
 Specification of NVRAM Manager
AUTOSAR CP R20-11

1 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Document Change History
Date Release Changed by Change Description

2020-11-30 R20-11 AUTOSAR

Release

Management

¶ InitBlockCallback and ROM block

are mutually exclusive

¶ Removal for DET error

NVM_E_PARAM_BLOCK_TYPE

¶ NvM partitioning for multi-core

2019-11-28 R19-11 AUTOSAR

Release

Management

¶ Changes related to

NVM_E_WRITE_PROTECTED

¶ Port Prototypes are generated for

block only if needed

¶ Changed Document Status from

Final to published

2018-10-31 4.4.0 AUTOSAR

Release

Management

¶ Removed NvM_GetActiveService

API

¶ Remove EcuMfixed completely

¶ Changed single and multi block

callbacks

¶ minor corrections / clarifications /

editorial changes; For details please

refer to the ChangeDocumentation

2017-12-08 4.3.1 AUTOSAR

Release

Management

¶ Correction for write protection and

erase requests for

NvMWriteBlockOnce blocks

¶ Clarification regarding implicit

recovery of dataset blocks

¶ minor corrections / clarifications /

editorial changes; For details please

refer to the ChangeDocumentation

Document Title Specification of NVRAM
Manager

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 33

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R20-11

 Specification of NVRAM Manager
AUTOSAR CP R20-11

2 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Document Change History
Date Release Changed by Change Description

2016-11-30 4.3.0 AUTOSAR

Release

Management

¶ Added NvM_FirstInitAll and

NvM_GetActiveService

functionalities

¶ NvM_SetRamBlockStatus works

also for explicit synchronization

blocks

¶ The interaction between NvM and

BswM is clarified.

¶ Other small clarifications and

updates.

2015-07-31 4.2.2 AUTOSAR

Release

Management

¶ Clarified behavior related to

restoring default data for blocks and

for handling of

MEMIF_BLOCK_INVALID job result

¶ Added additional information related

to the block states in chapter

7.2.2.14 and related subchapters

¶ Updated NvM_Init and

NvM_ValidateAll function prototypes

¶ Debugging support marked as

obsolete

2014-10-31 4.2.1 AUTOSAR

Release

Management

¶ Detailed pass/fail conditions for

production errors

¶ Added the NvM_ValidateAll

functionality

¶ Updated return values for Init and

SingleBlock callbacks

¶ Other small clarifications

2014-03-31 4.1.3 AUTOSAR

Release

Management

¶ Removed job postpone in case of

explicit synchronization failed after

configured number of retries

¶ Updated Service Interfaces tables

¶ Renamed configuration parameter

NvMRamBlockHeaderInclude to

NvMBlockHeaderInclude

¶ Editorial changes

 Specification of NVRAM Manager
AUTOSAR CP R20-11

3 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Document Change History
Date Release Changed by Change Description

2013-10-31 4.1.2 AUTOSAR

Release

Management

¶ Added

NvMRamBlockHeaderInclude and

NvMMainFunctionPeriod

configuration parameters

¶ Corrected bugs for

NvMWriteVerificationDataSize and

NvMNvramBlockIdentifier

parameters

¶ Other small clarifications in

requirement

¶ Editorial changes

¶ Removed chapter(s) on change

documentation

2013-03-15 4.1.1 AUTOSAR

Administration

¶ Added NvM_ReadPRAMBlock,

NvM_WritePRAMBlock and

NvM_RestorePRAMBlockDefaults

APIs

¶ Production Errors and Extended

Production Errors classification

¶ Clarifications for explicit

synchronization mechanism

¶ Modeling of Services: introduction of

formal descriptions of service

interfaces

¶ Changes regarding

NvM_CancelJobs API,

NvmSetRamBlockStatus API, Init

callback, handling of redundant

blocks,queue sizes and usage of

MemoryMapping

¶ Reworked according to the new

SWS_BSWGeneral

 Specification of NVRAM Manager
AUTOSAR CP R20-11

4 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Document Change History
Date Release Changed by Change Description

2011-12-22 4.0.3 AUTOSAR

Administration

¶ Added NvM_CancelJobs behaviour

¶ Added NvM and BswM interaction

¶ Added NvM_SetBlockLockStatus

API functional description

¶ Corrected inconsistency between C-

interface and port interface

¶ Updated Include structure

¶ Updated configuration parameters

description and range

2010-09-30 3.1.5 AUTOSAR

Administration

¶ Behavior specified to prevent

possible loss of data during

shutdown

¶ References to DEM for production

errors, new config container

NvmDemEventParameterRefs

¶ NvMMaxNoOfWriteRetries renamed

to NvMMaxNumOfWriteRetries

¶ Note in chapter 7.1.4.5 completed

¶ Null pointer handling changed

¶ Chapter ñVersion checkò updated

¶ New DET error

NVM_E_PARAM_POINTER

¶ Chapter 10 updated,

NvMMainFunctionCycleTime

moved, NvMSelectBlockForWriteAll

added, some ranges corrected

¶ Behavior specified when NVRAM

block ID 1 shall be written

¶ Chapter 12 updated

¶ Handling of single-block callbacks

during asynchronous multi-block

specified.

¶ Some minor changes, typos

corrected

 Specification of NVRAM Manager
AUTOSAR CP R20-11

5 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Document Change History
Date Release Changed by Change Description

2010-02-02 3.1.4 AUTOSAR

Administration

¶ The following features had impact

on this document:

¶ Debugging concept

¶ Error handler concept

¶ Memory related concepts

¶ The following major features were

necessary to implement these

concepts:

¶ Static Block Id Check

¶ Write Verification

¶ Read Retry

¶ buffered read/write-operations

¶ Legal disclaimer revised

2008-08-13 3.1.1 AUTOSAR

Administration

¶ Technical Office SWS

Improvements are incorporated.

¶ Requirement IDs for configuration

parameters (chapter 10) added.

¶ Management of the RAM block state

specified more precisely.

¶ The NVRAM Manager doesn't

support non-sequential NVRAM

block IDs any longer.

¶ Document meta information

extended

¶ Small layout adaptations made

2007-12-21 3.0.1 AUTOSAR

Administration

¶ Legal disclaimer revised

2007-01-24 2.1.15 AUTOSAR

Administration

¶ AUTOSAR service description

added in chapter 11

¶ Reentrancy of callback functions

specified

¶ Details regarding memory hardware

abstraction addressing scheme

added

¶ Legal disclaimer revised

¶ ñAdvice for usersò revised

¶ ñRevision Informationò added

 Specification of NVRAM Manager
AUTOSAR CP R20-11

6 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Document Change History
Date Release Changed by Change Description

2006-05-16 2.0 AUTOSAR

Administration

¶ Document structure adapted to

common Release 2.0 SWS

Template.

¶ Major changes in chapter 10

¶ Structure of document changed

partly

2005-05-31 1.0 AUTOSAR

Administration

¶ Initial release

 Specification of NVRAM Manager
AUTOSAR CP R20-11

7 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Disclaimer

This work (specification and/or software implementation) and the material contained
in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR
and the companies that have contributed to it shall not be liable for any use of the
work.
The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.
This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the
work may be utilized or reproduced, in any form or by any means, without permission
in writing from the publisher.
The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.
The word AUTOSAR and the AUTOSAR logo are registered trademarks.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

8 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Table of Contents

1 Introduction and functional overview 10

2 Acronyms and abbreviations 12

3 Related documentation 13

3.1 Input documents ... 13

3.2 Related specification .. 14

4 Constraints and assumptions 15

4.1 Limitations .. 15

4.2 Applicability to car domains ... 15

4.3 Conflicts .. 15

5 Dependencies to other modules 16

5.1 File structure ... 16

5.1.1 Header file structure ... 16

5.2 Memory abstraction modules ... 16

5.3 CRC module ... 16

5.4 Capability of the underlying drivers .. 16

6 Requirements traceability 17

7 Functional specification 25

7.1 Basic architecture guidelines ... 25

7.1.1 Layer structure ... 25

7.1.2 Addressing scheme for the memory hardware abstraction 25

7.1.3 Basic storage objects ... 27

7.1.4 Block management types ... 31

7.1.5 Scan order / priority scheme .. 37

7.2 General behavior .. 39

7.2.1 Functional requirements .. 39

7.2.2 Design notes .. 40

7.3 Error Classification ... 65

7.3.1 Development Errors ... 65

7.3.2 Runtime Errors ... 73

7.3.3 Transient faults ... 73

7.3.4 Production Errors ... 73

7.3.5 Extended Production Errors ... 74

8 API specification 78

8.1 API .. 78

8.1.1 Imported types.. 78

8.1.2 Type definitions .. 78

8.1.3 Function definitions .. 79

8.1.4 Expected Interfaces ... 140

8.1.5 API Overview .. 147

8.2 Service Interfaces .. 148

8.2.1 Client-Server-Interfaces ... 148

8.2.2 Implementation Data Types ... 156

8.2.3 Ports ... 159

9 Sequence Diagrams 162

9.1 Synchronous calls .. 162

9.1.1 NvM_Init ... 162

9.1.2 NvM_SetDataIndex .. 162

9.1.3 NvM_GetDataIndex .. 163

 Specification of NVRAM Manager
AUTOSAR CP R20-11

9 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

9.1.4 NvM_SetBlockProtection ... 163

9.1.5 NvM_GetErrorStatus .. 163

9.1.6 NvM_GetVersionInfo .. 164

9.2 Asynchronous calls .. 165

9.2.1 Asynchronous call with polling ... 165

9.2.2 Asynchronous call with callback .. 166

9.2.3 Cancellation of a Multi Block Request ... 167

9.2.4 BswM Interraction .. 168

10 Configuration specification 172

10.1 How to read this chapter .. 172

10.2 Containers and configuration parameters ... 172

10.2.1 NvM .. 173

10.2.2 NvMCommon ... 173

10.2.3 NvMBlockDescriptor ... 180

10.2.4 NvMInitBlockCallback .. 194

10.2.5 NvMSingleBlockCallback ... 194

10.2.6 NvMTargetBlockReference .. 195

10.2.7 NvMEaRef .. 196

10.2.8 NvMFeeRef .. 196

10.2.9 NvmDemEventParameterRefs... 196

10.2.10 NvMBlockCiphering ... 199

10.3 Common configuration options .. 201

10.4 Published parameters .. 201

11 Not applicable requirements 202

Figures

Figure 1: Memory Structure of Different Block Types 10

Figure 2: Logical Structure of Different Block Types 11

Figure 4: NVRAM Manager interactions overview 25

Figure 5: NV Block layout 27

Figure 6: RAM Block layout 28

Figure 7: ROM block layout 29

Figure 8: NV block layout with Static Block ID enabled 30

Figure 9: Redundant NVRAM Block layout 33

Figure 10: Dataset NVRAM block layout 35

Figure 11: RAM Block States 48

Figure 12: UML sequence diagram NvM_Init 162

Figure 13: UML sequence diagram NvM_SetDataIndex 162

Figure 14: UML sequence diagram NvM_GetDataIndex 163

Figure 15: UML sequence diagram NvM_SetBlockProtection 163

Figure 16: UML sequence diagram NvM_GetErrorStatus 163

Figure 17: UML sequence diagram NvM_GetVersionInfo 164

Figure 18: UML sequence diagram for asynchronous call with polling 165

Figure 19: UML sequence diagram for asynchronous call with callback 166

Figure 20: UML sequence diagram for cancellation of asynchronous call 167

 Specification of NVRAM Manager
AUTOSAR CP R20-11

10 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

1 Introduction and functional overview

This specification describes the functionality, API and the configuration of the
AUTOSAR Basic Software module NVRAM Manager (NvM).
The NvM module shall provide services to ensure the data storage and maintenance
of NV (non volatile) data according to their individual requirements in an automotive
environment. The NvM module shall be able to administrate the NV data of an
EEPROM and/or a FLASH EEPROM emulation device.
The NvM module shall provide the required synchronous/asynchronous services for
the management and the maintenance of NV data (init/read/write/control).
The relationship between the different blocks can be visualized in the following
picture:

-

Figure 1: Memory Structure of Different Block Types

 Specification of NVRAM Manager
AUTOSAR CP R20-11

11 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

id Component Model

NV Block RAM Block Administrativ e BlockROM Block

Basic Storage Object

çabstractè

NVRAM Block

- Block Management Type:

constraints

{exact composition depends on Management type}

{handling depends on Block Management Type}

çuser dataè

NV Data

çrealizeèçrealizeèçrealizeèçrealizeè

Figure 2: Logical Structure of Different Block Types

 Specification of NVRAM Manager
AUTOSAR CP R20-11

12 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

2 Acronyms and abbreviations

Acronyms and abbreviations, which have a local scope and therefore are not
contained in the AUTOSAR glossary, must appear in a local glossary.

Abbreviation/ Acronym: Description:

Basic Storage Object A ñBasic Storage Objectò is the smallest entity of a
ñNVRAM blockò. Several ñBasic Storage Objectsò can be
used to build a NVRAM Block. A ñBasic Storage Objectñ
can reside in different memory locations (RAM/ROM/NV
memory).

NVRAM Block The ñNVRAM Blockò is the entire structure, which is
needed to administrate and to store a block of NV data.

NV data The data to be stored in Non-Volatile memory.

Block Management Type Type of the NVRAM Block. It depends on the
(configurable) individual composition of a NVRAM Block in
chunks of different mandatory/optional Basic Storage
Objects and the subsequent handling of this NVRAM block.

RAM Block The ĂRAM Blockñ is a ĂBasic Storage Objectñ. It represents
the part of a ĂNVRAM Blockñ which resides in the RAM.
See [SWS_NvM_00126]

ROM Block The ĂROM Blockñ is a ĂBasic Storage Objectñ. It represents
the part of a ĂNVRAM Blockñ which resides in the ROM.
The ĂROM Blockñ is an optional part of a ĂNVRAM
Blockñ.[SWS_NvM_00020]

NV Block The ĂNV Blockñ is a ĂBasic Storage Objectñ. It represents
the part of a ĂNVRAM Blockñ which resides in the NV
memory. The ĂNV Blockñ is a mandatory part of a ĂNVRAM
Blockñ. [SWS_NvM_00125]

NV Block Header Additional information included in the NV Block if the
mechanism ñStatic Block IDò is enabled.

Administrative Block The ñAdministrative Blockò is a ñBasic Storage Objectò. It
resides in RAM. The ñAdministrative Blockò is a mandatory
part of a ñNVRAM Blockò. [SWS_NvM_00135]

DET Default Error Tracer ï module to which development errors
are reported.

DEM Diagnostic Event Manager ï module to which production
relevant errors are reported

NV Non volatile

FEE Flash EEPROM Emulation

EA EEPROM Abstraction

FCFS First come first served

 Specification of NVRAM Manager
AUTOSAR CP R20-11

13 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules
AUTOSAR_TR_BSWModuleList.pdf

[2] Layered Software Architecture

AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[3] General Requirements on Basic Software Modules

AUTOSAR_SRS_BSWGeneral.pdf

[4] Requirements on Memory Services

AUTOSAR_SRS_MemoryServices.pdf

[5] Specification of EEPROM Abstraction

AUTOSAR_SWS_EEPROMAbstraction

[6] Specification of Flash EEPROM Emulation

AUTOSAR_SWS_FlashEEPROMEmulation

[7] Specification of Memory Abstraction Interface

AUTOSAR_SWS_MemoryAbstractionInterface

[8] Specification of Memory Mapping

AUTOSAR_SWS_MemoryMapping

[9] Virtual Functional Bus

AUTOSAR_EXP_VFB.pdf

[10] Software Component Template

AUTOSAR_TPS_SoftwareComponentTemplate

[11] Specification of RTE Software

AUTOSAR_SWS_RTE.pdf

[12] Specification of ECU Configuration

AUTOSAR_TPS_ECUConfiguration.pdf

[13] Basic Software Module Description Template

AUTOSAR_TPS_BSWModuleDescriptionTemplate

[14] Specification of CRC Routines

AUTOSAR_SWS_CRCLibrary

[15] General Specification of Basic Software Modules
AUTOSAR_SWS_BSWGeneral.pdf

 Specification of NVRAM Manager
AUTOSAR CP R20-11

14 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [15] (SWS
BSW General), which is also valid for NVRAM Manager.

Thus, the specification SWS BSW General shall be considered as additional and
required specification for NVRAM Manager.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

15 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

4 Constraints and assumptions

4.1 Limitations

Limitations are given mainly by the finite number of ñBlock Management Typesò and
their individual treatment of NV data. These limits can be reduced by an enhanced
user defined management information, which can be stored as a structured part of
the real NV data. In this case the user defined management information has to be
interpreted and handled by the application at least.

4.2 Applicability to car domains

No restrictions.

4.3 Conflicts

The NvM can be configured to use functionality from other modules or integrator
code. Examples include the en/decryption of block data using Csm or the
compression of block data. It is the responsibility of the integrator to ensure that:

¶ the required functionality is available at the time NvM uses it (e.g. the called
Csm is already initialized [or not yet de-initialized]; needed main functions in
called modules are executed; ...)

¶ the required time is available (e.g. cryptographic algorithms may need some
time and therefore the read/write functionality of the NvM may take much
longer for blocks which need an en/decryption)

 Specification of NVRAM Manager
AUTOSAR CP R20-11

16 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

5 Dependencies to other modules

This section describes the relations to other modules within the basic software.

5.1 File structure

5.1.1 Header file structure

The include file structure shall be as follows:

[SWS_NvM_00554] ᶉNvM module shall include NvM.h, Dem.h, MemIf.h. ᶌ ()

[SWS_NvM_00691] ᶉOnly NvM.h shall be included by the upper layer. ᶌ ()

5.2 Memory abstraction modules

The memory abstraction modules abstract the NvM module from the subordinated
drivers which are hardware dependent. The memory abstraction modules provide a
runtime translation of each block access initiated by the NvM module to select the
corresponding driver functions which are unique for all configured EEPROM or
FLASH storage devices. The memory abstraction module is chosen via the NVRAM
block device ID which is configured for each NVRAM block.

5.3 CRC module

The NvM module uses CRC generation routines (8/16/32 bit) to check and to
generate CRC for NVRAM blocks as a configurable option. The CRC routines have
to be provided externally [ref. to ch. 8.1.4.2].

5.4 Capability of the underlying drivers

A set of underlying driver functions has to be provided for every configured NVRAM
device as, for example, internal or external EEPROM or FLASH devices. The unique
driver functions inside each set of driver functions are selected during runtime via a
memory hardware abstraction module (see chapter 5.2). A set of driver functions has
to include all the needed functions to write to, to read from or to maintain (e.g. erase)
a configured NVRAM device.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

17 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

6 Requirements traceability

Requirement Description Satisfied by

SRS_BSW_00005 Modules of the ÂµC Abstraction
Layer (MCAL) may not have hard
coded horizontal interfaces

SWS_NvM_00744

SRS_BSW_00006 The source code of software
modules above the ÂµC
Abstraction Layer (MCAL) shall
not be processor and compiler
dependent.

SWS_NvM_00744

SRS_BSW_00007 All Basic SW Modules written in C
language shall conform to the
MISRA C 2012 Standard.

SWS_NvM_00744

SRS_BSW_00009 All Basic SW Modules shall be
documented according to a
common standard.

SWS_NvM_00744

SRS_BSW_00010 The memory consumption of all
Basic SW Modules shall be
documented for a defined
configuration for all supported
platforms.

SWS_NvM_00744

SRS_BSW_00101 The Basic Software Module shall
be able to initialize variables and
hardware in a separate
initialization function

SWS_NvM_00399, SWS_NvM_00400

SRS_BSW_00160 Configuration files of AUTOSAR
Basic SW module shall be
readable for human beings

SWS_NvM_00744

SRS_BSW_00161 The AUTOSAR Basic Software
shall provide a microcontroller
abstraction layer which provides a
standardized interface to higher
software layers

SWS_NvM_00744

SRS_BSW_00162 The AUTOSAR Basic Software
shall provide a hardware
abstraction layer

SWS_NvM_00744

SRS_BSW_00164 The Implementation of interrupt
service routines shall be done by
the Operating System, complex
drivers or modules

SWS_NvM_00744

SRS_BSW_00168 SW components shall be tested
by a function defined in a common
API in the Basis-SW

SWS_NvM_00744

SRS_BSW_00170 The AUTOSAR SW Components
shall provide information about
their dependency from faults,
signal qualities, driver demands

SWS_NvM_00744

SRS_BSW_00172 The scheduling strategy that is
built inside the Basic Software
Modules shall be compatible with

SWS_NvM_00464

 Specification of NVRAM Manager
AUTOSAR CP R20-11

18 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

the strategy used in the system

SRS_BSW_00302 All AUTOSAR Basic Software
Modules shall only export
information needed by other
modules

SWS_NvM_00744

SRS_BSW_00304 All AUTOSAR Basic Software
Modules shall use the following
data types instead of native C
data types

SWS_NvM_00744

SRS_BSW_00306 AUTOSAR Basic Software
Modules shall be compiler and
platform independent

SWS_NvM_00744

SRS_BSW_00307 Global variables naming
convention

SWS_NvM_00744

SRS_BSW_00308 AUTOSAR Basic Software
Modules shall not define global
data in their header files, but in
the C file

SWS_NvM_00744

SRS_BSW_00309 All AUTOSAR Basic Software
Modules shall indicate all global
data with read-only purposes by
explicitly assigning the const
keyword

SWS_NvM_00744

SRS_BSW_00312 Shared code shall be reentrant SWS_NvM_00744

SRS_BSW_00314 All internal driver modules shall
separate the interrupt frame
definition from the service routine

SWS_NvM_00744

SRS_BSW_00321 The version numbers of
AUTOSAR Basic Software
Modules shall be enumerated
according specific rules

SWS_NvM_00744

SRS_BSW_00323 All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

SWS_NvM_00027

SRS_BSW_00325 The runtime of interrupt service
routines and functions that are
running in interrupt context shall
be kept short

SWS_NvM_00744

SRS_BSW_00327 Error values naming convention SWS_NvM_00027, SWS_NvM_91004

SRS_BSW_00328 All AUTOSAR Basic Software
Modules shall avoid the
duplication of code

SWS_NvM_00744

SRS_BSW_00330 It shall be allowed to use macros
instead of functions where source
code is used and runtime is critical

SWS_NvM_00744

SRS_BSW_00331 All Basic Software Modules shall
strictly separate error and status
information

SWS_NvM_00027, SWS_NvM_91004

SRS_BSW_00333 For each callback function it shall
be specified if it is called from
interrupt context or not

SWS_NvM_00468

 Specification of NVRAM Manager
AUTOSAR CP R20-11

19 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

SRS_BSW_00334 All Basic Software Modules shall
provide an XML file that contains
the meta data

SWS_NvM_00744

SRS_BSW_00335 Status values naming convention SWS_NvM_00744

SRS_BSW_00336 Basic SW module shall be able to
shutdown

SWS_NvM_00744

SRS_BSW_00337 Classification of development
errors

SWS_NvM_91004

SRS_BSW_00341 Module documentation shall
contains all needed informations

SWS_NvM_00744

SRS_BSW_00342 It shall be possible to create an
AUTOSAR ECU out of modules
provided as source code and
modules provided as object code,
even mixed

SWS_NvM_00744

SRS_BSW_00343 The unit of time for specification
and configuration of Basic SW
modules shall be preferably in
physical time unit

SWS_NvM_00744

SRS_BSW_00344 BSW Modules shall support link-
time configuration

SWS_NvM_00744

SRS_BSW_00347 A Naming seperation of different
instances of BSW drivers shall be
in place

SWS_NvM_00744

SRS_BSW_00348 All AUTOSAR standard types and
constants shall be placed and
organized in a standard type
header file

SWS_NvM_00744

SRS_BSW_00353 All integer type definitions of
target and compiler specific scope
shall be placed and organized in a
single type header

SWS_NvM_00744

SRS_BSW_00360 AUTOSAR Basic Software
Modules callback functions are
allowed to have parameters

SWS_NvM_00468

SRS_BSW_00361 All mappings of not standardized
keywords of compiler specific
scope shall be placed and
organized in a compiler specific
type and keyword header

SWS_NvM_00744

SRS_BSW_00371 The passing of function pointers
as API parameter is forbidden for
all AUTOSAR Basic Software
Modules

SWS_NvM_00744

SRS_BSW_00373 The main processing function of
each AUTOSAR Basic Software
Module shall be named according
the defined convention

SWS_NvM_00464

SRS_BSW_00375 Basic Software Modules shall
report wake-up reasons

SWS_NvM_00744

SRS_BSW_00378 AUTOSAR shall provide a SWS_NvM_00744

 Specification of NVRAM Manager
AUTOSAR CP R20-11

20 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

boolean type

SRS_BSW_00383 The Basic Software Module
specifications shall specify which
other configuration files from other
modules they use at least in the
description

SWS_NvM_00465, SWS_NvM_00466

SRS_BSW_00384 The Basic Software Module
specifications shall specify at least
in the description which other
modules they require

SWS_NvM_00465, SWS_NvM_00466

SRS_BSW_00385 List possible error notifications SWS_NvM_00027, SWS_NvM_91004

SRS_BSW_00386 The BSW shall specify the
configuration for detecting an error

SWS_NvM_00027, SWS_NvM_91004

SRS_BSW_00398 The link-time configuration is
achieved on object code basis in
the stage after compiling and
before linking

SWS_NvM_00744

SRS_BSW_00399 Parameter-sets shall be located in
a separate segment and shall be
loaded after the code

SWS_NvM_00744

SRS_BSW_00400 Parameter shall be selected from
multiple sets of parameters after
code has been loaded and started

SWS_NvM_00744

SRS_BSW_00404 BSW Modules shall support post-
build configuration

SWS_NvM_00744

SRS_BSW_00405 BSW Modules shall support
multiple configuration sets

SWS_NvM_00744

SRS_BSW_00406 A static status variable denoting if
a BSW module is initialized shall
be initialized with value 0 before
any APIs of the BSW module is
called

SWS_NvM_00027, SWS_NvM_00399,
SWS_NvM_00400, SWS_NvM_91004

SRS_BSW_00412 - SWS_NvM_00744

SRS_BSW_00414 Init functions shall have a pointer
to a configuration structure as
single parameter

SWS_NvM_00447

SRS_BSW_00415 Interfaces which are provided
exclusively for one module shall
be separated into a dedicated
header file

SWS_NvM_00744

SRS_BSW_00416 The sequence of modules to be
initialized shall be configurable

SWS_NvM_00744

SRS_BSW_00417 Software which is not part of the
SW-C shall report error events
only after the DEM is fully
operational.

SWS_NvM_00744

SRS_BSW_00422 Pre-de-bouncing of error status
information is done within the
DEM

SWS_NvM_00744

SRS_BSW_00423 BSW modules with AUTOSAR
interfaces shall be describable

SWS_NvM_00744

 Specification of NVRAM Manager
AUTOSAR CP R20-11

21 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

with the means of the SW-C
Template

SRS_BSW_00425 The BSW module description
template shall provide means to
model the defined trigger
conditions of schedulable objects

SWS_NvM_00464

SRS_BSW_00426 BSW Modules shall ensure data
consistency of data which is
shared between BSW modules

SWS_NvM_00744

SRS_BSW_00427 ISR functions shall be defined and
documented in the BSW module
description template

SWS_NvM_00744

SRS_BSW_00429 Access to OS is restricted SWS_NvM_00332

SRS_BSW_00432 Modules should have separate
main processing functions for
read/receive and write/transmit
data path

SWS_NvM_00744

SRS_BSW_00457 Callback functions of Application
software components shall be
invoked by the Basis SW

SWS_NvM_00468

SRS_LIBS_08533 - SWS_NvM_00460

SRS_LIBS_08535 - SWS_NvM_00018, SWS_NvM_00253,
SWS_NvM_00461

SRS_Mem_00011 The NVRAM manager shall be
independent from its underlying
memory hardware.

SWS_NvM_00157

SRS_Mem_00013 The NVRAM manager shall
provide a mechanism to handle
multiple, concurrent read / write
requests

SWS_NvM_00162, SWS_NvM_00699

SRS_Mem_00016 The NVRAM manager shall
provide functionality to read out
data associated with an NVRAM
block from the non-volatile
memory

SWS_NvM_00010, SWS_NvM_00051,
SWS_NvM_00195, SWS_NvM_00196,
SWS_NvM_00629, SWS_NvM_00765,
SWS_NvM_00766, SWS_NvM_00825,
SWS_NvM_00898, SWS_NvM_00899

SRS_Mem_00017 The NVRAM manager shall
provide functionality to store data
associated with an NVRAM block
in the non-volatile memory

SWS_NvM_00051, SWS_NvM_00210,
SWS_NvM_00410, SWS_NvM_00622,
SWS_NvM_00794, SWS_NvM_00897,
SWS_NvM_00900, SWS_NvM_00901

SRS_Mem_00018 The NVRAM manager shall
provide functionality to restore an
NVRAM block's associated data
from ROM defaults

SWS_NvM_00012, SWS_NvM_00051,
SWS_NvM_00266, SWS_NvM_00267,
SWS_NvM_00435, SWS_NvM_00814,
SWS_NvM_00816, SWS_NvM_00817,
SWS_NvM_00893, SWS_NvM_00894,
SWS_NvM_00902, SWS_NvM_00903,
SWS_NvM_00951

SRS_MEM_00020 - SWS_NvM_00888, SWS_NvM_00889,
SWS_NvM_00890, SWS_NvM_00891,
SWS_NvM_00892, SWS_NvM_00949

SRS_Mem_00020 The NVRAM manager shall
provide functionality to read out
the status of read/write operations

SWS_NvM_00895, SWS_NvM_00896

 Specification of NVRAM Manager
AUTOSAR CP R20-11

22 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

SRS_Mem_00027 The NVRAM manager shall
provide an implicit way of
accessing blocks in the NVRAM
and in the shared memory (RAM).

SWS_NvM_00442

SRS_Mem_00030 The NVRAM manager shall
implement mechanisms for
consistency/integrity checks of
data saved in NVRAM

SWS_NvM_00164, SWS_NvM_00897

SRS_Mem_00034 Write accesses of the NVRAM
manager to persistent memory
shall be executed quasi-parallel to
normal operation of the ECU

SWS_NvM_00162

SRS_Mem_00038 Treatable errors shall not affect
other software components

SWS_NvM_00748, SWS_NvM_00825,
SWS_NvM_00910, SWS_NvM_00911,
SWS_NvM_00948

SRS_Mem_00041 Each application shall be enabled
to declare the memory
requirements at configuration time

SWS_NvM_00051

SRS_MEM_00125 - SWS_NvM_00890, SWS_NvM_00891,
SWS_NvM_00892, SWS_NvM_00949

SRS_Mem_00125 For each block a notification shall
be configurable

SWS_NvM_00463

SRS_Mem_00127 The NVRAM manager shall allow
enabling/disabling a write
protection for each NVRAM block
individually

SWS_NvM_00016, SWS_NvM_00748

SRS_Mem_00129 The NVRAM manager shall repair
data in blocks of management
type 'NVRAM redundant'

SWS_NvM_00165, SWS_NvM_00582

SRS_Mem_00135 The NVRAM manager shall have
an unique configuration identifier

SWS_NvM_00034

SRS_MEM_00136 - SWS_NvM_00888, SWS_NvM_00889

SRS_Mem_00136 The NVRAM manager shall
provide functionality for
determining updates of data
associated with an NVRAM Block
during runtime

SWS_NvM_00849, SWS_NvM_00850,
SWS_NvM_00852, SWS_NvM_00853,
SWS_NvM_00854, SWS_NvM_00906,
SWS_NvM_00909

SRS_Mem_00137 The NVRAM manager shall
provide a service for auto-
validating NVRAM blocks

SWS_NvM_00855, SWS_NvM_00856,
SWS_NvM_00857, SWS_NvM_00858,
SWS_NvM_00859, SWS_NvM_00860,
SWS_NvM_00861, SWS_NvM_00862,
SWS_NvM_00863

SRS_Mem_08000 The NVRAM manager shall be
able to access multiple non-
volatile memory devices

SWS_NvM_00051, SWS_NvM_00123,
SWS_NvM_00442

SRS_Mem_08009 The NVRAM Manager shall allow
a static configuration of a default
write protection (on/off) for each
NVRAM block

SWS_NvM_00325, SWS_NvM_00326,
SWS_NvM_00577

SRS_Mem_08010 The NVRAM manager shall copy
the ROM default data to the data
area of the corresponding RAM

SWS_NvM_00171, SWS_NvM_00172

 Specification of NVRAM Manager
AUTOSAR CP R20-11

23 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

block if it can not read data from
NV into RAM

SRS_Mem_08011 The NVRAM manager shall
provide a service to invalidate a
block of data in the non-volatile
memory

SWS_NvM_00421

SRS_Mem_08014 The NVRAM manager shall allow
a non-continuous RAM block
allocation in the global RAM area

SWS_NvM_00051, SWS_NvM_00442

SRS_Mem_08015 Some of the NV Blocks in the
NVRAM shall never be erased nor
be replaced with the default ROM
data after first initialization

SWS_NvM_00397

SRS_MEM_08533 - SWS_NvM_00888, SWS_NvM_00889

SRS_Mem_08534 The NVRAM manager shall
support two classes of RAM data
blocks

SWS_NvM_00904

SRS_MEM_08535 - SWS_NvM_00888, SWS_NvM_00889

SRS_Mem_08540 The NVRAM manager shall
provide a function for aborting the
shutdown process

SWS_NvM_00019, SWS_NvM_00458

SRS_Mem_08541 The NVRAM manager shall
guarantee that an accepted write
request will be processed

SWS_NvM_00208, SWS_NvM_00472,
SWS_NvM_00622, SWS_NvM_00748,
SWS_NvM_00798

SRS_Mem_08542 The NVRAM manager shall
provide a prioritization for job
processing order

SWS_NvM_00032, SWS_NvM_00378,
SWS_NvM_00564

SRS_Mem_08544 The NVRAM manager shall
provide a service to erase the NV
block(s) associated with an
NVRAM block

SWS_NvM_00415

SRS_Mem_08545 The NVRAM Manager shall
provide a service for marking the
permanent RAM data block of an
NVRAM block valid

SWS_NvM_00241, SWS_NvM_00405,
SWS_NvM_00906, SWS_NvM_00909

SRS_Mem_08546 It shall be possible to protect
permanent RAM data blocks
against data loss due to reset

SWS_NvM_00240

SRS_Mem_08547 The NVRAM Manager shall be
able to distinguish between
explicitly invalidated and
inconsistent data

SWS_NvM_00132, SWS_NvM_00164,
SWS_NvM_00165, SWS_NvM_00571

SRS_Mem_08548 The NVRAM Manager shall
request default data from the
application

SWS_NvM_00629, SWS_NvM_00700,
SWS_NvM_00893, SWS_NvM_00894

SRS_Mem_08549 The NVRAM manager shall
provide functionality to
automatically initialize RAM data
blocks after a software update

SWS_NvM_00171

SRS_Mem_08550 The NVRAM Manager shall
provide a service for marking

SWS_NvM_00345, SWS_NvM_00696,
SWS_NvM_00906, SWS_NvM_00909

 Specification of NVRAM Manager
AUTOSAR CP R20-11

24 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

permanent RAM data blocks as
modified/unmodified

SRS_Mem_08554 The NVRAM manager shall retry
read and write operations on
NVRAM blocks if they have not
succeeded up to a configurable
number of times

SWS_NvM_00213, SWS_NvM_00526,
SWS_NvM_00527, SWS_NvM_00529,
SWS_NvM_00581, SWS_NvM_00804,
SWS_NvM_00897, SWS_NvM_00907,
SWS_NvM_00908

SRS_Mem_08555 The NVRAM manager shall
provide mechanisms for static
verification of the block identifier
when reading an NVRAM block

SWS_NvM_00523, SWS_NvM_00524,
SWS_NvM_00593

SRS_Mem_08556 The NVRAM manager shall
provide a mechanism for
verification of the written block
data by again reading and
comparing it

SWS_NvM_00527, SWS_NvM_00528,
SWS_NvM_00529, SWS_NvM_00897

SRS_Mem_08558 The NVRAM manager shall
provide a mechanism to remove
all unprocessed requests
associated with a NVRAM block

SWS_NvM_00458

SRS_Mem_08560 Each NVRAM block shall be
configurable for shared access

SWS_NvM_00536

SWS_BSW_00047 Implement index based API
services

SWS_NvM_00447

SWS_NvM_08541 - SWS_NvM_00897

 Specification of NVRAM Manager
AUTOSAR CP R20-11

25 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

7 Functional specification

7.1 Basic architecture guidelines

7.1.1 Layer structure

The figure below shows the communication interaction of module NvM.

Figure 3: NVRAM Manager interactions overview

7.1.2 Addressing scheme for the memory hardware abstraction

[SWS_NvM_00051] ᶉThe Memory Abstraction Interface, the underlying Flash
EEPROM Emulation and EEPROM Abstraction Layer provide the NvM module with a
virtual linear 32bit address space which is composed of a 16bit block number and a
16bit block address offset.Ộ (SRS_Mem_00041, SRS_Mem_08000,
SRS_Mem_08014, SRS_Mem_00016, SRS_Mem_00017, SRS_Mem_00018)

Hint: According to [SWS_NvM_00051], the NvM module allows for a (theoretical)
maximum of 65536 logical blocks, each logical block having a (theoretical) maximum
size of 64 Kbytes.

sd NVM
Overview

NVM

DEM
CRC Library

MemIf

SchM

BswM

RTE

DET

«communicate»

«communicate»
«communicate»

«communicate»

«communicate» «communicate»

«communicate»

 Specification of NVRAM Manager
AUTOSAR CP R20-11

26 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00122] ᶉThe NvM module shall further subdivide the 16bit Fee/Ea block
number into the following parts:

- NV block base number (NVM_NV_BLOCK_BASE_NUMBER) with a bit width
of (16 -NVM_DATASET_SELECTION_BITS)

- Data index with a bit width of (NVM_DATASET_SELECTION_BITS)

ᶌ (SRS_Mem_00041, SRS_Mem_08014, SRS_Mem_00016, SRS_Mem_00017,
SRS_Mem_00018)

[SWS_NvM_00343] ᶉHandling/addressing of redundant NVRAM blocks shall be
done towards the memory hardware abstraction in the same way like for dataset
NVRAM blocks, i.e. the redundant NV blocks shall be managed by usage of the
configuration parameter NvMDatasetSelectionBits. Ộ ()

[SWS_NvM_00123] ᶉThe NV block base number
(NVM_NV_BLOCK_BASE_NUMBER) shall be located in the most significant bits of
the Fee/Ea block number. Ộ (SRS_Mem_08000)

[SWS_NvM_00442] ᶉThe configuration tool shall configure the block identifiers. ᶌ
(SRS_Mem_08000, SRS_Mem_00027, SRS_Mem_08014)

[SWS_NvM_00443] ᶉThe NvM module shall not modify the configured block

identifiers. Ộ ()

7.1.2.1 Examples

To clarify the previously described addressing scheme which is used for NVRAM

manager ª memory hardware abstraction interaction, the following examples shall
help to understand the correlations between the configuration parameters
NvMNvBlockBaseNumber, NvMDatasetSelectionBits on NVRAM manager side and
EA_BLOCK_NUMBER / FEE_BLOCK_NUMBER on memory hardware abstraction
side [ECUC_NvM_00061].
For the given examples A and B a simple formula is used:
FEE/EA_BLOCK_NUMBER = (NvMNvBlockBaseNumber << NvMDatasetSelectionBits)

+ DataIndex .

Example A:
The configuration parameter NvMDatasetSelectionBits is configured to be 2. This
leads to the result that 14 bits are available as range for the configuration parameter
NvMNvBlockBaseNumber.

- Range of NvMNvBlockBaseNumber: 0x1..0x3FFE

- Range of data index: 0x0..0x3(=2^NvMDatasetSelectionBits-1)

- Range of FEE_BLOCK_NUMBER/EA_BLOCK_NUMBER: 0x4..0xFFFB

With this configuration the FEE/EA_BLOCK_NUMBER computes using the formula
mentioned before should look like in the examples below:

For a native NVRAM block with NvMNvBlockBaseNumber = 2:

- NV block is accessed with FEE/EA_BLOCK_NUMBER = 8

../../../_work/___AUTOSAR/August2011/AUTOSAR_SWS_NVRAMManager_old.doc#ECUC_NvM_00061

 Specification of NVRAM Manager
AUTOSAR CP R20-11

27 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

For a redundant NVRAM block with NvMNvBlockBaseNumber = 3:

- 1st NV block with data index 0 is accessed with
FEE/EA_BLOCK_NUMBER = 12

- 2nd NV block with data index 1 is accessed with
FEE/EA_BLOCK_NUMBER = 13

For a dataset NVRAM block with NvMNvBlockBaseNumber = 4, NvMNvBlockNum =
3:

- NV block #0 with data index 0 is accessed with
FEE/EA_BLOCK_NUMBER = 16

- NV block #1 with data index 1 is accessed with
FEE/EA_BLOCK_NUMBER = 17

- NV block #2 with data index 2 is accessed with
FEE/EA_BLOCK_NUMBER = 18

Example B:
The configuration parameter NvMDatasetSelectionBits is configured to be 4. This
leads to the result that 12 bits are available as range for the configuration parameter
NvMNvBlockBaseNumber.

- Range of NvMNvBlockBaseNumber: 0x1..0xFFE

- Range of data index: 0x0..0xF(=2^NvMDatasetSelectionBits-1)

- Range of FEE/EA Block Number: 0x10..0xFFEF

7.1.3 Basic storage objects

7.1.3.1 NV block

[SWS_NvM_00125] ᶉThe NV block is a basic storage object and represents a
memory area consisting of NV user data and (optionally) a CRC value and
(optionally) a NV block header.

NV block data

NV block CRC
(optional)

NV Block

NV block data

NV block CRC
(optional)

NV block CRC
(optional)

NV block CRC

(optional)

NV block Header

(optional)

NV block data

NV block CRC
(optional)

NV block CRC
(optional)

NV Block

NV block data

NV block CRC
(optional)

NV block CRC
(optional)

NV block CRC
(optional)

NV block CRC
(optional)

NV block CRC

(optional)

NV block Header

(optional)

NV block CRC

(optional)

NV block Header

(optional)

Figure 4: NV Block layout

Note: This figure does not show the physical memory layout of an NV block. Only the

logical clustering is shown. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

28 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

7.1.3.2 RAM block

[SWS_NvM_00126] ᶉThe RAM block is a basic storage object and represents an
area in RAM consisting of user data and (optionally) a CRC value and (optionally) a

NV block header. ᶌ ()

[SWS_NvM_00127] ᶉRestrictions on CRC usage on RAM blocks. CRC is only
available if the corresponding NV block(s) also have a CRC. CRC has to be of the

same type as that of the corresponding NV block(s). [ECUC_NvM_00061]. ᶌ ()

[SWS_NvM_00129] ᶉThe user data area of a RAM block can reside in a different

RAM address location (global data section) than the state of the RAM block. ᶌ ()

[SWS_NvM_00130] ᶉThe data area of a RAM block shall be accessible from
NVRAM Manager and from the application side (data passing from/to the
corresponding NV block).

RAM block data

(permanent/

temporary)

RAM block CRC

(optional)

RAM Block

Data Field

RAM block

CRC Field

RAM Block

RAM block data

(permanent/

temporary)

RAM block CRC
(optional)

RAM Block

Data Field

RAM block

CRC Field

NV block Header

(optional)

RAM block

Header Field

RAM block data

(permanent/

temporary)

RAM block CRC

(optional)

RAM Block

Data Field

RAM block

CRC Field

RAM Block

RAM block data

(permanent/

temporary)

RAM block CRC
(optional)

RAM Block

Data Field

RAM block

CRC Field

NV block Header

(optional)

RAM block

Header Field

Figure 5: RAM Block layout

Note: This figure does not show the physical memory layout of a RAM block. Only
the logical clustering is shown.
As the NvM module doesnôt support alignment, this could be managed by
configuration, i.e. the block length could be enlarged by adding padding to meet

alignment requirements. ᶌ ()

[SWS_NvM_00373] ᶉThe RAM block data shall contain the permanently or

temporarily assigned user data. ᶌ ()

[SWS_NvM_00370] ᶉIn case of permanently assigned user data, the address of the

RAM block data is known during configuration time. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

29 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00372] ᶉIn case of temporarily assigned user data, the address of the
RAM block data is not known during configuration time and will be passed to the NvM

module during runtime. ᶌ ()

[SWS_NvM_00088] ᶉIt shall be possible to allocate each RAM block without address
constraints in the global RAM area. The whole number of configured RAM blocks

needs not be located in a continuous address space. ᶌ ()

7.1.3.3 ROM block

[SWS_NvM_00020] ᶉThe ROM block is a basic storage object, resides in the ROM
(FLASH) and is used to provide default data in case of an empty or damaged NV
block.

ROM Block

ROM block data

(default data)

ROM Block

ROM block data

(default data)

Figure 6: ROM block layout

ᶌ ()

7.1.3.4 Administrative block

[SWS_NvM_00134] ᶉThe Administrative block shall be located in RAM and shall
contain a block index which is used in association with Dataset NV blocks.
Additionally, attribute/error/status information of the corresponding NVRAM block

shall be contained. ᶌ ()

[SWS_NvM_00128] ᶉ The NvM module shall use state information of the permanent
RAM block or of the RAM mirror in the NvM module in case of explicit syncronization

(invalid/valid) to determine the validity of the permanent RAM block user data.ᶌ ()

[SWS_NvM_00132] ᶉThe RAM block state òinvalidñ indicates that the data area of
the respective RAM block is invalid. The RAM block state ñvalidñ indicates that the

data area of the respective RAM block is valid. ᶌ (SRS_Mem_08547)

[SWS_NvM_00133] ᶉThe value of ñinvalidò shall be represented by all other values

except ñvalidò. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

30 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00135] ᶉThe Administrative block shall be invisible for the application
and is used exclusively by the NvM module for security and administrative purposes

of the RAM block and the NVRAM block itself. ᶌ ()

[SWS_NvM_00054] ᶉThe NvM module shall use an attribute field to manage the NV

block write protection in order to protect/unprotect a NV block data field. ᶌ ()

[SWS_NvM_00136] ᶉThe NvM module shall use an error/status field to manage the

error/status value of the last request [SWS_NvM_00083]. ᶌ ()

7.1.3.5 NV Block Header

[SWS_NvM_00522] ổThe NV Block header shall be included first in the NV Block, if
the mechanism Static Block ID is enabled.

NV block data

NV Block

NV block header

NV block CRC

(optional)

NV block data

NV Block

NV block header

NV block CRC

(optional)

Figure 7: NV block layout with Static Block ID enabled

ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

31 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

7.1.4 Block management types

7.1.4.1 Block management types overview

[SWS_NvM_00137] ᶉThe following types of NVRAM storage shall be supported by
the NvM module implementation:

- NVM_BLOCK_NATIVE

- NVM_BLOCK_REDUNDANT

- NVM_BLOCK_DATASETᶌ ()

[SWS_NvM_00557] ᶉNVM_BLOCK_NATIVE type of NVRAM storage shall consist of
the following basic storage objects:

- NV Blocks: 1

- RAM Blocks: 1

- ROM Blocks: 0..1

- Administrative Blocks:1ᶌ ()

[SWS_NvM_00558] ᶉNVM_BLOCK_REDUNDANT type of NVRAM storage shall
consist of the following basic storage objects:

- NV Blocks: 2

- RAM Blocks: 1

- ROM Blocks: 0..1

- Administrative Blocks:1ᶌ ()

[SWS_NvM_00559] ᶉNVM_BLOCK_DATASET type of NVRAM storage shall consist
of the following basic storage objects:

- NV Blocks: 1..(m<256)*

- RAM Blocks: 1

- ROM Blocks: 0..n

- Administrative Blocks:1
* The number of possible datasets depends on the configuration parameter

NvMDatasetSelectionBits. ᶌ ()

7.1.4.2 NVRAM block structure

[SWS_NvM_00138] ᶉThe NVRAM block shall consist of the mandatory basic storage

objects NV block, RAM block and Administrative block. ᶌ ()

[SWS_NvM_00139] ᶉThe basic storage object ROM block is optional. ᶌ ()

[SWS_NvM_00140] ᶉThe composition of any NVRAM block is fixed during

configuration by the corresponding NVRAM block descriptor. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

32 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00141] ᶉAll address offsets are given relatively to the start addresses of
RAM or ROM in the NVRAM block descriptor. The start address is assumed to be
zero.
Hint: A device specific base address or offset will be added by the respective device

driver if needed. ᶌ ()

For details of the NVRAM block descriptor see chapter 7.1.4.3.

7.1.4.3 NVRAM block descriptor table

[SWS_NvM_00069] ᶉA single NVRAM block to deal with will be selected via the NvM

module API by providing a subsequently assigned Block ID. ᶌ ()

[SWS_NvM_00143] ᶉAll structures related to the NVRAM block descriptor table and
their addresses in ROM (FLASH) have to be generated during configuration of the

NvM module. ᶌ ()

7.1.4.4 Native NVRAM block

The Native NVRAM block is the simplest block management type. It allows storage
to/retrieval from NV memory with a minimum of overhead.

[SWS_NvM_00000] ᶉThe Native NVRAM block consists of a single NV block, RAM

block and Administrative block. ᶌ ()

7.1.4.5 Redundant NVRAM block

In addition to the Native NVRAM block, the Redundant NVRAM block provides
enhanced fault tolerance, reliability and availability. It increases resistance against
data corruption.

[SWS_NvM_00001] ᶉThe Redundant NVRAM block consists of two NV blocks, a
RAM block and an Administrative block.
The following figure reflects the internal structure of a redundant NV block:

 Specification of NVRAM Manager
AUTOSAR CP R20-11

33 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

NV block data

NV Block

NV block header

(optional)

NV block CRC

(optional)

NV block data

NV Block

NV block header

(optional)

NV block CRC

(optional)

NV block data

NV Block

NV block header

(optional)

NV block CRC

(optional)

NV block data

NV Block

NV block header

(optional)

NV block CRC

(optional)

Figure 8: Redundant NVRAM Block layout

Note: This figure does not show the physical NV memory layout of a redundant

NVRAM block. Only the logical clustering is shown. ᶌ ()

[SWS_NvM_00531] In case one NV Block associated with a Redundant NVRAM

block is deemed invalid (e.g. during read), an attempt shall be made to recover the

NV Block using data from the incorrupt NV Block. ()

[SWS_NvM_00546] In case the recovery fails then this shall be reported to the

DEM using the code NVM_E_LOSS_OF_REDUNDANCY.

Note: ñRecoveryò denotes the re-establishment of redundancy. This usually means

writing the recovered data back to the NV Block. ()

7.1.4.6 Dataset NVRAM block

The Dataset NVRAM block is an array of equally sized data blocks (NV/ROM). The
application can at one time access exactly one of these elements.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

34 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00006] ᶉThe Dataset NVRAM block consists of multiple NV user data,
(optionally) CRC areas, (optional) NV block headers, a RAM block and an

Administrative block. ᶌ ()

[SWS_NvM_00144] ᶉThe index position of the dataset is noticed via a separated

field in the corresponding Administrative block. ᶌ ()

[SWS_NvM_00374] ᶉThe NvM module shall be able to read all assigned NV blocks.

ᶌ ()

[SWS_NvM_00375] ᶉThe NvM module shall only be able to write to all assigned NV

blocks if (and only if) write protection is disabled. ᶌ ()

[SWS_NvM_00146] ᶉIf the basic storage object ROM block is selected as optional
part, the index range which normally selects a dataset is extended to the ROM to
make it possible to select a ROM block instead of a NV block. The index covers all

NV/ROM blocks which may build up the NVRAM Dataset block. ᶌ ()

[SWS_NvM_00376] ᶉThe NvM module shall be able to only read optional ROM

blocks (default datasets). ᶌ ()

[SWS_NvM_00377] ᶉThe NvM module shall treat a write to a ROM block like a write

to a protected NV block. ᶌ ()

[SWS_NvM_00444] ᶉThe total number of configured datasets (NV+ROM blocks)

must be in the range of 1..255. ᶌ ()

[SWS_NvM_00445] ᶉIn case of optional ROM blocks, data areas with an index from
0 up to NvMNvBlockNum - 1 represent the NV blocks with their CRC in the NV
memory. Data areas with an index from NvMNvBlockNum up to NvMNvBlockNum +
NvMRomBlockNum - 1 represent the ROM blocks.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

35 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Figure 9: Dataset NVRAM block layout

Note: This figure does not show the physical NV memory layout of a Dataset NVRAM

block. Only the logical clustering is shown. ᶌ ()

7.1.4.7 NVRAM Manager API configuration classes

[SWS_NvM_00149] ᶉTo have the possibility to adapt the NvM module to limited
hardware resources, three different API configuration classes shall be defined:

- API configuration class 3: All specified API calls are available. A maximum of
functionality is supported.

- API configuration class 2: An intermediate set of API calls is available.

- API configuration class 1: Especially for matching systems with very limited
hardware resources this API configuration class offers only a minimum set of

API calls which are required in any case. ᶌ ()

NV memory

NV block data

area 0

NV block CRC

of data area 0 (opt)

.

.

.

index

0 to

NVM_NV_BLOCK_NUM - 1

NV block data

area

(NVM_NV_BLOCK_NUM-1)

NV block CRC

of data area

(NVM_NV_BLOCK_NUM-1) (opt)

ROM block data area
NVM_NV_BLOCK_NUM (opt)

.

.

.

index

NVM_NV_BLOCK_NUM to

NVM_NV_BLOCK_NUM+NVM_ROM_BLOCK_NUM-1

ROM block data area

(NVM_NV_BLOCK_NUM+NVM_RO

M_BLOCK_NUM-1) (opt)

ROM

NV memory

NV block data

area 0

NV block CRC

of data area 0 (opt)

.

.

.

index

0 to

NVM_NV_BLOCK_NUM - 1

NV block data

area

(NVM_NV_BLOCK_NUM-1)

NV block CRC

of data area

(NVM_NV_BLOCK_NUM-1) (opt)

ROM block data area
NVM_NV_BLOCK_NUM (opt)

.

.

.

index

NVM_NV_BLOCK_NUM to

NVM_NV_BLOCK_NUM+NVM_ROM_BLOCK_NUM-1

ROM block data area

(NVM_NV_BLOCK_NUM+NVM_RO

M_BLOCK_NUM-1) (opt)

ROM

 Specification of NVRAM Manager
AUTOSAR CP R20-11

36 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00560] ᶉAPI configuration class 3 shall consist of the following API:
Type 1:

- NvM_SetDataIndex(...)

- NvM_GetDataIndex(...)

- NvM_SetBlockProtection(...)

- NvM_GetErrorStatus(...)

- NvM_SetRamBlockStatus(...)

- NvM_SetBlockLockStatus()
Type 2:

- NvM_ReadBlock(...)

- NvM_WriteBlock(...)

- NvM_RestoreBlockDefaults(...)

- NvM_EraseNvBlock(...)

- NvM_InvalidateNvBlock(...)

- NvM_CancelJobs(é)

- NvM_ReadPRAMBlock(...)

- NvM_WritePRAMBlock(...)

- NvM_RestorePRAMBlockDefaults(...)
Type 3:

- NvM_ReadAll(...)

- NvM_WriteAll(...)

- NvM_CancelWriteAll(...)

- NvM_ValidateAll(...)

- NvM_FirstInitAll(é)
Type 4:

- NvM_Init(...)ᶌ ()

[SWS_NvM_00561] ᶉAPI configuration class 2 shall consist of the following API:
Type 1:

- NvM_SetDataIndex(...)

- NvM_GetDataIndex(...)

- NvM_GetErrorStatus(...)

- NvM_SetRamBlockStatus(...)

- NvM_SetBlockLockStatus(...)
Type 2:

- NvM_ReadBlock(...)

- NvM_WriteBlock(...)

- NvM_RestoreBlockDefaults(...)

- NvM_CancelJobs(é)

- NvM_ReadPRAMBlock(...)

- NvM_WritePRAMBlock(...)

- NvM_RestorePRAMBlockDefaults(...)
Type 3:

- NvM_ReadAll(...)

- NvM_WriteAll(...)

- NvM_CancelWriteAll(...)

 Specification of NVRAM Manager
AUTOSAR CP R20-11

37 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

- NvM_ValidatedAll(...)
Type 4:

- NvM_Init(...)ᶌ ()

[SWS_NvM_00562] ᶉAPI configuration class 1 shall consist of the following API:
Type 1:

- NvM_GetErrorStatus(...)

- NvM_SetRamBlockStatus(...)

- NvM_SetBlockLockStatus(...)
Type 2:

- --
Type 3:

- NvM_ReadAll(...)

- NvM_WriteAll(...)

- NvM_CancelWriteAll(...)
Type 4:

- NvM_Init(...)
Note: For API configuration class 1 no queues are needed, no immediate data can
be written. Furthermore the API call NvM_SetRamBlockStatus is only available if

configured by NvMSetRamBlockStatusApi. ᶌ ()

[SWS_NvM_00365] ᶉWithin API configuration class 1, the block management type

NVM_BLOCK_DATASET is not supported. ᶌ ()

For information regarding the definition of Type 1é4 refer to chapter 8.1.5.

[SWS_NvM_00150] ᶉThe NvM module shall only contain that code that is needed to

handle the configured block types. ᶌ ()

7.1.5 Scan order / priority scheme

[SWS_NvM_00032] ᶉThe NvM module shall support a priority based job processing.

ᶌ (SRS_Mem_08542)

[SWS_NvM_00564] ᶉBy configuration parameter NvMJobPrioritization

[SWS_NvM_00028] priority based job processing shall be enabled/disabled. ᶌ
(SRS_Mem_08542)

[SWS_NvM_00378] ᶉIn case of priority based job processing order, the NvM module
shall use two queues, one for immediate write jobs (crash data) another for all other

jobs (including immediate read/erase jobs). ᶌ (SRS_Mem_08542)

 Specification of NVRAM Manager
AUTOSAR CP R20-11

38 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00379] ᶉIf priority based job processing is disabled via configuration,
the NvM module shall not support immediate write jobs. In this case, the NvM module

processes all jobs in FCFS order. ᶌ ()

[SWS_NvM_00380] ᶉThe job queue length for multi block requests originating from
any of the NvM_ReadAll, NvM_ValidateAll, NvM_FirstInitAll and NvM_WriteAll APIs

shall be one (only one multi block job is queued).ᶌ ()

[SWS_NvM_00381] ᶉThe NvM module shall not interrupt jobs originating from the

NvM_ReadAll request by other requests. ᶌ ()

Note: The only exception to the rule given in [SWS_NvM_00381, SWS_NvM_00567]
is a write job with immediate priority which shall preempt the running read / write job [
SWS_NvM_00182]. The preempted job shall subsequently be resumed / restarted
by the NvM module.

[SWS_NvM_00567] ᶉThe NvM module shall not interrupt jobs originating from the

NvM_WriteAll request by other requests. ᶌ ()

[SWS_NvM_00568] ᶉThe NvM module shall rather queue read jobs that are
requested during an ongoing NvM_ReadAll request and executed them

subsequently. ᶌ ()

[SWS_NvM_00569] ᶉThe NvM module shall rather queue write jobs that are
requested during an ongoing NvM_WriteAll request and executed them

subsequently. ᶌ ()

[SWS_NvM_00725] ᶉThe NvM module shall rather queue write jobs that are
requested during an ongoing NvM_ReadAll request and executed them

subsequently. ᶌ ()

[SWS_NvM_00726] ᶉThe NvM module shall rather queue read jobs that are
requested during an ongoing NvM_WriteAll request and executed them

subsequently. ᶌ ()

Note: The NvM_WriteAll request can be aborted by calling NvM_CancelWriteAll. In
this case, the current block is processed completely but no further blocks are written
[SWS_NvM_00238].
Hint: It shall be allowed to dequeue requests, if they became obsolete by completion
of the regarding NVRAM block.

[SWS_NvM_00570] ᶉThe preempted job shall subsequently be resumed / restarted
by the NvM module. This behavior shall apply for single block requests as well as for

multi block requests. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

39 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

7.2 General behavior

7.2.1 Functional requirements

[SWS_NvM_00383] ᶉFor each asynchronous request, a notification of the caller after

completion of the job shall be a configurable option. ᶌ ()

[SWS_NvM_00384] ᶉThe NvM module shall provide a callback interface
SWS_NvM_00113.
Hint: The NvM moduleôs environment shall access the non-volatile memory via the
NvM module only. It shall not be allowed for any module (except for the NvM module)

to access the non-volatile memory directly. ᶌ (SRS_Mem_08541)

[SWS_NvM_00038] ᶉThe NvM module only provides an implicit way of accessing
blocks in the NVRAM and in the shared memory (RAM). This means, the NvM
module copies one or more blocks from NVRAM to the RAM and the other way

round. ᶌ ()

[SWS_NvM_00692] ᶉThe application accesses the RAM data directly, with respect

to given restrictions (e.g. synchronization). ᶌ ()

[SWS_NvM_00385] ᶉThe NvM module shall queue all asynchronous ñsingle blockò
read/write/control requests if the block with its specific ID is not already queued or

currently in progress (multitasking restrictions). ᶌ ()

[SWS_NvM_00386] ᶉThe NvM module shall accept multiple asynchronous ñsingle

blockò requests as long as no queue overflow occurs. ᶌ ()

[SWS_NvM_00155] ᶉThe highest priority request shall be fetched from the queues

by the NvM module and processed in a serialized order. ᶌ ()

[SWS_NvM_00040] ᶉThe NvM module shall implement implicit mechanisms for

consistency / integrity checks of data saved in NV memory [SWS_NvM_00165]. ᶌ ()

Depending on implementation of the memory stack, callback routines provided
and/or invoked by the NvM module may be called in interrupt context.
Hint: The NvM module providing routines called in interrupt context has therefore to
make sure that their runtime is reasonably short.

[SWS_NvM_00085] ᶉIf there is no default ROM data available at configuration time
or no callback defined by NvMInitBlockCallback then the application shall be
responsible for providing the default initialization data.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

40 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

In this case, the application has to use NvM_GetErrorStatus() to be able to
distinguish [ECUC_NvM_00061] between first initialization and corrupted data

[SWS_NvM_00083]. ᶌ ()

[SWS_NvM_00387] ᶉDuring processing of NvM_ReadAll, the NvM module shall be
able to detect corrupted RAM data by performing a checksum calculation.

[ECUC_NvM_00476]. ᶌ ()

[SWS_NvM_00226] ᶉDuring processing of NvM_ReadAll, the NvM module shall be
able to detect invalid RAM data by testing the validity of a data within the

administrative block [ECUC_NvM_00476]. ᶌ ()

[SWS_NvM_00388] ᶉDuring startup phase and normal operation of NvM_ReadAll
and if the NvM module has detected an unrecoverable error within the NV block, the
NvM module shall copy default data (if configured) to the corresponding RAM block.

ᶌ ()

[SWS_NvM_00332] ᶉTo make use of the OS services, the NvM module shall only
use the BSW scheduler instead of directly making use of OS objects and/or related

OS services. ᶌ (SRS_BSW_00429)

7.2.2 Design notes

7.2.2.1 NVRAM manager startup

[SWS_NvM_00693] ᶉNvM_Init shall be invoked by the BSW Mode Manager

exclusively. ᶌ ()

[SWS_NvM_00091] ᶉDue to strong constraints concerning the ECU startup time, the
NvM_Init request shall not contain the initialization of the configured NVRAM blocks.

ᶌ ()

[SWS_NvM_00157] ᶉThe NvM_Init request shall not be responsible to trigger the
initialization of underlying drivers and memory hardware abstraction. This shall also

be handled by the BSW Mode Manager. ᶌ (SRS_Mem_00011)

[SWS_NvM_00158] ᶉThe initialization of the RAM data blocks shall be done by

another request, namely NvM_ReadAll. ᶌ ()

NvM_ReadAll shall be called exclusively by BSW Mode Manager.

[SWS_NvM_00694] ᶉSoftware components which use the NvM module shall be
responsible for checking global error/status information resulting from the NvM

 Specification of NVRAM Manager
AUTOSAR CP R20-11

41 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

module startup. The BSW Mode Manager shall use polling by using
NvM_GetErrorStatus [SWS_NvM_00015] (reserved block ID 0) or callback
notification (configurable option NvM_MultiBlockCallback [SWS_NvM_00028]) to
derive global error/status information resulting from startup. If polling is used, the end
of the NVRAM startup procedure shall be detected by the global error/status
NVM_REQ_OK or NVM_REQ_NOT_OK (during startup NVM_REQ_PENDING)
[SWS_NvM_00083]. If callbacks are chosen for notification, software components
shall be notified automatically if an assigned NVRAM block has been processed
[SWS_NvM_00281].

Note 1: If callbacks are configured for each NVRAM block which is processed within
NvM_ReadAll, they can be used by the RTE to start e.g. SW-Cs at an early point of
time.

Note 2: To ensure that the DEM is fully operational at an early point of time, i.e. its
NV data is restored to RAM, DEM related NVRAM blocks should be configured to

have a low ID to be processed first within NvM_ReadAll. ᶌ ()

[SWS_NvM_00160] ᶉThe NvM module shall not store the currently used Dataset
index automatically in a persistent way.
Software components shall check the specific error/status of all blocks they are
responsible for by using NvM_GetErrorStatus [SWS_NvM_00015] with specific block

IDs to determine the validity of the corresponding RAM blocks. ᶌ ()

[SWS_NvM_00695] ᶉFor all blocks of the block management type ñNVRAM Datasetò
[SWS_NvM_00006] the software component shall be responsible to set the proper
index position by NvM_SetDataIndex [SWS_NvM_00014]. E.g. the current index
position can be stored/maintained by the software component in a unique NVRAM
block. To get the current index position of a ñDataset Blockò, the software component

shall use the NvM_GetDataIndex [SWS_NvM_00021] API call. ᶌ ()

7.2.2.2 NVRAM manager shutdown

[SWS_NvM_00092] ᶉThe basic shutdown procedure shall be done by the request
NvM_WriteAll [SWS_NvM_00018].

Hint: NvM_WriteAll shall be invoked by the BSW Mode Manager. ᶌ ()

7.2.2.3 (Quasi) parallel write access to the NvM module

[SWS_NvM_00162] ᶉThe NvM module shall receive the requests via an
asynchronous interface using a queuing mechanism. The NvM module shall process

all requests serially depending on their priority. ᶌ (SRS_Mem_00013,
SRS_Mem_00034)

 Specification of NVRAM Manager
AUTOSAR CP R20-11

42 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

7.2.2.4 NVRAM block consistency check

[SWS_NvM_00164] ᶉThe NvM module shall provide implicit techniques to check the

data consistency of NVRAM blocks [ECUC_NvM_00476], [SWS_NvM_00040]. ᶌ
(SRS_Mem_08547, SRS_Mem_00030)

[SWS_NvM_00571] ᶉThe data consistency check of a NVRAM block shall be done

by CRC recalculations of its corresponding NV block(s). ᶌ (SRS_Mem_08547)

[SWS_NvM_00165] ᶉThe implicit way of a data consistency check shall be provided
by configurable options of the internal functions. The implicit consistency check shall
be configurable for each NVRAM block and depends on the configurable parameters

NvMBlockUseCrc and NvMCalcRamBlockCrc [ECUC_NvM_00061]. ᶌ
(SRS_Mem_08547, SRS_Mem_00129)

[SWS_NvM_00724] ᶉNvMBlockUseCrc should be enabled for NVRAM blocks

where NvMWriteBlockOnce = TRUE . NvMBlockWriteProt should be disabled

for NVRAM blocks where NvMWriteBlockOnce = TRUE , to enable the user to

write data to the NVRAM block in case of CRC check is failed. ᶌ ()

[SWS_NvM_00544] ᶉDepending on the configurable parameters NvMBlockUseCrc

and NvMCalcRamBlockCrc , NvM module shall allocate memory for the largest CRC

used.
Hint: NvM users must not know anything about CRC memory (e.g. size, location) for

their data in a RAM block. ᶌ ()

7.2.2.5 Error recovery

[SWS_NvM_00047] ᶉThe NvM module shall provide techniques for error recovery.
The error recovery depends on the NVRAM block management type

[SWS_NvM_00001]. ᶌ ()

[SWS_NvM_00389] ᶉThe NvM module shall provide error recovery on read for every

kind of NVRAM block management type by loading of default values. ᶌ ()

[SWS_NvM_00390] The NvM module shall provide error recovery on read for

NVRAM blocks of block management type NVM_BLOCK_REDUNDANT by loading

the RAM block with default values. ()

[SWS_NvM_00168] The NvM module shall provide error recovery on write by

performing write retries regardless of the NVRAM block management type. ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

43 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00169] ᶉThe NvM module shall provide read error recovery on startup
for all NVRAM blocks with configured RAM block CRC in case of RAM block

revalidation failure. ᶌ ()

7.2.2.6 Recovery of a RAM block with ROM data

[SWS_NvM_00171] ᶉThe NvM module shall provide implicit and explicit recovery
techniques to restore ROM data to its corresponding RAM block in case of
unrecoverable data inconsistency of a NV block [SWS_NvM_00387,

[SWS_NvM_00226,SWS_NvM_00388]. ᶌ (SRS_Mem_08549, SRS_Mem_08010)

7.2.2.7 Implicit recovery of a RAM block with ROM default data

[SWS_NvM_00172] ᶉThe data content of the corresponding NV block shall remain

unmodified during the implicit recovery. ᶌ (SRS_Mem_08010)

[SWS_NvM_00572] ᶉThe implicit recovery shall not be provided during startup (part
of NvM_ReadAll), neither by NvM_ReadBlock nor by NvM_ReadPRAMBlock for
each NVRAM block when no default data is configured (by the parameter

NvMRomBlockDataAddress or NvMInitBlockCallback). ᶌ ()

[SWS_NvM_00573] ᶉThe implicit recovery shall not be provided during startup (part
of NvM_ReadAll), neither by NvM_ReadBlock nor by NvM_ReadPRAMBlock for
each NVRAM block for the following conditions:

- The default data is configured (by the parameter NvMRomBlockDataAddress
or the parameter NvMInitBlockCallback).

- The permanent RAM block or the content of the RAM mirror in the NvM
module (in case of explicit synchronization) state is valid and CRC (data) is

consistent. ᶌ ()

[SWS_NvM_00574] ᶉThe implicit recovery shall not be provided during startup (part
of NvM_ReadAll), neither by NvM_ReadBlock nor by NvM_ReadPRAMBlock for
each NVRAM block for the following conditions:

- The default data is configured (by the parameter NvMRomBlockDataAddress
or the parameter NvMInitBlockCallback).

- The permanent RAM block or the content of the RAM mirror in the NvM
module (in case of explicit synchronization) state is invalid and CRC (data) is
inconsistent.

- Read attempt from NV succeeds. ᶌ ()

[SWS_NvM_00575] ᶉThe implicit recovery shall be provided during startup (part of
NvM_ReadAll) and by NvM_ReadBlock or NvM_ReadPRAMBlock for each NVRAM
block for the following conditions:

 Specification of NVRAM Manager
AUTOSAR CP R20-11

44 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

- The default data is configured (by the parameter NvMRomBlockDataAddress
or the parameter NvMInitBlockCallback).

- The permanent RAM block state or the content of the RAM mirror in the NvM
module (in case of explicit synchronization) is invalid and CRC (data) is
inconsistent.

- Read attempt from NV fails. ᶌ ()

[SWS_NvM_00951] ᶉImplicit recovery shall be provided during NvM_ReadBlock() or
NvM_ReadPRAMBlock() requests for NVRAM blocks of type NVM_BLOCK_NATIVE

and NVM_BLOCK_REDUNDANT. ᶌ (SRS_Mem_00018)

7.2.2.8 Explicit recovery of a RAM block with ROM default data

[SWS_NvM_00391] ᶉFor explicit recovery with ROM block data the NvM module
shall provide functions NvM_RestoreBlockDefaults and
NvM_RestorePRAMBlockDefaults [SWS_NvM_00012] to restore ROM data to its

corresponding RAM block. ᶌ ()

[SWS_NvM_00392] ᶉThe function NvM_RestoreBlockDefaults and
NvM_RestorePRAMBlockDefaults shall remain unmodified the data content of the
corresponding NV block.
Hint: The function NvM_RestoreBlockDefaults or NvM_RestorePRAMBlockDefaults
shall be used by the application to restore ROM data to the corresponding RAM

block every time it is needed. ᶌ ()

7.2.2.9 Detection of an incomplete write operation to a NV block

[SWS_NvM_00174] ᶉThe detection of an incomplete write operation to a NV block is
out of scope of the NvM module. This is handled and detected by the memory
hardware abstraction. The NvM module expects to get information from the memory
hardware abstraction if a referenced NV block is invalid or inconsistent and cannot be
read when requested.
SW-Cs may use NvM_InvalidateNvBlock to prevent lower layers from delivering old

data. ᶌ (SRS_Mem_08547)

7.2.2.10 Termination of a single block request

[SWS_NvM_00175] ᶉAll asynchronous requests provided by the NvM module
(except for NvM_CancelWriteAll) shall indicate their result in the designated

error/status field of the corresponding Administrative block [SWS_NvM_00000]. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

45 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00176] ᶉThe optional configuration parameter NvMSingleBlockCallback
configures the notification via callback on the termination of an asynchronous block

request (and for NvM_ReadAll) [ECUC_NvM_00061].ᶌ ()

Note: In communication with application SW-C, the ECUC configuration parameter
NvMSingleBlockCallback (ECUC_NvM_00506) should be configured to the
corresponding Rte_call_<p>_<o> API.

7.2.2.11 Termination of a multi block request

[SWS_NvM_00393] ᶉThe NvM module shall use a separate variable to store the

result of an asynchronous multi block request (NvM_ReadAll, NvM_WriteAll

including NvM_CancelWriteAll, NvM_ValidateAll). ᶌ ()

[SWS_NvM_00394] ᶉThe function NvM_GetErrorStatus [SWS_NvM_00015] shall

return the most recent error/status information of an asynchronous multi block

request (including NvM_CancelWriteAll) [SWS_NvM_00083] in conjunction with a

reserved block ID value of 0. ᶌ ()

[SWS_NvM_00395] ᶉThe result of a multi block request shall represent only a

common error/status information. ᶌ ()

[SWS_NvM_00396] ᶉThe multi block requests provided by the NvM module shall
indicate their detailed error/status information in the designated error/status field of

each affected Administrative block. ᶌ ()

[SWS_NvM_00179] ᶉThe optional configuration parameter NvMMultiBlockCallback
configures the notification via callback on the termination of an asynchronous multi

block request [SWS_NvM_00028]. ᶌ ()

7.2.2.12 General handling of asynchronous requests/ job processing

[SWS_NvM_00180] ᶉEvery time when CRC calculation is processed within a
request, the NvM module shall calculate the CRC in multiple steps if the referenced
NVRAM block length exceeds the number of bytes configured by the parameter

NvMCrcNumOfBytes. ᶌ ()

[SWS_NvM_00351] ᶉFor CRC calculation, the NvM module shall use initial values

which are published by the CRC module. ᶌ ()

[SWS_NvM_00181] ᶉMultiple concurrent single block requests shall be queueable. ᶌ
()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

46 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00182] ᶉThe NvM module shall interrupt asynchronous request/job

processing in favor of jobs with immediate priority (crash data). ᶌ ()

[SWS_NvM_00184] ᶉIf the invocation of an asynchronous function on the NvM

module leads to a job queue overflow, the function shall return with E_NOT_OK. ᶌ ()

[SWS_NvM_00185] ᶉOn successful enqueuing a request, the NvM module shall set

the request result of the corresponding NVRAM block to NVM_REQ_PENDING. ᶌ ()

[SWS_NvM_00270] ᶉIf the NvM module has successfully processed a job, it shall

return NVM_REQ_OK as request result. ᶌ ()

7.2.2.13 NVRAM block write protection

The NvM module shall offer different kinds of write protection which shall be
configurable. Every kind of write protection is only related to the NV part of NVRAM
block, i.e. the RAM block data can be modified but not be written to NV memory.

[SWS_NvM_00325] ᶉEnabling/Disabling of the write protection is allowed using
NvM_SetBlockProtection function when the NvMWriteBlockOnce is FALSE

regardless of the value (True/False) configured for NvMBlockWriteProt. ᶌ
(SRS_Mem_08009)

[SWS_NvM_00577] ᶉEnabling/Disabling of the write protection is not allowed using
NvM_SetBlockProtection function when the NvMWriteBlockOnce is TRUE regardless

of the value (True/False) configured for NvMBlockWriteProt. ᶌ (SRS_Mem_08009)

[SWS_NvM_00326] ᶉFor all NVRAM blocks configured with NvMBlockWriteProt =

TRUE, the NvM module shall enable a default write protection. ᶌ (SRS_Mem_08009)

[SWS_NvM_00578] ᶉThe NvM moduleôs environment can explicitly disable the write

protection using the NvM_SetBlockProtection function. ᶌ ()

[SWS_NvM_00397] ᶉFor NVRAM blocks configured with NvMWriteBlockOnce ==

TRUE [ECUC_NvM_00072], the NvM module shall only write once to the associated

NV memory, i.e in case of a blank NV device. ᶌ (SRS_Mem_08015)

[SWS_NvM_00398] ᶉFor NVRAM blocks configured with NvMWriteBlockOnce ==

TRUE, the NvM module shall not allow disabling the write protection explicitly using

the NvM_SetBlockProtection function.[SWS_NvM_00450] ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

47 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00952] For a block configured with NVM_WRITE_BLOCK_ONCE

(TRUE), NvM shall reject any Write/Erase/Invalidate request made prior to the first

read request. ()

Note: In case of a reset, the write protection flag of a block configured with
NVM_WRITE_BLOCK_ONCE (TRUE), from the NvM Administrative block, is
cleared. In order to reactivate the protection, the block must be read prior to a first
Write/Erase/Invalidate request being processed, in order to set the write proctection
only for a block that is valid and consistent. The first read request can be done either
as a single block request or as part of NvM_ReadAll.

7.2.2.14 Validation and modification of RAM block data

This chapter shall give summarized information regarding the internal handling of
NVRAM Manager status bits. Depending on different API calls, the influence on the
status of RAM blocks shall be described in addition to the specification items located
in chapter 8.1.3. The following figures depict the state transitions of RAM blocks.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

48 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

VALID / UNCHANGED

responsibil ities

may ReadAll

must not WriteAll

constraints

{RAM==NV}

INVALID /

UNCHANGED

responsibil ities

must not WriteAll

VALID / CHANGED

responsibil ities

must not ReadAll

must WriteAll

constraints

{RAM != NV}

INVALID / CHANGED

constraints

{it can never occur}

Initial

UNINITIALIZED

State is preserved until at

least one exit condition is

met

Read/ReadAll for block successful OR

Write/WriteAll for block successful

Power-On

Reset

NvM_Init

Read/ReadAll for block successful OR

Write/WriteAll for block successful

Write/WriteAll ongoing for block OR

Read/ReadAll gives default data OR

RestoreBlockDefaults performed OR

RamBlockStatus == TRUE

Erase/Invalidate successful OR

Read/ReadAll for block not successful OR

Write/WriteAll for block not successful OR

RamBlockStatus == FALSE

Write/WriteAll ongoing for block OR

Read/ReadAll gives default data OR

RestoreBlockDefaults performed OR

RamBlockStatus == TRUE

Erase/Invalidate successful OR

Read/ReadAll for block not successful OR

Write/WriteAll for block not successful OR

RamBlockStatus == FALSE

Figure 10: RAM Block States

Since entering and preserving a state can be done based on multiple conditions and
placing them all in the above figure would make it difficult to understand, more
detailed explanations are provided in the following subchapters. The INVALID /
CHANGED state is not detailed as it can never be reached (as mentioned in the
figure above).

After the Initialization the RAM Block is in state INVALID/UNCHANGED until it is
updated via NvM_ReadAll, which causes a transition to state VALID/UNCHANGED.
In this state WriteAll is not allowed. This state is left, if the NvM_SetRamBlockStatus
is invoked. If there occurs a CRC error the RAM Block changes to state INVALID
again, which than can be left via the implicit or explicit error recovery mechanisms.
After error recovery the block is in state VALID/CHANGED as the content of the RAM
differs from the NVRAM content.

[SWS_NvM_00344] ᶉ If the API for modifying the RAM block status has been
disabled in configuration (via NvMSetRamBlockStatusApi or

 Specification of NVRAM Manager
AUTOSAR CP R20-11

49 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

NvMBlockUseSetRamBlockStatus) the NvM module shall treat a RAM block or the
RAM mirror in the NvM module (in case of explicit synchronization) as valid and
changed when writing data in the corresponding NV block, i.e. during NvM_WriteAll,

the NvM module shall write each permanent RAM block to NV memory.ᶌ
(SRS_Mem_08550)

[SWS_NvM_00345] ᶉ If the API for modifying the RAM block status has been
disabled in configuration (via NvMSetRamBlockStatusApi or
NvMBlockUseSetRamBlockStatus) the NvM module shall treat a RAM block as
invalid when reading data from NV block, i.e. during NvM_ReadAll, the NvM module

shall copy each NVRAM block to RAM if configured accordingly. ᶌ
(SRS_Mem_08550)

[SWS_NvM_00696] ᶉIn case of an unsuccessful block read attempt, it is the

responsibility of the application to provide valid data before the next write attempt. ᶌ
(SRS_Mem_08550)

[SWS_NvM_00472] ᶉIn case a RAM block is successfully copied to NV memory the

RAM block state shall be set to "valid/unmodified" afterwards.ᶌ (SRS_Mem_08541)

7.2.2.14.1 The VALID / UNCHANGED state

This state implies that the contents of the RAM Block are either identical to the
contents of the corresponding NV Block or - if the application has accessed the RAM
Block - a potential change was not yet indicated. For a DATASET block these
conditions apply to he RAM contents of the instance that was last processed. Also,
the last block operation was successful and the block was not invalidated by request.

To enter the VALID / UNCHANGED state, at least of the following must occur:

1. NvM_ReadAll() read successfully the block
2. NvM_ReadBlock finished successfully for the block
3. NvM_WriteBlock finished successfully for the block
4. NvM_WriteAll() wrote successfully the block

The VALID / UNCHANGED state is preserved while:

¶ the last read or write for a BlockID was successful (no error and no retrieval of
default data)

AND

¶ the application has not indicated a potential change of RAM block since last
read or write

 Specification of NVRAM Manager
AUTOSAR CP R20-11

50 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

7.2.2.14.2 The VALID / CHANGED state

This state implies that the contents of the RAM Block potentially differ from the
contents of the corresponding NV Block. For a DATASET block this condition applies
to the RAM contents of the instance that was last processed. Also, the last operation
for the block was successsful and the block was not invalidated by request. The
block owner can signal a potential RAM contents changed for the block causing the
block state to become VALID / CHANGED.

To enter the VALID / CHANGED state, at least one of the following must occur:

1. NvM_SetRamBlockStatus called with TRUE for the block
2. NvM_WriteBlock is called for the block
3. NvM_WriteAll will also process the block
4. NvM_ReadBlock called for the block gives default data
5. NvM_RestoreBlockDefaults called for the block finishes successfully
6. NvM_ReadAll gives default data when processign the block
7. NvM_ValidateAll processed successfully the block

The VALID / CHANGED state is preserved while:

¶ a block owner has indicated a potential change of RAM block
OR

¶ default data was retrieved (implicitly or explicitly) for the block upon last read

7.2.2.14.3 The INVALID / UNCHANGED state

This state implies that the NV Block is invalid. For a DATASET block this means that
the NV Block contents are invalid for the last instance that was processed.

To enter the INVALID / UNCHANGED state, at least one of the following must occur:

1. NvM_SetRamBlockStatus called with FALSE for the block
2. NvM_ReadBlock indicates invalidation by user request for the block
3. NvM_ReadBlock indicates corrupted data (if CRC configured) for the
block
4. NvM_ReadBlock indicates wrong StaticID (if configured) for the block
5. NvM_WriteBlock finished non-successfully for the block
6. NvM_WriteAll non-successful write for the block
7. NvM_InvalidateNvBlock finished successfully for the block
8. NvM_EraseNvBlock finished successfully for the block

The INVALID / UNCHANGED state is preserved while:

¶ the block state is unknown at the time (early init, until ReadAll or first operation
requested for a given block)

OR

¶ the block was detected as corrupted or with wrong StaticID
OR

¶ the last successful operation on the block was an invalidation
OR

 Specification of NVRAM Manager
AUTOSAR CP R20-11

51 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

¶ the current read failed and no default data
OR

¶ the last successful operation on the block was an erase

7.2.2.15 Communication and implicit synchronization between application

and NVRAM manager

To minimize locking/unlocking overhead or the use of other synchronization methods,
the communication between applications and the NvM module must follow a strict
sequence of steps which is described below. This ensures a reliable communication
between applications and the NvM module and avoids data corruption in RAM blocks
and a proper synchronization is guaranteed.

This access model assumes that two parties are involved in communication with a
RAM block: The application and the NvM module.

[SWS_NvM_00697] ᶉIf several applications are using the same RAM block it is not
the job of the NvM module to ensure the data integrity of the RAM block. In this case,
the applications have to synchronize their accesses to the RAM block and have to
guarantee that no unsuitable accesses to the RAM block take place during NVRAM
operations (details see below).

Especially if several applications are sharing a NVRAM block by using (different)
temporary RAM blocks, synchronization between applications becomes more
complex and this is not handled by the NvM module, too. In case of using callbacks
as notification method, it could happen that e.g. an application gets a notification
although the request has not been initiated by this application.

All applications have to adhere to the following rules. ᶌ ()

7.2.2.15.1 Write requests (NvM_WriteBlock or NvM_WritePRAMBlock)

[SWS_NvM_00698] ᶉApplications have to adhere to the following rules during write
request for implicit synchronization between application and NVRAM manager:

1. The application fills a RAM block with the data that has to be written by the
NvM module

2. The application issues the NvM_WriteBlock or NvM_WritePRAMBlock request
which transfers control to the NvM module.

3. From now on the application must not modify the RAM block until success or
failure of the request is signaled or derived via polling. In the meantime the
contents of the RAM block may be read.

4. An application can use polling to get the status of the request or can be
informed via a callback function asynchronously.

5. After completion of the NvM module operation, the RAM block is reusable for

modifications. ᶌ (SRS_Mem_00013)

7.2.2.15.2 Read requests (NvM_ReadBlock or NvM_ReadPRAMBlock)

 Specification of NVRAM Manager
AUTOSAR CP R20-11

52 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00699] ổApplications have to adhere to the following rules during read
request for implicit synchronization between application and NVRAM manager:

1. The application provides a RAM block that has to be filled with NVRAM data
from the NvM moduleôs side.

2. The application issues the NvM_ReadBlock request which transfers control to
the NvM module.

3. From now on the application must not read or write to the RAM block until
success or failure of the request is signaled or derived via polling.

4. An application can use polling to get the status of the request or can be
informed via a callback function.

5. After completion of the NvM module operation, the RAM block is available with

new data for use by the application. ᶌ (SRS_Mem_00013)

7.2.2.15.3 Restore default requests (NvM_RestoreBlockDefaults and
NvM_RestorePRAMBlockDefaults)

[SWS_NvM_00700] ᶉApplications have to adhere to the following rules during
restore default requests for implicit synchronization between application and NVRAM
manager:

1. The application provides a RAM block, which has to be filled with ROM data
from the NvM modules side.

2. The application issues the NvM_RestoreBlockDefaults or
NvM_RestorePRAMBlockDefaults request which transfers control to the NvM
module.

3. From now on the application must not read or write to the RAM block until
success or failure of the request is signaled or derived via polling.

4. An application can use polling to get the status of the request or can be
informed via a callback function.

5. After completion of the NvM module operation, the RAM block is available with

the ROM data for use by the application. ᶌ (SRS_Mem_08548)

7.2.2.15.4 Multi block read requests (NvM_ReadAll)

This request may be triggered only by the BSW Mode Manager at system startup.
This request fills all configured permanent RAM blocks with necessary data for
startup.
If the request fails or the request is handled only partially successful, the NVRAM-
Manager signals this condition to the DEM and returns an error to the BSW Mode
Manager. The DEM and the BSW Mode Manager have to decide about further
measures that have to be taken. These steps are beyond the scope of the NvM
module and are handled in the specifications of DEM and BSW Mode Manager.

[SWS_NvM_00701] ᶉApplications have to adhere to the following rules during multi
block read requests for implicit synchronization between application and NVRAM
manager:

 Specification of NVRAM Manager
AUTOSAR CP R20-11

53 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

The BSW Mode Manager issues the NvM_ReadAll.
1. The BSW Mode Manager can use polling to get the status of the request or

can be informed via a callback function.
2. During NvM_ReadAll, a single block callback (if configured) will be invoked

after having completely processed a NVRAM block. These callbacks enable

the RTE to start each SW-C individually. ᶌ ()

7.2.2.15.5 Multi block write requests (NvM_WriteAll)

This request must only be triggered by the BSW Mode Manager at shutdown of the
system. This request writes the contents of all modified permanent RAM blocks to NV
memory. By calling this request only during ECU shutdown, the BSW Mode Manager
can ensure that no SW component is able to modify data in the RAM blocks until the
end of the operation. These measures are beyond the scope of the NvM module and
are handled in the specifications of the BSW Mode Manager.

[SWS_NvM_00702] ổApplications have to adhere to the following rules during multi
block write requests for implicit synchronization between application and NVRAM
manager:

1. The BSW Mode Manager issues the NvM_WriteAll request which transfers
control to the NvM module.

2. The BSW Mode Manager can use polling to get the status of the request or

can be informed via a callback function. ᶌ ()

7.2.2.15.6 Cancel Operation (NvM_CancelWriteAll)

This request cancels a pending NvM_WriteAll request. This is an asynchronous
request and can be called to terminate a pending NvM_WriteAll request.

[SWS_NvM_00703] ổNvM_CancelWriteAll request shall only be used by the BSW

Mode Manager. Ộ ()

7.2.2.15.7 Modification of administrative blocks

For administrative purposes an administrative block is part of each configured
NVRAM block (ref. to ch. 7.1.3.4).

[SWS_NvM_00704] ổIf there is a pending single-block operation for a NVRAM block,
the application is not allowed to call any operation that modifies the administrative
block, like NvM_SetDataIndex, NvM_SetBlockProtection, NvM_SetRamBlockStatus,

until the pending job has finished. Ộ ()

7.2.2.16 Normal and extended runtime preparation of NVRAM blocks

 Specification of NVRAM Manager
AUTOSAR CP R20-11

54 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

This subchapter is supposed to provide a short summary of normal and extended
runtime preparation of NVRAM blocks. The detailed behavior regarding the handling
of NVRAM blocks during start-up is specified in chapter 8.1.3.3.1.
Depending on the two configuration parameters NvMDynamicConfiguration and
NvMResistantToChangedSw the NVRAM Manager shall behave in different ways
during start-up, i.e. while processing the request NvM_ReadAll().
If NvMDynamicConfiguration is set to FALSE, the NVRAM Manager shall ignore the
stored configuration ID (see SWS_NvM_00034) and continue with the normal
runtime preparation of NVRAM blocks. In this case the RAM block shall be checked
for its validity. If the RAM block content is detected to be invalid the NV block shall be
checked for its validity. A NV block which is detected to be valid shall be copied to its
assigned RAM block. If an invalid NV Block is detected default data shall be loaded.
If NvMDynamicConfiguration is set to TRUE and a configuration ID mismatch is
detected, the extended runtime preparation shall be performed for those NVRAM
blocks which are configured with NvMResistantToChangedSw(FALSE). In this case
default data shall be loaded independent of the validity of an assigned RAM or NV
block.

7.2.2.17 Communication and explicit synchronization between application

and NVRAM manager

In contrast to the implicit synchronization between the application and the NvM
module (see section 7.2.2.15) an optional (i.e. configurable) explicit synchronization
mechanism is available. It is realized by a RAM mirror in the NvM module. The data
is transferred by the application in both directions via callback routines, called by the
NvM module.

Here is a short analysis of this mechanism:

- The advantage is that applications can control their data in a better way. They
are responsible for copying consistent data to and from the NvM moduleôs
RAM mirror, so they know the point in time. The RAM block is never in an
inconsistent state due to concurrent accesses.

- The drawbacks are the additional RAM which needs to have the same size as
the largest NVRAM block that uses this mechanism and the necessity of an
additional copy between two RAM locations for every operation.

This mechanism especially enables the sharing of NVRAM blocks by different
applications, if there is a module that synchronizes these applications and is the
owner of the NVRAM block from the NvM moduleôs perspective.

[SWS_NvM_00511] ᶉFor every NVRAM block there shall be the possibility to
configure the usage of an explicit synchronization mechanism by the parameter

NvMBlockUseSyncMechanism. ᶌ ()

[SWS_NvM_00512] ᶉThe NvM module must not allocate a RAM mirror if no block is

configured to use the explicit synchronization mechanism. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

55 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00513] ᶉThe NvM module shall allocate only one RAM mirror if at least
one block is configured to use the explicit synchronization mechanism. This RAM
mirror must not exceed the size of the longest NVRAM block configured to use the

explicit synchronization mechanism. ᶌ ()

[SWS_NvM_00514] ᶉThe NvM module shall use the internal mirror as buffer for all
operations that read and write the RAM block of those NVRAM blocks with
NvMBlockUseSyncMechanism == TRUE. The buffer must not be used for the other

NVRAM blocks. ᶌ ()

[SWS_NvM_00515] ᶉThe NvM module shall call the routine
NvMWriteRamBlockToNvCallback in order to copy the data from the RAM block to
the mirror for all NVRAM blocks with NvMBlockUseSyncMechanism == TRUE. This

routine must not be used for the other NVRAM blocks. ᶌ ()

[SWS_NvM_00516] ᶉThe NvM module shall call the routine
NvMReadRamBlockFromNvCallback in order to copy the data from the mirror to the
RAM block for all NVRAM blocks with NvMBlockUseSyncMechanism == TRUE. This

routine must not be used for the other NVRAM blocks. ᶌ ()

[SWS_NvM_00517] ᶉDuring a single block request if the routines
NvMReadRamBlockFromNvCallback return E_NOT_OK, then the NvM module shall
retry the routine call NvMRepeatMirrorOperations times. Thereafter the single block
read job shall set the block specific request result to NVM_REQ_NOT_OK and shall

report NVM_E_REQ_FAILED to the DEM. ᶌ ()

[SWS_NvM_00839] In the case the NvMReadRamBlockFromNvCallback routine

returns E_NOT_OK, the NvM module shall retry the routine call in the next call of the

NvM_MainFunction. ()

[SWS_NvM_00579] ᶉDuring a single block request if the routines
NvMWriteRamBlockToNvCallback return E_NOT_OK, then the NvM module shall
retry the routine call NvMRepeatMirrorOperations times. Thereafter the single block
write job shall set the block specific request result to NVM_REQ_NOT_OK and shall

report NVM_E_REQ_FAILED to the DEM. ᶌ ()

[SWS_NvM_00840] In the case the NvMWriteRamBlockToNvCallback routine

returns E_NOT_OK, the NvM module shall retry the routine call in the next call of the

NvM_MainFunction. ()

[SWS_NvM_00837] During a multi block request (NvM_WriteAll) if the routines

NvMWriteRamBlockToNvCallback return E_NOT_OK, then the NvM module shall
retry the routine call NvMRepeatMirrorOperations times. Thereafter the job of the

 Specification of NVRAM Manager
AUTOSAR CP R20-11

56 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

function NvM_WriteAll shall set the block specific request result to

NVM_REQ_NOT_OK and shall report NVM_E_REQ_FAILED to the DEM. ()

[SWS_NvM_00838] ổ During a multi block request (NvM_ReadAll) if the routines
NvMReadRamBlockFromNvCallback return E_NOT_OK, then the NvM module shall
retry the routine call NvMRepeatMirrorOperations times. Thereafter the job of the
function NvM_ReadAll shall set the block specific request result to

NVM_REQ_NOT_OK and shall report NVM_E_REQ_FAILED to the DEM. ᶌ ()

[SWS_NvM_00904] ổIf a block has explicit synchronization configured for it then it

must not have a permanent RAM image configured. ᶌ (SRS_Mem_08534)

The following two sections clarify the differences when using the explicit
synchronization mechanism, compare to 7.2.2.15.1 and 7.2.2.15.2.

7.2.2.17.1 Write requests (NvM_WriteBlock or NvM_WritePRAMBlock)

[SWS_NvM_00705] ổApplications have to adhere to the following rules during write
request for explicit synchronization between application and NVRAM manager:

1. The application fills a RAM block with the data that has to be written by the
NvM module.

2. The application issues the NvM_WriteBlock or NvM_WritePRAMBlock
request.

3. The application might modify the RAM block until the routine
NvMWriteRamBlockToNvCallback is called by the NvM module.

4. If the routine NvMWriteRamBlockToNvCallback is called by the NvM module,
then the application has to provide a consistent copy of the RAM block to the
destination requested by the NvM module.
The application can use the return value E_NOT_OK in order to signal that
data was not consistent. The NvM module will accept this
NvMRepeatMirrorOperations times and then postpones the request and
continues with its next request.

5. Continuation only if data was copied to the NvM module:
6. From now on the application can read and write the RAM block again.
7. An application can use polling to get the status of the request or can be

informed via a callback routine asynchronously.
Note: The application may combine several write requests to different positions in
one RAM block, if NvM_WriteBlock or NvM_WritePRAMBlock was requested, but not
yet processed by the NvM module. The request was not processed, if the callback

routine NvMWriteRamBlockToNvCallback was not called. ᶌ ()

7.2.2.17.2 Read requests (NvM_ReadBlock or NvM_ReadPRAMBlock)

[SWS_NvM_00706] ổApplications have to adhere to the following rules during read
request for explicit synchronization between application and NVRAM manager:

1. The application provides a RAM block that has to be filled with NVRAM data
from the NvM moduleôs side.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

57 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

2. The application issues the NvM_ReadBlock or NvM_ReadPRAMBlock request.
3. The application might modify the RAM block until the routine

NvMReadRamBlockFromNvCallback is called by the NvM module.
4. If the routine NvMReadRamBlockFromNvCallback is called by the NvM module,

then the application copy the data from the destination given by the NvM
module to the RAM block.The application can use the return value
E_NOT_OK in order to signal that data was not copied. The NvM module will
accept this NvMRepeatMirrorOperations times and then postpones the
request and continues with its next request.

5. Continuation only if data was copied from the NvM module:
6. Now the application finds the NV block values in the RAM block.
7. The application can use polling to get the status of the request or can be

informed via a callback routine.
Note: The application may combine several read requests to different positions in
one NV block, if NvM_ReadBlock or NvM_ReadPRAMBlock was requested, but not
yet processed by the NvM module. The request was not processed, if the callback
routine NvMReadRamBlockFromNvCallback was not called.
Note: NvM_RestoreBlockDefaults and NvM_RestorePRAMBlockDefaults works

similarly to NvM_ReadBlock. ᶌ ()

7.2.2.17.3 Multi block read requests (NvM_ReadAll)

This request may be triggered only by the BSW Mode Manager at system startup.
This request fills all configured permanent RAM blocks with necessary data for
startup.

If the request fails or the request is handled only partially successful, the NVRAM-
Manager signals this condition to the DEM and returns an error to the BSW Mode
Manager. The DEM and the BSW Mode Manager have to decide about further
measures that have to be taken. These steps are beyond the scope of the NvM
module and are handled in the specifications of DEM and BSW Mode Manager.

Normal operation:

1. The BSW Mode Manager issues the NvM_ReadAll .

2. The BSW Mode Manager can use polling to get the status of the request or

can be informed via a callback function.

3. During NvM_ReadAll job, if a synchronization callback

(NvM_ReadRamBlockFromNvm) is configured for a block it will be called by
the NvM module. In this callback the application shall copy the data from the
destination given by the NvM module to the RAM block.The application can
use the return value E_NOT_OK in order to signal that data was not copied.
The NvM module will accept this NvMRepeatMirrorOperations times and then
report the read operation as failed.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

58 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

4. Now the application finds the NV block values in the RAM block if the read
operation was successful.

5. During NvM_ReadAll , a single block callback (if configured) will be invoked

after having completely processed a NVRAM block. These callbacks enable
the RTE to start each SW-C individually.

6. After processing of the last block and calling its single block callback (if
configured), the multi block callback (if configured) will be invoked.

7.2.2.17.4 Multi block write requests (NvM_WriteAll)

This request must only be triggered by the BSW Mode Manager at shutdown of the
system. This request writes the contents of all modified permanent RAM blocks to NV
memory. By calling this request only during ECU shutdown, the BSW Mode Manager
can ensure that no SW component is able to modify data in the RAM blocks until the
end of the operation. These measures are beyond the scope of the NvM module and
are handled in the specifications of the BSW Mode Manager.

Normal operation:

1. The BSW Mode Manager issues the NvM_WriteAll request which transfers

control to the NvM module.

2. During NvM_WriteAll job, if a synchronization callback

(NvM_WriteRamBlockToNvM) is configured for a block it will be called by the
NvM module. In this callback the application has to provide a consistent copy
of the RAM block to the destination requested by the NvM module.
The application can use the return value E_NOT_OK in order to signal that
data was not consistent. The NvM module will accept this
NvMRepeatMirrorOperations times and then report the write operation as
failed.

3. Now the application can read and write the RAM block again.

4. The BSW Mode Manager can use polling to get the status of the request or
can be informed via a callback function.

7.2.2.18 Static Block ID Check

Note: NVRAM Manager stores the NV Block Header including the Static Block ID in
the NV Block each time the block is written to NV memory. When a block is read, its
Static Block ID is compared to the requested block ID. This permits to detect
hardware failures which cause a wrong block to be read.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

59 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00523] ᶉThe NVRAM Manager shall store the Static Block ID field of the

Block Header each time the block is written to NV memory. ᶌ (SRS_Mem_08555)

[SWS_NvM_00524] The NVRAM Manager shall check the Block Header each time

the block is read from NV memory. (SRS_Mem_08555)

[SWS_NvM_00525] If the Static Block ID check fails then the failure

NVM_E_WRONG_BLOCK_ID is reported to DEM. ()

[SWS_NvM_00580] ᶉIf the Static Block ID check fails then the read error recovery is
initiated.
Hint: A check shall be made during configuration to ensure that all Static Block IDs

are unique. ᶌ ()

7.2.2.19 Read Retry

[SWS_NvM_00526] ᶉIf the NVRAM manager detects a failure during a read
operation from NV memory, a CRC error then one or more additional read attempts
shall be made, as configured by NVM_MAX_NUM_OF_READ_RETRIES, before

continuing to read the redundant NV Block. ᶌ (SRS_Mem_08554)

[SWS_NvM_00581] ᶉIf the NVRAM manager detects a failure during a read
operation from NV memory, a CRC error then one or more additional read attempts
shall be made, as configured by NVM_MAX_NUM_OF_READ_RETRIES, before

continuing to read the ROM Block. ᶌ (SRS_Mem_08554)

[SWS_NvM_00582] ᶉIf the NVRAM manager detects a failure during a read
operation from NV memory, a Static Block ID check then one or more additional read
attempts shall be made, as configured by NVM_MAX_NUM_OF_READ_RETRIES,

before continuing to read the redundant NV Block. ᶌ (SRS_Mem_00129)

[SWS_NvM_00583] ᶉIf the NVRAM manager detects a failure during a read
operation from NV memory, a Static Block ID check then one or more additional read
attempts shall be made, as configured by NVM_MAX_NUM_OF_READ_RETRIES,

before continuing to read the ROM Block. ᶌ ()

7.2.2.20 Write Verification

When a RAM Block is written to NV memory the NV block shall be immediately read
back and compared with the original content in RAM Block if the behaviour is
enabled by NVM_WRITE_VERIFICATION.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

60 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00527] ᶉComparison between original content in RAM Block and the
block read back shall be performed in steps so that the number of bytes read and
compared is not greater than as specified by the configuration parameter

NVM_WRITE_VERIFICATION_DATA_SIZE. ᶌ (SRS_Mem_08554,
SRS_Mem_08556)

[SWS_NvM_00528] If the original content in RAM Block is not the same as read

back then the production code error NVM_E_VERIFY_FAILED shall be reported to

DEM. (SRS_Mem_08556)

[SWS_NvM_00529] If the original content in RAM Block is not the same as read

back then write retries shall be performed as specified in this document. (

SRS_Mem_08554, SRS_Mem_08556)

[SWS_NvM_00530] ᶉIf the read back operation fails then no read retries shall be

performed. ᶌ ()

[SWS_NvM_00897] ᶉIf the original content in RAM Block is not the same as read
back, for the initial write attempt as well as for all the configured retries, then NvM

shall set as request result NVM_REQ_NOT_OK. ᶌ (SRS_Mem_00017,
SRS_Mem_08554, SWS_NvM_08541, SRS_Mem_00030, SRS_Mem_08556)

7.2.2.21 Comparing NV data in NvM

In order to avoid unnecessary write operations in NV memory, if the NV data of a
specific RAM Block was not updated during runtime, the NvM module offers a CRC
based compare mechanism which can be applied while processing a write job.

[SWS_NvM_00849] ổThe NvM module shall provide an option to skip writing of
unchanged data by implementing a CRC based compare mechanism.Ộ
(SRS_Mem_00136)

Note: In general, there is a risk that some changed content of an RAM Block leads to
the same CRC as the initial content so that an update might be lost if this option is
used. Therefore this option should be used only for blocks where this risk can be
tolerated.

[SWS_NvM_00850] ổFor every NVRAM Block there shall be the possibility to
configure the usage of the CRC based compare mechanism by the parameter
NvMBlockUseCRCCompMechanism if the parameter NvMBlockUseCrc is set to
true.Ộ (SRS_Mem_00136)

 Specification of NVRAM Manager
AUTOSAR CP R20-11

61 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

7.2.2.22 NvM and BswM interaction

[SWS_NvM_00745] ᶉ The NvM shall use the BswM API
BswM_NvM_CurrentJobMode() when it needs to inform the BswM about a multiblock

request state change. ᶌ ()

[SWS_NvM_00950] ᶉ If NvMBswMMultiBlockJobStatusInformation is true, the NvM

shall not call the configured multiblock callback. ᶌ ()

[SWS_NvM_00746] ᶉ The NvM shall use the BswM API
BswM_NvM_CurrentBlockMode() when it needs to inform the BswM about a single

block request acceptance (as being pending) and result. ᶌ ()

[SWS_NvM_00888] ᶉIf NvMBswMMultiBlockJobStatusInformation is true, when NvM
accepts a multiblock operation the NvM shall inform the BswM about the accepted
multiblock operation as being pending, by calling the BswM_NvM_CurrentJobMode

with the related multiblock request type and, as mode, NVM_REQ_PENDING.ᶌ
(SRS_MEM_00020, SRS_MEM_00136, SRS_MEM_08535, SRS_MEM_08533)

[SWS_NvM_00889] ᶉIf NvMBswMMultiBlockJobStatusInformation is true, when a
multiblock operation finishes or is canceled the NvM shall inform the BswM about the
result of the multiblock operation, by calling the BswM_NvM_CurrentJobMode with
the related multiblock request type and, as mode, the outcome of the multiblock

operation. ᶌ (SRS_MEM_00020, SRS_MEM_00136, SRS_MEM_08535,
SRS_MEM_08533)

[SWS_NvM_00890] ᶉIf NvMBswMBlockStatusInformation is true, when NvM accepts
a single block operation the NvM shall inform the BswM about the accepted single
block operation as being pending, by calling the BswM_NvM_CurrentBlockMode with

the related Block ID and, as mode, NVM_REQ_PENDING.ᶌ (SRS_MEM_00125,
SRS_MEM_00020)

[SWS_NvM_00891] ᶉIf NvMBswMBlockStatusInformation is true, when a single
block operation finishes or is canceled the NvM shall inform the BswM about the
result of the single block operation, by calling the BswM_NvM_CurrentBlockMode

with the related Block ID and, as mode, the outcome of the singleblock operation. ᶌ
(SRS_MEM_00125, SRS_MEM_00020)

[SWS_NvM_00892] ᶉIf NvMBswMBlockStatusInformation is true and NvM has a
multiblock operation ongoing, for each block processed due to the multiblock
operation, NvM shall inform the BswM when it starts to process the block, as being
pending, by calling the BswM_NvM_CurrentBlockMode with the related Block ID and,

as mode, NVM_REQ_PENDING. ᶌ (SRS_MEM_00125, SRS_MEM_00020)

 Specification of NVRAM Manager
AUTOSAR CP R20-11

62 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00949] ᶉ If NvMBswMBlockStatusInformation is true and NvM has a
multiblock operation ongoing, for each block processed due to the multiblock
operation, NvM shall inform the BswM about the result of the processing of the block
when the block is finished processing, by calling the BswM_NvM_CurrentBlockMode

with the related Block ID and, as mode, the outcome of the singleblock operation. ᶌ
(SRS_MEM_00125, SRS_MEM_00020)

7.2.2.23 NvM behaviour in case of Block locked

 The NvM_SetBlockLockStatus API service shall only be usable by BSW
Components, it is not published as Service in the SWC-Description. Thus it will not
be accessible via RTE.

 [SWS_NvM_00751] ᶉ If the function NvM_SetBlockLockStatus was called with the
parameter BlockLocked as TRUE, the NvM shall guarantee that the NV contents
associated to the NVRAM block identified by BlockId, will not be modified by any
request. The Block shall be skipped during NvM_WriteAll, other requests, that are
NvM_WriteBlock, NvM_WritePRAMBlock, NvM_InvalidateNvBlock,

NvM_EraseNvBlock, shall be rejected.ᶌ ()

[SWS_NvM_00752] ᶉ If the function NvM_SetBlockLockStatus was called with the
parameter BlockLocked as TRUE, the NvM shall guarantee that at next start-up,
during processing of NvM_ReadBlock or NvM_ReadPRAMBlock, this NVRAM block

shall be loaded from NV memory. ᶌ ()

[SWS_NvM_00753] ᶉ If the function NvM_SetBlockLockStatus was called with the
parameter BlockLocked as FALSE, the NvM shall guarantee normal processing of

this NVRAM block as specified by AUTOSAR. ᶌ ()

[SWS_NvM_00754] ᶉ The BlockLocked setting made using the function
NvM_SetBlockLockStatus shall not be changeable by NvM_SetRamBlockStatus, nor

by NvM_SetBlockProtection. ᶌ ()

7.2.2.23.1 Use Case

Save new Data for an NVRAM block via diagnostic services into NV memory. These
data shall be made available to the SW-C(s) with next ECU start-up, i.e. they shall
neither be overwritten by a request originating from an SW-C, nor be overwritten with

permanent RAM blockôs data during shut-down (NvM_WriteAll).

7.2.2.23.2 Usage (by DCM):

 Specification of NVRAM Manager
AUTOSAR CP R20-11

63 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

1. DCM requests NvM_SetBlo ckLockStatus(<BlockId>, FALSE) , in order

to re-enable writing to this block. (It might be locked by executing this
procedure before).

2. DCM requests NvM_WriteBlock(<blockId>, <DataBuffer>)

3. DCM polls for completion of write request (using NvM_GetErrorStatus())

4. On success (NVM_REQ_OK), the DCM issues

NvM_SetBlockLockStatus(<BlockId>, TRUE) .

7.2.2.24 Block Compression

The block data is compressed before it is written to NV memory. The type of
compression (block split, compression, delta) is vendor-specific.
The use-case is for larger data blocks with changes of only smaller junks (like drive-
cycle logging). The goal is that not the whole block needs to be written to NV memory
to reduce the overall write-cycles.
The block split would divide the block in multiple sub-blocks and only the changed
sub-blocks would be written. Alternatively, only the changed delta could be written.
Anyway, any data compression algorithm could be used.
The drawback is always a higher runtime for writing or reading the data.

[SWS_NvM_00966] DRAFT In case the NvMBlockUseCompression is set to true, the

NvM shall compress the stored data in NV memory. ()

7.2.2.25 Block Ciphering

For security purposes NvM supports synchronous encryption and decryption via
CSM module using symmetric 16 byte aligned algorithms, e.g. AES128.
The user always works with plain data, the NV RAM stores the ciphered data:
> Write data: NvM encrypts the plain user data and then forwards the ciphered data
to the device.
> Read data: NvM reads the ciphered data from device, decrypts the data and finally
provides the plain data to the user.
To check the integrity of the ciphered data a CRC can be configured (as usual). NvM
will then calculate the CRC over encrypted data and recalculate and check the CRC
before decryption: the CRC always matches the ciphered data.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

64 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00976] ᶉ In case NvMBlockCipheringRef is given, the NvM shall before
forwarding the write request to MemIf encrypt the plain data using Csm_Encrypt()
with the CSM job given in NvMCsmEncryptionJobReference.
The CRC calculation (if configured) shall be done over the encrypted data.

ᶌ ()

[SWS_NvM_00977] ᶉ In case Csm_Encrypt() returns a CRYPTO_E_BUSY, the NvM
shall retry to redo the job. After NvMCsmRetryCounter times of retry the NvM shall
abort the write job and set the NvM result to NVM_REQ_NOT_OK and signal an

error via NvM_JobErrorNotification().Ộ ()

[SWS_NvM_00978] ổ In case Csm_Encrypt() returns any other error than
CRYPTO_E_BUSY or CRYPTO_E_OK, the NvM shall abort the write job and set the
NvM result to NVM_REQ_NOT_OK and signal an error via NvM_JobError
Notification().Ộ ()

[SWS_NvM_00979] ᶉ In case Csm_Encrypt() returns successfully with
CRYPTO_E_OK, the NvM shall continue the write job (e.g. with the CRC calculation)

with the new length given in NvMNvBlockNVRAMDataLength.
In case of the returned length in resultLengthPtr is different to the
NvMNvBlockNVRAMDataLength the development error NVM_E_BLOCK_

CHIPHER_LENGTH_MISSMATCH shall be triggerd. ᶌ ()

[SWS_NvM_00980] ᶉ In case NvMBlockCipheringRef is given, the NvM shall before
forwarding the read request to application decrypt the stored data using
Csm_Decrypt() with the CSM job given in NvMCsmDecryptionJobReference.
The CRC check (if configured) shall be done over the encrypted data.
If the CRC does not match, NvM will not decrypt the data but abort the job with
NVM_REQ_INTEGRITY_FAILED.

ᶌ ()

[SWS_NvM_00981] ᶉ In case Csm_Decrypt() returns a CRYPTO_E_BUSY, the NvM
shall retry to redo the job. After NvMCsmRetryCounter times of retry the NvM shall
abort the read job and set the NvM result to NVM_REQ_NOT_OK and signal an error

via NvM_JobErrorNotification() .ᶌ ()

[SWS_NvM_00982] ᶉ In case Csm_Decrypt() returns any other error than
CRYPTO_E_BUSY or CRYPTO_E_OK, the NvM shall abort the read job and set the
NvM result to NVM_REQ_NOT_OK and signal an error via NvM_JobError
Notification().Ộ ()

[SWS_NvM_00983] ᶉ In case Csm_Decrypt() returns successfully with
CRYPTO_E_OK, the NvM shall continue the read job with the new length given in

NvMNvBlockLength.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

65 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

In case of the returned length in resultLengthPtr is different to the
NvMNvBlockLength the development error NVM_E_BLOCK_

CHIPHER_LENGTH_MISSMATCH shall be triggerd. ᶌ ()

7.3 Error Classification

7.3.1 Development Errors

[SWS_NvM_91004]ổ

Type of error Related error code
Error
value

API is called with wrong parameter block ID
NVM_E_PARAM_
BLOCK_ID

0x0A

API is called with wrong parameter block data
NVM_E_PARAM_
BLOCK_DATA_IDX

0x0C

API is called with wrong parameter address
NVM_E_PARAM_
ADDRESS

0x0D

API is called with wrong parameter data
NVM_E_PARAM_
DATA

0x0E

API is called with wrong parameter pointer
NVM_E_PARAM_
POINTER

0x0F

API is called for a block without defaults when either the NvM_
RestoreBlockDeafults or NvM_RestorePRAMBlockDefaults is
called for a valid block ID that has no default data and no NvMInit
BlockCallback configured for the block

NVM_E_BLOCK_
WITHOUT_
DEFAULTS

0x11

API is called when NVRAM manager is not initialized yet NVM_E_UNINIT 0x14

read/write/control API is called for a block which is already listed
or in progress

NVM_E_BLOCK_
PENDING

0x15

Service is not possible with this block configuration
NVM_E_BLOCK_
CONFIG

0x18

write API is called for a block which RAM block is locked
NVM_E_BLOCK_
LOCKED

0x19

write/erase/invalidate API is called for a block with MVM_WRITE_
BLOCK_ONCE (TRUE) prior to the first read request for that
block

NVM_E_WRITE_
ONCE_STATUS_
UNKNOWN

0x1A

The length resulting from encryption or decription do not match
with the given length in the configuration.

NVM_E_BLOCK_
CHIPHER_LENGTH_
MISSMATCH

0x1B

Ộ(SRS_BSW_00385, SRS_BSW_00386, SRS_BSW_00406, SRS_BSW_00337,

 Specification of NVRAM Manager
AUTOSAR CP R20-11

66 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

SRS_BSW_00327, SRS_BSW_00331) (SRS_BSW_00385, SRS_BSW_00386,
SRS_BSW_00406, SRS_BSW_00337, SRS_BSW_00327)

[SWS_NvM_00961] The development error NVM_E_WRITE_PROTECTED (0x1B)

shall be detectable by the NvM module when a write attempt to a NVRAM block with
write protection (which write protection can be either configured or set by explicit

request) occurs. ()

[SWS_NvM_00027] ổIf development error detection is enabled for NvM module, the
function NvM_SetDataIndex shall report the DET error NVM_E_UNINIT when NVM is
not yet initialized. Ộ (SRS_BSW_00323, SRS_BSW_00385, SRS_BSW_00386,
SRS_BSW_00406, SRS_BSW_00327, SRS_BSW_00331)

[SWS_NvM_00598] ổIf development error detection is enabled for NvM module, the
function NvM_SetDataIndex shall report the DET error NVM_E_BLOCK_PENDING

when NVRAM block identifier is already queued or currently in progress. Ộ ()

[SWS_NvM_00599] ổIf development error detection is enabled for NvM module, the
function NvM_SetDataIndex shall report the DET error
NVM_E_PARAM_BLOCK_DATA_IDX when DataIndex parameter exceeds the total
number of configured datasets (Check: [SWS_NvM_00444, [SWS_NvM_00445). Ộ ()

[SWS_NvM_00601] ổIf development error detection is enabled for NvM module, the
function NvM_SetDataIndex shall report the DET error NVM_E_PARAM_BLOCK_ID
when the passed BlockID is out of range. Ộ ()

[SWS_NvM_00602] ổIf development error detection is enabled for NvM module, the
function NvM_GetDataIndex shall report the DET error NVM_E_UNINIT when NVM

not yet initialized. Ộ ()

[SWS_NvM_00604] ổIf development error detection is enabled for NvM module, the
function NvM_GetDataIndex shall report the DET error NVM_E_PARAM_BLOCK_ID
when the passed BlockID is out of range. Ộ ()

[SWS_NvM_00605] ổIf development error detection is enabled for NvM module, the
function NvM_GetDataIndex shall report the DET error NVM_E_PARAM_DATA
when a NULL pointer is passed via the parameter DataIndexPtr. Ộ ()

[SWS_NvM_00606] ổIf development error detection is enabled for NvM module, the
function NvM_SetBlockProtection shall report the DET error NVM_E_UNINIT when
NVM is not yet initialized. Ộ ()

[SWS_NvM_00607] ổIf development error detection is enabled for NvM module, the
function NvM_SetBlockProtection shall report the DET error
NVM_E_BLOCK_PENDING when NVRAM block identifier is already queued or

currently in progress. Ộ ()

[SWS_NvM_00608] ổIf development error detection is enabled for NvM module, the
function NvM_SetBlockProtection shall report the DET error

 Specification of NVRAM Manager
AUTOSAR CP R20-11

67 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

NVM_E_BLOCK_CONFIG when the NVRAM block is configured with

NvMWriteBlockOnce = TRUE. Ộ ()

[SWS_NvM_00609] ổIf development error detection is enabled for NvM module, the
function NvM_SetBlockProtection shall report the DET error
NVM_E_PARAM_BLOCK_ID when the passed BlockID is out of range. Ộ ()

[SWS_NvM_00759] ổIf development error detection is enabled for NvM module, the
function NvM_SetBlockProtection shall report the DET error
NVM_E_BLOCK_LOCKED when the block is locked. Ộ ()

[SWS_NvM_00610] ổIf development error detection is enabled for NvM module, the
function NvM_GetErrorStatus shall report the DET error NVM_E_UNINIT when NVM
is not yet initialized. Ộ ()

[SWS_NvM_00611] ổIf development error detection is enabled for NvM module, the
function NvM_GetErrorStatus shall report the DET error
NVM_E_PARAM_BLOCK_ID when the passed BlockID is out of range. Ộ ()

[SWS_NvM_00612] ổIf development error detection is enabled for NvM module, the
function NvM_GetErrorStatus shall report the DET error NVM_E_PARAM_DATA

when a NULL pointer is passed via the parameter RequestResultPtr. Ộ ()

[SWS_NvM_00613] ổIf development error detection is enabled for NvM module, the
function NvM_GetVersionInfo shall report the DET error NVM_E_PARAM_POINTER
when a NULL pointer is passed via the parameter versioninfo. Ộ ()

[SWS_NvM_00614] ổIf development error detection is enabled for NvM module, the
function NvM_ReadBlock shall report the DET error NVM_E_UNINIT when NVM is
not yet initialized. Ộ ()

[SWS_NvM_00615] ổIf development error detection is enabled for NvM module, the
function NvM_ReadBlock shall report the DET error NVM_E_BLOCK_PENDING
when NVRAM block identifier is already queued or currently in progress. Ộ ()

[SWS_NvM_00616] ổIf development error detection is enabled for NvM module, the
function NvM_ReadBlock shall report the DET error NVM_E_PARAM_ADDRESS
when no permanent RAM block and no explicit synchronization are configured and a
NULL pointer is passed via the parameter NvM_DstPtr. Ộ ()

[SWS_NvM_00618] ổIf development error detection is enabled for NvM module, the
function NvM_ReadBlock shall report the DET error NVM_E_PARAM_BLOCK_ID
when the passed BlockID is out of range. Ộ ()

[SWS_NvM_00823] ổIf development error detection is enabled for NvM module, the
function NvM_ReadPRAMBlock shall report the DET error NVM_E_UNINIT when
NVM is not yet initialized. Ộ ()

[SWS_NvM_00824] ổIf development error detection is enabled for NvM module, the
function NvM_ReadPRAMBlock shall report the DET error

 Specification of NVRAM Manager
AUTOSAR CP R20-11

68 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

NVM_E_BLOCK_PENDING when NVRAM block identifier is already queued or

currently in progress. Ộ ()

[SWS_NvM_00825] ổIf development error detection is enabled for NvM module, the
function NvM_ReadPRAMBlock shall report the DET error
NVM_E_PARAM_ADDRESS when no permanent RAM block and no explicit
synchronization are configured, for the received block ID. Ộ (SRS_Mem_00016,
SRS_Mem_00038)

[SWS_NvM_00826] ổIf development error detection is enabled for NvM module, the
function NvM_ReadPRAMBlock shall report the DET error
NVM_E_PARAM_BLOCK_ID when the passed BlockID is out of range. Ộ ()

[SWS_NvM_00619] ổIf development error detection is enabled for NvM module, the
function NvM_WriteBlock shall report the DET error NVM_E_UNINIT when NVM not

yet initialized. Ộ ()

[SWS_NvM_00620] ổIf development error detection is enabled for NvM module, the
function NvM_WriteBlock shall report the DET error NVM_E_BLOCK_PENDING
when NVRAM block identifier is already queued or currently in progress. Ộ ()

[SWS_NvM_00622] ổIf development error detection is enabled for NvM module, the
function NvM_WriteBlock shall report the DET error NVM_E_PARAM_ADDRESS
when no permanent RAM block and no explicit synchronization are configured and a
NULL pointer is passed via the parameter NvM_SrcPtr. Ộ (SRS_Mem_00017,
SRS_Mem_08541)

[SWS_NvM_00624] ổIf development error detection is enabled for NvM module, the
function NvM_WriteBlock shall report the DET error NVM_E_PARAM_BLOCK_ID
when the passed BlockID is out of range. Ộ ()

[SWS_NvM_00748] ổIf development error detection is enabled for NvM module, the
function NvM_WriteBlock shall report the DET error NVM_E_BLOCK_LOCKED when
the block is locked. Ộ (SRS_Mem_08541, SRS_Mem_00127, SRS_Mem_00038)

[SWS_NvM_00827] ổIf development error detection is enabled for NvM module, the
function NvM_WritePRAMBlock shall report the DET error NVM_E_UNINIT when
NVM not yet initialized. Ộ ()

[SWS_NvM_00828] ổIf development error detection is enabled for NvM module, the
function NvM_WritePRAMBlock shall report the DET error
NVM_E_BLOCK_PENDING when NVRAM block identifier is already queued or
currently in progress. Ộ ()

[SWS_NvM_00893] ổIf development error detection is enabled for NvM module, the
function NvM_WritePRAMBlock shall report the DET error
NVM_E_PARAM_ADDRESS when no permanent RAM block and no explicit
synchronization are configured. Ộ (SRS_Mem_00018, SRS_Mem_08548)

 Specification of NVRAM Manager
AUTOSAR CP R20-11

69 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00829] ổIf development error detection is enabled for NvM module, the
function NvM_WritePRAMBlock shall report the DET error
NVM_E_PARAM_BLOCK_ID when the passed BlockID is out of range. Ộ ()

[SWS_NvM_00830] ổIf development error detection is enabled for NvM module, the
function NvM_WritePRAMBlock shall report the DET error
NVM_E_BLOCK_LOCKED when the block is locked. Ộ ()

[SWS_NvM_00625] ổIf development error detection is enabled for NvM module, the
function NvM_RestoreBlockDefaults shall report the DET error NVM_E_UNINIT
when NVM is not yet initialized. Ộ ()

[SWS_NvM_00626] ổIf development error detection is enabled for NvM module, the
function NvM_RestoreBlockDefaults shall report the DET error
NVM_E_BLOCK_PENDING when NVRAM block identifier is already queued or
currently in progress. Ộ ()

[SWS_NvM_00894] ổIf development error detection is enabled for NvM module, the
function NvM_RestorePRAMBlockDefaults shall report the DET error
NVM_E_PARAM_ADDRESS when no permanent RAM block and no explicit
synchronization are configured. Ộ (SRS_Mem_00018, SRS_Mem_08548)

[SWS_NvM_00629] ổIf development error detection is enabled for NvM module, the
function NvM_RestoreBlockDefaults shall report the DET error
NVM_E_PARAM_ADDRESS when no permanent RAM block and no explicit
synchronization are configured and a NULL pointer is passed via the parameter
NvM_DstPtr. Ộ (SRS_Mem_00016, SRS_Mem_08548)

[SWS_NvM_00630] ổIf development error detection is enabled for NvM module, the
function NvM_RestoreBlockDefaults shall report the DET error
NVM_E_PARAM_BLOCK_ID when the passed BlockID is out of range. Ộ ()

[SWS_NvM_00831] ổIf development error detection is enabled for NvM module, the
function NvM_RestorePRAMBlockDefaults shall report the DET error

NVM_E_UNINIT when NVM is not yet initialized. Ộ ()

[SWS_NvM_00832] ổIf development error detection is enabled for NvM module, the
function NvM_RestorePRAMBlockDefaults shall report the DET error
NVM_E_BLOCK_PENDING when NVRAM block identifier is already queued or
currently in progress. Ộ ()

[SWS_NvM_00834] ổIf development error detection is enabled for NvM module, the
function NvM_RestorePRAMBlockDefaults shall report the DET error
NVM_E_PARAM_BLOCK_ID when the passed BlockID is out of range. Ộ ()

[SWS_NvM_00631] ổIf development error detection is enabled for NvM module, the
function NvM_EraseNvBlock shall report the DET error NVM_E_UNINIT when the
NVM is not yet initialized. Ộ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

70 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00632] ổIf development error detection is enabled for NvM module, the
function NvM_EraseNvBlock shall report the DET error NVM_E_BLOCK_PENDING
when the NVRAM block identifier is already queued or currently in progress. Ộ ()

[SWS_NvM_00635] ổIf development error detection is enabled for NvM module, the
function NvM_EraseNvBlock shall report the DET error NVM_E_PARAM_BLOCK_ID
when the passed BlockID is out of range. Ộ ()

[SWS_NvM_00636] ổIf development error detection is enabled for NvM module, the
function NvM_EraseNvBlock shall report the DET error NVM_E_BLOCK_CONFIG
when the NVRAM block has not immediate priority. Ộ ()

[SWS_NvM_00757] ổIf development error detection is enabled for NvM module, the
function NvM_EraseNvBlock shall report the DET error NVM_E_BLOCK_LOCKED

when the block is locked. Ộ ()

[SWS_NvM_00637] ổIf development error detection is enabled for NvM module, the
function NvM_CancelWriteAll shall report the DET error NVM_E_UNINIT when NVM
is not yet initialized. Ộ ()

[SWS_NvM_00638] ổIf development error detection is enabled for NvM module, the
function NvM_InvalidateNvBlock shall report the DET error NVM_E_UNINIT when
NVM is not yet initialized. Ộ ()

[SWS_NvM_00639] ổIf development error detection is enabled for NvM module, the
function NvM_InvalidateNvBlock shall report the DET error
NVM_E_BLOCK_PENDING when NVRAM block identifier is already queued or

currently in progress. Ộ ()

[SWS_NvM_00642] ổIf development error detection is enabled for NvM module, the
function NvM_InvalidateNvBlock shall report the DET error
NVM_E_PARAM_BLOCK_ID when the passed BlockID is out of range. Ộ ()

[SWS_NvM_00756] ổIf development error detection is enabled for NvM module, the
function NvM_InvalidateNvBlock shall report the DET error
NVM_E_BLOCK_LOCKED when the block is locked.Ộ ()

[SWS_NvM_00643] ổIf development error detection is enabled for NvM module, the
function NvM_SetRamBlockStatus shall report the DET error NVM_E_UNINIT when
NVM not yet initialized. Ộ ()

[SWS_NvM_00644] ổIf development error detection is enabled for NvM module, the
function NvM_SetRamBlockStatus shall report the DET error
NVM_E_BLOCK_PENDING when NVRAM block identifier is already queued or

currently in progress. Ộ ()

[SWS_NvM_00645] ổIf development error detection is enabled for NvM module, the
function NvM_SetRamBlockStatus shall report the DET error
NVM_E_PARAM_BLOCK_ID when the passed BlockID is out of range. Ộ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

71 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00758] ổIf development error detection is enabled for NvM module, the
function NvM_SetRamBlockStatus shall report the DET error
NVM_E_BLOCK_LOCKED when the block is locked.Ộ ()

[SWS_NvM_00646] ổIf development error detection is enabled for NvM module, the
function NvM_ReadAll shall report the DET error NVM_E_UNINIT when NVM is not
yet initialized. Ộ ()

[SWS_NvM_00647] ổIf development error detection is enabled for NvM module, the
function NvM_WriteAll shall report the DET error NVM_E_UNINIT when NVM is not
yet initialized. Ộ ()

[SWS_NvM_00648] ổIf development error detection is enabled for NvM module, the
function NvM_CancelJobs shall report the DET error NVM_E_UNINIT when NVM is

not yet initialized. Ộ ()

[SWS_NvM_00649] ổIf development error detection is enabled for NvM module, the
function NvM_CancelJobs shall report the DET error NVM_E_PARAM_BLOCK_ID
when the passed BlockID is out of range. Ộ ()

[SWS_NvM_00728] ổIf development error detection is enabled for NvM module, the
function NvM_SetBlockLockStatus shall report the DET error NVM_E_UNINIT when
NVM is not yet initialized. Ộ ()

[SWS_NvM_00729] ổIf development error detection is enabled for NvM module, the
function NvM_SetBlockLockStatus shall report the DET error
NVM_E_BLOCK_PENDING when NVRAM block identifier is already queued or

currently in progress. Ộ ()

[SWS_NvM_00730] ổIf development error detection is enabled for NvM module, the
function NvM_SetBlockLockStatus shall report the DET error
NVM_E_BLOCK_CONFIG when the NVRAM block is configured with
NvMWriteBlockOnce = TRUE. Ộ ()

[SWS_NvM_00731] ổIf development error detection is enabled for NvM module, the
function NvM_SetBlockLockStatus shall report the DET error
NVM_E_PARAM_BLOCK_ID when the passed BlockID is out of range. Ộ ()

[SWS_NvM_00863] ổIf development error detection is enabled for NvM module, the
function NvM_ValidateAll shall report the DET error NVM_E_UNINIT when NVM is
not yet initialized. Ộ (SRS_Mem_00137)

[SWS_NvM_00954] ổ If development error detection is enabled for NvM module, the
function NvM_WriteBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made for a
block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this. Ộ ()

[SWS_NvM_00955] ổ If development error detection is enabled for NvM module, the
function NvM_WritePRAMBlock shall report the DET error

 Specification of NVRAM Manager
AUTOSAR CP R20-11

72 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made for a
block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this. Ộ ()

[SWS_NvM_00956] ổ If development error detection is enabled for NvM module, the
job of the function NvM_WriteAll shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when the processing of a block
configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read request was

made prior to this. Ộ ()

[SWS_NvM_00957] ổ If development error detection is enabled for NvM module, the
job of the function NvM_EraseNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made for a
block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this. Ộ ()

[SWS_NvM_00958] ổ If development error detection is enabled for NvM module, the
job of the function NvM_InvalidateNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made for a
block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this. Ộ ()

[SWS_NvM_00962] If development error detection is enabled for NvM module, the

function NvM_WriteBlock shall report the DET error NVM_E_WRITE_PROTECTED

when the block is write protected. ()

[SWS_NvM_00963] If development error detection is enabled for NvM module, the

function NvM_WritePRAMBlock shall report the DET error

NVM_E_WRITE_PROTECTED when the block is write protected. ()

[SWS_NvM_00964] If development error detection is enabled for NvM module, the

function NvM_EraseNvBlock shall report the DET error

NVM_E_WRITE_PROTECTED when the block is write protected. ()

[SWS_NvM_00965] If development error detection is enabled for NvM module, the

function NvM_InvalidateNvBlock shall report the DET error

NVM_E_WRITE_PROTECTED when the block is write protected. ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

73 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

7.3.2 Runtime Errors

[SWS_NvM_00947]ổ

Type of error
Related error
code

Error
value

NvM queue is full so the request cannot be queued, be the request
either standard or immediate.

NVM_E_QUEUE_
FULL

0xA0

Ộ()

[SWS_NvM_00948] ổ The run-time error NVM_E_QUEUE_FULL shall be reported to
Det, by the NvM module, each time a request cannot be queued because the related

queue is full. Ộ (SRS_Mem_00038)

7.3.3 Transient faults

There are no transient faults.

7.3.4 Production Errors

7.3.4.1 NVM_E_HARDWARE

[SWS_NvM_00835]ổ
Error Name: NVM_E_HARDWARE

Short Description: Reading from or writing to non volatile memory failed

Long Description: If read job (multi job or single job read) fails either because the MemIf
reports MEMIF_JOB_FAILED, MEMIF_BLOCK_INCONSISTENT or a
CRC mismatch occurs or if a write/invalidate/erase job fails because the
MemIf reports MEMIF_JOB_FAILED, NvM shall report
NVM_E_HARDWARE to the DEM.

Detection Criteria:

Fail MemIf reports MEMIF_JOB_FAILED,
MEMIF_BLOCK_INCONSISTENT or a CRC mismatch
occurs during read / write / invalidate / erase operation.

Pass Read / write / invalidate / erase is successfull.
(MemIf does not report MEMIF_JOB_FAILED ,
MEMIF_BLOCK_INCONSISTENT and no CRC mismatch
occurs)

Secondary Parameters:
The condition under which the FAIL and/or PASS detection is active:
Every time a read / write / invalidate / erase is requested for the block
NvM shall report if the condition of the block changed.

Time Required: Not applicabale. (there is no timeout monitoring in the NvM)

Monitor Frequency continous

Ộ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

74 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

7.3.5 Extended Production Errors

Type or error Related error code Value
[hex]

The processing of the read service detects an
inconsistency

NVM_E_INTEGRITY_FAILED
Assigned
by DEM

The processing of the service fails NVM_E_REQ_FAILED
Assigned
by DEM

The Static Block ID check during read failed NVM_E_WRONG_BLOCK_ID
Assigned
by DEM

The write verification failed NVM_E_VERIFY_FAILED
Assigned
by DEM

There is a loss of redundancy for a block of
redundant type

NVM_E_LOSS_OF_REDUNDANCY
Assigned
by DEM

[SWS_NvM_00591] ổThe extended production error NVM_E_INTEGRITY_FAILED
(value assigned by DEM, see container NvmDemEventParameterRefs) shall be
detectable by the NvM module when API request integrity failed, depending on
whether the build version mode is in production mode. Ộ ()

[SWS_NvM_00592] ổThe extended production error NVM_E_REQ_FAILED (value
assigned by DEM, see container NvmDemEventParameterRefs) shall be detectable
by the NvM module when API request failed, depending on whether the build version
mode is in production mode. Ộ ()

[SWS_NvM_00593] ổThe extended production error NVM_E_WRONG_BLOCK_ID
(value assigned by DEM, see container NvmDemEventParameterRefs) shall be
detectable by the NvM module when Static Block ID check failed, depending on
whether the build version mode is in production mode. Ộ (SRS_Mem_08555)

[SWS_NvM_00594] ổThe extended production error NVM_E_VERIFY_FAILED
(value assigned by DEM, see container NvmDemEventParameterRefs) shall be
detectable by the NvM module when write Verification failed, depending on whether
the build version mode is in production mode. Ộ ()

[SWS_NvM_00595] ổThe extended production error
NVM_E_LOSS_OF_REDUNDANCY (value assigned by DEM, see container
NvmDemEventParameterRefs) shall be detectable by the NvM module when loss of
redundancy, depending on whether the build version mode is in production mode. Ộ (
)

[SWS_NvM_00871] ổEach time a request is made to the NvM, the job of that
request, if encountering an error situation, shall report the corresponding production
error.Ộ()

7.3.5.1 NVM_E_INTEGRITY_FAILED

 Specification of NVRAM Manager
AUTOSAR CP R20-11

75 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Error Name: NVM_E_INTEGRITY_FAILED

Short Description: Processin of the read service detects an inconsistency.

Long Description: If the read for a block detects that the data and/or CRC are corrupted
based on the CRC check performed after the read was finished
successfully (JobEndNotification from underlyinh memory module). This
only applies for blocks configured with CRC.

Detection Criteria:
Fail See SWS_NvM_00864

Pass See SWS_NvM_00872

Secondary Parameters:

The condition under which the FAIL or PASS detection is active:
CRC checking is performed each time a block with CRC is read
successfully by the underlying memory module and it will indicate failure
or pass.

Time Required: Not applicable. There is no timeout monitoring or constraint for NvM.

Monitor Frequency continous

[SWS_NvM_00864] ổFail condition: NVM_E_INTEGRITY_FAILED is reported by the
NvM module if the processing of a read request will detect, via the CRC checking,
corruption of the data and/or CRC of the block that was subject to the read
operation.Ộ()

[SWS_NvM_00872] ổPass condition: when requirement SWS_NvM_00864 does not

apply, meaning the data of the block is not corrupted in terms of CRC checking. Ộ()

7.3.5.2 NVM_E_REQ_FAILED

Error Name: NVM_E_REQ_FAILED

Short Description: Processin of the read service failed at a lower layer in the MemStack
architecture, including all retries.

Long Description: If the underlying layer reports JobErrorNotification, indicating that the
request failed, either after it was accepted by the underlying memory
module or because the module refused the request. This is done after all
retries also failed.

Detection Criteria:
Fail See SWS_NvM_00865

Pass See: SWS_NvM_00873

Secondary Parameters:
The condition under which the FAIL or PASS detection is active:
check is performed to see if the job was accepted or not and, if accepted,
to see if it finished successfully or not.

Time Required: Not applicable. There is no timeout monitoring or constraint for NvM.

Monitor Frequency continous

[SWS_NvM_00865] ổFail condition: NVM_E_REQ_FAILED is reported by the NvM
module if a user request is either rejected and the number of configured retries
expired or if it was accepted and then failed, while being processed by the underlying

memory stack module.Ộ()

[SWS_NvM_00873] ổPass condition: when requirement SWS_NvM_00865 does not
apply, meaning that the user request was accepted by the undelying layer, either
from the first attempt or from one of the retries, and that it finished successfully, from
the point of view of the underlying layer (request result is MEMIF_JOB_OK). Ộ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

76 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

7.3.5.3 NVM_E_WRONG_BLOCK_ID

Error Name: NVM_E_WRONG_BLOCK_ID

Short Description: Static block ID check, during read, indicates failure.

Long Description: If the read was successfully finished by the underlying memory module
but the Static ID check failed (meaning the block ID that was read is not
the same as the block ID for which the read was requested).

Detection Criteria:
Fail See SWS_NvM_00866

Pass See SWS_NvM_00874

Secondary Parameters:

The condition under which the FAIL or PASS detection is active:
check is performed each time the reading of a block is finished
successfully by the underlying memory module, if the block is configured
to have the Static ID checking performed for it.

Time Required: Not applicable. There is no timeout monitoring or constraint for NvM.

Monitor Frequency continous

[SWS_NvM_00866] ổFail condition: NVM_E_WRONG_BLOCK_ID is reported by the
NvM module if, after the block data is successfully read from the non-volatile
memory, the Static ID that was retrieved is not the same as the current one, for the
block the read was requested for.Ộ()

[SWS_NvM_00874] ổPass condition: when requirement SWS_NvM_00866 does not
apply, meaning that the block ID that was read from the non-volatile memory is the
same as the block ID for which the read was requested.Ộ()

7.3.5.4 NVM_E_VERIFY_FAILED

Error Name: NVM_E_VERIFY_FAILED

Short Description: The write verification failed.

Long Description: If, after a successfully finished write, the verification for the written data
fails.

Detection Criteria:
Fail See SWS_NvM_00867

Pass See SWS_NvM_00875

Secondary Parameters:
The condition under which the FAIL or PASS detection is active:
a check is performed each time a block that is configured to have write
verification performed on it, has a write operation successfully finished.

Time Required: Not applicable. There is no timeout monitoring or constraint for NvM.

Monitor Frequency continous

[SWS_NvM_00867] ổFail condition: NVM_E_VERIFY_FAILED is reported by the
NvM module if, after a successful write, the write verification indicates failure and the
configured number of retries has expired.Ộ()

[SWS_NvM_00875] ổPass condition: when requirement SWS_NvM_00867 does not
apply, meaning that the write verification indicates success, the latest for the last
retry attempt.Ộ()

7.3.5.5 NVM_E_LOSS_OF_REDUNDANCY

Error Name: NVM_E_LOSS_OF_REDUNDANCY

 Specification of NVRAM Manager
AUTOSAR CP R20-11

77 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Short Description: A redundant block has lost the redundancy.

Long Description: A redundant block has the same contents written in two different block
instances ï hence the redundancy. If the contents are different, if the first
instance becomes corrupted or if the first instance cannot be read then
NvM will report this fault.

Detection Criteria:
Fail See SWS_NvM_00868

Pass See SWS_NvM_00876

Secondary Parameters:
The condition under which the FAIL or PASS detection is active:
checks are performed whenever a reading is requested for a redundant
block.

Time Required: Not applicable. There is no timeout monitoring or constraint for NvM.

Monitor Frequency continous

[SWS_NvM_00868] ổFail condition: NVM_E_LOSS_OF_REDUNDANCY is reported
by the NvM module if the reading performed over a REDUNDANT block indicates the

block has lost its redundancy.Ộ()

Note: The loss of redundancy is detected if the reading of the first instance of the block fails
and the reading of the second instance of the block is finished successfully.

[SWS_NvM_00876] ổPass condition: when requirement SWS_NvM_00868 does not
apply, meaning that the NvM did not detect the loss of redundancy for a
REDUNDANT block.Ộ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

78 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8 API specification

8.1 API

8.1.1 Imported types

In this chapter all types included from the following modules are listed:
[SWS_NvM_00446]ổ

Module Header File Imported Type

Dem
Rte_Dem_Type.h Dem_EventIdType

Rte_Dem_Type.h Dem_EventStatusType

MemIf

MemIf.h MemIf_JobResultType

MemIf.h MemIf_ModeType

MemIf.h MemIf_StatusType

Std
Std_Types.h Std_ReturnType

Std_Types.h Std_VersionInfoType

Ộ()

8.1.2 Type definitions

8.1.2.1 NvM_ConfigType

[SWS_NvM_00880]ổ

Name NvM_ConfigType

Kind Structure

Elements

implementation specific

Type --

Comment --

Description Configuration data structure of the NvM module.

Available via NvM.h

Ộ()
Since this type is used for compliance purposes only (meaning that NvM_Init will now
have a pointer to this type as parameter, based on SWS_BSW_00047) it will be left
to the developer to chose how to implement it, considering it has no use for the NvM
module in any way.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

79 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.2.2 NvM_MultiBlockRequestType

[SWS_NvM_91003]ổ

Name NvM_MultiBlockRequestType

Kind Enumeration

Range

NVM_READ_ALL 0x00 NvM_ReadAll was performed

NVM_WRITE_ALL 0x01 NvM_WriteAll was performed

NVM_VALIDATE_ALL 0x02 NvM_ValidateAll was performed

NVM_FIRST_INIT_ALL 0x03 NvM_FirstInitAll was performed

NVM_CANCEL_WRITE_ALL 0x04 NvM_CancelWriteAll was performed

Description
Identifies the type of request performed on multi block when signaled via the callback
function or when reporting to BswM

Available
via

NvM.h

Ộ()

8.1.3 Function definitions

8.1.3.1 Synchronous requests

8.1.3.1.1 NvM_Init

[SWS_NvM_00447]ổ

Service Name NvM_Init

Syntax
void NvM_Init (
 const NvM_ConfigType* ConfigPtr
)

Service ID [hex] 0x00

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) ConfigPtr Pointer to the selected configuration set.

Parameters (inout) None

Parameters (out) None

Return value None

Description Service for resetting all internal variables.

Available via NvM.h

 Specification of NVRAM Manager
AUTOSAR CP R20-11

80 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Ộ(SRS_BSW_00414, SWS_BSW_00047)

[SWS_NvM_00881] The Configuration pointer ConfigPtr shall always have a

NULL_PTR value. ()

The Configuration pointer ConfigPtr is currently not used and shall therefore be set to
a NULL_PTR value when calling the NvM_Init API.

[SWS_NvM_00399] ᶉThe function NvM_Init shall reset all internal variables, e.g. the
queues, request flags, state machines, to their initial values. It shall signal ñINIT

DONEò internally, e.g. to enable job processing and queue management. ᶌ
(SRS_BSW_00101, SRS_BSW_00406)

[SWS_NvM_00400] ᶉ The function NvM_Init shall not modify the permanent RAM
block contents or call explicit synchronization callback, as this shall be done on

NvM_ReadAll .ᶌ (SRS_BSW_00101, SRS_BSW_00406)

[SWS_NvM_00192] ᶉThe function NvM_Init shall set the dataset index of all NVRAM

blocks of type NVM_BLOCK_DATASET to zero. ᶌ ()

[SWS_NvM_00193] ᶉThe function NvM_Init shall not initialize other modules (it is

assumed that the underlying layers are already initialized). ᶌ ()

The function NvM_Init is affected by the common [SWS_NvM_00028] and published
configuration parameter.

Hint: The time consuming NVRAM block initialization and setup according to the
block descriptor [ECUC_NvM_00061] shall be done by the NvM_ReadAll request.

8.1.3.1.2 NvM_SetDataIndex

[SWS_NvM_00448]ổ

Service Name NvM_SetDataIndex

Syntax

Std_ReturnType NvM_SetDataIndex (
 NvM_BlockIdType BlockId,
 uint8 DataIndex
)

Service ID
[hex]

0x01

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

BlockId
The block identifier uniquely identifies one NVRAM block descriptor. A
NVRAM block descriptor contains all needed information about a

 Specification of NVRAM Manager
AUTOSAR CP R20-11

81 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

single NVRAM block.

DataIndex Index position (association) of a NV/ROM block.

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_-
Return-
Type

E_OK: The index position was set successfully.
E_NOT_OK: An error occurred.

Description Service for setting the DataIndex of a dataset NVRAM block.

Available via NvM.h

Ộ(SRS_Mem_08007)

[SWS_NvM_00014] ᶉThe function NvM_SetDataIndex shall set the index to access

a certain dataset of a NVRAM block (with/without ROM blocks). ᶌ ()

[SWS_NvM_00263] ᶉThe function NvM_SetDataIndex shall leave the content of the

corresponding RAM block unmodified. ᶌ ()

[SWS_NvM_00264] ᶉFor blocks with block management different from
NVM_BLOCK_DATASET, NvM_SetDataIndex shall return without any effect in

production mode. Further, E_NOT_OK shall be returned. ᶌ ()

[SWS_NvM_00707] ᶉThe NvM moduleôs environment shall have initialized the NvM

module before it calls the function NvM_SetDataIndex. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

82 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.3.1.3 NvM_GetDataIndex

[SWS_NvM_00449]ổ

Service Name NvM_GetDataIndex

Syntax

Std_ReturnType NvM_GetDataIndex (
 NvM_BlockIdType BlockId,
 uint8* DataIndexPtr
)

Service ID
[hex]

0x02

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

BlockId
The block identifier uniquely identifies one NVRAM block descriptor. A
NVRAM block descriptor contains all needed information about a
single NVRAM block.

Parameters
(inout)

None

Parameters
(out)

DataIndex
Ptr

Pointer to where to store the current dataset index (0..255)

Return value
Std_-
Return-
Type

E_OK: The index position has been retrieved successfully.
E_NOT_OK: An error occurred.

Description Service for getting the currently set DataIndex of a dataset NVRAM block

Available via NvM.h

Ộ()

[SWS_NvM_00021] ᶉThe function NvM_GetDataIndex shall get the current index

(association) of a dataset NVRAM block (with/without ROM blocks). ᶌ ()

[SWS_NvM_00265] ᶉFor blocks with block management different from
NVM_BLOCK_DATASET, NvM_GetDataIndex shall set the index pointed by

DataIndexPtr to zero. Further, E_NOT_OK shall be returned. ᶌ ()

[SWS_NvM_00708] ᶉThe NvM moduleôs environment shall have initialized the NvM

module before it calls the function NvM_GetDataIndex.ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

83 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.3.1.4 NvM_SetBlockProtection

[SWS_NvM_00450]ổ

Service Name NvM_SetBlockProtection

Syntax

Std_ReturnType NvM_SetBlockProtection (
 NvM_BlockIdType BlockId,
 boolean ProtectionEnabled
)

Service ID
[hex]

0x03

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

BlockId
The block identifier uniquely identifies one NVRAM block descriptor.
A NVRAM block descriptor contains all needed information about a
single NVRAM block.

Protection
Enabled

TRUE: Write protection shall be enabled FALSE: Write protection
shall be disabled

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_Return-
Type

E_OK: The block was enabled/disabled as requested
E_NOT_OK: An error occured.

Description Service for setting/resetting the write protection for a NV block.

Available via NvM.h

Ộ(SRS_Mem_00127)

[SWS_NvM_00016] ᶉThe function NvM_SetBlockProtection shall set/reset the write
protection for the corresponding NV block by setting the write protection attribute in

the administrative part of the corresponding NVRAM block. ᶌ (SRS_Mem_00127)

[SWS_NvM_00709] ᶉThe NvM moduleôs environment shall have initialized the NvM

module before it calls the function NvM_SetBlockProtection.ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

84 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.3.1.5 NvM_GetErrorStatus

[SWS_NvM_00451]ổ

Service Name NvM_GetErrorStatus

Syntax

Std_ReturnType NvM_GetErrorStatus (
 NvM_BlockIdType BlockId,
 NvM_RequestResultType* RequestResultPtr
)

Service ID
[hex]

0x04

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

BlockId
The block identifier uniquely identifies one NVRAM block descriptor.
A NVRAM block descriptor contains all needed information about a
single NVRAM block.

Parameters
(inout)

None

Parameters
(out)

Request
ResultPtr

Pointer to where to store the request result. See NvM_RequestResult
Type .

Return value
Std_-
ReturnType

E_OK: The block dependent error/status information was read
successfully.
E_NOT_OK: An error occured.

Description Service to read the block dependent error/status information.

Available via NvM.h

Ộ(SRS_Mem_00020)

[SWS_NvM_00015] ᶉThe function NvM_GetErrorStatus shall read the block
dependent error/status information in the administrative part of a NVRAM block.
The status/error information of a NVRAM block shall be set by a former or current

asynchronous request. ᶌ (SRS_Mem_00020)

[SWS_NvM_00710] ᶉThe NvM moduleôs environment shall have initialized the NvM

module before it calls the function NvM_GetErrorStatus. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

85 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.3.1.6 NvM_GetVersionInfo

[SWS_NvM_00452]ổ

Service Name NvM_GetVersionInfo

Syntax
void NvM_GetVersionInfo (
 Std_VersionInfoType* versioninfo
)

Service ID [hex] 0x0f

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) versioninfo Pointer to where to store the version information of this module.

Return value None

Description Service to get the version information of the NvM module.

Available via NvM.h

Ộ()
8.1.3.1.7 NvM_SetRamBlockStatus

[SWS_NvM_00453]ổ

Service
Name

NvM_SetRamBlockStatus

Syntax

Std_ReturnType NvM_SetRamBlockStatus (
 NvM_BlockIdType BlockId,
 boolean BlockChanged
)

Service ID
[hex]

0x05

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

BlockId
The block identifier uniquely identifies one NVRAM block descriptor. A
NVRAM block descriptor contains all needed information about a
single NVRAM block.

Block
Changed

TRUE: Validate the permanent RAM block or the explicit
synchronization and mark block as changed. FALSE: Invalidate the
permanent RAM block or the explicit synchronization and mark block
as unchanged.

Parameters
(inout)

None

 Specification of NVRAM Manager
AUTOSAR CP R20-11

86 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Parameters
(out)

None

Return value
Std_-
Return-
Type

E_OK: The status of the permanent RAM block or the explicit
synchronization was changed as requested.
E_NOT_OK: An error occurred.

Description
Service for setting the RAM block status of a permanent RAM block or the status of
the explicit synchronization of a NVRAM block.

Available via NvM.h

Ộ(SRS_Mem_08545)

[SWS_NvM_00240] ᶉ The function NvM_SetRamBlockStatus shall only work on
NVRAM blocks with a permanently configured RAM block or on NVRAM blocks
configured to support explicit synchronization, that have
NvMBlockUseSetRamBlockStatus enabled and shall have no effect to other NVRAM

blocks. ᶌ (SRS_Mem_08546)

[SWS_NvM_00241] ᶉ The function NvM_SetRamBlockStatus shall assume that a

changed permanent RAM block or the content of the RAM mirror in the NvM module

(in case of explicit synchronization) is valid (basic assumption).ᶌ (SRS_Mem_08545)

[SWS_NvM_00405] ᶉWhen the ñBlockChangedò parameter passed to the function
NvM_SetRamBlockStatus is FALSE the corresponding RAM block is either invalid or

unchanged (or both). ᶌ (SRS_Mem_08545)

[SWS_NvM_00406] ᶉ When the ñBlockChangedò parameter passed to the function

NvM_SetRamBlockStatus is TRUE, the corresponding permanent RAM block or

the content of the RAM mirror in the NvM module (in case of explicit

synchronization) is valid and changed.ᶌ ()

[SWS_NvM_00121] ᶉFor blocks with a permanently configured RAM, the function
NvM_SetRamBlockStatus shall request the recalculation of CRC in the background,
i.e. the CRC recalculation shall be processed by the NvM_MainFunction, if the given
ñBlockChangedò parameter is TRUE and CRC calculation in RAM is configured (i.e.

NvMCalcRamBlockCrc == TRUE). ᶌ ()

Note:
If a block processed by the job of the function NvM_SetRamBlockStatus has explicit
synchronization configured for it then the block owner must provide the related RAM
data for the comparison. The call made by NvM to the explicit synchronization 'write'
callback must be successful.

Hint:
In some cases, a permanent RAM block cannot be validated neither by a reload of its
NV data, nor by a load of its ROM data during the execution of a NvM_ReadAll
command (startup). The application is responsible to fill in proper data to the RAM

 Specification of NVRAM Manager
AUTOSAR CP R20-11

87 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

block and to validate the block via the function NvM_SetRamBlockStatus before

this RAM block can be written to its corresponding NV block by NvM_WriteAll .

It is expected that the function NvM_SetRamBlockStatus will be called frequently

for NVRAM blocks which are configured to be protected in RAM via CRC. Otherwise
this function only needs to be called once to mark a block as ñchangedò and to be

processed during NvM_WriteAll .

[SWS_NvM_00906] ᶉIf the function NvM_SetRamBlockStatus is called for a block
that does not have permanent RAM but it does have explicit synchronization and the
"BlockChanged" parameter is TRUE then the job of the function
NvM_SetRamBlockStatus shall use the explicit synchronization callback for data
storage (write) in order to obtain the data over which to calculate the CRC for the

block. ᶌ (SRS_Mem_08550, SRS_Mem_08545, SRS_Mem_00136)

[SWS_NvM_00907] ᶉIf the explicit synchronization callback that is called by the job
of the function NvM_SetRamBlockStatus returns E_NOT_OK then NvM shall retry to
call the callback for the number of retries that are configured for the explicit

synchronization. ᶌ (SRS_Mem_08554)

[SWS_NvM_00908] ᶉIf the explicit synchronization callback that is called by the job
of the function NvM_SetRamBlockStatus returns E_NOT_OK then NvM shall perform

the configured retries, one per NvM_MainFunction call. ᶌ (SRS_Mem_08554)

[SWS_NvM_00909] ᶉIf the explicit synchronization callback that is called by the job
of the function NvM_SetRamBlockStatus returns E_NOT_OK for the initial call and
for all retry attempts then NvM will consider the job completed, keep the block

marked as "BlockChanged" and continue as though it finished successfully. ᶌ
(SRS_Mem_08550, SRS_Mem_08545, SRS_Mem_00136)

[SWS_NvM_00910] ᶉThe function NvM_SetRamBlockStatus shall not change the

request result for the block ID received as parameter. ᶌ (SRS_Mem_00038)

[SWS_NvM_00911] ᶉA queued background CRC calculation done by the function
NvM_SetRamBlockStatus shall not change the request result for the received block

ID. ᶌ (SRS_Mem_00038)

[SWS_NvM_00711] ᶉThe NvM moduleôs environment shall have initialized the NvM

module before it calls the function NvM_SetRamBlockStatus. ᶌ ()

[SWS_NvM_00408] ᶉThe NvM module shall provide the function

NvM_SetRamBlockStatus only if it is configured via

NvMSetRamBlockStatusApi [SWS_NvM_00028]. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

88 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.3.1.8 NvM_SetBlockLockStatus

[SWS_NvM_00548]ổ

Service Name NvM_SetBlockLockStatus

Syntax

void NvM_SetBlockLockStatus (
 NvM_BlockIdType BlockId,
 boolean BlockLocked
)

Service ID
[hex]

0x13

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

BlockId
The block identifier uniquely identifies one NVRAM block descriptor. A
NVRAM block descriptor contains all needed information about a single
NVRAM block.

Block
Locked

TRUE: Mark the RAM.block as locked FALSE: Mark the RAM.block as
unlocked

Parameters
(inout)

None

Parameters
(out)

None

Return value None

Description
Service for setting the lock status of a permanent RAM block or of the explicit
synchronization of a NVRAM block.

Available via NvM.h

Ộ(SRS_Mem_08546)

[SWS_NvM_00732] ᶉThe function NvM_SetBlockLockStatus shall only work on
NVRAM blocks with a permanently configured RAM block or on NVRAM blocks
configured to support explicit synchronization and shall have no effect to other
NVRAM blocks.
Hint: This function is to be used mainly by DCM, but it can also be used by complex

device drivers. The function is not included in the ServicePort interface. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

89 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.3.1.9 NvM_CancelJobs

[SWS_NvM_00535]ổ

Service Name NvM_CancelJobs

Syntax
Std_ReturnType NvM_CancelJobs (
 NvM_BlockIdType BlockId
)

Service ID
[hex]

0x10

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

BlockId
The block identifier uniquely identifies one NVRAM block descriptor. A
NVRAM block descriptor contains all needed information about a
single NVRAM block.

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_-
Return-
Type

E_OK: The job was successfully removed from queue.
E_NOT_OK: The job could not be found in the queue.

Description Service to cancel all jobs pending for a NV block.

Available via NvM.h

Ộ(SRS_Mem_08560)

[SWS_NvM_00536] ổThe function NvM_CancelJobs shall cancel all jobs pending in
the queue for the specified NV Block. If requested the result type for the canceled
blocks is NVM_REQ_CANCELED. Ộ (SRS_Mem_08560)

[SWS_NvM_00537] ᶉA currently processed job shall continue even after the call of

NvM_CancelJobs. ᶌ ()

[SWS_NvM_00225] ᶉ The job of the function NvM_CancelJobs shall set block
specific request result for specified NVRAM block to NVM_REQ_CANCELED in
advance if the request is accepted.
Hint: The intent is just to empty the queue during the cleanup phase in case of

termination or restart of a partition, to avoid later end of job notification. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

90 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.3.2 Asynchronous single block requests

8.1.3.2.1 NvM_ReadBlock

[SWS_NvM_00454]ổ

Service Name NvM_ReadBlock

Syntax

Std_ReturnType NvM_ReadBlock (
 NvM_BlockIdType BlockId,
 void* NvM_DstPtr
)

Service ID
[hex]

0x06

Sync/Async Asynchronous

Reentrancy Reentrant

Parameters
(in)

BlockId
The block identifier uniquely identifies one NVRAM block descriptor. A
NVRAM block descriptor contains all needed information about a
single NVRAM block.

Parameters
(inout)

None

Parameters
(out)

NvM_Dst
Ptr

Pointer to the RAM data block.

Return value
Std_-
Return-
Type

E_OK: request has been accepted
E_NOT_OK: request has not been accepted

Description Service to copy the data of the NV block to its corresponding RAM block.

Available via NvM.h

Ộ(SRS_LIBS_08533, SRS_Mem_00016)

[SWS_NvM_00010] ᶉThe job of the function NvM_ReadBlock shall copy the data of

the NV block to the corresponding RAM block. ᶌ (SRS_Mem_00016)
Note: The error/status NVM_REQ_OK will be set if the job succeeds. (See
SWS_NvM_00270)

[SWS_NvM_00195] ᶉThe function NvM_ReadBlock shall take over the given

parameters, queue the read request in the job queue and return. ᶌ
(SRS_Mem_00016)

[SWS_NvM_00196] ᶉIf the function NvM_ReadBlock is provided with a valid RAM

block address then it is used. ᶌ (SRS_Mem_00016)

 Specification of NVRAM Manager
AUTOSAR CP R20-11

91 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00898] ᶉIf the function NvM_ReadBlock is provided with NULL_PTR as
a RAM block address and it has a permanent RAM block configured then the

permanent RAM block is used. ᶌ (SRS_Mem_00016)

[SWS_NvM_00899] ᶉIf the function NvM_ReadBlock is provided with NULL_PTR as
a RAM block address and it has the explicit synchronization configured then the

explicit synchronization is used. ᶌ (SRS_Mem_00016)

[SWS_NvM_00278] ᶉ The job of the function NvM_ReadBlock shall provide the

possibility to copy NV data to a temporary RAM block although the NVRAM block is
configured with a permanent RAM block or explicit synchronization callbacks. In this
case, the parameter NvM_DstPtr must be unequal to the NULL pointer. Otherwise a

DET-Parameter error (see Section 7.3) shall be emitted. ᶌ ()

[SWS_NvM_00198] ᶉ The function NvM_ReadBlock shall invalidate a permanent

RAM block immediately when the block is successfully enqueued or the job
processing starts, i.e. copying data from NV memory or ROM to RAM. If the block
has a synchronization callback (NvM_NvMReadRamBlockFromNvCallback)
configured the invalidation will be done just before

NvMReadRamBlockFromNvCallback is called.ᶌ ()

[SWS_NvM_00199] ᶉThe job of the function NvM_ReadBlock shall initiate a read
attempt on the second NV block if the passed BlockId references a NVRAM block of

type NVM_BLOCK_REDUNDANT and the read attempts on the first NV block fail. ᶌ (
)

[SWS_NvM_00340] ᶉIn case of NVRAM block management type
NVM_BLOCK_DATASET, the job of the function NvM_ReadBlock shall copy only
that NV block to the corresponding RAM block which is selected via the data index in

the administrative block. ᶌ ()

[SWS_NvM_00355] ᶉThe job of the function NvM_ReadBlock shall not copy the NV
block to the corresponding RAM block if the NVRAM block management type is
NVM_BLOCK_DATASET and the NV block selected by the dataset index is

invalidate. ᶌ ()

[SWS_NvM_00651] ᶉThe job of the function NvM_ReadBlock shall not copy the NV
block to the corresponding RAM block if the NVRAM block management type is
NVM_BLOCK_DATASET and the NV block selected by the dataset index is

inconsistent. ᶌ ()

[SWS_NvM_00354] ᶉThe job of the function NvM_ReadBlock shall copy the ROM
block to RAM and set the request result to NVM_REQ_OK if the NVRAM block

 Specification of NVRAM Manager
AUTOSAR CP R20-11

92 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

management type is NVM_BLOCK_DATASET and the dataset index points at a

ROM block. ᶌ ()

[SWS_NvM_00200] ᶉThe job of the function NvM_ReadBlock shall set the RAM
block to valid and assume it to be unchanged after a successful copy process of the

NV block to RAM. ᶌ ()

[SWS_NvM_00366] ᶉThe job of the function NvM_ReadBlock shall set the RAM
block to valid and assume it to be changed if the default values are copied to the

RAM successfully. ᶌ ()

[SWS_NvM_00206] ᶉThe job of the function NvM_ReadBlock shall set the request
result to NVM_REQ_OK if the NV block was copied successfully from NV memory to

RAM. ᶌ ()

[SWS_NvM_00341] ᶉThe job of the function NvM_ReadBlock shall set the request
result to NVM_REQ_NV_INVALIDATED if the MemIf reports

MEMIF_BLOCK_INVALID. ᶌ ()

[SWS_NvM_00652] ᶉThe job of the function NvM_ReadBlock shall report no error to

the DEM if the MemIf reports MEMIF_BLOCK_INVALID. ᶌ ()

[SWS_NvM_00358] ᶉThe job of the function NvM_ReadBlock shall set the request
result to NVM_REQ_INTEGRITY_FAILED if:
- the MemIf reports MEMIF_BLOCK_INCONSISTENT and
- NvMRomBlockDataAddress is not configured (no ROM block with default data is
available) for the block and

- NvMInitBlockCallback is not configured (no init callback) for the block. ᶌ ()

[SWS_NvM_00653] ᶉThe job of the function NvM_ReadBlock shall report
NVM_E_INTEGRITY_FAILED to the DEM if the MemIf reports

MEMIF_BLOCK_INCONSISTENT. ᶌ ()

Note: After the production of an ECU / a car, on the production line all blocks shall
have been written with valid data (may be default data) and all diagnostic events
(errors) shall have been deleted. If the process does not allow to write all NV blocks
during production than the NvM will report diagnostic events (errors) because of
blocks that were never written and reported as MEMIF_BLOCK_INCONSISTENT by
MemIf.

[SWS_NvM_00359] ᶉThe job of the function NvM_ReadBlock shall set the request
result to NVM_REQ_NOT_OK if:
- the MemIf reports MEMIF_JOB_FAILED and
- NvMRomBlockDataAddress is not configured (no ROM block with default data is
available) for the block and

 Specification of NVRAM Manager
AUTOSAR CP R20-11

93 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

- NvMInitBlockCallback is not configured (no init callback) for the block. ᶌ ()

[SWS_NvM_00654] ᶉThe job of the function NvM_ReadBlock shall report

NVM_E_REQ_FAILED to the DEM if the MemIf reports MEMIF_JOB_FAILED. ᶌ ()

[SWS_NvM_00279] The job of the function NvM_ReadBlock shall set the request

result to NVM_REQ_OK if the block management type of the given NVRAM block is
NVM_BLOCK_REDUNDANT and one of the NV blocks was copied successfully from

NV memory to RAM. ()

[SWS_NvM_00655] ᶉThe job of the function NvM_ReadBlock shall report no error to
the DEM if the block management type of the given NVRAM block is
NVM_BLOCK_REDUNDANT and one of the NV blocks was copied successfully from

NV memory to RAM. ᶌ ()

[SWS_NvM_00316] ᶉThe job of the function NvM_ReadBlock shall mark every
NVRAM block that has been configured with NVM_WRITE_BLOCK_ONCE (TRUE)
as write protected if that block is valid and with consistent data. This write protection

cannot be cleared by NvM_SetBlockProtection.ᶌ ()

[SWS_NvM_00317] ᶉThe job of the function NvM_ReadBlock shall invalidate a
NVRAM block of management type redundant if both NV blocks have been

invalidated. ᶌ ()

[SWS_NvM_00201] ᶉThe job of the function NvM_ReadBlock shall request a CRC
recalculation over the RAM block data after the copy process [SWS_NvM_00180] if
the NV block is configured with CRC, i.e. if NvMCalRamBlockCrC == TRUE for the

NV block. ᶌ ()

[SWS_NvM_00202] ᶉThe job of the function NvM_ReadBlock shall load the default
values according to processing of NvM_RestoreBlockDefaults (also set the request
result to NVM_REQ_RESTORED_DEFAULTS) if the recalculated CRC is not equal

to the CRC stored in NV memory. ᶌ ()

[SWS_NvM_00658] ᶉNvM_ReadBlock: If there are no default values available, the

RAM blocks shall remain invalid. ᶌ ()

[SWS_NvM_00657] ᶉThe job of the function NvM_ReadBlock shall load the default
values according to processing of NvM_RestoreBlockDefaults (also set the request
result to NVM_REQ_RESTORED_DEFAULTS) if the read request passed to the
underlying layer fails (MemIf reports MEMIF_JOB_FAILED or

MEMIF_BLOCK_INCONSISTENT) and if the default values are available. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

94 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00203] ᶉThe job of the function NvM_ReadBlock shall report

NVM_E_INTEGRITY_FAILED to the DEM if a CRC mismatch occurs. ᶌ ()

[SWS_NvM_00204] ᶉThe job of the function NvM_ReadBlock shall set the request
result to NVM_REQ_INTEGRITY_FAILED if:
- a CRC mismatch occurs and
- NvMRomBlockDataAddress is not configured (no ROM block with default data is
available) for the block and

- NvMInitBlockCallback is not configured (no init callback) for the block. ᶌ ()

[SWS_NvM_00712] ᶉThe NvM moduleôs environment shall have initialized the NvM

module before it calls the function NvM_ReadBlock. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

95 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.3.2.2 NvM_WriteBlock

[SWS_NvM_00455]ổ

Service Name NvM_WriteBlock

Syntax

Std_ReturnType NvM_WriteBlock (
 NvM_BlockIdType BlockId,
 const void* NvM_SrcPtr
)

Service ID
[hex]

0x07

Sync/Async Asynchronous

Reentrancy Reentrant

Parameters
(in)

BlockId
The block identifier uniquely identifies one NVRAM block descriptor. A
NVRAM block descriptor contains all needed information about a
single NVRAM block.

NvM_Src
Ptr

Pointer to the RAM data block.

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_-
Return-
Type

E_OK: request has been accepted
E_NOT_OK: request has not been accepted

Description Service to copy the data of the RAM block to its corresponding NV block.

Available via NvM.h

Ộ(SRS_Mem_00017)
[SWS_NvM_00410] ổThe job of the function NvM_WriteBlock shall copy the data of
the RAM block to its corresponding NV block. Ộ (SRS_Mem_00017)
Note: The error/status NVM_REQ_OK will be set if the job succeeds. (See
SWS_NvM_00270)

[SWS_NvM_00749] ổThe function NvM_WriteBlock shall return with E_NOT_OK, if a
locked NVRAM block is referenced by the passed BlockId parameter. and a DET
error (see Section 7.3) shall be emitted. Ộ ()

[SWS_NvM_00208] ổThe function NvM_WriteBlock shall take over the given
parameters, queue the write request in the job queue and return. Ộ
(SRS_Mem_08541)

 Specification of NVRAM Manager
AUTOSAR CP R20-11

96 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00209] ổThe function NvM_WriteBlock shall check the NVRAM block
protection when the request is enqueued but not again before the request is
executed. Ộ ()

[SWS_NvM_00300] ổThe function NvM_WriteBlock shall cancel a pending job
immediately in a destructive way if the passed BlockId references a NVRAM block
configured to have immediate priority. The immediate job shall be the next active job
to be processed. Ộ ()

[SWS_NvM_00210] ổIf the function NvM_WriteBlock is provided with a valid RAM
block address then it is used. Ộ (SRS_Mem_00017)

[SWS_NvM_00900] ổIf the function NvM_WriteBlock is provided with NULL_PTR as
a RAM block address and it has a permanent RAM block configured then the

permanent RAM block is used. Ộ (SRS_Mem_00017)

[SWS_NvM_00901] ổIf the function NvM_WriteBlock is provided with NULL_PTR as
a RAM block address and it has the explicit synchronization configured then the
explicit synchronization is used. Ộ (SRS_Mem_00017)

[SWS_NvM_00280] ổ The job of the function NvM_WriteBlock shall provide the
possibility to copy a temporary RAM block to a NV block although the NVRAM block
is configured with a permanent RAM block or explicit synchronization callbacks. In
this case, the parameter NvM_SrcPtr must be unequal to a NULL pointer. Otherwise

a DET-Parameter error (see Section 7.3) shall be emittedỘ ()

[SWS_NvM_00212] ổThe job of the function NvM_WriteBlock shall request a CRC
recalculation before the RAM block will be copied to NV memory if the NV block is
configured with CRC [SWS_NvM_00180]. Ộ ()

[SWS_NvM_00852] ổThe job of the function NvM_WriteBlock shall skip writing and
consider the job as successfully finished if the NvMBlockUseCRCCompMechanism
attribute of the NVRAM Block is set to true and the RAM block CRC calculated by the
write job is equal to the CRC calculated during the last successful read or write job.
This mechanism shall not be applied to blocks for which a loss of redundancy has
been detected.Ộ (SRS_Mem_00136)

[SWS_NvM_00338] ổThe job of the function NvM_WriteBlock shall copy the RAM
block to the corresponding NV block which is selected via the data index in the
administrative block if the NVRAM block management type of the given NVRAM
block is NVM_BLOCK_DATASET. Ộ ()

[SWS_NvM_00303] ổ The job of the function NvM_WriteBlock shall assume a
referenced permanent RAM block or the RAM mirror in the NvM module in case of
explicit synchronization to be valid when the request is passed to the NvM module. If
the permanent RAM block is still in an invalid state, the function NvM_WriteBlock
shall validate it automatically before copying the RAM block contents to NV memory
or after calling explicit synchronization callback (NvM_WriteRamBlockToNvm).Ộ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

97 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00213] The job of the function NvM_WriteBlock shall check the

number of write retries using a write retry counter to avoid infinite loops. Each
negative result reported by the memory interface shall be followed by an increment of
the retry counter. In case of a retry counter overrun, the job of the function

NvM_WriteBlock shall set the request result to NVM_REQ_NOT_OK. (

SRS_Mem_08554)

[SWS_NvM_00659] ổThe job of the function NvM_WriteBlock shall check the number
of write retries using a write retry counter to avoid infinite loops. Each negative result
reported by the memory interface shall be followed by an increment of the retry
counter. In case of a retry counter overrun, the job of the function NvM_WriteBlock

shall report NVM_E_REQ_FAILED to the DEM. Ộ ()

[SWS_NvM_00216] ổThe configuration parameter
NVM_MAX_NUM_OF_WRITE_RETRIES [SWS_NvM_00028] shall prescribe the
maximum number of write retries for the job of the function NvM_WriteBlock when
RAM block data cannot be written successfully to the corresponding NV block. Ộ ()

[SWS_NvM_00760] ổThe job of the function NvM_WriteBlock shall copy the data
content of the RAM block to both corresponding NV blocks if the NVRAM block
management type of the processed NVRAM block is NVM_BLOCK_REDUNDANT.Ộ (
)

[SWS_NvM_00761] ổIf the processed NVRAM block is of type
NVM_BLOCK_REDUNDANT the job of the function NvM_WriteBlock shall start to
copy the data of the RAM block to NV block which has not been read during the jobs
started by NvM_ReadBlock, NvM_ReadPRAMBlock or NvM_ReadAll then continue
to copy the other NV block.Ộ ()

[SWS_NvM_00284] ổThe job of the function NvM_WriteBlock shall set
NVM_REQ_OK as request result if the passed BlockId references a NVRAM block of
type NVM_BLOCK_REDUNDANT and at least one of the NV blocks has been written
successfully. Ộ ()

[SWS_NvM_00328] ổThe job of the function NvM_WriteBlock shall set the write
protection flag in the administrative block immediately if the NVRAM block is
configured with NvMWriteBlockOnce == TRUE and the data has been written
successfully to the NV block. Ộ ()

[SWS_NvM_00713] ổThe NvM moduleôs environment shall have initialized the NvM
module before it calls the function NvM_WriteBlock. Ộ ()

Hint:
To avoid the situation that in case of redundant NVRAM blocks two different NV
blocks are containing different but valid data at the same time, each client of the
function NvM_WriteBlock may call NvM_InvalidateNvBlock in advance.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

98 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00547] ổThe job of the function NvM_WriteBlock with Block ID 1 shall
write the compiled NVRAM configuration ID to the stored NVRAM configuration ID
(block 1). Ộ ()

Hint: If a pristine ECU is flashed for the first time, such a call invoked by will ensure
that after a power-off without a proper shutdown, everything is as expected at the
next start-up. Otherwise, the new configuration ID would not be stored in NV RAM
and all ROM defaultd would be used.
A macro scan be used to indicate this usage.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

99 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.3.2.3 NvM_RestoreBlockDefaults

[SWS_NvM_00456]ổ

Service Name NvM_RestoreBlockDefaults

Syntax

Std_ReturnType NvM_RestoreBlockDefaults (
 NvM_BlockIdType BlockId,
 void* NvM_DestPtr
)

Service ID
[hex]

0x08

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters
(in)

BlockId
The block identifier uniquely identifies one NVRAM block descriptor. A
NVRAM block descriptor contains all needed information about a
single NVRAM block.

Parameters
(inout)

None

Parameters
(out)

NvM_Dest
Ptr

Pointer to the RAM data block.

Return value
Std_-
Return-
Type

E_OK: request has been accepted
E_NOT_OK: request has not been accepted

Description Service to restore the default data to its corresponding RAM block.

Available via NvM.h

Ộ(SRS_Mem_00018)

[SWS_NvM_00012] ổThe job of the function NvM_RestoreBlockDefaults shall restore
the default data to its corresponding RAM block. Ộ (SRS_Mem_00018)
Note: The error/status NVM_REQ_OK will be set if the job succeeds. (See
SWS_NvM_00270)

[SWS_NvM_00224] ổThe function NvM_RestoreBlockDefaults shall take over the

given parameters, queue the request in the job queue and return. Ộ ()

[SWS_NvM_00267] ᶉThe job of the function NvM_RestoreBlockDefaults shall load

the default data from a ROM block if a ROM block is configured. ᶌ
(SRS_Mem_00018)

[SWS_NvM_00266] ᶉThe NvM moduleôs environment shall call the function
NvM_RestoreBlockDefaults to obtain the default data if no ROM block is configured
for a NVRAM block and an application callback routine is configured via the

parameter NvMInitBlockCallback. ᶌ (SRS_Mem_00018)

 Specification of NVRAM Manager
AUTOSAR CP R20-11

100 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00353] ᶉThe function NvM_RestoreBlockDefaults shall return with
E_NOT_OK if the block management type of the given NVRAM block is
NVM_BLOCK_DATASET, at least one ROM block is configured and the data index

points at a NV block. ᶌ ()

[SWS_NvM_00435] ᶉIf the function NvM_RestoreBlockDefaults is provided with a

valid RAM block address then it is used. ᶌ (SRS_Mem_00018)

[SWS_NvM_00902] ᶉIf the function NvM_RestoreBlockDefaults is provided with
NULL_PTR as a RAM block address and it has a permanent RAM block configured

then the permanent RAM block is used. ᶌ (SRS_Mem_00018)

[SWS_NvM_00903] ᶉIf the function NvM_RestoreBlockDefaults is provided with
NULL_PTR as a RAM block address and it has the explicit synchronization

configured then the explicit synchronization is used. ᶌ (SRS_Mem_00018)

[SWS_NvM_00436] ᶉ The NvM moduleôs environment shall pass a pointer unequal
to NULL via the parameter NvM_DstPtr to the function

NvM_RestoreBlockDefaults in order to copy ROM data to a temporary RAM

block although the NVRAM block is configured with a permanent RAM block or
explicit synchronization callbacks. Otherwise a DET-Parameter error (see Section

7.3) shall be emittedᶌ ()

[SWS_NvM_00227] ᶉ The job of the function NvM_RestoreBlockDefaults shall
invalidate a RAM block before copying default data to the RAM if a permanent RAM
block is requested or before explicit synchronization callback

(NvMReadRamBlockFromNvCallback) is called.ᶌ ()

[SWS_NvM_00228] ᶉ The job of the function NvM_RestoreBlockDefaults shall
validate and assume a RAM block to be changed if the requested RAM block is
permanent or after explicit synchronization callback
(NvMReadRamBlockFromNvCallback) that is called returns E_OK and the copy

process of the default data to RAM was successful .ᶌ ()

[SWS_NvM_00229] ᶉThe job of the function NvM_RestoreBlockDefaults shall
request a recalculation of CRC from a RAM block after the copy process/validation if

a CRC is configured for this RAM block. ᶌ ()

[SWS_NvM_00714] ᶉThe NvM moduleôs environment shall have initialized the NvM

module before it calls the function NvM_RestoreBlockDefaults. ᶌ ()

Hint: For the block management type NVM_BLOCK_DATASET, the application has
to ensure that a valid dataset index is selected (pointing to ROM data).

 Specification of NVRAM Manager
AUTOSAR CP R20-11

101 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00883] ᶉIf the block has no ROM default data and no
NvMInitBlockCallback configured for it then the function NvM_RestoreBlockDefaults

shall leave the block status unchanged and return E_NOT_OK as result. ᶌ ()

[SWS_NvM_00885] ᶉIf the block has no default data, it has no
InitBlockCallbackFunction configured and the development error detection is enabled
then the NvM_RestoreBlockDefaults API shall report the error

NVM_E_BLOCK_WITHOUT_DEFAULTS error to the Det module. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

102 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.3.2.4 NvM_EraseNvBlock

[SWS_NvM_00457]ổ

Service Name NvM_EraseNvBlock

Syntax
Std_ReturnType NvM_EraseNvBlock (
 NvM_BlockIdType BlockId
)

Service ID
[hex]

0x09

Sync/Async Asynchronous

Reentrancy Reentrant

Parameters
(in)

BlockId
The block identifier uniquely identifies one NVRAM block descriptor. A
NVRAM block descriptor contains all needed information about a
single NVRAM block.

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_-
Return-
Type

E_OK: request has been accepted
E_NOT_OK: request has not been accepted

Description Service to erase a NV block.

Available via NvM.h

Ộ(SRS_Mem_08544)

[SWS_NvM_00415] ᶉThe job of the function NvM_EraseNvBlock shall erase a NV

block. ᶌ (SRS_Mem_08544)
Note: The error/status NVM_REQ_OK will be set if the job succeeds. (See
SWS_NvM_00270)

[SWS_NvM_00231] ᶉThe function NvM_EraseNvBlock shall take over the given

parameters, queue the request and return. ᶌ ()

[SWS_NvM_00418] ᶉThe function NvM_EraseNvBlock shall queue the request to

erase in case of disabled write protection. ᶌ ()

[SWS_NvM_00416] ᶉThe job of the function NvM_EraseNvBlock shall leave the

content of the RAM block unmodified. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

103 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00959] ᶉ The job of the function NvM_EraseNvBlock shall leave the
write protection unchanged for the blocks configured with

NVM_WRITE_BLOCK_ONCE (TRUE). ᶌ ()

[SWS_NvM_00661] ᶉThe function NvM_EraseNvBlock shall return with E_NOT_OK

if a ROM block of a dataset NVRAM block is referenced. ᶌ ()

[SWS_NvM_00662] ᶉNvM_EraseNvBlock: The NvM module shall not re-check the

write protection before fetching the job from the job queue. ᶌ ()

[SWS_NvM_00269] ᶉIf the referenced NVRAM block is of type
NVM_BLOCK_REDUNDANT, the function NvM_EraseNvBlock shall only succeed

when both NV blocks have been erased. ᶌ ()

[SWS_NvM_00271] The job of the function NvM_EraseNvBlock shall set the

request result to NVM_REQ_NOT_OK if the processing of the service fails. ()

[SWS_NvM_00663] ᶉThe job of the function NvM_EraseNvBlock shall report

NVM_E_REQ_FAILED to the DEM if the processing of the service fails. ᶌ ()

[SWS_NvM_00357] ᶉThe function NvM_EraseNvBlock shall return with E_NOT_OK,
when development error detection is enabled and the referenced NVRAM block is

configured with standard priority. ᶌ ()

[SWS_NvM_00715] ᶉThe NvM moduleôs environment shall have initialized the NvM

module before it calls the function NvM_EraseNvBlock. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

104 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.3.2.5 NvM_InvalidateNvBlock

[SWS_NvM_00459]ổ

Service Name NvM_InvalidateNvBlock

Syntax
Std_ReturnType NvM_InvalidateNvBlock (
 NvM_BlockIdType BlockId
)

Service ID
[hex]

0x0b

Sync/Async Asynchronous

Reentrancy Reentrant

Parameters
(in)

BlockId
The block identifier uniquely identifies one NVRAM block descriptor. A
NVRAM block descriptor contains all needed information about a
single NVRAM block.

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_-
Return-
Type

E_OK: request has been accepted
E_NOT_OK: request has not been accepted

Description Service to invalidate a NV block.

Available via NvM.h

Ộ(SRS_Mem_08011)

[SWS_NvM_00421] ᶉThe job of the function NvM_InvalidateNvBlock shall invalidate

a NV block. ᶌ (SRS_Mem_08011)
Note: The error/status NVM_REQ_OK will be set if the job succeeds. (See
SWS_NvM_00270)

[SWS_NvM_00422] ᶉThe job of the function NvM_InvalidateNvBlock shall leave the

RAM block unmodified. ᶌ ()

[SWS_NvM_00960] ᶉ The job of the function NvM_InvalidateNvBlock shall leave the
write protection unchanged for the blocks configured with

NVM_WRITE_BLOCK_ONCE (TRUE). ᶌ ()

[SWS_NvM_00424] ᶉThe function NvM_InvalidateNvBlock shall queue the request if

the write protection of the corresponding NV block is disabled. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

105 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00239] ᶉThe function NvM_InvalidateNvBlock shall take over the given

parameters, queue the request and return. ᶌ ()

[SWS_NvM_00664] ᶉThe function NvM_InvalidateNvBlock shall return with
E_NOT_OK if a ROM block of a dataset NVRAM block is referenced by the BlockId

parameter. ᶌ ()

[SWS_NvM_00665] ᶉThe NvM module shall not recheck write protection before

fetching the job from the job queue. ᶌ ()

[SWS_NvM_00274] ᶉIf the referenced NVRAM block is of type
NVM_BLOCK_REDUNDANT, the function NvM_InvalidateNvBlock shall only set the
request result NvM_RequestResultType to NVM_REQ_OK when both NV blocks

have been invalidated. ᶌ ()

[SWS_NvM_00275] ᶉThe function NvM_InvalidateNvBlock shall set the request

result to NVM_REQ_NOT_OK if the processing of this service fails. ᶌ ()

[SWS_NvM_00666] ᶉThe function NvM_InvalidateNvBlock shall report

NVM_E_REQ_FAILED to the DEM if the processing of this service fails. ᶌ ()

[SWS_NvM_00717] ᶉThe NvM moduleôs environment shall have initialized the NvM

module before it calls the function function NvM_InvalidateNvBlock. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

106 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.3.2.6 NvM_ReadPRAMBlock

[SWS_NvM_00764]ổ

Service Name NvM_ReadPRAMBlock

Syntax
Std_ReturnType NvM_ReadPRAMBlock (
 NvM_BlockIdType BlockId
)

Service ID
[hex]

0x16

Sync/Async Asynchronous

Reentrancy Reentrant

Parameters
(in)

BlockId
The block identifier uniquely identifies one NVRAM block descriptor. A
NVRAM block descriptor contains all needed information about a
single NVRAM block.

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_-
Return-
Type

E_OK: request has been accepted
E_NOT_OK: request has not been accepted

Description
Service to copy the data of the NV block to its corresponding permanent RAM
block.

Available via NvM.h

Ộ(SRS_LIBS_08533, SRS_Mem_00016)

[SWS_NvM_00765] ᶉThe job of the function NvM_ReadPRAMBlock shall copy the

data of the NV block to the permanent RAM block. ᶌ (SRS_Mem_00016)
Note: The error/status NVM_REQ_OK will be set if the job succeeds. (See
SWS_NvM_00270)

[SWS_NvM_00766] ᶉThe function NvM_ReadPRAMBlock shall take over the given

parameters, queue the read request in the job queue and return. ᶌ
(SRS_Mem_00016)

[SWS_NvM_00767] ᶉ The function NvM_ReadPRAMBlock shall invalidate a
permanent RAM block immediately when the block is successfully enqueued or the
job processing starts, i.e. copying data from NV memory or ROM to RAM. If the block
has a synchronization callback (NvM_NvMReadRamBlockFromNvCallback)
configured the invalidation will be done just before

NvMReadRamBlockFromNvCallback is called.ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

107 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00768] ᶉThe job of the function NvM_ReadPRAMBlock shall initiate a
read attempt on the second NV block if the passed BlockId references a NVRAM
block of type NVM_BLOCK_REDUNDANT and the read attempts on the first NV

block fail. ᶌ ()

[SWS_NvM_00769] ᶉIn case of NVRAM block management type
NVM_BLOCK_DATASET, the job of the function NvM_ReadPRAMBlock shall copy
only that NV block to the corresponding RAM block which is selected via the data

index in the administrative block. ᶌ ()

[SWS_NvM_00770] ᶉThe job of the function NvM_ReadPRAMBlock shall not copy
the NV block to the corresponding RAM block if the NVRAM block management type
is NVM_BLOCK_DATASET and the NV block selected by the dataset index is

invalidate. ᶌ ()

[SWS_NvM_00771] ᶉThe job of the function NvM_ReadPRAMBlock shall not copy
the NV block to the corresponding RAM block if the NVRAM block management type
is NVM_BLOCK_DATASET and the NV block selected by the dataset index is

inconsistent. ᶌ ()

[SWS_NvM_00772] ᶉThe job of the function NvM_ReadPRAMBlock shall copy the
ROM block to RAM and set the request result to NVM_REQ_OK if the NVRAM block
management type is NVM_BLOCK_DATASET and the dataset index points at a

ROM block. ᶌ ()

[SWS_NvM_00773] ᶉThe job of the function NvM_ReadPRAMBlock shall set the
RAM block to valid and assume it to be unchanged after a successful copy process

of the NV block to RAM. ᶌ ()

[SWS_NvM_00774] ᶉThe job of the function NvM_ReadPRAMBlock shall set the
RAM block to valid and assume it to be changed if the default values are copied to

the RAM successfully. ᶌ ()

[SWS_NvM_00775] ᶉThe job of the function NvM_ReadPRAMBlock shall set the
request result to NVM_REQ_OK if the NV block was copied successfully from NV

memory to RAM. ᶌ ()

[SWS_NvM_00776] ᶉThe job of the function NvM_ReadPRAMBlock shall set the
request result to NVM_REQ_NV_INVALIDATED if the MemIf reports

MEMIF_BLOCK_INVALID. ᶌ ()

[SWS_NvM_00777] ᶉThe job of the function NvM_ReadPRAMBlock shall report no

error to the DEM if the MemIf reports MEMIF_BLOCK_INVALID. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

108 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00778] ᶉThe job of the function NvM_ReadPRAMBlock shall set the
request result to NVM_REQ_INTEGRITY_FAILED if the MemIf reports

MEMIF_BLOCK_INCONSISTENT. ᶌ ()

[SWS_NvM_00779] ᶉThe job of the function NvM_ReadPRAMBlock shall report
NVM_E_INTEGRITY_FAILED to the DEM if the MemIf reports

MEMIF_BLOCK_INCONSISTENT. ᶌ ()

[SWS_NvM_00780] ᶉThe job of the function NvM_ReadPRAMBlock shall set the

request result to NVM_REQ_NOT_OK if the MemIf reports MEMIF_JOB_FAILED. ᶌ (
)

[SWS_NvM_00781] ᶉThe job of the function NvM_ReadPRAMBlock shall report

NVM_E_REQ_FAILED to the DEM if the MemIf reports MEMIF_JOB_FAILED. ᶌ ()

[SWS_NvM_00782] ᶉThe job of the function NvM_ReadPRAMBlock shall set the
request result to NVM_REQ_OK if the block management type of the given NVRAM
block is NVM_BLOCK_REDUNDANT and one of the NV blocks was copied

successfully from NV memory to RAM. ᶌ ()

[SWS_NvM_00783] ᶉThe job of the function NvM_ReadPRAMBlock shall report no
error to the DEM if the block management type of the given NVRAM block is
NVM_BLOCK_REDUNDANT and one of the NV blocks was copied successfully from

NV memory to RAM. ᶌ ()

[SWS_NvM_00784] ᶉThe job of the function NvM_ReadPRAMBlock shall mark
every NVRAM block that has been configured with NVM_WRITE_BLOCK_ONCE
(TRUE) as write protected if that block is valid and with consistent data. This write

protection cannot be cleared by NvM_SetBlockProtection. ᶌ ()

[SWS_NvM_00785] ᶉThe job of the function NvM_ReadPRAMBlock shall invalidate
a NVRAM block of management type redundant if both NV blocks have been

invalidated. ᶌ ()

[SWS_NvM_00786] ᶉThe job of the function NvM_ReadPRAMBlock shall request a
CRC recalculation over the RAM block data after the copy process
[SWS_NvM_00180] if the NV block is configured with CRC, i.e. if

NvMCalRamBlockCrC == TRUE for the NV block. ᶌ ()

[SWS_NvM_00787] ᶉThe job of the function NvM_ ReadPRAMBlock shall load the
default values according to processing of NvM_RestorePRAMBlockDefaults if the

recalculated CRC is not equal to the CRC stored in NV memory. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

109 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00788] ᶉNvM_ReadPRAMBlock: If there are no default values

available, the RAM blocks shall remain invalid. ᶌ ()

[SWS_NvM_00789] ᶉThe job of the function NvM_ReadPRAMBlock shall load the
default values according to processing of NvM_RestorePRAMBlockDefaults if the

read request passed to the underlying layer fails. ᶌ ()

[SWS_NvM_00790] ᶉThe job of the function NvM_ReadPRAMBlock shall report

NVM_E_INTEGRITY_FAILED to the DEM if a CRC mismatch occurs. ᶌ ()

[SWS_NvM_00791] ᶉThe job of the function NvM_ReadPRAMBlock shall set the

request result NVM_REQ_INTEGRITY_FAILED if a CRC mismatch occurs. ᶌ ()

[SWS_NvM_00792] ᶉThe NvM moduleôs environment shall have initialized the NvM

module before it calls the function NvM_ReadPRAMBlock. ᶌ ()

[SWS_NvM_00882] ᶉThe job of the function NvM_ReadPRAMBlock shall load the
default values according to processing of NvM_RestorePRAMBlockDefaults (also set
the request result to NVM_REQ_RESTORED_DEFAULTS) if the read request
passed to the underlying layer fails (MemIf reports MEMIF_JOB_FAILED or

MEMIF_BLOCK_INCONSISTENT) and if the default values are available. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

110 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.3.2.7 NvM_WritePRAMBlock

[SWS_NvM_00793]ổ

Service Name NvM_WritePRAMBlock

Syntax
Std_ReturnType NvM_WritePRAMBlock (
 NvM_BlockIdType BlockId
)

Service ID
[hex]

0x17

Sync/Async Asynchronous

Reentrancy Reentrant

Parameters
(in)

BlockId
The block identifier uniquely identifies one NVRAM block descriptor. A
NVRAM block descriptor contains all needed information about a
single NVRAM block.

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_-
Return-
Type

E_OK: request has been accepted
E_NOT_OK: request has not been accepted

Description
Service to copy the data of the permanent RAM block to its corresponding NV
block.

Available via NvM.h

Ộ(SRS_Mem_00017)

[SWS_NvM_00794] ᶉThe job of the function NvM_WritePRAMBlock shall copy the

data of the permanent RAM block to its corresponding NV block. ᶌ
(SRS_Mem_00017)
Note: The error/status NVM_REQ_OK will be set if the job succeeds. (See
SWS_NvM_00270)

[SWS_NvM_00797] ᶉThe function NvM_WritePRAMBlock shall return with
E_NOT_OK, if a locked NVRAM block is referenced by the passed BlockId

parameter. and a DET error (see Section 7.3) shall be emitted. ᶌ ()

[SWS_NvM_00798] ᶉThe function NvM_WritePRAMBlock shall take over the given

parameters, queue the write request in the job queue and return. ᶌ
(SRS_Mem_08541)

 Specification of NVRAM Manager
AUTOSAR CP R20-11

111 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00799] ᶉThe function NvM_WritePRAMBlock shall check the NVRAM
block protection when the request is enqueued but not again before the request is

executed. ᶌ ()

[SWS_NvM_00800] ᶉThe function NvM_WritePRAMBlock shall cancel a pending job
immediately in a destructive way if the passed BlockId references a NVRAM block
configured to have immediate priority. The immediate job shall be the next active job

to be processed. ᶌ ()

[SWS_NvM_00801] ᶉThe job of the function NvM_WritePRAMBlock shall request a
CRC recalculation before the RAM block will be copied to NV memory if the NV block

is configured with CRC [SWS_NvM_00180]. ᶌ ()

[SWS_NvM_00853] ổThe job of the function NvM_WritePRAMBlock shall skip writing
and consider the job as successfully finished if the
NvMBlockUseCRCCompMechanism attribute of the NVRAM Block is set to true and
the RAM block CRC calculated by the write job is equal to the CRC calculated during
the last successful read or write job. This mechanism shall not be applied to blocks
for which a loss of redundancy has been detected.Ộ (SRS_Mem_00136)

[SWS_NvM_00802] ᶉThe job of the function NvM_WritePRAMBlock shall copy the
RAM block to the corresponding NV block which is selected via the data index in the
administrative block if the NVRAM block management type of the given NVRAM

block is NVM_BLOCK_DATASET. ᶌ ()

[SWS_NvM_00803] ᶉ The job of the function NvM_WritePRAMBlock shall assume a
referenced permanent RAM block or the RAM mirror in the NvM module in case of
explicit synchronization to be valid when the request is passed to the NvM module. If
the permanent RAM block is still in an invalid state, the function
NvM_WritePRAMBlock shall validate it automatically before copying the RAM block
contents to NV memory or after calling explicit synchronization callback

(NvM_WriteRamBlockToNvm).ᶌ ()

[SWS_NvM_00804] ᶉThe job of the function NvM_WritePRAMBlock shall check the
number of write retries using a write retry counter to avoid infinite loops. Each
negative result reported by the memory interface shall be followed by an increment of
the retry counter. In case of a retry counter overrun, the job of the function

NvM_WritePRAMBlock shall set the request result to NVM_REQ_NOT_OK. ᶌ
(SRS_Mem_08554)

[SWS_NvM_00805] ᶉThe job of the function NvM_WritePRAMBlock shall check the
number of write retries using a write retry counter to avoid infinite loops. Each
negative result reported by the memory interface shall be followed by an increment of
the retry counter. In case of a retry counter overrun, the job of the function

NvM_WritePRAMBlock shall report NVM_E_REQ_FAILED to the DEM. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

112 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00806] ᶉThe configuration parameter
NVM_MAX_NUM_OF_WRITE_RETRIES [SWS_NvM_00028] shall prescribe the
maximum number of write retries for the job of the function NvM_WritePRAMBlock
when RAM block data cannot be written successfully to the corresponding NV block.

ᶌ ()

[SWS_NvM_00807] ᶉThe job of the function NvM_WritePRAMBlock shall copy the
data content of the RAM block to both corresponding NV blocks if the NVRAM block

management type of the processed NVRAM block is NVM_BLOCK_REDUNDANT.ᶌ
()

[SWS_NvM_00808] ᶉIf the processed NVRAM block is of type
NVM_BLOCK_REDUNDANT the job of the function NvM_WritePRAMBlock shall
start to copy the data of the RAM block to NV block which has not been read during
the jobs started by NvM_ReadBlock, NvM_ReadPRAMBlock or NvM_ReadAll then

continue to copy the other NV block.ᶌ ()

[SWS_NvM_00809] ᶉThe job of the function NvM_WritePRAMBlock shall set
NVM_REQ_OK as request result if the passed BlockId references a NVRAM block of
type NVM_BLOCK_REDUNDANT and at least one of the NV blocks have been

written successfully. ᶌ ()

[SWS_NvM_00810] ᶉThe job of the function NvM_WritePRAMBlock shall set the
write protection flag in the administrative block immediately if the NVRAM block is
configured with NvMWriteBlockOnce == TRUE and the data has been written

successfully to the NV block. ᶌ ()

[SWS_NvM_00811] ᶉThe NvM moduleôs environment shall have initialized the NvM

module before it calls the function NvM_WritePRAMBlock. ᶌ ()
Hint:
To avoid the situation that in case of redundant NVRAM blocks two different NV
blocks are containing different but valid data at the same time, each client of the
function NvM_WritePRAMBlock may call NvM_InvalidateNvBlock in advance.

[SWS_NvM_00812] ᶉThe job of the function NvM_WritePRAMBlock with Block ID 1
shall write the compiled NVRAM configuration ID to the stored NVRAM configuration

ID (block 1). ᶌ ()
Hint: If a pristine ECU is flashed for the first time, such a call invoked by will ensure
that after a power-off without a proper shutdown, everything is as expected at the
next start-up. Otherwise, the new configuration ID would not be stored in NV RAM
and all ROM defaultd would be used.
A macro scan be used to indicate this usage.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

113 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.3.2.8 NvM_RestorePRAMBlockDefaults

[SWS_NvM_00813]ổ

Service Name NvM_RestorePRAMBlockDefaults

Syntax
Std_ReturnType NvM_RestorePRAMBlockDefaults (
 NvM_BlockIdType BlockId
)

Service ID
[hex]

0x18

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters
(in)

BlockId
The block identifier uniquely identifies one NVRAM block descriptor. A
NVRAM block descriptor contains all needed information about a
single NVRAM block.

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_-
Return-
Type

E_OK: request has been accepted
E_NOT_OK: request has not been accepted

Description Service to restore the default data to its corresponding permanent RAM block.

Available via NvM.h

Ộ(SRS_Mem_00018)

[SWS_NvM_00814] ổThe job of the function NvM_RestorePRAMBlockDefaults shall
restore the default data to its corresponding permanent RAM block. Ộ
(SRS_Mem_00018)
Note: The error/status NVM_REQ_OK will be set if the job succeeds. (See
SWS_NvM_00270)

[SWS_NvM_00815] ổThe function NvM_RestorePRAMBlockDefaults shall take over

the given parameters, queue the request in the job queue and return. Ộ ()

[SWS_NvM_00816] ổThe job of the function NvM_RestorePRAMBlockDefaults shall

load the default data from a ROM block if a ROM block is configured. Ộ
(SRS_Mem_00018)

[SWS_NvM_00817] ᶉThe NvM moduleôs environment shall call the function
NvM_RestorePRAMBlockDefaults to obtain the default data if no ROM block is
configured for a NVRAM block and an application callback routine is configured via

the parameter NvMInitBlockCallback. ᶌ (SRS_Mem_00018)

 Specification of NVRAM Manager
AUTOSAR CP R20-11

114 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00818] ᶉThe function NvM_RestorePRAMBlockDefaults shall return
with E_NOT_OK if the block management type of the given NVRAM block is
NVM_BLOCK_DATASET, at least one ROM block is configured and the data index

points at a NV block. ᶌ ()

[SWS_NvM_00819] ᶉ The job of the function NvM_RestorePRAMBlockDefaults shall
invalidate a RAM block before copying default data to the permanent RAM block or
before explicit synchronization callback (NvMReadRamBlockFromNvCallback) is

called.ᶌ ()

[SWS_NvM_00820] ᶉ The job of the function NvM_RestorePRAMBlockDefaults shall
validate and assume a RAM block to be changed if the requested RAM block is
permanent or after explicit synchronization callback
(NvMReadRamBlockFromNvCallback) that is called returns E_OK and the copy

process of the default data to RAM was successful .ᶌ ()

[SWS_NvM_00821] ᶉThe job of the function NvM_RestorePRAMBlockDefaults shall
request a recalculation of CRC from a RAM block after the copy process/validation if

a CRC is configured for this RAM block. ᶌ ()

[SWS_NvM_00822] ᶉThe NvM moduleôs environment shall have initialized the NvM

module before it calls the function NvM_RestorePRAMBlockDefaults. ᶌ ()

Hint: For the block management type NVM_BLOCK_DATASET, the application has
to ensure that a valid dataset index is selected (pointing to ROM data).

[SWS_NvM_00884] ᶉIf the block has no ROM default data and no
NvMInitBlockCallback configured for it then the function
NvM_RestorePRAMBlockDefaults shall leave the block status unchanged and return

E_NOT_OK as result. ᶌ ()

[SWS_NvM_00886] ᶉIf the block has no default data, it has no
InitBlockCallbackFunction configured and the development error detection is enabled
then the NvM_RestorePRAMBlockDefaults API shall report the error

NVM_E_BLOCK_WITHOUT_DEFAULTS error to the Det module. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

115 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.3.3 Asynchronous multi block requests

8.1.3.3.1 NvM_ReadAll

[SWS_NvM_00460]ổ

Service Name NvM_ReadAll

Syntax
void NvM_ReadAll (
 void
)

Service ID [hex] 0x0c

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description Initiates a multi block read request.

Available via NvM.h

Ộ(SRS_LIBS_08533)

[SWS_NvM_00356] ᶉThe multi block service NvM_ReadAll shall provide two distinct
functionalities.

- Initialize the management data for all NVRAM blocks (see SWS_NvM_00304
ff)

- Copy data to the permanent RAM blocks or call explicit synchronization
callback(NvM_ReadRamBlockFromNvm) for those NVRAM blocks which are
configured accordingly.

Note: The two functionalities can be implemented in one loop. ᶌ ()

[SWS_NvM_00243] ᶉThe function NvM_ReadAll shall signal the request to the NvM
module and return. The NVRAM Manager shall defer the processing of the requested

ReadAll until all single block job queues are empty. ᶌ ()

[SWS_NvM_00304] ᶉThe job of the function NvM_ReadAll shall set each proceeding

block specific request result for NVRAM blocks in advance. ᶌ ()

[SWS_NvM_00667] ᶉThe job of the function NvM_ReadAll shall set the multi block

request result to NVM_REQ_PENDING in advance. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

116 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00895] ᶉThe job of the function NvM_ReadAll shall set the multi block

request result to NVM_REQ_OK if no NVRAM block processing fails. ᶌ
(SRS_Mem_00020)

Note: When the result of an individual block processing (in the context of a multi-
block job) is different than NVM_REQ_OK, the individual block processing is
considered as failed.

[SWS_NvM_00244] ᶉThe job of the function NvM_ReadAll shall iterate over all user
NVRAM blocks, i.e. except for reserved Block Ids 0 (multi block request result) and 1

(NV configuration ID), beginning with the lowest Block Id. ᶌ ()

[SWS_NvM_00245] ᶉBlocks of management type NVM_BLOCK_DATASET shall not
be loaded automatically upon start-up. Thus the selection of blocks, which belong to
block management type NVM_BLOCK_DATASET, shall not be possible for the

service NvM_ReadAll. ᶌ ()

[SWS_NvM_00362] ᶉ The NvM module shall initiate the recalculation of the RAM
CRC for every NVRAM block with a valid permanent RAM block or explicit

synchronization callback configured and NvmCalcRamBlockCrc == TRUE during

the processing of NvM_ReadAll . ᶌ ()

Note:

If a block processed by the job of the function NvM_ReadAll has explicit
synchronization configured for it then the block owner must provide the related RAM
data for the comparison. The call made by NvM to the explicit synchronization 'write'
callback must be successful.

[SWS_NvM_00364] ᶉThe job of the function NvM_ReadAll shall treat the data for
every recalculated RAM CRC which matches the stored RAM CRC as valid and set
the block specific request result to NVM_REQ_OK.

Note: This mechanism enables the NVRAM Manager to avoid overwriting of maybe

still valid RAM data with outdated NV data. ᶌ ()

[SWS_NvM_00246] ᶉThe job of the function NvM_ReadAll shall validate the
configuration ID by comparing the stored NVRAM configuration ID vs. the compiled

NVRAM configuration ID. ᶌ ()

[SWS_NvM_00669] ᶉNvM_ReadAll: The NVRAM block with the block ID 1
(redundant type with CRC) shall be reserved to contain the stored NVRAM

configuration ID. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

117 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00247] ᶉThe job of the function NvM_ReadAll shall process the normal
runtime preparation for all configured NVRAM blocks in case of configuration ID

match. ᶌ ()

[SWS_NvM_00670] ᶉThe job of the function NvM_ReadAll shall set the error/status
information field of the corresponding NVRAM blockôs administrative block to

NVM_REQ_OK in case of configuration ID match. ᶌ ()

[SWS_NvM_00305] ᶉThe job of the function NvM_ReadAll shall report the extended
production error NVM_E_REQ_FAILED to the DEM if the configuration ID cannot be

read because of an error detected by one of the subsequent SW layers. ᶌ ()

[SWS_NvM_00671] ᶉThe job of the function NvM_ReadAll shall set the error status
field of the reserved NVRAM block to NVM_REQ_INTEGRITY_FAILED if the
configuration ID cannot be read because of an error detected by one of the
subsequent SW layers. The NvM module shall behave in the same way as if a

configuration ID mismatch was detected. ᶌ ()

[SWS_NvM_00307] ᶉThe job of the function NvM_ReadAll shall set the error/status
information field of the reserved NVRAM block with ID 1 to NVM_REQ_NOT_OK in

the case of configuration ID mismatch. ᶌ ()

[SWS_NvM_00306] ᶉIn case the NvM module can not read the configuration ID
because the corresponding NV blocks are empty or invalidated, the job of the
function NvM_ReadAll shall not report an extended production error or a production

error to the DEM. ᶌ ()

[SWS_NvM_00672] ᶉIn case the NvM module can not read the configuration ID
because the corresponding NV blocks are empty or invalidated, the job of the
function NvM_ReadAll shall set the error/status information field in this NVRAM

blockôs administrative block to NVM_REQ_NV_INVALIDATED. ᶌ ()

[SWS_NvM_00673] ᶉNvM_ReadAll: In case the NvM module can not read the
configuration ID because the corresponding NV blocks are empty or invalidated,
NVM module shall update the configuration ID from the RAM block assigned to the
reserved NVRAM block with ID 1 according to the new (compiled) configuration ID.

The NvM module shall behave the same way as if the configuration ID matched. ᶌ ()

[SWS_NvM_00248] ᶉThe job of the function NvM_ReadAll shall ignore a
configuration ID mismatch and behave normal if NvMDynamicConfiguration ==

FALSE [SWS_NvM_00028]. ᶌ ()

[SWS_NvM_00249] ᶉThe job of the function NvM_ReadAll shall process an
extended runtime preparation for all blocks which are configured with

 Specification of NVRAM Manager
AUTOSAR CP R20-11

118 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

NvMResistantToChangedSw == FALSE and NvMDynamicConfiguration == TRUE

and configuration ID mismatch occurs. ᶌ ()

[SWS_NvM_00674] ᶉThe job of the function NvM_ReadAll shall process the normal
runtime preparation of all NVRAM blocks when they are configured with
NvMResistantToChangedSw == TRUE and NvMDynamicConfiguration == TRUE

and if a configuration ID mismatch occurs. ᶌ ()

[SWS_NvM_00314] ᶉThe job of the function NvM_ReadAll shall mark every NVRAM
block that has been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write
protected if that block is valid and with consistent data. This write protection cannot

be cleared by NvM_SetBlockProtection. ᶌ ()

[SWS_NvM_00315] ᶉThe job of the function NvM_ReadAll shall only invalidate a
NVRAM block of management type NVM_BLOCK_REDUNDANT if both NV blocks

have been invalidated. ᶌ ()

[SWS_NvM_00718] ᶉ The NvM moduleôs environment shall use the multi block
request NvM_ReadAll to load and validate the content of configured permanent RAM
or to do the explicit synchronization for configured blocks during start-up

[SWS_NvM_00091]. ᶌ ()

[SWS_NvM_00118] ᶉ The job of the function NvM_ReadAll shall process only the

permanent RAM blocks or call explicit synchronization callback
(NvM_ReadRamBlockFromNvm) for blocks which are configured with

NvmSelectBlockForReadall == TRUE .ᶌ ()

[SWS_NvM_00287] ᶉThe job of the function NvM_ReadAll shall set the request
result to NVM_REQ_BLOCK_SKIPPED for each NVRAM block configured to be
processed by the job of the function NvM_ReadAll (NvMSelectBlockForReadAll is

checked) and which has not been read during processing of the NvM_ReadAll job. ᶌ
()

[SWS_NvM_00426] ᶉIf configured by NvMDrvModeSwitch, the job of the function
NvM_ReadAll shall switch the mode of each memory device to ñfast-modeò before

starting to iterate over all user NVRAM blocks. ᶌ ()

[SWS_NvM_00427] ᶉIf configured by NvMDrvModeSwitch, the job of the function
NvM_ReadAll shall switch the mode of each memory device to ñslow-modeò after

having processed all user NVRAM blocks. ᶌ ()

[SWS_NvM_00308] ᶉ The job of the function NvM_ReadAll shall restore the default
data to the corresponding RAM blocks either if configured by the parameter
NvMRomBlockDataAddress or by the parameter NvMInitBlockCallback, and set the

 Specification of NVRAM Manager
AUTOSAR CP R20-11

119 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

error/status field in the administrative block to NVM_REQ_RESTORED_DEFAULTS

when processing the extended runtime preparation. ᶌ ()

[SWS_NvM_00309] ᶉWhen executing the extended runtime preparation, the job of
the function NvM_ReadAll shall treat the affected NVRAM blocks as invalid or blank
in order to allow rewriting of blocks configured with NVM_BLOCK_WRITE_ONCE ==

TRUE. ᶌ ()

[SWS_NvM_00310] ᶉThe job of the function NvM_ReadAll shall update the
configuration ID from the RAM block assigned to the reserved NVRAM block with ID
1 according to the new (compiled) configuration ID, mark the NVRAM block to be
written during NvM_WriteAll and request a CRC recalculation if a configuration ID
mismatch occurs and if the NVRAM block is configured with

NvMDynamicConfiguration == TRUE. ᶌ ()

[SWS_NvM_00311] ᶉThe NvM module shall allow applications to send any request
for the reserved NVRAM Block ID 1 if (and only if) NvMDynamicConfiguration is set

to TRUE, including NvM_WriteBlock and NvM_WritePRAMBlock.ᶌ ()

[SWS_NvM_00312] ᶉThe NvM module shall not send a request for invalidation of the
reserved configuration ID NVRAM block to the underlying layer, unless requested so
by the application. This shall ensure that the NvM moduleôs environment can rely on
this block to be only invalidated at the first start-up of the ECU or if desired by the

application. ᶌ ()

[SWS_NvM_00313] ᶉIn case of a Configuration ID match, the job of the function
NvM_ReadAll shall not automatically write to the Configuration ID block stored in the

reserved NVRAM block 1. ᶌ ()

[SWS_NvM_00288] ᶉThe job of the function NvM_ReadAll shall initiate a read
attempt on the second NV block for each NVRAM block of type
NVM_BLOCK_REDUNDANT [SWS_NvM_00118], where the read attempt of the first

block fails (see also SWS_NvM_00531). ᶌ ()

[SWS_NvM_00290] ᶉThe job of the function NvM_ReadAll shall set the block
specific request result to NVM_REQ_OK if the job has successfully copied the

corresponding NV block from NV memory to RAM. ᶌ ()

[SWS_NvM_00342] ᶉThe job of the function NvM_ReadAll shall set the block
specific request result to NVM_REQ_NV_INVALIDATED if the MemIf reports

MEMIF_BLOCK_INVALID. ᶌ ()

[SWS_NvM_00676] ᶉThe job of the function NvM_ReadAll shall report no error to

the DEM if the MemIf reports MEMIF_BLOCK_INVALID. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

120 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00360] ᶉThe job of the function NvM_ReadAll shall set the block
specific request result to NVM_REQ_INTEGRITY_FAILED if:
- the MemIf reports MEMIF_BLOCK_INCONSISTENT and
- NvMRomBlockDataAddress is not configured (no ROM block with default data is
available) for the block and

- NvMInitBlockCallback is not configured (no init callback) for the block. ᶌ ()

[SWS_NvM_00677] ᶉThe job of the function NvM_ReadAll shall report
NVM_E_INTEGRITY_FAILED to the DEM if the MemIf reports

MEMIF_BLOCK_INCONSISTENT. ᶌ ()

Note: After the production of an ECU / a car, on the production line all blocks shall
have been written with valid data (may be default data) and all diagnostic events
(errors) shall have been deleted. If the process does not allow to write all NV blocks
during production than the NvM will report diagnostic events (errors) because of
blocks that were never written and reported as MEMIF_BLOCK_INCONSISTENT by
MemIf.

[SWS_NvM_00361] ᶉThe job of the function NvM_ReadAll shall set the block
specific request result to NVM_REQ_NOT_OK if:
- the MemIf reports MEMIF_JOB_FAILED and
- NvMRomBlockDataAddress is not configured (no ROM block with default data is
available) for the block and

- NvMInitBlockCallback is not configured (no init callback) for the block. ᶌ ()

[SWS_NvM_00678] ᶉThe job of the function NvM_ReadAll shall report

NVM_E_REQ_FAILED to the DEM, if the MemIf reports MEMIF_JOB_FAILED. ᶌ ()

[SWS_NvM_00291] ᶉThe job of the function NvM_ReadAll shall set the block
specific request result to NVM_REQ_OK if the corresponding block management
type is NVM_BLOCK_REDUNDANT and the function has successfully copied one of

the NV blocks from NV memory to RAM. ᶌ ()

[SWS_NvM_00292] The job of the function NvM_ReadAll shall request a CRC

recalculation over the RAM block data after the copy process SWS_NvM_00180 if
the NV block is configured with CRC, , i.e. if NvMCalRamBlockCrC == TRUE for the

NV block. ()

[SWS_NvM_00293] ᶉThe job of the function NvM_ReadAll shall load the default
values to the RAM blocks according to the processing of NvM_RestoreBlockDefaults
(also set the corresponding request result to NVM_REQ_RESTORED_DEFAULTS):
- if the recalculated CRC is not equal to the CRC stored in NV memory and if the
default values are available, or
- if the blocks are marked as invalid (MemIf reports MEMIF_BLOCK_INVALID) and
the default values are available.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

121 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

ᶌ ()

[SWS_NvM_00679] ᶉThe job of the function NvM_ReadAll shall load the default
values to the RAM blocks according to the processing of NvM_RestoreBlockDefaults
(also set the request result to NVM_REQ_RESTORED_DEFAULTS) if the read
request passed to the underlying layer fails (MemIf reports MEMIF_JOB_FAILED or

MEMIF_BLOCK_INCONSISTENT) and if the default values are available. ᶌ ()

[SWS_NvM_00680] ᶉNvM_ReadAll: If the read request passed to the underlying
layer fails and there are no default values available, the job shall leave the RAM

blocks invalid. ᶌ ()

[SWS_NvM_00294] The job of the function NvM_ReadAll shall report

NVM_E_INTEGRITY_FAILED to the DEM if a CRC mismatch occurs. ()

[SWS_NvM_00295] ᶉThe job of the function NvM_ReadAll shall set a block specific
request result to NVM_REQ_INTEGRITY_FAILED if:
- a CRC mismatch occurs and
- NvMRomBlockDataAddress is not configured (no ROM block with default data is
available) for the block and

- NvMInitBlockCallback is not configured (no init callback) for the block. ᶌ ()

[SWS_NvM_00302] ᶉThe job of the function NvM_ReadAll shall report
NVM_E_REQ_FAILED to the DEM if the referenced NVRAM Block is not configured

with CRC and the corresponding job process has failed. ᶌ ()

[SWS_NvM_00301] ᶉThe job of the function NvM_ReadAll shall set the
multi block request result to NVM_REQ_NOT_OK if the processing of at least one

NVRAM block fails.ᶌ ()

Note: When the result of an individual block processing (in the context of a multi-
block job) is different than NVM_REQ_OK, the individual block processing (or
individual job) is considered as failed.

[SWS_NvM_00281] ᶉIf configured by NvMSingleBlockCallback, the job of the
function NvM_ReadAll shall call the single block callback after having completely
processed a NVRAM block. For the last block, NvMSingleBlockCallback (if

configured) is called before MultiBlockCallback.ᶌ ()

Note: The idea behind using the single block callbacks also for NvM_ReadAll is to
speed up the software initialization process:

¶ A single-block callback issued from an NvM_ReadAll will result in an RTE
event.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

122 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

¶ If the RTE is initialized after or during the asynchronous NvM_ReadAll, all or
some of these RTE events will get lost because they are overwritten during the
RTE initialization (see SWS_Rte_2536).

¶ After its initialization, the RTE can use the "surviving" RTE events to start
software components even before the complete NvM_ReadAll has been
finished.

¶ For those RTE events that got lost during the initialization: the RTE will start
those software components and the software components either query the
status of the NV block they want to access or request that NV block to be read.
This is exactly the same behavior if the single-block callbacks would not be
used in NvM_ReadAll.

[SWS_NvM_00251] ᶉThe job of the function NvM_ReadAll shall mark a NVRAM
block as ñvalid/unmodifiedò if NV data has been successfully loaded to the RAM

Block. ᶌ ()

[SWS_NvM_00367] ᶉThe job of the function NvM_ReadAll shall set a RAM block to
valid and assume it to be changed if the job has successfully copied default values to

the corresponding RAM. ᶌ ()

[SWS_NvM_00719] ᶉThe NvM moduleôs environment shall have initialized the NvM

module before it calls the function NvM_ReadAll. ᶌ ()

The DEM shall already be able to accept error notifications.

[SWS_NvM_00968]ổ The job of the function NvM_ReadAll shall set the block specific
request result to NVM_REQ_INTEGRITY_FAILED if:

¶ the extended runtime preparation is executed for the block

¶ NvMRomBlockDataAddress is not configured (no ROM block with default data
is available) for the block and

¶ NvMInitBlockCallback is not configured (no init callback) for the block.

()

[SWS_NvM_00970] The multi block service NvM_ReadAll shall only be provided by

the NvM master. ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

123 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.3.3.2 NvM_WriteAll

[SWS_NvM_00461]ổ

Service Name NvM_WriteAll

Syntax
void NvM_WriteAll (
 void
)

Service ID [hex] 0x0d

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description Initiates a multi block write request.

Available via NvM.h

Ộ(SRS_LIBS_08535)

[SWS_NvM_00018] ᶉ The job of the function NvM_WriteAll shall synchronize the

contents of permanent RAM blocks to their corresponding NV blocks or call explicit

synchronization callback (NvM_WriteRamBlockToNvm) on shutdown.ᶌ
(SRS_LIBS_08535)

[SWS_NvM_00733] ᶉIf NVRAM block ID 1 (which holds the configuration ID of the
memory layout) is marked as "to be written during NvM_WriteAll", the job of the
function NvM_WriteAll shall write this block in a final step (last write operation) to
prevent memory layout mismatch in case of a power loss failure during write

operation. ᶌ ()

[SWS_NvM_00254] ᶉThe function NvM_WriteAll shall signal the request to the NvM
module and return. The NVRAM Manager shall defer the processing of the requested

WriteAll until all single block job queues are empty. ᶌ ()

[SWS_NvM_00549] ᶉThe job of the function NvM_ WriteAll shall set each
proceeding block specific request result for NVRAM blocks and the multi block

request result to NVM_REQ_PENDING in advance. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

124 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00896] ᶉThe job of the function NvM_WriteAll shall set the multi block

request result to NVM_REQ_OK if no NVRAM block processing fails. ᶌ
(SRS_Mem_00020)

Note: When the result of an individual block processing (in the context of a multi-
block job) is different than NVM_REQ_OK, the individual block processing is
considered as failed.

[SWS_NvM_00252] ᶉThe job of the function NvM_WriteAll shall process only the
permanent RAM blocks or call explicit synchronization callback
(NvM_WriteRamBlockToNvm) for all blocks for which the corresponding NVRAM

block parameter NvMSelectBlockForWriteAll is configured to true. ᶌ ()

[SWS_NvM_00430] ᶉIf configured by NvMDrvModeSwitch, the job of the function
NvM_WriteAll shall set the mode of each memory device to ñfast-modeò before

starting to iterate over all non-reserved NVRAM blocks. ᶌ ()

[SWS_NvM_00431] ᶉIf configured by NvMDrvModeSwitch, the job of the function
NvM_WriteAll shall set the mode of each memory device to ñslow-modeò after having

processed all non-reserved NVRAM blocks. ᶌ ()

[SWS_NvM_00681] ᶉIf configured by NvMDrvModeSwitch, the job of the function
NvM_WriteAll shall set the mode of each memory device to ñslow-modeò after the

function NvM_CancelWriteAll has canceled the job. ᶌ ()

[SWS_NvM_00432] ᶉThe job of the function NvM_WriteAll shall check the write-

protection for each RAM block in advance. ᶌ ()

[SWS_NvM_00682] ᶉThe job of the function NvM_WriteAll shall check the

ñvalid/modifiedò state for each RAM block in advance. ᶌ ()

[SWS_NvM_00433] ᶉThe job of the function NvM_WriteAll shall only write the
content of a RAM block to its corresponding NV block for non write-protected

NVRAM blocks. ᶌ ()

[SWS_NvM_00474] ᶉThe job of the function NvM_WriteAll shall correct the
redundant data (if configured) if the redundancy has been lost. In this case the job of
the function NvM_WriteAll shall ignore write protection for this block in order to be

able to repair it.ᶌ ()

Note: If NvM implementation detects loss of redundancy during read operation the
user (application) should ensure that redundant block is read (e.g. during
NvM_ReadAll by configuring the block to be read during NvM_ReadAll). If the block
is not read then the NVM will not be able to correct the redundant block's data.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

125 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00434] ᶉThe job of the function NvM_WriteAll shall skip every write-

protected NVRAM block without error notification. ᶌ ()

[SWS_NvM_00750] ᶉ The job of the function NvM_WriteAll shall skip every locked

NVRAM block without error notification. ᶌ ()

[SWS_NvM_00854] ổThe job of the function NvM_WriteAll shall skip an NVRAM
block if the NvMBlockUseCRCCompMechanism attribute is set to true and the RAM
block CRC calculated by the write job is equal to the CRC calculated during the last
successful read or write job. This mechanism shall not be applied to blocks for which
a loss of redundancy has been detected.Ộ (SRS_Mem_00136)

[SWS_NvM_00298] ᶉThe job of the function NvM_WriteAll shall set the request
result to NVM_REQ_BLOCK_SKIPPED for each NVRAM block configured to be
processed by the job of the function NvM_WriteAll (NvMSelectBlockForWriteAll is
checked) and which has not been written during processing of the NvM_WriteAll job.

ᶌ ()

[SWS_NvM_00339] ᶉIn case of NVRAM block management type
NVM_BLOCK_DATASET, the job of the function NvM_WriteAll shall copy only the
RAM block to the corresponding NV block which is selected via the data index in the

administrative block. ᶌ ()

[SWS_NvM_00253] ᶉThe job of the function NvM_WriteAll shall request a CRC
recalculation and renew the CRC from a NVRAM block before writing the data if a

CRC is configured for this NVRAM block. ᶌ (SRS_LIBS_08535)

[SWS_NvM_00296] ᶉThe job of the function NvM_WriteAll shall check the number of
write retries by a write retry counter to avoid infinite loops. Each unsuccessful result
reported by the MemIf module shall be followed by an increment of the retry counter.

ᶌ ()

[SWS_NvM_00683] ᶉThe job of the function NvM_WriteAll shall set the block
specific request result to NVM_REQ_NOT_OK if the write retry counter becomes

greater than the configured NVM_MAX_NUM_OF_WRITE_RETRIES. ᶌ ()

[SWS_NvM_00684] ᶉThe job of the function NvM_WriteAll shall report
NVM_E_REQ_FAILED to the DEM if the write retry counter becomes greater than

the configured NVM_MAX_NUM_OF_WRITE_RETRIES. ᶌ ()

[SWS_NvM_00762] ᶉThe job of the function NvM_WriteAll shall copy the data
content of the RAM block to both corresponding NV blocks if the NVRAM block

 Specification of NVRAM Manager
AUTOSAR CP R20-11

126 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

management type of the processed NVRAM block is NVM_BLOCK_REDUNDANT.ᶌ
()

[SWS_NvM_00763] ᶉIf the processed NVRAM block is of type
NVM_BLOCK_REDUNDANT the job of the function NvM_WriteAll shall start to copy
the data of the RAM block to NV block which has _not_ been read during the jobs
started by NvM_ReadBlock, NvM_ReadPRAMBlock or NvM_ReadAll then continue

to copy the other NV block.ᶌ ()

[SWS_NvM_00337] ᶉThe job of the function NvM_WriteAll shall set the single block
request result to NVM_REQ_OK if the processed NVRAM block is of type
NVM_BLOCK_REDUNDANT and at least one of the NV blocks has been written

successfully. ᶌ ()

[SWS_NvM_00238] ᶉThe job of the function NvM_WriteAll shall complete the job in
a non-destructive way for the NVRAM block currently being processed if a

cancellation of NvM_WriteAll is signaled by a call of NvM_CancelWriteAll. ᶌ ()

[SWS_NvM_00237] ᶉThe NvM module shall set the multi block request result to

NVM_REQ_CANCELED in case of cancellation of NvM_WriteAll. ᶌ ()

[SWS_NvM_00685] ᶉNvM_WriteAll: The NvM module shall anyway report the error

code condition, due to a failed NVRAM block write, to the DEM. ᶌ ()

[SWS_NvM_00318] ᶉThe job of the function NvM_WriteAll shall set the multi block
request result to NVM_REQ_NOT_OK if the processing of at least one NVRAM block

fails. ᶌ ()

Note: When the result of an individual block processing (in the context of a multi-
block job) is different than NVM_REQ_OK, the individual block processing is
considered as failed.

[SWS_NvM_00329] ᶉIf the job of the function NvM_WriteAll has successfully written
data to NV memory for a NVRAM block configured with NvMWriteBlockOnce ==
TRUE, the job shall immediately set the corresponding write protection flag in the

administrative block. ᶌ ()

[SWS_NvM_00720] ᶉThe NvM moduleôs environment shall have initialized the NvM

module before it calls the function NvM_WriteAll. ᶌ ()

No other multiblock request shall be pending when the NvM moduleôs environment
calls the function NvM_WriteAll.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

127 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Note: To avoid the situation that in case of redundant NVRAM blocks two different
NV blocks are containing different but valid data at the same time, each client of the
NvM_WriteAll service may call NvM_InvalidateNvBlock in advance.

[SWS_NvM_00971] The multi block service NvM_WriteAll shall only be provided by

the NvM master. ()

8.1.3.3.3 NvM_CancelWriteAll

[SWS_NvM_00458]ổ

Service Name NvM_CancelWriteAll

Syntax
void NvM_CancelWriteAll (
 void
)

Service ID [hex] 0x0a

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description Service to cancel a running NvM_WriteAll request.

Available via NvM.h

Ộ(SRS_Mem_08558, SRS_Mem_08540)

[SWS_NvM_00019] ᶉThe function NvM_CancelWriteAll shall cancel a running
NvM_WriteAll request. It shall terminate the NvM_WriteAll request in a way that the

data consistency during processing of a single NVRAM block is not compromisedᶌ
(SRS_Mem_08540)

[SWS_NvM_00232] ᶉThe function NvM_CancelWriteAll shall signal the request to

the NvM module and return. ᶌ ()

[SWS_NvM_00233] ᶉThe function NvM_CancelWriteAll shall be without any effect if

no NvM_WriteAll request is pending. ᶌ ()

[SWS_NvM_00234] ᶉThe function NvM_CancelWriteAll shall treat multiple requests
to cancel a running NvM_WriteAll request as one request, i.e. subsequent requests

will be ignored. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

128 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00235] ᶉThe request result of the function NvM_CancelWriteAll shall be

implicitly given by the result of the NvM_WriteAll request to be canceled. ᶌ ()

[SWS_NvM_00236] ᶉThe function NvM_CancelWriteAll shall only modify the
error/status attribute field of the pending blocks to NVM_REQ_CANCELED and for
the currently written block after the processing of a single NVRAM block is finished to
NVM_REQ_OK or NVM_REQ_NOT_OK depending on the success of the write

operation. ᶌ ()

[SWS_NvM_00716] ᶉThe NvM moduleôs environment shall have initialized the NvM

module before it calls the function function NvM_CancelWriteAll. ᶌ ()

[SWS_NvM_00420] ᶉThe function NvM_CancelWriteAll shall signal the NvM module

and shall not be queued, i.e. there can be only one pending request of this type. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

129 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.3.3.4 NvM_ValidateAll

[SWS_NvM_00855]ổ

Service Name NvM_ValidateAll

Syntax
void NvM_ValidateAll (
 void
)

Service ID [hex] 0x19

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description Initiates a multi block validation request.

Available via NvM.h

Ộ(SRS_Mem_00137)

[SWS_NvM_00856] ổIf auto validation is configured for an NVRAM Block
(NvMBlockUseAutoValidation == TRUE), the function NvM_ValidateAll shall set the
RAM Block status to ñVALID / CHANGEDò.Ộ (SRS_Mem_00137)

[SWS_NvM_00857] ổFor blocks which meet the conditions of SWS_NvM_00856 and
in addition have CRC calculation in RAM configured the function NvM_ValidateAll
shall request the recalculation of CRC in the background, i.e. the CRC recalculation

shall be processed by the NvM_MainFunction.Ộ (SRS_Mem_00137)

[SWS_NvM_00858] ổThe function NvM_ValidateAll shall signal the request to the
NvM module and return. The NVRAM Manager shall defer the processing of the
requested NvM_ValidateAll function until all single block job queues are empty.Ộ
(SRS_Mem_00137)

[SWS_NvM_00859] ổThe NvM moduleôs environment shall have initialized the NvM
module before it calls the function NvM_ValidateAll.Ộ (SRS_Mem_00137)

[SWS_NvM_00860] ổThe job of the function NvM_ValidateAll shall process only the
permanent RAM blocks or call explicit synchronization callback
(NvM_WriteRamBlockToNvm) for all blocks for which the corresponding NVRAM

Block parameter NvMBlockUseAutoValidation is configured to true.Ộ
(SRS_Mem_00137)

 Specification of NVRAM Manager
AUTOSAR CP R20-11

130 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00861] ổThe job of the function NvM_ValidateAll shall set each
proceeding block specific request result for NVRAM blocks and the multi block
request result to NVM_REQ_PENDING in advance.Ộ (SRS_Mem_00137)

[SWS_NvM_00862] ổThe job of the function NvM_ValidateAll shall set the block
specific request result to NVM_REQ_OK if the RAM block was successfully
validated.Ộ (SRS_Mem_00137)

 Specification of NVRAM Manager
AUTOSAR CP R20-11

131 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.3.3.5 NvM_FirstInitAll

[SWS_NvM_91001]ổ

Service Name NvM_FirstInitAll

Syntax
void NvM_FirstInitAll (
 void
)

Service ID
[hex]

0x14

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters
(in)

None

Parameters
(inout)

None

Parameters
(out)

None

Return value None

Description
The function initiates a multi block first initialization request. The job of the function
does not care if a block exists in the non-volatile memory or not OR if it is valid (i.e.
not corrupted) or not, when processing it.

Available via NvM.h

Ộ()

For each processed block, the job of the function will either write it with default data
(if it is not of type DATASET and it has default data) or invalidate the block (if it is of
type DATASET or without default data).

The term ñdefault dataò means the data from the ROM block (if any) or the one
provided inside the InitBlockCallback (if any) by the related block owner.

If NvM_FirstInitAll is called after NvM_ReadAll, then an inconsistency between the
NvM userôs expectation of RAM block contents and the actual RAM block contents
can occur. Even worse, also concurrent writes to the RAM block content from NvM
user side and NvM_FirstInitAll could occur. Hence, calling NvM_FirstInitAll after
NvM_ReadAll should generally be avoided.

In light of the above, the following requirements apply:

[SWS_NvM_00912] ổ The job of the function NvM_FirstInitAll shall also process the
block with ID 1 (which holds the configuration ID of the NvM module), if this block has
been configured to be processed by it and dynamic configuration is enabled. Ộ

 Specification of NVRAM Manager
AUTOSAR CP R20-11

132 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00913] ổ If a block of type NATIVE that is processed by the
NvM_FirstInitAll has default data, the NV block shall be written with its default data.Ộ

[SWS_NvM_00914] ổ If a NATIVE block that is processed by the NvM_FirstInitAll has
neither permanent RAM nor explicit synchronization then that block shall be
processed by using the internal NvM buffer as its RAM and, upon processing, its
RAM block state shall be left untouched. Ộ

[SWS_NvM_00915] ổ If a NATIVE block that has either permanent RAM or explicit
synchronization is processed by the NvM_FirstInitAll and the block has default data
(ROM or Init Callback) then the blocks RAM will be updated with the default data, just
like for the processing of a NvM_RestoreBlockDefaults request. Ộ

[SWS_NvM_00916] ổ If a block of type REDUNDANT that is processed by the
NvM_FirstInitAll has default data, both block instances shall be written with that
default data. Ộ

[SWS_NvM_00917] ổ If a REDUNDANT block that is processed by the
NvM_FirstInitAll has neither permanent RAM nor explicit synchronization then that
block shall be processed by using the internal NvM buffer as its RAM and, upon

processing, its RAM block state shall be left untouched. Ộ

[SWS_NvM_00918] ổ If a REDUNDANT block that has either permanent RAM or
explicit synchronization is processed by the NvM_FirstInitAll and the block has
default data (ROM or Init Callback) then the blocks RAM will be updated with the
default data, just like for the processing of a NvM_RestoreBlockDefaults request.Ộ

[SWS_NvM_00919] ổ If a block of type NATIVE that is processed by the
NvM_FirstInitAll does not have default data, the block shall be invalidated using the
same mechanism as for NvM_InvalidateNvBlock. Ộ

[SWS_NvM_00920] ổ If a block of type REDUNDANT that is processed by the
NvM_FirstInitAll does not have default data, both block instances shall be invalidated
using the same mechanism as for NvM_InvalidateNvBlock. Ộ

[SWS_NvM_00921] ổ If a NATIVE block that is processed by the NvM_FirstInitAll has
only the Init Callback configured and the return value of the callback is not E_OK
then the job of the function NvM_FirstInitAll shall invalidate the block. Ộ

[SWS_NvM_00922] ổ If a REDUNDANT block that is processed by the
NvM_FirstInitAll has only the Init Callback configured and the return value of the
callback is not E_OK then the job of the function NvM_FirstInitAll shall invalidate both
instances of the block. Ộ

Note: An Init Callback returning something else than E_OK is interpreted as a
runtime decision of the block owner not to provide default data via this callback. In
this case, in order for the state of the block not to remain ambiguous, it is invalidated.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

133 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00923] ổ The job of the function NvM_FirstInitAll shall invalidate all
blocks that are of type DATASET and that have been configured to be processed by
it. Ộ

[SWS_NvM_00924] ổ The job of the function NvM_FirstInitAll shall invalidate all NV
block instances of a block of type DATASET, if the block was configured to be
processed by it. Ộ

[SWS_NvM_00925] ổ If the writing of a block of type NATIVE with its default data
fails, the job of the function NvM_FirstInitAll shall set the request result to
NVM_REQ_NOT_OK. Ộ

[SWS_NvM_00926] ổ If the writing of a block of type REDUNDANT with its default
data fails for both instances, the job of the function NvM_FirstInitAll shall set the

request result to NVM_REQ_NOT_OK. Ộ

[SWS_NvM_00927] ổ If the invalidation of a block of type NATIVE fails, the job of the

function NvM_FirstInitAll shall set the request result to NVM_REQ_NOT_OK. Ộ

[SWS_NvM_00928] ổ If the invalidation of a block of type REDUNDANT fails for at
least one of the two block instances, the job of the function NvM_FirstInitAll shall set
the request result to NVM_REQ_NOT_OK. Ộ

Note: Since the purpose of the FirstInitAll is to have all selected NvM blocks in a well
defined state (either written successfully with the default data or invalidated), if one of
the two duplicates of the REDUNDANT block was not invalidated successfully, this
has to be known. This is not like the ñwriteò case (see requirements
SWS_NvM_00284 and SWS_NvM_00274 for more details).

[SWS_NvM_00929] ổ If the invalidation of a block of type DATASET fails for at least
one of its NV block instances then the job of the function NvM_FirstInitAll shall set

the request result to NVM_REQ_NOT_OK. Ộ

Note: Since the purpose of the FirstInitAll is to have all selected NvM blocks in a well
defined state if at least one of the NV block instances of the DATASET block was not
invalidated successfully, this has to be known. The NvM_FirstInitAll processing of
blocks of type DATASET implies invalidating all NV block instances of all processed
blocks of type DATASET.

[SWS_NvM_00930] ổ Blocks without permanent RAM block and without explicit
synchronization can be configured to be processed by the NvM_FirstInitAll. Ộ

[SWS_NvM_00931] ổ The write protection status of a block shall be completely
ignored by the NvM_FirstInitAll functionality. Ộ

Note: The block write protection needs to be handled by the caller of the
NvM_FirstInitAll or by the block owner (which must know about the execution of the
NvM_FirstInitAll function and related job). This is due to the fact that, upon successful
completion of the job of the NvM_FirstInitAll, all selected blocks must have a well
known and well defined state.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

134 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00932] ổ The write block once functionality shall not be triggered by
NvM_FirstInitAll. Ộ

Note: The reason behind this is to allow the blocks that are Write Once Only to be
written via the NvM_WriteBlock API with valid values, after being initialized by the job
of the function NvM_FirstInitAll.

[SWS_NvM_00933] ổ The locked status of a block shall be completely ignored by the
NvM_FirstInitAll functionality. Ộ

Note: The block locking needs to be handled by the caller of the NvM_FirstInitAll or
by the block owner (which must know about the execution of the NvM_FirstInitAll
function and related job). This is due to the fact that, upon successful completion of
the job of the NvM_FirstInitAll, all selected blocks must have a well known and well
defined state.

[SWS_NvM_00934] ổ If a block that has either permanent RAM or explicit
synchronization has been successfully written into the non-volatile memory by the job
of the function NvM_FirstInitAll then its RAM block state shall be set to VALID /
UNCHANGED. Ộ

[SWS_NvM_00935] ổ If a block that has either permanent RAM or explicit
synchronization has been successfully invalidated by the job of the function
NvM_FirstInitAll then its RAM block state shall be left untouched. Ộ

[SWS_NvM_00936] ổ The job of the function NvM_FirstInitAll shall not be started
while there are single block requests that need to be processed by the NvM module.
Ộ

[SWS_NvM_00937] ổ The job of the function NvM_FirstInitAll, once started, shall not
be interrupted by any single block requests except write requests for immediate
blocks. Ộ

[SWS_NvM_00938] ổ If the NvM module is not initialized and the function
NvM_FirstInitAll is called, it shall report the Det error NVM_E_UNINIT and return

without performing any other activities. Ộ

[SWS_NvM_00939] ổ If a multi block operation is PENDING and the function
NvM_FirstInitAll is called, it shall report the Det error NVM_E_BLOCK_PENDING and
return without performing any other activities. Ộ

Note: The error NVM_E_BLOCK_PENDING is used to indicate that another
multiblock operation is accepted but not completed by NvM. This is due to the fact
that the NvM module can only accept and process one multiblock operation at a time.

[SWS_NvM_00940] ổ The job of the function NvM_FirstInitAll shall set the multi block
request result to NVM_REQ_NOT_OK if the processing of at least one NVRAM block
fails. Ộ

 Specification of NVRAM Manager
AUTOSAR CP R20-11

135 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Note: When the result of an individual block processing (in the context of a multi-
block job) is different than NVM_REQ_OK, the individual block processing is
considered as failed.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

136 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.3.4 Callback notification of the NvM module

[SWS_NvM_00438] ᶉThe NvM module shall provide callback functions to be used by
the underlying memory abstraction (EEPROM abstraction / FLASH EEPROM
Emulation) to signal end of job state with or without error.

ᶌ ()

8.1.3.4.1 NVRAM Manager job end notification without error

[SWS_NvM_00462]ổ

Service Name NvM_JobEndNotification

Syntax
void NvM_JobEndNotification (
 void
)

Service ID [hex] 0x11

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters
(inout)

None

Parameters (out) None

Return value None

Description
Function to be used by the underlying memory abstraction to signal end of job
without error.

Available via NvM_MemIf.h

Ộ()

[SWS_NvM_00111] ᶉThe callback function NvM_JobEndNotification is used by the
underlying memory abstraction to signal end of job without error.
Note: Successful job end notification of the memory abstraction:

- Read finished & OK

- Write finished & OK

- Erase finished & OK
This routine might be called in interrupt context, depending on the calling function. All
memory abstraction modules should be configured to use the same mode

(callback/polling). ᶌ ()

[SWS_NvM_00440] ᶉThe NvM module shall only provide the callback function
NvM_JobEndNotification if polling mode is disabled via NvMPollingMode.
The function NvM_JobEndNotification is affected by the common [SWS_NvM_00028]

configuration parameters. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

137 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.3.4.2 NVRAM Manager job end notification with error

[SWS_NvM_00463]ổ

Service Name NvM_JobErrorNotification

Syntax
void NvM_JobErrorNotification (
 void
)

Service ID [hex] 0x12

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters
(inout)

None

Parameters (out) None

Return value None

Description
Function to be used by the underlying memory abstraction to signal end of job
with error.

Available via NvM_MemIf.h

Ộ(SRS_Mem_00125)

[SWS_NvM_00112] ᶉThe callback function NvM_JobErrorNotification is to be used
by the underlying memory abstraction to signal end of job with error.
Note: Unsuccessful job end notification of the memory abstraction:

- Read aborted or failed

- Write aborted or failed

- Erase aborted or failed
This routine might be called in interrupt context, depending on the calling function. All
memory abstraction modules should be configured to use the same mode

(callback/polling). ᶌ ()

[SWS_NvM_00441] ᶉThe NvM module shall only provide the callback function
NvM_JobErrorNotification if polling mode is disabled via NvMPollingMode.
The function NvM_JoberrorNotification is affected by the common

[SWS_NvM_00028] configuration parameters. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

138 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.3.5 Scheduled functions
These functions are directly called by the Basic Software Scheduler. The following
functions shall have no return value and no parameter. All functions shall be non
reentrant.

[SWS_NvM_00464]ổ

Service Name NvM_MainFunction

Syntax
void NvM_MainFunction (
 void
)

Service ID [hex] 0x0e

Description Service for performing the processing of the NvM jobs.

Available via SchM_NvM.h

Ộ(SRS_BSW_00425, SRS_BSW_00373, SRS_BSW_00172)

[SWS_NvM_00256] ᶉThe function NvM_MainFunction shall perform the processing

of the NvM module jobs. ᶌ ()

[SWS_NvM_00333] ᶉThe function NvM_MainFunction shall perform the CRC

recalculation if requested for a NVRAM block in addition to SWS_NvM_00256. ᶌ ()

[SWS_NvM_00334] ᶉThe NvM module shall only start writing of a block (i.e. hand
over the job to the lower layers) after CRC calculation for this block has been

finished. ᶌ ()

[SWS_NvM_00257] ᶉThe NvM module shall only do/start job processing, queue
management and CRC recalculation if the NvM_Init function has internally set an

ñINIT DONEò signal. ᶌ ()

[SWS_NvM_00258] ᶉThe function NvM_MainFunction shall restart a destructively
canceled request caused by an immediate priority request after the NvM module has

processed the immediate priority request [SWS_NvM_00182]. ᶌ ()

[SWS_NvM_00259] ᶉThe function NvM_MainFunction shall supervise the immediate

priority queue (if configured) regarding the existence of immediate priority requests. ᶌ
()

[SWS_NvM_00346] ᶉIf polling mode is enabled, the function NvM_MainFunction

shall check the status of the requested job sent to the lower layer. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

139 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00347] ᶉIf callback routines are configured, the function
NvM_MainFunction shall call callback routines to the upper layer after completion of

an asynchronous service. ᶌ ()

[SWS_NvM_00350] ᶉIn case of processing an NvM_WriteAll multi block request, the
function NvM_MainFunction shall not call callback routines to the upper layer as long
as the service MemIf_GetStatus returns MEMIF_BUSY_INTERNAL for the reserved
device ID MEMIF_BROADCAST_ID [7]. For this purpose (status is
MEMIF_BUSY_INTERNAL), the function NvM_MainFunction shall cyclically poll the
status of the Memory Hardware Abstraction independent of being configured for

polling or callback mode. ᶌ ()

[SWS_NvM_00349] ᶉThe function NvM_MainFunction shall return immediately if no

further job processing is possible. ᶌ ()

[SWS_NvM_00721] ᶉNVRAM blocks with immediate priority are not expected to be

configured to have a CRC. ᶌ ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

140 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.4 Expected Interfaces

In this chapter, all interfaces required by other modules are listed.

[SWS_NvM_00969]ổ The NvM shall call the expected interface in the same partition
context to which its functionality is mapped:

¶ The master partition for all general functionality, not directly related to an
individual NV block

¶ The corresponding satellite partition for all functionality directly related to an
individual NV blockỘ()

8.1.4.1 Mandatory Interfaces
The following table defines all interfaces which are required to fulfill the core
functionality of the module.

[SWS_NvM_00465]ổ

API Function
Header
File

Description

MemIf_Cancel MemIf.h
Invokes the "Cancel" function of the underlying memory abstraction
module selected by the parameter DeviceIndex.

MemIf_Erase-
ImmediateBlock

MemIf.h
Invokes the "EraseImmediateBlock" function of the underlying
memory abstraction module selected by the parameter Device
Index.

MemIf_GetJob-
Result

MemIf.h
Invokes the "GetJobResult" function of the underlying memory
abstraction module selected by the parameter DeviceIndex.

MemIf_GetStatus MemIf.h
Invokes the "GetStatus" function of the underlying memory
abstraction module selected by the parameter DeviceIndex.

MemIf_Invalidate-
Block

MemIf.h
Invokes the "InvalidateBlock" function of the underlying memory
abstraction module selected by the parameter DeviceIndex.

MemIf_Read MemIf.h
Invokes the "Read" function of the underlying memory abstraction
module selected by the parameter DeviceIndex.

MemIf_Write MemIf.h
Invokes the "Write" function of the underlying memory abstraction
module selected by the parameter DeviceIndex.

Ộ(SRS_BSW_00383, SRS_BSW_00384)

8.1.4.2 Optional Interfaces
The following table defines all interfaces which are required to fulfill an optional
functionality of the module.

[SWS_NvM_00466]ổ

API
Function

Header
File

Description

Crc_- Crc.h This service makes a CRC16 calculation on Crc_Length data bytes.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

141 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

CalculateC-
RC16

Crc_-
CalculateC-
RC32

Crc.h This service makes a CRC32 calculation on Crc_Length data bytes.

Crc_-
CalculateC-
RC8

Crc.h
This service makes a CRC8 calculation on Crc_Length data bytes, with
SAE J1850 parameters

Dem_Set-
EventStatus

Dem.h

Called by SW-Cs or BSW modules to report monitor status information to
the Dem. BSW modules calling Dem_SetEventStatus can safely ignore the
return value. This API will be available only if ({Dem/DemConfigSet/Dem
EventParameter/DemEventReportingType} == STANDARD_REPORTING)

Det_Report-
Error

Det.h Service to report development errors.

MemIf_Set-
Mode

MemIf.h
Invokes the "SetMode" functions of all underlying memory abstraction
modules.

Ộ(SRS_BSW_00383, SRS_BSW_00384)

8.1.4.3 Configurable interfaces

In this chapter, all interfaces are listed for which the target function can be
configured. The target function is usually a callback function. The names of these
interfaces are not fixed because they are configurable.

[SWS_NvM_00113] The notification of a caller via an asynchronous callback routine

(NvMSingleBlockCallback) shall be optionally configurable for all NV blocks (see

ECUC_NvM_00061). ()

[SWS_NvM_00740] ổIf a callback is configured for a NVRAM block, every
asynchronous block request to the block itself shall be terminated with an invocation

of the callback routine. Ộ ()

[SWS_NvM_00742] ổIf no callback is configured for a NVRAM block, there shall be

no asynchronous notification of the caller in case of an asynchronous block request. Ộ
()

[SWS_NvM_00260] ổA common callback entry (NvMMultiBlockCallback) which is not
bound to any NVRAM block shall be optionally configurable for all asynchronous
multi block requests (including NvM_CancelWriteAll). Ộ ()

8.1.4.3.1 Single block job end notification

 Specification of NVRAM Manager
AUTOSAR CP R20-11

142 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_00467]ổ

Service Name NvM_SingleBlockCallbackFunction

Syntax

Std_ReturnType NvM_SingleBlockCallbackFunction (
 NvM_BlockRequestType BlockRequest,
 NvM_RequestResultType JobResult
)

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in)
BlockRequest

The request type (read, write, ... etc.) of the previous
processed block job

JobResult The request result of the previous processed block job.

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_Return-
Type

E_OK: callback function has been processed successfully
any other: callback function has been processed
unsuccessfully

Description
Per block callback routine to notify the upper layer that an asynchronous single
block request has been finished.

Available via NvM_Externals.h

Ộ(SRS_BSW_00457, SRS_BSW_00360, SRS_BSW_00333)

Note: The following requirements are related to the above mentioned callback
SWS_NVM_00176, SWS_NVM_00281, SWS_NvM_00113 and ECUC_NvM_00506.

Note: Please refer to NvMSingleBlockCallback in chapter 10. The Single block job
end notification might be called in interrupt context only if there is no callback
configured in NvM that belongs to a SW-C.

8.1.4.3.2 Multi block job end notification

[SWS_NvM_00468]ổ

Service Name NvM_MultiBlockCallbackFunction

Syntax

Std_ReturnType NvM_MultiBlockCallbackFunction (
 NvM_MultiBlockRequestType MultiBlockRequest,
 NvM_RequestResultType JobResult
)

Sync/Async Synchronous

Reentrancy Non Reentrant

 Specification of NVRAM Manager
AUTOSAR CP R20-11

143 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Parameters (in)

MultiBlock
Request

The request type (read, write, ... etc.) of the previous
processed multi block job

JobResult The request result of the previous processed multi block job.

Parameters
(inout)

None

Parameters
(out)

None

Return value Std_ReturnType
E_OK: callback function has been processed successfully
any other: callback function has been processed
unsuccessfully

Description
Common callback routine to notify the upper layer that an asynchronous multi
block request has been finished.

Available via NvM_Externals.h

Ộ(SRS_BSW_00457, SRS_BSW_00360, SRS_BSW_00333)
Note: The following requirements are related to the above mentioned callback
SWS_NVM_00179, SWS_NVM_00260 and ECUC_NvM_00500.

Note: Please refer to NvMMultiBlockCallback in chapter 10. The Multi block job end
notification might be called in interrupt context, depending on the calling function.

8.1.4.3.3 Callback function for block initialization

[SWS_NvM_00469]ổ

Service Name NvM_InitBlockCallbackFunction

Syntax
Std_ReturnType NvM_InitBlockCallbackFunction (
 NvM_InitBlockRequestType InitBlockRequest
)

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters
(in)

InitBlockRequest
The request type (read, restore, ... etc.) of the currently
processed block

Parameters
(inout)

None

Parameters
(out)

None

Return value Std_ReturnType
E_OK: callback function has been processed successfully
any other: callback function has been processed
unsuccessfully

Description
Per block callback routine which shall be called by the NvM module when default
data needs to be restored in RAM, and a ROM block is not configured.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

144 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Available via NvM_Externals.h

Ộ(SRS_BSW_00457, SRS_BSW_00360, SRS_BSW_00333)
Note: The following requirements are related to the above mentioned callback:
SWS_NVM_00085, SWS_NVM_00266, SWS_NvM_00817 and ECUC_NvM_00116.

[SWS_NvM_00369] ổIf the Init block callback returns a value different than E_OK
then the request result shall be set to NVM_REQ_NOT_OK.
Note: The Init block callback is called either if a read request for a block failed in
retrieving the data from the non-volatile memory or if explicit default data recovery is
requested. Either way, if the Init block callback does not indicate E_OK,
the read/restore default operation has failed completely and the request result needs
to reflect this. Ộ ()

Note: Please refer to NvMInitBlockCallback in chapter 10. The init block callback
function might be called in interrupt context only if there is no callback configured in
NvM that belongs to a SW-C.

[SWS_NvM_00967] If the block is configured with CalcRamBlockCrc and if the

return value for NvMInitBlockCallback is E_OK then NvM shall synchronize the data
with the NvM mirror before calculating the CRC over it. (SRS_Mem_08538,

SRS_LIBS_08533, SRS_Mem_00016, SRS_Mem_00018) ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

145 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.4.3.4 Callback function for RAM to NvM copy

[SWS_NvM_00539]ổ

Service Name NvM_WriteRamBlockToNvm

Syntax
Std_ReturnType NvM_WriteRamBlockToNvm (
 void* NvMBuffer
)

Service ID
[hex]

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters
(inout)

None

Parameters
(out)

NvMBuffer the address of the buffer where the data shall be written to

Return value Std_ReturnType
E_OK: callback function has been processed successfully
any other: callback function has been processed
unsuccessfully

Description
Block specific callback routine which shall be called in order to let the application
copy data from RAM block to NvM module's mirror.

Available via NvM_Externals.h

Ộ(SRS_BSW_00457)

[SWS_NvM_00541] ổThe RAM to NvM copy callback shall be a function pointer. Ộ ()
Note: Please refer to NvMWriteRamBlockToNvCallback in chapter 10.

8.1.4.3.5 Callback function for NvM to RAM copy

[SWS_NvM_00540]ổ

Service Name NvM_ReadRamBlockFromNvm

Syntax
Std_ReturnType NvM_ReadRamBlockFromNvm (
 const void* NvMBuffer
)

Service ID
[hex]

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) NvMBuffer the address of the buffer where the data can be read from

 Specification of NVRAM Manager
AUTOSAR CP R20-11

146 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Parameters
(inout)

None

Parameters
(out)

None

Return value Std_ReturnType
E_OK: callback function has been processed successfully
any other: callback function has been processed
unsuccessfully

Description
Block specific callback routine which shall be called in order to let the application
copy data from NvM module's mirror to RAM block.

Available via NvM_Externals.h

Ộ(SRS_LIBS_08533, SRS_BSW_00457)

[SWS_NvM_00542] ổThe NvM to RAM copy callback shall be a function pointer. Ộ ()
Note: Please refer to NvMReadRamBlockFromNvCallback in chapter 10.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

147 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.1.5 API Overview

Request Types Characteristics of Request Types

Type 1:
- NvM_SetDataIndex (...)
- NvM_GetDataIndex (...)
- NvM_SetBlockProtection (...)
- NvM_GetErrorStatus(...)
- NvM_SetRamBlockStatus(...)

- synchronous request
- affects one RAM block
- available for all SW-Cs

Type 2:
- NvM_ReadBlock(...)
- NvM_WriteBlock(...)
- NvM_RestoreBlockDefaults(...)
- NvM_EraseNvBlock(...)
- NvM_InvalidateNvBlock(...)
- NvM_CancelJobs(é)
- NvM_ReadPRAMBlock(...)
- NvM_WritePRAMBlock(...)
- NvM_RestorePRAMBlockDefaults(...)

- asynchronous request (result via callback or polling)
- affects one NVRAM block
- handled by NVRAM manager task via request list
- available for all SW-Cs

Type 3:
- NvM_ReadAll(...)
- NvM_WriteAll(...)
- NvM_CancelWriteAll(...)
- NvM_ValidateAll(...)

- asynchronous request (result via callback or polling)
- affects all NVRAM blocks with permanent RAM data

Type 4:
- NvM_Init(...)

- synchronous request
- basic initialization
- success signaled to the task via command interface
 inside the function itself

 Specification of NVRAM Manager
AUTOSAR CP R20-11

148 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.2 Service Interfaces

This chapter is an addition to the specification of the NvM module. Whereas the other
parts of the specification define the behavior and the C-interfaces of the
corresponding basic software module, this chapter formally specifies the
corresponding AUTOSAR service in terms of the SWC template. The interfaces
described here will be visible on the VFB and are used to generate the RTE between
application software and the NvM module.

8.2.1 Client-Server-Interfaces

8.2.1.1 NvM_Admin

[SWS_NvM_00737]ổ

Name NvMAdmin

Comment --

IsService true

Variation --

Possible Errors
0 E_OK Operation successful

1 E_NOT_OK Operation failed

Operation SetBlockProtection

Comment Service for setting/resetting the write protection for a NV block.

Variation

FOR
 configClass : ECV.subEltList("NvM/NvMCommon/NvMApiConfigClass");
LET
 isConfigClass3 = configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE

 isConfigClass3;

Parameters

ProtectionEnabled

Type boolean

Direction IN

Comment --

Variation --

Possible Errors
E_OK
E_NOT_OK

Ộ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

149 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.2.1.2 NvM_Mirror

[SWS_NvM_00738]ổ

Name NvMMirror

Comment --

IsService true

Variation --

Possible Errors
0 E_OK Operation successful

1 E_NOT_OK Operation failed

Operation ReadRamBlockFromNvM

Comment
Block specific callback routine which shall be called in order to let the application
copy data from NvM module's mirror to RAM block.

Variation --

Parameters

SrcPtr

Type ConstVoidPtr

Direction IN

Comment
The parameter "SrcPtr" shall be typed by an ImplementationDataType of
category DATA_REFERENCE with the pointer target void to pass an
address (pointer) to the RAM Block.

Variation --

Possible
Errors

E_OK
E_NOT_OK

Operation WriteRamBlockToNvM

Comment
Block specific callback routine which shall be called in order to let the application
copy data from RAM block to NvM module's mirror.

Variation --

Parameters

DstPtr

Type VoidPtr

Direction IN

Comment
The parameter "DstPtr" shall be typed by an ImplementationDataType of
category DATA_REFERENCE with the pointer target void to pass an
address (pointer) to the RAM Block.

Variation --

Possible
Errors

E_OK
E_NOT_OK

 Specification of NVRAM Manager
AUTOSAR CP R20-11

150 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Ộ()
8.2.1.3 NvM_NotifyInitBlock

[SWS_NvM_00736]ổ

Name NvMNotifyInitBlock

Comment
Callback that is called by the NvM module when default data needs to be restored
to the RAM image

IsService true

Variation --

Possible
Errors

0 E_OK RAM block content was updated

1 RTE_E_RAM_UNCHANGED RAM block content was not changed

Operation InitBlock

Comment This callback is called if the initialization of a block has completed.

Variation --

Parameters

InitBlockRequest

Type NvM_InitBlockRequestType

Direction IN

Comment --

Variation --

Possible Errors --

Ộ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

151 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

8.2.1.4 NvM_NotifyJobFinished

[SWS_NvM_00735]ổ

Name NvMNotifyJobFinished

Comment Callback that is called when a job has finished

IsService true

Variation --

Possible Errors 0 E_OK Operation successful

Operation JobFinished

Comment Callback that gets called if a job has finished

Variation --

Parameters

BlockRequest

Type NvM_BlockRequestType

Direction IN

Comment --

Variation --

JobResult

Type NvM_RequestResultType

Direction IN

Comment --

Variation --

Possible Errors E_OK

Ộ()
8.2.1.5 NvM_Service

[SWS_NvM_00734]ổ

Name NvMService

Comment --

IsService true

Variation --

Possible Errors
0 E_OK Operation successful

1 E_NOT_OK Operation failed

 Specification of NVRAM Manager
AUTOSAR CP R20-11

152 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Operation EraseBlock

Comment Service to erase a NV block.

Variation

FOR
 configClass : ECV.subEltList("NvM/NvMCommon/NvMApiConfigClass");
LET
 isConfigClass3 = configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE

 isConfigClass3;

Possible Errors
E_OK
E_NOT_OK

Operation GetDataIndex

Comment Service for getting the currently set DataIndex of a dataset NVRAM block

Variation

FOR
 configClass : ECV.subEltList("NvM/NvMCommon/NvMApiConfigClass");
LET
 isConfigClass2 = configClass.value() == "NVM_API_CONFIG_CLASS_2";
WHERE
 isConfigClass2;

Parameters

DataIndex

Type uint8

Direction OUT

Comment --

Variation --

Possible Errors
E_OK
E_NOT_OK

Operation GetErrorStatus

Comment Service to read the block dependent error/status information.

Variation --

Parameters

RequestResult

Type NvM_RequestResultType

Direction OUT

Comment --

Variation --

Possible Errors
E_OK
E_NOT_OK

 Specification of NVRAM Manager
AUTOSAR CP R20-11

153 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Operation InvalidateNvBlock

Comment Service to invalidate a NV block.

Variation

FOR
 configClass : ECV.subEltList("NvM/NvMCommon/NvMApiConfigClass");
LET
 isConfigClass3 = configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE
 isConfigClass3;

Possible Errors
E_OK
E_NOT_OK

Operation ReadBlock

Comment Service to copy the data of the NV block to its corresponding RAM block.

Variation

FOR
 configClass : ECV.subEltList("NvM/NvMCommon/NvMApiConfigClass");
LET
 isConfigClass2 = configClass.value() == "NVM_API_CONFIG_CLASS_2";
 isConfigClass3 = configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE
 isConfigClass2 OR isConfigClass3;

Parameters

DstPtr

Type VoidPtr

Direction IN

Comment
The parameter "DstPtr" shall be typed by an ImplementationDataType of
category DATA_REFERENCE with the pointer target void to pass an
address (pointer) to the RAM Block.

Variation --

Possible
Errors

E_OK
E_NOT_OK

Operation ReadPRAMBlock

Comment --

Variation

FOR
 configClass : ECV.subEltList("NvM/NvMCommon/NvMApiConfigClass");
LET
 isConfigClass2 = configClass.value() == "NVM_API_CONFIG_CLASS_2";
 isConfigClass3 = configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE
 isConfigClass2 OR isConfigClass3;

Possible Errors
E_OK
E_NOT_OK

Operation RestoreBlockDefaults

 Specification of NVRAM Manager
AUTOSAR CP R20-11

154 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Comment Service to restore the default data to its corresponding RAM block.

Variation

FOR
 configClass : ECV.subEltList("NvM/NvMCommon/NvMApiConfigClass");
LET
 isConfigClass2 = configClass.value() == "NVM_API_CONFIG_CLASS_2";
 isConfigClass3 = configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE
 isConfigClass2 OR isConfigClass3;

Parameters

DstPtr

Type VoidPtr

Direction IN

Comment
The parameter "DstPtr" shall be typed by an ImplementationDataType of
category DATA_REFERENCE with the pointer target void to pass an
address (pointer) to the RAM Block.

Variation --

Possible
Errors

E_OK
E_NOT_OK

Operation RestorePRAMBlockDefaults

Comment --

Variation

FOR
 configClass : ECV.subEltList("NvM/NvMCommon/NvMApiConfigClass");
LET
 isConfigClass2 = configClass.value() == "NVM_API_CONFIG_CLASS_2";
 isConfigClass3 = configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE
 isConfigClass2 OR isConfigClass3;

Possible Errors
E_OK
E_NOT_OK

Operation SetDataIndex

Comment Service for setting the DataIndex of a dataset NVRAM block.

Variation

FOR
 configClass : ECV.subEltList("NvM/NvMCommon/NvMApiConfigClass");
LET
 isConfigClass2 = configClass.value() == "NVM_API_CONFIG_CLASS_2";
 isConfigClass3 = configClass.value() == "NVM_API_CONFIG_CLASS_3";
 blockMgmTypes = ECV.subEltList("NvM/NvMBlockDescriptor/NvMBlock
ManagementType");
 isMgd(mgmtType) = mgmtType.value() == "NVM_BLOCK_DATASET";
 datasetMgdCount = blockMgmTypes.filter(isMgd).count();
WHERE
 (isConfigClass2 OR isConfigClass3) AND (datasetMgdCount GT 0);

Parameters DataIndex

 Specification of NVRAM Manager
AUTOSAR CP R20-11

155 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Type uint8

Direction IN

Comment --

Variation --

Possible
Errors

E_OK
E_NOT_OK

Operation SetRamBlockStatus

Comment Service for setting the RAM block status of an NVRAM block.

Variation

LET
 nvmBlockUseSetRamBlockStatus = ECV.subEltList("NvM/NvMBlockDescriptor/
NvMBlockUseSetRamBlockStatus");
 useSetRamBlockStatus(useApi) = useApi.value() == true;
 useSetRamBlockStatusCount = nvmBlockUseSetRamBlockStatus.filter(useSet
RamBlockStatus).count();
WHERE
 (useSetRamBlockStatusCount GT 0);

Parameters

BlockChanged

Type boolean

Direction IN

Comment --

Variation --

Possible
Errors

E_OK
E_NOT_OK

Operation WriteBlock

Comment Service to copy the data of the RAM block to its corresponding NV block.

Variation

FOR
 configClass : ECV.subEltList("NvM/NvMCommon/NvMApiConfigClass");
LET
 isConfigClass2 = configClass.value() == "NVM_API_CONFIG_CLASS_2";
 isConfigClass3 = configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE
 isConfigClass2 OR isConfigClass3;

Parameters

SrcPtr

Type ConstVoidPtr

Direction IN

Comment
The parameter "SrcPtr" shall be typed by an ImplementationDataType of
category DATA_REFERENCE with the pointer target void to pass an
address (pointer) to the RAM Block.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

156 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Variation --

Possible
Errors

E_OK
E_NOT_OK

Operation WritePRAMBlock

Comment --

Variation

FOR
 configClass : ECV.subEltList("NvM/NvMCommon/NvMApiConfigClass");
LET
 isConfigClass2 = configClass.value() == "NVM_API_CONFIG_CLASS_2";
 isConfigClass3 = configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE
 isConfigClass2 OR isConfigClass3;

Possible Errors
E_OK
E_NOT_OK

Ộ()

8.2.2 Implementation Data Types

8.2.2.1 ImplementationDataType NvM_RequestResultType

[SWS_NvM_00470]ổ

Name NvM_RequestResultType

Kind Type

Derived
from

uint8

Range

NVM_REQ_OK 0x00
The last asynchronous request has been finished
successfully. This shall be the default value after reset.
This status shall have the value 0.

NVM_REQ_NOT_
OK

0x01
The last asynchronous read/write/control request has
been finished unsuccessfully.

NVM_REQ_
PENDING

0x02
An asynchronous read/write/control request is currently
pending.

NVM_REQ_
INTEGRITY_
FAILED

0x03

The result of the last asynchronous request
NvM_ReadBlock or NvM_ReadAll
is a data integrity failure.
Note: In case of
NvM_ReadBlock
the content of the RAM block has changed but has
become invalid. The application is responsible to renew
and validate the RAM block content.

NVM_REQ_
BLOCK_
SKIPPED

0x04
The referenced block was skipped during execution of Nv
M_ReadAll or NvM_WriteAll, e.g. Dataset NVRAM blocks
(NvM_ReadAll) or NVRAM blocks without a permanently

 Specification of NVRAM Manager
AUTOSAR CP R20-11

157 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

configured RAM block.

NVM_REQ_NV_
INVALIDATED

0x05 The referenced NV block is invalidated.

NVM_REQ_
CANCELED

0x06

The multi block request NvM_WriteAll was canceled by
calling NvM_CancelWriteAll. Or Any single block job
request (NvM_ReadBlock, NvM_WriteBlock, NvM_Erase
NvBlock, NvM_InvalidateNvBlock and NvM_RestoreBlock
Defaults) was canceled by calling NvM_CancelJobs.

NVM_REQ_
RESTORED_
DEFAULTS

0x08
The referenced NV block had the default values copied to
the RAM image.

Description
This is an asynchronous request result returned by the API service NvM_GetError
Status. The availability of an asynchronous request result can be additionally signaled
via a callback function.

Variation --

Available
via

Rte_NvM_Type.h

Ộ()
8.2.2.2 ImplementationDataType NvM_BlockIdType

[SWS_NvM_00471]ổ

Name NvM_BlockIdType

Kind Type

Derived
from

uint16

Range 0..2^(16- NvMDatasetSelectionBits)-1 -- --

Description
Identification of a NVRAM block via a unique block identifier.
Reserved NVRAM block IDs: 0 -> to derive multi block request results via NvM_Get
ErrorStatus 1 -> redundant NVRAM block which holds the configuration ID

Variation --

Available
via

Rte_NvM_Type.h

Ộ()

8.2.2.3 ImplementationDataType NvM_InitBlockRequestType

[SWS_NvM_91123]ổ

Name NvM_InitBlockRequestType

Kind Type

Derived uint8

 Specification of NVRAM Manager
AUTOSAR CP R20-11

158 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

from

Range

NVM_INIT_READ_BLOCK 0x00
NvM_ReadBlock/ NvM_ReadPRAMBlock is
requested on the block

NVM_INIT_RESTORE_
BLOCK_DEFAULTS

0x01
NvM_RestoreBlockDefaults/ NvM_Restore
PRAMBlockDefaults is requested on the block

NVM_INIT_READ_ALL_
BLOCK

0x02 NvM_ReadAll is processing this block

NVM_INIT_FIRST_INIT_
ALL

0x03 NvM_FirstInitAll is processing this block

Description
Identifies the type of request performed on a block when signaled via the callback
function

Variation --

Available
via

Rte_NvM_Type.h

Ộ()

8.2.2.4 ImplementationDataType NvM_BlockRequestType

[SWS_NvM_91002]ổ

Name NvM_BlockRequestType

Kind Type

Derived
from

uint8

Range

NVM_READ_BLOCK 0x00
NvM_ReadBlock/ NvM_ReadPRAMBlock was
performed on the block

NVM_WRITE_BLOCK 0x01
NvM_WriteBlock/ NvM_WritePRAMBlock was
performed on the block

NVM_RESTORE_
BLOCK_DEFAULTS

0x02
NvM_RestoreBlockDefaults/ NvM_Restore
PRAMBlockDefaults was performed on the block

NVM_ERASE_NV_
BLOCK

0x03 NvM_EraseNvBlock was performed on the block

NVM_INVALIDATE_NV_
BLOCK

0x04
NvM_InvalidateNvBlock was performed on the
block

NVM_READ_ALL_
BLOCK

0x05 NvM_ReadAll has finished processing this block

Description
Identifies the type of request performed on a block when signaled via the callback
function

Variation --

Available Rte_NvM_Type.h

 Specification of NVRAM Manager
AUTOSAR CP R20-11

159 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

via

Ộ()
Note: Calling the single block callback with NVM_READ_ALL_BLOCK can be used
to trigger an RTE Event that initializes a SW-C (see note below SWS_NvM_00281)
as opposed to calling the single block callback with NVM_READ_BLOCK which is
used to notify an already initialized SW-C of the result of a pending read block job.
Therefore separate literals/values are specified.

8.2.3 Ports

8.2.3.1 NvM_PAdmin_{Block}

[SWS_NvM_00843]ổ

Name PAdmin_{Block}

Kind
Provided
Port

Interface NvMAdmin

Description --

Port Defined Argument
Value(s)

Type NvM_BlockIdType

Value

FOR
 nvBlockDescriptor : ECV.subEltList("NvM/NvMBlock
Descriptor");
LET
 Block = nvBlockDescriptor.shortname();
 BlockId = nvBlockDescriptor.subElt("NvMNvramBlock
Identifier").value();

Variation

FOR
 nvBlockDescriptor : ECV.subEltList("NvM/NvMBlockDescriptor");
LET
 Block = nvBlockDescriptor.shortname();
 UsePort = nvBlockDescriptor.subElt("NvMBlockUse
Port").value() == true;
WHERE
 UsePort;

Ộ()
8.2.3.2 NvM_PM_{Block}

[SWS_NvM_00844]ổ

Name PM_{Block}

 Specification of NVRAM Manager
AUTOSAR CP R20-11

160 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Kind RequiredPort Interface NvMMirror

Description --

Variation

FOR
 nvBlockDescriptor : ECV.subEltList("NvM/NvMBlockDescriptor");
LET
 Block = nvBlockDescriptor.shortname();
 UsePort = nvBlockDescriptor.subElt("NvMBlockUsePort").value() == true;
 UsePortSyncMech = nvBlockDescriptor.subElt("NvMBlockUseSync
Mechanism").value() == true;
WHERE
 UsePort AND UsePortSyncMech;

Ộ()
8.2.3.3 NvM_PNIB_{Block}

[SWS_NvM_00845]ổ

Name PNIB_{Block}

Kind RequiredPort Interface NvMNotifyInitBlock

Description --

Variation

FOR
 nvBlockDescriptor : ECV.subEltList("NvM/NvMBlockDescriptor");
LET
 Block = nvBlockDescriptor.shortname();
 UsePort = nvBlockDescriptor.subElt("NvMBlockUsePort").value() == true;
 InitBlockCallbackDef = nvBlockDescriptor.subElt("NvMInitBlockCallback").is
Defined();
 InitBlockCallbackFncDef = nvBlockDescriptor.subElt("NvMInitBlockCallback/NvMInit
BlockCallbackFnc").isDefined();
WHERE
 UsePort AND InitBlockCallbackDef AND NOT InitBlockCallbackFncDef;

Ộ()
8.2.3.4 NvM_PNJF_{Block}

[SWS_NvM_00846]ổ

Name PNJF_{Block}

Kind RequiredPort Interface NvMNotifyJobFinished

Description --

Variation

FOR
 nvBlockDescriptor : ECV.subEltList("NvM/NvMBlockDescriptor");
LET
 Block = nvBlockDescriptor.shortname();
 UsePort = nvBlockDescriptor.subElt("NvMBlockUsePort").value() == true;
 SingleBlockCallbackDef = nvBlockDescriptor.subElt("NvMSingleBlockCallback").is
Defined();
 SingleBlockCallbackFncDef = nvBlockDescriptor.subElt("NvMSingleBlockCallback/
NvMSingleBlockCallbackFnc").isDefined();
WHERE

 Specification of NVRAM Manager
AUTOSAR CP R20-11

161 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

 UsePort AND SingleBlockCallbackDef AND NOT SingleBlockCallbackFncDef;

Ộ()
8.2.3.5 NvM_PS_{Block}

[SWS_NvM_00847]ổ

Name PS_{Block}

Kind
Provided
Port

Interface NvMService

Description --

Port Defined Argument
Value(s)

Type NvM_BlockIdType

Value

FOR
 nvBlockDescriptor : ECV.subEltList("NvM/NvMBlock
Descriptor");
LET
 Block = nvBlockDescriptor.shortname();
 BlockId = nvBlockDescriptor.subElt("NvMNvramBlock
Identifier").value();

Variation

FOR
 nvBlockDescriptor : ECV.subEltList("NvM/NvMBlockDescriptor");
LET
 Block = nvBlockDescriptor.shortname();
 UsePort = nvBlockDescriptor.subElt("NvMBlockUse
Port").value() == true;
WHERE
 UsePort;

Ộ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

162 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

9 Sequence Diagrams

9.1 Synchronous calls

9.1.1 NvM_Init

Figure 11: UML sequence diagram NvM_Init

9.1.2 NvM_SetDataIndex

çmoduleè

NvM

NvM User

NvM_SetDataIndex(Std_ReturnType,

NvM_BlockIdType, uint8)

NvM_SetDataIndex

()

Figure 12: UML sequence diagram NvM_SetDataIndex

 Specification of NVRAM Manager
AUTOSAR CP R20-11

163 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

9.1.3 NvM_GetDataIndex

çmoduleè

NvM

NvM User

NvM_GetDataIndex(Std_ReturnType,

NvM_BlockIdType, uint8**)

NvM_GetDataIndex

()

Figure 13: UML sequence diagram NvM_GetDataIndex

9.1.4 NvM_SetBlockProtection

çmoduleè

NvM

NvM User

NvM_SetBlockProtection

()

NvM_SetBlockProtection(Std_ReturnType,

NvM_BlockIdType, boolean)

Figure 14: UML sequence diagram NvM_SetBlockProtection

9.1.5 NvM_GetErrorStatus

çmoduleè

NvM

NvM User

NvM_GetErrorStatus()

NvM_GetErrorStatus(Std_ReturnType,

NvM_BlockIdType,

NvM_RequestResultType**)

Figure 15: UML sequence diagram NvM_GetErrorStatus

 Specification of NVRAM Manager
AUTOSAR CP R20-11

164 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

9.1.6 NvM_GetVersionInfo

çmoduleè

NvM

NvM User

NvM_GetVersionInfo

(Std_VersionInfoType**)

NvM_GetVersionInfo

()

Figure 16: UML sequence diagram NvM_GetVersionInfo

 Specification of NVRAM Manager
AUTOSAR CP R20-11

165 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

9.2 Asynchronous calls

The following sequence diagrams concentrate on the interaction between the NvM
module and SW-Côs or the BSW Mode Manager. For interaction regarding the
Memory Interface please ref. to [5] or [6].

9.2.1 Asynchronous call with polling

The following diagram shows the function NvM_WriteBlock as an example of a
request that is performed asynchronously. The sequence for all other asynchronous
functions is the same, only the processed number of blocks and the block types may
vary. The result of the asynchronous function is obtained by polling requests to the
error/status information.

çmoduleè

NvM

NvM User

BSW Task (OS task

or cyclic call)

Comment:

Check and store request.

Set job result to NVM_REQ_PENDING

Comment:

Job processing (writing NVRAM) is done

asynchronously.

Data unit by data unit is written to NVRAM

(e.g. 1 byte every 10 ms, both depending

on NVRAM hardware).

During writing of data job result is still

NVM_REQ_PENDING

Comment:

Writing of Block completed successfully.

Job result will be NVM_REQ_OK

loop Job processing

[repeat until writing of block is completed]

NvM_GetErrorStatus(Std_ReturnType,

NvM_BlockIdType, NvM_RequestResultType**)

NvM_GetErrorStatus

()

NvM_MainFunction()

NvM_GetErrorStatus

()

NvM_GetErrorStatus(Std_ReturnType,

NvM_BlockIdType, NvM_RequestResultType**)

NvM_WriteBlock(Std_ReturnType,

NvM_BlockIdType, const void*)

NvM_MainFunction

()

NvM_WriteBlock

()

Figure 17: UML sequence diagram for asynchronous call with polling

 Specification of NVRAM Manager
AUTOSAR CP R20-11

166 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

9.2.2 Asynchronous call with callback

The following diagram shows the function NvM_WriteBlock as an example of a
request that is performed asynchronously. The sequence for all other asynchronous
functions is the same, only the processed number of blocks and the block types may
vary. The result of the asynchronous function is obtained after an asynchronous
notification (callback) by requesting the error/status information.

çmoduleè

NvM

NvM User

BSW Task (OS task

or cyclic call)

Comment:

Job processing (writing NVRAM) is done

asynchronously.

Data unit by data unit is written to NVRAM (e.g. 1

byte every 10 ms, both depending on NVRAM

hardware).

During writing of data job result is still

NVM_REQ_PENDING

Comment:

Check and store request.

Callback address is stored in the NVRAM block

descriptor.

Set job result to NVM_REQ_PENDING.

Comment:

Writing of Block completed.

Call Job End Notification

Comment:

Writing of Block completed successfully.

Job result will be NVM_REQ_OK

loop Job processing

[repeat until writing of block is completed]

NvM_WriteBlock

()

NvM_SingleBlockCallbackFunction(Std_ReturnType,

NvM_BlockRequestType, NvM_RequestResultType)

NvM_GetErrorStatus

()

<SingleBlockJobEndNotification>

()

NvM_WriteBlock(Std_ReturnType,

NvM_BlockIdType, const void*)

NvM_MainFunction()

NvM_MainFunction()

NvM_GetErrorStatus(Std_ReturnType,

NvM_BlockIdType, NvM_RequestResultType**)

NvM_MainFunction

()

NvM_MainFunction

()

Figure 18: UML sequence diagram for asynchronous call with callback

 Specification of NVRAM Manager
AUTOSAR CP R20-11

167 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

9.2.3 Cancellation of a Multi Block Request

The following diagram shows the effect of a cancel operation applied to a running
NvM_WriteAll multi block request. The running NvM_WriteAll function completes the
actual NVRAM block and stops further writes.

çmoduleè

NvM

çmoduleè

EcuM

BSW Task (OS task

or cyclic call)

Comment:

Call Job End Notification if

configured

Comment:

A currently pending NVRAM

block will be processed until its

end non-destructively.

Processing a next NVRAM

block resulting from

NvM_WriteAll will not be started.

EcuM_CB_NfyNvMJobEnd(uint8,

NvM_RequestResultType)

NvM_CancelWriteAll()

NvM_MainFunction

()

EcuM_CB_NfyNvMJobEnd

()

NvM_WriteAll()

NvM_MainFunction()

NvM_CancelWriteAll

()

NvM_MainFunction()

NvM_MainFunction

()

NvM_WriteAll()

Figure 19: UML sequence diagram for cancellation of asynchronous call

 Specification of NVRAM Manager
AUTOSAR CP R20-11

168 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

9.2.4 BswM Interraction

The following diagrams show the interractions between NvM and BswM in terms of
single block operation and multiblock operation.

BSW Task (OS task

or cyclic call)

çmoduleè

BswM

çmoduleè

NvM

NvM User

loop While block is sti l l being processed

Multi block operation

finishes in this call

BswM_NvM_CurrentBlockMode(Block,

NVM_REQ_PENDING)

BswM_NvM_CurrentBlockMode(Block,

JobResult)

NvM_MainFunction()

NvM_MainFunction()

SingleBlockCallback(JobResult)

Single block request()

Figure 20: NvM interraction with BswM in case of a single block operation

 Specification of NVRAM Manager
AUTOSAR CP R20-11

169 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Figure 21: NvM interraction with BswM for a multiblock operation

 Specification of NVRAM Manager
AUTOSAR CP R20-11

170 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Figure 22: NvM interraction with BswM in case of a WriteAll cancellation

 Specification of NVRAM Manager
AUTOSAR CP R20-11

171 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

BSW Task (OS task

or cyclic call)

çmoduleè

BswM

çmoduleè

NvM

NvM User

alt

[Single block request just queued]

[Single block request processing is ongoing]

BswM_NvM_CurrentBlockMode(Block,

NVM_REQ_PENDING)

NvM_CancelJobs(BlockId)

NvM_CancelJobs(BlockId)

return(E_NOT_OK)

Single block request()

BswM_NvM_CurrentBlockMode(Block,

NVM_REQ_CANCELED)

Figure 23: NvM interraction with BswM in case of a single block cancellation

 Specification of NVRAM Manager
AUTOSAR CP R20-11

172 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into
containers. In order to support the specification Chapter 10.1 describes
fundamentals. It also specifies a template (table) you shall use for the parameter
specification.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
NvM.
Chapter 10.2.9 specifies published information of the module NvM.

10.1 How to read this chapter

For details refer to the chapter 10.1 ñIntroduction to configuration specificationò in
SWS_BSWGeneral.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters describe chapter 7.2 and chapter 8.

NvMCommon:

EcucParamConfContainerDef

NvMBlockDescriptor:

EcucParamConfContainerDef

upperMultiplicity = 65536

lowerMultiplicity = 1

NvM: EcucModuleDef

upperMultiplicity = 1

lowerMultiplicity = 0

AUTOSARParameterDefinition:

EcucDefinitionCollection

NvMBlockCiphering:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 65535

+container

+module

+container

+container

 Specification of NVRAM Manager
AUTOSAR CP R20-11

173 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

10.2.1 NvM

SWS Item ECUC_NvM_00539 :

Module Name NvM

Module Description Configuration of the NvM (NvRam Manager) module.

Post -Build Variant Support false

Supported Config Variants VARIANT -LINK -TIME, VARIANT -PRE-COMPILE

Included Containers

Container Name Multiplicity Scope / Dependency

NvMBlockCiphering 0..65535
Container for a chiphering of the Block.
Tags:
atp.Status=draft

NvMBlockDescriptor 1..65536

Container for a management structure to configure the
composition of a given NVRAM Block Management Type. Its
multiplicity describes the number of configured NVRAM
blocks, one block is required to be configured. The NVRAM
block descriptors are condensed in the NVRAM block
descriptor table.

NvMCommon 1 Container for common configuration options.

NvmDemEventParameterRef
s

0..1

Container for the references to DemEventParameter elements
which shall be invoked using the API Dem_SetEventStatus in
case the corresponding error occurs. The EventId is taken
from the referenced DemEventParameter's DemEventId
symbolic value. The standardized errors are provided in this
container and can be extended by vendor-specific error
references.

10.2.2 NvMCommon

SWS Item ECUC_NvM_00028 :

Container Name NvMCommon

Parent Container NvM

Description Container for common configuration options.

Configuration Parameters

SWS Item ECUC_NvM_00491 :

Name

NvMApiConfigClass
Parent Container NvMCommon

Description Preprocessor switch to enable some API calls which are related to NVM API
configuration classes.

Multiplicity 1

Type EcucEnumerationParamDef

Range NVM_API_CONFIG_CLASS_1 All API calls belonging to configuration
class 1 are available.

NVM_API_CONFIG_CLASS_2 All API calls belonging to configuration
class 2 are available.

NVM_API_CONFIG_CLASS_3 All API calls belonging to configuration
class 3 are available.

Post -Build Variant
Value

false

Value
Configuration
Class

Pre-compile time X All Variants

Link time --

Post -build time --

Scope / scope: local

 Specification of NVRAM Manager
AUTOSAR CP R20-11

174 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Dependency

SWS Item ECUC_NvM_00550 :

Name

NvMBswMMultiBlockJobStatusInformation
Parent Container NvMCommon

Description This parameter specifies whether BswM is informed about the current
status of the multiblock job.
True: call BswM_NvM_CurrentJobMode if ReadAll and WriteAll are
started, finished, canceled
False: do not inform BswM at all

Multiplicity 1

Type EcucBooleanParamDef

Default value true

Post -Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00492 :

Name

NvMCompiledConfigId
Parent Container NvMCommon

Description Configuration ID regarding the NV memory layout. This configuration ID
shall be published as e.g. a SW-C shall have the possibility to write it to NV
memory.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value --

Post -Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00493 :

Name

NvMCrcNumOfBytes
Parent Container NvMCommon

Description If CRC is configured for at least one NVRAM block, this parameter defines
the maximum number of bytes which shall be processed within one cycle
of job processing.

Multiplicity 1

Type EcucIntegerParamDef

Range 1 .. 65535

Default value --

Post -Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00572 :

Name

NvMCsmRetryCounter
Parent Container NvMCommon

Description This value specifies the number of CSM encryption/decryption job retry
attempts.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

175 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

CSM jobs for block reading and writing may fail (e.g. module busy, queue
full, ...).
To not directly abort the read/write with an error status, the NvM will retry
the CSM job for the configured NvMCsmRetryCounter times.

Configuring 0 means: no retry behavior; job will be aborted directly.
Tags:
atp.Status=draft

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 255

Default value 0

Value Configuration Class Pre-compile time X All Variants

Link time --

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00494 :

Name

NvMDatasetSelectionBits
Parent Container NvMCommon

Description Defines the number of least significant bits which shall be used to address
a certain dataset of a NVRAM block within the interface to the memory
hardware abstraction.
0..8: Number of bits which are used for dataset or redundant block
addressing.

0: No dataset or redundant NVRAM blocks are configured at all, no
selection bits required.

1: In case of redundant NVRAM blocks are configured, but no dataset
NVRAM blocks.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 8

Default value --

Post -Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Scope / Dependency scope: local
dependency: MemHwA, NVM_NVRAM_BLOCK_IDENTIFIER,
NVM_BLOCK_MANAGEMENT_TYPE

SWS Item ECUC_NvM_00495 :

Name

NvMDevErrorDetect
Parent Container NvMCommon

Description Switches the development error detection and notification on or off.

¶ true: detection and notification is enabled.

¶ false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post -Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

 Specification of NVRAM Manager
AUTOSAR CP R20-11

176 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00496 :

Name

NvMDrvModeSwitch
Parent Container NvMCommon

Description Preprocessor switch to enable switching memory drivers to fast mode
during performing NvM_ReadAll and NvM_WriteAll
true: Fast mode enabled.
false: Fast mode disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post -Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00497 :

Name

NvMDynamicConfiguration
Parent Container NvMCommon

Description Preprocessor switch to enable the dynamic configuration management
handling by the NvM_ReadAll request.
true: Dynamic configuration management handling enabled.
false: Dynamic configuration management handling disabled.

This parameter affects all NvM processing related to Block with ID 1 and
all processing related to Resistant to Changed Software. If the Dynamic
Configuration is disabled, Block 1 cannot be used by NvM.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post -Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00498 :

Name

NvMJobPrioritization
Parent Container NvMCommon

Description Preprocessor switch to enable job prioritization handling
true: Job prioritization handling enabled.
false: Job prioritization handling disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post -Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00555 :

Name

NvMMainFunctionPeriod

 Specification of NVRAM Manager
AUTOSAR CP R20-11

177 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Parent Container NvMCommon

Description The period between successive calls to the main function in seconds.

Multiplicity 1

Type EcucFloatParamDef

Range]0 .. INF[

Default value --

Post -Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post -build time --

Scope / Dependency scope: ECU

SWS Item ECUC_NvM_00500 :

Name

NvMMultiBlockCallback
Parent Container NvMCommon

Description Entry address of the common callback routine which shall be invoked on
termination of each asynchronous multi block request

Multiplicity 0..1

Type EcucFunctionNameDef

Default value --

maxLength --

minLength --

regularExpression --

Post -Build Variant
Multiplicity

false

Post -Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00501 :

Name

NvMPollingMode
Parent Container NvMCommon

Description Preprocessor switch to enable/disable the polling mode in the NVRAM
Manager and at the same time disable/enable the callback functions
useable by lower layers
true: Polling mode enabled, callback function usage disabled.
false: Polling mode disabled, callback function usage enabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post -Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00518 :

Name

NvMRepeatMirrorOperations
Parent Container NvMCommon

Description Defines the number of retries to let the application copy data to or from the
NvM module's mirror before postponing the current job.

 Specification of NVRAM Manager
AUTOSAR CP R20-11

178 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 7

Default value 0

Post -Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00502 :

Name

NvMSetRamBlockStatusApi
Parent Container NvMCommon

Description Preprocessor switch to enable the API NvM_SetRamBlockStatus.
true: API NvM_SetRamBlockStatus enabled.
false: API NvM_SetRamBlockStatus disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post -Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00503 :

Name

NvMSizeImmediateJobQueue
Parent Container NvMCommon

Description Defines the number of queue entries for the immediate priority job queue.
If NVM_JOB_PRIORITIZATION is switched OFF this parameter shall be
out of scope.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 1 .. 65535

Default value --

Post -Build Variant
Multiplicity

false

Post -Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Scope / Dependency scope: local
dependency: NVM_JOB_PRIORITIZATION

SWS Item ECUC_NvM_00504 :

Name

NvMSizeStandardJobQueue
Parent Container NvMCommon

Description Defines the number of queue entries for the standard job queue.

Multiplicity 1

Type EcucIntegerParamDef

Range 1 .. 65535

Default value --

Post -Build Variant Value false

 Specification of NVRAM Manager
AUTOSAR CP R20-11

179 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00505 :

Name

NvMVersionInfoApi
Parent Container NvMCommon

Description Pre-processor switch to enable / disable the API to read out the modules
version information].
true: Version info API enabled.
false: Version info API disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post -Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00565 :

Name

NvMEcucPartitionRef
Parent Container NvMCommon

Description Maps the NvM to one or multiple ECUC partitions to make its C-APIs
available in the according partition.

Multiplicity 1..*

Type Reference to [EcucPartition]

Value Configuration Class Pre-compile time X All Variants

Link time --

Post -build time --

Scope / Dependency scope: ECU

SWS Item ECUC_NvM_00566 :

Name

NvMMasterEcucPartitionRef
Parent Container NvMCommon

Description Maps the NvM master to zero or one ECUC partition to assign the master
functionality to a certain core. The ECUC partition referenced is a subset of
the ECUC partitions where the NvM is mapped to.

Multiplicity 0..1

Type Reference to [EcucPartition]

Value Configuration Class Pre-compile time X All Variants

Link time --

Post -build time --

Scope / Dependency scope: ECU

No Included Containers

[SWS_NvM_CONSTR00974] The ECUC partition referenced by

NvMMasterEcucPartitionRef shall be within the subset of the ECUC partitions

referenced by NvMEcucPartitionRef. ()

 Specification of NVRAM Manager
AUTOSAR CP R20-11

180 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

[SWS_NvM_CONSTR00975] If NvMEcucPartitionRef references one or more

ECUC partitions, NvMMasterEcucPartitionRef shall have a multiplicity of one and

reference one of these ECUC partitions as well. ()

10.2.3 NvMBlockDescriptor

SWS Item ECUC_NvM_00061 :

Container Name NvMBlockDescriptor

Parent Container NvM

Description

Container for a management structure to configure the composition of a
given NVRAM Block Management Type. Its multiplicity describes the
number of configured NVRAM blocks, one block is required to be
configured. The NVRAM block descriptors are condensed in the NVRAM
block descriptor table.

Configuration Parameters

SWS Item ECUC_NvM_00476 :

Name

NvMBlockCrcType
Parent Container NvMBlockDescriptor

Description Defines CRC data width for the NVRAM block. Default: NVM_CRC16, i.e. CRC16
will be used if NVM_BLOCK_USE_CRC==true

Multiplicity 0..1

Type EcucEnumerationParamDef

Range NVM_CRC16 (Default) CRC16 will be used if
NVM_BLOCK_USE_CRC==true.

NVM_CRC32 CRC32 is selected for this NVRAM block if
NVM_BLOCK_USE_CRC==true.

NVM_CRC8 CRC8 is selected for this NVRAM block if
NVM_BLOCK_USE_CRC==true.

Post -Build Variant
Multiplicity

false

Post -Build Variant
Value

false

Multiplicity
Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Value
Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Scope /
Dependency

scope: local
dependency: NVM_BLOCK_USE_CRC, NVM_CALC_RAM_BLOCK_CRC

SWS Item ECUC_NvM_00554 :

Name

NvMBlockHeaderInclude
Parent Container NvMBlockDescriptor

Description Defines the header file where the owner of the NVRAM block has the
declarations of the permanent RAM data block, ROM data block (if
configured) and the callback function prototype for each configured
callback. If no permanent RAM block, ROM block or callback functions are
configured then this configuration parameter shall be ignored.

Multiplicity 0..1

Type EcucStringParamDef

Default value --

maxLength --

minLength --

 Specification of NVRAM Manager
AUTOSAR CP R20-11

181 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

regularExpression --

Post -Build Variant
Multiplicity

false

Post -Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00477 :

Name

NvMBlockJobPriority
Parent Container NvMBlockDescriptor

Description Defines the job priority for a NVRAM block (0 = Immediate priority).

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

Post -Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00062 :

Name

NvMBlockManagementType
Parent Container NvMBlockDescriptor

Description Defines the block management type for the NVRAM block.[SWS_NvM_00137]

Multiplicity 1

Type EcucEnumerationParamDef

Range NVM_BLOCK_DATASET NVRAM block is configured to be of
dataset type.

NVM_BLOCK_NATIVE NVRAM block is configured to be of
native type.

NVM_BLOCK_REDUNDANT NVRAM block is configured to be of
redundant type.

Post -Build Variant
Value

false

Value
Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Scope /
Dependency

scope: local

SWS Item ECUC_NvM_00557 :

Name

NvMBlockUseAutoValidation
Parent Container NvMBlockDescriptor

Description Defines whether the RAM Block shall be auto validated during shutdown
phase.
true: if auto validation mechanism is used,
false: otherwise

Multiplicity 1

Type EcucBooleanParamDef

Default value false

 Specification of NVRAM Manager
AUTOSAR CP R20-11

182 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

Post -Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00563 :

Name

NvMBlockUseCompression
Parent Container NvMBlockDescriptor

Description Defines whether the data is compressed before written.
true: data compression activated (takes more time to read and write)
false: no compression
Tags:
atp.Status=draft

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post -Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00036 :

Name

NvMBlockUseCrc
Parent Container NvMBlockDescriptor

Description Defines CRC usage for the NVRAM block, i.e. memory space for CRC is
reserved in RAM and NV memory.
true: CRC will be used for this NVRAM block.
false: CRC will not be used for this NVRAM block.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post -Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00556 :

Name

NvMBlockUseCRCCompMechanism
Parent Container NvMBlockDescriptor

Description Defines whether the CRC of the RAM Block shall be compared during a
write job with the CRC which was calculated during the last successful
read or write job.
true: if compare mechanism is used,
false: otherwise

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post -Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Scope / Dependency scope: local
dependency: False if NvMBlockUseCrc = False

 Specification of NVRAM Manager
AUTOSAR CP R20-11

183 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

SWS Item ECUC_NvM_00559 :

Name

NvMBlockUsePort
Parent Container NvMBlockDescriptor

Description If this parameter is true it defines whether:

¶ the port with interface 'NvMMirror' for synchronization mechanism
callbacks are generated if the parameter
NvMBlockUseSyncMechanism is configured TRUE;

¶ the port with interface 'NvMNotifyInitBlock' for initialization block
callback is generated if NvMInitBlockCallback parameter is
configured (independent of the content);

¶ the port with interface 'NvMNotifyJobFinished' for single block
callback is generated if NvMSingleBlockCallback parameter is
configured (independent of the content);

¶ the port with interface 'NvMAdmin' for SetBlockProtection
operation is generated.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00552 :

Name

NvMBlockUseSetRamBlockStatus
Parent Container NvMBlockDescriptor

Description Defines if NvMSetRamBlockStatusApi shall be used for this block or not.
Note: If NvMSetRamBlockStatusApi is disabled this configuration
parameter shall be ignored.

true: calling of NvMSetRamBlockStatus for this RAM block shall set the
status of the RAM block.

false: calling of NvMSetRamBlockStatus for this RAM block shall be
ignored.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post -Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00519 :

Name

NvMBlockUseSyncMechanism
Parent Container NvMBlockDescriptor

Description Defines whether an explicit synchronization mechanism with a RAM mirror
and callback routines for transferring data to and from NvM module's RAM
mirror is used for NV block. true if synchronization mechanism is used,

 Specification of NVRAM Manager
AUTOSAR CP R20-11

184 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

false otherwise.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post -Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00033 :

Name

NvMBlockWriteProt
Parent Container NvMBlockDescriptor

Description Defines an initial write protection of the NV block
true: Initial block write protection is enabled.
false: Initial block write protection is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post -Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00551 :

Name

NvMBswMBlockStatusInformation
Parent Container NvMBlockDescriptor

Description This parameter specifies whether BswM is informed about the current
status of the specified block.
True: Call BswM_NvM_CurrentBlockMode on changes
False: Don't inform BswM at all

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post -Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00119 :

Name

NvMCalcRamBlockCrc
Parent Container NvMBlockDescriptor

Description Defines CRC (re)calculation for the permanent RAM block or NVRAM
blocks which are configured to use explicit synchronization mechanism.
true: CRC will be (re)calculated for this permanent RAM block.
false: CRC will not be (re)calculated for this permanent RAM block.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value --

Post -Build Variant
Multiplicity

false

Post -Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

