
Methodology
AUTOSAR Release 4.2.2

Document Title Methodology
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 068

Document Classification Auxiliary

Document Status Final

Part of AUTOSAR Release 4.2.2

Document Change History
Release Changed by Description

4.2.2
AUTOSAR
Release
Management

• Minor corrections and editorial changes

4.2.1
AUTOSAR
Release
Management

• Support for Safety Extensions added
• Support for Diagnostic Extract added
• Support for Rapid Prototyping added
• Support for Sender Receiver Serialization added

4.1.3
AUTOSAR
Release
Management

• Alignment of the AUTOSAR Methodology to the
System Description categories
• Editorial changes

4.1.2
AUTOSAR
Release
Management

• Harmonization between ECU Configuration
specification and AUTOSAR Methodology

4.1.1 AUTOSAR
Administration

• Allow the usage of requirement ID definition and
tracing for specification items
• Updated chapter 3.6 Ecu Integration and

Configuration with support for A2L function
• Added chapter 2.14 How to resolve Name Conflicts
• Added sections 3.4.1.15 Define Consistency Needs

and 3.4.2.17 Consistency Needs
• Refine definition of Binding Times

1 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

4.0.3 AUTOSAR
Administration

• Simplification of use case diagrams by removing
task use and introducing deliverables on use cases
level (see Methodology Concept chapter)
• Readability improvement by generation of tables

with navigable links
• Introduction of Variant Handling, E2E support,

System Constraints Description
• Refinement of Methodology Library, including the

extension of deliverables in different use cases

4.0.1 AUTOSAR
Administration

• Changed tool platform for the SPEM model
• Publish as pdf file instead of html
• Used new table format for the model elements
• Added SPEM diagrams
• Methodology Concept chapter detailed
• Memory Mapping use case added
• Reworked and restructured use cases for more

readability
• Direct references to meta-model elements in

figures and tables

3.1.1 AUTOSAR
Administration

• Legal Disclaimer revised

3.0.1 AUTOSAR
Administration

• Subchapter limitations of the current version
enhanced
• Document meta information extended
• Small layout adaptations made

2.1.15 AUTOSAR
Administration

• Updated chapter 5 ECU-Design
• Updated chapter 6.1 Relationship with Services
• Legal disclaimer revised
• Release Notes added
• Advice for users revised
• Revision Information added

2.0 AUTOSAR
Administration • Initial release

2 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for the
purpose of information only. AUTOSAR and the companies that have contributed to it
shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types of
Intellectual Property Rights. The commercial exploitation of the material contained in
this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only. For any other purpose, no part of
the specification may be utilized or reproduced, in any form or by any means, without
permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference models,
"use cases", and/or references to exemplary technical solutions, devices, processes or
software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their pres-
ence in such specifications, nor any later documentation of AUTOSAR conformance of
products actually implementing such exemplary items, imply that intellectual property
rights covering such exemplary items are licensed under the same rules as applicable
to the AUTOSAR Standard.

3 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Table of Contents

1 Introduction 17

1.1 Objective . 17
1.2 Overview . 17
1.3 Known Limitations . 17
1.4 Scope . 18
1.5 Methodology Concepts . 18

1.5.1 Method Library (Method Content) 19
1.5.1.1 Task Definition . 20
1.5.1.2 Work Product Definition 21
1.5.1.3 Role Definition . 23
1.5.1.4 Tool Definition . 24
1.5.1.5 Guidance . 24
1.5.1.6 Tables . 25

1.5.2 Capability Patterns (Use Case Elements) 28
1.5.2.1 Activity . 29

1.6 Requirements Traceability . 32

2 Use Cases 40

2.1 Overall View . 40
2.1.1 Purpose . 40
2.1.2 Description . 40

2.1.2.1 Views on the System 40
2.1.2.2 Overall Workflow . 40

2.1.3 Workflow . 42
2.2 Develop an Abstract System Description 44

2.2.1 Purpose . 44
2.2.2 Description . 44
2.2.3 Workflow . 46

2.3 Develop a VFB System Description . 47
2.3.1 Purpose . 47
2.3.2 Description . 47
2.3.3 Workflow . 50

2.4 Develop Software Components . 54
2.4.1 Develop an Atomic Software Component 54

2.4.1.1 Purpose . 54
2.4.1.2 Description . 55
2.4.1.3 Workflow . 55

2.4.2 Develop Application Software 61
2.4.2.1 Purpose . 61
2.4.2.2 Description . 61
2.4.2.3 Workflow . 61

2.4.3 Uses Cases for more Specialized Software Components . . 62
2.4.3.1 Purpose . 62
2.4.3.2 Description . 62

4 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.4.3.3 Workflow . 62
2.5 Develop System and Subsystems . 68

2.5.1 Overview . 68
2.5.1.1 Purpose . 68
2.5.1.2 Description . 68

2.5.2 Design System . 72
2.5.2.1 Purpose . 72
2.5.2.2 Description . 72
2.5.2.3 Workflow . 73

2.5.3 Generate System Extract . 78
2.5.3.1 Purpose . 78
2.5.3.2 Description . 78
2.5.3.3 Workflow . 78

2.5.4 Create ECU System Description 78
2.5.4.1 Purpose . 78
2.5.4.2 Description . 79
2.5.4.3 Workflow . 79

2.5.5 Design Sub-System . 80
2.5.5.1 Purpose . 80
2.5.5.2 Description . 80
2.5.5.3 Workflow . 82

2.5.6 Generate ECU Extract . 82
2.5.6.1 Purpose . 82
2.5.6.2 Description . 83
2.5.6.3 Workflow . 83

2.5.7 Design Transformer . 84
2.5.7.1 Purpose . 84
2.5.7.2 Description . 84
2.5.7.3 Workflow . 85

2.5.8 Define System Safety Information 86
2.5.8.1 Purpose . 86
2.5.8.2 Description . 86
2.5.8.3 Workflow . 87

2.6 Develop Basic Software . 88
2.6.1 Overview . 88

2.6.1.1 Purpose . 88
2.6.1.2 Description . 88
2.6.1.3 Workflow . 88

2.6.2 Design BSW . 89
2.6.2.1 Purpose . 89
2.6.2.2 Description . 89
2.6.2.3 Workflow . 90

2.6.3 Develop BSW Module . 92
2.6.3.1 Purpose . 92
2.6.3.2 Description . 92
2.6.3.3 Workflow . 93

5 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.7 Integrate Software for ECU . 95
2.7.1 Description . 95
2.7.2 Overview . 96

2.7.2.1 Purpose . 96
2.7.2.2 Description . 96
2.7.2.3 Workflow . 99

2.7.3 Prepare ECU Configuration 100
2.7.3.1 Description . 100
2.7.3.2 Workflow . 101

2.7.4 Configure BSW and RTE . 102
2.7.4.1 Description . 102
2.7.4.2 Workflow . 103

2.7.5 Update ECU Configuration 104
2.7.5.1 Description . 104
2.7.5.2 Workflow . 105

2.7.6 Model ECU Timing . 106
2.7.6.1 Workflow . 106

2.7.7 Generate BSW and RTE . 106
2.7.7.1 Description . 106
2.7.7.2 Workflow . 107

2.7.8 Build Executable . 110
2.7.8.1 Description . 110
2.7.8.2 Workflow . 111

2.7.9 Configuration Classes . 112
2.7.9.1 Configuration Class: Pre-compile Time 113
2.7.9.2 Configuration Class: Link Time 117
2.7.9.3 Configuration Class: Post-build Time 119
2.7.9.4 Handling of different post-build variants in configura-

tion classes . 123
2.8 Components and Services . 124

2.8.1 Purpose . 124
2.8.2 Description . 124
2.8.3 Workflow . 124

2.9 Calibration Overview . 130
2.9.1 Purpose . 130
2.9.2 Description . 130
2.9.3 Workflow . 131

2.10 Memory Mapping . 135
2.10.1 Purpose . 135
2.10.2 Description . 136
2.10.3 Workflow . 136

2.11 E2E Protection . 140
2.11.1 Purpose . 140
2.11.2 Description . 140
2.11.3 Workflow . 141

2.12 Diagnostic Extract . 141

6 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.12.1 Purpose . 141
2.12.2 Description . 141
2.12.3 Workflow . 145

2.13 Rapid Prototyping . 149
2.13.1 Purpose . 149
2.13.2 Description . 149
2.13.3 Workflow . 150

2.14 Safety Extensions . 153
2.14.1 Purpose . 153
2.14.2 Description . 153
2.14.3 Workflow . 155

2.15 Variant Handling . 157
2.15.1 Overview . 157
2.15.2 Binding Times . 157

2.15.2.1 Latest Binding Time 158
2.15.2.2 Actual Binding Time 158

2.15.3 Defining Variants . 159
2.15.4 Choosing Variants . 159

2.16 Definition of Binding Times . 160
2.16.1 Overview . 160
2.16.2 A Classification of Artifacts with respect to Binding Times . . 163
2.16.3 Classification of Binding Times 163

2.16.3.1 BlueprintDerivationTime 164
2.16.3.2 FunctionDesignTime 164
2.16.3.3 InitialBindingTime 165
2.16.3.4 SystemDesignTime 165
2.16.3.5 CodeGenerationTime 165
2.16.3.6 PreCompileTime 166
2.16.3.7 CompileTime . 166
2.16.3.8 LinkTime . 166
2.16.3.9 PostBuild . 167
2.16.3.10 Runtime . 167

2.17 How to resolve Name Conflicts . 167
2.17.1 Reasons for Name Conflicts 167
2.17.2 Points in the Methodology where Name Conflicts are resolved 168
2.17.3 Mechanisms for resolving Name Conflicts 169

3 Methodology Library 172

3.1 Common Elements . 172
3.1.1 Work Product Kinds . 172
3.1.2 Tasks . 174

3.1.2.1 Add General Documentation 174
3.1.2.2 Define Admin Data 174
3.1.2.3 Define Alias Names 175
3.1.2.4 Evaluate Variant . 177
3.1.2.5 Define Memory Addressing Modes 178

7 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.1.2.6 Configure Memmap Allocation 179
3.1.2.7 Generate BSW Memory Mapping Header 181
3.1.2.8 Generate SWC Memory Mapping Header 184
3.1.2.9 Configure Compiler Memory Classes 186
3.1.2.10 Generate Compiler Configuration 188

3.1.3 Work Products . 189
3.1.3.1 General Documentation 189
3.1.3.2 Alias Name Set . 190
3.1.3.3 Evaluated Variant Set 190
3.1.3.4 General Autosar Artifact 192
3.1.3.5 General Deliverable 193
3.1.3.6 General Non-Autosar Artifact 193
3.1.3.7 Postbuild Variant Set 194
3.1.3.8 Predefined Variant 195
3.1.3.9 Standard Header Files 196
3.1.3.10 System Constant Value Set 198

3.1.4 Roles . 199
3.1.5 Tools . 209

3.1.5.1 Compiler . 209
3.1.5.2 Linker . 210

3.1.6 Diagnostics . 210
3.1.6.1 Work Products . 210

3.1.7 Safety . 212
3.1.7.1 Tasks . 212
3.1.7.2 Work Products . 221

3.2 Virtual Functional Bus . 224
3.2.1 Tasks . 225

3.2.1.1 Define VFB Top Level 225
3.2.1.2 Define VFB Composition Component 226
3.2.1.3 Extend Composition 227
3.2.1.4 Define VFB Component Constraints 229
3.2.1.5 Define VFB Application Software Component 230
3.2.1.6 Define VFB Sensor or Actuator Component 231
3.2.1.7 Define VFB Parameter Component 232
3.2.1.8 Define ECU Abstraction Component 233
3.2.1.9 Define Complex Driver Component 234
3.2.1.10 Define VFB NvBlock Software Component 235
3.2.1.11 Define Wrapper Components to Integrate Legacy

Software . 236
3.2.1.12 Define VFB Interfaces 237
3.2.1.13 Define VFB Types 238
3.2.1.14 Define VFB Modes 239
3.2.1.15 Define VFB Constants 240
3.2.1.16 Define VFB Timing 241
3.2.1.17 Define VFB Variants 242
3.2.1.18 Define VFB Integration Connector 243

8 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.2.1.19 Translate Non-AUTOSAR Description to AUTOSAR
Description . 245

3.2.2 Work Products . 246
3.2.2.1 VFB System . 246
3.2.2.2 Overall VFB System 249
3.2.2.3 VFB System Extract 250
3.2.2.4 VFB Top Level System Composition 251
3.2.2.5 VFB Composition Component 251
3.2.2.6 VFB AUTOSAR Standard Package 253
3.2.2.7 AUTOSAR Specification of Application Interfaces . . 255
3.2.2.8 VFB Atomic Software Component 256
3.2.2.9 VFB Atomic Application Software Component 258
3.2.2.10 Complex Driver Component 258
3.2.2.11 ECU Abstraction Software Component 259
3.2.2.12 VFB Parameter Component 259
3.2.2.13 VFB Sensor Actuator Component 260
3.2.2.14 VFB NvBlock Software Component 261
3.2.2.15 VFB Non AUTOSAR Component 262
3.2.2.16 VFB Interfaces . 262
3.2.2.17 VFB Types . 264
3.2.2.18 VFB Data Type Mapping Set 266
3.2.2.19 VFB Modes . 267
3.2.2.20 VFB Constants . 268
3.2.2.21 VFB Software Component Mapping Constraints . . . 268
3.2.2.22 VFB Timing . 269
3.2.2.23 Description of a Non-AUTOSAR System 269
3.2.2.24 Integration Connector 270

3.3 System . 271
3.3.1 Tasks . 272

3.3.1.1 Set System Root . 272
3.3.1.2 Assign Top Level Composition 273
3.3.1.3 Define ECU Description 274
3.3.1.4 Define System Topology 275
3.3.1.5 Define Software Component Mapping Constraints . 275
3.3.1.6 Deploy Software Component 277
3.3.1.7 Generate or Adjust System Flat Map 278
3.3.1.8 Derive Communication Needs 279
3.3.1.9 Define Signal Path Constraints 280
3.3.1.10 Define System Variants 281
3.3.1.11 Define System Timing 283
3.3.1.12 Extend Topology . 284
3.3.1.13 Select Software Component Implementation 285
3.3.1.14 Select Design Time Variant 286
3.3.1.15 Define System View Mapping 287
3.3.1.16 Create Transformer Specification 288
3.3.1.17 Define Rapid Prototyping Scenario 289

9 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.2 Work Products . 290
3.3.2.1 System Description 290
3.3.2.2 Abstract System Description 294
3.3.2.3 Complete ECU Description 296
3.3.2.4 System Description Root Element 296
3.3.2.5 System Mapping Overview 297
3.3.2.6 Software Component Mapping Contraints 298
3.3.2.7 Data Mapping . 300
3.3.2.8 Mapping of Software Components to ECUs 300
3.3.2.9 Mapping of Software Components to Implementations 301
3.3.2.10 Signal Path Constraints 301
3.3.2.11 Topology . 302
3.3.2.12 Ecu Resources Description 303
3.3.2.13 System Signal . 304
3.3.2.14 System Signal Group 305
3.3.2.15 System Flat Map . 306
3.3.2.16 System Timing . 307
3.3.2.17 System View Mapping 308
3.3.2.18 Transformer Design Bundle 309
3.3.2.19 Transformer Specification 309
3.3.2.20 Rapid Prototyping Scenario 310

3.3.3 Communication Matrix and Communication Layers 310
3.3.3.1 Tasks . 311
3.3.3.2 Work Products . 320

3.3.4 ECU Extract . 325
3.3.4.1 Tasks . 325
3.3.4.2 Work Products . 333

3.4 Software Component . 340
3.4.1 Tasks . 341

3.4.1.1 Define Software Component Internal Behavior . . . 341
3.4.1.2 Define Partial Flat Map 342
3.4.1.3 Define Software Component Timing 343
3.4.1.4 Define SymbolProps for Types 344
3.4.1.5 Add Documentation to the Software Component . . 345
3.4.1.6 Generate Atomic Software Component Contract

Header Files . 346
3.4.1.7 Generate Component Header File in Vendor Mode . 348
3.4.1.8 Generate Component Prebuild Data Set 350
3.4.1.9 Implement Atomic Software Component 351
3.4.1.10 Compile Atomic Software Component 353
3.4.1.11 Map Software Component to BSW 354
3.4.1.12 Measure Component Resources 356
3.4.1.13 Recompile Component in ECU Context 357
3.4.1.14 Define Consistency Needs 358
3.4.1.15 Generate Rapid Prototyping Wrapper 359

3.4.2 Work Products . 361

10 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.4.2.1 Delivered Atomic Software Components 361
3.4.2.2 Software Component Internal Behavior 364
3.4.2.3 Atomic Software Component Implementation 365
3.4.2.4 Software Component Documentation 367
3.4.2.5 Software Component Timing 368
3.4.2.6 Software Component to BSW Mapping 368
3.4.2.7 Partial Flat Map . 369
3.4.2.8 Application Header File 371
3.4.2.9 Software Component Data Types Header 371
3.4.2.10 Component RTE Prebuild Configuration Header . . . 372
3.4.2.11 Atomic Software Component Source Code 372
3.4.2.12 Atomic Software Component Object Code 373
3.4.2.13 Optimized Application Header File 373
3.4.2.14 Optimized Software Component Object Code 374
3.4.2.15 Consistency Needs 374
3.4.2.16 Rapid Prototyping Wrapper Header File 375
3.4.2.17 Rapid Prototyping Wrapper Source Code 376

3.4.3 Tools . 376
3.4.3.1 Component API Generator Tool 376

3.5 Basic Software . 377
3.5.1 Tasks . 378

3.5.1.1 Define BSW Types 378
3.5.1.2 Define BSW Entries 379
3.5.1.3 Define BSW Interfaces 380
3.5.1.4 Define Vendor Specific Module Definition 381
3.5.1.5 Define BSW Behavior 382
3.5.1.6 Define BSW Module Timing 383
3.5.1.7 Generate BSW Contract Header Files 384
3.5.1.8 Implement a BSW Module 385
3.5.1.9 Develop BSW Module Generator 387
3.5.1.10 Create Library . 388
3.5.1.11 Compile BSW Core Code 389
3.5.1.12 Generate BSW Module Prebuild Dataset 391

3.5.2 Work Products . 392
3.5.2.1 BSW Standard Package 392
3.5.2.2 BSW Module Bundle 394
3.5.2.3 BSW Design Bundle 395
3.5.2.4 BSW Module ICS Bundle 396
3.5.2.5 BSW Module Delivered Bundle 397
3.5.2.6 AUTOSAR Software Module Specification 399
3.5.2.7 AUTOSAR Standard Types 400
3.5.2.8 AUTOSAR Platform Types 400
3.5.2.9 BSW Module Generator 401
3.5.2.10 AUTOSAR Standardized ECU Configuration Param-

eter Definition . 401
3.5.2.11 BSW Module Preconfigured Configuration 402

11 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.5.2.12 BSW Module Recommended Configuration 403
3.5.2.13 BSW Module Vendor Specific Configuration Param-

eter Definition . 404
3.5.2.14 BSW Types . 405
3.5.2.15 Basic Software Entries 405
3.5.2.16 Basic Software Module Description 405
3.5.2.17 Basic Software Module Internal Behavior 406
3.5.2.18 Basic Software Module Implementation Description . 407
3.5.2.19 Build Action Manifest 408
3.5.2.20 Basic Software Module Timing 409
3.5.2.21 Basic Software Module Core Header 410
3.5.2.22 Basic Software Module Core Source Code 410
3.5.2.23 Basic Software Interlink Header 411
3.5.2.24 Basic Software Interlink Types Header 412
3.5.2.25 BSW RTE Prebuild Configuration Header 412
3.5.2.26 Basic Software Module Object Code 413
3.5.2.27 Library Description 413
3.5.2.28 Library Header Files 414
3.5.2.29 Library Object Code 415

3.6 ECU Integration and Configuration . 415
3.6.1 Tasks . 415

3.6.1.1 Provide RTE Calibration Dataset 415
3.6.1.2 Define Integration Variant 416
3.6.1.3 Generate Base ECU Configuration 418
3.6.1.4 Generate Updated ECU Configuration 419
3.6.1.5 Define ECU Timing 420
3.6.1.6 Configure EcuC . 421
3.6.1.7 Configure OS . 423
3.6.1.8 Configure RTE . 425
3.6.1.9 Configure Watchdog Manager 427
3.6.1.10 Configure Mode Management 428
3.6.1.11 Configure NvM . 429
3.6.1.12 Configure Diagnostics 431
3.6.1.13 Create Service Component 432
3.6.1.14 Connect Service Component 436
3.6.1.15 Configure COM . 437
3.6.1.16 Configure IO Hardware Abstraction 439
3.6.1.17 Configure MCAL . 440
3.6.1.18 Configure Debug . 441
3.6.1.19 Configure Transformer 444
3.6.1.20 Generate BSW Configuration Code and Model Ex-

tensions . 445
3.6.1.21 Generate Local MC Data Support 447
3.6.1.22 Create MC Function Model 448
3.6.1.23 Generate RTE . 450
3.6.1.24 Generate Scheduler 453

12 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.1.25 Generate OS . 454
3.6.1.26 Generate RTE Prebuild Dataset 455
3.6.1.27 Compile ECU Source Code 456
3.6.1.28 Generate ECU Executable 458
3.6.1.29 Generate RTE Postbuild Dataset 460
3.6.1.30 Generate A2L . 461
3.6.1.31 Measure Resources 463
3.6.1.32 Refine Rapid Prototyping Scenario 464

3.6.2 Work Products . 465
3.6.2.1 BSW Module Integration Bundle 465
3.6.2.2 ECU Software Delivered 466
3.6.2.3 Service Component Description 467
3.6.2.4 ECU Service Connectors 468
3.6.2.5 ECU Timing . 468
3.6.2.6 BSW Module Interface Extension 469
3.6.2.7 BSW Module Behavior Extension 469
3.6.2.8 BSW Module Implementation Extension 470
3.6.2.9 ECU Configuration Values 470
3.6.2.10 RTE Implementation Description 473
3.6.2.11 RTE Prebuild Configuration Header 474
3.6.2.12 Calibration Parameter Value Set 474
3.6.2.13 MC Function Model 475
3.6.2.14 Local Measurement and Calibration Support Data . 476
3.6.2.15 RTE Measurement and Calibration Support Data . . 477
3.6.2.16 RTE Source Code 479
3.6.2.17 BSW Scheduler Code 479
3.6.2.18 OS Generated Code 480
3.6.2.19 RTE Postbuild Variants Dataset 480
3.6.2.20 ECU Object Code 480
3.6.2.21 ECU Executable . 481
3.6.2.22 Map of the ECU Executable 481
3.6.2.23 A2L File . 482
3.6.2.24 MC Driver Support Data 482
3.6.2.25 MC Additional Config 483

3.6.3 Tools . 483
3.6.3.1 RTE Generator . 483
3.6.3.2 BSW Generator Framework 484

3.6.4 ECU Config Classes . 484
3.6.4.1 Tasks . 484
3.6.4.2 Work Products . 494

A History of Constraints and Specification Items 498

A.1 Constraint History of this Document according to AUTOSAR R4.1.1 . . 498
A.1.1 Added Specification Items in R4.1.1 498

A.2 Constraint History of this Document according to AUTOSAR R4.1.2 . . 501
A.2.1 Added Specification Items in R4.1.2 501

13 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

A.3 Constraint History of this Document according to AUTOSAR R4.1.3 . . 501
A.3.1 Added Specification Items in R4.1.3 501
A.3.2 Changed Specification Items in R4.1.3 501

A.4 Constraint History of this Document according to AUTOSAR R4.2.1 . . 502
A.4.1 Added Specification Items in R4.2.1 502
A.4.2 Changed Specification Items in R4.2.1 502
A.4.3 Deleted Specification Items in R4.2.1 503

A.5 Constraint History of this Document according to AUTOSAR R4.2.2 . . 503

14 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Bibliography

[1] Requirements on Methodology
AUTOSAR_RS_Methodology

[2] Software Process Engineering Meta-Model Specification
http://www.omg.org/spec/SPEM/2.0/

[3] Integration of Franca IDL Software Component Descriptions
AUTOSAR_TR_FrancaIntegration

[4] Virtual Functional Bus
AUTOSAR_EXP_VFB

[5] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

[6] General Specification of Basic Software Modules
AUTOSAR_SWS_BSWGeneral

[7] General Specification on Transformers
AUTOSAR_ASWS_TransformerGeneral

[8] Basic Software Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate

[9] System Template
AUTOSAR_TPS_SystemTemplate

[10] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration

[11] Specification of Memory Mapping
AUTOSAR_SWS_MemoryMapping

[12] Specification of Compiler Abstraction
AUTOSAR_SWS_CompilerAbstraction

[13] Specification of Module E2E Transformer
AUTOSAR_SWS_E2ETransformer

[14] Diagnostic Extract Template
AUTOSAR_TPS_DiagnosticExtractTemplate

[15] Specification of RTE Software
AUTOSAR_SWS_RTE

[16] Specifications of Safety Extensions
AUTOSAR_TPS_SafetyExtensions

[17] ISO 26262 (Part 1-10) – Road vehicles – Functional Safety, First edition
http://www.iso.org

15 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

http://www.omg.org/spec/SPEM/2.0/
http://www.iso.org

Methodology
AUTOSAR Release 4.2.2

[18] Generic Structure Template
AUTOSAR_TPS_GenericStructureTemplate

[19] Standardization Template
AUTOSAR_TPS_StandardizationTemplate

[20] Specification of ECU Resource Template
AUTOSAR_TPS_ECUResourceTemplate

16 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

1 Introduction

1.1 Objective

AUTOSAR requires a common technical approach for some steps of system develop-
ment. This approach is called the AUTOSAR methodology. This document defines
and describes this AUTOSAR methodology. It covers all major steps of the develop-
ment of a system with AUTOSAR: from the definition of the Virtual Functional
Bus to the generation of an ECU executable.

The requirements for the methodology are defined in the document [1].

1.2 Overview

[TR_METH_01000] Domains of the AUTOSAR methodology d The AUTOSAR
methodology is structured into several domains of development:

• Virtual Functional Bus

• System

• Software Component

• Basic Software

• ECU

c(RS_METH_00018, RS_METH_00032)

[TR_METH_01001] AUTOSAR methodology assets d For each domain, rele-
vant Work Product, Task, Role, and Tool elements are defined (see chap-
ter 3). In addition, there are elements that are common for all domains (see 3.1).
c(RS_METH_00025, RS_METH_00028, RS_METH_00009)

[TR_METH_01002] AUTOSAR methodology use cases d Use cases (see chapter 2)
show how these standard reusable elements are applied to support real-world devel-
opment. The Overall View (see chapter 2.1) provides an end to end view on the typical
use cases of all domains. c(RS_METH_00018, RS_METH_00056, RS_METH_00009)

1.3 Known Limitations

Work products and tasks for End to End communication safety are not completely
described in the methodology.

17 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

1.4 Scope

[TR_METH_01003] Scope of the AUTOSAR methodology d The AUTOSAR method-
ology is not a complete process description, but rather aggregates the various elements
of AUTOSAR and shows how they are brought together to develop a complete system.
Sample aggregations are provided as Use Cases in Chapter 2. c(RS_METH_00006)

[TR_METH_01004] Support for various stakeholders by the AUTOSAR method-
ology d The structure of the methodology was designed to help cover the needs of
various AUTOSAR stakeholders:

• Organizations: Methodology is modeled in a modular format to allow organiza-
tions to tailor it and combine the Methodology within their own internal processes,
while identifying points where they interact with other organizations.

• Engineers: Methodology is scoped to allow engineers of various roles quickly find
AUTOSAR information that is relevant to their specific needs.

• Tool Vendors: Methodology provides a common language to share among all
AUTOSAR members and a common expectation of what capabilities tools should
support.

c(RS_METH_00018, RS_METH_00056, RS_METH_00009)

[TR_METH_01005] Restrictions of AUTOSAR methodology d Furthermore, the
methodology does not prescribe a precise order in which activities should be carried
out. The methodology is a mere work-product flow: it defines the dependencies of
activities on work-products. This means that when the information specified in the
methodology is available, an activity can be carried out to produce the output work-
products. The set of activities is described in Chapter 3.

This restriction implies that the AUTOSAR methodology does not define an overall time-
line and does not define how and when iterations are carried out. For example during
system and design, the same activity (namely configuring the system) will be carried
out repeatedly with various levels of precision. There will be a first ”rough” configuration
and a final ”precise” configuration which might depend on the feedback from the actual
configuration or even implementation of ECUs. How and when such refinement steps
are to be carried out is NOT defined in the methodology. c(RS_METH_00047)

1.5 Methodology Concepts

[TR_METH_01006] General AUTOSAR methodology concepts d The AUTOSAR
methodology defines activities performed by roles that create work products as gen-
eral reusable method patterns1. The reusable method pattern elements are described
in the method library section (cf. Section 1.5.1). The methodology also describes

1The RS_Methodology document uses the term “Activity” when addressing process elements in gen-
eral. In the SPEM model the atomic process elements are called “Tasks”, whereas an “Activity” is used
to organize tasks and to define processes.

18 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

sample process patterns of typical use cases considered for the creation of AUTOSAR
work products. The patterns use process elements that are described in the use case
section (cf. Section 1.5.2).

The definitions and the figures are made according to the Software Process Engi-
neering Meta-Model Specification [2]. The symbols are taken from the Enterprise
Architect modeling tool. c(RS_METH_00018, RS_METH_00021, RS_METH_00047,
RS_METH_00048, RS_METH_00025, RS_METH_00061, RS_METH_00028,
RS_METH_00056)

1.5.1 Method Library (Method Content)

[TR_METH_01007] Method Library d The Method Library defines the
Method Library Elements of every method pattern such as Roles, Tasks,
and Work Product Definitions. c(RS_METH_00018, RS_METH_00021,
RS_METH_00025, RS_METH_00028)

[TR_METH_01008] Method Library Element d A Method Library Element
contains a description of the element to define its purpose in the methodology and thus
provides the basic contents of the AUTOSAR methodology. The Method Library
Elements are used for the description of the related development processes. These
Method Library Elements can been seen as a standard. c(RS_METH_00017,
RS_METH_00043, RS_METH_00050, RS_METH_00064)

[TR_METH_01009] Relation of Method Library and Method Library Ele-
ment to the SPEM meta model d The Method Library and the Method Library
Elements correspond to the Method Content and Method Content Elements
in the SPEM meta model [2]. c(RS_METH_00009)

[TR_METH_01010] Overview of Method Library Elements d Method Library
Elements comprise:

• Task Definition (section 1.5.1.1)

• Work Product Definition (section 1.5.1.2)

• Role Definition (section 1.5.1.3)

• Tool Definition (section 1.5.1.4)

• Guidance (section 1.5.1.5)2

c(RS_METH_00021, RS_METH_00025, RS_METH_00027, RS_METH_00042,
RS_METH_00028)

The element symbols are shown in Figure 1.1.
2The Guidance is currently not used in the AUTOSAR Methodology. It may be used in future docu-

ments.

19 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Role Definition

Tool Definition

Task Definition

Work Product
Definition
(Artifact)

Deliverable1 Guidance

Figure 1.1: Symbols of AUTOSAR Method Content Elements

1.5.1.1 Task Definition

[TR_METH_01011] Task Definition d According to the SPEM meta model, a
Task Definition is an assignable unit of work that is being performed by specific
Roles. The duration of a task is generally a few hours to a few days. Tasks usually
generate one or more work products. Each Task is associated to input and output
Work Products. Inputs are differentiated in mandatory and optional inputs. A Task
is used as one element among others to define a Process. c(RS_METH_00021)

[TR_METH_01012] Task semantics d A Task has a clear purpose in which the per-
forming roles achieve a well defined goal. It provides complete step-by-step explana-
tions of doing all the work that needs to be done to achieve this goal. This description
is completely independent of when in a process lifecycle the work would actually be
done. It does not describe when what work is being done, but describes all the work
that gets done. c(RS_METH_00021, RS_METH_00056)

[TR_METH_01013] Task usage dWhen a Task is used in a process (cf. Task Use),
it provides the information of which pieces of the Task will actually be performed at any
particular point in time. This assumes that the Task will be performed in the process
over and over again, but each time with a slightly different emphasis on different steps
or aspects of the task description [2].

For the AUTOSAR Methodology, a Task is a reusable element that is used across
multiple methodology use cases. A Task is associated to at least one performing
Role and may have several additional performers. Tasks use Tools to achieve their
outputs. Optional performers and optional input and outputs to the task are described
by the relationship’s multiplicity. c(RS_METH_00021, RS_METH_00042)

20 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

An overview of the Task as it is used in this document is given in Figure 1.2.

Task Definition
Work Product 2

Role Definition

Tool Definition

Work Product 1

0..*
 «input»

 «used tool»
 «performs»

 «output»
0..*

Figure 1.2: Task Definition Overview

1.5.1.2 Work Product Definition

[TR_METH_01014] Work Product Definition d According to the SPEM meta
model, a Work Product Definition is used, modified, and produced by Tasks
(i.e. a task input and output). Work Products are in most cases tangible work prod-
ucts consumed, produced, or modified by Tasks. They may serve as a basis for defin-
ing reusable assets. A Work Product can be related to other work products by a kind
of nesting relationship. c(RS_METH_00046, RS_METH_00047, RS_METH_00025,
RS_METH_00052, RS_METH_00061, RS_METH_00054)

[TR_METH_01015] Relationship between Roles and Work Products d Roles
use Work Products to perform Tasks and produce Work Products in the course
of performing the Tasks. Work Products are in the responsibility of the associated
Roles, thereby also defining a set of skills the performing Role should have. Even
though one Role might own a specific type of Work Product, other Roles can still
use the Work Product for their work, and update them [2]. c(RS_METH_00052,
RS_METH_00061)

A Work Product can be of type Artifact or Deliverable:

• [TR_METH_01017] Artifact Definition d Artifact: A tangible Work Prod-
uct that is consumed, produced, or modified by one or more Tasks. Artifacts
may be composed of other Artifacts and may serve as a basis for defining
reusable assets [2]. c(RS_METH_00052, RS_METH_00061, RS_METH_00054)

[TR_METH_01018] Kinds of Artifacts d For the AUTOSAR Methodology, typ-
ical kinds of artifacts are:

– AUTOSAR XML

– Source Code

21 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

– Object Code

– Executable

– Text

For more details see chapter 3.1.1. c(RS_METH_00063, RS_METH_00015,
RS_METH_00057)

[TR_METH_01019] Properties of Artifacts d At a high level, an artifact is rep-
resented as a single conceptual file. As a rule of thumb, the AUTOSAR Method-
ology will distinguish artifacts that have most of the following properties:

– Separate versioning is needed

– A dedicated life cycle has to be cared for

– Different exchange requirements need to be fulfilled

– Change in responsible roles

– Change in multiplicities

– Change in physical representation or format

– One of the products may be a separate deliverable to another party

– Separation of standardized from non-standardized parts

c(RS_METH_00063, RS_METH_00017, RS_METH_00016)

[TR_METH_01020] Relationship between Artifacts and meta-model ele-
ments d To express a relationship between artifacts of the methodology model
and any AUTOSAR meta-model element, a relationship with the stereotype «at-
pUseMetaModelElement» is used to express this ”dependency”. For AUTOSAR
meta-model elements that are not directly related to methodology elements,
there is usually an indirect relationship via a related meta-model element.
The methodology can thus focus on the main elements of the meta-model.
c(RS_METH_00051)

• [TR_METH_01021] Deliverable Definition d Deliverable: Used to pre-
define typical or recommended content in the form of Work Products that
would be packaged for delivery. Deliverables are used to represent an output
from a process that has value, material or otherwise, to a client, customer, or
other stakeholder. c(RS_METH_00025, RS_METH_00018, RS_METH_00054)

[TR_METH_01022] Aggregation of Work Products d A Deliverable is a
Work Product that aggregates other Work Products. The Method Con-
tent maintains pre-configured potential Deliverables [2]. For the AUTOSAR
Methodology, the aggregation relationship is used to indicate which Work Prod-
ucts are contained in a deliverable. c(RS_METH_00025, RS_METH_00018,
RS_METH_00054)

22 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Work Product
Definition

Deliverable2
Artifact

PackageableElement

ARPackage::ARElement

«AtpUseMetaModelElement»

0..*

«SPEM_Aggregation»

Figure 1.3: Work Product Definition Overview

1.5.1.3 Role Definition

[TR_METH_01023] Role Definition d According to the SPEM meta model, Role
Definitions define responsibilities of an individual or a set of individuals and thereby
define a set of related skills, competencies, and qualifications needed to perform a
Task. A Role can be filled by one person or multiple people, one person may fill
several Roles. Each Role performs Tasks. c(RS_METH_00028)

[TR_METH_01024] Role assignment d Roles are not individuals or resources. In-
dividual members of the development organization will wear different hats, or perform
different Roles. The mapping from individual to Role, usually performed by the project
manager when planning and staffing a project, allows different individuals to act as sev-
eral different Roles, and for a Role to be taken by several individuals [2].

In the AUTOSAR Methodology, a Role also assigns the responsibility of a Task
and defines optional performers. Performers that are responsible for e.g. a Task
have a multiplicity of 1 for the relationship to the Task, optional performers have op-
tional multiplicity assigned. Role Definitions are usually generic and still provide
sufficient level of detail for managers to organize a team. Examples of Roles are
”System Engineer”, ”Safety Engineer”, or ”Software Developer”. c(RS_METH_00028,
RS_METH_00056)

23 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

RoleDefinition

Task Definition

RoleDefinition
(optional performer) «performs»

0..*

 «performs»

1

Figure 1.4: Role Definition Overview

1.5.1.4 Tool Definition

[TR_METH_01025] Tool Definition d According to the SPEM meta model, Tool
Definitions can be used to specify a tool’s participation in a Task. A Tool Defi-
nition describes the capabilities of a CASE tool, general purpose tool, or any other
automation unit that supports the associated Roles in performing the work defined by
a Task. A Tool can identify a resource as useful, recommended, or necessary for a
task’s completion. A Tool can also be used to manage one or more Work Products
[2].

The AUTOSAR Methodology uses the Tool Definition to describe AUTOSAR spe-
cific (e.g. Software Component Contract Generator) and other general Tools (e.g.
Compilers). The relationship of a Tool to a Task shows which Tools a Role will
need to perform the Task. c(RS_METH_00066, RS_METH_00042)

Tool Definition

Task Definition
 «used tool»

Figure 1.5: Tool Definition Overview

1.5.1.5 Guidance

[TR_METH_01026] Guidance definition d According to the SPEM meta model, a
Guidance provides additional information related to e.g. Roles, Work Products,
and Tasks. A Guidance is classified to indicate a specific type for which perhaps a
specific structure and type of content is assumed [2]. c(RS_METH_00027)

24 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

[TR_METH_01027] Guidance kinds d A Guidance can be a

• Supporting Material: Supporting Material is a catch-all for other types
of guidance not specifically defined elsewhere. It can be related to all kinds
of Content Elements, i.e., including other guidance elements. The AUTOSAR
Methodology uses the Supporting Material Guidance type to define title
pages, change histories, disclaimers etc.

• Tool Mentor: A Tool Mentor shows how to use a specific Tool to accom-
plish some piece of work either in the context of or independent from a Task or
Activity. In the context of the AUTOSAR Methodology, a Tool Mentor is
used in the same way as the Tool element.

• White Paper: White Papers are concept guidances that have been exter-
nally reviewed or published and can be read and understood in isolation from
other Method Content. AUTOSAR documents are examples of White Pa-
pers.

Other Guidances such as Checklists, Concepts, Estimates, Guidelines, Practices,
Reports, Reusable Assets, Roadmaps, or Templates as defined in [2] are not used
within the AUTOSAR Methodology. c(RS_METH_00027)

Guidance
(Supporting Material,
Tool Mentor, White
Paper)

Role Definition

Task Definition

Work Product
Definition

«refersTo»

«refersTo»

«refersTo»

Figure 1.6: Guidance Overview

1.5.1.6 Tables

[TR_METH_01028] Usage of tables d Beside the graphical visualization of the differ-
ent SPEM diagrams, tables are used to specify and describe the model elements in
detail. c(RS_METH_00050, RS_METH_00064)

[TR_METH_01113] Usage of hyperlinks d Beside the conventional references to
chapters, figures and sections the AUTOSAR methodology document utilizes hyper-
links to the used SPEM elements. These hyperlinks are used across the text and
within the tables. Using the hyperlinks the reader can quickly navigate to the re-
lated elements such as Tasks, Activities, Roles, Work Products and Tools.
c(RS_METH_00067)

In the Methodology library the following tables are used :

25 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

1.5.1.6.1 Work Product Kind Tables

Category
(Work Product Kind)

Work Product Kind

Package Location in the MetaModel package
Brief Description Short Description
Description Detailed Description

Table 1.1: Work Product Kind

1.5.1.6.2 Task Definition Tables

Task Definition Task
Package Location in the MetaModel package
Brief Description Short description
Description Detailed description
Relation Type Related Element Mul. Note
Performed by Which Roles Per-

form the Task
Opt
or
not

Description of the specific role needed

Consumes What is Consumed
by the Task

Mult Explanation on why this Element is
needed.

Produces What is produced
by the Task

Mult Explanation on why this Element is
needed.

In/out What is produced
and consumed by
the Task

Mult Explanation on why this Element is
needed.

Used tool Tool used for that
Task

Mult

Table 1.2: Task

1.5.1.6.3 Work Product Definition Tables

Artifact Work Product
Package Location in the MetaModel package
Brief Description Short Description.
Description Detailed Description
Kind Work Product Kind
Extended by Artifacts which extend this Artifact
Extends Artifacts which are extended by this Artifact
Relation Type Related Element Mul. Note
Aggregated by To which Deliver-

able is it aggre-
gated By

Mult Description of the context of the
Aggregation.

26 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
In/out Which task is pro-

ducing and con-
suming the Work
Product

Mult Description of the context of the Work
Product production and consumption.

Produced by Which task is pro-
ducing the Work
Product

Mult Description of the context of the Work
Product production.

Consumed by Which task is con-
suming the Work
Product

Mult Description of the context of the Work
Product consumption.

Use meta model element MetamodelElement
Relationship

Mult

Table 1.3: Work Product

1.5.1.6.4 Deliverable Definition Tables

It is the same structure of table as the Work Product, only the Aggregation is not the
same as it can aggregate other Work Products or Deliverables.

Deliverable Deliverable
Package Location in the MetaModel package
Brief Description Short Description.
Description Detailed Description
Kind Work Product Kind
Extended by Deliverables which extend this Deliverable
Extends Deliverables which are extended by this Deliverable
Relation Type Related Element Mul. Note
Aggregates Which Work

Products are
aggregated to it

Mult

Aggregated by To which Deliver-
able is it aggre-
gated By

Mult Description of the context of the
Aggregation.

In/out Which task is pro-
ducing and con-
suming the Deliv-
erable

Mult Description of the Context of production
and consumption.

Produced by Which task is pro-
ducing the Deliver-
able

Mult Description of the context of the
production.

Consumed by Which task is con-
suming the Deliv-
erable

Mult Description of the context of the
consumption.

Use meta model element MetamodelElement
Relationship

Mult

Table 1.4: Deliverable

27 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

1.5.1.6.5 Roles Definition Tables

Role Role
Package Meta-model Package Name
Brief Description Short Description.
Description Detailed Description.
Relation Type Related Element Mul. Note
Performs In which task the

performer is acting
Mult

Table 1.5: Role

1.5.1.6.6 Tools Tables

Tool Tool
Package Meta-model Package name
Brief Description Short Description
Description Detailed Description
Kind
Relation Type Related Element Mul. Note
Used Task where the tool

is used
Mult

Table 1.6: Tool

1.5.2 Capability Patterns (Use Case Elements)

The method content (cf. Section 1.5.1) is referenced in section 2.1.2 to describe so-
called Capability Patterns.

[TR_METH_01029] Capability Patterns definition d A Capability
Pattern3 is a process pattern that contains a reusable set of activities.
c(RS_METH_00018)

[TR_METH_01030] Composition of Capability Patterns d Capability Pat-
terns can be assembled to larger Capability Patterns that describe devel-
opment processes or parts of a development process including typical use cases.
c(RS_METH_00018, RS_METH_00056)

[TR_METH_01031] Adaptability of the AUTOSAR methodology d The main focus of
this section is merely to provide a use case process flow that can be supported by an
AUTOSAR tool chain rather than to define a complete process description. One reason
for doing this is that the AUTOSAR methodology should be adaptable to development
processes of different organizations. c(RS_METH_00056)

[TR_METH_01032] Use case elements d This section describes the use case ele-
ments. The SPEM meta model defines the Role Use , the Work Product Use and

3In Enterprise Architect a SPEM “Capability Pattern” is called “Process Pattern”.

28 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

the Task Use elements in addition. Whereas these are important elements when
applying SPEM in an organization, the AUTOSAR methodology does not necessar-
ily need these elements since no instantiation of the Enterprise Architect model is
intended. The elements are thus not used to enhance readability and ease the de-
scription. Instead, Roles, Work Products, Deliverables and Tasks are used
directly to describe the details of an Activity.

The element symbols are shown in Figure 1.7. c()

Capabil i ty Pattern
Activity1

Figure 1.7: Symbols of AUTOSAR Use Case Process Elements

1.5.2.1 Activity

[TR_METH_01033] Definition of Activities d In the SPEM meta model, an Ac-
tivity is the main building block to define a process. An Activity is usually
a defined task or work to be done that is commonly executed in one sequence.
c(RS_METH_00021)

[TR_METH_01034] Composition of Activities d Activities can include other
Activities and thereby often decompose a flow of work and show which Activity
precedes other Activities [2]. At the lowest level, Activities are collections
of work breakdown elements which in AUTOSAR methodology are Tasks , Roles
, and Work Products. c(RS_METH_00048, RS_METH_00046, RS_METH_00047,
RS_METH_00066)

[TR_METH_01035] Definition of Processes d A Process is a special Activity
in the SPEM meta model that describes a typical structure of development projects
or parts of them. A Process focuses on the lifecycle and the sequencing of work in
breakdown structures. Processes contain sequences of Task and Activities and
thereby express a lifecycle of the product under development. Processes also define
how to get from one milestone to the next by defining sequences of work, operations,
or events [2]. c(RS_METH_00056)

For the AUTOSAR Methodology, the main Use Cases are described with 3 types of
diagrams.

[TR_METH_01036] Description of overall Use Cases d In the first diagram,
the Capability Patterns, Activities and Deliverables are used to de-
scribe the overall Use Case, sequence of Activities and their main out-

29 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

puts(Deliverables). In these diagrams, the predecessor relationship can be skipped
and Deliverables can be extended by other Deliverables (see Figure 1.8). c()

Activity 1 Activity 2

Capabil ity
Pattern

Deliverable1
Deliverable2

Deliverable3

 «output»

 «nesting»

 «input»

 «extends»

 «nesting»

Figure 1.8: Activity Overview

The diagram is followed by its corresponding table as detailed hereunder:

Process Pattern Capability Pattern
Package Meta-model Package name
Brief Description Short Description
Description Detailed Description.
Relation Type Related Element Mul. Note
Aggregates Activity nested to

the Capability Pat-
tern or to another
Activity

Mult Context explanation

Consumes Deliverable con-
sumed by the
Activity

Mult Why this Activity needs to consume this
Deliverable

Produces Deliverable pro-
duced by the
Activity

Mult Why this Activity is producing this
Deliverable

Table 1.7: Capability Pattern

30 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

[TR_METH_01037] Precise description of Use Cases d The second type of dia-
gram are Activities and Task Definition diagrams which precise the main
Tasks and Work Products used for the Use Cases but are not as detailed as in
the Methodology Library (see Figure 1.9). The task usage in these diagrams will be
expressed by the role and in the note at the aggregation. This information will be also
visible in the generated table. The Work Products consumed or produced in the use
cases will be not integrated in the table for readability. c()

Activity 1

TaskDefinition1

Task Definition

Work Product

Work Product 1

 «extends»

 «output»
1

+The task usage can be
expressed by the role
and the note of the
aggregation

 «nesting»

+The task usage can be
expressed by the role and
the note of the
aggregation

 «nesting»

1

 «input»

Figure 1.9: Activity and Tasks Overview

The diagram is followed by its corresponding table as detailed hereunder:

Activity Activity
Package Meta-model Package Name
Brief Description Short Description
Description Detailed Description
Extended by Activities which extend this Activity
Extends Activities which are extended by this Activity
Relation Type Related Element Mul. Note
Aggregates Nested task defini-

tion
Mult Task usage description if needed

Consumes What is Consumed
by the Activity

Mult Explanation on why this Element is
needed.

Produces What is produced
by the Activity

Mult Explanation on why this Element is
needed.

In/out What is produced
and consumed by
the Activity

Mult Explanation on why this Element is
needed.

Predecessor Predecessor of the
Activity

Mult Explanation on why the Predecessor is
needed.

Table 1.8: Activity

31 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

[TR_METH_01038] Detailed description of the work flow d The third type of diagram
contains the Tasks and Work Products used by an Activity in order to show the
detailed work flow but not the structure of Activities as seen in Section 1.5.1.1. As
an example take Figure 2.9. The table generation is not done for this type of diagram.
c()

1.6 Requirements Traceability

This section states the response of this specification to the corresponding requirements
document[1].

Requirement Description Satisfied by
[RS_METH_00002] Methodology shall explain the

typical usage of SW-C template
[TR_METH_01044]
[TR_METH_01047]
[TR_METH_01048]
[TR_METH_01050]
[TR_METH_01051]
[TR_METH_01052]
[TR_METH_01053]
[TR_METH_01054]
[TR_METH_01055]
[TR_METH_01056]
[TR_METH_01057]
[TR_METH_01058]
[TR_METH_01059]
[TR_METH_01060]
[TR_METH_01061]
[TR_METH_01065]
[TR_METH_01066]
[TR_METH_01067]
[TR_METH_01068]
[TR_METH_01071]
[TR_METH_01075]
[TR_METH_01076]
[TR_METH_01077]
[TR_METH_01078]

32 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

[TR_METH_01079]
[TR_METH_01080]
[TR_METH_01081]
[TR_METH_01082]
[TR_METH_01087]
[TR_METH_01088]
[TR_METH_01090]
[TR_METH_01091]
[TR_METH_01110]
[TR_METH_01112]
[TR_METH_01125]
[TR_METH_01126]
[TR_METH_01127]
[TR_METH_01132]
[TR_METH_01133]
[TR_METH_02000]
[TR_METH_02001]
[TR_METH_02002]
[TR_METH_02005]
[TR_METH_03000]
[TR_METH_03005]
[TR_METH_03006]
[TR_METH_03007]

[RS_METH_00003] Methodology shall explain the
typical usage of BSW Module
Template

[TR_METH_01083]
[TR_METH_01084]
[TR_METH_01085]
[TR_METH_01087]
[TR_METH_01088]
[TR_METH_01089]
[TR_METH_01090]
[TR_METH_01091]
[TR_METH_01092]
[TR_METH_01111]
[TR_METH_01112]
[TR_METH_01114]
[TR_METH_01115]
[TR_METH_01117]
[TR_METH_02002]
[TR_METH_02005]
[TR_METH_03000]
[TR_METH_03010]

33 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

[RS_METH_00004] Methodology shall explain the
typical usage of the ECU
Configuration template

[TR_METH_01083]
[TR_METH_01086]
[TR_METH_01087]
[TR_METH_01088]
[TR_METH_01089]
[TR_METH_01090]
[TR_METH_01091]
[TR_METH_01092]
[TR_METH_01095]
[TR_METH_01098]
[TR_METH_01103]
[TR_METH_01104]
[TR_METH_01112]
[TR_METH_01114]
[TR_METH_01115]
[TR_METH_01116]
[TR_METH_01117]
[TR_METH_01151]
[TR_METH_02005]
[TR_METH_03000]

[RS_METH_00005] Methodology shall explain the
typical usage of the System
Template

[TR_METH_01046]
[TR_METH_01047]
[TR_METH_01048]
[TR_METH_01053]
[TR_METH_01065]
[TR_METH_01066]
[TR_METH_01067]
[TR_METH_01068]
[TR_METH_01070]
[TR_METH_01071]
[TR_METH_01075]
[TR_METH_01076]
[TR_METH_01077]
[TR_METH_01078]
[TR_METH_01079]
[TR_METH_01080]
[TR_METH_01081]
[TR_METH_01082]
[TR_METH_01087]
[TR_METH_01088]
[TR_METH_01090]
[TR_METH_01091]
[TR_METH_01092]
[TR_METH_01109]

34 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

[TR_METH_01112]
[TR_METH_01114]
[TR_METH_01125]
[TR_METH_01126]
[TR_METH_01127]
[TR_METH_01130]
[TR_METH_01153]
[TR_METH_01154]
[TR_METH_02003]
[TR_METH_02006]
[TR_METH_02015]
[TR_METH_02016]
[TR_METH_02017]
[TR_METH_02018]
[TR_METH_03000]
[TR_METH_03008]

[RS_METH_00006] Methodology shall explain how
Autosar system is built

[TR_METH_01003]
[TR_METH_01039]
[TR_METH_01044]
[TR_METH_01045]
[TR_METH_01046]
[TR_METH_01047]
[TR_METH_01048]
[TR_METH_01049]
[TR_METH_01061]
[TR_METH_01085]
[TR_METH_01087]
[TR_METH_01092]
[TR_METH_01093]
[TR_METH_01109]
[TR_METH_01110]
[TR_METH_01111]
[TR_METH_01112]
[TR_METH_01114]
[TR_METH_01134]
[TR_METH_01135]
[TR_METH_03002]
[TR_METH_03003]
[TR_METH_03004]

[RS_METH_00009] Methodology should be modeled [TR_METH_01001]
[TR_METH_01002]
[TR_METH_01004]
[TR_METH_01009]

[RS_METH_00010] Methodology should define rules
to translate methodology model
into a document

[TR_METH_01121]

[RS_METH_00015] Methodology shall be
independent of programming
language

[TR_METH_01018]

[RS_METH_00016] Methodology shall support
building a system of both
Autosar and Non-Autosar ECUs

[TR_METH_01019]
[TR_METH_01128]
[TR_METH_01129]

[RS_METH_00017] Methodology shall clearly define
what is standardized and what is
not standardized

[TR_METH_01008]
[TR_METH_01019]

35 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

[RS_METH_00018] Methodology shall be modular [TR_METH_01000]
[TR_METH_01002]
[TR_METH_01004]
[TR_METH_01006]
[TR_METH_01007]
[TR_METH_01021]
[TR_METH_01022]
[TR_METH_01029]
[TR_METH_01030]
[TR_METH_01084]
[TR_METH_01110]

[RS_METH_00020] Methodology shall support
iterations

[TR_METH_01071]
[TR_METH_01089]
[TR_METH_02004]

[RS_METH_00021] Methodology shall define
Activities

[TR_METH_01006]
[TR_METH_01007]
[TR_METH_01010]
[TR_METH_01011]
[TR_METH_01012]
[TR_METH_01013]
[TR_METH_01033]

[RS_METH_00025] Methodology shall define Work
products

[TR_METH_01001]
[TR_METH_01006]
[TR_METH_01007]
[TR_METH_01010]
[TR_METH_01014]
[TR_METH_01021]
[TR_METH_01022]

[RS_METH_00027] Methodology shall define
unambiguous guidance
terminology

[TR_METH_01010]
[TR_METH_01026]
[TR_METH_01027]

[RS_METH_00028] Methodology shall define Roles [TR_METH_01001]
[TR_METH_01006]
[TR_METH_01007]
[TR_METH_01010]
[TR_METH_01023]
[TR_METH_01024]

[RS_METH_00032] The methodology shall respect
the different levels of
Abstractions

[TR_METH_01000]
[TR_METH_01040]

[RS_METH_00033] Methodology should support
VFB concept

[TR_METH_01039]
[TR_METH_01045]
[TR_METH_01054]
[TR_METH_02000]

[RS_METH_00038] Methodology shall support the C
programming language

[TR_METH_01060]
[TR_METH_01085]
[TR_METH_01093]
[TR_METH_02005]
[TR_METH_03001]

[RS_METH_00041] Methodology shall support
Bottom/Up Approach

[TR_METH_01071]

36 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

[RS_METH_00042] Methodology shall incorporate
the usage of industry standard
tools

[TR_METH_01010]
[TR_METH_01013]
[TR_METH_01025]
[TR_METH_01093]

[RS_METH_00043] Activities shall have a purpose [TR_METH_01008]
[RS_METH_00046] Activities shall have input work

products
[TR_METH_01014]
[TR_METH_01034]

[RS_METH_00047] Activities shall have output work
products

[TR_METH_01005]
[TR_METH_01006]
[TR_METH_01014]
[TR_METH_01034]

[RS_METH_00048] Activities shall include roles [TR_METH_01006]
[TR_METH_01034]

[RS_METH_00050] Work products shall have a
description

[TR_METH_01008]
[TR_METH_01028]

[RS_METH_00051] Work products shall have a
reference(s) to metaclass(es) in
the Autosar Metamodel.

[TR_METH_01020]

[RS_METH_00052] It must be possible to avoid
duplication of data in Work
Products

[TR_METH_01014]
[TR_METH_01015]
[TR_METH_01017]

[RS_METH_00054] Work Products shall not have
circular references with other
work products

[TR_METH_01014]
[TR_METH_01017]
[TR_METH_01021]
[TR_METH_01022]
[TR_METH_01122]

[RS_METH_00056] AUTOSAR methodology shall
not be bound to a particular
lifecycle model

[TR_METH_01002]
[TR_METH_01004]
[TR_METH_01006]
[TR_METH_01012]
[TR_METH_01024]
[TR_METH_01030]
[TR_METH_01031]
[TR_METH_01035]

[RS_METH_00057] AUTOSAR methodology shall
support traceability to external
artifacts

[TR_METH_01018]
[TR_METH_01123]

[RS_METH_00061] Methodology shall describe the
change of existing work
products.

[TR_METH_01006]
[TR_METH_01014]
[TR_METH_01015]
[TR_METH_01017]

[RS_METH_00062] Methodology shall support
configuration of parameters with
different binding time.

[TR_METH_01086]
[TR_METH_01095]
[TR_METH_01098]
[TR_METH_01104]
[TR_METH_01108]
[TR_METH_01150]
[TR_METH_01151]

[RS_METH_00063] Work Products shall be capable
to be version controlled

[TR_METH_01018]
[TR_METH_01019]

[RS_METH_00064] Roles shall have a description [TR_METH_01008]
[TR_METH_01028]

[RS_METH_00066] Activities shall include tools [TR_METH_01025]
[TR_METH_01034]

37 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

[RS_METH_00067] Methodology document shall
include hyperlinks between
Activities, Roles, Work Products,
and Guidance.

[TR_METH_01113]

[RS_METH_00069] It shall be possible to add
precise and human readable
documentation to each work
product.

[TR_METH_01123]
[TR_METH_01124]

[RS_METH_00074] Methodology shall specify
Binding times

[TR_METH_00001]
[TR_METH_00002]
[TR_METH_00003]
[TR_METH_02011]
[TR_METH_02012]
[TR_METH_02013]
[TR_METH_02014]
[TR_METH_02020]

[RS_METH_00075] Methodology shall specify the
tasks of resolving variant

[TR_METH_00001]
[TR_METH_02016]

[RS_METH_00076] Methodology shall specify a
work product for values of
variant selectors

[TR_METH_02016]
[TR_METH_02017]

[RS_METH_00077] Methodology shall explain the
typical interaction between
OEMs and suppliers

[TR_METH_01049]
[TR_METH_01076]
[TR_METH_01079]
[TR_METH_01080]
[TR_METH_01081]
[TR_METH_01082]
[TR_METH_01125]
[TR_METH_01126]
[TR_METH_01127]
[TR_METH_01130]
[TR_METH_01131]

[RS_METH_00078] Methodology shall explain the
typical usage of different views
on the system of the OEM

[TR_METH_01044]
[TR_METH_01050]
[TR_METH_01068]

[RS_METH_00079] Methodology shall explain the
typical usage of different views
on the system of the Supplier

[TR_METH_01068]
[TR_METH_01079]
[TR_METH_01080]
[TR_METH_01081]
[TR_METH_01082]

[RS_METH_00080] Exchange of Implicit
Communication Behavior
Description

[TR_METH_01120]

[RS_METH_00081] Methodology shall explain the
typical usage of Safety
Extensions

[TR_METH_01144]
[TR_METH_01145]
[TR_METH_01146]
[TR_METH_01147]
[TR_METH_01148]
[TR_METH_01149]

38 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

[RS_METH_00082] Methodology shall explain the
typical usage of Diagnostic
Extract Template

[TR_METH_01136]
[TR_METH_01137]
[TR_METH_01138]
[TR_METH_01139]
[TR_METH_01140]
[TR_METH_01141]
[TR_METH_01142]
[TR_METH_01143]

Some input requirements cannot (or not completely) be traced down to single specifi-
cation items found in this document. They are satisfied by the AUTOSAR methodology
in a general way together with other documents as listed in the following:

[TR_METH_01120] Definition of Consistency Needs d The AUTOSAR methodol-
ogy supports the exchange of implicit communication behavior description. Chapters
3.4.1.14 and 3.4.2.15 depict the task and the artifact which allow to define the corre-
sponding consistency needs. c(RS_METH_00080)

[TR_METH_01121] Building the AUTOSAR methodology document d All
AUTOSAR methodology related model elements (see 1.5) are consumed by an in-
ternal AUTOSAR tool that automatically produces the corresponding text, tables, and
diagrams. These artifacts are included into a document which is automatically trans-
formed into the final PDF file. c(RS_METH_00010)

[TR_METH_01122] Relations between AUTOSAR Work Products d Work Prod-
ucts (Deliverables and Artifacts) are designed in such a way that no circular
references with other Work Products exist. c(RS_METH_00054)

[TR_METH_01123] Traceability to external artifacts d Artifacts considered in the
Methodology model include external artifacts like c-code, libraries, documentation and
generated artifacts (see e.g. 3.5.2.22, 3.4.2.4). General Non Autosar Artifact
is a generic representation of non AUTOSAR artifacts. It is aggregated by the General
Deliverable and allows linking and tracing of non AUTOSAR artifacts within the
AUTOSAR context. Furthermore, several specific artifacts represent non AUTOSAR
elements or allow referring to them. The A2L File artifact is a representation of
the measurement and calibration format that is defined by the ASAM and therefore
out of scope of AUTOSAR. The description of the Atomic Software Component
Implementation artifact explains how external artifacts can be referred from this
ARXML artifact. c(RS_METH_00057, RS_METH_00069)

[TR_METH_01124] Documentation of Work Products d In order to document de-
sign decisions or restrictions during the development process each Work Prod-
uct can aggregate the corresponding documentation which is represented by the
General Documentation artifact. The General Documentation artifact is
added to Work Products by processing the task Add General Documentation.
c(RS_METH_00069)

39 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2 Use Cases

2.1 Overall View

2.1.1 Purpose

This pattern provides a rough outline of the design steps to build a system and resultant
of this the ECUs and the topology with the AUTOSAR methodology. The main activities
are depicted in Figure 2.1.

2.1.2 Description

2.1.2.1 Views on the System

[TR_METH_01039] AUTOSAR System development overview d The development of
an AUTOSAR System is based on the definition of the Virtual Functional Bus
(VFB). The VFB is the communication mechanism that allows a composition of inter-
connected software components to interact. Based on the VFB the system is designed.
c(RS_METH_00006, RS_METH_00033)

[TR_METH_01040] Support of different system views d During the overall develop-
ment of the system, different views on the system can exist (e.g. functional architecture,
or software architecture). These views are described explicitely, whereas a mapping
mechanism is used to express the relation between them. c(RS_METH_00032)

In the following three different views on the system are distinguished:

• [TR_METH_01041] Abstract system d The abstract system abstracts from the
concrete software architecture and describes e.g. the functional view on the sys-
tem. c()

• [TR_METH_01042] Overall technical system d The overall technical system is
organized from the software architecture perspective. c()

• [TR_METH_01043] Sub-System d The Sub-System is a reduced part of the
overall technical System and describes relevant aspects for a dedicated subsys-
tem. c()

2.1.2.2 Overall Workflow

[TR_METH_01044] Development of a functional view on the system d The overall
workflow (see Figure 2.2) starts with an optional activity. In this activity, the Abstract
System Description is developed in advance, which represents the overall system
from a functional or abstract view (functional architecture). This Abstract System

40 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Description is then the basis for the development of the concrete System De-
scription. c(RS_METH_00006, RS_METH_00002, RS_METH_00078)

[TR_METH_01045] Development of the Overall VFB System d In case of omit-
ting the optional first step, the development directly starts with the definition of the
Overall VFB System. The VFB provides a software architecture oriented view of
all the functions the system supports, independent of any ECUs and networks. See
chapter 2.3 for more details. c(RS_METH_00006, RS_METH_00033)

[TR_METH_01046] Development of the system d The VFB is refined into a sys-
tem by defining a topology of ECUs and Networks, deploying software components to
the ECUs, and deriving the communication matrices required to interconnect the dis-
tributed features. As a part of the communication development, a custom transforma-
tion technology can be specified. This specification is the basis for the implementation
of the corresponding basic software module. The development of the system can be
achieved directly in one phase or in several phases (the use case shows a single phase
and a two phase approach). c(RS_METH_00006, RS_METH_00005)

[TR_METH_01047] Two phase development approach d The two phase approach is
used when there is an organizational separation of responsibility where the primary or-
ganization defines the overall system in the first phase, and several other organizations
define the sub-systems in parallel during the second phase. In this case, the primary
organization hands over System Extracts, which represent subsystem parts of the
whole system. These subsystems contain Subsystem VFBs which are reduced overall
VFBs. c(RS_METH_00006, RS_METH_00002, RS_METH_00005)

[TR_METH_01048] The overall system d The overall system defines the major
public ECUs and topologies, and the subsystem design contributes by adding pri-
vate ECUs and networks to the system. Please note that portions defined within a
subsystem are not directly visible to any other subsystem or to the overall system.
c(RS_METH_00006, RS_METH_00005, RS_METH_00002)

[TR_METH_01049] Interaction between organizations d Additionally, the software
component structure of the System Extracts, delivered by the primary organiza-
tion can be transformed into a different structure by the receiving organization (ECU
System Description). In this case the System Extract of the primary organi-
zation can be considered as a requirement and the subsystem of the receiving or-
ganization represented by one or more ECU System Descriptions can be seen
as a solution which has to fulfill the delivered requirements. c(RS_METH_00006,
RS_METH_00077)

[TR_METH_01109] Producing ECU-specific deliverables d After the system de-
sign is complete, the portions that are related to a specific ECU are extracted
producing a deliverable for each ECU. This is elaborated further in chapter 2.5.
c(RS_METH_00006, RS_METH_00005)

[TR_METH_01110] Development of Software Components d In parallel to the
system design, the software components (Delivered Atomic Software Compo-

41 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

nents) are implemented according to the definitions required by the abstract VFB,
the VFB or the subsystem VFB. These are delivered to be integrated in the ECUs
where they are deployed. Please note that the implementation of a software compo-
nent is more or less independent from ECU configuration. This is a key feature of
the AUTOSAR methodology. See chapter 2.4 for more details. c(RS_METH_00006,
RS_METH_00002, RS_METH_00018)

[TR_METH_01111] Development of Basic Software modules d Since the Basic
Software modules are independent of the VFB, they can be developed at any time
before ECU integration. See chapter 2.6 for more details. c(RS_METH_00006,
RS_METH_00003)

[TR_METH_01112] Integration of AUTOSAR ECUs d The integration for an
AUTOSAR ECU commences when the BSW Module Delivered Bundles, ECU
Extract, and the implementation of all Delivered Atomic Software Compo-
nents are available. At this stage, the ECU is configured by creating tasks, schedul-
ing Software Component Runnables, configuring the Basic Software Mod-
ules, etc. The complete code is compiled and linked into an executable. This is
elaborated in chapter 2.7. c(RS_METH_00006, RS_METH_00002, RS_METH_00003,
RS_METH_00004, RS_METH_00005)

2.1.3 Workflow

Methodology
Overview

Develop a VFB
System Description

Develop Application
Software

Integrate Software
for ECU

Develop Basic
Software

Develop System

Develop Sub-System

Develop an Abstract
System Description

 «nesting»

 «nesting»

 «nesting»
 «nesting»

 «nesting»

 «nesting»

 «nesting»

Figure 2.1: Methodology Overview: Overall Structure

42 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Develop a VFB
System
Description

Develop
Application
Software

Integrate Software
for ECU

Develop Basic
Software

ECU Software
Delivered

BSW Module
Delivered Bundle

ECU Extract

Delivered
Atomic
Software
Components

BSW Standard Package

Overall VFB
System

VFB AUTOSAR
Standard Package

System
Constraint
Description

System Extract

Develop System

Develop Sub-System

Develop an Abstract
System Description

Abstract System
Description

Transformer Design
Bundle

 «output»

1

 «output»

0..*

 «output»

1..*

 «output»

1..*

0..*

 «input»

1..*

 «input»

 «output»

1..*

 «output»

1

1

 «input»

1..*

 «input»

1..*
 «input»

1

 «input»

 «output»

0..*

0..*

 «input»

1

 «input» 0..1

 «input»

0..*

 «input»
0..1

 «input»

1
 «input»

1..*

 «input»

0..1 «input»

 «output»

1..*

 «output»

1..*

Figure 2.2: Methodology Overview: Work Flow

43 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Process Pattern Methodology Overview
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High

Level::Methodology Overview
Brief Description High level view of the AUTOSAR Methodology
Description This Process Patterns contains the typical activities to develop an

AUTOSAR system.
Relation Type Related Element Mul. Note
Aggregates Develop Applica-

tion Software
1

Aggregates Develop Basic
Software

1

Aggregates Develop Sub-Sys-
tem

1

Aggregates Develop System 1
Aggregates Develop a VFB

System Descrip-
tion

1

Aggregates Develop an Ab-
stract System
Description

1

Aggregates Integrate Software
for ECU

1

Table 2.1: Methodology Overview

2.2 Develop an Abstract System Description

2.2.1 Purpose

This Activity provides a rough outline of the creation of the Abstract System
Description.

2.2.2 Description

[TR_METH_01050] Abstract System Description activity d Due to the fact that
the overall view on vehicle functions can differ from the actual technical definition of
the software architectures of individual ECUs, the optional activity Develop an Ab-
stract System Description allows to define a view on the overall system from
an abstract or functional perspective. This view describes a dedicated abstract VFB.
During the further activities this abstract view is refactored into a technical view of the
software architecture. c(RS_METH_00002, RS_METH_00078)

For the purpose of this use case, this activity is split into sub-activities and tasks (see
Figure 2.3) that are in detail described in Chapter 2.3 and 2.5.2:

• Data Model Development

44 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

• Component Model Development

• VFB Timing Development

• Define VFB Top Level

• Define VFB Component Constraints

• Design System

• Integrate Non AUTOSAR System at VFB level

In the Data Model Development activity, the set of VFB Interfaces, VFB Modes,
and VFB Types that are used throughout the abstract VFB are defined. Please note,
that these objects can be used in later steps by the VFB and the subsystem VFB as
well.

[TR_METH_01051] Creation of an overall abstract system d In the Component
Model Development activity, a component model is created which represents the
overall system from a functional point of view, e.g. from a customer related perspec-
tive of vehicle functions, independent of a concrete vehicle platform design. During this
process compositions might be modeled, which are not further refined into Atomic Soft-
ware Components. However it is also possible to define atomic software components
as well in this abstract VFB view. c(RS_METH_00002)

[TR_METH_01052] Definition of a constraints in the context of an abstract sys-
tem d In the context of the abstract VFB, the task Define VFB Component Con-
straints defines constraints w.r.t. software components of the abstract VFB. These
constraints have to be considered when the abstract VFB is transformed into the con-
crete, technical VFB. c(RS_METH_00002)

[TR_METH_01128] Integration of Non AUTOSAR Systems in the context of an
abstract system d In parallel with the development of the Abstract System De-
scription within an AUTOSAR process there may be functions that are developed
based on another approach. The functionality of in-vehicle infotainment systems for
instance is usually not covered in an AUTOSAR development process. Rather, devel-
opment methods and platforms such as GENIVI (http://www.genivi.org/) for instance
are employed that address the specific needs and conditions of infotainment system
development. The integration of these functions into the overall system should be ad-
dressed as early as possible. For that purpose first a description of the non-AUTOSAR
functionality (Description of a Non-AUTOSAR System) is needed, which must
be provided by the non-AUTOSAR approach. Within the development of the Abstract
System Description the functional interaction of the non-AUTOSAR functions and
the AUTOSAR functions has to be specified that is based on the given descriptions of
both parts. Since the non-AUTOSAR part is typically specified in a non-AUTOSAR
format it must be translated to the corresponding AUTOSAR format (task Trans-
late Non-Autosar Description to Autosar Description). Moreover, the
information on the functional interaction must be incorporated in order to obtain one
common view of the integrated system. The "Integration of Franca IDL Software Com-
ponent Descriptions" document ([3]) defines a format for a VFB Integration Con-

45 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

nector and a translation of Franca Interface Definitions - that are used in GENIVI
- to AUTOSAR. It can be used for the development of an abstract description of an
integrated AUTOSAR and GENIVI system. c(RS_METH_00016)

[TR_METH_01053] Definition of a System Description in the context of an ab-
stract system d Additionally to the definition of the abstract VFB, parts of the System
Description can already be defined in the Design System activity, e.g. the topol-
ogy and ECUs where SWCs of the abstract VFB are mapped to. This SW-C mapping
from the abstract VFB to ECUs can be used as a methodological step to the defini-
tion of the concrete VFB. Please note that not all tasks of the Design System ac-
tivity have to be performed in the context of an abstract system. c(RS_METH_00002,
RS_METH_00005)

2.2.3 Workflow

Develop an Abstract
System Description

VFB AUTOSAR
Standard Package

Abstract System
Description

Data Model
Development

Component Model
Development

VFB Timing
Development

Define VFB Top
Level

Define VFB Component
Constraints

Design
System

System
Constraint
Description

Integrate Non
AUTOSAR System at
VFB level

 «predecessor»

 «predecessor»

 «output»

1..*

 «nesting»

1..*

 «input»

 «nesting»

 «nesting»

 «nesting»

0..1

 «input»

 «nesting»

 «nesting»

 «nesting»

Figure 2.3: Develop an Abstract System Description

Activity Develop an Abstract System Description
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::

Develop System
Brief Description Develop an abstract or functional view on the system.
Description This activity defines an abstract view on the overall system from an

abstract or functional point of view. This activity is optional.
Relation Type Related Element Mul. Note

46 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes System Constraint

Description
0..1 In the context of the "Develop an

Abstract System Description" activity, the
constraints for the abstract or functional
view on the system can be provided by
the "System Constraint Description".

Consumes VFB AUTOSAR
Standard Package

1..*

Produces Abstract System
Description

1..*

Aggregates Component Model
Development

1

Aggregates Data Model Devel-
opment

1

Aggregates Define VFB Com-
ponent Constraints

1

Aggregates Define VFB Top
Level

1

Aggregates Design System 1 In the context of the Develop an Abstract
System Description activity, not all tasks
have to be performed.

Aggregates Integrate Non AUT
OSAR System at V
FB level

1

Aggregates VFB Timing Devel-
opment

1

Table 2.2: Develop an Abstract System Description

2.3 Develop a VFB System Description

2.3.1 Purpose

This Activity provides a rough outline of the creation of a Virtual Functional
Bus view of a System. [2]

2.3.2 Description

[TR_METH_01054] Virtual Functional Bus d The Virtual Functional
Bus (VFB) view of a System shows how the Systems software functions interact in-
dependently of any network topology or deployment of features across multiple ECUs.
c(RS_METH_00033, RS_METH_00002)

For more information on the VFB concept see [4]. For detailed information on the
meta-model parts relevant for the VFB see [5].

For the purpose of this use case, this Activity is split into the following sub-activities:

47 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

• Data Model Development

• Component Model Development

• VFB Timing Development

• Integrate Non AUTOSAR System at VFB level

• Define VFB Safety Information

[TR_METH_01055] Data Model Development activity d In the Data Model De-
velopment, the set of VFB Interfaces, VFB Modes, and VFB Types that are
used throughout the VFB are defined. Some of these have already been pre-defined
by AUTOSAR (so-called “blueprints”), see 3.2.2.7 c(RS_METH_00002)

[TR_METH_01056] Definition of the VFB d In the Component Model Develop-
ment activity, the VFB is defined. This can either be done by the use of the abstract
VFB as a basis, or is done directly by defining the software components. In case of
using the abstract VFB as a basis, a mapping between the abstract and the concrete
VFB can be established by performing the tasks Define System View Mapping
(see Section 3.3.1.15 for more details). c(RS_METH_00002)

Two general approaches can be separated:

• [TR_METH_01057] Top-Down approach d Following a Top-Down approach, the
highest level VFB Composition Components are created, and these are itera-
tively broken down to smaller components. At the leaves of the hierarchy the VFB
Atomic Software Component are defined. Note that the activity can be even
finished with empty VFB Composition Components, allowing the detailing of
the further structure at a later stage. c(RS_METH_00002)

• [TR_METH_01058] Bottom-Up approach d If a Bottom-Up approach is used,
then the VFB Atomic Software Components are first defined, and aggre-
gated into VFB Composition Components. c(RS_METH_00002)

[TR_METH_01059] Kinds of VFB Atomic Software Components d Several spe-
cial kinds of VFB Atomic Software Components can be modeled in this activity:

• VFB Atomic Application Software Components are the core elements.
They are used to implement the feature algorithms.

• VFB Parameter Component are used to provide characteristic values, such
as calibration parameters, to software components.

• VFB Sensor Actuator Components provide the connection between phys-
ical sensors/actuators and the VFB Atomic Application Software Com-
ponents.

• ECU Abstraction Software Components can be modeled at this level as
well in oder to model the ECU input and output interfaces which are used by
sensors and actuators.

48 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

• Complex Driver Components also have to be modeled here, though their
implementation is ECU specific, because their ports need to be connected at the
VFB level.

• VFB NvBlock Software Component can be modeled at this level if applica-
tion software accesses non-volatile data via ports.

• Empty VFB Composition Components can be provided in case the detailed
structure of the desired solution is not in the scope of this activity and will be left
open to a later stage in the development.

c(RS_METH_00002)

[TR_METH_01129] Integrate Non AUTOSAR System at VFB level activity d
In addition to the components that are specified with an AUTOSAR SwComponent
Description there may be application components that are specified in other formats
because they are developed within another application domain. In-vehicle infotain-
ment components for instance are usually not developed with AUTOSAR means.
Rather, development methods and platforms such as GENIVI (http://www.genivi.org/)
are employed that address the specific needs and conditions of infotainment sys-
tem development. The integration of these components into the overall system
should be addressed as early as possible. For that purpose the Description
of a Non-AUTOSAR System must be incorporated into the VFB system descrip-
tion (VFB System). Since the non-AUTOSAR components are typically specified in
a non-AUTOSAR format their descriptions must be translated to the corresponding
AUTOSAR format (Task Translate Non-Autosar Description to Autosar
Description). Moreover, the information on the interconnection of the components
must be incorporated in order to obtain one common view of the integrated system.
The document "Integration of Franca IDL Software Component Descriptions" ([3]) de-
fines a format for a VFB Integration Connector and a translation of Franca In-
terface Definitions - that are used in GENIVI - to AUTOSAR. It can be used for the
development of a VFB description of an integrated AUTOSAR-and-GENIVI system.
c(RS_METH_00016)

[TR_METH_01149] Definition of VFB relevant safety information d In the optional
activity Define VFB Safety Information the VFB relevant safety information is
defined. Safety requirements and safety measures created at this development stage
may be detailed (refined, decomposed, allocated, mapped, etc.) later on in the process
(See chapter 2.14). c(RS_METH_00081)

After these activities are completed, the Virtual Functional Bus view of the Sys-
tem is defined. At this point, some VFB Software Component Mapping Con-
straints may already be known by design, or based on an analysis such as De-
fine VFB Timing. These can be described to provide guidance to the downstream
activities.

49 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.3.3 Workflow

Component Model Development

Data Model Development

VFB Timing Development

Develop a VFB
System Description

Overall VFB
System

VFB AUTOSAR
Standard Package Define VFB Modes

Define VFB Interfaces

Define VFB Types

Define VFB
Constants

Define VFB Composition
Component

Define VFB
Application Software
Component

Define VFB Sensor or
Actuator Component

Define VFB
Parameter
Component

Define Wrapper
Components to Integ
Legacy Software

Define Complex Drive
Component

Define ECU
Abstraction
Component

Define VFB
Variants

Define VFB Component
Constraints

Define VFB
Timing

Define VFB Top Level

Define System
View Mapping

Abstract System
Description

Define VFB NvBlock
Software Component

Integrate Non AUTOSAR
System at VFB level

Define VFB Safety
Information

 «nesting»

0..*

 «input»
 «nesting»

1..*

 «input»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «predecessor»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «predecessor»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «output»1

 «nesting»

 «nesting»

 «nesting»

Figure 2.4: Develop a VFB System Description

50 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Integrate Non AUTOSAR
System at VFB level

Define VFB
Integration
Connector

Translate Non-Autosar Description
to Autosar Description

 «predecessor»

 «nesting» «nesting»

Figure 2.5: Integrate Non AUTOSAR System at VFB level

Define Safety
Information

VFB System VFB Safety ExtensionsDefine VFB Safety
Information

 «input» «output»

Figure 2.6: Define VFB Safety Information

Activity Develop a VFB System Description
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::VFB::

Develop VFB
Brief Description This pattern describes the methodology to develop the Virtual

Functional Bus view of the System.
Description The Virtual Functional Bus (VFB) view of a System shows how the

Systems software and hardware functions interact independent of any
network topology or deployment of features across muliple ECUs. This
Activity is split into three sub-activities:

• Data Model Development

• Component Model Development

• Timing Model Development

• Integrate Non AUTOSAR System at VFB level

• Define VFB Safety Information.

Relation Type Related Element Mul. Note

51 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes Abstract System

Description
0..* The abstract System Description is an

optional input for the activity "Develop a
VFB System Description". The
VFB-related part of the Abstract System
Description can be than refined to the
concrete "Overall VFB System".
Additionally, a mapping between those
two views can be established.

Consumes VFB AUTOSAR
Standard Package

1..*

Produces Overall VFB Sys-
tem

1

Aggregates Component Model
Development

1

Aggregates Data Model Devel-
opment

1

Aggregates Define System
View Mapping

1

Aggregates Define VFB Com-
ponent Constraints

1

Aggregates Define VFB Safety
Information

1

Aggregates Define VFB Top
Level

1

Aggregates Integrate Non AUT
OSAR System at V
FB level

1

Aggregates VFB Timing Devel-
opment

1

Table 2.3: Develop a VFB System Description

Activity Data Model Development
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::VFB::

Develop VFB
Brief Description
Description
Relation Type Related Element Mul. Note
Aggregates Define VFB Con-

stants
1

Aggregates Define VFB Inter-
faces

1

Aggregates Define VFB Modes 1
Aggregates Define VFB Types 1

Table 2.4: Data Model Development

52 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Activity Component Model Development
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::VFB::

Develop VFB
Brief Description
Description
Relation Type Related Element Mul. Note
Aggregates Define Complex

Driver Component
1

Aggregates Define ECU
Abstraction Com-
ponent

1

Aggregates Define VFB Ap-
plication Software
Component

1

Aggregates Define VFB Com-
position Compo-
nent

1

Aggregates Define VFB Nv
Block Software
Component

1

Aggregates Define VFB Pa-
rameter Compo-
nent

1

Aggregates Define VFB Sen-
sor or Actuator
Component

1

Aggregates Define VFB Vari-
ants

1

Aggregates Define Wrapper
Components to
Integrate Legacy
Software

1

Table 2.5: Component Model Development

Activity VFB Timing Development
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::VFB::

Develop VFB
Brief Description
Description
Relation Type Related Element Mul. Note
Aggregates Define VFB Timing 1
Predecessor Component Model

Development
1

Predecessor Data Model Devel-
opment

1

Table 2.6: VFB Timing Development

53 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Activity Integrate Non AUTOSAR System at VFB level
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::VFB::

Develop VFB
Brief Description Incorporate the description of the non-AUTOSAR system and its

connection with the AUTOSAR system into the AUTOSAR
methodology activities.

Description Based on the description of the non-AUTOSAR system its connection
with the AUTOSAR system is defined and specified using the VFB
Integration Connector format. This is translated into an AUTOSAR
description that becomes part of the VFB system description.

Relation Type Related Element Mul. Note
Aggregates Define VFB Inte-

gration Connector
1

Aggregates Translate Non-
Autosar Descrip-
tion to Autosar
Description

1

Table 2.7: Integrate Non AUTOSAR System at VFB level

Activity Define VFB Safety Information
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::VFB::

Develop VFB
Brief Description Defines all required safety information at VFB level.
Description In this activity, the safety information at VFB level is defined. The safety

information can be refined or completed in further development phases.
Extends Define Safety Information
Relation Type Related Element Mul. Note
Consumes VFB System 1
Produces VFB Safety Exten-

sions
1

Table 2.8: Define VFB Safety Information

2.4 Develop Software Components

2.4.1 Develop an Atomic Software Component

2.4.1.1 Purpose

This Activity provides a rough outline of the creation of an Atomic Software
Component.

54 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.4.1.2 Description

[TR_METH_01060] Develop an Atomic Software Component activity d This is
the generic Activity valid for several kinds of Atomic Software Components. The
first step is to create design, including the runnables, events, interrunnable variables,
etc. Once this is complete, the contract header files can be created and the software
component can be implemented.

Optionally, the safety relevant information for the software component and all contained
elements can be defined (See chapter 2.14). If the software component is developed
as a SEooC (Safety Element out of Context) and the safety requirements are not fully
known at development time, the ASIL attribute can be set to indicate the integrity level
the component was developed for, i.e. in the development process all development
process related requirements of ISO 26262 for the specified ASIL have been applied.
c(RS_METH_00002, RS_METH_00038)

Note that the method of implementation, quality, testing, etc. are beyond the scope of
this activity.

After the component is implemented and successfully compiled, its resources are mea-
sured and stored as part of the software component description for further usage by
downstream processes.

The pattern also includes the optional tasks of creating a timing model, binding pre-
build-variants and evaluating variants, all in the scope of the atomic software compo-
nent. Note that the sequence of these optional tasks within the Activity is only one
possible example.

2.4.1.3 Workflow

Figure 2.7 shows the work breakdown assumed for this use case. The next two fig-
ures 2.9 and 2.10 show all the tasks and work products of the method library involved
in this use case.

55 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Develop an Atomic Software
Component

Evaluate Variant

Measure Component
Resources

Compile Atomic
Software
Component

Implement Atomic
Software Component

Define Software Component
Timing

Generate
Component
Prebuild Data
Set

Generate Atomic
Software Component
Contract Header Files

Define
Atomic
Software
Component
Internal
Behavior

Define SymbolProps
for Types

Define Consistency
Needs

Define Software
Component Safety
Information

 «nesting»

 «nesting»

 «nesting»

 «nesting»
 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting» «nesting»

 «nesting»

Figure 2.7: Develop an Atomic Software Component

Define Safety
Information

Overall VFB System

VFB Safety Extensions

Software
Component
Internal
Behavior

Software Component Safety
ExtensionsDefine Software

Component Safety
Information

 «input»

 «input»

 «input»

 «output»

Figure 2.8: Define Software Component Safety Information

56 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Activity Develop an Atomic Software Component
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software

Component::Develop Atomic SWC
Brief Description
Description This is the generic pattern valid for several kinds of Atomic Software

Components. The first step is to create design, including the
runnables, events, interrunnable variables, etc. Once this is complete,
the contract header files can be created and the software component
can be implemented.

Note that the method of implementation, quality, testing, etc. are
beyond the scope of this capability pattern.

After the component is implemented and successfully compiled, its
resources are measured and stored as part of the software component
for further usage by downstream processes.

The pattern also includes the optional tasks of creating a timing model,
defining safety relevant information, binding prebuild-variants and
evaluating variants, all in the scope of the Atomic Software
Component. Note that the sequence of these optional tasks within the
capability pattern is only one possible example.

Extended by Develop Application Software, Develop a Complex Driver Component,
Develop a Sensor Actuator Component, Develop an ECU Abstraction
Component, Develop an NvBlock Software Component, Optimize a
Software Component for a Specific Target

Relation Type Related Element Mul. Note
Aggregates Compile Atomic

Software Compo-
nent

1

Aggregates Define Atomic
Software Com-
ponent Internal
Behavior

1

Aggregates Define Consis-
tency Needs

1 Used for defining the consistency
relations between a group of
RunnableEntitys and a group of
DataPrototypes.

Aggregates Define Software
Component Safety
Information

1

Aggregates Define Software
Component Timing

1

Aggregates Define Symbol
Props for Types

1 Used for solving name conflicts on the
level of component or data types.

Aggregates Evaluate Variant 1
Aggregates Generate Atomic

Software Com-
ponent Contract
Header Files

1

Aggregates Generate Compo-
nent Prebuild Data
Set

1

57 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Aggregates Implement Atomic

Software Compo-
nent

1

Aggregates Measure Compo-
nent Resources

1

Table 2.9: Develop an Atomic Software Component

Activity Define Software Component Safety Information
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software

Component::Develop Atomic SWC
Brief Description Defines all required safety information for a software component.
Description
Extends Define Safety Information
Relation Type Related Element Mul. Note
Consumes Overall VFB Sys-

tem
1

Consumes Software Compo-
nent Internal Be-
havior

1

Consumes VFB Safety Exten-
sions

1

Produces Software Compo-
nent Safety Exten-
sions

1

Table 2.10: Define Software Component Safety Information

58 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Define Atomic
Software
Component Internal
Behavior

Define Software
Component Timing

Generate Atomic
Software
Component
Contract Header
Files

Generate Component
Prebuild Data Set

Predefined Variant

System Constant Value Set

Postbuild Variant Set

VFB Atomic Software
Component

VFB Types

VFB Modes

VFB AUTOSAR Standard Package

VFB Interfaces

VFB Data Type Mapping Set

Software Component Internal
Behavior

Software Component Data Ty
Header

Application Header File

Component RTE Prebuild
Configuration Header

Software
Component
Timing

Define
SymbolProps
for Types

0..1

 «input»

 «output»

1

0..*
 «input»

0..*

 «input»

1

 «input»

0..*

 «input»

0..1
 «input»

1..*

 «input»

1 «input»

0..*
 «input»

0..1
 «input»

0..1

 «input»

0..1
 «input»

 «output»

1

1

 «input»
 «output»

+symbolProps 0..*

0..1

 «input»

1

 «input»

0..*

 «input»

0..1

 «input»

0..*

 «input»

1
 «input»

 «output»

+symbolProps 0..*

 «output»

1

0..1
 «input»

1

 «input»

 «output»

1

 «output» 1

0..*
 «input»

Figure 2.9: Develop an Atomic Software Component - Detailed view with work products
(1)

59 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Implement Atomic Software
Component

Compile Atomic
Software Component

Measure Component Resources

Evaluate Variant
General Autosar Artifact

Predefined Variant

System Constant Value Set

Postbuild Variant Set

Evaluated Variant Set

Library Description

Library Header Files

Software Component Internal
Behavior

Software
Component Data
Types Header

Application Header
File

Component RTE
Prebuild
Configuration
Header

Software Component
Timing

Atomic Software
Component Source
Code

Atomic Software
Component
Implementation

Atomic Software
Component Object
Code

Standard
Header Files

1

 «input»

 «input»

0..1

 «input»

0..*

 «input»

0..*

 «input»0..1

1
 «input»

 «output»

1

 «inoutput»

1

 «input»

1..*

 «input»0..*

1

 «input»

 «output»

1

1

 «input»

0..1

 «input»

0..1

 «input»

1

 «input»

 «output» 1

 «output»

1

0..*

 «input»

0..1

 «input»

0..*

 «input»

1

 «input»

1

 «input»

1
 «input»

0..*

 «input»

Figure 2.10: Develop an Atomic Software Component - Detailed view with work products
(2)

60 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.4.2 Develop Application Software

2.4.2.1 Purpose

This Activity provides a rough outline of the creation of one or more Application
Software Components.

2.4.2.2 Description

[TR_METH_01061] Develop Application Software activity d This Activity
describes the work flow and the necessary activities in terms of the AUTOSAR method-
ology to develop one or more Application Software Components. The work
flow shall allow a more or less independent development of the software compo-
nents core functionality. These activities have to be performed for each Application
Software Component. c(RS_METH_00002, RS_METH_00006)

2.4.2.3 Workflow

The detailed work flow can be derived from the generic activity Develop an Atomic
Software Component.

Develop Application
Software

Develop an Atomic Software
Component

Delivered
Atomic
Software
Components

Overall VFB
System

 «output» 1..*

 «extends»

1 «input»

Figure 2.11: Develop Application Software

61 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Activity Develop Application Software
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software

Component::Develop Application SWC
Brief Description
Description This pattern describes the workflow and the necessary activities in

terms of the AUTOSAR methodology for the development of
application software components.

The workflow shall allow a more or less independent development of
the software component core functionality. These activities have to be
performed for every application software component.

Extends Develop an Atomic Software Component
Relation Type Related Element Mul. Note
Consumes Diagnostic System

Extract
0..*

Consumes Overall VFB Sys-
tem

1 The application software needs to refer
to the relevant elements of the overall
VFB system such as Software
Component Types, Port Interfaces and
Data Types.

Produces Delivered Atomic
Software Compo-
nents

1..*

Produces Diagnostic System
Extract

0..*

Table 2.11: Develop Application Software

2.4.3 Uses Cases for more Specialized Software Components

2.4.3.1 Purpose

These Activities provides a rough outline of the creation of more specialized com-
ponents and of the ECU specific optimization of a software component.

2.4.3.2 Description

These Activities describe the work flow and the necessary activities in terms of
the AUTOSAR methodology to develop more specialized components, which could be
partially hardware or ECU dependent.

2.4.3.3 Workflow

These work flows are for the most part derived from the generic activity Develop an
Atomic Software Component. The diagrams show the required extensions.

62 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Note the development of a Service Component does not fall into this category of use
cases, because it is for the most part generated during integration time.

For the development of a VFB Parameter Component refer to the calibration use
case 2.9.

Develop an Atomic Software
Component

Develop a Sensor Actuator
Component

 «extends»

Figure 2.12: Develop a Sensor or Actuator Component

Activity Develop a Sensor Actuator Component
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software

Component::Develop Sensor-Actuator Component
Brief Description Show how to develop a Sensor Actuator Component
Description Activities to develop a VFB Sensor Actuator Component, i.e.

component that represents a physical sensor or actuator.
Extends Develop an Atomic Software Component
Relation Type Related Element Mul. Note

Table 2.12: Develop a Sensor Actuator Component

Develop an Atomic Software
Component

Develop an ECU Abstraction
Component

Define BSW Module
Timing

Map Software Component
to BSW

 «extends» «nesting»

 «nesting»

Figure 2.13: Develop an ECU Abstraction Component

63 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Activity Develop an ECU Abstraction Component
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software

Component::Develop Ecuabs Component
Brief Description Show how to develop an ECU Abstraction Component.
Description Activities to develop an ECU Abstraction Software Component, i.e. a

component that implements an ECU Abstraction..
Extends Develop an Atomic Software Component
Relation Type Related Element Mul. Note
Aggregates Define BSW Mod-

ule Timing
1

Aggregates Map Software
Component to BS
W

1

Table 2.13: Develop an ECU Abstraction Component

Develop an Atomic Software
Component

Develop a Complex Driver
Component

Map Software Component
to BSW

 «nesting» «extends»

Figure 2.14: Develop a Complex Driver Component

Activity Develop a Complex Driver Component
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software

Component::Develop CDD Component
Brief Description Show how to develop a Complex Driver Component
Description Show how to develop a Complex Driver Component
Extends Develop an Atomic Software Component
Relation Type Related Element Mul. Note
Aggregates Map Software

Component to BS
W

1

Table 2.14: Develop a Complex Driver Component

64 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Develop an NvBlock Software
Component

Develop an Atomic Software
Component

 «extends»

Figure 2.15: Develop an NvBlock Software Component

65 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Activity Develop an NvBlock Software Component
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software

Component::Develop NvBlock Software Component
Brief Description
Description Activities to develop an NvBlock Software Component. An

NvBlockSoftwareComponentType (designed as part of activity
Component Model Development) allows the application software to
access non-volatile data in a convenient way via ports. The NvBlock
Software Component takes over the management and buffering of data
within blocks including data exchange with the underlying basic
software (NvM). Optionally, it implements special writing strategies
(e.g. cyclic writing). The development activities are similar to the
generic activity Develop an Atomic Software Component with the
following differences:

• The description of the NvBlockNeeds within a
NvBlockSoftwareComponentType is done in response to
requirements given by the application software as part of their
own NvBlockNeeds. These are part of their Software
Component Internal Behavior which means that this level must
be available when the NvBlockSoftwareComponentType is
finally designed.

• The creation of an Software Component Internal Behavior within
NvBlockSoftwareComponentType is optional. This artifact is
only needed if special writing strategies have to implemented by
the RTE or if the application software needs a direct access (via
client-server ports) to the NvM.

• The source code of an NvBlockSoftwareComponentType will be
generated during integration as part of the artifact RTE Source
Code. Therefore no source code and no Atomic Software
Component Implementation needs to be created during this
activity.

Note that if non-volatile data are accessed by the application software
via an NvBlockSoftwareComponentType, it is not required to define a
ServiceComponentType for this use case.

Extends Develop an Atomic Software Component
Relation Type Related Element Mul. Note

Table 2.15: Develop an NvBlock Software Component

66 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Develop an Atomic
Software Component

Optimize a
Software
Component for a
Specific Target

Re-compile
Component in ECU
context

Generate Component
Header File in Vendor
Mode

Generate Base
Ecu Configuration

Create Service
Component

 «extends»

 «nesting»

 «nesting»

+Compile Atomic
SWC ECU
Specific

 «nesting»

 «nesting»

Figure 2.16: Optimize Software Component

Activity Optimize a Software Component for a Specific Target
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software

Component::Optimize Software Component
Brief Description Show how to optimize a software component for a specific target.
Description In practice the integration of an application software component has to

consider some optimizations to meet performance or resource
requirements. The Component API might be much more efficient, if it
will be generated particularly adapted to the concrete ECU
configuration, e.g. via using macro definitions instead of function calls
for some RTE interaction. In fact this should not change the
Component Implementation (i.e. the C-sources).

That means now we have a different set of component headers, which
include the ECU-configuration-specific optimizations.

Note: This use case shows the typical steps needed until the
recompilation with the optimized header file can be done. It does not
show all the other steps needed for the ECU build.

Extends Develop an Atomic Software Component
Relation Type Related Element Mul. Note
Aggregates Create Service

Component
1

Aggregates Generate Base
Ecu Configuration

1

Aggregates Generate Compo-
nent Header File in
Vendor Mode

1

67 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Aggregates Re-compile Com-

ponent in ECU
context

1 Compile Atomic SWC ECU Specific:

Table 2.16: Optimize a Software Component for a Specific Target

2.5 Develop System and Subsystems

2.5.1 Overview

2.5.1.1 Purpose

The Activities to develop the artifacts on the system level include the optional
development of the abstract system (see Chapter 2.2), the development of an overall
(technical) system and optionally the refinement into one or more subsystems. The
reason for this split is, that the latter may be done by another organization, as has
already been pointed out in 2.1.2.

2.5.1.2 Description

[TR_METH_01065] Develop System and Develop Sub-System activities d Fig-
ures 2.17 and 2.18 show the main inputs and outputs of these two major activities
and how they are refined into sub-activities. Note that the activity Generate ECU
Extract and Define System Safety Information can be performed as part
of Develop System and Develop Sub-System as well. Optionally a mapping be-
tween two different system views represented by different System Descriptions
can be added (see Section 3.3.1.15) and a specification of the transformer technology
for the communication can be defined. c(RS_METH_00005, RS_METH_00002)

[TR_METH_01066] Creation of a System Extract and an ECU Extract d De-
pending on the intended work split, the System Configuration Description
produced during this activity can be used as a basis

1. to create one or more so-called System Extracts as a basis for further refine-
ment as sub-systems (see 2.5.5)

2. or to generate ECU Extracts which directly contain all relevant information to
be integrated on an ECU (see 2.5.6)

In the first case, only an outer system is defined. Based on the outer sys-
tem, one or more System Extracts can be delivered. The System Extract is
not fully decomposed and still needs to be refined before it forms the basis for the
ECU configuration. In order to distinguish between the delivered System Ex-
tracts and the refined sub-system, one or more ECU System Descriptions are
created as a basis for further refinement (See activity Create ECU System De-

68 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

scription). Atomic Software Components, additional ECUs, Networks and
the resulting communication will be added during the refinement step in the activity
Design Sub-System. c(RS_METH_00005, RS_METH_00002)

Generate System
Extract

Develop System

Design
System

Generate ECU
Extract

System
Constraint
Description

System Extract

ECU ExtractOverall VFB
System

Abstract System
Description

Define System
View Mapping

System
Configuration
Description

Design Transformer

Transformer Design
Bundle

Define System
Safety Information

1..*

 «nesting»

0..*

 «nesting»

0..*

 «input»

0..1

 «input»

0..1

 «input»

0..*

 «nesting»

0..1

 «nesting»

 «output»

1..*

0..1

 «nesting»

 «output»

0..*

 «output»

1..*

 «output»
0..*

1

 «nesting»

Figure 2.17: Structure of Activity: Develop System

Design
Sub-System

Develop Sub-System

System Extract ECU Extract

Generate ECU
Extract

Create ECU System
Description

Define System
Safety Information

 «output» 1..*

1

 «nesting»

1..*

 «nesting»

1 «input»

1..*

 «nesting»

0..1

 «nesting»

Figure 2.18: Structure of Activity: Develop Subsystem

Figure 2.19 shows how the major deliverables produced during these activities are
related and how they refer to artifacts describing the software.

[TR_METH_01067] Abstract System Description deliverable d The Ab-
stract System Description extends the general System Description. The
System View Mapping maps the different views on the system together, e.g. dif-
ferent overall VFB systems (e.g. Abstract System Description with System

69 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Configuration Description), or the overall VFB system with the VFB System
Extract description. c(RS_METH_00005, RS_METH_00002)

System

Software

System
Description

System Constraint
Description

System Configuration
Description System Extract ECU Extract

ECU Extract of
VFB System

Overall VFB
System

VFB System
Extract

System Flat Map
ECU Flat Map

Abstract System
Description

System View
Mapping

ECU System
Description

0..1

«SPEM_Aggregation»

1

«SPEM_Aggregation»

 «extends»

1

«SPEM_Aggregation»

1

«SPEM_Aggregation»

0..1

«SPEM_Aggregation»

0..1
«SPEM_Aggregation»

0..1

«SPEM_Aggregation»

1

«SPEM_Aggregation»

1

«SPEM_Aggregation»

0..1
«SPEM_Aggregation»

 «extends» «extends» «extends» «extends»

0..1

«SPEM_Aggregation»

Figure 2.19: Overview on the different roles of deliverables based on System Description

Note that all the deliverables based on the generic deliverable System Description
as well as the ECU Extract consist of ARXML files that are using the meta-model
element System as the root element, from where the other information can be traced
down.

Activity Develop System
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::

Develop System
Brief Description
Description Develop the description of an overall AUTOSAR System as a basis to

deliver System and/or ECU extracts.
Relation Type Related Element Mul. Note
Consumes Abstract System

Description
0..* The abstract System Description is an

optional input for the activity "Develop
System". Please note, that in this step
the Abstract System Description is
refined to a System Description.

70 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes Overall VFB Sys-

tem
0..1 Usually the System refers to elements of

an overall VFB descriptions. But for the
description of a legacy system, this input
might be empty.

Consumes System Constraint
Description

0..1

Produces ECU Extract 1..*
Produces System Configura-

tion Description
1..*

Produces System Extract 0..*
Produces Transformer De-

sign Bundle
0..*

Aggregates Define System
Safety Information

0..1

Aggregates Define System
View Mapping

0..1

Aggregates Design System 1
Aggregates Design Trans-

former
0..*

Aggregates Generate ECU Ex-
tract

1..*

Aggregates Generate System
Extract

0..*

Table 2.17: Develop System

Activity Develop Sub-System
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::

Develop System
Brief Description
Description Develop the description of a sub-system based on a given System

Extract.
Relation Type Related Element Mul. Note
Consumes System Extract 1
Produces ECU Extract 1..*
Aggregates Create ECU Sys-

tem Description
1

Aggregates Define System
Safety Information

0..1

Aggregates Design Sub-Sys-
tem

1..*

Aggregates Generate ECU Ex-
tract

1..*

Table 2.18: Develop Sub-System

71 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.5.2 Design System

2.5.2.1 Purpose

This Activity provides a rough outline of the design steps leading to an AUTOSAR
System Configuration Description and the system-specific part of the Ab-
stract System Description, including its topology, deployment, communication
matrix, etc.

2.5.2.2 Description

[TR_METH_01068] Inputs and Output of the Design System activity d The design
of an AUTOSAR System Configuration Description and the system-specific
part of the Abstract System Description uses input information from a Sys-
tem Constraint Description and is based on an Overall VFB System for
the software part. Optionally, the Abstract System Description that represents
the functional view on the system can be used as an input. Please note that the inputs
and output are depicted in the top-level activities which aggregates the activity Design
System.

The activity involves the creation of a Topology, ECU Resources Descrip-
tions, and the interconnection between ECU instances. c(RS_METH_00005,
RS_METH_00002, RS_METH_00078, RS_METH_00079)

[TR_METH_01069] Deployment of AUTOSAR Software Components d The
AUTOSAR Software Components defined within the VFB Top Level System Com-
position are then deployed to the ECU instances. c()

[TR_METH_01070] Description of network signals d The required network signals
are identified and a mapping is done to System Signals to implement the VFB.
System Signal Groups, are defined to keep certain signals grouped together for
consistent transmission. System Signals are then defined and form the initial input
to design the Communication. c(RS_METH_00005)

[TR_METH_01071] Description of design constraints d During this stage,
design constraints can also be defined Mapping of Software Components
to Implementations, Mapping of Software Components to ECUs, Sig-
nal Path Constraints, and Software Component Mapping Constraints.
These constraints serve many purposes including the ability for tools to use them
to optimization a system, to interface with legacy ECUs, and to ”lock” design deci-
sion between iterations. c(RS_METH_00005, RS_METH_00002, RS_METH_00041,
RS_METH_00020)

Note: The mapping of software components to implementations is optional and needed
only if those components are specifically required to be used in an ECU.

72 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.5.2.3 Workflow

Design
System

Design
Communication

 «nesting»

Figure 2.20: Structure overview: Design System

73 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Design System

Set System RootDefine Software
Component
Mapping
Constraints

Assign Top Level
Composition

Define ECU
Description

Define System
Topology

Deploy Software
Component

Generate or Adjust
System Flat Map

Derive
Communication
Needs

Define Signal Path
Constraints

Define System
Variants

Define System
Timing

Define
Communication
Matrix

Select Software
Component
Implementation

Design
Communication

Define Frames

Define Signal PDUs

Define TP

Define PDU Gateway Define RTE Fan-outDefine Network
Management

Define Signal Gateway Define Transformation
Technology

Define Secured
PDUs

Define E2E
Transformer
Technology

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»
 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

Figure 2.21: Nesting relationship: Design System

74 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Set System
Root

System
Description
Root Element

Assign Top Level
Composition

Define ECU
Description

ECU Resources
Description

Define System
Topology

Define Software
Component
Mapping
Constraints

Software
Component
Mapping
Constraints

Topology

Generate or
Adjust System
Flat Map System Flat

Map

Deploy Software
Component

Mapping of
Software
Components
to ECUs

Derive
Communication
Needs

System Signal

Data Mapping

Define Signal Path
Constraints

Signal Path
Constraints

Communication Layers

VFB Top Level
System
Composition

1

1

1

1

1

1..*

1

1

1

1

1..*
1

1

1..*

1

1

1 1

1

0..1

1

1

1..*

1

1

1..*

Figure 2.22: Detailed work flow for: Design System

75 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Activity Design System
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::

Design System
Brief Description Initial work to create a topology, map a VFB onto that topology and

determine the ECU resources each ECU needs.
Description The design of an AUTOSAR System involves the creation of a

Topology, ECU Resources Descriptions, and the interconnection
between ECU instances.

The software components defined within the VFB Top Level System
Composition are then deployed to the ECU instances.

The required network signals are identified and a mapping is done to
System Signals to implement the VFB. System Signal Groups, are
defined to keep certain signals grouped together for atomic
transmission. System Signals are then defined and form the initial input
to design the Communication Matrix.

During this stage, design constraints can also be defined (Mapping of
Software Components to Implementations, Mapping of Software
Components to ECUs, Signal Path Constraint, and Software
Component Mapping Constraint). These constraints serve many
purposes including the ability for tools to use them to optimization a
system, to interface with legacy ECUs, and to "lock" design decision
between iterations.

Notes: The mapping of software components to implementations is
optional and needed only if those components are specifically required
to be used in an ECU.

Relation Type Related Element Mul. Note
Aggregates Assign Top Level

Composition
1

Aggregates Define ECU De-
scription

1

Aggregates Define Signal Path
Constraints

1

Aggregates Define Software
Component Map-
ping Constraints

1

Aggregates Define System
Timing

1

Aggregates Define System
Topology

1

Aggregates Define System
Variants

1

Aggregates Deploy Software
Component

1

Aggregates Derive Communi-
cation Needs

1

Aggregates Design Communi-
cation

1

76 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Aggregates Generate or Adjust

System Flat Map
1

Aggregates Select Software
Component Imple-
mentation

1

Aggregates Set System Root 1

Table 2.19: Design System

Activity Design Communication
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::

Design System
Brief Description
Description Describe all communication layers. and define the mapping of the

triggering elements within the Physical Channels to the communication
connector ports for the individual ECUs.

Because the triggering elements are aggregated as splitable elements
within the Physical Channels it is possible to define them in an artifact
separated from the Topology.

Relation Type Related Element Mul. Note
Aggregates Define Communi-

cation Matrix
1

Aggregates Define E2E Trans-
former Technology

1

Aggregates Define Frames 1
Aggregates Define Network

Management
1

Aggregates Define PDU Gate-
way

1

Aggregates Define RTE Fan-
out

1

Aggregates Define Secured P
DUs

1

Aggregates Define Signal
Gateway

1

Aggregates Define Signal PD
Us

1

Aggregates Define TP 1
Aggregates Define Transforma-

tion Technology
1

Table 2.20: Design Communication

77 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.5.3 Generate System Extract

2.5.3.1 Purpose

This Activity provides an extract of the system description for a specific sub-system.

2.5.3.2 Description

Generate a System Extract which is a basis to develop a sub-system.

2.5.3.3 Workflow

Generate System ExtractSystem
Configuration
Description

System Extract

Detailed tasks are not
modeled.

1 «input» «output» 0..*

Figure 2.23: Generate the System Extract

The detailed tasks of Generate System Extract are not modeled since they are
considered as trivial - it just means to reduce the content of the input description to the
subsystem in question.

Activity Generate System Extract
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::

Generate System Extract
Brief Description
Description Generate for further development, a System Extract which represents

the description of a part of the system (sub-system). This allows a start
of work on ECU’s even if the system is not completely described.

Relation Type Related Element Mul. Note
Consumes System Configura-

tion Description
1

Produces System Extract 0..*

Table 2.21: Generate System Extract

2.5.4 Create ECU System Description

2.5.4.1 Purpose

Based on a System Extract, this Activity creates ECU System Descrip-
tions which are refined during the design of the sub-system.

78 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.5.4.2 Description

[TR_METH_01125] Create ECU System Description activity d Based on the
delivered System Extract, the receiving organization creates one or more ECU De-
scriptions. The ECU Descriptions are used for designing the sub-system arti-
facts (See activity Design Sub-System). c(RS_METH_00002, RS_METH_00005,
RS_METH_00077)

From the methodological point of view there are two choices for creating the ECU Sys-
tem Description.

[TR_METH_01126] Using the System Extract as the structural basis for the
ECU development d The System Extract is taken as the structural basis for the
ECU development. In this case the System Extract becomes an ECU System
Description. c(RS_METH_00002, RS_METH_00005, RS_METH_00077)

[TR_METH_01127] Creating a new structure for the ECU development d A new
structure is created as a basis for the ECU development. The newly created ECU
System Description is mapped to the initial System Extract. For this purpose
the task Define System View Mapping creates the initial System View Map-
ping artifact which is refined during the sub-system design. c(RS_METH_00002,
RS_METH_00005, RS_METH_00077)

2.5.4.3 Workflow

System Extract ECU System Description

Define System View
Mapping

Create ECU System
Description

1

 «input»

0..*

 «nesting»

 «output»

1..*

Figure 2.24: Create ECU System Description

79 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Activity Create ECU System Description
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::

Create ECU System Description
Brief Description
Description During the Develop Sub-System activity the supplier refines the

received System Extract so that valid ECU Extracts can be generated.
The refinement of the System Extract is done using the ECU System
Description. Therefore, this activity creates one or more ECU System
Descriptions based on the System Extract. The sub-system artifacts
are designed in the ECU System Description during the activity
"Design Sub-System".

From the methodological point of view there are two choices for
creating the ECU System Description.

1) The System Extract is taken as the structural basis for the ECU
development. In this case the System Extract becomes an ECU
System Description.

2) A new structure is created as a basis for the ECU development. The
newly created ECU System Description is mapped to the initial System
Extract. For this purpose the task "Define System View Mapping" is
performed.

Relation Type Related Element Mul. Note
Consumes System Extract 1
Produces ECU System De-

scription
1..*

Aggregates Define System
View Mapping

0..*

Table 2.22: Create ECU System Description

2.5.5 Design Sub-System

2.5.5.1 Purpose

This Activity details a given ECU System Description (previously created from
the delivered System Extract) with additional ECUs and networks.

2.5.5.2 Description

[TR_METH_01075] Design Sub-System activity d Based on the ECU System
Description, the description of a sub-system is defined. c(RS_METH_00002,
RS_METH_00005)

[TR_METH_01076] Collaboration between different organizations d Additionally,
the software component structure of the System Extracts, delivered by the primary
organization can be transformed into a different structure by the receiving organization

80 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

(ECU System Description). In this case the System Extract of the primary or-
ganization can be considered as a requirement and the sub-system of the receiving
organization can be seen as a solution which has to fulfill the delivered requirements.
Thus here again a mapping activity can be defined which maps the newly introduced
solution sub-system to the provided requirement sub-system from the primary organi-
zation. c(RS_METH_00002, RS_METH_00005, RS_METH_00077)

[TR_METH_01077] Transformation changes during the Design Sub-System ac-
tivity d During this transformation the hierarchical SWC-structure can be changed,
some SWCs can be replaced by other SWCs, some can remain in the resulting view.
c(RS_METH_00002, RS_METH_00005)

[TR_METH_01078] Mapping of different views d The different views are mapped by
the System View Mapping. c(RS_METH_00002, RS_METH_00005)

Typical use-cases for this transformation steps are:

• [TR_METH_01079] Use Case: Substitution of existing components d The
secondary organization has an existing software architecture. By software shar-
ing some of the existing components are substituted by the delivered soft-
ware components. c(RS_METH_00002, RS_METH_00005, RS_METH_00077,
RS_METH_00079)

• [TR_METH_01080] Use Case: Mapping of requirements to the solution d
The secondary organization develops one ECU for different primary organiza-
tions and therefore has to map the requirements of different primary organiza-
tions to its solution. c(RS_METH_00002, RS_METH_00005, RS_METH_00077,
RS_METH_00079)

• [TR_METH_01081] Use Case: Reorganization of the software structure
d The primary organization delivers a sub-system description which defines
one ECU. The secondary organization decides to use two ECUs. There-
fore the software structure has to be reorganized by the second organization.
c(RS_METH_00002, RS_METH_00005, RS_METH_00077, RS_METH_00079)

• [TR_METH_01082] Use Case: Description of changes between different ver-
sions of System Descriptions d Additionally the mapping can be used to for-
mally describe changes between different versions of System Descriptions.
c(RS_METH_00002, RS_METH_00005, RS_METH_00077, RS_METH_00079)

Finally all Atomic Software Components in the resulting sub-system scope are
included in this sub-system description.

81 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.5.5.3 Workflow

Design Sub-System

ECU System Description

1

 «input» «output»

1

Figure 2.25: Overview: Design Sub-System

Note that the ECU System Description appears as input and output of this Activity
because it is refined.

As the detailed work flow for this Activity uses the same elements from the methodology
library as the one described in 2.5.2.3, the breakdown into tasks is not modeled here.

Activity Design Sub-System
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::

Design Sub-System
Brief Description
Description Design the sub-system artifacts based on an ECU System Description

which was previously created from the delivered ECU Extract. It
consists of the same tasks as the activity Design System.

The description must be completed down to the ECU level, so that valid
ECU extracts can be generated.

Relation Type Related Element Mul. Note
Consumes ECU System De-

scription
1 System Extract as generated from the

outer system.
Produces ECU System De-

scription
1 System Extract refined during design of

the corresponding sub-system with
elements needed to generate ECU
Extract(s).

Table 2.23: Design Sub-System

2.5.6 Generate ECU Extract

2.5.6.1 Purpose

This Activity provides an extract of the System description for setting up an ECU
Configuration for specific ECU.

82 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.5.6.2 Description

Generate an ECU Extract basis for setting up the ECU configuration and further
development on ECU level.

2.5.6.3 Workflow

Generate
ECU Extract

Extract ECU
Topology

Generate or Adjust
ECU Flat Map

ECU Flat Map

Flatten Software
Composition

ECU Extract of
Topology

Extract the ECU
Communication

ECU Extract

ECU Extract for
Communication

System
Configuration
Description System Extract

ECU Extract of
Data Mapping

ECU Extract of VFB
System

ECU System
Description

Extract ECU Rapid
Prototyping Scenario

ECU Extract of Rapid
Prototyping Scenario

1

 «input»

 «output» 1..*

0..1

 «input»

0..1

 «input»

 «nesting»

 «nesting»

0..1

 «input»

 «nesting»

 «nesting»

 «nesting»

 «output»
1

1

 «inoutput»
1

 «output»

1

 «output»

1

 «output»

1

 «output»

1..*

Figure 2.26: Generate the ECU Extract

Activity Generate ECU Extract
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::

Generate Ecu Extract
Brief Description Generate the ECU Extract out of the System Description in order to be

delivered for integration for further development on ECU level.
Description Generate the ECU extract which is a basis for setting up the ECU

configuration and further development on ECU level.

It can be generated either from a full system (System Configuration
Description), a System Extract or a ECU System Description.

Relation Type Related Element Mul. Note

83 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes ECU System De-

scription
0..1

Consumes System Configura-
tion Description

0..1

Consumes System Extract 0..1
Produces ECU Extract 1
Aggregates Extract ECU Rapid

Prototyping Sce-
nario

1

Aggregates Extract ECU Topol-
ogy

1

Aggregates Extract the ECU
Communication

1

Aggregates Flatten Software
Composition

1

Aggregates Generate or Adjust
ECU Flat Map

1

Predecessor Define Rapid Pro-
totyping Scenario

1

Table 2.24: Generate ECU Extract

2.5.7 Design Transformer

2.5.7.1 Purpose

This Activity specifies the functional aspects of a transformation technology used
for the serialization of selected system signals.

2.5.7.2 Description

Transformer enable AUTOSAR systems to use a data transformation mechanism to
linearize and transform data. They can be concatenated to transformer chains and
are executed by the RTE for inter-ECU communication which is configured to be trans-
formed.

The transformation technology (which transformer should be used for which commu-
nication) is defined in the context of the Design Communication activity (task De-
fine Transformation Technology). For the transformation of communication
data standardized transformers (e.g. SOME/IP transformer) or custom transformers
can be used.

[TR_METH_01130] Design Transformer activity d In case of custom transformers
the Design Transformer activity has to be performed to define the functional spec-
ification of the custom transformation mechanism (Transformer Specification)
and the corresponding configuration parameters (BSW Module Vendor- Specific

84 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Configuration Parameter Definition). The Design Transformer activity
is done during the Develop System activity because it produces a definition what a
transformer does and therefore significantly affects the corresponding communication.
c(RS_METH_00005, RS_METH_00077)

The specified transformer is then implemented (Develop Basic Software) and
can be used in the Design Communication activity. There, inter-ECU communi-
cation can be marked for being transformed.

[TR_METH_01131] Output of Design Transformer activity d The Design
Transformer activity shall result in a set of complete and unambiguous written
Transformer Specifications and the corresponding BSW Module Vendor-
Specific Configuration Parameter Definition. A specification of a spe-
cific transformer shall adhere to [6, SWS BSW General] and [7, ASWS Transformer
General].

A specification of a transformer shall contain:

• Functional specification of the transformer. See [7, ASWS Transformer General]
for details. The most important issue are:

– Specification of the transformers output

– Transformer class

– Transformer errors

• Definition of Development Errors, Production Errors and Extended Production
Errors.

• Transformer APIs

• Extension of the transformer EcuC if necessary for the specific transformer

c(RS_METH_00077)

2.5.7.3 Workflow

Design Transformer

Create Transformer SpecificationDefine Vendor Specific
Module Definition

Transformer Design Bundle

 «nesting» «nesting»

 «output» 1

Figure 2.27: Design Transformer activity

85 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Activity Design Transformer
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::

Design Transformer
Brief Description
Description In this activity the functional specification of the custom transformer

module is created and the corresponding parameter definition is
specified. The creation of the functional specification of the
Transformer can be seen as a part of the communication design.

This activity is performed only if a custom transformer for the
communication is required.

Relation Type Related Element Mul. Note
Produces Transformer De-

sign Bundle
1

Aggregates Create Trans-
former Specifica-
tion

1

Aggregates Define Vendor
Specific Module
Definition

1

Table 2.25: Design Transformer

2.5.8 Define System Safety Information

2.5.8.1 Purpose

This Activity allows specifying safety information at system level.

2.5.8.2 Description

In this activity, the safety information at system or sub-system level is defined. Obvi-
ously, the safety information defined in previous development stages is detailed. (For
detailed tasks see chapter 2.14).

86 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.5.8.3 Workflow

Define System
Safety Information

Define Safety
Information

System Description

VFB Safety Extensions

Software Component Safety
Extensions

System Safety Extensions

 «output»

 «input»

 «input»

 «input»

Figure 2.28: Define System Safety Information

Activity Define System Safety Information
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::

Develop System
Brief Description Defines all required safety information at system level.
Description In this activity, the safety information at system level is defined. The

safety information can be refined or completed in further development
phases.

Extends Define Safety Information
Relation Type Related Element Mul. Note
Consumes Software Compo-

nent Safety Exten-
sions

1

Consumes System Descrip-
tion

1

Consumes VFB Safety Exten-
sions

1

Produces System Safety Ex-
tensions

1

Table 2.26: Define System Safety Information

87 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.6 Develop Basic Software

2.6.1 Overview

2.6.1.1 Purpose

This Activity provides an overall use case how to the develop AUTOSAR Basic
Software.

2.6.1.2 Description

2.6.1.3 Workflow

Design Basic
Software

Develop BSW
Module

Develop Basic
Software

Define BSW Types

Define BSW Entries

Define BSW
Interfaces

Define BSW
Behavior

Generate
BSWM Contract
Header Files

Implement a BSW
Module

Define BSW
Module Timing

Compile BSW
Core Code

Generate BSW
Module Prebuild
Data Set

Define Vendor Specific
Module Definition

Develop BSW Module
Generator

BSW Module
Delivered Bundle

BSW Standard
Package

Transformer Design
Bundle

 «nesting»1

 «input»

0..*

 «input»

1

 «nesting»

 «output»

1..*

1..*

 «nesting»

 «nesting»

 «nesting»

 «predecessor»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

Figure 2.29: Nesting relationship: Develop Basic Software

88 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Activity Develop Basic Software
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::BS

W::develop_bsw
Brief Description
Description Describes the overall activities to develop Basic Software, starting from

the design down to delivery of modules.

In case of custom transformer module development, the Transformer
Design Bundle containing the functional specification and the
parameter definition is taken as a basis for all required activities.

Relation Type Related Element Mul. Note
Consumes BSW Standard

Package
1

Consumes Diagnostic System
Extract

0..*

Consumes Transformer De-
sign Bundle

0..*

Produces BSW Module De-
livered Bundle

1..*

Produces Diagnostic System
Extract

0..*

Aggregates Design Basic Soft-
ware

1

Aggregates Develop BSW
Module

1..*

Table 2.27: Develop Basic Software

It consists of two parts:

• Design Basic Software

• Develop BSW Module

2.6.2 Design BSW

2.6.2.1 Purpose

This Activity provides a rough outline for the Basic Software design for an ECU or
a set of ECUs.

2.6.2.2 Description

[TR_METH_01083] Design Basic Software activity d Design the Basic Soft-
ware for an ECU or a set of ECUs. This shall result in a set of complete and
unambiguous Basic Software Module Descriptions. c(RS_METH_00003,
RS_METH_00004)

89 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Note that existing descriptions, especially standardized ones, can be reused, eventu-
ally setting only optional elements or user specific extension.

[TR_METH_01084] Separation of design and development of basic software d
This Activity is conceptually separated from Develop BSW Module, because it
might be performed by a Basic Software Designer responsible for the com-
plete Basic Software Design on a given ECU, which may be different in general from
the Basic Software Module Developer who develops or delivers the single modules.
c(RS_METH_00003, RS_METH_00018)

2.6.2.3 Workflow

Design Basic Software

Define BSW Types

Define BSW Entries Define BSW Interfaces
Define Vendor Specific
Module Definition

BSW Standard
Package

BSW Design Bundle

 «output» 1..*1 «input»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

Figure 2.30: Nesting Relationship : Design Basic Software

90 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Define BSW
Types

Define BSW Entries

Define BSW
Interfaces

Basic Software
Entries

BSW Types

Basic Software
Module Description

ECU Resources
Description

Define Vendor Specific
Module Definition

BSW Module Vendor-
Specific Configuration
Parameter Definition

AUTOSAR Standardized ECU
Configuration Parameter Definition

BSW Standard Package

 «output» 1

1

«SPEM_Aggregation»

 «input»

0..1

 «input»

0..1

 «input»

0..1

 «inoutput»

 «input»

1

 «input»

1

 «output» 1

 «input»0..1

1 «input»

 «output» 1

 «input»

1

Figure 2.31: Design Basic Software

Activity Design Basic Software
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::BS

W::develop_bsw
Brief Description Design the Basic Software for an ECU or a set of ECUs.
Description Design the Basic Software for an ECU or a set of ECUs. This shall

result in a set of complete and unambiguous Basic Software Module
Description. Note that existing descriptions, especially standardized
ones, can be reused, eventually setting only optional elements or user
specific extension.

This activity is conceptually separated from the activity Develop Basic
Software Module, because it might be performed by a Basic Software
Designer responsible for the complete Basic Software Design on a
given ECU, which may be different (in general) from the Basic Software
Module Developer who develops and/or delivers the single modules.

Relation Type Related Element Mul. Note
Consumes BSW Standard

Package
1

Produces BSW Design Bun-
dle

1..*

Aggregates Define BSW En-
tries

1

Aggregates Define BSW Inter-
faces

1

91 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Aggregates Define BSW Types 1
Aggregates Define Vendor

Specific Module
Definition

1

Table 2.28: Design Basic Software

2.6.3 Develop BSW Module

2.6.3.1 Purpose

This Activity provides a rough outline for a single Basic Software module or cluster
development prior to an ECU integration.

2.6.3.2 Description

[TR_METH_01085] Develop BSW Module activity d To develop the core code (i.e.
the code not generated during integration) of a single BSW module or cluster prior
to ECU integration. This Activity focuses on the tasks which are common for
most BSW modules. It is not valid for those modules (RTE, BSW Scheduler) which
are completely generated at integration time. c(RS_METH_00003, RS_METH_00006,
RS_METH_00038)

92 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.6.3.3 Workflow

Develop BSW Module

Define BSW
Behavior

Define BSW
Module Timing

Generate
BSWM Contract
Header Files Implement a BSW

Module

Compile BSW
Core Code

Generate BSW
Module Prebuild
Data Set

Develop BSW Module
Generator

BSW Standard
Package

BSW Design Bundle

BSW Module
Delivered Bundle

 «nesting» «nesting»

 «nesting»

 «nesting»
 «nesting»

 «nesting»

 «nesting»

1 «input»

1..*

 «input»

 «output» 1

Figure 2.32: Nesting relationship : Develop Basic Software Module

93 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Define BSW
Behavior

Define BSW
Module Timing

Generate
BSWM
Contract
Header Files

Implement a
BSW Module

Compile BSW
Core Code

Generate BSW
Module Prebuild
Data Set

Basic Software
Module Internal
Behavior

Basic Software
Module Core
Header

Basic Software Module
Core Source Code

Basic Software
Module Object
Code

Basic Software
Module Interl ink
Header

BSW RTE
Prebuild
Configuration
Header

Basic Software
Module
Implementation
Description

Basic
Software
Module
Description

Basic Software
Module Timing

Develop BSW Module
Generator

BSW Module
Generator

BSW
Standard
Package

BSW Module Vendor-
Specific Configuration
Parameter Definition

Build Action Manifest

0..1

1

 «output»

1

1

1

 «input»
1

1

 «output»

0..1

 «output»

1

 «output»

1

1

 «input»
1

1

1

1

1

0..1

1

1

1

1

0..1 «input»

 «input»

 «output»

1

0..*
 «input»

1

 «output»
1

 «input»

0..1

 «input»

0..1

 «input»

0..1

 «input»

0..1

 «output» 1

1

 «input»

Figure 2.33: Develop Basic Software Module

94 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Activity Develop BSW Module
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::BS

W::develop_bsw
Brief Description Develop a single BSW module or cluster prior to ECU integration.
Description Develop a single BSW module or cluster prior to ECU integration.

To develop the core code (i.e. the code not generated during
integration) of a single BSW module or cluster prior to ECU integration
including vendor specific configuration parameters and module
generators. This activity focuses on the tasks which are common for
most BSW modules. It is not valid for those modules (RTE, BSW
Scheduler) which are completely generated at integration time.

Relation Type Related Element Mul. Note
Consumes BSW Design Bun-

dle
1..*

Consumes BSW Standard
Package

1

Produces BSW Module De-
livered Bundle

1

Aggregates Compile BSW
Core Code

1

Aggregates Define BSW Be-
havior

1

Aggregates Define BSW Mod-
ule Timing

1

Aggregates Develop BSW
Module Generator

1

Aggregates Generate BSW
Module Prebuild
Data Set

1

Aggregates Generate BSWM
Contract Header
Files

1

Aggregates Implement a BSW
Module

1

Predecessor Design Basic Soft-
ware

1

Predecessor Design Basic Soft-
ware

1

Table 2.29: Develop BSW Module

2.7 Integrate Software for ECU

2.7.1 Description

In this chapter, the integration for an AUTOSAR ECU is described. In the AUTOSAR
sense an ECU means a microcontroller plus peripherals and the according software/-
configuration. Therefore, each microcontroller requires its own ECU Configuration.

95 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

[TR_METH_01086] Integrate Software for ECU activity d The main activities
include configuring and/or generating the BSW modules (including the RTE) and build-
ing the executable. The BSW configuration can be done during different steps of devel-
opment. The detailed use cases for these different ways of configuration are introduced
later in the chapter, thanks to the Configuration Classes definition :

• Pre-compile time

• Link time

• Post-build time

c(RS_METH_00004, RS_METH_00062)

2.7.2 Overview

2.7.2.1 Purpose

This Activity is showing the high level view how to integrate AUTOSAR Software for
an ECU.

2.7.2.2 Description

[TR_METH_01087] Scope of Integrate Software for ECU activity d The de-
velopment of an AUTOSAR ECU consists of four main activities:

• Prepare ECU Configuration

• Configure BSW and RTE

• Generate BSW and RTE

• Build Executable

In addition, the optional activity Model ECU Timing is shown. The ECU timing
model depends on ECU configuration details (BSW and RTE), but the results shall
help to optimize the configuration in an iterative approach. c(RS_METH_00005,
RS_METH_00003, RS_METH_00004, RS_METH_00002, RS_METH_00006)

The ECU configuration plays a significant role during the integration of the soft-
ware for an ECU. The relevant workflow is depicted in figure 2.351. All three activi-
ties (Prepare ECU Configuration, Configure BSW and RTE, Generate BSW
and RTE) use the work product ECU Configuration Values which contains (i.e.
references) all the configuration information for all BSW modules on the ECU. In or-
der to better understand the three different activities an introduction to configuration
classes is given in chapter 2.7.9.

1In order to be more comprehensible, this figure hides some outputs of the activity Generate BSW
and RTE. For more details see the outputs of all aggregated tasks.

96 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

One can measure resources used by the various BSW modules and applications and
save that information within the Basic Software Module Implementation De-
scription or Atomic Software Component Implementation.

One can also generate an A2L File processing the Generate A2L task at this point.

2.7.2.2.1 Inputs to ECU Configuration

[TR_METH_01114] Input sources for ECU Configuration d ECU Configuration has
two input sources (see figure 2.35). First of all, all configuration that must be agreed
across ECUs is defined in the System Configuration, which results in a System
Configuration Description (and the resulting ECU Extract for the individual
ECUs).

Secondly, the ECU BSW is built using BSW modules. The specifics of these module im-
plementation are defined in the BSW Module descriptions covered by the BSW Module
Delivered Bundle. c(RS_METH_00003, RS_METH_00004, RS_METH_00005,
RS_METH_00006)

The latter is described in [8] in more detail. The concept of the ECU Extract is
depicted below:

ECU Extract

ECU Configuration can only be started once a plausible System Configuration
Description and the corresponding ECU Extract has been generated (see fig-
ure 2.35). Details on the System Configuration Description can be found
in [9].

The System Configuration Description contains all relevant system-wide con-
figuration, such as

• ECUs present in the system

• Communication systems interconnecting those ECUs and their configuration

• Communication matrices (frames sent and received) for those communication
systems

• Definition of Software Components with their ports and interfaces and connec-
tions (defined in the SWC Description and referenced in the System Configu-
ration Description).

• Mapping of SWCs to ECUs

The ECU Extract is a description in the same format as the System Configura-
tion Description, but with only those elements included that are relevant for the
configuration of one specific ECU.

97 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.7.2.2.2 ECU Configuration Value description

The ECU Extract only defines the configuration elements that must be agreed be-
tween ECUs. In order to generate a working executable that runs on the ECU, much
more configuration information must be provided.

The remaining part of the configuration is about configuring all BSW modules within the
ECU. Typical BSW modules within an ECU can be: RTE, Com, Can, OS, NVRAM etc.
There are also dependencies between BSW modules to consider when configuring the
ECU.

When the configuration is done, the generation of configuration data takes place. I.e.
there are both configuration editors and configuration generators involved in the pro-
cess.

In order to obtain consistency within the overall configuration of the ECU, AUTOSAR
has defined a single format, the ECU Configuration Value description to be used for
all BSW modules within an ECU. Both configuration editors and configuration gen-
erators are working toward ECU Configuration Value descriptions. In the AUTOSAR
Methodology the ECU Configuration Value descriptions is represented by the artifact
ECU Configuration Values.

[TR_METH_01116] ECU Configuration Value description contains the configura-
tion of all BSW modules in a single ECU d This one description (ECU Configura-
tion Values) collects the complete configuration of BSW modules in a single ECU.
Each module generator may then extract the subset of configuration data it needs from
that single format. c(RS_METH_00004)

98 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.7.2.3 Workflow

Integrate Software
for ECU

Prepare ECU Configuration

Configure BSW and RTE

Model ECU Timing

Generate BSW and RTE

Build Executable

ECU Software Delivered

ECU Extract
Delivered Atomic Software
Components

BSW Module
Delivered Bundle

Diagnostic ECU
Extract

Update ECU Configuration

 «nesting»

 «nesting»

 «nesting»

0..1

 «input»

1..*

 «input»

 «nesting»

 «nesting»

 «nesting»

1..*

 «input»

 «output»

1

1

 «input»

Figure 2.34: Integrate Software for ECU Overview

ECU Extract Prepare ECU
Configuration

Generate BSW and
RTE

Configure BSW and RTE

BSW Module
Delivered Bundle

ECU
Configuration
Values

BSW Module
Configuration Data
Source Code

BSW Module
Configuration
Header File

RTE Source
Code

 «output»

1

 «output»

1

 «output»

1

 «inoutput»

1

1

 «input»
1..*

 «input»

1 «input»

 «output»

1

Figure 2.35: ECU Configuration Overview

99 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Activity Integrate Software for ECU
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::

Integrate Software for ECU
Brief Description
Description This activity contains all typical sub-activities required to integrate the

software components and modules on an AUTOSAR ECU.

ECU in this context means processor, so if an electronic control unit
consists of several processors, one "ECU Delivered" will be needed for
each processor.

Relation Type Related Element Mul. Note
Consumes BSW Module De-

livered Bundle
1..*

Consumes Delivered Atomic
Software Compo-
nents

1..*

Consumes Diagnostic ECU
Extract

0..1 complete DE:

Consumes ECU Extract 1
Produces ECU Software De-

livered
1

Aggregates Build Executable 1
Aggregates Configure BSW

and RTE
1

Aggregates Generate BSW
and RTE

1

Aggregates Model ECU Timing 1
Aggregates Prepare ECU Con-

figuration
1

Aggregates Update ECU Con-
figuration

1

Table 2.30: Integrate Software for ECU

2.7.3 Prepare ECU Configuration

2.7.3.1 Description

[TR_METH_01088] Prepare ECU Configuration activity d During the Prepare
ECU Configuration activity, the information available in ECU Extract for the spe-
cific ECU is extended by implementing the Service Needs required by the Soft-
ware Components and BSW Modules and by including their initial configurations as
provided in the BSW Module Preconfigured Configuration or BSW Module
Recommended Configuration. The result of this activity is the base ECU Con-
figuration.

In addition, the BSW Module Vendor- Specific Configuration Parameter
Definition, which defines all possible configuration parameters and their struc-
ture, is incorporated into the ECU Configuration. This is necessary because the

100 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

output ECU Configuration has a flexible structure which does not define a fixed
number of configuration parameters a priori. c(RS_METH_00005, RS_METH_00003,
RS_METH_00004, RS_METH_00002)

[TR_METH_01117] BSW implementation shall be chosen for each BSW module
that is present in the ECU d For each BSW module that shall be present in the
ECU, the implementation must be chosen. This is done by referencing the BSW Mod-
ule description delivered with the BSW module (BSW Module Delivered Bundle).
c(RS_METH_00003, RS_METH_00004)

The rules that must be followed when building the base ECU Configuration Value
description are available in [10] chapter 4.2.

2.7.3.2 Workflow

Prepare ECU
Configuration

Define
Integration
Variant

Generate Base
Ecu Configuration

ECU Configuration
Values

ECU Extract

Evaluated Variant Set

Postbuild Variant
Set

Predefined Variant

Diagnostic ECU
Extract

1

 «input»

0..1

 «input»

1
 «input»

 «nesting»

 «nesting»

 «output»

1

0..1

 «input»

1

 «input»

 «inoutput»

0..*

 «output»

1

 «output»

0..1

Figure 2.36: Prepare ECU Configuration

Activity Prepare ECU Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::

Integrate Software for ECU
Brief Description
Description Initial actions required to create the initial ECU Configuration.
Relation Type Related Element Mul. Note
Consumes BSW Module De-

livered Bundle
1..*

101 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes Diagnostic ECU

Extract
0..1

Consumes ECU Extract 1
Produces ECU Configuration

Values
1

Aggregates Define Integration
Variant

1

Aggregates Generate Base
Ecu Configuration

1

Predecessor Refine Rapid Pro-
totyping Scenario

1

Table 2.31: Prepare ECU Configuration

2.7.4 Configure BSW and RTE

2.7.4.1 Description

[TR_METH_01089] Configure BSW and RTE activity d Once there is a base ECU
Configuration, the complete configuration can be performed. This is mainly editing
work on the ECU Configuration which is typically supported by an editing tool. In
practice this will require iterations and/or parallel work to configure the RTE and all par-
ticipating BSW modules. c(RS_METH_00003, RS_METH_00004, RS_METH_00020)

The methodology does not prescribe a certain order of these configuration steps. The
ECU Configuration description (e.g. ECU Configuration Values) which was
produced by one activity can be read by another activity (e.g. Configure RTE gener-
ates a description and Configure Com reads this). Usually the configuration activities
for the BSW modules (e.g. COM and OS) read and write the ECU Configuration.

[TR_METH_01090] Configure RTE task d The Configure RTE task is more com-
plex as this additionally needs all the Atomic Software Component Implemen-
tations required for that ECU. Whenever these change, e.g. because software
components have been moved to or from other ECUs, or simply another implemen-
tation of a software component has been selected, the Configure RTE task must
be repeated as well. c(RS_METH_00005, RS_METH_00003, RS_METH_00004,
RS_METH_00002)

[TR_METH_01091] Configure Debug task d Finally the Configure Debug task
can be completed. Since this configuration depends on previous configura-
tion results, it should be completed last. c(RS_METH_00005, RS_METH_00003,
RS_METH_00004, RS_METH_00002)

102 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.7.4.2 Workflow

Configure BSW and RTE

Configure ECUC

Configure OS

Configure RTE

Configure Watchdog
Manager

Configure Mode
Management

Configure NvM
Configure Diagnostics

Create Service
Component

Configure Com

Configure IO
Hardware abstraction

Configure MCAL

Configure
Debug

Configure
Memmap
Allocation

Connect Service Component

Configure Transformer

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»
 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

Figure 2.37: Configure BSW and RTE

Activity Configure BSW and RTE
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::

Integrate Software for ECU
Brief Description
Description All the tasks used to configure the Basic Software Modules on an ECU.
Relation Type Related Element Mul. Note
Aggregates Configure Com 1
Aggregates Configure Debug 1
Aggregates Configure Diag-

nostics
1

Aggregates Configure ECUC 1
Aggregates Configure IO Hard-

ware abstraction
1

Aggregates Configure MCAL 1

103 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Aggregates Configure

Memmap Allo-
cation

1

Aggregates Configure Mode
Management

1

Aggregates Configure NvM 1 Since the configuration of the DEM
usually has impact on the data to be
stored in NvM, the task Configure
Diagnostics is assumed to precede the
task Configure NvM.

Aggregates Configure OS 1
Aggregates Configure RTE 1
Aggregates Configure Trans-

former
1

Aggregates Configure Watch-
dog Manager

1

Aggregates Connect Service
Component

1

Aggregates Create Service
Component

1

Predecessor Prepare ECU Con-
figuration

1

In/out ECU Configuration
Values

1

Table 2.32: Configure BSW and RTE

2.7.5 Update ECU Configuration

2.7.5.1 Description

In a post-build scenario, there are two loadable files generated in the end - one of
them containing the application software, basic software and the pre-compile and link
time configuration of the basic software (referred to as ECU Executable) and the
other one containing only the post-build time configuration of the basic software (BSW
Module Configuration Data Loadable to ECU Memory). These two load-
able files represent the initial configuration. This initial configuration can be updated
in post-build time by generating two new loadable files. In this update, the ECU Exe-
cutable is not modified.

[TR_METH_01151] Update ECU Configuration activity d The update of the BSW
Module Configuration Data Loadable to ECU Memory is usually done by
importing the updated EcuExtract containing the needed post-build updates to the
ECU configuration tool which already contains the initial ECU configuration. Based
on these updates in the EcuExtract and everything else from the initial ECU configura-
tion, an updated ECU configuration shall be created (therefore we have both input and

104 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

output relations between the ECU Configuration Values and the Update ECU
Configuration activity). c(RS_METH_00004, RS_METH_00062)

2.7.5.2 Workflow

Generate Updated ECU
Configuration

Update ECU
Configuration

Define
Integration
Variant

Evaluated Variant Set

Postbuild Variant
Set

Predefined Variant

ECU Extract

Diagnostic ECU
Extract

ECU Configuration
Values

 «inoutput»

1

 «output»

1

 «inoutput»

0..*

 «output»

0..1

1

 «input»

1

 «input»
 «nesting»

0..1

 «input»

 «nesting»

0..1 «input»

1
 «input»

Figure 2.38: Update ECU Configuration

Activity Update ECU Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::

Integrate Software for ECU
Brief Description Tasks required to create the updated ECU Configuration.
Description Tasks required to create the updated ECU Configuration.
Relation Type Related Element Mul. Note
Consumes Diagnostic ECU

Extract
0..1

Consumes ECU Extract 1
Aggregates Define Integration

Variant
1

Aggregates Generate Updated
ECU Configuration

1

Table 2.33: Update ECU Configuration

105 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.7.6 Model ECU Timing

2.7.6.1 Workflow

Model ECU
Timing

Define ECU
Timing

ECU Timing

ECU Extract

Basic Software
Module Timing

ECU Service
Connectors

ECU Extract of
System Timing

 «nesting»

0..1

«SPEM_Aggregation»

0..1

 «input»

0..1

 «input»

0..1

 «input»

1..*

 «input»

 «output»
1

Figure 2.39: Model ECU Timing

Activity Model ECU Timing
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::

Integrate Software for ECU
Brief Description
Description ECU timing model depends on ECU configuration data (BSW and

RTE) but the result of the ECU timing model shall help to optimize ECU
configuration. The relation between "Configure BSW and RTE" and
"Model ECU Timing" must be seen as an iterative work.

Relation Type Related Element Mul. Note
Aggregates Define ECU Tim-

ing
1

Predecessor Configure BSW
and RTE

1

Table 2.34: Model ECU Timing

2.7.7 Generate BSW and RTE

2.7.7.1 Description

[TR_METH_01092] Generating BSW modules, RTE, and OS source files d After
the ECU Configuration is completed, the BSW modules, RTE, and OS source

106 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

files are generated. c(RS_METH_00005, RS_METH_00003, RS_METH_00004,
RS_METH_00006)

Generation is the process of applying the tailored ECU Configuration Value de-
scription to the software modules. This can be performed in different ways, and is
dependent on the configuration classes chosen for the different modules (see 2.7.9),
and on implementers choices.

For each BSW module, a generator reads the relevant parameters from the ECU Con-
figuration Value description and creates code that implements the specified
configuration.

In this generation step, the abstract parameters of the ECU Configuration Value
description are translated to hardware and implementation-specific data structures
that fit to the implementation of the corresponding software module. The AUTOSAR
Methodology specification does not specify the generator tools in detail.

It is assumed however that generators perform error, consistency and completeness
checks on the part of the configuration they require for generation.

There are some alternative approaches when it comes to generation of configuration
data. See chapter A.1.2 in [10] for more details.

2.7.7.2 Workflow

Generate BSW
and RTE

Generate RTE

Generate OS

Generate RTE
Prebuild Dataset

Generate Local MC
Data Support

Generate SWC
Memory Mapping
Header

Generate BSW
Memory Mapping
Header

Generate BSW
Configuration Code

Generate Compiler
Configuration

 «nesting»

 «nesting»

 «nesting»
 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

Figure 2.40: Generate BSW and RTE

107 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Generate
BSW
Configuration
Code

Generate BSW
Memory Mapping
Header

Generate SWC
Memory Mapping
Header

ECU
Configuration
Values

Atomic Software
Component
Implementation

BSW Module
Configuration
Data Source
Code

BSW Module
Configuration Header
File

Standard
Header Files

BSW Module
Behavior
Extension

BSW Module
Interface
Extension

BSW Module
Implementation
Extension

BSW Module Vendor-
Specific Configuration
Parameter Definition

BSW Module
Generator

BSW Module
Preconfigured
Configuration

VFB Types

Basic Software
Module
Implementation
Description

Build Action Manifest

Generate Compiler
Configuration

Figure 2.41: Generate BSW and RTE (Part 1)

108 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Generate
RTE

Generate OS
Generate RTE
Prebuild Dataset

Generate Local MC
Data Support

ECU Configuration
Values

Software
Component
Internal Behavior

Basic Software
Module Internal
Behavior

Delivered
Atomic
Software
Components

ECU Extract

RTE Source Code

RTE Prebuild
Configuration
Header

OS Generated Code

BSW Module
Behavior
Extension

BSW Module
Integration
Bundle

Local
Measurement and
Calibration Support
Data

RTE
Implementation
Description

RTE Measurement
and Calibration
Support Data

BSW
Scheduler
Code

ECU Service
Connectors

Service Component
Description

Calibration
Parameter
Value Set

1

0..*

0..*

1

1

0..*

1

1

0..1

1

1

0..1

1

1

0..*

0..*

1..*

0..1

1

1

0..*

0..1

0..1

0..1

0..*

Figure 2.42: Generate BSW and RTE(Part 2)

109 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Activity Generate BSW and RTE
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::

Integrate Software for ECU
Brief Description High Level view showing how to build an AUTOSAR ECU software.
Description There are many possibilities how to run the configuration of the

different modules in detail (see the detailed use cases for the
configuration classes).

This overall use case shows the generation of RTE, OS and Memory
Mapping explicitly, for the other modules it shows as an example the
generic task required for link time configuration of the modules plus the
generic task to generate local calibration support data.

Relation Type Related Element Mul. Note
Consumes ECU Configuration

Values
1

Produces BSW Module Con-
figuration Data
Source Code

1

Produces BSW Module Con-
figuration Header
File

1

Produces RTE Source Code 1
Aggregates Generate BS

W Configuration
Code

1

Aggregates Generate BSW
Memory Mapping
Header

1

Aggregates Generate Compiler
Configuration

1

Aggregates Generate Local M
C Data Support

1

Aggregates Generate OS 1
Aggregates Generate RTE 1
Aggregates Generate RTE

Prebuild Dataset
1

Aggregates Generate SWC
Memory Mapping
Header

1

Predecessor Configure BSW
and RTE

1

Table 2.35: Generate BSW and RTE

2.7.8 Build Executable

2.7.8.1 Description

[TR_METH_01093] Building ECU Executable d These are compiled and linked
along with all the applications, libraries, etc. to build the ECU Executable. The

110 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

details of the various compiling and linking options are explained in the chap-
ters 2.7.9.1, 2.7.9.2, 2.7.9.3 and 2.7.9.4. c(RS_METH_00006, RS_METH_00042,
RS_METH_00038)

2.7.8.2 Workflow

Compile ECU
Source Code Generate

ECU
Executable

Generate RTE
Postbuild Dataset

Measure Resources

Generate A2L

ECU Object Code ECU
Executable

Map of the ECU
Executable

RTE Postbuild
Variants Dataset

Atomic Software
Component
Implementation

A2L File

ECU
Configuration
Values

Generation of the
executable for
Postbuild
Configuration Data is
not modeled here.

BSW Module
Implementation
Extension

Build Action Manifest

 «output» 1

0..1

 «input»

1

 «input»

0..1

 «input»

1

 «input»

1

 «input»

0..1

 «input»

 «output»

1

 «output» 1..*

0..1

 «input»

0..1

 «input»

1..* «input»

0..1

 «input»

 «output»

0..*

 «output» 1

 «output» 1

 «output»
0..*

Figure 2.43: Build Executable

111 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Activity Build Executable
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::

Integrate Software for ECU
Brief Description
Description Describes how to build one executable and related artifacts (A2L file)

starting from the source code (and delivered object code).
Relation Type Related Element Mul. Note
Aggregates Compile ECU

Source Code
1

Aggregates Generate A2L 1
Aggregates Generate ECU Ex-

ecutable
1

Aggregates Generate RTE
Postbuild Dataset

1

Aggregates Measure Re-
sources

1

Predecessor Generate BSW
and RTE

1

Table 2.36: Build Executable

2.7.9 Configuration Classes

The development of BSW modules involve the following development cycles: com-
piling, linking and downloading of the executable to ECU memory. Configuration of
parameters can be done in any of these process-steps: pre-compile time, link time or
even post-build time.

According to the process-step that does the configuration of parameters, the configu-
ration classes are categorized as below

• pre-compile time

• link time

• post-build time

The configuration in different process-steps has some consequences for the handling
of ECU configuration parameters. If a configuration parameter is defined as pre-
compile time, after compilation this configuration parameter can not be changed any
more.

Or if a configuration parameter is defined at post-build time the configuration parameter
has to be stored at a known memory location. Also, the format in which the BSW
module is delivered determines in what way parameters are changeable. A source
code delivery or an object code delivery of a BSW module has different degrees of
freedom regarding the configuration.

The configuration class of a parameter depends on the chosen implementation vari-
ants of the BSW module it belongs to. However once the module is implemented, the

112 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

configuration class for each of the parameters is fixed. Choosing the right implementa-
tion variant for a module depends on the type of application and the design decisions
taken by the module implementer.

Different configuration classes can be combined within one module. For example, for
post-build time configurable BSW implementations only a subset of the parameters
might be configurable post-build time. Some parameters might be configured as pre-
compile time or link time.

File formats used for describing the configuration classes:

• .arxml (An xml file standardized by AUTOSAR.)

• .exe (An executable that can be downloaded to an ECU.)

• .hex (A binary file that can be downloaded to an ECU , but it can not execute by
its own.)

• .c (A C-source file containing either source code or configuration data.)

• .h (A header file for either source code or configuration data.)

• .obj (A object file for either source code or configuration data.)

[TR_METH_01115] A mix of parameters with different configuration classes
within a BSW module is allowed d In a real implementation of a BSW module all
configuration parameters are most likely not in the same configuration class. I.e it
will be a mix of parameters with different configuration classes within a BSW module.
c(RS_METH_00003, RS_METH_00004)

2.7.9.1 Configuration Class: Pre-compile Time

[TR_METH_01095] Configuration Class: Pre-compile Time d
([TPS_ECUC_01031], see [10]) This type of configuration is a standalone con-
figuration done before compiling the source code. That means parameter values
for those configurable elements are selected before compiling and will be effective
after compilation time. The value of the configurable parameter is decided in earlier
stage of software development process and any changes in the parameter value
calls for a re-compilation. The contents of pre-compile time parameters can not
be changed at the subsequent development steps like link time or post-build time.
c(RS_METH_00004, RS_METH_00062)

2.7.9.1.1 Description

The work breakdown structure shows two approaches:

[TR_METH_01096] Generating header files only d The first approach is to generate a
BSW Module Configuration Header File, then compile the module core code

113 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

using this header file. In this case the module core code is not touched by the BSW
Configuration Generator. c()

[TR_METH_01097] Generating header and source files d An alternative ap-
proach, in which the BSW Configuration Generator generates the com-
plete, configuration-specific BSW Module Configuration Header Files plus
BSW Module Completely Generated Source Code. In this case, no core code
exist. c()

Both approaches are equally valid.

Whenever the decision of parameter value must be taken before the selection of other
dependable parameters, pre-compile time configuration is the right choice. For exam-
ple, the algorithm choice for CRC initial checksum parameter is based on the selection
of CRC type (CRC16 or CRC32). When CRC16 is selected, there will be increase in
processing time but reduction in memory usage. Whereas when CRC32 is selected,
there will be decrease in processing time but increase in memory usage. The correct
choice should be made by the implementer before compilation of source code based
on the requirement and resource availability.

Sample cases where pre-compile time configuration can be adopted are:

• Configure the number of memory tables and block descriptor table of NVRAM
manager.

• Enable the macro for the development error tracing of the software modules.

114 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.7.9.1.2 Workflow

ECU
Configuration
Values

Basic
Software
Module
Object
Code

BSW Module
Completely
Generated Source
Code

BSW Module
Configuration
Header File

Generate
BSW Source
Code

Generate BSW
Precompile
Configuration Header

Compile Configured
BSW

Compile
Generated
BSW

Basic
Software
Module Core
Source Code

ECU Executable

Source code is
completely
generated

Only
Configuration
header is
generated

Link ECU Code after
Precompile Configuration

Possible existence of
unbound Pre-Compile
time variation points.

All Pre-compile time
variation points are
bound.

No existence of
unbound Pre-Compile
time variation points.
Link-time and post-
build variation points
may sti ll be unbound.

Possible existence of
unbound Pre-Compile
time variation points.

1

 «input»

 «output»

1

 «output»

1

1

 «input»

1

 «input»

1

 «input»

1

 «input»

1

 «input»

 «output»

1

 «output»

1

1..*

 «input»

 «output»

1

 «output»

1

Figure 2.44: Pre-compile time configuration overview

Further description of the PreCompile binding time can be found in Section 2.16.3.6.

115 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Do Pre
Compile
Configuration

Compile Configured BSW

Generate BSW
Source Code

Compile
Generated
BSW

Link ECU Code
after
Precompile
Configuration

Generate BSW
Precompile
Configuration Header

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

Figure 2.45: Pre compile time configuration activities

Activity Do Pre Compile Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::

Pre Compile Conf
Brief Description
Description [from ecuc sws 1031] This type of configuration is a standalone

configuration done before compiling the source code. That means
parameter values for those configurable elements are defined before
compiling and will be effective after compilation time. The value of the
configurable parameter is decided in an earlier stage of software
development process and any changes in the parameter value calls for
a re-compilation. The contents of pre-compile time parameters cannot
be changed at the subsequent development steps like link time or
post-build time.

Relation Type Related Element Mul. Note
Aggregates Compile Config-

ured BSW
1

Aggregates Compile Gener-
ated BSW

1

Aggregates Generate BSW
Precompile Con-
figuration Header

1

Aggregates Generate BSW
Source Code

1

Aggregates Link ECU Code
after Precompile
Configuration

1

Table 2.37: Do Pre Compile Configuration

116 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.7.9.2 Configuration Class: Link Time

[TR_METH_01098] Configuration Class: Link Time d ([TPS_ECUC_01032],
see [10]) This type of configuration is done for the BSW module during link time.
That means the object code of the BSW module receives parts of its configuration
from another object code file or it is defined by linker options. Link time parameters
are typically used when delivering object code to the integrator. c(RS_METH_00004,
RS_METH_00062)

2.7.9.2.1 Description

This configuration class provides a modular approach to the configuration process. A
separate module will handle the configuration details and those parameter values will
be made available to the other modules during the linking process.

[TR_METH_01099] Generation and compilation of BSW Configuration Code d
The first step is to Generate BSW Configuration Code, which produces the BSW
Module Configuration Data Source Code and the BSW Module Configu-
ration Header File. These are compiled along with the Basic Software Mod-
ule Core Header into the BSW Module Configuration Data Object Code.
c()

[TR_METH_01100] Definition of configuration data d The configuration parameter
data is defined in a common header file Basic Software Module Core Header
and included by both Basic Software Module Core Source Code and BSW
Module Configuration Data Source Code. The module source file needs this
header file to resolve the references and module configuration source file will need it in
order to cross check the declaration of data type against the definition. c()

[TR_METH_01101] Separate compilation of module source and configuration file
d Both module source file and module configuration source file are compiled separately
to generate Basic Software Module Object Code and BSW Module Config-
uration Data Object Code respectively. c()

[TR_METH_01102] Linking process d During the linking process, the configuration
data will be available to Basic Software Module Object Code by resolving the
external references. c()

[TR_METH_01103] Re-generation in case of configuration value changes dWhen
the values of configuration parameters change the Basic Software Module Ob-
ject Code needs to be re-generated. c(RS_METH_00004)

Sample cases where Link time configuration can be adopted are:

• Initial value and invalid value of signal

• Unique channel identifier configured for the respective instance of the Network
Management.

117 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

• Logical handle of CAN network.

• Identifier and type of Hardware Reception Handle and Hardware Transmission

• Handle for CAN interface.

• Definition of ComFilterAlgorithm.

• COM callback function to indicate RTE about the reception of an invalidated sig-
nal.

2.7.9.2.2 Workflow

ECU Configuration
Values

Basic Software
Module Object Code

ECU Executable

Generate BSW
Configuration Code

Basic Software
Module Core
Header

Compile Unconfigured
BSW

Basic Software
Module Core
Source Code

BSW Module
Configuration
Header File

BSW Module
Configuration
Data Source
Code

Compile BSW
Configuration Data

BSW Module
Configuration
Data Object
Code

Link ECU Code during
Link Time
Configuration

Possible existence of
unbound Link time
variation points.

No existence of
unbound Link time
variation points.
Unbound Post-build
variation points may
stil l exist.

All Link time variation
points are bound.

No existence of
unbound Link time
variation points. Post-
build variation points
may sti l l be unbound.

1 «input»

1..*

 «input»

1..*

 «input»

 «output» 1

 «output»

1

 «output» 1

1

 «input»

1

 «input»

1 «input» «output» 1

1 «input»

1

 «input»

 «output»

1

Figure 2.46: Overview Link Time Configuration

Further description of the LinkTime binding time can be found in Section 2.16.3.8.

118 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Do Link Time
Configuration

Compile
Unconfigured
BSW

Link ECU Code during
Link Time
Configuration

Compile BSW
Configuration
Data

Generate BSW
Configuration Code

 «nesting»

 «nesting»

 «nesting»

 «nesting»

Figure 2.47: Link time configuration

Activity Do Link Time Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::

Link Time Conf
Brief Description
Description [from ecuc sws 1032] This type of configuration is done for the BSW

module during link time. That means the object code of the BSW
module receives parts of its configuration from another object code file
or it is defined by linker options. Link time parameters are typically
used when delivering object code to the integrator.

Relation Type Related Element Mul. Note
Aggregates Compile BSW

Configuration Data
1

Aggregates Compile Unconfig-
ured BSW

1

Aggregates Generate BS
W Configuration
Code

1

Aggregates Link ECU Code
during Link Time
Configuration

1

Table 2.38: Do Link Time Configuration

2.7.9.3 Configuration Class: Post-build Time

[TR_METH_01104] Configuration Class: Post-build Time d ([TPS_ECUC_04006],
see [10]) This type of configuration is possible after building the BSW module or the
ECU software. The BSW module gets the parameters of its configuration by download-

119 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

ing a separate file to the ECU memory, avoiding a re-compilation and re-build of the
BSW module. c(RS_METH_00004, RS_METH_00062)

2.7.9.3.1 Description

[TR_METH_01105] Generate BSW Postbuild Configuration Code d In order to make
the post-build time re-configuration possible, the re-configurable parameters shall be
stored at a known memory location of the ECU memory. In this approach the Basic
Software Module Core Source Code is compiled and linked independently of its
configuration data. The BSW Configuration Generator generates the configura-
tion data as BSW Module Configuration Data Source Code that is compiled
and linked independently of the core source code. c()

The generation of the post-build configuration is a process that can be done multi-
ple times. The first time it is done during the creation of the initial ECU configuration
which includes the generation of both ECU Executable and BSW Module Config-
uration Data Loadable to ECU Memory binary files. This approach is shown
in Figure 2.48. After this, the post-build configuration may be updated (the updates
usually originate from the ECU Extract) separately from the ECU Executable as
many times as needed according to the process shown in Figure 2.49.

Sample cases where post-build time configuration can be adopted are:

• Identifiers of the CAN frames

• CAN driver baudrate and propagation delay

• COM transmission mode, transmission mode time offset and time period

• Enabling/disabling signal transmission

• Frame packing

• Signal gateway

• LIN/FlexRay schedule

120 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.7.9.3.2 Workflow

ECU
Configuration
Values

Generate BSW Postbuild
Configuration Code BSW Module

Configuration
Header File

BSW Module
Configuration
Data Source
Code

Compile BSW
Configuration Data

BSW Module
Configuration
Data Object
Code

Link ECU
Code
during
Post-Build
Time

BSW Module
Configuration
Data Loadable to
ECU Memory

Compile Unconfigured
BSW

Basic Software
Module Core
Header

Basic Software
Module Core
Source Code

Basic Software
Module Object
Code

Generate
ECU
Executable ECU Executable

Possible existence of
unbound Post-build
time variation points.

1..*

 «input»

0..*

 «input»

 «output»

1

 «output»
1

1 «input»
 «output» 1

1

 «input»

 «output» 1

 «output»

1

1

 «input»

1
 «input»

 «output» 1

1 «input»

1

 «input»

Figure 2.48: Overview of initial Post-Build Configuration

121 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

ECU
Configuration
Values

Generate BSW Postbuild
Configuration Code BSW Module

Configuration
Header File

BSW Module
Configuration
Data Source
Code

Compile BSW
Configuration Data

BSW Module
Configuration
Data Object
Code

Link ECU
Code
during
Post-Build
Time

BSW Module
Configuration
Data Loadable to
ECU Memory

Basic Software
Module Core
Header

Possible existence of
unbound Post-build
time variation points.

 «output»

1

1..*

 «input»

 «output» 1

 «output»

1

 «output» 11 «input» 1 «input»

1

 «input»

1

 «input»

Figure 2.49: Update of the Post-Build Configuration

Further description of the PostBuild binding time can be found in Section 2.16.3.9.

Do Post Build
Configuration

Link ECU Code
during Post-Build
Time

Generate
ECU
Executable

Compile
Unconfigured
BSW

Compile BSW
Configuration
Data

Generate BSW Postbuild
Configuration Code

 «nesting»

 «nesting» «nesting»

 «nesting»

 «nesting»

Figure 2.50: Work Flow for Post-Build Configuration

122 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Activity Do Post Build Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::

Post Build Conf
Brief Description
Description [from ecuc sws 4006] This type of configuration is possible after

building the BSW module or the ECU software. The BSW module gets
the parameters of its configuration by downloading a separate file to
the ECU memory, avoiding a re-compilation and re-build of the BSW
module.

Relation Type Related Element Mul. Note
Aggregates Compile BSW

Configuration Data
1

Aggregates Compile Unconfig-
ured BSW

1

Aggregates Generate BSW
Postbuild Configu-
ration Code

1

Aggregates Generate ECU Ex-
ecutable

1

Aggregates Link ECU Code
during Post-Build
Time

1

Table 2.39: Do Post Build Configuration

2.7.9.4 Handling of different post-build variants in configuration classes

2.7.9.4.1 Description

[TR_METH_01108] Generating multiple post-build configuration variants d In this
use case, the BSW Configuration Generator generates two or more variants
of configuration parameters within BSW Module Configuration Header Files
and BSW Module Configuration Data Source Code. The configuration data
is compiled and linked together with the Basic Software Module Core Source
Code. The resulting ECU Executable includes all configuration variants as well as the
source code of the BSW module. I.e. it is not possible to exchange the configuration
data without re-building the entire executable. c(RS_METH_00062)

[TR_METH_01150] Including different post-build variants dDifferent post-build vari-
ants are included in the configuration by specifying different variation points which shall
be bound at post-build time. This can be done regardless of the configuration class, as
shown in the notes of 2.44, Figure 2.46 and Figure 2.48. c(RS_METH_00062)

123 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.8 Components and Services

2.8.1 Purpose

This use case focuses on the activities required to use and configure AUTOSAR Ser-
vices. It is therefore a subset of the overall use case (see 2.1).

2.8.2 Description

[TR_METH_02000] Use of AUTOSAR Services dAtomic Software Components can
use AUTOSAR Services. In order to do so, two things have to be defined on the VFB
and Software Component level:

• The ports which are to be connected to the Service during ECU integration (this is
a sub-task of Define VFB Application Software Component). The port
interfaces used for service ports should be standardized.

• The needs to configure the Service (for example NvM blocks or symbolic names
for diagnostic events) from the perspective of the single Software Compo-
nent (this is a sub-task of Define Atomic Software Component Inter-
nal Behavior.)

c(RS_METH_00002, RS_METH_00033)

The service ports have impact on the component API just like any other port, so there is
no difference between service ports and "normal" ports with respect to API generation.

When the Application Software Components are mapped to an ECU their description
is put into the corresponding ECU Extract. These activities belong to the System
domain (see 2.5.6) and are not explicitly shown in this use case.

As part of the ECU integration, additional artifacts are generated to connect the service
ports over the RTE: Service Component Descriptions, including their mapping
to the Basic Software Modules, and the connectors between their ports and the service
ports of the Application Software Components.

The use case shows also the creation of ECU configuration of the corresponding Basic
Software Module (e.g. DEM, DCM, Watchdog Manager etc.). This must be done with
respect to the service ports and the Service Needs of all Application Software
Components connected to the corresponding Service Component (the diagram shows
only the configuration activity of diagnostics as an example).

2.8.3 Workflow

Figure 2.51 shows the work sequence assumed for this use case. The next two fig-
ures 2.52 and 2.53 show the tasks and work products of the method library involved in
the activities on the VFB and Component resp. the ECU level.

124 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Components and Services

Add Service Ports
and Service Needs

Connect and
Configure Service
Module on ECU

Define VFB
Application Software
Component

Define Atomic
Software Component
Internal Behavior

Generate Atomic
Software Component
Contract Header Files

Implement Atomic
Software Component

Generate Base
Ecu Configuration

Generate BSW
Source Code

Create Service
Component

Generate RTE

 «predecessor»

+Add Service Needs to
Atomic Component

 «nesting»

+Re-Implement Atomic
Software Component with
Service Ports

 «nesting»

+Add Service Ports to
Atomic Software
Component

 «nesting»

+Re-generate Contract
Header Files with
Service Intefaces

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

Figure 2.51: Use Case: Components and Services

125 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Process Pattern Components and Services
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High

Level::Components and Services
Brief Description This use case focuses on the activities required to use and configure

AUTOSAR Services. It is therefore a subset of the overall use case
(Methodology Overview).

Description Atomic Software Components can use AUTOSAR Services. In order to
do so, two things have to be defined: The ports which are to be
connected to the Service during ECU integration and in addition the
needs to configure the Service (for example NvM blocks or symbolic
names for diagnostic events) from the perspecive of the single
Software Component.

The service ports have impact on the component API just like any
other port, so there is no difference between service ports and
"normal" ports with respect to API generation.

Afterwards the Application Software Components are mapped to an
ECU and their description is put into the corresponding ECU extract
(deliverable Complete ECU Description). These activities belong to the
system domain and are not explictly shown in this use case (see
Methodology Overview).

As part of the ECU integration, additional artifacts are generated to
connect the service ports over the RTE: Service Component
Descriptions, including their mapping to the Basic Software Modules,
and the connectors between their ports and the service ports of the
Appplication Software Components.

The ECU configuration of the Basic Software Module (e.g. DEM, DCM,
Watchdog Manager etc.) is then created with respect to the service
ports and the SeviceNeeds of the Application Software Components
connected to that Service.

Relation Type Related Element Mul. Note
Aggregates Add Service Ports

and Service Needs
1

Aggregates Connect and Con-
figure Service
Module on ECU

1

Table 2.40: Components and Services

126 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Define VFB
Application Software
Component

VFB Atomic
Application Software
Component

VFB Atomic
Software
Component

Define Atomic Software
Component Internal
Behavior

Generate Atomic Software
Component Contract
Header FilesSoftware Component Internal

Behavior

Application Header File

Implement Atomic
Software Component

Atomic Software Component
Source Code

 «output»

1

 «output»

1

1

 «input»

1
 «input»

1 «input»

1

 «input»

 «output»

1

 «extends»

 «output»

1

1

 «input»

Figure 2.52: Add Service Ports and Service Needs - Detailed view with work products

127 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Activity Add Service Ports and Service Needs
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High

Level::Components and Services
Brief Description
Description Atomic Software Components can use AUTOSAR Services. In order to

do so, two things have to be defined:

• The ports which are to be connected to the Service during ECU
integration (this is a sub-task of Define VFB Application
Software Component). The port interfaces used for service ports
should be standardized.

• The needs to configure the Service (for example NvM blocks or
symbolic names for diagnostic events) from the perspecive of
the single Software Component (this is a sub-task of Define
Atomic Software Component Internal Behavior)

The service ports have impact on the component API just like any
other port, so there is no difference between service ports and
"normal" ports with respect to API generation.

Relation Type Related Element Mul. Note
Aggregates Define Atomic

Software Com-
ponent Internal
Behavior

1 Add Service Needs to Atomic
Component:

Aggregates Define VFB Ap-
plication Software
Component

1 Add Service Ports to Atomic Software
Component:

Aggregates Generate Atomic
Software Com-
ponent Contract
Header Files

1 Re-generate Contract Header Files with
Service Intefaces:

Aggregates Implement Atomic
Software Compo-
nent

1 Re-Implement Atomic Software
Component with Service Ports:

Table 2.41: Add Service Ports and Service Needs

128 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Create Service Component

Generate Base
Ecu Configuration

Generate RTE

ECU Service
Connectors

ECU Extract

Service
Component
Description

Generate BSW Source Code

ECU
Configuration
Values

Configure
Diagnostics

Diagnosis is used as
an example here.

Connect Service Component

 «output»

1

1

 «input»

1

 «input»

0..*

 «input»

 «output»

1..*

1

 «input»

1 «input»

0..*

 «input»

1

 «input»

 «output»

1

1

 «input»

0..1

 «input»0..1
 «input»

 «inoutput» 1

 «output»

0..1

 «output»

1

1

 «input»

Figure 2.53: Connect and Configure Service Module on ECU - Detailed view with work
products

Activity Connect and Configure Service Module on ECU
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High

Level::Components and Services
Brief Description
Description As part of the ECU integration, additional artifacts are generated to

connect the service ports over the RTE: Service Component
Descriptions, including their mapping to the Basic Software Modules,
and the connectors between their ports and the service ports of the
Appplication Software Components.

The ECU configuration of the Basic Software Module (e.g. DEM, DCM,
Watchdog Manager etc.) is then created with respect to the service
ports and the SeviceNeeds of the Application Software Components
connected to that Service (the diagram shows only the configuration
activity of diagnostics as an example). The code gneration of the
service module (e.g. DEM, DCM) and of the RTE is shown for
completeness.

Relation Type Related Element Mul. Note

129 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Aggregates Create Service

Component
1

Aggregates Generate BSW
Source Code

1

Aggregates Generate Base
Ecu Configuration

1

Aggregates Generate RTE 1
Predecessor Add Service Ports

and Service Needs
1

Table 2.42: Connect and Configure Service Module on ECU

2.9 Calibration Overview

2.9.1 Purpose

This use case describes the typical activities required from the creation or update of
calibration parameters down to the creation or update of the A2L Files.

2.9.2 Description

The use cases assumes, that calibration parameters are changed in an already existing
system, thus the tasks required to define and build a new system are omitted, only the
calibration relevant steps are shown.

In addition, the use case includes the (optional) task of updating a set of calibration
parameter values as input for the RTE.

As far as AUTOSAR artifacts are involved, this use case can be divided into four major
activities:

[TR_METH_02001] Define Cross-component Calibration Parameters
activity d Define Cross-component Calibration Parameters: Contains
the tasks used to define or update cross-component calibration parameters.
These parameters have to be provided via ports by Parameter Components.
c(RS_METH_00002)

[TR_METH_02002] Define Local Calibration Parameters activity d De-
fine Local Calibration Parameters: Contains the tasks used to define or up-
date component-local calibration parameters or calibration parameters defined within
a BSW module. These parameters are declared within the Internal Behavior
of the component (or the BSW module) which uses them. c(RS_METH_00002,
RS_METH_00003)

[TR_METH_02003] Provide Unique Parameter Names activity d Provide
Unique Parameter Names: Contains the tasks used to provide unique names for

130 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

calibration parameters. A Flat Map is used to provide unique names for MCD tools.
An Alias Name Set can be provided additionally in cases, where this is not suffi-
cient. c(RS_METH_00005)

[TR_METH_02004] Re-generate RTE and Calibration Support activity d
Re-generate RTE and Calibration Support: Contains the tasks used to re-
generate relevant artifacts during ECU integration (before the final build) after an up-
date of calibration parameters. c(RS_METH_00020)

2.9.3 Workflow

Figure 2.54 shows the work sequence assumed for this use case.

131 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Calibration Overview

Define
Cross-component
Calibration
Parameters

Define Local
Calibration
Parameters

Provide Unique
Parameter
Names

Re-generate RTE and
Calibration Support

Generate ECU Extract

Define VFB Interfaces

Define VFB
Types

Define VFB
Parameter
Component

Define VFB Composition
Component

Define Atomic
Software Component
Internal Behavior

Define Partial Flat Map

Define Alias Names

Generate or Adjust
System Flat Map

Generate ECU
Executable

Generate A2L Generate RTE

Provide RTE Calibration
Dataset

Generate Local MC
Data Support

Define BSW Behavior

Generate BSW
Configuration Code

Create MC Function Model

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

+Define VFB Types for
Parameter Interfaces

 «nesting»

 «predecessor»

 «nesting»

 «nesting»

 «predecessor»

 «nesting»

 «nesting»

 «nesting»

+Define local
Calibration
Parameters in
BSW

 «nesting»

+Define VFB types
for Local
Calibration

 «nesting»

 «nesting»

 «predecessor»

+Define Calibration
Parameters in
Internal Behavior

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

Figure 2.54: Use Case: Calibration Overview

132 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Process Pattern Calibration Overview
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High

Level::Calibration Overview
Brief Description Describe the required steps to update the calibrations data down to an

update of the A2L files.
Description This use case shows the typical steps required from an updated design

of calibration data down to an update of the A2L file. The use cases
assumes, that calibration parameters are changed in an already
existing system, thus the steps required to define and build a new
system are omitted, only the calibration relevant steps are shown.

In addition, the use case includes the (optional) task of updating a set
of calibration parameter values as input for the RTE.

Relation Type Related Element Mul. Note
Aggregates Define Cross-

component Cali-
bration Parameters

1

Aggregates Define Local Cali-
bration Parameters

1

Aggregates Generate A2L 1
Aggregates Generate ECU Ex-

ecutable
1

Aggregates Provide Unique
Parameter Names

1

Aggregates Re-generate RT
E and Calibration
Support

1

Table 2.43: Calibration Overview

Activity Define Cross-component Calibration Parameters
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High

Level::Calibration Overview
Brief Description
Description Contains the tasks used to define or update cross-component

calibration parameters. These parameters are provided by Parameter
Components.

Relation Type Related Element Mul. Note
Aggregates Define VFB Com-

position Compo-
nent

1

Aggregates Define VFB Inter-
faces

1

Aggregates Define VFB Pa-
rameter Compo-
nent

1

Aggregates Define VFB Types 1 Define VFB Types for Parameter
Interfaces: Use this task to define VFB
Types for Parameter Interfaces

Table 2.44: Define Cross-component Calibration Parameters

133 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Activity Define Local Calibration Parameters
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High

Level::Calibration Overview
Brief Description
Description Contains the tasks used to define or update component-local (or

module-local) calibration parameters. These parameters are declared
within the Internal Behavior of the component (or BSW module) which
uses them.

Relation Type Related Element Mul. Note
Aggregates Define Atomic

Software Com-
ponent Internal
Behavior

1 Define Calibration Parameters in Internal
Behavior: Use this task to define local
calibration parameters as part of the
Internal Behavior of a software
component.

Aggregates Define BSW Be-
havior

1 Define local Calibration Parameters in
BSW: Use this task to define local
calibration parameters as part of the
Internal Behavior of a BSW module.

Aggregates Define Partial Flat
Map

1 Define (optionally) a Partial Flat Map for
one or more delivered components.

Aggregates Define VFB Types 1 Define VFB types for Local Calibration:
Use this task to define VFB types for
Local Calibration.

Table 2.45: Define Local Calibration Parameters

Activity Provide Unique Parameter Names
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High

Level::Calibration Overview
Brief Description
Description Contains the tasks used to provide unique names for calibration

parameters. A Flat Map is used to provide unique names for MCD
tools. An Alias Name Set can be provided in cases, where this is not
sufficient.

Relation Type Related Element Mul. Note
Aggregates Define Alias

Names
1

Aggregates Generate ECU Ex-
tract

1 Use this activity to update the ECU
Extract. This includes updating the ECU
Flat Map if parameter names on ECU
level have changed.

Aggregates Generate or Adjust
System Flat Map

1 Use this task if parameter names are
defined on system level.

Predecessor Define Cross-
component Cali-
bration Parameters

1

Predecessor Define Local Cali-
bration Parameters

1

Table 2.46: Provide Unique Parameter Names

134 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Activity Re-generate RTE and Calibration Support
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High

Level::Calibration Overview
Brief Description
Description Contains the tasks used to re-generate relevant artifacts during ECU

integration (before the final build) after an update of calibration
parameters.

Relation Type Related Element Mul. Note
Aggregates Create MC Func-

tion Model
1 This use case shows the creation of an

MC Function Model as part of the activity
that generates also the RTE and
calibration support data.

This is only one possibility. It is also
possible to create an MC Function Model
earlier in the process (as part of the
design activities) or later (shortly before
the A2L is generated).

Aggregates Generate BS
W Configuration
Code

1 Use this task to generate the description
of calibration parameters in BSW that are
a result of ECU configuration.

Such parameters will be described within
the artifact BSW Module Behavior
Extension.

Aggregates Generate Local M
C Data Support

1 Use this task to generate support for
calibration data that are not handled via
the RTE.

Aggregates Generate RTE 1 Use this task to generate support for
calibration data that are handled over the
RTE.

This includes cross-component
calibration as well as local calibration (in
SWC and BSW) that needs emulation
support by the RTE.

Aggregates Provide RTE Cali-
bration Dataset

1

Predecessor Provide Unique
Parameter Names

1

Table 2.47: Re-generate RTE and Calibration Support

2.10 Memory Mapping

2.10.1 Purpose

This use case gives a comprehensive view on the tasks required to define, configure
and generate header files for memory mapping and for the compiler abstraction related
to memory aspects. The underlying concepts are specified in [11] and [12].

135 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.10.2 Description

[TR_METH_02005] Memory sections for data and code d AUTOSAR basic software
as well as application software use a standardized preprocessor mechanism in order to
define memory sections for their data and code as well as compiler memory classes2

defined globally or per section. The goal of this mechanism is to maintain the compiler
specific statements and the ECU specific mappings separately from the main code.
c(RS_METH_00002, RS_METH_00003, RS_METH_00004, RS_METH_00038)

With AUTOSAR it is possible to derive (i.e. generate) the content of these header
files from XML artifacts. This use case shows how the required artifacts and tasks are
related.

2.10.3 Workflow

Figure 2.55 shows the work sequence assumed for this use case. The next figures 2.56
and 2.57 show the involved tasks and work products of the method library.

Note that this use case ends with compilation of the code. The assignment of memory
sections to the actual hardware (which is typically done by the configuration of the
linker) is currently not considered to be part of the AUTOSAR methodology.

2This determines far and near addressing on certain platforms.

136 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Memory
Mapping
Overview

Configure
Memmap
Allocation

Define Memory
Addressing Modes

Generate BSW
Memory Mapping
Header

Compile BSW Core
Code

Compile Atomic
Software
Component

Generate SWC
Memory Mapping
Header

Compile ECU Source
Code

Configure
Compiler Memory
Classes

Generate Compiler
Configuration

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

Figure 2.55: Use Case: Memory Mapping

137 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Define Memory
Addressing Modes

Configure
Memmap
Allocation

Generate BSW
Memory Mapping
Header

Generate SWC
Memory Mapping
Header

BSW Module
Preconfigured
Configuration

ECU Configuration
Values

VFB Types

Basic Software
Module
Implementation
Description

Standard
Header Files

Compile Atomic
Software
Component

Compile BSW Core Code

Compile ECU Source
Code

Per compiler platform

Per BSW module/cluster and
build environment.

Per component and
build environment.

Per build environment.

Atomic Software
Component
Implementation

+SwAddrMethod

1..*

 «input»

+MemMapAddressingModeSet

1..*

 «input»

+MemorySections

0..*

 «input»

+MemorySections

0..*

 «input»

 «output»

+MemMapAllocation
1

 «input»

1

 «output»

+BSW_MemMap
1

 «output»

+SWC_MemMap

1

+MemMapAddressingModeSet

1..*

 «input»

+moduleDescription

0..1

 «input»

+DependencyOnArtifact

1

 «input»

+SwAddrMethods

0..*

 «input»

+MemMapAllocation

1

 «input»

 «output»

+MemMapAddressingModeSet 1..*

+MemorySections
1

 «input»

+MemMapAddressingModeSet

1..*

 «input»

+MemorySections

1

 «input»

+RteImplementationRef
0..1

 «input»

+MemMapAllocation

1

 «input»

+SwAddrMethod

1..*

 «input»

1 «input»

1

 «input»

Figure 2.56: Memory Mapping - Detailed view with work products

138 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

BSW Module
Preconfigured
Configuration

Configure
Compiler Memory
Classes

Per compiler platform

ECU Configuration
Values

Basic Software Module
Implementation Description

VFB Types

Generate Compiler
Configuration

Standard Header Files

Compile Atomic
Software
Component

Compile BSW Core Code

Compile ECU Source
Code

Per build environment.

Atomic Software
Component
Implementation

1 «input»

1

 «input»

 «output»

+Compiler_Cfg

 «input»

1

+MemorySections
1..*

 «input»

+RteImplementationRef
0..1

 «input»

+CompilerMemClassConfiguration

1..*

 «input»

+MemorySections 0..*

 «input»

+ModuleDescription
0..1

 «input»
+SwAddrMethod

1..*

 «input»

 «output»

+MemMap config for
compiler memclasses

1..*

Figure 2.57: Compiler Configuration - Detailed view with work products

Activity Memory Mapping Overview
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High

Level::Memory Mapping Overview
Brief Description
Description Overview of the work sequence for defining and configuration of

memory sections.
Relation Type Related Element Mul. Note
Aggregates Compile Atomic

Software Compo-
nent

1

Aggregates Compile BSW
Core Code

1

139 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Aggregates Compile ECU

Source Code
1

Aggregates Configure Com-
piler Memory
Classes

1

Aggregates Configure
Memmap Allo-
cation

1

Aggregates Define Memory
Addressing Modes

1

Aggregates Generate BSW
Memory Mapping
Header

1

Aggregates Generate Compiler
Configuration

1

Aggregates Generate SWC
Memory Mapping
Header

1

Table 2.48: Memory Mapping Overview

2.11 E2E Protection

2.11.1 Purpose

This Activity provides a rough outline of the creation of E2E Protection to secure
communication flow in an AUTOSAR Architecture. [13]

2.11.2 Description

E2E Protection mechanisms are needed when safety related data exchanges need
to be protected at runtime against communication link faults.

[TR_METH_02006] E2E Protection d The E2E Protection in AUTOSAR is real-
ized as an E2E Transformer Module [13] which is invoked by the RTE. First of all, the
Serializer Transformer serializes the data and then the RTE invokes E2E Transformer
to protect the communication. The software component communicates through RTE
using the plain RTE API. c(RS_METH_00005)

[TR_METH_01153] Configuration and Generation of the E2E Transformer d Ac-
cording to the generic transformer approach, the E2E Transformer can be configured
at the system level (Inter-ECU communication). The generation of the E2E Transformer
module is done based on the System Description. No ECU configuration is needed.
c(RS_METH_00005)

140 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

[TR_METH_01154] Define E2E Transformer Technology Task d The task De-
fine E2E Transformer Technology is needed to define all information required
for the generation of the E2E transformer module like pre-defined Profiles and state
machine configuration. c(RS_METH_00005)

2.11.3 Workflow

Figure 2.58 shows the Define E2E Transformer Technology task which is
mainly processed in the activity Design Communication.

Define E2E Transformer
Technology

System Engineer

Interaction Layer

 «output»

+E2E Transformer Technology

1

+ISignals

1

 «input»

1

 «performs»

Figure 2.58: Task Define E2E Transformer Technology

2.12 Diagnostic Extract

2.12.1 Purpose

This use case provides a rough outline of the diagnostics configuration using the Di-
agnostic Extract Template [14]. The involved activities and deliverables will be refined
based on the experience in the field in next AUTOSAR releases.

2.12.2 Description

The distributed nature of an AUTOSAR ECU development requires an optimized cap-
turing of information. In particular, diagnostic information (i.e. DEM and DCM configu-
ration) shall be captured only once by the person with the best knowledge and therefore
being able to take responsibility better than one centralized individual. ECU configura-
tion is not suitable to be exchanged between partners in an ECU development project.
Therefore, AUTOSAR defines the Diagnostic Extract Template that represents a stan-
dardized exchange format on diagnostic functionality. The Diagnostic Extract Template
allows the decentralized configuration of diagnostic aspects. The basic usage of the
Diagnostic Extract Template is the exchange of diagnostic data between the different

141 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

parties involved in the diagnostic development process to allow the configuration of the
DCM and the DEM and to provide the description of corresponding application inter-
faces to implement diagnostic services and fault handling. In the AUTOSAR Method-
ology the Diagnostic Extract is represented by the deliverable Diagnostic Extract
and its sub-deliverables.

[TR_METH_01136] Content of Diagnostic Extract d The deliverable Diagnos-
tic Extract contains all relevant diagnostics aspects.

• Diagnostic Services (e.g. IOControl, MemoryByAddress)

• Diagnostic Event Handling (e.g. events, trouble codes, conditions)

• Mappings (Service Mappings, Diagnostic Mappings, etc.)

c(RS_METH_00082)

[TR_METH_01137] Diagnostic Extract category d Depending on the phase in
the process, the Diagnostic Extract can have several categories that are repre-
sented as specialized deliverables:

• Diagnostic Abstract System Description: This deliverable represents
a high-level definition that can be taken as a template for creating concrete Di-
agnostic System Extracts or Diagnostic ECU Extracts.

• Diagnostic System Extract: This deliverable represents the diagnostic as-
pects for several ECUs.

• Diagnostic ECU Extract: This deliverable represents the diagnostic as-
pects for a single ECUs.

c(RS_METH_00082)

[TR_METH_01138] Decentralized configuration d The timing and frequency of ex-
changes and the content in each of these exchanged files is highly dependent on the
individual project setup and situation. The Diagnostic Extract Template has been de-
signed to support the decentralized and independent definition of diagnostic require-
ments that can be linked together at a late point during the development process.
The approach of decentralized configuration is met in the Diagnostic Extract Template
mainly in two ways:

• Separation of elements over several physical files: Most elements of the Diag-
nostic Extract template can be split over several physical files. Therefore, parts of
these elements (e.g. certain attributes) can be defined by, for example, an OEM
and other parts of these elements by, for example, an ECU supplier.

• Usage of self-contained mappings: Many diagnostic requirements are estab-
lished by mappings between diagnostic elements (e.g., DTC to DemEvent map-
ping). However, the "‘decentralized configuration"’ approach requires that these
mappings can be flexibly defined at almost any time within the ECU development
process and by any of the involved companies respectively roles. Therefore, the
Diagnostic Extract Template defines self-contained mapping elements that have

142 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

references to two (or potentially more) diagnostic elements to define a mapping.
The usage of the Diagnostic Extract Template will be restricted by the appropriate
application of the "‘roles and rights"’ concepts in next AUTOSAR releases.

c(RS_METH_00082)

[TR_METH_01139] Roles d The relevant activities of the Diagnostic Extract use case
are logically grouped to the following roles (see diagram 2.60): Diagnostic Requester,
Software Developer and Diagnostic Integrator. Obviously, the OEM acts as a diag-
nostic requester and the ECU supplier as the diagnostic integrator. Nevertheless, in
several situations (e.g. in-house development of application software components), the
OEM may act as the diagnostic integrator and performs collecting and merging tasks.
c(RS_METH_00082)

[TR_METH_01140] Develop Diagnostic Abstract System Description
activity d The basic workflow for the configuration of the diagnostic aspects may start
with the optional activity Develop Diagnostic Abstract System Descrip-
tion. This activity defines diagnostic requirements at abstract level. The resulting
Diagnostic Abstract System Description may be used by the following
activity as a basis for the Diagnostic System Extract or the Diagnostic ECU
Extract. c(RS_METH_00082)

[TR_METH_01141] Development of diagnostic requirements d In the activity De-
velop Diagnostic Requirements the requester of diagnostic data defines the
diagnostic interfaces of one or multiple ECUs. The following tasks may be performed:

• Define the values of the DTCs

• Define the UDS services and sub-services supported by the ECUs

• Define the required events needed by a specific composition implemented by an
Application Developer

During this activity, several Develop Diagnostic Requirements from different
parties may be collected and merged. c(RS_METH_00082)

[TR_METH_01142] Diagnostic information in the context of SW-C development d
The purpose of the Diagnostic Extract during the development of software com-
ponents is basically twofold: On the one side the Diagnostic System Extract
may serve as a requirement for the software developer. The diagnostic requester can
specify e.g. the following issues:

• Definition of the content of a specific ReadDataByIdentifier which has to be im-
plemented by a specific SW-C

• Definition of the events needed for a certain SW-C

On the other side the application developer has the possibility to provide diagnostic
information relevant to the SW-Cs as a part of the Diagnostic System Extract
and/or using Service Needs. The Service Needs within the SW-C Description are still
to be used along with the Diagnostic System Extract in order to annotate the

143 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

SW-C ports which are relevant for further mapping and handling as defined by the
Diagnostic System Extract. c(RS_METH_00082)

[TR_METH_01143] Integration of diagnostic information d In activity Integrate
Diagnostic Information, the integrator receives one or several Diagnostic
System Extracts (or Diagnostic ECU Extracts) from the diagnostic requester
and from multiple application software or basic software developers. The main goal of
the integration activity is to integrate and merge all delivered Diagnostic Extracts
so that the configuration of the corresponding basic software modules (DCM, DEM)
can be generated (activity Integrate Software for ECU).

Since the AUTOSAR Methodology does not restrict the definition of elements like DIDs,
parameters of a UDS service, Events, Sessions, etc. in activity Integrate Diag-
nostic Information the integrator has to ensure that the complete information is
still valid after merging it. Usually, the following task may be performed:

• Mapping of DTCs (Diagnostic Trouble Code) to events

• Merge of events

• Mapping of services

During the integration activity the following issues and conflicts may be considered:

• Some DTCs may already be mapped to events - especially in cases where both
come from the same party. But if the DTCs are defined by the OEM and the
software components are implemented by other supplier acting as an application
developer the integrator has to ensure that both are mapped together.

• In some cases, an diagnostic event may be defined multiple times. An diagnos-
tic requester defines the events which shall be implemented by an application
developer. A supplier implements a software component which will be used in
multiple projects and which also detects this type of error and also defines this
same event. Both events may have different naming but the same meaning. The
integrator has to detect this redundancy during the integration and merge them
together.

• The diagnostic requester requires a specific ReadDataByIdentifier and an appli-
cation developer implements it. If the implementation is performed for one spe-
cific project only, the application developer may map the DID from the diagnostic
requester to the already defined job in their software component. In other cases
in which the application developer implements a generic diagnostic job, it will be
a task of the diagnostic integrator to merge this information and to map the jobs
to the corresponding DID.

c(RS_METH_00082)

After all issues and conflicts are resolved and the inputs are merged, the final com-
plete Diagnostic ECU Extract is produced. Based on this deliverable, the initial
configuration of the relevant basic software modules is generated (activity Integrate
Software for ECU).

144 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.12.3 Workflow

Diagnostic Extract
Overview

Develop Diagnostic Abstract
System Description

Develop Diagnostic Requirements

Develop Application
Software

Integrate Diagnostic Information

Integrate Software for ECU

Develop Basic Software

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

Figure 2.59: Diagnostic Extract Overview

145 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Diagnostics Integrator

Software DeveloperDiagnostic Requester

Develop
Diagnostic
Abstract System
Description

Develop
Diagnostic
Requirements

Integrate Diagnostic
Information

Develop Application
Software

Integrate Software for ECU

Diagnostic ECU
Extract

Diagnostic Abstract System
Description

Diagnostic System
Extract

Develop Basic Software

0..*

 «input»

 «output» 0..* «output»

0..*

 «output»

0..*

 «output»

1

 «output»

0..* «output»
+complete DE

1..*

+complete DE 0..1

 «input»

0..* «input»

0..*

 «input»

+partial ly fi lled DE

0..*
 «input»

0..*

0..* «input»

Figure 2.60: Diagnostic Extract Workflow

Diagnostic Extract

Diagnostic Abstract System
Description

Diagnostic System
Extract

Diagnostic ECU Extract

Figure 2.61: Diagnostic Extract Deliverables

146 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Process Pattern Diagnostic Extract Overview
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High

Level::Diagnostic Extract Overview
Brief Description
Description
Relation Type Related Element Mul. Note
Aggregates Develop Applica-

tion Software
1

Aggregates Develop Basic
Software

1

Aggregates Develop Diagnos-
tic Abstract System
Description

1

Aggregates Develop Diagnos-
tic Requirements

1

Aggregates Integrate Diagnos-
tic Information

1

Aggregates Integrate Software
for ECU

1

Table 2.49: Diagnostic Extract Overview

Activity Develop Diagnostic Abstract System Description
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High

Level::Diagnostic Extract Overview
Brief Description
Description This activity defines diagnostic requirements at functional/abstract

level. The resulting Diagnostic Abstract System Description may be
used by the following activity as a basis for the Diagnostic System
Extract or the Diagnostic ECU Extract.

Relation Type Related Element Mul. Note
Produces Diagnostic Ab-

stract System
Description

1

Table 2.50: Develop Diagnostic Abstract System Description

147 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Activity Develop Diagnostic Requirements
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High

Level::Diagnostic Extract Overview
Brief Description
Description In this activity the OEM or diagnostic requirer defines the diagnostic

interfaces of one or multiple ECUs. It may also define some
InternalBehaviors as requirements for the ECU-Supplier or application
developer.

The following tasks may be relevant:

• Define the values of the DTCs

• Define the UDS services and sub-services supported by the
ECUs

• Define the required events needed by a specific composition

Additionally, the OEM may also collect Diagnostic Extracts from
different departments as well as from SW-C developers and merge the
information into one Diagnostic Extract.

Relation Type Related Element Mul. Note
Diagnostic Ab-
stract System
Description

0..*

Consumes Diagnostic System
Extract

0..*

Produces Diagnostic ECU
Extract

0..*

Produces Diagnostic System
Extract

0..*

Table 2.51: Develop Diagnostic Requirements

Activity Integrate Diagnostic Information
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High

Level::Diagnostic Extract Overview
Brief Description
Description The main goal of this activity is to integrate all parts of the Diagnostic

Description received from the OEM and from the application developer.
Based on the complete Diagnostic Extract the initial ECUC can be
generated.

Relation Type Related Element Mul. Note
Consumes Diagnostic ECU

Extract
0..* partially filled DE:

Consumes Diagnostic System
Extract

0..*

Produces Diagnostic ECU
Extract

1..* complete DE:

Table 2.52: Integrate Diagnostic Information

148 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.13 Rapid Prototyping

2.13.1 Purpose

This use case describes usual activities to enable rapid prototyping in AUTOSAR.

2.13.2 Description

Rapid prototyping can be used during electronic control unit development to evaluate
and test new software control algorithms for various functions.

With Fullpass technology the original ECU is totally replaced by a Rapid Prototyping
Unit (RPU). With Bypass technology the original ECU and software stays in the con-
trol loop to supports the majority of the control algorithms and interface with sensors,
actuators and communication buses: only the specific control algorithm that shall be
prototyped is deported into the RPU (external bypass) or even directly executed in the
original ECU (internal bypass). Bypass mainly consists in replacing at run time inputs
and/or outputs of the original software algorithms by value computed by the prototype
algorithm under test.

[TR_METH_01132] Definition of a Rapid Prototyping Scenario d In order to
enable rapid prototyping, first of all the initial Rapid Prototyping Scenario is de-
fined (task Define Rapid Prototyping Scenario). After the generation of the
ECU Extract the ECU Extract of Rapid Prototyping Scenario should be
refined to achieve a complete rapid prototyping scenario (task Refine Rapid Pro-
totyping Scenario). c(RS_METH_00002)

[TR_METH_01133] Content of Rapid Prototyping Scenario artifact d A RPT
Scenario consist out of two main aspects: The description of the bypass points and the
relation to a hook. A bypass point describes the required preparation of the host ECU.
At a bypass point the host ECU shall be capable to communicate with a RPT system in
order to support the execution of the rapid prototyping algorithms with the original data
calculated by the host system and to replace dedicated results of the host system by
the results of the rapid prototyping algorithm. The hook represents the link between a
bypass point and the rapid prototyping algorithm.

Obviously, the bypass point and the hook reference aspects like parameterAc-
cess (dataWriteAccess, dataReadAccess, dataSendPoint, dataReceivePointByValue,
dataReceivePointByArgument, writtenLocalVariable, readLocalVariable). For more de-
tails see SW-C Template [5] (constr_2055). c(RS_METH_00002)

Currently, AUTOSAR supports two approaches for Rapid Prototyping: Component
wrapper method and direct buffer access method.

[TR_METH_01134] Component wrapper method d The component wrapper method
consists in wrapping the original software component implementation with an integra-
tion code (Rapid Prototyping Wrapper Header File and Rapid Prototyp-
ing Wrapper Source Code) that implements the bypass. With this method the in-

149 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

tegration code is able to take the control of the AUTOSAR interfaces of the software
component because there is no more direct call between RTE and the SW-C but ev-
erything go through the integration code.

In order to use this method, the RTE has to be configured properly (task Configure
RTE, for configuration details see AUTOSAR_SWS_RTE [15], section 4.9.2). Further-
more, based on the complete ECU Extract of Rapid Prototyping Scenario
artifact the corresponding wrapper code has to be generated and compiled (activity
Encapsulate SW-C). Depending on the development strategy the wrapper code gen-
eration may be processed in different stages of the development process.

The RTE supports the component wrapper method by generating the SW-C inter-
faces with a c-namespace including an additional [Byps_] infix for the bypassed SW-
C (task Generate RTE, for details see AUTOSAR_SWS_RTE [15], section 4.9.2).
c(RS_METH_00006)

[TR_METH_01135] Direct buffer access method d The direct buffer access method
provides runtime direct read and write access to the RTE buffers that implement the
ECU communication infrastructure. If the direct buffer access method for bypass sup-
port is enabled for a software component type, the Generate RTE task produces RTE
Measurement and Calibration Support Data with mcDataAccessDetails for
each preemption area specific buffer that implements the implicit communication for
this software component type (For details see AUTOSAR_SWS_RTE [15], section
4.9.3). For this method no wrapper code has to be generated. c(RS_METH_00006)

2.13.3 Workflow

Figure 2.62 shows the work sequence for this use case.

150 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Rapid Prototyping
Overview

Define Rapid
Prototyping
Scenario

Generate
ECU Extract

Extract ECU Rapid Prototyping
Scenario

Generate BSW and
RTE

Generate RTE

Configure BSW and
RTE

Prepare ECU
Configuration

Configure RTE

Generate ECU
Executable

Encapsulate SW-C

Generate Rapid Prototyping
Wrapper

Compile Atomic Software
Component

Generate A2L

Refine Rapid
Prototyping Scenario

 «nesting»

 «predecessor»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «predecessor»

 «predecessor»

 «predecessor»

 «nesting»

 «predecessor»

 «nesting»

 «nesting»

 «predecessor»

 «predecessor»

 «nesting»

Figure 2.62: Rapid Prototyping Overview

151 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Process Pattern Rapid Prototyping Overview
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High

Level::Rapid Prototyping Overview
Brief Description
Description This use case shows the typical steps required from an updated rapid

prototyping scenario down to an update of the generated RTE and the
produced A2L file. The use cases assumes, that rapid prototyping
scenario is changed in an already existing system, thus the steps
required to define and build a new system are omitted, only the
calibration relevant steps are shown.

In addition, the use case includes the (optional) task of updating a set
of calibration parameter values as input for the RTE.

Relation Type Related Element Mul. Note
Aggregates Configure BSW

and RTE
1

Aggregates Define Rapid Pro-
totyping Scenario

1

Aggregates Encapsulate SW-C 1
Aggregates Generate A2L 1
Aggregates Generate BSW

and RTE
1

Aggregates Generate ECU Ex-
ecutable

1

Aggregates Generate ECU Ex-
tract

1

Aggregates Prepare ECU Con-
figuration

1

Aggregates Refine Rapid Pro-
totyping Scenario

1

Table 2.53: Rapid Prototyping Overview

Activity Encapsulate SW-C
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High

Level::Rapid Prototyping Overview
Brief Description
Description Encapsulate the software component to enable rapid prototyping.

During this activity the wrapper code is generated based on the Rapid
Prototyping Scenario and the software component is compiled and
linked with the generated wrapper.

Relation Type Related Element Mul. Note
Aggregates Compile Atomic

Software Compo-
nent

1

Aggregates Generate Rapid
Prototyping Wrap-
per

1

Table 2.54: Encapsulate SW-C

152 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.14 Safety Extensions

2.14.1 Purpose

This use case provides an overview of the usage of the Safety Extensions (see [16]).

2.14.2 Description

ISO 26262 [17] is the applicable standard for functional safety of electronic and soft-
ware based systems in road vehicles which impacts almost all development activities,
including software specifications, design and implementation. The Safety Extensions
enable a standardized exchange of the safety information in an AUTOSAR context and
provide the basis for consistent management as required by ISO 26262. The additional
safety related information can be used e.g. for generation of the documentation or the
checking of ASIL constraints (w.r.t. allocation, mapping, decomposition and hierarchy),
which are prescribed by the ISO 26262. The AUTOSAR Methodology focuses on the
creation and refinement of the information. The corresponding analysis is out of scope
of this document.

According to the ISO 26262, the Safety Extensions provide the following means to
express safety information (for more details see TPS_SafetyExtension [16]):

• Safety Requirements (Artifact Safety Requirement)

• Safety Measures (Artifact Safety Measure)

• Safety integrity levels: attribute of Safety Requirement, Safety Measure
and any AUTOSAR element

• Decomposition of Safety Requirements: reference between the original and the
decomposed requirement (Task Decompose Safety Requirement)

• Refinement of Safety Requirements: reference between the original and the re-
fined requirement (Task Refine Safety Requirement)

• Allocation of Safety Requirements: reference between of Safety Requirement
and an AUTOSAR element (Task Allocate Safety Requirement)

• Allocation of Safety Measures: reference between Safety Measure and an
AUTOSAR element (Task Allocate Safety Measure)

• Mapping between Safety Requirements and Safety Measures (Task Map
Safety Requirement to Safety Measure)

• Independence relation between Safety Requirements (Task Add Indepen-
dence Relation)

The safety relevant information can be exchanged independently and are therefore
consolidated in a separate deliverable Safety Extensions.

153 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

[TR_METH_01144] Activity Define Safety Information d The activity Define
Safety Information (see Figure 2.63) represents a generic pattern for defin-
ing safety relevant information. The safety extensions are not restricted to specific
AUTOSAR elements so that safety relevant information can be added and modified in
several stages of the AUTOSAR Methodology in an iterative way. Thus, the AUTOSAR
elements consumed by some of the nested tasks are modeled using the General
Autosar Artifact. The AUTOSAR Methodology does not prescribe an explicit ex-
ecution order of the tasks. The only restrictions with respect to the execution order are
given by the input and output relations (E.g. obviously, before a Safety Require-
ment can be decomposed, it has to be defined). c(RS_METH_00081)

[TR_METH_01145] Creation of Safety Requirements d Naturally, the process
starts with the task Define Safety Requirement. This task creates a Safety
Requirement and assigns the required attributes such as ASIL. The top level Safety
Requirement is a safety goal and obviously results from the hazard analysis and risk
assessment. If Safety Requirements are not detailed enough to allocate them
directly to appropriate AUTOSAR elements, it is necessary to refine them first (task
Refine Safety Requirement). The refinement will add new Safety Require-
ments which are in a hierarchy relation to existing Safety Requirements. The ASIL
is maintained as attribute at each safety goal and inherited consistently through the
subsequent levels of functional safety requirements (as part of the Functional Safety
Concept) and technical safety requirements (as part of the Technical Safety Concept).
The latter will be refined into SW and HW safety requirements. c(RS_METH_00081)

[TR_METH_01146] Allocation of Safety Requirements d Each Safety Re-
quirement must be allocated properly to an element of the system architecture, i.e.
component, HW, SW or both (HW and SW). Hence, an AUTOSAR element might re-
ceive an ASIL which indicates that it is in the scope of an ISO 26262 development.
The allocation is done by task Allocate Safety Requirement. If safety require-
ments are not available or will not be exchanged together with a specification, the
AUTOSAR implementation must at least be aware that the element is used in a safety
context. Hence, the task Define ASIL For AUTOSAR Element directly assigns
the ASIL attribute to an AUTOSAR element (independent of an allocation). Especially
in cases of a SEooC (Safety Element out of Context) development, where the safety
requirements are not fully known at development time, the ASIL attribute supports the
integration and verification of such parts in a later stage of development by matching
the assumptions against the finalized safety requirements. c(RS_METH_00081)

[TR_METH_01147] Decomposition of Safety Requirements d In order to tailor
the ASIL of Safety Requirements, ASIL decomposition may be applied. The de-
composition is done by task Decompose Safety Requirement. According to the
ISO 26262 a requirement can be decomposed into two requirements. In the con-
text of ASIL decomposition the independence (freedom of interference) for the result-
ing requirements has to be demonstrated (Task Add Independence Relation).
c(RS_METH_00081)

[TR_METH_01148] Definition of Safety Measures d Safety of a system is achieved
by means of safety measures that are applied at various stages of the development pro-

154 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

cess and safety mechanisms which are implemented in a number of technologies into
the system. Safety measures and safety mechanisms are represented by the artifact
Safety Measure which is created by the task Define Safety Measure. In task
Allocate Safety Measure the Safety Measures which are safety mechanisms
realized in AUTOSAR are allocated to AUTOSAR elements in order to describe what el-
ements are involved in the provision of a safety measure. The task Map Safety Re-
quirement to Safety Measure creates a mapping between the Safety Mea-
sure and the Safety Requirement. c(RS_METH_00081)

The following specialized activities demonstrate the usage of the Safety Extensions in
different development stages and are integrated into the corresponding use cases:

• Define VFB Safety Information

• Define Software Component Safety Information

• Define System Safety Information

2.14.3 Workflow

Safety Extensions
Overview

Define Safety
Information

Map Safety Requirement
to Safety Measure

Define Safety
Requirement

Define Safety
Measure

Refine Safety Requirement

Decompose Safety
Requirement

Define ASIL For
AUTOSAR Element

Add Independence
Relation

Allocate Safety Measure

Allocate Safety Requirement

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»
 «nesting»

 «nesting»

 «nesting»

Figure 2.63: Safety Extensions Overview

155 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Process Pattern Safety Extensions Overview
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High

Level::Safety Extensions Overview
Brief Description
Description
Relation Type Related Element Mul. Note
Aggregates Define Safety In-

formation
1

Table 2.55: Safety Extensions Overview

Activity Define Safety Information
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High

Level::Safety Extensions Overview
Brief Description Defines all required safety information.
Description This activity represents a generic pattern for defining safety relevant

information. The safety extensions are not restricted to specific
AUTOSAR elements so that safety relevant information can be added
and modified in several stages of the AUTOSAR Methodology. Thus,
the AUTOSAR elements consumed by some of the nested tasks are
modeled using the "General Autosar Artifact".

Extended by Define Software Component Safety Information, Define System Safety
Information, Define VFB Safety Information

Relation Type Related Element Mul. Note
Aggregates Add Independence

Relation
1

Aggregates Allocate Safety
Measure

1

Aggregates Allocate Safety Re-
quirement

1

Aggregates Decompose Safety
Requirement

1

Aggregates Define ASIL For A
UTOSAR Element

1

Aggregates Define Safety Mea-
sure

1

Aggregates Define Safety Re-
quirement

1

Aggregates Map Safety Re-
quirement to
Safety Measure

1

Aggregates Refine Safety Re-
quirement

1

Table 2.56: Define Safety Information

156 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.15 Variant Handling

2.15.1 Overview

[TR_METH_02009] Variation points in Variant Handling d Variant Handling for
AUTOSAR is defined in the Generic Structure Template Template [18]. First, this con-
cept defines means to designate certain locations in the AUTOSAR meta-model as
variation points. A point roughly consists of a condition (under which conditions is this
variation active?) and a binding time (when should this variation be resolved?). c()

Second, there are predefined variants.

[TR_METH_02010] Predefined variants in Variant Handling d A typical AUTOSAR
model may contain a large number of variation points. However, usually only a relatively
small number of variants (i.e., combinations of “active” variation points) is actively used.
Each predefined variant describes such a variant. c()

2.15.2 Binding Times

[TR_METH_02011] Types of binding times d The AUTOSAR variant handling de-
fines two kinds of binding times for AUTOSAR: the latest binding time and the actual
binding time. They have the same kinds of values3, but are used in different contexts.
c(RS_METH_00074)

AUTOSAR defines the following binding times (presented here in chronological order):

• BlueprintDerivationTime

• SystemDesignTime

• CodeGenerationTime

• PreCompileTime

• LinkTime

• PostBuild

The Generic Structure Template mentions two more binding times. First, there is
FunctionDesignTime, which comes before SystemDesignTime, but is indepen-
dent of BluePrintDerivationTime. Second, there is Runtime, which comes after
PostBuild. These binding times are not covered by AUTOSAR and mentioned here
only for completeness.

[TR_METH_02012] Definition of a binding time d It should also be noted that a bind-
ing “time” is not really a point in time, but rather denotes a phase in the development of
an AUTOSAR system. c(RS_METH_00074)

3BlueprintDerivationTime and PostBuild are not part of the actual enum that is used in the
meta-model, but they are implied by the structure of the variation point. See chapter 7 in the Generic
Structure Template Template [18] are more details.

157 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.15.2.1 Latest Binding Time

[TR_METH_02013] Latest Binding Time d In the AUTOSAR meta model, ev-
ery variation point has a latest binding time, which is implemented by the tag
Vh.LatestBindingTime. As the name suggests, the latest binding time of a par-
ticular variation point puts an upper limit on when this point can be bound. A variation
may be bound earlier than this time, but not later. c(RS_METH_00074)

For example, the latest binding time for a software component which is part of a com-
position is PostBuild. In other words, an ECU can be configured to decide at startup
whether a software component is active or not.

However, it is not always possible to bind a variant at the latest possible time. To
continue the above example, making all software components PostBuild means that
an executable always contains code and other resources for all software components,
regardless whether it gets activated or not. Because of this, it may happen that the
executable becomes too large to fit onto its designated ECU. If this is the case, the
software component needs to be bound earlier, typically at PreCompileTime or even at
SystemDesignTime.

This is not the only scenario that leads to this decision. For example, a software com-
ponent might contain two or more subcomponents each of which is specific to a certain
vendor. In this case, before delivering the software component to a specific vendor, it
is custom to remove the subcomponents that are targeted at the other vendor(s). This
can obviously be done at PrecompileTime the latest.

There are also cases where there is an implicit (i.e., not stated of the meta-model)
lower limit for the binding time of a variation point. For example, if a variant in software
component A uses a variant in software component B, then the binding times need
to be coordinated. Component A cannot be SystemDesignTime if component B is
PostBuild, but makes use of software component A.

2.15.2.2 Actual Binding Time

[TR_METH_02014] Actual Binding Time d This brings us to the actual binding time
of a variation point, which is stored in an attribute4 of the variation point. Again, it is not
mandatory that the variation point is bound exactly at this stage; it rather states that
the variation point must not be bound at a later stage.

This binding time may be earlier than the latest binding time. c(RS_METH_00074)

As explained in the previous section, composition of software components can be
bound at PostBuild, but it is not always desirable or even feasible to do so. In such
a case. bindingTime should state an earlier binding time.

4The attribute is named bindingTime and is located at the ConditionByformula element of a
variation point. For an AttributeValueVariationPoint, it is contained in the attribute binding-
Time.

158 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Also, unlike the latest binding time, which is a meta model element and is stated on
M2 level, this binding time is a model element associated with a variation point and is
stated on M1 level.

That is, the binding time of a variation point limits the point at which a particular vari-
ation point has to be bound, but this binding time is again constrained by the latest
binding time.

2.15.3 Defining Variants

[TR_METH_02015] Definition of variants d A variant is almost always more than a
single variant point or a single system constant. Typically, a variant is a list of value as-
signments to system constants or postbuild variant conditions. In an AUTOSAR model,
such a list is represented by an instance of the meta-class PredefinedVariant, see
definition of artifact Predefined Variant. c(RS_METH_00005)

[TR_METH_02016] Evaluated Variant Set d Similarly, an instance of the meta-
class EvaluatedVariantSet is a set of PredefinedVariants that are known to
work (or not to work) for a certain element of the meta-model, for example a specific
software component. Evaluated variants may be used to exchange information about
known variants between different vendors, for example to document which variants of
a software component have been tested and are known to work.

In the Methodology SPEM model, the variant selectors are represented by the Eval-
uated Variant Set artifact which is created by the Evaluate Variant task.
c(RS_METH_00005, RS_METH_00075, RS_METH_00076)

This information is necessary because there is a extremely high number of possible
variants, but only a very small subset of them are feasible.

[TR_METH_02017] Use of Predefined Variant d The set of system constants
that are contained in an instance of PredefinedVariant usually affect a number of
variation points, which are at different locations in the model and have different binding
times.

Hence, a predefined variant cannot be directly associated with a specific location
in the meta-model, or a certain binding time. On the contrary, a Predefined-
Variant is used for several meta-model elements and at different binding times.
c(RS_METH_00005, RS_METH_00076)

2.15.4 Choosing Variants

Whether a variation point is included in a system or not is determined by one or more
variables. If the binding time of a variation point is anywhere from SystemDesignTime
to LinkTime, then the variation point contains an expression that is based on system
constants (see artifact System Constant Value Set). If this expression evaluates
to true, then the variation point is included in the system. PostBuild uses a simplified

159 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

scheme that allows only a single comparison with a PostBuildVariantCriterion
(technically, an ARElement).

[TR_METH_02018] Choosing variants d So, a variant is chosen as soon as the val-
ues for the respective system constants or postbuild variant conditions have been de-
termined. This is usually done by selecting a PredefinedVariant, which contains
the respective values. This selection must obviously happen before a variation point is
bound. But, it does not need to happen immediately before a variation point is bound.
c(RS_METH_00005)

For example, the system constants that determine a PreCompileTime variation point
may already have been chosen at SystemDesignTime, but the actual binding has
to be delayed to PreCompileTime because of a dependency on another software
components that have the binding time PreCompileTime, as described in Sec-
tion 2.15.2.2.

Furthermore, since PredefinedVariant spans several variation points, which may
have different binding times, some might have a binding time (latest or even actual)
immediately after the PredefinedVariant has been chosen, and the others might
have a later binding time.

Finally, the decision to go for a particular variant is often tied to vendor specific pro-
cesses that follow their own timeline.

Hence, the time at which a particular variant is chosen is often not the same as the
time when the associated variation points are bound. In summary, a variant must be
chosen some time before it is bound, but the actual time when this is happening is not
determined by AUTOSAR, and is also quite vendor specific.

2.16 Definition of Binding Times

2.16.1 Overview

A binding time is not (as the name probably suggests) a precise point in time, but
rather a classification of processing steps. For example, the binding time CodeGener-
ationTime refers to a transformation step from an AUTOSAR model in ARXML format
to code.

In this section, we define binding times for artifacts and tasks in the methodology.

[TR_METH_00001] Definition of Binding Time for Tasks d A task has binding time
X if it binds variation points of binding time X.

This means in particular:

• Any task that works on the model may bind variation points that have the binding
time SystemDesignTime.

160 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

• Any task that generates code needs to bind open variation points that have the
binding time CodeGenerationTime. All variation points with earlier binding
times must have been bound by then.

• Similarly, any task that compiles code needs to bind open variation points that
have the binding time PreCompileTime.5 All variation points with earlier binding
times must have been bound by then.

At this time, the values for PostBuildVariantConditions of variation points
must also be bound. These values have a latest binding time of PreCompile-
Time6.

In all these cases, the system constants that are needed by the condition of a variation
point obviously must be defined before the variation point is bound.

In the Methodology library, the binding time of a task is indicated by a value of the tag
Meth.bindingTime for those tasks which always can be associated with this binding
time. It is not indicated for tasks that only optionally bind variations. This typically
is the case for all tasks that only work on the ARXML model, for example, it is up
to the concrete process whether a task like Extract ECU Topology shall bind any
variations. c(RS_METH_00074, RS_METH_00075)

[TR_METH_00002] Definition of Binding Time for Artifacts d In an artifact with bind-
ing time X, all variation points up to binding time X shall be bound.

We do not denote such a binding time for artifacts in the Methodology library, be-
cause their binding time typically depends on the context. However, this definition
could be used to assign a binding time to an artifact as part of a specific use case.
c(RS_METH_00074)

[TR_METH_00003] Definition of Binding Time for Artifacts in the context of par-
ticular tasks d If an artifact of binding time X is used as input or output of a particular
task, then all variation points related to that task with binding time up to X shall be
bound.

This in particular means that if the artifact is input to the task, then binding time variation
points X shall be bound and the task relies on this.

If the artifact is output to the task, it is granted that the such created artifact has all
variation points of binding time X bound.

In the Methodology library, this is indicated by a value of the tag Meth.bindingTime
attached to a Consumes/ConsumedBy resp. Produces/ProducedBy relationship.

5Note that in case of the RTE code, the technical step of binding PreCompileTime variants is
partially done by a preparatory task which runs before the actual compilation, see Generate RTE
Prebuild Dataset. That means in particular, the relevant system constants must be defined before
executing this preparatory task. The binding time of actual compilation task Compile ECU Source
Code is indicated as CompileTime in this case.

6The variation point is still PostBuild: the PostBuildVariantCondition is fixed at PreCompile-
Time, but the comparison with the associated PostBuildVariantCriterion occurs at PostBuild-
VariantCriterion. See the Generic Structure Template [18] for details

161 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Note that the tag Meth.bindingTime is not applicable to inout relationships, as the
binding time values according to the above definition are usually different for the inputs
and outputs of a particular task. If it is important to express these binding times, the
inout relation must be split into an input (i.e. ConsumedBy) and output (i.e. Pro-
duces) relation. c(RS_METH_00074)

Figure 2.64 presents an overview of binding times as used in the AUTOSAR method-
ology. Boxed elements in this figure correspond to binding times, and the connections
between them characterize artifacts.

Model + Requirements

BluePrintDerivationTime FunctionDesignTime

InitialBindingTime

CodeGenerationTime

PreCompileTime

CompileTime

LinkTime

PostBuild

RunTime

Executable, Configuration Data Set

Object Code

Bound Source Code

Source Code

ARXML

Function ModelARXML

Figure 2.64: Overview of Binding Times

162 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.16.2 A Classification of Artifacts with respect to Binding Times

Model, Requirements, Functional Model These refer to models that are not an
AUTOSAR Model. For example, a Model may be a Matlab/Simulink model or
a requirements document.

ARXML An ARXML artifact is a XML document that conforms to the AUTOSAR XML
schema.

Source Code A Source Code artifact is text written using the syntax of a programming
language, for example such as C or C++.

Source Code may be generated by hand, or may be the output of a code gener-
ator.

Bound Source Code A Bound Source Code artifact contains source code without any
unbound precompile variation points.

Object Code An Object Code is the output of a compiler. Object code is typically
machine code, but may also include descriptive information in a format such as
XML.

Executable An Executable is an artifact that can run on an ECU. It is often similar to
Object Code; the difference between the two is that the former does not provide
means for execution on an ECU.

Configuration Data Set A Configuration Data Set is a set of assignments to Post-
BuildVariantCriterion.

2.16.3 Classification of Binding Times

Table 2.57 presents an overview of the binding times in AUTOSAR Variant Handling.

Binding Time AUTOSAR Metamodel AUTOSAR Methodology
BlueprintDerivationTime partially yes
FunctionDesignTime out of scope out of scope
InitialBindingTime no yes
SystemDesignTime yes yes
CodeGenerationTime yes yes
PreCompileTime yes yes
CompileTime unused yes
LinkTime yes yes
PostBuild yes yes
Runtime out of scope out of scope

Table 2.57: Binding Times in Meta Model and Methodology

Variant handling in the AUTOSAR meta model supports the following binding times:

• BlueprintDerivationTime

163 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

• SystemDesignTime

• CodeGenerationTime

• PreCompileTime

• LinkTime

• PostBuild

[TR_METH_02020] Definition of latest Binding Time for a variation point
in the meta-model d All these binding times may be used in the tag
�Vh.latestBindingTime�, which is used to define the latest binding time for a
variation point in the meta model.

The actual binding time of a variation point is stored in the attribute bindingTime
of the ConditionByFormula of a VariationPoint, and can only use the val-
ues SystemDesignTime, CodeGenerationTime, PreCompileTime, LinkTime.
c(RS_METH_00074)

The AUTOSAR methodology utilizes two more binding times, InitialBinding-
Times to characterize artifacts where no variation points are bound, and Compile-
Time to distinguish between preprocessing and compiling of code. Finally, Func-
tionDesignTime and Runtime are not in the scope of AUTOSAR variant handling
but mentioned here for completeness.

2.16.3.1 BlueprintDerivationTime

At BlueprintDerivationTime, a model is derived from Blueprints. For example,
a function design tool provides the option to derive objects from a predefined set of
blueprints. See [19] for more details. This is different from the variant handling defined
in this chapter, but it uses the same meta model features (see [18]).

BlueprintDerivationTime is out of the scope of this document, but mentioned
here for completeness.

Input Artifacts: Model, Requirements

Output Artifacts: ARXML

2.16.3.2 FunctionDesignTime

At FunctionDesignTime, a software architecture independent model for (control)
systems is developed. Typical tools used at this stage are Matlab/Simulink, or ASCET-
MD.

If a function design tool supports variant handling according to AUTOSAR it has no
other choice than using CodeGenerationTime or later as binding time in the gener-
ated AUTOSAR artifacts.

164 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

FunctionDesignTime is out of the scope of this document (as long as it does not
affect calibration measurements), but mentioned here for completeness.

Input Artifacts: Model, Requirements

Output Artifacts: Function model

2.16.3.3 InitialBindingTime

At InitialBindingTime, no variation points are bound. This binding time is needed to
express a state where no SystemDesignTime points are bound in artifact

Input Artifacts: Model, Requirements, Function model, AUTOSAR models from
blueprints in ARXML format.

Output Artifacts: ARXML.

2.16.3.4 SystemDesignTime

SystemDesignTime is characterized by the following tasks:

• Designing the VFB

• Software Component types (Interfaces)

• SWC Prototypes and the Connections between SWCprototypes

• Designing the Topology

• ECUs and interconnecting Networks

• Designing the Communication Matrix and Data Mapping

Input Artifacts: Function model, Requirements, AUTOSAR models from blueprints in
ARXML format.

Output Artifacts: ARXML.

2.16.3.5 CodeGenerationTime

At this step, code is generated. This may be done either by hand, or using a tool, or a
mixture of both.

Handwritten code is typically based on a requirements document, whereas generated
code is usually created from a model that was designed at FunctionDesignTime or
SystemDesignTime.

Both the requirements and the model may contain variants, but code is only generated
for those variants that have been selected, or which need to be resolved later.

165 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Input Artifacts: ARXML.

Output Artifacts: Source Code.

2.16.3.6 PreCompileTime

At PreCompileTime, a preprocessor (e.g., the C preprocessor) is used to further
customize the code and exclude parts of the code from the compilation process.

There are several reasons for such an exclusion: code is not required for the selected
variant(s), code is incompatible with the selected variant(s), or code requires resources
that are not present in the selected variant(s). The code that is excluded at this stage
code will not be available at later stages.

PreCompileTime is typically used for handwritten code (for which SystemDesign-
Time and CodeGenerationTime obviously cannot not take effect) or when a system
constant needs to be bound after code generation.

Input Artifacts: Source Code.

Output Artifacts: Bound Source Code.

2.16.3.7 CompileTime

At CompileTime, source code that has already been processed by a macro processor
such as the C preprocessor and stripped of all PreCompileTime variation points is
transformed into object code. The compiler might eliminate further variants by remov-
ing unused code paths.

CompileTime is not used in the AUTOSAR meta model, but is used in the AUTOSAR
methodology to discriminate between a preprocessor and a compiler.

Input Artifacts: Bound Source Code.

Output Artifacts: Object code.

2.16.3.8 LinkTime

The configuration at this stage determines which modules are included in the resulting
object code (executable), and which ones are omitted based on the selected variants.

Input Artifacts: Object code.

Output Artifacts: Executable program.

166 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

2.16.3.9 PostBuild

PostBuild is the binding time which is bound latest at startup of the ECU. In other words
this is everything between creation of the executable program and startup of the ECU.

The startup of the ECU is the PostBuild binding since and obviously cannot be resolved
in the model.

Input Artifacts: Executable program, Configuration data set.

Output Artifacts: –

2.16.3.10 Runtime

Everything after startup and initialization is RunTime. Variant Handling at RunTime is
out of the scope of this document, but mentioned here for completeness.

2.17 How to resolve Name Conflicts

2.17.1 Reasons for Name Conflicts

In the highly distributed development of an AUTOSAR system, there is a certain risk
that symbolic names used in different development artifacts are not unique so that
name conflicts may occur when applying software tools.

[TR_METH_03000] Name spaces via ARPackages d In the “upstream” specification
of an AUTOSAR system, a software component, a basic software module or config-
uration parameters via AUTOSAR XML artifacts, such a risk can be widely avoided
through the proper usage of ARPackages because they set up name spaces and
may be nested (see also General Autosar Artifact). Here it is recommended
to follow similar rules as AUTOSAR is using for its own published artifacts, see [18]:
[TPS_GST_00081], [TPS_GST_00083], [TPS_GST_00086]. c(RS_METH_00002,
RS_METH_00003, RS_METH_00004, RS_METH_00005)

However, certain symbols specified in the AUTOSAR XML artifacts need to be trans-
ferred to other development artifacts in later process steps (“downstream”) and will
appear e.g. as symbols in C-code, as file names, as names displayed by calibration
tools or in textual documents. Here we have in general two reasons for naming conflicts
(which may also occur in combination):

[TR_METH_03001] Reasons for name conflicts in “downstream” artifacts d

• Uncoordinated co-development

Due to the global name space of the C-language within one compilation unit, the
risk of name conflicts is rather high if pieces of source code are integrated that
were developed by different parties without coordinating the definition of symbols.

167 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

The same can happen with names of header files or with symbols visible by the
linker.

In AUTOSAR, the programming language interfaces between software compo-
nents and (to some extend) between basic software modules are restricted to
certain patterns and are generated from ARXML, so the coordination effort is
restricted to the proper definition of the relevant symbols in ARXML.

In several cases the shortName of an ARElement corresponds to an identifier
in the code (or to a part of such an identifier), sometimes also to a file name
or a part of it. Since shortNames are also used in the links between ARXML
elements, it is hard to change such a name without impact on the overall design.
This is for example the case for the names of the AtomicSwComponentTypes.

• Multiple instantiation

The AUTOSAR Runtime Environment (RTE) supports multiple instantiation of
software components. This means, in a system and even on one ECU there
can be several instances of a given AtomicSwComponentType. Each instance
possesses its own data (managed by the RTE), but there is only one artifact (VFB
Atomic Software Component) describing the whole type. If one needs a
symbol identifying a particular component instance or particular data belonging
to that instance (for example for display in a calibration tool), a conflict arises.

A similar thing happens with data elements or operation arguments in a PortIn-
terface or in a composite data type, if the enclosing element is reused in more
than one context.

A different kind of “multiple instantiation” can occur in the basic software, if several
driver modules implement the same interface (only distinguished by an instance
identifier). In this case, we actually have different implementations of code, the
modules only share the upper levels of description (artifacts Basic Software
Module Description and Basic Software Module Internal Behav-
ior).

c(RS_METH_00038)

2.17.2 Points in the Methodology where Name Conflicts are resolved

On the other hand we have multiple points in the methodology where to resolve those
conflicts.

In general we can distinguish between the development phase in which a name conflict
is resolved and the phase in which it occurs (or would occur). Because a conflict usually
prevents a certain task from being completed (e.g. compilation), it must be resolved in
the same or an earlier phase than the phase in which it would occur.

• [TR_METH_03002] Conflict solution at system design time d
This is mentioned mainly for completeness. Of course, a proper system design

168 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

can avoid conflicts in the first place and if a name conflict still arises in a later
phase, it is in principle possible to iterate over the system design. But in this
chapter we focus on solutions that allow to resolve name conflicts in later process
phases which usually causes less effort.c(RS_METH_00006)

• [TR_METH_03003] Conflict solution at coding time d
Conflicts occurring at compile time or link time must be resolved (latest) at the
time a developer is producing the code and/or the ARXML descriptions leading to
the generation of code. In other words, this has to happen within the activities De-
velop an Atomic Software Component or Develop BSW Module. Note
that in the worst case, such a conflict is detected not before integration time (dur-
ing activity Build Executable) which means that some kind of iteration of the
activities is required.c(RS_METH_00006)

• [TR_METH_03004] Conflict solution at ECU integration time d
During ECU integration time (latest) it is still possible to resolve name conflicts
that would occur in tasks after the software build, e.g. during generation of A2L
files.c(RS_METH_00006)

2.17.3 Mechanisms for resolving Name Conflicts

The mechanisms to resolve the name conflicts are:

• [TR_METH_03005] Conflict solution via SymbolProps d

This mechanism allows to redefine a name in cases where the shortName by
default is used to generate RTE relevant code. This avoids to change the overall
design in the ARXML model.

This mechanism can be applied at coding time (activity Develop an Atomic
Software Component, task Define SymbolProps for Types) and solves
conflicts caused by uncoordinated development. Such changes - even if they do
not influence the overall design of the software - should be agreed upon by the
involved parties.

This mechanism is provided for the following meta-model elements:

AtomicSwComponentType.symbolProps
Allows to redefine the software component type name that the RTE is using in
its code. This resolves name clashes among different software component types
designed accidentally with the same shortName.7

ImplementationDataType.symbolProps
Allows to redefine the implementation data type name used in the code of the

7Note that this mechanism is not applicable for the prefixes used in the preprocessor code of memory
sections and compiler memory classes. Conflicts among these preprocessor symbols due to duplicate
component type names are not visible to the linker. However conflicts might occur when compiling the
header file Compiler_Cfg.h and must be resolved manually.

169 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

RTE and/or the components. This resolves name clashes among different imple-
mentation data types designed accidentally with the same shortName.

For more information on the meta-model refer to [TPS_SWCT_01194] and
[TPS_SWCT_01110] in [5].c(RS_METH_00002)

• [TR_METH_03006] Conflict solution via literal prefixes d

This mechanisms is similar to the one described before. It allows to define a pre-
fix for preprocessor literals (e.g. for enumeration types or upper/lower limits) cre-
ated by the RTE generator contract phase. Also this mechanism solves conflicts
caused by uncoordinated development and must be applied at coding time (part
of task Define Atomic Software Component Internal Behavior).

The model element to be manipulated is:
SwcInternalBehavior.includedDataTypeSet.literalPrefix

For more information refer to [TPS_SWCT_01157] in [5].c(RS_METH_00002)

• [TR_METH_03007] Conflict solution in names of runnable entities d

In case of a RunnableEntity the symbol used in the code is already indepen-
dent from the shortName - it is always modeled via the attribute
RunnableEntity.symbol. However, since these symbols need to be unique
in the scope of one RTE instance (see [constr_2025] in [5]), also here a name
conflict can occur at integration time if the definition of the symbols was not coor-
dinated before.

Similar to the cases discussed before, this conflict must be solved at coding time
simply be changing the symbol. Note that such a change would not influence
the overall design and can be done locally on one component (whose runnable
shall be renamed) since the runnable symbol is hidden to other component by the
RTE. Despite of that, the definition of unique runnable symbols still might need
some human coordination.c(RS_METH_00002)

• [TR_METH_03008] Conflict solution via FlatMap d

This mechanism allows to assign identifiers to instances of model elements (e.g.
software component instances or data element instances) so that they are unique
in a certain scope, e.g. a system or an ECU. Thereby name conflicts are avoided,
which would occur if simply the shortNames of the ARXML elements would be
used. In other words, this mechanisms solves the name conflicts arising from
multiple instantiation of types in the ARXML model.

The identifiers defined in this way are typically not used within the code, since
AUTOSAR components do not rely on global variables. The main purpose is the
usage within other artifacts which need to handle symbols out of the package
context of the ARXML model, for example citation in documents (e.g. in arti-
fact Software Component Documentation) or input for measurement and
calibration tools (e.g. in artifact RTE Measurement and Calibration Sup-
port Data). A special use case of the ECU Flat Map is the the model trans-

170 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

formation from the System to ECU Extract, where it is used to define additional
names of component prototypes.

The point in the methodology where this mechanisms is applied depends of
course on the use case. The typical tasks in the methodology library for defining
a Flat Map are normally performed before integration time: Generate or Ad-
just System Flat Map, Define Partial Flat Map and Generate or
Adjust ECU Flat Map. But since identifiers in a FlatMap are independent of
the code, it can in principle be adjusted even at integration time in case a conflict
occurs.

For more information see artifacts System Flat Map, Partial Flat Map
and ECU Flat Map, for the underlying meta-model parts refer to refer
to [9].c(RS_METH_00005)

• [TR_METH_03009] Conflict solution via AliasNameSet d

This mechanism is similar to FlatMap. It allows to define additional names for
model elements, either on top of an entry in a FlatMap or standalone. The
usage is also similar, but there are no standardized use cases in connection with
the AUTOSAR RTE. It can be used in cases where the format of the FlatMap is
too restrictive.

For more information refer to the artifact Alias Name Set and task Define
Alias Names. For the meta-model of AliasNameSet refer to [9]. The docu-
ment [9] also gives recommendations on how to transfer certain attributes below
AliasNameSet into an ASAM ASAP2 (“A2L”) specification.c()

• [TR_METH_03010] Conflict solution via API Infixes d

If several “instances” of a basic software module (with different implementation
but identical interface definition) are linked together, name conflicts have to be
solved by defining “infixes”. These are small pieces of strings denoting the mod-
ule vendor and the instance role. They are used to extend globally visible C
symbols and certain header file names. The mechanism is also relevant for the
basic software scheduler APIs generated in task Generate BSWM Contract
Header Files.

Though this mechanism solves a conflict of a certain kind of multiple instantiation,
it is relevant to the code and thus must be applied at coding time. The description
of the infixes has to be put into the artifact Basic Software Module Imple-
mentation Description.

For more information refer to [TPS_BSWMDT_04031] in [8] and to
[SWS_BSW_00102] in [6].c(RS_METH_00003)

171 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3 Methodology Library

3.1 Common Elements

This chapter contains the definition of work products and tasks used in several areas of
AUTOSAR development. For the definition of the relevant meta-model elements refer
to [18].

3.1.1 Work Product Kinds

Category
(Work Product Kind)

AUTOSAR XML

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Product Kinds

Brief Description
Description An artifact that conforms to the AUTOSAR XML schema.

Table 3.1: AUTOSAR XML

Category
(Work Product Kind)

Source Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Product Kinds

Brief Description
Description A human readable artifact that conforms to a defined programming

language syntax, such as C or Java.

Table 3.2: Source Code

Category
(Work Product Kind)

Bound Source Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Product Kinds

Brief Description
Description A Bound Source Code artifact contains source code without any

unbound precompile variation points.

Table 3.3: Bound Source Code

Category
(Work Product Kind)

Object Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Product Kinds

Brief Description

172 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Description An Object Code is the output of a compiler. Object code is typically
machine code, but may also include descriptive information in a format
such as XML.

Table 3.4: Object Code

Category
(Work Product Kind)

Configuration Data Set

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Product Kinds

Brief Description
Description This is a special kind of binary code containing configuration that can

be loaded separately from the main ECU code.

Table 3.5: Configuration Data Set

Category
(Work Product Kind)

Executable

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Product Kinds

Brief Description
Description An Executable is an artifact that can run on an ECU. It is often similar

to Object Code; the difference between the two is that the former does
not provide means for execution on an ECU.

Table 3.6: Executable

Category
(Work Product Kind)

Text

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Product Kinds

Brief Description
Description A human readable artifact that is stored as plain text, rich text, PDF, etc.

Table 3.7: Text

Category
(Work Product Kind)

Custom

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Product Kinds

Brief Description
Description A custom artifact format which is not further specified in the AUTOSAR

Methodology.

Table 3.8: Custom

173 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Category
(Work Product Kind)

Delivered

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common
Elements::Work Product Kinds

Brief Description
Description These are collections of delivered work products. They form the basis

of exchange between organizations.

Table 3.9: Delivered

3.1.2 Tasks

3.1.2.1 Add General Documentation

Add General Documentation

General Documentation

 «output» 1

Figure 3.1: Add General Documentation

Task Definition Add General Documentation
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Tasks
Brief Description
Description Add General Documentation to work products (AR_MET_REQ069)
Relation Type Related Element Mul. Note
Produces General Documen-

tation
1

Table 3.10: Add General Documentation

3.1.2.2 Define Admin Data

Define Admin Data

General Autosar Artifact

 «output» 1

Figure 3.2: Define Admin Data

174 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Define Admin Data
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Tasks
Brief Description Generic task to define admin data of an Identifiable within an

AUTOSAR artifact.
Description Generic task to define administration data (metamodel element

AdminData) of an Identifiable within an AUTOSAR artifact. Note that
administration data can be defined on several levels, namely for the
top-level package of a General Autosar Artifact, but also for
sub-packages and for other Identifiables within the XML description.

Admininistration data include versioning information of the model
element via the meta-class DocRevision, and the aggretation of user
specific data via so-called special data groups, meta-class Sdg.

For more details on the administration data content see
AUTOSAR_TPS_GenericStructureTemplate.pdf.

Relation Type Related Element Mul. Note
Produces General Autosar

Artifact
1

Table 3.11: Define Admin Data

3.1.2.3 Define Alias Names

Define Alias Names

Alias Name Set

Delivered Atomic Software
Components

System Description

 «output» 1

0..1

 «input»

0..1

 «input»

Figure 3.3: Define Alias Names

175 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Define Alias Names
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Tasks
Brief Description Define a set of alias names for AUTOSAR model elements.
Description The usual mechanism for defining global names for nested elements

within an AUTOSAR XML model is the Flat Map. However in the
cooperation with non-AUTOSAR tools, there are uses cases which
require additional alias names which can be defined by this task.

It can be applied on System and on ECU level as well. Possible use
cases are for example:

• The names defined by an ECU Flat Map, System Flat Map or
Partial Flat Map shall be superseded when used by an external
tool (e.g. in order to use a more general string format).

• Resolve name conflicts for elements which cannot be referred in
the context of a Flat Map (e.g. for elements directly defined in
the scope of ARPackages, like System Constants to be
displayed by A2L tools).

Relation Type Related Element Mul. Note
Consumes Delivered Atomic

Software Compo-
nents

0..1 Needed for definition of alias names in
the scope of delivered software
components.

Consumes System Descrip-
tion

0..1 Needed for definition of alias names with
system, system extract or ECU scope,
depending of the role of the System
Description.

Produces Alias Name Set 1

Table 3.12: Define Alias Names

176 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.1.2.4 Evaluate Variant

Evaluate Variant Evaluated Variant Set

Postbuild Variant Set

General Autosar Artifact

Predefined Variant

System Constant
Value Set

 «input»

0..*

 «input» 0..1

 «output» 1

 «input»0..*

 «input»

1..*

 «input»

0..*

Figure 3.4: Evaluate Variant

Task Definition Evaluate Variant
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Tasks
Brief Description Document the evaluation of variants in the software description.
Description Create or modify an Evaluated Variant Set in order to document the

outcome of an evaluation of particular variants. This namely means
setting the "approval status" in relation to a given set of
PredefinedVariants and a given set of model elements (e.g. a
particular Software Component) which were evaluated.

This is a general task which can be applied on different levels,
therefore the input is modeled as General Autosar Artifact.

Relation Type Related Element Mul. Note
Consumes General Autosar

Artifact
1..*

Consumes Evaluated Variant
Set

0..1

Consumes Postbuild Variant
Set

0..*

Consumes Predefined Variant 0..*
Consumes System Constant

Value Set
0..*

Produces Evaluated Variant
Set

1

Table 3.13: Evaluate Variant

177 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.1.2.5 Define Memory Addressing Modes

Define Memory
Addressing Modes

BSW Module
Preconfigured
Configuration

Basic Software
Module Developer

Software
Component
Developer

 «output»

+MemMapAddressingModeSet

1..*

1

 «performs»

0..1

 «performs»

Figure 3.5: Define Memory Addressing Modes

Task Definition Define Memory Addressing Modes
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Tasks
Brief Description
Description Define the compiler specific configuration used in a later task to

generate the "pragmas" in memory mapping header files.

The output (container MemMapAddressingModeSet) is treated as
pre-configured configuration values for the "module" MemMap,
because it can be prepared independently from the configuration for a
specific integration project.

Meth.bindingTime = SystemDesignTime
Relation Type Related Element Mul. Note
Performed by Basic Software

Module Developer
1

Performed by Software Compo-
nent Developer

0..1

Produces BSW Module Pre-
configured Config-
uration

1..* MemMapAddressingModeSet:
Meth.bindingTime = SystemDesignTime

Table 3.14: Define Memory Addressing Modes

178 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.1.2.6 Configure Memmap Allocation

Configure
Memmap
Allocation

BSW Module
Preconfigured
Configuration

ECU Configuration
Values

VFB Types

Basic Software
Module
Implementation
Description

ECU Integrator

Basic Software
Module Developer

Software
Component
Developer

Atomic Software
Component
Implementation

0..1

 «performs»

0..1
 «performs»

+MemorySections

0..* «input»

0..1

 «performs»

+SwAddrMethods

0..*

 «input»

+MemorySections

0..*

 «input»

+MemMapAddressingModeSet

1..*

 «input»

 «output»

+MemMapAllocation

1

Figure 3.6: Configure Memmap Allocation

179 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Configure Memmap Allocation
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Tasks
Brief Description
Description Configure the ECU Configuration part MemMapAllocation for module

"MemMap".

The output is to be used for generating memory mapping headers
during ECU integration as well as for BSW and SWC compiling/linking
in local environments.

MemMapAllocation defines a mapping between abstract memory
sections used in BSW or SWC code and compiler specific
configuration elements. The abstract sections are identified via links to
SwAddrmethods (generic mapping) resp. MemorySections of the XML
input files. The compiler specific configuration is given as a
pre-configured configuration for module "MemMap" via the container
MemMapAddressingModeSet.

For more information refer to document ID 128:
SWS_MemoryMapping.

Meth.bindingTime = SystemDesignTime
Relation Type Related Element Mul. Note
Performed by Basic Software

Module Developer
0..1

Performed by ECU Integrator 0..1
Performed by Software Compo-

nent Developer
0..1

Consumes BSW Module Pre-
configured Config-
uration

1..* MemMapAddressingModeSet: Collection
of compiler specific configuration
elements for memory allocation and
addressing modes.

Consumes Atomic Software
Component Imple-
mentation

0..* MemorySections:

Consumes Basic Software
Module Implemen-
tation Description

0..* MemorySections:

Consumes VFB Types 0..* SwAddrMethods: SwAddrMethods used
for the generic mapping. Note that one
SwAddrmethod can represent several
memory sections.

Produces ECU Configuration
Values

1 MemMapAllocation:
Meth.bindingTime = SystemDesignTime

Table 3.15: Configure Memmap Allocation

180 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.1.2.7 Generate BSW Memory Mapping Header

Generate BSW
Memory Mapping
Header

BSW Module
Preconfigured
Configuration

ECU Configuration
Values

VFB Types

Standard
Header Files

Basic Software
Module
Implementation
Description

Basic Software
Module
Developer

ECU Integrator

Basic Software
Module
Description

+SwAddrMethod

1..*

 «input»

+moduleDescription

0..1

 «input»

+infixes

1

 «input»
+DependencyOnArtifact

1

 «input»

+MemorySections

1

 «input»

+MemMapAddressingModeSet

1..*

 «input»

+MemMapAllocation

1

 «input»

1

 «performs»

+shortName 0..1

 «input»

0..1

 «performs»

 «output»

+BSW_MemMap

1

Figure 3.7: Generate BSW Memory Mapping Header

181 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Generate BSW Memory Mapping Header
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Tasks
Brief Description
Description Generate a memory mapping header to be used for one BSW module

(the default case) or a group of BSW modules (e.g. an ICC2 cluster).
Note that the usage of one MemMap.h for the complete BSW of one
build environment is possible, but deprecated.

This task can be used in ECU scope or with preliminary scope to test
BSW modules. Note that the content of the generated file is compiler
specific (#pragma statements).

Inputs are:

• From Basic Software Module Description: The shortName is
used (in the default case) as the first part of the generated file
name.

• From VFB Types: Properties of abstract sections given by
SwAddrmethods, which in turn are referred by MemorySection
as well as by MemMapAllocation.

• From Basic Software Module Implementation Description:
Names of the individual abstract sections (preprocessor macros)
used in the code (including optional prefixes overriding the
default rule); optional infixes for the file name (if the default rule
is used); optional declaration of file name (element
DependencyOnArtifact) overriding the default rule.

• From Preconfigured Configuration for module "MemMap":
Collection of compiler specific configuration elements.

• From ECU Configuration for module "MemMap" :
MemMapAllocation - this is the concrete mapping for this
environment.

• From ECU Configuration: Find the list of used BSW modules in
case the task is done for the whole BSW
(EcucValueCollection.ecucValue.moduleDescription).

Meth.bindingTime = CodeGenerationTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Performed by Basic Software

Module Developer
0..1

Consumes Basic Software
Module Implemen-
tation Description

1 infixes: Optional infixes (denoting
instance and vendor ID) to be used
within the created header file name.
Meth.bindingTime = SystemDesignTime

Consumes Basic Software
Module Implemen-
tation Description

1 DependencyOnArtifact: Can be used to
override the default name of the memory
mapping header file.
Meth.bindingTime = SystemDesignTime

182 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes Basic Software

Module Implemen-
tation Description

1 MemorySections: MemorySections
defined for a BSW module. This input
includes optional prefixes for memory
sections overriding the default rule.
Meth.bindingTime = SystemDesignTime

Consumes ECU Configuration
Values

1 MemMapAllocation: Mapping of the
abstract sections (SwAddressMethods
for generic mapping resp.
MemorySection Elements for specific
mapping) to the compiler specific
MemMapAddressingModes.
Meth.bindingTime = SystemDesignTime

Consumes BSW Module Pre-
configured Config-
uration

1..* MemMapAddressingModeSet: Collection
of compiler specific configuration
elements for memory allocation.
Meth.bindingTime = SystemDesignTime

Consumes VFB Types 1..* SwAddrMethod: Referred
SwAddrMethods
Meth.bindingTime = SystemDesignTime

Consumes Basic Software
Module Descrip-
tion

0..1 shortName: The BSW module’s
shortName is used as the first part of the
generated file name, in case the default
rule applies.
Meth.bindingTime = SystemDesignTime

Consumes ECU Configuration
Values

0..1 moduleDescription: List of used BSW
modules (EcucValueCollec-
tion.ecucValue.moduleDescription)
Meth.bindingTime = SystemDesignTime

Produces Standard Header
Files

1 BSW_MemMap: The memory mapping
header file to be used for one or more
BSW modules in a given build
environment.

The file name has in the standardized
case a form like {Mip}_MemMap.h in
which the prefixes {Mip} are determined
by the module (or cluster) name and
optional infixes.

However, it is also possible to create a
completely different filename via explicit
declaration in the BSW Module
Implementation.

For more detailed rules on the name of
the generated file refer to
AUTOSAR_SWS_MemoryMapping.
Meth.bindingTime =
CodeGenerationTime

Table 3.16: Generate BSW Memory Mapping Header

183 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.1.2.8 Generate SWC Memory Mapping Header

BSW Module
Preconfigured
Configuration

ECU Configuration
Values

VFB Types

Standard
Header Files

ECU Integrator

Generate SWC
Memory Mapping
Header

Software
Component
Developer

Atomic Software
Component
Implementation

 «output»

+SWC_MemMap

1

1

 «performs»

+MemMapAllocation

1

 «input»

+MemMapAddressingModeSet

1..* «input»

+RteImplementationRef

0..1

 «input»

+MemorySections

1

 «input»

0..1

 «performs»

+SwAddrMethod

1..*

 «input»

Figure 3.8: Generate SWC Memory Mapping Header

184 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Generate SWC Memory Mapping Header
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Tasks
Brief Description
Description Generate the memory mapping header file for one build environment

and one Atomic Software Component. This task can be used in ECU
scope or with preliminary scope to test software component. Note that
the generated header file is compiler specific (#pragma statements).

Inputs are:

• From VFB Types: Properties of abstract sections given by
SwAddrmethods, which in turn are referred by MemorySection
as well as by MemMapAllocation

• From Software Component Implementation, element
MemorySection: Names of the individual abstract sections
(preprocessor macros) used in the code.

• From Preconfigured Configuration for module "MemMap":
Collection of compiler specific configuration elements.

• From ECU Configuration for module "MemMap" :
MemMapAllocation - This is the concrete mapping for this
environment.

• From ECU Configuration: Find (optionally) the list of used
software component implementations by usage of the RTE ECU
Configuration "RteSwComponentType.RteImplementationRef"

Meth.bindingTime = CodeGenerationTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Performed by Software Compo-

nent Developer
0..1

Consumes Atomic Software
Component Imple-
mentation

1 MemorySections: MemorySections
defined for an Atomic Software
Component.
Meth.bindingTime = SystemDesignTime

Consumes ECU Configuration
Values

1 MemMapAllocation: Mapipng of the
abstract sections (SwAddressMethods
for generic mapping resp.
MemorySection Elements for specific
mapping) to the compiler specific
MemMapAddressingModes.
Meth.bindingTime = SystemDesignTime

Consumes BSW Module Pre-
configured Config-
uration

1..* MemMapAddressingModeSet: Collection
of compiler specific configuration
elements for memory allocation.
Meth.bindingTime = SystemDesignTime

Consumes VFB Types 1..* SwAddrMethod: Referred
SwAddrMethods
Meth.bindingTime = SystemDesignTime

185 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes ECU Configuration

Values
0..1 RteImplementationRef: Existence of

SWCs could be identified by usage of the
RTE ECU Configuration "RteSwCompo-
nentType.RteImplementationRef"
Meth.bindingTime = SystemDesignTime

Produces Standard Header
Files

1 SWC_MemMap: One header per
software component type for a given
build environment.

The file name follows the pattern
{componentTypeName}_MemMap.h in
which the prefix componentTypeName is
determined by the software component
type name.

For more detailed rules on the name of
the generated file refer to
AUTOSAR_SWS_MemoryMapping.
Meth.bindingTime =
CodeGenerationTime

Table 3.17: Generate SWC Memory Mapping Header

3.1.2.9 Configure Compiler Memory Classes

Basic Software
Module Developer

Software
Component
Developer

BSW Module
Preconfigured
Configuration

Configure
Compiler Memory
Classes

1

 «performs»

0..1

 «performs»

 «output»

+MemMap config for
compiler memclasses

1..*

Figure 3.9: Define Compiler Memory Classes

186 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Configure Compiler Memory Classes
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Tasks
Brief Description
Description Define the compiler specific configuration for "memory classes" used in

a later task to generate the preprocessor code of the compiler
configuration header file (Compiler_Cfg.h).

The output is treated as pre-configured configuration values for the
"module" MemMap, because it can be prepared independently from
the configuration for a specific integration project.

Meth.bindingTime = SystemDesignTime
Relation Type Related Element Mul. Note
Performed by Basic Software

Module Developer
1

Performed by Software Compo-
nent Developer

0..1

Produces BSW Module Pre-
configured Config-
uration

1..* MemMap config for compiler
memclasses: Set the parameter values
that define generic MemClassSymbols
(i.e. those not defined by modules or
SWCs.).

Set the parameter values that define the
implementation behind all kind of
MemClassSymbols (generic and local
ones).
Meth.bindingTime = SystemDesignTime

Table 3.18: Configure Compiler Memory Classes

187 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.1.2.10 Generate Compiler Configuration

Generate Compiler
Configuration

Software Component
Developer

Basic Software
Module Developer

ECU Integrator

Standard Header
Files

ECU Configuration
Values

BSW Module
Preconfigured
Configuration

Basic Software Module
Implementation
Description

VFB Types

Atomic Software
Component
Implementation

 «output»

+Compiler_Cfg

1

 «performs»

+MemorySections

0..*

 «input»

+RteImplementationRef

0..1

 «input»

+CompilerMemClassConfiguration

1..*

 «input»

0..1

 «performs»

0..1
 «performs»

+SwAddrMethod

1..*

 «input»

+MemorySections

1..* «input»

+ModuleDescription

0..1

 «input»

Figure 3.10: Generate Compiler Configuration

Task Definition Generate Compiler Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Tasks
Brief Description
Description This task generates a compiler configuration header (Compiler_cfg.h)

for one build environment to be used for all BSW modules and software
components.

Meth.bindingTime = CodeGenerationTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Performed by Basic Software

Module Developer
0..1

Performed by Software Compo-
nent Developer

0..1

188 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes BSW Module Pre-

configured Config-
uration

1..* CompilerMemClassConfiguration: The
parameters "MemMapCompilerMem-
ClassSymbolImpl" and
"MemMapGenericCompilerMem-
ClassSymbolImpl" define the
implementation behind a
MemClassSymbol.
Meth.bindingTime = SystemDesignTime

Consumes Basic Software
Module Implemen-
tation Description

1..* MemorySections: Find referred
SwAddrMethods or specific
memClassSymbols in the
MemorySections defined for BSW
modules.
Meth.bindingTime = SystemDesignTime

Consumes VFB Types 1..* SwAddrMethod: Referred
SwAddrMethods. They provide the
default names for the compiler memory
classes.
Meth.bindingTime = SystemDesignTime

Consumes ECU Configuration
Values

0..1 RteImplementationRef: Existence of
SWCs could be identified by usage of the
RTE ECU Configuration "RteSwCompo-
nentType.RteImplementationRef"
Meth.bindingTime = SystemDesignTime

Consumes ECU Configuration
Values

0..1 ModuleDescription: List of used BSW
modules (EcucValueCollec-
tion.ecucValue.moduleDescription)
Meth.bindingTime = SystemDesignTime

Consumes Atomic Software
Component Imple-
mentation

0..* MemorySections: Find referred
SwAddrMethods or specific
memClassSymbols in the
MemorySections defined for Atomic
Software Components.
Meth.bindingTime = SystemDesignTime

Produces Standard Header
Files

1 Compiler_Cfg: The output file
"Compiler_Cfg.h" configures the
abstraction of compiler specifics.
Meth.bindingTime =
CodeGenerationTime

Table 3.19: Generate Compiler Configuration

3.1.3 Work Products

3.1.3.1 General Documentation

189 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact General Documentation
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Work Products
Brief Description
Description General documentation link to a given work product
Kind Custom
Relation Type Related Element Mul. Note
Aggregated by General Deliver-

able
0..*

Produced by Add General Docu-
mentation

1

Table 3.20: General Documentation

3.1.3.2 Alias Name Set

Artifact Alias Name Set
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Work Products
Brief Description Set of alias names for AUTOSAR model elements for usage outside of

AUTOSAR.
Description Set of alias names, each consisting of the name (string) itself and the

reference to the model element it renames.

Each reference to a model element is either a reference to an
Identifiable or to an entry in an ECU Flat Map or System Flat Map.

For an explanation of uses cases see task Define Alias Names.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Delivered Atomic

Software Compo-
nents

0..1 Alias names valid in the context of the
delivered components.

Aggregated by System Descrip-
tion

0..*

Produced by Define Alias
Names

1

Consumed by Add Documenta-
tion to the Software
Component

0..* Optional input in order to refer to unique
names defined in an Alias Name Set
(e.g. System Constants).

Consumed by Generate A2L 0..*
Use meta model element AliasNameSet 1

Table 3.21: Alias Name Set

3.1.3.3 Evaluated Variant Set

190 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Evaluated Variant Set
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Work Products
Brief Description A set of evaluated variants
Description This artifact represents a table defining which ArElements or

ArPackages (referrred as "evaluatedElements") are able to support one
or more particular variant. It can thus be used to document which
variants are support by a certain delivery, e.g. of a software component
or of a system.

In other words, for a given set of evaluatedElements this element
represents a table of evaluated variants, where each PredefinedVariant
represents one column. In this column each descendant
swSystemConstantValue (part of System Constant Value Set) resp.
postbuildVariantCriterionValue (part of Postbuid Variant Set) represents
one entry.

In a graphical representation each swSystemConstantValueSet /
postBuildVariantCriterionValueSet could be used as an intermediate
headline in the table column.

The Evaluated Variant Set comes with an attribute "approvalStatus". If
this is set to "APPROVED" it expresses that the evaluatedElements are
known be valid for the given evaluated variants.

Note that an evaluatedElement could be another Evaluated Variant
Set. This allows to establish a hierarchy of EvaluatedVariantSets.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Delivered Atomic

Software Compo-
nents

0..1

Aggregated by ECU Extract of
System Variant
Model

0..*

Aggregated by System Descrip-
tion

0..*

Aggregated by VFB System 0..*
Produced by Define System

Variants
1

Produced by Evaluate Variant 1
Produced by Define Integration

Variant
0..1 Meth.bindingTime = SystemDesignTime

Produced by Define VFB Vari-
ants

0..*

Consumed by Evaluate Variant 0..1
Consumed by Extract ECU Sys-

tem Variant Model
0..*

Use meta model element EvaluatedVariant
Set

1

Table 3.22: Evaluated Variant Set

191 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.1.3.4 General Autosar Artifact

Artifact General Autosar Artifact
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Work Products
Brief Description Describes the meta data for an AUTOSAR artifact.
Description This artifact represents the data which are common to all AUTOSAR

XML artifacts.

Each file starts with the root element AUTOSAR.

The content of such an artifact below this root element is organized by
packages using the element ARPackage. Packages can be nested. It
is important to understand, that the hierarchy defined via packages and
other aggregated elements can (in general) span over several XML
files, i.e. over several artifacts. That means, if an aggregation is "split"
between several files, each file is considered as a separate artifact by
the methodology, even if the elements are formally aggregated within
the same package.

All elements derived from meta-class Identifiable can carry
documentation and administrative description based on the element
AdminData. Note that ARPackage is itself derived from Identifiable, so
there can be AdminData for the top-level package, for sub-packages
and for more specific elements (derived from Identifiable) as well. The
AdminData among other things contain revision information (including
the artifact version) based on the metamodel element DocRevision .

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by General Deliver-

able
0..*

Produced by Define ASIL For A
UTOSAR Element

1

Produced by Define Admin Data 1
Produced by Allocate Safety

Measure
0..* Allocated Elements:

Produced by Allocate Safety Re-
quirement

0..* Allocated Elements:

Consumed by Define ASIL For A
UTOSAR Element

1

Consumed by Allocate Safety
Measure

1..*

Consumed by Allocate Safety Re-
quirement

1..*

Consumed by Evaluate Variant 1..*
Consumed by Define Safety Mea-

sure
0..*

Consumed by Define Safety Re-
quirement

0..*

Use meta model element ARPackage 1
Use meta model element AUTOSAR 1

192 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note

Table 3.23: General Autosar Artifact

3.1.3.5 General Deliverable

General Deliverable

General Autosar Artifact General Non Autosar Artifact General Documentation

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

Figure 3.11: General Deliverable

Deliverable General Deliverable
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Work Products
Brief Description General data for an XML based deliverable within AUTOSAR.
Description General data for an XML based deliverable within AUTOSAR :

Especially it contains a catalog of all included artifacts. These can be
AUTOSAR artifacts (see General Autosar Artifact) or non-AUTOSAR
artifacts (see General Non AUTOSAR Artifact).

An AUTOSAR XML artifact which is contained in the catalog may refer
to an non AUTOSAR Artifact whithin the catalog via the metamodel
element AutosarEngineeringObject (see
AUTOSAR_TPS_GenericStructureTemplate.pdf for further description).

Kind Delivered
Relation Type Related Element Mul. Note
Aggregates General Autosar

Artifact
0..*

Aggregates General Documen-
tation

0..*

Aggregates General Non
Autosar Artifact

0..*

Table 3.24: General Deliverable

3.1.3.6 General Non-Autosar Artifact

193 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact General Non Autosar Artifact
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Work Products
Brief Description Describes the data for a non AUTOSAR artifact.
Description Describes the data for a non AUTOSAR artifact.
Kind Custom
Relation Type Related Element Mul. Note
Aggregated by General Deliver-

able
0..*

Consumed by Provide RTE Cali-
bration Dataset

1..* input from calibration process

Table 3.25: General Non Autosar Artifact

3.1.3.7 Postbuild Variant Set

Artifact Postbuild Variant Set
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Work Products
Brief Description Set of Postbuild Variant Criterion Values used to define post-build

variants of the software.
Description Set of Postbuild Variant Criterion Values used to define post-build

variants of the software.

Such a set does not necessarily define a variant which is actually used.
To define a meaningful variant in the production process, such a set is
to be used via reference by artifact PredefinedVariant.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Delivered Atomic

Software Compo-
nents

0..1

Aggregated by ECU Extract of
System Variant
Model

0..*

Aggregated by System Descrip-
tion

0..*

Aggregated by VFB System 0..*
In/out Define System

Variants
1

In/out Define Integration
Variant

0..*

In/out Define VFB Vari-
ants

0..*

Consumed by Generate RTE
Postbuild Dataset

1

Consumed by Generate Atomic
Software Com-
ponent Contract
Header Files

0..1

194 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumed by Generate RTE

Prebuild Dataset
0..1

Consumed by Evaluate Variant 0..*
Consumed by Extract ECU Sys-

tem Variant Model
0..*

Use meta model element PostBuildVariant
CriterionValueSet

1

Table 3.26: Postbuild Variant Set

3.1.3.8 Predefined Variant

Artifact Predefined Variant
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Work Products
Brief Description Defines a variant predefined for usage in subsequent process steps.
Description Defines one variant of a software description for delivery and/or usage

in subsequent process steps. The actual definition of all settings which
make up this variant is given by attached System Constant Value Set
(all settings which are resolved prior to post-build) and/or Postbuid
Variant Set (all settings which are resolved after software build). These
sets may be part of the same artifact or may be separated artifacts. Via
these settings, the actual values which make up a particular variant,
are selected.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Delivered Atomic

Software Compo-
nents

0..*

Aggregated by ECU Extract of
System Variant
Model

0..*

Aggregated by System Descrip-
tion

0..*

Aggregated by VFB System 0..*
Produced by Define Integration

Variant
1 Meth.bindingTime = SystemDesignTime

Produced by Define System
Variants

1

Produced by Define VFB Vari-
ants

0..*

Consumed by Generate BSW
Module Prebuild
Data Set

1

Consumed by Generate RTE
Postbuild Dataset

1

Consumed by Generate RTE
Prebuild Dataset

1

195 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumed by Generate Atomic

Software Com-
ponent Contract
Header Files

0..1

Consumed by Evaluate Variant 0..*
Consumed by Extract ECU Sys-

tem Variant Model
0..*

Consumed by Generate Compo-
nent Prebuild Data
Set

0..*

Use meta model element PredefinedVariant 1

Table 3.27: Predefined Variant

3.1.3.9 Standard Header Files

Artifact Standard Header Files
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Work Products
Brief Description Overall header files to be included by each standardized BSW module,

optionally also by Software Component code.
Description Overall header files to be included by each standardized BSW module,

optionally also by Software Component code. For simplicity of the
methodology, these are modeled as one artifact though in practice
these are several different files:

• (<prefixes>_)MemMap.h - defines a common set of macros in
order to define abstract memory sections for code and data in
the source code . The prefixes indicates whether the scope is
limited to a component, module or some other source code area
(e.g. an ICC2 cluster). Note that the usage of one MemMap.h
for the complete BSW is possible, but deprecated. It is also
possible to use a completely different filename via explicit
declaration in the BSW Module Implementation Description.

• Std_Types.h - defines a common set of C data types for usage
within the basic software, this header includes the following two
headers:

• Compiler.h (in turn including Compiler_Cfg.h) - for abstraction of
compiler specifics, in which the second header is the part that is
subject to configuration

• Platform_Types.h - for abstraction of platform specific types

Kind Source Code
Relation Type Related Element Mul. Note

196 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Produced by Generate BSW

Memory Mapping
Header

1 BSW_MemMap: The memory mapping
header file to be used for one or more
BSW modules in a given build
environment.

The file name has in the standardized
case a form like {Mip}_MemMap.h in
which the prefixes {Mip} are determined
by the module (or cluster) name and
optional infixes.

However, it is also possible to create a
completely different filename via explicit
declaration in the BSW Module
Implementation.

For more detailed rules on the name of
the generated file refer to
AUTOSAR_SWS_MemoryMapping.
Meth.bindingTime =
CodeGenerationTime

Produced by Generate Compiler
Configuration

1 Compiler_Cfg: The output file
"Compiler_Cfg.h" configures the
abstraction of compiler specifics.
Meth.bindingTime =
CodeGenerationTime

Produced by Generate SWC
Memory Mapping
Header

1 SWC_MemMap: One header per
software component type for a given
build environment.

The file name follows the pattern
{componentTypeName}_MemMap.h in
which the prefix componentTypeName is
determined by the software component
type name.

For more detailed rules on the name of
the generated file refer to
AUTOSAR_SWS_MemoryMapping.
Meth.bindingTime =
CodeGenerationTime

Consumed by Compile Atomic
Software Compo-
nent

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Compile BSW
Core Code

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Compile ECU
Source Code

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Implement a BSW
Module

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Re-compile Com-
ponent in ECU
context

1 Meth.bindingTime =
CodeGenerationTime

197 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumed by Implement Atomic

Software Compo-
nent

0..1 Meth.bindingTime =
CodeGenerationTime

Table 3.28: Standard Header Files

3.1.3.10 System Constant Value Set

Artifact System Constant Value Set
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Work Products
Brief Description Set of System Constant Values used to handle variants.
Description Set of System Constant Values used to define pre-build variants of the

software.

Such a set does not necessarily define a variant which is actually used.
To define a meaningful variant in the production process, such a set is
to be used via reference by artifact PredefinedVariant.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Delivered Atomic

Software Compo-
nents

0..*

Aggregated by ECU Extract of
System Variant
Model

0..*

Aggregated by System Descrip-
tion

0..*

Aggregated by VFB System 0..*
In/out Define System

Variants
1

In/out Define Integration
Variant

0..*

In/out Define VFB Vari-
ants

0..*

Consumed by Generate BSW
Module Prebuild
Data Set

1

Consumed by Generate RTE
Prebuild Dataset

1

Consumed by Generate Compo-
nent Prebuild Data
Set

1..* Meth.bindingTime =
CodeGenerationTime

Consumed by Generate Atomic
Software Com-
ponent Contract
Header Files

0..1 Meth.bindingTime = SystemDesignTime

Consumed by Evaluate Variant 0..*
Consumed by Extract ECU Sys-

tem Variant Model
0..*

198 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Use meta model element SwSystemcon-

stantValueSet
1

Table 3.29: System Constant Value Set

3.1.4 Roles

Role AUTOSAR Partnership
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Roles
Brief Description The AUTOSAR Partnership development defines standard artifacts.
Description
Relation Type Related Element Mul. Note

Table 3.30: AUTOSAR Partnership

Role Basic Software Designer
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Roles
Brief Description Role responsible for the overall design of the Basic Software.
Description Role responsible for the overall design of the Basic Software. In

contrast to the Basic Software Module Developer he is responsible for
the consistency of interfaces and data types between modules.

Relation Type Related Element Mul. Note
Performs Define BSW Be-

havior
1

Performs Define BSW En-
tries

1

Performs Define BSW Inter-
faces

1

Performs Define BSW Types 1
Performs Create Trans-

former Specifica-
tion

0..1

Performs Define VFB Nv
Block Software
Component

0..1

Performs Define Vendor
Specific Module
Definition

0..1

Table 3.31: Basic Software Designer

199 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Role Basic Software Module Developer
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Roles
Brief Description Role responsible to develop and deliver a Basic Software Module.
Description
Relation Type Related Element Mul. Note
Performs Compile BSW

Core Code
1

Performs Configure Com-
piler Memory
Classes

1

Performs Create Library 1
Performs Define BSW En-

tries
1

Performs Define BSW Inter-
faces

1

Performs Define BSW Mod-
ule Timing

1

Performs Define BSW Types 1
Performs Define Memory

Addressing Modes
1

Performs Develop BSW
Module Generator

1

Performs Generate BSW
Module Prebuild
Data Set

1

Performs Generate BSWM
Contract Header
Files

1

Performs Implement a BSW
Module

1

Performs Configure
Memmap Allo-
cation

0..1

Performs Define Vendor
Specific Module
Definition

0..1

Performs Generate BSW
Memory Mapping
Header

0..1

Performs Generate Compiler
Configuration

0..1

Performs Measure Compo-
nent Resources

0..1

Table 3.32: Basic Software Module Developer

200 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Role Calibration Engineer
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Roles
Brief Description The calibration engieer determines the calibration parameters of an

ECU.
Description
Relation Type Related Element Mul. Note
Performs Define VFB Pa-

rameter Compo-
nent

1

Performs Generate A2L 1
Performs Create MC Func-

tion Model
0..1

Performs Define VFB Con-
stants

0..1

Performs Provide RTE Cali-
bration Dataset

0..1

Table 3.33: Calibration Engineer

Role Certification Agency
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Roles
Brief Description The certification agency verifies the conformance of artifacts with

respect to the standard artifacts defined by the autosar consortium.
Description
Relation Type Related Element Mul. Note

Table 3.34: Certification Agency

Role ECU Integrator
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Roles
Brief Description Integrates the complete software on an ECU.
Description Integrates the complete software on an ECU, which includes

generating necessary code and completing the configuration of all
software components and basic software modules.

Relation Type Related Element Mul. Note
Performs Compile ECU

Source Code
1

Performs Configure Com 1
Performs Configure Debug 1
Performs Configure Diag-

nostics
1

Performs Configure ECUC 1
Performs Configure IO Hard-

ware abstraction
1

Performs Configure MCAL 1

201 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Performs Configure Mode

Management
1

Performs Configure NvM 1
Performs Configure OS 1
Performs Configure RTE 1
Performs Configure Trans-

former
1

Performs Configure Watch-
dog Manager

1

Performs Connect Service
Component

1

Performs Create Library 1
Performs Create Service

Component
1

Performs Define ECU Tim-
ing

1

Performs Define Integration
Variant

1

Performs Extract the ECU
Communication

1

Performs Generate BS
W Configuration
Code

1

Performs Generate BSW
Memory Mapping
Header

1

Performs Generate Base
Ecu Configuration

1

Performs Generate Compiler
Configuration

1

Performs Generate ECU Ex-
ecutable

1

Performs Generate Local M
C Data Support

1

Performs Generate OS 1
Performs Generate RTE 1
Performs Generate RTE

Postbuild Dataset
1

Performs Generate RTE
Prebuild Dataset

1

Performs Generate SWC
Memory Mapping
Header

1

Performs Generate Sched-
uler

1

Performs Generate Updated
ECU Configuration

1

Performs Measure Re-
sources

1

202 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Performs Provide RTE Cali-

bration Dataset
1

Performs Configure
Memmap Allo-
cation

0..1

Performs Create MC Func-
tion Model

0..1

Performs Define VFB Nv
Block Software
Component

0..1

Performs Extend Topology 0..1
Performs Extract ECU Rapid

Prototyping Sce-
nario

0..1

Performs Extract ECU Sys-
tem Timing

0..1

Performs Extract ECU Sys-
tem Variant Model

0..1

Performs Extract ECU Topol-
ogy

0..1

Performs Flatten Software
Composition

0..1

Performs Generate Compo-
nent Header File in
Vendor Mode

0..1

Performs Generate or Adjust
ECU Flat Map

0..1

Performs Map Software
Component to BS
W

0..1

Performs Measure Compo-
nent Resources

0..1

Table 3.35: ECU Integrator

Role Software Component Designer
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Roles
Brief Description Designer of software components and VFB systems.
Description
Relation Type Related Element Mul. Note
Performs Add Documenta-

tion to the Software
Component

1

Performs Define Atomic
Software Com-
ponent Internal
Behavior

1

Performs Define Complex
Driver Component

1

203 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Performs Define Consis-

tency Needs
1

Performs Define ECU
Abstraction Com-
ponent

1

Performs Define VFB Ap-
plication Software
Component

1

Performs Define VFB Com-
position Compo-
nent

1

Performs Define VFB Con-
stants

1

Performs Define VFB Inter-
faces

1

Performs Define VFB Modes 1
Performs Define VFB Sen-

sor or Actuator
Component

1

Performs Define VFB Timing 1
Performs Define VFB Types 1
Performs Define VFB Vari-

ants
1

Performs Define Wrapper
Components to
Integrate Legacy
Software

1

Performs Map Software
Component to BS
W

1

Performs Define Partial Flat
Map

0..1

Performs Define VFB Com-
ponent Constraints

0..1

Performs Define VFB Nv
Block Software
Component

0..1

Performs Define VFB Top
Level

0..1

Table 3.36: Software Component Designer

Role Software Component Developer
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Roles
Brief Description Developer of the software component code.
Description
Relation Type Related Element Mul. Note

204 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Performs Define Consis-

tency Needs
1

Performs Define Software
Component Timing

1

Performs Define Symbol
Props for Types

1

Performs Generate Atomic
Software Com-
ponent Contract
Header Files

1

Performs Generate Compo-
nent Header File in
Vendor Mode

1

Performs Generate Compo-
nent Prebuild Data
Set

1

Performs Implement Atomic
Software Compo-
nent

1

Performs Measure Compo-
nent Resources

1

Performs Re-compile Com-
ponent in ECU
context

1

Performs Add Documenta-
tion to the Software
Component

0..1

Performs Compile Atomic
Software Compo-
nent

0..1

Performs Configure Com-
piler Memory
Classes

0..1

Performs Configure
Memmap Allo-
cation

0..1

Performs Define Atomic
Software Com-
ponent Internal
Behavior

0..1

Performs Define Memory
Addressing Modes

0..1

Performs Define Partial Flat
Map

0..1

Performs Generate Compiler
Configuration

0..1

Performs Generate SWC
Memory Mapping
Header

0..1

Table 3.37: Software Component Developer

205 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Role System Engineer
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Roles
Brief Description Creation, management, developement and integration of systems

within the vehicle
Description
Relation Type Related Element Mul. Note
Performs Assign Top Level

Composition
1

Performs Create Trans-
former Specifica-
tion

1

Performs Define Communi-
cation Matrix

1

Performs Define E2E Trans-
former Technology

1

Performs Define ECU De-
scription

1

Performs Define Frames 1
Performs Define Network

Management
1

Performs Define PDU Gate-
way

1

Performs Define RTE Fan-
out

1

Performs Define Secured P
DUs

1

Performs Define Signal
Gateway

1

Performs Define Signal PD
Us

1

Performs Define Signal Path
Constraints

1

Performs Define Software
Component Map-
ping Constraints

1

Performs Define System
Timing

1

Performs Define System
Topology

1

Performs Define System
Variants

1

Performs Define System
View Mapping

1

Performs Define TP 1
Performs Define Transforma-

tion Technology
1

Performs Deploy Software
Component

1

206 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Performs Derive Communi-

cation Needs
1

Performs Extend Composi-
tion

1

Performs Extract the ECU
Communication

1

Performs Flatten Software
Composition

1

Performs Generate or Adjust
System Flat Map

1

Performs Select Design
Time Variant

1

Performs Select Software
Component Imple-
mentation

1

Performs Set System Root 1
Performs Define VFB Com-

ponent Constraints
0..1

Performs Define VFB Com-
position Compo-
nent

0..1

Performs Define VFB Con-
stants

0..1

Performs Define VFB Top
Level

0..1

Performs Extend Topology 0..1
Performs Extract ECU Rapid

Prototyping Sce-
nario

0..1

Performs Extract ECU Sys-
tem Timing

0..1

Performs Extract ECU Sys-
tem Variant Model

0..1

Performs Extract ECU Topol-
ogy

0..1

Performs Generate or Adjust
ECU Flat Map

0..1

Table 3.38: System Engineer

207 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Role Non-AUTOSAR System Integrator
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Roles
Brief Description Responsibility for the quality of the description of the non-AUTOSAR

system and its integration into the AUTOSAR process.
Description The non-AUTOSAR System Integrator is responsible for the quality of

the Description of the non-AUTOSAR System, the correct definition of
the VFB Integration Connector, and the integration of the
non-AUTOSAR system into the AUTOSAR process via the translation
of the non-AUTOSAR artifacts.

Relation Type Related Element Mul. Note
Performs Define VFB Inte-

gration Connector
1

Performs Translate Non-
Autosar Descrip-
tion to Autosar
Description

1

Table 3.39: Non-AUTOSAR System Integrator

Role Rapid Prototyping Engineer
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Roles
Brief Description
Description
Relation Type Related Element Mul. Note
Performs Define Rapid Pro-

totyping Scenario
1

Performs Generate Rapid
Prototyping Wrap-
per

1

Performs Refine Rapid Pro-
totyping Scenario

1

Performs Compile Atomic
Software Compo-
nent

0..1

Table 3.40: Rapid Prototyping Engineer

Role Safety Engineer
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Roles
Brief Description
Description Responsibility for the safety relevant steps in the AUTOSAR

development process
Relation Type Related Element Mul. Note
Performs Add Independence

Relation
1

Performs Allocate Safety
Measure

1

208 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Performs Allocate Safety Re-

quirement
1

Performs Decompose Safety
Requirement

1

Performs Define ASIL For A
UTOSAR Element

1

Performs Define Safety Mea-
sure

1

Performs Define Safety Re-
quirement

1

Performs Map Safety Re-
quirement to
Safety Measure

1

Performs Refine Safety Re-
quirement

1

Table 3.41: Safety Engineer

3.1.5 Tools

3.1.5.1 Compiler

Tool Compiler
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Guidance
Brief Description
Description
Kind
Relation Type Related Element Mul. Note
Used Compile Atomic

Software Compo-
nent

1

Used Compile BSW
Configuration Data

1

Used Compile BSW
Core Code

1

Used Compile Config-
ured BSW

1

Used Compile ECU
Source Code

1

Used Compile Gener-
ated BSW

1

Used Compile Unconfig-
ured BSW

1

Used Re-compile Com-
ponent in ECU
context

1

Table 3.42: Compiler

209 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.1.5.2 Linker

Tool Linker
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Guidance
Brief Description
Description
Kind
Relation Type Related Element Mul. Note
Used Generate ECU Ex-

ecutable
1

Used Link ECU Code
after Precompile
Configuration

1

Used Link ECU Code
during Link Time
Configuration

1

Used Link ECU Code
during Post-Build
Time

1

Table 3.43: Linker

3.1.6 Diagnostics

3.1.6.1 Work Products

Deliverable Diagnostic Extract
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Diagnostics::Work Products
Brief Description
Description Generic deliverable for defining diagnostic information. It is used in

different roles (Diagnostic Extract categories).

In each role, this deliverable may contain variation points in its ARXML
artifacts which need to be bound in later steps. If such variation points
are present, the Diagnostic Description may optionally include
PredefinedVariants in order to predefine variants for later selection and
an Evaluated Variant Set.

Kind
Extended by Diagnostic Abstract System Description, Diagnostic ECU Extract,

Diagnostic System Extract
Relation Type Related Element Mul. Note

Table 3.44: Diagnostic Extract

210 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Deliverable Diagnostic Abstract System Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Diagnostics::Work Products
Brief Description
Description This deliverable represents a more or less high-level definition of

diagnostic information that can be taken as a template for creating
Diagnostic System Extract or Diagnostic ECU Extract. It corresponds
to an Diagnostic Extract with DiagnosticContributionSet of category
DIAGNOSTICS_ABSTRACT_SYSTEM_DESCRIPTION.

Kind
Extends Diagnostic Extract
Relation Type Related Element Mul. Note

Develop Diagnos-
tic Requirements

0..*

Produced by Develop Diagnos-
tic Abstract System
Description

1

Table 3.45: Diagnostic Abstract System Description

Deliverable Diagnostic System Extract
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Diagnostics::Work Products
Brief Description
Description This deliverable represents concrete diagnostic information for several

ECUs. It corresponds to an Diagnostic Extract with
DiagnosticContributionSet of category
DIAGNOSTICS_SYSTEM_EXTRACT.

Kind
Extends Diagnostic Extract
Relation Type Related Element Mul. Note
Produced by Develop Applica-

tion Software
0..*

Produced by Develop Basic
Software

0..*

Produced by Develop Diagnos-
tic Requirements

0..*

Consumed by Develop Applica-
tion Software

0..*

Consumed by Develop Basic
Software

0..*

Consumed by Develop Diagnos-
tic Requirements

0..*

Consumed by Integrate Diagnos-
tic Information

0..*

Table 3.46: Diagnostic System Extract

211 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Deliverable Diagnostic ECU Extract
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Diagnostics::Work Products
Brief Description
Description This deliverable represents concrete diagnostic information for a single

ECUs. It corresponds to an Diagnostic Extract with
DiagnosticContributionSet of category
DIAGNOSTICS_ECU_EXTRACT.

Kind
Extends Diagnostic Extract
Relation Type Related Element Mul. Note
Produced by Integrate Diagnos-

tic Information
1..* complete DE:

Produced by Develop Diagnos-
tic Requirements

0..*

Consumed by Generate Base
Ecu Configuration

0..1

Consumed by Generate Updated
ECU Configuration

0..1

Consumed by Integrate Software
for ECU

0..1 complete DE:

Consumed by Prepare ECU Con-
figuration

0..1

Consumed by Update ECU Con-
figuration

0..1

Consumed by Integrate Diagnos-
tic Information

0..* partially filled DE:

Table 3.47: Diagnostic ECU Extract

3.1.7 Safety

3.1.7.1 Tasks

3.1.7.1.1 Define Safety Requirement

Safety Engineer

Define Safety
Requirement

General Autosar
Artifact

Safety Requirement

 «output»

10..*

 «input»

 «performs»

Figure 3.12: Define Safety Requirement

212 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Define Safety Requirement
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Safety::Tasks
Brief Description Add Safety Requirements to work products.
Description This task creates a safety requirement and sets the corresponding

attributes such as ASIL. The allocation to an AUTOSAR element and
the mapping to a safety measure are not part of this task.

Relation Type Related Element Mul. Note
Performed by Safety Engineer 1
Consumes General Autosar

Artifact
0..*

Produces Safety Require-
ment

1

Table 3.48: Define Safety Requirement

3.1.7.1.2 Define Safety Measure

Safety Engineer

Define Safety Measure

General Autosar
Artifact

Safety Measure

 «output»

1

 «performs»

0..* «input»

Figure 3.13: Define Safety Measure

Task Definition Define Safety Measure
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Safety::Tasks
Brief Description Add Safety Measures to work products.
Description This task creates a safety measure and sets the corresponding

attributes such as ASIL. The allocation to an AUTOSAR element and
the mapping to a safety requirement are not part of this task.

Relation Type Related Element Mul. Note
Performed by Safety Engineer 1
Consumes General Autosar

Artifact
0..*

Produces Safety Measure 1

Table 3.49: Define Safety Measure

213 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.1.7.1.3 Define ASIL For AUTOSAR Element

General Autosar Artifact

Safety Engineer

Define ASIL For
AUTOSAR Element

1

 «input»

 «performs»

 «output» 1

Figure 3.14: Define ASIL For AUTOSAR Element

Task Definition Define ASIL For AUTOSAR Element
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Safety::Tasks
Brief Description Provide ASIL attribute for AUTOSAR element.
Description According to the safety extensions, AUTOSAR elements can carry

ASIL attributes if they are safety relevant. This task assigns the ASIL
attribute to an AUTOSAR element.

The assignment of the ASIL attribute can also be done for safety
requirements and safety measures. This is covered by the tasks
"Define Safety Requirement" and "Define Safety Measure".

Relation Type Related Element Mul. Note
Performed by Safety Engineer 1
Consumes General Autosar

Artifact
1

Produces General Autosar
Artifact

1

Table 3.50: Define ASIL For AUTOSAR Element

214 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.1.7.1.4 Refine Safety Requirement

Safety Engineer

Refine Safety
Requirement

Safety Requirement

 «output»

+Refined Safety Requirement

1..*

+Original Safety Requirement

1 «input»

 «performs»

Figure 3.15: Refine Safety Requirement

Task Definition Refine Safety Requirement
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Safety::Tasks
Brief Description Refine existing Safety Requirements by adding more detailed safety

requirements and organize them in an appropriate hierarchy.
Description If safety requirements are not detailed enough to allocate them directly

to appropriate AUTOSAR elements, it is necessary to refine them first.
The refinement will add new safety requirements which are in a
hierarchy relation to existing safety requirements.

This task adds the corresponding "REFINEMENT" relation between the
original requirement and the newly created requirements.

This task can be done on different levels, depending on the level of
details of the safety requirements.

Relation Type Related Element Mul. Note
Performed by Safety Engineer 1
Consumes Safety Require-

ment
1 Original Safety Requirement:

Produces Safety Require-
ment

1..* Refined Safety Requirement:

Table 3.51: Refine Safety Requirement

215 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.1.7.1.5 Decompose Safety Requirement

Safety Engineer

Decompose Safety
Requirement

Safety Requirement

 «output»

+Decomposed Safety Requirements

2

 «performs»

+Initial Safety Requirement

1 «input»

Figure 3.16: Decompose Safety Requirement

Task Definition Decompose Safety Requirement
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Safety::Tasks
Brief Description Decompose existing Safety Requirements into independent Safety

Requirements to tailor the ASIL.
Description By ASIL decomposition it is possible to decompose a safety

requirement into two new safety requirements with potentially lower
ASILs. This can be done, if the independence (freedom of interference)
for the resulting requirements can be demonstrated. The modeling of
the corresponding INDEPENDENCE relation is covered by task "Add
Independence Relation".

This task adds the corresponding "DECOMPOSITION" reference.
Relation Type Related Element Mul. Note
Performed by Safety Engineer 1
Consumes Safety Require-

ment
1 Initial Safety Requirement:

Produces Safety Require-
ment

2 Decomposed Safety Requirements:

Table 3.52: Decompose Safety Requirement

216 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.1.7.1.6 Allocate Safety Measure

Safety Engineer

Allocate Safety
MeasureGeneral

Autosar Artifact Safety Measure

 «output»

+Allocated Safety Measure

0..1 «output»

+Allocated Elements

0..*

1

 «input»1..* «input»

 «performs»

Figure 3.17: Allocate Safety Measure

Task Definition Allocate Safety Measure
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Safety::Tasks
Brief Description Allocate Safety Measure to AUTOSAR elements.
Description Safety measures which are safety mechanisms realized in AUTOSAR

are allocated to AUTOSAR elements in order to describe what
elements are involved in the provision of a safety measure. This task
adds the corresponding "ALLOCATION" reference. The reference can
be contained by the AUTOSAR element or by the safety measure.

The allocation can be done on different levels, depending on the
granularity of the safety measures and the availability of the
appropriate elements in the model.

Relation Type Related Element Mul. Note
Performed by Safety Engineer 1
Consumes Safety Measure 1
Consumes General Autosar

Artifact
1..*

Produces Safety Measure 0..1 Allocated Safety Measure:
Produces General Autosar

Artifact
0..* Allocated Elements:

Table 3.53: Allocate Safety Measure

217 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.1.7.1.7 Allocate Safety Requirement

Allocate Safety
Requirement

General Autosar
Artifact

Safety Engineer

Safety Requirement

 «output»

+Allocated Requirement

0..1 «output»

+Allocated Elements

0..*

1

 «input»

1..*

 «input»

 «performs»

Figure 3.18: Allocate Safety Requirement

Task Definition Allocate Safety Requirement
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Safety::Tasks
Brief Description Allocate Safety Requirement to AUTOSAR elements.
Description Safety requirements are allocated to AUTOSAR elements in order to

fulfill the needs of ISO 26262. By this allocation, AUTOSAR elements
obtain their ASIL attribute (if not defined e.g. during previous
development of the element).

This task adds the corresponding allocation reference to the AUTOSAR
element. The reference can be contained by the AUTOSAR element or
by the safety requirement.

The allocation can be done on different levels, depending on the
granularity of the safety requirements and the availability of the
appropriate elements in the model.

Relation Type Related Element Mul. Note
Performed by Safety Engineer 1
Consumes Safety Require-

ment
1

Consumes General Autosar
Artifact

1..*

Produces Safety Require-
ment

0..1 Allocated Requirement:

Produces General Autosar
Artifact

0..* Allocated Elements:

Table 3.54: Allocate Safety Requirement

218 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.1.7.1.8 Map Safety Requirement to Safety Measure

Safety Engineer

Map Safety
Requirement to
Safety MeasureSafety Requirement

Safety Measure

 «output» 0..1 «output»0..1

1 «input»

 «performs»

1 «input»

Figure 3.19: Map Safety Requirement to Safety Measure

Task Definition Map Safety Requirement to Safety Measure
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Safety::Tasks
Brief Description Map Safety Requirements to Safety Measures
Description The mapping relates safety requirements with safety measures. This

task creates the corresponding MAPS_TO relation. The mapping
relation can either be contained by the safety requirement or by the
safety measure.

The mapping can be done on different levels, depending on the
granularity of the safety requirements and the safety measures.

Relation Type Related Element Mul. Note
Performed by Safety Engineer 1
Consumes Safety Measure 1
Consumes Safety Require-

ment
1

Produces Safety Measure 0..1
Produces Safety Require-

ment
0..1

Table 3.55: Map Safety Requirement to Safety Measure

219 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.1.7.1.9 Add Independence Relation

Add Independence
Relation

Safety Engineer

Safety Requirement

 «output»

+Linked Requirement

1..*

 «performs»

1..* «input»

Figure 3.20: Add Independence Relation

Task Definition Add Independence Relation
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Safety::Tasks
Brief Description Add Independence relation to decomposed requirements.
Description This task establishes the INDEPENDENCE relation between

requirements. The relation is established between a decomposed
requirement and a requirement which express a means to achieve
freedom from interference for the two requirements into which the
decomposed requirement is decomposed by the task Decompose
Safety Requirement.

Obviously, this task is processed in the context of the decomposition of
safety requirements.

Relation Type Related Element Mul. Note
Performed by Safety Engineer 1
Consumes Safety Require-

ment
1..*

Produces Safety Require-
ment

1..* Linked Requirement:

Table 3.56: Add Independence Relation

220 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.1.7.2 Work Products

3.1.7.2.1 Safety Extensions

Safety Extensions

Safety Requirement

Safety Measure

VFB Safety Extensions Software Component Safety
Extensions

System Safety Extensions

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

Figure 3.21: Safety Extensions

Deliverable Safety Extensions
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Safety::Work Products
Brief Description Safety Extensions
Description This element represents an abstract deliverable containing all safety

relevant artifacts. Several specializations of this deliverable are used to
demonstrate the handling of safety extensions in specific development
activities.

The explicit separation of the safety information from the AUTOSAR
models allows an independent exchange and processing of them.

Kind Delivered
Extended by Software Component Safety Extensions, System Safety Extensions, V

FB Safety Extensions
Relation Type Related Element Mul. Note
Aggregates Safety Measure 0..*
Aggregates Safety Require-

ment
0..*

Table 3.57: Safety Extensions

221 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Deliverable VFB Safety Extensions
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Safety::Work Products
Brief Description Vfb Safety Extensions
Description This deliverable contains all safety information related to VFB

elements.
Kind Delivered
Extends Safety Extensions
Relation Type Related Element Mul. Note
Produced by Define VFB Safety

Information
1

Consumed by Define Software
Component Safety
Information

1

Consumed by Define System
Safety Information

1

Table 3.58: VFB Safety Extensions

Deliverable Software Component Safety Extensions
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Safety::Work Products
Brief Description Software Component Safety Extensions
Description This deliverable contains all safety information related to software

components.
Kind Delivered
Extends Safety Extensions
Relation Type Related Element Mul. Note
Produced by Define Software

Component Safety
Information

1

Consumed by Define System
Safety Information

1

Table 3.59: Software Component Safety Extensions

Deliverable System Safety Extensions
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Safety::Work Products
Brief Description System Safety Extensions
Description This deliverable contains all safety information related to system

elements (see Deliverable "System Description" for more details).
Kind Delivered
Extends Safety Extensions
Relation Type Related Element Mul. Note
Produced by Define System

Safety Information
1

Table 3.60: System Safety Extensions

222 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.1.7.2.2 Safety Requirement

Artifact Safety Requirement
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Safety::Work Products
Brief Description Safety Requirement
Description This artifact represents a safety requirement and the corresponding

ASIL attribute. ISO 26262 defines a hierarchy of safety requirements:
safety goals, technical, hardware and software. Furthermore, it might
be the case that safety requirements are specified outside the
AUTOSAR model (external) and are only referenced. Thus, the safety
requirement can have one of the following categories:

• SAFETY_GOAL

• SAFETY_FUNCTIONAL

• SAFETY_TECHNICAL

• SAFETY_SOFTWARE

• SAFETY_HARDWARE

• SAFETY_EXTERNAL

For details refer to ISO 26262-3, 4, 9 and TPS_SafetyExtensions
document.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Safety Extensions 0..*
Produced by Decompose Safety

Requirement
2 Decomposed Safety Requirements:

Produced by Define Safety Re-
quirement

1

Produced by Add Independence
Relation

1..* Linked Requirement:

Produced by Refine Safety Re-
quirement

1..* Refined Safety Requirement:

Produced by Allocate Safety Re-
quirement

0..1 Allocated Requirement:

Produced by Map Safety Re-
quirement to
Safety Measure

0..1

Consumed by Allocate Safety Re-
quirement

1

Consumed by Decompose Safety
Requirement

1 Initial Safety Requirement:

Consumed by Map Safety Re-
quirement to
Safety Measure

1

Consumed by Refine Safety Re-
quirement

1 Original Safety Requirement:

223 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumed by Add Independence

Relation
1..*

Use meta model element StructuredReq 1

Table 3.61: Safety Requirement

3.1.7.2.3 Safety Measure

Artifact Safety Measure
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common

Elements::Safety::Work Products
Brief Description Safety Measure
Description This artifact represents a safety measure. A safety measure is an

activity or solution to avoid systematic failures and to detect random
hardware failures or control failures (see ISO 26262).

The safety measure can have one of the following categories:

• SAFETY_MEASURE

• SAFETY_MECHANISM

For further details refer to TPS_SafetyExtensions document.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Safety Extensions 0..*
Produced by Define Safety Mea-

sure
1

Produced by Allocate Safety
Measure

0..1 Allocated Safety Measure:

Produced by Map Safety Re-
quirement to
Safety Measure

0..1

Consumed by Allocate Safety
Measure

1

Consumed by Map Safety Re-
quirement to
Safety Measure

1

Use meta model element TraceableText 1

Table 3.62: Safety Measure

3.2 Virtual Functional Bus

This chapter contains the definition of work products and tasks used for the develop-
ment of a VFB system. For the definition of the relevant meta-model elements refer
to [5], for the VFB concepts refer to [4].

224 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.2.1 Tasks

3.2.1.1 Define VFB Top Level

Define VFB Top Level

VFB Composition Component

VFB Atomic
Software
Component

VFB Non
AUTOSAR
Component

Software
Component
Designer

System Engineer

VFB Parameter
Component

VFB Top Level System Composition

 «output» 1

0..1

 «performs»

0..*

 «input»

0..*

 «input»

0..*

 «input»

0..*
 «input»

0..1

 «performs»

Figure 3.22: Task Define VFB Top Level

Task Definition Define VFB Top Level
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define the top level VFB composition of a concrete system.
Description Define the top level composition of a VFB system.
Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Designer
0..1

Performed by System Engineer 0..1
Consumes VFB Interfaces 1..*
Consumes VFB Types 1..*
Consumes VFB Atomic Soft-

ware Component
0..*

Consumes VFB Composition
Component

0..*

Consumes VFB Modes 0..*
Consumes VFB Non AUTOSA

R Component
0..*

Consumes VFB Parameter
Component

0..*

Produces VFB Top Level
System Composi-
tion

1

Table 3.63: Define VFB Top Level

225 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.2.1.2 Define VFB Composition Component

Define VFB
Composition
Component

Software Component DesignerSystem Engineer

VFB Composition Component

VFB Interfaces

VFB AUTOSAR Standard Package

VFB Types

VFB Atomic Software Component

VFB Modes

VFB Non AUTOSAR Component VFB Parameter Component

0..*

 «input»

1..*

 «input»

1

 «performs»

0..*

 «input»

0..*

 «input»

0..*

 «input»

0..1

 «input»

1..* «input»

0..*

 «input»

0..1

 «performs»

 «output» 1

Figure 3.23: Task Define VFB Composition Component

Task Definition Define VFB Composition Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define a Composition of VFB Software Components, i.e. a

ComponentTypes which contains other Component Types.
Description Define a Composition of VFB Software Components, i.e. a

ComponentType which contains other Component Types. Iteration of
this task can create a complete VFB system without the Atomic
Software Components itself.

Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Designer
1

Performed by System Engineer 0..1
Consumes VFB Interfaces 1..*
Consumes VFB Types 1..*
Consumes VFB AUTOSAR

Standard Package
0..1 Use port blueprints in order to create

ports with standardized application
interfaces.

Consumes VFB Atomic Soft-
ware Component

0..*

Consumes VFB Composition
Component

0..*

226 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes VFB Modes 0..*
Consumes VFB Non AUTOSA

R Component
0..*

Consumes VFB Parameter
Component

0..*

Produces VFB Composition
Component

1

Table 3.64: Define VFB Composition Component

3.2.1.3 Extend Composition

Extend Composition

System Engineer

VFB System

VFB Composition Component

VFB Atomic Software Component

VFB Parameter Component

VFB Interfaces

VFB Modes

VFB Software Component Mapping
Constraints

VFB Types

VFB Non AUTOSAR Component

 «output»

0..*

 «output»

0..*

1

 «performs»

+initial system

1
 «input»

 «output»

+extended system

1

 «output» 0..*

 «output»

0..*

 «output»

0..*

 «output»

0..*

 «output»

0..*

 «output»

0..*

Figure 3.24: Task Extend Composition

227 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Extend Composition
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Extend a software composistion with further compositions and atomic

software components.
Description This tasks describes the refinement of a delivered VFB System by

extending an existing composition with further sub-elements, which
could be software components (Atomic Software Components as well
as Compositions), connectors or port groups, plus the related
interfaces, data types and modes.

The main use case is the refinement of the VFB description of a
sub-system: New elements are added but the original delivery is not
changed.

Relation Type Related Element Mul. Note
Performed by System Engineer 1
Consumes VFB System 1 initial system:
Produces VFB System 1 extended system:
Produces VFB Atomic Soft-

ware Component
0..*

Produces VFB Composition
Component

0..*

Produces VFB Interfaces 0..*
Produces VFB Modes 0..*
Produces VFB Non AUTOSA

R Component
0..*

Produces VFB Parameter
Component

0..*

Produces VFB Software
Component Map-
ping Constraints

0..*

Produces VFB Types 0..*

Table 3.65: Extend Composition

228 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.2.1.4 Define VFB Component Constraints

Define VFB Component Constraints

Software
Component
Designer

VFB Software Component
Mapping Constraints

VFB Composition Component

VFB Top Level System Composition

VFB Atomic Software
Component

System Engineer

1
 «input»

0..1

 «performs»

2..*

 «input»

1..*

 «input»

0..1

 «performs»

 «output» 1..*

Figure 3.25: Task Define VFB Component Constraints

Task Definition Define VFB Component Constraints
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define which components need to be deployed together, and which

need to be deployed separately.
Description Define which components need to be deployed together, and which

need to be deployed separately, independent of any topology.
Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Designer
0..1

Performed by System Engineer 0..1
Consumes VFB Atomic Soft-

ware Component
2..*

Consumes VFB Top Level
System Composi-
tion

1

Consumes VFB Composition
Component

1..*

Produces VFB Software
Component Map-
ping Constraints

1..*

Table 3.66: Define VFB Component Constraints

229 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.2.1.5 Define VFB Application Software Component

Define VFB Application Software
Component

VFB AUTOSAR Standard Package

VFB Interfaces

VFB Types

VFB Modes

VFB Atomic Application Software
Component

Software Component Designer

 «output» 1

0..1

 «input»

 «performs»

1..*

 «input»

0..*

 «input»

1..* «input»

Figure 3.26: Task Define VFB Application Software Component

Task Definition Define VFB Application Software Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define an ApplicationSoftwareComponentType on VFB level
Description Define an ApplicationSwComponentType on VFB level. (i.e. without

Internal Behavior and Implementation).
Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Designer
1

Consumes VFB Interfaces 1..*
Consumes VFB Types 1..*
Consumes VFB AUTOSAR

Standard Package
0..1 Use port blueprints in order to create

ports with standardized application
interfaces.

Consumes VFB Modes 0..*
Produces VFB Atomic Ap-

plication Software
Component

1

Table 3.67: Define VFB Application Software Component

230 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.2.1.6 Define VFB Sensor or Actuator Component

Define VFB Sensor or Actuator
Component

Software Component Designer

VFB AUTOSAR
Standard Package

VFB Types

ECU Resources Description

VFB Sensor Actuator Component

VFB Interfaces

1..*

 «input»

 «performs»

1..*

 «input»

0..1

 «input»

0..*

 «input»

 «output» 1

Figure 3.27: Task Define VFB Sensor or Actuator Component

Task Definition Define VFB Sensor or Actuator Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define a VFB Sensor or Actuator Comnponent.
Description Define a SensorActuatorSwComponentType on VFB level. (i.e. without

Internal Behavior and Implementation). In addition to defining the
ports, references to the required sensor/actuator hardrware shall be
specified.

Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Designer
1

Consumes VFB Interfaces 1..*
Consumes VFB Types 1..*
Consumes VFB AUTOSAR

Standard Package
0..1 Use port blueprints in order to create

ports with standardized application
interfaces.

Consumes ECU Resources
Description

0..*

Produces VFB Sensor Actu-
ator Component

1

Table 3.68: Define VFB Sensor or Actuator Component

231 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.2.1.7 Define VFB Parameter Component

Define VFB Parameter Component

Calibration Engineer

VFB Parameter Component

VFB Interfaces

VFB AUTOSAR Standard Package

VFB Types

 «output» 1

 «performs»

1..*

 «input»

1..* «input»

0..1

 «input»

Figure 3.28: Task Define VFB Parameter Component

Task Definition Define VFB Parameter Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define a VFB Parameter Component.
Description Define a VFB Parameter Component.
Relation Type Related Element Mul. Note
Performed by Calibration Engi-

neer
1

Consumes VFB Interfaces 1..*
Consumes VFB Types 1..*
Consumes VFB AUTOSAR

Standard Package
0..1 Use port blueprints in order to create

ports with standardized application
interfaces.

Produces VFB Parameter
Component

1

Table 3.69: Define VFB Parameter Component

232 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.2.1.8 Define ECU Abstraction Component

Define ECU Abstraction Component

Software Component Designer

VFB AUTOSAR Standard Package

VFB Interfaces

VFB Types

VFB Modes ECU Resources Description

ECU Abstraction Software
Component

 «output» 1

 «input»

 «input»

0..*

 «input»

 «performs»

0..1

 «input»

 «input»

Figure 3.29: Task Define ECU Abstraction Component

Task Definition Define ECU Abstraction Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define an EcuAbstractionSoftwareComponentType on VFB level.
Description Define a EcuAbstractionSwComponentType on VFB level. (i.e. without

Internal Behavior and Implementation). In addition to the defining the
ports, references to required ECU or processor hardware elements
shall be specified.

Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Designer
1

Consumes VFB AUTOSAR
Standard Package

1 Use port blueprints in order to create
ports with standardized application
interfaces.

Consumes VFB Interfaces 1
Consumes VFB Types 1
Consumes ECU Resources

Description
0..1

Consumes VFB Modes 0..*
Produces ECU Abstraction

Software Compo-
nent

1

Table 3.70: Define ECU Abstraction Component

233 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.2.1.9 Define Complex Driver Component

Define Complex Driver Component

Software Component Designer

VFB AUTOSAR
Standard Package

VFB Interfaces

VFB Types

VFB Modes ECU Resources Description

Complex Driver Component

 «output» 1

1..*

 «input»

0..1

 «input»

0..*

 «input»

 «performs»

0..*

 «input»

1..*

 «input»

Figure 3.30: Task Define Complex Driver Component

Task Definition Define Complex Driver Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define a ComplexDeviceDriverSwComponentType on VFB level.
Description Define a ComplexDeviceDriverSwComponentType on VFB level. (i.e.

without Internal Behavior and Implementation). In addition to the
defining the ports, references to the required ECU or processor
hardware elements shall be specified.

Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Designer
1

Consumes VFB Interfaces 1..*
Consumes VFB Types 1..*
Consumes VFB AUTOSAR

Standard Package
0..1 Use port blueprints in order to create

ports with standardized application
interfaces.

Consumes ECU Resources
Description

0..*

Consumes VFB Modes 0..*
Produces Complex Driver

Component
1

Table 3.71: Define Complex Driver Component

234 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.2.1.10 Define VFB NvBlock Software Component

Define VFB NvBlock Software
Component

ECU Integrator

Basic Software
Designer

Software
Component
Designer

VFB AUTOSAR
Standard
Package

VFB Interfaces

VFB Types

VFB Modes Software Component Internal
Behavior

VFB NvBlock
Software
Component

0..1

 «input»

1..*

 «input»

0..1

 «performs»

0..*

 «input»

1..*

 «input»

0..1

 «performs»

0..1

 «performs»

0..*

 «input»

 «output»

1

Figure 3.31: Task Define VFB NvBlock Software Component

Task Definition Define VFB NvBlock Software Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description
Description Define an NvBlockSwComponentType on VFB level. The

NvBlockSwComponentType defines non volatile data which can be
shared between SwComponentPrototypes. The non volatile data of the
NvBlockSwComponentType are accessible via provided and required
ports.

Relation Type Related Element Mul. Note
Performed by Basic Software De-

signer
0..1

Performed by ECU Integrator 0..1
Performed by Software Compo-

nent Designer
0..1

Consumes VFB Interfaces 1..*
Consumes VFB Types 1..*
Consumes VFB AUTOSAR

Standard Package
0..1

Consumes Software Compo-
nent Internal Be-
havior

0..* This input is required to collect the
requirements for the NvBlockNeeds from
the using application software.

Consumes VFB Modes 0..*

235 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Produces VFB NvBlock Soft-

ware Component
1

Table 3.72: Define VFB NvBlock Software Component

3.2.1.11 Define Wrapper Components to Integrate Legacy Software

Define Wrapper Components to
Integrate Legacy Software

Software
Component
Designer

VFB AUTOSAR
Standard
Package

VFB Modes

VFB Types

VFB Non
AUTOSAR
Component

VFB Interfaces

 «output» 10..*
 «input»

0..*

 «input»

 «performs»

0..1

 «input»
0..*

 «input»

Figure 3.32: Task Define Wrapper Components to Integrate Legacy Software

Task Definition Define Wrapper Components to Integrate Legacy Software
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define a wrapper component used to represent legacy software that is

integrated into an AUTOSAR system.
Description Define a wrapper component used to represent legacy software that is

integrated into an AUTOSAR system. For the VFB system, this mainly
means to define the corresponding port interfaces and data elements.

Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Designer
1

Consumes VFB AUTOSAR
Standard Package

0..1 Use port blueprints in order to create
ports with standardized application
interfaces.

Consumes VFB Interfaces 0..*
Consumes VFB Modes 0..*
Consumes VFB Types 0..*
Produces VFB Non AUTOSA

R Component
1

Table 3.73: Define Wrapper Components to Integrate Legacy Software

236 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.2.1.12 Define VFB Interfaces

Define VFB Interfaces

Software Component Designer

VFB AUTOSAR
Standard Package

VFB InterfacesVFB Types

0..1

 «input»
 «performs»

1..* «input» «output» 1..*

Figure 3.33: Task Define VFB Interfaces

Task Definition Define VFB Interfaces
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define a set of Port Interface required by a system.
Description Define a set of Port Interfaces required by a VFB system, to describe

the communication of data via SWC ports.
Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Designer
1

Consumes VFB Types 1..*
Consumes VFB AUTOSAR

Standard Package
0..1 Use standardized Port Interfaces as

blueprints (as far as applicable) to create
the corresponding elements of the actual
project.

Produces VFB Interfaces 1..*

Table 3.74: Define VFB Interfaces

237 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.2.1.13 Define VFB Types

Software Component Designer

VFB AUTOSAR Standard Package

Define VFB Types

VFB Types

VFB Data Type
Mapping Set

 «output»

0..*

 «output»
1..*

 «performs»

0..1

 «input»

Figure 3.34: Task Define VFB Types

Task Definition Define VFB Types
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define a set of data types required by a system, but not already

defined by AUTOSAR.
Description Define a set of Autosar Data Types and related elements as far as

visible on the VFB. Standardized types can be used as input in order to
copy and refine them.

The VFB Types will be used for specifying types of DataElements in
Sender-Receiver PortInterfaces and argument/return values of
Client-Server PortInterfaces.

This task inludes (optionally) also the creation of a VFB Data Type
mapping Set between application and implementation data types.

Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Designer
1

Consumes VFB AUTOSAR
Standard Package

0..1 Use standardized elements (e.g. Data
Types, Compu Methods) as blueprints
(as far as applicable) to create the
corresponding elements of the actual
project.

Produces VFB Types 1..*
Produces VFB Data Type

Mapping Set
0..*

Table 3.75: Define VFB Types

238 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.2.1.14 Define VFB Modes

Define VFB Modes

VFB Modes

Software Component Designer

 «performs»

 «output» 1..*

Figure 3.35: Task Define VFB Modes

Task Definition Define VFB Modes
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define modes that are used by the VFB components.
Description Define modes (mode groups and the modes they contain) that are

used by the VFB components.
Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Designer
1

Produces VFB Modes 1..*

Table 3.76: Define VFB Modes

239 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.2.1.15 Define VFB Constants

Define VFB Constants

VFB Constants

VFB Data Type
Mapping Set

VFB Types

Software Component Designer

Calibration Engineer

System Engineer

 «output»

1..*

0..*

 «input»

0..*

 «input»

1

 «performs»

0..1

 «performs»

0..1

 «performs»

Figure 3.36: Task Define VFB Constants

Task Definition Define VFB Constants
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define one or more VFB Constants.
Description Define one or more VFB Constants as standalone artifact. Such

constants can be referred in the specification of inital values at several
places in the VFB descrption, such as port interfaces or declaration of
local parameters or variables.

Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Designer
1

Performed by Calibration Engi-
neer

0..1

Performed by System Engineer 0..1
Consumes VFB Data Type

Mapping Set
0..*

Consumes VFB Types 0..*
Produces VFB Constants 1..*

Table 3.77: Define VFB Constants

240 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.2.1.16 Define VFB Timing

Define VFB
Timing

Software Component Designer

VFB Interfaces

VFB AUTOSAR Standard Package

VFB Atomic Software Component

VFB Non AUTOSAR Component

VFB Composition Component VFB Timing

VFB Parameter Component

0..*

 «input»

0..*

 «input»

1..* «input»

 «performs»

0..*

 «input»

0..1

 «input»1..*

 «input»

 «output» 1

Figure 3.37: Task Define VFB Timing

Task Definition Define VFB Timing
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define VFB Timing (TimingDescription and TimingConstraints) for an

Atomic Software Component or a Composition Component
Description Define VFB Timing (TimingDescription and TimingConstraints) for an

Atomic Software Component or a Composition Component
Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Designer
1

Consumes VFB Composition
Component

1..*

Consumes VFB Interfaces 1..*
Consumes VFB AUTOSAR

Standard Package
0..1

Consumes VFB Atomic Soft-
ware Component

0..*

Consumes VFB Non AUTOSA
R Component

0..*

Consumes VFB Parameter
Component

0..*

Produces VFB Timing 1

Table 3.78: Define VFB Timing

241 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.2.1.17 Define VFB Variants

Define VFB Variants

System Constant Value Set

Predefined Variant

Evaluated Variant Set

Postbuild Variant Set

VFB Top Level System Composition VFB
Composition
Component

VFB Atomic Software Component

VFB Interfaces

VFB Non AUTOSAR Component

VFB Timing

Software
Component
Designer

VFB Parameter Component

 «output»

0..*

 «inoutput»

0..*

1

 «input»

0..*

 «input»

0..*

 «input»

1..*

 «input»

0..*

 «input»

 «performs»

0..1

 «input»0..*

 «input»

 «inoutput»
0..*

 «output»

0..*

Figure 3.38: Task Define VFB Variants

Task Definition Define VFB Variants
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define variants for the artifacts of a VFB system.
Description Define one or more variants for the artifacts of a VFB system. Defining

one variant means creating a Predefined Variant related to the settings
used by the VFB elements in scope. To do so, this task can make use
of existing System Constant Value Sets and/or Postbuid Variant Sets or
define new ones.

Several Predefined Variants can be combined to one Evaluated Variant
Set.

Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Designer
1

Consumes VFB Top Level
System Composi-
tion

1

Consumes VFB Composition
Component

1..*

Consumes VFB Timing 0..1
Consumes VFB Atomic Soft-

ware Component
0..*

242 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes VFB Interfaces 0..*
Consumes VFB Non AUTOSA

R Component
0..*

Consumes VFB Parameter
Component

0..*

In/out Postbuild Variant
Set

0..*

In/out System Constant
Value Set

0..*

Produces Evaluated Variant
Set

0..*

Produces Predefined Variant 0..*

Table 3.79: Define VFB Variants

3.2.1.18 Define VFB Integration Connector

Non-AUTOSAR
System Integrator

Define VFB Integration
Connector

VFB System

Description of a
Non-AUTOSAR System

Integration
Connector

 «output» 1

1

 «performs»

1 «input»

1
 «input»

Figure 3.39: Task Define VFB Integration Connector

243 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Define VFB Integration Connector
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define how the non-AUTOSAR system shall be connected to the

AUTOSAR system.
Description The VFB Integration Connector is used to represent the connection of

the non-AUTOSAR system and the AUTOSAR system. Its contents
and format depend on the way in which the non-AUTOSAR system is
defined.

To define the VFB Integration Connector the requirements on the
connection are brought into the format of the Integration Connector.
When the requirements are defined in a proprietary format the have to
be translated to the format of the Integration Connector. When they are
only informally defined or are even more tangible the format of the
Integration Connector can be used to elicit, formalize, and analyze the
connection requirements.

Relation Type Related Element Mul. Note
Performed by Non-AUTOSAR

System Integrator
1

Consumes Description of a
Non-AUTOSAR
System

1

Consumes VFB System 1
Produces Integration Con-

nector
1

Predecessor Translate Non-
Autosar Descrip-
tion to Autosar
Description

1

Table 3.80: Define VFB Integration Connector

244 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.2.1.19 Translate Non-AUTOSAR Description to AUTOSAR Description

Translate Non-Autosar
Description to Autosar
Description

Non-AUTOSAR System
Integrator

Integration
Connector

Description of a
Non-AUTOSAR
System

VFB System

 «output»
+Integrated VFB System

1

1

 «performs»1
 «input»

1

 «input»

+Initial VFB System

1
 «input»

Figure 3.40: Task Translate Non-AUTOSAR Description to AUTOSAR Descrip-
tion

Task Definition Translate Non-Autosar Description to Autosar Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Translate the description of the non-AUTOSAR system into a

semantically equivalent AUTOSAR description (template).
Description In order to incorporate the development of the non-AUTOSAR system

into the AUTOSAR process the Description of the non-AUTOSAR
system must be translated into an AUTOSAR format. Typically this will
be achieved by a translation tool, although in principle it might also be
done manually.

Relation Type Related Element Mul. Note
Performed by Non-AUTOSAR

System Integrator
1

Consumes Description of a
Non-AUTOSAR
System

1

Consumes Integration Con-
nector

1

Consumes VFB System 1 Initial VFB System:
Produces VFB System 1 Integrated VFB System:

Table 3.81: Translate Non-Autosar Description to Autosar Description

245 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.2.2 Work Products

3.2.2.1 VFB System

VFB System

Overall VFB
System

VFB System
Extract

ECU Extract of
VFB System

VFB Top Level
System Composition

VFB Composition
Component

See separate diagram
for further
aggregations.

System View
Mapping

 «extends» «extends» «extends»

1

«SPEM_Aggregation»

0..1

«SPEM_Aggregation»

0..*

«SPEM_Aggregation» 0..1

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

Figure 3.41: Overview on the different roles of Deliverables based on VFB System

246 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

VFB System

System Constant Value Set

Predefined Variant

Evaluated Variant Set

Postbuild Variant Set

VFB Top Level
System Composition

VFB Interfaces VFB Data Type Mapping SetVFB Modes VFB Types

VFB Atomic
Application
Software
Component

Complex Driver
Component

VFB Sensor
Actuator
Component

ECU Abstraction
Software
Component

VFB Parameter
Component

VFB Non AUTOSAR
Component

VFB Software
Component Mapping
Constraints

Consistency Needs

VFB NvBlock
Software
Component

1

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*
«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*
«SPEM_Aggregation»

0..*
«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*
«SPEM_Aggregation»

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

Figure 3.42: Structure of Deliverable VFB System

Deliverable VFB System
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products
Brief Description Complete VFB view of a concrete system.
Description Delivery of a VFB view of a concrete system. i.e. the top level

composition and all nested compositions and components. This
element is the basis for several extensions according to the scope of
the VFB which can be an Overall System, a System Extract or an ECU
Extract.

This deliverable may contain variation points in its XML artifacts which
need to be bound in later steps of the methodology. If such variation
points are present, the delivered VFB system may optionally include
PredefinedVariants in order to predefine variants for later selection and
an Evaluated Variant Set.

Kind Delivered
Extended by ECU Extract of VFB System, Overall VFB System, VFB System Extract
Relation Type Related Element Mul. Note

247 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Aggregates Consistency

Needs
1 Correlation between a group of

RunnableEntitys and a group of
DataPrototypes.

Aggregates VFB Top Level
System Composi-
tion

1

Aggregates Complex Driver
Component

0..*

Aggregates ECU Abstraction
Software Compo-
nent

0..*

Aggregates Evaluated Variant
Set

0..*

Aggregates Postbuild Variant
Set

0..*

Aggregates Predefined Variant 0..*
Aggregates System Constant

Value Set
0..*

Aggregates VFB Atomic Ap-
plication Software
Component

0..*

Aggregates VFB Data Type
Mapping Set

0..*

Aggregates VFB Interfaces 0..*
Aggregates VFB Modes 0..*
Aggregates VFB Non AUTOSA

R Component
0..*

Aggregates VFB NvBlock Soft-
ware Component

0..*

Aggregates VFB Parameter
Component

0..*

Aggregates VFB Sensor Actu-
ator Component

0..*

Aggregates VFB Software
Component Map-
ping Constraints

0..*

Aggregates VFB Types 0..*
Produced by Extend Composi-

tion
1 extended system:

Produced by Translate Non-
Autosar Descrip-
tion to Autosar
Description

1 Integrated VFB System:

248 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumed by Define Partial Flat

Map
1 Various parts of a given VFB system will

be used as input:

• Refer to parameters and variables
in port interfaces and their data
types.

• In order to define unique names,
also other the component
definitions not in the scope of the
partial flat map might be checked.

• Set a link to the context of the Flat
Map, e.g. a VFB Composition.

Consumed by Define VFB Inte-
gration Connector

1

Consumed by Define VFB Safety
Information

1

Consumed by Extend Composi-
tion

1 initial system:

Consumed by Extract the ECU
Communication

1 Need as input in order to set up the Data
Mapping.

Consumed by Generate or Adjust
System Flat Map

1

Consumed by Translate Non-
Autosar Descrip-
tion to Autosar
Description

1 Initial VFB System:

Table 3.82: VFB System

3.2.2.2 Overall VFB System

Deliverable Overall VFB System
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products
Brief Description
Description Deliverable containing an overall VFB description. It must contain the

VFB Top Level System Composition of the complete system.
Kind Delivered
Extends VFB System
Relation Type Related Element Mul. Note
Aggregated by Abstract System

Description
1

Aggregated by System Configura-
tion Description

1

Aggregated by System Constraint
Description

0..1

249 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Aggregates System View Map-

ping
0..1 The Overall VFB System aggregates a

potential mapping to the abstract or
functional view of the system.

Aggregates VFB Composition
Component

0..* Further compositions below the top level
composition.

Produced by Develop a VFB
System Descrip-
tion

1

Consumed by Define Software
Component Safety
Information

1

Consumed by Develop Applica-
tion Software

1 The application software needs to refer
to the relevant elements of the overall
VFB system such as Software
Component Types, Port Interfaces and
Data Types.

Consumed by Develop System 0..1 Usually the System refers to elements of
an overall VFB descriptions. But for the
description of a legacy system, this input
might be empty.

Consumed by Flatten Software
Composition

0..1 Read relevant elements starting from
VFB Top Level System Composition in
case transformation starts with the full
system.

Consumed by Generate or Adjust
ECU Flat Map

0..1 Used to set the upstream references in
case one starts from a complete system.

Table 3.83: Overall VFB System

3.2.2.3 VFB System Extract

Deliverable VFB System Extract
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products
Brief Description The VFB description for the partial system.
Description The VFB description for a sub-system. It contains only those software

components which belong to this sub-system. It should contain a VFB
Top Level System Composition which has unconnected ports reflecting
the connection points to the outer system.

Kind Delivered
Extends VFB System
Relation Type Related Element Mul. Note
Aggregated by System Extract 1
Aggregates System View Map-

ping
0..1 The VFB System Extract aggregates a

potential mapping to the abstract or
functional view of the system.

Aggregates VFB Composition
Component

0..* Further compositions below the top level
composition.

250 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumed by Flatten Software

Composition
0..1 Read relevant elements starting from

VFB Top Level System Composition in
case transformation starts from the
system extract.

Consumed by Generate or Adjust
ECU Flat Map

0..1 Used to set the upstream references in
case one starts from a system extract.

Table 3.84: VFB System Extract

3.2.2.4 VFB Top Level System Composition

Artifact VFB Top Level System Composition
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products
Brief Description Highest Level Composition consisting of all components that make up

the Virtual Functional Bus.
Description Highest Level Composition consisting of all components and their

connectors that make up the VFB System Deliverable.

This composition is not allowed to have ports if it represents the top
level composition of an Overall VFB System, but it may have
unconnected ports (and port groups) if it is at the top of a System
Extract or ECU Extract.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by VFB System 1
Produced by Define VFB Top

Level
1

Consumed by Assign Top Level
Composition

1

Consumed by Define Software
Component Map-
ping Constraints

1

Consumed by Define VFB Com-
ponent Constraints

1

Consumed by Define VFB Vari-
ants

1

Consumed by Deploy Software
Component

1

Use meta model element CompositionSw
ComponentType

1

Table 3.85: VFB Top Level System Composition

3.2.2.5 VFB Composition Component

251 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact VFB Composition Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products
Brief Description Describes a set of VFB CompositionTypes.
Description Describes a set of CompositionComponentTypes, which may be

nested. A VFB composition aggregates component types to
encapsulate and abstract subsystem functionality. Compositions
contain instances of components (other compositions and atomic
components), as well as the connectors between them.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Delivered Atomic

Software Compo-
nents

0..* In case the delivered atomic components
make up one or more VFB Compositions,
the composition description(s) shall be
included in the delivery.

Aggregated by Overall VFB Sys-
tem

0..* Further compositions below the top level
composition.

Aggregated by VFB System Ex-
tract

0..* Further compositions below the top level
composition.

Produced by Define VFB Com-
position Compo-
nent

1

Produced by Extend Composi-
tion

0..*

Consumed by Set System Root 1 Only the reference to the artifact is
needed

Consumed by Define VFB Com-
ponent Constraints

1..*

Consumed by Define VFB Timing 1..*
Consumed by Define VFB Vari-

ants
1..*

Consumed by Define VFB Com-
position Compo-
nent

0..*

Consumed by Define VFB Top
Level

0..*

Use meta model element CompositionSw
ComponentType

1

Use meta model element SwComponent
Type

1

Table 3.86: VFB Composition Component

252 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.2.2.6 VFB AUTOSAR Standard Package

VFB AUTOSAR Standard Package

AUTOSAR Specification of
Application Interfaces

AUTOSAR
Standard Types

AUTOSAR
Platform Types

1

«SPEM_Aggregation»

1

«SPEM_Aggregation»

1

«SPEM_Aggregation»

Figure 3.43: Structure of Deliverable VFB AUTOSAR Standard Package

Deliverable VFB AUTOSAR Standard Package
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products
Brief Description Package with standardized AUTOSAR DataTypes, PortInterfaces,

ComponentTypes (may include compositions), etc. on VFB level.
Description Package with standardized AUTOSAR elements needed on VFB level.

This deliverable is released by AUTOSAR and is readonly within the
methodology.

Kind Delivered
Relation Type Related Element Mul. Note
Aggregates AUTOSAR Plat-

form Types
1

Aggregates AUTOSAR Specifi-
cation of Applica-
tion Interfaces

1

Aggregates AUTOSAR Stan-
dard Types

1

Consumed by Define ECU
Abstraction Com-
ponent

1 Use port blueprints in order to create
ports with standardized application
interfaces.

Consumed by Develop a VFB
System Descrip-
tion

1..*

Consumed by Develop an Ab-
stract System
Description

1..*

Consumed by Define Atomic
Software Com-
ponent Internal
Behavior

0..1 Use standardized elements (e.g. Data
Types) as blueprints (as far as
applicable) to create the corresponding
elements of the actual project.

253 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumed by Define Complex

Driver Component
0..1 Use port blueprints in order to create

ports with standardized application
interfaces.

Consumed by Define VFB Ap-
plication Software
Component

0..1 Use port blueprints in order to create
ports with standardized application
interfaces.

Consumed by Define VFB Com-
position Compo-
nent

0..1 Use port blueprints in order to create
ports with standardized application
interfaces.

Consumed by Define VFB Inter-
faces

0..1 Use standardized Port Interfaces as
blueprints (as far as applicable) to create
the corresponding elements of the actual
project.

Consumed by Define VFB Nv
Block Software
Component

0..1

Consumed by Define VFB Pa-
rameter Compo-
nent

0..1 Use port blueprints in order to create
ports with standardized application
interfaces.

Consumed by Define VFB Sen-
sor or Actuator
Component

0..1 Use port blueprints in order to create
ports with standardized application
interfaces.

Consumed by Define VFB Timing 0..1
Consumed by Define VFB Types 0..1 Use standardized elements (e.g. Data

Types, Compu Methods) as blueprints
(as far as applicable) to create the
corresponding elements of the actual
project.

Consumed by Define Wrapper
Components to
Integrate Legacy
Software

0..1 Use port blueprints in order to create
ports with standardized application
interfaces.

Consumed by Generate Atomic
Software Com-
ponent Contract
Header Files

0..1

Consumed by Generate Compo-
nent Header File in
Vendor Mode

0..1

Consumed by Generate Compo-
nent Prebuild Data
Set

0..1

Table 3.87: VFB AUTOSAR Standard Package

254 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.2.2.7 AUTOSAR Specification of Application Interfaces

AUTOSAR
Specification of
Application Interfaces

ARElement
AtpType

Datatypes::AutosarDataType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface::PortInterface

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

Components::SwComponentType

ARElement

Units::Unit

ARElement
AtpBlueprint

AtpStructureElement

PortProtoypeBlueprint::
PortPrototypeBlueprint

ARElement
AtpBlueprint

AtpBlueprintable

GlobalConstraints::DataConstr

ARElement
AtpBlueprint

AtpBlueprintable

ComputationMethod::
CompuMethod

«AtpUseMetaModelElement»

«AtpUseMetaModelElement»

«AtpUseMetaModelElement»

«AtpUseMetaModelElement»

«AtpUseMetaModelElement»

«AtpUseMetaModelElement»

«AtpUseMetaModelElement»

Figure 3.44: The AUTOSAR Specification of Application Interfaces

Artifact AUTOSAR Specification of Application Interfaces
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products
Brief Description Definitions of the AUTOSAR standard appliction interfaces.
Description This includes standardized data types, port interfaces, units, port

blueprints and example component types (including compositions) for
the design of Application Software Components.

Note that most of the content is not meant as direct input for defining a
VFB system but as so-called blueprints:

Blueprints need to be completed with company or project specific
elements (e.g. a component type defined as blueprint may need
additional ports or a data type defined as blueprint may need additional
properties).

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by VFB AUTOSAR

Standard Package
1

Use meta model element AutosarDataType 1
Use meta model element CompuMethod 1

255 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Use meta model element DataConstr 1
Use meta model element PortInterface 1
Use meta model element PortPrototype

Blueprint
1

Use meta model element SwComponent
Type

1

Use meta model element Unit 1

Table 3.88: AUTOSAR Specification of Application Interfaces

3.2.2.8 VFB Atomic Software Component

VFB Atomic
Software
Component

VFB Atomic
Application Software
Component

Complex Driver
Component

ECU Abstraction
Software
Component

VFB Sensor
Actuator
Component

Components::
AtomicSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

Components::SwComponentType

«AtpUseMetaModelElement»

«AtpUseMetaModelElement»

 «extends»

 «extends»

 «extends» «extends»

Figure 3.45: The Generic Work Product VFB Atomic Software Component

Artifact VFB Atomic Software Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products
Brief Description Description of an Atomic VFB Component.
Description The description of an Atomic Software Component Type without

Internal Behavior. Note that there are more specific artifacts extending
this one. This artifact is used to describe general use cases which are
valid for all kind of Atomic Software Components.

Kind AUTOSAR XML
Extended by Complex Driver Component, ECU Abstraction Software Component, V

FB Atomic Application Software Component, VFB Sensor Actuator
Component

Relation Type Related Element Mul. Note
Aggregated by Delivered Atomic

Software Compo-
nents

1..*

256 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Produced by Define Symbol

Props for Types
0..* symbolProps: The symbolProps attribute

redefines the software component type
name used in the code of the RTE. This
resolves name clashes among different
software component types designed
accidentally with the same shortName.

Note that this output is a splitable
element, so it can be added later without
changing the VFB model.

Produced by Extend Composi-
tion

0..*

Consumed by Define VFB Com-
ponent Constraints

2..*

Consumed by Define Atomic
Software Com-
ponent Internal
Behavior

1

Consumed by Generate Atomic
Software Com-
ponent Contract
Header Files

1 Meth.bindingTime = SystemDesignTime

Consumed by Generate Compo-
nent Header File in
Vendor Mode

1 Meth.bindingTime = SystemDesignTime

Consumed by Generate Compo-
nent Prebuild Data
Set

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Select Software
Component Imple-
mentation

1..*

Consumed by Define Consis-
tency Needs

0..* The description of an
AtomicSoftwareComponentType without
InternalBehavior.

Consumed by Define VFB Com-
position Compo-
nent

0..*

Consumed by Define VFB Timing 0..*
Consumed by Define VFB Top

Level
0..*

Consumed by Define VFB Vari-
ants

0..*

Use meta model element AtomicSwCompo-
nentType

1

Use meta model element SwComponent
Type

1

Table 3.89: VFB Atomic Software Component

257 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.2.2.9 VFB Atomic Application Software Component

Artifact VFB Atomic Application Software Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products
Brief Description Description of an Atomic VFB Component.
Description The description of an Application Software Component Type.

It is used to represent the ECU-independent application software.
Kind AUTOSAR XML
Extends VFB Atomic Software Component
Relation Type Related Element Mul. Note
Aggregated by VFB System 0..*
Produced by Define VFB Ap-

plication Software
Component

1

Use meta model element ApplicationSw
ComponentType

1

Table 3.90: VFB Atomic Application Software Component

3.2.2.10 Complex Driver Component

Artifact Complex Driver Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products
Brief Description VFB Description of a Complex Driver Component.
Description The Complex Driver Component is a special VFB Atomic Software

Component that has direct access to hardware on an ECU and which
is therefore linked to a specific ECU or specific hardware.

It uses the meta-model element
ComplexDeviceDriverSwComponentType which introduces the
possibility to link from the software representation to its hardware
description provided by the ECU Resource Template.

It provides (non-standardized) AUTOSAR Interfaces via ports on VFB
level.

Kind AUTOSAR XML
Extends VFB Atomic Software Component
Relation Type Related Element Mul. Note
Aggregated by VFB System 0..*
Produced by Define Complex

Driver Component
1

Consumed by Configure Debug 0..1
Consumed by Map Software

Component to BS
W

0..1

258 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Use meta model element ComplexDevice

DriverSwCompo-
nentType

1

Table 3.91: Complex Driver Component

3.2.2.11 ECU Abstraction Software Component

Artifact ECU Abstraction Software Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products
Brief Description VFB Description of an ECU Abstraction Software Component.
Description The ECU Abstraction Software Component is a special Atomic

Software Component that sits between a component that wants to
access ECU periphery (typically a Sensor Actuator Component) and
the Microcontroller Abstraction.

It provides (non-standardized) AUTOSAR Interfaces via ports which
represent the ECU periphery. The EcuAbstractionSwComponentType
introduces the possibility to link from the software representation to its
hardware description provided by the ECU Resource Template.

During integration, an ECU Abstraction Software Component will be
mapped to a BSW module which implements it and which will directly
(without RTE) be connected to the Microcontroller Abstraction.

Kind AUTOSAR XML
Extends VFB Atomic Software Component
Relation Type Related Element Mul. Note
Aggregated by VFB System 0..*
Produced by Define ECU

Abstraction Com-
ponent

1

Consumed by Map Software
Component to BS
W

0..1

Use meta model element EcuAbstractionSw
ComponentType

1

Table 3.92: ECU Abstraction Software Component

3.2.2.12 VFB Parameter Component

259 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact VFB Parameter Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products
Brief Description A ParameterComponentType defines parameters and characteristic

values accessible via provided Ports.
Description A ParameterSwComponentType defines parameters and characteristic

values accessible via Provide Ports. The provided values are the same
for all connected Component Prototypes. This is as opposed to private
parameters which are only available within the scope of an Atomic
Software Component

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by VFB System 0..*
Produced by Define VFB Pa-

rameter Compo-
nent

1

Produced by Extend Composi-
tion

0..*

Consumed by Define VFB Com-
position Compo-
nent

0..*

Consumed by Define VFB Timing 0..*
Consumed by Define VFB Top

Level
0..*

Consumed by Define VFB Vari-
ants

0..*

Use meta model element ParameterSw
ComponentType

1

Table 3.93: VFB Parameter Component

3.2.2.13 VFB Sensor Actuator Component

260 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact VFB Sensor Actuator Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products
Brief Description Describes a sensor or actuator component that exist at the VFB Level

and represents the physical interface of an actual sensor or actuator
hardware element.

Description A Sensor Actuator Software Component is an Atomic Software
Component that makes the functionality of a sensor or actuator usable
for other software components. That means that the Sensor Actuator
Software Component provides to the application software components
an interface for the physical values of the sensors and actuators. It is
written for a concrete sensor or actuator and uses the ECU Abstraction
interface.

It references the description of the associated hardware elements.
Kind AUTOSAR XML
Extends VFB Atomic Software Component
Relation Type Related Element Mul. Note
Aggregated by Complete ECU

Description
0..*

Aggregated by VFB System 0..*
Produced by Define VFB Sen-

sor or Actuator
Component

1

Use meta model element SensorActuatorSw
ComponentType

1

Table 3.94: VFB Sensor Actuator Component

3.2.2.14 VFB NvBlock Software Component

Artifact VFB NvBlock Software Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products
Brief Description
Description The VFB NvBlock Software Component defines non volatile data which

can be shared between SwComponentPrototypes. The non volatile
data of the VFB NvBlock Software Component are accessible via
provided and required ports.

Kind
Relation Type Related Element Mul. Note
Aggregated by VFB System 0..*
Produced by Define VFB Nv

Block Software
Component

1

Use meta model element NvBlockSwCom-
ponentType

1

Table 3.95: VFB NvBlock Software Component

261 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.2.2.15 VFB Non AUTOSAR Component

Artifact VFB Non AUTOSAR Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products
Brief Description A Component used to describe the non-autosar entities that exist at the

VFB level.
Description A Component used to describe the non-AUTOSAR entities that exist at

the VFB level.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by VFB System 0..*
Produced by Define Wrapper

Components to
Integrate Legacy
Software

1

Produced by Extend Composi-
tion

0..*

Consumed by Define VFB Com-
position Compo-
nent

0..*

Consumed by Define VFB Timing 0..*
Consumed by Define VFB Top

Level
0..*

Consumed by Define VFB Vari-
ants

0..*

Use meta model element SwComponent
Type

1

Table 3.96: VFB Non AUTOSAR Component

3.2.2.16 VFB Interfaces

Artifact VFB Interfaces
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products
Brief Description Interfaces and related elements that form part of the VFB, but are not

standardized by AUTOSAR.
Description Interfaces and related elements that form part of the VFB, but are not

standardized by AUTOSAR.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Delivered Atomic

Software Compo-
nents

0..*

Aggregated by VFB System 0..*
Produced by Define VFB Inter-

faces
1..*

262 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Produced by Extend Composi-

tion
0..*

Consumed by Define ECU
Abstraction Com-
ponent

1

Consumed by Define Complex
Driver Component

1..*

Consumed by Define VFB Ap-
plication Software
Component

1..*

Consumed by Define VFB Com-
position Compo-
nent

1..*

Consumed by Define VFB Nv
Block Software
Component

1..*

Consumed by Define VFB Pa-
rameter Compo-
nent

1..*

Consumed by Define VFB Sen-
sor or Actuator
Component

1..*

Consumed by Define VFB Timing 1..*
Consumed by Define VFB Top

Level
1..*

Consumed by Define Consis-
tency Needs

0..* Interfaces which are relevant for the
consistency definition.

Consumed by Define VFB Vari-
ants

0..*

Consumed by Define Wrapper
Components to
Integrate Legacy
Software

0..*

Consumed by Generate Atomic
Software Com-
ponent Contract
Header Files

0..* Meth.bindingTime = SystemDesignTime

Consumed by Generate Compo-
nent Header File in
Vendor Mode

0..* Meth.bindingTime = SystemDesignTime

Consumed by Generate Compo-
nent Prebuild Data
Set

0..* Meth.bindingTime =
CodeGenerationTime

Use meta model element AutosarDataType 1
Use meta model element ModeDeclaration

Group
1

Use meta model element PortInterface 1

Table 3.97: VFB Interfaces

263 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.2.2.17 VFB Types

Artifact VFB Types
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products
Brief Description Data types and related elements that form part of the VFB, but are not

standardized by AUTOSAR.
Description Description of AutosarDataTypes and related elements (e.g. units,

computation methods, etc.) that form part of the VFB, but are not
standardized by AUTOSAR. This may also include copies of
standardized elements which have been completed with project
specific information (e.g. with calibration access information or
computation methods). A VFB system can contain several different
instances of this artifact, which may fulfill different roles.

AutosarDataTypes can come as so-called ApplicationDatatypes or
ImplementationDataTypes. This package can contain both kinds but
they can also be split into separate artifacts. However, since it is also
possible to generate ImplementationDataTypes from
ApplicationDataTypes, a VFB system can be completely defined with
ApplicationDatatypes only.

Note that this work product is meant for use cases, in which a set of
data types is maintained as a separate artifact. It is also possible to
define particular AutosarDataTypes as part of another artifact, e.g. of
VFB Interfaces if the types are closely related to certain port interfaces.

In the methodology this artifact stands not only for data type definitions,
but also for related elements like addressing methods, units,
computation methods, constraints. etc. This is done for simplicity,
because these elements are often consumed by the same tasks. Of
course these can be treated as separate artifacts in real projects.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Delivered Atomic

Software Compo-
nents

0..*

Aggregated by VFB System 0..*
Produced by Define VFB Types 1..*
Produced by Define Symbol

Props for Types
0..* symbolProps: The symbolProps attribute

redefines the implementation data type
name used in the code of the RTE and/or
the component. This resolves name
clashes among different implementation
data types designed accidentally with the
same shortName.

Note that this output is a splitable
element, so it can be added later without
changing the VFB model.

Produced by Extend Composi-
tion

0..*

264 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumed by Define ECU

Abstraction Com-
ponent

1

Consumed by Define Complex
Driver Component

1..*

Consumed by Define VFB Ap-
plication Software
Component

1..*

Consumed by Define VFB Com-
position Compo-
nent

1..*

Consumed by Define VFB Inter-
faces

1..*

Consumed by Define VFB Nv
Block Software
Component

1..*

Consumed by Define VFB Pa-
rameter Compo-
nent

1..*

Consumed by Define VFB Sen-
sor or Actuator
Component

1..*

Consumed by Define VFB Top
Level

1..*

Consumed by Generate BSW
Memory Mapping
Header

1..* SwAddrMethod: Referred
SwAddrMethods
Meth.bindingTime = SystemDesignTime

Consumed by Generate Compiler
Configuration

1..* SwAddrMethod: Referred
SwAddrMethods. They provide the
default names for the compiler memory
classes.
Meth.bindingTime = SystemDesignTime

Consumed by Generate SWC
Memory Mapping
Header

1..* SwAddrMethod: Referred
SwAddrMethods
Meth.bindingTime = SystemDesignTime

Consumed by Configure
Memmap Allo-
cation

0..* SwAddrMethods: SwAddrMethods used
for the generic mapping. Note that one
SwAddrmethod can represent several
memory sections.

Consumed by Define Consis-
tency Needs

0..* Data types which are relevant for the
consistency definition.

Consumed by Define VFB Con-
stants

0..*

Consumed by Define Wrapper
Components to
Integrate Legacy
Software

0..*

Consumed by Generate Atomic
Software Com-
ponent Contract
Header Files

0..* Meth.bindingTime = SystemDesignTime

265 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumed by Generate Compo-

nent Header File in
Vendor Mode

0..* Meth.bindingTime = SystemDesignTime

Consumed by Generate Compo-
nent Prebuild Data
Set

0..* Meth.bindingTime =
CodeGenerationTime

Use meta model element ApplicationData
Type

1

Use meta model element AutosarDataType 1
Use meta model element CompuMethod 1
Use meta model element DataConstr 1
Use meta model element Implementation

DataType
1

Use meta model element SwAddrMethod 1
Use meta model element Unit 1

Table 3.98: VFB Types

3.2.2.18 VFB Data Type Mapping Set

Artifact VFB Data Type Mapping Set
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products
Brief Description Mapping Set between Application and Implementation Data Types.
Description Mapping Set between Application and Implementation Data Types.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Delivered Atomic

Software Compo-
nents

0..*

Aggregated by VFB System 0..*
Produced by Define VFB Types 0..*
Consumed by Generate Atomic

Software Com-
ponent Contract
Header Files

0..1 Meth.bindingTime = SystemDesignTime

Consumed by Generate Compo-
nent Header File in
Vendor Mode

0..1 Meth.bindingTime = SystemDesignTime

Consumed by Generate Compo-
nent Prebuild Data
Set

0..1 Meth.bindingTime =
CodeGenerationTime

Consumed by Define VFB Con-
stants

0..*

Use meta model element DataTypeMapping
Set

1

Table 3.99: VFB Data Type Mapping Set

266 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.2.2.19 VFB Modes

Artifact VFB Modes
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products
Brief Description Modes declared here are non-AUTOSAR standard. They are modes

that are managed by a software component acting as a application
mode manager.

Description Desclaration of mode groups and of the modes they contain. Modes
declared here are non-AUTOSAR standard. They are modes that are
managed by an application software component acting as a mode
manager.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Delivered Atomic

Software Compo-
nents

0..*

Aggregated by VFB System 0..*
Produced by Define VFB Modes 1..*
Produced by Extend Composi-

tion
0..*

Consumed by Define Complex
Driver Component

0..*

Consumed by Define ECU
Abstraction Com-
ponent

0..*

Consumed by Define VFB Ap-
plication Software
Component

0..*

Consumed by Define VFB Com-
position Compo-
nent

0..*

Consumed by Define VFB Nv
Block Software
Component

0..*

Consumed by Define VFB Top
Level

0..*

Consumed by Define Wrapper
Components to
Integrate Legacy
Software

0..*

Consumed by Generate Atomic
Software Com-
ponent Contract
Header Files

0..* Meth.bindingTime = SystemDesignTime

Consumed by Generate Compo-
nent Header File in
Vendor Mode

0..* Meth.bindingTime = SystemDesignTime

Consumed by Generate Compo-
nent Prebuild Data
Set

0..* Meth.bindingTime =
CodeGenerationTime

267 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Use meta model element ModeDeclaration

Group
1

Table 3.100: VFB Modes

3.2.2.20 VFB Constants

Artifact VFB Constants
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products
Brief Description Specification of constant data for usage as initial values by other

artifacts.
Description Specification of constant data for usage as initial values by other

artifacts, e.g. initial values for calibration parameters or variable data
elements provided in ports.

By using the ConstantSpecification meta-class, such data can be
standalone artifacts and thus be maintained independently of the
components or interfaces to which they apply.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Define VFB Con-

stants
1..*

Use meta model element ConstantSpecifica-
tion

1

Table 3.101: VFB Constants

3.2.2.21 VFB Software Component Mapping Constraints

Artifact VFB Software Component Mapping Constraints
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products
Brief Description A defined constraint on how certain components must be mapped

(clustered or separated) to ECUs.
Description One or more defined constraints on how certain components must be

mapped (clustered, separated or dedicated mapping).

This defines constraints to which components need to be mapped to a
single ECU, and which must be mapped to separate ECUs, without
regard to any particular ECU or topology.

Notes: The meta-model element SystemMapping allows to describe a
collection of such constraints as one single artifact.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by VFB System 0..*
Produced by Define VFB Com-

ponent Constraints
1..*

268 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Produced by Extend Composi-

tion
0..*

Consumed by Deploy Software
Component

0..1 Constraints defined on the VFB level

Use meta model element MappingConstraint 1
Use meta model element SystemMapping 1 The splitable element SystemMapping is

the root for this artifact.

Table 3.102: VFB Software Component Mapping Constraints

3.2.2.22 VFB Timing

Artifact VFB Timing
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products
Brief Description Atomic Software Component or Composition Component

TimingDescription and TimingConstraints
Description TimingDescription and TimingConstraints defined for an Atomic

Software Component or a Composition Component
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Define VFB Timing 1
Consumed by Define Software

Component Timing
0..1

Consumed by Define System
Timing

0..1

Consumed by Define VFB Vari-
ants

0..1

Use meta model element VfbTiming 1

Table 3.103: VFB Timing

3.2.2.23 Description of a Non-AUTOSAR System

269 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Description of a Non-AUTOSAR System
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products
Brief Description View of the non-AUTOSAR system that contains the relevant

information for its integration with the AUTOSAR system at VFB level
Description This artifact describes the elements of the non-AUTOSAR system that

are relevant for its integration with an AUTOSAR system at the VFB
level. The format of the description depends on the methodology or
platform that is employed for the development of the non-AUTOSAR
system. It may not be assumed that the description of the
non-AUTOSAR system comes in an AUTOSAR format. Also the
contents of the description may differ both in its scope and in its details
from an AUTOSAR description that also addresses the VFB level, i.e. a
SwComponent Description.

The interfaces of infotainment system components developed on the
basis of the GENIVI platform for instance are specified with the Franca
Interface Definition Language. A Franca IDL description contains
interfaces that define data types, methods, attributes, and broadcasts.
It does neither define the components that implement these interfaces
nor their connections. In addition, the granularity of the data type
description is much coarser than a data type description with the
SwComponent Template.

Kind Custom
Relation Type Related Element Mul. Note
Consumed by Define VFB Inte-

gration Connector
1

Consumed by Translate Non-
Autosar Descrip-
tion to Autosar
Description

1

Table 3.104: Description of a Non-AUTOSAR System

3.2.2.24 Integration Connector

270 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Integration Connector
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work

Products
Brief Description Specification of the connections of the elements of the non-AUTOSAR

system with the elements of the AUTOSAR system
Description This artifact specifies which elements of the non-AUTOSAR system are

to be connected with which elements of the AUTOSAR system. If for
instance the Description of the non-AUTOSAR system contains
elements corresponding to port instances, the integration connector
would define how these ports are connected with the port instances
contained in the AUTOSAR SwComponent Description. In addition, the
Integration Connector may specify information that is necessary for the
integration but not yet contained in the Description of the
non-AUTOSAR system.

If for instance the Description of the non-AUTOSAR system contains
only very coarse grained data type descriptions the Integration
Connector will be used to add sufficient information such that the
compatibility of the data types with the ones defined in the AUTOSAR
SwComponent Description can be checked.

Kind Custom
Relation Type Related Element Mul. Note
Produced by Define VFB Inte-

gration Connector
1

Consumed by Translate Non-
Autosar Descrip-
tion to Autosar
Description

1

Table 3.105: Integration Connector

3.3 System

This chapter contains the definition of work products and tasks used for the devel-
opment of systems and sub-systems. For the definition of the relevant meta-model
elements refer to [9] and [20].

271 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.1 Tasks

3.3.1.1 Set System Root

Set System Root

System Description
Root Element

Topology

Mapping of Software
Components to ECUs

Signal Path Constraints

Software Component
Mapping Constraints

Communication Layers

System Engineer

VFB Composition
Component

Data Mapping

 «output» 1

1

 «input»

1

 «input»

1

 «input»

1

 «input»

1..*

 «input»

1 «input»

1

 «input»

1

 «performs»

Figure 3.46: Set System Root

Task Definition Set System Root
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Tasks
Brief Description
Description Set up the root element of a system description.
Relation Type Related Element Mul. Note
Performed by System Engineer 1
Consumes Communication

Layers
1 Only the reference to the artifact is

needed
Consumes Mapping of Soft-

ware Components
to ECUs

1 Only the reference to the artifact is
needed

Consumes Signal Path Con-
straints

1 Only the reference to the artifact is
needed

Consumes Software Compo-
nent Mapping Con-
straints

1 Only the reference to the artifact is
needed

Consumes Topology 1 Only the reference to the artifact is
needed

Consumes VFB Composition
Component

1 Only the reference to the artifact is
needed

272 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes Data Mapping 1..* Only the reference to the artifact is

needed
Produces System Descrip-

tion Root Element
1 Set up the root element, and the links to

other artifacts

Table 3.106: Set System Root

3.3.1.2 Assign Top Level Composition

Assign Top Level
Composition

System Description
Root Element

VFB Top Level
System Composition

System Engineer

 «output»
11

 «input»

 «performs»

Figure 3.47: Assign Top Level Composition

Task Definition Assign Top Level Composition
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Tasks
Brief Description
Description Assign a VFB Top Level Composition to the System Root
Relation Type Related Element Mul. Note
Performed by System Engineer 1
Consumes VFB Top Level

System Composi-
tion

1

Produces System Descrip-
tion Root Element

1

Table 3.107: Assign Top Level Composition

273 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.1.3 Define ECU Description

ECU Resources
Description

Define ECU Description

System Engineer

 «performs»

 «output»
1..*

Figure 3.48: Define ECU description

Task Definition Define ECU Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Tasks
Brief Description Define a particular ECU’s resources.
Description Define a particular ECU’s resources by describing Hardware Elements,

pins, connections.The HW Elements are the main describing elements
of an ECU,e;g processing units, memory, peripherals, sensors and
actuators. HW Elements have a unique name and can be identified
within the ECU description. HW Elements do not necessarily have to
be described on the level of an ECU. It is possible to describe HW
Elements as parts of other HW Elements. By this means, a hierarchical
description of HW Elements can be created. HW Elements provide HW
PinGroups and HW Pins for being interconnected among each others.
HW PinGroups allow a rough description of how certain groups of
HWPins are arranged. The detailed description can be done using the
HW Pins.HW Connections are used to describe connection on several
levels:connections between HW Elements, connections between HW
PinGroups, connections between HW Pins.

Relation Type Related Element Mul. Note
Performed by System Engineer 1
Produces ECU Resources

Description
1..*

Table 3.108: Define ECU Description

274 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.1.4 Define System Topology

System Engineer

ECU Resources
Description

Topology
Define System Topology

1

 «performs»

1..* «input»

 «output»

1

Figure 3.49: Define System Topology

Task Definition Define System Topology
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Tasks
Brief Description Select the ECUs and how the they are interconnected by networks.
Description Define how the ECUs of a system are interconnected by networks.
Relation Type Related Element Mul. Note
Performed by System Engineer 1
Consumes ECU Resources

Description
1..*

Produces Topology 1

Table 3.109: Define System Topology

3.3.1.5 Define Software Component Mapping Constraints

VFB Top Level System
Composition

Topology

Software Component
Mapping Constraints

Define Software Component
Mapping Constraints

System Engineer

 «performs»

1
 «input»

1
 «input»

 «output»

1

Figure 3.50: Define Software Component Mapping Constraints

275 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Define Software Component Mapping Constraints
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Tasks
Brief Description Define Constraints on software components that are clusterred

together or separate, and how software components need to be
assigned to a particular ECU or not.

Description Define constraints on Software Components during the mapping
phase. These constraints are described into the System Constraint
description. Two constraints express the restrictions that Software
Components impose each other when performing the mapping onto
the ECUs.

In fact, before the mapping process begins, it can be useful to impose
the allocation of a predefined set of SW components onto the same
ECU, especially if such a set is tightly linked from a functional point of
view. In the same way, two critical SW components, performing some
kind of redundancy, may be not suitable to run both on the same ECU.
Thus, we call these two kinds of mapping constraints, respectively,
ComponentClustering and ComponentSeparation.

The ComponentClustering constraint (also, clustering) is to be used for
expressing that a certain set of SW components (atomic or not) must
be mapped (allocated) onto the same ECU. This is some kind of
"execute together on same ECU" constraint.

The ComponentSeparation constraint (also, separation) is to be used
for expressing that two SW components (atomic or not) shall not be
mapped (allocated) onto the same ECU. This is some kind of do not
execute together on same ECU constraint.

Relation Type Related Element Mul. Note
Performed by System Engineer 1
Consumes Topology 1
Consumes VFB Top Level

System Composi-
tion

1

Produces Software Compo-
nent Mapping Con-
straints

1

Table 3.110: Define Software Component Mapping Constraints

276 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.1.6 Deploy Software Component

System Engineer

Topology

VFB Top Level System
Composition

VFB Software Component
Mapping Constraints

System Timing

Mapping of Software
Components to ECUs

Deploy Software
Component

Software Component
Mapping Constraints

 «output»

1

1

 «input»

0..1

 «input»

1
 «input»

0..1

 «input»

1

 «performs»

0..1

 «input»

Figure 3.51: Deploy Software Component

Task Definition Deploy Software Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Tasks
Brief Description Deploy VFB Software Components to an ECU
Description Deploy each VFB Software Component to an ECU that will execute the

component.
Relation Type Related Element Mul. Note
Performed by System Engineer 1
Consumes Topology 1
Consumes VFB Top Level

System Composi-
tion

1

Consumes Software Compo-
nent Mapping Con-
straints

0..1 Constraints defined on the System level

Consumes System Timing 0..1
Consumes VFB Software

Component Map-
ping Constraints

0..1 Constraints defined on the VFB level

Produces Mapping of Soft-
ware Components
to ECUs

1

Table 3.111: Deploy Software Component

277 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.1.7 Generate or Adjust System Flat Map

System Flat Map

System Description Root
Element

VFB System

Generate or Adjust
System Flat Map

System Engineer

Partial Flat Map

 «performs»

0..* «input»

1

 «input»

1

 «input»

 «inoutput»

1

Figure 3.52: Generate or Adjust System Flat Map

Task Definition Generate or Adjust System Flat Map
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Tasks
Brief Description Generates and/or adjust the unique names of component prototypes

and MCD display data in the scope of system.
Description Generates and/or adjust the unique names of component prototypes

and MCD display data in the scope of a System or System Extract.
Relation Type Related Element Mul. Note
Performed by System Engineer 1
Consumes System Descrip-

tion Root Element
1

Consumes VFB System 1
Consumes Partial Flat Map 0..* If Partial Flat Maps were delivered along

with software components, they must be
integrated into the System Flat Map:

• The instance refs used in a partial
flat map must be taken over and
adjusted to the context of the
System or System Extract.

• Name conflicts have to be
resolved if several partial flat
maps are merged.

In/out System Flat Map 1

Table 3.112: Generate or Adjust System Flat Map

278 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.1.8 Derive Communication Needs

System Engineer

Mapping of Software
Components to ECUs

System Signal

Derive
Communication
Needs

Data Mapping

System Signal Group

 «output» 0..*

1
 «input»

1

 «performs»

 «output»

1..*

 «output»

1..*

Figure 3.53: Derive Communication Needs

Task Definition Derive Communication Needs
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Tasks
Brief Description Define the signals used to exchange data & operations needed by

software components over a network.
Description Define the signals used to exchange data & operations needed by

software components over a network.
Relation Type Related Element Mul. Note
Performed by System Engineer 1
Consumes Mapping of Soft-

ware Components
to ECUs

1

Produces Data Mapping 1..*
Produces System Signal 1..*
Produces System Signal

Group
0..*

Table 3.113: Derive Communication Needs

279 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.1.9 Define Signal Path Constraints

System Engineer

Mapping of Software
Components to ECUs

Topology

Signal Path Constraints
Define Signal Path Constraints

1

 «performs»

1 «input»

1 «input»

 «output»

1

Figure 3.54: Define Signal Path Constraints

Task Definition Define Signal Path Constraints
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Tasks
Brief Description Additional guidelines for the System Generator, which specific way a

signal between two Software Components should take in the network
without defining in which frame and with which timing it is transmitted.

Description Define additional guidelines for the System Generator, which specific
way a signal between two Software Components should take in the
network without defining in which frame and with which timing it is
transmitted.

Relation Type Related Element Mul. Note
Performed by System Engineer 1
Consumes Mapping of Soft-

ware Components
to ECUs

1

Consumes Topology 1
Produces Signal Path Con-

straints
1

Table 3.114: Define Signal Path Constraints

280 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.1.10 Define System Variants

System Engineer

System Description Root
Element

Topology

Complete ECU
Description

Mapping of Software
Components to
Implementations

Postbuild Variant Set

Software Component
Mapping Constraints

Mapping of Software
Components to ECUs

System Constant Value
Set

System Description

System Signal Group

System Signal

System Timing

Evaluated Variant Set

Predefined Variant

Define System Variants

 «inoutput»

 «output»

 «output»

 «inoutput»

 «input»

 «input»

 «input»

 «input»

 «input»

1..*

 «input»

 «input»

1

 «performs»

0..*

 «input»

 «input»

1

 «input»

Figure 3.55: Define System Variants

Task Definition Define System Variants
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Tasks
Brief Description Define variants for the artifacts of a System Description.
Description Define variants for the artifacts of a System Description. Definition of a

variant means in general to define its conditions and its latest binding
time. Therefore one has to create a PredefinedVariant referring to the
settings which are used by the system elements in scope. To do so,
this task can make use of existing System Constant Value Set s and/or
Postbuid Variant Set s or define new ones. Several PredefinedVariant s
can be combined to one Evaluated Variant Set . This task can also be
applied when designing a subsystem, therefore the System Extract is
an optional input.

Relation Type Related Element Mul. Note
Performed by System Engineer 1

281 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes Mapping of Soft-

ware Components
to ECUs

1

Consumes Mapping of Soft-
ware Components
to Implementations

1

Consumes Software Compo-
nent Mapping Con-
straints

1

Consumes System Descrip-
tion Root Element

1

Consumes System Signal 1
Consumes System Signal

Group
1

Consumes System Timing 1
Consumes Topology 1
Consumes Complete ECU

Description
1..*

Consumes System Descrip-
tion

0..*

In/out Postbuild Variant
Set

1

In/out System Constant
Value Set

1

Produces Evaluated Variant
Set

1

Produces Predefined Variant 1

Table 3.115: Define System Variants

282 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.1.11 Define System Timing

System Engineer

Mapping of Software
Components to
Implementations

Mapping of Software
Components to ECUs

Topology

Communication Layers

Software Component
Timing

VFB Timing

System Timing

Define System
Timing

 «output»

1

1

 «input»

0..1

 «input»

0..1

 «input»

1

 «performs»

1

 «input»

1

 «input»

0..1

 «input»

Figure 3.56: Define System Timing

Task Definition Define System Timing
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Tasks
Brief Description Define SystemTiming for a concrete system taking the mapping of

software components to ECUs and their implementation into account
Description Define SystemTiming (TimingDescription and TimingConstraints) for a

concrete system taking the mapping of software components to ECUs
and their implementation into account. This means that the resulting
Communication Matrix (and its implication to the communication stack)
can also be referenced by the timing specification to refine remote
communication timing behavior.

Relation Type Related Element Mul. Note
Performed by System Engineer 1
Consumes Communication

Layers
1

Consumes Mapping of Soft-
ware Components
to ECUs

1

Consumes Topology 1
Consumes Mapping of Soft-

ware Components
to Implementations

0..1

Consumes Software Compo-
nent Timing

0..1

Consumes VFB Timing 0..1
Produces System Timing 1

283 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note

Table 3.116: Define System Timing

3.3.1.12 Extend Topology

System Engineer

ECU Integrator

ECU Resources
Description

Topology
Extend Topology

1

 «inoutput»

10..1

 «input»

0..1

 «performs»

0..1

 «performs»

Figure 3.57: Extend Topology

Task Definition Extend Topology
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Tasks
Brief Description Extend the existing System Topology
Description Extend the existing System Topology by describing how new ECUs will

be connected to the existing one through the current network
Relation Type Related Element Mul. Note
Performed by ECU Integrator 0..1
Performed by System Engineer 0..1
Consumes ECU Resources

Description
0..1

In/out Topology 1

Table 3.117: Extend Topology

284 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.1.13 Select Software Component Implementation

Select Software
Component
Implementation

Mapping of Software
Components to
Implementations

Atomic Software Component
Implementation

Software Component Internal
Behavior

VFB Atomic
Software
Component

System Engineer

1..*

 «input»

1..*

 «input»

1..*

 «input»

1

 «performs»

 «output»

1

Figure 3.58: Select Software Component Implementation

Task Definition Select Software Component Implementation
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Tasks
Brief Description Select implementation for an Atomic Software Component.
Description The system engineer selects an Atomic Software Component

Implementation for each defined VFB Atomic Software Component
Relation Type Related Element Mul. Note
Performed by System Engineer 1
Consumes Atomic Software

Component Imple-
mentation

1..*

Consumes Software Compo-
nent Internal Be-
havior

1..*

Consumes VFB Atomic Soft-
ware Component

1..*

Produces Mapping of Soft-
ware Components
to Implementations

1

Table 3.118: Select Software Component Implementation

285 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.1.14 Select Design Time Variant

System Description

Complete ECU
Description

Select Design Time Variant

System Engineer

 «performs»

1

 «input»

1

 «inoutput»

1

Figure 3.59: Select Design Time Variant

Task Definition Select Design Time Variant
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Tasks
Brief Description Select a system variant at system design time.
Description Select a system variant at system design time. This could be done in

different ways: Replace a model, which contains the variation points
contributing to this particular variant and all the possible
settings/elements, by a model, which does no more contain these
variation points and which contains only the particular
settings/elements selected for this variant. In order to document the
selection for further process steps, it is also possible to keep the
information about the selected variant and the variation points in the
model by introducing a PredefinedVariant along with appropriate fixed
settings of system constant values. In constrast to variant selection in
later process steps, no code generation or compilation is involved at
system design time, thus this task is just a transformation of one XML
model into another one. This task can be applied to a complete system
description, represented by a System Extract

Meth.bindingTime = SystemDesignTime
Relation Type Related Element Mul. Note
Performed by System Engineer 1
Consumes Complete ECU

Description
1

In/out System Descrip-
tion

1

Table 3.119: Select Design Time Variant

286 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.1.15 Define System View Mapping

The task Define System View Mapping (see Figure 3.60) creates the System
View Mapping between two System Descriptions. Different cases can be sepa-
rated:

• Mapping of different overall VFB systems - the Abstract System Descrip-
tion and the System Configuration Description.

• Mapping of different structured System Extracts, e.g. System Extract de-
livered by a primary organization and the different structure (ECU System De-
scription) of the secondary organization (see 2.5.4, 2.5.5).

System
Description

System View
Mapping

Define System View Mapping

System Engineer

 «output»

2

 «input»

 «performs»

Figure 3.60: Define System View Mapping

Task Definition Define System View Mapping
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Tasks
Brief Description Map elements from different views on the system.
Description This task creates the System View Mapping between two System

Descriptions (Mapping of different structured system descriptions, e.g.
system extract delivered by a primary organization and the different
structure of the secondary organisation).

Relation Type Related Element Mul. Note
Performed by System Engineer 1
Consumes System Descrip-

tion
2

Produces System View Map-
ping

1

Table 3.120: Define System View Mapping

287 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.1.16 Create Transformer Specification

Create Transformer Specification

System Engineer

Transformer Specification

Basic Software Designer

 «output»

1

0..1

 «performs»

1

 «performs»

Figure 3.61: Create Transformer Specification

Task Definition Create Transformer Specification
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Tasks
Brief Description
Description In this task the specification of a transformer module is created. Since

the specification is created as a part of the communication design, the
System Engineer has to perform this task. Optionally a Basic Software
Designer can support the creation of the specification.

Relation Type Related Element Mul. Note
Performed by System Engineer 1
Performed by Basic Software De-

signer
0..1

Produces Transformer Speci-
fication

1

Table 3.121: Create Transformer Specification

288 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.1.17 Define Rapid Prototyping Scenario

Rapid Prototyping
Engineer

Define Rapid Prototyping
ScenarioSoftware Component Internal

Behavior

System Description Root Element

Rapid Prototyping
Scenario

 «output»

1

1

 «input»

1..*

 «input»

1

 «performs»

Figure 3.62: Define Rapid Prototyping Scenario

Task Definition Define Rapid Prototyping Scenario
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Tasks
Brief Description
Description Defines the rapid prototyping scenario.
Relation Type Related Element Mul. Note
Performed by Rapid Prototyping

Engineer
1

Consumes System Descrip-
tion Root Element

1

Consumes Software Compo-
nent Internal Be-
havior

1..*

Produces Rapid Prototyping
Scenario

1

Table 3.122: Define Rapid Prototyping Scenario

289 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.2 Work Products

3.3.2.1 System Description

System
Description

Mapping of Software
Components to
Implementations

Software Component
Mapping Constraints

Mapping of Software
Components to ECUs

System Description Root
Element

System Signal Group System Signal

System Timing

Topology

Evaluated Variant Set

Postbuild Variant Set

Predefined Variant

System Constant Value
Set

Data MappingCommunication Matrix

Alias Name Set

Communication Layers

Rapid Prototyping
Scenario

0..*

«SPEM_Aggregation»

1

«SPEM_Aggregation»

0..*

«SPEM_Aggregation» 0..1

«SPEM_Aggregation»

0..*
«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..1

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..1

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..1

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..1
«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

Figure 3.63: Structure of generic deliverable System Description

290 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Deliverable System Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description Partial Extract of a System
Description Generic deliverable for defining a System. It is used in different roles

within the methodology.

In each role, this deliverable may contain variation points in its ARXML
artifacts which need to be bound in later steps, e.g. when defining a
subsystem from a complete system or later for the single ECUs. If such
variation points are present, the System Description may optionally
include PredefinedVariants in order to predefine variants for later
selection and an Evaluated Variant Set.

Please note that this generic deliverable does not correspond to the
system description with the system category
"SYSTEM_DESCRIPTION" (see [TPS_SYST_01003]). The system
description with the category "SYSTEM_DESCRIPTION" is
represented by the deliverable "System Configuration Description".

This deliverable is equivalent to a description of a system with any
category. In the System Template Specification "system description" is
the most frequently used term for this kind of artifact.

Kind Delivered
Extended by Abstract System Description, System Configuration Description,

System Constraint Description, System Extract
Relation Type Related Element Mul. Note
Aggregates System Descrip-

tion Root Element
1

Aggregates Communication
Layers

0..1

Aggregates Mapping of Soft-
ware Components
to ECUs

0..1

Aggregates Mapping of Soft-
ware Components
to Implementations

0..1

Aggregates Rapid Prototyping
Scenario

0..1

Aggregates Topology 0..1
Aggregates Alias Name Set 0..*
Aggregates Communication

Matrix
0..*

Aggregates Data Mapping 0..*
Aggregates Evaluated Variant

Set
0..*

Aggregates Postbuild Variant
Set

0..*

Aggregates Predefined Variant 0..*
Aggregates Software Compo-

nent Mapping Con-
straints

0..*

291 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Aggregates System Constant

Value Set
0..*

Aggregates System Signal 0..*
Aggregates System Signal

Group
0..*

Aggregates System Timing 0..*
In/out Select Design

Time Variant
1

Consumed by Define System
View Mapping

2

Consumed by Define System
Safety Information

1

Consumed by Define Alias
Names

0..1 Needed for definition of alias names with
system, system extract or ECU scope,
depending of the role of the System
Description.

Consumed by Define System
Variants

0..*

Table 3.123: System Description

Deliverable System Constraint Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description
Description Contains the artifacts that describe System Constraints. It serves as an

input for setting up the complete Abstract System Description and/or
System Configuration Description.

This deliverable corresponds to the system description with the system
category "SYSTEM_CONSTRAINTS" (see [TPS_SYST_01003]).

Kind Delivered
Extends System Description
Relation Type Related Element Mul. Note
Aggregates Overall VFB Sys-

tem
0..1

Aggregates System Flat Map 0..1
Consumed by Develop System 0..1
Consumed by Develop an Ab-

stract System
Description

0..1 In the context of the "Develop an
Abstract System Description" activity, the
constraints for the abstract or functional
view on the system can be provided by
the "System Constraint Description".

Table 3.124: System Constraint Description

292 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Deliverable System Configuration Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description
Description Contains the artifacts that describe a complete AUTOSAR System. It is

the basis for extracting descriptions for sub-systems or ECUs.

Note that System Extracts may be refined by details which are not
present in the System Configuration.

This deliverable corresponds to the system description with the system
category "SYSTEM_DESCRIPTION" (see [TPS_SYST_01003]).

Kind Delivered
Extends System Description
Relation Type Related Element Mul. Note
Aggregates Overall VFB Sys-

tem
1

Aggregates System Flat Map 0..1
Produced by Develop System 1..*
Consumed by Generate System

Extract
1

Consumed by Generate ECU Ex-
tract

0..1

Table 3.125: System Configuration Description

Deliverable System Extract
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description
Description Contains the artifacts that describe a subsystem specific view on the

complete System Description. Initially, the System Extract is not fully
decomposed and still contains compositions. It is the basis for
designing subsystems, e.g. by adding further ECUs within the given
constraints.

This deliverable corresponds to the system description with the system
category "SYSTEM_EXTRACT" (see [TPS_SYST_01003]).

Kind Delivered
Extended by ECU System Description
Extends System Description
Relation Type Related Element Mul. Note
Aggregates VFB System Ex-

tract
1

Aggregates System Flat Map 0..1
Produced by Develop System 0..*
Produced by Generate System

Extract
0..*

Consumed by Create ECU Sys-
tem Description

1

293 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumed by Develop Sub-Sys-

tem
1

Consumed by Generate ECU Ex-
tract

0..1

Table 3.126: System Extract

Deliverable ECU System Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description
Description This System Description is used to describe the closed view on one

ECU (note that an AUTOSAR ECU is defined being one
microprocessor running one AUTOSAR Stack). It can be derived from
a System Extract or it can be designed independently and mapped to a
System Extract. The ECU System Description is not fully decomposed
and still may contain compositions.

It is refined during the activity Design Sub-System.

This deliverable corresponds to the system description with the system
category "ECU_SYSTEM_DESCRIPTION" (see [TPS_SYST_01003]).

Kind
Extends System Extract
Relation Type Related Element Mul. Note
Produced by Design Sub-Sys-

tem
1 System Extract refined during design of

the corresponding sub-system with
elements needed to generate ECU
Extract(s).

Produced by Create ECU Sys-
tem Description

1..*

Consumed by Design Sub-Sys-
tem

1 System Extract as generated from the
outer system.

Consumed by Generate ECU Ex-
tract

0..1

Table 3.127: ECU System Description

3.3.2.2 Abstract System Description

294 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Deliverable Abstract System Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description Provides an abstract or functional view on the system
Description The Abstract System Description extends the general System

Description and provides an abstract or functional view on the system
to be developed.

This deliverable corresponds to the system description with the system
category "ABSTRACT_SYSTEM_DESCRIPTION" (see
[TPS_SYST_01003]).

Kind Delivered
Extends System Description
Relation Type Related Element Mul. Note
Aggregates Overall VFB Sys-

tem
1

Produced by Develop an Ab-
stract System
Description

1..*

Consumed by Develop System 0..* The abstract System Description is an
optional input for the activity "Develop
System". Please note, that in this step
the Abstract System Description is
refined to a System Description.

Consumed by Develop a VFB
System Descrip-
tion

0..* The abstract System Description is an
optional input for the activity "Develop a
VFB System Description". The
VFB-related part of the Abstract System
Description can be than refined to the
concrete "Overall VFB System".
Additionally, a mapping between those
two views can be established.

Table 3.128: Abstract System Description

295 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.2.3 Complete ECU Description

Complete ECU
Description

ECU Resources
Description

VFB Sensor Actuator
Component

1

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

Figure 3.64: Complete ECU Description

Deliverable Complete ECU Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description An ECU Description includes the resources it has available along with

its corresponding ECU-specific software components.
Description An ECU Description includes the resources it has available along with

its corresponding ECU-specific software components.
Kind Delivered
Relation Type Related Element Mul. Note
Aggregates ECU Resources

Description
1

Aggregates VFB Sensor Actu-
ator Component

0..*

Consumed by Select Design
Time Variant

1

Consumed by Define System
Variants

1..*

Table 3.129: Complete ECU Description

3.3.2.4 System Description Root Element

296 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact System Description Root Element
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description A System Description root element.
Description The System description defines the following major elements:

• Topology : description of the Topology of the System.

• Software : description of the root software composition
containing all software components in the System in a
hierarchical structure.

• Communication : description of all Communication elements
used in the System.

• Mapping and Mapping Constraints : description of all mapping
aspects (mapping of SW components to ECUs, mapping of data
elements to signals, and mapping constraints).

The root element can be the basis for a System extract as well as for
the whole System depending on which elements are aggregated.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by System Descrip-

tion
1

Produced by Assign Top Level
Composition

1

Produced by Set System Root 1 Set up the root element, and the links to
other artifacts

Consumed by Define Rapid Pro-
totyping Scenario

1

Consumed by Define System
Variants

1

Consumed by Flatten Software
Composition

1 find the top level composition

Consumed by Generate or Adjust
System Flat Map

1

Use meta model element System 1

Table 3.130: System Description Root Element

3.3.2.5 System Mapping Overview

There are various artifacts which correspond to the mappings collected under the meta-
model element SystemMapping. Figure 3.65 shows an overview. The details will be
explained in the following sub-chapters.

297 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Data Mapping

Software Component
Mapping Constraints

Mapping of Software
Components to ECUs

Mapping of Software
Components to
Implementations

VFB Software
Component
Mapping Constraints

Identifiable

SystemTemplate::SystemMapping

DataMapping::DataMapping

SignalPaths::
SignalPathConstraint

Identifiable

SWmapping::
SwcToImplMapping

SWmapping::
MappingConstraint

Identifiable

SWmapping::
SwcToEcuMapping

ARElement
AtpStructureElement

SystemTemplate::System

Signal Path Constraints

System View
Mapping

Identifiable

ViewMapSet::ViewMap

ARElement

ViewMapSet::
ViewMapSet

+dataMapping
*

«atpVariation»

+mapping 0..*

«atpVariation,atpSplitable»

«AtpUseMetaModelElement»

+swMapping *

«atpVariation»

+mappingConstraint

*

«atpVariation»

«AtpUseMetaModelElement»

«AtpUseMetaModelElement»

+swImplMapping *

«atpVariation»

«AtpUseMetaModelElement»

«AtpUseMetaModelElement»

«AtpUseMetaModelElement»

+signalPathConstraint *

«atpVariation»

«AtpUseMetaModelElement»

«AtpUseMetaModelElement»

«AtpUseMetaModelElement»

«AtpUseMetaModelElement»

«AtpUseMetaModelElement»

«AtpUseMetaModelElement»

+viewMap

0..*

«AtpUseMetaModelElement»

Figure 3.65: Overview on the various artifacts for System Mapping

3.3.2.6 Software Component Mapping Contraints

298 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Software Component Mapping Constraints
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description Defined constraints on how certain components must be mapped

(clustered or separated).
Description Description of one or more constraints on Software Components during

mapping to the ECUs. Three type of constraints have been defined:

The ComponentClustering constraint (also, clustering) is to be used for
expressing that a certain set of SW components (atomic or not) must
be mapped (allocated) onto the same ECU. This is some kind of
"execute together on same ECU" constraint.The semantic of the
clustering constraint is straightforward if all concerned SW components
are atomic. Otherwise, it shall be interpreted as follows: all of the
atomic SW components making up the composition must be mapped
together onto the same ECU together with all other SW components
(atomic or not) affected by the constraint. This also means that a
clustering constraint can also refer to only a single composition.

The ComponentSeparation constraint (also, separation) is to be used
for expressing that two SW components (atomic or not) shall not be
mapped (allocated) onto the same ECU. This is some kind of do not
execute together on same ECU constraint.The semantic of the
separation constraint is straightforward if one or both SW components
are atomic. Otherwise, it shall be interpreted as follows: any of the
atomic SW components making up the first composition, must not be
mapped onto the same ECU with any atomic SW component from the
second composition. As a consequence, and to preserve consistency,
an atomic SW component instance cannot be part of two compositions
concerned by the same separation constraint, i.e. the two compositions
have to be disjoint with regards to component instances.

SwcToEcuMapping constraint: The System Constraint Description has
to describe dedicated and exclusive mapping of SW-Cs to one or more
ECUs.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by System Descrip-

tion
0..*

Produced by Define Software
Component Map-
ping Constraints

1

Consumed by Define System
Variants

1

Consumed by Set System Root 1 Only the reference to the artifact is
needed

Consumed by Deploy Software
Component

0..1 Constraints defined on the System level

Use meta model element MappingConstraint 1
Use meta model element SystemMapping 1 The splitable element SystemMapping is

the root for this artifact.

Table 3.131: Software Component Mapping Constraints

299 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.2.7 Data Mapping

Artifact Data Mapping
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description
Description Mapping of data prototypes from the VFB description to System

signals.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by System Descrip-

tion
0..*

Produced by Derive Communi-
cation Needs

1..*

Consumed by Define Signal PD
Us

1

Consumed by Flatten Software
Composition

1..*

Consumed by Set System Root 1..* Only the reference to the artifact is
needed

Use meta model element DataMapping 1
Use meta model element SystemMapping 1 The splitable element SystemMapping is

the root for this artifact.

Table 3.132: Data Mapping

3.3.2.8 Mapping of Software Components to ECUs

Artifact Mapping of Software Components to ECUs
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description Describes the mapping of Software Components to the ECUs that are

defined in the VFB context.
Description The VFB shows all Software Components independently of their

deployment on individual ECUs. This work product defines for each
Software Component the corresponding ECU on which the Software
Component will be deployed and executed.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by System Descrip-

tion
0..1

Produced by Deploy Software
Component

1

Consumed by Define Signal PD
Us

1

Consumed by Define Signal Path
Constraints

1

Consumed by Define System
Timing

1

300 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumed by Define System

Variants
1

Consumed by Derive Communi-
cation Needs

1

Consumed by Extract the ECU
Communication

1

Consumed by Flatten Software
Composition

1

Consumed by Set System Root 1 Only the reference to the artifact is
needed

Use meta model element SwcToEcuMap-
ping

1

Use meta model element SystemMapping 1 The splitable element SystemMapping is
the root for this artifact.

Table 3.133: Mapping of Software Components to ECUs

3.3.2.9 Mapping of Software Components to Implementations

Artifact Mapping of Software Components to Implementations
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description
Description Specifies the selection of software implementations for the atomic

component prototypes. Because component prototypes can be located
on different ECUs, it is possible to have different Implementations of
two prototypes of the same AtomicComponentType in the system.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by System Descrip-

tion
0..1

Produced by Select Software
Component Imple-
mentation

1

Consumed by Define System
Variants

1

Consumed by Define System
Timing

0..1

Use meta model element SwcToImplMap-
ping

1

Use meta model element SystemMapping 1 The splitable element SystemMapping is
the root for this artifact..

Table 3.134: Mapping of Software Components to Implementations

3.3.2.10 Signal Path Constraints

301 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Signal Path Constraints
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description Constraints on the Path that should be used or not by Signals
Description One of the tasks of the System Generator is actually to calculate

automatically the communication (signals) between the RTEs and
define the needed frames for that communication. These definitions of
the frames include implicitly the definition of the paths the
AUTOSAR-Signals are transmitted through the system. Thereby the
System Generator often has the choice between alternative ways
through the system. There exist four different constraints for signals
regarding the signal path:

• The CommonSignalPath describes that two signals must take
the same way (Signal Path) in the topology.

• ’The ForbiddenSignalPath describes the way (Signal Path) that a
signal must not take in the topology, e.g. in case of safety critical
transmission.

• The PermissibleSignalPath describes the way (Signal Path) a
signal can take in the topology. If more than one
PermissibleSignalPath is defined for the same signal/operation
attributes, any of them can be chosen.

• The SeparateSignalPath describes that two or more signals
must not take the same way (Signal Path) in the topology e.g. in
case of redundant transmission. It is also possible that the same
signal is aggregated two times by the SeparateSignalPath
element to indicate that this signal should be transmitted
redundantly over two different paths.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Define Signal Path

Constraints
1

Consumed by Set System Root 1 Only the reference to the artifact is
needed

Use meta model element SignalPathCon-
straint

1

Use meta model element SystemMapping 1 The splitable element SystemMapping is
the root for this artifact.

Table 3.135: Signal Path Constraints

3.3.2.11 Topology

302 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Topology
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description The system topology, which may be reused in different systems.
Description Describes the topology of the system : A topology is formed by a

number of EcuInstances that are interconnected to each other in order
to form ensembles of ECUs and CommunicationClusters.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by System Descrip-

tion
0..1

Produced by Define System
Topology

1

In/out Extend Topology 1
Consumed by Define Communi-

cation Matrix
1

Consumed by Define Network
Management

1

Consumed by Define Signal PD
Us

1

Consumed by Define Signal Path
Constraints

1

Consumed by Define Software
Component Map-
ping Constraints

1

Consumed by Define System
Timing

1

Consumed by Define System
Variants

1

Consumed by Define TP 1
Consumed by Deploy Software

Component
1

Consumed by Extract ECU Topol-
ogy

1

Consumed by Set System Root 1 Only the reference to the artifact is
needed

Consumed by Define Secured P
DUs

0..1

Use meta model element Communication
Cluster

1

Use meta model element EcuInstance 1

Table 3.136: Topology

3.3.2.12 Ecu Resources Description

303 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact ECU Resources Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description Definition of the resources available on an ECU.
Description Definition of the resources available on an ECU. It mainly contains a

description of hardware elements (like physical memory sections or
peripherals, pins, hardware connections) which need to be referred by
a software component or a basic software description. The focus is to
describe an already engineered piece of hardware, its content and
structure. It is not in the focus of the ECU Resource Description to
support the design of electronics hardware itself. In the XML it is
represented as a set of HwDescriptionEntity -s

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Complete ECU

Description
1

Produced by Define ECU De-
scription

1..*

Consumed by Define System
Topology

1..*

Consumed by Define BSW Inter-
faces

0..1

Consumed by Define ECU
Abstraction Com-
ponent

0..1

Consumed by Extend Topology 0..1
Consumed by Generate ECU Ex-

ecutable
0..1 may be used to set up build environment

Meth.bindingTime = CompileTime
Consumed by Implement a BSW

Module
0..1 Meth.bindingTime = SystemDesignTime

Consumed by Measure Compo-
nent Resources

0..1

Consumed by Measure Re-
sources

0..1

Consumed by Define Complex
Driver Component

0..*

Consumed by Define VFB Sen-
sor or Actuator
Component

0..*

Use meta model element HwElement 1

Table 3.137: ECU Resources Description

3.3.2.13 System Signal

304 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact System Signal
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description
Description The system signals allow to represent this communication view in a

flattened structure, with (at least) one system signal defined for each
data element sent or received by a SW component instance. If data
has to be sent over gateways, there is still only one system signal
representing this data. The representation of the data on the individual
communication systems is done by the cluster signals.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by System Descrip-

tion
0..*

Produced by Derive Communi-
cation Needs

1..*

Consumed by Define Signal PD
Us

1

Consumed by Define System
Variants

1

Consumed by Define RTE Fan-
out

1..*

Consumed by Extract the ECU
Communication

0..*

Use meta model element SystemSignal 1

Table 3.138: System Signal

3.3.2.14 System Signal Group

305 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact System Signal Group
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description A signal group refers to a set of signals that must always be kept

together. A signal group is used to guarantee the atomic transfer of
AUTOSAR composite data types.

Description The System Signal Group is representing a set of Signals that must be
kept together. A signal group is to guarantee the transfer of AUTOSAR
composite data types for sender receiver communication.The RTE is
required to treat AUTOSAR signals transmitted using sender-receiver
communication atomically. To achieve this, the "signal group"
mechanisms shall be utilized.It is not possible to map a Variable Data
Prototype with a composite datatype directly to a System Signal . The
complex data type must be decomposed into single signals. As this set
of single signals has to be treated as atomic, it is placed in a "signal
group". It is also used in client server communication when the RTE
maps a response to a corresponding operation request. The
arguments, application errors, client identifier and sequence counter of
an operation are mapped to System Signal of two dedicated
SystemSignalGroup elements;one for the request and one for the
response. The RTE Client Server Protocol is used to provide a specific
semantics to each of these SystemSignalGroups and System Signal ,
also those which are introduced only to support the protocol.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by System Descrip-

tion
0..*

Produced by Derive Communi-
cation Needs

0..*

Consumed by Define System
Variants

1

Consumed by Extract the ECU
Communication

0..*

Use meta model element SystemSignal
Group

1

Table 3.139: System Signal Group

3.3.2.15 System Flat Map

306 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact System Flat Map
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description Mapping of instance names to nested model elements. Use cases:

Resolve name conflicts when flattening VFB software compositions;
provide unique names and unique model references for measurement
and calibration data.

Description The flat map is a list of elements, each element represents exactly one
node (e.g. a component instance or data element) of the instance tree
of a software system. The purpose of this element is to map the
various nested representations of this instance to a flat representation
and assign a unique name to it. The name will be unique in the scope
to which this Flat Map belongs (which could be a whole System or a
System Extract).

Use case: The System Flat Map is defined in the context of a System
or System Extract. It serves as a basis for generating an ECU Flat Map
(or a Flat Map of a "child" System Extract). In the ECU Flat Map, the
names will be used as display names for MCD tools or as names for
component prototypes in a flattened software composition. For further
information refer to the description of artifact ECU Flat Map.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by System Configura-

tion Description
0..1

Aggregated by System Constraint
Description

0..1

Aggregated by System Extract 0..1
In/out Generate or Adjust

System Flat Map
1

Consumed by Add Documenta-
tion to the Software
Component

0..1 Optional input in order to refer to unique
names defined in system context.

Consumed by Generate or Adjust
ECU Flat Map

0..1 Take over definitions of unique names
from system level to ECU level.

Use meta model element FlatMap 1

Table 3.140: System Flat Map

3.3.2.16 System Timing

307 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact System Timing
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description Concrete system’s TimingDescription and TimingConstraints
Description TimingDescription and TimingConstraints defined for a concrete

system taking the mapping of software components to ECUs and their
implementation into account. This means that the resulting
Communication Matrix (and its implication to the communication stack)
can also be referenced by the timing specification to refine remote
communication timing behavior.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by System Descrip-

tion
0..*

Produced by Define System
Timing

1

Consumed by Define System
Variants

1

Consumed by Extract ECU Sys-
tem Timing

1

Consumed by Deploy Software
Component

0..1

Use meta model element SystemTiming 1

Table 3.141: System Timing

3.3.2.17 System View Mapping

Artifact System View Mapping
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description The System View Mapping provide an mapping between different

views on the system.
Description This artifact contains a set of system view mappings and provides an

mapping between different views on the system, e.g. different overall
VFB systems (e.g. abstract system description with system
configuration description), or the overall VFB system with the VFB
System Extract description.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Overall VFB Sys-

tem
0..1 The Overall VFB System aggregates a

potential mapping to the abstract or
functional view of the system.

Aggregated by VFB System Ex-
tract

0..1 The VFB System Extract aggregates a
potential mapping to the abstract or
functional view of the system.

Produced by Define System
View Mapping

1

Use meta model element ViewMapSet 1

Table 3.142: System View Mapping

308 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.2.18 Transformer Design Bundle

Transformer Design Bundle

Transformer
Specification

BSW Module Vendor-
Specific Configuration
Parameter Definition

«SPEM_Aggregation»

0..1

«SPEM_Aggregation»

Figure 3.66: Structure of deliverable Transformer Design Bundle

Deliverable Transformer Design Bundle
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description
Description This deliverable contains a specification of the transformer technology

to be implemented by the BSWM developer. Furthermore it contains
the Vendor specific parameter definition for the corresponding
transformer.

Kind Delivered
Relation Type Related Element Mul. Note
Aggregates Transformer Speci-

fication
1

Aggregates BSW Module
Vendor- Specific
Configuration Pa-
rameter Definition

0..1

Produced by Design Trans-
former

1

Produced by Develop System 0..*
Consumed by Develop Basic

Software
0..*

Table 3.143: Transformer Design Bundle

3.3.2.19 Transformer Specification

309 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Transformer Specification
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description
Description This artifact represents the functional specification of the Transformer

to be implemented. The AUTOSAR methodology does not prescribe
the format of this artifact.

Kind Custom
Relation Type Related Element Mul. Note
Aggregated by Transformer De-

sign Bundle
1

Produced by Create Trans-
former Specifica-
tion

1

Table 3.144: Transformer Specification

3.3.2.20 Rapid Prototyping Scenario

Artifact Rapid Prototyping Scenario
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description Description of the (required) bypass points and the hooks in the

system.
Description Description of the (required) bypass points and the in the system and

the corresponding hooks. This artifact contains the RptContainers with
bypass points referencing things like parameterAccess
(dataWriteAccess, dataReadAccess, dataSendPoint,
dataReceivePointByValue, dataReceivePointByArgument,
writtenLocalVariable, readLocalVariable, etc.) The hooks describe the
link between the bypass points and the rapid prototyping algorithm.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by System Descrip-

tion
0..1

Produced by Define Rapid Pro-
totyping Scenario

1

Consumed by Extract ECU Rapid
Prototyping Sce-
nario

1

Use meta model element RapidPrototyping
Scenario

1

Table 3.145: Rapid Prototyping Scenario

3.3.3 Communication Matrix and Communication Layers

This section contains the tasks and work products to set up the communication matrix
and the communication layers as part of a system description.

310 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.3.1 Tasks

3.3.3.1.1 Define Communication Matrix

System Engineer

Define
Communication
Matrix

Communication MatrixTopology

 «output» 1

1

 «performs»

1 «input»

Figure 3.67: Define Communication Matrix

Task Definition Define Communication Matrix
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Communication Matrix::Tasks
Brief Description The communication matrix contents are created or extended by adding

communication definitions.
Description Define or extend Communication Matrix.

Define the triggering of the Physical Channels and the mapping to the
communication connector ports.

In case of extension the original communication matrix contents (which
were delivered as part of a system extract) are extended by adding
communication definitions. The main use case is the extension of the
communication matrix when refining a sub-system.

Relation Type Related Element Mul. Note
Performed by System Engineer 1
Consumes Topology 1
Produces Communication

Matrix
1

Table 3.146: Define Communication Matrix

311 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.3.1.2 Define Frames

System Engineer

Network Layer

Data Link LayerDefine Frames

Interaction Layer

 «output» 1

0..1

 «input»

1

 «performs»

0..1
 «input»

Figure 3.68: Define Frames

Task Definition Define Frames
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Communication Matrix::Tasks
Brief Description Define Data Link Layer
Description Define the Frame and assign it to a physical channel of a

communication cluster. Determine the number, the type, the length and
the timing of Frames that are sent or received by the ECUs. Describe
the mapping of Pdus (I-Pdus, N-Pdus or NmPdus) into the frame.
Define the triggering and the identification of a frame on the physical
channel, on which it is sent.

Relation Type Related Element Mul. Note
Performed by System Engineer 1
Consumes Interaction Layer 0..1
Consumes Network Layer 0..1
Produces Data Link Layer 1

Table 3.147: Define Frames

312 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.3.1.3 Define Signal PDUs

System Engineer

Mapping of Software
Components to ECUs

System Signal

Topology

Define Signal PDUs
Interaction Layer

Data Mapping

 «output»

1 «input»

1

 «input»

1

 «input»

1

 «performs»

1

 «input»

Figure 3.69: Define Signal PDUs

Task Definition Define Signal PDUs
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Communication Matrix::Tasks
Brief Description Define the I-PDU and their ISignals
Description Define the Signal Pdu that is handled by AUTOSAR COM and assign it

to a physical channel of a communication cluster. Determine the length
and the timing and describe the mapping of Signals into the Signal
Pdu..

Relation Type Related Element Mul. Note
Performed by System Engineer 1
Consumes Data Mapping 1
Consumes Mapping of Soft-

ware Components
to ECUs

1

Consumes System Signal 1
Consumes Topology 1
Produces Interaction Layer 1 ISignals

Table 3.148: Define Signal PDUs

313 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.3.1.4 Define Secured PDUs

System Engineer

Topology Interaction Layer

Define Secured
PDUs

1

 «performs»

+I-PDUs

1 «input»

0..1 «input»

 «output»

+Secured PDUs

1

Figure 3.70: Define Secured PDUs

Task Definition Define Secured PDUs
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Communication Matrix::Tasks
Brief Description Define Secured PDUs
Description If a secured communication of a PDU over network is required,

SecuredIPDUs are defined. A secured communication can be
established for IPDUs from the Interaction Layer. In addition to the
SecuredPDUs corresponding SecureCommunicationProperties are
specified that describe how the PDU is secured (e.g. authentication
algorithm).

Relation Type Related Element Mul. Note
Performed by System Engineer 1
Consumes Interaction Layer 1 I-PDUs: Authentic IPdu that will be

secured against manipulation and replay
attacks.

Consumes Topology 0..1
Produces Interaction Layer 1 Secured PDUs: Secured IPdu that

contains payload of an Authentic IPdu
supplemented by additional
Authentication Information.

Table 3.149: Define Secured PDUs

314 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.3.1.5 Define TP

System Engineer

Topology

Network Layer

Define TP

Interaction Layer

Diagnostics Interaction
Layer

1

 «performs»

0..1

 «input»

1 «input»

 «output»

0..1

 «output»
1

Figure 3.71: Define TP

Task Definition Define TP
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Communication Matrix::Tasks
Brief Description Define the Network management and the N-PDUs
Description Define the N-PDU - Network Layer Protocol Data Unit (assembled and

disassembled in a Transport Protocol module). If an I-PDU does not fit
into one frame, a segmentation is needed and will be done through
several N-PDUs by the Transport Protocol module.

If large COM PDUs are transported by TP, the Interaction Layer should
be the Input to the Define TP task. If Diagnostic is used then the
Diagnostics Interaction Layer should be an output of Task Define TP.

Relation Type Related Element Mul. Note
Performed by System Engineer 1
Consumes Topology 1
Consumes Interaction Layer 0..1
Produces Network Layer 1
Produces Diagnostics Inter-

action Layer
0..1

Table 3.150: Define TP

315 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.3.1.6 Define Network Management

System Engineer

Topology
Network Layer

Interaction Layer

Define Network
Management

 «performs»

1
 «input»

0..1

 «input»

 «output»

Figure 3.72: Define Network Management

Task Definition Define Network Management
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Communication Matrix::Tasks
Brief Description
Description Define the Network Management that is responsible for the cluster

wide coordinated switching of ECUs between operational modes
(Network Mode, Bus-sleep Mode). Describe the Nm Pdus and
configure the Nm Coordinator, the Nm Clusters and Nm Nodes.

Relation Type Related Element Mul. Note
Performed by System Engineer 1
Consumes Topology 1
Consumes Interaction Layer 0..1
Produces Network Layer 1

Table 3.151: Define Network Management

316 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.3.1.7 Define PDU Gateway

System Engineer

Define PDU Gateway

Interaction Layer

1 «inoutput» 1

1

 «performs»

Figure 3.73: Define PDU Gateway

Task Definition Define PDU Gateway
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Communication Matrix::Tasks
Brief Description Define the gateway for IPDUs
Description Define the gateways that are transferring the I-Pdus from one channel

to the other in pairs. Each pair consist of a source and a target
referencing to a IPduTriggering. In the case that a Pdu is being
gatewayed to more than one channel of the same cluster, all of this
gateway relationships shall be specified. Therefore, all affected
IpduTriggerings must be described as gateway mappings.

Relation Type Related Element Mul. Note
Performed by System Engineer 1
In/out Interaction Layer 1

Table 3.152: Define PDU Gateway

3.3.3.1.8 Define Signal Gateway

System Engineer

Interaction Layer

Define Signal Gateway

 «performs»

1 «inoutput» 1

Figure 3.74: Define Signal Gateway

317 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Define Signal Gateway
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Communication Matrix::Tasks
Brief Description
Description Define the Signal Gateway to describe the routing of signals and signal

groups from one Physical Channel to another Physical Channel.
Relation Type Related Element Mul. Note
Performed by System Engineer 1
In/out Interaction Layer 1

Table 3.153: Define Signal Gateway

3.3.3.1.9 Define RTE Fan-out

System Engineer

System Signal
Define RTE Fan-out

Interaction Layer

1

 «performs»

1..*

 «input»
 «output»

1

Figure 3.75: Define RTE Fan-out

Task Definition Define RTE Fan-out
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Communication Matrix::Tasks
Brief Description Define RTE fan-out which are the relation between ISignals and

System Signal
Description The RTE supports a "signal fan-out" where the same signal (System

Signal) is sent in different IPdus to multiple receivers. The Pdu Router
supports the "PDU fan-out" where the same IPdu is sent to multiple
destinations.

Relation Type Related Element Mul. Note
Performed by System Engineer 1
Consumes System Signal 1..*
Produces Interaction Layer 1 Link of ISignals to System Signals

Table 3.154: Define RTE Fan-out

318 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.3.1.10 Define Transformation Technology

Define Transformation
Technology

System Engineer

Interaction Layer

+DataTransformationSet

1

+ISignals

1

1

 «performs»

Figure 3.76: Define Transformation Technology

Task Definition Define Transformation Technology
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Communication Matrix::Tasks
Brief Description
Description Define the information required for the correct usage of the Transformer

(e.g. DataTransformation and TransformationTechnology). This task
produces a set of DataTransformationSets.

Relation Type Related Element Mul. Note
Interaction Layer 1
Interaction Layer 1

Performed by System Engineer 1

Table 3.155: Define Transformation Technology

3.3.3.1.11 Define E2E Transformer Technology

Define E2E Transformer
Technology

System Engineer

Interaction Layer

 «output»

+E2E Transformer Technology

1

+ISignals

1

 «input»

1

 «performs»

Figure 3.77: Define E2E Transformer Technology

319 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Define E2E Transformer Technology
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Communication Matrix::Tasks
Brief Description Define the E2E transformer technology.
Description This task defines the E2E transformer technology.
Relation Type Related Element Mul. Note
Performed by System Engineer 1
Consumes Interaction Layer 1 ISignals:
Produces Interaction Layer 1 E2E Transformer Technology:

Table 3.156: Define E2E Transformer Technology

3.3.3.2 Work Products

3.3.3.2.1 Communication Layers

Communication Layers

Data Link Layer Interaction Layer Network Layer

FibexElement

CoreCommunication::Frame

+ frameLength :Integer

Pdu

CoreCommunication::
IPdu

CoreCommunication::NPdu

FibexElement

CoreCommunication::ISignal

+ dataTypePolicy :DataTypePolicyEnum
+ length :Integer

ARElement

CoreCommunication::
SystemSignal

+ dynamicLength :Boolean

Diagnostics
Interaction Layer

CoreCommunication::DcmIPdu

+ diagPduType :DiagPduType

ARElement

Transformer::DataTransformationSet

«AtpUseMetaModelElement»

«AtpUseMetaModelElement»

0..1

«SPEM_Aggregation»

1

«SPEM_Aggregation»

0..1

«SPEM_Aggregation»

1

«SPEM_Aggregation»

«AtpUseMetaModelElement» «AtpUseMetaModelElement»
«AtpUseMetaModelElement»

«AtpUseMetaModelElement»

1..*

+systemSignal 1

Figure 3.78: Communication Layers

320 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Deliverable Communication Layers
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Communication Matrix::Work products
Brief Description Communication Matrix
Description It’s a container for the description elements of the communication

layers
Kind Delivered
Relation Type Related Element Mul. Note
Aggregated by System Descrip-

tion
0..1

Aggregates Data Link Layer 1
Aggregates Interaction Layer 1
Aggregates Diagnostics Inter-

action Layer
0..1

Aggregates Network Layer 0..1
Consumed by Define System

Timing
1

Consumed by Extract the ECU
Communication

1

Consumed by Set System Root 1 Only the reference to the artifact is
needed

Table 3.157: Communication Layers

3.3.3.2.2 Communication Matrix

Communication Matrix

Identifiable

CoreCommunication::ISignalTriggering

Identifiable

CoreCommunication::PduTriggering

Identifiable

CoreCommunication::
FrameTriggering

«AtpUseMetaModelElement»

«AtpUseMetaModelElement»

«atpVariation»

+iSignalTriggering

0..*

«AtpUseMetaModelElement»

«atpVariation»

+pduTriggering 0..*

Figure 3.79: Communication Matrix

321 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Communication Matrix
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Communication Matrix::Work products
Brief Description
Description Define the mapping of the triggering elements within the Physical

Channels to the communication connector ports for the individual
ECUs.

Because the triggering elements are aggregated as splitable elements
within the Physical Channels it is possible to define them in an artifact
separated from the Topology.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by System Descrip-

tion
0..*

Produced by Define Communi-
cation Matrix

1

Use meta model element FrameTriggering 1
Use meta model element ISignalTriggering 1
Use meta model element PduTriggering 1

Table 3.158: Communication Matrix

3.3.3.2.3 Data Link Layer

Artifact Data Link Layer
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Communication Matrix::Work products
Brief Description Describes the frames that are used in the Data Link Layer
Description Describes the layout of frames to be sent over communication

channels. This definition belongs to the Data Link Layer. The Data Link
Layer provides the functional and procedural means to transfer data
between network entities. This layer is used to transmit data passed by
an upper layer (PduR, Tp) between adjacent network nodes. In
AUTOSAR the Drivers (FrDrv, CanDrv, LinDrv) and Interfaces (FrIf,
CanIf, LinIf) belong to the Data Link Layer.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Communication

Layers
1

Produced by Define Frames 1
Use meta model element Frame 1

Table 3.159: Data Link Layer

3.3.3.2.4 Interaction Layer

322 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Interaction Layer
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Communication Matrix::Work products
Brief Description Describes the Signals of the Interaction Layer.
Description Describes the Signals of the Interaction Layer covering the COM

Signals. The Interaction Layer packs one or more signals into assigned
COM I-Pdus and passes them to the underlying layer for transfer
between nodes in a network.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note

Define Transforma-
tion Technology

1

Define Transforma-
tion Technology

1

Aggregated by Communication
Layers

1

Produced by Define E2E Trans-
former Technology

1 E2E Transformer Technology:

Produced by Define RTE Fan-
out

1 Link of ISignals to System Signals

Produced by Define Secured P
DUs

1 Secured PDUs: Secured IPdu that
contains payload of an Authentic IPdu
supplemented by additional
Authentication Information.

Produced by Define Signal PD
Us

1 ISignals

In/out Define PDU Gate-
way

1

In/out Define Signal
Gateway

1

Consumed by Define E2E Trans-
former Technology

1 ISignals:

Consumed by Define Secured P
DUs

1 I-PDUs: Authentic IPdu that will be
secured against manipulation and replay
attacks.

Consumed by Define Frames 0..1
Consumed by Define Network

Management
0..1

Consumed by Define TP 0..1
Use meta model element DataTransforma-

tionSet
1

Use meta model element IPdu 1
Use meta model element ISignal 1

Table 3.160: Interaction Layer

3.3.3.2.5 Diagnostics Interaction Layer

323 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Diagnostics Interaction Layer
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Communication Matrix::Work products
Brief Description
Description Collection of DCM IPDUs.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Communication

Layers
0..1

Produced by Define TP 0..1
Use meta model element DcmIPdu 1

Table 3.161: Diagnostics Interaction Layer

3.3.3.2.6 Network Layer

Artifact Network Layer
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Communication Matrix::Work products
Brief Description Describes the PDUs of the Network Layer.
Description Describes the PDUs of the Network Layer (N-PDUs and NM-PDUs).

The Network Layer’s main purposes are :

• the segmentation and reassembly of I-PDUs and DCM I-PDUs
that do not fit in one of the assigned N-PDUs

• the definition of NM-PDUs

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Communication

Layers
0..1

Produced by Define Network
Management

1

Produced by Define TP 1
Consumed by Define Frames 0..1
Use meta model element NPdu 1

Table 3.162: Network Layer

324 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.4 ECU Extract

3.3.4.1 Tasks

3.3.4.1.1 Extract ECU Topology

System Engineer ECU Integrator

Topology Extract ECU Topology

System Description
ECU Extract

ECU Extract of Topology

 «output»

1..*
1 «input»

0..1

 «performs»

0..1

 «performs»

0..1

«SPEM_Aggregation»
1

«SPEM_Aggregation»

Figure 3.80: Extract ECU Topology

Task Definition Extract ECU Topology
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC

U Extract::Tasks
Brief Description Extract the topology for a single ECU from the System Topology
Description From the System or System Extract Topology, extract the topology for a

single ECU.
Relation Type Related Element Mul. Note
Performed by ECU Integrator 0..1
Performed by System Engineer 0..1
Consumes Topology 1
Produces ECU Extract of

Topology
1..*

Table 3.163: Extract ECU Topology

325 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.4.1.2 Generate or Adjust ECU Flat Map

System
Engineer

ECU Integrator

ECU Flat Map

System Flat Map

Generate or Adjust
ECU Flat Map

Partial Flat Map

Overall VFB System

VFB System
Extract ECU Extract

0..1
 «input»

0..1

 «performs»0..1

 «input»

0..*

 «input»0..1

 «input»

0..1

 «performs»

1

«SPEM_Aggregation»

1 «inoutput» 1

Figure 3.81: Generate or Adjust ECU Flat Map

Task Definition Generate or Adjust ECU Flat Map
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC

U Extract::Tasks
Brief Description Generates and/or adjust the unique names of component prototypes

and MCD display data in the scope of a single ECU.
Description Generates and/or adjust the unique names of component prototypes

and MCD display data in the scope of a single ECU. This information is
kept in the so-called ECU Flat Map.

The names can be generated according to some rules (e.g. from
model elements of the VFB system), taken over from the System Flat
Map, from partial Flat Maps, or be manually defined. The task shall
always result in an ECU Flat Map with unique names.

Relation Type Related Element Mul. Note
Performed by ECU Integrator 0..1
Performed by System Engineer 0..1
Consumes Overall VFB Sys-

tem
0..1 Used to set the upstream references in

case one starts from a complete system.
Consumes System Flat Map 0..1 Take over definitions of unique names

from system level to ECU level.
Consumes VFB System Ex-

tract
0..1 Used to set the upstream references in

case one starts from a system extract.

326 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes Partial Flat Map 0..* If Partial Flat Maps were delivered along

with software components referring only
to ECU internal information, they may be
integrated into the ECU Flat Map directly,
i.e. without needing the System Flat
Map.

• The instance refs used in a partial
flat map must be taken over and
adjusted to the context ECU
Extract.

• Name conflicts have to be
resolved if several partial flat
maps are merged.

In/out ECU Flat Map 1

Table 3.164: Generate or Adjust ECU Flat Map

3.3.4.1.3 Flatten Software Composition

System Engineer
ECU Integrator

ECU Flat Map

Mapping of Software
Components to ECUs

ECU Extract of VFB
System

Flatten
Software
Composition

System Description Root
Element

VFB System ExtractOverall VFB System

ECU Extract
of Data
Mapping

Data Mapping

 «output»

1

1

 «input»

1
 «input»

1..*

 «input»

0..1

 «input»

1

 «performs»

0..1 «input»

1

 «input»

0..1

 «performs»

 «output»

1

Figure 3.82: Flatten Software Composition

327 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Flatten Software Composition
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC

U Extract::Tasks
Brief Description Extract and flatten the ECU Software Composition.
Description Generate the complete software composition in an ECU by copying

ComponentPrototypes from the VFB description into a flat
representation (still without service components).

Flat representation means, that all compositions are removed and a
"flat" set of ComponetPrototypes is generated. Due to the replication of
ComponentPrototypes new names have to be generated for those.
These can be predefined in the FlatMap which is an input to this task.

The ECU Extract of Data Mapping is also created by this task, as the
references to the Data Prototypes need to be created with respect to
the new component structure.

Relation Type Related Element Mul. Note
Performed by System Engineer 1
Performed by ECU Integrator 0..1
Consumes ECU Flat Map 1
Consumes Mapping of Soft-

ware Components
to ECUs

1

Consumes System Descrip-
tion Root Element

1 find the top level composition

Consumes Data Mapping 1..*
Consumes Overall VFB Sys-

tem
0..1 Read relevant elements starting from

VFB Top Level System Composition in
case transformation starts with the full
system.

Consumes VFB System Ex-
tract

0..1 Read relevant elements starting from
VFB Top Level System Composition in
case transformation starts from the
system extract.

Produces ECU Extract of
Data Mapping

1

Produces ECU Extract of VF
B System

1

Table 3.165: Flatten Software Composition

328 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.4.1.4 Extract the ECU Communication

System Engineer
ECU Integrator

Communication Layers

ECU Extract for
Communication

Extract the ECU
Communication

System Signal

ECU Extract

VFB System

Mapping of Software
Components to ECUs

System Signal Group

 «output»

1..*

1 «input»

0..*

 «input»

1

 «input»

0..*

 «input»

1

 «performs»

1

 «input»

1

 «performs»

1

«SPEM_Aggregation»

Figure 3.83: Extract the ECU Communication

Task Definition Extract the ECU Communication
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC

U Extract::Tasks
Brief Description The limited-scope communication matrices for an ECU to communicate

on all networks on which it is directly connected.
Description The limited-scope communication matrices for an ECU to communicate

on all networks on which it is directly connected.
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Performed by System Engineer 1
Consumes Communication

Layers
1

Consumes Mapping of Soft-
ware Components
to ECUs

1

Consumes VFB System 1 Need as input in order to set up the Data
Mapping.

Consumes System Signal 0..*
Consumes System Signal

Group
0..*

Produces ECU Extract for
Communication

1..*

Table 3.166: Extract the ECU Communication

329 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.4.1.5 Extract the ECU Timing Model

System Engineer ECU Integrator
System
Description

ECU Extract

Extract ECU System Timing
ECU Extract of System
Timing

System Timing

0..1

 «performs»

1 «input»

0..1

 «performs»

 «output»
1

0..1

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

Figure 3.84: Extract the ECU System Timing Model

Task Definition Extract ECU System Timing
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC

U Extract::Tasks
Brief Description
Description Extract the System Timing Model for a particular ECU from the model

for a complete system or system extract.
Relation Type Related Element Mul. Note
Performed by ECU Integrator 0..1
Performed by System Engineer 0..1
Consumes System Timing 1
Produces ECU Extract of

System Timing
1

Table 3.167: Extract ECU System Timing

330 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.4.1.6 Extract the ECU System Variant Model

System Engineer ECU Integrator

System
Description

ECU Extract

Extract ECU System
Variant Model ECU Extract of System

Variant Model

System Constant Value Set

Predefined Variant

Postbuild Variant Set

Evaluated Variant Set

0..*

«SPEM_Aggregation»

0..1

 «performs»
0..*

 «input»

0..1

 «performs»

0..*

 «input»

0..*

 «input»

0..*

 «input»

0..*

«SPEM_Aggregation»

 «output»

1

0..*

«SPEM_Aggregation»

0..*«SPEM_Aggregation»

0..1

«SPEM_Aggregation»

Figure 3.85: Extract the ECU System Variant Model

Task Definition Extract ECU System Variant Model
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC

U Extract::Tasks
Brief Description
Description Extract the global model elements (ARElements) that are used to

describe variants from system or system extract scope to a particular
ECU scope. This applies to:

• System Constant Value Set

• Postbuild Variant Set

• Predefined Variant

• Evaluated Variant Set

They are transformed as far as they are needed into the ECU Extract.
Relation Type Related Element Mul. Note
Performed by ECU Integrator 0..1
Performed by System Engineer 0..1
Consumes Evaluated Variant

Set
0..*

Consumes Postbuild Variant
Set

0..*

Consumes Predefined Variant 0..*

331 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes System Constant

Value Set
0..*

Produces ECU Extract of
System Variant
Model

1

Table 3.168: Extract ECU System Variant Model

3.3.4.1.7 Extract ECU Rapid Prototyping Scenario

Extract ECU Rapid Prototyping
Scenario

ECU IntegratorSystem EngineerSystem
Description

Rapid
Prototyping
Scenario

ECU Extract of Rapid
Prototyping Scenario

ECU Extract

0..1

«SPEM_Aggregation»

 «output» 1

0..1

«SPEM_Aggregation»

0..1

 «performs»

1 «input»

0..1

 «performs»

Figure 3.86: Extract ECU Rapid Prototyping Scenario

Task Definition Extract ECU Rapid Prototyping Scenario
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC

U Extract::Tasks
Brief Description Extracts the ECU Rapid Prototyping Scenario
Description From the System Rapid Prototyping Scenario extract the entities

relevant for the single ECU.
Relation Type Related Element Mul. Note
Performed by ECU Integrator 0..1
Performed by System Engineer 0..1
Consumes Rapid Prototyping

Scenario
1

Produces ECU Extract of
Rapid Prototyping
Scenario

1

Table 3.169: Extract ECU Rapid Prototyping Scenario

332 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.3.4.2 Work Products

3.3.4.2.1 ECU Extract

ECU Extract

ECU Extract for
Communication

ECU Extract of VFB
System

ECU Extract of Topology

ECU Flat Map

ECU Extract Root
Element

ECU Extract of System
Timing

ECU Extract of System
Variant Model

ECU Extract
of Data
Mapping

ECU Extract of Rapid
Prototyping Scenario

0..1

«SPEM_Aggregation»

0..1

«SPEM_Aggregation»

0..1

«SPEM_Aggregation»

1

«SPEM_Aggregation»

1«SPEM_Aggregation»

1

«SPEM_Aggregation»

1

«SPEM_Aggregation»

1«SPEM_Aggregation»

1

«SPEM_Aggregation»

Figure 3.87: ECU Extract

Deliverable ECU Extract
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC

U Extract::Work products
Brief Description A version of the System Description, with information pertaining to a

single ECU.
Description A deliverable used to describe the ECU specific view on the System

Description. The ECU Extract is fully decomposed and contains only
Atomic Software Components.It is the basis for setting up the ECU
Configuration.

A timing model is optionally included.

This deliverable may contain variation points in its XML artifacts which
need to be bound for the ECU. If such variation points are present, the
ECU extract may optionally include Predefined Variants in order to
predefine variants for later selection and an Evaluated Variant Set (this
is expressed by artifact ECU Extract of System Variant Model).

This deliverable corresponds to the system description with the system
category "ECU_EXTRACT" (see [TPS_SYST_01003]).

Kind Delivered
Relation Type Related Element Mul. Note

Configure Trans-
former

1

333 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Aggregates ECU Extract Root

Element
1

Aggregates ECU Extract for
Communication

1

Aggregates ECU Extract of
Data Mapping

1

Aggregates ECU Extract of
Topology

1

Aggregates ECU Extract of VF
B System

1

Aggregates ECU Flat Map 1
Aggregates ECU Extract of

Rapid Prototyping
Scenario

0..1

Aggregates ECU Extract of
System Timing

0..1

Aggregates ECU Extract of
System Variant
Model

0..1

Produced by Generate ECU Ex-
tract

1

Produced by Develop Sub-Sys-
tem

1..*

Produced by Develop System 1..*
Consumed by Configure Com 1
Consumed by Configure Debug 1
Consumed by Configure Diag-

nostics
1 Application software requirements for

diagnostics, especially
SwcServiceDependency and
ServiceNeeds.

Consumed by Configure ECUC 1
Consumed by Configure Mode

Management
1 Application software requirements for

NvM, especially SwcServiceDependency
and ServiceNeeds.

Consumed by Configure NvM 1 Application software requirements for
NvM, especially SwcServiceDependency
and ServiceNeeds.

Consumed by Configure RTE 1 Elements of the System Description and
VFB Description are referred by the RTE
configuration.

Optional Input: ECU Extract of System
Timing, e.g. execution order constraints.

Consumed by Configure Watch-
dog Manager

1 Application software requirements for
WdgM, especially
SwcServiceDependency and
ServiceNeeds.

Consumed by Connect Service
Component

1 Find the ports on the application side to
be connected to the Service Component.

334 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumed by Define Integration

Variant
1

Consumed by Generate Base
Ecu Configuration

1

Consumed by Generate RTE 1 Find the VFB description of all Atomic
Software Components on this ECU and
the relevant parts of the system
description.

The ECU Flat Map is also an input.
Meth.bindingTime = SystemDesignTime

Consumed by Generate RTE
Postbuild Dataset

1 Meth.bindingTime = LinkTime

Consumed by Generate RTE
Prebuild Dataset

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Generate Updated
ECU Configuration

1

Consumed by Integrate Software
for ECU

1

Consumed by Prepare ECU Con-
figuration

1

Consumed by Update ECU Con-
figuration

1

Consumed by Create MC Func-
tion Model

0..1 The ECU Flat Map can be used to define
references to variables and parameters
which are later visible in A2L.

Furthermore, the ECU Extract can be
used to find the relevant software
components.

Consumed by Create Service
Component

0..1 Input information about the Service Ports
and Service Dependencies of the
software components.

Consumed by Define ECU Tim-
ing

0..1 Needed to set up links to the elements of
the ECU extract.

Table 3.170: ECU Extract

3.3.4.2.2 ECU Extract Root Element

Artifact ECU Extract Root Element
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC

U Extract::Work products
Brief Description
Description Extract of the System root element for a specific ECU.
Kind AUTOSAR XML
Extends System
Relation Type Related Element Mul. Note

335 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Aggregated by ECU Extract 1
Consumed by Generate Rapid

Prototyping Wrap-
per

1

Use meta model element System 1

Table 3.171: ECU Extract Root Element

3.3.4.2.3 ECU Extract of VFB System

Deliverable ECU Extract of VFB System
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC

U Extract::Work products
Brief Description Contains the complete software composition in an ECU, copied from

the VFB description into a flat representation, it is still without service
components.

Description Contains the complete software composition in an ECU, copied from
the VFB description into a flat representation, that means it is still
without service components. Flat representation means, that all
compositions have been removed and a "flat" set of
ComponentPrototypes was generated (including their connectors)
which are put into the top level composition of the ECU.

Kind Delivered
Extends VFB System
Relation Type Related Element Mul. Note
Aggregated by ECU Extract 1
Produced by Flatten Software

Composition
1

Consumed by Generate Rapid
Prototyping Wrap-
per

1

Use meta model element RootSwComposi-
tionPrototype

1

Table 3.172: ECU Extract of VFB System

3.3.4.2.4 ECU Extract of Data Mapping

Artifact ECU Extract of Data Mapping
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC

U Extract::Work products
Brief Description
Description ECU extract of the mapping of data prototypes from the (flattened) VFB

description to System Signals.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by ECU Extract 1

336 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Produced by Flatten Software

Composition
1

Use meta model element DataMapping 1

Table 3.173: ECU Extract of Data Mapping

3.3.4.2.5 ECU Extract of Topology

Artifact ECU Extract of Topology
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC

U Extract::Work products
Brief Description A view of the topology centered around a single ECU.
Description A view of the topology centered around a single ECU.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by ECU Extract 1
Produced by Extract ECU Topol-

ogy
1..*

Use meta model element Communication
Cluster

1

Use meta model element EcuInstance 1

Table 3.174: ECU Extract of Topology

3.3.4.2.6 ECU Extract for Communication

Artifact ECU Extract for Communication
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC

U Extract::Work products
Brief Description A version of the System Communication Matrix work product, with

information pertaining to a single ECU.
Description This artifact represents an extract of the System Description elements

for communication with respect to a single ECU. It provides all
information needed to let the ECU communicate on all networks on
which it is directly connected.

It is extracted from these system artifacts:

• Communication Matrix

• Communication Layers

• System Signal(s)

• System Signal Group(s)

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by ECU Extract 1

337 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Produced by Extract the ECU

Communication
1..*

Use meta model element FibexElement 1

Table 3.175: ECU Extract for Communication

3.3.4.2.7 ECU Extract of System Timing

Artifact ECU Extract of System Timing
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC

U Extract::Work products
Brief Description
Description The extract of the System Timing for a particular ECU.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by ECU Extract 0..1
Produced by Extract ECU Sys-

tem Timing
1

Consumed by Define ECU Tim-
ing

0..1

Use meta model element SystemTiming 1

Table 3.176: ECU Extract of System Timing

3.3.4.2.8 ECU Extract of System Variant Model

Deliverable ECU Extract of System Variant Model
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC

U Extract::Work products
Brief Description
Description An extract of the System artifacts

• System Constant Value Set

• Postbuld Variant Set

• Predefined Variant

• Evaluated Variant Set

It contains only the elements relevant for a particular ECU.
Kind Delivered
Relation Type Related Element Mul. Note
Aggregated by ECU Extract 0..1
Aggregates Evaluated Variant

Set
0..*

Aggregates Postbuild Variant
Set

0..*

338 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Aggregates Predefined Variant 0..*
Aggregates System Constant

Value Set
0..*

Produced by Extract ECU Sys-
tem Variant Model

1

Consumed by Generate Rapid
Prototyping Wrap-
per

0..1

Table 3.177: ECU Extract of System Variant Model

3.3.4.2.9 ECU Flat Map

Artifact ECU Flat Map
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC

U Extract::Work products
Brief Description Mapping of instance names to nested model elements. Use cases:

Resolve name conflicts when flattening VFB software compositions;
provide unique names for measurement and calibration data.

Description The flat map is a list of elements, each element represents exactly one
node (e.g. a component instance or data element) of the instance tree
of a software system. The purpose of this element is to map the
various nested representations of this instance to a flat representation
and assign a unique name to it. The name will be unique in the scope
of a single ECU. (Note that additional alias names can be defined via
artifact Alias Name Set.)

Use cases:

• Specify the display name of a data object for measurement and
calibration. This serves as an input for the calibration support
which is produced by the RTE generator. The RTE generator
needs to find the attributes assigned to these data via the
attached references.

• Specify a unique name for an instance of a component
prototype in the ECU extract of the system description. This
information is needed to set up the ECU extract.

• Assign initial values to calibration parameters as input for the
RTE generator.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by ECU Extract 1
In/out Generate or Adjust

ECU Flat Map
1

Consumed by Flatten Software
Composition

1

Consumed by Generate Local M
C Data Support

1 Meth.bindingTime = SystemDesignTime

339 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumed by Generate Rapid

Prototyping Wrap-
per

1

Consumed by Provide RTE Cali-
bration Dataset

1

Consumed by Generate A2L 0..1 The ECU Flat Map is needed in case the
A2L generator has to process an MC
Function Model that relates to data in the
ECU Flat Map.

Use meta model element FlatInstanceDe-
scriptor

1

Table 3.178: ECU Flat Map

3.3.4.2.10 ECU Extract of Rapid Prototyping Scenario

Artifact ECU Extract of Rapid Prototyping Scenario
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::EC

U Extract::Work products
Brief Description Description of the (required) bypass points in the ECU.
Description Description of the (required) bypass points in the ECU.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by ECU Extract 0..1
Produced by Extract ECU Rapid

Prototyping Sce-
nario

1

In/out Refine Rapid Pro-
totyping Scenario

1

Consumed by Generate Rapid
Prototyping Wrap-
per

1

Table 3.179: ECU Extract of Rapid Prototyping Scenario

3.4 Software Component

This chapter contains the definition of work products and tasks used for the develop-
ment of a single software component against a given VFB description. For the definition
of the relevant meta-model elements refer to [5].

340 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.4.1 Tasks

3.4.1.1 Define Software Component Internal Behavior

Define Atomic Software
Component Internal
Behavior

Software
Component
Designer

Software
Component
Developer

Software Component Internal
Behavior

VFB Atomic
Software
Component

VFB AUTOSAR Standard Package

 «performs»

0..1

 «input»

1
 «input»

0..1

 «performs»

 «output» 1

Figure 3.88: Define Software Component Internal Behavior

Task Definition Define Atomic Software Component Internal Behavior
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Tasks
Brief Description Define the InternalBehavior in relation to a given

AtomicSoftwareComponentType
Description Define the InternalBehavior in relation to a given

AtomicSoftwareComponentType so that an RTE API can be generated.
This includes the definition of Runnables, RTE Events, Inter-Runnable
variables, etc.

Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Designer
1

Performed by Software Compo-
nent Developer

0..1

Consumes VFB Atomic Soft-
ware Component

1

Consumes VFB AUTOSAR
Standard Package

0..1 Use standardized elements (e.g. Data
Types) as blueprints (as far as
applicable) to create the corresponding
elements of the actual project.

Produces Software Compo-
nent Internal Be-
havior

1

Table 3.180: Define Atomic Software Component Internal Behavior

341 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.4.1.2 Define Partial Flat Map

Software
Component
Designer

Software
Component
Developer

Software Component Internal
Behavior

VFB System

Partial Flat Map

Define Partial Flat Map

 «output» 1

0..*

 «input»

0..1

 «performs»

1

 «input»

0..1

 «performs»

Figure 3.89: Define Partial Flat Map

Task Definition Define Partial Flat Map
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Tasks
Brief Description
Description Define a Partial Flat Map for an intended delivery of Atomic Software

Components.
Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Designer
0..1

Performed by Software Compo-
nent Developer

0..1

Consumes VFB System 1 Various parts of a given VFB system will
be used as input:

• Refer to parameters and variables
in port interfaces and their data
types.

• In order to define unique names,
also other the component
definitions not in the scope of the
partial flat map might be checked.

• Set a link to the context of the Flat
Map, e.g. a VFB Composition.

Consumes Software Compo-
nent Internal Be-
havior

0..* Refer to parameter and variables defined
in the Internal Behavior of one or more
Atomic Software Components.

Produces Partial Flat Map 1

Table 3.181: Define Partial Flat Map

342 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.4.1.3 Define Software Component Timing

Define Software Component
Timing

Software Component Developer

Software Component
Internal Behavior

VFB Timing

Software Component Timing

 «output» 1

1 «input» «performs»

0..1

 «input»

Figure 3.90: Define Software Component Timing

Task Definition Define Software Component Timing
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Tasks
Brief Description Define SWCTiming (TimingDescription and TimingConstraints) for the

Internal Behavior (RunnableEntities) of a Software Component
Description Define SWCTiming (TimingDescription and TimingConstraints) of a

software component. A software component can either be of type
AtomicSWComponentType or CompositionSWComponentType.

In the former case, the task allows to describe timing description and
constraints for the InternalBehavior of the AtomicSWComponentType.

In the latter case, timing descriptions and constraints can be defined for
all Atomic Software Components in the
CompositionSWComponentType.

Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Developer
1

Consumes Software Compo-
nent Internal Be-
havior

1

Consumes VFB Timing 0..1
Produces Software Compo-

nent Timing
1

Table 3.182: Define Software Component Timing

343 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.4.1.4 Define SymbolProps for Types

Software Component Developer

VFB Atomic
Software
Component

VFB Types

Define SymbolProps
for Types

 «performs»

 «output»

+symbolProps

0..*

 «output» +symbolProps

0..*

Figure 3.91: Define SymbolProps for Types

Task Definition Define SymbolProps for Types
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Tasks
Brief Description Define SymbolProps for types in order to resolve name conflicts in the

code.
Description Redefines the symbols used by the RTE contract for the names of

software component types and/or implementation data types (in the
code as well as in certain header file names).

This task is used to resolve name conflicts between different software
components without changing the VFB model.

Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Developer
1

Produces VFB Atomic Soft-
ware Component

0..* symbolProps: The symbolProps attribute
redefines the software component type
name used in the code of the RTE. This
resolves name clashes among different
software component types designed
accidentally with the same shortName.

Note that this output is a splitable
element, so it can be added later without
changing the VFB model.

344 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Produces VFB Types 0..* symbolProps: The symbolProps attribute

redefines the implementation data type
name used in the code of the RTE and/or
the component. This resolves name
clashes among different implementation
data types designed accidentally with the
same shortName.

Note that this output is a splitable
element, so it can be added later without
changing the VFB model.

Table 3.183: Define SymbolProps for Types

3.4.1.5 Add Documentation to the Software Component

Add Documentation to the
Software Component

Software
Component
Developer

Software Component
Designer

Software
Component
Documentation

System Flat Map

Alias Name Set

Partial Flat Map

0..*

 «input»

0..1

 «input»

0..1

 «performs»

0..1

 «input»

1

 «performs»

1

 «inoutput»

Figure 3.92: Add Documentation to the Software Component

Task Definition Add Documentation to the Software Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Tasks
Brief Description Add documentation to the Software Component
Description Add documentation to the Software Component describing the

functionality, how to test it, the calibration uses, the maintenance and
diagnosis issues.

Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Designer
1

Performed by Software Compo-
nent Developer

0..1

345 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes Partial Flat Map 0..1 Optional input in order to refer to unique

names defined in component or
composition context.

Consumes System Flat Map 0..1 Optional input in order to refer to unique
names defined in system context.

Consumes Alias Name Set 0..* Optional input in order to refer to unique
names defined in an Alias Name Set
(e.g. System Constants).

In/out Software Compo-
nent Documenta-
tion

1

Table 3.184: Add Documentation to the Software Component

3.4.1.6 Generate Atomic Software Component Contract Header Files

Generate Atomic Software
Component Contract Header Files

Software Component Developer

Component API Generator Tool

Application Header File

Software
Component Data
Types Header

Software Component
Internal Behavior

VFB Atomic
Software
Component

Postbuild Variant Set

Predefined Variant

System Constant Value Set

VFB Data Type
Mapping Set

VFB Interfaces

VFB Modes
VFB AUTOSAR Standard Package

VFB Types

Software
Component to
BSW Mapping

 «used tool»

 «output»

1

1

 «input»

0..*

 «input»

 «performs»

0..1

 «input»

0..*

 «input»

0..1

 «input»

0..1

 «input»

0..1

 «input»

0..1 «input»

0..1

 «input»

0..*

 «input»

1

 «input»

 «output»
1

Figure 3.93: Generate Atomic Software Component Contract Header Files

346 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Generate Atomic Software Component Contract Header Files
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Tasks
Brief Description Generate the component contract header files.
Description Generate the component header files as part of the so-called "contract

phase". These headers will allow to link the component lateron with the
RTE.

The header can still contain variants with later binding time, therefore
the information about these variants is contained in the input to this
task.

Meth.bindingTime = CodeGenerationTime
Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Developer
1

Consumes Software Compo-
nent Internal Be-
havior

1 Meth.bindingTime = SystemDesignTime

Consumes VFB Atomic Soft-
ware Component

1 Meth.bindingTime = SystemDesignTime

Consumes Postbuild Variant
Set

0..1

Consumes Predefined Variant 0..1
Consumes Software Compo-

nent to BSW Map-
ping

0..1 If a Software Component is mapped to a
BSW module description, this input is
optionally needed already in the contract
phase in order to ensure that the
generated prototypes for runnables are
consistent with the definitions in
Software Component and BSW.
Meth.bindingTime = SystemDesignTime

Consumes System Constant
Value Set

0..1 Meth.bindingTime = SystemDesignTime

Consumes VFB AUTOSAR
Standard Package

0..1

Consumes VFB Data Type
Mapping Set

0..1 Meth.bindingTime = SystemDesignTime

Consumes VFB Interfaces 0..* Meth.bindingTime = SystemDesignTime
Consumes VFB Modes 0..* Meth.bindingTime = SystemDesignTime
Consumes VFB Types 0..* Meth.bindingTime = SystemDesignTime
Produces Application Header

File
1 Meth.bindingTime =

CodeGenerationTime
Produces Software Compo-

nent Data Types
Header

1 Meth.bindingTime =
CodeGenerationTime

Used tool Component API
Generator Tool

1

Table 3.185: Generate Atomic Software Component Contract Header Files

347 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.4.1.7 Generate Component Header File in Vendor Mode

Generate Component Header File
in Vendor Mode

Component API Generator Tool

Optimized
Application Header
File

Software
Component Data
Types Header

Software Component Internal
Behavior

Atomic Software Component
Implementation

VFB Atomic Software Component

VFB Data Type Mapping Set

VFB Interfaces

VFB Modes

VFB AUTOSAR Standard Package

VFB Types

Software Component
Developer

ECU Integrator

 «used tool»

 «output»
1

 «output»

1

0..*
 «input»

0..1

 «performs»

0..1

 «input»

1

 «input»

0..*

 «input»

1

 «input»

0..*

 «input»

1

 «input»

1

 «performs»

0..1

 «input»

Figure 3.94: Generate Component Header File in Vendor Mode

Task Definition Generate Component Header File in Vendor Mode
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Tasks
Brief Description Generate an optimized component header file. This is achieved by

using the RTE’s vendor mode.
Description Generate an optimized component header file. This is achieved by

using the RTE’s vendor mode.

Meth.bindingTime = CodeGenerationTime
Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Developer
1

Performed by ECU Integrator 0..1
Consumes Atomic Software

Component Imple-
mentation

1 Meth.bindingTime = SystemDesignTime

Consumes Software Compo-
nent Internal Be-
havior

1 Meth.bindingTime = SystemDesignTime

348 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes VFB Atomic Soft-

ware Component
1 Meth.bindingTime = SystemDesignTime

Consumes VFB AUTOSAR
Standard Package

0..1

Consumes VFB Data Type
Mapping Set

0..1 Meth.bindingTime = SystemDesignTime

Consumes VFB Interfaces 0..* Meth.bindingTime = SystemDesignTime
Consumes VFB Modes 0..* Meth.bindingTime = SystemDesignTime
Consumes VFB Types 0..* Meth.bindingTime = SystemDesignTime
Produces Optimized Applica-

tion Header File
1 Meth.bindingTime =

CodeGenerationTime
Produces Software Compo-

nent Data Types
Header

1 Meth.bindingTime =
CodeGenerationTime

Used tool Component API
Generator Tool

1

Table 3.186: Generate Component Header File in Vendor Mode

349 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.4.1.8 Generate Component Prebuild Data Set

Generate Component Prebuild
Data Set

Software Component Developer

Predefined Variant

System Constant Value Set

Software
Component Internal
Behavior

VFB Atomic Software Component

VFB Data
Type Mapping
Set

VFB Interfaces

VFB Modes

VFB AUTOSAR Standard Package

VFB Types

Component RTE
Prebuild
Configuration
Header

Component API Generator Tool

0..*

 «input»

0..*

 «input»

1

 «input»

0..1

 «input»

0..1

 «input»

1..*

 «input»

 «performs»

0..*

 «input»

1

 «input»

0..*

 «input»

 «used tool»

 «output» 1

Figure 3.95: Generate Component Prebuild Data Set

Task Definition Generate Component Prebuild Data Set
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Tasks
Brief Description Prebuild Data Set Generation Phase for a software component: It binds

all variations which need to be set after generation of the RTE contract
header but before compilation of the component.

Description Prebuild Data Set Generation Phase for a software component: It binds
all variations which need to be set after generation of the RTE contract
header but before compilation of the component. The output is a
configuration header which is used when compiling the component and
the RTE as well.

Meth.bindingTime = PreCompileTime
Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Developer
1

Consumes Software Compo-
nent Internal Be-
havior

1 Meth.bindingTime =
CodeGenerationTime

350 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes VFB Atomic Soft-

ware Component
1 Meth.bindingTime =

CodeGenerationTime
Consumes System Constant

Value Set
1..* Meth.bindingTime =

CodeGenerationTime
Consumes VFB AUTOSAR

Standard Package
0..1

Consumes VFB Data Type
Mapping Set

0..1 Meth.bindingTime =
CodeGenerationTime

Consumes Predefined Variant 0..*
Consumes VFB Interfaces 0..* Meth.bindingTime =

CodeGenerationTime
Consumes VFB Modes 0..* Meth.bindingTime =

CodeGenerationTime
Consumes VFB Types 0..* Meth.bindingTime =

CodeGenerationTime
Produces Component RTE

Prebuild Configu-
ration Header

1 Meth.bindingTime = PreCompileTime

Used tool Component API
Generator Tool

1

Table 3.187: Generate Component Prebuild Data Set

3.4.1.9 Implement Atomic Software Component

Implement Atomic Software
Component

Software Component Developer

Atomic Software Component
Source Code

Atomic Software Component
Implementation

Standard Header Files Software Component Timing

Library Description

Library Header Files

Software Component Internal
Behavior

Application Header File

Software Component Data Types
Header

1

 «input»

0..1

 «input»

0..*

 «input»

0..*

 «input»
1

 «input»

1
 «input»

 «performs»

0..1

 «input»

 «output»

1

 «output»

1

Figure 3.96: Implement Atomic Software Component

351 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Implement Atomic Software Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Tasks
Brief Description Implement the code of the AtomicSoftwareComponent and decribe the

Implementation.
Description Implement the code of the AtomicSoftwareComponent against the

generated component contract header. Document the basic
information in the Implementation Description.

Meth.bindingTime = CodeGenerationTime
Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Developer
1

Consumes Application Header
File

1 Meth.bindingTime = SystemDesignTime

Consumes Software Compo-
nent Data Types
Header

1 Meth.bindingTime = SystemDesignTime

Consumes Software Compo-
nent Internal Be-
havior

1 Meth.bindingTime = SystemDesignTime

Consumes Software Compo-
nent Timing

0..1 Meth.bindingTime = SystemDesignTime

Consumes Standard Header
Files

0..1 Meth.bindingTime =
CodeGenerationTime

Consumes Library Description 0..* Meth.bindingTime =
CodeGenerationTime

Consumes Library Header
Files

0..* Meth.bindingTime =
CodeGenerationTime

Produces Atomic Software
Component Imple-
mentation

1 Meth.bindingTime =
CodeGenerationTime

Produces Atomic Soft-
ware Component
Source Code

1 Meth.bindingTime =
CodeGenerationTime

Table 3.188: Implement Atomic Software Component

352 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.4.1.10 Compile Atomic Software Component

Compile Atomic
Software
Component

Software
Component
Developer

Compiler

Atomic Software
Component Object
Code

Atomic Software
Component
Source Code

Application Header File

Component RTE Prebuild
Configuration Header

Software Component Data Types
Header

Library Header Files
Standard Header Files

Rapid Prototyping
Wrapper Header
File

Rapid Prototyping
Wrapper Source
Code

Rapid Prototyping
Engineer

 «used tool»

 «output» 1

0..1

 «performs»

0..1

 «input»

0..1

 «input»

0..*

 «input»

1

 «input»

1 «input»

1

 «input»

0..1

 «input»

1

 «input»

0..1

 «performs»

Figure 3.97: Compile Atomic Software Component

Task Definition Compile Atomic Software Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Tasks
Brief Description Compile the AtomicSoftwareComponent independently of an ECU.
Description Compile the Atomic Software Component independently of an ECU. In

the context of Rapid Prototyping Wrapper compilation the task is
performed by the Rapid Prototyping Engineer.

Meth.bindingTime = CompileTime
Relation Type Related Element Mul. Note
Performed by Rapid Prototyping

Engineer
0..1

Performed by Software Compo-
nent Developer

0..1

Consumes Application Header
File

1 Meth.bindingTime =
CodeGenerationTime

Consumes Atomic Soft-
ware Component
Source Code

1 Meth.bindingTime =
CodeGenerationTime

353 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes Software Compo-

nent Data Types
Header

1 Meth.bindingTime =
CodeGenerationTime

Consumes Standard Header
Files

1 Meth.bindingTime =
CodeGenerationTime

Consumes Component RTE
Prebuild Configu-
ration Header

0..1 Meth.bindingTime = PreCompileTime

Consumes Rapid Prototyping
Wrapper Header
File

0..1

Consumes Rapid Prototyping
Wrapper Source
Code

0..1

Consumes Library Header
Files

0..* Meth.bindingTime =
CodeGenerationTime

Produces Atomic Software
Component Object
Code

1 The object file should include both code
of the SWC and the E2E Protection
Wrapper code (if present as an input).
Meth.bindingTime = CompileTime

Used tool Compiler 1

Table 3.189: Compile Atomic Software Component

3.4.1.11 Map Software Component to BSW

Map Software Component to BSW Software
Component to
BSW Mapping

Basic Software Module Internal
Behavior

Software Component Internal
Behavior

Complex Driver Component

ECU Abstraction Software
Component

Software
Component
Designer

ECU Integrator

 «output» 1

0..1

 «input»

0..1

 «input»

0..1

 «performs»
1

 «input»

1

 «performs»

1

 «input»

Figure 3.98: Map Software Component to BSW

354 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Map Software Component to BSW
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Tasks
Brief Description Define the mapping between a Software Component and a BSW

Module.
Description Define the mapping between a Software Component and a BSW

Module. Required only for Complex Drivers and ECU Abstraction
Components. Note that for Service Components, this mapping will be
generated in the ECU integration phase, so the latter is not considered
as a task in the responsibility of the BSW developer.

Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Designer
1

Performed by ECU Integrator 0..1
Consumes Basic Software

Module Internal
Behavior

1

Consumes Software Compo-
nent Internal Be-
havior

1

Consumes Complex Driver
Component

0..1

Consumes ECU Abstraction
Software Compo-
nent

0..1

Produces Software Compo-
nent to BSW Map-
ping

1

Table 3.190: Map Software Component to BSW

355 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.4.1.12 Measure Component Resources

Measure Component Resources

Basic Software Module Developer

ECU Integrator

Software
Component
Developer

Atomic Software Component
Implementation

Atomic Software Component Object
Code

ECU Resources
Description

Software Component Timing

 «inoutput» 1

0..1

 «performs»

0..1

 «performs»

1
 «input»

1

 «performs»

 «input»

0..1

 «input»

0..1

Figure 3.99: Measure Component Resources

Task Definition Measure Component Resources
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Tasks
Brief Description Measure the resource consumption of an Atomic Software Component
Description Determine the resource consumption (memory, execution time) for a

specific implementation of an Atomic Software Component in a certain
context (ECU or test environment) and document the results in the
Implementation description targeted at this specific platform.

The ECU Resources Description is an optional input, because some
results should be documented in relation to the hardware elements.

Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Developer
1

Performed by Basic Software
Module Developer

0..1

Performed by ECU Integrator 0..1
Consumes Atomic Software

Component Object
Code

1

Consumes ECU Resources
Description

0..1

Consumes Software Compo-
nent Timing

0..1

In/out Atomic Software
Component Imple-
mentation

1

356 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note

Table 3.191: Measure Component Resources

3.4.1.13 Recompile Component in ECU Context

Re-compile
Component in ECU
context

Software Component Developer

Compiler

Atomic Software Component
Source Code

Library Header
Files

Optimized Software Component
Object Code

Optimized Application
Header File

Standard Header Files

 «output»

1

 «used tool»

0..*
 «input»

1

 «input»

 «performs»

1 «input»

1

 «input»

Figure 3.100: Recompile Component in ECU Context

Task Definition Re-compile Component in ECU context
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Tasks
Brief Description Re-compile Component with ECU-Configuration specific optimizations.
Description Re-compile Component with optimizations made by the RTE in the

context of an ECU (so-called RTE implementation phase).

Meth.bindingTime = CompileTime
Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Developer
1

Consumes Atomic Soft-
ware Component
Source Code

1 Meth.bindingTime =
CodeGenerationTime

Consumes Optimized Applica-
tion Header File

1 Meth.bindingTime =
CodeGenerationTime

Consumes Standard Header
Files

1 Meth.bindingTime =
CodeGenerationTime

Consumes Library Header
Files

0..* Meth.bindingTime =
CodeGenerationTime

357 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Produces Optimized Soft-

ware Component
Object Code

1 Meth.bindingTime = CompileTime

Used tool Compiler 1

Table 3.192: Re-compile Component in ECU context

3.4.1.14 Define Consistency Needs

Define Consistency
Needs

Software
Component
Designer

Software Component
Developer

Consistency Needs

Software
Component
Internal
Behavior

VFB Types

VFB Interfaces

VFB Atomic
Software
Component

 «inoutput»

1

0..*
 «input»

0..*

 «input»
0..*

 «input»

1..*

 «input»

 «performs»

 «performs»

Figure 3.101: Define Consistency Needs

Task Definition Define Consistency Needs
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Tasks
Brief Description
Description Defines the consistency relations between a group of RunnableEntitys

and a group of DataPrototypes. The consistency relations can be
defined first time at the design of an Atomic Software Component but
can be added as well if Compositions are created.

Relation Type Related Element Mul. Note
Performed by Software Compo-

nent Designer
1

Performed by Software Compo-
nent Developer

1

358 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes Software Compo-

nent Internal Be-
havior

1..* Runnables the consistency is defined for.

Consumes VFB Atomic Soft-
ware Component

0..* The description of an
AtomicSoftwareComponentType without
InternalBehavior.

Consumes VFB Interfaces 0..* Interfaces which are relevant for the
consistency definition.

Consumes VFB Types 0..* Data types which are relevant for the
consistency definition.

In/out Consistency
Needs

1 The description of the correlation
between a group of RunnableEntitys and
a group of DataPrototypes. In order to
allow incremental development and
refinement the Consistency Needs
artifact is also used as an input.

Table 3.193: Define Consistency Needs

3.4.1.15 Generate Rapid Prototyping Wrapper

Generate Rapid
Prototyping Wrapper

Software Component Internal
Behavior

Rapid Prototyping
Wrapper Header
File

Rapid Prototyping
Wrapper Source
Code

Rapid Prototyping
Engineer

ECU Extract Root
Element

ECU Extract of System
Variant Model

ECU Extract of VFB
System

ECU Extract of Rapid
Prototyping Scenario

ECU Flat Map

 «output»

1

 «output»

1

1

 «input»

1

 «input»

1

 «performs»

1

 «input»

1 «input»

1

 «input»
0..1

 «input»

Figure 3.102: Generate Rapid Prototyping Wrapper

359 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Generate Rapid Prototyping Wrapper
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Tasks
Brief Description Generate Rapid Prototyping Wrapper code.
Description Generate Rapid Prototyping Wrapper code. The header and source

code are generated based on the Rapid Prototyping Scenario
describing the bypass points and the RPT hooks.

Relation Type Related Element Mul. Note
Performed by Rapid Prototyping

Engineer
1

Consumes ECU Extract Root
Element

1

Consumes ECU Extract of
Rapid Prototyping
Scenario

1

Consumes ECU Extract of VF
B System

1

Consumes ECU Flat Map 1
Consumes Software Compo-

nent Internal Be-
havior

1

Consumes ECU Extract of
System Variant
Model

0..1

Produces Rapid Prototyping
Wrapper Header
File

1

Produces Rapid Prototyping
Wrapper Source
Code

1

Table 3.194: Generate Rapid Prototyping Wrapper

360 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.4.2 Work Products

3.4.2.1 Delivered Atomic Software Components

Delivered Atomic Software
Components

Software
Component
Internal
Behavior

Software
Component
to BSW
Mapping

Atomic
Software
Component
Source Code

Software
Component
Documentation

Atomic Software
Component
Implementation

Atomic Software
Component
Object Code

Application
Header File

Component RTE Prebuild
Configuration Header

Software Component Data
Types Header

System Constant
Value Set

Predefined Variant

Software Component Timing

Evaluated Variant Set

Postbuild Variant Set

Library Object
Code

VFB Atomic
Software
Component

VFB Interfaces

VFB Data Type
Mapping SetVFB Modes VFB Types

VFB Composition
Component

Partial Flat MapAlias Name SetConsistency Needs

1..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

1..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

1..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..1

«SPEM_Aggregation»

0..1

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..1

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..1

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»
0..*

«SPEM_Aggregation»

Figure 3.103: Delivered Atomic Software Components

361 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Deliverable Delivered Atomic Software Components
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Work Products
Brief Description Delivery of a set of AtomicSoftwareComponents including their

Implementation.
Description Complete description of a set of AtomicSoftwareComponents including

Implementation (still standalone, not yet mapped to a specific ECU).
The source or object code files are referred by the Implementation
Description.

The Atomic Software Components that make up the delivery may or
may not form a composition (in the sense of the VFB).

Note that the VFB descriptions of the components, compositions and
the used interfaces are part of the deliverable too in order to describe
the delivered components completely. However, depending on the use
case, these parts could have been predefined and were treated as
"readonly" during the component development. The same holds
(optionally) for the Internal Behavior(s).

In case of RTE generation a mapping set between Application and
Implementation Data Types shall be included if Application Data Types
are used. A Timing Model is included optionally.

The delivery can optionally also contain variants (an Evaluated Variant
Set and the related artifacts).

Kind Delivered
Relation Type Related Element Mul. Note
Aggregates Application Header

File
1..*

Aggregates Software Compo-
nent Data Types
Header

1..*

Aggregates VFB Atomic Soft-
ware Component

1..*

Aggregates Alias Name Set 0..1 Alias names valid in the context of the
delivered components.

Aggregates Evaluated Variant
Set

0..1

Aggregates Partial Flat Map 0..1
Aggregates Postbuild Variant

Set
0..1

Aggregates Atomic Software
Component Imple-
mentation

0..* If the delivery contains only VFB NvBlock
Software Components, no
implementation is contained as the code
is generated as part of the RTE.

Aggregates Atomic Software
Component Object
Code

0..*

Aggregates Atomic Soft-
ware Component
Source Code

0..*

362 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Aggregates Component RTE

Prebuild Configu-
ration Header

0..*

Aggregates Consistency
Needs

0..* Correlation between a group of
RunnableEntitys and a group of
DataPrototypes.

Aggregates Library Object
Code

0..*

Aggregates Predefined Variant 0..*
Aggregates Software Compo-

nent Documenta-
tion

0..*

Aggregates Software Compo-
nent Internal Be-
havior

0..* If the delivery contains only VFB NvBlock
Software Components, the Internal
Behavior is optional since it is needed
only in special cases.

Aggregates Software Compo-
nent Timing

0..*

Aggregates Software Compo-
nent to BSW Map-
ping

0..*

Aggregates System Constant
Value Set

0..*

Aggregates VFB Composition
Component

0..* In case the delivered atomic components
make up one or more VFB Compositions,
the composition description(s) shall be
included in the delivery.

Aggregates VFB Data Type
Mapping Set

0..*

Aggregates VFB Interfaces 0..*
Aggregates VFB Modes 0..*
Aggregates VFB Types 0..*
Produced by Develop Applica-

tion Software
1..*

Consumed by Configure RTE 1..* Required input:

• References to all component
implementation descriptions on
this ECU

• SwcInternalBehavior (for example
to map the runnables to tasks)
which was used in the contract
phase of the software components
on this ECU

363 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumed by Generate RTE 1..* Required input:

• References to all component
implementation descriptions on
this ECU

• SwcInternalBehavior which was
used in the contract phase of the
software components on this ECU

• (optional) Software Component to
BSW Mapping

Meth.bindingTime = SystemDesignTime
Consumed by Integrate Software

for ECU
1..*

Consumed by Define Alias
Names

0..1 Needed for definition of alias names in
the scope of delivered software
components.

Consumed by Create MC Func-
tion Model

0..* The component model may be used to
derive an MC Function Model.

Table 3.195: Delivered Atomic Software Components

3.4.2.2 Software Component Internal Behavior

Artifact Software Component Internal Behavior
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Work Products
Brief Description Description of the InternalBehavor: It describes the RTE relevant

aspects of a component, for example the runnable entities and the
events they respond to.

Description Description of the Internal Behavor. The Internal Behavior of an Atomic
Software Component describes the RTE relevant aspects of a
component, i.e. the runnable entities and the events they respond to. It
is used to generate the RTE but also as input for parts of the basic
software generation (AUTOSAR Services). The Internal Behavior (i.e.
the XML description) can only be used together with an Atomic
Software Component Type to which it is related.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Delivered Atomic

Software Compo-
nents

0..* If the delivery contains only VFB NvBlock
Software Components, the Internal
Behavior is optional since it is needed
only in special cases.

Produced by Define Atomic
Software Com-
ponent Internal
Behavior

1

364 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumed by Define Software

Component Safety
Information

1

Consumed by Define Software
Component Timing

1

Consumed by Generate Atomic
Software Com-
ponent Contract
Header Files

1 Meth.bindingTime = SystemDesignTime

Consumed by Generate Compo-
nent Header File in
Vendor Mode

1 Meth.bindingTime = SystemDesignTime

Consumed by Generate Compo-
nent Prebuild Data
Set

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Generate Rapid
Prototyping Wrap-
per

1

Consumed by Implement Atomic
Software Compo-
nent

1 Meth.bindingTime = SystemDesignTime

Consumed by Map Software
Component to BS
W

1

Consumed by Refine Rapid Pro-
totyping Scenario

1

Consumed by Define Consis-
tency Needs

1..* Runnables the consistency is defined for.

Consumed by Define Rapid Pro-
totyping Scenario

1..*

Consumed by Select Software
Component Imple-
mentation

1..*

Consumed by Generate Local M
C Data Support

0..1 Meth.bindingTime = SystemDesignTime

Consumed by Define Partial Flat
Map

0..* Refer to parameter and variables defined
in the Internal Behavior of one or more
Atomic Software Components.

Consumed by Define VFB Nv
Block Software
Component

0..* This input is required to collect the
requirements for the NvBlockNeeds from
the using application software.

Use meta model element SwcInternalBehav-
ior

1

Table 3.196: Software Component Internal Behavior

3.4.2.3 Atomic Software Component Implementation

365 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Atomic Software Component Implementation
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Work Products
Brief Description Description of an implementation for a single Atomic Software

Component.
Description Description of an implementation for a single Atomic Software

Component. It is possible to have several different implementations for
the same Software Component Internal Behavior, but only one
implementation can be mapped to a particular ECU. In general, this
XML artifact relates to one particular version of the code. It contains
the version information as defined by the vendor.

An implementation description may depend on several non-AUTOSAR
artifacts, especially its own code files (source or object) but also
required libraries, generator tools etc. These dependencies are not
described by direct references to files (because this might be
ambiguous), but by referring entries in the container catalog of the
General Deliverable which contains the implementation artifacts. Such
a reference is described via the metamodel element
AutosarEngineeringObject (see
AUTOSAR_TPS_GenericStructureTemplate.pdf for further
description). This allows among other things to refer to a particular
version of an artifact.

For more information on the content of the implmementation
description refer to
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Delivered Atomic

Software Compo-
nents

0..* If the delivery contains only VFB NvBlock
Software Components, no
implementation is contained as the code
is generated as part of the RTE.

Produced by Create Service
Component

1 In order to generate the RTE, one needs
to create a kind of dummy
Implementation element for the Service
Component, however this should not be
filled with descriptive elements, e.g.
resource consumption, as these are
already defined by the Basic Software
Module Implementation Description.
Meth.bindingTime = SystemDesignTime

Produced by Implement Atomic
Software Compo-
nent

1 Meth.bindingTime =
CodeGenerationTime

Produced by Measure Re-
sources

0..* Add extensions to the Implementation
Description.
Meth.bindingTime = PostBuild

In/out Measure Compo-
nent Resources

1

Consumed by Generate Compo-
nent Header File in
Vendor Mode

1 Meth.bindingTime = SystemDesignTime

366 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumed by Generate SWC

Memory Mapping
Header

1 MemorySections: MemorySections
defined for an Atomic Software
Component.
Meth.bindingTime = SystemDesignTime

Consumed by Select Software
Component Imple-
mentation

1..*

Consumed by Configure
Memmap Allo-
cation

0..* MemorySections:

Consumed by Generate Compiler
Configuration

0..* MemorySections: Find referred
SwAddrMethods or specific
memClassSymbols in the
MemorySections defined for Atomic
Software Components.
Meth.bindingTime = SystemDesignTime

Use meta model element Implementation 1

Table 3.197: Atomic Software Component Implementation

3.4.2.4 Software Component Documentation

Artifact Software Component Documentation
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Work Products
Brief Description Documentation dedicated to a Software Component.
Description Documentation of a dedicated Software Component. This

documentation is following the ASAM FSX standard. In this
documentation, you will find the SW Feature definition and description
which define the physical functionality of the Swc, the SW test
description which will contains suggestions and hints for the test of the
software functionality of the Swc, the SW calibration notes which will
give calibration instructions and hints for a calibration engineer, some
maintenance, diagnosis and CARB notes which will bring general
information, on the maintenance diagnosis and CARB issues on the
Swc. For other description not listed previously, some notes (chapters)
are left free for that.

This artifact may also contain standalone documentation (meta-class
Documentation) not aggregeted by a specific software component.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Delivered Atomic

Software Compo-
nents

0..*

In/out Add Documenta-
tion to the Software
Component

1

Use meta model element Documentation 1
Use meta model element SwComponent

Documentation
1

367 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note

Table 3.198: Software Component Documentation

3.4.2.5 Software Component Timing

Artifact Software Component Timing
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Work Products
Brief Description Software Component’s TimingDescription and TimingConstraints
Description TimingDescription and TimingConstraints of a software component. A

software component can either be of type AtomicSWComponentType
or CompositionSWComponentType.

In the former case, the SwcTiming allows to describe timing description
and constraints for the InternalBehavior of the
AtomicSWComponentType.

In the latter case, timing descriptions and constraints can be defined for
all Atomic Software Components in the
CompositionSWComponentType.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Delivered Atomic

Software Compo-
nents

0..*

Produced by Define Software
Component Timing

1

Consumed by Define System
Timing

0..1

Consumed by Implement Atomic
Software Compo-
nent

0..1 Meth.bindingTime = SystemDesignTime

Consumed by Measure Compo-
nent Resources

0..1

Use meta model element SwcTiming 1

Table 3.199: Software Component Timing

3.4.2.6 Software Component to BSW Mapping

368 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Software Component to BSW Mapping
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Work Products
Brief Description Desribes how to map a software component to basic software

elements (required in special cases only).
Description Maps an SwcInternalBehavior to an BswInternalBehavior. This is

required to coordinate the API generation and the scheduling for
AUTOSAR Service Components, ECU Abstraction Components and
Complex Driver Components by the RTE and the BSW scheduling
mechanisms.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Delivered Atomic

Software Compo-
nents

0..*

Produced by Map Software
Component to BS
W

1

Produced by Create Service
Component

0..1 Meth.bindingTime = SystemDesignTime

Consumed by Generate Atomic
Software Com-
ponent Contract
Header Files

0..1 If a Software Component is mapped to a
BSW module description, this input is
optionally needed already in the contract
phase in order to ensure that the
generated prototypes for runnables are
consistent with the definitions in
Software Component and BSW.
Meth.bindingTime = SystemDesignTime

Consumed by Generate RTE 0..* This input is explicitly stated because the
mapping may be created during ECU
integration and thus is not necessarily
part of the Delivered Atomic Software
Components.
Meth.bindingTime = SystemDesignTime

Use meta model element SwcBswMapping 1

Table 3.200: Software Component to BSW Mapping

3.4.2.7 Partial Flat Map

369 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Partial Flat Map
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Work Products
Brief Description
Description The Partial Flat Map pre-defines Flat Map entries in the context of

delivered software components. This allows the component developer
to specify names of data instances for measurement and calibration. It
has to be integrated into the System Flat Map.

For more information on the Flat Map concept refer to artifact System
Flat Map in the system domain.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Delivered Atomic

Software Compo-
nents

0..1

Produced by Define Partial Flat
Map

1

Consumed by Add Documenta-
tion to the Software
Component

0..1 Optional input in order to refer to unique
names defined in component or
composition context.

Consumed by Generate or Adjust
ECU Flat Map

0..* If Partial Flat Maps were delivered along
with software components referring only
to ECU internal information, they may be
integrated into the ECU Flat Map directly,
i.e. without needing the System Flat
Map.

• The instance refs used in a partial
flat map must be taken over and
adjusted to the context ECU
Extract.

• Name conflicts have to be
resolved if several partial flat
maps are merged.

Consumed by Generate or Adjust
System Flat Map

0..* If Partial Flat Maps were delivered along
with software components, they must be
integrated into the System Flat Map:

• The instance refs used in a partial
flat map must be taken over and
adjusted to the context of the
System or System Extract.

• Name conflicts have to be
resolved if several partial flat
maps are merged.

Use meta model element FlatMap 1

Table 3.201: Partial Flat Map

370 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.4.2.8 Application Header File

Artifact Application Header File
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Work Products
Brief Description Header generated for an AtomicSoftwareComponentType in the RTE

contract phase.
Description Header generated for an AtomicSoftwareComponentType in the RTE

contract phase. It represents the complete source-code interface
between the component code and RTE (calls into the RTE as well as
prototypes called by the RTE). All communication of the component
code with other components is routed through this header.

Kind Source Code
Relation Type Related Element Mul. Note
Aggregated by Delivered Atomic

Software Compo-
nents

1..*

Produced by Generate Atomic
Software Com-
ponent Contract
Header Files

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Compile Atomic
Software Compo-
nent

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Implement Atomic
Software Compo-
nent

1 Meth.bindingTime = SystemDesignTime

Consumed by Compile ECU
Source Code

1..* Meth.bindingTime =
CodeGenerationTime

Table 3.202: Application Header File

3.4.2.9 Software Component Data Types Header

Artifact Software Component Data Types Header
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Work Products
Brief Description Software Component Data Types Header provided by the RTE in the

contract phase.
Description Software Component Data Types Header provided by the RTE in the

contract phase. This includes data types, which were declared as part
of the SWC description but not used in any ports or data elements.

Kind Source Code
Relation Type Related Element Mul. Note
Aggregated by Delivered Atomic

Software Compo-
nents

1..*

371 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Produced by Generate Atomic

Software Com-
ponent Contract
Header Files

1 Meth.bindingTime =
CodeGenerationTime

Produced by Generate Compo-
nent Header File in
Vendor Mode

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Compile Atomic
Software Compo-
nent

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Implement Atomic
Software Compo-
nent

1 Meth.bindingTime = SystemDesignTime

Consumed by Compile ECU
Source Code

0..* Meth.bindingTime =
CodeGenerationTime

Table 3.203: Software Component Data Types Header

3.4.2.10 Component RTE Prebuild Configuration Header

Artifact Component RTE Prebuild Configuration Header
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Work Products
Brief Description Generated header file used to resolve the prebuild variants in the

prebuild RTE contract phase for an SWC.
Description Generated header file used to resolve the prebuild variants of a

software component in the prebuild RTE contract phase. Contains
macros which resolve the variants when compiled with the module and
the generated RTE.

Kind Bound Source Code
Relation Type Related Element Mul. Note
Aggregated by Delivered Atomic

Software Compo-
nents

0..*

Produced by Generate Compo-
nent Prebuild Data
Set

1 Meth.bindingTime = PreCompileTime

Consumed by Compile Atomic
Software Compo-
nent

0..1 Meth.bindingTime = PreCompileTime

Consumed by Compile ECU
Source Code

0..* Meth.bindingTime =
CodeGenerationTime

Table 3.204: Component RTE Prebuild Configuration Header

3.4.2.11 Atomic Software Component Source Code

372 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Atomic Software Component Source Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Work Products
Brief Description Source code implementing an Atomic Software Component Type
Description Source code implementing an Atomic Software Component Type. In

general it is independent from an ECU.
Kind Source Code
Relation Type Related Element Mul. Note
Aggregated by Delivered Atomic

Software Compo-
nents

0..*

Produced by Implement Atomic
Software Compo-
nent

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Compile Atomic
Software Compo-
nent

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Re-compile Com-
ponent in ECU
context

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Compile ECU
Source Code

0..* Meth.bindingTime =
CodeGenerationTime

Table 3.205: Atomic Software Component Source Code

3.4.2.12 Atomic Software Component Object Code

Artifact Atomic Software Component Object Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Work Products
Brief Description
Description Object Code of an Atomic Software Component.
Kind Object Code
Relation Type Related Element Mul. Note
Aggregated by Delivered Atomic

Software Compo-
nents

0..*

Produced by Compile Atomic
Software Compo-
nent

1 The object file should include both code
of the SWC and the E2E Protection
Wrapper code (if present as an input).
Meth.bindingTime = CompileTime

Consumed by Measure Compo-
nent Resources

1

Consumed by Generate ECU Ex-
ecutable

0..* Meth.bindingTime = CompileTime

Table 3.206: Atomic Software Component Object Code

3.4.2.13 Optimized Application Header File

373 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Optimized Application Header File
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Work Products
Brief Description Optimized application header file for a software component.
Description Application header file for a software component optimized by the RTE

in vendor mode.
Kind Source Code
Relation Type Related Element Mul. Note
Produced by Generate Compo-

nent Header File in
Vendor Mode

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Re-compile Com-
ponent in ECU
context

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Compile ECU
Source Code

0..* Meth.bindingTime =
CodeGenerationTime

Table 3.207: Optimized Application Header File

3.4.2.14 Optimized Software Component Object Code

Artifact Optimized Software Component Object Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Work Products
Brief Description The object code of a software component compiled with ECU specific

optimizations.
Description The object code of a software component compiled with ECU specific

optimizations.
Kind Object Code
Relation Type Related Element Mul. Note
Produced by Re-compile Com-

ponent in ECU
context

1 Meth.bindingTime = CompileTime

Table 3.208: Optimized Software Component Object Code

3.4.2.15 Consistency Needs

374 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Consistency Needs
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Work Products
Brief Description
Description A ConsistencyNeed describes the correlation between a group of

RunnableEntitys and a group of DataPrototypes with the intended
purpose to describe the need for

• Stable data during the execution of a group of RunnableEntitys.

• Coherent data consumption and propagation for a group of
DataPrototypes.

The information can be defined first time at the design of an Atomic
Software Component but can be added as well if Compositions are
created. In order to allow incremental development the groups of
Runnables and DataPrototypes can be distributed over several
artifacts.

Kind
Relation Type Related Element Mul. Note
Aggregated by VFB System 1 Correlation between a group of

RunnableEntitys and a group of
DataPrototypes.

Aggregated by Delivered Atomic
Software Compo-
nents

0..* Correlation between a group of
RunnableEntitys and a group of
DataPrototypes.

In/out Define Consis-
tency Needs

1 The description of the correlation
between a group of RunnableEntitys and
a group of DataPrototypes. In order to
allow incremental development and
refinement the Consistency Needs
artifact is also used as an input.

Use meta model element ConsistencyNeeds 1

Table 3.209: Consistency Needs

3.4.2.16 Rapid Prototyping Wrapper Header File

Artifact Rapid Prototyping Wrapper Header File
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Work Products
Brief Description
Description This header replaces the RTE API in order to allow to read and modify

inputs and outputs of the original SWC as well as to control execution
of the original (and prototype) runnable.

Kind Source Code
Relation Type Related Element Mul. Note
Produced by Generate Rapid

Prototyping Wrap-
per

1

375 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumed by Compile Atomic

Software Compo-
nent

0..1

Table 3.210: Rapid Prototyping Wrapper Header File

3.4.2.17 Rapid Prototyping Wrapper Source Code

Artifact Rapid Prototyping Wrapper Source Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Work Products
Brief Description
Description A piece of code that is placed between software components and the

RTE in order to provide rapid prototyping functionality. This code allows
to encapsulate the SWC to bypass into the rapid prototyping
component and may be implemented ad as a complex device driver
and/or integration code.

Kind Source Code
Relation Type Related Element Mul. Note
Produced by Generate Rapid

Prototyping Wrap-
per

1

Consumed by Compile Atomic
Software Compo-
nent

0..1

Table 3.211: Rapid Prototyping Wrapper Source Code

3.4.3 Tools

3.4.3.1 Component API Generator Tool

376 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Tool Component API Generator Tool
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::

Guidance
Brief Description Generates the software component contract header used to connect

the software component to the RTE layer.
Description This guidance represents the so-called contract phase of the RTE

generation process.

• SWC Contract phase - a limited set of information about a
component, principally the AUTOSAR Interface definitions and
the internal behavior, is used to create an application header file
for a component type. The application header file defines the
"contract" between component and RTE.

• BSW Contract phase - a similar use case for a BSW module in
order to generate the module interlink header files, which are
used to interface between the module and the BSW Scheduler.

• Additional phases - for SWS and BSW as well - are used to bind
pre-build variants in the contract headers of a single Software
Component or BSW module.

Kind
Relation Type Related Element Mul. Note
Used Generate Atomic

Software Com-
ponent Contract
Header Files

1

Used Generate BSW
Module Prebuild
Data Set

1

Used Generate BSWM
Contract Header
Files

1

Used Generate Compo-
nent Header File in
Vendor Mode

1

Used Generate Compo-
nent Prebuild Data
Set

1

Table 3.212: Component API Generator Tool

3.5 Basic Software

This chapter contains the definition of work products and tasks used for the develop-
ment of Basic Software modules. For the definition of the relevant meta-model ele-
ments refer to [8].

377 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.5.1 Tasks

3.5.1.1 Define BSW Types

Define BSW Types
BSW Standard Package

BSW Types

Basic Software Designer Basic Software Module Developer

 «performs»

0..1

 «performs»

1

 «inoutput»
 «input»0..1

Figure 3.104: Define BSW Types

Task Definition Define BSW Types
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description Define data types for usage within the Basic Software.
Description A data type is typically based on elements standardized by AUTOSAR,

therefore BSW Standard Package appears as a mandatory input.
Relation Type Related Element Mul. Note
Performed by Basic Software De-

signer
1

Performed by Basic Software
Module Developer

1

Consumes BSW Standard
Package

0..1

In/out BSW Types 1

Table 3.213: Define BSW Types

378 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.5.1.2 Define BSW Entries

Define BSW Entries

BSW Types

BSW Standard Package

Basic Software Entries

Basic Software Designer

Basic Software Module Developer

 «input»

1

 «output» 1

 «input»

0..1

 «performs»

0..1

 «performs»

1

Figure 3.105: Define BSW Entries

Task Definition Define BSW Entries
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description Define BswEntries (= function signatures) for usage within the Basic

Software.
Description
Relation Type Related Element Mul. Note
Performed by Basic Software De-

signer
1

Performed by Basic Software
Module Developer

1

Consumes BSW Types 1
Consumes BSW Standard

Package
0..1

Produces Basic Software En-
tries

1

Table 3.214: Define BSW Entries

379 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.5.1.3 Define BSW Interfaces

Define BSW Interfaces
BSW Standard Package

BSW Types

Basic Software Entries

ECU Resources Description

Basic Software Module Description

Basic Software Designer

Basic Software Module Developer

 «input»0..1

 «performs»

1

 «performs»

0..1

 «input»

1

 «input»

0..1

 «output» 1

 «input»

1

Figure 3.106: Define BSW Interfaces

Task Definition Define BSW Interfaces
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description Define the interfaces for a single BSW Module.
Description Define the interfaces for a particular BSW Module or cluster as part of

the BSW Module Description. This includes an abstraction of the
required and provided C-functions, as well as triggers and modes.
Note that this task also exists for modules standardized by AUTOSAR,
as it may be required to decide on optional or alternative elements and
to add allowed project specific extensions.

Relation Type Related Element Mul. Note
Performed by Basic Software De-

signer
1

Performed by Basic Software
Module Developer

1

Consumes BSW Types 1
Consumes Basic Software En-

tries
1

Consumes BSW Standard
Package

0..1

Consumes ECU Resources
Description

0..1

380 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Produces Basic Software

Module Descrip-
tion

1

Table 3.215: Define BSW Interfaces

3.5.1.4 Define Vendor Specific Module Definition

Define Vendor Specific
Module Definition

BSW Module Vendor-
Specific Configuration
Parameter Definition

AUTOSAR Standardized ECU
Configuration Parameter Definition

Basic Software Designer

Basic Software
Module Developer

 «output» 1

0..1

 «performs»

0..1

 «performs»

1 «input»

Figure 3.107: Define Vendor Specific Module Definition

Task Definition Define Vendor Specific Module Definition
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description
Description Define the Vendor Specific Module Definition (=Configuration

Parameters).
Relation Type Related Element Mul. Note
Performed by Basic Software De-

signer
0..1

Performed by Basic Software
Module Developer

0..1

Consumes AUTOSAR Stan-
dardized ECU
Configuration Pa-
rameter Definition

1

Produces BSW Module
Vendor- Specific
Configuration Pa-
rameter Definition

1

Table 3.216: Define Vendor Specific Module Definition

381 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.5.1.5 Define BSW Behavior

Define BSW Behavior

Basic Software
Module Description

BSW Standard Package

Basic Software Module
Internal Behavior

Basic Software Designer

 «performs»

1

 «output» 1

 «input»

1

 «input»

0..1

Figure 3.108: Define BSW Behavior

Task Definition Define BSW Behavior
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description Define the BSW Behavior related to a BSW Module Description.
Description Define the BSW Behavior related to a BSW Module Description. This

task is required during BSW module development in order to be able to
generate the API to the BSW Scheduler. In addition, local data
(variables or parameters) may be defined during this task in order to
use the AUTOSAR data type system for module local data and to
generate measurement & calibration support.

Relation Type Related Element Mul. Note
Performed by Basic Software De-

signer
1

Consumes Basic Software
Module Descrip-
tion

1

Consumes BSW Standard
Package

0..1

Produces Basic Software
Module Internal
Behavior

1

Table 3.217: Define BSW Behavior

382 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.5.1.6 Define BSW Module Timing

Basic Software Module Internal
Behavior

Basic Software
Module Timing

Basic Software Module Developer

Define BSW Module Timing

 «performs»

1

 «output» 1 «input»1

Figure 3.109: Define BSW Module Timing

Task Definition Define BSW Module Timing
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description Define BSWModuleTiming (TimingDescription and TimingConstraints)

for the Internal Behavior (BSWModuleEntities) of a BSW module
Description Define BSWModuleTiming (TimingDescription and TimingConstraints)

for the Internal Behavior (BSWModuleEntities) of a BSW module
Relation Type Related Element Mul. Note
Performed by Basic Software

Module Developer
1

Consumes Basic Software
Module Internal
Behavior

1

Produces Basic Software
Module Timing

1

Table 3.218: Define BSW Module Timing

383 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.5.1.7 Generate BSW Contract Header Files

Generate
BSWM Contract
Header Files

Basic Software
Module Internal
Behavior

Basic Software Module Description

Basic Software Module
Implementation Description

BSW Standard Package

Basic Software Module
Interl ink Header

Basic Software Interl ink
Types Header

Basic Software Module Developer

Component API
Generator Tool

 «output»

1

 «used tool»

 «input»1

 «input»

1

 «output» 1

 «input»

0..1

 «performs»

1

 «input»

1

Figure 3.110: Generate BSW Contract Header Files

Task Definition Generate BSWM Contract Header Files
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description Generate Basic Softwaree Module Contract Header Files
Description Generate the header files needed for a BSW module as part of the

so-called "contract phase". These headers will allow to link the module
lateron with the RTE (namely the BSW Scheduler).

Meth.bindingTime = CodeGenerationTime
Relation Type Related Element Mul. Note
Performed by Basic Software

Module Developer
1

Consumes Basic Software
Module Descrip-
tion

1 Meth.bindingTime = SystemDesignTime

Consumes Basic Software
Module Implemen-
tation Description

1 Meth.bindingTime = SystemDesignTime

Consumes Basic Software
Module Internal
Behavior

1 Meth.bindingTime = SystemDesignTime

Consumes BSW Standard
Package

0..1

384 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Produces Basic Software

Interlink Types
Header

1 Meth.bindingTime =
CodeGenerationTime

Produces Basic Software
Module Interlink
Header

1 Meth.bindingTime =
CodeGenerationTime

Used tool Component API
Generator Tool

1

Table 3.219: Generate BSWM Contract Header Files

3.5.1.8 Implement a BSW Module

Implement a BSW
Module

Basic Software Module Internal
Behavior

Basic Software Module Description

Basic Software Module Interl ink
Header

Basic Software
Interl ink Types
Header

BSW Standard Package

Basic Software
Module Timing

Library Header
Files

ECU Resources Description

Basic Software Module Core
Header

Basic Software Module
Core Source Code

Basic Software
Module
Implementation
Description

Standard Header
Files

Basic Software
Module Developer

Build
Action
Manifest

 «input»1

 «input»

1

 «input»

0..1

 «input»

0..1

 «input»

1

 «output»

1

 «input»

0..1

 «input»

1

 «performs»

1

 «input»

0..1

 «output»

0..1

 «input»

1

 «output»

1

 «output»
0..1

Figure 3.111: Implement a BSW Module

385 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Implement a BSW Module
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description Implement the source code of a BSW module.
Description Implement the source code of a BSW module. This task is not

described by AUTOSAR completely, but included for completeness of
the AUTOSAR use cases. Note that specification of an AUTOSAR
standard module imposes several requirements, e.g. the inclusion of
certain header files, onto this task.

In addition to the code, this task also produces the necessary XML
descriptions.

Optionally, a build action manifest may be created or modified in order
to be used for code generation or further processing of the code.

Meth.bindingTime = CodeGenerationTime
Relation Type Related Element Mul. Note
Performed by Basic Software

Module Developer
1

Consumes Basic Software
Interlink Types
Header

1 Meth.bindingTime = SystemDesignTime

Consumes Basic Software
Module Descrip-
tion

1 Meth.bindingTime = SystemDesignTime

Consumes Basic Software
Module Interlink
Header

1 Meth.bindingTime = SystemDesignTime

Consumes Basic Software
Module Internal
Behavior

1 Meth.bindingTime = SystemDesignTime

Consumes Standard Header
Files

1 Meth.bindingTime =
CodeGenerationTime

Consumes BSW Standard
Package

0..1

Consumes Basic Software
Module Timing

0..1 Meth.bindingTime = SystemDesignTime

Consumes ECU Resources
Description

0..1 Meth.bindingTime = SystemDesignTime

Consumes Library Header
Files

0..1 Meth.bindingTime =
CodeGenerationTime

Produces Basic Software
Module Core
Header

1 Meth.bindingTime =
CodeGenerationTime

Produces Basic Software
Module Implemen-
tation Description

1 Meth.bindingTime =
CodeGenerationTime

386 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Produces Basic Software

Module Core
Source Code

0..1 The creation of source code is optional,
since it might be generated completely in
a later step based on the Build Action
Manifest.
Meth.bindingTime =
CodeGenerationTime

Produces Build Action Mani-
fest

0..1

Table 3.220: Implement a BSW Module

3.5.1.9 Develop BSW Module Generator

BSW Module
Generator

Develop BSW Module Generator

BSW
Standard
Package

Basic Software
Module Developer

BSW Module Vendor-
Specific Configuration
Parameter Definition

 «output» 1

1

 «input»

0..*

 «input»

 «performs»

Figure 3.112: Develop BSW Module Generator

Task Definition Develop BSW Module Generator
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description
Description Develop a generator for one or more BSW modules.
Relation Type Related Element Mul. Note
Performed by Basic Software

Module Developer
1

Consumes BSW Standard
Package

1

Consumes BSW Module
Vendor- Specific
Configuration Pa-
rameter Definition

0..*

Produces BSW Module Gen-
erator

1

Table 3.221: Develop BSW Module Generator

387 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.5.1.10 Create Library

Create Library

Basic Software Module Internal
Behavior

Library Description

Library Header Files

Library Object Code

Basic Software Module Developer

ECU Integrator

Basic Software Module
Implementation Description

BSW Standard
Package

1

 «input»

 «performs»

0..1

 «performs»

1

 «output»

1

 «output»

1

 «output»

1

 «output»

1

 «output» 1

Figure 3.113: Create Library

Task Definition Create Library
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description Create a library to be used within an Autosar ECU.
Description Create a non-standardized library to be used within an Autosar ECU.

The task is the same for the basic software and application level, but it
is considered as a basic software task because no VFB resp. RTE
abstraction is used. The output includes source code, header file and
XML descriptions of the interfaces and of the implementation. A
"dummy" BSW Behavior must be created too in order to be able to link
the other two XML artifacts.

Meth.bindingTime = CodeGenerationTime
Relation Type Related Element Mul. Note
Performed by Basic Software

Module Developer
1

Performed by ECU Integrator 1
Consumes BSW Standard

Package
1 Used for standard types and

specifications.

388 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Produces Basic Software

Module Implemen-
tation Description

1 Meth.bindingTime =
CodeGenerationTime

Produces Basic Software
Module Internal
Behavior

1 Meth.bindingTime =
CodeGenerationTime

Produces Library Description 1 Meth.bindingTime =
CodeGenerationTime

Produces Library Header
Files

1 Meth.bindingTime =
CodeGenerationTime

Produces Library Object
Code

1 Meth.bindingTime =
CodeGenerationTime

Table 3.222: Create Library

3.5.1.11 Compile BSW Core Code

Compile BSW Core Code

Basic Software
Module Core Header

Basic Software
Module Interl ink
Header

Basic Software Interl ink
Types Header

BSW RTE Prebuild
Configuration Header

Basic Software
Module Object
Code

Library
Header Files Basic Software

Module Developer

Standard
Header Files

Compiler

Basic Software Module
Core Source Code

Build Action Manifest

 «output»
1 «input»

1

 «input»

1

 «used tool»

 «input»

1

 «input»

1

 «input»

0..1

1

 «input»

 «input»

0..1

 «input»

 «performs»

Figure 3.114: Compile BSW Core Code

389 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Compile BSW Core Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description Compile the source code of a BSW modue without ECU specific

configurations.
Description Compile the source code of a BSW modue without ECU specific

configurations. This task is mainly used to describe the use cases of
BSW development for object code delivery. The output will only
represent the "core code". During ECU integration, additional
generated code may be added per module in response to ECU
configuration.

Meth.bindingTime = CompileTime
Relation Type Related Element Mul. Note
Performed by Basic Software

Module Developer
1

Consumes BSW RTE Pre-
build Configuration
Header

1 Meth.bindingTime = PreCompileTime

Consumes BSW Types 1 Meth.bindingTime =
CodeGenerationTime

Consumes Basic Software
Interlink Types
Header

1 Meth.bindingTime =
CodeGenerationTime

Consumes Basic Software
Module Core
Header

1 Meth.bindingTime =
CodeGenerationTime

Consumes Basic Software
Module Core
Source Code

1 Meth.bindingTime =
CodeGenerationTime

Consumes Basic Software
Module Interlink
Header

1 Meth.bindingTime =
CodeGenerationTime

Consumes Standard Header
Files

1 Meth.bindingTime =
CodeGenerationTime

Consumes Build Action Mani-
fest

0..1 The compilation can optionally be
controlled by a Build Action Manifest.

Consumes Library Header
Files

0..1 Meth.bindingTime =
CodeGenerationTime

Produces Basic Software
Module Object
Code

1 Meth.bindingTime = CompileTime

Used tool Compiler 1

Table 3.223: Compile BSW Core Code

390 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.5.1.12 Generate BSW Module Prebuild Dataset

Generate BSW
Module Prebuild
Data Set

Basic Software Module
Description

Basic Software
Module Internal
Behavior

Basic Software Module
Implementation Description

BSW RTE
Prebuild
Configuration
Header

BSW Standard Package

Predefined Variant

Basic Software
Module
Developer

Component API Generator Tool

System Constant
Value Set

 «input»

1

 «input»

0..1

 «performs»

1

 «input»

 «input»

1

 «input»
1

 «used tool»

 «output» 1

 «input»

1

Figure 3.115: Generate BSW Module Prebuild Dataset

Task Definition Generate BSW Module Prebuild Data Set
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description Prebuild Data Set Generation Phase for a BSW module: It binds all

variations which need to be set after generation of the RTE contract
header but before compilation of the module.

Description Prebuild Data Set Generation Phase for a basic software module: It
binds all variations which need to be set after generation of the RTE
contract header but before compilation of the module. The variant
settings must be defined by the PredefinedVariant given as input.

The output is a BSW Module RTE Prebuild Configuration Header which
is included by the corresponding BSW Module Interlink Header,
thereby resolving the variation points when compiled. Note that link
time variants are not allowed here.

Meth.bindingTime = PreCompileTime
Relation Type Related Element Mul. Note
Performed by Basic Software

Module Developer
1

Consumes Basic Software
Module Descrip-
tion

1 Meth.bindingTime =
CodeGenerationTime

391 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes Basic Software

Module Implemen-
tation Description

1 Meth.bindingTime =
CodeGenerationTime

Consumes Basic Software
Module Internal
Behavior

1 Meth.bindingTime =
CodeGenerationTime

Consumes Predefined Variant 1
Consumes System Constant

Value Set
1

Consumes BSW Standard
Package

0..1

Produces BSW RTE Pre-
build Configuration
Header

1 Meth.bindingTime = PreCompileTime

Used tool Component API
Generator Tool

1

Table 3.224: Generate BSW Module Prebuild Data Set

3.5.2 Work Products

3.5.2.1 BSW Standard Package

BSW Standard Package

AUTOSAR
Standardized ECU
Configuration
Parameter Definition

AUTOSAR
Standard Types

AUTOSAR
Platform Types

AUTOSAR
Software Module
Specification

1

«SPEM_Aggregation»

1

«SPEM_Aggregation»

1

«SPEM_Aggregation»

*

«SPEM_Aggregation»

Figure 3.116: BSW Standard Package

392 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Deliverable BSW Standard Package
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description Package containing standard artifacts for BSW.
Description Contains the standard specifications and standard ARXML artifacts to

be used within the AUTOSAR basic software and for the generation of
the RTE.

This deliverable is released by AUTOSAR and is readonly within the
methodology.

Kind Delivered
Relation Type Related Element Mul. Note
Aggregates AUTOSAR Plat-

form Types
1

Aggregates AUTOSAR Stan-
dard Types

1

Aggregates AUTOSAR Stan-
dardized ECU
Configuration Pa-
rameter Definition

1

Aggregates AUTOSAR Soft-
ware Module
Specification

0..*

Consumed by Create Library 1 Used for standard types and
specifications.

Consumed by Design Basic Soft-
ware

1

Consumed by Develop BSW
Module

1

Consumed by Develop BSW
Module Generator

1

Consumed by Develop Basic
Software

1

Consumed by Define BSW Be-
havior

0..1

Consumed by Define BSW En-
tries

0..1

Consumed by Define BSW Inter-
faces

0..1

Consumed by Define BSW Types 0..1
Consumed by Generate BSW

Module Prebuild
Data Set

0..1

Consumed by Generate BSWM
Contract Header
Files

0..1

Consumed by Implement a BSW
Module

0..1

Table 3.225: BSW Standard Package

393 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.5.2.2 BSW Module Bundle

BSW Module Bundle

BSW Module ICS
Bundle

BSW Module
Integration
Bundle

Basic
Software
Module
Description

Basic
Software
Module
Timing

Basic
Software
Entries

BSW Types

BSW Module
Delivered
Bundle

BSW Design Bundle

BSW Module Vendor-
Specific Configuration
Parameter Definition

 «extends»

1..*

«SPEM_Aggregation»

 «extends»

0..*

«SPEM_Aggregation»

0..1

«SPEM_Aggregation»

 «extends»

 «extends»

0..1

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

Figure 3.117: BSW Module Bundle

Deliverable BSW Module Bundle
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description
Description Generic deliverable representing a bundle of one or more BSW

modules. It is used as a basis for extended deliverables.

The deliverable aggregates the ARXML definitions on the interface
level including vendor specific configuration parameter definition.

According to the role of the extended deliverable, these elements
maybe blueprints completely or partially. .

Kind Delivered
Extended by BSW Design Bundle, BSW Module Delivered Bundle, BSW Module IC

S Bundle
Relation Type Related Element Mul. Note
Aggregates Basic Software

Module Descrip-
tion

1..*

Aggregates Basic Software En-
tries

0..1

Aggregates Basic Software
Module Timing

0..1

394 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Aggregates BSW Module

Vendor- Specific
Configuration Pa-
rameter Definition

0..* The configuration parameter definitions
of the modules under test - needed for
static check against the standardized
configuration parameters.

Aggregates BSW Types 0..*

Table 3.226: BSW Module Bundle

3.5.2.3 BSW Design Bundle

Deliverable BSW Design Bundle
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description
Description A bundle of one or more BSW modules used in the design phase.

It contains only definitions on the interface level. These elements
maybe blueprints completely or partially.

Kind Delivered
Extends BSW Module Bundle
Relation Type Related Element Mul. Note
Produced by Design Basic Soft-

ware
1..*

Consumed by Develop BSW
Module

1..*

Table 3.227: BSW Design Bundle

395 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.5.2.4 BSW Module ICS Bundle

BSW Module
Bundle

Basic Software
Module
Implementation
Description

BSW Module
Preconfigured
Configuration

Basic Software
Module Object Code

BSW Module
ICS Bundle

 «extends»

0..*

«SPEM_Aggregation»

1

«SPEM_Aggregation»

1..*

«SPEM_Aggregation»

Figure 3.118: BSW Module ICS Bundle

Deliverable BSW Module ICS Bundle
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description
Description Deliverable containing the Implementation Conformance Statement

(ICS) for one or more BSW modules.
Kind Delivered
Extends BSW Module Bundle
Relation Type Related Element Mul. Note
Aggregates Basic Software

Module Implemen-
tation Description

1 The administrative elements (e.g.
version info) of the Implementation
model needed for the conformance test.

Aggregates Basic Software
Module Object
Code

1..*

Aggregates BSW Module Pre-
configured Config-
uration

0..* The predefined configurations
implemented by the modules under test.
The modules under test are completely
configured.

Table 3.228: BSW Module ICS Bundle

396 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.5.2.5 BSW Module Delivered Bundle

BSW Module
Delivered Bundle

BSW Module
Bundle

BSW Module
Integration Bundle

Basic Software
Module Internal
Behavior

Basic Software
Module Core
Header

Basic Software
Module
Implementation
Description

Basic Software
Module Interl ink
Header

BSW RTE Prebuild
Configuration
Header

Basic Software Interl ink
Types Header

Basic Software
Module Core
Source Code

Basic Software
Module Object Code

BSW Module
Generator

BSW Module
Preconfigured
Configuration

BSW Module
Recommended
Configuration

Build
Action
Manifest

«SPEM_Aggregation»

0..1

 «extends»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

 «extends»

0..* «SPEM_Aggregation»

1..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

1..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

1..*

«SPEM_Aggregation»

1..*
«SPEM_Aggregation»

Figure 3.119: BSW Module Delivered Bundle

Deliverable BSW Module Delivered Bundle
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description
Description Deliverable containing one or more BSW modules delivered for

integration (code and ARXML descriptions).

It can still contain blueprints for some of the elements which need to be
extended during ECU integration.

Kind Delivered
Extended by BSW Module Integration Bundle
Extends BSW Module Bundle
Relation Type Related Element Mul. Note

Configure Trans-
former

0..1

397 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Aggregates Basic Software

Module Core
Header

1..*

Aggregates Basic Software
Module Implemen-
tation Description

1..*

Aggregates Basic Software
Module Interlink
Header

1..*

Aggregates Basic Software
Module Internal
Behavior

1..*

Aggregates Build Action Mani-
fest

0..1 The build action manifest to be used for
the delivered basic software.

Aggregates BSW Module Gen-
erator

0..*

Aggregates BSW Module Pre-
configured Config-
uration

0..*

Aggregates BSW Module
Recommended
Configuration

0..*

Aggregates BSW RTE Pre-
build Configuration
Header

0..*

Aggregates Basic Software
Interlink Types
Header

0..*

Aggregates Basic Software
Module Core
Source Code

0..*

Aggregates Basic Software
Module Object
Code

0..*

Produced by Develop BSW
Module

1

Produced by Develop Basic
Software

1..*

Consumed by Define Integration
Variant

1..*

Consumed by Generate Base
Ecu Configuration

1..* Need vendor specific configuration
parameters and their recommended or
pre-configured values.

Consumed by Generate Updated
ECU Configuration

1..*

Consumed by Integrate Software
for ECU

1..*

Consumed by Prepare ECU Con-
figuration

1..*

Consumed by Configure Com 0..1

398 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumed by Configure Diag-

nostics
0..1 Predefined or recommended

configuration values, vendor specific
parameters, ServiceNeeds defined by
BSW.

Consumed by Configure MCAL 0..1
Consumed by Configure Mode

Management
0..1 Predefined or recommended

configuration values, vendor specific
parameters, ServiceNeeds defined by
BSW.

Consumed by Configure NvM 0..1 Predefined or recommended
configuration values, vendor specific
parameters, ServiceNeeds defined by
BSW.

Consumed by Configure Watch-
dog Manager

0..1 Predefined or recommended
configuration values, vendor specific
parameters, ServiceNeeds defined by
BSW.

Consumed by Create Service
Component

0..1 Required in order to define a mapping
between SWC and BSW.

In addition, the Build Action Manifest
may be used.

Consumed by Configure Debug 0..*
Consumed by Configure ECUC 0..*
Consumed by Configure IO Hard-

ware abstraction
0..*

Consumed by Configure OS 0..* OS Resources required by Basic
Software.

Optional Input: Basic Software Module
Timing, e.g. execution order constraints.

Consumed by Configure RTE 0..* Input from the BSW Module Description
is needed related to Scheduling,
Exclusive Areas, Triggers and Modes.

Optional Input: Basic Software Module
Timing, e.g. execution order constraints.

Table 3.229: BSW Module Delivered Bundle

3.5.2.6 AUTOSAR Software Module Specification

399 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact AUTOSAR Software Module Specification
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description The standard sofware module specification.
Description Specification of a standardized Basic Software Module (SWS).

It is published as a textual specification, but can be seen as a Basic
Software Design bundle in the methodology, consisting mainly of
blueprints. It may be published as ARXML in future releases of
AUTOSAR.

Kind Text
Relation Type Related Element Mul. Note
Aggregated by BSW Standard

Package
0..*

Table 3.230: AUTOSAR Software Module Specification

3.5.2.7 AUTOSAR Standard Types

Artifact AUTOSAR Standard Types
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description Contains all the standardized module definition parameters.
Description ARXML description of the AUTOSAR standard types (e.g.

Std_ReturnType).
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by BSW Standard

Package
1

Aggregated by VFB AUTOSAR
Standard Package

1

Use meta model element Implementation
DataType

1

Table 3.231: AUTOSAR Standard Types

3.5.2.8 AUTOSAR Platform Types

400 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact AUTOSAR Platform Types
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description Contains all the standardized module definition parameters.
Description ARXML description of the standardized part of the AUTOSAR platform

types. It consists of

• ImplementationDataTypes for the platform types - this part is still
platform independent.

• Blueprints of the underlying BaseTypes. These have to be
refined for each processor platform.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by BSW Standard

Package
1

Aggregated by VFB AUTOSAR
Standard Package

1

Use meta model element Implementation
DataType

1

Use meta model element SwBaseType 1

Table 3.232: AUTOSAR Platform Types

3.5.2.9 BSW Module Generator

Artifact BSW Module Generator
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description
Description A generator that comes as part of one or more delivered BSW

modules. It can be put into a framework to let it generate a module’s
configuration code.

Kind Custom
Relation Type Related Element Mul. Note
Aggregated by BSW Module De-

livered Bundle
0..*

Produced by Develop BSW
Module Generator

1

Consumed by Generate BS
W Configuration
Code

0..1 This is an input in case a generator
framework is used which has to run
some module specific generator code.

Table 3.233: BSW Module Generator

3.5.2.10 AUTOSAR Standardized ECU Configuration Parameter Definition

401 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact AUTOSAR Standardized ECU Configuration Parameter Definition
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description Contains all the standardized module definition parameters.
Description Contains all the standardized module definition parameters. These

parameters must be referred by the vendor specific configuration of a
specific module.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note

Configure Trans-
former

0..1

Aggregated by BSW Standard
Package

1

Consumed by Configure Debug 1
Consumed by Define Vendor

Specific Module
Definition

1

Consumed by Configure Com 0..1
Consumed by Configure Diag-

nostics
0..1

Consumed by Configure ECUC 0..1
Consumed by Configure IO Hard-

ware abstraction
0..1

Consumed by Configure MCAL 0..1
Consumed by Configure Mode

Management
0..1

Consumed by Configure NvM 0..1
Consumed by Configure OS 0..1
Use meta model element EcucModuleDef 1

Table 3.234: AUTOSAR Standardized ECU Configuration Parameter Definition

3.5.2.11 BSW Module Preconfigured Configuration

Artifact BSW Module Preconfigured Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description Configuration parameter values that are fixed to the object code and

cannot be changed without recompilation.
Description Configuration parameter values that are pre-configured in the delivered

code. They cannot be changed during the ECU integration of the code.

Pre-configuration is possible for object and source code as well.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by BSW Module De-

livered Bundle
0..*

402 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Aggregated by BSW Module ICS

Bundle
0..* The predefined configurations

implemented by the modules under test.
The modules under test are completely
configured.

Produced by Configure Com-
piler Memory
Classes

1..* MemMap config for compiler
memclasses: Set the parameter values
that define generic MemClassSymbols
(i.e. those not defined by modules or
SWCs.).

Set the parameter values that define the
implementation behind all kind of
MemClassSymbols (generic and local
ones).
Meth.bindingTime = SystemDesignTime

Produced by Define Memory
Addressing Modes

1..* MemMapAddressingModeSet:
Meth.bindingTime = SystemDesignTime

Consumed by Configure
Memmap Allo-
cation

1..* MemMapAddressingModeSet: Collection
of compiler specific configuration
elements for memory allocation and
addressing modes.

Consumed by Generate BSW
Memory Mapping
Header

1..* MemMapAddressingModeSet: Collection
of compiler specific configuration
elements for memory allocation.
Meth.bindingTime = SystemDesignTime

Consumed by Generate Compiler
Configuration

1..* CompilerMemClassConfiguration: The
parameters "MemMapCompilerMem-
ClassSymbolImpl" and
"MemMapGenericCompilerMem-
ClassSymbolImpl" define the
implementation behind a
MemClassSymbol.
Meth.bindingTime = SystemDesignTime

Consumed by Generate SWC
Memory Mapping
Header

1..* MemMapAddressingModeSet: Collection
of compiler specific configuration
elements for memory allocation.
Meth.bindingTime = SystemDesignTime

Use meta model element EcucModuleCon-
figurationValues

1

Table 3.235: BSW Module Preconfigured Configuration

3.5.2.12 BSW Module Recommended Configuration

403 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact BSW Module Recommended Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description Recommended "default" configuration parameter values.
Description Set of configuration parameter values, which are recommended by the

module vendor as a default, but are not mandatory for the integration.
There can be more than one such set in order to allow for variable
usage of the module. This artifact does not include values of so-called
published parameters. These must always be given as Basic Software
Module Preconfigured Configuration.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by BSW Module De-

livered Bundle
0..*

Use meta model element EcucModuleCon-
figurationValues

1

Table 3.236: BSW Module Recommended Configuration

3.5.2.13 BSW Module Vendor Specific Configuration Parameter Definition

Artifact BSW Module Vendor- Specific Configuration Parameter Definition
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description Vendor specific parameter definition for a module. This defines the

format of the parameters, not its values.
Description Vendor specific parameter definition for a module. This defines the

format of the parameters, not its values. In case of a standardized
module, it redefines the existing standardized configuration parameter
format (ModuleDef).

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Transformer De-

sign Bundle
0..1

Aggregated by BSW Module Bun-
dle

0..* The configuration parameter definitions
of the modules under test - needed for
static check against the standardized
configuration parameters.

Produced by Define Vendor
Specific Module
Definition

1

Consumed by Configure RTE 1 The definitions for the module RTE
Consumed by Develop BSW

Module Generator
0..*

Consumed by Generate BS
W Configuration
Code

0..*

Use meta model element EcucModuleDef 1

Table 3.237: BSW Module Vendor- Specific Configuration Parameter Definition

404 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.5.2.14 BSW Types

Artifact BSW Types
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description Set of data types for usage within the Basic Software.
Description Set of data types (arxml descriptions) for usage by Basic Software

Modules. They will be referred by the Basic Software Module
Description

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by BSW Module Bun-

dle
0..*

In/out Define BSW Types 1
Consumed by Compile BSW

Core Code
1 Meth.bindingTime =

CodeGenerationTime
Consumed by Define BSW En-

tries
1

Consumed by Define BSW Inter-
faces

1

Use meta model element AutosarDataType 1

Table 3.238: BSW Types

3.5.2.15 Basic Software Entries

Artifact Basic Software Entries
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description Set of signatures for calls between BSW modules.
Description Set of signatures for calls between BSW modules. Defining such a set

as a separate artifact allows for a better reuse by several BSW
modules.They are decribed in terms of the meta-model element
BswModuleEntry which represents a C-function signature and
associated properties.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by BSW Module Bun-

dle
0..1

Produced by Define BSW En-
tries

1

Consumed by Define BSW Inter-
faces

1

Use meta model element BswModuleEntry 1

Table 3.239: Basic Software Entries

3.5.2.16 Basic Software Module Description

405 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Basic Software Module Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description Description of a single BSW module or a module cluster in terms of its

interfaces, dependencies and module Id.
Description Description of all interfaces (ingoing and outgoing C-function calls,

triggers and modes) and other dependencies of a single BSW module
or a module cluster. In addition, this artifacts defines the so-called
module Id, which indicates the role of the module within the
architecture (only mandatory for standardized modules).

Note that the description of the function signatures (so-called
BswModuleEntry and their ImplementationDataType can be factored
out into separate artifacts BSW Entries and BSW Types in order to
improve their reuse.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by BSW Module Bun-

dle
1..*

Produced by Define BSW Inter-
faces

1

Consumed by Define BSW Be-
havior

1

Consumed by Generate BSW
Module Prebuild
Data Set

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Generate BSWM
Contract Header
Files

1 Meth.bindingTime = SystemDesignTime

Consumed by Implement a BSW
Module

1 Meth.bindingTime = SystemDesignTime

Consumed by Generate BSW
Memory Mapping
Header

0..1 shortName: The BSW module’s
shortName is used as the first part of the
generated file name, in case the default
rule applies.
Meth.bindingTime = SystemDesignTime

Use meta model element BswModuleDe-
scription

1

Table 3.240: Basic Software Module Description

3.5.2.17 Basic Software Module Internal Behavior

406 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Basic Software Module Internal Behavior
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description Specifies the InternalBehavior of a BSW module or a BSW cluster,

especially the scheduling aspect.
Description Specifies the behavior of a BSW module or a BSW cluster w.r.t. the

code entities visible by the BSW Scheduler. It is possible to have
several different BswInternalBehaviors referring to the same
BswModuleDescription, but only one of them can be integrated on one
CPU.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by BSW Module De-

livered Bundle
1..*

Produced by Create Library 1 Meth.bindingTime =
CodeGenerationTime

Produced by Define BSW Be-
havior

1

Consumed by Define BSW Mod-
ule Timing

1

Consumed by Generate BSW
Module Prebuild
Data Set

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Generate BSWM
Contract Header
Files

1 Meth.bindingTime = SystemDesignTime

Consumed by Implement a BSW
Module

1 Meth.bindingTime = SystemDesignTime

Consumed by Map Software
Component to BS
W

1

Consumed by Generate Local M
C Data Support

0..1 Meth.bindingTime = SystemDesignTime

Use meta model element BswInternalBehav-
ior

1

Table 3.241: Basic Software Module Internal Behavior

3.5.2.18 Basic Software Module Implementation Description

Artifact Basic Software Module Implementation Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description Contains the implementation specific information of a module.
Description Contains the implementation specific information of a module in

addition to the generic specification given in Basic Software Module
Description and Basic Software Module Internal Behavior.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note

407 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Aggregated by BSW Module ICS

Bundle
1 The administrative elements (e.g.

version info) of the Implementation
model needed for the conformance test.

Aggregated by BSW Module De-
livered Bundle

1..*

Produced by Create Library 1 Meth.bindingTime =
CodeGenerationTime

Produced by Implement a BSW
Module

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Generate BSW
Memory Mapping
Header

1 infixes: Optional infixes (denoting
instance and vendor ID) to be used
within the created header file name.
Meth.bindingTime = SystemDesignTime

Consumed by Generate BSW
Memory Mapping
Header

1 DependencyOnArtifact: Can be used to
override the default name of the memory
mapping header file.
Meth.bindingTime = SystemDesignTime

Consumed by Generate BSW
Memory Mapping
Header

1 MemorySections: MemorySections
defined for a BSW module. This input
includes optional prefixes for memory
sections overriding the default rule.
Meth.bindingTime = SystemDesignTime

Consumed by Generate BSW
Module Prebuild
Data Set

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Generate BSWM
Contract Header
Files

1 Meth.bindingTime = SystemDesignTime

Consumed by Generate Compiler
Configuration

1..* MemorySections: Find referred
SwAddrMethods or specific
memClassSymbols in the
MemorySections defined for BSW
modules.
Meth.bindingTime = SystemDesignTime

Consumed by Configure
Memmap Allo-
cation

0..* MemorySections:

Use meta model element BswImplementa-
tion

1

Table 3.242: Basic Software Module Implementation Description

3.5.2.19 Build Action Manifest

408 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Build Action Manifest
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description Describes the actions used to build certain artifacts from other artifacts.
Description Describes the actions used to build certain artifacts from other artifacts

(generate, compile, link...).

Note: A build action manifest can include the actions for processing of
basic software as well as of application software artifacts. The manifest
itself is however considered as a product of basic software
development.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by BSW Module De-

livered Bundle
0..1 The build action manifest to be used for

the delivered basic software.
Produced by Implement a BSW

Module
0..1

Consumed by Compile BSW
Core Code

0..1 The compilation can optionally be
controlled by a Build Action Manifest.

Consumed by Compile ECU
Source Code

0..1 The task may be controlled by a Build
Action Manifest.

Consumed by Connect Service
Component

0..1 The task may be controlled by a Build
Action Manifest.

Consumed by Generate A2L 0..1 The task may be controlled by a Build
Action Manifest.

Consumed by Generate BS
W Configuration
Code

0..1 The task may be controlled by a Build
Action Manifest.

Consumed by Generate ECU Ex-
ecutable

0..1 The task may be controlled by a Build
Action Manifest.

Consumed by Generate OS 0..1 The task may be controlled by a Build
Action Manifest.

Consumed by Generate RTE
Postbuild Dataset

0..1 The task may be controlled by a Build
Action Manifest.

Consumed by Generate RTE
Prebuild Dataset

0..1 The task may be controlled by a Build
Action Manifest.

Use meta model element BuildActionMani-
fest

1

Table 3.243: Build Action Manifest

3.5.2.20 Basic Software Module Timing

409 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Basic Software Module Timing
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description BSW module’s TimingDescription and TimingConstraints
Description TimingDescription and TimingConstraints defined for the Internal

Behavior of a BSW module (BSWModuleEntities)
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by BSW Module Bun-

dle
0..1

Produced by Define BSW Mod-
ule Timing

1

Consumed by Define ECU Tim-
ing

0..1

Consumed by Implement a BSW
Module

0..1 Meth.bindingTime = SystemDesignTime

Use meta model element BswModuleTiming 1

Table 3.244: Basic Software Module Timing

3.5.2.21 Basic Software Module Core Header

Artifact Basic Software Module Core Header
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description C-header files delivered with a BSW module.
Description C-header file delivered with a BSW module. It may have to be included

by other modules.
Kind Source Code
Relation Type Related Element Mul. Note
Aggregated by BSW Module De-

livered Bundle
1..*

Produced by Implement a BSW
Module

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Compile BSW
Configuration Data

1

Consumed by Compile BSW
Core Code

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Compile Config-
ured BSW

1

Consumed by Compile Unconfig-
ured BSW

1

Consumed by Compile ECU
Source Code

0..* Meth.bindingTime =
CodeGenerationTime

Table 3.245: Basic Software Module Core Header

3.5.2.22 Basic Software Module Core Source Code

410 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Basic Software Module Core Source Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description The core source code of a module provided by the vendor.
Description The core source code of a module provided by the vendor. "Core"

means, that it does not include addtional source code, which may be
generated during the configuration process.

Kind Source Code
Relation Type Related Element Mul. Note
Aggregated by BSW Module De-

livered Bundle
0..*

Produced by Implement a BSW
Module

0..1 The creation of source code is optional,
since it might be generated completely in
a later step based on the Build Action
Manifest.
Meth.bindingTime =
CodeGenerationTime

Consumed by Compile BSW
Core Code

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Compile Config-
ured BSW

1

Consumed by Compile Unconfig-
ured BSW

1

Consumed by Compile ECU
Source Code

0..* Meth.bindingTime =
CodeGenerationTime

Table 3.246: Basic Software Module Core Source Code

3.5.2.23 Basic Software Interlink Header

Artifact Basic Software Module Interlink Header
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description Generated Header file used to link a BSW module with the BSW

Scheduler.
Description Generated Header file used to link a BSW module with the BSW

Scheduler during Contract phase.
Kind Source Code
Relation Type Related Element Mul. Note
Aggregated by BSW Module De-

livered Bundle
1..*

Produced by Generate BSWM
Contract Header
Files

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Compile BSW
Core Code

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Implement a BSW
Module

1 Meth.bindingTime = SystemDesignTime

Consumed by Compile ECU
Source Code

1..* Meth.bindingTime =
CodeGenerationTime

411 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note

Table 3.247: Basic Software Module Interlink Header

3.5.2.24 Basic Software Interlink Types Header

Artifact Basic Software Interlink Types Header
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description Generated Header file with data types used to link a BSW module with

the BSW Scheduler
Description Generated Header file with data types used to link a BSW module with

the BSW Scheduler.
Kind Source Code
Relation Type Related Element Mul. Note
Aggregated by BSW Module De-

livered Bundle
0..*

Produced by Generate BSWM
Contract Header
Files

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Compile BSW
Core Code

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Implement a BSW
Module

1 Meth.bindingTime = SystemDesignTime

Consumed by Compile ECU
Source Code

0..* Meth.bindingTime =
CodeGenerationTime

Table 3.248: Basic Software Interlink Types Header

3.5.2.25 BSW RTE Prebuild Configuration Header

Artifact BSW RTE Prebuild Configuration Header
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description Generated header file used to resolve the prebuild variants in the

prebuild RTE contract phase for the BSW.
Description Generated header file used to resolve the prebuild variants of a basic

software module in the prebuild RTE contract phase. Contains macros
which resolve the variants when compiled with the module.

Kind Bound Source Code
Relation Type Related Element Mul. Note
Aggregated by BSW Module De-

livered Bundle
0..*

Produced by Generate BSW
Module Prebuild
Data Set

1 Meth.bindingTime = PreCompileTime

Consumed by Compile BSW
Core Code

1 Meth.bindingTime = PreCompileTime

412 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumed by Compile ECU

Source Code
0..* Meth.bindingTime = PreCompileTime

Table 3.249: BSW RTE Prebuild Configuration Header

3.5.2.26 Basic Software Module Object Code

Artifact Basic Software Module Object Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description Object code of a BSW module.
Description Object code of a BSW module.
Kind Object Code
Relation Type Related Element Mul. Note
Aggregated by BSW Module ICS

Bundle
1..*

Aggregated by BSW Module De-
livered Bundle

0..*

Produced by Compile BSW
Core Code

1 Meth.bindingTime = CompileTime

Produced by Compile Config-
ured BSW

1

Produced by Compile Gener-
ated BSW

1

Produced by Compile Unconfig-
ured BSW

1

Consumed by Link ECU Code
after Precompile
Configuration

1..*

Consumed by Link ECU Code
during Link Time
Configuration

1..*

Consumed by Generate ECU Ex-
ecutable

0..* for object code delivery
Meth.bindingTime = CompileTime

Table 3.250: Basic Software Module Object Code

3.5.2.27 Library Description

413 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Library Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description Description of a library in Autosar XML.
Description Description of a library in Autosar XML. This uses the same template

as for describing Basic Software Modules, but with restricted content.
Main purpose is to describe the C-interfaces of the library.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Create Library 1 Meth.bindingTime =

CodeGenerationTime
Consumed by Implement Atomic

Software Compo-
nent

0..* Meth.bindingTime =
CodeGenerationTime

Use meta model element BswModuleDe-
scription

1

Table 3.251: Library Description

3.5.2.28 Library Header Files

Artifact Library Header Files
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description These additional headers are typically needed for libraries that a

component uses.
Description These additional headers are typically needed for libraries that a

component or a module uses (e.g. a "math-libary").
Kind Source Code
Relation Type Related Element Mul. Note
Produced by Create Library 1 Meth.bindingTime =

CodeGenerationTime
Consumed by Compile BSW

Core Code
0..1 Meth.bindingTime =

CodeGenerationTime
Consumed by Implement a BSW

Module
0..1 Meth.bindingTime =

CodeGenerationTime
Consumed by Compile Atomic

Software Compo-
nent

0..* Meth.bindingTime =
CodeGenerationTime

Consumed by Compile ECU
Source Code

0..* Meth.bindingTime =
CodeGenerationTime

Consumed by Implement Atomic
Software Compo-
nent

0..* Meth.bindingTime =
CodeGenerationTime

Consumed by Re-compile Com-
ponent in ECU
context

0..* Meth.bindingTime =
CodeGenerationTime

Table 3.252: Library Header Files

414 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.5.2.29 Library Object Code

Artifact Library Object Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work

products
Brief Description The object code of a lbrary.
Description The object code of a library, to be linked with other object code during a

build of the ECU executable.
Kind Object Code
Relation Type Related Element Mul. Note
Aggregated by Delivered Atomic

Software Compo-
nents

0..*

Produced by Create Library 1 Meth.bindingTime =
CodeGenerationTime

Consumed by Generate ECU Ex-
ecutable

0..* for object code delivery
Meth.bindingTime = CompileTime

Table 3.253: Library Object Code

3.6 ECU Integration and Configuration

This chapter contains the definition of work products and tasks used for the integration
and configuration of AUTOSAR software on an ECU. For the definition of the relevant
meta-model elements refer to [10].

3.6.1 Tasks

3.6.1.1 Provide RTE Calibration Dataset

Provide RTE Calibration
Dataset

ECU Flat Map

General Non Autosar Artifact

Calibration Parameter Value Set

Calibration Engineer

ECU Integrator

 «output»

1

1..*

 «input»

1

 «performs»

1
 «input»

0..1

 «performs»

Figure 3.120: Provide RTE Calibration Dataset

415 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Provide RTE Calibration Dataset
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Provide a data set defining initial values for calibration parameters in

the RTE code.
Description Since a model of the "downstream" calibration process of an ECU is

not part of the AUTOSAR methodology, the input data are only shown
as a General Non AUTOSAR Artifact.

The output of this task is a set of calibration values in AUTOSAR
format, which can be further processed within AUTOSAR, namely by
the RTE generator. The calibration values have to be associated to the
corresponding parameter specification via a reference to the ECU Flat
Map.

Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Performed by Calibration Engi-

neer
0..1

Consumes ECU Flat Map 1
Consumes General Non

Autosar Artifact
1..* input from calibration process

Produces Calibration Param-
eter Value Set

1

Table 3.254: Provide RTE Calibration Dataset

3.6.1.2 Define Integration Variant

Define
Integration
Variant

Predefined Variant

System Constant Value Set

Postbuild Variant Set

Evaluated Variant Set

ECU Extract

ECU Integrator

BSW Module
Delivered Bundle

 «inoutput»

0..*

 «output»

1

 «output»

0..1

1..*

 «input»

1

 «input»

1

 «performs»

 «inoutput»

0..*

Figure 3.121: Define Integration Variant

416 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Define Integration Variant
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Define a variant for the artifacts integrated on an ECU.
Description Define a variant for the artifacts integrated on an ECU, this means

adding a PredefinedVariant related to the ECU extract and the BSW
modules in scope. To do so, this task can make use of existing System
Constant Value Set and/or Postbuid Variant Sets or define new ones.

Several PredefinedVariants can be combined to one Evaluated Variant
Set.

It is up to particular process definition to decide, which variants are
allowed to be set at integration time. Technically, since this task is part
of ECU integration, it can only resolve variation points which have not
yet been resolved in the delivered ECU extract or BSW modules.
Especially, variation points which have to be bound at system design
time, should have been already resolved before.

Meth.bindingTime = SystemDesignTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes ECU Extract 1
Consumes BSW Module De-

livered Bundle
1..*

In/out Postbuild Variant
Set

0..*

In/out System Constant
Value Set

0..*

Produces Predefined Variant 1 Meth.bindingTime = SystemDesignTime
Produces Evaluated Variant

Set
0..1 Meth.bindingTime = SystemDesignTime

Table 3.255: Define Integration Variant

417 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.1.3 Generate Base ECU Configuration

Generate Base
Ecu Configuration

ECU Extract
ECU Configuration
Values

ECU Integrator

BSW Module
Delivered Bundle

Diagnostic ECU
Extract

 «output» 1

1..*

 «input»

0..1 «input»

1

 «performs»

1
 «input»

Figure 3.122: Generate Base ECU Configuration

Task Definition Generate Base Ecu Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Generate an initial set of ECU configuration values based on the

delivered ECU extract.
Description Create the ECU configuration module structure including an initial set

of ECU configuration values.

This is based on the delivered ECU extract and on the vendor specific
configuration parameters and their recommended or pre-configured
values provided with the delivered BSW modules.

Furthermore the diagnostic extract is used to create the initial
configuration for diagnostic related modules, such as DCM and DEM.

Meth.bindingTime = SystemDesignTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes ECU Extract 1
Consumes BSW Module De-

livered Bundle
1..* Need vendor specific configuration

parameters and their recommended or
pre-configured values.

Consumes Diagnostic ECU
Extract

0..1

Produces ECU Configuration
Values

1 Meth.bindingTime = SystemDesignTime

Table 3.256: Generate Base Ecu Configuration

418 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.1.4 Generate Updated ECU Configuration

ECU Integrator

ECU Configuration
Values

ECU Extract

BSW Module
Delivered Bundle

Diagnostic ECU
Extract

Generate Updated ECU
Configuration

1 «input»

0..1
 «input»

1..*

 «input»

1

 «performs»

 «inoutput»

1

Figure 3.123: Generate Updated ECU Configuration

Task Definition Generate Updated ECU Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Generates the updated ECU configuration.
Description This task generates the updated ECU configuration based on the initial

ECU configuration, the updated ECU Extract and optionally the
Diagnostic Extract.

Meth.bindingTime = SystemDesignTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes ECU Extract 1
Consumes BSW Module De-

livered Bundle
1..*

Consumes Diagnostic ECU
Extract

0..1

In/out ECU Configuration
Values

1 The task "Generate Updated ECU
Configuration" consumes the initial ECU
configuration values and produces the
updated ECU configuration values.

Table 3.257: Generate Updated ECU Configuration

419 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.1.5 Define ECU Timing

Define ECU
Timing

ECU Timing

ECU Extract

Basic Software
Module Timing

ECU Configuration
Values

ECU Service
Connectors

ECU Integrator
ECU Extract of
System Timing

0..1

«SPEM_Aggregation»

 «output» 1

0..1

 «input»

0..1 «input»

1..*

 «input»

0..1

 «input»

1

 «input»

1

 «performs»

Figure 3.124: Define ECU Timing

Task Definition Define ECU Timing
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Define ECUTiming (TimingDescription and TimingConstraints) for a

concrete ECU taking the ECU configuration and the ECU Software
Composition (including their implementation) into account.

Description Define ECUTiming (TimingDescription and TimingConstraints) for a
concrete ECU taking the ECU configuration and the ECU Software
Composition (including their implementation) into account.

Meth.bindingTime = SystemDesignTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes ECU Configuration

Values
1

Consumes ECU Service Con-
nectors

1..*

Consumes Basic Software
Module Timing

0..1

Consumes ECU Extract 0..1 Needed to set up links to the elements of
the ECU extract.

Consumes ECU Extract of
System Timing

0..1

Produces ECU Timing 1 Meth.bindingTime = SystemDesignTime

Table 3.258: Define ECU Timing

420 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.1.6 Configure EcuC

Configure ECUC

ECU Configuration Values

AUTOSAR Standardized ECU
Configuration Parameter Definition

ECU Integrator

ECU Extract

BSW Module
Delivered Bundle

 «inoutput» 1

0..1

 «input»

0..*
 «input»

1

 «performs»

 «input»
1

Figure 3.125: Configure EcuC

421 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Configure ECUC
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Set the general ECU configuration values.
Description Set the general ECU configuration values, the so-called EcuC

parameters. These are the configuration parameters which are not
related to a particular module, but are relevant for the ECU in general.
The EcuC parameters consist of the following parts:

• Collection of all Pdu objects flowing through the Com-Stack.

• Definition of partitions for the ECU (One partition will be
implemented using one OS application). The memory partitions
have to be known before doing the OS configuration.

• Collection of PredefinedVariant elements which shall be applied
when resolving the variability during ECU Configuration.

• Collection of mappings between ECU hardware memory
segments (defined in ECU Resources Description) and
SwAddrMethod elements (defined in VFB Types). The name of
each such EcucMemoryMappingElement could be used as to
predefine the logical memory segment for the linker
configuration.

Note: The usage of EcucMemoryMappingElement is deprecated in
R4.0 rev.2, because the configuration of the "MemMap" module has
been added which allows a more fined grained memory mapping than
SwAddrmethod. A relatonship to hardware elements from this fine
grained mapping is currently not provided. See task definition
Configure Memmap Allocation.

Meth.bindingTime = SystemDesignTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes ECU Extract 1
Consumes AUTOSAR Stan-

dardized ECU
Configuration Pa-
rameter Definition

0..1

Consumes BSW Module De-
livered Bundle

0..*

In/out ECU Configuration
Values

1

Table 3.259: Configure ECUC

422 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.1.7 Configure OS

Configure OS

ECU Integrator

ECU Configuration Values

AUTOSAR Standardized
ECU Configuration
Parameter Definition

ECU Timing

BSW Module
Delivered Bundle

0..1

 «input»

0..1

 «input»

1

 «performs»

0..*

 «input»

 «inoutput» 1

Figure 3.126: Configure OS

423 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Configure OS
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Configure the OS by creating the Tasks, events, alarms, etc.
Description The OS configuration process may be highly iterative between RTE

and OS, e.g. RTE needs some OsTasks or OsScheduleTables to map
Runnables into them. To finalize a ECU Configuration the OS is the last
BSW module to configure (with the exception of the debugger). To use
multi-core ECUs the EcuC Configuration needs to be provided
beforehand to the OS Configuration to map the cores. There cannot be
specified a precedence which configuration parameter values should
be set first for OsAlarm, OsApplication, OsCounter, OsIsr, OsOs,
OsResource, OsScheduleTable, OsSpinlock, OsTask. This is
dependent on the development and configuration process. Application
+ Basic Software requirements and fulfill those with OS artifacts.

Mandatory Inputs:

• RTE part of the ECU Configuration

• EcuC part of the ECU Configuration

Outputs:

• OS part of the ECU Configuration

• RTE part of the ECU Configuration

The following steps are needed to perform the task :

• Map OS Configuration to Cores only in the case of multiple core
ECU.

• Define the OSTasks and OSSchedule : Tables based on the
events/runnables of the application & bsw components, create
the OSTasks that will invoke them.

• Map Runnables into OSTasks and OSSchedule Tables : Assign
all the runnables to the OSTasks

• Steps for "OsAlarm, OsApplication, OsCounter, OsIsr, OsOs,
OsResource, OsScheduleTable, OsSpinlock, OsTask."

Meth.bindingTime = SystemDesignTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes AUTOSAR Stan-

dardized ECU
Configuration Pa-
rameter Definition

0..1

Consumes ECU Timing 0..1

424 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes BSW Module De-

livered Bundle
0..* OS Resources required by Basic

Software.

Optional Input: Basic Software Module
Timing, e.g. execution order constraints.

In/out ECU Configuration
Values

1

Table 3.260: Configure OS

3.6.1.8 Configure RTE

Configure RTE

ECU Integrator

ECU Configuration Values

BSW Module Vendor-
Specific Configuration
Parameter Definition

ECU Timing

ECU Extract

Service Component
Description

Delivered Atomic
Software Components

BSW Module
Delivered Bundle

1..* «input»

0..*

 «input»

1

 «input»

0..*

 «input»

0..1

 «input»

1

 «performs»1

 «input»

 «inoutput» 1

Figure 3.127: Configure RTE

425 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Configure RTE
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Describes the steps required to successfully configure the AUTOSAR

RTE.
Description Configure the RTE to correctly interact with AUTOSAR COM and the

OS. The specification of the OS objects used by the generated RTE
are configured in this task. In addition, configuration includes setting
RTE specific options and the handling of measurement and calibration
data. Post-build variants which shall be supported by the RTE code
must be referenced by the configuration.

The following steps are usualy done to configure the RTE : 1.Setup
RTE General Configuration 2.Select Software Component
Implementations 3.Select BSW Module Implementations 4.Each
Runnable needs to be assigned to an Operating System Task in order
to be invoked. 5.Map BSW Executables to tasks 6.Resolve Exclusive
Areas 7.Select Implicit Communication behavior 8.Select Calibration
Support 9.Configure Non Volatile Memory Block Component (only
needed if decisions on the configuration have to be taken during ECU
Configuration) 10.Select the supported post-build variants

Meth.bindingTime = SystemDesignTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes BSW Module

Vendor- Specific
Configuration Pa-
rameter Definition

1 The definitions for the module RTE

Consumes ECU Extract 1 Elements of the System Description and
VFB Description are referred by the RTE
configuration.

Optional Input: ECU Extract of System
Timing, e.g. execution order constraints.

Consumes Delivered Atomic
Software Compo-
nents

1..* Required input:

• References to all component
implementation descriptions on
this ECU

• SwcInternalBehavior (for example
to map the runnables to tasks)
which was used in the contract
phase of the software components
on this ECU

Consumes ECU Timing 0..1
Consumes BSW Module De-

livered Bundle
0..* Input from the BSW Module Description

is needed related to Scheduling,
Exclusive Areas, Triggers and Modes.

Optional Input: Basic Software Module
Timing, e.g. execution order constraints.

426 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes Service Compo-

nent Description
0..* The Internal Behavior of Service

Components contributes to the RTE
configuration.

In/out ECU Configuration
Values

1

Table 3.261: Configure RTE

3.6.1.9 Configure Watchdog Manager

Configure Watchdog Manager

ECU Configuration Values

ECU Extract

ECU Timing

ECU Integrator

BSW Module
Delivered Bundle

1

 «performs»

1

 «input»

0..1

 «input»

0..1

 «input»

 «inoutput» 1

Figure 3.128: Configure Watchdog Manager

Task Definition Configure Watchdog Manager
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Describes the steps required to succesfully configure the Watchdog

Manager
Description Configured Top-Down. Service needs determine what kind of watchdog

manager you need. For each service need there is one interface. You
can connect several of these interfaces to one watchdog manager

Meth.bindingTime = SystemDesignTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes ECU Extract 1 Application software requirements for

WdgM, especially
SwcServiceDependency and
ServiceNeeds.

427 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes BSW Module De-

livered Bundle
0..1 Predefined or recommended

configuration values, vendor specific
parameters, ServiceNeeds defined by
BSW.

Consumes ECU Timing 0..1
In/out ECU Configuration

Values
1

Table 3.262: Configure Watchdog Manager

3.6.1.10 Configure Mode Management

Configure Mode
Management

ECU Integrator

ECU Configuration
Values

AUTOSAR Standardized ECU
Configuration Parameter Definition

ECU Extract

BSW Module
Delivered Bundle

0..1

 «input»

0..1

 «input»

1

 «performs»

1 «input» «inoutput» 1

Figure 3.129: Configure Mode Management

Task Definition Configure Mode Management
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Configure the Mode Managers in the Basic Software for this ECU.
Description Configure the Mode Managers in the Basic Software for this ECU. In

the methodology library this is modeled as a single task (for simplicity)
though in practice it may consist of several single tasks.

Meth.bindingTime = SystemDesignTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes ECU Extract 1 Application software requirements for

NvM, especially SwcServiceDependency
and ServiceNeeds.

428 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes AUTOSAR Stan-

dardized ECU
Configuration Pa-
rameter Definition

0..1

Consumes BSW Module De-
livered Bundle

0..1 Predefined or recommended
configuration values, vendor specific
parameters, ServiceNeeds defined by
BSW.

In/out ECU Configuration
Values

1

Table 3.263: Configure Mode Management

3.6.1.11 Configure NvM

Configure NvM

ECU Integrator

ECU Configuration
Values

AUTOSAR Standardized ECU
Configuration Parameter Definition

ECU Extract

Service Component
Description

BSW Module
Delivered Bundle

 «inoutput» 1

0..1

 «input»

0..*

 «input»

1 «input»

1

 «performs»

0..1

 «input»

Figure 3.130: Configure NvM

429 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Configure NvM
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Configure the NvM stack for this ECU.
Description Configure the NvM stack for this ECU. In the methodology library this is

modeled as a single task (for simplicity) though in practice it may
consist of several single tasks.

Requirements for the configuration of NvM can be collected

• from the upstream information about ServiceDependencies and
ServiceNeeds in the ECU Extract and BSW Modules

• from existing ECU configuration values

• from Service Component Descriptions created for other
Services (e.g. DEM)

Meth.bindingTime = SystemDesignTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes ECU Extract 1 Application software requirements for

NvM, especially SwcServiceDependency
and ServiceNeeds.

Consumes AUTOSAR Stan-
dardized ECU
Configuration Pa-
rameter Definition

0..1

Consumes BSW Module De-
livered Bundle

0..1 Predefined or recommended
configuration values, vendor specific
parameters, ServiceNeeds defined by
BSW.

Consumes Service Compo-
nent Description

0..* The configuration of diagnostics,
especially of the DEM, typically leads to
the definition of additional data to be
stored in NvM. One possibility to handle
this is to create ServiceNeeds on the
level ServiceComponentType which is
then taken into account for the
configuration of the NvM.

In/out ECU Configuration
Values

1

Table 3.264: Configure NvM

430 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.1.12 Configure Diagnostics

Configure Diagnostics

ECU Integrator

ECU Configuration
Values

AUTOSAR Standardized ECU
Configuration Parameter Definition

ECU Extract

BSW Module
Delivered Bundle

1 «input»

0..1

 «input»

0..1

 «input»

1

 «performs»

 «inoutput» 1

Figure 3.131: Configure Diagnostics

Task Definition Configure Diagnostics
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Configure the diagnostic modules for this ECU
Description Configure the diagnostic modules for this ECU. In the methodology

library this is modeled as a single task (for simplicity) though in practice
it may consist of several single tasks.

Meth.bindingTime = SystemDesignTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes ECU Extract 1 Application software requirements for

diagnostics, especially
SwcServiceDependency and
ServiceNeeds.

Consumes AUTOSAR Stan-
dardized ECU
Configuration Pa-
rameter Definition

0..1

Consumes BSW Module De-
livered Bundle

0..1 Predefined or recommended
configuration values, vendor specific
parameters, ServiceNeeds defined by
BSW.

In/out ECU Configuration
Values

1 Configuration Values for DEM, DCM,
DLT, FIM.

Table 3.265: Configure Diagnostics

431 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.1.13 Create Service Component

Create Service
Component

ECU Configuration
Values

ECU Timing

Atomic Software
Component
Implementation

Service Component
Description

Software Component to
BSW Mapping

ECU
Extract

ECU Integrator

BSW Module
Delivered Bundle

 «output»

1

 «output»

1

 «output» 1

0..1

 «input»

0..1

 «input»

0..1
 «input»

1

 «performs»

0..1

 «input»

 «output»

0..1

Figure 3.132: Create Service Component

432 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

433 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Task Definition Create Service Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Create an instances for all required Service Components, configure

them, create necessary ports and connectors to the respective
application software components. This completes the ECU Software
Composition.

Description The ECU Extract contains all information about which components are
mapped to a specific ECU. In a new "flat" Software Composition
(meta-class RootSwCompositionPrototype) all other compositions have
been removed. This has to be extended by an aggregation of the
SwComponentPrototypes which describe the Services required by all
application components on the ECU:

• For each mapped SwComponentPrototype of type
AtomicSwComponentType, the PortPrototypes requiring a
particular Service and the asscociated
SwcServiceDependency-s and ServiceNeeds are collected.
Based on this information, a ServiceSwComponentType and its
prototype is created exactly once per service with the
corresponding number of PortPrototypes, thus that all
service-type PortPrototypes of the Application Components
have their PortPrototype counterpart on the
ServiceSwComponentType.

• RTE generation requires that an InternalBehavior and
Implementation is created for each ServiceSwComponentType.
In particular, the port defined argument values required for the
usage of some service interfaces are configured, and the
required RunnableEntities and RTEEvents are set up. It is also
required to define a mapping between elements of the
generated SWC and existing or generated elements of the BSW
module description.

• The evaluation of the input might result in further ServiceNeeds
to be added to the generated InternalBehavior - for example a
ServiceSwComponentType created for the DEM might include
ServiceNeeds for NVRAM blocks. It is assumed, that such
interdependencies are incrementally resolved within this task for
all involved Service Components such that the outputs are
consistent. Note that this is just one possibility to handle the
situation - another option is to resolve the interdependencies
only within the ECU configuration tasks (Configure Diagnostics,
Configure NvM) without creating additional ServiceNeeds.

Depending on the details of the configuration process for the particular
module (namely which parts are generated or manually created), the
steps described above can be done before, in parallel or after setting
up the ECU configuration of the involved BSW modules. Likewise, the
information used to create the ServiceSwComponentType(s) can come
directly as input from the ECU Extract, or via the ECU Configuration.
Therefore both artifacts are shown as optional input. The ECU
Configuration is also an output, because a reference to the created
SwComponentPrototype(s) must be entered here.

The creation of connectors between the service and application
components is a separate task..

Meth.bindingTime = SystemDesignTime
Relation Type Related Element Mul. Note

434 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes BSW Module De-

livered Bundle
0..1 Required in order to define a mapping

between SWC and BSW.

In addition, the Build Action Manifest
may be used.

Consumes ECU Configuration
Values

0..1 The creation of Service Component
details may depend on ECU
configuration values, especially for the
DCM.

Consumes ECU Extract 0..1 Input information about the Service Ports
and Service Dependencies of the
software components.

Consumes ECU Timing 0..1 Additional information for fine tuning
configuration decisions.

Produces Atomic Software
Component Imple-
mentation

1 In order to generate the RTE, one needs
to create a kind of dummy
Implementation element for the Service
Component, however this should not be
filled with descriptive elements, e.g.
resource consumption, as these are
already defined by the Basic Software
Module Implementation Description.
Meth.bindingTime = SystemDesignTime

Produces ECU Configuration
Values

1 Enter links to the created
SwComponentPrototypes.
Meth.bindingTime = SystemDesignTime

Produces Service Compo-
nent Description

1 Meth.bindingTime = SystemDesignTime

Produces Software Compo-
nent to BSW Map-
ping

0..1 Meth.bindingTime = SystemDesignTime

Table 3.266: Create Service Component

435 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.1.14 Connect Service Component

Service Component
Description

ECU Service Connectors

ECU Integrator

Connect Service Component

ECU
Extract

Build Action Manifest

 «output» 1..*

1
 «input»

0..1

 «input»

1

 «input»

 «performs»

Figure 3.133: Connect Service Component

Task Definition Connect Service Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description
Description In order to connect the "isService"-ports of the application components

to a particular ServiceSwComponentType,
AssemblyConnectorPrototypes are generated.

The ECU Extract with its RootSwCompositionPrototype, extended by
the Service Components and their connectors, finally serves as input
for generating the RTE.

Meth.bindingTime = SystemDesignTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes ECU Extract 1 Find the ports on the application side to

be connected to the Service Component.
Consumes Service Compo-

nent Description
1 Required in order to define the connector

links to the ports on the BSW side.
Consumes Build Action Mani-

fest
0..1 The task may be controlled by a Build

Action Manifest.
Produces ECU Service Con-

nectors
1..* Meth.bindingTime = SystemDesignTime

Table 3.267: Connect Service Component

436 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.1.15 Configure COM

Configure Com

ECU Integrator

ECU Configuration
Values

AUTOSAR Standardized ECU
Configuration Parameter Definition

ECU Extract

BSW Module
Delivered Bundle

 «inoutput» 1

0..1

 «input»

0..1

 «input»

 «performs»

1

 «input»1

Figure 3.134: Configure COM

437 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Configure Com
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Configure the COM stack modules within an ECU
Description The ECU Extract of the System Configuration contains the major part

of information that is needed to configure the COM Stack modules.
Many parameter values of the ECU configuration can be derived from
the ECU extract.The missing ECU specific configuration parameters
that can not be derived from the System Description need to be set in
this phase, e.g. Vendor-Specific Configuration Parameters. The
following steps will be needed to perform the task : 1- Derive
configuration parameter values from ECU extract : The System
Template Specification describes rules on how the individual ECU
configuration parameters shall be derived from the Upstream
Templates (SWC Template, System Template, ECU Resource
Template). This rules shall be followed. 2- Derive global PDUs from
ECU extract : A global PDU has to be configured for each I-PDU flow
and is added to the PDU collection of the module EcuC. Derived from
the ECU Extract all PDUs that traverse through the COM Stack have to
be created. 3- Create PDU References from the BSW Module PDUs to
the global PDUs in the module EcuC:As soon as these global PDUs
are created the references from the local module PDUs to the
appropriate global PDUs need to be configured. 4-Set Missing and
Vendor-Specific Parameter Values:Missing and Vendor-Specific
Parameter Values need to be set 5-Set BSW Module specific PDU
handle IDs:The last step is the assignment of the actual values for the
Handle IDs. This can be achieved by an automatic tool which might be
run directly before the generation of the module.

Meth.bindingTime = SystemDesignTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes ECU Extract 1
Consumes AUTOSAR Stan-

dardized ECU
Configuration Pa-
rameter Definition

0..1

Consumes BSW Module De-
livered Bundle

0..1

In/out ECU Configuration
Values

1

Table 3.268: Configure Com

438 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.1.16 Configure IO Hardware Abstraction

Configure IO Hardware abstraction

ECU Configuration Values

AUTOSAR Standardized ECU
Configuration Parameter Definition

ECU Integrator

BSW Module
Delivered Bundle

0..1

 «input»

1
 «inoutput»

0..*
 «input»

1

 «performs»

Figure 3.135: Configure IO Hardware Abstraction

Task Definition Configure IO Hardware abstraction
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Configure I/O Hardware Abstraction
Description Configure the I/O Hardware Abstraction modules.

Meth.bindingTime = SystemDesignTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes AUTOSAR Stan-

dardized ECU
Configuration Pa-
rameter Definition

0..1

Consumes BSW Module De-
livered Bundle

0..*

In/out ECU Configuration
Values

1

Table 3.269: Configure IO Hardware abstraction

439 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.1.17 Configure MCAL

Configure MCAL
ECU Configuration ValuesAUTOSAR Standardized ECU

Configuration Parameter Definition

ECU IntegratorBSW Module
Delivered Bundle

1 «inoutput»
0..1 «input»

1

 «performs»

0..1

 «input»

Figure 3.136: Configure MCAL

Task Definition Configure MCAL
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Configure the Microcontroller Abstraction Layer for this ECU.
Description Configure the Microcontroller Abstraction Layer for this ECU.

Meth.bindingTime = SystemDesignTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes AUTOSAR Stan-

dardized ECU
Configuration Pa-
rameter Definition

0..1

Consumes BSW Module De-
livered Bundle

0..1

In/out ECU Configuration
Values

1

Table 3.270: Configure MCAL

440 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.1.18 Configure Debug

Configure
Debug

ECU Integrator

AUTOSAR Standardized ECU
Configuration Parameter Definition

ECU Configuration Values

Complex Driver
Component

ECU Extract

BSW Module
Delivered Bundle

 «input»
1

0..1

 «input»

 «performs»

1 «inoutput»

1

 «input»

0..*

 «input»

Figure 3.137: Configure Debug

441 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Configure Debug
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Configure the AUTOSARdebugger Module
Description The AUTOSAR Debugger Module (Dbg) handles the interaction

between the Debugger Host and the AUTOSAR ECU. It is split into the
"core" and the "communication" part. Each BSW has an ID & Each API
has an ID. (e.g. module 84, api 5). The Debugger Host (shortly called
Host) may be connected via

1. Existing communication buses which are also used for the functional
behavior of the ECU.

2. A dedicated debugging line which is not used for functional behavior
of the ECU. (e.g. via Complex Driver)

Since Dbg needs information on the debugged software, it is
configured quite late in the ECU Configuration steps. Other modules
must be configured before the debug. Even after changes of the OS
configuration, Dbg needs to be updated as well.

The input to the Dbg ECU Configuration are: 1. ECU Configuration
Values description

• If existing communication buses are used, Dbg needs to
transmit and receive I-Pdus which then are handled in the
COM-Stack. Those I-Pdus need to be created / referenced.

• Usage of OsAlarm

• Usage of GptChannel (optional, for time stamping)

2. BSW Module Descriptions of the debugged modules in order to
identify which variables / functions can be debugged. Prerequisites
are: The variables need to be placed in global accessible memory; the
data types of these variables need to be defined in the header files.

Meth.bindingTime = SystemDesignTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes AUTOSAR Stan-

dardized ECU
Configuration Pa-
rameter Definition

1

Consumes ECU Extract 1
Consumes Complex Driver

Component
0..1

Consumes BSW Module De-
livered Bundle

0..*

In/out ECU Configuration
Values

1

Table 3.271: Configure Debug

442 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

The task to configure the debug module consists of the following detailed steps (not
shown in the table above due to formating reasons):

1. RTE VFB-Tracing if needed : The RTE ECU Configuration shall contain a
“RteVfbTraceClientPrefix = Dbg”.

2. Periodic Data Collection if needed : Configure the reference to the OsAlarm which
will invoke the periodic data collection. Note that the OsAlarm needs to be configured
in the Os ECU Configuration (before or after).

3. Timestamp Measurement if needed : Configure the size of the timestamp (16 or
32 bit) then configure the reference to the GptChannel which will provide the times-
tamp information. Note that the GptChannel needs to be configured in the Gpt ECU
Configuration (before or after).

4. Configure the Buffering of the Debug : Size, Strategy (last-is-best/queued) and
behavior.

5. AUTOSAR Communication stack : Configure the used Tx and Rx I-Pdus, the corre-
sponding I-Pdus need to be configured in the EcuC Module and the rest of the COM-
Stack. If Complex Driver is used for communication, configure Complex Driver.

6. Configure the to be debugged elements - BSW only - Prerequisite: The BSW Module
shall be already configured and generated therefore there is an updated BSW-Module
Description available of the actually generated BSW Module.The first work will be to get
the list of traceable API calls out of the BSWMD of the BSW Module. Then select which
API calls shall be traced (e.g. call "CanIf_Transmit" from the "PduR" to the "CanIf") and
configure each trace function: buffering, timestamp.

7. Configure the to be debugged elements - RTE only - Prerequisite: The RTE
has been generated, therefore there is an updated BSW-Module Description avail-
able of the actually generated RTE. Attention: The RTE shall not be re-configured
after the Dbg has been configured, otherwise the Dbg needs to be re-configured
as well. The first work will be get the list of available VFB-Trace functions out of
the BSWMD of the RTE. Then, Select which VFB-Trace functions shall be traced
(e.g. Rte_Dbg_Runnable_component_re_Start()), configure each VFB-Trace func-
tion: Buffering,Timestamp, in case of Rte-Com tracing: which Com-Signal is traced, in
case of VFB-Signal tracing: which VariablePrototype is traced, in case of Client-Server
tracing: which OperationPrototype is traced, in case of RunnableEntity tracing: which
RunnableEntity is traced.

8. Configure the to be debugged elements - BSW and RTE - Prerequisite: The RTE
has been generated, therefore there is an updated BSW-Module Description available
. Attention: The RTE shall not be re-configured after the Dbg has been configured.The
first step will be out of the BSWMD of the BSW and the RTE to extract the list of
available debuggable variables and provide it to the Dbg configuration. Then, select
which variables shall be debugged (e.g. internal states of the module), configure each
individual DID with symbol name, optional size, optional absolute address, buffering,
timestamp, collection frequency Note: Size and address (e.g. for an ECU register)
could be resolved by the linker, hence optional here.

443 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

9. Generate the Dbg Module: Generate the c and header files of the Dbg, use the
additional header files of the to be debugged modules in order to perform a "sizeof()"
operation in the compiler, compile Dbg Module (and other to-be-debugged modules),
analyze the object file in order to update the ECU Configuration Values description
which additional information the length information for each DID (out of the sizeof()
operation). Host application uses this information (ECU configuration of debug module,
BSW module description of the debug module and the to-be-debugged modules) in
order to send the correct DIDs.

3.6.1.19 Configure Transformer

Configure Transformer

ECU Configuration
Values

ECU Integrator

AUTOSAR Standardized ECU
Configuration Parameter Definition

ECU Extract

BSW Module
Delivered Bundle

 «inoutput» 1

1

0..1

1

 «performs»

0..1

Figure 3.138: Configure Transformer

Task Definition Configure Transformer
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description
Description Configure the Transformer modules for this ECU.
Relation Type Related Element Mul. Note

ECU Extract 1
AUTOSAR Stan-
dardized ECU
Configuration Pa-
rameter Definition

0..1

BSW Module De-
livered Bundle

0..1

Performed by ECU Integrator 1
In/out ECU Configuration

Values
1

444 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note

Table 3.272: Configure Transformer

3.6.1.20 Generate BSW Configuration Code and Model Extensions

Generate BSW
Configuration Code

ECU Configuration
Values

BSW Module
Configuration Header
File

BSW Module
Configuration
Data Source
Code

BSW Module
Behavior Extension

BSW Module
Interface Extension

BSW Module
Implementation
Extension

BSW Generator Framework

BSW Module
Generator

ECU Integrator

BSW Module Vendor-
Specific Configuration
Parameter Definition

Build Action
Manifest

 «used tool»

 «output»

1

0..1

 «input»

1 «input»

 «performs»0..1

 «input»

0..*

 «input»

 «output»

1

 «output»

0..1

 «output»

0..1

 «output»

0..1

Figure 3.139: Generate BSW Code and model extensions

445 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Generate BSW Configuration Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU

Config Classes::Tasks
Brief Description Generate source code which implements configuration data for link- or

compile-time configuration.
Description A generator reads the relevant parameters from the ECU Configuration

Description and creates a separate code file that implements the
specified configuration. This task is used for link-time configuration, i.e.
the configuration code can be produced at link-time of the core code or
for compile-time configuration, if the configuration code cannot be put
into a header file (e.g. for tables), even if the core code and the
configuration code shall be compiled at the same time.

A header file may be produced in addition, to declare the data.

Furthermore the generator may produce extensions of the BSW
module description artifacts as a result of configuration parameter
values which are set at integration time.

Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes ECU Configuration

Values
1

Consumes BSW Module Gen-
erator

0..1 This is an input in case a generator
framework is used which has to run
some module specific generator code.

Consumes Build Action Mani-
fest

0..1 The task may be controlled by a Build
Action Manifest.

Consumes BSW Module
Vendor- Specific
Configuration Pa-
rameter Definition

0..*

Produces BSW Module Con-
figuration Data
Source Code

1

Produces BSW Module Con-
figuration Header
File

1

Produces BSW Module Be-
havior Extension

0..1

Produces BSW Module
Implementation
Extension

0..1

Produces BSW Module Inter-
face Extension

0..1

Used tool BSW Generator
Framework

1

Table 3.273: Generate BSW Configuration Code

446 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.1.21 Generate Local MC Data Support

Generate Local
MC Data Support

Basic Software
Module Internal
Behavior

Software
Component
Internal Behavior

Local
Measurement and
Calibration Support
Data

BSW Module
Behavior Extension

ECU Flat Map

ECU Integrator

 «output» 1

0..1

 «input»

0..1

 «input» «performs»

0..1

 «input»

1

 «input»

Figure 3.140: Generate Local MC Data Support

Task Definition Generate Local MC Data Support
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Generate Local MC Support Data
Description Generate the support data needed for measurement and calibration of

those parameters and variables (roles constantMemory and
staticMemory), which are owned locally by the code of a module or
component (in contrast to those, which are owned by the RTE).

The declaration of local variables/parameters is read from the Internal
Behavior of either a BSW module or an Atomic Software Component,
therefore these can be considered as alternative inputs.The ECU Flat
Map is needed as input in order to resolve possible name conflicts.

This task can be combined with RTE generation for practical reasons,
but it is considered as an independent task.

Note that calibration data that need software emulation support by the
RTE cannot be handled by this task; they need to be processed by the
task Generate RTE.

Meth.bindingTime = CodeGenerationTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes ECU Flat Map 1 Meth.bindingTime = SystemDesignTime
Consumes BSW Module Be-

havior Extension
0..1 Meth.bindingTime = SystemDesignTime

Consumes Basic Software
Module Internal
Behavior

0..1 Meth.bindingTime = SystemDesignTime

447 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes Software Compo-

nent Internal Be-
havior

0..1 Meth.bindingTime = SystemDesignTime

Produces Local Measure-
ment and Cali-
bration Support
Data

1 Meth.bindingTime =
CodeGenerationTime

Table 3.274: Generate Local MC Data Support

3.6.1.22 Create MC Function Model

Delivered Atomic
Software
Components

Create MC
Function
Model MC Function

ModelECU Extract

RTE Measurement
and Calibration
Support Data Local

Measurement and
Calibration
Support Data

Calibration Engineer

ECU
Integrator

 «output» 1

0..1

 «input»

0..*

 «input»

0..1

 «input»

0..1

 «performs»

0..1

 «performs»

0..*

 «input»

Figure 3.141: Create MC Function Model

448 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Create MC Function Model
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Define a model of McFunctions.
Description Create (manually or by generator) a functional model of measurement

and calibration data on an ECU. Such a model may be derived from the
logical structure of software components, ports etc. but the rules for
this transformation are not standardized.

This task may be performed before the RTE code is generated. Then
the model will be based on the data defined in the ECU Flat Map.

The task may also be performed at the same time as or after the
generation of Measurement and Calibration Support Data. In this case
it is possible (but not mandatory) to base the model on these support
data only.

The task may be supported by the RTE generator (not a standardized
feature) or another tool.

Relation Type Related Element Mul. Note
Performed by Calibration Engi-

neer
0..1

Performed by ECU Integrator 0..1
Consumes ECU Extract 0..1 The ECU Flat Map can be used to define

references to variables and parameters
which are later visible in A2L.

Furthermore, the ECU Extract can be
used to find the relevant software
components.

Consumes RTE Measurement
and Calibration
Support Data

0..1 Used if the MC Function Model shall
refer to McDataInstances allocated by
the RTE.

Consumes Delivered Atomic
Software Compo-
nents

0..* The component model may be used to
derive an MC Function Model.

Consumes Local Measure-
ment and Cali-
bration Support
Data

0..* Used if the MC Function Model shall
refer to McDataInstances allocated by
BSW modules without RTE support.

Produces MC Function
Model

1

Table 3.275: Create MC Function Model

449 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.1.23 Generate RTE

RTE Source Code

Generate RTE

ECU Configuration
Values

ECU Extract

ECU Service
Connectors

Service Component
Description

RTE Implementation
Description

Calibration Parameter Value Set

RTE Measurement
and Calibration
Support Data

ECU Integrator

RTE Generator

BSW Scheduler
CodeDelivered Atomic Software

Components

BSW Module
Integration
Bundle

Software Component to
BSW Mapping

1

 «input»

 «output»

1

 «output»
1

 «output»

1

0..*

 «input»

0..1

 «input»

 «output»

0..1

1

 «input»

0..*

 «input»

0..*

 «input»

1

 «performs»

0..*

 «input»

 «output»

0..1

 «used tool»

1..*
 «input»

Figure 3.142: Generate RTE

450 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Generate RTE
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Generate the RTE and several further artifacts.
Description Generate the RTE and several further artifacts from the input XML

descriptions in the scope of a given ECU:

• RTE Core Source Code

• BSW Scheduler Code

• RTE Implementation Description

• RTE Measurement and Calibration Support Data

In an optional mode, this task can also write into the ECU
configuration, especially for the configuration of the OS. This mode is
used to pre-configure parts of the ECU configuration. It shall support
the integrator in setting up the configuration in an iterative way.

In the so-called strict mode, the ECU configuration is not changed but
assumed to be complete. This mode shall be used before the final
build. A PredefinedVariant in the input data (referred in the EcuC
configuration, see task Configure EcuC) can be used to bind variation
points at code generation time. For variation points with latest binding
time "code generation time" this is mandatory. Unbound variation
points can still be present in the generated code.

Meth.bindingTime = CodeGenerationTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes ECU Configuration

Values
1 Meth.bindingTime = SystemDesignTime

Consumes ECU Extract 1 Find the VFB description of all Atomic
Software Components on this ECU and
the relevant parts of the system
description.

The ECU Flat Map is also an input.
Meth.bindingTime = SystemDesignTime

Consumes Delivered Atomic
Software Compo-
nents

1..* Required input:

• References to all component
implementation descriptions on
this ECU

• SwcInternalBehavior which was
used in the contract phase of the
software components on this ECU

• (optional) Software Component to
BSW Mapping

Meth.bindingTime = SystemDesignTime
Consumes Calibration Param-

eter Value Set
0..1 Meth.bindingTime = SystemDesignTime

451 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes BSW Module Inte-

gration Bundle
0..* Input for BSW scheduling, BSW mode

and trigger declaration, BSW exclusive
areas, BSW calibration parameters that
need RTE support (for software
emulation).

Optionally, a Build Action Manifest maybe
be used to control the generator steps.
Meth.bindingTime = SystemDesignTime

Consumes ECU Service Con-
nectors

0..* Meth.bindingTime = SystemDesignTime

Consumes Service Compo-
nent Description

0..* Meth.bindingTime = SystemDesignTime

Consumes Software Compo-
nent to BSW Map-
ping

0..* This input is explicitly stated because the
mapping may be created during ECU
integration and thus is not necessarily
part of the Delivered Atomic Software
Components.
Meth.bindingTime = SystemDesignTime

Produces BSW Scheduler
Code

1 Meth.bindingTime =
CodeGenerationTime

Produces RTE Implementa-
tion Description

1 Meth.bindingTime =
CodeGenerationTime

Produces RTE Source Code 1 Meth.bindingTime =
CodeGenerationTime

Produces ECU Configuration
Values

0..1 Optional output for the configuration of
the OS.
Meth.bindingTime =
CodeGenerationTime

Produces RTE Measurement
and Calibration
Support Data

0..1 Meth.bindingTime =
CodeGenerationTime

Used tool RTE Generator 1

Table 3.276: Generate RTE

452 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.1.24 Generate Scheduler

Generate
Scheduler

ECU Configuration
Values

BSW Scheduler
Code

ECU Integrator

BSW Module
Integration
Bundle

RTE Generator

RTE Measurement
and Calibration
Support Data

RTE Implementation
Description

 «output»

1

 «output»

0..1

1

 «performs»

1
 «input»

1..*

 «input»

 «output»

0..1

 «used tool»

Figure 3.143: Generate Scheduler

Task Definition Generate Scheduler
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Generate the BSW Scheduler
Description Optional task of the RTE generator which only produces the code of

the BSW Scheduler and related artifacts.

Meth.bindingTime = CodeGenerationTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes ECU Configuration

Values
1 Configuration values for the BSW

Scheduler (subset of RTE configuration).

Meth.bindingTime = SystemDesignTime
Consumes BSW Module Inte-

gration Bundle
1..* Input for BSW scheduling, BSW mode

and trigger declaration, BSW exclusive
areas, BSW calibration parameters that
need support for software emulation.

Optionally, a Build Action Manifest maybe
be used to control the generator steps.
Meth.bindingTime = SystemDesignTime

Produces BSW Scheduler
Code

1 Meth.bindingTime =
CodeGenerationTime

453 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Produces RTE Implementa-

tion Description
0..1 Creates a subset of the RTE

implementation description that contains
only the description of data owned by the
BSW Scheduler.
Meth.bindingTime =
CodeGenerationTime

Produces RTE Measurement
and Calibration
Support Data

0..1 Creates a subset of the measurement &
calibration support data related only to
the data owned by the BSW Scheduler.
Meth.bindingTime =
CodeGenerationTime

Used tool RTE Generator 1

Table 3.277: Generate Scheduler

3.6.1.25 Generate OS

Generate OS

OS Generated Code

ECU Configuration
Values

ECU Integrator

Build Action
Manifest

1
 «input»

0..1

 «input»
1

 «performs»

 «output» 1

Figure 3.144: Generate OS

Task Definition Generate OS
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Generate the OS Generated Code files
Description Generate the OS Generated Code files using the OS configuration

values from the ECU Configuration .

Meth.bindingTime = CodeGenerationTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes ECU Configuration

Values
1 Meth.bindingTime = SystemDesignTime

Consumes Build Action Mani-
fest

0..1 The task may be controlled by a Build
Action Manifest.

Produces OS Generated
Code

1 Meth.bindingTime =
CodeGenerationTime

Table 3.278: Generate OS

454 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.1.26 Generate RTE Prebuild Dataset

Generate RTE
Prebuild Dataset

RTE Prebuild
Configuration
Header

ECU Configuration
Values

ECU Extract

Service Component
Description

System Constant
Value Set

Predefined Variant Postbuild Variant Set

ECU Integrator

RTE Generator

Build Action
Manifest

 «output» 1

 «used tool»

1

 «input»

1

 «performs»

1

 «input»

1

 «input»

1

 «input»

0..*

 «input»

0..1

 «input»

0..1

 «input»

Figure 3.145: Generate RTE Prebuild Dataset

Task Definition Generate RTE Prebuild Dataset
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Prebuild Data Set Generation Phase for the RTE: It binds all variations

which are later than code generation time
Description Prebuild Data Set Generation Phase for the RTE: It binds all variations

which are later than code generation time but before build time. The
output is a configuration header which is used for the build.

The actually supported variant are defined by the PredefinedVariant
referred in the EcuC configuration (see task Configure EcuC).

Meth.bindingTime = PreCompileTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes ECU Configuration

Values
1 find the Predefiined Variant to be used

Meth.bindingTime =
CodeGenerationTime

Consumes ECU Extract 1 Meth.bindingTime =
CodeGenerationTime

Consumes Predefined Variant 1
Consumes System Constant

Value Set
1

Consumes Build Action Mani-
fest

0..1 The task may be controlled by a Build
Action Manifest.

455 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes Postbuild Variant

Set
0..1

Consumes Service Compo-
nent Description

0..* Meth.bindingTime =
CodeGenerationTime

Produces RTE Prebuild Con-
figuration Header

1 Meth.bindingTime = PreCompileTime

Used tool RTE Generator 1

Table 3.279: Generate RTE Prebuild Dataset

3.6.1.27 Compile ECU Source Code

Compile ECU Source
Code

Application Header File

Component RTE
Prebuild
Configuration Header

Software
Component Data
Types Header

Standard Header Files

Basic Software
Module Core Source
Code

Basic Software
Interl ink Types
Header

BSW RTE Prebuild
Configuration
Header

BSW Scheduler
Code

BSW Module
Configuration
Data Source
Code

BSW Module
Configuration
Header File

Basic Software
Module Core
Header

Basic Software Module
Interl ink HeaderLibrary Header Files

OS Generated Code RTE Source Code Atomic Software
Component Source
Code

Optimized
Application
Header File

ECU Integrator

Compiler

ECU Object
Code

RTE Prebuild
Configuration
Header

Build Action
Manifest

 «input»

0..*

 «input»

1..*

 «input»

1

 «input»

1

 «input»

0..*

 «performs»

1

 «input»

0..*

 «used tool»

0..1

 «input»

 «output» 1..*

 «input»

0..*

 «input»

0..*

 «input»

0..*

 «input»

1
 «input»

1..*

 «input»

0..*

 «input»

0..*

 «input»

0..*

 «input»

0..*

 «input»

0..*

 «input»

1
0..1

 «input»

Figure 3.146: Compile ECU Source Code

456 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Compile ECU Source Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Compile Source Code for an ECU
Description Compile all the source code required for ECU integration, i.e. all source

code except the code which is delivered as object code.

Meth.bindingTime = CompileTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes BSW Scheduler

Code
1 Meth.bindingTime =

CodeGenerationTime
Consumes OS Generated

Code
1 Meth.bindingTime =

CodeGenerationTime
Consumes RTE Source Code 1 Meth.bindingTime =

CodeGenerationTime
Consumes Standard Header

Files
1 Meth.bindingTime =

CodeGenerationTime
Consumes Application Header

File
1..* Meth.bindingTime =

CodeGenerationTime
Consumes Basic Software

Module Interlink
Header

1..* Meth.bindingTime =
CodeGenerationTime

Consumes Build Action Mani-
fest

0..1 The task may be controlled by a Build
Action Manifest.

Consumes RTE Prebuild Con-
figuration Header

0..1 Meth.bindingTime = PreCompileTime

Consumes Atomic Soft-
ware Component
Source Code

0..* Meth.bindingTime =
CodeGenerationTime

Consumes BSW Module Con-
figuration Data
Source Code

0..* Meth.bindingTime =
CodeGenerationTime

Consumes BSW Module Con-
figuration Header
File

0..* Meth.bindingTime =
CodeGenerationTime

Consumes BSW RTE Pre-
build Configuration
Header

0..* Meth.bindingTime = PreCompileTime

Consumes Basic Software
Interlink Types
Header

0..* Meth.bindingTime =
CodeGenerationTime

Consumes Basic Software
Module Core
Header

0..* Meth.bindingTime =
CodeGenerationTime

Consumes Basic Software
Module Core
Source Code

0..* Meth.bindingTime =
CodeGenerationTime

Consumes Component RTE
Prebuild Configu-
ration Header

0..* Meth.bindingTime =
CodeGenerationTime

457 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes Library Header

Files
0..* Meth.bindingTime =

CodeGenerationTime
Consumes Optimized Applica-

tion Header File
0..* Meth.bindingTime =

CodeGenerationTime
Consumes Software Compo-

nent Data Types
Header

0..* Meth.bindingTime =
CodeGenerationTime

Produces ECU Object Code 1..* Meth.bindingTime = CompileTime
Used tool Compiler 1

Table 3.280: Compile ECU Source Code

3.6.1.28 Generate ECU Executable

Generate
ECU
Executable

Atomic Software
Component Object
Code

Basic Software
Module Object Code

Library Object
Code

ECU Configuration
Values

ECU Resources
Description

ECU Object Code

Map of the ECU Executable

ECU Executable

Linker

ECU Integrator

Build Action Manifest

0..*

 «input»

0..*

 «input»

0..*

 «input»

0..1

 «input»

1..*

 «input»

1

 «performs»

0..1

 «input»

0..1

 «input»

 «output»

1

 «output»

1

 «used tool»

Figure 3.147: Generate ECU Executable

458 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Generate ECU Executable
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Generate the executable code of the ECU out of the object files and

linker configuration.
Description The steps to generate the code for an ECU resemble today’s

development practice. However, it is important to note that this activity
is more than a simple linker step. Information from the ECU
Configuration Description might be used to generate specially
configured executable software. The ECU Configuration Description is
needed as input to the Generate Executable activity, because it
contains the information which BSW modules and SWC
implementations are used to create the executable and further
information about the memory mapping.

The output of this activity is the ECU Executable and the Map of
Executable (which is typically the log file from linking the ECU
Executable).

The detailed input and output formats of this task are not standardized
by AUTOSAR, therefore this task is only included for informative
purposes. Note that ECU Configuration is shown as an input to get the
overall picture, however in practice more specific artifacts (e.g. linker
settings, make file etc.) will have to be generated out of the ECU
configuration before the actual software build can be started.
Especially, the information about the mapping of the physical memory
sections to the memory section used in the software, which is
described in the so-called EcuC parameter values, is needed in order
to generate the linker settings.

Meth.bindingTime = LinkTime
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes ECU Object Code 1..* from generated or delivered source code

Meth.bindingTime = CompileTime
Consumes Build Action Mani-

fest
0..1 The task may be controlled by a Build

Action Manifest.
Consumes ECU Configuration

Values
0..1 may be used to set up build environment

Meth.bindingTime = CompileTime
Consumes ECU Resources

Description
0..1 may be used to set up build environment

Meth.bindingTime = CompileTime
Consumes Atomic Software

Component Object
Code

0..* Meth.bindingTime = CompileTime

Consumes Basic Software
Module Object
Code

0..* for object code delivery
Meth.bindingTime = CompileTime

Consumes Library Object
Code

0..* for object code delivery
Meth.bindingTime = CompileTime

Produces ECU Executable 1 Meth.bindingTime = LinkTime
Produces Map of the ECU

Executable
1 Meth.bindingTime = LinkTime

Used tool Linker 1

459 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Predecessor Encapsulate SW-C 1
Predecessor Generate BSW

and RTE
1

Table 3.281: Generate ECU Executable

3.6.1.29 Generate RTE Postbuild Dataset

Generate RTE
Postbuild Dataset

ECU Configuration
Values

ECU Extract
RTE Postbuild
Variants Dataset

Postbuild Variant Set Predefined Variant

Service
Component
Description

ECU Integrator

RTE GeneratorBuild Action
Manifest

1 «input»

1

 «input»

1

 «input»

1

 «performs»

0..*

 «input»

0..1

 «input»

1

 «input»

 «output» 1

 «used tool»

Figure 3.148: Generate RTE Postbuild Dataset

Task Definition Generate RTE Postbuild Dataset
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Postbuild Data Set Generation Phase for the RTE: It binds all variations

which are for postbuild time.
Description Data Set Generation Phase for the RTE: It binds all variations which

are for postbuild time. The output is a data set which can be used to
build an image separately from the main code.

The supported post-build variants are defined by the
PredefinedVariants referred in the post-build section of the RTE
configuration. At runtime, only one of those variants can be active. This
selection is done via the initialization structure for the BSW Scheduler.
The actual value for this iniialization structure used for runtime
initialization is defined by the configuration of the ECU State Manager.

Meth.bindingTime = PostBuild
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes ECU Configuration

Values
1 Meth.bindingTime = LinkTime

460 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes ECU Extract 1 Meth.bindingTime = LinkTime
Consumes Postbuild Variant

Set
1

Consumes Predefined Variant 1
Consumes Build Action Mani-

fest
0..1 The task may be controlled by a Build

Action Manifest.
Consumes Service Compo-

nent Description
0..* Meth.bindingTime = LinkTime

Produces RTE Postbuild
Variants Dataset

1 Meth.bindingTime = PostBuild

Used tool RTE Generator 1

Table 3.282: Generate RTE Postbuild Dataset

3.6.1.30 Generate A2L

Generate A2L

A2L File

Calibration
Engineer

Local
Measurement and
Calibration Support
Data

Map of the ECU
Executable

MC Driver Support Data

RTE Measurement
and Calibration
Support Data

Alias Name Set MC Additional
Config

MC Function Model ECU Flat Map Build Action
Manifest

 «output» 1

1

 «performs»

0..1

 «input»

1

 «input»

1

 «input»

0..*

 «input»

0..1

 «input»

0..1

 «input»

0..1

 «input»

0..*

 «input»

0..*

 «input»

Figure 3.149: Generate A2L

461 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Generate A2L
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Generate the A2L File for an ECU.
Description The A2L File created by this task is the final representation of the data

given by RTE Measurement and Calibration Support Data and Local
Measurement and Calibration Support Data.

The main purpose of this task is to replace all symbolic information on
data location found in these input data by actual addresses. Optionally,
it replaces identifiers by alias names given in Alias Name Set(s).
Finally is completes the A2L file with configuration from ECU driver
software (MC Driver Support Data) and configuration not determined
by AUTOSAR artifacts (MC Additional Configuration).

This task is not part of AUTOSAR, it is only included for completeness
of the use cases. The Map of the ECU Executable (linker map file) is
shown as input in order to illustrate the principle use case only. Note
that one needs additional information, like the .ELF or .COFF file, to
resolve addresses of elements of composite C-variables.

Relation Type Related Element Mul. Note
Performed by Calibration Engi-

neer
1

Consumes Map of the ECU
Executable

1

Consumes RTE Measurement
and Calibration
Support Data

1

Consumes Build Action Mani-
fest

0..1 The task may be controlled by a Build
Action Manifest.

Consumes ECU Flat Map 0..1 The ECU Flat Map is needed in case the
A2L generator has to process an MC
Function Model that relates to data in the
ECU Flat Map.

Consumes MC Additional
Config

0..1

Consumes MC Function
Model

0..1 This input is needed if the keyword
FUNCTION shall be supported in the
generated A2L.

Consumes Alias Name Set 0..*
Consumes Local Measure-

ment and Cali-
bration Support
Data

0..*

Consumes MC Driver Support
Data

0..*

Produces A2L File 1 Meth.bindingTime =
CodeGenerationTime

Table 3.283: Generate A2L

462 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.1.31 Measure Resources

Measure Resources

Atomic Software
Component
Implementation

ECU Resources
Description

ECU Integrator

ECU Executable

Map of the ECU
Executable

BSW Module
Implementation
Extension

 «output»

0..*

0..1

 «input»

1

 «performs»

1

 «input»

0..1 «input»

 «output»
0..*

Figure 3.150: Measure Resources

Task Definition Measure Resources
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Measure the resource consumption and update the implementation

section of the Application SWC and BSW Module Descriptions.
Description Measure the resource consumption and update the implementation

section of the Application SWC and BSW Module Descriptions.
Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes ECU Executable 1
Consumes ECU Resources

Description
0..1

Consumes Map of the ECU
Executable

0..1

Produces Atomic Software
Component Imple-
mentation

0..* Add extensions to the Implementation
Description.
Meth.bindingTime = PostBuild

Produces BSW Module
Implementation
Extension

0..* Meth.bindingTime = PostBuild

Table 3.284: Measure Resources

463 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.1.32 Refine Rapid Prototyping Scenario

Refine Rapid
Prototyping Scenario

Rapid Prototyping
Engineer

Software Component Internal
Behavior

ECU Extract of Rapid
Prototyping Scenario

ECU Extract

0..1

«SPEM_Aggregation»

 «inoutput» 11 «input»

1

 «performs»

Figure 3.151: Refine Rapid Prototyping Scenario

Task Definition Refine Rapid Prototyping Scenario
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description
Description Add missing ECU specific information in the Rapid Prototyping

Scenario, e.g. missing RptHooks or hook implementation decisions.
Relation Type Related Element Mul. Note
Performed by Rapid Prototyping

Engineer
1

Consumes Software Compo-
nent Internal Be-
havior

1

In/out ECU Extract of
Rapid Prototyping
Scenario

1

Predecessor Generate ECU Ex-
tract

1

Table 3.285: Refine Rapid Prototyping Scenario

464 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.2 Work Products

3.6.2.1 BSW Module Integration Bundle

BSW Module
Bundle

BSW Module
Integration
Bundle

BSW Module
Interface Extension

BSW Module
Behavior Extension

BSW Module
Implementation
Extension

Local
Measurement and
Calibration Support
Data

BSW Module
Delivered
Bundle

 «extends»

 «extends»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

Figure 3.152: BSW Module Integration Bundle

Deliverable BSW Module Integration Bundle
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description
Description Contains the BSW artifacts for one or more BSW modules completed

during integration.
Kind Delivered
Extends BSW Module Delivered Bundle
Relation Type Related Element Mul. Note
Aggregates BSW Module Be-

havior Extension
0..*

Aggregates BSW Module
Implementation
Extension

0..*

Aggregates BSW Module Inter-
face Extension

0..*

Aggregates Local Measure-
ment and Cali-
bration Support
Data

0..*

465 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumed by Generate Sched-

uler
1..* Input for BSW scheduling, BSW mode

and trigger declaration, BSW exclusive
areas, BSW calibration parameters that
need support for software emulation.

Optionally, a Build Action Manifest maybe
be used to control the generator steps.
Meth.bindingTime = SystemDesignTime

Consumed by Generate RTE 0..* Input for BSW scheduling, BSW mode
and trigger declaration, BSW exclusive
areas, BSW calibration parameters that
need RTE support (for software
emulation).

Optionally, a Build Action Manifest maybe
be used to control the generator steps.
Meth.bindingTime = SystemDesignTime

Table 3.286: BSW Module Integration Bundle

3.6.2.2 ECU Software Delivered

ECU Software
Delivered

ECU Executable A2L FileBSW Module
Configuration Data
Loadable to ECU Memory

0..*

«SPEM_Aggregation»

0..*

«SPEM_Aggregation»

1..*

«SPEM_Aggregation»

Figure 3.153: ECU Software Delivered

466 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Deliverable ECU Software Delivered
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description All the work products that form the deliverable of an AUTOSAR ECU.
Description All the work products that form the deliverable of an AUTOSAR ECU

software build.

ECU in this context means processor, so if an electronic control unit
consists of several processors, one "ECU Software Delivered" will be
needed for each processor.

Note that the detailed format for all parts of this deliverable is not
defined by AUTOSAR.

Kind Delivered
Relation Type Related Element Mul. Note
Aggregates ECU Executable 1..*
Aggregates A2L File 0..*
Aggregates BSW Module Con-

figuration Data
Loadable to ECU
Memory

0..*

Produced by Integrate Software
for ECU

1

Table 3.287: ECU Software Delivered

3.6.2.3 Service Component Description

Artifact Service Component Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description Describes the RTE relevant part of an AUTOSAR Service on a given

ECU in form of a ServcieComponentType with all its ports and an
internal behavior.

Description Describes the RTE relevant part of an AUTOSAR Service on a given
ECU in form of a ServiceComponentType with all its ports and an
internal behavior. This artifact must be generated during the ECU
configuration process, latest before the RTE is generated. It depends
on the needs of the software components for this AUTOSAR Service.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Create Service

Component
1 Meth.bindingTime = SystemDesignTime

Consumed by Connect Service
Component

1 Required in order to define the connector
links to the ports on the BSW side.

467 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumed by Configure NvM 0..* The configuration of diagnostics,

especially of the DEM, typically leads to
the definition of additional data to be
stored in NvM. One possibility to handle
this is to create ServiceNeeds on the
level ServiceComponentType which is
then taken into account for the
configuration of the NvM.

Consumed by Configure RTE 0..* The Internal Behavior of Service
Components contributes to the RTE
configuration.

Consumed by Generate RTE 0..* Meth.bindingTime = SystemDesignTime
Consumed by Generate RTE

Postbuild Dataset
0..* Meth.bindingTime = LinkTime

Consumed by Generate RTE
Prebuild Dataset

0..* Meth.bindingTime =
CodeGenerationTime

Use meta model element ServiceSwCompo-
nentType

1

Use meta model element SwcInternalBehav-
ior

1

Table 3.288: Service Component Description

3.6.2.4 ECU Service Connectors

Artifact ECU Service Connectors
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description The conectors to the Service Components which complete the

complete Software Composition predefined in the ECU extract.
Description The assembly connectors to the Service Components which complete

the Software Composition predefined in the ECU extract. These
connectores are added during ECU integration as a separate artifact to
the already defined composition of Atomic Software Components.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Connect Service

Component
1..* Meth.bindingTime = SystemDesignTime

Consumed by Define ECU Tim-
ing

1..*

Consumed by Generate RTE 0..* Meth.bindingTime = SystemDesignTime
Use meta model element AssemblySw

Connector
1

Table 3.289: ECU Service Connectors

3.6.2.5 ECU Timing

468 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact ECU Timing
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description TimingDescription and TimingConstraints for a concrete ECU
Description TimingDescription and TimingConstraints defined for a concrete ECU

taking the ECU configuration and the ECU Software Composition
(including their implementation) into account.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Define ECU Tim-

ing
1 Meth.bindingTime = SystemDesignTime

Consumed by Configure OS 0..1
Consumed by Configure RTE 0..1
Consumed by Configure Watch-

dog Manager
0..1

Consumed by Create Service
Component

0..1 Additional information for fine tuning
configuration decisions.

Use meta model element EcuTiming 1

Table 3.290: ECU Timing

3.6.2.6 BSW Module Interface Extension

Artifact BSW Module Interface Extension
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description
Description Additions to the BSW Module on the interface level during integration.

It is used for example to add Basic Software Module Entries in
response to the ECU configuration, for example callback declarations.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by BSW Module Inte-

gration Bundle
0..*

Produced by Generate BS
W Configuration
Code

0..1

Use meta model element BswModuleDe-
scription

1

Use meta model element BswModuleEntry 1

Table 3.291: BSW Module Interface Extension

3.6.2.7 BSW Module Behavior Extension

469 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact BSW Module Behavior Extension
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description
Description Additions to the BSW Module on the behavior level during integration.

It can for example be used to add local data declaration
(constantMemory, staticMemory, perInstanceMemory) for debug or
calibration purposes in response to configuration parameters.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by BSW Module Inte-

gration Bundle
0..*

Produced by Generate BS
W Configuration
Code

0..1

Consumed by Generate Local M
C Data Support

0..1 Meth.bindingTime = SystemDesignTime

Use meta model element BswInternalBehav-
ior

1

Table 3.292: BSW Module Behavior Extension

3.6.2.8 BSW Module Implementation Extension

Artifact BSW Module Implementation Extension
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description
Description Additions to the BSW Module on the implementation level during

integration. It is used for example to add information on resource
consumption.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by BSW Module Inte-

gration Bundle
0..*

Produced by Generate BS
W Configuration
Code

0..1

Produced by Measure Re-
sources

0..* Meth.bindingTime = PostBuild

Use meta model element BswImplementa-
tion

1

Table 3.293: BSW Module Implementation Extension

3.6.2.9 ECU Configuration Values

470 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact ECU Configuration Values
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description The collection of all configuration values for an ECU.
Description First of all, the ECU Configuration Values contain a link to the System

element which comes with the ECU Extract thus it can be used as a
root element for integration on this ECU.

Furtheron, it contains a collection of all configuration values for an
ECU, which is gradually filled. Starting with the root element
EcucValueCollection it contains the actual configuration settings
EcucModuleConfigurationValues for each module including the RTE.
Note that due to their strong interrelation, these parts are not
considered as separate artifacts in the use cases for ECU integration.

A special set of configuration values is the so-called
EcuC-configuration: It contains the configuration values which are
relevant for the whole ECU. Tools that interpret the configuration values
need to know the underlying parameter definition. Therefore, in
addition to the configuration values, each EcucValueCollection
contains a link and the version of the parameter definition to which it
adheres. This parameter definition is either part of the AUTOSAR
Standardized ECU Configuration Parameter Definition or, in case of
vendor specific extensions, is given by the artifact Basic Software
Module Vendor-Specific Configuration Parameter Definition.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Configure

Memmap Allo-
cation

1 MemMapAllocation:
Meth.bindingTime = SystemDesignTime

Produced by Create Service
Component

1 Enter links to the created
SwComponentPrototypes.
Meth.bindingTime = SystemDesignTime

Produced by Generate Base
Ecu Configuration

1 Meth.bindingTime = SystemDesignTime

Produced by Prepare ECU Con-
figuration

1

Produced by Generate RTE 0..1 Optional output for the configuration of
the OS.
Meth.bindingTime =
CodeGenerationTime

In/out Configure BSW
and RTE

1

In/out Configure Com 1
In/out Configure Debug 1
In/out Configure Diag-

nostics
1 Configuration Values for DEM, DCM,

DLT, FIM.
In/out Configure ECUC 1
In/out Configure IO Hard-

ware abstraction
1

In/out Configure MCAL 1

471 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
In/out Configure Mode

Management
1

In/out Configure NvM 1
In/out Configure OS 1
In/out Configure RTE 1
In/out Configure Trans-

former
1

In/out Configure Watch-
dog Manager

1

In/out Generate Updated
ECU Configuration

1 The task "Generate Updated ECU
Configuration" consumes the initial ECU
configuration values and produces the
updated ECU configuration values.

Consumed by Define ECU Tim-
ing

1

Consumed by Generate BS
W Configuration
Code

1

Consumed by Generate BSW
Memory Mapping
Header

1 MemMapAllocation: Mapping of the
abstract sections (SwAddressMethods
for generic mapping resp.
MemorySection Elements for specific
mapping) to the compiler specific
MemMapAddressingModes.
Meth.bindingTime = SystemDesignTime

Consumed by Generate BSW
Postbuild Configu-
ration Code

1

Consumed by Generate BSW
Precompile Con-
figuration Header

1

Consumed by Generate BSW
Source Code

1

Consumed by Generate BSW
and RTE

1

Consumed by Generate OS 1 Meth.bindingTime = SystemDesignTime
Consumed by Generate RTE 1 Meth.bindingTime = SystemDesignTime
Consumed by Generate RTE

Postbuild Dataset
1 Meth.bindingTime = LinkTime

Consumed by Generate RTE
Prebuild Dataset

1 find the Predefiined Variant to be used
Meth.bindingTime =
CodeGenerationTime

Consumed by Generate SWC
Memory Mapping
Header

1 MemMapAllocation: Mapipng of the
abstract sections (SwAddressMethods
for generic mapping resp.
MemorySection Elements for specific
mapping) to the compiler specific
MemMapAddressingModes.
Meth.bindingTime = SystemDesignTime

472 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumed by Generate Sched-

uler
1 Configuration values for the BSW

Scheduler (subset of RTE configuration).

Meth.bindingTime = SystemDesignTime
Consumed by Create Service

Component
0..1 The creation of Service Component

details may depend on ECU
configuration values, especially for the
DCM.

Consumed by Generate BSW
Memory Mapping
Header

0..1 moduleDescription: List of used BSW
modules (EcucValueCollec-
tion.ecucValue.moduleDescription)
Meth.bindingTime = SystemDesignTime

Consumed by Generate Compiler
Configuration

0..1 RteImplementationRef: Existence of
SWCs could be identified by usage of the
RTE ECU Configuration "RteSwCompo-
nentType.RteImplementationRef"
Meth.bindingTime = SystemDesignTime

Consumed by Generate Compiler
Configuration

0..1 ModuleDescription: List of used BSW
modules (EcucValueCollec-
tion.ecucValue.moduleDescription)
Meth.bindingTime = SystemDesignTime

Consumed by Generate ECU Ex-
ecutable

0..1 may be used to set up build environment
Meth.bindingTime = CompileTime

Consumed by Generate SWC
Memory Mapping
Header

0..1 RteImplementationRef: Existence of
SWCs could be identified by usage of the
RTE ECU Configuration "RteSwCompo-
nentType.RteImplementationRef"
Meth.bindingTime = SystemDesignTime

Use meta model element EcucModuleCon-
figurationValues

1

Use meta model element EcucValueCollec-
tion

1

Table 3.294: ECU Configuration Values

3.6.2.10 RTE Implementation Description

Artifact RTE Implementation Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description Implementation Description for the RTE, generated by the RTE

generator.
Description Implementation Description for the RTE, generated by the RTE

generator. Uses the format of BswImplementation. This artifact is
required to provide information for other generators and the build
process, namely debugging information, memory section. It
aggregates also the support data for measurement and calibration,
which is considered as a separate artifact.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note

473 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Produced by Generate RTE 1 Meth.bindingTime =

CodeGenerationTime
Produced by Generate Sched-

uler
0..1 Creates a subset of the RTE

implementation description that contains
only the description of data owned by the
BSW Scheduler.
Meth.bindingTime =
CodeGenerationTime

Use meta model element BswImplementa-
tion

1

Table 3.295: RTE Implementation Description

3.6.2.11 RTE Prebuild Configuration Header

Artifact RTE Prebuild Configuration Header
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description RTE Prebuild Configuration Header File. It defines all variants for the

RTE code which have to be bound later than code generation time but
before build time.

Description RTE Prebuild Configuration Header File. It defines the setting of all
variants for the RTE code (via macro code) which have to be bound
later than code generation time but before build time.

Kind Bound Source Code
Relation Type Related Element Mul. Note
Produced by Generate RTE

Prebuild Dataset
1 Meth.bindingTime = PreCompileTime

Consumed by Compile ECU
Source Code

0..1 Meth.bindingTime = PreCompileTime

Table 3.296: RTE Prebuild Configuration Header

3.6.2.12 Calibration Parameter Value Set

474 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Calibration Parameter Value Set
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description Calibration Parameter Value Setting
Description A set of calibration parameter values used to initialize the memory

objects which implement calibration parameters. The values are
specific for the software component instances in ECU scope. They will
override any initial values defined for those parameters within the ECU
Extract. The parameter values can be defined as ApplicationDataTypes
or as ImplementationDataTypes which has several use cases. These
two use cases are supported by the RTE generation phase:

• Parameter values defined as ImplementationDataTypes can be
used as instance specific initialization for calibration parameters
within components as soon as the respective
ImplementationDataTypes are available (which must be the case
for RTE generation anyhow).

• Parameter values defined as ApplicationDataTypes can be used
as instance specific initialization for calibration parameters which
are only defined with ApplicationDataTypes.

The next case is not modelled within AUTOSAR in detail:

• Parameter values defined as ApplicationDataTypes can be used
to exchange initial values with the component vendor not
publishing the transformation algorithm between
ApplicationDataTypes and ImplementationDataTypes

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Provide RTE Cali-

bration Dataset
1

Consumed by Generate RTE 0..1 Meth.bindingTime = SystemDesignTime
Use meta model element CalibrationParam-

eterValueSet
1

Table 3.297: Calibration Parameter Value Set

3.6.2.13 MC Function Model

475 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact MC Function Model
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description A functional model to be used for A2L generation.
Description As set of nested McFunction elements to be used as input to generate

A2L. Its purpose is to

• assign calibration parameters to a logical function

• assign measurement variables to a logical function

• structure functions hierarchically

It shall support the generation of the FUNCTION keyword and related
elements defined in ASAM MCD-2 MC.

An MC Function Model refers to the data descriptions in other
AUTOSAR XML artifacts either via entries in the ECU Flat Map or via
McDataInstances being part of Measurement and Calibration Support
Data.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Create MC Func-

tion Model
1

Consumed by Generate A2L 0..1 This input is needed if the keyword
FUNCTION shall be supported in the
generated A2L.

Use meta model element McFunction 1

Table 3.298: MC Function Model

3.6.2.14 Local Measurement and Calibration Support Data

476 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Local Measurement and Calibration Support Data
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description Generated artifact, which supports the later generation of "A2L"-files

for measurement and calibration data which are owned locally by a
component or module.

Description Generated artifact which is used as an input for the later generation of
"A2L"-files for measurement and calibration. It relates the measurment
and calibration data listed in the ECU FlatMap to the C-variables used
locally within a component or module (this is relevant only valid for
those parameters and variables, which are not implemented by the
RTE) . In addition, it contains all configuration data which are relevant
for the A2L generator (e.g. the access method to calibration data
whithin a Complex Driver).

This XML-artifact is linked via a (splitable) aggregation to the
Implementation Description of the component or module, but it is
considered as a separate artifact.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by BSW Module Inte-

gration Bundle
0..*

Produced by Generate Local M
C Data Support

1 Meth.bindingTime =
CodeGenerationTime

Consumed by Create MC Func-
tion Model

0..* Used if the MC Function Model shall
refer to McDataInstances allocated by
BSW modules without RTE support.

Consumed by Generate A2L 0..*
Use meta model element McSupportData 1

Table 3.299: Local Measurement and Calibration Support Data

3.6.2.15 RTE Measurement and Calibration Support Data

477 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact RTE Measurement and Calibration Support Data
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description RTE generator output, which supports the later generation of

"A2L"-files for the measurement and calibration data which are owned
by the RTE.

Description RTE generator output, which is used as an input for the later
generation of "A2L"-files for measurement and calibration. It relates the
measurement and calibration data listed in the ECU FlatMap to the
C-variables of the generated RTE code. For all these data it contains
copies of the attributes which are relevant for A2L generation. In
additions it contains all configuration data which are relevant for the
A2L generator (namely the access method to calibration data which is
supported by the RTE). This XML-artifact is linked via a (splitable)
aggregation to the RTE Implementation Description, but is considered
as a separate artifact.

The most important attributes for each data instance are:

• Its shortName copied from the ECU Flat Map to be used as
identifier and for display by the MC system.

• The category copied from the corresponding data type
(ApplicationDataType if defined, otherwise
ImplementationDataType) as far as applicable.

• The symbol used in the programing language. It will be used to
find out the actual memory address by the final generation tool
with the help of linker generated information.

• All aggregated and referred elements like CompuMethod or
BaseType describing the data (with the exception of the Flat
Map) are completely copied from "upstream" information.
Therefore this artifact is a self-contained description which can
be forwarded to the A2L generator without needing related
descriptions.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Generate RTE 0..1 Meth.bindingTime =

CodeGenerationTime
Produced by Generate Sched-

uler
0..1 Creates a subset of the measurement &

calibration support data related only to
the data owned by the BSW Scheduler.
Meth.bindingTime =
CodeGenerationTime

Consumed by Generate A2L 1
Consumed by Create MC Func-

tion Model
0..1 Used if the MC Function Model shall

refer to McDataInstances allocated by
the RTE.

Use meta model element McSupportData 1

Table 3.300: RTE Measurement and Calibration Support Data

478 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.2.16 RTE Source Code

Artifact RTE Source Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description Source code implementiing the RTE on a CPU.
Description Source code implementing the RTE on a CPU.

The output of an RTE generator can consist of both generated code
and configuration for library code that may be supplied as either object
code or source code. Both configured and generated code reference
standard definitions that are defined in one of two standardized header
files: The RTE Header File and the Lifecycle Header File. These
header files are not explicitly shown in the methodology, as in all tasks
they appear with the RTE source code. For details refer to
AUTOSAR_SWS_RTE.pdf.

Apart from this, the file structure is not standardized, and therefore
represented as one single artifact in the methodology. In general, the
RTE code can be partitioned in several files. The partitioning depends
on the RTE vendor’s software design and generation strategy.
Nevertheless it shall be possible to clearly identify code and header
files which are part of the RTE module.

Kind Source Code
Relation Type Related Element Mul. Note
Produced by Generate BSW

and RTE
1

Produced by Generate RTE 1 Meth.bindingTime =
CodeGenerationTime

Consumed by Compile ECU
Source Code

1 Meth.bindingTime =
CodeGenerationTime

Table 3.301: RTE Source Code

3.6.2.17 BSW Scheduler Code

Artifact BSW Scheduler Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description Generated Code implementing the BSW Scheduler.
Description Generated Code implementing the BSW Scheduler. It can be source or

macro code.
Kind Source Code
Relation Type Related Element Mul. Note
Produced by Generate RTE 1 Meth.bindingTime =

CodeGenerationTime
Produced by Generate Sched-

uler
1 Meth.bindingTime =

CodeGenerationTime
Consumed by Compile ECU

Source Code
1 Meth.bindingTime =

CodeGenerationTime

479 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note

Table 3.302: BSW Scheduler Code

3.6.2.18 OS Generated Code

Artifact OS Generated Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description OS configuration generated code
Description OS configuration generated code. OS configuration code are

composed of header and C files. These will be compiled with the
source code in the build process (see Compile Source Code).

Kind Source Code
Relation Type Related Element Mul. Note
Produced by Generate OS 1 Meth.bindingTime =

CodeGenerationTime
Consumed by Compile ECU

Source Code
1 Meth.bindingTime =

CodeGenerationTime

Table 3.303: OS Generated Code

3.6.2.19 RTE Postbuild Variants Dataset

Artifact RTE Postbuild Variants Dataset
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description Generated code used to resolve postbuild variants in the RTE.
Description Generated code used to resolve postbuild variants in the RTE. It

consists of a c-file and a header file:

• The RTE generator must generate a Rte_PBCfg.c file containing
the declarations and initializations of one or more RTE post build
variants. Only one of these variants can be active at runtime.

• The RTE generator shall generate in the Rte_PBCfg.h file the
SchM_ConfigType type declaration of the predefined post build
variants data structure. This header file must be used by other
RTE modules to resolve their runtime variabilities.

Kind Bound Source Code
Relation Type Related Element Mul. Note
Produced by Generate RTE

Postbuild Dataset
1 Meth.bindingTime = PostBuild

Table 3.304: RTE Postbuild Variants Dataset

3.6.2.20 ECU Object Code

480 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact ECU Object Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description
Description Object code file produced by compilation during ECU integration.

To be distinguished from code files which are already delivered as
object code for integration (see Basic Software Module Object Code or
Atomic Software Component Object Code).

Kind Object Code
Relation Type Related Element Mul. Note
Produced by Compile ECU

Source Code
1..* Meth.bindingTime = CompileTime

Consumed by Generate ECU Ex-
ecutable

1..* from generated or delivered source code
Meth.bindingTime = CompileTime

Consumed by Link ECU Code
during Link Time
Configuration

1..*

Table 3.305: ECU Object Code

3.6.2.21 ECU Executable

Artifact ECU Executable
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description The executable image containing all the fully integrated software ready

to download to an ECU.
Description The executable image containing all the fully integrated software ready

to download to an ECU. This work product and its format is not defined
by AUTOSAR, it is only included for completeness of the use cases.

Kind Executable
Relation Type Related Element Mul. Note
Aggregated by ECU Software De-

livered
1..*

Produced by Generate ECU Ex-
ecutable

1 Meth.bindingTime = LinkTime

Produced by Link ECU Code
after Precompile
Configuration

1

Produced by Link ECU Code
during Link Time
Configuration

1

Consumed by Measure Re-
sources

1

Table 3.306: ECU Executable

3.6.2.22 Map of the ECU Executable

481 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact Map of the ECU Executable
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description Linker map file of the excecutable.
Description Linker map file of the excecutable. This work product and its format is

not defined by AUTOSAR, it is only included for completeness of the
use cases.

Kind Text
Relation Type Related Element Mul. Note
Produced by Generate ECU Ex-

ecutable
1 Meth.bindingTime = LinkTime

Consumed by Generate A2L 1
Consumed by Measure Re-

sources
0..1

Table 3.307: Map of the ECU Executable

3.6.2.23 A2L File

Artifact A2L File
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description Input file for measurment and calibration tools.
Description Input file for measurement and calibration tools related to one ECU.

This format is not in the scope of AUTOSAR, it is defined by the ASAM
organization. The work product is only included for completeness of
the use cases.

Kind Text
Relation Type Related Element Mul. Note
Aggregated by ECU Software De-

livered
0..*

Produced by Generate A2L 1 Meth.bindingTime =
CodeGenerationTime

Table 3.308: A2L File

3.6.2.24 MC Driver Support Data

482 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact MC Driver Support Data
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description Support data describing the specific access of a driver (e.g. XCP) for

exchange of data for measurement and calibration.
Description Support data describing the specific access method of a driver (e.g.

XCP) in order to exchange data for measurement and calibration.
These are the so-called IF-DATA needed in the A2L files.

This artifact shall be generated by a driver(e.g. XCP) specific
generator out of its ECU configuration. This format is not defined by
AUTOSAR. The work product is only included for completeness of the
use cases.

Kind Custom
Relation Type Related Element Mul. Note
Consumed by Generate A2L 0..*

Table 3.309: MC Driver Support Data

3.6.2.25 MC Additional Config

Artifact MC Additional Config
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work

Products
Brief Description External configuration data nedded to generate the A2L file.
Description Additional configuration data needed to generate the A2L file. This

format is not defined by AUTOSAR. The work product is only included
for completeness of the use cases.

Kind Custom
Relation Type Related Element Mul. Note
Consumed by Generate A2L 0..1

Table 3.310: MC Additional Config

3.6.3 Tools

3.6.3.1 RTE Generator

Tool RTE Generator
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::

Guidance
Brief Description
Description RTE Generator used for several tasks during ECU integration.
Kind
Relation Type Related Element Mul. Note
Used Generate RTE 1
Used Generate RTE

Postbuild Dataset
1

483 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Used Generate RTE

Prebuild Dataset
1

Used Generate Sched-
uler

1

Table 3.311: RTE Generator

3.6.3.2 BSW Generator Framework

Tool BSW Generator Framework
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::

Guidance
Brief Description
Description Framework that uses BSW generators that are being delivered as part

of individual modules.
Kind
Relation Type Related Element Mul. Note
Used Generate BS

W Configuration
Code

1

Table 3.312: BSW Generator Framework

3.6.4 ECU Config Classes

3.6.4.1 Tasks

3.6.4.1.1 Compile Unconfigured Bsw

Basic Software
Module Core
Header

Compile
Unconfigured
BSW

Basic Software
Module Core
Source Code

Basic Software
Module Object
Code

Compiler

1

 «input»

1

 «input»

 «output» 1

 «used tool»

Figure 3.154: Compile Unconfigured Bsw

484 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Compile Unconfigured BSW
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU

Config Classes::Tasks
Brief Description Compile unconfigured BSW to get a BSW Module Object Code.
Description Compile Unconfigured BSW is the usual step to compile files without

any configuration data when no configuration is needed. This can be
use either in the pre-compile, link or post-build time.

Relation Type Related Element Mul. Note
Consumes Basic Software

Module Core
Header

1

Consumes Basic Software
Module Core
Source Code

1

Produces Basic Software
Module Object
Code

1

Used tool Compiler 1

Table 3.313: Compile Unconfigured BSW

3.6.4.1.2 Compile Configured Bsw

Compile
Configured
BSW

BSW Module
Configuration Header
File

Basic Software
Module Core Header

Basic Software
Module Core
Source Code

Basic Software
Module Object Code

Compiler

 «used tool»

 «output» 1

1

 «input»

1 «input»

1

 «input»

Figure 3.155: Compile Configured Bsw

485 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Compile Configured BSW
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU

Config Classes::Tasks
Brief Description Compile Configured BSW to get a BSW Module Object Code
Description Compile Configured BSW to get a Basic Software Module Object Code

used in the link steps. This Configured BSW is representing C files that
have already included all needed configured data. This is done in the
pre-compile time.

Relation Type Related Element Mul. Note
Consumes BSW Module Con-

figuration Header
File

1

Consumes Basic Software
Module Core
Header

1

Consumes Basic Software
Module Core
Source Code

1

Produces Basic Software
Module Object
Code

1

Used tool Compiler 1

Table 3.314: Compile Configured BSW

3.6.4.1.3 Compile BSW Configuration Data

Compile BSW
Configuration
Data

BSW Module
Configuration
Header File

Basic Software
Module Core
Header

BSW Module
Configuration Data
Object Code

BSW Module
Configuration
Data Source
Code

Compiler

1 «input»

1

 «input»

1

 «input»

 «used tool»

 «output» 1

Figure 3.156: Compile BSW Configuration Data

486 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Compile BSW Configuration Data
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU

Config Classes::Tasks
Brief Description Compile BSW Configuration Data during link time
Description Compile BSW Configuration Data during link-time- or post-build

configuration to get the Basic Software Module Configuration Data
Object Code used in the link steps.

Relation Type Related Element Mul. Note
Consumes BSW Module Con-

figuration Data
Source Code

1

Consumes BSW Module Con-
figuration Header
File

1

Consumes Basic Software
Module Core
Header

1

Produces BSW Module Con-
figuration Data Ob-
ject Code

1

Used tool Compiler 1

Table 3.315: Compile BSW Configuration Data

3.6.4.1.4 Compile Generated BSW

Compile
Generated
BSW

BSW Module
Configuration
Header File

BSW Module Completely
Generated Source Code Basic Software

Module Object
Code

Compiler

 «output» 1

 «used tool»

1 «input»

1

 «input»

Figure 3.157: Compile Generated BSW

487 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Compile Generated BSW
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU

Config Classes::Tasks
Brief Description Compile generated BSW in the pre-compile time:
Description Compile generated BSW in the pre-compile time: this generated BSW

has been generated with a BSW Configuration generator which
generates the complete configuration-specific code.

Relation Type Related Element Mul. Note
Consumes BSW Module

Completely Gen-
erated Source
Code

1

Consumes BSW Module Con-
figuration Header
File

1

Produces Basic Software
Module Object
Code

1

Used tool Compiler 1

Table 3.316: Compile Generated BSW

3.6.4.1.5 Generate BSW Precompile Configuration Header

Generate BSW Precompile
Configuration Header BSW Module

Configuration Header
File

ECU Configuration
Values

 «output» 11 «input»

Figure 3.158: Generate BSW Precompile Configuration Header

Task Definition Generate BSW Precompile Configuration Header
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU

Config Classes::Tasks
Brief Description Generate BSW Precompile Configuration Header
Description Generate BSW Pre-compile Configuration Header. The header is used

for definition or declaration (in case source code is needed) of the
pre-compile configuration data code.

Relation Type Related Element Mul. Note
Consumes ECU Configuration

Values
1

Produces BSW Module Con-
figuration Header
File

1

Table 3.317: Generate BSW Precompile Configuration Header

488 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.4.1.6 Generate BSW Source Code

Generate BSW Source
Code

BSW Module Completely
Generated Source Code

ECU Configuration Values

BSW Module Configuration Header
File

 «output»

1

1 «input»

 «output»

1

Figure 3.159: Generate BSW Source Code

Task Definition Generate BSW Source Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU

Config Classes::Tasks
Brief Description Generate the source code of a module completely from its precompile

configuration.
Description Generate the source code of a BSW module completely from its

pre-compile configuration. A header file may be produced in addition, if
required.

Relation Type Related Element Mul. Note
Consumes ECU Configuration

Values
1

Produces BSW Module
Completely Gen-
erated Source
Code

1

Produces BSW Module Con-
figuration Header
File

1

Table 3.318: Generate BSW Source Code

489 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.4.1.7 Generate BSW Configuration Code

Generate BSW
Configuration Code

ECU Configuration Values

BSW Module
Configuration Header
File

BSW Module
Configuration
Data Source
Code

 «output»

1

1 «input»

 «output»

1

Figure 3.160: Generate BSW Configuration Code

Task Definition Generate BSW Configuration Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU

Config Classes::Tasks
Brief Description Generate source code which implements configuration data for link- or

compile-time configuration.
Description A generator reads the relevant parameters from the ECU Configuration

Description and creates a separate code file that implements the
specified configuration. This task is used for link-time configuration, i.e.
the configuration code can be produced at link-time of the core code or
for compile-time configuration, if the configuration code cannot be put
into a header file (e.g. for tables), even if the core code and the
configuration code shall be compiled at the same time.

A header file may be produced in addition, to declare the data.

Furthermore the generator may produce extensions of the BSW
module description artifacts as a result of configuration parameter
values which are set at integration time.

Relation Type Related Element Mul. Note
Performed by ECU Integrator 1
Consumes ECU Configuration

Values
1

Consumes BSW Module Gen-
erator

0..1 This is an input in case a generator
framework is used which has to run
some module specific generator code.

Consumes Build Action Mani-
fest

0..1 The task may be controlled by a Build
Action Manifest.

490 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note
Consumes BSW Module

Vendor- Specific
Configuration Pa-
rameter Definition

0..*

Produces BSW Module Con-
figuration Data
Source Code

1

Produces BSW Module Con-
figuration Header
File

1

Produces BSW Module Be-
havior Extension

0..1

Produces BSW Module
Implementation
Extension

0..1

Produces BSW Module Inter-
face Extension

0..1

Used tool BSW Generator
Framework

1

Table 3.319: Generate BSW Configuration Code

3.6.4.1.8 Generate BSW Postbuild Configuration Code

Generate BSW Postbuild
Configuration Code

BSW Module Configuration
Header File

ECU Configuration Values

BSW Module
Configuration
Data Source
Code

1 «input»

 «output»

1

 «output»

1

Figure 3.161: Generate BSW Postbuild Configuration Code

491 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Task Definition Generate BSW Postbuild Configuration Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU

Config Classes::Tasks
Brief Description Generate the code for data structures that can be used for postbuild

configuration.
Description Generate the source code and associated header for data structures

that can be used for postbuild configuration.
Relation Type Related Element Mul. Note
Consumes ECU Configuration

Values
1

Produces BSW Module Con-
figuration Data
Source Code

1

Produces BSW Module Con-
figuration Header
File

1

Table 3.320: Generate BSW Postbuild Configuration Code

3.6.4.1.9 Link ECU after Precompile Configuration

Link ECU Code
after
Precompile
Configuration

ECU ExecutableBasic Software
Module Object Code

Linker

 «output» 11..* «input»

 «used tool»

Figure 3.162: Link ECU after Precompile Configuration

Task Definition Link ECU Code after Precompile Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU

Config Classes::Tasks
Brief Description Link the ECU code in the pre-compile time Configuration Class
Description Link the different BSW modules object code in the pre-compile

Configuration Class. All parameters values for configurable elements
have been already fixed and are effective after compilation time.

Relation Type Related Element Mul. Note
Consumes Basic Software

Module Object
Code

1..*

Produces ECU Executable 1
Used tool Linker 1

Table 3.321: Link ECU Code after Precompile Configuration

492 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.4.1.10 Link ECU Code During Link Time Configuration

Link ECU Code
during Link Time
Configuration ECU Executable

BSW Module Configuration
Data Object Code

Basic Software Module
Object Code

ECU Object Code

Linker

1..*
 «input»

1..*

 «input»

1..*

 «input»

 «output» 1

 «used tool»

Figure 3.163: Link ECU Code During Link Time Configuration

Task Definition Link ECU Code during Link Time Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU

Config Classes::Tasks
Brief Description Link ECU Code during Link Time
Description Link ECU Code during Link Time
Relation Type Related Element Mul. Note
Consumes BSW Module Con-

figuration Data Ob-
ject Code

1..*

Consumes Basic Software
Module Object
Code

1..*

Consumes ECU Object Code 1..*
Produces ECU Executable 1
Used tool Linker 1

Table 3.322: Link ECU Code during Link Time Configuration

493 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

3.6.4.1.11 Link ECU Code During Post-build Time

Link ECU Code
during Post-Build
Time

BSW Module Configuration
Data Loadable to ECU
Memory

BSW Module
Configuration Data
Object Code

Linker

 «output»
1

 «used tool»

1..*
 «input»

Figure 3.164: Link ECU Code During Post-build Time

Task Definition Link ECU Code during Post-Build Time
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU

Config Classes::Tasks
Brief Description Link ECU Code during post-build time loadable .
Description Link ECU Code during post-build time. The objects used for this link

are coming from configuration data file that contain all configured
parameters. The result of the link is a hex file that will be loadable in
the ECU memory.

Relation Type Related Element Mul. Note
Consumes BSW Module Con-

figuration Data Ob-
ject Code

1..*

Produces BSW Module Con-
figuration Data
Loadable to ECU
Memory

1

Used tool Linker 1

Table 3.323: Link ECU Code during Post-Build Time

3.6.4.2 Work Products

3.6.4.2.1 BSW Module Configuration Header File

494 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Artifact BSW Module Configuration Header File
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU

Config Classes::Work Products
Brief Description C-header file generated from the configuration data of a BSW module.
Description C-header file generated from the configuration data of a BSW module,

defining the data (only possible for pre-compile configuration) or
containing additional declarations (needed by generated configuration
code only).

Kind Bound Source Code
Relation Type Related Element Mul. Note
Produced by Generate BS

W Configuration
Code

1

Produced by Generate BSW
Postbuild Configu-
ration Code

1

Produced by Generate BSW
Precompile Con-
figuration Header

1

Produced by Generate BSW
Source Code

1

Produced by Generate BSW
and RTE

1

Consumed by Compile BSW
Configuration Data

1

Consumed by Compile Config-
ured BSW

1

Consumed by Compile Gener-
ated BSW

1

Consumed by Compile ECU
Source Code

0..* Meth.bindingTime =
CodeGenerationTime

Table 3.324: BSW Module Configuration Header File

3.6.4.2.2 BSW Module Completely Generated Source Code

Artifact BSW Module Completely Generated Source Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU

Config Classes::Work Products
Brief Description Generated BSW source code implementing the complete module after

inclusion of pre-compilation configuration data.
Description Generated BSW source code implementing the complete module after

inclusion of pre-compilation configuration data. In this case, no core
code is delivered by the module vendor.

Kind Source Code
Relation Type Related Element Mul. Note
Produced by Generate BSW

Source Code
1

Consumed by Compile Gener-
ated BSW

1

495 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note

Table 3.325: BSW Module Completely Generated Source Code

3.6.4.2.3 BSW Module Configuration Data Source Code

Artifact BSW Module Configuration Data Source Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU

Config Classes::Work Products
Brief Description BSW source code generated from configuration data, implementing

only the data.
Description BSW source code generated from configuration data, implementing

only the data.
Kind Bound Source Code
Relation Type Related Element Mul. Note
Produced by Generate BS

W Configuration
Code

1

Produced by Generate BSW
Postbuild Configu-
ration Code

1

Produced by Generate BSW
and RTE

1

Consumed by Compile BSW
Configuration Data

1

Consumed by Compile ECU
Source Code

0..* Meth.bindingTime =
CodeGenerationTime

Table 3.326: BSW Module Configuration Data Source Code

3.6.4.2.4 BSW Module Configuration Data Object Code

Artifact BSW Module Configuration Data Object Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU

Config Classes::Work Products
Brief Description Generated data for link-time or postbuild configuration of a BSW

module.
Description Generated & compiled configuration data for link-time or postbuild

configuration of a BSW module.
Kind Object Code
Relation Type Related Element Mul. Note
Produced by Compile BSW

Configuration Data
1

Consumed by Link ECU Code
during Link Time
Configuration

1..*

Consumed by Link ECU Code
during Post-Build
Time

1..*

496 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

Relation Type Related Element Mul. Note

Table 3.327: BSW Module Configuration Data Object Code

3.6.4.2.5 BSW Module Configuration Data Loadable to ECU Memory

Artifact BSW Module Configuration Data Loadable to ECU Memory
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU

Config Classes::Work Products
Brief Description Generated loadable configuration data for post-build configuration of a

BSW module.
Description Generated loadable configuration data for post-build configuration of a

BSW module.
Kind Configuration Data Set
Relation Type Related Element Mul. Note
Aggregated by ECU Software De-

livered
0..*

Produced by Link ECU Code
during Post-Build
Time

1

Table 3.328: BSW Module Configuration Data Loadable to ECU Memory

497 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

A History of Constraints and Specification Items

A.1 Constraint History of this Document according to AUTOSAR
R4.1.1

N/A

A.1.1 Added Specification Items in R4.1.1

Number Heading
[TR_METH_00001] Definition of Binding Time for Tasks
[TR_METH_00002] Definition of Binding Time for Artifacts
[TR_METH_00003] Definition of Binding Time for Artifacts in the context of particular tasks
[TR_METH_01000] Domains of the AUTOSAR methodology
[TR_METH_01001] AUTOSAR methodology assets
[TR_METH_01002] AUTOSAR methodology use cases
[TR_METH_01003] Scope of the AUTOSAR methodology
[TR_METH_01004] Support for various stakeholders by the AUTOSAR methodology
[TR_METH_01005] Restrictions of AUTOSAR methodology
[TR_METH_01006] General AUTOSAR methodology concepts
[TR_METH_01007] Method Library
[TR_METH_01008] Method Library Element
[TR_METH_01009] Relation of Method Library and Method Library Element to the SPEM

meta model
[TR_METH_01010] Overview of Method Library Elements
[TR_METH_01011] Task Definition
[TR_METH_01012] Task semantics
[TR_METH_01013] Task usage
[TR_METH_01014] Work Product Definition
[TR_METH_01015] Relationship between Roles and Work Products
[TR_METH_01017] Artifact Definition
[TR_METH_01018] Kinds of Artifacts
[TR_METH_01019] Properties of Artifacts
[TR_METH_01020] Relationship between Artifacts and meta model elements
[TR_METH_01021] Deliverable Definition
[TR_METH_01022] Aggregation of Work Products
[TR_METH_01023] Role Definition
[TR_METH_01024] Role assignment
[TR_METH_01025] Tool Definition
[TR_METH_01026] Guidance definition
[TR_METH_01027] Guidance kinds
[TR_METH_01028] Usage of tables
[TR_METH_01029] Capability Patterns definition
[TR_METH_01030] Composition of Capability Patterns
[TR_METH_01031] Adaptability of the AUTOSAR methodology
[TR_METH_01032] Use case elements
[TR_METH_01033] Definition of Activities
[TR_METH_01034] Composition of Activities
[TR_METH_01035] Definition of Processes
[TR_METH_01036] Description of overall Use Cases

498 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

[TR_METH_01037] Precise description of Use Cases
[TR_METH_01038] Detailed description of the work flow
[TR_METH_01039] AUTOSAR System development overview
[TR_METH_01040] Support of different system views
[TR_METH_01041] Abstract system
[TR_METH_01042] Overall technical system
[TR_METH_01043] Sub-System
[TR_METH_01044] Development of a functional view on the system
[TR_METH_01045] Development of the Overall VFB System
[TR_METH_01046] Development of the system
[TR_METH_01047] Two phase development approach
[TR_METH_01048] The overall system
[TR_METH_01049] Interaction between organizations
[TR_METH_01050] Abstract System Description activity
[TR_METH_01051] Creation of an overall abstract system
[TR_METH_01052] Definition of a constraints in the context of an abstract system
[TR_METH_01053] Definition of a System Description in the context of an abstract system
[TR_METH_01054] Virtual Functional Bus
[TR_METH_01055] Data Model Development activity
[TR_METH_01056] Definition of the VFB
[TR_METH_01057] Top-Down approach
[TR_METH_01058] Bottom-Up approach
[TR_METH_01059] Kinds of VFB Atomic Software Components
[TR_METH_01060] Develop an Atomic Software Component activity
[TR_METH_01061] Develop Application Software activity
[TR_METH_01065] Develop System and Develop Sub-System activities
[TR_METH_01066] Creation of a System Extract and a ECU Extract
[TR_METH_01067] Abstract System Description deliverable
[TR_METH_01068] Inputs and Output of the Design System activity
[TR_METH_01069] Deployment of AUTOSAR Software Components
[TR_METH_01070] Description of network signals
[TR_METH_01071] Description of design constraints
[TR_METH_01075] Design Sub-System activity
[TR_METH_01076] Collaboration between different organizations
[TR_METH_01077] Transformation changes during the Design Sub-System activity
[TR_METH_01078] Mapping of different views
[TR_METH_01079] Use Case: Substitution of existing components
[TR_METH_01080] Use Case: Mapping of requirements to the solution
[TR_METH_01081] Use Case: Reorganization of the software structure
[TR_METH_01082] Use Case: Description of changes between different versions of System De-

scriptions
[TR_METH_01083] Design Basic Software activity
[TR_METH_01084] Separation of design and development of basic software
[TR_METH_01085] Develop BSW Module activity
[TR_METH_01086] Integrate Software for ECU activity
[TR_METH_01087] Scope of Integrate Software for ECU activity
[TR_METH_01088] Prepare ECU Configuration activity
[TR_METH_01089] Configure BSW and RTE activity
[TR_METH_01090] Configure RTE task
[TR_METH_01091] Configure Debug task
[TR_METH_01092] Generating BSW modules, RTE, and OS source files
[TR_METH_01093] Building ECU Executable
[TR_METH_01095] Configuration Class: Pre-compile Time

499 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

[TR_METH_01096] Generating header files only
[TR_METH_01097] Generating header and source files
[TR_METH_01098] Configuration Class: Link Time
[TR_METH_01099] Generation and compilation of BSW Configuration Code
[TR_METH_01100] Definition of configuration data
[TR_METH_01101] Separate compilation of module source and configuration file
[TR_METH_01102] Linking process
[TR_METH_01103] Re-generation in case of configuration value changes
[TR_METH_01104] Configuration Class: Post-build Time
[TR_METH_01105] Generate BSW Postbuild Configuration Code
[TR_METH_01106] Generate BSW Configuration Data Loadable
[TR_METH_01107] Configuration Class: Post-build Time Selectable
[TR_METH_01108] Generating multiple post-build configuration variants
[TR_METH_01109] Producing ECU-specific deliverables
[TR_METH_01110] Development of Software Components
[TR_METH_01111] Development of Basic Software modules
[TR_METH_01112] Integration of AUTOSAR ECUs
[TR_METH_01113] Usage of hyperlinks
[TR_METH_01120] Definition of Consistency Needs
[TR_METH_01121] Building the AUTOSAR methodology document
[TR_METH_01122] Relations between AUTOSAR Work Products
[TR_METH_01123] Traceability to external artifacts
[TR_METH_01124] Documentation of Work Products
[TR_METH_02000] Use of AUTOSAR Services
[TR_METH_02001] Define Cross-component Calibration Parameters activity
[TR_METH_02002] Define Local Calibration Parameters activity
[TR_METH_02003] Provide Unique Parameter Names activity
[TR_METH_02004] Re-generate RTE and Calibration Support activity
[TR_METH_02005] Memory sections for data and code
[TR_METH_02006] E2E Protection
[TR_METH_02007] Define E2E Protection Set activity
[TR_METH_02008] Regenerate E2E Protection Wrapper activity
[TR_METH_02009] Variation points in Variant Handling
[TR_METH_02010] Predefined Variants in Variant Handling
[TR_METH_02011] Types of binding times
[TR_METH_02012] Definition of a binding time
[TR_METH_02013] Latest Binding Time
[TR_METH_02014] Actual Binding Time
[TR_METH_02015] Definition of variants
[TR_METH_02016] Evaluated Variant Set
[TR_METH_02017] Use of Predefined Variant
[TR_METH_02018] Choosing variants
[TR_METH_02020] Definition of latest Binding Time for a variation point in the meta-model
[TR_METH_03000] Name spaces via ARPackages
[TR_METH_03001] Reasons for name conflicts in “downstream” artifacts
[TR_METH_03002] Conflict solution at system design time
[TR_METH_03003] Conflict solution at coding time
[TR_METH_03004] Conflict solution at ECU integration time
[TR_METH_03005] Conflict solution via SymbolProps
[TR_METH_03006] Conflict solution via literal prefixes
[TR_METH_03007] Conflict solution in names of runnable entities
[TR_METH_03008] Conflict solution via FlatMap
[TR_METH_03009] Conflict solution via AliasNameSet

500 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

[TR_METH_03010] Conflict solution via API Infixes

Table A.1: Added Specification Items in 4.1.1

A.2 Constraint History of this Document according to AUTOSAR
R4.1.2

N/A

A.2.1 Added Specification Items in R4.1.2

Number Heading
[TR_METH_01114] Input sources for ECU Configuration
[TR_METH_01115] A mix of parameters with different configuration classes within a BSW module

is allowed
[TR_METH_01116] ECU Configuration Value description contains the configuration of all BSW

modules in a single ECU
[TR_METH_01117] BSW implementation shall be chosen for each BSW module that is present in

the ECU

Table A.2: Added Specification Items in 4.1.2

A.3 Constraint History of this Document according to AUTOSAR
R4.1.3

N/A

A.3.1 Added Specification Items in R4.1.3

Number Heading
[TR_METH_01125] Create ECU System Description activity
[TR_METH_01126] Using the System Extract as the structural basis for the ECU development
[TR_METH_01127] Creating a new structure for the ECU development

Table A.3: Added Specification Items in 4.1.3

A.3.2 Changed Specification Items in R4.1.3

Number Heading
[TR_METH_01049] Interaction between organizations
[TR_METH_01066] Creation of a System Extract and an ECU Extract
[TR_METH_01075] Design Sub-System activity
[TR_METH_01076] Collaboration between different organizations

Table A.4: Changed Specification Items in 4.1.3

501 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

A.4 Constraint History of this Document according to AUTOSAR
R4.2.1

N/A

A.4.1 Added Specification Items in R4.2.1

Number Heading
[TR_METH_01128] Integration of Non AUTOSAR Systems in the context of an abstract system
[TR_METH_01129] Integrate Non AUTOSAR System at VFB level activity
[TR_METH_01130] Design Transformer activity
[TR_METH_01131] Output of Design Transformer activity
[TR_METH_01132] Definition of a Rapid Prototyping Scenario
[TR_METH_01133] Content of Rapid Prototyping Scenario artifact
[TR_METH_01134] Component wrapper method
[TR_METH_01135] Direct buffer access method
[TR_METH_01136] Content of Diagnostic Extract
[TR_METH_01137] Diagnostic Extract category
[TR_METH_01138] Decentralized configuration
[TR_METH_01139] Roles
[TR_METH_01140] Develop Diagnostic Abstract System Description activity
[TR_METH_01141] Development of diagnostic requirements
[TR_METH_01142] Diagnostic information in the context of SW-C development
[TR_METH_01143] Integration of diagnostic information
[TR_METH_01144] Activity Define Safety Information
[TR_METH_01145] Creation of Safety Requirements
[TR_METH_01146] Allocation of Safety Requirements
[TR_METH_01147] Decomposition of Safety Requirements
[TR_METH_01148] Definition of Safety Measures
[TR_METH_01149] Definition of VFB relevant safety information
[TR_METH_01150] Including different post-build variants
[TR_METH_01151] Update ECU Configuration activity
[TR_METH_01153] Configuration and Generation of the E2E Transformer
[TR_METH_01154] Define E2E Transformer Technology Task

Table A.5: Added Specification Items in 4.2.1

A.4.2 Changed Specification Items in R4.2.1

Number Heading
[TR_METH_01059] Kinds of VFB Atomic Software Components
[TR_METH_01046] Development of the system
[TR_METH_01065] Develop System and Develop Sub-System activities
[TR_METH_01060] Develop an Atomic Software Component activity
[TR_METH_01065] Develop System and Develop Sub-System activities
[TR_METH_01104] Configuration Class: Post-build Time
[TR_METH_01105] Generate BSW Postbuild Configuration Code
[TR_METH_01108] Generating multiple post-build configuration variants
[TR_METH_02006] E2E Protection

Table A.6: Changed Specification Items in 4.2.1

502 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

Methodology
AUTOSAR Release 4.2.2

A.4.3 Deleted Specification Items in R4.2.1

Number Heading
[TR_METH_01106] Generate BSW Configuration Data Loadable
[TR_METH_01107] Configuration Class: Post-build Time Selectable
[TR_METH_02007] Define E2E Protection Set activity
[TR_METH_02008] Regenerate E2E Protection Wrapper activity

Table A.7: Deleted Specification Items in 4.2.1

A.5 Constraint History of this Document according to AUTOSAR
R4.2.2

No changes.

503 of 503
— AUTOSAR CONFIDENTIAL —

Document ID 068: AUTOSAR_TR_Methodology

	1 Introduction
	1.1 Objective
	1.2 Overview
	1.3 Known Limitations
	1.4 Scope
	1.5 Methodology Concepts
	1.5.1 Method Library (Method Content)
	1.5.1.1 Task Definition
	1.5.1.2 Work Product Definition
	1.5.1.3 Role Definition
	1.5.1.4 Tool Definition
	1.5.1.5 Guidance
	1.5.1.6 Tables

	1.5.2 Capability Patterns (Use Case Elements)
	1.5.2.1 Activity

	1.6 Requirements Traceability

	2 Use Cases
	2.1 Overall View
	2.1.1 Purpose
	2.1.2 Description
	2.1.2.1 Views on the System
	2.1.2.2 Overall Workflow

	2.1.3 Workflow

	2.2 Develop an Abstract System Description
	2.2.1 Purpose
	2.2.2 Description
	2.2.3 Workflow

	2.3 Develop a VFB System Description
	2.3.1 Purpose
	2.3.2 Description
	2.3.3 Workflow

	2.4 Develop Software Components
	2.4.1 Develop an Atomic Software Component
	2.4.1.1 Purpose
	2.4.1.2 Description
	2.4.1.3 Workflow

	2.4.2 Develop Application Software
	2.4.2.1 Purpose
	2.4.2.2 Description
	2.4.2.3 Workflow

	2.4.3 Uses Cases for more Specialized Software Components
	2.4.3.1 Purpose
	2.4.3.2 Description
	2.4.3.3 Workflow

	2.5 Develop System and Subsystems
	2.5.1 Overview
	2.5.1.1 Purpose
	2.5.1.2 Description

	2.5.2 Design System
	2.5.2.1 Purpose
	2.5.2.2 Description
	2.5.2.3 Workflow

	2.5.3 Generate System Extract
	2.5.3.1 Purpose
	2.5.3.2 Description
	2.5.3.3 Workflow

	2.5.4 Create ECU System Description
	2.5.4.1 Purpose
	2.5.4.2 Description
	2.5.4.3 Workflow

	2.5.5 Design Sub-System
	2.5.5.1 Purpose
	2.5.5.2 Description
	2.5.5.3 Workflow

	2.5.6 Generate ECU Extract
	2.5.6.1 Purpose
	2.5.6.2 Description
	2.5.6.3 Workflow

	2.5.7 Design Transformer
	2.5.7.1 Purpose
	2.5.7.2 Description
	2.5.7.3 Workflow

	2.5.8 Define System Safety Information
	2.5.8.1 Purpose
	2.5.8.2 Description
	2.5.8.3 Workflow

	2.6 Develop Basic Software
	2.6.1 Overview
	2.6.1.1 Purpose
	2.6.1.2 Description
	2.6.1.3 Workflow

	2.6.2 Design BSW
	2.6.2.1 Purpose
	2.6.2.2 Description
	2.6.2.3 Workflow

	2.6.3 Develop BSW Module
	2.6.3.1 Purpose
	2.6.3.2 Description
	2.6.3.3 Workflow

	2.7 Integrate Software for ECU
	2.7.1 Description
	2.7.2 Overview
	2.7.2.1 Purpose
	2.7.2.2 Description
	2.7.2.3 Workflow

	2.7.3 Prepare ECU Configuration
	2.7.3.1 Description
	2.7.3.2 Workflow

	2.7.4 Configure BSW and RTE
	2.7.4.1 Description
	2.7.4.2 Workflow

	2.7.5 Update ECU Configuration
	2.7.5.1 Description
	2.7.5.2 Workflow

	2.7.6 Model ECU Timing
	2.7.6.1 Workflow

	2.7.7 Generate BSW and RTE
	2.7.7.1 Description
	2.7.7.2 Workflow

	2.7.8 Build Executable
	2.7.8.1 Description
	2.7.8.2 Workflow

	2.7.9 Configuration Classes
	2.7.9.1 Configuration Class: Pre-compile Time
	2.7.9.2 Configuration Class: Link Time
	2.7.9.3 Configuration Class: Post-build Time
	2.7.9.4 Handling of different post-build variants in configuration classes

	2.8 Components and Services
	2.8.1 Purpose
	2.8.2 Description
	2.8.3 Workflow

	2.9 Calibration Overview
	2.9.1 Purpose
	2.9.2 Description
	2.9.3 Workflow

	2.10 Memory Mapping
	2.10.1 Purpose
	2.10.2 Description
	2.10.3 Workflow

	2.11 E2E Protection
	2.11.1 Purpose
	2.11.2 Description
	2.11.3 Workflow

	2.12 Diagnostic Extract
	2.12.1 Purpose
	2.12.2 Description
	2.12.3 Workflow

	2.13 Rapid Prototyping
	2.13.1 Purpose
	2.13.2 Description
	2.13.3 Workflow

	2.14 Safety Extensions
	2.14.1 Purpose
	2.14.2 Description
	2.14.3 Workflow

	2.15 Variant Handling
	2.15.1 Overview
	2.15.2 Binding Times
	2.15.2.1 Latest Binding Time
	2.15.2.2 Actual Binding Time

	2.15.3 Defining Variants
	2.15.4 Choosing Variants

	2.16 Definition of Binding Times
	2.16.1 Overview
	2.16.2 A Classification of Artifacts with respect to Binding Times
	2.16.3 Classification of Binding Times
	2.16.3.1 BlueprintDerivationTime
	2.16.3.2 FunctionDesignTime
	2.16.3.3 InitialBindingTime
	2.16.3.4 SystemDesignTime
	2.16.3.5 CodeGenerationTime
	2.16.3.6 PreCompileTime
	2.16.3.7 CompileTime
	2.16.3.8 LinkTime
	2.16.3.9 PostBuild
	2.16.3.10 Runtime

	2.17 How to resolve Name Conflicts
	2.17.1 Reasons for Name Conflicts
	2.17.2 Points in the Methodology where Name Conflicts are resolved
	2.17.3 Mechanisms for resolving Name Conflicts

	3 Methodology Library
	3.1 Common Elements
	3.1.1 Work Product Kinds
	3.1.2 Tasks
	3.1.2.1 Add General Documentation
	3.1.2.2 Define Admin Data
	3.1.2.3 Define Alias Names
	3.1.2.4 Evaluate Variant
	3.1.2.5 Define Memory Addressing Modes
	3.1.2.6 Configure Memmap Allocation
	3.1.2.7 Generate BSW Memory Mapping Header
	3.1.2.8 Generate SWC Memory Mapping Header
	3.1.2.9 Configure Compiler Memory Classes
	3.1.2.10 Generate Compiler Configuration

	3.1.3 Work Products
	3.1.3.1 General Documentation
	3.1.3.2 Alias Name Set
	3.1.3.3 Evaluated Variant Set
	3.1.3.4 General Autosar Artifact
	3.1.3.5 General Deliverable
	3.1.3.6 General Non-Autosar Artifact
	3.1.3.7 Postbuild Variant Set
	3.1.3.8 Predefined Variant
	3.1.3.9 Standard Header Files
	3.1.3.10 System Constant Value Set

	3.1.4 Roles
	3.1.5 Tools
	3.1.5.1 Compiler
	3.1.5.2 Linker

	3.1.6 Diagnostics
	3.1.6.1 Work Products

	3.1.7 Safety
	3.1.7.1 Tasks
	3.1.7.2 Work Products

	3.2 Virtual Functional Bus
	3.2.1 Tasks
	3.2.1.1 Define VFB Top Level
	3.2.1.2 Define VFB Composition Component
	3.2.1.3 Extend Composition
	3.2.1.4 Define VFB Component Constraints
	3.2.1.5 Define VFB Application Software Component
	3.2.1.6 Define VFB Sensor or Actuator Component
	3.2.1.7 Define VFB Parameter Component
	3.2.1.8 Define ECU Abstraction Component
	3.2.1.9 Define Complex Driver Component
	3.2.1.10 Define VFB NvBlock Software Component
	3.2.1.11 Define Wrapper Components to Integrate Legacy Software
	3.2.1.12 Define VFB Interfaces
	3.2.1.13 Define VFB Types
	3.2.1.14 Define VFB Modes
	3.2.1.15 Define VFB Constants
	3.2.1.16 Define VFB Timing
	3.2.1.17 Define VFB Variants
	3.2.1.18 Define VFB Integration Connector
	3.2.1.19 Translate Non-AUTOSAR Description to AUTOSAR Description

	3.2.2 Work Products
	3.2.2.1 VFB System
	3.2.2.2 Overall VFB System
	3.2.2.3 VFB System Extract
	3.2.2.4 VFB Top Level System Composition
	3.2.2.5 VFB Composition Component
	3.2.2.6 VFB AUTOSAR Standard Package
	3.2.2.7 AUTOSAR Specification of Application Interfaces
	3.2.2.8 VFB Atomic Software Component
	3.2.2.9 VFB Atomic Application Software Component
	3.2.2.10 Complex Driver Component
	3.2.2.11 ECU Abstraction Software Component
	3.2.2.12 VFB Parameter Component
	3.2.2.13 VFB Sensor Actuator Component
	3.2.2.14 VFB NvBlock Software Component
	3.2.2.15 VFB Non AUTOSAR Component
	3.2.2.16 VFB Interfaces
	3.2.2.17 VFB Types
	3.2.2.18 VFB Data Type Mapping Set
	3.2.2.19 VFB Modes
	3.2.2.20 VFB Constants
	3.2.2.21 VFB Software Component Mapping Constraints
	3.2.2.22 VFB Timing
	3.2.2.23 Description of a Non-AUTOSAR System
	3.2.2.24 Integration Connector

	3.3 System
	3.3.1 Tasks
	3.3.1.1 Set System Root
	3.3.1.2 Assign Top Level Composition
	3.3.1.3 Define ECU Description
	3.3.1.4 Define System Topology
	3.3.1.5 Define Software Component Mapping Constraints
	3.3.1.6 Deploy Software Component
	3.3.1.7 Generate or Adjust System Flat Map
	3.3.1.8 Derive Communication Needs
	3.3.1.9 Define Signal Path Constraints
	3.3.1.10 Define System Variants
	3.3.1.11 Define System Timing
	3.3.1.12 Extend Topology
	3.3.1.13 Select Software Component Implementation
	3.3.1.14 Select Design Time Variant
	3.3.1.15 Define System View Mapping
	3.3.1.16 Create Transformer Specification
	3.3.1.17 Define Rapid Prototyping Scenario

	3.3.2 Work Products
	3.3.2.1 System Description
	3.3.2.2 Abstract System Description
	3.3.2.3 Complete ECU Description
	3.3.2.4 System Description Root Element
	3.3.2.5 System Mapping Overview
	3.3.2.6 Software Component Mapping Contraints
	3.3.2.7 Data Mapping
	3.3.2.8 Mapping of Software Components to ECUs
	3.3.2.9 Mapping of Software Components to Implementations
	3.3.2.10 Signal Path Constraints
	3.3.2.11 Topology
	3.3.2.12 Ecu Resources Description
	3.3.2.13 System Signal
	3.3.2.14 System Signal Group
	3.3.2.15 System Flat Map
	3.3.2.16 System Timing
	3.3.2.17 System View Mapping
	3.3.2.18 Transformer Design Bundle
	3.3.2.19 Transformer Specification
	3.3.2.20 Rapid Prototyping Scenario

	3.3.3 Communication Matrix and Communication Layers
	3.3.3.1 Tasks
	3.3.3.2 Work Products

	3.3.4 ECU Extract
	3.3.4.1 Tasks
	3.3.4.2 Work Products

	3.4 Software Component
	3.4.1 Tasks
	3.4.1.1 Define Software Component Internal Behavior
	3.4.1.2 Define Partial Flat Map
	3.4.1.3 Define Software Component Timing
	3.4.1.4 Define SymbolProps for Types
	3.4.1.5 Add Documentation to the Software Component
	3.4.1.6 Generate Atomic Software Component Contract Header Files
	3.4.1.7 Generate Component Header File in Vendor Mode
	3.4.1.8 Generate Component Prebuild Data Set
	3.4.1.9 Implement Atomic Software Component
	3.4.1.10 Compile Atomic Software Component
	3.4.1.11 Map Software Component to BSW
	3.4.1.12 Measure Component Resources
	3.4.1.13 Recompile Component in ECU Context
	3.4.1.14 Define Consistency Needs
	3.4.1.15 Generate Rapid Prototyping Wrapper

	3.4.2 Work Products
	3.4.2.1 Delivered Atomic Software Components
	3.4.2.2 Software Component Internal Behavior
	3.4.2.3 Atomic Software Component Implementation
	3.4.2.4 Software Component Documentation
	3.4.2.5 Software Component Timing
	3.4.2.6 Software Component to BSW Mapping
	3.4.2.7 Partial Flat Map
	3.4.2.8 Application Header File
	3.4.2.9 Software Component Data Types Header
	3.4.2.10 Component RTE Prebuild Configuration Header
	3.4.2.11 Atomic Software Component Source Code
	3.4.2.12 Atomic Software Component Object Code
	3.4.2.13 Optimized Application Header File
	3.4.2.14 Optimized Software Component Object Code
	3.4.2.15 Consistency Needs
	3.4.2.16 Rapid Prototyping Wrapper Header File
	3.4.2.17 Rapid Prototyping Wrapper Source Code

	3.4.3 Tools
	3.4.3.1 Component API Generator Tool

	3.5 Basic Software
	3.5.1 Tasks
	3.5.1.1 Define BSW Types
	3.5.1.2 Define BSW Entries
	3.5.1.3 Define BSW Interfaces
	3.5.1.4 Define Vendor Specific Module Definition
	3.5.1.5 Define BSW Behavior
	3.5.1.6 Define BSW Module Timing
	3.5.1.7 Generate BSW Contract Header Files
	3.5.1.8 Implement a BSW Module
	3.5.1.9 Develop BSW Module Generator
	3.5.1.10 Create Library
	3.5.1.11 Compile BSW Core Code
	3.5.1.12 Generate BSW Module Prebuild Dataset

	3.5.2 Work Products
	3.5.2.1 BSW Standard Package
	3.5.2.2 BSW Module Bundle
	3.5.2.3 BSW Design Bundle
	3.5.2.4 BSW Module ICS Bundle
	3.5.2.5 BSW Module Delivered Bundle
	3.5.2.6 AUTOSAR Software Module Specification
	3.5.2.7 AUTOSAR Standard Types
	3.5.2.8 AUTOSAR Platform Types
	3.5.2.9 BSW Module Generator
	3.5.2.10 AUTOSAR Standardized ECU Configuration Parameter Definition
	3.5.2.11 BSW Module Preconfigured Configuration
	3.5.2.12 BSW Module Recommended Configuration
	3.5.2.13 BSW Module Vendor Specific Configuration Parameter Definition
	3.5.2.14 BSW Types
	3.5.2.15 Basic Software Entries
	3.5.2.16 Basic Software Module Description
	3.5.2.17 Basic Software Module Internal Behavior
	3.5.2.18 Basic Software Module Implementation Description
	3.5.2.19 Build Action Manifest
	3.5.2.20 Basic Software Module Timing
	3.5.2.21 Basic Software Module Core Header
	3.5.2.22 Basic Software Module Core Source Code
	3.5.2.23 Basic Software Interlink Header
	3.5.2.24 Basic Software Interlink Types Header
	3.5.2.25 BSW RTE Prebuild Configuration Header
	3.5.2.26 Basic Software Module Object Code
	3.5.2.27 Library Description
	3.5.2.28 Library Header Files
	3.5.2.29 Library Object Code

	3.6 ECU Integration and Configuration
	3.6.1 Tasks
	3.6.1.1 Provide RTE Calibration Dataset
	3.6.1.2 Define Integration Variant
	3.6.1.3 Generate Base ECU Configuration
	3.6.1.4 Generate Updated ECU Configuration
	3.6.1.5 Define ECU Timing
	3.6.1.6 Configure EcuC
	3.6.1.7 Configure OS
	3.6.1.8 Configure RTE
	3.6.1.9 Configure Watchdog Manager
	3.6.1.10 Configure Mode Management
	3.6.1.11 Configure NvM
	3.6.1.12 Configure Diagnostics
	3.6.1.13 Create Service Component
	3.6.1.14 Connect Service Component
	3.6.1.15 Configure COM
	3.6.1.16 Configure IO Hardware Abstraction
	3.6.1.17 Configure MCAL
	3.6.1.18 Configure Debug
	3.6.1.19 Configure Transformer
	3.6.1.20 Generate BSW Configuration Code and Model Extensions
	3.6.1.21 Generate Local MC Data Support
	3.6.1.22 Create MC Function Model
	3.6.1.23 Generate RTE
	3.6.1.24 Generate Scheduler
	3.6.1.25 Generate OS
	3.6.1.26 Generate RTE Prebuild Dataset
	3.6.1.27 Compile ECU Source Code
	3.6.1.28 Generate ECU Executable
	3.6.1.29 Generate RTE Postbuild Dataset
	3.6.1.30 Generate A2L
	3.6.1.31 Measure Resources
	3.6.1.32 Refine Rapid Prototyping Scenario

	3.6.2 Work Products
	3.6.2.1 BSW Module Integration Bundle
	3.6.2.2 ECU Software Delivered
	3.6.2.3 Service Component Description
	3.6.2.4 ECU Service Connectors
	3.6.2.5 ECU Timing
	3.6.2.6 BSW Module Interface Extension
	3.6.2.7 BSW Module Behavior Extension
	3.6.2.8 BSW Module Implementation Extension
	3.6.2.9 ECU Configuration Values
	3.6.2.10 RTE Implementation Description
	3.6.2.11 RTE Prebuild Configuration Header
	3.6.2.12 Calibration Parameter Value Set
	3.6.2.13 MC Function Model
	3.6.2.14 Local Measurement and Calibration Support Data
	3.6.2.15 RTE Measurement and Calibration Support Data
	3.6.2.16 RTE Source Code
	3.6.2.17 BSW Scheduler Code
	3.6.2.18 OS Generated Code
	3.6.2.19 RTE Postbuild Variants Dataset
	3.6.2.20 ECU Object Code
	3.6.2.21 ECU Executable
	3.6.2.22 Map of the ECU Executable
	3.6.2.23 A2L File
	3.6.2.24 MC Driver Support Data
	3.6.2.25 MC Additional Config

	3.6.3 Tools
	3.6.3.1 RTE Generator
	3.6.3.2 BSW Generator Framework

	3.6.4 ECU Config Classes
	3.6.4.1 Tasks
	3.6.4.2 Work Products

	A History of Constraints and Specification Items
	A.1 Constraint History of this Document according to AUTOSAR R4.1.1
	A.1.1 Added Specification Items in R4.1.1

	A.2 Constraint History of this Document according to AUTOSAR R4.1.2
	A.2.1 Added Specification Items in R4.1.2

	A.3 Constraint History of this Document according to AUTOSAR R4.1.3
	A.3.1 Added Specification Items in R4.1.3
	A.3.2 Changed Specification Items in R4.1.3

	A.4 Constraint History of this Document according to AUTOSAR R4.2.1
	A.4.1 Added Specification Items in R4.2.1
	A.4.2 Changed Specification Items in R4.2.1
	A.4.3 Deleted Specification Items in R4.2.1

	A.5 Constraint History of this Document according to AUTOSAR R4.2.2

