
Specification of Operating System
AUTOSAR Release 4.2.2

1 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Document Change History
Release Changed by Change Description

4.2.2 AUTOSAR
Release
Management

¶ Allow calls to ControlIdle from all cores

¶ Minor updates/clarification of descriptions

¶ Editorial changes

4.2.1 AUTOSAR
Release
Management

¶ Add support for AsilQmProtection

¶ Minor updates/clarification of descriptions

¶ Editorial changes

4.1.3 AUTOSAR
Release
Management

¶ Changed multiplicity of attributes in
IocSender/ReceiverProperties

¶ Minor updates/clarification of descriptions

¶ Editorial changes

4.1.2 AUTOSAR
Release
Management

¶ Clarification on E_OS_NESTING_DEADLOCK

¶ Update of table 2

¶ Corrected multiplicity of ECUC_Os_00393

¶ Minor updates/clarification of descriptions

¶ Editorial changes

¶ Removed chapter(s) on change documentation

4.1.1 AUTOSAR
Administration

¶ Add support for ECU degradation

¶ Changed service interface description to a
formal format

¶ Several minor changes and clarifications

4.0.3 AUTOSAR
Administration

¶ Included MultiCore support from former
ñSpecification of Multi-Core OS Architectureò

3.1.5 AUTOSAR
Administration

¶ Clarification in 7.8.1 (meaning of "do nothing")
and 7.1.2.1 ("OSEK declarations")

¶ Minor changes as typos and rewording

3.1.4 AUTOSAR
Administration

¶ Extension of services (Chapter 12)

¶ States in OS- Applications

¶ Active termination of other OS-Applications in
possible (Chapter8)

¶ Legal disclaimer revised

¶ Chapter 10.4 revised

Document Title Specification of Operating
System

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 034

Document Classification Standard

Document Status Final

Part of AUTOSAR Release 4.2.2

Specification of Operating System
AUTOSAR Release 4.2.2

2 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Document Change History
Release Changed by Change Description

3.1.2 AUTOSAR
Administration

¶ Changes in OS configuration:

¶ removed "OsAppModeId" Parameter from
OsAppModeContainer

¶ added optional references from
OsAppModeContainer to OsAlarm, OsTask and
OsScheduleTable

3.1.1 AUTOSAR
Administration

¶ Legal Disclaimer revised

3.0.2 AUTOSAR
Administration

¶ Added ñOsScheduleTableDurationò parameter
to configuration specification chapter

3.0.1 AUTOSAR
Administration

¶ Changed methods for timing protection

¶ Moved configuration from OIL to AUTOSAR
XML

¶ Clarrified description for synchronization and
schedule tables

¶ Document meta information extended

¶ Small layout adaptations made

2.1.15 AUTOSAR
Administration

¶ Added support for SoftwareFreeRunningTimer
(SWFRT) incl. 2 new APIs

¶ Added API to start a schedule table synchron

¶ Misc. Corrections, Clarification and further
explanations

¶ Legal disclaimer revised

¶ Release Notes added

¶ ñAdvice for usersò revised

¶ ñRevision Informationò added

2.0 AUTOSAR
Administration

¶ Document structure adapted to common
Release 2.0 SWS Template.

¶ Major changes in chapter 10

¶ Structure of document changed partly

¶ Other changes see chapter 14

1.0 AUTOSAR
Administration

¶ Initial Release

Specification of Operating System
AUTOSAR Release 4.2.2

3 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only. For any other purpose, no part of
the specification may be utilized or reproduced, in any form or by any means, without
permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference
models, "use cases", and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their
presence in such specifications, nor any later documentation of AUTOSAR
conformance of products actually implementing such exemplary items, imply that
intellectual property rights covering such exemplary items are licensed under the
same rules as applicable to the AUTOSAR Standard.

Specification of Operating System
AUTOSAR Release 4.2.2

4 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Table of Content

1 Introduction and functional overview ... 10

2 Acronyms and abbreviations ... 11

2.1 Glossary of Terms .. 11

3 Related documentation.. 16

3.1 Input documents ... 16
3.2 Related standards and norms .. 17

3.2.1 OSEK/VDX .. 17
3.2.2 HIS .. 17

3.3 Company Reports, Academic Work, etc. .. 18

3.4 Related specification .. 18

4 Constraints and assumptions .. 19

4.1 Existing Standards ... 19
4.2 Terminology ... 19
4.3 Interaction with the RTE ... 19
4.4 Operating System Abstraction Layer (OSAL) ... 20

4.5 Multi-Core Hardware assumptions ... 20
4.5.1 CPU Core features .. 20
4.5.2 Memory features ... 21

4.5.3 Multi-Core Limitations ... 21
4.6 Limitations .. 22

4.6.1 Hardware... 22

4.6.2 Programming Language .. 22

4.6.3 Miscellaneous ... 23
4.7 Applicability to car domains .. 23

5 Dependencies to other modules .. 24

5.1 File structure .. 24
5.1.1 Code file structure ... 24

5.1.2 Header file structure .. 24

6 Requirements Traceability ... 26

7 Functional specification ... 43

7.1 Core OS ... 43

7.1.1 Background & Rationale ... 43
7.1.2 Requirements .. 43

7.2 Software Free Running Timer .. 46
7.3 Schedule Tables... 47

7.3.1 Background & Rationale ... 47

7.3.2 Requirements .. 47
7.4 Schedule Table Synchronization .. 54

7.4.1 Background & Rationale ... 54
7.4.2 Requirements .. 56

7.5 Stack Monitoring Facilities .. 63
7.5.1 Background & Rationale ... 63

Specification of Operating System
AUTOSAR Release 4.2.2

5 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

7.5.2 Requirements .. 64
7.6 OS-Application ... 64

7.6.1 Background & Rationale ... 64
7.6.2 Requirements .. 66

7.7 Protection Facilities .. 68

7.7.1 Memory Protection .. 68
7.7.2 Timing Protection .. 71
7.7.3 Service Protection ... 77
7.7.4 Protecting the Hardware used by the OS .. 83
7.7.5 Providing »Trusted Functions« .. 84

7.8 Protection Error Handling ... 85
7.8.1 Background & Rationale ... 85

7.8.2 Requirements .. 86

7.9 Operating System for Multi-Core .. 88
7.9.1 Background & Rationale ... 88
7.9.2 Scheduling .. 89
7.9.3 Locatable entities (LE) .. 90

7.9.4 Multi-Core start-up concept ... 91
7.9.5 Cores under control of the AUTOSAR OS .. 93

7.9.6 Cores which are not controlled by the AUTOSAR OS 94
7.9.7 Multi-Core shutdown concept .. 95

7.9.8 OS service functionality (overview) ... 96
7.9.9 GetTaskID ... 98
7.9.10 Interrupt disabling .. 98

7.9.11 TASK activation ... 99

7.9.12 TASK Chaining .. 100
7.9.13 EVENT setting ... 100
7.9.14 Activating additional cores .. 101

7.9.15 Start of the OS .. 101
7.9.16 TASK termination .. 102

7.9.17 Termination of OS-Applications ... 102
7.9.18 Shutdown of the OS .. 103
7.9.19 Waiting for EVENTs .. 103
7.9.20 Calling trusted functions .. 104

7.9.21 Invoking reschedule .. 104
7.9.22 RESOURCE occupation ... 104
7.9.23 The CoreID.. 105
7.9.24 COUNTERs, background & rationale .. 106

7.9.25 Multi-Core restrictions on COUNTERs .. 106
7.9.26 Synchronization of COUNTERs .. 107
7.9.27 ALARMs .. 108

7.9.28 Schedule tables ... 109
7.9.29 The spinlock mechanism ... 109
7.9.30 Offline checks .. 113
7.9.31 Auto start Objects .. 114

7.10 Inter-OS-Application Communicator (IOC) ... 114

7.10.1 Background & Rationale ... 114
7.10.2 IOC - General purpose .. 115
7.10.3 IOC functionality .. 116

Specification of Operating System
AUTOSAR Release 4.2.2

6 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

7.10.4 IOC interface ... 117
7.10.5 IOC internal structure .. 118
7.10.6 IOC configuration and generation ... 118
7.10.7 IOC integration examples .. 119
7.10.8 Future extensions .. 122

7.11 System Scalability .. 123
7.11.1 Background & Rationale ... 123
7.11.2 Requirements .. 124

7.12 Hook Functions .. 125
7.12.1 Background & Rationale ... 125

7.12.2 Requirements .. 125
7.13 Error classification .. 126

8 API specification .. 128

8.1 Constants ... 128
8.1.1 Error codes of type StatusType ... 128

8.2 Macros ... 128
8.3 Type definitions .. 128

8.3.1 ApplicationType (for OS-Applications) .. 128
8.3.2 ApplicationStateType .. 129

8.3.3 ApplicationStateRefType ... 129
8.3.4 TrustedFunctionIndexType.. 129

8.3.5 TrustedFunctionParameterRefType .. 129
8.3.6 AccessType... 129
8.3.7 ObjectAccessType .. 130

8.3.8 ObjectTypeType .. 130

8.3.9 MemoryStartAddressType... 130
8.3.10 MemorySizeType .. 130
8.3.11 ISRType .. 130

8.3.12 ScheduleTableType .. 131
8.3.13 ScheduleTableStatusType .. 131

8.3.14 ScheduleTableStatusRefType... 131
8.3.15 CounterType ... 131
8.3.16 ProtectionReturnType ... 132
8.3.17 RestartType... 132

8.3.18 PhysicalTimeType ... 132
8.3.19 CoreIdType ... 132
8.3.20 SpinlockIdType .. 132

8.3.21 TryToGetSpinlockType ... 133
8.3.22 IdleModeType ... 133

8.4 Function definitions .. 133
8.4.1 GetApplicationID ... 133

8.4.2 GetCurrentApplicationID ... 134
8.4.3 GetISRID ... 135
8.4.4 CallTrustedFunction .. 135
8.4.5 CheckISRMemoryAccess ... 137
8.4.6 CheckTaskMemoryAccess .. 138
8.4.7 CheckObjectAccess .. 139
8.4.8 CheckObjectOwnership .. 140

Specification of Operating System
AUTOSAR Release 4.2.2

7 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

8.4.9 StartScheduleTableRel ... 140
8.4.10 StartScheduleTableAbs .. 142
8.4.11 StopScheduleTable ... 143
8.4.12 NextScheduleTable ... 144
8.4.13 StartScheduleTableSynchron.. 145

8.4.14 SyncScheduleTable .. 146
8.4.15 SetScheduleTableAsync ... 147
8.4.16 GetScheduleTableStatus .. 148
8.4.17 IncrementCounter ... 150
8.4.18 GetCounterValue .. 150

8.4.19 GetElapsedValue .. 151
8.4.20 TerminateApplication .. 152

8.4.21 AllowAccess .. 154

8.4.22 GetApplicationState .. 155
8.4.23 GetNumberOfActivatedCores .. 155
8.4.24 GetCoreID ... 156
8.4.25 StartCore ... 156

8.4.26 StartNonAutosarCore .. 157
8.4.27 GetSpinlock ... 158

8.4.28 ReleaseSpinlock ... 159
8.4.29 TryToGetSpinlock ... 160

8.4.30 ShutdownAllCores ... 162
8.4.31 ControlIdle ... 162

8.5 IOC ... 163

8.5.1 Imported types .. 163

8.5.2 Type definitions ... 164
8.5.3 Constants .. 164
8.5.4 Function definitions ... 165

8.6 Expected Interfaces .. 175
8.6.1 Mandatory Interfaces .. 175

8.6.2 Optional Interfaces .. 175
8.7 Hook functions.. 177

8.7.1 Protection Hook ... 177
8.7.2 Application specific StartupHook ... 178

8.7.3 Application specific ErrorHook .. 178
8.7.4 Application specific ShutdownHook .. 179

8.8 Service Interfaces ... 179
8.8.1 Client-Server-Interfaces .. 179

9 Sequence diagrams... 182

9.1 Sequence chart for calling trusted functions ... 182
9.2 Sequence chart for usage of ErrorHook ... 183

9.3 Sequence chart for ProtectionHook.. 184
9.4 Sequence chart for StartupHook .. 185
9.5 Sequence chart for ShutdownHook .. 186
9.6 Sequence diagrams of Sender Receiver communication over the IOC 186

9.6.1 LastIsBest communication .. 186
9.6.2 Queued communication without pull callback.................................... 187
9.6.3 Queued communication with pull callback .. 189

Specification of Operating System
AUTOSAR Release 4.2.2

8 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

10 Configuration Specification .. 190

10.1 How to read this chapter .. 190
10.1.1 Rules for paramters ... 190

10.2 Containers and configuration parameters .. 190
10.2.1 Variants ... 190

10.2.2 Os ... 190
10.2.3 OsAlarmSetEvent .. 191
10.2.4 OsAlarm .. 192
10.2.5 OsAlarmAction .. 193
10.2.6 OsAlarmActivateTask .. 193

10.2.7 OsAlarmAutostart .. 193
10.2.8 OsAlarmCallback .. 195

10.2.9 OsAlarmIncrementCounter.. 195

10.2.10 OsApplication .. 196
10.2.11 OsApplicationHooks .. 199
10.2.12 OsApplicationTrustedFunction ... 200
10.2.13 OsAppMode ... 201

10.2.14 OsCounter ... 201
10.2.15 OsEvent ... 203

10.2.16 OsHooks .. 204
10.2.17 OsIsr .. 205

10.2.18 OsIsrResourceLock ... 206
10.2.19 OsIsrTimingProtection ... 207
10.2.20 OsOS ... 209

10.2.21 OsResource ... 211

10.2.22 OsScheduleTable .. 212
10.2.23 OsScheduleTableAutostart .. 213
10.2.24 OsScheduleTableEventSetting .. 215

10.2.25 OsScheduleTableExpiryPoint .. 215
10.2.26 OsScheduleTableTaskActivation ... 216

10.2.27 OsScheduleTblAdjustableExpPoint ... 216
10.2.28 OsScheduleTableSync .. 217
10.2.29 OsSpinlock .. 218
10.2.30 OsTask .. 219

10.2.31 OsTaskAutostart .. 221
10.2.32 OsTaskResourceLock ... 222
10.2.33 OsTaskTimingProtection ... 223
10.2.34 OsTimeConstant .. 224

10.3 Containers and configuration parameter extensions of the IOC 225
10.3.1 OsIoc ... 225
10.3.2 OsIocCommunication .. 226

10.3.3 OsIocSenderProperties ... 227
10.3.4 OsIocReceiverProperties .. 228
10.3.5 OsIocDataProperties ... 230

10.4 Published Information ... 231

11 Generation of the OS ... 232

11.1 Read in configuration ... 232
11.2 Consistency check ... 232

Specification of Operating System
AUTOSAR Release 4.2.2

9 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

11.3 Generating operating system ... 234

12 Application Notes ... 235

12.1 Hooks ... 235
12.2 Providing Trusted Functions ... 235
12.3 Migration hints for OSEKtime OS users ... 237

12.4 Software Components and OS-Applications .. 239
12.5 Global Time Synchronization ... 240
12.6 Working with FlexRay ... 240
12.7 Migration from OIL to XML ... 241
12.8 Migrating RES_SCHEDULER in AUTOSAR OS 241

12.9 Debug support .. 242
12.10 Integration hints for peripheral protection ... 242

12.11 Termination of OSApplications ... 243

13 AUTOSAR Service implemented by the OS .. 245

13.1 Scope of this Chapter ... 245
13.1.1 Package .. 245

13.2 Overview .. 245
13.3 Specification of the Ports and Port Interfaces .. 245

14 Outlook on Memory Protection Configuration .. 246

14.1 Configuration Approach .. 246

15 Not applicable requirements .. 247

Specification of Operating System
AUTOSAR Release 4.2.2

10 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

1 Introduction and functional overview

This document describes the essential requirements on the AUTOSAR Operating
System to satisfy the top-level requirements presented in the AUTOSAR SRS [2].

In general, operating systems can be split up in different groups according to their
characteristics, e.g. statically configured vs. dynamically managed. To classify the
AUTOSAR OS, here are the basic features: the OS

¶ is configured and scaled statically

¶ is amenable to reasoning of real-time performance

¶ provides a priority-based scheduling policy

¶ provides protective functions (memory, timing etc.) at run-time

¶ is hostable on low-end controllers and without external resources

This feature set defines the type of OS commonly used in the current generation of
automotive ECUs, with the exception of Telematic/Infotainment systems. It is
assumed that Telematic/Infotainment systems will continue to use proprietary Oss
under the AUTOSAR framework (e.g. Windows CE, VxWorks, QNX, etc.). In the case
where AUTOSAR components are needed to run on these proprietary Oss, the
interfaces defined in this document should be provided as an Operating System
Abstraction Layer (OSAL).

This document uses the industry standard OSEK OS [15] (ISO 17356-3) as the basis
for the AUTOSAR OS. The reader should be familiar with this standard before
reading this document.

This document describes extensions to, and restrictions of, this OSEK OS.

Specification of Operating System
AUTOSAR Release 4.2.2

11 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

2 Acronyms and abbreviations

Abbreviation Description

API Application Programming Interface

AR AUTOSAR

BSW Basic Software

BSWMD Basic Software Module Description

CDD Complex Driver

COM Communication

ECC Extended Conformance Class

ECU Electronic Control Unit

HIS Hersteller Initiative Software

HW Hardware

ID Identifier

IOC Inter OS-Application communicator

ISR Interrupt Service Routine

LE A locatable entity is a distinct piece of software that has the same effect regardless of
which core it is located.

MC Multi-Core

MCU Microcontroller Unit

ME Mutual exclusion

MPU Memory Protection Unit

NMI Mutual exclusion

OIL OSEK Implementation Language

OS Operating System

OSEK/VDX Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug

RTE Run-Time Environment

RTOS Real Time Operating System

SC Single-Core

SLA Software Layered Architecture

SW Software

SWC Software Component

SWFRT Software FreeRunningTimer

2.1 Glossary of Terms

Term: Definition

Access Right An indication that an object (e.g. Task, ISR, hook function) of an OS-Application
has the permission of access or manipulation with respect to memory, OS
services or (set of) OS objects.

Cardinality The number of items in a set.

Counter An operating system object that registers a count in ticks. There are two types of
counters:

Hardware Counter A counter that is advanced by hardware (e.g. timer).
The count value is maintained by the peripheral ñin
hardwareò.

Software Counter A counter which is incremented by making the

IncrementCounter() API call (see

SWS_Os_00399). The count value is maintained by
the operating system ñin softwareò.

Deadline The time at which a Task/Category 2 ISR must reach a certain point during its
execution defined by system design relative to the stimulus that triggered

activation. See Figure 2.1

Specification of Operating System
AUTOSAR Release 4.2.2

12 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Delay The number of ticks between two adjacent expiry points on a schedule table.
A pair of expiry points X and Y are said to be adjacent when:

¶ There is no expiry point Z such that X.Offset < Z.Offset < Y.Offset. In this
case the Delay = Y.Offset-X.Offset

¶ X and Y are the Final Expiry Point and the Initial Expiry Point
respectively. In this case Delay = (Duration-X.Offset)+Y.Offset

When used in the text, Delay is a relative number of ticks measured from a
specified expiry point. For example: X.Delay is the delay from X to the next expiry
point.

Deviation The minimum number of ticks between the current position on an explicitly
synchronized schedule table and the value of the synchronization count modulo
the duration of the schedule table.

Duration The number of ticks from a notional zero at which a schedule table wraps.

Execution Time Tasks:

The net time a task spends in the RUNNING state without entering the

SUSPENDED or WAITING state excluding all preemptions due to ISRs

which preempt the task. An extended task executing the WaitEvent()

API call to wait on an event which is already set notionally enters the

WAITING state. For multiple activated basic tasks the net time is per

activation of a task.

ISRs:
The net time from the first to the last instruction of the user provided
Category 2 interrupt handler excluding all preemptions due to higher
priority ISRs executing in preference.

Execution time includes the time spent in the error, pretask and posttask hooks
and the time spent making OS service calls.

Execution Budget Maximum permitted execution time for a Task/ISR.

Expiry Point The offset on a Schedule Table, measured from zero, at which the OS activates
tasks and/or sets events.

Initial Expiry Point The expiry point with the smallest offset

Final Expiry Point The expiry point with the largest offset

Hook Function A Hook function is implemented by the user and invoked by the operating system
in the case of certain incidents. In order to react to these on system or application
level, there are two kinds of hook functions

Application-specific Hook functions within the scope of an individual OS-
Application.

System-specific Hook functions within the scope of the complete
system (in general provided by the integrator).

Initial Offset The smallest expiry point offset on a schedule table. This can be zero.

Interarrival Time Basic Tasks

The time between successively entering the READY state from the

SUSPENDED state. Activation of a task always represents a new arrival.

This applies in the case of multiple activations, even if an existing

instance of the task is in the RUNNING or READY state.

Extended Tasks:

The time between successively entering the READY state from the

SUSPENDED or WAITING states. Setting an event for a task in the

WAITING state represents a new arrival if the task is waiting on the

event. Waiting for an event in the RUNNING state which is already set

represents a new arrival.

ISRs:
The time between successive occurrences of an interrupt.

See Figure 2.1.

Specification of Operating System
AUTOSAR Release 4.2.2

13 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Interrupt Lock Time The time for which a Task/ISR executes with Category 1 interrupts
disabled/suspended and/or Category 2 interrupts disabled/suspended .

Interrupt Source
Enable

The switch which enables a specific interrupt source in the hardware.

Interrupt Vector
Table

Conceptually, the interrupt vector table contains the mapping from hardware
interrupt requests to (software) interrupt service routines. The real content of the
Interrupt Vector Table is very hardware specific, e.g. it can contain the start
addresses of the interrupt service routines.

Final Delay The difference between the Final Expiry Point offset and the duration on a
schedule table in ticks. This value defines the delay from the Final Expiry Point to
the logical end of the schedule table for single-shot and ñnextedò schedule tables.

Forced OS-
Application
Termination

The operating system frees all system objects, e.g. forcibly terminates Tasks,
disables interrupts, etc., which are associated to the OS-Application. OS-
Application and internal variables are potentially left in an undefined state.

Forced
Termination

The OS terminates the Task/Category 2 ISR and does òunlockò its held
resources. For details see SWS_Os_00108 and SWS_Os_00109.

Linker File File containing linking settings for the linker. The syntax of the linker file depends
on the specific linker and, consequently, definitions are stored ñlinker-specificò in
the linker file.

Lock Budget Maximum permitted Interrupt Lock Time or Resource Lock Time.

Master core A master core is a core from which the AUTOSAR system is bootstrapped.

Memory Protection
Unit

A Memory Protection Unit (MPU) enables memory partitioning with individual
protection attributes. This is distinct from a Memory Management Unit (MMU)
that provides a mapping between virtual addresses and physical memory
locations at runtime.
Note that some devices may realise the functionality of an MPU in an MMU.

Mode Describes the permissions available on a processor.

Privileged In general, in »privileged mode« unrestricted access is
available to memory as well as the underlying hardware.

Non-privileged In »non-privileged mode« access is restricted.

Modulus The number of ticks required to complete a full wrap of an OSEK counter. This is

equal to OsCounterMaxAllowedValue +1 ticks of the counter.

OS-Application A collection of OS objects

Trusted An OS-Application that may be executed in privileged mode and
may have unrestricted access to the API and hardware
resources. Only trusted applications can provide trusted
functions.

Non-trusted An OS-Application that is executed in non-privileged mode has
restricted access to the API and hardware resources.

OS object Object that belongs to a single OS-Application: Task, ISR, Alarm, Event,
Schedule Table, Resource, Trusted Function, Counter, Applicaton-specific hook.

OS Service OS services are the API of the operating system.

Protection Error Systematic error in the software of an OS-Application.

Memory access
violation

A protection error caused by access to an address in a
manner for which no access right exists.

Timing fault A protection error that violates the timing protection.

Illegal service A protection error that violates the service protection, e.g.
unauthorized call to OS service.

Hardware exception division by zero, illegal instruction etc.

Resource Lock
Time

The time an OSEK resource is held by a Task/ISR (excluding the preemptions of
the Task/ISR by higher prior Tasks/ISRs).

Response Time The time between a Task/ISR being made ready to execute and generating a

specified response. The time includes all preemptions. See Figure 2.1

Restart an OS-
Application

An OS-Application can be restarted after self-termination or being forcibly
terminated because of a protection error. When an OS-Application is restarted,

the OS activates the configured OsRestartTask .

Specification of Operating System
AUTOSAR Release 4.2.2

14 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Scalability Class The features of the OS (e.g. Memory Protection or Timing Protection), described
by this document, can be grouped together to customize the operating system to
the needs of the application. There are 4 defined groups of features which are
named scalability classes. For details see Chapter 7.11

Schedule Table Encapsulation of a statically defined set of expiry points.

Section Part of an object file in which instructions or data are combined to form a unit
(contiguous address space in memory allocated for data or code). A section in an
object file (object file format) has a name and a size.
From the linker perspective, two different sides can be distinguished:

Input section memory section in an input object file of the linker.

Output section memory section in an output object file of the linker.

Set (of OS objects) This document uses the term set, indicating a collection of the same type of OS
objects, in the strict mathematical sense, i.e.:
- a set contains zero or more OS objects (this means a set can be empty)
- the OS objects in the set are unique (this means there cannot be duplicate OS
objects in the set)

Spinlock A spinlock is a locking mechanism where the TASK waits in a loop ("spins")
repeatedly checking for a shared variable to become a certain value.
The value indicates whether the lock is free or not. In Multi-Core systems the
comparison and changing of the variable typically requires an atomic operation.
As the TASK remains active but is not doing anything useful, a spinlock is a busy
waiting mechanism

Spinlock variable A spinlock variable is a shared variable used by a spinlock to indicate whether a
spinlock is free or occupied.

Symbol Address label that can be imported/used by software modules and resolved by
the linker. The precise syntax of the labels is linker-specific. Here, these address
labels are used to identify the start and end of memory sections.

Start symbol Tags the start of a memory section

End symbol Tags the end of a memory section

Synchronization of
schedule tables
with a
synchronization
counter

Synchronization with a synchronization counter is achieved, if the expiry points of
the schedule table are processed within an absolute deviation from the
synchronization counter that is smaller than or equal to a precision threshold.

Synchronization
Counter

The ñSynchronization Counterò, distinct from an OS counter object, is an external
counter, external to the OS, against which expiry points of a schedule table are
synchronized

Task A Task is the object which executes (user) code and which is managed by the
OS. E.g. the OS switches between different Tasks (ñschedulesò). There are 2
types of Tasks; for more details see [15].

Basic Task A Task which can not block by itself. This means that it can not
wait for (OS) event(s).

Extended Task A Task which can block by itself and wait for (OS) event(s).

Time Frame The minmum inter-arrival time for a Task/ISR.

Trusted Function A service provided by a trusted OS-Application that can be used by other OS-
Applications (trusted or non-trusted).

Worst case
execution time
(WCET)

The longest possible execution time.

Write access Storing a value in a register or memory location. All memory accesses that have
the consequence of writing (e.g. reads that have the side effect of writing to a
memory location) are treated as write accesses.

Specification of Operating System
AUTOSAR Release 4.2.2

15 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

12 13 14 152 3 4 5 6 7 8 9 10 110 1

High

16 17 18

High

Low Low

LOWôs Response Time

LOWôs Deadline

LOWôs Inter-arrival time

Low

19 20 21 22 23 24

Low

LOWôs Execution Time

High

Low

Task HIGH and Task

LOW activated
Task LOW terminates

Task LOW activated

again

Figure 2.1: Definition of Timing Terminology

Specification of Operating System
AUTOSAR Release 4.2.2

16 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

3 Related documentation

3.1 Input documents

[1] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[2] Requirements on Operating System
AUTOSAR_SRS_OS.pdf

[3] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral.pdf

[4] Specification of the Virtual Functional Bus
AUTOSAR_EXP_VFB.pdf

[5] Requirements on Software FreeRunningTimer
AUTOSAR_SRS_FreeRunningTimer.pdf

[6] Specification of GPT Driver
AUTOSAR_SWS_GPTDriver.pdf

[7] Specification of Standard Types
AUTOSAR_SWS_StandardTypes.pdf

[8] Specification of Memory Mapping
AUTOSAR_SWS_MemoryMapping.pdf

[9] Specification of RTE
AUTOSAR_SWS_RTE.pdf

[10] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration.pdf

[11] Basic Software Module Description Template,
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[12] List of Basic Software Modules,
AUTOSAR_TR_BSWModuleList.pdf

[13] Specification of RTE,
AUTOSAR_SWS_RTE.pdf

[14] General Specification of Basic Software Modules
AUTOSAR_SWS_BSWGeneral.pdf

Specification of Operating System
AUTOSAR Release 4.2.2

17 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

3.2 Related standards and norms

3.2.1 OSEK/VDX

The OSEK/VDX specifications are publicly available from www.osek-vdx.org

[15] Operating System

Version 2.2.3
17th February 2005

[16] Time-Triggered Operating System

Version 1.0
24th July 2001

[17] System Generation OIL: OSEK Implementation Language

Version 2.5
1st July 2004

[18] OSEK RunTime Interface (ORTI) Part A: Language Specification

Version 2.2
14th November 2005

[19] OSEK Run Time Interface (ORTI) Part B: OSEK Objects and Attributes
Version 2.2
25th November 2005

[20] Binding Specification

Version 1.4.2
15th July 2004

3.2.2 HIS

The HIS (Hersteller Initiative Software) documents are publicly available from
www.automotive-his.de

[21] Requirements for Protected Applications under OSEK

Version 1
25th September 2002.

[22] OSEK OS Extensions for Protected Applications

Version 1.0
27th July 2003

http://www.osek-vdx.org/
http://www.automotive-his.de/

Specification of Operating System
AUTOSAR Release 4.2.2

18 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

3.3 Company Reports, Academic Work, etc.

[23] Extensions of OSEK OS for Protected Applications

OSEK Support Project DC058_02
DaimlerChrysler AG

3.4 Related specification

AUTOSAR provides a General Specification on Basic Software modules [14] (SWS
BSW General), which is also valid for Operating System.

Thus, the specification SWS BSW General shall be considered as additional and
required specification for Operating System.

Specification of Operating System
AUTOSAR Release 4.2.2

19 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

4 Constraints and assumptions

4.1 Existing Standards

This document makes the following assumptions about the referenced related
standards and norms:

¶ OSEK OS [15] provides a sufficiently flexible scheduling policy to schedule
AUTOSAR systems.

¶ OSEK OS [15] is a mature specification and implementations are used in millions
of ECUs worldwide.

¶ OSEK OS [15] does not provide sufficient support for isolating multi-source
software components at runtime.

¶ OSEK OS [15] does not provide sufficient runtime support for demonstrating the
absence of some classes of fault propagation in a safety-case.

¶ OSEKtime OS [16] and the HIS Protected OSEK [22] are immature specifications
that contain concepts necessary for AUTOSAR and satisfy specific application
domains. It is the purpose of this document to identify these needs and to
recommend the use of parts (or all) of these specifications as appropriate.

4.2 Terminology

The specification uses the following operators when requirements specify multiple
terms:

NOT : negation of a single term e.g. NOT Weekend
AND : conjunction of two terms e.g. Weekend AND Saturday
OR : disjunction of two terms e.g. Monday OR Tuesday

A requirement comprising multiple terms is evaluated left to right.

The precedence rules are:

Highest Precedence NOT
Lowest Precedence AND OR

The expression NOT X AND Y means (NOT X) AND (Y)

Where operators of the same precedence are used in the same sentence, commas
are used to disambiguate. The expression X AND Y, OR Z means (X AND Y) OR Z.

4.3 Interaction with the RTE

The configuration of an AUTOSAR system [4] maps the »runnables« of a »software
component« to (one or more) tasks that are scheduled by the operating system. All
runnables in a task share the same protection boundary. In AUTOSAR, a software
component must not include an interrupt handler. A software component is therefore
implemented as runnables executing within the body of a task, or set of tasks, only.

Specification of Operating System
AUTOSAR Release 4.2.2

20 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Runnables get access to hardware-sourced data through the AUTOSAR RTE. The
RTE provides the runtime interface between runnables and the basic software
modules. The basic software modules also comprise a number of tasks and ISRs
that are scheduled by the operating system.

It is assumed that the software component templates and the description of the basic
software modules provide sufficient information about the required runtime behavior
to be able to specify the attributes of tasks required to configure the OS.

4.4 Operating System Abstraction Layer (OSAL)

Systems that do not use the OS defined in AUTOSAR can provide a platform for the
execution of AUTOSAR software components using an Operating System
Abstraction Layer. The interface to the OSAL is exactly that defined for the
AUTOSAR OS.

4.5 Multi-Core Hardware assumptions

There are currently several existing and suggested HW-architectures1 for Multi-Core
microprocessors. There is considerable variation in the features offered by these
architectures. Therefore this section attempts to capture a common set of
architectural features required for Multi-Core.
Hardware assumptions shall remain assumptions and shall not become official
Autosar requirements.

4.5.1 CPU Core features

1. More than one core on the same piece of silicon.

2. The HW offers a method that can be used by the SW to identify a core.

3. The hardware supports atomic read and atomic write operations for a fixed
word length depending on the hardware.

4. The hardware supports some atomic Test-And-Set functionality or similar
functionalities that can be used to built a critical section shared between cores.
Additional atomic operations may exist.

5. The cores may have the same instruction set; at least a common basic
instruction set is available on all cores. Core specific add-ons may exist but
they are not taken into account.

6. The cores have the same data representation. For example, the same size of
integer, same byte and bit order, etc.

1
 In this context ñarchitectureò encompasses: the connections between cores and memory, and to peripherals and how interrupts

work.

Specification of Operating System
AUTOSAR Release 4.2.2

21 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

7. If per-core caches exist, AUTOSAR requires support for RAM - cache
coherency in HW or in SW. In software means that the cache-controller can be
programmed by the SW in a way that it invalidates cache lines or excludes
certain memory regions from caching.

8. In case of an exception (such as an illegal memory reference or divide by
zero) the exception occurs on the core that introduced the exception.

9. For notification purposes, it is possible to trigger an interrupt/trap on any core.

4.5.2 Memory features

1. Shared RAM is available to all cores; at least all cores can share a substantial
part of the memory.

2. Flash shall be shared between all cores at least. However, performance can
be improved if Flash/RAM can be partitioned so that there are separate
pathways from cores to Flash.

3. A single address space is assumed, at least in the shared parts of the memory
address space.

4. The AUTOSAR Multi-Core architecture shall be capable to run on systems
that do and do not support memory protection. If memory protection exists, all
cores are covered by a hardware based memory protection.

4.5.3 Multi-Core Limitations

¶ In AUTOSAR R4.0, it is not supported to activate additional cores under
control of AUTOSAR after the Operating System was started.

¶ The scheduling algorithm does not assign TASKs dynamically to cores.

¶ The AUTOSAR OS RESOURCE algorithm is not supported across cores.
RESOURCES can be used locally, between TASKs that are bound to the
same core but not between TASKs/ISRs which are bound to different cores.

Specification of Operating System
AUTOSAR Release 4.2.2

22 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

4.6 Limitations

4.6.1 Hardware

The core AUTOSAR operating system assumes free access to hardware resources,
which are managed by the OS itself. This includes, but is not limited to, the following
hardware:

¶ interrupt control registers

¶ processor status words

¶ stack pointer(s)

Specific (extended) features of the core operating system extend the requirements
on hardware resource. The following list outlines the features that have requirements
on the hardware. Systems that do not use these OS features do not have these
hardware requirements.

¶ Memory Protection: A hardware memory protection unit is required. All memory
accesses that have the consequence of writing (e.g. reads that have the side
effect of writing to a memory location) shall be treated as writes.

¶ Time Protection: Timer Hardware for monitoring execution times and arrival rates.

¶ »Privileged« and »non-privileged« modes on the MCU: to protect the OS against
internal corruption caused by writes to OS controlled registers. This mode must
not allow OS-Applications to circumvent protection (e.g. write registers which
govern memory protection, write to processor status word etc.). The privileged
mode must be under full control of the protected OS which uses the mode
internally and to transfer control back and forth from a non-trusted OS-Application
to a trusted OS-Application. The microprocessor must support a controlled means
which moves a processor into this privileged mode.

¶ Local/Global Time Synchronization: A global time source is needed.

In general hardware failures in the processor are not detected by the operating
system. In the event of hardware failure, correct operation of the OS cannot be
guaranteed.

The resources managed by a specific OS implementation have to be defined within
the appropriate configuration file of the OS.

4.6.2 Programming Language

The API of the operating system is defined as C function calls or macros. If other
languages are used they must adapt to the C interface.

Specification of Operating System
AUTOSAR Release 4.2.2

23 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

4.6.3 Miscellaneous

The operating system does not provide services for dynamic memory management.

4.7 Applicability to car domains

The operating system has the same design constraints regarding size and scalability
under which the OSEK OS was designed. The immediate domain of applicability is
therefore currently body, chassis and power train ECUs. However, there is no reason
that the OS cannot be used to implement ECUs for infotainment applications.

Specification of Operating System
AUTOSAR Release 4.2.2

24 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

5 Dependencies to other modules

There are no forced dependencies on other modules, however:

o It is assumed that the operating system may use timer units directly to drive
counters.

o If the user needs to drive scheduling directly from global time, then a global
time interrupt is required.

o If the user needs to synchronize the processing of a schedule table to a global
time, the operating system needs to be told the global time using the

SyncScheduleTable() service.
o The IOC described in this document provides communication between OS-

Applications. The IOC generation is based on configuration information which
is generated by the RTE generator. On the other hand the RTE uses functions
generated by the IOC to transmit data.

5.1 File structure

5.1.1 Code file structure

The code file structure of the Operating system module is not fixed, besides the
requirements in the General SRS.

5.1.2 Header file structure

Figure 5:1: Header File Structure for the OS

The figure above contains the defined AUTOSAR header file hierarchy of the
Operating System module.

Os.h

includes

OS

Os_Cfg.h

Std_Types.h Os_MemM
ap.h

Rte_Type.h

Specification of Operating System
AUTOSAR Release 4.2.2

25 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

The IOC generator generates an additional header file Ioc.h. Users of the Ioc.h shall
include the Ioc.h file. If an implementation of the IOC requires additional header files,
it is free to include them. The header files are self-contained, that means they will
include all other header files, which they require.

Specification of Operating System
AUTOSAR Release 4.2.2

26 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

6 Requirements Traceability

This chapter contains references to requirements of other AUTOSAR documents.

Requirement Description Satisfied by

- - SWS_Os_00006

- - SWS_Os_00009

- - SWS_Os_00016

- - SWS_Os_00017

- - SWS_Os_00027

- - SWS_Os_00045

- - SWS_Os_00050

- - SWS_Os_00054

- - SWS_Os_00058

- - SWS_Os_00060

- - SWS_Os_00071

- - SWS_Os_00083

- - SWS_Os_00085

- - SWS_Os_00097

- - SWS_Os_00100

- - SWS_Os_00111

- - SWS_Os_00112

- - SWS_Os_00172

- - SWS_Os_00173

- - SWS_Os_00177

- - SWS_Os_00179

- - SWS_Os_00194

- - SWS_Os_00198

- - SWS_Os_00209

- - SWS_Os_00211

- - SWS_Os_00225

- - SWS_Os_00226

- - SWS_Os_00236

- - SWS_Os_00237

- - SWS_Os_00239

- - SWS_Os_00242

- - SWS_Os_00256

- - SWS_Os_00258

- - SWS_Os_00261

Specification of Operating System
AUTOSAR Release 4.2.2

27 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

- - SWS_Os_00262

- - SWS_Os_00263

- - SWS_Os_00264

- - SWS_Os_00265

- - SWS_Os_00266

- - SWS_Os_00267

- - SWS_Os_00268

- - SWS_Os_00269

- - SWS_Os_00270

- - SWS_Os_00271

- - SWS_Os_00272

- - SWS_Os_00273

- - SWS_Os_00274

- - SWS_Os_00275

- - SWS_Os_00276

- - SWS_Os_00277

- - SWS_Os_00278

- - SWS_Os_00279

- - SWS_Os_00280

- - SWS_Os_00281

- - SWS_Os_00282

- - SWS_Os_00283

- - SWS_Os_00284

- - SWS_Os_00285

- - SWS_Os_00287

- - SWS_Os_00289

- - SWS_Os_00290

- - SWS_Os_00291

- - SWS_Os_00292

- - SWS_Os_00293

- - SWS_Os_00300

- - SWS_Os_00303

- - SWS_Os_00304

- - SWS_Os_00308

- - SWS_Os_00309

- - SWS_Os_00311

- - SWS_Os_00312

- - SWS_Os_00313

- - SWS_Os_00314

Specification of Operating System
AUTOSAR Release 4.2.2

28 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

- - SWS_Os_00320

- - SWS_Os_00321

- - SWS_Os_00323

- - SWS_Os_00324

- - SWS_Os_00327

- - SWS_Os_00328

- - SWS_Os_00330

- - SWS_Os_00332

- - SWS_Os_00343

- - SWS_Os_00344

- - SWS_Os_00347

- - SWS_Os_00348

- - SWS_Os_00349

- - SWS_Os_00350

- - SWS_Os_00351

- - SWS_Os_00353

- - SWS_Os_00354

- - SWS_Os_00355

- - SWS_Os_00356

- - SWS_Os_00358

- - SWS_Os_00361

- - SWS_Os_00362

- - SWS_Os_00364

- - SWS_Os_00365

- - SWS_Os_00367

- - SWS_Os_00368

- - SWS_Os_00369

- - SWS_Os_00376

- - SWS_Os_00381

- - SWS_Os_00387

- - SWS_Os_00388

- - SWS_Os_00389

- - SWS_Os_00391

- - SWS_Os_00396

- - SWS_Os_00397

- - SWS_Os_00399

- - SWS_Os_00401

- - SWS_Os_00402

- - SWS_Os_00403

Specification of Operating System
AUTOSAR Release 4.2.2

29 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

- - SWS_Os_00404

- - SWS_Os_00407

- - SWS_Os_00408

- - SWS_Os_00409

- - SWS_Os_00410

- - SWS_Os_00411

- - SWS_Os_00412

- - SWS_Os_00413

- - SWS_Os_00414

- - SWS_Os_00415

- - SWS_Os_00416

- - SWS_Os_00417

- - SWS_Os_00418

- - SWS_Os_00419

- - SWS_Os_00420

- - SWS_Os_00421

- - SWS_Os_00422

- - SWS_Os_00423

- - SWS_Os_00424

- - SWS_Os_00425

- - SWS_Os_00427

- - SWS_Os_00428

- - SWS_Os_00429

- - SWS_Os_00430

- - SWS_Os_00431

- - SWS_Os_00435

- - SWS_Os_00436

- - SWS_Os_00437

- - SWS_Os_00438

- - SWS_Os_00439

- - SWS_Os_00440

- - SWS_Os_00442

- - SWS_Os_00443

- - SWS_Os_00444

- - SWS_Os_00445

- - SWS_Os_00446

- - SWS_Os_00447

- - SWS_Os_00448

- - SWS_Os_00449

Specification of Operating System
AUTOSAR Release 4.2.2

30 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

- - SWS_Os_00450

- - SWS_Os_00451

- - SWS_Os_00452

- - SWS_Os_00453

- - SWS_Os_00454

- - SWS_Os_00455

- - SWS_Os_00456

- - SWS_Os_00457

- - SWS_Os_00458

- - SWS_Os_00459

- - SWS_Os_00460

- - SWS_Os_00461

- - SWS_Os_00462

- - SWS_Os_00463

- - SWS_Os_00464

- - SWS_Os_00466

- - SWS_Os_00467

- - SWS_Os_00475

- - SWS_Os_00476

- - SWS_Os_00483

- - SWS_Os_00484

- - SWS_Os_00493

- - SWS_Os_00494

- - SWS_Os_00495

- - SWS_Os_00496

- - SWS_Os_00497

- - SWS_Os_00498

- - SWS_Os_00499

- - SWS_Os_00500

- - SWS_Os_00501

- - SWS_Os_00502

- - SWS_Os_00503

- - SWS_Os_00504

- - SWS_Os_00505

- - SWS_Os_00506

- - SWS_Os_00507

- - SWS_Os_00508

- - SWS_Os_00509

- - SWS_Os_00510

Specification of Operating System
AUTOSAR Release 4.2.2

31 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

- - SWS_Os_00511

- - SWS_Os_00512

- - SWS_Os_00513

- - SWS_Os_00514

- - SWS_Os_00515

- - SWS_Os_00516

- - SWS_Os_00517

- - SWS_Os_00518

- - SWS_Os_00519

- - SWS_Os_00520

- - SWS_Os_00521

- - SWS_Os_00522

- - SWS_Os_00523

- - SWS_Os_00524

- - SWS_Os_00525

- - SWS_Os_00526

- - SWS_Os_00527

- - SWS_Os_00528

- - SWS_Os_00529

- - SWS_Os_00530

- - SWS_Os_00531

- - SWS_Os_00532

- - SWS_Os_00533

- - SWS_Os_00534

- - SWS_Os_00535

- - SWS_Os_00536

- - SWS_Os_00537

- - SWS_Os_00538

- - SWS_Os_00539

- - SWS_Os_00540

- - SWS_Os_00541

- - SWS_Os_00542

- - SWS_Os_00543

- - SWS_Os_00544

- - SWS_Os_00545

- - SWS_Os_00547

- - SWS_Os_00548

- - SWS_Os_00553

- - SWS_Os_00554

Specification of Operating System
AUTOSAR Release 4.2.2

32 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

- - SWS_Os_00555

- - SWS_Os_00556

- - SWS_Os_00557

- - SWS_Os_00558

- - SWS_Os_00559

- - SWS_Os_00560

- - SWS_Os_00562

- - SWS_Os_00563

- - SWS_Os_00564

- - SWS_Os_00565

- - SWS_Os_00566

- - SWS_Os_00762

- - SWS_Os_00763

- - SWS_Os_00764

- - SWS_Os_00769

- - SWS_Os_00772

- - SWS_Os_00773

- - SWS_Os_00774

- - SWS_Os_00775

- - SWS_Os_00776

- - SWS_Os_00777

- - SWS_Os_00778

- - SWS_Os_00779

- - SWS_Os_00780

- - SWS_Os_00781

- - SWS_Os_00782

- - SWS_Os_00783

- - SWS_Os_00784

- - SWS_Os_00785

- - SWS_Os_00786

- - SWS_Os_00787

- - SWS_Os_00788

- - SWS_Os_00789

- - SWS_Os_00790

- - SWS_Os_00791

- - SWS_Os_00792

- - SWS_Os_00793

- - SWS_Os_00794

- - SWS_Os_00797

Specification of Operating System
AUTOSAR Release 4.2.2

33 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

- - SWS_Os_00798

- - SWS_Os_00799

- - SWS_Os_00800

SRS_BSW_00003 All software modules shall
provide version and
identification information

SWS_Os_00767

SRS_BSW_00006 The source code of software
modules above the ÂµC
Abstraction Layer (MCAL)
shall not be processor and
compiler dependent.

SWS_Os_00767

SRS_BSW_00007 All Basic SW Modules written
in C language shall conform to
the MISRA C 2004 Standard.

SWS_Os_00767

SRS_BSW_00009 All Basic SW Modules shall be
documented according to a
common standard.

SWS_Os_00767

SRS_BSW_00010 The memory consumption of
all Basic SW Modules shall be
documented for a defined
configuration for all supported
platforms.

SWS_Os_00767

SRS_BSW_00161 The AUTOSAR Basic Software
shall provide a microcontroller
abstraction layer which
provides a standardized
interface to higher software
layers

SWS_Os_00767

SRS_BSW_00162 The AUTOSAR Basic Software
shall provide a hardware
abstraction layer

SWS_Os_00767

SRS_BSW_00168 SW components shall be
tested by a function defined in
a common API in the Basis-
SW

SWS_Os_00767

SRS_BSW_00170 The AUTOSAR SW
Components shall provide
information about their
dependency from faults, signal
qualities, driver demands

SWS_Os_00767

SRS_BSW_00172 The scheduling strategy that is
built inside the Basic Software
Modules shall be compatible
with the strategy used in the
system

SWS_Os_00767

SRS_BSW_00301 All AUTOSAR Basic Software
Modules shall only import the
necessary information

SWS_Os_00767

SRS_BSW_00302 All AUTOSAR Basic Software
Modules shall only export
information needed by other

SWS_Os_00767

Specification of Operating System
AUTOSAR Release 4.2.2

34 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

modules

SRS_BSW_00305 Data types naming convention SWS_Os_00767

SRS_BSW_00306 AUTOSAR Basic Software
Modules shall be compiler and
platform independent

SWS_Os_00767

SRS_BSW_00307 Global variables naming
convention

SWS_Os_00767

SRS_BSW_00308 AUTOSAR Basic Software
Modules shall not define global
data in their header files, but in
the C file

SWS_Os_00767

SRS_BSW_00309 All AUTOSAR Basic Software
Modules shall indicate all
global data with read-only
purposes by explicitly
assigning the const keyword

SWS_Os_00767

SRS_BSW_00310 API naming convention SWS_Os_00767

SRS_BSW_00312 Shared code shall be reentrant SWS_Os_00767

SRS_BSW_00314 All internal driver modules
shall separate the interrupt
frame definition from the
service routine

SWS_Os_00767

SRS_BSW_00318 Each AUTOSAR Basic
Software Module file shall
provide version numbers in the
header file

SWS_Os_00767

SRS_BSW_00321 The version numbers of
AUTOSAR Basic Software
Modules shall be enumerated
according specific rules

SWS_Os_00767

SRS_BSW_00325 The runtime of interrupt
service routines and functions
that are running in interrupt
context shall be kept short

SWS_Os_00767

SRS_BSW_00327 Error values naming
convention

SWS_Os_00767

SRS_BSW_00328 All AUTOSAR Basic Software
Modules shall avoid the
duplication of code

SWS_Os_00767

SRS_BSW_00330 It shall be allowed to use
macros instead of functions
where source code is used
and runtime is critical

SWS_Os_00767

SRS_BSW_00333 For each callback function it
shall be specified if it is called
from interrupt context or not

SWS_Os_00767

SRS_BSW_00334 All Basic Software Modules
shall provide an XML file that
contains the meta data

SWS_Os_00767

SRS_BSW_00335 Status values naming SWS_Os_00767

Specification of Operating System
AUTOSAR Release 4.2.2

35 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

convention

SRS_BSW_00337 Classification of development
errors

SWS_Os_00767

SRS_BSW_00339 Reporting of production
relevant error status

SWS_Os_00767

SRS_BSW_00342 It shall be possible to create an
AUTOSAR ECU out of
modules provided as source
code and modules provided as
object code, even mixed

SWS_Os_00767

SRS_BSW_00344 BSW Modules shall support
link-time configuration

SWS_Os_00767

SRS_BSW_00347 A Naming seperation of
different instances of BSW
drivers shall be in place

SWS_Os_00767

SRS_BSW_00350 All AUTOSAR Basic Software
Modules shall apply a specific
naming rule for
enabling/disabling the
detection and reporting of
development errors

SWS_Os_00767

SRS_BSW_00357 For success/failure of an API
call a standard return type
shall be defined

SWS_Os_00767

SRS_BSW_00358 The return type of init()
functions implemented by
AUTOSAR Basic Software
Modules shall be void

SWS_Os_00767

SRS_BSW_00361 All mappings of not
standardized keywords of
compiler specific scope shall
be placed and organized in a
compiler specific type and
keyword header

SWS_Os_00767

SRS_BSW_00369 All AUTOSAR Basic Software
Modules shall not return
specific development error
codes via the API

SWS_Os_00767

SRS_BSW_00373 The main processing function
of each AUTOSAR Basic
Software Module shall be
named according the defined
convention

SWS_Os_00767

SRS_BSW_00374 All Basic Software Modules
shall provide a readable
module vendor identification

SWS_Os_00767

SRS_BSW_00375 Basic Software Modules shall
report wake-up reasons

SWS_Os_00767

SRS_BSW_00377 A Basic Software Module can
return a module specific types

SWS_Os_00767

SRS_BSW_00378 AUTOSAR shall provide a SWS_Os_00767

Specification of Operating System
AUTOSAR Release 4.2.2

36 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

boolean type

SRS_BSW_00379 All software modules shall
provide a module identifier in
the header file and in the
module XML description file.

SWS_Os_00767

SRS_BSW_00381 The pre-compile time
parameters shall be placed
into a separate configuration
header file

SWS_Os_00767

SRS_BSW_00383 The Basic Software Module
specifications shall specify
which other configuration files
from other modules they use at
least in the description

SWS_Os_00767

SRS_BSW_00384 The Basic Software Module
specifications shall specify at
least in the description which
other modules they require

SWS_Os_00767

SRS_BSW_00385 List possible error notifications SWS_Os_00767

SRS_BSW_00386 The BSW shall specify the
configuration for detecting an
error

SWS_Os_00767

SRS_BSW_00401 Documentation of multiple
instances of configuration
parameters shall be available

SWS_Os_00767

SRS_BSW_00404 BSW Modules shall support
post-build configuration

SWS_Os_00767

SRS_BSW_00405 BSW Modules shall support
multiple configuration sets

SWS_Os_00767

SRS_BSW_00406 A static status variable
denoting if a BSW module is
initialized shall be initialized
with value 0 before any APIs of
the BSW module is called

SWS_Os_00767

SRS_BSW_00407 Each BSW module shall
provide a function to read out
the version information of a
dedicated module
implementation

SWS_Os_00767

SRS_BSW_00409 All production code error ID
symbols are defined by the
Dem module and shall be
retrieved by the other BSW
modules from Dem
configuration

SWS_Os_00767

SRS_BSW_00410 Compiler switches shall have
defined values

SWS_Os_00767

SRS_BSW_00411 All AUTOSAR Basic Software
Modules shall apply a naming
rule for enabling/disabling the
existence of the API

SWS_Os_00767

Specification of Operating System
AUTOSAR Release 4.2.2

37 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

SRS_BSW_00412 References to c-configuration
parameters shall be placed
into a separate h-file

SWS_Os_00767

SRS_BSW_00413 An index-based accessing of
the instances of BSW modules
shall be done

SWS_Os_00767

SRS_BSW_00414 Init functions shall have a
pointer to a configuration
structure as single parameter

SWS_Os_00767

SRS_BSW_00415 Interfaces which are provided
exclusively for one module
shall be separated into a
dedicated header file

SWS_Os_00767

SRS_BSW_00417 Software which is not part of
the SW-C shall report error
events only after the DEM is
fully operational.

SWS_Os_00767

SRS_BSW_00419 If a pre-compile time
configuration parameter is
implemented as "const" it
should be placed into a
separate c-file

SWS_Os_00767

SRS_BSW_00422 Pre-de-bouncing of error
status information is done
within the DEM

SWS_Os_00767

SRS_BSW_00423 BSW modules with AUTOSAR
interfaces shall be describable
with the means of the SW-C
Template

SWS_Os_00767

SRS_BSW_00437 Memory mapping shall provide
the possibility to define RAM
segments which are not to be
initialized during startup

SWS_Os_00767

SRS_BSW_00439 Enable BSW modules to
handle interrupts

SWS_Os_00767

SRS_BSW_00440 The callback function
invocation by the BSW module
shall follow the signature
provided by RTE to invoke
servers via Rte_Call API

SWS_Os_00767

SRS_BSW_00441 Naming convention for type,
macro and function

SWS_Os_00767

SRS_Frt_00020 The configuration and
initialization shall be performed
by the module providing the
SWFRT functionality (OS) if
the GPT Timer is not used .

SWS_Os_00374

SRS_Frt_00022 It shall be possible to state
which HW Timer is used

SWS_Os_00370

SRS_Frt_00025 Access methods to time
information shall be provided

SWS_Os_00383, SWS_Os_00392

Specification of Operating System
AUTOSAR Release 4.2.2

38 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

for different users.

SRS_Frt_00030 The read - out value shall start
with Zero

SWS_Os_00384

SRS_Frt_00031 The SWFRT shall increment
i.e.

SWS_Os_00384

SRS_Frt_00032 Wrap around shall work
without software interaction.

SWS_Os_00767

SRS_Frt_00033 There shall be a function to
achieve an atomic read the of
the timer's value.

SWS_Os_00377

SRS_Frt_00034 The module shall provide
functionality to calculate the
ticks elapsed between a
previously stored value
(passed as a parameter) and
the current timer value.

SWS_Os_00382

SRS_Frt_00047 The SWFRT shall provide a
"user" dependent API (function
/ macro) to convert ticks to
time.

SWS_Os_00393

SRS_Os_00097 The OS shall provide an API
that is backward compatible to
the API of OSEK OS

SWS_Os_00001

SRS_Os_00098 The Operating System shall
provide statically configurable
schedule tables based on time
tables as an optional service

SWS_Os_00002, SWS_Os_00007

SRS_Os_00099 The Operating System shall
provide a mechanism which
allows switching between
different schedule tables

SWS_Os_00191

SRS_Os_11000 The OS may offer support to
protect the memory sections of
an OS-Application against
read accesses by all other OS-
Applications

SWS_Os_00026

SRS_Os_11001 The OS shall provide partitions
which allow for fault isolation
and fault recovery capabilities

SWS_Os_00056

SRS_Os_11002 The operating system shall
provide the ability to
synchronize the processing of
schedule tables with a global
system time base

SWS_Os_00013, SWS_Os_00199,
SWS_Os_00201, SWS_Os_00206,
SWS_Os_00227

SRS_Os_11003 The operating system shall be
able to monitor stack usage
and check for a stack overflow
on a per executable object
basis

SWS_Os_00067, SWS_Os_00068

SRS_Os_11005 The operating system shall
prevent an OS-Application

SWS_Os_00195, SWS_Os_00207,
SWS_Os_00208, SWS_Os_00795

Specification of Operating System
AUTOSAR Release 4.2.2

39 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

from modifying the memory of
other OS-Applications

SRS_Os_11006 The operating system shall
allow tasks and ISRs within an
OS-Application to exchange
data

SWS_Os_00086, SWS_Os_00087,
SWS_Os_00196

SRS_Os_11007 The operating system shall
allow OS-Applications to
execute shared code

SWS_Os_00081

SRS_Os_11008 The OS shall not allow a timing
fault in any OS-Application to
propagate

SWS_Os_00028, SWS_Os_00033,
SWS_Os_00037, SWS_Os_00048,
SWS_Os_00064, SWS_Os_00089,
SWS_Os_00465, SWS_Os_00469,
SWS_Os_00470, SWS_Os_00471,
SWS_Os_00472, SWS_Os_00473,
SWS_Os_00474

SRS_Os_11009 The operating system shall
prevent the corruption of the
OS by any call of a system
service

SWS_Os_00051, SWS_Os_00052,
SWS_Os_00069, SWS_Os_00070,
SWS_Os_00088, SWS_Os_00092,
SWS_Os_00093

SRS_Os_11010 The operating system shall
prevent an OS-Application
modifying OS objects that are
not owned by that OS-
Application

SWS_Os_00056

SRS_Os_11011 The OS shall protect itself
against OS-Applications
attempting to modify control
registers directly which are
managed by the OS

SWS_Os_00096, SWS_Os_00245

SRS_Os_11012 The OS shall provide
scalability for its protection
features

SWS_Os_00240, SWS_Os_00241

SRS_Os_11013 The OS shall be capable of
notifying the occurrence of a
protection error at runtime

SWS_Os_00033, SWS_Os_00037,
SWS_Os_00044, SWS_Os_00051,
SWS_Os_00056, SWS_Os_00064,
SWS_Os_00068, SWS_Os_00070,
SWS_Os_00088, SWS_Os_00093,
SWS_Os_00210, SWS_Os_00246

SRS_Os_11014 In case of a protection error,
the OS shall provide an action
for recovery on OS-, OS-
Application and task/ISR-level

SWS_Os_00033, SWS_Os_00037,
SWS_Os_00106, SWS_Os_00107,
SWS_Os_00108, SWS_Os_00109,
SWS_Os_00110, SWS_Os_00243,
SWS_Os_00244

SRS_Os_11016 The OS implementation shall
offer scalability which is
configurable by a generation
tool

SWS_Os_00240, SWS_Os_00241

SRS_Os_11018 The OS shall provide interrupt
mask functions

SWS_Os_00299

SRS_Os_11019 The AUTOSAR OS generation
tool shall create the interrupt

SWS_Os_00336

Specification of Operating System
AUTOSAR Release 4.2.2

40 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

vector table

SRS_Os_11020 The OS shall provide a
standard interface to tick a
software counter

SWS_Os_00286

SRS_Os_11021 The OS shall provide a
mechanism to cascade
multiple software counters
from a single hardware
counter.

SWS_Os_00301

SRS_Os_80001 The OS shall be able to
manage multiple closely
coupled CPU Cores

SWS_Os_00568, SWS_Os_00569,
SWS_Os_00579, SWS_Os_00583,
SWS_Os_00596, SWS_Os_00600,
SWS_Os_00606, SWS_Os_00616,
SWS_Os_00626, SWS_Os_00627,
SWS_Os_00628, SWS_Os_00672,
SWS_Os_00673, SWS_Os_00674,
SWS_Os_00675

SRS_Os_80003 The multi core extension shall
provide the same degree of
predictability as the single core

SWS_Os_00570, SWS_Os_00571,
SWS_Os_00573

SRS_Os_80005 OsApplications and as a result
TASKS and OsISRs shall be
assigned statically to cores

SWS_Os_00570, SWS_Os_00571,
SWS_Os_00572, SWS_Os_00573,
SWS_Os_00667

SRS_Os_80006 Initialization/Start-up of the
system shall be synchronized

SWS_Os_00572, SWS_Os_00574,
SWS_Os_00575, SWS_Os_00576,
SWS_Os_00577, SWS_Os_00578,
SWS_Os_00579, SWS_Os_00580,
SWS_Os_00581, SWS_Os_00582,
SWS_Os_00584, SWS_Os_00585,
SWS_Os_00607, SWS_Os_00608,
SWS_Os_00609, SWS_Os_00610,
SWS_Os_00625, SWS_Os_00668,
SWS_Os_00669, SWS_Os_00670,
SWS_Os_00676, SWS_Os_00677,
SWS_Os_00678, SWS_Os_00679,
SWS_Os_00680, SWS_Os_00681,
SWS_Os_00682, SWS_Os_00683,
SWS_Os_00684, SWS_Os_00685

SRS_Os_80007 Shutdown procedure shall be
triggered by any core

SWS_Os_00586, SWS_Os_00587,
SWS_Os_00588, SWS_Os_00616,
SWS_Os_00617, SWS_Os_00621,
SWS_Os_00713, SWS_Os_00714,
SWS_Os_00715, SWS_Os_00716

SRS_Os_80008 It shall be a common OS
configuration across multiple
cores

SWS_Os_00567, SWS_Os_00582

SRS_Os_80011 The number of cores that the
operating system manages
shall be configurable offline

SWS_Os_00583

SRS_Os_80013 The behaviour of services shall
be identical to single core
systems

SWS_Os_00569, SWS_Os_00589,
SWS_Os_00590, SWS_Os_00591,
SWS_Os_00592, SWS_Os_00593,
SWS_Os_00594, SWS_Os_00595,

Specification of Operating System
AUTOSAR Release 4.2.2

41 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

SWS_Os_00607, SWS_Os_00618,
SWS_Os_00619, SWS_Os_00623,
SWS_Os_00629, SWS_Os_00630,
SWS_Os_00631, SWS_Os_00635,
SWS_Os_00636, SWS_Os_00637,
SWS_Os_00638, SWS_Os_00639,
SWS_Os_00640, SWS_Os_00643,
SWS_Os_00645, SWS_Os_00646,
SWS_Os_00647, SWS_Os_00663,
SWS_Os_00664, SWS_Os_00665

SRS_Os_80015 The MC extensions shall
provide a mechanism to
activate tasks on different
cores

SWS_Os_00596, SWS_Os_00598,
SWS_Os_00599, SWS_Os_00600

SRS_Os_80016 Event mechanism shall work
across cores

SWS_Os_00602, SWS_Os_00604,
SWS_Os_00605

SRS_Os_80018 A method to synchronize tasks
on more than one core shall be
provided

SWS_Os_00632, SWS_Os_00633,
SWS_Os_00634, SWS_Os_00641,
SWS_Os_00642, SWS_Os_00644,
SWS_Os_00648, SWS_Os_00649,
SWS_Os_00650, SWS_Os_00652,
SWS_Os_00653, SWS_Os_00654,
SWS_Os_00655, SWS_Os_00656,
SWS_Os_00657, SWS_Os_00658,
SWS_Os_00659, SWS_Os_00660,
SWS_Os_00661

SRS_Os_80020 A data exchange mechanism
shall be provided

SWS_Os_00611, SWS_Os_00671,
SWS_Os_00718, SWS_Os_00719,
SWS_Os_00720, SWS_Os_00721,
SWS_Os_00722, SWS_Os_00723,
SWS_Os_00724, SWS_Os_00725,
SWS_Os_00726, SWS_Os_00727,
SWS_Os_00728, SWS_Os_00729,
SWS_Os_00730, SWS_Os_00731,
SWS_Os_00732, SWS_Os_00733,
SWS_Os_00734, SWS_Os_00735,
SWS_Os_00736, SWS_Os_00737,
SWS_Os_00738, SWS_Os_00739,
SWS_Os_00740, SWS_Os_00741,
SWS_Os_00742, SWS_Os_00743,
SWS_Os_00744, SWS_Os_00745,
SWS_Os_00746, SWS_Os_00747,
SWS_Os_00748, SWS_Os_00749,
SWS_Os_00750, SWS_Os_00751,
SWS_Os_00752, SWS_Os_00753,
SWS_Os_00754, SWS_Os_00755,
SWS_Os_00756, SWS_Os_00757,
SWS_Os_00758, SWS_Os_00759,
SWS_Os_00760, SWS_Os_00761

SRS_Os_80021 The MC extension of the
AUTOSAR environment shall
support a mutual exclusion
mechanism between cores
that shall not cause deadlocks

SWS_Os_00612, SWS_Os_00613,
SWS_Os_00614, SWS_Os_00615,
SWS_Os_00620, SWS_Os_00622,
SWS_Os_00624, SWS_Os_00648,
SWS_Os_00649, SWS_Os_00650,
SWS_Os_00651, SWS_Os_00652,
SWS_Os_00653, SWS_Os_00654,

Specification of Operating System
AUTOSAR Release 4.2.2

42 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

SWS_Os_00655, SWS_Os_00656,
SWS_Os_00657, SWS_Os_00658,
SWS_Os_00659, SWS_Os_00660,
SWS_Os_00661, SWS_Os_00666,
SWS_Os_00686, SWS_Os_00687,
SWS_Os_00688, SWS_Os_00689,
SWS_Os_00690, SWS_Os_00691,
SWS_Os_00692, SWS_Os_00693,
SWS_Os_00694, SWS_Os_00695,
SWS_Os_00696, SWS_Os_00697,
SWS_Os_00698, SWS_Os_00699,
SWS_Os_00700, SWS_Os_00701,
SWS_Os_00704, SWS_Os_00705,
SWS_Os_00706, SWS_Os_00707,
SWS_Os_00708, SWS_Os_00709,
SWS_Os_00710, SWS_Os_00711,
SWS_Os_00712, SWS_Os_00801

SRS_Os_80023 The OS shall execute an
operation which can be
selected at runtime, in case no
task is going to be scheduled
on a specific core

SWS_Os_00770, SWS_Os_00771,
SWS_Os_00802

SRS_Os_80026 It shall be possible to start any
of the cores in a multi core
system

SWS_Os_00574, SWS_Os_00575,
SWS_Os_00576, SWS_Os_00577,
SWS_Os_00584, SWS_Os_00585,
SWS_Os_00676, SWS_Os_00677,
SWS_Os_00678, SWS_Os_00679,
SWS_Os_00680, SWS_Os_00681,
SWS_Os_00682, SWS_Os_00683,
SWS_Os_00684, SWS_Os_00685

SRS_Os_80027 It shall be possible to initialize
any of the cores in a multi core
system

SWS_Os_00574, SWS_Os_00575,
SWS_Os_00576, SWS_Os_00577,
SWS_Os_00584, SWS_Os_00585,
SWS_Os_00676, SWS_Os_00677,
SWS_Os_00678, SWS_Os_00679,
SWS_Os_00680, SWS_Os_00681,
SWS_Os_00682, SWS_Os_00683,
SWS_Os_00684, SWS_Os_00685

Specification of Operating System
AUTOSAR Release 4.2.2

43 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

7 Functional specification

7.1 Core OS

7.1.1 Background & Rationale

The OSEK/VDX Operating System [15] is widely used in the automotive industry and
has been proven in use in all classes of ECUs found in modern vehicles. The
concepts that OSEK OS has introduced are widely understood and the automotive
industry has many years of collective experience in engineering OSEK OS based
systems.

OSEK OS is an event-triggered operating system. This provides high flexibility in the
design and maintenance of AUTOSAR based systems. Event triggering gives
freedom for the selection of the events to drive scheduling at runtime, for example
angular rotation, local time source, global time source, error occurrence etc.

For these reasons the core functionality of the AUTOSAR OS shall be based upon
the OSEK OS. In particular OSEK OS provides the following features to support
concepts in AUTOSAR:

o fixed priority-based scheduling
o facilities for handling interrupts
o only interrupts with higher priority than tasks
o some protection against incorrect use of OS services

o a startup interface through StartOS() and the StartupHook()

o a shutdown interface through ShutdownOS() and the ShutdownHook()

OSEK OS provides many features in addition to these. Readers should consult the
OSEK specification [15] for details.

Basing AUTOSAR OS on OSEK OS means that legacy applications will be backward
compatible ï i.e. applications written for OSEK OS will run on AUTOSAR OS.
However, some of the features introduced by AUTOSAR OS require restrictions on
the use of existing OSEK OS features or extend existing OSEK OS features.

7.1.2 Requirements

[SWS_Os_00001] ᶉThe Operating System module shall provide an API that is

backward compatible with the OSEK OS API [15]. ᶌ (SRS_Os_00097)

7.1.2.1 Restrictions on OSEK OS

It is too inefficient to achieve timing and memory protection for alarm callbacks. They
are therefore not allowed in specific scalability classes (SWS_Os_00242)

Specification of Operating System
AUTOSAR Release 4.2.2

44 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[SWS_Os_00242] ᶉThe Operating System module shall only allow Alarm Callbacks

in Scalability Class 1. ᶌ ()

OSEK OS is required to provide functionality to handle inter-task (internal)
communication according to the OSEK COM specification when internal
communication only is required in the system. In AUTOSAR, internal communication
is provided by the AUTOSAR RTE or by AUTOSAR COM at least one of which will
be present for all AUTOSAR ECUs.

AUTOSAR OS, when used in an AUTOSAR system, therefore does not need to
support internal communication.

An OSEK OS must implement internal communication if the symbol

LOCALMESSAGESONLY is defined. AUTOSAR OS can deprecate the need to
implement OSEK COM functionality and maintain compatibility with OSEK suite of
specifications by ensuring that AUTOSAR OS always exists in an environment where

LOCALMESSAGESONLY is undefined.

OSEK OS has one special resource called RES_SCHEDULER. This resource has 2
specific aspects:

1. It is always present in the system, even if it is not configured. This means that

the RES_SCHEDULER is always known by the OS.

2. It has always the highest Task priority. This means a Task which allocates this
resource can not be preempted by other Tasks.

Since special cases are always hard to handle (e.g. in this case with respect to timing

protection) AUTOSAR OS handles RES_SCHEDULER as any other resource. This

means that the RES_SCHEDULER is not automatically created. However, a

configuration attribute allows that a resource in AUTOSAR OS can optionally be
assigned the priority of the highest priority task in the system.

For backwards compatibility with OSEK OS systems, see Chapter 12.8 on how to

configure a standard resource called RES_SCHEDULER in a way that make it

compatible with the resource of the same name which is declared automatically in
OSEK OS.

In OSEK OS users must declare Operating System objects with specific macros (e.g.
DeclareTask(), é) An AUTOSAR OS implementation shall not depend on such
declarations and shall (for backwards compatibility) supply macros without
functionality.

7.1.2.2 Undefined Behaviour in OSEK OS

There are a number of cases where the behaviour of OSEK OS is undefined. These
cases represent a barrier to portability. AUTOSAR OS tightens the OSEK OS
specification by defining the required behaviour.

[SWS_Os_00304] ᶉIf in a call to SetRelAlarm() the parameter ñincrementò is set to

zero, the service shall return E_OS_VALUE in standard and extended status . ᶌ ()

Specification of Operating System
AUTOSAR Release 4.2.2

45 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[SWS_Os_00424] ᶉThe first call to StartOS() (for starting the Operating System)

shall not return. ᶌ ()

[SWS_Os_00425] ᶉIf ShutdownOS() is called and ShutdownHook() returns then

the Operating System module shall disable all interrupts and enter an endless loop. ᶌ
()

7.1.2.3 Extensions to OSEK OS

[SWS_Os_00299] ᶉThe Operating System module shall provide the services

DisableAllInterrupts() , EnableAllInterrupts() , SuspendAllInterrupts() ,

ResumeAllInterrupts() prior to calling StartOS() and after calling

ShutdownOS() .ᶌ (SRS_Os_11018)

It is assumed that the static variables of the functions mentioned in SWS_Os_00299
are initialized.

[SWS_Os_00301] ᶉThe Operating System module shall provide the ability to

increment a software counter as an alternative action on alarm expiry. ᶌ
(SRS_Os_11021)

The Operating System module provides API service IncrementCounter() (see
SWS_Os_00399) to increment a software counter.

[SWS_Os_00476] ᶉThe Operating System module shall allow to automatically start

preconfigured absolute alarms during the start of the Operating System. ᶌ ()

SWS_Os_00476 is an extension to OSEK OS which allows this only for relative
alarms.

[SWS_Os_00566] ᶉThe Operating System API shall check in extended mode all

pointer arguments for a NULL pointer and return E_OS_PARAM_POINTER in extended

status if such an argument is NULL. ᶌ ()

Specification of Operating System
AUTOSAR Release 4.2.2

46 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

7.2 Software Free Running Timer

Due to the fact that the number of timers is often very limited, some functionality and
configuration is added to extend the reuse of timers. E.g. this allows timer
measurements. For more details see also [5] (SWFRT).

[SWS_Os_00374] ᶉThe Operating System module shall handle all the initialization
and configuration of timers used directly by the Operating System module and not

handled by the GPT driver. ᶌ (SRS_Frt_00020)

The Operating System module provides API service GetCounterValue () (see

SWS_Os_00383) to read the current count value of a counter (returning either the
hardware timer ticks if counter is driven by hardware or the software ticks when user
drives counter).

The Operating System module provides API service GetElapsedValue() (see

SWS_Os_00392) to get the number of ticks between the current tick value and a
previously read tick value.

[SWS_Os_00384] ᶉThe Operating System module shall adjust the read out values of
hardware timers (which drive counters) in such that the lowest value is zero and
consecutive reads return an increasing count value until the timer wraps at its

modulus. ᶌ (SRS_Frt_00030, SRS_Frt_00031)

Specification of Operating System
AUTOSAR Release 4.2.2

47 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

7.3 Schedule Tables

7.3.1 Background & Rationale

It is possible to implement a statically defined task activation mechanism using an
OSEK counter and a series of auto started alarms. In the simple case, this can be
achieved by specifying that the alarms are not modified once started. Run-time
modifications can only be made if relative synchronization between alarms can be
guaranteed. This typically means modifying the alarms while associated counter tick
interrupts are disabled.

Schedule Tables address the synchronization issue by providing an encapsulation of
a statically defined set of expiry points. Each expiry point defines:

¶ one or more actions that must occur when it is processed where an action is
the activation of a task or the setting of an event.

¶ An offset in ticks from the start of the schedule table

Each schedule table has a duration in ticks. The duration is measured from zero and
defines the modulus of the schedule table.

At runtime, the Operating System module will iterate over the schedule table,
processing each expiry point in turn. The iteration is driven by an OSEK counter. It
therefore follows that the properties of the counter have an impact on what is
possible to configure on the schedule table.

7.3.2 Requirements

7.3.2.1 Structure of a Schedule Table

Delay=8 Delay=8

Expiry Point 1

Task Activations

TaskA

TaskB

Event Settings

EventP:TaskC

EventP:TaskD

Offset

4 ticks

Expiry Point 2

Task Activations

<none>

Event Settings

EventP:TaskC

EventP:TaskD

Offset

12 ticks

Expiry Point 3

Task Activations

TaskA

TaskE

Event Settings

<none>

Offset

20 ticks

Expiry Point 4

Task Activations

TaskA

TaskE

Event Settings

EventQ:TaskC

EventQ:TaskE

Offset

32 ticks

Expiry Point 5

Task Activations

TaskB

TaskF

Event Settings

EventP:TaskC

Offset

40 ticks

Delay=12 Delay=8

Delay=InitialOffset+FinalDelay=14

120 3220 40 0

Schedule Table Duration = 50 ticks

4

InitialOffset=4

Initial Expiry

Point

Final Expiry

Point

FinalDelay=10

Figure 7.1: Anatomy of a Schedule Table

Specification of Operating System
AUTOSAR Release 4.2.2

48 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[SWS_Os_00401] ᶉA schedule table shall have at least one expiry point. ᶌ ()

[SWS_Os_00402] ᶉAn expiry point shall contain a (possibly empty) set of tasks to

activate. ᶌ ()

[SWS_Os_00403] ᶉAn expiry point shall contain a (possibly empty) set of events to

set. ᶌ ()

[SWS_Os_00404] ᶉAn expiry point shall contain an offset in ticks from the start of

the schedule table. ᶌ ()

7.3.2.2 Constraints on Expiry Points

There is no use case for an empty expiry point, so each one must define at least one
action.

[SWS_Os_00407] ᶉAn expiry point shall activate at least one task OR set at least

one event. ᶌ ()

The OS needs to know the order in which expiry points are processed. It is therefore
necessary to ensure that the expiry points on a schedule table can be totally ordered.
This is guaranteed by forcing each expiry point on a schedule table to have a unique
offset.

[SWS_Os_00442] : ᶉEach expiry point on a given schedule table shall have a unique

offset. ᶌ ()

Iteration over expiry points on a schedule table is driven by an OSEK counter. The

characteristics of the counter ï OsCounterMinCycle and

OsCounterMaxAllowedValue ï place constraints on expiry point offsets.

[SWS_Os_00443] ᶉThe Initial Offset shall be zero OR in the range

OsCounterMinCycle .. OsCounterMaxAllowedValue of the underlying counter. ᶌ
()

Simlarly, constraints apply to the delays between of adjacent expiry points and the
delay to the logical end of the schedule table.

[SWS_Os_00408] ᶉThe delay between adjacent expiry points shall be in the range

OsCounterMinCycle .. OsCounterMaxAllowedValue of the underlying counter. ᶌ
()

Specification of Operating System
AUTOSAR Release 4.2.2

49 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

7.3.2.3 Processing Schedule Tables

[SWS_Os_00002] ᶉThe Operating System module shall process each expiry point
on a schedule table from the Initial Expiry Point to the Final Expiry Point in order of

increasing offset. ᶌ (SRS_Os_00098)

[SWS_Os_00007] ᶉThe Operating System module shall permit multiple schedule

tables to be processed concurrently. ᶌ (SRS_Os_00098)

[SWS_Os_00409] ᶉA schedule table of the Operating System module shall be driven

by exactly one counter. ᶌ ()

[SWS_Os_00410] ᶉThe Operating System module shall be able to process at least

one schedule table per counter at any given time. ᶌ ()

[SWS_Os_00411] ᶉThe Operating System module shall make use of ticks so that

one tick on the counter corresponds to one tick on the schedule table. ᶌ ()

It is possible to activate a task and set (one or more unique) events for the same task
at the same expiry point. The ordering of task activations and event settings
performed from the expiry point could lead to different implementations exhibiting
different behaviour (for example, activating a suspended task and then setting and
event on the task would succeed but if the ordering was reversed then the event
setting would fail). To prevent such non-determinism, it is necessary to enforce a
strict ordering of actions on the expiry point.

[SWS_Os_00412] ᶉThe Operating System module shall process all task activations

on an expiry point first and then set events. ᶌ ()

A schedule table always has a defined state and the following figure illustrates the
different states (for a non-synchronized schedule table) and the transitions between
them.

Specification of Operating System
AUTOSAR Release 4.2.2

50 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Ăpreviousñ schedule table ends

StopScheduleTable()

StartScheduleTableAbs()

StartScheduleTableRel()

StopScheduleTable()

OR schedule table ends

NextScheduleTable()

SCHEDULETABLE_NEXT

SCHEDULETABLE_RUNNI NG

SCHEDULETABLE_STOPPED

Figure 7.2: States of a schedule table

If a schedule table is not active ï this means that is not processed by the Operating

System ï the state is SCHEDULETABLE_STOPPED. After starting a schedule tables

enters the SCHEDULETABLE_RUNNING state where the OS processes the expiry points.
If the service to switch a schedule table is called a schedule table enters the the

SCHEDULETABLE_NEXT state and waits until the ñcurrentò schedule table ends.

7.3.2.4 Repeated Schedule Table Processing

A schedule table may or may not repeat after the final expiry point is processed. This
allows two types of behaviour:

1. single-shot ï the schedule table processes each expiry point in sequence and
then stops at the end. This is useful for triggering a phased sequence of
actions in response to some trigger

2. repeating ï the schedule table processes each expiry point in turn, After

processing the final expiry point, it loops back to the initial expirt point. This is
useful for building applications that perform repeated processing or system
which need to synchronise processing to a driver source.

A repeating schedule table means that each expiry point is repeated at a period
equal to the schedule table duration.

[SWS_Os_00413] ᶉThe schedule table shall be configurable as either single-shot or

repeating. ᶌ ()

[SWS_Os_00009] ᶉIf the schedule table is single-shot, the Operating System
module shall stop the processing of the schedule table Final Delay ticks after the

Final Expiry Point is processed. ᶌ ()

Specification of Operating System
AUTOSAR Release 4.2.2

51 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[SWS_Os_00427] ᶉIf the schedule table is single-shot, the Operating System

module shall allow a Final Delay between 0 .. OsCounterMaxAllowedValue of the

underlying counter. ᶌ ()

[SWS_Os_00444] ᶉFor periodic schedule tables the value of Final Delay shall be in

the range OsCounterMinCycle .. OsCounterMaxAllowedValue of the underlying

counter. ᶌ ()

[SWS_Os_00194] ᶉAfter processing the Final Expiry Point, and if the schedule table
is repeating, the Operating System shall process the next Initial Expiry Point, after

Final Delay plus Initial Offset ticks have elapsed. ᶌ ()

7.3.2.5 Controlling Schedule Table Processing

The application is responsible for starting and stopping the processing of a schedule
table.

The Operating System module provides the service StartScheduleTableAbs()
(see SWS_Os_00358) to start the processing of a schedule table at an absolute
value ñStartò on the underlying counter. (The Initial Expiry Point has to be processed
when the value of the underlying counter equals Start + InitialOffset).

The Operating System module provides the service StartScheduleTableRel()

(see SWS_Os_00347) to start the processing of a schedule table at ñOffsetò relative
to the ñNowò value on the underlying counter (The Initial Expiry Point shall be
processed when the value of the underlying counter equals Now + Offset +
InitialOffset).

The figure below illustrates the two different methods for a schedule table driven by a

counter with a modulus of 65536 (i.e. an OsCounterMaxAllowedValue = 65535).

Specification of Operating System
AUTOSAR Release 4.2.2

52 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

2 3 4 5 6 7 8 90 1

STOPPED RUNNING

StartScheduleTableAbs(Tbl,2);
Process Initial Expiry Point when the Counter = 2 + Initial Offset = 2

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1 2 3 40 1

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1 0

Schedule Table Tbl

Initial Offset = 2

Final Delay = 2

Duration = 10

EP1

65535
65534

65533
65532

65531
65530

12 13 14 15 16 17 18 19 20 2110 11 22 23 24 25 26

2 3 4 5 6 7 8 90 1

STOPPED RUNNING

StartScheduleTableRel(Tbl,2);
Process Initial Expiry Point when the Counter = Now + 2 + Initial Offset = 1

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1

65535
65534

65533
65532

65531
65530

12 13 14 15 16 17 18 19 20 2110 11 22 23 24 25 26

EP1 EP2

2 3 4 5 6 70 1

OS Counter

OS Counter

Figure 7.3: Starting a Schedule Table at an Absolute and a Relative Count

The Operating System module provides the service StopScheduleTable() (see

SWS_Os_00006) to cancel the processing of a schedule table immediately at any
point while the schedule table is running.

[SWS_Os_00428] ᶉIf schedule table processing has been cancelled before reaching
the Final Expiry Point and is subsequently restarted then
SWS_Os_00358/SWS_Os_00347 means that the re-start occurs from the start of the

schedule table. ᶌ ()

The Operating System module provides the service NextScheduleTable() (see

SWS_Os_00191) to switch the processing from one schedule table to another
schedule table.

Specification of Operating System
AUTOSAR Release 4.2.2

53 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[SWS_Os_00414] ᶉWhen a schedule table switch is requested, the OS shall
continue to process expiry points on the current schedule table. After the Final Expiry
Point there will be a delay equivalent to Final Delay ticks before processing the
switched-to schedule table. The initial expiry point will be processed after initial

offset. ᶌ ()

The Operating System module provides the service GetScheduleTable Status ()

(see SWS_Os_00227) to query the state of a schedule table.

Schedule tables can be configured (see chapter 10) to start automatically during start
of the Operating System module (like Tasks and Alarms in OSEK OS). OSEK OS
defines a specific order: Autostart of Tasks is performed before autostart of alarms.
AUTOSAR OS extends this with schedule tables.

[SWS_Os_00510] ᶉThe Operating System module shall perform the autostart of

schedule tables during startup after the autostart of Tasks and Alarms. ᶌ ()

Specification of Operating System
AUTOSAR Release 4.2.2

54 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

7.4 Schedule Table Synchronization

7.4.1 Background & Rationale

The absolute time at which the Initial Expiry Point on a schedule table is processed is
under user control. However, if the schedule table repeats then it is not guaranteed
that the absolute count value at which the initial expiry point was first processed is
the same count value at which it is subsequently processed. This is because the
duration of the schedule table need not be equal to the counter modulus.

In many cases it may be important that schedule table expiry points are processed at
specific absolute values of the underlying counter. This is called synchronization.
Typical use-cases include:

¶ Synchronization of expiry points to degrees of angular rotation for motor
management

¶ Synchronizing the computation to a global (network) time base. Note that in
AUTOSAR, the Operating System does not provide a global (network) time
source because

1. a global time may not be needed in many cases
2. other AUTOSAR modules, most notably FlexRay, provide this

independently to the Operating System
3. if the Operating System is required to synchronize to multiple global

(network) time sources (for example when building a gateway between two
time-triggered networks) the Operating System cannot be the source of a
unique global time.

AUTOSAR OS provides support for synchronization in two ways:

1. implicit synchronization ï the counter driving the schedule table is the counter
with which synchronization is required. This is typically how synchronization
with time-triggered networking technologies (e.g. FlexRay, TTP) is achieved ï
the underlying hardware manages network time synchronization and simply
presents time as an output/compare timer interface to the Operating System.
The following figure shows the possible states for schedule tables with implicit
synchronization.

Specification of Operating System
AUTOSAR Release 4.2.2

55 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

StopScheduleTable()

SCHEDULETABLE_RUNNING_AND

_SYNCHRONOUS

Ăpreviousñ ScheduleTable ends

StopScheduleTable()

StartScheduleTableAbs()

NextScheduleTable()

SCHEDULETABLE_NEXT

SCHEDULETABLE_STOPPED

Figure 7.4: States of an implicit synchronized schedule table

2. explicit synchronization ï the schedule table is driven by an Operating System

counter which is not the counter with which synchronization is required. The
Operating System provides additional functionality to keep schedule table
processing driven by the Operating System counter synchronized with the
synchronization counter. This is typically how synchronization with periodically
broadcast global times works. The next figure shows the states of such
schedule tables.

Specification of Operating System
AUTOSAR Release 4.2.2

56 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

StopScheduleTable()
SetScheduleTableAsync() OR

ABS(CounterValue-GlobalValue)>PRECISION

ABS(CounterValue-GlobalValue)<=PRECISION

StartScheduleTableSync()

SyncScheduleTable()

StopScheduleTable()

SCHEDULETABLE_RUNNING_AND

_SYNCHRONOUS

Ăpreviousñ ScheduleTable ends

StopScheduleTable()

StartScheduleTableAbs()

StartScheduleTableRel()

StopScheduleTable()

NextScheduleTable()

SCHEDULETABLE_NEXT

SCHEDULETABLE_RUNNING

SCHEDULETABLE_STOPPED

SCHEDULETABLE_WAITING

Figure 7.5: States of an explicit synchronized schedule table (not all conditions for transitions
are shown in the picture)

7.4.2 Requirements

[SWS_Os_00013] ᶉThe Operating System module shall provide the ability to

synchronize the processing of schedule table to known counter values. ᶌ
(SRS_Os_11002)

7.4.2.1 Implicit Synchronization

The Operating System module does not need to provide any additional support for
implicit synchronization of schedule tables. However, it is necessary to constrain
configuration and runtime control of the schedule table so that ticks on the configured
schedule table can be aligned with ticks on the counter. This requires the range of
the schedule table to be identical to the range of the counter (the equality of tick
resolution of each is guaranteed by the requirements on the schedule table / counter
interaction):

[SWS_Os_00429] ᶉA schedule table of the Operating System module that is

implicitly synchronized shall have a Duration equal to OsCounterMaxAllowedValue

+ 1 of its associated OSEK OS counter. ᶌ ()

Specification of Operating System
AUTOSAR Release 4.2.2

57 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

To synchronize the processing of the schedule table it must be started at a known
counter value. The implication of this is that a schedule table requiring implicit
synchronization must only be started at an absolute counter value and cannot be
started at a relative count value.

[SWS_Os_00430] ᶉThe Operating System module shall prevent a schedule table

that is implicitly synchronized from being started at a relative count value. ᶌ ()

When the schedule table is started at an absolute counter value each expiry point will
be processed when the counter equals the value specified in the service call plus
expiry pointôs offset. The common use-case is to ensure that the offsets specified in
the schedule table configuration correspond to absolute values of the underlying

counter. This is achieved trivially using StartScheduleTable Abs(Tbl,0) as shown
below.

2 3 4 5 6 7 8 90 1

STOPPED RUNNING AND SYNCHRONOUS

StartScheduleTableAbs(Tbl,0);
Process Initial Expiry Point when the Counter = 0 + Initial Offset = 2

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1 2 3 40 1

EP1

5 6 7 8 94 2 3 4 5 6 7 8 90 1 2 3 40 1

OS Counter

Figure 7.6: Example for implicit synchronized schedule table

7.4.2.2 Explicit Synchonization

An explicitly synchronized schedule table requires additional support from the
Operating System module. The schedule table is driven by an Operating System
moduleôs counter as normal (termed the ñdrive counterò) but processing needs to be
synchronized with a different counter (termed the ñsynchronization counterò) which is
not an Operating System moduleôs counter object.

The following constraints must be enforced between the schedule table, the
Operating System moduleôs counter and the synchronization counter:

Constraint1:

[SWS_Os_00431] ᶉA schedule table that is explicitly synchronized shall have

a duration no greater than modulus of the drive counter. ᶌ ()

Constraint2:

Specification of Operating System
AUTOSAR Release 4.2.2

58 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[SWS_Os_00462] ᶉA schedule table that is explicitly synchronized shall have

a duration equal to the modulus of the synchronization counter. ᶌ ()

Constraint3:

[SWS_Os_00463] ᶉThe synchronization counter shall have the same
resolution as the drive counter associated with the schedule table. This means
that a tick on the schedule table has the same duration as a tick on the

synchronization counter. ᶌ ()

Note that it is in the responsibility of the Operating System module user to verify that
Constraints 2 and 3 are satisfied by their system.

The function of explicit synchronization is for the Operating System module to keep
processing each expiry point at absolute value of the synchronization counter equal
to the expiry pointôs offset. This means that explicit synchronization always assumes
that the notional zero of the schedule table has to be synchronized with absolute
value zero on the synchronization counter.

To achieve this, the Operating System module must be told the value of the
synchronization counter by the user. As the modulus of the synchronization counter
and the schedule table are identical, the Operating System module can use this
information to calculate drift. The Operating System module then automatically
adjusts the delay between specially configured expiry points, retarding them or
advancing them as appropriate, to ensure that synchronization is maintained.

7.4.2.2.1 Startup

There are two options for starting an explicitly synchronized schedule table:

1. Asynchronous start: Start the schedule table at an arbitrary value of the
synchronization counter.

2. Synchronous start: Start the schedule table at absolute value zero of the
synchronization counter only after a synchronization count has been provided.
This may mean waiting for first synchronization indefinitely.

Asynchronous start is provided by the existing absolute and relative schedule table
start services. Both of these services set the point at which the initial expiry point is
processed with respect to the driver counter not the synchronization counter. This
allows the schedule table to start running before the value of the synchronization
counter is known.

Synchronous start requires an additional service that starts the schedule table only
after the Operating System module is told the value of the synchronization counter.

Specification of Operating System
AUTOSAR Release 4.2.2

59 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

The Operating System module provides the service

Start ScheduleTable Synchron () (see SWS_Os_00201) to start an explicitly
synchronized schedule table synchronously. The Initial Expiry Point will be processed
after (Duration ï Value) + Initial Offset ticks of the driver counter have elapsed where
Value is the absolute value of the synchronization counter provided to the schedule
table.

[SWS_Os_00435] ᶉIf an explicitly synchronized schedule table was started
synchronously, then the Operating System module shall guarantee that it has state

ñwaitingò when the call of service StartScheduleTableSynchron() returns. ᶌ ()

7.4.2.2.2 Providing a Synchronization Count

The Operating System module must be told the value of the synchronization counter.
Since the schedule table duration is equal to the modulus of the synchronization
counter, the Operating System module can use this to determine the drift between
the current count value on the schedule table time and the synchronization count and
decide whether (or not) any action to achieve synchronization is required.

The Operating System module provides the service Sync ScheduleTable() (see

SWS_Os_00199) to provide the schedule table with a synchronization count and
start synchronization.

7.4.2.2.3 Specifying Synchronization Bounds

A schedule table defaults to denying adjustment at all expiry points. Adjustment is
allowed only when explicitly configured. The range of adjustment that the Operating
System module can make at an adjustable expiry point is controlled by specifying:

¶ OsScheduleTableMaxShorten : the maximum value that can be subtracted

from the expiry offset

¶ OsScheduleTableMaxLengthen : the maximum value that can be added to the
expiry point offset

The following figure illustrates the behaviour depending on

OsScheduleTableMaxShorten and OsScheduleTableMaxLengthen :

Specification of Operating System
AUTOSAR Release 4.2.2

60 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Figure 7.7: Adjustment of Exipry Points

So called ñhardò and ñsmoothò synchronization from OSEKtime [16] are supported by
this single unified concept in AUTOSAR OS. ñSmoothò synchronization may be
emulated by setting the small adjustment values on the final expiry point. ñHardò
synchronization may be emulated by setting large adjustment values on the final
expiry point.

[SWS_Os_00415] ᶉAn expiry point shall permit the configuration of a

OsScheduleTableMaxShorten that defines the maximum number of ticks that can

be subtracted from expiry point offset. ᶌ ()

[SWS_Os_00416] ᶉAn expiry point shall permit the configuration of a

OsScheduleT ableMaxLengthen that defines the maximum number of ticks that can

be added to expiry point offset. ᶌ ()

Specification of Operating System
AUTOSAR Release 4.2.2

61 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

When performing synchrioniszation it is important that the expiry points on the
schedule table are processed according to the total ordering defined by their offsets.

This means that the range of permitted values for OsScheduleTableMaxShorten

and OsScheduleTableMaxLengthen must ensure that the next expiry point is not
retarded into the past or advanced beyond more than one iteration of the schedule
table.

[SWS_Os_00436] ᶉThe value of (Offset ï OsScheduleTableMaxShorten) of an

expiry point shall be greater than (Offset + OsCounterMinCycle) of the pervious

expiry point. ᶌ ()

[SWS_Os_00559] ᶉThe value of OsScheduleTableMaxLengthen shall be smaller

than the duration of the schedule table. ᶌ ()

[SWS_Os_00437] ᶉThe value of (OsScheduleTableMaxLengthen +

delay_ from_previous_ EP) of an expiry point shall be less than the

OsCounterMaxAllowedValue of the underlying counter. ᶌ ()

Explicitly synchronized schedule tables allow the tolerance of some drift between the
schedule table value and the synchronization counter value. This tolerance can be
zero, indicating that the schedule table is not considered synchronized unless the
values are indentical..

[SWS_Os_00438] ᶉA schedule table shall define a precision bound with a value in

the range 0 to duration. ᶌ ()

7.4.2.3 Performing Synchronization

The Operating System module uses the synchronization count to support
(re-)synchronization of a schedule table at each expiry point by calculating an
adjustment to the delay to the next expiry point. This provides faster re-
synchronization of the schedule table than doing the action on the final expiry point.

[SWS_Os_00206] ᶉWhen a new synchronization count is provided, the Operating
System module shall calculate the current deviation between the explicitly

synchronized scheduled table and the synchronization count. ᶌ (SRS_Os_11002)

It is meaningless to try and synchronise an explicitly synchronized schedule table
before a synchronization count is provided.

Specification of Operating System
AUTOSAR Release 4.2.2

62 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[SWS_Os_00417] ᶉThe Operating System module shall start to synchronise an
explicitly synchronized schedule table after a synchronization count is provided AND

shall continue to adjust expiry points until synchronized. ᶌ ()

[SWS_Os_00418] ᶉThe Operating System module shall set the state of an explicitly
synchronized schedule table to ñrunning and synchronousò if the deviation is less

than or equal to the configured OsScheduleTblExplicitPrecision threshold. ᶌ ()

[SWS_Os_00419] ᶉThe Operating System module shall set the state of an explicitly
synchronized schedule table to ñrunningò if the deviation is greater than the

configured OsScheduleTblExplicitPrecision threshold. ᶌ ()

[SWS_Os_00420] ᶉIF the deviation is non-zero AND the next expiry point is
adjustable AND the table is behind the sync counter
(TableTicksAheadOfSyncCounter <= TableTicksBehindOfSyncCounter) THEN the
OS shall set the next EP to expire delay - min(MaxShorten, Deviation) ticks from the

current expiry. ᶌ ()

[SWS_Os_00421] ᶉIF the deviation is non-zero AND the next expiry point is
adjustable AND the table is ahead of the sync counter
(TableTicksAheadOfSyncCounter > TableTicksBehindOfSyncCounter) THEN the OS
shall set the next EP to expire delay + min(MaxLengthen, Deviation) ticks from the

current expiry. ᶌ ()

Figure 7.8: shows explicit synchronization of a schedule table. It assumes the
following:

¶ EP1-3 have OsScheduleTableMaxLengthen =2

¶ EP1-3 have OsScheduleTableMaxShorten =1

Specification of Operating System
AUTOSAR Release 4.2.2

63 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Figure 7.8: Explict Schedule Table Synchronization

The Operating System module provides the service SetScheduleTableAsync()
(see SWS_Os_00422) to cancel synchronization being performed at adjustable
expiry points on a schedule table.

The Operating System module provides the service GetScheduleTableStatus()
(see SWS_Os_00227) to query the state of a schedule table also with respect to
synchronization.

7.5 Stack Monitoring Facilities

7.5.1 Background & Rationale

On processors that do not provide any memory protection hardware it may still be
necessary to provide a ñbest effort with available resourcesò scheme for detectable
classes of memory faults. Stack monitoring will identify where a task or ISR has
exceeded a specified stack usage at context switch time. This may mean that there is
considerable time between the system being in error and that fault being detected.
Similarly, the error may have been cleared at the point the fault is notified (the stack
may be less than the specified size when the context switch occurs).

It is not usually sufficient to simply monitor the entire stack space for the system
because it is not necessarily the Task/ISR that was executing that used more than
stack space than required ï it could be a lower priority object that was pre-empted.

Specification of Operating System
AUTOSAR Release 4.2.2

64 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Significant debugging time can be saved by letting the Operating System correctly
identify the Task/Category 2 ISR in error.

Note that for systems using a MPU and scalability class 3 or 4 a stack overflow may
cause a memory exception before the stack monitoring is able to detect the fault.

7.5.2 Requirements

[SWS_Os_00067] ᶉThe Operating System module shall provide a stack monitoring

which detects possible stack faults of Task(s)/Category 2 ISR(s). ᶌ (SRS_Os_11003)

[SWS_Os_00068] ᶉIf a stack fault is detected by stack monitoring AND no

ProtectionHook() is configured, the Operating System module shall call the

ShutdownOS() service with the status E_OS_STACKFAULT. ᶌ (SRS_Os_11003 ,

SRS_Os_11013)

[SWS_Os_00396] ᶉIf a stack fault is detected by stack monitoring AND a

ProtectionHook() is configured the Operating System module shall call the

ProtectionHook() with the status E_OS_STACKFAULT. ᶌ ()

7.6 OS-Application

7.6.1 Background & Rationale

An AUTOSAR OS must be capable of supporting a collection of Operating System
objects (Tasks, ISRs, Alarms, Schedule tables, Counters) that form a cohesive
functional unit. This collection of objects is termed an OS-Application.

The Operating System module is responsible for scheduling the available processing
resource between the OS-Applications that share the processor. If OS-Application(s)
are used, all Tasks, ISRs, Counters, Alarms and Schedule tables must belong to an
OS-Application. All objects which belong to the same OS-Application have access to
each other. The right to access objects from other OS-Applications may be granted
during configuration. An event is accessible if the task for which the event can be set
is accessible. Access means that these Operating System objects are allowed as
parameters to API services.

There are two classes of OS-Application:

(1) Trusted OS-Applications are allowed to run with monitoring or protection
features disabled at runtime. They may have unrestricted access to memory,
the Operating System moduleôs API, and need not have their timing behaviour
enforced at runtime. They are allowed to run in privileged mode when
supported by the processor.

Specification of Operating System
AUTOSAR Release 4.2.2

65 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

(2) Non-Trusted OS-Applications are not allowed to run with monitoring or
protection features disabled at runtime. They have restricted access to
memory, restricted access to the Operating System moduleôs API and have
their timing behaviour enforced at runtime. They are not allowed to run in
privileged mode when supported by the processor.

It is assumed that the Operating System module itself is trusted.

There are services offered by the AUTOSAR OS which give the caller information
about the access rights and the membership of objects. These services are intended
to be used in case of an inter-OS-Application call for checking access rights and
arguments.

Note that Resource obejcts do not belong to any OS-Application, but access to them
must be explicitely granted. (The same principle applies to spinlocks in Multi-Core
systems)

The running OS-Application is defined as the OS-Application to which the currently
running Task or ISR belongs. In case of a hook routine the Task or ISR which caused
the call of the hook routine defines the running OS-Application.

class OS-Application Model

{XOR}

OS-Application

trusted

OS-Application

constraints

{privileged mode}

non-trusted

OS-Application

constraints

{non-privileged mode}

TASK

- EVENTs (of the TASK)

- One optional restart TASK

ISR

TRUSTED_FUNCTION

Hook

ShutdownHook_<Appl>

Hook

StartupHook_<Appl>

Hook

ErrorHook_<Appl>

SCHEDULETABLE

ALARM

COUNTER

An OS-Application may acces OS

objects of other OS-Application (e.g.

starting an Alarm or setting an Event

to anothers OS-Application Task) if

their configuration allows this.

#itsCounter

* 1

#itsAlarm

* 1

#itsISR

*1

#itsTask

*

1

#itsSchedule

*
1

#itsErrorHook

0..11

#itsStartupHook

0..11

#itsShutdownHook

0..11

çrealizeèçrealizeè

1

+itsProvidedServices

0..*

Figure 7.9: UML-model of OS-Application

Specification of Operating System
AUTOSAR Release 4.2.2

66 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

OS-Applications have a state which defines the scope of accessability of its
Operating System objects from other OS-Applications. Each OS-Application is
always in one of the following states:

¶ Active and accessible (APPLICATION_ACCESSIBLE): Operating System objects
may be accessed from other OS-Applications. This is the default state at startup.

¶ Currently in restart phase (APPLICATION_RESTART). Operating System objects
can not be accessed from other OS-Applications. State is valid until the OS-
Application calls AllowAccess().

¶ Terminated and not accessible (APPLICATION_TERMINATED): Operating
System objects can not be accessed from other OS-Applications. State will not
change.

The following figure shows the states and the possible transitions:

APPLICATION_RESTARTING

APPLICATION_ACCESSIBLE APPLICATION_TERMINATED

ProtectionHook with RESTART

OR

TerminateApplication with

RESTART

After StartOS and

before StartupHooks()

AllowAccess()

ProtectionHook without RESTART

OR

TerminateApplication without

RESTART

Figure 7.13: States of OS-Applications

7.6.2 Requirements

[SWS_Os_00445] ᶉThe Operating System module shall support OS-Applications
which are a configurable selection of Trusted Functions, Tasks, ISRs, Alarms,

Schedule tables, Counters, hooks (for startup, error and shutdown). ᶌ ()

[SWS_Os_00446] ᶉThe Operating System module shall support the notion of trusted

and non-trusted OS-Applications. ᶌ ()

Specification of Operating System
AUTOSAR Release 4.2.2

67 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[SWS_Os_00464] ᶉTrusted OS-Applications may offer services (ñtrusted servicesò)

to other (even non-trusted) OS-Applications. ᶌ ()

The Operating System module provides the services GetApplicationID() and

GetCurrentApplicationID() (see SWS_Os_00016) to determine the configured

resp. currently executing OS-Application (a unique identifier shall be allocated to
each application).

The Operating System module provides the service CheckObjectOwnership() (see
SWS_Os_00017) to determine to which OS-Application a given Task, ISR, Counter,
Alarm or Schedule Table belongs.

The Operating System module provides the service CheckObjectAccess() (see
SWS_Os_00256) to determine which OS-Applications are allowed to use the IDs of a
Task, Resource, Counter, Alarm or Schedule Table in API calls.

The Operating System module provides the service TerminateApplication() (see

SWS_Os_00258) to terminate the OS-Application to which the calling Task/Category
2 ISR/application specific error hook belongs. (This is an OS-Application level variant

of the TerminateTask() service)

The Operating System provides the service TerminateApplication() (see
SWS_Os_00258) to terminate another OS-Application AND calls to this service shall
be ignored if the caller does not belong to a trusted OS-Application.

[SWS_Os_00447] ᶉIf the Operating System module terminates an OS-Application,
then it shall:

¶ terminate all running, ready and waiting Tasks/ISRs of the OS-Application
AND

¶ disable all interrupts of the OS-Application AND

¶ stop all active alarms of the OS-Applications AND

¶ stop all schedule tables of the OS-Application. ᶌ ()

[SWS_Os_00448] ᶉThe Operating System module shall prevent access of OS-
Applications, trusted or non-trusted, to objects not belonging to this OS-Application,

except access rights for such objects are explicitly granted by configuration. ᶌ ()

The Operating System provides the service GetApplicationState () (see

SWS_Os_00499) to request the current state of an OS-Application.

[SWS_Os_00500] ᶉThe Operating System module shall set the state of all OS-

Applications after the call of StartOS() and before any StartupHook is called to

APPLICATION_ACCESSIBE. ᶌ ()

Specification of Operating System
AUTOSAR Release 4.2.2

68 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

The Operating System module provides the service AllowAccess () (see
SWS_Os_00501) to set the own state of an OS-Application from

APPLICATION_RESTARTING to APPLICATION_ACCESSIBLE.

[SWS_Os_00502] ᶉIf an OS-Application is terminated (e.g. through a service call or
via protection hook) and no restart is requested, then the Operating System module

shall set the state of this OS-Application to APPLICATION_TERMINATED. ᶌ ()

[SWS_Os_00503] ᶉIf an OS-Application is terminated (e.g. through a service call or
via protection hook) and a restart is requested, then the Operating System module

shall set the state of this OS-Application to APPLICATION_RESTARTING. ᶌ ()

[SWS_Os_00504] ᶉThe Operating System module shall deny access to Operating
System objects from other OS-Applications to an OS-Application which is not in state

APPLICATION_ACCESSIBLE. ᶌ ()

[SWS_Os_00509] ᶉIf a service call is made on an Operating System object that is

owned by another OS-Application without state APPLICATION_ACCESSIBLE, then the

Operating System module shall return E_OS_ACCESS. ᶌ ()

An example for SWS_Os_00509 is a call to ActivateTask() for a task in an OS-
Application that is restarting.

7.7 Protection Facilities

Protection is only possible for Operating System managed objects. This means that:

¶ It is not possible to provide protection during runtime of Category 1 ISRs,
because the operating system is not aware of any Category 1 ISRs being
invoked. Therefore, if any protection is required, Category 1 ISRs have to be
avoided. If Category 1 interrupts AND OS-Applications are used together then
all Category 1 ISR must belong to a trusted OS-Application.

¶ It is not possible to provide protection between functions called from the body
of the same Task/Category 2 ISR.

7.7.1 Memory Protection

7.7.1.1 Background & Rationale

Memory protection will only be possible on processors that provide hardware support
for memory protection.

Specification of Operating System
AUTOSAR Release 4.2.2

69 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

The memory protection scheme is based on the (data, code and stack) sections of
the executable program.

Stack: An OS-Application comprises a number of Tasks and ISRs. The stack for
these objects, by definition, belongs only to the owner object and there is therefore
no need to share stack data between objects, even if those objects belong to the
same OS-Application.
Memory protection for the stacks of Tasks and ISRs is useful mainly for two reasons:

(1) Provide a more immediate detection of stack overflow and
underflow for the Task or ISR than can be achieved with stack
monitoring

(2) Provide protection between constituent parts of and OS-Application,
for example to satisfy some safety constraints.

Data: OS-Applications can have private data sections and Tasks/ISRs can have
private data sections. OS-Applicationôs private data sections are shared by all
Tasks/ISRs belonging to that OS-Application.

Code: Code sections are either private to an OS-Application or can be shared
between all OS-Applications (to use shared libraries). In the case where code
protection is not used, executing incorrect code will eventually result in a memory,
timing or service violation.

7.7.1.2 Requirements

Data Sections and Stack

[SWS_Os_00198] ᶉThe Operating System module shall prevent write access to its

own data sections and its own stack from non-trusted OS-Applications. ᶌ ()

[SWS_Os_00795] ᶉThe OS shall offer the possibility to restrict write access of
trusted OS-Applications in the same way as it is done for non-trusted OS-

Applications.ò ᶌ(SRS_Os_11005)

This can be configured with the OsTrustedApplicationWithProtection .

Private data of an OS-Application

[SWS_Os_00026] ᶉThe Operating System module may prevent read access to an

OS-Applicationôs data section attempted by other non-trusted OS-Applications. ᶌ
(SRS_Os_11000)

Specification of Operating System
AUTOSAR Release 4.2.2

70 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[SWS_Os_00086] ᶉThe Operating System module shall permit an OS-Application

read and write access to that OS-Applicationôs own private data sections. ᶌ
(SRS_Os_11006)

[SWS_Os_00207] ᶉThe Operating System module shall prevent write access to the

OS-Applicationôs private data sections from other non-trusted OS-Applications. ᶌ
(SRS_Os_11005)

Private Stack of Task/ISR

[SWS_Os_00196] ᶉThe Operating System module shall permit a Task/Category 2

ISR read and write access to that Taskôs/Category 2 ISRôs own private stack. ᶌ
(SRS_Os_11006)

[SWS_Os_00208] ᶉThe Operating System module may prevent write access to the
private stack of Tasks/Category 2 ISRs of a non-trusted application from all other

Tasks/ISRs in the same OS-Application. ᶌ (SRS_Os_11005)

[SWS_Os_00355] ᶉThe Operating System module shall prevent write access to all
private stacks of Tasks/Category 2 ISRs of an OS-Application from other non-trusted

OS-Applications. ᶌ ()

Private data of a Task/ISR

[SWS_Os_00087] ᶉThe Operating System module shall permit a Task/Category 2
ISR read and write access to that Taskôs/Category 2 ISRôs own private data sections.

ᶌ (SRS_Os_11006)

[SWS_Os_00195] ᶉThe Operating System module may prevent write access to the
private data sections of a Task/Category 2 ISR of a non-trusted application from all

other Tasks/ISRs in the same OS-Application. ᶌ (SRS_Os_11005)

[SWS_Os_00356] ᶉThe Operating System module shall prevent write access to all
private data sections of a Task/Category 2 ISR of an OS-Application from other non-

trusted OS-Applications. ᶌ ()

Code Sections

[SWS_Os_00027] ᶉThe Operating System module may provide an OS-Application
the ability to protect its code sections against executing by non-trusted OS-

Applications. ᶌ ()

Specification of Operating System
AUTOSAR Release 4.2.2

71 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[SWS_Os_00081] ᶉThe Operating System module shall provide the ability to provide

shared library code in sections that are executable by all OS-Applications. ᶌ
(SRS_Os_11007)

Peripherals

[SWS_Os_00209] ᶉIf OsTrustedApplicationWithProtection == FALSE

then the Operating System module shall permit trusted OS-Applications read and write

access to peripherals. ᶌ ()

[SWS_Os_00083] ᶉThe Operating System module shall allow non-trusted OS-
Applications to write to their assigned peripherals only (incl. reads that have the side

effect of writing to a memory location). ᶌ ()

Memory Access Violation

[SWS_Os_00044] ᶉIf a memory access violation is detected, the Operating System

module shall call the Protection Hook with status code E_OS_PROTECTION_MEMORY. ᶌ
(SRS_Os_11013)

7.7.2 Timing Protection

7.7.2.1 Background & Rationale

A timing fault in a real-time system occurs when a task or interrupt misses its
deadline at runtime.

AUTOSAR OS does not offer deadline monitoring for timing protection. Deadline
monitoring is insufficient to correctly identify the Task/ISR causing a timing fault in an
AUTOSAR system. When a deadline is violated this may be due to a timing fault
introduced by an unrelated Task/ISR that interferes/blocks for too long. The fault in
this case lies with the unrelated Task/ISR and this will propagate through the system
until a Task/ISR misses its deadline. The Task/ISR that misses a deadline is
therefore not necessarily the Task/ISR that has failed at runtime, it is simply the
earliest point that a timing fault is detected.

If action is taken based on a missed deadline identified with deadline monitoring this
would potentially use false evidence of error to terminate a correct OS-Application in
favour of allowing an incorrect OS-Application to continue running. The problem is
best illustrated by example. Consider a system with the following configuration:

TaskID Priority Execution Time Deadline (=Period)

A High 1 5

B Medium 3 10

C Low 5 15

Specification of Operating System
AUTOSAR Release 4.2.2

72 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Assuming that all tasks are ready to run at time zero, the following execution trace
would be expected and all tasks would meet their respective deadlines.

.

Figure 7.10: Example execution trace

Now consider the case when tasks A and B behave incorrectly. The figure below
shows both task A and task B executing for longer than specified and task B arriving
2 ticks earlier than specified. Both tasks A and B meet their deadlines. Task C
however, behaves correctly but it fails to meet its deadline because of the incorrect
execution of Tasks A and B. This is fault propagation ï a fault in an unrelated part of
the system is causing a correctly functioning part of the system to fail.

12 13 14 152 3 4 5 6 7 8 9 10 110 1

A

B

A A

C

B

C

Task A executes for too long

Task A meets its deadline

Task B executes for too long

Task B meets its deadline

Task B arrives too early (at 8 rather than at 10)

Task B executes as expected otherwise

Task B meets its deadline

!

Task C has executed within specification.

Task C misses its deadline 4 ticks into its

execution with 1 tick of execution

remaining

B

C

16 17

Figure 7.11: Insufficiency of Deadline Monitoring

Specification of Operating System
AUTOSAR Release 4.2.2

73 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Whether a task or ISR meets its deadline in a fixed priority preemptive operating
system like AUTOSAR OS is determined by the following factors:

(1) the execution time of Task/ISRs in the system

(2) the blocking time that Task/ISRs suffers from lower priority Tasks/ISRs locking
shared resources or disabling interrupts

(3) the interarrival rate of Task/ISRs in the system

For safe and accurate timing protection it is necessary for the operating system to
control these factors at runtime to ensure that Tasks/ISRs can meet their respective
deadlines.

AUTOSAR OS prevents timing errors from (1) by using execution time protection to
guarantee a statically configured upper bound, called the Execution Budget, on the
execution time of:

¶ Tasks

¶ Category 2 ISRs

AUTOSAR OS prevents timing errors from (2) by using locking time protection to
guarantee a statically configured upper bound, called the Lock Budget, on the time
that:

¶ Resources are held by Tasks/Category 2 ISRs

¶ OS interrupts are suspended by Tasks/Category 2 ISRs

¶ ALL interrupts are suspended/disabled by Tasks/Category 2 ISRs

AUTOSAR OS prevents timing errors from (3) by using inter-arrival time protection to
guarantee a statically configured lower bound, called the Time Frame, on the time
between:

¶ A task being permitted to transition into the READY state due to:

o Activation (the transition from the SUSPENDED to the READY state)

o Release (the transition from the WAITING to the READY state)

¶ A Category 2 ISR arriving
An arrival occurs when the Category 2 ISR is recognized by the OS

Inter-arrival time protection for basic tasks controls the time between successive
activations, irrespective of whether activations are queued or not. In the case of

queued activations, activating a basic task which is in the READY or RUNNING state is

a new activation because it represents the activation of a new instance of the task.
Inter-arrival time protection therefore interacts with queued activation to control the
rate at which the queue is filled.

Inter-arrival time protection for extended tasks controls the time between successive

activations and releases. When a task is in the WAITING state and multiple events are

set with a single call to SetEvent() this represents a single release. When a task

waits for one or more events which are already set this represents a notional
Wait/Release/Start transition and therefore is considered as a new release.

Specification of Operating System
AUTOSAR Release 4.2.2

74 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

The following figure shows how execution time protection and inter-arrival time
protection interact with the task state transition model for AUTOSAR OS.

Wait
OsTaskExecutionBudget reset

Terminate
OsTaskExecutionBudget reset

Preempt
OsTaskExecutionBudget stopped

Start
OsTaskExecutionBudget started

Activate
OsTaskTimeFrame started

Release
OsTaskTimeFrame started

Successful activation of a task already in the READY

state marks the start of a new OsTaskTimeFrame

A task that waits on an event which is already set

notionally transitions into the WAITING state

Successful activation of a task already in the RUNNING

state marks the start of a new OsTaskTimeFrame

SUSPENDED

READY

WAITING

RUNNING

Figure 7.12: Time protection interaction with the task state transition model

Notes:

1. Inter-arrival time enforcement on Category 2 ISRs can be used to protect an
ECU from a ñbabbling idiotò source of interrupts (e.g. a CAN controller taking
an interrupt each time a frame is received from another ECU on the network)
and provides the type of protection given by the OSEKtime Interrupt re-enable
schedule event [16].

2. Timing protection only applies to Tasks or Category 2 ISRs. There is no
protection for Category 1 ISRs. If timing protection error occurs during a
category 1 ISR, consistency of the Operating System module can not be
guaranteed. Therefore we discourage timing protection in systems with
category 1 interrupts.

3. Timing protection does not apply before the Operating System module is
started.

4. In the case of trusted OS-Applications it is essential that all timing information
is correct, otherwise the system may fail at run-time. For a non-trusted OS-
Application, timing protection can be used to enforce timing boundaries
between executable objects.

7.7.2.2 Requirements

Specification of Operating System
AUTOSAR Release 4.2.2

75 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[SWS_Os_00028] ᶉIn a non-trusted OS-Application, the Operating System module
shall apply timing protection to every Task/Category 2 ISR of this non-trusted OS-

Application. ᶌ (SRS_Os_11008)

[SWS_Os_00089] ᶉIn a trusted OS-Application, the Operating System module shall
provide the ability to apply timing protection to Tasks/Category 2 ISRs of this OS-

Application. ᶌ (SRS_Os_11008)

[SWS_Os_00397] ᶉIf no OS-Application is configured, the Operating System module

shall be able to apply timing protection to Tasks/Category 2 ISRs. ᶌ ()

Timing Protection: Tasks

[SWS_Os_00064] ᶉIf a taskôs OsTaskExecutionBudget is reached then the

Operating System module shall call the ProtectionHook() with

E_OS_PROTECTION_TIME. ᶌ (SRS_Os_11008, SRS_Os_11013)

[SWS_Os_00473] ᶉThe Operating System module shall reset a taskôs

OsTaskExecutionBudget on a transition to the SUSPENDED or WAITING states. ᶌ
(SRS_Os_11008)

[SWS_Os_00465] ᶉThe Operating System module shall limit the inter-arrival time of

tasks to one per OsTaskTimeFrame. ᶌ (SRS_Os_11008)

[SWS_Os_00469] ᶉThe Operating System module shall start an OsTaskTimeFrame

when a task is activated successfully. ᶌ (SRS_Os_11008)

[SWS_Os_00472] ᶉThe Operating System module shall start an OsTaskTimeFrame

when a task is released successfully. ᶌ (SRS_Os_11008)

[SWS_Os_00466] ᶉIf an attempt is made to activate a task before the end of an
OsTaskTimeFrame then the Operating System module shall not perform the

activation AND shall call the ProtectionHook() with E_OS_PROTECTION_ARRIVAL. ᶌ
()

[SWS_Os_00467] ᶉIf an attempt is made to release a task before the end of an
OsTaskTimeFrame then the Operating System module shall not perform the release

AND shall call the ProtectionHook() with E_OS_PROTECTION_ARRIVAL AND the

event shall be set. ᶌ ()

Timing Protection: ISRs

Specification of Operating System
AUTOSAR Release 4.2.2

76 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[SWS_Os_00210] ᶉIf a Category 2 ISRôs OsIsrExecutionBudget is reached then the

Operating System module shall call the ProtectionHook() with

E_OS_PROTECTION_TIME. ᶌ (SRS_Os_11013)

[SWS_Os_00474] ᶉThe Operating System module shall reset an ISRôs

OsIsrExecutionBudget when the ISR returns control to the OS or terminates. ᶌ
(SRS_Os_11008)

[SWS_Os_00470] ᶉThe Operating System module shall limit the inter-arrival time of

Category 2 ISRs to one per OsIsrTimeFrame. ᶌ (SRS_Os_11008)

[SWS_Os_00471] ᶉThe Operating System module shall measure the start of an
OsIsrTimeFrame from the point at which it recognises the interrupt (i.e. in the

Operating System interrupt wrapper). ᶌ (SRS_Os_11008)

[SWS_Os_00048] ᶉIf Category 2 interrupt occurs before the end of the
OsIsrTimeFrame then the Operating System module shall not execute the user

provided ISR AND shall call the ProtectionHook() with

E_OS_PROTECTION_ARRIVAL. ᶌ (SRS_Os_11008)

Timing Protection: Resource Locking and Interrupt Disabling

[SWS_Os_00033] ᶉIf a Task/Category 2 ISR holds an OSEK Resource and exceeds
the Os[Task|Isr]ResourceLockBudget, the Operating System module shall call the

ProtectionHook() with E_OS_PROTECTION_LOCKED. ᶌ (SRS_Os_11008, SRS_Os_11013,

SRS_Os_11014)

[SWS_Os_00037] ᶉIf a Task/Category 2 ISR disables interrupts (via

Suspend/Disable|All/OS|Interrupts()) and exceeds the configured

Os[Task|Isr][All|OS]InterruptLockBudget, the Operating System module shall call the

ProtectionHook() with E_OS_PROTECTION_LOCKED. ᶌ (SRS_Os_11008,

SRS_Os_11013, SRS_Os_11014)

7.7.2.3 Implementation Notes

Execution time enforcement requires hardware support, e.g. a timing enforcement
interrupt. If an interrupt is used to implement the time enforcement, the priority of this
interrupt has to be high enough to ñinterruptò the supervised tasks or ISRs.

Depending on the real hardware support this could mean that DisableAllInterrupts
and SuspendAllInterrupts disable not all interrupts (e.g. all interrupts except of the
interrupt used for timing protection) or that the usage of Category 1 ISRs ï which
bypass the Operating System (and also the timing protection) ï is limited somehow.

Specification of Operating System
AUTOSAR Release 4.2.2

77 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

The implementation has to document such implementation specific behaviour (e.g.
the limitations when timing protection is used).

7.7.3 Service Protection

Background & Rationale

As OS-Applications can interact with the Operating System module through services,
it is essential that the service calls will not corrupt the Operating System module
itself. Service Protection guards against such corruption at runtime.

There are a number of cases to consider with Service Protection: An OS-Application
makes an API call

(1) with an invalid handle or out of range value.

(2) in the wrong context, e.g. calling ActivateTask() in the StartupHook() .

(3) or fails to make an API call that results in the OSEK OS being left in an

undefined state, e.g. it terminates without a ReleaseResource() call

(4) that impacts on the behaviour of every other OS-Application in the system,

e.g. ShutdownOS()

(5) to manipulate Operating System objects that belong to another OS-Application
(to which it does not have the necessary permissions), e.g. an OS-Application

tries to execute ActivateTask() on a task it does not own.

The OSEK OS already provides some service protection through the status codes
returned from service calls and this will provide the basis for service protection. This
means that service protection will only apply for the extended status of OSEK OS.

However, OSEK OS does not cover all the cases outlined above. The following
sections describe ï besides the mandatory extended status ï the additional
protection requirements to be applied in each of these cases.

7.7.3.1 Invalid Object Parameter or Out of Range Value

7.7.3.1.1 Background & Rationale

The current OSEK OSô service calls already return E_OS_ID on invalid objects (i.e.

objects not defined in the OIL file) and E_OS_VALUE for out of range values (e.g.

setting an alarm cycle time less than OsCounterMinCycle).

Specification of Operating System
AUTOSAR Release 4.2.2

78 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

7.7.3.1.2 Requirements

[SWS_Os_00051] ᶉIf an invalid address (address is not writable by this OS-
Application) is passed as an out-parameter to an Operating System service, the

Operating System module shall return the status code E_OS_ILLEGAL_ADDRESS. ᶌ
(SRS_Os_11009, SRS_Os_11013)

7.7.3.2 Service Calls Made from Wrong Context

7.7.3.2.1 Background & Rationale

The current OSEK OS defines the valid calling context for service calls ([15], Fig. 12-
1), however protects against only a small set of these invalid calls, e.g. calling

Ter minateTask() from a Category 2 ISR.

Service T
a
s
k

C
a

t1
 I

S
R

C
a

t2
 I

S
R

E
rr

o
r

H
o

o
k

P
re

T
a
s

k
 H

o
o

k

P
o

s
tT

a
s

k
 H

o
o

k

S
ta

rt
u

p
 H

o
o

k

S
h

u
td

o
w

n
 H

o
o

k

A
la

rm
 C

a
ll
b

a
c

k

P
ro

te
c
ti

o
n

 H
o

o
k

ActivateTask V V

TerminateTask V C

ChainTask V C

Schedule V C

GetTaskID V V V V V V

GetTaskState V V V V V

DisableAllInterrupts V V V V V V V V V V

EnableAllInterrupts V V V V V V V V V V

SuspendAllInterrupts V V V V V V V V V V

ResumeAllInterrupts V V V V V V V V V V

SuspendOSInterrupts V V V V V V V V V V

ResumeOSInterrupts V V V V V V V V V V

GetResource V V

ReleaseResource V V

SetEvent V V

ClearEvent V C

GetEvent V V V V V

WaitEvent V C

GetAlarmBase V V V V V

GetAlarm V V V V V

SetRelAlarm V V

SetAbsAlarm V V

CancelAlarm V V

GetActiveApplicationMode V V V V V V V

StartOS

ShutdownOS V V V V

Specification of Operating System
AUTOSAR Release 4.2.2

79 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Service T
a
s
k

C
a

t1
 I

S
R

C
a

t2
 I

S
R

E
rr

o
r

H
o

o
k

P
re

T
a
s

k
 H

o
o

k

P
o

s
tT

a
s

k
 H

o
o

k

S
ta

rt
u

p
 H

o
o

k

S
h

u
td

o
w

n
 H

o
o

k

A
la

rm
 C

a
ll
b

a
c

k

P
ro

te
c
ti

o
n

 H
o

o
k

GetApplicationID V V V V V V V V

GetISRID V V V V

CallTrustedFunction V V

CheckISRMemoryAccess V V V V

CheckTaskMemoryAccess V V V V

CheckObjectAccess V V V V

CheckObjectOwnership V V V V

StartScheduleTableRel V V

StartScheduleTableAbs V V

StopScheduleTable V V

NextScheduleTable V V

StartScheduleTableSynchron V V

SyncScheduleTable V V

GetScheduleTableStatus V V

SetScheduleTableAsync V V

IncrementCounter V V

GetCounterValue V V

GetElapsedValue V V

TerminateApplication V V V
2

AllowAccess V V

GetApplicationState V V V V V V V V

ControlIdle V V

GetCurrentApplicationID V V V V V V V V

Tab. 1: Allowed Calling Context for OS Service Calls

In the table above ñCò indicates that validity is only ñChecked in Extended status by

E_OS_CALLEVELò .

7.7.3.2.2 Requirements

[SWS_Os_00088] ᶉIf an OS-Application makes a service call from the wrong context
AND is currently not inside a Category 1 ISR the Operating System module shall not
perform the requested action (the service call shall have no effect), and return

E_OS_CALLEVEL or the ñinvalid valueò of the service. ᶌ (SRS_Os_11009, SRS_Os_11013)

2
 Only in case of self termination.

Specification of Operating System
AUTOSAR Release 4.2.2

80 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

7.7.3.3 Services with Undefined Behaviour

7.7.3.3.1 Background & Rationale

There are a number of situations where the behaviour of OSEK OS is undefined in
extended status. This is unacceptable when protection is required as it would allow
the Operating System module to be corrupted through its own service calls. The
implementation of service protection for the Operating System module must therefore
describe and implement a behaviour that does not jeopardise the integrity of the
system or of any OS-Application which did not cause the specific error.

7.7.3.3.2 Requirements

Tasks ends without calling a TerminateTask() or ChainTask()

[SWS_Os_00052] ᶉIf a task returns from its entry function without making a

TerminateTask() or ChainTask() call, the Operating System module shall

terminate the task (and call the PostTaskHook() if configured). ᶌ (SRS_Os_11009)

[SWS_Os_00069] ᶉIf a task returns from its entry function without making a

TerminateTask() or ChainTask() call AND the error hook is configured, the

Operating System module shall call the ErrorHook() (this is done regardless of

whether the task causes other errors, e.g. E_OS_RESOURCE) with status

E_OS_MISSINGEND before the task leaves the RUNNING state. ᶌ (SRS_Os_11009)

[SWS_Os_00070] ᶉIf a task returns from the entry function without making a

TerminateTask() or ChainTask() call and still holds OSEK Resources, the

Operating System module shall release them. ᶌ (SRS_Os_11009, SRS_Os_11013)

[SWS_Os_00239] ᶉIf a task returns from the entry function without making a

TerminateTask() or ChainTask() call and interrupts are still disabled, the

Operating System module shall enable them. ᶌ ()

Category 2 ISR ends with locked interrupts or allocated resources

[SWS_Os_00368] ᶉIf a Category 2 ISR calls DisableAllInterupts() /

SuspendAllInterrupts() / SuspendOSInterrupts() and ends (returns) without

calling the corresponding EnableAllInterrupts() / ResumeAllInterrupts() /

ResumeOSInterrupts() , the Operating System module shall perform the missing

Specification of Operating System
AUTOSAR Release 4.2.2

81 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

service and shall call the ErrorHook() (if configured) with the status

E_OS_DISABLEDINT. ᶌ ()

[SWS_Os_00369] ᶉIf a Category 2 ISR calls GetResource() and ends (returns)

without calling the corresponding ReleaseResource() , the Operating System

module shall perform the ReleaseResource() call and shall call the ErrorHook() (if

configured) with the status E_OS_RESOURCE (see [12], section 13.1). ᶌ ()

PostTaskHook called during ShutdownOS()

[SWS_Os_00071] ᶉIf the PostTaskHook() is configured, the Operating System

module shall not call the hook if ShutdownOS() is called. ᶌ ()

Tasks/ISRs calls EnableAllInterrupts/ResumeAllInterrupts/ResumeOSInterrupts
without a corresponding disable

[SWS_Os_00092] ᶉIf EnableAllInterrupts() / ResumeAllInterrupts() /

ResumeOSInterrupts() are called and no corresponding DisableAllInterupts()

/ SuspendAllInterrupts() / SuspendOSInterrupts() was done before, the

Operating System module shall not perform this Operating System service. ᶌ
(SRS_Os_11009)

Tasks/ISRs calling OS services when
DisableAllInterupts/SuspendAllInterrupts/SuspendOSInterrupts called

[SWS_Os_00093] ᶉIf interrupts are disabled/suspended by a Task/ISR/Hook and the
Task/ISR/Hook calls any Operating System service (excluding the interrupt services)
then the Operating System module shall ignore the service AND shall return

E_OS_DISABLEDINT if the service returns a StatusType value. ᶌ (SRS_Os_11009,

SRS_Os_11013)

7.7.3.4 Service Restrictions for Non-Trusted OS-Applications

7.7.3.4.1 Background & Rationale

The Operating System service calls available are restricted according to the calling
context (see Section 7.7.3.2). In a protected system, additional constraints need to
be placed to prevent non-trusted OS-Applications executing API calls that can have a
global effect on the system. Each level of restriction is a proper subset of the
previous level as shown in the figure below.

Specification of Operating System
AUTOSAR Release 4.2.2

82 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Figure 7.13: API Restrictions

There are two defined integrity levels:

1. Trusted
2. Non-Trusted

that correspond exactly with trusted and non-trusted OS-Applications.

7.7.3.4.2 Requirements

[SWS_Os_00054] ᶉThe Operating System module shall ignore calls to

ShutdownOS() from non-trusted OS-Applications. ᶌ ()

7.7.3.5 Service Calls on Objects in Different OS-Applications

7.7.3.5.1 Background

Section 7.7.3.1 stated that E_OS_ID is returned by OSEK OS service calls when the
object is invalid. Under the protection scheme a service call can be invalid because
the caller does not have valid permissions for the object (a new meaning for multi-
OS-Application systems).
This is a similar case to an object not being accessible in OSEK OS (for example,
when a task tries to get a resource which exists in the system but has not been
configured as used by the task).

Specification of Operating System
AUTOSAR Release 4.2.2

83 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

7.7.3.5.2 Requirements

[SWS_Os_00056] ᶉIf an OS-object identifier is the parameter of an Operating
System moduleôs system service, and no sufficient access rights have been assigned

to this OS-object at configuration time (Parameter Os[...]AccessingApplication)

to the calling Task/Category 2 ISR, the Operating System moduleôs system service

shall return E_OS_ACCESS. ᶌ (SRS_Os_11001 , SRS_Os_11010 , SRS_Os_11013)

[SWS_Os_00449] ᶉCheckTaskMemoryAccess and CheckIsrMemoryAccess check
the memory access. Memory access checking is possible for all OS-Applications and

from all OS-Applications and does not need granted rights. ᶌ ()

SWS_Os_00449 is an exception to SWS_Os_00056.

[SWS_Os_00450] ᶉCheckObjectAccess checks the access rights for Operating
System objects. Checking object access is possible for all OS-Applications and from

all OS-Applications and does not need granted rights. ᶌ ()

SWS_Os_00450 is an exception to SWS_Os_00056.

7.7.4 Protecting the Hardware used by the OS

7.7.4.1 Background & Rationale

Where a processor supports privileged and non-privileged mode it is usually the case
that certain registers, and the instructions to modify those registers, are inaccessible
outside the privileged mode.

On such hardware, executing the Operating System module in privileged mode and
Tasks/ISRs in non-privileged mode protects the registers fundamental to Operating
System module operation from inadvertent corruption by the objects executing in
non-privileged mode. The Operating System moduleôs services will need to execute
in privileged mode as they will need to modify the registers that are protected outside
this mode.

The Operating System module can use the control registers of the MPU, timer
unit(s), interrupt controller, etc. and therefore it is necessary to protect those registers
against non-trusted OS-Applications.

7.7.4.2 Requirements

[SWS_Os_00058] ᶉIf supported by hardware, the Operating System module shall

execute non-trusted OS-Applications in non-privileged mode. ᶌ ()

Specification of Operating System
AUTOSAR Release 4.2.2

84 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[SWS_Os_00096] ᶉAs far as supported by hardware, the Operating System module
shall not allow non-trusted OS-Applications to access control registers managed by

the Operating System module. ᶌ (SRS_Os_11011)

[SWS_Os_00245] ᶉIf an instruction exception occurs (e.g. division by zero) the
Operating System module shall call the protection hook with

E_OS_PROTECTION_EXCEPTION. ᶌ (SRS_Os_11011)

7.7.4.3 Implementation Notes

When the Operating System module is running non-trusted OS-Applications, the
Operating System moduleôs treatment of interrupt entry and hook routines must be
carefully managed.

Interrupt handling: Where the MCU supports different modes (as discussed in this

section) ISRs will require the Operating System module to do extra work in the ISR()

wrapper. ISRs will typically be entered in privileged mode. If the handler is part of a

non-trusted OS-Application then the ISR() wrapper must make sure that a switch to
non-privileged mode occurs before the handler executes.

7.7.5 Providing »Trusted Functions«

7.7.5.1 Background & Rationale

An OS-Application can invoke a Trusted Function provided by (another) trusted OS-
Application. That can require a switch from non-privileged to privileged mode. This is
typically achieved by these operations:

(1) Each trusted OS-Application may export services which are callable from
other OS-Applications.

(2) During configuration these trusted services must be configured to be called
from a non-trusted OS-Application.

(3) The call from the non-trusted OS-Application to the trusted service is using a
mechanism (e.g. trap/software interrupt) provided by the Operating System.
The service is passed as an identifier that is used to determine, in the trusted
environment, if the service can be called.

(4) The Operating System offers services to check if a memory region is
write/read/execute accessible from an OS-Application. It also returns
information if the memory region is part of the stack space.

The Operating System software specification does not provide support for »non-
trusted services«.

Specification of Operating System
AUTOSAR Release 4.2.2

85 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

7.7.5.2 Requirements

[SWS_Os_00451] ᶉThe Operating System module shall allow exporting services

from trusted OS-Applications. ᶌ ()

The Operating System module provides the service CallTrustedFunction() (see
SWS_Os_00097) to call a trusted function from a (trusted or non-trusted) OS-
Application.

[SWS_Os_00100] ᶉIf CallTrustedFunction() is called and the called trusted

function is not configured the Operating System module shall call the ErrorHook with

E_OS_SERVICEID. ᶌ ()

The Operating System module provides the services CheckISRMemoryAccess() and

CheckTaskMemoryAccess() (see SWS_Os_00512 and SWS_Os_00513) for OS-
Applications to check if a memory region is write/read/execute accessible from a
Task/Category 2 ISR and also return information if the memory region is part of the
stack space.

7.8 Protection Error Handling

7.8.1 Background & Rationale

The Operating System can detect protection errors based on statically configured
information on what the constituent parts of an OS-Application can do at runtime.
See Section 7.7.

Unlike monitoring, protection facilities will trap the erroneous state at the point the
error occurs, resulting in the shortest possible time between transition into an
erroneous state and detection of the fault. The different kinds of protection errors are
described in the glossary. If a protection error occurs before the Operating System
module is started the behaviour is not defined. If a protection error happens during
shutdown, e.g. in the application-specific shutdown hook, an endless loop between
the shutdown service and the protection hook may occur.

In the case of a protection error, the Operating System module calls a user provided
Protection Hook for the notification of protection errors at runtime. The Protection
Hook runs in the context of the Operating System module and must therefore be
trusted code.

The Operating System module itself needs only to detect an error and provide the
ability to act. The Protection Hook can select one out of four options the Operating
System module provides, which will be performed after returning from the Protection
Hook, depending on the return value of the Protection Hook. The options are:

1. do nothing

Specification of Operating System
AUTOSAR Release 4.2.2

86 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

2. forcibly terminate the faulty Task/Category 2 ISR
3. forcibly terminate all tasks and ISRs in the faulty OS-Application

a. without restart of the OS-Application
b. with restart of the OS-Application

4. shutdown the Operating System module.

Requirements SWS_Os_00243 and SWS_Os_00244 define the order of the default
reaction if no faulty Task/Category 2 ISR or OS-Application can be found, e.g. in the
system specific hook routines. Also OS-Applications are only mandatory in Scalability
Classes 3 and 4, therefore in other Scalability Classes OS-Applications need not be
defined.

Note that forcibly terminating interrupts is handled differently in ñforcibly terminate the
faulty ISRò and ñforcibly terminate the OS-Applicationò. If a faulty ISR is forcibly
terminated, the current invocation of the ISR is terminated. A subsequent invocation
is allowed. If the OS-Application is forcibly terminated, then the interrupt source is
also disabled, preventing subsequent interrupts.

Notes regarding the return value PRO_IGNORE

The meaning of "do nothing" (PRO_IGNORE) means that the error reaction is

ignored. The PRO_IGNORE is only allowed in specific situations (currently: arrival rate

errors). After the error is detected and handled (e.g. as specified in OS466 or OS467)

the protection hook is called. If the hook returns with PRO_IGNORE the OS does

continue normal operation. If a service call was the root cause of the violation (e.g.

an ActivateTask()) and protection hook returns PRO_IGNORE the service call

always returns E_OK.

Example 1: A task calls ActivateTask() and causes a arrival rate violation. The

activation is not performed (OS466) and protection hook is called. When returning

PRO_IGNORE the task can continue, e.g. the ActivateTask() call returns E_OK

and goes on.

Example 2: A task A calls SetEvent() for task B (which currently waits for the

event). The OS sets the event (OS467) but also detects a arrival rate violation and

performs a call of the protection hook. When the call returns with PRO_IGNORE, the

task A continues to run. Also in this case the SetEvent() will return E_OK.

7.8.2 Requirements

[SWS_Os_00211] ᶉThe Operating System module shall execute the

ProtectionHook() with the same permissions as the Operating System module. ᶌ (
)

[SWS_Os_00107] ᶉIf no ProtectionHook() is configured and a protection error

occurs, the Operating System module shall call Shut downOS() .ᶌ (SRS_Os_11014)

Specification of Operating System
AUTOSAR Release 4.2.2

87 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[SWS_Os_00106] ᶉIf the ProtectionHook() returns PRO_IGNORE and was called

with E_OS_PROTECTION_ARRIVAL the Operating System module shall return control

to the user application. ᶌ (SRS_Os_11014)

[SWS_Os_00553] ᶉIf the ProtectionH ook() returns PRO_TERMINATETASKISR the

Operating System module shall forcibly terminate the faulty Task/Category 2 ISR. ᶌ (

)

[SWS_Os_00554] ᶉIf the ProtectionHook() returns PRO_TERMINATEAPPL the

Operating System module shall forcibly terminate the faulty OS-Application. ᶌ ()

[SWS_Os_00555] ᶉIf the ProtectionHook() returns PRO_TERMINATEAPPL_RESTART

the Operating System module shall forcibly terminate the faulty OS-Application and

afterwards restart the OS-Application. ᶌ ()

[SWS_Os_00556] ᶉIf the Protec tionHook() returns PRO_SHUTDOWN the Operating

System module shall call the ShutdownOS() .ᶌ ()

[SWS_Os_00506] ᶉIf the ProtectionHook() is called with

E_OS_PROTECTION_ARRIVAL the only valid return values are PRO_IGNORE or

PRO_SHUTDOWN 3. Returning other values will result in a call to ShutdownOS() .ᶌ ()

[SWS_Os_00475] ᶉIf the ProtectionHook() returns PRO_IGNORE and the

ProtectionHook() was not called with E_OS_PROTECTION_ARRIVAL then the

Operating System module shall call ShutdownOS() .ᶌ ()

[SWS_Os_00243] ᶉIf the ProtectionHook() returns PRO_TERMINATETASKISR and

no Task or ISR can be associated with the error, the running OS-Application is
forcibly terminated by the Operating System module. If even no OS-Application can

be assigned, ShutdownOS() is called. ᶌ (SRS_Os_11014)

[SWS_Os_00244] ᶉIf the ProtectionHook() returns PRO_TERMINATEAPPL or

PRO_TERMINATEAPPL_RESTART and no OS-Application can be assigned,

ShutdownOS() is called. ᶌ (SRS_Os_11014)

[SWS_Os_00557] ᶉIf the ProtectionHook() returns PRO_TERMINATEAPPL_RESTART

and no OsRestartTask was configured for the faulty OS-Application, ShutdownOS()

is called. ᶌ ()

[SWS_Os_00108] ᶉIf the Operating System module forcibly terminates a task, it
terminates the task, releases all allocated OSEK resources and calls

EnableAllInterrupts() / ResumeOSInterrupts() / ResumeAllInterrupts() if

3
 The reason for this case is that the Task which is supervised is not necessary active (and can not be e.g. terminated) and it

can be that the caller of the activation is the real problem.

Specification of Operating System
AUTOSAR Release 4.2.2

88 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

the Task called DisableAllInterrupts() / SuspendOSInterrupts() /

SuspendAllInterrupts() before without the corresponding

EnableAllInterrupts() / ResumeOSInterrupts() / ResumeAllInterrup ts() call.

ᶌ (SRS_Os_11014)

[SWS_Os_00109] ᶉIf the Operating System module forcibly terminates an interrupt
service routine, it clears the interrupt request, aborts the interrupt service routine
(The interrupt source stays in the current state.) and releases all OSEK resources the

interrupt service routine has allocated and calls EnableAllInterrupts() /

ResumeOSInterrupts() / ResumeAllInterrupts() if the interrupt called

DisableAllInterrupts() / SuspendOSInterrupts() /

SuspendAllInterrupts() before without the corresponding

EnableAllInterrupts() / ResumeOSInterrupts() / ResumeAllInterrupts() call.

ᶌ (SRS_Os_11014)

[SWS_Os_00110] ᶉIf the Operating System module shall forcibly terminates an OS-
Application, it:shall

o forcibly terminate all Tasks/ISRs of the OS-Application AND
o cancel all alarms of the OS-Application AND
o stop schedule tables of the OS-Application AND

o disable interrupt sources of Category 2 ISRs belonging to the OS-Applicationᶌ
(SRS_Os_11014)

[SWS_Os_00111] ᶉWhen the Operating System module restarts an OS-Application,

it shall activate the configured OsRestartTask. ᶌ ()

7.9 Operating System for Multi-Core

This chapter specifies some extensions that allow to use an AUTOSAR system on
Multi-Core micro-processors. It describes the main philosophy as well as additional
extensions to the existing OS functionality regarding Multi-Core. The following
chapter contains a specification of a new mechanism within the OS called IOC (Inter
OS-Application Communicator) that supports the communication between OS-
Applications located on the same or on different cores

7.9.1 Background & Rationale

The existing AUTOSAR-OS is based on the OSEK/VDX Operating system which is
widely used in the automotive industry. The AUTOSAR Multi-Core OS is derived from
the existing AUTOSAR OS.

Specification of Operating System
AUTOSAR Release 4.2.2

89 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

The Multi-Core OS in AUTOSAR is not a virtual ECU concept, instead it shall be
understood as an OS that shares the same configuration and most of the code, but
operates on different data structures for each core.
To reduce the memory footprint all cores should use the same code base.
Sometimes it can be beneficial to spend some more ROM/Flash, e.g. to use a local
ROM, and "double" parts of the code to get faster ROM/Flash access.

7.9.1.1 Requirements

[SWS_Os_00567] ᶉThe generated part of the OS is derived from a single
configuration that contains the relevant information for all cores. This implies, that IDs
(e.g. TASKID, RESOURCEID, é) are unique across cores. Every ID shall refer
exactly to one entity independent from the core on which the entity is accessed. This

applies also to objects that cannot be shared between cores. ᶌ (SRS_Os_80008)

7.9.2 Scheduling

The priority of the TASKs drives the scheduling. Since multiple cores run truly
parallel, several TASKs can execute at the same time.

Figure 2: Priorities are assigned to TASKS. The cores schedule independently from each other.
The TASKS T2, T3 and T5 are executed in true parallelism. TASKs with the same priority on the

same core will be executed in order of activation; TASKs with the same priority on different
cores may not be executed in the order of activation, since the cores schedule independent

from each other.

The OS can be entered on each core in parallel. This optimizes scalability towards
multiple cores. The cores schedule independently. This implies that the schedule on
one core does not consider the scheduling on the other cores4. A low priority TASK
on one core may run in parallel with a high priority TASK on another core.
TASKs and ISRs cannot dynamically change cores by means of the scheduling
algorithm.

4
 This also applies to TASKs with the same priority, bound to different cores. It also means that non-preemptive tasks cannot be

preempted on the core they are running, but tasks on other cores can run in parallel.

Specification of Operating System
AUTOSAR Release 4.2.2

90 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

7.9.2.1 Requirements

[SWS_Os_00568] ᶉImplementations shall be able to independently execute a TASK

or an ISR on each started AUTOSAR OS core in parallel. ᶌ (SRS_Os_80001)

[SWS_Os_00569] ᶉThe scheduling strategy as defined in AUTOSAR OS shall apply
for each individual core in a Multi-Core system, for the TASKs and ISR assigned to

the core. ᶌ (SRS_Os_80001 , SRS_Os_80013)

7.9.3 Locatable entities (LE)

A locatable entity is an entity that has to be located entirely on one core. The
assignment of LEs to cores is defined at configuration time

(OsApplica tionCore Ref).

In this release of the AUTOSAR standard OS-Applications shall be the LEs. Because
every TASK has to run on some core, the usage of OS-Applications becomes
obligatory in AUTOSAR R4.0 for Multi-Core systems. BSW modules are not allowed
to ignore OS-Applications, even if they do not use any protection mechanisms. This
is independent from the SC class.

As is stated in the AUTOSAR Specification of the Operating System, if OS-
Applications are used, all Tasks, ISR etc. must belong to an OS-Application. This
implies, that no AUTOSAR software exists outside of an OS-Application in Multi-Core
systems.

On single-core systems OS-Applications are available only for SC3 and SC4
because the mechanism is used to support memory protection and implies the usage
of extended mode. In Multi-core systems OS-Applications are always available
independend of memory protection and on SC1 standard mode shall be possible.

7.9.3.1 Requirements

[SWS_Os_00570] ᶉAll TASKs that are assigned to the same OS-Application shall

execute on the same core. ᶌ (SRS_Os_80003, SRS_Os_80005)

[SWS_Os_00571] ᶉAll ISRs that are assigned to the same OS-Application shall

execute on the same core. ᶌ (SRS_Os_80003, SRS_Os_80005)

[SWS_Os_00572] ᶉISR balancing (if supported by the HW) shall be switched off at

boot time by the OS. ᶌ (SRS_Os_80005, SRS_Os_80006)

[SWS_Os_00764] ᶉThe OS module shall support OS-Applications in case of Multi-

Core also for SC1 and SC2. ᶌ ()

Specification of Operating System
AUTOSAR Release 4.2.2

91 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[SWS_Os_00763] ᶉIn an SC1 system standard mode shall be possible. ᶌ ()

[SWS_Os_00573] ᶉThe binding of OS-Applications to cores shall be configured

within the OS-Application container. ᶌ (SRS_Os_80003, SRS_Os_80005)

A new configuration item: OsApplicationCore Ref within the OS-Application

container shall be used to define the core to which the OS-Application is bound. The
OS generator will map the configuration parameter ñCOREò to a certain core, so that
all OS-Applications with the same configuration parameter reside on the same core.

7.9.4 Multi-Core start-up concept

The way cores are started depends heavily on the hardware. Typically the hardware
only starts one core, referred as the master core, while the other cores (slaves)
remain in halt state until they are activated by the software.

In contrast to such a master-slave system other boot concepts with cores that start
independently from each other are conceivable. However it is possible to emulate
master-slave behavior on such systems by software.

The AUTOSAR Multi-Core OS specification requires a system with master-slave
start-up behavior, either supported directly by the hardware or emulated in software.
The master core is defined to be the core that requires no software activation,
whereas a slave core requires activation by software.

In Multi-Core configurations, each slave core that is used by AUTOSAR must be

activated before StartOS is entered on the core. Depending on the hardware, it may

be possible to only activate a subset of the available cores from the master. The

slave cores might activate additional cores before calling StartOS . All cores that

belong to the AUTOSAR system have to be activated by the designated AUTOSAR

API function. Additionally, the StartOS function has to be called on all these cores.

If a core is activated it executes some HW and compiler specific operations, before

the "main" function is called. In case the same "main" function is executed on

each core, the cores have to be differentiated by their specific core Id within the
function.

Example:
void main ()

{

 StatusType rv;

 [é]

 switch (GetCoreID())

 {

 case OS_CORE_ID_MASTER:

 [é]

Specification of Operating System
AUTOSAR Release 4.2.2

92 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

 StartCore(OS_CORE_ID_0, &rv);

 StartOS(OSDEFAULTAPPMODE);

 break;

 case OS_CORE_ID_0:

 [é]

 StartCore(OS_CORE_ID_1, &rv);

 StartOS(DONOTCARE);

 break;

 otherwise:

 StartOS(DONOTCARE);

 }

}

StartOS synchronizes all cores twice. The first synchronization point is located

before the StartupHooks are executed, the second after the OS-Application specific
StartupHooks have finished and before the scheduler is started. The exact point
where the second synchronization occurs depends on the implementation, but it shall
be before the scheduling is started. This release of the AUTOSAR specification does
not support timeouts during the synchronization phase. Cores that are activated with

StartCore but do not call StartOS may cause the system to hang. It is in the

responsibility of the integrator to avoid such behavior.

As shown in Figure 3, the StartUpHook is called on every core right after the first

synchronization. However, there is only one StartUpHook in the system. If, for

example, core-individual functionality must be executed during StartupHook the

GetCoreID function can be used to discriminate the individual cores. After the global

StartUpHook has finished each core performs the StartUpHooks of its OS-
Applications . Since OS-Applications are bound to cores the OS-Application specific
StartUpHooks are executed only on the core to which the corresponding OS-
Application is bound.

Figure 3: This figure shows an example of an initialization process with 4 cores.

7.9.4.1 Requirements

[SWS_Os_00574] ᶉThe master core shall be able to activate cores. ᶌ (SRS_Os_80006,

SRS_Os_80026, SRS_Os_80027)

Specification of Operating System
AUTOSAR Release 4.2.2

93 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[SWS_Os_00575] ᶉAny slave core shall be able to activate cores. ᶌ (SRS_Os_80006,

SRS_Os_80026, SRS_Os_80027)

[SWS_Os_00576] ᶉIt shall be allowed to use only a subset of the cores available on

a µC for the AUTOSAR system. ᶌ (SRS_Os_80006, SRS_Os_80026, SRS_Os_80027)

[SWS_Os_00577] ᶉThe cores shall boot in master-slave mode. If this is not
supported by the hardware, it shall be that the cores boot in parallel and emulate the

behavior of a master-slave system. ᶌ (SRS_Os_80006, SRS_Os_80026, SRS_Os_80027)

[SWS_Os_00578] ᶉIn case of an emulation a slave core (CoreS), which is controlled
by the AUTOSAR OS (AUTOSAR core), shall not enter the main function before

another core has activated the slave core by means of StartCore(CoreS) . ᶌ
(SRS_Os_80006)

[SWS_Os_00579] ᶉAll cores that belong to the AUTOSAR system shall be

synchronized within the StartOS function before the scheduling is started and after

the global Startup Hook is called. ᶌ (SRS_Os_80001, SRS_Os_80006)

[SWS_Os_00580] ᶉAll cores that belong to the AUTOSAR system shall be

synchronized within the StartOS before the global StartupHook is called. ᶌ
(SRS_Os_80006)

[SWS_Os_00581] ᶉThe global StartupHook shall be called on all cores

immediately after the first synchronisation point. ᶌ (SRS_Os_80006)

[SWS_Os_00582] ᶉThe OS-Application-specific StartupHooks shall be called after

the global StartupHook but only on the cores to which the OS-Application is bound.

ᶌ (SRS_Os_80006, SRS_Os_80008)

7.9.5 Cores under control of the AUTOSAR OS

The AUTOSAR OS controls several cores as stated above. It need not control all
cores of a µC, however. The maximum number of controlled cores shall be
configured within the ñOsOSò section of the configuration.

The AUTOSAR OS API provides a StartCore function to start the cores under its

control. The StartCore function takes a scalar value parameter of type

CoreI dType, specifying the core that shall be started. StartCore can be called

more than once on the master core and also on slave cores. Each core can only be
started once, however. For example:

Specification of Operating System
AUTOSAR Release 4.2.2

94 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

StartusType rv1, rv2;

StartCore(OS_CORE_ID_1, &rv1);

StartCore(OS_CORE_ID_2, &rv2);

if (rv1 != E_OK) || (rv2 != E_OK)

 EnterPanicMode();

StartO S(OSDEFAULTAPPMODE);

The StartOS function shall be called on all cores that have been activated by

StartCore . It is not allowed to call StartCore from a core that has already called

StartOS .

Cores that belong to the AUTOSAR system shall be started by the designated

AUTOSAR OS API service StartCore .

7.9.5.1 Requirements

[SWS_Os_00583] ᶉThe number of cores that can be controlled by the AUTOSAR
OS shall be configured offline.

A new configuration item (OsNumberOfCores) within the ñOsOSò container is used

to specify the maximum number of cores that are controlled by the AUTOSAR OS. If

no value for (OsNumberOfCores) has been specified the number of cores shall be

one. ᶌ (SRS_Os_80001, SRS_Os_80011)

7.9.6 Cores which are not controlled by the AUTOSAR OS

The function StartNonA utosarCore can be used both before and after StartOS .

It is provided to activate cores that are controlled by another OS or no OS at all,
AUTOSAR functions shall not be called on these cores, otherwise the behavior is
unspecified.

7.9.6.1 Requirements

[SWS_Os_00584] ᶉThe AUTOSAR OS shall provide a function called

StartNonAutosarCore that can be used to start cores, which are not controlled by

the AUTOSAR OS. ᶌ (SRS_Os_80006, SRS_Os_80026, SRS_Os_80027)

[SWS_Os_00585] ᶉIt shall be possible to activate cores that are not controlled by the

AUTOSAR OS before and after calling StartOS . ᶌ (SRS_Os_80006, SRS_Os_80026,

SRS_Os_80027)

Specification of Operating System
AUTOSAR Release 4.2.2

95 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

7.9.7 Multi-Core shutdown concept

AUTOSAR supports two shutdown concepts, the synchronized shutdown and the
individual shutdown concept. While the synchronized shutdown is triggered by the

new API function ShutdownAllCores() , the individual shutdown is invoked by the

existing API function ShutdownOS() .

7.9.7.1 Synchronized shutdown concept

If a TASK with the proper rights calls ñShutdownAllCores ò, a signal is sent to all

other cores to induce the shutdown procedure. Once the shutdown procedure has
started on a core, interrupts and TASKs are not further processed, and no scheduling
will take place, therefore it makes no sense to activate any TASK, however no error
will be generated. It is in the responsibility of the application developer/system
integrator to make sure that any preparations for shutdown on application and basic

software level are completed before calling ñShutdownAllCores ò. (e.g. by means of

the ECU state manager).

During the shutdown procedure every core executes its OS-Application specific

ShutdownHook functions, followed by a synchronization point. After all cores have

reached the synchronization point the global ShutdownHook function is executed by

all cores in parallel.

Figure 4: Example of a shutdown procedure.

[SWS_Os_00586] ᶉDuring the shutdown, the OS-Application specific

ShutdownHook shall be called on the core on which the corresponding OS-

Application is bound. ᶌ (SRS_Os_80007)

[SWS_Os_00587] ᶉBefore calling the global ShutdownHook, all cores shall be

synchronized. ᶌ (SRS_Os_80007)

Specification of Operating System
AUTOSAR Release 4.2.2

96 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[SWS_Os_00588] ᶉThe global ShutdownHook shall be called on all cores. ᶌ
(SRS_Os_80007)

7.9.7.2 Individual shutdown concept

If a TASK calls ShutdownOS the OS will be shut down on the core on which

ShutdownOS has been called. Every core shall be able to invoke ShutdownOS .

Similar to StartOS this function will shutdown the individual core. To shutdown the

whole ECU ShutdownOS has to be called on every core. The function will not return.

Individual shutdown is not supported in AUTOSAR R4.x (AUTOSAR mode
management will not use it).

7.9.7.3 Shutdown in case of fatal internal errors
In multicore systems it can happen that a fatal internal OS error is detected only on
one core. In such cases a local shutdown of that core does not make sense.

[SWS_Os_00762] ᶉIn cases where the OS detects a fatal internal error all cores

shall be shut down. ᶌ ()

7.9.8 OS service functionality (overview)

Within this chapter we describe which existing single core AUTOSAR OS
functionality has been extended. The following table gives an overview of all standard
OS API functions. The column ñMulti-Core supportò contains one of the following
values:

¶ Extended: The function that has been extended substantially to support
special Multi-Core functionality.

¶ Adapted: the function required some minor changes but basically remains
unchanged.

¶ Unchanged: the behavior of the function has not changed.

¶ New: the function is a new AUTOSAR OS API-function.

Service Multi-Core support Annotation
ActivateTask Extended Cross core use shall be

supported.

AllowAccess Unchanged Works only on the same core

CallTrustedFunction Adapted Function must be bound to the

same core

CancelAlarm Extended Cross cor e use shall be

supported

ChainTask Extended Cross core use shall be

supported.

CheckISRMemoryAccess Unchanged

CheckObjectAccess Unchanged

CheckObjectOwnership Unchanged

CheckTASKMemoryAccess Unchanged

ClearEvent Unchanged

ControlIdle Unchan ged Is allowed to be called from

Specification of Operating System
AUTOSAR Release 4.2.2

97 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

any core

DisableAllInterrupts Unchanged Works only on the same core

EnableAllInterrupts Unchanged Works only on the same core

GetActiveApplicationMode Unchanged

GetAlarm Extended Cross core use shall be

supported

Get AlarmBase Extended Cross core use shall be

supported

GetApplicationID Unchanged

GetApplicationState Extended Cross core use shall be

supported

GetCoreID New ID of the current core

GetCounterValue Extended Cross core use shall be

supported

GetElapsed CounterValue Extended Cross core use shall be

supported.

GetEvent Unchanged

GetISRID Unchanged

GetNumberOfActivatedCores New Number of cores activated

during startup.

GetResource Adapted Nestable with spinlocks

GetScheduleTableStatus Extended Cro ss core use shall be

supported.

GetSpinlock New Occupy a spinlock

GetTaskID Unchanged Works only on the same core

GetTaskState Extended Cross core use shall be

supported

IncrementCounter Adapted Cross core is not allowed.

NextScheduleTable Unchanged

ReleaseResource Adapted Nestable with spinlocks

ReleaseSpinlock New Release a spinlock

ResumeAllInterrupts Unchanged Works only on the same core

ResumeOSInterrupts Unchanged Works only on the same core

Schedule Adapted Check for unreleased

spinloc ks

SetAbsAlarm Extended Cross core use shall be

supported

SetEvent Extended Cross core use shall be

supported.

SetRelAlarm Extended Cross core use shall be

supported

SetScheduleTableAsync Unchanged

ShutdownAllCores New Synchronized shutdown.

Shutdo wnOS Extended Support for MC systems

StartCore New Start additional core

StartOS Extended Support for MC systems

StartNonAutosarCore New Start additional core

StartScheduleTableAbs Extended Cross core use shall be

supported.

StartScheduleTableRel Extended Cross core use shall be

supported.

StartScheduleTableSynchron Unchanged

StopScheduleTable Extended Cross core use shall be

supported.

SuspendAllInterrupts Unchanged Works only on the same core

SuspendOSInterrupts Unchanged Works only on the s ame core

SyncScheduleTable Unchanged

TerminateApplication Extended Check for unreleased

spinlocks. Cross core use

Specification of Operating System
AUTOSAR Release 4.2.2

98 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

shall be supported.

TerminateTask Adapted Check for unreleased

spinlocks

TryToGetSpinlock New Try to occupy a spinlock

WaitEvent Adapted Check for unreleased

spinlocks

Tab. 2: gives an overview of changes to the OS Service Calles

Service
 T

a
s
k

C
a

t1
 I

S
R

C
a

t2
 I

S
R

E
rr

o
r

H
o

o
k

P
re

T
a
s

k
 H

o
o

k

P
o

s
tT

a
s

k
 H

o
o

k

S
ta

rt
u

p
 H

o
o

k

S
h

u
td

o
w

n
 H

o
o

k

A
la

rm
 C

a
ll
b

a
c

k

P
ro

te
c
ti

o
n

 H
o

o
k

GetNumberOfActivatedCores V V

GetCoreID V V V V V V V V V V
StartCore
StartNonAutosarCore
GetSpinlock V V
ReleaseSpinlock V V
TryToGetSpinlock V V
ShutdownAllCores V V V V

Tab. 3: Allowed Calling Context for OS Service Calls

[SWS_Os_00589] ᶉAll functions that are not allowed to operate cross core shall
return E_OS_CORE in extended status if called with parameters that require a cross

core operation. ᶌ (SRS_Os_80013)

7.9.9 GetTaskID

GetTaskID can be called both from TASK and ISR2 level. When called from an

interrupt routine, on Single-Core systems, GetTaskID returns either the interrupted

TASK or indicates that no TASK is running. On Multi-Core systems it

1. indicates that no TASK is running on the core or,
2. returns the ID of the interrupted TASK on the core.

7.9.10 Interrupt disabling

Note: All types of interrupts can only be disabled on the local core. This implies that
the interrupt flags on other cores remain in their current state. Scheduling continues
on the other cores. Running ISRs on other cores continue executing.

Specification of Operating System
AUTOSAR Release 4.2.2

99 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

7.9.10.1 Requirements

[SWS_Os_00590] ᶉThe OS service ñDisableAllInterruptsò shall only affect

the core on which it is called. ᶌ (SRS_Os_80013)

[SWS_Os_00591] ᶉThe OS service ñEnableAllInterruptsò shall only affect the

core on which it is called. ᶌ (SRS_Os_80013)

[SWS_Os_00592] ᶉThe OS service ñSuspendAllInterruptsò shall only affect

the core on which it is called. ᶌ (SRS_Os_80013)

[SWS_Os_00593] ᶉThe OS service ñResumeAllInterruptsò shall only affect

the core on which it is called. ᶌ (SRS_Os_80013)

[SWS_Os_00594] ᶉThe OS service ñSuspendOSInterruptsò shall only affect the

core on which it is called. ᶌ (SRS_Os_80013)

[SWS_Os_00595] ᶉThe OS service ñResumeOSInterruptsò shall only affect the

core on which it is called. ᶌ (SRS_Os_80013)

7.9.11 TASK activation

TASK activation shall be extended to work across cores. This document will not
specify any implementation details. This functions timing behavior can be slower
when working across cores. If a TASK has to be activated on another core, a
scheduling decision is necessary on that core. If the core has not been started an
error is generated.

7.9.11.1 Requirements

[SWS_Os_00596] ᶉIt shall be possible to activate a TASK that is part of an OS-

Application located on another core, as long as the assigned access rights allow it. ᶌ
(SRS_Os_80001, SRS_Os_80015)

[SWS_Os_00598] ᶉThe call of ActivateTask across cores shall behave

synchronously, i.e. a call returns after the task has been activated or an error has
been detected. It shall not be possible to continue execution on the calling core

before ActivateTask is accomplished on the remote core. ᶌ (SRS_Os_80015)

Specification of Operating System
AUTOSAR Release 4.2.2

100 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[SWS_Os_00599] ᶉIn case of an error when calling ActivateTask across cores,

the error handler shall be called on the core on which ActivateTask was originally

called. ᶌ (SRS_Os_80015)

7.9.12 TASK Chaining

TASK chaining shall be extended to work across cores. This document will not
specify any implementation details. This functionôs timing behavior can be slower
when working across cores. If a TASK has to be activated on another core, a
scheduling decision is necessary on that core. If the core has not been activated, an
error is generated.

7.9.12.1 Requirements

[SWS_Os_00600] ᶉIt shall be possible to chain a TASK that is part of an OS-

Application located on another core, as long as the assigned access rights allow it. ᶌ
(SRS_Os_80001, SRS_Os_80015)

7.9.13 EVENT setting

SetEvent shall be extended to work across cores. This document will not specify

any implementation details. This functionôs timing behavior can be slower when
working across cores. If the core has not been activated, an error is generated.

7.9.13.1 Requirements

[SWS_Os_00602] ᶉIt shall be possible to set an EVENT that is part of an OS-

Application located on another core, as long as the assigned access rights allow it. ᶌ
(SRS_Os_80016)

[SWS_Os_00604] ᶉThe call of SetEvent across cores shall behave synchronously,

i.e. a call returns after the Event has been set or an error has been detected. It shall

not be possible to continue execution on the calling core before SetEvent is

accomplished on the remote core. ᶌ (SRS_Os_80016)

[SWS_Os_00605] ᶉIn case of an error when calling SetEvent across cores, the

error handler shall be called on the core on which SetEvent was originally called. ᶌ
(SRS_Os_80016)

Specification of Operating System
AUTOSAR Release 4.2.2

101 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

7.9.14 Activating additional cores

The mechanism by which additional cores can be activated as described in section
7.9.5

7.9.15 Start of the OS

It is necessary to extend the functionality of StartOS . This is because StartOS is

called once on each core. The user provides the so called application mode5 to the

Operating System through the call parameter of StartOS(AppMode). The

application mode defines which of the configured (startup) objects (Tasks, Alarms,
ScheduleTables) the OS automatically starts.

On a Multi-Core system all cores shall run in the same application mode. If StartOS

is called with the Appmode DONOTCARE, the AppMode of the other cores is used. At

least one core has to define an AppMode other than DONOTCARE.

If the application mode is the same on all cores, StartOS will proceed its

task. More details can be found in chapter 7.9.4.

7.9.15.1 Requirements

[SWS_Os_00606] ᶉThe AUTOSAR specification does not support the activation of

AUTOSAR cores after calling StartOS on that core. If StartCore is called after

StartOS it shall return with E_OS_ACCESS in extended status. ᶌ (SRS_Os_80001)

[SWS_Os_00607] ᶉStartOS shall start the OS on the core on which it is called. ᶌ
(SRS_Os_80006, SRS_Os_80013)

[SWS_Os_00608] ᶉIf more than one core calls StartOS with an AppMode other

than ñDONOTCAREò, the AppModes shall be the same. StartOS shall check this at

the first synchronisation point. In case of violation, StartOS shall not start the

scheduling, shall not call any StartupHooks , and shall enter an endless loop on

every core. ᶌ (SRS_Os_80006)

[SWS_Os_00609] ᶉIf StartOS is called with the AppMode ñDONOTCAREò the

application mode of the other core(s) (differing from ñDONOTCAREò) shall be used. ᶌ
(SRS_Os_80006)

[SWS_Os_00610] ᶉAt least one core shall define an AppMode other than

ñDONOTCAREò. ᶌ (SRS_Os_80006)

5
 This is the application mode of the Operating System and shall not be confused by other application modes defined in the

AUTOSAR mode management.

Specification of Operating System
AUTOSAR Release 4.2.2

102 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[SWS_Os_00611] ᶉIf the IOC is configured, StartOS shall initialize the data

structures of the IOC. ᶌ (SRS_Os_80020)

7.9.16 TASK termination

The termination of TASKs requires an additional check: It is not allowed to terminate

a TASK while a spinlock is occupied. If TerminateTask / ChainTask is called with

an occupied spinlock an error is returned.

7.9.16.1 Requirements

If TerminateTask (or ChainTask) is called while the calling TASK holds a

spinlock, the behavior is undefined in standard status.

[SWS_Os_00612] ᶉIn extended status TerminateTask / ChainTask shall

return with an error (E_OS_SPINLOCK), which can be evaluated in the application. ᶌ
(SRS_Os_80021)

[SWS_Os_00613] ᶉSpinlocks occupied by TASKS that are terminated in response to
a protection hook shall be automatically released. This applies also to the case in

which an OS-Application is terminated. ᶌ (SRS_Os_80021)

7.9.17 Termination of OS-Applications

Similar to TASKs an OS-Application cannot be terminated while any of its TASKs
occupy a spinlock. In such cases, the lock is automatically released. To avoid an
avalanche of error handling, no calls to the ErrorHook are made.

It might be possible that TerminateApplication(A) is called in parallel from

different cores. The implementation has to support such a call pattern by executing

the first arriving call of TerminateApplication(A) and ignoring any subsequent

calls until the termination is completed.

7.9.17.1 Requirements

[SWS_Os_00614] ᶉTerminateApplication shall check if any of the TASKs in

theOS-Application have occupied a spinlock. If so, the spinlocks shall be released. ᶌ
(SRS_Os_80021)

[SWS_Os_00615] ᶉIf TerminateApplic ation(A) is called in parallel from

different cores, the OsApplication ñAò is terminated by the first call, any subsequent
calls will return with 'E_OK' in standard and extended status without doing anything,

until the termination is completed. ᶌ (SRS_Os_80021)

Specification of Operating System
AUTOSAR Release 4.2.2

103 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

7.9.18 Shutdown of the OS

Every core shall be able to invoke shutdown by using the ShutdownOS function. By

calling ShutdownOS only the calling core will enter the shutdown procedure.

If the user wants to shutdown all cores (more or less in parallel)

Shutdo wnAllCores shall be used.

ShutdownOS and ShutdownAllCores will not return.

The OS service ShutdownOS is not used by the AUTOSAR mode management in

AUTOSAR R4.0. The function is offered for users that run the OS on cores without
RTE and without mode management.

7.9.18.1 Requirements

[SWS_Os_00616] ᶉShutdownOS shall be callable from each core running an

AUTOSAR OS. ᶌ (SRS_Os_80001, SRS_Os_80007)

[SWS_Os_00617] ᶉShutdownOS shall shutdown the core on which it was called. ᶌ
(SRS_Os_80007)

[SWS_Os_00618] ᶉThe OS shall not start TASKs of an OS-Application once the

shutdown procedure has been entered on a particular core. ᶌ (SRS_Os_80013)

[SWS_Os_00619] ᶉThe AUTOSAR OS function ShutdownOS shall be callable in

parallel on multiple cores. ᶌ (SRS_Os_80013)

[SWS_Os_00620] ᶉShutdownOS shall release all spinlocks which are occupied by

the calling core. ᶌ (SRS_Os_80021)

[SWS_Os_00621] ᶉShutdownAllCores shall be callable from each core running

an AUTOSAR OS. ᶌ (SRS_Os_80007)

7.9.19 Waiting for EVENTs

The EVENT waiting mechanism must be adapted to the new Multi-Core spinlock
functionality:

A TASK might be de-scheduled when calling WaitEvent, in which case it would not

be able to release the spinlock. WaitEvent must therefore check if the calling TASK

holds a spinlock. As with RESOURCES, spinlocks cannot be occupied by TASKs in
wait state.

Specification of Operating System
AUTOSAR Release 4.2.2

104 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

7.9.19.1 Requirements

[SWS_Os_00622] ᶉThe AUTOSAR Operating System WaitEvent API service shall

check if it has been called while the calling TASK has occupied a spinlock. In

extended status an error E_OS_SPINLOCK shall be returned and the TASK shall not

enter the wait state. ᶌ (SRS_Os_80021)

7.9.20 Calling trusted functions

Functions can be declared as trusted as part of an OS-Application. They can then

only be executed through the CallTrustedFunction API function. Assuming that

the access rights are configured accordingly, a TASK from OS-Application A can call
a trusted function from OS-Application B.

On a Multi-Core system, these trusted function calls from one OS-Application to
another are limited to the same core.

7.9.20.1 Requirements

[SWS_Os_00623] ᶉThe OS API function CallTrustedFunction shall return

E_OS_ACCESS in extended status if the target trusted function is part of an OS-

Application on another core. ᶌ (SRS_Os_80013)

7.9.21 Invoking reschedule

The Schedule API service must be adapted to the new Multi-Core spinlock

functionality in the same manner as WaitEvent .

A TASK shall not actively force a de-scheduling while it occupies spinlocks.

7.9.21.1 Requirements

[SWS_Os_00624] ᶉThe AUTOSAR Operating System Schedule API service shall

check if it has been called while the calling TASK has occupied a spinlock. In

extended status an error E_OS_SPINLOCK shall be returned and the scheduler shall

not be called. ᶌ (SRS_Os_80021)

7.9.22 RESOURCE occupation

The GetResource function allows mutual exclusion between TASKs on the same

core. The OS generator shall check offline that the TASKs are not on different

cores.(see 7.9.30) and the GetResource function will check this requirement online.

Specification of Operating System
AUTOSAR Release 4.2.2

105 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

The priority ceiling protocol (used by GetResource) temporarily changes the priority

of a TASK. Such an approach fails on Multi-Core systems as the priorities are local to
each core. Therefore the ceiling protocol is not sufficient to protect a critical section
against access from different cores.

[SWS_Os_00801]ổ If Spinlocks and Resources are locked by a Task/ISR they have

to be unlocked in strict LIFO order. ReleaseResource() shall return E_OS_NOFUNC

if the unlock order is violated. No other functionality shall be performed.Ộ(

SRS_Os_80021)

7.9.23 The CoreID

Every HW assigns a unique physical Id to a core. The physical core Id is the only
way to distinguish between cores. The physical core Ids of a µC are not necessarily
consecutive and do not necessarily start with zero.

The SW requires a mechanism to identify a core, e.g. to use core specific variables.
Because the physical core Id usually can not be used as a direct array index for core
specific variables, a logical CoreID is necessary to map physical core Ids to array
indexes. In the SW it is not necessary to know the physical core Id, the logical
CoreID is sufficient.

The mapping of OSApplications and other SW objects to cores is specified in the
configuration files. All such mappings shall be HW independent and therefore shall
not be based on the physical core Id but on the logical CoreID.

The function GetCoreID internally maps the physical core Id to the logical CoreID.
The mapping is implementation specific. GetCoreID can be either a C function or a
macro.

7.9.23.1 Requirements

[SWS_Os_00625] ᶉThe AUTOSAR Operating System API function GetCoreID shall

be callable before StartOS . ᶌ (SRS_Os_80006)

[SWS_Os_00626] ᶉAn implementation shall offer a function

GetNumberOfActivatedCores that returns the number of cores running the

AUTOSAR OS. ᶌ (SRS_Os_80001)

[SWS_Os_00627] ᶉAn implementation shall define a set of constants

OS_CORE_ID_<No> of the type CoreI dType with <No> a value from 0 to

ñOsNumberOfCores - 1. ᶌ (SRS_Os_80001)

Specification of Operating System
AUTOSAR Release 4.2.2

106 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[SWS_Os_00628] ᶉAn implementation shall offer a constant OS_CORE_ID_MASTER

of the type CoreI dType that refers to the master core. ᶌ (SRS_Os_80001)

7.9.24 COUNTERs, background & rationale

A COUNTER is represented by a COUNTER value, measured in ñticksò, and some
COUNTER-specific constants.

Similarly to Single-Core situation, each operating system (on each core) offers at
least one COUNTER that is derived from a timer. Therefore, it is possible to define
several COUNTERs which belong to different OS-Applications and either resides on
the same or different cores.

Figure 5: Examples of allowed configurations for COUNTERs, ALARMs, Schedule-tables and
ISRs.

7.9.25 Multi-Core restrictions on COUNTERs

The AUTOSAR OS can only increment COUNTERSs on the core on which it resides.
A COUNTER which is assigned to an OS-Application X cannot be incremented by an
OS-Application Y if X and Y are assigned to different cores.

7.9.25.1 Requirements

[SWS_Os_00629] ᶉA COUNTER belonging to an OS-Application shall be
incremented by the core on which the OS-Application resides. The COUNTER shall

not be incremented by other cores. ᶌ (SRS_Os_80013)

Specification of Operating System
AUTOSAR Release 4.2.2

107 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[SWS_Os_00630] ᶉIt shall not be allowed to drive a schedule table from a

COUNTER, which is assigned to a different core. ᶌ (SRS_Os_80013)

[SWS_Os_00631] ᶉIt shall not be allowed to drive an ALARM from a COUNTER,

which is assigned to a different core. ᶌ (SRS_Os_80013)

There are two different reasons for these restrictions:

1. Race conditions can occur when cross-core modification of COUNTER is
allowed (one core waits for a COUNTER to be modified by another core).

2. The core which is incrementing the COUNTER has to check if ALARMs which
are based on the COUNTER have expired. Handling of expired ALARMs is
more complex when different cores manipulate the same ALARMs, because
mutual exclusion becomes necessary.

Figure 6: Example of disallowed configurations for COUNTERs, ALARMs, Schedule-tables and
Call-backs.

7.9.26 Synchronization of COUNTERs

COUNTERs are used to drive ALARMs and schedule tables. To synchronize
ALARMs and schedule tables that reside on different cores, the corresponding
COUNTERs have to be synchronized.

For example, if the hardware supports this, it is possible that corresponding
free running hardware counters on different cores use the same timer (same
counter value maintained by the periperial) and therefor provide the same
timebase on different cores. Software COUNTERs can then get advanced by alarms
attached to these core local corresponding hardware counters, e.g to drive
synchronized schedule tables on different cores.

Specification of Operating System
AUTOSAR Release 4.2.2

108 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

The quality of the synchronicity depends on the hardware architecture and on the
system configuration. .

7.9.27 ALARMs

The ALARM mechanism of the AUTOSAR Operating System provides services to
activate TASKs, set EVENTs, increment COUNTERs, or call an ALARM-call-back.

As stated above, ALARMS can only be bound to a COUNTER which resides on the
same core. TASKs can be activated and EVENTs can be set with an ALARM action
regardless of the core to which the TASK is bound. The access rights defined by OS-
Applications have to be respected, however. Additionaly it shall be allowed to
manipulate ALARMS when they are bound to other cores. The API-services

SetRelAlarm, SetAbsAlarm, and CancelAlarm can be used to manipulate

parameters of ALARMs on other cores.

7.9.27.1 Requirements

[SWS_Os_00632] ᶉIf an ALARM expires, it shall be allowed to activate a TASK on a

different core. ᶌ (SRS_Os_80018)

[SWS_Os_00633] ᶉIf an ALARM expires, it shall be allowed to set an EVENT on a

different core. ᶌ (SRS_Os_80018)

[SWS_Os_00634] ᶉThe AUTOSAR Operating System shall process an ALARM on

the core on which its corresponding OS-Application resides. ᶌ (SRS_Os_80018)

[SWS_Os_00635] ᶉALARM callbacks shall be executed on the core to which the
ALARM is bound. This is only applicable to SC1 systems, because otherwise Alarm

Callback are not allowed (SWS_Os_00242). ᶌ (SRS_Os_80013)

[SWS_Os_00636] ᶉSetRelAlarm shall also work on an ALARM that is bound to

another core. ᶌ (SRS_Os_80013)

[SWS_Os_00637] ᶉSetAbsAlarm shall also work on an ALARM that is bound to

another core. ᶌ (SRS_Os_80013)

[SWS_Os_00638] ᶉCancelAlarm shall also work on an ALARM that is bound to

another core. ᶌ (SRS_Os_80013)

[SWS_Os_00639] ᶉGetAlarmBase shall also work on an ALARM that is bound to

another core. ᶌ (SRS_Os_80013)

Specification of Operating System
AUTOSAR Release 4.2.2

109 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[SWS_Os_00640] ᶉGetAlarm shall also work on an ALARM that is bound to

another core. ᶌ (SRS_Os_80013)

7.9.28 Schedule tables

Similarly to ALARMs, schedule tables can be used to activate TASKs and set
EVENTs. As with ALARMs, a schedule table can only be bound to a COUNTER
which resides on the same core.

To simplify system startup, it should be possible to start schedule tables on other
cores. The system designer is responsible for the correct handling of schedule
tables. For example, schedule tables can be controlled from one core.

7.9.28.1 Requirements

[SWS_Os_00641] ᶉA schedule table shall be able to activate a TASK bound on a

core other than the one upon which the schedule tables resides. ᶌ (SRS_Os_80018)

[SWS_Os_00642] ᶉA schedule table shall be able to set an EVENT on a core other

than the one upon which the schedule tables residesᶌ (SRS_Os_80018)

[SWS_Os_00643] ᶉThe AUTOSAR Operating System shall process a schedule table

on the core on which its corresponding OS-Application resides. ᶌ (SRS_Os_80013)

[SWS_Os_00644] ᶉThe API call ñStartScheduleTableAbs ò shall be able to start

schedule tables of OS-Applications residing on other cores. ᶌ (SRS_Os_80018)

[SWS_Os_00645] ᶉThe API call ñStartScheduleTableRel ò shall be able to start

schedule tables of OS-Applications residing on other cores. ᶌ (SRS_Os_80013)

[SWS_Os_00646] ᶉThe API call ñStopScheduleTable ò shall be able to stop

schedule tables of OS-Applications residing on other cores. ᶌ (SRS_Os_80013)

[SWS_Os_00647] ᶉThe API service ñGetScheduleTableStatus ò shall be able to

get the status of a schedule table that is part of an OS-Application residing on a

different core. ᶌ (SRS_Os_80013)

7.9.29 The spinlock mechanism

With the Multi-Core concept, a new mechanism is needed to support mutual
exclusion for TASKS on different cores. This new mechanism shall not be used

Specification of Operating System
AUTOSAR Release 4.2.2

110 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

between TASKs on the same core because it makes no sense. In such cases the
AUTOSAR Operating System returns an error.

A ñSpinlockType ò, which is similar to OSEKôs ñResourceType ò, shall be used.

Spinlocks are configured offline.

A spinlock is a busy waiting mechanism that polls a (lock) variable until it becomes
available. Typically, this requires an atomic ñtest and setò functionality, the details of
which are implementation specific.

Once a lock variable is occupied by a TASK/ISR2, other TASKs/ISR2s on other
cores shall be unable to occupy the lock variable. The spinlock mechanism will not
de-schedule these other TASKs while they poll the lock variable. However it might
happen that a TASK/ISR with a higher priority becomes ready while the lock variable
is being polled. In such cases the spinning TASK will be interfered. This is illustrated
in Figure 7.

Figure 7: A deadlock situation caused by interference, the high priority TASK spins indefinitely
because the low priority TASK has occupied the spinlock. In such cases the second

GetSpinlock call will return with an error

A user can protect a TASK against such a situation by, for example, rapping

the spinlock with SuspendAllInterrupts , so that it cannot be interfered by

other TASKS. The OS can do this automatically for the caller see configuration
parameter OsSpinlockLockMethod (on page 110).
A second deadlock situation can be created by nested spinlocks calls, as illustrated
in Figure 8.

Specification of Operating System
AUTOSAR Release 4.2.2

111 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Figure 8: This figure shows a typical deadlock caused by two spinlocks taken in different order
by TASKS on two different cores.

To avoid deadlocks it is not allowed to nest different spinlocks. Optionally if spinlocks
shall be nested, a unique order has to be defined. Spinlocks can only be taken in this
order whereas it is allowed to skip individual spinlocks. Cycles are not allowed within
the defined order. This is illustrated in Figure 9.

Figure 9: This figure shows an example in which two TASKS have access to a set of spinlocks
S1 -- S6. It is allowed to occupy the spinlocks in the predefined order and it is allowed to skip
spinlocks. If multiple spinlocks are occupied at the same time, locking and unlocking has to

occur in strict LIFO order.

The spinlock mechanism is not deadlock free by itself. The order in which spinlocks
from Tasks/ISRs are requested has to be mentioned in the configuration description.
If a task occupies a spinlock, scheduling shall be restricted.

7.9.29.1 Requirements

[SWS_Os_00648] ᶉThe AUTOSAR Operating System shall provide a spinlock

mechanism that works across cores. ᶌ (SRS_Os_80018, SRS_Os_80021)

[SWS_Os_00649] ᶉThe AUTOSAR Operating System shall provide a GetSpinlock

function which occupies a spinlock. If the spinlock is already occupied,

GetSpinlock shall keep on trying to occupy the spinlock until it succeeds. ᶌ
(SRS_Os_80018, SRS_Os_80021)

