
 Specification of Key Manager
AUTOSAR CP R20-11

1 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Document Title Specification of Key Manager
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 907

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R20-11

Document Change History
Date Release Changed by Change Description

2020-11-30 R20-11 AUTOSAR
Release
Management

¶ Editorial changes, improve error
section

¶ Add security events for IdsM

¶ Detail order of certificate verification

¶ Align functions, parameters and
return values for C-API and service
interfaces

¶ Signing request reference for CSR

2019-11-28 R19-11 AUTOSAR
Release
Management

¶ Editorial changes.

¶ Create general error detection in
chapter 7.4.

¶ Changed Document Status from
Final to published.

2018-10-31 4.4.0 AUTOSAR
Release
Management

¶ Initial release

 Specification of Key Manager
AUTOSAR CP R20-11

2 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Disclaimer

This work (specification and/or software implementation) and the material contained
in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR
and the companies that have contributed to it shall not be liable for any use of the
work.

The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the
work may be utilized or reproduced, in any form or by any means, without permission
in writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

 Specification of Key Manager
AUTOSAR CP R20-11

3 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Table of Contents

1 Introduction and functional overview ... 5

1.1 Important note ... 5

2 Acronyms and abbreviations.. 6

3 Related documentation .. 7

3.1 Input documents ... 7

3.2 Related standards and norms .. 7

3.3 Related specification ... 7

4 Constraints and assumptions ... 8

4.1 Limitations ... 8

4.2 Applicability to car domains .. 8

5 Dependencies to other modules .. 9

5.1 Dependencies to Crypto Service Manager... 9

5.2 Dependencies to Non Volatile Memory .. 9

5.3 Dependencies to Synchronized Time Base ... 9

6 Requirements traceability .. 10

7 Functional specification .. 11

7.1 Crypto key submodule .. 11

7.1.1 General behavior ... 12

7.2 Certificate Submodule .. 15

7.2.1 General behavior ... 16

7.2.2 Initialization .. 16

7.2.3 Certificate configuration .. 17

7.2.4 Operation mode ... 20

7.3 Security Events ... 23

7.4 Error classification .. 25

7.4.1 Development Errors .. 25

7.4.2 Runtime Errors .. 25

7.4.3 Transient Faults ... 25

7.4.4 Production Errors .. 26

7.4.5 Extended Production Errors .. 26

7.5 Error detection .. 26

8 API specification ... 27

8.1 Imported types .. 27

8.2 Type definitions ... 28

8.2.1 KeyM_ConfigType ... 28

8.2.2 KeyM_KH_UpdateOperationType .. 29

8.2.3 KeyM_CertElementIteratorType ... 29

8.2.4 KeyM_CryptoKeyIdType ... 30

8.2.5 KeyM_CertDataPointerType ... 30

8.3 Function definitions ... 31

8.3.1 General .. 31

 Specification of Key Manager
AUTOSAR CP R20-11

4 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

8.3.2 Crypto key operation ... 34

8.3.3 Certificate handling .. 44

8.4 Call-out definitions .. 62

8.5 Scheduled functions ... 63

8.5.1 KeyM_MainFunction.. 63

8.5.2 KeyM_MainBackgroudFunction .. 63

8.6 Expected Interfaces .. 63

8.6.1 Mandatory Interfaces... 64

8.6.2 Optional Interfaces .. 64

8.6.3 Configurable interfaces ... 65

8.7 Service Interfaces ... 78

8.7.1 Scope of this Chapter .. 78

8.7.2 Data Types .. 78

8.7.3 Client-Server-Interfaces .. 84

8.7.4 Ports .. 103

9 Sequence diagrams ... 106

9.1 Store single key .. 106

9.2 Store multiple keys ... 107

9.3 Derive key ... 108

9.4 Add working certificate .. 109

9.5 Add root or intermediate certificate .. 110

10 Configuration specification ... 111

10.1 Containers and configuration parameters .. 111

10.1.1 KeyM .. 111

10.1.2 KeyMGeneral ... 112

10.1.3 KeyMCertificate .. 118

10.1.4 KeyMCertificateElement .. 126

10.1.5 KeyMCertificateElementVerification .. 128

10.1.6 KeyMCertificateElementRule ... 129

10.1.7 KeyMCertificateElementCondition ... 130

10.1.8 KeyMCertificateElementConditionPrimitive 131

10.1.9 KeyMCertificateElementConditionArray .. 132

10.1.10 KeyMCertificateElementConditionArrayElement 132

10.1.11 KeyMCertificateElementConditionCerificateElement 133

10.1.12 KeyMCertificateElementConditionValue.. 133

10.1.13 KeyMCertificateElementConditionSenderReceiver 134

10.1.14 KeyMCryptoKey ... 134

10.1.15 KeyMNvmBlock .. 140

10.1.16 KeyMSecurityEventRefs .. 141

10.2 Published Information ... 144

11 Not applicable requirements .. 145

 Specification of Key Manager
AUTOSAR CP R20-11

5 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

1 Introduction and functional overview

The AUTOSAR KeyM module consists of two sub modules, the crypto key
submodule and the certificate submodule.

The crypto key submodule provides an API and configuration items to introduce or
update pre-defined cryptographic key material. It acts as a key client to interpret the
provided data from a key server and to create respective key materials. These keys
are provided to the crypto service manager. After successful installation of the key
material, the application is able to utilize the crypto operations. This allows OEMs to
introduce key materials in production or maintenance phase to ECUs separate from
the application.

The certificate submodule provides an API and configuration to operate on
certificates. It allows to define certificate slots and associate them in a hierarchy as it
is used in a PKI. Certificates can be permanently stored like a Root or intermediate
certificate(s) so that they can be used to verify a given certificate against a certificate
chain. Furthermore, the certificate submodule allows to access certificate elements or
to verify its contents.

1.1 Important note

This specification provides skeletons of an API for a Vehicle Key and Certificate
Management system. Not all functionalities have been completely specified. This
may allow some freedom of interpretation and implementation details. Even though
the interfaces have been designed in a generic and flexible way it might be the case
that they can change in upcoming AUTOSAR releases.

 Specification of Key Manager
AUTOSAR CP R20-11

6 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

2 Acronyms and abbreviations

Abbreviation /
Acronym:

Description:

KeyM Key Manager

PKI Public Key Infrastructure

CSR Certificate Signing Request

CSM Crypto Service Manager

CRL Certificate Revocation List

CA Certificate Authority

OID Object Identifier. A byte array that identifies a certificate element or group
or list of certificate elements.

 Specification of Key Manager
AUTOSAR CP R20-11

7 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

3 Related documentation

3.1 Input documents

[1] AUTOSAR Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[2] AUTOSAR General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral.pdf

[3] AUTOSAR General Specification for Basic Software Modules
AUTOSAR_SWS_BSWGeneral.pdf

[4] AUTOSAR Specification of Crypto Service Manager
AUTOSAR_SWS_CryptoServiceManager.pdf

[5] AUTOSAR Requirements on Crypto Stack
AUTOSAR_SRS_CryptoStack.pdf

[6] AUTOSAR Requirements on Intrusion Detection System

AUTOSAR_RS_IntrusionDetectionSystem.pdf

3.2 Related standards and norms

[7] IEC 7498-1 The Basic Model, IEC Norm, 1994

[8] IETF 5280 Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile

[9] SHE ï Secure Hardware Extension, Functional Specification, V1.1

3.3 Related specification

AUTOSAR provides a General Specification on Basic Software (SWS BSW General)
[3] which is also valid for the Key Management module.

Thus, the specification SWS BSW General [3] shall be considered as additional and
required specification for the Key and Certificate Management module.

 Specification of Key Manager
AUTOSAR CP R20-11

8 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

4 Constraints and assumptions

4.1 Limitations

The Key Management module shall be used with a Crypto Service Manager and its
underlying modules.

Only a single KeyElement (with ID = 1) per CsmKey is currently supported.

4.2 Applicability to car domains

This specification has no limitations to specific car domains.

 Specification of Key Manager
AUTOSAR CP R20-11

9 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

5 Dependencies to other modules

This chapter lists the relations to other modules that are used by the AUTOSAR
KeyM module.

5.1 Dependencies to Crypto Service Manager

The KeyM module depends on cryptographic algorithms and functions provided by
the Csm module. The KeyM module requires API functions to retrieve and set key
elements and to verify signatures of certificates, namely:

¶ Key Setting Interface

¶ Key Extraction Interface

¶ Key Copying Interface

¶ Key Generation Interface

¶ Key Derivation Interface

¶ Key Exchange Interface

¶ Signature Interface

5.2 Dependencies to Non Volatile Memory

The KeyM can be configured to store key material in non volatile memory. This
requires interfaces to NVM.

5.3 Dependencies to Synchronized Time Base

The time for certificate validation period is provided by the STBM.

 Specification of Key Manager
AUTOSAR CP R20-11

10 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

6 Requirements traceability

Requirement Description Satisfied by

RS_Ids_00810 Basic SW security events SWS_KeyM_00171,
SWS_KeyM_00173

SRS_BSW_00101 The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

SWS_KeyM_00043

SRS_BSW_00358 The return type of init() functions
implemented by AUTOSAR Basic
Software Modules shall be void

SWS_KeyM_00043

SRS_BSW_00407 Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

SWS_KeyM_00049

SRS_BSW_00414 Init functions shall have a pointer to
a configuration structure as single
parameter

SWS_KeyM_00043

SRS_CryptoStack_00007 The Crypto Stack shall provide
scalability for the cryptographic
features

SWS_KeyM_00001,
SWS_KeyM_00002

SRS_CryptoStack_00013 The modules of the crypto stack
shall support only pre-compile time
configuration

SWS_KeyM_00001,
SWS_KeyM_00002

SRS_CryptoStack_00090 The CSM shall provide an interface
to be accessible via the RTE

SWS_KeyM_00160,
SWS_KeyM_00161,
SWS_KeyM_00162,
SWS_KeyM_00163,
SWS_KeyM_00164

SRS_CryptoStack_00091 The CSM shall provide one
Provide--Port for each configuration

SWS_KeyM_00160,
SWS_KeyM_00161,
SWS_KeyM_00162,
SWS_KeyM_00163,
SWS_KeyM_00164

SWS_BSW_00050 Check parameters passed to
Initialization functions

SWS_KeyM_00158

SWS_BSW_00216 - SWS_KeyM_00157

 Specification of Key Manager
AUTOSAR CP R20-11

11 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

7 Functional specification

Figure 7-1: AUTOSAR layered view with KEYM

The Key Management module can roughly be divided into two parts: the crypto key
sub module and the certificate sub module. The crypto key sub module is mainly
used to interact with a key provisioning entity (key master) that initiates the
generation or provides key material directly. These keys are assigned to crypto keys
of the CSM and stored in dedicated NVM blocks or can be stored as keys of the
respective crypto driver. The certificate sub module allows to configure certificates of
a chain, providing interfaces to store and verify them. The public key contained in a
certificate can further be assigned to CSM keys so that they can be used by crypto
jobs.

[SWS_KeyM_00001] ổ The crypto key sub module of the Key Manager shall be
completely disabled if KeyMCryptoKeyManagerEnabled is set to FALSE. No function
shall be available, and no resources shall be allocated in this case that is not needed
for other operation.

(SRS_CryptoStack_00013, SRS_CryptoStack_00007)

[SWS_KeyM_00002] ổ The support of the certificate sub module within the Key
Manager shall be completely disabled if KeyMCertificateManagerEnabled is set to
FALSE. No function shall be available and no resources shall be allocated in this
case that is associated to certificate operations.

(SRS_CryptoStack_00013, SRS_CryptoStack_00007)

7.1 Crypto key submodule

The crypto key submodule is used to initialize, update and maintain cryptographic
key material for an ECU. One use case is the provision of keys for the secured on-

 Specification of Key Manager
AUTOSAR CP R20-11

12 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

board communication that need to be distributed to the involved ECUs. These keys
should be provided to CSM keys which are assigned to crypto jobs that are used for
authentication of Secured I-PDUs. It is therefore crucial from a modelling aspect to
assign the keys provided by the key master to the CSM keys and jobs used for the
respective Secured-I PDUs. This is an overall task in a vehicle and affects several
ECUs in the same way. It is one purpose of the crypto key submodule to support this
operation.
The key master can either be located directly in the vehicle to coordinate the key
generation internally, e.g. as a particular ECU. It is also possible to use a backend
system in the cloud that generates the key material and provides the necessary data
in a secure way to the ECUs. Usually diagnostic commands are used for the
communication, directly or indirectly, between the key master and the crypto key sub
module.

7.1.1 General behavior

[SWS_KeyM_00003] ổ The crypto key submodule can be configured to perform crypto
key operation in a session like manner. In this way, key operation such as

KeyM_Prepare () or KeyM_Update() are only accepted during an open session.

()

[SWS_KeyM_00004] ổ A session is started by a call to KeyM_Start() . Afterwards key

operations can be performed until the session is closed with a call to the function

KeyM_Finalize() .

()

[SWS_KeyM_00005] ổ By default, the KeyM_Start() function will not consider any

input data or length information and will not provide any output data nor will the
output data length be changed.

()

[SWS_KeyM_00006] ổ Optionally, a key handler can be called if the configuration

option KeyMCryptoKeyHandlerStartFinalizeEnabled is set to TRUE. The

KeyM_Start() function will call in turn the KeyM_KH_Start() function with the

same parameter of KeyM_Start() . The return value of KeyM_KH_Start() will be

used as the return value of KeyM_Start() .

()

Rationale:

The KeyM_KH_Start() function can perform OEM specific checks like signature

verification of any input data to prove the authenticity for a key management
operation.

 Specification of Key Manager
AUTOSAR CP R20-11

13 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Note: The definition of KeyMCryptoKeyHandlerStartFinalizeEnabled has only effect if

KeyMCryptoKeyStartFinalizeFunctionEnabled is set to TRUE.

[SWS_KeyM_00007] ổ If the configuration option

KeyMCryptoKeyStartFinalizeFunctionEnabled is set to FALSE, the function

KeyM_Start() and KeyM_Finalize() are not provided by the Key Management

module. A key update operation can then be performed at any time.

()

[SWS_KeyM_00008] ổ A session is closed by a call to KeyM_Finalize() . During the

call, all keys that were updated within the session will be set to valid by calling

Csm_KeySetValid() . After the function has been completed its operation, no

further key update operations will be accepted.

()

[SWS_KeyM_00009] ổ The function KeyM_Finalize() will return E_OK if all keys

have been validated successfully. If at least one key could not be validated

successfully, the function shall return E_NOT_OK. Nevertheless, all keys shall be

validated that have been updated and the operation shall not be aborted if one key
validation has failed.

()

[SWS_KeyM_00010] ổ If the configuration option

KeyMCryptoKeyPrepareFunctionEnabled is set to TRUE the function

KeyM_Prepare() is provided. This function has currently no functional behavior. If

the configuration option is set to FALSE, the functional interface is not provided.

()

[SWS_KeyM_00011] ổ If the configuration option

KeyMCryptoKeyHandlerPrepareEnabled is set to TRUE, then a call to

KeyM_Prepare() will in turn passed on to KeyM_KH_Prepare() and the

arguments and return value will be passed accordingly.

()

Rationale:

The intention is to call KeyM_Prepare() once at the beginning after the key update

session has been initiated. The calling diagnostic service can provide specific data to
the key handler which is needed to perform the following key update operation. For
example, it could be used to extract crypto driver specific information needed by the
key master which is extracted from the (SHE-)hardware and provided in the output
buffer back again. Or it can initiate an OEM specific key negotiation process with
results that are later on necessary for the key update process. Another possibility
would be, that a (encrypted) common key is provided by the key master during
preparation. The specific key handler is able to (decrypt and) store the key in the
CSM. This results in a common key that is assigned to a CSM key and can further be
used to derive other keys from it.

 Specification of Key Manager
AUTOSAR CP R20-11

14 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

[SWS_KeyM_00012] ổ A key update is triggered by a call to KeyM_Update() , typically

initiated by a diagnostic service.

()

[SWS_KeyM_00013] ổ If KeyM_Update () is called and

KeyMCryptoKeyHandlerUpdateEnabled is set to FALSE and keyNameLength is

greater than 0, the crypto key submodule will search for the key name configured in
KeyMCryptoKey/KeyMCryptoKeyName. If the key name is not found, the function will

return E_NOT_OK. If found, the function will trigger the key update operation.

()

[SWS_KeyM_00014] ổ If KeyM_Update () is called and

KeyMCryptoKeyHandlerUpdateEnabled is set to FALSE and keyNameLength is 0,
the crypto key submodule will interpret the input data as M1M2M3 values of a SHE
key. The key_ID is extracted from M1 by extracting bit 121..124 of the input data and
will search for the corresponding value in KeyMCryptoKeyCryptoProps to identify the
KeyMCryptoKeyId and the associated CsmKeyRef. If found, the function will trigger
the keyupdate operation.

()

Note: In this case, the CsmKey should be configured as a SHE key. The format
should be of algorithm type SHE and the KeyMCryptoKeyGenerationType should be

set to KEYM_STORED_KEY.

[SWS_KeyM_00015] ổ When KeyM_Update() is called and a KeyMCryptoKeyId is
found either by the internal search algorithm or through the provision of the key
handler KeyM_KH_Update(), the key generation shall be performed as configured in
KeyMCryptoKeyGenerationType. If no associated key was found the KeyM_Update()

function shall return E_NOT_OK.

()

[SWS_KeyM_00016] ổ If a key ID was identified and KeyMCryptoKeyGenerationType is

configured as KEYM_STORED_KEY, the function Csm_KeyElement Set () will be

called with the reference to KeyMCryptoKeyCsmKeyTargetRef and key element id
ó1ô. An internal marker will be set for this key that the contents have been altered and
need to be finalized.

()

[SWS_KeyM_00017] ổ If a key ID was identified and KeyMCryptoKeyGenerationType is

configured as KEYM_DERIVE_KEY, the function Csm_KeyDerive() will be called to

derive a new key (referenced by KeyMCryptoKeyCsmKeyTargetRef) out of the
common key (referenced by KeyMCryptoKeyCsmKeySourceDeriveRef). An internal
marker will be set for this key that the contents have been altered and need to be
finalized.

 Specification of Key Manager
AUTOSAR CP R20-11

15 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

()

[SWS_KeyM_00018] ổ If the KeyMCryptoKeyStartFinalizeFunctionEnabled is set to

FALSE, the function Csm_KeySetVal i d() shall be called immediately after a

successful key derive or store operation.

()

There are several options on how to operate key updates:

One obvious option is to call the KeyM_Update () function several times, i.e. once

per key that shall be updated. The key master will trigger the function call from
outside and will provide the key material with every service function. Another

possibility is to provide a container with one single call to e.g. KeyM_Prepare()

which in turn calls KeyM_KH_Prepare() . This allows to provide the container in an

OEM specific format. The key handler will scan the container and has to call

KeyM_Update() several times for each key available in the container.

[SWS_KeyM_00019] ổ If the configuration item

KeyMCryptoKeyStartFinalizeFunctionEnabled is set to TRUE, the crypto key

operation has to be concluded with a call to KeyM_Finalize() . This function will

trigger a call to Csm_KeySetValid () for all keys that have an internal marker set to

finalize the key update operation. The key update session is closed after this function
call and all internal markers are cleared, regardless if the function call was successful
or not.

()

[SWS_KeyM_00020] ổ If the configuration item KeyMCryptoKeyVerifyFunctionEnabled
is set to TRUE, the crypto key submodule shall provide the function

KeyM_Verify() . This function can be triggered by the key master and is used to

run a crypto job referenced by KeyMCryptoKeyCsmVerifyJobRef. KeyM_Verify()

can be called at any time and is not bound to an active crypto key session.

()

7.2 Certificate Submodule

The certificate submodule functions of KeyM allow BSW modules and SWCs to
perform operations with certificates more efficiently and on a central point within the
AUTOSAR software architecture. Examples for such operations are the verification of
a complete certificate chain or retrieving elements from a certificate that was
provided and verified at runtime.
The required cryptographic operations such as verification of a certificate signature
are still performed by associated crypto jobs that are defined in the Crypto Service
Manager. Also, the secure storage of certificates can be located in key storage
locations of the CSM, e.g. to allow to store the root certificate within the HSM.

 Specification of Key Manager
AUTOSAR CP R20-11

16 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

7.2.1 General behavior

The certificate submodule allows to define and configure certificates so that they can
be stored at production time and further be used for several purposes. The
configuration allows to define certificates of a certificate chain in a hierarchical
structure with root, intermediate and target certificates used in a PKI system. The
stored certificates will be checked at startup according to the configured hierarchy.
The configuration allows also to check if specific certificate elements have
determined values. There is further support to read specific elements of a certificate
and the contained public key can be associated to a CsmKey to use them with
configured CSM crypto jobs.

One important part of the specification is therefore the configuration to define the
parts of a certificate for flexible and comprehensive verification and for information
extraction. The certificates can be associated to KeyMCryptoKey container. This
allows a permanent storage of certificates in either NVM or CSM.

Figure 7-2: Exemplary PKI certificate chain

Root and intermediate certificates, if required, can be provided in the production
phase of the ECU or the vehicle. These certificates will be permanently stored in a
specified place. If a certificate is now presented to the ECU, this certificate can be
stored in a temporary place to request the verification. The certificate submodule will
check for existing certificates in the associated chain and will start to parse the
contents, verify them against pre-configured conditions and will then check the
signatures against all available certificates in its chain.

7.2.2 Initialization

[SWS_KeyM_00022] ổ During initialization, the certificate submodule will retrieve the
permanently stored certificates, will prepare them for parsing and make them

 Specification of Key Manager
AUTOSAR CP R20-11

17 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

available on demand, e.g. for certificate element extraction or verification against
other certificates.

()

Optionally, instead of parsing the certificate on every startup, the certificate
submodule can parse the certificate once and store the parsed information in a
dedicated NVM block. The advantage to store parsing results in NVM would lead to
faster startup of the system.

Since parsing and verification of certificates can take a significant amount of time it is
recommended to perform this operation for stored certificates in the background task
after startup.

[SWS_KeyM_00023] ổ If the parsing operation was successful, the certificate
submodule extracts the public key from the certificate and stores it in the provided
key reference of the CSM or in NVM.

()

7.2.3 Certificate configuration

[SWS_KeyM_00024] ổ At least one certificate shall be defined as the Root certificate
of a PKI. The KeyMCertUpperHierarchicalCertRef of the corresponding
KeyMCertificate container is referencing to itself.

Ộ()

Rationale:
A root certificate has the characteristics, that the signature is verified with the public
key stored in the same certificate (self-signed certificate). It is the top certificate in the
hierarchy.

Figure 7-3 shows a configuration of three KeyMCertificate containers in a hierarchal
way. It illustrates the configuration of the CSM job and key and the references from
the KeyMCertificate. This shows, which CSM job and key are referenced by the
containers and which job is used for signature verification.

 Specification of Key Manager
AUTOSAR CP R20-11

18 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Figure 7-3: Exemplary configuration of a certificate chain in a hierarchy with references to CSM
jobs and keys.

[SWS_KeyM_00025] ổ A certificate is stored for verification with the call of the function

KeyM_SetCertificate() . The certificate will be placed in the preconfigured

storage class of the KeyMCertificate/KeyMCertificateStorage.

()

Note:
Such a certificate is typically placed in RAM and is not intended to be used for

permanent storage. KeyM_SetCertificate() is just used for the verification of a

presented certificate. It is not intended to be used for permanent storage like for
example the Root certificate. For operation to store a certificate permanently, the

function KeyM_ServiceCertificate() shall be used.

Certificates can be represented in different formats. The configuration foresees three
different formats, the X.509, CVC and CRL. Key elements that are assigned to
certificates can be categorized into basic elements of the structure. This is configured
with KeyMCertificateElement/KeyMCertificateElementOfStructure.

The following tables give correspondences of the enum values of
KeyMCertificateElementOfStructure to the naming convention of the respective
specifications.

X
.5

0
9

RFC 5280 KeyM Configuration of KeyMCertificateElement/
KeyMCertificateElementOfStructure

Version CertificateVersionNumber

Certificate Serial
Number

CertificateSerialNumber

 Specification of Key Manager
AUTOSAR CP R20-11

19 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Signature Algorithm
Identifier

CertificateSignatureAlgorithmID

Issuer Name CertificateIssuerName

Validity Not Before
Time

CertificateValidityPeriodNotBefore

Validity Not After Time CertificateValidityPeriodNotAfter

Subject Name CertificateSubjectName

Subject Public Key
Algorithm

CertificateSubjectPublicKeyInfo_PublicKeyAlgorithm

Subject Public Key CertificateSubjectPublicKeyInfo_SubjectPublicKey

Extensions CertificateExtension

Table 7-1: Corresponding items of X.509 elements from RFC5280 with element item
configuration of KeyMCertificateElement/KeyMCertificateElementOfStructure in
[ECUC_KeyM_00038].

C
V

C

BSI - Technical
Guideline TR-03110

KeyM Configuration of KeyMCertificateElement/
KeyMCertificateElementOfStructure

Certificate Profile
Identifier

CertificateVersionNumber

Certificate Authority
Reference

CertificateIssuerName

Signature Algorithm
Identifier

CertificateSignatureAlgorithmID

Public Key Object
Identifier

CertificateSubjectPublicKeyInfo_PublicKeyAlgorithm

Public Key Domain
Parameters

CertificateSubjectPublicKeyInfo_SubjectPublicKey

Certificate Holder
Reference

CertificateSubjectName

Certificate Holder
Authorization Template

CertificateSubjectAuthorization

Certificate Effective
Date

CertificateValidityPeriodNotBefore

Certificate Expiration
Date

CertificateValidityPeriodNotAfter

Certificate Extensions CertificateExtension

Table 7-2: Corresponding items of CVC elements as defined in BSI - Technical Guideline TR-
03110 with element item configuration of
KeyMCertificateElement/KeyMCertificateElementOfStructure in [ECUC_KeyM_00038].

The element RevokedCertificates in [ECUC_KeyM_00038] is used to indicate that
this element is the list of revoked certificates in the certificate revocation list (CRL).

 Specification of Key Manager
AUTOSAR CP R20-11

20 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

7.2.4 Operation mode

[SWS_KeyM_00021] ổ If the configuration item
KeyMServiceCertificateFunctionEnabled and KeyMCertificateManagerEnabled is set
to TRUE, the certificate submodule shall provide the function

KeyM_ServiceCertificate() . This function can be triggered by the key master

and is used to provide certificate related information to the certificate submodule.
Several certificate related operations can be performed like introduction or update of
certificates that are permanently stored in the system.

()

Every certificate that can be addressed by its symbolic name
KeyMCertificate/KeyMCertificateId provides a status as defined in

KeyM_CertificateStatusType . Each status will be entered by a defined state

transition that is outlined in Figure 7-4. The current status of a certificate can be

requested by KeyM_CertGetStatus() .

Figure 7-4: Certificate status and possible state transitions.

[SWS_KeyM_00167] ổ The certificate status

ñKEYM_CERTIFICATE_NOT_AVAILABLEò is entered after initialization of KeyM. This

status can also be entered by a call to KeyM_SetCertificate() with a length

value of 0 in certDataLength within the KeyM_CertDataType structure to reset a

certificate and its status (see also [SWS_KeyM_00141]).
Ộ()

 [SWS_KeyM_00026] ổ The parsing process of a certificate shall be started as soon as

the certificate has been stored with either KeyM_SetCertificate() or

KeyM_ServiceCertificate() . When parsing is in progress, the certificate status

shall change to the transient status KEYM_CERTIFICATE_NOT_PARSED until the

parsing process is completed.

 Specification of Key Manager
AUTOSAR CP R20-11

21 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

The parsing process can also be already triggered on initialization of KeyM, as
outlined in [SWS_KeyM_00022]. In the same way, the certificate status shall change

to KEYM_CERTIFICATE_NOT_PARSED.

()

[SWS_KeyM_00027] ổ [If the certificate parse operation detects violations to basic
encoding rules on the KeyMCertFormatType such as ASN.1 or TLV (Tag-Length-
Values) or if basic elements for that KeyMCertFormatType are missing, the certificate

status KEYM_CERTIFICATE_INVALID_FORMAT shall be set and reported to the

application if required by configured callback. No further operation like parsing and
validating shall be performed on this certificate until the status has been reset.

()

[SWS_KeyM_00168] ổ If the certificate is in a well-formatted ASN.1 structure but

basic elements as outlined in KeyMCertificateElementOfStructure for the

specified format type (KeyMCertFormatType) are missing, the certificate status

KEYM_E_CERTIFICATE_INVALID_TYPE shall be set and reported to the application

if required by the configured callback. No further operation like validating shall be
performed on this certificate until the status has been reset.

Ộ()

[SWS_KeyM_00169] ổ If the parsing operation has been completed without failure,
the certificate status shall be set to

KEYM_CERTIFICATE_PARSED_NOT_VALIDATED and reported to the application if

required by the configured callback.

Ộ()

 [SWS_KeyM_00028] ổ A verification of a certificate shall only be started if the

certificate is in the status KEYM_CERTIFICATE_PARSED_NOT_VALIDATED. The

verification shall be triggered at the latest by a call to one of the functions

KeyM_VerifyCertificate() , KeyM_VerifyCertif icates() or

KeyM_VerifyCertificateChain() .

()

Note:
It is up to the implementation of a KeyM to start the verification process earlier than
by one of these function calls, e.g. in the background after initialization or if a
certificate chain needs to be verified.

[SWS_KeyM_00029] ổ The verification of a certificate shall be done in sequential steps
as described in the following requirements. If one step fails, the certificate status shall
be set to the corresponding value, it shall be reported through a callback function (if
configured) and the verification shall be stopped. The certificate status shall remain in
this status until it is reset as outlined in [SWS_KeyM_00167].

Ộ()

 Specification of Key Manager
AUTOSAR CP R20-11

22 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

[SWS_KeyM_00030] ổ The verification of a certificate starts with a check if all certificates
that are linked with KeyMCertUpperHierarchicalCertRef are in the status

KEYM_CERTIFICATE_VALID.

If either of these referenced certificates are in the status

KEYM_CERTIFICATE_NOT_PARSED or

KEYM_CERTIFICATE_PARSED_NOT_VALIDATED, the parse and/respectively

verification process shall be started for these linked certificates in the order from top
(the last one of the linked list that either has no further link or links to itself) down to
the bottom (the next certificate that is directly linked with
KeyMCertUpperHierarchicalCertRef of the currently processed certificate). In this
case, the status check of the linked certificates shall be re-done after all initiated
certificate verifications have reached a final status.

()

[SWS_KeyM_00031] ổ If all certificates that are linked with

KeyMCertUpperHierarchicalCertRef are in the status KEYM_CERTIFICATE_VALID,

or KeyMCertUpperHierarchicalCertRef links to itself (self-signed certificates), the
subject field of the currently validated certificate shall be verified with the issuer field
of the next upper certificate (the one referenced by
KeyMCertUpperHierarchicalCertRef).
If one of the checks above have failed, the status

KEYM_E_CERTIFICATE_INVALID_CHAIN_OF_TRUST shall be set and reported

through callback function (if configured) and the validation process shall stop.
Otherwise, the check outlined in [SWS_KEYM_00032] shall be performed at next.

()

[SWS_KeyM_00032] ổ The signature of the certificate shall be verified by using the

CSM verify job referenced with KeyMCertUpperHierarchicalCertRef/

KeyMCertCsmSignatureVerifyJobRef (see Figure 7-4). It should be noted, that for
self-signed certificates, the public key of this certificate needs to be set and validated
in KeyMCertCsmSignatureVerifyKeyRef beforehand.
If the signature verification fails, the certificate status

KEYM_E_CERTIFICATE_SIGNATURE_FAIL shall be set and reported through

callback function (if configured) and the validation process shall stop.
Otherwise, the check outlined in [SWS_KEYM_00033] shall be performed at next.

()

[SWS_KeyM_00033] ổ If the KeyM module maintains revocation lists, it shall check if
the certificate under validation is part of the revoked one. If so, the certificate status

KEYM_E_CERTIFICATE_REVOKED shall be set and reported through callback

function (if configured) and the validation process shall stop.
Otherwise, the check outlined in [SWS_KEYM_00034] shall be performed at next.

()

[SWS_KeyM_00034] ổ If the certificate format type contains a time period, the KeyM
module shall query the current time from configured time source
(KeyMCertTimebaseRef) and compare the current time if it is within the validity

 Specification of Key Manager
AUTOSAR CP R20-11

23 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

period of the certificate. If not, the certificate status

KEYM_E_CERTIFICATE_VALIDITY_PERIOD_FAIL shall be set and reported

through callback function (if configured) and the validation process shall stop.
Otherwise, the check outlined in [SWS_KEYM_00035] shall be performed at next.

()

[SWS_KeyM_00035] ổ The contents of certificate elements shall be checked through by
a check of all KeyMCertCertificateElementRuleRef. If one of the rules are violated,

the certificate status KEYM_E_CERTIFICATE_INVALID_CONTENT shall be set and

reported through callback function (if configured) and the validation process shall
stop.
Otherwise, the requirement outlined in [SWS_KeyM_00170] shall be performed.

()

[SWS_KeyM_00170] ổ If all verification steps have been performed and no error was
detected during the verification, the public key of the certificate shall be set and

validated (Csm_KeySetValid()) to the CSM key referenced by

KeyMCertCsmSignatureVerifyKeyRef (if not already done for self-signed certificates,

see [SWS_KeyM_00032]). The certificate status KEYM_CERTIFICATE_VALID shall

be set and reported to the application if required by configured callback.

Ộ()

7.3 Security Events

[SWS_KeyM_00171] ổ ổ If security event reporting has been enabled for the KeyM
module (KeyMEnableSecurityEventReporting = true) the respective security events
shall be reported to the IdsM via the interfaces defined in
AUTOSAR_SWS_BSWGeneral.
Ộ(RS_Ids_00810)

The following table lists the security events which are standardized for the KeyM
together with their trigger conditions:

[SWS_KeyM_00172]ổ

Name Description ID

KEYM_SEV_INST_ROOT_CERT_OP Attempt to install a root certificate. 1

KEYM_SEV_UPD_ROOT_CERT_OP Attempt to update an existing root certificate. 2

KEYM_SEV_INST_INTERMEDIATE_
CERT_OP

Attempt to install an intermediate certificate. 3

KEYM_SEV_UPD_INTERMEDIATE_
CERT_OP

Attempt to update an intermediate certificate. 4

 Specification of Key Manager
AUTOSAR CP R20-11

24 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

KEYM_SEV_CERT_VERIF_FAILED
A request to verify a certificate against a certificate
chain was not successful.

5

Ộ()

 [SWS_KeyM_00173] ổ The following table describes the context data which shall be
reported for the respective security event:

Security Event Context Data

KEYM_SEV_INST_ROOT_CERT_OP Context Data (41 Byte)

¶ Result (1 Byte)

o Operation failed: 0x0

o Operation succeeded: 0x1

¶ HashedID8 of certificate (8 Byte)

¶ certificateIssuerName (32 Byte)

KEYM_SEV_UPD_ROOT_CERT_OP Context Data (41 Byte)

¶ Result (1 Byte)

o Operation failed: 0x0

o Operation succeeded: 0x1

¶ HashedID8 of certificate (8 Byte)

¶ certificateIssuerName (32 Byte)

KEYM_SEV_INST_INTERMEDIATE_CERT_O
P

Context Data (41 Byte)

¶ Result (1 Byte)

o Operation failed: 0x0

o Operation succeeded: 0x1

¶ HashedID8 of certificate (8 Byte)

¶ certificateIssuerName (32 Byte)

KEYM_SEV_UPD_INTERMEDIATE_CERT_O
P

Context Data (41 Byte)

¶ Result (1 Byte)

o Operation failed: 0x0

o Operation succeeded: 0x1

¶ HashedID8 of certificate (8 Byte)

¶ certificateIssuerName (32 Byte)

KEYM_SEV_CERT_VERIF_FAILED Context Data (41 Byte)

¶ Result (1 Byte)

o E_NOT_OK: 0x0

o KEYM_E_BUSY: 0x1

o KEYM_E_PARAMETER_MISMA

TCH: 0x05

o KEYM_E_KEY_CERT_EMPTY:

0x0A

o KEYM_E_CERT_INVALID_

CHAIN_OF_TRUST: 0x0B

¶ HashedID8 of certificate (8 Byte)

¶ certificateIssuerName (32 Byte)

 Specification of Key Manager
AUTOSAR CP R20-11

25 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Ộ(RS_Ids_00810)

7.4 Error classification

Section 7.2 "Error Handling" of the document "General Specification of Basic
Software Modules" describes the error handling of the Basic Software in detail.
Above all, it constitutes a classification scheme consisting of five error types which
may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.4.1 Development Errors

[SWS_KeyM_00036]ổ

Type of error Related error code Error value

API service called with invalid parameter (Null Pointer) KEYM_E_PARAM_POINTER 0x01

Buffer is too small for operation KEYM_E_SMALL_BUFFER 0x02

API called before module has been initialized KEYM_E_UNINIT 0x03

KeyM module initialization failed KEYM_E_INIT_FAILED 0x04

KeyM configuration failure KEYM_E_CONFIG_FAILURE 0x05

Ộ()

7.4.2 Runtime Errors

There are no runtime errors.

7.4.3 Transient Faults

There are no transient faults.

 Specification of Key Manager
AUTOSAR CP R20-11

26 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

7.4.4 Production Errors

There are no production errors.

7.4.5 Extended Production Errors

There are no extended production errors.

7.5 Error detection

[SWS_KeyM_00144] ổ If development errors are active the Key Manager shall check
on every function call if the module has been initialized with KeyM_Init() and not yet
been de-initialized with KeyM_Deinit(). Otherwise, the Development error
KEYM_E_UNINIT shall be set.

()

[SWS_KeyM_00145] ổ If development errors are active the Key Manager shall check
on every function where result buffers are provided if the provided buffer is large
enough to store the requested result. If not, the development error
KEYM_E_SMALL_BUFFER shall be set.

()

[SWS_KeyM_00146] ổ If development errors are active the Key Manager shall check
on every function where pointers are provided if the pointer is not a NULL_PTR. If a
NULL_PTR is provided but not expected, the development error
KEYM_E_PARAM_POINTER shall be set.

()

 Specification of Key Manager
AUTOSAR CP R20-11

27 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed:

[SWS_KeyM_00037]ổ

Module Header File Imported Type

Csm

Rte_Csm_Type.h Crypto_OperationModeType

Rte_Csm_Type.h Crypto_VerifyResultType

IdsM IdsM_Types.h IdsM_SecurityEventIdType

StbM

Rte_StbM_Type.h StbM_SynchronizedTimeBaseType

Rte_StbM_Type.h StbM_TimeBaseStatusType

Rte_StbM_Type.h StbM_TimeStampType

Rte_StbM_Type.h StbM_UserDataType

Std

Std_Types.h Std_ReturnType

Std_Types.h Std_VersionInfoType

Ộ()

The Key Management module uses the following extension to the Std_ReturnType:
[SWS_KeyM_00040]ổ

Range

KEYM_E_BUSY 0x02 Key management is busy with other operations.

KEYM_E_PENDING 0x03
Operation request accepted, response is pending.
It runs now in asynchronous mode, response will
be given through callback.

KEYM_E_KEY_CERT_
SIZE_MISMATCH

0x04
Parameter size does not match the expected
value.

 Specification of Key Manager
AUTOSAR CP R20-11

28 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

KEYM_E_PARAMETER_
MISMATCH

0x05
Parameter to function does not provide the
expected value.

KEYM_E_KEY_CERT_
INVALID

0x06
Key or certificate is invalid and cannot be used for
the operation.

KEYM_E_KEY_CERT_
WRITE_FAIL

0x07 Certificate or key write operation failed.

KEYM_E_KEY_CERT_
UPDATE_FAIL

0x08 Key or certificate update operation failed.

KEYM_E_KEY_CERT_
READ_FAIL

0x09
Certificate or key could not be provided due to a
read or permission failure.

KEYM_E_KEY_CERT_
EMPTY

0x0A
The requested key or certificate is not available,
slot is empty.

KEYM_E_CERT_
INVALID_CHAIN_OF_
TRUST

0x0B
Certificate verification failed - Invalid Chain of
Trust

Description Key management specific return values for use in Std_ReturnType.

Available
via

KeyM.h

Ộ()

8.2 Type definitions

8.2.1 KeyM_ConfigType

[SWS_KeyM_00157]ổ

Name KeyM_ConfigType

Kind Structure

Elements

Implementation specific

Type --

 Specification of Key Manager
AUTOSAR CP R20-11

29 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Comment The content of this data structure is implementation specific

Description

This structure is the base type to initialize the Key Manager module.

A pointer to an instance of this structure will be used in the initialization of the Key
Manager module.

Available
via

KeyM.h

Ộ(SWS_BSW_00216)

8.2.2 KeyM_KH_UpdateOperationType

[SWS_KeyM_00055]ổ

Name KeyM_KH_UpdateOperationType

Kind Enumeration

Range

KEYM_KH_
UPDATE_KEY_
UPDATE_REPEAT

0x01

Key handler has successfully performed the operation
and provides new key data that shall be further operated
by the update function of the key manager. A next call to
key handler is requested.

KEYM_KH_
UPDATE_FINISH

0x02

Key handler has successfully performed all update
operation. The update operation is finished and the result
data can be provided back for a final result of the KeyM_
Update operation.

Description Specifies the type of key handler update operation that was performed in the callback.

Available
via

KeyM.h

Ộ()

8.2.3 KeyM_CertElementIteratorType

[SWS_KeyM_00042]ổ

Name KeyM_CertElementIteratorType

 Specification of Key Manager
AUTOSAR CP R20-11

30 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Kind Structure

Elements

Implementation specific

Type --

Comment The content of this data structure is implementation specific

Description This structure is used to iterate through a number of elements of a certificate.

Available via KeyM.h

Ộ()

8.2.4 KeyM_CryptoKeyIdType

[SWS_KeyM_00302]ổ

Name KeyM_CryptoKeyIdType

Kind Type

Derived from uint16

Description Crypto key handle.

Available via KeyM.h

Ộ()

8.2.5 KeyM_CertDataPointerType

[SWS_KeyM_91011]ổ

Name KeyM_CertDataPointerType

Kind Pointer

 Specification of Key Manager
AUTOSAR CP R20-11

31 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Type uint8*

Description Byte-pointer to the data of the certificate

Available via KeyM.h

Ộ()

8.3 Function definitions

This is a list of functions provided to upper layer modules.

8.3.1 General

8.3.1.1 KeyM_Init

[SWS_KeyM_00043]ổ

Service Name KeyM_Init

Syntax

void KeyM_Init (

 const KeyM_Config Type* Config Ptr

)

Service ID [hex] 0x01

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) ConfigPtr Pointer to the configuration set in VARIANT-POST-BUILD.

Parameters (inout) None

Parameters (out) None

Return value None

Description This function initializes the key management module.

Available via KeyM.h

Ộ(SRS_BSW_00101, SRS_BSW_00358, SRS_BSW_00414)

 Specification of Key Manager
AUTOSAR CP R20-11

32 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

[SWS_KeyM_00158] ổ The Configuration pointer configPtr shall always have a

NULL_PTR value.

Ộ(SWS_BSW_00050)

Note: A Configuration of the Key Manager at initialization is currently not used and

shall therefore pass a NULL_PTR to the module.

[SWS_KeyM_00044] ổ If the initialization of the key management module fails and

development errors are activated, the error KEYM_E_INIT_FAILED shall be reported

to the DET.
Ộ ()

[SWS_KeyM_00045] ổ If the certificate submodule is active and permanently stored
certificates are available in unparsed and unverified state, the KeyM certificate
submodule part shall start a background task to pre-parse and pre-verify certificates.

()

Rationale: The operation can be done in a background task if CPU time is available,
Pre-validating certificates will help to speed-up the authentication when a certificate
is presented and shall be verified at runtime against a pre-installed certificate chain.

[SWS_KeyM_00046] ổ If the crypto key submodule is active, all keys stored in NVM
shall be read from and stored to CSM (RAM-) key slots during initialization.

()

8.3.1.2 KeyM_Deinit

[SWS_KeyM_00047]ổ

Service Name KeyM_Deinit

Syntax

void KeyM_Deinit (

 void

)

Service ID [hex] 0x02

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

 Specification of Key Manager
AUTOSAR CP R20-11

33 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Parameters (out) None

Return value None

Description This function resets the key management module to the uninitialized state.

Available via KeyM.h

Ộ()

[SWS_KeyM_00048] ổ
For security reason the crypto key submodule shall actively destroy all data in RAM
that was used for cryptographical key material. Especially symmetric keys and
intermediate results shall be set to an initial value.

()

8.3.1.3 KeyM_GetVersionInfo

[SWS_KeyM_00049]ổ

Service Name KeyM_GetVersionInfo

Syntax

void KeyM_Get Version Info (

 Std_ Version Info Type* Version Info

)

Service ID [hex] 0x03

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) VersionInfo Pointer to the version information of this module.

Return value None

Description Provides the version information of this module.

Available via KeyM.h

Ộ(SRS_BSW_00407)

 Specification of Key Manager
AUTOSAR CP R20-11

34 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

8.3.2 Crypto key operation

8.3.2.1 KeyM_Start

[SWS_KeyM_00050]ổ

Service Name KeyM_Start

Syntax

Std_ Return Type KeyM_Start (

 KeyM_Start Type Start Type,

 const uint8* Request Data,

 uint16 Request Data Length,

 uint8* Response Data,

 uint16* Response Data Length

)

Service ID
[hex]

0x04

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters
(in)

StartType Defines in which mode the key operation shall be executed.

RequestData Information that comes along with the request, e.g. signature

RequestData
Length

Length of data in the RequestData array

Parameters
(inout)

ResponseData
Length

In: Max number of bytes available in ResponseData Out:
Actual number

Parameters
(out)

ResponseData Data returned by the function.

Return value Std_ReturnType

E_OK: Start operation successfully performed. Key update
operations are now allowed.
E_NOT_OK: Start operation not accepted.
KEYM_E_PARAMETER_MISMATCH: Parameter do not
match with expected value.
KEYM_E_KEY_CERT_SIZE_MISMATCH: Parameter size
doesn't match

 Specification of Key Manager
AUTOSAR CP R20-11

35 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Description
This function is optional and only used if the configuration item KeyMCryptoKey
StartFinalizeFunctionEnabled is set to true. It intents to allow key update operation.

Available via KeyM.h

Ộ()

[SWS_KeyM_00085] ổ If KeyMCryptoKeyStartFinalizeFunctionEnabled is set to

TRUE, this function shall be called to initiate a key update session. The function

indicates with E_OK that key operations are now possible.

()

[SWS_KeyM_00086] ổ If a key update session is already active and the function is

called with the same parameter, this function shall return with E_OK and continue to

accept key update operations.

()

[SWS_KeyM_00087] ổ By default, the KeyM_Start() function does not check

RequestData length or values. It will accept every function call with valid startTypes
to initiate key update sessions.

()

[SWS_KeyM_00088] ổ OEM or security specific checks for the start operation shall
be performed in the corresponding key handler operation.

()

8.3.2.2 KeyM_Prepare

[SWS_KeyM_00051]ổ

Service
Name

KeyM_Prepare

Syntax

Std_ Return Type KeyM_Prepare (

 const uint8* Request Data,

 uint16 Request Data Length,

 uint8* Response Data,

 uint16* Response Data Length

)

Service ID
[hex]

0x05

Sync/Async Synchronous

Reentrancy Non Reentrant

 Specification of Key Manager
AUTOSAR CP R20-11

36 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Parameters
(in)

RequestData Information that comes along with the request

RequestData
Length

Length of data in the RequestData array

Parameters
(inout)

ResponseData
Length

In: Max number of bytes available in ResponseData Out: Actual
number of bytes

Parameters
(out)

ResponseData Data returned by the function.

Return value Std_ReturnType

E_OK: Service has been accepted and will be processed
internally. Results will be provided through a callback
E_NOT_OK: Service not accepted due to an internal error.
KEYM_E_PARAMETER_MISMATCH: Parameter do not match
with expected value.
KEYM_E_KEY_CERT_SIZE_MISMATCH: Parameter size
doesn't match

Description

This function is used to prepare a key update operation. The main intent is to provide
information for the key operation to the key server. Other operations may start the
negotiation for a common secret that is used further to derive key material. This
function is only available if KeyMCryptoKeyPrepareFunctionEnabled is set to TRUE.

Available via KeyM.h

Ộ()

[SWS_KeyM_00089] ổ The function KeyM_Prepare() is provided when

KeyMCryptoKeyPrepareFunctionEnabled is set to TRUE. There is no dedicated

implementation, but a key handler can be used to provide specific information to the
key server that is required to generate key material. Such information or further

operation can be performed through the key handler callback KeyM_KH_Prepare()

when enabled, e.g. providing SHE information or generating secret key generation
operations.

()

[SWS_KeyM_00090] ổ By default, the function returns E_NOT_OK. If a key handler is

configured to be called, this function will call the key handler with the exact parameter
and will pass the return value of this key handler back to the caller.

()

8.3.2.3 KeyM_Update

[SWS_KeyM_00052]ổ

Service Name KeyM_Update

 Specification of Key Manager
AUTOSAR CP R20-11

37 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Syntax

Std_ Return Type KeyM_Update (

 const uint8* KeyNamePtr,

 uint16 KeyNameLength,

 const uint8* Request Data Ptr,

 uint16 Request Data Length,

 uint8* Result Data Ptr,

 uint16 Result Data MaxLength

)

Service ID
[hex]

0x06

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters
(in)

KeyNamePtr
Pointer to an array that defines the name of the key to be
updated

KeyName
Length

Specifies the number of bytes in keyName. The value 0 indicates
that no keyName is provided within this function.

RequestData
Ptr

Information that comes along with the request

RequestData
Length

Length of data in the RequestData array

ResultDataMax
Length

Max number of bytes available in ResultDataPtr.

Parameters
(inout)

None

Parameters
(out)

ResultDataPtr Pointer to a data buffer used by the function to store results.

Return value
Std_Return-
Type

E_OK: Service has been accepted and will be processed
internally. Results will be provided through a callback
E_NOT_OK: Service not accepted due to an internal error.
E_BUSY: Service could not be accepted because another
operation is already ongoing. Try next time.
KEYM_E_PARAMETER_MISMATCH: Parameter do not match
with expected value.
KEYM_E_KEY_CERT_SIZE_MISMATCH: Parameter size
doesn't match

Description This function is used to initiate the key generation or update process.

 Specification of Key Manager
AUTOSAR CP R20-11

38 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Available via KeyM.h

Ộ()

By the call of this function a key update operation is requested.

[SWS_KeyM_00091] ổ If a KeyName is provided the Key Manager shall search for
an element in the container that matches /KeyMCryptoKey/KeyMCryptoKeyName. If
found, the CryptoKeyId shall be used as KeyID and this container shall be used for
reference of any further key update operation (derive or store the key value).

()

[SWS_KeyM_00154] ổ If either KeyNamePtr is not valid or KeyNameLength is 0 and
KeyMCryptoKeyCryptoProps is defined then the Key Manager shall interpret the
RequestData as M1M2M3 values of a SHE key. The Key Manager shall extract bits
121..124 located in RequestDataPtr (if RequestDataLength indicates enough data)
and shall check for a corresponding value in KeyMCryptoKeyCryptoProps. If a
matching value is found then CryptoKeyId of this container shall be used as KeyID
and this container shall be used for reference of any further key update operation
(derive or store the key value).
Ộ()

[SWS_KeyM_00155] ổ If a KeyID could not be identified and

KeyMCryptoKeyHandlerUpdateEnabled is set to FALSE then KeyM_Update () shall

not perform a key update operation and shall return

KEYM_E_PARAMETER_MISMATCH.

Ộ()

[SWS_KeyM_00092] ổ If KeyMCryptoKeyHandlerUpdateEnabled is set to TRUE to

perform a key handler operation then KeyM_Update() shall call

KeyM_KH_Update() . The parameter RequestDataPtr, RequestDataLength,

KeyName and KeyNameLength shall be passed on to the key handler. If a
KeyMCryptoKey container was identified in one of the previous steps then the
KeyMCryptoKeyID shall be provided with the KeymId parameter. Otherwise, the
value 0xFFFFFFFFul shall be used.

()

[SWS_KeyM_00098] ổ If no key handler is configured for the key update operation

(KeyMCryptoKeyHandlerUpdateEnabled is set to FALSE) and a CryptoKey container

was identified, a key update operation shall be performed according to the
configuration (derive or store key in CSM). stored according to the configuration.

Thus, if KeyMCryptoKeyStorage is set to KEYM_STORAGE_IN_NVM is set, the

ResultData and length for this key ID shall be stored in the configured NVM block.

Otherwise, if KEYM_STORAGE_IN_CSM is set, the CSM is responsible to store the

key data after it has been set.

()

 Specification of Key Manager
AUTOSAR CP R20-11

39 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

[SWS_KeyM_00099] ổ If a key was identified by its ID and either RequestDataPtr

and RequestDataLength indicates data or KeyM_KH_Update() has returned E_OK

and ResultDataPtr and ResultDataLengthPtr indicates data and the configuration

/KeyMCryptoKey/KeyMCryptoKeyGenerationType is set to KEYM_STORED_KEY, then

this function shall call Csm_KeyElementSet () to provide the data to CSM. The key

element ID is always 1 and the KeyMCryptoKeyCsmKeyTargetRef is used to identify
the target key.

()

[SWS_KeyM_00100] ổ If a CryptoKey container was found and either

RequestDataPtr and RequestDataLength provides data or KeyM_KH_Update() has

returned E_OK and ResultDataPtr and ResultDataLengthPtr provides data and the
configuration /KeyMCryptoKey/KeyMCryptoKeyGenerationType is set to

KEYM_DERIVE_KEY, then the data shall be set to the key element

CRYPTO_KE_KEYDERIVATION_PASSWORD. If the configuration value

KeyMCryptoKeyGenerationInfo is set, then this value shall be used as the salt for the
target key and shall set the value to the key element ID

CRYPTO_KE_KEYDERIVATION_SALT. The KeyMCryptoKeyCsmKeyTargetRef is

used to identify the target key and KeyMCryptoKeyCsmKeySourceDeriveRef as the

source key for the derivation and the function Csm_KeyDerive() shall be called

accordingly.

()

[SWS_KeyM_00101] ổ If a key update operation was successful and

KeyMCryptoKeyStartFinalizeFunctionEnabled is set to FALSE, then the function

Csm_KeySetValid() shall be called immediately after the key element has been

successfully set in CSM.

()

[SWS_KeyM_00102] ổ If a key update operation was successfully performed through
CSM operation and KeyMCryptoKeyStartFinalizeFunctionEnabled is set to TRUE,

then a flag shall be set for this key to indicate, that Csm_KeySetValid () for the key

shall be called during finalization of the key update operation.

()

[SWS_KeyM_00094] ổ KeyM_Update () runs in asynchronous mode. Note that the

key handler KeyM_KH_Update() is called in synchronous mode. It shall be called

therefore from within the background task.

()

[SWS_KeyM_00095] ổ If a single key update operation was finished with success or
a key update operation has failed because a function call to CSM or key handler has

not returned E_OK or KeyM_KH_Update() has provided the operation type

KEYM_KH_UPDATE_FINISH, the callback function

KeyM_CryptoKeyUpdateCallbackNotification() has to be called.

 Specification of Key Manager
AUTOSAR CP R20-11

40 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

()

[SWS_KeyM_00156] ổ The function that calls KeyM_Update() shall provide a

pointer to a buffer with ResultDataPtr. If KeyM_Update() accepts the operation by

returning E_OK the function shall not touch this buffer until the callback notification

KeyM_CryptoKeyUpdateCallbackNotification() has been called. Any

results from the KeyM_Update() operation will be copied into this buffer. The same

buffer pointer provided with the call to KeyM_Update() (ResultDataPtr) will be

provided as ResultDataPtr with the callback notification. The callback also indicates
the length of the result data and the overall result of the update operation.

Ộ()

Info:
The result data is either the result from the key handler or, if no key handler is used,
contains the M4M5 for a SHE key.

8.3.2.4 KeyM_Finalize

[SWS_KeyM_00053]ổ

Service
Name

KeyM_Finalize

Syntax

Std_ Return Type KeyM_Finalize (

 const uint8* Request Data Ptr,

 uint16 Request Data Length,

 uint8* Response Data Ptr,

 uint16 Response MaxData Length

)

Service ID
[hex]

0x07

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters
(in)

RequestDataPtr Information that comes along with the request

RequestData
Length

Length of data in the RequestData array

Parameters
(inout)

ResponseMax
DataLength

In: Max number of bytes available in ResponseData Out: Actual
number of bytes in ResponseData or left untouched if service runs
in asynchronous mode and function returns KEYM_E_OK.

Parameters
(out)

ResponseData
Ptr

Data returned by the function.

 Specification of Key Manager
AUTOSAR CP R20-11

41 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Return value
Std_Return-
Type

E_OK: Operation has been accepted and will be processed
internally. Results will be provided through a callback
E_NOT_OK: Operation not accepted due to an internal error.
KEYM_E_BUSY: Validation cannot be performed yet. KeyM is
currently busy with other jobs.
KEYM_E_PARAMETER_MISMATCH: Parameter do not match
with expected value.
KEYM_E_KEY_CERT_SIZE_MISMATCH: Parameter size doesn't
match

Description

The function is used to finalize key update operations. It is typically used in
conjunction with the KeyM_Start operation and returns the key operation into the idle
mode. Further key prepare or update operations are not accepted until a new KeyM_
Start operation has been initialized. This function is only available if KeyMCryptoKey
StartFinalizeFunctionEnabled is set to TRUE. In addition, updated key material will
be persisted and set into valid state (calling Csm_KeySetValid).

Available via KeyM.h

Ộ()

[SWS_KeyM_00103] ổ If KeyMCryptoKeyStartFinalizeFunctionEnabled is set to

TRUE, this function will conclude the key update operation. All keys that have
flagged to be updated during the session shall be finalized by calling

Csm_KeySetValid() .

The validation shall be done for all keys that have been updated, even if

Csm_KeySetValid() returns a failure for one of the keys. This is to finalize as

much keys as possible even if one key fails. If at least one key fails, then the overall
result is a fail information in the callback result.

()

[SWS_KeyM_00104] ổ If KeyMCryptoKeyStartFinalizeFunctionEnabled and

KeyMCryptoKeyHandlerStartFinalizeEnabled is set to TRUE this function will call

KeyM_KH_Finalize() with the exact same parameter as provided with

KeyM_Finalize() . The finalize key handler has to be called BEFORE the

validation of the key (the call to Csm_KeySetValid()). If the key handler returns

E_OK, then this function will continue its operation as specified. If the key handler

finalization function returns E_NOT_OK, then no validation shall be done.

()

[SWS_KeyM_00105] ổ The callback function

KeyM_CryptoKeyFinalizeCallbackNotification () will be called if the

operation has finished. The parameter óResultDataPtrô of this callback shall provide

the buffer pointer óResponseDataPtrô provided with the call to KeyM_Finalize() .

The result information provides the residual result of the validation of all keys.

()

 Specification of Key Manager
AUTOSAR CP R20-11

42 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Info:
Since key validation can take considerable amount of time this function is used in
asynchronous mode only. Since the key handler is called in synchronous mode it is

recommended to call it not from within KeyM_Finalize() but delegate the call to

the background task.

The caller of KeyM_Finalize() shall provide a buffer that is large enough to store

the response. This buffer shall not be touched by the caller if KeyM_Finalize()

returns E_OK until the callback notification has indicated the end of the finalize

operation.

[SWS_KeyM_00106] ổ At the end of a key finalize operation, all flags for key
validation have to be cleared and the session state shall be set to the init mode.
Thus, no further key update operations are allowed anymore.

()

8.3.2.5 KeyM_Verify
[SWS_KeyM_00054]ổ

Service
Name

KeyM_Verify

Syntax

Std_ Return Type KeyM_Verify (

 const uint8* KeyNamePtr,

 uint16 KeyNameLength,

 const uint8* Request Data,

 uint16 Request Data Length,

 uint8* Response Data,

 uint16* Response Data Length

)

Service ID
[hex]

0x08

Sync/Async Synchronous Synchronous/Asynchronous

Reentrancy Non Reentrant

Parameters
(in)

KeyNamePtr Points to an array that defines the name of the key to be updated

KeyName
Length

Specifies the number of bytes in KeyNamePtr. The value 0 indicates
that no KeyNamePtr is provided within this function.

RequestData Information that comes along with the request

RequestData
Length

Length of data in the RequestData array

 Specification of Key Manager
AUTOSAR CP R20-11

43 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Parameters
(inout)

Response
DataLength

In: Max number of bytes available in ResponseData Out: Actual
number of bytes in ResponseData or left untouched if service runs
in asynchronous mode and function returns KEYM_E_PENDING

Parameters
(out)

Response
Data

Data returned by the function.

Return value
Std_Return-
Type

KEYM_E_PENDING: Operation runs in asynchronous mode, has
been accepted and will be processed internally. Results will be
provided through callback
E_OK: Operation was successfully performed. Result information
are available.
E_NOT_OK: Operation not accepted due to an internal error.
KEYM_E_BUSY: Validation cannot be performed yet. KeyM is
currently busy with other jobs (for asynchronous mode).
KEYM_E_PARAMETER_MISMATCH: Parameter do not match with
expected value.
KEYM_E_KEY_CERT_SIZE_MISMATCH: Parameter size doesn't
match
KEYM_E_KEY_CERT_INVALID: Key operation cannot be
performed because the key name is invalid.
KEYM_E_KEY_CERT_EMPTY: The key for this slot has not been
set.

Description

The key server requests to verify the provided keys. The key manager performs
operation on the assigned job and returns the result to the key server who verifies if
the results was provided with this key as expected. This function is only available if
KeyMCryptoKeyVerifyFunctionEnabled is set to TRUE.

Available via KeyM.h

Ộ()

[SWS_KeyM_00107] ổ If KeyMCryptoKeyVerifyFunctionEnabled is set to TRUE this

function is available to perform a verification of a key. This function can always be
called and is not bound to a key update session.

()

[SWS_KeyM_00108] ổ If KeyMCryptoKeyVerifyAsyncMode is set to FALSE, the

function will use KeyMCryptoKey/KeyMCryptoKeyCsmKeyVerifyJobRef to perform a
crypto operation. If specified then the configuration KeyMCryptoCsmVerifyJobType
shall be specified as well to identify which job shall be called.

()

Info:
Since only one input and output buffer is specified, only MAC generate and data
decrypt/encrypt operations can be done autonomously in this function. Other
operations such as AEAD encrypt/decrypt or MAC verify requires interpretation of

 Specification of Key Manager
AUTOSAR CP R20-11

44 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

structured RequestData which needs to be interpreted in the key handler verification
function.

[SWS_KeyM_00109] ổ If KeyMCryptoKeyVerifyAsyncMode is set to TRUE, the

function will run in asynchronous mode. The direct function call will return

KEYM_E_PENDING if the job was accepted or any other return value if the job could

not be accepted.
In asynchronous mode, the KeyM_CryptoKeyVerifyCallbackNotification will provide
the result of the crypto job operation.

()

Info:
This is especially useful if at least one CSM verify job is configured for asynchronous
operation. Ideally, the verification is initiated in the background task.

8.3.3 Certificate handling

8.3.3.1 KeyM_ServiceCertificate

[SWS_KeyM_00056]ổ

Service
Name

KeyM_ServiceCertificate

Syntax

Std_ Return Type KeyM_Service Certificate (

 KeyM_Service Certificate Type Service,

 const uint8* Cert NamePtr,

 uint16 Cert NameLength,

 const uint8* Request Data,

 uint16 Request Data Length,

 uint8* Response Data,

 uint16 Response Data Length

)

Service ID
[hex]

0x09

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters
(in)

Service Provides the type of service the key manager has to perform.

CertNamePtr
Points to an array that defines the name of the certificate to be
updated

 Specification of Key Manager
AUTOSAR CP R20-11

45 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

CertNameLength
Specifies the number of bytes in CertNamePtr. The value 0
indicates that no CertNamePtr is provided within this function.

RequestData Information that comes along with the request

RequestData
Length

Length of data in the RequestData array

ResponseData
Length

Max number of bytes available in ResponseDataPtr.

Parameters
(inout)

None

Parameters
(out)

ResponseData Data returned by the function.

Return value Std_ReturnType

E_OK: Service data operation successfully accepted.
E_NOT_OK: Operation not accepted due to an internal error.
KEYM_E_PARAMETER_MISMATCH: Parameter do not match
with expected value.
KEYM_E_KEY_CERT_SIZE_MISMATCH: Parameter size
doesn't match
KEYM_E_BUSY Certificate service cannot be executed,
operation is busy.

Description

The key server requests an operation from the key client. The type of operation is
specified in the first parameter KeyM_ServiceCertificateType. Certificate operation
requests are operated through this function. This function is only available if the
configuration parameter KeyMServiceCertificateFunctionEnabled is set to TRUE.

Available via KeyM.h

Ộ()

[SWS_KeyM_00110] ổ If KeyMServiceCertificateFunctionEnabled is set to TRUE, this

service function is provided to update certificates or certificate information. The type
of operation is specified by the Service parameter.

Ộ()

[SWS_KeyM_00111] ổ A service certificate key handler can be configured to defer
the service operation. If KeyMCryptoKeyHandlerServiceCertificateEnabled is set to
TRUE, this function will directly call the service certificate key handler by passing the
exact parameter to the handler. It will also return the value returned by the handler
and no further operation will be performed.

Ộ()

 Specification of Key Manager
AUTOSAR CP R20-11

46 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

[SWS_KeyM_00112] ổ If KeyMCryptoKeyHandlerServiceCertificateEnabled is set to

FALSE, the service certificate function will check for the requested service and will

perform the requested operation by first searching for a configured certificate by its
name.
Ộ()

[SWS_KeyM_00113] ổ Depending on the Service parameter the following services
shall be offered:

KEYM_SERVICE_CERT_
REQUEST_CSR

Key server requests a certificate signing request. Service certificate
shall generate a certificate according to the format, will generate a key
pair, either as RSA or ECC, and will store the values in the configured
container. The generated certificate will be provided to the key server.

KEYM_SERVICE_CERT_
UPDATE_SIGNED_CSR

The key server has modified and signed the certificate. It is provided
back and this function stores now the valid certificate in the configured
storage.

KEYM_SERVICE_CERT_
SET_ROOT

The key server requests to store a root certificate. The service checks
if the certificate slot is empty and if so will validate the root certificate
according to the configured rule and will store the root certificate

KEYM_SERVICE_CERT_
UPDATE_ROOT

The key server requests to update an existing root certificate. The
service checks if a root certificate exists and verifies the new root
certificate against the already existing ones. If the validation was
successful, the root certificate is re-newed in the slot.

KEYM_SERVICE_CERT_
SET_INTERMEDIATE

The key server requests to store an intermediate certificate. A root
certificate shall already exist to allow to validate the intermediate
certificate against the root certificate and other certificates that might
exist in the chain. The certificate slot is checked to be empty. If the
validation was successful, the certificate is stored in the slot.

KEYM_SERVICE_CERT_
UPDATE_INTERMEDIAT
E

The key server requests to update an intermediate certificate. It is
verified against the root certificate and other certificates that might
exist in the chain. If the validation was successful the certificate is
updated.

KEYM_SERVICE_CERT_
UPDATE_CRL

The key server provides a certificate revocation list. The service
checks the signature of the list and stores it in the slot if the validation
was successful. The revocation list shall then be checked during the
verification of certificates if at least one CRL is available.

The implementation of either or all of the services are optional.
Ộ()

[SWS_KeyM_00114] ổ If KeyMCryptoKeyStartFinalizeFunctionEnabled is set to

TRUE, then a key update session shall be started before a service certificate

operation can be performed.
Ộ()

[SWS_KeyM_00149] ổ The service operation runs asynchronously and will call

KeyM_ServiceCertificateCallbackNotification() with results when the

operation has finished.

()

8.3.3.2 KeyM_SetCertificate

[SWS_KeyM_00057]ổ

 Specification of Key Manager
AUTOSAR CP R20-11

47 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Service Name KeyM_SetCertificate

Syntax

Std_ Return Type KeyM_Set Certificate (

 KeyM_Certificate Id Type Cert Id,

 const KeyM_Cert Data Type* Certificate Data Ptr

)

Service ID [hex] 0x0a

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in)

CertId Holds the identifier of the certificate

CertificateData
Ptr

Pointer to a structure that provides the certificate data.

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_Return-
Type

E_OK: Certificate accepted.
E_NOT_OK: Certificate could not be set.
KEYM_E_PARAMETER_MISMATCH: Parameter do not match
with expected value.
KEYM_E_KEY_CERT_SIZE_MISMATCH: Parameter size
doesn't match

Description
This function provides the certificate data to the key management module to
temporarily store the certificate.

Available via KeyM.h

Ộ()

The KeyM_SetCertificate() function is used to store a given certificate to verify

it against a certificate chain. Certificates from the chain can either be provided

temporarily in dedicated certificate slots and stored with KeyM_SetCertificate ()

or are permanently stored with the KeyM_ServiceCertificate() . This can be

done, for example, through proprietary operations during the manufacturing process.
At least it is necessary for a proper operation, that the root certificate is available.

[SWS_KeyM_00115] ổ If all parameters are accepted the function shall store the
provided certificate data in an internal memory that is assigned to the certificate slot

 Specification of Key Manager
AUTOSAR CP R20-11

48 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

referenced by the given CertId, typically in RAM. Once the certificate is provided the
certificate submodule will start parsing the certificate.
Ộ()

The parsing of a certificate can either be done directly within this function or can be
operated in the background or main function.

Note: Setting the certificate and parsing it successfully does not necessarily imply
that the certificate is validated in its chain of trust. The parsing is merely a pre-
requisite to perform a certificate validation which is requested with another function.

[SWS_KeyM_00116] ổ The function returns E_OK if the certificate was basically

accepted. Any other return value indicates that the certificate was not accepted. No
parsing and validation operation can be performed on this certificate until a new
certificate is provided and accepted.

Ộ()

Info: The status of the certificate if it is parsed or validated successfully can be

checked with KeyM_CertGetStatus() .

[SWS_KeyM_00166] ổ
If the storage class of the certificate referenced by the container

KeyMCertificate//KeyMCertificateStorage is set to KEYM_STORAGE_IN_CSM or

KEYM_STORAGE_IN_NVM a development error KEYM_E_CONFIG_FAILURE shall be

generated. If development mode is disabled the value E_NOT_OK shall be returned.

Ộ()

[SWS_KeyM_00141] ổ The status of a certificate can be reset by calling

KeyM_SetCertificate () with the corresponding certificate ID but with length

information 0. The function will return E_OK and will reset the status of the certificate

to KEYM_CERTIFICATE_NOT_AVAILABLE (see KeyM_CertGetStatus()).

Ộ()

8.3.3.3 KeyM_GetCertificate

[SWS_KeyM_00058]ổ

Service
Name

KeyM_GetCertificate

Syntax

Std_ Return Type KeyM_Get Certificate (

 KeyM_Certificate Id Type Cert Id,

 KeyM_Cert Data Type* Certificate Data Ptr

)

Service ID
[hex]

0x0b

Sync/Async Synchronous

 Specification of Key Manager
AUTOSAR CP R20-11

49 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Reentrancy Non Reentrant

Parameters
(in)

CertId Holds the identifier of the certificate

Parameters
(inout)

Certificate
DataPtr

Provides a pointer to a certificate data structure. The buffer located by
the pointer in the structure shall be provided by the caller of this
function. The length information indicates the maximum length of the
buffer when the function is called. If E_OK is returned, the length
information indicates the actual length of the certificate data in the
buffer.

Parameters
(out)

None

Return value
Std_-
Return-
Type

E_OK Certificate data available and provided.
E_NOT_OK: Operation not accepted due to an internal error.
KEYM_E_PARAMETER_MISMATCH: Certificate ID invalid.
KEYM_E_KEY_CERT_SIZE_MISMATCH: Provided buffer for the
certificate too small.
KEYM_E_KEY_CERT_EMPTY: No certificate data available, the
certificate slot is empty.
KEYM_E_KEY_CERT_READ_FAIL: Certificate cannot be provided,
access denied.

Description This function provides the certificate data

Available via KeyM.h

Ộ()

[SWS_KeyM_00117] ổ This function shall provide certificate data referenced by
certificate ID. It retrieves the information from the corresponding slot, checks if the
data structure references a data buffer that is large enough to store the requested
certificate, copies the data into the elements of CertificateDataPtr and adjusts the

size. The function returns E_OK on success, or any other appropriate return value if

the certificate data cannot be provided.

Ộ()

8.3.3.4 KeyM_VerifyCertificates

[SWS_KeyM_00059]ổ

Service
Name

KeyM_VerifyCertificates

Syntax
Std_ Return Type KeyM_Verify Certificates (

 KeyM_Certificate Id Type Cert Id,

 Specification of Key Manager
AUTOSAR CP R20-11

50 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

 KeyM_Certificate Id Type Cert Upper Id

)

Service ID
[hex]

0x0c

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters
(in)

CertId Holds the identifier of the lower certificate in the chain

CertUpperId Holds the identifier of the upper certificate in the chain

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_Return-
Type

E_OK: Certificate verification request accepted. Operation will be
performed in the background and response is given through a
callback.
E_NOT_OK: Operation not accepted due to an internal error.
KEYM_E_BUSY:Validation cannot be performed yet. KeyM is
currently busy with other jobs.
KEYM_E_PARAMETER_MISMATCH: Certificate ID invalid.
KEYM_E_KEY_CERT_EMPTY: One of the certificate slots are
empty.
KEYM_E_CERT_INVALID_CHAIN_OF_TRUST: An upper certificate
is not valid.

Description

This function verifies two certificates that are stored and parsed internally against
each other. The certificate referenced with CertId was signed by the certificate
referenced with certUpperId. Only these two certificates are validated against each
other.

Available via KeyM.h

Ộ()

[SWS_KeyM_00118] ổ The function shall validate two certificates referenced by
certificate IDs. Both certificate data shall be present, the certificate referenced by
CertUpperId shall have been validated before, otherwise the function will return

KEYM_E_CERT_INVALID_CHAIN_OF_TRUST.

Ộ()

[SWS_KeyM_00119] ổ The function returns E_OK if the validation request was

accepted. Any other return value indicates an error and the validation will not be

 Specification of Key Manager
AUTOSAR CP R20-11

51 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

started. It does not perform the validation operation directly, but in the background. A
callback will be called after validation to provide the result.
Ộ()

[SWS_KeyM_00123] ổ After the certificate submodule has successfully validated the
certificate, the corresponding public key shall be stored in the assigned key element
of the CSM. This allows the application to operate jobs where this key is assigned to.
Ộ()

[SWS_KeyM_00139] ổ If a certificate shall be verified but has not yet been parsed,
the parsing operation shall be done as soon as possible and the verification process
shall be started afterwards.

Ộ()

8.3.3.5 KeyM_VerifyCertificate

[SWS_KeyM_00060]ổ

Service Name KeyM_VerifyCertificate

Syntax

Std_ Return Type KeyM_Verify Certificate (

 KeyM_Certificate Id Type Cert Id

)

Service ID
[hex]

0x0d

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters
(in)

CertId Holds the identifier of the certificate

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_-
ReturnType

E_OK: Certificate verification request accepted. Operation will be
performed in the background and response is given through a
callback.
E_NOT_OK: Operation not accepted due to an internal error.
KEYM_E_BUSY: Validation cannot be performed yet. KeyM is
currently busy with other jobs.
KEYM_E_PARAMETER_MISMATCH: Certificate ID invalid.
KEYM_E_KEY_CERT_EMPTY: One of the certificate slots are
empty.

 Specification of Key Manager
AUTOSAR CP R20-11

52 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

KEYM_E_CERT_INVALID_CHAIN_OF_TRUST: An upper certificate
is not valid.

Description
This function verifies a certificate that was previously provided with KeyM_Set
Certificate() against already stored and provided certificates stored with other
certificate IDs.

Available via KeyM.h

Ộ()

The intention of KeyM_VerifyCertificate () is to autonomously identify the

certificates referenced by CertID and the associated certificates in the chain. The
certificate that shall be validated is expected to be set prior to this function call with

KeyM_SetCertificate() . If a certificate in the chain is not yet verified, it will be

parsed and verified automatically until the complete chain of trust has been parsed
and verified up to the root certificate. The verification shall be done from the top of
the certificate hierarchy to the bottom. Thus, the function shall first identify the chain
of trust and check if the root certificate has been validated. If this is valid, the next
intermediate certificate shall be checked until the certificate referenced by CertID is
to be verified. The order of the validation is important to meet security requirements.

[SWS_KeyM_00120] ổ The verification of the certificate(s) shall be done
asynchronously. All certificates that are involved in the chain of trust shall be verified,
from top to bottom. The callback function

KeyM_CertificateVerifyCallbackNotification() shall be called if the

verification has been finished and provide the result of the operation in the callback.

Ộ()

[SWS_KeyM_00121] ổ The function returns E_OK if the operation has been accepted

and can be performed. Any other return value will indicate the appropriate error and
the verification will not be started.

Ộ()

[SWS_KeyM_00135] ổ Elements of the certificate associated and defined in
KeyMCertificateElement and subcontainers shall be used to verify elements of the
certificate according to the configuration. This shall be done for every certificate that
has to be verified.
Ộ()

8.3.3.6 KeyM_VerifyCertificateChain

[SWS_KeyM_00061]ổ

Service
Name

KeyM_VerifyCertificateChain

Syntax
Std_ Return Type KeyM_Verify Certificate Chain (

 KeyM_Certificate Id Type Cert Id,

 Specification of Key Manager
AUTOSAR CP R20-11

53 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

 const KeyM_Cert Data Type[] cert Chain Data,

 uint8 NumberOf Certificates

)

Service ID
[hex]

0x0e

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters
(in)

CertId Holds the identifier of the last certificate in the chain.

certChainData
This is a pointer to an array of certificates sorted according to the
order in the PKI.

NumberOf
Certificates

Defines the number of certificates stored in the CertChainData
array.

Parameters
(inout)

None

Parameters
(out)

None

Return value Std_ReturnType

E_OK: Certificate verification request accepted. Operation will be
performed in the background and response is given through a
callback.
E_NOT_OK: Operation not accepted due to an internal error.
KEYM_E_BUSY: Validation cannot be performed yet. KeyM is
currently busy with other jobs.
KEYM_E_PARAMETER_MISMATCH: Certificate ID invalid.
KEYM_E_KEY_CERT_EMPTY: One of the certificate slots are
empty.
KEYM_E_CERT_INVALID_CHAIN_OF_TRUST: An upper
certificate is not valid.

Description

This function performs a certificate verification against a list of certificates. It is a pre-
requisite that the certificate that shall be checked has already been written with Key
M_SetCertificate() and that the root certificate is either in the list or is already
assigned to one of the other certificates.

Available via KeyM.h

Ộ()

The function KeyM_VerifyCertificateChain () is called when a certificate shall

be validated, but there are one or more other certificates that is required for the chain
of trust. For example, a PKI consists of four certificates, including the root certificate

 Specification of Key Manager
AUTOSAR CP R20-11

54 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

and the certificate used for authentication. Two other certificates are not permanently
available in the configuration and they are just needed to proof the authentication of
the one in place. Thus, only the to-be-verified certificate need to be set with

KeyM_SetCertificate() while the other two certificates of the chain can be

provided in a temporary buffer. They are needed to complete the chain of trust. The
verification will start by identifying the permanently provided certificate, namely the
root certificate in-place. This certificate is checked followed by any other permanently
stored certificates until the missing one in the chain. These certificates are
referenced by certChainData. The first one from the list will be parsed and verified
against the last one that has been permanently stored in the certificate submodule.
This would be the root certificate in our example. If the first certificate in
certChainData can be verified against the root certificate, the next one in
certChainData will be verified against the previously verified until all certificates in
certChainData have been verified. The last one in the list will then be used to verify
the certificate referenced with CertId. Only the final result of this verification is
important and need to be stored. The intermediate results for the verification of
certChainData is not important and can be dropped.

[SWS_KeyM_00124] ổ The verification of the certificate(s) shall be done
asynchronously. All certificates that are involved in the chain of trust shall be verified,
from top to bottom. The callback function

KeyM_CertificateVerifyCallbackNotification() shall be called if the

verification has been finished and provide the result of the operation in the callback.
Ộ()

[SWS_KeyM_00125] ổ The function returns E_OK if the operation has been accepted

and can be performed. Any other return value will indicate the appropriate error and
the verification will not be started.
Ộ()

[SWS_KeyM_00126] ổ After the certificate submodule has successfully validated the
certificate, the corresponding public key shall be stored in the assigned key element
of the CSM. This allows the application to operate jobs where this key is assigned to.
This has to be done each time a verification of a certificate was successfully
performed, regardless of the function call that has been used.
Ộ()

8.3.3.7 KeyM_CertElementGet
[SWS_KeyM_00063]ổ

Service
Name

KeyM_CertElementGet

Syntax

Std_ Return Type KeyM_Cert Element Get (

 KeyM_Certificate Id Type Cert Id,

 KeyM_Cert Element Id Type Cert Element Id,

 uint8* Cert Element Data,

 uint32* Cert Element Data Length

)

 Specification of Key Manager
AUTOSAR CP R20-11

55 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Service ID
[hex]

0x0f

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters
(in)

CertId Holds the identifier of the certificate.

Cert
ElementId

Specifies the ElementId where the data shall be read from.

Parameters
(inout)

Cert
Element
DataLength

In: Pointer to a value that contains the maximum data length of the
CertElementData buffer. Out: The data length will be overwritten with
the actual length of data placed to the buffer if the function returns E_
OK. Otherwise, the it will be overwritten with the value zero.

Parameters
(out)

Cert
Element
Data

Pointer to a data buffer allocated by the caller of this function. If
available, the function returns E_OK and copies the data into this
buffer.

Return value
Std_-
ReturnType

E_OK: Element found and data provided in the buffer.
E_NOT_OK: Element data not found.
KEYM_E_PARAMETER_MISMATCH: Certificate ID or certificate
element ID invalid.
KEYM_E_KEY_CERT_SIZE_MISMATCH: Provided buffer for the
certificate element too small.
KEYM_E_KEY_CERT_EMPTY: No certificate data available, the
certificate slot is empty.
KEYM_E_KEY_CERT_INVALID: The certificate is not valid or has not
yet been verified.

Description

Provides the content of a specific certificate element. The certificate configuration
defines how the certificate submodule can find the element, e.g. by providing the
object identifier (OID). This function is used to retrieve this information if only one
element is assigned to the respective OID.

Available via KeyM.h

Ộ()

[SWS_KeyM_00127] ổ The function shall retrieve certificate elements from the
certificate as defined in the configuration by searching the object ID in the configured
section of the certificate and provide the data from the parsed and validated
certificate by copying the content into the provided data buffer when the indicated
buffer size is large enough.
Ộ()

 Specification of Key Manager
AUTOSAR CP R20-11

56 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

8.3.3.8 KeyM_CertElementGetByIndex

[SWS_KeyM_91014]ổ

Service
Name

KeyM_CertificateElementGetByIndex

Syntax

Std_ Return Type KeyM_Certificate Element Get ByIndex (

 KeyM_Certificate Id Type Cert Id,

 KeyM_Cert Element Id Type Cert Element Id,

 uint32 Index,

 uint8* Cert Element Data Ptr,

 uint32* Cert Element Data Length Ptr

)

Service ID
[hex]

0x1b

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters
(in)

CertId Identifier of the certificate where the element shall be read from.

CertElementId Specifies the ElementId where the data shall be read from.

Index Specifies the index to the element that shall be read (0..N).

Parameters
(inout)

CertElementData
LengthPtr

In: Pointer to a value that contains the maximum data length of
the CertElementData buffer.

Out: The data length will be overwritten with the actual length of
data placed to the buffer if the function returns E_OK.

Parameters
(out)

CertElementData
Ptr

Pointer to a data buffer allocated by the caller of this function. If
the function returns E_OK element data are copied into this
buffer.

Return value Std_ReturnType

E_OK: Element found and data provided in the buffer.
E_NOT_OK: Unable to read the element data.
KEYM_E_PARAMETER_MISMATCH: Invalid certificate ID,
element ID invalid or index out of range.
KEYM_E_KEY_CERT_SIZE_MISMATCH: Provided buffer for
the certificate element too small.
KEYM_E_KEY_CERT_EMPTY: No certificate data available, the
certificate is empty.
KEYM_E_CERT_INVALID: Certificate is not valid or not verified
successfully

Description
This function provides the element data of a certificate. The function is used if an
element type can have more than one parameter. The index specifies which element
shall be read. The function works similar to the KeyM_CertElementGetFirst/KeyM_

 Specification of Key Manager
AUTOSAR CP R20-11

57 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

CertElementGetNext, but instead of the iteration, the individual elements can be
accessed by index (like the operation in the service interface)

Available via KeyM.h

Ộ()

8.3.3.9 KeyM_CertElementGetCount

[SWS_KeyM_91015]ổ

Service
Name

KeyM_CertificateElementGetCount

Syntax

Std_ Return Type KeyM_Certificate Element Get Count (

 KeyM_Certificate Id Type Cert Id,

 KeyM_Cert Element Id Type Cert Element Id,

 uint16* Count Ptr

)

Service ID
[hex]

0x1c

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters
(in)

CertId Identifier of the certificate.

CertElementId Specifies the certificate element.

Parameters
(inout)

None

Parameters
(out)

CountPtr
Pointer to the buffer where the number of available data elements
for this certificate element shall be copied to.

Return value
Std_Return-
Type

E_OK: Count value has been provided.
E_NOT_OK: Unable to provide the count value.
KEYM_E_PARAMETER_MISMATCH: Certificate ID or certificate
element ID invalid resp. out of range.

Description

This function provides the total number of data elements that are available for the
specified certificate element. Typically, only one data element is available. But in
some cases, several data elements can be assigned to one certificate element in a
row. This function retrieves the total number of elements. The individual data
elements can then accessed with KeyM_CertificateElementGetByIndex(). It is similar
to the functions KeyM_CertElementGetFirst/KeyM_CertElementGetNext to retrieve a
group of data elements of one certificate element.

 Specification of Key Manager
AUTOSAR CP R20-11

58 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Available via KeyM.h

Ộ()

8.3.3.10 KeyM_CertElementGetFirst

[SWS_KeyM_00064]ổ

Service
Name

KeyM_CertElementGetFirst

Syntax

Std_ Return Type KeyM_Cert Element Get First (

 KeyM_Certificate Id Type Cert Id,

 KeyM_Cert Element Id Type Cert Element Id,

 KeyM_Cert Element Iterator Type* Cert Element Iterator,

 uint8* Cert Element Data,

 uint32* Cert Element Data Length

)

Service ID
[hex]

0x10

Sync/Async Synchronous

Reentrancy Reentrant Reentrant for one iterator.

Parameters
(in)

CertId Holds the identifier of the certificate.

CertElement
Id

Specifies the CertElementId where the data shall be read from.

Parameters
(inout)

CertElement
Iterator

Pointer to a structure that is allocated and maintained by the caller. It
shall not be destroyed or altered by the application until all elements
have been retrieved through KeyM_CertElementGetNext().

CertElement
DataLength

In: Pointer to a value that contains the maximum data length of the
CertElementData buffer. Out: The data length will be overwritten with
the actual length of data placed to the buffer if the function returns E_
OK.

Parameters
(out)

CertElement
Data

Pointer to a data buffer allocated by the caller of this function. If
available, the function returns E_OK and copies the data into this
buffer.

Return value
Std_Return-
Type

E_OK: Element found and data provided in the buffer. The cert
ElementIterator has been initialized accordingly.
E_NOT_OK: Element data not found. CertElementIterator cannot be
used for further calls.
KEYM_E_PARAMETER_MISMATCH: Certificate ID or certificate

 Specification of Key Manager
AUTOSAR CP R20-11

59 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

element ID invalid.
KEYM_E_KEY_CERT_SIZE_MISMATCH: Provided buffer for the
certificate element too small.
KEYM_E_KEY_CERT_EMPTY: No certificate data available, the
certificate is empty.
KEYM_E_CERT_INVALID: Certificate is not valid or not verified
successfully

Description

This function is used to initialize the interative extraction of a certificate data element.
It always retrieves the top element from the configured certificate element and
initializes the structure KeyM_CertElementIterator so that consecutive data from this
element can be read with KeyM_CertElementGetNext().

Available via KeyM.h

Ộ()

[SWS_KeyM_00128] ổ The function shall retrieve certificate elements from the
certificate as defined in the configuration by searching the object ID in the configured
section of the certificate. If no error is detected, the identified data from the parsed
and validated shall be provided from the certificate by copying the content into the
provided data buffer when the indicated buffer size is large enough and the function

shall return E_OK. Otherwise, any other appropriate error code shall be provided.

()

[SWS_KeyM_00129] ổ The function returns E_OK, the iterator structure shall be

initialized in a way, that further listed elements associated to the referenced
certificate element can be retrieved one after another.
Ộ()

Rationale:
Some certificate elements can contain more than one element associated to an

object ID. The function pair of KeyM_CertElementGetFi rst () /

KeyM_CertElementGetNext () shall be used to retrieve a list of elements one

after another. The iterator, which is implementation specific, shall be used to forward
iterate through the list of elements.

8.3.3.11 KeyM_CertElementGetNext

[SWS_KeyM_00065]ổ

Service
Name

KeyM_CertElementGetNext

Syntax

Std_ Return Type KeyM_Cert Element Get Next (

 KeyM_Cert Element Iterator Type* Cert Element Iterator,

 uint8* Cert Element Data,

 Specification of Key Manager
AUTOSAR CP R20-11

60 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

 uint32* Cert Element Data Length

)

Service ID
[hex]

0x11

Sync/Async Synchronous

Reentrancy Reentrant Reentrant for one iterator.

Parameters
(in)

None

Parameters
(inout)

CertElement
Iterator

Pointer to a structure that is allocated by the caller and used by the
function. It shall not be destroyed or altered by the application until all
elements have been read from the list.

CertElement
DataLength

In: Pointer to a value that contains the maximum data length of the
CertElementData buffer. Out: The data length will be overwritten with
the actual length of data placed to the buffer if the function returns E_
OK.

Parameters
(out)

CertElement
Data

Pointer to a data buffer allocated by the caller of this function. If
available, the function returns E_OK and copies the data into this
buffer.

Return value
Std_Return-
Type

E_OK: Element found and data provided in the buffer. The Cert
ElementIterator has been initialized accordingly.
E_NOT_OK: Element data not found. CertElementIterator cannot be
used for further calls.
KEYM_E_PARAMETER_MISMATCH: Certificate ID or certificate
element ID invalid.
KEYM_E_KEY_CERT_SIZE_MISMATCH: Provided buffer for the
certificate element too small.
KEYM_E_KEY_CERT_EMPTY: No certificate data available, the
certificate is empty.
KEYM_E_CERT_INVALID: Certificate is not valid or not verified
successfully

Description

This function provides further data from a certificate element, e.g. if a set of data are
located in one certificate element that shall be read one after another. This function
can only be called if the function KeyM_CertElementGetFirst() has been called once
before.

Available via KeyM.h

Ộ()

 Specification of Key Manager
AUTOSAR CP R20-11

61 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

[SWS_KeyM_00148] ổ This function can only be called for certificate elements where

KeyMCertificateElementHasIteration is set to TRUE. Otherwise, the function shall

return KEYM_E_CERT_INVALID.

()

[SWS_KeyM_00130] ổ The function KeyM_CertGetElementFirst () shall be

called once with return value E_OK before the KeyM_CertGetElementNext () can

be called.
Ộ()

[SWS_KeyM_00131] ổ If KeyM_CertGetElementNext () returns any other value

than E_OK, no further function call to KeyM_CertElementGetNext () is allowed

with the iterator structure until a new a successful call to

KeyM_CertElementGetFirst() was performed.

Ộ()

[SWS_KeyM_00132] ổ The function KeyM_CertGetElementNext () returns E_OK

and provides further data from the list referenced by certificate and certificate

element ID used by the call to KeyM_CertGetElementFirst () .

Ộ()

8.3.3.12 KeyM_CertGetStatus

[SWS_KeyM_00066]ổ

Service Name KeyM_CertGetStatus

Syntax

Std_ Return Type KeyM_Cert Get Status (

 KeyM_Certificate Id Type Cert Id,

 KeyM_Certificate Status Type* Status

)

Service ID [hex] 0x12

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) CertId Holds the identifier of the certificate

Parameters (inout) None

Parameters (out) Status Provides the status of the certificate.

Return value Std_ReturnType
E_OK Status successfully provided
E_NOT_OK Status provision currently not possible.
KEYM_E_PARAMETER_MISMATCH: Invalid certificate ID.

 Specification of Key Manager
AUTOSAR CP R20-11

62 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Description This function provides the status of a certificate.

Available via KeyM.h

Ộ()

 [SWS_KeyM_00133] ổ The certificate submodule shall maintain the status of a
certificate and provide the status on demand.
Ộ()
[SWS_KeyM_00134] ổ A certificate has the status KEYM_CERTIFICATE_VALID if it

was parsed and verified completely against other certificates of the PKI. All
certificates of the chain of trust are available and verified completely.
Ộ()

[SWS_KeyM_00136] ổ A certificate is in the status KEYM_CERTIFICATE_INVALID if

the contents could not be parsed due to an internal error, e.g. a format error,
signature failure period failure or any other failure occurred during the verification.
Ộ()

[SWS_KeyM_00137] ổ A certificate has the status

KEYM_CERTIFICATE_PARSED_NOT_VALID if the certificate has been provided e.g.

with the function KeyM_SetCertificate() and has been parsed successfully, but

the verification has not yet been initiated, e.g. by a call to

KeyM_VerifyCertificate() .

Ộ()

[SWS_KeyM_00138] ổ A certificate has the status

KEYM_CERTIFICATE_NOT_PARSED if the certificate was already provided, e.g. with

KeyM_SetCertificate() but the parsing process is still ongoing in the

background.

Ộ()

[SWS_KeyM_00140] ổ A certificate is in the status

KEYM_CERTIFICATE_NOT_AVAILABLE if the certificate has not yet been provided

by a function call KeyM_SetCertificate() or the function was called with the

certificate ID but with certificate length of 0.
Ộ()

8.4 Call-out definitions

The KeyM module provides no callouts.

 Specification of Key Manager
AUTOSAR CP R20-11

63 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

8.5 Scheduled functions

8.5.1 KeyM_MainFunction

[SWS_KeyM_00074]ổ

Service Name KeyM_MainFunction

Syntax

void KeyM_Main Function (

 void

)

Service ID [hex] 0x19

Description Function is called periodically according the specified time interval.

Available via SchM_KeyM.h

Ộ()

8.5.2 KeyM_MainBackgroudFunction

[SWS_KeyM_00075]ổ

Service
Name

KeyM_MainBackgroundFunction

Syntax

void KeyM_Main Background Function (

 void

)

Service ID
[hex]

0x1a

Description
Function is called from a pre-emptive operating system when no other task operation
is needed. Can be used for calling time consuming synchronous functions such as
KeyM_KH_Update().

Available via SchM_KeyM.h

Ộ()

8.6 Expected Interfaces

In this chapter all external interfaces required from other modules are listed.

 Specification of Key Manager
AUTOSAR CP R20-11

64 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

8.6.1 Mandatory Interfaces

This chapter defines all external interfaces which are required to fulfill the core
functionality of the module.

[SWS_KeyM_00076]ổ

API Function
Header
File

Description

Csm_Key-
ElementGet

Csm.h
Retrieves the key element bytes from a specific key element of the key
identified by the keyId and stores the key element in the memory location
pointed by the key pointer.

Csm_Key-
ElementSet

Csm.h Sets the given key element bytes to the key identified by keyId.

Csm_KeySet-
Valid

Csm.h Sets the key state of the key identified by keyId to valid.

Ộ()

8.6.2 Optional Interfaces

This chapter defines all external interfaces which are required to fulfill an optional
functionality of the module.

[SWS_KeyM_00078]ổ

API Function
Header
File

Description

Csm_KeyDerive Csm.h

Derives a new key by using the key elements in the given key
identified by the keyId. The given key contains the key elements for
the password and salt. The derived key is stored in the key element
with the id 1 of the key identified by targetCryptoKeyId.

Csm_Signature-
Verify

Csm.h
Verifies the given MAC by comparing if the signature is generated with
the given data.

Det_ReportError Det.h Service to report development errors.

IdsM_Set-
SecurityEvent

IdsM.h
This API is the application interface to report security events to the Ids
M.

 Specification of Key Manager
AUTOSAR CP R20-11

65 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

IdsM_Set-
SecurityEvent-
WithContextData

IdsM.h
This API is the application interface to report security events with
context data to the IdsM.

StbM_Get-
CurrentTime

StbM.h

Returns a time value (Local Time Base derived from Global Time
Base) in standard format.

Note: This API shall be called with locked interrupts / within an
Exclusive Area to prevent interruption (i.e., the risk that the time stamp
is outdated on return of the function call).

Ộ()

8.6.3 Configurable interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a call-back function. The names of these kind of
interfaces is not fixed because they are configurable.

Hint:
The functional behaviour of key handler functions is described in the respective
section of the calling Key Management function.

8.6.3.1 KeyM_KH_Start

[SWS_KeyM_00067]ổ

Service
Name

KeyM_KH_Start

Syntax

Std_ Return Type KeyM_KH_Start (

 KeyM_Start Type Start Type,

 const uint8* Request Data,

 uint16 Request Data Length,

 uint8* Response Data,

 uint16* Response Data Length

)

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters
(in)

StartType Defines in which mode the key operation shall be executed.

RequestData Information that comes along with the request, e.g. signature

 Specification of Key Manager
AUTOSAR CP R20-11

66 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

RequestData
Length

Length of data in the RequestData array

Parameters
(inout)

ResponseData
Length

In: Max number of bytes available in ResponseData Out: Actual
number of bytes in ResponseData if function returns E_OK.

Parameters
(out)

ResponseData Data returned by the function.

Return value Std_ReturnType

E_OK: Start operation successfully performed. Key update
operations are now allowed.
E_NOT_OK: Start operation not accepted.
KEYM_E_PARAMETER_MISMATCH: Parameter do not match
with expected value.
KEYM_E_KEY_CERT_SIZE_MISMATCH: Parameter size
doesn't match

Description

If KeyMCryptoKeyStartFinalizeFunctionEnabled and KeyMCryptoKeyHandlerStart
FinalizeEnabled is set to TRUE, this function will be called immediately when KeyM_
Start gets called. The function shall return E_OK to switch the Key Manager into the
active state for any key operation.

Available via KeyM_Externals.h

Ộ()

8.6.3.2 KeyM_KH_Prepare

[SWS_KeyM_00068]ổ

Service
Name

KeyM_KH_Prepare

Syntax

Std_ Return Type KeyM_KH_Prepare (

 const uint8* Request Data,

 uint16 Request Data Length,

 uint8* Response Data Ptr,

 uint16* Response Data Length

)

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters
(in)

RequestData Information that comes along with the request

RequestData
Length

Length of data in the RequestData array

 Specification of Key Manager
AUTOSAR CP R20-11

67 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Parameters
(inout)

ResponseData
Length

In: Max number of bytes available in ResponseData Out: Actual
number of bytes in ResponseData.

Parameters
(out)

ResponseDataPtr Data returned by the function.

Return value Std_ReturnType

E_OK: Service has been accepted and will be processed
internally. Results will be provided through a callback
E_NOT_OK: Service not accepted due to an internal error.
KEYM_E_PARAMETER_MISMATCH: Parameter do not match
with expected value.
KEYM_E_KEY_CERT_SIZE_MISMATCH: Parameter size
doesn't match

Description

If the configuration parameters KeyMCryptoKeyPrepareFunctionEnabled and Key
MCryptoKeyHandlerPrepareEnabled are both set to TRUE, then this function will be
called immediately when KeyM_Prepare gets called. The function takes over the task
to prepare a key management operation. The response data will be passed on as is
to the caller of Key_Prepare.

Available via KeyM_Externals.h

Ộ()

8.6.3.3 KeyM_KH_Update

[SWS_KeyM_00069]ổ

Service
Name

KeyM_KH_Update

Syntax

Std_ Return Type KeyM_KH_Update (

 const uint8* KeyNamePtr,

 uint16 KeyNameLength,

 const uint8* Request Data,

 uint16 Request Data Length,

 uint8* Result Data Ptr,

 uint16* Result Data Length Ptr,

 KeyM_Crypto KeyId Type* KeymId,

 KeyM_KH_Update Operation Type* Update Operation

)

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters
(in)

KeyName
Ptr

Points to an array that defines the name of the key to be updated

 Specification of Key Manager
AUTOSAR CP R20-11

68 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

KeyName
Length

Specifies the number of bytes in KeyNamePtr. The value 0 indicates
that no KeyNamePtr is provided within this function.

Request
Data

Information that comes along with the request

Request
DataLength

Length of data in the RequestData array

Parameters
(inout)

ResultData
LengthPtr

In: Max number of bytes available in ResultDataPtr Out: Actual
number of bytes in ResultData or 0 if no data available. Unspecified or
untouched if return value indicates a failure.

KeymId

Provides a reference to the crypto key as an index to the crypto key
table. In: Providing the key ID if a name was provided and a key was
found. Returns 0xFFFFFFFFul if no key was found. Out: Key ID of the
key where the operation shall be performed to if updateOperation
indicates a key operation.

Parameters
(out)

ResultData
Ptr

Data returned by the function.

Update
Operation

Provides information to the caller what operation has been performed
and how to interpret the ResultData.

Return value
Std_Return-
Type

E_OK: Data returned by this function.
E_NOT_OK: General error, no data provided.
E_BUSY: Service could not be accepted because another operation is
already ongoing. Try next time.
KEYM_E_PARAMETER_MISMATCH: A parameter does not have
expected value. Service discarded.
KEYM_E_KEY_CERT_WRITE_FAIL: Key could not be written.
KEYM_E_KEY_CERT_UPDATE_FAIL: General failure on updating a
key.

Description
If the configuration item KeyMCryptoKeyHandlerUpdateEnabled is set to TRUE, the
KeyM_Update function will not perform any operation but will delegate the operation
to the key handler. On return, the function provides the status of the key operation.

Available via KeyM_Externals.h

Ộ()

[SWS_KeyM_00097] ổ If a key handler is used for key update operation

(KeyMCryptoKeyHandlerUpdateEnabled is set to TRUE), the Key Manager shall

provide a pointer to an internal buffer to the key handler when calling

KeyM_KH_Update() . This buffer can be used by the key handler to store the key

data results during the operation. As a consequence, the KeyM_Update() function

shall not touch this buffer after calling KeyM_KH_Update() until the key handler

 Specification of Key Manager
AUTOSAR CP R20-11

69 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

returns. The length of the buffer shall be at least as large as the largest value of all
KeyMCryptoKey/KeyMCryptoKeyMaxLength defined in the KeyMCryptoKey
container.

()

[SWS_KeyM_00096] ổ If the key handler returns E_OK and provides the operation

type KEYM_KH_UPDATE_KEY_UPDATE_REPEAT and ResultDataLengthPtr indicates

a value greater than 0 then the key manager shall perform the key update operation
according to the configuration (store or derive the key in CSM) and use the data
stored in ResultDataPtr.
If the update operation was successful, the key handler shall be called again.

()

Info: The repeated call to the key handler update operation allows the key handler to
update several keys at a time.

[SWS_KeyM_00093] ổ If the key handler returns and provides the operation type

KEYM_KH_UPDATE_FINISH, the key update operation shall finish and use the return

value from the key handler. The data buffer from KeyM_KH_Update ::ResultDataPtr

shall be copied to the buffer provided with KeyM_Update ::ResultDataPtr and the

KeyM_CryptoKeyUpdateCallbackNotification() function shall be called by

the KeyM_Update() function.

Ộ()

Info:
This allows the key handler update operation to provide results back to the key
server.

8.6.3.4 KeyM_KH_Finalize

[SWS_KeyM_00070]ổ

Service
Name

KeyM_KH_Finalize

Syntax

Std_ Return Type KeyM_KH_Finalize (

 const uint8* Request Data,

 uint16 Request Data Length,

 uint8* Response Data,

 uint16* Response Data Length

)

Sync/Async Synchronous

Reentrancy Non Reentrant

RequestData Information that comes along with the request

 Specification of Key Manager
AUTOSAR CP R20-11

70 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Parameters
(in)

RequestData
Length

Length of data in the RequestData array

Parameters
(inout)

ResponseData
Length

In: Max number of bytes available in ResponseData Out: Actual
number of bytes in ResponseData.

Parameters
(out)

ResponseData Data returned by the function.

Return value Std_ReturnType

E_OK: Operation has been accepted and will be processed
internally. Results will be provided through a callback
E_NOT_OK: Operation not accepted due to an internal error.
KEYM_E_BUSY: Validation cannot be performed yet. KeyM is
currently busy with other jobs.
KEYM_E_PARAMETER_MISMATCH: Parameter do not match
with expected value.
KEYM_E_KEY_CERT_SIZE_MISMATCH: Parameter size
doesn't match

Description

If KeyMCryptoKeyStartFinalizeFunctionEnabled and KeyMCryptoKeyHandlerStart
FinalizeEnabled is set to TRUE, this function will be called immediately when KeyM_
Finalize gets called KeyM_Finalize() will not perform any operation but will call this
key handler function to delegate the operation.

Available via KeyM_Externals.h

Ộ()

8.6.3.5 KeyM_KH_Verify

[SWS_KeyM_00071]ổ

Service
Name

KeyM_KH_Verify

Syntax

Std_ Return Type KeyM_KH_Verify (

 const uint8* KeyNamePtr,

 uint16 KeyNameLength,

 const uint8* Request Data,

 uint16 Request Data Length,

 uint8* Response Data,

 uint16* Response Data Length

)

Sync/Async Synchronous

Reentrancy Non Reentrant

KeyNamePtr Pointer to an array that defines the name of the key to be updated

 Specification of Key Manager
AUTOSAR CP R20-11

71 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Parameters
(in)

KeyName
Length

Specifies the number of bytes in keyName. The value 0 indicates
that no keyName is provided within this function.

RequestData Information that comes along with the request

RequestData
Length

Length of data in the RequestData array

Parameters
(inout)

ResponseData
Length

In: Max number of bytes available in ResponseData Out: Actual
number of bytes in ResponseData.

Parameters
(out)

ResponseData Data returned by the function.

Return value
Std_Return-
Type

KEYM_E_PENDING: Operation runs in asynchronous mode, has
been accepted and will be processed internally. Results will be
provided through callback
E_OK: Operation was successfully performed. Result information
are available.
E_NOT_OK: Operation not accepted due to an internal error.
KEYM_E_BUSY: Validation cannot be performed yet. KeyM is
currently busy with other jobs (for asynchronous mode).
KEYM_E_PARAMETER_MISMATCH: Parameter do not match
with expected value.
KEYM_E_KEY_CERT_SIZE_MISMATCH: Parameter size doesn't
match
KEYM_E_KEY_CERT_INVALID: Key operation cannot be
performed because the key name is invalid.
KEYM_E_KEY_CERT_EMPTY: The key for this slot has not been
set.

Description

If KeyMCryptoKeyHandlerVerifyEnabled is set to TRUE, the KeyM_Verify function
will not perform any operation but will delegate its operation to this service callback.
The intention is to perform a verification of input data using the CSM job referenced
with KeyMCryptoKeyCsmVerifyJobRef.

Available via KeyM_Externals.h

Ộ()

8.6.3.6 KeyM_KH_ServiceCertificate

[SWS_KeyM_00072]ổ

Service Name KeyM_KH_ServiceCertificate

Syntax

Std_ Return Type KeyM_KH_Service Certificate (

 KeyM_Service Certificate Type Service,

 const uint8* Cert Name,

 uint16 Cert NameLength,

 Specification of Key Manager
AUTOSAR CP R20-11

72 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

 const uint8* Request Data,

 uint16 Request Data Length,

 uint8* Response Data,

 uint16* Response Data Length

)

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters
(in)

Service
Provides the type of service the certificate submodule has to
perform.

CertName
Points to an array that defines the name of the key to be
updated

CertNameLength
Specifies the number of bytes in keyName. The value 0
indicates that no keyName is provided within this function.

RequestData Information that comes along with the request

RequestData
Length

Length of data in the RequestData array

Parameters
(inout)

ResponseData
Length

In: Max number of bytes available in ResponseData Out: Actual
number of bytes in ResponseData.

Parameters
(out)

ResponseData Data returned by the function.

Return value Std_ReturnType

E_OK: Service data operation successfully accepted.
E_NOT_OK: Operation not accepted due to an internal error.
KEYM_E_PARAMETER_MISMATCH: Parameter do not match
with expected value.
KEYM_E_KEY_CERT_SIZE_MISMATCH: Parameter size
doesn't match

Description
If KeyMCryptoKeyHandlerServiceCertificateEnabled is set to TRUE, this function
will be called by KeyM_ServiceCertificate() to delegate the operation to this user
specific service function.

Available via KeyM_Externals.h

Ộ()

8.6.3.7 KeyM_CryptoKeyUpdateCallbackNotification

 Specification of Key Manager
AUTOSAR CP R20-11

73 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

[SWS_KeyM_00077]ổ

Service Name KeyM_CryptoKeyUpdateCallbackNotification

Syntax

void KeyM_Crypto KeyUpdate Callback Notification (

 KeyM_Result Type Result,

 uint16 Result Data Length,

 const uint8* Result Data Ptr

)

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in)

Result Contains information about the result of the operation.

ResultDataLength
Contains the length of the resulting data of this operation if
any.

ResultDataPtr Pointer to the data of the result.

Parameters
(inout)

None

Parameters
(out)

None

Return value None

Description
Notifies the application that a crypto key update operation has been finished. This
function is used by the key manager.

Available via KeyM_Externals.h

Ộ()

[SWS_KeyM_00150] ổ This callback function indicates the end of a key update

operation. It is called after a successful call to KeyM_Update() that has returned

E_OK and the requested key update operation was finished. It is only needed if

KeyMCryptoKeyManagerEnabled is set to TRUE.

()

8.6.3.8 KeyM_CryptoKeyFinalizeCallbackNotification

 Specification of Key Manager
AUTOSAR CP R20-11

74 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

[SWS_KeyM_00079]ổ

Service Name KeyM_CryptoKeyFinalizeCallbackNotification

Syntax

void KeyM_Crypto KeyFinalize Callback Notification (

 KeyM_Result Type Result,

 uint16 Result Data Length,

 const uint8* Result Data Ptr

)

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

Result Contains information about the result of the operation.

ResultData
Length

ontains the length of the resulting data of this operation.

ResultDataPtr
Pointer to the data of the result (the data buffer that has been
provided with the service function).

Parameters
(inout)

None

Parameters
(out)

None

Return value None

Description
Notifies the application that a crypto key finalize operation has been finished. The
callback function is only called and needed if KeyMCryptoKeyStartFinalizeFunction
Enabled is set to TRUE.

Available via KeyM_Externals.h

Ộ()

[SWS_KeyM_00080] ổ If KeyMCryptoKeyStartFinalizeFunctionEnabled is set to

TRUE the callback function
KeyM_CryptoKeyFinalizeCallbackNotification () indicates that the finalize

operation has been concluded. The result value provides the status of the finalization
operation, if all keys have been validated successfully or not. The ResultData can
provide additional information about the finalization operation used to provide this
back to the key server.

Ộ ()

 Specification of Key Manager
AUTOSAR CP R20-11

75 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

8.6.3.9 KeyM_CryptoKeyVerifyCallbackNotification

[SWS_KeyM_00081]ổ

Service Name KeyM_CryptoKeyVerifyCallbackNotification

Syntax

void KeyM_Crypto KeyVerify Callback Notification (

 KeyM_Result Type Result,

 uint32 KeyId,

 uint16 Result Data Length,

 const uint8* Result Data Ptr

)

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in)

Result Contains information about the result of the operation.

KeyId The key identifier where this verification was started for.

ResultDataLength
Contains the length of the resulting data of this operation if
any.

ResultDataPtr Pointer to the data of the result.

Parameters
(inout)

None

Parameters
(out)

None

Return value None

Description
Notifies the application that a crypto key verify operation has been finished. This
function is used by the key manager.

Available via KeyM_Externals.h

Ộ()

[SWS_KeyM_00151] ổ If KeyMCryptoKeyVerifyFunctionEnabled is set to TRUE and

KeyM_Verify() has been called successfully and returned E_OK and if

KeyMCryptoKeyVerifyAsyncMode is set to TRUE then the Key Manager will perform

the verification operation in asynchronous mode. The function

KeyM_CryptoKeyVerifyCallback Notification() will be called by the Key

Manager after the verification for the given key and will provide the result.

 Specification of Key Manager
AUTOSAR CP R20-11

76 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

()

8.6.3.10 KeyM_ServiceCertificateCallbackNotification

[SWS_KeyM_00147]ổ

Service
Name

KeyM_ServiceCertificateCallbackNotification

Syntax

void KeyM_Service Certificate Callback Notification (

 KeyM_Certificate Id Type Cert Id,

 KeyM_Result Type Result,

 uint16 Result Data Length,

 const uint8* Result Data Ptr

)

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

CertId The certificate identifier where this service was started for.

Result Contains information about the result of the operation.

ResultDataLength
Contains the length of the resulting data of this operation if
any.

ResultDataPtr Pointer to the data of the result.

Parameters
(inout)

None

Parameters
(out)

None

Return value None

Description

Notifies the application that the certificate service operation has been finished. This
function is used by the certificate submodule. This callback is only provided if Key
MServiceCertificateFunctionEnabled is set to TRUE. The function name is
configurable by KeyMServiceCertificateCallbackNotificationFunc.

Available via KeyM_Externals.h

Ộ()

 Specification of Key Manager
AUTOSAR CP R20-11

77 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

[SWS_KeyM_00152] ổ If KeyMServiceCertificateFunctionEnabled is set to TRUE and

KeyM_ServiceCertificate() was called successfully by returning E_OK and

KeyMServiceCertificateCallbackNotificationFunc is configured with a valid function
name, this function will get called for the corresponding certificate to indicate the
result of the requested operation.

()

8.6.3.11 KeyM_CertificateVerifyCallbackNotification
[SWS_KeyM_00073]ổ

Service Name KeyM_CertificateVerifyCallbackNotification

Syntax

Std_ Return Type KeyM_Certificate Verify Callback Notification (

 KeyM_Certificate Id Type Cert Id,

 KeyM_Certificate Status Type Result

)

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

CertId The certificate identifier that has been verified.

Result Contains information about the result of the operation.

Parameters
(inout)

None

Parameters
(out)

None

Return value Std_ReturnType E_OK

Description
Notifies the application that a certificate verification has been finished. The function
name is configurable by KeyMCertificateVerifyCallbackNotificationFunc.

Available via KeyM_Externals.h

Ộ()

[SWS_KeyM_00153] ổ If a certificate verification request was successfully submitted

by KeyM_VerifyCertificate() , KeyM_VerifyCertificates() or

KeyM_VerifyCertificateChain() by returning E_OK and

KeyMCertificateVerifyCallbackNotificationFunc is configured with a valid function

 Specification of Key Manager
AUTOSAR CP R20-11

78 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

name, this function will get called for the corresponding certificate to indicate the
result of the verification operation.

()

8.7 Service Interfaces

This chapter is an add-on to the specification of the KeyM module. Whereas the
other parts of the specification define the behavior and the C-interfaces of the
corresponding basic software module, this chapter formally describes the
corresponding AUTOSAR services for SWC generated by the RTE. The interfaces
described here will be visible on the VFB and are used to generate the RTE between
application and the KEYM module.

8.7.1 Scope of this Chapter

This chapter defines blueprints of the AUTOSAR Interfaces of the Key Manager
Service (KeyM).

According to TPS_GST_00081 these blueprints are placed in ARPackage

/ AUTOSAR/KeyM.

8.7.2 Data Types

8.7.2.1 KeyM_StartType

[SWS_KeyM_00038]ổ

Name KeyM_StartType

Kind Enumeration

Range

KEYM_START_OEM_
PRODUCTIONMODE

0x01
Key operation starts in OEM
production mode

KEYM_START_
WORKSHOPMODE

0x02
Key operation starts in workshop
mode

reserved
0x80-
0x9F

The range from 0x80-0x9F is reserved
for user specific extensions

Description
This type specifies in which mode the key operation will start. The OEM production
mode provides higher privileges compared to workshop mode.

Variation --

 Specification of Key Manager
AUTOSAR CP R20-11

79 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Available
via

Rte_KeyM_Type.h

Ộ()

8.7.2.2 KeyM_CertElementIdType

[SWS_KeyM_00300]ổ

Name KeyM_CertElementIdType

Kind Type

Derived from uint16

Description Certificate Element handle.

Variation --

Available via Rte_KeyM_Type.h

Ộ()

8.7.2.3 KeyM_CertificateIdType

[SWS_KeyM_00301]ổ

Name KeyM_CertificateIdType

Kind Type

Derived from uint16

Description Certificate handle.

Variation --

Available via Rte_KeyM_Type.h

Ộ()

8.7.2.4 KeyM_ServiceCertificateType

[SWS_KeyM_00039]ổ

 Specification of Key Manager
AUTOSAR CP R20-11

80 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Name KeyM_ServiceCertificateType

Kind Enumeration

Range

KEYM_SERVICE_CERT_
REQUEST_CSR

0x01
Key server requests to generate a certificate
from the key client.

KEYM_SERVICE_CERT_
UPDATE_SIGNED_CSR

0x02
Key server returns a previously received
certificate and has been now signed by the
CA.

KEYM_SERVICE_CERT_
SET_ROOT

0x03 Key server wants to add a new root certificate.

KEYM_SERVICE_CERT_
UPDATE_ROOT

0x04
Key server wants to update an existing root
certificate.

KEYM_SERVICE_CERT_
SET_INTERMEDIATE

0x05
Key server wants to add a new CA certificate.
pre-requisite: Root certificate shall have been
stored beforefor a successful verification.

KEYM_SERVICE_CERT_
UPDATE_INTERMEDIATE

0x06
Key server wants to update an existing CA
certificate.

KEYM_SERVICE_CERT_
UPDATE_CRL

0x07 Provide or update a certificate revocation list.

reserved
0x80-
0x9F

The range from 0x80-0x9F is reserved for user
specific extensions

Description
This type specifies the requested service operation and what information is provided
with this function.

Variation --

Available
via

Rte_KeyM_Type.h

Ộ()

8.7.2.5 KeyM_KeyCertNameDataType

[SWS_KeyM_91000]ổ

Name KeyM_KeyCertNameDataType

 Specification of Key Manager
AUTOSAR CP R20-11

81 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Kind Array Element type uint8

Size {ecuc(KeyM/KeyMGeneral/KeyMKeyCertNameMaxLength)} Elements

Description
Array long enough to store the key or certificate name.

baseTypeEncoding = UTF-8

Variation --

Available via Rte_KeyM_Type.h

Ộ()

8.7.2.6 KeyM_CertificateStatusType

[SWS_KeyM_91003]ổ

Name KeyM_CertificateStatusType

Kind Enumeration

Range

KEYM_CERTIFICATE_VALID 0x00
Certificate successfully parsed and
verified.

KEYM_CERTIFICATE_INVALID 0x01
The certificate is invalid
(unspedified failure)

KEYM_CERTIFICATE_NOT_PARSED 0x02
Certificate has not been parsed so
far.

KEYM_CERTIFICATE_PARSED_NOT_
VALIDATED

0x03
Certificate parsed but not yet
validated

KEYM_CERTIFICATE_NOT_
AVAILABLE

0x04 Certificate not set

KEYM_E_CERTIFICATE_VALIDITY_
PERIOD_FAIL

0x05
Certificate verification failed -
Invalid Time Period

KEYM_E_CERTIFICATE_
SIGNATURE_FAIL

0x06
Certificate verification failed -
Invalid Signature

KEYM_E_CERTIFICATE_INVALID_
CHAIN_OF_TRUST

0x07
Certificate verification failed -
Invalid Chain of Trust

 Specification of Key Manager
AUTOSAR CP R20-11

82 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

KEYM_E_CERTIFICATE_INVALID_
TYPE

0x08
Certificate verification failed -
Invalid Type

KEYM_E_CERTIFICATE_INVALID_
FORMAT

0x09
Certificate verification failed -
Invalid Format

KEYM_E_CERTIFICATE_INVALID_
CONTENT

0x0A
Certificate verification failed -
Invalid Content

KEYM_E_CERTIFICATE_REVOKED 0x0B
Certificate verification failed -
Invalid Scope

Description Enumeration of the result type of verification operations.

Variation --

Available
via

Rte_KeyM_Type.h

Ộ()

8.7.2.7 KeyM_CertificateElementType_{ KeyMCertificate }_{

KeyMCertificateElement }

[SWS_KeyM_91004]ổ

Name KeyM_CertificateElementType_{KeyMCertificate}_{KeyMCertificateElement}

Kind Array Element type uint8

Size {ecuc(KeyM/KeyMCertificateElement/KeyMCertificateElementMaxLength} Elements

Description Array long enough to store data

Variation
KeyMCertificate ={ecuc(KeyM/KeyMCertificate.SHORT-NAME)}KeyMCertificate
Element ={ecuc(KeyM/KeyMCertificate/KeyMCertificateElement.SHORT-NAME)}

Available
via

Rte_KeyM_Type.h

Ộ()

8.7.2.8 KeyM_CryptoKeyDataType

[SWS_KeyM_91012]ổ

 Specification of Key Manager
AUTOSAR CP R20-11

83 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Name KeyM_CryptoKeyDataType

Kind Pointer

Type uint8*

Description Byte-pointer to the input or output data

Variation --

Available via Rte_KeyM_Type.h

Ộ()

8.7.2.9 KeyM_ResultType

[SWS_KeyM_91008]ổ

Name KeyM_ResultType

Kind Enumeration

Range

KEYM_RT_OK 0x00 Key management operation successful.

KEYM_RT_NOT_OK 0x01
General error occured during key management
operation.

KEYM_RT_KEY_CERT_
INVALID

0x02
Key or certificate is invalid and cannot be used for
the operation.

KEYM_RT_KEY_CERT_
WRITE_FAIL

0x03
Key or certificate could not be written to designated
storage.

KEYM_RT_KEY_CERT_
UPDATE_FAIL

0x04
General failure while updating a key or certificate
(error code could not be precised by one of the
other error codes)

KEYM_RT_CERT_
INVALID_CHAIN_OF_
TRUST

0x05 Certificate verification failed - Invalid Chain of Trust

Description Specifies the result type of an asynchronous key management function.

Variation --

 Specification of Key Manager
AUTOSAR CP R20-11

84 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Available
via

Rte_KeyM_Type.h

Ộ()

8.7.2.10 KeyM_CertDataType

[SWS_KeyM_00041]ổ

Name KeyM_CertDataType

Kind Structure

Elements

certDataLength

Type uint32

Comment Length of the certificate data.

certData

Type VoidPtr

Comment
Pointer references the data for a certificate on a local data area of the
caller.

Description This structure is used to exchange certificate data through interface functions.

Variation --

Available
via

KeyM.h

Ộ()

8.7.3 Client-Server-Interfaces

8.7.3.1 KeyM_Certificate

[SWS_KeyM_00082]ổ

Name KeyMCertificate_{KeyMCertificate}

 Specification of Key Manager
AUTOSAR CP R20-11

85 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Comment Service of Certificate sub module

IsService true

Variation KeyMCertificate = {ecuc(KeyM/KeyMCertificate.SHORT-NAME)}

Possible Errors

0 E_OK --

1 E_NOT_OK --

2 KEYM_E_BUSY --

4 KEYM_E_KEY_CERT_SIZE_MISMATCH --

5 KEYM_E_PARAMETER_MISMATCH --

7 KEYM_E_KEY_CERT_WRITE_FAIL --

9 KEYM_E_KEY_CERT_READ_FAIL --

10 KEYM_E_KEY_CERT_EMPTY --

11 KEYM_E_CERT_INVALID_CHAIN_OF_TRUST --

Operation GetCertificate

Comment Read certificate data from the certificate sub module

Variation --

Parameters

Certificate

Type KeyM_CertDataType

Direction OUT

Comment Certificate

Variation KeyMCertificate = {ecuc(KeyM/KeyMCertificate.SHORT-NAME)}

Possible Errors E_OK
E_NOT_OK

 Specification of Key Manager
AUTOSAR CP R20-11

86 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

KEYM_E_KEY_CERT_SIZE_MISMATCH
KEYM_E_PARAMETER_MISMATCH
KEYM_E_KEY_CERT_READ_FAIL
KEYM_E_KEY_CERT_EMPTY

Operation GetStatus

Comment Provides the status of a certificate.

Variation --

Parameters

Status

Type KeyM_CertificateStatusType

Direction OUT

Comment Provides the status type.

Variation --

Possible Errors
E_OK
E_NOT_OK

Operation SetCertificate

Comment Provides certificate data to be processed by the certificate sub module

Variation --

Parameters

Certificate

Type KeyM_CertDataType

Direction IN

Comment Certificate data

Variation KeyMCertificate = {ecuc(KeyM/KeyMCertificate.SHORT-NAME)}

Possible Errors E_OK
E_NOT_OK

 Specification of Key Manager
AUTOSAR CP R20-11

87 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

KEYM_E_KEY_CERT_SIZE_MISMATCH
KEYM_E_PARAMETER_MISMATCH
KEYM_E_KEY_CERT_WRITE_FAIL

Operation VerifyCertificate

Comment Verify certificate data from the certificate sub module

Variation --

Possible Errors

E_OK
E_NOT_OK
KEYM_E_BUSY
KEYM_E_KEY_CERT_SIZE_MISMATCH
KEYM_E_PARAMETER_MISMATCH
KEYM_E_KEY_CERT_EMPTY
KEYM_E_CERT_INVALID_CHAIN_OF_TRUST

Ộ()

8.7.3.2 KeyMCertificateNotification

[SWS_KeyM_00159]ổ

Name KeyMCertificateNotification

Comment This service interface provides callbacks for certificate management operation.

IsService true

Variation --

Possible Errors -- -- --

Operation {ecuc(KeyM/KeyMGeneral/KeyMServiceCertificateFunctionEnabled)} == true

Comment Notifies the application that a certificate verification has been finished.

Variation {ecuc(KeyM/KeyMGeneral/KeyMServiceCertificateFunctionEnabled)} == true

Parameters

Result

Type KeyM_CertificateStatusType

 Specification of Key Manager
AUTOSAR CP R20-11

88 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Direction IN

Comment Contains information about the result of the operation.

Variation --

Possible Errors --

Operation ServiceCertificateCallbackNotification

Comment

Notifies the application that the certificate service operation has been finished. This
function is used by the certificate submodule.

This callback is only provided if KeyMServiceCertificateFunctionEnabled is set to
TRUE.

Variation --

Parameters

Result

Type KeyM_ResultType

Direction IN

Comment Contains information about the result of the operation.

Variation --

ResponseDataLength

Type uint16

Direction IN

Comment --

Variation --

ResponseData

Type KeyM_CryptoKeyDataType

 Specification of Key Manager
AUTOSAR CP R20-11

89 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Direction IN

Comment Data returned by this operation

Variation --

Possible
Errors

--

Ộ()

8.7.3.3 KeyMCertificateElement

[SWS_KeyM_00083]ổ

Name KeyMCertificateElement_{KeyMCertificate}_{KeyMCertificateElement}

Comment Service of the certificate sub module to access certificate elements.

IsService true

Variation
KeyMCertificate = {ecuc(KeyM/KeyMCertificate.SHORT-NAME)} KeyMCertificate
Element ={ecuc(KeyM/KeyMCertificate/KeyMCertificateElement.SHORT-NAME)}

Possible
Errors

0 E_OK --

1 E_NOT_OK --

4 KEYM_E_KEY_CERT_SIZE_MISMATCH --

5 KEYM_E_PARAMETER_MISMATCH --

6 KEYM_E_CERT_INVALID --

10 KEYM_E_KEY_CERT_EMPTY --

Operation CertificateElementGet

Comment

Provides the content of a specific certificate element. The certificate configuration
defines how the certificate submodule can find the element, e.g. by providing the
object identifier (OID). This function is used to retrieve this information if only one
element is assigned to the respective OID.

 Specification of Key Manager
AUTOSAR CP R20-11

90 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Variation --

Parameters

CertificateElementData

Type
KeyM_CertificateElementType_{KeyMCertificate}_{KeyMCertificate-
Element}

Direction OUT

Comment --

Variation
KeyMCertificate ={ecuc(KeyM/KeyMCertificate.SHORT-NAME)}, Key
MCertificateElement ={ecuc(KeyM/KeyMCertificate/KeyMCertificate
Element.SHORT-NAME)}

CertificateDataLength

Type uint32

Direction OUT

Comment --

Variation --

Possible
Errors

E_OK
E_NOT_OK
KEYM_E_KEY_CERT_SIZE_MISMATCH
KEYM_E_PARAMETER_MISMATCH
KEYM_E_CERT_INVALID
KEYM_E_KEY_CERT_EMPTY

Operation CertificateElementGetByIndex

Comment

This operation provides the data of a certificate element. The function is used when
an element may contain more than one element. The index allows to access the n(th)
value of an element. This can be considered like an "array" access. Index=0
accesses the first element.

Variation --

Parameters

Index

Type uint16

 Specification of Key Manager
AUTOSAR CP R20-11

91 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Direction IN

Comment This is the index to dedicated element in the list

Variation --

CertificateElementData

Type
KeyM_CertificateElementType_{KeyMCertificate}_{KeyMCertificate-
Element}

Direction OUT

Comment --

Variation
KeyMCertificate = {ecuc(KeyM/KeyMCertificate.SHORT-NAME)}, Key
MCertificateElement ={ecuc(KeyM/KeyMCertificate/KeyMCertificate
Element.SHORT-NAME)}

CertificateDataLength

Type uint32

Direction OUT

Comment --

Variation --

Possible
Errors

E_OK
E_NOT_OK
KEYM_E_KEY_CERT_SIZE_MISMATCH
KEYM_E_PARAMETER_MISMATCH
KEYM_E_CERT_INVALID
KEYM_E_KEY_CERT_EMPTY

Operation CertificateElementGetCount

Comment

This operation provides the amount of data elements available for the certificate
element. This function is useful to retrieve the total amount of data elements available
in one certificate element and is used in combination with the operation Certificate
ElementGetByIndex. If only one data element is available, the function returns "1".

Variation --

 Specification of Key Manager
AUTOSAR CP R20-11

92 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Parameters

count

Type uint16

Direction OUT

Comment Number of items available for an element

Variation --

Possible
Errors

E_OK
E_NOT_OK
KEYM_E_KEY_CERT_SIZE_MISMATCH
KEYM_E_PARAMETER_MISMATCH
KEYM_E_CERT_INVALID
KEYM_E_KEY_CERT_EMPTY

Ộ()

8.7.3.4 KeyMCryptoKey

[SWS_KeyM_00084]ổ

Name KeyMCryptoKey

Comment Service of CryptoKey sub module

IsService true

Variation --

Possible Errors

0 E_OK --

1 E_NOT_OK --

2 KEYM_E_BUSY --

3 KEYM_E_PENDING --

4 KEYM_E_KEY_CERT_SIZE_MISMATCH --

5 KEYM_E_PARAMETER_MISMATCH --

6 KEYM_E_CERT_INVALID --

 Specification of Key Manager
AUTOSAR CP R20-11

93 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

10 KEYM_E_KEY_CERT_EMPTY --

Operation Finalize

Comment --

Variation {ecuc(KeyM/KeyMGeneral/KeyMCryptoKeyHandlerStartFinalizeEnabled)} == true

Parameters

RequestData

Type KeyM_CryptoKeyDataType

Direction IN

Comment Information that comes along with the request, e.g. signature

Variation --

RequestDataLength

Type uint16

Direction IN

Comment --

Variation --

ResponseData

Type KeyM_CryptoKeyDataType

Direction OUT

Comment Data returned by this operation

Variation --

ResponseDataLength

Type uint16

 Specification of Key Manager
AUTOSAR CP R20-11

94 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Direction OUT

Comment --

Variation --

Possible Errors

E_OK
E_NOT_OK
KEYM_E_KEY_CERT_SIZE_MISMATCH
KEYM_E_PARAMETER_MISMATCH

Operation Prepare

Comment --

Variation {ecuc(KeyM/KeyMGeneral/KeyMCryptoKeyPrepareFunctionEnabled)} == true

Parameters

RequestData

Type KeyM_CryptoKeyDataType

Direction IN

Comment Information that comes along with the request, e.g. signature

Variation --

RequestDataLength

Type uint16

Direction IN

Comment --

Variation --

ResponseData

Type KeyM_CryptoKeyDataType

Direction OUT

 Specification of Key Manager
AUTOSAR CP R20-11

95 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Comment Data returned by this operation

Variation --

ResponseDataLength

Type uint16

Direction OUT

Comment --

Variation --

Possible Errors

E_OK
E_NOT_OK
KEYM_E_KEY_CERT_SIZE_MISMATCH
KEYM_E_PARAMETER_MISMATCH

Operation Start

Comment This function intents to start a key update operation.

Variation {ecuc(KeyM/KeyMGeneral/KeyMCryptoKeyHandlerStartFinalizeEnabled)} == true

Parameters

StartType

Type KeyM_StartType

Direction IN

Comment Defines in which mode the key operation shall be executed

Variation --

RequestData

Type KeyM_CryptoKeyDataType

Direction IN

Comment Information that comes along with the request, e.g. signature

 Specification of Key Manager
AUTOSAR CP R20-11

96 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Variation --

RequestDataLength

Type uint16

Direction IN

Comment --

Variation --

ResponseData

Type KeyM_CryptoKeyDataType

Direction OUT

Comment Data returned by this operation

Variation --

ResponseDataLength

Type uint16

Direction OUT

Comment --

Variation --

Possible Errors

E_OK
E_NOT_OK
KEYM_E_KEY_CERT_SIZE_MISMATCH
KEYM_E_PARAMETER_MISMATCH

Operation Update

Comment --

Variation --

 Specification of Key Manager
AUTOSAR CP R20-11

97 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Parameters

KeyName

Type KeyM_KeyCertNameDataType

Direction IN

Comment Provides the name of the key that shall be verified

Variation --

KeyNameLength

Type uint16

Direction IN

Comment --

Variation --

RequestData

Type KeyM_CryptoKeyDataType

Direction IN

Comment Information that comes along with the request, e.g. signature

Variation --

RequestDataLength

Type uint16

Direction IN

Comment --

Variation --

ResponseData

 Specification of Key Manager
AUTOSAR CP R20-11

98 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Type KeyM_CryptoKeyDataType

Direction OUT

Comment Data returned by this operation

Variation --

ResponseDataLength

Type uint16

Direction OUT

Comment --

Variation --

Possible Errors

E_OK
E_NOT_OK
KEYM_E_KEY_CERT_SIZE_MISMATCH
KEYM_E_PARAMETER_MISMATCH

Operation Verify

Comment
The intention is to perform a verification of input data using an assigned crypto job
with its key.

Variation {ecuc(KeyM/KeyMGeneral/KeyMCryptoKeyVerifyFunctionEnabled)} == true

Parameters

KeyName

Type KeyM_KeyCertNameDataType

Direction IN

Comment Provides the name of the key that shall be verified

Variation --

KeyNameLength

 Specification of Key Manager
AUTOSAR CP R20-11

99 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Type uint16

Direction IN

Comment --

Variation --

RequestData

Type KeyM_CryptoKeyDataType

Direction IN

Comment Information that comes along with the request, e.g. signature

Variation --

RequestDataLength

Type uint16

Direction IN

Comment --

Variation --

ResponseData

Type KeyM_CryptoKeyDataType

Direction OUT

Comment Data returned by this operation

Variation --

ResponseDataLength

Type uint16

 Specification of Key Manager
AUTOSAR CP R20-11

100 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Direction OUT

Comment --

Variation --

Possible
Errors

E_OK
E_NOT_OK
KEYM_E_BUSY
KEYM_E_PENDING
KEYM_E_KEY_CERT_SIZE_MISMATCH
KEYM_E_PARAMETER_MISMATCH
KEYM_E_CERT_INVALID
KEYM_E_KEY_CERT_EMPTY

Ộ()

8.7.3.5 KeyMCryptoKeyNotification

[SWS_KeyM_91005]ổ

Name KeyMCryptoKeyNotification

Comment Service of <module>

IsService true

Variation --

Possible Errors -- -- --

Operation CryptoKeyFinalizeCallbackNotification

Comment

Notifies the application that a crypto key finalize operation has been finished.

The callback function is only called and needed if KeyMCryptoKeyStartFinalize
FunctionEnabled is set to TRUE.

Variation {ecuc(KeyM/KeyMGeneral/KeyMCryptoKeyStartFinalizeFunctionEnabled)} == true

Parameters

Result

Type KeyM_ResultType

Direction IN

 Specification of Key Manager
AUTOSAR CP R20-11

101 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Comment Contains information about the result of the operation.

Variation --

ResponseDataLength

Type uint16

Direction IN

Comment --

Variation --

ResponseData

Type KeyM_CryptoKeyDataType

Direction IN

Comment Data returned by this operation

Variation --

Possible
Errors

--

Operation CryptoKeyUpdateCallbackNotification

Comment
Notifies the application that a crypto key update operation has been finished. This
function is used by the key manager.

Variation --

Parameters

Result

Type KeyM_ResultType

Direction IN

Comment Contains information about the result of the operation.

 Specification of Key Manager
AUTOSAR CP R20-11

102 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Variation --

ResponseDataLength

Type uint16

Direction IN

Comment --

Variation --

ResponseData

Type KeyM_CryptoKeyDataType

Direction IN

Comment Data returned by this operation

Variation --

Possible
Errors

--

Operation CryptoKeyVerifyCallbackNotification

Comment
Notifies the application that a crypto key verify operation has been finished. This
function is used by the key manager.

Variation --

Parameters

Result

Type KeyM_ResultType

Direction IN

Comment Contains information about the result of the operation.

Variation --

 Specification of Key Manager
AUTOSAR CP R20-11

103 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

KeyId

Type uint32

Direction IN

Comment The key identifier where this verification was started for.

Variation --

ResultDataLength

Type uint16

Direction IN

Comment --

Variation --

ResultData

Type KeyM_CryptoKeyDataType

Direction IN

Comment Data returned by this operation

Variation --

Possible
Errors

--

Ộ()

8.7.4 Ports

8.7.4.1 KeyM_Certificate_{KeyMCertificate}

[SWS_KeyM_00160]ổ

 Specification of Key Manager
AUTOSAR CP R20-11

104 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Name KeyMCertificate_{KeyMCertificate}

Kind ProvidedPort Interface KeyMCertificate_{KeyMCertificate}

Description Port to execute certificate related functions.

Port Defined Argument Value(s)

Type KeyM_CertificateIdType

Value {ecuc(KeyM/KeyMCertificate/KeyMCertificateId)}

Variation KeyMCertificate = {ecuc(KeyM/KeyMCertificate.SHORT-NAME)}

Ộ(SRS_CryptoStack_00090, SRS_CryptoStack_00091)

8.7.4.2 KeyM_CertificateNotification_{KeyMCertificate}

[SWS_KeyM_00161]ổ

Name KeyMCertificateNotification_{KeyMCertificate}

Kind RequiredPort Interface KeyMCertificateNotification

Description Port to execute certificate notification related functions.

Port Defined Argument Value(s)

Type KeyM_CertificateIdType

Value {ecuc(KeyM/KeyMCertificate/KeyMCertificateId)}

Variation
KeyMCertificateVerifyCallbackNotificationFunc == NULL
KeyMCertificate = {ecuc(KeyM/KeyMCertificate.SHORT-NAME)}

Ộ(SRS_CryptoStack_00090, SRS_CryptoStack_00091)

8.7.4.3 KeyMCertificateElement_{KeyMCertificate}_{KeyMCertificateElement}

[SWS_KeyM_00162]ổ

Name KeyMCertificateElement_{KeyMCertificate}_{KeyMCertificateElement}

Kind ProvidedPort Interface
KeyMCertificateElement_{KeyMCertificate}_{-
KeyMCertificateElement}

Description Port to execute certificate related functions.

 Specification of Key Manager
AUTOSAR CP R20-11

105 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Port Defined
Argument
Value(s)

Type KeyM_CertificateIdType

Value {ecuc(KeyM/KeyMCertificate/KeyMCertificateId)}

Type KeyM_CertElementIdType

Value
{ecuc(KeyM/KeyMCertificate/KeyMCertificateElement/Key
MCertificateElementId)}

Variation
KeyMCertificate = {ecuc(KeyM/KeyMCertificate.SHORT-NAME)} Key
MCertificateElement = {ecuc(KeyM/KeyMCertificate/KeyMCertificate
Element.SHORT-NAME)}

Ộ(SRS_CryptoStack_00090, SRS_CryptoStack_00091)

8.7.4.4 KeyMCryptoKey

[SWS_KeyM_00163]ổ

Name KeyMCryptoKey

Kind ProvidedPort Interface KeyMCryptoKey

Description Port to execute crypto key related functions.

Variation --

Ộ(SRS_CryptoStack_00090, SRS_CryptoStack_00091)

8.7.4.5 KeyMCryptoKeyNotification

[SWS_KeyM_00164]ổ

Name KeyMCryptoKeyNotification

Kind RequiredPort Interface KeyMCryptoKeyNotification

Description Port to execute crypto key notification related functions.

Variation --

Ộ(SRS_CryptoStack_00090, SRS_CryptoStack_00091)

 Specification of Key Manager
AUTOSAR CP R20-11

106 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

9 Sequence diagrams

9.1 Store single key

Configuration item KeyMCryptoKeyStartFinalizeFunctionEnabled assumed to be

FALSE, KeyM_Prepare () is activated and delegated to the key handler.

KeyM_Update () operation completely covered by KeyM.

Store single key sequence (KeyMCryptoKeyGenerationType==KEYM_STORED_KEY)

Application KeyHandler çmoduleè

Csm

çmoduleè

KeyM

KeyM_KH_Prepare()

Csm_KeySetValid(Std_ReturnType, uint32)

KeyM_Prepare(Std_ReturnType, const uint8*,

uint16, uint8**, uint16**)

KeyM_Update("SHE", ...)

Csm_KeyElementSet(Std_ReturnType, uint32, uint32, const uint8*, uint32)

 Specification of Key Manager
AUTOSAR CP R20-11

107 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

9.2 Store multiple keys

Example with StartFinalize enabled and managed by KeyM (no delegation via

KeyM_KH_Start () to key handler). The KeyM_Prepare() operation is delegated

to the key handler. Multiple keys are set or updated using multiple KeyM_Update()

calls. The keys are updated using the Csm_KeyElementSet() function according to

the configuration of the keys.
During finalization the KeyM sets all keys to valid.

Store multiple keys sequence (KeyMCryptoKeyGenerationType==KEYM_STORED_KEY)

KeyHandlerApplication çmoduleè

Csm

çmoduleè

KeyM

state = active

KeyM needs to derive the correct function name from

KeyMCryptoCsmVerifyJobType

KeyM_KH_Prepare()

KeyM_Start(Std_ReturnType,

KeyM_StartType, const uint8*, uint16,

uint8**, uint16**): int

Csm_KeyElementSet(Std_ReturnType, uint32, uint32, const uint8*, uint32)

KeyM_Verify(Std_ReturnType, const uint8*, uint16,

const uint8*, uint16, uint8**, uint16**): int

Csm_KeyElementSet(Std_ReturnType, uint32, uint32, const uint8*, uint32)

KeyM_Finalize(Std_ReturnType, const

uint8*, uint16, uint8**, uint16*)

KeyM_Update("3",...)

KeyM_Prepare(Std_ReturnType, const uint8*,

uint16, uint8**, uint16**)

KeyM_Update("2",...)

Csm_XXXVerify(KeyMCryptpKeyCsmVerifyJobRef)

Csm_KeySetValid(Std_ReturnType, uint32)

KeyM_Update("1", ...)

Csm_KeyElementSet(Std_ReturnType, uint32, uint32, const uint8*, uint32)

 Specification of Key Manager
AUTOSAR CP R20-11

108 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

9.3 Derive key

Example using Csm_KeyDerive sequence instead of Csm_KeyElementSet()
(KeyMCryptoKeyGenerationType==KEYM_DERIVED_KEY).

çmoduleè

KeyM

Application KeyHandler çmoduleè

Csm

KeyM_Prepare(Std_ReturnType, const

uint8*, uint16, uint8**, uint16**)

KeyM_Update("Hugo", ...)

KeyM_KH_Prepare()

Csm_KeySetValid(Std_ReturnType, uint32)

Csm_KeyDerive(Std_ReturnType, uint32, uint32)

 Specification of Key Manager
AUTOSAR CP R20-11

109 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

9.4 Add working certificate

Application çmoduleè

Csm

çmoduleè

KeyM

çmoduleè

NvM

çmoduleè

StbM

Parsing all sub elements

KeyMCertificateElementverification() executed successfully

The subject field of the certificate in the upper hierarchy matches the issuer field

of the certificate in the lower hierarchy.

The current time provided by the time server (i.e. the time provided by STBM)

matches the "not before" and "not after" time period.

opt

[certificate stored in NvM]

StbM_GetCurrentTime(Std_ReturnType, StbM_SynchronizedTimeBaseType,

StbM_TimeStampType**, StbM_UserDataType**)

Verifying

E_OK

KeyM_CertGetStatus(Std_ReturnType,

KeyM_CertificateIdType,

KeyM_CertificateStatusType**)

Csm_KeyElementSet(Std_ReturnType, uint32, uint32, const uint8*, uint32)

status = KEYM_CERTIFICATE_NOT_AVAILABLE

time stamp check

Csm_SignatureVerify(Std_ReturnType, uint32, Crypto_OperationModeType, const uint8*,

uint32, const uint8*, uint32, Crypto_VerifyResultType**)

Csm_KeySetValid(Std_ReturnType, uint32)

status = KEYM_CERTIFICATE_VALID

KeyM_CertGetStatus(Std_ReturnType,

KeyM_CertificateIdType,

KeyM_CertificateStatusType**)

KeyM_SetCertificate(Std_ReturnType,

KeyM_CertificateIdType, const

KeyM_CertDataType*)

Parsing

KeyM_CertGetStatus(Std_ReturnType,

KeyM_CertificateIdType,

KeyM_CertificateStatusType**)

NvM_ReadBlock(Std_ReturnType, NvM_BlockIdType, void**)

subject check

KeyM_VerifyCertificate(Std_ReturnType,

KeyM_CertificateIdType)

status =

KEYM_CERTIFICATE_PARSED_NOT_VALIDATED

 Specification of Key Manager
AUTOSAR CP R20-11

110 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

9.5 Add root or intermediate certificate

Application çmoduleè

KeyM

çmoduleè

NvM

çmoduleè

Csm

çmoduleè

StbM

service == KEYM_SERVICE_CERT_SET_ROOT

service == KEYM_SERVICE_CERT_SET_INTERMEDIATE_CERT

service == KEYM_SERVICE_CERT_UPDATE_INTERMEDIATE

Search for KeyMCertificate with identical KeyMCertStorageCryptoKeyRef->KeyMCryptoKeyName

Parsing all sub elements

KeyMCertificateElementerification() executed successfully

The subject field of the certificate in the upper hierarchy matches the

issuer field of the certificate in the lower hierarchy.

The current time provided by the time server (i.e. the time provided by STBM)

matches the "not before" and "not after" time period.

opt

[Verification successful]

alt

[NvM uesd for Key storage]

[Csm uesd for Key storage]

KeyElementSet to destroy the worker key

NvM_WriteBlock(Std_ReturnType, NvM_BlockIdType, const void*)

KeyM_ServiceCertificate(Std_ReturnType, KeyM_ServiceCertificateType, const

uint8*, uint16, const uint8*, uint16, uint8**, uint16): int

Csm_KeySetValid(Std_ReturnType, uint32)

Csm_KeyElementSet(Std_ReturnType, uint32, uint32, const uint8*, uint32)

subject check

Search for KeyMCertificate

time stamp check

Csm_KeyElementSet(Std_ReturnType, uint32, uint32, const uint8*, uint32)

Csm_KeySetValid(Std_ReturnType, uint32)

StbM_GetCurrentTime(Std_ReturnType, StbM_SynchronizedTimeBaseType,

StbM_TimeStampType**, StbM_UserDataType**)

Parsing

Csm_KeyElementSet(Std_ReturnType, uint32, uint32, const uint8*, uint32)

Verifying

Csm_SignatureVerify(Std_ReturnType, uint32, Crypto_OperationModeType,

const uint8*, uint32, const uint8*, uint32, Crypto_VerifyResultType**)

 Specification of Key Manager
AUTOSAR CP R20-11

111 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

10 Configuration specification

Chapter 10.1 specifies the structure (containers) and the parameters of the module
KeyM.

Chapter 10.2 specifies additionally published information of the module KeyM.

10.1 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters describe Chapters 7 and Chapter 8.

10.1.1 KeyM

SWS Item ECUC_KeyM_00001 :

Module Name KeyM

Module Description Configuration of the Mcu (Microcontroller Unit) module.

Post -Build Variant Support true

Supported Config Variants VARIANT -POST-BUILD, VARIANT -PRE-COMPILE

Included Containers

Container Name Multiplicity Scope / Dependency

KeyMCertificate 0..65535 This container contains the certificate configuration.

KeyMCertificateElementVerificatio
n

0..65535
This container defines if and how certificate elements are
to be verified.

KeyMCryptoKey 0..65535
This container contains the crypto keys that can be
updated.

KeyMGeneral 1
This container holds general configuration (parameters)
for key manager.

KeyMNvmBlock 0..65535
Configuration of optional usage of Nvm in case the KeyM
module requires non volatile memory in the Ecu to store
information (e.g. crypto keys or certificates).

 Specification of Key Manager
AUTOSAR CP R20-11

112 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

10.1.2 KeyMGeneral

SWS Item ECUC_KeyM_00002 :

Container Name KeyMGeneral

Parent Container KeyM

Description This container holds general configuration (parameters) for key manager.

Configuration Parameters

SWS Item ECUC_KeyM_00008 :

Name

KeyMCertificateChainMaxDepth
Parent Container KeyMGeneral

Description Maximum number of certificates defined in a certificate chain.

Multiplicity 1

Type EcucIntegerParamDef

Range 1 .. 255

Default value --

Post -Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

KeyM: EcucModuleDef

upperMultiplicity = 1

lowerMultiplicity = 0

AUTOSARParameterDefinition:

EcucDefinitionCollection

KeyMGeneral:

EcucParamConfContainerDef

KeyMCertificate:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 65535

KeyMCertificateElementVerification:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 65535

KeyMCryptoKey:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 65535

+module

+container

+container

+container

+container

 Specification of Key Manager
AUTOSAR CP R20-11

113 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Link time --

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_KeyM_00010 :

Name

KeyMCertificateManagerEnabled
Parent Container KeyMGeneral

Description Enables (TRUE) or disables (FALSE) the part that manages certificates.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post -Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_KeyM_00018 :

Name

KeyMCryptoKeyHandlerPrepareEnabled
Parent Container KeyMGeneral

Description Enables (TRUE) or disables (FALSE) the key handler prepare function call.
If set to true, the corresponding key handler function shall be provided.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post -Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_KeyM_00021 :

Name

KeyMCryptoKeyHandlerServiceCertificateEnabled
Parent Container KeyMGeneral

Description Enables (TRUE) or disables (FALSE) the key handler service function call.
If set to true, the certificate submodule function
KeyM_KH_ServiceCertificate() shall be provided.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post -Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_KeyM_00017 :

Name

KeyMCryptoKeyHandlerStartFinalizeEnabled
Parent Container KeyMGeneral

Description Enables (TRUE) or disables (FALSE) the key handler start and finalize
function call. If set to true, the key handler functions KeyM_KH_Start() and
KeyM_KH_Finalize() shall be provided.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post -Build Variant Value false

 Specification of Key Manager
AUTOSAR CP R20-11

114 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Value Configuration Class Pre-compile time X All Variants

Link time --

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_KeyM_00019 :

Name

KeyMCryptoKeyHandlerUpdateEnabled
Parent Container KeyMGeneral

Description Enables (TRUE) or disables (FALSE) the call to the key handler update
function KeyM_KH_Update(). If set to true, the corresponding key handler
function shall be provided.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post -Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_KeyM_00020 :

Name

KeyMCryptoKeyHandlerVerifyEnabled
Parent Container KeyMGeneral

Description Enables (TRUE) or disables (FALSE) the call to the key handler verify
function KeyM_KH_Verify(). If set to true, the corresponding key handler
function shall be provided.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post -Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_KeyM_00011 :

Name

KeyMCryptoKeyManagerEnabled
Parent Container KeyMGeneral

Description Enables (TRUE) or disables (FALSE) the part that manages crypto key
operations.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post -Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_KeyM_00013 :

Name

KeyMCryptoKeyPrepareFunctionEnabled
Parent Container KeyMGeneral

Description Enables (TRUE) or disables (FALSE) the prepare function of the key
manager. If set to true, the KeyM_Prepare() function has to be called
accordingly.

Multiplicity 0..1

 Specification of Key Manager
AUTOSAR CP R20-11

115 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Type EcucBooleanParamDef

Default value false

Post -Build Variant
Multiplicity

false

Post -Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post -build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_KeyM_00012 :

Name

KeyMCryptoKeyStartFinalizeFunctionEnabled
Parent Container KeyMGeneral

Description Enables (TRUE) or disables (FALSE) the start and Finish function of the
key manager. If set to true, the KeyM_Start() and KeyM_Finalize()
functions have to be called.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post -Build Variant
Multiplicity

false

Post -Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post -build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_KeyM_00015 :

Name

KeyMCryptoKeyVerifyAsyncMode
Parent Container KeyMGeneral

Description This parameter defines if the function KeyM_Verify() runs in synchronous
or asynchronous mode

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post -Build Variant
Multiplicity

false

Post -Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post -build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_KeyM_00014 :

Name

KeyMCryptoKeyVerifyFunctionEnabled
Parent Container KeyMGeneral

 Specification of Key Manager
AUTOSAR CP R20-11

116 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Description Enables (TRUE) or disables (FALSE) the verify function of the key
manager. If set to true, the KeyM_Verify() function can be called.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post -Build Variant
Multiplicity

false

Post -Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post -build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_KeyM_00006 :

Name

KeyMDevErrorDetect
Parent Container KeyMGeneral

Description Switches the development error detection and notification on or off.

¶ true: detection and notification is enabled.

¶ false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post -Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_KeyM_00078 :

Name

KeyMEnableSecurityEventReporting
Parent Container KeyMGeneral

Description Switches the reporting of security events to the IdsM:
- true: reporting is enabled.
- false: reporting is disabled.
Tags:
atp.Status=draft

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post -Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post -build time --

Scope / Dependency scope: ECU

SWS Item ECUC_KeyM_00009 :

Name

KeyMKeyCertNameMaxLength
Parent Container KeyMGeneral

Description Maximum length in bytes of certificate or key names used for the service
interface.

Multiplicity 1

 Specification of Key Manager
AUTOSAR CP R20-11

117 of 145 Document ID 907: AUTOSAR_SWS_KeyManager

Type EcucIntegerParamDef

Range 1 .. 255

Default value --

Post -Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_KeyM_00007 :

Name

KeyMMainFunctionPeriod
Parent Container KeyMGeneral

Description Specifies the period of main function KeyM_MainFunction in seconds.

Multiplicity 1

Type EcucFloatParamDef

Range]0 .. INF[

Default value --

Post -Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post -build time --

Scope / Dependency scope: local

SWS Item ECUC_KeyM_00016 :

Name

KeyMServiceCertificateFunctionEnabled
Parent Container KeyMGeneral

Description Enables (TRUE) or disables (FALSE) the certificate service function of the
key manager. If set to true, the KeyM_ServiceCertificate() function has to
be called accordingly.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post -Build Variant
Multiplicity

false

Post -Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post -build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post -build time --

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

KeyMSecurityEventRefs 0..1

Container for the references to IdsMEvent elements
representing the security events that the KeyM module shall
report to the IdsM in case the coresponding security related
event occurs (and if KeyMEnableSecurityEventReporting is set
to "true"). The standardized security events in this container
can be extended by vendor-specific security events.
Tags:
atp.Status=draft

