
Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

Document Title Explanation of Adaptive Platform
Software Architectural Decisions

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 983

Document Status published

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release R21-11

Document Change History
Date Release Changed by Description

2021-11-25 R21-11
AUTOSAR
Release
Management

• Added architectural decisions made
for release R21-11
• Updated the list of affected functional

clusters

2020-11-30 R20-11
AUTOSAR
Release
Management

• Initial release

1 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

Table of Contents

1 Introduction 4

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Definition of Terms and Acronyms 5

2.1 Acronyms and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Definition of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Related Documentation 6

4 Overview 7

5 Architectural Decisions 8

5.1 Dynamic memory allocation . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Making Adaptive Runtime classes final . . . . . . . . . . . . . . . . . . 9
5.3 Usage of out parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.4 Usage of named constructors for exception-less object creation . . . . 11
5.5 Introduction of a monotonic clock API . . . . . . . . . . . . . . . . . . . 12
5.6 Responsibilities of State Management, Execution Management, and

Platform Health Management . . . . . . . . . . . . . . . . . . . . . . . 13
5.7 Use of local proxy objects for shared access to objects . . . . . . . . . 16
5.8 Harmonized production errors . . . . . . . . . . . . . . . . . . . . . . . 17
5.9 Default arguments are not allowed in virtual functions . . . . . . . . . . 18
5.10 Assert that only APIs from properly initialized functional clusters can

be called . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.11 Provide only interfaces that are intended to be used by AUTOSAR ap-

plications and other Functional Clusters . . . . . . . . . . . . . . . . . 20
5.12 AUTOSAR should follow the C++ Core Guidelines . . . . . . . . . . . 21
5.13 Harmonized error handling for lost daemon connection . . . . . . . . . 22
5.14 Granularity of diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.15 Faults inside constructor . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.16 Restart granularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.17 Platform-independent development of Software Clusters of category

APPLICATION_LAYER . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.18 Harmonized logging / tracing . . . . . . . . . . . . . . . . . . . . . . . 27

3 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

1 Introduction

This explanatory document provides additional information on architectural decisions
made for the AUTOSAR Adaptive Platform standard.

1.1 Objectives

The main objective of this document is to provide a documentation of architectural
decisions made for the AUTOSAR Adaptive Platform to make such decisions compre-
hensible and reviewable in the future and ultimately get a more maintainable standard.

1.2 Scope

This document covers decisions made for the software architecture of the AUTOSAR
Adaptive Platform. The main audience of this document are architects of the AU-
TOSAR Adaptive Platform as well as members of other working groups.

4 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

2 Definition of Terms and Acronyms

2.1 Acronyms and Abbreviations

Abbreviation / Acronym Description
API Application Programming Interface
STL Standard Template Library

2.2 Definition of Terms

Term Description
Adaptive Application See [1, AUTOSAR Glossary].
Execution Management A Functional Cluster. See [2, EXP_SWArchitecture] for an

overview.
Functional Cluster A logical group of functionality within the AUTOSAR Adaptive

Platform. Functional Clusters are the subject of the individual
specification documents that make up the AUTOSAR Adaptive
Platform standard. See [2, EXP_SWArchitecture] for an overview
of all Functional Clusters in the AUTOSAR Adaptive Platform.

Platform Health Management A Functional Cluster. See [2, EXP_SWArchitecture] for an
overview.

Process See [1, AUTOSAR Glossary].
State Management A Functional Cluster. See [2, EXP_SWArchitecture] for an

overview.
Software Cluster See [1, AUTOSAR Glossary] and [2, EXP_SWArchitecture].
Thread See [1, AUTOSAR Glossary].
Watchdog An external component that supervises execution of the AU-

TOSAR Adaptive Platform. See [2, EXP_SWArchitecture] for an
overview.

5 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

3 Related Documentation

This document provides an overview of the architectural decisions that have been
made for the AUTOSAR Adaptive Platform and their rationale. A high-level
overview of the current AUTOSAR Adaptive Platform architecture is provided in [2,
EXP_SWArchitecture].

6 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

4 Overview

This chapter provides and overview of the organization and structure of decisions listed
in this document. All decisions are organized in a table as described below.

Date of approval Date when the decision has been approved by CF-CCB.

Decision
The decision itself. Impact or direct consequences (for example, changes to
interfaces) of the decision are not documented in the normal case. Changes
are requested during the roll-out process after the decision has been made.

Rationale A rationale for the decision.
Architectural
cluster

A list of architectural clusters that are affected by the decision.

Category Category of the decision.

Application
affected

States if the decision has an direct impact on existing applications.

Assumptions
Lists the assumptions that have been made before making the decision itself.
These assumptions are documented in order to be able to review decisions in
the future and check if some assumptions probably no longer hold.

Constraints
Provides an overview of the constraints that were identified to have an impact
on possible solutions. The constraints are also documented in order to be
reference points for future reviews of the decision.

Alternatives Lists the alternatives that were considered and a rationale why they are worse
than the decision that has been made.

Remarks Lists remarks on the decisions.
Related
requirements

Lists requirements related to the decision.

7 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

5 Architectural Decisions

This chapter lists architectural decisions that have been made for the AUTOSAR Adap-
tive Platform.

5.1 Dynamic memory allocation

Date of approval 2020-09-15

Decision
The use of dynamic memory allocation by Adaptive Applications and Functional
Clusters is allowed and assumed upon designing the AUTOSAR Adaptive
Platform standard.

Rationale

The use of dynamic memory allocation is essentially indispensable as the
AUTOSAR Adaptive Platform standard employs C++ as the language for its
API.

As the AUTOSAR Adaptive Platform standard will be used in safety-related
systems, dynamic memory allocation can cause non-deterministic behavior.
Two typical issues are the fragmentation and non-deterministic
allocation/de-allocation processing time. Memory allocators designed for
non-safety-critical systems often exhibit such issues, as they are more or less
designed for memory efficiency and/or average processing performance.

These issues can be controlled by using deterministic memory allocators.
Memory allocation is a well-studied area and various techniques have been
reported (Refer to references below for some examples). Multiple AUTOSAR
partners within the architecture group reportedly have such deterministic
memory allocators implemented and have been used in mass-production
systems.

Note that such allocators should replace the default malloc()/free()
implementations provided in the standard C library, that sits underneath the
C++ runtime library providing new()/delete() and also STL that AUTOSAR
Adaptive Platform also uses. This frees applications from providing its own
custom deterministic allocators and installing it to custom-allocator-aware
classes.

Please refer to [3], [4], [5], and [6] for further information on memory
fragmentation and memory allocation in real-time systems.

Architectural
cluster

• Communication Management

• Adaptive Core

• Intrusion Detection System Manager for Adaptive
Platform

• Persistency

• Execution Management

• Time Synchronization

• Platform Health Management
5

5

8 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

4
4

• Identity and Access Management

• Diagnostic Management

• Log and Trace

• Cryptography

• State Management

• Update and Configuration Management

• Network Management

Category Safety

Application
affected

No

Assumptions

Platform vendors and/or compiler vendors can replace the default memory
allocation/deallocation functions to use deterministic versions of those functions
during critical phases of the runtime when such determinism is required for
safety purposes.

Constraints
During certain phases of the runtime determinism is required. These are the
phases in which the allocators need to be replaced with deterministic versions.

Alternatives

• Not using dynamic memory allocation is not an alternative for using C++.

• Disallow dynamic memory allocation during certain phases of the
runtime in which determinism is required. This makes it very difficult to
run complex code during these phases.

Remarks No remarks.
Related
requirements

• [RS_AP_00129] Public types defined by functional clusters shall be
designed to allow implementation without dynamic memory allocation

5.2 Making Adaptive Runtime classes final

Date of approval 2020-09-15

Decision Adaptive Runtime types shall use the final specifier unless they are
meant to be used as a base class.

Rationale

Making classes final that are not intended to be used as base class
expresses the design (in particular the class hierarchy) more explicit. This will
avoid problems such as
• to derive from a class that is not prepared for sub-classing,

• to inadvertently create a new virtual function instead of overwriting a
function from the base class due to a slightly different signature.

Architectural
cluster

• Communication Management

• Adaptive Core

• Intrusion Detection System Manager for Adaptive
Platform

5

5

9 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

4
4

• Persistency

• Execution Management

• Time Synchronization

• Platform Health Management

• Diagnostic Management

• Log and Trace

• Cryptography

Category None

Application
affected

No

Assumptions A clear expression of the intended design of the public AUTOSAR Runtime for
Adaptive Applications class hierarchy.

Constraints No constraints were identified.

Alternatives
The alternative is to have a code review of the application code using
AUTOSAR types. This is far out-of-scope of AUTOSAR wherefore it is not a
real alternative.

Remarks No remarks.
Related
requirements

• [RS_AP_00140] Usage of "final specifier" in ara types

5.3 Usage of out parameters

Date of approval 2020-09-15

Decision
Out parameters can be used for in-place modifications but shall not be used for
returning values.

Rationale

Harmonized look and feel.

C++ Core Guidelines [7]: “F.20: For "out" output values, prefer return values to
output parameters. [...] A return value is self-documenting, whereas a & could
be either in-out or out-only and is liable to be misused. This includes large
objects like standard containers that use implicit move operations for
performance and to avoid explicit memory management.”

Architectural
cluster

• Persistency

Category None

Application
affected

No

Assumptions Dynamic memory allocation is allowed for all cases in which the APIs are used,
even when running time critical safety related code including ASIL D.

Constraints
In/out parameters, i.e. modifying an already existing parameter within a function
is allowed. For example, a function that clears or writes to a buffer should
receive that buffer as a non-const in/out parameter.

5

10 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

4
Alternatives No alternatives were considered.
Remarks No remarks.
Related
requirements

• [RS_AP_00141] Usage of out parameters

5.4 Usage of named constructors for exception-less object cre-
ation

Date of approval 2020-10-06

Decision Exceptionless functions for creation of objects which returns an
ara::core::Result should use the "named constructor idiom".

Rationale

Disadvantages of constructor token approach are avoided as follows:
• The constructor token type is an implementation detail of a Class and

should thus not be specified, or even accessible from outside. This
makes the use of auto for obtaining a token mandatory because the
token type cannot be referred to in any other way.

• Moving the token’s content to the SomeClass instance has to be done
very carefully to fulfill the always-successful guarantee, which can be
tricky if multiple resources need to be acquired.

• The token object is "destroyed" by std::move-ing its value into the
SomeClass constructor (actually, it is to be in a "valid" but unspecific
state according to the C++ standard), but it is easily possible to
mistakenly use it again for attempting to create another instance, with
undefined results.

Architectural
cluster

• Communication Management

• Adaptive Core

• Intrusion Detection System Manager for Adaptive
Platform

• Persistency

• Execution Management

• Time Synchronization

• Platform Health Management

• Identity and Access Management

• Diagnostic Management

• Log and Trace

• Cryptography

• State Management

• Update and Configuration Management

• Network Management

5

11 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

4
Category Safety

Application
affected

Yes

Assumptions No assumptions were made.

Constraints No constraints were identified.

Alternatives

• Constructor token approach. It was not considered due to the drawbacks
described in the rationale of this decision.

• Regular constructor calls. Regular constructor calls were not considered
because regular constructors may throw exceptions and thus cannot be
used in an exception-less design.

Remarks No remarks.
Related
requirements

No related requirements.

5.5 Introduction of a monotonic clock API

Date of approval 2020-10-20

Decision

The AUTOSAR Runtime for Adaptive Applications shall provide its own
monotonic std::chrono::SteadyClock representing the power-up time of
the machine. The accuracy of this clock is defined by the platform vendor.

The accuracy of this clock could be used as a characteristic value of the
platform so that the projects could check whether this clock meets the
project-specific requirements (e.g. time synchronization requires typically a
clock with higher accuracy).

The system start of the machine defines the epoch of the clock. So this clock
represents the power-up time of the machine.

Functional Clusters dealing with timestamps or clocks should use this clock as
a basis.

Rationale
The timestamps used in the time synchronization cluster should be based on
std::chrono. Time synchronization requires a monotonic clock with special
accuracy.

Architectural
cluster

• Adaptive Core

• Execution Management

• Time Synchronization

Category None

Application
affected

Yes

Assumptions

The time synchronization cluster is typically a daemon-based architecture due
to a single communication endpoint of the time sync messages. A standardized
clock with a special accuracy as a common basis is required to synchronize the
daemon with the library.

Constraints No constraints were identified.
5

12 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

4

Alternatives
The used clock could also be passed as a template argument. But a
standardized clock with a special accuracy as a common basis is required
anyway in case the time synchronization cluster is daemon based.

Remarks No remarks.
Related
requirements

No related requirements.

5.6 Responsibilities of State Management, Execution Manage-
ment, and Platform Health Management

Date of approval 2020-10-27

Decision

State Management, Execution Management, and Platform Health
Management are the fundament/basis of the AUTOSAR Adaptive Platform. A
failure in either State Management, Platform Health Management, or
Execution Management process will typically lead to stop triggering the
watchdog. Platform Health Management supervises State
Management and Execution Management. Platform Health
Management controls the watchdog and is thus in turn supervised by the
hardware watchdog.

Triggering of a Machine reset as a last resort should not be an option at all in
case of a failing of an Adaptive Application supervision (i.e. apart from
Operating System / Execution Management / State Management /
Platform Health Management). A supervision failure in an Adaptive
Application shall be reported to State Management. State Management
may forward this failure based on the criticality to Platform Health
Management to wrongly trigger or stop triggering the serviced watchdog.

Platform Health Management performs a logical supervision of
checkpoints within a process or between processes within a Function
Group. Platform Health Management reports any supervision failures to
State Management. State Management is responsible to perform recovery
actions including a switch of the Function Group State, by delegating to
the Adaptive Application, or, as a last resort, by advising Platform Health
Management to perform a hardware reset. Platform Health Management
is intended for supervision of safety-critical processes. Thus, Platform
Health Management is an optional part of the AUTOSAR Adaptive Platform
for non safety-critical applications.

Processes shall never be restarted on their own because they may have
unknown runtime dependencies. The relation between a Process and a
Function Group is comparable to the relation between a thread and a
process. State Management should always trigger a request (Function
Group State change) to restart processes even in the
simplistic/non-dependent cases. Thus, Platform Health Management
does not have a direct interface to Execution Management.

The unrecoverable state interface of Platform Health Management shall
be removed.

5

13 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

4

Rationale

The chosen solution leads to a simpler design of Platform Health
Management with a single and well-defined responsibility. The chosen solution
also adheres to the single responsibility principle for State Management
(control system state) and Execution Management (control processes) as
well.

Recovery actions can be added by extension (open-closed principle) to State
Management. There is no need to modify or configure Platform Health
Management.

Supervision failures may be handled by an Adaptive Application as well if
State Management chooses to delegate recovery to the Adaptive Application.

Architectural
cluster

• Execution Management

• Platform Health Management

• State Management

Category Safety

Application
affected

Yes

Assumptions

• State Management is a mandatory part of the AUTOSAR Adaptive
Platform.

• Performance impact / delay of indirect reporting of supervision failures to
an Adaptive Application via State Management is negligible in
comparison to execution of reasonable recovery actions (such as
starting processes).

Constraints No constraints were identified.

Alternatives

• Alternative 1 - Failure recovery coordinated by Platform Health
Management

Recovery in case of a systematic failure is coordinated by Platform
Health Management. Several components (Adaptive Application,
Execution Management, State Management, watchdog) are
involved based on priorities. Platform Health Management
coordinates the recovery in the following manner:

1. Platform Health Management asks the Adaptive Application
to recover

2. In case of failure, Platform Health Management asks
Execution Management to restart failed processes

3. In case of failure, Platform Health Management asks State
Management to recover by switching the Function Group
State

4. In case of failure, Platform Health Management stops
triggering the watchdog and resets the Machine

5. In case of failure, Platform Health Management switches to
unrecoverable state (not yet fully defined)

Alternative 1 was not considered due to not adhering to the single
responsibility principle because several components are responsible for
recovery actions. This solution would also require Platform Health
Management to have application knowledge because it has to determine

5

5

14 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

4
4

the appropriate Function Group State in step 3. Restarting single
processes may not be appropriate (step 2) due to runtime dependencies.

• Alternative 2 - Distributed failure recovery
Recovery in case of a systematic failure is coordinated by Platform
Health Management and State Management. Several components
(Adaptive Application, Execution Management, watchdog) are
involved based on priorities. Platform Health Management and
State Management coordinate the recovery in the following manner:

1. Platform Health Management asks the Adaptive Application
to recover

2. In case of failure, Platform Health Management asks State
Management to coordinate recovery by restarting the application

3. State Management asks Execution Management to change
state / switch to degraded state or safe state

4. In case of failure, State Management asks Adaptive Application
to recover

5. In case step 2 failed due to application dependencies, Platform
Health Management stops triggering the watchdog and resets
the Machine

Alternative 2 was not considered due to not adhering to the single
responsibility principle because Platform Health Management and
State Management share responsibility for coordinating recovery
actions.

Remarks

• According to ISO 26262, it has to be ensured that a reaction is triggered
after a safety-relevant failure occurred. Therefore, Platform Health
Management shall make sure that State Management receives the
notification on a detected failure even if they communicate via an
unreliable communication channel, for example, an inter-process
communication mechanism. To achieve this, Platform Health
Management should implement a timeout monitoring. If no response by
State Management is received after a configurable timeout and
number of tries, Platform Health Management shall trigger a
reaction via hardware Watchdog.

• For release R19-11 of the AUTOSAR Adaptive Platform, the
configuration of Platform Health Management included rules for
monitoring (PhmSupervision), arbitration and recovery actions. With
this decision, Platform Health Management is only responsible for
monitoring. The rules for monitoring (PhmSupervision) are unaffected.
However, the responsibilities for arbitration and recovery actions are
moved to State Management. In the current design, State
Management is a piece of project-specific, coded software with only little
configuration. The configuration for State Management should be
extended to support arbitration and recovery actions as well. This will
allow to validate such configurations based on standardized rules which
is extremely hard to achieve on source code level.

Related
requirements

No related requirements.

15 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

5.7 Use of local proxy objects for shared access to objects

Date of approval 2020-10-27

Decision
Local proxy object(s) shall be used to provide shared access to object
instance(s) via the AUTOSAR Runtime for Adaptive Applications interface.

Rationale

Local proxy objects hide the implementation details of the shared access. The
AUTOSAR Runtime for Adaptive Applications interface shall return a proxy
object by value. The caller shall use the object as a local proxy for subsequent
communication. Return by value is the most straightforward way to return data.
This decision enforces harmonization of the AUTOSAR Runtime for Adaptive
Applications interface. Stack vendors may freely choose how to implement the
shared access inside the proxy class.

An example for the use of a local proxy object by the caller is the following:

1

2 Result<void> myFunc() {
3 Result<KeyValueStorage> kvsRes
4 = KeyValueStorage::Create(KVS_ID);
5 if (kvsRes) {
6 KeyValueStorage kvs = std::move(kvsRes).Value();
7 auto keyRes = kvs.GetAllKeys(); // Value semantics
8 // ...
9 } else {

10 return {std::move(kvsRes).Error()};
11 }
12 }

Architectural
cluster

• Communication Management

• Adaptive Core

• Intrusion Detection System Manager for Adaptive
Platform

• Persistency

• Execution Management

• Time Synchronization

• Platform Health Management

• Identity and Access Management

• Diagnostic Management

• Log and Trace

• Cryptography

• State Management

• Update and Configuration Management

• Network Management

Category None
5

16 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

4
Application
affected

Yes

Assumptions No assumptions were made.

Constraints No constraints were identified.

Alternatives
The alternative of using proxy classes is the usage of handles. These handles
would however reveal the implementation details of the shared access.

Remarks No remarks.
Related
requirements

• [RS_AP_00135] Avoidance of shared ownership

5.8 Harmonized production errors

Date of approval 2021-04-20

Decision

Functional clusters shall standardize production errors for common use-cases
demanded by the market. The standardization shall summarize all production
errors by a standardized table in all SWS documents specifying production
errors.

Rationale
Production errors are a fact. In order to be able to (semi-)automatically analyze
them and react to them, they and their documentation/persistence and their
healing needs to be standardized.

Architectural
cluster

• Communication Management

• Adaptive Core

• Intrusion Detection System Manager for Adaptive
Platform

• Persistency

• Execution Management

• Time Synchronization

• Platform Health Management

• Identity and Access Management

• Diagnostic Management

• Log and Trace

• Cryptography

• State Management

• Update and Configuration Management

• Network Management

Category None

Application
affected

Yes

5

17 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

4

Assumptions
Conceptually production errors are taken over from the AUTOSAR Classic
Platform. A differentiation between production errors and extended production
errors is not necessary.

Constraints No constraints were identified.

Alternatives
Functional clusters provide interfaces to allow applications to monitor
production errors.

Remarks None
Related
requirements

None

5.9 Default arguments are not allowed in virtual functions

Date of approval 2021-06-01

Decision Default arguments shall not be used at all in virtual functions.

Rationale

The according RQ of the "C++ core guidelines" are too weak .. (they state, that
it needs be made sure that a default argument is always the same) ... this
would lead to code duplication with dependencies and high risks of
inconsistencies, which can easily lead to unexpected behavior.

Architectural
cluster

• Communication Management

• Adaptive Core

• Intrusion Detection System Manager for Adaptive
Platform

• Execution Management

• Time Synchronization

• Platform Health Management

• Diagnostic Management

• Log and Trace

• Cryptography

Category None

Application
affected

Yes

Assumptions No assumptions were made.

Constraints No constraints were identified.
Alternatives No alternatives were considered.
Remarks No remarks.
Related
requirements

• [RS_AP_00148] Default arguments are not allowed in virtual functions

18 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

5.10 Assert that only APIs from properly initialized functional
clusters can be called

Date of approval 2021-06-08

Decision

If functionality is called that depends on prior initialization via
ara::core::Initialize and ara::core::Initialize has not been
called, the functional cluster implementation shall treat this as a violation and
shall follow SWS_CORE_00003 from [8, Specification of Adaptive Platform
Core].

Rationale

Calling APIs from uninitialized functional clusters that depend on prior
initialization cannot perform properly. This results in undefined behavior. The
problem is typically caused by misconfiguration or incomplete initialization at an
earlier stage of the system startup. This cannot be handled by the caller of the
API at the point in time where the error is detected. Aborting execution is the
only way to signal this kind of systematic error and prevent later failures.

Architectural
cluster

• Communication Management

• Adaptive Core

• Intrusion Detection System Manager for Adaptive
Platform

• Persistency

• Execution Management

• Time Synchronization

• Platform Health Management

• Identity and Access Management

• Diagnostic Management

• Log and Trace

• Cryptography

• State Management

• Update and Configuration Management

• Network Management

Category None

Application
affected

Yes

Assumptions Parts of the system need to be initialized statically.

Constraints No constraints were identified.

Alternatives
• Extend every API that depends on prior initialization with a specific error

code (e.g. kNotInitialized ) and force callers to check this error code at
every call (and let them abort themselves).

Remarks No remarks.
Related
requirements

None

19 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

5.11 Provide only interfaces that are intended to be used by AU-
TOSAR applications and other Functional Clusters

Date of approval 2021-06-08

Decision

It is explicitly prohibited to standardize implementation details, like:
• Classes, base-classes, functions etc. that are not used on the

application level or in platform extension APIs

• Implementation inheritance in the public APIs

• C++ SFINAE techniques of any kind

• Private members of classes

Rationale

• Provide only narrow interfaces to avoid coupling to implementation
details.

• Hide implementation details because by AUTOSAR definition the
implementation details are on the platform vendor.

Architectural
cluster

• Communication Management

• Adaptive Core

• Intrusion Detection System Manager for Adaptive
Platform

• Persistency

• Execution Management

• Time Synchronization

• Platform Health Management

• Identity and Access Management

• Diagnostic Management

• Log and Trace

• Cryptography

• State Management

• Update and Configuration Management

• Network Management

Category None

Application
affected

Yes

Assumptions No assumptions were made.

Constraints No constraints were identified.
Alternatives No alternatives were considered.
Remarks No remarks.
Related
requirements

• [RS_AP_00150] Provide only interfaces that are intended to be used by
AUTOSAR applications and other Functional Clusters

20 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

5.12 AUTOSAR should follow the C++ Core Guidelines

Date of approval 2021-06-08

Decision

AUTOSAR C++ APIs should follow the [7, C++ Core Guidelines]. The
exceptions for hard-real-time systems shall apply. The AUTOSAR guidelines
defined in RS-General shall overrule the "C++ Core Guidelines" in case of
conflict. If a part of the AUTOSAR C++ API cannot follow the "C++ Core
Guidelines" for some other reason, its specification shall state the rationale
(how this is done in detail, shall be aligned with the architecture group).

Rationale

These guidelines are well accepted in the market. Their aim is to help C++
programmers writing simpler, more efficient, and more maintainable code.
Specific guidelines for the automotive domain for C++ 14 are not available.
When the upcoming version of the MISRA C++ standard is published, this
decision/requirement may be replaced by a decision/requirement to follow
MISRA C++.

Architectural
cluster

• Communication Management

• Adaptive Core

• Intrusion Detection System Manager for Adaptive
Platform

• Persistency

• Execution Management

• Time Synchronization

• Platform Health Management

• Identity and Access Management

• Diagnostic Management

• Log and Trace

• Cryptography

• State Management

• Update and Configuration Management

• Network Management

Category None

Application
affected

Yes

Assumptions No assumptions were made.

Constraints Some exceptions apply like the exception-less handling of the ARA APIs.

Alternatives No alternatives were considered.
Remarks No remarks.
Related
requirements

• [RS_AP_00151] C++ Core Guidelines

21 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

5.13 Harmonized error handling for lost daemon connection

Date of approval 2021-06-08

Decision

If a functional cluster communicates with a remote peer (e.g. IPC
communication to a daemon) adequate error cases for communication failures
shall be identified (e.g. lost communication). These error cases shall be
grouped (according to the same error recovery mechanism) and if the user of
the API shall receive notification (e.g. by callbacks or returning error codes) for
a particular group, a suitable notification mechanism shall be selected.

If notification of client is required as immediate action on error occurrence the
notification mechanism shall be based on client callback. This mechanism uses
registration of a state change callback handler before a client can make use of
a service.

If notification shall take place on communication attempt one of the following
options shall be implemented:
• provision of error code, e.g. kServiceNotAvailable of type
ara::core::ErrorDomain::CodeType.

• mapping to functional status information inside a data structure (e.g.
class object), which represent an error status

Rationale
The provider of the service call shall decide individually the most suitable
mechanism if it is useful to inform application about lost daemon.

Architectural
cluster

• Communication Management

• Adaptive Core

• Intrusion Detection System Manager for Adaptive
Platform

• Persistency

• Execution Management

• Time Synchronization

• Platform Health Management

• Identity and Access Management

• Diagnostic Management

• Log and Trace

• Cryptography

• State Management

• Update and Configuration Management

• Network Management

Category None

Application
affected

Yes

5

22 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

4

Assumptions

The following assumptions were made:
• The implementation does not depend on the type of communication

interface, e.g. process local, ara::com or native IPC mechanisms are in
scope of the decision.

• There is no polling of communication status required by user of the API.

• The cause of disconnected service shall be kept agnostic to the user of
the API.

• Connection oriented communication is out of scope due to inherent
detection mechanisms of the protocol.

Constraints No constraints were identified.
Alternatives No alternatives were considered.
Remarks No remarks.
Related
requirements

None

5.14 Granularity of diagnostics

Date of approval 2021-06-08

Decision
Diagnostic entity shall be identical to the deployable unit within a vehicle.
Deployable unit means either hardware units (ECUs), partitions or
Root-SoftwareClusters.

Rationale

AUTOSAR focused on the SoftwareCluster approach because it offers a more
easy option to keep the two worlds consistent. The Root-SoftwareCluster is the
individual deployable unit from the OEM perspective. Wherefore it is easy to
keep the offboard world consistent if the diagnostic has identical boundaries.

The production and workshop systems are often bound to the physical device
wherefore many OEMs want to start also with this approach in Adaptive.
Consequently, until there is no individual software setup with a car (e.g.
because the installed options can be chosen by the driver itself) the offboard
systems could be kept consistent by stringent workflows.

Architectural
cluster

• Diagnostic Management

Category None

Application
affected

No

Assumptions
DM core doesn’t mind if a further diagnostic server is installed (in the context of
a new SoftwareCluster) or the current diagnostic server is just extended.
Partitions could be Classic Platform, Adaptive Platform or non-AUTOSAR ones.

5

23 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

4

Constraints

Diagnostics is a (non-verbose) offboard-communication using external
description to document the communication content. For the development of a
vehicle the AUTOSAR DEXT is used; for the offboard world typically the ASAM
ODX format is used, because it offers higher flexibility across different carlines.
Today it is often already a challenge to keep the two worlds consistent. But with
the dynamic deployment (offered by Adaptive Platform) it is even more
challenging because in worst cases each vehicle has an individual setup of
installed SoftwareClusters.

Alternatives None, because both options are requested by the market.

Remarks No remarks.
Related
requirements

None

5.15 Faults inside constructor

Date of approval 2021-06-29

Decision

Calling a constructor that may throw exceptions as part of its defined behavior
shall result in a compilation error if the compiler toolchain does not support
exceptions. The compilation error shall result from a static_assert with the
error message "This constructor requires exception support.".

Rationale

Unintended calls to constructors that may throw exceptions are detected at
compile time. static_assert is the only viable option. Declaring the
constructor protected or private is more complicated. Moreover,
static_assert supports a customized error message which explicitly states
the cause.

Architectural
cluster

• Communication Management

• Adaptive Core

• Intrusion Detection System Manager for Adaptive
Platform

• Persistency

• Execution Management

• Time Synchronization

• Platform Health Management

• Diagnostic Management

• Log and Trace

• Cryptography

Category None

Application
affected

Yes

Assumptions There are toolchains targeted by AUTOSAR, which do not support exceptions.

Constraints No constraints were identified.
5

24 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

4

Alternatives

• Constructors that may throw exceptions shall not participate in overload
resolution when the compiler toolchain does not support exceptions.

– (Pro) Similar solution as for
ara::core::Result::ValueOrThrow()

– (Con) Changes the overload set. Thus, may result in an
unintended change to the program flow instead of a compiler error.
∗ Unintended changes to the program flow may occur due to

overloads and due to conversion functions.
∗ Guidelines regarding constructor overloads might help.
∗ Conversion functions cannot be controlled by the AUTOSAR

Adaptive Platform.
∗ The problem does not exist for Result::ValueOrThrow()

because the function has no overloads that are available with
a toolchain without exception support.

– (Con) May result in lots of #ifdef in vendor-supplied headers.

• Constructors that may throw exceptions shall call abort instead of
throwing an exception when the compiler toolchain does not support
exceptions.

– (Pro) Constructors that may throw may be used even with a
toolchain that does not support exceptions if it can be precluded
that an exception is thrown.

– (Con) May be difficult to support by vendors, unless they make
large-scale changes to their C++ standard library if it does not
happen to follow the AR-specified style.

– (Con) Unintended calls to such constructors are only detected at
runtime and only in the case of an error.

• Implementation-specific behavior
– (Con) Violates [RS_AP_00111]

• All public constructors shall be declared as noexcept. Instead of public
constructors that may throw, the named constructor idiom shall be used
(even if the toolchain supports exceptions).

– (Pro) Unintended calls to constructors that may throw are detected
at compile time.

– (Con) Unnecessary restriction when a toolchain is used that
supports exceptions.

Remarks No remarks.
Related
requirements

• [RS_AP_00152] Faults inside constructor

25 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

5.16 Restart granularity

Date of approval 2021-06-29

Decision

Applications can be restarted in the scope of a FunctionGroup. Ideally, the
recovery of supervision errors should be handled in the own FunctionGroup.
If the recovery cannot be handled within the own FunctionGroup, it has to be
escalated within the State Management. There the coordination for the
recovery should take place. This could typically be:
• the shutdown/restart of multiple FunctionGroups,

• the start of other FunctionGroups or

• the restart of the entire Machine.

The coordination of the restart of the entire Machine has to be coordinated
within the State Management of the platform-core Software Cluster.

Rationale

Software Clusters are independently deployable units. They could be
added later to the same Machine and then should not harm other Software
Clusters (freedom from interference between Software Clusters).
Recovery shall always be tried within the Software Cluster.

Architectural
cluster

• Execution Management

• Platform Health Management

• State Management

Category Safety

Application
affected

No

Assumptions

The platform-core Software Cluster is the housekeeping initial Software
Cluster which Execution Management, Platform Health
Management, and State Management are a mandatory part of (if it is a
safety relevant Machine).

Constraints No constraints were identified.

Alternatives
Applications can be restarted in the scope of a Software Cluster. The
Software Cluster is for deployment and not visible in runtime, wherefore it
cannot be used in this context.

Remarks No remarks.
Related
requirements

None

5.17 Platform-independent development of Software Clusters of
category APPLICATION_LAYER

Date of approval 2021-06-29

Decision
Functional Cluster daemons and their startup coordination shall be part
of Software Clusters of category PLATFORM_CORE or PLATFORM.

5

26 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

4

Rationale

This allows uniform and platform-independent integration of Software
Clusters of category APPLICATION_LAYER. Consequently, it shall not be
necessary to take care of the platform software when developing an Software
Cluster of category APPLICATION_LAYER.

Architectural
cluster

• Adaptive Core

Category None

Application
affected

Yes

Assumptions Market demand is to deliver Machines with pre-installed Adaptive Platform
software.

Constraints No constraints were identified.

Alternatives
Do not make any limitations of platform software. This can lead to a
non-uniform integration of the platform software.

Remarks No remarks.
Related
requirements

None

5.18 Harmonized logging / tracing

Date of approval 2021-06-29

Decision

Functional Clusters shall standardize their logging/tracing for common
use-cases demanded by the market. The standardization shall be for the
non-verbose logging/tracing. If applicable it shall be summarized by two
standardized tables (one for logging and a second for tracing) listing all
standardized log-/trace messages.

Rationale
Standardized logging/tracing within Functional Clusters allows a
harmonized evaluation of logging/tracing on vehicle-level.

Architectural
cluster

• Communication Management

• Adaptive Core

• Intrusion Detection System Manager for Adaptive
Platform

• Persistency

• Execution Management

• Time Synchronization

• Platform Health Management

• Identity and Access Management

• Diagnostic Management

• Log and Trace

• Cryptography
5

5

27 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

4
4

• State Management

• Update and Configuration Management

• Network Management

Category None

Application
affected

Yes

Assumptions
Logging/tracing is necessary for a variety of use cases (root cause analysis,
auditing, debugging). Especially, in a distributed environment a harmonization
is necessary to enable automated analysis.

Constraints No constraints were identified.
Alternatives Do not standardize logging at all.

Remarks No remarks.
Related
requirements

None

28 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions



Explanation of Adaptive Platform Software
Architectural Decisions
AUTOSAR AP R21-11

References

[1] Glossary
AUTOSAR_TR_Glossary

[2] Explanation of Adaptive Platform Software Architecture
AUTOSAR_EXP_SWArchitecture

[3] Dynamic Memory Allocation and Fragmentation
https://www.researchgate.net/publication/295010953_Dynamic_Memory_Alloca-
tion_and_Fragmentation

[4] Dynamic Memory Allocation on Real-Time Linux
https://static.lwn.net/images/conf/rtlws-2011/proc/Jianping.pdf

[5] TLSF: a new dynamic memory allocator for real-time systems
https://doi.org/10.1109/EMRTS.2004.1311009

[6] The Memory Fragmentation Problem: Solved?
https://doi.org/10.1145/286860.286864

[7] C++ Core Guidelines
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

[8] Specification of Adaptive Platform Core
AUTOSAR_SWS_AdaptivePlatformCore

29 of 29 Document ID 983: AUTOSAR_EXP_SWArchitecturalDecisions

https://www.researchgate.net/publication/295010953\hskip 0em{}_Dynamic\hskip 0em{}_Memory\hskip 0em{}_Allocation\hskip 0em{}_and\hskip 0em{}_Fragmentation
https://www.researchgate.net/publication/295010953\hskip 0em{}_Dynamic\hskip 0em{}_Memory\hskip 0em{}_Allocation\hskip 0em{}_and\hskip 0em{}_Fragmentation
https://static.lwn.net/images/conf/rtlws-2011/proc/Jianping.pdf
https://doi.org/10.1109/EMRTS.2004.1311009
https://doi.org/10.1145/286860.286864
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

	1 Introduction
	1.1 Objectives
	1.2 Scope

	2 Definition of Terms and Acronyms
	2.1 Acronyms and Abbreviations
	2.2 Definition of Terms

	3 Related Documentation
	4 Overview
	5 Architectural Decisions
	5.1 Dynamic memory allocation
	5.2 Making Adaptive Runtime classes final
	5.3 Usage of out parameters
	5.4 Usage of named constructors for exception-less object creation
	5.5 Introduction of a monotonic clock API
	5.6 Responsibilities of State Management, Execution Management, and Platform Health Management
	5.7 Use of local proxy objects for shared access to objects
	5.8 Harmonized production errors
	5.9 Default arguments are not allowed in virtual functions
	5.10 Assert that only APIs from properly initialized functional clusters can be called
	5.11 Provide only interfaces that are intended to be used by AUTOSAR applications and other Functional Clusters
	5.12 AUTOSAR should follow the C++ Core Guidelines
	5.13 Harmonized error handling for lost daemon connection
	5.14 Granularity of diagnostics
	5.15 Faults inside constructor
	5.16 Restart granularity
	5.17 Platform-independent development of Software Clusters of category APPLICATION_LAYER
	5.18 Harmonized logging / tracing


