AUTO SAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

Document Title

Specification of NVRAM

Manager
Document Owner AUTOSAR
Document Responsibility AUTOSAR

Document Identification No 33

Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R20-11

Document Change History

Date

Release

Changed by

Change Description

2020-11-30

R20-11

AUTOSAR
Release
Management

T

InitBlockCallback and ROM block
are mutually exclusive

Removal for DET error
NVM_E_PARAM_BLOCK_TYPE
NvM partitioning for multi-core

2019-11-28

R19-11

AUTOSAR
Release
Management

Changes related to
NVM_E_WRITE_PROTECTED

Port Prototypes are generated for
block only if needed

Changed Document Status from
Final to published

2018-10-31

4.4.0

AUTOSAR
Release
Management

Removed NVvM_ GetActiveService
API

Remove EcuMfixed completely
Changed single and multi block
callbacks

minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

2017-12-08

4.3.1

AUTOSAR
Release
Management

Correction for write protection and
erase requests for
NvMWriteBlockOnce blocks
Clarification regarding implicit
recovery of dataset blocks

minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

1 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

Document Change History

Date Release |Changed by Change Description

2016-11-30 43.0 |AUTOSAR 1 Added NvM_FirstInitAll and
Release NvM_GetActiveService
Management functionalities

1 NvM_SetRamBlockStatus works

also for explicit synchronization
blocks

M The interaction between NvM and

BswM is clarified.

9 Other small clarifications and

updates.

2015-07-31 422 AUTOSAR
Release
Management

9 Clarified behavior related to

restoring default data for blocks and
for handling of
MEMIF_BLOCK_INVALID job result

I Added additional information related

to the block states in chapter
7.2.2.14 and related subchapters

1 Updated NvM_Init and

NvM_ValidateAll function prototypes

1 Debugging support marked as

obsolete

2014-10-31 421 |AUTOSAR
Release
Management

1 Detailed pass/fail conditions for

production errors

1 Added the NvM_ValidateAll

functionality

1 Updated return values for Init and

SingleBlock callbacks

M Other small clarifications

2014-03-31 4.1.3 |AUTOSAR
Release
Management

1 Removed job postpone in case of

explicit synchronization failed after
configured number of retries

1 Updated Service Interfaces tables
1 Renamed configuration parameter

NvMRamBlockHeaderInclude to
NvMBlockHeaderInclude

1 Editorial changes

2 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

Document Change History

Date

Release

Changed by

Change Description

2013-10-31

4.1.2

AUTOSAR
Release
Management

T

Added
NvMRamBlockHeaderInclude and
NvMMainFunctionPeriod
configuration parameters
Corrected bugs for
NvMWriteVerificationDataSize and
NvMNvramBlockldentifier
parameters

Other small clarifications in
requirement

Editorial changes

Removed chapter(s) on change
documentation

2013-03-15

4.1.1

AUTOSAR
Administration

Added NvM_ReadPRAMBIock,
NvM_WritePRAMBIock and
NvM_RestorePRAMBIockDefaults
APIs

Production Errors and Extended
Production Errors classification
Clarifications for explicit
synchronization mechanism
Modeling of Services: introduction of
formal descriptions of service
interfaces

Changes regarding
NvM_CancelJobs API,
NvmSetRamBlockStatus API, Init
callback, handling of redundant
blocks,queue sizes and usage of
MemoryMapping

Reworked according to the new
SWS BSWGeneral

3 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

Document Change History

Date

Release

Changed by

Change Description

2011-12-22

4.0.3

AUTOSAR
Administration

1
T
T

Added NvM_CancelJobs behaviour
Added NvM and BswM interaction
Added NvM_SetBlockLockStatus
API functional description

Corrected inconsistency between C-
interface and port interface

Updated Include structure

Updated configuration parameters
description and range

2010-09-30

3.1.5

AUTOSAR
Administration

= =4 4 A

Behavior specified to prevent
possible loss of data during
shutdown

References to DEM for production
errors, new config container
NvmDemEventParameterRefs
NvMMaxNoOfWriteRetries renamed
to NvMMaxNumOfWriteRetries
Note in chapter 7.1.4.5 completed
Null pointer handling changed
Chapter AVersion
New DET error
NVM_E_PARAM_POINTER
Chapter 10 updated,
NvMMainFunctionCycleTime
moved, NvMSelectBlockForWriteAll
added, some ranges corrected
Behavior specified when NVRAM
block ID 1 shall be written

Chapter 12 updated

Handling of single-block callbacks
during asynchronous multi-block
specified.

Some minor changes, typos
corrected

4 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

Document Change History

Date

Release

Changed by

Change Description

2010-02-02

3.14

AUTOSAR
Administration

T

= =4 4 4

The following features had impact
on this document:

Debugging concept

Error handler concept

Memory related concepts

The following major features were
necessary to implement these
concepts:

Static Block Id Check

Write Verification

Read Retry

buffered read/write-operations
Legal disclaimer revised

2008-08-13

3.1.1

AUTOSAR
Administration

= |=2 =4 =4 4 =4

Technical Office SWS
Improvements are incorporated.
Requirement IDs for configuration
parameters (chapter 10) added.
Management of the RAM block state
specified more precisely.

The NVRAM Manager doesn't
support non-sequential NVRAM
block IDs any longer.

Document meta information
extended

Small layout adaptations made

2007-12-21

3.0.1

AUTOSAR
Administration

Legal disclaimer revised

2007-01-24

2.1.15

AUTOSAR
Administration

= =4

AUTOSAR service description

added in chapter 11

Reentrancy of callback functions
specified

Details regarding memory hardware
abstraction addressing scheme
added

Legal disclaimer revised
AAdvice for users
ARevision I nfor ma

5 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

Document Change History

Date Release |Changed by Change Description
2006-05-16 2.0 AUTOSAR 1 Document structure adapted to
Administration common Release 2.0 SWS
Template.

1 Major changes in chapter 10
9 Structure of document changed
partly

2005-05-31 1.0 AUTOSAR M |Initial release
Administration

6 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

Disclaimer

This work (specification and/or software implementation) and the material contained
in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR
and the companies that have contributed to it shall not be liable for any use of the
work.

The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the
work may be utilized or reproduced, in any form or by any means, without permission
in writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

7 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

Table of Contents

Introduction and functional overview
Acronyms and abbreviations
Related documentation
3.1 INPUL DOCUMENES ...ttt e e e e e
3.2 Related SPeCIfiCAtiONcccoiiiiiiiiiiie e
4 Constraints and assumptions
o R 10 ¢ = 11 0] RSP
4.2 Applicability to car dOmainsccoeveeeeeeeeeieeee e
G T o | Tox £ RPSP
5 Dependencies to other modules
5.1 File StUCKUI...ccc e e e e e e e e e e e e e aeee s
5.1.1 Header file StrUCIUIEcuiiiiiiiiiiiiiie e
5.2 Memory abstraction MOdUIES...........cccooiiiiiiiiiiiieiiiee e
5.3 CRC MOAUIB......cciiiiiiiiiiiiee ettt ee e e e
5.4 Capability of the underlying drivers...........ccccciiiiiiiiiic e
Requirements traceability
Functional specification
7.1 Basic architecture guidelinesuuuiiiiiiiiiiiiiiec e
7.1.1 LAYl SIUCKUIE ...ceeeeeiiieee et e e e e e e e ennnnnnes
7.1.2 Addressing scheme for the memory hardware abstraction...................
7.1.3 BasSiC StOrage ODJECISuuiiii i
7.1.4 BIloCK Management tYPES......ccoiiiiiiiiiiiiiiie e e e
7.1.5 Scan order / priority SCNEMEccoiiiiiiiiiiiiiie e
7.2 General DENAVION.........uiiiiiiii e
7.2.1 Functional reqQUIrEMENTScccoiiiiiiiiiiiiiie e e e e e e et e e e e e e e e eeaaaaane
7.2.2 DESION NOES .. .ciiiiiiiiiiie e e e e et e e e e e e e e e eeeaaaaane
7.3 Error ClassifiCatiOncooeiiiiiiiccccc e e e e e e e e e
7.3.1 DeVelopmeENt ETOrSccooiiiiii e e e e e e e e e e e aaaaeas
7.3.2 RUNLME EITOIS ..ot e e e e e e
7.3.3 Transient faultS..........ooooriiii i
7.3.4 ProducClion EITOIScooi ettt e e e e e e e e e e e e e eaeeeeas
7.3.5 Extended Production ErTOrS........ccceiiiiiiiiiiieeiiiiiiiieee e
8 API specification
S 0 Y TP EPRRPOPRRRPR
8.1.1 IMPOITEA LYPES...ciiiiiiiiiitieie ettt e e e e e e e e
8.1.2 Type definitioNScccoiiiiiieee s
8.1.3 FUuNCtion defiNitiONScoooiiiiiiiii e
8.1.4 EXpected INtErfaCescooiiiiiiiiiice e
8.1.5 API OVEIVIEW.....cciiiiiiiieeeeee ettt e e e e e e e e e eaaeaaeeeas
8.2 ServiCe INEIfACESuvieiiiie i
8.2.1 Client-Server-INterfaces ...
8.2.2 Implementation Data TYPESccovveiiiiiiicirere e e e e e e e e e e e e e e as
8.2.3 POIS e
9 Sequence Diagrams
9.1 SYNChronouUS CallS.........coooiiiiiiiic e
0.1.1 NVIML_INIT ottt e e e e a e e e e e ennnees
9.1.2 NVM_SetDatalNdeXcceeeiieiieiieiici e e e e e e e e e e e eeeeeeeeeas
9.1.3 NVM_GetDatalNdeX.........cooeiieiieiicccc e e e e e e e e e aaeaeas

wWN P

~N O

8 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

9.1.4 NVM_SetBIOCKPIOtECHIONccceieie e e 163
9.1.5 NVM_GetEImorStatus.......ccoevuiiiiii et 163
9.1.6 NVM_GetVersionINfO......cccciieiiiiiieeeiee e 164
9.2 ASYNCHroNOUS CallSccooiiiiiiiiiie e 165
9.2.1 Asynchronous call with pollingccccccoiiiiiiiiiieeeeeeee e 165
9.2.2 Asynchronous call with callbackccccccciiiiiiiiiiiiiiiee e, 166
9.2.3 Cancellation of a Multi Block Requestc.ooovviiiiiiiiiiie i, 167
9.2.4 BSWM INTEITACHION ...ccceeieieeeee et e e e e e e e e e e e e e eeaeeeas 168
10 Configuration specification 172
10.1 How to read thiS Chapteruuueiiiiiiiiiiiiiee e 172
10.2 Containers and configuration parameterscccceevvvviviiiiiiieeeeeeeeeeen, 172
LO.2. L NVM e e e e e e e e e e e e e e e e e nnraaaas 173
10.2.2 NVMCOMMON ...ttt e e e e e e e e e e e e e e e eeees 173
10.2.3 NVMBIOCKDESCHIPLONuuuiuiiiiiiiiieiiiiieeieeeeeeeeeeeeeeeeeaeaaeaaaaeeaeaaaaeaaaaaaaaaanns 180
10.2.4 NVMINItBIOCKCAIIDACKuuiiiiiiiiiiiiiiiiiiieee s 194
10.2.5 NvMSingleBlockCallback ..o 194
10.2.6 NVvMTargetBIOCKREfErencCe...........uvvviieiiiiiiiiieiiieeeeeeeeeee e 195
10.2.7 NVMEGRET ...t e 196
10.2.8NVMFEERET ... 196
10.2.9 NvmDemEventParameterRefS..........uuuiiiiiiiiiiiiieieieeeeeeeeeee e 196
10.2.20 NVMBIOCKCIPNEING.....cuviiiiiieiiiiiiiiiie e 199
10.3 Common configuration OPLIONSeeueeeiiiiiiiiiiiieeieeee e 201
10.4 Published parametersuuuuuiiiiiiiiiiiiieieieeee e 201
11 Not applicable requirements 202
Figures
Figure 1: Memory Structure of Different Block Types 10
Figure 2: Logical Structure of Different Block Types 11
Figure 4: NVRAM Manager interactions overview 25
Figure 5: NV Block layout 27
Figure 6: RAM Block layout 28
Figure 7: ROM block layout 29
Figure 8: NV block layout with Static Block ID enabled 30
Figure 9: Redundant NVRAM Block layout 33
Figure 10: Dataset NVRAM block layout 35
Figure 11: RAM Block States 48
Figure 12: UML sequence diagram NvM_Init 162
Figure 13: UML sequence diagram NvM_ SetDatalndex 162
Figure 14: UML sequence diagram NvM_GetDatalndex 163
Figure 15: UML sequence diagram NvM_SetBlockProtection 163
Figure 16: UML sequence diagram NvM_GetErrorStatus 163
Figure 17: UML sequence diagram NvM_GetVersioninfo 164
Figure 18: UML sequence diagram for asynchronous call with polling 165
Figure 19: UML sequence diagram for asynchronous call with callback 166
Figure 20: UML sequence diagram for cancellation of asynchronous call 167

9 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

Specification of NVRAM Manager

1 Introduction and functional overview

AUTOSAR CP R20-11

This specification describes the functionality, APl and the configuration of the
AUTOSAR Basic Software module NVRAM Manager (NvM).
The NvM module shall provide services to ensure the data storage and maintenance
of NV (non volatile) data according to their individual requirements in an automotive
environment. The NvM module shall be able to administrate the NV data of an
EEPROM and/or a FLASH EEPROM emulation device.
The NvM module shall provide the required synchronous/asynchronous services for
the management and the maintenance of NV data (init/read/write/control).

The relationship between the different blocks can be visualized in the following

picture:

Anplicaion access (MWW 30

Administradive-
Block

Data index

 "RaM-Blod
! [ztemporary:) |

MyManacer access

NYRAM-Block #1WM TOTAL NUM OF MYRAM BLOCKS

rYBlock #n

MY Block #2

SBlock

M*-Block #1

- EEE T

pvR A Bl ock #2
MR A0 Bl ock #1

S\, |ROM-Blod fn |

|
|
| |
L _l
|
i

_________ 1

10 of 202

RaM | Y [+ROM]

Datazet : 2,255 elements

Figure 1: Memory Structure of Different Block Types

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

id Component Model /|

cabstracte
NVRAM Block

- BlockManagement Type:

constraints
{exact composition depends on Management type}
{handling depends on Block Management Type}

NV Block RAM Block ROM Block Administrative Block

~

N

N ~
~ .

.
.
’

Ze%rea\l i ze{arvleal i zec;,real izeé
\
\
h
h
h

A VP

cuser dataég Basic Storage Object

NV Data

Figure 2: Logical Structure of Different Block Types

11 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

2

AUTO SAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

Acronyms and abbreviations

Acronyms and abbreviations, which have a local scope and therefore are not
contained in the AUTOSAR glossary, must appear in a local glossary.

Abbreviation/ Acronym:

Description:

Basic Storage Object

A ABasic Storage Objecto 1§
ANVRAM bl ocko. Sever atls ol Bcaas
used to build a NVRAM Bl ock
can reside in different memory locations (RAM/ROM/NV
memory).

NVRAM Block The ANVRAM Bl ockd is the en
needed to administrate and to store a block of NV data.
NV data The data to be stored in Non-Volatile memory.

Block Management Type

Type of the NVRAM Block. It depends on the
(configurable) individual composition of a NVRAM Block in
chunks of different mandatory/optional Basic Storage
Objects and the subsequent handling of this NVRAM block.

RAM Block The ARAM Blockin is a ABasi ¢
the part of a ANVRAM Bl ockan
See [SWS NvM 00126]

ROM Block The AROM BlockfA isjacABasli ¢t
the part of a ANVRAM Bl ockn
The AROM Blockid is an opti g
Bl o cSW8 NYM 00020]

NV Block The ANV Blockid is a ABasic
thepat of a ANVRAM Bl ockid whi
memory. The ANV Blockfi is 4

Bl o dRME.NvM 00125]

NV Block Header

Additional information included in the NV Block if the
mechani sm A Sxoatiisc eBnl aobclke dl.

Administrative Block

The AAdmi ni strative Bl ockbo
resides i n RAM. The iAdmi n
part of a i NMMSANM B0185¢ k 0 .

DET Default Error Tracer i module to which development errors
are reported.

DEM Diagnostic Event Manager i module to which production
relevant errors are reported

NV Non volatile

FEE Flash EEPROM Emulation

EA EEPROM Abstraction

FCFS First come first served

12 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules
AUTOSAR_TR_BSWNModuleList.pdf

[2] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[3] General Requirements on Basic Software Modules
AUTOSAR_SRS BSWGeneral.pdf

[4] Requirements on Memory Services
AUTOSAR_SRS_MemoryServices.pdf

[5] Specification of EEPROM Abstraction
AUTOSAR_SWS EEPROMADbstraction

[6] Specification of Flash EEPROM Emulation
AUTOSAR_SWS FlashEEPROMEmulation

[7] Specification of Memory Abstraction Interface
AUTOSAR_SWS_MemoryAbstractioninterface

[8] Specification of Memory Mapping
AUTOSAR_SWS_ MemoryMapping

[9] Virtual Functional Bus
AUTOSAR_EXP_VFB.pdf

[10] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

[11] Specification of RTE Software
AUTOSAR_SWS_RTE.pdf

[12] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration.pdf

[13] Basic Software Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate

[14] Specification of CRC Routines
AUTOSAR_SWS_CRClLibrary

[15] General Specification of Basic Software Modules
AUTOSAR_SWS_ BSWGeneral.pdf

AUTOSAR CP R20-11

13 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [15] (SWS
BSW General), which is also valid for NVRAM Manager.

Thus, the specification SWS BSW General shall be considered as additional and
required specification for NVRAM Manager.

14 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

4 Constraints and assumptions

4.1 Limitations

Limtations are given mainly by the finite n
their individual treatment of NV data. These limits can be reduced by an enhanced

user defined management information, which can be stored as a structured part of

the real NV data. In this case the user defined management information has to be

interpreted and handled by the application at least.

4.2 Applicability to car domains

No restrictions.

4.3 Conflicts

The NvM can be configured to use functionality from other modules or integrator
code. Examples include the en/decryption of block data using Csm or the
compression of block data. It is the responsibility of the integrator to ensure that:

1 the required functionality is available at the time NvM uses it (e.g. the called
Csm is already initialized [or not yet de-initialized]; needed main functions in
called modules are executed; ...)

1 the required time is available (e.g. cryptographic algorithms may need some
time and therefore the read/write functionality of the NvM may take much
longer for blocks which need an en/decryption)

15 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

5

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

Dependencies to other modules

This section describes the relations to other modules within the basic software.
5.1 File structure
5.1.1 Header file structure

The include file structure shall be as follows:
[SWS_NvM_00554] y NvM module shall include NvM.h, Dem.h, Memlf.h. v ()

[SWS_NvM_00691] y Only NvM.h shall be included by the upper layer. v ()

5.2 Memory abstraction modules

The memory abstraction modules abstract the NvM module from the subordinated
drivers which are hardware dependent. The memory abstraction modules provide a
runtime translation of each block access initiated by the NvM module to select the
corresponding driver functions which are unique for all configured EEPROM or
FLASH storage devices. The memory abstraction module is chosen via the NVRAM
block device ID which is configured for each NVRAM block.

5.3 CRC module

The NvM module uses CRC generation routines (8/16/32 bit) to check and to
generate CRC for NVRAM blocks as a configurable option. The CRC routines have
to be provided externally [ref. to ch. 8.1.4.2].

5.4 Capability of the underlying drivers

A set of underlying driver functions has to be provided for every configured NVRAM
device as, for example, internal or external EEPROM or FLASH devices. The unique
driver functions inside each set of driver functions are selected during runtime via a
memory hardware abstraction module (see chapter 5.2). A set of driver functions has
to include all the needed functions to write to, to read from or to maintain (e.g. erase)
a configured NVRAM device.

16 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

6

AUTOSAR

Requirements traceability

Specification of NVRAM Manager
AUTOSAR CP R20-11

Requirement

Description

Satisfied by

SRS_BSW_00005

Modules of the AuC Abstraction
Layer (MCAL) may not have hard
coded horizontal interfaces

SWS_NvM_00744

SRS_BSW_00006

The source code of software
modules above the AuC
Abstraction Layer (MCAL) shall
not be processor and compiler
dependent.

SWS_NvM_00744

SRS_BSW_00007

All Basic SW Modules written in C
language shall conform to the
MISRA C 2012 Standard.

SWS_NvM_00744

SRS_BSW_00009

All Basic SW Modules shall be
documented according to a
common standard.

SWS_NvM_00744

SRS_BSW_00010

The memory consumption of all
Basic SW Modules shall be
documented for a defined
configuration for all supported
platforms.

SWS_NvM_00744

SRS_BSW_00101

The Basic Software Module shall
be able to initialize variables and
hardware in a separate
initialization function

SWS_NvM_00399, SWS_NvM_00400

SRS_BSW_00160

Configuration files of AUTOSAR
Basic SW module shall be
readable for human beings

SWS_NvM_00744

SRS_BSW_00161

The AUTOSAR Basic Software
shall provide a microcontroller
abstraction layer which provides a
standardized interface to higher
software layers

SWS_NvM_00744

SRS_BSW_00162

The AUTOSAR Basic Software
shall provide a hardware
abstraction layer

SWS_NvM_00744

SRS_BSW_00164

The Implementation of interrupt
service routines shall be done by
the Operating System, complex
drivers or modules

SWS_NvM_00744

SRS_BSW_00168

SW components shall be tested
by a function defined in a common
API in the Basis-SW

SWS_NvM_00744

SRS_BSW_00170

The AUTOSAR SW Components
shall provide information about
their dependency from faults,
signal qualities, driver demands

SWS_NvM_00744

SRS_BSW_00172

The scheduling strategy that is
built inside the Basic Software
Modules shall be compatible with

SWS_NvM_00464

17 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

the strategy used in the system

SRS_BSW_00302

All AUTOSAR Basic Software
Modules shall only export
information needed by other
modules

SWS_NvM_00744

SRS_BSW_00304

All AUTOSAR Basic Software
Modules shall use the following
data types instead of native C
data types

SWS_NvM_00744

SRS_BSW_00306

AUTOSAR Basic Software
Modules shall be compiler and
platform independent

SWS_NvM_00744

SRS_BSW_00307

Global variables naming
convention

SWS_NvM_00744

SRS_BSW_00308

AUTOSAR Basic Software
Modules shall not define global
data in their header files, but in
the C file

SWS_NvM_00744

SRS_BSW_00309

All AUTOSAR Basic Software
Modules shall indicate all global
data with read-only purposes by
explicitly assigning the const
keyword

SWS_NvM_00744

SRS_BSW_00312

Shared code shall be reentrant

SWS_NvM_00744

SRS_BSW_00314

All internal driver modules shall
separate the interrupt frame
definition from the service routine

SWS_NvM_00744

SRS_BSW_00321

The version numbers of
AUTOSAR Basic Software
Modules shall be enumerated
according specific rules

SWS_NvM_00744

SRS_BSW_00323

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

SWS_NvM_00027

SRS_BSW_00325

The runtime of interrupt service
routines and functions that are
running in interrupt context shall
be kept short

SWS_NvM_00744

SRS_BSW_00327

Error values naming convention

SWS_NvM_00027, SWS_NvM_91004

SRS_BSW_00328

All AUTOSAR Basic Software
Modules shall avoid the
duplication of code

SWS_NvM_00744

SRS_BSW_00330

It shall be allowed to use macros
instead of functions where source
code is used and runtime is critical

SWS_NvM_00744

SRS_BSW_00331

All Basic Software Modules shall
strictly separate error and status
information

SWS_NvM_00027, SWS_NvM_91004

SRS_BSW_00333

For each callback function it shall
be specified if it is called from
interrupt context or not

SWS_NvM_00468

18 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

SRS_BSW_00334

All Basic Software Modules shall
provide an XML file that contains
the meta data

SWS_NvM_00744

SRS_BSW_00335

Status values naming convention

SWS_NvM_00744

SRS_BSW_00336

Basic SW module shall be able to
shutdown

SWS_NvM_00744

SRS_BSW_00337

Classification of development
errors

SWS_NvM_91004

SRS_BSW_00341

Module documentation shall
contains all needed informations

SWS_NvM_00744

SRS_BSW_00342

It shall be possible to create an
AUTOSAR ECU out of modules
provided as source code and
modules provided as object code,
even mixed

SWS_NvM_00744

SRS_BSW_00343

The unit of time for specification
and configuration of Basic SW
modules shall be preferably in
physical time unit

SWS_NvM_00744

SRS_BSW_00344

BSW Modules shall support link-
time configuration

SWS_NvM_00744

SRS_BSW_00347

A Naming seperation of different
instances of BSW drivers shall be
in place

SWS_NvM_00744

SRS_BSW_00348

All AUTOSAR standard types and
constants shall be placed and
organized in a standard type
header file

SWS_NvM_00744

SRS_BSW_00353

All integer type definitions of
target and compiler specific scope
shall be placed and organized in a
single type header

SWS_NvM_00744

SRS_BSW_00360

AUTOSAR Basic Software
Modules callback functions are
allowed to have parameters

SWS_NvM_00468

SRS_BSW_00361

All mappings of not standardized
keywords of compiler specific
scope shall be placed and
organized in a compiler specific
type and keyword header

SWS_NvM_00744

SRS_BSW_00371

The passing of function pointers
as API parameter is forbidden for
all AUTOSAR Basic Software
Modules

SWS_NvM_00744

SRS_BSW_00373

The main processing function of
each AUTOSAR Basic Software
Module shall be named according
the defined convention

SWS_NvM_00464

SRS_BSW_00375

Basic Software Modules shall
report wake-up reasons

SWS_NvM_00744

SRS_BSW_00378

AUTOSAR shall provide a

SWS_NvM_00744

19 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

boolean type

SRS_BSW_00383

The Basic Software Module
specifications shall specify which
other configuration files from other
modules they use at least in the
description

SWS_NvM_00465, SWS_NvM_00466

SRS_BSW_00384

The Basic Software Module
specifications shall specify at least
in the description which other
modules they require

SWS_NvM_00465, SWS_NvM_00466

SRS_BSW_00385

List possible error notifications

SWS_NvM_00027, SWS_NvM_91004

SRS_BSW_00386

The BSW shall specify the
configuration for detecting an error

SWS_NvM_00027, SWS_NvM_91004

SRS_BSW_00398

The link-time configuration is
achieved on object code basis in
the stage after compiling and
before linking

SWS_NvM_00744

SRS_BSW_00399

Parameter-sets shall be located in
a separate segment and shall be
loaded after the code

SWS_NvM_00744

SRS_BSW_00400

Parameter shall be selected from
multiple sets of parameters after
code has been loaded and started

SWS_NvM_00744

SRS_BSW_00404

BSW Modules shall support post-
build configuration

SWS_NvM_00744

SRS_BSW_00405

BSW Modules shall support
multiple configuration sets

SWS_NvM_00744

SRS_BSW_00406

A static status variable denoting if
a BSW module is initialized shall
be initialized with value 0 before
any APIs of the BSW module is
called

SWS_NvM_00027, SWS_NvM_00399,
SWS_NvM_00400, SWS_NvM_91004

SRS_BSW_00412

SWS_NvM_00744

SRS_BSW_00414

Init functions shall have a pointer
to a configuration structure as
single parameter

SWS_NvM_00447

SRS_BSW_00415

Interfaces which are provided
exclusively for one module shall
be separated into a dedicated
header file

SWS_NvM_00744

SRS_BSW_00416

The sequence of modules to be
initialized shall be configurable

SWS_NvM_00744

SRS_BSW_00417

Software which is not part of the
SW-C shall report error events
only after the DEM is fully
operational.

SWS_NvM_00744

SRS_BSW_00422

Pre-de-bouncing of error status
information is done within the
DEM

SWS_NvM_00744

SRS_BSW_00423

BSW modules with AUTOSAR
interfaces shall be describable

SWS_NvM_00744

20 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

with the means of the SW-C
Template

SRS_BSW_00425

The BSW module description
template shall provide means to
model the defined trigger
conditions of schedulable objects

SWS_NvM_00464

SRS_BSW_00426

BSW Modules shall ensure data
consistency of data which is
shared between BSW modules

SWS_NvM_00744

SRS_BSW_00427

ISR functions shall be defined and
documented in the BSW module
description template

SWS_NvM_00744

SRS_BSW_00429

Access to OS is restricted

SWS_NvM_00332

SRS_BSW_00432

Modules should have separate
main processing functions for
read/receive and write/transmit
data path

SWS_NvM_00744

SRS_BSW_00457

Callback functions of Application
software components shall be
invoked by the Basis SW

SWS_NvM_00468

SRS_LIBS_08533

SWS_NvM_00460

SRS_LIBS_08535

SWS_NvM_00018, SWS_NvM_00253,
SWS_NvM_00461

SRS_Mem_00011

The NVRAM manager shall be
independent from its underlying
memory hardware.

SWS_NvM_00157

SRS_Mem_00013

The NVRAM manager shall
provide a mechanism to handle
multiple, concurrent read / write
requests

SWS_NvM_00162, SWS_NvM_00699

SRS_Mem_00016

The NVRAM manager shall
provide functionality to read out
data associated with an NVRAM
block from the non-volatile
memory

SWS_NvM_00010, SWS_NvM_00051,
SWS_NvM_00195, SWS_NvM_00196,
SWS_NvM_00629, SWS_NvM_00765,
SWS_NvM_00766, SWS_NvM_00825,
SWS_NvM_00898, SWS_NvM_00899

SRS_Mem_00017

The NVRAM manager shall
provide functionality to store data
associated with an NVRAM block
in the non-volatile memory

SWS_NvM_00051, SWS_NvM_00210,
SWS_NvM_00410, SWS_NvM_00622,
SWS_NvM_00794, SWS_NvM_00897,
SWS_NvM_00900, SWS_NvM_00901

SRS_Mem_00018

The NVRAM manager shall
provide functionality to restore an
NVRAM block's associated data
from ROM defaults

SWS_NvM_00012, SWS_NvM_00051,
SWS_NvM_00266, SWS_NvM_00267,
SWS_NvM_00435, SWS_NvM_00814,
SWS_NvM_00816, SWS_NvM_00817,
SWS_NvM_00893, SWS_NvM_00894,
SWS_NvM_00902, SWS_NvM_00903,
SWS_NvM_00951

SRS_MEM_00020

SWS_NvM_00888, SWS_NvM_00889,
SWS_NvM_00890, SWS_NvM_00891,
SWS_NvM_00892, SWS_NvM_00949

SRS_Mem_00020

The NVRAM manager shall
provide functionality to read out
the status of read/write operations

SWS_NvM_00895, SWS_NvM_00896

21 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

SRS_Mem_00027

The NVRAM manager shall
provide an implicit way of
accessing blocks in the NVRAM
and in the shared memory (RAM).

SWS_NvM_00442

SRS_Mem_00030

The NVRAM manager shall
implement mechanisms for
consistencyl/integrity checks of
data saved in NVRAM

SWS_NvM_00164, SWS_NvM_00897

SRS_Mem_00034

Write accesses of the NVRAM
manager to persistent memory
shall be executed quasi-parallel to
normal operation of the ECU

SWS_NvM_00162

SRS_Mem_00038

Treatable errors shall not affect
other software components

SWS_NvM_00748, SWS_NvM_00825,
SWS_NvM_00910, SWS_NvM_00911,
SWS_NvM_00948

SRS_Mem_00041

Each application shall be enabled
to declare the memory
requirements at configuration time

SWS_NvM_00051

SRS_MEM_00125

SWS_NvM_00890, SWS_NvM_00891,
SWS_NvM_00892, SWS_NvM_00949

SRS_Mem_00125

For each block a notification shall
be configurable

SWS_NvM_00463

SRS _Mem_00127

The NVRAM manager shall allow
enabling/disabling a write
protection for each NVRAM block
individually

SWS_NvM_00016, SWS_NvM_00748

SRS_Mem_00129

The NVRAM manager shall repair
data in blocks of management
type 'NVRAM redundant’

SWS_NvM_00165, SWS_NvM_00582

SRS_Mem_00135

The NVRAM manager shall have
an unigue configuration identifier

SWS_NvM_00034

SRS_MEM_00136

SWS_NvM_00888, SWS_NvM_00889

SRS_Mem_00136

The NVRAM manager shall
provide functionality for
determining updates of data
associated with an NVRAM Block
during runtime

SWS_NvM_00849, SWS_NvM_00850,
SWS_NvM_00852, SWS_NvM_00853,
SWS_NvM_00854, SWS_NvM_00906,
SWS_NvM_00909

SRS_Mem_00137

The NVRAM manager shall
provide a service for auto-
validating NVRAM blocks

SWS_NvM_00855, SWS_NvM_00856,
SWS_NvM_00857, SWS_NvM_00858,
SWS_NvM_00859, SWS_NvM_00860,
SWS_NvM_00861, SWS_NvM_00862,
SWS_NvM_00863

SRS_Mem_08000

The NVRAM manager shall be
able to access multiple non-
volatile memory devices

SWS_NvM_00051, SWS_NvM_00123,
SWS_NvM_00442

SRS_Mem_08009

The NVRAM Manager shall allow
a static configuration of a default
write protection (on/off) for each
NVRAM block

SWS_NvM_00325, SWS_NvM_00326,
SWS_NvM_00577

SRS_Mem_08010

The NVRAM manager shall copy
the ROM default data to the data
area of the corresponding RAM

SWS_NvM_00171, SWS_NvM_00172

22 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

block if it can not read data from
NV into RAM

SRS _Mem_08011

The NVRAM manager shall
provide a service to invalidate a
block of data in the non-volatile
memory

SWS_NvM_00421

SRS_Mem_08014

The NVRAM manager shall allow
a non-continuous RAM block
allocation in the global RAM area

SWS_NvM_00051, SWS_NvM_00442

SRS _Mem_08015

Some of the NV Blocks in the
NVRAM shall never be erased nor
be replaced with the default ROM
data after first initialization

SWS_NvM_00397

SRS_MEM_08533

SWS_NvM_00888, SWS_NvM_00889

SRS_Mem_08534

The NVRAM manager shall
support two classes of RAM data
blocks

SWS_NvM_00904

SRS_MEM_08535

SWS_NvM_00888, SWS_NvM_00889

SRS_Mem_08540

The NVRAM manager shall
provide a function for aborting the
shutdown process

SWS_NvM_00019, SWS_NvM_00458

SRS _Mem_08541

The NVRAM manager shall
guarantee that an accepted write
request will be processed

SWS_NvM_00208, SWS_NvM_00472,
SWS_NvM_00622, SWS_NvM_00748,
SWS_NvM_00798

SRS_Mem_08542

The NVRAM manager shall
provide a prioritization for job
processing order

SWS_NvM_00032, SWS_NvM_00378,
SWS_NvM_00564

SRS_Mem_08544

The NVRAM manager shall
provide a service to erase the NV
block(s) associated with an
NVRAM block

SWS_NvM_00415

SRS_Mem_08545

The NVRAM Manager shall
provide a service for marking the
permanent RAM data block of an
NVRAM block valid

SWS_NvM_00241, SWS_NvM_00405,
SWS_NvM_00906, SWS_NvM_00909

SRS_Mem_08546

It shall be possible to protect
permanent RAM data blocks
against data loss due to reset

SWS_NvM_00240

SRS Mem_ 08547

The NVRAM Manager shall be
able to distinguish between
explicitly invalidated and
inconsistent data

SWS_NvM_00132, SWS_NvM_00164,
SWS_NvM_00165, SWS_NvM_00571

SRS_Mem_08548

The NVRAM Manager shall
request default data from the
application

SWS_NvM_00629, SWS_NvM_00700,
SWS_NvM_00893, SWS_NvM_00894

SRS_Mem_08549

The NVRAM manager shall
provide functionality to
automatically initialize RAM data
blocks after a software update

SWS_NvM_00171

SRS_Mem_08550

The NVRAM Manager shall
provide a service for marking

SWS_NvM_00345, SWS_NvM_00696,
SWS_NvM_00906, SWS_NvM_00909

23 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

permanent RAM data blocks as
modified/unmodified

SRS_Mem_08554

The NVRAM manager shall retry
read and write operations on
NVRAM blocks if they have not
succeeded up to a configurable
number of times

SWS_NvM_00213, SWS_NvM_005286,
SWS_NvM_00527, SWS_NvM_00529,
SWS_NvM_00581, SWS_NvM_00804,
SWS_NvM_00897, SWS_NvM_00907,
SWS_NvM_00908

SRS_Mem_08555

The NVRAM manager shall
provide mechanisms for static
verification of the block identifier
when reading an NVRAM block

SWS_NvM_00523, SWS_NvM_00524,
SWS_NvM_00593

SRS_Mem_08556

The NVRAM manager shall
provide a mechanism for
verification of the written block
data by again reading and
comparing it

SWS_NvM_00527, SWS_NvM_00528,
SWS_NvM_00529, SWS_NvM_00897

SRS_Mem_08558

The NVRAM manager shall
provide a mechanism to remove
all unprocessed requests
associated with a NVRAM block

SWS_NvM_00458

SRS_Mem_08560

Each NVRAM block shall be
configurable for shared access

SWS_NvM_00536

SWS_BSW_00047

Implement index based API
services

SWS_NvM_00447

SWS_NvM_08541

SWS_NvM_00897

24 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

7

AUTOSAR

Functional specification

Specification of NVRAM Manager
AUTOSAR CP R20-11

7.1 Basic architecture guidelines

7.1.1 Layer structure

The figure below shows the communication interaction of module NvM.

sd NVM /

RTE

8]

«comn

nunicate»

gl

DEM

NVM

CRC Library
g x

ommunicate»

BswM

«communicate»

«communi »

«commynicate»

SchM

DET

gl

Memlf

Figure 3: NVRAM Manager interactions overview

7.1.2 Addressing scheme for the memory hardware abstraction

[SWS_NvM_00051] y The Memory Abstraction Interface, the underlying Flash
EEPROM Emulation and EEPROM Abstraction Layer provide the NvM module with a
virtual linear 32bit address space which is composed of a 16bit block number and a
16bit block address offset. (SRS_Mem_00041, SRS_Mem_08000,

SRS _Mem_08014, SRS _Mem_00016, SRS_Mem_00017, SRS_Mem_00018)

Hint: According to [SWS_NvM_00051], the NvM module allows for a (theoretical)
maximum of 65536 logical blocks, each logical block having a (theoretical) maximum

size of 64 Kbytes.

25 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00122] y The NvM module shall further subdivide the 16bit Fee/Ea block
number into the following parts:
- NV block base number (NVM_NV_BLOCK_BASE_NUMBER) with a bit width
of (16 -NVM_DATASET_SELECTION_BITS)
- Data index with a bit width of (NVM_DATASET_SELECTION_BITS)

\ (SRS_Mem_00041, SRS _Mem_08014, SRS_Mem_00016, SRS_Mem_ 00017,
SRS_Mem_00018)

[SWS_NvM_00343] y Handling/addressing of redundant NVRAM blocks shall be
done towards the memory hardware abstraction in the same way like for dataset
NVRAM blocks, i.e. the redundant NV blocks shall be managed by usage of the
configuration parameter NvMDatasetSelectionBits. Q)

[SWS_NvM_00123] y The NV block base number
(NVM_NV_BLOCK_BASE_NUMBER) shall be located in the most significant bits of
the Fee/Ea block number. Q(SRS_Mem_08000)

[SWS_NvM_00442] y The configuration tool shall configure the block identifiers. \
(SRS_Mem_08000, SRS_Mem_00027, SRS_Mem_08014)

[SWS_NvM_00443] y The NvM module shall not modify the configured block
identifiers. ()

7.1.2.1 Examples

To clarify the previously described addressing scheme which is used for NVRAM
manager 2 memory hardware abstraction interaction, the following examples shall
help to understand the correlations between the configuration parameters
NvMNvBlockBaseNumber, NvMDatasetSelectionBits on NVRAM manager side and
EA BLOCK NUMBER / FEE_BLOCK_NUMBER on memory hardware abstraction
side [ECUC_NvM_00061].

For the given examples A and B a simple formula is used:
FEE/EA_BLOCK NUMBER = (NvMNvBlockBaseNumber << NvMDatasetSelectionBits)
+ Datalndex

Example A:
The configuration parameter NvMDatasetSelectionBits is configured to be 2. This
leads to the result that 14 bits are available as range for the configuration parameter
NvMNvBlockBaseNumber.

- Range of NvMNvBIlockBaseNumber: 0x1..0x3FFE

- Range of data index: 0x0..0x3(=2"NvMDatasetSelectionBits-1)

- Range of FEE_BLOCK_NUMBER/EA_BLOCK_NUMBER: 0x4..0xFFFB

With this configuration the FEE/EA_BLOCK_NUMBER computes using the formula
mentioned before should look like in the examples below:

For a native NVRAM block with NvMNvBlockBaseNumber = 2:
- NV block is accessed with FEE/EA_ BLOCK _NUMBER =8

26 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

../../../_work/___AUTOSAR/August2011/AUTOSAR_SWS_NVRAMManager_old.doc#ECUC_NvM_00061

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

For a redundant NVRAM block with NvMNvBlockBaseNumber = 3:
- 1st NV block with data index 0 is accessed with
FEE/EA BLOCK_NUMBER =12
- 2nd NV block with data index 1 is accessed with
FEE/EA BLOCK_ NUMBER =13

For a dataset NVRAM block with NvMNvBlockBaseNumber = 4, NvMNvBlockNum =

3:

- NV block #0 with data index O is accessed with
FEE/EA BLOCK NUMBER =16

- NV block #1 with data index 1 is accessed with
FEE/EA BLOCK_NUMBER =17

- NV block #2 with data index 2 is accessed with
FEE/EA BLOCK NUMBER =18

Example B:
The configuration parameter NvMDatasetSelectionBits is configured to be 4. This
leads to the result that 12 bits are available as range for the configuration parameter
NvMNvBIlockBaseNumber.

- Range of NvMNvBIlockBaseNumber: 0x1..0xFFE

- Range of data index: 0x0..0xF(=2"NvMDatasetSelectionBits-1)

- Range of FEE/EA Block Number: 0x10..0xFFEF

7.1.3 Basic storage objects

7.1.3.1 NV block

[SWS_NvM _00125] y The NV block is a basic storage object and represents a
memory area consisting of NV user data and (optionally) a CRC value and

(optionally) a NV block header.
NV Block

NV block Header
(optional)

NV block data

NV block CRC
(optional)

Figure 4: NV Block layout

Note: This figure does not show the physical memory layout of an NV block. Only the
logical clustering is shown. v ()

27 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

7.1.3.2 RAM block

[SWS_NvM _00126] r The RAM block is a basic storage object and represents an
area in RAM consisting of user data and (optionally) a CRC value and (optionally) a

NV block header. v ()

[SWS_NvM_00127] y Restrictions on CRC usage on RAM blocks. CRC is only
available if the corresponding NV block(s) also have a CRC. CRC has to be of the

same type as that of the corresponding NV block(s). [ECUC_NvM_00061]. v ()

[SWS_NvM_00129] y The user data area of a RAM block can reside in a different
RAM address location (global data section) than the state of the RAM block. v ()

[SWS_NvM_00130] y The data area of a RAM block shall be accessible from
NVRAM Manager and from the application side (data passing from/to the
corresponding NV block).

RAM Block
NV block Header RAM block
(optional) _ Header Field

[) TRttty U
| | A
I I
I I
l |
: RAM block data : RAM Block
I (permanent/ I Data Field
| temporary) :
I I
| RAM block CRC | RAM block
: (optional) J CRC Field
e Ittt

Figure 5: RAM Block layout

Note: This figure does not show the physical memory layout of a RAM block. Only

the logical clustering is shown.

As the NvM module doesndét support alignment,
configuration, i.e. the block length could be enlarged by adding padding to meet

alignment requirements. \ ()

[SWS_NvM _00373] y The RAM block data shall contain the permanently or
temporarily assigned user data. v ()

[SWS_NvM_00370] r In case of permanently assigned user data, the address of the
RAM block data is known during configuration time. v ()

28 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00372] rIn case of temporarily assigned user data, the address of the
RAM block data is not known during configuration time and will be passed to the NvM

module during runtime. y ()

[SWS_NvM_00088] y It shall be possible to allocate each RAM block without address
constraints in the global RAM area. The whole number of configured RAM blocks

needs not be located in a continuous address space. v ()

7.1.3.3 ROM block

[SWS_NvM _00020] r The ROM block is a basic storage object, resides in the ROM
(FLASH) and is used to provide default data in case of an empty or damaged NV
block.

ROM Block

ROM block data
(default data)

Figure 6: ROM block layout

v ()

7.1.3.4 Administrative block

[SWS_NvM_00134] yr The Administrative block shall be located in RAM and shall
contain a block index which is used in association with Dataset NV blocks.
Additionally, attribute/error/status information of the corresponding NVRAM block

shall be contained. v ()

[SWS_NvM _00128] r The NvM module shall use state information of the permanent
RAM block or of the RAM mirror in the NvM module in case of explicit syncronization

(invalid/valid) to determine the validity of the permanent RAM block user data.y ()

[SWS_NvM 00132y The RAM bl ock state oinvalidf indi
the respective RAM blockisi nval i d. The RAM block state Av
data area of the respective RAM block is valid. y (SRS_Mem_08547)

[SWS NvM 00133]yThe value of #Ainvalido shall be re
except vyiiyvalido.

29 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00135] yr The Administrative block shall be invisible for the application
and is used exclusively by the NvM module for security and administrative purposes

of the RAM block and the NVRAM block itself. v ()

[SWS_NvM_00054] r The NvM module shall use an attribute field to manage the NV
block write protection in order to protect/unprotect a NV block data field. v ()

[SWS_NvM _00136] y The NvM module shall use an error/status field to manage the
error/status value of the last request [SWS_NvM_00083]. v ()

7.1.3.5 NV Block Header

[SWS_NvM_00522] 6rhe NV Block header shall be included first in the NV Block, if
the mechanism Static Block ID is enabled.

NV Block

NV block header

NV block data

NV block CRC
(optional)

Figure 7: NV block layout with Static Block ID enabled

v ()

30 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

7.1.4 Block management types

7.1.4.1 Block management types overview

[SWS_NvM_00137] y The following types of NVRAM storage shall be supported by
the NvM module implementation:

- NVM_BLOCK_NATIVE

- NVM_BLOCK REDUNDANT

- NVM_BLOCK_DATASETV ()

[SWS_NvM_00557] NVM_BLOCK_NATIVE type of NVRAM storage shall consist of
the following basic storage objects:

- NV Blocks: 1

- RAM Blocks: 1

- ROM Blocks: 0..1

- Administrative Blocks:1y ()

[SWS_NvM_00558] y NVM_BLOCK_ REDUNDANT type of NVRAM storage shall
consist of the following basic storage objects:

- NV Blocks: 2

- RAM Blocks: 1

- ROM Blocks: 0..1

- Administrative Blocks:1y ()

[SWS_NvM_00559] f NVM_BLOCK_ DATASET type of NVRAM storage shall consist
of the following basic storage objects:

- NV Blocks: 1..(m<256)*

- RAM Blocks: 1

- ROM Blocks: 0..n

- Administrative Blocks:1
* The number of possible datasets depends on the configuration parameter

NvMDatasetSelectionBits. v ()

7.1.4.2 NVRAM block structure

[SWS_NvM_00138] y The NVRAM block shall consist of the mandatory basic storage
objects NV block, RAM block and Administrative block. v ()

[SWS_NvM_00139] yr The basic storage object ROM block is optional. \ ()

[SWS_NvM_00140] yr The composition of any NVRAM block is fixed during
configuration by the corresponding NVRAM block descriptor. \ ()

31 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00141] y All address offsets are given relatively to the start addresses of
RAM or ROM in the NVRAM block descriptor. The start address is assumed to be
zero.

Hint: A device specific base address or offset will be added by the respective device

driver if needed. vy ()

For details of the NVRAM block descriptor see chapter 7.1.4.3.

7.1.4.3 NVRAM block descriptor table

[SWS_NvM_00069] 1 A single NVRAM block to deal with will be selected via the NvM
module API by providing a subsequently assigned Block ID. v ()

[SWS_NvM_00143] r All structures related to the NVRAM block descriptor table and
their addresses in ROM (FLASH) have to be generated during configuration of the

NvM module. y ()

7.1.4.4 Native NVRAM block

The Native NVRAM block is the simplest block management type. It allows storage
to/retrieval from NV memory with a minimum of overhead.

[SWS_NvM_00000] y The Native NVRAM block consists of a single NV block, RAM
block and Administrative block. v ()

7.1.4.5 Redundant NVRAM block

In addition to the Native NVRAM block, the Redundant NVRAM block provides
enhanced fault tolerance, reliability and availability. It increases resistance against
data corruption.

[SWS_NvM_00001] y The Redundant NVRAM block consists of two NV blocks, a
RAM block and an Administrative block.
The following figure reflects the internal structure of a redundant NV block:

32 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

NV Block

NV block header
(optional)

NV block data

NV block CRC
(optional)

NV Block

NV block header
(optional)

NV block data

NV block CRC
(optional)

Figure 8: Redundant NVRAM Block layout

Note: This figure does not show the physical NV memory layout of a redundant
NVRAM block. Only the logical clustering is shown. vy ()

[SWS_NvM_00531] In case one NV Block associated with a Redundant NVRAM
block is deemed invalid (e.g. during read), an attempt shall be made to recover the
NV Block using data from the incorrupt NV Block. ()

[SWS_NvM_00546] In case the recovery fails then this shall be reported to the
DEM using the code NVM_E_LOSS_OF REDUNDANCY

Not e: fiRecovVver yestablisenmeot bf eedundarcye This esually means
writing the recovered data back to the NV Block. ()

7.1.4.6 Dataset NVRAM block

The Dataset NVRAM block is an array of equally sized data blocks (NV/ROM). The
application can at one time access exactly one of these elements.

33 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00006] r The Dataset NVRAM block consists of multiple NV user data,
(optionally) CRC areas, (optional) NV block headers, a RAM block and an

Administrative block. v ()
[SWS_NvM_00144] y The index position of the dataset is noticed via a separated
field in the corresponding Administrative block. vy ()

[SWS_NvM_00374] y The NvM module shall be able to read all assigned NV blocks.
v ()

[SWS_NvM_00375] y The NvM module shall only be able to write to all assigned NV
blocks if (and only if) write protection is disabled. v ()

[SWS_NvM_00146] y If the basic storage object ROM block is selected as optional
part, the index range which normally selects a dataset is extended to the ROM to
make it possible to select a ROM block instead of a NV block. The index covers all

NV/ROM blocks which may build up the NVRAM Dataset block. v ()

[SWS_NvM _00376] r The NvM module shall be able to only read optional ROM
blocks (default datasets). \ ()

[SWS_NvM_00377] y The NvM module shall treat a write to a ROM block like a write
to a protected NV block. v ()

[SWS_NvM _00444] yr The total number of configured datasets (NV+ROM blocks)
must be in the range of 1..255. v ()

[SWS_NvM_00445] rIn case of optional ROM blocks, data areas with an index from
0 up to NvMNvBIockNum - 1 represent the NV blocks with their CRC in the NV
memory. Data areas with an index from NvMNvBIockNum up to NvMNvBlockNum +
NvMRomBlockNum - 1 represent the ROM blocks.

34 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

NV memory

NV block data
area 0

NV block CRC
of data area O (opt)

index
Oto
NVM_NV_BLOCK_NUM - 1

NV block data
area
(NVM_NV_BLOCK_NUM-1)

NV block CRC
of dataarea
(NVM_NV_BLOCK_NUM-1) (opt)

ROM block data area
NVM_NV_BLOCK_NUM (opt)

I
I
I
I
I
I
I
I
I
l
index |
NVM_NV_BLOCK_NUM to j !
NVM_NV_BLOCK_NUM+NVM_ROM_BLOCK_NUM-1 !
|

I

I

I

I

I

I

I

I

I

ROM block data area
NVM_NV_BLOCK_NUM+NVM_RO

I
|
|
|
|
|
|
|
|
| M_BLOCK_NUM-1) (opt)
T

Figure 9: Dataset NVRAM block layout

Note: This figure does not show the physical NV memory layout of a Dataset NVRAM
block. Only the logical clustering is shown. v ()

7.1.4.7 NVRAM Manager API configuration classes

[SWS_NvM_00149] r To have the possibility to adapt the NvM module to limited
hardware resources, three different APl configuration classes shall be defined:
- API configuration class 3: All specified API calls are available. A maximum of
functionality is supported.
- API configuration class 2: An intermediate set of API calls is available.
- API configuration class 1: Especially for matching systems with very limited
hardware resources this API configuration class offers only a minimum set of

API calls which are required in any case. \ ()

35 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
AUTOSAR CP R20-11

[SWS_NvM_00560] y API configuration class 3 shall consist of the following API:
Type 1:
- NvM_SetDatalndex(...)
- NvM_GetDatalndex(...)
- NvM_SetBlockProtection(...)
- NvM_GetErrorStatus(...)
- NvM_SetRamBlockStatus(...)
NvM_SetBlockLockStatus()
Type 2:
NvM_ReadBlock(...)
- NvM_WriteBlock(...)
- NvM_RestoreBlockDefaults(...)
- NvM_EraseNvBlock(...)
- NvM_InvalidateNvBlock(...)
- NvVM_Cancel Jobs (¢é)
- NvM_ReadPRAMBIock(...)
- NvM_WritePRAMBIock(...)
NvM_RestorePRAMBIockDefaults(...)
Type 3:
NvM_ReadAll(...)
- NvM_WriteAll(...)
- NvM_CancelWriteAll(...)
- NvM_ValidateAll(...)
- NvVM_FirstlnitAll (é)
Type 4:

- NvM_Init(...)y ()

[SWS_NvM_00561] y API configuration class 2 shall consist of the following API:
Type 1:
- NvM_SetDatalndex(...)
- NvM_GetDatalndex(...)
- NvM_GetErrorStatus(...)
- NvM_SetRamBlockStatus(...)
NvM_SetBlockLockStatus(...)
Type 2:
NvM_ReadBlock(...)
- NvM_WriteBlock(...)
- NvM_RestoreBlockDefaults(...)
- NvVM_Cancel Jobs (¢é)
- NvM_ReadPRAMBIock(...)
- NvM_WritePRAMBIock(...)
NvM_RestorePRAMBIockDefaults(...)
Type 3:
- NvM_ReadAll(...)
- NvM_WriteAll(...)
- NvM_CancelWriteAll(...)

36 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

- NvM_\ValidatedAll(...)
Type 4:

- NvM_Init(...)y ()

[SWS_NvM_00562] y API configuration class 1 shall consist of the following API:
Type 1:

- NvM_GetErrorStatus(...)

- NvM_SetRamBlockStatus(...)

- NvM_SetBlockLockStatus(...)
Type 2:

Type 3:
- NvM_ReadAll(...)
- NvM_WriteAll(...)
- NvM_CancelWriteAll(...)
Type 4:
- NvM_Init(...)
Note: For API configuration class 1 no queues are needed, no immediate data can
be written. Furthermore the API call NvM_SetRamBlockStatus is only available if

configured by NvMSetRamBlockStatusApi. v ()

[SWS_NvM_00365] y Within API configuration class 1, the block management type
NVM_BLOCK_DATASHS not supported. v ()

For information regarding the d8lfhi nition of

[SWS_NvM _00150] r The NvM module shall only contain that code that is needed to
handle the configured block types. vy ()

7.1.5 Scan order / priority scheme

[SWS_NvM_00032] y The NvM module shall support a priority based job processing.
V (SRS_Mem_08542)

[SWS_NvM_00564] y By configuration parameter NvMJobPrioritization

[SWS _NvM_00028] priority based job processing shall be enabled/disabled. y
(SRS_Mem_08542)

[SWS_NvM_00378] rIn case of priority based job processing order, the NvM module
shall use two queues, one for immediate write jobs (crash data) another for all other

jobs (including immediate read/erase jobs). y (SRS_Mem_08542)

37 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00379] rIf priority based job processing is disabled via configuration,
the NvM module shall not support immediate write jobs. In this case, the NvM module

processes all jobs in FCFS order. \ ()

[SWS_NvM_00380] r The job queue length for multi block requests originating from
any of the NvM_ReadAll, NvM_ValidateAll, NvM_FirstInitAll and NvM_WriteAll APIs

shall be one (only one multi block job is queued).y ()

[SWS_NvM _00381] y The NvM module shall not interrupt jobs originating from the
NvM_ReadAll request by other requests. \ ()

Note: The only exception to the rule given in [SWS NvM 00381, SWS NvM 00567]
Is a write job with immediate priority which shall preempt the running read / write job [
SWS NvM 00182]. The preempted job shall subsequently be resumed / restarted
by the NvM module.

[SWS_NvM _00567] y The NvM module shall not interrupt jobs originating from the
NvM_WriteAll request by other requests. vy ()

[SWS_NvM_00568] r The NvM module shall rather queue read jobs that are
requested during an ongoing NvM_ReadAll request and executed them

subsequently. v ()

[SWS_NvM_00569] y The NvM module shall rather queue write jobs that are
requested during an ongoing NvM_WriteAll request and executed them

subsequently. v ()

[SWS_NvM_00725] r The NvM module shall rather queue write jobs that are
requested during an ongoing NvM_ReadAll request and executed them

subsequently. v ()

[SWS_NvM_00726] y The NvM module shall rather queue read jobs that are
requested during an ongoing NvM_WriteAll request and executed them

subsequently. v ()

Note: The NvM_WriteAll request can be aborted by calling NvM_CancelWriteAll. In
this case, the current block is processed completely but no further blocks are written
[SWS _NvM 00238].

Hint: It shall be allowed to dequeue requests, if they became obsolete by completion
of the regarding NVRAM block.

[SWS_NvM_00570] y The preempted job shall subsequently be resumed / restarted
by the NvM module. This behavior shall apply for single block requests as well as for

multi block requests. vy ()

38 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

7.2 General behavior

7.2.1 Functional requirements

[SWS_NvM_00383] y For each asynchronous request, a notification of the caller after
completion of the job shall be a configurable option. v ()

[SWS_NvM_00384] y The NvM module shall provide a callback interface

SWS NvM 00113.

Hi nt: The Nv M mo dshdllactess the monivalablennmemorytvia the
NvM module only. It shall not be allowed for any module (except for the NvM module)

to access the non-volatile memory directly. y (SRS_Mem_08541)

[SWS_NvM_00038] y The NvM module only provides an implicit way of accessing
blocks in the NVRAM and in the shared memory (RAM). This means, the NvM
module copies one or more blocks from NVRAM to the RAM and the other way

round. v ()

[SWS_NvM_00692] r The application accesses the RAM data directly, with respect
to given restrictions (e.g. synchronization). v ()

[SWS NvM 00385]fThe NvM module shall queue all asy
read/write/control requests if the block with its specific ID is not already queued or

currently in progress (multitasking restrictions). v ()

[SWS_NvM _00386]yThe NvM modul e shall accept multip
bl ocko requests as |l ong w9 no queue overfl ow

[SWS_NvM _00155] r The highest priority request shall be fetched from the queues
by the NvM module and processed in a serialized order. v ()

[SWS_NvM_00040] r The NvM module shall implement implicit mechanisms for
consistency / integrity checks of data saved in NV memory [SWS_NvM _00165]. v ()

Depending on implementation of the memory stack, callback routines provided
and/or invoked by the NvM module may be called in interrupt context.

Hint: The NvM module providing routines called in interrupt context has therefore to
make sure that their runtime is reasonably short.

[SWS_NvM_00085] y If there is no default ROM data available at configuration time
or no callback defined by NvMInitBlockCallback then the application shall be
responsible for providing the default initialization data.

39 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

In this case, the application has to use NvM_GetErrorStatus() to be able to
distinguish [ECUC_NvM_00061] between first initialization and corrupted data

[SWS_NvM 00083]. v ()

[SWS_NvM_00387] y During processing of NvM_ReadAll, the NvM module shall be
able to detect corrupted RAM data by performing a checksum calculation.

[ECUC_NVM_00476]. y ()

[SWS_NvM_00226] y During processing of NvM_ReadAll, the NvM module shall be
able to detect invalid RAM data by testing the validity of a data within the

administrative block [ECUC_NvM_00476]. v ()

[SWS_NvM_00388] y During startup phase and normal operation of NvM_ReadAll
and if the NvM module has detected an unrecoverable error within the NV block, the
NvM module shall copy default data (if configured) to the corresponding RAM block.

v ()

[SWS_NvM _00332] y To make use of the OS services, the NvM module shall only
use the BSW scheduler instead of directly making use of OS objects and/or related

OS services. y (SRS_BSW_00429)

7.2.2 Design notes

7.2.2.1 NVRAM manager startup

[SWS_NvM_00693] y NvM_Init shall be invoked by the BSW Mode Manager
exclusively. v ()

[SWS_NvM_00091] y Due to strong constraints concerning the ECU startup time, the
NvM_ Init request shall not contain the initialization of the configured NVRAM blocks.

v ()

[SWS_NvM_00157] y The NvM_Init request shall not be responsible to trigger the
initialization of underlying drivers and memory hardware abstraction. This shall also

be handled by the BSW Mode Manager. vy (SRS_Mem_00011)

[SWS_NvM_00158] y The initialization of the RAM data blocks shall be done by
another request, namely NvM_ReadAll. y ()

NvM_ReadAll shall be called exclusively by BSW Mode Manager.

[SWS_NvM_00694] yr Software components which use the NvM module shall be
responsible for checking global error/status information resulting from the NvM

40 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

module startup. The BSW Mode Manager shall use polling by using
NVM_GetErrorStatus [SWS_NvM_00015] (reserved block ID 0) or callback
notification (configurable option NvM_MultiBlockCallback [SWS_NvM_00028]) to
derive global error/status information resulting from startup. If polling is used, the end
of the NVRAM startup procedure shall be detected by the global error/status
NVM_REQ_OK or NVM_REQ_NOT_OK (during startup NVM_REQ_PENDING)
[SWS _NvM_00083]. If callbacks are chosen for notification, software components
shall be notified automatically if an assigned NVRAM block has been processed
[SWS_NvM_00281].

Note 1: If callbacks are configured for each NVRAM block which is processed within
NvM_ReadAll, they can be used by the RTE to start e.g. SW-Cs at an early point of
time.

Note 2: To ensure that the DEM is fully operational at an early point of time, i.e. its
NV data is restored to RAM, DEM related NVRAM blocks should be configured to

have a low ID to be processed first within NvM_ReadAll. v ()

[SWS_NvM_00160] y The NvM module shall not store the currently used Dataset
index automatically in a persistent way.

Software components shall check the specific error/status of all blocks they are
responsible for by using NvM_GetErrorStatus [SWS_NvM_00015] with specific block

IDs to determine the validity of the corresponding RAM blocks. v ()

[SWS_NvM 00695]rFor al | bl ocks of the block manage
[SWS _NvM_00006] the software component shall be responsible to set the proper

index position by NvM_SetDatalndex [SWS_NvM_00014]. E.g. the current index

position can be stored/maintained by the software component in a unique NVRAM

bl ock. To get the current index position of

shall use the NvM_GetDatalndex [SWS_NvM_00021] API call. v ()

7.2.2.2 NVRAM manager shutdown

[SWS_NvM_00092] yr The basic shutdown procedure shall be done by the request
NvM_WriteAll [SWS_NvM_00018].

Hint: NvM_WriteAll shall be invoked by the BSW Mode Manager. \ ()

7.2.2.3 (Quasi) parallel write access to the NvM module

[SWS_NvM_00162] y The NvM module shall receive the requests via an
asynchronous interface using a queuing mechanism. The NvM module shall process

all requests serially depending on their priority. y (SRS_Mem_00013,
SRS_Mem_00034)

41 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

7.2.2.4 NVRAM block consistency check

[SWS_NvM_00164] r The NvM module shall provide implicit techniques to check the

data consistency of NVRAM blocks [ECUC_NvM_00476], [SWS_NvM _00040]. v
(SRS_Mem_08547, SRS_Mem_00030)

[SWS_NvM_00571] y The data consistency check of a NVRAM block shall be done
by CRC recalculations of its corresponding NV block(s). v (SRS_Mem_08547)

[SWS_NvM_00165] y The implicit way of a data consistency check shall be provided
by configurable options of the internal functions. The implicit consistency check shall
be configurable for each NVRAM block and depends on the configurable parameters

NvMBIlockUseCrc and NvMCalcRamBlockCrc [ECUC _NvM_00061]. v
(SRS_Mem_08547, SRS _Mem_00129)

[SWS_NvM_00724] y NvMBlockUseCrc should be enabled for NVRAM blocks
where NvMWriteBlockOnce = TRUE . NvMBlockWriteProt should be disabled
for NVRAM blocks where NvMWriteBlockOnce = TRUE | to enable the user to

write data to the NVRAM block in case of CRC check is failed. v ()

[SWS_NvM_00544] y Depending on the configurable parameters NvMBlockUseCrc
and NvMCalcRamBlockCrc , NvM module shall allocate memory for the largest CRC
used.

Hint: NvM users must not know anything about CRC memory (e.g. size, location) for

their data in a RAM block. v ()

7.2.2.5 Error recovery

[SWS_NvM _00047] y The NvM module shall provide techniques for error recovery.
The error recovery depends on the NVRAM block management type

[SWS_NvM_00001]. y ()

[SWS_NvM_00389] r The NvM module shall provide error recovery on read for every
kind of NVRAM block management type by loading of default values. vy ()

[SWS_NvM_00390] The NvM module shall provide error recovery on read for
NVRAM blocks of block management type NVM_BLOCK_REDUNDANT by loading
the RAM block with default values. ()

[SWS_NvM _00168] The NvM module shall provide error recovery on write by

performing write retries regardless of the NVRAM block management type. ()

42 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00169] r The NvM module shall provide read error recovery on startup
for all NVRAM blocks with configured RAM block CRC in case of RAM block

revalidation failure. v ()

7.2.2.6 Recovery of a RAM block with ROM data

[SWS_NvM _00171] y The NvM module shall provide implicit and explicit recovery
techniques to restore ROM data to its corresponding RAM block in case of
unrecoverable data inconsistency of a NV block [SWS_NvM 00387,

[SWS_NvM_00226,SWS NvM 00388]. y (SRS_Mem_08549, SRS_Mem_08010)

7.2.2.7 Implicit recovery of a RAM block with ROM default data

[SWS_NvM_00172] y The data content of the corresponding NV block shall remain
unmodified during the implicit recovery. vy (SRS_Mem_08010)

[SWS_NvM_00572] y The implicit recovery shall not be provided during startup (part
of NvM_ReadAll), neither by NvM_ReadBlock nor by NvM_ReadPRAMBIock for
each NVRAM block when no default data is configured (by the parameter

NvMRomBlockDataAddress or NvMInitBlockCallback). v ()

[SWS_NvM_00573] y The implicit recovery shall not be provided during startup (part
of NvM_ReadAll), neither by NvM_ReadBlock nor by NvM_ReadPRAMBIock for
each NVRAM block for the following conditions:
- The default data is configured (by the parameter N\vVMRomBlockDataAddress
or the parameter NvMInitBlockCallback).
- The permanent RAM block or the content of the RAM mirror in the NvM
module (in case of explicit synchronization) state is valid and CRC (data) is

consistent. \ ()

[SWS_NvM_00574] y The implicit recovery shall not be provided during startup (part
of NvM_ReadAll), neither by NvM_ReadBlock nor by NvM_ReadPRAMBIock for
each NVRAM block for the following conditions:
- The default data is configured (by the parameter NvVMRomBlockDataAddress
or the parameter NvMInitBlockCallback).
- The permanent RAM block or the content of the RAM mirror in the NvM
module (in case of explicit synchronization) state is invalid and CRC (data) is
inconsistent.

- Read attempt from NV succeeds. \ ()

[SWS_NvM_00575] r The implicit recovery shall be provided during startup (part of
NvM_ReadAll) and by NvM_ReadBlock or NvM_ReadPRAMBIock for each NVRAM

block for the following conditions:
43 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

- The default data is configured (by the parameter NvVMRomBlockDataAddress
or the parameter NvMInitBlockCallback).

- The permanent RAM block state or the content of the RAM mirror in the NvM
module (in case of explicit synchronization) is invalid and CRC (data) is
inconsistent.

- Read attempt from NV fails. v ()

[SWS_NvM_00951] y Implicit recovery shall be provided during NvM_ReadBlock() or
NvM_ReadPRAMBIock() requests for NVRAM blocks of type NVM_BLOCK_NATIVE

and NVM_BLOCK_REDUNDANT. y (SRS_Mem_00018)

7.2.2.8 Explicit recovery of a RAM block with ROM default data

[SWS_NvM _00391] r For explicit recovery with ROM block data the NvM module
shall provide functions NvM_RestoreBlockDefaults and
NvM_RestorePRAMBIockDefaults [SWS_NvM _00012] to restore ROM data to its

corresponding RAM block. v ()

[SWS_NvM_00392] r The function NvM_RestoreBlockDefaults and
NvM_RestorePRAMBIockDefaults shall remain unmodified the data content of the
corresponding NV block.

Hint: The function NvM_RestoreBlockDefaults or NvM_RestorePRAMBIlockDefaults
shall be used by the application to restore ROM data to the corresponding RAM

block every time it is needed. \ ()

7.2.2.9 Detection of an incomplete write operation to a NV block

[SWS_NvM_00174] y The detection of an incomplete write operation to a NV block is
out of scope of the NvM module. This is handled and detected by the memory
hardware abstraction. The NvM module expects to get information from the memory
hardware abstraction if a referenced NV block is invalid or inconsistent and cannot be
read when requested.

SW-Cs may use NvM_InvalidateNvBlock to prevent lower layers from delivering old

data. y (SRS_Mem_08547)

7.2.2.10 Termination of a single block request

[SWS_NvM_00175] r All asynchronous requests provided by the NvM module
(except for NvM_CancelWriteAll) shall indicate their result in the designated

error/status field of the corresponding Administrative block [SWS_NvM_00000]. v ()

44 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00176] yr The optional configuration parameter NvMSingleBlockCallback
configures the notification via callback on the termination of an asynchronous block

request (and for NvM_ReadAll) [ECUC_NvM_00061].y ()

Note: In communication with application SW-C, the ECUC configuration parameter
NvMSingleBlockCallback (ECUC_NvM_00506) should be configured to the
corresponding Rte_call_<p>_<o> API.

7.2.2.11 Termination of a multi block request

[SWS_NvM _00393] y The NvM module shall use a separate variable to store the
result of an asynchronous multi block request (NvM_ReadAll, NvM_WriteAll

including NvM__CancelWriteAll, NvM_ValidateAll)- v ()

[SWS_NvM_00394] r The function NvM_GetErrorStatus [SWS_NvM_00015] shall
return the most recent error/status information of an asynchronous multi block
request (including NvM_CancelWriteAll) [SWS_NvM_00083] in conjunction with a

reserved block ID value of 0. y ()

[SWS_NvM_00395] yr The result of a multi block request shall represent only a
common error/status information. v ()

[SWS_NvM _00396] r The multi block requests provided by the NvM module shall
indicate their detailed error/status information in the designated error/status field of

each affected Administrative block. v ()

[SWS_NvM_00179] r The optional configuration parameter NvMMultiBlockCallback
configures the notification via callback on the termination of an asynchronous multi

block request [SWS_NvM_00028]. v ()

7.2.2.12 General handling of asynchronous requests/ job processing

[SWS_NvM _00180] r Every time when CRC calculation is processed within a
request, the NvM module shall calculate the CRC in multiple steps if the referenced
NVRAM block length exceeds the number of bytes configured by the parameter

NvMCrcNumOfBytes. \ ()

[SWS_NvM_00351] y For CRC calculation, the NvM module shall use initial values
which are published by the CRC module. y ()

[SWS_NvM_00181] y Multiple concurrent single block requests shall be queueable. y
()

45 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00182] y The NvM module shall interrupt asynchronous request/job
processing in favor of jobs with immediate priority (crash data). v ()

[SWS_NvM_00184] y If the invocation of an asynchronous function on the NvM
module leads to a job queue overflow, the function shall return with E_NOT_OKy ()

[SWS_NvM_00185] r On successful enqueuing a request, the NvM module shall set
the request result of the corresponding NVRAM block to NVM_REQ PNDING vy ()

[SWS_NvM_00270] y If the NvM module has successfully processed a job, it shall
return NVM_REQ_OK as request result. vy ()

7.2.2.13 NVRAM block write protection

The NvM module shall offer different kinds of write protection which shall be
configurable. Every kind of write protection is only related to the NV part of NVRAM
block, i.e. the RAM block data can be modified but not be written to NV memory.

[SWS_NvM_00325] y Enabling/Disabling of the write protection is allowed using
NvM_SetBlockProtection function when the NvMWriteBlockOnce is FALSE

regardless of the value (True/False) configured for NvMBlockWriteProt.
(SRS_Mem_08009)

[SWS_NvM_00577] y Enabling/Disabling of the write protection is not allowed using
NvM_ SetBlockProtection function when the NvMWriteBlockOnce is TRUE regardless

of the value (True/False) configured for NvMBlockWriteProt. y (SRS_Mem_08009)

[SWS_NvM_00326] y For all NVRAM blocks configured with NvMBIlockWriteProt =
TRUE, the NvM module shall enable a default write protection. y (SRS_Mem_08009)

[SWS_NvM_00578]fThe NvM modul eds environment can
protection using the NvM_SetBlockProtection function. v ()

[SWS_NvM_00397] y For NVRAM blocks configured with NvMWriteBlockOnce ==
TRUE[ECUC_NvM_00072], the NvM module shall only write once to the associated

NV memory, i.e in case of a blank NV device. y (SRS_Mem_08015)

[SWS_NvM_00398] y For NVRAM blocks configured with NvMWriteBlockOnce ==
TRUE the NvM module shall not allow disabling the write protection explicitly using

the NvM_SetBlockProtection function.[SWS_NvM_00450] vy ()

46 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM _00952] For a block configured with NVM_WRITE_BLOCK_ONCE
(TRUE), NvM shall reject any Write/Erase/Invalidate request made prior to the first
read request. ()

Note: In case of a reset, the write protection flag of a block configured with
NVM_WRITE_BLOCK_ONCE (TRUE), from the NvM Administrative block, is
cleared. In order to reactivate the protection, the block must be read prior to a first
Write/Erase/Invalidate request being processed, in order to set the write proctection
only for a block that is valid and consistent. The first read request can be done either
as a single block request or as part of NvM_ReadAll.

7.2.2.14 Validation and modification of RAM block data
This chapter shall give summarized information regarding the internal handling of
NVRAM Manager status bits. Depending on different API calls, the influence on the

status of RAM blocks shall be described in addition to the specification items located
in chapter 8.1.3. The following figures depict the state transitions of RAM blocks.

47 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

Initia\
Power-On
Reset

UNINITIALIZED

NVM_ Init
Erase/Invalidate successful OR
Read/ReadAll for block not successful OR
Write/WriteAll for block not successful OR
RamBlockStatus == FALSE INVALID /
UNCHANGED

Specification of NVRAM Manager
AUTOSAR CP R20-11

/ INVALID / CHANGED "\

constraints
{it can never occur}

Erase/Invalidate successful OR
Read/ReadAll for block not successful OR
Write/WriteAll for block not successful OR
RamBlockStatus == FALSE

responsibilities
must not WriteAll

Read/ReadAll for block successful OR
Write/WriteAll for block successful

—

Write/WriteAll ongoing for block OR

Read/ReadAll gives default data OR
RestoreBlockDefaults performed OR

RamBlockStatus == TRUE

/7 VALID / UNCHANGED "\ e

responsibilities

State is preserved until at
least one exit condition is
met

Write/WriteAll ongoing for block OR

Read/ReadAll gives default data OR
RestoreBlockDefaults performed OR

RamBlockStatus == TRUE

“~. /7 VALID/CHANGED \

responsibilities

may ReadAll
must not WriteAll

constraints

must not ReadAll
must WriteAll

constraints

{RAM==NV}

-

Read/ReadAll for block successful OR
Write/WriteAll for block successful

{RAM 1= NV}

—

Figure 10: RAM Block States

Since entering and preserving a state can be done based on multiple conditions and
placing them all in the above figure would make it difficult to understand, more
detailed explanations are provided in the following subchapters. The INVALID /
CHANGED state is not detailed as it can never be reached (as mentioned in the

figure above).

After the Initialization the RAM Block is in state INVALID/UNCHANGED until it is
updated via NvM_ReadAll, which causes a transition to state VALID/UNCHANGED.
In this state WriteAll is not allowed. This state is left, if the NvM_SetRamBlockStatus
is invoked. If there occurs a CRC error the RAM Block changes to state INVALID
again, which than can be left via the implicit or explicit error recovery mechanisms.
After error recovery the block is in state VALID/CHANGED as the content of the RAM
differs from the NVRAM content.

[SWS_NvM_00344] ¢ If the API for modifying the RAM block status has been
disabled in configuration (via NvMSetRamBlockStatusApi or

48 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

NvMBlockUseSetRamBlockStatus) the NvM module shall treat a RAM block or the
RAM mirror in the NvM module (in case of explicit synchronization) as valid and
changed when writing data in the corresponding NV block, i.e. during NvM_WriteAll,

the NvM module shall write each permanent RAM block to NV memory.y
(SRS_Mem_08550)

[SWS_NvM _00345] ¢ If the API for modifying the RAM block status has been
disabled in configuration (via NvMSetRamBlockStatusApi or
NvMBlockUseSetRamBlockStatus) the NvM module shall treat a RAM block as
invalid when reading data from NV block, i.e. during NvM_ReadAll, the NvM module

shall copy each NVRAM block to RAM if configured accordingly. v
(SRS_Mem_08550)

[SWS_NvM_00696] 1 In case of an unsuccessful block read attempt, it is the

responsibility of the application to provide valid data before the next write attempt. y
(SRS_Mem_08550)

[SWS_NvM_00472] rIn case a RAM block is successfully copied to NV memory the
RAM block state shall be set to "valid/unmodified" afterwards.y (SRS_Mem_08541)

7.2.2.14.1 The VALID / UNCHANGED state

This state implies that the contents of the RAM Block are either identical to the
contents of the corresponding NV Block or - if the application has accessed the RAM
Block - a potential change was not yet indicated. For a DATASET block these
conditions apply to he RAM contents of the instance that was last processed. Also,
the last block operation was successful and the block was not invalidated by request.

To enter the VALID / UNCHANGED state, at least of the following must occur:

1. NvM_ReadAll() read successfully the block

2. NvM_ReadBlock finished successfully for the block
3. NvM_WriteBlock finished successfully for the block
4. NvM_WriteAll() wrote successfully the block

The VALID / UNCHANGED state is preserved while:
1 the last read or write for a BlockID was successful (no error and no retrieval of
default data)
AND
1 the application has not indicated a potential change of RAM block since last
read or write

49 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

7.2.2.14.2 The VALID / CHANGED state

This state implies that the contents of the RAM Block potentially differ from the
contents of the corresponding NV Block. For a DATASET block this condition applies
to the RAM contents of the instance that was last processed. Also, the last operation
for the block was successsful and the block was not invalidated by request. The
block owner can signal a potential RAM contents changed for the block causing the
block state to become VALID / CHANGED.

To enter the VALID / CHANGED state, at least one of the following must occur:

NvM_SetRamBlockStatus called with TRUE for the block
NvM_WriteBlock is called for the block

NvM_WriteAll will also process the block

NvM_ReadBlock called for the block gives default data
NvM_RestoreBlockDefaults called for the block finishes successfully
NvM_ReadAll gives default data when processign the block

NvM_ ValidateAll processed successfully the block

NogahkwNpE

The VALID / CHANGED state is preserved while:
1 a block owner has indicated a potential change of RAM block
OR
1 default data was retrieved (implicitly or explicitly) for the block upon last read

7.2.2.14.3 The INVALID / UNCHANGED state

This state implies that the NV Block is invalid. For a DATASET block this means that
the NV Block contents are invalid for the last instance that was processed.

To enter the INVALID / UNCHANGED state, at least one of the following must occur:
1. NvM_SetRamBlockStatus called with FALSE for the block

2. NvM_ReadBlock indicates invalidation by user request for the block
3. NvM_ReadBlock indicates corrupted data (if CRC configured) for the
block

4 NvM_ReadBlock indicates wrong StaticID (if configured) for the block
5. NvM_WriteBlock finished non-successfully for the block

6. NvM_WriteAll non-successful write for the block

7 NvM_InvalidateNvBlock finished successfully for the block

8 NvM_EraseNvBlock finished successfully for the block

The INVALID / UNCHANGED state is preserved while:
1 the block state is unknown at the time (early init, until ReadAll or first operation
requested for a given block)
OR
1 the block was detected as corrupted or with wrong StaticlD
OR
1 the last successful operation on the block was an invalidation
OR

50 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

9 the current read failed and no default data
OR

1 the last successful operation on the block was an erase

7.2.2.15 Communication and implicit synchronization between application
and NVRAM manager

To minimize locking/unlocking overhead or the use of other synchronization methods,
the communication between applications and the NvM module must follow a strict
sequence of steps which is described below. This ensures a reliable communication
between applications and the NvM module and avoids data corruption in RAM blocks
and a proper synchronization is guaranteed.

This access model assumes that two parties are involved in communication with a
RAM block: The application and the NvM module.

[SWS_NvM_00697] y If several applications are using the same RAM block it is not
the job of the NvM module to ensure the data integrity of the RAM block. In this case,
the applications have to synchronize their accesses to the RAM block and have to
guarantee that no unsuitable accesses to the RAM block take place during NVRAM
operations (details see below).

Especially if several applications are sharing a NVRAM block by using (different)
temporary RAM blocks, synchronization between applications becomes more
complex and this is not handled by the NvM module, too. In case of using callbacks
as notification method, it could happen that e.g. an application gets a notification
although the request has not been initiated by this application.

All applications have to adhere to the following rules. v ()

7.2.2.15.1 Write requests (NVvM_WriteBlock or NvM_WritePRAMBIlock)

[SWS_NvM _00698] r Applications have to adhere to the following rules during write
request for implicit synchronization between application and NVRAM manager:

1. The application fills a RAM block with the data that has to be written by the
NvM module

2. The application issues the NvM_WriteBlock or NvM_WritePRAMBIock request
which transfers control to the NvM module.

3. From now on the application must not modify the RAM block until success or
failure of the request is signaled or derived via polling. In the meantime the
contents of the RAM block may be read.

4. An application can use polling to get the status of the request or can be
informed via a callback function asynchronously.

5. After completion of the NvM module operation, the RAM block is reusable for

modifications. y (SRS_Mem_00013)

7.2.2.15.2 Read requests (NvM_ReadBlock or NvM_ReadPRAMBIlock)
51 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00699] MApplications have to adhere to the following rules during read
request for implicit synchronization between application and NVRAM manager:
1. The application provides a RAM block that has to be filled with NVRAM data
from the NvM modul eds side.
2. The application issues the NvM_ReadBlock request which transfers control to
the NvM module.
3. From now on the application must not read or write to the RAM block until
success or failure of the request is signaled or derived via polling.
4. An application can use polling to get the status of the request or can be
informed via a callback function.
5. After completion of the NvM module operation, the RAM block is available with

new data for use by the application. v (SRS_Mem_00013)

7.2.2.15.3 Restore default requests (NVvM_RestoreBlockDefaults and
NvM_RestorePRAMBIlockDefaults)

[SWS_NvM_00700] y Applications have to adhere to the following rules during
restore default requests for implicit synchronization between application and NVRAM
manager:

1. The application provides a RAM block, which has to be filled with ROM data
from the NvM modules side.

2. The application issues the NvM_RestoreBlockDefaults or
NvM_RestorePRAMBIockDefaults request which transfers control to the NvM
module.

3. From now on the application must not read or write to the RAM block until
success or failure of the request is signaled or derived via polling.

4. An application can use polling to get the status of the request or can be
informed via a callback function.

5. After completion of the NvM module operation, the RAM block is available with

the ROM data for use by the application. y (SRS_Mem_08548)

7.2.2.15.4 Multi block read requests (NvM_ReadAll)

This request may be triggered only by the BSW Mode Manager at system startup.
This request fills all configured permanent RAM blocks with necessary data for
startup.

If the request fails or the request is handled only partially successful, the NVRAM-
Manager signals this condition to the DEM and returns an error to the BSW Mode
Manager. The DEM and the BSW Mode Manager have to decide about further
measures that have to be taken. These steps are beyond the scope of the NvM
module and are handled in the specifications of DEM and BSW Mode Manager.

[SWS_NvM_00701] y Applications have to adhere to the following rules during multi

block read requests for implicit synchronization between application and NVRAM
manager:

52 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

The BSW Mode Manager issues the NvM_ReadAll.
1. The BSW Mode Manager can use polling to get the status of the request or
can be informed via a callback function.
2. During NvM_ReadAll, a single block callback (if configured) will be invoked
after having completely processed a NVRAM block. These callbacks enable

the RTE to start each SW-C individually. v ()

7.2.2.15.5 Multi block write requests (NVvM_WriteAll)

This request must only be triggered by the BSW Mode Manager at shutdown of the
system. This request writes the contents of all modified permanent RAM blocks to NV
memory. By calling this request only during ECU shutdown, the BSW Mode Manager
can ensure that no SW component is able to modify data in the RAM blocks until the
end of the operation. These measures are beyond the scope of the NvM module and
are handled in the specifications of the BSW Mode Manager.

[SWS_NvM_00702] ®Applications have to adhere to the following rules during multi
block write requests for implicit synchronization between application and NVRAM
manager:
1. The BSW Mode Manager issues the NvM_WriteAll request which transfers
control to the NvM module.
2. The BSW Mode Manager can use polling to get the status of the request or

can be informed via a callback function. v ()

7.2.2.15.6 Cancel Operation (NvM_CancelWriteAll)

This request cancels a pending NvM_ W riteAll request. This is an asynchronous
request and can be called to terminate a pending NvM_WriteAll request.

[SWS_NvM_OO?QS] ANvM_CancelWriteAll request shall only be used by the BSW
Mode Manager. (X))
7.2.2.15.7 Modification of administrative blocks

For administrative purposes an administrative block is part of each configured
NVRAM block (ref. to ch. 7.1.3.4).

[SWS_NvM_00704] df there is a pending single-block operation for a NVRAM block,
the application is not allowed to call any operation that modifies the administrative

block, like NvM_SetDatalndex, NvM_SetBlockProtection, NvM_SetRamBlockStatus,
until the pending job has finished. QX)

7.2.2.16 Normal and extended runtime preparation of NVRAM blocks

53 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

This subchapter is supposed to provide a short summary of normal and extended
runtime preparation of NVRAM blocks. The detailed behavior regarding the handling
of NVRAM blocks during start-up is specified in chapter 8.1.3.3.1.

Depending on the two configuration parameters NvMDynamicConfiguration and
NvMResistantToChangedSw the NVRAM Manager shall behave in different ways
during start-up, i.e. while processing the request NvM_ReadAll().

If NvMDynamicConfiguration is set to FALSE, the NVRAM Manager shall ignore the
stored configuration ID (see SWS _NvM 00034) and continue with the normal
runtime preparation of NVRAM blocks. In this case the RAM block shall be checked
for its validity. If the RAM block content is detected to be invalid the NV block shall be
checked for its validity. A NV block which is detected to be valid shall be copied to its
assigned RAM block. If an invalid NV Block is detected default data shall be loaded.
If NvMDynamicConfiguration is set to TRUE and a configuration ID mismatch is
detected, the extended runtime preparation shall be performed for those NVRAM
blocks which are configured with NvMResistantToChangedSw(FALSE). In this case
default data shall be loaded independent of the validity of an assigned RAM or NV
block.

7.2.2.17 Communication and explicit synchronization between application
and NVRAM manager

In contrast to the implicit synchronization between the application and the NvM
module (see section 7.2.2.15) an optional (i.e. configurable) explicit synchronization
mechanism is available. It is realized by a RAM mirror in the NvM module. The data
Is transferred by the application in both directions via callback routines, called by the
NvM module.

Here is a short analysis of this mechanism:
- The advantage is that applications can control their data in a better way. They
are responsible for copying consistent da
RAM mirror, so they know the point in time. The RAM block is never in an
iInconsistent state due to concurrent accesses.
- The drawbacks are the additional RAM which needs to have the same size as
the largest NVRAM block that uses this mechanism and the necessity of an
additional copy between two RAM locations for every operation.
This mechanism especially enables the sharing of NVRAM blocks by different
applications, if there is a module that synchronizes these applications and is the
owner of the NVRAM block from the NvM modul e

[SWS_NvM _00511] r For every NVRAM block there shall be the possibility to
configure the usage of an explicit synchronization mechanism by the parameter

NvMBlockUseSyncMechanism. vy ()

[SWS_NvM_00512] y The NvM module must not allocate a RAM mirror if no block is
configured to use the explicit synchronization mechanism. v ()

54 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00513] y The NvM module shall allocate only one RAM mirror if at least
one block is configured to use the explicit synchronization mechanism. This RAM
mirror must not exceed the size of the longest NVRAM block configured to use the

explicit synchronization mechanism. \ ()

[SWS_NvM_00514] y The NvM module shall use the internal mirror as buffer for all
operations that read and write the RAM block of those NVRAM blocks with
NvMBIlockUseSyncMechanism == TRUE. The buffer must not be used for the other

NVRAM blocks. y ()

[SWS_NvM_00515] y The NvM module shall call the routine
NvMWriteRamBlockToNvCallback in order to copy the data from the RAM block to
the mirror for all NVRAM blocks with NvMBlockUseSyncMechanism == TRUE. This

routine must not be used for the other NVRAM blocks. \ ()

[SWS_NvM_00516] y The NvM module shall call the routine
NvMReadRamBIlockFromNvCallback in order to copy the data from the mirror to the
RAM block for all NVRAM blocks with NvMBlockUseSyncMechanism == TRUE. This

routine must not be used for the other NVRAM blocks. v ()

[SWS_NvM_00517] y During a single block request if the routines

NvMReadRamBIlockFromNvCallback return E_NOT_OK, then the NvM module shall
retry the routine call NvMRepeatMirrorOperations times. Thereafter the single block
read job shall set the block specific request result to NVM_REQ_NOT_OK and shall

report NVM_E_REQ_FAILED to the DEM. y ()

[SWS_NvM_00839] In the case the NvMReadRamBlockFromNvCallback routine
returns E_NOT_OK, the NvM module shall retry the routine call in the next call of the
NvM_MainFunction. ()

[SWS_NvM_00579] y During a single block request if the routines
NvMWriteRamBlockToNvCallback return E_NOT_OK, then the NvM module shall
retry the routine call NvMRepeatMirrorOperations times. Thereafter the single block
write job shall set the block specific request result to NVM_REQ_NOT_OK and shall

report NVM_E_REQ_FAILED to the DEM. y ()

[SWS_NvM _00840] In the case the NvMWriteRamBlockToNvCallback routine
returns E_NOT_OK, the NvM module shall retry the routine call in the next call of the
NvM_MainFunction. ()

[SWS_NvM_00837] During a multi block request (NvM_WriteAll) if the routines

NvMWriteRamBlockToNvCallback return E_NOT_OK, then the NvM module shall
retry the routine call NvMRepeatMirrorOperations times. Thereafter the job of the

55 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

function NvM_WriteAll shall set the block specific request result to
NVM_REQ_NOT_OK and shall report NVM_E_REQ_FAILED to the DEM. ()

[SWS_NvM_00838] 6During a multi block request (NvM_ReadAl) if the routines
NvMReadRamBlockFromNvCallback return E_NOT_OK, then the NvM module shall
retry the routine call NvMRepeatMirrorOperations times. Thereafter the job of the
function NvM_ReadAll shall set the block specific request result to

NVM_REQ_NOT_OK and shall report NVM_E_REQ_FAILED to the DEM. \ ()

[SWS_NvM_00904] df a block has explicit synchronization configured for it then it
must not have a permanent RAM image configured. v (SRS_Mem_08534)

The following two sections clarify the differences when using the explicit
synchronization mechanism, compare to 7.2.2.15.1 and 7.2.2.15.2.

7.2.2.17.1 Write requests (NvM_WriteBlock or NvM_WritePRAMBIock)

[SWS_NvM_00705] ®Applications have to adhere to the following rules during write
request for explicit synchronization between application and NVRAM manager:

1. The application fills a RAM block with the data that has to be written by the
NvM module.

2. The application issues the NvM_WriteBlock or NvM_WritePRAMBIlock
request.

3. The application might modify the RAM block until the routine
NvMWriteRamBlockToNvCallback is called by the NvM module.

4. If the routine NvMWriteRamBlockToNvCallback is called by the NvM module,
then the application has to provide a consistent copy of the RAM block to the
destination requested by the NvM module.

The application can use the return value E_NOT_OK in order to signal that
data was not consistent. The NvM module will accept this
NvMRepeatMirrorOperations times and then postpones the request and
continues with its next request.

5. Continuation only if data was copied to the NvM module:

6. From now on the application can read and write the RAM block again.

7. An application can use polling to get the status of the request or can be
informed via a callback routine asynchronously.

Note: The application may combine several write requests to different positions in
one RAM block, if NvM_WriteBlock or NvM_WritePRAMBIlock was requested, but not
yet processed by the NvM module. The request was not processed, if the callback

routine NvMWriteRamBlockToNvCallback was not called. v ()

7.2.2.17.2 Read requests (NvM_ReadBlock or NvM_ReadPRAMBIlock)

[SWS_NvM_00706] dApplications have to adhere to the following rules during read
request for explicit synchronization between application and NVRAM manager:
1.The application provides a RAM block that has to be filled with NVRAM data

from the NvM modul ebs si de.
56 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

2.The application issues the NvM_ReadBlock or NvM_ReadPRAMBIlock request.
3.The application might modify the RAM block until the routine
NvMReadRamBIlockFromNvCallback is called by the NvM module.
4.1f the routine NvMReadRamBIlockFromNvCallback is called by the NvM module,
then the application copy the data from the destination given by the NvM
module to the RAM block.The application can use the return value
E_NOT_OK in order to signal that data was not copied. The NvM module will
accept this NvMRepeatMirrorOperations times and then postpones the
request and continues with its next request.
5.Continuation only if data was copied from the NvM module:
6.Now the application finds the NV block values in the RAM block.
7.The application can use polling to get the status of the request or can be
informed via a callback routine.
Note: The application may combine several read requests to different positions in
one NV block, if N\vM_ReadBlock or NvM_ReadPRAMBIlock was requested, but not
yet processed by the NvM module. The request was not processed, if the callback
routine NvMReadRamBlockFromNvCallback was not called.
Note: NvM_RestoreBlockDefaults and NvM_RestorePRAMBIockDefaults works

similarly to NvM_ReadBlock. v ()

7.2.2.17.3 Multi block read requests (NvM_ReadAll)

This request may be triggered only by the BSW Mode Manager at system startup.
This request fills all configured permanent RAM blocks with necessary data for
startup.

If the request fails or the request is handled only partially successful, the NVRAM-
Manager signals this condition to the DEM and returns an error to the BSW Mode
Manager. The DEM and the BSW Mode Manager have to decide about further
measures that have to be taken. These steps are beyond the scope of the NvM
module and are handled in the specifications of DEM and BSW Mode Manager.

Normal operation:
1. The BSW Mode Manager issues the NvM_ReadAll .

2. The BSW Mode Manager can use polling to get the status of the request or
can be informed via a callback function.

3. During NvM_ReadAll job, if a synchronization callback
(NvM_ReadRamBlockFromNvm) is configured for a block it will be called by
the NvM module. In this callback the application shall copy the data from the
destination given by the NvM module to the RAM block.The application can
use the return value E_NOT_OK in order to signal that data was not copied.
The NvM module will accept this NvMRepeatMirrorOperations times and then
report the read operation as failed.

57 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

4. Now the application finds the NV block values in the RAM block if the read
operation was successful.

5. During NvM_ReadAll , a single block callback (if configured) will be invoked
after having completely processed a NVRAM block. These callbacks enable
the RTE to start each SW-C individually.

6. After processing of the last block and calling its single block callback (if
configured), the multi block callback (if configured) will be invoked.

7.2.2.17.4 Multi block write requests (NVvM_WriteAll)

This request must only be triggered by the BSW Mode Manager at shutdown of the
system. This request writes the contents of all modified permanent RAM blocks to NV
memory. By calling this request only during ECU shutdown, the BSW Mode Manager
can ensure that no SW component is able to modify data in the RAM blocks until the
end of the operation. These measures are beyond the scope of the NvM module and
are handled in the specifications of the BSW Mode Manager.

Normal operation:

1. The BSW Mode Manager issues the NvM_WriteAll request which transfers
control to the NvM module.

2. During NvM_WriteAll job, if a synchronization callback
(NvM_WriteRamBlockToNvM) is configured for a block it will be called by the
NvM module. In this callback the application has to provide a consistent copy
of the RAM block to the destination requested by the NvM module.

The application can use the return value E_NOT_OK in order to signal that
data was not consistent. The NvM module will accept this
NvMRepeatMirrorOperations times and then report the write operation as
failed.

3. Now the application can read and write the RAM block again.

4. The BSW Mode Manager can use polling to get the status of the request or
can be informed via a callback function.

7.2.2.18 Static Block ID Check

Note: NVRAM Manager stores the NV Block Header including the Static Block ID in
the NV Block each time the block is written to NV memory. When a block is read, its
Static Block ID is compared to the requested block ID. This permits to detect
hardware failures which cause a wrong block to be read.

58 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00523] y The NVRAM Manager shall store the Static Block ID field of the
Block Header each time the block is written to NV memory. y (SRS_Mem_08555)

[SWS_NvM_00524] The NVRAM Manager shall check the Block Header each time
the block is read from NV memory. (SRS_Mem_08555)

[SWS_NvM_00525] If the Static Block ID check fails then the failure
NVM_E_WRONG_BLOCK_ID is reported to DEM. ()

[SWS_NvM_00580] y If the Static Block ID check fails then the read error recovery is
initiated.

Hint: A check shall be made during configuration to ensure that all Static Block IDs
are unique. \ ()

7.2.2.19 Read Retry

[SWS_NvM_00526] y If the NVRAM manager detects a failure during a read
operation from NV memory, a CRC error then one or more additional read attempts
shall be made, as configured by NVM_MAX_NUM_OF READ_RETRIES, before

continuing to read the redundant NV Block. y (SRS_Mem_08554)

[SWS_NvM_00581] y If the NVRAM manager detects a failure during a read
operation from NV memory, a CRC error then one or more additional read attempts
shall be made, as configured by NVM_MAX_NUM_OF_READ_RETRIES, before

continuing to read the ROM Block. y (SRS_Mem_08554)

[SWS_NvM_00582] r If the NVRAM manager detects a failure during a read
operation from NV memory, a Static Block ID check then one or more additional read
attempts shall be made, as configured by NVM_MAX_NUM_OF_READ_RETRIES,

before continuing to read the redundant NV Block. y (SRS_Mem_00129)

[SWS_NvM_00583] y If the NVRAM manager detects a failure during a read
operation from NV memory, a Static Block ID check then one or more additional read
attempts shall be made, as configured by NVM_MAX_NUM_OF_READ_RETRIES,

before continuing to read the ROM Block. \ ()

7.2.2.20 Write Verification
When a RAM Block is written to NV memory the NV block shall be immediately read

back and compared with the original content in RAM Block if the behaviour is
enabled by NVM_WRITE_VERIFICATION.

59 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00527] y Comparison between original content in RAM Block and the
block read back shall be performed in steps so that the number of bytes read and
compared is not greater than as specified by the configuration parameter

NVM_WRITE_VERIFICATION_DATA_SIZE. y (SRS_Mem_08554,
SRS_Mem_08556)

[SWS_NvM_00528] If the original content in RAM Block is not the same as read
back then the production code error NVM_E_VERIFY_FAILED shall be reported to
DEM. (SRS_Mem_08556)

[SWS_NvM _00529] If the original content in RAM Block is not the same as read

back then write retries shall be performed as specified in this document. (
SRS _Mem_ 08554, SRS _Mem_08556)

[SWS_NvM _00530] rIf the read back operation fails then no read retries shall be
performed. v ()

[SWS_NvM_00897] y If the original content in RAM Block is not the same as read
back, for the initial write attempt as well as for all the configured retries, then NvM

shall set as request result NVM_REQ_NOT_OK. y (SRS_Mem_00017,
SRS _Mem_08554, SWS_NvM_08541, SRS_Mem_00030, SRS_Mem_08556)

7.2.2.21 Comparing NV data in NvM

In order to avoid unnecessary write operations in NV memory, if the NV data of a
specific RAM Block was not updated during runtime, the NvM module offers a CRC
based compare mechanism which can be applied while processing a write job.

[SWS_NvM_00849] 6rhe NvM module shall provide an option to skip writing of
unchanged data by implementing a CRC based compare mechanism.Q
(SRS_Mem_00136)

Note: In general, there is a risk that some changed content of an RAM Block leads to
the same CRC as the initial content so that an update might be lost if this option is
used. Therefore this option should be used only for blocks where this risk can be
tolerated.

[SWS_NvM_00850] dor every NVRAM Block there shall be the possibility to
configure the usage of the CRC based compare mechanism by the parameter
NvMBIlockUseCRCCompMechanism if the parameter NvMBIlockUseCrc is set to
true.Q(SRS_Mem_00136)

60 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

7.2.2.22 NvM and BswM interaction

[SWS_NvM_00745] r The NvM shall use the BswM API
BswM_NvM_CurrentJobMode() when it needs to inform the BswM about a multiblock

request state change. v ()

[SWS_NvM_00950] y If NvMBswMMultiBlockJobStatusinformation is true, the NvM
shall not call the configured multiblock callback. vy ()

[SWS_NvM _00746] r The NvM shall use the BswM API
BswM_NvM_CurrentBlockMode() when it needs to inform the BswM about a single

block request acceptance (as being pending) and result. \ ()

[SWS_NvM_00888] y If NvMBswMMultiBlockJobStatusinformation is true, when NvM
accepts a multiblock operation the NvM shall inform the BswM about the accepted
multiblock operation as being pending, by calling the BswM_NvM_CurrentJobMode

with the related multiblock request type and, as mode, NVM_REQ_PENDING.y,
(SRS_MEM_00020, SRS_MEM_00136, SRS_MEM_08535, SRS_MEM_08533)

[SWS_NvM_00889] r If NvMBswMMultiBlockJobStatusinformation is true, when a
multiblock operation finishes or is canceled the NvM shall inform the BswM about the
result of the multiblock operation, by calling the BswM_NvM_ CurrentJobMode with
the related multiblock request type and, as mode, the outcome of the multiblock

operation. v (SRS_MEM_00020, SRS_MEM_00136, SRS_MEM_08535,
SRS_MEM_08533)

[SWS_NvM_00890] y If NvMBswMBlockStatusinformation is true, when NvM accepts
a single block operation the NvM shall inform the BswM about the accepted single
block operation as being pending, by calling the BswM_NvM_CurrentBlockMode with

the related Block ID and, as mode, NVM_REQ_PENDING.y (SRS_MEM_00125,
SRS_MEM_00020)

[SWS_NvM _00891] r If NvMBswMBIlockStatusinformation is true, when a single
block operation finishes or is canceled the NvM shall inform the BswM about the
result of the single block operation, by calling the BswM_NvM_ CurrentBlockMode

with the related Block ID and, as mode, the outcome of the singleblock operation. v
(SRS_MEM_00125, SRS_MEM_00020)

[SWS_NvM_00892] y If NvMBswMBlockStatusinformation is true and NvM has a
multiblock operation ongoing, for each block processed due to the multiblock
operation, NvM shall inform the BswM when it starts to process the block, as being
pending, by calling the BswM_NvM_ CurrentBlockMode with the related Block ID and,

as mode, NVM_REQ_PENDING. y (SRS_MEM_00125, SRS_MEM_00020)
61 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00949] r If NvMBswMBlockStatusinformation is true and NvM has a
multiblock operation ongoing, for each block processed due to the multiblock
operation, NvM shall inform the BswM about the result of the processing of the block
when the block is finished processing, by calling the BswM_NvM_CurrentBlockMode

with the related Block ID and, as mode, the outcome of the singleblock operation. y
(SRS_MEM_00125, SRS_MEM_00020)

7.2.2.23 NvM behaviour in case of Block locked

The NvM_SetBlockLockStatus API service shall only be usable by BSW
Components, it is not published as Service in the SWC-Description. Thus it will not
be accessible via RTE.

[SWS_NvM_00751] ¢ If the function NvM_SetBlockLockStatus was called with the
parameter BlockLocked as TRUE, the NvM shall guarantee that the NV contents
associated to the NVRAM block identified by Blockld, will not be modified by any
request. The Block shall be skipped during NvM_WriteAll, other requests, that are
NvM_WriteBlock, NvM_WritePRAMBIock, NvM_InvalidateNvBlock,

NvM_EraseNvBlock, shall be rejected.y ()

[SWS_NvM_00752] y If the function NvM_SetBlockLockStatus was called with the
parameter BlockLocked as TRUE, the NvM shall guarantee that at next start-up,
during processing of NvM_ReadBlock or NvM_ReadPRAMBIock, this NVRAM block

shall be loaded from NV memory. v ()

[SWS_NvM_00753] y If the function NvM_SetBlockLockStatus was called with the
parameter BlockLocked as FALSE, the NvM shall guarantee normal processing of

this NVRAM block as specified by AUTOSAR. v ()

[SWS_NvM_00754] yr The BlockLocked setting made using the function
NvM_SetBlockLockStatus shall not be changeable by NvM_SetRamBlockStatus, nor

by NvM_SetBlockProtection. v ()

7.2.2.23.1 Use Case
Save new Data for an NVRAM block via diagnostic services into NV memory. These
data shall be made available to the SW-C(s) with next ECU start-up, i.e. they shall

neither be overwritten by a request originating from an SW-C, nor be overwritten with
per manent RAM bl oc kdown (Nd¢M WateAd u)r i ng s hut

7.2.2.23.2 Usage (by DCM):

62 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

1. DCM requests NvM_SetBlo ckLockStatus(<Blockld>, FALSE) , in order

to re-enable writing to this block. (It might be locked by executing this

procedure before).

DCM requests NvM_WriteBlock(<blockld>, <DataBuffer>)

DCM polls for completion of write request (using NvM_GetErrorStatus())

4. On success (NVM_REQ_OKthe DCM issues
NvM_SetBlockLockStatus(<Blockld>, TRUE)

wnN

7.2.2.24 Block Compression

The block data is compressed before it is written to NV memory. The type of
compression (block split, compression, delta) is vendor-specific.

The use-case is for larger data blocks with changes of only smaller junks (like drive-
cycle logging). The goal is that not the whole block needs to be written to NV memory
to reduce the overall write-cycles.

The block split would divide the block in multiple sub-blocks and only the changed
sub-blocks would be written. Alternatively, only the changed delta could be written.
Anyway, any data compression algorithm could be used.

The drawback is always a higher runtime for writing or reading the data.

NvM block compression

App NIV Memif
I 1 I
1 Write !
—_— T

! MirrarCallback |
o T m—

. [,
compressian

| Memlf Write () _ |
I%I

[SWS_NvM_00966] DRAFT In case the NvMBlockUseCompression is set to true, the

NvM shall compress the stored data in NV memory. ()

7.2.2.25 Block Ciphering

For security purposes NvM supports synchronous encryption and decryption via
CSM module using symmetric 16 byte aligned algorithms, e.g. AES128.

The user always works with plain data, the NV RAM stores the ciphered data:

> Write data: NvM encrypts the plain user data and then forwards the ciphered data
to the device.

> Read data: NvM reads the ciphered data from device, decrypts the data and finally
provides the plain data to the user.

To check the integrity of the ciphered data a CRC can be configured (as usual). NvM
will then calculate the CRC over encrypted data and recalculate and check the CRC

before decryption: the CRC always matches the ciphered data.
63 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00976] r In case NvMBIlockCipheringRef is given, the NvM shall before
forwarding the write request to MemlIf encrypt the plain data using Csm_Encrypt()
with the CSM job given in NvMCsmEncryptionJobReference.

The CRC calculation (if configured) shall be done over the encrypted data.

v ()

[SWS_NvM_00977] 1 In case Csm_Encrypt() returns a CRYPTO_E_BUSY, the NvM
shall retry to redo the job. After NvMCsmRetryCounter times of retry the NvM shall
abort the write job and set the NvM result to NVM_REQ_NOT_OK and signal an
error via NvM_JobErrorNotification().Q()

[SWS_NvM_00978] 6ln case Csm_Encrypt() returns any other error than
CRYPTO_E_BUSY or CRYPTO_E_OK, the NvM shall abort the write job and set the
NVM result to NVM_REQ_NOT_OK and signal an error via NvM_JobError
Notification().QX)

[SWS_NvM_00979] 1 In case Csm_Encrypt() returns successfully with
CRYPTO_E_OK, the NvM shall continue the write job (e.g. with the CRC calculation)

with the new length given in NvMNvBIockNVRAMDatal ength.
In case of the returned length in resultLengthPtr is different to the
NvMNvBlockNVRAMDatal ength the development error NVM_E_BLOCK _

CHIPHER_LENGTH_MISSMATCH shall be triggerd. v ()

[SWS_NvM _00980] 1 In case NvMBIlockCipheringRef is given, the NvM shall before
forwarding the read request to application decrypt the stored data using
Csm_Decrypt() with the CSM job given in NvMCsmDecryptionJobReference.

The CRC check (if configured) shall be done over the encrypted data.

If the CRC does not match, NvM will not decrypt the data but abort the job with
NVM_REQ_INTEGRITY_FAILED.

v ()

[SWS_NvM _00981] 1 In case Csm_Decrypt() returns a CRYPTO_E_BUSY, the NvM
shall retry to redo the job. After NvMCsmRetryCounter times of retry the NvM shall
abort the read job and set the NvM result to NVM_REQ_NOT_OK and signal an error

via NvM_JobErrorNotification() .)

[SWS_NvM _00982] 1 In case Csm_Decrypt() returns any other error than
CRYPTO_E_BUSY or CRYPTO_E_OK, the NvM shall abort the read job and set the
NVM result to NVM_REQ_NOT_OK and signal an error via NvM_JobError
Notification().Q()

[SWS_NvM _00983] 1 In case Csm_Decrypt() returns successfully with

CRYPTO_E_OK, the NvM shall continue the read job with the new length given in
NvMNvBIlockLength.

64 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

In case of the returned length in resultLengthPtr is different to the
NvMNvBIlockLength the development error NVM_E_BLOCK _

CHIPHER_LENGTH_MISSMATCH shall be triggerd. v ()

7.3 Error Classification
7.3.1 Development Errors

[SWS_NvM_91004]8

Type of error Related error code Sliels
value
. : NVM_E_PARAM _
API is called with wrong parameter block ID BLOCK_ID 0x0A
. . NVM_E_PARAM_
API is called with wrong parameter block data BLOCK_DATA_ IDX 0x0C
. . NVM_E_PARAM_
APl is called with wrong parameter address ADDRESS 0x0D
API is called with wrong parameter data NVM_E_PARAM_ 0x0E
DATA
. . . NVM_E_PARAM_
APl is called with wrong parameter pointer POINTER OxOF
APl is called for a block without defaults when either the NvM_ NVM E BLOCK
RestoreBlockDeafults or NvM_RestorePRAMBIlockDefaults is — —
. . WITHOUT Ox11
called for a valid block ID that has no default data and no NvMinit DEEAULTS
BlockCallback configured for the block
API is called when NVRAM manager is not initialized yet NVM_E_UNINIT 0x14
read/write/control APl is called for a block which is already listed NVM_E_BLOCK _
. 0x15
or in progress PENDING
L NVM_E_BLOCK_
Service is not possible with this block configuration CONFIG 0x18
. . . . NVM_E_BLOCK_
write APl is called for a block which RAM block is locked LOCKED 0x19
write/erasel/invalidate API is called for a block with MVM_WRITE_ | NVM_E_WRITE_
BLOCK_ONCE (TRUE) prior to the first read request for that ONCE_STATUS _ Ox1A
block UNKNOWN
. . - NVM_E_BLOCK_
TR o s ing o ehcplon o decPlon Q0N MEIEh | GupHER LENGTH_ | ox1e
9 g 9 ' MISSMATCH

QSRS _BSW_00385, SRS BSW_00386, SRS_BSW_00406, SRS_BSW_00337,
65 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

SRS_BSW_00327, SRS_BSW_00331) (SRS_BSW_00385, SRS_BSW_00386,
SRS_BSW_00406, SRS_BSW_00337, SRS_BSW_00327)

[SWS_NvM_00961] The development error NVM_E_WRITE_PROTECTED (0x1B)

shall be detectable by the NvM module when a write attempt to a NVRAM block with
write protection (which write protection can be either configured or set by explicit

request) occurs. ()

[SWS_NvM_00027] af development error detection is enabled for NvM module, the
function NvM_SetDatalndex shall report the DET error NVM_E_UNINIT when NVM is
not yet initialized. Q(SRS_BSW_00323, SRS_BSW_00385, SRS_BSW_00386,
SRS_BSW_00406, SRS_BSW_00327, SRS_BSW_00331)

[SWS_NvM_00598] df development error detection is enabled for NvM module, the
function NvM_SetDatalndex shall report the DET error NVM_E_BLOCK_PENDING
when NVRAM block identifier is already queued or currently in progress. Q()

[SWS_NvM_00599] df development error detection is enabled for NvM module, the
function NvM_SetDatalndex shall report the DET error

NVM_E PARAM_BLOCK_DATA IDX when Datalndex parameter exceeds the total
number of configured datasets (Check: [SWS_NvM_00444, [SWS_NvM_00445). ()

[SWS_NvM_00601] df development error detection is enabled for NvM module, the
function NvM_SetDatalndex shall report the DET error NVM_E_PARAM_BLOCK_ID
when the passed BlockID is out of range. QX))

[SWS_NvM_00602] df development error detection is enabled for NvM module, the
function NvM_GetDatalndex shall report the DET error NVM_E_UNINIT when NVM
not yet initialized. O)

[SWS_NvM_00604] df development error detection is enabled for NvM module, the
function NvM_GetDatalndex shall report the DET error NVM_E_PARAM_BLOCK_ID
when the passed BlockID is out of range. QX))

[SWS_NvM_00605] df development error detection is enabled for NvM module, the
function NvM_GetDatalndex shall report the DET error NVM_E_PARAM_DATA
when a NULL pointer is passed via the parameter DatalndexPtr. Q()

[SWS_NvM_00606] df development error detection is enabled for NvM module, the
function NvM_SetBlockProtection shall report the DET error NVM_E_UNINIT when
NVM is not yet initialized. ()

[SWS_NvM_00607] df development error detection is enabled for NvM module, the
function NvM_SetBlockProtection shall report the DET error
NVM_E_BLOCK_PENDING when NVRAM block identifier is already queued or
currently in progress. ()

[SWS_NvM_00608] df development error detection is enabled for NvM module, the
function NvM_SetBlockProtection shall report the DET error

66 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

NVM_E_BLOCK_CONFIG when the NVRAM block is configured with
NvMWriteBlockOnce = TRUE. (X)

[SWS_NvM_00609] df development error detection is enabled for NvM module, the
function NvM_SetBlockProtection shall report the DET error A
NVM_E_PARAM_BLOCK_ID when the passed BlocklID is out of range. (X))

[SWS_NvM_00759] daf development error detection is enabled for NvM module, the
function NvM_SetBlockProtection shall report the DET error
NVM_E_BLOCK_LOCKED when the block is locked. QX))

[SWS_NvM_00610] df development error detection is enabled for NvM module, the
function NvM_GetErrorStatus shall report the DET error NVM_E_UNINIT when NVM
Is not yet initialized. Q()

[SWS_NvM_00611] df development error detection is enabled for NvM module, the
function NvM_GetErrorStatus shall report the DET error A
NVM_E_PARAM_BLOCK_ID when the passed BlocklID is out of range. X))

[SWS_NvM_00612] df development error detection is enabled for NvM module, the
function NvM_GetErrorStatus shall report the DET error NVM_E_PARAM_DATA
when a NULL pointer is passed via the parameter RequestResultPtr. ()

[SWS_NvM_00613] df development error detection is enabled for NvM module, the
function NvM_GetVersioninfo shall report the DET error NVM_E_PARAM_POINTER
when a NULL pointer is passed via the parameter versioninfo. Q)

[SWS_NvM_00614] df development error detection is enabled for NvM module, the
function NvM_ReadBlock shall report the DET error NVM_E_UNINIT when NVM is
not yet initialized. Q()

[SWS_NvM_00615] df development error detection is enabled for NvM module, the
function NvM_ReadBlock shall report the DET error NVM_E_BLOCK_PENDING
when NVRAM block identifier is already queued or currently in progress. X))

[SWS_NvM_00616] df development error detection is enabled for NvM module, the
function NvM_ReadBlock shall report the DET error NVM_E_PARAM_ADDRESS
when no permanent RAM block and no explicit synchronization are configured and a
NULL pointer is passed via the parameter NvM_DstPtr. ()

[SWS_NvM_00618] df development error detection is enabled for NvM module, the
function NvM_ReadBlock shall report the DET error NVM_E_PARAM_BLOCK_ID
when the passed BlockID is out of range. QX))

[SWS_NvM_00823] df development error detection is enabled for NvM module, the
function NvM_ReadPRAMBIock shall report the DET error NVM_E_UNINIT when
NVM is not yet initialized. QX))

[SWS_NvM_00824] daf development error detection is enabled for NvM module, the
function NvM_ReadPRAMBIock shall report the DET error
67 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

NVM_E_BLOCK_PENDING when NVRAM block identifier is already queued or
currently in progress. Q()

[SWS_NvM_00825] df development error detection is enabled for NvM module, the
function NvM_ReadPRAMBIock shall report the DET error
NVM_E_PARAM_ADDRESS when no permanent RAM block and no explicit
synchronization are configured, for the received block ID.)(SRS_Mem_00016,
SRS_Mem_00038)

[SWS_NvM_00826] df development error detection is enabled for NvM module, the
function NvM_ReadPRAMBIock shall report the DET error)
NVM_E_PARAM_BLOCK_ID when the passed BlockID is out of range. (X))

[SWS_NvM_00619] df development error detection is enabled for NvM module, the
function NvM_WriteBIock shall report the DET error NVM_E_UNINIT when NVM not
yet initialized. QX))

[SWS_NvM_00620] df development error detection is enabled for NvM module, the
function NvM_WriteBlock shall report the DET error NVM_E_BLOCK_PENDING
when NVRAM block identifier is already queued or currently in progress. QX))

[SWS_NvM_00622] df development error detection is enabled for NvM module, the
function NvM_WriteBlock shall report the DET error NVM_E_PARAM_ADDRESS
when no permanent RAM block and no explicit synchronization are configured and a
NULL pointer is passed via the parameter NvM_SrcPtr. O(SRS_Mem_00017,
SRS_Mem_08541)

[SWS_NvM_00624] df development error detection is enabled for NvM module, the
function NvM_WriteBlock shall report the DET error NVM_E_PARAM_BLOCK_ID
when the passed BlockID is out of range. X))

[SWS_NvM_00748] df development error detection is enabled for NvM module, the
function NvM_WriteBlock shall report the DET error NVM_E_BLOCK_LOCKED when
the block is locked. QSRS _Mem_ 08541, SRS Mem_ 00127, SRS _Mem_00038)

[SWS_NvM_00827] df development error detection is enabled for NvM module, the
function NvM_WritePRAMBIock shall report the DET error NVM_E_UNINIT when
NVM not yet initialized. QX)

[SWS_NvM_00828] df development error detection is enabled for NvM module, the
function NvM_WritePRAMBIock shall report the DET error
NVM_E_BLOCK_PENDING when NVRAM block identifier is already queued or
currently in progress. Q()

[SWS_NvM_00893] df development error detection is enabled for NvM module, the
function NvM_WritePRAMBIock shall report the DET error
NVM_E_PARAM_ADDRESS when no permanent RAM block and no explicit
synchronization are configured. Q(SRS_Mem_00018, SRS_Mem_08548)

68 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00829] df development error detection is enabled for NvM module, the
function NvM_WritePRAMBIock shall report the DET error A
NVM_E_PARAM_BLOCK ID when the passed BlockID is out of range. ()

[SWS_NvM_00830] df development error detection is enabled for NvM module, the
function NvM_WritePRAMBIock shall report the DET error
NVM_E_BLOCK_LOCKED when the block is locked. X))

[SWS_NvM_00625] df development error detection is enabled for NvM module, the
function NvM_RestoreBlockDefaults shall report the DET error NVM_E_UNINIT
when NVM is not yet initialized. X))

[SWS_NvM_00626] df development error detection is enabled for NvM module, the
function NvM_RestoreBlockDefaults shall report the DET error
NVM_E_BLOCK_PENDING when NVRAM block identifier is already queued or
currently in progress. Q()

[SWS_NvM_00894] df development error detection is enabled for NvM module, the
function NvM_RestorePRAMBIlockDefaults shall report the DET error
NVM_E_PARAM_ADDRESS when no permanent RAM block and no explicit
synchronization are configured. Q(SRS_Mem_00018, SRS_Mem_08548)

[SWS_NvM_00629] df development error detection is enabled for NvM module, the
function NvM_RestoreBlockDefaults shall report the DET error
NVM_E_PARAM_ADDRESS when no permanent RAM block and no explicit
synchronization are configured and a NULL pointer is passed via the parameter
NvM_DstPtr. (SRS_Mem_00016, SRS_Mem_08548)

[SWS_NvM_00630] df development error detection is enabled for NvM module, the
function NvM_RestoreBlockDefaults shall report the DET error A
NVM_E_PARAM_BLOCK_ID when the passed BlocklID is out of range. ()

[SWS_NvM_00831] df development error detection is enabled for NvM module, the
function NvM_RestorePRAMBIockDefaults shall report the DET error
NVM_E_UNINIT when NVM is not yet initialized. QX)

[SWS_NvM_00832] df development error detection is enabled for NvM module, the
function NvM__RestorePRAMBIockDefaults shall report the DET error
NVM_E_BLOCK_PENDING when NVRAM block identifier is already queued or
currently in progress. ()

[SWS_NvM_00834] df development error detection is enabled for NvM module, the
function NvM_RestorePRAMBIockDefaults shall report the DET error
NVM_E_PARAM_BLOCK_ID when the passed BlocklID is out of range. ()

[SWS_NvM_00631] df development error detection is enabled for NvM module, the

function NvM_EraseNvBIogk shall report the DET error NVM_E_UNINIT when the
NVM is not yet initialized. QX))

69 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00632] df development error detection is enabled for NvM module, the
function NvM_EraseNvBlock shall report the DET error NVM_E_BLOCK_PENDING
when the NVRAM block identifier is already queued or currently in progress. X)

[SWS_NvM_00635] df development error detection is enabled for NvM module, the
function NvM_EraseNvBlock shall report the DET error NVM_E_PARAM_BLOCK_ID
when the passed BlockID is out of range. QX))

[SWS_NvM_00636] df development error detection is enabled for NvM module, the
function NvM_EraseNvBlock shall report the DET error NVM_E_BLOCK_CONFIG
when the NVRAM block has not immediate priority. QX)

[SWS_NvM_00757] daf development error detection is enabled for NvM module, the
function NvM_EraseNvBlock shall report the DET error NVM_E_BLOCK_LOCKED
when the block is locked. Q)

[SWS_NvM_00637] df development error detection is enabled for NvM module, the
function NvM_CancelWriteAll shall report the DET error NVM_E_UNINIT when NVM
Is not yet initialized. Q()

[SWS_NvM_00638] df development error detection is enabled for NvM module, the
function NvM_lInvalidateNvBlock shall report the DET error NVM_E_UNINIT when
NVM is not yet initialized. X))

[SWS_NvM_00639] df development error detection is enabled for NvM module, the
function NvM_InvalidateNvBlock shall report the DET error

NVM_E_BLOCK_ PENDING when NVRAM block identifier is already queued or
currently in progress. Q()

[SWS_NvM_00642] df development error detection is enabled for NvM module, the
function NvM_InvalidateNvBlock shall report the DET error A
NVM_E_PARAM_BLOCK_ID when the passed BlocklID is out of range. X))

[SWS_NvM_00756] df development error detection is enabled for NvM module, the
function NvM_lInvalidateNvBlock shall report the DET error
NVM_E_BLOCK_LOCKED when the block is locked.QX)

[SWS_NvM_00643] df development error detection is enabled for NvM module, the
function NvM_SetRamBlockStatus shall report the DET error NVM_E_UNINIT when
NVM not yet initialized. QX)

[SWS_NvM_00644] df development error detection is enabled for NvM module, the
function NvM_SetRamBlockStatus shall report the DET error

NVM_E_BLOCK_ PENDING when NVRAM block identifier is already queued or
currently in progress. ()

[SWS_NvM_00645] df development error detection is enabled for NvM module, the
function NvM__SetRamBlockStatus shall report the DET error A
NVM_E_PARAM_BLOCK_ID when the passed BlocklID is out of range. (X))

70 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00758] df development error detection is enabled for NvM module, the
function NvM_SetRamBlockStatus shall report the DET error
NVM_E_ BLOCK_LOCKED when the block is locked.(X)

[SWS_NvM_00646] df development error detection is enabled for NvM module, the
function NvM_ReadAll shall report the DET error NVM_E_UNINIT when NVM is not
yet initialized. Q()

[SWS_NvM_00647] df development error detection is enabled for NvM module, the
function NvM_WriteAll shall report the DET error NVM_E_UNINIT when NVM is not
yet initialized. QX))

[SWS_NvM_00648] df development error detection is enabled for NvM module, the
function NvM_CancelJobs shall report the DET error NVM_E_UNINIT when NVM is
not yet initialized. Q()

[SWS_NvM_00649] df development error detection is enabled for NvM module, the
function NvM_CancelJobs shall report the DET error NVM_E_PARAM_BLOCK_ID
when the passed BlockID is out of range. Q)

[SWS_NvM_00728] daf development error detection is enabled for NvM module, the
function NvM_SetBlockLockStatus shall report the DET error NVM_E_UNINIT when
NVM is not yet initialized. X))

[SWS_NvM_00729] daf development error detection is enabled for NvM module, the
function NvM_SetBlockLockStatus shall report the DET error

NVM_E_BLOCK_ PENDING when NVRAM block identifier is already queued or
currently in progress. Q()

[SWS_NvM_00730] df development error detection is enabled for NvM module, the
function NvM_SetBlockLockStatus shall report the DET error
NVM_E_BLOCK_CONFIG when the NVRAM block is configured with

NvMW riteBlockOnce = TRUE. (X)

[SWS_NvM_00731] df development error detection is enabled for NvM module, the
function NvM_SetBlockLockStatus shall report the DET error A
NVM_E_PARAM_BLOCK ID when the passed BlocklID is out of range. Q()

[SWS_NvM_00863] df development error detection is enabled for NvM module, the
function NvM_ValidateAll shall report the DET error NVM_E_UNINIT when NVM is
not yet initialized. QQSRS_Mem_00137)

[SWS_NvM_00954] 6If development error detection is enabled for NvM module, the
function NvM_WriteBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made for a
block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this. Q)

[SWS_NvM_00955] 6If development error detection is enabled for NvM module, the
function NvM_WritePRAMBIock shall report the DET error
71 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made for a
block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this. X)

[SWS_NvM_00956] o61f development error detection is enabled for NvM module, the
job of the function NvM_WriteAll shall report the DET error
NVM_E_WRITE_ONCE_STATUS UNKNOWN when the processing of a block
configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read request was
made prior to this.)

[SWS_NvM_00957] 6If development error detection is enabled for NvM module, the
job of the function NvM_EraseNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made for a
block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this. Q)

[SWS_NvM_00958] 6If development error detection is enabled for NvM module, the
job of the function NvM_ InvalidateNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made for a
block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this. {X)

[SWS_NvM _00962] If development error detection is enabled for NvM module, the
function NvM_WriteBlock shall report the DET error NVM_E_WRITE_PROTECTED
when the block is write protected. ()

[SWS_NvM _00963] If development error detection is enabled for NvM module, the
function NvM_WritePRAMBIlock shall report the DET error
NVM_E_WRITE_PROTECTED when the block is write protected. ()

[SWS_NvM_00964] If development error detection is enabled for NvM module, the
function NvM_EraseNvBIlock shall report the DET error
NVM_E_WRITE_PROTECTED when the block is write protected. ()

[SWS_NvM_00965] If development error detection is enabled for NvM module, the

function NvM_InvalidateNvBlock shall report the DET error
NVM_E_WRITE_PROTECTED when the block is write protected. ()

72 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

7.3.2 Runtime Errors

[SWS_NvM_00947]8

Related error Error

Type of error code value

NvM queue is full so the request cannot be queued, be the request | NVM_E_QUEUE _

either standard or immediate. FULL OxAQ

@

[SWS_NvM_00948] 6 The run-time error NVM_E_QUEUE_FULL shall be reported to
Det, by the NvM module, each time a request cannot be queued because the related
queue is full.)(SRS_Mem_00038)

7.3.3 Transient faults

There are no transient faults.

7.3.4 Production Errors

7.3.4.1 NVM_E_HARDWARE

SWS NvM 00835]8

Error Name: INVM_E_HARDWARE
Short Description: IReading from or writing to non volatile memory failed
Long Description: If read job (multi job or single job read) fails either because the Memif

reports MEMIF_JOB_FAILED, MEMIF_BLOCK_INCONSISTENT or a
CRC mismatch occurs or if a write/invalidate/erase job fails because the
Memif reports MEMIF_JOB_FAILED, NvM shall report

NVM _E HARDWARE to the DEM.

Fail Memlf reports MEMIF_JOB_FAILED,
MEMIF_BLOCK_INCONSISTENT or a CRC mismatch
occurs during read / write / invalidate / erase operation.

Detection Criteria: Pass Read / write / invalidate / erase is successfull.

(Memlf does not report MEMIF_JOB_FAILED ,
MEMIF_BLOCK_INCONSISTENT and no CRC mismatch
occurs)

The condition under which the FAIL and/or PASS detection is active:

Secondary Parameters: |[Every time a read / write / invalidate / erase is requested for the block

NvM shall report if the condition of the block changed.

Time Required: Not applicabale. (there is no timeout monitoring in the NvM)
Monitor Frequency continous

73 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

7.3.5 Extended Production Errors

Type or error Related error code Value
[hex]

The processing of the read service detects an NVM E INTEGRITY FAILED Assigned
inconsistency - = - by DEM
. . : Assigned
The processing of the service fails NVM_E REQ _FAILED by DEM
The Static Block ID check during read failed NVM_E_WRONG_BLOCK_ID ’Esysggﬁﬂd
The write verification failed NVM_E_VERIFY_FAILED Assigned
- - by DEM
There is a loss of redundancy for a block of Assigned
redundant type NVM_E_LOSS_OF REDUNDANCY by DEM

[SWS_NvM_00591] drhe extended production error NVM_E_INTEGRITY_FAILED
(value assigned by DEM, see container NvmDemEventParameterRefs) shall be
detectable by the NvM module when API request integrity failed, depending on
whether the build version mode is in production mode. ()

[SWS_NvM_00592] 6The extended production error NVM_E_REQ_FAILED (value
assigned by DEM, see container NvmDemEventParameterRefs) shall be detectable
by the NvM module when API request failed, depending on whether the build version
mode is in production mode. ()

[SWS_NvM_00593] 6rhe extended production error NVM_E_WRONG_BLOCK_ID
(value assigned by DEM, see container NvmDemEventParameterRefs) shall be
detectable by the NvM module when Static Block ID check failed, depending on
whether the build version mode is in production mode. (SRS _Mem_08555)

[SWS_NvM_00594] érhe extended production error NVM_E_VERIFY_FAILED
(value assigned by DEM, see container NvmDemEventParameterRefs) shall be
detectable by the NvM module when write Verification failed, depending on whether
the build version mode is in production mode. (X)

[SWS_NvM_00595] érhe extended production error

NVM_E LOSS OF_ REDUNDANCY (value assigned by DEM, see container
NvmDemEventParameterRefs) shall be detectable by the NvM module when loss of
redundancy, depending on whether the build version mode is in production mode. QX

)

[SWS_NvM_00871] d&ach time a request is made to the NvM, the job of that
request, if encountering an error situation, shall report the corresponding production
error.Q)

7.3.5.1 NVM_E_INTEGRITY_FAILED

74 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

Specification of NVRAM Manager

AUTOSAR CP R20-11

Error Name:

INVM_E INTEGRITY FAILED

Short Description:

IProcessin of the read service detects an inconsistency.

Long Description:

If the read for a block detects that the data and/or CRC are corrupted
based on the CRC check performed after the read was finished
successfully (JobEndNotification from underlyinh memory module). This
only applies for blocks configured with CRC.

Detection Criteria:

IFail See SWS_NvM_00864

Pass See SWS NvM 00872

Secondary Parameters:

The condition under which the FAIL or PASS detection is active:

CRC checking is performed each time a block with CRC is read
successfully by the underlying memory module and it will indicate failure
or pass.

Time Required:

Not applicable. There is no timeout monitoring or constraint for NvM.

Monitor Frequency

continous

[SWS_NvM_00864] d-ail condition: NVM_E_INTEGRITY_FAILED is reported by the
NvM module if the processing of a read request will detect, via the CRC checking,
corruption of the data and/or CRC of the block that was subject to the read

operation.Q)

[SWS_NvM_00872] dPass condition: when requirement SWS_NvM_00864 doesAnot
apply, meaning the data of the block is not corrupted in terms of CRC checking. @)

7.3.5.2 NVM_E_REQ_FAILED

Error Name:

INVM_E_REQ FAILED

Short Description:

Processin of the read service failed at a lower layer in the MemStack
architecture, including all retries.

Long Description:

If the underlying layer reports JobErrorNotification, indicating that the
request failed, either after it was accepted by the underlying memory
module or because the module refused the request. This is done after all
retries also failed.

Detection Criteria:

IFail See SWS NvM 00865
Pass See; SWS NvM 00873

Secondary Parameters:

The condition under which the FAIL or PASS detection is active:
check is performed to see if the job was accepted or not and, if accepted,
to see if it finished successfully or not.

Time Required:

Not applicable. There is no timeout monitoring or constraint for NvM.

Monitor Frequency

continous

[SWS_NvM_00865] d-ail condition: NVM_E_REQ_FAILED is reported by the NvM
module if a user request is either rejected and the number of configured retries

expired or if it was accepted and then failed, while being processed by the underlying
memory stack module.Q)

[SWS_NvM_00873] dPass condition: when requirement SWS_NvM_00865 does not
apply, meaning that the user request was accepted by the undelying layer, either
from the first attempt or from one of the retries, and that it finished successfully, from
the point of view of the underlying layer (request result is MEMIF_JOB_OK). Q)

75 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

7.3.5.3 NVM_E_WRONG_BLOCK_ID

Error Name: NVM_E WRONG BLOCK ID
Short Description: Static block ID check, during read, indicates failure.
Long Description: If the read was successfully finished by the underlying memory module

but the Static ID check failed (meaning the block ID that was read is not
the same as the block ID for which the read was requested).

Fail See SWS _NvM_00866

Pass See SWS NvM_00874

The condition under which the FAIL or PASS detection is active:

check is performed each time the reading of a block is finished
successfully by the underlying memory module, if the block is configured
to have the Static ID checking performed for it.

Time Required: Not applicable. There is no timeout monitoring or constraint for NvM.

Monitor Frequency continous

Detection Criteria:

Secondary Parameters:

[SWS_NvM_00866] d-ail condition: NVM_E_WRONG_BLOCK _ID is reported by the
NvM module if, after the block data is successfully read from the non-volatile
memory, the Static ID that was retrieved is not the same as the current one, for the
block the read was requested for.Q)

[SWS_NvM_00874] dPass condition: when requirement SWS_NvM_00866 does not

apply, meaning that the block ID that was read from the non-volatile memory is the
same as the block ID for which the read was requested.()

7.3.5.4 NVM_E_VERIFY_FAILED

Error Name: NVM E VERIFY FAILED

Short Description: The write verification failed.

Long Description: If, after a successfully finished write, the verification for the written data
fails.
IFail See SWS NvM 00867

Detection Criteria: Pass See SWS NvM 00875

The condition under which the FAIL or PASS detection is active:
Secondary Parameters: |a check is performed each time a block that is configured to have write
verification performed on it, has a write operation successfully finished.

Time Required: Not applicable. There is no timeout monitoring or constraint for NvM.
Monitor Frequency continous

[SWS_NvM_00867] ail condition: NVM_E_VERIFY_FAILED is reported by the
NvM module if, after a successful write, thg: write verification indicates failure and the
configured number of retries has expired.()

[SWS_NvM_00875] dPass condition: when requirement SWS_NvM_00867 does not
apply, meaning that the write verification indicates success, the latest for the last
retry attempt.@)

7.3.5.5 NVM_E_LOSS_OF REDUNDANCY

[Error Name: INVM_E LOSS OF REDUNDANCY

76 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

Short Description: A redundant block has lost the redundancy.

Long Description: A redundant block has the same contents written in two different block
instances 1 hence the redundancy. If the contents are different, if the first
instance becomes corrupted or if the first instance cannot be read then
NvM will report this fault.

. L Fail
Detection Criteria:

See SWS_NvM_00868

Pass

See SWS_NvM 00876

The condition under which the FAIL or PASS detection is active:
Secondary Parameters: |checks are performed whenever a reading is requested for a redundant

block.
Time Required: Not applicable. There is no timeout monitoring or constraint for NvM.
Monitor Frequency continous

[SWS_NvM_00868] d-ail condition: NVM_E_LOSS OF REDUNDANCY is reported
by the NvM module if the reading performed over a REDUNDANT block indicates the

block has lost its redundancy.CQ)

Note: The loss of redundancy is detected if the reading of the first instance of the block fails
and the reading of the second instance of the block is finished successfully.

[SWS_NvM_00876] dPass condition: when requirement SWS_NvM_00868 does not
apply, meaning that the NvM did not detect the loss of redundancy for a

REDUNDANT block.Q)

77 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

8 APl specification

8.1 API

8.1.1 Imported types

In this chapter all types included from the following modules are listed:
[SWS_NvM_00446]6

Module Header File Imported Type
Rte_Dem_Type.h Dem_EventldType
Dem
Rte_Dem_Type.h Dem_EventStatusType
Memlf.h Memlf_JobResultType
Memif Memlf.h Memlf_ModeType
Memlf.h Memlf_StatusType
Std_Types.h Std_ReturnType
Std
Std_Types.h Std_VersioninfoType
Q@

8.1.2 Type definitions

8.1.2.1 NvM_ConfigType

[SWS_NvM_00880]8

Name NvM_ConfigType

Kind Structure

implementation specific

Elements Type --
Comment -

Description Configuration data structure of the NvM module.

Available via NvM.h

Q)

Since this type is used for compliance purposes only (meaning that NvM _Init will now
have a pointer to this type as parameter, based on SWS_BSW_00047) it will be left
to the developer to chose how to implement it, considering it has no use for the NvM
module in any way.

78 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

8.1.2.2 NvM_MultiBlockRequestType

Specification of NVRAM Manager
AUTOSAR CP R20-11

[SWS NvM 91003]6

Name NvM_MultiBlockRequestType

Kind Enumeration
NVM_READ_ALL 0x00 NvM_ReadAll was performed
NVM_WRITE_ALL 0x01 NvM_WriteAll was performed

Range NVM_VALIDATE_ALL 0x02 NvM_ValidateAll was performed
NVM_FIRST_INIT_ALL 0x03 NvM_FirstinitAll was performed
NVM_CANCEL_WRITE_ALL 0x04 NvM_ CancelWriteAll was performed

I Identifies the type of request performed on multi block when signaled via the callback

Description . -
function or when reporting to BswM

A_vallable NVM.h

via

Q@

8.1.3 Function definitions
8.1.3.1 Synchronous requests
8.1.3.1.1 NvM_lInit

[SWS_NvM_00447]8

Service Name NvM_ Init
void NvM_Init (

Syntax const NvM_ConfigType* ConfigPtr
)

Service ID [hex] 0x00

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) ConfigPtr Pointer to the selected configuration set.

Parameters (inout) None

Parameters (out) None

Return value None

Description

Service for resetting all internal variables.

Available via NvM.h

79 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

@SRS_BSW _00414, SWS_BSW_00047)
[SWS_NvM _00881] The Configuration pointer ConfigPtr shall always have a

NULL_PTR value. ()

The Configuration pointer ConfigPtr is currently not used and shall therefore be set to
a NULL_PTR value when calling the NvM__Init API.

[SWS_NvM_00399] r The function NvM_Init shall reset all internal variables, e.g. the
queues, request flags, state machines, to their initial values. It shall sign a | Al NI T

DONEO internally, e.g. to enable vy ob process
(SRS_BSW_00101, SRS_BSW_00406)

[SWS_NvM_00400] r The function NvM_Init shall not modify the permanent RAM
block contents or call explicit synchronization callback, as this shall be done on

NvM_ReadAll . ¢SRS_BSW_00101, SRS_BSW_00406)

[SWS_NvM _00192] r The function NvM_Init shall set the dataset index of all NVRAM
blocks of type NVM_BLOCK_DATASET to zero. \ ()

[SWS_NvM_00193] y The function NvM_Init shall not initialize other modules (it is
assumed that the underlying layers are already initialized). v ()

The function NvM_Init is affected by the common [SWS_NvM_00028] and published
configuration parameter.

Hint: The time consuming NVRAM block initialization and setup according to the
block descriptor [ECUC_NvM_00061] shall be done by the NvM_ReadAll request.

8.1.3.1.2 NvM_SetDatalndex

[SWS_NvM_00448]6

Service Name | NvM_SetDatalndex

Std_ReturnType NvM_SetDatalndex (
NvM_BlockldType Blockld,

Syntax uint8 Datalndex
)

Service ID

thex] 0x01

Sync/Async Synchronous

Reentrancy Reentrant
Parameters Blockld The block identifier uniquely identifies one NVRAM block descriptor. A
(in) NVRAM block descriptor contains all needed information about a

80 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

single NVRAM block.
Datalndex | Index position (association) of a NV/ROM block.
Parameters
. None
(inout)
Parameters None
(out)
Std_-) . .
Return value Returmn- E_OK: The index position was set successfully.
E_NOT_OK: An error occurred.
Type - -
Description Service for setting the Datalndex of a dataset NVRAM block.
Available via NvM.h

Q@SRS_Mem_08007)
[SWS_NvM_00014] r The function NvM_SetDatalndex shall set the index to access
a certain dataset of a NVRAM block (with/without ROM blocks). v ()

[SWS_NvM _00263] r The function NvM_SetDatalndex shall leave the content of the
corresponding RAM block unmodified. v ()

[SWS_NvM_00264] y For blocks with block management different from
NVM_BLOCK_DATASET, NvM_SetDatalndex shall return without any effect in
production mode. Further, E_NOT_OK shall be returned. v ()

[SWS _NvM 00707]fThe NvM modul eds environment
module before it calls the function NvM_SetDatalndex. \ ()

81 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

s hal

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

8.1.3.1.3 NvM_GetDatalndex

[SWS_NvM_00449]8

Service Name | NvM_GetDatalndex

Std_ReturnType NvM_GetDatalndex (
NvM_BlockldType Blockld,

Syntax uint8* DatalndexPtr
)

Service ID

thex] 0x02

Sync/Async Synchronous

Reentrancy Reentrant

Parameters The block identifier uniquely identifies one NVRAM block descriptor. A

(in) Blockld NVRAM block descriptor contains all needed information about a
single NVRAM block.

Parameters

. None

(inout)

Parameters Datalndex Pointer to where to store the current dataset index (0..255)

(out) Ptr

Return value g‘;'ta'm_ E_OK: The index position has been retrieved successfully.
E_NOT_OK: An error occurred.

Type
Description Service for getting the currently set Datalndex of a dataset NVRAM block

Available via NvM.h

@
[SWS_NvM_00021] y The function NvM_GetDatalndex shall get the current index
(association) of a dataset NVRAM block (with/without ROM blocks). v ()

[SWS_NvM_00265] y For blocks with block management different from
NVM_BLOCK_DATASET, NvM_GetDatalndex shall set the index pointed by
DatalndexPtr to zero. Further, E_NOT_OK shall be returned. v ()

[SWS NvM 00708]fThe NvM modul eds environment
module before it calls the function NvM_GetDatalndex.\y ()

82 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

s hal

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

8.1.3.1.4 NvM_SetBlockProtection

[SWS_NvM 00450]6

Service Name | NvM_SetBlockProtection

Std_ReturnType NvM_SetBlockProtection (
NvM_BlockldType Blockld,

Syntax boolean ProtectionEnabled
)

Service ID

[hex] 0x03

Sync/Async Synchronous

Reentrancy Reentrant
The block identifier uniquely identifies one NVRAM block descriptor.
Blockld A NVRAM block descriptor contains all needed information about a
Parameters single NVRAM block.
(in)
Protection TRUE: Write protection shall be enabled FALSE: Write protection
Enabled shall be disabled
Parameters None
(inout)
Parameters
None

(out)

Std_Return- | E_OK: The block was enabled/disabled as requested

R VElE Type E_NOT_OK: An error occured.

Description Service for setting/resetting the write protection for a NV block.

Available via NvM.h

QSRS _Mem_00127)

[SWS_NvM_00016] r The function NvM_SetBlockProtection shall set/reset the write
protection for the corresponding NV block by setting the write protection attribute in

the administrative part of the corresponding NVRAM block. y (SRS_Mem_00127)

[SWS_NvM_00709]fThe NvM modul eds environment
module before it calls the function NvM_SetBlockProtection.y ()

83 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

s hal

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

8.1.3.1.5 NvM_GetErrorStatus

[SWS_NvM_00451]8

Service Name | NvM_GetErrorStatus

Std_ReturnType NvM_GetErrorStatus (
NvM_BlockldType Blockld,

Syntax NvM_RequestResultType* RequestResultPtr
)

Service ID

[hex] 0x04

Sync/Async Synchronous

Reentrancy Reentrant

Parameters The block identifier uniquely identifies one NVRAM block descriptor.

(in) Blockid A NVRAM block descriptor contains all needed information about a
single NVRAM block.

Parameters

. None

(inout)

Parameters Request Pointer to where to store the request result. See NvM_RequestResult

(out) ResultPtr Type .

E_OK: The block dependent error/status information was read

Return value gtedta-rnT e successfully.
yp E_NOT_OK: An error occured.
Description Service to read the block dependent error/status information.

Available via NvM.h

@SRS_Mem_00020)

[SWS_NvM_00015] y The function NvM_GetErrorStatus shall read the block
dependent error/status information in the administrative part of a NVRAM block.
The status/error information of a NVRAM block shall be set by a former or current

asynchronous request. y (SRS_Mem_00020)

[SWS NvM 00710y The NvM modul eds environment shal/l
module before it calls the function NvM_GetErrorStatus. v ()

84 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

8.1.3.1.6 NvM_GetVersioniInfo

[SWS_NvM_00452]8

Specification of NVRAM Manager
AUTOSAR CP R20-11

Service Name NvM_GetVersionInfo

void NvM_GetVersioninfo (

Syntax Std_VersioninfoType* versioninfo
)

Service ID [hex] 0xO0f

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) | None

Parameters (out) versioninfo

Pointer to where to store the version information of this module.

Return value None
Description Service to get the version information of the NvM module.
Available via NvM.h

8.1.3.1.7 NvM_SetRamBlockStatus

[SWS_NvM_00453]8

SERIED NvM_SetRamBlockStatus
Name -
Std_ReturnType NvM_SetRamBlockStatus (
Svntax NvM_BlockldType Blockld,
y boolean BlockChanged
)
Service ID
[hex] 0x05

Sync/Async Synchronous

Reentrancy Reentrant

The block identifier uniquely identifies one NVRAM block descriptor. A
Blockld NVRAM block descriptor contains all needed information about a
single NVRAM block.
Parameters
(in) TRUE: Validate the permanent RAM block or the explicit
Block synchronization and mark block as changed. FALSE: Invalidate the
Changed permanent RAM block or the explicit synchronization and mark block
as unchanged.
Parameters None
(inout)
85 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

Parameters None
(out)
Std_- E_OK: The status of the permanent RAM block or the explicit
Return value | Return- synchronization was changed as requested.
Type E_NOT_OK: An error occurred.
Description Service for setting the RAM block status of a permanent RAM block or the status of
P the explicit synchronization of a NVRAM block.
Available via | NvM.h

QSRS _Mem_08545)

[SWS_NvM _00240] r The function NvM_SetRamBlockStatus shall only work on
NVRAM blocks with a permanently configured RAM block or on NVRAM blocks
configured to support explicit synchronization, that have
NvMBlockUseSetRamBlockStatus enabled and shall have no effect to other NVRAM

blocks. v (SRS_Mem_08546)

[SWS_NvM_00241] y The function NvM_SetRamBlockStatus shall assume that a
changed permanent RAM block or the content of the RAM mirror in the NvM module

(in case of explicit synchronization) is valid (basic assumption).y (SRS_Mem_08545)

[SWS NvM 004051 fWhen t he fABl ockChangedo parameter
NvM_SetRamBlockStatus is FALSE the corresponding RAM block is either invalid or

unchanged (or both). y (SRS_Mem_08545)

[SWS_NvM 00406y When the ABl ockChangedo pcdonamet er
NvM_SetRamBlockStatus is TRUE, the corresponding permanent RAM block or
the content of the RAM mirror in the NvM module (in case of explicit

synchronization) is valid and changed.y ()

[SWS_NvM _00121] y For blocks with a permanently configured RAM, the function
NvM_SetRamBlockStatus shall request the recalculation of CRC in the background,

i.e. the CRC recalculation shall be processed by the NvM_MainFunction, if the given

ABl ockChangedo parameter is TRUE and .CRC cal

NvMCalcRamBlockCrc == TRUE). v ()

Note:

If a block processed by the job of the function NvM_SetRamBlockStatus has explicit
synchronization configured for it then the block owner must provide the related RAM
data for the comparison. The call made by NvM to the explicit synchronization 'write'
callback must be successful.

Hint:

In some cases, a permanent RAM block cannot be validated neither by a reload of its
NV data, nor by a load of its ROM data during the execution of a NvM_ReadAll
command (startup). The application is responsible to fill in proper data to the RAM

86 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

block and to validate the block via the function NvM_SetRamBlockStatus before

this RAM block can be written to its corresponding NV block by NvM_WriteAll

It is expected that the function NvM_SetRamBlockStatus will be called frequently

for NVRAM blocks which are configured to be protected in RAM via CRC. Otherwise

this function only needs to be called once t
processed during NvM_ WriteAll

[SWS_NvM_00906] y If the function NvM_SetRamBlockStatus is called for a block
that does not have permanent RAM but it does have explicit synchronization and the
"BlockChanged" parameter is TRUE then the job of the function
NvM_SetRamBlockStatus shall use the explicit synchronization callback for data
storage (write) in order to obtain the data over which to calculate the CRC for the

block. y (SRS_Mem_08550, SRS _Mem_08545, SRS Mem_00136)

[SWS_NvM_00907] y If the explicit synchronization callback that is called by the job
of the function NvM_SetRamBlockStatus returns E_NOT_OK then NvM shall retry to
call the callback for the number of retries that are configured for the explicit

synchronization. y (SRS_Mem_08554)

[SWS_NvM_00908] i If the explicit synchronization callback that is called by the job
of the function NvM_SetRamBlockStatus returns E_NOT_OK then NvM shall perform

the configured retries, one per NvM_MainFunction call. y (SRS_Mem_08554)

[SWS_NvM_00909] r If the explicit synchronization callback that is called by the job
of the function NvM_SetRamBlockStatus returns E_NOT_OK for the initial call and
for all retry attempts then NvM will consider the job completed, keep the block

marked as "BlockChanged" and continue as though it finished successfully. v
(SRS_Mem_08550, SRS_Mem_08545, SRS_Mem_00136)

[SWS_NvM _00910] r The function NvM_SetRamBlockStatus shall not change the
request result for the block ID received as parameter. y (SRS_Mem_00038)

[SWS_NvM_00911] r A queued background CRC calculation done by the function
NvM_SetRamBlockStatus shall not change the request result for the received block

ID. y (SRS_Mem_00038)

[SWS_NvM_00711]yThe NvM modul edés environment shall h a
module before it calls the function NvM_SetRamBlockStatus. v ()

[SWS_NvM _00408] y The NvM module shall provide the function
NvM_SetRamBlockStatus only if it is configured via

NvMSetRamBlockStatusApi [SWS_NvM_00028]. v ()

87 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

8.1.3.1.8 NvM_SetBlockLockStatus

[SWS_NvM 00548]6

Service Name | NvM_SetBlockLockStatus
void NvM_ SetBlockLockStatus (
Svntax NvM_BlockldType Blockld,
y boolean BlockLocked
)
Service ID
[hex] 0x13
Sync/Async Synchronous
Reentrancy Reentrant
The block identifier uniquely identifies one NVRAM block descriptor. A
Blockid NVRAM block descriptor contains all needed information about a single
Parameters NVRAM block.
(in)
Block TRUE: Mark the RAM.block as locked FALSE: Mark the RAM.block as
Locked unlocked
Parameters None
(inout)
Parameters None
(out)
Return value None
Describtion Service for setting the lock status of a permanent RAM block or of the explicit
P synchronization of a NVRAM block.
Available via NvM.h

Q@SRS_Mem_08546)

[SWS_NvM_00732] y The function NvM_SetBlockLockStatus shall only work on
NVRAM blocks with a permanently configured RAM block or on NVRAM blocks
configured to support explicit synchronization and shall have no effect to other
NVRAM blocks.

Hint: This function is to be used mainly by DCM, but it can also be used by complex

device drivers. The function is not included in the ServicePort interface. y ()

88 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

8.1.3.1.9 NvM_CancelJobs

[SWS_NvM 00535]6

Service Name | NvM_CancelJobs

Std_ReturnType NvM_CancelJobs (

Syntax NvM_BlockldType Blockld
)
Service ID
[hex] 0x10
Sync/Async Synchronous
Reentrancy Reentrant
B .- The block identifier uniquely identifies one NVRAM block descriptor. A
(in) Blocklid NVRAM block descriptor contains all needed information about a
single NVRAM block.
Parameters
. None
(inout)
Parameters None
(out)
Return value gtedtﬁ-rn- E_OK: The job was successfully removed from queue.
Type E_NOT_OK: The job could not be found in the queue.
Description Service to cancel all jobs pending for a NV block.

Available via NvM.h

@SRS_Mem_08560)

[SWS_NvM_00536] drhe function NvM_CancelJobs shall cancel all jobs pending in
the queue for the specified NV Block. If requested the result type for the canceled
blocks is NVM_REQ_CANCELED. Q(SRS_Mem_08560)

[SWS_NvM_00537] rA currently processed job shall continue even after the call of
NvM_CancelJobs. vy ()

[SWS_NvM _00225] r The job of the function NvM_CancelJobs shall set block
specific request result for specified NVRAM block to NVM_REQ_CANCELED in
advance if the request is accepted.

Hint: The intent is just to empty the queue during the cleanup phase in case of

termination or restart of a partition, to avoid later end of job notification. v ()

89 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

8.1.3.2 Asynchronous single block requests
8.1.3.2.1 NvM_ReadBlock

[SWS_NvM_00454]8

Service Name | NvM_ReadBlock

Std_ReturnType NvM_ReadBlock (
NvM_BlockldType Blockld,

Syntax void* NvM_DstPtr
)

Service ID

[hex] 0x06

Sync/Async Asynchronous

Reentrancy Reentrant
Parameters The block identifier uniquely identifies one NVRAM block descriptor. A
(in) Blocklid NVRAM block descriptor contains all needed information about a
single NVRAM block.
Parameters None
(inout)
PETETIEIEE NVM_Dst Pointer to the RAM data block.
(out) Ptr
Std_- .
Return value Return- E_OK: request has been accepted
Type E_NOT_OK: request has not been accepted

Description Service to copy the data of the NV block to its corresponding RAM block.

Available via NvM.h

@SRS_LIBS 08533, SRS_Mem_00016)
[SWS_NvM_00010] y The job of the function NvM_ReadBlock shall copy the data of

the NV block to the corresponding RAM block. y (SRS_Mem_00016)
Note: The error/status NVM_REQ_OK will be set if the job succeeds. (See
SWS_NvM_00270)

[SWS_NvM_00195] y The function NvM_ReadBlock shall take over the given
parameters, queue the read request in the job queue and return. y

(SRS_Mem_00016)

[SWS_NvM _00196] ¢ If the function NvM_ReadBlock is provided with a valid RAM
block address then it is used. y (SRS_Mem_00016)

90 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00898] r If the function NvM_ReadBlock is provided with NULL_PTR as
a RAM block address and it has a permanent RAM block configured then the

permanent RAM block is used. y (SRS_Mem_00016)

[SWS_NvM_00899] r If the function NvM_ReadBlock is provided with NULL_PTR as
a RAM block address and it has the explicit synchronization configured then the

explicit synchronization is used. y (SRS_Mem_00016)

[SWS_NvM_00278] y The job of the function NvM_ReadBlock shall provide the

possibility to copy NV data to a temporary RAM block although the NVRAM block is
configured with a permanent RAM block or explicit synchronization callbacks. In this
case, the parameter NvM_DstPtr must be unequal to the NULL pointer. Otherwise a

DET-Parameter error (see Section 7.3) shall be emitted. \ ()

[SWS_NvM_00198] y The function NvM_ReadBlock shall invalidate a permanent
RAM block immediately when the block is successfully enqueued or the job
processing starts, i.e. copying data from NV memory or ROM to RAM. If the block
has a synchronization callback (NvM_NvMReadRamBlockFromNvCallback)
configured the invalidation will be done just before

NvMReadRamBlockFromNvCallback is called.y ()

[SWS_NvM _00199] r The job of the function NvM_ReadBlock shall initiate a read
attempt on the second NV block if the passed Blockld references a NVRAM block of

type NVM_BLOCK_REDUNDANT and the read attempts on the first NV block falil. v (
)

[SWS_NvM_00340] yIn case of NVRAM block management type
NVM_BLOCK_DATASET, the job of the function NvM_ReadBlock shall copy only
that NV block to the corresponding RAM block which is selected via the data index in

the administrative block. v ()

[SWS_NvM_00355] r The job of the function NvM_ReadBlock shall not copy the NV
block to the corresponding RAM block if the NVRAM block management type is
NVM_BLOCK_DATASET and the NV block selected by the dataset index is

invalidate. v ()

[SWS_NvM_00651] y The job of the function NvM_ReadBlock shall not copy the NV
block to the corresponding RAM block if the NVRAM block management type is
NVM_BLOCK_DATASET and the NV block selected by the dataset index is

inconsistent. \ ()

[SWS_NvM_00354] r The job of the function NvM_ReadBlock shall copy the ROM
block to RAM and set the request result to NVM_REQ_OK if the NVRAM block

91 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

management type is NVM_BLOCK_DATASET and the dataset index points at a
ROM block. y ()

[SWS_NvM_00200] r The job of the function NvM_ReadBlock shall set the RAM
block to valid and assume it to be unchanged after a successful copy process of the

NV block to RAM. \ ()

[SWS_NvM_00366] y The job of the function NvM_ReadBlock shall set the RAM
block to valid and assume it to be changed if the default values are copied to the

RAM successfully. v ()

[SWS_NvM_00206] y The job of the function NvM_ReadBlock shall set the request
result to NVM_REQ_OK if the NV block was copied successfully from NV memory to

RAM. y ()

[SWS_NvM _00341] r The job of the function NvM_ReadBlock shall set the request
result to NVM_REQ_NV_INVALIDATED if the Memlf reports

MEMIF_BLOCK_INVALID. \ ()

[SWS_NvM_00652] r The job of the function NvM_ReadBlock shall report no error to
the DEM if the MemlIf reports MEMIF_BLOCK_INVALID. y ()

[SWS_NvM _00358] r The job of the function NvM_ReadBlock shall set the request
result to NVM_REQ_INTEGRITY_FAILED if:

- the Memlf reports MEMIF_BLOCK INCONSISTENT and

- NvMRomBlockDataAddress is not configured (no ROM block with default data is
available) for the block and

- NvMInitBlockCallback is not configured (no init callback) for the block. v ()

[SWS_NvM_00653] r The job of the function NvM_ReadBlock shall report
NVM_E_INTEGRITY_FAILED to the DEM if the Memlf reports

MEMIF_BLOCK_INCONSISTENT. v ()

Note: After the production of an ECU / a car, on the production line all blocks shall
have been written with valid data (may be default data) and all diagnostic events
(errors) shall have been deleted. If the process does not allow to write all NV blocks
during production than the NvM will report diagnostic events (errors) because of
blocks that were never written and reported as MEMIF_BLOCK_INCONSISTENT by
Memlf.

[SWS_NvM_00359] yr The job of the function NvM_ReadBlock shall set the request
result to NVM_REQ_NOT_OK if:

- the Memlf reports MEMIF_JOB_FAILED and

- NvMRomBlockDataAddress is not configured (no ROM block with default data is
available) for the block and

92 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

- NvMInitBlockCallback is not configured (no init callback) for the block. v ()

[SWS_NvM_00654] y The job of the function NvM_ReadBlock shall report
NVM_E_REQ_FAILED to the DEM if the Memlf reports MEMIF_JOB_FAILED. y ()

[SWS_NvM_00279] The job of the function NvM_ReadBlock shall set the request

result to NVM_REQ_OK if the block management type of the given NVRAM block is
NVM_BLOCK_REDUNDANT and one of the NV blocks was copied successfully from

NV memory to RAM. ()

[SWS_NvM_00655] r The job of the function NvM_ReadBlock shall report no error to
the DEM if the block management type of the given NVRAM block is
NVM_BLOCK_REDUNDANT and one of the NV blocks was copied successfully from

NV memory to RAM. \ ()

[SWS_NvM _00316] r The job of the function NvM_ReadBlock shall mark every
NVRAM block that has been configured with NVM_WRITE_BLOCK_ONCE (TRUE)
as write protected if that block is valid and with consistent data. This write protection

cannot be cleared by NvM_SetBlockProtection.y ()

[SWS_NvM_00317] y The job of the function NvM_ReadBlock shall invalidate a
NVRAM block of management type redundant if both NV blocks have been

invalidated. vy ()

[SWS_NvM_00201] r The job of the function NvM_ReadBlock shall request a CRC
recalculation over the RAM block data after the copy process [SWS_NvM_00180] if
the NV block is configured with CRC, i.e. if NvMCalRamBlockCrC == TRUE for the

NV block. v ()

[SWS_NvM _00202] yr The job of the function NvM_ReadBlock shall load the default
values according to processing of NvM_RestoreBlockDefaults (also set the request
result to NVM_REQ_RESTORED_DEFAULTYS) if the recalculated CRC is not equal

to the CRC stored in NV memory. v ()

[SWS_NvM_00658] r NvM_ReadBlock: If there are no default values available, the
RAM blocks shall remain invalid. v ()

[SWS_NvM_00657] y The job of the function NvM_ReadBlock shall load the default
values according to processing of NvM_RestoreBlockDefaults (also set the request
result to NVM_REQ_RESTORED_DEFAULTYS) if the read request passed to the
underlying layer fails (MemlIf reports MEMIF_JOB_FAILED or

MEMIF_BLOCK_INCONSISTENT) and if the default values are available. \ ()

93 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00203] r The job of the function NvM_ReadBlock shall report
NVM_E_INTEGRITY_FAILED to the DEM if a CRC mismatch occurs. v ()

[SWS_NvM_00204] y The job of the function NvM_ReadBlock shall set the request
result to NVM_REQ_INTEGRITY_FAILED if:

- a CRC mismatch occurs and

- NvMRomBlockDataAddress is not configured (no ROM block with default data is
available) for the block and

- NvMInitBlockCallback is not configured (no init callback) for the block. v ()

[SWS_NvM_00712]fThe NvM modul eds environment
module before it calls the function NvM_ReadBlock. v ()

94 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

s hal

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

8.1.3.2.2 NvM_WriteBlock

[SWS_NvM 00455]6

Service Name | NvM_WriteBlock

Std_ReturnType NvM_WriteBlock (
NvM_BlockldType Blockld,

SHnLEE const void* NvM_SrcPtr
)

Service ID

[hex] 0x07

Sync/Async Asynchronous

Reentrancy Reentrant
The block identifier uniquely identifies one NVRAM block descriptor. A
Blockld NVRAM block descriptor contains all needed information about a
Parameters single NVRAM block.
(in)
E;/rM_Src Pointer to the RAM data block.
Parameters None
(inout)
Parameters None
(out)
Std_- E_OK: request has been accepted
REAU) VLS _?;;Zm_ E:NOT_OK: request has not been accepted

Description Service to copy the data of the RAM block to its corresponding NV block.

Available via NvM.h

Q@SRS_Mem_00017)

[SWS_NvM_00410] orhe job of the function NvM_WriteBlock shall copy the data of
the RAM block to its corresponding NV block.)(SRS_Mem_00017)

Note: The error/status NVM_REQ_OK will be set if the job succeeds. (See
SWS_NvM_00270)

[SWS_NvM_00749] 6rhe function NvM_WriteBlock shall return with E_NOT_OK, if a
locked NVRAM block is referenced by the passed Blockld parameter. and a DET
error (see Section 7.3) shall be emitted. Q()

[SWS_NvM_00208] érhe function NvM_WriteBlock shall take over the given

parameters, queue the write request in the job queue and return. O
(SRS_Mem_08541)

95 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00209] 6rhe function NvM_WriteBlock shall check the NVRAM block
protection when the request is enqueued but not again before the request is
executed. QX)

[SWS_NvM_00300] 6rhe function NvM_WriteBlock shall cancel a pending job
immediately in a destructive way if the passed Blockld references a NVRAM block
configured to have immediate priority. The immediate job shall be the next active job
to be processed. QX)

[SWS_NvM_00210] df the function NvM_WriteBlock is provided with a valid RAM
block address then it is used. Q(SRS_Mem_00017)

[SWS_NvM_00900] df the function NvM_WriteBlock is provided with NULL_PTR as
a RAM block address and it has a permanent RAM block configured then the
permanent RAM block is used. Q(SRS_Mem_00017)

[SWS_NvM_00901] df the function NvM_WriteBlock is provided with NULL_PTR as
a RAM block address and it has the explicit synchronization configured then the
explicit synchronization is used. (SRS_Mem_00017)

[SWS_NvM_00280] 6 The job of the function NvM_WriteBlock shall provide the
possibility to copy a temporary RAM block to a NV block although the NVRAM block
Is configured with a permanent RAM block or explicit synchronization callbacks. In
this case, the parameter NvM_SrcPtr must be unequal to a NULL pointer. Otherwise
a DET-Parameter error (see Section 7.3) shall be emitted()

[SWS_NvM_00212] érhe job of the function NvM_WriteBlock shall request a CRC
recalculation before the RAM block will be copied to NV memory if the NV block is
configured with CRC [SWS_NvM_00180]. ()

[SWS_NvM_00852] éTrhe job of the function NvM_WriteBlock shall skip writing and
consider the job as successfully finished if the NvMBlockUseCRCCompMechanism
attribute of the NVRAM Block is set to true and the RAM block CRC calculated by the
write job is equal to the CRC calculated during the last successful read or write job.
This mechanism shall not be applied to blocks for which a loss of redundancy has
been detected.)(SRS_Mem_00136)

[SWS_NvM_00338] drhe job of the function NvM_WriteBlock shall copy the RAM
block to the corresponding NV block which is selected via the data index in the
administrative block if the NVRAM block management type of the given NVRAM
block is NVM_BLOCK_DATASET.)

[SWS_NvM_00303] 6The job of the function NvM_WriteBlock shall assume a
referenced permanent RAM block or the RAM mirror in the NvM module in case of
explicit synchronization to be valid when the request is passed to the NvM module. If
the permanent RAM block is still in an invalid state, the function NvM_ WriteBlock
shall validate it automatically before copying the RAM block contents to NV memory
or after calling explicit synchronization callback (NvM_WriteRamBlockToNvm).QX)

96 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00213] The job of the function NvM_WriteBlock shall check the

number of write retries using a write retry counter to avoid infinite loops. Each
negative result reported by the memory interface shall be followed by an increment of
the retry counter. In case of a retry counter overrun, the job of the function

NvM_WriteBlock shall set the request result to NVM_REQ_NOT_OK. (
SRS Mem_08554)

[SWS_NvM_00659] 6Trhe job of the function NvM_WriteBlock shall check the number
of write retries using a write retry counter to avoid infinite loops. Each negative result
reported by the memory interface shall be followed by an increment of the retry
counter. In case of a retry counter overrun, the job of the function NvM_WriteBlock
shall report NVM_E_REQ_FAILED to the DEM. X)

[SWS_NvM_00216] 6The configuration parameter
NVM_MAX_NUM_OF_WRITE_RETRIES [SWS_NvM_00028] shall prescribe the
maximum number of write retries for the job of the function NvM_WriteBlock when
RAM block data cannot be written successfully to the corresponding NV block. Q)

[SWS_NvM_00760] 6The job of the function NvM_WriteBlock shall copy the data
content of the RAM block to both corresponding NV blocks if the NVRAM block A
management type of the processed NVRAM block is NVM_BLOCK_REDUNDANT.QX

)

[SWS_NvM_00761] df the processed NVRAM block is of type
NVM_BLOCK_REDUNDANT the job of the function NvM_WriteBlock shall start to
copy the data of the RAM block to NV block which has not been read during the jobs
started by NvM_ReadBlock, NvM_ReadPRAMBIock or NvM_ReadAll then continue
to copy the other NV block.QY)

[SWS_NvM_00284] 6The job of the function NvM_WriteBlock shall set
NVM_REQ_OK as request result if the passed Blockld references a NVRAM block of
type NVM_BLOCK_REDUNDANT and at least one of the NV blocks has been written
successfully. Q)

[SWS_NvM_00328] drhe job of the function NvM_WriteBlock shall set the write
protection flag in the administrative block immediately if the NVRAM block is
configured with NvMWriteBlockOnce == TRUE and the data has been written
successfully to the NV block. ()

[SWS_NvM _00713]6T he Nv M modul edbs environment shall
module before it calls the function NvM_WriteBlock. QX)

Hint:

To avoid the situation that in case of redundant NVRAM blocks two different NV
blocks are containing different but valid data at the same time, each client of the
function NvM_WriteBlock may call NvM_InvalidateNvBlock in advance.

97 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

[SWS_NvM_00547] 6The job of the function NvM_WriteBlock with Block ID 1 shall
write the compiled NVRAM configuration ID to the stored NVRAM configuration 1D
(block 1). ()

Hint: If a pristine ECU is flashed for the first time, such a call invoked by will ensure
that after a power-off without a proper shutdown, everything is as expected at the
next start-up. Otherwise, the new configuration ID would not be stored in NV RAM
and all ROM defaultd would be used.

A macro scan be used to indicate this usage.

98 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

8.1.3.2.3 NvM_RestoreBlockDefaults

[SWS_NvM 00456]6

Service Name | NvM_RestoreBlockDefaults

Std_ReturnType NvM_RestoreBlockDefaults (
NvM_BlockldType Blockld,

SHnLEE void* NvM_ DestPtr
)

Service ID

[hex] 0x08

Sync/Async Asynchronous

Reentrancy Non Reentrant
Parameters The block identifier uniquely identifies one NVRAM block descriptor. A
(in) Blockld NVRAM block descriptor contains all needed information about a
single NVRAM block.
Parameters
. None
(inout)
Parameters NvM_Dest .
(out) Pt Pointer to the RAM data block.
Std_- E_OK: request has been accepted
REU) VENLS .?;Sém' E:NOT_OK: request has not been accepted
Description Service to restore the default data to its corresponding RAM block.

Available via NvM.h

@SRS_Mem_00018)

[SWS_NvM_00012] érhe job of the function NvM_RestoreBlockDefaults shall restore
the default data to its corresponding RAM block.)(SRS_Mem_00018)

Note: The error/status NVM_REQ_OK will be set if the job succeeds. (See
SWS_NvM_00270)

[SWS_NvM_00224] 6rhe function NvM_RestoreBlockDefaults shall take over the
given parameters, queue the request in the job queue and return. Q)

[SWS_NvM _00267] yr The job of the function NvM_RestoreBlockDefaults shall load

the default data from a ROM block if a ROM block is configured. y
(SRS_Mem_00018)

[SWS _NvM 00266]fThe NvM modul eds environment shal
NvM_ RestoreBlockDefaults to obtain the default data if no ROM block is configured
for a NVRAM block and an application callback routine is configured via the

parameter NvMInitBlockCallback. y (SRS_Mem_00018)

99 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00353] r The function NvM_RestoreBlockDefaults shall return with
E_NOT_OK if the block management type of the given NVRAM block is
NVM_BLOCK_DATASET, at least one ROM block is configured and the data index

points at a NV block. y ()

[SWS_NvM _00435] yIf the function NvM_RestoreBlockDefaults is provided with a
valid RAM block address then it is used. y (SRS_Mem_00018)

[SWS_NvM_00902] r If the function NvM_RestoreBlockDefaults is provided with
NULL_PTR as a RAM block address and it has a permanent RAM block configured

then the permanent RAM block is used. y (SRS_Mem_00018)

[SWS_NvM_00903] ¢ If the function NvM_RestoreBlockDefaults is provided with
NULL_PTR as a RAM block address and it has the explicit synchronization

configured then the explicit synchronization is used. y (SRS_Mem_00018)

[SWS NvM 00436y The NvM modul eds environment
to NULL via the parameter NvM_DstPtr to the function

NvM_RestoreBlockDefaults in order to copy ROM data to a temporary RAM
block although the NVRAM block is configured with a permanent RAM block or
explicit synchronization callbacks. Otherwise a DET-Parameter error (see Section

7.3) shall be emittedy, ()

[SWS_NvM_00227] y The job of the function NvM_RestoreBlockDefaults shall
invalidate a RAM block before copying default data to the RAM if a permanent RAM
block is requested or before explicit synchronization callback

(NvMReadRamBIlockFromNvCallback) is called.y ()

[SWS_NvM_00228] y The job of the function NvM_RestoreBlockDefaults shall
validate and assume a RAM block to be changed if the requested RAM block is
permanent or after explicit synchronization callback
(NvMReadRamBlockFromNvCallback) that is called returns E_OK and the copy

process of the default data to RAM was successful .\ ()

[SWS_NvM _00229] r The job of the function NvM_RestoreBlockDefaults shall
request a recalculation of CRC from a RAM block after the copy process/validation if

a CRC is configured for this RAM block. vy ()

[SWS NvM 00714]rThe Nv M modul e d&hkall avenitializedtineéNwnvt
module before it calls the function NvM_RestoreBlockDefaults. v ()

Hint: For the block management type NVM_BLOCK_DATASET, the application has
to ensure that a valid dataset index is selected (pointing to ROM data).

100 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

s hal

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00883] y If the block has no ROM default data and no
NvMinitBlockCallback configured for it then the function NvM_RestoreBlockDefaults

shall leave the block status unchanged and return E_NOT_OK as result. v ()

[SWS_NvM_00885] rIf the block has no default data, it has no
InitBlockCallbackFunction configured and the development error detection is enabled
then the NvM_RestoreBlockDefaults API shall report the error

NVM_E_BLOCK WITHOUT_DEFAULTS error to the Det module. y ()

101 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

8.1.3.2.4 NvM_EraseNvBlock

[SWS_NvM_00457]8

Service Name | NvM_EraseNvBlock

Std_ReturnType NvM_EraseNvBlock (

Syntax NvM_BlockldType Blockld
)

Service ID

[hex] 0x09

Sync/Async Asynchronous

Reentrancy Reentrant
B .- The block identifier uniquely identifies one NVRAM block descriptor. A
(in) Blockld NVRAM block descriptor contains all needed information about a
single NVRAM block.
Parameters
. None
(inout)
Parameters None
(out)
Std_- E_OK: request has been accepted
XEEHINET .IFf;Ft)lém' E:NOT_OK: request has not been accepted
Description Service to erase a NV block.

Available via NvM.h

Q@SRS_Mem_08544)
[SWS_NvM_00415] y The job of the function NvM_EraseNvBlock shall erase a NV

block. y (SRS_Mem_08544)
Note: The error/status NVM_REQ_OK will be set if the job succeeds. (See
SWS_NvM_00270)

[SWS_NvM_00231] y The function NvM_EraseNvBlock shall take over the given
parameters, queue the request and return. v ()

[SWS_NvM _00418] r The function NvM_EraseNvBlock shall queue the request to
erase in case of disabled write protection. v ()

[SWS_NvM _00416] r The job of the function NvM_EraseNvBlock shall leave the
content of the RAM block unmodified. v ()

102 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM _00959] 1 The job of the function NvM_EraseNvBlock shall leave the
write protection unchanged for the blocks configured with

NVM_WRITE_BLOCK_ONCE (TRUE). \ ()

[SWS_NvM_00661] y The function NvM_EraseNvBlock shall return with E_NOT_OK
if a ROM block of a dataset NVRAM block is referenced. y ()

[SWS_NvM_00662] y NvM_EraseNvBlock: The NvM module shall not re-check the
write protection before fetching the job from the job queue. v ()

[SWS_NvM_00269] y If the referenced NVRAM block is of type
NVM_BLOCK_ REDUNDANT, the function NvM_EraseNvBIlock shall only succeed

when both NV blocks have been erased. v ()

[SWS_NvM _00271] The job of the function NvM_EraseNvBlock shall set the
request result to NVM_REQ_NOT_OK if the processing of the service fails. ()

[SWS_NvM_00663] r The job of the function NvM_EraseNvBlock shall report
NVM_E_REQ_FAILED to the DEM if the processing of the service fails. v ()

[SWS_NvM_00357] r The function NvM_EraseNvBlock shall return with E_NOT_OK,
when development error detection is enabled and the referenced NVRAM block is

configured with standard priority. v ()

[SWS _NvM 00715]fyThe NvM modul eds environment
module before it calls the function NvM_EraseNvBlock. \ ()

103 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

s hal

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

8.1.3.2.5 NvM__InvalidateNvBlock

[SWS_NvM 00459]6

Service Name | NvM_InvalidateNvBlock

Std_ReturnType NvM_ InvalidateNvBIlock (

Syntax NvM_BlockldType Blockld
)

Service ID

[hex] 0x0b

Sync/Async Asynchronous

Reentrancy Reentrant
B .- The block identifier uniquely identifies one NVRAM block descriptor. A
(in) Blockld NVRAM block descriptor contains all needed information about a
single NVRAM block.
Parameters
. None
(inout)
Parameters None
(out)
Std_- E_OK: request has been accepted
REU) VLS .IFf;Ft)lém' E:NOT_OK: request has not been accepted
Description Service to invalidate a NV block.

Available via NvM.h

@SRS_Mem_08011)
[SWS_NvM_00421] y The job of the function NvM_InvalidateNvBlock shall invalidate

a NV block. y (SRS_Mem_08011)
Note: The error/status NVM_REQ_OK will be set if the job succeeds. (See
SWS_NvM_00270)

[SWS_NvM_00422] y The job of the function NvM_InvalidateNvBlock shall leave the
RAM block unmodified. v ()

[SWS_NvM_00960] 1 The job of the function NvM_ InvalidateNvBlock shall leave the
write protection unchanged for the blocks configured with

NVM_WRITE_BLOCK_ONCE (TRUE). y ()

[SWS_NvM_00424] y The function NvM_InvalidateNvBlock shall queue the request if
the write protection of the corresponding NV block is disabled. v ()

104 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00239] r The function NvM_InvalidateNvBlock shall take over the given
parameters, queue the request and return. v ()

[SWS_NvM_00664] y The function NvM_InvalidateNvBlock shall return with
E_NOT_OK if a ROM block of a dataset NVRAM block is referenced by the Blocklid

parameter. v ()

[SWS_NvM_00665] y The NvM module shall not recheck write protection before
fetching the job from the job queue. v ()

[SWS_NvM_00274] yIf the referenced NVRAM block is of type
NVM_BLOCK_ REDUNDANT, the function NvM_InvalidateNvBlock shall only set the
request result NvM_RequestResultType to NVM_REQ_OK when both NV blocks

have been invalidated. v ()

[SWS_NvM_00275] y The function NvM_InvalidateNvBlock shall set the request
result to NVM_REQ_NOT_OK if the processing of this service fails. vy ()

[SWS_NvM_00666] r The function NvM_InvalidateNvBlock shall report
NVM_E_REQ_FAILED to the DEM if the processing of this service fails. v ()

[SWS _NvM 00717] yThe NvM modul eds environment
module before it calls the function function NvM_InvalidateNvBlock. v ()

105 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

s hal

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

8.1.3.2.6 NvM_ReadPRAMBIlock

[SWS_NvM_00764]8

Service Name | NvM_ReadPRAMBIlock

Std_ReturnType NvM_ReadPRAMBIock (

Syntax NvM_BlockldType Blockld
)

Service ID

[hex] 0x16

Sync/Async Asynchronous

Reentrancy Reentrant
B .- The block identifier uniquely identifies one NVRAM block descriptor. A
(in) Blockld NVRAM block descriptor contains all needed information about a
single NVRAM block.
Parameters
. None
(inout)
Parameters None
(out)
Std_- E_OK: request has been accepted

REU) VLS %?Sém' E:NOT_OK: request has not been accepted

o Service to copy the data of the NV block to its corresponding permanent RAM
Description

block.

Available via NvM.h

@SRS_LIBS_08533, SRS_Mem_00016)
[SWS_NvM_00765] y The job of the function NvM_ReadPRAMBIock shall copy the

data of the NV block to the permanent RAM block. vy (SRS_Mem_00016)
Note: The error/status NVM_REQ_OK will be set if the job succeeds. (See
SWS_NvM_00270)

[SWS_NvM_00766] r The function NvM_ReadPRAMBIock shall take over the given

parameters, queue the read request in the job queue and return. \
(SRS_Mem_00016)

[SWS_NvM_00767] y The function NvM_ReadPRAMBIock shall invalidate a
permanent RAM block immediately when the block is successfully enqueued or the
job processing starts, i.e. copying data from NV memory or ROM to RAM. If the block
has a synchronization callback (NvM_NvMReadRamBlockFromNvCallback)
configured the invalidation will be done just before

NvMReadRamBIlockFromNvCallback is called.y ()

106 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00768] y The job of the function NvM_ReadPRAMBIock shall initiate a
read attempt on the second NV block if the passed Blockld references a NVRAM
block of type NVM_BLOCK_REDUNDANT and the read attempts on the first NV

block fail. v ()

[SWS_NvM_00769] r In case of NVRAM block management type
NVM_BLOCK_DATASET, the job of the function NvM_ReadPRAMBIock shall copy
only that NV block to the corresponding RAM block which is selected via the data

index in the administrative block. y ()

[SWS_NvM_00770] y The job of the function NvM_ReadPRAMBIock shall not copy
the NV block to the corresponding RAM block if the NVRAM block management type
is NVM_BLOCK_DATASET and the NV block selected by the dataset index is

invalidate. v ()

[SWS_NvM_00771] y The job of the function NvM_ReadPRAMBIock shall not copy
the NV block to the corresponding RAM block if the NVRAM block management type
is NVM_BLOCK _DATASET and the NV block selected by the dataset index is

inconsistent. v ()

[SWS_NvM_00772] y The job of the function NvM_ReadPRAMBIock shall copy the
ROM block to RAM and set the request result to NVM_REQ_OK if the NVRAM block
management type is NVM_BLOCK_DATASET and the dataset index points at a

ROM block. v ()

[SWS_NvM _00773] r The job of the function NvM_ReadPRAMBIock shall set the
RAM block to valid and assume it to be unchanged after a successful copy process

of the NV block to RAM. y ()

[SWS_NvM_00774] y The job of the function NvM_ReadPRAMBIock shall set the
RAM block to valid and assume it to be changed if the default values are copied to

the RAM successfully. v ()

[SWS_NvM_00775] y The job of the function NvM_ReadPRAMBIock shall set the
request result to NVM_REQ_OK if the NV block was copied successfully from NV

memory to RAM. v ()

[SWS_NvM _00776] r The job of the function NvM_ReadPRAMBIock shall set the
request result to NVM_REQ_NV_INVALIDATED if the Memif reports

MEMIF_BLOCK_INVALID. \ ()

[SWS_NvM_00777] y The job of the function NvM_ReadPRAMBIock shall report no
error to the DEM if the Memlf reports MEMIF_BLOCK_INVALID. v ()

107 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00778] r The job of the function NvM_ReadPRAMBIock shall set the
request result to NVM_REQ_INTEGRITY_FAILED if the MemlIf reports

MEMIF_BLOCK_INCONSISTENT. v ()

[SWS_NvM_00779] yr The job of the function NvM_ReadPRAMBIock shall report
NVM_E_INTEGRITY_FAILED to the DEM if the Memlf reports

MEMIF_BLOCK_INCONSISTENT. v ()

[SWS_NvM_00780] r The job of the function NvM_ReadPRAMBIock shall set the

request result to NVM_REQ_NOT_OK if the Memlf reports MEMIF_JOB_FAILED. \ (
)

[SWS_NvM _00781] r The job of the function NvM_ReadPRAMBIock shall report
NVM_E_REQ_FAILED to the DEM if the Memilf reports MEMIF_JOB_FAILED. y ()

[SWS_NvM_00782] y The job of the function NvM_ReadPRAMBIock shall set the
request result to NVM_REQ_OK if the block management type of the given NVRAM
block is NVM_BLOCK_REDUNDANT and one of the NV blocks was copied

successfully from NV memory to RAM. \ ()

[SWS_NvM_00783] y The job of the function NvM_ReadPRAMBIock shall report no
error to the DEM if the block management type of the given NVRAM block is
NVM_BLOCK_REDUNDANT and one of the NV blocks was copied successfully from

NV memory to RAM. v ()

[SWS_NvM_00784] y The job of the function NvM_ReadPRAMBIock shall mark
every NVRAM block that has been configured with NVM_WRITE_BLOCK_ONCE
(TRUE) as write protected if that block is valid and with consistent data. This write

protection cannot be cleared by NvM_SetBlockProtection. vy ()

[SWS_NvM_00785] y The job of the function NvM_ReadPRAMBIock shall invalidate
a NVRAM block of management type redundant if both NV blocks have been

invalidated. v ()

[SWS_NvM _00786] r The job of the function NvM_ReadPRAMBIock shall request a
CRC recalculation over the RAM block data after the copy process
[SWS NvM _00180] if the NV block is configured with CRC, i.e. if

NvMCalRamBlockCrC == TRUE for the NV block. v ()

[SWS_NvM_00787] y The job of the function NvM_ ReadPRAMBIock shall load the
default values according to processing of NvM_RestorePRAMBIlockDefaults if the

recalculated CRC is not equal to the CRC stored in NV memory. \ ()

108 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00788] y NvM_ReadPRAMBIock: If there are no default values
available, the RAM blocks shall remain invalid. v ()

[SWS_NvM_00789] y The job of the function NvM_ReadPRAMBIock shall load the
default values according to processing of NvM_RestorePRAMBIockDefaults if the

read request passed to the underlying layer fails. v ()

[SWS_NvM_00790] r The job of the function NvM_ReadPRAMBIock shall report
NVM_E_INTEGRITY_FAILED to the DEM if a CRC mismatch occurs. \ ()

[SWS_NvM _00791] r The job of the function NvM_ReadPRAMBIock shall set the
request result NVM_REQ_INTEGRITY_FAILED if a CRC mismatch occurs. v ()

[SWS NvM 00792]frThe NvVvM modul eds envir oditmedNuM s hal |
module before it calls the function NvM_ReadPRAMBIock. \ ()

[SWS_NvM_00882] y The job of the function NvM_ReadPRAMBIock shall load the
default values according to processing of NvM_RestorePRAMBIlockDefaults (also set
the request result to NVM_REQ_RESTORED_DEFAULTYS) if the read request
passed to the underlying layer fails (Memilf reports MEMIF_JOB_FAILED or

MEMIF_BLOCK_INCONSISTENT) and if the default values are available. \ ()

109 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager

AUTOSAR CP R20-11

8.1.3.2.7 NvM_WritePRAMBIock

[SWS NvM 00793]6

Service Name

NvM_WritePRAMBIock

Std_ReturnType NvM_WritePRAMBIock (

Syntax NvM_BlockldType Blockld
)
Service ID
[hex] 0x17
Sync/Async Asynchronous
Reentrancy Reentrant
B .- The block identifier uniquely identifies one NVRAM block descriptor. A
(in) Blockld NVRAM block descriptor contains all needed information about a
single NVRAM block.
Parameters
. None
(inout)
Parameters None
(out)
Std_- E_OK: request has been accepted
REU) VLS .IFf;Ft)lém' E:NOT_OK: request has not been accepted

Description

Service to copy the data of the permanent RAM block to its corresponding NV
block.

Available via

NvM.h

@SRS_Mem_00017)
[SWS_NvM_00794] y The job of the function NvM_WritePRAMBIock shall copy the

data of the permanent RAM block to its corresponding NV block. v
(SRS_Mem_00017)

Note: The error/status NVM_REQ_OK will be set if the job succeeds. (See
SWS_NvM_00270)

[SWS_NvM_00797] yr The function NvM_WritePRAMBIock shall return with
E_NOT_OK, if a locked NVRAM block is referenced by the passed Blockld

parameter. and a DET error (see Section 7.3) shall be emitted. v ()

[SWS_NvM_00798] yr The function NvM_WritePRAMBIock shall take over the given

parameters, queue the write request in the job queue and return. y
(SRS_Mem_08541)

110 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00799] r The function NvM_WritePRAMBIlock shall check the NVRAM
block protection when the request is enqueued but not again before the request is

executed. v ()

[SWS_NvM_00800] r The function NvM_WritePRAMBIlock shall cancel a pending job
immediately in a destructive way if the passed Blockld references a NVRAM block
configured to have immediate priority. The immediate job shall be the next active job

to be processed. v ()

[SWS_NvM_00801] y The job of the function NvM_WritePRAMBIock shall request a
CRC recalculation before the RAM block will be copied to NV memory if the NV block

Is configured with CRC [SWS_NvM_00180]. v ()

[SWS_NvM_00853] drhe job of the function NvM_WritePRAMBIock shall skip writing
and consider the job as successfully finished if the
NvMBlockUseCRCCompMechanism attribute of the NVRAM Block is set to true and
the RAM block CRC calculated by the write job is equal to the CRC calculated during
the last successful read or write job. This mechanism shall not be applied to blocks
for which a loss of redundancy has been detected. (SRS_Mem_00136)

[SWS_NvM_00802] y The job of the function NvM_WritePRAMBIlock shall copy the
RAM block to the corresponding NV block which is selected via the data index in the
administrative block if the NVRAM block management type of the given NVRAM

block is NVM_BLOCK_DATASET. y ()

[SWS_NvM_00803] r The job of the function NvM_WritePRAMBIock shall assume a
referenced permanent RAM block or the RAM mirror in the NvM module in case of
explicit synchronization to be valid when the request is passed to the NvM module. If
the permanent RAM block is still in an invalid state, the function
NvM_WritePRAMBIock shall validate it automatically before copying the RAM block
contents to NV memory or after calling explicit synchronization callback

(NvM_WriteRamBlockToNvm).y ()

[SWS_NvM_00804] r The job of the function NvM_WritePRAMBIock shall check the
number of write retries using a write retry counter to avoid infinite loops. Each
negative result reported by the memory interface shall be followed by an increment of
the retry counter. In case of a retry counter overrun, the job of the function

NvM_WritePRAMBIock shall set the request result to NVM_REQ_NOT_OK. y
(SRS_Mem_08554)

[SWS_NvM_00805] y The job of the function NvM_WritePRAMBIlock shall check the
number of write retries using a write retry counter to avoid infinite loops. Each
negative result reported by the memory interface shall be followed by an increment of
the retry counter. In case of a retry counter overrun, the job of the function

NvM_WritePRAMBIock shall report NVM_E_REQ_FAILED to the DEM. \ ()

111 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00806] y The configuration parameter
NVM_MAX_NUM_OF_WRITE_RETRIES [SWS_NvM_00028] shall prescribe the
maximum number of write retries for the job of the function NvM_WritePRAMBIock
when RAM block data cannot be written successfully to the corresponding NV block.

v ()

[SWS_NvM _00807] yr The job of the function NvM_WritePRAMBIlock shall copy the
data content of the RAM block to both corresponding NV blocks if the NVRAM block

management type of the processed NVRAM block is NVM_BLOCK_REDUNDANT.y
()

[SWS_NvM_00808] r If the processed NVRAM block is of type

NVM_BLOCK_ REDUNDANT the job of the function NvM_WritePRAMBIock shall
start to copy the data of the RAM block to NV block which has not been read during
the jobs started by NvM_ReadBlock, NvM_ReadPRAMBIock or NvM_ReadAll then

continue to copy the other NV block.y ()

[SWS_NvM _00809] r The job of the function NvM_WritePRAMBIock shall set
NVM_REQ_OK as request result if the passed Blockld references a NVRAM block of
type NVM_BLOCK_REDUNDANT and at least one of the NV blocks have been

written successfully. v ()

[SWS_NvM_00810] r The job of the function NvM_WritePRAMBIock shall set the
write protection flag in the administrative block immediately if the NVRAM block is
configured with NvMWriteBlockOnce == TRUE and the data has been written

successfully to the NV block. \ ()

[SWS NvM 00811]frThe NvM modul eds environment shal/l

module before it calls the function NvM_WritePRAMBIlock. v ()

Hint:

To avoid the situation that in case of redundant NVRAM blocks two different NV
blocks are containing different but valid data at the same time, each client of the
function NvM_WritePRAMBIock may call NvM_InvalidateNvBlock in advance.

[SWS_NvM _00812] y The job of the function NvM_WritePRAMBIock with Block ID 1
shall write the compiled NVRAM configuration ID to the stored NVRAM configuration

ID (block 1). v ()

Hint: If a pristine ECU is flashed for the first time, such a call invoked by will ensure
that after a power-off without a proper shutdown, everything is as expected at the
next start-up. Otherwise, the new configuration ID would not be stored in NV RAM
and all ROM defaultd would be used.

A macro scan be used to indicate this usage.

112 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

8.1.3.2.8 NvM_RestorePRAMBIlockDefaults

[SWS NvM 00813]6

Service Name | NvM_RestorePRAMBIlockDefaults

Std_ReturnType NvM_RestorePRAMBIlockDefaults (

Syntax NvM_BlockldType Blockld
)

Service ID

[hex] 0x18

Sync/Async Asynchronous

Reentrancy Non Reentrant
B .- The block identifier uniquely identifies one NVRAM block descriptor. A
(in) Blockld NVRAM block descriptor contains all needed information about a
single NVRAM block.
Parameters
. None
(inout)
Parameters None
(out)
Std_- E_OK: request has been accepted
EEIIREATS %?Sém' E:NOT_OK: request has not been accepted
Description Service to restore the default data to its corresponding permanent RAM block.

Available via NvM.h

@SRS_Mem_00018)

[SWS_NvM_00814] érhe job of the function NvM_ RestorePRAMBIockDefaults shall
restore the default data to its corresponding permanent RAM block. O
(SRS_Mem_00018)

Note: The error/status NVM_REQ_OK will be set if the job succeeds. (See
SWS_NvM_00270)

[SWS_NvM_00815] érhe function NvM_RestorePRAMBIlockDefaults sAhaII take over
the given parameters, queue the request in the job queue and return. Q()

[SWS_NvM_00816] drhe job of the function NvM_RestorePRAMBIlockDefaults shall
load the default data from a ROM block if a ROM block is configured. O
(SRS_Mem_00018)

[SWS NvM 00817]rThe Nv M smemdranmentishall call the function
NvM_RestorePRAMBIockDefaults to obtain the default data if no ROM block is
configured for a NVRAM block and an application callback routine is configured via

the parameter NvMInitBlockCallback. y (SRS_Mem_00018)

113 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00818] r The function NvM_RestorePRAMBIlockDefaults shall return
with E_NOT_OK if the block management type of the given NVRAM block is
NVM_BLOCK_DATASET, at least one ROM block is configured and the data index

points at a NV block. y ()

[SWS_NvM _00819] r The job of the function NvM_RestorePRAMBIlockDefaults shall
invalidate a RAM block before copying default data to the permanent RAM block or
before explicit synchronization callback (NvMReadRamBlockFromNvCallback) is

called.y ()

[SWS_NvM_00820] y The job of the function NvM_RestorePRAMBIlockDefaults shall
validate and assume a RAM block to be changed if the requested RAM block is
permanent or after explicit synchronization callback
(NvMReadRamBIlockFromNvCallback) that is called returns E_OK and the copy

process of the default data to RAM was successful .y ()

[SWS_NvM _00821] r The job of the function NvM_RestorePRAMBIlockDefaults shall
request a recalculation of CRC from a RAM block after the copy process/validation if

a CRC is configured for this RAM block. v ()

[SWS _NvM 00822]yThe Nv M mo du mentskall lavenitializechthe NvM
module before it calls the function NvM_RestorePRAMBIockDefaults. v ()

Hint: For the block management type NVM_BLOCK_DATASET, the application has
to ensure that a valid dataset index is selected (pointing to ROM data).

[SWS_NvM_00884] r If the block has no ROM default data and no
NvMiInitBlockCallback configured for it then the function
NvM_RestorePRAMBIockDefaults shall leave the block status unchanged and return

E_NOT_OK as result. v ()

[SWS_NvM_00886] y If the block has no default data, it has no
InitBlockCallbackFunction configured and the development error detection is enabled
then the NvM_RestorePRAMBIockDefaults API shall report the error

NVM_E_BLOCK_WITHOUT_DEFAULTS error to the Det module. v ()

114 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR

8.1.3.3 Asynchronous multi block requests

8.1.3.3.1 NvM_ReadAll

[SWS_NvM_00460]8

Specification of NVRAM Manager

AUTOSAR CP R20-11

Service Name

NvM_ReadAll

void NvM_ReadAll (

Syntax void

)
Service ID [hex] 0x0c
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description Initiates a multi block read request.
Available via NvM.h

QSRS _LIBS_08533)
[SWS_NvM_00356] r The multi block service NvM_ReadAll shall provide two distinct
functionalities.
- Initialize the management data for all NVRAM blocks (see SWS NvM_ 00304
ff)
- Copy data to the permanent RAM blocks or call explicit synchronization
callback(NvM_ReadRamBlockFromNvm) for those NVRAM blocks which are
configured accordingly.

Note: The two functionalities can be implemented in one loop. v ()

[SWS_NvM_00243] y The function NvM_ReadAll shall signal the request to the NvM
module and return. The NVRAM Manager shall defer the processing of the requested

ReadAll until all single block job queues are empty. v ()

[SWS_NvM_00304] r The job of the function NvM_ReadAll shall set each proceeding
block specific request result for NVRAM blocks in advance. y ()

[SWS_NvM_00667] r The job of the function NvM_ReadAll shall set the multi block
request result to NVM_REQ_PENDING in advance. \ ()

115 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00895] r The job of the function NvM_ReadAll shall set the multi block

request result to NVM_REQ_OK if no NVRAM block processing fails. y
(SRS_Mem_00020)

Note: When the result of an individual block processing (in the context of a multi-
block job) is different than NVM_REQ _OK, the individual block processing is
considered as failed.

[SWS_NvM_00244] yr The job of the function NvM_ReadAll shall iterate over all user
NVRAM blocks, i.e. except for reserved Block Ids O (multi block request result) and 1

(NV configuration ID), beginning with the lowest Block Id. v ()

[SWS_NvM_00245] y Blocks of management type NVM_BLOCK_DATASET shall not
be loaded automatically upon start-up. Thus the selection of blocks, which belong to
block management type NVM_BLOCK_DATASET, shall not be possible for the

service NvM_ReadAll. y ()

[SWS_NvM_00362] y The NvM module shall initiate the recalculation of the RAM
CRC for every NVRAM block with a valid permanent RAM block or explicit
synchronization callback configured and NvmCalcRamBlockCrc == TRUE during

the processing of NvM_ReadAll .y ()

Note:

If a block processed by the job of the function NvM_ReadAll has explicit
synchronization configured for it then the block owner must provide the related RAM
data for the comparison. The call made by NvM to the explicit synchronization 'write'
callback must be successful.

[SWS_NvM _00364] r The job of the function NvM_ReadAll shall treat the data for
every recalculated RAM CRC which matches the stored RAM CRC as valid and set
the block specific request result to NVM_REQ_OK.

Note: This mechanism enables the NVRAM Manager to avoid overwriting of maybe
still valid RAM data with outdated NV data. vy ()

[SWS_NvM _00246] r The job of the function NvM_ReadAll shall validate the
configuration ID by comparing the stored NVRAM configuration ID vs. the compiled

NVRAM configuration ID. vy ()
[SWS_NvM_00669] y NvM_ReadAll: The NVRAM block with the block ID 1

(redundant type with CRC) shall be reserved to contain the stored NVRAM
configuration ID. \ ()

116 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00247] y The job of the function NvM_ReadAll shall process the normal
runtime preparation for all configured NVRAM blocks in case of configuration ID

match. v ()

[SWS_NvM_00670] yr The job of the function NvM_ReadAll shall set the error/status
i nformation field of the corresponding

NVM_REQ_OK in case of configuration ID match. v ()

[SWS_NvM_00305] y The job of the function NvM_ReadAll shall report the extended
production error NVM_E_REQ_FAILED to the DEM if the configuration ID cannot be

read because of an error detected by one of the subsequent SW layers. \ ()

[SWS_NvM_00671] yr The job of the function NvM_ReadAll shall set the error status
field of the reserved NVRAM block to NVM_REQ_INTEGRITY_FAILED if the
configuration ID cannot be read because of an error detected by one of the
subsequent SW layers. The NvM module shall behave in the same way as if a

configuration ID mismatch was detected. vy ()

[SWS_NvM_00307] r The job of the function NvM_ReadAll shall set the error/status
information field of the reserved NVRAM block with ID 1 to NVM_REQ_NOT_OK in

the case of configuration ID mismatch. vy ()

[SWS_NvM_00306] yIn case the NvM module can not read the configuration 1D
because the corresponding NV blocks are empty or invalidated, the job of the
function NvM_ReadAll shall not report an extended production error or a production

error to the DEM. v ()

[SWS_NvM_00672] rIn case the NvM module can not read the configuration 1D
because the corresponding NV blocks are empty or invalidated, the job of the
function NvM_ReadAll shall set the error/status information field in this NVRAM

NVRAN

bl ock6és administrative blockvyt)o NVM_REQ_NV_I

[SWS_NvM_00673] y NvM_ReadAll: In case the NvM module can not read the
configuration ID because the corresponding NV blocks are empty or invalidated,
NVM module shall update the configuration ID from the RAM block assigned to the
reserved NVRAM block with ID 1 according to the new (compiled) configuration ID.

The NvM module shall behave the same way as if the configuration ID matched. v ()

[SWS_NvM_00248] y The job of the function NvM_ReadAll shall ignore a
configuration ID mismatch and behave normal if NvMDynamicConfiguration ==

FALSE [SWS_NvM_00028]. y ()

[SWS_NvM_00249] y The job of the function NvM_ReadAll shall process an
extended runtime preparation for all blocks which are configured with
117 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

NvMResistantToChangedSw == FALSE and NvMDynamicConfiguration == TRUE
and configuration ID mismatch occurs. v ()

[SWS_NvM_00674] r The job of the function NvM_ReadAll shall process the normal
runtime preparation of all NVRAM blocks when they are configured with
NvMResistantToChangedSw == TRUE and NvMDynamicConfiguration == TRUE

and if a configuration ID mismatch occurs. \ ()

[SWS_NvM_00314] rThe job of the function NvM_ReadAll shall mark every NVRAM
block that has been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write
protected if that block is valid and with consistent data. This write protection cannot

be cleared by NvM_SetBlockProtection. v ()

[SWS_NvM _00315] r The job of the function NvM_ReadAll shall only invalidate a
NVRAM block of management type NVM_BLOCK_ REDUNDANT if both NV blocks

have been invalidated. \ ()

[SWS NvM 00718]y The NvM modul eds environment shal/l
request NvM_ReadAll to load and validate the content of configured permanent RAM
or to do the explicit synchronization for configured blocks during start-up

[SWS_NvM_00091]. v ()

[SWS_NvM_00118] y The job of the function NvM_ReadAll shall process only the
permanent RAM blocks or call explicit synchronization callback
(NvM_ReadRamBIlockFromNvm) for blocks which are configured with

NvmSelectBlockForReadall == TRUE N ()

[SWS_NvM_00287] y The job of the function NvM_ReadAll shall set the request
result to NVM_REQ _ BLOCK_SKIPPED for each NVRAM block configured to be
processed by the job of the function NvM_ReadAll (NvMSelectBlockForReadAll is

checked) and which has not been read during processing of the NvM_ReadAll job. y

0

[SWS_NvM _00426] y If configured by NvMDrvModeSwitch, the job of the function
NvM_ReadAll shall switch the mondea edf bed olf eme

starting to iterate over all user NVRAM blocks. v ()

[SWS_NvM_00427] y If configured by NvMDrvModeSwitch, the job of the function
NvM_ReadAll shall switchthemode of each memor¥rmpo dkeedv iadd etro 7

having processed all user NVRAM blocks. v ()

[SWS_NvM_00308] y The job of the function NvM_ReadAll shall restore the default
data to the corresponding RAM blocks either if configured by the parameter
NvMRomBlockDataAddress or by the parameter NvMInitBlockCallback, and set the

118 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

error/status field in the administrative block to NVM_REQ_RESTORED_DEFAULTS
when processing the extended runtime preparation. v ()

[SWS_NvM_00309] r When executing the extended runtime preparation, the job of
the function NvM_ReadAll shall treat the affected NVRAM blocks as invalid or blank
in order to allow rewriting of blocks configured with NVM_BLOCK_ WRITE_ONCE ==

TRUE. v ()

[SWS_NvM_00310] r The job of the function NvM_ReadAll shall update the
configuration ID from the RAM block assigned to the reserved NVRAM block with ID
1 according to the new (compiled) configuration ID, mark the NVRAM block to be
written during NvM_WriteAll and request a CRC recalculation if a configuration ID
mismatch occurs and if the NVRAM block is configured with

NvMDynamicConfiguration == TRUE. vy ()

[SWS_NvM_00311] y The NvM module shall allow applications to send any request
for the reserved NVRAM Block ID 1 if (and only if) NvMDynamicConfiguration is set

to TRUE, including NvM_WsriteBlock and NvM_WritePRAMBIlock.y ()

[SWS_NvM_00312] y The NvM module shall not send a request for invalidation of the
reserved configuration ID NVRAM block to the underlying layer, unless requested so

by the application. This shall ensure that the NvM modul ebs
this block to be only invalidated at the first start-up of the ECU or if desired by the

application. v ()

[SWS_NvM_00313] rIn case of a Configuration ID match, the job of the function
NvM_ReadAll shall not automatically write to the Configuration ID block stored in the

reserved NVRAM block 1. v ()

[SWS_NvM _00288] r The job of the function NvM_ReadAll shall initiate a read
attempt on the second NV block for each NVRAM block of type
NVM_BLOCK_REDUNDANT [SWS_NvM _00118], where the read attempt of the first

block fails (see also SWS _NvM_00531). v ()

[SWS_NvM_00290] y The job of the function NvM_ReadAll shall set the block
specific request result to NVM_REQ _OK if the job has successfully copied the

corresponding NV block from NV memory to RAM. v ()

[SWS_NvM_00342] y The job of the function NvM_ReadAll shall set the block
specific request result to NVM_REQ_NV_INVALIDATED if the Memif reports

MEMIF_BLOCK_INVALID. y ()

[SWS_NvM_00676] r The job of the function NvM_ReadAll shall report no error to

the DEM if the MemlIf reports MEMIF_BLOCK_INVALID. y ()
119 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00360] y The job of the function NvM_ReadAll shall set the block
specific request result to NVM_REQ_INTEGRITY_FAILED if:

- the Memlf reports MEMIF_BLOCK_INCONSISTENT and

- NvMRomBlockDataAddress is not configured (no ROM block with default data is
available) for the block and

- NvMInitBlockCallback is not configured (no init callback) for the block. v ()

[SWS_NvM_00677] r The job of the function NvM_ReadAll shall report
NVM_E_INTEGRITY_FAILED to the DEM if the Memlf reports

MEMIF_BLOCK_INCONSISTENT. v ()

Note: After the production of an ECU / a car, on the production line all blocks shall
have been written with valid data (may be default data) and all diagnostic events
(errors) shall have been deleted. If the process does not allow to write all NV blocks
during production than the NvM will report diagnostic events (errors) because of
blocks that were never written and reported as MEMIF_BLOCK INCONSISTENT by
Memlf.

[SWS_NvM_00361] r The job of the function NvM_ReadAll shall set the block
specific request result to NVM_REQ_NOT_OK if:

- the Memlf reports MEMIF_JOB_FAILED and

- NvMRomBlockDataAddress is not configured (no ROM block with default data is
available) for the block and

- NvMInitBlockCallback is not configured (no init callback) for the block. v ()

[SWS_NvM _00678] r The job of the function NvM_ReadAll shall report
NVM_E_REQ_FAILED to the DEM, if the Memlf reports MEMIF_JOB_FAILED. \ ()

[SWS_NvM _00291] r The job of the function NvM_ReadAll shall set the block
specific request result to NVM_REQ_OK if the corresponding block management
type is NVM_BLOCK_REDUNDANT and the function has successfully copied one of

the NV blocks from NV memory to RAM. v ()

[SWS_NvM_00292] The job of the function NvM_ReadAll shall request a CRC

recalculation over the RAM block data after the copy process SWS _NvM_ 00180 if
the NV block is configured with CRC, , i.e. if NvMCalRamBlockCrC == TRUE for the

NV block. ()

[SWS_NvM_00293] y The job of the function NvM_ReadAll shall load the default
values to the RAM blocks according to the processing of NvM_RestoreBlockDefaults
(also set the corresponding request result to NVM_REQ_RESTORED_DEFAULTS):
- if the recalculated CRC is not equal to the CRC stored in NV memory and if the
default values are available, or

- if the blocks are marked as invalid (Memlf reports MEMIF_BLOCK _INVALID) and

the default values are available.
120 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

v ()

[SWS_NvM_00679] y The job of the function NvM_ReadAll shall load the default
values to the RAM blocks according to the processing of NvM_RestoreBlockDefaults
(also set the request result to NVM_REQ_RESTORED_DEFAULTS) if the read
request passed to the underlying layer fails (MemlIf reports MEMIF_JOB_FAILED or

MEMIF_BLOCK_INCONSISTENT) and if the default values are available. \ ()

[SWS_NvM_00680] r NvM_ReadAll: If the read request passed to the underlying
layer fails and there are no default values available, the job shall leave the RAM

blocks invalid. v ()

[SWS_NvM_00294] The job of the function NvM_ReadAll shall report
NVM_E_INTEGRITY_FAILED to the DEM if a CRC mismatch occurs. ()

[SWS_NvM_00295] yr The job of the function NvM_ReadAll shall set a block specific
request result to NVM_REQ_INTEGRITY_FAILED if:

- a CRC mismatch occurs and

- NvMRomBlockDataAddress is not configured (no ROM block with default data is
available) for the block and

- NvMInitBlockCallback is not configured (no init callback) for the block. v ()

[SWS_NvM_00302] yr The job of the function NvM_ReadAll shall report
NVM_E_REQ_FAILED to the DEM if the referenced NVRAM Block is not configured

with CRC and the corresponding job process has failed. v ()

[SWS_NvM_00301] y The job of the function NvM_ReadAll shall set the
multi block request result to NVM_REQ_NOT_OK if the processing of at least one

NVRAM block fails.y ()

Note: When the result of an individual block processing (in the context of a multi-
block job) is different than NVM_REQ_OK, the individual block processing (or
individual job) is considered as failed.

[SWS_NvM_00281] r If configured by NvMSingleBlockCallback, the job of the
function NvM_ReadAll shall call the single block callback after having completely
processed a NVRAM block. For the last block, NvMSingleBlockCallback (if

configured) is called before MultiBlockCallback.y ()

Note: The idea behind using the single block callbacks also for NvM_ReadAll is to
speed up the software initialization process:
1 A single-block callback issued from an NvM_ReadAll will result in an RTE
event.

121 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

9 If the RTE is initialized after or during the asynchronous NvM_ReadAll, all or
some of these RTE events will get lost because they are overwritten during the
RTE initialization (see SWS_Rte 2536).

1 After its initialization, the RTE can use the "surviving" RTE events to start
software components even before the complete NvM_ReadAll has been
finished.

9 For those RTE events that got lost during the initialization: the RTE will start
those software components and the software components either query the
status of the NV block they want to access or request that NV block to be read.
This is exactly the same behavior if the single-block callbacks would not be
used in NvM_ReadAll.

[SWS_NvM_00251] r The job of the function NvM_ReadAll shall mark a NVRAM
bl ock as dAvalid/unmodifiedo i f NV dat a

Block. v ()

[SWS_NvM _00367] r The job of the function NvM_ReadAll shall set a RAM block to
valid and assume it to be changed if the job has successfully copied default values to

the corresponding RAM. \ ()

[SWS_NvM 00719y The NvM modul eds environment
module before it calls the function NvM_ReadAll. y ()

The DEM shall already be able to accept error notifications.

[SWS_NvM_00968]6The job of the function NvM_ReadAll shall set the block specific
request result to NVM_REQ_INTEGRITY_FAILED if:
1 the extended runtime preparation is executed for the block
1 NvMRomBIlockDataAddress is not configured (no ROM block with default data
is available) for the block and
1 NvMiInitBlockCallback is not configured (no init callback) for the block.

0

[SWS_NvM _00970] The multi block service NvM_ReadAll shall only be provided by
the NvM master. ()

122 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

s hal

AUTO SAR

8.1.3.3.2 NvM_WriteAll

[SWS_NvM_00461]8

Specification of NVRAM Manager

AUTOSAR CP R20-11

Service Name

NvM_WriteAll

void NvM_WriteAll (

Syntax void
)
Service ID [hex] 0x0d
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

Initiates a multi block write request.

Available via

NvM.h

Q@SRS_LIBS_08535)

[SWS_NvM_00018] y The job of the function NvM_WriteAll

shall synchronize the

contents of permanent RAM blocks to their corresponding NV blocks or call explicit
synchronization callback (NvM_WriteRamBlockToNvm) on shutdown.y

(SRS_LIBS_08535)

[SWS_NvM_00733] yIf NVRAM block ID 1 (which holds the configuration ID of the
memory layout) is marked as "to be written during NvM_WriteAll", the job of the
function NvM_WriteAll shall write this block in a final step (last write operation) to
prevent memory layout mismatch in case of a power loss failure during write

operation. v ()

[SWS_NvM_00254] y The function NvM_WriteAll shall signal the request to the NvM
module and return. The NVRAM Manager shall defer the processing of the requested

WriteAll until all single block job queues are empty. v ()

[SWS_NvM_00549] r The job of the function NvM_ WriteAll shall set each
proceeding block specific request result for NVRAM blocks and the multi block

request result to NVM_REQ_PENDING in advance. \ ()

123 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00896] r The job of the function NvM_WriteAll shall set the multi block

request result to NVM_REQ_OK if no NVRAM block processing fails. y
(SRS_Mem_00020)

Note: When the result of an individual block processing (in the context of a multi-
block job) is different than NVM_REQ _OK, the individual block processing is
considered as failed.

[SWS_NvM_00252] r The job of the function NvM_WriteAll shall process only the
permanent RAM blocks or call explicit synchronization callback
(NvM_WriteRamBlockToNvm) for all blocks for which the corresponding NVRAM

block parameter NvMSelectBlockForWriteAll is configured to true. v ()

[SWS_NvM_00430] y If configured by NvMDrvModeSwitch, the job of the function
NvM_WriteAll shall set the mode of each memory devicetofi f anotd e 0 bef or e

starting to iterate over all non-reserved NVRAM blocks. v ()

[SWS_NvM_00431] y If configured by NvMDrvModeSwitch, the job of the function
NvM_WriteAll shall set the modhede® e@dctler mbmo

processed all non-reserved NVRAM blocks. vy ()

[SWS_NvM_00681] yIf configured by NvMDrvModeSwitch, the job of the function
NvM_WriteAll shall set the modhedeD a&clker meée me

function NvM_CancelWriteAll has canceled the job. v ()

[SWS_NvM 00432] r The job of the function NvM_WriteAll shall check the write-
protection for each RAM block in advance. v ()

[SWS_NvM_00682] yr The job of the function NvM_WriteAll shall check the
Avalid/ modifiedo state fwol) each RAM bl ock in

[SWS_NvM _00433] r The job of the function NvM_WriteAll shall only write the
content of a RAM block to its corresponding NV block for non write-protected

NVRAM blocks. vy ()

[SWS_NvM _00474] y The job of the function NvM_WriteAll shall correct the
redundant data (if configured) if the redundancy has been lost. In this case the job of
the function NvM_WriteAll shall ignore write protection for this block in order to be

able to repair it.y ()

Note: If NvM implementation detects loss of redundancy during read operation the
user (application) should ensure that redundant block is read (e.g. during
NvM_ReadAll by configuring the block to be read during NvM_ReadAll). If the block
is not read then the NVM will not be able to correct the redundant block's data.

124 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00434] y The job of the function NvM_WriteAll shall skip every write-
protected NVRAM block without error notification. v ()

[SWS_NvM_00750] r The job of the function NvM_WriteAll shall skip every locked
NVRAM block without error notification. v ()

[SWS_NvM_00854] 6Trhe job of the function NvM_WriteAll shall skip an NVRAM
block if the NvMBlockUseCRCCompMechanism attribute is set to true and the RAM
block CRC calculated by the write job is equal to the CRC calculated during the last
successful read or write job. This mechanism shall not be applied to blocks for which
a loss of redundancy has been detected. SRS_Mem_00136)

[SWS_NvM_00298] y The job of the function NvM_WriteAll shall set the request
result to NVM_REQ _BLOCK_SKIPPED for each NVRAM block configured to be
processed by the job of the function NvM_WriteAll (NvMSelectBlockForWriteAll is
checked) and which has not been written during processing of the NvM_ WriteAll job.

v ()

[SWS_NvM _00339] rIn case of NVRAM block management type
NVM_BLOCK_DATASET, the job of the function NvM_WriteAll shall copy only the
RAM block to the corresponding NV block which is selected via the data index in the

administrative block. vy ()

[SWS_NvM_00253] r The job of the function NvM_WriteAll shall request a CRC
recalculation and renew the CRC from a NVRAM block before writing the data if a

CRC is configured for this NVRAM block. y (SRS_LIBS 08535)

[SWS_NvM_00296] r The job of the function NvM_WriteAll shall check the number of
write retries by a write retry counter to avoid infinite loops. Each unsuccessful result
reported by the MemlIf module shall be followed by an increment of the retry counter.

v ()

[SWS_NvM_00683] y The job of the function NvM_WriteAll shall set the block
specific request result to NVM_REQ_NOT_OK if the write retry counter becomes

greater than the configured NVM_MAX_NUM_OF_WRITE_RETRIES. vy ()
[SWS_NvM_00684] y The job of the function NvM_WriteAll shall report
NVM_E_REQ_FAILED to the DEM if the write retry counter becomes greater than
the configured NVM_MAX_NUM_OF WRITE_RETRIES. y ()

[SWS_NvM_00762] y The job of the function NvM_WriteAll shall copy the data
content of the RAM block to both corresponding NV blocks if the NVRAM block

125 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

management type of the processed NVRAM block is NVM_BLOCK_REDUNDANT.y
()

[SWS_NvM_00763] yIf the processed NVRAM block is of type
NVM_BLOCK_REDUNDANT the job of the function NvM_WriteAll shall start to copy
the data of the RAM block to NV block which has _not_ been read during the jobs
started by NvM_ReadBlock, NvM_ReadPRAMBIlock or NvM_ReadAll then continue

to copy the other NV block.y ()

[SWS_NvM_00337] y The job of the function NvM_WriteAll shall set the single block
request result to NVM_REQ_OK if the processed NVRAM block is of type
NVM_BLOCK_REDUNDANT and at least one of the NV blocks has been written

successfully. v ()

[SWS_NvM_00238] y The job of the function NvM_WsriteAll shall complete the job in
a non-destructive way for the NVRAM block currently being processed if a

cancellation of NvM_WriteAll is signaled by a call of NvM_CancelWriteAll. v ()

[SWS_NvM_00237] y The NvM module shall set the multi block request result to
NVM_REQ_CANCELED in case of cancellation of NvM_WriteAll. v ()

[SWS_NvM_00685] y NvM_WriteAll: The NvM module shall anyway report the error
code condition, due to a failed NVRAM block write, to the DEM. y ()

[SWS_NvM_00318] y The job of the function NvM_WriteAll shall set the multi block
request result to NVM_REQ_NOT_OK if the processing of at least one NVRAM block

fails. v ()
Note: When the result of an individual block processing (in the context of a multi-

block job) is different than NVM_REQ _OK, the individual block processing is
considered as failed.

[SWS_NvM_00329] yIf the job of the function NvM_WriteAll has successfully written
data to NV memory for a NVRAM block configured with NvMWriteBlockOnce ==
TRUE, the job shall immediately set the corresponding write protection flag in the

administrative block. v ()

[SWS_NvM_00720]fThe NvM modul eds environment shal/l
module before it calls the function NvM_WriteAll. v ()

No other multiblock request shall be pending
calls the function NvM_ WriteAll.

126 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

Note: To avoid the situation that in case of redundant NVRAM blocks two different
NV blocks are containing different but valid data at the same time, each client of the
NvM_WriteAll service may call NvM_InvalidateNvBlock in advance.

[SWS_NvM_00971] The multi block service NvM_WriteAll shall only be provided by
the NvM master. ()

8.1.3.3.3 NvM_CancelWriteAll

[SWS NvM_00458]8

Service Name

NvM_CancelWriteAll

void NvM__CancelWriteAll (

Syntax void
)
Service ID [hex] 0x0a
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description Service to cancel a running NvM_ WriteAll request.

Available via NvM.h

@SRS_Mem_08558, SRS_Mem_08540)

[SWS_NvM _00019] r The function NvM_CancelWriteAll shall cancel a running
NvM_WriteAll request. It shall terminate the NvM_WriteAll request in a way that the

data consistency during processing of a single NVRAM block is not compromisedy
(SRS_Mem_08540)

[SWS_NvM_00232] r The function NvM_CancelWriteAll shall signal the request to
the NvM module and return. v ()

[SWS_NvM_00233] y The function NvM_CancelWriteAll shall be without any effect if
no NvM_WriteAll request is pending. \ ()

[SWS_NvM_00234] y The function NvM_CancelWriteAll shall treat multiple requests
to cancel a running NvM_WriteAll request as one request, i.e. subsequent requests

will be ignored. vy ()

127 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00235] y The request result of the function NvM_CancelWriteAll shall be
implicitly given by the result of the NvM_WriteAll request to be canceled. y ()

[SWS_NvM_00236] r The function NvM_CancelWriteAll shall only modify the
error/status attribute field of the pending blocks to NVM_REQ_CANCELED and for
the currently written block after the processing of a single NVRAM block is finished to
NVM_REQ_OK or NVM_REQ_NOT_OK depending on the success of the write

operation. v ()

[SWS_NvM_00716]fThe NvM modul eds environment shal/l
module before it calls the function function NvM_CancelWriteAll. v ()

[SWS_NvM_00420] y The function NvM_CancelWriteAll shall signal the NvM module
and shall not be queued, i.e. there can be only one pending request of this type. v ()

128 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

8.1.3.3.4 NvM_ValidateAll

[SWS_NvM 00855]6

Service Name NvM_ValidateAll

void NvM_ ValidateAll (
Syntax void

)
Service ID [hex] 0x19
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description Initiates a multi block validation request.
Available via NvM.h

Q@SRS_Mem_00137)

[SWS_NvM_00856] df auto validation is configured for an NVRAM Block
(NvMBIlockUseAutoValidation == TRUE), the function NvM_ValidateAll shall set the
RAM Bl ock status t oQ8R8AMemn DM0187) CHANGEDO .

[SWS_NvM_00857] & or blocks which meet the conditions of SWS_NvM_00856 and
in addition have CRC calculation in RAM configured the function NvM_ ValidateAll
shall request the recalculation of CRC in the background, i.e. the CRC recalculation
shall be processed by the NvM_MainFunction.(SRS_Mem_00137)

[SWS_NvM_00858] érhe function NvM_ValidateAll shall signal the request to the
NvM module and return. The NVRAM Manager shall defer the processing of the
requested NvM_ValidateAll function until all single block job queues are empty.Q
(SRS_Mem_00137)

[SWS NvM 00859]6T he Nv M modul entosiall eve vnitializedhtine NvM
module before it calls the function NvM_ValidateAlLQQSRS_Mem_00137)

[SWS_NvM_00860] 6rhe job of the function NvM_ ValidateAll shall process only the
permanent RAM blocks or call explicit synchronization callback
(NvM_WriteRamBlockToNvm) for all blocks for which the corresponding NVRAM
Block parameter NvMBlockUseAutoValidation is configured to true.Q
(SRS_Mem_00137)

129 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00861] 6rhe job of the function NvM_ ValidateAll shall set each
proceeding block specific request result for NVRAM blocks and the multi block
request result to NVM_REQ _PENDING in advance.QSRS_Mem_00137)

[SWS_NvM_00862] érhe job of the function NvM_ValidateAll shall set the block

specific request result to NVM_REQ_OK if the RAM block was successfully
validated. QQSRS_Mem_00137)

130 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

8.1.3.3.5 NVM_FirstInitAll

[SWS_NvM_91001]8

Specification of NVRAM Manager
AUTOSAR CP R20-11

Service Name

NvM_FirstinitAll

void NvM_FirstiInitAll (

Syntax void
)
Service ID
[hex] 0x14
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters
. None
(in)
Parameters None
(inout)
Parameters
None

(out)

Return value None

The function initiates a multi block first initialization request. The job of the function
Description does not care if a block exists in the non-volatile memory or not OR if it is valid (i.e.
not corrupted) or not, when processing it.

Available via | NvM.h

@

For each processed block, the job of the function will either write it with default data
(if it is not of type DATASET and it has default data) or invalidate the block (if it is of
type DATASET or without default data).

The term Adefault datad means the data from
provided inside the InitBlockCallback (if any) by the related block owner.

If NvM__FirstiInitAll is called after NvM_ReadAll, then an inconsistency between the

NvM user6s expectation of RAM block contents
can occur. Even worse, also concurrent writes to the RAM block content from NvM

user side and NvM_ FirstInitAll could occur. Hence, calling NvM_FirstInitAll after

NvM_ReadAll should generally be avoided.

In light of the above, the following requirements apply:

[SWS_NvM_00912] 6The job of the function NvM_FirstInitAll shall also process the
block with ID 1 (which holds the configuration ID of the NvM module), if this block has
been configured to be processed by it and dynamic configuration is enabled. O

131 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00913] 61f a block of type NATIVE that is processed by the
NvM_ FirstInitAll has default data, the NV block shall be written with its default data.Q

[SWS_NvM_00914] 61f a NATIVE block that is processed by the NvM_FirstinitAll has
neither permanent RAM nor explicit synchronization then that block shall be
processed by using the internal NvM buffer as its RAM and, upon processing, its
RAM block state shall be left untouched. O

[SWS_NvM_00915] 61f a NATIVE block that has either permanent RAM or explicit
synchronization is processed by the NvM_FirstInitAll and the block has default data
(ROM or Init Callback) then the blocks RAM will be updated with the default data, just
like for the processing of a NvM_RestoreBlockDefaults request. O

[SWS_NvM_00916] 6If a block of type REDUNDANT that is processed by the
NvM_FirstInitAll has default data, both block instances shall be written with that
default data. O

[SWS_NvM _00917] 6If a REDUNDANT block that is processed by the

NVvM_ FirstInitAll has neither permanent RAM nor explicit synchronization then that
block shall be processed by using the internal NvM buffer as its RAM and, upon
processing, its RAM block state shall be left untouched. O

[SWS_NvM_00918] 61f a REDUNDANT block that has either permanent RAM or
explicit synchronization is processed by the NvM_FirstlInitAll and the block has
default data (ROM or Init Callback) then the blocks RAM will be updated with the
default data, just like for the processing of a NvM_RestoreBlockDefaults request.O

[SWS_NvM_00919] 61f a block of type NATIVE that is processed by the
NvM_ FirstInitAll does not have default data, the block shall be invalidated using the
same mechanism as for NvM_ InvalidateNvBlock. O

[SWS_NvM_00920] 61f a block of type REDUNDANT that is processed by the
NvM_FirstinitAll does not have default data, both block instances shall be invalidated
using the same mechanism as for NvM_InvalidateNvBlock. O

[SWS_NvM_00921] 61f a NATIVE block that is processed by the NvM_ FirstinitAll has
only the Init Callback configured and the return value of the callback is not E_OK
then the job of the function NvM_FirstInitAll shall invalidate the block. O

[SWS_NvM_00922] 61f a REDUNDANT block that is processed by the

NvM _FirstInitAll has only the Init Callback configured and the return value of the
callback is not E_OK then the job of the function NvM_FirstinitAll shall invalidate both
instances of the block. O

Note: An Init Callback returning something else than E_OK is interpreted as a
runtime decision of the block owner not to provide default data via this callback. In
this case, in order for the state of the block not to remain ambiguous, it is invalidated.

132 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00923] 6The job of the function NvM_FirstInitAll shall invalidate all
blocks that are of type DATASET and that have been configured to be processed by
it. O

[SWS_NvM_00924] 6The job of the function NvM_FirstinitAll shall invalidate all NV
block instances of a block of type DATASET, if the block was configured to be
processed by it. O

[SWS_NvM_00925] 61f the writing of a block of type NATIVE with its default data
fails, the job of the function NvM_FirstiInitAll shall set the request result to
NVM_REQ NOT OK. O

[SWS_NvM_00926] 61f the writing of a block of type REDUNDANT with its default
data fails for both instances, the job of the function NvM_FirstInitAll shall set the
request result to NVM_REQ_NOT_OK. O

[SWS_NvM_00927] 6If the invalidation of a block of type NATIVE fails, the job of the
function NvM_FirstlInitAll shall set the request result to NVM_REQ_NOT_OK. O

[SWS_NvM_00928] 61f the invalidation of a block of type REDUNDANT fails for at
least one of the two block instances, the job of the function NvM_FirstinitAll shall set
the request result to NVM_REQ_NOT_OK. O

Note: Since the purpose of the FirstlInitAll is to have all selected NvM blocks in a well

defined state (either written successfully with the default data or invalidated), if one of

the two duplicates of the REDUNDANT block was not invalidated successfully, this

has to be known. Thisis notliketheiwr i t e0 case (see requiremen
SWS_NvM_00284 and SWS_NvM_00274 for more details).

[SWS_NvM_00929] 61f the invalidation of a block of type DATASET fails for at least
one of its NV block instances then the job of the function NvM_FirstinitAll shall set
the request result to NVM_REQ_NOT_OK. O

Note: Since the purpose of the FirstInitAll is to have all selected NvM blocks in a well
defined state if at least one of the NV block instances of the DATASET block was not
invalidated successfully, this has to be known. The NvM_FirstInitAll processing of
blocks of type DATASET implies invalidating all NV block instances of all processed
blocks of type DATASET.

[SWS_NvM_00930] 6Blocks without permanent RAM block and without explicit
synchronization can be configured to be processed by the NvM_FirstinitAll. O

[SWS_NvM_00931] 6 The write protection status of a block shall be completely
ignored by the NvM_FirstInitAll functionality. O

Note: The block write protection needs to be handled by the caller of the
NvM_FirstInitAll or by the block owner (which must know about the execution of the
NvM_FirstInitAll function and related job). This is due to the fact that, upon successful
completion of the job of the NvM_FirstinitAll, all selected blocks must have a well
known and well defined state.

133 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00932] 6 The write block once functionality shall not be triggered by
NvM_FirstinitAll. O

Note: The reason behind this is to allow the blocks that are Write Once Only to be
written via the NvM_WriteBlock API with valid values, after being initialized by the job
of the function NvM_FirstInitAll.

[SWS_NvM_00933] 6The locked status of a block shall be completely ignored by the
NvM _FirstInitAll functionality. O

Note: The block locking needs to be handled by the caller of the NvM_FirstinitAll or
by the block owner (which must know about the execution of the NvM_FirstinitAll
function and related job). This is due to the fact that, upon successful completion of
the job of the NvM_FirstinitAll, all selected blocks must have a well known and well
defined state.

[SWS_NvM_00934] 61f a block that has either permanent RAM or explicit
synchronization has been successfully written into the non-volatile memory by the job
of the function NvM_FirstlnitAll then its RAM block state shall be set to VALID /
UNCHANGED. O

[SWS_NvM_00935] 61f a block that has either permanent RAM or explicit
synchronization has been successfully invalidated by the job of the function
NvM _FirstInitAll then its RAM block state shall be left untouched. O

[SWS_NvM_00936] 6 The job of the function NvM_FirstInitAll shall not be started
while there are single block requests that need to be processed by the NvM module.
0

[SWS_NvM_00937] 6The job of the function NvM_FirstlInitAll, once started, shall not
be interrupted by any single block requests except write requests for immediate
blocks. O

[SWS_NvM_00938] 61f the NvM module is not initialized and the function
NVvM_FirstinitAll is called, it shall report the Det error NVM_E_UNINIT and return
without performing any other activities. O

[SWS_NvM_00939] 61f a multi block operation is PENDING and the function
NvM_ FirstInitAll is called, it shall report the Det error NVM_E_BLOCK_PENDING and
return without performing any other activities. O

Note: The error NVM_E_BLOCK _ PENDING is used to indicate that another
multiblock operation is accepted but not completed by NvM. This is due to the fact
that the NvM module can only accept and process one multiblock operation at a time.

[SWS_NvM_00940] 6The job of the function NvM_FirstinitAll shall set the multi block

request result to NVM_REQ_NOT_OK if the processing of at least one NVRAM block
fails. O

134 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

Note: When the result of an individual block processing (in the context of a multi-
block job) is different than NVM_REQ _OK, the individual block processing is
considered as failed.

135 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

8.1.3.4 Callback notification of the NvM module

[SWS_NvM _00438] r The NvM module shall provide callback functions to be used by
the underlying memory abstraction (EEPROM abstraction / FLASH EEPROM
Emulation) to signal end of job state with or without error.

v ()

8.1.3.4.1 NVRAM Manager job end notification without error

[SWS NvM 00462]6

Service Name

NvM_JobEndNotification

void NvM_JobEndNotification (

Syntax void

)
Service ID [hex] 0x11
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
F_’arameters None
(inout)
Parameters (out) | None
Return value None

Description

Function to be used by the underlying memory abstraction to signal end of job
without error.

Available via

NvM_Memlf.h

@

[SWS_NvM _00111] r The callback function NvM_JobEndNotification is used by the
underlying memory abstraction to signal end of job without error.
Note: Successful job end notification of the memory abstraction:

- Read finished & OK

- Write finished & OK

- Erase finished & OK
This routine might be called in interrupt context, depending on the calling function. All
memory abstraction modules should be configured to use the same mode

(callback/polling). v ()

[SWS_NvM_00440] y The NvM module shall only provide the callback function
NvM_JobEndNotification if polling mode is disabled via NvMPollingMode.
The function NvM_JobEndNotification is affected by the common [SWS_NvM_00028]

configuration parameters. \ ()

136 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

8.1.3.4.2 NVRAM Manager job end notification with error

[SWS NvM 00463]6

Service Name

NvM_JobErrorNotification

void NvM_JobErrorNotification (

Syntax void

)
Service ID [hex] 0x12
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters
. None
(inout)
Parameters (out) | None
Return value None

Description

Function to be used by the underlying memory abstraction to signal end of job
with error.

Available via

NvM_Memlf.h

Q@SRS_Mem_00125)
[SWS_NvM_00112] y The callback function NvM_JobErrorNaotification is to be used

by the underlying memory abstraction to signal end of job with error.
Note: Unsuccessful job end notification of the memory abstraction:
- Read aborted or failed
- Write aborted or failed
- Erase aborted or failed
This routine might be called in interrupt context, depending on the calling function. All
memory abstraction modules should be configured to use the same mode

(callback/polling). v ()

[SWS_NvM _00441] y The NvM module shall only provide the callback function
NvM_JobErrorNotification if polling mode is disabled via NvMPollingMode.
The function NvM_JoberrorNotification is affected by the common

[SWS NvM 00028] configuration parameters. v ()

137 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

8.1.3.5 Scheduled functions

These functions are directly called by the Basic Software Scheduler. The following
functions shall have no return value and no parameter. All functions shall be non
reentrant.

[SWS_NvM_00464]8

Service Name NvM_MainFunction
void NvM_MainFunction (
Syntax void
)
Service ID [hex] Ox0e
Description Service for performing the processing of the NvM jobs.
Available via SchM_NvM.h

@SRS_BSW_00425, SRS_BSW_00373, SRS_BSW_00172)
[SWS_NvM_00256] r The function NvM_MainFunction shall perform the processing
of the NvM module jobs. v ()

[SWS_NvM_00333] y The function NvM_MainFunction shall perform the CRC
recalculation if requested for a NVRAM block in addition to SWS _NvM_00256. v ()

[SWS_NvM_00334] y The NvM module shall only start writing of a block (i.e. hand
over the job to the lower layers) after CRC calculation for this block has been

finished. v ()

[SWS_NvM_00257] y The NvM module shall only do/start job processing, queue
management and CRC recalculation if the NvM _Init function has internally set an

Al NI' T DONBKEG) signal

[SWS_NvM _00258] y The function NvM_MainFunction shall restart a destructively
canceled request caused by an immediate priority request after the NvM module has

processed the immediate priority request [SWS_NvM_00182]. v ()
[SWS_NvM_00259] r The function NvM_MainFunction shall supervise the immediate
priority queue (if configured) regarding the existence of immediate priority requests. v

0

[SWS_NvM_00346] r If polling mode is enabled, the function NvM_MainFunction
shall check the status of the requested job sent to the lower layer. v ()

138 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

[SWS_NvM_00347] r If callback routines are configured, the function
NvM_MainFunction shall call callback routines to the upper layer after completion of

an asynchronous service. v ()

[SWS_NvM_00350] rIn case of processing an NvM_WriteAll multi block request, the
function NvM_MainFunction shall not call callback routines to the upper layer as long
as the service Memlf_GetStatus returns MEMIF_BUSY_INTERNAL for the reserved
device ID MEMIF_BROADCAST_ID [7]. For this purpose (status is
MEMIF_BUSY_INTERNAL), the function NvM_MainFunction shall cyclically poll the
status of the Memory Hardware Abstraction independent of being configured for

polling or callback mode. y ()

[SWS_NvM_00349] y The function NvM_MainFunction shall return immediately if no
further job processing is possible. v ()

[SWS_NvM_00721] y NVRAM blocks with immediate priority are not expected to be
configured to have a CRC. y ()

139 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager

AUTOSAR CP R20-11

8.1.4 Expected Interfaces

In this chapter, all interfaces required by other modules are listed.

[SWS_NvM _00969]6The NvM shall call the expected interface in the same partition
context to which its functionality is mapped:
1 The master partition for all general functionality, not directly related to an
individual NV block
1 The corresponding satellite partition for all functionality directly related to an
individual NV block®)

8.1.4.1 Mandatory Interfaces
The following table defines all interfaces which are required to fulfill the core
functionality of the module.

[SWS_NvM_00465]8

API Function H.eader Description
File
Memlf_Cancel Memif.h Invokes the "Cancel” function of the underlying memory abstraction

module selected by the parameter Devicelndex.

Memlf_Erase-
ImmediateBlock

Invokes the "EraselmmediateBlock" function of the underlying

Memlf.h | memory abstraction module selected by the parameter Device

Index.

Memlf_GetJob-
Result

Memlf.h

Invokes the "GetJobResult" function of the underlying memory
abstraction module selected by the parameter Devicelndex.

Memlf_GetStatus Memlf.h

Invokes the "GetStatus" function of the underlying memory
abstraction module selected by the parameter Devicelndex.

Memlf_Invalidate-

Invokes the "InvalidateBlock” function of the underlying memory

Block Memif.h abstraction module selected by the parameter Devicelndex.

Memlf Read Memif.h Invokes the "Read" function of the und(_arlymg memory abstraction
- module selected by the parameter Devicelndex.

Memlf_Write Memif.h Invokes the "Write" function of the underlying memory abstraction

module selected by the parameter Devicelndex.

@SRS_BSW_00383, SRS_BSW_00384)

8.1.4.2 Optional Interfaces
The following table defines all interfaces which are required to fulfill an optional
functionality of the module.

[SWS NvM_00466]6

e eEelEs Description

Function File P

Crc_- Crc.h This service makes a CRC16 calculation on Crc_Length data bytes.

140 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

CalculateC-
RC16
Crc_-
CalculateC- | Crc.h This service makes a CRC32 calculation on Crc_Length data bytes.
RC32
Cre_- This service makes a CRC8 calculation on Crc_Length data bytes, with
CalculateC- | Crc.h

SAE J1850 parameters
RC8

Called by SW-Cs or BSW modules to report monitor status information to
Dem_Set- the Dem. BSW modules calling Dem_SetEventStatus can safely ignore the

EventStatus Dem.h return value. This APl will be available only if ({Dem/DemConfigSet/Dem

EventParameter/DemEventReportingType} == STANDARD_REPORTING)

E:arto_rReport- Det.h Service to report development errors.

Memlf_Set- Invokes the "SetMode" functions of all underlying memory abstraction
Memlf.h

Mode modules.

@SRS_BSW_00383, SRS_BSW_00384)

8.1.4.3 Configurable interfaces

In this chapter, all interfaces are listed for which the target function can be
configured. The target function is usually a callback function. The names of these
interfaces are not fixed because they are configurable.

[SWS_NvM_00113] The notification of a caller via an asynchronous callback routine
(NvMSingleBlockCallback) shall be optionally configurable for all NV blocks (see
ECUC_NvM_00061). ()

[SWS_NvM_00740] df a callback is configured for a NVRAM block, every
asynchronous block request to the block itself shall be terminated with an invocation
of the callback routine. Q()

[SWS_NvM_00742] df no callback is configured for a NVRAM block, there shall be A
no asynchronous notification of the caller in case of an asynchronous block request. O

0)

[SWS_NvM_00260] 6A common callback entry (NvMMultiBlockCallback) which is not
bound to any NVRAM block shall be optionally configurable for all asynchronous
multi block requests (including NvM_CancelWriteAll). ()

8.1.4.3.1 Single block job end notification

141 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

[SWS_NvM_00467]8

Service Name

NvM_SingleBlockCallbackFunction

Std_ReturnType NvM_SingleBlockCallbackFunction (
NvM_BlockRequestType BlockRequest,

SYED NvM_RequestResultType JobResult

)
Sync/Async Synchronous
Reentrancy Non Reentrant

BlockRequest The request type (read, write, ... etc.) of the previous
Parameters (in) processed block job

JobResult The request result of the previous processed block job.
Parameters
. None
(inout)
Parameters None
(out)

Std Return- E_OK: callback function has been processed successfully
Return value Tvpe any other: callback function has been processed

yp unsuccessfully

Description

Per block callback routine to notify the upper layer that an asynchronous single
block request has been finished.

Available via

NvM_Externals.h

@SRS_BSW_00457, SRS_BSW_00360, SRS_BSW_00333)

Note: The following requirements are related to the above mentioned callback
SWS NVM 00176, SWS_NVM_00281, SWS_NvM 00113 and ECUC NvM 00506.

Note: Please refer to NvMSingleBlockCallback in chapter 10. The Single block job
end notification might be called in interrupt context only if there is no callback
configured in NvM that belongs to a SW-C.

8.1.4.3.2 Multi block job end notification

[SWS NvM 00468]6

Service Name

NvM_MultiBlockCallbackFunction

Std_ReturnType NvM_MultiBlockCallbackFunction (
NvM_MultiBlockRequestType MultiBlockRequest,

SYIER NvM_RequestResultType JobResult
)
Sync/Async Synchronous
Reentrancy Non Reentrant
142 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

MultiBlock The request type (read, write, ... etc.) of the previous
Parameters (in) Request processed multi block job

JobResult The request result of the previous processed multi block job.
Parameters
; None
(inout)
Parameters None
(out)

E_OK: callback function has been processed successfully
Return value Std_ReturnType | any other: callback function has been processed
unsuccessfully

Common callback routine to notify the upper layer that an asynchronous multi

Lot block request has been finished.

Available via NvM_Externals.h

Q@SRS_BSW_00457, SRS_BSW_00360, SRS _BSW_00333)
Note: The following requirements are related to the above mentioned callback
SWS NVM 00179, SWS_NVM 00260 and ECUC_NvM_00500.

Note: Please refer to NvMMultiBlockCallback in chapter 10. The Multi block job end
notification might be called in interrupt context, depending on the calling function.

8.1.4.3.3 Callback function for block initialization

[SWS NvM_00469]6

Service Name | NvM_lInitBlockCallbackFunction

Std_ReturnType NvM_InitBlockCallbackFunction (

Syntax NvM_ InitBlockRequestType InitBlockRequest
)

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters InitBlockRequest The request type (read, restore, ... etc.) of the currently

(in) processed block

Parameters

. None

(inout)

Parameters None

(out)

E_OK: callback function has been processed successfully
Return value Std_ReturnType | any other: callback function has been processed
unsuccessfully

Per block callback routine which shall be called by the NvM module when default

L o14re] data needs to be restored in RAM, and a ROM block is not configured.

143 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

Available via NvM_Externals.h

QSRS_BSW_00457, SRS_BSW_00360, SRS_BSW_00333)
Note: The following requirements are related to the above mentioned callback:
SWS NVM 00085, SWS NVM 00266, SWS NvM 00817 and ECUC NvM 00116.

[SWS_NvM_00369] df the Init block callback returns a value different than E_OK
then the request result shall be set to NVM_REQ_NOT_OK.

Note: The Init block callback is called either if a read request for a block failed in
retrieving the data from the non-volatile memory or if explicit default data recovery is
requested. Either way, if the Init block callback does not indicate E_OK,

the read/restore default operation has failed completely and the request result needs
to reflect this. ()

Note: Please refer to NvMInitBlockCallback in chapter 10. The init block callback
function might be called in interrupt context only if there is no callback configured in
NvM that belongs to a SW-C.

[SWS_NvM _00967] If the block is configured with CalcRamBlockCrc and if the

return value for NvMInitBlockCallback is E_OK then NvM shall synchronize the data
with the NvM mirror before calculating the CRC over it. (SRS_Mem_08538,

SRS_LIBS_08533, SRS_Mem_00016, SRS_Mem_00018) ()

144 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

8.1.4.3.4 Callback function for RAM to NvM copy

[SWS NvM 00539]6

Service Name

NvM_WriteRamBlockToNvm

Std_ReturnType NvM_WriteRamBlockToNvm (

Syntax void* NvMBuffer
)

Service ID

[hex]

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) | None

Parameters

. None

(inout)

PEIEIIEEE NvMBuffer the address of the buffer where the data shall be written to

(out)

Return value

E_OK: callback function has been processed successfully
any other: callback function has been processed
unsuccessfully

Std_ReturnType

Description

Block specific callback routine which shall be called in order to let the application
copy data from RAM block to NvM module's mirror.

Available via

NvM_Externals.h

QSRS _BSW_00457) i
[SWS_NvM_00541] 6The RAM to NvM copy callback shall be a function pointer. X)
Note: Please refer to NvMWriteRamBlockToNvCallback in chapter 10.

8.1.4.3.5 Callback function for NvM to RAM copy

[SWS_NvM_00540]6

Service Name

NvM_ReadRamBlockFromNvm

Std_ReturnType NvM_ReadRamBlockFromNvm (

Syntax const void* NvMBuffer
)

Service ID

[hex]

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in)

NvMBuffer the address of the buffer where the data can be read from

145 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager

AUTOSAR CP R20-11

Parameters None
(inout)

Parameters None
(out)

Return value

E_OK: callback function has been processed successfully
Std_ReturnType any other: callback function has been processed
unsuccessfully

Description

Block specific callback routine which shall be called in order to let the application
copy data from NvM module's mirror to RAM block.

Available via

NvM_Externals.h

@SRS_LIBS 08533, SRS _BSW_00457) X
[SWS_NvM_00542] 6The NvM to RAM copy callback shall be a function pointer. ()
Note: Please refer to NvVMReadRamBlockFromNvCallback in chapter 10.

146 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

8.1.5 API Overview

Specification of NVRAM Manager
AUTOSAR CP R20-11

Request Types

Characteristics of Request Types

Type 1:

- NvM_SetDatalndex (...)

- NvM_GetDatalndex (...)

- NvM_SetBlockProtection (...)
- NvM_GetErrorStatus(...)

- NvM_SetRamBIlockStatus(...)

- synchronous request
- affects one RAM block
- available for all SW-Cs

Type 2:

- NvM_ReadBlock(...)

- NvM_WriteBlock(...)

- NvM_RestoreBlockDefaults(...)

- NvM_EraseNvBlock(...)

- NvM_InvalidateNvBlock(...)
-NvM_Cancel Jobs(é)
- NvM_ReadPRAMBIock(...)

- NvM_WritePRAMBIock(...)

- NvM_RestorePRAMBIockDefaults(...)

- asynchronous request (result via callback or polling)
- affects one NVRAM block

- handled by NVRAM manager task via request list

- available for all SW-Cs

Type 3:

- NvM_ReadAll(...)

- NvM_WriteAll(...)

- NvM_CancelWriteAll(...)
- NvM_ValidateAll(...)

- asynchronous request (result via callback or polling)
- affects all NVRAM blocks with permanent RAM data

Type 4: - synchronous request
- NVvM_Init(...) - basic initialization
- success signaled to the task via command interface
inside the function itself
147 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager

AUTOSAR CP R20-11

8.2 Service Interfaces

This chapter is an addition to the specification of the NvM module. Whereas the other
parts of the specification define the behavior and the C-interfaces of the
corresponding basic software module, this chapter formally specifies the
corresponding AUTOSAR service in terms of the SWC template. The interfaces
described here will be visible on the VFB and are used to generate the RTE between
application software and the NvM module.

8.2.1 Client-Server-Interfaces

8.2.1.1 NvM_Admin

[SWS_NvM_00737]6

Name NvMAdmin
Comment --
IsService true
Variation -
0 E_OK Operation successful
Possible Errors
1 E_NOT_OK Operation failed

Operation SetBlockProtection
Comment Service for setting/resetting the write protection for a NV block.

FOR

configClass : ECV.subEltList("NvM/NvMCommon/NvMApiConfigClass");
. LET

MEMell isConfigClass3 = configClass.value() == "NVM_AP|_CONFIG_CLASS_3":

WHERE

isConfigClass3;

ProtectionEnabled

Type boolean
Parameters Direction IN

Comment -

Variation -

. E_OK

Possible Errors E_NOT OK

@

148 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

8.2.1.2 NvM_Mirror

[SWS_NvM_00738]8

Name NvMMirror
Comment --
IsService true
Variation --
0 E_OK Operation successful
Possible Errors
1 E_NOT_OK Operation failed

Operation ReadRamBlockFromNvM
Comment Block specific callback routine which shall be called in order to let the application
copy data from NvM module's mirror to RAM block.
Variation -
SrcPtr
Type ConstVoidPtr
Direction | IN
Parameters
The parameter "SrcPtr" shall be typed by an ImplementationDataType of
Comment | category DATA_REFERENCE with the pointer target void to pass an
address (pointer) to the RAM Block.
Variation | --
Possible E_OK
Errors E_NOT_OK
Operation WriteRamBlockToNvM
Comment Block specific callback routine which shall be called in order to let the application
copy data from RAM block to NvM module's mirror.
Variation --
DstPtr
Type VoidPtr
Direction | IN
Parameters
The parameter "DstPtr" shall be typed by an ImplementationDataType of
Comment | category DATA_REFERENCE with the pointer target void to pass an
address (pointer) to the RAM Block.
Variation | --
Possible E_OK
Errors E_NOT_OK
149 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

@
8.2.1.3 NvM_NotifylnitBlock

[SWS_NvM_00736]6

Name NvMNotifylnitBlock
Comment Callback tha}t is called by the NvM module when default data needs to be restored
to the RAM image
IsService true
Variation -
Seaale 0 | E_OK RAM block content was updated
SURE 1 | RTE_E_RAM_UNCHANGED RAM block content was not changed
Operation InitBlock
Comment This callback is called if the initialization of a block has completed.
Variation --
InitBlockRequest
Type NvM_InitBlockRequestType
Parameters Direction IN
Comment --
Variation --
Possible Errors --

@

150 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

8.2.1.4 NvM_NotifyJobFinished

[SWS_NvM 00735]6

Name NvMNotifyJobFinished
Comment Callback that is called when a job has finished
IsService true
Variation --
Possible Errors 0 E_OK Operation successful
Operation JobFinished
Comment Callback that gets called if a job has finished
Variation -
BlockRequest
Type NvM_BlockRequestType
Direction IN
Comment --
Variation --
Parameters
JobResult
Type NvM_RequestResultType
Direction IN
Comment --
Variation -
Possible Errors E_OK
@

8.2.1.5 NvM_Service

[SWS_NvM_00734]8

Name NvMService
Comment -
IsService true
Variation --
0 E_OK Operation successful
Possible Errors
1 E_NOT_OK Operation failed

151 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

Operation EraseBlock

Comment Service to erase a NV block.

FOR

configClass : ECV.subEltList("NvM/NvMCommon/NvMApiConfigClass");
LET

isConfigClass3 = configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE

isConfigClass3;

Variation

E_OK

Possible Errors E_NOT_OK

Operation GetDatalndex

Comment Service for getting the currently set Datalndex of a dataset NVRAM block

FOR

configClass : ECV.subEltList("NvM/NvMCommon/NvMApiConfigClass");
LET

isConfigClass2 = configClass.value() == "NVM_API_CONFIG_CLASS_2"
WHERE

isConfigClass2;

Variation

Datalndex

Type uint8

Parameters Direction ouT

Comment -

Variation --

E_OK

Possible Errors E_NOT OK

Operation GetErrorStatus

Comment Service to read the block dependent error/status information.

Variation -

RequestResult

Type NvM_RequestResultType

Parameters Direction ouT

Comment -

Variation -

E_OK

Possible Errors E_NOT_OK

152 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

Operation InvalidateNvBlock
Comment Service to invalidate a NV block.
FOR
configClass : ECV.subEltList("NvM/NvMCommon/NvMApiConfigClass");
Variation LET

isConfigClass3 = configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE

isConfigClass3;
. E_OK
Possible Errors E_NOT OK
Operation ReadBlock
Comment Service to copy the data of the NV block to its corresponding RAM block.
FOR
configClass : ECV.subEltList("NvM/NvMCommon/NvMApiConfigClass");
LET
Variation isConfigClass2 = configClass.value() == "NVM_API_CONFIG_CLASS_2";
isConfigClass3 = configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE
isConfigClass2 OR isConfigClass3;
DstPtr
Type VoidPtr
Direction | IN
Parameters
The parameter "DstPtr" shall be typed by an ImplementationDataType of
Comment | category DATA_REFERENCE with the pointer target void to pass an
address (pointer) to the RAM Block.
Variation | --
Possible E_OK
Errors E_NOT_OK
Operation ReadPRAMBIlock
Comment --
FOR
configClass : ECV.subEltList("NvM/NvMCommon/NvMApiConfigClass");
LET
Variation isConfigClass2 = configClass.value() == "NVM_API_CONFIG_CLASS 2",

isConfigClass3 = configClass.value() == "NVM_API_CONFIG_CLASS_3"
WHERE
isConfigClass2 OR isConfigClass3;

Possible Errors

E_OK
E_NOT_OK

Operation

RestoreBlockDefaults

153 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

Comment Service to restore the default data to its corresponding RAM block.
FOR
configClass : ECV.subEltList("NvM/NvMCommon/NvMApiConfigClass");
LET
Variation isConfigClass2 = configClass.value() == "NVM_API_CONFIG_CLASS_2";
isConfigClass3 = configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE
isConfigClass2 OR isConfigClass3;
DstPtr
Type VoidPtr
Direction | IN
Parameters
The parameter "DstPtr" shall be typed by an ImplementationDataType of
Comment | category DATA_REFERENCE with the pointer target void to pass an
address (pointer) to the RAM Block.
Variation | --
Possible E_OK
Errors E_NOT_OK
Operation RestorePRAMBIlockDefaults
Comment --
FOR
configClass : ECV.subEltList("NvM/NvMCommon/NvMApiConfigClass");
LET
Variation isConfigClass2 = configClass.value() == "NVM_API_CONFIG_CLASS_2";

isConfigClass3 = configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE
isConfigClass2 OR isConfigClass3;

Possible Errors

E_OK
E_NOT_OK

Operation SetDatalndex
Comment Service for setting the Datalndex of a dataset NVRAM block.
FOR
configClass : ECV.subEltList("NvM/NvMCommon/NvMApiConfigClass");
LET
isConfigClass2 = configClass.value() == "NVM_API_CONFIG_CLASS_2";
isConfigClass3 = configClass.value() == "NVM_API_CONFIG_CLASS 3"
Variation blockMgmTypes = ECV.subEltList("NvM/NvMBIlockDescriptor/NvMBlock
ManagementType");
isMgd(mgmtType) = mgmtType.value() == "NVM_BLOCK_DATASET";
datasetMgdCount = blockMgmTypes.filter(isMgd).count();
WHERE
(isConfigClass2 OR isConfigClass3) AND (datasetMgdCount GT 0);
Parameters Datalndex
154 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

Type uint8
Direction IN
Comment --
Variation --
Possible E OK
Errors E_NOT_OK
Operation SetRamBlockStatus
Comment Service for setting the RAM block status of an NVRAM block.
LET
nvmBlockUseSetRamBlockStatus = ECV.subEltList("NvM/NvMBIlockDescriptor/
NvMBlockUseSetRamBlockStatus");
Variation useSetRamBlockStatus(useApi) = useApi.value() == true;
useSetRamBlockStatusCount = nvmBlockUseSetRamBlockStatus.filter(useSet
RamBlockStatus).count();
WHERE
(useSetRamBlockStatusCount GT 0);
BlockChanged
Type boolean
Parameters Direction IN
Comment -
Variation -
Possible E_OK
Errors E_NOT_OK
Operation WriteBlock
Comment Service to copy the data of the RAM block to its corresponding NV block.
FOR
configClass : ECV.subEltList("NvM/NvMCommon/NvMApiConfigClass");
LET
Variation isConfigClass2 = configClass.value() == "NVM_API_CONFIG_CLASS_2";
isConfigClass3 = configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE
isConfigClass2 OR isConfigClass3;
SrcPtr
Type ConstVoidPtr
Parameters | Direction | IN
The parameter "SrcPtr" shall be typed by an ImplementationDataType of
Comment | category DATA_REFERENCE with the pointer target void to pass an
address (pointer) to the RAM Block.
155 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

Variation | --
Possible E_OK
Errors E_NOT_OK
Operation WritePRAMBIock
Comment --
FOR
configClass : ECV.subEltList("NvM/NvMCommon/NvMApiConfigClass");
LET
Variation isConfigClass2 = configClass.value() == "NVM_API_CONFIG_CLASS_2";
isConfigClass3 = configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE
isConfigClass2 OR isConfigClass3;
. E_OK
Possible Errors E_NOT OK

)
8.2.2 Implementation Data Types

8.2.2.1 ImplementationDataType NVvM_RequestResultType

[SWS_NvM_00470]8

Name NvM_RequestResultType
Kind Type
Derived .
o uint8
The last asynchronous request has been finished
NVM_REQ_OK 0x00 | successfully. This shall be the default value after reset.
This status shall have the value 0.
NVM_REQ_NOT_ The last asynchronous read/write/control request has
0x01 o
OK been finished unsuccessfully.
NVM_REQ _ 0X02 An asynchronous read/write/control request is currently
PENDING pending.
Ran The result of the last asynchronous request
ange NvM_ReadBlock or NvM_ReadAll
NVM_REQ_ Note: Incaseol
INTEGRITY_ 0x03 '
FAILED NvM_ReadBlock
the content of the RAM block has changed but has
become invalid. The application is responsible to renew
and validate the RAM block content.
NVM_REQ The referenced block was skipped during execution of Nv
BLOCK _ 0x04 | M_ReadAll or NvM_WriteAll, e.g. Dataset NVRAM blocks
SKIPPED (NvM_ReadAll) or NVRAM blocks without a permanently

156 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

configured RAM block.
NVM_REQ _NV_ o .
INVALIDATED 0x05 | The referenced NV block is invalidated.
The multi block request NvM_WriteAll was canceled by
NVM_REQ calling NvM__CancelWriteAll. Or Any single block job
CANCELED 0x06 | request (NvM_ReadBlock, NvM_WriteBlock, NvM_Erase
NvBlock, NvM_InvalidateNvBlock and NvM_RestoreBlock
Defaults) was canceled by calling NvM_CancelJobs.
NVM_REQ _ :
RESTORED_ 0x08 ;I'hr;eRr%\eAriergge(; NV block had the default values copied to
DEFAULTS ge.

This is an asynchronous request result returned by the API service NvM_GetError

Description | Status. The availability of an asynchronous request result can be additionally signaled
via a callback function.
Variation --
A_vallable Rte_NvM_Type.h
via
o) |
8.2.2.2 ImplementationDataType NvM_BlockldType
[SWS NvM 00471]6
Name NvM_BlockldType
Kind Type
Pe”"ed uint16
rom
Range 0..27(16- NvMDatasetSelectionBits)-1 -- --
Identification of a NVRAM block via a unique block identifier.
Description | Reserved NVRAM block IDs: 0 -> to derive multi block request results via NvM_Get
ErrorStatus 1 -> redundant NVRAM block which holds the configuration 1D
Variation --
Avallable Rte_NvM_Type.h
via
)
8.2.2.3 ImplementationDataType NvM_InitBlockRequestType
[SWS NvM 91123]6
Name NvM_ InitBlockRequestType
Kind Type
Derived uint8
157 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

from
NVM_INIT_READ_BLOCK | 0x00 NvM_ReadBlock/ NvM_ReadPRAMBIock is
requested on the block
NVM_INIT_RESTORE_ OxO1 NvM_ RestoreBlockDefaults/ NvM_Restore
BLOCK_DEFAULTS PRAMBIockDefaults is requested on the block
Range
NVM_INIT_READ_ALL . . .
BLOCK 0x02 | NvM_ReadAll is processing this block
E\L/Il_\A—INlT—FIRST—INIT— 0x03 | NvM_FirstInitAll is processing this block
D g Identifies the type of request performed on a block when signaled via the callback
escription .
function
Variation --
Available | oo NyM_Type.h
via
Q@
8.2.2.4 ImplementationDataType NvM_BlockRequestType
[SWS NvM 91002]6
Name NvM_BlockRequestType
Kind Type
Derived | g
NvM_ReadBlock/ NvM_ReadPRAMBIlock was
NVM_READ_BLOCK 0x00 performed on the block
NVM_WRITE_BLOCK 001 NvM_WriteBlock/ NvM_WritePRAMBIlock was
performed on the block
NVM_RESTORE 002 NvM_ RestoreBlockDefaults/ NvM_Restore
BLOCK_DEFAULTS PRAMBIlockDefaults was performed on the block
Range
NVM_ERASE_NV_ 0x03 | NvM_EraseNvBlock was performed on the block
BLOCK
NVM_INVALIDATE_NV _ 0x04 NvM_ InvalidateNvBlock was performed on the
BLOCK block
NVM_READ ALL_ - . .
BLOCK 0x05 | NvM_ReadAll has finished processing this block
D L Identifies the type of request performed on a block when signaled via the callback
escription .
function
Variation --
Available Rte_NvM_Type.h
158 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

via

Q@

Note: Calling the single block callback with NVM_READ_ALL BLOCK can be used
to trigger an RTE Event that initializes a SW-C (see note below SWS_NvM_00281)
as opposed to calling the single block callback with NVM_READ_BLOCK which is
used to notify an already initialized SW-C of the result of a pending read block job.
Therefore separate literals/values are specified.

8.2.3 Ports

8.2.3.1 NvM_PAdmin_{Block}

[SWS_NvM_00843]6

Name PAdmin_{Block}
Kind Provided Interface NvMAdmin
Port
Description
Type NvM_BlockldType
FOR

nvBlockDescriptor : ECV.subEltList("NvM/NvMBlock

Port Defined Argument Descriptor"):

Ve Value LET
Block = nvBlockDescriptor.shorthame();
Blockld = nvBlockDescriptor.subEIt("NvMNvramBlock
Identifier").value();
FOR
nvBlockDescriptor : ECV.subEltList("NvM/NvMBlockDescriptor™);
LET
Variation Block = nvBlockDescriptor.shortname();
UsePort = nvBlockDescriptor.subEIt("NvMBlockUse
Port").value() == true;
WHERE
UsePort;
Q)

8.2.3.2 NvM_PM_{Block}

[SWS_NvM_00844]8

Name PM_{Block}

159 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

Kind RequiredPort Interface NvMMirror
Description | --
FOR
nvBlockDescriptor : ECV.subEltList("NvM/NvMBlockDescriptor");
LET
Block = nvBlockDescriptor.shorthame();
Variation UsePort = nvBlockDescriptor.subEIlt("NvMBlockUsePort").value() == true;
UsePortSyncMech = nvBlockDescriptor.subElt("NvMBlockUseSync
Mechanism").value() == true;
WHERE
UsePort AND UsePortSyncMech;
Q)
8.2.3.3 NvM_PNIB_{Block}
[SWS NvM 00845]6
Name PNIB_{Block}
Kind RequiredPort Interface NvMNotifylnitBlock
Description | --
FOR
nvBlockDescriptor : ECV.subEltList("NvM/NvMBlockDescriptor");
LET
Block = nvBlockDescriptor.shorthame();
UsePort = nvBlockDescriptor.subEIt("NvMBlockUsePort").value() == true;
Variation InitBlockCallbackDef = nvBlockDescriptor.subEIt("NvMInitBlockCallback™).is
Defined();
InitBlockCallbackFncDef = nvBlockDescriptor.subEIt("NvMInitBlockCallback/NvMinit
BlockCallbackFnc").isDefined();
WHERE
UsePort AND InitBlockCallbackDef AND NOT InitBlockCallbackFncDef;
0)

8.2.3.4 NvM_PNJF_{Block}

[SWS NvM 00846]6

Name PNJF_{Block}
Kind RequiredPort Interface NvMNotifyJobFinished
Description | --
FOR
nvBlockDescriptor : ECV.subEltList("NvM/NvMBlockDescriptor");
LET
Block = nvBlockDescriptor.shortname();
Variation UsePort = nvBlockDescriptor.subEIt("NvMBlockUsePort").value() == true;
SingleBlockCallbackDef = nvBlockDescriptor.subEIt("NvMSingleBlockCallback").is
Defined();
SingleBlockCallbackFncDef = nvBlockDescriptor.subElt("NvMSingleBlockCallback/
NvMSingleBlockCallbackFnc").isDefined();
WHERE

160 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

UsePort AND SingleBlockCallbackDef AND NOT SingleBlockCallbackFncDef;

@
8.2.3.5 NvM_PS_{Block}

[SWS_NvM_00847]6

Name PS_{Block}

Kind Provided Interface NvMService
Port

Description --
Type NvM_BlockldType

FOR
nvBlockDescriptor : ECV.subEltList("NvM/NvMBlock

Port Defined Argument Descriptor");

VEILEE) Value LET
Block = nvBlockDescriptor.shorthame();
Blockld = nvBlockDescriptor.subEIt("NvMNvramBlock
Identifier").value();
FOR
nvBlockDescriptor : ECV.subEltList("NvM/NvMBIlockDescriptor™);
LET
Variation Block = nvBlockDescriptor.shortname();
UsePort = nvBlockDescriptor.subEIt("NvMBlockUse
Port").value() == true;
WHERE
UsePort;
0)

161 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

9 Sequence Diagrams

9.1 Synchronous calls

9.1.1 NvM_Init

maodule maodule Comment
" " " " Initmlzation of HIVRANM
Bisnhid Hyvhd manager is perfommesd
= - 4 synchronousky
I __La=="7

! Wuhd_Init{const Nvhd_ConfigType™)” |

Figure 11: UML sequence diagram NvM_Init

9.1.2 NvM_SetDatalndex

NvM User

| |
!
NvM SetDatalndex(Std ReturnType, '
NvM_BlockidType, uint8)

NvM_SetDatalndex

Figure 12: UML sequence diagram NvM_SetDatalndex

162 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

9.1.3 NvM_GetDatalndex

¢modul e §
NvM

NvM User
O

I

| |
NvM_GetDatalndex(Std_ReturnType, I
NvM_BlockidType, uint8+**)

NvM_GetDatalndex

Figure 13: UML sequence diagram NvM_GetDatalndex

9.1.4 NvM_SetBlockProtection

¢modul e §
NvM

NvM User
[e

I

| |
NvM_SetBlockProtection(Std_ReturnType, |
NvM_BlockidType, boolean)

NvM_SetBlockProtection

Figure 14: UML sequence diagram NvM_SetBlockProtection

9.1.5 NvM_GetErrorStatus

¢modul e §
NvM

NvM User
O

I NvM_GetErrorStatus(Std_ReturnType,
| NvM BlockidType, !
NvM_RequestResultType**)

NvM_ GetErrorStatus()

Figure 15: UML sequence diagram NvM_GetErrorStatus

163 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

9.1.6 NvM_GetVersioninfo

NvM User ¢modul e §

NvM
O

I NvM_GetVersioninfo I
(Std_VersionInfoType**)

NvM_GetVersioninfo

Figure 16: UML sequence diagram NvM_GetVersionlnfo

164 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

9.2 Asynchronous calls

The following sequence diagrams concentrate on the interaction between the NvM
module and SW-C 6 s oBSW tMbde Manager. For interaction regarding the
Memory Interface please ref. to [5] or [6].

9.2.1 Asynchronous call with polling

The following diagram shows the function NvM_WriteBlock as an example of a
request that is performed asynchronously. The sequence for all other asynchronous
functions is the same, only the processed number of blocks and the block types may
vary. The result of the asynchronous function is obtained by polling requests to the
error/status information.

NvM User ¢modul eé
NvM
O

BSW Task (OS task T T
or cyclic call) | |
| I NvM_WriteBlock(Std_ReturnType, |

Comment:

| NvM_BlockidType, constvoid®) -~ ----~----___ZJ1|___| T] ST (D

: NvM_WiteBlock Set job result to NVM_REQ_PENDING

| 0

| | |

+ +

loop Job processin

P p *] | : B
[repleat until writing of blo4<is completed] | Comment:

| | Job processing (writihg NVRAM) is done

| NvM_MainFunction() | asynchronously.

Data unit by data unit is written to NVRAM
NvM_MainFunction (e.g. 1 byte every 10 ms, both depending
_______________________________ on NVRAM hardware).

During writing of data job result is still
NVM_REQ_PENDING

{F

NvM_GetErrorStatus(Std_ReturnType,
NvM_BlockidType, NvM_RequestResultType**)

-

NvM_GetErrorStatus

NvM_GetErrorStatus(Std_ReturnType,
NvM_BlockidType, NvM_RequestResultType**)

NvM_GetErrorStatus el
e -Gl _ Tl = .—‘“

| Comment:
Writing of Block completed successfully.
Job result will be NVM_REQ_OK

Figure 17: UML sequence diagram for asynchronous call with polling

165 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUl

9.22 As

TOSAR

ynchronous call with callback

Specification of NVRAM Manager

AUTOSAR CP R20-11

The following diagram shows the function NvM_WriteBlock as an example of a
request that is performed asynchronously. The sequence for all other asynchronous
functions is the same, only the processed number of blocks and the block types may
vary. The result of the asynchronous function is obtained after an asynchronous
notification (callback) by requesting the error/status information.

@ NvM User

BSW Task

T
or cyclic call) |
|

(OS task

I NvM_WriteBlock(Std_ReturnType,

¢modul ee
NvM

NvM_BlockidType, const void*) T
___________ NvM_WriteBlock _ _ _ _ _ _ _ ___
0

Comment:

Check and store request.

Callback address is stored in the NVRAM block
descriptor.

Set job result to NVM_REQ_PENDING.

|
|
loop Job processing / :
1
!

[repealit until writing of block is completed]

NvM_MainFunction()

NvM_MainFunction

NvM_MainFunction()

)
I
|
I
I
:
I

S SR U
|
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
i

 —

NvaSingleBIockCal:lbaJ:kFunction(StdeetumType,

~ { byte every 10 ms, both depending on NVRAM

Comment:

Job processing (writihg NVRAM) is done
asynchronously.

Data unit by data unit is written to NVRAM (e.g. 1
hardware).

During writing of data job result is still
NVM_REQ_PENDING

_ ___ _ _ <SingleBlocklobEndNofification> _ _ _ "33t

0

NvM_MainFunction

NvM_BIockRequestT[Fe, NvM_RequestResultType)

D et

166 of 202

NvM_GetErrorStatus(Std_ReturnType,

NvM_BlockldType, NvM_RequestResultType**)

- 4 Job result will be NVM_REQ_OK

| Comment:

Writing of Block completed.

Call Job End Notification
L
|
|
| AN
L

Comment:
Writing of Block completed successfully.

Figure 18: UML sequence diagram for asynchronous call with callback

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

Specification of NVRAM Manager

9.2.3 Cancellation of a Multi Block Request

AUTOSAR CP R20-11

The following diagram shows the effect of a cancel operation applied to a running
NvM_WriteAll multi block request. The running NvM_WriteAll function completes the
actual NVRAM block and stops further writes.

O

BSW Task (OS task

¢modul eé

or cyclic call)
|

167 of 202

¢modul eé

EcuM NvM
O O
T T
| |
| NVM_ WriteAll() |
|
|
| e ____Nwmwidealg ________ |
| L
: :NvaMainFunction() :
| AN
INvM_MainFunction Comment:
_________________ w-o T T T T T T T T A currently pending NVRAM
| . T block will be processed until its
| 1 NvM_CancelWriteAll(Q 1 end non-destructively.
| Processing a next NVRAM
| . block resulting from
| e o __ NvM_CancelWriteAll _ _ _ _ _ _ _ | L]----1 NvM_WriteAll will not be started.
| 0 R
| - - =m0 L
| INvM_MainFunction()- - =~ |
T
|
| _EcuM_CB_NfyNvMJobEnd(uints,
NvM_RequestResultType) .
________ EcuM_CB_NyNMIobEnd_ _ _ _ _ "l -~ | comment
L] 0 Call Job End Nofification if
_________________ :L\lv_M=Nlai_nF_un_ctloE___________________ Confioutes
10

o

Figure 19: UML sequence diagram for cancellation of asynchronous call

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

9.2.4 BswM Interraction

Specification of NVRAM Manager
AUTOSAR CP R20-11

The following diagrams show the interractions between NvM and BswM in terms of
single block operation and multiblock operation.

¢modul ep
BswM

BSW Task (OS task
or cyclic call)

BswM_NvM_CurrentBlockMode(Block,
NVM_REQ_PENDING)

¢modul el NvM User
NvM

Single block request()

A

loop While blockis still being processed/

168 of 202

NvM_MainFunction()
T

JobResult)

Multi block operation

BswM_NvM_CurrentBlockMode (Block, finishes in this call j

SingleBlockCallback(JobResult) .y
L

<_ _________________

Figure 20: NvM interraction with BswM in case of a single block operation

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

amodules amodules Muhd User
Banhd Mohd
o
BEW Tash (0F task I I I
or cyclic call) : : :
|
| | [hulti Block Requesh) |
: : B=nubd_MNvhd_Currentlobhode i
| | (MultiBlockRaquest, HWh_REQ_FENDING)
| -t
|
Il e =
5 e _ =
| |
| | | |
| | | |
loop For each blodi to be processed / : : :
| | | |
i i | |
! N\rM_M:alnFunctlonO - |
| |
: Bzwabd_Mvhd _CurrentBlocdul odelBlod, :
| NWh_REQ_PENDING) |
- |
|
————————————————— = !
| |
e - r - -] |
| |
| T |
| | |
loop While bladk iz till being processad / : : :
| | |
I) | |
Hvhd_MainFunction() o | |
| = |
| |
e - — - - ———— r |
| |
| | |
i i |
| | |
| | |
| | |
Hwbd_M ainFunction) - | |
T = |
| . |
| Block processing |
| Bawhd_MNwhd_CurrentBlocdodelBlodk, finishas in this call I
| JobResulf) |
= I
|
_________________ |
= SingleBlockCallback |
(BlockRequest, JobResulf) |
| |
[' o
| em - —
I 1]
|
e<-—-—-—-—-——-——————-——= +tr-—-—— - -——-—-————-—=—=—=—- |
| L] Cinky for Mvb_Read~ll |
| | |
1 1 1
| | |
| | |
Hwbd_M ainFunction) - | |
T = |
| |
| Fuld block opeaton |
| Eanhd_Nwhd_Cumentlobhode finishes in this call |
| (MultiBlockRequest, MultiBloddobResult) |
- |
I > |
|
| |
=-————"———"——- B |
= | o |
|

Figure 21: NvM interraction with BswM for a multiblock operation

169 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTOSAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

amodules amodules MvM U=r
Bsaid Nwhd
[]
BEWTak {05 tazk T T T
orcydiccall 1 ! |
I 1 I I
: H ! - N _Wiit=Al1) !
| Ey.'h-'-_N\'I.-'_ Currentto bl ode{NVM _WRITE_ALL,
: i NV _REC_FENDING)
| e
|
N i £
I
| T 1 =1
I 1
| I |
alt i |r
[N _:Wrilafxll accepted but notyet started : :
| I | g MM _CanoslWiit=AII])
| BawM_NvM_Currento b ode{MVM _WRITE_ALL,
: H NVIM_RECQ CANCELED)
_—
| -
|
. [pE— ?,
I
I | ittt]
I 1
| I [
S] e e e e i
[Nw.-h-l_:'wm:aa.u started but not finished] : :
: : !__1 M _Cancel Vit Al
I 1
I 1
| | ittt o
I 1
I 1 T T
| 1 I I
| Mwbd _M sinFunction{ | |
T bt I
1 I
BaaM_Mw_CurrentJobMode{NvM_WRITE_ALL, |
! NVI4_REQ CANCELED) :
I
I
————————————————— > |
I
1 I
<emmmmoooees bommmm oo |
T 1 T I
| 1 | |
I T T T
I)] [)) I)] I
Figure 22: NvM interraction with BswM in case of a WriteAll cancellation
170 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
) AUTOSAR CP R20-11

¢modul efe ¢modul efe NvM User
BswM NvM

BSW Task (OS task
or cycllic call)

Single block request()

|

|

| BswM_NvM_CurrentBlockMode(Block,

: NVM_REQ_PENDING)

|

T

|

e

| | >
| |

| | |

| 1 1

| alt |

| - . |

| [Smglle block request just queued] | NvM_CancelJobs(Blockid)

| _

| | BswM_NvM_CurrentBlockMode(Block,

: ! NVM_REQ_CANCELED)

|

|

M - ——————-=

|

I T i =
| |

| | |

- [l B Bttt b
| [Single block request processing is ongoing] |

| | |

: : ! NvM_CancelJobs(Blockid)

| |

! ! turn(E_NOT_OK)

1 | — —— _ fetumn(s NOT_OK) _ _ _ =

| | =
| | L
| T

Figure 23: NvM interraction with BswM in case of a single block cancellation

171 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR Specification of NVRAM Manager
’ AUTOSAR CP R20-11

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into
containers. In order to support the specification Chapter 10.1 describes
fundamentals. It also specifies a template (table) you shall use for the parameter
specification.

Chapter 10.2 specifies the structure (containers) and the parameters of the module

NvM.

Chapter 10.2.9 specifies published information of the module NvM.

10.1How to read this chapter

For details refer to the chapter 10inl Alntro
SWS_BSWGeneral.

10.2Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters describe chapter 7.2 and chapter 8.

AUT OSARParameterDefinition:
EcucDefinitionCollection

+module

NvM: EcucModuleDef NvMCommon:
+container EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 0

NvMBlockDescriptor:
+container EcucParamConfContainerDef

upperMultiplicity = 65536
lowerMultiplicity = 1

NvMBlockCiphering:
+container EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 65535

172 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR

10.2.1 NvVM

Specification of NVRAM Manager
AUTOSAR CP R20-11

SWS Item

ECUC_NvM_00539 :

Module Name NvM

Module Description

Configuration of the NvM (NvRam Manager) module.

Post-Build Variant Support [false

Supported Config Variants

VARIANT -LINK -TIME, VARIANT -PRECOMPILE

Included Containers

Container Name Multiplicity [Scope / Dependency
Container for a chiphering of the Block.
NvMBIlockCiphering 0..65535 [Tags:
atp.Status=draft
Container for a management structure to configure the
composition of a given NVRAM Block Management Type. Its
. multiplicity describes the number of configured NVRAM
NvMBlockDescriptor 1..65536 blocks, one block is required to be configured. The NVRAM
block descriptors are condensed in the NVRAM block
descriptor table.
NvMCommon 1 Container for common configuration options.

NvmDemEventParameterRef

Container for the references to DemEventParameter elements|
which shall be invoked using the APl Dem_SetEventStatus in
case the corresponding error occurs. The Eventld is taken

S 0.1 from the referenced DemEventParameter's DemEventld
symbolic value. The standardized errors are provided in this
container and can be extended by vendor-specific error
references.

10.2.2 NvMCommon

SWS ltem ECUC NvM 00028 :

Container Name NvMCommon

Parent Container NvM

Description

Container for common configuration options.

Configuration Parameters

SWS ltem ECUC _NvM 00491 :

Name NvMApiConfigClass

Parent Container NvMCommon

Description Preprocessor switch to enable some API calls which are related to NVM API
configuration classes.

Multiplicity 1

Type EcucEnumerationParamDef

Range NVM_API_CONFIG_CLASS 1 All API calls belonging to configuration

class 1 are available.

NVM_API_CONFIG_CLASS_2

All API calls belonging to configuration
class 2 are available.

NVM_API_CONFIG_CLASS_3

All API calls belonging to configuration
class 3 are available.

Post -Build Variant

Value false

Value Pre-compile time X All Variants

Configuration Link time -

Class Post -build time -

Scope / scope: local

173 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

[Dependency | |
SWS Item ECUC_NvM_00550 :
Name NvMBswMMultiBlockJobStatusinformation
Parent Container NvMCommon
Description This parameter specifies whether BswM is informed about the current
status of the multiblock job.
True: call BswM_NvM_CurrentJobMode if ReadAll and WriteAll are
started, finished, canceled
False: do not inform BswM at all
Multiplicity 1
Type EcucBooleanParamDef
Default value true
Post-Build Variant Value false
\Value Configuration Class |Pre-compile time X [VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post-build time --
Scope / Dependency scope: local

SWS Item ECUC_NvM_00492 :

Name NvMCompiledConfigld

Parent Container NvMCommon

Description Configuration ID regarding the NV memory layout. This configuration ID
shall be published as e.g. a SW-C shall have the possibility to write it to NV
memory.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 65535 |

Default value -~

Post-Build Variant Value false

Value Configuration Class |Pre-compile time X |All Variants
Link time -
Post -build time -

Scope / Dependency scope: local

SWS ltem ECUC_NvM_00493 :

Name NvMCrcNumOfBytes

Parent Container NvMCommon

Description If CRC is configured for at least one NVRAM block, this parameter defines
the maximum number of bytes which shall be processed within one cycle
of job processing.

Multiplicity 1

Type EcuclntegerParamDef

Range 1..65535 |

Default value --

Post-Build Variant Value false

Value Configuration Class |Pre-compile time X [VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post-build time --

Scope / Dependency scope: local

SWS Item ECUC _NvM 00572 :

Name NvMCsmRetryCounter

Parent Container NvMCommon

Description This value specifies the number of CSM encryption/decryption job retry
attempts.

174 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

CSM jobs for block reading and writing may fail (e.g. module busy, queue
full, ...).

To not directly abort the read/write with an error status, the NvM will retry
the CSM job for the configured NvMCsmRetryCounter times.

Configuring 0 means: no retry behavior; job will be aborted directly.
Tags:
atp.Status=draft

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0..255 |

Default value 0

Value Configuration Class |Pre-compile time X |All Variants
Link time --
Post -build time --

Scope / Dependency scope: local

SWS ltem ECUC NvM 00494 :

Name NvMDatasetSelectionBits

Parent Container NvMCommon

Description Defines the number of least significant bits which shall be used to address
a certain dataset of a NVRAM block within the interface to the memory
hardware abstraction.
0..8: Number of bits which are used for dataset or redundant block
addressing.
0: No dataset or redundant NVRAM blocks are configured at all, no
selection bits required.
1: In case of redundant NVRAM blocks are configured, but no dataset
NVRAM blocks.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..8 |

Default value -~

Post-Build Variant Value false

\Value Configuration Class |Pre-compile time X |VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post -build time -

Scope / Dependency scope: local

dependency: MemHwA, NVM_NVRAM_BLOCK_IDENTIFIER,
NVM BLOCK_MANAGEMENT TYPE

SWS ltem ECUC_NvM_ 00495 :

Name NvMDeVvErrorDetect

Parent Container NvMCommon

Description Switches the development error detection and notification on or off.
9 true: detection and natification is enabled.
i false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post -Build Variant Value false

Value Configuration Class |Pre-compile time X Al Variants

Link time --

175 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

Post -build time

Scope / Dependency

scope: local

SWS Item ECUC_NvM_00496 :

Name NvMDrvModeSwitch

Parent Container NvMCommon

Description Preprocessor switch to enable switching memory drivers to fast mode
during performing NvM_ReadAll and NvM_WriteAll
true: Fast mode enabled.
false: Fast mode disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class |Pre-compile time X [VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post-build time --

Scope / Dependency scope: local

SWS ltem ECUC NvM 00497 :

Name NvMDynamicConfiguration

Parent Container NvMCommon

Description Preprocessor switch to enable the dynamic configuration management
handling by the NvM_ReadAll request.
true: Dynamic configuration management handling enabled.
false: Dynamic configuration management handling disabled.
This parameter affects all NvM processing related to Block with ID 1 and
all processing related to Resistant to Changed Software. If the Dynamic
Configuration is disabled, Block 1 cannot be used by NvM.

Multiplicity 1

Type EcucBooleanParambDef

Default value --

Post-Build Variant Value false

Value Configuration Class |Pre-compile time X |VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post-build time --

Scope / Dependency scope: local

SWS ltem ECUC_NvM_00498 :

Name NvMJobPrioritization

Parent Container NvMCommon

Description Preprocessor switch to enable job prioritization handling
true: Job prioritization handling enabled.
false: Job prioritization handling disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value false

\Value Configuration Class |Pre-compile time X |VARIANT-PRE-COMPILE
Link time X |[VARIANT-LINK-TIME
Post -build time -

Scope / Dependency scope: local

SWS Item ECUC _NvM_ 00555 :
Name NvMMainFunctionPeriod
176 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

Parent Container

NvMCommon

Description [The period between successive calls to the main function in seconds.
Multiplicity 1
Type EcucFloatParamDef
Range 0 .. INF[|
Default value --
Post-Build Variant Value false
\Value Configuration Class |Pre-compile time X |All Variants
Link time --
Post-build time --
Scope / Dependency scope: ECU

SWS ltem ECUC _NvM 00500 :

Name NvMMultiBlockCallback

Parent Container NvMCommon

Description Entry address of the common callback routine which shall be invoked on
termination of each asynchronous multi block request

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -~

maxLength --

minLength --

regularExpression

Post -Build Variant

Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Pre-compile time X [VARIANT-PRE-COMPILE

Class Link time X |VARIANT-LINK-TIME
Post-build time --

\Value Configuration Class |Pre-compile time X |VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post -build time -

Scope / Dependency scope: local

SWS ltem ECUC _NvM 00501 :
Name NvMPollingMode
Parent Container NvMCommon
Description Preprocessor switch to enable/disable the polling mode in the NVRAM
Manager and at the same time disable/enable the callback functions
useable by lower layers
true: Polling mode enabled, callback function usage disabled.
false: Polling mode disabled, callback function usage enabled.
Multiplicity 1
Type EcucBooleanParamDef
Default value --
Post-Build Variant Value false
\Value Configuration Class |Pre-compile time X |VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post-build time --
Scope / Dependency scope: local

SWS ltem ECUC_NvM_00518:

Name NvMRepeatMirrorOperations

Parent Container NvMCommon

Description Defines the number of retries to let the application copy data to or from the
NvM module's mirror before postponing the current job.

177 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

Multiplicity 1

Type EcuclntegerParamDef

Range 0.7 |

Default value 0

Post-Build Variant Value false

\Value Configuration Class |Pre-compile time X |VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME
Post -build time -

Scope / Dependency scope: local

SWS ltem ECUC NvM 00502 :

Name NvMSetRamBlockStatusApi

Parent Container NvMCommon

Description Preprocessor switch to enable the APl NvM_SetRamBlockStatus.
true: APl NvM_SetRamBlockStatus enabled.
false: APl NvM SetRamBlockStatus disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

\Value Configuration Class |Pre-compile time X Al Variants
Link time --
Post-build time -

Scope / Dependency scope: local

SWS ltem ECUC_NvM_ 00503 :

Name NvMSizelmmediateJobQueue

Parent Container NvMCommon

Description Defines the number of queue entries for the immediate priority job queue.
If NVM_JOB_PRIORITIZATION is switched OFF this parameter shall be
out of scope.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 1..65535 |

Default value -~

Post-Build Variant false

Multiplicity

Post -Build Variant Value false

Multiplicity Configuration Pre-compile time X [VARIANT-PRE-COMPILE

Class Link time X |VARIANT-LINK-TIME
Post-build time --

\Value Configuration Class |Pre-compile time X [VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post-build time --

Scope / Dependency scope: local

dependency: NVM_JOB_PRIORITIZATION

SWS ltem ECUC _NvM 00504 :

Name NvMSizeStandardJobQueue

Parent Container NvMCommon

Description Defines the number of queue entries for the standard job queue.
Multiplicity 1

Type EcuclIntegerParamDef

Range 1..65535 |

Default value --

Post-Build Variant Value false

178 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR

Specification of NVRAM Manager

AUTOSAR CP R20-11

Value Configuration Class

Pre-compile time X [VARIANT-PRE-COMPILE

Link time X [VARIANT-LINK-TIME

Post-build time --

Scope / Dependency

scope: local

SWS Item ECUC _NvM 00505 :

Name NvMVersionInfoApi

Parent Container NvMCommon

Description Pre-processor switch to enable / disable the API to read out the modules
version information].
true: Version info API enabled.
false: Version info API disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class |Pre-compile time X Al Variants
Link time --

Post-build time --

Scope / Dependency

scope: local

SWS Item ECUC_NvM_00565 :

Name NvMEcucPartitionRef

Parent Container NvMCommon

Description Maps the NvM to one or multiple ECUC partitions to make its C-APIs
available in the according partition.

Multiplicity 1..%

Type Reference to [EcucPartition]

\Value Configuration Class |Pre-compile time X |All Variants
Link time -

Post -build time --

Scope / Dependency

scope: ECU

SWS ltem ECUC _NvM 00566 :

Name NvMMasterEcucPartitionRef

Parent Container NvMCommon

Description Maps the NvM master to zero or one ECUC partition to assign the master
functionality to a certain core. The ECUC patrtition referenced is a subset of
the ECUC partitions where the NvM is mapped to.

Multiplicity 0..1

Type Reference to [EcucPartition]

Value Configuration Class |Pre-compile time X |All Variants
Link time --

Post -build time --

Scope / Dependency

scope: ECU

[No Included Containers

[SWS_NvM_CONSTRO00974] The ECUC patrtition referenced by
NvMMasterEcucPartitionRef shall be within the subset of the ECUC partitions
referenced by NvMEcucPartitionRef. ()

179 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR

[SWS_NvM_CONSTR00975]

Specification of NVRAM Manager
AUTOSAR CP R20-11

If NvMEcucPartitionRef references one or more

ECUC partitions, NvMMasterEcucPartitionRef shall have a multiplicity of one and
reference one of these ECUC patrtitions as well. ()

10.2.3 NvMBlockDescriptor

SWS Item ECUC_NvM_00061 :
Container Name NvMBlockDescriptor
Parent Container NvM

Description

Container for a management structure to configure the composition of a
given NVRAM Block Management Type. Its multiplicity describes the
number of configured NVRAM blocks, one block is required to be
configured. The NVRAM block descriptors are condensed in the NVRAM

block descriptor table.

Configuration Parameters

SWS Item ECUC _NvM 00476 :
Name NvMBlockCrcType
Parent Container |[NvMBIlockDescriptor
Description Defines CRC data width for the NVRAM block. Default: NVM_CRC186, i.e. CRC16
will be used if NVM BLOCK USE CRC==true
Multiplicity 0..1
Type EcucEnumerationParamDef
Range NVM_CRC16 (Default) CRC16 will be used if
NVM BLOCK USE CRC==true.
NVM_CRC32 CRC32 is selected for this NVRAM block if
NVM BLOCK USE CRC==true.
NVM_CRCS8 CRCS8 is selected for this NVRAM block if
NVM BLOCK USE CRC==true.
Post-Build Variant lse
Multiplicity
Post-Build Variant lse
Value
Multiplicity Pre-compile time X [VARIANT-PRE-COMPILE
Configuration Link time X [VARIANT-LINK-TIME
Class Post -build time -
\Value Pre-compile time X [VARIANT-PRE-COMPILE
Configuration Link time X [VARIANT-LINK-TIME
Class Post-build time --
Scope / scope: local
Dependency dependency: NVM_BLOCK USE_CRC, NVM CALC RAM BLOCK CRC
SWS ltem ECUC_NvM_00554 :
Name NvMBlockHeaderInclude
Parent Container NvMBlockDescriptor
Description Defines the header file where the owner of the NVRAM block has the
declarations of the permanent RAM data block, ROM data block (if
configured) and the callback function prototype for each configured
callback. If no permanent RAM block, ROM block or callback functions are
configured then this configuration parameter shall be ignored.
Multiplicity 0..1
Type EcucStringParamDef
Default value --
maxLength --
minLength --
180 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

regularExpression

Post -Build Variant

Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Pre-compile time X |VARIANT-PRE-COMPILE

Class Link time X |VARIANT-LINK-TIME
Post -build time -

\Value Configuration Class |Pre-compile time X |VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: local

SWS Item ECUC NvM 00477 :

Name NvMBIlockJobPriority

Parent Container NvMBlockDescriptor

Description Defines the job priority for a NVRAM block (0 = Immediate priority).

Multiplicity 1

Type EcuclntegerParamDef

Range 0..255 |

Default value -~

Post-Build Variant Value false

Value Configuration Class |Pre-compile time X [VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_NvM_00062 :

Name NvMBlockManagementType

Parent Container NvMBIlockDescriptor

Description Defines the block management type for the NVRAM block.[SWS NvM 00137]
Multiplicity 1

Type EcucEnumerationParamDef

Range NVM_BLOCK_DATASET NVRAM block is configured to be of

dataset type.

NVM_BLOCK_NATIVE

NVRAM block is configured to be of
native type.

NVM_BLOCK_REDUNDANT

NVRAM block is configured to be of
redundant type.

Post-Build Variant
\Value

false

\Value Pre-compile time X [VARIANT-PRE-COMPILE
Configuration Link time X VARIANT-LINK-TIME
Class Post -build time --
Scope / scope: local
Dependency
SWS ltem ECUC _NvM 00557 :
Name NvMBlockUseAutoValidation
Parent Container NvMBlockDescriptor
Description Defines whether the RAM Block shall be auto validated during shutdown
phase.
true: if auto validation mechanism is used,
false: otherwise
Multiplicity 1
Type EcucBooleanParamDef
Default value false

181 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

Post-Build Variant Value false

Value Configuration Class |Pre-compile time X [VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post -build time -

Scope / Dependency scope: local

SWS Item ECUC_NvM_00563 :

Name NvMBlockUseCompression

Parent Container NvMBlockDescriptor

Description Defines whether the data is compressed before written.
true: data compression activated (takes more time to read and write)
false: no compression
Tags:
atp.Status=draft

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

\Value Configuration Class |Pre-compile time X |VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post -build time -

Scope / Dependency scope: local

SWS ltem ECUC_NvM_00036 :

Name NvMBlockUseCrc

Parent Container NvMBlockDescriptor

Description Defines CRC usage for the NVRAM block, i.e. memory space for CRC is
reserved in RAM and NV memory.
true: CRC will be used for this NVRAM block.
false: CRC will not be used for this NVRAM block.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value false

Value Configuration Class |Pre-compile time X |VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post -build time --

Scope / Dependency scope: local

SWS ltem ECUC _NvM 00556 :

Name NvMBlockUseCRCCompMechanism

Parent Container NvMBIlockDescriptor

Description Defines whether the CRC of the RAM Block shall be compared during a
write job with the CRC which was calculated during the last successful
read or write job.
true: if compare mechanism is used,
false: otherwise

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post -Build Variant Value false

Value Configuration Class |Pre-compile time X |VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post-build time --

Scope / Dependency scope: local

dependency: False if NvMBlockUseCrc = False

182 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

SWS ltem ECUC _NvM 00559 :

Name NvMBlockUsePort

Parent Container NvMBlockDescriptor

Description If this parameter is true it defines whether:

1 the port with interface 'NvMMirror' for synchronization mechanism
callbacks are generated if the parameter
NvMBlockUseSyncMechanism is configured TRUE;

1 the port with interface 'NvMNotifyInitBlock' for initialization block
callback is generated if NvMInitBlockCallback parameter is
configured (independent of the content);

1 the port with interface 'NvMNotifyJobFinished' for single block
callback is generated if NvMSingleBlockCallback parameter is
configured (independent of the content);

9 the port with interface '"NvMAdmin' for SetBlockProtection
operation is generated.

Multiplicity 1
Type EcucBooleanParamDef

Default value

Multiplicity Configuration Pre-compile time X [VARIANT-PRE-COMPILE

Class Link time X |VARIANT-LINK-TIME
Post -build time -

\Value Configuration Class |Pre-compile time X |VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post -build time --

Scope / Dependency scope: local

SWS ltem ECUC_NvM_00552 :

Name NvMBlockUseSetRamBlockStatus

Parent Container NvMBlockDescriptor

Description Defines if NvMSetRamBlockStatusApi shall be used for this block or not.
Note: If NvMSetRamBlockStatusApi is disabled this configuration
parameter shall be ignored.
true: calling of NvMSetRamBIlockStatus for this RAM block shall set the
status of the RAM block.
false: calling of NvMSetRamBlockStatus for this RAM block shall be
ignored.

Multiplicity 1

Type EcucBooleanParamDef

Default value -~

Post -Build Variant Value false

Value Configuration Class |Pre-compile time X [VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post -build time -

Scope / Dependency scope: local

SWS Item ECUC_NvM_00519:

Name NvMBIlockUseSyncMechanism

Parent Container NvMBlockDescriptor

Description Defines whether an explicit synchronization mechanism with a RAM mirror
and callback routines for transferring data to and from NvM module's RAM
mirror is used for NV block. true if synchronization mechanism is used,

183 of 202 Document ID 33: AUTOSAR_SWS_NVRAMManager

AUTO SAR

Specification of NVRAM Manager
AUTOSAR CP R20-11

false otherwise.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

\Value Configuration Class |Pre-compile time X |VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post -build time -

Scope / Dependency scope: local

SWS ltem ECUC NvM 00033 :

Name NvMBIlockWriteProt

Parent Container NvMBlockDescriptor

Description Defines an initial write protection of the NV block
true: Initial block write protection is enabled.
false: Initial block write protection is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value false

\Value Configuration Class |Pre-compile time X |VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: local

SWS ltem ECUC _NvM_ 00551 :

Name NvMBswMBlockStatusInformation

Parent Container NvMBlockDescriptor

Description This parameter specifies whether BswM is informed about the current
status of the specified block.
True: Call BswM_NvM_CurrentBlockMode on changes
False: Don't inform BswM at all

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

\Value Configuration Class |Pre-compile time X |VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post -build time -

Scope / Dependency scope: local

SWS ltem ECUC NvM 00119 :

Name NvMCalcRamBlockCrc

Parent Container NvMBlockDescriptor

Description Defines CRC (re)calculation for the permanent RAM block or NVRAM
blocks which are configured to use explicit synchronization mechanism.
true: CRC will be (re)calculated for this permanent RAM block.
false: CRC will not be (re)calculated for this permanent RAM block.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value

Post -Build Variant

Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Pre-compile time X [VARIANT-PRE-COMPILE
Class Link time X [VARIANT-LINK-TIME

184 of 202

Document ID 33: AUTOSAR_SWS_NVRAMManager

