AUTOSAR

Document Title | Methodology
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 068

Document Classification Auxiliary
Document Status Final

Part of AUTOSAR Release 4.2.2

Document Change History

Release | Changed by Description

41.3 Release
Management o

AUTOSAR

4.2.2 Release e Minor corrections and editorial changes
Management

e Support for Safety Extensions added

AUTOSAR . Suggort for Diagr?ostic Extract added

4.2.1 Release e Support for Rapid Prototyping added
Management |, g 500rt for Sender Receiver Serialization added
AUTOSAR e Alignment of the AUTOSAR Methodology to the

System Description categories
Editorial changes

4.1.1 Administration

AUTOSAR e Harmonization between ECU Configuration
4.1.2 Release specification and AUTOSAR Methodology
Management
¢ Allow the usage of requirement ID definition and
tracing for specification items
e Updated chapter 3.6 Ecu Integration and
AUTOSAR Configuration with support for A2L function

e Added chapter 2.14 How to resolve Name Conflicts
e Added sections 3.4.1.15 Define Consistency Needs

and 3.4.2.17 Consistency Needs
Refine definition of Binding Times

AUTOSAR

e Simplification of use case diagrams by removing
task use and introducing deliverables on use cases
level (see Methodology Concept chapter)

AUTOSAR ° R.eadabillity improvement by generation of tables

4.0.3 Administration with navigable links

¢ Introduction of Variant Handling, E2E support,
System Constraints Description

e Refinement of Methodology Library, including the

extension of deliverables in different use cases

Changed tool platform for the SPEM model
Publish as pdf file instead of html

Used new table format for the model elements
Added SPEM diagrams

Methodology Concept chapter detailed
Memory Mapping use case added

Reworked and restructured use cases for more
readability

e Direct references to meta-model elements in
figures and tables

AUTOSAR

4.0.1 Administration

3.1.1 AUTOSAR e Legal Disclaimer revised

Administration

e Subchapter limitations of the current version
AUTOSAR enhanced

Administration Document meta information extended

Small layout adaptations made

3.0.1

Updated chapter 5 ECU-Design

Updated chapter 6.1 Relationship with Services
Legal disclaimer revised

Release Notes added

Advice for users revised

Revision Information added

AUTOSAR

2.1.15 Administration

AUTOSAR

2.0 Administration

Initial release

AUTOSAR

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for the
purpose of information only. AUTOSAR and the companies that have contributed to it
shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types of
Intellectual Property Rights. The commercial exploitation of the material contained in
this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only. For any other purpose, no part of
the specification may be utilized or reproduced, in any form or by any means, without
permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference models,
"use cases", and/or references to exemplary technical solutions, devices, processes or
software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their pres-
ence in such specifications, nor any later documentation of AUTOSAR conformance of
products actually implementing such exemplary items, imply that intellectual property
rights covering such exemplary items are licensed under the same rules as applicable
to the AUTOSAR Standard.

AUTOSAR

Table of Contents

1

Introduction

1.1

1.6

Objective
Overview

Known Limitations

Scope

Methodology Concepts . . .
Method Library (Method Content)
Task Definition
Work Product Definition
Role Definition
Tool Definition,

1.5.1

1.5.2

—_ .
—_ .l
OO0 WN =

Guidance
Tables . .

Capability Patterns (Use Case Elements)

1.5.2.1

Activity . .

Requirements Traceability .

Use Cases

2.1

2.2

2.3

2.4

Overall View

211
21.2
213
2.21
2.2.2
2.2.3
2.3.1
2.3.2
2.3.3

2.41

2.4.2

2.4.3

Purpose
Description
ViewsontheSystem
Overall Workflow
Workflow
Develop an Abstract System Description
Purpose
Description
Workflow
Develop a VFB System Description
Purpose
Description
Workflow
Develop Software Components
Develop an Atomic Software Component

2.1.2.1
2.1.2.2

2411
241.2
2.4.1.3

Purpose .
Description
Workflow

Develop Application Software

2.4.2.1
2422
2423

Purpose .
Description
Workflow

Uses Cases for more Specialized Software Components

2.4.3.1
2.4.3.2

Purpose .
Description

AUTOSAR

2.5

2.6

2.4.3.3 Workflow 62
Develop System and Subsystems 68
2.5.1 Overview 68
2.5.1.1 Purpose 68
2.51.2 Description 68
252 DesignSystem 72
2.5.2.1 Purpose 72
25.2.2 Description 72
2.5.2.3 Workflow 73
253 Generate System Extract 78
2.5.3.1 Purpose 78
2.53.2 Description 78
2.5.3.3 Workflow 78
254 Create ECU System Description 78
2.5.4A1 Purpose 78
2542 Description L 79
2543 Workflow o 79
255 Design Sub-System oL 80
2.5.5.1 Purpose 80
2.5.5.2 Description oo 80
2.5.5.3 Workflow oo 82
2.5.6 Generate ECUExtract. 82
2.5.6.1 Purpose 82
2.5.6.2 Description o 83
2.5.6.3 Workflow 83
2.5.7 Design Transformer 84
2.5.71 Purpose 84
2.5.7.2 Description 84
2.5.7.3 Workflow 85
2.5.8 Define System Safety Information 86
2.5.8.1 Purpose 86
2.5.8.2 Description L 86
2.5.8.3 Workflow 87
Develop Basic Software 88
2.6.1 Overview 88
2.6.1.1 Purpose 88
2.6.1.2 Description 88
2.6.1.3 Workflow o 88
2.6.2 Design BSW 89
2.6.2.1 Purpose 89
2.6.2.2 Description oo 89
2.6.2.3 Workflow o 90
2.6.3 DevelopBSWModule 92
2.6.3.1 Purpose 92
2.6.3.2 Description o 92

2.6.3.3 Workflow 93

AUTOSAR

2.7 Integrate Software for ECU 95
2.7.1 Description 95
2.7.2 Overview 96

2.7.2.1 Purpose 96
2.7.2.2 Description 96
2.7.2.3 Workflow o 99
2.7.3 Prepare ECU Configuration 100
2.7.3.1 Description 100
2.7.3.2 Workflow 101
2.7.4 Configure BSWandRTE 102
2.7.41 Description 102
2.74.2 Workflow 103
2.7.5 Update ECU Configuration 104
2.7.5.1 Description 104
2.7.5.2 Workflow o 105
2.7.6 Model ECUTiming. 106
2.7.6.1 Workflow o 106
2.7.7 Generate BSWandRTE 106
2.7.7.1 Description 106
2.7.7.2 Workflow oo 107
2.7.8 Build Executable oL 110
2.7.8.1 Description 110
2.7.8.2 Workflow oL 111
2.7.9 ConfigurationClasses 112
2.7.9.1 Configuration Class: Pre-compile Time 113
2.7.9.2 Configuration Class: Link Time 117
2.7.9.3 Configuration Class: Post-build Time 119

2.7.9.4 Handling of different post-build variants in configura-
tionclasses L. 123

28 Componentsand Services 124
2.8.1 Purpose 124
2.8.2 Description 124
2.8.3 Workflow 124

2.9 Calibration Overview 130
2.9.1 Purpose 130
2.9.2 Description 130
293 Workflow 131

210 Memory Mapping 135
2.10.1 Purpose 135
2.10.2 Description 136
2.10.3 Workflow 136

211 E2EProtection 140
21141 Purpose 140
211.2 Description 140
2113 Workflow 141

2.12 Diagnostic Extract 141

AUTOSAR

2121 Purpose 141
2.12.2 Description 141
2123 Workflow 145

2.13 Rapid Prototyping 149
2.13.1 Purpose 149
2.13.2 Description 149
2.13.3 Workflow 150

2.14 Safety Extensions 153
2141 Purpose 153
2.14.2 Description 153
2.14.3 Workflow 155

215 VariantHandling 157
2.15.1 Overview e 157
2.15.2 Binding Times, 157
2.15.21 Latest Binding Time 158

2.15.2.2 Actual Binding Time 158

2.15.3 DefiningVariants, 159
2154 Choosing Variants 159

2.16 Definition of Binding Times 160
2.16.1 Overview e 160
2.16.2 A Classification of Artifacts with respect to Binding Times . . 163
2.16.3 Classification of Binding Times 163
2.16.3.1 BlueprintDerivationTime 164

2.16.3.2 FunctionDesignTime« v v v v v v v v .. 164

2.16.3.3 InitialBindingTime v v v v v v v v v .. 165

2.16.3.4 SystemDesignTime 165

2.16.3.5 CodeGenerationTime 165

2.16.3.6 PreCompileTime v v v v v v v v v oo v 166

2.16.3.7 CompileTime . . . v v v v v v i e e it e e 166

2.16.3.8 LInkTime . .« v v v v v e e e e e e e e e e 166

2.16.3.9 POSEBUILIA + v v v v vt e e e e e e e 167

2.16.3.10 Runtime i 167

2.17 How to resolve Name Conflicts 167
2171 Reasons for Name Conflicts 167
2.17.2 Points in the Methodology where Name Conflicts are resolved 168
217.3 Mechanisms for resolving Name Conflicts 169

3 Methodology Library 172
3.1 CommonElements 172
3.1.1 Work ProductKinds 172
3.1.2 Tasks 174
3.1.2.1 Add General Documentation 174

3.1.2.2 Define AdminData 174

3.1.2.3 Define AliasNames 175

3.1.2.4 Evaluate Variant 177

3.1.2.5 Define Memory Addressing Modes 178

AUTOSAR

3.2

3.1.2.6 Configure Memmap Allocation 179
3.1.2.7 Generate BSW Memory Mapping Header 181
3.1.2.8 Generate SWC Memory Mapping Header 184
3.1.2.9 Configure Compiler Memory Classes 186
3.1.2.10 Generate Compiler Configuration 188
3.1.3 Work Products 189
3.1.3.1 General Documentation 189
3.1.3.2 AliasName Set 190
3.1.3.3 Evaluated VariantSet 190
3.1.34 General Autosar Artifact 192
3.1.35 General Deliverable 193
3.1.3.6 General Non-Autosar Artifact 193
3.1.3.7 Postbuild VariantSet 194
3.1.3.8 Predefined Variant 195
3.1.3.9 Standard Header Files 196
3.1.3.10 System Constant Value Set 198
3.1.4 Roles 199
3.1.5 Tools . . . o e 209
3.1.5.1 Compiler. 209
3.1.5.2 Linker 210
3.1.6 Diagnostics 210
3.1.6.1 Work Products 210
3.1.7 Safety 212
3.1.71 Tasks 212
3.1.7.2 Work Products 221
Virtual FunctionalBus L. 224
3.2.1 Tasks 225
3.2.1.1 Define VFB Top Level 225
3.21.2 Define VFB Composition Component 226
3.2.1.3 Extend Composition 227
3.2.1.4 Define VFB Component Constraints 229
3.2.1.5 Define VFB Application Software Component 230
3.2.1.6 Define VFB Sensor or Actuator Component 231
3.21.7 Define VFB Parameter Component 232
3.2.1.8 Define ECU Abstraction Component 233
3.2.1.9 Define Complex Driver Component 234
3.2.1.10 Define VFB NvBlock Software Component 235
3.2.1.11 Define Wrapper Components to Integrate Legacy
Software 236
3.2.1.12 Define VFB Interfaces 237
3.2.1.13 Define VFBTypes 238
3.2.1.14 Define VFBModes 239
3.2.1.15 Define VFBConstants 240
3.2.1.16 Define VFBTiming 241
3.21.17 Define VFB Variants 242
3.2.1.18 Define VFB Integration Connector 243

AUTOSAR

3.3

3.2.1.19 Translate Non-AUTOSAR Description to AUTOSAR
Description

3.2.2 Work Products
3.2.2.1 VFBSystem.
3.22.2 Overall VFB System
3.223 VFB System Extract
3.2.24 VFB Top Level System Composition
3.2.2.5 VFB Composition Component
3.2.2.6 VFB AUTOSAR Standard Package
3.2.2.7 AUTOSAR Specification of Application Interfaces . .
3.2.2.8 VFB Atomic Software Component
3.2.2.9 VFB Atomic Application Software Component
3.2.2.10 Complex Driver Component
3.2.2.11 ECU Abstraction Software Component
3.2.2.12 VFB Parameter Component
3.2.2.13 VFB Sensor Actuator Component
3.2.2.14 VFB NvBlock Software Component
3.2.2.15 VFB Non AUTOSAR Component
3.2.2.16 VFBInterfaces,
3.2.2.17 VEBTypes
3.2.2.18 VFB Data Type MappingSet
3.2.2.19 VFBModes
3.2.2.20 VFBConstants
3.2.2.21 VFB Software Component Mapping Constraints . . .
3.2.2.22 VFEBTiming
3.2.2.23 Description of a Non-AUTOSAR System
3.2.2.24 Integration Connector
System
3.3.1 Tasks
3.3.1.1 SetSystemRoot
3.3.1.2 Assign Top Level Composition.
3.3.1.3 Define ECU Description
3.3.1.4 Define System Topology
3.3.1.5 Define Software Component Mapping Constraints .
3.3.1.6 Deploy Software Component
3.3.1.7 Generate or Adjust System FlatMap
3.3.1.8 Derive CommunicationNeeds
3.3.1.9 Define Signal Path Constraints
3.3.1.10 Define System Variants
3.3.1.11 Define System Timing
3.3.1.12 Extend Topology
3.3.1.13 Select Software Component Implementation
3.3.1.14 Select Design Time Variant
3.3.1.15 Define System View Mapping
3.3.1.16 Create Transformer Specification
3.3.1.17 Define Rapid Prototyping Scenario

AUTOSAR

3.3.2 Work Products 290
3.3.2.1 System Description 290
3.3.2.2 Abstract System Description. 294
3.3.23 Complete ECU Description 296
3.3.2.4 System Description Root Element 296
3.3.25 System Mapping Overview 297
3.3.2.6 Software Component Mapping Contraints 298
3.3.2.7 DataMappingo 300
3.3.2.8 Mapping of Software Components to ECUs 300
3.3.2.9 Mapping of Software Components to Implementations 301
3.3.2.10 Signal Path Constraints 301
3.3.2.11 Topology 302
3.3.2.12 Ecu Resources Description 303
3.3.2.13 System Signal oL 304
3.3.2.14 System Signal Group 305
3.3.2.15 SystemFlatMap 306
3.3.2.16 SystemTiming 307
3.3.2.17 System View Mapping 308
3.3.2.18 Transformer Design Bundle 309
3.3.2.19 Transformer Specification 309
3.3.2.20 Rapid Prototyping Scenario 310

3.3.3 Communication Matrix and Communication Layers 310
3.3.3.1 Tasks 311
3.3.3.2 Work Products 320

3.3.4 ECUExtract 325
3.3.4.1 Tasks 325
3.3.4.2 Work Products 333

3.4 Software Component 340

3.4.1 Tasks e 341
3.4.1.1 Define Software Component Internal Behavior . . . 341
3.4.1.2 Define Partial FlatMap 342
3.4.1.3 Define Software Component Timing 343
3.4.1.4 Define SymbolProps for Types 344
3.41.5 Add Documentation to the Software Component . . 345
3.4.1.6 Generate Atomic Software Component Contract

HeaderFiles 346

3.41.7 Generate Component Header File in Vendor Mode . 348
3.4.1.8 Generate Component Prebuild Data Set 350
3.4.1.9 Implement Atomic Software Component 351
3.4.1.10 Compile Atomic Software Component 353
3.4.1.11 Map Software Componentto BSW 354
3.4.1.12 Measure Component Resources 356
3.4.1.13 Recompile Component in ECU Context 357
3.4.1.14 Define Consistency Needs 358
3.4.1.15 Generate Rapid Prototyping Wrapper 359
3.4.2 Work Products 361

AUTOSAR

3.5

3.4.2.1 Delivered Atomic Software Components
3.4.2.2 Software Component Internal Behavior.
3.4.2.3 Atomic Software Component Implementation
3.4.24 Software Component Documentation
3.4.2.5 Software Component Timing
3.4.2.6 Software Component to BSW Mapping
3.4.2.7 Partial FlatMap
3.4.2.8 Application Header File
3.4.2.9 Software Component Data Types Header
3.4.2.10 Component RTE Prebuild Configuration Header . . .
3.4.2.11 Atomic Software Component Source Code
3.4.2.12 Atomic Software Component Object Code
3.4.2.13 Optimized Application Header File
3.4.2.14 Optimized Software Component Object Code
3.4.2.15 Consistency Needs
3.4.2.16 Rapid Prototyping Wrapper Header File
3.4.2.17 Rapid Prototyping Wrapper Source Code
3.4.3 Tools . . . o e
3.4.3.1 Component APl Generator Tool
Basic Software
3.5.1 Tasks o
3.5.1.1 DefineBSW Types
3.5.1.2 Define BSWEntries
3.5.1.3 Define BSW interfaces
3.5.1.4 Define Vendor Specific Module Definition
3.5.1.5 Define BSW Behavior
3.5.1.6 Define BSW Module Timing
3.5.1.7 Generate BSW Contract Header Files
3.5.1.8 Implementa BSWModule
3.5.1.9 Develop BSW Module Generator
3.5.1.10 CreateLibrary
3.5.1.11 Compile BSW Core Code
3.5.1.12 Generate BSW Module Prebuild Dataset
3.5.2 Work Products
3.5.2.1 BSW Standard Package
3.5.2.2 BSW Module Bundle
3.5.2.3 BSW DesignBundle
3.5.24 BSW Module ICSBundle
3.5.2.5 BSW Module DeliveredBundle
3.5.2.6 AUTOSAR Software Module Specification
3.5.2.7 AUTOSAR Standard Types
3.5.2.8 AUTOSAR Platform Types
3.5.2.9 BSW Module Generator
3.5.2.10 AUTOSAR Standardized ECU Configuration Param-
eter Definition

3.5.2.11 BSW Module Preconfigured Configuration

AUTOSAR

3.5.2.12 BSW Module Recommended Configuration 403
3.5.2.13 BSW Module Vendor Specific Configuration Param-
eter Definition 404
3.5.2.14 BSWTypes, 405
3.5.2.15 Basic Software Entries 405
3.5.2.16 Basic Software Module Description 405
3.5.2.17 Basic Software Module Internal Behavior 406
3.5.2.18 Basic Software Module Implementation Description . 407
3.5.2.19 Build Action Manifest 408
3.5.2.20 Basic Software Module Timing 409
3.5.2.21 Basic Software Module Core Header 410
3.5.2.22 Basic Software Module Core Source Code 410
3.5.2.23 Basic Software Interlink Header 411
3.5.2.24 Basic Software Interlink Types Header 412
3.5.2.25 BSW RTE Prebuild Configuration Header 412
3.5.2.26 Basic Software Module Object Code 413
3.5.2.27 Library Description 413
3.5.2.28 Library Header Files 414
3.5.2.29 Library Object Code 415
3.6 ECU Integration and Configuration 415
3.6.1 Tasks o 415
3.6.1.1 Provide RTE Calibration Dataset 415
3.6.1.2 Define Integration Variant 416
3.6.1.3 Generate Base ECU Configuration 418
3.6.1.4 Generate Updated ECU Configuration 419
3.6.1.5 Define ECUTiming 420
3.6.1.6 ConfigureEcuC 421
3.6.1.7 Configure OS 423
3.6.1.8 Configure RTE 425
3.6.1.9 Configure Watchdog Manager 427
3.6.1.10 Configure Mode Management 428
3.6.1.11 Configure NvVMo oL 429
3.6.1.12 Configure Diagnostics 431
3.6.1.13 Create Service Component 432
3.6.1.14 Connect Service Component 436
3.6.1.15 Configure COM, 437
3.6.1.16 Configure IO Hardware Abstraction 439
3.6.1.17 Configure MCAL, 440
3.6.1.18 ConfigureDebug 441
3.6.1.19 Configure Transformer 444
3.6.1.20 Generate BSW Configuration Code and Model Ex-
tensions 445
3.6.1.21 Generate Local MC Data Support. 447
3.6.1.22 Create MC Function Model 448
3.6.1.23 Generate RTE 450
3.6.1.24 Generate Scheduler 453

AUTOSAR

3.6.1.25
3.6.1.26
3.6.1.27
3.6.1.28
3.6.1.29
3.6.1.30
3.6.1.31
3.6.1.32

GenerateOS
Generate RTE Prebuild Dataset
Compile ECU Source Code
Generate ECU Executable
Generate RTE Postbuild Dataset
Generate A2Lo
Measure Resources
Refine Rapid Prototyping Scenario

3.6.2 Work Products

3.6.2.1
3.6.2.2
3.6.2.3
3.6.2.4
3.6.2.5
3.6.2.6
3.6.2.7
3.6.2.8
3.6.2.9
3.6.2.10
3.6.2.11
3.6.2.12
3.6.2.13
3.6.2.14
3.6.2.15
3.6.2.16
3.6.2.17
3.6.2.18
3.6.2.19
3.6.2.20
3.6.2.21
3.6.2.22
3.6.2.23
3.6.2.24
3.6.2.25
3.6.3 Tools
3.6.3.1
3.6.3.2

BSW Module Integration Bundle
ECU Software Delivered
Service Component Description.
ECU Service Connectors
ECUTIming
BSW Module Interface Extension
BSW Module Behavior Extension
BSW Module Implementation Extension
ECU Configuration Values
RTE Implementation Description
RTE Prebuild Configuration Header
Calibration Parameter Value Set
MC FunctionModel
Local Measurement and Calibration Support Data .
RTE Measurement and Calibration Support Data . .
RTE SourceCode
BSW SchedulerCode
OS GeneratedCode
RTE Postbuild Variants Dataset
ECUObjectCode
ECUExecutable
Map of the ECU Executable
A2LFile
MC Driver SupportData
MC Additional Config
RTE Generator
BSW Generator Framework

3.6.4 ECUConfigClasses

3.6.4.1
3.6.4.2

Tasks
Work Products

A History of Constraints and Specification ltems

A.1 Constraint History of this Document according to AUTOSAR R4.1.1 . .
A1 Added Specification ltemsinR4.1.1
A.2 Constraint History of this Document according to AUTOSAR R4.1.2 . .
A.2.1 Added Specification ItemsinR4.1.2

AUTOSAR

A.3 Constraint History of this Document according to AUTOSAR R4.1.3 . .
A.3.1 Added Specification temsinR4.1.3
A3.2 Changed Specification ltemsinR4.1.3

A.4 Constraint History of this Document according to AUTOSAR R4.2.1 . .
A4A Added Specification ItemsinR4.21
A4.2 Changed Specification Items in R4.2.1
A4.3 Deleted Specification ltemsinR4.2.1

A5 Constraint History of this Document according to AUTOSAR R4.2.2 . .

501
501
501
502
502
502
503
503

AUTOSAR

Bibliography
[1] Requirements on Methodology

AUTOSAR_RS_Methodology

[2] Software Process Engineering Meta-Model Specification
http://www.omg.org/spec/SPEM/2.0/

[3] Integration of Franca IDL Software Component Descriptions
AUTOSAR_TR_Francalntegration

[4] Virtual Functional Bus
AUTOSAR_EXP_VFB

[5] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

[6] General Specification of Basic Software Modules
AUTOSAR_SWS BSWGeneral

[7] General Specification on Transformers
AUTOSAR_ASWS TransformerGeneral

[8] Basic Software Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate

[9] System Template
AUTOSAR_TPS_SystemTemplate

[10] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration

[11] Specification of Memory Mapping
AUTOSAR_SWS_MemoryMapping

[12] Specification of Compiler Abstraction
AUTOSAR_SWS_CompilerAbstraction

[13] Specification of Module E2E Transformer
AUTOSAR_SWS E2ETransformer

[14] Diagnostic Extract Template
AUTOSAR_TPS_DiagnosticExtractTemplate

[15] Specification of RTE Software
AUTOSAR_SWS RTE

[16] Specifications of Safety Extensions
AUTOSAR_TPS_SafetyExtensions

[17] 1SO 26262 (Part 1-10) — Road vehicles — Functional Safety, First edition
http://www.iso.org

http://www.omg.org/spec/SPEM/2.0/
http://www.iso.org

AUTOSAR

[18] Generic Structure Template
AUTOSAR_TPS_GenericStructureTemplate

[19] Standardization Template
AUTOSAR_TPS_StandardizationTemplate

[20] Specification of ECU Resource Template
AUTOSAR_TPS_ECUResourceTemplate

AUTOSAR

1 Introduction

1.1 Objective

AUTOSAR requires a common technical approach for some steps of system develop-
ment. This approach is called the AUTOSAR methodology. This document defines
and describes this AUTOSAR methodology. It covers all major steps of the develop-
ment of a system with AUTOSAR: from the definition of the Virtual Functional
Bus to the generation of an ECU executable.

The requirements for the methodology are defined in the document [1].

1.2 Overview

[TR_METH_01000] Domains of the AUTOSAR methodology | The AUTOSAR
methodology is structured into several domains of development:

e Virtual Functional Bus
e System
e Software Component
e Basic Software
e FCU
|(RS_METH_00018, RS_METH_00032)

[TR_METH_01001] AUTOSAR methodology assets | For each domain, rele-
vant Work Product, Task, Role, and Tool elements are defined (see chap-
ter 3). In addition, there are elements that are common for all domains (see 3.1).
|(RS_METH_00025, RS_METH_00028, RS_METH_00009)

[TR_METH_01002] AUTOSAR methodology use cases | Use cases (see chapter 2)
show how these standard reusable elements are applied to support real-world devel-
opment. The Overall View (see chapter 2.1) provides an end to end view on the typical
use cases of all domains. |(RS_METH 00018, RS_METH_00056, RS_METH_00009)

1.3 Known Limitations

Work products and tasks for End to End communication safety are not completely
described in the methodology.

AUTOSAR

1.4 Scope

[TR_METH_01003] Scope of the AUTOSAR methodology | The AUTOSAR method-
ology is not a complete process description, but rather aggregates the various elements
of AUTOSAR and shows how they are brought together to develop a complete system.
Sample aggregations are provided as Use Cases in Chapter 2. |(RS_METH_00006)

[TR_METH_01004] Support for various stakeholders by the AUTOSAR method-
ology | The structure of the methodology was designed to help cover the needs of
various AUTOSAR stakeholders:

e Organizations: Methodology is modeled in a modular format to allow organiza-
tions to tailor it and combine the Methodology within their own internal processes,
while identifying points where they interact with other organizations.

e Engineers: Methodology is scoped to allow engineers of various roles quickly find
AUTOSAR information that is relevant to their specific needs.

e Tool Vendors: Methodology provides a common language to share among all
AUTOSAR members and a common expectation of what capabilities tools should
support.

|(RS_METH_00018, RS_METH_00056, RS_METH_00009)

[TR_METH_01005] Restrictions of AUTOSAR methodology | Furthermore, the
methodology does not prescribe a precise order in which activities should be carried
out. The methodology is a mere work-product flow: it defines the dependencies of
activities on work-products. This means that when the information specified in the
methodology is available, an activity can be carried out to produce the output work-
products. The set of activities is described in Chapter 3.

This restriction implies that the AUTOSAR methodology does not define an overall time-
line and does not define how and when iterations are carried out. For example during
system and design, the same activity (namely configuring the system) will be carried
out repeatedly with various levels of precision. There will be a first "rough” configuration
and a final "precise” configuration which might depend on the feedback from the actual
configuration or even implementation of ECUs. How and when such refinement steps
are to be carried out is NOT defined in the methodology. |(RS_METH_00047)

1.5 Methodology Concepts

[TR_METH_01006] General AUTOSAR methodology concepts | The AUTOSAR
methodology defines activities performed by roles that create work products as gen-
eral reusable method patterns’. The reusable method pattern elements are described
in the method library section (cf. Section 1.5.1). The methodology also describes

The RS_Methodology document uses the term “Activity” when addressing process elements in gen-
eral. In the SPEM model the atomic process elements are called “Tasks”, whereas an “Activity” is used
to organize tasks and to define processes.

AUTOSAR

sample process patterns of typical use cases considered for the creation of AUTOSAR
work products. The patterns use process elements that are described in the use case
section (cf. Section 1.5.2).

The definitions and the figures are made according to the Software Process Engi-
neering Meta-Model Specification [2]. The symbols are taken from the Enterprise
Architect modeling tool. |(RS_METH_00018, RS_METH_00021, RS_METH_00047,
RS_METH_00048, RS_METH 00025, RS METH_00061, RS _METH_00028,
RS_METH_00056)

1.5.1 Method Library (Method Content)

[TR_METH_01007] Method Library | The Method Library defines the
Method Library Elements of every method pattern such as Roles, Tasks,
and Work Product Definitions. |(RS_METH_00018, RS_METH_00021,
RS_METH 00025, RS METH_00028)

[TR_METH_01008] Method Library Element | A Method Library Element
contains a description of the element to define its purpose in the methodology and thus
provides the basic contents of the AUTOSAR methodology. The Method Library
Elements are used for the description of the related development processes. These
Method Library Elements can been seen as a standard. |(RS_METH_00017,
RS _METH_ 00043, RS_METH_00050, RS _METH_00064)

[TR_METH_01009] Relation of Method Library and Method Library Ele-
ment to the SPEM meta model | The Method Library andthe Method Library
Elements correspond to the Method Content and Method Content Elements
in the SPEM meta model [2]. |(RS_METH_00009)

[TR_METH_01010] Overview of Method Library Elements [Method Library
Elements comprise:

e Task Definition (section 1.5.1.1)

e Work Product Definition (section 1.5.1.2)
e Role Definition (section 1.5.1.3)

e Tool Definition (section 1.5.1.4)

e Guidance (section 1.5.1.5)2

|(RS_METH_00021, RS_METH_00025, RS_METH_00027, RS_METH_00042,
RS _METH_00028)

The element symbols are shown in Figure 1.1.

2The Guidance is currently not used in the AUTOSAR Methodology. It may be used in future docu-
ments.

AUTOSAR

>

Task Definition

Role Definition

Tool Definition

Work Product Deliverablel Guidance
Definition
(Artifact)
Figure 1.1: Symbols of AUTOSAR Method Content Elements

1.5.1.1 Task Definition

[TR_METH_01011] Task Definition | According to the SPEM meta model, a
Task Definition is an assignable unit of work that is being performed by specific
Roles. The duration of a task is generally a few hours to a few days. Tasks usually
generate one or more work products. Each Task is associated to input and output
Work Products. Inputs are differentiated in mandatory and optional inputs. A Task
is used as one element among others to define a Process. |(RS_METH_00021)

[TR_METH_01012] Task semantics | A Task has a clear purpose in which the per-
forming roles achieve a well defined goal. It provides complete step-by-step explana-
tions of doing all the work that needs to be done to achieve this goal. This description
is completely independent of when in a process lifecycle the work would actually be
done. It does not describe when what work is being done, but describes all the work
that gets done. | (RS_METH_00021, RS_METH_00056)

[TR_METH_01013] Task usage [When a Task is used in a process (cf. Task Use),
it provides the information of which pieces of the Task will actually be performed at any
particular point in time. This assumes that the Task will be performed in the process
over and over again, but each time with a slightly different emphasis on different steps
or aspects of the task description [2].

For the AUTOSAR Methodology, a Task is a reusable element that is used across
multiple methodology use cases. A Task is associated to at least one performing
Role and may have several additional performers. Tasks use Tools to achieve their
outputs. Optional performers and optional input and outputs to the task are described
by the relationship’s multiplicity. |(RS_METH_00021, RS_METH_00042)

AUTOSAR

An overview of the Task as it is used in this document is given in Figure 1.2.

Role Definition

«used tool»

N /
«pei::gf Tool Definition

*

o

input

—«Ou’[pu’[»%_

o
*

Task Definition

Work Product 1 Work Product 2

Figure 1.2: Task Definition Overview

1.5.1.2 Work Product Definition

[TR_METH_01014] Wwork Product Definition [According to the SPEM meta
model, a Work Product Definition is used, modified, and produced by Tasks
(i.e. a task input and output). Work Products are in most cases tangible work prod-
ucts consumed, produced, or modified by Tasks. They may serve as a basis for defin-
ing reusable assets. AWork Product can be related to other work products by a kind
of nesting relationship. |(RS_METH_00046, RS_METH_00047, RS_METH_00025,
RS METH 00052, RS METH 00061, RS METH _00054)

[TR_METH_01015] Relationship between Roles and Work Products [Roles
use Work Products to perform Tasks and produce Work Products in the course
of performing the Tasks. Work Products are in the responsibility of the associated
Roles, thereby also defining a set of skills the performing Role should have. Even
though one Role might own a specific type of Work Product, other Roles can still
use the Work Product for their work, and update them [2]. |(RS_METH_00052,
RS _METH_00061)

AWork Product can be of type Artifact orDeliverable:

e [TR_METH_01017] Artifact Definition [Artifact: Atangible work Prod-
uct thatis consumed, produced, or modified by one or more Tasks. Artifacts
may be composed of other Artifacts and may serve as a basis for defining
reusable assets [2]. | (RS_METH_00052, RS_METH_00061, RS_METH_00054)

[TR_METH_01018] Kinds of Artifacts | For the AUTOSAR Methodology, typ-
ical kinds of artifacts are:

— AUTOSAR XML

— Source Code

AUTOSAR

— Object Code
— Executable
- Text

For more details see chapter 3.1.1. |(RS_METH_00063, RS _METH_00015,
RS METH 00057)

[TR_METH_01019] Properties of Artifacts | At a high level, an artifact is rep-
resented as a single conceptual file. As a rule of thumb, the AUTOSAR Method-
ology will distinguish artifacts that have most of the following properties:

— Separate versioning is needed

— A dedicated life cycle has to be cared for

— Different exchange requirements need to be fulfilled

— Change in responsible roles

— Change in multiplicities

— Change in physical representation or format

— One of the products may be a separate deliverable to another party

— Separation of standardized from non-standardized parts
|(RS_METH_00063, RS_METH_00017, RS_METH_00016)

[TR_METH_01020] Relationship between Artifacts and meta-model ele-
ments | To express a relationship between artifacts of the methodology model
and any AUTOSAR meta-model element, a relationship with the stereotype «at-
pUseMetaModelElement» is used to express this "dependency”. For AUTOSAR
meta-model elements that are not directly related to methodology elements,
there is usually an indirect relationship via a related meta-model element.
The methodology can thus focus on the main elements of the meta-model.
|(RS_METH_00051)

e [TR_METH_01021] Deliverable Definition | Deliverable: Used to pre-
define typical or recommended content in the form of Work Products that
would be packaged for delivery. Deliverables are used to represent an output
from a process that has value, material or otherwise, to a client, customer, or
other stakeholder. |(RS_METH_00025, RS_METH_00018, RS_METH_00054)

[TR_METH_01022] Aggregation of Work Products [A Deliverable iS a
Work Product that aggregates other Work Products. The Method Con-
tent maintains pre-configured potential Deliverables [2]. For the AUTOSAR
Methodology, the aggregation relationship is used to indicate which Wwork Prod-
ucts are contained in a deliverable. |(RS_METH_00025, RS_METH_00018,
RS _METH_00054)

AUTOSAR

PackageableElement

ARPackage::ARElement Work Product

Definition

o
Tx

«AtpUseMetaModelElement»
\ «SPEM_Aggregation»
\

\

I

Artifact Deliverable2

Figure 1.3: Work Product Definition Overview

1.5.1.3 Role Definition

[TR_METH_01023] Role Definition | According to the SPEM meta model, Role
Definitions define responsibilities of an individual or a set of individuals and thereby
define a set of related skills, competencies, and qualifications needed to perform a
Task. A Role can be filled by one person or multiple people, one person may fill
several Roles. Each Role performs Tasks. |(RS_METH_00028)

[TR_METH_01024] rRole assighment | Roles are not individuals or resources. In-
dividual members of the development organization will wear different hats, or perform
different Roles. The mapping from individual to Ro1e, usually performed by the project
manager when planning and staffing a project, allows different individuals to act as sev-
eral different Roles, and for a Role to be taken by several individuals [2].

In the AUTOSAR Methodology, a Role also assigns the responsibility of a Task
and defines optional performers. Performers that are responsible for e.g. a Task
have a multiplicity of 1 for the relationship to the Task, optional performers have op-
tional multiplicity assigned. Role Definitions are usually generic and still provide
sufficient level of detail for managers to organize a team. Examples of Roles are
"System Engineer”, "Safety Engineer”, or "Software Developer”. |(RS_METH_00028,
RS _METH_00056)

AUTOSAR

RoleDefinition

0..*
/RoIeDefinition

«performs» «perfoms» ntional performer)

Task Definition
Figure 1.4: Role Definition Overview

1.5.1.4 Tool Definition

[TR_METH_01025] Tool Definition | According to the SPEM meta model, Tool
Definitions can be used to specify a tool’s participation in a Task. A Tool Defi-
nition describes the capabilities of a CASE tool, general purpose tool, or any other
automation unit that supports the associated Roles in performing the work defined by
a Task. A Tool can identify a resource as useful, recommended, or necessary for a
task’s completion. A Tool can also be used to manage one or more Work Products
[2].

The AUTOSAR Methodology uses the Tool Definition todescribe AUTOSAR spe-
cific (e.g. Software Component Contract Generator) and other general Tools (e.g.
Compilers). The relationship of a Tool to a Task shows which Tools a Role will
need to perform the Task. |(RS_METH_00066, RS_METH_00042)

«used tool»
Task Definition

Tool Definition
Figure 1.5: Tool Definition Overview

1.5.1.5 Guidance

[TR_METH_01026] Guidance definition | According to the SPEM meta model, a
Guidance provides additional information related to e.g. Roles, Work Products,
and Tasks. A Guidance is classified to indicate a specific type for which perhaps a
specific structure and type of content is assumed [2]. |(RS_METH_00027)

AUTOSAR

[TR_METH_01027] Guidance kinds | A Guidance can be a

e Supporting Material: Supporting Material is a catch-all for other types
of guidance not specifically defined elsewhere. It can be related to all kinds
of Content Elements, i.e., including other guidance elements. The AUTOSAR
Methodology uses the Supporting Material Guidance type to define title
pages, change histories, disclaimers etc.

e Tool Mentor: A Tool Mentor shows how to use a specific Tool to accom-
plish some piece of work either in the context of or independent from a Task or
Activity. In the context of the AUTOSAR Methodology, a Tool Mentor is
used in the same way as the Tool element.

e White Paper: White Papers are concept guidances that have been exter-
nally reviewed or published and can be read and understood in isolation from
other Method Content. AUTOSAR documents are examples of Wwhite Pa-
pers.

Other Guidances such as Checklists, Concepts, Estimates, Guidelines, Practices,
Reports, Reusable Assets, Roadmaps, or Templates as defined in [2] are not used
within the AUTOSAR Methodology. | (RS_METH_00027)

Role Definition Guidance
(Supporting Material,

Tool Mentor, White
Paper)

~— =
-~

-
-~ <
«refersTo» ~ D\ C

«refersTo»

l%
A
|
|
|
|
|

— —«refersTo»

Work Product
Task Definition Definition

Figure 1.6: Guidance Overview

1.5.1.6 Tables

[TR_METH_01028] Usage of tables | Beside the graphical visualization of the differ-
ent SPEM diagrams, tables are used to specify and describe the model elements in
detail. |(RS_METH_00050, RS_METH_00064)

[TR_METH_01113] Usage of hyperlinks | Beside the conventional references to
chapters, figures and sections the AUTOSAR methodology document utilizes hyper-
links to the used SPEM elements. These hyperlinks are used across the text and
within the tables. Using the hyperlinks the reader can quickly navigate to the re-
lated elements such as Tasks, Activities, Roles, Work Products and Tools.
|(RS_METH_00067)

In the Methodology library the following tables are used :

AUTOSAR

1.5.1.6.1 Work Product Kind Tables
Category Work Product Kind
(Work Product Kind)
Package Location in the MetaModel package
Brief Description Short Description
Description Detailed Description

Table 1.1: Work Product Kind

1.5.1.6.2 Task Definition Tables

Task Definition Task

Package Location in the MetaModel package
Brief Description Short description

Description Detailed description

Relation Type

Related Element Mul.

Note

Performed by

Which Roles Per- | Opt

Description of the specific role needed

form the Task or
not

Consumes What is Consumed | Mult | Explanation on why this Element is
by the Task needed.

Produces What is produced | Mult | Explanation on why this Element is
by the Task needed.

In/out What is produced | Mult | Explanation on why this Element is
and consumed by needed.
the Task

Used tool Tool used for that | Mult

Task

Table 1.2: Task

1.5.1.6.3 Work Product Definition Tables

Artifact Work Product

Package Location in the MetaModel package

Brief Description Short Description.

Description Detailed Description

Kind Work Product Kind

Extended by Artifacts which extend this Artifact
Extends Artifacts which are extended by this Artifact

Relation Type

Related Element Mul.

Note

Aggregated by

To which Deliver- | Mult
able is it aggre-
gated By

Description of the context of the
Aggregation.

AUTOSAR

Relation Type Related Element Mul. | Note

In/out Which task is pro- | Mult | Description of the context of the Work
ducing and con- Product production and consumption.
suming the Work
Product

Produced by Which task is pro- | Mult | Description of the context of the Work
ducing the Work Product production.
Product

Consumed by Which task is con- | Mult | Description of the context of the Work
suming the Work Product consumption.
Product

Use meta model element | MetamodelElement | Mult
Relationship

Table 1.3: Work Product

1.5.1.6.4 Deliverable Definition Tables

It is the same structure of table as the Work Product, only the Aggregation is not the

same as it can aggregate other Work Products Or Deliverables.

Deliverable Deliverable

Package Location in the MetaModel package

Brief Description Short Description.

Description Detailed Description

Kind Work Product Kind

Extended by Deliverables which extend this Deliverable

Extends Deliverables which are extended by this Deliverable

Relation Type Related Element Mul. | Note

Aggregates Which Work | Mult
Products are
aggregated to it

Aggregated by To which Deliver- | Mult | Description of the context of the
able is it aggre- Aggregation.
gated By

In/out Which task is pro- | Mult | Description of the Context of production
ducing and con- and consumption.
suming the Deliv-
erable

Produced by Which task is pro- | Mult | Description of the context of the
ducing the Deliver- production.
able

Consumed by Which task is con- | Mult | Description of the context of the
suming the Deliv- consumption.
erable

Use meta model element | MetamodelElement | Mult
Relationship

Table 1.4: Deliverable

AUTOSAR

1.5.1.6.5 Roles Definition Tables

Role Role

Package Meta-model Package Name

Brief Description Short Description.

Description Detailed Description.

Relation Type Related Element Mul. | Note

Performs In which task the | Mult
performer is acting

Table 1.5: Role
1.5.1.6.6 Tools Tables
Tool Tool
Package Meta-model Package name
Brief Description Short Description
Description Detailed Description
Kind
Relation Type Related Element Mul. | Note
Used Task where the tool | Mult
is used
Table 1.6: Tool

1.5.2 Capability Patterns (Use Case Elements)

The method content (cf. Section 1.5.1) is referenced in section 2.1.2 to describe so-
called Capability Patterns.

[TR_METH_01029] cCapability Patterns definition | A Capability
Pattern® is a process pattern that contains a reusable set of activities.
|(RS_METH_00018)

[TR_METH_01030] Composition of Capability Patterns [Capability Pat-—
terns can be assembled to larger Capability Patterns that describe devel-
opment processes or parts of a development process including typical use cases.
|(RS_METH_00018, RS_METH_00056)

[TR_METH_01031] Adaptability of the AUTOSAR methodology | The main focus of
this section is merely to provide a use case process flow that can be supported by an
AUTOSAR tool chain rather than to define a complete process description. One reason
for doing this is that the AUTOSAR methodology should be adaptable to development
processes of different organizations. |(RS_METH_00056)

[TR_METH_01032] Use case elements | This section describes the use case ele-
ments. The SPEM meta model defines the Role Use, the Work Product Use and

3In Enterprise Architect a SPEM “Capability Pattern” is called “Process Pattern”.

AUTOSAR

the Task Use elements in addition. Whereas these are important elements when
applying SPEM in an organization, the AUTOSAR methodology does not necessar-
ily need these elements since no instantiation of the Enterprise Architect model is
intended. The elements are thus not used to enhance readability and ease the de-
scription. Instead, Roles, Work Products, Deliverables and Tasks are used
directly to describe the details of an Activity.

The element symbols are shown in Figure 1.7. |()

T =

Activityl
Figure 1.7: Symbols of AUTOSAR Use Case Process Elements

Capability Pattern

1.5.2.1 Activity

[TR_METH_01033] Definition of Activities [In the SPEM meta model, an Ac-
tivity is the main building block to define a process. An Activity is usually
a defined task or work to be done that is commonly executed in one sequence.
|(RS_METH_00021)

[TR_METH_01034] Composition of Activities | Activities can include other
Activities and thereby often decompose a flow of work and show which Activity
precedes other Activities [2]. At the lowest level, Activities are collections
of work breakdown elements which in AUTOSAR methodology are Tasks , Roles
, and Work Products. |[(RS_METH 00048, RS_METH 00046, RS_METH_00047,
RS_METH_00066)

[TR_METH_01035] Definition of Processes | A Process is a special Activity
in the SPEM meta model that describes a typical structure of development projects
or parts of them. A Process focuses on the lifecycle and the sequencing of work in
breakdown structures. Processes contain sequences of Task and Activities and
thereby express a lifecycle of the product under development. Processes also define
how to get from one milestone to the next by defining sequences of work, operations,
or events [2]. |(RS_METH_00056)

For the AUTOSAR Methodology, the main Use Cases are described with 3 types of
diagrams.

[TR_METH_01036] Description of overall Use Cases | In the first diagram,
the Capability Patterns, Activities and Deliverables are used to de-
scribe the overall Use Case, sequence of Activities and their main out-

AUTOSAR

puts(Deliverables). Inthese diagrams, the predecessor relationship can be skipped
and Deliverables can be extended by other Deliverables (see Figure 1.8). |()

Capability
Pattern

«nesting» «nesting»

Activity 1 Activity 2
«input» «output»
Deliverablel -
Deliverable2
«extends»
Deliverable3

Figure 1.8: Activity Overview

The diagram is followed by its corresponding table as detailed hereunder:

Process Pattern Capability Pattern
Package Meta-model Package name
Brief Description Short Description
Description Detailed Description.
Relation Type Related Element Mul. | Note
Aggregates Activity nested to | Mult | Context explanation
the Capability Pat-
tern or to another
Activity
Consumes Deliverable con- | Mult | Why this Activity needs to consume this
sumed by the Deliverable
Activity
Produces Deliverable pro- | Mult | Why this Activity is producing this
duced by the Deliverable
Activity

Table 1.7: Capability Pattern

AUTOSAR

[TR_METH_01037] Precise description of Use Cases | The second type of dia-
gram are Activities and Task Definition diagrams which precise the main
Tasks and Work Products used for the Use Cases but are not as detailed as in
the Methodology Library (see Figure 1.9). The task usage in these diagrams will be
expressed by the role and in the note at the aggregation. This information will be also
visible in the generated table. The Work Products consumed or produced in the use
cases will be not integrated in the table for readability. | ()

Activity 1 \
«nesting»

+The task usage can be
expressed by the role
and the note of the
aggregation

«output»
TaskDefinition1

/> «nesting» Work Pfoduct 1

«extends»

\ 1
+The taskusage can be_ /
expressed by the role and «input»
the note of the
aggregation

Task Definition

S
g
x~
v
5]
a
c
5
=}

Figure 1.9: Activity and Tasks Overview

The diagram is followed by its corresponding table as detailed hereunder:

Activity Activity

Package Meta-model Package Name

Brief Description Short Description

Description Detailed Description

Extended by Activities which extend this Activity

Extends Activities which are extended by this Activity

Relation Type Related Element Mul. | Note

Aggregates Nested task defini- | Mult | Task usage description if needed
tion

Consumes What is Consumed | Mult | Explanation on why this Element is
by the Activity needed.

Produces What is produced | Mult | Explanation on why this Element is
by the Activity needed.

In/out What is produced | Mult | Explanation on why this Element is
and consumed by needed.
the Activity

Predecessor Predecessor of the | Mult | Explanation on why the Predecessor is
Activity needed.

Table 1.8: Activity

AUTOSAR

[TR_METH_01038] Detailed description of the work flow | The third type of diagram
contains the Tasks and Work Products used by an Activity in order to show the
detailed work flow but not the structure of Activities as seen in Section 1.5.1.1. As
an example take Figure 2.9. The table generation is not done for this type of diagram.

10

1.6 Requirements Traceability

This section states the response of this specification to the corresponding requirements
document[1].

Requirement Description Satisfied by

[RS_METH_00002] Methodology shall explain the [TR_METH_01044]
typical usage of SW-C template | [TR_METH_01047]
[TR_METH_01048]
[TR_METH_01050]
[TR_METH_01051]
[TR_METH_01052]
[TR_METH_01053]
[TR_METH_01054]
[TR_METH_01055]
[TR_METH_01056]
[TR_METH_01057]
[TR_METH_01058]
[TR_METH_01059]
[TR_METH_01060]
[TR_METH_01061]
[TR_METH_01065]
[TR_METH_01066]
[TR_METH_01067]
[TR_METH_01068]
[TR_METH_01071]
[TR_METH_01075]
[TR_METH_01076]
[TR_METH_01077]
[TR_METH_01078]

AUTOSAR

[TR_METH_01079]
[TR_METH_01080]
[TR_METH_01081]
[TR_METH_01082]
[TR_METH_01087]
[TR_METH_01088]
[TR_METH_01090]
[TR_METH_01091]
[TR_METH_01110]
[TR_METH_01112]
[TR_METH_01125]
[TR_METH_01126]
[TR_METH_01127]
[TR_METH_01132]
[TR_METH_01133]
[TR_METH_02000]
[TR_METH_02001]
[TR_METH_02002]
[TR_METH_02005]
[TR_METH_03000]
[TR_METH_03005]
[TR_METH_03006]
[TR_METH_03007]

[RS_METH_00003] Methodology shall explain the [TR_METH_01083]
typical usage of BSW Module [TR_METH_01084]
Template [TR_METH_01085]

[TR_METH_01087]
[TR_METH_01088]
[TR_METH_01089]
[TR_METH_01090]
[TR_METH_01091]
[TR_METH_01092]
[TR_METH_01111]
[TR_METH_01112]
[TR_METH_01114]
[TR_METH_01115]
[TR_METH_01117]
[TR_METH_02002]
[TR_METH_02005]
[TR_METH_03000]
[TR_METH_03010]

AUTOSAR

[RS_METH_00004]

Methodology shall explain the
typical usage of the ECU
Configuration template

[TR_METH_01083]
[TR_METH_01086]
[TR_METH_01087]
[TR_METH_01088]
[TR_METH_01089]
[TR_METH_01090]
[TR_METH_01091]
[TR_METH_01092]
[TR_METH_01095]
[TR_METH_01098]
[TR_METH_01103]
[TR_METH_01104]
[TR_METH_01112]
[TR_METH_01114]
[TR_METH_01115]
[TR_METH_01116]
[TR_METH_01117]
[TR_METH_01151]
[TR_METH_02005]
[TR_METH_03000]

[RS_METH_00005]

Methodology shall explain the
typical usage of the System
Template

[TR_METH_01046]
[TR_METH_01047]
[TR_METH_01048]
[TR_METH_01053]
[TR_METH_01065]
[TR_METH_01066]
[TR_METH_01067]
[TR_METH_01068]
[TR_METH_01070]
[TR_METH_01071]
[TR_METH_01075]
[TR_METH_01076]
[TR_METH_01077]
[TR_METH_01078]
[TR_METH_01079]
[TR_METH_01080]
[TR_METH_01081]
[TR_METH_01082]
[TR_METH_01087]
[TR_METH_01088]
[TR_METH_01090]
[TR_METH_01091]
[TR_METH_01092]
[TR_METH_01109]

AUTOSAR

[TR_METH_01112]
[TR_METH_01114]
[TR_METH_01125]
[TR_METH_01126]
[TR_METH_01127]
[TR_METH_01130]
[TR_METH_01153]
[TR_METH_01154]
[TR_METH_02003]
[TR_METH_02006]
[TR_METH_02015]
[TR_METH_02016]
[TR_METH_02017]
[TR_METH_02018]
[TR_METH_03000]
[TR_METH_03008]

[RS_METH_00006]

Methodology shall explain how
Autosar system is built

[TR_METH_01003]
[TR_METH_01039]
[TR_METH_01044]
[TR_METH_01045]
[TR_METH_01046]
[TR_METH_01047]
[TR_METH_01048]
[TR_METH_01049]
[TR_METH_01061]
[TR_METH_01085]
[TR_METH_01087]
[TR_METH_01092]
[TR_METH_01093]
[TR_METH_01109]
[TR_METH_01110]
[TR_METH_01111]
[TR_METH_01112]
[TR_METH_01114]
[TR_METH_01134]
[TR_METH_01135]
[TR_METH_03002]
[TR_METH_03003]
[TR_METH_03004]

[RS_METH_00009]

Methodology should be modeled

[TR_METH_01001]
[TR_METH_01002]
[TR_METH_01004]
[TR_METH_01009]

[RS_METH_00010]

Methodology should define rules
to translate methodology model
into a document

[TR_ METH 01121]

[RS_METH_00015]

Methodology shall be
independent of programming
language

[TR_ METH _01018]

[RS_METH_00016]

Methodology shall support
building a system of both
Autosar and Non-Autosar ECUs

[TR_ METH _01019]
[TR_METH_01128]
[TR_METH_01129]

[RS_METH_00017]

Methodology shall clearly define
what is standardized and what is
not standardized

[TR_METH_01008]
[TR_METH_01019]

AUTOSAR

[RS_METH_00018]

Methodology shall be modular

[TR_METH_01000]
[TR_METH_01002]
[TR_METH_01004]
[TR_METH_01006]
[TR_METH_01007]
[TR_METH_01021]
[TR_METH_01022]
[TR_METH_01029]
[TR_METH_01030]
[TR_METH_01084]
[TR_METH_01110]

[RS_METH_00020]

Methodology shall support
iterations

[TR_METH_01071]
[TR_METH_01089]
[TR_METH_02004]

[RS_METH_00021]

Methodology shall define
Activities

[TR_METH_01006]
[TR_METH_01007]
[TR_METH_01010]
[TR_METH_01011]
[TR_METH_01012]
[TR_METH_01013]
[TR_METH_01033]

[RS_METH_00025]

Methodology shall define Work
products

[TR_METH_01001]
[TR_METH_01006]
[TR_METH_01007]
[TR_METH_01010]
[TR_METH_01014]
[TR_METH_01021]
[TR_METH_01022]

[RS_METH_00027]

Methodology shall define
unambiguous guidance
terminology

[TR_METH_01010]
[TR_METH_01026]
[TR_METH_01027]

[RS_METH_00028]

Methodology shall define Roles

[TR_METH_01001]
[TR_METH_01006]
[TR_METH_01007]
[TR_METH_01010]
[TR_METH_01023]
[TR_METH_01024]

[RS_METH_00032]

The methodology shall respect
the different levels of
Abstractions

[TR_METH_01000]
[TR_METH_01040]

[RS_METH_00033]

Methodology should support
VFB concept

[TR_METH_01039]
[TR_METH_01045]
[TR_METH_01054]
[TR_METH_02000]

[RS_METH_00038]

Methodology shall support the C
programming language

[TR_METH_01060]
[TR_METH_01085]
[TR_METH_01093]
[TR_METH_02005]
[TR_METH_03001]

[RS_METH_00041]

Methodology shall support
Bottom/Up Approach

[TR_METH_01071]

AUTOSAR

[RS_METH_00042]

Methodology shall incorporate
the usage of industry standard
tools

[TR_METH_01010]
[TR_METH_01013]
[TR_METH_01025]
[TR_METH_01093]

[RS_METH_00043]

Activities shall have a purpose

[TR_METH_01008]

[RS_METH_00046]

Activities shall have input work
products

[TR_METH _01014]
[TR_METH_01034]

[RS_METH_00047]

Activities shall have output work
products

[TR_METH_01005]
[TR_METH_01006]
[TR_METH_01014]
[TR_METH_01034]

[RS_METH_00048]

Activities shall include roles

[TR_METH_01006]
[TR_METH_01034]

[RS_METH_00050]

Work products shall have a
description

[TR_METH_01008]
[TR_METH_01028]

[RS_METH_00051]

Work products shall have a
reference(s) to metaclass(es) in
the Autosar Metamodel.

[TR_METH_01020]

[RS_METH_00052]

It must be possible to avoid
duplication of data in Work
Products

[TR_METH_01014]
[TR_METH_01015]
[TR_METH_01017]

[RS_METH_00054]

Work Products shall not have
circular references with other
work products

[TR_ METH _01014]
[TR_METH_01017]
[TR_METH_01021]
[TR_METH_01022]
[TR_METH_01122]

[RS_METH_00056]

AUTOSAR methodology shall
not be bound to a particular
lifecycle model

[TR_METH_01002]
[TR_METH_01004]
[TR_METH_01006]
[TR_METH_01012]
[TR_METH_01024]
[TR_METH_01030]
[TR_METH_01031]
[TR_METH_01035]

[RS_METH_00057]

AUTOSAR methodology shall
support traceability to external
artifacts

[TR_METH_01018]
[TR_METH_01123]

[RS_METH_00061]

Methodology shall describe the
change of existing work
products.

[TR_METH_01006]
[TR_METH_01014]
[TR_METH_01015]
[TR_METH_01017]

[RS_METH_00062]

Methodology shall support
configuration of parameters with
different binding time.

[TR_METH_01086]
[TR_METH_01095]
[TR_METH_01098]
[TR_METH_01104]
[TR_METH_01108]
[TR_METH_01150]
[TR_METH_01151]

[RS_METH_00063]

Work Products shall be capable
to be version controlled

[TR_METH_071018]
[TR_METH_01019]

[RS_METH_00064]

Roles shall have a description

[TR_METH_01008]
[TR_METH_01028]

[RS_METH_00066]

Activities shall include tools

[TR_METH_01025]
[TR_METH_01034]

AUTOSAR

[RS_METH_00067]

Methodology document shall
include hyperlinks between
Activities, Roles, Work Products,
and Guidance.

[TR_METH_01113]

[RS_METH_00069]

It shall be possible to add
precise and human readable
documentation to each work

[TR_METH_01123]
[TR_METH_01124]

product.
[RS_METH_00074] Methodology shall specify [TR_METH_00001]
Binding times [TR_METH_00002]

[TR_METH_00003]
[TR_METH_02011]
[TR_METH_02012]
[TR_METH_02013]
[TR_METH_02014]
[TR_METH_02020]

[RS_METH_00075]

Methodology shall specify the
tasks of resolving variant

[TR_METH_00001]
[TR_METH_02016]

[RS_METH_00076]

Methodology shall specify a
work product for values of
variant selectors

[TR_METH_02016]
[TR_METH_02017]

[RS_METH_00077]

Methodology shall explain the
typical interaction between
OEMSs and suppliers

[TR_METH_01049]
[TR_METH_01076]
[TR_METH_01079]
[TR_METH_01080]
[TR_METH_01081]
[TR_METH_01082]
[TR_METH_01125]
[TR_METH_01126]
[TR_METH_01127]
[TR_METH_01130]
[TR_METH_01131]

[RS_METH_00078]

Methodology shall explain the
typical usage of different views
on the system of the OEM

[TR_METH_01044]
[TR_METH_01050]
[TR_METH_01068]

[RS_METH_00079]

Methodology shall explain the
typical usage of different views
on the system of the Supplier

[TR_METH_01068]
[TR_METH_01079]
[TR_METH_01080]
[TR_METH_01081]
[TR_METH_01082]

[RS_METH_00080]

Exchange of Implicit
Communication Behavior
Description

[TR_METH_01120]

[RS_METH_00081]

Methodology shall explain the
typical usage of Safety
Extensions

[TR_METH_01144]
[TR_METH_01145]
[TR_METH_01146]
[TR_METH_01147]
[TR_METH_01148]
[TR_METH_01149]

AUTOSAR

[RS_METH_00082] Methodology shall explain the [TR_METH_01136]
typical usage of Diagnostic [TR_METH_01137]
Extract Template [TR_METH_01138]

[TR_METH_01139]
[TR_METH_01140]
[TR_METH_01141]
[TR_METH_01142]
[TR_METH_01143]

Some input requirements cannot (or not completely) be traced down to single specifi-
cation items found in this document. They are satisfied by the AUTOSAR methodology
in a general way together with other documents as listed in the following:

[TR_METH_01120] Definition of Consistency Needs [The AUTOSAR methodol-
ogy supports the exchange of implicit communication behavior description. Chapters
3.4.1.14 and 3.4.2.15 depict the task and the artifact which allow to define the corre-
sponding consistency needs. | (RS_METH_00080)

[TR_METH_01121] Building the AUTOSAR methodology document | All
AUTOSAR methodology related model elements (see 1.5) are consumed by an in-
ternal AUTOSAR tool that automatically produces the corresponding text, tables, and
diagrams. These artifacts are included into a document which is automatically trans-
formed into the final PDF file. |(RS_METH_00010)

[TR_METH_01122] Relations between AUTOSAR Work Products [Work Prod-
ucts (Deliverables and Artifacts) are designed in such a way that no circular
references with other Wwork Products exist. |(RS_METH_00054)

[TR_METH_01123] Traceability to external artifacts | Artifacts considered in the
Methodology model include external artifacts like c-code, libraries, documentation and
generated artifacts (see e.g. 3.5.2.22, 3.4.2.4). General Non Autosar Artifact
is a generic representation of non AUTOSAR artifacts. It is aggregated by the General
Deliverable and allows linking and tracing of non AUTOSAR artifacts within the
AUTOSAR context. Furthermore, several specific artifacts represent non AUTOSAR
elements or allow referring to them. The A2L File artifact is a representation of
the measurement and calibration format that is defined by the ASAM and therefore
out of scope of AUTOSAR. The description of the Atomic Software Component
Implementation artifact explains how external artifacts can be referred from this
ARXML artifact. | (RS_METH_00057, RS_METH_00069)

[TR_METH_01124] Documentation of Work Products | In order to document de-
sign decisions or restrictions during the development process each Work Prod-
uct can aggregate the corresponding documentation which is represented by the
General Documentation artifact. The General Documentation artifact is
added to Work Products by processing the task Add General Documentation.
|(RS_METH_00069)

AUTOSAR

2 Use Cases

2.1 Overall View

2.1.1 Purpose

This pattern provides a rough outline of the design steps to build a system and resultant
of this the ECUs and the topology with the AUTOSAR methodology. The main activities
are depicted in Figure 2.1.

2.1.2 Description
2.1.2.1 Views on the System

[TR_METH_01039] AUTOSAR System development overview | The development of
an AUTOSAR System is based on the definition of the Virtual Functional Bus
(VFB). The VFB is the communication mechanism that allows a composition of inter-
connected software components to interact. Based on the VFB the system is designed.
|(RS_METH_00006, RS _METH_00033)

[TR_METH_01040] Support of different system views | During the overall develop-
ment of the system, different views on the system can exist (e.g. functional architecture,
or software architecture). These views are described explicitely, whereas a mapping
mechanism is used to express the relation between them. | (RS_METH_00032)

In the following three different views on the system are distinguished:

e [TR_METH_01041] Abstract system | The abstract system abstracts from the
concrete software architecture and describes e.g. the functional view on the sys-

tem. |()

e [TR_METH_01042] Overall technical system | The overall technical system is
organized from the software architecture perspective. |()

e [TR_METH_01043] Sub-System | The Sub-System is a reduced part of the
overall technical System and describes relevant aspects for a dedicated subsys-

tem. |()

2.1.2.2 Overall Workflow

[TR_METH_01044] Development of a functional view on the system | The overall
workflow (see Figure 2.2) starts with an optional activity. In this activity, the Abstract
System Description is developed in advance, which represents the overall system
from a functional or abstract view (functional architecture). This Abstract System

AUTOSAR

Description is then the basis for the development of the concrete System De-
scription. |(RS_METH_00006, RS_METH_00002, RS_METH_00078)

[TR_METH_01045] Development of the overall VFB System | In case of omit-
ting the optional first step, the development directly starts with the definition of the
Overall VFB System. The VFB provides a software architecture oriented view of
all the functions the system supports, independent of any ECUs and networks. See
chapter 2.3 for more details. |(RS_METH_00006, RS_METH_00033)

[TR_METH_01046] Development of the system | The VFB is refined into a sys-
tem by defining a topology of ECUs and Networks, deploying software components to
the ECUs, and deriving the communication matrices required to interconnect the dis-
tributed features. As a part of the communication development, a custom transforma-
tion technology can be specified. This specification is the basis for the implementation
of the corresponding basic software module. The development of the system can be
achieved directly in one phase or in several phases (the use case shows a single phase
and a two phase approach). |(RS_METH_00006, RS _METH_00005)

[TR_METH_01047] Two phase development approach | The two phase approach is
used when there is an organizational separation of responsibility where the primary or-
ganization defines the overall system in the first phase, and several other organizations
define the sub-systems in parallel during the second phase. In this case, the primary
organization hands over System Extracts, which represent subsystem parts of the
whole system. These subsystems contain Subsystem VFBs which are reduced overall
VFBs. |(RS_METH_00006, RS_METH_00002, RS_METH_00005)

[TR_METH_01048] The overall system | The overall system defines the major
public ECUs and topologies, and the subsystem design contributes by adding pri-
vate ECUs and networks to the system. Please note that portions defined within a
subsystem are not directly visible to any other subsystem or to the overall system.
|(RS_METH_00006, RS_METH_00005, RS_METH_00002)

[TR_METH_01049] Interaction between organizations | Additionally, the software
component structure of the system Extracts, delivered by the primary organiza-
tion can be transformed into a different structure by the receiving organization (ECU
System Description). In this case the System Extract of the primary organi-
zation can be considered as a requirement and the subsystem of the receiving or-
ganization represented by one or more ECU System Descriptions can be seen
as a solution which has to fulfill the delivered requirements. |(RS_METH_00006,
RS METH 00077)

[TR_METH_01109] Producing ECU-specific deliverables | After the system de-
sign is complete, the portions that are related to a specific ECU are extracted
producing a deliverable for each ECU. This is elaborated further in chapter 2.5.
|(RS_METH_00006, RS_METH_00005)

[TR_METH_01110] Development of Software Components | In parallel to the
system design, the software components (Delivered Atomic Software Compo-

AUTOSAR

nents) are implemented according to the definitions required by the abstract VFB,
the VFB or the subsystem VFB. These are delivered to be integrated in the ECUs
where they are deployed. Please note that the implementation of a software compo-
nent is more or less independent from ECU configuration. This is a key feature of
the AUTOSAR methodology. See chapter 2.4 for more details. |(RS_METH_00006,
RS _METH_ 00002, RS_METH_00018)

[TR_METH_01111] Development of Basic Software modules | Since the Basic
Software modules are independent of the VFB, they can be developed at any time
before ECU integration. See chapter 2.6 for more details. |(RS_METH_00006,
RS _METH_00003)

[TR_METH_01112] Integration of AUTOSAR ECUs | The integration for an
AUTOSAR ECU commences when the BSW Module Delivered BundleS, ECU
Extract, and the implementation of all Delivered Atomic Software Compo-
nents are available. At this stage, the ECU is configured by creating tasks, schedul-
ing Software Component Runnables, configuring the Basic Software Mod-
ules, etc. The complete code is compiled and linked into an executable. This is
elaborated in chapter 2.7. | (RS_METH_00006, RS_METH_00002, RS_METH_00003,
RS _METH_00004, RS_METH_00005)

2.1.3 Workflow

Develop Bub-System

«nesting» Develop Application
«nesting» Software

e
\

«nesting»

\

5
@
a
H
<

Develop a VFB Methodology

i Develop Basic
System Description OVervIew

Software

Develop an Abstract Integrate Software
System Description for ECU

Figure 2.1: Methodology Overview: Overall Structure

AUTOSAR

Develop an Abstract VFB AUTOSAR

BSW Standard Package System Description Standard Package
- «input» -
- 1.x =
1 1.*
«output»
n «input»
0.1 «input» 1.%
- - . ¢ Develop a VFB
- - «input» System
- - 0.* Description
System o -
Cons(ramt 0..1 : Abstract System
Description Description
«input» «output»
1
Develop System -
«input» -
«inrut» 0.1 -
«output» Overall VFB| 1
«output» System
*
- 0. 0.* System Extract
- - «input»
By z
Transformer Design 1
Bundle :
] «input» Develop
«input» Application
«output» Software
Develop Bagic Develop Suib-System
Software
«<output»
«<output» 1
1.% z
- - «output»
- - ECU Extract
- 1
- T - 1.*
BSW Module -
Delivered Bundle -
«input» «input> -
—~
_—~1x -
«input» Delivered
Atomic
Software
Components

Integrate Software
for ECU

«output»

ECU Software
Delivered

Figure 2.2: Methodology Overview: Work Flow

AUTOSAR

Process Pattern Methodology Overview
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High
Level::Methodology Overview
Brief Description High level view of the AUTOSAR Methodology
Description This Process Patterns contains the typical activities to develop an
AUTOSAR system.
Relation Type Related Element Mul. | Note
Aggregates Develop Applica- 1
tion Software
Aggregates Develop Basic 1
Software
Aggregates Develop Sub-Sys- 1
tem
Aggregates Develop System 1
Aggregates Develop a VFB 1
System Descrip-
tion
Aggregates Develop an Ab- 1
stract System
Description
Aggregates Integrate Software 1
for ECU

Table 2.1: Methodology Overview

2.2 Develop an Abstract System Description

2.2.1 Purpose

This Activity provides a rough outline of the creation of the Abstract System
Description.

2.2.2 Description

[TR_METH_01050] Abstract System Description activity | Due to the fact that
the overall view on vehicle functions can differ from the actual technical definition of
the software architectures of individual ECUs, the optional activity Develop an Ab-
stract System Description allows to define a view on the overall system from
an abstract or functional perspective. This view describes a dedicated abstract VFB.
During the further activities this abstract view is refactored into a technical view of the
software architecture. |(RS_METH_00002, RS_METH_00078)

For the purpose of this use case, this activity is split into sub-activities and tasks (see
Figure 2.3) that are in detail described in Chapter 2.3 and 2.5.2:

e Data Model Development

AUTOSAR

e Component Model Development

e VFB Timing Development

e Define VFB Top Level

e Define VFB Component Constraints

e Design System

e Integrate Non AUTOSAR System at VFB level

In the Data Model Development activity, the set of VFB Interfaces, VFB Modes,
and VFB Types that are used throughout the abstract VFB are defined. Please note,
that these objects can be used in later steps by the VFB and the subsystem VFB as
well.

[TR_METH_01051] Creation of an overall abstract system | In the Component
Model Development activity, a component model is created which represents the
overall system from a functional point of view, e.g. from a customer related perspec-
tive of vehicle functions, independent of a concrete vehicle platform design. During this
process compositions might be modeled, which are not further refined into Atomic Soft-
ware Components. However it is also possible to define atomic software components
as well in this abstract VFB view. |(RS_METH_00002)

[TR_METH_01052] Definition of a constraints in the context of an abstract sys-
tem | In the context of the abstract VFB, the task Define VFB Component Con-
straints defines constraints w.r.t. software components of the abstract VFB. These
constraints have to be considered when the abstract VFB is transformed into the con-
crete, technical VFB. |(RS_METH_00002)

[TR_METH_01128] Integration of Non AUTOSAR Systems in the context of an
abstract system | In parallel with the development of the Abstract System De-
scription within an AUTOSAR process there may be functions that are developed
based on another approach. The functionality of in-vehicle infotainment systems for
instance is usually not covered in an AUTOSAR development process. Rather, devel-
opment methods and platforms such as GENIVI (http://www.genivi.org/) for instance
are employed that address the specific needs and conditions of infotainment system
development. The integration of these functions into the overall system should be ad-
dressed as early as possible. For that purpose first a description of the non-AUTOSAR
functionality (Description of a Non-AUTOSAR System) is needed, which must
be provided by the non-AUTOSAR approach. Within the development of the Abstract
System Description the functional interaction of the non-AUTOSAR functions and
the AUTOSAR functions has to be specified that is based on the given descriptions of
both parts. Since the non-AUTOSAR part is typically specified in a non-AUTOSAR
format it must be translated to the corresponding AUTOSAR format (task Trans-
late Non-Autosar Description to Autosar Description). Moreover, the
information on the functional interaction must be incorporated in order to obtain one
common view of the integrated system. The "Integration of Franca IDL Software Com-
ponent Descriptions" document ([3]) defines a format for a VFB Integration Con-

AUTOSAR

nector and a translation of Franca Interface Definitions - that are used in GENIVI
- to AUTOSAR. It can be used for the development of an abstract description of an

integrated AUTOSAR and GENIVI system. |(RS_METH_00016)

[TR_METH_01053] Definition of a System Description in the context of an ab-
stract system | Additionally to the definition of the abstract VFB, parts of the system
Description can already be defined in the Design System activity, e.g. the topol-
ogy and ECUs where SWCs of the abstract VFB are mapped to. This SW-C mapping
from the abstract VFB to ECUs can be used as a methodological step to the defini-
tion of the concrete VFB. Please note that not all tasks of the besign System ac-
tivity have to be performed in the context of an abstract system. |(RS_METH_00002,

RS_METH_00005)

2.2.3 Workflow

VFB AUTOSAR
Standard Package

«input»

Develop ¢
System Dx

System
Constraint Data Model
Description Development

>

scription

«output»

1.*

Abstract System
Description

«input»,

Component Model
Development

«nesting»

«nesting» X _ «predecessor»
~

«nesting»

VFB Timing

«nesting» Development

«nesting»

«nesting»
«nesting»

Define VFB Component Define VFB Top

Constraints Design Integrate Non

VFB level

Figure 2.3: Develop an Abstract System Description

Activity Develop an Abstract System Description

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::
Develop System

Brief Description Develop an abstract or functional view on the system.

Description This activity defines an abstract view on the overall system from an
abstract or functional point of view. This activity is optional.

Relation Type Related Element \ Mul. \ Note

Level System AUTOSAR System at

AUTOSAR

Relation Type Related Element Mul. | Note
Consumes System Constraint | 0..1 | Inthe context of the "Develop an
Description Abstract System Description" activity, the
constraints for the abstract or functional
view on the system can be provided by
the "System Constraint Description”.
Consumes VFB AUTOSAR | 1.*
Standard Package
Produces Abstract System | 1..%
Description
Aggregates Component Model 1
Development
Aggregates Data Model Devel- 1
opment
Aggregates Define VFB Com- 1
ponent Constraints
Aggregates Define VFB Top 1
Level
Aggregates Design System 1 In the context of the Develop an Abstract
System Description activity, not all tasks
have to be performed.
Aggregates Integrate Non AUT 1
OSAR System at V
FB level
Aggregates VFB Timing Devel- 1
opment

Table 2.2: Develop an Abstract System Description

2.3 Develop a VFB System Description

2.3.1 Purpose

This Activity provides a rough outline of the creation of a Virtual Functional
Bus view of a System. [2]

2.3.2 Description

[TR_METH_01054] Virtual Functional Bus | The Virtual Functional
Bus (VFB) view of a System shows how the Systems software functions interact in-
dependently of any network topology or deployment of features across multiple ECUs.
|(RS_METH_00033, RS _METH_00002)

For more information on the VFB concept see [4]. For detailed information on the
meta-model parts relevant for the VFB see [5].

For the purpose of this use case, this Act ivity is split into the following sub-activities:

AUTOSAR

e Data Model Development

e Component Model Development

e VEFB Timing Development

e Integrate Non AUTOSAR System at VFB level
e Define VFB Safety Information

[TR_METH_01055] Data Model Development activity [Inthe Data Model De-
velopment, the set of VFB Interfaces, VFB Modes, and VEB Types that are
used throughout the VFB are defined. Some of these have already been pre-defined
by AUTOSAR (so-called “blueprints”), see 3.2.2.7 |(RS_METH_00002)

[TR_METH_01056] Definition of the VFB | In the Component Model Develop-
ment activity, the VFB is defined. This can either be done by the use of the abstract
VFB as a basis, or is done directly by defining the software components. In case of
using the abstract VFB as a basis, a mapping between the abstract and the concrete
VFB can be established by performing the tasks Define System View Mapping
(see Section 3.3.1.15 for more details). |(RS_METH_00002)

Two general approaches can be separated:

e [TR_METH_01057] Top-Down approach | Following a Top-Down approach, the
highest level VEB Composition Components are created, and these are itera-
tively broken down to smaller components. At the leaves of the hierarchy the VFB
Atomic Software Component are defined. Note that the activity can be even
finished with empty VEB Composition Components, allowing the detailing of
the further structure at a later stage. |(RS_METH_00002)

e [TR_METH_01058] Bottom-Up approach | If a Bottom-Up approach is used,
then the VFB Atomic Software Components are first defined, and aggre-
gated into VFB Composition Components. |(RS_METH_00002)

[TR_METH_01059] Kinds of VFB Atomic Software Components | Several spe-
cial kinds of VFB Atomic Software Components can be modeled in this activity:

e VFB Atomic Application Software Components$ are the core elements.
They are used to implement the feature algorithms.

e VFB Parameter Component are used to provide characteristic values, such
as calibration parameters, to software components.

e VFB Sensor Actuator ComponentsS provide the connection between phys-
ical sensors/actuators and the VFB Atomic Application Software Com-—
ponents.

e ECU Abstraction Software Component$ can be modeled at this level as
well in oder to model the ECU input and output interfaces which are used by
sensors and actuators.

AUTOSAR

e Complex Driver Component$ also have to be modeled here, though their
implementation is ECU specific, because their ports need to be connected at the
VFB level.

e VFB NvBlock Software Component can be modeled at this level if applica-
tion software accesses non-volatile data via ports.

e Empty VFB Composition ComponentsS can be provided in case the detailed
structure of the desired solution is not in the scope of this activity and will be left
open to a later stage in the development.

|(RS_METH_00002)

[TR_METH_01129] Integrate Non AUTOSAR System at VFB level activity |
In addition to the components that are specified with an AUTOSAR SwComponent
Description there may be application components that are specified in other formats
because they are developed within another application domain. In-vehicle infotain-
ment components for instance are usually not developed with AUTOSAR means.
Rather, development methods and platforms such as GENIVI (http://www.genivi.org/)
are employed that address the specific needs and conditions of infotainment sys-
tem development. The integration of these components into the overall system
should be addressed as early as possible. For that purpose the Description
of a Non-AUTOSAR System must be incorporated into the VFB system descrip-
tion (VEB System). Since the non-AUTOSAR components are typically specified in
a non-AUTOSAR format their descriptions must be translated to the corresponding
AUTOSAR format (Task Translate Non-Autosar Description to Autosar
Description). Moreover, the information on the interconnection of the components
must be incorporated in order to obtain one common view of the integrated system.
The document "Integration of Franca IDL Software Component Descriptions" ([3]) de-
fines a format for a VFB Integration Connector and a translation of Franca In-
terface Definitions - that are used in GENIVI - to AUTOSAR. It can be used for the
development of a VFB description of an integrated AUTOSAR-and-GENIVI system.
|(RS_METH_00016)

[TR_METH_01149] Definition of VFB relevant safety information | In the optional
activity Define VFB Safety Information the VFB relevant safety information is
defined. Safety requirements and safety measures created at this development stage
may be detailed (refined, decomposed, allocated, mapped, etc.) later on in the process
(See chapter 2.14). |(RS_METH_00081)

After these activities are completed, the virtual Functional Bus view of the Sys-
tem is defined. At this point, some VFB Software Component Mapping Con-—
straints may already be known by design, or based on an analysis such as De-
fine VFB Timing. These can be described to provide guidance to the downstream
activities.

AUTOSAR

2.3.3 Workflow

Abstract System

VFB AUTOSAR

y

Define VFB Component
Constraints

Description Standard Package Data Model Development Define VFB Modes
z - «nesting»
- z _— >
- - «nesting»
0..* 1.% / Define VFB Interfaces
«input» - «nesting»\D
«nesting»
«input»
ﬁ— «nesting» Define VFB Types
/
/
/
/
Develop a VFB !
System Description / -
/ Define VFB
I/ Constants
== /
— !
/ Component Model Development
«nesting» f;‘\
! Define VFB Composition
/ «nesting» component
1«output» /I
- / «nesting»
- / >
- /
- «predecessor Defne VEB
- ! L
- / P /7 Application Software
! 7 «negting» Component
Overall VFB / -
System o / _7
) VFB Timing Development / _ 7 «predecessor>
«nesting> Pid «nesting»
— Define VFB Sensor or
Actuator Component
«nesting» wsxing»
Define VFB
Define VFB Safety Parameter
Information) Component
Define VFB
Timing
«nesting»
— «nesting»
"
Integrate Non AUTOSAR gir'ﬂ”peo‘;‘g:f;zrlme‘
System at VFB level Define VFB Top Level Legacy Software
«nesting» «nesting»
«nesting»
«nesting» : X Define Complex Driv
Define System Component
View Mapping
«nesting» :

Figure 2.4:

Define ECU

Abstraction

Component
Define VFB NvBlock Define VFB
Software Component Variants

Develop a VFB System Description

AUTOSAR

Integrate Non AUTOSAR
System at VFB level

«nesting»

«nesting»

«predecessor»

Define VFB Translate Non-Autosar Description
Integration to Autosar Description
Connector

Figure 2.5: Integrate Non AUTOSAR System at VFB level

Define Safety
Information

«output»

VFB System

Define VFB Safety VFB Safety Extensions
Information

Figure 2.6: Define VFB Safety Information

Activity Develop a VFB System Description

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::VFB::
Develop VFB

Brief Description This pattern describes the methodology to develop the Virtual
Functional Bus view of the System.

Description The Virtual Functional Bus (VFB) view of a System shows how the

Systems software and hardware functions interact independent of any
network topology or deployment of features across muliple ECUs. This
Activity is split into three sub-activities:

e Data Model Development

e Component Model Development

Timing Model Development
Integrate Non AUTOSAR System at VFB level

Define VFB Safety Information.

Relation Type

Related Element \ Mul. \ Note

AUTOSAR

Relation Type Related Element Mul. | Note
Consumes Abstract System | 0..* | The abstract System Description is an
Description optional input for the activity "Develop a
VFB System Description". The
VFB-related part of the Abstract System
Description can be than refined to the
concrete "Overall VFB System".
Additionally, a mapping between those
two views can be established.
Consumes VFB AUTOSAR | 1.~
Standard Package
Produces Overall VFB Sys- 1
tem
Aggregates Component Model 1
Development
Aggregates Data Model Devel- 1
opment
Aggregates Define System 1
View Mapping
Aggregates Define VFB Com- 1
ponent Constraints
Aggregates Define VFB Safety 1
Information
Aggregates Define VFB Top 1
Level
Aggregates Integrate Non AUT 1
OSAR System at V
FB level
Aggregates VFB Timing Devel- 1
opment
Table 2.3: Develop a VFB System Description
Activity Data Model Development
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::VFB::
Develop VFB
Brief Description
Description
Relation Type Related Element Mul. | Note
Aggregates Define VFB Con- 1
stants
Aggregates Define VFB Inter- 1
faces
Aggregates Define VFB Modes 1
Aggregates Define VFB Types 1

Table 2.4: Data Model Development

AUTOSAR

Activity Component Model Development

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::VFB::
Develop VFB

Brief Description

Description

Relation Type Related Element Mul. | Note

Aggregates Define Complex 1
Driver Component

Aggregates Define ECU 1
Abstraction Com-
ponent

Aggregates Define VFB Ap- 1
plication Software
Component

Aggregates Define VFB Com- 1
position Compo-
nent

Aggregates Define VFB Nv 1
Block Software
Component

Aggregates Define VFB Pa- 1
rameter Compo-
nent

Aggregates Define VFB Sen- 1
sor or Actuator
Component

Aggregates Define VFB Vari- 1
ants

Aggregates Define Wrapper 1
Components to
Integrate Legacy
Software

Table 2.5: Component Model Development

Activity VFB Timing Development
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::VFB::
Develop VFB
Brief Description
Description
Relation Type Related Element Mul. | Note
Aggregates Define VFB Timing 1
Predecessor Component Model 1
Development
Predecessor Data Model Devel- 1
opment

Table 2.6: VFB Timing Development

AUTOSAR

Activity Integrate Non AUTOSAR System at VFB level

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::VFB::
Develop VFB

Brief Description Incorporate the description of the non-AUTOSAR system and its

connection with the AUTOSAR system into the AUTOSAR
methodology activities.

Description Based on the description of the non-AUTOSAR system its connection
with the AUTOSAR system is defined and specified using the VFB
Integration Connector format. This is translated into an AUTOSAR
description that becomes part of the VFB system description.

Relation Type Related Element Mul. | Note
Aggregates Define VFB Inte- 1

gration Connector
Aggregates Translate Non- 1

Autosar Descrip-
tion to Autosar
Description

Table 2.7: Integrate Non AUTOSAR System at VFB level

Activity Define VFB Safety Information

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::VFB::
Develop VFB

Brief Description Defines all required safety information at VFB level.

Description In this activity, the safety information at VFB level is defined. The safety
information can be refined or completed in further development phases.

Extends Define Safety Information

Relation Type Related Element Mul. | Note

Consumes VFB System 1

Produces VFB Safety Exten- 1
sions

Table 2.8: Define VFB Safety Information

2.4 Develop Software Components
2.4.1 Develop an Atomic Software Component
2.4.1.1 Purpose

This Activity provides a rough outline of the creation of an Atomic Software
Component.

AUTOSAR

2.4.1.2 Description

[TR_METH_01060] Develop an Atomic Software Component activity [Thisis
the generic Activity valid for several kinds of Atomic Software Components. The
first step is to create design, including the runnables, events, interrunnable variables,
etc. Once this is complete, the contract header files can be created and the software
component can be implemented.

Optionally, the safety relevant information for the software component and all contained
elements can be defined (See chapter 2.14). If the software component is developed
as a SEooC (Safety Element out of Context) and the safety requirements are not fully
known at development time, the ASIL attribute can be set to indicate the integrity level
the component was developed for, i.e. in the development process all development
process related requirements of ISO 26262 for the specified ASIL have been applied.
|(RS_METH_00002, RS _METH_00038)

Note that the method of implementation, quality, testing, etc. are beyond the scope of
this activity.

After the component is implemented and successfully compiled, its resources are mea-
sured and stored as part of the software component description for further usage by
downstream processes.

The pattern also includes the optional tasks of creating a timing model, binding pre-
build-variants and evaluating variants, all in the scope of the atomic software compo-
nent. Note that the sequence of these optional tasks within the Activity is only one
possible example.

2.4.1.3 Workflow
Figure 2.7 shows the work breakdown assumed for this use case. The next two fig-

ures 2.9 and 2.10 show all the tasks and work products of the method library involved
in this use case.

AUTOSAR

Define Consistency
Needs

Define
Atomic
Software
Component
Internal
Behavior

Define SymbolProps

for Types

: /«nesing»

Develop an Atomic Software
Component

«nesting»

T

«nesting» Evaluate Variant
o «nesting»
«nesting» «nesting» >
: «nesting»
«nesting» 9 Measure Component

«nesting» Resources

«nesting»

Generate Atomic _ Generate Define Software
Software Component Implement Atomic Component Component Safety
Contract Header Files Software Component Prebuild Data Information

Set

Define Software Component
Timing

Compile Atomic
Software
Component

Figure 2.7: Develop an Atomic Software Component

Define Safety
Information

Overall VFB System

«input»

«output»

F

VFB Safety Extensions «input»

Software Component Safety
Extensions

Define Software
Component Safety
Information

«input»

Software
Component
Internal
Behavior

Figure 2.8: Define Software Component Safety Information

AUTOSAR

Activity

Develop an Atomic Software Component

Package

AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software
Component::Develop Atomic SWC

Brief Description

Description

This is the generic pattern valid for several kinds of Atomic Software
Components. The first step is to create design, including the
runnables, events, interrunnable variables, etc. Once this is complete,
the contract header files can be created and the software component
can be implemented.

Note that the method of implementation, quality, testing, etc. are
beyond the scope of this capability pattern.

After the component is implemented and successfully compiled, its
resources are measured and stored as part of the software component
for further usage by downstream processes.

The pattern also includes the optional tasks of creating a timing model,
defining safety relevant information, binding prebuild-variants and
evaluating variants, all in the scope of the Atomic Software
Component. Note that the sequence of these optional tasks within the
capability pattern is only one possible example.

Extended by

Develop Application Software, Develop a Complex Driver Component,
Develop a Sensor Actuator Component, Develop an ECU Abstraction
Component, Develop an NvBlock Software Component, Optimize a
Software Component for a Specific Target

Relation Type

Related Element Mul. | Note

Aggregates

Compile Atomic 1
Software Compo-
nent

Aggregates

Define Atomic 1
Software Com-
ponent Internal
Behavior

Aggregates

Define Consis- 1
tency Needs

Used for defining the consistency
relations between a group of
RunnableEntitys and a group of
DataPrototypes.

Aggregates

Define Software 1
Component Safety
Information

Aggregates

Define Software 1
Component Timing

Aggregates

Define Symbol 1
Props for Types

Used for solving name conflicts on the
level of component or data types.

Aggregates

Evaluate Variant 1

Aggregates

Generate Atomic 1
Software Com-
ponent Contract
Header Files

Aggregates

Generate Compo- 1
nent Prebuild Data
Set

AUTOSAR

Relation Type Related Element Mul. | Note
Aggregates Implement Atomic 1
Software Compo-
nent
Aggregates Measure Compo- 1
nent Resources
Table 2.9: Develop an Atomic Software Component
Activity Define Software Component Safety Information
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software
Component::Develop Atomic SWC
Brief Description Defines all required safety information for a software component.
Description
Extends Define Safety Information
Relation Type Related Element Mul. | Note
Consumes Overall VFB Sys- 1
tem
Consumes Software Compo- 1
nent Internal Be-
havior
Consumes VFB Safety Exten- 1
sions
Produces Software Compo- 1
nent Safety Exten-
sions

Table 2.10:

Define Software Component Safety Information

AUTOSAR

VFB Atomic Software

VFB AUTOSAR Standard Package

Component «input» Software Component Internal
0.1 0.1 0.. Behavior
«input»
«input»
— 1 Define Atomic — Define Soft
e — SeliEE efine Software
E—— Component Integrél «output» bY — Component Timing
— X e
— 1 input c 3
1 «input»§
1
+symboIProps/|\0”* 1
«input»
«output» «input»
Define
SymbolProps «output»
for Types
«input»
«output»
i . 1
+symbolProps\|/0..* «input> «input»
0.* Generate Atomic —
0. Software S
o Component
VFB Types > e — \ Software
’\L Component
«input». ™~ Timing
* «input» \<<0utput>>
t
39 < N
Ny
odes 0.* \L .
1
«input» —
0.* «output»
o~ put; % e} P A— Application Header Fi
VFB Interfaces
— <ARLL:
= T—
«input» >——>) —
0.1
VFB Data Type Mapping Set
«inpyt» Software Component Data T\
—~ Header
— «input»,
0.1
Postbuild Variant Set
«input»
0.1 Generate Component
— 1 Prebuild Data Set
«input»
1.+
System Constant Value Set «output»
— n—
input;]
0. input r
0.1

Predefined Variant

Component RTE Prebuild
Configuration Header

Figure 2.9: Develop an Atomic Software Component - Detailed view with work products

1)

Software Component Internal
Behavior

Implement Atomic Software
Component

«input»\

“iﬂb

«output» 7

«input»

«input»

: «input»
— «input»
—

—

—

—

—

«output»

«input»

icati 0..1 | Component RTE
Application Header C
FiTs «input» Prebuild 1
Configuration —
Header _
— —
— —
— 1
Thput «input»
PR Atomic Software
Component

«inoutput»

3
°
©
3
)
2
28
o
)

Compile Atomic
Software Component

«output»

-

_—1
«input> Atomic Software
Component Object
Code

Measure Component Resources

«input»

1.%

«input»
: General Autosar Artifac
—
—
—
—
—

0.* «input»

=
§.§
=R
[v]
Q
o
3
=]
o
S
o
=

Evaluate Variant

«output»

«input»
«input»

3 «input»
—
—
—
—
—

0..*

Predefined Variant

Figure 2.10: Develop an Atomic Software Component - Detailed view with work products
(2)

AUTOSAR

2.4.2 Develop Application Software
2.4.2.1 Purpose

This Activity provides a rough outline of the creation of one or more Application
Software Components.

2.4.2.2 Description

[TR_METH_01061] Develop Application Software activity [This Activity
describes the work flow and the necessary activities in terms of the AUTOSAR method-
ology to develop one or more Application Software Components. The work
flow shall allow a more or less independent development of the software compo-
nents core functionality. These activities have to be performed for each 2Application
Software Component. |(RS_METH_00002, RS _METH_00006)

2.4.2.3 Workflow

The detailed work flow can be derived from the generic activity Develop an Atomic
Software Component.

Develop Application
Software

«output» 1.*

Delivered
Atomic
Software
Components

Overall VFB
System

«extends»

Develop an Atomic Software
Component

Figure 2.11: Develop Application Software

AUTOSAR

Activity Develop Application Software
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software
Component::Develop Application SWC
Brief Description
Description This pattern describes the workflow and the necessary activities in
terms of the AUTOSAR methodology for the development of
application software components.
The workflow shall allow a more or less independent development of
the software component core functionality. These activities have to be
performed for every application software component.
Extends Develop an Atomic Software Component
Relation Type Related Element Mul. | Note
Consumes Diagnostic System | 0..*
Extract
Consumes Overall VFB Sys- 1 The application software needs to refer
tem to the relevant elements of the overall
VFB system such as Software
Component Types, Port Interfaces and
Data Types.
Produces Delivered Atomic | 1..*
Software Compo-
nents
Produces Diagnostic System | 0..”
Extract

Table 2.11: Develop Application Software

2.4.3 Uses Cases for more Specialized Software Components

2.4.3.1 Purpose

These Activities provides a rough outline of the creation of more specialized com-
ponents and of the ECU specific optimization of a software component.

2.4.3.2 Description

These Activities describe the work flow and the necessary activities in terms of
the AUTOSAR methodology to develop more specialized components, which could be
partially hardware or ECU dependent.

2.4.3.3 Workflow

These work flows are for the most part derived from the generic activity Develop an
Atomic Software Component. The diagrams show the required extensions.

AUTOSAR

Note the development of a Service Component does not fall into this category of use
cases, because it is for the most part generated during integration time.

For the development of a VFB Parameter Component refer to the calibration use

case 2.9.
Develop a Sensor Actuator
% Component
«extends»
23&1‘3’2 ::t Atomic Software
Figure 2.12: Develop a Sensor or Actuator Component
Activity Develop a Sensor Actuator Component
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software
Component::Develop Sensor-Actuator Component
Brief Description Show how to develop a Sensor Actuator Component
Description Activities to develop a VFB Sensor Actuator Component, i.e.
component that represents a physical sensor or actuator.
Extends Develop an Atomic Software Component
Relation Type Related Element \ Mul. \ Note

Table 2.12: Develop a Sensor Actuator Component

Develop an ECU Abstraction
Component

«nesting»™

Define BSW Module
Timing

«extends» «nesting»

o

Map Software Component
Develop an Atomic Software to BSW

Component

Figure 2.13: Develop an ECU Abstraction Component

AUTOSAR

Activity Develop an ECU Abstraction Component
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software
Component::Develop Ecuabs Component
Brief Description Show how to develop an ECU Abstraction Component.
Description Activities to develop an ECU Abstraction Software Component, i.e. a
component that implements an ECU Abstraction..
Extends Develop an Atomic Software Component
Relation Type Related Element Mul. | Note
Aggregates Define BSW Mod- 1
ule Timing
Aggregates Map Software 1
Component to BS
w
Table 2.13: Develop an ECU Abstraction Component
G?F 22\§ézﬂ:ﬂ?omplex Driver
«extends» «nesting»
Component
Figure 2.14: Develop a Complex Driver Component
Activity Develop a Complex Driver Component
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software
Component::Develop CDD Component
Brief Description Show how to develop a Complex Driver Component
Description Show how to develop a Complex Driver Component
Extends Develop an Atomic Software Component
Relation Type Related Element Mul. | Note
Aggregates Map Software 1
Component to BS
w

Table 2.14: Develop a Complex Driver Component

AUTOSAR

Develop an NvBlock Software
Component

«extends»

Develop an Atomic Software

Component

Figure 2.15: Develop an NvBlock Software Component

AUTOSAR

Activity

Develop an NvBlock Software Component

Package

AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software
Component::Develop NvBlock Software Component

Brief Description

Description

Activities to develop an NvBlock Software Component. An
NvBlockSoftwareComponentType (designed as part of activity
Component Model Development) allows the application software to
access non-volatile data in a convenient way via ports. The NvBlock
Software Component takes over the management and buffering of data
within blocks including data exchange with the underlying basic
software (NvM). Optionally, it implements special writing strategies
(e.g. cyclic writing). The development activities are similar to the
generic activity Develop an Atomic Software Component with the
following differences:

e The description of the NvBlockNeeds within a
NvBlockSoftwareComponentType is done in response to
requirements given by the application software as part of their
own NvBlockNeeds. These are part of their Software
Component Internal Behavior which means that this level must
be available when the NvBlockSoftwareComponentType is
finally designed.

e The creation of an Software Component Internal Behavior within
NvBlockSoftwareComponentType is optional. This artifact is
only needed if special writing strategies have to implemented by
the RTE or if the application software needs a direct access (via
client-server ports) to the NvM.

e The source code of an NvBlockSoftwareComponentType will be
generated during integration as part of the artifact RTE Source
Code. Therefore no source code and no Atomic Software
Component Implementation needs to be created during this
activity.

Note that if non-volatile data are accessed by the application software
via an NvBlockSoftwareComponentType, it is not required to define a
ServiceComponentType for this use case.

Extends

Develop an Atomic Software Component

Relation Type

Related Element \ Mul. \ Note

Table 2.15: Develop an NvBlock Software Component

AUTOSAR

Develop an Atomic
Software Component

«extends»

Optimize a
Software +Compile Atomic

Component for a SWC ECU :
Specific Target Specific

«nesting» Re-compile
Component in ECU
context

«nesting»

«nesting» X
«nesting»

Generate Component
Header File in Vendor
Mode

Create Service Generate Base

Ecu Configuration

Figure 2.16: Optimize Software Component

Activity

Optimize a Software Component for a Specific Target

Package

AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software
Component::Optimize Software Component

Brief Description

Show how to optimize a software component for a specific target.

Description

In practice the integration of an application software component has to
consider some optimizations to meet performance or resource
requirements. The Component API might be much more efficient, if it
will be generated particularly adapted to the concrete ECU
configuration, e.g. via using macro definitions instead of function calls
for some RTE interaction. In fact this should not change the
Component Implementation (i.e. the C-sources).

That means now we have a different set of component headers, which
include the ECU-configuration-specific optimizations.

Note: This use case shows the typical steps needed until the
recompilation with the optimized header file can be done. It does not
show all the other steps needed for the ECU build.

Extends

Develop an Atomic Software Component

Relation Type

Related Element Mul. | Note

Aggregates

Create Service 1
Component

Aggregates

Generate Base 1
Ecu Configuration

Aggregates

Generate Compo- 1
nent Header File in
Vendor Mode

AUTOSAR

Relation Type Related Element Mul. | Note

Aggregates Re-compile Com- 1 Compile Atomic SWC ECU Specific:
ponent in ECU
context

Table 2.16: Optimize a Software Component for a Specific Target

2.5 Develop System and Subsystems

2.5.1 Overview
2.5.1.1 Purpose

The Activities to develop the artifacts on the system level include the optional
development of the abstract system (see Chapter 2.2), the development of an overall
(technical) system and optionally the refinement into one or more subsystems. The
reason for this split is, that the latter may be done by another organization, as has
already been pointed out in 2.1.2.

2.5.1.2 Description

[TR_METH_01065] Develop System and Develop Sub-System activities | Fig-
ures 2.17 and 2.18 show the main inputs and outputs of these two major activities
and how they are refined into sub-activities. Note that the activity Generate ECU
Extract and Define System Safety Information can be performed as part
of Develop System and Develop Sub-System as well. Optionally a mapping be-
tween two different system views represented by different System Descriptions
can be added (see Section 3.3.1.15) and a specification of the transformer technology
for the communication can be defined. |(RS_METH_00005, RS_METH_00002)

[TR_METH_01066] Creation of a System Extract and an ECU Extract | De-
pending on the intended work split, the System Configuration Description
produced during this activity can be used as a basis

1. to create one or more so-called System Extracts as a basis for further refine-
ment as sub-systems (see 2.5.5)

2. or to generate ECU Extracts which directly contain all relevant information to
be integrated on an ECU (see 2.5.6)

In the first case, only an outer system is defined. Based on the outer sys-
tem, ONe€ Or more System Extracts can be delivered. The system Extract is
not fully decomposed and still needs to be refined before it forms the basis for the
ECU configuration. In order to distinguish between the delivered System Ex-
tracts and the refined sub-system, one or more ECU System Descriptions are
created as a basis for further refinement (See activity Create ECU System De-

AUTOSAR

scription). Atomic Software Components, additional ECUs, Networks and
the resulting communication will be added during the refinement step in the activity
Design Sub-System. |(RS_METH_00005, RS_METH_00002)

0.* ~
Transformer Design
Bundle

- 0. -
- «output» «output» 07 -
- L

Abstract System\«,

input»

Description 2 Develop System System Extract
- . «output» -
- «input» -
- ix -

Overall VFB «output» ECU Extract

System «input»
- 0-1 «nesting» -
- . «nesting» -
- «nesting» «nesting» 9 -

nestmg System

System ! .

Constraint nesxmg gzglﬁgliirzalon

Description P

1 0.1
‘ ‘% | % | Define System
- " Generate System View Mapping
Design Define System Generate ECU
Design Transformer
System Safety Information 9 Extract Extract

Figure 2.17: Structure of Activity: Develop System

Develop Sub-System

1 «input» «output» 1
System Extract ECU Extract
«nesung» «nesting»
«nesting» nesl ng»

B \fb| \fb|

Create ECU System Define System
Description Safety Information

Generate ECU
Extract

Design
Sub-System

Figure 2.18: Structure of Activity: Develop Subsystem

Figure 2.19 shows how the major deliverables produced during these activities are
related and how they refer to artifacts describing the software.

[TR_METH_01067] Abstract System Description deliverable | The 2Ab-
stract System Description extends the general System Description. The
System View Mapping maps the different views on the system together, e.g. dif-
ferent overall VFB systems (e.g. Abstract System Description with System

AUTOSAR

Configuration Description), or the overall VFB system with the VFB System
Extract description. | (RS_METH_00005, RS_METH_00002)

System
— | syse
- Description
«extends» «extends» «extends» «extends»
- - - - «extends»_ -
— |system Constraint — | Abstract System — | system Configuratibn ~ — —| ECU System -
~ |Description — | Description — | Description — | System Extract —| Description —| ECUExtract
1
PEM_A
« -Aggregation> «SPEM_Aggregation» «SPEM_Aggregation»)
«SPEM_Aggregation» «SPEM_Aggregation»
|
|1 1 Software 1 1
0.1 -| Overall VF8 —| vre sysem | ECU Extract of
=| System =| Extract - | VFB System
«SPEM_Aggregation»
«SPEM_Aggregation» «SPEM_Aggregation» «SPEM_Aggregation»
1
0.1 _ 0.1
«SPEM_Aggregation»
0.1
e —
0.1
— —
—)
— 0.1 «SPEM_Aggregation» —
i ECU Flat Ma
System Flat Map ;yﬂef_" View p
apping

Figure 2.19: Overview on the different roles of deliverables based on System Description

Note that all the deliverables based on the generic deliverable System Description
as well as the ECU Extract consist of ARXML files that are using the meta-model
element system as the root element, from where the other information can be traced
down.

Activity Develop System

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::
Develop System

Brief Description

Description Develop the description of an overall AUTOSAR System as a basis to
deliver System and/or ECU extracts.

Relation Type Related Element Mul. | Note

Consumes Abstract System | 0..* | The abstract System Description is an
Description optional input for the activity "Develop

System". Please note, that in this step
the Abstract System Description is
refined to a System Description.

AUTOSAR

tract

Relation Type Related Element Mul. | Note
Consumes Overall VFB Sys- | 0..1 | Usually the System refers to elements of
tem an overall VFB descriptions. But for the
description of a legacy system, this input
might be empty.
Consumes System Constraint | 0..1
Description
Produces ECU Extract 1.*
Produces System Configura- | 1..*
tion Description
Produces System Extract 0.x
Produces Transformer De- | 0..%
sign Bundle
Aggregates Define System | 0..1
Safety Information
Aggregates Define System | 0..1
View Mapping
Aggregates Design System 1
Aggregates Design Trans- | 0..%
former
Aggregates Generate ECU Ex- | 1..*
tract
Aggregates Generate System | 0..*
Extract
Table 2.17: Develop System
Activity Develop Sub-System
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::
Develop System
Brief Description
Description Develop the description of a sub-system based on a given System
Extract.
Relation Type Related Element Mul. | Note
Consumes System Extract 1
Produces ECU Extract 1.*
Aggregates Create ECU Sys- 1
tem Description
Aggregates Define System | 0..1
Safety Information
Aggregates Design Sub-Sys- | 1..*
tem
Aggregates Generate ECU Ex- | 1..*

Table 2.18: Develop Sub-System

AUTOSAR

2.5.2 Design System
2.5.2.1 Purpose

This Activity provides a rough outline of the design steps leading to an AUTOSAR
System Configuration Description and the system-specific part of the Ab-
stract System Description, including its topology, deployment, communication
matrix, etc.

2.5.2.2 Description

[TR_METH_01068] Inputs and Output of the Design System activity [The design
of an AUTOSAR system Configuration Description and the system-specific
part of the Abstract System Description uses input information from a Sys-
tem Constraint Description and is based on an Overall VFB System for
the software part. Optionally, the Abstract System Description that represents
the functional view on the system can be used as an input. Please note that the inputs
and output are depicted in the top-level activities which aggregates the activity Design
System.

The activity involves the creation of a Topology, ECU Resources Descrip-
tions, and the interconnection between ECU instances. |(RS_METH_00005,
RS _METH_ 00002, RS_METH_00078, RS_METH_00079)

[TR_METH_01069] Deployment of AUTOSAR Software Components | The
AUTOSAR Software Components defined within the VFB Top Level System Com-
position are then deployed to the ECU instances. |()

[TR_METH_01070] Description of network signals | The required network signals
are identified and a mapping is done to System Signals to implement the VFB.
System Signal Groups, are defined to keep certain signals grouped together for
consistent transmission. System Signals are then defined and form the initial input
to design the Communication. |(RS_METH_00005)

[TR_METH_01071] Description of design constraints | During this stage,
design constraints can also be defined Mapping of Software Components
to Implementations, Mapping of Software Components to ECUs, Sig-
nal Path Constraints, and Software Component Mapping Constraints.
These constraints serve many purposes including the ability for tools to use them
to optimization a system, to interface with legacy ECUs, and to "lock” design deci-
sion between iterations. |(RS_METH_00005, RS_METH_00002, RS _METH_00041,
RS METH 00020)

Note: The mapping of software components to implementations is optional and needed
only if those components are specifically required to be used in an ECU.

AUTOSAR

2.5.2.3 Workflow

«nesting»

Design
Communication

Figure 2.20: Structure overview: Design System

AUTOSAR

Define Software
Component
Mapping
Congtraints

Assign Top Level
Composition

Set System Root ;
«nesting»

5

Design System

«nesting»

Define ECU

Description .
«nesting»

«nesting»

<<neaing>>/

%

«nesting»

Define System
Topology

Deploy Software
Component

2

Generate or Adjust
System Flat Map

>

«nesting» «nesting» «nesting»

«nesting»

>

Derive - Define Signal Path Define System Define System Select Software

Communication Constraints Variants Timing Component

Needs Implementation

«nesting»
Design
Communication
«nesting»

Define

Communication

Matrix

Define Frames

: - «nedling»

«nesting»
Define Signal PDUs
/«nesling»
Define TP «nesting» negting»
«nesting» i}
«nesting» «nesting» .
«nesting»
«nesting»

Define Secured

PDUs

Define E2E
Transformer y " - - -
Technology Define Network Define PDU Gateway Define Signal Gateway Define RTE Fan-out oo o rangormation

Management

Technology

Figure 2.21: Nesting relationship: Design System

AUTOSAR

[

- 1
Define ECU Define System 1 /
Description .
Topology —
ECU Resources —] Define Software ——
Description 1 e Component —
Mapping —
| Constraints —
A
Topology 1 0.1
Software
\ — Component
— Mapping
1] Constraints
_— Deploy Software
]] — — 1
Define Signal Path . — — Component
¢ ; Signal Path s \/FB TOp Level
onstraints .
Constraints N System
Composition
M M
Mapping of
Software
- Components
- to ECUs
- 1
- Set System || —
Communication Layers Root five _
Communication e
/ Needs —
1.*
Data Mapping
—
—
1=
—
—
Assign Top Level
iti 1
Composition System
Description
Root Elemen
System Signal
—
—
—
1
—
Generate or —
Adjust System
Flat Map System Flat
Map

Figure 2.22:

Detailed work flow for: Design System

AUTOSAR

Activity Design System

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::
Design System

Brief Description Initial work to create a topology, map a VFB onto that topology and
determine the ECU resources each ECU needs.

Description The design of an AUTOSAR System involves the creation of a

Topology, ECU Resources Descriptions, and the interconnection
between ECU instances.

The software components defined within the VFB Top Level System
Composition are then deployed to the ECU instances.

The required network signals are identified and a mapping is done to
System Signals to implement the VFB. System Signal Groups, are
defined to keep certain signals grouped together for atomic
transmission. System Signals are then defined and form the initial input
to design the Communication Matrix.

During this stage, design constraints can also be defined (Mapping of
Software Components to Implementations, Mapping of Software
Components to ECUs, Signal Path Constraint, and Software
Component Mapping Constraint). These constraints serve many
purposes including the ability for tools to use them to optimization a
system, to interface with legacy ECUs, and to "lock" design decision
between iterations.

Notes: The mapping of software components to implementations is
optional and needed only if those components are specifically required
to be used in an ECU.

Relation Type

Related Element Mul. | Note

Aggregates Assign Top Level 1
Composition

Aggregates Define ECU De- 1
scription

Aggregates Define Signal Path 1
Constraints

Aggregates Define Software 1
Component Map-
ping Constraints

Aggregates Define System 1
Timing

Aggregates Define System 1
Topology

Aggregates Define System 1
Variants

Aggregates Deploy Software 1
Component

Aggregates Derive Communi- 1
cation Needs

Aggregates Design Communi- 1

cation

AUTOSAR

Relation Type

Related Element Mul. | Note

Aggregates Generate or Adjust 1
System Flat Map
Aggregates Select Software 1
Component Imple-
mentation
Aggregates Set System Root 1
Table 2.19: Design System
Activity Design Communication
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::
Design System
Brief Description
Description Describe all communication layers. and define the mapping of the

triggering elements within the Physical Channels to the communication
connector ports for the individual ECUs.

Because the triggering elements are aggregated as splitable elements
within the Physical Channels it is possible to define them in an artifact
separated from the Topology.

Relation Type Related Element Mul. | Note

Aggregates Define Communi- 1
cation Matrix

Aggregates Define E2E Trans- 1
former Technology

Aggregates Define Frames 1

Aggregates Define Network 1
Management

Aggregates Define PDU Gate- 1
way

Aggregates Define RTE Fan- 1
out

Aggregates Define Secured P 1
DUs

Aggregates Define Signal 1
Gateway

Aggregates Define Signal PD 1
Us

Aggregates Define TP 1

Aggregates Define Transforma- 1
tion Technology

Table 2.20: Design Communication

AUTOSAR

2.5.3 Generate System Extract

2.5.3.1 Purpose

This Activity provides an extract of the system description for a specific sub-system.

2.5.3.2 Description

Generate a System Extract which is a basis to develop a sub-system.

2.5.3.3 Workflow

System Generate System Extract

Detailed tasks are not
modeled.

Configuration
Description

«output» 0.*

System Extract

Figure 2.23: Generate the System Extract

The detailed tasks of Generate System Extract are not modeled since they are
considered as trivial - it just means to reduce the content of the input description to the
subsystem in question.

Activity Generate System Extract

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::
Generate System Extract

Brief Description

Description Generate for further development, a System Extract which represents

the description of a part of the system (sub-system). This allows a start
of work on ECU’s even if the system is not completely described.

Relation Type Related Element Mul. | Note
Consumes System Configura- 1

tion Description
Produces System Extract 0.x

2.5.4 Create ECU System Description

2.5.4.1 Purpose

Table 2.21: Generate System Extract

Based on a System Extract, this Activity creates ECU System Descrip-—
tions which are refined during the design of the sub-system.

AUTOSAR

2.5.4.2 Description

[TR_METH_01125] Create ECU System Description activity [Based on the
delivered System Extract, the receiving organization creates one or more ECU De-
scriptions. The ECU Descriptions are used for designing the sub-system arti-
facts (See activity Design Sub-System). |(RS_METH_00002, RS_METH_00005,
RS _METH_00077)

From the methodological point of view there are two choices for creating the ECU Sys-
tem Description.

[TR_METH_01126] Using the system Extract as the structural basis for the
ECU development | The System Extract is taken as the structural basis for the
ECU development. In this case the System Extract becomes an ECU System
Description. |(RS_METH 00002, RS_METH_ 00005, RS_METH_00077)

[TR_METH_01127] Creating a new structure for the ECU development | A new
structure is created as a basis for the ECU development. The newly created ECU
System Description is mapped to the initial System Extract. For this purpose
the task Define System View Mapping creates the initial System View Map-
ping artifact which is refined during the sub-system design. |(RS_METH_00002,
RS METH 00005, RS METH _00077)

2.5.4.3 Workflow

Create ECU System
Description

«output»

1.*

System Extract ECU System Description

Define System View
Mapping

Figure 2.24: Create ECU System Description

AUTOSAR

Activity Create ECU System Description

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::
Create ECU System Description

Brief Description

Description During the Develop Sub-System activity the supplier refines the
received System Extract so that valid ECU Extracts can be generated.
The refinement of the System Extract is done using the ECU System
Description. Therefore, this activity creates one or more ECU System
Descriptions based on the System Extract. The sub-system artifacts
are designed in the ECU System Description during the activity
"Design Sub-System".

From the methodological point of view there are two choices for
creating the ECU System Description.

1) The System Extract is taken as the structural basis for the ECU
development. In this case the System Extract becomes an ECU
System Description.

2) A new structure is created as a basis for the ECU development. The
newly created ECU System Description is mapped to the initial System
Extract. For this purpose the task "Define System View Mapping" is
performed.

Relation Type Related Element Mul. | Note

Consumes System Extract 1
Produces ECU System De- | 1.
scription
Aggregates Define System | 0..%
View Mapping

Table 2.22: Create ECU System Description

2.5.5 Design Sub-System
2.5.5.1 Purpose

This Activity details a given ECU System Description (previously created from
the delivered system Extract) with additional ECUs and networks.

2.5.5.2 Description

[TR_METH_01075] Design Sub-System activity | Based on the ECU System
Description, the description of a sub-system is defined. |(RS_METH_00002,
RS _METH_00005)

[TR_METH_01076] Collaboration between different organizations | Additionally,
the software component structure of the System Extracts, delivered by the primary
organization can be transformed into a different structure by the receiving organization

AUTOSAR

(ECU System Description). Inthis case the System Extract of the primary or-
ganization can be considered as a requirement and the sub-system of the receiving
organization can be seen as a solution which has to fulfill the delivered requirements.
Thus here again a mapping activity can be defined which maps the newly introduced
solution sub-system to the provided requirement sub-system from the primary organi-
zation. |(RS_METH_00002, RS_METH_00005, RS_METH_00077)

[TR_METH_01077] Transformation changes during the Design Sub-System ac-
tivity | During this transformation the hierarchical SWC-structure can be changed,
some SWCs can be replaced by other SWCs, some can remain in the resulting view.
|(RS_METH_00002, RS_METH_00005)

[TR_METH_01078] Mapping of different views | The different views are mapped by
the System View Mapping. |(RS_METH_00002, RS_METH_00005)

Typical use-cases for this transformation steps are:

e [TR_METH_01079] Use Case: Substitution of existing components | The
secondary organization has an existing software architecture. By software shar-
ing some of the existing components are substituted by the delivered soft-
ware components. |(RS_METH_00002, RS_METH_00005, RS _METH_00077,
RS METH _00079)

e [TR_METH_01080] Use Case: Mapping of requirements to the solution |
The secondary organization develops one ECU for different primary organiza-
tions and therefore has to map the requirements of different primary organiza-
tions to its solution. |(RS_METH_00002, RS_METH_00005, RS _METH_00077,
RS _METH_00079)

e [TR_METH_01081] Use Case: Reorganization of the software structure
[The primary organization delivers a sub-system description which defines
one ECU. The secondary organization decides to use two ECUs. There-
fore the software structure has to be reorganized by the second organization.
|(RS_METH_00002, RS _METH_00005, RS_METH_00077, RS _METH_00079)

e [TR_METH_01082] Use Case: Description of changes between different ver-
sions of System Descriptions | Additionally the mapping can be used to for-
mally describe changes between different versions of System Descriptions.
|(RS_METH_00002, RS _METH_00005, RS_METH_00077, RS _METH_00079)

Finally all Atomic Software Components in the resulting sub-system scope are
included in this sub-system description.

AUTOSAR

2.5.5.3 Workflow

Design Sub-System

«input> output»

ECU System Description

Figure 2.25: Overview: Design Sub-System

Note that the ECU System Description appears as input and output of this Activity
because it is refined.

As the detailed work flow for this Activity uses the same elements from the methodology
library as the one described in 2.5.2.3, the breakdown into tasks is not modeled here.

Activity Design Sub-System
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::
Design Sub-System
Brief Description
Description Design the sub-system artifacts based on an ECU System Description
which was previously created from the delivered ECU Extract. It
consists of the same tasks as the activity Design System.
The description must be completed down to the ECU level, so that valid
ECU extracts can be generated.
Relation Type Related Element Mul. | Note
Consumes ECU System De- 1 System Extract as generated from the
scription outer system.
Produces ECU System De- 1 System Extract refined during design of
scription the corresponding sub-system with
elements needed to generate ECU
Extract(s).

Table 2.23: Design Sub-System

2.5.6 Generate ECU Extract
2.5.6.1 Purpose

This Activity provides an extract of the System description for setting up an ECU
Configuration for specific ECU.

AUTOSAR

2.5.6.2 Description

Generate an ECU Extract basis for setting up the ECU configuration and further
development on ECU level.

2.5.6.3 Workflow

System
Configuration ECU System
Description System Extract Description

\0_1 0.1 /0..1 1
tput /
«outpul> ECU Extract of

«input» « «input» Topology

Extract ECU

Topology «inoutput»
1
1
- D

Generate or Adjust
«nesting» ECU Flat Map

ECU Flat Map

«input»

«output»

/

«nesting». ECU Extract of

Data Mapping

e

Generate
ECU Extract

«nesting» Flatten Software «output».
Composition &1

«nesting»

ECU Extract of VFB
System

Extract the ECU *
- «output» 1.
Communication

«output»

Extract ECU Rapid
Prototyping Scenario

«output»

ECU Extract

ECU Extract for
Communication

ECU Extract of Rapid
Prototyping Scenario

Figure 2.26: Generate the ECU Extract

Activity Generate ECU Extract

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::
Generate Ecu Extract

Brief Description Generate the ECU Extract out of the System Description in order to be
delivered for integration for further development on ECU level.

Description Generate the ECU extract which is a basis for setting up the ECU

configuration and further development on ECU level.

It can be generated either from a full system (System Configuration
Description), a System Extract or a ECU System Description.

Relation Type Related Element \ Mul. \ Note

AUTOSAR

Relation Type Related Element Mul. | Note

Consumes ECU System De- | 0..1
scription

Consumes System Configura- | 0..1
tion Description

Consumes System Extract 0..1

Produces ECU Extract 1

Aggregates Extract ECU Rapid 1
Prototyping Sce-
nario

Aggregates Extract ECU Topol- 1
ogy

Aggregates Extract the ECU 1
Communication

Aggregates Flatten Software 1
Composition

Aggregates Generate or Adjust 1
ECU Flat Map

Predecessor Define Rapid Pro- 1
totyping Scenario

Table 2.24: Generate ECU Extract

2.5.7 Design Transformer
2.5.7.1 Purpose

This Activity specifies the functional aspects of a transformation technology used
for the serialization of selected system signals.

2.5.7.2 Description

Transformer enable AUTOSAR systems to use a data transformation mechanism to
linearize and transform data. They can be concatenated to transformer chains and
are executed by the RTE for inter-ECU communication which is configured to be trans-
formed.

The transformation technology (which transformer should be used for which commu-
nication) is defined in the context of the Design Communication activity (task De—
fine Transformation Technology). For the transformation of communication
data standardized transformers (e.g. SOME/IP transformer) or custom transformers
can be used.

[TR_METH_01130] Design Transformer activity [In case of custom transformers
the Design Transformer activity has to be performed to define the functional spec-
ification of the custom transformation mechanism (Transformer Specification)
and the corresponding configuration parameters (BSW Module Vendor- Specific

AUTOSAR

Configuration Parameter Definition). The Design Transformer activity
is done during the bevelop System activity because it produces a definition what a
transformer does and therefore significantly affects the corresponding communication.
|(RS_METH_00005, RS METH_00077)

The specified transformer is then implemented (Develop Basic Software) and
can be used in the Design Communication activity. There, inter-ECU communi-
cation can be marked for being transformed.

[TR_METH_01131] Output of Design Transformer activity [The Design
Transformer activity shall result in a set of complete and unambiguous written
Transformer Specifications and the corresponding BSW Module Vendor-—
Specific Configuration Parameter Definition. A specification of a spe-
cific transformer shall adhere to [6, SWS BSW General] and [7, ASWS Transformer
Generall].

A specification of a transformer shall contain:

e Functional specification of the transformer. See [7, ASWS Transformer General]
for details. The most important issue are:

— Specification of the transformers output
— Transformer class
— Transformer errors

e Definition of Development Errors, Production Errors and Extended Production
Errors.

e Transformer APIs
e Extension of the transformer EcuC if necessary for the specific transformer
|(RS_METH_00077)

2.5.7.3 Workflow

Design Transformer

«output» 1 -
[t

Transformer Design Bundle

«nesting» «nesting»

Define Vendor Specific
Module Definition

Figure 2.27: Design Transformer activity

Create Transformer Specification

AUTOSAR

module is created and the corresponding parameter definition is
specified. The creation of the functional specification of the
Transformer can be seen as a part of the communication design.

This activity is performed only if a custom transformer for the

Activity Design Transformer

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::
Design Transformer

Brief Description

Description In this activity the functional specification of the custom transformer

communication is required.

Relation Type Related Element Mul. | Note
Produces Transformer De- 1
sign Bundle
Aggregates Create Trans- 1
former Specifica-
tion
Aggregates Define Vendor 1
Specific Module
Definition

2.5.8 Define System Safety Information

2.5.8.1

Purpose

Table 2.25: Design Transformer

This Activity allows specifying safety information at system level.

2.5.8.2 Description

In this activity, the safety information at system or sub-system level is defined. Obvi-
ously, the safety information defined in previous development stages is detailed. (For
detailed tasks see chapter 2.14).

AUTOSAR

2.5.8.3 Workflow

System Description

Define Safety
Information

VFB Safety Extensions

>

«input»

«input»

Software Component Safety

Extensions

Define System
Safety Information

«output»

<errrn

System Safety Extensions

Figure 2.28: Define System Safety Information

Activity Define System Safety Information

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::
Develop System

Brief Description Defines all required safety information at system level.

Description In this activity, the safety information at system level is defined. The
safety information can be refined or completed in further development
phases.

Extends Define Safety Information

Relation Type Related Element Mul. | Note

Consumes Software Compo- 1
nent Safety Exten-
sions

Consumes System Descrip- 1
tion

Consumes VFB Safety Exten- 1
sions

Produces System Safety Ex- 1

tensions

Table 2.26: Define System Safety Information

AUTOSAR

2.6 Develop Basic Software
2.6.1 Overview
2.6.1.1 Purpose

This Activity provides an overall use case how to the develop AUTOSAR Basic
Software.

2.6.1.2 Description

2.6.1.3 Workflow

BSW Standard Transformer Design
Package Bundle
- - Defink BSW Types
- - Define Vendor Specific
- - odule Definition
1 0..* «esting> «nesting»
/Define BSW Entries
«nesting»
[T
. «input> <> «nesting»
«input» "
Define BSW
Interfaces
1 Design Basic
| Software
«nesting» :
| Define BSW
| i
| Behavior

«predecessor

i
| «nesting»
I
Develop Basic : / >
Software «nesting» Generate
% BSWM Contract
«output» Header Files

«nesting»——____ |
Develop BsW)
1.x Module

«nesting» Implement a BSW
Module

«nesting»
BSW Module
Delivered Bundle

«nesting» Develop BSW Module

«nesting»

Generator
Define BSW
Module Timing
Generate BSW Compile BSW
Module Prebuild Core Code
Data Set

Figure 2.29: Nesting relationship: Develop Basic Software

AUTOSAR

Activity Develop Basic Software
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::BS
W::develop_bsw
Brief Description
Description Describes the overall activities to develop Basic Software, starting from
the design down to delivery of modules.
In case of custom transformer module development, the Transformer
Design Bundle containing the functional specification and the
parameter definition is taken as a basis for all required activities.
Relation Type Related Element Mul. | Note
Consumes BSW Standard 1
Package
Consumes Diagnostic System | 0..”
Extract
Consumes Transformer De- | 0..*
sign Bundle
Produces BSW Module De- | 1..%
livered Bundle
Produces Diagnostic System | 0..*
Extract
Aggregates Design Basic Soft- 1
ware
Aggregates Develop BSw | 1.7
Module

Table 2.27: Develop Basic Software

It consists of two parts:
e Design Basic Software

e Develop BSW Module

2.6.2 Design BSW
2.6.2.1 Purpose

This Activity provides a rough outline for the Basic Software design for an ECU or
a set of ECUs.

2.6.2.2 Description

[TR_METH_01083] Design Basic Software activity [Design the Basic Soft-
ware for an ECU or a set of ECUs. This shall result in a set of complete and
unambiguous Basic Software Module Descriptions. |(RS_METH_00003,
RS _METH_00004)

AUTOSAR

Note that existing descriptions, especially standardized ones, can be reused, eventu-
ally setting only optional elements or user specific extension.

[TR_METH_01084] Separation of desigh and development of basic software |
This Activity is conceptually separated from Develop BSW Module, because it
might be performed by a Basic Software Designer responsible for the com-
plete Basic Software Design on a given ECU, which may be different in general from
the Basic Software Module Developer who develops or delivers the single modules.
|(RS_METH_00003, RS METH_00018)

2.6.2.3 Workflow

Design Basic Software

S

«output» 1

wlhiii

BSW Standard
Package

/«nesting»

Define BSW Types

SW Design Bundle

«nesting»

«nesting»

«nesting»

Define BSW Entries Define BSW Interfaces
Define Vendor Specific
Module Definition

Figure 2.30: Nesting Relationship : Design Basic Software

AUTOSAR

Define BSW
Types

«input»

Define BSW Entries
«input»

«inoutput» 1 «output» 1

([

Basic Software
Entries

~
0..

0.1

BSW Standard Package

«SPEM_Aggregation»

| | =

«input»

«output»

[l

0.1 «input»
Define BSW
Interfaces

Basic Software

ECU Resources Module Description

Description

AUTOSAR Standardized ECU
Configuration Parameter Definition

1

«input» «output»

Define Vendor Specific
Module Definition

BSW Module Vendor-
Specific Configuration
Parameter Definition

Figure 2.31: Design Basic Software

Activity Design Basic Software

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::BS
W::develop_bsw

Brief Description Design the Basic Software for an ECU or a set of ECUs.

Description Design the Basic Software for an ECU or a set of ECUs. This shall

result in a set of complete and unambiguous Basic Software Module
Description. Note that existing descriptions, especially standardized
ones, can be reused, eventually setting only optional elements or user
specific extension.

This activity is conceptually separated from the activity Develop Basic
Software Module, because it might be performed by a Basic Software
Designer responsible for the complete Basic Software Design on a
given ECU, which may be different (in general) from the Basic Software
Module Developer who develops and/or delivers the single modules.

Relation Type Related Element Mul. | Note
Consumes BSW Standard 1
Package
Produces BSW Design Bun- | 1..*
dle
Aggregates Define BSW En- 1
tries
Aggregates Define BSW Inter- 1
faces

AUTOSAR

Relation Type Related Element Mul. | Note
Aggregates Define BSW Types 1
Aggregates Define Vendor 1

Specific Module

Definition

Table 2.28: Design Basic Software

2.6.3 Develop BSW Module
2.6.3.1 Purpose

This Activity provides a rough outline for a single Basic Software module or cluster
development prior to an ECU integration.

2.6.3.2 Description

[TR_METH_01085] Develop BSW Module activity [To develop the core code (i.e.
the code not generated during integration) of a single BSW module or cluster prior
to ECU integration. This Activity focuses on the tasks which are common for
most BSW modules. It is not valid for those modules (RTE, BSW Scheduler) which
are completely generated at integration time. |(RS_METH_00003, RS_METH_00006,
RS METH _00038)

AUTOSAR

2.6.3.3 Workflow

Develop BSW Module

«input»

SW Standard

ackage «output»

Ssw it

BSW Module
Delivered Bundle

/«input»

1.%

«nesting»

BSW Design Bundle

: «nesting»

Define BSW «nesting»

«nesting»

Behavior
«nesting» «nesting»
«nesting»
Generate BSW
Module Prebuild
Define BSW Data Set
Module Timing

Generate Compile BSW
BSWM Contract Core Code
Header Files Implement a BSW Develop BSW Module

Module Generator

Figure 2.32: Nesting relationship : Develop Basic Software Module

AUTOSAR

Basic Software
— .
_«output»% Module Timing
1 | e—
Define BSW e
Module Timing l
17| m— 0.1 —
— - R
1 «<input» —
9 1 1
1 Generate BSW
Define BS! Module Prebuild
f Basic Software BSWRTE 1
Behavior Data Set .
Module Intemal Prebuild
Behavior Configuration
1 . Header
—
—
Implement a
- BSW Module —
— PN /
A —
—
— 0..
Bas Basic Software Module
asic
output: Core Source Code
Software 1 «outpur
Modu.le' «ingut»
Description >
1
—
—
1 —
«input» —
_‘ «output» —
—
. —
—input————— 0
1 I Basic Software
—
e Module Core
— Header
Generate Basic Software 0.1
BSWM Module h
Contract Implementation
Header Files Description
—
«output» 1 —
«input» —
— A —
— € T Compile BSW
0.1 «input»
— Core Code
. B — Build Action Manifest
«input» —
—
c c
S S
Basic Software! «output»
Module Interlink
Header 1
«input»
—
—
0.1 0.1 —
—
- —
- —
- 1.1 Basic Software
- Module Object
BSW Code
Standard
Package «input»
_k
— —
— —
0.* «nput> «output Fl
Develop BSW Module ——
BSW Module Vendor- Generator BSW Module
Specific Configuration Generator

Parameter Definition

Figure 2.33: Develop Basic Software Module

AUTOSAR

Activity Develop BSW Module
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::BS
W::develop_bsw
Brief Description Develop a single BSW module or cluster prior to ECU integration.
Description Develop a single BSW module or cluster prior to ECU integration.
To develop the core code (i.e. the code not generated during
integration) of a single BSW module or cluster prior to ECU integration
including vendor specific configuration parameters and module
generators. This activity focuses on the tasks which are common for
most BSW modules. It is not valid for those modules (RTE, BSW
Scheduler) which are completely generated at integration time.
Relation Type Related Element Mul. | Note
Consumes BSW Design Bun- | 1..*
dle
Consumes BSW Standard 1
Package
Produces BSW Module De- 1
livered Bundle
Aggregates Compile BSW 1
Core Code
Aggregates Define BSW Be- 1
havior
Aggregates Define BSW Mod- 1
ule Timing
Aggregates Develop BSW 1
Module Generator
Aggregates Generate BSW 1
Module Prebuild
Data Set
Aggregates Generate BSWM 1
Contract Header
Files
Aggregates Implement a BSW 1
Module
Predecessor Design Basic Soft- 1
ware
Predecessor Design Basic Soft- 1
ware

Table 2.29: Develop BSW Module

2.7 Integrate Software for ECU

2.7.1 Description

In this chapter, the integration for an AUTOSAR ECU is described. In the AUTOSAR
sense an ECU means a microcontroller plus peripherals and the according software/-
configuration. Therefore, each microcontroller requires its own ECU Configuration.

AUTOSAR

[TR_METH_01086] Integrate Software for ECU activity | The main activities
include configuring and/or generating the BSW modules (including the RTE) and build-
ing the executable. The BSW configuration can be done during different steps of devel-
opment. The detailed use cases for these different ways of configuration are introduced
later in the chapter, thanks to the Configuration Classes definition :

e Pre—compile time
e Link time
e Post-build time

|(RS_METH_00004, RS_METH_00062)

2.7.2 Overview
2.7.2.1 Purpose

This Activity is showing the high level view how to integrate AUTOSAR Software for
an ECU.

2.7.2.2 Description

[TR_METH_01087] Scope of Integrate Software for ECU activity [The de-
velopment of an AUTOSAR ECU consists of four main activities:

e Prepare ECU Configuration
e Configure BSW and RTE

e Generate BSW and RTE

e Build Executable

In addition, the optional activity Model ECU Timing is shown. The ECU timing
model depends on ECU configuration details (BSW and RTE), but the results shall
help to optimize the configuration in an iterative approach. |(RS_METH_00005,
RS METH 00003, RS METH 00004, RS METH 00002, RS METH _00006)

The ECU configuration plays a significant role during the integration of the soft-
ware for an ECU. The relevant workflow is depicted in figure 2.35". All three activi-
ties (Prepare ECU Configuration,Configure BSW and RTE, Generate BSW
and RTE) use the work product ECU Configuration Values which contains (i.e.
references) all the configuration information for all BSW modules on the ECU. In or-
der to better understand the three different activities an introduction to configuration
classes is given in chapter 2.7.9.

'In order to be more comprehensible, this figure hides some outputs of the activity Generate BSW
and RTE. For more details see the outputs of all aggregated tasks.

AUTOSAR

One can measure resources used by the various BSW modules and applications and
save that information within the Basic Software Module Implementation De-
scription Or Atomic Software Component Implementation

One can also generate an A21, File processing the Generate A21 task at this point.

2.7.2.2.1 Inputs to ECU Configuration

[TR_METH_01114] Input sources for ECU Configuration [ECU Configuration has
two input sources (see figure 2.35). First of all, all configuration that must be agreed
across ECUs is defined in the System Configuration, which results in a System
Configuration Description (and the resulting ECU Extract for the individua
ECUs).

Secondly, the ECU BSW is built using BSW modules. The specifics of these module im-
plementation are defined in the BSW Module descriptions covered by the BSWw Module
Delivered Bundle. |(RS_METH_00003, RS_METH_ 00004, RS _METH_00005,
RS _METH _00006)

The latter is described in [8] in more detail. The concept of the ECU Extract is
depicted below:

ECU Extract

ECU Configuration can only be started once a plausible System Configuration
Description and the corresponding ECU Extract has been generated (see fig-
ure 2.35). Details on the system Configuration Description can be found
in [9].

The System Configuration Description contains all relevant system-wide con-
figuration, such as

e ECUs present in the system
e Communication systems interconnecting those ECUs and their configuration

e Communication matrices (frames sent and received) for those communication
systems

e Definition of Software Components with their ports and interfaces and connec-
tions (defined in the SWC Description and referenced in the System Configu-
ration Description).

e Mapping of SWCs to ECUs

The ECU Extract is a description in the same format as the System Configura-
tion Description, but with only those elements included that are relevant for the
configuration of one specific ECU.

AUTOSAR

2.7.2.2.2 ECU Configuration Value description

The ECU Extract only defines the configuration elements that must be agreed be-
tween ECUs. In order to generate a working executable that runs on the ECU, much
more configuration information must be provided.

The remaining part of the configuration is about configuring all BSW modules within the
ECU. Typical BSW modules within an ECU can be: RTE, Com, Can, OS, NVRAM etc.
There are also dependencies between BSW modules to consider when configuring the
ECU.

When the configuration is done, the generation of configuration data takes place. l.e.
there are both configuration editors and configuration generators involved in the pro-
cess.

In order to obtain consistency within the overall configuration of the ECU, AUTOSAR
has defined a single format, the ECU Configuration Value description to be used for
all BSW modules within an ECU. Both configuration editors and configuration gen-
erators are working toward ECU Configuration Value descriptions. In the AUTOSAR
Methodology the ECU Configuration Value descriptions is represented by the artifact

ECU Configuration Values.

[TR_METH_01116] ECU Configuration Value description contains the configura-
tion of all BSW modules in a single ECU | This one description (ECU Configura-
tion Values) collects the complete configuration of BSW modules in a single ECU.
Each module generator may then extract the subset of configuration data it needs from
that single format. | (RS_METH_00004)

AUTOSAR

2.7.2.3 Workflow

BSW Module

Delivered Bundle

Diagnostic ECU

Delivered Atomic Software

—

ECU Extract Extract
Components
1.* 1 0.1
«nesting»
«inputs «input» «input»
«input»
«nesting»
2 «nesting»

Integrate Software
for ECU

«output»

«nesting»

ECU Software Delivered

«nesting»

«nesting»

i

Prepare ECU Configuration

i

P
3
m

Configure BSW and

i

Update ECU Configuration

i

Model ECU Timing

S

Generate BSW and RTE

Build Executable

Figure 2.34: Integrate Software for ECU Overview

1 «input»

ECU Extract

«input»

BSW Module
Delivered Bundle

ECU
Prepare ECU Configuration
Configuration Values

«output»

«input»

= I

«inoutput»

Configure BSW and RTE

Generate BSW and

RTE

il

-

BSW Module
Configuration
Source Code

«output»

«output»

Il

BSW Module
Configuration

«output» Header File

RTE Source
Code

Figure 2.35: ECU Configuration Overview

Data

AUTOSAR

Activity Integrate Software for ECU
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::
Integrate Software for ECU
Brief Description
Description This activity contains all typical sub-activities required to integrate the
software components and modules on an AUTOSAR ECU.
ECU in this context means processor, so if an electronic control unit
consists of several processors, one "ECU Delivered" will be needed for
each processor.
Relation Type Related Element Mul. | Note
Consumes BSW Module De- | 1..*
livered Bundle
Consumes Delivered Atomic | 1..*
Software Compo-
nents
Consumes Diagnostic ECU | 0..1 | complete DE:
Extract
Consumes ECU Extract 1
Produces ECU Software De- 1
livered
Aggregates Build Executable 1
Aggregates Configure BSW 1
and RTE
Aggregates Generate BSW 1
and RTE
Aggregates Model ECU Timing 1
Aggregates Prepare ECU Con- 1
figuration
Aggregates Update ECU Con- 1
figuration

Table 2.30: Integrate Software for ECU

2.7.3 Prepare ECU Configuration
2.7.3.1 Description

[TR_METH_01088] Prepare ECU Configuration activity | During the Prepare
ECU Configuration activity, the information available in ECU Extract for the spe-
cific ECU is extended by implementing the Service Needs required by the Soft-
ware Components and BSW Modules and by including their initial configurations as
provided in the BSW Module Preconfigured Configuration Or BSW Module
Recommended Configuration. The result of this activity is the base ECU Con-
figuration.

In addition, the BSW Module Vendor—- Specific Configuration Parameter
Definition, which defines all possible configuration parameters and their struc-
ture, is incorporated into the ECU Configuration. This is necessary because the

AUTOSAR

output ECU Configuration has a flexible structure which does not define a fixed
number of configuration parameters a priori. |(RS_METH_00005, RS_METH_00003,
RS_METH 00004, RS METH _00002)

[TR_METH_01117] BSW implementation shall be chosen for each BSW module
that is present in the ECU | For each BSW module that shall be present in the
ECU, the implementation must be chosen. This is done by referencing the BSW Mod-
ule description delivered with the BSW module (BSW Module Delivered Bundle).
|(RS_METH_00003, RS _METH_00004)

The rules that must be followed when building the base ECU Configuration Value
description are available in [10] chapter 4.2.

2.7.3.2 Workflow

Prepare ECU
Configuration
Diagnostic ECU

«input»
Extract P

«nesting»,

«i npul»\\

ECU Extract;

enerate Base

. Ecu Configuration
«nesting»

«<output»

«inoutput»

«input» 0.*

Define
Intggration Postbuild Variant ECU Configuration
Variant Set Values

«output» «output»

Nee =0

Predefined Variant

Evaluated Variant Sel

Figure 2.36: Prepare ECU Configuration

Activity Prepare ECU Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::
Integrate Software for ECU

Brief Description

Description Initial actions required to create the initial ECU Configuration.

Relation Type Related Element Mul. | Note

Consumes BSW Module De- | 1.%
livered Bundle

AUTOSAR

Relation Type Related Element Mul. | Note

Consumes Diagnostic ECU | 0..1
Extract

Consumes ECU Extract 1

Produces ECU Configuration 1
Values

Aggregates Define Integration 1
Variant

Aggregates Generate Base 1
Ecu Configuration

Predecessor Refine Rapid Pro- 1
totyping Scenario

Table 2.31: Prepare ECU Configuration

2.7.4 Configure BSW and RTE
2.7.4.1 Description

[TR_METH_01089] Configure BSW and RTE activity [Once there is a base ECU
Configuration, the complete configuration can be performed. This is mainly editing
work on the ECU Configuration which is typically supported by an editing tool. In
practice this will require iterations and/or parallel work to configure the RTE and all par-
ticipating BSW modules. |(RS_METH_00003, RS_METH_00004, RS_METH_00020)

The methodology does not prescribe a certain order of these configuration steps. The
ECU Configuration description (e.g. ECU Configuration Values) which was
produced by one activity can be read by another activity (e.g. Configure RTE gener-
ates a description and Configure Comreads this). Usually the configuration activities
for the BSW modules (e.g. COM and OS) read and write the ECU Configuration.

[TR_METH_01090] Configure RTE task [The Configure RTE taskis more com-
plex as this additionally needs all the Atomic Software Component Implemen-
tations required for that ECU. Whenever these change, e.g. because software
components have been moved to or from other ECUs, or simply another implemen-
tation of a software component has been selected, the Configure RTE task must
be repeated as well. |(RS_METH_00005, RS _METH_00003, RS_METH_ 00004,
RS METH _00002)

[TR_METH_01091] Configure Debug task | Finally the Configure Debug task
can be completed. Since this configuration depends on previous configura-
tion results, it should be completed last. |(RS_METH_00005, RS _METH_00003,
RS METH 00004, RS METH_00002)

AUTOSAR

2.7.4.2 Workflow

Configure BSW and RTE

>

Configure

«nesting»

Memmap
Allocation

«nesting»

>

Configure ECUC
«nesting»

«nesting»
«nesting»
/

«nesting»

«negting» ~ Component

«nesti ng»\
\ Create Service

«nesting»

«nesting» -
9 Connect Service Component

«nesting»
«nesting»
«nesting»
Configure OS
Configure Transformer
Configure RTE
Configure Com
Configure Watchdog :
Manager
Configure
Debug
Configure 10 Configure MCAL

Configure Mode Hardware abstraction
Management
Configure Diagnostics Configure NM
Figure 2.37: Configure BSW and RTE
Activity Configure BSW and RTE
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::
Integrate Software for ECU
Brief Description
Description All the tasks used to configure the Basic Software Modules on an ECU.
Relation Type Related Element Mul. | Note
Aggregates Configure Com 1
Aggregates Configure Debug 1
Aggregates Configure Diag- 1
nostics
Aggregates Configure ECUC 1
Aggregates Configure 10 Hard- 1
ware abstraction
Aggregates Configure MCAL 1

AUTOSAR

Relation Type Related Element Mul. | Note
Aggregates Configure 1
Memmap Allo-
cation
Aggregates Configure Mode 1
Management
Aggregates Configure NvM 1 Since the configuration of the DEM

usually has impact on the data to be
stored in NvM, the task Configure
Diagnostics is assumed to precede the
task Configure NvM.

Aggregates Configure OS 1

Aggregates Configure RTE 1

Aggregates Configure Trans- 1
former

Aggregates Configure Watch- 1
dog Manager

Aggregates Connect Service 1
Component

Aggregates Create Service 1
Component

Predecessor Prepare ECU Con- 1
figuration

In/out ECU Configuration 1
Values

Table 2.32: Configure BSW and RTE

2.7.5 Update ECU Configuration
2.7.5.1 Description

In a post-build scenario, there are two loadable files generated in the end - one of
them containing the application software, basic software and the pre-compile and link
time configuration of the basic software (referred to as ECU Executable) and the
other one containing only the post-build time configuration of the basic software (Bsw
Module Configuration Data Loadable to ECU Memory). These two load-
able files represent the initial configuration. This initial configuration can be updated
in post-build time by generating two new loadable files. In this update, the ECU Exe-
cutable is not modified.

[TR_METH_01151] Update ECU Configuration activity [The update of the Bsw
Module Configuration Data Loadable to ECU Memory is usually done by
importing the updated EcuExtract containing the needed post-build updates to the
ECU configuration tool which already contains the initial ECU configuration. Based
on these updates in the EcuExtract and everything else from the initial ECU configura-
tion, an updated ECU configuration shall be created (therefore we have both input and

AUTOSAR

output relations between the ECU Configuration Values and the Update ECU
Configuration activity). |(RS_METH_00004, RS_METH_00062)

2.7.5.2 Workflow

Update ECU
Configuration

«nesting» «nesting»

«input»
Diagnostic ECU
Extract
«

«inoutput»

Generate Updated ECU
Configuration

ECU Configuration
Values

«inoutput»

—

—

«input» 0% | m—
.

—

Define

Integration Postbuild Variant
Variant Set

«output»

Predefined Variant

Evaluated Variant Set

Figure 2.38: Update ECU Configuration

Activity Update ECU Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::
Integrate Software for ECU
Brief Description Tasks required to create the updated ECU Configuration.
Description Tasks required to create the updated ECU Configuration.
Relation Type Related Element Mul. | Note
Consumes Diagnostic ECU | 0..1
Extract
Consumes ECU Extract 1
Aggregates Define Integration 1
Variant
Aggregates Generate Updated 1
ECU Configuration

Table 2.33: Update ECU Configuration

AUTOSAR

2.7.6 Model ECU Timing

2.7.6.1 Workflow

ECU Extract

Model ECU
Timing

0.1

«nesting»

«SPEM_Aggregation» «input»

«output»

0.1 Define EQU
Timing

ECU Extract of
System Timing / «input»

ECU Timing

Basic Software
Module Timing

ECU Service
Connectors

Figure 2.39: Model ECU Timing

Activity Model ECU Timing

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::
Integrate Software for ECU

Brief Description

Description ECU timing model depends on ECU configuration data (BSW and
RTE) but the result of the ECU timing model shall help to optimize ECU
configuration. The relation between "Configure BSW and RTE" and
"Model ECU Timing" must be seen as an iterative work.

Relation Type Related Element Mul. | Note

Aggregates Define ECU Tim- 1
ing

Predecessor Configure ~ BSW 1
and RTE

Table 2.34: Model ECU Timing

2.7.7 Generate BSW and RTE
2.7.7.1 Description

[TR_METH_01092] Generating BSW modules, RTE, and OS source files | After
the ECU Configuration is completed, the BSW modules, RTE, and OS source

AUTOSAR

fles are generated. |(RS_METH_00005, RS_METH_00003, RS_METH_00004,
RS METH _00006)

Generation is the process of applying the tailored ECU Configuration Value de-
scription to the software modules. This can be performed in different ways, and is
dependent on the configuration classes chosen for the different modules (see 2.7.9),
and on implementers choices.

For each BSW module, a generator reads the relevant parameters from the ECU Con-
figuration Value description and creates code that implements the specified
configuration.

In this generation step, the abstract parameters of the ECU Configuration Value
description are translated to hardware and implementation-specific data structures
that fit to the implementation of the corresponding software module. The AUTOSAR
Methodology specification does not specify the generator tools in detail.

It is assumed however that generators perform error, consistency and completeness
checks on the part of the configuration they require for generation.

There are some alternative approaches when it comes to generation of configuration
data. See chapter A.1.2 in [10] for more details.

2.7.7.2 Workflow

Generate BSW
and RTE

«nesting»,

«nesting» —

: Generate BSW

Configuration Code
Generate SWC

Memory Mapping «nesting»
Header \
«nesting»
«nesting» :

«nesting» \ «nesting» Generate Compiler
«nesting» Configuration

>

Generate OS

Generate RTE
Prebuild Dataset

Generate Local MC Generate BSW
Data Support Memory Mapping
Header

Generate RTE

Figure 2.40: Generate BSW and RTE

AUTOSAR

VFB Types BSW Module
3_ Generator -
— S —
I —
— S —
— — —
— (— —
BSW Module
Preconfigured
Configuration
BSW Module
— Behavior
— cc BSW Module Extension
— _ — Configuration
— — e -—I Data Source
— < —
— e Code
Generate SWC e —
Atomic Software Memory Mapping
Component Header
Implementation Standard —
Header File —
—
—
—
—
— L — ,% BSW Modulp
— Interface
Vel) X
— 7 Extension
—
Generate BSW
asic Software Memory Mapping
Module Header —
Implementation e
Description Generate Compiler Generate —
Configuration BSW
Configuratiol
> e
N BSW Module
N Implemenlatlon
il T Extension
— —
—
—
— —
— —
—
—
—
ECU. » — BSW Module
Configuration — Configuration Header
Values — File

BSW Module Vendor-
Specific Configuration
Parameter Definition

(liin

Build Action Manifest

Figure 2.41: Generate BSW and RTE (Part 1)

AUTOSAR

Methodology
AUTOSAR Release 4.2.2

—
—
—
—
/ !] | e—
—
G te R Generate OS
enerate .
Prebuild Datase) RTE Prebuild OS Generated Code
Configuration
Header
1
! 1
- —— ECU Configuration
- — | \/alues
—
- —
- —
- —
0.% ECU Extract A —
] | c—
—
—
— —
— | 0..*

0.1 calibration

— RTE Source Code
— Parameter | —
— ———

Value Set

—
—

BSW
Scheduler

Code

\E

Generate 0.1
RTE

Service Component
Description

(i

ECU Service
Connectors RTE Measurement
and Calibration
1 Support Data
/
- A\
- 1
- 0.+ —
- —
- - —
Delivered - O —
Atomic - —
Software -
Components -
RTE
BSW Module Implementation
Integration Description

Bundle

Local 1
Measurement and

Calibration Support
Data

0.1

Basic Software
Module Internal
Behavior

Figure 2.42: Generate BSW and RTE(Part 2)

Generate Local MC
Data Support

109 of 503 Document ID 068: AUTOSAR_TR_Methodology
— AUTOSAR CONFIDENTIAL —

AUTOSAR

Activity Generate BSW and RTE
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::
Integrate Software for ECU
Brief Description High Level view showing how to build an AUTOSAR ECU software.
Description There are many possibilities how to run the configuration of the
different modules in detail (see the detailed use cases for the
configuration classes).
This overall use case shows the generation of RTE, OS and Memory
Mapping explicitly, for the other modules it shows as an example the
generic task required for link time configuration of the modules plus the
generic task to generate local calibration support data.
Relation Type Related Element Mul. | Note
Consumes ECU Configuration 1
Values
Produces BSW Module Con- 1
figuration Data
Source Code
Produces BSW Module Con- 1
figuration Header
File
Produces RTE Source Code 1
Aggregates Generate BS 1
W Configuration
Code
Aggregates Generate BSW 1
Memory Mapping
Header
Aggregates Generate Compiler 1
Configuration
Aggregates Generate Local M 1
C Data Support
Aggregates Generate OS 1
Aggregates Generate RTE 1
Aggregates Generate RTE 1
Prebuild Dataset
Aggregates Generate SWC 1
Memory Mapping
Header
Predecessor Configure BSW 1
and RTE

Table 2.35: Generate BSW and RTE

2.7.8 Build Executable
2.7.8.1 Description

[TR_METH_01093] Building ECU Executable | These are compiled and linked
along with all the applications, libraries, etc. to build the ECU Executable. The

AUTOSAR

details of the various compiling and linking options are explained in the chap-

ters 2.7.9.1, 2.7.9.2, 2.7.9.3 and 2.7.9.4. |(RS_METH_00006, RS_METH_00042,
RS _METH_00038)

2.7.8.2 Workflow

Build Action Manifest

0.1
—
—
—
0.1
«input»
0.1 0.1
«input»
— —
— —
«€OULPUD» 1 | s | 1% «input» «output» 1 || e—
— —
Compile ECU
Source Code ECU Object Code (ESEEerate ECU 1
Executable Executable
«input» «output»
ECU
Configuration 1 1 oulflap of the ECU
Values «input» Executable
—
—
—
" —
«input» «output» 1 | e—
—
Generate RTE L -
Postbuild Dataset , - RTE Postbuild
,7 Variants Dataset
-
«input»
Generation of the
executable for
Postbuild 11 -
Configuration Data is «input»
not modeled here.
—
_ 0.
«output»
s
Atomic Software
Component
Implementation
Measure Resources
«output»
[y ——
—
—
«input»
BSW Module
Implementation
Extension
- —
—
| e—
«output» —
«input»
Generate A2L
A2L File

Figure 2.43: Build Executable

AUTOSAR

Activity Build Executable
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::
Integrate Software for ECU
Brief Description
Description Describes how to build one executable and related artifacts (A2L file)
starting from the source code (and delivered object code).
Relation Type Related Element Mul. | Note
Aggregates Compile ECU 1
Source Code
Aggregates Generate A2L 1
Aggregates Generate ECU Ex- 1
ecutable
Aggregates Generate RTE 1
Postbuild Dataset
Aggregates Measure Re- 1
sources
Predecessor Generate BSW 1
and RTE

Table 2.36: Build Executable

2.7.9 Configuration Classes

The development of BSW modules involve the following development cycles: com-
piling, linking and downloading of the executable to ECU memory. Configuration of
parameters can be done in any of these process-steps: pre-compile time, link time or
even post-build time.

According to the process-step that does the configuration of parameters, the configu-
ration classes are categorized as below

e pre-compile time
e link time
e post-build time

The configuration in different process-steps has some consequences for the handling
of ECU configuration parameters. If a configuration parameter is defined as pre-
compile time, after compilation this configuration parameter can not be changed any
more.

Or if a configuration parameter is defined at post-build time the configuration parameter
has to be stored at a known memory location. Also, the format in which the BSW
module is delivered determines in what way parameters are changeable. A source
code delivery or an object code delivery of a BSW module has different degrees of
freedom regarding the configuration.

The configuration class of a parameter depends on the chosen implementation vari-
ants of the BSW module it belongs to. However once the module is implemented, the

AUTOSAR

configuration class for each of the parameters is fixed. Choosing the right implementa-
tion variant for a module depends on the type of application and the design decisions
taken by the module implementer.

Different configuration classes can be combined within one module. For example, for
post-build time configurable BSW implementations only a subset of the parameters
might be configurable post-build time. Some parameters might be configured as pre-
compile time or link time.

File formats used for describing the configuration classes:
e .arxml (An xml file standardized by AUTOSAR.)

e .exe (An executable that can be downloaded to an ECU.)

.hex (A binary file that can be downloaded to an ECU , but it can not execute by
its own.)

e .c (A C-source file containing either source code or configuration data.)
e .h (A header file for either source code or configuration data.)
e .ob7j (A object file for either source code or configuration data.)

[TR_METH_01115] A mix of parameters with different configuration classes
within a BSW module is allowed | In a real implementation of a BSW module all
configuration parameters are most likely not in the same configuration class. l.e it
will be a mix of parameters with different configuration classes within a BSW module.
|(RS_METH_00003, RS _METH_00004)

2.7.9.1 Configuration Class: Pre-compile Time

[TR_METH_01095] Configuration Class: Pre-compile Time [
([TPS_ECUC_01031], see [10]) This type of configuration is a standalone con-
figuration done before compiling the source code. That means parameter values
for those configurable elements are selected before compiling and will be effective
after compilation time. The value of the configurable parameter is decided in earlier
stage of software development process and any changes in the parameter value
calls for a re-compilation. The contents of pre-compile time parameters can not
be changed at the subsequent development steps like link time or post-build time.
|(RS_METH_00004, RS _METH_00062)

2.7.9.1.1 Description

The work breakdown structure shows two approaches:

[TR_METH_01096] Generating header files only | The first approach is to generate a
BSW Module Configuration Header File, then compile the module core code

AUTOSAR

using this header file. In this case the module core code is not touched by the Bsw
Configuration Generator. ()

[TR_METH_01097] Generating header and source files | An alternative ap-
proach, in which the BSW Configuration Generator generates the com-
plete, configuration-specific BSW Module Configuration Header FileS plus
BSW Module Completely Generated Source Code. In this case, no core code
exist. |()

Both approaches are equally valid.

Whenever the decision of parameter value must be taken before the selection of other
dependable parameters, pre-compile time configuration is the right choice. For exam-
ple, the algorithm choice for CRC initial checksum parameter is based on the selection
of CRC type (CRC16 or CRC32). When CRC16 is selected, there will be increase in
processing time but reduction in memory usage. Whereas when CRC32 is selected,
there will be decrease in processing time but increase in memory usage. The correct
choice should be made by the implementer before compilation of source code based
on the requirement and resource availability.

Sample cases where pre-compile time configuration can be adopted are:

e Configure the number of memory tables and block descriptor table of NVRAM
manager.

e Enable the macro for the development error tracing of the software modules.

AUTOSAR

2.7.9.1.2 Workflow

Possible existence of

unbound Pre-Compile
time variation points.

Source code is
completely
generated

/«output»

Generate

BSW Source
Code
«input» «output»
—\".
—
—
—
—
—
—
1
ECU «input»
Configuration «output»
Values /
Generate BSW
Only Prec9mpilg
Configuration Configuration Header
headeris
generated

Possible existence of
unbound Pre-Compile
time variation points.

bound.

«input» '

Code
ompile
Generated
BSW
«input»
«output»
1 | —) 1
—
—
—
1 1
BSW Module
Configuration
Header File
«input»

«output»

Compile Configured
BSW

«input»

Basic
Software
Module Core
Source Code

All Pre-compile time
variation points are

No existence of
unbound Pre-Compile
time variation points.
Linktime and post-
build variation points
may still be unbound.

1 N
—
—
—
—
—
—

1.
Basic
Softwarp
Module]
Object
Code
«<input»
Link ECU Code after

Precompille Configuration

«output»

ECU Executable

Figure 2.44: Pre-compile time configuration overview

Further description of the PreCompile binding time can be found in Section 2.16.3.6.

AUTOSAR

Do Pre
Compile
Configuration

Compile Configured BSW

Generate BSW

Precompile

nestin) N
« 9> Configuration Header

>

Generate BSW
Source Code

>

Compile
Generated
BSW

>

Link ECU Code
after
Precompile
Configuration

«nesting»

«nesting»

«nesting»

«nesting»

Figure 2.45: Pre compile time configuration activities

Activity Do Pre Compile Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::
Pre Compile Conf

Brief Description

Description [from ecuc sws 1031] This type of configuration is a standalone

configuration done before compiling the source code. That means
parameter values for those configurable elements are defined before
compiling and will be effective after compilation time. The value of the
configurable parameter is decided in an earlier stage of software
development process and any changes in the parameter value calls for
a re-compilation. The contents of pre-compile time parameters cannot
be changed at the subsequent development steps like link time or
post-build time.

Relation Type Related Element Mul. | Note

Aggregates Compile Config- 1
ured BSW

Aggregates Compile Gener- 1
ated BSW

Aggregates Generate BSW 1
Precompile Con-
figuration Header

Aggregates Generate BSW 1
Source Code

Aggregates Link ECU Code 1
after Precompile
Configuration

Table 2.37: Do Pre Compile Configuration

AUTOSAR

2.7.9.2 Configuration Class: Link Time

[TR_METH_01098] Configuration Class: Link Time | ([TPS_ECUC_01032],
see [10]) This type of configuration is done for the BSW module during link time.
That means the object code of the BSW module receives parts of its configuration
from another object code file or it is defined by linker options. Link time parameters
are typically used when delivering object code to the integrator. |(RS_METH_00004,
RS METH _00062)

2.7.9.2.1 Description

This configuration class provides a modular approach to the configuration process. A
separate module will handle the configuration details and those parameter values will
be made available to the other modules during the linking process.

[TR_METH_01099] Generation and compilation of BSW Configuration Code |
The first step is to Generate BSW Configuration Code, which produces the Bsw
Module Configuration Data Source Code and the BSW Module Configu-
ration Header File. These are compiled alongwiththe Basic Software Mod-
ule Core Header into the BSW Module Configuration Data Object Code.

10

[TR_METH_01100] Definition of configuration data | The configuration parameter
data is defined in a common header file Basic Software Module Core Header
and included by both Basic Software Module Core Source Code and BSW
Module Configuration Data Source Code. The module source file needs this
header file to resolve the references and module configuration source file will need it in
order to cross check the declaration of data type against the definition. |()

[TR_METH_01101] Separate compilation of module source and configuration file
[Both module source file and module configuration source file are compiled separately
to generate Basic Software Module Object CodeandBSW Module Config-
uration Data Object Code respectively. |()

[TR_METH_01102] Linking process | During the linking process, the configuration
data will be available to Basic Software Module Object Code by resolving the
external references. |()

[TR_METH_01103] Re-generation in case of configuration value changes [When
the values of configuration parameters change the Basic Software Module Ob-
ject Code needs to be re-generated. |(RS_METH_00004)

Sample cases where Link time configuration can be adopted are:
e Initial value and invalid value of signal

e Unique channel identifier configured for the respective instance of the Network
Management.

AUTOSAR

e Logical handle of CAN network.
.

e Handle for CAN interface.

¢ Definition of ComPFilterAlgorithm.
o

nal.

2.7.9.2.2 Workflow

Possible existence of
unbound Linktime
variation points.

«input»

/

1

w o
o§m
c 8 a
i5;
o 0
068

o
a‘ig
o3 8
[v]

1

Basic Software
Module Core
Header

Identifier and type of Hardware Reception Handle and Hardware Transmission

COM callback function to indicate RTE about the reception of an invalidated sig-

1 «input» «output» 1
Compile Unconfigured
BSW
Basic Software

Module Object Code

No existence of
unbound Linktime
variation points.
Unbound Post-build
variation points may
still exist.

«input»

1 «input» «output»

Generate BSW
Configuration Cod

ECU Configuration

«output»
Values

1 1

[liim

BSW Module
Configuration
Header File

BSW Module
Configuration
Data Source

Code

«output» 1

1.%

«input»

Compile BSW BSW ModL_lIe
Configuration Data Configuration
Data Object
«input» Code
«input»

All Linktime variation
points are bound.

-
%

>

Link ECU Code during
LinkTime
Configuration

No existence of

«output»

unbound Linktime

variation points. Post-
build variation points |~
may still be unbound.

ECU Executable

Figure 2.46: Overview Link Time Configuration

Further description of the LinkTime binding time can be found in Section 2.16.3.8.

AUTOSAR

Compile
Unconfigured
BSW

«nesting»

>

Link ECU Code during
Link Time
Configuration

>

Compile BSW
Configuration
Data

«nesting»

Do LinkTime
Configuration
«nesting»

«nesting»

Generate BSW
Configuration Code

Figure 2.47: Link time configuration

Activity Do Link Time Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::
Link Time Conf

Brief Description

Description [from ecuc sws 1032] This type of configuration is done for the BSW

module during link time. That means the object code of the BSW
module receives parts of its configuration from another object code file
or it is defined by linker options. Link time parameters are typically
used when delivering object code to the integrator.

Relation Type

Related Element Mul. | Note

Aggregates Compile BSW 1
Configuration Data

Aggregates Compile Unconfig- 1
ured BSW

Aggregates Generate BS 1
W Configuration
Code

Aggregates Link ECU Code 1

during Link Time
Configuration

Table 2.38: Do Link Time Configuration

2.7.9.3 Configuration Class: Post-build Time

[TR_METH_01104] Configuration Class: Post-build Time | ([TPS_ECUC_04006],
see [10]) This type of configuration is possible after building the BSW module or the
ECU software. The BSW module gets the parameters of its configuration by download-

AUTOSAR

ing a separate file to the ECU memory, avoiding a re-compilation and re-build of the
BSW module. |(RS_METH_00004, RS_METH_00062)

2.7.9.3.1 Description

[TR_METH_01105] Generate BSW Postbuild Configuration Code | In order to make
the post-build time re-configuration possible, the re-configurable parameters shall be
stored at a known memory location of the ECU memory. In this approach the Basic
Software Module Core Source Code iscompiled and linked independently of its
configuration data. The BSW Configuration Generator generates the configura-
tion data as BSWw Module Configuration Data Source Code that is compiled
and linked independently of the core source code. |()

The generation of the post-build configuration is a process that can be done multi-
ple times. The first time it is done during the creation of the initial ECU configuration
which includes the generation of both ECU Executable and BSW Module Config-
uration Data Loadable to ECU Memory binary files. This approach is shown
in Figure 2.48. After this, the post-build configuration may be updated (the updates
usually originate from the ECU Extract) separately from the ECU Executable as
many times as needed according to the process shown in Figure 2.49.

Sample cases where post-build time configuration can be adopted are:

e Identifiers of the CAN frames

CAN driver baudrate and propagation delay

COM transmission mode, transmission mode time offset and time period

Enabling/disabling signal transmission

Frame packing

Signal gateway
LIN/FlexRay schedule

AUTOSAR

2.7.9.3.2 Workflow

— — —=
— — —
- —
1 «input» «output» 1 1 «input> RCTTITIE f—
— — —
Generate BSW Postbu Compile BSW
£cu Configuration Code BSW Module Configuration DaéaSWModule 1.%
Configuration Configuration Configuration
Values output» HeaderFile «input» Data Object
Code
«input»
1| e— | 1
—
—
—
—
—
BSW Module
Configuration LinkECU
Data Source Code
Code during
Post-Build
Time
«output»
«input» 1
—
—
—
—
o | —
. .
BSW Module
. Possible existence of Configuration
—— unbound Post-build Data Loadable to
— time variation points. ECU Memory
—
—
—
—
N
N
Basic Solyare N
Module Cor AR
Header «input» ~
—\ ‘
— —
— «input» —
output:
«output» 1 0..* 1 || e—
-) — —
Compile Unconfigured
BSW Generate
; Basic Software Ecu
«input» ECU Executable
1/ Module Object Executable
Code
—
—
—
—
—
—

Basic Software
Module Core
Source Code

Figure 2.48: Overview of initial Post-Build Configuration

AUTOSAR

— —h L
— — —
. —
e |1 «input» «output» o |1 «nput> «output» 1|
— — —
Generate BSW Postbu} gomf_plle B_SWD
- : onfiguration Data
ECU Configuration Code BSW. Modwe BSW Module 1..%
Configuration Configuration Configuration
Values «output» HeaderFile «input» Data Object
Code
: «input»
1| e— | 1
—
—
—
—
BSW Module >
Configuration LinkECU
Data Source Code
Code during
Post-Build
Time
«output»
«input»
1 1
—
— —
e Possible existence of |- === "7 77 | p—
— unbound Post-build —
R time variation points.
Basic Software BSW Module

Module Core
Header

Configuration
Data Loadable to

ECU Memory

Figure 2.49: Update of the Post-Build Configuration

Further description of the PostBuild binding time can be found in Section 2.16.3.9.

Generate BSW Postbuild
Configuration Code

Compile BSW

Configuration
Data
«nesting» «nesting» Link ECU Code
during Post-Build
? Time
«nesting»
Do Post Build
Configuration
Generate
«nesting» ECU
Executable
Compile
Unconfigured
BSW

Figure 2.50: Work Flow for Post-Build Configuration

AUTOSAR

Activity Do Post Build Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::
Post Build Conf

Brief Description

Description [from ecuc sws 4006] This type of configuration is possible after
building the BSW module or the ECU software. The BSW module gets
the parameters of its configuration by downloading a separate file to
the ECU memory, avoiding a re-compilation and re-build of the BSW
module.

Relation Type Related Element Mul. | Note

Aggregates Compile BSW 1
Configuration Data

Aggregates Compile Unconfig- 1
ured BSW

Aggregates Generate BSW 1
Postbuild Configu-
ration Code

Aggregates Generate ECU Ex- 1
ecutable

Aggregates Link ECU Code 1
during Post-Build
Time

Table 2.39: Do Post Build Configuration

2.7.9.4 Handling of different post-build variants in configuration classes
2.7.9.4.1 Description

[TR_METH_01108] Generating multiple post-build configuration variants | In this
use case, the BSW Configuration Generator generates two or more variants
of configuration parameters within BSW Module Configuration Header FileS
and BSW Module Configuration Data Source Code. The configuration data
is compiled and linked together with the Basic Software Module Core Source
Code. The resulting ECU Executable includes all configuration variants as well as the
source code of the BSW module. l.e. it is not possible to exchange the configuration
data without re-building the entire executable. |(RS_METH_00062)

[TR_METH_01150] Including different post-build variants | Different post-build vari-
ants are included in the configuration by specifying different variation points which shall
be bound at post-build time. This can be done regardless of the configuration class, as
shown in the notes of 2.44, Figure 2.46 and Figure 2.48. |(RS_METH_00062)

AUTOSAR

2.8 Components and Services

2.8.1 Purpose

This use case focuses on the activities required to use and configure AUTOSAR Ser-
vices. It is therefore a subset of the overall use case (see 2.1).

2.8.2 Description

[TR_METH_02000] Use of AUTOSAR Services [Atomic Software Components can
use AUTOSAR Services. In order to do so, two things have to be defined on the VFB
and Software Component level:

e The ports which are to be connected to the Service during ECU integration (this is
a sub-task of Define VFB Application Software Component). The port
interfaces used for service ports should be standardized.

e The needs to configure the Service (for example NvM blocks or symbolic names
for diagnostic events) from the perspective of the single Software Compo-
nent (this is a sub-task of Define Atomic Software Component Inter—
nal Behavior.)

|(RS_METH_00002, RS _METH_00033)

The service ports have impact on the component API just like any other port, so there is
no difference between service ports and "normal" ports with respect to API generation.

When the Application Software Components are mapped to an ECU their description
is put into the corresponding ECU Extract. These activities belong to the System
domain (see 2.5.6) and are not explicitly shown in this use case.

As part of the ECU integration, additional artifacts are generated to connect the service
ports over the RTE: Service Component Descriptions, including their mapping
to the Basic Software Modules, and the connectors between their ports and the service
ports of the Application Software Components

The use case shows also the creation of ECU configuration of the corresponding Basic
Software Module (e.g. DEM, DCM, Watchdog Manager etc.). This must be done with
respect to the service ports and the Service NeedsofallApplication Software
Component s connected to the corresponding Service Component (the diagram shows
only the configuration activity of diagnostics as an example).

2.8.3 Workflow
Figure 2.51 shows the work sequence assumed for this use case. The next two fig-

ures 2.52 and 2.53 show the tasks and work products of the method library involved in
the activities on the VFB and Component resp. the ECU level.

AUTOSAR

+Add Service Ports to
Atomic Software

.

Component Define VFB
Application Software
Component
«nesting»

+Add Service Needsto
Atomic Component

.

Define Atomic
: Software Component
«nesting» Internal Behavior

+Re-generate Contract
Header Files with
Service Intefaces—

.

«nesting»
Generate Atomic
Software Component
Contract Header Files
«nesting»

Add Service Ports

and Service Needs +Re-Implement Atomic
Software Component with|
Service Ports

«nesting»

.

Implement Atomic
Software Component

«predecessor»
|

Componentsand Services

.

|

|

|

|

| /

: Generate Base
|

|

nestin " .
< 9> Ecu Configuration
«nesting»
«nesting» >
Connect and Generate BSW
Configure Service Source Code
Module on ECU «nesting»
«nesting» :

Create Service
Component

Generate RTE

Figure 2.51: Use Case: Components and Services

AUTOSAR

Process Pattern

Components and Services

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High
Level::Components and Services

Brief Description This use case focuses on the activities required to use and configure
AUTOSAR Services. It is therefore a subset of the overall use case
(Methodology Overview).

Description Atomic Software Components can use AUTOSAR Services. In order to

do so, two things have to be defined: The ports which are to be
connected to the Service during ECU integration and in addition the
needs to configure the Service (for example NvM blocks or symbolic
names for diagnostic events) from the perspecive of the single
Software Component.

The service ports have impact on the component AP just like any
other port, so there is no difference between service ports and
"normal” ports with respect to API generation.

Afterwards the Application Software Components are mapped to an
ECU and their description is put into the corresponding ECU extract
(deliverable Complete ECU Description). These activities belong to the
system domain and are not explictly shown in this use case (see
Methodology Overview).

As part of the ECU integration, additional artifacts are generated to
connect the service ports over the RTE: Service Component
Descriptions, including their mapping to the Basic Software Modules,
and the connectors between their ports and the service ports of the
Appplication Software Components.

The ECU configuration of the Basic Software Module (e.g. DEM, DCM,
Watchdog Manager etc.) is then created with respect to the service
ports and the SeviceNeeds of the Application Software Components
connected to that Service.

Relation Type

Related Element Mul. | Note

Aggregates Add Service Ports 1
and Service Needs

Aggregates Connect and Con- 1
figure Service

Module on ECU

Table 2.40: Components and Services

AUTOSAR

«output»
1
Define VFB
Application Software VFB Atomic
Component Application Software
Component
«extends»
_k
—
—
1 | —
—
—
«input: 1
VFB Atomic
Software
Component «input»
Define Atomic Software
Component Internal
Behavior «output»
\ —
] —
1 «input»
—
nerate Atomic Software

Component Contract

1
Software Component Internal Header Files

Behavior
«input»
— |
—
—
/
«input» 1 | e—
—
Application Header File
Implement Atomic
Software Component «output»
—
1 —
—
—

Atomic Software Component
Source Code

Figure 2.52: Add Service Ports and Service Needs - Detailed view with work products

AUTOSAR

Activity Add Service Ports and Service Needs

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High
Level::Components and Services

Brief Description

Description Atomic Software Components can use AUTOSAR Services. In order to

do so, two things have to be defined:

e The ports which are to be connected to the Service during ECU
integration (this is a sub-task of Define VFB Application
Software Component). The port interfaces used for service ports
should be standardized.

e The needs to configure the Service (for example NvM blocks or
symbolic names for diagnostic events) from the perspecive of
the single Software Component (this is a sub-task of Define
Atomic Software Component Internal Behavior)

The service ports have impact on the component API just like any
other port, so there is no difference between service ports and
"normal” ports with respect to API generation.

Software Compo-
nent

Relation Type Related Element Mul. | Note

Aggregates Define Atomic 1 Add Service Needs to Atomic
Software Com- Component:
ponent Internal
Behavior

Aggregates Define VFB Ap- 1 Add Service Ports to Atomic Software
plication Software Component:
Component

Aggregates Generate Atomic 1 Re-generate Contract Header Files with
Software Com- Service Intefaces:
ponent Contract
Header Files

Aggregates Implement Atomic 1 Re-Implement Atomic Software

Component with Service Ports:

Table 2.41: Add Service Ports and Service Needs

AUTOSAR

«

Generate Base
Ecu Configuration

input»

ECU Extract
-

«input»

«output»
«inpul»% out
«input»

Create Service Component

«output»

«output»

«input»

Configure
Diagnosfics
.

'
Diagnosisisused as «inpub»
an example here.

«input»

ECU Service
Connectors

«input» 1

Connect Service Component

0.*
«output»

Service
Component
Description

o7l Ecu
Configuration
Values
«input»
«input»

«output»

<

%

Generate BSW Source Code

Generate RTE

Figure 2.53: Connect and Configure Service Module on ECU - Detailed view with work

products
Activity Connect and Configure Service Module on ECU
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High
Level::Components and Services
Brief Description
Description As part of the ECU integration, additional artifacts are generated to

connect the service ports over the RTE: Service Component
Descriptions, including their mapping to the Basic Software Modules,
and the connectors between their ports and the service ports of the
Appplication Software Components.

The ECU configuration of the Basic Software Module (e.g. DEM, DCM,
Watchdog Manager etc.) is then created with respect to the service
ports and the SeviceNeeds of the Application Software Components
connected to that Service (the diagram shows only the configuration
activity of diagnostics as an example). The code gneration of the
service module (e.g. DEM, DCM) and of the RTE is shown for
completeness.

Relation Type

Related Element \ Mul. \ Note

AUTOSAR

Relation Type Related Element Mul. | Note
Aggregates Create Service 1
Component
Aggregates Generate BSW 1
Source Code
Aggregates Generate Base 1
Ecu Configuration
Aggregates Generate RTE 1
Predecessor Add Service Ports 1
and Service Needs

Table 2.42: Connect and Configure Service Module on ECU

2.9 Calibration Overview

2.9.1 Purpose

This use case describes the typical activities required from the creation or update of
calibration parameters down to the creation or update of the 221 Files.

2.9.2 Description

The use cases assumes, that calibration parameters are changed in an already existing
system, thus the tasks required to define and build a new system are omitted, only the
calibration relevant steps are shown.

In addition, the use case includes the (optional) task of updating a set of calibration
parameter values as input for the RTE.

As far as AUTOSAR artifacts are involved, this use case can be divided into four major
activities:

[TR_METH_02001] Define Cross—-component Calibration Parameters
activity | Define Cross-component Calibration Parameters: Contains
the tasks used to define or update cross-component calibration parameters.
These parameters have to be provided via ports by Parameter Components.
|(RS_METH_00002)

[TR_METH_02002] Define Local Calibration Parameters activity | De-
fine Local Calibration Parameters: Contains the tasks used to define or up-
date component-local calibration parameters or calibration parameters defined within
a BSW module. These parameters are declared within the Internal Behavior
of the component (or the BSW module) which uses them. |(RS_METH_00002,
RS_METH_00003)

[TR_METH_02003] Provide Unique Parameter Names activity [Provide
Unique Parameter Names: Contains the tasks used to provide unique names for

AUTOSAR

calibration parameters. A Flat Map is used to provide unique names for MCD tools.
An Alias Name Set can be provided additionally in cases, where this is not suffi-
cient. |(RS_METH_00005)

[TR_METH_02004] Re-generate RTE and Calibration Support activity |
Re—generate RTE and Calibration Support: Contains the tasks used to re-
generate relevant artifacts during ECU integration (before the final build) after an up-
date of calibration parameters. |(RS_METH_00020)

2.9.3 Workflow

Figure 2.54 shows the work sequence assumed for this use case.

AUTOSAR

Define
Cross-component
Calibration
Parameters

«nesting»

Calibration Overview

«nesting»

«nesting» «nesting».

\

+Define VFB Types for
Parameter Interfaces

«nesting»/

Define VFB Interfaces

Define VFB
Parameter
Component

Define VFB Composition

\ Define VFB Component
\ Types
\
\ +Define VFB types
\ for Foca.l +Define Calibration
\‘ Calibration Parametersin
«pred‘ecesor» Internal Behavior
\ «nesting»

\
\
\
\
\
\

«nesting»” \
\

Define Atomic
Software Component

- Intemal Behavior
«nesting»

I— >
«nesting»

Define Partial Flat Map

Generate A2L

I\ Define Local «nesting»
\ | Calibration F—peiine local
\ 1 Parameters Callbratmn\
\ 1 Parametersin
\ / BSW
\ / Define BSW Behavior
\ «predecessor»
«nesting» Define Alias Names
«nesting»
«nesting»
Generate or Adjust
s System Flat Map
v Provide Unique .
Ve Parameter «nesting
-
7 Names \
«predecessor»
] Generate ECU Extract
«nesting»
Generate BSW
«nesting» Configuration Code
«neaing»\
Re-generate RTE a| «nesting»
Calibration Support Generate Local MC
Data Support
" «nesting»
«nesting» «nesting»
Provide RTE Calibration
Generate ECU Dataset
Executable
«nesting»,

Create MC Function Model

Generate RTE

Figure 2.54: Use Case: Calibration Overview

AUTOSAR

Process Pattern Calibration Overview

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High
Level::Calibration Overview

Brief Description Describe the required steps to update the calibrations data down to an
update of the A2L files.

Description This use case shows the typical steps required from an updated design

of calibration data down to an update of the A2L file. The use cases
assumes, that calibration parameters are changed in an already
existing system, thus the steps required to define and build a new
system are omitted, only the calibration relevant steps are shown.

In addition, the use case includes the (optional) task of updating a set
of calibration parameter values as input for the RTE.

Relation Type

Related Element Mul. | Note

Aggregates Define Cross- 1
component Cali-
bration Parameters
Aggregates Define Local Cali- 1
bration Parameters
Aggregates Generate A2L 1
Aggregates Generate ECU Ex- 1
ecutable
Aggregates Provide Unique 1
Parameter Names
Aggregates Re-generate RT 1
E and Calibration
Support
Table 2.43: Calibration Overview
Activity Define Cross-component Calibration Parameters
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High
Level::Calibration Overview
Brief Description
Description Contains the tasks used to define or update cross-component

calibration parameters. These parameters are provided by Parameter
Components.

Relation Type

Related Element Mul. | Note

Aggregates Define VFB Com- 1
position Compo-
nent
Aggregates Define VFB Inter- 1
faces
Aggregates Define VFB Pa- 1
rameter Compo-
nent
Aggregates Define VFB Types 1 Define VFB Types for Parameter

Interfaces: Use this task to define VFB
Types for Parameter Interfaces

Table 2.44: Define Cross-component Calibration Parameters

AUTOSAR

Activity Define Local Calibration Parameters

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High
Level::Calibration Overview

Brief Description

Description Contains the tasks used to define or update component-local (or

module-local) calibration parameters. These parameters are declared
within the Internal Behavior of the component (or BSW module) which
uses them.

Relation Type

Related Element Mul. | Note

Aggregates Define Atomic 1 Define Calibration Parameters in Internal
Software Com- Behavior: Use this task to define local
ponent Internal calibration parameters as part of the
Behavior Internal Behavior of a software

component.

Aggregates Define BSW Be- 1 Define local Calibration Parameters in
havior BSW: Use this task to define local

calibration parameters as part of the
Internal Behavior of a BSW module.

Aggregates Define Partial Flat 1 Define (optionally) a Partial Flat Map for
Map one or more delivered components.

Aggregates Define VFB Types 1 Define VFB types for Local Calibration:

Use this task to define VFB types for
Local Calibration.
Table 2.45: Define Local Calibration Parameters

Activity Provide Unique Parameter Names

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High
Level::Calibration Overview

Brief Description

Description Contains the tasks used to provide unique names for calibration

parameters. A Flat Map is used to provide unique names for MCD
tools. An Alias Name Set can be provided in cases, where this is not
sufficient.

Relation Type

Related Element Mul. | Note

Aggregates Define Alias 1
Names
Aggregates Generate ECU Ex- 1 Use this activity to update the ECU
tract Extract. This includes updating the ECU
Flat Map if parameter names on ECU
level have changed.
Aggregates Generate or Adjust 1 Use this task if parameter names are
System Flat Map defined on system level.
Predecessor Define Cross- 1
component Cali-
bration Parameters
Predecessor Define Local Cali- 1

bration Parameters

Table 2.46: Provide Unique Parameter Names

AUTOSAR

Activity Re-generate RTE and Calibration Support
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High
Level::Calibration Overview
Brief Description
Description Contains the tasks used to re-generate relevant artifacts during ECU
integration (before the final build) after an update of calibration
parameters.
Relation Type Related Element Mul. | Note
Aggregates Create MC Func- 1 This use case shows the creation of an
tion Model MC Function Model as part of the activity
that generates also the RTE and
calibration support data.
This is only one possibility. It is also
possible to create an MC Function Model
earlier in the process (as part of the
design activities) or later (shortly before
the A2L is generated).
Aggregates Generate BS 1 Use this task to generate the description
W Configuration of calibration parameters in BSW that are
Code a result of ECU configuration.
Such parameters will be described within
the artifact BSW Module Behavior
Extension.
Aggregates Generate Local M 1 Use this task to generate support for
C Data Support calibration data that are not handled via
the RTE.
Aggregates Generate RTE 1 Use this task to generate support for
calibration data that are handled over the
RTE.
This includes cross-component
calibration as well as local calibration (in
SWC and BSW) that needs emulation
support by the RTE.
Aggregates Provide RTE Cali- 1
bration Dataset
Predecessor Provide Unique 1
Parameter Names

2.10 Memory Mapping

2.10.1

Purpose

Table 2.47: Re-generate RTE and Calibration Support

This use case gives a comprehensive view on the tasks required to define, configure
and generate header files for memory mapping and for the compiler abstraction related
to memory aspects. The underlying concepts are specified in [11] and [12].

AUTOSAR

2.10.2 Description

[TR_METH_02005] Memory sections for data and code | AUTOSAR basic software
as well as application software use a standardized preprocessor mechanism in order to
define memory sections for their data and code as well as compiler memory classes?
defined globally or per section. The goal of this mechanism is to maintain the compiler
specific statements and the ECU specific mappings separately from the main code.
|(RS_METH_00002, RS_METH_00003, RS_METH_00004, RS_METH_00038)

With AUTOSAR it is possible to derive (i.e. generate) the content of these header
files from XML artifacts. This use case shows how the required artifacts and tasks are
related.

2.10.3 Workflow

Figure 2.55 shows the work sequence assumed for this use case. The next figures 2.56
and 2.57 show the involved tasks and work products of the method library.

Note that this use case ends with compilation of the code. The assignment of memory
sections to the actual hardware (which is typically done by the configuration of the
linker) is currently not considered to be part of the AUTOSAR methodology.

2This determines far and near addressing on certain platforms.

AUTOSAR

«nesting» fﬁoer::,.gn:s
Allocation
«nesting»
«nesing> Define Memory
Addressing Modes
Memory

Mapping ‘ ‘ ‘ Configure

Ovenview Compiler Memory
Classes
«nesting»
Generate Compiler
Configuration
«nesting»
«nesting»
«nesting»
Generate BSW
Memory Mapping
Generate SWC Header
Memory Mapping
Header
«nesting» Compile BSW Core
Code
«nesting» Compile Atomic
Software
Component

Compile ECU Source
Code

Figure 2.55: Use Case: Memory Mapping

AUTOSAR

Define Memory

Per compiler platform Addressing Modes

«output».

+MemMapAddressingModeSet BSW Module

Preconfigured
Configuration

Per build environment.

+MemMapAddressingModeSet

+MemorySections

0.* . 1.
N
. «input»
Configure\
Atomic Software «input» Memm_ap N 1.% 1.%
Component Allocation N +MemMapAddressingModeSet +MemMapAddressingModeSet

Implementation

+MemorySections Basic Software
VFB Types Module
\ n & Implementation
«qput> : Description
+SwAddrMethods «input» y +*MemorySections p
€ «output» o
——) « "
I
; —
— +MemMapAllocation
e ECU Configuration 1 —
f—.swAddrMethod Values . I —
1.% +MemMapAllocation —
- —
— —
i 1
| L «input» —
—
+SwAddrMethod +MemMapAllocation | 1 .
—— +MemorySections
0.1
0..1 +moduleDescription +DependencyOnArtifact
+RtelmplementationRef
«input»
«input»
«input> «input» «inpup> «input»
«input»

«input» «input» . /
\ / \ /«mput»

Generate SWC

M Mapni Generate BSW el
H::::I(;? appTQI Memory Mapping
- Header Per BSW module/cluster and
e build environment.
«output» «output»

Per component and
build environment.

+SWC_MemMap +BSW_MemMap

y

«input»

Compile Atomic
1 Software

Component
P\ «inpul»x

Standard
Header Files

.

- Compile BSW Core Code
«input»

.

Compile ECU Source
Code

Figure 2.56: Memory Mapping - Detailed view with work products

AUTOSAR

Atomic Software
Component
Implementation

Per compiler platform

+MemorySections | 0..*

VFB Types

+SwAddrMethod

Per build environment.

------------ «output»

Configure +MemMap config for
Compiler Memory compiler memclasses Basic Software Module
Classes

Implementation Description

BSW Module
Preconfigured
Configuration

[fne

| 1.

+CompilerMemClassConfiguration +MemorySections
ECU Configuration
Values
«input»
0.1 0.1
+RtelmplementationRef +ModuleDescription
«input» «input»
«input»
«input»
«input»\
/” Generate Compiler
Bt Configuration
PR - «output»
+Compiler_Cfg :
Compile Atomic
. Software
«input» Component
—
—
— 1
— «input»
—
Compile BSW Core Code

Standard Header Files
«input»

.

Compile ECU Source
Code

Figure 2.57: Compiler Configuration - Detailed view with work products

Activity

Memory Mapping Overview

Package

AUTOSAR Root::M2::Methodology::Methodology Use Cases::High
Level::Memory Mapping Overview

Brief Description

Description

Overview of the work sequence for defining and configuration of
memory sections.

Relation Type

Related Element Mul. | Note

Aggregates Compile Atomic 1
Software Compo-
nent

Aggregates Compile BSW 1

Core Code

AUTOSAR

Relation Type Related Element Mul. | Note

Aggregates Compile ECU 1
Source Code

Aggregates Configure ~ Com- 1
piler Memory
Classes

Aggregates Configure 1
Memmap Allo-
cation

Aggregates Define Memory 1
Addressing Modes
Aggregates Generate BSW 1
Memory Mapping
Header
Aggregates Generate Compiler 1
Configuration
Aggregates Generate SWC 1
Memory Mapping
Header

Table 2.48: Memory Mapping Overview

2.11 EZ2E Protection

2.11.1 Purpose

This Activity provides arough outline of the creation of E2E Protection to secure
communication flow in an AUTOSAR Architecture. [13]

2.11.2 Description

E2E Protection mechanisms are needed when safety related data exchanges need
to be protected at runtime against communication link faults.

[TR_METH_02006] E2E Protection | The E2E Protection in AUTOSAR is real-
ized as an E2E Transformer Module [13] which is invoked by the RTE. First of all, the
Serializer Transformer serializes the data and then the RTE invokes E2E Transformer
to protect the communication. The software component communicates through RTE
using the plain RTE API. |(RS_METH_00005)

[TR_METH_01153] Configuration and Generation of the E2E Transformer | Ac-
cording to the generic transformer approach, the E2E Transformer can be configured
at the system level (Inter-ECU communication). The generation of the E2E Transformer
module is done based on the System Description. No ECU configuration is needed.
|(RS_METH_00005)

AUTOSAR

[TR_METH_01154] Define E2E Transformer Technology Task [The task De-
fine E2E Transformer Technology is needed to define all information required
for the generation of the E2E transformer module like pre-defined Profiles and state
machine configuration. | (RS_METH_00005)

2.11.3 Workflow

Figure 2.58 shows the Define E2E Transformer Technology task which is
mainly processed in the activity Design Communication.

(]

1| System Engineer

«performs»

+ISignals «input»

1
+E2E Transformer Technology

1 «output» Define E2E Transformer

Technology
Interaction Layer

Figure 2.58: Task Define E2E Transformer Technology

2.12 Diagnostic Extract

2.12.1 Purpose

This use case provides a rough outline of the diagnostics configuration using the Di-
agnostic Extract Template [14]. The involved activities and deliverables will be refined
based on the experience in the field in next AUTOSAR releases.

2.12.2 Description

The distributed nature of an AUTOSAR ECU development requires an optimized cap-
turing of information. In particular, diagnostic information (i.e. DEM and DCM configu-
ration) shall be captured only once by the person with the best knowledge and therefore
being able to take responsibility better than one centralized individual. ECU configura-
tion is not suitable to be exchanged between partners in an ECU development project.
Therefore, AUTOSAR defines the Diagnostic Extract Template that represents a stan-
dardized exchange format on diagnostic functionality. The Diagnostic Extract Template
allows the decentralized configuration of diagnostic aspects. The basic usage of the
Diagnostic Extract Template is the exchange of diagnostic data between the different

AUTOSAR

parties involved in the diagnostic development process to allow the configuration of the
DCM and the DEM and to provide the description of corresponding application inter-
faces to implement diagnostic services and fault handling. In the AUTOSAR Method-
ology the Diagnostic Extract is represented by the deliverable Diagnostic Extract
and its sub-deliverables.

[TR_METH_01136] Content of Diagnostic Extract | The deliverable Diagnos—
tic Extract contains all relevant diagnostics aspects.

e Diagnostic Services (e.g. I0Control, MemoryByAddress)

e Diagnostic Event Handling (e.g. events, trouble codes, conditions)

e Mappings (Service Mappings, Diagnostic Mappings, etc.)
|(RS_METH_00082)

[TR_METH_01137] Diagnostic Extract category [Depending on the phase in
the process, the Diagnostic Extract can have several categories that are repre-
sented as specialized deliverables:

e Diagnostic Abstract System Description: This deliverable represents
a high-level definition that can be taken as a template for creating concrete Di -
agnostic System ExtractSorDiagnostic ECU Extracts.

e Diagnostic System Extract: This deliverable represents the diagnostic as-
pects for several ECUs.

e Diagnostic ECU Extract: This deliverable represents the diagnostic as-
pects for a single ECUs.

|(RS_METH_00082)

[TR_METH_01138] Decentralized configuration | The timing and frequency of ex-
changes and the content in each of these exchanged files is highly dependent on the
individual project setup and situation. The Diagnostic Extract Template has been de-
signed to support the decentralized and independent definition of diagnostic require-
ments that can be linked together at a late point during the development process.
The approach of decentralized configuration is met in the Diagnostic Extract Template
mainly in two ways:

e Separation of elements over several physical files: Most elements of the Diag-
nostic Extract template can be split over several physical files. Therefore, parts of
these elements (e.g. certain attributes) can be defined by, for example, an OEM
and other parts of these elements by, for example, an ECU supplier.

e Usage of self-contained mappings: Many diagnostic requirements are estab-
lished by mappings between diagnostic elements (e.g., DTC to DemEvent map-
ping). However, the "‘decentralized configuration” approach requires that these
mappings can be flexibly defined at almost any time within the ECU development
process and by any of the involved companies respectively roles. Therefore, the
Diagnostic Extract Template defines self-contained mapping elements that have

AUTOSAR

references to two (or potentially more) diagnostic elements to define a mapping.
The usage of the Diagnostic Extract Template will be restricted by the appropriate
application of the "‘roles and rights™ concepts in next AUTOSAR releases.

|(RS_METH_00082)

[TR_METH_01139] Roles | The relevant activities of the Diagnostic Extract use case
are logically grouped to the following roles (see diagram 2.60): Diagnostic Requester,
Software Developer and Diagnostic Integrator. Obviously, the OEM acts as a diag-
nostic requester and the ECU supplier as the diagnostic integrator. Nevertheless, in
several situations (e.g. in-house development of application software components), the
OEM may act as the diagnostic integrator and performs collecting and merging tasks.
|(RS_METH_00082)

[TR_METH 01140] Develop Diagnostic Abstract System Description
activity [The basic workflow for the configuration of the diagnostic aspects may start
with the optional activity Develop Diagnostic Abstract System Descrip-
tion. This activity defines diagnostic requirements at abstract level. The resulting
Diagnostic Abstract System Description may be used by the following
activity as a basis for the Diagnostic System Extract orthe Diagnostic ECU
Extract. |(RS_METH_00082)

[TR_METH_01141] Development of diagnostic requirements [In the activity De—
velop Diagnostic Requirements the requester of diagnostic data defines the
diagnostic interfaces of one or multiple ECUs. The following tasks may be performed:

e Define the values of the DTCs
e Define the UDS services and sub-services supported by the ECUs

¢ Define the required events needed by a specific composition implemented by an
Application Developer

During this activity, several Develop Diagnostic Requirements from different
parties may be collected and merged. |(RS_METH_00082)

[TR_METH_01142] Diagnostic information in the context of SW-C development |
The purpose of the Diagnostic Extract during the development of software com-
ponents is basically twofold: On the one side the Diagnostic System Extract
may serve as a requirement for the software developer. The diagnostic requester can
specify e.g. the following issues:

¢ Definition of the content of a specific ReadDataByldentifier which has to be im-
plemented by a specific SW-C

e Definition of the events needed for a certain SW-C

On the other side the application developer has the possibility to provide diagnostic
information relevant to the SW-Cs as a part of the biagnostic System Extract
and/or using Service Needs. The Service Needs within the SW-C Description are still
to be used along with the Diagnostic System Extract in order to annotate the

AUTOSAR

SW-C ports which are relevant for further mapping and handling as defined by the
Diagnostic System Extract. |(RS_METH_00082)

[TR_METH_01143] Integration of diagnostic information | In activity Integrate
Diagnostic Information, the integrator receives one or several Diagnostic
System Extracts (or Diagnostic ECU Extracts) from the diagnostic requester
and from multiple application software or basic software developers. The main goal of
the integration activity is to integrate and merge all delivered Diagnostic Extracts
so that the configuration of the corresponding basic software modules (DCM, DEM)
can be generated (activity Integrate Software for ECU).

Since the AUTOSAR Methodology does not restrict the definition of elements like DIDs,
parameters of a UDS service, Events, Sessions, etc. in activity Integrate Diag-
nostic Information the integrator has to ensure that the complete information is
still valid after merging it. Usually, the following task may be performed:

e Mapping of DTCs (Diagnostic Trouble Code) to events
e Merge of events
e Mapping of services
During the integration activity the following issues and conflicts may be considered:

e Some DTCs may already be mapped to events - especially in cases where both
come from the same party. But if the DTCs are defined by the OEM and the
software components are implemented by other supplier acting as an application
developer the integrator has to ensure that both are mapped together.

¢ In some cases, an diagnostic event may be defined multiple times. An diagnos-
tic requester defines the events which shall be implemented by an application
developer. A supplier implements a software component which will be used in
multiple projects and which also detects this type of error and also defines this
same event. Both events may have different naming but the same meaning. The
integrator has to detect this redundancy during the integration and merge them
together.

e The diagnostic requester requires a specific ReadDataByldentifier and an appli-
cation developer implements it. If the implementation is performed for one spe-
cific project only, the application developer may map the DID from the diagnostic
requester to the already defined job in their software component. In other cases
in which the application developer implements a generic diagnostic job, it will be
a task of the diagnostic integrator to merge this information and to map the jobs
to the corresponding DID.

|(RS_METH_00082)

After all issues and conflicts are resolved and the inputs are merged, the final com-
plete Diagnostic ECU Extract is produced. Based on this deliverable, the initial
configuration of the relevant basic software modules is generated (activity Integrate
Software for ECU).

AUTOSAR

2.12.3 Workflow

Develop Diagnostic Abstract
System Description

«nesting» Develop Diagnostic Requirements

«nesting»

«nesting» Develop Application

Software

Diagnostic Ex
Overview

«nesting»

«nesting»
Develop Basic Software

«nesting»

Integrate Diagnostic Information

Integrate Software for ECU

Figure 2.59: Diagnostic Extract Overview

AUTOSAR

Develop
Diagnostic
Abstract System
Description

Diagnostic Requester

«output»

«input»

Software Developer

Develop Basic Software

- «output»
- 0.*
- 0.* «input»
0.*
Diagnostic System
Extract
«input»

Develop Application
Software

Diagnosfics Integrator

Loutput» Diagnostic Abstract System
1 Description
0..*
«output» 0..*
Develop
Diagnostic
Requirements «input» 0.*
«output»
0..* «output»
- +complete DE
- 1.
Diagnostic ECU - +partially filled DE
Extract -
0..*
+complete DE | 0..1 «input»
«input»

Integrate Software for ECU

Figure 2.60: Diagnostic Extract Workflow

Diagnostic Abstract System
Description

Integrate Diagnostic
Information

Diagnostic Extract

Diagnostic System
Extract

Diagnostic ECU Extract

Figure 2.61: Diagnostic Extract Deliverables

AUTOSAR

Process Pattern Diagnostic Extract Overview
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High
Level::Diagnostic Extract Overview
Brief Description
Description
Relation Type Related Element Mul. | Note
Aggregates Develop Applica- 1
tion Software
Aggregates Develop Basic 1
Software
Aggregates Develop Diagnos- 1
tic Abstract System
Description
Aggregates Develop Diagnos- 1
tic Requirements
Aggregates Integrate Diagnos- 1
tic Information
Aggregates Integrate Software 1
for ECU
Table 2.49: Diagnostic Extract Overview
Activity Develop Diagnostic Abstract System Description
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High
Level::Diagnostic Extract Overview
Brief Description
Description This activity defines diagnostic requirements at functional/abstract

level. The resulting Diagnostic Abstract System Description may be
used by the following activity as a basis for the Diagnostic System
Extract or the Diagnostic ECU Extract.

Relation Type Related Element Mul. | Note
Produces Diagnostic Ab- 1

stract System

Description

Table 2.50: Develop Diagnostic Abstract System Description

AUTOSAR

Activity Develop Diagnostic Requirements

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High
Level::Diagnostic Extract Overview

Brief Description

Description In this activity the OEM or diagnostic requirer defines the diagnostic

interfaces of one or multiple ECUs. It may also define some
InternalBehaviors as requirements for the ECU-Supplier or application
developer.
The following tasks may be relevant:

e Define the values of the DTCs

¢ Define the UDS services and sub-services supported by the
ECUs

o Define the required events needed by a specific composition

Additionally, the OEM may also collect Diagnostic Extracts from
different departments as well as from SW-C developers and merge the
information into one Diagnostic Extract.

Relation Type Related Element Mul. | Note
Diagnostic Ab- | 0.F
stract System
Description
Consumes Diagnostic System | 0..*
Extract
Produces Diagnostic ECU | 0..”
Extract
Produces Diagnostic System | 0..*
Extract
Table 2.51: Develop Diagnostic Requirements
Activity Integrate Diagnostic Information
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High
Level::Diagnostic Extract Overview
Brief Description
Description The main goal of this activity is to integrate all parts of the Diagnostic

Description received from the OEM and from the application developer.
Based on the complete Diagnostic Extract the initial ECUC can be
generated.

Relation Type Related Element Mul. | Note

Consumes Diagnostic ECU | 0..* | partially filled DE:
Extract

Consumes Diagnostic System | 0..*
Extract

Produces Diagnostic ECU | 1.* | complete DE:
Extract

Table 2.52: Integrate Diagnostic Information

AUTOSAR

2.13 Rapid Prototyping

2.13.1 Purpose

This use case describes usual activities to enable rapid prototyping in AUTOSAR.

2.13.2 Description

Rapid prototyping can be used during electronic control unit development to evaluate
and test new software control algorithms for various functions.

With Fullpass technology the original ECU is totally replaced by a Rapid Prototyping
Unit (RPU). With Bypass technology the original ECU and software stays in the con-
trol loop to supports the majority of the control algorithms and interface with sensors,
actuators and communication buses: only the specific control algorithm that shall be
prototyped is deported into the RPU (external bypass) or even directly executed in the
original ECU (internal bypass). Bypass mainly consists in replacing at run time inputs
and/or outputs of the original software algorithms by value computed by the prototype
algorithm under test.

[TR_METH_01132] Definition of a Rapid Prototyping Scenario | In order to
enable rapid prototyping, first of all the initial Rapid Prototyping Scenario is de-
fined (task Define Rapid Prototyping Scenario). After the generation of the
ECU Extract the ECU Extract of Rapid Prototyping Scenario should be
refined to achieve a complete rapid prototyping scenario (task Refine Rapid Pro-
totyping Scenario). |(RS_METH_00002)

[TR_METH_01133] Content of Rapid Prototyping Scenario artifact | A RPT
Scenario consist out of two main aspects: The description of the bypass points and the
relation to a hook. A bypass point describes the required preparation of the host ECU.
At a bypass point the host ECU shall be capable to communicate with a RPT system in
order to support the execution of the rapid prototyping algorithms with the original data
calculated by the host system and to replace dedicated results of the host system by
the results of the rapid prototyping algorithm. The hook represents the link between a
bypass point and the rapid prototyping algorithm.

Obviously, the bypass point and the hook reference aspects like parameterAc-
cess (dataWriteAccess, dataReadAccess, dataSendPoint, dataReceivePointByValue,
dataReceivePointByArgument, writtenLocalVariable, readLocalVariable). For more de-
tails see SW-C Template [5] (constr_2055). |(RS_METH_00002)

Currently, AUTOSAR supports two approaches for Rapid Prototyping: Component
wrapper method and direct buffer access method.

[TR_METH_01134] Component wrapper method | The component wrapper method
consists in wrapping the original software component implementation with an integra-
tion code (Rapid Prototyping Wrapper Header File andRapid Prototyp-—
ing Wrapper Source Code) that implements the bypass. With this method the in-

AUTOSAR

tegration code is able to take the control of the AUTOSAR interfaces of the software
component because there is no more direct call between RTE and the SW-C but ev-
erything go through the integration code.

In order to use this method, the RTE has to be configured properly (task Configure
RTE, for configuration details see AUTOSAR_SWS_RTE [15], section 4.9.2). Further-
more, based on the complete ECU Extract of Rapid Prototyping Scenario
artifact the corresponding wrapper code has to be generated and compiled (activity
Encapsulate SW-C). Depending onthe development strategy the wrapper code gen-
eration may be processed in different stages of the development process.

The RTE supports the component wrapper method by generating the SW-C inter-
faces with a c-namespace including an additional [Byps_] infix for the bypassed SW-
C (task Generate RTE, for details see AUTOSAR _SWS RTE [15], section 4.9.2).
|(RS_METH_00006)

[TR_METH_01135] Direct buffer access method | The direct buffer access method
provides runtime direct read and write access to the RTE buffers that implement the
ECU communication infrastructure. If the direct buffer access method for bypass sup-
port is enabled for a software component type, the Generate RTE task produces RTE
Measurement and Calibration Support Data with mcDataAccessDetails for
each preemption area specific buffer that implements the implicit communication for
this software component type (For details see AUTOSAR_SWS_ RTE [15], section
4.9.3). For this method no wrapper code has to be generated. |(RS_METH_00006)

2.13.3 Workflow

Figure 2.62 shows the work sequence for this use case.

AUTOSAR

«nesting»

«nesting»

«nesting»

«nesting»

Rapid Prototyping

Overview «nesting»

«nesting»

«nesting»

«nesting»

«nesting»

f Define Rapid

| Prototyping

| Scenario
«predec(%mor»

«nesting»

Extract ECU Rapid Prototyping
I\ Generate Scenario
| ECU Extract
|
«predecessor»
|

f Refine Rapid
| Prototyping Scenario

|
«predecessor»
|

A Prepare ECU
| Configuration

«predecessor»
1

«nesting»

.

Configure RTE
\ Configure BSW and
| RTE

|
«predecessor
I

«nesting»

.

Generate RTE

|\ Generate BSW and
\ RTE

«predecessor»

Generate ECU
Executable

«predecessor»

«nesting»—_ |

.

Generate Rapid Prototyping
Wrapper

«nesting»

Encapsulate SW-C

.

Compile Atomic Software
Component

Generate A2L

Figure 2.62: Rapid Prototyping Overview

AUTOSAR

Process Pattern

Rapid Prototyping Overview

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High
Level::Rapid Prototyping Overview

Brief Description

Description This use case shows the typical steps required from an updated rapid

prototyping scenario down to an update of the generated RTE and the
produced A2L file. The use cases assumes, that rapid prototyping
scenario is changed in an already existing system, thus the steps
required to define and build a new system are omitted, only the
calibration relevant steps are shown.

In addition, the use case includes the (optional) task of updating a set
of calibration parameter values as input for the RTE.

Relation Type

Related Element Mul. | Note

Aggregates Configure BSW 1
and RTE
Aggregates Define Rapid Pro- 1
totyping Scenario
Aggregates Encapsulate SW-C 1
Aggregates Generate A2L 1
Aggregates Generate BSW 1
and RTE
Aggregates Generate ECU Ex- 1
ecutable
Aggregates Generate ECU Ex- 1
tract
Aggregates Prepare ECU Con- 1
figuration
Aggregates Refine Rapid Pro- 1
totyping Scenario
Table 2.53: Rapid Prototyping Overview
Activity Encapsulate SW-C
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High
Level::Rapid Prototyping Overview
Brief Description
Description Encapsulate the software component to enable rapid prototyping.

During this activity the wrapper code is generated based on the Rapid
Prototyping Scenario and the software component is compiled and
linked with the generated wrapper.

Relation Type

Related Element Mul. | Note

Aggregates Compile Atomic 1
Software Compo-
nent

Aggregates Generate Rapid 1

Prototyping Wrap-
per

Table 2.54: Encapsulate SW-C

AUTOSAR

2.14 Safety Extensions

2.14.1 Purpose

This use case provides an overview of the usage of the Safety Extensions (see [16]).

2.14.2 Description

ISO 26262 [17] is the applicable standard for functional safety of electronic and soft-
ware based systems in road vehicles which impacts almost all development activities,
including software specifications, design and implementation. The Safety Extensions
enable a standardized exchange of the safety information in an AUTOSAR context and
provide the basis for consistent management as required by ISO 26262. The additional
safety related information can be used e.g. for generation of the documentation or the
checking of ASIL constraints (w.r.t. allocation, mapping, decomposition and hierarchy),
which are prescribed by the ISO 26262. The AUTOSAR Methodology focuses on the
creation and refinement of the information. The corresponding analysis is out of scope
of this document.

According to the ISO 26262, the Safety Extensions provide the following means to
express safety information (for more details see TPS_SafetyExtension [16]):

e Safety Requirements (Artifact safety Requirement)
e Safety Measures (Artifact safety Measure)

e Safety integrity levels: attribute of Safety Requirement, Safety Measure
and any AUTOSAR element

e Decomposition of Safety Requirements: reference between the original and the
decomposed requirement (Task Decompose Safety Requirement)

e Refinement of Safety Requirements: reference between the original and the re-
fined requirement (Task Refine Safety Requirement)

e Allocation of Safety Requirements: reference between of Safety Requirement
and an AUTOSAR element (Task Allocate Safety Requirement)

e Allocation of Safety Measures: reference between Safety Measure and an
AUTOSAR element (Task Allocate Safety Measure)

e Mapping between Safety Requirements and Safety Measures (Task Map
Safety Requirement to Safety Measure)

e Independence relation between Safety Requirements (Task Add Indepen-
dence Relation)

The safety relevant information can be exchanged independently and are therefore
consolidated in a separate deliverable safety Extensions.

AUTOSAR

[TR_METH_01144] Activity Define Safety Information [The activity Define
Safety Information (see Figure 2.63) represents a generic pattern for defin-
ing safety relevant information. The safety extensions are not restricted to specific
AUTOSAR elements so that safety relevant information can be added and modified in
several stages of the AUTOSAR Methodology in an iterative way. Thus, the AUTOSAR
elements consumed by some of the nested tasks are modeled using the General
Autosar Artifact. The AUTOSAR Methodology does not prescribe an explicit ex-
ecution order of the tasks. The only restrictions with respect to the execution order are
given by the input and output relations (E.g. obviously, before a Safety Require-
ment can be decomposed, it has to be defined). |(RS_METH_00081)

[TR_METH_01145] Creation of safety Requirements | Naturally, the process
starts with the task Define Safety Requirement. This task creates a Safety
Requirement and assigns the required attributes such as ASIL. The top level safety
Requirement is a safety goal and obviously results from the hazard analysis and risk
assessment. If safety Requirements are not detailed enough to allocate them
directly to appropriate AUTOSAR elements, it is necessary to refine them first (task
Refine Safety Requirement). The refinement will add new Safety Require-
ments which are in a hierarchy relation to existing safety Requirements. The ASIL
is maintained as attribute at each safety goal and inherited consistently through the
subsequent levels of functional safety requirements (as part of the Functional Safety
Concept) and technical safety requirements (as part of the Technical Safety Concept).
The latter will be refined into SW and HW safety requirements. |(RS_METH_00081)

[TR_METH_01146] Allocation of Safety Requirements [Each Safety Re-
quirement must be allocated properly to an element of the system architecture, i.e.
component, HW, SW or both (HW and SW). Hence, an AUTOSAR element might re-
ceive an ASIL which indicates that it is in the scope of an ISO 26262 development.
The allocation is done by task Allocate Safety Requirement. If safety require-
ments are not available or will not be exchanged together with a specification, the
AUTOSAR implementation must at least be aware that the element is used in a safety
context. Hence, the task Define ASIL For AUTOSAR Element directly assigns
the ASIL attribute to an AUTOSAR element (independent of an allocation). Especially
in cases of a SEooC (Safety Element out of Context) development, where the safety
requirements are not fully known at development time, the ASIL attribute supports the
integration and verification of such parts in a later stage of development by matching
the assumptions against the finalized safety requirements. |(RS_METH_00081)

[TR_METH_01147] Decomposition of Safety Requirements [In order to tailor
the ASIL of safety Requirements, ASIL decomposition may be applied. The de-
composition is done by task Decompose Safety Requirement. According to the
ISO 26262 a requirement can be decomposed into two requirements. In the con-
text of ASIL decomposition the independence (freedom of interference) for the result-
ing requirements has to be demonstrated (Task Add Independence Relation).
|(RS_METH_00081)

[TR_METH_01148] Definition of Safety Measures [Safety of a system is achieved
by means of safety measures that are applied at various stages of the development pro-

AUTOSAR

cess and safety mechanisms which are implemented in a number of technologies into
the system. Safety measures and safety mechanisms are represented by the artifact
Safety Measure which is created by the task Define Safety Measure. In task
Allocate Safety Measure the safety Measures which are safety mechanisms
realized in AUTOSAR are allocated to AUTOSAR elements in order to describe what el-
ements are involved in the provision of a safety measure. The task Map Safety Re-
quirement to Safety Measure creates a mapping between the Safety Mea-
sure and the safety Requirement. |(RS_METH_00081)

The following specialized activities demonstrate the usage of the Safety Extensions in
different development stages and are integrated into the corresponding use cases:

e Define VFB Safety Information
e Define Software Component Safety Information

e Define System Safety Information

2.14.3 Workflow

Define Safety Define Safety
Requirement Measure

Define ASIL For
AUTOSAR Element

>

«nesting» «nesting»

«nesting» Refine Safety Requirement

«nesting»

«nesting» Decompose Safety
Requirement

«nesting»
4>

Safety Extensions Define Safety ‘ . AR\
Overview Information

«neﬂin‘k

Map Safety Requirement
«nesting» to Safety Measure

«nesting»
«nestNig»

Allocate Safety Measure

>

Add Independence Allocate Safety Requirement
Relation

Figure 2.63: Safety Extensions Overview

AUTOSAR

Process Pattern Safety Extensions Overview

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High
Level::Safety Extensions Overview

Brief Description

Description

Relation Type Related Element Mul. | Note

Aggregates Define Safety In- 1
formation

Table 2.55: Safety Extensions Overview

Activity Define Safety Information

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High
Level::Safety Extensions Overview

Brief Description Defines all required safety information.

Description This activity represents a generic pattern for defining safety relevant
information. The safety extensions are not restricted to specific
AUTOSAR elements so that safety relevant information can be added
and modified in several stages of the AUTOSAR Methodology. Thus,
the AUTOSAR elements consumed by some of the nested tasks are
modeled using the "General Autosar Artifact”.

Extended by Define Software Component Safety Information, Define System Safety

Information, Define VFB Safety Information

Relation Type

Related Element Mul. | Note

Aggregates Add Independence 1
Relation

Aggregates Allocate Safety 1
Measure

Aggregates Allocate Safety Re- 1
quirement

Aggregates Decompose Safety 1
Requirement

Aggregates Define ASIL For A 1
UTOSAR Element

Aggregates Define Safety Mea- 1
sure

Aggregates Define Safety Re- 1
quirement

Aggregates Map Safety Re- 1
quirement to
Safety Measure

Aggregates Refine Safety Re- 1

quirement

Table 2.56: Define Safety Information

AUTOSAR

2.15 Variant Handling

2.15.1 Overview

[TR_METH_02009] Variation points in Variant Handling | Variant Handling for
AUTOSAR is defined in the Generic Structure Template Template [18]. First, this con-
cept defines means to designate certain locations in the AUTOSAR meta-model as
variation points. A point roughly consists of a condition (under which conditions is this
variation active?) and a binding time (when should this variation be resolved?). |()

Second, there are predefined variants.

[TR_METH_02010] Predefined variants in Variant Handling | A typical AUTOSAR
model may contain a large number of variation points. However, usually only a relatively
small number of variants (i.e., combinations of “active” variation points) is actively used.
Each predefined variant describes such a variant. |()

2.15.2 Binding Times

[TR_METH_02011] Types of binding times [The AUTOSAR variant handling de-
fines two kinds of binding times for AUTOSAR: the latest binding time and the actual
binding time. They have the same kinds of values®, but are used in different contexts.
|(RS_METH_00074)

AUTOSAR defines the following binding times (presented here in chronological order):
e BlueprintDerivationTime
e SystemDesignTime
e CodeGenerationTime
e PreCompileTime
e LinkTime
e PostBuild

The Generic Structure Template mentions two more binding times. First, there is
FunctionDesignTime, which comes before SystembesignTime, but is indepen-
dent of BluePrintDerivationTime. Second, there is Runt ime, which comes after
PostBuild. These binding times are not covered by AUTOSAR and mentioned here
only for completeness.

[TR_METH_02012] Definition of a binding time [It should also be noted that a bind-
ing “time” is not really a point in time, but rather denotes a phase in the development of
an AUTOSAR system. |(RS_METH_00074)

3BlueprintDerivationTime and PostBuild are not part of the actual enum that is used in the
meta-model, but they are implied by the structure of the variation point. See chapter 7 in the Generic
Structure Template Template [18] are more details.

AUTOSAR

2.15.2.1 Latest Binding Time

[TR_METH_02013] Latest Binding Time [In the AUTOSAR meta model, ev-
ery variation point has a latest binding time, which is implemented by the tag
Vh.LatestBindingTime. As the name suggests, the latest binding time of a par-
ticular variation point puts an upper limit on when this point can be bound. A variation
may be bound earlier than this time, but not later. |(RS_METH_00074)

For example, the latest binding time for a software component which is part of a com-
position is PostBuild. In other words, an ECU can be configured to decide at startup
whether a software component is active or not.

However, it is not always possible to bind a variant at the latest possible time. To
continue the above example, making all software components PostBuild means that
an executable always contains code and other resources for all software components,
regardless whether it gets activated or not. Because of this, it may happen that the
executable becomes too large to fit onto its designated ECU. If this is the case, the
software component needs to be bound earlier, typically at PreCompileTime or even at
SystemDesignTime.

This is not the only scenario that leads to this decision. For example, a software com-
ponent might contain two or more subcomponents each of which is specific to a certain
vendor. In this case, before delivering the software component to a specific vendor, it
is custom to remove the subcomponents that are targeted at the other vendor(s). This
can obviously be done at PrecompileTime the latest.

There are also cases where there is an implicit (i.e., not stated of the meta-model)
lower limit for the binding time of a variation point. For example, if a variant in software
component A uses a variant in software component B, then the binding times need
to be coordinated. Component A cannot be SystemDesignTime if component B is
PostBuild, but makes use of software component A.

2.15.2.2 Actual Binding Time

[TR_METH_02014] Actual Binding Time | This brings us to the actual binding time
of a variation point, which is stored in an attribute* of the variation point. Again, it is not
mandatory that the variation point is bound exactly at this stage; it rather states that
the variation point must not be bound at a later stage.

This binding time may be earlier than the latest binding time. |(RS_METH_00074)

As explained in the previous section, composition of software components can be
bound at PostBuild, but it is not always desirable or even feasible to do so. In such
a case. bindingTime should state an earlier binding time.

4The attribute is named bindingTime and is located at the ConditionByformula element of a
variation point. For an AttributevValueVariationPoint, it is contained in the attribute binding-
Time.

AUTOSAR

Also, unlike the latest binding time, which is a meta model element and is stated on
M2 level, this binding time is a model element associated with a variation point and is
stated on M1 level.

That is, the binding time of a variation point limits the point at which a particular vari-
ation point has to be bound, but this binding time is again constrained by the latest
binding time.

2.15.3 Defining Variants

[TR_METH_02015] Definition of variants | A variant is almost always more than a
single variant point or a single system constant. Typically, a variant is a list of value as-
signments to system constants or postbuild variant conditions. In an AUTOSAR model,
such a list is represented by an instance of the meta-class Predefinedvariant, see
definition of artifact Predefined variant. |(RS_METH_00005)

[TR_METH_02016] Evaluated Variant Set | Similarly, an instance of the meta-
class EvaluatedvariantSet is a set of Predefinedvariants that are known to
work (or not to work) for a certain element of the meta-model, for example a specific
software component. Evaluated variants may be used to exchange information about
known variants between different vendors, for example to document which variants of
a software component have been tested and are known to work.

In the Methodology SPEM model, the variant selectors are represented by the Eval-
uated Variant Set artifact which is created by the Evaluate Variant task.
|(RS_METH_00005, RS_METH_00075, RS_METH_00076)

This information is necessary because there is a extremely high number of possible
variants, but only a very small subset of them are feasible.

[TR_METH_02017] Use of Predefined Variant | The set of system constants
that are contained in an instance of Predefinedvariant usually affect a number of
variation points, which are at different locations in the model and have different binding
times.

Hence, a predefined variant cannot be directly associated with a specific location
in the meta-model, or a certain binding time. On the contrary, a Predefined-
Variant is used for several meta-model elements and at different binding times.
|(RS_METH_00005, RS_METH_00076)

2.15.4 Choosing Variants

Whether a variation point is included in a system or not is determined by one or more
variables. If the binding time of a variation point is anywhere from SystemDesignTime
to LinkTime, then the variation point contains an expression that is based on system
constants (see artifact System Constant Value Set). If this expression evaluates
to true, then the variation point is included in the system. PostBuild uses a simplified

AUTOSAR

scheme that allows only a single comparison with a PostBuildVariantCriterion
(technically, an ARElement).

[TR_METH_02018] Choosing variants | So, a variant is chosen as soon as the val-
ues for the respective system constants or postbuild variant conditions have been de-
termined. This is usually done by selecting a Predefinedvariant, which contains
the respective values. This selection must obviously happen before a variation point is
bound. But, it does not need to happen immediately before a variation point is bound.
|(RS_METH_00005)

For example, the system constants that determine a PreCompileTime variation point
may already have been chosen at SystemDesignTime, but the actual binding has
to be delayed to PreCompileTime because of a dependency on another software
components that have the binding time PreCompileTime, as described in Sec-
tion 2.15.2.2.

Furthermore, since Predefinedvariant spans several variation points, which may
have different binding times, some might have a binding time (latest or even actual)
immediately after the Predefinedvariant has been chosen, and the others might
have a later binding time.

Finally, the decision to go for a particular variant is often tied to vendor specific pro-
cesses that follow their own timeline.

Hence, the time at which a particular variant is chosen is often not the same as the
time when the associated variation points are bound. In summary, a variant must be
chosen some time before it is bound, but the actual time when this is happening is not
determined by AUTOSAR, and is also quite vendor specific.

2.16 Definition of Binding Times

2.16.1 Overview

A binding time is not (as the name probably suggests) a precise point in time, but
rather a classification of processing steps. For example, the binding time CodeGener-
ationTime refers to a transformation step from an AUTOSAR model in ARXML format
to code.

In this section, we define binding times for artifacts and tasks in the methodology.

[TR_METH_00001] Definition of Binding Time for Tasks | A task has binding time
X if it binds variation points of binding time X.

This means in particular:

e Any task that works on the model may bind variation points that have the binding
time SystemDesignTime.

AUTOSAR

e Any task that generates code needs to bind open variation points that have the
binding time CodeGenerationTime. All variation points with earlier binding
times must have been bound by then.

e Similarly, any task that compiles code needs to bind open variation points that
have the binding time PreCompileTime.® All variation points with earlier binding
times must have been bound by then.

At this time, the values for PostBuildvariantConditions of variation points
must also be bound. These values have a latest binding time of PreCompile-

Time®.

In all these cases, the system constants that are needed by the condition of a variation
point obviously must be defined before the variation point is bound.

In the Methodology library, the binding time of a task is indicated by a value of the tag
Meth.bindingTime for those tasks which always can be associated with this binding
time. It is not indicated for tasks that only optionally bind variations. This typically
is the case for all tasks that only work on the ARXML model, for example, it is up
to the concrete process whether a task like Ext ract ECU Topology shall bind any
variations. |(RS_METH_00074, RS_METH_00075)

[TR_METH_00002] Definition of Binding Time for Artifacts [In an artifact with bind-
ing time X, all variation points up to binding time X shall be bound.

We do not denote such a binding time for artifacts in the Methodology library, be-
cause their binding time typically depends on the context. However, this definition
could be used to assign a binding time to an artifact as part of a specific use case.
|(RS_METH_00074)

[TR_METH_00003] Definition of Binding Time for Artifacts in the context of par-
ticular tasks | If an artifact of binding time X is used as input or output of a particular
task, then all variation points related to that task with binding time up to X shall be
bound.

This in particular means that if the artifact is input to the task, then binding time variation
points X shall be bound and the task relies on this.

If the artifact is output to the task, it is granted that the such created artifact has all
variation points of binding time X bound.

In the Methodology library, this is indicated by a value of the tag Meth.bindingTime
attached to a Consumes/ConsumedBy resp. Produces/ProducedBy relationship.

SNote that in case of the RTE code, the technical step of binding PreCompileTime variants is
partially done by a preparatory task which runs before the actual compilation, see Generate RTE
Prebuild Dataset. That means in particular, the relevant system constants must be defined before
executing this preparatory task. The binding time of actual compilation task Compile ECU Source
Code is indicated as CompileTime in this case.

6The variation point is still PostBuild: the PostBuildvariantCondition is fixed at PreCompile-
Time, but the comparison with the associated PostBuildvariantCriterion occurs at PostBuild-
VariantCriterion. See the Generic Structure Template [18] for details

AUTOSAR

Note that the tag Meth.bindingTime is not applicable to inout relationships, as the
binding time values according to the above definition are usually different for the inputs
and outputs of a particular task. If it is important to express these binding times, the
inout relation must be split into an input (i.e. ConsumedBy) and output (i.e. Pro-
duces) relation. |(RS_METH_00074)

Figure 2.64 presents an overview of binding times as used in the AUTOSAR method-
ology. Boxed elements in this figure correspond to binding times, and the connections
between them characterize artifacts.

| Model + Requirements |

BluePrintDerivationTime FunctionDesignTime

ARM Mtion Model

InitialBindingTime

mMm

I
ARXML

CodeGenerationTime

T
Source Code

PreCompileTime

T
Bound Source Code

CompileTime

T
Object Code

LinkTime

[
Executable, Configuration Data Set

PostBuild

RunTime

LA\

Figure 2.64: Overview of Binding Times

AUTOSAR

2.16.2 A Classification of Artifacts with respect to Binding Times

Model, Requirements, Functional Model These refer to models that are not an
AUTOSAR Model. For example, a Model may be a Matlab/Simulink model or
a requirements document.

ARXML An ARXML artifact is a XML document that conforms to the AUTOSAR XML
schema.

Source Code A Source Code artifact is text written using the syntax of a programming
language, for example such as C or C++.

Source Code may be generated by hand, or may be the output of a code gener-
ator.

Bound Source Code A Bound Source Code artifact contains source code without any
unbound precompile variation points.

Object Code An Object Code is the output of a compiler. Object code is typically
machine code, but may also include descriptive information in a format such as
XML.

Executable An Executable is an artifact that can run on an ECU. It is often similar to
Object Code; the difference between the two is that the former does not provide
means for execution on an ECU.

Configuration Data Set A Configuration Data Set is a set of assignments to Post -
BuildVariantCriterion.

2.16.3 Classification of Binding Times

Table 2.57 presents an overview of the binding times in AUTOSAR Variant Handling.

Binding Time AUTOSAR Metamodel | AUTOSAR Methodology
BlueprintDerivationTime | partially yes
FunctionDesignTime out of scope out of scope
InitialBindingTime no yes
SystemDesignTime yes yes
CodeGenerationTime yes yes
PreCompileTime yes yes
CompileTime unused yes
LinkTime yes yes
PostBuild yes yes
Runtime out of scope out of scope

Table 2.57: Binding Times in Meta Model and Methodology

Variant handling in the AUTOSAR meta model supports the following binding times:

e BlueprintDerivationTime

AUTOSAR

SystemDesignTime

CodeGenerationTime

PreCompileTime
e LinkTime
e PostBuild

[TR_METH_02020] Definition of latest Binding Time for a variation point
in the meta-model | All these binding times may be used in the tag
<Vh.latestBindingTime>>, which is used to define the latest binding time for a
variation point in the meta model.

The actual binding time of a variation point is stored in the attribute bindingTime
of the ConditionByFormula of a VariationPoint, and can only use the val-
ues SystemDesignTime, CodeGenerationTime, PreCompileTime, LinkTime.

|(RS_METH_00074)

The AUTOSAR methodology utilizes two more binding times, InitialBinding-
Times to characterize artifacts where no variation points are bound, and Compile-
Time to distinguish between preprocessing and compiling of code. Finally, Func-
tionDesignTime and Runtime are not in the scope of AUTOSAR variant handling
but mentioned here for completeness.

2.16.3.1 BlueprintDerivationTime

At BlueprintDerivationTime, a model is derived from Blueprints. For example,
a function design tool provides the option to derive objects from a predefined set of
blueprints. See [19] for more details. This is different from the variant handling defined
in this chapter, but it uses the same meta model features (see [18]).

BlueprintDerivationTime is out of the scope of this document, but mentioned
here for completeness.

Input Artifacts: Model, Requirements

Output Artifacts: ARXML

2.16.3.2 FunctionDesignTime

At FunctionDesignTime, a software architecture independent model for (control)
systems is developed. Typical tools used at this stage are Matlab/Simulink, or ASCET-
MD.

If a function design tool supports variant handling according to AUTOSAR it has no
other choice than using CodeGenerationTime or later as binding time in the gener-
ated AUTOSAR artifacts.

AUTOSAR

FunctionDesignTime is out of the scope of this document (as long as it does not
affect calibration measurements), but mentioned here for completeness.

Input Artifacts: Model, Requirements

Output Artifacts: Function model

2.16.3.3 InitialBindingTime

At InitialBindingTime, no variation points are bound. This binding time is needed to
express a state where no SystemDesignTime points are bound in artifact

Input Artifacts: Model, Requirements, Function model, AUTOSAR models from
blueprints in ARXML format.

Output Artifacts: ARXML.

2.16.3.4 SystemDesignTime

SystemDesignTime is characterized by the following tasks:

e Designing the VFB

Software Component types (Interfaces)

SWC Prototypes and the Connections between SWCprototypes

Designing the Topology

ECUs and interconnecting Networks
e Designing the Communication Matrix and Data Mapping

Input Artifacts: Function model, Requirements, AUTOSAR models from blueprints in
ARXML format.

Output Artifacts: ARXML.

2.16.3.5 CodeGenerationTime

At this step, code is generated. This may be done either by hand, or using a tool, or a
mixture of both.

Handwritten code is typically based on a requirements document, whereas generated
code is usually created from a model that was designed at FunctionDesignTime Of
SystemDesignTime.

Both the requirements and the model may contain variants, but code is only generated
for those variants that have been selected, or which need to be resolved later.

AUTOSAR

Input Artifacts: ARXML.

Output Artifacts: Source Code.

2.16.3.6 PreCompileTime

At PreCompileTime, a preprocessor (e.g., the C preprocessor) is used to further
customize the code and exclude parts of the code from the compilation process.

There are several reasons for such an exclusion: code is not required for the selected
variant(s), code is incompatible with the selected variant(s), or code requires resources
that are not present in the selected variant(s). The code that is excluded at this stage
code will not be available at later stages.

PreCompileTime is typically used for handwritten code (for which SystemDesign-
Time and CodeGenerationTime obviously cannot not take effect) or when a system
constant needs to be bound after code generation.

Input Artifacts: Source Code.

Output Artifacts: Bound Source Code.

2.16.3.7 CompileTime

At compileTime, source code that has already been processed by a macro processor
such as the C preprocessor and stripped of all PreCompileTime variation points is
transformed into object code. The compiler might eliminate further variants by remov-
ing unused code paths.

CompileTime is not used in the AUTOSAR meta model, but is used in the AUTOSAR
methodology to discriminate between a preprocessor and a compiler.

Input Artifacts: Bound Source Code.

Output Artifacts: Object code.

2.16.3.8 LinkTime

The configuration at this stage determines which modules are included in the resulting
object code (executable), and which ones are omitted based on the selected variants.

Input Artifacts: Object code.

Output Artifacts: Executable program.

AUTOSAR

2.16.3.9 PostBuild

PostBuild is the binding time which is bound latest at startup of the ECU. In other words
this is everything between creation of the executable program and startup of the ECU.

The startup of the ECU is the PostBuild binding since and obviously cannot be resolved
in the model.

Input Artifacts: Executable program, Configuration data set.

Output Artifacts: —

2.16.3.10 Runtime

Everything after startup and initialization is RunTime. Variant Handling at RunTime is
out of the scope of this document, but mentioned here for completeness.

2.17 How to resolve Name Conflicts

2.17.1 Reasons for Name Conflicts

In the highly distributed development of an AUTOSAR system, there is a certain risk
that symbolic names used in different development artifacts are not unique so that
name conflicts may occur when applying software tools.

[TR_METH_03000] Name spaces via ARPackages | In the “upstream” specification
of an AUTOSAR system, a software component, a basic software module or config-
uration parameters via AUTOSAR XML artifacts, such a risk can be widely avoided
through the proper usage of ARPackages because they set up name spaces and
may be nested (see also General Autosar Artifact). Here it is recommended
to follow similar rules as AUTOSAR is using for its own published artifacts, see [18]:
[TPS_GST_00081], [TPS_GST_00083], [TPS_GST_00086]. |(RS_METH_00002,
RS METH 00003, RS METH 00004, RS METH _00005)

However, certain symbols specified in the AUTOSAR XML artifacts need to be trans-
ferred to other development artifacts in later process steps (“downstream”) and will
appear e.g. as symbols in C-code, as file names, as names displayed by calibration
tools or in textual documents. Here we have in general two reasons for naming conflicts
(which may also occur in combination):

[TR_METH_03001] Reasons for name conflicts in “downstream” artifacts |
e Uncoordinated co-development

Due to the global name space of the C-language within one compilation unit, the
risk of name conflicts is rather high if pieces of source code are integrated that
were developed by different parties without coordinating the definition of symbols.

AUTOSAR

The same can happen with names of header files or with symbols visible by the
linker.

In AUTOSAR, the programming language interfaces between software compo-
nents and (to some extend) between basic software modules are restricted to
certain patterns and are generated from ARXML, so the coordination effort is
restricted to the proper definition of the relevant symbols in ARXML.

In several cases the shortName of an ARElement corresponds to an identifier
in the code (or to a part of such an identifier), sometimes also to a file name
or a part of it. Since shortNames are also used in the links between ARXML
elements, it is hard to change such a name without impact on the overall design.
This is for example the case for the names of the AtomicSwComponent Types.

e Multiple instantiation

The AUTOSAR Runtime Environment (RTE) supports multiple instantiation of
software components. This means, in a system and even on one ECU there
can be several instances of a given AtomicSwComponent Type. Each instance
possesses its own data (managed by the RTE), but there is only one artifact (VFB
Atomic Software Component) describing the whole type. If one needs a
symbol identifying a particular component instance or particular data belonging
to that instance (for example for display in a calibration tool), a conflict arises.

A similar thing happens with data elements or operation argumentsina PortIn-
terface orin a composite data type, if the enclosing element is reused in more
than one context.

A different kind of “multiple instantiation” can occur in the basic software, if several
driver modules implement the same interface (only distinguished by an instance
identifier). In this case, we actually have different implementations of code, the
modules only share the upper levels of description (artifacts Basic Software
Module Description and Basic Software Module Internal Behav-
ior).

|(RS_METH_00038)

2.17.2 Points in the Methodology where Name Conflicts are resolved

On the other hand we have multiple points in the methodology where to resolve those
conflicts.

In general we can distinguish between the development phase in which a name conflict
is resolved and the phase in which it occurs (or would occur). Because a conflict usually
prevents a certain task from being completed (e.g. compilation), it must be resolved in
the same or an earlier phase than the phase in which it would occur.

e [TR_METH_03002] Conflict solution at system design time |
This is mentioned mainly for completeness. Of course, a proper system design

AUTOSAR

can avoid conflicts in the first place and if a name conflict still arises in a later
phase, it is in principle possible to iterate over the system design. But in this
chapter we focus on solutions that allow to resolve name conflicts in later process
phases which usually causes less effort. | (RS_METH_00006)

e [TR_METH_03003] Conflict solution at coding time |

Conflicts occurring at compile time or link time must be resolved (latest) at the
time a developer is producing the code and/or the ARXML descriptions leading to
the generation of code. In other words, this has to happen within the activities De—
velop an Atomic Software Component Of Develop BSW Module. Note
that in the worst case, such a conflict is detected not before integration time (dur-
ing activity Build Executable) which means that some kind of iteration of the
activities is required. | (RS_METH_00006)

e [TR_METH_03004] Conflict solution at ECU integration time |
During ECU integration time (latest) it is still possible to resolve name conflicts
that would occur in tasks after the software build, e.g. during generation of A2L
files.|(RS_METH_00006)

2.17.3 Mechanisms for resolving Name Conflicts

The mechanisms to resolve the name conflicts are:
e [TR_METH_03005] Conflict solution via SymbolProps |

This mechanism allows to redefine a name in cases where the shortName by
default is used to generate RTE relevant code. This avoids to change the overall
design in the ARXML model.

This mechanism can be applied at coding time (activity Develop an Atomic
Software Component,taskDefine SymbolProps for Types)and solves
conflicts caused by uncoordinated development. Such changes - even if they do
not influence the overall design of the software - should be agreed upon by the
involved parties.

This mechanism is provided for the following meta-model elements:

AtomicSwComponentType.symbolProps

Allows to redefine the software component type name that the RTE is using in
its code. This resolves name clashes among different software component types
designed accidentally with the same shortName.’

ImplementationDataType.symbolProps
Allows to redefine the implementation data type name used in the code of the

"Note that this mechanism is not applicable for the prefixes used in the preprocessor code of memory
sections and compiler memory classes. Conflicts among these preprocessor symbols due to duplicate
component type names are not visible to the linker. However conflicts might occur when compiling the
header file Compiler_Cfg.h and must be resolved manually.

AUTOSAR

RTE and/or the components. This resolves name clashes among different imple-
mentation data types designed accidentally with the same shortName.

For more information on the meta-model refer to [TPS_SWCT _01194] and
[TPS_SWCT_01110] in [5].| (RS_METH_00002)

e [TR_METH_03006] Conflict solution via literal prefixes |

This mechanisms is similar to the one described before. It allows to define a pre-
fix for preprocessor literals (e.g. for enumeration types or upper/lower limits) cre-
ated by the RTE generator contract phase. Also this mechanism solves conflicts
caused by uncoordinated development and must be applied at coding time (part
of task Define Atomic Software Component Internal Behavior).

The model element to be manipulated is:
SwcInternalBehavior.includedDataTypeSet.literalPrefix

For more information refer to [TPS_SWCT_01157] in [5].| (RS_METH_00002)
e [TR_METH_03007] Conflict solution in names of runnable entities |

In case of a RunnableEntity the symbol used in the code is already indepen-
dent from the shortName - it is always modeled via the attribute
RunnableEntity.symbol. However, since these symbols need to be unique
in the scope of one RTE instance (see [constr_2025] in [5]), also here a name
conflict can occur at integration time if the definition of the symbols was not coor-
dinated before.

Similar to the cases discussed before, this conflict must be solved at coding time
simply be changing the symbol. Note that such a change would not influence
the overall design and can be done locally on one component (whose runnable
shall be renamed) since the runnable symbol is hidden to other component by the
RTE. Despite of that, the definition of unique runnable symbols still might need
some human coordination. | (RS_METH_00002)

e [TR_METH_03008] Conflict solution via FlatMap |

This mechanism allows to assign identifiers to instances of model elements (e.g.
software component instances or data element instances) so that they are unique
in a certain scope, e.g. a system or an ECU. Thereby name conflicts are avoided,
which would occur if simply the shortNames of the ARXML elements would be
used. In other words, this mechanisms solves the name conflicts arising from
multiple instantiation of types in the ARXML model.

The identifiers defined in this way are typically not used within the code, since
AUTOSAR components do not rely on global variables. The main purpose is the
usage within other artifacts which need to handle symbols out of the package
context of the ARXML model, for example citation in documents (e.g. in arti-
fact Software Component Documentation) or input for measurement and
calibration tools (e.g. in artifact RTE Measurement and Calibration Sup-
port Data). A special use case of the ECU Flat Map is the the model trans-

AUTOSAR

formation from the System to ECU Extract, where it is used to define additional
names of component prototypes.

The point in the methodology where this mechanisms is applied depends of
course on the use case. The typical tasks in the methodology library for defining
a Flat Map are normally performed before integration time: Generate or Ad-
just System Flat Map, Define Partial Flat Map and Generate or
Adjust ECU Flat Map. Butsince identifiers in a FlatMap are independent of
the code, it can in principle be adjusted even at integration time in case a conflict
occurs.

For more information see artifacts System Flat Map, Partial Flat Map
and ECU Flat Map, for the underlying meta-model parts refer to refer
to [9].| (RS_METH_00005)

e [TR_METH_03009] Conflict solution via AliasNameSet |

This mechanism is similar to FlatMap. It allows to define additional names for
model elements, either on top of an entry in a FlatMap or standalone. The
usage is also similar, but there are no standardized use cases in connection with
the AUTOSAR RTE. It can be used in cases where the format of the F1atMap is
too restrictive.

For more information refer to the artifact Alias Name Set and task Define
Alias Names. For the meta-model of AliasNameSet refer to [9]. The docu-
ment [9] also gives recommendations on how to transfer certain attributes below
AliasNameSet into an ASAM ASAP2 (“A2L”) specification. ()

e [TR_METH_03010] Conflict solution via API Infixes |

If several “instances” of a basic software module (with different implementation
but identical interface definition) are linked together, name conflicts have to be
solved by defining “infixes”. These are small pieces of strings denoting the mod-
ule vendor and the instance role. They are used to extend globally visible C
symbols and certain header file names. The mechanism is also relevant for the
basic software scheduler APls generated in task Generate BSWM Contract
Header Files.

Though this mechanism solves a conflict of a certain kind of multiple instantiation,
it is relevant to the code and thus must be applied at coding time. The description
of the infixes has to be put into the artifact Basic Software Module Imple-
mentation Description.

For more information refer to [TPS_BSWMDT 04031] in [8] and to
[SWS_BSW_00102] in [6].| (RS_METH_00003)

AUTOSAR

3 Methodology Library

3.1 Common Elements
This chapter contains the definition of work products and tasks used in several areas of

AUTOSAR development. For the definition of the relevant meta-model elements refer
to [18].

3.1.1 Work Product Kinds

Category AUTOSAR XML

(Work Product Kind)

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Product Kinds

Brief Description

Description An artifact that conforms to the AUTOSAR XML schema.

Table 3.1: AUTOSAR XML

Category Source Code

(Work Product Kind)

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Product Kinds

Brief Description

Description A human readable artifact that conforms to a defined programming
language syntax, such as C or Java.

Table 3.2: Source Code

Category Bound Source Code

(Work Product Kind)

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Product Kinds

Brief Description

Description A Bound Source Code artifact contains source code without any
unbound precompile variation points.

Table 3.3: Bound Source Code

Category Object Code

(Work Product Kind)

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Work Product Kinds

Brief Description

AUTOSAR

Description An Object Code is the output of a compiler. Object code is typically
machine code, but may also include descriptive information in a format
such as XML.

Table 3.4: Object Code

Category Configuration Data Set

(Work Product Kind)

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Product Kinds

Brief Description

Description This is a special kind of binary code containing configuration that can
be loaded separately from the main ECU code.

Table 3.5: Configuration Data Set

Category Executable

(Work Product Kind)

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Product Kinds

Brief Description

Description An Executable is an artifact that can run on an ECU. It is often similar
to Object Code; the difference between the two is that the former does
not provide means for execution on an ECU.

Table 3.6: Executable

Category Text

(Work Product Kind)

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Product Kinds

Brief Description

Description A human readable artifact that is stored as plain text, rich text, PDF, etc.

Table 3.7: Text

Category Custom

(Work Product Kind)

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Product Kinds

Brief Description

Description A custom artifact format which is not further specified in the AUTOSAR

Methodology.

Table 3.8: Custom

AUTOSAR

Category Delivered

(Work Product Kind)

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Product Kinds

Brief Description

Description These are collections of delivered work products. They form the basis
of exchange between organizations.

Table 3.9: Delivered
3.1.2 Tasks

3.1.2.1 Add General Documentation

«output» 1
Add General Documentation

General Documentation

Figure 3.1: Add General Documentation

Task Definition Add General Documentation

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Tasks

Brief Description

Description Add General Documentation to work products (AR_MET_REQO069)

Relation Type Related Element Mul. | Note

Produces General Documen- 1
tation

Table 3.10: Add General Documentation

3.1.2.2 Define Admin Data

«output» 1
Define Admin Data

General Autosar Artifac

Figure 3.2: Define Admin Data

AUTOSAR

Task Definition Define Admin Data

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Tasks

Brief Description Generic task to define admin data of an Identifiable within an
AUTOSAR artifact.

Description Generic task to define administration data (metamodel element

AdminData) of an Identifiable within an AUTOSAR artifact. Note that
administration data can be defined on several levels, namely for the
top-level package of a General Autosar Artifact, but also for

sub-packages and for other Identifiables within the XML description.

Admininistration data include versioning information of the model
element via the meta-class DocRevision, and the aggretation of user
specific data via so-called special data groups, meta-class Sdg.

For more details on the administration data content see
AUTOSAR_TPS_GenericStructureTemplate.pdf.

Relation Type

Related Element Mul. | Note

Produces

General Autosar 1
Artifact

Table 3.11: Define Admin Data

3.1.2.3 Define Alias Names

~

- —Jo.1
System Description

\
«i nput»x

«output» 1

Define Alias Names

/«mput» Alias Name Set

0.1

Delivered Atomic Software
Components

Figure 3.3: Define Alias Names

AUTOSAR

Task Definition Define Alias Names

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Tasks

Brief Description Define a set of alias names for AUTOSAR model elements.

Description The usual mechanism for defining global names for nested elements

within an AUTOSAR XML model is the Flat Map. However in the
cooperation with non-AUTOSAR tools, there are uses cases which
require additional alias names which can be defined by this task.

It can be applied on System and on ECU level as well. Possible use
cases are for example:

e The names defined by an ECU Flat Map, System Flat Map or
Partial Flat Map shall be superseded when used by an external
tool (e.g. in order to use a more general string format).

e Resolve name conflicts for elements which cannot be referred in
the context of a Flat Map (e.g. for elements directly defined in
the scope of ARPackages, like System Constants to be
displayed by A2L tools).

Relation Type Related Element Mul. | Note
Consumes Delivered Atomic | 0..1 | Needed for definition of alias names in
Software Compo- the scope of delivered software
nents components.
Consumes System Descrip- | 0..1 | Needed for definition of alias names with
tion system, system extract or ECU scope,
depending of the role of the System
Description.
Produces Alias Name Set 1

Table 3.12: Define Alias Names

AUTOSAR

3.1.2.4 Evaluate Variant

(il

1.*

(Il

0..%

Predefined V:

il

ariant

Value Set

System Constant

r Artifac

«input»

«input»x

«input»

«output»

Evaluate Variant Evaluated Variant Set

«input»

Postbuild Variant Set

Figure 3.4: Evaluate Variant

Task Definition Evaluate Variant

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Tasks

Brief Description Document the evaluation of variants in the software description.

Description Create or modify an Evaluated Variant Set in order to document the

outcome of an evaluation of particular variants. This namely means
setting the "approval status" in relation to a given set of
PredefinedVariants and a given set of model elements (e.g. a
particular Software Component) which were evaluated.

This is a general task which can be applied on different levels,
therefore the input is modeled as General Autosar Artifact.

Relation Type Related Element Mul. | Note

Consumes General Autosar | 1..*
Artifact

Consumes Evaluated Variant | 0..1
Set

Consumes Postbuild Variant | 0..*
Set

Consumes Predefined Variant 0.*

Consumes System Constant | 0..*
Value Set

Produces Evaluated Variant 1
Set

Table 3.13: Evaluate Variant

AUTOSAR

3.1.2.5 Define Memory Addressing Modes

Basic Software
Module Developer

1 Software
Component
Developer

2N

«performs»

«performs»

+MemMapAddressingModeSet

«output» 1.x

Define Memory

Addressing Modes
BSW Module
Preconfigured
Configuration

Figure 3.5: Define Memory Addressing Modes

Task Definition Define Memory Addressing Modes

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Tasks

Brief Description

Description Define the compiler specific configuration used in a later task to
generate the "pragmas” in memory mapping header files.
The output (container MemMapAddressingModeSet) is treated as
pre-configured configuration values for the "module” MemMap,
because it can be prepared independently from the configuration for a
specific integration project.
Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mul. | Note

Performed by Basic Software 1
Module Developer

Performed by Software Compo- | 0..1
nent Developer

Produces BSW Module Pre- | 1..* | MemMapAddressingModeSet:
configured Config- Meth.bindingTime = SystemDesignTime
uration

Table 3.14: Define Memory Addressing Modes

AUTOSAR

3.1.2.6 Configure Memmap Allocation

+SwAddrMethods

0.*

+MemorySections

«input»

Basic Software
Module Developer
Software
Component
0.1 Developer
s
/0. 1

«performs» «performs»

0.* «

Module
Implementation
Description

+MemorySections

input»

«input»

_—
_—0.1
«performs»
/ ECU Integrator

Configure

«input»

Component 1.*

Implementation
—
—
—
—
—
—
BSW Module

Preconfigured
Configuration

Figure 3.6: Configure Memmap Allocation

Memmap
Allocation

«output»
—

+MemMapAllocation

1] | —

ECU Configuration
Values

+MemMapA;1dre$‘ngModeSet

AUTOSAR

Task Definition Configure Memmap Allocation

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Tasks

Brief Description

Description Configure the ECU Configuration part MemMapAllocation for module

"MemMap".

The output is to be used for generating memory mapping headers
during ECU integration as well as for BSW and SWC compiling/linking
in local environments.

MemMapAllocation defines a mapping between abstract memory
sections used in BSW or SWC code and compiler specific
configuration elements. The abstract sections are identified via links to
SwAddrmethods (generic mapping) resp. MemorySections of the XML
input files. The compiler specific configuration is given as a
pre-configured configuration for module "MemMap" via the container
MemMapAddressingModeSet.

For more information refer to document ID 128:
SWS_MemoryMapping.

Meth.bindingTime = SystemDesignTime

Relation Type

Related Element Mul. | Note

Performed by

Basic Software | 0..1
Module Developer

Performed by

ECU Integrator 0..1

Performed by

Software Compo- | 0..1
nent Developer

Consumes BSW Module Pre- | 1..* | MemMapAddressingModeSet: Collection
configured Config- of compiler specific configuration
uration elements for memory allocation and

addressing modes.

Consumes Atomic Software | 0..* | MemorySections:

Component Imple-
mentation

Consumes Basic Software | 0..* | MemorySections:
Module Implemen-
tation Description

Consumes VFB Types 0..* | SwAddrMethods: SwAddrMethods used

for the generic mapping. Note that one
SwAddrmethod can represent several
memory sections.

Produces ECU Configuration 1 MemMapAllocation:

Values Meth.bindingTime = SystemDesignTime

Table 3.15: Configure Memmap Allocation

AUTOSAR

3.1.2.7 Generate BSW Memory Mapping Header

Basic Software

| Module
— .
| DESCIptION
N —
— ;
e Basic Software
— Module
e +shortName | 0..1 Developer
m— | +SwAddrMethod P
1 0.1
VFB Types
+infixes
_ «performs»
1 1
— 1 ;MemorySections «input»
«input»
1 .
— . «input» ECU Integrator
| +DependencyOnArtifact «performs»
1 «input»
Basic Software «nput»
Module P
Implementation
Description
. «inyt»/ \«output»
— : enerate BSW
+MemMapAddressingModeSet .
— p: 9 Memory Mapping
1% Header +BSW_MemMap | s
— —
1 | e—
BSW Module «input»
Preconfigured Standard
Configuration Header Files

«input»

llocation

+moduleDescription

| HHQ

0.1

ECU Configuration
Values

Figure 3.7: Generate BSW Memory Mapping Header

AUTOSAR

Task Definition Generate BSW Memory Mapping Header

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Tasks

Brief Description

Description Generate a memory mapping header to be used for one BSW module

(the default case) or a group of BSW modules (e.g. an ICC2 cluster).
Note that the usage of one MemMap.h for the complete BSW of one
build environment is possible, but deprecated.

This task can be used in ECU scope or with preliminary scope to test
BSW modules. Note that the content of the generated file is compiler
specific (#pragma statements).

Inputs are:

e From Basic Software Module Description: The shortName is
used (in the default case) as the first part of the generated file
name.

e From VFB Types: Properties of abstract sections given by
SwAddrmethods, which in turn are referred by MemorySection
as well as by MemMapAllocation.

e From Basic Software Module Implementation Description:
Names of the individual abstract sections (preprocessor macros)
used in the code (including optional prefixes overriding the
default rule); optional infixes for the file name (if the default rule
is used); optional declaration of file name (element
DependencyOnAtrtifact) overriding the default rule.

e From Preconfigured Configuration for module "MemMap":
Collection of compiler specific configuration elements.

e From ECU Configuration for module "MemMap" :
MemMapAllocation - this is the concrete mapping for this
environment.

e From ECU Configuration: Find the list of used BSW modules in
case the task is done for the whole BSW
(EcucValueCollection.ecucValue.moduleDescription).

Meth.bindingTime = CodeGenerationTime

Relation Type

Related Element Mul. | Note

Performed by

ECU Integrator 1

Performed by

Basic Software | 0..1
Module Developer

Consumes Basic Software 1 infixes: Optional infixes (denoting
Module Implemen- instance and vendor ID) to be used
tation Description within the created header file name.

Meth.bindingTime = SystemDesignTime

Consumes Basic Software 1 DependencyOnArtifact: Can be used to

Module Implemen-
tation Description

override the default name of the memory
mapping header file.
Meth.bindingTime = SystemDesignTime

AUTOSAR

Files

Relation Type Related Element Mul. | Note
Consumes Basic Software 1 MemorySections: MemorySections
Module Implemen- defined for a BSW module. This input
tation Description includes optional prefixes for memory
sections overriding the default rule.
Meth.bindingTime = SystemDesignTime
Consumes ECU Configuration 1 MemMapAllocation: Mapping of the
Values abstract sections (SwAddressMethods
for generic mapping resp.
MemorySection Elements for specific
mapping) to the compiler specific
MemMapAddressingModes.
Meth.bindingTime = SystemDesignTime
Consumes BSW Module Pre- | 1.* | MemMapAddressingModeSet: Collection
configured Config- of compiler specific configuration
uration elements for memory allocation.
Meth.bindingTime = SystemDesignTime
Consumes VFB Types 1..* | SwAddrMethod: Referred
SwAddrMethods
Meth.bindingTime = SystemDesignTime
Consumes Basic Software | 0..1 | shortName: The BSW module’s
Module Descrip- shortName is used as the first part of the
tion generated file name, in case the default
rule applies.
Meth.bindingTime = SystemDesignTime
Consumes ECU Configuration | 0..1 | moduleDescription: List of used BSW
Values modules (EcucValueCollec-
tion.ecucValue.moduleDescription)
Meth.bindingTime = SystemDesignTime
Produces Standard Header 1 BSW_MemMap: The memory mapping

header file to be used for one or more
BSW modules in a given build
environment.

The file name has in the standardized
case a form like {Mip}_MemMap.h in
which the prefixes {Mip} are determined
by the module (or cluster) name and
optional infixes.

However, it is also possible to create a
completely different filename via explicit
declaration in the BSW Module
Implementation.

For more detailed rules on the name of
the generated file refer to
AUTOSAR_SWS_MemoryMapping.
Meth.bindingTime =
CodeGenerationTime

Table 3.16: Generate BSW Memory Mapping Header

AUTOSAR

3.1.2.8 Generate SWC Memory Mapping Header

+SwAddrMethod

1.x

+MemorySections

<
m
@
=
<
3
2

Atomic Software

Component

1

Implementation

+MemMapAddressingModeSet

«input»

Software
Component
0.1 Developer

«input»
«performs»

«performs»

Generate SWC
Memory Mapping
Header

BSW Module
Preconfigured
Configuration

1.* «input»

«input»

+MemMapAllocation

1

+RtelmplementationRef

«output»

e
1

ECU Integrator

+SWC_MemMap | m—

«input»

1 | e—

Standard
Header Files

Figure 3.8: Generate SWC Memory Mapping Header

AUTOSAR

Task Definition Generate SWC Memory Mapping Header

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Tasks

Brief Description

Description Generate the memory mapping header file for one build environment

and one Atomic Software Component. This task can be used in ECU
scope or with preliminary scope to test software component. Note that
the generated header file is compiler specific (#pragma statements).

Inputs are:

e From VFB Types: Properties of abstract sections given by
SwAddrmethods, which in turn are referred by MemorySection
as well as by MemMapAllocation

e From Software Component Implementation, element
MemorySection: Names of the individual abstract sections
(preprocessor macros) used in the code.

e From Preconfigured Configuration for module "MemMap":
Collection of compiler specific configuration elements.

e From ECU Configuration for module "MemMap" :
MemMapAllocation - This is the concrete mapping for this

environment.

e From ECU Configuration: Find (optionally) the list of used
software component implementations by usage of the RTE ECU
Configuration "RteSwComponentType.RtelmplementationRef"

Meth.bindingTime = CodeGenerationTime

nent Developer

Relation Type Related Element Mul. | Note
Performed by ECU Integrator 1
Performed by Software Compo- | 0..1

Consumes Atomic Software 1 MemorySections: MemorySections
Component Imple- defined for an Atomic Software
mentation Component.

Meth.bindingTime = SystemDesignTime

Consumes ECU Configuration 1 MemMapAllocation: Mapipng of the
Values abstract sections (SwAddressMethods

for generic mapping resp.
MemorySection Elements for specific
mapping) to the compiler specific
MemMapAddressingModes.
Meth.bindingTime = SystemDesignTime

Consumes BSW Module Pre- | 1..* | MemMapAddressingModeSet: Collection
configured Config- of compiler specific configuration
uration elements for memory allocation.

Meth.bindingTime = SystemDesignTime

Consumes VFB Types 1..* | SwAddrMethod: Referred

SwAddrMethods
Meth.bindingTime = SystemDesignTime

AUTOSAR

Relation Type Related Element Mul. | Note
Consumes ECU Configuration | 0..1 | RtelmplementationRef: Existence of
Values SWCs could be identified by usage of the

RTE ECU Configuration "RteSwCompo-
nentType.RtelmplementationRef"
Meth.bindingTime = SystemDesignTime

Produces Standard Header 1 SWC_MemMap: One header per
Files software component type for a given
build environment.

The file name follows the pattern
{componentTypeName}_MemMap.h in
which the prefix componentTypeName is
determined by the software component
type name.

For more detailed rules on the name of
the generated file refer to
AUTOSAR_SWS_MemoryMapping.
Meth.bindingTime =
CodeGenerationTime

Table 3.17: Generate SWC Memory Mapping Header

3.1.2.9 Configure Compiler Memory Classes

Basic Software
Module Developer

1 Software
Component
Developer

«performs»
«performs»

+MemMap config for
compiler memclasses

«output» 1.x

Configure

Compiler Memory

Classes BSW Module
Preconfigured
Configuration

Figure 3.9: Define Compiler Memory Classes

AUTOSAR

Task Definition Configure Compiler Memory Classes

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Tasks

Brief Description

Description Define the compiler specific configuration for "memory classes” used in

a later task to generate the preprocessor code of the compiler
configuration header file (Compiler_Cfg.h).

The output is treated as pre-configured configuration values for the
"module™ MemMap, because it can be prepared independently from
the configuration for a specific integration project.

Meth.bindingTime = SystemDesignTime

nent Developer

Relation Type Related Element Mul. | Note
Performed by Basic Software 1

Module Developer
Performed by Software Compo- | 0..1

Produces

BSW Module Pre-
configured Config-
uration

MemMap config for compiler
memclasses: Set the parameter values
that define generic MemClassSymbols
(i.e. those not defined by modules or
SWCs.).

Set the parameter values that define the
implementation behind all kind of
MemClassSymbols (generic and local
ones).

Meth.bindingTime = SystemDesignTime

Table 3.18: Configure Compiler Memory Classes

AUTOSAR

3.1.2.10 Generate Compiler Configuration

+MemorySections

0..*

[l

Basic Software
Module Developer

Atomic Software
Component
Implementation

+SwAddrMethod «input»

[l

1.*

VFB Types

«input»

+MemorySections

1.*% «input»\

Basic Software Module
Implementation
Description

il

«input»

[

+CompilerMemClassConfiguration

«input»

BSW Module
Preconfigured
Configuration

1
+ModuleDescription

«input»

[0

0.1

+RtelmplementationRef

ECU Configuration
Values

«performs»

/

Generate Compiler
Configuration

Software Component
Developer

«perfgims»

«performs» ECU Integrator

«output»

+Compiler_Cfg

Standard Header
Files

Figure 3.10: Generate Compiler Configuration

Task Definition Generate Compiler Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Tasks

Brief Description

Description This task generates a compiler configuration header (Compiler_cfg.h)

for one build environment to be used for all BSW modules and software
components.

Meth.bindingTime = CodeGenerationTime

Relation Type

Related Element Mul. | Note

Performed by

ECU Integrator 1

Performed by

Basic Software | 0..1
Module Developer

Performed by

Software Compo- | 0..1
nent Developer

AUTOSAR

Relation Type

Related Element

Mul.

Note

Consumes

BSW Module Pre-
configured Config-
uration

1.*

CompilerMemClassConfiguration: The
parameters "MemMapCompilerMem-
ClassSymbollmpl" and
"MemMapGenericCompilerMem-
ClassSymbollmpl" define the
implementation behind a
MemClassSymbol.

Meth.bindingTime = SystemDesignTime

Consumes

Basic Software
Module Implemen-
tation Description

MemorySections: Find referred
SwAddrMethods or specific
memClassSymbols in the
MemorySections defined for BSW
modules.

Meth.bindingTime = SystemDesignTime

Consumes

VFB Types

SwAddrMethod: Referred
SwAddrMethods. They provide the
default names for the compiler memory
classes.

Meth.bindingTime = SystemDesignTime

Consumes

ECU Configuration
Values

RtelmplementationRef: Existence of
SWCs could be identified by usage of the
RTE ECU Configuration "RteSwCompo-
nentType.RtelmplementationRef"
Meth.bindingTime = SystemDesignTime

Consumes

ECU Configuration
Values

ModuleDescription: List of used BSW
modules (EcucValueCollec-
tion.ecucValue.moduleDescription)
Meth.bindingTime = SystemDesignTime

Consumes

Atomic Software
Component Imple-
mentation

MemorySections: Find referred
SwAddrMethods or specific
memClassSymbols in the
MemorySections defined for Atomic
Software Components.
Meth.bindingTime = SystemDesignTime

Standard Header
Files

Compiler_Cfg: The output file
"Compiler_Cfg.h" configures the
abstraction of compiler specifics.
Meth.bindingTime =
CodeGenerationTime

Table 3.19: Generate Compiler Configuration

3.1.3 Work Products

General Documentation

AUTOSAR

Artifact General Documentation

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Products

Brief Description

Description General documentation link to a given work product

Kind Custom

Relation Type Related Element Mul. | Note

Aggregated by General Deliver- | 0.7
able

Produced by

Add General Docu- 1
mentation

Table 3.20: General Documentation

3.1.3.2 Alias Name Set

Artifact Alias Name Set

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Products

Brief Description Set of alias names for AUTOSAR model elements for usage outside of
AUTOSAR.

Description Set of alias names, each consisting of the name (string) itself and the
reference to the model element it renames.
Each reference to a model element is either a reference to an
Identifiable or to an entry in an ECU Flat Map or System Flat Map.
For an explanation of uses cases see task Define Alias Names.

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Aggregated by

Delivered Atomic | 0..1
Software Compo-
nents

Alias names valid in the context of the
delivered components.

Aggregated by

System Descrip- | 0..%
tion

Produced by

Define Alias 1

Names

Consumed by

Add Documenta- | 0..*
tion to the Software

Optional input in order to refer to unique
names defined in an Alias Name Set

Component (e.g. System Constants).
Consumed by Generate A2L 0.x
Use meta model element | AliasNameSet 1

Table 3.21: Alias Name Set

3.1.3.3 Evaluated Variant Set

AUTOSAR

Artifact

Evaluated Variant Set

Package

AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Products

Brief Description

A set of evaluated variants

Description

This artifact represents a table defining which ArElements or
ArPackages (referrred as "evaluatedElements") are able to support one
or more particular variant. It can thus be used to document which
variants are support by a certain delivery, e.g. of a software component
or of a system.

In other words, for a given set of evaluatedElements this element
represents a table of evaluated variants, where each PredefinedVariant
represents one column. In this column each descendant
swSystemConstantValue (part of System Constant Value Set) resp.
postbuildVariantCriterionValue (part of Postbuid Variant Set) represents
one entry.

In a graphical representation each swSystemConstantValueSet /
postBuildVariantCriterionValueSet could be used as an intermediate
headline in the table column.

The Evaluated Variant Set comes with an attribute "approvalStatus". If
this is set to "APPROVED" it expresses that the evaluatedElements are
known be valid for the given evaluated variants.

Note that an evaluatedElement could be another Evaluated Variant
Set. This allows to establish a hierarchy of EvaluatedVariantSets.

Kind

AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

Delivered Atomic | 0..1
Software Compo-
nents

Aggregated by

ECU Extract of | 0.7
System Variant

Model

Aggregated by System Descrip- | 0..*
tion

Aggregated by VFB System 0.x

Produced by Define System 1
Variants

Produced by Evaluate Variant 1

Produced by

Define Integration | 0..1 | Meth.bindingTime = SystemDesignTime
Variant

Produced by

Define VFB Vari- | 0..*
ants

Consumed by

Evaluate Variant 0..1

Consumed by

Extract ECU Sys- | 0..”
tem Variant Model

Use meta model element

EvaluatedVariant 1
Set

Table 3.22: Evaluated Variant Set

AUTOSAR

3.1.3.4 General Autosar Artifact

Artifact

General Autosar Artifact

Package

AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Products

Brief Description

Describes the meta data for an AUTOSAR artifact.

Description

This artifact represents the data which are common to all AUTOSAR
XML artifacts.

Each file starts with the root element AUTOSAR.

The content of such an artifact below this root element is organized by
packages using the element ARPackage. Packages can be nested. It
is important to understand, that the hierarchy defined via packages and
other aggregated elements can (in general) span over several XML
files, i.e. over several artifacts. That means, if an aggregation is "split"
between several files, each file is considered as a separate artifact by
the methodology, even if the elements are formally aggregated within
the same package.

All elements derived from meta-class Identifiable can carry
documentation and administrative description based on the element
AdminData. Note that ARPackage is itself derived from Identifiable, so
there can be AdminData for the top-level package, for sub-packages
and for more specific elements (derived from Identifiable) as well. The
AdminData among other things contain revision information (including
the artifact version) based on the metamodel element DocRevision .

Kind

AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

General Deliver- | 0..*
able

Produced by

Define ASIL For A 1
UTOSAR Element

Produced by

Define Admin Data 1

Produced by

Allocate Safety | 0..* | Allocated Elements:
Measure

Produced by

Allocate Safety Re- | 0..* | Allocated Elements:
quirement

Consumed by

Define ASIL For A 1
UTOSAR Element

Consumed by

Allocate Safety | 1.*

Measure

Consumed by Allocate Safety Re- | 1..*
quirement

Consumed by Evaluate Variant 1.*

Consumed by Define Safety Mea- | 0..*
sure

Consumed by Define Safety Re- | 0..*
quirement

Use meta model element | ARPackage 1

Use meta model element | AUTOSAR 1

AUTOSAR

Relation Type

| Related Element | Mul. | Note

Table 3.23: General Autosar Artifact

3.1.3.5 General Deliverable

General Deliverable

«SPEM_Aggregation» «SPEM_Aggregation»

/ «SPEM_Aggregation»

0..%
—
—
—
—
—
—
—

General Autosar Artifact General Non Autosar Artifac General Documentation

Figure 3.11: General Deliverable

Deliverable General Deliverable

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Products

Brief Description General data for an XML based deliverable within AUTOSAR.

Description General data for an XML based deliverable within AUTOSAR :
Especially it contains a catalog of all included artifacts. These can be
AUTOSAR artifacts (see General Autosar Artifact) or non-AUTOSAR
artifacts (see General Non AUTOSAR Artifact).
An AUTOSAR XML artifact which is contained in the catalog may refer
to an non AUTOSAR Artifact whithin the catalog via the metamodel
element AutosarEngineeringObject (see
AUTOSAR_TPS_GenericStructureTemplate.pdf for further description).

Kind Delivered

Relation Type Related Element Mul. | Note

Aggregates General Autosar | 0..*
Artifact

Aggregates General Documen- | 0..*
tation

Aggregates General Non | 0.~
Autosar Artifact

Table 3.24: General Deliverable

3.1.3.6 General Non-Autosar Artifact

AUTOSAR

Artifact General Non Autosar Artifact

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Products

Brief Description Describes the data for a non AUTOSAR artifact.

Description Describes the data for a non AUTOSAR artifact.

Kind Custom

Relation Type

Related Element Mul. | Note

Aggregated by

General Deliver- | 0..*
able

Consumed by

Provide RTE Cali- | 1..* | input from calibration process
bration Dataset

Table 3.25: General Non Autosar Artifact

3.1.3.7 Postbuild Variant Set

Artifact Postbuild Variant Set

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Products

Brief Description Set of Postbuild Variant Criterion Values used to define post-build
variants of the software.

Description Set of Postbuild Variant Criterion Values used to define post-build
variants of the software.
Such a set does not necessarily define a variant which is actually used.
To define a meaningful variant in the production process, such a set is
to be used via reference by artifact PredefinedVariant.

Kind AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

Delivered Atomic | 0..1
Software Compo-
nents

Aggregated by

ECU Extract of | 0..*
System Variant

Model

Aggregated by System Descrip- | 0..%
tion

Aggregated by VFB System 0.*

In/out Define System 1
Variants

In/out Define Integration | 0..*
Variant

In/out Define VFB Vari- | 0..*
ants

Consumed by

Generate RTE 1
Postbuild Dataset

Consumed by

Generate Atomic | 0..1
Software Com-
ponent Contract
Header Files

AUTOSAR

Relation Type Related Element Mul. | Note
Consumed by Generate RTE | 0..1

Prebuild Dataset
Consumed by Evaluate Variant 0.x

Consumed by

Extract ECU Sys- | 0..”
tem Variant Model

Use meta model element

PostBuildVariant 1
CriterionValueSet

Table 3.26: Postbuild Variant Set

3.1.3.8 Predefined Variant

Artifact Predefined Variant

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Products

Brief Description Defines a variant predefined for usage in subsequent process steps.

Description Defines one variant of a software description for delivery and/or usage
in subsequent process steps. The actual definition of all settings which
make up this variant is given by attached System Constant Value Set
(all settings which are resolved prior to post-build) and/or Postbuid
Variant Set (all settings which are resolved after software build). These
sets may be part of the same artifact or may be separated artifacts. Via
these settings, the actual values which make up a particular variant,
are selected.

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Aggregated by Delivered Atomic | 0..”
Software Compo-
nents

Aggregated by ECU Extract of | 0..%
System Variant
Model

Aggregated by System Descrip- | 0..*
tion

Aggregated by VFB System 0.x

Produced by Define Integration 1 Meth.bindingTime = SystemDesignTime
Variant

Produced by Define System 1
Variants

Produced by Define VFB Vari- | 0..*
ants

Consumed by Generate BSW 1
Module Prebuild
Data Set

Consumed by Generate RTE 1
Postbuild Dataset

Consumed by Generate RTE 1
Prebuild Dataset

AUTOSAR

Relation Type

Related Element Mul. | Note

Consumed by

Generate Atomic | 0..1
Software Com-
ponent Contract
Header Files

Consumed by

Evaluate Variant 0..*

Consumed by

Extract ECU Sys- | 0..*
tem Variant Model

Consumed by

Generate Compo- | 0..*
nent Prebuild Data
Set

Use meta model element

PredefinedVariant 1

Table 3.27: Predefined Variant

3.1.3.9 Standard Header Files

Artifact

Standard Header Files

Package

AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Products

Brief Description

Overall header files to be included by each standardized BSW module,
optionally also by Software Component code.

Description

Overall header files to be included by each standardized BSW module,
optionally also by Software Component code. For simplicity of the
methodology, these are modeled as one artifact though in practice
these are several different files:

o (<prefixes>_)MemMap.h - defines a common set of macros in
order to define abstract memory sections for code and data in
the source code . The prefixes indicates whether the scope is
limited to a component, module or some other source code area
(e.g. an ICC2 cluster). Note that the usage of one MemMap.h
for the complete BSW is possible, but deprecated. It is also
possible to use a completely different filename via explicit
declaration in the BSW Module Implementation Description.

e Std Types.h - defines a common set of C data types for usage
within the basic software, this header includes the following two
headers:

e Compiler.h (in turn including Compiler_Cfg.h) - for abstraction of
compiler specifics, in which the second header is the part that is
subject to configuration

e Platform_Types.h - for abstraction of platform specific types

Kind

Source Code

Relation Type

Related Element \ Mul. \ Note

AUTOSAR

Relation Type

Related Element

Mul.

Note

Produced by

Generate BSW
Memory Mapping
Header

BSW_MemMap: The memory mapping
header file to be used for one or more
BSW modules in a given build
environment.

The file name has in the standardized
case a form like {Mip}_MemMap.h in
which the prefixes {Mip} are determined
by the module (or cluster) name and
optional infixes.

However, it is also possible to create a
completely different filename via explicit
declaration in the BSW Module
Implementation.

For more detailed rules on the name of
the generated file refer to
AUTOSAR_SWS_MemoryMapping.
Meth.bindingTime =
CodeGenerationTime

Produced by

Generate Compiler
Configuration

Compiler_Cfg: The output file
"Compiler_Cfg.h" configures the
abstraction of compiler specifics.
Meth.bindingTime =
CodeGenerationTime

Produced by

Generate SWC
Memory Mapping
Header

SWC_MemMap: One header per
software component type for a given
build environment.

The file name follows the pattern
{componentTypeName}_MemMap.h in
which the prefix componentTypeName is
determined by the software component
type name.

For more detailed rules on the name of
the generated file refer to
AUTOSAR_SWS_MemoryMapping.
Meth.bindingTime =
CodeGenerationTime

Consumed by

Compile Atomic
Software Compo-
nent

Meth.bindingTime =
CodeGenerationTime

Consumed by

Compile BSW
Core Code

Meth.bindingTime =
CodeGenerationTime

Consumed by

Compile ECU
Source Code

Meth.bindingTime =
CodeGenerationTime

Consumed by

Implement a BSW
Module

Meth.bindingTime =
CodeGenerationTime

Consumed by

Re-compile Com-
ponent in ECU
context

Meth.bindingTime =
CodeGenerationTime

AUTOSAR

Relation Type

Related Element

Mul.

Note

Consumed by

Implement Atomic
Software Compo-
nent

0..1

Meth.bindingTime =
CodeGenerationTime

Table 3.28: Standard Header Files

3.1.3.10 System Constant Value Set

Artifact System Constant Value Set
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Products
Brief Description Set of System Constant Values used to handle variants.
Description Set of System Constant Values used to define pre-build variants of the
software.
Such a set does not necessarily define a variant which is actually used.
To define a meaningful variant in the production process, such a set is
to be used via reference by artifact PredefinedVariant.
Kind AUTOSAR XML
Relation Type Related Element Mul. | Note
Aggregated by Delivered Atomic | 0..*
Software Compo-
nents
Aggregated by ECU Extract of | 0..*
System Variant
Model
Aggregated by System Descrip- | 0..%
tion
Aggregated by VFB System 0.x
In/out Define System 1
Variants
In/out Define Integration | 0..*
Variant
In/out Define VFB Vari- | 0..*
ants
Consumed by Generate BSW 1
Module Prebuild
Data Set
Consumed by Generate RTE 1
Prebuild Dataset
Consumed by Generate Compo- | 1..* | Meth.bindingTime =
nent Prebuild Data CodeGenerationTime
Set
Consumed by Generate Atomic | 0..1 | Meth.bindingTime = SystemDesignTime
Software Com-
ponent Contract
Header Files
Consumed by Evaluate Variant 0.x
Consumed by Extract ECU Sys- | 0..*

tem Variant Model

AUTOSAR

Relation Type

Related Element Mul. | Note

Use meta model element

SwSystemcon- 1
stantValueSet

Table 3.29: System Constant Value Set

3.1.4 Roles
Role AUTOSAR Partnership
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Roles
Brief Description The AUTOSAR Partnership development defines standard artifacts.
Description

Relation Type

Related Element \ Mul. \ Note

Table 3.30: AUTOSAR Partnership

Role Basic Software Designer

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Roles

Brief Description Role responsible for the overall design of the Basic Software.

Description Role responsible for the overall design of the Basic Software. In

contrast to the Basic Software Module Developer he is responsible for
the consistency of interfaces and data types between modules.

Relation Type

Related Element Mul. | Note

Performs Define BSW Be- 1
havior

Performs Define BSW En- 1
tries

Performs Define BSW Inter- 1
faces

Performs Define BSW Types 1

Performs Create Trans- | 0..1
former Specifica-
tion

Performs Define VFB Nv | 0..1
Block Software
Component

Performs Define Vendor | 0..1

Specific Module
Definition

Table 3.31: Basic Software Designer

AUTOSAR

Role Basic Software Module Developer

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Roles

Brief Description Role responsible to develop and deliver a Basic Software Module.

Description

Relation Type Related Element Mul. | Note

Performs Compile BSW 1
Core Code

Performs Configure ~ Com- 1
piler Memory
Classes

Performs Create Library 1

Performs Define BSW En- 1
tries

Performs Define BSW Inter- 1
faces

Performs Define BSW Mod- 1
ule Timing

Performs Define BSW Types 1

Performs Define Memory 1
Addressing Modes

Performs Develop BSW 1
Module Generator

Performs Generate BSW 1
Module Prebuild
Data Set

Performs Generate BSWM 1
Contract Header
Files

Performs Implement a BSW 1
Module

Performs Configure 0..1
Memmap Allo-
cation

Performs Define Vendor | 0..1
Specific Module
Definition

Performs Generate BSW | 0..1
Memory Mapping
Header

Performs Generate Compiler | 0..1
Configuration

Performs Measure Compo- | 0..1
nent Resources

Table 3.32: Basic Software Module Developer

AUTOSAR

Role Calibration Engineer
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Roles
Brief Description The calibration engieer determines the calibration parameters of an
ECU.
Description
Relation Type Related Element Mul. | Note
Performs Define VFB Pa- 1
rameter Compo-
nent
Performs Generate A2L 1
Performs Create MC Func- | 0..1
tion Model
Performs Define VFB Con- | 0..1
stants
Performs Provide RTE Cali- | 0..1
bration Dataset
Table 3.33: Calibration Engineer
Role Certification Agency
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Roles
Brief Description The certification agency verifies the conformance of artifacts with
respect to the standard artifacts defined by the autosar consortium.
Description

Relation Type

Related Element \ Mul. \ Note

Table 3.34: Certification Agency

Role ECU Integrator

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Roles

Brief Description Integrates the complete software on an ECU.

Description Integrates the complete software on an ECU, which includes

generating necessary code and completing the configuration of all
software components and basic software modules.

Relation Type

Related Element Mul. | Note

Performs Compile ECU 1
Source Code

Performs Configure Com 1

Performs Configure Debug 1

Performs Configure Diag- 1
nostics

Performs Configure ECUC 1

Performs Configure 10 Hard- 1
ware abstraction

Performs Configure MCAL 1

AUTOSAR

Relation Type Related Element Mul. | Note

Performs Configure Mode 1
Management

Performs Configure NvM 1

Performs Configure OS 1

Performs Configure RTE 1

Performs Configure Trans- 1
former

Performs Configure Watch- 1
dog Manager

Performs Connect Service 1
Component

Performs Create Library 1

Performs Create Service 1
Component

Performs Define ECU Tim- 1
ing

Performs Define Integration 1
Variant

Performs Extract the ECU 1
Communication

Performs Generate BS 1
W Configuration
Code

Performs Generate BSW 1
Memory Mapping
Header

Performs Generate Base 1
Ecu Configuration

Performs Generate Compiler 1
Configuration

Performs Generate ECU Ex- 1
ecutable

Performs Generate Local M 1
C Data Support

Performs Generate OS 1

Performs Generate RTE 1

Performs Generate RTE 1
Postbuild Dataset

Performs Generate RTE 1
Prebuild Dataset

Performs Generate SWC 1
Memory Mapping
Header

Performs Generate Sched- 1
uler

Performs Generate Updated 1
ECU Configuration

Performs Measure Re- 1
sources

AUTOSAR

Relation Type Related Element Mul. | Note
Performs Provide RTE Cali- 1
bration Dataset
Performs Configure 0..1
Memmap Allo-
cation
Performs Create MC Func- | 0.1
tion Model
Performs Define VFB Nv | 0.1
Block Software
Component
Performs Extend Topology 0.1
Performs Extract ECU Rapid | 0..1
Prototyping Sce-
nario
Performs Extract ECU Sys- | 0..1
tem Timing
Performs Extract ECU Sys- | 0..1
tem Variant Model
Performs Extract ECU Topol- | 0..1
ogy
Performs Flatten Software | 0..1
Composition
Performs Generate Compo- | 0..1
nent Header File in
Vendor Mode
Performs Generate or Adjust | 0..1
ECU Flat Map
Performs Map Software | 0..1
Component to BS
W
Performs Measure Compo- | 0..1
nent Resources
Table 3.35: ECU Integrator
Role Software Component Designer
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Roles
Brief Description Designer of software components and VFB systems.
Description
Relation Type Related Element Mul. | Note
Performs Add Documenta- 1
tion to the Software
Component
Performs Define Atomic 1
Software Com-
ponent Internal
Behavior
Performs Define Complex 1
Driver Component

AUTOSAR

Relation Type Related Element Mul. | Note

Performs Define Consis- 1
tency Needs

Performs Define ECU 1
Abstraction Com-
ponent

Performs Define VFB Ap- 1
plication Software
Component

Performs Define VFB Com- 1
position ~ Compo-
nent

Performs Define VFB Con- 1
stants

Performs Define VFB Inter- 1
faces

Performs Define VFB Modes 1

Performs Define VFB Sen- 1
sor or Actuator
Component

Performs Define VFB Timing 1

Performs Define VFB Types 1

Performs Define VFB Vari- 1
ants

Performs Define Wrapper 1
Components to
Integrate Legacy
Software

Performs Map Software 1
Component to BS
w

Performs Define Partial Flat | 0..1
Map

Performs Define VFB Com- | 0..1
ponent Constraints

Performs Define VFB Nv | 0..1
Block Software
Component

Performs Define VFB Top | 0..1
Level

Table 3.36: Software Component Designer

Role Software Component Developer

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Roles

Brief Description Developer of the software component code.

Description

Relation Type Related Element \ Mul. \ Note

AUTOSAR

Relation Type Related Element Mul. | Note

Performs Define Consis- 1
tency Needs

Performs Define Software 1
Component Timing

Performs Define Symbol 1
Props for Types

Performs Generate Atomic 1
Software Com-
ponent Contract
Header Files

Performs Generate Compo- 1
nent Header File in
Vendor Mode

Performs Generate Compo- 1
nent Prebuild Data
Set

Performs Implement Atomic 1
Software Compo-
nent

Performs Measure Compo- 1
nent Resources

Performs Re-compile Com- 1
ponent in ECU
context

Performs Add Documenta- | 0..1
tion to the Software
Component

Performs Compile Atomic | 0..1
Software Compo-
nent

Performs Configure Com- | 0..1
piler Memory
Classes

Performs Configure 0..1
Memmap Allo-
cation

Performs Define Atomic | 0..1
Software Com-
ponent Internal
Behavior

Performs Define Memory | 0..1
Addressing Modes

Performs Define Partial Flat | 0..1
Map

Performs Generate Compiler | 0..1
Configuration

Performs Generate SWC | 0.1
Memory Mapping
Header

Table 3.37: Software Component Developer

AUTOSAR

Component

Role System Engineer

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Roles

Brief Description Creation, management, developement and integration of systems
within the vehicle

Description

Relation Type Related Element Mul. | Note

Performs Assign Top Level 1
Composition

Performs Create Trans- 1
former Specifica-
tion

Performs Define Communi- 1
cation Matrix

Performs Define E2E Trans- 1
former Technology

Performs Define ECU De- 1
scription

Performs Define Frames 1

Performs Define Network 1
Management

Performs Define PDU Gate- 1
way

Performs Define RTE Fan- 1
out

Performs Define Secured P 1
DUs

Performs Define Signal 1
Gateway

Performs Define Signal PD 1
Us

Performs Define Signal Path 1
Constraints

Performs Define Software 1
Component Map-
ping Constraints

Performs Define System 1
Timing

Performs Define System 1
Topology

Performs Define System 1
Variants

Performs Define System 1
View Mapping

Performs Define TP 1

Performs Define Transforma- 1
tion Technology

Performs Deploy Software 1

AUTOSAR

Relation Type Related Element Mul. | Note

Performs Derive Communi- 1
cation Needs

Performs Extend Composi- 1
tion

Performs Extract the ECU 1
Communication

Performs Flatten Software 1
Composition

Performs Generate or Adjust 1
System Flat Map

Performs Select Design 1
Time Variant

Performs Select Software 1
Component Imple-
mentation

Performs Set System Root 1

Performs Define VFB Com- | 0..1
ponent Constraints

Performs Define VFB Com- | 0..1
position ~ Compo-
nent

Performs Define VFB Con- | 0..1
stants

Performs Define VFB Top | 0..1
Level

Performs Extend Topology 0..1

Performs Extract ECU Rapid | 0..1
Prototyping Sce-
nario

Performs Extract ECU Sys- | 0..1
tem Timing

Performs Extract ECU Sys- | 0..1
tem Variant Model

Performs Extract ECU Topol- | 0..1
ogy

Performs Generate or Adjust | 0..1
ECU Flat Map

Table 3.38: System Engineer

AUTOSAR

Role Non-AUTOSAR System Integrator

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Roles

Brief Description Responsibility for the quality of the description of the non-AUTOSAR
system and its integration into the AUTOSAR process.

Description The non-AUTOSAR System Integrator is responsible for the quality of

the Description of the non-AUTOSAR System, the correct definition of
the VFB Integration Connector, and the integration of the
non-AUTOSAR system into the AUTOSAR process via the translation
of the non-AUTOSAR artifacts.

Relation Type

Related Element Mul. | Note

Performs Define VFB Inte- 1
gration Connector
Performs Translate Non- 1
Autosar Descrip-
tion to Autosar
Description
Table 3.39: Non-AUTOSAR System Integrator
Role Rapid Prototyping Engineer
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Roles
Brief Description
Description
Relation Type Related Element Mul. | Note
Performs Define Rapid Pro- 1
totyping Scenario
Performs Generate Rapid 1
Prototyping Wrap-
per
Performs Refine Rapid Pro- 1
totyping Scenario
Performs Compile Atomic | 0..1
Software Compo-
nent
Table 3.40: Rapid Prototyping Engineer
Role Safety Engineer
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Roles
Brief Description
Description Responsibility for the safety relevant steps in the AUTOSAR

development process

Relation Type

Related Element Mul. | Note

Performs Add Independence 1
Relation
Performs Allocate Safety 1

Measure

AUTOSAR

Relation Type Related Element Mul. | Note

Performs Allocate Safety Re- 1
quirement

Performs Decompose Safety 1
Requirement

Performs Define ASIL For A 1
UTOSAR Element

Performs Define Safety Mea- 1
sure

Performs Define Safety Re- 1
quirement

Performs Map Safety Re- 1
quirement to
Safety Measure

Performs Refine Safety Re- 1
quirement

Table 3.41: Safety Engineer
3.1.5 Tools

3.1.5.1 Compiler

Tool Compiler

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Guidance

Brief Description

Description

Kind

Relation Type

Related Element Mul. | Note

Used

Compile Atomic 1
Software Compo-
nent

Used Compile BSW 1
Configuration Data

Used Compile BSW 1
Core Code

Used Compile Config- 1
ured BSW

Used Compile ECU 1
Source Code

Used Compile Gener- 1
ated BSW

Used Compile Unconfig- 1
ured BSW

Used Re-compile Com- 1
ponent in ECU
context

Table 3.42: Compiler

AUTOSAR

3.1.5.2 Linker
Tool Linker
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Guidance
Brief Description
Description
Kind

Relation Type

Related Element Mul. | Note

Used

Generate ECU Ex- 1
ecutable

Used

Link ECU Code 1
after Precompile
Configuration

Used

Link ECU Code 1
during Link Time
Configuration

Used

Link ECU Code 1
during Post-Build
Time

3.1.6 Diagnostics

3.1.6.1 Work Products

Table 3.43: Linker

Deliverable Diagnostic Extract

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Diagnostics::Work Products

Brief Description

Description Generic deliverable for defining diagnostic information. It is used in
different roles (Diagnostic Extract categories).
In each role, this deliverable may contain variation points in its ARXML
artifacts which need to be bound in later steps. If such variation points
are present, the Diagnostic Description may optionally include
PredefinedVariants in order to predefine variants for later selection and
an Evaluated Variant Set.

Kind

Extended by Diagnostic Abstract System Description, Diagnostic ECU Extract,

Diagnostic System Extract

Relation Type

Related Element | Mul. | Note

Table 3.44: Diagnostic Extract

AUTOSAR

Deliverable Diagnostic Abstract System Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Diagnostics::Work Products

Brief Description

Description This deliverable represents a more or less high-level definition of
diagnostic information that can be taken as a template for creating
Diagnostic System Extract or Diagnostic ECU Extract. It corresponds
to an Diagnostic Extract with DiagnosticContributionSet of category
DIAGNOSTICS_ABSTRACT_SYSTEM_DESCRIPTION.

Kind

Extends Diagnostic Extract

Relation Type Related Element Mul. | Note
Develop Diagnos- | 0..*
tic Requirements

Produced by Develop Diagnos- 1
tic Abstract System
Description

Table 3.45: Diagnostic Abstract System Description

Deliverable Diagnostic System Extract

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Diagnostics::Work Products

Brief Description

Description This deliverable represents concrete diagnostic information for several
ECUs. It corresponds to an Diagnostic Extract with
DiagnosticContributionSet of category
DIAGNOSTICS_SYSTEM_EXTRACT.

Kind

Extends Diagnostic Extract

Relation Type

Related Element Mul. | Note

Produced by

Develop Applica- | 0..*
tion Software

Produced by

Develop Basic | 0..”
Software

Produced by

Develop Diagnos- | 0..*
tic Requirements

Consumed by

Develop Applica- | 0..*
tion Software

Consumed by

Develop Basic | 0..*
Software

Consumed by

Develop Diagnos- | O..
tic Requirements

Consumed by

Integrate Diagnos- | O..

tic Information

Table 3.46: Diagnostic System Extract

AUTOSAR

Deliverable Diagnostic ECU Extract

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Diagnostics::Work Products

Brief Description

Description This deliverable represents concrete diagnostic information for a single
ECUs. It corresponds to an Diagnostic Extract with
DiagnosticContributionSet of category
DIAGNOSTICS_ECU_EXTRACT.

Kind

Extends Diagnostic Extract

Relation Type

Related Element Mul. | Note

Produced by

Integrate Diagnos- | 1..* | complete DE:
tic Information

Produced by

Develop Diagnos- | 0..*
tic Requirements

Consumed by

Generate Base | 0..1
Ecu Configuration

Consumed by

Generate Updated | 0..1
ECU Configuration

Consumed by

Integrate Software | 0..1 | complete DE:

for ECU

Consumed by Prepare ECU Con- | 0..1
figuration

Consumed by Update ECU Con- | 0..1
figuration

Consumed by

Integrate Diagnos- | 0..* | partially filled DE:
tic Information

3.1.7 Safety

3.1.7.1 Tasks

Table 3.47: Diagnostic ECU Extract

3.1.7.1.1 Define Safety Requirement

Safety Engineer

«performs»

) «output»
«input»

o
-

Define Safety

Requirement

General Autosar Safety Requirement

Artifact

Figure 3.12: Define Safety Requirement

AUTOSAR

Task Definition

Define Safety Requirement

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Safety::Tasks

Brief Description Add Safety Requirements to work products.

Description This task creates a safety requirement and sets the corresponding

attributes such as ASIL. The allocation to an AUTOSAR element and
the mapping to a safety measure are not part of this task.

Relation Type Related Element Mul. | Note
Performed by Safety Engineer 1
Consumes General Autosar | 0..*

Artifact
Produces Safety Require- 1

ment

Table 3.48: Define Safety Requirement

3.1.7.1.2 Define Safety Measure

Safety Engineer

«performs»

«output»

0.* «input» 1
Define Safety Measure

Safety Measure

General Autosar

Artifact

Figure 3.13: Define Safety Measure

Task Definition Define Safety Measure

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Safety::Tasks

Brief Description Add Safety Measures to work products.

Description This task creates a safety measure and sets the corresponding

attributes such as ASIL. The allocation to an AUTOSAR element and
the mapping to a safety requirement are not part of this task.

Relation Type Related Element Mul. | Note
Performed by Safety Engineer 1
Consumes General Autosar | 0..%

Artifact
Produces Safety Measure 1

Table 3.49: Define Safety Measure

AUTOSAR

3.1.7.1.3 Define ASIL For AUTOSAR Element

Safety Engineer

«performs»

«input»

Define ASIL For «output» 1
AUTOSAR Element

General Autosar Artifac

Figure 3.14: Define ASIL For AUTOSAR Element

Task Definition Define ASIL For AUTOSAR Element

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Safety:: Tasks

Brief Description Provide ASIL attribute for AUTOSAR element.

Description According to the safety extensions, AUTOSAR elements can carry

ASIL attributes if they are safety relevant. This task assigns the ASIL
attribute to an AUTOSAR element.

The assignment of the ASIL attribute can also be done for safety
requirements and safety measures. This is covered by the tasks
"Define Safety Requirement" and "Define Safety Measure".

Relation Type Related Element Mul. | Note
Performed by Safety Engineer 1
Consumes General Autosar 1

Artifact
Produces General Autosar 1

Artifact

Table 3.50: Define ASIL For AUTOSAR Element

AUTOSAR

3.1.7.1.4 Refine Safety Requirement

Safety Engineer

«performs»

+Original Safety Requirement

«input» 1

+Refined Safety Requirement | m—

Refine Safety «output» 1| —
Requirement
Safety Requirement

Figure 3.15: Refine Safety Requirement

Task Definition Refine Safety Requirement

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Safety::Tasks

Brief Description Refine existing Safety Requirements by adding more detailed safety
requirements and organize them in an appropriate hierarchy.

Description If safety requirements are not detailed enough to allocate them directly

to appropriate AUTOSAR elements, it is necessary to refine them first.
The refinement will add new safety requirements which are in a
hierarchy relation to existing safety requirements.

This task adds the corresponding "REFINEMENT" relation between the
original requirement and the newly created requirements.

This task can be done on different levels, depending on the level of
details of the safety requirements.

Relation Type

Related Element Mul. | Note

Performed by

Safety Engineer 1

Consumes Safety Require- 1 Original Safety Requirement:
ment
Produces Safety Require- | 1..* | Refined Safety Requirement:

ment

Table 3.51: Refine Safety Requirement

AUTOSAR

3.1.7.1.5 Decompose Safety Requirement

Safety Engineer

«performs»

+Initial Safety Requirement

- —
«input» 1 | c—

—

+Decomposed Safety Requirements) s

Decompose Safety «output» 2

Requirement
Safety Requirement

Figure 3.16: Decompose Safety Requirement

Task Definition Decompose Safety Requirement

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Safety::Tasks

Brief Description Decompose existing Safety Requirements into independent Safety
Requirements to tailor the ASIL.

Description By ASIL decomposition it is possible to decompose a safety

requirement into two new safety requirements with potentially lower
ASILs. This can be done, if the independence (freedom of interference)
for the resulting requirements can be demonstrated. The modeling of
the corresponding INDEPENDENCE relation is covered by task "Add
Independence Relation".

This task adds the corresponding "DECOMPOSITION" reference.

Relation Type

Related Element Mul. | Note

Performed by

Safety Engineer 1

Consumes Safety Require- 1 Initial Safety Requirement:
ment

Produces Safety Require- 2 Decomposed Safety Requirements:
ment

Table 3.52: Decompose Safety Requirement

AUTOSAR

3.1.7.1.6 Allocate Safety Measure

1.%

Safety Engineer

«performs»

«input» «input»

+Allocated Elements

1
+Allocated Safety Measure

0..*

General
Autosar Artifact

«output»

Allocate Safety «output» 0.1
Measure

Safety Measure

Figure 3.17: Allocate Safety Measure

Task Definition Allocate Safety Measure

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Safety::Tasks

Brief Description Allocate Safety Measure to AUTOSAR elements.

Description Safety measures which are safety mechanisms realized in AUTOSAR

are allocated to AUTOSAR elements in order to describe what
elements are involved in the provision of a safety measure. This task
adds the corresponding "ALLOCATION" reference. The reference can
be contained by the AUTOSAR element or by the safety measure.

The allocation can be done on different levels, depending on the
granularity of the safety measures and the availability of the
appropriate elements in the model.

Relation Type Related Element Mul. | Note

Performed by Safety Engineer 1

Consumes Safety Measure 1

Consumes General Autosar | 1.*
Artifact

Produces Safety Measure 0..1 | Allocated Safety Measure:

Produces General Autosar | 0..* | Allocated Elements:
Artifact

Table 3.53: Allocate Safety Measure

AUTOSAR

3.1.7.1.7 Allocate Safety Requirement

Safety Engineer

«performs»

«input» «input»

+Allocated Elements

1
> +Allocated Requirement

General Autosar
Artifact

«output» Allocate Safety «output» 0.1
Requirement

Safety Requirement

Figure 3.18: Allocate Safety Requirement

Task Definition Allocate Safety Requirement

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Safety::Tasks

Brief Description Allocate Safety Requirement to AUTOSAR elements.

Description Safety requirements are allocated to AUTOSAR elements in order to

fulfill the needs of ISO 26262. By this allocation, AUTOSAR elements
obtain their ASIL attribute (if not defined e.g. during previous
development of the element).

This task adds the corresponding allocation reference to the AUTOSAR
element. The reference can be contained by the AUTOSAR element or
by the safety requirement.

The allocation can be done on different levels, depending on the
granularity of the safety requirements and the availability of the
appropriate elements in the model.

Relation Type Related Element Mul. | Note

Performed by Safety Engineer 1

Consumes Safety Require- 1
ment

Consumes General Autosar | 1..*
Artifact

Produces Safety Require- | 0..1 | Allocated Requirement:
ment

Produces General Autosar | 0..* | Allocated Elements:
Artifact

Table 3.54: Allocate Safety Requirement

AUTOSAR

3.1.7.1.8 Map Safety Requirement to Safety Measure

«input»

Safety Requirement

«output»

Map Safety
Requirement to
Safety Measure

Safety Engineer

«performs»

«input» 1

«output» 0.1

Safety Measure

Figure 3.19: Map Safety Requirement to Safety Measure

Task Definition Map Safety Requirement to Safety Measure

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Safety::Tasks

Brief Description Map Safety Requirements to Safety Measures

Description The mapping relates safety requirements with safety measures. This

task creates the corresponding MAPS_TO relation. The mapping
relation can either be contained by the safety requirement or by the

safety measure.

The mapping can be done on different levels, depending on the
granularity of the safety requirements and the safety measures.

Relation Type Related Element Mul. | Note
Performed by Safety Engineer 1
Consumes Safety Measure 1
Consumes Safety Require- 1

ment
Produces Safety Measure 0..1
Produces Safety Require- | 0..1

ment

Table 3.55: Map Safety Requirement to Safety Measure

AUTOSAR

3.1.7.1.9 Add Independence Relation

Safety Engineer

«performs»

«input» 1.

+Linked Requirement

Add Independence «output» 1.%

Relation
Safety Requirement

Figure 3.20: Add Independence Relation

Task Definition Add Independence Relation

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Safety::Tasks

Brief Description Add Independence relation to decomposed requirements.

Description This task establishes the INDEPENDENCE relation between

requirements. The relation is established between a decomposed
requirement and a requirement which express a means to achieve
freedom from interference for the two requirements into which the
decomposed requirement is decomposed by the task Decompose
Safety Requirement.

Obviously, this task is processed in the context of the decomposition of
safety requirements.

Relation Type Related Element Mul. | Note

Performed by Safety Engineer 1

Consumes Safety Require- | 1.7
ment

Produces Safety Require- | 1..* | Linked Requirement:
ment

Table 3.56: Add Independence Relation

AUTOSAR

3.1.7.2 Work Products

3.1.7.2.1 Safety Extensions

Safety Extensions

«SPEM_Aggregation»

«SPEM_Aggregation»
Safety Requirement

o
*

Safety Measure

VFB Safety Extensions Software Component Safety System Safety Extensions

Extensions

Figure 3.21: Safety Extensions

Deliverable Safety Extensions

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Safety::Work Products

Brief Description Safety Extensions

Description This element represents an abstract deliverable containing all safety
relevant artifacts. Several specializations of this deliverable are used to
demonstrate the handling of safety extensions in specific development
activities.
The explicit separation of the safety information from the AUTOSAR
models allows an independent exchange and processing of them.

Kind Delivered

Extended by Software Component Safety Extensions, System Safety Extensions, V
FB Safety Extensions

Relation Type Related Element Mul. | Note

Aggregates Safety Measure 0.x

Aggregates Safety Require- | 0..*
ment

Table 3.57: Safety Extensions

AUTOSAR

Deliverable VFB Safety Extensions

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Safety::Work Products

Brief Description Vfb Safety Extensions

Description This deliverable contains all safety information related to VFB
elements.

Kind Delivered

Extends Safety Extensions

Relation Type

Related Element Mul. | Note

Produced by

Define VFB Safety 1
Information

Consumed by

Define Software 1
Component Safety
Information

Consumed by

Define System 1

Safety Information

Table 3.58: VFB Safety Extensions

Deliverable Software Component Safety Extensions

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Safety::Work Products

Brief Description Software Component Safety Extensions

Description This deliverable contains all safety information related to software
components.

Kind Delivered

Extends Safety Extensions

Relation Type

Related Element Mul. | Note

Produced by

Define Software 1
Component Safety
Information

Consumed by

Define System 1
Safety Information

Table 3.59: Software Component Safety Extensions

Deliverable System Safety Extensions

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Safety::Work Products

Brief Description System Safety Extensions

Description This deliverable contains all safety information related to system
elements (see Deliverable "System Description” for more details).

Kind Delivered

Extends Safety Extensions

Relation Type

Related Element Mul. | Note

Produced by

Define System 1
Safety Information

Table 3.60: System Safety Extensions

AUTOSAR

3.1.7.2.2 Safety Requirement

Artifact

Safety Requirement

Package

AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Safety::Work Products

Brief Description

Safety Requirement

Description

This artifact represents a safety requirement and the corresponding
ASIL attribute. 1ISO 26262 defines a hierarchy of safety requirements:
safety goals, technical, hardware and software. Furthermore, it might
be the case that safety requirements are specified outside the
AUTOSAR model (external) and are only referenced. Thus, the safety
requirement can have one of the following categories:

e SAFETY_GOAL
o SAFETY_FUNCTIONAL

e SAFETY_TECHNICAL
SAFETY_SOFTWARE
SAFETY_HARDWARE
e SAFETY_EXTERNAL

For details refer to ISO 26262-3, 4, 9 and TPS_SafetyExtensions

document.

Kind

AUTOSAR XML

Relation Type

Related Element

Mul.

Note

Aggregated by

Safety Extensions

0.”

Produced by

Decompose Safety
Requirement

Decomposed Safety Requirements:

Produced by

Define Safety Re-
quirement

Produced by

Add Independence
Relation

1.7

Linked Requirement:

Produced by

Refine Safety Re-
quirement

1.*

Refined Safety Requirement:

Produced by

Allocate Safety Re-
quirement

0..1

Allocated Requirement:

Produced by

Map Safety Re-
quirement to
Safety Measure

0..1

Consumed by

Allocate Safety Re-
quirement

Consumed by

Decompose Safety
Requirement

Initial Safety Requirement:

Consumed by

Map Safety Re-
quirement to
Safety Measure

Consumed by

Refine Safety Re-
quirement

Original Safety Requirement:

AUTOSAR

Relation Type

Related Element Mul. | Note

Consumed by

Add Independence | 1..*
Relation

Use meta model element

StructuredReq 1

Table 3.61: Safety Requirement

3.1.7.2.3 Safety Measure

Artifact Safety Measure
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Safety::Work Products
Brief Description Safety Measure
Description This artifact represents a safety measure. A safety measure is an
activity or solution to avoid systematic failures and to detect random
hardware failures or control failures (see ISO 26262).
The safety measure can have one of the following categories:
e SAFETY_MEASURE
e SAFETY_MECHANISM
For further details refer to TPS_SafetyExtensions document.
Kind AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

Safety Extensions 0.x

Produced by

Define Safety Mea- 1
sure

Produced by

Allocate Safety | 0..1 | Allocated Safety Measure:
Measure

Produced by

Map Safety Re- | 0..1
quirement to
Safety Measure

Consumed by

Allocate Safety 1

Measure

Consumed by Map Safety Re- 1
quirement to
Safety Measure

Use meta model element | TraceableText 1

Table 3.62: Safety Measure

3.2 \Virtual Functional Bus

This chapter contains the definition of work products and tasks used for the develop-
ment of a VFB system. For the definition of the relevant meta-model elements refer
to [5], for the VFB concepts refer to [4].

AUTOSAR

3.2.1 Tasks
3.2.1.1 Define VFB Top Level
—A o
— omponent
— 0..*
= " /
Cof:lgonent Ninput» «performs» pesaner
—
= N\
— Define VFB Top Level
— | «input» «outputs 77
VFB Composition Component
VFB Top Level System Composition
«performs»
0.1
System Engineer
Figure 3.22: Task Define VFB Top Level
Task Definition Define VFB Top Level
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define the top level VFB composition of a concrete system.
Description Define the top level composition of a VFB system.
Relation Type Related Element Mul. | Note
Performed by Software Compo- | 0..1
nent Designer
Performed by System Engineer 0..1
Consumes VFB Interfaces 1.*
Consumes VFB Types 1.*
Consumes VFB Atomic Soft- | 0..*
ware Component
Consumes VFB Composition | 0..*
Component
Consumes VFB Modes 0.”
Consumes VFB Non AUTOSA | 0..*
R Component
Consumes VFB Parameter | 0..*
Component
Produces VFB Top Level 1
System Composi-
tion

Table 3.63: Define VFB Top Level

AUTOSAR

3.2.1.2 Define VFB Composition Component

VFB AUTOSAR Standard Package

0..1
\ 0..1 [System Engineer 1

«performs» «performs»

Software Component Designer

([

1.*
VFB Interfaces \
T\
- «input»

/«input»
0..*

«input»

«input»

[l

VFB Types
P «output» 1

Define VFB
Composition
Component

VFB Composition Component

(il

«input»

«input»

VFB Atomic Softwarg“ZComponent /

0.¥ s 0.x

VFB Modes

VFB Non AUTOSAR Component g Parameter Component

Figure 3.23: Task Define VFB Composition Component

Task Definition Define VFB Composition Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define a Composition of VFB Software Components, i.e. a
ComponentTypes which contains other Component Types.

Description Define a Composition of VFB Software Components, i.e. a

ComponentType which contains other Component Types. Iteration of
this task can create a complete VFB system without the Atomic
Software Components itself.

Relation Type Related Element Mul. | Note
Performed by Software Compo- 1
nent Designer
Performed by System Engineer 0..1
Consumes VFB Interfaces 1.7
Consumes VFB Types 1.7
Consumes VFB AUTOSAR | 0..1 | Use port blueprints in order to create
Standard Package ports with standardized application
interfaces.
Consumes VFB Atomic Soft- | 0..*
ware Component
Consumes VFB Composition | 0..*
Component

AUTOSAR

Relation Type Related Element Mul. | Note
Consumes VFB Modes 0.x
Consumes VFB Non AUTOSA | 0..*
R Component
Consumes VFB Parameter | 0..*
Component
Produces VFB Composition 1
Component

3.2.1.3 Extend Composition

Table 3.64: Define VFB Composition Component

System Engineer 1

«performs»

+initial system
T
«input»

+extended system

1 «output»

VFB System

Figure 3.24:

Extend Composition

>

VFB Types

«out] ut»

«output»

Task Extend

«output»

\ «Ouuw\
\ 0..
0..*

0.*
VFB Interfaces

—
0.*

/ VFB Modes

«output» 0.%

VFB Atomic Software Component

VFB Parameter Component

«output» 0..*

N

VFB Non AUTOSAR Componeni

VFB Composition Component

VFB Software Component Mapping
Constraints

Composition

AUTOSAR

Task Definition Extend Composition

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Extend a software composistion with further compositions and atomic
software components.

Description This tasks describes the refinement of a delivered VFB System by

extending an existing composition with further sub-elements, which
could be software components (Atomic Software Components as well
as Compositions), connectors or port groups, plus the related
interfaces, data types and modes.

The main use case is the refinement of the VFB description of a
sub-system: New elements are added but the original delivery is not
changed.

Relation Type

Related Element Mul. | Note

Performed by System Engineer 1
Consumes VFB System 1 initial system:
Produces VFB System 1 extended system:
Produces VFB Atomic Soft- | 0..*
ware Component
Produces VFB Composition | 0..*
Component
Produces VFB Interfaces 0.x
Produces VFB Modes 0.”
Produces VFB Non AUTOSA | 0..*
R Component
Produces VFB Parameter | 0..*
Component
Produces VFB Software | 0..*
Component Map-
ping Constraints
Produces VFB Types 0.x

Table 3.65: Extend Composition

AUTOSAR

3.2.1.4 Define VFB Component Constraints

VFB Atomic Software
Component

0..1 / Software
Component 0.1
Designer System Engineer

(/perfomw/«performs»

«output»

«input»

Define VFB Component Constraints

VFB Software Component
Mapping Constraints

Figure 3.25: Task Define VFB Component Constraints

Task Definition Define VFB Component Constraints
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define which components need to be deployed together, and which
need to be deployed separately.
Description Define which components need to be deployed together, and which
need to be deployed separately, independent of any topology.
Relation Type Related Element Mul. | Note
Performed by Software Compo- | 0..1
nent Designer
Performed by System Engineer 0..1
Consumes VFB Atomic Soft- | 2..*
ware Component
Consumes VFB Top Level 1
System Composi-
tion
Consumes VFB Composition | 1..*
Component
Produces VFB Software | 1..*
Component Map-
ping Constraints

Table 3.66: Define VFB Component Constraints

AUTOSAR

3.2.1.5 Define VFB Application Software Component

VFB AUTOSAR Standard Package

VFB Interfaces

«inw\

VFB Types

Software Component Designer

«performs»

«output» 1

Define VFB Application Software
Component

VFB Atomic Application Software
Component

Figure 3.26: Task Define VFB Application Software Component

Task Definition Define VFB Application Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define an ApplicationSoftwareComponentType on VFB level
Description Define an ApplicationSwComponentType on VFB level. (i.e. without

Internal Behavior and Implementation).

Relation Type Related Element Mul. | Note
Performed by Software Compo- 1
nent Designer
Consumes VFB Interfaces 1.7
Consumes VFB Types 1.*
Consumes VFB AUTOSAR | 0..1 | Use port blueprints in order to create
Standard Package ports with standardized application
interfaces.
Consumes VFB Modes 0.”
Produces VFB Atomic Ap- 1
plication Software
Component

Table 3.67: Define VFB Application Software Component

AUTOSAR

3.2.1.6 Define VFB Sensor or Actuator Component

VFB Interfaces

VFB Types

/«input»
1.*

VFB AUTOSAR
Standard Package

S

p

1

«input»,

~
1..*\

«input»

/

\

«input»

0..*

ECU Resources Description

Software Component Designer

«performs»

«output» 1

efine VFB Sensor or Actuator
Component

VFB Sensor Actuator Component

Figure 3.27: Task Define VFB Sensor or Actuator Component

Task Definition Define VFB Sensor or Actuator Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define a VFB Sensor or Actuator Comnponent.

Description Define a SensorActuatorSwComponentType on VFB level. (i.e. without

Internal Behavior and Implementation). In addition to defining the
ports, references to the required sensor/actuator hardrware shall be

ator Component

specified.
Relation Type Related Element Mul. | Note
Performed by Software Compo- 1
nent Designer
Consumes VFB Interfaces 1.*
Consumes VFB Types 1.7
Consumes VFB AUTOSAR | 0..1 | Use port blueprints in order to create
Standard Package ports with standardized application
interfaces.
Consumes ECU Resources | 0..”
Description
Produces VFB Sensor Actu- 1

Table 3.68: Define VFB Sensor or Actuator Component

AUTOSAR

3.2.1.7 Define VFB Parameter Component

VFB AUTOSAR Standard Package

Calibration Engineer

L «input»

1.5

VFB Interfaces «input» «performs»

I

1. «input» «output» 1

Define VFB Parameter Component
VFB Types

VFB Parameter Component

Figure 3.28: Task Define VFB Parameter Component

Task Definition Define VFB Parameter Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define a VFB Parameter Component.
Description Define a VFB Parameter Component.
Relation Type Related Element Mul. | Note
Performed by Calibration Engi- 1
neer
Consumes VFB Interfaces 1.*
Consumes VFB Types 1.*
Consumes VFB AUTOSAR | 0..1 | Use port blueprints in order to create
Standard Package ports with standardized application
interfaces.
Produces VFB Parameter 1
Component

Table 3.69: Define VFB Parameter Component

AUTOSAR

3.2.1.8 Define ECU Abstraction Component

(i

VFB AUTOSAR\Standard Package

«input»

«input»

VFB Interfaces

«input»

il
\

«input»

VFB Types

VFB Modes

Software Component Designer

«performs»

«output»

Define ECU Abstraction Component

ECU Resources Description

ECU Abstraction Software
Component

Figure 3.29: Task Define ECU Abstraction Component
Task Definition Define ECU Abstraction Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define an EcuAbstractionSoftwareComponentType on VFB level.
Description Define a EcuAbstractionSwComponentType on VFB level. (i.e. without

Internal Behavior and Implementation). In addition to the defining the
ports, references to required ECU or processor hardware elements
shall be specified.

Relation Type Related Element Mul. | Note

Performed by Software Compo- 1
nent Designer

Consumes VFB AUTOSAR 1 Use port blueprints in order to create
Standard Package ports with standardized application

interfaces.

Consumes VFB Interfaces 1

Consumes VFB Types 1

Consumes ECU Resources | 0..1
Description

Consumes VFB Modes 0.x

Produces ECU Abstraction 1

nent

Software Compo-

Table 3.70: Define ECU Abstraction Component

AUTOSAR

3.2.1.9 Define Complex Driver Component

VFB AUTOSAR
Standard Package

0.1

Software Component Designer

«input»

. 4

«performs»

«input»
VFB Interfaces \
. «output»

— «input» Define Complex Driver Component
— N

—

—

—

«input» «input»

Complex Driver Component

VFB Modes ECU Resources Description

Figure 3.30: Task Define Complex Driver Component

Task Definition Define Complex Driver Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define a ComplexDeviceDriverSwComponentType on VFB level.

Description Define a ComplexDeviceDriverSwComponentType on VFB level. (i.e.
without Internal Behavior and Implementation). In addition to the
defining the ports, references to the required ECU or processor
hardware elements shall be specified.

Relation Type Related Element Mul. | Note

Performed by Software Compo- 1
nent Designer

Consumes VFB Interfaces 1.7

Consumes VFB Types 1.7

Consumes VFB AUTOSAR | 0..1 | Use port blueprints in order to create
Standard Package ports with standardized application

interfaces.

Consumes ECU Resources | 0..*
Description

Consumes VFB Modes 0.”

Produces Complex Driver 1
Component

Table 3.71: Define Complex Driver Component

AUTOSAR

3.2.1.10 Define VFB NvBlock Software Component

VFB AUTOSAR

Standard
Package

VFB Modes

Software 0.1 0.1/ Basc Software
Component Designer
Designer 0.1 ECU Integrator

«performs»

«performs»
«performs»
«input»

N\

«output»

Define VFB NvBlock Software

Component
VFB NvBlock

Software
Component

Software Component Intemnal
Behavior

Figure 3.31: Task Define VFB NvBlock Software Component
Task Definition Define VFB NvBlock Software Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description
Description Define an NvBlockSwComponentType on VFB level. The

NvBlockSwComponentType defines non volatile data which can be
shared between SwComponentPrototypes. The non volatile data of the
NvBlockSwComponentType are accessible via provided and required
ports.

Relation Type

Related Element Mul. | Note

Performed by

Basic Software De- | 0..1
signer

Performed by

ECU Integrator 0..1

Performed by

Software Compo- | 0..1
nent Designer

Consumes VFB Interfaces 1.*
Consumes VFB Types 1.7
Consumes VFB AUTOSAR | 0..1
Standard Package
Consumes Software Compo- | 0..* | This input is required to collect the
nent Internal Be- requirements for the NvBlockNeeds from
havior the using application software.
Consumes VFB Modes 0.”

AUTOSAR

Relation Type Related Element Mul. | Note

Produces VFB NvBlock Soft- 1
ware Component

Table 3.72: Define VFB NvBlock Software Component

3.2.1.11 Define Wrapper Components to Integrate Legacy Software

.1
VFB AUTOSAR 0

Standard
Package

«input»
0.% Software
g Component
\ Designer

«performs»

VFB Interfaces
«inpul»\ /

. «input»

«output» 1

-7

Define Wrapper Components to

VFB Modes Integrate Legacy Software
«input»

/ Component
0..*

> <
cT
Jw
o

g
> 35
o

VFB Types

Figure 3.32: Task Define Wrapper Components to Integrate Legacy Software

Task Definition Define Wrapper Components to Integrate Legacy Software

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define a wrapper component used to represent legacy software that is
integrated into an AUTOSAR system.

Description Define a wrapper component used to represent legacy software that is

integrated into an AUTOSAR system. For the VFB system, this mainly
means to define the corresponding port interfaces and data elements.

Relation Type Related Element Mul. | Note

Performed by Software Compo- 1
nent Designer

Consumes VFB AUTOSAR | 0..1 | Use port blueprints in order to create
Standard Package ports with standardized application

interfaces.

Consumes VFB Interfaces 0.x

Consumes VFB Modes 0.”

Consumes VFB Types 0..”

Produces VFB Non AUTOSA 1
R Component

Table 3.73: Define Wrapper Components to Integrate Legacy Software

AUTOSAR

3.2.1.12 Define VFB Interfaces

VFB AUTOSAR
Standard Package

0.1

«performs»

«iwb\ /

«input»

[

VFB Types

Software Component Designer

Define VFB Interfaces

«output» 17x

VFB Interfaces

Figure 3.33: Task Define VFB Interfaces

Task Definition Define VFB Interfaces

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define a set of Port Interface required by a system.

Description Define a set of Port Interfaces required by a VFB system, to describe

the communication of data via SWC ports.

Relation Type Related Element Mul. | Note
Performed by Software Compo- 1
nent Designer
Consumes VFB Types 1.7
Consumes VFB AUTOSAR | 0..1 | Use standardized Port Interfaces as
Standard Package blueprints (as far as applicable) to create
the corresponding elements of the actual
project.
Produces VFB Interfaces 1.7

Table 3.74: Define VFB Interfaces

AUTOSAR

3.2.1.13 Define VFB Types

VFB AUTOSAR Standard Package

Software Component Designer

«performs»

«input»

Define VFB Types

«output»

Figure 3.34: Task Define VFB Types

copy and refine them.

Task Definition Define VFB Types

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define a set of data types required by a system, but not already
defined by AUTOSAR.

Description Define a set of Autosar Data Types and related elements as far as

visible on the VFB. Standardized types can be used as input in order to

The VFB Types will be used for specifying types of DataElements in
Sender-Receiver Portinterfaces and argument/return values of
Client-Server Portinterfaces.

This task inludes (optionally) also the creation of a VFB Data Type
mapping Set between application and implementation data types.

Relation Type Related Element Mul. | Note
Performed by Software Compo- 1
nent Designer
Consumes VFB AUTOSAR | 0..1 | Use standardized elements (e.g. Data
Standard Package Types, Compu Methods) as blueprints
(as far as applicable) to create the
corresponding elements of the actual
project.
Produces VFB Types 1.*
Produces VFB Data Type | 0..*
Mapping Set

Table 3.75: Define VFB Types

AUTOSAR

3.2.1.14 Define VFB Modes

Software Component Designer

«performs»

VFB Modes

Define VFB Modes

«output»

Figure 3.35: Task Define

VFB Modes

Task Definition Define VFB Modes

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define modes that are used by the VFB components.

Description Define modes (mode groups and the modes they contain) that are

used by the VFB components.

Relation Type

Related Element

Mul.

Note

Performed by

Software Compo-
nent Designer

1

Produces

VFB Modes

1.*

Table 3.76: Define VFB Modes

AUTOSAR

3.2.1.15 Define VFB Constants

1 / Software Component Designer

«performs»

~
0..%

«input»
VFB Data Type
Mapping Set I\N

«output»

[

Define VFB Constants

VFB Constants

«input»

e

0..*
«performs»
«performs»

VFB Types 0.1

System Engineer

Calibration Engineer

Figure 3.36: Task Define VFB Constants

Task Definition Define VFB Constants

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define one or more VFB Constants.

Description Define one or more VFB Constants as standalone artifact. Such

constants can be referred in the specification of inital values at several
places in the VFB descrption, such as port interfaces or declaration of
local parameters or variables.

Relation Type

Related Element Mul. | Note

Performed by

Software Compo- 1
nent Designer

Performed by

Calibration Engi- | 0..1
neer

Performed by

System Engineer 0..1

Consumes VFB Data Type | 0..*
Mapping Set

Consumes VFB Types 0.”

Produces VFB Constants 1.7

Table 3.77: Define VFB Constants

AUTOSAR

3.2.1.16 Define VFB Timing

VFB Interfaces

1.

VFB AUTOSAR Standard Package

G <input»
\«K

<
mn
w
[e]
o
E
o
.

VFB Atomic Software Component

1.%

ition Component

«input»

/in?ut»
*

VFB Non AUTOSAR Component

Software Component Designer

«performs»

«output» 1

Define VFB
Timing VFB Timing

«input»

VFB Parameter Component

Figure 3.37: Task Define VFB Timing

Task Definition Define VFB Timing
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define VFB Timing (TimingDescription and TimingConstraints) for an
Atomic Software Component or a Composition Component
Description Define VFB Timing (TimingDescription and TimingConstraints) for an
Atomic Software Component or a Composition Component
Relation Type Related Element Mul. | Note
Performed by Software Compo- 1
nent Designer
Consumes VFB Composition | 1..*
Component
Consumes VFB Interfaces 1.7
Consumes VFB AUTOSAR | 0..1
Standard Package
Consumes VFB Atomic Soft- | 0..*
ware Component
Consumes VFB Non AUTOSA | 0.7
R Component
Consumes VFB Parameter | 0..*
Component
Produces VFB Timing 1

Table 3.78: Define VFB Timing

AUTOSAR

3.2.1.17 Define VFB Variants

VFB

1.x
Composition
Component

«input»

«input»

\

VFB Atomic Software Component

«performs»

Software
Component
Designer

[

System Constant Value Set

«inoutput»

«inoutput»

il

«inputr >

Define VFB Variants

VFB Non AUTOSAR Component «input»
:/
—

—

—

—

«input»

o
o
i

VFB Interfaces ~ VFB Timing

Postbuild Variant Set

«output»,

N

0.%

i)

«output»

Predefined Variant

[[m

Evaluated Variant Set

Figure 3.38: Task Define VFB Variants

Task Definition Define VFB Variants

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define variants for the artifacts of a VFB system.

Description Define one or more variants for the artifacts of a VFB system. Defining

one variant means creating a Predefined Variant related to the settings
used by the VFB elements in scope. To do so, this task can make use
of existing System Constant Value Sets and/or Postbuid Variant Sets or

define new ones.

Several Predefined Variants can be combined to one Evaluated Variant

Set.
Relation Type Related Element Mul. | Note
Performed by Software Compo- 1
nent Designer
Consumes VFB Top Level 1
System Composi-
tion
Consumes VFB Composition | 1..*
Component
Consumes VFB Timing 0..1
Consumes VFB Atomic Soft- | 0..*

ware Component

AUTOSAR

Relation Type Related Element Mul. | Note

Consumes VFB Interfaces 0.

Consumes VFB Non AUTOSA | 0..*
R Component

Consumes VFB Parameter | 0..*
Component

In/out Postbuild Variant | 0..*
Set

In/out System Constant | 0..*
Value Set

Produces Evaluated Variant | 0..*
Set

Produces Predefined Variant 0.

Table 3.79: Define VFB Variants

3.2.1.18 Define VFB Integration Connector

Non-AUTOSAR
System Integrator

«performs»

1 «input»
VFB System

—
—
«output»] | e—
—

Define VFB Integration
Connector

Integration
Connector

Description of a
Non-AUTOSAR System

Figure 3.39: Task Define VFB Integration Connector

AUTOSAR

Task Definition Define VFB Integration Connector

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define how the non-AUTOSAR system shall be connected to the
AUTOSAR system.

Description The VFB Integration Connector is used to represent the connection of

the non-AUTOSAR system and the AUTOSAR system. Its contents
and format depend on the way in which the non-AUTOSAR system is

defined.

To define the VFB Integration Connector the requirements on the
connection are brought into the format of the Integration Connector.
When the requirements are defined in a proprietary format the have to
be translated to the format of the Integration Connector. When they are
only informally defined or are even more tangible the format of the
Integration Connector can be used to elicit, formalize, and analyze the
connection requirements.

Relation Type

Related Element

Mul.

Note

Performed by

Non-AUTOSAR
System Integrator

1

Consumes Description of a 1
Non-AUTOSAR
System

Consumes VFB System 1

Produces Integration Con- 1
nector

Predecessor Translate Non- 1
Autosar Descrip-
tion to Autosar
Description

Table 3.80: Define VFB Integration Connector

AUTOSAR

3.2.1.19 Translate Non-AUTOSAR Description to AUTOSAR Description

Non-AUTOSAR
System

Figure 3.40: Task Translate Non-AUTOSAR Description to AUTOSAR Descrip-

Description

Translate Non-Autosar
Description to Autosar

«performs»

«output»

«input»

Non-AUTOSAR System
Integrator

+Integrated VFB System

PR

+Initial VFB System VFB System

tion
Task Definition Translate Non-Autosar Description to Autosar Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Translate the description of the non-AUTOSAR system into a
semantically equivalent AUTOSAR description (template).
Description In order to incorporate the development of the non-AUTOSAR system

into the AUTOSAR process the Description of the non-AUTOSAR
system must be translated into an AUTOSAR format. Typically this will
be achieved by a translation tool, although in principle it might also be

done manually.

Relation Type

Related Element

Mul.

Note

Performed by

Non-AUTOSAR
System Integrator

1

Consumes Description of a 1
Non-AUTOSAR
System
Consumes Integration Con- 1
nector
Consumes VFB System 1 Initial VFB System:
Produces VFB System 1 Integrated VFB System:

Table 3.81: Translate Non-Autosar Description to Autosar Description

AUTOSAR

3.2.2 Work Products

3.2.2.1 VFB System

See separate diagram
for further
aggregations.

VFB System

«SPEM_Aggregation»

«extends» «extends»

VFB Top Level
System Composition

«extends»

Overall VFB
System

VFB System
Extract

«SPEM_Aggregation»
«SPEM_Aggregation»

«SPEM_Aggregation»

(1'%

System View
0.* Mapping

VFB Composition
Component

Figure 3.41: Overview on the different roles of Deliverables based on VFB

ECU Extract of
VFB System

«SPEM_Aggregation»

System

AUTOSAR

(Il

0.%

I

Predefined Variant

0..*

[l

Evaluated Variant Set

(Il

Postbuild Variant Set

N

0..x
System Constant \%\
«SPEM_Agaition»

«SPEM_Aggregation»7\

VFB Interfaces VFB Modes VFB Types VFB Data Type Mapping Set
_— _— — _—
0..* \ 0.* 0.* 0.*
«SPEM_Aggregation»

——«SPEM_Aggregation»

«SPEM_Aggregation»

VFB Top Level

«SPEM_Aggregation» System Composition

«SPEM_Aggregation»
«SPEM_Aggregation» «SPEM_Aggregation»

«SPEM_Aggregation

-— «SPEM_AgC ion»

— VFB System

VFB Software
Component Mapping
Constraints

«SPEM_Aggregation»

«SPEM_AggregatioR»

«SPEM_Aggregation» «SPEM_Aggregation»

—
—
«SPEM_A ion»
) —
«SPEM_Aggregation» «SPEM_Aggregation» —
o 0. 0.* 0. 0. 0.* VFB Non AUTOSAR
Component
— — — —
_— _—
—
—
—
—
VEB Atomic VFB Sensor ECU Abstraction Complex Driver VFB Parameter vEB NvBlock
Application Actuator Software Component Component Software
Software Component Component Component
Component

Figure 3.42: Structure of Deliverable VFB System

Deliverable VFB System

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work
Products

Brief Description Complete VFB view of a concrete system.

Description Delivery of a VFB view of a concrete system. i.e. the top level
composition and all nested compositions and components. This
element is the basis for several extensions according to the scope of
the VFB which can be an Overall System, a System Extract or an ECU
Extract.

This deliverable may contain variation points in its XML artifacts which
need to be bound in later steps of the methodology. If such variation
points are present, the delivered VFB system may optionally include
PredefinedVariants in order to predefine variants for later selection and
an Evaluated Variant Set.

Kind Delivered

Extended by ECU Extract of VFB System, Overall VFB System, VFB System Extract

Relation Type

Related Element | Mul.

Note

AUTOSAR

Relation Type Related Element Mul. | Note
Aggregates Consistency 1 Correlation between a group of
Needs RunnableEntitys and a group of
DataPrototypes.
Aggregates VFB Top Level 1
System Composi-
tion
Aggregates Complex Driver | 0..*
Component
Aggregates ECU Abstraction | 0..”
Software Compo-
nent
Aggregates Evaluated Variant | 0..*
Set
Aggregates Postbuild Variant | 0..”
Set
Aggregates Predefined Variant 0.*
Aggregates System Constant | 0..*
Value Set
Aggregates VFB Atomic Ap- | 0.
plication Software
Component
Aggregates VFB Data Type | 0.
Mapping Set
Aggregates VFB Interfaces 0.x
Aggregates VFB Modes 0.x
Aggregates VFB Non AUTOSA | 0..*
R Component
Aggregates VFB NvBlock Soft- | 0..”
ware Component
Aggregates VFB Parameter | 0..*
Component
Aggregates VFB Sensor Actu- | 0..*
ator Component
Aggregates VFB Software | 0..*
Component Map-
ping Constraints
Aggregates VFB Types 0.x
Produced by Extend Composi- 1 extended system:
tion
Produced by Translate Non- 1 Integrated VFB System:
Autosar Descrip-
tion to Autosar
Description

AUTOSAR

Relation Type

Related Element

Mul.

Note

Consumed by

Define Partial Flat
Map

Various parts of a given VFB system will
be used as input:

o Refer to parameters and variables
in port interfaces and their data
types.

e In order to define unique names,
also other the component
definitions not in the scope of the
partial flat map might be checked.

e Set a link to the context of the Flat
Map, e.g. a VFB Composition.

Consumed by

Define VFB Inte-
gration Connector

Consumed by

Define VFB Safety
Information

Consumed by

Extend Composi-
tion

initial system:

Consumed by

Extract the ECU
Communication

Need as input in order to set up the Data
Mapping.

Consumed by

Generate or Adjust
System Flat Map

Consumed by

Translate Non-
Autosar Descrip-
tion to Autosar
Description

Initial VFB System:

Table 3.82: VFB System

3.2.2.2 Overall VFB System

Description

Deliverable Overall VFB System

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work
Products

Brief Description

Description Deliverable containing an overall VFB description. It must contain the
VFB Top Level System Composition of the complete system.

Kind Delivered

Extends VFB System

Relation Type Related Element Mul. | Note

Aggregated by Abstract System 1
Description

Aggregated by System Configura- 1
tion Description

Aggregated by System Constraint | 0..1

AUTOSAR

ECU Flat Map

Relation Type Related Element Mul. | Note
Aggregates System View Map- | 0..1 | The Overall VFB System aggregates a
ping potential mapping to the abstract or
functional view of the system.

Aggregates VFB Composition | 0..* | Further compositions below the top level

Component composition.

Produced by Develop a VFB 1

System Descrip-
tion
Consumed by Define Software 1
Component Safety
Information
Consumed by Develop Applica- 1 The application software needs to refer
tion Software to the relevant elements of the overall
VFB system such as Software
Component Types, Port Interfaces and
Data Types.

Consumed by Develop System 0..1 | Usually the System refers to elements of
an overall VFB descriptions. But for the
description of a legacy system, this input
might be empty.

Consumed by Flatten Software | 0..1 | Read relevant elements starting from

Composition VFB Top Level System Composition in
case transformation starts with the full
system.

Consumed by Generate or Adjust | 0..1 | Used to set the upstream references in

case one starts from a complete system.

Table 3.83: Overall VFB System

3.2.2.3 VFB System Extract

Deliverable VFB System Extract

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work
Products

Brief Description The VFB description for the partial system.

Description The VFB description for a sub-system. It contains only those software
components which belong to this sub-system. It should contain a VFB
Top Level System Composition which has unconnected ports reflecting
the connection points to the outer system.

Kind Delivered

Extends VFB System

Relation Type Related Element Mul. | Note

Aggregated by System Extract 1

Aggregates System View Map- | 0..1 | The VFB System Extract aggregates a
ping potential mapping to the abstract or

functional view of the system.
Aggregates VFB Composition | 0..* | Further compositions below the top level

Component

composition.

AUTOSAR

ECU Flat Map

Relation Type Related Element Mul. | Note
Consumed by Flatten Software | 0..1 | Read relevant elements starting from
Composition VFB Top Level System Composition in
case transformation starts from the
system extract.
Consumed by Generate or Adjust | 0..1 | Used to set the upstream references in

case one starts from a system extract.

3.2.2.4 VFB Top Level System Composition

Table 3.84: VFB System Extract

Artifact VFB Top Level System Composition

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work
Products

Brief Description Highest Level Composition consisting of all components that make up
the Virtual Functional Bus.

Description Highest Level Composition consisting of all components and their
connectors that make up the VFB System Deliverable.
This composition is not allowed to have ports if it represents the top
level composition of an Overall VFB System, but it may have
unconnected ports (and port groups) if it is at the top of a System
Extract or ECU Extract.

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Aggregated by VFB System 1

Produced by

Define VFB Top
Level

1

Consumed by

Assign Top Level
Composition

Consumed by

Define Software
Component Map-
ping Constraints

Consumed by

Define VFB Com-
ponent Constraints

Consumed by

Define VFB Vari-
ants

Consumed by Deploy Software 1
Component

Use meta model element | CompositionSw 1
ComponentType

3.2.2.5 VFB Composition Component

Table 3.85: VFB Top Level System Composition

AUTOSAR

Level

Artifact VFB Composition Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work
Products

Brief Description Describes a set of VFB CompositionTypes.

Description Describes a set of CompositionComponentTypes, which may be
nested. A VFB composition aggregates component types to
encapsulate and abstract subsystem functionality. Compositions
contain instances of components (other compositions and atomic
components), as well as the connectors between them.

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Aggregated by Delivered Atomic | 0..* | In case the delivered atomic components
Software Compo- make up one or more VFB Compositions,
nents the composition description(s) shall be

included in the delivery.

Aggregated by Overall VFB Sys- | 0..* | Further compositions below the top level
tem composition.

Aggregated by VFB System Ex- | 0..* | Further compositions below the top level
tract composition.

Produced by Define VFB Com- 1
position Compo-
nent

Produced by Extend Composi- | 0..*
tion

Consumed by Set System Root 1 Only the reference to the artifact is

needed

Consumed by Define VFB Com- | 1..*
ponent Constraints

Consumed by Define VFB Timing | 1..*

Consumed by Define VFB Vari- | 1..*
ants

Consumed by Define VFB Com- | 0..”
position ~ Compo-
nent

Consumed by Define VFB Top | 0.*

Use meta model element | CompositionSw 1
ComponentType

Use meta model element | SwComponent 1
Type

Table 3.86: VFB Composition Component

AUTOSAR

3.2.2.6 VFB AUTOSAR Standard Package

VFB AUTOSAR Standard Package

«SPEM_Ag regam:\
«SPEM Aggregatlon \ «SPEM Aggregatlon

AUTOSAR Specification of ’;ULSSQRT . AUTOSAR
Application Interfaces andard Types Platform Types

~
._.

Figure 3.43: Structure of Deliverable VFB AUTOSAR Standard Package

Deliverable VFB AUTOSAR Standard Package

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work
Products

Brief Description Package with standardized AUTOSAR DataTypes, Portinterfaces,
ComponentTypes (may include compositions), etc. on VFB level.

Description Package with standardized AUTOSAR elements needed on VFB level.
This deliverable is released by AUTOSAR and is readonly within the
methodology.

Kind Delivered

Relation Type Related Element Mul. | Note

Aggregates AUTOSAR Plat- 1
form Types

Aggregates AUTOSAR Specifi- 1
cation of Applica-
tion Interfaces

Aggregates AUTOSAR Stan- 1
dard Types

Consumed by Define ECU 1 Use port blueprints in order to create
Abstraction Com- ports with standardized application
ponent interfaces.

Consumed by

Develop a VFB | 1.~
System Descrip-

tion
Consumed by Develop an Ab-| 1.*
stract System
Description
Consumed by Define Atomic | 0..1 | Use standardized elements (e.g. Data

Software Com- Types) as blueprints (as far as
ponent Internal applicable) to create the corresponding
Behavior elements of the actual project.

AUTOSAR

Relation Type Related Element Mul. | Note

Consumed by Define Complex | 0..1 | Use port blueprints in order to create
Driver Component ports with standardized application

interfaces.

Consumed by Define VFB Ap- | 0..1 | Use port blueprints in order to create
plication Software ports with standardized application
Component interfaces.

Consumed by Define VFB Com- | 0..1 | Use port blueprints in order to create
position Compo- ports with standardized application
nent interfaces.

Consumed by Define VFB Inter- | 0..1 | Use standardized Port Interfaces as
faces blueprints (as far as applicable) to create

the corresponding elements of the actual
project.

Consumed by Define VFB Nv | 0..1
Block Software
Component

Consumed by Define VFB Pa- | 0..1 | Use port blueprints in order to create
rameter Compo- ports with standardized application
nent interfaces.

Consumed by Define VFB Sen- | 0..1 | Use port blueprints in order to create
sor or Actuator ports with standardized application
Component interfaces.

Consumed by Define VFB Timing | 0..1

Consumed by Define VFB Types 0..1 | Use standardized elements (e.g. Data

Types, Compu Methods) as blueprints
(as far as applicable) to create the
corresponding elements of the actual
project.

Consumed by Define Wrapper | 0..1 | Use port blueprints in order to create
Components to ports with standardized application
Integrate Legacy interfaces.

Software

Consumed by Generate Atomic | 0..1
Software Com-
ponent Contract
Header Files

Consumed by Generate Compo- | 0..1
nent Header File in
Vendor Mode

Consumed by Generate Compo- | 0..1

nent Prebuild Data
Set

Table 3.87: VFB AUTOSAR Standard Package

AUTOSAR

3.2.2.7 AUTOSAR Specification of Application Interfaces

AUTOSAR

Specification of
Application Interfaces

ARElement
AtpType
Datatypes::AutosarDataType
=7
-
Ve
-
_ ARElement
Pie Units:Unit
-
-
Ve
-
- -,
- 4 -
«AtpUseMetaModelElement» -
P
e 7 ARElement
e P AtpBlueprint
/// /// AtpBlueprintable
7 «AtpUseMetaModelElement» /,7 ComputationMethod::
// -7 - CompuMethod.
~ -
- -
- -
~ -
~ - -
_- «AtpUseMetaModelElement»

- - ARElement
- AtpBlueprint
——————————————————————————— AtpBlueprintable

«AtpUseMetaModelElement» =] X P P
S GlobalConstraints::DataConstr
I ~ it ~ -
[N -
N o~ T
> =~ AtpUseMetaModelElement»
AN ~_ P ~ement ARElement
S o S~ RSN AtpBlueprint
~ ~o AtpBlueprintable
N\ _ «AtpUseMetaModelElement» AtpType
N ~

\\
N ~

~

Portinterface::Portinterface

~
~

N

~ ~

~

N ~
«AtpUseMetaModelElement» \A
N

ARElement
AtpBlueprint
AtpStructureElement

PortProtoypeBlueprint::
PortPrototypeBlueprint

ARElement
AtpBlueprint
AtpBlueprintable

AtpType
Figure 3.44: The AUTOSAR Specification of Application Interfaces

Artifact AUTOSAR Specification of Application Interfaces

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work
Products

Brief Description Definitions of the AUTOSAR standard appliction interfaces.

Description This includes standardized data types, port interfaces, units, port
blueprints and example component types (including compositions) for
the design of Application Software Components.
Note that most of the content is not meant as direct input for defining a
VFB system but as so-called blueprints:
Blueprints need to be completed with company or project specific
elements (e.g. a component type defined as blueprint may need
additional ports or a data type defined as blueprint may need additional
properties).

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Aggregated by VFB AUTOSAR 1
Standard Package

Use meta model element | AutosarDataType 1

Use meta model element | CompuMethod 1

AUTOSAR

Relation Type Related Element Mul. | Note
Use meta model element | DataConstr 1
Use meta model element | Portinterface 1
Use meta model element | PortPrototype 1
Blueprint
Use meta model element | SwComponent 1
Type
Use meta model element | Unit 1

Table 3.88: AUTOSAR Specification of Application Interfaces

3.2.2.8 VFB Atomic Software Component

VFB Atomic
Software
Component

«extends»

VFB Atomic
Application Software
Component

ARElement
AtpBlueprint
AtpBlueprintable
AtpType

Conponents::SwComponentType

Components::
AtomicSwComponentType

-7

«AIpUseMeIaModeIEIenTem»

«AtpUseMetaModelElement»"

->

)

«extends» «extends»

«extends»

ECU Abstraction
Software
Component

VFB Sensor
Actuator
Component

Complex Driver
Component

Figure 3.45: The Generic Work Product VFB Atomic Software Component

Artifact VFB Atomic Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work
Products

Brief Description Description of an Atomic VFB Component.

Description The description of an Atomic Software Component Type without
Internal Behavior. Note that there are more specific artifacts extending
this one. This artifact is used to describe general use cases which are
valid for all kind of Atomic Software Components.

Kind AUTOSAR XML

Extended by Complex Driver Component, ECU Abstraction Software Component, V
FB Atomic Application Software Component, VFB Sensor Actuator
Component

Relation Type Related Element Mul. | Note

Aggregated by Delivered Atomic | 1..*

Software Compo-
nents

AUTOSAR

Relation Type Related Element Mul. | Note
Produced by Define Symbol | 0..* | symbolProps: The symbolProps attribute
Props for Types redefines the software component type
name used in the code of the RTE. This
resolves name clashes among different
software component types designed
accidentally with the same shortName.
Note that this output is a splitable
element, so it can be added later without
changing the VFB model.
Produced by Extend Composi- | 0..*
tion
Consumed by Define VFB Com- | 2..*
ponent Constraints
Consumed by Define Atomic 1
Software Com-
ponent Internal
Behavior
Consumed by Generate Atomic 1 Meth.bindingTime = SystemDesignTime
Software Com-
ponent Contract
Header Files
Consumed by Generate Compo- 1 Meth.bindingTime = SystemDesignTime
nent Header File in
Vendor Mode
Consumed by Generate Compo- 1 Meth.bindingTime =
nent Prebuild Data CodeGenerationTime
Set
Consumed by Select Software | 1..*
Component Imple-
mentation
Consumed by Define Consis- | 0..* | The description of an
tency Needs AtomicSoftwareComponentType without
InternalBehavior.
Consumed by Define VFB Com- | 0..”
position ~ Compo-
nent
Consumed by Define VFB Timing | 0..*
Consumed by Define VFB Top | 0.*
Level
Consumed by Define VFB Vari- | 0..*

ants

Use meta model element

AtomicSwCompo-
nentType

Use meta model element

SwComponent
Type

Table 3.89: VFB Atomic Software Component

AUTOSAR

3.2.2.9 VFB Atomic Application Software Component

Artifact VFB Atomic Application Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work
Products

Brief Description Description of an Atomic VFB Component.

Description The description of an Application Software Component Type.
It is used to represent the ECU-independent application software.

Kind AUTOSAR XML

Extends VFB Atomic Software Component

Relation Type

Related Element Mul. | Note

Aggregated by

VFB System 0.”

Produced by

Define VFB Ap- 1
plication Software
Component

Use meta model element

ApplicationSw 1
ComponentType

Table 3.90: VFB Atomic Application Software Component

3.2.2.10 Complex Driver Component

Artifact Complex Driver Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work
Products

Brief Description VFB Description of a Complex Driver Component.

Description The Complex Driver Component is a special VFB Atomic Software
Component that has direct access to hardware on an ECU and which
is therefore linked to a specific ECU or specific hardware.

It uses the meta-model element
ComplexDeviceDriverSwComponentType which introduces the
possibility to link from the software representation to its hardware
description provided by the ECU Resource Template.

It provides (non-standardized) AUTOSAR Interfaces via ports on VFB
level.

Kind AUTOSAR XML

Extends VFB Atomic Software Component

Relation Type Related Element Mul. | Note

Aggregated by VFB System 0.x

Produced by Define Complex 1

Driver Component

Consumed by

Configure Debug 0..1

Consumed by

Map Software | 0..1
Component to BS
W

AUTOSAR

Relation Type Related Element Mul. | Note
Use meta model element | ComplexDevice 1
DriverSwCompo-
nentType

Table 3.91: Complex Driver Component

3.2.2.11 ECU Abstraction Software Component

Artifact ECU Abstraction Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work
Products

Brief Description VFB Description of an ECU Abstraction Software Component.

Description The ECU Abstraction Software Component is a special Atomic

Software Component that sits between a component that wants to
access ECU periphery (typically a Sensor Actuator Component) and
the Microcontroller Abstraction.

It provides (non-standardized) AUTOSAR Interfaces via ports which
represent the ECU periphery. The EcuAbstractionSwComponentType
introduces the possibility to link from the software representation to its
hardware description provided by the ECU Resource Template.

During integration, an ECU Abstraction Software Component will be
mapped to a BSW module which implements it and which will directly
(without RTE) be connected to the Microcontroller Abstraction.

Kind AUTOSAR XML
Extends VFB Atomic Software Component
Relation Type Related Element Mul. | Note
Aggregated by VFB System 0.x
Produced by Define ECU 1
Abstraction Com-
ponent
Consumed by Map Software | 0..1
Component to BS
w
Use meta model element | EcuAbstractionSw 1
ComponentType

Table 3.92: ECU Abstraction Software Component

3.2.2.12 VFB Parameter Component

AUTOSAR

Artifact VFB Parameter Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work
Products

Brief Description A ParameterComponentType defines parameters and characteristic
values accessible via provided Ports.

Description A ParameterSwComponentType defines parameters and characteristic
values accessible via Provide Ports. The provided values are the same
for all connected Component Prototypes. This is as opposed to private
parameters which are only available within the scope of an Atomic
Software Component

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Aggregated by VFB System 0.x

Produced by

Define VFB Pa- 1
rameter Compo-
nent

Produced by

Extend Composi- | 0..”
tion

Consumed by

Define VFB Com- | 0..”
position ~ Compo-
nent

Consumed by

Define VFB Timing | 0..*

Consumed by

Define VFB Top | 0.*

Level

Consumed by Define VFB Vari- | 0..*
ants

Use meta model element ParameterSw 1
ComponentType

Table 3.93: VFB Parameter Component

3.2.2.13 VFB Sensor Actuator Component

AUTOSAR

Artifact VFB Sensor Actuator Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work
Products

Brief Description Describes a sensor or actuator component that exist at the VFB Level
and represents the physical interface of an actual sensor or actuator
hardware element.

Description A Sensor Actuator Software Component is an Atomic Software
Component that makes the functionality of a sensor or actuator usable
for other software components. That means that the Sensor Actuator
Software Component provides to the application software components
an interface for the physical values of the sensors and actuators. It is
written for a concrete sensor or actuator and uses the ECU Abstraction
interface.

It references the description of the associated hardware elements.

Kind AUTOSAR XML

Extends VFB Atomic Software Component

Relation Type Related Element Mul. | Note

Aggregated by Complete ECU | 0.

Description

Aggregated by VFB System 0.”

Produced by Define VFB Sen- 1
sor or Actuator
Component

Use meta model element | SensorActuatorSw 1
ComponentType

Table 3.94: VFB Sensor Actuator Component

3.2.2.14 VFB NvBlock Software Component

Artifact VFB NvBlock Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work
Products

Brief Description

Description The VFB NvBlock Software Component defines non volatile data which
can be shared between SwComponentPrototypes. The non volatile
data of the VFB NvBlock Software Component are accessible via
provided and required ports.

Kind

Relation Type Related Element Mul. | Note

Aggregated by VFB System 0.x

Produced by Define VFB Nv 1
Block Software
Component

Use meta model element | NvBlockSwCom- 1
ponentType

Table 3.95: VFB NvBlock Software Component

AUTOSAR

3.2.2.15 VFB Non AUTOSAR Component

Artifact VFB Non AUTOSAR Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work
Products

Brief Description A Component used to describe the non-autosar entities that exist at the
VFB level.

Description A Component used to describe the non-AUTOSAR entities that exist at
the VFB level.

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Aggregated by VFB System 0.x

Produced by

Define Wrapper 1
Components to
Integrate Legacy
Software

Produced by

Extend Composi- | 0..”
tion

Consumed by

Define VFB Com- | 0..*
position ~ Compo-
nent

Consumed by

Define VFB Timing | 0..*

Consumed by

Define VFB Top | 0.*

Level

Consumed by Define VFB Vari- | 0..*
ants

Use meta model element | SwComponent 1
Type

Table 3.96: VFB Non AUTOSAR Component

3.2.2.16 VFB Interfaces

Artifact VFB Interfaces

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work
Products

Brief Description Interfaces and related elements that form part of the VFB, but are not
standardized by AUTOSAR.

Description Interfaces and related elements that form part of the VFB, but are not
standardized by AUTOSAR.

Kind AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

Delivered Atomic | 0..*
Software Compo-
nents

Aggregated by

VFB System 0.”

Produced by

Define VFB Inter- 1.%
faces

AUTOSAR

Relation Type

Related Element

Mul.

Note

Produced by

Extend Composi-
tion

0.”

Consumed by

Define ECU
Abstraction Com-
ponent

Consumed by

Define Complex
Driver Component

Consumed by

Define VFB Ap-
plication Software
Component

Consumed by

Define VFB Com-
position Compo-
nent

Consumed by

Define VFB Nv
Block Software
Component

Consumed by

Define VFB Pa-
rameter Compo-
nent

Consumed by

Define VFB Sen-
sor or Actuator
Component

Consumed by

Define VFB Timing

Consumed by

Define VFB Top
Level

Consumed by

Define Consis-
tency Needs

Interfaces which are relevant for the
consistency definition.

Consumed by

Define VFB Vari-
ants

Consumed by

Define Wrapper
Components to
Integrate Legacy
Software

Consumed by

Generate Atomic
Software Com-
ponent Contract
Header Files

Meth.bindingTime = SystemDesignTime

Consumed by

Generate Compo-
nent Header File in
Vendor Mode

Meth.bindingTime = SystemDesignTime

Consumed by

Generate Compo-
nent Prebuild Data
Set

Meth.bindingTime =
CodeGenerationTime

Use meta model element | AutosarDataType 1

ModeDeclaration 1
Group

Use meta model element

Use meta model element PortInterface 1

Table 3.97: VFB Interfaces

AUTOSAR

3.2.2.17 VFB Types

Artifact

VFB Types

Package

AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work
Products

Brief Description

Data types and related elements that form part of the VFB, but are not
standardized by AUTOSAR.

Description

Description of AutosarDataTypes and related elements (e.g. units,
computation methods, etc.) that form part of the VFB, but are not
standardized by AUTOSAR. This may also include copies of
standardized elements which have been completed with project
specific information (e.g. with calibration access information or
computation methods). A VFB system can contain several different
instances of this artifact, which may fulfill different roles.

AutosarDataTypes can come as so-called ApplicationDatatypes or
ImplementationDataTypes. This package can contain both kinds but
they can also be split into separate artifacts. However, since it is also
possible to generate ImplementationDataTypes from
ApplicationDataTypes, a VFB system can be completely defined with
ApplicationDatatypes only.

Note that this work product is meant for use cases, in which a set of
data types is maintained as a separate artifact. It is also possible to
define particular AutosarDataTypes as part of another artifact, e.g. of
VFB Interfaces if the types are closely related to certain port interfaces.

In the methodology this artifact stands not only for data type definitions,
but also for related elements like addressing methods, units,
computation methods, constraints. etc. This is done for simplicity,
because these elements are often consumed by the same tasks. Of
course these can be treated as separate artifacts in real projects.

Kind

AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

Delivered Atomic | 0..*
Software Compo-
nents

Aggregated by

VFB System 0.x

Produced by

Define VFB Types 1.7

Produced by

Define Symbol | 0..* | symbolProps: The symbolProps attribute
Props for Types redefines the implementation data type
name used in the code of the RTE and/or
the component. This resolves name
clashes among different implementation
data types designed accidentally with the
same shortName.

Note that this output is a splitable
element, so it can be added later without
changing the VFB model.

Produced by

Extend Composi- | 0..*
tion

AUTOSAR

Relation Type

Related Element

Mul.

Note

Consumed by

Define ECU
Abstraction Com-
ponent

Consumed by

Define ~ Complex
Driver Component

Consumed by

Define VFB Ap-
plication Software
Component

Consumed by

Define VFB Com-
position ~ Compo-
nent

Consumed by

Define VFB Inter-
faces

Consumed by

Define VFB Nv
Block Software
Component

Consumed by

Define VFB Pa-
rameter Compo-
nent

Consumed by

Define VFB Sen-
sor or Actuator
Component

Consumed by

Define VFB Top
Level

Consumed by

Generate BSW
Memory Mapping
Header

SwAddrMethod: Referred
SwAddrMethods
Meth.bindingTime = SystemDesignTime

Consumed by

Generate Compiler
Configuration

SwAddrMethod: Referred
SwAddrMethods. They provide the
default names for the compiler memory
classes.

Meth.bindingTime = SystemDesignTime

Consumed by

Generate SWC
Memory Mapping
Header

SwAddrMethod: Referred
SwAddrMethods
Meth.bindingTime = SystemDesignTime

Consumed by

Configure
Memmap Allo-
cation

SwAddrMethods: SwAddrMethods used
for the generic mapping. Note that one
SwAddrmethod can represent several
memory sections.

Consumed by

Define Consis-
tency Needs

Data types which are relevant for the
consistency definition.

Consumed by

Define VFB Con-
stants

Consumed by

Define Wrapper
Components to
Integrate Legacy
Software

Consumed by

Generate Atomic
Software Com-
ponent Contract
Header Files

Meth.bindingTime = SystemDesignTime

AUTOSAR

nent Prebuild Data
Set

Relation Type Related Element Mul. | Note

Consumed by Generate Compo- | 0..* | Meth.bindingTime = SystemDesignTime
nent Header File in
Vendor Mode

Consumed by Generate Compo- | 0..* | Meth.bindingTime =

CodeGenerationTime

Use meta model element

ApplicationData
Type

Use meta model element | AutosarDataType 1

Use meta model element | CompuMethod 1

Use meta model element | DataConstr 1

Use meta model element | Implementation 1
DataType

Use meta model element | SwAddrMethod

Use meta model element | Unit 1

Table 3.98: VFB Types

3.2.2.18 VFB Data Type Mapping Set

Artifact VFB Data Type Mapping Set
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work
Products
Brief Description Mapping Set between Application and Implementation Data Types.
Description Mapping Set between Application and Implementation Data Types.
Kind AUTOSAR XML
Relation Type Related Element Mul. | Note
Aggregated by Delivered Atomic | 0..*
Software Compo-
nents
Aggregated by VFB System 0.x
Produced by Define VFB Types 0.x
Consumed by Generate Atomic | 0..1 | Meth.bindingTime = SystemDesignTime
Software Com-
ponent Contract
Header Files
Consumed by Generate Compo- | 0..1 | Meth.bindingTime = SystemDesignTime
nent Header File in
Vendor Mode
Consumed by Generate Compo- | 0..1 | Meth.bindingTime =
nent Prebuild Data CodeGenerationTime
Set
Consumed by Define VFB Con- | 0..*

stants

Use meta model element

DataTypeMapping
Set

Table 3.99: VFB Data Type Mapping Set

AUTOSAR

3.2.2.19 VFB Modes

Artifact

VFB Modes

Package

AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products

Brief Description

Modes declared here are non-AUTOSAR standard. They are modes
that are managed by a software component acting as a application

mode manager.

Description

Desclaration of mode groups and of the modes they contain. Modes
declared here are non-AUTOSAR standard. They are modes that are
managed by an application software component acting as a mode

manager.

Kind

AUTOSAR XML

Relation Type

Related Element

Mul.

Note

Aggregated by

Delivered Atomic
Software Compo-
nents

0.”

Aggregated by

VFB System

Produced by

Define VFB Modes

Produced by

Extend Composi-
tion

Consumed by

Define Complex
Driver Component

Consumed by

Define ECU
Abstraction Com-
ponent

Consumed by

Define VFB Ap-
plication Software
Component

Consumed by

Define VFB Com-
position Compo-
nent

Consumed by

Define VFB Nv
Block Software
Component

Consumed by

Define VFB Top
Level

Consumed by

Define Wrapper
Components to
Integrate Legacy
Software

Consumed by

Generate Atomic
Software Com-
ponent Contract
Header Files

Meth.bindingTime = SystemDesignTime

Consumed by

Generate Compo-
nent Header File in
Vendor Mode

Meth.bindingTime = SystemDesignTime

Consumed by

Generate Compo-
nent Prebuild Data
Set

Meth.bindingTime =
CodeGenerationTime

AUTOSAR

Relation Type

Use meta model element

Related Element Mul. | Note
ModeDeclaration 1
Group

Table 3.100: VFB Modes

3.2.2.20 VFB Constants

Artifact VFB Constants

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work
Products

Brief Description Specification of constant data for usage as initial values by other
artifacts.

Description Specification of constant data for usage as initial values by other
artifacts, e.g. initial values for calibration parameters or variable data
elements provided in ports.

By using the ConstantSpecification meta-class, such data can be
standalone artifacts and thus be maintained independently of the
components or interfaces to which they apply.

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Produced by Define VFB Con- | 1.7
stants

Use meta model element | ConstantSpecifica- 1
tion

Table 3.101: VFB Constants

3.2.2.21 VFB Software Component Mapping Constraints

Artifact VFB Software Component Mapping Constraints

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work
Products

Brief Description A defined constraint on how certain components must be mapped
(clustered or separated) to ECUs.

Description One or more defined constraints on how certain components must be
mapped (clustered, separated or dedicated mapping).
This defines constraints to which components need to be mapped to a
single ECU, and which must be mapped to separate ECUs, without
regard to any particular ECU or topology.
Notes: The meta-model element SystemMapping allows to describe a
collection of such constraints as one single artifact.

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Aggregated by VFB System 0.x

Produced by Define VFB Com- | 1..*
ponent Constraints

AUTOSAR

Relation Type Related Element Mul. | Note

Produced by Extend Composi- | 0..*
tion

Consumed by Deploy Software | 0..1 | Constraints defined on the VFB level
Component

Use meta model element | MappingConstraint 1

Use meta model element | SystemMapping 1 The splitable element SystemMapping is

the root for this artifact.

Table 3.102:

3.2.2.22 VFB Timing

VFB Software Component Mapping Constraints

ants

Artifact VFB Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work
Products

Brief Description Atomic Software Component or Composition Component
TimingDescription and TimingConstraints

Description TimingDescription and TimingConstraints defined for an Atomic
Software Component or a Composition Component

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Produced by Define VFB Timing 1

Consumed by Define Software | 0..1
Component Timing

Consumed by Define System | 0..1
Timing

Consumed by Define VFB Vari- | 0..1

Use meta model element

VibTiming

1

Table 3.103: VFB Timing

3.2.2.23 Description of a Non-AUTOSAR System

AUTOSAR

Artifact

Description of a Non-AUTOSAR System

Package

AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work
Products

Brief Description

View of the non-AUTOSAR system that contains the relevant
information for its integration with the AUTOSAR system at VFB level

Description

This artifact describes the elements of the non-AUTOSAR system that
are relevant for its integration with an AUTOSAR system at the VFB
level. The format of the description depends on the methodology or
platform that is employed for the development of the non-AUTOSAR
system. It may not be assumed that the description of the
non-AUTOSAR system comes in an AUTOSAR format. Also the
contents of the description may differ both in its scope and in its details
from an AUTOSAR description that also addresses the VFB level, i.e. a
SwComponent Description.

The interfaces of infotainment system components developed on the
basis of the GENIVI platform for instance are specified with the Franca
Interface Definition Language. A Franca IDL description contains
interfaces that define data types, methods, attributes, and broadcasts.
It does neither define the components that implement these interfaces
nor their connections. In addition, the granularity of the data type
description is much coarser than a data type description with the
SwComponent Template.

Kind

Custom

Relation Type

Related Element Mul. | Note

Consumed by

Define VFB Inte- 1
gration Connector

Consumed by

Translate Non- 1
Autosar Descrip-
tion to Autosar
Description

Table 3.104: Description of a Non-AUTOSAR System

3.2.2.24 Integration Connector

AUTOSAR

Artifact Integration Connector

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work
Products

Brief Description Specification of the connections of the elements of the non-AUTOSAR
system with the elements of the AUTOSAR system

Description This artifact specifies which elements of the non-AUTOSAR system are

to be connected with which elements of the AUTOSAR system. If for
instance the Description of the non-AUTOSAR system contains
elements corresponding to port instances, the integration connector
would define how these ports are connected with the port instances
contained in the AUTOSAR SwComponent Description. In addition, the
Integration Connector may specify information that is necessary for the
integration but not yet contained in the Description of the
non-AUTOSAR system.

If for instance the Description of the non-AUTOSAR system contains
only very coarse grained data type descriptions the Integration
Connector will be used to add sufficient information such that the
compatibility of the data types with the ones defined in the AUTOSAR
SwComponent Description can be checked.

Kind Custom
Relation Type Related Element Mul. | Note
Produced by Define VFB Inte- 1
gration Connector
Consumed by Translate Non- 1

Autosar Descrip-
tion to Autosar
Description

Table 3.105: Integration Connector

3.3 System

This chapter contains the definition of work products and tasks used for the devel-
opment of systems and sub-systems. For the definition of the relevant meta-model
elements refer to [9] and [20].

AUTOSAR

3.3.1 Tasks

3.3.1.1 Set System Root

1 Software Component System Engineer

Ypping Constraints

«input»

«performs»

Mapping of Software

«output» 1
Componentsto ECUs

Set System Root

System Description
Root Element

«input»

Signal Path Constraints

1

Communication Layers

VFB Composition Data Mapping
Component

Figure 3.46: Set System Root

Task Definition Set System Root

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Tasks

Brief Description

Description Set up the root element of a system description.

Relation Type Related Element Mul. | Note

Performed by System Engineer 1

Consumes Communication 1 Only the reference to the artifact is
Layers needed

Consumes Mapping of Soft- 1 Only the reference to the artifact is
ware Components needed
to ECUs

Consumes Signal Path Con- 1 Only the reference to the artifact is
straints needed

Consumes Software Compo- 1 Only the reference to the artifact is
nent Mapping Con- needed
straints

Consumes Topology 1 Only the reference to the artifact is

needed

Consumes VFB Composition 1 Only the reference to the artifact is

Component needed

AUTOSAR

Relation Type

Related Element

Mul.

Note

tion Root Element

Consumes Data Mapping 1..* | Only the reference to the artifact is
needed
Produces System Descrip- 1 Set up the root element, and the links to

other artifacts

Table 3.106: Set System Root

3.3.1.2 Assign Top Level Composition

VFB Top Level
System Composition

Assign Top Level
Composition

System Engineer

«performs»

—
—
—
—
—

1 —

«output» —

System Description
Root Element

Figure 3.47: Assign Top Level Composition

Task Definition Assign Top Level Composition

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Tasks

Brief Description

Description Assign a VFB Top Level Composition to the System Root

Relation Type

Related Element

Mul.

Note

Performed by

System Engineer

1

Consumes VFB Top Level 1
System Composi-
tion

Produces System Descrip- 1

tion Root Element

Table 3.107: Assign Top Level Composition

AUTOSAR

3.3.1.3 Define ECU Description

System Engineer

«performs»

—
—
—
—
—-—«uutpm»/l?_
7| —
—

Define ECU Description

ECU Resources
Description

Figure 3.48: Define ECU description

Task Definition Define ECU Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Tasks

Brief Description Define a particular ECU’s resources.

Description Define a particular ECU’s resources by describing Hardware Elements,

pins, connections.The HW Elements are the main describing elements
of an ECU,e;g processing units, memory, peripherals, sensors and
actuators. HW Elements have a unique name and can be identified
within the ECU description. HW Elements do not necessarily have to
be described on the level of an ECU. It is possible to describe HW
Elements as parts of other HW Elements. By this means, a hierarchical
description of HW Elements can be created. HW Elements provide HW
PinGroups and HW Pins for being interconnected among each others.
HW PinGroups allow a rough description of how certain groups of
HWPins are arranged. The detailed description can be done using the
HW Pins.HW Connections are used to describe connection on several
levels:connections between HW Elements, connections between HW
PinGroups, connections between HW Pins.

Relation Type Related Element Mul. | Note

Performed by System Engineer 1

Produces ECU Resources | 1..*
Description

Table 3.108: Define ECU Description

AUTOSAR

3.3.1.4 Define System Topology

System Engineer

[

1.x «input»

ECU Resources

Description

«performs»

«output»

Define System Topology

7 | ——

Topology

Figure 3.49: Define System Topology

Task Definition Define System Topology
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Tasks
Brief Description Select the ECUs and how the they are interconnected by networks.
Description Define how the ECUs of a system are interconnected by networks.
Relation Type Related Element Mul. | Note
Performed by System Engineer 1
Consumes ECU Resources | 1..*
Description
Produces Topology 1

Table 3.109: Define System Topology

3.3.1.5 Define Software Component Mapping Constraints

VFB Top Level System 1

Composition

Topology

Figure 3.50: Define Software Component Mapping Constraints

«performs»

«output»

Define Software Component
Mapping Constraints

System Engineer

“1
Software Component
Mapping Constraints

AUTOSAR

Task Definition Define Software Component Mapping Constraints

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Tasks

Brief Description Define Constraints on software components that are clusterred
together or separate, and how software components need to be
assigned to a particular ECU or not.

Description Define constraints on Software Components during the mapping

phase. These constraints are described into the System Constraint
description. Two constraints express the restrictions that Software
Components impose each other when performing the mapping onto
the ECUs.

In fact, before the mapping process begins, it can be useful to impose
the allocation of a predefined set of SW components onto the same
ECU, especially if such a set is tightly linked from a functional point of
view. In the same way, two critical SW components, performing some
kind of redundancy, may be not suitable to run both on the same ECU.
Thus, we call these two kinds of mapping constraints, respectively,
ComponentClustering and ComponentSeparation.

The ComponentClustering constraint (also, clustering) is to be used for
expressing that a certain set of SW components (atomic or not) must
be mapped (allocated) onto the same ECU. This is some kind of
"execute together on same ECU" constraint.

The ComponentSeparation constraint (also, separation) is to be used
for expressing that two SW components (atomic or not) shall not be
mapped (allocated) onto the same ECU. This is some kind of do not
execute together on same ECU constraint.

Relation Type

Related Element Mul. | Note

Performed by System Engineer 1
Consumes Topology 1
Consumes VFB Top Level 1
System Composi-
tion
Produces Software Compo- 1
nent Mapping Con-
straints

Table 3.110: Define Software Component Mapping Constraints

AUTOSAR

3.3.1.6 Deploy Software Component

e — System Engineer
———————— 1

Topology

1
\ «performs»
«input»

VFB Top Level System
Composition

«input»\"
«output»

1 | c— \
«input»/ Deploy Software —

Component

Mapping of Software
Componentsto ECUs

VFB Software Component
Mapping Constraints

0.1

Software Component
Mapping Constraints

System Timing

Figure 3.51: Deploy Software Component

Task Definition Deploy Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Tasks

Brief Description Deploy VFB Software Components to an ECU

Description Deploy each VFB Software Component to an ECU that will execute the

component.

Relation Type

Related Element Mul. | Note

Performed by System Engineer 1

Consumes Topology 1

Consumes VFB Top Level 1
System Composi-
tion

Consumes Software Compo- | 0..1 | Constraints defined on the System level
nent Mapping Con-
straints

Consumes System Timing 0..1

Consumes VFB Software | 0..1 | Constraints defined on the VFB level
Component Map-
ping Constraints

Produces Mapping of Soft- 1

ware Components
to ECUs

Table 3.111: Deploy Software Component

AUTOSAR

3.3.1.7 Generate or Adjust System Flat Map

Partial Flat Map

System Description Rogt 1
Element

«input»

T
" «inputry|

«input»

VFB System

System Engineer

«performs»

«inoutput»
—
Generate or Adjust —

System Flat Map

1

System Flat Map

Figure 3.52: Generate or Adjust System Flat Map

Task Definition

Generate or Adjust System Flat Map

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Tasks
Brief Description Generates and/or adjust the unique names of component prototypes
and MCD display data in the scope of system.
Description Generates and/or adjust the unique names of component prototypes
and MCD display data in the scope of a System or System Extract.
Relation Type Related Element Mul. | Note
Performed by System Engineer 1
Consumes System Descrip- 1
tion Root Element
Consumes VFB System 1
Consumes Partial Flat Map 0..* | If Partial Flat Maps were delivered along
with software components, they must be
integrated into the System Flat Map:

e The instance refs used in a partial
flat map must be taken over and
adjusted to the context of the
System or System Extract.

e Name conflicts have to be
resolved if several partial flat
maps are merged.

In/out System Flat Map 1

Table 3.112: Generate or Adjust System Flat Map

AUTOSAR

3.3.1.8 Derive Communication Needs

— «input»\ /_’____.% —
| c—
Mapping of Software — «output» 0. ——
Componentsto ECUs
System Signal Group

System Engineer 1

System Signal
«performs»

«output»

Communication

Needs «output»,

Sy

Data Mapping

Figure 3.53: Derive Communication Needs

Task Definition Derive Communication Needs

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Tasks

Brief Description Define the signals used to exchange data & operations needed by
software components over a network.

Description Define the signals used to exchange data & operations needed by

software components over a network.

Relation Type

Related Element Mul. | Note

Performed by

System Engineer 1

Consumes Mapping of Soft- 1
ware Components
to ECUs
Produces Data Mapping 1.*
Produces System Signal 1.*
Produces System Signal | 0..”
Group

Table 3.113: Derive Communication Needs

AUTOSAR

3.3.1.9 Define Signal Path Constraints

1 System Engineer

" 1 «input»
Mapping of Software
Componentsto ECUs
«performs»

«output»

—
/ 1| c—
Define Signal Path Constraints - -

Signal Path Constraints

1 «input»

—
o
°
o
1]
Q
<

Figure 3.54: Define Signal Path Constraints

Task Definition Define Signal Path Constraints

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Tasks

Brief Description Additional guidelines for the System Generator, which specific way a

signal between two Software Components should take in the network
without defining in which frame and with which timing it is transmitted.

Description Define additional guidelines for the System Generator, which specific
way a signal between two Software Components should take in the
network without defining in which frame and with which timing it is
transmitted.

Relation Type Related Element Mul. | Note
Performed by System Engineer 1
Consumes Mapping of Soft- 1

ware Components

to ECUs
Consumes Topology 1
Produces Signal Path Con- 1

straints

Table 3.114: Define Signal Path Constraints

AUTOSAR

3.3.1.10 Define System Variants

Description

C;mplete ECU 1 System Engineer :
—
——

«input».

«performs»

Evaluated Variant Set

Mapping of Software

Components to «inputy «output»
Implementations ‘
—
Define Syste&m Variants —
—
—————————— ——
— i —
—— —

W

«output»x

Postbuild Variant Set

=

System Description Root
Element

— «input»
System Signal Group / «input»

«inoutput»

Predefined Variant

. —
«input» «input» ——
«input»| «input»
System Signal
System Constant Value
Set
0..%
F— 1
System Timing
Software Component Mapping of Software System Description Topology
Mapping Constraints Componentsto ECUs

Figure 3.55: Define System Variants

Task Definition Define System Variants

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Tasks

Brief Description Define variants for the artifacts of a System Description.

Description Define variants for the artifacts of a System Description. Definition of a

variant means in general to define its conditions and its latest binding
time. Therefore one has to create a PredefinedVariant referring to the
settings which are used by the system elements in scope. To do so,
this task can make use of existing System Constant Value Set s and/or
Postbuid Variant Set s or define new ones. Several PredefinedVariant s
can be combined to one Evaluated Variant Set . This task can also be
applied when designing a subsystem, therefore the System Extract is
an optional input.

Relation Type Related Element Mul. | Note

Performed by System Engineer 1

AUTOSAR

Relation Type Related Element Mul. | Note

Consumes Mapping of Soft- 1
ware Components
to ECUs

Consumes Mapping of Soft- 1
ware Components
to Implementations

Consumes Software Compo- 1
nent Mapping Con-
straints

Consumes System Descrip- 1
tion Root Element

Consumes System Signal 1

Consumes System Signal 1
Group

Consumes System Timing 1

Consumes Topology 1

Consumes Complete ECU | 1.*
Description

Consumes System Descrip- | 0..*
tion

In/out Postbuild Variant 1
Set

In/out System Constant 1
Value Set

Produces Evaluated Variant 1
Set

Produces Predefined Variant 1

Table 3.115: Define System Variants

AUTOSAR

3.3.1.11 Define System Timing

- System Engineer
Communication Layers 1. 1

«input» «performs»

Mapping of Software

Components to «input>
Implementations

«output»

Define System
Timing System Timing

Mapping of Software
Componentsto ECUs

/«input»
0.1

Topology Software Component
Timing

Figure 3.56: Define System Timing

VFB Timing

Task Definition Define System Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Tasks

Brief Description Define SystemTiming for a concrete system taking the mapping of
software components to ECUs and their implementation into account

Description Define SystemTiming (TimingDescription and TimingConstraints) for a

concrete system taking the mapping of software components to ECUs
and their implementation into account. This means that the resulting
Communication Matrix (and its implication to the communication stack)
can also be referenced by the timing specification to refine remote
communication timing behavior.

Relation Type Related Element Mul. | Note
Performed by System Engineer 1
Consumes Communication 1

Layers
Consumes Mapping of Soft- 1

ware Components

to ECUs
Consumes Topology 1
Consumes Mapping of Soft- | 0..1

ware Components
to Implementations

Consumes Software Compo- | 0..1
nent Timing
Consumes VFB Timing 0..1

Produces System Timing 1

AUTOSAR

Relation Type

| Related Element | Mul. | Note

Table 3.116: Define System Timing

3.3.1.12 Extend Topology

ECU Integrator \0..1

«performs»

Extend Topology

ECU Resources
Description

System Engineer

«performs»

«inoutput»

1

-
)
°
=2
)
Q
<

Figure 3.57: Extend Topology

Task Definition Extend Topology

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Tasks

Brief Description Extend the existing System Topology

Description Extend the existing System Topology by describing how new ECUs will
be connected to the existing one through the current network

Relation Type Related Element Mul. | Note

Performed by ECU Integrator 0..1

Performed by System Engineer 0..1

Consumes ECU Resources | 0..1
Description

In/out Topology 1

Table 3.117: Extend Topology

AUTOSAR

3.3.1.13 Select Software Component Implementation

Software Component Internal

Behavior

*
Atomic Software Compon .
Implementation «input»

L ——«input»
1.x

«input»

VFB Atomic

Software

Component

Figure 3.58: Select Software Component Implementation

System Engineer

«performs»

Select Software
Component
Implementation

—
Pl —
—
—

«output»

Mapping of Software
Componentsto
Implementations

Task Definition Select Software Component Implementation
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Tasks
Brief Description Select implementation for an Atomic Software Component.
Description The system engineer selects an Atomic Software Component
Implementation for each defined VFB Atomic Software Component
Relation Type Related Element Mul. | Note
Performed by System Engineer 1
Consumes Atomic Software | 1..*
Component Imple-
mentation
Consumes Software Compo- | 1..*
nent Internal Be-
havior
Consumes VFB Atomic Soft- | 1..*
ware Component
Produces Mapping of Soft- 1
ware Components
to Implementations

Table 3.118: Select Software Component Implementation

AUTOSAR

3.3.1.14 Select Design Time Variant

Co
De

mplete ECU 1

scription \ System Engineer
«input»

«performs»

1 : . .
Select Design Time Variant

«inoutput»

System Description

Figure 3.59: Select Design Time Variant
Task Definition Select Design Time Variant
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Tasks
Brief Description Select a system variant at system design time.
Description Select a system variant at system design time. This could be done in

different ways: Replace a model, which contains the variation points
contributing to this particular variant and all the possible
settings/elements, by a model, which does no more contain these
variation points and which contains only the particular
settings/elements selected for this variant. In order to document the
selection for further process steps, it is also possible to keep the
information about the selected variant and the variation points in the
model by introducing a PredefinedVariant along with appropriate fixed
settings of system constant values. In constrast to variant selection in
later process steps, no code generation or compilation is involved at
system design time, thus this task is just a transformation of one XML
model into another one. This task can be applied to a complete system
description, represented by a System Extract

Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mul. | Note
Performed by System Engineer 1
Consumes Complete ECU 1
Description
In/out System Descrip- 1
tion

Table 3.119: Select Design Time Variant

AUTOSAR

3.3.1.15 Define System View Mapping

The task Define System View Mapping (see Figure 3.60) creates the System
View Mapping betweentwo System Descriptions. Different cases can be sepa-
rated:

e Mapping of different overall VFB systems - the Abstract System Descrip-
tion andthe System Configuration Description.

e Mapping of different structured System Extracts, e.g. System Extract de-
livered by a primary organization and the different structure (ECU System De-
scription) of the secondary organization (see 2.5.4, 2.5.5).

System Engineer

«performs»

«input» «output»

Define System View Mapping
System System View

Description Mapping

Figure 3.60: Define System View Mapping

Task Definition Define System View Mapping

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Tasks

Brief Description Map elements from different views on the system.

Description This task creates the System View Mapping between two System

Descriptions (Mapping of different structured system descriptions, e.g.
system extract delivered by a primary organization and the different
structure of the secondary organisation).

Relation Type Related Element Mul. | Note
Performed by System Engineer 1
Consumes System Descrip- 2

tion
Produces System View Map- 1

ping

Table 3.120: Define System View Mapping

AUTOSAR

3.3.1.16 Create Transformer Specification

1
System Engineer \

«performs»

\

Basic Software Designer

«performs»

«output»

Create Transformer Specification

[

Transformer Specification

Figure 3.61: Create Transformer Specification

Task Definition Create Transformer Specification

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Tasks

Brief Description

Description In this task the specification of a transformer module is created. Since

the specification is created as a part of the communication design, the
System Engineer has to perform this task. Optionally a Basic Software
Designer can support the creation of the specification.

Relation Type Related Element Mul. | Note
Performed by System Engineer 1
Performed by Basic Software De- | 0..1

signer
Produces Transformer Speci- 1

fication

Table 3.121: Create Transformer Specification

AUTOSAR

3.3.1.17 Define Rapid Prototyping Scenario

Rapid Prototyping
Engineer

«performs»
— —
— —
— «input» «output» —
— 1.] [—
— —
— —
Define Rapid Prototyping
Software Component Interal Scenario Rapid Prototyping
Behavior Scenario

«input»

1
—
—

System Description Root Element

Figure 3.62: Define Rapid Prototyping Scenario

Task Definition Define Rapid Prototyping Scenario
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Tasks
Brief Description
Description Defines the rapid prototyping scenario.
Relation Type Related Element Mul. | Note
Performed by Rapid Prototyping 1
Engineer
Consumes System Descrip- 1
tion Root Element
Consumes Software Compo- | 1..*
nent Internal Be-
havior
Produces Rapid Prototyping 1
Scenario

Table 3.122: Define Rapid Prototyping Scenario

AUTOSAR

3.3.2 Work Products
3.3.2.1 System Description

=

Mapping of Softwareg 1
Components to
Implementations

«SPEM_Aggregation»

N
0.1~
Topology «SPEM_Aggregation»
—
0..* —
SPEM_Aggregation
System Timing « -Aggreg [

1

System Description Root

Element

«SPEM_Aggregation»

Methodology

AUTOSAR Release 4.2.2

0.*

=

«SPEM_Aggregation».,

Iy

Evaluated Variant Set

«SPEM_Aggregation»
%ZM_Aggrega:ion»

System Constant Value
Set

0.1

System

«SPEM_Aggregation»

Description

Mapping of Software
Componentsto ECUs

«SPEM_A ion»

0.x

«SPEM_Aggregation»

Software Component
Mapping Constraints

ey

«SPEM_Aggregation»

Alias Name Set

«SPEM_Aggregation»

«SPEM_Aggregation»
«SPEM_Aggregation»

Postbuild Variant Set

«SPEM_Aggregation»

«SPEM_Agg

«SPEM_Aggregation»

Communication Matrix Data Mapping

290 of 503

System Signal Group

System Signal

0.1 Communication Layers

Rapid Prototyping

Scenario

Figure 3.63: Structure of generic deliverable System Description

Document ID 068: AUTOSAR_TR_Methodology
— AUTOSAR CONFIDENTIAL —

AUTOSAR

Deliverable

System Description

Package

AUTOSAR Root::M2::Methodology::Methodology Library::System::
Work products

Brief Description

Partial Extract of a System

Description

Generic deliverable for defining a System. It is used in different roles
within the methodology.

In each role, this deliverable may contain variation points in its ARXML
artifacts which need to be bound in later steps, e.g. when defining a
subsystem from a complete system or later for the single ECUs. If such
variation points are present, the System Description may optionally
include PredefinedVariants in order to predefine variants for later
selection and an Evaluated Variant Set.

Please note that this generic deliverable does not correspond to the
system description with the system category
"SYSTEM_DESCRIPTION" (see [TPS_SYST_01003]). The system
description with the category "SYSTEM_DESCRIPTION" is
represented by the deliverable "System Configuration Description".

This deliverable is equivalent to a description of a system with any
category. In the System Template Specification "system description" is
the most frequently used term for this kind of artifact.

Kind

Delivered

Extended by

Abstract System Description, System Configuration Description,
System Constraint Description, System Extract

Relation Type

Related Element Mul. | Note

Aggregates System Descrip- 1
tion Root Element

Aggregates Communication 0..1
Layers

Aggregates Mapping of Soft- | 0..1
ware Components
to ECUs

Aggregates Mapping of Soft- | 0..1
ware Components
to Implementations

Aggregates Rapid Prototyping | 0..1
Scenario

Aggregates Topology 0..1

Aggregates Alias Name Set 0.*

Aggregates Communication 0.x
Matrix

Aggregates Data Mapping 0.x

Aggregates Evaluated Variant | 0..*
Set

Aggregates Postbuild Variant | 0..*
Set

Aggregates Predefined Variant | 0..”

Aggregates Software Compo- | 0..*

nent Mapping Con-
straints

AUTOSAR

Relation Type Related Element Mul. | Note
Aggregates System Constant | 0..*
Value Set
Aggregates System Signal 0.x
Aggregates System Signal | 0..*
Group
Aggregates System Timing 0.
In/out Select Design 1
Time Variant
Consumed by Define System 2
View Mapping
Consumed by Define System 1
Safety Information
Consumed by Define Alias | 0..1 | Needed for definition of alias names with
Names system, system extract or ECU scope,
depending of the role of the System
Description.
Consumed by Define System | 0..*
Variants

Table 3.123: System Description

Deliverable System Constraint Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Work products

Brief Description

Description Contains the artifacts that describe System Constraints. It serves as an
input for setting up the complete Abstract System Description and/or
System Configuration Description.
This deliverable corresponds to the system description with the system
category "SYSTEM_CONSTRAINTS" (see [TPS_SYST_01003]).

Kind Delivered

Extends System Description

Relation Type Related Element Mul. | Note

Aggregates Overall VFB Sys- | 0..1
tem

Aggregates System Flat Map 0..1

Consumed by Develop System 0..1

Consumed by Develop an Ab- | 0..1 | Inthe context of the "Develop an
stract System Abstract System Description" activity, the
Description constraints for the abstract or functional

view on the system can be provided by
the "System Constraint Description".

Table 3.124: System Constraint Description

AUTOSAR

Deliverable System Configuration Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Work products

Brief Description

Description Contains the artifacts that describe a complete AUTOSAR System. It is
the basis for extracting descriptions for sub-systems or ECUs.
Note that System Extracts may be refined by details which are not
present in the System Configuration.
This deliverable corresponds to the system description with the system
category "SYSTEM_DESCRIPTION" (see [TPS_SYST_01003]).

Kind Delivered

Extends System Description

Relation Type Related Element Mul. | Note

Aggregates Overall VFB Sys- 1
tem

Aggregates System Flat Map

Produced by

- O
R

Develop System

Consumed by

Generate System 1
Extract

Consumed by

Generate ECU Ex- | 0..1
tract

Table 3.125: System Configuration Description

Deliverable System Extract

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Work products

Brief Description

Description Contains the artifacts that describe a subsystem specific view on the
complete System Description. Initially, the System Extract is not fully
decomposed and still contains compositions. It is the basis for
designing subsystems, e.g. by adding further ECUs within the given
constraints.
This deliverable corresponds to the system description with the system
category "SYSTEM_EXTRACT" (see [TPS_SYST_01003])).

Kind Delivered

Extended by ECU System Description

Extends System Description

Relation Type Related Element Mul. | Note

Aggregates VFB System Ex- 1
tract

Aggregates System Flat Map 0..1

Produced by Develop System 0..”

Produced by Generate System | 0..*
Extract

Consumed by

Create ECU Sys- 1
tem Description

AUTOSAR

Relation Type

Related Element Mul. | Note

Consumed by

Develop Sub-Sys- 1
tem

Consumed by

Generate ECU Ex- | 0..1
tract

Table 3.126: System Extract

Deliverable ECU System Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Work products

Brief Description

Description This System Description is used to describe the closed view on one
ECU (note that an AUTOSAR ECU is defined being one
microprocessor running one AUTOSAR Stack). It can be derived from
a System Extract or it can be designed independently and mapped to a
System Extract. The ECU System Description is not fully decomposed
and still may contain compositions.
It is refined during the activity Design Sub-System.
This deliverable corresponds to the system description with the system
category "ECU_SYSTEM_DESCRIPTION" (see [TPS_SYST_01003]).

Kind

Extends System Extract

Relation Type

Related Element Mul. | Note

Produced by

Design Sub-Sys- 1 System Extract refined during design of
tem the corresponding sub-system with
elements needed to generate ECU
Extract(s).

Produced by

Create ECU Sys- | 1.*
tem Description

Consumed by

Design Sub-Sys- 1 System Extract as generated from the
tem outer system.

Consumed by

Generate ECU Ex- | 0..1
tract

Table 3.127: ECU System Description

3.3.2.2 Abstract System Description

AUTOSAR

Deliverable Abstract System Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Work products

Brief Description Provides an abstract or functional view on the system

Description The Abstract System Description extends the general System

Description and provides an abstract or functional view on the system
to be developed.

This deliverable corresponds to the system description with the system
category "ABSTRACT_SYSTEM_DESCRIPTION" (see
[TPS_SYST_01003)).

Kind Delivered

Extends System Description
Relation Type Related Element Mul. | Note
Aggregates Overall VFB Sys- 1
tem
Produced by Develop an Ab- | 1.*
stract System
Description
Consumed by Develop System 0..* | The abstract System Description is an

optional input for the activity "Develop
System". Please note, that in this step
the Abstract System Description is
refined to a System Description.

Consumed by

Develop a VFB
System Descrip-
tion

The abstract System Description is an
optional input for the activity "Develop a
VFB System Description". The
VFB-related part of the Abstract System
Description can be than refined to the
concrete "Overall VFB System".
Additionally, a mapping between those
two views can be established.

Table 3.128: Abstract System Description

AUTOSAR

3.3.2.3 Complete ECU Description

ECU Resources
Description

1

«SPEM_Aégregation»

Complete ECU
Description

«SPEM_Aggregation»

<
T
@
[
g
o
g "
>
Q
£
23
=}

Component

Figure 3.64: Complete ECU Description

Deliverable Complete ECU Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Work products

Brief Description An ECU Description includes the resources it has available along with
its corresponding ECU-specific software components.

Description An ECU Description includes the resources it has available along with
its corresponding ECU-specific software components.

Kind Delivered

Relation Type Related Element Mul. | Note

Aggregates ECU Resources 1
Description

Aggregates VFB Sensor Actu- | 0..*

ator Component

Consumed by

Select Design 1

Time Variant
Consumed by Define System | 1.*
Variants

Table 3.129: Complete ECU Description

3.3.2.4 System Description Root Element

AUTOSAR

Artifact

System Description Root Element

Package

AUTOSAR Root::M2::Methodology::Methodology Library::System::
Work products

Brief Description

A System Description root element.

Description

The System description defines the following major elements:

Topology : description of the Topology of the System.

Software : description of the root software composition
containing all software components in the System in a

hierarchical structure.

Communication : description of all Communication elements

used in the System.

Mapping and Mapping Constraints : description of all mapping
aspects (mapping of SW components to ECUs, mapping of data
elements to signals, and mapping constraints).

The root element can be the basis for a System extract as well as for
the whole System depending on which elements are aggregated.

Kind

AUTOSAR XML

Relation Type

Related Element Mul.

Note

Aggregated by

System Descrip- 1

tion
Produced by Assign Top Level 1
Composition
Produced by Set System Root 1 Set up the root element, and the links to

other artifacts

Consumed by

Define Rapid Pro- 1

totyping Scenario

Consumed by Define System 1
Variants

Consumed by Flatten Software 1 find the top level composition
Composition

Consumed by

Generate or Adjust 1

System Flat Map

Use meta model element

System 1

3.3.2.5 System Mapping Overview

Table 3.130: System Description Root Element

There are various artifacts which correspond to the mappings collected under the meta-
model element SystemMapping. Figure 3.65 shows an overview. The details will be
explained in the following sub-chapters.

AUTOSAR

ARElement
AtpStructureElement
SystemTemplate::System

-

«atpVariation,atpSplitable»

0.%

+mapping

SystemTemplate::SystemMapping

Identifiable

«AtpUseMetaModelElement»

Implementations

=
=

+signalPathConstraint

A
I I I I I
____________ I I I I I
I I I I I
— | | | | | «atpVariation»
«AtpU AodelElement» | I | I |
______________ r=——r=——r="r=—T777\
_ 1 1 1 1 | \ «atpVariation»
—
" - - ! ! ! ! \ +mappingConstraint
— I I I I \
- I I I I *
VFB Software s | | | |
Component «AtpUseL\/IgtaModeIElemem»)))) SWimapping::
Mapping Constraints - | | | | MappingConstraint
- I I I I
-7 AR
- «atpVariation»
- | | | | / P
| | | | ,
e | | | | , +dataMapping
— | _cAtPUsMetaModelBlements L _ VL1 .
— r ~ r T «atpVariation»
: : : : DataMapping::DataMapping
A | | |
Software Component P | | |
Mapping Constraints i : : :
-
g | | | «atpVariation»
«AtpUseMetaModelElement» | | | 7
e | | | «AtpUseMetaModelElement»
-7 I I I / +swimplMapping |«
-
— |, / | | 4
— s 1 | 4 Identifiable
— / .
— —————————_____/Z _____ _:___II_ _____ — SWmapping::
s | | SwcTolmplMapping
- 1 1
7
Ve | |
i -
Data Mapping L : : //7
«AtpUseMetaModelElement» | | v
P4 .
, ~ | | V2 +swMapping | «
! ! 7 Identifiabl
| | L/ entifiable
— | I «AtpUseMetaModelElement» SWmapping::
e | | 4 SwcToEcuMapping
— Fm——————— —
—
— b
—
v I -7
- «AtpUseMetaModelElement» | y
Mapping of Software V2 | V2
Components to s | s
|
|

Mapping of Software

«AtpUseMetaModelElement»
|

.
«AtpUseMetaModelElement»

SignalPaths::
SignalPathConstraint

Componentsto ECUs //7
7
— %
— «AtpUseMetaModelElemgm»
—
—
—
Signal Path Constraints
ARElement =
ViewMapSet:: Identifiable
ViewMapSet +viewMap ViewMapSet::ViewMap
— — — — _ _ _ ______=
— «AtpUseMetaModelElement» 0..*
—
—
System View
Mapping

Figure 3.65:

3.3.2.6 Software Component Mapping Contraints

Overview on the various artifacts for System Mapping

AUTOSAR

Artifact

Software Component Mapping Constraints

Package

AUTOSAR Root::M2::Methodology::Methodology Library::System::
Work products

Brief Description

Defined constraints on how certain components must be mapped
(clustered or separated).

Description

Description of one or more constraints on Software Components during
mapping to the ECUs. Three type of constraints have been defined:

The ComponentClustering constraint (also, clustering) is to be used for
expressing that a certain set of SW components (atomic or not) must
be mapped (allocated) onto the same ECU. This is some kind of
"execute together on same ECU" constraint. The semantic of the
clustering constraint is straightforward if all concerned SW components
are atomic. Otherwise, it shall be interpreted as follows: all of the
atomic SW components making up the composition must be mapped
together onto the same ECU together with all other SW components
(atomic or not) affected by the constraint. This also means that a
clustering constraint can also refer to only a single composition.

The ComponentSeparation constraint (also, separation) is to be used
for expressing that two SW components (atomic or not) shall not be
mapped (allocated) onto the same ECU. This is some kind of do not
execute together on same ECU constraint. The semantic of the
separation constraint is straightforward if one or both SW components
are atomic. Otherwise, it shall be interpreted as follows: any of the
atomic SW components making up the first composition, must not be
mapped onto the same ECU with any atomic SW component from the
second composition. As a consequence, and to preserve consistency,
an atomic SW component instance cannot be part of two compositions
concerned by the same separation constraint, i.e. the two compositions
have to be disjoint with regards to component instances.

SwcToEcuMapping constraint: The System Constraint Description has
to describe dedicated and exclusive mapping of SW-Cs to one or more
ECUs.

Kind

AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

System Descrip- | 0..%
tion

Produced by

Define Software 1
Component Map-
ping Constraints

Consumed by

Define System 1
Variants

Consumed by

Set System Root 1 Only the reference to the artifact is
needed

Consumed by

Deploy Software | 0..1 | Constraints defined on the System level
Component

Use meta model element

MappingConstraint 1

Use meta model element

SystemMapping 1 The splitable element SystemMapping is
the root for this artifact.

Table 3.131: Software Component Mapping Constraints

AUTOSAR

3.3.2.7 Data Mapping

Artifact Data Mapping

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Work products

Brief Description

Description Mapping of data prototypes from the VFB description to System
signals.

Kind AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

System Descrip- | 0..%
tion

Produced by

Derive Communi- 1..
cation Needs

Consumed by

Define Signal PD 1

Us
Consumed by Flatten Software | 1..*
Composition
Consumed by Set System Root 1..* | Only the reference to the artifact is
needed
Use meta model element | DataMapping 1
Use meta model element | SystemMapping 1 The splitable element SystemMapping is

the root for this artifact.

Table 3.132: Data Mapping

3.3.2.8 Mapping of Software Components to ECUs

Artifact Mapping of Software Components to ECUs

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Work products

Brief Description Describes the mapping of Software Components to the ECUs that are
defined in the VFB context.

Description The VFB shows all Software Components independently of their
deployment on individual ECUs. This work product defines for each
Software Component the corresponding ECU on which the Software
Component will be deployed and executed.

Kind AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

System Descrip- | 0..1

tion

Produced by Deploy Software 1
Component

Consumed by Define Signal PD 1
Us

Consumed by

Define Signal Path 1
Constraints

Consumed by

Define System 1
Timing

AUTOSAR

Relation Type Related Element Mul. | Note
Consumed by Define System 1
Variants

Consumed by

Derive Communi-
cation Needs

Consumed by

Extract the ECU
Communication

Consumed by

Flatten Software
Composition

Consumed by

Set System Root

Only the reference to the artifact is
needed

Use meta model element | SwcToEcuMap- 1
ping
Use meta model element | SystemMapping 1 The splitable element SystemMapping is

the root for this artifact.

Table 3.133: Mapping of Software Components to ECUs

3.3.2.9 Mapping of Software Components to Implementations

Artifact Mapping of Software Components to Implementations
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Work products
Brief Description
Description Specifies the selection of software implementations for the atomic
component prototypes. Because component prototypes can be located
on different ECUs, it is possible to have different Implementations of
two prototypes of the same AtomicComponentType in the system.
Kind AUTOSAR XML
Relation Type Related Element Mul. | Note
Aggregated by System Descrip- | 0..1
tion
Produced by Select Software 1
Component Imple-
mentation
Consumed by Define System 1
Variants
Consumed by Define System | 0..1
Timing

Use meta model element

SwcTolmplMap-
ping

Use meta model element

SystemMapping

The splitable element SystemMapping is
the root for this artifact..

Table 3.134: Mapping of Software Components to Implementations

3.3.2.10 Signal Path Constraints

AUTOSAR

Artifact

Signal Path Constraints

Package

AUTOSAR Root::M2::Methodology::Methodology Library::System::
Work products

Brief Description

Constraints on the Path that should be used or not by Signals

Description

One of the tasks of the System Generator is actually to calculate
automatically the communication (signals) between the RTEs and
define the needed frames for that communication. These definitions of
the frames include implicitly the definition of the paths the
AUTOSAR-Signals are transmitted through the system. Thereby the
System Generator often has the choice between alternative ways
through the system. There exist four different constraints for signals
regarding the signal path:

e The CommonSignalPath describes that two signals must take
the same way (Signal Path) in the topology.

e 'The ForbiddenSignalPath describes the way (Signal Path) that a
signal must not take in the topology, e.g. in case of safety critical
transmission.

e The PermissibleSignalPath describes the way (Signal Path) a
signal can take in the topology. If more than one
PermissibleSignalPath is defined for the same signal/operation
attributes, any of them can be chosen.

e The SeparateSignalPath describes that two or more signals
must not take the same way (Signal Path) in the topology e.g. in
case of redundant transmission. It is also possible that the same
signal is aggregated two times by the SeparateSignalPath
element to indicate that this signal should be transmitted
redundantly over two different paths.

Kind

AUTOSAR XML

Relation Type

Related Element Mul. | Note

Produced by

Define Signal Path 1
Constraints

Consumed by Set System Root 1 Only the reference to the artifact is
needed
Use meta model element | SignalPathCon- 1
straint
Use meta model element | SystemMapping 1 The splitable element SystemMapping is

the root for this artifact.

3.3.2.11 Topology

Table 3.135: Signal Path Constraints

AUTOSAR

Artifact Topology

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Work products

Brief Description The system topology, which may be reused in different systems.

Description Describes the topology of the system : A topology is formed by a
number of Eculnstances that are interconnected to each other in order
to form ensembles of ECUs and CommunicationClusters.

Kind AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

System Descrip- | 0..1

tion
Produced by Define System 1
Topology
In/out Extend Topology 1
Consumed by Define Communi- 1

cation Matrix

Consumed by

Define Network 1
Management

Consumed by

Define Signal PD 1
Us

Consumed by

Define Signal Path 1
Constraints

Consumed by

Define Software 1
Component Map-
ping Constraints

Consumed by

Define System 1

Timing
Consumed by Define System 1
Variants
Consumed by Define TP 1
Consumed by Deploy Software 1
Component
Consumed by Extract ECU Topol- 1
ogy
Consumed by Set System Root 1 Only the reference to the artifact is
needed
Consumed by Define Secured P | 0..1
DUs
Use meta model element | Communication 1
Cluster
Use meta model element | Eculnstance 1

Table 3.136: Topology

3.3.2.12 Ecu Resources Description

AUTOSAR

Artifact

ECU Resources Description

Package

AUTOSAR Root::M2::Methodology::Methodology Library::System::
Work products

Brief Description

Definition of the resources available on an ECU.

Description

Definition of the resources available on an ECU. It mainly contains a
description of hardware elements (like physical memory sections or
peripherals, pins, hardware connections) which need to be referred by
a software component or a basic software description. The focus is to
describe an already engineered piece of hardware, its content and
structure. It is not in the focus of the ECU Resource Description to
support the design of electronics hardware itself. In the XML it is
represented as a set of HwDescriptionEntity -s

Kind

AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

Complete ECU 1

Description

Produced by Define ECU De- | 1.7
scription

Consumed by Define System | 1.*
Topology

Consumed by Define BSW Inter- | 0..1
faces

Consumed by Define ECU | 0.1
Abstraction Com-
ponent

Consumed by

Extend Topology 0..1

Consumed by

Generate ECU Ex- | 0..1 | may be used to set up build environment
ecutable Meth.bindingTime = CompileTime

Consumed by

Implement a BSW | 0..1 | Meth.bindingTime = SystemDesignTime
Module

Consumed by

Measure Compo- | 0..1
nent Resources

Consumed by

Measure Re- | 0..1
sources

Consumed by

Define Complex | 0..*
Driver Component

Consumed by

Define VFB Sen- | 0..*
sor or Actuator
Component

Use meta model element

HwElement 1

Table 3.137: ECU Resources Description

3.3.2.13 System Signal

AUTOSAR

Communication

Artifact System Signal

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Work products

Brief Description

Description The system signals allow to represent this communication view in a
flattened structure, with (at least) one system signal defined for each
data element sent or received by a SW component instance. If data
has to be sent over gateways, there is still only one system signal
representing this data. The representation of the data on the individual
communication systems is done by the cluster signals.

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Aggregated by System Descrip- | 0..*
tion

Produced by Derive Communi- | 1..*
cation Needs

Consumed by Define Signal PD 1
Us

Consumed by Define System 1
Variants

Consumed by Define RTE Fan- | 1.
out

Consumed by Extract the ECU | 0.

Use meta model element

SystemSignal

Table 3.138: System Signal

3.3.2.14 System Signal Group

AUTOSAR

Artifact

System Signal Group

Package

AUTOSAR Root::M2::Methodology::Methodology Library::System::
Work products

Brief Description

A signal group refers to a set of signals that must always be kept
together. A signal group is used to guarantee the atomic transfer of
AUTOSAR composite data types.

Description

The System Signal Group is representing a set of Signals that must be
kept together. A signal group is to guarantee the transfer of AUTOSAR
composite data types for sender receiver communication.The RTE is
required to treat AUTOSAR signals transmitted using sender-receiver
communication atomically. To achieve this, the "signal group”
mechanisms shall be utilized.It is not possible to map a Variable Data
Prototype with a composite datatype directly to a System Signal . The
complex data type must be decomposed into single signals. As this set
of single signals has to be treated as atomic, it is placed in a "signal
group". Itis also used in client server communication when the RTE
maps a response to a corresponding operation request. The
arguments, application errors, client identifier and sequence counter of
an operation are mapped to System Signal of two dedicated
SystemSignalGroup elements;one for the request and one for the
response. The RTE Client Server Protocol is used to provide a specific
semantics to each of these SystemSignalGroups and System Signal ,
also those which are introduced only to support the protocol.

Kind

AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

System Descrip- | 0..*
tion

Produced by

Derive Communi- | 0..*
cation Needs

Consumed by

Define System 1
Variants

Consumed by

Extract the ECU | 0..*
Communication

Use meta model element

SystemSignal 1
Group

Table 3.139: System Signal Group

3.3.2.15 System Flat Map

AUTOSAR

Artifact

System Flat Map

Package

AUTOSAR Root::M2::Methodology::Methodology Library::System::
Work products

Brief Description

Mapping of instance names to nested model elements. Use cases:
Resolve name conflicts when flattening VFB software compositions;
provide unique names and unique model references for measurement
and calibration data.

Description

The flat map is a list of elements, each element represents exactly one
node (e.g. a component instance or data element) of the instance tree
of a software system. The purpose of this element is to map the
various nested representations of this instance to a flat representation
and assign a unique name to it. The name will be unique in the scope
to which this Flat Map belongs (which could be a whole System or a
System Extract).

Use case: The System Flat Map is defined in the context of a System
or System Extract. It serves as a basis for generating an ECU Flat Map
(or a Flat Map of a "child" System Extract). In the ECU Flat Map, the
names will be used as display names for MCD tools or as names for
component prototypes in a flattened software composition. For further
information refer to the description of artifact ECU Flat Map.

Kind

AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

System Configura- | 0..1
tion Description

Aggregated by

System Constraint | 0..1
Description

Aggregated by

System Extract 0..1

In/out

Generate or Adjust 1
System Flat Map

Consumed by

Add Documenta- | 0..1 | Optional input in order to refer to unique

tion to the Software names defined in system context.
Component

Consumed by Generate or Adjust | 0..1 | Take over definitions of unique names
ECU Flat Map from system level to ECU level.

Use meta model element | FlatMap 1

Table 3.140: System Flat Map

3.3.2.16 System Timing

AUTOSAR

Artifact System Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Work products

Brief Description Concrete system’s TimingDescription and TimingConstraints

Description TimingDescription and TimingConstraints defined for a concrete
system taking the mapping of software components to ECUs and their
implementation into account. This means that the resulting
Communication Matrix (and its implication to the communication stack)
can also be referenced by the timing specification to refine remote
communication timing behavior.

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Aggregated by System Descrip- | 0..%
tion

Produced by Define System 1
Timing

Consumed by Define System 1
Variants

Consumed by Extract ECU Sys- 1
tem Timing

Consumed by Deploy Software | 0..1
Component

Use meta model element | SystemTiming 1

Table 3.141: System Timing

3.3.2.17 System View Mapping

Artifact System View Mapping

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Work products

Brief Description The System View Mapping provide an mapping between different
views on the system.

Description This artifact contains a set of system view mappings and provides an
mapping between different views on the system, e.g. different overall
VFB systems (e.g. abstract system description with system
configuration description), or the overall VFB system with the VFB
System Extract description.

Kind AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

Overall VFB Sys- | 0..1 | The Overall VFB System aggregates a
tem potential mapping to the abstract or
functional view of the system.

Aggregated by

VFB System Ex- | 0..1 | The VFB System Extract aggregates a
tract potential mapping to the abstract or
functional view of the system.

Produced by

Define System 1
View Mapping

Use meta model element

ViewMapSet 1

Table 3.142: System View Mapping

AUTOSAR

3.3.2.18 Transformer Design Bundle

Transformer Design Bundle

«SPEM_Aggregation»

.1

|||||| o

BSW Module Vendor-
Specific Configuration
Parameter Definition

«SPEM_Aigation»

Transformer
Specification

Figure 3.66: Structure of deliverable Transformer Design Bundle

Deliverable Transformer Design Bundle

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Work products

Brief Description

Description This deliverable contains a specification of the transformer technology
to be implemented by the BSWM developer. Furthermore it contains
the Vendor specific parameter definition for the corresponding
transformer.

Kind Delivered

Relation Type Related Element Mul. | Note

Aggregates Transformer Speci- 1
fication

Aggregates BSW Module | 0..1
Vendor- Specific
Configuration Pa-
rameter Definition

Produced by Design Trans- 1
former

Produced by Develop System 0.”

Consumed by Develop Basic | 0..”
Software

3.3.2.19 Transformer Specification

Table 3.143: Transformer Design Bundle

AUTOSAR

Artifact Transformer Specification

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Work products

Brief Description

Description This artifact represents the functional specification of the Transformer
to be implemented. The AUTOSAR methodology does not prescribe
the format of this artifact.

Kind Custom

Relation Type Related Element Mul. | Note

Aggregated by Transformer De- 1
sign Bundle

Produced by Create Trans- 1
former Specifica-
tion

Table 3.144: Transformer Specification

3.3.2.20 Rapid Prototyping Scenario

Artifact

Rapid Prototyping Scenario

Package

AUTOSAR Root::M2::Methodology::Methodology Library::System::
Work products

Brief Description

Description of the (required) bypass points and the hooks in the
system.

Description

Description of the (required) bypass points and the in the system and
the corresponding hooks. This artifact contains the RptContainers with
bypass points referencing things like parameterAccess
(dataWriteAccess, dataReadAccess, dataSendPoint,
dataReceivePointByValue, dataReceivePointByArgument,
writtenLocalVariable, readLocalVariable, etc.) The hooks describe the
link between the bypass points and the rapid prototyping algorithm.

Kind

AUTOSAR XML

Relation Type Related Element Mul. | Note
Aggregated by System Descrip- | 0..1
tion

Produced by

Define Rapid Pro- 1
totyping Scenario

Consumed by

Extract ECU Rapid 1
Prototyping Sce-
nario

Use meta model element

RapidPrototyping 1
Scenario

Table 3.145: Rapid Prototyping Scenario

3.3.3 Communication Matrix and Communication Layers

This section contains the tasks and work products to set up the communication matrix
and the communication layers as part of a system description.

AUTOSAR

3.3.3.1 Tasks

3.3.3.1.1 Define Communication Matrix

1System Engineer

\«[edorm >

Topology

«input» «output» 1

Define
Communication Communication Matrix
Matrix

Figure 3.67: Define Communication Matrix

Task Definition Define Communication Matrix

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Communication Matrix::Tasks

Brief Description The communication matrix contents are created or extended by adding
communication definitions.

Description Define or extend Communication Matrix.

Define the triggering of the Physical Channels and the mapping to the
communication connector ports.

In case of extension the original communication matrix contents (which
were delivered as part of a system extract) are extended by adding
communication definitions. The main use case is the extension of the
communication matrix when refining a sub-system.

Relation Type Related Element Mul. | Note
Performed by System Engineer 1
Consumes Topology 1
Produces Communication 1

Matrix

Table 3.146: Define Communication Matrix

AUTOSAR

3.3.3.1.2 Define Frames

Network Layer

System Engineer

N

«performs»

«i npm»\

/efine Frames

«input»
0.1

Interaction Layer

«output» 1

Data Link Layer

Figure 3.68: Define Frames

Task Definition Define Frames

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Communication Matrix::Tasks

Brief Description Define Data Link Layer

Description Define the Frame and assign it to a physical channel of a

communication cluster. Determine the number, the type, the length and
the timing of Frames that are sent or received by the ECUs. Describe
the mapping of Pdus (I-Pdus, N-Pdus or NmPdus) into the frame.
Define the triggering and the identification of a frame on the physical
channel, on which it is sent.

Relation Type Related Element Mul. | Note
Performed by System Engineer 1
Consumes Interaction Layer 0..1
Consumes Network Layer 0..1
Produces Data Link Layer 1

Table 3.147: Define Frames

AUTOSAR

3.3.3.1.3 Define Signal PDUs

Data Mapping

|

Mapping of Software
Componentsto ECUs

)

System Engineer

«input»

1

«performs»

System Signal

Topology

«input»

Define Signal

- i

Interaction Layer

PDUs

Figure 3.69: Define Signal PDUs

Task Definition Define Signal PDUs

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Communication Matrix::Tasks

Brief Description Define the I-PDU and their ISignals

Description Define the Signal Pdu that is handled by AUTOSAR COM and assign it

to a physical channel of a communication cluster. Determine the length
and the timing and describe the mapping of Signals into the Signal

Pdu..
Relation Type Related Element Mul. | Note
Performed by System Engineer 1
Consumes Data Mapping 1
Consumes Mapping of Soft- 1
ware Components
to ECUs
Consumes System Signal 1
Consumes Topology 1
Produces Interaction Layer 1 ISignals

Table 3.148: Define Signal PDUs

AUTOSAR

3.3.3.1.4 Define Secured PDUs

1 System Engineer

«performs»

+Secured PDUs

—
1 | ——

«output» —

Topology

«input» +]|-PDUs| S—

- -
Define Secured «input» 1
PDUs

Figure 3.70: Define Secured PDUs

Interaction Layer

Task Definition Define Secured PDUs

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Communication Matrix::Tasks

Brief Description Define Secured PDUs

Description If a secured communication of a PDU over network is required,

SecuredIPDUs are defined. A secured communication can be
established for IPDUs from the Interaction Layer. In addition to the
SecuredPDUs corresponding SecureCommunicationProperties are
specified that describe how the PDU is secured (e.g. authentication
algorithm).

Relation Type

Related Element Mul. | Note

Performed by System Engineer 1

Consumes Interaction Layer 1 I-PDUs: Authentic IPdu that will be
secured against manipulation and replay
attacks.

Consumes Topology 0..1

Produces Interaction Layer 1 Secured PDUs: Secured IPdu that

contains payload of an Authentic IPdu
supplemented by additional
Authentication Information.

Table 3.149: Define Secured PDUs

AUTOSAR

3.3.3.1.5 Define TP

N
0..

Interaction Layer

—
o
°
o
1]
Q
<

-_

1
System Enginger

«performs»

=

«output»
— Network Layer

«input» >

Define TP

«output»

Diagnostics Interaction
Layer

Figure 3.71: Define TP

Task Definition Define TP

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Communication Matrix::Tasks

Brief Description Define the Network management and the N-PDUs

Description Define the N-PDU - Network Layer Protocol Data Unit (assembled and

disassembled in a Transport Protocol module). If an I-PDU does not fit
into one frame, a segmentation is needed and will be done through
several N-PDUs by the Transport Protocol module.

If large COM PDUs are transported by TP, the Interaction Layer should
be the Input to the Define TP task. If Diagnostic is used then the
Diagnostics Interaction Layer should be an output of Task Define TP.

Relation Type

Related Element Mul. | Note

Performed by System Engineer 1
Consumes Topology 1
Consumes Interaction Layer 0..1
Produces Network Layer 1
Produces Diagnostics Inter- | 0..1

action Layer

Table 3.150: Define TP

AUTOSAR

3.3.3.1.6 Define Network Management

Interaction Layer

N
0..

System Engineer

Define Network
Management

«performs»

«output»

Network Layer

Figure 3.72: Define Network Management

Task Definition Define Network Management

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Communication Matrix::Tasks

Brief Description

Description Define the Network Management that is responsible for the cluster

wide coordinated switching of ECUs between operational modes
(Network Mode, Bus-sleep Mode). Describe the Nm Pdus and
configure the Nm Coordinator, the Nm Clusters and Nm Nodes.

Relation Type Related Element Mul. | Note
Performed by System Engineer 1
Consumes Topology 1
Consumes Interaction Layer 0..1
Produces Network Layer 1

Table 3.151: Define Network Management

AUTOSAR

3.3.3.1.7 Define PDU Gateway

1 System Engineer

«performs»

1 «inoutput» 1

Define PDU Gateway

Interaction Layer

Figure 3.73: Define PDU Gateway

Task Definition Define PDU Gateway

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Communication Matrix::Tasks

Brief Description Define the gateway for IPDUs

Description Define the gateways that are transferring the I-Pdus from one channel

to the other in pairs. Each pair consist of a source and a target
referencing to a IPduTriggering. In the case that a Pdu is being
gatewayed to more than one channel of the same cluster, all of this
gateway relationships shall be specified. Therefore, all affected
IpduTriggerings must be described as gateway mappings.

Relation Type

Related Element Mul. | Note

Performed by

System Engineer 1

In/out

Interaction Layer 1

Table 3.152: Define PDU Gateway

3.3.3.1.8 Define Signal Gateway

System Engineer

«performs»

1 «inoutput» 1

Define Signal Gateway

Interaction Layer

Figure 3.74: Define Signal Gateway

AUTOSAR

Task Definition Define Signal Gateway

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Communication Matrix::Tasks

Brief Description

Description Define the Signal Gateway to describe the routing of signals and signal
groups from one Physical Channel to another Physical Channel.

Relation Type Related Element Mul. | Note

Performed by System Engineer 1

In/out Interaction Layer 1

Table 3.153: Define Signal Gateway

3.3.3.1.9 Define RTE Fan-out

System Engineer

1

«performs»

«input» «output»

System Signal

1. 1

Define RTE Fan-out =
Interaction Layer

Figure 3.75: Define RTE Fan-out

Task Definition Define RTE Fan-out

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Communication Matrix::Tasks

Brief Description Define RTE fan-out which are the relation between [Signals and
System Signal

Description The RTE supports a "signal fan-out" where the same signal (System

Signal) is sent in different IPdus to multiple receivers. The Pdu Router
supports the "PDU fan-out" where the same IPdu is sent to multiple
destinations.

Relation Type Related Element Mul. | Note

Performed by System Engineer 1

Consumes System Signal 1.*

Produces Interaction Layer 1 Link of ISignals to System Signals

Table 3.154: Define RTE Fan-out

AUTOSAR

3.3.3.1.10 Define Transformation Technology

System Engineer

«performs»

+1Signals) m—

> +DataTransformationSet ! | S

1
Define Transformation Interaction Layer
Technology

Figure 3.76: Define Transformation Technology

Task Definition Define Transformation Technology

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Communication Matrix::Tasks

Brief Description

Description Define the information required for the correct usage of the Transformer
(e.g. DataTransformation and TransformationTechnology). This task
produces a set of DataTransformationSets.

Relation Type Related Element Mul. | Note
Interaction Layer 1
Interaction Layer 1

Performed by System Engineer 1

Table 3.155: Define Transformation Technology

3.3.3.1.11 Define E2E Transformer Technology

1| System Engineer

«performs»

+ISignals «input»

1
+E2E Transformer Technology

1 «output» Define E2E Transformer

Technology
Interaction Layer

Figure 3.77: Define E2E Transformer Technology

AUTOSAR

Task Definition Define E2E Transformer Technology

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Communication Matrix::Tasks

Brief Description Define the E2E transformer technology.

Description This task defines the E2E transformer technology.

Relation Type Related Element Mul. | Note

Performed by System Engineer 1

Consumes Interaction Layer 1 ISignals:

Produces Interaction Layer 1 E2E Transformer Technology:

Table 3.156: Define E2E Transformer Technology

3.3.3.2 Work Products

3.3.3.2.1

Data Link Layer

Communication Layers

Communication Layers

«SPEM/Aggregaton»\\

«SPEM_Aggregation»

«SPEM_Aggregation» «SPEM_Aggregation»

Network Layer \

\ Diagnos{ics\\

: P 4 \ Interaction Layer
H . ! \
| P 7 / \ «AtpUseMetaModelElement» \‘
: / | «AtpUseMetaModelElement» ‘\ «AtpUseMetaModelElement»
\ 0
| / / \ \
| I «AtpUseMetaModelElement» \\ \ \
«AtpUseMetaModelElement» II 1 \ \\J
/ \
/ | Pdu \

e ———

CoreCommunication::DemIPdu

! / CoreCommunication:: \

! 1
IPdu + diagPduType :DiagPduType

<<AlpUseMelaM’(;delElemenl» II \\
I / \

/ v \

/ FibexElement \J

FibexElement
CoreCommunication::Frame

| CoreCommunication::ISignal CoreCommunication::NPdu

+ framelLength :Integer

Transformer::DataTransformationSet

/ + dataTypePolicy :DataTypePolicyEnum
/ + length :Integer
1
!
1.x
!
V/ +systemSignal \|/1
ARElement ARElement
CoreCommunication::
SystemSignal

+ dynamicLength :Boolean

Figure 3.78: Communication Layers

AUTOSAR

needed

Deliverable Communication Layers

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Communication Matrix::Work products

Brief Description Communication Matrix

Description It's a container for the description elements of the communication
layers

Kind Delivered

Relation Type Related Element Mul. | Note

Aggregated by System Descrip- | 0..1
tion

Aggregates Data Link Layer 1

Aggregates Interaction Layer 1

Aggregates Diagnostics Inter- | 0..1
action Layer

Aggregates Network Layer 0..1

Consumed by Define System 1
Timing

Consumed by Extract the ECU 1
Communication

Consumed by Set System Root 1 Only the reference to the artifact is

Table 3.157: Communication Layers

3.3.3.2.2 Communication Matrix

CoreCommunication::ISignalTriggering

Identifiable
+iSignalTriggering

0..* «atpVariation»

Communication Matrix

Identifiable

CoreCommunication::PduTriggering

/
/

/+pduTriggeri ng N..*
/
/

«atpVariation»

/
«AtpUseMetaModelElement»

Identifiable

CoreCommunication::
FrameTriggering

P

P

-

~
«AtpUseMetaModelElement»
P

Figure 3.79: Communication Matrix

AUTOSAR

Artifact Communication Matrix

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Communication Matrix::Work products

Brief Description

Description Define the mapping of the triggering elements within the Physical
Channels to the communication connector ports for the individual
ECUs.
Because the triggering elements are aggregated as splitable elements
within the Physical Channels it is possible to define them in an artifact
separated from the Topology.

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Aggregated by System Descrip- | 0..*
tion

Produced by Define Communi- 1
cation Matrix

Use meta model element | FrameTriggering 1

Use meta model element | [SignalTriggering 1

Use meta model element | PduTriggering 1

Table 3.158: Communication Matrix

3.3.3.2.3 Data Link Layer

Artifact Data Link Layer

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Communication Matrix::Work products

Brief Description Describes the frames that are used in the Data Link Layer

Description Describes the layout of frames to be sent over communication
channels. This definition belongs to the Data Link Layer. The Data Link
Layer provides the functional and procedural means to transfer data
between network entities. This layer is used to transmit data passed by
an upper layer (PduR, Tp) between adjacent network nodes. In
AUTOSAR the Drivers (FrDrv, CanDry, LinDrv) and Interfaces (Frlf,
Canlf, Linlf) belong to the Data Link Layer.

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Aggregated by Communication 1
Layers

Produced by Define Frames 1

Use meta model element | Frame 1

3.3.3.24

Table 3.159: Data Link Layer

Interaction Layer

AUTOSAR

Artifact Interaction Layer

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Communication Matrix::Work products

Brief Description Describes the Signals of the Interaction Layer.

Description Describes the Signals of the Interaction Layer covering the COM
Signals. The Interaction Layer packs one or more signals into assigned
COM I-Pdus and passes them to the underlying layer for transfer
between nodes in a network.

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note
Define Transforma- 1
tion Technology
Define Transforma- 1
tion Technology

Aggregated by Communication 1
Layers

Produced by

Define E2E Trans- 1
former Technology

E2E Transformer Technology:

Produced by

Define RTE Fan- 1
out

Link of I1Signals to System Signals

Produced by

Define Secured P 1
DUs

Secured PDUs: Secured IPdu that
contains payload of an Authentic IPdu
supplemented by additional
Authentication Information.

former Technology

Produced by Define Signal PD 1 ISignals
Us

In/out Define PDU Gate- 1
way

In/out Define Signal 1
Gateway

Consumed by Define E2E Trans- 1 ISignals:

Consumed by

Define Secured P 1
DUs

I-PDUs: Authentic IPdu that will be
secured against manipulation and replay
attacks.

Consumed by Define Frames 0..1

Consumed by Define Network | 0..1
Management

Consumed by Define TP 0..1

Use meta model element | DataTransforma- 1
tionSet

Use meta model element | IPdu 1

Use meta model element | ISignal 1

Table 3.160: Interaction Layer

3.3.3.2.5 Diagnostics Interaction Layer

AUTOSAR

Artifact Diagnostics Interaction Layer
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Communication Matrix::Work products
Brief Description
Description Collection of DCM IPDUs.
Kind AUTOSAR XML
Relation Type Related Element Mul. | Note
Aggregated by Communication 0..1
Layers
Produced by Define TP 0..1
Use meta model element | DcmiPdu 1

Table 3.161: Diagnostics Interaction Layer

3.3.3.2.6 Network Layer

Artifact Network Layer
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::
Communication Matrix::Work products
Brief Description Describes the PDUs of the Network Layer.
Description Describes the PDUs of the Network Layer (N-PDUs and NM-PDUs).
The Network Layer’s main purposes are :
e the segmentation and reassembly of I-PDUs and DCM I-PDUs
that do not fit in one of the assigned N-PDUs
o the definition of NM-PDUs
Kind AUTOSAR XML
Relation Type Related Element Mul. | Note
Aggregated by Communication 0..1
Layers
Produced by Define Network 1
Management
Produced by Define TP 1
Consumed by Define Frames 0..1
Use meta model element | NPdu 1

Table 3.162: Network Layer

AUTOSAR

3.3.4 ECU Extract
3.3.4.1 Tasks

3.3.4.1.1 Extract ECU Topology

System Engineer 0.1 0.1 ECU Integrator

ECU Extract
System Description «performs» «performs»

«SPEM_Aggregation»

«SPEM_Aggregation» 1

0.1

—
—
—_————— 15 | —

1 «input»

«output»™

Topology Extract ECU Topology ECU Extract of Topology

Figure 3.80: Extract ECU Topology

Task Definition Extract ECU Topology

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC
U Extract::Tasks

Brief Description Extract the topology for a single ECU from the System Topology

Description From the System or System Extract Topology, extract the topology for a
single ECU.

Relation Type Related Element Mul. | Note

Performed by ECU Integrator 0..1

Performed by System Engineer 0..1

Consumes Topology 1

Produces ECU Extract of | 1.7
Topology

Table 3.163: Extract ECU Topology

AUTOSAR

3.3.4.1.2 Generate or Adjust ECU Flat Map

VFB System 0.1
Extract \

0.1

Overall VFB System

System Flat Map

System
Engineer

ECU Integrator

«performs»

«performs»

ECU Extract

«input» «SPEM_ATQregation»
1

2\
«inpu:»x

1 «inoutput» "1

77

Generate or Adjust

ECU Flat Map ECU Flat Map

«input»

«input»

Partial Flat Map

Figure 3.81: Generate or Adjust ECU Flat Map

Task Definition Generate or Adjust ECU Flat Map

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC
U Extract::Tasks

Brief Description Generates and/or adjust the unique names of component prototypes
and MCD display data in the scope of a single ECU.

Description Generates and/or adjust the unique names of component prototypes

and MCD display data in the scope of a single ECU. This information is
kept in the so-called ECU Flat Map.

The names can be generated according to some rules (e.g. from
model elements of the VFB system), taken over from the System Flat
Map, from partial Flat Maps, or be manually defined. The task shall
always result in an ECU Flat Map with unique names.

Relation Type Related Element Mul. | Note

Performed by ECU Integrator 0..1

Performed by System Engineer 0..1

Consumes Overall VFB Sys- | 0..1 | Used to set the upstream references in
tem case one starts from a complete system.

Consumes System Flat Map 0..1 | Take over definitions of unique names

from system level to ECU level.

Consumes VFB System Ex- | 0..1 | Used to set the upstream references in

tract case one starts from a system extract.

AUTOSAR

Relation Type

Related Element

Mul.

Note

Consumes

Partial Flat Map

0.”

If Partial Flat Maps were delivered along
with software components referring only
to ECU internal information, they may be
integrated into the ECU Flat Map directly,
i.e. without needing the System Flat
Map.

e The instance refs used in a partial
flat map must be taken over and
adjusted to the context ECU
Extract.

e Name conflicts have to be
resolved if several partial flat
maps are merged.

In/out

ECU Flat Map

1

Table 3.164: Generate or Adjust ECU Flat Map

3.3.4.1.3 Flatten Software Composition

ECU Flat Map 1.

e

Mapping of Software \
Componentsto ECUs

Eeeg

System Description Root
Element

[—~.

«input»

Data Mapping

Overall VFB System

—— | System Engineer 1

«performs»

«input» 0.1

ECU Integrator

«performs»

1

% ECU Extract of VFB

System

o
Flatten «oupy »\

Software 1
Composition

ECU Extract
of Data
Mapping

VFB System Extract

Figure 3.82: Flatten Software Composition

AUTOSAR

Task Definition Flatten Software Composition

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC
U Extract::Tasks

Brief Description Extract and flatten the ECU Software Composition.

Description Generate the complete software composition in an ECU by copying

ComponentPrototypes from the VFB description into a flat
representation (still without service components).

Flat representation means, that all compositions are removed and a
"flat" set of ComponetPrototypes is generated. Due to the replication of
ComponentPrototypes new names have to be generated for those.

These can be predefined in the FlatMap which is an input to this task.

The ECU Extract of Data Mapping is also created by this task, as the
references to the Data Prototypes need to be created with respect to
the new component structure.

Relation Type

Related Element Mul. | Note

Performed by System Engineer 1
Performed by ECU Integrator 0..1
Consumes ECU Flat Map 1
Consumes Mapping of Soft- 1
ware Components
to ECUs
Consumes System Descrip- 1 find the top level composition
tion Root Element
Consumes Data Mapping 1.7
Consumes Overall VFB Sys- | 0..1 | Read relevant elements starting from
tem VFB Top Level System Composition in
case transformation starts with the full
system.
Consumes VFB System Ex- | 0..1 | Read relevant elements starting from
tract VFB Top Level System Composition in
case transformation starts from the
system extract.
Produces ECU Extract of 1
Data Mapping
Produces ECU Extract of VF 1

B System

Table 3.165: Flatten Software Composition

AUTOSAR

3.3.4.1.4 Extract the ECU Communication

VFB System

Mapping of Software

Componentsto ECUs

/«input»
—jo_*

System Signal Group

System Signal

1

i«npus

I

System Engineer

«performs»

AN

«input»

«input»

«performs»

ECU Integrator

ECU Extract

«SPEM_Aggregation»

1

«output»

Extract the ECU
Communication

«input»

Communication Layers

ECU Extract for
Communication

Figure 3.83: Extract the ECU Communication

Task Definition Extract the ECU Communication

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC
U Extract::Tasks

Brief Description The limited-scope communication matrices for an ECU to communicate
on all networks on which it is directly connected.

Description The limited-scope communication matrices for an ECU to communicate
on all networks on which it is directly connected.

Relation Type Related Element Mul. | Note

Performed by ECU Integrator 1

Performed by System Engineer 1

Consumes Communication 1
Layers

Consumes Mapping of Soft- 1
ware Components
to ECUs

Consumes VFB System 1 Need as input in order to set up the Data

Mapping.

Consumes System Signal 0.”

Consumes System Signal | 0..”
Group

Produces ECU Extract for | 1..*
Communication

Table 3.166: Extract the ECU Communication

AUTOSAR

3.3.4.1.5 Extract the ECU Timing Model

ECU Extract

System Engineer \0..1 ECU Integratorg. 1
System
Description
erforms»
«performs» “p g
«SPEM_Aggregation» «SPEM_Aggregation»
0 0.1
N «input> «output» 1
— Extract ECU System Timing
System Timing ECU Extract of System

Timing

Figure 3.84: Extract the ECU System Timing Model

Task Definition Extract ECU System Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC
U Extract::Tasks

Brief Description

Description Extract the System Timing Model for a particular ECU from the model
for a complete system or system extract.

Relation Type Related Element Mul. | Note

Performed by ECU Integrator 0..1

Performed by System Engineer 0..1

Consumes System Timing 1

Produces ECU Extract of 1
System Timing

Table 3.167: Extract ECU System Timing

AUTOSAR

3.3.4.1.6 Extract the ECU System Variant Model

System Constant Value Set System Engineer\g..1 ECU Integratpr g 1 ECU Extract

—— |\0 *\ \ / «SPEM_Aggregation»

«performs» «performs»

0.*
«input»” 0.1
— -
— T e
] —input» 1 -
0. Extract ECU System -
Variant Model EC‘ Extract of System
Variant Model
0.* Predefined Variant .
«input»
«SPEM_Aggregation» 0.*
«SPEM_Aggregation»
<input»
0.* Postbuild Variant Set
«SPEM_Aggregation»
0..*
- «SPEM_Aggregation» 0.*
System Evaluated Variant Set
Description

Figure 3.85: Extract the ECU System Variant Model

Task Definition Extract ECU System Variant Model

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC
U Extract::Tasks

Brief Description

Description Extract the global model elements (ARElements) that are used to

describe variants from system or system extract scope to a particular
ECU scope. This applies to:

e System Constant Value Set
e Postbuild Variant Set
e Predefined Variant

e Evaluated Variant Set

They are transformed as far as they are needed into the ECU Extract.

Relation Type Related Element Mul. | Note
Performed by ECU Integrator 0..1
Performed by System Engineer 0..1
Consumes Evaluated Variant | 0..*

Set
Consumes Postbuild Variant | 0..*

Set
Consumes Predefined Variant | 0..*

AUTOSAR

Relation Type

Related Element Mul. | Note

Consumes System Constant | 0..*
Value Set
Produces ECU Extract of 1

System Variant
Model

Table 3.168: Extract ECU System Variant Model

3.3.4.1.7 Extract ECU Rapid Prototyping Scenario

«SPEM_Aggregation»

Rapid Scenario

System System Engineer
Description 0.1

ECU Integrator ECU Extract

«SPEM_Aggregation»

«performs» «performs»

1 «input» «output» 1

I o
“

Extract ECU Rapid Prototyping

ECU Extract of Rapid
Prototyping Scenario

Figure 3.86: Extract ECU Rapid Prototyping Scenario

Task Definition Extract ECU Rapid Prototyping Scenario

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC
U Extract::Tasks

Brief Description Extracts the ECU Rapid Prototyping Scenario

Description From the System Rapid Prototyping Scenario extract the entities

relevant for the single ECU.

Relation Type

Related Element Mul. | Note

Performed by

ECU Integrator 0..1

Performed by

System Engineer 0..1

Consumes Rapid Prototyping 1
Scenario
Produces ECU Extract of 1

Rapid Prototyping
Scenario

Table 3.169: Extract ECU Rapid Prototyping Scenario

AUTOSAR

3.3.4.2 Work Products

3.3.4.2.1 ECU Extract

— 1 ECU Extract Root
—— Element
«SPEM_Aggregation» —
ECU Extract for 1 —
Communication «SPEM_Agg 1

on»"1
«SPEM Aggregatlon ECU Extract of Topology

= S

ECU Extract «SPEM Aggregatlon

ECU Extract
of Data

Mapping / \6\01

<<§>EM7Aggregat|on» «SPEM_Aggregation»

ECU Extract of System
—— «SPEM_Aggregation» Variant Model
——— 1
«SPEM_Aggregation»

ECU Flat Map

«SPEM_Aggregation»

ECU Extract of VFB
System

ECU Extract of System
Timing

ECU Extract of Rapid
Prototyping Scenario

Figure 3.87: ECU Extract

Deliverable ECU Extract

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC
U Extract::Work products

Brief Description A version of the System Description, with information pertaining to a
single ECU.

Description A deliverable used to describe the ECU specific view on the System
Description. The ECU Extract is fully decomposed and contains only
Atomic Software Components.lt is the basis for setting up the ECU
Configuration.

A timing model is optionally included.

This deliverable may contain variation points in its XML artifacts which
need to be bound for the ECU. If such variation points are present, the
ECU extract may optionally include Predefined Variants in order to
predefine variants for later selection and an Evaluated Variant Set (this
is expressed by artifact ECU Extract of System Variant Model).

This deliverable corresponds to the system description with the system
category "ECU_EXTRACT" (see [TPS_SYST_01003]).

Kind Delivered

Relation Type Related Element Mul. | Note

Configure Trans- 1
former

AUTOSAR

System Variant
Model

Relation Type Related Element Mul. | Note

Aggregates ECU Extract Root 1
Element

Aggregates ECU Extract for 1
Communication

Aggregates ECU Extract of 1
Data Mapping

Aggregates ECU Extract of 1
Topology

Aggregates ECU Extract of VF 1
B System

Aggregates ECU Flat Map 1

Aggregates ECU Extract of | 0..1
Rapid Prototyping
Scenario

Aggregates ECU Extract of | 0..1
System Timing

Aggregates ECU Extract of | 0..1

Produced by

Generate ECU Ex-
tract

Produced by

Develop Sub-Sys-
tem

Produced by

Develop System

Consumed by

Configure Com

Consumed by

Configure Debug

Consumed by

Configure Diag-
nostics

Application software requirements for
diagnostics, especially
SwcServiceDependency and
ServiceNeeds.

Consumed by

Configure ECUC

Consumed by

Configure Mode
Management

Application software requirements for
NvM, especially SwcServiceDependency
and ServiceNeeds.

Consumed by

Configure NvM

Application software requirements for
NvM, especially SwcServiceDependency
and ServiceNeeds.

Consumed by

Configure RTE

Elements of the System Description and
VFB Description are referred by the RTE
configuration.

Optional Input: ECU Extract of System
Timing, e.g. execution order constraints.

Consumed by

Configure Watch-
dog Manager

Application software requirements for
WdgM, especially
SwcServiceDependency and
ServiceNeeds.

Consumed by

Connect Service
Component

Find the ports on the application side to
be connected to the Service Component.

AUTOSAR

Define ECU Tim-
ing

Relation Type Related Element Mul. | Note
Consumed by Define Integration 1
Variant
Consumed by Generate Base 1
Ecu Configuration
Consumed by Generate RTE 1 Find the VFB description of all Atomic
Software Components on this ECU and
the relevant parts of the system
description.
The ECU Flat Map is also an input.
Meth.bindingTime = SystemDesignTime
Consumed by Generate RTE 1 Meth.bindingTime = LinkTime
Postbuild Dataset
Consumed by Generate RTE 1 Meth.bindingTime =
Prebuild Dataset CodeGenerationTime
Consumed by Generate Updated 1
ECU Configuration
Consumed by Integrate Software 1
for ECU
Consumed by Prepare ECU Con- 1
figuration
Consumed by Update ECU Con- 1
figuration
Consumed by Create MC Func- | 0..1 | The ECU Flat Map can be used to define
tion Model references to variables and parameters
which are later visible in A2L.
Furthermore, the ECU Extract can be
used to find the relevant software
components.
Consumed by Create Service | 0..1 | Input information about the Service Ports
Component and Service Dependencies of the
software components.
Consumed by 0..1 | Needed to set up links to the elements of

the ECU extract.

Table 3.170: ECU Extract

3.3.4.2.2 ECU Extract Root Element

Artifact ECU Extract Root Element

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC
U Extract::Work products

Brief Description

Description Extract of the System root element for a specific ECU.

Kind AUTOSAR XML

Extends System

Relation Type Related Element \ Mul. \ Note

AUTOSAR

Relation Type Related Element Mul. | Note
Aggregated by ECU Extract 1
Consumed by Generate Rapid 1
Prototyping Wrap-
per
Use meta model element | System 1

Table 3.171: ECU Extract Root Element

3.3.4.2.3 ECU Extract of VFB System

Deliverable ECU Extract of VFB System

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC
U Extract::Work products

Brief Description Contains the complete software composition in an ECU, copied from
the VFB description into a flat representation, it is still without service
components.

Description Contains the complete software composition in an ECU, copied from
the VFB description into a flat representation, that means it is still
without service components. Flat representation means, that all
compositions have been removed and a "flat" set of
ComponentPrototypes was generated (including their connectors)
which are put into the top level composition of the ECU.

Kind Delivered

Extends VFB System

Relation Type Related Element Mul. | Note

Aggregated by ECU Extract 1

Produced by Flatten Software 1
Composition

Consumed by Generate Rapid 1
Prototyping Wrap-
per

Use meta model element | RootSwComposi- 1
tionPrototype

Table 3.172: ECU Extract of VFB System

3.3.4.2.4 ECU Extract of Data Mapping

Artifact ECU Extract of Data Mapping

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC
U Extract::Work products

Brief Description

Description ECU extract of the mapping of data prototypes from the (flattened) VFB
description to System Signals.

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Aggregated by ECU Extract 1

AUTOSAR

Relation Type

Related Element Mul. | Note

Produced by

Flatten Software 1
Composition

Use meta model element

DataMapping 1

Table 3.173: ECU Extract of Data Mapping

3.3.4.2.5 ECU Extract of Topology

Artifact ECU Extract of Topology
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC
U Extract::Work products
Brief Description A view of the topology centered around a single ECU.
Description A view of the topology centered around a single ECU.
Kind AUTOSAR XML
Relation Type Related Element Mul. | Note
Aggregated by ECU Extract 1
Produced by Extract ECU Topol- | 1.7
ogy
Use meta model element | Communication 1
Cluster
Use meta model element | Eculnstance 1

Table 3.174: ECU Extract of Topology

3.3.4.2.6 ECU Extract for Communication

Artifact

ECU Extract for Communication

Package

AUTOSAR Root::M2::Methodology::Methodology Library::System::EC
U Extract::Work products

Brief Description

A version of the System Communication Matrix work product, with
information pertaining to a single ECU.

Description

This artifact represents an extract of the System Description elements
for communication with respect to a single ECU. It provides all
information needed to let the ECU communicate on all networks on
which it is directly connected.
It is extracted from these system artifacts:

e Communication Matrix

e Communication Layers

System Signal(s)

System Signal Group(s)

Kind

AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

ECU Extract 1

AUTOSAR

Relation Type

Related Element Mul. | Note

Produced by

Extract the ECU 1.*
Communication

Use meta model element

FibexElement 1

Table 3.175: ECU Extract for Communication

3.3.4.2.7 ECU Extract of System Timing

Artifact ECU Extract of System Timing
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC
U Extract::Work products
Brief Description
Description The extract of the System Timing for a particular ECU.
Kind AUTOSAR XML
Relation Type Related Element Mul. | Note
Aggregated by ECU Extract 0..1
Produced by Extract ECU Sys- 1
tem Timing
Consumed by Define ECU Tim- | 0..1
ing
Use meta model element | SystemTiming 1

Table 3.176: ECU Extract of System Timing

3.3.4.2.8 ECU Extract of System Variant Model

Deliverable ECU Extract of System Variant Model
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC
U Extract::Work products
Brief Description
Description An extract of the System artifacts
e System Constant Value Set
e Postbuld Variant Set
e Predefined Variant
e Evaluated Variant Set
It contains only the elements relevant for a particular ECU.
Kind Delivered
Relation Type Related Element Mul. | Note
Aggregated by ECU Extract 0..1
Aggregates Evaluated Variant | 0..”
Set
Aggregates Postbuild Variant | 0..*

Set

AUTOSAR

Relation Type

Related Element Mul. | Note

Aggregates

Predefined Variant 0.*

Aggregates

System Constant | 0..*
Value Set

Produced by

Extract ECU Sys- 1
tem Variant Model

Consumed by

Generate Rapid | 0..1
Prototyping Wrap-
per

Table 3.177: ECU Extract of System Variant Model

3.3.4.2.9 ECU Flat Map

Artifact

ECU Flat Map

Package

AUTOSAR Root::M2::Methodology::Methodology Library::System::EC
U Extract::Work products

Brief Description

Mapping of instance names to nested model elements. Use cases:
Resolve name conflicts when flattening VFB software compositions;
provide unique names for measurement and calibration data.

Description

The flat map is a list of elements, each element represents exactly one
node (e.g. a component instance or data element) of the instance tree
of a software system. The purpose of this element is to map the
various nested representations of this instance to a flat representation
and assign a unigue name to it. The name will be unique in the scope
of a single ECU. (Note that additional alias names can be defined via
artifact Alias Name Set.)

Use cases:

o Specify the display name of a data object for measurement and
calibration. This serves as an input for the calibration support
which is produced by the RTE generator. The RTE generator
needs to find the attributes assigned to these data via the
attached references.

e Specify a unique name for an instance of a component
prototype in the ECU extract of the system description. This
information is needed to set up the ECU extract.

¢ Assign initial values to calibration parameters as input for the
RTE generator.

Kind

AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

ECU Extract 1

In/out

Generate or Adjust 1
ECU Flat Map

Consumed by

Flatten Software 1
Composition

Consumed by

Generate Local M 1 Meth.bindingTime = SystemDesignTime

C Data Support

AUTOSAR

Relation Type Related Element Mul. | Note
Consumed by Generate Rapid 1
Prototyping Wrap-
per
Consumed by Provide RTE Cali- 1
bration Dataset
Consumed by Generate A2L 0..1 | The ECU Flat Map is needed in case the

A2L generator has to process an MC
Function Model that relates to data in the
ECU Flat Map.

Use meta model element FlatinstanceDe- 1
scriptor

Table 3.178: ECU Flat Map

3.3.4.2.10 ECU Extract of Rapid Prototyping Scenario

Artifact ECU Extract of Rapid Prototyping Scenario
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC
U Extract::Work products
Brief Description Description of the (required) bypass points in the ECU.
Description Description of the (required) bypass points in the ECU.
Kind AUTOSAR XML
Relation Type Related Element Mul. | Note
Aggregated by ECU Extract 0..1
Produced by Extract ECU Rapid 1
Prototyping Sce-
nario
In/out Refine Rapid Pro- 1
totyping Scenario
Consumed by Generate Rapid 1
Prototyping Wrap-
per

Table 3.179: ECU Extract of Rapid Prototyping Scenario

3.4 Software Component

This chapter contains the definition of work products and tasks used for the develop-
ment of a single software component against a given VFB description. For the definition
of the relevant meta-model elements refer to [5].

AUTOSAR

3.4.1 Tasks

3.4.1.1 Define Software Component Internal Behavior

Software Software

Component Component
Designer 0.1 Developer
.
—
—
e «performs» «performs»
1
«input»
VFB Atomic
Software
Component S—
—
«output» 1| —
—
Define Atomic Software
«input» Component Internal Software Component Internal
Behavior Behavior

0.1

VFB AUTOSAR Standard Package

Figure 3.88: Define Software Component Internal Behavior

Task Definition Define Atomic Software Component Internal Behavior

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Tasks

Brief Description Define the InternalBehavior in relation to a given
AtomicSoftwareComponentType

Description Define the InternalBehavior in relation to a given

AtomicSoftwareComponentType so that an RTE API can be generated.
This includes the definition of Runnables, RTE Events, Inter-Runnable
variables, etc.

Relation Type Related Element Mul. | Note
Performed by Software Compo- 1
nent Designer
Performed by Software Compo- | 0..1
nent Developer
Consumes VFB Atomic Soft- 1
ware Component
Consumes VFB AUTOSAR | 0..1 | Use standardized elements (e.g. Data
Standard Package Types) as blueprints (as far as
applicable) to create the corresponding
elements of the actual project.
Produces Software Compo- 1
nent Internal Be-
havior

Table 3.180: Define Atomic Software Component Internal Behavior

AUTOSAR

3.4.1.2 Define Partial Flat Map

VFB System

1
«input»

«performs»

0..*

Software Component Internal

Behavior

Software
Component
Designer

0.1

\

Software
Component
Developer

«performs»

Define Partial Flat Map

«output» 1

Partial Flat Map

Figure 3.89: Define Partial Flat Map

Task Definition Define Partial Flat Map

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Tasks

Brief Description

Description Define a Partial Flat Map for an intended delivery of Atomic Software
Components.

Relation Type Related Element Mul. | Note

Performed by Software Compo- | 0..1
nent Designer

Performed by Software Compo- | 0..1
nent Developer

Consumes VFB System 1 Various parts of a given VFB system will

be used as input:

o Refer to parameters and variables
in port interfaces and their data
types.

o In order to define unique names,
also other the component
definitions not in the scope of the
partial flat map might be checked.

e Set a link to the context of the Flat
Map, e.g. a VFB Composition.

Consumes Software Compo- | 0..* | Refer to parameter and variables defined
nent Internal Be- in the Internal Behavior of one or more
havior Atomic Software Components.

Produces Partial Flat Map 1

Table 3.181: Define Partial Flat Map

AUTOSAR

3.4.1.3 Define Software Component Timing

Software Co
Internal Behavior

Software Component Developer

1 «input» «performs»
mponent

«output» 1

Define Software Component
Timing
«input» Software Component Timing

0.1

<
Bl
w
=
El
E
@

Figure 3.90: Define Software Component Timing

Task Definition Define Software Component Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Tasks

Brief Description Define SWCTiming (TimingDescription and TimingConstraints) for the
Internal Behavior (RunnableEntities) of a Software Component

Description Define SWCTiming (TimingDescription and TimingConstraints) of a

software component. A software component can either be of type
AtomicSWComponentType or CompositionSWComponentType.

In the former case, the task allows to describe timing description and
constraints for the InternalBehavior of the AtomicSWComponentType.

In the latter case, timing descriptions and constraints can be defined for
all Atomic Software Components in the
CompositionSWComponentType.

Relation Type Related Element Mul. | Note
Performed by Software Compo- 1

nent Developer
Consumes Software Compo- 1

nent Internal Be-

havior
Consumes VFB Timing 0..1
Produces Software Compo- 1

nent Timing

Table 3.182: Define Software Component Timing

AUTOSAR

3.4.1.4 Define SymbolProps for Types

Software Component Developer

«performs»

Define SymbolProps

for Types «output»

+wmboIProps)

VFB Atomic
«output» Software
Component

+symbolProps

0.%

VFB Types

Figure 3.91: Define SymbolProps for Types

Task Definition Define SymbolProps for Types

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Tasks

Brief Description Define SymbolProps for types in order to resolve name conflicts in the
code.

Description Redefines the symbols used by the RTE contract for the names of

software component types and/or implementation data types (in the
code as well as in certain header file names).

This task is used to resolve name conflicts between different software
components without changing the VFB model.

ware Component

Relation Type Related Element Mul. | Note
Performed by Software Compo- 1
nent Developer
Produces VFB Atomic Soft- | 0..* | symbolProps: The symbolProps attribute

redefines the software component type
name used in the code of the RTE. This
resolves name clashes among different
software component types designed
accidentally with the same shortName.

Note that this output is a splitable
element, so it can be added later without
changing the VFB model.

AUTOSAR

Relation Type

Related Element

Mul.

Note

Produces

VFB Types

0.”

symbolProps: The symbolProps attribute
redefines the implementation data type
name used in the code of the RTE and/or
the component. This resolves name
clashes among different implementation
data types designed accidentally with the
same shortName.

Note that this output is a splitable
element, so it can be added later without
changing the VFB model.

Table 3.183: Define SymbolProps for Types

3.4.1.5 Add Documentation to the Software Component

Software Component
Designer

«performs»

¥

L

’/«input»

0.1

System Flat Map «input»

d

0.1

°

Partial Flat Map

Alias Name Set

«performs»

Software
Component
Developer

«inoutput»

Add Documentation to the
Software Component

/«| nput»
*

Documentation

Figure 3.92: Add Documentation to the Software Component

Task Definition Add Documentation to the Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Tasks

Brief Description Add documentation to the Software Component

Description Add documentation to the Software Component describing the

diagnosis issues.

functionality, how to test it, the calibration uses, the maintenance and

Relation Type Related Element Mul. | Note
Performed by Software Compo- 1

nent Designer
Performed by Software Compo- | 0..1

nent Developer

AUTOSAR

Relation Type Related Element Mul. | Note
Consumes Partial Flat Map 0..1 | Optional input in order to refer to unique
names defined in component or
composition context.
Consumes System Flat Map 0..1 | Optional input in order to refer to unique
names defined in system context.
Consumes Alias Name Set 0..* | Optional input in order to refer to unique
names defined in an Alias Name Set
(e.g. System Constants).
In/out Software Compo- 1
nent Documenta-
tion
Table 3.184: Add Documentation to the Software Component
3.4.1.6 Generate Atomic Software Component Contract Header Files

«input»

~
0.1

‘ «input»
—
—
—
—
—

Predefined Variant

«inpUI»\

«input»

' 4

0.1

System Constant Value Set

«input»

«input»

VFB Data Type
Mapping Set

Software Component

Internal Behavior
— VFB Atomic 1 1
Software
Component
0.1
Postbuild Variant Set
«input»

Generate Atomic Software
Component Contract Header Files

Software Component Developer

«performs»

«output» 7

W

1

«used tool» Software

Component Data
Types Header

«input»

Component API Generator Tool

VFB Modes

Software
Component to
BSW Mapping

Figure 3.93: Generate Atomic Software Component Contract Header Files

VFB AUTOSAR Standard Package

AUTOSAR

Task Definition Generate Atomic Software Component Contract Header Files

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Tasks

Brief Description Generate the component contract header files.

Description Generate the component header files as part of the so-called "contract

phase". These headers will allow to link the component lateron with the
RTE.

The header can still contain variants with later binding time, therefore
the information about these variants is contained in the input to this
task.

Meth.bindingTime = CodeGenerationTime

Relation Type

Related Element Mul. | Note

Performed by Software Compo- 1
nent Developer
Consumes Software Compo- 1 Meth.bindingTime = SystemDesignTime
nent Internal Be-
havior
Consumes VFB Atomic Soft- 1 Meth.bindingTime = SystemDesignTime
ware Component
Consumes Postbuild Variant | 0..1
Set
Consumes Predefined Variant | 0..1
Consumes Software Compo- | 0..1 | If a Software Component is mapped to a
nent to BSW Map- BSW module description, this input is
ping optionally needed already in the contract
phase in order to ensure that the
generated prototypes for runnables are
consistent with the definitions in
Software Component and BSW.
Meth.bindingTime = SystemDesignTime
Consumes System Constant | 0..1 | Meth.bindingTime = SystemDesignTime
Value Set
Consumes VFB AUTOSAR | 0.1
Standard Package
Consumes VFB Data Type | 0..1 | Meth.bindingTime = SystemDesignTime
Mapping Set
Consumes VFB Interfaces 0..* | Meth.bindingTime = SystemDesignTime
Consumes VFB Modes 0..* | Meth.bindingTime = SystemDesignTime
Consumes VFB Types 0..* | Meth.bindingTime = SystemDesignTime
Produces Application Header 1 Meth.bindingTime =
File CodeGenerationTime
Produces Software Compo- 1 Meth.bindingTime =
nent Data Types CodeGenerationTime
Header
Used tool Component API 1

Generator Tool

Table 3.185: Generate Atomic Software Component Contract Header Files

AUTOSAR

3.41.7

VFB Types

VFB Data Type Mapping Set

Software Component¥rternal

Behavior

Generate Component Header File in Vendor Mode

Software Component
1 1 Developer 7

. 0.1
Atomic Soft\n{a Component ECU Integrator
Implementation

«input»
«performs»

«performs»

«input»

“1
«output»

Optimized
. Application Header
/ Generate Component Header File File
«input» in Vendor Mode
«input» «output»’
—
—
1

«used tool»)
. —
«input» —

Software

Component Data
Types Header

«input»
«input»
0..*

il

Component API Generator Tool

VFB

0..*
/
=
—

VFB Modes

VFB AUTOSAR Standard Package

Figure 3.94: Generate Component Header File in Vendor Mode

Task Definition Generate Component Header File in Vendor Mode

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Tasks

Brief Description Generate an optimized component header file. This is achieved by
using the RTE’s vendor mode.

Description Generate an optimized component header file. This is achieved by

using the RTE’s vendor mode.

Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Mul. | Note
Performed by Software Compo- 1

nent Developer
Performed by ECU Integrator 0..1

Consumes Atomic Software 1 Meth.bindingTime = SystemDesignTime
Component Imple-
mentation

Consumes Software Compo- 1 Meth.bindingTime = SystemDesignTime
nent Internal Be-

havior

AUTOSAR

Generator Tool

Relation Type Related Element Mul. | Note
Consumes VFB Atomic Soft- 1 Meth.bindingTime = SystemDesignTime
ware Component
Consumes VFB AUTOSAR | 0..1
Standard Package
Consumes VFB Data Type | 0..1 | Meth.bindingTime = SystemDesignTime
Mapping Set
Consumes VFB Interfaces 0..* | Meth.bindingTime = SystemDesignTime
Consumes VFB Modes 0..* | Meth.bindingTime = SystemDesignTime
Consumes VFB Types 0..* | Meth.bindingTime = SystemDesignTime
Produces Optimized Applica- 1 Meth.bindingTime =
tion Header File CodeGenerationTime
Produces Software Compo- 1 Meth.bindingTime =
nent Data Types CodeGenerationTime
Header
Used tool Component API 1

Table 3.186: Generate Component Header File in Vendor Mode

AUTOSAR

3.4.1.8 Generate Component Prebuild Data Set

Software
Component Internal
Behavior

1
VFB Atomic Softwgre Component
Software Component Developer
0.

VFB Data
Type Mapping
Set

*
«input»
— Predefined Variant
— «input»
—
— .
— | L «input»,
«performs»
System Constant Value Set
«inpm»\

Generate Component Prebuild

—
—
«input» Data Set «output»] | —
—

Component RTE
Prebuild
«<input» Configuration
«used tool» Header
«input»
/ «input»
/ «input»
B

Component API Generator Tool

o
Tx

VFB Interfaces

VFB Modes

VFB AUTOSAR Standard Package

Figure 3.95: Generate Component Prebuild Data Set

Task Definition Generate Component Prebuild Data Set

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Tasks

Brief Description Prebuild Data Set Generation Phase for a software component: It binds
all variations which need to be set after generation of the RTE contract
header but before compilation of the component.

Description Prebuild Data Set Generation Phase for a software component: It binds

all variations which need to be set after generation of the RTE contract
header but before compilation of the component. The output is a
configuration header which is used when compiling the component and
the RTE as well.

Meth.bindingTime = PreCompileTime

Relation Type

Related Element Mul. | Note

Performed by Software Compo- 1
nent Developer
Consumes Software Compo- 1 Meth.bindingTime =

nent Internal Be- CodeGenerationTime

havior

AUTOSAR

Header

Behavior

1

0.*
Library Header Files
Software CQmpW

Software Component Data Types

«input»
«input»

«input»

«input»

Standard Header Files

Library Description

Implement Atomic Softwarg
Component

«input»

Software Component Timing

«performs»

Relation Type Related Element Mul. | Note
Consumes VFB Atomic Soft- 1 Meth.bindingTime =
ware Component CodeGenerationTime
Consumes System Constant | 1..* | Meth.bindingTime =
Value Set CodeGenerationTime
Consumes VFB AUTOSAR | 0..1
Standard Package
Consumes VFB Data Type | 0..1 | Meth.bindingTime =
Mapping Set CodeGenerationTime
Consumes Predefined Variant | 0..*
Consumes VFB Interfaces 0..* | Meth.bindingTime =
CodeGenerationTime
Consumes VFB Modes 0..* | Meth.bindingTime =
CodeGenerationTime
Consumes VFB Types 0..* | Meth.bindingTime =
CodeGenerationTime
Produces Component RTE 1 Meth.bindingTime = PreCompileTime
Prebuild Configu-
ration Header
Used tool Component API 1
Generator Tool
Table 3.187: Generate Component Prebuild Data Set
3.4.1.9 Implement Atomic Software Component

Software Component Developer

«output»

m

1

Atomic Software Component
Source Code

Atomic Software Component
Implementation

Figure 3.96: Implement Atomic Software Component

AUTOSAR

Task Definition Implement Atomic Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Tasks

Brief Description Implement the code of the AtomicSoftwareComponent and decribe the
Implementation.

Description Implement the code of the AtomicSoftwareComponent against the
generated component contract header. Document the basic
information in the Implementation Description.

Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Mul. | Note

Performed by Software Compo- 1
nent Developer

Consumes Application Header 1 Meth.bindingTime = SystemDesignTime
File

Consumes Software Compo- 1 Meth.bindingTime = SystemDesignTime
nent Data Types
Header

Consumes Software Compo- 1 Meth.bindingTime = SystemDesignTime
nent Internal Be-
havior

Consumes Software Compo- | 0..1 | Meth.bindingTime = SystemDesignTime
nent Timing

Consumes Standard Header | 0..1 | Meth.bindingTime =
Files CodeGenerationTime

Consumes Library Description | 0..* | Meth.bindingTime =

CodeGenerationTime

Consumes Library Header | 0..* | Meth.bindingTime =
Files CodeGenerationTime

Produces Atomic Software 1 Meth.bindingTime =
Component Imple- CodeGenerationTime
mentation

Produces Atomic Soft- 1 Meth.bindingTime =
ware Component CodeGenerationTime
Source Code

Table 3.188: Implement Atomic Software Component

AUTOSAR

3.4.1.10 Compile Atomic Software Component

Rapid Prototyping
Wrapper Source
Code

—
0.1 ' ;
0.1
0.1
Software
. Component 0.1
«input») Developer
i «input»
«input» NP Rapid Prototyping
Engineer
«performs» 9!
«input»
0..1 «performs»
Component RTE Prebuil
Configuration Header .

Rapid Prototyping
Wrapper Header
File

Atomic Software
Component
Source Code

Compile Atomic

Software
Component

—
—
P r] —
—

Atomic Software
Component Object
Code

Software Component Data Types
Header

«used tool»

T

Compiler

«input»

N

Standard Header Files Library Header Files

Figure 3.97: Compile Atomic Software Component

Task Definition Compile Atomic Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Tasks

Brief Description Compile the AtomicSoftwareComponent independently of an ECU.

Description Compile the Atomic Software Component independently of an ECU. In

the context of Rapid Prototyping Wrapper compilation the task is
performed by the Rapid Prototyping Engineer.

Meth.bindingTime = CompileTime

Relation Type

Related Element Mul. | Note

Performed by

Rapid Prototyping | 0..1
Engineer

Performed by

Software Compo- | 0..1
nent Developer

Consumes Application Header 1 Meth.bindingTime =
File CodeGenerationTime
Consumes Atomic Soft- 1 Meth.bindingTime =

ware Component CodeGenerationTime

Source Code

AUTOSAR

Relation Type Related Element Mul. | Note
Consumes Software Compo- 1 Meth.bindingTime =
nent Data Types CodeGenerationTime
Header
Consumes Standard Header 1 Meth.bindingTime =
Files CodeGenerationTime
Consumes Component RTE | 0..1 | Meth.bindingTime = PreCompileTime
Prebuild Configu-
ration Header
Consumes Rapid Prototyping | 0..1
Wrapper Header
File
Consumes Rapid Prototyping | 0..1
Wrapper Source
Code
Consumes Library Header | 0..* | Meth.bindingTime =
Files CodeGenerationTime
Produces Atomic Software 1 The object file should include both code
Component Object of the SWC and the E2E Protection
Code Wrapper code (if present as an input).
Meth.bindingTime = CompileTime
Used tool Compiler 1
Table 3.189: Compile Atomic Software Component
3.4.1.11 Map Software Component to BSW

Il

1

Software Componeéxg Intemal
Behavior

«input»

(L

1
- «input»
Basic Software Module Intemal
Behavior

[l

«input»

Complex Driver Comporfent

[l

ECU Abstraction Software
Component

Software
Component
Designer

«performs»

% Map Software Component to BSW

ECU Integrator

«performs»

«output» 1

Software
Component to
BSW Mapping

Figure 3.98: Map Software Component to BSW

AUTOSAR

Task Definition Map Software Component to BSW

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Tasks

Brief Description Define the mapping between a Software Component and a BSW
Module.

Description Define the mapping between a Software Component and a BSW

Module. Required only for Complex Drivers and ECU Abstraction
Components. Note that for Service Components, this mapping will be
generated in the ECU integration phase, so the latter is not considered
as a task in the responsibility of the BSW developer.

nent to BSW Map-
ping

Relation Type Related Element Mul. | Note

Performed by Software Compo- 1
nent Designer

Performed by ECU Integrator 0..1

Consumes Basic Software 1
Module Internal
Behavior

Consumes Software Compo- 1
nent Internal Be-
havior

Consumes Complex Driver | 0..1
Component

Consumes ECU Abstraction | 0..1
Software Compo-
nent

Produces Software Compo- 1

Table 3.190: Map Software Component to BSW

AUTOSAR

3.4.1.12 Measure Component Resources

Software
1 Component
Developer

Atomic Software Component Obj
Code

«input»

L

.1

o

ECU Resources

«input»

«input»

«performs»

Measure Component Resources

«performs»

«inoutput» 71

Atomic Software Component

«performs» Implementation

Description :
— ECU Integrator
Software Component Timing
Basic Software Module Developer
Figure 3.99: Measure Component Resources
Task Definition Measure Component Resources
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Tasks

Brief Description Measure the resource consumption of an Atomic Software Component
Description Determine the resource consumption (memory, execution time) for a

specific implementation of an Atomic Software Component in a certain
context (ECU or test environment) and document the results in the
Implementation description targeted at this specific platform.

The ECU Resources Description is an optional input, because some
results should be documented in relation to the hardware elements.

Component Imple-
mentation

Relation Type Related Element Mul. | Note

Performed by Software Compo- 1
nent Developer

Performed by Basic Software | 0..1
Module Developer

Performed by ECU Integrator 0..1

Consumes Atomic Software 1
Component Object
Code

Consumes ECU Resources | 0..1
Description

Consumes Software Compo- | 0..1
nent Timing

In/out Atomic Software 1

AUTOSAR

Relation Type

| Related Element | Mul. | Note

Table 3.191: Measure Component Resources

3.4.1.13 Recompile Component in ECU Context

Optimized Ap
Header File

Library Header
Files /

@
s
S
=Y
2
a
I
©
2
5 =
I
@
»

Atomic Software Component
Source Code

oN
1

1 «input»
plication
«output»

1
:

Re-compile Optimized Software Component
Component in ECU Object Code
context

Software Component Developer

«performs»

«used tool»

«input»

Compiler

Figure 3.100: Recompile Component in ECU Context

Task Definition Re-compile Component in ECU context

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Tasks

Brief Description Re-compile Component with ECU-Configuration specific optimizations.

Description Re-compile Component with optimizations made by the RTE in the

context of an ECU (so-called RTE implementation phase).

Meth.bindingTime = CompileTime

Relation Type

Related Element Mul. | Note

Performed by Software Compo- 1
nent Developer

Consumes Atomic Soft- 1 Meth.bindingTime =
ware Component CodeGenerationTime
Source Code

Consumes Optimized Applica- 1 Meth.bindingTime =
tion Header File CodeGenerationTime

Consumes Standard Header 1 Meth.bindingTime =
Files CodeGenerationTime

Consumes Library Header | 0..* | Meth.bindingTime =

Files CodeGenerationTime

AUTOSAR

Relation Type Related Element Mul. | Note

Produces Optimized Soft- 1 Meth.bindingTime = CompileTime
ware Component
Object Code

Used tool Compiler 1

Table 3.192: Re-compile Component in ECU context

3.4.1.14 Define Consistency Needs

Software
Component
Designer

Software 1.
Component
Internal

Behavior

Software Component

«input» Developer
«performs»

«performs»

«input» § /

0..*

«inoutput»

VFB Types 1
«input» Define Consistency
Needs Consistency Needs
*

«input»

o

VFB Interfaces

VFB Atomic
Software
Component

Figure 3.101: Define Consistency Needs

Task Definition Define Consistency Needs

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Tasks

Brief Description

Description Defines the consistency relations between a group of RunnableEntitys

and a group of DataPrototypes. The consistency relations can be
defined first time at the design of an Atomic Software Component but
can be added as well if Compositions are created.

Relation Type Related Element Mul. | Note
Performed by Software Compo- 1

nent Designer
Performed by Software Compo- 1

nent Developer

AUTOSAR

Relation Type Related Element Mul. | Note
Consumes Software Compo- | 1..* | Runnables the consistency is defined for.
nent Internal Be-
havior
Consumes VFB Atomic Soft- | 0..* | The description of an
ware Component AtomicSoftwareComponentType without
InternalBehavior.
Consumes VFB Interfaces 0..* | Interfaces which are relevant for the
consistency definition.
Consumes VFB Types 0..* | Data types which are relevant for the
consistency definition.
In/out Consistency 1 The description of the correlation
Needs between a group of RunnableEntitys and
a group of DataPrototypes. In order to
allow incremental development and
refinement the Consistency Needs
artifact is also used as an input.

Table 3.193: Define Consistency Needs

3.4.1.15 Generate Rapid Prototyping Wrapper

~

ECU Extract of VFB

System

ECU Extract of Rapid
Prototyping Scenario

Y

ECU Extract of System
Variant Model

ECU Extract Root
Element

«input»

«input»

«i npu(»ﬁ

«input»

/) /

ECU Flat Map

1 [Rapid Prototyping
Engineer

«performs»
1
«output»

Generate Rapid
Prototyping Wrapper

il

Rapid Prototyping
Wrapper Header
File

«output»

Rapid Prototyping
Wrapper Source
Code

Software Component Internal

Behavior

Figure 3.102: Generate Rapid Prototyping Wrapper

AUTOSAR

Task Definition Generate Rapid Prototyping Wrapper

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Tasks

Brief Description Generate Rapid Prototyping Wrapper code.

Description Generate Rapid Prototyping Wrapper code. The header and source

code are generated based on the Rapid Prototyping Scenario
describing the bypass points and the RPT hooks.

Relation Type

Related Element

Mul.

Note

Performed by

Rapid Prototyping
Engineer

1

Consumes

ECU Extract Root
Element

Consumes

ECU Extract of
Rapid Prototyping
Scenario

Consumes

ECU Extract of VF
B System

Consumes

ECU Flat Map

Consumes

Software Compo-
nent Internal Be-
havior

Consumes

ECU Extract of
System Variant
Model

0..1

Produces

Rapid Prototyping
Wrapper Header
File

Produces

Rapid Prototyping
Wrapper Source
Code

Table 3.194: Generate Rapid Prototyping Wrapper

AUTOSAR

Methodology
AUTOSAR Release 4.2.2

3.4.2 Work Products

3.4.2.1 Delivered Atomic Software Components

System Constant VFB Composition VFB Atomic VFB Data Type
Value Set Component Software VFB Interfaces VFB Modes VFB Types Mapping Set Application
Componen Header File
— — — — — — —
—
—
—
0. —
—
15 | —
0..* 1. 0.* 0..* 0.* 0..*
«SPEM_Aggregation» .
«SPEM_Aggregation
— «SPEM_Aggregation»
— «SPEM_Aggregation» «SPEM_Aggregation» SPEM A I —
= «SPEM_Aggregation» « _Agg
— . N —
— N~ «SPEM_Aggregation» 1. —
. | «<SPEM_Aggregation» v :__
Predefined Variant «SPEM_Aggregation»
<> <> Software Component Data
Types Header
— —
—
—) 1 — —
E— «SPEM_A 10N |
—

Evaluated Variant Set 0, x| —
. f— Component RTE Prebuild
— «SPEM_Aggregation» Configuration Headn

= f— Delivered Atomic Software i
«SPEM_Aggregation».
—] Components -Aogreg e
— — 0..% | e—
— T —
—
Postbuild Variant Set —
«SPEM_Aggregation»tomic Software
SPEM A " Component
« _Aggregation»| \ Object Code
«SPEM_Aggregation» «SPEM_Aggregatiag»
«SPEM_Aggregatipn» ‘
0..% | e—
«SPEM_Ag -
«SPEM_Aggregation» —
/0 . 0. 0% 0.* 0. | e—
Library Object
— — — — === |Code
— — —
— — —
— — —
— — —
Software Software Atomic Atomic Software Software Component Timing
Component Component Software Component
Intemal to BSW Component Implementation
Behavior Mapping Source Code
«SPEM_Aggregation» «SPEM_Aggregation» spgmM_Aggregation»
0..* 0.1 0.*
— — —
— — —
— — —
— — —
— — —
— — —
Consistency Needs Alias Name Set Partial Flat Map Software
Component

Documentation

Figure 3.103: Delivered Atomic Software Components

361 of 503 Document ID 068: AUTOSAR_TR_Methodology
— AUTOSAR CONFIDENTIAL —

AUTOSAR

Deliverable Delivered Atomic Software Components

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Work Products

Brief Description Delivery of a set of AtomicSoftwareComponents including their
Implementation.

Description Complete description of a set of AtomicSoftwareComponents including
Implementation (still standalone, not yet mapped to a specific ECU).
The source or object code files are referred by the Implementation
Description.
The Atomic Software Components that make up the delivery may or
may not form a composition (in the sense of the VFB).
Note that the VFB descriptions of the components, compositions and
the used interfaces are part of the deliverable too in order to describe
the delivered components completely. However, depending on the use
case, these parts could have been predefined and were treated as
"readonly" during the component development. The same holds
(optionally) for the Internal Behavior(s).
In case of RTE generation a mapping set between Application and
Implementation Data Types shall be included if Application Data Types
are used. A Timing Model is included optionally.
The delivery can optionally also contain variants (an Evaluated Variant
Set and the related artifacts).

Kind Delivered

Relation Type Related Element Mul. | Note

Aggregates Application Header | 1..*
File

Aggregates Software Compo- | 1..*
nent Data Types
Header

Aggregates VFB Atomic Soft- | 1..*
ware Component

Aggregates Alias Name Set 0..1 | Alias names valid in the context of the

delivered components.

Aggregates Evaluated Variant | 0..1
Set

Aggregates Partial Flat Map 0..1

Aggregates Postbuild Variant | 0..1
Set

Aggregates Atomic Software | 0..* | If the delivery contains only VFB NvBlock
Component Imple- Software Components, no
mentation implementation is contained as the code

is generated as part of the RTE.

Aggregates Atomic Software | 0..*
Component Object
Code

Aggregates Atomic Soft- | 0..*
ware Component
Source Code

AUTOSAR

Relation Type Related Element Mul. | Note
Aggregates Component RTE | 0..*
Prebuild Configu-
ration Header
Aggregates Consistency 0..* | Correlation between a group of
Needs RunnableEntitys and a group of
DataPrototypes.
Aggregates Library Object | 0..”
Code
Aggregates Predefined Variant | 0..*
Aggregates Software Compo- | 0..*
nent Documenta-
tion
Aggregates Software Compo- | 0..* | If the delivery contains only VFB NvBlock
nent Internal Be- Software Components, the Internal
havior Behavior is optional since it is needed
only in special cases.
Aggregates Software Compo- | 0..*
nent Timing
Aggregates Software Compo- | 0..*
nent to BSW Map-
ping
Aggregates System Constant | 0..*
Value Set
Aggregates VFB Composition | 0..* | In case the delivered atomic components
Component make up one or more VFB Compositions,
the composition description(s) shall be
included in the delivery.
Aggregates VFB Data Type | 0.
Mapping Set
Aggregates VFB Interfaces 0.”
Aggregates VFB Modes 0.*
Aggregates VFB Types 0.x
Produced by Develop Applica- | 1..*
tion Software
Consumed by Configure RTE 1..* | Required input:

e References to all component
implementation descriptions on
this ECU

e SwclnternalBehavior (for example
to map the runnables to tasks)
which was used in the contract
phase of the software components
on this ECU

AUTOSAR

Relation Type

Related Element Mul. | Note

Consumed by

Generate RTE 1..* | Required input:

e References to all component
implementation descriptions on
this ECU

e SwclnternalBehavior which was
used in the contract phase of the
software components on this ECU

o (optional) Software Component to
BSW Mapping

Meth.bindingTime = SystemDesignTime

Consumed by

Integrate Software | 1..*

for ECU
Consumed by Define Alias | 0..1 | Needed for definition of alias names in
Names the scope of delivered software
components.
Consumed by Create MC Func- | 0..* | The component model may be used to
tion Model derive an MC Function Model.

Table 3.195: Delivered Atomic Software Components

3.4.2.2 Software Component Internal Behavior

Artifact

Software Component Internal Behavior

Package

AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Work Products

Brief Description

Description of the InternalBehavor: It describes the RTE relevant
aspects of a component, for example the runnable entities and the
events they respond to.

Description

Description of the Internal Behavor. The Internal Behavior of an Atomic
Software Component describes the RTE relevant aspects of a
component, i.e. the runnable entities and the events they respond to. It
is used to generate the RTE but also as input for parts of the basic
software generation (AUTOSAR Services). The Internal Behavior (i.e.
the XML description) can only be used together with an Atomic
Software Component Type to which it is related.

Kind

AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

Delivered Atomic | 0..* | If the delivery contains only VFB NvBlock
Software Compo- Software Components, the Internal

nents Behavior is optional since it is needed
only in special cases.

Produced by

Define Atomic 1
Software Com-
ponent Internal

Behavior

AUTOSAR

Relation Type

Related Element

Mul.

Note

Consumed by

Define Software
Component Safety
Information

Consumed by

Define Software
Component Timing

Consumed by

Generate Atomic
Software Com-
ponent Contract
Header Files

Meth.bindingTime = SystemDesignTime

Consumed by

Generate Compo-
nent Header File in
Vendor Mode

Meth.bindingTime = SystemDesignTime

Consumed by

Generate Compo-
nent Prebuild Data
Set

Meth.bindingTime =
CodeGenerationTime

Consumed by

Generate Rapid
Prototyping Wrap-
per

Consumed by

Implement Atomic
Software Compo-
nent

Meth.bindingTime = SystemDesignTime

Consumed by

Map Software
Component to BS
W

Consumed by

Refine Rapid Pro-
totyping Scenario

Consumed by

Define Consis-
tency Needs

Runnables the consistency is defined for.

Consumed by

Define Rapid Pro-
totyping Scenario

Consumed by

Select Software
Component Imple-
mentation

Consumed by

Generate Local M
C Data Support

Meth.bindingTime = SystemDesignTime

Consumed by

Define Partial Flat
Map

Refer to parameter and variables defined
in the Internal Behavior of one or more
Atomic Software Components.

Consumed by

Define VFB Nv
Block Software
Component

This input is required to collect the
requirements for the NvBlockNeeds from
the using application software.

Use meta model element

SweclinternalBehav-
ior

Table 3.196: Software Component Internal Behavior

3.4.2.3 Atomic Software Component Implementation

AUTOSAR

Artifact

Atomic Software Component Implementation

Package

AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Work Products

Brief Description

Description of an implementation for a single Atomic Software
Component.

Description

Description of an implementation for a single Atomic Software
Component. It is possible to have several different implementations for
the same Software Component Internal Behavior, but only one
implementation can be mapped to a particular ECU. In general, this
XML artifact relates to one particular version of the code. It contains
the version information as defined by the vendor.

An implementation description may depend on several non-AUTOSAR
artifacts, especially its own code files (source or object) but also
required libraries, generator tools etc. These dependencies are not
described by direct references to files (because this might be
ambiguous), but by referring entries in the container catalog of the
General Deliverable which contains the implementation artifacts. Such
a reference is described via the metamodel element
AutosarEngineeringObject (see
AUTOSAR_TPS_GenericStructureTemplate.pdf for further
description). This allows among other things to refer to a particular
version of an artifact.

For more information on the content of the implmementation
description refer to
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf.

Kind

AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

Delivered Atomic | 0..* | If the delivery contains only VFB NvBlock
Software Compo- Software Components, no

nents implementation is contained as the code
is generated as part of the RTE.

Produced by

Create Service 1
Component

In order to generate the RTE, one needs
to create a kind of dummy
Implementation element for the Service
Component, however this should not be
filled with descriptive elements, e.qg.
resource consumption, as these are
already defined by the Basic Software
Module Implementation Description.
Meth.bindingTime = SystemDesignTime

Produced by

Implement Atomic 1 Meth.bindingTime =
Software Compo- CodeGenerationTime

nent
Produced by Measure Re- | 0..* | Add extensions to the Implementation
sources Description.
Meth.bindingTime = PostBuild
In/out Measure Compo- 1

nent Resources

Consumed by

Generate Compo- 1 Meth.bindingTime = SystemDesignTime
nent Header File in
Vendor Mode

AUTOSAR

Relation Type

Related Element Mul. | Note

Consumed by

Generate SWC 1 MemorySections: MemorySections
Memory Mapping defined for an Atomic Software
Header Component.

Meth.bindingTime = SystemDesignTime

Consumed by

Select Software | 1..
Component Imple-

mentation
Consumed by Configure 0..* | MemorySections:
Memmap Allo-
cation
Consumed by Generate Compiler | 0..* | MemorySections: Find referred
Configuration SwAddrMethods or specific
memClassSymbols in the
MemorySections defined for Atomic
Software Components.
Meth.bindingTime = SystemDesignTime
Use meta model element | Implementation 1

Table 3.197: Atomic Software Component Implementation

3.4.2.4 Software Component Documentation

Artifact Software Component Documentation

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Work Products

Brief Description Documentation dedicated to a Software Component.

Description Documentation of a dedicated Software Component. This
documentation is following the ASAM FSX standard. In this
documentation, you will find the SW Feature definition and description
which define the physical functionality of the Swc, the SW test
description which will contains suggestions and hints for the test of the
software functionality of the Swc, the SW calibration notes which will
give calibration instructions and hints for a calibration engineer, some
maintenance, diagnosis and CARB notes which will bring general
information, on the maintenance diagnosis and CARB issues on the
Swec. For other description not listed previously, some notes (chapters)
are left free for that.

This artifact may also contain standalone documentation (meta-class
Documentation) not aggregeted by a specific software component.

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Aggregated by Delivered Atomic | 0..”

Software Compo-
nents

In/out Add Documenta- 1
tion to the Software
Component

Use meta model element | Documentation 1

Use meta model element | SwComponent 1
Documentation

AUTOSAR

Relation Type

| Related Element | Mul. | Note

Table 3.198: Software Component Documentation

3.4.2.5 Software Component Timing

Artifact

Software Component Timing

Package

AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Work Products

Brief Description

Software Component’s TimingDescription and TimingConstraints

Description

TimingDescription and TimingConstraints of a software component. A
software component can either be of type AtomicSWComponentType
or CompositionSWComponentType.

In the former case, the SwcTiming allows to describe timing description
and constraints for the InternalBehavior of the
AtomicSWComponentType.

In the latter case, timing descriptions and constraints can be defined for
all Atomic Software Components in the
CompositionSWComponentType.

Kind

AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

Delivered Atomic | 0..*
Software Compo-
nents

Produced by

Define Software 1
Component Timing

Consumed by

Define System | 0..1
Timing

Consumed by

Implement Atomic | 0..1 | Meth.bindingTime = SystemDesignTime
Software Compo-
nent

Consumed by

Measure Compo- | 0..1
nent Resources

Use meta model element

SwcTiming 1

Table 3.199: Software Component Timing

3.4.2.6 Software Component to BSW Mapping

AUTOSAR

Artifact Software Component to BSW Mapping

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Work Products

Brief Description Desribes how to map a software component to basic software
elements (required in special cases only).

Description Maps an SwclinternalBehavior to an BswinternalBehavior. This is
required to coordinate the API generation and the scheduling for
AUTOSAR Service Components, ECU Abstraction Components and
Complex Driver Components by the RTE and the BSW scheduling
mechanisms.

Kind AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

Delivered Atomic | 0..*
Software Compo-
nents

Produced by

Map Software 1
Component to BS
W

Produced by

Create Service | 0..1 | Meth.bindingTime = SystemDesignTime
Component

Consumed by

Generate Atomic | 0..1 | If a Software Component is mapped to a
Software Com- BSW module description, this input is
ponent Contract optionally needed already in the contract
Header Files phase in order to ensure that the
generated prototypes for runnables are
consistent with the definitions in
Software Component and BSW.
Meth.bindingTime = SystemDesignTime

Consumed by

Generate RTE 0..* | This input is explicitly stated because the
mapping may be created during ECU
integration and thus is not necessarily
part of the Delivered Atomic Software
Components.

Meth.bindingTime = SystemDesignTime

Use meta model element

SwcBswMapping 1

Table 3.200: Software Component to BSW Mapping

3.4.2.7 Partial Flat Map

AUTOSAR

System Flat Map

Artifact Partial Flat Map
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Work Products
Brief Description
Description The Partial Flat Map pre-defines Flat Map entries in the context of
delivered software components. This allows the component developer
to specify names of data instances for measurement and calibration. It
has to be integrated into the System Flat Map.
For more information on the Flat Map concept refer to artifact System
Flat Map in the system domain.
Kind AUTOSAR XML
Relation Type Related Element Mul. | Note
Aggregated by Delivered Atomic | 0..1
Software Compo-
nents
Produced by Define Partial Flat 1
Map
Consumed by Add Documenta- | 0..1 | Optional input in order to refer to unique
tion to the Software names defined in component or
Component composition context.
Consumed by Generate or Adjust | 0..* | If Partial Flat Maps were delivered along
ECU Flat Map with software components referring only
to ECU internal information, they may be
integrated into the ECU Flat Map directly,
i.e. without needing the System Flat
Map.

e The instance refs used in a partial
flat map must be taken over and
adjusted to the context ECU
Extract.

e Name conflicts have to be
resolved if several partial flat
maps are merged.

Consumed by Generate or Adjust | 0..* | If Partial Flat Maps were delivered along

with software components, they must be
integrated into the System Flat Map:

e The instance refs used in a partial
flat map must be taken over and
adjusted to the context of the
System or System Extract.

e Name conflicts have to be
resolved if several partial flat
maps are merged.

Use meta model element

FlatMap

1

Table 3.201: Partial Flat Map

AUTOSAR

3.4.2.8 Application Header File

Artifact Application Header File

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Work Products

Brief Description Header generated for an AtomicSoftwareComponentType in the RTE
contract phase.

Description Header generated for an AtomicSoftwareComponentType in the RTE
contract phase. It represents the complete source-code interface
between the component code and RTE (calls into the RTE as well as
prototypes called by the RTE). All communication of the component
code with other components is routed through this header.

Kind Source Code

Relation Type

Related Element Mul. | Note

Aggregated by

Delivered Atomic | 1..*
Software Compo-
nents

Produced by

Generate Atomic 1
Software Com-
ponent Contract
Header Files

Meth.bindingTime =
CodeGenerationTime

Consumed by

Compile Atomic 1
Software Compo-
nent

Meth.bindingTime =
CodeGenerationTime

Consumed by

Implement Atomic 1
Software Compo-
nent

Meth.bindingTime = SystemDesignTime

Consumed by

Compile ECU | 1.* | Meth.bindingTime =
Source Code CodeGenerationTime

Table 3.202: Application Header File

3.4.2.9 Software Component Data Types Header

Artifact Software Component Data Types Header

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Work Products

Brief Description Software Component Data Types Header provided by the RTE in the
contract phase.

Description Software Component Data Types Header provided by the RTE in the
contract phase. This includes data types, which were declared as part
of the SWC description but not used in any ports or data elements.

Kind Source Code

Relation Type

Related Element Mul. | Note

Aggregated by

Delivered Atomic 1.*
Software Compo-
nents

AUTOSAR

Source Code

Relation Type Related Element Mul. | Note

Produced by Generate Atomic 1 Meth.bindingTime =
Software Com- CodeGenerationTime
ponent Contract
Header Files

Produced by Generate Compo- 1 Meth.bindingTime =
nent Header File in CodeGenerationTime
Vendor Mode

Consumed by Compile Atomic 1 Meth.bindingTime =
Software Compo- CodeGenerationTime
nent

Consumed by Implement Atomic 1 Meth.bindingTime = SystemDesignTime
Software Compo-
nent

Consumed by Compile ECU | 0.* | Meth.bindingTime =

CodeGenerationTime

Table 3.203: Software Component Data Types Header

3.4.2.10 Component RTE Prebuild Configuration Header

Source Code

Artifact Component RTE Prebuild Configuration Header

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Work Products

Brief Description Generated header file used to resolve the prebuild variants in the
prebuild RTE contract phase for an SWC.

Description Generated header file used to resolve the prebuild variants of a
software component in the prebuild RTE contract phase. Contains
macros which resolve the variants when compiled with the module and
the generated RTE.

Kind Bound Source Code

Relation Type Related Element Mul. | Note

Aggregated by Delivered Atomic | 0..*

Software Compo-
nents

Produced by Generate Compo- 1 Meth.bindingTime = PreCompileTime
nent Prebuild Data
Set

Consumed by Compile Atomic | 0..1 | Meth.bindingTime = PreCompileTime
Software Compo-
nent

Consumed by Compile ECU | 0.* | Meth.bindingTime =

CodeGenerationTime

Table 3.204:

3.4.2.11

Component RTE Prebuild Configuration Header

Atomic Software Component Source Code

AUTOSAR

Source Code

Artifact Atomic Software Component Source Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Work Products
Brief Description Source code implementing an Atomic Software Component Type
Description Source code implementing an Atomic Software Component Type. In
general it is independent from an ECU.
Kind Source Code
Relation Type Related Element Mul. | Note
Aggregated by Delivered Atomic | 0..*
Software Compo-
nents
Produced by Implement Atomic 1 Meth.bindingTime =
Software Compo- CodeGenerationTime
nent
Consumed by Compile Atomic 1 Meth.bindingTime =
Software Compo- CodeGenerationTime
nent
Consumed by Re-compile Com- 1 Meth.bindingTime =
ponent in ECU CodeGenerationTime
context
Consumed by Compile ECU | 0.* | Meth.bindingTime =

CodeGenerationTime

Table 3.205: Atomic Software Component Source Code

3.4.2.12 Atomic Software Component Object Code

ecutable

Artifact Atomic Software Component Object Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Work Products

Brief Description

Description Object Code of an Atomic Software Component.

Kind Object Code

Relation Type Related Element Mul. | Note

Aggregated by Delivered Atomic | 0..*
Software Compo-
nents

Produced by Compile Atomic 1 The object file should include both code
Software Compo- of the SWC and the E2E Protection
nent Wrapper code (if present as an input).

Meth.bindingTime = CompileTime

Consumed by Measure Compo- 1
nent Resources

Consumed by Generate ECU Ex- | 0..* | Meth.bindingTime = CompileTime

Table 3.206: Atomic Software Component Object Code

3.4.2.13 Optimized Application Header File

AUTOSAR

Source Code

Artifact Optimized Application Header File
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Work Products
Brief Description Optimized application header file for a software component.
Description Application header file for a software component optimized by the RTE
in vendor mode.
Kind Source Code
Relation Type Related Element Mul. | Note
Produced by Generate Compo- 1 Meth.bindingTime =
nent Header File in CodeGenerationTime
Vendor Mode
Consumed by Re-compile Com- 1 Meth.bindingTime =
ponent in ECU CodeGenerationTime
context
Consumed by Compile ECU | 0..* | Meth.bindingTime =

CodeGenerationTime

Table 3.207: Optimized Application Header File

3.4.2.14 Optimized Software Component Object Code

Artifact Optimized Software Component Object Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Work Products

Brief Description The object code of a software component compiled with ECU specific
optimizations.

Description The object code of a software component compiled with ECU specific
optimizations.

Kind Object Code

Relation Type Related Element Mul. | Note

Produced by Re-compile Com- 1 Meth.bindingTime = CompileTime
ponent in ECU
context

Table 3.208: Optimized Software Component Object Code

3.4.2.15 Consistency Needs

AUTOSAR

Artifact

Consistency Needs

Package

AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Work Products

Brief Description

Description

A ConsistencyNeed describes the correlation between a group of
RunnableEntitys and a group of DataPrototypes with the intended
purpose to describe the need for

e Stable data during the execution of a group of RunnableEntitys.

e Coherent data consumption and propagation for a group of

DataPrototypes.

The information can be defined first time at the design of an Atomic
Software Component but can be added as well if Compositions are
created. In order to allow incremental development the groups of
Runnables and DataPrototypes can be distributed over several

artifacts.

Kind

Relation Type

Related Element

Mul.

Note

Aggregated by

VFB System 1

Correlation between a group of
RunnableEntitys and a group of
DataPrototypes.

Aggregated by

Delivered Atomic | 0..*
Software Compo-
nents

Correlation between a group of
RunnableEntitys and a group of
DataPrototypes.

In/out

Define Consis- 1
tency Needs

The description of the correlation
between a group of RunnableEntitys and
a group of DataPrototypes. In order to
allow incremental development and
refinement the Consistency Needs
artifact is also used as an input.

Use meta model element

ConsistencyNeeds 1

Table 3.209: Consistency Needs

3.4.2.16 Rapid Prototyping Wrapper Header File

Artifact Rapid Prototyping Wrapper Header File

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Work Products

Brief Description

Description This header replaces the RTE API in order to allow to read and modify
inputs and outputs of the original SWC as well as to control execution
of the original (and prototype) runnable.

Kind Source Code

Relation Type Related Element Mul. | Note

Produced by Generate Rapid 1

Prototyping Wrap-
per

AUTOSAR

Relation Type Related Element Mul. | Note
Consumed by Compile Atomic | 0..1
Software Compo-
nent

Table 3.210: Rapid Prototyping Wrapper Header File

3.4.2.17 Rapid Prototyping Wrapper Source Code

Artifact Rapid Prototyping Wrapper Source Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Work Products

Brief Description

Description A piece of code that is placed between software components and the
RTE in order to provide rapid prototyping functionality. This code allows
to encapsulate the SWC to bypass into the rapid prototyping
component and may be implemented ad as a complex device driver
and/or integration code.

Kind Source Code

Relation Type Related Element Mul. | Note

Produced by Generate Rapid 1
Prototyping Wrap-
per

Consumed by Compile Atomic | 0..1
Software Compo-
nent

Table 3.211: Rapid Prototyping Wrapper Source Code

3.4.3 Tools

3.4.3.1 Component API Generator Tool

AUTOSAR

Tool Component API Generator Tool

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::
Guidance

Brief Description Generates the software component contract header used to connect
the software component to the RTE layer.

Description This guidance represents the so-called contract phase of the RTE

generation process.

e SWC Contract phase - a limited set of information about a
component, principally the AUTOSAR Interface definitions and
the internal behavior, is used to create an application header file
for a component type. The application header file defines the
"contract" between component and RTE.

e BSW Contract phase - a similar use case for a BSW module in
order to generate the module interlink header files, which are
used to interface between the module and the BSW Scheduler.

e Additional phases - for SWS and BSW as well - are used to bind
pre-build variants in the contract headers of a single Software
Component or BSW module.

Kind
Relation Type Related Element Mul. | Note

Used Generate Atomic 1
Software Com-
ponent Contract
Header Files

Used Generate BSW 1
Module Prebuild
Data Set

Used Generate BSWM 1
Contract Header
Files

Used Generate Compo- 1
nent Header File in
Vendor Mode
Used Generate Compo- 1
nent Prebuild Data
Set

Table 3.212: Component APl Generator Tool

3.5 Basic Software

This chapter contains the definition of work products and tasks used for the develop-
ment of Basic Software modules. For the definition of the relevant meta-model ele-
ments refer to [8].

AUTOSAR

3.5.1 Tasks

3.5.1.1 Define BSW Types

Basic Software Designer Basic Software Module Developer

«performs» «performs»

BSW Standard Package

0..

1

«input» .
P «inoutput»

Define BSW Types

w
17}
=
=
<
=]
2

Figure 3.104: Define BSW Types

Task Definition Define BSW Types

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description Define data types for usage within the Basic Software.

Description A data type is typically based on elements standardized by AUTOSAR,

therefore BSW Standard Package appears as a mandatory input.

Relation Type

Related Element Mul. | Note

Performed by

Basic Software De- 1
signer

Performed by

Basic Software 1
Module Developer

Consumes BSW Standard | 0..1
Package
In/out BSW Types 1

Table 3.213: Define BSW Types

AUTOSAR

3.5.1.2 Define BSW Entries

)
17}

=

=
<
3

2

BSW Standard Package

o,
/)efine BSW Entries\

«input»

«performs»

asic Software Designer

«output» 1

Basic Software Entries

«performs»

Basic Software Module Developer

Figure 3.105: Define BSW Entries

tries

Task Definition Define BSW Entries
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description Define BswEntries (= function signatures) for usage within the Basic
Software.
Description
Relation Type Related Element Mul. | Note
Performed by Basic Software De- 1
signer
Performed by Basic Software 1
Module Developer
Consumes BSW Types 1
Consumes BSW Standard | 0..1
Package
Produces Basic Software En- 1

Table 3.214: Define BSW Entries

AUTOSAR

3.5.1.3 Define BSW Interfaces

o
1]
3
3

<

=]
®

7

Basiqg Software Designer

«input»

=

0.1

BSW Standard Package

Basic Software Entries

«input»

LO..

«performs»

[

Basic Software Module Developer

«performs»

Define BSW Iterfaces

«input»

0.1

-

«output»

Basic Software Module Description

ECU Resources Description

Figure 3.106: Define BSW Interfaces

Task Definition Define BSW Interfaces

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description Define the interfaces for a single BSW Module.

Description Define the interfaces for a particular BSW Module or cluster as part of

the BSW Module Description. This includes an abstraction of the
required and provided C-functions, as well as triggers and modes.
Note that this task also exists for modules standardized by AUTOSAR,
as it may be required to decide on optional or alternative elements and
to add allowed project specific extensions.

Relation Type Related Element Mul. | Note

Performed by Basic Software De- 1
signer

Performed by Basic Software 1
Module Developer

Consumes BSW Types 1

Consumes Basic Software En- 1
tries

Consumes BSW Standard | 0..1
Package

Consumes ECU Resources | 0..1
Description

AUTOSAR

Relation Type Related Element Mul. | Note
Produces Basic Software 1

Module Descrip-

tion

Table 3.215: Define BSW Interfaces

3.5.1.4 Define Vendor Specific Module Definition

Basic Software
Module Developer

Basic Software Designer 0.1 0.1
«performs» «performs>
—
— —
— —
—

—
— 1 «input» «output» (] [m—
— —

Define Vendor Specific —
AUTOSAR Standardized ECU Module Definition
Configuration Parameter Definition BSW Module Vendor-

Specific Configuration
Parameter Definition

Figure 3.107: Define Vendor Specific Module Definition

Task Definition Define Vendor Specific Module Definition
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description
Description Define the Vendor Specific Module Definition (=Configuration
Parameters).
Relation Type Related Element Mul. | Note
Performed by Basic Software De- | 0..1
signer
Performed by Basic Software | 0..1
Module Developer
Consumes AUTOSAR Stan- 1
dardized ECU
Configuration Pa-
rameter Definition
Produces BSW Module 1
Vendor- Specific
Configuration Pa-
rameter Definition

Table 3.216: Define Vendor Specific Module Definition

AUTOSAR

3.5.1.5 Define BSW Behavior

BSW Standard Package

Basic Software Designer

«performs»

«output» 1
Define BSW Behavior
«input»
Basic Software Module

1 Internal Behavior

Basic Software
Module Description

Figure 3.108: Define BSW Behavior

Task Definition Define BSW Behavior

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description Define the BSW Behavior related to a BSW Module Description.
Description Define the BSW Behavior related to a BSW Module Description. This

task is required during BSW module development in order to be able to
generate the API to the BSW Scheduler. In addition, local data
(variables or parameters) may be defined during this task in order to
use the AUTOSAR data type system for module local data and to
generate measurement & calibration support.

Relation Type Related Element Mul. | Note

Performed by Basic Software De- 1
signer

Consumes Basic Software 1
Module Descrip-
tion

Consumes BSW Standard | 0..1
Package

Produces Basic Software 1
Module Internal
Behavior

Table 3.217: Define BSW Behavior

AUTOSAR

3.5.1.6 Define BSW Module Timing

asic Software Module Developer

«performs»

1 «input» «output» 1
Define BSW Module Timing

Basic Software Module Intemal Basic Software
Behavior Module Timing

Figure 3.109: Define BSW Module Timing

Task Definition Define BSW Module Timing
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description Define BSWModuleTiming (TimingDescription and TimingConstraints)
for the Internal Behavior (BSWModuleEntities) of a BSW module
Description Define BSWModuleTiming (TimingDescription and TimingConstraints)
for the Internal Behavior (BSWModuleEntities) of a BSW module
Relation Type Related Element Mul. | Note
Performed by Basic Software 1
Module Developer
Consumes Basic Software 1
Module Internal
Behavior
Produces Basic Software 1
Module Timing

Table 3.218: Define BSW Module Timing

AUTOSAR

3.5.1.7 Generate BSW Contract Header Files

Basic Software
Module Internal
Behavior

BSW Standard Package

0.1

Basic Software Module Developer
«input»

«performs»
«input»

N

[l

1

Basic Software Module Description

Basic Software Module
Implementation Description

«input» «output»

Generate
BSWM Contract
Header Files

Basic Software Module
Interlink Header
«input»

«output»

«used tool»

Basic Software Interlink

Ci t API
omponen Types Header

Generator Tool

Figure 3.110: Generate BSW Contract Header Files

Task Definition Generate BSWM Contract Header Files

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description Generate Basic Softwaree Module Contract Header Files
Description Generate the header files needed for a BSW module as part of the

so-called "contract phase". These headers will allow to link the module
lateron with the RTE (namely the BSW Scheduler).

Meth.bindingTime = CodeGenerationTime

Relation Type

Related Element Mul. | Note

Performed by

Basic Software 1
Module Developer

Consumes Basic Software 1 Meth.bindingTime = SystemDesignTime
Module Descrip-
tion

Consumes Basic Software 1 Meth.bindingTime = SystemDesignTime
Module Implemen-
tation Description

Consumes Basic Software 1 Meth.bindingTime = SystemDesignTime
Module Internal
Behavior

Consumes BSW Standard | 0..1

Package

AUTOSAR

Relation Type Related Element Mul. | Note

Produces Basic Software 1 Meth.bindingTime =
Interlink Types CodeGenerationTime
Header

Produces Basic Software 1 Meth.bindingTime =
Module Interlink CodeGenerationTime
Header

Used tool Component API 1
Generator Tool

Table 3.219: Generate BSWM Contract Header Files

3.5.1.8 Implement a BSW Module

BSW Gtandard Package

Basic Software
0.1 Module Developer

Behavior

«input»

«input» «input»

«performs»

«input»

«output»

Basic Software Module Description

Implement a BSW
Module

«input»

«output»é
0.1

— 2

Basic Software Module
Core Source Code

" . «input»
Basic Software Module Interlink

Header —A
—
1 | e—
«output» —
—
«input» —
— «input» «input»
—
—
—
—
— /1 0.1
Basic Software —
Interlink Types
Header
Build
S.tandard Header Basic Software Library Header Actign
Files Module Timing Files Manifest

Figure 3.111: Implement a BSW Module

AUTOSAR

Task Definition Implement a BSW Module

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description Implement the source code of a BSW module.

Description Implement the source code of a BSW module. This task is not

described by AUTOSAR completely, but included for completeness of
the AUTOSAR use cases. Note that specification of an AUTOSAR
standard module imposes several requirements, e.g. the inclusion of
certain header files, onto this task.

In addition to the code, this task also produces the necessary XML
descriptions.

Optionally, a build action manifest may be created or modified in order
to be used for code generation or further processing of the code.

Meth.bindingTime = CodeGenerationTime

Relation Type

Related Element Mul. | Note

Performed by

Basic Software 1
Module Developer

Consumes Basic Software 1 Meth.bindingTime = SystemDesignTime
Interlink Types
Header

Consumes Basic Software 1 Meth.bindingTime = SystemDesignTime
Module Descrip-
tion

Consumes Basic Software 1 Meth.bindingTime = SystemDesignTime
Module Interlink
Header

Consumes Basic Software 1 Meth.bindingTime = SystemDesignTime
Module Internal
Behavior

Consumes Standard Header 1 Meth.bindingTime =
Files CodeGenerationTime

Consumes BSW Standard | 0..1
Package

Consumes Basic Software | 0..1 | Meth.bindingTime = SystemDesignTime
Module Timing

Consumes ECU Resources | 0..1 | Meth.bindingTime = SystemDesignTime
Description

Consumes Library Header | 0..1 | Meth.bindingTime =
Files CodeGenerationTime

Produces Basic Software 1 Meth.bindingTime =
Module Core CodeGenerationTime
Header

Produces Basic Software 1 Meth.bindingTime =

Module Implemen- CodeGenerationTime

tation Description

AUTOSAR

Relation Type Related Element Mul. | Note
Produces Basic Software | 0..1 | The creation of source code is optional,
Module Core since it might be generated completely in
Source Code a later step based on the Build Action
Manifest.
Meth.bindingTime =
CodeGenerationTime
Produces Build Action Mani- | 0..1
fest

Table 3.220: Implement a BSW Module

3.5.1.9 Develop BSW Module Generator

BSW

Standard

Package

«input»

/ Develop BSW Module Generator

/«input»
0.%

BSW Module Vendor-
Specific Configuration
Parameter Definition

Basic Software
Module Developer

«performs»

«output» 1

BSW Module
Generator

Figure 3.112: Develop BSW Module Generator

erator

Task Definition Develop BSW Module Generator
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description
Description Develop a generator for one or more BSW modules.
Relation Type Related Element Mul. | Note
Performed by Basic Software 1
Module Developer
Consumes BSW Standard 1
Package
Consumes BSW Module | 0..*
Vendor- Specific
Configuration Pa-
rameter Definition
Produces BSW Module Gen- 1

Table 3.221: Develop BSW Module Generator

AUTOSAR

3.5.1.10 Create Library

«input»

1 BSWw standard
Package

Basic Software Module Developer =7

Basic Software Module Internal
Behavior

«performs»

«output»

“1

Basic Software Module

«output» Implementation Description

«performs»

«output»

«output»

«output»

Library Object Code

ECU Integrator

Library Header Files

Figure 3.113: Create Library

Task Definition Create Library

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description Create a library to be used within an Autosar ECU.

Description Create a non-standardized library to be used within an Autosar ECU.

The task is the same for the basic software and application level, but it
is considered as a basic software task because no VFB resp. RTE
abstraction is used. The output includes source code, header file and
XML descriptions of the interfaces and of the implementation. A
"dummy" BSW Behavior must be created too in order to be able to link
the other two XML artifacts.

Meth.bindingTime = CodeGenerationTime

Relation Type

Related Element Mul. | Note

Performed by

Basic Software 1
Module Developer

Performed by

ECU Integrator 1

Consumes

BSW Standard 1
Package

Used for standard types and
specifications.

AUTOSAR

Relation Type Related Element Mul. | Note

Produces Basic Software 1 Meth.bindingTime =
Module Implemen- CodeGenerationTime
tation Description

Produces Basic Software 1 Meth.bindingTime =
Module Internal CodeGenerationTime
Behavior

Produces Library Description 1 Meth.bindingTime =

CodeGenerationTime

Produces Library Header 1 Meth.bindingTime =
Files CodeGenerationTime

Produces Library Object 1 Meth.bindingTime =
Code CodeGenerationTime

Table 3.222: Create Library

3.5.1.11 Compile BSW Core Code

Basic Software Modul
Core Source Code

\

«input»/—> Compile BSW Core Code
-

Basic Software Interlink
Types Header

il

Basic Software
Module Core Head®yr

«input»

«input»

«input»

BSW RTE Prebuild
Configuration Header

[k

Library 0.1
Header Files

Basic Software
Module Developer

«input»

«performs»

«output»

Basic Software
Module Object
Code

«used tool»

«input»

Compiler

Build Action Manifest

Figure 3.114: Compile BSW Core Code

AUTOSAR

Task Definition Compile BSW Core Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description Compile the source code of a BSW modue without ECU specific
configurations.
Description Compile the source code of a BSW modue without ECU specific
configurations. This task is mainly used to describe the use cases of
BSW development for object code delivery. The output will only
represent the "core code". During ECU integration, additional
generated code may be added per module in response to ECU
configuration.
Meth.bindingTime = CompileTime
Relation Type Related Element Mul. | Note
Performed by Basic Software 1
Module Developer
Consumes BSW RTE Pre- 1 Meth.bindingTime = PreCompileTime
build Configuration
Header
Consumes BSW Types 1 Meth.bindingTime =
CodeGenerationTime
Consumes Basic Software 1 Meth.bindingTime =
Interlink Types CodeGenerationTime
Header
Consumes Basic Software 1 Meth.bindingTime =
Module Core CodeGenerationTime
Header
Consumes Basic Software 1 Meth.bindingTime =
Module Core CodeGenerationTime
Source Code
Consumes Basic Software 1 Meth.bindingTime =
Module Interlink CodeGenerationTime
Header
Consumes Standard Header 1 Meth.bindingTime =
Files CodeGenerationTime
Consumes Build Action Mani- | 0..1 | The compilation can optionally be
fest controlled by a Build Action Manifest.
Consumes Library Header | 0..1 | Meth.bindingTime =
Files CodeGenerationTime
Produces Basic Software 1 Meth.bindingTime = CompileTime
Module Object
Code
Used tool Compiler 1

Table 3.223: Compile BSW Core Code

AUTOSAR

3.5.1.12 Generate BSW Module Prebuild Dataset

—
—
— / A
—
—
Generate BSW
Module Prebuild

1

Basic Software
Module Internal
Behavior

—
—
Predefined Variant
Header
«used tool»
«input»

— /

—

—

—

—

BSW Standard Package

1

Basic Software
«input» Module

Developer

<<inpu1>>//> «output» 1

«input»

«performs»

73
3
g2
= X
a —
m

«input» Data Set Configuration

/1

System Constant
Value Set

Component AP| Generator Tool
Basic Software Module
Implementation Description

Figure 3.115: Generate BSW Module Prebuild Dataset

Task Definition Generate BSW Module Prebuild Data Set

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks

Brief Description Prebuild Data Set Generation Phase for a BSW module: It binds all
variations which need to be set after generation of the RTE contract
header but before compilation of the module.

Description Prebuild Data Set Generation Phase for a basic software module: It

binds all variations which need to be set after generation of the RTE
contract header but before compilation of the module. The variant
settings must be defined by the PredefinedVariant given as input.

The output is a BSW Module RTE Prebuild Configuration Header which
is included by the corresponding BSW Module Interlink Header,
thereby resolving the variation points when compiled. Note that link
time variants are not allowed here.

Meth.bindingTime = PreCompileTime

Relation Type

Related Element Mul. | Note

Performed by

Basic Software 1
Module Developer

Consumes

Basic Software 1 Meth.bindingTime =
Module Descrip- CodeGenerationTime
tion

AUTOSAR

Relation Type Related Element Mul. | Note

Consumes Basic Software 1 Meth.bindingTime =
Module Implemen- CodeGenerationTime
tation Description

Consumes Basic Software 1 Meth.bindingTime =
Module Internal CodeGenerationTime
Behavior

Consumes Predefined Variant 1

Consumes System Constant 1
Value Set

Consumes BSW Standard | 0..1
Package

Produces BSW RTE Pre- 1 Meth.bindingTime = PreCompileTime
build Configuration
Header

Used tool Component API 1
Generator Tool

3.5.2 Work Products

3.5.2.1 BSW Standard Package

Table 3.224: Generate BSW Module Prebuild Data Set

BSW Standard Package

«SPEM_Aggregation» «SPEM_Aggregation»

«SPEM_Aggregation» /
*
/ 1

«SPEM_Aggregation»

AUTOSAR
Software Module
Specification

AUTOSAR AUTOSAR AUTOSAR
Standardized ECU Standard Types Platform Types
Configuration

Parameter Definition

Figure 3.116: BSW Standard Package

AUTOSAR

Module

Deliverable BSW Standard Package
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products
Brief Description Package containing standard artifacts for BSW.
Description Contains the standard specifications and standard ARXML artifacts to
be used within the AUTOSAR basic software and for the generation of
the RTE.
This deliverable is released by AUTOSAR and is readonly within the
methodology.
Kind Delivered
Relation Type Related Element Mul. | Note
Aggregates AUTOSAR Plat- 1
form Types
Aggregates AUTOSAR Stan- 1
dard Types
Aggregates AUTOSAR Stan- 1
dardized ECU
Configuration Pa-
rameter Definition
Aggregates AUTOSAR Soft- | 0..*
ware Module
Specification
Consumed by Create Library 1 Used for standard types and
specifications.
Consumed by Design Basic Soft- 1
ware
Consumed by Develop BSW 1
Module
Consumed by Develop BSW 1
Module Generator
Consumed by Develop Basic 1
Software
Consumed by Define BSW Be- | 0..1
havior
Consumed by Define BSW En- | 0..1
tries
Consumed by Define BSW Inter- | 0..1
faces
Consumed by Define BSW Types | 0..1
Consumed by Generate BSwW | 0..1
Module Prebuild
Data Set
Consumed by Generate BSWM | 0..1
Contract Header
Files
Consumed by Implement a BSW | 0..1

Table 3.225: BSW Standard Package

AUTOSAR

3.5.2.2 BSW Module Bundle

Basic

Software
Module
Description

«SPEM_Aggregation» «SPEM_Aggregation»

Basic 0.1 BSW Types 0..* Basic 0.1 0.% BSW.ModuIe.Vend.or—
Software Software Specific Configuration
Entries Module Parameter Definition
Timing
«SPEM_Aggregation» «SPEM_A jon» «SPEM_Ag(ion»
BSW Module Bundle

«extends» «extends»

BSW Module
Delivered
Bundle

BSW Design Bundle

«extends» «extends»

BSW Module
Integration
Bundle

Figure 3.117: BSW Module Bundle

BSW Module ICS
Bundle

Deliverable BSW Module Bundle

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products

Brief Description

Description Generic deliverable representing a bundle of one or more BSW
modules. It is used as a basis for extended deliverables.
The deliverable aggregates the ARXML definitions on the interface
level including vendor specific configuration parameter definition.
According to the role of the extended deliverable, these elements
maybe blueprints completely or partially. .

Kind Delivered

Extended by BSW Design Bundle, BSW Module Delivered Bundle, BSW Module IC
S Bundle

Relation Type Related Element Mul. | Note

Aggregates Basic Software | 1..*
Module Descrip-
tion

Aggregates Basic Software En- | 0..1
tries

Aggregates Basic Software | 0..1
Module Timing

AUTOSAR

Relation Type Related Element Mul. | Note

Aggregates BSW Module | 0..* | The configuration parameter definitions
Vendor- Specific of the modules under test - needed for
Configuration Pa- static check against the standardized
rameter Definition configuration parameters.

Aggregates BSW Types 0.”

Table 3.226: BSW Module Bundle

3.5.2.3 BSW Design Bundle

Deliverable BSW Design Bundle

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products

Brief Description

Description A bundle of one or more BSW modules used in the design phase.
It contains only definitions on the interface level. These elements
maybe blueprints completely or partially.

Kind Delivered

Extends BSW Module Bundle

Relation Type Related Element Mul. | Note

Produced by Design Basic Soft- | 1..*

ware

Consumed by

Develop BSW
Module

Table 3.227: BSW Design Bundle

AUTOSAR

3.5.2.4 BSW Module ICS Bundle

BSW Module
Bundle
«extends»
—|BSW Module
=|ICS Bundle
«SPEM_Aggregation» «SPEM_Aggregation»
«SPEM_Aggregation»
0..* 1
£
1.*
— — —
— — —
— —
Basic Software Basic Software
BSW Module Module Module Object Code

Implementation
Description

Figure 3.118: BSW Module ICS Bundle

Configuration

Deliverable BSW Module ICS Bundle

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products

Brief Description

Description Deliverable containing the Implementation Conformance Statement
(ICS) for one or more BSW modules.

Kind Delivered

Extends BSW Module Bundle

Relation Type Related Element Mul. | Note

Aggregates Basic Software 1 The administrative elements (e.qg.
Module Implemen- version info) of the Implementation
tation Description model needed for the conformance test.

Aggregates Basic Software | 1..*
Module Object
Code

Aggregates BSW Module Pre- | 0..* | The predefined configurations
configured Config- implemented by the modules under test.
uration The modules under test are completely

configured.

Table 3.228: BSW Module ICS Bundle

AUTOSAR

3.5.2.5 BSW Module Delivered Bundle

— — | BSW Module —
- — | Bundle —
- —
i o1 0.
Build BSW Module
Action Generator
Manifest
— —
— «extends» . =
— «SPEM_Aggregation» «SPEM_Aggregation» /1{ —

BSW Module s
Recommended «SPEM_Aggregation» «SPEM_Aggregation» Basic Software
Configuration - Module Internal
Behavior
—
SPEM_A ti - BSW MO UIe SPEM_A(i —
0. « _Aggregation» - R « _Aggregation» o —
— |Delivered Bundle 1| e—
" —
BSW Module Basic Software
i Modul
Preconfigured o Iu e ,
Configuration Implementation
Description

«SPEM_Aggregation» «SPEM_Aggregation»

. «SPEM_A/ggregation» emends «SPEM_Aggregation» |
'«SPEM_Aggregation» .
«SPEM_Aggregation»
Basic Software - .
Module Object Code Basic Software Interlink
Types Header
1.* 1.
/
0.* -
— - 0..
— — _—
— — -
— -
— — | BSW Module
(— — | Integration Bundle
Basic Software Basic Software Basic Software BSW RTE Prebuild
Module Core Module Core Module Interlink Configuration
Source Code Header Header Header

Figure 3.119: BSW Module Delivered Bundle

Deliverable BSW Module Delivered Bundle

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products

Brief Description

Description Deliverable containing one or more BSW modules delivered for

integration (code and ARXML descriptions).

It can still contain blueprints for some of the elements which need to be
extended during ECU integration.

Kind Delivered

Extended by BSW Module Integration Bundle
Extends BSW Module Bundle

Relation Type Related Element Mul. | Note

Configure Trans- | 0..1
former

AUTOSAR

Relation Type Related Element Mul. | Note
Aggregates Basic Software | 1..*
Module Core
Header
Aggregates Basic Software | 1..*
Module Implemen-
tation Description
Aggregates Basic Software | 1..*
Module Interlink
Header
Aggregates Basic Software | 1..*
Module Internal
Behavior
Aggregates Build Action Mani- | 0..1 | The build action manifest to be used for
fest the delivered basic software.
Aggregates BSW Module Gen- | 0..*
erator
Aggregates BSW Module Pre- | 0..*
configured Config-
uration
Aggregates BSW Module | 0..*
Recommended
Configuration
Aggregates BSW RTE Pre-| 0.*
build Configuration
Header
Aggregates Basic Software | 0..*
Interlink Types
Header
Aggregates Basic Software | 0..*
Module Core
Source Code
Aggregates Basic Software | 0..*
Module Object
Code
Produced by Develop BSW | 1
Module
Produced by Develop Basic | 1..%
Software
Consumed by Define Integration | 1..*
Variant
Consumed by Generate Base | 1..* | Need vendor specific configuration
Ecu Configuration parameters and their recommended or
pre-configured values.
Consumed by Generate Updated | 1..*
ECU Configuration
Consumed by Integrate Software | 1..*
for ECU
Consumed by Prepare ECU Con- | 1..*
figuration
Consumed by Configure Com 0..1

AUTOSAR

Relation Type Related Element Mul. | Note
Consumed by Configure Diag- | 0..1 | Predefined or recommended
nostics configuration values, vendor specific
parameters, ServiceNeeds defined by
BSW.
Consumed by Configure MCAL 0..1
Consumed by Configure Mode | 0..1 | Predefined or recommended
Management configuration values, vendor specific
parameters, ServiceNeeds defined by
BSW.

Consumed by Configure NvM 0..1 | Predefined or recommended
configuration values, vendor specific
parameters, ServiceNeeds defined by
BSW.

Consumed by Configure Watch- | 0..1 | Predefined or recommended

dog Manager configuration values, vendor specific
parameters, ServiceNeeds defined by
BSW.
Consumed by Create Service | 0..1 | Required in order to define a mapping
Component between SWC and BSW.
In addition, the Build Action Manifest
may be used.

Consumed by Configure Debug 0.x

Consumed by Configure ECUC 0.x

Consumed by Configure IO Hard- | 0..*

ware abstraction

Consumed by Configure OS 0..* | OS Resources required by Basic
Software.

Optional Input: Basic Software Module
Timing, e.g. execution order constraints.
Consumed by Configure RTE 0..* | Input from the BSW Module Description

is needed related to Scheduling,
Exclusive Areas, Triggers and Modes.

Optional Input: Basic Software Module
Timing, e.g. execution order constraints.

Table 3.229: BSW Module Delivered Bundle

3.5.2.6 AUTOSAR Software Module Specification

AUTOSAR

Artifact AUTOSAR Software Module Specification

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products

Brief Description The standard sofware module specification.

Description Specification of a standardized Basic Software Module (SWS).
It is published as a textual specification, but can be seen as a Basic
Software Design bundle in the methodology, consisting mainly of
blueprints. It may be published as ARXML in future releases of
AUTOSAR.

Kind Text

Relation Type Related Element Mul. | Note

Aggregated by BSW Standard | 0..”
Package

Table 3.230: AUTOSAR Software Module Specification

3.5.2.7 AUTOSAR Standard Types

Artifact AUTOSAR Standard Types
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products
Brief Description Contains all the standardized module definition parameters.
Description ARXML description of the AUTOSAR standard types (e.g.
Std_ReturnType).
Kind AUTOSAR XML
Relation Type Related Element Mul. | Note
Aggregated by BSW Standard 1
Package
Aggregated by VFB AUTOSAR 1
Standard Package
Use meta model element | Implementation 1
DataType

Table 3.231: AUTOSAR Standard Types

3.5.2.8 AUTOSAR Platform Types

AUTOSAR

Artifact AUTOSAR Platform Types
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products
Brief Description Contains all the standardized module definition parameters.
Description ARXML description of the standardized part of the AUTOSAR platform
types. It consists of
¢ ImplementationDataTypes for the platform types - this part is still
platform independent.
o Blueprints of the underlying BaseTypes. These have to be
refined for each processor platform.
Kind AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

BSW Standard 1
Package

Aggregated by

VFB AUTOSAR 1
Standard Package

Use meta model element | Implementation 1
DataType
Use meta model element | SwBaseType 1

Table 3.232: AUTOSAR Platform Types

3.5.2.9 BSW Module Generator

Artifact BSW Module Generator

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products

Brief Description

Description A generator that comes as part of one or more delivered BSW
modules. It can be put into a framework to let it generate a module’s
configuration code.

Kind Custom

Relation Type

Related Element Mul. | Note

Aggregated by

BSW Module De- | 0..*
livered Bundle

Produced by

Develop BSW 1
Module Generator

Consumed by

Generate BS | 0..1 | Thisis aninputin case a generator
W Configuration framework is used which has to run
Code some module specific generator code.

Table 3.233: BSW Module Generator

3.5.2.10 AUTOSAR Standardized ECU Configuration Parameter Definition

AUTOSAR

Artifact AUTOSAR Standardized ECU Configuration Parameter Definition
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products
Brief Description Contains all the standardized module definition parameters.
Description Contains all the standardized module definition parameters. These
parameters must be referred by the vendor specific configuration of a
specific module.
Kind AUTOSAR XML
Relation Type Related Element Mul. | Note
Configure Trans- | 0..1
former
Aggregated by BSW Standard 1
Package
Consumed by Configure Debug 1
Consumed by Define Vendor 1
Specific Module
Definition
Consumed by Configure Com 0..1
Consumed by Configure Diag- | 0..1
nostics

Consumed by

Configure ECUC 0..1

Consumed by

Configure 10 Hard- | 0..1
ware abstraction

Consumed by

Configure MCAL 0..1

Consumed by Configure Mode | 0..1
Management

Consumed by Configure NvM 0..1

Consumed by Configure OS 0..1

Use meta model element | EcucModuleDef 1

Table 3.234: AUTOSAR Standardized ECU Configuration Parameter Definition

3.5.2.11 BSW Module Preconfigured Configuration

Artifact BSW Module Preconfigured Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products

Brief Description Configuration parameter values that are fixed to the object code and
cannot be changed without recompilation.

Description Configuration parameter values that are pre-configured in the delivered
code. They cannot be changed during the ECU integration of the code.
Pre-configuration is possible for object and source code as well.

Kind AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

BSW Module De- | 0..*
livered Bundle

AUTOSAR

Relation Type

Related Element

Mul.

Note

Aggregated by

BSW Module ICS
Bundle

0.”

The predefined configurations
implemented by the modules under test.
The modules under test are completely
configured.

Memory Mapping
Header

Produced by Configure Com- | 1.* | MemMap config for compiler
piler Memory memclasses: Set the parameter values
Classes that define generic MemClassSymbols
(i.e. those not defined by modules or
SWGCs.).
Set the parameter values that define the
implementation behind all kind of
MemClassSymbols (generic and local
ones).
Meth.bindingTime = SystemDesignTime
Produced by Define Memory | 1..* | MemMapAddressingModeSet:
Addressing Modes Meth.bindingTime = SystemDesignTime
Consumed by Configure 1..* | MemMapAddressingModeSet: Collection
Memmap Allo- of compiler specific configuration
cation elements for memory allocation and
addressing modes.
Consumed by Generate BSW | 1. | MemMapAddressingModeSet: Collection

of compiler specific configuration
elements for memory allocation.
Meth.bindingTime = SystemDesignTime

Consumed by

Generate Compiler
Configuration

CompilerMemClassConfiguration: The
parameters "MemMapCompilerMem-
ClassSymbollmpl" and
"MemMapGenericCompilerMem-
ClassSymbollmpl" define the
implementation behind a
MemClassSymbol.

Meth.bindingTime = SystemDesignTime

Consumed by

Generate SWC
Memory Mapping
Header

MemMapAddressingModeSet: Collection
of compiler specific configuration
elements for memory allocation.
Meth.bindingTime = SystemDesignTime

Use meta model element

EcucModuleCon-
figurationValues

Table 3.235: BSW Module Preconfigured Configuration

3.5.2.12 BSW Module Recommended Configuration

AUTOSAR

Artifact BSW Module Recommended Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products

Brief Description Recommended "default" configuration parameter values.

Description Set of configuration parameter values, which are recommended by the
module vendor as a default, but are not mandatory for the integration.
There can be more than one such set in order to allow for variable
usage of the module. This artifact does not include values of so-called
published parameters. These must always be given as Basic Software
Module Preconfigured Configuration.

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Aggregated by

BSW Module De- | 0..*
livered Bundle

Use meta model element

EcucModuleCon- 1
figurationValues

Table 3.236: BSW Module Recommended Configuration

3.5.2.13 BSW Module Vendor Specific Configuration Parameter Definition

Artifact BSW Module Vendor- Specific Configuration Parameter Definition

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products

Brief Description Vendor specific parameter definition for a module. This defines the
format of the parameters, not its values.

Description Vendor specific parameter definition for a module. This defines the
format of the parameters, not its values. In case of a standardized
module, it redefines the existing standardized configuration parameter
format (ModuleDef).

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Aggregated by Transformer De- | 0..1
sign Bundle

Aggregated by

BSW Module Bun- | 0..* | The configuration parameter definitions
dle of the modules under test - needed for
static check against the standardized
configuration parameters.

Produced by Define Vendor 1
Specific Module
Definition
Consumed by Configure RTE 1 The definitions for the module RTE
Consumed by Develop BSw | 0.~
Module Generator
Consumed by Generate BS| 0.*
W Configuration
Code
Use meta model element | EcucModuleDef 1

Table 3.237: BSW Module Vendor- Specific Configuration Parameter Definition

AUTOSAR

3.5.2.14 BSW Types

Artifact BSW Types

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products

Brief Description Set of data types for usage within the Basic Software.

Description Set of data types (arxml descriptions) for usage by Basic Software
Modules. They will be referred by the Basic Software Module
Description

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Aggregated by

BSW Module Bun- | 0..*
dle

In/out

Define BSW Types 1

Consumed by

Compile BSW 1
Core Code

Meth.bindingTime =
CodeGenerationTime

Consumed by

Define BSW En- 1
tries

Consumed by

Define BSW Inter- 1
faces

Use meta model element

AutosarDataType 1

Table 3.238: BSW Types

3.5.2.15 Basic Software Entries

Artifact Basic Software Entries

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products

Brief Description Set of signatures for calls between BSW modules.

Description Set of signatures for calls between BSW modules. Defining such a set
as a separate artifact allows for a better reuse by several BSW
modules.They are decribed in terms of the meta-model element
BswModuleEntry which represents a C-function signature and
associated properties.

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Aggregated by

BSW Module Bun- | 0..1
dle

Produced by

Define BSW En- 1
tries

Consumed by

Define BSW Inter- 1
faces

Use meta model element

BswModuleEntry 1

3.5.2.16 Basic Software Module Description

Table 3.239: Basic Software Entries

AUTOSAR

Artifact Basic Software Module Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products

Brief Description Description of a single BSW module or a module cluster in terms of its
interfaces, dependencies and module Id.

Description Description of all interfaces (ingoing and outgoing C-function calls,
triggers and modes) and other dependencies of a single BSW module
or a module cluster. In addition, this artifacts defines the so-called
module Id, which indicates the role of the module within the
architecture (only mandatory for standardized modules).

Note that the description of the function signatures (so-called
BswModuleEntry and their ImplementationDataType can be factored
out into separate artifacts BSW Entries and BSW Types in order to
improve their reuse.

Kind AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

BSW Module Bun- | 1..*

dle

Produced by Define BSW Inter- 1
faces

Consumed by Define BSW Be- 1
havior

Consumed by

Generate BSW 1 Meth.bindingTime =
Module Prebuild CodeGenerationTime
Data Set

Consumed by

Generate BSWM 1 Meth.bindingTime = SystemDesignTime
Contract Header
Files

Consumed by

Implement a BSW 1 Meth.bindingTime = SystemDesignTime
Module

Consumed by

Generate BSW | 0..1 | shortName: The BSW module’s
Memory Mapping shortName is used as the first part of the

Use meta model element

Header generated file name, in case the default
rule applies.
Meth.bindingTime = SystemDesignTime
BswModuleDe- 1
scription

Table 3.240: Basic Software Module Description

3.5.2.17 Basic Software Module Internal Behavior

AUTOSAR

Artifact Basic Software Module Internal Behavior

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products

Brief Description Specifies the InternalBehavior of a BSW module or a BSW cluster,
especially the scheduling aspect.

Description Specifies the behavior of a BSW module or a BSW cluster w.r.t. the
code entities visible by the BSW Scheduler. It is possible to have
several different BswinternalBehaviors referring to the same
BswModuleDescription, but only one of them can be integrated on one
CPU.

Kind AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

BSW Module De- | 1..*
livered Bundle

Produced by

Create Library 1 Meth.bindingTime =

CodeGenerationTime

Produced by

Define BSW Be- 1

havior
Consumed by Define BSW Mod- 1
ule Timing
Consumed by Generate BSW 1 Meth.bindingTime =
Module Prebuild CodeGenerationTime
Data Set
Consumed by Generate BSWM 1 Meth.bindingTime = SystemDesignTime
Contract Header
Files
Consumed by Implement a BSW 1 Meth.bindingTime = SystemDesignTime
Module
Consumed by Map Software 1

Component to BS
w

Consumed by

Generate Local M | 0..1
C Data Support

Meth.bindingTime = SystemDesignTime

Use meta model element

BswinternalBehav- 1
ior

Table 3.241: Basic Software Module Internal Behavior

3.5.2.18 Basic Software Module Implementation Description

Artifact Basic Software Module Implementation Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products

Brief Description Contains the implementation specific information of a module.

Description Contains the implementation specific information of a module in
addition to the generic specification given in Basic Software Module
Description and Basic Software Module Internal Behavior.

Kind AUTOSAR XML

Relation Type

Related Element | Mul. | Note

AUTOSAR

Relation Type Related Element Mul. | Note
Aggregated by BSW Module ICS 1 The administrative elements (e.qg.
Bundle version info) of the Implementation
model needed for the conformance test.
Aggregated by BSW Module De- | 1.%
livered Bundle
Produced by Create Library 1 Meth.bindingTime =
CodeGenerationTime
Produced by Implement a BSW 1 Meth.bindingTime =
Module CodeGenerationTime
Consumed by Generate BSW 1 infixes: Optional infixes (denoting
Memory Mapping instance and vendor ID) to be used
Header within the created header file name.
Meth.bindingTime = SystemDesignTime
Consumed by Generate BSW 1 DependencyOnArtifact: Can be used to
Memory Mapping override the default name of the memory
Header mapping header file.
Meth.bindingTime = SystemDesignTime
Consumed by Generate BSW 1 MemorySections: MemorySections
Memory Mapping defined for a BSW module. This input
Header includes optional prefixes for memory
sections overriding the default rule.
Meth.bindingTime = SystemDesignTime
Consumed by Generate BSW 1 Meth.bindingTime =
Module Prebuild CodeGenerationTime
Data Set
Consumed by Generate BSWM 1 Meth.bindingTime = SystemDesignTime
Contract Header
Files
Consumed by Generate Compiler | 1..* | MemorySections: Find referred
Configuration SwAddrMethods or specific
memClassSymbols in the
MemorySections defined for BSW
modules.
Meth.bindingTime = SystemDesignTime
Consumed by Configure 0..* | MemorySections:
Memmap Allo-
cation

Use meta model element

Bswlmplementa-
tion

Table 3.242: Basic Software Module Implementation Description

3.5.2.19 Build Action Manifest

AUTOSAR

Artifact Build Action Manifest

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products

Brief Description Describes the actions used to build certain artifacts from other artifacts.

Description Describes the actions used to build certain artifacts from other artifacts
(generate, compile, link...).
Note: A build action manifest can include the actions for processing of
basic software as well as of application software artifacts. The manifest
itself is however considered as a product of basic software
development.

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Aggregated by BSW Module De- | 0..1 | The build action manifest to be used for
livered Bundle the delivered basic software.

Produced by Implement a BSW | 0..1
Module

Consumed by Compile BSW | 0..1 | The compilation can optionally be
Core Code controlled by a Build Action Manifest.

Consumed by Compile ECU | 0..1 | The task may be controlled by a Build
Source Code Action Manifest.

Consumed by Connect Service | 0..1 | The task may be controlled by a Build
Component Action Manifest.

Consumed by Generate A2L 0..1 | The task may be controlled by a Build

Action Manifest.

Consumed by Generate BS | 0..1 | The task may be controlled by a Build
W Configuration Action Manifest.
Code

Consumed by Generate ECU Ex- | 0..1 | The task may be controlled by a Build
ecutable Action Manifest.

Consumed by Generate OS 0..1 | The task may be controlled by a Build

Action Manifest.

Consumed by Generate RTE | 0..1 | The task may be controlled by a Build
Postbuild Dataset Action Manifest.

Consumed by Generate RTE | 0..1 | The task may be controlled by a Build
Prebuild Dataset Action Manifest.

Use meta model element | BuildActionMani- 1
fest

Table 3.243: Build Action Manifest

3.5.2.20 Basic Software Module Timing

AUTOSAR

Module

Artifact Basic Software Module Timing
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products
Brief Description BSW module’s TimingDescription and TimingConstraints
Description TimingDescription and TimingConstraints defined for the Internal
Behavior of a BSW module (BSWModuleEntities)
Kind AUTOSAR XML
Relation Type Related Element Mul. | Note
Aggregated by BSW Module Bun- | 0..1
dle
Produced by Define BSW Mod- 1
ule Timing
Consumed by Define ECU Tim- | 0..1
ing
Consumed by Implement a BSW | 0..1 | Meth.bindingTime = SystemDesignTime

Use meta model element

BswModuleTiming

1

Table 3.244: Basic Software Module Timing

3.5.2.21 Basic Software Module Core Header

Artifact Basic Software Module Core Header

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products

Brief Description C-header files delivered with a BSW module.

Description C-header file delivered with a BSW module. It may have to be included
by other modules.

Kind Source Code

Relation Type Related Element Mul. | Note

Aggregated by BSW Module De- | 1.7
livered Bundle

Produced by Implement a BSW 1 Meth.bindingTime =
Module CodeGenerationTime

Consumed by Compile BSW 1
Configuration Data

Consumed by Compile BSW 1 Meth.bindingTime =
Core Code CodeGenerationTime

Consumed by Compile Config- 1
ured BSW

Consumed by Compile Unconfig- 1
ured BSW

Consumed by Compile ECU | 0.* | Meth.bindingTime =

Source Code

CodeGenerationTime

Table 3.245: Basic Software Module Core Header

3.5.2.22 Basic Software Module Core Source Code

AUTOSAR

Artifact Basic Software Module Core Source Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products

Brief Description The core source code of a module provided by the vendor.

Description The core source code of a module provided by the vendor. "Core"
means, that it does not include addtional source code, which may be
generated during the configuration process.

Kind Source Code

Relation Type

Related Element Mul. | Note

Aggregated by

BSW Module De- | 0..*
livered Bundle

Produced by

Implement a BSW | 0..1 | The creation of source code is optional,
Module since it might be generated completely in
a later step based on the Build Action
Manifest.

Meth.bindingTime =
CodeGenerationTime

Consumed by

Compile BSW 1 Meth.bindingTime =

Core Code CodeGenerationTime
Consumed by Compile Config- 1

ured BSW
Consumed by Compile Unconfig- 1

ured BSW

Consumed by

Compile ECU | 0.* | Meth.bindingTime =
Source Code CodeGenerationTime

Table 3.246: Basic Software Module Core Source Code

3.5.2.23 Basic Software Interlink Header

Artifact Basic Software Module Interlink Header

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products

Brief Description Generated Header file used to link a BSW module with the BSW
Scheduler.

Description Generated Header file used to link a BSW module with the BSW
Scheduler during Contract phase.

Kind Source Code

Relation Type

Related Element Mul. | Note

Aggregated by

BSW Module De- | 1..*
livered Bundle

Produced by

Generate BSWM 1
Contract Header

Meth.bindingTime =
CodeGenerationTime

Files

Consumed by Compile BSW 1 Meth.bindingTime =
Core Code CodeGenerationTime

Consumed by Implement a BSW 1 Meth.bindingTime = SystemDesignTime
Module

Consumed by

Compile ECU | 1.* | Meth.bindingTime =
Source Code CodeGenerationTime

AUTOSAR

Relation Type

| Related Element | Mul. | Note

Table 3.247: Basic Software Module Interlink Header

3.5.2.24 Basic Software Interlink Types Header

Artifact Basic Software Interlink Types Header

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products

Brief Description Generated Header file with data types used to link a BSW module with
the BSW Scheduler

Description Generated Header file with data types used to link a BSW module with
the BSW Scheduler.

Kind Source Code

Relation Type

Related Element Mul. | Note

Aggregated by

BSW Module De- | 0..*
livered Bundle

Produced by

Generate BSWM 1
Contract Header

Meth.bindingTime =
CodeGenerationTime

Files

Consumed by Compile BSW 1 Meth.bindingTime =
Core Code CodeGenerationTime

Consumed by Implement a BSW 1 Meth.bindingTime = SystemDesignTime
Module

Consumed by

Compile ECU | 0..* | Meth.bindingTime =
Source Code CodeGenerationTime

Table 3.248: Basic Software Interlink Types Header

3.5.2.25 BSW RTE Prebuild Configuration Header

Artifact BSW RTE Prebuild Configuration Header

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products

Brief Description Generated header file used to resolve the prebuild variants in the
prebuild RTE contract phase for the BSW.

Description Generated header file used to resolve the prebuild variants of a basic
software module in the prebuild RTE contract phase. Contains macros
which resolve the variants when compiled with the module.

Kind Bound Source Code

Relation Type

Related Element Mul. | Note

Aggregated by

BSW Module De- | 0..*
livered Bundle

Produced by

Generate BSW 1
Module Prebuild
Data Set

Meth.bindingTime = PreCompileTime

Consumed by

Compile BSW 1 Meth.bindingTime = PreCompileTime

Core Code

AUTOSAR

Relation Type

Related Element

Mul.

Note

Consumed by

Compile ECU
Source Code

0.”

Meth.bindingTime = PreCompileTime

3.5.2.26 Basic Software Module Object Code

Table 3.249: BSW RTE Prebuild Configuration Header

Artifact Basic Software Module Object Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products

Brief Description Object code of a BSW module.

Description Object code of a BSW module.

Kind Object Code

Relation Type Related Element Mul. | Note

Aggregated by

BSW Module ICS
Bundle

1.*

ecutable

Aggregated by BSW Module De- | 0.
livered Bundle
Produced by Compile BSW 1 Meth.bindingTime = CompileTime
Core Code
Produced by Compile Config- 1
ured BSW
Produced by Compile Gener- 1
ated BSW
Produced by Compile Unconfig- 1
ured BSW
Consumed by Link ECU Code | 1.
after Precompile
Configuration
Consumed by Link ECU Code | 1.
during Link Time
Configuration
Consumed by Generate ECU Ex- | 0..* | for object code delivery

Meth.bindingTime = CompileTime

3.5.2.27 Library Description

Table 3.250: Basic Software Module Object Code

AUTOSAR

Artifact Library Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products

Brief Description Description of a library in Autosar XML.

Description Description of a library in Autosar XML. This uses the same template
as for describing Basic Software Modules, but with restricted content.
Main purpose is to describe the C-interfaces of the library.

Kind AUTOSAR XML

Relation Type

Related Element Mul. | Note

Produced by

Create Library 1 Meth.bindingTime =

CodeGenerationTime

Consumed by

Implement Atomic | 0..*
Software Compo-
nent

Meth.bindingTime =
CodeGenerationTime

Use meta model element

BswModuleDe- 1
scription

Table 3.251: Library Description

3.5.2.28 Library Header Files

Artifact Library Header Files

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products

Brief Description These additional headers are typically needed for libraries that a
component uses.

Description These additional headers are typically needed for libraries that a
component or a module uses (e.g. a "math-libary").

Kind Source Code

Relation Type

Related Element Mul. | Note

Produced by Create Library 1 Meth.bindingTime =
CodeGenerationTime
Consumed by Compile BSW | 0..1 | Meth.bindingTime =
Core Code CodeGenerationTime
Consumed by Implement a BSW | 0..1 | Meth.bindingTime =
Module CodeGenerationTime
Consumed by Compile Atomic | 0..* | Meth.bindingTime =
Software Compo- CodeGenerationTime
nent
Consumed by Compile ECU | 0.* | Meth.bindingTime =

Source Code CodeGenerationTime

Consumed by

Implement Atomic
Software Compo-

0..* | Meth.bindingTime =
CodeGenerationTime

nent

Consumed by Re-compile Com- | 0..* | Meth.bindingTime =
ponent in ECU CodeGenerationTime
context

Table 3.252: Library Header Files

AUTOSAR

3.5.2.29 Library Object Code

Artifact Library Object Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work
products

Brief Description The object code of a lbrary.

Description The object code of a library, to be linked with other object code during a
build of the ECU executable.

Kind Object Code

Relation Type Related Element Mul. | Note

Aggregated by Delivered Atomic | 0..*
Software Compo-
nents

Produced by Create Library 1 Meth.bindingTime =

CodeGenerationTime

Consumed by Generate ECU Ex- | 0..* | for object code delivery

ecutable Meth.bindingTime = CompileTime

Table 3.253: Library Object Code

3.6 ECU Integration and Configuration
This chapter contains the definition of work products and tasks used for the integration

and configuration of AUTOSAR software on an ECU. For the definition of the relevant
meta-model elements refer to [10].

3.6.1 Tasks

3.6.1.1 Provide RTE Calibration Dataset

ECU Integrator 1
/

D -1 Calibration Engineer
«performs»

—

—

—

— PerfOfm9>
—

—

—

Provide RTE Calibration <output»

Dataset \

«input»

Calibration Parameter Value Set

Figure 3.120: Provide RTE Calibration Dataset

AUTOSAR

Task Definition Provide RTE Calibration Dataset

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Provide a data set defining initial values for calibration parameters in
the RTE code.

Description Since a model of the "downstream” calibration process of an ECU is

not part of the AUTOSAR methodology, the input data are only shown
as a General Non AUTOSAR Artifact.

The output of this task is a set of calibration values in AUTOSAR
format, which can be further processed within AUTOSAR, namely by
the RTE generator. The calibration values have to be associated to the
corresponding parameter specification via a reference to the ECU Flat
Map.

Relation Type Related Element Mul. | Note

Performed by ECU Integrator 1

Performed by Calibration Engi- | 0..1
neer

Consumes ECU Flat Map 1

Consumes General Non | 1.* | input from calibration process
Autosar Artifact

Produces Calibration Param- 1
eter Value Set

Table 3.254: Provide RTE Calibration Dataset

3.6.1.2 Define Integration Variant

ECU Extract

ECU Integrator

Evaluated Variant Set

1
«output»
«performs»

«input»

‘1
«output»

Predefined Variant

«inoutput»

T

/ Define 0..*

«input» Integration
Variant

«inoutput» gystem Constant Value Set

BSW Module
Delivered Bundle

*

Postbuild Variant Set

Figure 3.121: Define Integration Variant

AUTOSAR

Task Definition Define Integration Variant

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Define a variant for the artifacts integrated on an ECU.

Description Define a variant for the artifacts integrated on an ECU, this means

adding a PredefinedVariant related to the ECU extract and the BSW
modules in scope. To do so, this task can make use of existing System
Constant Value Set and/or Postbuid Variant Sets or define new ones.

Several PredefinedVariants can be combined to one Evaluated Variant
Set.

It is up to particular process definition to decide, which variants are
allowed to be set at integration time. Technically, since this task is part
of ECU integration, it can only resolve variation points which have not
yet been resolved in the delivered ECU extract or BSW modules.
Especially, variation points which have to be bound at system design
time, should have been already resolved before.

Meth.bindingTime = SystemDesignTime

Relation Type

Related Element Mul. | Note

Performed by ECU Integrator 1
Consumes ECU Extract 1
Consumes BSW Module De- | 1..%
livered Bundle
In/out Postbuild Variant | 0..*
Set
In/out System Constant | 0..*
Value Set
Produces Predefined Variant 1 Meth.bindingTime = SystemDesignTime
Produces Evaluated Variant | 0..1 | Meth.bindingTime = SystemDesignTime

Set

Table 3.255: Define Integration Variant

AUTOSAR

3.6.1.3 Generate Base ECU Configuration

ECU Integrator

Diagnostic ECU

Extract

«performs»

~
0

///% «output»
L1 P 1

«input» =

Generate Base

ECU Extract

Ecu Configuration ECU Configuration

«input» Values

BSW Module
Delivered Bundle

Figure 3.122: Generate Base ECU Configuration

Task Definition Generate Base Ecu Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Generate an initial set of ECU configuration values based on the
delivered ECU extract.

Description Create the ECU configuration module structure including an initial set

of ECU configuration values.

This is based on the delivered ECU extract and on the vendor specific
configuration parameters and their recommended or pre-configured
values provided with the delivered BSW modules.

Furthermore the diagnostic extract is used to create the initial
configuration for diagnostic related modules, such as DCM and DEM.

Meth.bindingTime = SystemDesignTime

Relation Type

Related Element Mul. | Note

Performed by ECU Integrator 1

Consumes ECU Extract 1

Consumes BSW Module De- | 1..* | Need vendor specific configuration
livered Bundle parameters and their recommended or

pre-configured values.

Consumes Diagnostic ECU | 0..1
Extract

Produces ECU Configuration 1 Meth.bindingTime = SystemDesignTime

Values

Table 3.256: Generate Base Ecu Configuration

AUTOSAR

3.6.1.4 Generate Updated ECU Configuration

Diagnostic ECU

ECU Integrator

Extract

«input»

«performs»

=\

ECU Extract

1.*

BSW Module
Delivered Bundle

«inoutput»

Generate Updated ECU
Configuration

-

ECU Configuration
Values

Figure 3.123: Generate Updated ECU Configuration

Diagnostic Extract.

Task Definition Generate Updated ECU Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Generates the updated ECU configuration.

Description This task generates the updated ECU configuration based on the initial

ECU configuration, the updated ECU Extract and optionally the

Meth.bindingTime = SystemDesignTime
Relation Type Related Element Mul. | Note
Performed by ECU Integrator 1
Consumes ECU Extract 1
Consumes BSW Module De- | 1.%
livered Bundle
Consumes Diagnostic ECU | 0..1
Extract
In/out ECU Configuration 1 The task "Generate Updated ECU
Values Configuration” consumes the initial ECU

configuration values and produces the
updated ECU configuration values.

Table 3.257: Generate Updated ECU Configuration

AUTOSAR

3.6.1.5 Define ECU Timing

«SPEM_Aggregation»

ECU Extract of
System Timing

[l

mirtrrrn

CU Extiact 0.1

ECU Integrator

«performs»

Basic Software
Module Timing

«output» 1

Define ECU
Timing

«input»
ECU Timing
«input»

ECU Configuration
Values

ECU Service
Connectors

Figure 3.124: Define ECU Timing

Task Definition Define ECU Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Define ECUTiming (TimingDescription and TimingConstraints) for a
concrete ECU taking the ECU configuration and the ECU Software
Composition (including their implementation) into account.

Description Define ECUTiming (TimingDescription and TimingConstraints) for a

concrete ECU taking the ECU configuration and the ECU Software
Composition (including their implementation) into account.

Meth.bindingTime = SystemDesignTime

Relation Type

Related Element Mul. | Note

Performed by ECU Integrator 1
Consumes ECU Configuration 1
Values
Consumes ECU Service Con- | 1..%
nectors
Consumes Basic Software | 0..1
Module Timing
Consumes ECU Extract 0..1 | Needed to set up links to the elements of
the ECU extract.
Consumes ECU Extract of | 0..1
System Timing
Produces ECU Timing 1 Meth.bindingTime = SystemDesignTime

Table 3.258: Define ECU Timing

AUTOSAR

3.6.1.6 Configure EcuC

/|

1
ECU Integrator

«performs»

- 1
ECU Extract «input»

«inoutput» ;

1 | —

| _—— «input»
0.

Configure ECUC
ECU Configuration Values

BSW Module

Delivered Bundle .
«input»

0.1

Iy

AUTOSAR Standardized ECU
Configuration Parameter Definition

Figure 3.125: Configure EcuC

AUTOSAR

Task Definition Configure ECUC

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Set the general ECU configuration values.

Description Set the general ECU configuration values, the so-called EcuC

parameters. These are the configuration parameters which are not
related to a particular module, but are relevant for the ECU in general.
The EcuC parameters consist of the following parts:

e Collection of all Pdu objects flowing through the Com-Stack.

o Definition of partitions for the ECU (One partition will be
implemented using one OS application). The memory partitions
have to be known before doing the OS configuration.

e Collection of PredefinedVariant elements which shall be applied
when resolving the variability during ECU Configuration.

e Collection of mappings between ECU hardware memory
segments (defined in ECU Resources Description) and
SwAddrMethod elements (defined in VFB Types). The name of
each such EcucMemoryMappingElement could be used as to
predefine the logical memory segment for the linker
configuration.

Note: The usage of EcucMemoryMappingElement is deprecated in
R4.0 rev.2, because the configuration of the "MemMap" module has
been added which allows a more fined grained memory mapping than
SwAddrmethod. A relatonship to hardware elements from this fine
grained mapping is currently not provided. See task definition
Configure Memmap Allocation.

Meth.bindingTime = SystemDesignTime

Relation Type

Related Element Mul. | Note

Performed by ECU Integrator 1

Consumes ECU Extract 1

Consumes AUTOSAR Stan- | 0..1
dardized ECU
Configuration Pa-
rameter Definition

Consumes BSW Module De- | 0..*
livered Bundle

In/out ECU Configuration 1

Values

Table 3.259: Configure ECUC

AUTOSAR

3.6.1.7 Configure OS

AUTOSAR Standardized
ECU Configuration
Parameter Definition

«input»

«inoutput»

«input»

L
=}
*

BSW Module
Delivered Bundle

ECU Timing

Figure 3.126: Configure OS

— «performs»

ECU Integrator

ECU Configuration Values

AUTOSAR

Task Definition Configure OS

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Configure the OS by creating the Tasks, events, alarms, etc.
Description The OS configuration process may be highly iterative between RTE

and OS, e.g. RTE needs some OsTasks or OsScheduleTables to map
Runnables into them. To finalize a ECU Configuration the OS is the last
BSW module to configure (with the exception of the debugger). To use
multi-core ECUs the EcuC Configuration needs to be provided
beforehand to the OS Configuration to map the cores. There cannot be
specified a precedence which configuration parameter values should
be set first for OsAlarm, OsApplication, OsCounter, Oslsr, OsOs,
OsResource, OsScheduleTable, OsSpinlock, OsTask. This is
dependent on the development and configuration process. Application
+ Basic Software requirements and fulfill those with OS artifacts.

Mandatory Inputs:

e RTE part of the ECU Configuration
e EcuC part of the ECU Configuration

Outputs:
e OS part of the ECU Configuration
e RTE part of the ECU Configuration

The following steps are needed to perform the task :

e Map OS Configuration to Cores only in the case of multiple core
ECU.

e Define the OSTasks and OSSchedule : Tables based on the
events/runnables of the application & bsw components, create
the OSTasks that will invoke them.

e Map Runnables into OSTasks and OSSchedule Tables : Assign
all the runnables to the OSTasks

e Steps for "OsAlarm, OsApplication, OsCounter, Oslsr, OsOs,
OsResource, OsScheduleTable, OsSpinlock, OsTask."

Meth.bindingTime = SystemDesignTime

Relation Type

Related Element Mul. | Note

Performed by

ECU Integrator 1

Consumes AUTOSAR Stan- | 0..1
dardized ECU
Configuration Pa-
rameter Definition

Consumes ECU Timing 0..1

AUTOSAR

Relation Type Related Element Mul. | Note
Consumes BSW Module De- | 0..* | OS Resources required by Basic
livered Bundle Software.

Optional Input: Basic Software Module
Timing, e.g. execution order constraints.

In/out ECU Configuration 1
Values

Table 3.260: Configure OS

3.6.1.8 Configure RTE

BSW Module
Specific Configlyation
Parameter Definifjon

ECU Integrator

«input»

ECU Extract «performs»

«input»
- 1% «input» «inoutput» 1
- - _ - Configure RTE
Delivered Atomic
Software Components ECU Configuration Values
«input»
«input»
«input»
0.%
L
Service Component -
Description -
BSW Module ECU Timing

Delivered Bundle

Figure 3.127: Configure RTE

AUTOSAR

Task Definition Configure RTE

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Describes the steps required to successfully configure the AUTOSAR
RTE.

Description Configure the RTE to correctly interact with AUTOSAR COM and the

OS. The specification of the OS objects used by the generated RTE
are configured in this task. In addition, configuration includes setting
RTE specific options and the handling of measurement and calibration
data. Post-build variants which shall be supported by the RTE code
must be referenced by the configuration.

The following steps are usualy done to configure the RTE : 1.Setup
RTE General Configuration 2.Select Software Component
Implementations 3.Select BSW Module Implementations 4.Each
Runnable needs to be assigned to an Operating System Task in order
to be invoked. 5.Map BSW Executables to tasks 6.Resolve Exclusive
Areas 7.Select Implicit Communication behavior 8.Select Calibration
Support 9.Configure Non Volatile Memory Block Component (only
needed if decisions on the configuration have to be taken during ECU
Configuration) 10.Select the supported post-build variants

Meth.bindingTime = SystemDesignTime

Relation Type

Related Element Mul. | Note

Performed by ECU Integrator 1
Consumes BSW Module 1 The definitions for the module RTE
Vendor- Specific
Configuration Pa-
rameter Definition
Consumes ECU Extract 1 Elements of the System Description and
VFB Description are referred by the RTE
configuration.
Optional Input: ECU Extract of System
Timing, e.g. execution order constraints.
Consumes Delivered Atomic | 1..* | Required input:
Software Compo-
nents . Beferences t_o all com_pqnent
implementation descriptions on
this ECU
o SwclinternalBehavior (for example
to map the runnables to tasks)
which was used in the contract
phase of the software components
on this ECU
Consumes ECU Timing 0..1
Consumes BSW Module De- | 0..* | Input from the BSW Module Description

livered Bundle is needed related to Scheduling,

Exclusive Areas, Triggers and Modes.

Optional Input: Basic Software Module
Timing, e.g. execution order constraints.

AUTOSAR

Values

Relation Type Related Element Mul. | Note
Consumes Service Compo- | 0..* | The Internal Behavior of Service
nent Description Components contributes to the RTE
configuration.
In/out ECU Configuration 1

Table 3.261: Configure RTE

3.6.1.9 Configure Watchdog Manager

ECU Extract

1

1 ECU Integrator

«performs»

/«input»
C

0.1

BSW Module
Delivered Bundle

«input»

igure Watchdog Manager

«inoutput»

ECU Configuration Values

Figure 3.128: Configure Watchdog Manager

Meth.bindingTime = SystemDesignTime

Task Definition Configure Watchdog Manager

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Describes the steps required to succesfully configure the Watchdog
Manager

Description Configured Top-Down. Service needs determine what kind of watchdog

manager you need. For each service need there is one interface. You
can connect several of these interfaces to one watchdog manager

Relation Type

Related Element

Mul.

Note

Performed by

ECU Integrator

1

Consumes

ECU Extract

1

Application software requirements for
WdgM, especially
SwcServiceDependency and

ServiceNeeds.

AUTOSAR

Relation Type Related Element Mul. | Note
Consumes BSW Module De- | 0..1 | Predefined or recommended
livered Bundle configuration values, vendor specific
parameters, ServiceNeeds defined by
BSW.
Consumes ECU Timing 0..1
In/out ECU Configuration 1
Values

3.6.1.10 Configure Mode Management

Table 3.262: Configure Watchdog Manager

BSW Module

Delivered Bundl

«input»

ECU Extract

«input»

4
1

ECU Integrator

«performs»

/

Configure Mode
Management

«input»

AUTOSAR Standardized ECU
Configuration Parameter Definition

Figure 3.129: Configure Mode Management

«inoutput» 1

ECU Configuration
Values

Task Definition Configure Mode Management

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Configure the Mode Managers in the Basic Software for this ECU.
Description Configure the Mode Managers in the Basic Software for this ECU. In

the methodology library this is modeled as a single task (for simplicity)
though in practice it may consist of several single tasks.

Meth.bindingTime = SystemDesignTime

Relation Type

Related Element

Mul.

Note

Performed by

ECU Integrator

1

Consumes

ECU Extract

1

Application software requirements for
NvM, especially SwcServiceDependency
and ServiceNeeds.

AUTOSAR

Relation Type Related Element Mul. | Note
Consumes AUTOSAR Stan- | 0..1
dardized ECU
Configuration Pa-
rameter Definition
Consumes BSW Module De- | 0..1 | Predefined or recommended
livered Bundle configuration values, vendor specific
parameters, ServiceNeeds defined by
BSW.
In/out ECU Configuration 1
Values

Table 3.263: Configure Mode Management

3.6.1.11 Configure NvM

BSW Module 0-1
Delivered Bundle

«input»

1 «input»

ECU Extract

AUTOSAR Standardized ECU
Configuration Parameter Definition

«input»

/

/«pe rforms»

Configure NvM

Service Component

Description

/
1
ECU Integrator

«inoutput»

ECU Configuration
Values

Figure 3.130: Configure NvM

AUTOSAR

Task Definition Configure NvM

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Configure the NvM stack for this ECU.

Description Configure the NvM stack for this ECU. In the methodology library this is

modeled as a single task (for simplicity) though in practice it may
consist of several single tasks.
Requirements for the configuration of NvM can be collected

o from the upstream information about ServiceDependencies and
ServiceNeeds in the ECU Extract and BSW Modules

o from existing ECU configuration values

o from Service Component Descriptions created for other
Services (e.g. DEM)

Meth.bindingTime = SystemDesignTime

Relation Type

Related Element Mul. | Note

Performed by ECU Integrator 1
Consumes ECU Extract 1 Application software requirements for
NvM, especially SwcServiceDependency
and ServiceNeeds.
Consumes AUTOSAR Stan- | 0..1
dardized ECU
Configuration Pa-
rameter Definition
Consumes BSW Module De- | 0..1 | Predefined or recommended
livered Bundle configuration values, vendor specific
parameters, ServiceNeeds defined by
BSW.
Consumes Service Compo- | 0..* | The configuration of diagnostics,
nent Description especially of the DEM, typically leads to
the definition of additional data to be
stored in NvM. One possibility to handle
this is to create ServiceNeeds on the
level ServiceComponentType which is
then taken into account for the
configuration of the NvM.
In/out ECU Configuration 1

Values

Table 3.264: Configure NvM

AUTOSAR

3.6.1.12 Configure Diagnostics

BSW Module

0..1

Delivered Bundle

«input»

[N

ECU Extract

«input»

«input»

AUTOSAR Standardized ECU
Configuration Parameter Definition

Figure 3.131: Configure Diagnostics

/|
1

ECU Integrator

«performs»

/

«inoutput» 1

Configure Diagnostics

ECU Configuration
Values

Task Definition Configure Diagnostics

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Configure the diagnostic modules for this ECU

Description Configure the diagnostic modules for this ECU. In the methodology

library this is modeled as a single task (for simplicity) though in practice
it may consist of several single tasks.

Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mul. | Note
Performed by ECU Integrator 1
Consumes ECU Extract 1 Application software requirements for
diagnostics, especially
SwcServiceDependency and
ServiceNeeds.
Consumes AUTOSAR Stan- | 0..1
dardized ECU
Configuration Pa-
rameter Definition
Consumes BSW Module De- | 0..1 | Predefined or recommended
livered Bundle configuration values, vendor specific
parameters, ServiceNeeds defined by
BSW.
In/out ECU Configuration 1 Configuration Values for DEM, DCM,
Values DLT, FIM.

Table 3.265: Configure Diagnostics

AUTOSAR

3.6.1.13 Create Service Component

ECU Configuration

Values —

- —
- —— —
- —
- e
- 0.1 1/° ECU Integrator
ECU 0.1 *
Extract «performs» Atomic Software
out Component
. «input» «output» Implementation
«input» «output» P
- S~
- 0.1~

«input»
BSW Module x W

Delivered Bundle

Service Component

Create Service Description

Component

/«input»
«output»

0.1

[l

ECU Timing

Software Component to
BSW Mapping

Figure 3.132: Create Service Component

AUTOSAR

AUTOSAR

Relation Type

Related Element | Mul. | Note

Task Definition Create Service Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Create an instances for all required Service Components, configure
them, create necessary ports and connectors to the respective
application software components. This completes the ECU Software
Composition.

Description The ECU Extract contains all information about which components are

mapped to a specific ECU. In a new "flat" Software Composition
(meta-class RootSwCompositionPrototype) all other compositions have
been removed. This has to be extended by an aggregation of the
SwComponentPrototypes which describe the Services required by all
application components on the ECU:

e For each mapped SwComponentPrototype of type
AtomicSwComponentType, the PortPrototypes requiring a
particular Service and the asscociated
SwcServiceDependency-s and ServiceNeeds are collected.
Based on this information, a ServiceSwComponentType and its
prototype is created exactly once per service with the
corresponding number of PortPrototypes, thus that all
service-type PortPrototypes of the Application Components
have their PortPrototype counterpart on the
ServiceSwComponentType.

e RTE generation requires that an InternalBehavior and
Implementation is created for each ServiceSwComponentType.
In particular, the port defined argument values required for the
usage of some service interfaces are configured, and the
required RunnableEntities and RTEEvents are set up. It is also
required to define a mapping between elements of the
generated SWC and existing or generated elements of the BSW
module description.

e The evaluation of the input might result in further ServiceNeeds
to be added to the generated InternalBehavior - for example a
ServiceSwComponentType created for the DEM might include
ServiceNeeds for NVRAM blocks. It is assumed, that such
interdependencies are incrementally resolved within this task for
all involved Service Components such that the outputs are
consistent. Note that this is just one possibility to handle the
situation - another option is to resolve the interdependencies
only within the ECU configuration tasks (Configure Diagnostics,
Configure NvM) without creating additional ServiceNeeds.

Depending on the details of the configuration process for the particular
module (namely which parts are generated or manually created), the
steps described above can be done before, in parallel or after setting
up the ECU configuration of the involved BSW modules. Likewise, the
information used to create the ServiceSwComponentType(s) can come
directly as input from the ECU Extract, or via the ECU Configuration.
Therefore both artifacts are shown as optional input. The ECU
Configuration is also an output, because a reference to the created
SwComponentPrototype(s) must be entered here.

The creation of connectors between the service and application
components is a separate task..

Meth.bindingTirme =SystemDesignTime

Relation Type

Related Element | Mul. | Note

AUTOSAR

Relation Type Related Element Mul. | Note

Performed by ECU Integrator 1

Consumes BSW Module De- | 0..1 | Required in order to define a mapping

livered Bundle between SWC and BSW.
In addition, the Build Action Manifest
may be used.

Consumes ECU Configuration | 0..1 | The creation of Service Component

Values details may depend on ECU
configuration values, especially for the
DCM.

Consumes ECU Extract 0..1 | Input information about the Service Ports
and Service Dependencies of the
software components.

Consumes ECU Timing 0..1 | Additional information for fine tuning
configuration decisions.

Produces Atomic Software 1 In order to generate the RTE, one needs

Component Imple- to create a kind of dummy

mentation Implementation element for the Service
Component, however this should not be
filled with descriptive elements, e.g.
resource consumption, as these are
already defined by the Basic Software
Module Implementation Description.
Meth.bindingTime = SystemDesignTime

Produces ECU Configuration 1 Enter links to the created

Values SwComponentPrototypes.
Meth.bindingTime = SystemDesignTime

Produces Service Compo- 1 Meth.bindingTime = SystemDesignTime

nent Description

Produces Software Compo- | 0..1 | Meth.bindingTime = SystemDesignTime

nent to BSW Map-
ping

Table 3.266: Create Service Component

AUTOSAR

3.6.1.14 Connect Service Component

«performs»

«input»\

1

Service Component

Description

«input»

Build Action Manifest

ECU Integrator

«output» 1=

Connect Service Component

ECU Service Connectors

Figure 3.133: Connect Service Component

Task Definition Connect Service Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description

Description In order to connect the "isService"-ports of the application components

to a particular ServiceSwComponentType,
AssemblyConnectorPrototypes are generated.

The ECU Extract with its RootSwCompositionPrototype, extended by
the Service Components and their connectors, finally serves as input
for generating the RTE.

Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mul. | Note

Performed by ECU Integrator 1

Consumes ECU Extract 1 Find the ports on the application side to

be connected to the Service Component.

Consumes Service Compo- 1 Required in order to define the connector
nent Description links to the ports on the BSW side.

Consumes Build Action Mani- | 0..1 | The task may be controlled by a Build
fest Action Manifest.

Produces ECU Service Con- | 1..* | Meth.bindingTime = SystemDesignTime
nectors

Table 3.267: Connect Service Component

AUTOSAR

3.6.1.15 Configure COM

0.1 L
BSW Module
Delivered Bundle ECU Integrator
«input»
«performs»
- T —
: —
- 1 i . 7 | e—
- «input> «inoutput» —
: . —
ECU Extract Configure Com

ECU Configuration
Values
«input»

AUTOSAR Standardized ECU
Configuration Parameter Definition

Figure 3.134: Configure COM

AUTOSAR

Task Definition Configure Com

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Configure the COM stack modules within an ECU

Description The ECU Extract of the System Configuration contains the major part

of information that is needed to configure the COM Stack modules.
Many parameter values of the ECU configuration can be derived from
the ECU extract.The missing ECU specific configuration parameters
that can not be derived from the System Description need to be set in
this phase, e.g. Vendor-Specific Configuration Parameters. The
following steps will be needed to perform the task : 1- Derive
configuration parameter values from ECU extract : The System
Template Specification describes rules on how the individual ECU
configuration parameters shall be derived from the Upstream
Templates (SWC Template, System Template, ECU Resource
Template). This rules shall be followed. 2- Derive global PDUs from
ECU extract : A global PDU has to be configured for each |-PDU flow
and is added to the PDU collection of the module EcuC. Derived from
the ECU Extract all PDUs that traverse through the COM Stack have to
be created. 3- Create PDU References from the BSW Module PDUs to
the global PDUs in the module EcuC:As soon as these global PDUs
are created the references from the local module PDUs to the
appropriate global PDUs need to be configured. 4-Set Missing and
Vendor-Specific Parameter Values:Missing and Vendor-Specific
Parameter Values need to be set 5-Set BSW Module specific PDU
handle IDs:The last step is the assignment of the actual values for the
Handle IDs. This can be achieved by an automatic tool which might be
run directly before the generation of the module.

Meth.bindingTime = SystemDesignTime

Relation Type

Related Element Mul. | Note

Performed by ECU Integrator 1

Consumes ECU Extract 1

Consumes AUTOSAR Stan- | 0..1
dardized ECU
Configuration Pa-
rameter Definition

Consumes BSW Module De- | 0..1
livered Bundle

In/out ECU Configuration 1

Values

Table 3.268: Configure Com

AUTOSAR

3.6.1.16 Configure 10 Hardware Abstraction

/|
1

ECU Integrator

«performs»

S~
*
0-"_input»
BSW Module \

Delivered Bundle =

«inoutput» 1

Configure 10 Hardware abstraction

«input» ECU Configuration Values

AUTOSAR Standardized ECU
Configuration Parameter Definition

Figure 3.135: Configure 10 Hardware Abstraction

Task Definition Configure 10 Hardware abstraction

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Configure 1/0 Hardware Abstraction

Description Configure the I/O Hardware Abstraction modules.

Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mul. | Note
Performed by ECU Integrator 1
Consumes AUTOSAR Stan- | 0..1
dardized ECU
Configuration Pa-
rameter Definition
Consumes BSW Module De- | 0..”
livered Bundle
In/out ECU Configuration 1
Values

Table 3.269: Configure 10 Hardware abstraction

AUTOSAR

3.6.1.17 Configure MCAL

7

1
BSW Module 01 / ECU Integrator
Delivered Bund\

«performs»

«input» /

0..

1 «input» «inoutput» 1

Configure MCAL

AUTOSAR Standardized ECU ECU Configuration Values
Configuration Parameter Definition

Figure 3.136: Configure MCAL

Task Definition Configure MCAL

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Configure the Microcontroller Abstraction Layer for this ECU.
Description Configure the Microcontroller Abstraction Layer for this ECU.

Meth.bindingTime = SystemDesignTime

Relation Type

Related Element Mul. | Note

Performed by

ECU Integrator 1

Consumes

AUTOSAR Stan- | 0..1
dardized ECU
Configuration Pa-
rameter Definition

Consumes

BSW Module De- | 0..1
livered Bundle

In/out

ECU Configuration 1
Values

Table 3.270: Configure MCAL

AUTOSAR

3.6.1.18 Configure Debug

BSW Modul\0--*

Delivered Bun ECU Integrator
- «inputy «performs»
- 1)
- «input». —
ECU Extract — —
«inoutput» 1 | —
—
—
Configure
Debug ECU Configuration Values
. «input»
«input»
—] 1 0.1 | —
—
— —
— —
— —
— —
AUTOSAR Standardized ECU Complex Driver
Configuration Parameter Definition Component

Figure 3.137: Configure Debug

AUTOSAR

Task Definition Configure Debug

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Configure the AUTOSARdebugger Module

Description The AUTOSAR Debugger Module (Dbg) handles the interaction

between the Debugger Host and the AUTOSAR ECU. It is split into the
"core" and the "communication" part. Each BSW has an ID & Each API
has an ID. (e.g. module 84, api 5). The Debugger Host (shortly called
Host) may be connected via

1. Existing communication buses which are also used for the functional
behavior of the ECU.

2. A dedicated debugging line which is not used for functional behavior
of the ECU. (e.g. via Complex Driver)

Since Dbg needs information on the debugged software, it is
configured quite late in the ECU Configuration steps. Other modules
must be configured before the debug. Even after changes of the OS
configuration, Dbg needs to be updated as well.

The input to the Dbg ECU Configuration are: 1. ECU Configuration
Values description

o If existing communication buses are used, Dbg needs to
transmit and receive I-Pdus which then are handled in the
COM-Stack. Those I-Pdus need to be created / referenced.

e Usage of OsAlarm

e Usage of GptChannel (optional, for time stamping)

2. BSW Module Descriptions of the debugged modules in order to
identify which variables / functions can be debugged. Prerequisites
are: The variables need to be placed in global accessible memory; the
data types of these variables need to be defined in the header files.

Meth.bindingTime = SystemDesignTime

Relation Type

Related Element Mul. | Note

Performed by

ECU Integrator 1

Consumes AUTOSAR Stan- 1
dardized ECU
Configuration Pa-
rameter Definition

Consumes ECU Extract 1

Consumes Complex Driver | 0..1
Component

Consumes BSW Module De- | 0..*
livered Bundle

In/out ECU Configuration 1

Values

Table 3.271: Configure Debug

AUTOSAR

The task to configure the debug module consists of the following detailed steps (not
shown in the table above due to formating reasons):

1. RTE VFB-Tracing if needed : The RTE ECU Configuration shall contain a
“RteVfbTraceClientPrefix = Dbg”.

2. Periodic Data Collection if needed : Configure the reference to the 0sAlarm which
will invoke the periodic data collection. Note that the 0sAlarm needs to be configured
inthe Os ECU Configuration (before or after).

3. Timestamp Measurement if needed : Configure the size of the timestamp (16 or
32 bit) then configure the reference to the GptChannel which will provide the times-
tamp information. Note that the GptChannel needs to be configured in the Gpt ECU
Configuration (before or after).

4. Configure the Buffering of the Debug : Size, Strategy (last-is-best/queued) and
behavior.

5. AUTOSAR Communication stack : Configure the used Tx and Rx I-Pdus, the corre-
sponding I-Pdus need to be configured in the EcuC Module and the rest of the COM-
Stack. If Complex Driver is used for communication, configure Complex Driver.

6. Configure the to be debugged elements - BSW only - Prerequisite: The BSW Module
shall be already configured and generated therefore there is an updated BSW-Module
Description available of the actually generated BSW Module.The first work will be to get
the list of traceable API calls out of the BSWMD of the BSW Module. Then select which
API calls shall be traced (e.g. call "Canlf_Transmit" from the "PduR" to the "Canlf") and
configure each trace function: buffering, timestamp.

7. Configure the to be debugged elements - RTE only - Prerequisite: The RTE
has been generated, therefore there is an updated BSW-Module Description avail-
able of the actually generated RTE. Attention: The RTE shall not be re-configured
after the Dbg has been configured, otherwise the Dbg needs to be re-configured
as well. The first work will be get the list of available VFB-Trace functions out of
the BSWMD of the RTE. Then, Select which VFB-Trace functions shall be traced
(e.g. Rte_Dbg_Runnable_component_re_ Start()), configure each VFB-Trace func-
tion: Buffering, Timestamp, in case of Rte-Com tracing: which Com-Signal is traced, in
case of VFB-Signal tracing: which VariablePrototype is traced, in case of Client-Server
tracing: which OperationPrototype is traced, in case of RunnableEntity tracing: which
RunnableEntity is traced.

8. Configure the to be debugged elements - BSW and RTE - Prerequisite: The RTE
has been generated, therefore there is an updated BSW-Module Description available
. Attention: The RTE shall not be re-configured after the Dbg has been configured.The
first step will be out of the BSWMD of the BSW and the RTE to extract the list of
available debuggable variables and provide it to the Dbg configuration. Then, select
which variables shall be debugged (e.g. internal states of the module), configure each
individual DID with symbol name, optional size, optional absolute address, buffering,
timestamp, collection frequency Note: Size and address (e.g. for an ECU register)
could be resolved by the linker, hence optional here.

AUTOSAR

9. Generate the Dbg Module: Generate the ¢ and header files of the Dbg, use the
additional header files of the to be debugged modules in order to perform a "sizeof()"
operation in the compiler, compile Dbg Module (and other to-be-debugged modules),
analyze the object file in order to update the ECU Configuration Values description
which additional information the length information for each DID (out of the sizeof()
operation). Host application uses this information (ECU configuration of debug module,
BSW module description of the debug module and the to-be-debugged modules) in

order to send the correct DIDs.

3.6.1.19 Configure Transformer

BSW Module
Delivered Bundle

ECU Extract

1

ECU Integrator

«performs»

«inoutput» 1

> Configure Transformer

AUTOSAR Standardized ECU
Configuration Parameter Definition

Figure 3.138: Configure Transformer

ECU Configuration
Values

livered Bundle

Task Definition Configure Transformer
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description
Description Configure the Transformer modules for this ECU.
Relation Type Related Element Mul. | Note

ECU Extract 1

AUTOSAR Stan- | 0..1

dardized ECU

Configuration Pa-

rameter Definition

BSW Module De- | 0..1

Performed by

ECU Integrator

In/out

ECU Configuration
Values

AUTOSAR

Relation Type | Related Element | Mul. | Note

Table 3.272: Configure Transformer

3.6.1.20 Generate BSW Configuration Code and Model Extensions

Build Action
Manifest
ECU Integra

.1 «performs» 7
BSW Module \ “anpu
Generator «input» BSW Module

«output»

Configuration
Data Source
Code

Generate BSW
Configuration Code

: «output»
1 «input»
ECU Configuration
Values
BSW Module
outbut Configuration Header
« »)
«used tool» «output» <output» P File
BSW Module Vendor- 0.1
Specific Configuration = 0.1 —J
Parameter Definition 0.1
—
—
BSW Module
BSW Generator Framework implementation
BSW Module Extension

Behavior Extension
BSW Module

Interface Extension

Figure 3.139: Generate BSW Code and model extensions

AUTOSAR

Task Definition Generate BSW Configuration Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU
Config Classes::Tasks

Brief Description Generate source code which implements configuration data for link- or
compile-time configuration.

Description A generator reads the relevant parameters from the ECU Configuration

Description and creates a separate code file that implements the
specified configuration. This task is used for link-time configuration, i.e.
the configuration code can be produced at link-time of the core code or
for compile-time configuration, if the configuration code cannot be put
into a header file (e.g. for tables), even if the core code and the
configuration code shall be compiled at the same time.

A header file may be produced in addition, to declare the data.
Furthermore the generator may produce extensions of the BSW

module description artifacts as a result of configuration parameter
values which are set at integration time.

Relation Type

Related Element Mul. | Note

Performed by ECU Integrator 1
Consumes ECU Configuration 1
Values
Consumes BSW Module Gen- | 0..1 | This is an input in case a generator
erator framework is used which has to run
some module specific generator code.
Consumes Build Action Mani- | 0..1 | The task may be controlled by a Build
fest Action Manifest.
Consumes BSW Module | 0..*
Vendor- Specific
Configuration Pa-
rameter Definition
Produces BSW Module Con- 1
figuration Data
Source Code
Produces BSW Module Con- 1
figuration Header
File
Produces BSW Module Be- | 0..1
havior Extension
Produces BSW Module | 0..1
Implementation
Extension
Produces BSW Module Inter- | 0..1
face Extension
Used tool BSW Generator 1

Framework

Table 3.273: Generate BSW Configuration Code

AUTOSAR

3.6.1.21 Generate Local MC Data Support
= ?..l ECU Integrator
Basic Software input> «performs»
toar ™ N —]
—— «inpub)) «output» 1 |
— / —
— Generate Local
_ MC Data Support
Local
Measurement and
BSW Module / Calibration Support
Behavior Extension «input» «input Data
/ /1
s 0.1 p—
Software
Component ECU Flat Map
Internal Behavior
Figure 3.140: Generate Local MC Data Support
Task Definition Generate Local MC Data Support
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Generate Local MC Support Data
Description Generate the support data needed for measurement and calibration of

those parameters and variables (roles constantMemory and
staticMemory), which are owned locally by the code of a module or
component (in contrast to those, which are owned by the RTE).

The declaration of local variables/parameters is read from the Internal
Behavior of either a BSW module or an Atomic Software Component,
therefore these can be considered as alternative inputs.The ECU Flat
Map is needed as input in order to resolve possible name conflicts.

This task can be combined with RTE generation for practical reasons,
but it is considered as an independent task.

Note that calibration data that need software emulation support by the
RTE cannot be handled by this task; they need to be processed by the
task Generate RTE.

Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Mul. | Note

Performed by ECU Integrator 1

Consumes ECU Flat Map 1 Meth.bindingTime = SystemDesignTime

Consumes BSW Module Be- | 0..1 | Meth.bindingTime = SystemDesignTime
havior Extension

Consumes Basic Software | 0..1 | Meth.bindingTime = SystemDesignTime
Module Internal
Behavior

AUTOSAR

Relation Type Related Element Mul. | Note
Consumes Software Compo- | 0..1 | Meth.bindingTime = SystemDesignTime
nent Internal Be-
havior
Produces Local Measure- 1 Meth.bindingTime =
ment and Cali- CodeGenerationTime
bration Support
Data

Table 3.274: Generate Local MC Data Support

3.6.1.22 Create MC Function Model

ECU

Calibration Engineer

«performs»

- Integrator 0.1
- 0..%
«performs»
Delivered Atomic
Software
Components «inpg
- /«mput»%
- 0.1 Create MC
- Function
- Model
ECU Extract .
«input»
/ «input»
0.*
— 0.1
—
—
— ——
— —
— =
—
—
RTE Measurement —
and Calibration
Support Data Local
Measurement and
Calibration

Support Data

—
—
«output» 1 | c—
—
—

MC Function
Model

Figure 3.141: Create MC Function Model

AUTOSAR

Task Definition Create MC Function Model

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Define a model of McFunctions.

Description Create (manually or by generator) a functional model of measurement

and calibration data on an ECU. Such a model may be derived from the
logical structure of software components, ports etc. but the rules for
this transformation are not standardized.

This task may be performed before the RTE code is generated. Then
the model will be based on the data defined in the ECU Flat Map.

The task may also be performed at the same time as or after the
generation of Measurement and Calibration Support Data. In this case
it is possible (but not mandatory) to base the model on these support
data only.

The task may be supported by the RTE generator (not a standardized
feature) or another tool.

Relation Type

Related Element Mul. | Note

Performed by

Calibration Engi- | 0..1

neer
Performed by ECU Integrator 0..1
Consumes ECU Extract 0..1 | The ECU Flat Map can be used to define
references to variables and parameters
which are later visible in A2L.
Furthermore, the ECU Extract can be
used to find the relevant software
components.
Consumes RTE Measurement | 0..1 | Used if the MC Function Model shall
and Calibration refer to McDatalnstances allocated by
Support Data the RTE.
Consumes Delivered Atomic | 0..* | The component model may be used to
Software Compo- derive an MC Function Model.
nents
Consumes Local Measure- | 0..* | Used if the MC Function Model shall
ment and Cali- refer to McDatalnstances allocated by
bration Support BSW modules without RTE support.
Data
Produces MC Function 1
Model

Table 3.275: Create MC Function Model

AUTOSAR

3.6.1.23 Generate RTE

0.1

[l

ECU Configuralic:.L
Values

1
ECU Extract \

«input»

1.

elivered Atomic Software

[el]

«iﬂPUl»x Generate RTE

omponents
%

«input»
BSW Module «input»
Integration P
Bundle
0..*
0.% /
—
—
0..*
—
Service Component =
Description ECU Service —
Connectors e

Software Component to
BSW Mapping

)
=3
=1
<
—

m

e}

C

Fl

@

<

Bl

=]

A\

«performs»

P

El
k=]
S
]
S
s
<)
i

RTE Source Code

«output»

||||||.U

«output»

BSW Scheduler

Code
«output» —
\ —
1 —
—
—

«output»
¢ RTE Implementation
«used tool» Description

RTE Measurement
and Calibration
Support Data

RTE Generator

0.1
—
—
—
—
—

Calibration Parameter Value Set

Figure 3.142: Generate RTE

AUTOSAR

Task Definition Generate RTE

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Generate the RTE and several further artifacts.

Description Generate the RTE and several further artifacts from the input XML

descriptions in the scope of a given ECU:
e RTE Core Source Code
e BSW Scheduler Code
RTE Implementation Description
RTE Measurement and Calibration Support Data

In an optional mode, this task can also write into the ECU
configuration, especially for the configuration of the OS. This mode is
used to pre-configure parts of the ECU configuration. It shall support
the integrator in setting up the configuration in an iterative way.

In the so-called strict mode, the ECU configuration is not changed but
assumed to be complete. This mode shall be used before the final
build. A PredefinedVariant in the input data (referred in the EcuC
configuration, see task Configure EcuC) can be used to bind variation
points at code generation time. For variation points with latest binding
time "code generation time" this is mandatory. Unbound variation
points can still be present in the generated code.

Meth.bindingTime = CodeGenerationTime

eter Value Set

Relation Type Related Element Mul. | Note
Performed by ECU Integrator 1
Consumes ECU Configuration 1 Meth.bindingTime = SystemDesignTime
Values
Consumes ECU Extract 1 Find the VFB description of all Atomic
Software Components on this ECU and
the relevant parts of the system
description.
The ECU Flat Map is also an input.
Meth.bindingTime = SystemDesignTime
Consumes Delivered Atomic | 1..* | Required input:
Software Compo-
o References to all component
nents : . N
implementation descriptions on
this ECU
e SwclnternalBehavior which was
used in the contract phase of the
software components on this ECU
¢ (optional) Software Component to
BSW Mapping
Meth.bindingTime = SystemDesignTime
Consumes Calibration Param- | 0..1 | Meth.bindingTime = SystemDesignTime

AUTOSAR

Relation Type Related Element Mul. | Note
Consumes BSW Module Inte- | 0..* | Input for BSW scheduling, BSW mode
gration Bundle and trigger declaration, BSW exclusive
areas, BSW calibration parameters that
need RTE support (for software
emulation).
Optionally, a Build Action Manifest maybe
be used to control the generator steps.
Meth.bindingTime = SystemDesignTime
Consumes ECU Service Con- | 0..* | Meth.bindingTime = SystemDesignTime
nectors
Consumes Service Compo- | 0..* | Meth.bindingTime = SystemDesignTime
nent Description
Consumes Software Compo- | 0..* | This input is explicitly stated because the
nent to BSW Map- mapping may be created during ECU
ping integration and thus is not necessarily
part of the Delivered Atomic Software
Components.
Meth.bindingTime = SystemDesignTime
Produces BSW Scheduler | 1 Meth.bindingTime =
Code CodeGenerationTime
Produces RTE Implementa- 1 Meth.bindingTime =
tion Description CodeGenerationTime
Produces RTE Source Code 1 Meth.bindingTime =
CodeGenerationTime
Produces ECU Configuration | 0..1 | Optional output for the configuration of
Values the OS.
Meth.bindingTime =
CodeGenerationTime
Produces RTE Measurement | 0..1 | Meth.bindingTime =
and Calibration CodeGenerationTime
Support Data
Used tool RTE Generator 1

Table 3.276: Generate RTE

AUTOSAR

3.6.1.24 Generate Scheduler

1

«input»\

ECU Configuration
Values

Generafe

. Scheddler
«input»

1.* «used tool»

T

RTE Generator

BSW Module
Integration
Bundle

«performs»

/«output»

1/ ECU Integrator

/

BSW Scheduler
Code

«output»

)

0.1

«output»

RTE Implementation
Description

RTE Measurement
and Calibration
Support Data

Figure 3.143: Generate Scheduler

Task Definition Generate Scheduler

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Generate the BSW Scheduler

Description Optional task of the RTE generator which only produces the code of

the BSW Scheduler and related artifacts.

Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Mul. | Note
Performed by ECU Integrator 1
Consumes ECU Configuration 1 Configuration values for the BSW
Values Scheduler (subset of RTE configuration).
Meth.bindingTime = SystemDesignTime
Consumes BSW Module Inte- | 1..* | Input for BSW scheduling, BSW mode
gration Bundle and trigger declaration, BSW exclusive
areas, BSW calibration parameters that
need support for software emulation.
Optionally, a Build Action Manifest maybe
be used to control the generator steps.
Meth.bindingTime = SystemDesignTime
Produces BSW Scheduler 1 Meth.bindingTime =
Code CodeGenerationTime

AUTOSAR

Relation Type Related Element Mul. | Note
Produces RTE Implementa- | 0..1 | Creates a subset of the RTE
tion Description implementation description that contains
only the description of data owned by the
BSW Scheduler.
Meth.bindingTime =
CodeGenerationTime
Produces RTE Measurement | 0..1 | Creates a subset of the measurement &
and Calibration calibration support data related only to
Support Data the data owned by the BSW Scheduler.
Meth.bindingTime =
CodeGenerationTime
Used tool RTE Generator 1

3.6.1.25 Generate OS

Table 3.277: Generate Scheduler

Build Action

anifest

«input»

«input»

ECU Integrator

«performs»

Generate OS

ECU Configuration

Values

«output»

OS Generated Code

Figure 3.144: Generate OS

Task Definition Generate OS

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Generate the OS Generated Code files

Description Generate the OS Generated Code files using the OS configuration

values from the ECU Configuration .

Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Mul. | Note

Performed by ECU Integrator 1

Consumes ECU Configuration 1 Meth.bindingTime = SystemDesignTime
Values

Consumes Build Action Mani- | 0..1 | The task may be controlled by a Build
fest Action Manifest.

Produces oS Generated 1 Meth.bindingTime =
Code CodeGenerationTime

Table 3.278

: Generate OS

AUTOSAR

3.6.1.26 Generate RTE Prebuild Dataset

Build Action -

Manifest

«input»,

ECU Configuration

«input»

«input»

Service Component
Description

System Constant
Value Set

ECU Extract \ 1

Generate RTE
Prebuild Dataset

«input»

1 ECU Integrator

«performs»

«output»

RTE Prebuild
Configuration
«used tool» Header

RTE Generator

Predefined Variant Postbuild Variant Set

Figure 3.145: Generate RTE Prebuild Dataset

Task Definition Generate RTE Prebuild Dataset

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Prebuild Data Set Generation Phase for the RTE: It binds all variations
which are later than code generation time

Description Prebuild Data Set Generation Phase for the RTE: It binds all variations

which are later than code generation time but before build time. The
output is a configuration header which is used for the build.

The actually supported variant are defined by the PredefinedVariant
referred in the EcuC configuration (see task Configure EcuC).

Meth.bindingTime = PreCompileTime

Relation Type Related Element Mul. | Note
Performed by ECU Integrator 1
Consumes ECU Configuration 1 find the Predefiined Variant to be used
Values Meth.bindingTime =
CodeGenerationTime
Consumes ECU Extract 1 Meth.bindingTime =
CodeGenerationTime
Consumes Predefined Variant 1
Consumes System Constant 1
Value Set
Consumes Build Action Mani- | 0..1 | The task may be controlled by a Build
fest Action Manifest.

AUTOSAR

Relation Type Related Element Mul. | Note

Consumes Postbuild Variant | 0..1
Set

Consumes Service Compo- | 0..* | Meth.bindingTime =
nent Description CodeGenerationTime

Produces RTE Prebuild Con- 1 Meth.bindingTime = PreCompileTime
figuration Header

Used tool RTE Generator 1

Table 3.279: Generate RTE Prebuild Dataset

3.6.1.27 Compile ECU Source Code

— — — — — — —
—
—
—
—
0.* 1%
0..* :
BSW Module Basic Software BSWModyle” Basic Softward *" 0. 0.* sic Software Module
Configuration Module Core Configuratiqn Interlink Types| Library Header Files BSW RTE Prebuild Interlink Header
Header File Header Header Configuration
Header
—
—
—
—
— —
— «input» 1‘
e «input» «input» input
— «input»
— | «input» BSW Scheduler
«input» «input» Code
Basic Software «input»
Module Core Source
Code
— A :
«input»
— ECU Integrator
—
 — «performs»
— 1
— \
) «input». \
Standard Header Files NWW/ Compile ECU Source
Code —
«output» 1% | m—
3 «input» ZIN
—
— :
— 1. ECU Object
«used tool», Code
—
«input»
Application Header File
. «input»
— «nput» «input»
— |, / _
— - «input» «input»
— /
«input» Compiler
—— «input»
Software
Component Data
TypesHeader 0.1
0.1 1 0.* 0.% —
1 / —
—
—
— | 0. — — — — — —
Build Action
Manifest
Component RTE 0S Generated Code RTE Prebuild RTE Source Code Atomic Software Optimized
Prebuild Configuration Component Source ~ Application
Configuration Header Header Code Header File

Figure 3.146: Compile ECU Source Code

AUTOSAR

Task Definition Compile ECU Source Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Compile Source Code for an ECU
Description Compile all the source code required for ECU integration, i.e. all source
code except the code which is delivered as object code.
Meth.bindingTime = CompileTime
Relation Type Related Element Mul. | Note
Performed by ECU Integrator 1
Consumes BSW Scheduler 1 Meth.bindingTime =
Code CodeGenerationTime
Consumes oS Generated 1 Meth.bindingTime =
Code CodeGenerationTime
Consumes RTE Source Code 1 Meth.bindingTime =
CodeGenerationTime
Consumes Standard Header 1 Meth.bindingTime =
Files CodeGenerationTime
Consumes Application Header | 1..* | Meth.bindingTime =
File CodeGenerationTime
Consumes Basic Software | 1..* | Meth.bindingTime =
Module Interlink CodeGenerationTime
Header
Consumes Build Action Mani- | 0..1 | The task may be controlled by a Build
fest Action Manifest.
Consumes RTE Prebuild Con- | 0..1 | Meth.bindingTime = PreCompileTime
figuration Header
Consumes Atomic Soft- | 0..* | Meth.bindingTime =
ware Component CodeGenerationTime
Source Code
Consumes BSW Module Con- | 0..* | Meth.bindingTime =
figuration Data CodeGenerationTime
Source Code
Consumes BSW Module Con- | 0..* | Meth.bindingTime =
figuration Header CodeGenerationTime
File
Consumes BSW RTE Pre- | 0. | Meth.bindingTime = PreCompileTime
build Configuration
Header
Consumes Basic Software | 0..* | Meth.bindingTime =
Interlink Types CodeGenerationTime
Header
Consumes Basic Software | 0..* | Meth.bindingTime =
Module Core CodeGenerationTime
Header
Consumes Basic Software | 0..* | Meth.bindingTime =
Module Core CodeGenerationTime
Source Code
Consumes Component RTE | 0..* | Meth.bindingTime =
Prebuild Configu- CodeGenerationTime
ration Header

AUTOSAR

Relation Type Related Element Mul. | Note
Consumes Library Header | 0. | Meth.bindingTime =
Files CodeGenerationTime
Consumes Optimized Applica- | 0..* | Meth.bindingTime =
tion Header File CodeGenerationTime
Consumes Software Compo- | 0..* | Meth.bindingTime =
nent Data Types CodeGenerationTime
Header
Produces ECU Object Code 1..* | Meth.bindingTime = CompileTime
Used tool Compiler 1

Table 3.280: Compile ECU Source Code

3.6.1.28 Generate ECU Executable

Basic Software
Module Object Ct

0..*

o&

0..*
Atomic Softwaye

Component Ob)ect
Code

«input»

«input»

«input» Generate

[

Library Object

Code

ECU
Executable

«input».

ECU Resources

Descrip

ECU Configuration

tion Values

1
ECU Integrator

«performs»

/

\

Iy

71
«output»

Map of the ECU Executable

«output»s

1

m
e}
c
m
x
@
o
=
o
=2
@

«used tool»

Linker

Build Action Manifest

Figure 3.147: Generate ECU Executable

AUTOSAR

Task Definition Generate ECU Executable

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Generate the executable code of the ECU out of the object files and
linker configuration.

Description The steps to generate the code for an ECU resemble today’s

development practice. However, it is important to note that this activity
is more than a simple linker step. Information from the ECU
Configuration Description might be used to generate specially
configured executable software. The ECU Configuration Description is
needed as input to the Generate Executable activity, because it
contains the information which BSW modules and SWC
implementations are used to create the executable and further
information about the memory mapping.

The output of this activity is the ECU Executable and the Map of
Executable (which is typically the log file from linking the ECU
Executable).

The detailed input and output formats of this task are not standardized
by AUTOSAR, therefore this task is only included for informative
purposes. Note that ECU Configuration is shown as an input to get the
overall picture, however in practice more specific artifacts (e.g. linker
settings, make file etc.) will have to be generated out of the ECU
configuration before the actual software build can be started.
Especially, the information about the mapping of the physical memory
sections to the memory section used in the software, which is
described in the so-called EcuC parameter values, is needed in order
to generate the linker settings.

Meth.bindingTime = LinkTime

Relation Type

Related Element Mul. | Note

Performed by

ECU Integrator 1

Consumes ECU Object Code 1..* | from generated or delivered source code
Meth.bindingTime = CompileTime
Consumes Build Action Mani- | 0..1 | The task may be controlled by a Build
fest Action Manifest.
Consumes ECU Configuration | 0..1 | may be used to set up build environment
Values Meth.bindingTime = CompileTime
Consumes ECU Resources | 0..1 | may be used to set up build environment
Description Meth.bindingTime = CompileTime
Consumes Atomic Software | 0..* | Meth.bindingTime = CompileTime
Component Object
Code
Consumes Basic Software | 0..* | for object code delivery
Module Object Meth.bindingTime = CompileTime
Code
Consumes Library Object | 0..* | for object code delivery
Code Meth.bindingTime = CompileTime
Produces ECU Executable 1 Meth.bindingTime = LinkTime
Produces Map of the ECU 1 Meth.bindingTime = LinkTime
Executable
Used tool Linker 1

AUTOSAR

Relation Type Related Element Mul. | Note
Predecessor Encapsulate SW-C 1
Predecessor Generate BSW 1

and RTE

Table 3.281: Generate ECU Executable

3.6.1.29 Generate RTE Postbuild Dataset

Description
1 0.*
ECU Configuration
Values «input»

—
—
—
—
— .
— | S€IViCE

Component

—
1 ECU Integrator

«performs»

«input».
\\

Generate RTE

ECU Extract

Postbuild Variant Set

Postbuild Dataset

«input»\

«used tool»

T

RTE Generator

«output» 1

«input»

1

RTE Postbuild
Variants Dataset

—

«input» «input»

=

-
A

Build Action
Manifest

Predefined Variant

Figure 3.148: Generate RTE Postbuild Dataset

Task Definition Generate RTE Postbuild Dataset

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Postbuild Data Set Generation Phase for the RTE: It binds all variations
which are for postbuild time.

Description Data Set Generation Phase for the RTE: It binds all variations which

are for postbuild time. The output is a data set which can be used to
build an image separately from the main code.

The supported post-build variants are defined by the
PredefinedVariants referred in the post-build section of the RTE
configuration. At runtime, only one of those variants can be active. This
selection is done via the initialization structure for the BSW Scheduler.
The actual value for this iniialization structure used for runtime
initialization is defined by the configuration of the ECU State Manager.

Meth.bindingTime = PostBuild

Relation Type

Related Element Mul. | Note

Performed by

ECU Integrator 1

Consumes

ECU Configuration 1
Values

Meth.bindingTime = LinkTime

AUTOSAR

Relation Type Related Element Mul. | Note

Consumes ECU Extract 1 Meth.bindingTime = LinkTime

Consumes Postbuild Variant 1
Set

Consumes Predefined Variant 1

Consumes Build Action Mani- | 0..1 | The task may be controlled by a Build
fest Action Manifest.

Consumes Service Compo- | 0..* | Meth.bindingTime = LinkTime
nent Description

Produces RTE Postbuild 1 Meth.bindingTime = PostBuild
Variants Dataset

Used tool RTE Generator 1

Table 3.282: Generate RTE Postbuild Dataset

3.6.1.30 Generate A2L

Map of the ECU
Executable

RTE Measurement
and Calibration
Support Data

Measurement and
Calibration Support
Data

«input»

Calibration
Engineer

«performs»

—
—
«output»] | —
—
—

A2L File
«input> «input» «input» . «input»
/ «input»
0.1 0.1 0.5 \O..l 0.1
/
— — — = =
MC Function Model ~ ECU Flat Map Alias Name Set MC Additional Build Action
Config Manifest

Figure 3.149: Generate A2L

AUTOSAR

Task Definition Generate A2L

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Generate the A2L File for an ECU.

Description The A2L File created by this task is the final representation of the data

given by RTE Measurement and Calibration Support Data and Local
Measurement and Calibration Support Data.

The main purpose of this task is to replace all symbolic information on
data location found in these input data by actual addresses. Optionally,
it replaces identifiers by alias names given in Alias Name Set(s).
Finally is completes the A2L file with configuration from ECU driver
software (MC Driver Support Data) and configuration not determined
by AUTOSAR artifacts (MC Additional Configuration).

This task is not part of AUTOSAR, it is only included for completeness
of the use cases. The Map of the ECU Executable (linker map file) is
shown as input in order to illustrate the principle use case only. Note
that one needs additional information, like the .ELF or .COFF file, to
resolve addresses of elements of composite C-variables.

Relation Type

Related Element Mul. | Note

Performed by

Calibration Engi- 1

neer
Consumes Map of the ECU 1
Executable
Consumes RTE Measurement 1
and Calibration
Support Data
Consumes Build Action Mani- | 0..1 | The task may be controlled by a Build
fest Action Manifest.
Consumes ECU Flat Map 0..1 | The ECU Flat Map is needed in case the
A2L generator has to process an MC
Function Model that relates to data in the
ECU Flat Map.
Consumes MC Additional | 0..1
Config
Consumes MC Function | 0..1 | This input is needed if the keyword
Model FUNCTION shall be supported in the
generated A2L.
Consumes Alias Name Set 0.”
Consumes Local Measure- | 0..*
ment and Cali-
bration Support
Data
Consumes MC Driver Support | 0..*
Data
Produces A2L File 1 Meth.bindingTime =

CodeGenerationTime

Table 3.283: Generate A2L

AUTOSAR

3.6.1.31 Measure Resources
— > 1/ Ecu Integrator
«performs»
ECU Executable «input»
«output» 0.
3 X BSW Module
E— Implementation
— - Extension
— 0.1 «input»
Measure Resources «output»
Map of the ECU
Executable «input»
0.. —
.1 —
Atomic Software
Component
Implementation
ECU Resources
Description
Figure 3.150: Measure Resources
Task Definition Measure Resources
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Measure the resource consumption and update the implementation
section of the Application SWC and BSW Module Descriptions.
Description Measure the resource consumption and update the implementation

section of the Application SWC and BSW Module Descriptions.

Relation Type Related Element Mul. | Note
Performed by ECU Integrator 1
Consumes ECU Executable 1
Consumes ECU Resources | 0..1
Description
Consumes Map of the ECU | 0..1
Executable
Produces Atomic Software | 0..* | Add extensions to the Implementation
Component Imple- Description.
mentation Meth.bindingTime = PostBuild
Produces BSW Module | 0..* | Meth.bindingTime = PostBuild
Implementation
Extension

Table 3.284: Measure Resources

AUTOSAR

3.6.1.32 Refine Rapid Prototyping Scenario

[

Rapid Prototyping
Engineer

«performs»

1

«input»

Refine Rapid

ECU Extract

_<>

«SPEM_Aggregation»

L&
o
N

Prototyping Scenario

Software Component Internal

Behavior

«inoutput» 1

ECU Extract of Rapid
Prototyping Scenario

Figure 3.151: Refine Rapid Prototyping Scenario

Task Definition Refine Rapid Prototyping Scenario

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description

Description Add missing ECU specific information in the Rapid Prototyping

Scenario, e.g. missing RptHooks or hook implementation decisions.

tract

Relation Type Related Element Mul. | Note
Performed by Rapid Prototyping 1
Engineer
Consumes Software Compo- 1
nent Internal Be-
havior
In/out ECU Extract of 1
Rapid Prototyping
Scenario
Predecessor Generate ECU Ex- 1

Table 3.285: Refine Rapid Prototyping Scenario

AUTOSAR

3.6.2 Work Products

3.6.2.1 BSW Module Integration Bundle

BSW Module
Bundle

«extends»

- BSW Module

- Delivered

- Bundle

- extends»
- BSW Module
_ Integration
- Bundle

«SPEM_Aggregation» r
«SPEM_Aggregation»
BSW Module «SPEM_Aggregation»

Interface Extension

BSW Module BSW Module Local
Behavior Extension Implementation Measurement and
Extension Calibration Support
Data

Figure 3.152: BSW Module Integration Bundle

Deliverable BSW Module Integration Bundle
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products
Brief Description
Description Contains the BSW artifacts for one or more BSW modules completed
during integration.
Kind Delivered
Extends BSW Module Delivered Bundle
Relation Type Related Element Mul. | Note
Aggregates BSW Module Be- | 0..*
havior Extension
Aggregates BSW Module | 0..*
Implementation
Extension
Aggregates BSW Module Inter- | 0..*
face Extension
Aggregates Local Measure- | 0..*
ment and Cali-
bration Support
Data

AUTOSAR

Relation Type

Related Element Mul. | Note

Consumed by

Generate Sched- | 1..* | Input for BSW scheduling, BSW mode
uler and trigger declaration, BSW exclusive
areas, BSW calibration parameters that
need support for software emulation.

Consumed by

emulation).

Table 3.286: BSW Module Integration Bundle

3.6.2.2 ECU Software Delivered

ECU Software:
Delivered
«SPEM_Aggregation» gpgpm Aggregation» «SPEM_Aggregation»
1 N
/ 0.* \o..
— — —
— — —
— — ——
_ — ——
) — ——
I —
— — ——
ECU Executable BSW Module A2L File

Configuration Data
Loadable to ECU Memory

Figure 3.153: ECU Software Delivered

Optionally, a Build Action Manifest maybe
be used to control the generator steps.
Meth.bindingTime = SystemDesignTime

Generate RTE 0..* | Input for BSW scheduling, BSW mode
and trigger declaration, BSW exclusive
areas, BSW calibration parameters that
need RTE support (for software

Optionally, a Build Action Manifest maybe
be used to control the generator steps.
Meth.bindingTime = SystemDesignTime

AUTOSAR

Deliverable ECU Software Delivered

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products

Brief Description All the work products that form the deliverable of an AUTOSAR ECU.

Description All the work products that form the deliverable of an AUTOSAR ECU
software build.
ECU in this context means processor, so if an electronic control unit
consists of several processors, one "ECU Software Delivered” will be
needed for each processor.
Note that the detailed format for all parts of this deliverable is not
defined by AUTOSAR.

Kind Delivered

Relation Type Related Element Mul. | Note

Aggregates ECU Executable 1.*

Aggregates A2L File 0.x

Aggregates BSW Module Con- | 0..”

figuration Data
Loadable to ECU
Memory

Produced by

Integrate Software 1
for ECU

Table 3.287: ECU Software Delivered

3.6.2.3 Service Component Description

Artifact

Service Component Description

Package

AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products

Brief Description

Describes the RTE relevant part of an AUTOSAR Service on a given
ECU in form of a ServcieComponentType with all its ports and an
internal behavior.

Description

Describes the RTE relevant part of an AUTOSAR Service on a given
ECU in form of a ServiceComponentType with all its ports and an
internal behavior. This artifact must be generated during the ECU
configuration process, latest before the RTE is generated. It depends
on the needs of the software components for this AUTOSAR Service.

Kind

AUTOSAR XML

Relation Type

Related Element Mul. | Note

Produced by

Create Service 1 Meth.bindingTime = SystemDesignTime
Component

Consumed by

Connect Service 1
Component

Required in order to define the connector
links to the ports on the BSW side.

AUTOSAR

Relation Type Related Element Mul. | Note

Consumed by Configure NvM 0..* | The configuration of diagnostics,
especially of the DEM, typically leads to
the definition of additional data to be
stored in NvM. One possibility to handle
this is to create ServiceNeeds on the
level ServiceComponentType which is
then taken into account for the
configuration of the NvM.

Consumed by Configure RTE 0..* | The Internal Behavior of Service
Components contributes to the RTE
configuration.

Consumed by Generate RTE 0..* | Meth.bindingTime = SystemDesignTime

Consumed by Generate RTE | 0..* | Meth.bindingTime = LinkTime

Postbuild Dataset
Consumed by Generate RTE | 0..* | Meth.bindingTime =
Prebuild Dataset CodeGenerationTime
Use meta model element | ServiceSwCompo- 1
nentType

Use meta model element

SweclinternalBehav-
ior

Table 3.288: Service Component Description

3.6.2.4 ECU Service Connectors

Artifact ECU Service Connectors

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products

Brief Description The conectors to the Service Components which complete the
complete Software Composition predefined in the ECU extract.

Description The assembly connectors to the Service Components which complete
the Software Composition predefined in the ECU extract. These
connectores are added during ECU integration as a separate artifact to
the already defined composition of Atomic Software Components.

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Produced by Connect Service | 1..* | Meth.bindingTime = SystemDesignTime
Component

Consumed by Define ECU Tim- | 1..*
ing

Consumed by Generate RTE 0..* | Meth.bindingTime = SystemDesignTime

Use meta model element | AssemblySw 1
Connector

3.6.2.5 ECU Timing

Table 3.289: ECU Service Connectors

AUTOSAR

Artifact ECU Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products

Brief Description TimingDescription and TimingConstraints for a concrete ECU

Description TimingDescription and TimingConstraints defined for a concrete ECU
taking the ECU configuration and the ECU Software Composition
(including their implementation) into account.

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Produced by Define ECU Tim- 1 Meth.bindingTime = SystemDesignTime
ing

Consumed by Configure OS 0..1

Consumed by Configure RTE 0..1

Consumed by Configure Watch- | 0..1
dog Manager

Consumed by Create Service | 0..1 | Additional information for fine tuning
Component configuration decisions.

Use meta model element | EcuTiming 1

Table 3.290: ECU Timing

3.6.2.6 BSW Module Interface Extension

W Configuration
Code

Artifact BSW Module Interface Extension

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products

Brief Description

Description Additions to the BSW Module on the interface level during integration.
It is used for example to add Basic Software Module Entries in
response to the ECU configuration, for example callback declarations.

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Aggregated by BSW Module Inte- | 0..*
gration Bundle

Produced by Generate BS | 0.1

Use meta model element | BswModuleDe- 1
scription
Use meta model element | BswModuleEntry 1

Table 3.291: BSW Module Interface Extension

3.6.2.7 BSW Module Behavior Extension

AUTOSAR

Artifact BSW Module Behavior Extension

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products

Brief Description

Description Additions to the BSW Module on the behavior level during integration.
It can for example be used to add local data declaration
(constantMemory, staticMemory, perinstanceMemory) for debug or
calibration purposes in response to configuration parameters.

Kind AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

BSW Module Inte- | 0..*
gration Bundle

Produced by

Generate BS | 0.1
W Configuration
Code

Consumed by

Generate Local M | 0..1 | Meth.bindingTime = SystemDesignTime

C Data Support

Use meta model element

BswinternalBehav- 1
ior

Table 3.292: BSW Module Behavior Extension

3.6.2.8 BSW Module Implementation Extension

Artifact BSW Module Implementation Extension

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products

Brief Description

Description Additions to the BSW Module on the implementation level during
integration. It is used for example to add information on resource
consumption.

Kind AUTOSAR XML

Relation Type Related Element Mul. | Note

Aggregated by BSW Module Inte- | 0..%
gration Bundle

Produced by Generate BS | 0.1
W Configuration
Code

Produced by Measure Re- | 0..* | Meth.bindingTime = PostBuild
sources

Use meta model element | Bswimplementa- 1
tion

Table 3.293: BSW Module Implementation Extension

3.6.2.9 ECU Configuration Values

AUTOSAR

Artifact

ECU Configuration Values

Package

AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products

Brief Description

The collection of all configuration values for an ECU.

Description

First of all, the ECU Configuration Values contain a link to the System
element which comes with the ECU Extract thus it can be used as a
root element for integration on this ECU.

Furtheron, it contains a collection of all configuration values for an
ECU, which is gradually filled. Starting with the root element
EcucValueCollection it contains the actual configuration settings
EcucModuleConfigurationValues for each module including the RTE.
Note that due to their strong interrelation, these parts are not
considered as separate artifacts in the use cases for ECU integration.

A special set of configuration values is the so-called
EcuC-configuration: It contains the configuration values which are
relevant for the whole ECU. Tools that interpret the configuration values
need to know the underlying parameter definition. Therefore, in
addition to the configuration values, each EcucValueCollection
contains a link and the version of the parameter definition to which it
adheres. This parameter definition is either part of the AUTOSAR
Standardized ECU Configuration Parameter Definition or, in case of
vendor specific extensions, is given by the artifact Basic Software
Module Vendor-Specific Configuration Parameter Definition.

Kind

AUTOSAR XML

Relation Type

Related Element Mul. | Note

Produced by

Configure 1 MemMapAllocation:
Memmap Allo- Meth.bindingTime = SystemDesignTime

cation
Produced by Create Service 1 Enter links to the created
Component SwComponentPrototypes.

Meth.bindingTime = SystemDesignTime

Produced by

Generate Base 1 Meth.bindingTime = SystemDesignTime
Ecu Configuration

Produced by

Prepare ECU Con- 1
figuration

Produced by

Generate RTE 0..1 | Optional output for the configuration of
the OS.

Meth.bindingTime =
CodeGenerationTime

In/out Configure BSW 1
and RTE

In/out Configure Com 1

In/out Configure Debug 1

In/out Configure Diag- 1 Configuration Values for DEM, DCM,
nostics DLT, FIM.

In/out Configure ECUC 1

In/out Configure 10 Hard- 1
ware abstraction

In/out Configure MCAL 1

AUTOSAR

Relation Type Related Element Mul. | Note
In/out Configure Mode 1
Management
In/out Configure NvM 1
In/out Configure OS 1
In/out Configure RTE 1
In/out Configure Trans- 1
former
In/out Configure Watch- 1
dog Manager
In/out Generate Updated 1 The task "Generate Updated ECU

ECU Configuration

Configuration" consumes the initial ECU
configuration values and produces the
updated ECU configuration values.

Consumed by

Define ECU Tim-
ing

Consumed by

Generate BS
W Configuration
Code

Consumed by

Generate BSW
Memory Mapping
Header

MemMapAllocation: Mapping of the
abstract sections (SwAddressMethods
for generic mapping resp.
MemorySection Elements for specific
mapping) to the compiler specific
MemMapAddressingModes.
Meth.bindingTime = SystemDesignTime

Consumed by

Generate BSW
Postbuild Configu-
ration Code

Consumed by

Generate BSW
Precompile Con-
figuration Header

Consumed by

Generate BSW
Source Code

Consumed by

Generate BSW
and RTE

Consumed by

Generate OS

Meth.bindingTime = SystemDesignTime

Consumed by

Generate RTE

Meth.bindingTime = SystemDesignTime

Consumed by

Generate RTE
Postbuild Dataset

Meth.bindingTime = LinkTime

Consumed by

Generate RTE
Prebuild Dataset

find the Predefiined Variant to be used
Meth.bindingTime =
CodeGenerationTime

Consumed by

Generate SWC
Memory Mapping
Header

MemMapAllocation: Mapipng of the
abstract sections (SwAddressMethods
for generic mapping resp.
MemorySection Elements for specific
mapping) to the compiler specific
MemMapAddressingModes.
Meth.bindingTime = SystemDesignTime

AUTOSAR

Memory Mapping
Header

Relation Type Related Element Mul. | Note
Consumed by Generate Sched- 1 Configuration values for the BSW
uler Scheduler (subset of RTE configuration).
Meth.bindingTime = SystemDesignTime
Consumed by Create Service | 0..1 | The creation of Service Component
Component details may depend on ECU
configuration values, especially for the
DCM.
Consumed by Generate BSW | 0..1 | moduleDescription: List of used BSW
Memory Mapping modules (EcucValueCollec-
Header tion.ecucValue.moduleDescription)
Meth.bindingTime = SystemDesignTime
Consumed by Generate Compiler | 0..1 | RtelmplementationRef: Existence of
Configuration SWCs could be identified by usage of the
RTE ECU Configuration "RteSwCompo-
nentType.RtelmplementationRef"
Meth.bindingTime = SystemDesignTime
Consumed by Generate Compiler | 0..1 | ModuleDescription: List of used BSW
Configuration modules (EcucValueCollec-
tion.ecucValue.moduleDescription)
Meth.bindingTime = SystemDesignTime
Consumed by Generate ECU Ex- | 0..1 | may be used to set up build environment
ecutable Meth.bindingTime = CompileTime
Consumed by Generate SWC | 0..1 | RtelmplementationRef: Existence of

SWCs could be identified by usage of the
RTE ECU Configuration "RteSwCompo-
nentType.RtelmplementationRef"
Meth.bindingTime = SystemDesignTime

Use meta model element

EcucModuleCon-
figurationValues

Use meta model element

EcucValueCollec-
tion

3.6.2.10 RTE Implementation Description

Table 3.294: ECU Configuration Values

Artifact RTE Implementation Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products

Brief Description Implementation Description for the RTE, generated by the RTE
generator.

Description Implementation Description for the RTE, generated by the RTE
generator. Uses the format of Bswimplementation. This artifact is
required to provide information for other generators and the build
process, namely debugging information, memory section. It
aggregates also the support data for measurement and calibration,
which is considered as a separate artifact.

Kind AUTOSAR XML

Relation Type Related Element | Mul. | Note

AUTOSAR

uler

Relation Type Related Element Mul. | Note

Produced by Generate RTE 1 Meth.bindingTime =
CodeGenerationTime

Produced by Generate Sched- | 0..1 | Creates a subset of the RTE

implementation description that contains
only the description of data owned by the
BSW Scheduler.

Meth.bindingTime =
CodeGenerationTime

Use meta model element

Bswimplementa-
tion

Table 3.295: RTE Implementation Description

3.6.2.11 RTE Prebuild Configuration Header

Artifact RTE Prebuild Configuration Header

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products

Brief Description RTE Prebuild Configuration Header File. It defines all variants for the
RTE code which have to be bound later than code generation time but
before build time.

Description RTE Prebuild Configuration Header File. It defines the setting of all
variants for the RTE code (via macro code) which have to be bound
later than code generation time but before build time.

Kind Bound Source Code

Relation Type Related Element Mul. | Note

Produced by Generate RTE 1 Meth.bindingTime = PreCompileTime
Prebuild Dataset

Consumed by Compile ECU | 0..1 | Meth.bindingTime = PreCompileTime
Source Code

Table 3.296: RTE Prebuild Configuration Header

3.6.2.12 Calibration Parameter Value Set

AUTOSAR

Artifact Calibration Parameter Value Set

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products

Brief Description Calibration Parameter Value Setting

Description A set of calibration parameter values used to initialize the memory
objects which implement calibration parameters. The values are
specific for the software component instances in ECU scope. They will
override any initial values defined for those parameters within the ECU
Extract. The parameter values can be defined as ApplicationDataTypes
or as ImplementationDataTypes which has several use cases. These
two use cases are supported by the RTE generation phase:

e Parameter values defined as ImplementationDataTypes can be
used as instance specific initialization for calibration parameters
within components as soon as the respective
ImplementationDataTypes are available (which must be the case
for RTE generation anyhow).

e Parameter values defined as ApplicationDataTypes can be used
as instance specific initialization for calibration parameters which
are only defined with ApplicationDataTypes.

The next case is not modelled within AUTOSAR in detail:

e Parameter values defined as ApplicationDataTypes can be used
to exchange initial values with the component vendor not
publishing the transformation algorithm between
ApplicationDataTypes and ImplementationDataTypes

Kind AUTOSAR XML
Relation Type Related Element Mul. | Note
Produced by Provide RTE Cali- 1
bration Dataset
Consumed by Generate RTE 0..1 | Meth.bindingTime = SystemDesignTime
Use meta model element | CalibrationParam- 1
eterValueSet

Table 3.297: Calibration Parameter Value Set

3.6.2.13 MC Function Model

AUTOSAR

Artifact MC Function Model
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products
Brief Description A functional model to be used for A2L generation.
Description As set of nested McFunction elements to be used as input to generate
A2L. Its purpose is to
e assign calibration parameters to a logical function
e assign measurement variables to a logical function
o structure functions hierarchically
It shall support the generation of the FUNCTION keyword and related
elements defined in ASAM MCD-2 MC.
An MC Function Model refers to the data descriptions in other
AUTOSAR XML artifacts either via entries in the ECU Flat Map or via
McDatalnstances being part of Measurement and Calibration Support
Data.
Kind AUTOSAR XML
Relation Type Related Element Mul. | Note
Produced by Create MC Func- 1
tion Model
Consumed by Generate A2L 0..1 | This input is needed if the keyword
FUNCTION shall be supported in the
generated A2L.
Use meta model element | McFunction 1

Table 3.298: MC Function Model

3.6.2.14 Local Measurement and Calibration Support Data

AUTOSAR

Artifact

Local Measurement and Calibration Support Data

Package

AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products

Brief Description

Generated artifact, which supports the later generation of "A2L"-files
for measurement and calibration data which are owned locally by a
component or module.

Description

Generated artifact which is used as an input for the later generation of
"A2L"-files for measurement and calibration. It relates the measurment
and calibration data listed in the ECU FlatMap to the C-variables used
locally within a component or module (this is relevant only valid for
those parameters and variables, which are not implemented by the
RTE) . In addition, it contains all configuration data which are relevant
for the A2L generator (e.g. the access method to calibration data
whithin a Complex Driver).

This XML-artifact is linked via a (splitable) aggregation to the
Implementation Description of the component or module, but it is
considered as a separate artifact.

Kind

AUTOSAR XML

Relation Type

Related Element Mul. | Note

Aggregated by

BSW Module Inte- | 0..*
gration Bundle

Produced by

Generate Local M 1 Meth.bindingTime =
C Data Support CodeGenerationTime

Consumed by

Create MC Func- | 0..* | Used if the MC Function Model shall
tion Model refer to McDatalnstances allocated by
BSW modules without RTE support.

Consumed by

Generate A2L 0.

Use meta model element

McSupportData 1

Table 3.299: Local Measurement and Calibration Support Data

3.6.2.15 RTE Measurement and Calibration Support Data

AUTOSAR

Artifact RTE Measurement and Calibration Support Data

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products

Brief Description RTE generator output, which supports the later generation of
"A2L"-files for the measurement and calibration data which are owned
by the RTE.

Description RTE generator output, which is used as an input for the later

generation of "A2L"-files for measurement and calibration. It relates the
measurement and calibration data listed in the ECU FlatMap to the
C-variables of the generated RTE code. For all these data it contains
copies of the attributes which are relevant for A2L generation. In
additions it contains all configuration data which are relevant for the
A2L generator (namely the access method to calibration data which is
supported by the RTE). This XML-artifact is linked via a (splitable)
aggregation to the RTE Implementation Description, but is considered
as a separate artifact.

The most important attributes for each data instance are:

o |ts shortName copied from the ECU Flat Map to be used as
identifier and for display by the MC system.

e The category copied from the corresponding data type
(ApplicationDataType if defined, otherwise
ImplementationDataType) as far as applicable.

e The symbol used in the programing language. It will be used to
find out the actual memory address by the final generation tool
with the help of linker generated information.

o All aggregated and referred elements like CompuMethod or
BaseType describing the data (with the exception of the Flat
Map) are completely copied from "upstream” information.
Therefore this artifact is a self-contained description which can
be forwarded to the A2L generator without needing related
descriptions.

Kind AUTOSAR XML
Relation Type Related Element Mul. | Note
Produced by Generate RTE 0..1 | Meth.bindingTime =
CodeGenerationTime
Produced by Generate Sched- | 0..1 | Creates a subset of the measurement &
uler calibration support data related only to
the data owned by the BSW Scheduler.
Meth.bindingTime =
CodeGenerationTime
Consumed by Generate A2L 1
Consumed by Create MC Func- | 0..1 | Used if the MC Function Model shall
tion Model refer to McDatalnstances allocated by
the RTE.
Use meta model element | McSupportData 1

Table 3.300: RTE Measurement and Calibration Support Data

AUTOSAR

3.6.2.16 RTE Source Code

Artifact

RTE Source Code

Package

AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products

Brief Description

Source code implementiing the RTE on a CPU.

Description

Source code implementing the RTE on a CPU.

The output of an RTE generator can consist of both generated code
and configuration for library code that may be supplied as either object
code or source code. Both configured and generated code reference
standard definitions that are defined in one of two standardized header
files: The RTE Header File and the Lifecycle Header File. These
header files are not explicitly shown in the methodology, as in all tasks
they appear with the RTE source code. For details refer to
AUTOSAR_SWS_RTE.pdf.

Apart from this, the file structure is not standardized, and therefore
represented as one single artifact in the methodology. In general, the
RTE code can be partitioned in several files. The partitioning depends
on the RTE vendor’s software design and generation strategy.
Nevertheless it shall be possible to clearly identify code and header
files which are part of the RTE module.

Kind

Source Code

Relation Type

Related Element Mul. | Note

Produced by

Generate BSW 1
and RTE

Produced by

Generate RTE 1 Meth.bindingTime =

CodeGenerationTime

Consumed by

Compile ECU 1 Meth.bindingTime =
Source Code CodeGenerationTime

Table 3.301: RTE Source Code

3.6.2.17 BSW Scheduler Code

Artifact BSW Scheduler Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products

Brief Description Generated Code implementing the BSW Scheduler.

Description Generated Code implementing the BSW Scheduler. It can be source or
macro code.

Kind Source Code

Relation Type

Related Element Mul. | Note

Produced by Generate RTE 1 Meth.bindingTime =
CodeGenerationTime

Produced by Generate Sched- 1 Meth.bindingTime =
uler CodeGenerationTime

Consumed by

Compile ECU 1
Source Code

Meth.bindingTime =
CodeGenerationTime

AUTOSAR

Relation Type

| Related Element | Mul. | Note

Table 3.302: BSW Scheduler Code

3.6.2.18 OS Generated Code

Artifact OS Generated Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products

Brief Description OS configuration generated code

Description OS configuration generated code. OS configuration code are
composed of header and C files. These will be compiled with the
source code in the build process (see Compile Source Code).

Kind Source Code

Relation Type

Related Element Mul. | Note

Produced by

Generate OS 1 Meth.bindingTime =
CodeGenerationTime

Consumed by

Compile ECU 1
Source Code

Meth.bindingTime =
CodeGenerationTime

Table 3.303: OS Generated Code

3.6.2.19 RTE Postbuild Variants Dataset

Artifact

RTE Postbuild Variants Dataset

Package

AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products

Brief Description

Generated code used to resolve postbuild variants in the RTE.

Description

Generated code used to resolve postbuild variants in the RTE. It
consists of a c-file and a header file:

e The RTE generator must generate a Rte_PBCfg.c file containing
the declarations and initializations of one or more RTE post build
variants. Only one of these variants can be active at runtime.

e The RTE generator shall generate in the Rte_PBCfg.h file the
SchM_ConfigType type declaration of the predefined post build
variants data structure. This header file must be used by other
RTE modules to resolve their runtime variabilities.

Kind

Bound Source Code

Relation Type

Related Element Mul. | Note

Produced by

Generate RTE 1 Meth.bindingTime = PostBuild
Postbuild Dataset

Table 3.304: RTE Postbuild Variants Dataset

3.6.2.20 ECU Object Code

AUTOSAR

Artifact ECU Object Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products

Brief Description

Description Object code file produced by compilation during ECU integration.
To be distinguished from code files which are already delivered as
object code for integration (see Basic Software Module Object Code or
Atomic Software Component Object Code).

Kind Object Code

Relation Type

Related Element Mul. | Note

Produced by

Compile ECU | 1.* | Meth.bindingTime = CompileTime
Source Code

Consumed by

Generate ECU Ex- | 1..* | from generated or delivered source code
ecutable Meth.bindingTime = CompileTime

Consumed by

Link ECU Code | 1.*
during Link Time
Configuration

Table 3.305: ECU Object Code

3.6.2.21 ECU Executable

Artifact ECU Executable

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products

Brief Description The executable image containing all the fully integrated software ready
to download to an ECU.

Description The executable image containing all the fully integrated software ready
to download to an ECU. This work product and its format is not defined
by AUTOSAR, it is only included for completeness of the use cases.

Kind Executable

Relation Type

Related Element Mul. | Note

Aggregated by

ECU Software De- | 1..*
livered

Produced by

Generate ECU Ex- 1
ecutable

Meth.bindingTime = LinkTime

Produced by

Link ECU Code 1
after Precompile
Configuration

Produced by

Link ECU Code 1
during Link Time
Configuration

Consumed by

Measure Re- 1
sources

Table 3.306: ECU Executable

3.6.2.22 Map of the ECU Executable

AUTOSAR

Artifact Map of the ECU Executable

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products

Brief Description Linker map file of the excecutable.

Description Linker map file of the excecutable. This work product and its format is
not defined by AUTOSAR, it is only included for completeness of the
use cases.

Kind Text

Relation Type

Related Element Mul. | Note

Produced by

Generate ECU Ex- 1 Meth.bindingTime = LinkTime
ecutable

Consumed by Generate A2L 1
Consumed by Measure Re- | 0..1
sources

3.6.2.23 AZ2L File

Table 3.307: Map of the ECU Executable

Artifact A2L File

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products

Brief Description Input file for measurment and calibration tools.

Description Input file for measurement and calibration tools related to one ECU.
This format is not in the scope of AUTOSAR, it is defined by the ASAM
organization. The work product is only included for completeness of
the use cases.

Kind Text

Relation Type

Related Element Mul. | Note

Aggregated by

ECU Software De- | 0..*
livered

Produced by

Generate A2L 1 Meth.bindingTime =
CodeGenerationTime

Table 3.308: A2L File

3.6.2.24 MC Driver Support Data

AUTOSAR

Artifact MC Driver Support Data

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products

Brief Description Support data describing the specific access of a driver (e.g. XCP) for
exchange of data for measurement and calibration.

Description Support data describing the specific access method of a driver (e.qg.
XCP) in order to exchange data for measurement and calibration.
These are the so-called IF-DATA needed in the A2L files.
This artifact shall be generated by a driver(e.g. XCP) specific
generator out of its ECU configuration. This format is not defined by
AUTOSAR. The work product is only included for completeness of the
use cases.

Kind Custom

Relation Type Related Element Mul. | Note

Consumed by Generate A2L 0.x

Table 3.309: MC Driver Support Data

3.6.2.25 MC Additional Config

Artifact MC Additional Config

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work
Products

Brief Description External configuration data nedded to generate the A2L file.

Description Additional configuration data needed to generate the A2L file. This
format is not defined by AUTOSAR. The work product is only included
for completeness of the use cases.

Kind Custom

Relation Type Related Element Mul. | Note

Consumed by Generate A2L 0..1

3.6.3 Tools

Table 3.310: MC Additional Config

3.6.3.1 RTE Generator

Tool RTE Generator

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::
Guidance

Brief Description

Description RTE Generator used for several tasks during ECU integration.

Kind

Relation Type

Related Element Mul. | Note

Used

Generate RTE 1

Used

Generate RTE 1
Postbuild Dataset

AUTOSAR

Relation Type Related Element Mul. | Note
Used Generate RTE 1

Prebuild Dataset
Used Generate Sched- 1

uler

Table 3.311: RTE Generator

3.6.3.2 BSW Generator Framework

Tool BSW Generator Framework

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::
Guidance

Brief Description

Description Framework that uses BSW generators that are being delivered as part
of individual modules.

Kind

Relation Type Related Element Mul. | Note

Used Generate BS 1
W Configuration
Code

Table 3.312: BSW Generator Framework

3.6.4 ECU Config Classes
3.6.4.1 Tasks

3.6.4.1.1 Compile Unconfigured Bsw

«output» 1

Compile

Unconfigured

BSW Basic Software
Module Object
Code

«used tool»

Compiler

Figure 3.154: Compile Unconfigured Bsw

AUTOSAR

Task Definition Compile Unconfigured BSW

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU
Config Classes::Tasks

Brief Description Compile unconfigured BSW to get a BSW Module Object Code.

Description Compile Unconfigured BSW is the usual step to compile files without

any configuration data when no configuration is needed. This can be
use either in the pre-compile, link or post-build time.

Relation Type

Related Element Mul. | Note

Consumes Basic Software 1
Module Core
Header

Consumes Basic Software 1
Module Core
Source Code

Produces Basic Software 1
Module Object
Code

Used tool Compiler 1

Table 3.313: Compile Unconfigured BSW

3.6.4.1.2 Compile Configured Bsw

BSW Module
Configuration Header
File

il

Basic Software
Module Core Header

—
—
1 «input» «output» 1 || e—
—
—

Compile

Configured

BSW Basic Software
Module Object Code

«used tool»

Basic Software Compiler
Module Core
Source Code

Figure 3.155: Compile Configured Bsw

AUTOSAR

Task Definition Compile Configured BSW

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU
Config Classes::Tasks

Brief Description Compile Configured BSW to get a BSW Module Object Code

Description Compile Configured BSW to get a Basic Software Module Object Code

used in the link steps. This Configured BSW is representing C files that
have already included all needed configured data. This is done in the
pre-compile time.

Relation Type

Related Element Mul. | Note

Consumes BSW Module Con- 1
figuration Header
File

Consumes Basic Software 1
Module Core
Header

Consumes Basic Software 1
Module Core
Source Code

Produces Basic Software 1
Module Object
Code

Used tool Compiler 1

Table 3.314: Compile Configured BSW

3.6.4.1.3 Compile BSW Configuration Data

Basic Software
Module Core
Header

1 «input» «output» 1

Compile BSW
Configuration
Data

BSW Module
Configuration
Data Source

Code

BSW Module
Configuration Data
Object Code

«used tool»

BSW Module
Configuration
Header File
Compiler

Figure 3.156: Compile BSW Configuration Data

AUTOSAR

Object Code used in the link steps.

Task Definition Compile BSW Configuration Data

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU
Config Classes::Tasks

Brief Description Compile BSW Configuration Data during link time

Description Compile BSW Configuration Data during link-time- or post-build

configuration to get the Basic Software Module Configuration Data

Relation Type

Related Element Mul. | Note

Consumes

BSW Module Con- 1
figuration Data
Source Code

Consumes

BSW Module Con- 1
figuration Header
File

Consumes

Basic Software 1
Module Core
Header

Produces

BSW Module Con- 1
figuration Data Ob-
ject Code

Used tool

Compiler 1

Table 3.315: Compile BSW Configuration Data

3.6.4.1.4 Compile Generated BSW

BSW Module
Configuration
Header File

[

Compile
Generated

BSW Module Completely BSW
Generated Source Code

cused tool»

Compiler

Figure 3.157: Compile Generated BSW

«input» «output»

Basic Software
Module Object
Code

AUTOSAR

Task Definition Compile Generated BSW

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU
Config Classes::Tasks

Brief Description Compile generated BSW in the pre-compile time:

Description Compile generated BSW in the pre-compile time: this generated BSW
has been generated with a BSW Configuration generator which
generates the complete configuration-specific code.

Relation Type Related Element Mul. | Note

Consumes BSW Module 1
Completely Gen-
erated Source
Code

Consumes BSW Module Con- 1
figuration Header
File

Produces Basic Software 1
Module Object
Code

Used tool Compiler 1

Table 3.316: Compile Generated BSW

3.6.4.1.5 Generate BSW Precompile Configuration Header

«input» «output» 1

[

Generate BSW Precompile
X . fi ion Hi
ECU Configuration Configuration Header BSWModgle
Values (F:‘olnflguratlon Header
e

Figure 3.158: Generate BSW Precompile Configuration Header

Task Definition Generate BSW Precompile Configuration Header

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU
Config Classes::Tasks

Brief Description Generate BSW Precompile Configuration Header

Description Generate BSW Pre-compile Configuration Header. The header is used

for definition or declaration (in case source code is needed) of the
pre-compile configuration data code.

Relation Type Related Element Mul. | Note
Consumes ECU Configuration 1

Values
Produces BSW Module Con- 1

figuration Header

File

Table 3.317: Generate BSW Precompile Configuration Header

AUTOSAR

3.6.4.1.6 Generate BSW Source Code

1

ECU Configuration Values

«input»

Generate BSW Source
Code

«output»

«output»

BSW Module Configuration Header
File

Figure 3.159: Generate BSW Source Code

Task Definition Generate BSW Source Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU
Config Classes::Tasks

Brief Description Generate the source code of a module completely from its precompile
configuration.

Description Generate the source code of a BSW module completely from its
pre-compile configuration. A header file may be produced in addition, if
required.

Relation Type Related Element Mul. | Note

Consumes ECU Configuration 1
Values

Produces BSW Module 1
Completely Gen-
erated Source
Code

Produces BSW Module Con- 1

figuration Header
File

Table 3.318: Generate BSW Source Code

AUTOSAR

3.6.4.1.7 Generate BSW Configuration Code

BSW Module
Configuration
«output» Data Source

ECU Configuration Values

/ o
«input» :

Generate BSW
Configuration Code

«output»

BSW Module
Configuration Header
File

Figure 3.160: Generate BSW Configuration Code

Task Definition Generate BSW Configuration Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU
Config Classes::Tasks

Brief Description Generate source code which implements configuration data for link- or
compile-time configuration.

Description A generator reads the relevant parameters from the ECU Configuration

Description and creates a separate code file that implements the
specified configuration. This task is used for link-time configuration, i.e.
the configuration code can be produced at link-time of the core code or
for compile-time configuration, if the configuration code cannot be put
into a header file (e.g. for tables), even if the core code and the
configuration code shall be compiled at the same time.

A header file may be produced in addition, to declare the data.
Furthermore the generator may produce extensions of the BSW

module description artifacts as a result of configuration parameter
values which are set at integration time.

Relation Type

Related Element Mul. | Note

Performed by ECU Integrator 1
Consumes ECU Configuration 1
Values
Consumes BSW Module Gen- | 0..1 | Thisis an inputin case a generator
erator framework is used which has to run
some module specific generator code.
Consumes Build Action Mani- | 0..1 | The task may be controlled by a Build

fest Action Manifest.

AUTOSAR

Relation Type Related Element Mul. | Note

Consumes BSW Module | 0..*
Vendor- Specific
Configuration Pa-
rameter Definition

Produces BSW Module Con- 1
figuration Data
Source Code

Produces BSW Module Con- 1
figuration Header
File

Produces BSW Module Be- | 0..1
havior Extension

Produces BSW Module | 0..1
Implementation
Extension

Produces BSW Module Inter- | 0..1
face Extension

Used tool BSW Generator 1
Framework

Table 3.319: Generate BSW Configuration Code

3.6.4.1.8 Generate BSW Postbuild Configuration Code

1
BSW Module

«output» Configuration

/ Data Source
Code

1 «input» >

Generate BSW Postbuild
Configuration Code

Iy

ECU Configuration Values
«output»

BSW Module Configuration
Header File

Figure 3.161: Generate BSW Postbuild Configuration Code

AUTOSAR

Task Definition Generate BSW Postbuild Configuration Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU
Config Classes::Tasks

Brief Description Generate the code for data structures that can be used for postbuild
configuration.

Description Generate the source code and associated header for data structures

that can be used for postbuild configuration.

Relation Type Related Element Mul. | Note
Consumes ECU Configuration 1
Values
Produces BSW Module Con- 1
figuration Data
Source Code
Produces BSW Module Con- 1

figuration Header
File

Table 3.320: Generate BSW Postbuild Configuration Code

3.6.4.1.9 Link ECU after Precompile Configuration

-

Basic Software
Module Object Code

«input» «output» 1

Link ECU Code
after
Precompile

Ny N ECU Executable
Configuration

«used tool»

Linker

Figure 3.162: Link ECU after Precompile Configuration

Task Definition Link ECU Code after Precompile Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU
Config Classes::Tasks

Brief Description Link the ECU code in the pre-compile time Configuration Class

Description Link the different BSW modules object code in the pre-compile

Configuration Class. All parameters values for configurable elements
have been already fixed and are effective after compilation time.

Relation Type Related Element Mul. | Note
Consumes Basic Software | 1..*
Module Object
Code
Produces ECU Executable 1
Used tool Linker 1

Table 3.321

: Link ECU Code after Precompile Configuration

AUTOSAR

3.6.4.1.10 Link ECU Code During Link Time Configuration

Basic Software Module «input»

Object Code

—
—
«output» 1 | —
—
—

Link ECU Code
during Link Time
Configuration

ECU Executable

BSW Module Configuration
Data Object Code

«used tool»

«input»

Linker

ECU Object Code

Figure 3.163: Link ECU Code During Link Time Configuration

Task Definition Link ECU Code during Link Time Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU
Config Classes::Tasks
Brief Description Link ECU Code during Link Time
Description Link ECU Code during Link Time
Relation Type Related Element Mul. | Note
Consumes BSW Module Con- | 1..*
figuration Data Ob-
ject Code
Consumes Basic Software | 1..*
Module Object
Code
Consumes ECU Object Code 1.*
Produces ECU Executable 1
Used tool Linker 1

Table 3.322: Link ECU Code during Link Time Configuration

AUTOSAR

3.6.4.1.11 Link ECU Code During Post-build Time

«input» «output»

Link ECU Code
during Post-Build
Time

BSW Module BSW Module Configuration
Configuration Data Data Loadable to ECU
Object Code Memory

«used tool»

T

Linker

Figure 3.164: Link ECU Code During Post-build Time

Task Definition Link ECU Code during Post-Build Time

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU
Config Classes::Tasks

Brief Description Link ECU Code during post-build time loadable .

Description Link ECU Code during post-build time. The objects used for this link

are coming from configuration data file that contain all configured
parameters. The result of the link is a hex file that will be loadable in
the ECU memory.

Relation Type

Related Element Mul. | Note

Consumes

BSW Module Con- | 1..”
figuration Data Ob-
ject Code

Produces

BSW Module Con- 1
figuration Data
Loadable to ECU
Memory

Used tool

Linker 1

Table 3.323: Link ECU Code during Post-Build Time

3.6.4.2 Work Products

3.6.4.2.1 BSW Module Configuration Header File

AUTOSAR

Artifact BSW Module Configuration Header File

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU
Config Classes::Work Products

Brief Description C-header file generated from the configuration data of a BSW module.

Description C-header file generated from the configuration data of a BSW module,
defining the data (only possible for pre-compile configuration) or
containing additional declarations (needed by generated configuration
code only).

Kind Bound Source Code

Relation Type

Related Element Mul. | Note

Produced by

Generate BS 1
W Configuration
Code

Produced by

Generate BSW 1
Postbuild Configu-
ration Code

Produced by

Generate BSW 1
Precompile Con-
figuration Header

Produced by

Generate BSW 1
Source Code

Produced by

Generate BSW 1
and RTE

Consumed by

Compile BSW 1
Configuration Data

Consumed by

Compile Config- 1
ured BSW

Consumed by

Compile Gener- 1
ated BSW

Consumed by

Compile ECU | 0..* | Meth.bindingTime =
Source Code CodeGenerationTime

Table 3.324: BSW Module Configuration Header File

3.6.4.2.2 BSW Module Completely Generated Source Code

Artifact BSW Module Completely Generated Source Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU
Config Classes::Work Products

Brief Description Generated BSW source code implementing the complete module after
inclusion of pre-compilation configuration data.

Description Generated BSW source code implementing the complete module after
inclusion of pre-compilation configuration data. In this case, no core
code is delivered by the module vendor.

Kind Source Code

Relation Type Related Element Mul. | Note

Produced by Generate BSW 1
Source Code

Consumed by Compile Gener- 1
ated BSW

AUTOSAR

Relation Type

| Related Element | Mul. | Note

Table 3.325: BSW Module Completely Generated Source Code

3.6.4.2.3 BSW Module Configuration Data Source Code

Artifact BSW Module Configuration Data Source Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU
Config Classes::Work Products

Brief Description BSW source code generated from configuration data, implementing
only the data.

Description BSW source code generated from configuration data, implementing
only the data.

Kind Bound Source Code

Relation Type

Related Element Mul. | Note

Produced by

Generate BS 1
W Configuration
Code

Produced by

Generate BSW 1
Postbuild Configu-
ration Code

Produced by

Generate BSW 1
and RTE

Consumed by

Compile BSW 1
Configuration Data

Consumed by

Compile ECU | 0.* | Meth.bindingTime =
Source Code CodeGenerationTime

Table 3.326: BSW Module Configuration Data Source Code

3.6.4.2.4 BSW Module Configuration Data Object Code

Artifact BSW Module Configuration Data Object Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU
Config Classes::Work Products

Brief Description Generated data for link-time or postbuild configuration of a BSW
module.

Description Generated & compiled configuration data for link-time or postbuild
configuration of a BSW module.

Kind Object Code

Relation Type

Related Element Mul. | Note

Produced by

Compile BSW 1
Configuration Data

Consumed by

Link ECU Code | 1.*
during Link Time
Configuration

Consumed by

Link ECU Code | 1.7
during Post-Build
Time

AUTOSAR

Relation Type | Related Element | Mul. | Note

Table 3.327: BSW Module Configuration Data Object Code

3.6.4.2.5 BSW Module Configuration Data Loadable to ECU Memory

Artifact BSW Module Configuration Data Loadable to ECU Memory

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU
Config Classes::Work Products

Brief Description Generated loadable configuration data for post-build configuration of a
BSW module.

Description Generated loadable configuration data for post-build configuration of a
BSW module.

Kind Configuration Data Set

Relation Type Related Element Mul. | Note

Aggregated by ECU Software De- | 0..*
livered

Produced by Link ECU Code 1
during Post-Build
Time

Table 3.328: BSW Module Configuration Data Loadable to ECU Memory

AUTOSAR

A History of Constraints and Specification ltems

A.1 Constraint History of this Document according to AUTOSAR

R4.1.1
N/A
A.1.1 Added Specification Items in R4.1.1
Number Heading

[TR_METH_00001]

Definition of Binding Time for Tasks

[TR_METH_00002]

Definition of Binding Time for Artifacts

[TR_METH_00003]

Definition of Binding Time for Artifacts in the context of particular tasks

[TR_METH_01000]

Domains of the AUTOSAR methodology

[TR_METH_01001]

AUTOSAR methodology assets

[TR_METH_01002]

AUTOSAR methodology use cases

[TR_METH_01003]

Scope of the AUTOSAR methodology

[TR_METH_01004]

Support for various stakeholders by the AUTOSAR methodology

[TR_METH_01005]

Restrictions of AUTOSAR methodology

[TR_METH_01006]

General AUTOSAR methodology concepts

[TR_METH_071007]

Method Library

[TR_METH_01008]

Method Library Element

[TR_METH_01009]

Relation of Method Library andMethod Library Element tothe SPEM
meta model

[TR_METH_01010]

Overview of Method Library Elements

[TR_METH_01011]

Task Definition

[TR_METH_01012]

Task semantics

[TR_METH_01013]

Task usage

[TR_METH_01014]

Work Product Definition

[TR_METH_01015]

Relationship between Roles and Work Products

[TR_METH_01017]

Artifact Definition

[TR_ METH_01018]

Kinds of Artifacts

[TR_METH_01019]

Properties of Artifacts

[TR_METH_01020]

Relationship between Artifacts and meta model elements

[TR_METH_01021]

Deliverable Definition

[TR_METH_01022]

Aggregation of Wwork Products

[TR_METH_01023]

Role Definition

[TR_METH_01024]

Role assignment

[TR_METH_01025]

Tool Definition

[TR_METH_01026]

Guidance definition

[TR_METH_01027]

Guidance kinds

[TR_METH_01028]

Usage of tables

[TR_METH_01029]

Capability Patterns definition

[TR_METH_01030]

Composition of Capability Patterns

[TR_METH_01031]

Adaptability of the AUTOSAR methodology

[TR_METH_01032]

Use case elements

[TR_METH_01033]

Definition of Activities

[TR_METH_01034]

Composition of Activities

[TR_METH_01035]

Definition of Processes

[TR_METH_01036]

Description of overall Use Cases

AUTOSAR

[TR_METH_01037]

Precise description of Use Cases

[TR_METH_01038]

Detailed description of the work flow

[TR_METH_01039]

AUTOSAR System development overview

[TR_METH_01040]

Support of different system views

[TR_METH_01041]

Abstract system

[TR_METH_01042]

Overall technical system

[TR_METH_01043]

Sub-System

[TR_METH_01044]

Development of a functional view on the system

[TR_METH_01045]

Development of the Overall VFB System

[TR_METH_01046]

Development of the system

[TR_METH_01047]

Two phase development approach

[TR_METH_01048]

The overall system

[TR_METH_01049]

Interaction between organizations

[TR_METH_01050]

Abstract System Description activity

[TR_METH_01051]

Creation of an overall abstract system

[TR_METH_01052]

Definition of a constraints in the context of an abstract system

[TR_METH_01053]

Definition of a System Description in the context of an abstract system

[TR_METH_01054]

Virtual Functional Bus

[TR_METH_01055]

Data Model Development activity

[TR_METH_01056]

Definition of the VFB

[TR_METH_01057]

Top-Down approach

[TR_METH_01058]

Bottom-Up approach

[TR_METH_01059]

Kinds of VFB Atomic Software Component$

[TR_METH_01060]

Develop an Atomic Software Component activity

[TR_METH_01061]

Develop Application Software activity

[TR_METH_01065]

Develop Systemand Develop Sub-System activities

[TR_METH_01066]

Creation of a System Extract and a ECU Extract

[TR_METH_01067]

Abstract System Description deliverable

[TR_METH_01068]

Inputs and Output of the Design System activity

[TR_METH_01069]

Deployment of AUTOSAR Software Components

[TR_METH_01070]

Description of network signals

[TR_METH_01071]

Description of design constraints

[TR_METH_01075]

Design Sub-System activity

[TR_METH_01076]

Collaboration between different organizations

[TR_ METH _01077]

Transformation changes during the besign Sub-System activity

[TR_METH_01078]

Mapping of different views

[TR_METH_01079]

Use Case: Substitution of existing components

[TR_METH_01080]

Use Case: Mapping of requirements to the solution

[TR_METH_01081]

Use Case: Reorganization of the software structure

[TR_METH_01082]

Use Case: Description of changes between different versions of System De-
scriptions

[TR_METH_01083]

Design Basic Software activity

[TR_METH_01084]

Separation of design and development of basic software

[TR_METH_01085]

Develop BSW Module activity

[TR_METH_01086]

Integrate Software for ECU activity

[TR_METH_01087]

Scope of Integrate Software for ECU activity

[TR_METH_01088]

Prepare ECU Configuration activity

[TR_METH_01089]

Configure BSW and RTE activity

[TR_METH_01090]

Configure RTE task

[TR_METH_01091]

Configure Debug task

[TR_METH_01092]

Generating BSW modules, RTE, and OS source files

[TR_METH_01093]

Building ECU Executable

[TR_METH_01095]

Configuration Class: Pre-compile Time

AUTOSAR

[TR_METH_01096]

Generating header files only

[TR_METH_01097]

Generating header and source files

[TR_METH_01098]

Configuration Class: Link Time

[TR_METH_01099]

Generation and compilation of BSW Configuration Code

[TR_METH_01100]

Definition of configuration data

[TR_METH_01101]

Separate compilation of module source and configuration file

[TR_METH_01102]

Linking process

[TR_METH_01103]

Re-generation in case of configuration value changes

[TR_METH_01104]

Configuration Class: Post-build Time

[TR_ METH_01105]

Generate BSW Postbuild Configuration Code

[TR_METH_01106]

Generate BSW Configuration Data Loadable

[TR_ METH_01107]

Configuration Class: Post-build Time Selectable

[TR_METH_01108]

Generating multiple post-build configuration variants

[TR_ METH_01109]

Producing ECU-specific deliverables

[TR_METH_01110]

Development of Software Components

[TR_METH_01111]

Development of Basic Software modules

[TR_METH_01112]

Integration of AUTOSAR ECUs

[TR_ METH 01113]

Usage of hyperlinks

[TR_METH_01120]

Definition of Consistency Needs

[TR_ METH 01121]

Building the AUTOSAR methodology document

[TR_METH_01122]

Relations between AUTOSAR Work Products

[TR_METH _01123]

Traceability to external artifacts

[TR_METH_01124]

Documentation of Work Products

[TR_METH_02000]

Use of AUTOSAR Services

[TR_METH_02001]

Define Cross—-component Calibration Parameters activity

[TR_METH_02002]

Define Local Calibration Parameters activity

[TR_METH_02003]

Provide Unique Parameter Names activity

[TR_METH_02004]

Re-generate RTE and Calibration Support activity

[TR_METH_02005]

Memory sections for data and code

[TR_METH_02006]

E2E Protection

[TR_METH_02007]

Define E2E Protection Set activity

[TR_METH_02008]

Regenerate E2E Protection Wrapper activity

[TR_METH_02009]

Variation points in Variant Handling

[TR_METH_02010]

Predefined Variants in Variant Handling

[TR_METH_02011]

Types of binding times

[TR_METH_02012]

Definition of a binding time

[TR_METH_02013]

Latest Binding Time

[TR_METH_02014]

Actual Binding Time

[TR_METH_02015]

Definition of variants

[TR_METH_02016]

Evaluated Variant Set

[TR_METH_02017]

Use of Predefined Variant

[TR_METH_02018]

Choosing variants

[TR_METH_02020]

Definition of latest Binding Time for a variation point in the meta-model

[TR_METH_03000]

Name spaces via ARPackage$s

[TR_METH_03001]

Reasons for name conflicts in “downstream” artifacts

[TR_METH_03002]

Conflict solution at system design time

[TR_METH_03003]

Conflict solution at coding time

[TR_METH_03004]

Conflict solution at ECU integration time

[TR_METH_03005]

Conflict solution via SymbolProps

[TR_METH_03006]

Conflict solution via literal prefixes

[TR_METH_03007]

Conflict solution in names of runnable entities

[TR_METH_03008]

Conflict solution via FlatMap

[TR_METH_03009]

Conflict solution via AliasNameSet

AUTOSAR

| [TR_METH_03010]

| Conflict solution via API Infixes

Table A.1: Added Specification ltems in 4.1.1

A.2 Constraint History of this Document according to AUTOSAR

R4.1.2

N/A

A.2.1 Added Specification Items in R4.1.2

Number

Heading

[TR_METH_01114]

Input sources for ECU Configuration

[TR_METH_01115]

A mix of parameters with different configuration classes within a BSW module
is allowed

[TR_METH_01116]

ECU Configuration Value description contains the configuration of all BSW
modules in a single ECU

[TR METH 01117]

BSW implementation shall be chosen for each BSW module that is present in
the ECU

Table A.2: Added Specification Iltems in 4.1.2

A.3 Constraint History of this Document according to AUTOSAR

R4.1.3

N/A

A.3.1 Added Specification Iltems in R4.1.3

Number

Heading

[TR_ METH _01125]

Create ECU System Description activity

[TR_METH_01126]

Using the System Extract as the structural basis for the ECU development

[TR_ METH 01127]

Creating a new structure for the ECU development

Table A.3: Added Specification Iltems in 4.1.3

A.3.2 Changed Specification Items in R4.1.3

Number

Heading

[TR_METH_01049]

Interaction between organizations

[TR_METH_01066]

Creation of a System Extract and an ECU Extract

[TR_METH_071075]

Design Sub-System activity

[TR_METH_010786]

Collaboration between different organizations

Table A.4: Changed Specification Items in 4.1.3

AUTOSAR

A.4 Constraint History of this Document according to AUTOSAR

R4.2.1

N/A

A.4.1 Added Specification Items in R4.2.1

Number

Heading

[TR_METH_01128]

Integration of Non AUTOSAR Systems in the context of an abstract system

[TR_ METH_01129]

Integrate Non AUTOSAR System at VFB level activity

[TR_METH_01130]

Design Transformer activity

[TR_ METH 01131]

Output of Design Transformer activity

[TR_METH_01132]

Definition of a Rapid Prototyping Scenario

[TR_ METH_01133]

Content of Rapid Prototyping Scenario artifact

[TR_METH_01134]

Component wrapper method

[TR_METH_01135]

Direct buffer access method

[TR_METH_01136]

Content of Diagnostic Extract

[TR_ METH 01137]

Diagnostic Extract category

[TR_METH_01138]

Decentralized configuration

[TR_METH_01139]

Roles

[TR_METH_01140]

Develop Diagnostic Abstract System Description activity

[TR_METH_01141]

Development of diagnostic requirements

[TR_METH_01142]

Diagnostic information in the context of SW-C development

[TR_METH_01143]

Integration of diagnostic information

[TR_METH_01144]

Activity Define Safety Information

[TR_METH_01145]

Creation of Safety Requirements

[TR_METH_01146]

Allocation of Safety Requirements

[TR_METH_01147]

Decomposition of Safety Requirements

[TR_ METH_01148]

Definition of safety Measures

[TR_METH_01149]

Definition of VFB relevant safety information

[TR_METH_01150]

Including different post-build variants

[TR_METH_01151]

Update ECU Configuration activity

[TR_ METH _01153]

Configuration and Generation of the E2E Transformer

[TR_METH_01154]

Define E2E Transformer Technology Task

Table A.5: Added Specification Items in 4.2.1

A.4.2 Changed Specification Iltems in R4.2.1

Number

Heading

[TR_METH_01059]

Kinds of VFB Atomic Software Component$

[TR_METH_01046]

Development of the system

[TR_METH_01065]

Develop Systemand Develop Sub-System activities

[TR_METH_01060]

Develop an Atomic Software Component activity

[TR_METH_01065]

Develop Systemand Develop Sub-System activities

[TR_METH_01104]

Configuration Class: Post-build Time

[TR_METH_01105]

Generate BSW Postbuild Configuration Code

[TR_METH_01108]

Generating multiple post-build configuration variants

[TR_METH_02006]

E2E Protection

Table A.6: Changed Specification Items in 4.2.1

AUTOSAR

A.4.3 Deleted Specification Items in R4.2.1

Number

Heading

[TR_METH_01106]

Generate BSW Configuration Data Loadable

[TR_METH_01107]

Configuration Class: Post-build Time Selectable

[TR_METH_02007]

Define E2E Protection Set activity

[TR_METH_02008]

Regenerate E2E Protection Wrapper activity

Table A.7: Deleted Specification Items in 4.2.1

A.5 Constraint History of this Document according to AUTOSAR

R4.2.2

No changes.

	1 Introduction
	1.1 Objective
	1.2 Overview
	1.3 Known Limitations
	1.4 Scope
	1.5 Methodology Concepts
	1.5.1 Method Library (Method Content)
	1.5.1.1 Task Definition
	1.5.1.2 Work Product Definition
	1.5.1.3 Role Definition
	1.5.1.4 Tool Definition
	1.5.1.5 Guidance
	1.5.1.6 Tables

	1.5.2 Capability Patterns (Use Case Elements)
	1.5.2.1 Activity

	1.6 Requirements Traceability

	2 Use Cases
	2.1 Overall View
	2.1.1 Purpose
	2.1.2 Description
	2.1.2.1 Views on the System
	2.1.2.2 Overall Workflow

	2.1.3 Workflow

	2.2 Develop an Abstract System Description
	2.2.1 Purpose
	2.2.2 Description
	2.2.3 Workflow

	2.3 Develop a VFB System Description
	2.3.1 Purpose
	2.3.2 Description
	2.3.3 Workflow

	2.4 Develop Software Components
	2.4.1 Develop an Atomic Software Component
	2.4.1.1 Purpose
	2.4.1.2 Description
	2.4.1.3 Workflow

	2.4.2 Develop Application Software
	2.4.2.1 Purpose
	2.4.2.2 Description
	2.4.2.3 Workflow

	2.4.3 Uses Cases for more Specialized Software Components
	2.4.3.1 Purpose
	2.4.3.2 Description
	2.4.3.3 Workflow

	2.5 Develop System and Subsystems
	2.5.1 Overview
	2.5.1.1 Purpose
	2.5.1.2 Description

	2.5.2 Design System
	2.5.2.1 Purpose
	2.5.2.2 Description
	2.5.2.3 Workflow

	2.5.3 Generate System Extract
	2.5.3.1 Purpose
	2.5.3.2 Description
	2.5.3.3 Workflow

	2.5.4 Create ECU System Description
	2.5.4.1 Purpose
	2.5.4.2 Description
	2.5.4.3 Workflow

	2.5.5 Design Sub-System
	2.5.5.1 Purpose
	2.5.5.2 Description
	2.5.5.3 Workflow

	2.5.6 Generate ECU Extract
	2.5.6.1 Purpose
	2.5.6.2 Description
	2.5.6.3 Workflow

	2.5.7 Design Transformer
	2.5.7.1 Purpose
	2.5.7.2 Description
	2.5.7.3 Workflow

	2.5.8 Define System Safety Information
	2.5.8.1 Purpose
	2.5.8.2 Description
	2.5.8.3 Workflow

	2.6 Develop Basic Software
	2.6.1 Overview
	2.6.1.1 Purpose
	2.6.1.2 Description
	2.6.1.3 Workflow

	2.6.2 Design BSW
	2.6.2.1 Purpose
	2.6.2.2 Description
	2.6.2.3 Workflow

	2.6.3 Develop BSW Module
	2.6.3.1 Purpose
	2.6.3.2 Description
	2.6.3.3 Workflow

	2.7 Integrate Software for ECU
	2.7.1 Description
	2.7.2 Overview
	2.7.2.1 Purpose
	2.7.2.2 Description
	2.7.2.3 Workflow

	2.7.3 Prepare ECU Configuration
	2.7.3.1 Description
	2.7.3.2 Workflow

	2.7.4 Configure BSW and RTE
	2.7.4.1 Description
	2.7.4.2 Workflow

	2.7.5 Update ECU Configuration
	2.7.5.1 Description
	2.7.5.2 Workflow

	2.7.6 Model ECU Timing
	2.7.6.1 Workflow

	2.7.7 Generate BSW and RTE
	2.7.7.1 Description
	2.7.7.2 Workflow

	2.7.8 Build Executable
	2.7.8.1 Description
	2.7.8.2 Workflow

	2.7.9 Configuration Classes
	2.7.9.1 Configuration Class: Pre-compile Time
	2.7.9.2 Configuration Class: Link Time
	2.7.9.3 Configuration Class: Post-build Time
	2.7.9.4 Handling of different post-build variants in configuration classes

	2.8 Components and Services
	2.8.1 Purpose
	2.8.2 Description
	2.8.3 Workflow

	2.9 Calibration Overview
	2.9.1 Purpose
	2.9.2 Description
	2.9.3 Workflow

	2.10 Memory Mapping
	2.10.1 Purpose
	2.10.2 Description
	2.10.3 Workflow

	2.11 E2E Protection
	2.11.1 Purpose
	2.11.2 Description
	2.11.3 Workflow

	2.12 Diagnostic Extract
	2.12.1 Purpose
	2.12.2 Description
	2.12.3 Workflow

	2.13 Rapid Prototyping
	2.13.1 Purpose
	2.13.2 Description
	2.13.3 Workflow

	2.14 Safety Extensions
	2.14.1 Purpose
	2.14.2 Description
	2.14.3 Workflow

	2.15 Variant Handling
	2.15.1 Overview
	2.15.2 Binding Times
	2.15.2.1 Latest Binding Time
	2.15.2.2 Actual Binding Time

	2.15.3 Defining Variants
	2.15.4 Choosing Variants

	2.16 Definition of Binding Times
	2.16.1 Overview
	2.16.2 A Classification of Artifacts with respect to Binding Times
	2.16.3 Classification of Binding Times
	2.16.3.1 BlueprintDerivationTime
	2.16.3.2 FunctionDesignTime
	2.16.3.3 InitialBindingTime
	2.16.3.4 SystemDesignTime
	2.16.3.5 CodeGenerationTime
	2.16.3.6 PreCompileTime
	2.16.3.7 CompileTime
	2.16.3.8 LinkTime
	2.16.3.9 PostBuild
	2.16.3.10 Runtime

	2.17 How to resolve Name Conflicts
	2.17.1 Reasons for Name Conflicts
	2.17.2 Points in the Methodology where Name Conflicts are resolved
	2.17.3 Mechanisms for resolving Name Conflicts

	3 Methodology Library
	3.1 Common Elements
	3.1.1 Work Product Kinds
	3.1.2 Tasks
	3.1.2.1 Add General Documentation
	3.1.2.2 Define Admin Data
	3.1.2.3 Define Alias Names
	3.1.2.4 Evaluate Variant
	3.1.2.5 Define Memory Addressing Modes
	3.1.2.6 Configure Memmap Allocation
	3.1.2.7 Generate BSW Memory Mapping Header
	3.1.2.8 Generate SWC Memory Mapping Header
	3.1.2.9 Configure Compiler Memory Classes
	3.1.2.10 Generate Compiler Configuration

	3.1.3 Work Products
	3.1.3.1 General Documentation
	3.1.3.2 Alias Name Set
	3.1.3.3 Evaluated Variant Set
	3.1.3.4 General Autosar Artifact
	3.1.3.5 General Deliverable
	3.1.3.6 General Non-Autosar Artifact
	3.1.3.7 Postbuild Variant Set
	3.1.3.8 Predefined Variant
	3.1.3.9 Standard Header Files
	3.1.3.10 System Constant Value Set

	3.1.4 Roles
	3.1.5 Tools
	3.1.5.1 Compiler
	3.1.5.2 Linker

	3.1.6 Diagnostics
	3.1.6.1 Work Products

	3.1.7 Safety
	3.1.7.1 Tasks
	3.1.7.2 Work Products

	3.2 Virtual Functional Bus
	3.2.1 Tasks
	3.2.1.1 Define VFB Top Level
	3.2.1.2 Define VFB Composition Component
	3.2.1.3 Extend Composition
	3.2.1.4 Define VFB Component Constraints
	3.2.1.5 Define VFB Application Software Component
	3.2.1.6 Define VFB Sensor or Actuator Component
	3.2.1.7 Define VFB Parameter Component
	3.2.1.8 Define ECU Abstraction Component
	3.2.1.9 Define Complex Driver Component
	3.2.1.10 Define VFB NvBlock Software Component
	3.2.1.11 Define Wrapper Components to Integrate Legacy Software
	3.2.1.12 Define VFB Interfaces
	3.2.1.13 Define VFB Types
	3.2.1.14 Define VFB Modes
	3.2.1.15 Define VFB Constants
	3.2.1.16 Define VFB Timing
	3.2.1.17 Define VFB Variants
	3.2.1.18 Define VFB Integration Connector
	3.2.1.19 Translate Non-AUTOSAR Description to AUTOSAR Description

	3.2.2 Work Products
	3.2.2.1 VFB System
	3.2.2.2 Overall VFB System
	3.2.2.3 VFB System Extract
	3.2.2.4 VFB Top Level System Composition
	3.2.2.5 VFB Composition Component
	3.2.2.6 VFB AUTOSAR Standard Package
	3.2.2.7 AUTOSAR Specification of Application Interfaces
	3.2.2.8 VFB Atomic Software Component
	3.2.2.9 VFB Atomic Application Software Component
	3.2.2.10 Complex Driver Component
	3.2.2.11 ECU Abstraction Software Component
	3.2.2.12 VFB Parameter Component
	3.2.2.13 VFB Sensor Actuator Component
	3.2.2.14 VFB NvBlock Software Component
	3.2.2.15 VFB Non AUTOSAR Component
	3.2.2.16 VFB Interfaces
	3.2.2.17 VFB Types
	3.2.2.18 VFB Data Type Mapping Set
	3.2.2.19 VFB Modes
	3.2.2.20 VFB Constants
	3.2.2.21 VFB Software Component Mapping Constraints
	3.2.2.22 VFB Timing
	3.2.2.23 Description of a Non-AUTOSAR System
	3.2.2.24 Integration Connector

	3.3 System
	3.3.1 Tasks
	3.3.1.1 Set System Root
	3.3.1.2 Assign Top Level Composition
	3.3.1.3 Define ECU Description
	3.3.1.4 Define System Topology
	3.3.1.5 Define Software Component Mapping Constraints
	3.3.1.6 Deploy Software Component
	3.3.1.7 Generate or Adjust System Flat Map
	3.3.1.8 Derive Communication Needs
	3.3.1.9 Define Signal Path Constraints
	3.3.1.10 Define System Variants
	3.3.1.11 Define System Timing
	3.3.1.12 Extend Topology
	3.3.1.13 Select Software Component Implementation
	3.3.1.14 Select Design Time Variant
	3.3.1.15 Define System View Mapping
	3.3.1.16 Create Transformer Specification
	3.3.1.17 Define Rapid Prototyping Scenario

	3.3.2 Work Products
	3.3.2.1 System Description
	3.3.2.2 Abstract System Description
	3.3.2.3 Complete ECU Description
	3.3.2.4 System Description Root Element
	3.3.2.5 System Mapping Overview
	3.3.2.6 Software Component Mapping Contraints
	3.3.2.7 Data Mapping
	3.3.2.8 Mapping of Software Components to ECUs
	3.3.2.9 Mapping of Software Components to Implementations
	3.3.2.10 Signal Path Constraints
	3.3.2.11 Topology
	3.3.2.12 Ecu Resources Description
	3.3.2.13 System Signal
	3.3.2.14 System Signal Group
	3.3.2.15 System Flat Map
	3.3.2.16 System Timing
	3.3.2.17 System View Mapping
	3.3.2.18 Transformer Design Bundle
	3.3.2.19 Transformer Specification
	3.3.2.20 Rapid Prototyping Scenario

	3.3.3 Communication Matrix and Communication Layers
	3.3.3.1 Tasks
	3.3.3.2 Work Products

	3.3.4 ECU Extract
	3.3.4.1 Tasks
	3.3.4.2 Work Products

	3.4 Software Component
	3.4.1 Tasks
	3.4.1.1 Define Software Component Internal Behavior
	3.4.1.2 Define Partial Flat Map
	3.4.1.3 Define Software Component Timing
	3.4.1.4 Define SymbolProps for Types
	3.4.1.5 Add Documentation to the Software Component
	3.4.1.6 Generate Atomic Software Component Contract Header Files
	3.4.1.7 Generate Component Header File in Vendor Mode
	3.4.1.8 Generate Component Prebuild Data Set
	3.4.1.9 Implement Atomic Software Component
	3.4.1.10 Compile Atomic Software Component
	3.4.1.11 Map Software Component to BSW
	3.4.1.12 Measure Component Resources
	3.4.1.13 Recompile Component in ECU Context
	3.4.1.14 Define Consistency Needs
	3.4.1.15 Generate Rapid Prototyping Wrapper

	3.4.2 Work Products
	3.4.2.1 Delivered Atomic Software Components
	3.4.2.2 Software Component Internal Behavior
	3.4.2.3 Atomic Software Component Implementation
	3.4.2.4 Software Component Documentation
	3.4.2.5 Software Component Timing
	3.4.2.6 Software Component to BSW Mapping
	3.4.2.7 Partial Flat Map
	3.4.2.8 Application Header File
	3.4.2.9 Software Component Data Types Header
	3.4.2.10 Component RTE Prebuild Configuration Header
	3.4.2.11 Atomic Software Component Source Code
	3.4.2.12 Atomic Software Component Object Code
	3.4.2.13 Optimized Application Header File
	3.4.2.14 Optimized Software Component Object Code
	3.4.2.15 Consistency Needs
	3.4.2.16 Rapid Prototyping Wrapper Header File
	3.4.2.17 Rapid Prototyping Wrapper Source Code

	3.4.3 Tools
	3.4.3.1 Component API Generator Tool

	3.5 Basic Software
	3.5.1 Tasks
	3.5.1.1 Define BSW Types
	3.5.1.2 Define BSW Entries
	3.5.1.3 Define BSW Interfaces
	3.5.1.4 Define Vendor Specific Module Definition
	3.5.1.5 Define BSW Behavior
	3.5.1.6 Define BSW Module Timing
	3.5.1.7 Generate BSW Contract Header Files
	3.5.1.8 Implement a BSW Module
	3.5.1.9 Develop BSW Module Generator
	3.5.1.10 Create Library
	3.5.1.11 Compile BSW Core Code
	3.5.1.12 Generate BSW Module Prebuild Dataset

	3.5.2 Work Products
	3.5.2.1 BSW Standard Package
	3.5.2.2 BSW Module Bundle
	3.5.2.3 BSW Design Bundle
	3.5.2.4 BSW Module ICS Bundle
	3.5.2.5 BSW Module Delivered Bundle
	3.5.2.6 AUTOSAR Software Module Specification
	3.5.2.7 AUTOSAR Standard Types
	3.5.2.8 AUTOSAR Platform Types
	3.5.2.9 BSW Module Generator
	3.5.2.10 AUTOSAR Standardized ECU Configuration Parameter Definition
	3.5.2.11 BSW Module Preconfigured Configuration
	3.5.2.12 BSW Module Recommended Configuration
	3.5.2.13 BSW Module Vendor Specific Configuration Parameter Definition
	3.5.2.14 BSW Types
	3.5.2.15 Basic Software Entries
	3.5.2.16 Basic Software Module Description
	3.5.2.17 Basic Software Module Internal Behavior
	3.5.2.18 Basic Software Module Implementation Description
	3.5.2.19 Build Action Manifest
	3.5.2.20 Basic Software Module Timing
	3.5.2.21 Basic Software Module Core Header
	3.5.2.22 Basic Software Module Core Source Code
	3.5.2.23 Basic Software Interlink Header
	3.5.2.24 Basic Software Interlink Types Header
	3.5.2.25 BSW RTE Prebuild Configuration Header
	3.5.2.26 Basic Software Module Object Code
	3.5.2.27 Library Description
	3.5.2.28 Library Header Files
	3.5.2.29 Library Object Code

	3.6 ECU Integration and Configuration
	3.6.1 Tasks
	3.6.1.1 Provide RTE Calibration Dataset
	3.6.1.2 Define Integration Variant
	3.6.1.3 Generate Base ECU Configuration
	3.6.1.4 Generate Updated ECU Configuration
	3.6.1.5 Define ECU Timing
	3.6.1.6 Configure EcuC
	3.6.1.7 Configure OS
	3.6.1.8 Configure RTE
	3.6.1.9 Configure Watchdog Manager
	3.6.1.10 Configure Mode Management
	3.6.1.11 Configure NvM
	3.6.1.12 Configure Diagnostics
	3.6.1.13 Create Service Component
	3.6.1.14 Connect Service Component
	3.6.1.15 Configure COM
	3.6.1.16 Configure IO Hardware Abstraction
	3.6.1.17 Configure MCAL
	3.6.1.18 Configure Debug
	3.6.1.19 Configure Transformer
	3.6.1.20 Generate BSW Configuration Code and Model Extensions
	3.6.1.21 Generate Local MC Data Support
	3.6.1.22 Create MC Function Model
	3.6.1.23 Generate RTE
	3.6.1.24 Generate Scheduler
	3.6.1.25 Generate OS
	3.6.1.26 Generate RTE Prebuild Dataset
	3.6.1.27 Compile ECU Source Code
	3.6.1.28 Generate ECU Executable
	3.6.1.29 Generate RTE Postbuild Dataset
	3.6.1.30 Generate A2L
	3.6.1.31 Measure Resources
	3.6.1.32 Refine Rapid Prototyping Scenario

	3.6.2 Work Products
	3.6.2.1 BSW Module Integration Bundle
	3.6.2.2 ECU Software Delivered
	3.6.2.3 Service Component Description
	3.6.2.4 ECU Service Connectors
	3.6.2.5 ECU Timing
	3.6.2.6 BSW Module Interface Extension
	3.6.2.7 BSW Module Behavior Extension
	3.6.2.8 BSW Module Implementation Extension
	3.6.2.9 ECU Configuration Values
	3.6.2.10 RTE Implementation Description
	3.6.2.11 RTE Prebuild Configuration Header
	3.6.2.12 Calibration Parameter Value Set
	3.6.2.13 MC Function Model
	3.6.2.14 Local Measurement and Calibration Support Data
	3.6.2.15 RTE Measurement and Calibration Support Data
	3.6.2.16 RTE Source Code
	3.6.2.17 BSW Scheduler Code
	3.6.2.18 OS Generated Code
	3.6.2.19 RTE Postbuild Variants Dataset
	3.6.2.20 ECU Object Code
	3.6.2.21 ECU Executable
	3.6.2.22 Map of the ECU Executable
	3.6.2.23 A2L File
	3.6.2.24 MC Driver Support Data
	3.6.2.25 MC Additional Config

	3.6.3 Tools
	3.6.3.1 RTE Generator
	3.6.3.2 BSW Generator Framework

	3.6.4 ECU Config Classes
	3.6.4.1 Tasks
	3.6.4.2 Work Products

	A History of Constraints and Specification Items
	A.1 Constraint History of this Document according to AUTOSAR R4.1.1
	A.1.1 Added Specification Items in R4.1.1

	A.2 Constraint History of this Document according to AUTOSAR R4.1.2
	A.2.1 Added Specification Items in R4.1.2

	A.3 Constraint History of this Document according to AUTOSAR R4.1.3
	A.3.1 Added Specification Items in R4.1.3
	A.3.2 Changed Specification Items in R4.1.3

	A.4 Constraint History of this Document according to AUTOSAR R4.2.1
	A.4.1 Added Specification Items in R4.2.1
	A.4.2 Changed Specification Items in R4.2.1
	A.4.3 Deleted Specification Items in R4.2.1

	A.5 Constraint History of this Document according to AUTOSAR R4.2.2

