AUTOSAR

Supplementary material of

Document Title general blueprints for AUTOSAR

Document Owner

AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 682

Document Classification Auxiliary

Document Status

Final

Part of AUTOSAR Release 4272

Document Change History

Management

Release | Changed by Description
AUTOSAR
422 Release

e Initial Release

AUTOSAR

AUTOSAR

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for the
purpose of information only. AUTOSAR and the companies that have contributed to it
shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types of
Intellectual Property Rights. The commercial exploitation of the material contained in
this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only. For any other purpose, no part of
the specification may be utilized or reproduced, in any form or by any means, without
permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference models,
"use cases", and/or references to exemplary technical solutions, devices, processes or
software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their pres-
ence in such specifications, nor any later documentation of AUTOSAR conformance of
products actually implementing such exemplary items, imply that intellectual property
rights covering such exemplary items are licensed under the same rules as applicable
to the AUTOSAR Standard.

AUTOSAR

Table of Contents

1

2

Introduction

Overview General Blueprints

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

AUTOSAR_MOD_BSWServicelnterfaces Blueprint
AUTOSAR_MOD_BswModuleEntrys_Blueprint
AUTOSAR_MOD IFL_RecordLayout Blueprint
AUTOSAR_MOD_IFX_RecordLayout_Blueprint
AUTOSAR_MOD_Cube_RecordLayout Blueprint
AUTOSAR_MOD_MemoryMapping_SwAddrMethods_Blueprint
AUTOSAR_MOD_SWCServiceRelatedInterfaces Blueprint
AUTOSAR_TR_PredefinedNames_Blueprint.

Visualization of SwRecordLayouts

3.1
3.2

3.3

3.4
3.5

Record Layout: Distr
CUIVES . . . e
3.2.1 Record Layout: Cur
3.2.2 Record Layout: IntCur
3.2.3 Record Layout: FixIntCur

Maps
3.3.1 Definition of Indexing oL
3.3.2 Transform Logical View in Memory Representation

3.3.3 RecordLayout: Map
3.3.4 Record Layout: IntMap
3.35 Record Layout: IntMap 3 x4
3.3.6 Record Layout: FixIntMap

Record Layout: Value and ValueBlock

Multidimensional Arrays
3.5.1 Definition of Indexing
3.5.2 Record Layout: Cuboid
3.5.3 Record Layout: Cube_4andCube 5

Additional SwRecordLayouts

Mentioned Class Tables

»

© 00000000 ~NNN N

WWWWWMNDMNDNDN = ==
O WW—LONMNMNONOOOOOTW = = O

N
N

N
(6]

AUTOSAR

Bibliography
[1] Standardization Template

AUTOSAR_TPS_StandardizationTemplate

[2] Basic Software Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate

[3] Specification of Floating Point Interpolation Routines
AUTOSAR_SWS_IFLLibrary

[4] Specification of Fixed Point Interpolation Routines
AUTOSAR_SWS_IFXLibrary

[5] Specification of Memory Mapping
AUTOSAR_SWS_MemoryMapping

[6] Specification of NVRAM Manager
AUTOSAR_SWS_NVRAMManager

[7] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

[8] Predefined Names in AUTOSAR
AUTOSAR_TR_PredefinedNames

AUTOSAR

1 Introduction

This technical report provides additional information to existing blueprints.

AUTOSAR

2 Overview General Blueprints

The General Blueprints are provided in auxiliary package
AUTOSAR_MOD_GeneralBlueprints. Currently it contains

e AUTOSAR_MOD_BSWServicelnterfaces_Blueprint
AUTOSAR_MOD_BswModuleEntrys_Blueprint
AUTOSAR_MOD_IFL_RecordLayout_Blueprint
AUTOSAR_MOD_IFX_ RecordLayout_Blueprint
AUTOSAR_MOD_Cube_ RecordLayout Blueprint
AUTOSAR_MOD_MemoryMapping_SwAddrMethods_Blueprint
AUTOSAR_MOD_SWCServiceRelatedInterfaces_Blueprint
AUTOSAR_TR_PredefinedNames_Blueprint.

2.1 AUTOSAR_MOD_ BSWServicelnterfaces_ Blueprint

The AUTOSAR_MOD_BSWsServicelnterfaces_Blueprint provides for a variety of
BSW modules blueprinted specification of their Standardized AUTOSAR Interfaces
which consists of DataConstrs, CompuMethods, ImplementationDataTypes,
ClientServerInterfaceS, SenderReceiverInterfaceS, ServiceSwCompo-
nent Types and others. Inside these blueprints also the BlueprintPolicy is used.
A detailed description of the BlueprintPolicy is given in [1]. The ARXML file is
generated based on the BSW UML Model.

2.2 AUTOSAR_MOD_ BswModuleEntrys Blueprint

The AUTOSAR_MOD_BswModuleEntrys Blueprint provides blueprints of the
BswModuleDescriptions and BswModuleEntrys based on [2].

2.3 AUTOSAR_MOD_IFL_RecordLayout_Blueprint

The AUTOSAR_MOD_IFL_RecordLayout_Blueprint provides blueprints of the Inter-
polationRoutineMappingSets and SwRecordLayouts based on [3].

AUTOSAR

2.4 AUTOSAR_MOD_IFX_ RecordLayout Blueprint

The AUTOSAR_MOD_IFX_RecordLayout_Blueprint provides blueprints of the Tnter-
polationRoutineMappingSets and SwRecordLayouts based on [4].

2.5 AUTOSAR_MOD_ Cube_RecordLayout_Blueprint

The AUTOSAR_MOD_Cube_RecordLayout Blueprint provides blueprints of
SwRecordLayouts for cuboids.

2.6 AUTOSAR_MOD_MemoryMapping SwAddrMethods_Blueprint

The AUTOSAR_MOD_MemoryMapping_SwAddrMethods_Blueprint provides
blueprints of the swAddrMethods based on [5].

2.7 AUTOSAR_MOD_SWCServiceRelatedinterfaces_Blueprint

The AUTOSAR_MOD_SWCServiceRelatedInterfaces_Blueprint provides blueprints of
the ClientServerInterfaces derived from the Standardized AUTOSAR Inter-
faces of the NVRAM Manager [6]. Those ClientServerInterfaces are used for
NvBlockSwComponent TypeS as described in [7].

2.8 AUTOSAR_TR_PredefinedNames_Blueprint

The AUTOSAR_TR_PredefinedNames_Blueprint provides various predefined names
used in AUTOSAR models and documents [8]. They are available as blueprints based
on AUTOSAR XML model. In this model, the predefined names are represented as
Keywords according to [1].

AUTOSAR

3 Visualization of SwRecordLayouts

The visualization of the swRecordLayouts follows a unique representation. The used
graphical elements are illustrated in figure 3.1.

|
Mx 1 Elements which are not defined inside the SwRecordLayout are illustrated by rectangle with dashed lines.
|

Mx Elements which are defined inside the SwRecordLayout are illustrated by blue rectangle.

(1.1 Data values which are defined inside the SwRecordLayout are illustrated by orange rectangle.

[2.3] Data value which is highligthed for illustrative reason is represented by gold rectangle.

Figure 3.1: Legend of used graphical elements

The logical view represents the definitive elements as number of sampling points, axis
elements and data values. The data values are arranged according to the applicable
dimension. Curves are visualized one dimensional (e.g. one column, see figure 3.7).
Maps are visualized in a two dimensional matrix, see figure 3.18).

The memory representation illustrates the storage of values in linear memory. In case
the swRecordLayout defines also the elements as number of sampling points and
axis elements (blue rectangle) the memory representation starts with these. Subse-
quently the storage of data values follows (orange rectangle). In case the SwRecord-
Layout does not define the elements as number of sampling points and axis elements
the memory representation starts with the storage of data values.

The ARXML representation lists the significant part of the ARXML file describing the
SwRecordLayout.

3.1 Record Layout: Distr

This chapter describes the record layout for distributed data point search. This means
that this SwRecordLayout describes only the number of sampling points and the axis
values. It does not describe any values. In this case several curves can used the same
axis (distributed data points), see figure 3.3.

Logical view:

The figure 3.2 illustrates the logical view of the SwRecordLayout Distr. Nx repre-
sents the standardized value of SwRecordLayoutV.swRecordLayoutVProp and is
documented in [TPS_SWCT_01489]. In the scope of this example the value COUNT is
used.

AUTOSAR

Mx

Valx Valx
O I I I

Figure 3.2: Distr Logical View

Memory representation:

Due to the fact that the number of sampling points and the axis values (content of
this record layout definition) are not stored in memory without any curve definition no
memory representation is defined.

ARXML representation:
Extract of the record layout Distr_s16 from AUTOSAR_MOD _IFX_RecordLayout_Blueprint.arxml.

Listing 3.1: Record Layout: Distr_s16 in ARXML representation

<!—— SW-RECORD-LAYOUT: Distr_sl6é6 ——>
<SW-RECORD-LAYOUT>
<SHORT-NAME NAME-PATTERN="{blueprintName}">Distr_sl6</SHORT-NAME>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">N</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sintl6</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">X</SHORT-LABEL>
<CATEGORY>INDEX_INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-FROM> 1</ SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sint16</BASE-TYPE—REF>
<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT>

Different curves can be assigned to one distribution.

N Distribution
Valx - Valx
] " -1)
(1 [1
2 | |
B | L] Bl
-1 -1
" Curvel " Curve2

Figure 3.3: Curves assigned to Distribution Logical View

Both curves use the same distribution (AXIS 1), e.g. illustrated by the purple-dotted
lines (x value 25) with different values (AXIS 0), curve values (y values 65 and 15).

120 120
00 00
f=al f=al
8 8
2l e e e e e e e e e e =)
? | ?
2 2
z I z
aqa | aqa
|
|
20 | 20
| |
a } a }
a L3 10 15 20 25 el fe.1 a 45 a0 a L3 10 15 20 25 el fe.1 a 45 a0
is digributio digributiol

Figure 3.4: Curves assigned to same Distribution

3.2 Curves

3.2.1 Record Layout: Cur

This chapter describes the record layout for a curve.

Logical view:

AUTOSAR

The figure 3.5 illustrates the logical view of the SwRecordLayout Cur. The num-
ber of sampling points (Nx) and the elements of [AXIS 1] are not defined inside this
SwRecordLayout. The SwRecordLayoutGroup With the shortLabel Val is shown
in the lower part.

-1

Figure 3.5: Cur Logical View

Memory representation:

The swRecordLayout Cur illustrated in figure 3.5 is stored as follows:

m | @ | B - H

Figure 3.6: Cur Memory Representation

This means that the data is stored in direction of columns ([1],[2],[3], -..)-
ARXML representation:
Extract of the record layout Cur_s16 from AUTOSAR_MOD_IFX_RecordLayout_Blueprint.arxml.

Listing 3.2: Record Layout: Cur_s16 in ARXML representation

<!—-— SW-RECORD-LAYOUT: Cur_sl6 —-—>
<SW-RECORD-LAYOUT>
<SHORT-NAME NAME-PATTERN="{blueprintName}">Cur_sl6</SHORT-NAME>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Val</SHORT-LABEL>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </ SW—RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>

AUTOSAR

<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sintl16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>0</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V—-PROP>
<SW-RECORD-LAYOUT-V-INDEX>X</SW—RECORD-LAYOUT-V-INDEX>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT>

3.2.2 Record Layout: IntCur

This chapter describes the record layout for a curve with integrated data point search.
This means that this SwRecordLayout represents a complete curve with number of
sampling points, number of axis and values. It describes all elements of the curve.

Logical view:

The figure 3.7 illustrates the logical view of the swRecordLayout IntCur. Nx rep-
resents the number of sampling points and is given by the standardized value of
SwRecordLayoutV.swRecordLayoutVProp. In the scope of this example the value
COUNT is used. The SwRecordLayoutGroup With the shortLabel Val is shown in
the lower part. Its elements are indexed by [AXIS 1] from value (AXIS 1: = 1) to value
(AXIS 1: = -1) there -1 gives the last value.

Mx

Valx Valx

(1

(2]

(3]

[-1]

Figure 3.7: IntCur Logical View

Memory representation:

The swRecordLayout IntCur illustrated in figure 3.7 is stored as follows:

AUTOSAR

Valx Valx
Mx (1) . . . 1) (1 [2] [3] . [-1]

Figure 3.8: IntCur Memory Representation

This means that the data is stored in direction of columns ([1],[2],[3], -..)-
ARXML representation:

Extract of the record layout IntCur_s16_s8 from
AUTOSAR_MOD_IFX_RecordLayout Blueprint.arxml.

Listing 3.3: Record Layout: IntCur_s16_s8 in ARXML representation

<!—— SW-RECORD-LAYOUT: IntCur_slé6_s8 —-—>
<SW-RECORD-LAYOUT>
<SHORT-NAME NAME-PATTERN="{blueprintName}">IntCur_s16_s8</SHORT-NAME>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">N</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sint16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">X</SHORT-LABEL>
<CATEGORY>INDEX_INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sint16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Val</SHORT-LABEL>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>(0</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-FROM>1</SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sint8</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>0</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VAILUE</SW-RECORD-LAYOUT-V-PROP>
<SW-RECORD-LAYOUT-V-INDEX>X</SW—RECORD-LAYOUT-V-INDEX>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>

AUTOSAR

</SW-RECORD-LAYOUT>

3.2.3 Record Layout: FixIntCur

This chapter describes the record layout for a curve with fixed axis points.

Logical view:

The figure 3.9 illustrates the logical view of the SwRecordLayout FixIntCur. The
number of sampling points (Nx), the Offset and the shift value are not defined inside
this SwRecordLayout. The SwRecordLayoutGroup With the shortLabel Val is
shown in the lower part. Its elements are indexed by virtual [AXIS 1] which is fixed and

not defined inside this SwRecordLayout.

——y
I onx |
| E—
- — - =
| Offset| Shift |
L L%

(1]

(2]

(3]

-1

Figure 3.9: FixIntCur Logical View

Memory representation:

The swRecordLayout FixIntCur illustrated in figure 3.9 is stored as follows:

W EI N EE)

[-1]

Figure 3.10: FixIntCur Memory Representation

This means that the data is stored in direction of columns ([1],[2],[3], -..)-

ARXML representation:

AUTOSAR

Extract of the record layout FixIntCur_s16_s16 from
AUTOSAR_MOD_IFX_RecordLayout_Blueprint.arxml.

Listing 3.4: Record Layout: FixIntCur_s16_s16 in ARXML representation

<!—— SW-RECORD-LAYOUT: FixIntCur sl6 _sl6 —-—>
<SW-RECORD-LAYOUT>
<SHORT-NAME NAME-PATTERN="{blueprintName}">FixIntCur_s16_s16</SHORT-NAME>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN=" {blueprintName}">Val</SHORT-LABEL>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM>1</SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOQOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sint16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>(0</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
<SW-RECORD-LAYOUT-V-INDEX>X</SW-RECORD-LAYOUT-V-INDEX>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT>

3.3 Maps

3.3.1 Definition of Indexing

To understand the visualization of SwRecordLayouts it is important to set-up a com-
mon understanding of the used indexing. There is the indexing used by matrix definition
in linear algebra and by cartesian coordinate systems. In linear algebra a matrix A(m,n)
is defined by the row index (m) and the column index (n).

m-by-n matrix

aij - ncoumns . TN

m —_— —_—
rows aig 1 ai 2 dis Qdin

81 8 An
as 4 asz ds s

arr1,1 am,Z am,n

Figure 3.11: Linear Algebra Matrix

AUTOSAR

The cartesian coordinate system which is used by AUTOSAR and ASAM assigns AXIS
2 (AXIS_PTS_Y) to the row index (m) and AXIS 1 (AXIS_PTS_X) to the column index
(n). This is the essential point in the transformation from indexing in matrix definition
to the representation in cartesian coordinate system. The matrix element a(2,3) in
figure 3.11 is represented in the cartesian coordinate system in figure 3.12 by (AXIS 1)
x=3and (AXIS 2) y = 2.

AXIS 2
)
TR - — N T S -
3 41 - X=3,y=2
|l el
AXIS 1
— — =
X-axls 1 2 3 4 5
w
=
iy
=
v

Figure 3.12: Cartesian Coordinate System

Based on this transformation definition the following visualization of SwRecordLay—
outs shall improve a better common understanding of the provided SwRecordLay-—
outs.

3.3.2 Transform Logical View in Memory Representation

The logical view is represented by m-by-n matrix (two dimensional matrix) as described
in 3.3.1.

AUTOSAR

first subscnpt
AXIS 2:=2

By

second subscript
AXIS1:=3

[1,1] [1.2] 131 [1.4] [1.-1]

211 | 22 | 23 | 24 | 2-1

B Bal § B3] B4) R

411 | @2 | @3 | @44 | B

[-1.1] [-1.2] [-1,3] [-1.4] | [-1,-1]

Figure 3.13: Matrix Representation

Each element of a matrix is denoted by an index with two subscripts [AXIS 2, AXIS
1]. For instance, [2,3] represents the element at the second row (AXIS 2) and third
column (AXIS 1) of a matrix. The index of the matrix can be transformed to the memory
representation in two different ways:

e storage of array values in column-major order in linear memory -> COLUMN_DIR
e storage of array values in row-major order in linear memory -> ROW_DIR

In column-major order', a multidimensional array in linear memory is organized such
that columns are stored one after the other. The first element of the first column [1,1] is
selected and then inside this column all elements will iterate up to the last element [-1,1]
(indicated by the red arrow in figure 3.14). The last element is defined in SwRecord-
Layout by ‘-1’. Afterwards the first element of the second column [1,2] is selected and
the iteration starts again as in the first column.

'The scientific programming language Fortran uses column-major ordering.

SR HEERHEENH TR R
2.1] 2.2] [2.3] [2.4] 2.-1]
s [Ba [Ba || Ba] B0
wn | w2 | w3 || ea || e
[1.1] 1.2] 1.3] [1.4] [1.-1]

Figure 3.14: Transformation Matrix in column-major order

This listing illustrates two nested FOR-loops in case of column-major order whereas
the outer loop iterates over AXIS 1 and the inner loop iterates over AXIS 2.

[
(select row element; outer loop)
iteration along row (AXIS 1 iterates, AXIS 2 is fixed !)
start with first element (AXIS 1: = 1)
[
(select column element; inner loop)
iteration along column (AXIS 2 iterates, AXIS 1 is fixed !)

start with first element (AXIS 2: = 1)
end with last element (AXIS 2: = -1)

]

end with last element (AXIS 1: = -1)

]

In row-major order?, a multidimensional array in linear memory is organized such that
rows are stored one after the other. The first element of the first row [1,1] is selected
and then inside this row all elements will iterate up to the last element [1,-1] (indicated
by the blue arrow in figure 3.15). Afterwards the first element of the second row [2,1] is
selected and the iteration starts again as in the first row.

2The C programming language uses row-major ordering.

AUTOSAR

P I =2 1 R P Y P O

---3 [2.1] [2.2] [2.3] [2.4] [2.-1] -

A BAl) B2 | B3| B4l | R s

--2 [41] [4.2] [4.3] [4.4] | 4] oo

--- [-1.1] [-1.2] [-1.3] [-1.4] | [-1.-1]

Figure 3.15: Transformation Matrix in row-major order

This listing illustrates two nested FOR-loops in case of row-major order whereas the
outer loop iterates over AXIS 2 and the inner loop iterates over AXIS 1.

[

(select column element; outer loop)
iteration along column (AXIS 2 iterates, AXIS 1 is fixed !)
start with first element (AXIS 2: = 1)
[
(select row element; inner loop)
iteration along row (AXIS 1 iterates, AXIS 2 is fixed !)

start with first element (AXIS 1: = 1)
end with last element (AXIS 1: = -1)

]

end with last element (AXIS 2: = -1)

3.3.3 Record Layout: Map

This chapter describes the record layout for a map.

Logical view:

The figure 3.16 illustrates the logical view of the SswRecordLayout Map. The number
of sampling points (Nx, Ny) and the elements of [AXIS 2, AXIS 1] are not defined
inside this swRecordLayout. The SwRecordLayoutGroup with the shortLabel
Val is shown in the lower part.

AUTOSAR

- -y

I onx |
| I |
Elie il il SEE i
| Valx I | I |Valx I
L L,
- ==
I My |
| I |
_— = e = e = =
PVay | vayy
TN T T T B
[1.1] [1.2] 1,31 - [1.-11
[2.1] [2.2] 23] - [2.-1]
[3.1] [3.21 [3.3] . [3.-11
[4-1]
[-1,1] [-1,2] [-1,3] [-1,4] [-1,-1]

Figure 3.16: Map Logical View
The matrix element a(2,3) in figure 3.16 is represented by (AXIS 1) x = 3 and (AXIS 2)
y=2.
Memory representation (COLUMN_DIR):

The swRecordLayout Map illustrated in figure 3.16 is stored in case of category
COLUMN_DIR as follows:

0y ra | B F1al) el | k2]) BE F.2) 03) =3
Ao B3 1.3 F14 | DA | A1) BAD) [0
o 111

Figure 3.17: Map Memory Representation

This means that the data is stored first in direction of columns and then in direction of
rows ([1,1],[2,1],[3,1], ...).

ARXML representation:

AUTOSAR

Extract of the record layout Map_s16 from AUTOSAR_MOD _IFX_RecordLayout Blueprint.arxml.

Listing 3.5: Record Layout: Map_s16 in ARXML representation

<!—— SW-RECORD-LAYOUT: Map sl16 —-—>
<SW-RECORD-LAYOUT>
<SHORT-NAME NAME-PATTERN="{blueprintName}">Map_s16</SHORT-NAME>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Val</SHORT-LABEL>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM>1</SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP-AXIS>2</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>Y</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM>1</SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sintl6</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>0</SW—RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
<SW-RECORD-LAYOUT-V-INDEX>X Y</SW-RECORD-LAYOUT-V-INDEX>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT>

3.3.4 Record Layout: IntMap

This chapter describes the record layout for a map with integrated data point search.
Logical view:

The figure 3.18 illustrates the logical view of the SwRecordLayout IntMap. Nx
and Ny represent the number of sampling points given by the standardized val-
ues of swRecordLayoutV.swRecordLayoutVProp. In the following example the
dimensions of Nx and Ny are not fixed defined but given by a range indicated
by index values. In the scope of this example the value COUNT is used. The
SwRecordLayoutGroup With the shortLabel Val is shown in the lower part.
Its elements are indexed by [AXIS 2, AXIS 1] from value (AXIS 2: = 1, AXIS

AUTOSAR

1: = 1) to value (AXIS 2: = -1, AXIS 1: = -1) there -1 gives the last value.
Mx Ny
Valx - Valx
(1] . . s (1)
Valy B Valy
(1} . . s (_-1}
o joa foa | L o
il |ea fea | . |en
B |ea x| .. |B
[4-1]
[-1.11 [-1.2] [-1.31 1.4 | [-1.-1]

Figure 3.18: IntMap Logical View
The matrix element a(2,3) in figure 3.18 is represented by (AXIS 1) x = 3 and (AXIS 2)
y=2.
Memory representation (COLUMN_DIR):

The swRecordLayout IntMap illustrated in figure 3.18 is stored in case of category
COLUMN_DIR as follows:

Valx WValx | Valy Valy
MW M
Y 1 | o 1)
o 111 12.1] 3,11 [-1.11 121 12,21 3.2 [-1.2] 1,31 2,31
H B3 [-1.31 1.4 | [1.-11 | [2-1] [-1.-11

Figure 3.19: IntMap Memory Representation (COLUMN_DIR)

This means that the data is stored first in direction of columns and then in direction of
rows ([1,1],[2,1],[3,1], ...).

ARXML representation:

AUTOSAR

Extract of the record layout IntMap_s16s16_s16 from
AUTOSAR_MOD_IFX_ RecordLayout Blueprint.arxml.

Listing 3.6: Record Layout: IntMap_s16s16_s16 in ARXML representation

<! —— SW-RECORD-LAYOUT: IntMap slé6sl6_sl6 ——>
<SW-RECORD-LAYOUT>
<SHORT-NAME NAME-PATTERN="{blueprintName}">IntMap_s16s16_s16</SHORT-NAME>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Nx</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sintl16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Ny</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sintl16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>2</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">X</SHORT-LABEL>
<CATEGORY>INDEX_INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM>1</SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sint16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VAILUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Y</SHORT-LABEL>
<CATEGORY>INDEX_INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>2</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>Y</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sint16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>2</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Val</SHORT-LABEL>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP-INDEX>

AUTOSAR

<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP-AXIS>2</SW-RECORD-LAYOUT-GROUP—-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>Y</SW—RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sint16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>0</SW—-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
<SW-RECORD-LAYOUT-V-INDEX>X Y</SW-RECORD-LAYOUT-V-INDEX>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT>

Memory representation (ROW_DIR):

The swRecordLayout IntMap illustrated in figure 3.18 is stored in case of category
ROW_DIR as follows:

Figure 3.20: IntMap Memory Representation (ROW_DIR)

This means that the data are stored first in direction of rows and then in direction of
columns ([1,1],[1,2],[1,3], ...).

ARXML representation:

Extract of the record layout IntMap_s8s16_s16 from
AUTOSAR_MOD_IFX_ RecordLayout Blueprint.arxml.

Listing 3.7: Record Layout: IntMap_s8s16_s16 in ARXML representation

<!—— SW-RECORD-LAYOUT: IntMap s8sl6_sl6 ——>
<SW-RECORD-LAYOUT>
<SHORT-NAME NAME—PATTERN="{blueprintName}">IntMap_S8sl6_Sl6</SHORT—NAME>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN=" {blueprintName}">Nx</SHORT-LABEL>

AUTOSAR

<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sint8</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Ny</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sint 8</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>2</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-RECORD-LAYOUT-V—-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">X</SHORT-LABEL>
<CATEGORY>INDEX_INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM>1</SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sint8</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VAILUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Y</SHORT-LABEL>
<CATEGORY>INDEX INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>2</SW-RECORD-LAYOUT-GROUP—-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>Y</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW—-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sintl6</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>2</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Val</SHORT-LABEL>
<CATEGORY>ROW_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP-AXIS>2</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>Y</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sint16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>0</SW-RECORD-LAYOUT-V-AXIS>

AUTOSAR

<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
<SW-RECORD-LAYOUT-V-INDEX>X Y</SW-RECORD-LAYOUT-V-INDEX>
</SW-RECORD-LAYOUT-V>
</SW-RECORD—-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT>

3.3.5 Record Layout: IntMap 3 x 4

Non-symmetrical matrices are commonly used and therefore a detailed description of
their handling is given here.

The logical view is represented by 3-by-4 matrix (two dimensional matrix). Each el-
ement of a matrix is denoted by an index with two subscripts [AXIS 2, AXIS 1]. For
instance, [3,2] represents the element at the third row (AXIS 2) and second column
(AXIS 1) of a matrix.

oy e g 0l [1.4]
2] | 22 | 23] [2.4]
[3.1] [3.2] [3.3] [3.4]

Figure 3.21: 3 x 4 Matrix Representation

In case of column-major order transformation the 3 x 4 matrix results in

[.1]

[3.7]

il HEERHEERH R

Figure 3.22: Transform 3 x 4 Matrix in column-major order

and in case of row-major order transformation the 3 x 4 matrix results in.

AUTOSAR

a1 | 2 | oA [1,4]
i, ________________________________
-3 4] | 23 [2,3] [2.4]
RREEECECCEEEEEL L
i

-x 31 | Ba | B3 [3.4]

Figure 3.23: Transform 3 x 4 Matrix in row-major order

Logical view:

The figure 3.24 illustrates the logical view of the SwRecordLayout IntMap for the 3 x 4
matrix. Nx and Ny represent the number of sampling points given by the standardized
values of SwRecordLayoutV.swRecordLayoutVProp. In the following example the
dimensions are of Nx = 4 and Ny = 3. In the scope of this example the value COUNT is
used. The SwRecordLayoutGroup with the shortLabel Val is shown in the lower
part. Its elements are indexed by [AXIS 2, AXIS 1] from value (AXIS 2: =1, AXIS 1: =
1) to value (AXIS 2: = 3, AXIS 1: = 4). AXIS 1 is assigned to Valx and shown above
the values. AXIS 2 is assigned to Valy and shown on the left side of the values.

Valx | Valx | Valx | Valx
] @ | 3 4)

N WValy
D e G
y=3 (1
Valy
2.1 22 | 23 | 24
@ || 2"
WValy
B34 | B2 | B3 | B4
(3)

Figure 3.24: IntMap Logical View 3 x 4 Matrix

Memory representation:

The SwRecordLayout IntMap of 3 x 4 matrix illustrated in figure 3.25 is stored in case
of category COLUMN_DIR as follows:

AUTOSAR

Figure 3.25: IntMap Memory Representation (COLUMN_DIR) 3 x 4 Matrix

This means that the data is stored first in direction of columns and then in direction of
rows. This means for Valx(1) ([1,1],[2,1],[3,1]), for Valx(2) ([1,2],[2,2],[3,2]), for Valx(3)
([1,31,[2,3],[3,3]) and for Valx(4) ([1,4],[2,4],[3,4]).

The SwRecordLayout IntMap of 3 x 4 matrix illustrated in figure 3.26 is stored in case
of category ROW_DIR as follows:

Valy | Valy
- [1.1] [1.2] [1,3] [1,4] 2,1
@ | o 2.1]
i
1
L-xl 2.2 23] [2.4] [3.1] [3.2] [3.3] [3.4]

Figure 3.26: IntMap Memory Representation (ROW_DIR) 3 x 4 Matrix

This means that the data is stored first in direction of rows and then in di-
rection of columns. This means for Valy(1) ([1,1],[1,2],[1,3],[1,4]), for Valy(2)
([2,11,[2,2],[2,3],[2,4]), for Valy(3) ([3,1],[3,2],[3,3],[3,4]).

3.3.6 Record Layout: FixIntMap

This chapter describes the record layout for a map with fixed axis points.
Logical view:

The figure 3.27 illustrates the logical view of the SwRecordLayout FixIntMap. The
number of sampling points (Nx, Ny), the Offset and the Shift values are not defined
inside this SwRecordLayout. The SwRecordLayoutGroup Wwith the shortLabel

AUTOSAR

Val is shown in the lower part. Its elements are indexed by [AXIS 2, AXIS 1] from value
(AXIS 2: =1, AXIS 1: = 1) to value (AXIS 2: = -1, AXIS 1: = -1) there -1 gives the last
value.

- mm = my
o 1T omy |
| I N
= g m— oy
|Offset| Shift |
) ()

- =y

| Offset] Shift

LY ™,
[1.1 [1.21 [1.31 . [1,-11
12.1] 12,21 2,31 - [2.-1]
31 321 33 - [3-1]

[4.-1]

1,11 | 1.2 1,31 | 1.4 | [F1.-1]

Figure 3.27: FixIntMap Logical View

The matrix element a(2,3) in figure 3.27 is represented by (AXIS 1) x = 3 and (AXIS 2)
y=2.

Memory representation (COLUMN_DIR):

The swRecordLayout FixIntMap illustrated in figure 3.27 is stored in case of category
COLUMN_DIR as follows:

[1.1] [2.1] [3.11 [-1.1] [1.2]1 [2.2]1 [3.21 [-1.2] [131 [2.31
Ao B3 1.3 F14 | DA | A1) BAD) [0
Ao -1

Figure 3.28: FixIntMap Memory Representation

This means that the data is stored in direction of columns and then in direction of rows
((1,1L,[2,11,[8,1], ...)-

ARXML representation:

AUTOSAR

Extract of the record layout FixIntMap_s16_s16
AUTOSAR_MOD_IFX_ RecordLayout Blueprint.arxml.

Listing 3.8: Record Layout: FixIntMap_s16_s16 in ARXML representation

<! —— SW-RECORD-LAYOUT: FixIntMap sl6_sl16 ——>
<SW-RECORD-LAYOUT>

from

<SHORT-NAME NAME-PATTERN="{blueprintName}">FixIntMap_s16_s16</SHORT-NAME>

<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Val</SHORT-LABEL>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM>1</SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP-AXIS>2</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>Y</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM>1</SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sintl16</BASE-TYPE—-REF>
<SW-RECORD-LAYOUT-V-AXIS>0</SW—RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V—PROP>
<SW-RECORD-LAYOUT-V-INDEX>X Y</SW-RECORD-LAYOUT-V-INDEX>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT>

The following SwRecordLayouts$s are not part
AUTOSAR_MOD_IFX_RecordLayout_Blueprint.arxml.

3.4 Record Layout: Value and ValueBlock

Logical view:

The figure 3.31 illustrates the logical view of the SwRecordLayout Value.

SwRecordLayout contains only one value.

Figure 3.29: Value Logical View

of

This

AUTOSAR

Memory representation:

The swRecordLayout Val illustrated in figure 3.31 is stored as follows:

Figure 3.30: Value Memory Representation

ARXML representation:

Listing 3.9: Record Layout of Value

<!—— SW-RECORD-LAYOUT: Val sl6 -—>
<SW-RECORD-LAYOUT>
<SHORT-NAME NAME-PATTERN="{blueprintName}">Val_s16</SHORT-NAME>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Val</SHORT-LABEL>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sintl16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>0</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOQOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT>

Logical view:

The figure 3.31 illustrates the logical view of the SwRecordLayout ValueBlock. This
SwRecordLayout is an array of values (similar to an axis but without the number of
axis points).

mo| . . e

Figure 3.31: ValueBlock Logical View

Memory representation:

The swRecordLayout ValueBlock illustrated in figure 3.32 is stored as follows:

AUTOSAR

m | . . R

Figure 3.32: Value Memory Representation

ARXML representation:

Listing 3.10: Record Layout of ValueBlock

<!—-— SW-RECORD-LAYOUT: ValBlk sl6 ——>
<SW-RECORD-LAYOUT>
<SHORT-NAME NAME-PATTERN="{blueprintName}">ValBlk_s16</SHORT-NAME>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Val</SHORT-LABEL>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </ SW—-RECORD-LAYOUT-GROUP—-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sintl16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>(0</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT>

3.5 Multidimensional Arrays

This chapter describes record layouts for multidimensional arrays as cuboids, cube 4
and cube_5.

3.5.1 Definition of Indexing

To define record layouts for arrays with more than two dimensions the same approach
is used as for maps described in 3.3.1.

In linear algebra, a 3-dimensional matrix is defined by A(l,m,n). Even though the
specifics of symbolic matrix notation varies widely, the subscripts are intentionally de-
fined as follows (see figure 3.33): slice or plane index (I), the row index (m) and the
column index (n). The row index (m) and the column index (n) span maps as known
from figure 3.11. The slice or plane index (I) builds an array of maps defined by the
indexes (m,n).

AUTOSAR

|-by-m-by-n matrix

ap i

I
slices

rows a4
A121
a1 31

A1 m1

a1 1

a2 1
A112 A13
Aiz22 123

a132 d133

At m2

asz11 As12 4313 831

a3 2 1 d3zoy A323 Ad32n

12 8213 321n (3333

Q22 323 Qon| ... A mn
a1,1,n 321313
A12n | ... A mn
a1,m,n

ncolumns - T

Figure 3.33: Linear Algebra Matrix with more than two dimensions

The transformation from indexing in matrix definition to the representation in Cartesian
coordinate system is shown in figure 3.34.

slices

“

AXIS (1)

Figure 3.34: Cartesian Coordiate System with an array of maps

The (AXIS 1) and (AXIS 2) span a map. The (AXIS 3) builds an array of these maps
called slices. Each of these slices will define a three-dimensional Euclidean space

AUTOSAR

which determines every point by three "coordinates™: (AXIS 1), (AXIS 2) and the
value.

It is essential to understand that the (AXIS 3) is not providing the value of the data
point. The (AXIS 3) gives the number of the three-dimensional Euclidean spaces in the
cuboid.

3.5.2 Record Layout: Cuboid

This chapter describes the record layout for a cuboid.
Logical view:

The figure 3.35 illustrates the logical view of the swRecordLayout Cuboid. The num-
ber of sampling points (Nx, Ny, Nz) are defined by separate SswRecordLayoutVs in-
side the swRecordLayout. In the following example the dimensions are of Nx = 5,
Ny = 4 and Nz = 2. The elements of [AXIS 1, AXIS 2, AXIS 3] are defined by sep-
arate swRecordLayoutGroups inside the enclosing SwRecordLayoutGroup. The
SwRecordLayoutGroup With the shortLabel Val defines the values of the data
points and is shown in the lower part.

x=5 | y=4 | z=2

Valx | Valx | Valx | Valx | Valx

Valy | Valy | Valy | Valy

ol) 3 | @ Y INDEX_INCR
Valz | Valz

a | o ZINDEX_INCR

2z) 222] | 223 | 224 | 225 i

2311 | 232] | [23.3] | [23.4] | [235] i

[141 J 1,421 | 1,431 | [1.4.4] | [1.45] |! [2.4.1] | [2.42] | [24.3] | [2.4.4] | [2.45 i

Valz(1) Valz(2)

Figure 3.35: Cuboid Logical View

The first slice (AXIS 3: = 1) is illustrated by the dotted rectangular area named Valz(1),
the second slice (AXIS 3: = 2) correspondently named by Valz(2).

Memory representation:

AUTOSAR

The swRecordLayout Cuboid illustrated in figure 3.35 is stored in case of category
COLUMN_DIR as follows:

Figure 3.36: Cuboid Memory Representation (COLUMN_DIR)

This means that the data is stored in direction of columns and then in direction of rows
starting with the first slice ([1,1,1],[1,2,1],[1,3,1], ... ,[1,4,5]). The second slice starts
with ([2,1,1],[2,2,1],[2,3,1], ... ,[2,4,5]) and follows the same pattern.

ARXML representation:

The ARXML representation of the record layout Cuboid_s16s16s16_s16 is given in two
parts for illustrative reason. The first part defines the number of sampling points and
the elements of axis.

Listing 3.11: Record Layout of Cuboid - part one

<!—— SW-RECORD-LAYOUT: Cuboid sléslésl6_sl16 COLUMN DIR --—>
<SW-RECORD-LAYOUT>
<SHORT-NAME NAME-PATTERN="{blueprintName}">Cuboid_s16s16s16_sl6</
SHORT-NAME>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Nx</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sintl16</BASE-TYPE—REF>
<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW—RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Ny</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sint16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>2</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-—RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>

AUTOSAR

<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Nz</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sint16</BASE-TYPE—REF>
<SW-RECORD-LAYOUT-V-AXIS>3</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">X</SHORT-LABEL>
<CATEGORY>INDEX_INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sint16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYQUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Y</SHORT-LABEL>
<CATEGORY>INDEX_INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>2</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>Y</SW—RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sint16</BASE-TYPE—REF>
<SW-RECORD-LAYOUT-V-AXIS>2</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOQUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Z</SHORT-LABEL>
<CATEGORY>INDEX_INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>3</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>7</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP—-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sintl16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>3</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW—RECORD-LAYOUT-V—-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>

The second part defines the values of the data points. Inside the SwRecordLay-
outGroup with the shortLabel Val the definition of memory representation (COL-
UMN_DIR or ROW_DIR) has to be unique. This means that memory representation of
the map (AXIS 1 and AXIS 2) and those of the slice (AXIS 3) have to be equal. In case
of listing 3.12 the memory representation COLUMN_DIR is defined.

AUTOSAR

Listing 3.12: Record Layout of Cuboid - part two

<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Val</SHORT-LABEL>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>3</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>7</SW—RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-GROUP>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOQUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW—RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOQOUT-GROUP-AXIS>2</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOQOUT-GROUP-INDEX>Y</SW-RECORD-LAYOUT-GROUP-
INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sintl16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>(0</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
<SW-RECORD-LAYOUT-V-INDEX>7 X Y</SW-RECORD-LAYOUT-V-INDEX>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>

The combination of different base types e.g. a Cuboid_u8s16u16_u32 are technically
possible but not further described in this document.

3.5.3 Record Layout: Cube_4 and Cube_5

This chapter describes the record layouts for Cube_4 and Cube_5. The Cube_4 stores
an array of Cuboids with incremented or decremented (AXIS 4). The Cube_5 corre-
spondingly stores an array of Cube_4s with incremented or decremented (AXIS 5). In
this version of the document only Cube_4 is described.

Logical view:

The figure 3.37 illustrates the logical view of the SwRecordLayout Cube_4. The
number of sampling points (Nx, Ny, Nz1, Nz2) are defined by separate SwRecord-
LayoutVs inside the SwRecordLayout. In the following example the dimensions are
of Nx =5, Ny =4, Nz1 = 2 and Nz2 = 3. The elements of [AXIS 1, AXIS 2, AXIS 3, AXIS
4] are defined by separate swRecordLayoutGroups inside the SwRecordLayout.
The swRecordLayoutGroup With the shortLabel Val defines the values of the data
points and is shown at the right side.

AUTOSAR

Supplementary material of general blueprints for AUTOSAR
AUTOSAR Release 4.2.2

xI:S y:i z1|12 zzN=3

TS e & | xmNDExUNCR
VT BT e Y INDEX_INCR
SlE 1 INDEX_INCR
ol'e ['e 22 INDEX_INCR

Figure 3.37: Cube_4 Logical View

The first array of cuboids (AXIS 4: = 1) is illustrated by the blue rectangular area named
Valz2(1) at the top in figure 3.37. It contains the cuboid with the slices Valz1(1) and
Valz1(2). The second array of cuboids (AXIS 4: = 2) and the third one (AXIS 4: = 3)
are illustrated in the middle and at the bottom in figure 3.37. Both contain cuboids with
the slices Valz1(1) and Valz1(2). Each element of a matrix is denoted by an index with
four subscripts [AXIS 4, AXIS 3, AXIS 2, AXIS 1].

39 of 59 Document ID 682: AUTOSAR_TR_GeneralBlueprintsSupplement
— AUTOSAR CONFIDENTIAL —

AUTOSAR

Memory representation:

The swRecordLayout Cube_4 illustrated in figure 3.37 is stored in case of category
COLUMN_DIR as follows:

N N N N Valx | Valx | Valx | Valx | Valx | Valy | Valy | Valy | Valy | Valz1]

=3 |y |z=2 |23 (1)] @ 3 4 | @ (1 AT I E)]) (1 |
E_{} Valz1 | Valz2 | Valz2 | Valz2 | 1.1 1.1 [1.1, [1.1 [1.1 1.1 [1.1 [1.1 1.1 [1.1 -

2) 1) 2) (3) 1] 21] 3,1] 4.1] 1,2] 2,2] 3,2] 4.2] 1,3] 23] i
cFTTo e ----------"-"-"-"--------~-~-~-y--"~"-"-~-"""~""~"~"~"~"~"~"~"~"~"“""“"“""“"“"“""“""“""“""*“"*"“"°""‘";/;/;,o,,,,,,,,,/,,,,,/,/,/C/,/S/=""""" -I—__‘I
1 [1.1, [1.4, [1.1, [1.1, [1.4, , W o Tl [1 (1,1 [1.2, [1.2, 1.2, [1.2,
7Y 33 4.3] 1,4] 2.4] 3.4] A4 a Z; P 3.5 5] 1,1] 2.1] 3,1] 411 I~
- " T =\ =L
0 [1.2, 1.2, [1.2, 1.2, | [1.2 1.2, [1.2, [1.2, 1.2, [1.2, [1.2, 1.2, [1.2, [1.2,

1,2] 2.7] 3,2] 472] 1,3] 23] 33] 43] 1,4] 2.4] 3,4] 4.4] 1,5 2 5] H
: M2 1.2 12,1 I 12 2. 2.1 12,1 2.2 2.2

3,5 45] 1] a Z] il 3.2] 4721 2.4] 34 5!
_______________ _.._________________________!__4:
. B3 2.2, [3.1, [3.1, [3.1, [3.1, [3.1, [3.1 [3.1, [3.1

4.4] 4.5] 1,1] 21] 3,11 41] 1,2] 2.2] 3.3] 4.3] <
-- VaIzZ 3
. [3.2, [3.2, [3.2, [3.2, [3.2, 32

" " 2,3] 3,3] 4,3] 1,4] 2,4] 3-91 I -r-q I i 3] I 4'_3] I .:-a] I —95]

Figure 3.38: Cube_4 Memory Representation (COLUMN_DIR)

The data values are stored in the following order: starting with the iteration along
cuboids Valz2(1), Valz2(2) and Valz2(3). Inside each of these iterations the iteration
along slices Valz1(1) and Valz1(2) run. Inside each of these iterations the iteration
along the maps is executed as known from 3.3.2. The data values of cuboids Valz2(2)
and Valz2(3) are intentionally not completely illustrated in figure 3.38.

[
(select cuboid; loop level 4)
iteration along cubuids
(AXIS 4 iterates, AXIS 3, AXIS 2 and AXIS 1 are fixed !)
start with first cuboid (AXIS 4: = 1)
[
(select slice; loop level 3)
iteration along slices
(AXIS 3 iterates, AXIS 4, AXIS 2 and AXIS 1 are fixed !)
start with first slice (AXIS 3: = 1)
[
(select row element; loop level 2)
iteration along row
(AXIS 1 iterates, AXIS 4, AXIS 3 and AXIS 2 are fixed !)
start with first row (AXIS 1: = 1)
[
(select column element; loop level 1)
iteration along column

AUTOSAR

(AXIS 2 iterates, AXIS 4, AXIS 3 and AXIS 1 are fixed !)

start with column element (AXIS 2: = 1)
éé& with last column (AXIS 2: = 5)
ind with last row (AXIS 1: = 4)
ind with last slice (AXIS 3: = 2)
ind with last cuboid (AXIS 4: = 3)
]
ARXML representation:

The ARXML representation of the record layout Cube_4 s16s16s16s16_s16 is given
in three parts for illustrative reason. The first part defines the number of sampling
points (Nx, Ny, Nz1, Nz2).

Listing 3.13: Record Layout of Cube_4 - part one

<! —— SW-RECORD-LAYOUT: Cube 4 sl6sl6slésl6 sl6 COLUMN DIR ——>
<SW-RECORD-LAYOUT>
<SHORT-NAME NAME-PATTERN="{blueprintName}">Cube_4_s16s16s16s16_sl6</
SHORT-NAME >
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Nx</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sintl16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-—RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Ny</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sint16</BASE-TYPE—-REF>
<SW-RECORD-LAYOUT-V-AXIS>2</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOQUT-V-PROP>COUNT</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Nz1</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sint16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>3</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-—RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Nz2</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sintl16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>4</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-RECORD-LAYOUT-V—-PROP>
</SW-RECORD-LAYOUT-V>

The second part defines the elements of axis [AXIS 1, AXIS 2, AXIS 3, AXIS 4].
Listing 3.14: Record Layout of Cube_4 - part two

AUTOSAR

<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">X</SHORT-LABEL>
<CATEGORY>INDEX_INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sint16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYQUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Y</SHORT-LABEL>
<CATEGORY>INDEX_INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>2</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>Y</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM>1</SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sintl16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>2</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Z%1</SHORT-LABEL>
<CATEGORY>INDEX_INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>3</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>71</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sint16</BASE-TYPE-REF>
<SW-RECORD-LAYQUT-V-AXIS>3</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYQUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Z2</SHORT-LABEL>
<CATEGORY>INDEX_INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>4</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>72</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sint16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>4</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOQOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>

AUTOSAR

The third part defines the values of the data points. Inside the SwRecordLayout—
Group with the shortLabel Val the nesting of the axis definies the memory repre-
sentation. In case of listing 3.15 the memory representation COLUMN_DIR is defined.
The (AXIS 2) iterates along the column.

Listing 3.15: Record Layout of Cube_4 - part three

<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN=" {blueprintName}">Val</SHORT-LABEL>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>4</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>72</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW—RECORD-LAYOUT—-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-GROUP>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>3</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>Z1</SW-RECORD-LAYOUT-GROUP-INDEX
>
<SW-RECORD-LAYOUT-GROUP-FROM>1 </ SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-GROUP>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP—-INDEX>X</SW—-RECORD-LAYOUT-GROUP—
INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM>1</SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP—-AXIS>2</SW-RECORD-LAYOUT-GROUP—

AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>Y</SW-RECORD-LAYOUT-GROUP-
INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </ SW—RECORD-LAYOUT-GROUP-
FROM>

<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
SwBaseTypes_Blueprint/sintl16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>0</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
<SW-RECORD-LAYOUT-V-INDEX>Z2 71 X Y</SW-RECORD-LAYOUT-V-
INDEX>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>

AUTOSAR

4 Additional SwRecordLayouts

In this chapter further swRecordLayout will be described which are not covered by
dedicated SWS documents.

Contents will be updated.

AUTOSAR

A Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class BlueprintPolicy (abstract)

Package M2::AUTOSARTemplates::StandardizationTemplate::AbstractBlueprintStructure

Note This meta-class represents the ability to indicate whether blueprintable elements will
be modifiable or not modifiable.

Base ARObject

Attribute Datatype Mul. | Kind | Note

attributeNa | String 1 attr

me

Table A.1: BlueprintPolicy

Class BswModuleDescription

Package M2::AUTOSARTemplates::BswModuleTemplate::BswOverview

Note Root element for the description of a single BSW module or BSW cluster. In case it
describes a BSW module, the short name of this element equals the name of the
BSW module.

Tags: atp.recommendedPackage=BswModuleDescriptions

Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,AtpFeature,Atp
StructureElement,CollectableElement,ldentifiable,Multilanguage
Referrable,PackageableElement,Referrable

Attribute Datatype Mul. | Kind | Note

bswModul | BswModuleDep * aggr | Describes the dependency to another BSW
eDepende | endency module.

ncy

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel

vh.latestBinding Time=preCompileTime

xml.sequenceOffset=20

bswModul | SwComponentD | 0..1 | aggr | This adds a documentation to the BSW module.
eDocumen | ocumentation
tation Stereotypes: atpSplitable; atpVariation

Tags: atp.Splitkey=bswModuleDocumentation,
variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=6

internalBe | BswinternalBeh * aggr | The various BswinternalBehaviors associated with

havior avior a BswModuleDescription can be distributed over
several physical files. Therefore the aggregation is
«atpSplitable».

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName
xml.sequenceOffset=65

AUTOSAR

Attribute

Datatype

Mul.

Kind

Note

moduleld

Positivelnteger

0..1

attr

Refers to the BSW Module Identifier defined by
the AUTOSAR standard. For non-standardized
modules, a proprietary identifier can be optionally
chosen.

Tags: xml.sequenceOffset=5

outgoingC
allback

BswModuleEntr
y

ref

Specifies a callback, which will be called from this
module if required by another module.

Stereotypes: atpSplitable; atpVariation

Tags: atp.Splitkey=outgoingCallback, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=15

providedCli
entServerE
ntry

BswModuleClie
ntServerEntry

aggr

Specifies that this module provides a client server
entry which can be called from another parition or
core.This entry is declared locally to this context
and will be connected to the
requiredClientServerEntry of another or the same
module via the configuration of the BSW
Scheduler.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel

vh.latestBinding Time=preCompileTime

xml.sequenceOffset=45

providedD
ata

VariableDataPr
ototype

aggr

Specifies a data prototype provided by this module
in order to be read from another partition or
core.The providedData is declared locally to this
context and will be connected to the requiredData
of another or the same module via the
configuration of the BSW Scheduler.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=55

providedE
ntry

BswModuleEntr
y

ref

Specifies an entry provided by this module which
can be called by other modules. This includes
"main" functions and interrupt routines, but not
callbacks (because the signature of a callback is
defined by the caller).

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=providedEntry, variation
Point.shortLabel

vh.latestBinding Time=preCompileTime
xml.sequenceOffset=10

AUTOSAR

Attribute

Datatype

Mul.

Kind

Note

providedM
odeGroup

ModeDeclaratio
nGroupPrototyp
e

aggr

A set of modes which is owned and provided by
this module or cluster. It can be connected to the
requiredModeGroups of other modules or clusters
via the configuration of the BswScheduler. It can
also be synchronized with modes provided via
ports by an associated
ServiceSwComponentType,
EcuAbstractionSwComponentType or
ComplexDeviceDriverSwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=25

releasedTri
gger

Trigger

aggr

A Trigger released by this module or cluster. It can
be connected to the requiredTriggers of other
modules or clusters via the configuration of the
BswScheduler. It can also be synchronized with
Triggers provided via ports by an associated
ServiceSwComponentType,
EcuAbstractionSwComponentType or
ComplexDeviceDriverSwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel

vh.latestBinding Time=preCompileTime

xml.sequenceOffset=35

requiredCli
entServerE
ntry

BswModuleClie
ntServerEntry

aggr

Specifies that this module requires a client server
entry which can be implemented on another
parition or core.This entry is declared locally to
this context and will be connected to the
providedClientServerEntry of another or the same
module via the configuration of the BSW
Scheduler.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel

vh.latestBinding Time=preCompileTime

xml.sequenceOffset=50

requiredDa
ta

VariableDataPr
ototype

aggr

Specifies a data prototype required by this module
in oder to be provided from another partition or
core.The requiredData is declared locally to this
context and will be connected to the providedData
of another or the same module via the
configuration of the BswScheduler.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel

vh.latestBinding Time=preCompileTime

xml.sequenceOffset=60

AUTOSAR

Attribute Datatype Mul. | Kind | Note
requiredM ModeDeclaratio * aggr | Specifies that this module or cluster depends on a
odeGroup nGroupPrototyp certain mode group. The requiredModeGroup is
e local to this context and will be connected to the
providedModeGroup of another module or cluster
via the configuration of the BswScheduler.
Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=30
requiredTri | Trigger * aggr | Specifies that this module or cluster reacts upon
gger an external trigger.This requiredTrigger is declared
locally to this context and will be connected to the
providedTrigger of another module or cluster via
the configuration of the BswScheduler.
Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=40
Table A.2: BswModuleDescription
Class BswModuleEntry
Package M2::AUTOSARTemplates::BswModuleTemplate::Bswinterfaces
Note This class represents a single API entry (C-function prototype) into the BSW module
or cluster.
The name of the C-function is equal to the short name of this element with one
exception: In case of multiple instances of a module on the same CPU, special rules
for "infixes" apply, see description of class Bswimplementation.
Tags: atp.recommendedPackage=BswModuleEntrys
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,Collectable
Element,ldentifiable,MultilanguageReferrable,PackageableElement,Referrable
Attribute Datatype Mul. | Kind | Note
argument SwServiceArg * aggr | An argument belonging to this BswModuleEntry.
(ordered)
Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivation
Time
xml.sequenceOffset=45
callType BswCallType 1 attr | The type of call associated with this service.
Tags: xml.sequenceOffset=25

AUTOSAR

Attribute

Datatype

Mul.

Kind

Note

executionC
ontext

BswExecutionC
ontext

attr

Specifies the execution context which is required
(in case of entries into this module) or guaranteed
(in case of entries called from this module) for this
service.

Tags: xml.sequenceOffset=30

isReentran
t

Boolean

attr

Reentrancy from the viewpoint of function callers:

e True: Enables the service to be invoked
again, before the service has finished.

e False: It is prohibited to invoke the service
again before is has finished.

Tags: xml.sequenceOffset=15

isSynchron
ous

Boolean

attr

Synchronicity from the viewpoint of function
callers:

e True: This calls a synchronous service, i.e.
the service is completed when the call
returns.

e False: The service (on semantical level)
may not be complete when the call returns.

Tags: xml.sequenceOffset=20

returnType

SwServiceArg

0..1

aggr

The return type belonging to this bswModuleEntry.

Tags: xml.sequenceOffset=40

role

Identifier

0..1

ref

Specifies the role of the entry in the given context.
It shall be equal to the standardized name of the
service call, especially in cases where no
Serviceldentifier is specified, e.g. for callbacks.
Note that the ShortName is not always sufficient
because it maybe vendor specific (e.g. for
callbacks which can have more than one
instance).

Tags: xml.sequenceOffset=10

serviceld

Positivelnteger

0..1

attr

Refers to the service identifier of the Standardized
Interfaces of AUTOSAR basic software. For
non-standardized interfaces, it can optionally be
used for proprietary identification.

Tags: xml.sequenceOffset=5

swServicel
mplPolicy

SwServicelmplP
olicyEnum

attr

Denotes the implementation policy as a standard
function call, inline function or macro. This has to
be specified on interface level because it
determines the signature of the call.

Tags: xml.sequenceOffset=35

Table A.3: BswModuleEntry

AUTOSAR

Class ClientServerinterface
Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note A client/server interface declares a number of operations that can be invoked on a
server by a client.
Tags: atp.recommendedPackage=Portinterfaces
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,Atp
Type,CollectableElement,ldentifiable,MultilanguageReferrable,Packageable
Element,Portinterface,Referrable
Attribute Datatype Mul. | Kind | Note
operation ClientServerOp 1..* | aggr | ClientServerOperation(s) of this
eration ClientServerinterface.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivation
Time
possibleErr | ApplicationError * aggr | Application errors that are defined as part of this
or interface.
Table A.4: ClientServerinterface
Class CompuMethod
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::ComputationMethod
Note This meta-class represents the ability to express the relationship between a physical
value and the mathematical representation.
Note that this is still independent of the technical implementation in data types. It only
specifies the formula how the internal value corresponds to its physical pendant.
Tags: atp.recommendedPackage=CompuMethods
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,Collectable
Element,Identifiable,MultilanguageReferrable,PackageableElement,Referrable
Attribute Datatype Mul. | Kind | Note
compulnter | Compu 0..1 | aggr | This specifies the computation from internal
nalToPhys values to physical values.
Tags: xml.sequenceOffset=80
compuPhy | Compu 0..1 | aggr | This represents the computation from physical
sTolnternal values to the internal values.
Tags: xml.sequenceOffset=90
displayFor | DisplayFormatS | 0..1 attr | This property specifies, how the physical value
mat tring shall be displayed e.g. in documents or
measurement and calibration tools.
Tags: xml.sequenceOffset=20
unit Unit 0..1 ref | This is the physical unit of the Physical values for
which the CompuMethod applies.
Tags: xml.sequenceOffset=30

Table A.5: CompuMethod

AUTOSAR

t (ordered)

Class DataConstr
Package M2::AUTOSARTemplates::CommonStructure::GlobalConstraints
Note This meta-class represents the ability to specify constraints on data.
Tags: atp.recommendedPackage=DataConstrs
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,Collectable
Element,ldentifiable,MultilanguageReferrable,PackageableElement,Referrable
Attribute Datatype Mul. | Kind | Note
dataConstr | DataConstrRule * aggr | This is one particular rule within the data
Rule constraints.
Tags: xml.roleElement=true; xml.roleWrapper
Element=true; xml.sequenceOffset=30; xml.type
Element=false; xml.typeWrapperElement=false
Table A.6: DataConstr
Class ImplementationDataType
Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes
Note Describes a reusable data type on the implementation level. This will typically
correspond to a typedef in C-code.
Tags: atp.recommendedPackage=ImplementationDataTypes
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,Atp Type,Autosar
DataType,CollectableElement,ldentifiable,MultilanguageReferrable,Packageable
Element,Referrable
Attribute Datatype Mul. | Kind | Note
dynamicAr | String 0..1 attr | Specifies the profile which the array will follow in
raySizePro case this data type is a variable size array.
file
subElemen | Implementation * aggr | Specifies an element of an array, struct, or union

DataTypeEleme data type.
nt
The aggregation of
ImplementionDataTypeElement is subject to
variability with the purpose to support the
conditional existence of elements inside a
ImplementationDataType representing a structure.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

r

symbolPro | SymbolProps 0..1 aggr | This represents the SymbolProps for the
ps ImplementationDataType.
Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName
typeEmitte | NameToken 0..1 attr | This attribute is used to control which part of the

AUTOSAR toolchain is supposed to trigger data
type definitions.

Table A.7: ImplementationDataType

AUTOSAR

Class InterpolationRoutineMappingSet
Package M2::AUTOSARTemplates::SWComponentTemplate::MeasurementAndCalibration::
InterpolationRoutineMappingSet
Note This meta-class specifies a set of interpolation routine mappings.
Tags: atp.recommendedPackage=InterpolationRoutineMappingSets
Base ARElement,ARObject,CollectableElement,ldentifiable,Multilanguage
Referrable,PackageableElement,Referrable
Attribute Datatype Mul. | Kind | Note
interpolatio | InterpolationRo * aggr | This specifies one particular mapping of
nRoutineM | utineMapping recordlayout and its matching
apping interpolationRoutines.
Table A.8: InterpolationRoutineMappingSet
Class Keyword
Package M2::AUTOSARTemplates::StandardizationTemplate::Keyword
Note This meta-class represents the ability to predefine keywords which may subsequently
be used to construct names following a given naming convention, e.g. the AUTOSAR
naming conventions.
Note that such names is not only shortName. It could be symbol, or even longName.
Application of keywords is not limited to particular names.
Base ARObject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. | Kind | Note
abbrName | NameToken 1 attr | This attribute specifies an abbreviated name of a
keyword. This abbreviation may e.g. be used for
constructing valid shortNames according to the
AUTOSAR naming conventions.
Unlike shortName, it may contain any name token.
E.g. it may consist of digits only.
classificati | NameToken * attr | This attribute allows to attach classification to the
on Keyword such as MEAN, ACTION, CONDITION,
INDEX, PREPOSITION
Table A.9: Keyword
Class NvBlockSwComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note The NvBlockSwComponentType defines non volatile data which data can be shared
between SwComponentPrototypes. The non volatile data of the
NvBlockSwComponentType are accessible via provided and required ports.
Tags: atp.recommendedPackage=SwComponentTypes
Base ARElement,ARObject,AtomicSwComponentType,AtpBlueprint,AtpBlueprintable,Atp
Classifier,AtpType,CollectableElement,ldentifiable,Multilanguage
Referrable,PackageableElement,Referrable,SwComponentType
Attribute Datatype \ Mul. \ Kind \ Note

AUTOSAR

Attribute Datatype Mul. | Kind | Note
nvBlockDe | NvBlockDescrip * aggr | Specification of the properties of exactly one
scriptor tor NVRAM Block.
Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
Table A.10: NvBlockSwComponentType
Class SenderReceiverinterface
Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note A sender/receiver interface declares a number of data elements to be sent and
received.
Tags: atp.recommendedPackage=Portinterfaces
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,Atp
Type,CollectableElement,Datalnterface,ldentifiable,Multilanguage
Referrable,PackageableElement,Portinterface,Referrable
Attribute Datatype Mul. | Kind | Note
dataEleme | VariableDataPr 1..* | aggr | The data elements of this
nt ototype SenderReceiverinterface.
invalidation | InvalidationPolic * aggr | InvalidationPolicy for a particular dataElement
Policy y
Table A.11: SenderReceiverinterface
Class ServiceSwComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note ServiceSwComponentType is used for configuring services for a given ECU.
Instances of this class are only to be created in ECU Configuration phase for the
specific purpose of the service configuration.
Tags: atp.recommendedPackage=SwComponentTypes
Base ARElement,ARObject,AtomicSwComponentType,AtpBlueprint,AtpBlueprintable,Atp
Classifier,AtpType,CollectableElement,Identifiable,Multilanguage
Referrable,PackageableElement,Referrable,SwComponentType
Attribute Datatype Mul. | Kind | Note

Table A.12: ServiceSwComponentType

AUTOSAR

Class SwAddrMethod
Package M2::AUTOSARTemplates::CommonStructure::AuxillaryObjects
Note Used to assign a common addressing method, e.g. common memory section, to data
or code objects. These objects could actually live in different modules or components.
Tags: atp.recommendedPackage=SwAddrMethods
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,Collectable
Element,Identifiable,MultilanguageReferrable,PackageableElement,Referrable
Attribute Datatype Mul. | Kind | Note
memoryAll | MemoryAllocati 0..1 attr | Enumeration to specify the name pattern of the
ocationKey | onKeywordPolic Memory Allocation Keyword.
wordPolicy | yType
option Identifier * ref | This attribute introduces the ability to specify
further intended properties of the MemorySection
in with the related objects shall be placed.
These properties are handled as to be selected.
The intended options are mentioned in the list.
In the Memory Mapping configuration, this option
list is used to determine an appropriate
MemMapAddressingModeSet.
sectionlniti | Sectionlnitializat | 0..1 attr | Specifies the expected initialization of the
alizationPo | ionPolicyType variables (inclusive those which are implementing
licy VariableDataPrototypes). Therefore this is an
implementation constraint for initialization code of
BSW modules (especially RTE) as well as the
start-up code which initializes the memory
segment to which the AutosarDataPrototypes
referring to the SwAddrMethod’s are later on
mapped.
If the attribute is not defined it has the identical
semantic as the attribute value "INIT"
sectionTyp | MemorySection 0..1 attr | Defines the type of memory sections which can be
e Type associated with this addresssing method.
Table A.13: SwAddrMethod
Class SwRecordLayout
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::RecordLayout
Note Defines how the data objects (variables, calibration parameters etc.) are to be stored
in the ECU memory. As an example, this definition specifies the sequence of axis
points in the ECU memory. lterations through axis values are stored within the
sub-elements swRecordLayoutGroup.
Tags: atp.recommendedPackage=SwRecordLayouts
Base ARElement,ARObject,CollectableElement,ldentifiable,Multilanguage
Referrable,PackageableElement,Referrable
Attribute Datatype \ Mul. \ Kind \ Note

AUTOSAR

Attribute Datatype Mul. | Kind | Note
swRecordL | SwRecordLayo 1 aggr | This is the top level record layout group.
ayoutGrou | utGroup
p Tags: xml.roleElement=true; xml.roleWrapper
Element=false; xml.sequenceOffset=20; xml.type
Element=false; xml.typeWrapperElement=false
Table A.14: SwRecordLayout
Class SwRecordLayoutGroup
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::RecordLayout
Note Specifies how a record layout is set up. Using SwRecordLayoutGroup it recursively
models iterations through axis values. The subelement
swRecordLayoutGroupContentType may reference other SwRecordLayouts,
SwRecordLayoutVs and SwRecordLayoutGroups for the modeled record layout.
Base ARObject
Attribute Datatype Mul. | Kind | Note
desc MultiLanguage 0..1 aggr | This aggregation allows a brief description about
OverviewParagr the particular record layout group which can help
aph to identify the entry. In-depth documentation
should be added to the introduction of the
surrounding record layout.
Tags: xml.sequenceOffset=20
category AsamRecordLa 0..1 attr | This attribute denotes the semantics in particular
youtSemantics in terms of the corresponding A2L-Keyword. This
is to support the mapping of the more general
record layouts in AUTOSAR/MSR to the specific
A2l keywords.
It is possible to express the specific semantics of
A2l recordlayout keywords in
swRecordlayoutGroup but not always vice versa.
Therefore the mapping is provided in this optional
attribute.
Tags: xml.sequenceOffset=5
shortLabel | Identifier 1 ref | This attribute specifies a name which can be used
e.g. when ECU code is generated from the record
layout group.
Tags: xml.sequenceOffset=3
swGeneric | SwGenericAxis 0..1 ref | This association allows to specify record layout
AxisParam | ParamType groups to iterate over generic axis parameters. For
Type example, if the generic axis parameter is an array,
the record layout group will iterate over this array.
Obviously, the axis referred to by
swRecordLayoutGroupAxis shall be a generic axis
in which the referenced SwGenericAxisType is
aggregated.
Tags: xml.sequenceOffset=50

AUTOSAR

Attribute Datatype Mul. | Kind | Note
swRecordL | Identifier 0..1 ref | This attribute is used to denote the component to
ayoutCom which the group in question applies. Thus, the
ponent record layout supports structured objects.
This secures independence from the sequence of
components, because they can be referred to via
name.
Tags: xml.sequenceOffset=90
swRecordL | AxislndexType 0..1 attr | This attribute specifies the iteration axis number
ayoutGrou for a SwRecordLayoutGroup. The current record
pAXxis layout group then refers exactly to the axis with
this number. This means that the values are taken
by iterating along the thus referenced axis.
Tags: xml.sequenceOffset=30
swRecordL | SwRecordLayo 0..1 aggr | This is the contents of the recordLayout which is
ayoutGrou | utGroupContent produced for every step of iteration.
pContentT
ype Tags: xml.roleElement=false; xml.roleWrapper
Element=false; xml.sequenceOffset=100; xml.type
Element=false; xml.typeWrapperElement=false
swRecordL | RecordLayoutlt 0..1 attr | This attribute specifies the iterator index for the
ayoutGrou | eratorPoint point in the axis from which a record layout group
pFrom is commenced.
Negative values are also possible, i.e. the value -4
counts from the fourth value from the end. If this
property is missing, the iteration starts with ’1’.
Tags: xml.sequenceOffset=60
swRecordL | NameToken 0..1 attr | This attribute attributes a symbolic name to the
ayoutGrou iterator of the superimposed record layout group.
plndex This can be referenced as a loop index in
contained SwRecordLayoutV elements.
Tags: xml.sequenceOffset=40
swRecordL | Integer 0..1 attr | This attribute specifies the step width for the
ayoutGrou iterator index that is used for the current record
pStep layout group.
Note that negative values are also possible, in
case of the starting point is higher than the
endpoint. If the property is missing, the step width
IS ll1 ll-
Tags: xml.sequenceOffset=80

AUTOSAR

Attribute Datatype Mul. | Kind | Note
swRecordL | RecordLayoutlt 0..1 attr | This attribute specifies the end point for the
ayoutGrou | eratorPoint iteration. Negative values are also possible, i.e.
pTo the value -4 counts up to the fourth value from the
end. If this property is not there, the iteration ends
at "-1" which is the last element.
Note that depending on the arraySizeSemantics of
SwTextProps the iteration ends at the value
specified in swMaxTextSize.
Tags: xml.sequenceOffset=70
Table A.15: SwRecordLayoutGroup
Class SwRecordLayoutV
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::RecordLayout
Note This element specifies which values are stored for the current
SwRecordLayoutGroup. If no baseType is present, the SwBaseType referenced
initially in the parent SwRecordLayoutGroup is valid. The specification of
swRecordLayoutVAxis gives the axis of the values which shall be stored in
accordance with the current record layout SwRecordLayoutGroup. In
swRecordLayoutVProp one can specify the information which shall be stored.
Base ARObject
Attribute Datatype Mul. | Kind | Note
desc MultiLanguage 0..1 | aggr | This aggregation allows for a brief description
OverviewParagr about the particular record layout value which can
aph help to identify the entry. In-depth documentation
should be added to the introduction of the
surrounding record layout.
Tags: xml.sequenceOffset=20
category AsamRecordLa 0..1 attr | This attribute denotes the semantics in particular
youtSemantics in terms of the corresponding A2L-Keyword. This
is to support the mapping of the more general
record layouts in AUTOSAR/MSR to the specific
A2l keywords. It is possible to express the specific
semantics of A2l RecordLayout keywords in
swRecordlayoutGroup but not always vice versa.
Therefore the mapping is provided in this optional
attribute.
Tags: xml.sequenceOffset=5
baseType SwBaseType 0..1 ref | This association allows to refer to a base type in
case a specific encoding is intended. If no base
type is referred, the base type referenced initially
in the corresponding DataPrototype is to be used.
Tags: xml.sequenceOffset=30

AUTOSAR

Attribute

Datatype

Mul.

Kind

Note

shortLabel

Identifier

ref

This attribute specifies a name which can be used
e.g. when ECU code is generated from the record
layout value.

Tags: xml.sequenceOffset=3

swGeneric
AxisParam
Type

SwGenericAxis
ParamType

0..1

ref

This association supports the case that a value
from a generic axis definition shall be stored. This
value is denoted by a particular generic axis
parameter type.

Tags: xml.sequenceOffset=70

swRecordL
ayoutVAxis

AxisIndexType

0..1

attr

This attribute gives the index of the axis of which
values that are stored in the record.
swRecordVIndex refers to the symbolic names of
the iterators for which the axis value shall be
stored in the record.

In case of nested iterators (mainly for
multidimensional objects) the iterator names are
specified as whitespace-separated names.

These symbolic names relate to
swRecordLayoutGrouplndex. The iterators are
processed from left to right in such a manner that
they symbolize the loop index from the outside to
the inside.

It is considered an error if more components are
specified than axes exist in the related
ApplicationDataType.

Tags: xml.sequenceOffset=40

swRecordL
ayoutVFix
Value

Integer

0..1

attr

This attribute specifies the filler character for the
current record layout, in the form of hex digits. It is
also used to specify the fix value for e.g.
FIXRIGHTDIFF.

Tags: xml.sequenceOffset=80

swRecordL
ayoutVind
ex

NameTokens

0..1

attr

The symbolic value for iteration, or the symbolic
values separated by whitespaces, refer to the
symbolic values given in
swRecordLayoutGroupindex .

The iterators are processed from left to right, in
such a manner that they symbolize the loop index
from the outside to the inside.

It is considered an error if the record layout is
referenced by an entity which has less number of
axes than index names referenced here.

Tags: xml.sequenceOffset=60

AUTOSAR

Attribute Datatype Mul. | Kind | Note

swRecordL | NameToken 0..1 attr | This attribute describes the kind of values to be
ayoutVPro stored. More details see below. The standardized
p values foreseen for this attribute are defined in

[TPS_SWCT_01489].

Tags: xml.sequenceOffset=50

Table A.16: SwRecordLayoutV

	1 Introduction
	2 Overview General Blueprints
	2.1 AUTOSAR_MOD_BSWServiceInterfaces_Blueprint
	2.2 AUTOSAR_MOD_BswModuleEntrys_Blueprint
	2.3 AUTOSAR_MOD_IFL_RecordLayout_Blueprint
	2.4 AUTOSAR_MOD_IFX_RecordLayout_Blueprint
	2.5 AUTOSAR_MOD_Cube_RecordLayout_Blueprint
	2.6 AUTOSAR_MOD_MemoryMapping_SwAddrMethods_Blueprint
	2.7 AUTOSAR_MOD_SWCServiceRelatedInterfaces_Blueprint
	2.8 AUTOSAR_TR_PredefinedNames_Blueprint

	3 Visualization of SwRecordLayouts
	3.1 Record Layout: Distr
	3.2 Curves
	3.2.1 Record Layout: Cur
	3.2.2 Record Layout: IntCur
	3.2.3 Record Layout: FixIntCur

	3.3 Maps
	3.3.1 Definition of Indexing
	3.3.2 Transform Logical View in Memory Representation
	3.3.3 Record Layout: Map
	3.3.4 Record Layout: IntMap
	3.3.5 Record Layout: IntMap 3 x 4
	3.3.6 Record Layout: FixIntMap

	3.4 Record Layout: Value and ValueBlock
	3.5 Multidimensional Arrays
	3.5.1 Definition of Indexing
	3.5.2 Record Layout: Cuboid
	3.5.3 Record Layout: Cube_4 and Cube_5

	4 Additional SwRecordLayouts
	A Mentioned Class Tables

