<table>
<thead>
<tr>
<th>Date</th>
<th>Release</th>
<th>Changed by</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020-11-30</td>
<td>R20-11</td>
<td>AUTOSAR Release Management</td>
<td>• No content changes</td>
</tr>
<tr>
<td>2019-11-28</td>
<td>R19-11</td>
<td>AUTOSAR Release Management</td>
<td>• Editorial changes
• Changed Document Status from Final to published</td>
</tr>
<tr>
<td>2018-10-31</td>
<td>4.4.0</td>
<td>AUTOSAR Release Management</td>
<td>• Editorial changes</td>
</tr>
<tr>
<td>2017-12-08</td>
<td>4.3.1</td>
<td>AUTOSAR Release Management</td>
<td>• Layout update.</td>
</tr>
<tr>
<td>2016-11-30</td>
<td>4.3.0</td>
<td>AUTOSAR Release Management</td>
<td>• Layout update.</td>
</tr>
<tr>
<td>2015-07-31</td>
<td>4.2.2</td>
<td>AUTOSAR Release Management</td>
<td>• Layout update.</td>
</tr>
<tr>
<td>2014-10-31</td>
<td>4.2.1</td>
<td>AUTOSAR Release Management</td>
<td>• Layout update.</td>
</tr>
<tr>
<td>2013-10-31</td>
<td>4.1.2</td>
<td>AUTOSAR Release Management</td>
<td>• Layout update.</td>
</tr>
<tr>
<td>2013-03-15</td>
<td>4.1.1</td>
<td>AUTOSAR Administration</td>
<td>• Added specification item numbers for tracing.</td>
</tr>
<tr>
<td>Date</td>
<td>Version</td>
<td>AUTOSAR Administration</td>
<td>Changes</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>2011-12-22</td>
<td>4.0.3</td>
<td></td>
<td>• Added detailed change history (appendix C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Added [constr_3500]</td>
</tr>
<tr>
<td>2010-09-30</td>
<td>3.1.5</td>
<td></td>
<td>• Added Glossary appendix.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Updated category definitions to upper case.</td>
</tr>
<tr>
<td>2010-02-02</td>
<td>3.1.4</td>
<td></td>
<td>• Reworked for Release 4.0.</td>
</tr>
<tr>
<td>2008-02-01</td>
<td>3.0.2</td>
<td></td>
<td>• Correction of References</td>
</tr>
<tr>
<td>2007-12-21</td>
<td>3.0.1</td>
<td></td>
<td>• Document meta information extended</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Small layout adaptations made</td>
</tr>
<tr>
<td>2007-01-24</td>
<td>2.1.15</td>
<td></td>
<td>• Legal disclaimer revised</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Release Notes added</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• "Advice for users" revised</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• "Revision Information" added</td>
</tr>
<tr>
<td>2005-05-31</td>
<td>1.0</td>
<td></td>
<td>Initial release</td>
</tr>
</tbody>
</table>
Disclaimer

This work (specification and/or software implementation) and the material contained in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intellectual property rights. The commercial exploitation of the material contained in this work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by any means, for informational purposes only. For any other purpose, no part of the work may be utilized or reproduced, in any form or by any means, without permission in writing from the publisher.

The work has been developed for automotive applications only. It has neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.
Table of Contents

1 Introduction 7
 1.1 Scope of the ECU Resource Template 7
 1.2 Overview ECU Resource Template 8
 1.3 Requirements Traceability 9
 1.4 Document Conventions 12
 1.5 Requirements Tracing 15

2 General Hardware Description 16
 2.1 Hardware Description Entity 17
 2.2 Hardware Type 19
 2.3 Hardware Element 20
 2.3.1 Multiple occurrence of Hardware Elements 21
 2.4 Hardware Pin and Pin Group 22
 2.5 Hardware Connection 23
 2.5.1 Scope of Connections 25
 2.6 Hardware Category Definition 26
 2.6.1 Vendor specific extensions of Hardware Category Definition 29
 2.7 Ecu Resource Variant Handling 30
 2.8 Documentation Support 31
 2.9 Infrastructural aspects 31

3 Hardware Type Specific Description 32
 3.1 HwElement categories 32
 3.1.1 Ecu 32
 3.1.2 Processing Unit 32
 3.1.3 Micro-Controller 33
 3.1.4 Memory 33
 3.1.5 Communication Controller 33
 3.1.6 Communication Transceiver 34
 3.1.7 Digital IO 34
 3.1.8 Analog IO 34
 3.1.9 Timer 35
 3.1.10 Watchdog 35
 3.1.11 SensorActuator 35
 3.2 HwPinGroup categories 35
 3.2.1 CommunicationPort 35
 3.3 HwPin categories 36

A Examples 37
 A.1 Hardware Element 37
 A.2 Hierarchy of Hardware Elements 37
 A.3 HwPinGroups and HwPins 38
 A.4 Hardware Element Connection 39
 A.5 Combined Example 40
References

[1] Requirements on ECU Resource Template
 AUTOSAR_RS_ECUResourceTemplate

 AUTOSAR_MMOD_MetaModel

[3] Software Component Template
 AUTOSAR_TPS_SoftwareComponentTemplate

 AUTOSAR_TPS_XMLSchemaProductionRules

[5] Standardization Template
 AUTOSAR_TPS_StandardizationTemplate

 AUTOSAR_TPS_GenericStructureTemplate

[7] IEEE standard for radix-independent floating-point arithmetic
 (ANSI/IEEE Std 854-1987)

 http://www.omg.org/spec/SPEM/2.0/
1 Introduction

One of the most prominent goals of AUTOSAR is the standardization of descriptions relevant for automotive software applications. In this context, the description of underlying ECU hardware is one of the major topics to resolve.

This document contains a specification of the modeling elements required to describe the hardware to the necessary extent. One aspect of the ECU Resource Template is to provide the system design engineer with the necessary information to assist the system partitioning, e.g. available memory and communication means of dedicated ECUs. Another aspect of the ECU Resource Template is to support the ECU Configuration engineers and tools with information required for the configuration of the micro-controller and ECU abstraction layer residing on a particular ECU.

The focus of the ECU Resource Template is to describe an already engineered piece of hardware, its content and structure. It is not in the focus of the ECU Resource Template to support the design of electronics hardware itself. There are established tools and exchange formats to aid in the design of electronics hardware already available. But such tools may be able to export their design using the AUTOSAR ECU Resource Template format for later usage in AUTOSAR design tools.

Where applicable, please consult the glossary and the abbreviation list contained in this document. The general characteristics of the ECU Resource Description are introduced followed by a detailed description of the hardware components inside the ECU.

1.1 Scope of the ECU Resource Template

The scope of the ECU Resource Template is the description of ECUs by means of the following basic building blocks:

- Hardware Elements
- Hardware PinGroups and Hardware Pins
- Hardware Connections

The HW Elements are the main describing elements of an ECU. For example: Processing units, memory, peripherals and sensors/actuators. HW Elements have a unique name and can be identified within an ECU description. HW Elements do not necessarily have to be described on the level of an ECU. It is possible to describe HW Elements as parts of other HW Elements. By this means a hierarchical description of HW Elements can be created.

HW Elements provide HW PinGroups and HW Pins for being interconnected among each others. HW PinGroups allow a rough description of how certain groups of HW Pins are arranged. The detailed description can be done using the HW Pins.
HW Connections are used to describe connections on several levels:

- connections between HW Elements
- connections between HW PinGroups
- connections between HW Pins

The different levels of abstraction allow to define and gather the required information for the different use-cases of the ECU Resource Template. For a rough understanding how the HW Elements are arranged in the ECU the connections between HW Elements are sufficient. To actually know at which HW Pin a certain signal is provided the detailed HW Pin connections are required.

1.2 Overview ECU Resource Template

Figure 1.1 depicts the main elements of an ECU Resource description and their interrelations.

![Figure 1.1: Overview of ECU Resource template](image)

Modeling elements in the ECU Resource Template can be hierarchically organized. A particular ECU (the physical box containing the electronics) can be described as a hierarchical composition of one or more micro-controllers and ECU electronics. Each micro-controller is in turn composed of processing units, memory, peripherals and management units.

The same approach can be used to describe a particular ECU in combination with all sensors and actuators attached to the ECU.

The ECU Electronics is the hardware present on the ECU to guarantee the operation of the Processing Units (clock) as well as the conditioning of signals going out of the ECU or coming in (communication transceiver, amplifier, discrete electronics).
1.3 Requirements Traceability

Tracing of the Requirements on ECU Resource Template [1].

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
<th>Satisfied by</th>
</tr>
</thead>
<tbody>
<tr>
<td>[RS_ECUR_00005] Support configuration of Basic Software</td>
<td>The ECU Resource template shall provide means to describe hardware properties which are supporting the configuration of the AUTOSAR Basic Software.</td>
<td>The relationships between upstream templates and ECU Configuration are described in the AUTOSAR Metamodel [2]. The configuration parameters in the M1 model contain a number of tagged values with the mapping information.</td>
</tr>
<tr>
<td>[RS_ECUR_00003] Describe characteristic properties of specific hardware elements</td>
<td>The ECU Resource template shall provide means to describe the common and characteristic properties of hardware elements based on their kind.</td>
<td>The requirement is fulfilled by the defined categories and their attributes in chapter 3.</td>
</tr>
<tr>
<td>[RS_ECUR_00004] Describe generic hardware</td>
<td>The ECU Resource template shall provide means to describe hardware elements of any kind.</td>
<td>A HW vendor can extend the categories of AUTOSAR. New categories can be defined. Attributes can be added to existing categories and new literals to existing enumerations.</td>
</tr>
<tr>
<td>[RS_ECUR_00006] Describe connections between hardware elements</td>
<td>The ECU Resource template shall provide means to describe in an abstracted way how the individual hardware elements - in an ECU and on the outside of the ECU - are connected.</td>
<td>Hardware Connections can be described on several levels in the ECU Resource Template. These levels are described in chapter 2.5.</td>
</tr>
<tr>
<td>[RS_ECUR_00014] Timing properties of hardware</td>
<td>The ECU Resource template shall provide means to describe the timing properties for hardware I/O, e.g. the latency introduced by a digital I/O hardware port.</td>
<td>A HW vendor can extend the categories of AUTOSAR. New categories can be defined. New timing attributes can be added to existing categories and new literals to existing enumerations.</td>
</tr>
<tr>
<td>[RS_ECUR_00015] Describe variability of the hardware</td>
<td>It shall be possible to describe the variability the actual hardware provides.</td>
<td>The requirement is fulfilled by the AUTOSAR Variant Handling concept (chapter 2.7).</td>
</tr>
<tr>
<td>[RS_ECUR_00017] Documentation Support</td>
<td>The ECU Resource template shall provide means to add documentation to the hardware elements.</td>
<td>The requirement is fulfilled by the AUTOSAR Documentation Support concept (chapter 2.8).</td>
</tr>
<tr>
<td>Requirement</td>
<td>Description</td>
<td>Satisfied by</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>[RS_ECUR_00018] Support hardware descriptions from several sources</td>
<td>The ECU Resource template shall provide means to combine the hardware descriptions from several sources.</td>
<td>The containment hierarchy of hardware elements is not represented as a hierarchical structure in the XML description but as linked list. This modeling allows the usage of different ARXML files for the description of the container and the nested hardware elements (chapter 2.3).</td>
</tr>
<tr>
<td>[RS_ECUR_00007] Processing Unit specification</td>
<td>The ECU Resource template shall provide dedicated means to describe a processing unit. A processing unit shall be defined as the core of the micro controller / processor.</td>
<td>The requirement is fulfilled by the Processing Unit Category (chapter 3.1.2).</td>
</tr>
<tr>
<td>[RS_ECUR_00008] Available memory</td>
<td>The ECU Resource template shall provide dedicated means to describe memory segments. This includes all possible memory kinds like RAM, ROM, EEPROM, Flash, etc.</td>
<td>The requirement is fulfilled by the Memory Category (chapter 3.1.4).</td>
</tr>
<tr>
<td>[RS_ECUR_00009] Available communication means</td>
<td>The ECU Resource template shall provide dedicated means to describe communication hardware.</td>
<td>The requirement is fulfilled by the Hw Pin Group Categories. (chapter 3.2).</td>
</tr>
<tr>
<td>[RS_ECUR_00010] Available IO HW-Peripherals</td>
<td>The ECU Resource template shall provide dedicated means to describe IO-HW-Peripherals.</td>
<td>The requirement is fulfilled by the Digital IO (chapter 3.1.7) and Analog IO (chapter 3.1.8) categories.</td>
</tr>
<tr>
<td>[RS_ECUR_00016] IO-HW-Abstraction specification</td>
<td>The ECU Resource template shall provide the abstract connection information between the hardware sensor / actuator and the IO-HW peripheral using the IO-HW-Abstraction layer.</td>
<td>The requirement is fulfilled by the ECU Abstraction Software Component that is defined in the Software Component Template [3]. The ECU Abstraction is a special AtomicSwComponentType that resides between a software-component that wants to access ECU periphery and the Microcontroller Abstraction.</td>
</tr>
<tr>
<td>[RS_ECUR_00011] Available sensors and actuators</td>
<td>The ECU Resource template shall provide dedicated means to describe sensors and actuators.</td>
<td>The requirement is fulfilled by the SensorActuator Category (chapter 3.1.11).</td>
</tr>
<tr>
<td>[RS_ECUR_00012] Development according to the AUTOSAR Generic Structure Template document</td>
<td>The UML representation of the ECU Resource template SHALL be developed according to the AUTOSAR Generic Structure Template.</td>
<td>The requirement is fulfilled by the AUTOSAR development process.</td>
</tr>
<tr>
<td>Requirement</td>
<td>Description</td>
<td>Satisfied by</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>[RS_ECUR_00013] Transformation of ECU Resource template modeling according to the AUTOSAR XML Schema Production Rules</td>
<td>The XML representation for the ECU Resource template shall be derived from its UML representation according to the AUTOSAR XML Schema Production Rules.</td>
<td>The requirement is fulfilled by the AUTOSAR XML Schema generation process. The document called XML Schema Production Rules [4] for XML describes how XML is used and how the meta-model designed in the "Ecu Resource Template" should be translated by the "Schema Generator" (MDS) into XML-Schema (XSD) "Data Exchange Format".</td>
</tr>
</tbody>
</table>
1.4 Document Conventions

Technical terms are typeset in mono spaced font, e.g. PortPrototype. As a general rule, plural forms of technical terms are created by adding "s" to the singular form, e.g. PortPrototypes. By this means the document resembles terminology used in the AUTOSAR XML Schema.

This document contains constraints in textual form that are distinguished from the rest of the text by a unique numerical constraint ID, a headline, and the actual constraint text starting after the ⌈ character and terminated by the ⌋ character.

The purpose of these constraints is to literally constrain the interpretation of the AUTOSAR meta-model such that it is possible to detect violations of the standardized behavior implemented in an instance of the meta-model (i.e. on M1 level).

Makers of AUTOSAR tools are encouraged to add the numerical ID of a constraint that corresponds to an M1 modeling issue as part of the diagnostic message issued by the tool.

The attributes of the classes introduced in this document are listed in form of class tables. They have the form shown in the example of the top-level element AUTOSAR:

Please note that constraints are not supposed to be enforceable at any given time in an AUTOSAR workflow. During the development of a model, constraints may legitimately be violated because an incomplete model will obviously show inconsistencies.

However, at specific points in the workflow, constraints shall be enforced as a safeguard against misconfiguration.

The points in the workflow where constraints shall be enforced, sometimes also known as the “binding time” of the constraint, are different for each model category, e.g. on the classic platform, the constraints defined for software-components are typically enforced prior to the generation of the RTE while the constraints against the definition of an Ecu extract shall be applied when the Ecu configuration for the Com stack is created.

For each document, possible binding times of constraints are defined and the binding times are typically mentioned in the constraint themselves to give a proper orientation for implementers of AUTOSAR authoring tools.
Class

<table>
<thead>
<tr>
<th>Class</th>
<th>AUTOSAR</th>
<th>*</th>
<th>aggr</th>
<th>This is the top level package in an AUTOSAR model. Stereotypes: atpSplitable; atpVariation Tags: atp.Splitkey=arPackage.shortName, arPackage.variation Point.shortLabel vh.latestBindingTime=blueprintDerivationTime xml.sequenceOffset=30</th>
</tr>
</thead>
<tbody>
<tr>
<td>arPackage</td>
<td>ARPackages</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>AUTOSAR</th>
<th>0..1</th>
<th>aggr</th>
<th>This represents a possibility to provide a structured comment in an AUTOSAR file. Stereotypes: atpStructuredComment Tags: xml.roleElement=true xml.sequenceOffset=-10 xml.typeElement=false</th>
</tr>
</thead>
<tbody>
<tr>
<td>fileInfo Comment</td>
<td>FileInfoComment</td>
<td></td>
<td></td>
<td>This represents an introduction on the Autosar file. It is intended for example to represent disclaimers and legal notes. Tags: xml.sequenceOffset=20</td>
</tr>
</tbody>
</table>

| Introduction | DocumentationBlock | 0..1 | aggr | This represents an introduction on the Autosar file. It is intended for example to represent disclaimers and legal notes. **Tags:** xml.sequenceOffset=20 |

Table 1.1: AUTOSAR

The first rows in the table have the following meaning:

Class: The name of the class as defined in the UML model.

Package: The UML package the class is defined in. This is only listed to help locating the class in the overall meta model.

Note: The comment the modeler gave for the class (class note). Stereotypes and UML tags of the class are also denoted here.

Base Classes: If applicable, the list of direct base classes.

The headers in the table have the following meaning:

Attribute: The name of an attribute of the class. Note that AUTOSAR does not distinguish between class attributes and owned association ends.

Type: The type of an attribute of the class.

Mul.: The assigned multiplicity of the attribute, i.e. how many instances of the given data type are associated with the attribute.

Kind: Specifies, whether the attribute is aggregated in the class (aggr aggregation), an UML attribute in the class (attr primitive attribute), or just referenced by it (ref reference). Instance references are also indicated (iref instance reference) in this field.

Note: The comment the modeler gave for the class attribute (role note). Stereotypes and UML tags of the class are also denoted here.

Please note that the chapters that start with a letter instead of a numerical value represent the appendix of the document. The purpose of the appendix is to support the explanation of certain aspects of the document and does not represent binding con-

Specification of ECU Resource Template

AUTOSAR CP R20-11

△

Class

<table>
<thead>
<tr>
<th>Class</th>
<th>AUTOSAR</th>
<th>*</th>
<th>aggr</th>
<th>This is the top level package in an AUTOSAR model. Stereotypes: atpSplitable; atpVariation Tags: atp.Splitkey=arPackage.shortName, arPackage.variation Point.shortLabel vh.latestBindingTime=blueprintDerivationTime xml.sequenceOffset=30</th>
</tr>
</thead>
<tbody>
<tr>
<td>arPackage</td>
<td>ARPackages</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>AUTOSAR</th>
<th>0..1</th>
<th>aggr</th>
<th>This represents a possibility to provide a structured comment in an AUTOSAR file. Stereotypes: atpStructuredComment Tags: xml.roleElement=true xml.sequenceOffset=-10 xml.typeElement=false</th>
</tr>
</thead>
<tbody>
<tr>
<td>fileInfo Comment</td>
<td>FileInfoComment</td>
<td></td>
<td></td>
<td>This represents an introduction on the Autosar file. It is intended for example to represent disclaimers and legal notes. Tags: xml.sequenceOffset=20</td>
</tr>
</tbody>
</table>

| Introduction | DocumentationBlock | 0..1 | aggr | This represents an introduction on the Autosar file. It is intended for example to represent disclaimers and legal notes. **Tags:** xml.sequenceOffset=20 |

Table 1.1: AUTOSAR

The first rows in the table have the following meaning:

Class: The name of the class as defined in the UML model.

Package: The UML package the class is defined in. This is only listed to help locating the class in the overall meta model.

Note: The comment the modeler gave for the class (class note). Stereotypes and UML tags of the class are also denoted here.

Base Classes: If applicable, the list of direct base classes.

The headers in the table have the following meaning:

Attribute: The name of an attribute of the class. Note that AUTOSAR does not distinguish between class attributes and owned association ends.

Type: The type of an attribute of the class.

Mul.: The assigned multiplicity of the attribute, i.e. how many instances of the given data type are associated with the attribute.

Kind: Specifies, whether the attribute is aggregated in the class (aggr aggregation), an UML attribute in the class (attr primitive attribute), or just referenced by it (ref reference). Instance references are also indicated (iref instance reference) in this field.

Note: The comment the modeler gave for the class attribute (role note). Stereotypes and UML tags of the class are also denoted here.

Please note that the chapters that start with a letter instead of a numerical value represent the appendix of the document. The purpose of the appendix is to support the explanation of certain aspects of the document and does not represent binding con-
ventions of the standard. The verbal forms for the expression of obligation specified in [TPS_STDT_00053] shall be used to indicate requirements, see Standardization Template, chapter Support for Traceability ([5]).

The representation of requirements in AUTOSAR documents follows the table specified in [TPS_STDT_00078], see Standardization Template, chapter Support for Traceability ([5]).
1.5 Requirements Tracing

The following tables reference the requirements specified in [1] and links to the fulfillment of these. Please note that if column “Satisfied by” is empty for a specific requirement this means that this requirement is not fulfilled by this document.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
<th>Satisfied by</th>
</tr>
</thead>
<tbody>
<tr>
<td>[RS_ECUR_00003]</td>
<td>Describe characteristic properties of specific hardware elements</td>
<td>[TPS_ECUR_01003] ([TPS_ECUR_01014])</td>
</tr>
<tr>
<td>[RS_ECUR_00004]</td>
<td>Describe generic hardware</td>
<td>[TPS_ECUR_01000] ([TPS_ECUR_01001] [TPS_ECUR_01002] [TPS_ECUR_01003] [TPS_ECUR_01005])</td>
</tr>
<tr>
<td>[RS_ECUR_00005]</td>
<td>Support configuration of Basic Software</td>
<td>[TPS_ECUR_01015]</td>
</tr>
<tr>
<td>[RS_ECUR_00006]</td>
<td>Describe connections between hardware elements</td>
<td>[TPS_ECUR_01006]</td>
</tr>
<tr>
<td>[RS_ECUR_00007]</td>
<td>Processing Unit specification</td>
<td>[TPS_ECUR_01007] ([TPS_ECUR_01034] [TPS_ECUR_01035] [TPS_ECUR_01036] [TPS_ECUR_01037] [TPS_ECUR_01038])</td>
</tr>
<tr>
<td>[RS_ECUR_00008]</td>
<td>Available memory</td>
<td>[TPS_ECUR_01008]</td>
</tr>
<tr>
<td>[RS_ECUR_00009]</td>
<td>Available communication means</td>
<td>[TPS_ECUR_01009] ([TPS_ECUR_01010] [TPS_ECUR_01013])</td>
</tr>
<tr>
<td>[RS_ECUR_00010]</td>
<td>Available IO HW-Peripherals</td>
<td>[TPS_ECUR_01011]</td>
</tr>
<tr>
<td>[RS_ECUR_00011]</td>
<td>Available sensors and actuators</td>
<td>[TPS_ECUR_01012]</td>
</tr>
<tr>
<td>[RS_ECUR_00012]</td>
<td>Development according to the AUTOSAR Generic Structure Template document</td>
<td>[TPS_ECUR_01032]</td>
</tr>
<tr>
<td>[RS_ECUR_00013]</td>
<td>Transformation of ECU Resource template modeling according to the AUTOSAR XML Schema Production Rules</td>
<td>[TPS_ECUR_01033]</td>
</tr>
<tr>
<td>[RS_ECUR_00014]</td>
<td>Timing properties of hardware</td>
<td>[TPS_ECUR_01031]</td>
</tr>
<tr>
<td>[RS_ECUR_00015]</td>
<td>Describe variability of the hardware</td>
<td>[TPS_ECUR_01003] ([TPS_ECUR_01014] [TPS_ECUR_01029])</td>
</tr>
<tr>
<td>[RS_ECUR_00016]</td>
<td>IO-HW-Abstraction specification</td>
<td>[TPS_ECUR_01006]</td>
</tr>
<tr>
<td>[RS_ECUR_00017]</td>
<td>Documentation Support</td>
<td>[TPS_ECUR_01030]</td>
</tr>
<tr>
<td>[RS_ECUR_00018]</td>
<td>Support hardware descriptions from several sources</td>
<td>[TPS_ECUR_01018]</td>
</tr>
</tbody>
</table>
2 General Hardware Description

The ECU Resource Template utilizes the basic building blocks

- hardware elements
- hierarchies of hardware elements
- hardware pins
- hardware pin groups
- hardware connections

to describe the relevant aspects of the actual hardware. The ECU Resource Template allows however to choose the appropriate level of detail in the description of the hardware, depending on the use case. It also allows to describe arbitrary hardware and its connections.

[TPS_ECUR_01015] Support of AUTOSAR Basic Software configuration [The primary goal of the ECU Resource Template is to support the configuration of the AUTOSAR Basic Software by providing information on the respective hardware and the how the hardware is connected to each other.](RS_ECUR_00005)

In figure 2.1 the overview of the involved classes is shown.
2.1 Hardware Description Entity

In order to allow flexibility of the ECU Resource Template with respect to the description of a multitude of hardware types the ECU Resource Template only provides the generic means to describe hardware elements and their connectivity. The description of specific attributes can be provided according to section 2.6.

[TPS_ECUR_01002] Definition of Hardware Elements [The HwDescriptionEntity allows to provide a set of attribute values which are defined by one or more hardware categories.](RS_ECUR_00004)
Please refer to chapter 3 for details on the actual applicable hardware categories and corresponding attributes.

The HwDescriptionEntity is able to specify for which hardware categories (see section 2.6) this HwDescriptionEntity is applicable. It is possible to define several references in the role hwCategory.

- **[TPS_ECUR_01000]** Definition of HwCategory
 [It shall be possible to reference different kinds of HwCategory elements in order to describe different aspects of the hardware (e.g. a Can controller with an integrated Spi channel).] (RS_ECUR_00004)

- **[TPS_ECUR_01001]** Extension of HwCategory
 [It shall be possible to extend the standardized HwCategory specification with additional attributes.] (RS_ECUR_00004)

For more details see section Vendor specific extensions of Hardware Category Definition.

For a description of the hwType reference please refer to section 2.2.

Each HwDescriptionEntity may aggregate several HwAttributeValue elements.

<table>
<thead>
<tr>
<th>Class</th>
<th>HwDescriptionEntity (abstract)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>M2::AUTOSARTemplates::EcuResourceTemplate</td>
</tr>
<tr>
<td>Note</td>
<td>This meta-class represents the ability to describe a hardware entity.</td>
</tr>
<tr>
<td>Base</td>
<td>ARObject, Referable</td>
</tr>
<tr>
<td>Subclasses</td>
<td>HwElement, Hwpin, HwpinGroup, HwType</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Mult.</th>
<th>Kind</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>hwAttributeValue</td>
<td>HwAttributeValue</td>
<td>*</td>
<td>aggr</td>
<td>This aggregation represents a particular hardware attribute value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stereotypes: atpVariation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tags:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>vh.latestBindingTime=systemDesignTime</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>xml.sequenceOffset=50</td>
</tr>
<tr>
<td>hwCategory</td>
<td>HwCategory</td>
<td>*</td>
<td>ref</td>
<td>One of the associations representing one particular category of the hardware entity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tags:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>xml.sequenceOffset=30</td>
</tr>
<tr>
<td>hwType</td>
<td>HwType</td>
<td>0..1</td>
<td>ref</td>
<td>This association is used to assign an optional HwType which contains the common attribute values for all occurrences of this HwDescriptionEntity. Note that HwTypes can not be redefined and therefore shall not have a hwType reference.</td>
</tr>
</tbody>
</table>

Table 2.1: HwDescriptionEntity

- **[TPS_ECUR_01014]** Definition of HwAttributeValue
 [The HwAttributeValue is used to specify one value for a predefined attribute. The link of the attribute is defined with the reference to HwAttributeDef in the role hwAttributeDef which is subject to variant handling.] (RS_ECUR_00003, RS_ECUR_00015)

The definition of attributes is described in section 2.6.
Values of hardware attributes

The actual value of a `HwAttributeValue` can be provided in one of two ways:

- **v** - the value is specified in a numerical representation. The actual value can be subject to variant handling.
- **vt** - the value is specified in a textual representation.

For more details see section Ecu Resource Variant Handling.

<table>
<thead>
<tr>
<th>Class</th>
<th>HwAttributeValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>M2::AUTOSARTemplates::EcuResourceTemplate::HwElementCategory</td>
</tr>
<tr>
<td>Note</td>
<td>This metaclass represents the ability to assign a hardware attribute value. Note that v and vt are mutually exclusive.</td>
</tr>
<tr>
<td>Base</td>
<td>ARObject</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Mult.</th>
<th>Kind</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>annotation</td>
<td>Annotation</td>
<td>0..1</td>
<td>aggr</td>
<td>Optional annotation that can be added to each HwAttributeValue.</td>
</tr>
<tr>
<td>hwAttributeDef</td>
<td>HwAttributeDef</td>
<td>1</td>
<td>ref</td>
<td>This association represents the definition of the particular hardware attribute value.</td>
</tr>
<tr>
<td>v</td>
<td>Numerical</td>
<td>0..1</td>
<td>attr</td>
<td>This represents a numerical hardware attribute value.</td>
</tr>
<tr>
<td>vt</td>
<td>VerbatimString</td>
<td>0..1</td>
<td>attr</td>
<td>This represents a textual hardware attribute value.</td>
</tr>
</tbody>
</table>

Table 2.2: HwAttributeValue

2.2 Hardware Type

Definition of `HwType`

The `HwType` is used to gather attribute values for elements which can occur several times in an Ecu and will not change due to their multiple usage.

For details on the multiple occurrence of hardware elements please refer to section 2.3.1.

A `HwType` is an `ARElement` which inherits from `HwDescriptionEntity`. The features of `ARElement` allow the hardware type to have a name and stand for its own inside some package. The features of `HwDescriptionEntity` allow the hardware type to describe hardware categories and attribute values (see section 2.1).

Attribute values defined in the `HwType` are applicable for all occurrences of this `HwType`

The attribute values defined in the `HwType` are applicable for all occurrences of this `HwType`, although it is possible to override the value in the `HwElement`.

For more details see section Hardware Element.
[constr_3511] **HwType** shall not have a reference to another **HwType** [A HwType (being a HwDescriptionEntity) shall not have a reference to another HwType in the role hwType. The definition of HwTypes is not hierarchical.] /

The HwType does not specify any structural features of the hardware. The description of hardware pin groups, hardware pins and hardware connections is only possible at the hardware element level.

<table>
<thead>
<tr>
<th>Class</th>
<th>HwType</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>M2::AUTOSARTemplates::EcuResourceTemplate::HwElementCategory</td>
</tr>
<tr>
<td>Note</td>
<td>This represents the ability to describe Hardware types on an abstract level. The particular types of hardware are distinguished by the category. This category determines the applicable attributes. The possible categories and attributes are defined in HwCategory.</td>
</tr>
<tr>
<td>Tags</td>
<td>@type=atp.recommendedPackage=HwTypes</td>
</tr>
<tr>
<td>Base</td>
<td>ARElement, AObject, CollectableElement, HwDescriptionEntity, Identifiable, MultilanguageReferrable, PackageableElement, Referable</td>
</tr>
<tr>
<td>Attribute</td>
<td>Type</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2.3: HwType

2.3 Hardware Element

[TPS_ECUR_01005] The HwElement describes one piece of hardware [The HwElement describes how one piece of hardware - as a building block - is contributing to the overall circuit describing the ECU. It can be used to describe any hardware, independent of their granularity and scale. So an ECU can be described as a whole, the connected sensors and actuators, the built-in micro-controller and communication transceiver. But also the processing cores and the memory segments inside the micro-controller can be described.] (RS_ECUR_00004)

[TPS_ECUR_01018] HwElement is self contained [Each HwElement can be described in a self contained way because the HwElement is an ARElement.] (RS_ECUR_00018)

Each HwElement inherits from HwDescriptionEntity and is therefore capable to describe a set of attributes (see section 2.1 for details).

[TPS_ECUR_01019] HwElement can refer to a HwType [Each HwElement can optionally refer to a HwType element in the role hwType. In the HwType the attribute values, which are common for all occurrences of the hardware type, are described. In case the HwElement provides an attribute value which is also provided in the referenced HwType the attribute value from the HwElement takes precedence.] /

The features of the nestedElement reference are specified in section 2.3.1.

The HwElement can describe several HwPinGroup elements which are contained in the role hwPinGroup (for details on the HwPinGroup refer to section 2.4).
The hardware element can describe several HwElementConnector elements which are contained in the role hwElementConnection (for details on the HwElementConnector refer to section 2.5).

<table>
<thead>
<tr>
<th>Class</th>
<th>HwElement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>M2::AUTOSARTemplates::EcuResourceTemplate</td>
</tr>
</tbody>
</table>

Note
This represents the ability to describe Hardware Elements on an instance level. The particular types of hardware are distinguished by the category. This category determines the applicable attributes. The possible categories and attributes are defined in HwCategory.

Tags:
- atp.recommendedPackage=HwElements

| Base | ARElement, ARObj, CollectableElement, HwDescriptionEntity, Identifiable, MultilanguageReferrable, PackageableElement, Referrable |

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Mult.</th>
<th>Kind</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>hwElement Connection</td>
<td>HwElementConnector</td>
<td>*</td>
<td>aggr</td>
<td>This represents one particular connection between two hardware elements.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stereotypes: atpVariation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tags: vh.latestBindingTime=systemDesignTime xml.sequenceOffset=110</td>
</tr>
<tr>
<td>hwPinGroup</td>
<td>HwPinGroup</td>
<td>*</td>
<td>aggr</td>
<td>This aggregation is used to describe the connection facilities of a hardware element. Note that hardware element has no pins but only pin groups.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stereotypes: atpVariation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tags: vh.latestBindingTime=systemDesignTime xml.sequenceOffset=90</td>
</tr>
<tr>
<td>nestedElement</td>
<td>HwElement</td>
<td>*</td>
<td>ref</td>
<td>This association is used to establish hierarchies of hw elements. Note that one particular HwElement can be target of this association only once. I.e. multiple instantiation of the same HwElement is not supported (at any hierarchy level).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stereotypes: atpVariation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tags: vh.latestBindingTime=systemDesignTime xml.sequenceOffset=70</td>
</tr>
</tbody>
</table>

Table 2.4: HwElement

2.3.1 Multiple occurrence of Hardware Elements

[TPS_ECUR_01020] Hierarchy of hardware [The hierarchy of hardware is described via referencing the contained hardware elements with the role nestedElement. The containment hierarchy of hardware elements is not represented as a hierarchical structure in the XML description but as linked list.](/)

This modeling allows the usage of different ARXML files for the description of the container hardware element and the nested hardware elements. E.g. the CPU is described by a Semiconductor-Vendor, the project specific usage of such a CPU is described by the ECU vendor.

[constr_3512] No support of multiple instantiation [An essential constraint is that each HwElement can only be target of one nestedElement reference. This means that there is no concept of multiple instantiation of hardware elements. If the same
hardware element shall be used several times (using the nestedElement reference) each occurrence has to have its own description. This is also true for nested elements of the referenced nested element.

Thus the hardware element and all its structural features (hardware pin groups, hardware pins and hardware connections) need to be cloned. There is however the possibility to reference the same HwType from several HwElement clones.

2.4 Hardware Pin and Pin Group

The HwPinGroup allows to describe dedicated channels of connectivity for hardware elements. It can be used to describe grouped hardware ports like ADC and DIO. It can structure the port information hierarchically. At the detailed level it can be used to describe individual hardware pins.

Each HwPinGroup is Identifiable. A HwPinGroup can only exist inside a HwElement or another HwPinGroup.

Each HwPinGroup inherits from HwDescriptionEntity and is therefore capable to describe a set of attributes (see section 2.1 for details).

The content of the HwPinGroup is aggregated in the role hwPinGroupContent.

<table>
<thead>
<tr>
<th>Class</th>
<th>HwPinGroup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>M2::AUTOSARTemplates::EcuResourceTemplate</td>
</tr>
<tr>
<td>Note</td>
<td>This meta-class represents the ability to describe groups of pins which are used to connect hardware elements. This group acts as a bundle of pins. Thereby they allow to describe high level connections. Pin groups can even be nested.</td>
</tr>
<tr>
<td>Base</td>
<td>ARObject, HwDescriptionEntity, Identifiable, MultilanguageReferrable, Referrable</td>
</tr>
<tr>
<td>Attribute</td>
<td>Type, Mult.</td>
</tr>
<tr>
<td>hwPinGroupContent</td>
<td>HwPinGroupContent</td>
</tr>
</tbody>
</table>

| Table 2.5: HwPinGroup |

The HwPinGroupContent can contain HwPinGroup and HwPin. The HwPinGroupContent is defined as «atpMixed» (see Generic Structure Template [6]). The elements contained in the HwPinGroupContent (HwPinGroup and HwPin) can occur in an arbitrary order and multiple times. This allows to describe the ordered occurrence of pins and pin groups within pin groups. One major use-case is to describe physical connectors and plugs with chambers and pins.
2.5 Hardware Connection

Connections can be described on several levels in the ECU Resource Template. This allows the expression of details on the needed level of abstraction.

[TPS_ECUR_01006] Connections between **HwElements** | The **HwElementConnector** allows to describe the connection between two **HwElements**. It is not meant to describe the actual technical connectivity between the two hardware elements. It is used to describe the general connectivity between the hardware elements. | *(RS_ECUR_00006, RS_ECUR_00016)*
Specification of ECU Resource Template

AUTOSAR CP R20-11

Class

HwElementConnector

Package
M2::AUTOSARTemplates::EcuResourceTemplate

Note
This meta-class represents the ability to connect two hardware elements. The details of the connection can be refined by hwPinGroupConnection.

Base
ARObject,Describable

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Mult.</th>
<th>Kind</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>hwElement</td>
<td>HwElement</td>
<td>2</td>
<td>ref</td>
<td>This association connects two hardware elements.</td>
</tr>
<tr>
<td>hwPin Connection</td>
<td>HwPinConnector</td>
<td>*</td>
<td>aggr</td>
<td>This represents one particular connection between two hardware pins.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The connected pins shall match the connection provided by the parent hwPinGroup Connection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stereotypes: atpVariation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tags: vh.latestBindingTime=systemDesignTime</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>xml.sequenceOffset=60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>hwPinGroup Connection</th>
<th>HwPinGroupConnector</th>
<th>*</th>
<th>aggr</th>
<th>This represents one particular connection between two hardware pin groups.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stereotypes: atpVariation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tags: vh.latestBindingTime=systemDesignTime</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>xml.sequenceOffset=50</td>
</tr>
</tbody>
</table>

Table 2.8: HwElementConnector

The HwPinGroupConnector allows to describe the connection between two HwPinGroups.

Class

HwPinGroupConnector

Package
M2::AUTOSARTemplates::EcuResourceTemplate

Note
This meta-class represents the ability to connect two pin groups.

Base
ARObject,Describable

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Mult.</th>
<th>Kind</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>hwPin Connection</td>
<td>HwPinConnector</td>
<td>*</td>
<td>aggr</td>
<td>This represents one particular connection between two hardware pins.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The connected pins shall match the connection provided by the parent hwPinGroup Connection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stereotypes: atpVariation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tags: vh.latestBindingTime=systemDesignTime</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>xml.sequenceOffset=60</td>
</tr>
</tbody>
</table>

| hwPinGroup | HwPinGroup | 2 | ref | This association connects two hardware pin groups. |

Table 2.9: HwPinGroupConnector

The HwPinConnector allows to describe the connection between two HwPins.

Class

HwPinConnector

Package
M2::AUTOSARTemplates::EcuResourceTemplate

Note
This meta-class represents the ability to connect two pins.

Base
ARObject,Describable

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Mult.</th>
<th>Kind</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>hwPin</td>
<td>HwPinConnector</td>
<td>*</td>
<td>aggr</td>
<td>This represents one particular connection between two hardware pins.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The connected pins shall match the connection provided by the parent hwPinGroup Connection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stereotypes: atpVariation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tags: vh.latestBindingTime=systemDesignTime</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>xml.sequenceOffset=60</td>
</tr>
</tbody>
</table>
2.5.1 Scope of Connections

The hardware connections are part of a hardware element and connect the two artifacts via references to the description of the artifacts. In principle such references can refer to any hardware element and its features in the input information. But the scope of connections is restricted based on the containing hardware element of the hardware connection.

[constr_3513] Scope of connections | Each hardware connection shall only connect features which both are in the hierarchical scope of the hardware element. The hierarchical scope encloses

- all features belonging to the hardware element containing the connection
- all features belonging to hardware elements which are referenced directly and indirectly in the `nestedElement` relation from the hardware element containing connection.

Especially it is allowed to specify connections in hardware elements which are in deeper hierarchical level and also connections which cross hierarchical levels.

In the example from figure A.1 the following connections are allowed:

- connections specified in the scope of hardware element "MyEcu"
 - all the shown connections can be specified on this level
 - even the connections inside another hierarchical hardware element (e.g. between "Pu1" and "Can") can be specified on this level
 - even the connections crossing hierarchical levels (e.g. between "Can" and "Trcv") can be specified on this level

- connections specified in the scope of hardware element "MicroController"
 - only the connections inside the hardware element "MicroController" (e.g. between "Pu1" and "Can") can be specified.
2.6 Hardware Category Definition

The definition of dedicated hardware types allows a flexible usage of the ECU Resource Template. Since the definition of hardware types and the applicable attributes is specified as an AUTOSAR XML file itself it can be updated and extended without the needs to update the AUTOSAR XML-Schema.

In figure 2.2 the relationship between the definition and the description of hardware is shown.

![Diagram of hardware category definition](image)

Figure 2.2: Definition of hardware categories

The element `HwCategory` specifies what type of hardware is defined. This can be for example a memory segment, a processing unit, a communication transceiver etc.

The `HwCategory` is later referenced from the `HwDescriptionEntity` in the role `hwCategory` to describe what type of hardware is described. Possible values for the `shortName` of the `HwCategory` element are defined in table 3.1 and table 3.5.

The `HwCategory` may contain several `HwAttributeDef` elements.

<table>
<thead>
<tr>
<th>Class</th>
<th>HwCategory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>M2::AUTOSARTemplates::EcuResourceTemplate::HwElementCategory</td>
</tr>
<tr>
<td>Note</td>
<td>This metaclass represents the ability to declare hardware categories and its particular attributes. Tags: atp.recommendedPackage=HwCategories</td>
</tr>
<tr>
<td>Base</td>
<td>ARElement, ARObject, AtpDefinition, CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable</td>
</tr>
</tbody>
</table>
Class

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Mult.</th>
<th>Kind</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>hwAttributeDef</td>
<td>HwAttributeDef</td>
<td>*</td>
<td>aggr</td>
<td>This aggregation describes particular hardware attribute definition.</td>
</tr>
</tbody>
</table>

Table 2.11: HwCategory

The **HwAttributeDef** specifies one attribute which is applicable for the **HwCategory**.

The name of the attribute is defined in the **shortName**.

The type of the attribute is specified by the **category**. Applicable values for the **category** of **HwAttributeDef** are defined in table 2.12.

[constr_3500] category of HwAttributeDef shall not be extended [In contrast to the general rule that category can be extended by user-specific values it is not allowed to extend the meaning of the attribute category of meta-class HwAttributeDef]()

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOLEAN</td>
<td>Defines a boolean attribute. The values of a boolean attribute can be provided in</td>
</tr>
<tr>
<td></td>
<td>• textual format 'true' / 'false' (using the vt element of HwAttributeValue</td>
</tr>
<tr>
<td></td>
<td>• numerical format '1' (true) / '0' (false) (using the v element of HwAttributeValue</td>
</tr>
<tr>
<td>INTEGER</td>
<td>Defines an integer attribute. The values of an integer attribute can be a signed / unsigned whole number. The value has to fit in a signed / unsigned 64-bit number space.</td>
</tr>
<tr>
<td>FLOAT</td>
<td>Defines a float attribute. The value of a float attribute is represented as an IEEE double-precision 64-bit floating point of the IEEE 754-1985 standard [7].</td>
</tr>
<tr>
<td>ENUMERATION</td>
<td>Defines an enumeration attribute. The possible enumeration literals are defined with the element vt. The value of an enumeration attribute is provided as text in the vt element of HwAttributeValue.</td>
</tr>
<tr>
<td>STRING</td>
<td>Defines a string attribute. The value of a string attribute is provided as text in the vt element of HwAttributeValue.</td>
</tr>
</tbody>
</table>

Table 2.12: Hardware Attribute Categories

The element **isRequired** specifies whether the attribute is mandatory for the defined category.
[TPS_ECUR_01031] Definition of attribute unit [Optionally the attribute definition can have a reference to a Unit element which specifies in which unit the value of this attribute shall be specified.](RS_ECUR_00014)

For details on the Unit specification please refer to the Software Component Template [3].
This metaclass represents the ability to define a particular hardware attribute. The category of this element defines the type of the attributeValue. If the category is Enumeration the hwAttributeEnumerationLiterals specify the available literals.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Mult.</th>
<th>Kind</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>hwAttribute</td>
<td>HwAttributeLiteralDef</td>
<td>*</td>
<td>agr</td>
<td>The available EnumerationLiterals of the Enumeration definition. Only applicable if the category of the HwAttributeDef equals Enumeration.</td>
</tr>
<tr>
<td>isRequired</td>
<td>Boolean</td>
<td>1</td>
<td>attr</td>
<td>This attribute specifies if the defined attribute value is required to be provided.</td>
</tr>
<tr>
<td>unit</td>
<td>Unit</td>
<td>0..1</td>
<td>ref</td>
<td>This association specifies the physical unit of the defined hardware attribute. This is optional due to the fact that there are textual attributes.</td>
</tr>
</tbody>
</table>

Table 2.13: HwAttributeDef

In case the category of the HwAttributeDef is set to Enumeration the applicable enumeration literals are specified with the element HwAttributeLiteralDef.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Mult.</th>
<th>Kind</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2.14: HwAttributeLiteralDef

In example A.8 the definition of some attributes for the MemorySegment category are described.

2.6.1 Vendor specific extensions of Hardware Category Definition

In order to allow the description of arbitrary hardware and their relationships the ECU Resource Template allows the extension of the definition of hardware categories and hardware attributes. When extending the ECU Resource Description for vendor specific usage the following rules shall be respected:

- [TPS_ECUR_01021] Definition of new hardware categories
 - New hardware categories for HwElement and HwPinGroup and HwPin can be defined if they are different from the already defined categories. This definition shall be in a package which is not the AUTOSAR package. A HwDescriptionEntity shall then reference the extended hardware category. (/)

For more details on the already defined categories see chapter Hardware Type Specific Description.
• **[TPS_ECUR_01022]** Extension of existing hardware categories

 An existing hardware category can be extended with new attribute definitions. The extension is via defining a hardware category of the same name as the standardized one in a different package than AUTOSAR. A HwDescriptionEntity shall then reference the standardized and the extended hardware category.

 For more details on the already existing hardware categories see chapter **Hardware Type Specific Description**.

• **[TPS_ECUR_01023]** No redefinition of hardware attributes

 An extension of the standardized hardware category shall not define the same hardware attributes as already defined in the standardized hardware category.

• **[TPS_ECUR_01024]** Extension of enumeration

 An existing enumeration attribute can be extended with new enumeration literals.

 For more details on existing enumerations attributes see chapter **Hardware Type Specific Description**.

• **[TPS_ECUR_01025]** No removal od existing enumeration literals

 Enumeration literals shall not be removed from the specified enumeration attributes.

 For more details on existing enumerations attributes see chapter **Hardware Type Specific Description**.

• **[TPS_ECUR_01026]** No change of category

 The category (type) of specified attributes shall not be changed.

 For more details see chapter **Hardware Type Specific Description**.

• **[TPS_ECUR_01027]** No change of isRequired value

 The value of the isRequired element shall not be changed for specified attributes.

 For more details see chapter **Hardware Type Specific Description**.

• **[TPS_ECUR_01028]** No change of Unit value

 The value of the Unit element shall not be changed for specified attributes.

 For more details see chapter **Hardware Type Specific Description**.

2.7 Ecu Resource Variant Handling

For details on the AUTOSAR variant handling support please refer to the **AUTOSAR Generic Structure Template** [6]. The structure is shown in figure 2.1.

• **[TPS_ECUR_01029]** Support for variant handling

 In the description of a hardware element the following relationships are subject to variant handling:

 - nestedElement
The existence of a HwPinGroup can be variant via the aggregation role hwPinGroup from HwElement. So different alternatives of HwPinGroup can be specified. The content of the HwPinGroup can as well be variant via the roles hwPinGroup and hwPin from the HwPinGroupContent.

The existence of a HwElementConnector can be variant via the aggregation role hwElementConnection from HwElement. The existence of individual HwPinGroupConnectors and HwPinConnectors in several roles is as well subject to variability.

For the description of attribute values the existence of the HwAttributeValue and the actual v element are subject to variability (see also figure 2.2).

2.8 Documentation Support

AUTOSAR provides support for integrated and well structured documentation. More details about the AUTOSAR Documentation Support concept can be found in the AUTOSAR Generic Structure Template [6].

[TPS_ECUR_01030] Documentation support [An optional documentation block can be applied to any Identifiable and Describable element in an Ecu Resource Description. This type of documentation is typically used to capture a short introduction about the role of an element or respectively how it is built.](RS_ECUR_00017)

2.9 Infrastructural aspects

[TPS_ECUR_01032] Modeling of ECU Resource metamodel [The modeling of the ECU Configuration Value and ECU Configuration Parameter Definition metamodels is done according to the Generic Structure Template [6].](RS_ECUR_00012)

[TPS_ECUR_01033] Transformation of the ECU Resource metamodel to schema definition [The transformation of the ECU Resource metamodel to schema definitions is done according to the XML Schema Production Rules [4].](RS_ECUR_00013)
3 Hardware Type Specific Description

Chapter 2 introduced the general building blocks which are provided to describe hardware elements and their relationships. But in order to use the information from the ECU Resource Description to aid the configuration of an ECU there is need to describe dedicated attributes of specific hardware elements (e.g. memory size).

The following sections deal with the special elements that are necessary to specify a partly or complete engineered ECU with the ECU Resource Template.

3.1 HwElement categories

An overview of the applicable categories for HwElement is shown in table 3.1.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecu</td>
<td>Describes an Ecu (see section 3.1.1).</td>
</tr>
<tr>
<td>ProcessingUnit</td>
<td>Describes a micro-controller core (see section 3.1.2).</td>
</tr>
<tr>
<td>MicroController</td>
<td>Describes a micro-controller (see section 3.1.3).</td>
</tr>
<tr>
<td>MemorySegment</td>
<td>Describes a memory segment (see section 3.1.4).</td>
</tr>
<tr>
<td>CommunicationController</td>
<td>Describes a communication controller (see section 3.1.5).</td>
</tr>
<tr>
<td>CommunicationTransceiver</td>
<td>Describes a communication transceiver (see section 3.1.6).</td>
</tr>
<tr>
<td>Digital</td>
<td>Describes a digital IO peripheral (see section 3.1.7).</td>
</tr>
<tr>
<td>Analog</td>
<td>Describes an analog IO peripheral (see section 3.1.8).</td>
</tr>
<tr>
<td>Timer</td>
<td>Describes a timer peripheral (see section 3.1.9).</td>
</tr>
<tr>
<td>Watchdog</td>
<td>Describes a watchdog peripheral (see section 3.1.10).</td>
</tr>
<tr>
<td>SensorActuator</td>
<td>Describes sensors and actuators (see section 3.1.11).</td>
</tr>
</tbody>
</table>

Table 3.1: Hardware Element Categories

3.1.1 Ecu

[TPS_ECUR_01034] Category of an Ecu

The category of an ECU is defined as Ecu. [RS_ECUR_00007]

Currently no special attributes are defined for the ECU.

There exists an inconsistency between the System Template and the ECU Resource Template concerning the usage of the term “Ecu”. In the System Template “Ecu” is used to determine one instance of an AUTOSAR Stack (e.g. like in ECUIInstance). In the Ecu Resource Template "Ecu" is used to describe the physical box (HardwareElement of category Ecu) containing the electronics which may contain several processing units with several AUTOSAR Stack instances running.

3.1.2 Processing Unit

The processing unit describes one core of a micro-controller.
3.1.3 Micro-Controller

The micro-controller describes one piece of hardware as delivered by the manufacturer of the micro-controller hardware. Typically the micro-controller contains one or several processing units, memory segments and peripherals.

Currently no special attributes are defined for the micro-controller.

Example A.1 shows a simple description of a high-level view on a micro-controller.

3.1.4 Memory

Attributes for the category MemorySegment

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Required</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>memorySize</td>
<td>true</td>
<td>INTEGER</td>
<td>Specifies the size of the memory segment in bytes.</td>
</tr>
<tr>
<td>memoryType</td>
<td>true</td>
<td>ENUMERATION</td>
<td>Specifies the type of memory:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• RAM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• ROM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• EEPROM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Flash</td>
</tr>
</tbody>
</table>

Table 3.2: MemorySegment Hardware Element Parameters

3.1.5 Communication Controller

Category of a communication controller

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Required</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
</table>

(RS_ECUR_00009)
3.1.6 Communication Transceiver

[TPS_ECUR_01010] Category of a communication transceiver [The category of a communication transceiver is defined as CommunicationTransceiver.](RS_ECUR_00009)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Required</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>supports Disabling</td>
<td>false</td>
<td>BOOLEAN</td>
<td>Specifies whether the transceiver can be disabled.</td>
</tr>
<tr>
<td>supports WakeUp</td>
<td>false</td>
<td>BOOLEAN</td>
<td>Specifies whether the transceiver can indicate a wake-up situation on the bus.</td>
</tr>
</tbody>
</table>

Table 3.4: CommunicationTransceiver Hardware Element Attributes

3.1.7 Digital IO

[TPS_ECUR_01011] Category of a digital IO [The category of a digital IO hardware element is defined as Digital.](RS_ECUR_00010)

Currently no special attributes are defined for the digital IO.

3.1.8 Analog IO

[TPS_ECUR_01036] Category of an analog IO [The category of an analog IO hardware element is defined as Analog.](RS_ECUR_00007)

Currently no special attributes are defined for the analog IO.
3.1.9 Timer

[TPS_ECUR_01037] Category of a timer [The category of a timer is defined as Timer.](RS_ECUR_00007)

Currently no special attributes are defined for the timer.

3.1.10 Watchdog

[TPS_ECUR_01038] Category of a watchdog [The category of a watchdog is defined as Watchdog.](RS_ECUR_00007)

Currently no special attributes are defined for the watchdog.

3.1.11 SensorActuator

[TPS_ECUR_01012] Category of a sensor/actuator [The category of a sensor/actuator is defined as SensorActuator.](RS_ECUR_00011)

Currently no special attributes are defined for the sensor/actuator.

3.2 HwPinGroup categories

An overview of the applicable categories for HwPinGroup is shown in table 3.5.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CommunicationPort</td>
<td>Describes a communication connector (see section 3.2.1).</td>
</tr>
</tbody>
</table>

Table 3.5: Hardware Pin Group Categories

3.2.1 CommunicationPort

[TPS_ECUR_01013] Category of a Communication Port [The category of a Communication Port is defined as CommunicationPort.](RS_ECUR_00009)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Required</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
</table>

3.3 HwPin categories

There are no dedicated categories specified for HwPin.
A Examples

A.1 Hardware Element

Example A.1 shows a simple description of a high-level view on a micro-controller.

Example A.1

<AR-PACKAGE>
 <SHORT-NAME>VendorA</SHORT-NAME>
 <ELEMENTS>
 <HW-ELEMENT>
 <SHORT-NAME>MicroController_0815</SHORT-NAME>
 <HW-CATEGORY-REFS>
 <HW-CATEGORY-REF DEST="HW-CATEGORY">/AUTOSAR/MicroController</HW-CATEGORY-REF>
 </HW-CATEGORY-REFS>
 </HW-ELEMENT>
 </ELEMENTS>
</AR-PACKAGE>

A.2 Hierarchy of Hardware Elements

Example A.2 shows the hierarchical description of a processing unit in a micro-controller.

Example A.2

<AR-PACKAGE>
 <SHORT-NAME>VendorA</SHORT-NAME>
 <ELEMENTS>
 <HW-ELEMENT>
 <SHORT-NAME>MicroController_0815</SHORT-NAME>
 <HW-CATEGORY-REFS>
 <HW-CATEGORY-REF DEST="HW-CATEGORY">/AUTOSAR/MicroController</HW-CATEGORY-REF>
 </HW-CATEGORY-REFS>
 <NESTED-ELEMENTS>
 <HW-ELEMENT-REF-CONDITIONAL>
 <HW-ELEMENT-REF DEST="HW-ELEMENT">/VendorA/ProcessingUnit0</HW-ELEMENT-REF>
 </HW-ELEMENT-REF-CONDITIONAL>
 </NESTED-ELEMENTS>
 </HW-ELEMENT>
 <HW-ELEMENT>
 <SHORT-NAME>ProcessingUnit0</SHORT-NAME>
 <HW-CATEGORY-REFS>
 <HW-CATEGORY-REF DEST="HW-CATEGORY">/AUTOSAR/ProcessingUnit</HW-CATEGORY-REF>
 </HW-CATEGORY-REFS>
 </HW-ELEMENT>
 </ELEMENTS>
</AR-PACKAGE>
A.3 HwPinGroups and HwPins

Example A.3 shows the description of pin groups and pins of the micro-controller.

Example A.3

```xml
<AR-PACKAGE>
  <SHORT-NAME>VendorA</SHORT-NAME>
  <ELEMENTS>
    <HW-ELEMENT>
      <SHORT-NAME>MicroController_0815</SHORT-NAME>
      <HW-CATEGORY-REFS>
        <HW-CATEGORY-REF DEST="HW-CATEGORY">/AUTOSAR/MicroController</HW-CATEGORY-REF>
      </HW-CATEGORY-REFS>
      <HW-PIN-GROUPS>
        <HW-PIN-GROUP>
          <SHORT-NAME>Adc</SHORT-NAME>
          <HW-PIN-GROUP-CONTENT>
            <HW-PIN-GROUP>
              <SHORT-NAME>AdcPortA</SHORT-NAME>
            </HW-PIN-GROUP>
            <HW-PIN-GROUP>
              <SHORT-NAME>AdcPortB</SHORT-NAME>
            </HW-PIN-GROUP>
            <HW-PIN>
              <SHORT-NAME>AdcB01</SHORT-NAME>
            </HW-PIN>
            <HW-PIN>
              <SHORT-NAME>AdcB02</SHORT-NAME>
            </HW-PIN>
          </HW-PIN-GROUP-CONTENT>
        </HW-PIN-GROUP>
        <HW-PIN-GROUP>...
      </HW-PIN-GROUPS>
    </HW-ELEMENT>
  </ELEMENTS>
</AR-PACKAGE>
```
A.4 Hardware Element Connection

Example A.4 shows the description of the internal structure of a micro-controller in order to define which memory segments are accessible from which processing unit (core).

Example A.4

```
<AR-PACKAGE>
  <SHORT-NAME>VendorA</SHORT-NAME>
  <ELEMENTS>
    <HW-ELEMENT>
      <SHORT-NAME>MicroController_0815</SHORT-NAME>
      <HW-CATEGORY-REFS>
        <HW-CATEGORY-REF DEST="HW-CATEGORY">/AUTOSAR/MicroController</HW-CATEGORY-REF>
      </HW-CATEGORY-REFS>
      <NESTED-ELEMENTS>
        <HW-ELEMENT-REF-CONDITIONAL>
          <HW-ELEMENT-REF DEST="HW-ELEMENT">/VendorA/Core0</HW-ELEMENT-REF>
        </HW-ELEMENT-REF-CONDITIONAL>
        <HW-ELEMENT-REF-CONDITIONAL>
          <HW-ELEMENT-REF DEST="HW-ELEMENT">/VendorA/Core1</HW-ELEMENT-REF>
        </HW-ELEMENT-REF-CONDITIONAL>
        <HW-ELEMENT-REF-CONDITIONAL>
          <HW-ELEMENT-REF DEST="HW-ELEMENT">/VendorA/Mem01</HW-ELEMENT-REF>
        </HW-ELEMENT-REF-CONDITIONAL>
        <!-- ... -->
      </NESTED-ELEMENTS>
      <HW-ELEMENT-CONNECTIONS>
        <HW-ELEMENT-CONNECTOR>
          <HW-ELEMENT-REFS>
            <HW-ELEMENT-REF DEST="HW-ELEMENT">/VendorA/Core0</HW-ELEMENT-REF>
            <HW-ELEMENT-REF DEST="HW-ELEMENT">/VendorA/Mem01</HW-ELEMENT-REF>
          </HW-ELEMENT-REFS>
        </HW-ELEMENT-CONNECTOR>
        <HW-ELEMENT-CONNECTOR>
          <HW-ELEMENT-REFS>
            <HW-ELEMENT-REF DEST="HW-ELEMENT">/VendorA/Core0</HW-ELEMENT-REF>
            <HW-ELEMENT-REF DEST="HW-ELEMENT">/VendorA/Mem02</HW-ELEMENT-REF>
          </HW-ELEMENT-REFS>
        </HW-ELEMENT-CONNECTOR>
        <!-- ... -->
      </HW-ELEMENT-CONNECTIONS>
    </HW-ELEMENT>
    <HW-ELEMENT>
      <SHORT-NAME>Core0</SHORT-NAME>
      <HW-CATEGORY-REFS>
        <HW-CATEGORY-REF DEST="HW-CATEGORY">/AUTOSAR/ProcessingUnit</HW-CATEGORY-REF>
      </HW-CATEGORY-REFS>
    </HW-ELEMENT>
  </ELEMENTS>
</AR-PACKAGE>
```
A.5 Combined Example

In this example section several mechanisms are utilized to describe an Ecu and some of its electronics attributes. The overview is shown in figure A.1. The individual sections describe the different abstraction layers.
A.5.1 Micro-controller description

The micro-controller consists of the processing unit, a Can controller and a Dio module. The processing unit is defined to have access to both of the peripherals.

The Dio module defines two HwPinGroups in order to support more detailed connection description.

The whole micro-controller is defined in an own ARPackage so it can be used in several projects.

Example A.5

```xml
<AR-PACKAGE>
  <SHORT-NAME>CpuVendor</SHORT-NAME>
  <ELEMENTS>
    <HW-ELEMENT>
      <SHORT-NAME>MicroController</SHORT-NAME>
      <NESTED-ELEMENTS>
        <HW-ELEMENT-REF-CONDITIONAL>
          <HW-ELEMENT-REF DEST="HW-ELEMENT">Pu1</HW-ELEMENT-REF>
        </HW-ELEMENT-REF-CONDITIONAL>
        <HW-ELEMENT-REF-CONDITIONAL>
          <HW-ELEMENT-REF DEST="HW-ELEMENT">Can</HW-ELEMENT-REF>
        </HW-ELEMENT-REF-CONDITIONAL>
        <HW-ELEMENT-REF-CONDITIONAL>
          <HW-ELEMENT-REF DEST="HW-ELEMENT">Dio</HW-ELEMENT-REF>
        </HW-ELEMENT-REF-CONDITIONAL>
      </NESTED-ELEMENTS>
    </HW-ELEMENT>
  </ELEMENTS>
</AR-PACKAGE>
```
A.5.2 Transceiver description

The transceiver module is defined as a HwElement which provides three HwPinGroups to describe its connectivity.

The transceiver module is defined in an own ARPackage so it can be used in several projects.

Example A.6
A.5.3 Ecu description

The Ecu contains the micro-controller and the transceiver.

The Ecu defines one HwPinGroup to represent the CanBus communication to the outside of the Ecu.

The Ecu defines the detailed connectivity inside.

Example A.7

```xml
<AR-PACKAGE>
  <SHORT-NAME>EcuVendor</SHORT-NAME>
  <ELEMENTS>
    <HW-ELEMENT>
      <SHORT-NAME>MyEcu</SHORT-NAME>
      <NESTED-ELEMENTS>
        <HW-ELEMENT-REF-CONDITIONAL>
          <HW-ELEMENT-REF DEST="HW-ELEMENT"/>
          <HW-ELEMENT-REF/>
          <HW-ELEMENT-REF/>
          <HW-ELEMENT-REF/>
          <HW-ELEMENT-REF/>
          <HW-ELEMENT-REF/>
          <HW-ELEMENT-REF/>
        </HW-ELEMENT-REF-CONDITIONAL>
      </NESTED-ELEMENTS>
      <HW-PIN-GROUPS>
        <HW-PIN-GROUP>
          <SHORT-NAME>CanBus</SHORT-NAME>
        </HW-PIN-GROUP>
      </HW-PIN-GROUPS>
      <HW-ELEMENT-CONNECTIONS>
        <HW-ELEMENT-CONNECTOR>
          <HW-ELEMENT-REF/>
        </HW-ELEMENT-CONNECTOR>
      </HW-ELEMENT-CONNECTIONS>
    </HW-ELEMENT>
  </ELEMENTS>
</AR-PACKAGE>
```
<AR-PACKAGE>
 <ELEMENTS>
 <HW-ELEMENT>
 <HW-ELEMENT-REF DEST="HW-ELEMENT">/CpuVendor/Can</HW-ELEMENT-REF>
 <HW-ELEMENT-REF DEST="HW-ELEMENT">/TransceiverVendor/Trcv</HW-ELEMENT-REF>
 </HW-ELEMENT-CONNECTOR>
 <HW-ELEMENT-REFS>
 <HW-ELEMENT-REF DEST="HW-ELEMENT">/CpuVendor/Dio</HW-ELEMENT-REF>
 <HW-ELEMENT-REF DEST="HW-ELEMENT">/TransceiverVendor/Trcv</HW-ELEMENT-REF>
 </HW-ELEMENT-REFS>
 <HW-PIN-GROUP-CONNECTIONS>
 <HW-PIN-GROUP-CONNECTOR>
 <HW-PIN-GROUP-REFS>
 <HW-PIN-GROUP-REF DEST="HW-PIN-GROUP">/CpuVendor/Dio/D0</HW-PIN-GROUP-REF>
 <HW-PIN-GROUP-REF DEST="HW-PIN-GROUP">/TransceiverVendor/Trcv/enable</HW-PIN-GROUP-REF>
 </HW-PIN-GROUP-REFS>
 <HW-PIN-GROUP-CONNECTOR>
 <HW-PIN-GROUP-REFS>
 <HW-PIN-GROUP-REF DEST="HW-PIN-GROUP">/CpuVendor/Dio/D1</HW-PIN-GROUP-REF>
 <HW-PIN-GROUP-REF DEST="HW-PIN-GROUP">/TransceiverVendor/Trcv/wakeup</HW-PIN-GROUP-REF>
 </HW-PIN-GROUP-REFS>
 <HW-PIN-GROUP-CONNECTOR>
 <HW-PIN-GROUP-REFS>
 <HW-PIN-GROUP-REF DEST="HW-PIN-GROUP">/TransceiverVendor/Trcv/Can</HW-PIN-GROUP-REF>
 <HW-PIN-GROUP-REF DEST="HW-PIN-GROUP">/EcuVendor/CanBus</HW-PIN-GROUP-REF>
 </HW-PIN-GROUP-REFS>
 <HW-PIN-GROUP-CONNECTOR>
 <HW-PIN-GROUP-REFS>
 <HW-PIN-GROUP-REF DEST="HW-PIN-GROUP">/EcuVendor/MyEcu</HW-PIN-GROUP-REF>
 </HW-PIN-GROUP-REFS>
 <HW-PIN-GROUP-CONNECTOR>
 <HW-PIN-GROUP-REFS>
 <HW-PIN-GROUP-REF DEST="HW-PIN-GROUP">/TransceiverVendor/Trcv</HW-PIN-GROUP-REF>
 <HW-PIN-GROUP-REF DEST="HW-PIN-GROUP">/EcuVendor/MyEcu</HW-PIN-GROUP-REF>
 </HW-PIN-GROUP-REFS>
 </HW-PIN-GROUP-CONNECTOR>
 </HW-PIN-GROUP-CONNECTOR>
 </HW-PIN-GROUP-CONNECTOR>
 </HW-PIN-GROUP-CONNECTOR>
 </HW-PIN-GROUP-CONNECTOR>
 </HW-PIN-GROUP-CONNECTIONS>
 </HW-ELEMENT>
</AR-PACKAGE>
A.6 Attribute Definition

Example A.8 shows how a category and associated attribute definitions are described in the ECU Resource Template.

Example A.8

```xml
<AR-PACKAGE>
  <SHORT-NAME>AUTOSAR</SHORT-NAME>
  <ELEMENTS>
    <HW-CATEGORY>
      <SHORT-NAME>MemorySegment</SHORT-NAME>
      <HW-ATTRIBUTE-DEFS>
        <HW-ATTRIBUTE-DEF>
          <SHORT-NAME>memorySize</SHORT-NAME>
          <DESC>
            <L-2 L="EN">Specifies the size of the memory segment in bytes.\</L-2>
          </DESC>
          <CATEGORY>INTEGER</CATEGORY>
          <IS-REQUIRED>true</IS-REQUIRED>
        </HW-ATTRIBUTE-DEF>
        <HW-ATTRIBUTE-DEF>
          <SHORT-NAME>memoryType</SHORT-NAME>
          <DESC>
            <L-2 L="EN">Specifies the type of memory: RAM, ROM, EEPROM, Flash.\</L-2>
          </DESC>
          <CATEGORY>ENUMERATION</CATEGORY>
          <HW-ATTRIBUTE-LITERALS>
            <HW-ATTRIBUTE-LITERAL-DEF><SHORT-NAME>RAM</SHORT-NAME></HW-ATTRIBUTE-LITERAL-DEF>
            <HW-ATTRIBUTE-LITERAL-DEF><SHORT-NAME>ROM</SHORT-NAME></HW-ATTRIBUTE-LITERAL-DEF>
            <HW-ATTRIBUTE-LITERAL-DEF><SHORT-NAME>FLASH</SHORT-NAME></HW-ATTRIBUTE-LITERAL-DEF>
            <HW-ATTRIBUTE-LITERAL-DEF><SHORT-NAME>EEPROM</SHORT-NAME></HW-ATTRIBUTE-LITERAL-DEF>
          </HW-ATTRIBUTE-LITERALS>
          <IS-REQUIRED>true</IS-REQUIRED>
        </HW-ATTRIBUTE-DEF>
      </HW-ATTRIBUTE-DEFS>
    </HW-CATEGORY>
  </ELEMENTS>
</AR-PACKAGE>
```
A.7 Attribute Value Example

Example A.9 shows the description of attributes which have been defined using the ECU Resource Template (see example A.8).

Example A.9

```
<AR-PACKAGE>
  <SHORT-NAME>VendorA</SHORT-NAME>
  <ELEMENTS>
    <HW-ELEMENT>
      <SHORT-NAME>MemorySeg001</SHORT-NAME>
      <HW-CATEGORY-REFS>
        <HW-CATEGORY-REF DEST="HW-CATEGORY">/AUTOSAR/MemorySegment</HW-CATEGORY-REF>
      </HW-CATEGORY-REFS>
      <HW-ATTRIBUTE-VALUES>
        <HW-ATTRIBUTE-VALUE>
          <HW-ATTRIBUTE-DEF-REF DEST="HW-ATTRIBUTE-DEF">/AUTOSAR/MemorySegment/memoryType</HW-ATTRIBUTE-DEF-REF>
          <VT>RAM</VT>
        </HW-ATTRIBUTE-VALUE>
        <HW-ATTRIBUTE-VALUE>
          <HW-ATTRIBUTE-DEF-REF DEST="HW-ATTRIBUTE-DEF">/AUTOSAR/MemorySegment/memorySize</HW-ATTRIBUTE-DEF-REF>
          <V>1024</V>
        </HW-ATTRIBUTE-VALUE>
      </HW-ATTRIBUTE-VALUES>
    </HW-ELEMENT>
  </ELEMENTS>
</AR-PACKAGE>
```
B Glossary

Artifact This is a Work Product Definition that provides a description and definition for tangible work product types. Artifacts may be composed of other artifacts ([8]).

At a high level, an artifact is represented as a single conceptual file.

AUTOSAR Tool This is a software tool which supports one or more tasks defined as AUTOSAR tasks in the methodology. Depending on the supported tasks, an AUTOSAR tool can act as an authoring tool, a converter tool, a processor tool or as a combination of those (see separate definitions).

AUTOSAR Authoring Tool An AUTOSAR Tool used to create and modify AUTOSAR XML Descriptions. Example: System Description Editor.

AUTOSAR Converter Tool An AUTOSAR Tool used to create AUTOSAR XML files by converting information from other AUTOSAR XML files. Example: ECU Flattener

AUTOSAR Definition This is the definition of parameters which can have values. One could say that the parameter values are Instances of the definitions. But in the meta model hierarchy of AUTOSAR, definitions are also instances of the meta model and therefore considered as a description. Examples for AUTOSAR definitions are: EcucParameterDef, PostBuildVariantCriterion, SwSystemconst.

AUTOSAR XML Description In AUTOSAR this means "filled Template". In fact an AUTOSAR XML description is the XML representation of an AUTOSAR model.

The AUTOSAR XML description can consist of several files. Each individual file represents an AUTOSAR partial model and shall validate successfully against the AUTOSAR XML schema.

AUTOSAR Meta-Model This is an UML2.0 model that defines the language for describing AUTOSAR systems. The AUTOSAR meta-model is an UML representation of the AUTOSAR templates. UML2.0 class diagrams are used to describe the attributes and their interrelationships. Stereotypes, UML tags and OCL expressions (object constraint language) are used for defining specific semantics and constraints.

AUTOSAR Meta-Model Tool The AUTOSAR Meta-Model Tool is the tool that generates different views (class tables, list of constraints, diagrams, XML Schema etc.) on the AUTOSAR meta-model.

AUTOSAR Model This is a representation of an AUTOSAR product. The AUTOSAR model represents aspects suitable to the intended use according to the AUTOSAR methodology.

Strictly speaking, this is an instance of the AUTOSAR meta-model. The information contained in the AUTOSAR model can be anything that is representable according to the AUTOSAR meta-model.
AUTOSAR Partial Model In AUTOSAR, the possible partitioning of models is marked in the meta-model by \(<\texttt{atpSplitable}\>\). One partial model is represented in an AUTOSAR XML description by one file. The partial model does not need to fulfill all semantic constraints applicable to an AUTOSAR model.

AUTOSAR Processor Tool An AUTOSAR Tool used to create non-AUTOSAR files by processing information from AUTOSAR XML files. Example: RTE Generator

AUTOSAR Specification Element An AUTOSAR Specification Element is a named element that is part of an AUTOSAR specification. Examples: requirement, constraint, specification item, class or attribute in the meta model, methodology, deliverable, methodology activity, model element, bsw module etc.

AUTOSAR Template The term "Template" is used in AUTOSAR to describe the format different kinds of descriptions. The term template comes from the idea, that AUTOSAR defines a kind of form which shall be filled out in order to describe a model. The filled form is then called the description.

In fact the AUTOSAR templates are now defined as a meta-model.

AUTOSAR Validation Tool A specialized AUTOSAR Tool which is able to check an AUTOSAR model against the rules defined by a profile.

AUTOSAR XML Schema This is a W3C XML schema that defines the language for exchanging AUTOSAR models. This Schema is derived from the AUTOSAR meta-model. The AUTOSAR XML Schema defines the AUTOSAR data exchange format.

Blueprint This is a model from which other models can be derived by copy and refinement. Note that in contrast to meta model resp. types, this process is not an instantiation.

Instance Generally this is a particular exemplar of a model or of a type.

Life Cycle Life Cycle is the course of development/evolutionary stages of a model element during its life time.

Meta-Model This defines the building blocks of a model. In that sense, a Meta-Model represents the language for building models.

Meta-Data This includes pertinent information about data, including information about the authorship, versioning, access-rights, timestamps etc.

Model A Model is an simplified representation of reality. The model represents the aspects suitable for an intended purpose.

Partial Model This is a part of a model which is intended to be persisted in one particular artifact.

Pattern in GST This is an approach to simplify the definition of the meta model by applying a model transformation. This transformation creates an enhanced model out of an annotated model.
Profile Authoring Support Data Data that is used for efficient authoring of a profile. E.g. list of referable constraints, meta-classes, meta-attributes or other reusable model assets (blueprints)

Profile Authoring Tool A specialized AUTOSAR Tool which focuses on the authoring of profiles for data exchange points. It e.g. provides support for the creation of profiles from scratch, modification of existing profiles or composition of existing profiles.

Profile Compatibility Checker Tool A specialized AUTOSAR Tool which focuses on checking the compatibility of profiles for data exchange. Note that this compatibility check includes manual compatibility checks by engineers and automated assistance using more formal algorithms.

Profile Consistency Checker Tool A specialized AUTOSAR Tool which focuses on checking the consistency of profiles.

Property A property is a structural feature of an object. As an example a “connector” has the properties “receive port” and “send port”

Properties are made variant by the ≪atpVariation≫.

Prototype This is the implementation of a role of a type within the definition of another type. In other words a type may contain Prototypes that in turn are typed by "Types". Each one of these prototypes becomes an instance when this type is instantiated.

Type A type provides features that can appear in various roles of this type.

Value This is a particular value assigned to a “Definition”.

Variability Variability of a system is its quality to describe a set of variants. These variants are characterized by variant specific property settings and / or selections. As an example, such a system property selection manifests itself in a particular “receive port” for a connection.

This is implemented using the ≪atpVariation≫.

Variant A system variant is a concrete realization of a system, so that all its properties have been set respectively selected. The software system has no variability anymore with respect to the binding time.

This is implemented using EvaluatedVariantSet.

Variation Binding A variant is the result of a variation binding process that resolves the variability of the system by assigning particular values/selections to all the system’s properties.

This is implemented by VariationPoint.

Variation Binding Time The variation binding time determines the step in the methodology at which the variability given by a set of variable properties is resolved.
This is implemented by vh.LatestBindingtime at the related properties.

Variation Definition Time The variation definition time determines the step in the methodology at which the variation points are defined.

Variation Point A variation point indicates that a property is subject to variation. Furthermore, it is associated with a condition and a binding time which define the system context for the selection / setting of a concrete variant.

This is implemented by VariationPoint.
C History of Constraints and Specification Items

Please note that the lists in this chapter also include constraints and specification items that have been removed from the specification in a later version. These constraints and specification items do not appear as hyperlinks in the document.

C.1 Constraint and Specification Item History of this document according to AUTOSAR Release R4.0.2

No changes.

C.2 Constraint and Specification Item History of this document according to AUTOSAR Release R4.0.3

C.2.1 Added Constraints in R4.0.3

<table>
<thead>
<tr>
<th>Number</th>
<th>Heading</th>
</tr>
</thead>
<tbody>
<tr>
<td>constr_3500</td>
<td>category of HwAttributeDef shall not be extended</td>
</tr>
</tbody>
</table>

Table C.1: Added Constraints in R4.0.3

C.3 Constraint and Specification Item History of this document according to AUTOSAR Release R4.1.1

C.3.1 Added Constraints in R4.1.1

<table>
<thead>
<tr>
<th>Number</th>
<th>Heading</th>
</tr>
</thead>
<tbody>
<tr>
<td>constr_3511</td>
<td>HwType shall not have a reference to another HwType</td>
</tr>
<tr>
<td>constr_3512</td>
<td>No support of multiple instantiation</td>
</tr>
<tr>
<td>constr_3513</td>
<td>Scope of connections</td>
</tr>
</tbody>
</table>

Table C.2: Added Constraints in R4.1.1

C.3.2 Added Traceables in R4.1.1

<table>
<thead>
<tr>
<th>SWS Item</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS_ECUR_01000</td>
<td>Definition of HwCategory</td>
</tr>
<tr>
<td>TPS_ECUR_01001</td>
<td>Extension of HwCategory</td>
</tr>
<tr>
<td>TPS_ECUR_01002</td>
<td>Definition of Hardware Elements</td>
</tr>
<tr>
<td>TPS_ECUR_01003</td>
<td>Values of hardware attributes</td>
</tr>
<tr>
<td>TPS_ECUR_01005</td>
<td>The HwElement describes one piece of hardware</td>
</tr>
<tr>
<td>TPS_ECUR_01006</td>
<td>Connections between HwElements</td>
</tr>
<tr>
<td>TPS_ECUR_01007</td>
<td>The category of a processing unit is defined as ProcessingUnit.</td>
</tr>
</tbody>
</table>
The special attributes which are applicable for the category MemorySegment hardware elements are defined in table 3.2.

The category of a communication controller is CommunicationController.

The category of a communication transceiver is defined as CommunicationTransceiver.

The category of a digital IO hardware element is defined as Digital.

The category of a sensor/actuator is defined as SensorActuator.

The category of a Communication Port is defined as CommunicationPort.

Definition of HwAttributeValue

Support of AUTOSAR Basic Software configuration

Definition of HwType

Attribute values defined in the HwType are applicable for all occurrences of this HwType.

HwElement is self contained

Hierarchy of hardware

Definition of new hardware categories

Extension of existing hardware categories

No redefinition of hardware attributes

Extension of enumeration

No removal of existing enumeration literals

No change of category

No change of isRequired value

No change of Unit value

Support for variant handling

Documentation support

Definition of attribute unit

Modeling of ECU Resource metamodel

Transformation of the ECU Resource metamodel to schema definition

Category of an Ecu

Category of a micro-controller

Category of an analog IO

Category of a timer

Category of a watchdog

Table C.3: Added Traceables in R4.1.1

C.4 Constraint and Specification Item History of this document according to AUTOSAR Release R4.1.2

No changes.

C.5 Constraint and Specification Item History of this document according to AUTOSAR Release R4.1.3

No changes.
C.6 Constraint and Specification Item History of this document according to AUTOSAR Release R4.2.1

No changes.

C.7 Constraint and Specification Item History of this document according to AUTOSAR Release R4.2.2

No changes.

C.8 Constraint and Specification Item History of this document according to AUTOSAR Release R4.3.0

No changes.

C.9 Constraint and Specification Item History of this document according to AUTOSAR Release R4.3.1

No changes.

C.10 Constraint and Specification Item History of this document according to AUTOSAR Release R4.4.0

No changes.

C.11 Constraint and Specification Item History of this document according to AUTOSAR Release R19-11

No changes.

C.12 Constraint and Specification Item History of this document according to AUTOSAR Release R20-11

No changes.
D Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing meta-classes mentioned in the context of this document but which are not contained directly in the scope of describing specific meta-model semantics.

<table>
<thead>
<tr>
<th>Class</th>
<th>ARElement (abstract)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>M2::AUTOSAR:templates::GenericStructure::GeneralTemplateClasses::ARPackage</td>
</tr>
<tr>
<td>Note</td>
<td>An element that can be defined stand-alone, i.e. without being part of another element (except for packages of course).</td>
</tr>
<tr>
<td>Base</td>
<td>ARObjct, CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Mult.</th>
<th>Kind</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table D.1: ARElement

<table>
<thead>
<tr>
<th>Class</th>
<th>ARPackage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>M2::AUTOSAR:templates::GenericStructure::GeneralTemplateClasses::ARPackage</td>
</tr>
<tr>
<td>Note</td>
<td>AUTOSAR package, allowing to create top level packages to structure the contained ARElements. ARPackages are open sets. This means that in a file based description system multiple files can be used to partially describe the contents of a package. This is an extended version of MSR's SW-SYSTEM.</td>
</tr>
<tr>
<td>Base</td>
<td>ARObjct, AtIpBlueprint, AtIpBlueprintable, CollectableElement, Identifiable, MultilanguageReferrable, Referrable</td>
</tr>
<tr>
<td>Attribute</td>
<td>Type</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

54 of 58 Document ID 60: AUTOSAR_TPS_ECUResourceTemplate
Table D.2: ARPackage

<table>
<thead>
<tr>
<th>Class</th>
<th>Describable (abstract)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>M2::AUTOSAR::GenericStructure::GeneralTemplateClasses::Identifiable</td>
</tr>
<tr>
<td>Note</td>
<td>This meta-class represents the ability to add a descriptive documentation to non identifiable elements.</td>
</tr>
<tr>
<td>Base</td>
<td>ARObjec</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Mult.</th>
<th>Kind</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>adminData</td>
<td>AdminData</td>
<td>0..1</td>
<td>aggr</td>
<td>This represents the administrative data for the describable object.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tags: xml.sequenceOffset=-20</td>
</tr>
<tr>
<td>category</td>
<td>CategoryString</td>
<td>0..1</td>
<td>attr</td>
<td>The category is a keyword that specializes the semantics of the Describable. It affects the expected existence of attributes and the applicability of constraints.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tags: xml.sequenceOffset=-50</td>
</tr>
<tr>
<td>desc</td>
<td>MultiLanguageOverview Paragraph</td>
<td>0..1</td>
<td>aggr</td>
<td>This represents a general but brief (one paragraph) description what the object in question is about. It is only one paragraph! Desc is intended to be collected into overview tables. This property helps a human reader to identify the object in question. More elaborate documentation, (in particular how the object is built or used) should go to "introduction".</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tags: xml.sequenceOffset=-60</td>
</tr>
</tbody>
</table>
This represents more information about how the object in question is built or is used. Therefore it is a DocumentationBlock.

<table>
<thead>
<tr>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>xml.sequenceOffset=-30</td>
</tr>
</tbody>
</table>

Table D.3: Describable

<table>
<thead>
<tr>
<th>Class</th>
<th>Description (abstract)</th>
</tr>
</thead>
<tbody>
<tr>
<td>introduction</td>
<td>DocumentationBlock</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Base</th>
<th>ARObject, MultilanguageReferrable, Referrable</th>
</tr>
</thead>
</table>

Attribute

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Mult.</th>
<th>Kind</th>
<th>Note</th>
</tr>
</thead>
</table>

Specification of ECU Resource Template

AUTOSAR CP R20-11
Table D.4: Identifiable

<table>
<thead>
<tr>
<th>Class</th>
<th>Identifier (abstract)</th>
</tr>
</thead>
<tbody>
<tr>
<td>adminData</td>
<td>AdminData</td>
</tr>
<tr>
<td>annotation</td>
<td>Annotation</td>
</tr>
<tr>
<td>category</td>
<td>CategoryString</td>
</tr>
<tr>
<td>desc</td>
<td>MultiLanguageOverview Paragraph</td>
</tr>
<tr>
<td>introduction</td>
<td>DocumentationBlock</td>
</tr>
<tr>
<td>uuid</td>
<td>String</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>adminData</th>
<th>AdminData</th>
<th>0..1</th>
<th>aggr</th>
<th>This represents the administrative data for the identifiable object.</th>
</tr>
</thead>
<tbody>
<tr>
<td>annotation</td>
<td>Annotation</td>
<td>*</td>
<td>aggr</td>
<td>Possibility to provide additional notes while defining a model element (e.g. the ECU Configuration Parameter Values). These are not intended as documentation but are mere design notes.</td>
</tr>
<tr>
<td>category</td>
<td>CategoryString</td>
<td>0..1</td>
<td>attr</td>
<td>The category is a keyword that specializes the semantics of the Identifiable. It affects the expected existence of attributes and the applicability of constraints.</td>
</tr>
<tr>
<td>desc</td>
<td>MultiLanguageOverview Paragraph</td>
<td>0..1</td>
<td>aggr</td>
<td>This represents a general but brief (one paragraph) description what the object in question is about. It is only one paragraph! Desc is intended to be collected into overview tables. This property helps a human reader to identify the object in question. More elaborate documentation, (in particular how the object is built or used) should go to "introduction".</td>
</tr>
<tr>
<td>introduction</td>
<td>DocumentationBlock</td>
<td>0..1</td>
<td>aggr</td>
<td>This represents more information about how the object in question is built or is used. Therefore it is a DocumentationBlock.</td>
</tr>
<tr>
<td>uuid</td>
<td>String</td>
<td>0..1</td>
<td>attr</td>
<td>The purpose of this attribute is to provide a globally unique identifier for an instance of a meta-class. The values of this attribute should be globally unique strings prefixed by the type of identifier. For example, to include a DCE UUID as defined by The Open Group, the UUID would be preceded by "DCE:". The values of this attribute may be used to support merging of different AUTOSAR models. The form of the UUID (Universally Unique Identifier) is taken from a standard defined by the Open Group (was Open Software Foundation). This standard is widely used, including by Microsoft for COM (GUIDs) and by many companies for DCE, which is based on CORBA. The method for generating these 128-bit IDs is published in the standard and the effectiveness and uniqueness of the IDs is not in practice disputed. If the id namespace is omitted, DCE is assumed. An example is "DCE:2fac1234-31f8-11b4-a222-08002b34c003". The uuid attribute has no semantic meaning for an AUTOSAR model and there is no requirement for AUTOSAR tools to manage the timestamp.</td>
</tr>
</tbody>
</table>

Tags: xml.sequenceOffset=-40, xml.sequenceOffset=-25, xml.sequenceOffset=-50, xml.sequenceOffset=-60, xml.sequenceOffset=-30, xml.attribute=true
Specification of ECU Resource Template

AUTOSAR CP R20-11

<table>
<thead>
<tr>
<th>Class</th>
<th>Referrable (abstract)</th>
</tr>
</thead>
</table>

Subclasses

- AtpDefinition
- BswDistinguishedPartition
- BswModuleCallPoint
- BswModuleClientServerEntry
- BswVariableAccess
- CouplingPortTrafficClassAssignment
- DiagnosticDebounceAlgorithmProps
- DiagnosticEnvModeElement
- EthernetPriorityRegeneration
- EventHandler
- ExclusiveAreaNestingOrder
- HwDescriptionEntity
- ImplementationProps
- LinSlaveConfigIdent
- ModeTransition
- MultilanguageReferrable
- PduActivationRoutingGroup
- PncMappingIdent
- SingleLanguageReferrable
- SoConPduIdentifier
- SocketConnectionBundle
- TimeSyncServerConfiguration
- TpConnectionIdent

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Mult.</th>
<th>Kind</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>shortName</td>
<td>Identifier</td>
<td>1</td>
<td>attr</td>
<td>This specifies an identifying shortName for the object. It needs to be unique within its context and is intended for humans but even more for technical reference. Stereotypes: atpIdentityContributor Tags: xml.enforceMinMultiplicity=true xml.sequenceOffset=-100</td>
</tr>
<tr>
<td>shortNameFragment</td>
<td>ShortNameFragment</td>
<td>*</td>
<td>aggr</td>
<td>This specifies how the Referrable.shortName is composed of several shortNameFragments. Tags: xml.sequenceOffset=-90</td>
</tr>
</tbody>
</table>

Table D.5: Referrable

<table>
<thead>
<tr>
<th>Class</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>M2:MSR:AsamHdo::Units</td>
</tr>
</tbody>
</table>

Note

This is a physical measurement unit. All units that might be defined should stem from SI units. In order to convert one unit into another factor and offset are defined.

For the calculation from SI-unit to the defined unit the factor (factorSiToUnit) and the offset (offsetSiToUnit) are applied as follows:

\[x \{\text{unit}\} := y \{\text{siUnit}\} \times \text{factorSiToUnit} \left(\frac{\text{unit}}{\text{siUnit}}\right) + \text{offsetSiToUnit} \{\text{unit}\} \]

For the calculation from a unit to SI-unit the reciprocal of the factor (factorSiToUnit) and the negation of the offset (offsetSiToUnit) are applied.

\[y \{\text{siUnit}\} := \left(\frac{x \{\text{unit}\} - \text{offsetSiToUnit} \{\text{unit}\}}{\text{factorSiToUnit} \left(\frac{\text{unit}}{\text{siUnit}}\right)}\right) \]

Base

- ARElement
- ARObj ect
- CollectableElement
- Identifiable
- MultilanguageReferrable
- Packageable
- Element
- Referrable

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Mult.</th>
<th>Kind</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>displayName</td>
<td>SingleLanguageUnitNames</td>
<td>0..1</td>
<td>aggr</td>
<td>This specifies how the unit shall be displayed in documents or in user interfaces of tools. The displayName corresponds to the Unit.Display in an ASAM MCD-2MC file. Tags: xml.sequenceOffset=20</td>
</tr>
<tr>
<td>factorSiToUnit</td>
<td>Float</td>
<td>0..1</td>
<td>attr</td>
<td>This is the factor for the conversion from SI Units to units. The inverse is used for conversion from units to SI Units. Tags: xml.sequenceOffset=30</td>
</tr>
<tr>
<td>offsetSiToUnit</td>
<td>Float</td>
<td>0..1</td>
<td>attr</td>
<td>This is the offset for the conversion from and to SI Units. Tags: xml.sequenceOffset=40</td>
</tr>
<tr>
<td>physicalDimension</td>
<td>PhysicalDimension</td>
<td>0..1</td>
<td>ref</td>
<td>This association represents the physical dimension to which the unit belongs to. Note that only values with units of the same physical dimensions might be converted. Tags: xml.sequenceOffset=50</td>
</tr>
</tbody>
</table>

Table D.6: Unit