AUTO SAR

Specification of Operating System
AUTOSAR Release 4.2.2

Document Title Specification of Operating
System

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 034

Document Classification Standard

Document Status Final

Part of AUTOSAR Release 422

Document Change History

Release |Changed by Change Description
4.2.2 |AUTOSAR 9 Allow calls to Controlldle from all cores
Release 1 Minor updates/clarification of descriptions
Management § Editorial changes
421 |AUTOSAR 1 Add support for AsilQmProtection
Release 1 Minor updates/clarification of descriptions
Management 1 Editorial changes
4.1.3 |AUTOSAR 1 Changed multiplicity of attributes in
Release locSender/ReceiverProperties
Management 1 Minor updates/clarification of descriptions
1 Editorial changes
4.1.2 |AUTOSAR 1 Clarification on E_OS_NESTING_DEADLOCK
Release {1 Update of table 2
Management 1 Corrected multiplicity of ECUC_Os_00393
1 Minor updates/clarification of descriptions
1 Editorial changes
1 Removed chapter(s) on change documentation
411 |AUTOSAR 1 Add support for ECU degradation
Administration ! Changed service interface description to a
formal format
1 Several minor changes and clarifications
4.0.3 |AUTOSAR 1 Included MultiCore support from former
Administration ASpecificaComea 0% Mudh
3.1.5 |AUTOSAR 1 Clarification in 7.8.1 (meaning of "do nothing")
Administration and 7.1.2.1 ("OSEK declarations")
1 Minor changes as typos and rewording
3.1.4 |AUTOSAR 1 Extension of services (Chapter 12)
Administration 1 States in OS- Applications
1 Active termination of other OS-Applications in
possible (Chapter8)
1 Legal disclaimer revised
1 Chapter 10.4 revised

1 of 247

Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

AUTO SAR

Specification of Operating System
AUTOSAR Release 4.2.2

Document Change History

Release

Changed by

Change Description

3.1.2

AUTOSAR
Administration

l
l

T

Changes in OS configuration:

removed "OsAppModeld" Parameter from
OsAppModeContainer

added optional references from
OsAppModeContainer to OsAlarm, OsTask and
OsScheduleTable

3.1.1

AUTOSAR
Administration

Legal Disclaimer revised

3.0.2

AUTOSAR
Administration

Added AOsSchedul eTabl e
to configuration specification chapter

3.0.1

AUTOSAR
Administration

= —A

Changed methods for timing protection
Moved configuration from OIL to AUTOSAR
XML

Clarrified description for synchronization and
schedule tables

Document meta information extended

Small layout adaptations made

2.1.15

AUTOSAR
Administration

= =2 =4

E |

Added support for SoftwareFreeRunningTimer
(SWFRT) incl. 2 new APIs

Added API to start a schedule table synchron
Misc. Corrections, Clarification and further
explanations

Legal disclaimer revised

Release Notes added

AAdvice for userso rev
ARevision I nformationo

2.0

AUTOSAR
Administration

E N R

Document structure adapted to common
Release 2.0 SWS Template.

Major changes in chapter 10

Structure of document changed partly

Other changes see chapter 14

1.0

AUTOSAR
Administration

E e

Initial Release

2 of 247

Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only. For any other purpose, no part of
the specification may be utilized or reproduced, in any form or by any means, without
permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference
models, "use cases", and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their
presence in such specifications, nor any later documentation of AUTOSAR
conformance of products actually implementing such exemplary items, imply that
intellectual property rights covering such exemplary items are licensed under the
same rules as applicable to the AUTOSAR Standard.

3 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTO SAR Specification of Operating System
AUTOSAR Release 4.2.2

Table of Content

1 Introduction and funNCtional OVEIVIEWceeuvviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee 10
2 Acronyms and abbreVIiatioNScooeiiuiiiuiiiiee et eeeeeeaees 11
2.1 GlOSSArY Of TEIMS .o e e e e e e 11

3 Related dOCUMENTALION..........uuuiiiiie e eeeeeeeees 16
3.1 INPUL AOCUMENES.....cceiiiiiiie et e e e e e e e e e e e e e e e e e enaaas 16
3.2 Related standards and NOIMMSuiiiiieiiiiiiiie e 17
3.2 1 OSEK/NVDX oottt 17
3.2.2 HIS e ———— 17

3.3 Company Reports, Academic WOrk, etC..........ccceeviieeiiiiiiiiiiiiiee e, 18
3.4 Related SPeCIfiCAtIONciiee e 18

4 Constraints and asSUMPLIONScooovviiiiiiie e e 19
4.1 EXIStING StaNdardscoooiiiiiiiiiiii 19
A I~ 11][] [o o | PSR 19
4.3 Interaction With the RTEcooiiiiiiiiie et 19
4.4 Operating System Abstraction Layer (OSAL)cccovvvvveiiiiiiiieeeeeeeeein, 20
4.5 Multi-Core Hardware asSUmMPLiONScooviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee 20
451 CPU COre fEAUIBS.....cuvviiiiiiiiiiiiiiiiieieiieeeeeeeeeeeee ettt e e 20
452 MEMOIY TRALUIES ... 21
4.5.3 Multi-Core LIMItationScoooeeeieiiieee e 21

I I 01> [0] 1P 22
4.6.1 HAIAWAIE......cco i 22
4.6.2 Programming LanguUage.........cooeeeeiiiieieee e 22
4.6.3 MISCEIIANEOUS ... 23

4.7 Applicability t0 car dOMAINSuuiiieeeeiiiiier e 23

5 Dependencies to other modules................uoiiiiiiiiiiiiiiie e 24
5.1 Fl@ SITUCIUIE ... e e e e e e e e e e e nnannes 24
5.1.1 Code file StIUCTUIEcceeviiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e 24
5.1.2 Header file SIrUCIUIE.........oveeeeeie e 24

6 Requirements Traceabilityccoeiiiiiiiiiiiii e 26
7 FuNnctional SPECITICATIONuuuuiiiiiiiiiiiiiiiiiiiii bbb 43
0 R O o 1 (=T @ S SRR 43
7.1.1 Background & Rationale ... 43
7.1.2 REQUITEMEBNTS ... e e eeaaaas 43

7.2 Software Free RUNNING TIMET ...oooiiiiiiiieeee 46
7.3 Schedule TabIes. ... 47
7.3.1 Background & Rationale ..., a7
7.3.2 REQUITEMEBNTS ... e e eeaaaas 47

7.4 Schedule Table Synchronization ..., 54
7.4.1 Background & Rationalecoooovviiiiiiiii e, 54
7.4.2 REQUITEMENTS ... 56

7.5 Stack Monitoring FacCIlitieS.........cccovvuiiiiiiiii e 63
7.5.1 Background & Rationale ... 63

4 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

AUTO SAR Specification of Operating System
AUTOSAR Release 4.2.2

7.5.2 REQUITEMENES ... 64
7.6 OS-APPLCALION ... ———— 64
7.6.1 Background & Rationale ... 64
7.6.2 =0 [T (=T 41T 1 66
7.7 Protection FACIlItIESoiiiiiiiiiiieicie e 68
7.7.1 YT g Lo VA = 10] (= ox 1 o] o S 68
7.7.2 TiIMING ProteCHON ...coeviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e 71
7.7.3 Service ProteCtioNcccuviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee ettt 77
7.7.4 Protecting the Hardware used by the OS...........oooii 83
7.75 Providing »Trusted FUNCHONSK...........cccuuuiuiiiieieeeeeeeiiies e 84
7.8 Protection Error Handlingcooooeeeeieeeeee 85
7.8.1 Background & Rationalecccoooviiiiiiiiiiiiii e 85
7.8.2 REQUITEMENES ... 86
7.9 Operating System for Multi-Corecooovviiiiiiiiiii e, 88
7.9.1 Background & Rationale ..., 88
7.9.2 SChEAUIING ...coeeeeie e e 89
7.9.3 Locatable entities (LE)coooeeeeeeeeeeeeee 90
79.4 Multi-Core Start-Up CONCEPL.......uiiii e e et 91
7.9.5 Cores under control of the AUTOSAR OSoooiiiiiiiiiiiiiiiiiiiiiieeeeeee 93
7.9.6 Cores which are not controlled by the AUTOSAR OS..........ccovvvvvnnnnnn. 94
7.9.7 Multi-Core Shutdown CONCEPL......cceeeeeeeeeeeeeeeeee e 95
7.9.8 OS service functionality (OVEIVIEW)uuveiiiieieiiieeiiiiie e, 96
7.9.9 LT = 1] S T 98
7.9.10 Interrupt diSabliNg......cccceiiiiiiiie e 98
7.9.11 TASK ACHVALION. ...euuiiei e e e e e e e 99
AR A 7N G @ = 1 11 o 100
7.9.13 EVENT SN ...coiiiiiiiiiiiiieiiiieieeeeeeeeeeeeee ettt 100
7.9.14 Activating additional COreSccooiiieiiiiiiiiiiiie e 101
7.9.15 Start of the OS ..o e 101
7.9.16 TASKermMiNatioNcoovviiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 102
7.9.17 Termination of OS-ApPlICAtIONS..........cccovvviiiiiiiiiiiiiieeeeeeeee 102
7.9.18 Shutdown of the OS......cooiiiiiiiiee e 103
7.9.19 Waiting for EVENTS ...coiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e 103
7.9.20 Calling trusted fUNCLIONSuuiiiiiie e 104
7.9.21 Invoking reschedulecccccoiiiiiiiiii 104
7.9.22 RESOURCE OCCUPALIONceevviiiiiiieeeeeeeeeeeiiee e e e e e e e eeaans 104
e I T I 1= T o (=1 I PP 105
7.9.24 COUNTERS, background & rationale..................ccoovvviiiiiiiiieeeeeeeennns 106
7.9.25 Multi-Core restrictions on COUNTERS........cccovviiiiiiiiiiiiiiiice e 106
7.9.26 Synchronization of COUNTERSccoiiiiiiiiiiici e 107
7.9.27 ALARMS ... 108
7.9.28 Schedule tables.........cooo oo 109
7.9.29 The spinlock MEeChaniSM ... 109
7.9.30 OffliN€ CHECKS.....cetiiiie e 113
7.9.31 AUt Start ODJECES.......covviiiiiiiii 114
7.10 Inter-OS-Application Communicator (I0OC)ccoeiiiiiiiiiiiiiiiiieeeeei e 114
7.10.1 Background & Rationalecccccevviiiiiiiiiiiiie 114
7.10.2 1OC - GeNneral PUIPOSE........uuiiiiiiiiie et ea e e 115
7.10.3 1OC fUNCHONAIILYceeiiiiiiiiiiiiiiiiiiieee e 116

5 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

AUTO SAR Specification of Operating System
AUTOSAR Release 4.2.2

7.10.4 [TOC INTEITACE ...ceeeiiiiiii et e e e e et e e e e e eeeeenes 117
7.10.5 10C iInternal StIUCLUIEccevviiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 118
7.10.6 10C configuration and generationcccccceveveeeiiiiiiiiiiiiiiiiieeeeeeeeee 118
7.10.7 10C integration eXamplesS..........ccooieieeiiiiiiiiiiiee e eee e e e e e 119
7.10.8 FULUIE EXIENSIONS. .. .uiiiiieiiieieiiiiie et e e e e et e e e e e e e eeeeees 122
7.11 System Scalabilityiiiiieiiii e 123
7.11.1 Background & Rationaleccccccevviiiiiiiiiiiiiiie 123
000 O = To [11T 4 =T) PR 124
7.12 HOOK FUNCLIONSoiiiiiiiiiiie ettt e et e e e e e e e eeenes 125
7.12.1 Background & Rationalecccoooeeiiiiiiiiiiiiiie e 125
7.12.2 REQUIFEMENTSoiiiiiiiiiiiiiiieeeeeeee ettt 125
7.13 Error ClassifiCationcoooeeeeeie e 126
8 API SPECIICALIONuiiei et e e e e e e e aaaae 128
8.1 CONSIANIS ...t e e e eees 128
8.1.1 Error codes of type StatuSTYPe....cooeeeeeeeeeeeeeeeeeeeeeeee e 128

o T |V - T {0 1 PP PPPPTTRPRPI 128
8.3 TypPe definitiONSccooeeeeeeeeee e 128
8.3.1 ApplicationType (for OS-AppliCatioNS)vuvviiiiieeiiiiiiiiiie e eeeeeeins 128
8.3.2 ApplicationStateTYPEcooviiiiiiiiiiiiiieeeeeeeeeeee e 129
8.3.3 ApplicationStateRefTYPe........uvvviiiiii e 129
8.3.4 TrustedFUNCHONINAEXTYPE...cciiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e 129
8.3.5 TrustedFunctionParameterRefTypevveiiiiieiiiiieeciee e 129
8.3.6 ACCESSTYPE.. ittt ettt eann 129
8.3.7 ODJECLACCESSTYPE .o ettt e e e e e e e eeaaans 130
8.3.8 ODJECITYPETYPE . ciiiiiiiiiiiiieeee ettt 130
8.3.9 MemOoryStartAddreSSTYPE.uvuiiieee e eeeaeanns 130
8.3.10 MEMOIYSIZETYPE ..coiiiiiiiiiiieeeeeeee et 130
8.3 Ll ISR I P it 130
8.3.12 ScheduleTableType ... 131
8.3.13 ScheduleTableStatuSTYPEuuviiiiiii e 131
8.3.14 ScheduleTableStatusRefType.......ccccooiiiiiiiiiiiiiiieeeee 131

o TG 0 T O 101 (=T gl 1Y/ o 1PN 131
8.3.16 ProteCtionNREIUNTYPE ...coiiiiiiiiiiiiiiiieeee e 132
8.3.17 RS A T Y PO et 132
8.3.18 PhysicalTIMETYPE....ciiiiiiiiiiiiiiiieeee e 132
8.3.19 COrelUTYPE . it a e e e aaaaa 132
8.3.20 SPINIOCKIATYPE...cciiiiiiiiiiiiieee 132
8.3.21 TryToGetSPINIOCKTYPE ...covvniiiieie e 133
8.3.22 1dIEMOAETYPEcoeiiiiieiieeeeeeeeeeeeee e 133
8.4 FuNnction definitioNSuuiiiiiiiii e 133
8.4.1 GetApplicationIDccoovviiiiiiiiiiii 133
8.4.2 GetCurrentApplicationIDccooeiiiiiiii e 134
8.4.3 GEtSRID.....coiiiiiieeeee e 135
8.4.4 CallTrustedFUNCHIONccoeiiiieieii e 135
8.45 CheCKISRMEMOIYACCESSccevviiiiiiiiiiiiiiiiiieeeeeeeeeeeee et 137
8.4.6 CheckTaskMemMOIrYACCESS......ccoiieiiieeeeeee e 138
8.4.7 CheCKODJECIACCESScceviiiiiiiiiiieiiieeeeeeeeeeeeeee e 139
8.4.8 CheckObjectOWNErShIPcoovviiiie e 140

6 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

AUTO SAR Specification of Operating System
AUTOSAR Release 4.2.2

8.4.9 StartScheduleTableRelccoor i 140
8.4.10 StartScheduleTableADSccccciiiiiiiie 142
8.4.11 StopScheduleTable........cccccoiiiiiiii 143
8.4.12 NextScheduleTable........ccccooiiiiiiii 144
8.4.13 StartScheduleTableSynchron...........cccoveiiiiiiii e 145
8.4.14 SyncScheduleTable ... 146
8.4.15 SetScheduleTabIEASYNCuuuiiiiiiiiiee e 147
8.4.16 GetScheduleTableStatuscccccviviiiiiiiiiiiieeee 148
8.4.17 INCremMENTCOUNTEYuuiiiiiii et e e e eaa e e eees 150
8.4.18 GetCoUNEIVAIUEcoovviiiiiiiiiiiiiieeeeeeeee e 150
8.4.19 GetElapsedValuecccccviiiiiiiiiiiii 151
8.4.20 Terminate APPIICALIONccoevvviiiiiie e 152
8.4.21 AlIOWACCESSceeeiiiiiiie e e e ettt e e e e e e e ettt s e e e e e e e e eeaaann s e e e e e e eeeeene 154
8.4.22 GetAppliCAtiONSIALEccovviiiiiiie e 155
8.4.23 GetNumberOfACtVAtEdCOrES.ccovee e e e e e eeeeees 155
8.4.24 GetCOreIDcciiieiiiiiieeeee 156
B.4.25 SHAIMTC O ... it a e 156
8.4.26 STartNONAULOSAICOIE......ceuuiieiieiie et e e e e e e e een e eees 157
8.4.27 GetSPINIOCK........cooviiiiiiiiiiii 158
8.4.28 ReleasSeSPINIOCKciiieeeeiiiiieeiiie e e 159
8.4.29 TryTOGEtSPINIOCKcccvvviiiiiiiiiiiiiiiiiee e 160
8.4.30 ShUtdOWNAIICOIES......cceiiiiiiiiiiiiieeeeeeeee e 162
8.4.31 CONLrOIAIE......ceeeeeieie e 162

B D IO 163
8.5.1 IMPOIEA LYPES .. 163
8.5.2 Type definitiONSuuiiiie i e 164
8.5.3 (07010153 - 4 | £ SR 164
8.5.4 Function definitions ..., 165
8.6 EXpected INTErfaCES.ccoo e 175
8.6.1 Mandatory INterfacesoouvvviiiii i 175
8.6.2 Optional INtErfacescoovviiiiiiiiiiiiieee 175
8.7 HOOK fUNCLIONS. ... 177
8.7.1 ProteCtion HOOK.........oiiiiiiiiieeeci e e e 177
8.7.2 Application specific StartupHOOK.............oovvviiiiiiieiiiiiiiie e, 178
8.7.3 Application specific ErforHOOK ... 178
8.7.4 Application specific ShutdownHOOKccooooieiiiiiiiiiiiiieeeee, 179
8.8 SerVICE INEITACES.......eeeeeiiii e e e e e aeaees 179
8.8.1 Client-Server-Interfacesccccccvviiiiiiiiiiiiiieeeeeeeeeeeee 179

S B ST To [=] g [T a0 [F=To | £= 0 £ 1T 182
9.1 Sequence chart for calling trusted functions.............ccccceiveviiiiiieeeiin e, 182
9.2 Sequence chart for usage of ErrorHOOK ..., 183
9.3 Sequence chart for ProteCtionHOOK.............cooeeiiiiiiiiiiiiiiic e 184
9.4 Sequence chart for StartUupHOOKccoovviiiiiii, 185
9.5 Sequence chart for ShutdownHOOK.............cooiiiiiiiiiii e 186
9.6 Sequence diagrams of Sender Receiver communication over the 10C.... 186
9.6.1 LastisBest COmMmMUNICALIONovviiiiiiiiiiiiiiiie e 186
9.6.2 Queued communication without pull callback............ccccccccvvvviriinnnnnn. 187
9.6.3 Queued communication with pull callbackccccooooeviiiiiiiinnnn. 189

7 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

AUTO SAR Specification of Operating System

AUTOSAR Release 4.2.2

10 Configuration SPeCIfiCatioNuuuiiiiiieiiiiei e 190
10.1 How to read this Chapter ..o e 190
10.1.1 RUIES fOr PArAMIEIS.....cco e 190
10.2 Containers and configuration parameterscccooeeeeevveeeviiiiineeeeeeeennnnns 190
O R - T - | PSPPI 190
10,22 O i 190
10.2.3 OSAIAIMSEIEVENT.......uiii i eeeeeees 191
O @ 17 A = 1 o PP 192
10.2.5 OSAIAIMACHON .ceeeiiiiiie e e et e e e e eeenes 193
10.2.6 OsAlarmACtiVateTaSK.........coovvviiiiiii e 193
10.2.7 OSAIAIMAULIOSTANeuiiii et e e et eeeeeeeees 193
10.2.8 OSAIArmMCallDACKcceeeeieiiieiiiie e 195
10.2.9 OsAlarmInNcremMentCOUNTEN..........uuiiieeeee e e e e et e e e e e eeeees 195
10.2.10 OSAPPHCALION ...covviiiii e e 196
10.2.11 OsAPpPlcatioNHOOKSccooeieeeeeeeeeeeeeee 199
10.2.12 OsApplicationTrustedFUNCHON..........coovviiiiiiiiie e 200
10.2.13 OSAPPMOUE......cc oo 201
O D R A @ =1 O o 11 | 1 (= RPN 201
10.2.15 OSEVENL... . 203
10.2.16 OSHOOKS.....cciiiiiiiiiiie et e e e e e e e e e e e eeanes 204
L1O.2.07 OSISE e 205
10.2.18 OSISIRESOUICELOCKccciiiiiiiiiiiie e e e eeaaans 206
10.2.19 OsSISITIMINGPIOIECHON ... 207
10.2.20 OS0S .. i 209
10.2.21 OSRESOUICE.uuiiiiiiiie et e ettt e et e e e e e e et e e e eeaa s 211
10.2.22 OSScheduleTableccooriiiiiiiiiee e 212
10.2.23 OsScheduleTable AUtOStart...........ccoevviveiiiiiiie e 213
10.2.24 OsScheduleTableEventSetting.............c.uuieiiiieeeiieiiiiicie e 215
10.2.25 OsScheduleTableEXPiryPoINt.........coooiiiiieiee, 215
10.2.26 OsScheduleTableTaskActivation..............ccccoveeeeiiiiiiiiiiiiee e, 216
10.2.27 OsScheduleTblAdjustableEXpPOoINt ..., 216
10.2.28 OsScheduleTableSyNCoiiiiieiiiiiece e 217
10.2.29 OSSPINIOCK ..o 218
10.2.30 OSTaASK cciiieieeeeeeeeeee 219
10.2.31 OSTASKAULIOSTANuuiieeeeieieiiiiiee e e e e e e e e e e e e e e e e e eeeeeees 221
10.2.32 OSTasSkRESOUICELOCKcuuuiiiieeeiiiiiice e 222
10.2.33 OsTaskTimIiNgProteCtioncoooeeeiiiiieeeeeeeeeeeeeeeeee e 223
10.2.34 OSTIMECONSIANT.......ciiieiiiiieiiiie e e e e e e eeeaans 224
10.3 Containers and configuration parameter extensions of the IOC............... 225
LO.3.1 OSI0C i 225
10.3.2 OSIOCCOMMUNICALIONccciiiiiiiiiiieee e e e e eeeeeiiee e e e e e e e et e e e e e eeeeenes 226
10.3.3 OSloCSENTEIPIrOPEItiES .. .cccvviieeeeiie e 227
10.3.4 OSIOCRECEIVEIPIOPEITIES ... 228
10.3.5 OsSloCDataPrOPertieS......cccviiiie e 230
10.4 Published INfOrmMation...........coooeiiiiieiiiiiee e e e e e 231
11 Generation 0f the OS ... e 232
11.1 Read in CONFIQUIALIONuuuuiiiiiiiiiiiiiiiiiiiiitieii e eeeeeeeaeeenee 232
11.2 CONSIStENCY CNECK .uuuiiiiiiie e e e 232
8 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

AUTO SAR Specification of Operating System

AUTOSAR Release 4.2.2

11.3 Generating Operating SYSTEIMuuuuuuummmiuiiiiiiiiiiiiiiieiiiieeeeeeneeeeneeeeenees 234
12 APPLICALION NOTES ... 235
L12.1 HOOKS .. ittt e e e e e e et e e e e e e e e e e e et e e e e e e eeeeae 235
12.2 Providing Trusted FUNCLIONS............cuuuiiiiii e e eeeaans 235
12.3 Migration hints for OSEKtIME OS USEISuuuuuimiiiiiiiiiiiiiiiiiiiiiiiiiiiinenens 237
12.4 Software Components and OS-Applicationscccoeeeevvvveviiiiciiieeeeeeeennnns 239
12.5 Global Time SYNChronizationeeeeeeeiemeimiieiiiiiiee. 240
12.6 Working With FIEXRAY.........cciiiiiiiiiiiiiiie e e e e e aaaans 240
12.7 Migration from OIL t0 XMLuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeseeeeeees 241
12.8 Migrating RES_SCHEDULER in AUTOSAR OS.........uuuuiiiiiiiiiiiiiiiniiinnnnns 241
12.9 DEDUQG SUPPOIT. ...ttt nseennnnne 242
12.10 Integration hints for peripheral protectionccccovvvvviiiiiii e eeeeeenns 242
12.11 Termination of OSAPPIICALIONSuuuuuurmiiiiiiiiiiiiiiiiiiiiiiiieeeeees 243
13 AUTOSAR Service implemented by the OS ..., 245
13.1 Scope Of thiS ChaPter........uuiiiiiiiiiiiiiiiiiiii e 245
R I = - T - T [PP 245
13,2 OVEIVIEW ..ot e e et e e ettt e e e e e e e e e e ettt e e e e e e e e e eesannnneeeeeeeeeeenes 245
13.3 Specification of the Ports and Port Interfacescccccevvviiiiiiiiieeeeennnn, 245
14 Outlook on Memory Protection Configurationeeeeeeieeieieieieennnnn. 246
14.1 Configuration APProach.........cccooiiiiiiiiiiii e 246
15 Not applicable reqUIremMENtSooooeeiii i 247
9 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

1 Introduction and functional overview

This document describes the essential requirements on the AUTOSAR Operating
System to satisfy the top-level requirements presented in the AUTOSAR SRS [2].

In general, operating systems can be split up in different groups according to their
characteristics, e.g. statically configured vs. dynamically managed. To classify the
AUTOSAR OS, here are the basic features: the OS

is configured and scaled statically

is amenable to reasoning of real-time performance

provides a priority-based scheduling policy

provides protective functions (memory, timing etc.) at run-time

is hostable on low-end controllers and without external resources

E

This feature set defines the type of OS commonly used in the current generation of
automotive ECUs, with the exception of Telematic/Infotainment systems. It is
assumed that Telematic/Infotainment systems will continue to use proprietary Oss
under the AUTOSAR framework (e.g. Windows CE, VxWorks, QNX, etc.). In the case
where AUTOSAR components are needed to run on these proprietary Oss, the
interfaces defined in this document should be provided as an Operating System
Abstraction Layer (OSAL).

This document uses the industry standard OSEK OS [15] (ISO 17356-3) as the basis
for the AUTOSAR OS. The reader should be familiar with this standard before
reading this document.

This document describes extensions to, and restrictions of, this OSEK OS.

10 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTO SAR

Specification of Operating System
AUTOSAR Release 4.2.2

2 Acronyms and abbreviations

Abbreviation | Description

API Application Programming Interface

AR AUTOSAR

BSW Basic Software

BSWMD Basic Software Module Description

CDD Complex Driver

COM Communication

ECC Extended Conformance Class

ECU Electronic Control Unit

HIS Hersteller Initiative Software

HW Hardware

ID Identifier

10C Inter OS-Application communicator

ISR Interrupt Service Routine

LE A locatable entity is a distinct piece of software that has the same effect regardless of
which core it is located.

MC Multi-Core

MCU Microcontroller Unit

ME Mutual exclusion

MPU Memory Protection Unit

NMI Mutual exclusion

OIL OSEK Implementation Language

oS Operating System

OSEK/VDX Offene Systeme und deren Schnittstellen fir die Elektronik im Kraftfahrzeug

RTE Run-Time Environment

RTOS Real Time Operating System

SC Single-Core

SLA Software Layered Architecture

SW Software

SWC Software Component

SWERT Software FreeRunningTimer

2.1 Glossary of Terms

Term:

Definition

Access Right

An indication that an object (e.g. Task, ISR, hook function) of an OS-Application
has the permission of access or manipulation with respect to memory, OS
services or (set of) OS objects.

Cardinality The number of items in a set.
Counter An operating system object that registers a count in ticks. There are two types of
counters:
Hardware Counter A counter that is advanced by hardware (e.g. timer).
The count value is mainta
hardwar eod.
Software Counter A counter which is incremented by making the
IncrementCounter() API call (see
SWS Os 00399). The count value is maintained by
the operating system Ain
Deadline The time at which a Task/Category 2 ISR must reach a certain point during its

execution defined by system design relative to the stimulus that triggered
activation. See Figure 2.1

11 of 247

Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTO SAR Specification of Operating System

Delay

AUTOSAR Release 4.2.2

The number of ticks between two adjacent expiry points on a schedule table.
A pair of expiry points X and Y are said to be adjacent when:
1 There is no expiry point Z such that X.Offset < Z.Offset < Y.Offset. In this
case the Delay = Y.Offset-X.Offset
1 XandY are the Final Expiry Point and the Initial Expiry Point
respectively. In this case Delay = (Duration-X.Offset)+Y.Offset
When used in the text, Delay is a relative number of ticks measured from a
specified expiry point. For example: X.Delay is the delay from X to the next expiry
point.

Deviation

The minimum number of ticks between the current position on an explicitly
synchronized schedule table and the value of the synchronization count modulo
the duration of the schedule table.

Duration

The number of ticks from a notional zero at which a schedule table wraps.

Execution Time

Tasks:
The net time a task spends in the RUNNINGstate without entering the
SUSPENDEDr WAITING state excluding all preemptions due to ISRs
which preempt the task. An extended task executing the WaitEvent()
API call to wait on an event which is already set notionally enters the
WAITING state. For multiple activated basic tasks the net time is per
activation of a task.

ISRs:
The net time from the first to the last instruction of the user provided
Category 2 interrupt handler excluding all preemptions due to higher
priority ISRs executing in preference.

Execution time includes the time spent in the error, pretask and posttask hooks
and the time spent making OS service calls.

Execution Budget

Maximum permitted execution time for a Task/ISR.

Expiry Point

The offset on a Schedule Table, measured from zero, at which the OS activates
tasks and/or sets events.

Initial Expiry Point The expiry point with the smallest offset

Final Expiry Point The expiry point with the largest offset

Hook Function

A Hook function is implemented by the user and invoked by the operating system
in the case of certain incidents. In order to react to these on system or application
level, there are two kinds of hook functions

Application-specific Hook functions within the scope of an individual OS-
Application.

System-specific Hook functions within the scope of the complete
system (in general provided by the integrator).

Initial Offset

The smallest expiry point offset on a schedule table. This can be zero.

Interarrival Time

Basic Tasks
The time between successively entering the READYstate from the
SUSPENDEDBtate. Activation of a task always represents a new arrival.
This applies in the case of multiple activations, even if an existing
instance of the task is in the RUNNINGor READ Ystate.

Extended Tasks:
The time between successively entering the READYstate from the
SUSPENDEDBr WAITING states. Setting an event for a task in the
WAITING state represents a new arrival if the task is waiting on the
event. Waiting for an event in the RUNNINGstate which is already set
represents a new arrival.

ISRs:
The time between successive occurrences of an interrupt.
See Figure 2.1.

12 of 247

Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR

Specification of Operating System
AUTOSAR Release 4.2.2

Interrupt Lock Time

The time for which a Task/ISR executes with Category 1 interrupts
disabled/suspended and/or Category 2 interrupts disabled/suspended .

Interrupt Source
Enable

The switch which enables a specific interrupt source in the hardware.

Interrupt Vector
Table

Conceptually, the interrupt vector table contains the mapping from hardware
interrupt requests to (software) interrupt service routines. The real content of the
Interrupt Vector Table is very hardware specific, e.g. it can contain the start
addresses of the interrupt service routines.

Final Delay The difference between the Final Expiry Point offset and the duration on a
schedule table in ticks. This value defines the delay from the Final Expiry Point to
the logical end of the schedule table for single-s hot and Anexted

Forced OS- The operating system frees all system objects, e.g. forcibly terminates Tasks,

Application disables interrupts, etc., which are associated to the OS-Application. OS-

Termination Application and internal variables are potentially left in an undefined state.

Forced The OS terminates the Task/Category2ISRand does ounl ockd

Termination resources. For details see SWS Os 00108 and SWS Os_00109.

Linker File File containing linking settings for the linker. The syntax of the linker file depends

on the nker and,

the linker file.

speci fic I consEeauiefn

Lock Budget

Maximum permitted Interrupt Lock Time or Resource Lock Time.

Master core

A master core is a core from which the AUTOSAR system is bootstrapped.

Memory Protection
Unit

A Memory Protection Unit (MPU) enables memory partitioning with individual
protection attributes. This is distinct from a Memory Management Unit (MMU)
that provides a mapping between virtual addresses and physical memory
locations at runtime.

Note that some devices may realise the functionality of an MPU in an MMU.

Mode Describes the permissions available on a processor.
Privileged In general, in »privileged mode« unrestricted access is
available to memory as well as the underlying hardware.
Non-privileged In »non-privileged mode« access is restricted.
Modulus The number of ticks required to complete a full wrap of an OSEK counter. This is

equal to OsCounterMaxAllowedValue +1 ticks of the counter.

OS-Application

A collection of OS objects

Trusted An OS-Application that may be executed in privileged mode and
may have unrestricted access to the APl and hardware
resources. Only trusted applications can provide trusted
functions.

Non-trusted An OS-Application that is executed in non-privileged mode has

restricted access to the APl and hardware resources.

OS object Object that belongs to a single OS-Application: Task, ISR, Alarm, Event,
Schedule Table, Resource, Trusted Function, Counter, Applicaton-specific hook.
OS Service OS services are the API of the operating system.

Protection Error

Systematic error in the software of an OS-Application.

Memory access A protection error caused by access to an address in a

violation manner for which no access right exists.
Timing fault A protection error that violates the timing protection.
lllegal service A protection error that violates the service protection, e.g.

unauthorized call to OS service.

Hardware exception | division by zero, illegal instruction etc.

Resource Lock
Time

The time an OSEK resource is held by a Task/ISR (excluding the preemptions of
the Task/ISR by higher prior Tasks/ISRs).

Response Time

The time between a Task/ISR being made ready to execute and generating a
specified response. The time includes all preemptions. See Figure 2.1

Restart an OS-
Application

An OS-Application can be restarted after self-termination or being forcibly
terminated because of a protection error. When an OS-Application is restarted,
the OS activates the configured OsRestartTask

13 of 247

Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTO SAR

Specification of Operating System
AUTOSAR Release 4.2.2

Scalability Class

The features of the OS (e.g. Memory Protection or Timing Protection), described
by this document, can be grouped together to customize the operating system to
the needs of the application. There are 4 defined groups of features which are
named scalability classes. For details see Chapter 7.11

Schedule Table

Encapsulation of a statically defined set of expiry points.

Section

Part of an object file in which instructions or data are combined to form a unit
(contiguous address space in memory allocated for data or code). A section in an
object file (object file format) has a name and a size.

From the linker perspective, two different sides can be distinguished:

Input section | memory section in an input object file of the linker.

Output section | memory section in an output object file of the linker.

Set (of OS objects)

This document uses the term set, indicating a collection of the same type of OS
objects, in the strict mathematical sense, i.e.:

- a set contains zero or more OS objects (this means a set can be empty)

- the OS objects in the set are unique (this means there cannot be duplicate OS
objects in the set)

Spinlock

A spinlock is a locking mechanism where the TASK waits in a loop ("spins")
repeatedly checking for a shared variable to become a certain value.

The value indicates whether the lock is free or not. In Multi-Core systems the
comparison and changing of the variable typically requires an atomic operation.
As the TASK remains active but is not doing anything useful, a spinlock is a busy
waiting mechanism

Spinlock variable

A spinlock variable is a shared variable used by a spinlock to indicate whether a
spinlock is free or occupied.

Symbol

Address label that can be imported/used by software modules and resolved by
the linker. The precise syntax of the labels is linker-specific. Here, these address
labels are used to identify the start and end of memory sections.

Start symbol [Tags the start of a memory section

End symbol Tags the end of a memory section

Synchronization of
schedule tables
with a
synchronization
counter

Synchronization with a synchronization counter is achieved, if the expiry points of
the schedule table are processed within an absolute deviation from the
synchronization counter that is smaller than or equal to a precision threshold.

Synchronization
Counter

Theymchronization Counter o, di stinct
counter, external to the OS, against which expiry points of a schedule table are
synchronized

Task A Task is the object which executes (user) code and which is managed by the
OSSE. g. the OS switches between differ
types of Tasks; for more details see [15].
Basic Task A Task which can not block by itself. This means that it can not
wait for (OS) event(s).
Extended Task | A Task which can block by itself and wait for (OS) event(s).
Time Frame The minmum inter-arrival time for a Task/ISR.

Trusted Function

A service provided by a trusted OS-Application that can be used by other OS-
Applications (trusted or non-trusted).

Worst case
execution time
(WCET)

The longest possible execution time.

Write access

Storing a value in a register or memory location. All memory accesses that have
the consequence of writing (e.g. reads that have the side effect of writing to a
memory location) are treated as write accesses.

14 of 247

Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUT O SAR Specification of Operating System

15 of 247

AUTOSAR Release 4.2.2

LOW6s Inter-arrival ti m#

»

LOWds Deadline A

LOW6s Response Time®

»

»

HOEE 3 45 7 9 10 11 12 13 14 15 16,17 18 19 20,21 22 23 24

Task HIGH and_ Task § E Task LOW ter“]I:]aa%(sLOW activated
LOW activated agan

L OWG s Execu—t—i—e»{‘u Ti me

Figure 2.1: Definition of Timing Terminology

Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System

3 Related documentation

3.1 Input documents

[1] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[2] Requirements on Operating System
AUTOSAR_SRS_OS.pdf

[3] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral.pdf

[4] Specification of the Virtual Functional Bus
AUTOSAR_EXP_VFB.pdf

[5] Requirements on Software FreeRunningTimer
AUTOSAR_SRS_FreeRunningTimer.pdf

[6] Specification of GPT Driver
AUTOSAR_SWS_GPTDriver.pdf

[7] Specification of Standard Types
AUTOSAR_SWS_StandardTypes.pdf

[8] Specification of Memory Mapping
AUTOSAR_SWS_MemoryMapping.pdf

[9] Specification of RTE
AUTOSAR_SWS_RTE.pdf

[10] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration.pdf

[11] Basic Software Module Description Template,
AUTOSAR_TPS BSWModuleDescriptionTemplate.pdf

[12] List of Basic Software Modules,
AUTOSAR_TR_BSWModuleList.pdf

[13] Specification of RTE,
AUTOSAR_SWS RTE.pdf

[14] General Specification of Basic Software Modules
AUTOSAR_SWS BSWGeneral.pdf

16 of 247
- AUTOSAR confidential -

AUTOSAR Release 4.2.2

Document ID 034: AUTOSAR_SWS_OS

AUTO SAR Specification of Operating System
AUTOSAR Release 4.2.2

3.2 Related standards and norms

3.2.1 OSEK/VDX

The OSEK/VDX specifications are publicly available from www.osek-vdx.org

[15] Operating System
Version 2.2.3
17" February 2005

[16] Time-Triggered Operating System
Version 1.0
24" July 2001

[17] System Generation OIL: OSEK Implementation Language
Version 2.5
1% July 2004

[18] OSEK RunTime Interface (ORTI) Part A: Language Specification
Version 2.2
14" November 2005

[19] OSEK Run Time Interface (ORTI) Part B: OSEK Objects and Attributes
Version 2.2
25" November 2005

[20] Binding Specification
Version 1.4.2
15" July 2004
3.2.2 HIS

The HIS (Hersteller Initiative Software) documents are publicly available from
www.automotive-his.de

[21] Requirements for Protected Applications under OSEK
Version 1
25™ September 2002.

[22] OSEK OS Extensions for Protected Applications
Version 1.0
27" July 2003

17 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

http://www.osek-vdx.org/
http://www.automotive-his.de/

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

3.3 Company Reports, Academic Work, etc.
[23] Extensions of OSEK OS for Protected Applications

OSEK Support Project DC058 02
DaimlerChrysler AG

3.4 Related specification

AUTOSAR provides a General Specification on Basic Software modules [14] (SWS
BSW General), which is also valid for Operating System.

Thus, the specification SWS BSW General shall be considered as additional and
required specification for Operating System.

18 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System

AUTOSAR Release 4.2.2

4 Constraints and assumptions

4.1 Existing Standards

This document makes the following assumptions about the referenced related
standards and norms:

T
T

OSEK OS [15] provides a sufficiently flexible scheduling policy to schedule
AUTOSAR systems.

OSEK OS [15] is a mature specification and implementations are used in millions
of ECUs worldwide.

OSEK OS [15] does not provide sufficient support for isolating multi-source
software components at runtime.

OSEK OS [15] does not provide sufficient runtime support for demonstrating the
absence of some classes of fault propagation in a safety-case.

OSEKtime OS [16] and the HIS Protected OSEK [22] are immature specifications
that contain concepts necessary for AUTOSAR and satisfy specific application
domains. It is the purpose of this document to identify these needs and to
recommend the use of parts (or all) of these specifications as appropriate.

4.2 Terminology

The specification uses the following operators when requirements specify multiple
terms:

NOT : negation of a single term e.g. NOT Weekend
AND : conjunction of two terms e.g. Weekend AND Saturday
OR : disjunction of two terms e.g. Monday OR Tuesday

A requirement comprising multiple terms is evaluated left to right.

The precedence rules are:

Highest Precedence NOT
Lowest Precedence AND OR

The expression NOT X AND Y means (NOT X) AND (Y)

Where operators of the same precedence are used in the same sentence, commas
are used to disambiguate. The expression X AND Y, OR Z means (X AND Y) OR Z.

4.3 Interaction with the RTE

The configuration of an AUTOSAR system [4] maps the »runnables« of a »software
component« to (one or more) tasks that are scheduled by the operating system. All
runnables in a task share the same protection boundary. In AUTOSAR, a software
component must not include an interrupt handler. A software component is therefore
implemented as runnables executing within the body of a task, or set of tasks, only.

19 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

Runnables get access to hardware-sourced data through the AUTOSAR RTE. The
RTE provides the runtime interface between runnables and the basic software
modules. The basic software modules also comprise a number of tasks and ISRs
that are scheduled by the operating system.

It is assumed that the software component templates and the description of the basic
software modules provide sufficient information about the required runtime behavior
to be able to specify the attributes of tasks required to configure the OS.

4.4 Operating System Abstraction Layer (OSAL)

Systems that do not use the OS defined in AUTOSAR can provide a platform for the
execution of AUTOSAR software components using an Operating System
Abstraction Layer. The interface to the OSAL is exactly that defined for the
AUTOSAR OS.

4.5 Multi-Core Hardware assumptions

There are currently several existing and suggested HW-architectures® for Multi-Core
microprocessors. There is considerable variation in the features offered by these
architectures. Therefore this section attempts to capture a common set of
architectural features required for Multi-Core.

Hardware assumptions shall remain assumptions and shall not become official
Autosar requirements.

451 CPU Core features
1. More than one core on the same piece of silicon.

2. The HW offers a method that can be used by the SW to identify a core.

3. The hardware supports atomic read and atomic write operations for a fixed
word length depending on the hardware.

4. The hardware supports some atomic Test-And-Set functionality or similar
functionalities that can be used to built a critical section shared between cores.
Additional atomic operations may exist.

5. The cores may have the same instruction set; at least a common basic
instruction set is available on all cores. Core specific add-ons may exist but
they are not taken into account.

6. The cores have the same data representation. For example, the same size of
integer, same byte and bit order, etc.

I'n this context fAarchitectured encompasses: the connections
work.
20 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

bet we

AUTOSAR Specification of Operating System

45.2

AUTOSAR Release 4.2.2

If per-core caches exist, AUTOSAR requires support for RAM - cache
coherency in HW or in SW. In software means that the cache-controller can be
programmed by the SW in a way that it invalidates cache lines or excludes
certain memory regions from caching.

In case of an exception (such as an illegal memory reference or divide by
zero) the exception occurs on the core that introduced the exception.

For notification purposes, it is possible to trigger an interrupt/trap on any core.

Memory features

Shared RAM is available to all cores; at least all cores can share a substantial
part of the memory.

Flash shall be shared between all cores at least. However, performance can
be improved if Flash/RAM can be partitioned so that there are separate
pathways from cores to Flash.

A single address space is assumed, at least in the shared parts of the memory
address space.

The AUTOSAR Multi-Core architecture shall be capable to run on systems
that do and do not support memory protection. If memory protection exists, all
cores are covered by a hardware based memory protection.

45.3 Multi-Core Limitations

21 of 247

In AUTOSAR R4.0, it is not supported to activate additional cores under
control of AUTOSAR after the Operating System was started.

The scheduling algorithm does not assign TASKs dynamically to cores.

The AUTOSAR OS RESOURCE algorithm is not supported across cores.
RESOURCES can be used locally, between TASKs that are bound to the
same core but not between TASKs/ISRs which are bound to different cores.

Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

4.6 Limitations

4.6.1 Hardware

The core AUTOSAR operating system assumes free access to hardware resources,
which are managed by the OS itself. This includes, but is not limited to, the following
hardware:

1 interrupt control registers
1 processor status words
1 stack pointer(s)

Specific (extended) features of the core operating system extend the requirements
on hardware resource. The following list outlines the features that have requirements
on the hardware. Systems that do not use these OS features do not have these
hardware requirements.

1 Memory Protection: A hardware memory protection unit is required. All memory
accesses that have the consequence of writing (e.g. reads that have the side
effect of writing to a memory location) shall be treated as writes.

1 Time Protection: Timer Hardware for monitoring execution times and arrival rates.

1 »Privileged« and »non-privileged« modes on the MCU: to protect the OS against
internal corruption caused by writes to OS controlled registers. This mode must
not allow OS-Applications to circumvent protection (e.g. write registers which
govern memory protection, write to processor status word etc.). The privileged
mode must be under full control of the protected OS which uses the mode
internally and to transfer control back and forth from a non-trusted OS-Application
to a trusted OS-Application. The microprocessor must support a controlled means
which moves a processor into this privileged mode.

1 Local/Global Time Synchronization: A global time source is needed.
In general hardware failures in the processor are not detected by the operating
system. In the event of hardware failure, correct operation of the OS cannot be

guaranteed.

The resources managed by a specific OS implementation have to be defined within
the appropriate configuration file of the OS.

4.6.2 Programming Language

The API of the operating system is defined as C function calls or macros. If other
languages are used they must adapt to the C interface.

22 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

4.6.3 Miscellaneous

The operating system does not provide services for dynamic memory management.

4.7 Applicability to car domains

The operating system has the same design constraints regarding size and scalability
under which the OSEK OS was designed. The immediate domain of applicability is
therefore currently body, chassis and power train ECUs. However, there is no reason
that the OS cannot be used to implement ECUs for infotainment applications.

23 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTO SAR Specification of Operating System

AUTOSAR Release 4.2.2

5 Dependencies to other modules

There are no forced dependencies on other modules, however:

o

o

It is assumed that the operating system may use timer units directly to drive
counters.

If the user needs to drive scheduling directly from global time, then a global
time interrupt is required.

If the user needs to synchronize the processing of a schedule table to a global
time, the operating system needs to be told the global time using the
SyncScheduleTable() service.

The 10C described in this document provides communication between OS-
Applications. The IOC generation is based on configuration information which
is generated by the RTE generator. On the other hand the RTE uses functions
generated by the 10C to transmit data.

5.1 File structure

5.1.1 Code file structure

The code file structure of the Operating system module is not fixed, besides the
requirements in the General SRS.

5.1.2 Header file structure

(O}
Rte_Type.h Std_Types.h Os_Cfg.h Os_MemM
ap.h
T T includes /I\ /I\

Os.h

Figure 5:1: Header File Structure for the OS

The figure above contains the defined AUTOSAR header file hierarchy of the
Operating System module.

24 of 247

Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

The 10C generator generates an additional header file loc.h. Users of the loc.h shall
include the loc.h file. If an implementation of the IOC requires additional header files,
it is free to include them. The header files are self-contained, that means they will
include all other header files, which they require.

25 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

AUTO SAR

6 Requirements Traceability

Specification of Operating System

AUTOSAR Release 4.2.2

This chapter contains references to requirements of other AUTOSAR documents.

Requirement

Description

Satisfied by

SWS_0Os_00006

SWS_0Os_00009

SWS_Os_00016

SWS_Os_00017

SWS_Os_00027

SWS_Os_00045

SWS_Os_00050

SWS_Os_00054

SWS_Os_00058

SWS_Os_00060

SWS_Os_00071

SWS_Os_00083

SWS_Os_00085

SWS_Os_00097

SWS_Os_00100

SWS_Os_00111

SWS_Os_00112

SWS_Os_00172

SWS_Os_00173

SWS_Os_00177

SWS_Os_00179

SWS_Os_00194

SWS_Os_00198

SWS_0Os_00209

SWS_Os_00211

SWS_Os_00225

SWS_Os_00226

SWS_Os_00236

SWS_Os_00237

SWS_Os_00239

SWS_Os_00242

SWS_Os_00256

SWS_Os_00258

SWS_Os_00261

26 of 247

- AUTOSAR confidential -

Document ID 034: AUTOSAR_SWS_OS

Specification of Operating System

AUTOSAR Release 4.2.2

SWS_Os_00262

SWS_Os_00263

SWS_Os_00264

SWS_0Os_00265

SWS_Os_00266

SWS_Os_00267

SWS_0Os_00268

SWS_0Os_00269

SWS_0s_00270

SWS_Os_00271

SWS_Os_00272

SWS_Os_00273

SWS_Os_00274

SWS_Os_00275

SWS_Os_00276

SWS_Os_00277

SWS_Os_00278

SWS_Os_00279

SWS_Os_00280

SWS_Os_00281

SWS_Os_00282

SWS_Os_00283

SWS_Os_00284

SWS_Os_00285

SWS_Os_00287

SWS_Os_00289

SWS_Os_00290

SWS_Os_00291

SWS_Os_00292

SWS_Os_00293

SWS_Os_00300

SWS_Os_00303

SWS_Os_00304

SWS_Os_00308

SWS_Os_00309

SWS_Os_00311

SWS_Os_00312

SWS_Os_00313

SWS_Os_00314

27 of 247

- AUTOSAR confidential -

Document ID 034: AUTOSAR_SWS_OS

Specification of Operating System

AUTOSAR Release 4.2.2

SWS_Os_00320

SWS_Os_00321

SWS_Os_00323

SWS_0Os_00324

SWS_0Os_00327

SWS_Os_00328

SWS_0s_00330

SWS_0Os_00332

SWS_Os_00343

SWS_Os_00344

SWS_Os_00347

SWS_Os_00348

SWS_Os_00349

SWS_Os_00350

SWS_Os_00351

SWS_Os_00353

SWS_Os_00354

SWS_Os_00355

SWS_Os_00356

SWS_Os_00358

SWS_Os_00361

SWS_Os_00362

SWS_Os_00364

SWS_Os_00365

SWS_Os_00367

SWS_Os_00368

SWS_Os_00369

SWS_Os_00376

SWS_Os_00381

SWS_Os_00387

SWS_Os_00388

SWS_Os_00389

SWS_Os_00391

SWS_Os_00396

SWS_Os_00397

SWS_Os_00399

SWS_Os_00401

SWS_Os_00402

SWS_0Os_00403

28 of 247

- AUTOSAR confidential -

Document ID 034: AUTOSAR_SWS_OS

Specification of Operating System

AUTOSAR Release 4.2.2

SWS_Os_00404

SWS_Os_00407

SWS_Os_00408

SWS_0Os_00409

SWS_0Os_00410

SWS_Os_00411

SWS_Os_00412

SWS_Os_00413

SWS_0Os_00414

SWS_Os_00415

SWS_Os_00416

SWS_Os_00417

SWS_Os_00418

SWS_Os_00419

SWS_Os_00420

SWS_Os_00421

SWS_Os_00422

SWS_Os_00423

SWS_Os_00424

SWS_Os_00425

SWS_Os_00427

SWS_Os_00428

SWS_Os_00429

SWS_Os_00430

SWS_Os_00431

SWS_Os_00435

SWS_Os_00436

SWS_Os_00437

SWS_Os_00438

SWS_0Os_00439

SWS_Os_00440

SWS_Os_00442

SWS_Os_00443

SWS_Os_00444

SWS_Os_00445

SWS_Os_00446

SWS_Os_00447

SWS_Os_00448

SWS_Os_00449

29 of 247

- AUTOSAR confidential -

Document ID 034: AUTOSAR_SWS_OS

Specification of Operating System

AUTOSAR Release 4.2.2

SWS_Os_00450

SWS_Os_00451

SWS_Os_00452

SWS_0Os_00453

SWS_0Os_00454

SWS_0Os_00455

SWS_0Os_00456

SWS_Os_00457

SWS_0Os_00458

SWS_Os_00459

SWS_Os_00460

SWS_Os_00461

SWS_Os_00462

SWS_Os_00463

SWS_Os_00464

SWS_Os_00466

SWS_Os_00467

SWS_Os_00475

SWS_Os_00476

SWS_0Os_00483

SWS_Os_00484

SWS_Os_00493

SWS_Os_00494

SWS_Os_00495

SWS_Os_00496

SWS_Os_00497

SWS_Os_00498

SWS_0Os_00499

SWS_Os_00500

SWS_0Os_00501

SWS_0Os_00502

SWS_Os_00503

SWS_Os_00504

SWS_Os_00505

SWS_Os_00506

SWS_Os_00507

SWS_Os_00508

SWS_Os_00509

SWS_Os_00510

30 of 247

- AUTOSAR confidential -

Document ID 034: AUTOSAR_SWS_OS

Specification of Operating System

AUTOSAR Release 4.2.2

SWS_Os_00511

SWS_Os_00512

SWS_Os_00513

SWS_0Os_00514

SWS_0Os_00515

SWS_Os_00516

SWS_Os_00517

SWS_Os_00518

SWS_0Os_00519

SWS_Os_00520

SWS_Os_00521

SWS_Os_00522

SWS_Os_00523

SWS_Os_00524

SWS_Os_00525

SWS_Os_00526

SWS_Os_00527

SWS_Os_00528

SWS_Os_00529

SWS_Os_00530

SWS_Os_00531

SWS_Os_00532

SWS_Os_00533

SWS_Os_00534

SWS_Os_00535

SWS_Os_00536

SWS_Os_00537

SWS_Os_00538

SWS_Os_00539

SWS_Os_00540

SWS_Os_00541

SWS_Os_00542

SWS_Os_00543

SWS_Os_00544

SWS_Os_00545

SWS_Os_00547

SWS_Os_00548

SWS_Os_00553

SWS_Os_00554

31 of 247

- AUTOSAR confidential -

Document ID 034: AUTOSAR_SWS_OS

Specification of Operating System

AUTOSAR Release 4.2.2

SWS_Os_00555

SWS_Os_00556

SWS_Os_00557

SWS_0Os_00558

SWS_0Os_00559

SWS_0Os_00560

SWS_0Os_00562

SWS_0Os_00563

SWS_0Os_00564

SWS_Os_00565

SWS_Os_00566

SWS_Os_00762

SWS_Os_00763

SWS_Os_00764

SWS_Os_00769

SWS_Os_00772

SWS_Os_00773

SWS_Os_00774

SWS_Os_00775

SWS_Os_00776

SWS_Os_00777

SWS_Os_00778

SWS_Os_00779

SWS_Os_00780

SWS_Os_00781

SWS_Os_00782

SWS_Os_00783

SWS_Os_00784

SWS_Os_00785

SWS_Os_00786

SWS_Os_00787

SWS_Os_00788

SWS_Os_00789

SWS_Os_00790

SWS_Os_00791

SWS_Os_00792

SWS_Os_00793

SWS_Os_00794

SWS_Os_00797

32 of 247

- AUTOSAR confidential -

Document ID 034: AUTOSAR_SWS_OS

Specification of Operating System

AUTOSAR Release 4.2.2

SWS_Os_00798

SWS_Os_00799

SWS_Os_00800

SRS_BSW_00003

All software modules shall
provide version and
identification information

SWS_Os_00767

SRS_BSW_00006

The source code of software
modules above the AuC
Abstraction Layer (MCAL)
shall not be processor and
compiler dependent.

SWS_Os_00767

SRS_BSW_00007

All Basic SW Modules written
in C language shall conform to
the MISRA C 2004 Standard.

SWS_Os_00767

SRS_BSW_00009

All Basic SW Modules shall be
documented according to a
common standard.

SWS_Os_00767

SRS_BSW_00010

The memory consumption of
all Basic SW Modules shall be
documented for a defined
configuration for all supported
platforms.

SWS_Os_00767

SRS_BSW_00161

The AUTOSAR Basic Software
shall provide a microcontroller
abstraction layer which
provides a standardized
interface to higher software
layers

SWS_Os_00767

SRS_BSW_00162

The AUTOSAR Basic Software
shall provide a hardware
abstraction layer

SWS_Os_00767

SRS_BSW_00168

SW components shall be
tested by a function defined in
a common APl in the Basis-
Sw

SWS_Os_00767

SRS_BSW_00170

The AUTOSAR SW
Components shall provide
information about their
dependency from faults, signal
qualities, driver demands

SWS_Os_00767

SRS_BSW_00172

The scheduling strategy that is
built inside the Basic Software
Modules shall be compatible
with the strategy used in the
system

SWS_Os_00767

SRS_BSW_00301

All AUTOSAR Basic Software
Modules shall only import the
necessary information

SWS_Os_00767

SRS_BSW_00302

All AUTOSAR Basic Software
Modules shall only export
information needed by other

SWS_Os_00767

33 of 247

- AUTOSAR confidential -

Document ID 034: AUTOSAR_SWS_OS

AUTOSAR

Specification of Operating System

AUTOSAR Release 4.2.2

modules

SRS_BSW_00305

Data types naming convention

SWS_Os_00767

SRS_BSW_00306

AUTOSAR Basic Software
Modules shall be compiler and
platform independent

SWS_Os_00767

SRS_BSW_00307

Global variables naming
convention

SWS_Os_00767

SRS_BSW_00308

AUTOSAR Basic Software
Modules shall not define global
data in their header files, but in
the C file

SWS_Os_00767

SRS_BSW_00309

All AUTOSAR Basic Software
Modules shall indicate all
global data with read-only
purposes by explicitly
assigning the const keyword

SWS_Os_00767

SRS_BSW_00310

API naming convention

SWS_Os_00767

SRS_BSW_00312

Shared code shall be reentrant

SWS_Os_00767

SRS_BSW_00314

All internal driver modules
shall separate the interrupt
frame definition from the
service routine

SWS_Os_00767

SRS_BSW_00318

Each AUTOSAR Basic
Software Module file shall
provide version numbers in the
header file

SWS_Os_00767

SRS_BSW_00321

The version numbers of
AUTOSAR Basic Software
Modules shall be enumerated
according specific rules

SWS_Os_00767

SRS_BSW_00325

The runtime of interrupt
service routines and functions
that are running in interrupt
context shall be kept short

SWS_Os_00767

SRS_BSW_00327

Error values naming
convention

SWS_Os_00767

SRS_BSW_00328

All AUTOSAR Basic Software
Modules shall avoid the
duplication of code

SWS_Os_00767

SRS_BSW_00330

It shall be allowed to use
macros instead of functions
where source code is used
and runtime is critical

SWS_Os_00767

SRS_BSW_00333

For each callback function it
shall be specified if it is called
from interrupt context or not

SWS_Os_00767

SRS_BSW_00334

All Basic Software Modules
shall provide an XML file that
contains the meta data

SWS_Os_00767

SRS_BSW_00335

Status values naming

SWS_Os_00767

34 of 247

- AUTOSAR confidential -

Document ID 034: AUTOSAR_SWS_OS

AUTOSAR

Specification of Operating System

AUTOSAR Release 4.2.2

convention

SRS_BSW_00337

Classification of development
errors

SWS_Os_00767

SRS_BSW_00339

Reporting of production
relevant error status

SWS_Os_00767

SRS_BSW_00342

It shall be possible to create an
AUTOSAR ECU out of
modules provided as source
code and modules provided as
object code, even mixed

SWS_Os_00767

SRS_BSW_00344

BSW Modules shall support
link-time configuration

SWS_Os_00767

SRS_BSW_00347

A Naming seperation of
different instances of BSW
drivers shall be in place

SWS_Os_00767

SRS_BSW_00350

All AUTOSAR Basic Software
Modules shall apply a specific
naming rule for
enabling/disabling the
detection and reporting of
development errors

SWS_Os_00767

SRS_BSW_00357

For success/failure of an API
call a standard return type
shall be defined

SWS_Os_00767

SRS_BSW_00358

The return type of init()
functions implemented by
AUTOSAR Basic Software
Modules shall be void

SWS_Os_00767

SRS_BSW_00361

All mappings of not
standardized keywords of
compiler specific scope shall
be placed and organized in a
compiler specific type and
keyword header

SWS_Os_00767

SRS_BSW_00369

All AUTOSAR Basic Software
Modules shall not return
specific development error
codes via the API

SWS_Os_00767

SRS_BSW_00373

The main processing function
of each AUTOSAR Basic
Software Module shall be
named according the defined
convention

SWS_Os_00767

SRS_BSW_00374

All Basic Software Modules
shall provide a readable
module vendor identification

SWS_Os_00767

SRS_BSW_00375

Basic Software Modules shall
report wake-up reasons

SWS_Os_00767

SRS_BSW_00377

A Basic Software Module can
return a module specific types

SWS_Os_00767

SRS_BSW_00378

AUTOSAR shall provide a

SWS_Os_00767

35 of 247

- AUTOSAR confidential -

Document ID 034: AUTOSAR_SWS_OS

AUTOSAR

Specification of Operating System

AUTOSAR Release 4.2.2

boolean type

SRS_BSW_00379

All software modules shall
provide a module identifier in
the header file and in the
module XML description file.

SWS_Os_00767

SRS_BSW_00381

The pre-compile time
parameters shall be placed
into a separate configuration
header file

SWS_Os_00767

SRS_BSW_00383

The Basic Software Module
specifications shall specify
which other configuration files
from other modules they use at
least in the description

SWS_Os_00767

SRS_BSW_00384

The Basic Software Module
specifications shall specify at
least in the description which
other modules they require

SWS_Os_00767

SRS_BSW_00385

List possible error notifications

SWS_Os_00767

SRS_BSW_00386

The BSW shall specify the
configuration for detecting an
error

SWS_Os_00767

SRS_BSW_00401

Documentation of multiple
instances of configuration
parameters shall be available

SWS_Os_00767

SRS_BSW_00404

BSW Modules shall support
post-build configuration

SWS_Os_00767

SRS_BSW_00405

BSW Modules shall support
multiple configuration sets

SWS_Os_00767

SRS_BSW_00406

A static status variable
denoting if a BSW module is
initialized shall be initialized
with value 0 before any APIs of
the BSW module is called

SWS_Os_00767

SRS_BSW_00407

Each BSW module shall
provide a function to read out
the version information of a
dedicated module
implementation

SWS_Os_00767

SRS_BSW_00409

All production code error ID
symbols are defined by the
Dem module and shall be
retrieved by the other BSW
modules from Dem
configuration

SWS_Os_00767

SRS_BSW_00410

Compiler switches shall have
defined values

SWS_Os_00767

SRS_BSW_00411

All AUTOSAR Basic Software
Modules shall apply a naming
rule for enabling/disabling the
existence of the API

SWS_Os_00767

36 of 247

- AUTOSAR confidential -

Document ID 034: AUTOSAR_SWS_OS

AUTOSAR

Specification of Operating System

AUTOSAR Release 4.2.2

SRS_BSW_00412

References to c-configuration
parameters shall be placed
into a separate h-file

SWS_Os_00767

SRS_BSW_00413

An index-based accessing of
the instances of BSW modules
shall be done

SWS_Os_00767

SRS _BSW_00414

Init functions shall have a
pointer to a configuration
structure as single parameter

SWS_Os_00767

SRS_BSW_00415

Interfaces which are provided
exclusively for one module
shall be separated into a
dedicated header file

SWS_Os_00767

SRS_BSW_00417

Software which is not part of
the SW-C shall report error
events only after the DEM is
fully operational.

SWS_Os_00767

SRS_BSW_00419

If a pre-compile time
configuration parameter is
implemented as "const" it
should be placed into a
separate c-file

SWS_Os_00767

SRS_BSW_00422

Pre-de-bouncing of error
status information is done
within the DEM

SWS_Os_00767

SRS_BSW_00423

BSW modules with AUTOSAR
interfaces shall be describable
with the means of the SW-C
Template

SWS_Os_00767

SRS_BSW_00437

Memory mapping shall provide
the possibility to define RAM
segments which are not to be
initialized during startup

SWS_Os_00767

SRS_BSW_00439

Enable BSW modules to
handle interrupts

SWS_Os_00767

SRS_BSW_00440

The callback function
invocation by the BSW module
shall follow the signature
provided by RTE to invoke
servers via Rte_Call API

SWS_Os_00767

SRS_BSW_00441

Naming convention for type,
macro and function

SWS_Os_00767

SRS_Frt_00020

The configuration and
initialization shall be performed
by the module providing the
SWEFRT functionality (OS) if
the GPT Timer is not used .

SWS_Os_00374

SRS_Frt_00022

It shall be possible to state
which HW Timer is used

SWS_Os_00370

SRS_Frt_00025

Access methods to time
information shall be provided

SWS_0Os_00383, SWS_0Os_00392

37 of 247

- AUTOSAR confidential -

Document ID 034: AUTOSAR_SWS_OS

AUTOSAR

Specification of Operating System

AUTOSAR Release 4.2.2

for different users.

SRS_Frt_00030

The read - out value shall start
with Zero

SWS_Os_00384

SRS_Frt_00031

The SWFRT shall increment
i.e.

SWS_0Os_00384

SRS_Frt_00032

Wrap around shall work
without software interaction.

SWS_Os_00767

SRS_Frt_00033

There shall be a function to
achieve an atomic read the of
the timer's value.

SWS_Os_00377

SRS_Frt_00034

The module shall provide
functionality to calculate the
ticks elapsed between a
previously stored value
(passed as a parameter) and
the current timer value.

SWS_Os_00382

SRS_Frt_00047

The SWFRT shall provide a
"user" dependent API (function
/ macro) to convert ticks to
time.

SWS_Os_00393

SRS_Os_00097

The OS shall provide an API
that is backward compatible to
the API of OSEK OS

SWS_0Os_00001

SRS_Os_00098

The Operating System shall
provide statically configurable
schedule tables based on time
tables as an optional service

SWS_Os_00002, SWS_Os_00007

SRS_Os_00099

The Operating System shall
provide a mechanism which
allows switching between
different schedule tables

SWS_Os_00191

SRS_Os_11000

The OS may offer support to
protect the memory sections of
an OS-Application against
read accesses by all other OS-
Applications

SWS_Os_00026

SRS_Os_11001

The OS shall provide partitions
which allow for fault isolation
and fault recovery capabilities

SWS_Os_00056

SRS_Os_11002

The operating system shall
provide the ability to
synchronize the processing of
schedule tables with a global
system time base

SWS_Os_00013, SWS_Os_00199,
SWS_Os_00201, SWS_Os_002086,

SWS_Os_00227

SRS_Os_11003

The operating system shall be
able to monitor stack usage
and check for a stack overflow
on a per executable object
basis

SWS_Os_00067, SWS_Os_00068

SRS_Os_11005

The operating system shall
prevent an OS-Application

SWS_0Os_00195, SWS_0Os_00207,
SWS_0Os_00208, SWS_0Os_00795

38 of 247

- AUTOSAR confidential -

Document ID 034: AUTOSAR_SWS_OS

AUTOSAR

Specification of Operating System
AUTOSAR Release 4.2.2

from modifying the memory of
other OS-Applications

SRS_Os_11006

The operating system shall
allow tasks and ISRs within an
OS-Application to exchange
data

SWS_Os_00086, SWS_Os_00087,
SWS_Os_00196

SRS_0Os_11007

The operating system shall
allow OS-Applications to
execute shared code

SWS_Os_00081

SRS_Os_11008

The OS shall not allow a timing
fault in any OS-Application to
propagate

SWS_Os_00028, SWS_Os_00033,
SWS_Os_00037, SWS_Os_00048,
SWS_Os_00064, SWS_Os_00089,
SWS_Os_00465, SWS_Os_004609,
SWS_Os_00470, SWS_Os_00471,
SWS_Os_00472, SWS_Os_00473,
SWS_Os_00474

SRS_Os_11009

The operating system shall
prevent the corruption of the
OS by any call of a system
service

SWS_Os_00051, SWS_Os_00052,
SWS_Os_00069, SWS_Os_00070,
SWS_Os_00088, SWS_Os_00092,
SWS_Os_00093

SRS_Os_11010

The operating system shall
prevent an OS-Application
modifying OS objects that are
not owned by that OS-
Application

SWS_Os_00056

SRS_Os_11011

The OS shall protect itself
against OS-Applications
attempting to modify control
registers directly which are
managed by the OS

SWS_Os_00096, SWS_Os_00245

SRS_Os_11012

The OS shall provide
scalability for its protection
features

SWS_0Os_00240, SWS_Os_00241

SRS_Os_11013

The OS shall be capable of
notifying the occurrence of a
protection error at runtime

SWS_Os_00033, SWS_Os_00037,
SWS_Os_00044, SWS_Os_00051,
SWS_Os_00056, SWS_Os_00064,
SWS_Os_00068, SWS_Os_00070,
SWS_Os_00088, SWS_Os_00093,
SWS_Os_00210, SWS_Os_00246

SRS_Os_11014

In case of a protection error,
the OS shall provide an action
for recovery on OS-, OS-
Application and task/ISR-level

SWS_Os_00033, SWS_Os_00037,
SWS_Os_00106, SWS_Os_00107,
SWS_Os_00108, SWS_Os_00109,
SWS_Os_00110, SWS_Os_00243,
SWS_Os_00244

SRS_Os_11016

The OS implementation shall
offer scalability which is
configurable by a generation
tool

SWS_Os_00240, SWS_Os_00241

SRS_Os_11018

The OS shall provide interrupt
mask functions

SWS_Os_00299

SRS_Os_11019

The AUTOSAR OS generation
tool shall create the interrupt

SWS_Os_00336

39 of 247

Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

AUTOSAR

Specification of Operating System
AUTOSAR Release 4.2.2

vector table

SRS_Os_11020

The OS shall provide a
standard interface to tick a
software counter

SWS_Os_00286

SRS_Os_11021

The OS shall provide a
mechanism to cascade
multiple software counters
from a single hardware
counter.

SWS_0Os_00301

SRS_Os_80001

The OS shall be able to
manage multiple closely
coupled CPU Cores

SWS_Os_00568, SWS_Os_005609,
SWS_Os_00579, SWS_Os_00583,
SWS_Os_00596, SWS_Os_00600,
SWS_Os_00606, SWS_Os_00616,
SWS_Os_00626, SWS_Os_00627,
SWS_Os_00628, SWS_Os_00672,
SWS_Os_00673, SWS_Os_00674,
SWS_Os_00675

SRS_Os_80003

The multi core extension shall
provide the same degree of
predictability as the single core

SWS_Os_00570, SWS_Os_00571,
SWS_Os_00573

SRS_Os_80005

OsApplications and as a result
TASKS and OsISRs shall be
assigned statically to cores

SWS_Os_00570, SWS_Os_00571,
SWS_Os_00572, SWS_Os_00573,
SWS_Os_00667

SRS_Os_80006

Initialization/Start-up of the
system shall be synchronized

SWS_Os_00572, SWS_Os_00574,
SWS_Os_00575, SWS_Os_00576,
SWS_Os_00577, SWS_Os_00578,
SWS_Os_00579, SWS_Os_00580,
SWS_Os_00581, SWS_Os_00582,
SWS_Os_00584, SWS_Os_00585,
SWS_Os_00607, SWS_Os_00608,
SWS_Os_00609, SWS_Os_00610,
SWS_Os_00625, SWS_Os_00668,
SWS_Os_00669, SWS_Os_00670,
SWS_Os_00676, SWS_Os_00677,
SWS_Os_00678, SWS_Os_00679,
SWS_Os_00680, SWS_Os_00681,
SWS_Os_00682, SWS_Os_00683,
SWS_Os_00684, SWS_Os_00685

SRS_Os_80007

Shutdown procedure shall be
triggered by any core

SWS_Os_00586, SWS_Os_00587,
SWS_Os_00588, SWS_Os_00616,
SWS_Os_00617, SWS_Os_00621,
SWS_Os_00713, SWS_Os_00714,
SWS_Os_00715, SWS_Os_00716

SRS_Os_80008

It shall be a common OS
configuration across multiple
cores

SWS_Os_00567, SWS_Os_00582

SRS_Os_80011

The number of cores that the
operating system manages
shall be configurable offline

SWS_Os_00583

SRS_Os_80013

The behaviour of services shall
be identical to single core
systems

SWS_Os_00569, SWS_Os_00589,
SWS_Os_00590, SWS_Os_00591,
SWS_Os_00592, SWS_Os_00593,
SWS_Os_00594, SWS_Os_00595,

40 of 247

Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

AUTOSAR

Specification of Operating System
AUTOSAR Release 4.2.2

SWS_Os_00607, SWS_Os_00618,
SWS_Os_00619, SWS_Os_00623,
SWS_Os_00629, SWS_Os_00630,
SWS_Os_00631, SWS_Os_00635,
SWS_Os_00636, SWS_Os_00637,
SWS_Os_00638, SWS_Os_00639,
SWS_Os_00640, SWS_Os_00643,
SWS_Os_00645, SWS_Os_00646,
SWS_Os_00647, SWS_Os_00663,
SWS_Os_00664, SWS_Os_00665

The MC extensions shall
provide a mechanism to
activate tasks on different
cores

SRS_Os_80015

SWS_Os_00596, SWS_Os_00598,
SWS_Os_00599, SWS_Os_00600

Event mechanism shall work
across cores

SRS_Os_80016

SWS_Os_00602, SWS_Os_00604,
SWS_Os_00605

SRS _Os 80018 |A method to synchronize tasks
on more than one core shall be

provided

SWS_Os_00632, SWS_Os_00633,
SWS_Os_00634, SWS_Os_00641,
SWS_Os_00642, SWS_Os_00644,
SWS_Os_00648, SWS_Os_00649,
SWS_Os_00650, SWS_Os_00652,
SWS_Os_00653, SWS_Os_00654,
SWS_Os_00655, SWS_Os_00656,
SWS_Os_00657, SWS_Os_00658,
SWS_Os_00659, SWS_Os_00660,
SWS_Os_00661

SRS_Os 80020 |A data exchange mechanism

shall be provided

SWS_Os_00611, SWS_Os_00671,
SWS_Os_00718, SWS_Os_00719,
SWS_Os_00720, SWS_Os_00721,
SWS_Os_00722, SWS_Os_00723,
SWS_Os_00724, SWS_Os_00725,
SWS_Os_00726, SWS_Os_00727,
SWS_Os_00728, SWS_Os_00729,
SWS_Os_00730, SWS_Os_00731,
SWS_Os_00732, SWS_Os_00733,
SWS_Os_00734, SWS_Os_00735,
SWS_Os_00736, SWS_Os_00737,
SWS_Os_00738, SWS_Os_00739,
SWS_Os_00740, SWS_Os_00741,
SWS_Os_00742, SWS_Os_00743,
SWS_Os_00744, SWS_Os_00745,
SWS_Os_00746, SWS_Os_00747,
SWS_Os_00748, SWS_Os_00749,
SWS_Os_00750, SWS_Os_00751,
SWS_Os_00752, SWS_Os_00753,
SWS_Os_00754, SWS_Os_00755,
SWS_Os_00756, SWS_Os_00757,
SWS_Os_00758, SWS_Os_007509,
SWS_Os_00760, SWS_Os_00761

SRS Os 80021 |The MC extension of the
AUTOSAR environment shall
support a mutual exclusion
mechanism between cores

that shall not cause deadlocks

SWS_Os_00612, SWS_Os_00613,
SWS_Os_00614, SWS_Os_00615,
SWS_Os_00620, SWS_Os_00622,
SWS_Os_00624, SWS_Os_00648,
SWS_Os_00649, SWS_Os_00650,
SWS_Os_00651, SWS_Os_00652,
SWS_0Os_00653, SWS_Os_00654,

41 of 247

Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

AUTOSAR

Specification of Operating System
AUTOSAR Release 4.2.2

SWS_Os_00655, SWS_Os_00656,
SWS_Os_00657, SWS_Os_00658,
SWS_Os_00659, SWS_Os_00660,
SWS_Os_00661, SWS_Os_00666,
SWS_Os_00686, SWS_Os_00687,
SWS_Os_00688, SWS_Os_00689,
SWS_Os_00690, SWS_Os_00691,
SWS_Os_00692, SWS_Os_00693,
SWS_Os_00694, SWS_Os_00695,
SWS_Os_00696, SWS_Os_00697,
SWS_Os_00698, SWS_Os_00699,
SWS_Os_00700, SWS_Os_00701,
SWS_Os_00704, SWS_Os_00705,
SWS_Os_00706, SWS_Os_00707,
SWS_Os_00708, SWS_Os_00709,
SWS_Os_00710, SWS_Os_00711,
SWS_Os_00712, SWS_Os_00801

The OS shall execute an
operation which can be
selected at runtime, in case no
task is going to be scheduled
on a specific core

SRS_Os_80023

SWS_0Os_00770, SWS_0Os_00771,
SWS_0Os_00802

SRS _Os 80026 |It shall be possible to start any
of the cores in a multi core

system

SWS_Os_00574, SWS_Os_00575,
SWS_Os_00576, SWS_Os_00577,
SWS_Os_00584, SWS_Os_00585,
SWS_Os_00676, SWS_Os_00677,
SWS_Os_00678, SWS_Os_00679,
SWS_Os_00680, SWS_Os_00681,
SWS_Os_00682, SWS_Os_00683,
SWS_Os_00684, SWS_Os_00685

SRS_Os 80027 |It shall be possible to initialize
any of the cores in a multi core

system

SWS_Os_00574, SWS_Os_00575,
SWS_Os_00576, SWS_Os_00577,
SWS_Os_00584, SWS_Os_00585,
SWS_Os_00676, SWS_Os_00677,
SWS_Os_00678, SWS_Os_00679,
SWS_Os_00680, SWS_Os_00681,
SWS_Os_00682, SWS_Os_00683,
SWS_Os_00684, SWS_Os_00685

42 of 247

Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

7 Functional specification

7.1 Core OS

7.1.1 Background & Rationale

The OSEK/VDX Operating System [15] is widely used in the automotive industry and
has been proven in use in all classes of ECUs found in modern vehicles. The
concepts that OSEK OS has introduced are widely understood and the automotive
industry has many years of collective experience in engineering OSEK OS based
systems.

OSEK OS is an event-triggered operating system. This provides high flexibility in the
design and maintenance of AUTOSAR based systems. Event triggering gives
freedom for the selection of the events to drive scheduling at runtime, for example
angular rotation, local time source, global time source, error occurrence etc.

For these reasons the core functionality of the AUTOSAR OS shall be based upon
the OSEK OS. In particular OSEK OS provides the following features to support
concepts in AUTOSAR:

fixed priority-based scheduling

facilities for handling interrupts

only interrupts with higher priority than tasks

some protection against incorrect use of OS services

a startup interface through StartOS() and the StartupHook()

a shutdown interface through ShutdownOS() and the ShutdownHook()

O OO0 Oo0OO0oOo

OSEK OS provides many features in addition to these. Readers should consult the
OSEK specification [15] for details.

Basing AUTOSAR OS on OSEK OS means that legacy applications will be backward
compatible 7 i.e. applications written for OSEK OS will run on AUTOSAR OS.

However, some of the features introduced by AUTOSAR OS require restrictions on
the use of existing OSEK OS features or extend existing OSEK OS features.

7.1.2 Requirements
[SWS_Os_00001] rThe Operating System module shall provide an API that is

backward compatible with the OSEK OS API [15]. (SRS_Os_00097)

7.1.2.1 Restrictions on OSEK OS

It is too inefficient to achieve timing and memory protection for alarm callbacks. They
are therefore not allowed in specific scalability classes (SWS_0Os _00242)

43 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

[SWS_Os_00242] y The Operating System module shall only allow Alarm Callbacks
in Scalability Class 1. \ ()

OSEK OS is required to provide functionality to handle inter-task (internal)
communication according to the OSEK COM specification when internal
communication only is required in the system. In AUTOSAR, internal communication
is provided by the AUTOSAR RTE or by AUTOSAR COM at least one of which will
be present for all AUTOSAR ECUs.

AUTOSAR OS, when used in an AUTOSAR system, therefore does not need to
support internal communication.

An OSEK OS must implement internal communication if the symbol
LOCALMESSAGESONLYs defined. AUTOSAR OS can deprecate the need to
implement OSEK COM functionality and maintain compatibility with OSEK suite of
specifications by ensuring that AUTOSAR OS always exists in an environment where
LOCALMESSAGESONIs&rundefined.

OSEK OS has one special resource called RES_SCHEDULERThis resource has 2
specific aspects:
1. Itis always present in the system, even if it is not configured. This means that
the RES_SCHEDULER always known by the OS.
2. It has always the highest Task priority. This means a Task which allocates this
resource can not be preempted by other Tasks.
Since special cases are always hard to handle (e.g. in this case with respect to timing
protection) AUTOSAR OS handles RES_SCHEDULERas any other resource. This
means that the RES_SCHEDULERIis not automatically created. However, a
configuration attribute allows that a resource in AUTOSAR OS can optionally be
assigned the priority of the highest priority task in the system.

For backwards compatibility with OSEK OS systems, see Chapter 12.8 on how to
configure a standard resource called RES_SCHEDULERNn a way that make it
compatible with the resource of the same name which is declared automatically in
OSEK OS.

In OSEK OS users must declare Operating System objects with specific macros (e.g.
Decl ar eTa &k AUTOSAR DS implementation shall not depend on such
declarations and shall (for backwards compatibility) supply macros without
functionality.

7.1.2.2 Undefined Behaviour in OSEK OS

There are a number of cases where the behaviour of OSEK OS is undefined. These
cases represent a barrier to portability. AUTOSAR OS tightens the OSEK OS
specification by defining the required behaviour.

[SWS _Os _00304] rIfinacallto SetRelAlarm() t he par ameter fi

zero, the service shall return E_OS_VALUEN standard and extended status . \ ()
44 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

nNcr eme

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

[SWS_Os_00424] y The first call to StartOS() (for starting the Operating System)
shall not return. v ()

[SWS_Os_00425] yIf ShutdownOS() is called and ShutdownHook() returns then
the Operating System module shall disable all interrupts and enter an endless loop. \

()

7.1.2.3 Extensions to OSEK OS

[SWS_Os_00299] yThe Operating System module shall provide the services
DisableAllinterrupts() , EnableAllinterrupts() , SuspendAllinterrupts() ,
ResumeAllinterrupts() prior to calling StartOS() and after calling

ShutdownOS() .\ (SRS_Os_11018)

It is assumed that the static variables of the functions mentioned in SWS Os 00299
are initialized.

[SWS_Os _00301] yThe Operating System module shall provide the ability to

increment a software counter as an alternative action on alarm expiry. \
(SRS_0Os_11021)

The Operating System module provides API service IncrementCounter() (see
SWS_0Os _00399) to increment a software counter.

[SWS_Os _00476] r The Operating System module shall allow to automatically start
preconfigured absolute alarms during the start of the Operating System. \ ()

SWS Os 00476 is an extension to OSEK OS which allows this only for relative
alarms.

[SWS_Os_00566] y The Operating System API shall check in extended mode all
pointer arguments for a NULL pointer and return E_OS PARAM_POINTER extended

status if such an argument is NULL \ ()

45 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

7.2 Software Free Running Timer

Due to the fact that the number of timers is often very limited, some functionality and
configuration is added to extend the reuse of timers. E.g. this allows timer
measurements. For more details see also [5] (SWFRT).

[SWS_Os _00374] y The Operating System module shall handle all the initialization
and configuration of timers used directly by the Operating System module and not

handled by the GPT driver. y (SRS_Frt_00020)

The Operating System module provides API service GetCounterValue () (see
SWS Os 00383) to read the current count value of a counter (returning either the
hardware timer ticks if counter is driven by hardware or the software ticks when user
drives counter).

The Operating System module provides APl service GetElapsedValue() (see
SWS Os 00392) to get the number of ticks between the current tick value and a
previously read tick value.

[SWS_Os_00384] y The Operating System module shall adjust the read out values of
hardware timers (which drive counters) in such that the lowest value is zero and
consecutive reads return an increasing count value until the timer wraps at its

modulus. \ (SRS_Frt_00030, SRS_Frt_00031)

46 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

7.3 Schedule Tables

7.3.1 Background & Rationale

It is possible to implement a statically defined task activation mechanism using an
OSEK counter and a series of auto started alarms. In the simple case, this can be
achieved by specifying that the alarms are not modified once started. Run-time
modifications can only be made if relative synchronization between alarms can be
guaranteed. This typically means modifying the alarms while associated counter tick
interrupts are disabled.

Schedule Tables address the synchronization issue by providing an encapsulation of
a statically defined set of expiry points. Each expiry point defines:

1 one or more actions that must occur when it is processed where an action is
the activation of a task or the setting of an event.
1 An offset in ticks from the start of the schedule table

Each schedule table has a duration in ticks. The duration is measured from zero and
defines the modulus of the schedule table.

At runtime, the Operating System module will iterate over the schedule table,
processing each expiry point in turn. The iteration is driven by an OSEK counter. It

therefore follows that the properties of the counter have an impact on what is
possible to configure on the schedule table.

7.3.2 Requirements

7.3.2.1 Structure of a Schedule Table

Initial Expiry Final Expiry
Point Point

Expiry Point 1 Expiry Point 2 Expiry Point 3 Expiry Point 4 Expiry Point 5

Task Activations Task Activations Task Activations Task Activations Task Activations

TaskA <none> TaskA TaskA TaskB

TaskB TaskE TaskE TaskF

Event Settings Event Settings Event Settings Event Settings Event Settings

EventP:TaskC EventP:TaskC <none> EventQ:TaskC EventP:TaskC

EventP:TaskD EventP:TaskD EventQ:TaskE

Offset Offset Offset Offset Offset IDelay=10

4 ticks 12 ticks 20 ticks 32 ticks 40 ticks inalbelay=

Inma\Offset:ﬂ
Delay=8 Delay=8 Delay=12 Delay=8
Delay=InitialOffset+FinalDelay=14
0 4 12 20 32 40 0
»
»
Schedule Table Duration = 50 ticks
Figure 7.1: Anatomy of a Schedule Table
47 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

[SWS_Os_00401] r A schedule table shall have at least one expiry point. \ ()

[SWS_Os_00402] y An expiry point shall contain a (possibly empty) set of tasks to
activate. v ()

[SWS_Os_00403] r An expiry point shall contain a (possibly empty) set of events to
set. v ()

[SWS_Os_00404] r An expiry point shall contain an offset in ticks from the start of
the schedule table. vy ()

7.3.2.2 Constraints on Expiry Points

There is no use case for an empty expiry point, so each one must define at least one
action.

[SWS_Os_00407] y An expiry point shall activate at least one task OR set at least
one event. v ()

The OS needs to know the order in which expiry points are processed. It is therefore
necessary to ensure that the expiry points on a schedule table can be totally ordered.
This is guaranteed by forcing each expiry point on a schedule table to have a unique
offset.

[SWS_Os_00442] : y Each expiry point on a given schedule table shall have a unique
offset. v ()

Iteration over expiry points on a schedule table is driven by an OSEK counter. The
characteristics of the counter i OsCounterMinCycle and
OsCounterMaxAllowedValue i place constraints on expiry point offsets.

[SWS _Os 00443] The Initial Offset shall be zero OR in the range
OsCounterMinCycle .. OsCounterMaxAllowedValue of the underlying counter. y

0

Simlarly, constraints apply to the delays between of adjacent expiry points and the
delay to the logical end of the schedule table.

[SWS_Os_00408] 1 The delay between adjacent expiry points shall be in the range

OsCounterMinCycle .. OsCounterMaxAllowedValue of the underlying counter. y
0
48 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

7.3.2.3 Processing Schedule Tables

[SWS_Os_00002] y The Operating System module shall process each expiry point
on a schedule table from the Initial Expiry Point to the Final Expiry Point in order of

increasing offset. v (SRS_0s 00098)

[SWS_Os _00007] y The Operating System module shall permit multiple schedule
tables to be processed concurrently. \ (SRS_Os_00098)

[SWS_Os_00409] r A schedule table of the Operating System module shall be driven
by exactly one counter. vy ()

[SWS_Os _00410] y The Operating System module shall be able to process at least
one schedule table per counter at any given time. \ ()

[SWS_Os_00411] y The Operating System module shall make use of ticks so that
one tick on the counter corresponds to one tick on the schedule table. v ()

It is possible to activate a task and set (one or more unique) events for the same task
at the same expiry point. The ordering of task activations and event settings
performed from the expiry point could lead to different implementations exhibiting
different behaviour (for example, activating a suspended task and then setting and
event on the task would succeed but if the ordering was reversed then the event
setting would fail). To prevent such non-determinism, it is necessary to enforce a
strict ordering of actions on the expiry point.

[SWS_Os_00412] y The Operating System module shall process all task activations
on an expiry point first and then set events. \ ()

A schedule table always has a defined state and the following figure illustrates the
different states (for a non-synchronized schedule table) and the transitions between
them.

49 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUT(©o OoOSAR Specification of Operating System
AUTOSAR Release 4.2.2

SCHEDULETABLE_STOPPED

StopScheduleTable()
\ NextScheduleTable()

StartScheduleTableAbs()
StartScheduleTableRel()

StopScheduleTable() (SCHEDULETABLE_NEXT)
OR schedule table ends

Moreviousfischedule table ends

(SCHEDULETABLE_RUNNI NG)4/

Figure 7.2: States of a schedule table

If a schedule table is not active 1 this means that is not processed by the Operating
System 1 the state is SCHEDULETABLE_STOPPER\fter starting a schedule tables
enters the SCHEDULETABLE_RUNNINs}ate where the OS processes the expiry points.
If the service to switch a schedule table is called a schedule table enters the the
SCHEDULETABLE_ NEX§t at e and waits unti |l the Acurrent

7.3.2.4 Repeated Schedule Table Processing

A schedule table may or may not repeat after the final expiry point is processed. This
allows two types of behaviour:

1. single-shot i the schedule table processes each expiry point in sequence and
then stops at the end. This is useful for triggering a phased sequence of
actions in response to some trigger

2. repeating 7 the schedule table processes each expiry point in turn, After
processing the final expiry point, it loops back to the initial expirt point. This is
useful for building applications that perform repeated processing or system
which need to synchronise processing to a driver source.

A repeating schedule table means that each expiry point is repeated at a period
equal to the schedule table duration.

[SWS_Os_00413] y The schedule table shall be configurable as either single-shot or
repeating. \ ()

[SWS_Os_00009] rIf the schedule table is single-shot, the Operating System
module shall stop the processing of the schedule table Final Delay ticks after the

Final Expiry Point is processed. v ()

50 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

[SWS_Os 00427] yIf the schedule table is single-shot, the Operating System
module shall allow a Final Delay between 0 .. OsCounterMaxAllowedValue of the

underlying counter. v ()

[SWS_Os_00444] y For periodic schedule tables the value of Final Delay shall be in
the range OsCounterMinCycle .. OsCounterMaxAllowedValue of the underlying

counter. \ ()

[SWS_Os_00194] y After processing the Final Expiry Point, and if the schedule table
is repeating, the Operating System shall process the next Initial Expiry Point, after

Final Delay plus Initial Offset ticks have elapsed. vy ()
7.3.2.5 Controlling Schedule Table Processing

The application is responsible for starting and stopping the processing of a schedule
table.

The Operating System module provides the service StartScheduleTableAbs()
(see SWS Os 00358) to start the processing of a schedule table at an absolute
value AStarto on the under | yihasgo be processed
when the value of the underlying counter equals Start + InitialOffset).

The Operating System module provides the service StartScheduleTableRel()

(see SWS Os 00347)t o start the processing of a
t o the @ No wthe uadarlyingecouoter (The Initial Expiry Point shall be
processed when the value of the underlying counter equals Now + Offset +
InitialOffset).

The figure below illustrates the two different methods for a schedule table driven by a
counter with a modulus of 65536 (i.e. an OsCounterMaxAllowedValue = 65535).

51 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

(TF

sche

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

EP1 EP2 EP3 Schedule Table Tbl
Initial Offset = 2
° > Final Delay = 2
T ‘ ‘ ‘ ‘ ‘ ‘ T Duration = 10
01 2 3 456 7 8 9 0
STOPPED * RUNNING >
EP1 EP2 EP3 EP1 EP2 EP3 EP1

v

—

w4
~
o |
o |
A
o |
° |

[
0 1

65530 | 65532 | 65534 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
65531 65533 65535 OS Counter
L StartScheduleTableAbs(Thl,2);
Process Initial Expiry Point when the Counter = 2 + Initial Offset = 2
STOPPED * RUNNING >
‘EPl ‘ ‘EPZ ‘ ‘EPS ‘ ‘EPl ‘ ‘EPZ ‘ ‘EP3 ‘ EP1 EP2
01 2 3 456 7 8 9 012 3 456 7 8 9012 3 456 7
65530 | 65532 |ess3a| © L 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
65531 65533 65535 OS Counter
L StartScheduleTableRel(Thbl,2);
Process Initial Expiry Point when the Counter = Now + 2 + Initial Offset = 1
Figure 7.3: Starting a Schedule Table at an Absolute and a Relative Count
The Operating System module provides the service StopScheduleTable() (see

SWS Os 00006) to cancel the processing of a schedule table immediately at any
point while the schedule table is running.

[SWS_Os_00428] r If schedule table processing has been cancelled before reaching
the Final Expiry Point and is subsequently restarted then
SWS _Os_00358/SWS_Os 00347 means that the re-start occurs from the start of the

schedule table. v ()

The Operating System module provides the service NextScheduleTable() (see
SWS Os 00191) to switch the processing from one schedule table to another

schedule table.
52 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

[SWS_Os 00414] rWhen a schedule table switch is requested, the OS shall
continue to process expiry points on the current schedule table. After the Final Expiry
Point there will be a delay equivalent to Final Delay ticks before processing the
switched-to schedule table. The initial expiry point will be processed after initial

offset. v ()

The Operating System module provides the service GetScheduleTable Status ()
(see SWS_Os _00227) to query the state of a schedule table.

Schedule tables can be configured (see chapter 10) to start automatically during start
of the Operating System module (like Tasks and Alarms in OSEK OS). OSEK OS
defines a specific order: Autostart of Tasks is performed before autostart of alarms.
AUTOSAR OS extends this with schedule tables.

[SWS_Os 00510] y The Operating System module shall perform the autostart of
schedule tables during startup after the autostart of Tasks and Alarms. v ()

53 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

7.4 Schedule Table Synchronization

7.4.1 Background & Rationale

The absolute time at which the Initial Expiry Point on a schedule table is processed is
under user control. However, if the schedule table repeats then it is not guaranteed
that the absolute count value at which the initial expiry point was first processed is
the same count value at which it is subsequently processed. This is because the
duration of the schedule table need not be equal to the counter modulus.

In many cases it may be important that schedule table expiry points are processed at
specific absolute values of the underlying counter. This is called synchronization.
Typical use-cases include:

1 Synchronization of expiry points to degrees of angular rotation for motor
management

1 Synchronizing the computation to a global (network) time base. Note that in
AUTOSAR, the Operating System does not provide a global (network) time
source because

1. a global time may not be needed in many cases

2. other AUTOSAR modules, most notably FlexRay, provide this
independently to the Operating System

3. if the Operating System is required to synchronize to multiple global
(network) time sources (for example when building a gateway between two
time-triggered networks) the Operating System cannot be the source of a
unique global time.

AUTOSAR OS provides support for synchronization in two ways:

1. implicit synchronization i the counter driving the schedule table is the counter
with which synchronization is required. This is typically how synchronization
with time-triggered networking technologies (e.g. FlexRay, TTP) is achieved 1
the underlying hardware manages network time synchronization and simply
presents time as an output/compare timer interface to the Operating System.
The following figure shows the possible states for schedule tables with implicit
synchronization.

54 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTO SAR Specification of Operating System
AUTOSAR Release 4.2.2

(SCHEDULETABLESTOPPED

StopScheduleTable()

NextScheduleTable()

StartScheduleTableAbso\.C SCHEDULETABLENEXT)

StopScheduleTable()

Apreviousifi Sche

SCHEDULETABLERUNNING AND
_SYNCHRONOUS

Figure 7.4: States of an implicit synchronized schedule table

2. explicit synchronization i the schedule table is driven by an Operating System
counter which is not the counter with which synchronization is required. The
Operating System provides additional functionality to keep schedule table
processing driven by the Operating System counter synchronized with the
synchronization counter. This is typically how synchronization with periodically
broadcast global times works. The next figure shows the states of such
schedule tables.

55 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTO SAR Specification of Operating System
AUTOSAR Release 4.2.2

SCHEDULETABLESTOPPED StopScheduleTable()

NextScheduleTable()

SCHEDULETABLENEXT)

StartScheduleTableAbs()
StartScheduleTableRel()
StopScheduleTable()

StopScheduleTable() Apreviousf Sched

StartScheduleTableSync()

(SCHEDULETABLEWAITING) (SCHEDULETABLERUNNING

ABS(CounterValue-GlobalValue)<=PRECISION

StopScheduleTable()
SyncScheduleTable() SetScheduleTableAsync() OR

ABS(CounterValue-GlobalValue)>PRECISION

SCHEDULETABLERUNNING AND
_SYNCHRONOUS

Figure 7.5: States of an explicit synchronized schedule table (not all conditions for transitions
are shown in the picture)

7.4.2 Requirements

[SWS_Os _00013] yThe Operating System module shall provide the ability to

synchronize the processing of schedule table to known counter values. V\
(SRS_0Os_11002)

7.4.2.1 Implicit Synchronization

The Operating System module does not need to provide any additional support for
implicit synchronization of schedule tables. However, it is necessary to constrain
configuration and runtime control of the schedule table so that ticks on the configured
schedule table can be aligned with ticks on the counter. This requires the range of
the schedule table to be identical to the range of the counter (the equality of tick
resolution of each is guaranteed by the requirements on the schedule table / counter
interaction):

[SWS_Os _00429] rA schedule table of the Operating System module that is
implicitly synchronized shall have a Duration equal to OsCounterMaxAllowedValue

+1 of its associated OSEK OS counter. \ ()

56 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

To synchronize the processing of the schedule table it must be started at a known
counter value. The implication of this is that a schedule table requiring implicit
synchronization must only be started at an absolute counter value and cannot be
started at a relative count value.

[SWS_Os _00430] y The Operating System module shall prevent a schedule table
that is implicitly synchronized from being started at a relative count value. \ ()

When the schedule table is started at an absolute counter value each expiry point will
be processed when the counter equals the value specified in the service call plus
expiry pointds of tcaseisto enBureethatcthe wifeeisnspeaifiectin
the schedule table configuration correspond to absolute values of the underlying
counter. This is achieved trivially using StartScheduleTable Abs(Tbl,0) as shown
below.

v

STOPPED h RUNNING AND SYNCHRONOUS
EP1 EP2 EP3 EP1 EP2 EP3 EP1
rrrrrrrrrrTrrrrrrrrrTrrrre
01 2 3 456 7 8 9 012 3 456 789 01 2 3 4
rrrrreererrerrrrrrrrrrrrrrrrrrre
4 5 6 7 8 9 01 2 3 456 7 8 9012 3 456 789 012 3 4
OS Counter

L StartScheduleTableAbs(Tbl,0);

Process Initial Expiry Point when the Counter = 0 + Initial Offset = 2
Figure 7.6: Example for implicit synchronized schedule table
7.4.2.2 Explicit Synchonization

An explicitly synchronized schedule table requires additional support from the

Operating System module. The schedule table is driven by an Operating System
modulceo@usant er as nor mal (termed the fAdrive <co
synchronized with a different counter (ter me
notanOper ati ng Sy scoumterobeotdul ed s

The following constraints must be enforced between the schedule table, the
Operati ng Sy scounter amdthd syhclerdnigation counter:

Constraintl:

[SWS_Os_00431] r A schedule table that is explicitly synchronized shall have
a duration no greater than modulus of the drive counter. \ ()

Constraint2:

57 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

[SWS_Os_00462] 1 A schedule table that is explicitly synchronized shall have
a duration equal to the modulus of the synchronization counter. \ ()

Constraint3:

[SWS_Os_00463] ; The synchronization counter shall have the same
resolution as the drive counter associated with the schedule table. This means
that a tick on the schedule table has the same duration as a tick on the

synchronization counter. \ ()

Note that it is in the responsibility of the Operating System module user to verify that
Constraints 2 and 3 are satisfied by their system.

The function of explicit synchronization is for the Operating System module to keep

processing each expiry point at absolute value of the synchronization counter equal

to the expiry pointés offset. This means t he
that the notional zero of the schedule table has to be synchronized with absolute

value zero on the synchronization counter.

To achieve this, the Operating System module must be told the value of the
synchronization counter by the user. As the modulus of the synchronization counter
and the schedule table are identical, the Operating System module can use this
information to calculate drift. The Operating System module then automatically
adjusts the delay between specially configured expiry points, retarding them or
advancing them as appropriate, to ensure that synchronization is maintained.

7.4.2.2.1 Startup
There are two options for starting an explicitly synchronized schedule table:

1. Asynchronous start: Start the schedule table at an arbitrary value of the
synchronization counter.

2. Synchronous start: Start the schedule table at absolute value zero of the
synchronization counter only after a synchronization count has been provided.
This may mean waiting for first synchronization indefinitely.

Asynchronous start is provided by the existing absolute and relative schedule table
start services. Both of these services set the point at which the initial expiry point is
processed with respect to the driver counter not the synchronization counter. This
allows the schedule table to start running before the value of the synchronization
counter is known.

Synchronous start requires an additional service that starts the schedule table only
after the Operating System module is told the value of the synchronization counter.

58 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

The Operating System module provides the service
Start ScheduleTable Synchron () (see SWS Os 00201) to start an explicitly
synchronized schedule table synchronously. The Initial Expiry Point will be processed
after (Duration i Value) + Initial Offset ticks of the driver counter have elapsed where
Value is the absolute value of the synchronization counter provided to the schedule
table.

[SWS _Os 00435] rlIf an explicitly synchronized schedule table was started
synchronously, then the Operating System module shall guarantee that it has state

Awai t i ng o allwflfservice $tanSxheduleTableSynchron() returns. v ()

7.4.2.2.2 Providing a Synchronization Count

The Operating System module must be told the value of the synchronization counter.
Since the schedule table duration is equal to the modulus of the synchronization
counter, the Operating System module can use this to determine the drift between
the current count value on the schedule table time and the synchronization count and
decide whether (or not) any action to achieve synchronization is required.

The Operating System module provides the service Sync ScheduleTable() (see
SWS Os 00199) to provide the schedule table with a synchronization count and
start synchronization.

7.4.2.2.3 Specifying Synchronization Bounds

A schedule table defaults to denying adjustment at all expiry points. Adjustment is
allowed only when explicitly configured. The range of adjustment that the Operating
System module can make at an adjustable expiry point is controlled by specifying:

1 OsScheduleTableMaxShorten : the maximum value that can be subtracted
from the expiry offset

9 OsScheduleTableMaxLengthen : the maximum value that can be added to the
expiry point offset

The following figure illustrates the behaviour depending on
OsScheduleTableMaxShorten and OsScheduleTableMaxLengthen

59 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTO SAR Specification of Operating System
AUTOSAR Release 4.2.2

Expected Delays

Expiry Point Expiry Point Expiry Point
Cument Next NexiMNaxd

Task Activations Task Activations Task Activations
Event Ssttings Event Ssttings Event Ssttings

Offest Offest

10 BoeE 42 noaE
Max shorten Max shorten
MaxLangtnan MaxLangtnan

1 1
Expiry Point Expiry Point Expiry Point
Cument Next NexiMNaxd
Task Activations Task Activations Task Activations
Event Ssttings Event Ssttings Event Ssttings
Ofteat Oftsat Oftsat
10 BoeE 24 g 42 9o
Max shorten Max shorten Max shorten
MaxLangtnan MaxLangtan MaxLangtnan

147 1

Expiry Point Expiry Point Expiry Point
Cument Next NexiMNaxd
Task Activations Task Activations Task Activations
Event Ssttings Event Ssttings Event Ssttings
Ofteat Ofteat Ofteat
10 9o 24 goee 42 o
Max shorten Maxshorten Max shorten
MaxLangtnan MaxLangtan MaxLangtnan

Figure 7.7: Adjustment of Exipry Points
So called fAhardodo and Asmoot h {l6]arg suppbriecbbyi zat i o
this single wunified concept i nizatibBnUmMma@ $eA R OS.
emul ated by setting the smal.|l adjust ment val
synchronization may be emulated by setting large adjustment values on the final
expiry point.

[SWS_Os _00415] rAn expiry point shall permit the configuration of a
OsScheduleTableMaxShorten that defines the maximum number of ticks that can

be subtracted from expiry point offset. v ()

[SWS_Os_00416] yAn expiry point shall permit the configuration of a
OsScheduleT ableMaxLengthen that defines the maximum number of ticks that can

be added to expiry point offset. v ()

60 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

When performing synchrioniszation it is important that the expiry points on the
schedule table are processed according to the total ordering defined by their offsets.
This means that the range of permitted values for OsScheduleTableMaxShorten
and OsScheduleTableMaxLengthen must ensure that the next expiry point is not
retarded into the past or advanced beyond more than one iteration of the schedule
table.

[SWS_Os _00436] yThe value of (Offset i OsScheduleTableMaxShorten) of an
expiry point shall be greater than (Offset + OsCounterMinCycle) of the pervious

expiry point. v ()

[SWS_Os_00559] rThe value of OsScheduleTableMaxLengthen shall be smaller
than the duration of the schedule table. v ()

[SWS Os 00437] The value of (OsScheduleTableMaxLengthen +
delay_ from_previous_ EP) of an expiry point shall be less than the

OsCounterMaxAllowedValue of the underlying counter. \ ()

Explicitly synchronized schedule tables allow the tolerance of some drift between the
schedule table value and the synchronization counter value. This tolerance can be
zero, indicating that the schedule table is not considered synchronized unless the
values are indentical..

[SWS_Os 00438] 1A schedule table shall define a precision bound with a value in
the range 0 to duration. v ()

7.4.2.3 Performing Synchronization

The Operating System module uses the synchronization count to support
(re-)synchronization of a schedule table at each expiry point by calculating an
adjustment to the delay to the next expiry point. This provides faster re-
synchronization of the schedule table than doing the action on the final expiry point.

[SWS_Os_00206] yWhen a new synchronization count is provided, the Operating
System module shall calculate the current deviation between the explicitly

synchronized scheduled table and the synchronization count. y (SRS_Os_11002)

It is meaningless to try and synchronise an explicitly synchronized schedule table
before a synchronization count is provided.

61 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

[SWS_Os _00417] yThe Operating System module shall start to synchronise an
explicitly synchronized schedule table after a synchronization count is provided AND

shall continue to adjust expiry points until synchronized. v ()

[SWS_Os_00418] y The Operating System module shall set the state of an explicitly
synchronized schedule table to frunning and synchronouso if the deviation is less
than or equal to the configured OsScheduleTblExplicitPrecision threshold. y ()

[SWS_Os _00419] y The Operating System module shall set the state of an explicitly
synchronized schedule table to frunningo if the deviation is greater than the
configured OsScheduleTblExplicitPrecision threshold. v ()

[SWS_Os_00420] yIF the deviation is non-zero AND the next expiry point is
adjustable AND the table is behind the sync counter
(TableTicksAheadOfSyncCounter <= TableTicksBehindOfSyncCounter) THEN the
OS shall set the next EP to expire delay - min(MaxShorten, Deviation) ticks from the

current expiry.y ()

[SWS _Os 00421] IF the deviation is non-zero AND the next expiry point is
adjustable AND the table is ahead of the sync counter
(TableTicksAheadOfSyncCounter > TableTicksBehindOfSyncCounter) THEN the OS
shall set the next EP to expire delay + min(MaxLengthen, Deviation) ticks from the

current expiry. v ()

Figure 7.8: shows explicit synchronization of a schedule table. It assumes the
following:

1 EP1-3 have OsScheduleTableMaxLengthen =2

1 EP1-3 have OsScheduleTableMaxShorten =1

62 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTO SAR Specification of Operating System
AUTOSAR Release 4.2.2

STOPPED WAITING RUNNING_AND_SYNCHRONOUS RUNNING RUNNING _AND_SYNCHRONOUS RUNNING RUNMNING_AND_S¥NCHRONOUS

‘EP‘I ‘ ‘EP2‘ ‘EP3‘ ‘EP1 ‘ ‘EP2‘ ‘EF‘S‘ ‘EF“I ‘EP2‘EP3‘
- > - »e >
TTTTT T2 DT PP T T T T Ral fal T
0 1 2 3 4 5 6 7 8 9 01 2 3 4 5 6 7 8 9 0 1 2 4 5 7 8 9 0
EP3.Delay = EP3.Delay + Adjustment EP1.Delay = EP1 Delay - Adjustment EP2 Delay = EP2 Delay - Adjustment
= 3 + min(MaxLengthenDeviation) = 2 - min{MaxShorten, Deviation) =3 + min(MaxShorterDeviation)
=3+2=5 =2-1=1 =3-1=2

_Synchronization

TP Tt T T T T counter

8 5 3
4
SyncScheduleTable(Tbl,5);
PasitionOnThbl
= NextEP.Offset - (DriveCtr.Match - DriveCtr.Now) SyneScheduleTable(Tbhl,3);
=8-(9-8)=7 PositionOnTbl
Deviation = NextEP Offset - (DriveCtrMatch - DriveCtr Now)
SyncScheduleTable(Thl,8); = PositionOnTbl-5 = 2 =2-(25-24)=1
DriveCtr.Match Deviation
= DriveGir.Now + (Duration-8) + Initial Offset = PositionOnTbl-3 = -2
=65535+2+2=3

— StartScheduleTableSynchron(Thl);

65530 ' 65532 ' 65534
65531 65533 65535

. Drive

T TTTTTTTTTTTTTEETTT counter

EERREREEE
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 7.8: Explict Schedule Table Synchronization

The Operating System module provides the service SetScheduleTableAsync()
(see SWS Os 00422) to cancel synchronization being performed at adjustable
expiry points on a schedule table.

The Operating System module provides the service GetScheduleTableStatus()
(see SWS Os 00227) to query the state of a schedule table also with respect to
synchronization.

7.5 Stack Monitoring Facilities

7.5.1 Background & Rationale

On processors that do not provide any memory protection hardware it may still be
necessary to provide a fAbest effort with av
classes of memory faults. Stack monitoring will identify where a task or ISR has

exceeded a specified stack usage at context switch time. This may mean that there is
considerable time between the system being in error and that fault being detected.

Similarly, the error may have been cleared at the point the fault is notified (the stack

may be less than the specified size when the context switch occurs).

It is not usually sufficient to simply monitor the entire stack space for the system
because it is not necessarily the Task/ISR that was executing that used more than
stack space than required 1 it could be a lower priority object that was pre-empted.

63 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

Significant debugging time can be saved by letting the Operating System correctly
identify the Task/Category 2 ISR in error.

Note that for systems using a MPU and scalability class 3 or 4 a stack overflow may
cause a memory exception before the stack monitoring is able to detect the fault.

7.5.2 Requirements

[SWS_Os_00067] y The Operating System module shall provide a stack monitoring
which detects possible stack faults of Task(s)/Category 2 ISR(S). v (SRS_Os_11003)

[SWS _Os 00068] rIf a stack fault is detected by stack monitoring AND no
ProtectionHook() is configured, the Operating System module shall call the

ShutdownOS() service with the status E_OS STACKFAULT vy (SRS_0s 11003,
SRS_0s 11013)

[SWS _Os 00396] rIf a stack fault is detected by stack monitoring AND a
ProtectionHook() is configured the Operating System module shall call the

ProtectionHook() with the status E_OS_STACKFAULTy ()

7.6 OS-Application

7.6.1 Background & Rationale

An AUTOSAR OS must be capable of supporting a collection of Operating System
objects (Tasks, ISRs, Alarms, Schedule tables, Counters) that form a cohesive
functional unit. This collection of objects is termed an OS-Application.

The Operating System module is responsible for scheduling the available processing
resource between the OS-Applications that share the processor. If OS-Application(s)
are used, all Tasks, ISRs, Counters, Alarms and Schedule tables must belong to an
OS-Application. All objects which belong to the same OS-Application have access to
each other. The right to access objects from other OS-Applications may be granted
during configuration. An event is accessible if the task for which the event can be set
is accessible. Access means that these Operating System objects are allowed as
parameters to API services.

There are two classes of OS-Application:

(1) Trusted OS-Applications are allowed to run with monitoring or protection
features disabled at runtime. They may have unrestricted access to memory,
theOper ati ng Sy sAPEand meddat hagedthgeir timing behaviour
enforced at runtime. They are allowed to run in privleged mode when
supported by the processor.

64 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTO SAR Specification of Operating System
AUTOSAR Release 4.2.2

(2) Non-Trusted OS-Applications are not allowed to run with monitoring or
protection features disabled at runtime. They have restricted access to
memory, restricted accesstothe Oper ati ng SysAR amnd mawed ul e d s
their timing behaviour enforced at runtime. They are not allowed to run in
privileged mode when supported by the processor.

It is assumed that the Operating System module itself is trusted.

There are services offered by the AUTOSAR OS which give the caller information
about the access rights and the membership of objects. These services are intended
to be used in case of an inter-OS-Application call for checking access rights and
arguments.

Note that Resource obejcts do not belong to any OS-Application, but access to them
must be explicitely granted. (The same principle applies to spinlocks in Multi-Core
systems)

The running OS-Application is defined as the OS-Application to which the currently
running Task or ISR belongs. In case of a hook routine the Task or ISR which caused
the call of the hook routine defines the running OS-Application.

class OS-Application Model /
OS-Application v Hook
#itsShutdownHook Shutdow nHook_<Appl>
SCHEDULETABLE #itsSchedule 1 0.1
<
* 1
#itsStartupHook Hook
StartupHook _<Appl>
1 0.1
ALARM)
#itsAlarm Hook
1 #itsEmorHook ErrorHook_<Appl>
1 0.1
TASK
COUNTER i
"SCOU"‘Q’: 1 #itsTasy| - EVENTS (of the TASK)
a - One optional restart TASK
*
ISR
#itsISR
1
e
realTzee | e
. . ¢ | er ? attzee An OS-Application may acces OS
+itsProvidedServices objects of other OS-Application (e.g.
trusted non-trusted starting an Alarm or setting an Event
JRSalER= ONCTION Os-Application Os-Application to anothers OS-Application Task) if
their configuration allows this.
0..* 1 -
constraints constraints
{privileged mode} {non-privileged mode
Figure 7.9: UML-model of OS-Application
65 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

AUTO SAR Specification of Operating System
AUTOSAR Release 4.2.2

OS-Applications have a state which defines the scope of accessability of its

Operating System objects from other OS-Applications. Each OS-Application is

always in one of the following states:

1 Active and accessible (APPLICATION_ACCESSIBLE): Operating System objects
may be accessed from other OS-Applications. This is the default state at startup.

1 Currently in restart phase (APPLICATION_RESTART). Operating System objects
can not be accessed from other OS-Applications. State is valid until the OS-
Application calls AllowAccess().

1 Terminated and not accessible (APPLICATION_TERMINATED): Operating
System objects can not be accessed from other OS-Applications. State will not
change.

The following figure shows the states and the possible transitions:

After StartOS and
before StartupHooks() ProtectionHook without RESTART
OR
TerminateApplication without
RESTART

APPLICATION_ACCESSIBLE

APPLICATION_TERMINATED

M\AIIowAcceSS()

ProtectionHook with RESTART
oR
TerminateApplication with AN
RESTART

APPLICATION_RESTARTING

Figure 7.13: States of OS-Applications

7.6.2 Requirements

[SWS_Os_00445] yThe Operating System module shall support OS-Applications
which are a configurable selection of Trusted Functions, Tasks, ISRs, Alarms,

Schedule tables, Counters, hooks (for startup, error and shutdown). v ()

[SWS_Os_00446] y The Operating System module shall support the notion of trusted
and non-trusted OS-Applications. v ()

66 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTO SAR Specification of Operating System
AUTOSAR Release 4.2.2

[SWS _Os 00464] yTrusted OS-Appl i cations may offer servic
to other (even non-trusted) OS-Applications. v ()

The Operating System module provides the services GetApplicationID() and
GetCurrentApplicationID() (see SWS_Os _00016) to determine the configured
resp. currently executing OS-Application (a unique identifier shall be allocated to
each application).

The Operating System module provides the service CheckObjectOwnership() (see
SWS Os _00017) to determine to which OS-Application a given Task, ISR, Counter,
Alarm or Schedule Table belongs.

The Operating System module provides the service CheckObjectAccess() (see
SWS Os _00256) to determine which OS-Applications are allowed to use the IDs of a
Task, Resource, Counter, Alarm or Schedule Table in API calls.

The Operating System module provides the service TerminateApplication() (see
SWS Os _00258) to terminate the OS-Application to which the calling Task/Category
2 ISR/application specific error hook belongs. (This is an OS-Application level variant
of the TerminateTask() service)

The Operating System provides the service TerminateApplication() (see
SWS Os _00258) to terminate another OS-Application AND calls to this service shall
be ignored if the caller does not belong to a trusted OS-Application.

[SWS_Os_00447] 1 If the Operating System module terminates an OS-Application,
then it shall:

1 terminate all running, ready and waiting Tasks/ISRs of the OS-Application
AND
disable all interrupts of the OS-Application AND
stop all active alarms of the OS-Applications AND

1 stop all schedule tables of the OS-Application. v ()

T
T

[SWS_Os 00448] yThe Operating System module shall prevent access of OS-
Applications, trusted or non-trusted, to objects not belonging to this OS-Application,

except access rights for such objects are explicitly granted by configuration. \ ()

The Operating System provides the service GetApplicationState 0 (see
SWS Os 00499) to request the current state of an OS-Application.

[SWS_Os_00500] yThe Operating System module shall set the state of all OS-
Applications after the call of StartOS() and before any StartupHook is called to

APPLICATION_ACCESSIBE \ ()

67 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

The Operating System module provides the service AllowAccess () (see
SWS Os 00501) to set the own state of an OS-Application from
APPLICATION_RESTARTINGto APPLICATION_ACCESSIBLE

[SWS_Os_00502] yIf an OS-Application is terminated (e.g. through a service call or
via protection hook) and no restart is requested, then the Operating System module

shall set the state of this OS-Application to APPLICATION_TERMINATEDV ()

[SWS_Os_00503] rIf an OS-Application is terminated (e.g. through a service call or
via protection hook) and a restart is requested, then the Operating System module

shall set the state of this OS-Application to APPLICATION_RESTARTING \ ()

[SWS_Os_00504] y The Operating System module shall deny access to Operating
System objects from other OS-Applications to an OS-Application which is not in state

APPLICATION_ACCESSIBLE \ ()

[SWS_Os_00509] rIf a service call is made on an Operating System object that is
owned by another OS-Application without state APPLICATION_ACCESSIBLE, then the

Operating System module shall return E_OS_ACCESSy ()

An example for SWS _Os 00509 is a call to ActivateTask() for a task in an OS-
Application that is restarting.

7.7 Protection Facilities
Protection is only possible for Operating System managed objects. This means that:

7 It is not possible to provide protection during runtime of Category 1 ISRs,
because the operating system is not aware of any Category 1 ISRs being
invoked. Therefore, if any protection is required, Category 1 ISRs have to be
avoided. If Category 1 interrupts AND OS-Applications are used together then
all Category 1 ISR must belong to a trusted OS-Application.

1 Itis not possible to provide protection between functions called from the body
of the same Task/Category 2 ISR.

7.7.1 Memory Protection

7.7.1.1 Background & Rationale

Memory protection will only be possible on processors that provide hardware support
for memory protection.

68 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

The memory protection scheme is based on the (data, code and stack) sections of
the executable program.

Stack: An OS-Application comprises a number of Tasks and ISRs. The stack for
these objects, by definition, belongs only to the owner object and there is therefore
no need to share stack data between objects, even if those objects belong to the
same OS-Application.
Memory protection for the stacks of Tasks and ISRs is useful mainly for two reasons:
(1) Provide a more immediate detection of stack overflow and
underflow for the Task or ISR than can be achieved with stack
monitoring
(2) Provide protection between constituent parts of and OS-Application,
for example to satisfy some safety constraints.

Data: OS-Applications can have private data sections and Tasks/ISRs can have
private data sections. OS-Appl i cati onds nsiakeashaeed loyaatla s ec
Tasks/ISRs belonging to that OS-Application.

Code: Code sections are either private to an OS-Application or can be shared
between all OS-Applications (to use shared libraries). In the case where code
protection is not used, executing incorrect code will eventually result in a memory,
timing or service violation.

7.7.1.2 Requirements

Data Sections and Stack

[SWS_Os_00198] y The Operating System module shall prevent write access to its
own data sections and its own stack from non-trusted OS-Applications. \ ()

[SWS _Os 00795] rThe OS shall offer the possibility to restrict write access of
trusted OS-Applications in the same way as it is done for non-trusted OS-

Appl i c atSRSo®ss11005)

This can be configured with the OsTrustedApplicationWithProtection

Private data of an OS-Application

[SWS_Os_00026] y The Operating System module may prevent read access to an

A

OS-Applic at i onos data sect i on-trustedtOSsApplicatidns. yy ot he
(SRS_0Os_11000)

69 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

[SWS_Os_00086] yThe Operating System module shall permit an OS-Application

read and write access to that OS-Appl i cati onds own pgivat e
(SRS_Os_11006)

[SWS_Os _00207] fThe Operating System module shall prevent write access to the

OS-Applicationédés private ddruseed GSeApplicatmnssy f r om
(SRS_Os_11005)

Private Stack of Task/ISR

[SWS_Os_00196] y The Operating System module shall permit a Task/Category 2

ISRread and write access tISR6s hatwvn Tpeskwatl €ats
(SRS_Os_11006)

[SWS_Os_00208] y The Operating System module may prevent write access to the
private stack of Tasks/Category 2 ISRs of a non-trusted application from all other

Tasks/ISRs in the same OS-Application. \y (SRS_Os_11005)

[SWS_Os_00355] yThe Operating System module shall prevent write access to all
private stacks of Tasks/Category 2 ISRs of an OS-Application from other non-trusted

OS-Applications. y ()

Private data of a Task/ISR

[SWS_Os_00087] y The Operating System module shall permit a Task/Category 2
ISRread and write access ISROst bhavin Ppaskas eCate @

\ (SRS_0Os_11006)

[SWS_Os_00195] y The Operating System module may prevent write access to the
private data sections of a Task/Category 2 ISR of a non-trusted application from all

other Tasks/ISRs in the same OS-Application. y (SRS_Os_11005)

[SWS_Os_00356] y The Operating System module shall prevent write access to all
private data sections of a Task/Category 2 ISR of an OS-Application from other non-

trusted OS-Applications. v ()

Code Sections

[SWS_Os_00027] y The Operating System module may provide an OS-Application
the ability to protect its code sections against executing by non-trusted OS-

Applications. \ ()

70 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

[SWS_Os_00081] y The Operating System module shall provide the ability to provide

shared library code in sections that are executable by all OS-Applications. \
(SRS_0Os_11007)

Peripherals

[SWS_Os_00209] ¢ | BsTrustedApplicationWithProtection == FALSE
then the Operating System module shall permit trusted OS-Applications read and write

access to peripherals. v ()

[SWS_Os_00083] yThe Operating System module shall allow non-trusted OS-
Applications to write to their assigned peripherals only (incl. reads that have the side

effect of writing to a memory location). v ()

Memory Access Violation

[SWS_Os_00044] 1 If a memory access violation is detected, the Operating System

module shall call the Protection Hook with status code E_OS_PROTECTION_MEMQRY
(SRS_0Os_11013)

7.7.2 Timing Protection

7.7.2.1 Background & Rationale

A timing fault in a real-time system occurs when a task or interrupt misses its
deadline at runtime.

AUTOSAR OS does not offer deadline monitoring for timing protection. Deadline
monitoring is insufficient to correctly identify the Task/ISR causing a timing fault in an
AUTOSAR system. When a deadline is violated this may be due to a timing fault
introduced by an unrelated Task/ISR that interferes/blocks for too long. The fault in
this case lies with the unrelated Task/ISR and this will propagate through the system
until a Task/ISR misses its deadline. The Task/ISR that misses a deadline is
therefore not necessarily the Task/ISR that has failed at runtime, it is simply the
earliest point that a timing fault is detected.

If action is taken based on a missed deadline identified with deadline monitoring this
would potentially use false evidence of error to terminate a correct OS-Application in
favour of allowing an incorrect OS-Application to continue running. The problem is
best illustrated by example. Consider a system with the following configuration:

TaskID | Priority | Execution Time | Deadline (=Period)
A High 1 5
B Medium | 3 10
C Low 5 15
71 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

Assuming that all tasks are ready to run at time zero, the following execution trace
would be expected and all tasks would meet their respective deadlines.

» »

o [o
[TTTT

BERREREEE
1 2 3 4 5 6 7 8 93 10112 13 14 15

0 il

Figure 7.10: Example execution trace

Now consider the case when tasks A and B behave incorrectly. The figure below
shows both task A and task B executing for longer than specified and task B arriving
2 ticks earlier than specified. Both tasks A and B meet their deadlines. Task C
however, behaves correctly but it fails to meet its deadline because of the incorrect
execution of Tasks A and B. This is fault propagation 1 a fault in an unrelated part of
the system is causing a correctly functioning part of the system to fail.

Task A executes for too long
Task A meets its deadline |
Task B executes for too long '
Task B meets its deadline |

A A A Task C has executed within specification.
Task C misses its deadline 4 ticks into its

/] execution with 1 tick of execution

remaining
B I B E I

Task B arrives too early (at 8 rather than at 10) | .
E

Task B executes as expected otherwise |
Task B meets its deadline

v

BER
6 7 8 9 10 11 12 13 14 15 16 17

o —e
AR
N —
w —
N —
o —

Figure 7.11: Insufficiency of Deadline Monitoring

72 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

Whether a task or ISR meets its deadline in a fixed priority preemptive operating
system like AUTOSAR OS is determined by the following factors:

(1) the execution time of Task/ISRs in the system

(2) the blocking time that Task/ISRs suffers from lower priority Tasks/ISRs locking
shared resources or disabling interrupts

(3) the interarrival rate of Task/ISRs in the system

For safe and accurate timing protection it is necessary for the operating system to
control these factors at runtime to ensure that Tasks/ISRs can meet their respective
deadlines.

AUTOSAR OS prevents timing errors from (1) by using execution time protection to
guarantee a statically configured upper bound, called the Execution Budget, on the
execution time of:

1 Tasks

1 Category 2 ISRs

AUTOSAR OS prevents timing errors from (2) by using locking time protection to
guarantee a statically configured upper bound, called the Lock Budget, on the time
that:

1 Resources are held by Tasks/Category 2 ISRs

1 OS interrupts are suspended by Tasks/Category 2 ISRs

1 ALL interrupts are suspended/disabled by Tasks/Category 2 ISRs

AUTOSAR OS prevents timing errors from (3) by using inter-arrival time protection to
guarantee a statically configured lower bound, called the Time Frame, on the time
between:
1 A task being permitted to transition into the READYstate due to:
o Activation (the transition from the SUSPENDEI[D the READYstate)
0 Release (the transition from the WAITING to the READYstate)
1 A Category 2 ISR arriving
An arrival occurs when the Category 2 ISR is recognized by the OS

Inter-arrival time protection for basic tasks controls the time between successive
activations, irrespective of whether activations are queued or not. In the case of
gueued activations, activating a basic task which is in the READYor RUNNINGstate is
a new activation because it represents the activation of a new instance of the task.
Inter-arrival time protection therefore interacts with queued activation to control the
rate at which the queue is filled.

Inter-arrival time protection for extended tasks controls the time between successive
activations and releases. When a task is in the WAITING state and multiple events are
set with a single call to SetEvent() this represents a single release. When a task
waits for one or more events which are already set this represents a notional
Wait/Release/Start transition and therefore is considered as a new release.

73 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

The following figure shows how execution time protection and inter-arrival time
protection interact with the task state transition model for AUTOSAR OS.

Terminate
/ OsTaskExecutionBudget reset

Successful activation of a task already in the RUNNING A task that waits on an event which is already set
state marks the start of a new OsTaskTimeFrame |*-. _=| notionally transitions into the WAITING state

(RUNNING

Wait
OsTaskExecutionBudget reset

/ >

Start Preempt
SUSPENDED OsTaskExecutionBudget started OsTaskExecutionBudget stopped WAITING

\ READY Release
t OsTaskTimeFrame started
T -.| Successful activation of a task already in the READY
\ Activate state marks the start of a new OsTaskTimeFrame

OsTaskTimeFrame started
Figure 7.12: Time protection interaction with the task state transition model

Notes:

1. Inter-arrival time enforcement on Category 2 ISRs can be used to protect an
ECU from a Ababbling idiotod source of
an interrupt each time a frame is received from another ECU on the network)
and provides the type of protection given by the OSEKtime Interrupt re-enable
schedule event [16].

2. Timing protection only applies to Tasks or Category 2 ISRs. There is no
protection for Category 1 ISRs. If timing protection error occurs during a
category 1 ISR, consistency of the Operating System module can not be
guaranteed. Therefore we discourage timing protection in systems with
category 1 interrupts.

3. Timing protection does not apply before the Operating System module is
started.

4. In the case of trusted OS-Applications it is essential that all timing information
is correct, otherwise the system may fail at run-time. For a non-trusted OS-
Application, timing protection can be used to enforce timing boundaries
between executable objects.

7.7.2.2 Requirements

74 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

[SWS_Os_00028] yIn a non-trusted OS-Application, the Operating System module
shall apply timing protection to every Task/Category 2 ISR of this non-trusted OS-

Application. v (SRS_Os_11008)

[SWS_Os _00089] rIn a trusted OS-Application, the Operating System module shall
provide the ability to apply timing protection to Tasks/Category 2 ISRs of this OS-

Application. v (SRS_Os_11008)

[SWS_Os_00397] y If no OS-Application is configured, the Operating System module
shall be able to apply timing protection to Tasks/Category 2 ISRs. \ ()

Timing Protection: Tasks

[SWS _Os _00064] ¢l f a taskods OsTaskExecutionBudget
Operating System module shall call the ProtectionHook() with

E_OS _PROTECTION_TIME\ (SRS_Os_11008, SRS_Os_11013)

[SWS_Os _00473] yThe Operating System module s hal | reset a

OsTaskExecutionBudget on a transition to the SUSPENDEDor WAITING states. \
(SRS_0Os_11008)

[SWS_Os_00465] yThe Operating System module shall limit the inter-arrival time of
tasks to one per OsTaskTimeFrame. \ (SRS_Os_11008)

[SWS_Os_00469] y The Operating System module shall start an OsTaskTimeFrame
when a task is activated successfully. y (SRS_Os_11008)

[SWS_Os_00472] y The Operating System module shall start an OsTaskTimeFrame
when a task is released successfully. vy (SRS_Os_11008)

[SWS_Os_00466] 1If an attempt is made to activate a task before the end of an
OsTaskTimeFrame then the Operating System module shall not perform the

activation AND shall call the ProtectionHook() with E_OS_PROTECTION_ARRIVALY
0

[SWS_Os_00467] rIf an attempt is made to release a task before the end of an
OsTaskTimeFrame then the Operating System module shall not perform the release
AND shall call the ProtectionHook() with E_OS_PROTECTION_ARRIVAIAND the

event shall be set. \ ()

Timing Protection: ISRs

75 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

[SWS Os 00210] rifa Category 2 ISR6s Os |l sr ExecutionBudget i
Operating System module shall call the ProtectionHook() with

E_OS_PROTECTION_TIMEV (SRS_Os_11013)

[SWS_Os_00474] yThe Operating System module shall reset an ISR s

OslsrExecutionBudget when the ISR returns control to the OS or terminates. \
(SRS_0Os_11008)

[SWS_Os_00470] y The Operating System module shall limit the inter-arrival time of
Category 2 ISRs to one per OslsrTimeFrame. \y (SRS_Os_11008)

[SWS_Os _00471] y The Operating System module shall measure the start of an
OslsrTimeFrame from the point at which it recognises the interrupt (i.e. in the

Operating System interrupt wrapper). y (SRS_Os_11008)

[SWS _Os 00048] rlIf Category 2 interrupt occurs before the end of the
OslsrTimeFrame then the Operating System module shall not execute the user
provided ISR AND shall call the ProtectionHook() with

E_OS_PROTECTION_ARRIVALY (SRS_Os_11008)

Timing Protection: Resource Locking and Interrupt Disabling

[SWS_Os_00033] y If a Task/Category 2 ISR holds an OSEK Resource and exceeds
the Os[Task|Isr]ResourceLockBudget, the Operating System module shall call the

ProtectionHook() with E_OS_PROTECTION_LOCKER (SRS_Os_11008, SRS_Os_11013,
SRS_0Os_11014)

[SWS_Os _00037] rIf a Task/Category 2 ISR disables interrupts (via
Suspend/Disable|All/OS|Interrupts()) and exceeds the configured
Os[Task|Isr][AlljOS]InterruptLockBudget, the Operating System module shall call the

ProtectionHook() with E_OS PROTECTION_LOCKED (SRS_0Os_11008,
SRS_0Os_11013, SRS_Os_11014)

7.7.2.3 Implementation Notes

Execution time enforcement requires hardware support, e.g. a timing enforcement
interrupt. If an interrupt is used to implement the time enforcement, the priority of this
interrupthastobe hi gh enoupghotohéi stupel8Rsi sed t asks

Depending on the real hardware support this could mean that DisableAllinterrupts
and SuspendAllinterrupts disable not all interrupts (e.g. all interrupts except of the
interrupt used for timing protection) or that the usage of Category 1 ISRs i which
bypass the Operating System (and also the timing protection) 1 is limited somehow.

76 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

The implementation has to document such implementation specific behaviour (e.g.
the limitations when timing protection is used).

7.7.3 Service Protection

Background & Rationale

As OS-Applications can interact with the Operating System module through services,
it is essential that the service calls will not corrupt the Operating System module
itself. Service Protection guards against such corruption at runtime.

There are a number of cases to consider with Service Protection: An OS-Application
makes an API call

(1) with an invalid handle or out of range value.
(2) in the wrong context, e.g. calling ActivateTask() in the StartupHook()

(3) or fails to make an API call that results in the OSEK OS being left in an
undefined state, e.g. it terminates without a ReleaseResource() call

(4) that impacts on the behaviour of every other OS-Application in the system,
e.g. ShutdownOS()

(5) to manipulate Operating System objects that belong to another OS-Application
(to which it does not have the necessary permissions), e.g. an OS-Application
tries to execute ActivateTask() on atask it does not own.

The OSEK OS already provides some service protection through the status codes
returned from service calls and this will provide the basis for service protection. This
means that service protection will only apply for the extended status of OSEK OS.

However, OSEK OS does not cover all the cases outlined above. The following

sections describe T besides the mandatory extended status 1 the additional
protection requirements to be applied in each of these cases.

7.7.3.1 Invalid Object Parameter or Out of Range Value
7.7.3.1.1 Background & Rationale
The current OSEK OSO6 s e EWEIDen invalild bbgectsailer e ady

objects not defined in the OIL file) and E_OS_VALUEfor out of range values (e.g.
setting an alarm cycle time less than OsCounterMinCycle).

77 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTO SAR Specification of Operating System
AUTOSAR Release 4.2.2

7.7.3.1.2 Requirements

[SWS_Os _00051] rlIf an invalid address (address is not writable by this OS-
Application) is passed as an out-parameter to an Operating System service, the

Operating System module shall return the status code E_OS_ILLEGAL_ADDRESSYV\
(SRS_Os_11009, SRS_Os_11013)

7.7.3.2 Service Calls Made from Wrong Context
7.7.3.2.1 Background & Rationale
The current OSEK OS defines the valid calling context for service calls ([15], Fig. 12-

1), however protects against only a small set of these invalid calls, e.g. calling
Ter minateTask() from a Category 2 ISR.

Error Hook
PreTask Hook
PostTask Hook
Startup Hook
Shutdown Hook
Alarm Callback
Protection Hook

Catl ISR

Service

ActivateTask
TerminateTask

ChainTask

Schedule

GetTaskID

GetTaskState
DisableAlllnterrupts
EnableAllinterrupts
SuspendAllinterrupts
ResumeAllinterrupts
SuspendOSinterrupts
ResumeOSinterrupts
GetResource
ReleaseResource
SetEvent

ClearEvent

GetEvent

WaitEvent

GetAlarmBase

GetAlarm

SetRelAlarm

SetAbsAlarm
CancelAlarm
GetActiveApplicationMode
StartOS

ShutdownOS \% \ \/ \Y
78 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

<

< <IKILIKI<K
< <K<K L ILKIKILIK
<K<K L ILKIKILIK
< I <KL ILKIKILIK
< I <IKILIKI<K
< <KL
< I <K KIKIKI<K
<< KKK

< LK LI LKL Ko<0LIL<ILKL LI LKL LKL LIK00|0|<| Cat2 ISR

<| <l <l << < < < < < < < < < < < | <] < < < | <] << | Task

V V V V V

AUTO SAR Specification of Operating System
AUTOSAR Release 4.2.2

Alarm Callback

Catl ISR

Service

GetApplicationID
GetISRID
CallTrustedFunction
CheckISRMemoryAccess
CheckTaskMemoryAccess
CheckObjectAccess
CheckObjectOwnership
StartScheduleTableRel
StartScheduleTableAbs
StopScheduleTable
NextScheduleTable
StartScheduleTableSynchron
SyncScheduleTable
GetScheduleTableStatus
SetScheduleTableAsync
IncrementCounter
GetCounterValue
GetElapsedValue
TerminateApplication
AllowAccess
GetApplicationState
Controlldle
GetCurrentApplicationID

<| PreTask Hook
<| PostTask Hook
<| Startup Hook
<| Shutdown Hook

<|<| Error Hook
<|<| Protection Hook

<I<I<|I<
<I<I<K|I<

<<l < << < < < < < < < < < < < << < << |<| Task
< I<IL<IL<IKIKL LKL IKIKIK LKL ILIL L L LILIKLILIL| Cat2 ISR

Tab. 1: Allowed Calling Context for OS Service Calls

Inthetableabove ACO indicates that wvalidity is
E_OS_CALLEVED.

7.7.3.2.2 Requirements

[SWS_Os_00088] 1 If an OS-Application makes a service call from the wrong context
AND is currently not inside a Category 1 ISR the Operating System module shall not
perform the requested action (the service call shall have no effect), and return

E_OS CALLEVElorthefii nval i d val ueg(@RS®m§ 1100HSIRS_GseL10MB)i C €

2 Only in case of self termination.
79 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

7.7.3.3 Services with Undefined Behaviour
7.7.3.3.1 Background & Rationale

There are a number of situations where the behaviour of OSEK OS is undefined in
extended status. This is unacceptable when protection is required as it would allow
the Operating System module to be corrupted through its own service calls. The
implementation of service protection for the Operating System module must therefore
describe and implement a behaviour that does not jeopardise the integrity of the
system or of any OS-Application which did not cause the specific error.

7.7.3.3.2 Requirements

Tasks ends without calling a TerminateTask() or ChainTask()

[SWS_Os _00052] yIf a task returns from its entry function without making a
TerminateTask() or ChainTask() call, the Operating System module shall

terminate the task (and call the PostTaskHook() if configured). y (SRS_Os_11009)

[SWS_Os _00069] yIf a task returns from its entry function without making a
TerminateTask() or ChainTask() call AND the error hook is configured, the
Operating System module shall call the ErrorHook() (this is done regardless of
whether the task causes other errors, e.g. E_OS RESOURQE with status

E_OS_MISSINGENDbefore the task leaves the RUNNINGstate. y (SRS_Os_11009)

[SWS_Os_00070] rlIf a task returns from the entry function without making a
TerminateTask() or ChainTask() call and still holds OSEK Resources, the

Operating System module shall release them. y (SRS_Os_11009, SRS_Os_11013)

[SWS_Os _00239] rlIf a task returns from the entry function without making a
TerminateTask() or ChainTask() call and interrupts are still disabled, the

Operating System module shall enable them. vy ()

Category 2 ISR ends with locked interrupts or allocated resources

[SWS _Os 00368] (If a Category 2 ISR calls DisableAllinterupts() /
SuspendAllinterrupts() | SuspendOSinterrupts() and ends (returns) without
calling the corresponding EnableAllinterrupts() / ResumeAllinterrupts() /
ResumeQOSinterrupts() , the Operating System module shall perform the missing

80 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

service and shall call the ErrorHook() (if configured) with the status
E_OS_DISABLEDINT. \ ()

[SWS_Os 00369] rIf a Category 2 ISR calls GetResource() and ends (returns)
without calling the corresponding ReleaseResource() , the Operating System
module shall perform the ReleaseResource() call and shall call the ErrorHook() (if

configured) with the status E_OS_RESOURCEsee [12], section 13.1). v ()

PostTaskHook called during ShutdownQOS()

[SWS_Os_00071] yIf the PostTaskHook() is configured, the Operating System
module shall not call the hook if ShutdownOS() is called. y ()

Tasks/ISRs calls EnableAllinterrupts/ResumeAllinterrupts/ResumeOSinterrupts
without a corresponding disable

[SWS_Os 00092] rlf EnableAllinterrupts() /' ResumeAllinterrupts() /
ResumeOSinterrupts() are called and no corresponding DisableAllinterupts()
| SuspendAllinterrupts() | SuspendOSinterrupts() was done before, the

Operating System module shall not perform this Operating System service. \
(SRS_0Os_11009)

Tasks/ISRs calling OS services when
DisableAllinterupts/SuspendAllinterrupts/SuspendOSinterrupts called

[SWS_Os_00093] 1 If interrupts are disabled/suspended by a Task/ISR/Hook and the
Task/ISR/Hook calls any Operating System service (excluding the interrupt services)
then the Operating System module shall ignore the service AND shall return

E_OS_DISABLEDINT if the service returns a StatusType value. v (SRS_Os_11009,
SRS_Os_11013)

7.7.3.4 Service Restrictions for Non-Trusted OS-Applications
7.7.3.4.1 Background & Rationale

The Operating System service calls available are restricted according to the calling
context (see Section 7.7.3.2). In a protected system, additional constraints need to
be placed to prevent non-trusted OS-Applications executing API calls that can have a
global effect on the system. Each level of restriction is a proper subset of the
previous level as shown in the figure below.

81 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

All service calls

Calling context
restrictions

Trust-based
restrictions

Figure 7.13: API Restrictions
There are two defined integrity levels:

1. Trusted
2. Non-Trusted

that correspond exactly with trusted and non-trusted OS-Applications.

7.7.3.4.2 Requirements

[SWS _Os 00054] The Operating System module shall ignore calls
ShutdownOS() from non-trusted OS-Applications. \ ()

7.7.3.5 Service Calls on Objects in Different OS-Applications

7.7.3.5.1 Background

to

Section 7.7.3.1 stated that E_OS_ID is returned by OSEK OS service calls when the
object is invalid. Under the protection scheme a service call can be invalid because
the caller does not have valid permissions for the object (a new meaning for multi-

OS-Application systems).

This is a similar case to an object not being accessible in OSEK OS (for example,
when a task tries to get a resource which exists in the system but has not been

configured as used by the task).

82 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

7.7.3.5.2 Requirements

[SWS_Os _00056] rIf an OS-object identifier is the parameter of an Operating

Sy st em mesystamlsendcs, and no sufficient access rights have been assigned

to this OS-object at configuration time (Parameter Os[...]JAccessingApplication)

to the calling Task/Category 2 ISR, the Oper at i ng Sy sdysem senvcel ul e 0 s
shall return E_OS_ACCESSy (SRS_0s11001, SRS_0s11010, SRS _0s 11013)

[SWS_Os_00449] yCheckTaskMemoryAccess and ChecklsrMemoryAccess check
the memory access. Memory access checking is possible for all OS-Applications and

from all OS-Applications and does not need granted rights. y ()

SWS Os 00449 is an exception to SWS_Os_00056.

[SWS_Os _00450] yCheckObjectAccess checks the access rights for Operating
System objects. Checking object access is possible for all OS-Applications and from

all OS-Applications and does not need granted rights. v ()

SWS Os 00450 is an exception to SWS_Os_00056.

7.7.4 Protecting the Hardware used by the OS

7.7.4.1 Background & Rationale

Where a processor supports privileged and non-privileged mode it is usually the case
that certain registers, and the instructions to modify those registers, are inaccessible
outside the privileged mode.

On such hardware, executing the Operating System module in privileged mode and
Tasks/ISRs in non-privileged mode protects the registers fundamental to Operating
System module operation from inadvertent corruption by the objects executing in
non-privileged mode. The Operating System mo d u Isendces will need to execute
in privileged mode as they will need to modify the registers that are protected outside
this mode.

The Operating System module can use the control registers of the MPU, timer

unit(s), interrupt controller, etc. and therefore it is necessary to protect those registers
against non-trusted OS-Applications.

7.7.4.2 Requirements

[SWS_Os_00058] rIf supported by hardware, the Operating System module shall
execute non-trusted OS-Applications in non-privileged mode. \ ()

83 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

[SWS_Os_00096] 1 As far as supported by hardware, the Operating System module
shall not allow non-trusted OS-Applications to access control registers managed by

the Operating System module. \ (SRS_Os_11011)

[SWS_Os _00245] rIf an instruction exception occurs (e.g. division by zero) the
Operating System module shall call the protection hook with

E_OS_PROTECTION_EXCEPTION (SRS_Os_11011)

7.7.4.3 Implementation Notes

When the Operating System module is running non-trusted OS-Applications, the
Operating System mo d u |treabngent of interrupt entry and hook routines must be
carefully managed.

Interrupt handling: Where the MCU supports different modes (as discussed in this
section) ISRs will require the Operating System module to do extra work in the ISR ()
wrapper. ISRs will typically be entered in privileged mode. If the handler is part of a
non-trusted OS-Application then the ISR() wrapper must make sure that a switch to
non-privileged mode occurs before the handler executes.

7.7.5 Providing »Trusted Functions«

7.7.5.1 Background & Rationale

An OS-Application can invoke a Trusted Function provided by (another) trusted OS-
Application. That can require a switch from non-privileged to privileged mode. This is
typically achieved by these operations:

(1) Each trusted OS-Application may export services which are callable from
other OS-Applications.

(2) During configuration these trusted services must be configured to be called
from a non-trusted OS-Application.

(3) The call from the non-trusted OS-Application to the trusted service is using a
mechanism (e.g. trap/software interrupt) provided by the Operating System.
The service is passed as an identifier that is used to determine, in the trusted
environment, if the service can be called.

(4) The Operating System offers services to check if a memory region is
write/read/execute accessible from an OS-Application. It also returns
information if the memory region is part of the stack space.

The Operating System software specification does not provide support for »non-
trusted services«.

84 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

7.7.5.2 Requirements

[SWS_Os_00451] yThe Operating System module shall allow exporting services
from trusted OS-Applications. \ ()

The Operating System module provides the service CallTrustedFunction() (see
SWS Os 00097) to call a trusted function from a (trusted or non-trusted) OS-
Application.

[SWS_Os _00100] rlIf CallTrustedFunction() is called and the called trusted
function is not configured the Operating System module shall call the ErrorHook with

E_OS_SERVICEID. \ ()

The Operating System module provides the services ChecklISRMemoryAccess() and
CheckTaskMemoryAccess() (see SWS Os 00512 and SWS_Os 00513) for OS-
Applications to check if a memory region is write/read/execute accessible from a
Task/Category 2 ISR and also return information if the memory region is part of the
stack space.

7.8 Protection Error Handling

7.8.1 Background & Rationale

The Operating System can detect protection errors based on statically configured
information on what the constituent parts of an OS-Application can do at runtime.
See Section 7.7.

Unlike monitoring, protection facilities will trap the erroneous state at the point the
error occurs, resulting in the shortest possible time between transition into an
erroneous state and detection of the fault. The different kinds of protection errors are
described in the glossary. If a protection error occurs before the Operating System
module is started the behaviour is not defined. If a protection error happens during
shutdown, e.g. in the application-specific shutdown hook, an endless loop between
the shutdown service and the protection hook may occur.

In the case of a protection error, the Operating System module calls a user provided
Protection Hook for the notification of protection errors at runtime. The Protection
Hook runs in the context of the Operating System module and must therefore be
trusted code.

The Operating System module itself needs only to detect an error and provide the
ability to act. The Protection Hook can select one out of four options the Operating
System module provides, which will be performed after returning from the Protection
Hook, depending on the return value of the Protection Hook. The options are:

1. do nothing

85 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

2. forcibly terminate the faulty Task/Category 2 ISR

3. forcibly terminate all tasks and ISRs in the faulty OS-Application
a. without restart of the OS-Application
b. with restart of the OS-Application

4. shutdown the Operating System module.

Requirements SWS Os 00243 and SWS_Os 00244 define the order of the default
reaction if no faulty Task/Category 2 ISR or OS-Application can be found, e.g. in the
system specific hook routines. Also OS-Applications are only mandatory in Scalability
Classes 3 and 4, therefore in other Scalability Classes OS-Applications need not be
defined.

Note that forcibly terminating interrupts 1is
faulty ISRO and fAforci bl y-Apgplrimé antait ®n ¢BRhislfor@iBa f a ul
terminated, the current invocation of the ISR is terminated. A subsequent invocation

is allowed. If the OS-Application is forcibly terminated, then the interrupt source is

also disabled, preventing subsequent interrupts.

Notes regarding the return value PRO_IGNORE

The meaning of "do nothing" (PRO_IGNORJEmMeans that the error reaction is

ignored. The PRO_IGNOREs only allowed in specific situations (currently: arrival rate
errors). After the error is detected and handled (e.g. as specified in OS466 or OS467)
the protection hook is called. If the hook returns with PRO_IGNDREthe OS does
continue normal operation. If a service call was the root cause of the violation (e.g.
an ActivateTask()) and protection hook returns PRO_IGNOREhe service call
always returns E_OK

Example 1: A task calls ActivateTask() and causes a arrival rate violation. The
activation is not performed (OS466) and protection hook is called. When returning
PRO_IGNOREhe task can continue, e.g. the ActivateTask() call returns E_OK
and goes on.

Example 2: A task A calls SetEvent() for task B (which currently waits for the
event). The OS sets the event (OS467) but also detects a arrival rate violation and
performs a call of the protection hook. When the call returns with PRO_IGNOREthe
task A continues to run. Also in this case the SetEvent() will return E_OK

7.8.2 Requirements

[SWS_Os_00211] fThe Operating System module shall execute the
ProtectionHook() with the same permissions as the Operating System module. v (

)

[SWS_Os_00107] yIf no ProtectionHook() is configured and a protection error
occurs, the Operating System module shall call Shut downOS() .y (SRS_Os_11014)

86 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

[SWS_Os_00106] yIf the ProtectionHook() returns PRO_IGNOREand was called
with E_OS_PROTECTION_ARRIVAlLthe Operating System module shall return control

to the user application. y (SRS_0s_11014)

[SWS_Os _00553] yIf the ProtectionH ook() returns PRO_TERMINATETASKISRhe
Operating System module shall forcibly terminate the faulty Task/Category 2 ISR. y (
)

[SWS_Os 00554] yIf the ProtectionHook() returns PRO_TERMINATEARP the
Operating System module shall forcibly terminate the faulty OS-Application. y ()

[SWS_Os_00555] If the ProtectionHook() returns PRO_TERMINATEARAP RESTART
the Operating System module shall forcibly terminate the faulty OS-Application and

afterwards restart the OS-Application. v ()

[SWS_Os_00556] yIf the Protec tionHook() returns PRO_SHUTDOWNe Operating
System module shall call the ShutdownOS() .v ()

[SWS_Os_00506] rIf the ProtectionHook() is called with
E_OS _PROTECTION_ARRIVALthe only valid return values are PRO_IGNORE or

PRO_SHUTDOWNReturning other values will result in a call to ShutdownOS() .\ ()

[SWS _Os 00475] rIf the ProtectionHook() returns PRO_IGNORE and the
ProtectionHook() was not called with E_OS PROTECTION_ARRIVALthen the

Operating System module shall call ShutdownOS() .\ ()

[SWS_Os_00243] yIf the ProtectionHook() returns PRO_TERMINATETASKISRand
no Task or ISR can be associated with the error, the running OS-Application is
forcibly terminated by the Operating System module. If even no OS-Application can

be assigned, ShutdownOS() s called. y (SRS_Os_11014)

[SWS_Os 00244] rlIf the ProtectionHook() returns PRO_TERMINATEAPPLoOr
PRO_TERMINATEAPPL_RESTART and no OS-Application can be assigned,

ShutdownOS() is called. \y (SRS_Os_11014)

[SWS_0Os_00557] r If the ProtectionHook() returns PRO_TERMINATERPL_RESTART
and no OsRestartTask was configured for the faulty OS-Application, ShutdownOS()

is called. v ()

[SWS_Os_00108] rIf the Operating System module forcibly terminates a task, it
terminates the task, releases all allocated OSEK resources and calls
EnableAllinterrupts() /' ResumeOSinterrupts() | ResumeAllinterrupts() if

® The reason for this case is that the Task which is supervised is not necessary active (and can not be e.g. terminated) and it
can be that the caller of the activation is the real problem.
87 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

the Task called DisableAllinterrupts() /' SuspendOSinterrupts() /
SuspendAllinterrupts() before without the corresponding
EnableAllinterrupts() / ResumeOSinterrupts() / ResumeAllinterrup ts() call.

\ (SRS_0Os_11014)

[SWS_Os_00109] yIf the Operating System module forcibly terminates an interrupt
service routine, it clears the interrupt request, aborts the interrupt service routine
(The interrupt source stays in the current state.) and releases all OSEK resources the

interrupt service routine has allocated and calls EnableAllinterrupts() /
ResumeOSinterrupts() | ResumeAlllnterrupts() if the interrupt called
DisableAllInterrupts() / SuspendOSinterrupts() /
SuspendAllinterrupts() before without the corresponding
EnableAllinterrupts() / ResumeOSinterrupts() / ResumeAllinterrupts() call.

\ (SRS_Os_11014)

[SWS_Os _00110] yIf the Operating System module shall forcibly terminates an OS-
Application, it:shall

o forcibly terminate all Tasks/ISRs of the OS-Application AND

o cancel all alarms of the OS-Application AND

0 stop schedule tables of the OS-Application AND

0

disable interrupt sources of Category 2 ISRs belonging to the OS-Applicationy
(SRS_Os_11014)

[SWS_Os 00111] r When the Operating System module restarts an OS-Application,
it shall activate the configured OsRestartTask. ()

7.9 Operating System for Multi-Core

This chapter specifies some extensions that allow to use an AUTOSAR system on
Multi-Core micro-processors. It describes the main philosophy as well as additional
extensions to the existing OS functionality regarding Multi-Core. The following
chapter contains a specification of a new mechanism within the OS called IOC (Inter
OS-Application Communicator) that supports the communication between OS-
Applications located on the same or on different cores

7.9.1 Background & Rationale

The existing AUTOSAR-OS is based on the OSEK/VDX Operating system which is
widely used in the automotive industry. The AUTOSAR Multi-Core OS is derived from
the existing AUTOSAR OS.

88 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTO SAR

Specification of Operating System

AUTOSAR Release 4.2.2

The Multi-Core OS in AUTOSAR is not a virtual ECU concept, instead it shall be
understood as an OS that shares the same configuration and most of the code, but

operates on different data structures for each core.

To reduce the memory footprint all cores should use the same code base.
Sometimes it can be beneficial to spend some more ROM/Flash, e.g. to use a local
ROM, and "double" parts of the code to get faster ROM/Flash access.

7.9.1.1 Requirements

[SWS_Os_00567] y The generated part of the OS is derived from a single
configuration that contains the relevant information for all cores. This implies, that IDs

(e. g.

TASKI

D

RESOURCEI

D,

€) are unique

exactly to one entity independent from the core on which the entity is accessed. This
applies also to objects that cannot be shared between cores. y (SRS_Os_80008)

7.9.2 Scheduling

The priority of the TASKSs drives the scheduling. Since multiple cores run truly
parallel, several TASKs can execute at the same time.

Prio Core 0 Core 1 Core 2
A A A
sl s 5
4 4 4 T
3 || ™ 3 3 Te
2| [2 20 |-
1 1 1

Figure 2: Priorities are assigned to TASKS. The cores schedule independently from each other.
The TASKS T2, T3 and T5 are executed in true parallelism. TASKs with the same priority on the
same core will be executed in order of activation; TASKs with the same priority on different
cores may not be executed in the order of activation, since the cores schedule independent

from each other.

The OS can be entered on each core in parallel. This optimizes scalability towards
multiple cores. The cores schedule independently. This implies that the schedule on
one core does not consider the scheduling on the other cores®. A low priority TASK
on one core may run in parallel with a high priority TASK on another core.

TASKs and ISRs cannot dynamically change cores by means of the scheduling

algorithm.

* This also applies to TASKs with the same priority, bound to different cores. It also means that non-preemptive tasks cannot be

preempted on the core they are running, but tasks on other cores can run in parallel.

89 of 247

- AUTOSAR confidential -

Document ID 034: AUTOSAR_SWS_OS

acrao

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

7.9.2.1 Requirements

[SWS_Os_00568] y Implementations shall be able to independently execute a TASK
or an ISR on each started AUTOSAR OS core in parallel. y (SRS_Os_80001)

[SWS_Os_00569] y The scheduling strategy as defined in AUTOSAR OS shall apply
for each individual core in a Multi-Core system, for the TASKs and ISR assigned to

the core. y (SRS_Os 80001, SRS_Os 80013)

7.9.3 Locatable entities (LE)

A locatable entity is an entity that has to be located entirely on one core. The
assignment of LEs to cores is defined at configuration time
(OsApplica tionCore Ref).

In this release of the AUTOSAR standard OS-Applications shall be the LEs. Because
every TASK has to run on some core, the usage of OS-Applications becomes
obligatory in AUTOSAR R4.0 for Multi-Core systems. BSW modules are not allowed
to ignore OS-Applications, even if they do not use any protection mechanisms. This
is independent from the SC class.

As is stated in the AUTOSAR Specification of the Operating System, if OS-
Applications are used, all Tasks, ISR etc. must belong to an OS-Application. This
implies, that no AUTOSAR software exists outside of an OS-Application in Multi-Core
systems.

On single-core systems OS-Applications are available only for SC3 and SC4
because the mechanism is used to support memory protection and implies the usage
of extended mode. In Multi-core systems OS-Applications are always available
independend of memory protection and on SC1 standard mode shall be possible.

7.9.3.1 Requirements

[SWS_Os_00570] r All TASKSs that are assigned to the same OS-Application shall
execute on the same core. \} (SRS_Os_80003, SRS_Os_80005)

[SWS_Os_00571] y All ISRs that are assigned to the same OS-Application shall
execute on the same core. \y (SRS_Os_80003, SRS_Os_80005)

[SWS_Os_00572] rISR balancing (if supported by the HW) shall be switched off at
boot time by the OS. y (SRS_0Os_80005, SRS_Os_80006)

[SWS_Os_00764] y The OS module shall support OS-Applications in case of Multi-
Core also for SC1 and SC2. v ()

90 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUT@SAR Specification of Operating System
AUTOSAR Release 4.2.2

[SWS_Os_00763] yIn an SC1 system standard mode shall be possible. v ()

[SWS_Os_00573] y The binding of OS-Applications to cores shall be configured
within the OS-Application container. \ (SRS_Os_80003, SRS_Os_80005)

A new configuration item: OsApplicationCore Ref within the OS-Application

container shall be used to define the core to which the OS-Application is bound. The

OS generator wil/l map the configuration para
all OS-Applications with the same configuration parameter reside on the same core.

7.9.4 Multi-Core start-up concept

The way cores are started depends heavily on the hardware. Typically the hardware
only starts one core, referred as the master core, while the other cores (slaves)
remain in halt state until they are activated by the software.

In contrast to such a master-slave system other boot concepts with cores that start
independently from each other are conceivable. However it is possible to emulate
master-slave behavior on such systems by software.

The AUTOSAR Multi-Core OS specification requires a system with master-slave
start-up behavior, either supported directly by the hardware or emulated in software.
The master core is defined to be the core that requires no software activation,
whereas a slave core requires activation by software.

In Multi-Core configurations, each slave core that is used by AUTOSAR must be
activated before StartOS is entered on the core. Depending on the hardware, it may
be possible to only activate a subset of the available cores from the master. The
slave cores might activate additional cores before calling StartOS . All cores that
belong to the AUTOSAR system have to be activated by the designated AUTOSAR
API function. Additionally, the StartOS function has to be called on all these cores.

If a core is activated it executes some HW and compiler specific operations, before
the "main” function is called. In case the same "main" function is executed on
each core, the cores have to be differentiated by their specific core Id within the
function.

Example:
void main ()
{
StatusType rv;
[¢]
switch (GetCorelD())

{
case OS_CORE_ID_MASTER

[€]

91 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUT@SAR Specification of Operating System
AUTOSAR Release 4.2.2

StartCore(OS_CORE_ID_0, &rv);
StartOS(OSDEFAULTAPPMORE
break;
case OS CORE_ID 0
[€]
StartCore(OS_CORE_ID_1, &rv);
StartOS(DONOTCARE);
break;
otherwise:
StartOS(DONOTCARE);

}

}

StartOS synchronizes all cores twice. The first synchronization point is located
before the StartupHooks are executed, the second after the OS-Application specific
StartupHooks have finished and before the scheduler is started. The exact point
where the second synchronization occurs depends on the implementation, but it shall
be before the scheduling is started. This release of the AUTOSAR specification does
not support timeouts during the synchronization phase. Cores that are activated with
StartCore but do not call StartOS may cause the system to hang. Itis in the
responsibility of the integrator to avoid such behavior.

As shown in Figure 3, the StartUpHook is called on every core right after the first
synchronization. However, there is only one StartUpHook in the system. If, for
example, core-individual functionality must be executed during StartupHook the
GetCorelD function can be used to discriminate the individual cores. After the global
StartUpHook has finished each core performs the StartUpHooks of its OS-
Applications . Since OS-Applications are bound to cores the OS-Application specific
StartUpHooks are executed only on the core to which the corresponding OS-
Application is bound.

Il ISRs disabled 1SR Cal2 disabled
Core 0 | Herdware-speciic. | Activation Call of Op?ilf:scs”;;l’"‘;m Synchronize cores 08 executes application | Synchroniz | OS kemelis | Firstuser lask
F— StartunHook . ; .
initialization code | of core 1 StartQs Inltallsation code StartupHook rtup e cores running is running
Il ISRs disablad ISR Cat2 disabled:
Hardware-specific s lion Call of OF sxacu =3 08 executes application Synchronize 0S kemel is First user task
Initialization code ey Start0s L S il £ StartupHook StartupHook cores running is running
Core 1 and 3 initialisation code
-+—A|l ISRs disabled ISR Cal2 disabled:
B OS executes Synchro Synchro o
b spete | G| opommpson | ce | S5 | mpinionsuus | nie | OStemers | sk
Core 2 initialisation code cores 2 cores g g
-«——A|l 15Rs disabled ISR Cat2 disabled
, OS executes Synchro .
Hardware-specific Call of 083 executes application 0S kemel is First user task
Core 3 initialization code Start0S ::ﬁ'ﬁ;ﬁ;;ﬁ;ﬂyi;:: c::rzees StartupHook | StarupHook S running is running

Figure 3: This figure shows an example of an initialization process with 4 cores.

7.9.4.1 Requirements

[SWS_Os_00574] y The master core shall be able to activate cores. \ (SRS_Os_80006,

SRS_Os_80026, SRS_Os_80027)

92 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

[SWS_Os_00575] r Any slave core shall be able to activate cores. y (SRS_Os_80006,
SRS_0Os_80026, SRS_Os_80027)

[SWS_Os_00576] y It shall be allowed to use only a subset of the cores available on
a UC for the AUTOSAR system. \ (SRS_Os_80006, SRS_Os_80026, SRS_Os_80027)

[SWS_Os_00577] y The cores shall boot in master-slave mode. If this is not
supported by the hardware, it shall be that the cores boot in parallel and emulate the

behavior of a master-slave system. y (SRS_Os_80006, SRS_Os_80026, SRS_Os_80027)

[SWS_Os_00578] yIn case of an emulation a slave core (CoreS), which is controlled
by the AUTOSAR OS (AUTOSAR core), shall not enter the main function before

another core has activated the slave core by means of StartCore(CoreS) Y
(SRS_0Os_80006)

[SWS_Os_00579] y All cores that belong to the AUTOSAR system shall be
synchronized within the StartOS function before the scheduling is started and after

the global Startup Hook is called. y (SRS_Os_80001, SRS_Os_80006)

[SWS_Os_00580] y All cores that belong to the AUTOSAR system shall be

synchronized within the StartOS before the global StartupHook s called.
(SRS_0Os_80006)

[SWS_Os_00581] r The global StartupHook shall be called on all cores
immediately after the first synchronisation point. y (SRS_Os_80006)

[SWS_Os_00582] y The OS-Application-specific StartupHooks shall be called after
the global StartupHook but only on the cores to which the OS-Application is bound.

\ (SRS_Os_80006, SRS_Os_80008)

7.9.5 Cores under control of the AUTOSAR OS

The AUTOSAR OS controls several cores as stated above. It need not control all
cores of a uC, however. The maximum number of controlled cores shall be
configured within becenfigir@enOS0 section of

The AUTOSAR OS API provides a StartCore function to start the cores under its
control. The StartCore function takes a scalar value parameter of type

Corel dType, specifying the core that shall be started. StartCore can be called

more than once on the master core and also on slave cores. Each core can only be
started once, however. For example:

93 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUT@SAR Specification of Operating System
AUTOSAR Release 4.2.2

StartusType rvi, rv2,

StartCore(OS_CORE_ID_1, &rvl);
StartCore(OS_CORE_ID_2, &rv2);

if (rvl!= E_OK) || (rv2 = E_OK)
EnterPanicMode();

StartO S(OSDEFAULTAPPMODE);

The StartOS function shall be called on all cores that have been activated by
StartCore . Itis not allowed to call StartCore from a core that has already called
StartOS .

Cores that belong to the AUTOSAR system shall be started by the designated
AUTOSAR OS API service StartCore

7.9.5.1 Requirements

[SWS_Os_00583] y The number of cores that can be controlled by the AUTOSAR

OS shall be configured offline.

A new configuration item (OsNumberOfCores) wi t hGs@Sot lte® nfi ai ner
to specify the maximum number of cores that are controlled by the AUTOSAR OS. If

no value for (OsNumberOfCores) has been specified the number of cores shall be

one. \ (SRS_Os_80001, SRS_Os_80011)

7.9.6 Cores which are not controlled by the AUTOSAR OS

The function StartNonA utosarCore can be used both before and after StartOS .
It is provided to activate cores that are controlled by another OS or no OS at all,
AUTOSAR functions shall not be called on these cores, otherwise the behavior is
unspecified.

7.9.6.1 Requirements

[SWS_Os_00584] y The AUTOSAR OS shall provide a function called
StartNonAutosarCore that can be used to start cores, which are not controlled by

the AUTOSAR OS. \ (SRS_Os_80006, SRS_Os_80026, SRS_Os_80027)

[SWS_Os_00585] y It shall be possible to activate cores that are not controlled by the

AUTOSAR OS before and after calling StartOS . \ (SRS_Os_80006, SRS_Os_80026,
SRS_0s_80027)

94 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR

Specification of Operating System
AUTOSAR Release 4.2.2

7.9.7 Multi-Core shutdown concept

AUTOSAR supports two shutdown concepts, the synchronized shutdown and the
individual shutdown concept. While the synchronized shutdown is triggered by the
new API function ShutdownAllCores() , the individual shutdown is invoked by the
existing API function ShutdownOS() .

7.9.7.1 Synchronized shutdown concept

I f a

TASK with t h@hutgowrAliCeres roi,g hat ssiajalallls ifs s e
other cores to induce the shutdown procedure. Once the shutdown procedure has

started on a core, interrupts and TASKs are not further processed, and no scheduling

will take place, therefore it makes no sense to activate any TASK, however no error

will be generated. It is in the responsibility of the application developer/system

integrator to make sure that any preparations for shutdown on application and basic

sof tware
the ECU state manager).

evel are cShudowndliCees lbef ¢ ee gcalblyi mg a

During the shutdown procedure every core executes its OS-Application specific
ShutdownHook functions, followed by a synchronization point. After all cores have
reached the synchronization point the global ShutdownHook function is executed by

all cores in parallel.

ShutdownallCores synchronize

/ distribute shutdown to other cores

TASK 3

TASK 3

TASK 3

o []

TASK 2

TASK 2

TASK 2

O

TASK

TASK

TASK 4

S Shutdown

Figure 4: Example of a shutdown procedure.

[SWS_Os_00586] y During the shutdown, the OS-Application specific
ShutdownHook shall be called on the core on which the corresponding OS-

Application is bound. y (SRS_Os_80007)

[SWS_Os_00587] r Before calling the global ShutdownHook, all cores shall be
synchronized. \ (SRS_Os_80007)

95 of 247

Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

[SWS_Os_00588] y The global ShutdownHook shall be called on all cores. \
(SRS_0Os_80007)

7.9.7.2 Individual shutdown concept

If a TASK calls ShutdownOS the OS will be shut down on the core on which
ShutdownOS has been called. Every core shall be able to invoke ShutdownOS.
Similar to StartOS this function will shutdown the individual core. To shutdown the
whole ECU ShutdownOS has to be called on every core. The function will not return.
Individual shutdown is not supported in AUTOSAR R4.x (AUTOSAR mode
management will not use it).

7.9.7.3 Shutdown in case of fatal internal errors
In multicore systems it can happen that a fatal internal OS error is detected only on
one core. In such cases a local shutdown of that core does not make sense.

[SWS_Os_00762] rIn cases where the OS detects a fatal internal error all cores
shall be shut down. v ()

7.9.8 OS service functionality (overview)

Within this chapter we describe which existing single core AUTOSAR OS
functionality has been extended. The following table gives an overview of all standard
OS API functi ons -CoTrhee scuoplpuommnt oA Muolnttiai ns
values:
1 Extended: The function that has been extended substantially to support
special Multi-Core functionality.
1 Adapted: the function required some minor changes but basically remains
unchanged.

1 Unchanged: the behavior of the function has not changed.
1 New: the function is a new AUTOSAR OS API-function.
Service Multi-Core support Annotation
ActivateTask Extended Cross core use shall be
supported.
AllowAccess Unchanged Works only on the same core
CallTrustedFunction Adapted Function must be bound to the
same core
CancelAlarm Extended Cross cor e use shall be
supported
ChainTask Extended Cross core use shall be
supported.
CheckISRMemoryAccess Unchanged
CheckObjectAccess Unchanged
CheckObjectOwnership Unchanged
CheckTASKMemoryAccess Unchanged
ClearEvent Unchanged
Controlldle Unchanged Is allowed to be called from
96 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

(0]

ne

AUTOSAR

DisableAllinterrupts
EnableAllinterrupts
GetActiveApplicationMode

GetAlarm
Get AlarmBase

GetApplicationID
GetApplicationState

GetCorelD
GetCounterValue

GetElapsed CounterValue

GetEvent
GetISRID
GetNumberOfActivatedCores

GetResource
GetScheduleTableStatus

GetSpinlock
GetTaskID
GetTaskState

IncrementCounter
NextScheduleTable
ReleaseResource
ReleaseSpinlock
ResumeAlllnterrupts
ResumeOSinterrupts

Schedule
SetAbsAlarm
SetEvent
SetRelAlarm

SetScheduleTableAsync
ShutdownAllCores
Shutdo wnOS

StartCore

StartOS
StartNonAutosarCore
StartScheduleTableAbs

StartScheduleTableRel

StartScheduleTableSynchron
StopScheduleTable

SuspendAllinterrupts
SuspendOSinterrupts
SyncScheduleTable
TerminateApplication

97 of 247

Specification of Operating System

Unchanged
Unchanged
Unchanged

Extended
Extended

Unchanged
Extended

New
Extended

Extended

Unchanged
Unchanged
New

Adapted
Extended

New
Unchanged
Extended

Adapted
Unchanged
Adapted
New
Unchanged
Unchanged

Adapted

Extended
Extended
Extended

Unchanged
New
Extended
New
Extended
New
Extended

Extended

Unchanged
Extended

Unchanged
Unchanged
Unchanged
Extended

- AUTOSAR confidential -

AUTOSAR Release 4.2.2

any core
Works only on the same core
Works only on the same core

Cross core use shall be
supported
Cross core use shall be
supported

Cross core use shall be
supported

ID of the current core
Cross core use shall be
supported

Cross core use shall be
supported.

Number of cores activated
during startup.

Nestable with spinlocks

Cro ss core use shall be
supported.

Occupy a spinlock

Works only on the same core
Cross core use shall be
supported

Cross core is not allowed.

Nestable with spinlocks
Release a spinlock

Works only on the same core
Works only on the same core

Check for unreleased
spinloc ks

Cross core use shall be
supported

Cross core use shall be
supported.

Cross core use shall be
supported

Synchronized shutdown.
Support for MC systems
Start additional core
Support for MC systems
Start additional core
Cross core use shall be
supported.

Cross core use shall be
supported.

Cross core use shall be

supported.

Works only on the same core
Works only on the s ame core

Check for unreleased
spinlocks. Cross core use

Document ID 034: AUTOSAR_SWS_OS

AUTO SAR Specification of Operating System
AUTOSAR Release 4.2.2

shall be supported.

TerminateTask Adapted Check for unreleased
spinlocks

TryToGetSpinlock New Try to occupy a spinlock

WaitEvent Adapted Check for unreleased
spinlocks

Tab. 2: gives an overview of changes to the OS Service Calles

X — X <
18|88 ¢
X~ o | T S T |2
@ X o ~ I} = O o
n|ln | I I @ o | o 5
S 12 | Y o | 1% | 5|5 S | =
Service |8 |® | =|2L|o|l8 |2 |8 |2
O |lOo|lwo|al|ld|h|lvw|<|a
GetNumberOfActivatedCores V V
GetCorelD V| iVv| Vv | V| VvV |V |V |V |V |V
StartCore
StartNonAutosarCore
GetSpinlock V Vv
ReleaseSpinlock V V
TryToGetSpinlock V V
ShutdownAllCores V V | V V

Tab. 3: Allowed Calling Context for OS Service Calls

[SWS_Os_00589] r All functions that are not allowed to operate cross core shall
return E_OS_CORE in extended status if called with parameters that require a cross

core operation. \ (SRS_Os_80013)

7.9.9 GetTaskID

GetTaskID can be called both from TASK and ISR2 level. When called from an
interrupt routine, on Single-Core systems, GetTaskIiD returns either the interrupted
TASK or indicates that no TASK is running. On Multi-Core systems it

1. indicates that no TASK is running on the core or,
2. returns the ID of the interrupted TASK on the core.

7.9.10 Interrupt disabling

Note: All types of interrupts can only be disabled on the local core. This implies that
the interrupt flags on other cores remain in their current state. Scheduling continues
on the other cores. Running ISRs on other cores continue executing.

98 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

7.9.10.1Requirements

[SWS _Os 00590] y The OSserviceii Di sabl e Al | | n tsbkatl only affecs o
the core on which it is called. y (SRS_Os_80013)

[SWS Os 00591] yThe OSservicei Enabl e Al | | nt shallonlymffest the
core on which it is called. y (SRS_Os_80013)

[SWS Os 00592] y The OSservice i SuspendAIl | | ntskall only affecs 0
the core on which it is called. y (SRS_Os_80013)

[SWS_Os 00593] y The OS service i Re s ume Al | | nt shallonlymffest 0
the core on which it is called. y (SRS_Os_80013)

[SWS_Os _00594] y The OS servicei Sus pe hdO8r r ughallony affect the
core on which it is called. v (SRS_Os_80013)

[SWS_Os_00595] y The OS servicein Re s ume OS| nt ehalt anlp affsctthe
core on which it is called. v (SRS_Os_80013)

7.9.11 TASK activation

TASK activation shall be extended to work across cores. This document will not
specify any implementation details. This functions timing behavior can be slower
when working across cores. If a TASK has to be activated on another core, a
scheduling decision is necessary on that core. If the core has not been started an
error is generated.

7.9.11.1Requirements

[SWS_Os_00596] r It shall be possible to activate a TASK that is part of an OS-

Application located on another core, as long as the assigned access rights allow it. v
(SRS_Os_80001, SRS_Os_80015)

[SWS_Os_00598] y The call of ActivateTask across cores shall behave
synchronously, i.e. a call returns after the task has been activated or an error has
been detected. It shall not be possible to continue execution on the calling core

before ActivateTask is accomplished on the remote core. \ (SRS_Os_80015)

99 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

[SWS_Os_00599] rIn case of an error when calling ActivateTask across cores,
the error handler shall be called on the core on which ActivateTask was originally

called. \ (SRS_Os_80015)

7.9.12 TASK Chaining

TASK chaining shall be extended to work across cores. This document will not
specify any implementation details. Thi s functionds timing behayv
when working across cores. If a TASK has to be activated on another core, a

scheduling decision is necessary on that core. If the core has not been activated, an

error is generated.

7.9.12.1Requirements

[SWS_Os_00600] y It shall be possible to chain a TASK that is part of an OS-

Application located on another core, as long as the assigned access rights allow it. v
(SRS_Os_80001, SRS_Os_80015)

7.9.13 EVENT setting

SetEvent shall be extended to work across cores. This document will not specify
any i mpl ementati on dneng hehdvier can betsiovger whenn ct i on o s
working across cores. If the core has not been activated, an error is generated.

7.9.13.1Requirements

[SWS_Os_00602] r It shall be possible to set an EVENT that is part of an OS-

Application located on another core, as long as the assigned access rights allow it. \
(SRS_0Os_80016)

[SWS_Os_00604] y The call of SetEvent across cores shall behave synchronously,
i.e. a call returns after the Event has been set or an error has been detected. It shall
not be possible to continue execution on the calling core before SetEvent is

accomplished on the remote core. \y (SRS_Os_80016)

[SWS_Os_00605] 1 In case of an error when calling SetEvent across cores, the

error handler shall be called on the core on which SetEvent was originally called. y
(SRS_0Os_80016)

100 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

7.9.14 Activating additional cores

The mechanism by which additional cores can be activated as described in section
7.9.5

7.9.15 Start of the OS

It is necessary to extend the functionality of StartOS . This is because StartOS is
called once on each core. The user provides the so called application mode® to the
Operating System through the call parameter of StartOS(AppMode). The
application mode defines which of the configured (startup) objects (Tasks, Alarms,
ScheduleTables) the OS automatically starts.

On a Multi-Core system all cores shall run in the same application mode. If StartOS
is called with the Appmode DONOTCARE the AppMode of the other cores is used. At
least one core has to define an AppMode other than DONOTCARE.

If the application mode is the same on all cores, StartOS will proceed its
task. More details can be found in chapter 7.9.4.

7.9.15.1Requirements

[SWS_Os _00606] y The AUTOSAR specification does not support the activation of
AUTOSAR cores after calling StartOS on that core. If StartCore s called after

StartOS it shall return with E_OS_ACCESSin extended status. \ (SRS_Os_80001)

[SWS_Os_00607] y StartOS shall start the OS on the core on which it is called. y
(SRS_Os_80006, SRS_Os_80013)

[SWS_Os_00608] y If more than one core calls StartOS with an AppMode other

t h aDON@GTCARE, t he AppModes Star®§ | shall éheck thizat s a me .
the first synchronisation point. In case of violation, StartOS shall not start the

scheduling, shall not call any StartupHooks , and shall enter an endless loop on

every core. \ (SRS_Os_80006)

[SWS Os 00609]rlfStartOS i s cal |l ed wi tDONOTCAREAPP&Mode 1

application mode of the other core(s) (d i f f er iDONOTCAREM d$ihal Iy be use
(SRS_0Os_80006)

[SWS_Os_00610] y At least one core shall define an AppMode other than
FDONOTCAREY (SRS_Os_80006)

® This is the application mode of the Operating System and shall not be confused by other application modes defined in the
AUTOSAR mode management.
101 of 247 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

[SWS_Os_00611] yIf the 10C is configured, StartOS shall initialize the data
structures of the IOC. y (SRS_Os_80020)

7.9.16 TASK termination

The termination of TASKSs requires an additional check: It is not allowed to terminate
a TASK while a spinlock is occupied. If TerminateTask / ChainTask is called with
an occupied spinlock an error is returned.

7.9.16.1Requirements

If TerminateTask (or ChainTask) is called while the calling TASK holds a
spinlock, the behavior is undefined in standard status.

[SWS_Os_00612] r In extended status TerminateTask / ChainTask shall

return with an error (E_OS_SPINLOCHK which can be evaluated in the application. \
(SRS_Os_80021)

[SWS_Os_00613] y Spinlocks occupied by TASKS that are terminated in response to
a protection hook shall be automatically released. This applies also to the case in

which an OS-Application is terminated. y (SRS_Os_80021)

7.9.17 Termination of OS-Applications

Similar to TASKs an OS-Application cannot be terminated while any of its TASKs
occupy a spinlock. In such cases, the lock is automatically released. To avoid an
avalanche of error handling, no calls to the ErrorHook are made.

It might be possible that TerminateApplication(A) is called in parallel from
different cores. The implementation has to support such a call pattern by executing
the first arriving call of TerminateApplication(A) and ignoring any subsequent

calls until the termination is completed.

7.9.17.1Requirements

[SWS_Os_00614] y TerminateApplication shall check if any of the TASKs in

theOS-Application have occupied a spinlock. If so, the spinlocks shall be released.
(SRS_Os_80021)

[SWS_Os_00615] yIf TerminateApplic ation(A) is called in parallel from
di fferent cores, the OsApplication AAO
calls will return with 'E_OK" in standard and extended status without doing anything,

until the termination is completed. \ (SRS_Os_80021)

102 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

7.9.18 Shutdown of the OS

Every core shall be able to invoke shutdown by using the ShutdownOS function. By
calling ShutdownOS only the calling core will enter the shutdown procedure.

If the user wants to shutdown all cores (more or less in parallel)

Shutdo wnAllCores shall be used.

ShutdownOS and ShutdownAllCores will not return.

The OS service ShutdownOS is not used by the AUTOSAR mode management in
AUTOSAR R4.0. The function is offered for users that run the OS on cores without
RTE and without mode management.

7.9.18.1Requirements

[SWS_Os_00616] y ShutdownOS shall be callable from each core running an
AUTOSAR OS. y (SRS_0s_80001, SRS_0Os_80007)

[SWS_Os_00617] y ShutdownOS shall shutdown the core on which it was called. y
(SRS_0Os_80007)

[SWS_Os _00618] y The OS shall not start TASKs of an OS-Application once the
shutdown procedure has been entered on a particular core. \j (SRS_Os_80013)

[SWS_Os_00619] y The AUTOSAR OS function ShutdownOS shall be callable in
parallel on multiple cores. \ (SRS_Os_80013)

[SWS_Os_00620] yShutdownOS shall release all spinlocks which are occupied by
the calling core. y (SRS_Os_80021)

[SWS_Os_00621] y ShutdownAllCores shall be callable from each core running
an AUTOSAR OS. \ (SRS_0Os_80007)

7.9.19 Waiting for EVENTSs

The EVENT waiting mechanism must be adapted to the new Multi-Core spinlock
functionality:

A TASK might be de-scheduled when calling WaitEvent, in which case it would not
be able to release the spinlock. WaitEvent must therefore check if the calling TASK
holds a spinlock. As with RESOURCES, spinlocks cannot be occupied by TASKSs in
wait state.

103 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

7.9.19.1Requirements

[SWS_Os _00622] y The AUTOSAR Operating System WaitEvent API service shall
check if it has been called while the calling TASK has occupied a spinlock. In
extended status an error E_OS_SPINLOCK shall be returned and the TASK shall not

enter the wait state. y (SRS_Os_80021)

7.9.20 Calling trusted functions

Functions can be declared as trusted as part of an OS-Application. They can then
only be executed through the CallTrustedFunction API function. Assuming that
the access rights are configured accordingly, a TASK from OS-Application A can call
a trusted function from OS-Application B.

On a Multi-Core system, these trusted function calls from one OS-Application to
another are limited to the same core.

7.9.20.1Requirements

[SWS_Os_00623] y The OS API function CallTrustedFunction shall return
E_OS_ACCESH extended status if the target trusted function is part of an OS-

Application on another core. \y (SRS_Os_80013)

7.9.21 Invoking reschedule

The Schedule API service must be adapted to the new Multi-Core spinlock
functionality in the same manner as WaitEvent

A TASK shall not actively force a de-scheduling while it occupies spinlocks.

7.9.21.1Requirements

[SWS_Os _00624] y The AUTOSAR Operating System Schedule API service shall
check if it has been called while the calling TASK has occupied a spinlock. In
extended status an error E_OS_SPINLOCK shall be returned and the scheduler shall

not be called. v (SRS_0Os_80021)

7.9.22 RESOURCE occupation

The GetResource function allows mutual exclusion between TASKs on the same
core. The OS generator shall check offline that the TASKs are not on different
cores.(see 7.9.30) and the GetResource function will check this requirement online.

104 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

The priority ceiling protocol (used by GetResource) temporarily changes the priority
of a TASK. Such an approach fails on Multi-Core systems as the priorities are local to
each core. Therefore the ceiling protocol is not sufficient to protect a critical section
against access from different cores.

[SWS_Os_00801]6 If Spinlocks and Resources are locked by a Task/ISR they have
to be unlocked in strict LIFO order. ReleaseResource() shall return E_OS_NOFUNC
if the unlock order is violated. No other functionality shall be performed.O (
SRS_Os_80021)

7.9.23 The CorelD

Every HW assigns a unique physical Id to a core. The physical core Id is the only
way to distinguish between cores. The physical core Ids of a uC are not necessarily
consecutive and do not necessarily start with zero.

The SW requires a mechanism to identify a core, e.g. to use core specific variables.
Because the physical core Id usually can not be used as a direct array index for core
specific variables, a logical CorelD is necessary to map physical core Ids to array
indexes. In the SW it is not necessary to know the physical core Id, the logical
CorelD is sufficient.

The mapping of OSApplications and other SW objects to cores is specified in the
configuration files. All such mappings shall be HW independent and therefore shall
not be based on the physical core Id but on the logical CorelD.

The function GetCorelD internally maps the physical core Id to the logical CorelD.
The mapping is implementation specific. GetCorelD can be either a C function or a
macro.

7.9.23.1Requirements

[SWS_Os _00625] y The AUTOSAR Operating System API function GetCorelD shall
be callable before StartOS . y (SRS_Os_80006)

[SWS_Os_00626] y An implementation shall offer a function
GetNumberOfActivatedCores that returns the number of cores running the

AUTOSAR OS. \ (SRS_Os_80001)

[SWS_Os_00627] y An implementation shall define a set of constants
OS_CORE_ID_<No> of the type Corel dType with <No> a value from O to

fOsNumberOfCores - 1.\ (SRS_Os_80001)

105 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTO SAR

Specification of Operating System

AUTOSAR Release 4.2.2

[SWS_Os_00628] r An implementation shall offer a constant OS_CORE_ID_MASTER
of the type Corel dType that refers to the master core. y (SRS_Os_80001)

7.9.24 COUNTERSs, background & rationale

A COUNTER i s
COUNTER-specific constant

represented
S.

by

a COUNTER

Similarly to Single-Core situation, each operating system (on each core) offers at
least one COUNTER that is derived from a timer. Therefore, it is possible to define
several COUNTERs which belong to different OS-Applications and either resides on

the same or different cores.

” T 4 e

i !
| Task : | Event :
N 4 s 4

_— -

—_——
5
2 1
NS
?_/
1
!
i s
1
Lf .
4
/
7
b
2
o
’
4

/’L\
4

| Event]
A ’

_—

=
4 k.
1 call-
| back !

P

-

" T==24 | scHEDULE-
_ TABLE
-
i N
ALARM == ———mm e —f=» Task |
\\-‘—/}
SCHEDULE- A _
TABLE /TN
| Event J#————L 19 ALARM ALARM
A A y
-
'Y
COUNTER J COUNTER COUNTER COUNTER
{53 8

—— Intra core actions.
—-—-» |Inter core actions.

/8) Synchronized counter

Figure 5: Examples of allowed configurations for COUNTERs, ALARMs, Schedule-tables and

ISRs.

7.9.25 Multi-Core restrictions on COUNTERS

The AUTOSAR OS can only increment COUNTERSS on the core on which it resides.
A COUNTER which is assigned to an OS-Application X cannot be incremented by an
OS-Application Y if X and Y are assigned to different cores.

7.9.25.1Requirements

[SWS_Os_00629] f A COUNTER belonging to an OS-Application shall be
incremented by the core on which the OS-Application resides. The COUNTER shall

not be incremented by other

106 of 247

cores. \/ (SRS_Os_80013)

- AUTOSAR confidential -

Document ID 034: AUTOSAR_SWS_OS

v al

ue

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

[SWS_Os_00630] y It shall not be allowed to drive a schedule table from a
COUNTER, which is assigned to a different core. \ (SRS_Os_80013)

[SWS_Os_00631] y It shall not be allowed to drive an ALARM from a COUNTER,
which is assigned to a different core. \y (SRS_Os_80013)

There are two different reasons for these restrictions:

1. Race conditions can occur when cross-core modification of COUNTER is
allowed (one core waits for a COUNTER to be modified by another core).

2. The core which is incrementing the COUNTER has to check if ALARMs which
are based on the COUNTER have expired. Handling of expired ALARMS is
more complex when different cores manipulate the same ALARMS, because
mutual exclusion becomes necessary.

i 2l i i
4 \ 4 L § | 4 \
| Task | | Event it Task 1! Event)
L s k Pl . F
\‘f‘/ N - N
ALARM

y .
COUNTER |- - | — Task }

-4.f/
s .
2 =S
/ call- L SCHEDULE-
| back y = ALARM ALARM TABLE
i
2\ gl =
A .- —
— —
— . _—
- -
— u

COUNTER COUNTER

1 ——» Allowed configuration/usage

Figure 6: Example of disallowed configurations for COUNTERs, ALARMs, Schedule-tables and
Call-backs.

! — - —m Prohibited configuration/usage

7.9.26 Synchronization of COUNTERs

COUNTERSs are used to drive ALARMs and schedule tables. To synchronize
ALARMSs and schedule tables that reside on different cores, the corresponding
COUNTERSs have to be synchronized.

For example, if the hardware supports this, it is possible that corresponding

free running hardware counters on different cores use the same timer (same
counter value maintained by the periperial) and therefor provide the same

timebase on different cores. Software COUNTERS can then get advanced by alarms
attached to these core local corresponding hardware counters, e.g to drive
synchronized schedule tables on different cores.

107 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

The quality of the synchronicity depends on the hardware architecture and on the
system configuration. .

7.9.27 ALARMSs

The ALARM mechanism of the AUTOSAR Operating System provides services to
activate TASKs, set EVENTSs, increment COUNTERS, or call an ALARM-call-back.

As stated above, ALARMS can only be bound to a COUNTER which resides on the
same core. TASKs can be activated and EVENTSs can be set with an ALARM action
regardless of the core to which the TASK is bound. The access rights defined by OS-
Applications have to be respected, however. Additionaly it shall be allowed to
manipulate ALARMS when they are bound to other cores. The API-services
SetRelAlarm, SetAbsAlarm, and CancelAlarm can be used to manipulate
parameters of ALARMs on other cores.

7.9.27.1Requirements

[SWS_Os_00632] r If an ALARM expires, it shall be allowed to activate a TASK on a
different core. \ (SRS_Os_80018)

[SWS_Os_00633] rIf an ALARM expires, it shall be allowed to set an EVENT on a
different core. \ (SRS_Os_80018)

[SWS_Os_00634] y The AUTOSAR Operating System shall process an ALARM on
the core on which its corresponding OS-Application resides. y (SRS_Os_80018)

[SWS_Os_00635] y ALARM callbacks shall be executed on the core to which the
ALARM is bound. This is only applicable to SC1 systems, because otherwise Alarm

Callback are not allowed (SWS_Os_00242). v (SRS_Os_80013)

[SWS_Os_00636] y SetRelAlarm shall also work on an ALARM that is bound to
another core. \ (SRS_Os_80013)

[SWS_Os_00637] y SetAbsAlarm shall also work on an ALARM that is bound to
another core. \ (SRS_Os_80013)

[SWS_Os_00638] y CancelAlarm shall also work on an ALARM that is bound to
another core. \ (SRS_Os_80013)

[SWS_Os_00639] y GetAlarmBase shall also work on an ALARM that is bound to
another core. \ (SRS_Os_80013)

108 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR Specification of Operating System
AUTOSAR Release 4.2.2

[SWS_Os_00640] y GetAlarm shall also work on an ALARM that is bound to
another core. \ (SRS_Os_80013)

7.9.28 Schedule tables

Similarly to ALARMSs, schedule tables can be used to activate TASKs and set
EVENTs. As with ALARMSs, a schedule table can only be bound to a COUNTER
which resides on the same core.

To simplify system startup, it should be possible to start schedule tables on other
cores. The system designer is responsible for the correct handling of schedule
tables. For example, schedule tables can be controlled from one core.

7.9.28.1Requirements

[SWS_Os_00641] 1 A schedule table shall be able to activate a TASK bound on a
core other than the one upon which the schedule tables resides. y (SRS_0Os_80018)

[SWS_Os_00642] r A schedule table shall be able to set an EVENT on a core other
than the one upon which the schedule tables residesy (SRS_Os_80018)

[SWS_Os_00643] y The AUTOSAR Operating System shall process a schedule table
on the core on which its corresponding OS-Application resides. y (SRS_Os_80013)

[SWS Os 00644]yT h e A P BtartSehéduleTébleAbs 0 shabldtodag a
schedule tables of OS-Applications residing on other cores. \y (SRS_Os_80018)

[SWS Os 00645]rT h e A P BtartSehéduleTébleRel 0 shall be abl e
schedule tables of OS-Applications residing on other cores. \y (SRS_Os_80013)

[SWS_Os 00646]rT h e A P BtopScheduleTable o6 shal | be able to
schedule tables of OS-Applications residing on other cores. \y (SRS_Os_80013)

[SWS Os 00647]fThe API GetcheduleTableBtatus 0 shall be abl
get the status of a schedule table that is part of an OS-Application residing on a

different core. \ (SRS_Os_80013)

7.9.29 The spinlock mechanism

With the Multi-Core concept, a new mechanism is needed to support mutual
exclusion for TASKS on different cores. This new mechanism shall not be used

109 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTO SAR Specification of Operating System
AUTOSAR Release 4.2.2

between TASKs on the same core because it makes no sense. In such cases the
AUTOSAR Operating System returns an error.

A SpinlockType o0, whi ch i s s Resoulcelypetoq QGIEBKAs bfe use
Spinlocks are configured offline.

A spinlock is a busy waiting mechanism that polls a (lock) variable until it becomes
avail able. Typically, this requires an at omi
which are implementation specific.

Once a lock variable is occupied by a TASK/ISR2, other TASKs/ISR2s on other
cores shall be unable to occupy the lock variable. The spinlock mechanism will not
de-schedule these other TASKs while they poll the lock variable. However it might
happen that a TASK/ISR with a higher priority becomes ready while the lock variable
is being polled. In such cases the spinning TASK will be interfered. This is illustrated
in Figure 7.

Spin for

Do something GetSplnLock(A)% lock A %
Point of preemption

4

GetSpinLock(A) | om'gfhin o r prasmpta}/ S S

[
Deadlock caused
by interference.

Task high

Core 0

Task low

Figure 7: A deadlock situation caused by interference, the high priority TASK spins indefinitely
because the low priority TASK has occupied the spinlock. In such cases the second
GetSpinlock call will return with an error

A user can protect a TASK against such a situation by, for example, rapping
the spinlock with SuspendAllinterrupts , SO that it cannot be interfered by
other TASKS. The OS can do this automatically for the caller see configuration
parameter OsSpinlockLockMethod (on page 110).

A second deadlock situation can be created by nested spinlocks calls, as illustrated
in Figure 8.

110 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTO SAR Specification of Operating System
AUTOSAR Release 4.2.2

Core 0 lock B

GetSpinLock({A) Do something GEISDinLock(B)S Spin for g

Deadlock caused
by different nesting
order.

Core 1 lock A

GetSpinLock(B) Do something GetSpinLock{A)S Spin for %

Figure 8: This figure shows a typical deadlock caused by two spinlocks taken in different order
by TASKS on two different cores.

To avoid deadlocks it is not allowed to nest different spinlocks. Optionally if spinlocks
shall be nested, a unique order has to be defined. Spinlocks can only be taken in this
order whereas it is allowed to skip individual spinlocks. Cycles are not allowed within
the defined order. This is illustrated in Figure 9.

Figure 9: This figure shows an example in which two TASKS have access to a set of spinlocks
S1-- S6. It is allowed to occupy the spinlocks in the predefined order and it is allowed to skip
spinlocks. If multiple spinlocks are occupied at the same time, locking and unlocking has to

occur in strict LIFO order.

The spinlock mechanism is not deadlock free by itself. The order in which spinlocks
from Tasks/ISRs are requested has to be mentioned in the configuration description.
If a task occupies a spinlock, scheduling shall be restricted.

7.9.29.1Requirements

[SWS_Os_00648] y The AUTOSAR Operating System shall provide a spinlock
mechanism that works across cores. \ (SRS_Os_80018, SRS_Os_80021)

[SWS_Os_00649] y The AUTOSAR Operating System shall provide a GetSpinlock
function which occupies a spinlock. If the spinlock is already occupied,

GetSpinlock shall keep on trying to occupy the spinlock until it succeeds.
(SRS_Os_80018, SRS_Os_80021)

111 of 247 Document ID 034: AUTOSAR_SWS_OS
- AUTOSAR confidential -

