AUTOSAR

Document Title jlpteroperability of AUTOSAR
0ols

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 204

Document Classification Auxiliary

Document Status Final

Part of AUTOSAR Release 422

Document Change History

Release | Changed by Description
AUTOSAR e Minor corrections / clarifications / editorial changes;
4.2.2 Release For details please refer to the
Management ChangeDocumentation
AUTOSAR : , e . _
491 Release e Minor co_rrectlonS / clarifications / editorial changes;
Management For details please refer to the BWCStatement
AUTOSAR
41.2 Release e Editorial changes
Management
AUTOSAR ¢ Add formal specification items
4.1.1 Administration | ® Support for the processor manifest
e Support for roles and rights
e Editorial changes including tagged specification
AUTOSAR items
4.0.3 Administration | ® !mproved recommendation of usecases for
AUTOSAR files
e Refined definition of XML serialization
¢ Refined scope to AUTOSAR tools
e Added R4 aspecits (Variant handling, splittable,
relative reference)
314 AUTOSAR e More details on XML serialization
Administration | ¢ More details on error reporting
e More details on merging
e Removed requirements on AUTOSAR-Products
(Meta-model and Schema)

AUTOSAR

AUTOSAR

3.1.1 Administration | ® Legal disclaimer revised

e Added description on how to merge models
e Removed dependencies to no longer existing

documents
3.0.1 AUTOSAR Added requirements on extension mechanism
Administration | ¢ Added requirements on handling / exchanging
errors

e Document meta information extended
e Small layout adaptations made

e NonSplitableElements are the minimum granularity
of most AUTOSAR descriptions. In case a smaller
granularity is required, the meta-model may

5145 |AUTOSAR explicitly define SplitableElements
Administration | 4 | ggal disclaimer revised
e Release Notes added
e “Advice for users” revised
e “Revision Information” added

AUTOSAR

2.0 Administration | ® Initial release

AUTOSAR

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for the
purpose of information only. AUTOSAR and the companies that have contributed to it
shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types of
Intellectual Property Rights. The commercial exploitation of the material contained in
this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only. For any other purpose, no part of
the specification may be utilized or reproduced, in any form or by any means, without
permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference models,
"use cases", and/or references to exemplary technical solutions, devices, processes or
software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their pres-
ence in such specifications, nor any later documentation of AUTOSAR conformance of
products actually implementing such exemplary items, imply that intellectual property
rights covering such exemplary items are licensed under the same rules as applicable
to the AUTOSAR Standard.

AUTOSAR

Table of Contents

1 Introduction 10
1.1 Classification of AUTOSAR Tools (non-normative) 11
1.2 Origins and goals (non-normative) 14
1.3 DocumentConventions 15
1.4 RequirementsTracing 16

2 Basic Concepts 17
21 Datarepresentation. Lo 17

211 Technological Space: “meta-model” 19
2.1.2 Technological Space: “XML” 20
21.3 Technological Space: “Tool” 21
2.2 Abstraction levels of information exchange 21
2.2.1 Physicallevel o 22
2.2.2 Data formatlevel 22
2.2.3 Contentlevel 22
224 Semanticlevel o L 23
2.2.5 Presentationlevel 24
2.2.6 Applicationlevel o o 24

3 Requirements on AUTOSAR Tools 25

3.1 Support for AUTOSAR XML dataexchange 25
3.1.1 Physicallevel oL 26
3.1.1.1 AUTOSAR tool SHALL support sets of files 26
3.1.2 Data formatlevel 27
3.1.2.1 AUTOSAR tool SHALL support AUTOSAR XML de-
scriptions 27
3.1.2.2 Authoring tool SHALL be able to import and export
supported model elements as AUTOSAR XML de-
scriptions 28
3.1.2.3 Authoring tool SHALL support well defined serialization 29
3.1.3 Contentlevel 33
3.1.3.1 Authoring tool SHALL NOT change model contents
without the intention of thewuser 33
3.1.3.2 Authoring tool SHALL support exchange of partial in-
formation L. 34
3.1.3.3 Authoring tool SHALL support AUTOSAR extension
mechanism 34
3.1.3.4 Authoring tool SHOULD maintain references 34
3.1.3.5 Authoring tool SHOULD follow specified access rights 35
3.1.4 Semanticlevel L 35
3.1.4.1 Authoring tool SHALL support validity checks 35
3.1.4.2 AUTOSAR tool SHALL support variants 36
3.1.5 Presentationlevel 36

3.2 Support for concurrent modeling, 36

AUTOSAR

3.3

3.4
3.5

3.6

3.7

3.2.1 Detection of differences between models 38
3.2.1.1 Authoring tool SHOULD provide a mechanism for

showing differences between AUTOSAR models .. 38

3.2.1.2 Definition of differences 38

3.2.1.3 Definition of differences - aggregation 39

3.2.14 Definition of differences - references 40

3.2.1.5 Algorithm for comparison of model elements 40
3.2.1.6 Authoring tool SHALL support unique identification

of modelelements 41
3.2.1.7 Examples of differences between models (non nor-

mative) 41

3.2.2 Mergingmodels 45
3.2.2.1 Authoring tool SHALL be able to handle partial

AUTOSARmodels 45
3.2.2.2 Authoring tool SHALL support the merging of

AUTOSARmodels 45

3.2.2.3 AUTOSAR tool SHALL resolve references 46

3.2.24 Handling Conflicts 47
3.2.2.5 AUTOSAR tools SHALL accept double defined
ARElements as long as their nonSplitables are the

SAME o e e e e 47

3.2.2.6 Handling merge conflicts: optimistic approach 47
3.2.2.7 Authoring tool SHOULD provide a mechanism for re-

solving merging conflicts 48

3.2.2.8 Handling merge conflicts: access control approach . 48
3.2.2.9 Authoring tool SHOULD prohibit the user from modi-

fying model elements that are marked read-only . . 49

3.2.2.10 Example on mergingmodels 49

Shipment of AUTOSAR models and related artifacts 51
3.3.1 AUTOSAR tool SHALL be able to interpret and create ASAM

Container Catalog file for meta-data exchange 52

Naming convention of AUTOSAR XML descriptionfiles 56

Specialized AUTOSAR1tooIs 57

3.5.1 Requirements for predictable tool interoperability 58
3.5.1.1 Documentation of AUTOSAR tool SHOULD describe

supported features 58

3.5.2 Requirements on the integration of specialized tools 59

Support for different versions of the meta-model 59

3.6.1 Minor changes in the meta-model 60

3.6.2 Major changes in the meta-model 62

3.6.3 AUTOSAR tool SHALL properly handle Meta-Model versions 63
3.6.4 Authoring tool SHOULD support upgrading AUTOSAR models 63

Support for versioning of AUTOSAR models 64
3.7.1 Granularity of AUTOSAR models 64
3.7.2 Annotation of AUTOSAR model elements by version informa-

tion s 64

AUTOSAR

3.8 Standardized errorhandling 64
3.8.1 AUTOSAR tools SHALL perform a standardized error handling 64
3.8.2 Error codes on semanticlevel 65
3.8.3 Guidelines for standardized error reporting 66

3.8.3.1 Interactive authoring tool SHOULD guide the user to
the locationsoferrors 66
3.8.3.2 Authoring tool SHOULD support exchanging infor-
mation abouterrors. 66
3.8.3.3 AUTOSAR tool MAY use well structured error mes-
SAPES . . . e e e e e e e 67

3.9 Requirements on meta-data for data exchange 68

3.9.1 Meta-data for data exchange SHALL be based on existing
standards and SHALL be defined by AUTOSAR 68

3.9.2 Description of access rights SHOULD allow for being

mapped to data structures that are different from the
AUTOSAR meta-model 69

3.9.3 Meta-data for data exchange SHALL NOT change the con-
tentof AUTOSARmodels 69

3.94 Meta-data for data exchange SHOULD contain information
about errorsinthemodel 70

3.9.5 Meta-data for data exchange SHOULD contain information
about deleted, changed and moved elements 70
4 Compliance 72

4.1 Summary of requirements on AUTOSARtools 72

42 Notesoncompliance 73
4.2.1 Compliance classes based on coverage of the meta-model . 73
422 Testing the compliance of an AUTOSAR authoring tool 73

A Glossary 75
B History of Specification Items 78

B.1 History of Specification ltems according to AUTOSAR R4.0.3 78
B.1.1 Added Specification ltemsinR4.0.3 78

B.2 History of Specification Items according to AUTOSAR R4.1.1 79
B.2.1 Added Specification ItemsinR4.1.1 79

B.3 History of Specification Items according to AUTOSAR R4.2.2 79
B.3.1 Added Traceablesin4.2.2. 79
B.3.2 Changed Traceablesin4.2.2 79
B.3.3 Deleted Traceablesin4.2.2 79
B.3.4 Added Constraintsin4.22 80
B.3.5 Changed Constraintsin4.2.2 80
B.3.6 Deleted Constraintsin4.2.2 80

C Mentioned Class Tables

81

AUTOSAR

Known Limitations
e Requirements were not updated

e Chapter 4 (Compliance) is incomplete. It specifies aspects but not specific com-
pliance criteria.

AUTOSAR

Bibliography
[1] Requirements on Interoperability of AUTOSAR Tools

AUTOSAR_RS _InteroperabilityOfAutosarTools

[2] Methodology
AUTOSAR_TR_Methodology

[3] Generic Structure Template
AUTOSAR_TPS_GenericStructureTemplate

[4] Model Persistence Rules for XML
AUTOSAR_TR_XMLPersistenceRules

[5] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

[6] Specification of ECU Resource Template
AUTOSAR_TPS_ECUResourceTemplate

[7] System Template
AUTOSAR_TPS_SystemTemplate

[8] Basic Software Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate

[9] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration

[10] Unified Modeling Language: Superstructure, Version 2.0, OMG Available Specifi-

cation, ptc/05-07-04

http://www.omg.org/cgi-bin/apps/doc?formal/05-07-04.pdf
[11] Unified Modeling Language OCL, Version 2.0, OMG Available Specification,

ptc/05-06-06
http://www.omg.org/cgi-bin/apps/doc?ptc/05-06-06.pdf

[12] Standardization Template
AUTOSAR_TPS_StandardizationTemplate

[13] Technological Spaces: an Initial Appraisal

http://www.sciences.univ-nantes.fr/lina/atl/www/papers/PositionPaperKurtev.pdf

[14] Extensible Markup Language (XML), v1.0
http://www.w3.org/TR/REC-xml/

[15] XML Schema 1.0
http://www.w3.org/TR/xmlschema-1

[16] Virtual Functional Bus
AUTOSAR_EXP_VFB

[17] Meta Model

http://www.omg.org/cgi-bin/apps/doc?formal/05-07-04.pdf
http://www.omg.org/cgi-bin/apps/doc?ptc/05-06-06.pdf
http://www.sciences.univ-nantes.fr/lina/atl/www/papers/PositionPaperKurtev.pdf
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/xmlschema-1

AUTOSAR

AUTOSAR_MMOD_MetaModel

[18] Container Catalog XML Model Specification
http://www.asam.net

[19] OASIS Web Site: TR 9401:1995 - Entity Management
http://www.oasis-open.org/specs/a401.htm

[20] Software Process Engineering Meta-Model Specification
http://www.omg.org/spec/SPEM/2.0/

http://www.asam.net
http://www.oasis-open.org/specs/a401.htm
http://www.omg.org/spec/SPEM/2.0/

AUTOSAR

1 Introduction

This document describes various aspects of interoperability of AUTOTSAR tools in
order to

e support proper implementation of AUTOSAR data exchange

e contribute to (but not fulfill) requirements on AUTOSAR Tools

e specify more details about XML handling

e discuss essential aspects for tool interoperability

e provide more information about how to utilize particular Meta-Model concepts

The dependency relationships of this document are depicted in Figure 1.1.

Requirements on
Interoperability of AUTOSAR Methodology

Tools

'
7
'

dep;ends on depend§ on

Specification Interoperability

of AUTOSAR Tools

7 N
supplements supplements
/' ~

~
7
' \\

Model Persistence Rules for
XML

Generic Structure Template

Figure 1.1: DocumentDependencies

According to Figure 1.1, this document depends on the “Requirements on Interoper-
ability of Authoring Tools” [1] and the “Methodology” [2].

This document defines requirements on AUTOSAR tools. Thereby it supplements
the document “Generic Structure Template” [3] and the document “Model Persistence
Rules for XML [4] under following aspects:

e “Model Persistence Rules for XML’ describes the M2 aspects while “Interoper-
ability of AUTOSAR tools” handles M1 (AUTOSAR XML description) aspects.

e “Generic Structure Template” describes meta-model facilities while “Interoperabil-
ity of AUTOSAR tools” handles implementation specific aspects.

AUTOSAR

1.1 Classification of AUTOSAR Tools (hon-normative)

The AUTOSAR methodology model [2] describes the major steps of a development of a
system with AUTOSAR: From the system level to the generation of an ECU executable.
It describes the dependencies of work products and tasks.

An AUTOSAR tool can support one or more tasks of the AUTOSAR methodology.
In other words, the term AUTOSAR Tool refers to all tools that support the tasks of
creation, modification and interpretation of AUTOSAR models which describe a system
and its configuration as defined in e.g. the

e Generic Structure Template [3]

Software-Component Template [5],

ECU Resource Template [6],

System Template [7],

Basic Software Module Description Template [8],
e Specification of ECU Configuration [9],

Thus all AUTOSAR tools deal in some way with AUTOSAR XML descriptions (i.e. the
XML representation of AUTOSAR models, see [4]). Depending on the nature of the
interaction with XML, three kind of AUTOSAR tools can be distinguished, as depicted
in Figure 1.2:

e AUTOSAR Importer Tools used to create AUTOSAR models (as XML descrip-
tions) by importing non-AUTOSAR artifacts. Note that an importer tool may also
be integrated in an AUTOSAR Authoring Tool.

e AUTOSAR Authoring Tools used to create and modify AUTOSAR models (as
XML descriptions)

e AUTOSAR Converter Tools used to produce new AUTOSAR XML descriptions by
converting information from existing ones

e AUTOSAR Processor Tools used to produce non-AUTOSAR artifacts by process-
ing AUTOSAR XML descriptions

AUTOSAR

non AUTOSAR
format

s
E%II

AUTOSAR Tool
- E_A%ﬁ
N ~
AUTOSAR Converter Tool \

AUTOSAR Processor Tool

XML

XML description

XML

XML description

XML

XML description

XML

XML description

XML

XML description

non AUTOSAR
format

Figure 1.2: Categories of AUTOSAR Tools

A tool can also act as a combination of these three types, e.g. the RTE generator can
produce code and XML descriptions (e.g. of its own implementation aspects) in one

step, acting as a combination of a converter and a processor to

Since from these three types only the authoring can modify an already existing
AUTOSAR model, in general most requirements for interoperability apply for author-

ing tools.

Figure 1.3 sketches some descriptions that can be maintained by AUTOSAR authoring
tools within the AUTOSAR methodology (for a detailed description of the notation see
[2]). The figure shows only some examples out of all the task which can be performed

on these artifacts.

ol.

AUTOSAR

The formal description of AUTOSAR software-components does not include a complete
formal description of the behavior of the software-component. The latter is intentionally
left to dedicate Behavior Modeling Tools (BMT).

It is therefore necessary to bridge the gap between a software-component model and
the corresponding behavior model created by a particular BMT. This task is carried out
by the “Coupling Tool” mentioned in Figure 1.3.

Behavioral Model

Translation of
Behavioral Model
into SW-C

Translation of SW-C
Descriptioninto | |
Behavioral Model [~~~ Lol bl JTTTTT

Coupling Tool inti
Despten Thistask can be performed manually
within an authoring tool. It isonly an
example of several tasks to be performed
in order to modify/create a system
description.
Deploy Software e~
Define VFB Application Component
Software Component _XM L —_— .XM L
VFB Atomic SR
Software Description
Component
Define BSW Module
Intefaces < XM L
—

Basic Software
Module

Covered by AUTOSAR authoring tools Description

Authoring tool for Authoring tool for Authoring Tool for
editing the SWC editing the System editing the BSW
Descrintion Descrintion Module

Figure 1.3: Examples for tasks of authoring tools including coupling between a Behav-
ioral Model and AUTOSAR Models

Figure 1.4 shows some examples of “downstream” XML artifacts and tasks, i.e. those
used to derive an ECU configuration out of a system description (this figure only gives
a rough overview, for the full picture refer to [2]).

In order to create the downstream artifacts, converter tools come into play, also a
combination of converter and authoring tools.

AUTOSAR

Covered by AUTOSAR conversion and authoring tools

XML XML XML XML

System ECU Extract Basic Software ECU
DescriptiQn Modple Configuragion
Description

Generate Base ECU
Configuration

Generate ECU
Extract

Configure ECU

7
AN

Ecu Extractor And ECU Configuration
Flattener generators/ editors

Figure 1.4: Examples for tasks of converter and authoring tools handling “downstream”
artifacts

1.2 Origins and goals (non-normative)

Whenever data is exchanged between different parties they need to agree on a com-
mon understanding about the wording and the semantics. Otherwise there will be mis-
understandings. This observation applies to communication between different tools as
well.

AUTOSAR formally defines the structure and semantics of data by means of UML
(Unified Modeling Language [10]) class diagrams, semantic constraints in the template
specifications as well as by OCL (Object Constraint Language [11]).

In addition to a common data exchange language (specified by the AUTOSAR XML
schema) further issues need to be considered in order to support a successful com-
munication.

This document points out potential problems when exchanging models between dif-
ferent tools and companies and defines strategies on how these problems could be
solved.

All requirements described in this document are summarized in chapter 4. These re-
quirements relate to all AUTOSAR tools used to create or interpret AUTOSAR xml
descriptions. Some requirements are specific to AUTOSAR authoring tools.

This document is structured as follows:

e Chapter 1 “Introduction” (this chapter) gives an overview of the documents that
deal with AUTOSAR authoring tools.

e Chapter 1.4 “Requirements Tracing” lists the requirements on this document and
associates the chapters where these requirements are addressed.

AUTOSAR

e Chapter 2 “Basic concepts” describes some basic concepts which are used in the
following chapters.

— Subchapter 2.1 “Data representation” explains the relationship be-
tween AUTOSAR template, AUTOSAR XML schema, AUTOSAR models,
AUTOSAR XML descriptions, etc.

— Subchapter 2.2 “Abstraction levels of information exchange” shall help to
understand the tasks which need to be done when exchanging AUTOSAR
models via XML. These tasks are illustrated by different levels. Note: These
level are introduced as a concept. This does does not imply that each
AUTOSAR tool must exactly implement this as its architecture.

e Chapter 3 “Requirements on AUTOSAR tools” explains aspects for tool interop-
erability and defines requirements on AUTOSAR tools. E.g.:

— Integration of tools which do not support the full set of information defined in
the meta-model: Those tools only need to import and export the information
that can be internally represented.

Merging the results of the input information with the output exported by the
authoring tool results in an updated overall model. All authoring tools are
required to support this merge for the set of information that is internally
supported.

— Migration between different versions of the AUTOSAR meta-model: Each
tool should support manual or automatic upgrades of AUTOSAR XML de-
scriptions which were created with respect to the last major version of the
AUTOSAR meta-model.

— Support for concurrent modeling of AUTOSAR systems: e.g. each authoring
tool should support working on incomplete AUTOSAR models. It should be
possible to merge several AUTOSAR models together.

e Chapter 4 “Compliance” discusses the compliance of AUTOSAR tools and sum-
marizes the requirements defined in this document: A tool may be called
AUTOSAR compliant if it implements all mandatory requirements on AUTOSAR
tools defined in this document.

Compliant tools should be able to be used within the AUTOSAR methodology.
However, a seamless exchange of AUTOSAR XML descriptions between different
tools is only possible if they support the same set of information.

1.3 Document Conventions

The representation of requirements in AUTOSAR documents follows the table specified
in[TPS_STDT_00078], see Standardization Template, chapter Support for Traceability

([12]).

AUTOSAR

The verbal forms for the expression of obligation specified in [TPS_STDT_00053] shall
be used to indicate requirements, see Standardization Template, chapter “Support for
Traceability” ([12]).

1.4 Requirements Tracing

The following table references the use cases and requirements specified in [1] and
links to the fulfillments of these.

Requirement

Description

Satisfied by

[RS_IOAT_00001]

Support data exchange

[TR_IOAT_00071] [TR_IOAT_00072]

[RS_IOAT_00002]

Standardize the handling of errors in
AUTOSAR models

[TR_IOAT_00065]

[RS_IOAT_00003]

Provide naming conventions

[TR_IOAT_00062] [TR_IOAT_00069]

[UC_IOAT_00001]

Integrate extracts from an AUTOSAR
model of an OEM passed for further
refinement and implementation to a
supplier

[TR_IOCAT_00035] [TR_IOAT_00063]
[TR_IOAT_00064]

[UC_IOAT_00002]

Dealing with changes of the AUTOSAR
meta model over time

[TR_IOAT_00005] [TR_IOAT_00066]
[TR_IOAT_00075]

[UC_IOAT_00004]

Allowing for concurrent work on the
same mode

[TR_IOAT_00062] [TR_IOAT_00067]
[TR_IOAT 00074]

[UC_IOAT_00005]

Usage within the different steps of
top-down functional development

[TR_IOAT_00035] [TR_IOAT_00065]

[UC_IOAT_00006]

Support for direct exchange of
AUTOSAR models in a tool-chain

[TR_IOAT_00065]

[UC_IOAT_00008]

An AUTOSAR model and related
artifacts are shipped from one party to
another.

[TR_IOAT_00036] [TR_IOAT_00062]
[TR_IOAT 00065] [TR_IOAT 00073]
[TR_IOAT_00075]

[UC_IOAT_00010]

Handling of identical double definitions

[TR_IOAT_00063] [TR_IOAT_00064]

Table 1.1: RequirementsTracing

AUTOSAR

2 Basic Concepts

[TR_IOAT_00071] Basic Concepts of Data Exchange | This chapter is intended to
provide the reader with a more detailed insight into the exchange of information among
different AUTOSAR tools. AUTOSAR has chosen XML as a language for exchange
of data between different AUTOSAR tools. Therefore AUTOSAR tools SHALL be able
to interpret and create AUTOSAR XML descriptions. The following section describes
the different data representations which will be used in AUTOSAR and clarifies the
relationship between the AUTOSAR meta-model, XML and the internal data structure
of AUTOSAR tools. Additionally, common tasks that an AUTOSAR authoring tool needs
to perform are defined. | (RS_IOAT_00001)

2.1 Data representation

In a development process, many different tools with different representation of
AUTOSAR models are used (Excel Sheets, Modeling Tools, UML, XML, etc.). Each
tool and its underlying representation of data have their advantages and disadvan-
tages. These tools and representations can be grouped into technological spaces.

A technological space is a working context with a set of associated concepts, body
of knowledge, tools, required skills, and possibilities [13]. Examples for technologi-
cal spaces which are used within AUTOSAR are: meta-model, XML and AUTOSAR
authoring tools (see Figure 2.1).

Technological spaces (e.g. meta-model and XML) are no islands. There are bridges
between several technological spaces. The deliverable “AUTOSAR Interaction with
Behavioral Models” explains how the AUTOSAR meta-model and the AUTOSAR con-
cepts can be mapped to behavioral models and back again. The document “AUTOSAR
model persistence rules for XML’ [4] for example defines how to map an AUTOSAR
meta-model to a W3C XML Schema.

Using XML and UML within AUTOSAR combines the strength of both technological
spaces:

e AUTOSAR defined templates for data that is exchanged in AUTOSAR. Since XML
is widely accepted as a standard for representation and exchange of structured
data it was chosen to be the basis for the exchange of AUTOSAR models.

e Due to the complexity of the data and its interrelationships a manual creation
of a consistent AUTOSAR XML schema turned out to be time-consuming and
error prone. In addition the expressive power of XML schema is not sufficient for
expressing content related constraints between data entities.

e Therefore a meta-model based approach was chosen to graphically describe the
templates by means of UML2.0 class diagrams. Constraints that cannot be for-
mulated graphically are described textually in the template specifications respec-
tively as OCL (Object constraint language). The UML model which defines all

AUTOSAR

data entities and interrelationships that can be used for describing AUTOSAR
systems and related artifacts is called AUTOSAR meta-model. An instance of the
meta-model, i.e. a concrete description of software components, etc., is called
an AUTOSAR model.

Figure 2.1 depicts the aforementioned technological spaces. The meta-levels (MO to
M4) show the correspondence of concepts in the different technological spaces. All
concepts within one meta-level are strongly related.

Unlike the classical four-layer architecture used by OMG, five meta levels are shown.
Starting at the lowest, most concrete meta level those are:

e MO: AUTOSAR objects
This is the realization of an AUTOSAR system at work: For example a real ECUs
executing a software image containing for instance the windshield wiper control
software.

e M1: AUTOSAR models
Models on this meta level are built by the AUTOSAR developers. They may define
a software component called “windshield wiper” with a certain set of ports that is
connected to another software component and so on. On this level all artifacts
required to describe an AUTOSAR system are detailed, including re-usable types
as well as specific instances of such types.

The AUTOSAR software is loaded in to individual ECUs for individual vehicles.
This loading means that the M1 Model is instantiated.

Note that such an AUTOSAR model can be represented using various formats
ranging from XML to C, even to PDF.

e M2: AUTOSAR meta-model
On this meta level the vocabulary for AUTOSAR templates is defined. This vo-
cabulary later can be used by developers of AUTOSAR based ECU systems.

For example it is defined on M2 that in AUTOSAR we have an entity called
“software component” which among others aggregate an entity called “port”. This
definition ensures that the developer of an AUTOSAR software component can
describe his particular component and its ports. This description is called an
AUTOSAR model and resides on M1.

e M3: UML profile for AUTOSAR templates
The AUTOSAR templates on M2 are built according to the meta-model defined
on M3. As discussed before this is UML together with a particular UML profile to
better support template modeling work.

Formally a template on M2 is still an instance of UML, but at the same time the
template profile is applied, i.e. that additionally rules set out by the stereotypes in
the profile need to be observed. The relevant details of the profile are specified
in [3].

AUTOSAR

Note that an AUTOSAR model can be represented using various tchnological spaces

e M4: Meta Object Facility
Just for completeness, OMG’s MOF sits on the final metalevel M4. No further
meta-levels are required since MOF is designed to be reflective.

ranging from XML, to C even to PDF. The conversion between these formats is called
“transformation”, while the fact that an AUTOSAR model follows to the AUTOSAR meta-

model is called “instantiation”. An AUTOSAR model (M1) is therefore called an instance

of the AUTOSAR meta-model (M2).

Instantiiatikn

2.1.1

The Technological Space “meta-model” relates to the Model Driven Architecture (MDA)
approach which was recently proposed by the OMG. According to MDA, the software
development process is populated with a number of different models, each represent-

Metamodel XML TOOL
MOF
M3/M4 Ins’[ar|1ceOf
UML XSD-
MetaModel Schema
; :
Instapceof Instapceof
[[
M2 AUTOSAR AUTOSAR Tool data
Meta-Model MetaModel XML Schema structure
: : ;
InstarjceOf Instapceof Instarlmeof
[[[
M1 AUTOSAR XML. Tool model
Models Model Description
; ; ;
InstapceOf Instapceof InstarjceOf
[[[
MO AUTOSAR Objectin a Objectin a
objects objects Car Car
Transformation »

Technological Space: “meta-model”

Figure 2.1: Technological spaces

AUTOSAR

ing a particular view on the system being built. Models are written in the language of
their meta-model’.

The left part in Figure 2.1 shows the meta-model Technological Space as it is used in
AUTOSAR.

e The lowest part called MO corresponds to the real world. In the meta-model tech-
nological space AUTOSAR has no representation of MO objects. It is mentioned
for completeness only.

e All AUTOSAR models are at the level M1. For some standardized models,
AUTOSAR uses an UML Object model.

e The M2 AUTOSAR meta-model is described by means of UML2.0 class diagrams
and formally identified constraints in the AUTOSAR template specifications?.

e A detailed description of the language that can be used for creating the
AUTOSAR meta-model is given on the level M3 by the UML2.0 meta-model and
the AUTOSAR Template Profile (see [3] for more information on the AUTOSAR
Template Profile).

e The UML2 meta-model is defined by MOF which constitutes the level M4.

2.1.2 Technological Space: “XML”

Extensible Markup Language (XML) is a markup language standardized by W3C. It
is widely accepted as a standard for representation and exchange of structured and
semi structured data. The XML description is the central concept in the XML tech-
nological space. Descriptions are written in a syntax constrained by well-formedness
and validity constraints. Well-formedness constraints are defined by the XML grammar
rules, whereas the validity constraints are defined in a separate document called XML
schema, which is written in a given schema language (W3C XML DTD [14], W3C XML
Schema [15], etc.).

In other words: The XML grammar describes that a XML description contains opening
and closing tags, etc. The XML schema defines e.g. which tags may be used in which
combinations.

The middle part of Figure 2.1 illustrates the relations between an XML description, the
XML grammar and a XML schema.

The technological space XML can be considered as a low level technological space:
The AUTOSAR meta-model can be mapped to a XML schema [4]. But the original
AUTOSAR meta-model cannot precisely be reconstructed out of the XML schema.

TAUTOSAR uses the database of the UML tool called “Enterprise Architect Database” to represent
this technological space.
2these constraints may be specified as OCL constraints in future.

AUTOSAR

2.1.3 Technological Space: “Tool”

Each tool has its internal data structure which implements the concepts that can be
used within the tool. This internal data structure is located at the meta-model level
(M2) and defines the language which can be used to interpret or create descriptions or
models (M1). The code that can be generated out of the model is again a different rep-
resentation of the model (e.g. C). The runtime-instances of the code that are executed
on an ECU in a car are represented on meta-level MO.

In most cases the internal data structure of an AUTOSAR tool is different from the
structure defined by the AUTOSAR meta-model, e.g. for performance or historical rea-
sons. In order to allow interoperability it is required to map the models represented by
the internal data structure onto an AUTOSAR XML description. This mapping and the
tool internal data structure is NOT subject of AUTOSAR standardization and therefore
NQOT in the scope of this document.

2.2 Abstraction levels of information exchange

Table 2.1 depicts several abstraction levels which will be used in this document for
structuring the requirements on authoring tool interoperability and the AUTOSAR data
exchange format. Each abstraction level is based on the underlying levels. For each
abstraction level the mechanism that must be supported is described - beginning with
the physical level (sets of files) until the semantic layer (semantic constraints formally
specified in the AUTOSAR meta-model).

The abstraction levels “presentation level” and “application level” are not relevant for
basic authoring tool interoperability but might have impact on the exchangeability of
AUTOSAR authoring tools which perform a similar functionality (e.g.: if AUTOSAR au-
thoring tools use a common graphical notation and provide similar mechanism for mod-
ifying AUTOSAR models, the effort for introducing another authoring tool is reduced).

In other words: each AUTOSAR authoring tool SHALL support the exchange of
AUTOSAR models based on sets of XML-descriptions that can be distributed over sev-
eral files. Each file in the set of files SHALL validate successfully against the AUTOSAR
XML schema that is generated out of the AUTOSAR meta-model. The exchanged
model SHOULD NOT violate semantic constraints. When exchanging AUTOSAR mod-
els an authoring tool needs to create an AUTOSAR XML description out of the internal
data structure. Another authoring tool needs to interpret the AUTOSAR XML descrip-
tion and create its internal data-representation.

In addition to the common mechanism for exchanging AUTOSAR models, authoring
tools can implement additional mechanisms. For example, an authoring tool could
provide a plugin-interface which allows direct access to its internal data-structure. In
this case a plugin and the authoring tool would be interoperable on the content level.
However, even if an authoring tool supports additional mechanisms for exchanging
AUTOSAR models at least the mechanisms defined in Table 2.1 SHALL be supported.
Thereby AUTOSAR XML descriptions are the only standardized format.

AUTOSAR

Abstraction Level

Minimum supported mechanism
for authoring tool interoperability

Document that describes further
information

Application Level

e.g.: Advanced automatic features

Not specified by AUTOSAR

Presentation Level

Graphical notation

Partly specified by AUTOSAR:
Graphical Notation [16]

Semantic Level

Semantic constraints precisely de-
scribed in the meta-model (e.g.: cri-
teria for compatibility of interfaces)

AUTOSAR meta-model [17],
AUTOSAR Template UML Profile

[3]

Content Level Internal data-structure This is subject to tool implementa-

tion and therefore not covered by

AUTOSAR documents.

Data Format Level | AUTOSAR XML schema Model Persistence Rules for XML
(4]

Physical Level Sets of files This document

Table 2.1: Data Exchange Abstraction Levels

2.2.1 Physical level
The physical level defines the physical characteristics of the communication path. A
physical representation could be one or more files or a data-stream.

2.2.2 Data format level

The data format level defines the format of the exchanged data. In AUTOSAR the
data exchange format between different authoring tools is XML. The exchanged data
SHALL be well-formed as defined in the W3C XML 1.1 Specification [14]. Addition-
ally the exchanged XML descriptions SHALL be valid with respect to the AUTOSAR
XML schema. We refer to this kind of data as “XML descriptions”. This level can be
implemented by off-the-shelf XML-parsers.

2.2.3 Content level

The content level defines the amount of information that can be exchanged. On the one
hand it defines, which information is allowed to be given (boundedness). On the other
hand, this level defines which information must at least be available (coverage). Au-
thoring tools which base on this level can assume that at least a minimum and not more
than a maximum of information is available. This level can be partly implemented by
off-the-shelf validating XML-parsers which validate against a strict W3C XML schema
(which can be generated out of the meta-model if the subset is formally defined). Some
checks such as resolving of references must be implemented by the AUTOSAR author-
ing tool.

AUTOSAR

Example: An authoring tool might be specialized in the description of interfaces. This
authoring tool might not understand any additional XML data. The content level needs
to make sure that no data is transferred to the authoring tool which it does not under-
stand.

Additionally the import and export of the AUTOSAR XML descriptions into the
AUTOSAR authoring tool internal data structure is realized in this level. If the
AUTOSAR XML description was split up over several files, the represented AUTOSAR
model needs to be constructed. During this construction merge conflicts can occur and
need to be resolved.

Example: references are resolved and potential conflicts such as multiple definitions of
the same element are detected.

2.2.4 Semantic level

The definition of a standardized XML based exchange format is the first step towards
successful interoperability of different authoring tools. The AUTOSAR XML data ex-
change format is defined by the AUTOSAR XML schema and therefore can only cover
the “data format level” (validity according to the AUTOSAR XML schema).

In order to allow for seamless authoring tool interoperability all authoring tools must
have the same interpretation of the semantics of the AUTOSAR models. For exam-
ple all tools must have a common interpretation of the compatibility of instances of
PortInterfaces.

The validation of semantic constraints is not only mandatory for the exchange of
AUTOSAR models - it is mandatory in any case (i.e. even if the information would
not be exchanged among different tools) because it must be possible to check the con-
sistency of AUTOSAR models during their creation and maintenance and before the
model is exported to an AUTOSAR XML description.

The template specifications released by AUTOSAR [3][5][6][7][9][8] already contain dis-
cussions of particular semantic constraints, which basically implement the structure
depicted in Figure 2.2.

[constr_1031] NvBlockSwComponentType references ConstantSpecifica-
tionMappingSet [NvElockSwComponent Type! in this case the ConstantSpec-
ificationMappingSet is associated with the aggregated NvElockDescriptor.

Figure 2.2: Example of a semantic constraint

AUTOSAR

2.2.5 Presentation level

In this level a more abstract access to the AUTOSAR model is supported. This can
e.g. be realized by an API for a programming language, by a set of text tables and/or
a graphical editor. This level does not support any automatic support for editing the
AUTOSAR models. The API and representation of the model is highly depending on
the AUTOSAR tool. Therefore AUTOSAR only specifies the graphical notation [16].

Example: editor with no automation support

2.2.6 Application level

The application supports automatic features such as algorithms for tool supported map-
ping of software components onto ECUs. This document does not specify the behavior
of tools on this level, since the behavior is highly depending on the implementation of
the tool. Additionally the “automatic” features have no impact on tool interoperability.

Example: semi-automatic algorithms for mapping signals onto buses.

AUTOSAR

3 Requirements on AUTOSAR Tools

3.1 Support for AUTOSAR XML data exchange

A

Authoring
Tooll '\

/ Tooll

\
edit description creatg XML
description
changed

intemal
representation

-

system description Authoring
:System ITooI 2\

interpret XML
description

edit description
internal
representation

Figure 3.1: Support for AUTOSAR data exchange format

[TR_IOAT_00072] Support for AUTOSAR XML Data Exchange | When exchanging
data between different departments or companies all involved parties need to agree on
a common wording for the exchanged information. Otherwise all parties have a differ-
ent understanding of the information. The same holds for exchanging AUTOSAR mod-
els between AUTOSAR authoring tools: Whenever AUTOSAR models are exchanged
they need to be represented as AUTOSAR XML descriptions. |(RS_IOAT_00001)

If the tools in a tool-chain are all able to deal with the full set of information as described
in the AUTOSAR meta-model, they can perfectly exchange their AUTOSAR models.
Of course this requires that all tools have implemented the functionalities which are
defined in

e The physical level (e.g. they support files),

AUTOSAR

e the data format level (e.g. the files are valid with respect to the AUTOSAR XML
schema),

e the content level (e.g. the data can be loaded in the tool internal data model), and

e the semantic level (e.g. ALL semantic constraints can be evaluated according to
the template specifications).

Optionally these tools can use the same graphical notation as defined in the presenta-
tion level.

3.1.1 Physical level
3.1.1.1 AUTOSAR tool SHALL support sets of files

[TR_IOAT_00010] AUTOSAR tool SHALL support sets of files |

AUTOSAR tools SHALL support for reading and writing single files and of sets
Description: of files that are stored in a file system. The tool SHALL provide a mechanism to
select a specific file and sets of files in the file system.

An AUTOSAR XML description can be shipped in several files. Some files
could contain data types others could contain interfaces, etc.

This allows the transport of models via CD, DVD, Email, etc. Splitting up an
AUTOSAR model (represented as AUTOSAR XML descriptions) over several
Use Case: files supports concurrent modeling and a more fine-grained versioning. This
allows development of parts of the model by different users or roles.
Additionally it allows reuse of unchanged parts of the model.

Dependencies: | [TR_IOAT_00036], [TR_IOAT_00042], [TR_IOAT_00063]

Supporting
Material:

Rationale:

ASAM Container Catalog as specified in [18]

10
The following details apply:

e An AUTOSAR tool SHALL be able to read the files in any order. Changing the
order of reading SHALL not result in any change of the semantics of the model.

e An AUTOSAR authoring tool SHALL save changed model elements in the same
file as they were read from.

o |f the same element was read from two artifacts, it needs to be serialized back to
these two ([TR_IOAT_00063]).

e An AUTOSAR authoring tool SHALL allow the user to specify in which file a newly
created model element shall be saved.

e An AUTOSAR tool shall be able to read the files to be processed from an ASAM
catalog file ([TR_IOAT_00036]).

AUTOSAR

3.1.2 Data format level

3.1.2.1 AUTOSAR tool SHALL support AUTOSAR XML descriptions

[TR_IOAT_00012] AUTOSAR tool SHALL support AUTOSAR XML descriptions [

Description: used with or without the document’s corresponding AUTOSAR XML schema(s).

AUTOSAR tools SHALL support the interpretation and creation of AUTOSAR
XML descriptions. These descriptions SHALL be "well-formed" and "valid" as
defined by the XML recommendation, W3C XML 1.1 Specification [14], whether

In other words: Even if the tool does not use standard XML mechanisms for
validating the XML descriptions it SHALL ensure that the XML descriptions can
be successfully validated against the AUTOSAR XML schema.

Rationale: Each AUTOSAR XML description file has confor to the AUTOSAR xml schema.
Use Case: -
Dependencies: | A specialization of this requirement is defined in [TR_IOAT_00033].
Supportin L
by a’;f ok 9 W3C XML 1.1 Specification [14]
10

The following details apply:

e An AUTOSAR tool SHALL reject XML descriptions with violate XMLs well

formedness constraints as specified in [14]. Such files need to be fixed out-
side of AUTOSAR tools using a text editor. Proper error messages SHALL be
provided, e.g. the messages from an XML parser).

An AUTOSAR tool may accept XML description which do not validate properly
against the XML schema. Nevertheless, for the processed subset all seman-
tic constraints and also the schema constraints SHALL be evaluated. This ap-
plies in particular to specialized AUTOSAR tools which to not process the entire
AUTOSAR model.

An AUTOSAR tool may process an AUTOSAR description using a well-formed
parser. Nevertheless, the result must exactly be the same as if the AUTOSAR
description were parsed with validation.

If an AUTOSAR tool wants to validate an AUTOSAR XML description against
an AUTOSAR schema, it SHALL provide the necessary schema files in its
own resources. An AUTOSAR tool shall use the SYSTEM-TIdentifier in the
xsi:schemalLocation to identify an appropriate schema file.

The sYSTEM-Identifier for the schema in the AUTOSAR XML description
indicates the AUTOSAR schema version which was the basis for the creation
of the description. It is very likely that a subsequent revision of the AUTOSAR
schema can also be utilized to validate the description.

Therefore an AUTOSAR tool may map the SYSTEM-Identifier forthe schema
to any resource which was declared backwards compatible by AUTOSAR. An
AUTOSAR tool MUST NOT use the SYSTEM-Identifier directly as afilename.

AUTOSAR

AUTOSAR does not specify, how this mapping SHALL be performed, as there are
various approaches to do this. As one example this may be done using SGML-
OPEN-Catalog files [19]. In Example 3.1 two SYSTEM-Identifers are mapped
to the same schema file using an SGML-OPEN-Catalog-File.

Example 3.1

OVERRIDE YES

SYSTEM "AUTOSAR_4-0-0.XSD" "resources/AUTOSAR_4-0-1.xsd"
SYSTEM "AUTOSAR_4-0-1.XSD" "resources/AUTOSAR_4-0-1.xsd"
SYSTEM "http://www.w3.0rg/2001/03/xml.xsd" "resources/xml.xsd"

Example 3.2 illustrates the beginning of an AUTOSAR XML description with the
requested attributes for AUTOSAR 4.0.x (see [TR_IOAT_00062] for more details):

Example 3.2
Listing 3.1: Requested attributes for the AUTOSAR element

<?xml version="1.0" encoding="UTF8"?>
<AUTOSAR
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://autosar.org/schema/r4.0_AUTOSAR_4-0-1.
xsd"
xmlns="http://autosar.org/schema/r4.0">

</AUTOSAR>

3.1.2.2 Authoring tool SHALL be able to import and export supported model

elements as AUTOSAR XML descriptions

[TR_IOAT_00033] Authoring tool SHALL be able to import and export supported
model elements as AUTOSAR XML descriptions |

Description: successfully against the AUTOSAR XML schema.

For all model elements that are defined by AUTOSAR and are supported by an
authoring tool, the tool SHALL provide the user with the possibility to import
them from XML descriptions and export them as XML descriptions that validate

Even if the tool has non AUTOSAR exchange possibility of models it SHALL
nonetheless support the creation of the corresponding AUTOSAR XML
description.

It is possible that between two tools or independent components of the same
tool exists some data exchange mechanism. Such mechanism might make it

Rationale: possible for the tool to bypass AUTOSAR XML descriptions even if the model
can be represented by AUTOSAR XML descriptions.
Avoid proprietary exchange formats that bypass the standardized AUTOSAR
Use Case: XML descriptions and therefore endanger the interoperability of tools from

different vendors.

Dependencies: [TR_IOAT_00012]

AUTOSAR

Supporting
Material:

10

3.1.2.3 Authoring tool SHALL support well defined serialization

[TR_IOAT_00062] Authoring tool SHALL support well defined serialization |

An AUTOSAR authoring tool shall provide a serialization for XML as shown in
the table below, in particular in Table 3.1

In order to support a direct comparison of AUTOSAR XML descriptions with a
Rationale: text comparison tool it is essential that the XML is generated in a reliable and
standardized manner.

Dependencies: [TR_IOAT_00012]

Supporting
Material:

Description:

|(RS_IOAT_00003, UC_IOAT_00004, UC_IOAT_00008)

In order to support a direct comparison of AUTOSAR XML descriptions with a text
comparison tool it is essential that the XML is generated in a reliable and standardized
manner.

This requirement also supports a well defined validation against an xml schema.
Therefore an AUTOSAR tool shall support serialization as follows:

e In AUTOSAR XML the root element shall contain the attribute
xsi:schemalocation. This attribute is list of URI/URL pairs which as-
sociates a SYSTEM-Identifier (the url) to a name space identifier (the URI)
according to listing 3.2.

Listing 3.2: Requested attributes for the AUTOSAR element

<?xml version="1.0" encoding="UTEF8"?>

<AUTOSAR
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="{AUTOSAR_Namespace} {SYSTEM-Identifier}"
xmlns="{AUTOSAR_Namespace} ">

</AUTOSAR>

e The SYSTEM-Identifier for the schema in the AUTOSAR XML description
indicates the AUTOSAR schema version which is the basis for the creation of the
description. It is very likely that a subsequent revision of the AUTOSAR schema
can also be utilized to validate the description. Therefore an AUTOSAR tool may
map the SYSTEM identifier for the schema to any resource which was declared
backwards compatible by AUTOSAR.

AUTOSAR

The sYSTEM-Identifier in the AUTOSAR XML description shall match the
following pattern:

AUTOSAR_{major}-{minor}—-{revision}.xsd
In particular no path shall be part of the SYSTEM-Identifier.

e AUTOSAR XML descriptions SHALL use the file extension “.arxml” (short for
AUTOSAR XML).

e Unless the meta model flags multiple elements as {ordered} the elements with
upper multiplicity > 1 shall be serialized in a predictable order. In particular, the
order shall be defined by the expression mentioned in the atp.splitKey. If
no splitkey is defined the order shall be defined by the contents of shortName,
shortLabel.

e XML comments may be silently ignored and need not to be serialized again. XML
comments are not treated as part of the AUTOSAR model.

e XML processing instructions may be silently ignored and need not to be serialized
again. It is allowed that an AUTOSAR tool places processing instructions to the
AUTOSAR XML description for specific purposes.

e primitives such as Numerical etc. SHALL be serialized as read from the
AUTOSAR XML description respectively as entered by the user in an AUTOSAR
Authoring tool.

e empty elements (if there are those) should be serialized as start/end tag, not as
‘emptytag’.

In particular
<VALUE></VALUE> instead of <VALUE /> for primitives
e The XML description SHALL be formatted as shown in Table 3.1:

Applied to Strategy description

default approach NewLine: Element is a NewLine means in particular:
block of its own) .
e indentation shall be 2 characters per level

e the start tag of the element shall be on a new line

e the XML attributes shall be sorted alphabetically. If more than
one XML attribute, each one shall be on its own line

e the start shall be indented according to the nesting level of XML
tag

e the end tag shall be on a new line and indented like the start tag

e no newline shall be placed after the end tag, this is inserted by
the next tag if necessary

e the content will be indented one step more than the start tag

Identifiables BlankLine: Elementis a | the approach is as NeweLine but with a blank line before the block
visible block

AUTOSAR

shortName and
shortLabel

KeepLine: element
remains on the current
line

Keepline is in particular:
e The start tag of the element will not start on a new line
e the position in the parent element will be kept as is

e no newline will be placed after the end tag, this is inserted by
the next tag if necessary

<UNIT><SHORT-NAME>Perc</SHORT-NAME>
<DESC>

Primitives (either
modeled as
UML-attribute or as
aggregation of a

OnelLine Element is
displayed in one line

The element starts on a new line, is indented and presented in one line.
The end tag is in the same line as the start tag and the content of the
element.

elements with
xml: space set to
preserve

primitive
Properties of InLine: Element is Surrounding whitespace of the element is not changed. No new line is
<atpMixedString> | floating within text inserted before or after the tags. Whitespace within the element is also
not changed. In the following example the element <> is formatted
according to the InLine approach.
<L-1 L="EN">This
is <E>bold </E> style </L-1>
VerbatimString keepWhitespace White space in the element is kept as is.

elements with with no
xml:space or set to
default

normalizeWhitespace

Normalize whitespace includes:
e leading and trailing whitespace will be removed
e consecutive white spaces will be replaced by a single blank
e no wrapping will be performed
e carriage returns will be replaced by blank

e child(inline)-elements are treated as one non whitespace
character

Table 3.1: Approaches for formating XML serialization

The following example 3.3 illustrates these approaches:

<UNIT><SHORT-NAME>Perc</SHORT-NAME>

<DESC>

<L-2 L="EN">a percentage..

</DESC>

<DISPLAY-NAME>%</DISPLAY-NAME>

</UNIT>

<UNIT><SHORT-NAME>PercPerSec</SHORT-NAME>

<DESC>

<L-2 L="EN">time-derivative of percent</L-2>

</DESC>

Listing 3.3: Serialization Example

.</L-2>

<!-- KeepLine ——>
<!—-- NewLine -—>
<!—— OneLine -—>
<!=— OneLine -—>
<!—=- BlankLine ——>
<!—— KeepLine -—>
<!—— NewLine -—>
<! —=— NewLine

NormalizeWhitespace

AUTOSAR

<DISPLAY-NAME>%/s</DISPLAY-NAME> <!—=- OneLine -—>
</UNIT>

[TR_IOAT_00075] No empty wrappers |

Some attributes and references in AUTOSAR models are mapped to a
hierarchy of two or more XML elements. The AUTOSAR XML description
SHOULD not contain incomplete hierarchies. The semantics of those
incomplete hierarchies is equivalent to “the value is not set”.

Description:

Empty collection wrappers provide no additional semantics and only blow up

PEBENELS file size without additional information.

Use Case: —

Dependencies: | —

This rules applies for attributes and references for which the following XML
schema production rules apply:

e [TR_APRXML_00008] XML Schema production rule: composite
property representation (1111)

e [TR_APRXML_00009] XML Schema production rule: composite
property representation (1101)

e [TR_APRXML_00023] XML Schema production rule: composite
property representation (1100)

e [TR_APRXML_00022] XML Schema production rule: composite

. property representation (1011)
Supporting
Material: e [TR_APRXML_00010] XML Schema production rule: composite

property representation (1001)

e [TR_APRXML_00011] XML Schema production rule: composite
property representation (0111)

e [TR_APRXML_00012] XML Schema production rule: composite
property representation (0101)

e [TR_APRXML_00014] XML Schema production rule: composite
property representation (0011)

e [TR_APRXML_00017] XML Schema production rule: reference property
representation with role wrapper element

| (UC_IOAT_00002, UC_IOAT_00008)
Example of a valid AUTOSAR XML description according to [TR_IOAT_00075]:

Listing 3.4: Valid example for hierarchy

<?xml version="1.0" encoding="UTEF-8"?>

<AUTOSAR

xmlns="http://autosar.org/schema/r4.0"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://autosar.org/schema/r4.0_autosar_4-2-2.xsd">
<Ve= ... -

</AUTOSAR>

Example of an invalid AUTOSAR XML description according to [TR_IOAT_00075]:

AUTOSAR

Listing 3.5: Invalid example for hierarchy

<?xml version="1.0" encoding="UTF-8"?>

<AUTOSAR

xmlns="http://autosar.org/schema/r4.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://autosar.org/schema/r4.0_autosar_4-2-2.xsd">
<AR-PACKAGES>
</AR-PACKAGES>

</AUTOSAR>

3.1.3 Content level

3.1.3.1 Authoring tool SHALL NOT change model contents without the intention

of the user
[TR_IOAT_00007] Authoring tool SHALL NOT change model contents without the
ntention of the user |
An AUTOSAR authoring tool SHALL NOT perform any changes on the
AUTOSAR model while interpreting and creating AUTOSAR XML descriptions.
If the user doesn’t explicitly trigger or confirm any changes then the semantics
of the AUTOSAR model represented by the original XML description SHALL be
equivalent to the semantics of the model represented by the created XML
description. This includes in particular
e that an authoring tool SHALL preserve references even if the target was
not available in the input XML description
Description: ¢ that the format of primitives such as Numerical, Integer is not
changed
o that the package structure of the model is not changed
e that the base attribute in references is not changed
¢ that uuids are not allowed to be removed or changed
o that checksums and timestamps are not allowed to be changed
Rationale: -
The meta-model contains some elements that are marked by ordered. The
Use Case: order in the XML representation may not change without the intention of the
’ user when interpreting and creating the XML description. Other use-cases may
apply as well.
Dependencies: | [TR_IOAT_00024]
Supporting B
Material:
10

Note that AUTOSAR tools are not required to keep checksums, timestamps, and uuids
consistent with the current data. Therefore after importing an XML description, work-

AUTOSAR

ing with it, and re-exporting it, the checksums, timestamps, and uuids might become

inconsistent.

3.1.3.2 Authoring tool SHALL support exchange of partial information

[TR_IOAT_00035] Authoring tool SHALL support exchange of partial information

[
Description: An AUTOSAR authoring tool SHALL support the exchange of AUTOSAR
models that are not complete.
Rationale: It SHALL be possible to exchange intermediate work products.
Use Case: [UC_IOAT_00001], [UC_IOAT_00005]
Dependencies: [TR_IOAT_00024]
Supporting B
Material:

| (UC_IOAT_00001, UC_IOAT_00005)

3.1.3.3 Authoring tool SHALL support AUTOSAR extension mechanism

[TR_IOAT _00048] Authoring tool SHALL support AUTOSAR extension mecha-

nism |
An AUTOSAR authoring tool MAY support the AUTOSAR extension
mechanism if applicable. Tools that do not need the additional information for
Description: its intended purpose SHALL ignore that information. If several extensions are
defined then the tool SHOULD support the relevant extensions and SHALL
ignore the irrelevant extensions.
For some use-cases it is required to exchange information that is not (yet)
Rati ; captured in the standard data exchange format. This additional information is
ationale: e . . : .
often specific to a tool (e.g. allow for round-trip engineering) or a tool-chain
within a development process.
Use Case: Using AUTOSAR descriptions in specific processes.
Dependencies: | —
Supporting
Material: B
10

3.1.3.4 Authoring tool SHOULD maintain references

[TR_IOAT_00067] AUTOSAR Authoring tool SHOULD maintain references |

Description:

An AUTOSAR authoring tool SHOULD provide means to maintain references
including referenceBase and attribute base

AUTOSAR

Rationale: The implementation of references is part of the AUTOSAR model and shall be
handled properly.

Use Case: [UC_IOAT_00004]

Dependencies: | [TR_IOAT_00007], [TR_IOAT_00003], [TR_IOAT_00064]

Supporting B

Material:

|(UC_IOAT _00004)

3.1.3.5 Authoring tool SHOULD follow specified access rights

[TR_IOAT_00074] AUTOSAR Authoring tool SHOULD follow specified access

rights |

An AUTOSAR authoring tool SHOULD provide an option to follow access

Description: rights. If this option is selected, it SHALL follow the access rights specified
according to [TPS_GST_00226]

Rationale: The agreed roles and their permissions need to be supported by a tool.

Use Case: [UC_IOAT 00004]

Dependencies: | [TR_IOAT_00007], [TR_IOAT_00003], [TR_IOAT_00043]

Supporting B

Material:

|(UC_IOAT _00004)

3.1.4 Semantic level

3.1.4.1 Authoring tool SHALL support validity checks

[TR_IOAT_00003] Authoring tool SHALL support validity checks |

Description:

An AUTOSAR authoring tool SHALL support validating the consistency of the
AUTOSAR model to the AUTOSAR meta-model, including the semantic
constraints. The validation SHALL be performed when interpreting and creating
AUTOSAR models.

A tool SHOULD allow the user to trigger validity checks manually. The tool
SHALL allow for interpreting and creating AUTOSAR XML-descriptions that are
not valid with respect to the semantic constraints.

If the tool is not able to interpret the file due to the violation of some semantic
constraints it SHALL notify the user and indicate the location of the violating
elements.

The SHALL perform semantic checks according to the intended task.

The Tool shall not produce erroneous results from semantically incorrect input
without notice to the user.

Rationale:

Use Case:

Support to create models of appropriate quality. User wants to correct
semantical problems.

AUTOSAR

Requirement on the Resolution of references in [TR_IOAT_00064]. The
. . | violation of semantic constraints shall be reported according to
Dependencies: | 12" \0AT 00065]. Validity checks shall be performed after loading all partial
models (see [TR_IOAT_00042].
Supporting
Material: B
10

3.1.4.2 AUTOSAR tool SHALL support variants

[TR_IOAT_00060] AUTOSAR tool SHALL support variants |

Starting with AUTOSAR 4.0, AUTOSAR models may contain variation points
Description: and tables of evaluated variants. An AUTOSAR tool needs to understand the
semantics of variation points and handle variability correcily.

An AUTOSAR model which contains variants is subject to relaxed constraints
on multiplicity and uniqueness of shortNames. Hence, the model is no longer
Rationale: backward compatible, and a tool which does not understand variant handling
cannot interpret such a model correctly; it is not sufficient to just ignore the
variation point information.

Party 1 sends a model which contains variants to party 2, which generates
code from this model, but does not resolve all variants. Party 1 gets back a

SEDEEE result with some variants bound, and other variants left “open” for binding at
compile time or later.
Dependencies: | —
Supporting Variant handling is described in Chapter 7 in the Generic Structure Template
Material: [3].
10

3.1.5 Presentation level

There are no general requirements on AUTOSAR Tools presentation level. Please
refer to chapter 3.8 “Standardized error handling” which also relates to the presentation
level.

3.2 Support for concurrent modeling

During the development of AUTOSAR systems, models will be passed between differ-
ent parties (e.g. from OEM to supplier and back). The fact that it is not possible or
wanted for all involved parties to work on the same repository, those parties will work
on different instances of the same model, e.g. enrich the models, add new elements,
implement the model etc. At some point in time, these models will be merged into one

AUTOSAR

complete model for the entire system: The consistency of the merged model must be
ensured and conflicts need to be resolved.

Since AUTOSAR models can be stored as AUTOSAR XML descriptions in several files
(which could be modified independently), an AUTOSAR authoring tool must support
merging the models stored in these files into a consistent internal data representation.
This includes providing a mechanism for manually or rule-based resolving of merge
conflicts.

Figure 3.2 shows the concept of handling AUTOSAR models which can be split up
over several files. The AUTOSAR authoring tool needs to interpret the contents stored
in each single file (partial model) and needs to merge them into the tool internal data
structure. After having finished modifying the model an XML description is created
which can again be split up over several files (the granularity of information that can be
split up over several files is defined in [TR_IOAT_00038]). Note that the merging shall
not be performed on the XML text level. It shall be performed on the level of the partial
models represented by XML.

XML XML

Original System
Description, Fragment
n :Sygtem

Original System

escription Fragment
1 :System

L&

Authoring Tool
-] N

N
~
~
~

-~
7~
7~
-
-
7~
~
Me.rgg edit model Produce XML
Description description / Spit to
Fragments
Original Modified

Model : Model :System
System

[

XML XML

Modified System Modified System
Description Fragment Description Fragment
X :Svstem a :Svstem

Figure 3.2: Concept of handling AUTOSAR models which can be split up over several
files

AUTOSAR

3.2.1 Detection of differences between models

3.2.1.1 Authoring tool SHOULD provide a mechanism for showing differences
between AUTOSAR models

[TR_IOAT _00043] Authoring tool SHOULD provide a mechanism for showing dif-
ferences between AUTOSAR models |

An AUTOSAR authoring tool SHOULD provide a mechanism for showing

Description: differences between AUTOSAR models. These differences could be
represented in textual or in graphical ways.
Rationale: Identification of differences between two versions of an AUTOSAR model.

e OEM wants to find out which parts of the model have been modified by

Use Case: the supplier.
¢ The user wants to check if a merge of two models was executed as
expected.
Dependencies: | —
Supporting ~
Material:
10

3.2.1.2 Definition of differences

The reconciliation of two independently modified models involves several activities.
1. Identification of model elements which are only available in one model.

2. ldentification of model elements that are available in both models and are identi-
cal in both models. Two model elements are considered identical if
(a) their attributes values are equal,
(b) their short-name references to other elements are equal and
(c) they are composed of identical elements (recursiveness).
(d) for aggregations with upper multiplicity greater than one, and specified as
{ordered}, the elements appear in the same sequence

(e) for aggregations with upper multiplicity greater than one and not specified
as {ordered} both sets contain the same elements

3. ldentification of model elements that are available in both models and are different
in the models.

The activities 2 and 3 require a precise definition of the concept of a “changed” model
element. In the following section we refer to meta classes that are specializations of

AUTOSAR

meta-class Tdentifiable as identifiables. An identifiable is considered as “changed”
if any of the following is changed:

e Any of its attributes of simple datatype changed its value.

e The identifiable or any parts (recursive) that are not identifiables themselves are
modified. So the granularity of possible detection of changes is the identifiable.
The rationale for this is that the Identifiable is considered as having an identity of
its own for which the difference is indicated separately.

The following section explains this definition in more details:

3.2.1.3 Definition of differences - aggregation

Figure 3.3 illustrates the granularity of modification detection: “A” is a specialization of
Identifiable. “B”is aggregated by “A” (“B” is a part of “A”) and “B1” is aggregated
by “B” (“B1” is part of “B”). “A” is considered changed (indicated by dark color) if the
underlying structure or any of the structure’s elements change. However it depends on
the particular use case if nested changes shall be indicated at higher levels to the user.

Identifiable
A

B

B1

Figure 3.3: Modification detection - aggregated meta classes that are not identifiable

Difference on aggregations marked as <atp.splitable>> require a more elaborate
consideration depending if partial or merged models are compared:

1. When comparing a merged model the rule of aggregations apply as mentioned
above.

2. When comparing a partial model, only the partial model which contains the
change also indicates the difference. In figure 3.4 the change of “C” is only indi-
cated in the “Lower Partial Model”. Reason is, that the “Upper Partial Model” is
not aware that there is another part.

AUTOSAR

Upper Partial model

Identifiable
A

Lower partial model

Identifiable Identifiable
A [}

«atpSplitable»

Figure 3.4: Modification detection - meta classes aggregated as <atp.splitable>

3.2.1.4 Definition of differences - references

If an Tdentifiable “A” has references to other Tdentifiables (see Figure 3.5),
“A” is considered changed, if a new reference is added/deleted or the string that in-
ternally represents the reference is changed. “A” is not considered changed, if the
referenced element changes. Please note that the AUTOSAR references are based
on the shortName as explained in the “Generic Structure Template” [3] and therefore
changing the shortName of an instance of “C” implies updating all references to the
instance. In this special case “A” is considered changed if the shortName of “C” is
updated (the string representing the reference needed to be updated too).

Identifiable Identifiable
A (0]

Figure 3.5: Modification detection - aggregated meta classes that are identifiable

3.2.1.5 Algorithm for comparison of model elements

The concrete algorithm of comparison is left open to the implementation, but it is re-
quired that it detects all of the changes described above. Possible implementation
could be a comparison on a per-attribute basis or the calculation and comparison of a
signature value (e.g. calculated by the MD5 algorithm) for any Tdentifiable. Since
somebody might change the content of an XML description with an XML editor without
updating the signature values, an authoring tool should not rely on the correctness of
the checksums that are transmitted with an XML description. However, if a user can
ensure that the checksum values fit to the content then they can be used in order to
increase the performance of the comparison.

AUTOSAR

3.2.1.6 Authoring tool SHALL support unique identification of model elements

[TR_IOAT_00024] Authoring tool SHALL support unique identification of model
elements |

e Upon user request, an AUTOSAR authoring tool MAY create XML
descriptions which contains uuids for each Identifiable.

L e An AUTOSAR authoring tool SHALL continue interpreting an AUTOSAR
Description: XML description even if uuids are missing.

e An AUTOSAR authoring tool SHALL not change the uuid while
processing an AUTOSAR model unless it is explicitly intended by the

user.
Rationale: Ability to trace model elements independently of content modifications.

Export of data from a database with unique uuids, change data in external tools
Use Case: and then re-import into the database. During the re-import the uuids aid the

unambiguous assignment of model elements to data in the database.
Dependencies: | [TR_IOAT_00042], [TR_IOAT_00035], [TR_IOAT_00007]
Supporting
Material:

10

3.2.1.7 Examples of differences between models (non normative)

The following figures show an original and a changed model. The model elements that
are marked in green indicate which element is considered to be changed: Figure 3.6
shows the original model. The SenderReceiverInterface “interface” and the Ap-
plicationPrimitiveDataType “velocityType” are defined within the ARPackage
“OEM”. The senderReceiverInterface “interface” has a variableDataProto-
type “velocity” which is of type “velocityType”. The invalid Value' of the Applica-
tionPrimitiveDataType “velocityType” is set to 10000.

"Note that valueSpecification is simplified in this diagram

AUTOSAR

:ARPackage

shortName = OEM

¢

+element +element
:ApplicationPrimitiveDataType | +type :VariableDataPrototype +dataElement :SenderReceiverinterface
shortName = velocityType shortName = velocity ;ﬁim:i: iailrferface
+invalidvalue +displayFormat
:NumericalValueSpecification :DisplayFormatString
value = 10000 value = %f6.2

Figure 3.6: Original Model

The model which is described in Figure 3.7 contains two additional model ele-
ments: VariableDataPrototype “buttonPressed” and the ApplicationPrimi-—
tiveDataType “Boolean”. These elements are marked as changed because they
were added. The ARPackage “OEM” and the SenderReceiverInterface “inter-
face” are marked as changed because aggregations to the new model elements have
been added.

ApplicationPrimitiveDataType :
+element —— —
:ARPackage ApplicationPrimitiveDataType

uuid = 6 shortName = Boolean
shortName =€EM

+type

:VariableDataPrototype

shortName = buttonPressed

+dataElement

+element +element
:ApplicationPrimitiveDataType | +type :VariableDataPrototype +dataElement :SenderReceiverinterface
shortName = velocityType shortName = velocity ;iim:;:iailie”ace
+invalidVvalue +displayFormat
:NumericalValueSpecification :DisplayFormatString
value = 10000 value = %f6.2

Figure 3.7: Modified model - added Data Element and Data Types

AUTOSAR

In Figure 3.8 the invalid value of ApplicationPrimitiveDataType “velocityType”
was extended. The change in the object valueSpecification is propagated to the
Identifiable ApplicationPrimitiveDataType.

:ARPackage

shortName = OEM

+element
+element
P A :SenderReceiverinterface
:ApplicationPrimitiveDataType | +type :VariableDataPrototype +dataElement -
- . isService = false
shortName = velocityType shortName = velocity TN S TG
+invalidvalue +displayFormat
:NumericalValueSpecification :DisplayFormatString
VALUE = 20000 value = %f6.2
value = 20000

Figure 3.8: Modified model - changed Invalid Value

The shortName of the ApplicationPrimitiveDataType in Figure 3.9 was
changed from “velocityType” to “speedType”. Changing the shortName of an object
implies a change of the references to this object. Therefore the variableDataPro-

totype “velocityType” is also changed. All these changes are propagated to the con-
taining ARPackage “OEM”.

AUTOSAR

:ARPackage
shortName = OEM
+element
+element

:SenderReceiverinterface

:ApplicationPrimitiveDataType | +type :VariableDataPrototype +dataElement
isService = false

shortName = speedType shortName = velocity shortName = interface
+invalidvalue +displayFormat
:NumericalValueSpecification :DisplayFormatString
value = 10000 value = %f6.2

Figure 3.9: Modified model - renamed Element (“speedType”)

If a model element is moved to a different ARPackage then only the source and the
target ARPackage are changed (Their list of elements changes). This is described
in Figure 3.10. Please note that all absolute references that point to moved elements
need to be changed as well. This is required because AUTOSAR uses absolute short
name paths for referencing elements. If references would have been relative refer-
ences then the references would not necessarily change depending on the layout of
the referenceBases.

:ARPackage :ARPackage
SEiETE = QI shortName = supplier
+element +elements
:ApplicationPrimitiveDataType | +type :VariableDataPrototype +dataElement :SenderReceiverinterface
sh = - A isService = false
ortName = velocityType shortName = velocity el AU
+invalidvalue +displayFormat
:NumericalValueSpecification :DisplayFormatString
value = 10000 value = %f6.2

Figure 3.10: Modified model - moved Element (“interface”) to another Package

AUTOSAR

3.2.2 Merging models

The following sections describe requirements on interpreting AUTOSAR models that
have been split up into several partial-models, each stored in an individual file. In
order to create an overall model the content described in the partial-models need to be
merged. The following algorithm describes a 2-way merge. Due to missing experience
with handling complex AUTOSAR models in development processes, strategies for
resolving merge conflicts are left open to implementation of tools.

In order to reduce manual interaction for resolving merge conflicts, tools may take
additional information into consideration. This information can e.g. be derived out of
an earlier version of the overall model (origin model, 3-way merge) or out of information
stored in meta-data for data exchange (see section 3.9).

3.2.2.1 Authoring tool SHALL be able to handle partial AUTOSAR models

[TR_IOAT_00061] Authoring tool SHALL be able to handle partial AUTOSAR mod-
els |

AUTOSAR authoring tools SHALL support handling of partial models. This
includes in particular support of dangling references as well as appropriate
Description: constraint validation. When storing an AUTOSAR partial model as an
’ AUTOSAR XML description this needs to be valid with respect to the
AUTOSAR XML schema: i.e. each of such files contains a full path beginning
from the root element AUTOSAR.
. . Allow for splitting up AUTOSAR models over several sub models which can be
Rationale: . P
stored, versioned, and modified independently.
. According to various process approaches, an AUTOSAR model may be split up
Use Case: : . :
into several files and have to be merged to a complete and consistent model.
Dependencies: | —
Supporting See “Generic Structure Template” [3] for detailed description on how to mark an
Material: aggregation as <atpSplitable>>.
10

3.2.2.2 Authoring tool SHALL support the merging of AUTOSAR models

[TR_IOAT_00042] Authoring tool SHALL support the merging of AUTOSAR mod-
els |

AUTOSAR

An AUTOSAR authoring tools SHALL support the merging of AUTOSAR
models that have been split up and stored in multiple partial models. The
minimum granularity of an AUTOSAR model is explicitly modeled in the
AUTOSAR meta-model: If an aggregation is marked as <atpSplitable>>,
then the aggregated elements MAY be described in different files. If the
aggregation is not marked as <atpSplitable>>, then the aggregated
content SHALL be stored in the same file as the aggregating element.

Merging of a model also includes the resolution of references.

The tool SHALL be able to read the submodels in any order. There is no
preference.

Allow for splitting up AUTOSAR models over several sub models which can be
stored, versioned, and developed independently.

When storing an AUTOSAR model as an AUTOSAR XML description in several
files, each file needs to be valid with respect to the AUTOSAR XML schema:
i.e. each file contains a full path beginning from the root element AUTOSAR.
Let’'s assume that an AUTOSAR model defines an At omicSwComponent Type
“A” and a SenderReceiverInterface “S” within the same ARPackage
named “pkg”. The XML description of “A” can be located in another file than the
XML description of “S”. Each file would contain the description of the
ARPackage “pkg”. While interpreting the contents of the two files the
AUTOSAR authoring tool must make sure that only one instance of “pkg” is
created in the internal representation of the AUTOSAR model.

This requirement is refined by [TR_IOAT_00044], [TR_IOAT_00043],
Dependencies: | [TR_IOAT_00040], [TR_IOAT_00063], [TR_IOAT_00064] and
[TR_IOAT_00024].

Description:

Rationale:

Use Case:

Supporting See “Generic Structure Template” [3] for detailed description on how to mark an
Material: aggregation as <atpSplitable>>.
10

3.2.2.3 AUTOSAR tool SHALL resolve references

[TR_IOAT _00064] AUTOSAR authoring/integration tools SHALL resolve refer-
ences |

When an AUTOSAR tools loads partial models, it shall be able to handle
references. This includes:

¢ late binding of references: When a partial model is loaded which
contains Identifiables which are referenced by previously loaded
artifacts, the references shall be bound

Description: ¢ handling dangling references: if a reference cannot be bound, it shall be

flagged as error, but the partial model shall still be loaded. Open
references shall be visible in the authoring systems (e.g. the name of a
referenced object shall be shown even if the reference cannot be
resolved).

Allow for integration of components that have been developed or modified by
different parties but referring common definitions which are not yet available.
Use Case: [UC_IOAT_00010], [UC_IOAT_00001]

Dependencies: | [TR_IOAT_00067]

Rationale:

AUTOSAR

Supporting
Material:

J(UC_IOAT_00010, UC_IOAT_00001)

3.2.2.4 Handling Conflicts

In case of conflicts, these need to be resolved with human interaction, since semantic
knowledge is needed in most cases for the decisions. Basically, for handling conflicts,
there is a need for regulation for mastership and how this is to be applied.

Merging tools might infer suggestions from additional information. If the sub-models are
derived from a common origin, the 3-way merge algorithms can be applied. Additionally
meta-data for data exchange could be used. E.g.: A timestamp could be used to
indicate the time of modification of an element (the initial creation of an instance is
considered as a modification, too), where modification means any change as described
in the section above. Timestamp is an optional field, since its existence is not critical
for the process.

3.2.2.5 AUTOSAR tools SHALL accept double defined ARElements as long as
their nonSplitables are the same

[TR_IOAT_00063] AUTOSAR tools SHALL accept double defined ARElements as
ong as their nonSplitables are the same |
An AUTOSAR tool shall keep track of the artifacts where “duplicate
ARElements” came from. An AUTOSAR tool shall indicate double defined
Description: ARElements with different nonSplitables as error. All related artifacts shall be
indicated to the user. There is no preference rule. This duplicate handling is
limited to ARE1ements which are not split into partial models and therefore
loaded from one artifact.
Rationale: AIIow_for integration of ggmponents have been modified by different parties but
referring common definitions.
Use Case: [UC_IOAT_00010], [UC_IOAT_00001]
Dependencies: | —
Supporting
Material: B

|(UC_IOAT 00010, UC_IOAT 00001)

3.2.2.6 Handling merge conflicts: optimistic approach

In the case of an optimistic approach for resolving conflicts, work is allowed on copies
of a model and only when the models are synchronized/integrated potential conflicts

AUTOSAR

are be resolved. Whenever a merge conflict is detected (i.e. two AUTOSAR models
contain model elements which have the same shortName but a different description)
the conflict needs to be resolved. This could be implemented by the tool by interactively
asking the user to choose the right model element.

Additional meta-data on the model elements can help finding out the correct model
element. E.g. if a timestamp is assigned to a model element it can be decided which
information is newer than the other. Another approach for resolving or even avoiding
merge conflicts is described in section 3.2.2.8.

3.2.2.7 Authoring tool SHOULD provide a mechanism for resolving merging
conflicts

[TR_IOAT_00044] Authoring tool SHOULD provide a mechanism for resolving
merging conflicts |

AUTOSAR authoring tools SHOULD provide a mechanism for resolving
merging conflicts. This mechanism could be e.g. implemented by an interactive
Description: user interface which allows for choosing from conflicting elements or by using
further meta-data such as the timestamp (e.g. the latest version of an element
shall be used), etc.

Rationale: Allow for integration of models which have been modified by different parties.
When integrating models which have been modified and extended by different
parties merge conflicts are likely to occur.

Dependencies: | —

Supporting
Material:

Use Case:

10

3.2.2.8 Handling merge conflicts: access control approach

The probability of merge conflicts can be reduced by a well defined work-flow. E.g. in
a top down development process [UC_IOAT_00005] an OEM could decompose a sys-
tem down to a given granularity. The refinement of the decomposition could be done by
different suppliers. If each supplier modifies a disjunctive part of the model no merge
conflicts will occur when merging the results into the OEMs model of the full system.
In order to support this strategy the supplier needs to know which parts of a model
are allowed to be changed and which parts are not allowed to be changed. These
access rights SHOULD be exchanged together with meta-data for supporting data
exchange. See requirement on the meta-data for data exchange [TR_IOAT_00036],
[TR_IOAT _00038]. If access rights are defined an AUTOSAR authoring tool SHOULD
prohibit the user from modifying model elements that are marked as read-only.

AUTOSAR

3.2.2.9 Authoring tool SHOULD prohibit the user from modifying model ele-
ments that are marked read-only

[TR_IOAT_00040] Authoring tool SHOULD prohibit the user from modifying
model elements that are marked read-only |

An AUTOSAR authoring tool SHOULD only allow the user to modify, create or

Description: delete model elements which he is allowed to change. The information if a
model element is allowed to be modified should be represented to the user.
Rationale: Prohibit a user from modifying model elements he is not allowed to change.

OEM wants to send information to tier-1 supplier. OEM wants to lock certain
model elements so that the tier-1 is not allowed to change them.

meta-data for data exchange could define the access-rights on model
Dependencies: | elements, see [TR_IOAT_00038]. The access-policies can support the merging
of models, see [TR_IOAT_00042].

Use Case:

Supporting
Material:

10

3.2.2.10 Example on merging models

Figure 3.12, Figure 3.13 and Figure 3.14 describe two example models and the result
after merging them. The underlying meta-model for those examples is described in Fig-
ure 3.11. Splitable aggregations are marked by the stereotype <atpSplitable>>.

Identifiable

+ shortName :ldentifier

I

Root . Package . PackageableElement
«atpSplitable» 0..* «atpSplitable» +element

\ +package - 0..*
' .

«atpSplitable» Tags:
atp.splitkey = shortName
Elementl Element2
«atpSplitable» Tags: | o-cccmmmm i
atpSplitkey = "DataSpec"” «atpSplitable»
+dataSpec | 1 +dataSpec | 1

DataSpec

+ attributel :String
+ attribute2 :String

Figure 3.11: Meta-model of the models described in this section

AUTOSAR

:Element2

uuid =3
shortName = engineControl

:Elementl

shortName = CentralLockingMaster

«atpSplitable»
+dataSpec|

:DataSEec

attributel = textl

+packag|e

:Element2

«atpSpIitabIe'>

+element

:Package +e|emelm
«atpSplitable»
-Root +packagle shortName = OEM1 :
«atpSplitable» +element
«atpSplitable»
Figure 3.12: First example model
:Package +element
«atpSplitable»
shortName = OEM1
:Root

shortName = engineControl
shortLabel = TwoSpec

:Elementl

>

«atpSplitable»

Figure 3.13: Second example model

shortName = PassengerDoorLock

«atpSplitable»
+dataSpec|

:DataSEec

attribute2 = onother text
attributel = one text

AUTOSAR

:Root +package

conflict. aggregation dataSpec ol
Element2 is not splitable.

]

:Package

+element

:Element2

«atpSplitable»

shortName = OEM1

«atpSplitable»

uuid =3
shortName = engineControl

+element

:Elementl

«atpSplitable»

«atpSplitable»

+element

shortName = CentralLockingMaster

«atpSplitable»
+dataSpec‘

:DataSEec

attributel = textl

:Elementl

shortName = PassengerDoorLock

«atpSplitable»
+dataSpec|

:DataS ec

attributel = one text

attribute2 = onother text

:DataSpec

attributel = text 21
attribute2 = text 22

+dataSpec‘

:Element2

shortName = engineContr
shortLabel = TwoSpec

ol

Figure 3.14: Result of merging the two example models

3.3 Shipment of AUTOSAR models and related artifacts

As described in the sections above, the minimum required data exchange mechanism
of AUTOSAR authoring tools is the interpretation and creation of AUTOSAR XML de-

scriptions which can be split up over several files.

The separation over several files imposes the risk that a file gets lost during the data
exchange or a file was accidentally transmitted incompletely. Listing all files that belong
to a shipment as meta-data for data exchange would allow the receiver to check if all

files have been received.

The meta-data for data exchange should contain information that supports the ex-

change of AUTOSAR models and related artifacts:

AUTOSAR

e List of physical artifacts (e.g. files) that belong to the shipment in order to detect
missing or superfluous artifacts. The physical artifacts are represented according
to EngineeringObject.

e Checksum for each file in order to allow for detection of modification.

e Access rights on model elements which allow for transmitting information which
model elements are allowed to be changed by the receiver.

e Explicit annotation of deleted, moved and added model elements in order to sup-
port merging.

3.3.1 AUTOSAR tool SHALL be able to interpret and create ASAM Container
Catalog file for meta-data exchange

[TR_IOAT_00036] AUTOSAR tool SHALL be able to interpret and create ASAM
Container Catalog file for meta-data exchange |

An AUTOSAR tool SHALL be able to interpret and create ASAM Container
Catalog file that contains meta-data about the relevant artfacts:

e SHALL be able to load the partial models from the artifacts denoted in
the catalog

e SHALL be able to resolve EngineeringObject via the meta-data in

Description: the catalog to find the physical file names of the artifacts
e SHOULD be able to interpret / maintain the UpD-Attribute in <ABLOCK>

e SHOULD be able to only load a subset of the partial models depending
on particular use cases

Support the exchange of additional information about exchanged
XML-descriptions and their usage. e.g. access policies, checksum, list of files
Rationale: that contain the XML description.

The Catalog also allows to find the relevant artifacts independent from the
position in the file system.

Use Case: [UC_IOAT_00008]

More requirements on the meta-data for data exchange are described in
[TR_IOAT_00037], [TR_IOAT_00038], [TR_IOAT_00039]. Per shipment all
Dependencies: | meta-data for data exchange must be stored in a single file. Meta-data for data
exchange is not splitable. Otherwise meta-data for meta-data would be
required.

ASAM container catalog [18]

Supporting
Material:

|(UC_IOAT _00008)

Table 3.2 illustrates a (practicable) example for a set of categorys for Engi-
neeringObjects/ <ABLOCK> for AUTOSAR artifacts containing partial models.

AUTOSAR

Example 3.3 illustrates a directory structure of AUTOSAR XML descriptions. The cor-
relating ASAM CC is shown in example 3.4. Note that for the first entry (SysDescr
“FillerCap”) the representation of additional meta-data is illustrated.

Example 3.3

C:\TEMP\FILLERCAP

+-— FillerCap_cc.xml <!—-— the catalog file —-->
+—— RBCentralElements_Standard.arxml

+-— FillerCap_SWCompo.arxml

+-— FillerCap_SysDescr.arxml

+-— FillerCapCompo
| +-— FillerCapCompo_SWCD.arxml
| \-— FillerCapCompo_Doc.arxml

+-—— FCPCtrl
| +—— FCPCtrl_ SWCD.arxml
| \-— FCPCtrl_Doc.arxml

+-— FCPIdctr
| +—-— FCPIdctr_SWCD.arxml
| \-— FCPIdctr_Doc.arxml

+-— INTEG
| +—— INTEG_SWCD.arxml
| \-- INTEG_Doc.arxml

+-— IOIfc
| +—— IOIfc_SWCD.arxml
| \-— IOIfc_Doc.arxml

\-— SWTNrm
+—— SWTINrm_SWCD.arxml
\-— SWINrm_Doc.arxml

Example 3.4

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE CATALOG PUBLIC "-//ASAM//DTD_CONTAINER_CATALOG:V3.0.0:LAI:IAI:CC.
DTD//EN" "catalog_V3_0_0.sl.dtd" >
<CATALOG>
<SHORT-NAME>FillerCap</SHORT-NAME>
<ADMIN-DATA>
<LANGUAGE>en</LANGUAGE>
</ADMIN-DATA>
<ABLOCKS>
<ABLOCK>
<SHORT-NAME>FillerCap</SHORT-NAME>
<CATEGORY>PRJ</CATEGORY>
<AREFS>
<AREF CATEGORY="SysDescr">FillerCap</AREF>
<AREF CATEGORY="SWCompo">FillerCap</AREF>
<AREF CATEGORY="Standard">RBCentralElements</AREF>

AUTOSAR

<AREF CATEGORY="Doc">FillerCap</AREF>
<AREF CATEGORY="SWCD">FillerCap</AREF>
<AREF CATEGORY="Doc">SWTNrm</AREF>
<AREF CATEGORY="SWCD">SWINrm</AREF>
<AREF CATEGORY="Doc">IOIfc</AREF>
<AREF CATEGORY="SWCD">IOIfc</AREF>
<AREF CATEGORY="Doc">INTEG</AREF>
<AREF CATEGORY="SWCD">INTEG</AREF>
<AREF CATEGORY="Doc">FCPIdctr</AREF>
<AREF CATEGORY="SWCD">FCPIdctr</AREF>
<AREF CATEGORY="Doc">FCPCtrl</AREF>
<AREF CATEGORY="SWCD">FCPCtrl</AREF>
</AREFS>
</ABLOCK>
<ABLOCK UPD="NEW">
<SHORT-NAME>FillerCap</SHORT-NAME>
<CATEGORY>SysDescr</CATEGORY>
<ADMIN-DATA>
<DOC—-REVISIONS>
<DOC—-REVISION>
<REVISION-LABEL>3.1.0</REVISION-LABEL>
<ISSUED-BY>TheSender</ISSUED-BY>
</DOC-REVISION>
</DOC-REVISIONS>
<SDGS>
<SDG GID="AUTOSAR">
<SD GID="MD5">B7296055E71F42807DF5FDB93EEQOF50D</SD>
</SDG>
</SDGS>
</ADMIN-DATA>
<FILES>
<FILE>FillerCap_SysDescr.arxml</FILE>
</FILES>
</ABLOCK>
<ABLOCK>
<SHORT-NAME>FillerCap</SHORT-NAME>
<CATEGORY>SWCompo</CATEGORY>
<FILES>
<FILE>FillerCap_SWCompo.arxml</FILE>
</FILES>
</ABLOCK>
<ABLOCK>
<SHORT-NAME>RBCentralElement s</SHORT-NAME>
<CATEGORY>Standard</CATEGORY>
<FILES>
<FILE>RBCentralElements_Standard.arxml</FILE>
</FILES>
</ABLOCK>
<ABLOCK>
<SHORT-NAME>FillerCapCompo</SHORT-NAME>
<CATEGORY>SWCD</CATEGORY>
<FILES>
<FILE>FillerCapCompo/FillerCap_SWCD.arxml</FILE>
</FILES>
</ABLOCK>
<ABLOCK>

AUTOSAR

<SHORT-NAME>FillerCapCompo</SHORT-NAME>
<CATEGORY>Doc</CATEGORY>
<FILES>
<FILE>FillerCapCompo/FillerCap_Doc.arxml</FILE>
</FILES>
</ABLOCK>
<ABLOCK>
<SHORT-NAME>SWTNrm</SHORT-NAME>
<CATEGORY>SWCD</CATEGORY>
<FILES>
<FILE>SWNrm/SWINrm_SWCD.arxml</FILE>
</FILES>
</ABLOCK>
<ABLOCK>
<SHORT-NAME>SWTNrm</SHORT-NAME>
<CATEGORY>Doc</CATEGORY>
<FILES>
<FILE>SWNrm/SWINrm_Doc.arxml</FILE>
</FILES>
</ABLOCK>
<ABLOCK>
<SHORT-NAME>IOI fc</SHORT-NAME>
<CATEGORY>SWCD</CATEGORY>
<FILES>
<FILE>IOIfc/IOIfc_SWCD.arxml</FILE>
</FILES>
</ABLOCK>
<ABLOCK>
<SHORT-NAME>IOI fc</SHORT-NAME>
<CATEGORY>Doc</CATEGORY>
<FILES>
<FILE>IOIfc/IOIfc_Doc.arxml</FILE>
</FILES>
</ABLOCK>
<ABLOCK>
<SHORT-NAME>INTEG</SHORT—-NAME>
<CATEGORY>SWCD</CATEGORY>
<FILES>
<FILE>INTEG/INTEG_SWCD.arxml</FILE>
</FILES>
</ABLOCK>
<ABLOCK>
<SHORT-NAME>INTEG</SHORT-NAME>
<CATEGORY>Doc</CATEGORY>
<FILES>
<FILE>INTEG/INTEG_Doc.arxml</FILE>
</FILES>
</ABLOCK>
<ABLOCK>
<SHORT-NAME>FCPIdctr</SHORT-NAME>
<CATEGORY>SWCD</CATEGORY>
<FILES>
<FILE>FCPIdctr/FCPIdctr_SWCD.arxml</FILE>
</FILES>
</ABLOCK>
<ABLOCK>

AUTOSAR

<SHORT-NAME>FCPIdctr</SHORT-NAME>
<CATEGORY>Doc</CATEGORY>
<FILES>
<FILE>FCPIdctr/FCPIdctr_Doc.arxml</FILE>
</FILES>
</ABLOCK>
<ABLOCK>
<SHORT-NAME>FCPCtrl</SHORT-NAME>
<CATEGORY>SWCD</CATEGORY>
<FILES>
<FILE>FCPCtrl/FCPCtrl_SWCD.arxml</FILE>
</FILES>
</ABLOCK>
<ABLOCK>
<SHORT-NAME>FCPCtrl</SHORT-NAME>
<CATEGORY>Doc</CATEGORY>
<FILES>
<FILE>FCPCtrl/FCPCtrl_Doc.arxml</FILE>
</FILES>
</ABLOCK>
</ABLOCKS>
</CATALOG>

3.4 Naming convention of AUTOSAR XML description files
According to [TR_IOAT_00062] AUTOSAR XML descriptions SHALL use the file ex-
tension “. arxm1” (short for AUTOSAR XML).

[TR_IOAT_00069] Name pattern for AUTOSAR XML description files | AUTOSAR
XML descriptions should use the following pattern for the file names:

{module}_[{SubUseCaseAbbr}_] {UseCaseAbbr}.arxml

e {module} describes the subject of the AUTOSAR XML description, for example
one of

— name of a module according to [TPS_GST_00017]
— the name of a component

— the name of the ECU

— even a fixed name like “SYS”

e {SubUseCaselAbbr} (optional) defines the intended sub-usage of the contained
information.

e {UseCaselAbbr} defines the intended usage of the contained information.
AUTOSAR has not formally defined the use cases for AUTOSAR XML description
filenames. However, some examples are given by Table 3.2

AUTOSAR

The maximum length of the filename is restricted to 255 characters.

restrictions apply:

name ::= [a-zA-7Z][a-zA-720-9_]+*
SubUseCaselAbbr ::= [a-zA-Z][a—-zA-Z0-9]~«
UseCaselbbr ::= [a-zA-Z][a-zA-Z0-9]«*

|(RS_IOAT_00003)

SubUseCaseAbbr | UseCaseAbbr Description
BAMF Build Action Manifest
BSWMD BSW Module Description
Blueprint Blueprints
Doc Documentation
Example Example objects
EcuExtr Ecu extract
STMD, VSMD EcucParamDef ECU Configuration Parameter Definition
EcucValues ECU Configuration Values
Prot EcucValues Protected ECU Configuration Values
Can, Lin, Flexray Frames Frames
HWT Hardware topology
ISigs Signals of the Interaction Layer
Keyword Keyword defintions
PDUs Protocol Data Unit
SWCD Component Type
SWCompo Ecu Software Composition
Standard Standardized objects
SysDescr System description
SysExtr System extract
SysSigs System Signals

Table 3.2: Use cases for AUTOSAR XML descriptions

The following

[TR_IOAT_00070] Kind-based SubUseCase | Note that if one wants to use separate
artifacts for the elements related to software component or module, it is recommended
to use the kind as SubUseCaselAbbr. For example the CompuMethods for a compo-
nent named foo, would be in an artifact named foo_CompuMethods_SWCT.arxml.

10

3.5 Specialized AUTOSAR tools

Within a tool-chain tools that consumes AUTOSAR models which have been created
in earlier phases should be able to interpret and understand all information which has
been defined before and is relevant for the processing step in question. This implies
that an AUTOSAR tool chain may be built of tools which process only a subset of the
AUTOSAR models. Therefore tools can be called AUTOSAR compliant, even if they
are specialized to particular tasks and therefore only handle a special subset of the
AUTOSAR meta-model.

AUTOSAR

3.5.1 Requirements for predictable tool interoperability

It should be predictable that two tools are able to exchange their models. In an early
phase in the development process it should be possible to find out if two tools are able
to exchange models which will be created in later phases. This could be a criterion for
choosing tools that are used in an AUTOSAR development process.

The formal validation of this expression would require all AUTOSAR tools to formally
describe the supported subset of the AUTOSAR meta-model. It needs to be checked if
the structure and semantics of all meta-classes that are supported by the tool A is also
supported by the tool B.

This approach would check if two tools can exchange information if all supported fea-
tures are used. Usually not all features are always used and therefore the results of
this formal compatibility check would become questionable.

A more pragmatic approach would be to compare features which describe the sup-
ported functionalities in a more abstract way. A starting point for these functionalities
are the tasks defined in the “AUTOSAR methodology” document [2]. AUTOSAR should
precisely define the required inputs and provided outputs of those tasks.

A more elaborate compatibility test can then be performed which can be based on
a number of test-models that are created in early phases of the development of an
AUTOSAR system.

In practice the information if two tools can exchange models is not the only criterion
for choosing a special tool (consider criteria such as usability, know how with existing
tools, etc). It is not very likely that e.g. a supplier switches to another tool because it
is not completely compatible with the tool of an OEM. Instead he would approach the
tool-vendor and ask for implementation of the missing features.

In order to get a set of AUTOSAR authoring tools which have comparable functionalities
and are able to exchange their models, a set of compliance classes can help. (See
Chapter 4.2 for more information on those compliance classes.)

3.5.1.1 Documentation of AUTOSAR tool SHOULD describe supported features

[TR_IOAT _00016] Documentation of AUTOSAR tool SHOULD describe supported
features |

The documentation of an AUTOSAR tool SHOULD describe the supported
Description: features. The description of the features SHOULD be based on the tasks
defined in the “AUTOSAR methodology” document [2]

When choosing specialized Authoring tools that do not support the full set
information described in the AUTOSAR meta-model for use in an AUTOSAR
tool chain, it SHALL be predictable if AUTOSAR models can be exchanged
between different tools.

Use Case: -

Dependencies: | —

Rationale:

AUTOSAR

Supporting
Material:

10

3.5.2 Requirements on the integration of specialized tools

The sections 3.1, 3.2 and 3.3 described some general concepts and requirements
on tool interoperability. The following list describes some observations on handling of
AUTOSAR models with special focus on tools that do not cover all information that is
represented by the AUTOSAR meta-model:

e AUTOSAR models are exchanged via AUTOSAR XML descriptions which can
be split up over several partial models. While interpreting an AUTOSAR XML
description an AUTOSAR tool must merge the contents of the different partial
models into the internal data-structure of the tool (see section 3.1.3).

e While merging AUTOSAR models conflicts can occur. Often user-interaction is
required for the resolving of merge conflicts. A tool can usually only provide
interaction mechanisms for model elements that are internally represented.

e While merging AUTOSAR models which were created by different parties (e.g.:
integration of several independently developed models to an overall model) vio-
lations of semantic constraints can show up. Each AUTOSAR model could be
valid in itself. However, violations can show up if all sub models are merged and
checked together. These violations can only be solved by tools that are able to
modify the violating information.

e A tool can very well perform its intended function even if some errors exist in the
model. Only the information that is required for performing the intended function
needs to be valid.

e [TR_IOAT_00073] Utilize BuildActionManifest [An AUTOSAR tool may be
supported by BuildActionManifest (see [TPS_GST_00294]) to specify its
particular application. This can be supported by providing even blueprints of
BuildActionManifest. |(UC_IOAT_00008)

3.6 Support for different versions of the meta-model

The implementation of the “Data Format Level”, “Content level”, “Semantic level” and
all higher levels highly depend on the AUTOSAR meta-model. Changes in the meta-
model can be classified in two different classes. The criteria for these classes are
based on the effort that is usually required for adaptation of tools.

AUTOSAR

Minor changes Extensions in the meta-model that don'’t influence relations and con-
straints between existing classes in the meta-model are considered as minor
changes. Existing models are still valid when used in a tool that conforms to
a new version of the meta-model.

Major changes Changing the structure, semantics and/or the relations in the meta-
model are considered as major changes. Existing models are no longer valid in
newer versions of the tool. They need to be updated.

The following sections describe these two types of changes and their impact on
the aforementioned levels in more details.

An AUTOSAR tool MAY be able to process AUTOSAR XML descriptions created ac-
cording to different major versions of AUTOSAR. Therefore, it is feasible that content
contributed by XML descriptions created according to different major versions can be
freely combined inside the tool as long as the tool supports this approach. Neverthe-
less the default scenario for an AUTOSAR project is expected to use only one revision
of XML schema.

Within a minor version, several revisions are created over time as a means to maintain
the version. An AUTOSAR tool MAY but is not required to support all revisions of a
specific version, e.g. it may support 4.0.1, 4.0.2, and 4.0.4. That is, 4.0.3 is left out in
this example. In other words, tool vendors shall not be forced to upgrade all tools to
support upcoming revisions because the changes implemented into a specific revision
might be irrelevant for the particular tool.

Note that a tool that is e.g. unable to process an XML file created according to revision
4.0.3 MAY still load this file if it uses the XML Schema created for revision 4.0.4 as the
basis for validation.

An AUTOSAR tool may be able to write AUTOSAR XML files according to a subset of
the published revisions of a version. The tool is neither required to support all revisions
for writing nor is it required to automatically write the file according to the latest revision.

An AUTOSAR tool MUST not change the AUTOSAR version of an XML description
without permission by the user.

3.6.1 Minor changes in the meta-model

These changes don’t influence the existing structure, interrelationships and constraints
within the meta-model: Existing instances of an old meta-model remain valid with re-
spect to a new meta-model. The following changes result in minor changes:

e adding new meta-classes,
e adding new (optional) aggregations,
e adding new (optional) references,

e adding new (optional) attributes,

AUTOSAR

e adding semantic constraints which do not effect existing meta-classes and rela-
tions and

e setting a class from abstract to concrete.

These minor changes in the meta-model SHOULD result in minor changes in the XML
representation (existing XML descriptions remain valid with respect to a new AUTOSAR
XML schema). AUTOSAR tools that are implemented according to a new version of
the AUTOSAR meta-model (only minor changes have been performed) can interpret
existing AUTOSAR XML descriptions. The following sections describe the effect on the
different abstraction levels:

e “Physical level”: changes on the meta-model don’t have any affect on the physical
level.

e “Data format level”: The new AUTOSAR XML schema contains additional XML
elements which represent the new content defined by the meta-model.

Since AUTOSAR tools and the respective AUTOSAR XML schema shall allow
for exchanging partially described AUTOSAR models?, existing AUTOSAR XML
descriptions remain valid with respect to the new AUTOSAR XML schema.

In other words: It is only possible to exchange partially defined AUTOSAR XML
descriptions if most of the content is considered to be optional in the AUTOSAR
XML schema. Adding a new optional element doesn'’t violate the validity of exist-
ing AUTOSAR XML descriptions.

e “Content level”: It is expected that new versions of the tool implementations
are more powerful with respect to the coverage of meta-classes defined by the
AUTOSAR meta-model. Therefore they will be able to interpret existing XML de-
scriptions and create the internal data-representation.

e “Semantic level”: The additional constraints are limited to the extensions. An
existing AUTOSAR model is still valid with respect to the new constraints since
these constraints have by definition of minor changes no impact on existing meta-
classes.

Please note: An old AUTOSAR tool can still fully interpret an AUTOSAR XML descrip-
tion if the new features have not been used in the description.

Additionally, AUTOSAR tools are not required to support the full set of information
defined in the meta-model (see section 3.5 for more details).

They can ignore information they do not understand. Therefore an old tool could still
interpret the supported features and ignore the additional features.

Of course this old tool is usually not able to modify features that have been introduced
in the extended meta-model.

An overview over the compatibility of AUTOSAR tools and AUTOSAR XML descriptions
in case of minor changes is listed in Table 3.3.

2See requirement on AUTOSAR authoring tools [TR_IOAT_00035]

AUTOSAR

Old AUTOSAR tool New AUTOSAR tool
Old AUTOSAR XML de- | compatible compatible
scription
New AUTOSAR XML de- | Fully compatible only if new fea- | compatible

tures are not used in the new
XML description®.

Otherwise an tool can still inter-
pret the new XML description.
However it is not able to mod-
ify information that was not avail-
able in the old AUTOSAR for-
mat.

scription (minor change)

Table 3.3: Compatibility matrix for minor changes

3.6.2 Major changes in the meta-model

Major changes are modifications on the meta-model which go beyond minor changes.
These include:

e Adding constraints for existing meta-classes and relations
e Removing of meta-classes and relations

e Changes on the semantics

e Renaming of meta-classes or relations

e Changing the upper multiplicity of attributes, references or composite associa-
tions from 1 to a value bigger than one or vice versa (Those changes usually
require changing the internal data structure of tools. Lists of elements need to be
supported)

e Adding new specializations to meta-classes which did not already have special-
izations before

Existing AUTOSAR models can no longer be used without modifications in a tool that
supports the new version of the meta-model. An AUTOSAR tool SHALL reject the
import or provide means to automatically or manually update the model to the new
version. Information on update should be given to the user.

Please note, that major changes in the meta-model only have an effect on a tool if
the changed structures are supported by the tool. E.g. If a tool is specialized on
the creation of software components and it doesn’t support aspects described in the
ECU Resource Template [6] then any major change in the meta-model concerning the
ECU descriptions doesn’t have any impact on that tool: From the point of view of this
specialized tool, old AUTOSAR models remain compatible.

3Please note that the XML namespace might change in later versions of the AUTOSAR XML Schema.
If the tool uses XML Schema validation it should be able to apply the old XML Schema to the new XML
description even if the XML namespace has changed.

AUTOSAR

An overview over the compatibility of AUTOSAR tools and AUTOSAR XML descriptions
in case of major changes is listed in Table 3.4.

Old AUTOSAR tool

New AUTOSAR tool

Old AUTOSAR XML descrip-
tion

compatible

Compatible only if changes in
the meta-model do not affect
the content described in the old
XML description. Otherwise an
upgrade mechanism should be
provided by the AUTOSAR tool.

New AUTOSAR XML descrip-
tion (major change)

Compatible only if changes in
the meta-model do not affect the
content described in the new
XML description. Otherwise the
tool SHOULD reject the XML de-
scription.

compatible

Table 3.4: Compatibility matrix for major changes

3.6.3 AUTOSAR tool SHALL properly handle Meta-Model versions

[TR_IOAT_00066] AUTOSAR tool SHALL properly handle Meta-Model versions |

It should be predictable if tools (potentially with different underlying meta model
versions) can exchange AUTOSAR models.
e An AUTOSAR tool MAY but is not forced to support multiple versions of
Description: the AUTOSAR meta-model
e An AUTOSAR authoring tools MUST not change an AUTOSAR xml
description to another version of the AUTOSAR meta-model without user
interaction.
Rationale: The AUTOSAR meta model and the derived AUTOSAR data exchange format
will change over time.
Use Case: [UC_IOAT_00002]
Dependencies: XML schema versions see [TR_IOAT_00012] and [TR_IOAT_00062]
Supporting
Material: B

|(UC_IOAT _00002)

3.6.4 Authoring tool SHOULD support upgrading AUTOSAR models

[TR_IOAT_00005] Authoring tool SHOULD support upgrading AUTOSAR models

[

AUTOSAR

AUTOSAR authoring tools SHOULD support upgrading AUTOSAR models
from at least the last major version of the meta-model. It is not required that an
authoring tool supports the upgrade of arbitrary AUTOSAR models. Only the

Description: content that is internally supported by the tool SHOULD be upgradeable. If the
tool doesn’t support automatic or manual upgrade of models then it SHALL
reject the import of old XML description.
It is not required that a tool creates AUTOSAR XML descriptions that are valid
with respect to older AUTOSAR XML schema.

Rationale: Reuse of existing AUTOSAR models.

Use Case: [UC_IOAT_00002]

Dependencies: | —

Supporting

Material: B

|(UC_IOAT 00002)

3.7 Support for versioning of AUTOSAR models

3.7.1 Granularity of AUTOSAR models
The minimum granularity of an AUTOSAR model SHALL be defined in the meta-model.
If aggregations in the meta-model are marked as <atpSplitable>>, then the ag-

gregated elements may be stored in different models. Please note that each individual
XML file SHALL be valid with respect to the AUTOSAR XML schema.

3.7.2 Annotation of AUTOSAR model elements by version information

The AUTOSAR meta-model supports meta-data for storing version information and
authorship for each element that is derived from the meta-class Identifiable.

3.8 Standardized error handling

3.8.1 AUTOSAR tools SHALL perform a standardized error handling

[TR_IOAT_00065] AUTOSAR tools SHALL perform a standardized error handling
[

In order to be able to exchange information about errors in models it is required
Description: to have a common vocabulary for model errors. This allows for discussing
about those errors while using different tools.

As a rationale for this proposal, please consider a scenario where different
Rationale: project partners carry out an AUTOSAR software project by means of different
tools for e.g. structural design.

Use Case: [UC_IOAT_00005], [UC_IOAT_00006], [UC_IOAT_00008]

AUTOSAR

Dependencies: | —
Supporting
Material:

for more details see information below.

|(RS_IOAT_00002, UC_IOAT_00005, UC_IOAT_00006, UC_IOAT_00008)

Let, for example, developers at different organizations using different AUTOSAR tools
work with an AUTOSAR model that contains semantic inconsistencies. Now let the
error messages according to the inconsistencies be reported by the particular tools.
How can the partners be sure that they talk about the same issue if each of the tools
reports a different error without a hint to a standardized error case?

When working with an AUTOSAR authoring tool the validity of an AUTOSAR model
can be checked at a wide variety of user interactions. E.g. the model could be checked
whenever:

e AUTOSAR XML descriptions are interpreted or created,
e the user inserts new data,

¢ the user inserts some specific data or

e the user explicitly triggers a validation of the model.

According to [TR_IOAT_00003], an AUTOSAR tool SHALL support validity checks.
Further details are not specified by AUTOSAR and are left over to the implementation
of the tool.

All error messages SHALL be significant and meaningful enough that ECU developers
(not only meta-model specialists) can solve the problem.

3.8.2 Error codes on semantic level

Authoring tools shall check the validity of AUTOSAR models against semantic con-
straints (see requirement [TR_IOAT_00003]). If semantic constraints are violated, an
error-code needs to be created.

The semantic constraints are defined in the AUTOSAR template specifications accord-
ing to the following pattern (see chapter 2.2.4):

[constr_<Constraintld>] <ConstraintHeadline> | <Constraint description> | ()

For each detected semantic constraint violation the following information shall be re-
ported:

e Constraintld: The Id mentioned in the template specification which SHALL be
displayed in case the constraint is violated. Note that this Constraintld shall be
reported in the error message. The tool may introduce its own tool specific error
ids which shall not be confused with any AUTOSAR Constraintld.

AUTOSAR

ConstraintHeadline: the formal definition of the constraint using the object con-
straint language.

ConstraintDescription: The human readable description of the constraint.

Severity: The severity fatal, critical, uncritical defines the behavior of the tool in
case the constraint is violated*.

path Name and path of the element in the AUTOSAR XML description.

Note that an AUTOSAR Tool might evaluate additional constraints which are not (yet)
expressed in the AUTOSAR template specifications. In this case it shall not define
a Constraintld outside of AUTOSAR. Otherwise such tool specific Constraintld would
potentially be in conflict with future AUTOSAR specifications.

3.8.3 Guidelines for standardized error reporting

3.8.3.1 Interactive authoring tool SHOULD guide the user to the locations of
errors

[TR_IOAT _00049] Interactive authoring tool SHOULD guide the user to the loca-
tions of errors |

An interactive authoring tool SHOULD guide the user to the locations of errors.

Description: If possible the error messages SHOULD contain a hint that describes how the
error can be fixed.

Rationale: Support user while fixing errors in an AUTOSAR model

Use Case: -

Dependencies: | —

Supporting B

Material:

10

3.8.3.2 Authoring tool SHOULD support exchanging information about errors

[TR_IOFT_OOOSO] Authoring tool SHOULD support exchanging information about
errors

An AUTOSAR authoring tool SHOULD support exchanging information about
errors.

Some tools (e.g.: highly specialized batch tools) might indicate an error but
might only provide limited means for fixing the error. A standardized
representation of information of the errors including the location in the model
that can be read into another tool can help identifying and fixing the problems.

Description:

Rationale:

4As the severity is considered from the perspective of the tool, it is not specified with the constraints
in the AUTOSAR templates

AUTOSAR

Use Case: -
Dependencies: [TR_IOAT_OQOSS] meta-data for data exchange SHOULD contain information
about errors in the model.
Supporting
Material: B
10

3.8.3.3 AUTOSAR tool MAY use well structured error messages

[TR_IOAT_00068] Authoring tool SHOULD support exchanging information about
errors |

Description: AUTOSAR tool MAY use well structured error messages.
Rati ; Provide as much information as suitable for particular error message. Support
ationale: - . .
the recognition of relevant information in error message.
Use Case: -
Dependencies: | this is an extension of [TR_IOAT_00049]
Supporting
Material:
10

An AUTOSAR tool may structure is messages along its own purpose using specific
fields. This may be represented even using XML and may be standardized in upcoming
AUTOSAR versions.

The following list is a collection of proposed information items in particular applicable
to log files used for exchanging information about errors.

ErrorCode A symbolic name for the message text
StandardErrorCode The reference to the AUTOSAR error code

ConstraintCode Reference to the semantic constraint mentioned in the AUTOSAR
template specification.

Signature Signature of the message for duplicate checks
Timestamp A time stamp for the message

ShortName A unique identification which allows to refer to particular error messages.
This can also be used to establish references between error messages, e.g. for
Screening and also to trace back to root cause

Desc The human readable message text.

Component Such information item may help the user to locate the problem in the
model

AUTOSAR

BaseUrl An url for a base directory which can be used as basis for file references in a
log file. This is typically the root direactory of a project structure.

ColumNumber The column of the error position
LineNumber The line number of the error position
LongName The title of the error message

ObjectCategory The category of for example the involved ApplicationPrimi-
tiveDataType (€.9.VALUE)

PrimaryErrorReference Reference to the root cause if applicable
ScopeEntryReference Reference to a scoping message if applicable

Object The shortName based reference to the AUTOSAR element which caused the
error

ToolName The name of the tool which reported the error
ToolVersion The version of the tools which reported the error
IncidentUrl The Url which refers to the artifact in which the error occurs

Value The actual found value which caused the problem

3.9 Requirements on meta-data for data exchange

The availability of meta-data for data exchange supports the interoperability of
AUTOSAR tools. This meta-data is e.g. required for checking the completeness of
a shipment or for giving additional information on what the receiver of an AUTOSAR
model is allowed to do with the model. This chapter describes requirements on the
meta-data for data exchange.

3.9.1 Meta-data for data exchange SHALL be based on existing standards and
SHALL be defined by AUTOSAR

[TR_IOAT_00037] Meta-data for data exchange SHALL be based on existing stan-
dards and SHALL be defined by AUTOSAR |

Description: The meta-data for supporting data exchange SHALL be based on existing
standards.

Rationale: Use of existing standardized (existing) solutions for interpretation and creation
of meta-data.

U . Reduce costs for implementation of tools/libraries that are capable of

se Case:)) :

interpreting and creating of meta-data for data exchange.

Dependencies: | —

AUTOSAR

Supporting Exa}mples of existing standards for describing meta-data e.g. for data exchange
Material: are-
ASAM Container Catalog - ASAM CC
10

3.9.2 Description of access rights SHOULD allow for being mapped to data
structures that are different from the AUTOSAR meta-model

[TR_IOAT_00038] Description of access rights SHOULD allow for being mapped
to data structures that are different from the AUTOSAR meta-model |

Description: The description of access rights SHOULD allow for being mapped to data
structures that are different from the AUTOSAR meta-model.
The internal data structure of AUTOSAR tools will very likely be different to the
structure of the AUTOSAR meta-model. Tools can only represent information

Rationale: about the access rights to the user if the access rights defined on instances of
the AUTOSAR meta-model can be mapped to instances of the tool internal
data structure.
A tool might want to represent a system on a high level of abstraction. E.g. the
tool only shows some connections between a CanCluster and an
Eculnstance. The existence of PhysicalChannels and

Use Case: CommConnectorPort might be hidden to the user. If the access rights are
defined in a very complex manner, then it might not be possible to decide which
impact these right have to model elements in the tool with a different internal
data structure.

Dependencies: | —

Supporting

Material: B

10

3.9.3 Meta-data for data exchange SHALL NOT change the content of AUTOSAR

models

[TR_IOAT_00039] Meta-data for data exchange SHALL NOT change the content
of AUTOSAR models |

The meta-data for data exchange SHALL be independent from the content of
Description: an AUTOSAR model. The content of an AUTOSAR model SHALL remain
identical if it is exchanged together with or without the meta-data.
Allow for integration of tools that do not support meta-data for data exchange.
Rationale: Avoiding the creation of new versions of the AUTOSAR model for each data
exchange.
Use Case: [UC_IOAT_00008]
Dependencies: | —

AUTOSAR

Supporting
Material:

10

3.9.4 Meta-data for data exchange SHOULD contain information about errors in

the model

[TR_IOAT_00055] Meta-data for data exchange SHOULD contain information
about errors in the model |

Meta-data for data exchange SHOULD contain information about errors in the

D Lo model in a standardized format. This format SHOULD contain the standardized

escription: . .)

error code, the informal error message and the location of the detected error in
the model.

Rationale: Exchange information about errors contained in a model.
Within an AUTOSAR development process several kinds of tools might be
used. E.g.: Interactive tools, batch tools, tools that do not support all elements

Use Case: and constraints in the meta-model. If error-log messages that are created by a
specialized batch-tool are created in a standardized format, then this
information can interpreted by other tools for fixing the errors.

Dependencies: | Error codes

Supporting

Material: B

10

3.9.5 Meta-data for data exchange SHOULD contain information about deleted,
changed and moved elements

[TR_IOAT_00056] Meta-data for data exchange SHOULD contain information
about deleted, changed and moved elements |

Meta-data for data exchange SHOULD contain information that supports

Description: merging models. It SHOULD contain information about added, changed and
moved elements.

Rationale: Support automated merge without user-interaction.
Two models have been created out of a common model and contain redundant
information. E.g.: both models contain an element with uuid=3. In one model

Use Case: that element has been removed explicitly. While merging the two models a tool
needs to know if an element was removed explicitly or if one model was
incomplete.

Dependencies: | —

Supporting

Material: B

AUTOSAR

10

AUTOSAR

4 Compliance

An AUTOSAR tool may be called “AUTOSAR compliant” if it implements the manda-
tory requirements on AUTOSAR authoring tools defined in this document. For better
readability the requirements of this document are summarized in the following section.

4.1 Summary of requirements on AUTOSAR tools

The following table lists all requirements on AUTOSAR tools which are required for
tool interoperability. Note that the mandatory requirements are indicated by the word
SHALL (instead of SHOULD).

Each requirement is assigned to a number of abstraction levels (marked by “x”). This
allows for e.g. easily identifying all requirements that are relevant on the content level
and all higher level. For example, a plugin for an AUTOSAR authoring tool could directly
access the internal data structure of the authoring tool: Plugin and authoring tool would
exchange information on content level. For this communication requirements on lower
levels are not relevant.

Requirement on AUTOSAR tools Abstraction Level
I I 5
T 5|5l g|®
S g5 28 g
2 2| 5|5|5]8

Mandatory Requirements n o 0|Oo|lwn|a

[TR_IOAT_00010] AUTOSAR tool SHALL support sets of files 3.1.1.1 | x

[TR_IOAT_00012] AUTOSAR tool SHALL support AUTOSAR XML | 3.1.2.1 X

descriptions

[TR_IOAT_00033] Authoring tool SHALL be able to import and ex- | 3.1.2.2 X

port supported model elements as AUTOSAR XML descriptions

[TR_IOAT_00062] Authoring tool SHALL support well defined seri- | 3.1.2.3 X

alization

[TR_IOAT_00007] Authoring tool SHALL NOT change model con- | 3.1.3.1 X

tents without the intention of the user

[TR_IOAT_00035] Authoring tool SHALL support exchange of par- | 3.1.3.2 X

tial information

[TR_IOAT_00003] Authoring tool SHALL support validity checks 3.1.4.1 X

[TR_IOAT_00060] AUTOSAR tool SHALL support variants 3.1.4.2 X

[TR_IOAT_00024] Authoring tool SHALL support unique identifica- | 3.2.1.6 X

tion of model elements

[TR_IOAT_00061] Authoring tool SHALL be able to handle partial | 3.2.2.1 X | X

AUTOSAR models

[TR_IOAT_00042] AUTOSAR tool SHALL support the merging of | 3.2.2.2 X

AUTOSAR models

[TR_IOAT_00064] AUTOSAR tool SHALL resolve references 3.2.2.3 X

[TR_IOAT_00063] AUTOSAR tools SHALL accept double defined | 3.2.2.5 X

ARElements as long as their nonSplitables are the same

[TR_IOAT_00036] AUTOSAR tool SHALL be able to interpret and | 3.3.1 X X

create ASAM Container Catalog file for meta-data exchange

AUTOSAR

[TR_IOAT_00066] AUTOSAR tool SHALL properly handle Meta- | 3.6.3 X | X | x | X
Model versions
[TR_IOAT_00065] AUTOSAR tools SHALL perform a standardized | 3.8.1 X | X | x |X

error handling

Optional Requirements

[TR_IOAT_00048] Authoring tool SHOULD support AUTOSAR ex- | 3.1.3.3 X

tension mechanism

[TR_IOAT_00067] Authoring tool SHOULD maintain references 3.1.34 X
[TR_IOAT_00043] Authoring tool SHOULD provide a mechanism for | 3.2.1.1 X X
showing differences between AUTOSAR models

[TR_IOAT_00044] Authoring tool SHOULD provide a mechanism for | 3.2.2.7 X X
resolving merging conflicts

[TR_IOAT_00040] Authoring tool SHOULD prohibit the user from | 3.2.2.9 X

modifying model elements that are marked read-only

[TR_IOAT_00016] Documentation of AUTOSAR tool SHOULD de- | 3.5.1.1
scribe supported features

[TR_IOAT_00005] Authoring tool SHOULD support upgrading | 3.6.4 X | X | x | X
AUTOSAR models

[TR_IOAT_00049] Interactive authoring tool SHOULD guide the | 3.8.3.1 X
user to the locations of errors

[TR_IOAT_00050] Authoring tool SHOULD support exchanging in- | 3.8.3.2 X
formation about errors

[TR_IOAT_00069] Naming convention for the AUTOSAR XML de- | 3.4 X

scriptions

Table 4.1: Requirements on AUTOSAR tools

4.2 Notes on compliance

4.2.1 Compliance classes based on coverage of the meta-model

In order to allow for seamless tool interoperability, AUTOSAR tools should support
a common set of features - the tools should implement a common coverage of the
AUTOSAR meta-model.

Otherwise one tool would generate AUTOSAR models that cannot be interpreted by
another tool. The definition of these common sets of features highly depends on the
intended work-flow. The compliance classes should be based on the ability to perform
tasks in the AUTOSAR Methodology [2].

4.2.2 Testing the compliance of an AUTOSAR authoring tool

The compliance of a given tool could be tested by defining a set of AUTOSAR XML
descriptions which need to be processed by the AUTOSAR authoring tools. These
compliance tests should be performed in early phases of an AUTOSAR system devel-

AUTOSAR

opment by the stakeholders who need to exchange AUTOSAR models. This document
does not define any models for testing the interoperability of AUTOSAR authoring tools.

AUTOSAR

A Glossary

Artifact This is a Work Product Definition that provides a description and definition for
tangible work product types. Artifacts may be composed of other artifacts ([20]).

At a high level, an artifact is represented as a single conceptual file.

AUTOSAR Tool This is a software tool which supports one or more tasks defined as
AUTOSAR tasks in the methodology. Depending on the supported tasks, an
AUTOSAR tool can act as an authoring tool, a converter tool, a processor tool or
as a combination of those (see separate definitions).

AUTOSAR Authoring Tool An AUTOSAR Tool used to create and modify AUTOSAR
XML Descriptions. Example: System Description Editor.

AUTOSAR Converter Tool An AUTOSAR Tool used to create AUTOSAR XML files by
converting information from other AUTOSAR XML files. Example: ECU Flattener

AUTOSAR Definition This is the definition of parameters which can have values. One
could say that the parameter values are Instances of the definitions. But in the
meta model hierarchy of AUTOSAR, definitions are also instances of the meta
model and therefore considered as a description. Examples for AUTOSAR def-
initions are: EcucParameterDef, PostBuildVariantCriterion, SwSys—
temconst.

AUTOSAR XML Description In AUTOSAR this means "filled Template". In fact an
AUTOSAR XML description is the XML representation of an AUTOSAR model.

The AUTOSAR XML description can consist of several files. Each individual file
represents an AUTOSAR partial model and shall validate successfully against the
AUTOSAR XML schema.

AUTOSAR Meta-Model This is an UML2.0 model that defines the language for de-
scribing AUTOSAR systems. The AUTOSAR meta-model is an UML represen-
tation of the AUTOSAR templates. UML2.0 class diagrams are used to describe
the attributes and their interrelationships. Stereotypes, UML tags and OCL ex-
pressions (object constraint language) are used for defining specific semantics
and constraints.

AUTOSAR Model This is a representation of an AUTOSAR product. The AUTOSAR
model represents aspects suitable to the intended use according to the
AUTOSAR methodology.

Strictly speaking, this is an instance of the AUTOSAR meta-model. The infor-
mation contained in the AUTOSAR model can be anything that is representable
according to the AUTOSAR meta-model.

AUTOSAR Partial Model In AUTOSAR, the possible partitioning of models is marked
in the meta-model by <atpSplitable>>. One partial model is represented in
an AUTOSAR XML description by one file. The partial model does not need to
fulfill all semantic constraints applicable to an AUTOSAR model.

AUTOSAR

AUTOSAR Processor Tool An AUTOSAR Tool used to create non-AUTOSAR files by
processing information from AUTOSAR XML files. Example: RTE Generator

AUTOSAR Template The term "Template" is used in AUTOSAR to describe the for-
mat different kinds of descriptions. The term template comes from the idea, that
AUTOSAR defines a kind of form which shall be filled out in order to describe a
model. The filled form is then called the description.

In fact the AUTOSAR templates are now defined as a meta model.

AUTOSAR XML Schema This is a W3C XML schema that defines the language for
exchanging AUTOSAR models. This Schema is derived from the AUTOSAR meta
model. The AUTOSAR XML Schema defines the AUTOSAR data exchange for-
mat.

Blueprint This is a model from which other models can be derived by copy and re-
finement. Note that in contrast to meta model resp. types, this process is not an
instantiation.

Instance Generally this is a particular exemplar of a model or of a type.

Life Cycle Life Cycle is the course of development/evolutionary stages of a model
element during its life time.

Meta-Model This defines the building blocks of a model. In that sense, a Meta-Model
represents the language for building models.

Meta-Data This includes pertinent information about data, including information about
the authorship, versioning, access-rights, timestamps etc.

Model A Model is an simplified representation of reality. The model represents the
aspects suitable for an intended purpose.

Partial Model This is a part of a model which is intended to be persisted in one par-
ticular artifact.

Pattern in GST : This is an approach to simplify the definition of the meta model by
applying a model transformation. This transformation creates an enhanced model
out of an annotated model.

Property A property is a structural feature of an object. As an example a “connector”
has the properties “receive port” and “send port”

Properties are made variant by the <atpvariation>>.

Prototype This is the implementation of a role of a type within the definition of another
type. In other words a type may contain Prototypes that in turn are typed by
"Types". Each one of these prototypes becomes an instance when this type is
instantiated.

Type A type provides features that can appear in various roles of this type.

Value This is a particular value assigned to a “Definition”.

AUTOSAR

Variability Variability of a system is its quality to describe a set of variants. These
variants are characterized by variant specific property settings and / or selections.
As an example, such a system property selection manifests itself in a particular
“receive port” for a connection.

This is implemented using the <atpvariation>>.

Variant A system variant is a concrete realization of a system, so that all its proper-
ties have been set respectively selected. The software system has no variability
anymore with respect to the binding time.

This is implemented using EvaluatedvariantSet.

Variation Binding A variant is the result of a variation binding process that resolves
the variability of the system by assigning particular values/selections to all the
system’s properties.

This is implemented by VariationPoint.

Variation Binding Time The variation binding time determines the step in the method-
ology at which the variability given by a set of variable properties is resolved.

This is implemented by vh.LatestBindingtime at the related properties .

Variation Definition Time The variation definition time determines the step in the
methodology at which the variation points are defined.

Variation Point A variation point indicates that a property is subject to variation. Fur-
thermore, it is associated with a condition and a binding time which define the
system context for the selection / setting of a concrete variant.

This is implemented by VariationPoint.

AUTOSAR

B History of Specification ltems

B.1 History of Specification Iltems according to AUTOSAR R4.0.3

B.1.1 Added Specification Iltems in R4.0.3

Number

Heading

Use cases

[UC_IOAT_00001]

Intergrate extracts from an AUTOSAR model of an OEM passed for further re-
finement and implementation to a supplier

[UC_IOAT_00002]

Dealing with changes of the AUTOSAR meta model over time

[UC_IOAT_00005]

Usage within the different steps of top-down functional development

[UC_IOAT_00006]

Support for direct exchange of AUTOSAR models in a tool-chain

[UC_IOAT_00008]

An AUTOSAR model and related artifacts are shipped from one party to an-
other.

[UC_IOAT_00009]

Filter and merge AUTOSAR models

[UC_IOAT_00010]

Handling of identical double definitions

Requirements

[TR_IOAT_00005]

Authoring tool SHOULD support upgrading AUTOSAR models

[TR_IOAT_00007]

Authoring tool SHALL NOT change model contents without the intention of the
user

[TR_IOAT_00010]

AUTOSAR tool SHALL support sets of files

[TR_IOAT_00012]

AUTOSAR tool SHALL support AUTOSAR XML descriptions

[TR_IOAT_00016]

Documentation of AUTOSAR tool SHOULD describe supported features

[TR_IOAT_00024]

Authoring tool SHALL support unique identification of model elements

[TR_IOAT_00033]

Authoring tool SHALL be able to import and export supported model elements
as AUTOSAR XML descriptions

[TR_IOAT_00035]

Authoring tool SHALL support exchange of partial information

[TR_IOAT_00036]

AUTOSAR tool SHALL be able to interpret and create ASAM Container Catalog
file for meta-data exchange

[TR_IOAT_00037]

Meta-data for data exchange SHALL be based on existing standards and
SHALL be defined by AUTOSAR

[TR_IOAT_00038]

Description of access rights SHOULD allow for being mapped to data structures
that are different from the AUTOSAR meta-model

[TR_IOAT_00039]

Meta-data for data exchange SHALL NOT change the content of AUTOSAR
models

[TR_IOAT_00040]

Authoring tool SHOULD prohibit the user from modifying model elements that
are marked read-only

[TR_IOAT_00043]

Authoring tool SHOULD provide a mechanism for showing differences between
AUTOSAR models

[TR_IOAT_00044]

Authoring tool SHOULD provide a mechanism for resolving merging conflicts

[TR_IOAT_00048]

Authoring tool SHALL support AUTOSAR extension mechanism

[TR_IOAT_00049]

Interactive authoring tool SHOULD guide the user to the locations of errors

[TR_IOAT_00050]

Authoring tool SHOULD support exchanging information about errors

[TR_IOAT_00055]

Meta-data for data exchange SHOULD contain information about errors in the
model

[TR_IOAT_00056]

Meta-data for data exchange SHOULD contain information about deleted,
changed and moved elements

[TR_IOAT_00060]

AUTOSAR tool SHALL support variants

[TR_IOAT_00061]

Authoring tool SHALL be able to handle partial AUTOSAR models

[TR_IOAT_00062]

Authoring tool SHALL support well defined serialization

AUTOSAR

[TR_IOAT_00063]

AUTOSAR tools SHALL accept double defined ARElements as long as their
nonSplitables are the same

[TR_IOAT_00064]

AUTOSAR authoring/integration tools SHALL resolve references

[TR_IOAT_00066]

AUTOSAR tool SHALL properly handle Meta-Model versions

[TR_IOAT_00067]

AUTOSAR Authoring tool SHOULD maintain references

[TR_IOAT_00068]

Authoring tool SHOULD support exchanging information about errors

[TR_IOAT_00069]

Name pattern for AUTOSAR XML description files

[TR_IOAT_00070]

Kind-based SubUseCase

Table B.1: Added Specification Iltems in R4.0.3

B.2 History of Specification ltems according to AUTOSAR R4.1.1

B.2.1 Added Specification Items in R4.1.1

Number

Heading

[TR_IOAT_00071]

Basic Concepts of Data Exchange

[TR_IOAT_00072]

Support for AUTOSAR XML Data Exchange

[TR_IOAT_00073]

Utilize BuildActionManifest

[TR_IOAT_00074]

AUTOSAR Authoring tool SHOULD follow specified access rights

Table B.2: Added Specification Items in R4.1.1

B.3 History of Specification Items according to AUTOSAR R4.2.2

B.3.1 Added Traceables in 4.2.2

Id

Heading

[TR_IOAT_00075]

No empty wrappers

Table B.3: Added Traceables in 4.2.2

B.3.2 Changed Traceables in 4.2.2

Id

Heading

[TR_IOAT_00007]

Authoring tool SHALL NOT change model contents without the intention of
the user

Table B.4: Changed Traceables in 4.2.2

B.3.3 Deleted Traceables in 4.2.2

Id

Heading

[UC_IOAT_00001]

Integrate extracts from an AUTOSAR model of an OEM passed for further
refinement and implementation to a supplier

[UC_TOAT _00002]

Dealing with changes of the AUTOSAR meta model over time

[UC_IOAT_00004]

Allowing for concurrent work on the same mode

[UC_IOAT_00005]

Usage within the different steps of top-down functional development

AUTOSAR

[UC_IOAT_00006] Support for direct exchange of AUTOSAR models in a tool-chain

[UC_IOAT_00008] An AUTOSAR model and related artifacts are shipped from one party to an-
other.

[UC_IOAT_00009] Filter and merge AUTOSAR models

[UC_IOAT_00010] Handling of identical double definitions

Table B.5: Deleted Traceables in 4.2.2

B.3.4 Added Constraints in 4.2.2

none

B.3.5 Changed Constraints in 4.2.2

none

B.3.6 Deleted Constraints in 4.2.2

none

AUTOSAR

C Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class ARElement (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::ARPackage

Note An element that can be defined stand-alone, i.e. without being part of another
element (except for packages of course).

Base ARObject,CollectableElement,Identifiable,MultilanguageReferrable,Packageable
Element,Referrable

Attribute Datatype Mul. | Kind | Note

Table C.1: ARElement

Class ARPackage

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::ARPackage

Note AUTOSAR package, allowing to create top level packages to structure the contained
ARElements.

ARPackages are open sets. This means that in a file based description system
multiple files can be used to partially describe the contents of a package.

This is an extended version of MSR’s SW-SYSTEM.

Base ARODbject,AtpBlueprint,AtpBlueprintable,Collectable
Element,ldentifiable,MultilanguageReferrable,Referrable

Attribute Datatype Mul. | Kind | Note

arPackage | ARPackage * aggr | This represents a sub package within an

ARPackage, thus allowing for an unlimited
package hierarchy.

Stereotypes: atpSplitable; atpVariation

Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=DblueprintDerivationTime
xml.sequenceOffset=30

* aggr | Elements that are part of this package

element PackageableEle
ment
Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=20

AUTOSAR

Attribute Datatype Mul. | Kind | Note

referenceB | ReferenceBase * aggr | This denotes the reference bases for the package.

ase This is the basis for all relative references within

the package. The base needs to be selected
according to the base attribute within the
references.
Stereotypes: atpSplitable
Tags: atp.Splitkey=shortLabel
xml.sequenceOffset=10

Table C.2: ARPackage

Class ApplicationPrimitiveDataType

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note A primitive data type defines a set of allowed values.

Tags: atp.recommendedPackage=ApplicationDataTypes

Base ARElement,ARObject,ApplicationDataType,AtpBlueprint,AtpBlueprintable,Atp
Classifier,AtpType,AutosarDataType,CollectableElement,ldentifiable,Multilanguage
Referrable,PackageableElement,Referrable

Attribute Datatype Mul. | Kind | Note

Table C.3: ApplicationPrimitiveDataType

Class AtomicSwComponentType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note An atomic software component is atomic in the sense that it cannot be further
decomposed and distributed across multiple ECUSs.

Base ARElement,ARODbject,AtpBlueprint,AtpBlueprintable,AtpClassifier,Atp
Type,CollectableElement,ldentifiable,MultilanguageReferrable,Packageable
Element,Referrable,SwComponentType

Attribute Datatype Mul. | Kind | Note

internalBe | SwcinternalBeh | 0..1 | aggr | The SwcinternalBehaviors owned by an

havior avior AtomicSwComponentType can be located in a

different physical file. Therefore the aggregation is

«atpSplitable».

Stereotypes: atpSplitable; atpVariation

Tags: atp.Splitkey=internalBehavior, variation

Point.shortLabel

vh.latestBindingTime=preCompileTime
symbolPro | SymbolProps 0..1 | aggr | This represents the SymbolProps for the

ps AtomicSwComponentType.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName

Table C.4: AtomicSwComponentType

AUTOSAR

Class <atpVariation>>> CanCluster

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::Fibex4Can::CanTopology

Note CAN bus specific cluster attributes.
Tags: atp.recommendedPackage=CommunicationClusters

Base ARObject,AbstractCanCluster,CollectableElement,CommunicationCluster,Fibex
Element,ldentifiable,MultilanguageReferrable,PackageableElement,Referrable

Attribute Datatype Mul. | Kind | Note

Table C.5: CanCluster

Class CommConnectorPort (abstract)

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreTopology

Note The Ecu communication relationship defines which signals, Pdus and frames are
actually received and transmitted by this ECU.
For each signal, Pdu or Frame that is transmitted or received and used by the Ecu an
association between an ISignalPort, IPduPort or FramePort with the corresponding
Triggering shall be created. An ISignalPort shall be created only if the corresponding
signal is handled by COM (RTE or Signal Gateway). If a Pdu Gateway ECU only
routes the Pdu without being interested in the content only a FramePort and an
IPduPort needs to be created.

Base ARODbject,Identifiable,MultilanguageReferrable,Referrable

Attribute Datatype Mul. | Kind | Note

communic | Communication 1 attr | Communication Direction of the Connector Port

ationDirecti | DirectionType (input or output Port).

on

Table C.6: CommConnectorPort

Class CompuMethod

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::ComputationMethod

Note This meta-class represents the ability to express the relationship between a physical
value and the mathematical representation.
Note that this is still independent of the technical implementation in data types. It only
specifies the formula how the internal value corresponds to its physical pendant.
Tags: atp.recommendedPackage=CompuMethods

Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,Collectable
Element,ldentifiable,MultilanguageReferrable,PackageableElement,Referrable

Attribute Datatype Mul. | Kind | Note

compulnter | Compu 0..1 aggr | This specifies the computation from internal

nalToPhys values to physical values.

Tags: xml.sequenceOffset=80

AUTOSAR

Attribute Datatype Mul. | Kind | Note
compuPhy | Compu 0..1 aggr | This represents the computation from physical
sTolnternal values to the internal values.
Tags: xml.sequenceOffset=90
displayFor | DisplayFormatS | O0..1 attr | This property specifies, how the physical value
mat tring shall be displayed e.g. in documents or
measurement and calibration tools.
Tags: xml.sequenceOffset=20
unit Unit 0..1 ref | This is the physical unit of the Physical values for
which the CompuMethod applies.
Tags: xml.sequenceOffset=30
Table C.7: CompuMethod
Class Eculnstance
Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreTopology
Note ECUInstances are used to define the ECUs used in the topology. The type of the ECU
is defined by a reference to an ECU specified with the ECU resource description.
Tags: atp.recommendedPackage=Eculnstances
Base ARObject,CollectableElement,FibexElement,Identifiable,Multilanguage
Referrable,PackageableElement,Referrable
Attribute Datatype Mul. | Kind | Note
associated | ISignallPduGro * ref | With this reference it is possible to identify which
ComIPduG | up ISignallPduGroups are applicable for which
roup CommunicationConnector/ ECU.
Only top level ISignallPduGroups shall be
referenced by an Eculnstance. If an
ISignallPduGroup contains other
ISignallPduGroups than these contained
ISignallPduGroups shall not be referenced by the
Eculnstance. Contained ISignallPduGroups are
associated to an Eculnstance via the top level
ISignallPduGroup.
associated | PdurlPduGroup * ref | With this reference it is possible to identify which
PdurlPduG PduR IPdu Groups are applicable for which
roup CommunicationConnector/ ECU.
clientldRan | ClientldRange 0..1 | aggr | Restriction of the Client Identifier for this Ecu to an
ge allowed range of numerical values. The Client
Identifier of the transaction handle is generated by
the client RTE for inter-Ecu Client/Server
communication.
comConfig | TimeValue 0..1 attr | The period between successive calls to
urationGw Com_MainFunctionRouteSignals of the
TimeBase AUTOSAR COM module in seconds.
comConfig | TimeValue 0..1 attr | The period between successive calls to
urationRxT Com_MainFunctionRx of the AUTOSAR COM
imeBase module in seconds.

AUTOSAR

Attribute Datatype Mul. | Kind | Note
comConfig | TimeValue 0..1 attr | The period between successive calls to
urationTxTi Com_MainFunctionTx of the AUTOSAR COM
meBase module in seconds.
comEnable | Boolean 0..1 attr | Enables for the Com module of this Eculnstance
MDTForCy the minimum delay time monitoring for cyclic and
clicTransm repeated transmissions (TransmissionModeTiming
ission has cyclicTiming assigned or
eventControlledTiming with numberOfRepetitions
> 0).
commCont | Communication 1..* | aggr | CommunicationControllers of the ECU.
roller Controller
connector | Communication * aggr | All channels controlled by a single controller.
Connector
diagnostic | Integer 0..1 attr | An ECU specific ID for responses of diagnostic
Address routines.
diagnostic | DiagnosticEcuP | 0..1 aggr | This represents the diagnostic-related properties
Props rops of an entire ECU.
partition EcuPartition * aggr | Optional definition of Partitions within an Ecu.
pnResetTi | TimeValue 0..1 attr | Specifies the runtime of the reset timer in
me seconds. This reset time is valid for the reset of
PN requests in the EIRA and in the ERA.
pncPrepar | TimeValue 0..1 attr | Time in seconds the PNC state machine shall wait
eSleepTim in PNC_PREPARE_SLEEP.
er
sleepMode | Boolean 1 attr | Specifies whether the ECU instance may be put to
Supported a "low power mode"
e true: sleep mode is supported
¢ false: sleep mode is not supported
Note: This flag may only be set to "true" if the
feature is supported by both hardware and basic
software.
wakeUpOv | Boolean 1 attr | Driver support for wakeup over Bus.
erBusSupp
orted

Table C.8:

Eculnstance

AUTOSAR

Class EngineeringObject (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Engineering
Object

Note This class specifies an engineering object. Usually such an object is represented by a

file artifact. The properties of engineering object are such that the artifact can be
found by querying an ASAM catalog file.

The engineering object is uniquely identified by
domain+category+shortLabel+revisionLabel.

Base ARObject
Attribute Datatype Mul. | Kind | Note
category NameToken 1 attr | This denotes the role of the engineering object in

the development cycle. Categories are such as
e SWSRC for source code
e SWOBJ for object code
e SWHDR for a C-header file

Further roles need to be defined via Methodology.

Tags: xml.sequenceOffset=20

domain NameToken 0..1 attr | This denotes the domain in which the engineering
object is stored. This allows to indicate various
segments in the repository keeping the
engineering objects. The domain may segregate
companies, as well as automotive domains.
Details need to be defined by the Methodology.

Attribute is optional to support a default domain.

Tags: xml.sequenceOffset=40

revisionLa | RevisionLabelSt attr | This is a revision label denoting a particular
bel ring version of the engineering object.

Tags: xml.sequenceOffset=30

shortLabel | NameToken 1 attr | This is the short name of the engineering object.
Note that it is modeled as NameToken and not as
Identifier since in ASAM-CC it is also a
NameToken.

Tags: xml.sequenceOffset=10

Table C.9: EngineeringObject

AUTOSAR

Class Identifiable (abstract)
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable
Note Instances of this class can be referred to by their identifier (within the namespace
borders). In addition to this, Identifiables are objects which contribute significantly to
the overall structure of an AUTOSAR description. In particular, Identifiables might
contain Identifiables.
Base ARObject,MultilanguageReferrable,Referrable
Attribute Datatype Mul. | Kind | Note
desc MultiLanguage 0..1 | aggr | This represents a general but brief (one
OverviewParagr paragraph) description what the object in question
aph is about. It is only one paragraph! Desc is
intended to be collected into overview tables. This
property helps a human reader to identify the
object in question.
More elaborate documentation, (in particular how
the object is built or used) should go to
"introduction".
Tags: xml.sequenceOffset=-60
category CategoryString 0..1 attr | The category is a keyword that specializes the
semantics of the Identifiable. It affects the
expected existence of attributes and the
applicability of constraints.
Tags: xml.sequenceOffset=-50
adminData | AdminData 0..1 aggr | This represents the administrative data for the
identifiable object.
Tags: xml.sequenceOffset=-40
annotation | Annotation * aggr | Possibility to provide additional notes while
defining a model element (e.g. the ECU
Configuration Parameter Values). These are not
intended as documentation but are mere design
notes.
Tags: xml.sequenceOffset=-25
introductio | Documentation 0..1 aggr | This represents more information about how the
n Block object in question is built or is used. Therefore it is
a DocumentationBlock.
Tags: xml.sequenceOffset=-30

AUTOSAR

Attribute

Datatype Mul. | Kind | Note

uuid

String 0..1 attr | The purpose of this attribute is to provide a
globally unigue identifier for an instance of a
meta-class. The values of this attribute should be
globally unique strings prefixed by the type of
identifier. For example, to include a DCE UUID as
defined by The Open Group, the UUID would be
preceded by "DCE:". The values of this attribute
may be used to support merging of different
AUTOSAR models. The form of the UUID
(Universally Unique Identifier) is taken from a
standard defined by the Open Group (was Open
Software Foundation). This standard is widely
used, including by Microsoft for COM (GUIDs) and
by many companies for DCE, which is based on
CORBA. The method for generating these 128-bit
IDs is published in the standard and the
effectiveness and uniqueness of the IDs is not in
practice disputed. If the id namespace is omitted,
DCE is assumed. An example is
"DCE:2fac1234-3118-11b4-a222-08002b34c003".
The uuid attribute has no semantic meaning for an
AUTOSAR model and there is no requirement for
AUTOSAR tools to manage the timestamp.

Tags: xml.attribute=true

Table C.10: Identifiable

Primitive

Integer

Package

M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Primitive
Types

Note

An instance of Integer is an element in the set of integer numbers (..., -2, -1, 0, 1, 2,

).

The value can be expressed in decimal, octal, hexadecimal and binary
representation. Negative numbers can only be expressed in decimal notation

Range is from -2147483648 and 2147483647.

Tags: xml.xsd.customType=INTEGER,;
xml.xsd.pattern=[+\-]?[1-9][0-9]*|0x[0-9a-f]+|0[0-7]*|Ob[0-1]+; xml.xsd.type=string

Table C.11: Integer

Primitive

Numerical

Package

M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Primitive
Types

AUTOSAR

Note This primitive specifies a numerical value. It can be denoted in different formats such
as Decimal, Octal, Hexadecimal, Float. See the xsd pattern for details.
The value can be expressed in octal, hexadecimal, binary representation. Negative
numbers can only be expressed in decimal or float notation.
Tags: xml.xsd.customType=NUMERICAL-VALUE; xml.xsd.pattern=(0x[0-9a-f]+)|(0[0-
71+)1(0B[0-11+)|(([+\-]?[1-9][0-91+(\.[0-9]+) ?|[+\-] ?[0-9] (\.[0-9]+) ?)}(E([+\-]?)[0-9]+) ?)|\.O| I
NF|-INF|NaN; xml.xsd.type=string
Table C.12: Numerical
Class PhysicalChannel (abstract)
Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreTopology
Note A physical channel is the transmission medium that is used to send and receive
information between communicating ECUs. Each CommunicationCluster has at least
one physical channel. Bus systems like CAN and LIN only have exactly one
PhysicalChannel. A FlexRay cluster may have more than one PhysicalChannels that
may be used in parallel for redundant communication.
An ECU is part of a cluster if it contains at least one controller that is connected to at
least one channel of the cluster.
Base ARODbiject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. | Kind | Note
commCon | Communication 1.7 ref | Reference to the ECUInstance via a
nector Connector CommunicationConnector to which the channel is
connected.
atpVariation: Variable assignment of Physical
Channels to different CommunicationConnectors
is expressed with this variation.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=postBuild
frameTrigg | FrameTriggerin * aggr | One frame triggering is defined for exactly one
ering g channel. Channels may have assigned an
arbitrary number of frame triggerings.
atpVariation: If signals/PDUs/frames are variable,
the corresponding triggerings must be variable,
too.
Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBinding Time=postBuild

AUTOSAR

Attribute Datatype Mul. | Kind | Note

iSignalTrig | ISignalTriggerin * aggr | One ISignalTriggering is defined for exactly one

gering g channel. Channels may have assigned an

arbitrary number of 1Signaltriggerings.
atpVariation: If signals/PDUs/frames are variable,
the corresponding triggerings must be variable,
too.

Stereotypes: atpSplitable; atpVariation

Tags: atp.Splitkey=shortName, variation
Point.shortLabel

vh.latestBindingTime=postBuild

pduTrigger | PduTriggering * aggr | One PduTriggering is defined for exactly one

ing channel. Channels may have assigned an

arbitrary number of I-Pdu triggerings.
atpVariation: If signals/PDUs/frames are variable,
the corresponding triggerings must be variable,
too.
Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=postBuild

Table C.13: PhysicalChannel

Class Portinterface (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface

Note Abstract base class for an interface that is either provided or required by a port of a
software component.

Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,Atp
Type,CollectableElement,ldentifiable,MultilanguageReferrable,Packageable
Element,Referrable

Attribute Datatype Mul. | Kind | Note

isService Boolean 1 attr | This flag is set if the Portinterface is to be used for

communication between an

e ApplicationSwComponentType or

ServiceProxySwComponentType or

SensorActuatorSwComponentType or

ComplexDeviceDriverSwComponentType

ServiceSwComponentType

EcuAbstractionSwComponentType

and a ServiceSwComponentType (namely an
AUTOSAR Service) located on the same ECU.
Otherwise the flag is not set.

AUTOSAR

Attribute Datatype Mul. | Kind | Note
serviceKin | ServiceProvider | 0..1 attr | This attribute provides further details about the
d Enum nature of the applied service.
Table C.14: Portinterface
Primitive Ref
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Primitive
Types
Note This primitive denotes a name based reference. For detailed syntax see the
xsd.pattern.
o first slash (relative or absolute reference) [optional]
o |dentifier [required]
e a sequence of slashes and Identifiers [optional]
This primitive is used by the meta-model tools to create the references.
Tags: xml.xsd.customType=REF; xml.xsd.pattern=/?[a-zA-Z][a-zA-Z0-9
){0,127}(/[a-zA-Z][a-zA-Z0-9]{0,127})*; xml.xsd.type=string
Attribute Datatype Mul. | Kind | Note
base Identifier 0..1 ref | This attribute reflects the base to be used for this
reference.
Tags: xml.attribute=true
index Positivelnteger 0..1 attr | This attribute supports the use case to point on
specific elements in an array. This is in particular
required if arrays are used to implement particular
data objects.
Tags: xml.attribute=true

[constr_2552] Index attribute is only valid for arrays [The index attribute in ref-
erences is valid only if the reference target is an ApplicationArrayElement or if the
reference target is an ImplementationDataTypeElement owned by an Implementation-
DataType/ImplementationDataTypeElement of category ARRAY and has an attribute

Table C.15: Ref

maxNumberOfElements/arraySize. | ()

Class Referrable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note Instances of this class can be referred to by their identifier (while adhering to
namespace borders).

Base ARObject

Attribute Datatype \ Mul. \ Kind \ Note

AUTOSAR

Attribute Datatype Mul. | Kind | Note
shortName | Identifier 1 ref | This specifies an identifying shortName for the
object. It needs to be unique within its context and
is intended for humans but even more for technical
reference.
Tags: xml.enforceMinMultiplicity=true;
xml.sequenceOffset=-100
shortName | ShortNameFrag * aggr | This specifies how the Referrable.shortName is
Fragment ment composed of several shortNameFragments.
Tags: xml.sequenceOffset=-90
Table C.16: Referrable
Class Sdg
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::SpecialData
Note Sdg (SpecialDataGroup) is a generic model which can be used to keep arbitrary
information which is not explicitly modeled in the meta-model.
Sdg can have various contents as defined by sdgContentsType. Special Data should
only be used moderately since all elements should be defined in the meta-model.
Thereby SDG should be considered as a temporary solution when no explicit model is
available. If an sdgCaption is available, it is possible to establish a reference to the
sdg structure.
Base ARObject
Attribute Datatype Mul. | Kind | Note
gid NameToken 1 attr | This attributes specifies an identifier. Gid comes
from the SGML/XML-Term "Generic Identifier"
which is the element name in XML. The role of this
attribute is the same as the name of an XML -
element.
Tags: xml.attribute=true
sdgCaptio | SdgCaption 0..1 | aggr | This aggregation allows to assign the properties of
n Identifiable to the sdg. By this, a shortName etc.
can be assigned to the Sdg.
Tags: xml.sequenceOffset=20
sdgCaptio | SdgCaption 0..1 ref | This association allows to reuse an already
nRef existing caption.
Tags: xml.name=SDG-CAPTION-REF;
xml.sequenceOffset=25
sdgConten | SdgContents 0..1 | aggr | Thisis the content of the Sdg.
tsType
Tags: xml.roleElement=false; xml.roleWrapper
Element=false; xml.sequenceOffset=30; xml.type
Element=false; xml.typeWrapperElement=false

Table C.17: Sdg

AUTOSAR

Class SenderReceiverinterface
Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note A sender/receiver interface declares a number of data elements to be sent and
received.
Tags: atp.recommendedPackage=Portinterfaces
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,Atp
Type,CollectableElement,Datalnterface,ldentifiable,Multilanguage
Referrable,PackageableElement,Portinterface,Referrable
Attribute Datatype Mul. | Kind | Note
dataEleme | VariableDataPr 1..* | aggr | The data elements of this
nt ototype SenderReceiverinterface.
invalidation | InvalidationPolic * aggr | InvalidationPolicy for a particular dataElement
Policy y
Table C.18: SenderReceiverinterface
Class ValueSpecification (abstract)
Package M2::AUTOSARTemplates::CommonStructure::Constants
Note Base class for expressions leading to a value which can be used to initialize a data
object.
Base ARObject
Attribute Datatype Mul. | Kind | Note
shortLabel | Identifier 0..1 ref | This can be used to identify particular value
specifications for human readers, for example
elements of a record type.
Table C.19: ValueSpecification
Class VariableDataPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes
Note A VariableDataPrototype is used to contain values in an ECU application. This means
that most likely a VariableDataPrototype allocates "static" memory on the ECU. In
some cases optimization strategies might lead to a situation where the memory
allocation can be avoided.
In particular, the value of a VariableDataPrototype is likely to change as the ECU on
which it is used executes.
Base ARObject,AtpFeature,AtpPrototype,AutosarDataPrototype,Data
Prototype,ldentifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. | Kind | Note
initValue ValueSpecificati | 0..1 | aggr | Specifies initial value(s) of the
on VariableDataPrototype

Table C.20: VariableDataPrototype

AUTOSAR

Class VariationPoint
Package M2::AUTOSARTemplates::GenericStructure::VariantHandling
Note This meta-class represents the ability to express a "structural variation point". The
container of the variation point is part of the selected variant if swSyscond evaluates
to true and each postBuildVariantCriterion is fulfilled.
Base ARObject
Attribute Datatype Mul. | Kind | Note
desc MultiLanguage 0..1 | aggr | This allows to describe shortly the purpose of the
OverviewParagr variation point.
aph
Tags: xml.sequenceOffset=20
blueprintC | Documentation 0..1 aggr | This represents a description that documents how
ondition Block the variation point shall be resolved when deriving
objects from the blueprint.
Note that variationPoints are not allowed within a
blueprintCondition.
Tags: xml.sequenceOffset=28
formalBlue | BlueprintFormul | 0..1 | aggr | This denotes a formal blueprintCondition. This
printCondit | a shall be not in contradiction with
ion blueprintCondition. It is recommanded only to use
one of the two.
Tags: xml.sequenceOffset=29
postBuildV | PostBuildVarian * aggr | This is the set of post build variant conditions
ariantCond | tCondition which all shall be fulfilled in order to (postbuild)
ition bind the variation point.
Tags: xml.sequenceOffset=40
sdg Sdg 0..1 aggr | An optional special data group is attached to every
variation point. These data can be used by
external software systems to attach application
specific data. For example, a variant management
system might add an identifier, an URL or a
specific classifier.
Tags: xml.sequenceOffset=50
shortLabel | Identifier 0..1 ref | This provides a name to the particular variation
point to support the RTE generator. It is necessary
for supporting splitable aggregations and if binding
time is later than codeGenerationTime, as well as
some RTE conditions. It needs to be unique with
in the enclosing Identifiables with the same
ShortName.
Tags: xml.sequenceOffset=10
swSyscon | ConditionByFor 0..1 | aggr | This condition acts as Binding Function for the
d mula VariationPoint. Note that the mulitplicity is 0..1 in
order to support pure postBuild variants.
Tags: xml.sequenceOffset=30

Table C.21: VariationPoint

AUTOSAR

Primitive VerbatimString

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Primitive
Types

Note This primitive represents a string in which white-space needs to be preserved.
Tags: xml.xsd.customType=VERBATIM-STRING; xml.xsd.type=string; xml.xsd.white
Space=preserve

Attribute Datatype Mul. | Kind | Note

xmlSpace | XmlISpaceEnum | 0..1 attr | This attribute is used to signal an intention that in

that element, white space should be preserved by
applications. It is defined according to xml:space
as declared by W3C.

Tags: atp.Status=shallBecomeMandatory
xml.attribute=true; xml.attributeRef=true;
xml.name=space; xml.nsPrefix=xml

Table C.22: VerbatimString

	1 Introduction
	1.1 Classification of AUTOSAR Tools (non-normative)
	1.2 Origins and goals (non-normative)
	1.3 Document Conventions
	1.4 Requirements Tracing

	2 Basic Concepts
	2.1 Data representation
	2.1.1 Technological Space: ``meta-model''
	2.1.2 Technological Space: ``XML''
	2.1.3 Technological Space: ``Tool''

	2.2 Abstraction levels of information exchange
	2.2.1 Physical level
	2.2.2 Data format level
	2.2.3 Content level
	2.2.4 Semantic level
	2.2.5 Presentation level
	2.2.6 Application level

	3 Requirements on AUTOSAR Tools
	3.1 Support for AUTOSAR XML data exchange
	3.1.1 Physical level
	3.1.1.1 AUTOSAR tool SHALL support sets of files

	3.1.2 Data format level
	3.1.2.1 AUTOSAR tool SHALL support AUTOSAR XML descriptions
	3.1.2.2 Authoring tool SHALL be able to import and export supported model elements as AUTOSAR XML descriptions
	3.1.2.3 Authoring tool SHALL support well defined serialization

	3.1.3 Content level
	3.1.3.1 Authoring tool SHALL NOT change model contents without the intention of the user
	3.1.3.2 Authoring tool SHALL support exchange of partial information
	3.1.3.3 Authoring tool SHALL support AUTOSAR extension mechanism
	3.1.3.4 Authoring tool SHOULD maintain references
	3.1.3.5 Authoring tool SHOULD follow specified access rights

	3.1.4 Semantic level
	3.1.4.1 Authoring tool SHALL support validity checks
	3.1.4.2 AUTOSAR tool SHALL support variants

	3.1.5 Presentation level

	3.2 Support for concurrent modeling
	3.2.1 Detection of differences between models
	3.2.1.1 Authoring tool SHOULD provide a mechanism for showing differences between AUTOSAR models
	3.2.1.2 Definition of differences
	3.2.1.3 Definition of differences - aggregation
	3.2.1.4 Definition of differences - references
	3.2.1.5 Algorithm for comparison of model elements
	3.2.1.6 Authoring tool SHALL support unique identification of model elements
	3.2.1.7 Examples of differences between models (non normative)

	3.2.2 Merging models
	3.2.2.1 Authoring tool SHALL be able to handle partial AUTOSAR models
	3.2.2.2 Authoring tool SHALL support the merging of AUTOSAR models
	3.2.2.3 AUTOSAR tool SHALL resolve references
	3.2.2.4 Handling Conflicts
	3.2.2.5 AUTOSAR tools SHALL accept double defined ARElements as long as their nonSplitables are the same
	3.2.2.6 Handling merge conflicts: optimistic approach
	3.2.2.7 Authoring tool SHOULD provide a mechanism for resolving merging conflicts
	3.2.2.8 Handling merge conflicts: access control approach
	3.2.2.9 Authoring tool SHOULD prohibit the user from modifying model elements that are marked read-only
	3.2.2.10 Example on merging models

	3.3 Shipment of AUTOSAR models and related artifacts
	3.3.1 AUTOSAR tool SHALL be able to interpret and create ASAM Container Catalog file for meta-data exchange

	3.4 Naming convention of AUTOSAR XML description files
	3.5 Specialized AUTOSAR tools
	3.5.1 Requirements for predictable tool interoperability
	3.5.1.1 Documentation of AUTOSAR tool SHOULD describe supported features

	3.5.2 Requirements on the integration of specialized tools

	3.6 Support for different versions of the meta-model
	3.6.1 Minor changes in the meta-model
	3.6.2 Major changes in the meta-model
	3.6.3 AUTOSAR tool SHALL properly handle Meta-Model versions
	3.6.4 Authoring tool SHOULD support upgrading AUTOSAR models

	3.7 Support for versioning of AUTOSAR models
	3.7.1 Granularity of AUTOSAR models
	3.7.2 Annotation of AUTOSAR model elements by version information

	3.8 Standardized error handling
	3.8.1 AUTOSAR tools SHALL perform a standardized error handling
	3.8.2 Error codes on semantic level
	3.8.3 Guidelines for standardized error reporting
	3.8.3.1 Interactive authoring tool SHOULD guide the user to the locations of errors
	3.8.3.2 Authoring tool SHOULD support exchanging information about errors
	3.8.3.3 AUTOSAR tool MAY use well structured error messages

	3.9 Requirements on meta-data for data exchange
	3.9.1 Meta-data for data exchange SHALL be based on existing standards and SHALL be defined by AUTOSAR
	3.9.2 Description of access rights SHOULD allow for being mapped to data structures that are different from the AUTOSAR meta-model
	3.9.3 Meta-data for data exchange SHALL NOT change the content of AUTOSAR models
	3.9.4 Meta-data for data exchange SHOULD contain information about errors in the model
	3.9.5 Meta-data for data exchange SHOULD contain information about deleted, changed and moved elements

	4 Compliance
	4.1 Summary of requirements on AUTOSAR tools
	4.2 Notes on compliance
	4.2.1 Compliance classes based on coverage of the meta-model
	4.2.2 Testing the compliance of an AUTOSAR authoring tool

	A Glossary
	B History of Specification Items
	B.1 History of Specification Items according to AUTOSAR R4.0.3
	B.1.1 Added Specification Items in R4.0.3

	B.2 History of Specification Items according to AUTOSAR R4.1.1
	B.2.1 Added Specification Items in R4.1.1

	B.3 History of Specification Items according to AUTOSAR R4.2.2
	B.3.1 Added Traceables in 4.2.2
	B.3.2 Changed Traceables in 4.2.2
	B.3.3 Deleted Traceables in 4.2.2
	B.3.4 Added Constraints in 4.2.2
	B.3.5 Changed Constraints in 4.2.2
	B.3.6 Deleted Constraints in 4.2.2

	C Mentioned Class Tables

