AUTOSAR

Document Title | Design Patterns Catalogue
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 672

Document Classification Auxiliary

Document Status Final

Part of AUTOSAR Release 4.2.2

Document Change History

Release | Changed by Description
e reconsideration of signal definitions and tailored
AUTOSAR pattern for smart actuators and actuators with no
4.2.2 Release feedback |00p
Management | specification items added
e minor changes
e First Release of document. Patterns covered:
AUTOSAR — Sensor and Actuator Pattern
4.2.1 Release — Arbitration of Several Set-point Requester
Management Pattern
e Previously published as part of EXP_AIPowertrain

AUTOSAR

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for the
purpose of information only. AUTOSAR and the companies that have contributed to it
shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types of
Intellectual Property Rights. The commercial exploitation of the material contained in
this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only. For any other purpose, no part of
the specification may be utilized or reproduced, in any form or by any means, without
permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference models,
"use cases", and/or references to exemplary technical solutions, devices, processes or
software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their pres-
ence in such specifications, nor any later documentation of AUTOSAR conformance of
products actually implementing such exemplary items, imply that intellectual property
rights covering such exemplary items are licensed under the same rules as applicable
to the AUTOSAR Standard.

AUTOSAR

Table of Contents

1 Introduction

©OW © 0o O

1.1 Documentconventions
1.2 RequirementsTracing
2 About Patterns
21 TypesofPattern.
2.2 DescribingPatterns L
3 Sensor and Actuator Pattern
3.1 Problem
3.2 AlsoKnownAs
3.3 Applicability
3.4 Solution
35 Naming
3.6 Example
3.6.1 ThrottleValve
3.6.2 TurboCharger
3.6.3 Turbo Charger with StagesandBanks
3.6.4 Actuator without Feedback Loop
3.6.5 Standard Sensor
3.6.6 Standard Sensor for Environment Temperature
3.6.7 Distributing Device Abstraction
3.7 Sample CodeandModel
3.8 KnownUses.
3.9 RelatedPatterns
3.10 Anti-Patterns One Should be Awareof
3.11 FurtherReadings
4 Arbitration between Several Set-point Requester
41 Problem
4.2 Applicability
4.3 Solution
44 Naming e
45 Example
46 SampleCodeandModel
47 KnownUses
48 RelatedPatterns
A History of Constraints and Specification ltems
A.1 Constraint History of this Document related to AUTOSAR R4.2.2 . . .
A1 Changed ConstraintsinR4.22
A1.2 Added ConstraintsinR4.2.2
A1.3 Deleted ConstraintsinR4.22.

Al1.4 Added Specification ltemsinR4.22

AUTOSAR

A.2 Constraint History of this Document related to AUTOSAR R4.2.1 ... 36
A.2.1 Added ConstraintsinR4.2.1 36
A2.2 Added Specification ltemsinR4.2.1 36

B Mentioned Class Tables 37

AUTOSAR

References

[1] ANTLR parser generator V3

[2] Standardization Template
AUTOSAR_TPS_StandardizationTemplate

[8] SW-C and System Modeling Guide
AUTOSAR_TR_SWCModelingGuide

[4] XML Specification of Application Interfaces
AUTOSAR_MOD_AlSpecification

[5] Main Requirements
AUTOSAR_RS Main

[6] Architectural Pattern
http://en.wikipedia.org/wiki/Architectural_pattern

[7] Software Design Pattern
http://en.wikipedia.org/wiki/Software_design_pattern

[8] Design Pattern
http://en.wikipedia.org/wiki/Design_Pattern

[9] Anti Pattern
http://en.wikipedia.org/wiki/Anti-pattern

[10] Software Design Pattern Template
http://c2.com/cgi/wiki?DesignPatternTemplate

[11] Secure Design Patterns
http://www.sei.cmu.edu/reports/09tr010.pdf

[12] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

[13] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture

http://en.wikipedia.org/wiki/Architectural_pattern
http://en.wikipedia.org/wiki/Software_design_pattern
http://en.wikipedia.org/wiki/Design_Pattern
http://en.wikipedia.org/wiki/Anti-pattern
http://c2.com/cgi/wiki?DesignPatternTemplate
http://www.sei.cmu.edu/reports/09tr010.pdf

AUTOSAR

1 Introduction

1.1 Document conventions

Technical terms (Class Names) are typeset in monospaced font, e.g. FrameTrig-
gering.

When defining name patterns the syntax defined according to ANTLR is used [1]. The
grammar for name patterns as defined in [2], [TPS_STDT_00055], is used. In the
following we just list the most important placeholders that are used throughout the
document:

anyName This represents a string which is valid shortName according to Tdenti-
fier

anyNamePart This represents a string (([a-zA-Z0-9]|_[a-zA-Z0-9])*_?) which is valid
part of a shortName.

Hint: The place holder "anyNamePart" shall not be used at the beginning of a
shortName pattern to avoid invalid shortNames.

blueprintName This represents the shortName / shortLabel / symbol of the ap-
plied blueprint

componentName This represents the shortName of the BSW module resp.
ASW SwComponentType / ASW component prototype related to the derived ob-
ject. "Related" mainly could be both, aggregating or referencing.

The placeholder componentName in particular supports multiple derivation of
a PortPrototypeBlueprint in the context of different software component
types resp. modules [TPS_STDT_00036].

componentTypeName This represents the shortName of the dedicated SwCompo-
nentType.

componentPrototypeName This represents the shortName of the dedicated
SwComponentPrototype.

index This represents a numerical index applicable for example to arrays.

keyword This represents the abbrName of a keyword acting as a name part of the
short name [TPS_STDT_00004].

For a complete description see [2], [TPS_STDT_00055]. Additionally we assume that
the naming rules as defined in [3] are fulfilled. If applicable and available the keywords
used in names are those standardized in [4].

Additionally we extend the grammar using the following place holders:

anyLongName This represents a string which is a valid 1ongName.

AUTOSAR

Additionally we assume that [TR_SWNR_0064] is fulfilled. This means that the
long name starts with a capital letter and that all words except articles (e.g. "a”,

“the”), prepositions (e.g. "at”, "by”, "to”) and conjunctions (e.g. "and”, “or”) start
with a captial letter as well.

anyLongNamePart This represents a string which is a valid part of a 1ongName.

AUTOSAR

1.2 Requirements Tracing

Requirements against this document are stated in the requirements document [5].

The following table references the requirements specified in [5] and provides informa-

tion about individual specification items that fulfill a given requirement.

Requirement

Description

Satisfied by

[RS_MAIN_00080]

AUTOSAR shall provide means to describe a
component model for application software

[TR_AIDPC_00001]
[TR_AIDPC_00002]

[RS_MAIN_00130]

AUTOSAR shall provide an abstraction from
hardware

[TR_AIDPC_00001]
[TR_AIDPC_00002]

[RS_MAIN_00140]

AUTOSAR shall provide network independent
communication mechanisms for applications

[TR_AIDPC_00001]
[TR_AIDPC_00002]
[TR_AIDPC_00003]

[RS_MAIN_00150]

AUTOSAR shall support the reallocation of
Software Components

[TR_AIDPC_00001]
[TR_AIDPC_00002]

[RS_MAIN_00400]

AUTOSAR shall provide a layered software
architecture

[TR_AIDPC_00001]
[TR_AIDPC_00002]
[TR_AIDPC_00003]
[TR_AIDPC_00004]

[RS_MAIN_00410]

AUTOSAR shall provide specifications for routines
commonly used by Software Components to
support sharing and optimization

[TR_AIDPC_00003]

[RS_MAIN_00500]

AUTOSAR shall provide naming conventions

[TR_AIDPC_00005]

AUTOSAR

2 About Patterns

This document gives an overview of the patterns defined in AUTOSAR for ease the
usage of AUTOSAR architecture, AUTOSAR application interfaces and the AUTOSAR
meta-model. The focus is on application software (ASW).

2.1 Types of Pattern

The following categories/classifications of patterns are distinguished:

Architectural Pattern An architectural pattern is a standard design in the field of soft-
ware architecture. The concept of an architectural pattern has a broader scope
than the concept of design pattern. The architectural patterns address various
issues in software engineering, such as computer hardware performance limita-
tions, high availability and minimization of a business risk [6].

Design Pattern In software engineering, a design pattern is a general reusable solu-
tion to a commonly occurring problem within a given context in software design.
A design pattern is not a finished design that can be transformed directly into
source or machine code. It is a description or template for how to solve a prob-
lem that can be used in many different situations. Patterns are formalized best
practices that the programmer must implement themselves in the application [7].

Solution Pattern A solution pattern describes a generic solution for a specific problem
like for example error handling or job scheduling [6].

An orthogonal classification of patterns is the following:

Design Patterns A design pattern in architecture and computer science is a formal
way of documenting a solution to a design problem in a particular field of expertise
[8].

Anti-Patterns In software engineering, an anti-pattern (or antipattern) is a pattern
used in social or business operations or software engineering that may be com-
monly used but is ineffective and/or counterproductive in practice [9].

2.2 Describing Patterns

The description of the patterns in this document follow a predefined structure. This
structure was created based on the contents of the documents [7], [10], [11], [1], and

2].

A pattern is described in a separate section and the header of the particular pattern
contains the name of the pattern and the pattern identification (standardized name):
{pattern name} ({pattern identification})

AUTOSAR

At the very beginning of the section describing a specific pattern the classification is
given as shown below:

Classification {type of pattern} Pattern

The type of the pattern is one of the categories described in section 2.1.

to know.

Section Mandatory | Instruction Additional Information

Problem Yes The problem solved by the | None
design pattern and its gen-
eral rationale and purpose.

Also Known As No Other names for the pattern, | None
if any are known.

Applicability Yes A general description of the | Indications: something you no-
characteristics a system | tice, hinting that this pattern may
must have for the pattern | be applicable Contraindications:
to be useful in the design | something that would indicate
or implementation of the | thatthis pattern would not be ap-
program. plicable

Solution Yes A textual or graphical de- | Also think about Overdose Ef-
scription of the pattern. This | fect: what undesirable thing
provides a detailed specifica- | happens if you keep applying
tion of the structural aspects | the suggested action over and
of the pattern, using appro- | over and over and over.
priate notations. Also think about Side Effects:

new problems that you might ex-
pect to crop up upon applying
the solution, or new issues that
come to the fore.

Naming No Describes naming pattern | Name pattern follow syntax de-
that are usable or should be | fined according to ANTLR like it
used in the context of the pat- | was decided to use in [2], e.g. in
tern. TPS_STDT_00055.

Example Yes Example how to apply the | None
pattern.

Sample Code and No Code or model providing an | None

Model example of how to implement
the pattern.

Known Uses No Examples of the use of the | None
pattern, taken from existing
systems or literature.

Related Patterns No Other patterns that have | Other patterns that relate, ei-
some relationship with the | ther superordinate, subordinate,
pattern; discussion of the dif- | competitor, or neighboring pat-
ferences between the pattern | terns, with references to where
and similar patterns. they can be found.

Anti-Patterns No Anti-Patterns you should be | None
aware of.

Reading No Further material worthwhile | None

Table 2.1: Pattern Description Template

AUTOSAR

3 Sensor and Actuator Pattern

Classification Design Pattern

3.1 Problem

The Sensor/Actuator Design Pattern describes how to handle sensors or actuators that
are connected to an ECU in the context of an overall architecture. The Sensor/Actuator
Design Pattern focuses on aspects of:

¢ Independence of application software from concrete sensors and actuators con-
nected to a specific ECU.

e Reusable code between different sensors and actuators.

¢ Different code sharing cooperation models (software sharing), thus supporting
different business models.

e Deployment of functionality to different ECUs.

3.2 Also Known As

This pattern is also known as Device Abstraction.

3.3 Applicability

[TR_AIDPC_00001] Access to Hardware by PSnsrAct |

The Device Abstraction is located above the RTE. It is a set of software components
that abstracts from the sensors and actuators connected to a specific ECU. It uses
sensor actuator software components, the only components above RTE that are al-
lowed to access the ECU abstraction interface. | (RS_MAIN_00080, RS_MAIN_00130,
RS MAIN_00140, RS _MAIN 00150, RS MAIN_00400)

In case direct access to the Micro controller is required because specific interrupts
and/or complex Micro controller peripherals to fulfill the special functional and timing
requirements of the sensor evaluation or actuator control have to be implemented this
pattern cannot be applied. Instead a complex driver implementation shall be used.

[TR_AIDPC_00002] Collaboration supported by PSnsrAct [The Sensor/Actuator
Design Pattern supports software sharing (=collaboration between various partners) on
different levels: Development partner one might deliver the sensors together with the
basic electrical driver software (DrvrSnsrElec), development partner two might deliver
the sensor device driver software (DevDrvrSnsr) and the third partner might develop the
substitute models together with the virtual device drivers (DevSnsrVirt). There might be

AUTOSAR

different suppliers for the same Sensor/Actuator or there might be sensors/actuators
from different vendors used within one and the same system. |(RS_MAIN_00080,
RS_MAIN_00130, RS_MAIN_00140, RS_MAIN_00150, RS_MAIN_00400)

In case software sharing shall not be supported it is also possible to just implement
the interfaces of the composition of a single sensor or actuator but not following the
internal three-level-architecture.

[TR_AIDPC_00003] Deployment/Relocation supported by PSnsrAct | The
Sensor/Actuator-Pattern also supports different deployment scenarios to ECUs. One
ECU might provide the measured value of a sensor whereas another ECU is imple-
menting the model that calculates the estimated value that may substitute the mea-
sured sensor value. |(RS_MAIN_00140, RS_MAIN_00400, RS_MAIN_00410)

Note: In general a pattern is not applied without any changes but with extension by
combining several patterns to one solution. For example:

e The composition pattern (splitting of component if they are getting too large and
are not maintainable any longer) is combined with this pattern.

e The diagnosis pattern is combined with this pattern.

3.4 Solution

In Figure 3.1 that was taken from [12] an example of the signal flow for a lamp (actuator)
and a velocity sensor is shown. This signal flow pattern is refined by this sensor/actu-
ator pattern.

AUTOSAR

Physical Interface Electrical Interface Electrical Interface
Isensor[o--zoomA] UECU [0..5V]

. ECU . pcC
Hardware e.g. Car Velocity —n—ms— i e, Peripherals

getVelocity() get_|_ECU(velocity_sensor) ADC_get() v

Application Sensor
SW-C1 e SW-C"

110

- Micro
e Controller
Abstraction

ECU

Software . Layer

Abstraction LCAL

Application Actuator PR .

SWLC 1 SW.O) <«—| (MCAL Driver)
setLamp() set_|_ECU(light_actuator) DIO_set()/iget() *
v
. ECU B e
Hardware e.g. Car Light Electronics | Peripherals
lecy [0..2A] U, [0..5V]

) Sensor Actuator SW Component Type

Figure 3.1: Sensor Actuator Signal Flow [12]

[TR_AIDPC_00004] Layers of PSnsrAct | The solution is proposing a three-level
layering within a composition representing a sensor or actuator:

e clectrical device driver layer,

e sensor/actuator device driver layer,

¢ virtual device driver layer.
|(RS_MAIN_00400)

In Figure 3.2 the overall structure of the pattern is shown. Recursive elements are op-
tional. Closed loop controlled actuator and position feedback is included. The naming
is simplified and will be explained in more detail later.

AUTOSAR

<

ACY
Reqd Consold Estimd nnn
A4 \d
DevCoorrVirt : DevSnsrVirt :
DevCoorrVirt DevSnsrVirt
[v] (Al (Al
Sp
c
1= J_‘ Measd Raw
©
£ Y ——A¥] (A] (A
7]
=}
<
@ DevDrvrActr : DevDrvrSnsr :
o DevDrvrActr DevDrvrSnsr
>
1]
(]
(W} A [A]
Outp
ElecBascFild ElecRaw
A ‘ A
DrvrActrElec : DrvrSnsrElec :
DrvrActrElec DrvrSnsrElec
[~]

{componentPrototypeName} : {componentTypeName}
L?

Figure 3.2: Sensor Actuator Pattern for Closed Loop

—5HD

The application software can rely on the existance of the consolidated value. The
consolidated value can be calculated from the

e estimated value,
e setpoint value,
e measured and/or raw value.

The calculation of the consolidated value via the setpoint or estimated value is used
in case of actuators without feedback loop. In Figure 3.8 an example of an actuator
without feedback loop calculating the consolidated value from the setpoint value is
shown. Besides actuators with open loop control there are also smart actuators that
can directly deal with the setpoint value itself. In this case the device driver actuator
SW-C and the electrical driver actuator SW-C are only routing the setpoint value since

AUTOSAR

the controlling of the actuator and thus the calculating of the output value etc. is realized
within the smart actuator itself. However, the two layers, electrical device layer and
device driver layer, are additionally needed because of diagnosis etc.

The pattern can be tailored for a standard sensor. In this case the consolidated value
is provided (Consold) and the estimated value (Estimd) is requested, see Figure 3.9.

The signal flow is shown in Figure 3.3: The electrical raw value is requested from the
ECU Abstraction. After basic filtering the signal is converted to a physical value repre-
senting the measured value. If the measured value is not suitable for the application the
estimated value might be chosen to be the consolidated value, i.e. the value that can
be used by the rest of the application software. Some applications request to explicitly
know about the physical raw value. This is why this signal is also made available.

ElecRaw
From ECU \
Abstraction
Basic filterin .
R g ElecBascFild
phase shift)
[optional]
Simple Raw
conversion to >
physical value
Final filtering Measd
> and offset
correction
P Selection between
measured and D
Estimd estimated value Consold
»-| depending on conditions

From Application
SwW

Figure 3.3: Signal Flow within Sensor and Actuator Pattern

Please be aware: SensorActuatorSwComponentTypes are the only components
that are allowed to access ECU Abstraction Software, namely EcuAbstraction-
SwComponentType. This is shown in Figure 3.4 taken from [13]. Access is denoted
by !)lO”.

AUTOSAR

Figure 3.4: Access to ECU Abstraction

3.5 Naming

[TR_AIDPC_00005] Naming within PSnsract | In the following the semantic port
prototype (blueprint) definition together with the name patterns are described.

The overall name pattern for port short names is described in grammar 3.1. In
the following these port (prototype blueprint) names are also referred to as signal
names. In Table 3.1 additionally the pattern for the corresponding long names is given.
|(RS_MAIN_00500)

Listing 3.1: Name Pattern for Ports in Device Abstraction
grammar PSnsrActrPortNames;

portName
{’ sensorActuatorSignal’} ;

sensorActuatorSignal
{anyName} {’ sensorActuatorSignalType’} ;

sensorActuatorSignalType
(ElecRaw | ElecBascFild | Raw | Measd | Consold | Estimd | Outp |
Sp | Reqd) ;

AUTOSAR

anyName
("keyword’) *

4

In case of a generic long name {anyLongNamePart} or {anyLongName}, resp., is

empty.
Generic Signal Name | Long Name Pattern | Generic AUTOSAR Definition
of Concrete Sen- | Long Name
sor/Actuator Signal | of Signal
(EN) (EN)
ElecRaw Electrical Raw | Electrical Electrical raw sensor value as provided by the
Value of {anyLong- | Raw Value ECU Abstraction. Typically this value is unfil-
NamePart} tered. However, there are for example smart
components doing some filtering themselves.
Electrical signals can only be represented in
voltage, current and time [12].
ElecBascFild Electrical Basic Fil- | Electrical Basic filtered electrical raw sensor value (e.g.
tered Value of {any- | Basic Fil- | maximum allowed phase shift is one schedul-
LongNamePart} tered Value ing raster or maximum 360 degree crankshaft
rotation if exhaust gas pulsation dependent).
Electrical representation of a technical sig-
nal [12]. Electrical signals can only be rep-
resented in voltage, current and time.
Raw Raw Value of {any- | Raw Value Physical raw/base sensor value. Sim-
LongNamePart} ple conversion of basic filtered electrical
(ElecBascFild) to physical value.
Measd {anyLongName} Measured Final filtered and offset corrected physical
(Measured) Value sensor value. Physical sensor value/standard
sensor value. The physical sensor value is
the linearized/filtered physical raw/base sen-
sor value including offset. At this step a (sig-
nificant) phase-shift could be possible.
Consold {anyLongName} Value Consolidated physical value, either a mea-
sured value (Measd) or a modeled value
(Estimd). Final filtered and offset corrected
consolidated actuator value/physical sensor
value. Virtual physical sensor value/fused
sensor value that comes as close as possi-
ble to the technical signal. In case of inability
to provide a physical sensor value (e.g. fail-
ure, implausibility or other reasons) a substi-
tute value/default value or a frozen value is
provided.
Estimd {anyLongName} Estimated Final filtered and offset corrected physical
(Estimated) Value sensor value replacement model value for
physical sensor value/standard sensor value.

AUTOSAR

Outp Output of {any- | Output Final controller output (closed loop or open
LongNamePart} Value loop). It includes the necessary control ac-
tions to reach the requested setpoint in the
given system conditions.
For example for realizing the requested ac-
tuator position a precontrol impulse to over-
come the static friction is needed. In case of
a smart actuator the output value might add
a dedicated intialization duty cycle to wakeup
the actuator.
Typically expressed as percentage.
Sp Setpoint {anyLong- | Setpoint Final actuator setpoint. Typically expressed
NamePart} Value as percentage.
Reqgd Requested Set- | Requested Final requested physical setpoint. Typically
point {anyLong- | Setpoint expressed as percentage but could also be
NamePart} expressed e.g. as factor.

Table 3.1: Signal Names and Semantics

Some examples of short and long names for sensor/actuator signals or ports, resp.,
are given in Table 3.2.

Short Name Class Long Name (EN)

TrboChrgrReqd PortPrototype Requested Setpoint for Turbo Charger

Consold PortPrototype Consolidated Value

TrboChrgrStg3AtBnk2 | FlatInstanceDescriptor Value of Turbo Charger at Third Stage
at Second Bank

TrboChrgr PortPrototype Value of Turbo Charger

Table 3.2: Port Names Examples

In grammar 3.2 the pattern for component types and component prototypes for the
atomic components within a composition representing a sensor or an actuator is de-

scribed.

In some cases there might be parts of the implementation that can be reused for dif-
ferent sensors/actuators. Therefore the name pattern for the component type name is
more generic and does not necessarily contain the Sensor/Actuator name. In other
cases the Sensor/Actuator names are not sufficient to make the component type
names unique so an additional identifier can be added to the component type name.

Listing 3.2: Name Pattern for Atomic Software Component Types in Device Abstraction

grammar PSnsrActrAtomicSwcShortName;

sensorActuatorComponent TypeName
sensorActuatorComponentName ;

sensorActuatorComponentPrototypeName
sensorActuatorComponentName ;

sensorActuatorComponentName

AUTOSAR

(Drv{Device}Elec | DevDrv{Device} | Dev{Device}Virt | DevCoorrVirt) (
"anyNamePart’) ;

Device
(Snsr | Actr) ;

anyNamePart
("keyword’) x ;

In grammar 3.3 the pattern is more refined but still conforming to grammar 3.2 be-
cause "For” is a standardized keyword. Note: the refined grammar is following
[TR_SWNR_0034] that requests that field blocks are concatenated by adding an ap-
propriate preposition.

Listing 3.3: Refined Name Pattern for Atomic Software Component Types in Device Ab-
straction

grammar PSnsrActrAtomicSwcShortNameRefined;

sensorActuatorComponentTypeName
sensorActuatorComponentName ;

sensorActuatorComponentPrototypeName
sensorActuatorComponentName ;

sensorActuatorComponentName
(Drv{deviceType}Elec | DevDrv{deviceType} | Dev{deviceType}Virt |
DevCoorrVirt) ({device}) ;

deviceType
(Snsr | Actr) ;

device
(For{sensor} (' anyNamePart’) | For{actuator} (' anyNamePart’)) ;

sensor
"anyName’ ;

actuator
"anyName’ ;

anyName
(" keyword’) x ;

anyNamePart
("keyword’) x ;

In grammar 3.4 the pattern for the corresponding English long names of the compo-

nents is described.

Listing 3.4: Pattern for English Long Names Atomic Software Component Types in De-
vice Abstraction

grammar PSnsrActrAtomicSwcLongName;

sensorActuatorComponentLongName

AUTOSAR

sensorActuatorComponentName ;

sensorActuatorComponentLongName
("anyLongName’) (Electrical Sensor Driver | Sensor Device Driver |
Virtual Device Drive | Electrical Actuator Driver | Actuator Device
Driver | Virtual Device Coordinator) (’anyLongNamePart’) ;

anyLongName
("keyword’) x ;

anyLongNamePart
("keyword’) x ;

In Table 3.3 the generic sensor and actuator component short and long names are
shown as pairs.

Generic Short Name Pattern | Generic Long Name (EN)
DrvrSnsrElec Electrical Sensor Driver
DevDrvrSnsr Sensor Device Driver
DevSnsrVirt Virtual Device Driver
DrvrActrElec Electrical Actuator Driver
DevDrvrActr Actuator Device Driver
DevCoorrVirt Virtual Device Coordinator

Table 3.3: Sensor and Actuator Component Name Patterns

Short Name Class Long Name (EN)
DrvrActrElecForTle8209 SensorActuatorSwCompo— TLE8209: Electrical Sensor Driver
nentType
DrvrActrElecForTrboChrgr | SwComponentPrototype Turbo Charger: Electrical Sensor
Driver
DevSnsrVirtForAnyTSnsr | ApplicationSwComponent— | Virtual Device Driver for Any Tempera-
Type ture Sensor
DevSnsrVirtForTrboChrgr | SwComponentPrototype Turbo Charger: Virtual Device Driver
TrboChrgrAcmeT064 CompositionSwComponent— | Turbo Charger: ACME T064
Type
TrboChrgrStg3AtBnk2 SwComponentPrototype Turbo Charger at Third Stage at First
Bank

Table 3.4: Examples for Sensor and Actuator Names

In grammar 3.5 a pattern is described how to refine ’'anyNamePart’ as defined in gram-
mar 3.3 in case of a system with several banks and stages. In Table 3.5 corresponding
name examples are shown using this grammar part.

Listing 3.5: Name Pattern for Signals in Device Abstraction in Case of a System with
Several Banks

grammar PSnsrActrStgBnkShortNames;

stageBank
(Stg{’indexStg’ } (AtBnk{’indexBnk’}) ;

indexStg

AUTOSAR

(1st | 2nd | 3rd) ;
indexBnk
(1st | 2nd | 3xrd) ;
Short Name Class Long Name (EN)
TrboChrgrStg3rdAtBnkist | PortPrototype Value of Turbo Charger at Third Stage

at First Bank

TrboChrgrStg3rdAtBnk2nd

SwComponentPrototype

Turbo Charger at Third Stage at Sec-
ond Bank

Table 3.5: Examples for Sensor and Actuator Names

3.6 Example

3.6.1 Throttle Valve

Figure 3.5 shows an example device abstraction for a throttle valve.

AUTOSAR

’J_‘ ThrVivReqd Thrviv ThrVIvEstimd
v A—Y
oo
Reqd Estimd [|
v v

DevCoorrVirtForThrViv: DevSnsrVirtForThrViv:
DevCoorrVirtForThrViv DevSnsrVirtForThrViv

c

=}

=

]

g V] A [A]

2 =

Consold

<

g ’J_I Measd Raw

>

o V——v} A (A]

° [] []
DevDrvrActrForThrviv: DevDrvrSnsrForThrViv:
DevDrvrActrForThrviv DevDrvrSnsrForThrViv

Outp

ElecRaw

p—"

A
ElecBascFild
A

A A

DrvrActrElecForThrViv: DrvrSnsrElecForThrVIv:
DrvrActrElecForThrViv DrvrSnsrElecForThrviv

[—«

[—~]
ThrViv : ThrViv ::[:
i

—HD

Figure 3.5: Device Abstraction for a Throttle Valve

3.6.2 Turbo Charger

In Figure 3.6 an example of a closed looped controlled device with position feedback
— a turbo charger — is shown.

AUTOSAR

Device Abstraction

TrboChrgrReqd

TrboChrgr
A

Reqd

-

DevCoorrVirtForTrboChrgr:
DevCoorrVirtForTrboChrgrAcmeXYZ

O

DevSnsrVirtForStdOffsLrngForHbrdgDev

TrboChrgrEstimd

v
ano

Estimd a

L]

v

DevSnsrVirtForTrboChrgr:

>

Sp

Consold

Raw

[—«

[

DevDrvrActrForTrboChrgr:
DevDrvrActrForStdPidCtrir

v

[

A

Outp

DrvrActrElecForTrboChrgr:
DrvrActrElecForTle8209

)

DevDrvrSnsrForStdPhyFilgForAnySnsr

DevDrvrSnsrForTrboChrgr:

ElecBascFild ElecRaw

p—»]

A

DrvrSnsrElecForTrboChrgr:
DrvrSnsrElecForSentForinfineon

b

Remark: The names for the
compaonent types are completely
imaginary in order to illustrate the
usage and are not part of the
standard.

TrboChrgr : TrboChrgr

L"L

L“’L

Figure 3.6: Device Abstraction for a Turbo Charger

Hint: In most cases it is not recommended to use company names in model names
(like "AcmeXYZ" used in the Figures). Company names etc. are only used in the
examples to show the difference between type and prototype and what is the reason
for the difference. For general rules and recommendations how to deal with variants
in models, as for example expressed by the company names in the examples, please
refer to the modeling guides and templates.

3.6.3 Turbo Charger with Stages and Banks

In Figure 3.7 a project system configuration for turbo charger with several stages and
banks is shown.

AUTOSAR

TrboChrgrStg3rdAtBnk2ndEstimd

TrboChrgrStg3rdAtBnk2nd
TrboChrgrStg3rdAtBnk2ndReqd
TrboChrgrStg1stAtBnk1stEstimd
TrboChrgrStgistAtBnk1st
TrboChrgrStg1stAtBnk1stReqd
wrl [wl [al]
Ad ry hd; (Y] ry A4
oo
O
[l al el
Ad 1A A oo
TrboChrgrReqd TrboChrgr TrboChrgrEstimd o
TrboChrgrStg1stAtBnkist : TrboChrarAcme2T064
wrl iy M|
Ad LY Ad oo
TrboChrgrReqd TrboChrgr TrboChrgrEstimd o
TrboChrgrStg1stAtBnk2nd : TrboChrgrAcme2T064
[wrl iy [l
Ad LA hd oo
TrboChrgrReqd TrboChrgr TrboChrgrEstimd o
TrboChrgrStg2ndAtBnk1st : TrboChrgrAcme3CT007
[wr] iy I wrl
Ad LA hd oo
TrboChrgrReqd TrboChrgr TrboChrgrEstimd -]
TrboChrgrStg2ndAtBnk2nd : TrboChrgrAcme3CT00T
W] L wrl
Ad LA A, oo
TrboChrgrReqd TrboChrgr TrboChrgrEstimd -]
TrboChrgrStg3rdAtBnk1st : TrboChrgrAcme1XYZ
T N
A4 ry Y] oo
TrboChrgrReqd TrboChrgr TrboChrgrEstimd [-]

TrboChrgrStg3rdAtBnk2nd : TrboChrgrAcmel1XYZ

Remark: The names for the
component types are
completely imaginary in order
to illustrate the usage and are AirSys : AirS
not part of the standard. ye: ye

Figure 3.7: Device Abstraction for a Turbo Charger with Banks and Stages

3.6.4 Actuator without Feedback Loop

In Figure 3.8 an open loop controlled actuator is shown that calculates the consolidated
value using the setpoint input as input. As described before there are alternatives how
to calculate the consolidated value.

AUTOSAR

J‘_‘ oo
= I 1 -

DevCoorrVirt: DevSnsrVirt :
DevCoorrVirt DevSnsrVirt

(<
]

O

DevDrvrActr :
DevDrvrActr

Device Abstraction

Qutp

[—«

A

DrvrActrElec :
DrvrActrElec

f~]
::I:: {componentPrototypeName} : {componentTypeName}
™

Figure 3.8: Example Actuator without Feedback Loop (Setpoint Alternative)

3.6.5 Standard Sensor

In Figure 3.9 a design pattern of blueprint components for a standard sensor is shown.

AUTOSAR

Device Abstraction

A—Y
Consold Estimd
v

DevSnsr¥irt :
DevSnsrVirt
A [A]
Measd
Raw
LYy, rYy; D
DevDrvrSnsr :
DevDrvrSnsr

A (Al
ElecBascFild
ElecRaw
A 1A

DrvrSnsrElec

5

A

DrvrSnsrElec :

{componentPrototypeName} : {compoenentTypeName}

;

Figure 3.9: Device Abstraction for Standard Sensor

3.6.6 Standard Sensor for Environment Temperature

In Figure 3.10 a standard sensor for environment temperature is shown.

AUTOSAR

A—Y

Device Abstraction

OutdT OutdTEstimd

v

[

DevSnsrVirtForOutdT :

DrvrSnsrVirtForOutdT
[A] (Al
OutdTMeasd OutdTRaw
TMeasd TRaw
LA Ly,

[l

DevDrvrSnsrForOutdT :
DevDrvrSnsForOutdTForAnyTSnsr

>
>

QutdTElecBascFild TElecRaw

ElecBascFild ElecRaw

>
>

DrvrSnsrElecForOutdT :
DrvrSnsrElecForOutdTForAnyAdcSnsr

A

OutdT : OutdT

—)

Figure 3.10: Device Abstraction for a Sensor measuring the Environment Temperature

3.6.7 Distributing Device Abstraction

In Figure 3.12 the ECU view derived from the VFB view of a temperature sensor as
shown in Figure 3.11 is shown. Finally it is shown that it is possible to also deploy the
different SW-C to different ECUs. Of course timing constraints have to be considered
before distributing components to different ECUs.

AUTOSAR

Device Abstraction

A

DrvSnsrElecOutdT :
DrvSnsrElecOutdTAcme

Sensor Actuator
Software
Component

[]

DevDrvrSnsrOutdT :

Software
Component

DevDrvrSnsrOutdTAcme

[]

DevDrvrVirtOutdT :
DevDrvrVirtOutdTAcme

Software
Component

Virtual Function Bus

Figure 3.11: VFB View of Temperature Sensor Example

ECU1
DrvSnsrElecOutdT : DevDrvrSnsrOutdT :
DrvSnsrElecOutdTAcme DevDrvrSnsrOutdTAcme
Sensor Actuator
Software Software
I'o Component Component

DevDrvrVirtOutdT :
DevDrvrVitOutdTAcme

Software
Component

BSW1

Basic Software

on ECU

1

__1Device Abstraction RTE

BSW 2
Basic Software
on ECU 2

Runtime Environment

Figure 3.12: ECU Views after Distribution of SW-Cs of Temperature Sensor to two ECUs

AUTOSAR

3.7 Sample Code and Model

In Listing 3.6 a blueprint for the components used in the Sensor/Actuator pattern is
provided. The blueprint code is not complete but just gives an idea how it is realized.
The composition component is not shown.

Please note that the AUTOSAR meta model requests that a sensor actuator component
type references a corresponding sensor or actuator, resp., using a HwDescriptio-
nEntity, [12]. In this case a HwElement is needed to be used. Since there is a
standardized HwCategory for sensors and actuators also a HwType is defined that is
referenced by the HwE1lement.

Listing 3.6: Sensor/Actuator Pattern

<AR-PACKAGE>
<SHORT-NAME>SwComponent Types_Blueprint</SHORT-NAME>
<CATEGORY>BLUEPRINT</CATEGORY>
<REFERENCE-BASES>
<REFERENCE—-BASE>
<SHORT-LABEL NAME-PATTERN="{anyName}">HwDescriptionEntitys</SHORT
-LABEL>
<IS-DEFAULT>false</IS-DEFAULT>
<IS-GLOBAL>false</IS-GLOBAL>
<BASE-IS-THIS-PACKAGE>false</BASE-IS-THIS-PACKAGE>
<PACKAGE-REF DEST="AR-PACKAGE"><?xm-replace_text {PACKAGE-REF}?><
/PACKAGE-REF><!--add
package path —-—>
</REFERENCE-BASE>
<REFERENCE-BASE>
<SHORT-LABEL NAME-PATTERN="{anyName}">PortInterfaces_Blueprint</
SHORT-LABEL>
<IS-DEFAULT>false</IS-DEFAULT>
<IS-GLOBAL>false</IS-GLOBAL>
<BASE-IS-THIS-PACKAGE>false</BASE-IS-THIS-PACKAGE>
<PACKAGE-REF DEST="AR-PACKAGE"><?xm-replace_text {PACKAGE-REF}?><
/PACKAGE-REF><!--add
package path —-—>
</REFERENCE-BASE>
</REFERENCE-BASES>
<ELEMENTS>
<SENSOR-ACTUATOR-SW-COMPONENT-TYPE>
<SHORT-NAME NAME-PATTERN=" {anyName}DrvrSnsrElec{anyNamePart}">
DrvrSnsrElec</SHORT-NAME>
<LONG-NAME>
<L-4 L="EN">Driver for Electrical Signals of Sensor</L-4>
</LONG-NAME>
<INTRODUCTION><!—-- optional: add documentation —-—>
</INTRODUCTION>
<PORTS>
<P-PORT-PROTOTYPE>
<SHORT-NAME NAME-PATTERN="{anyName}ElecRaw{anyNamePart}">
ElecRaw</SHORT-NAME>
<LONG—-NAME >
<L-4 L="EN">Electrical Raw Value</L-4>
</LONG-NAME>

AUTOSAR

<PROVIDED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE"
BASE="PortInterfaces_Blueprint">ElecRawl</PROVIDED-
INTERFACE-TREF>
</P-PORT-PROTOTYPE>
<P-PORT-PROTOTYPE>
<SHORT-NAME NAME-PATTERN="{anyName}ElecBascFild{anyNamePart}"
>ElecBascFild</SHORT-NAME>
<LONG-NAME>
<L-4 L="EN">Electrical Basic Filtered Value</L-4>
</LONG-NAME>
<PROVIDED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE"
BASE="PortInterfaces_Blueprint">ElecBascFildl</PROVIDED-
INTERFACE-TREF>
</P-PORT-PROTOTYPE>
</PORTS>
<!—— add correct reference to sensor actuator type —-—>
<SENSOR-ACTUATOR-REF DEST="HW-DESCRIPTION-ENTITY" BASE="
HwDescriptionEntitys">SensorActuatorType</SENSOR-ACTUATOR-REF>
</SENSOR-ACTUATOR-SW-COMPONENT-TYPE>
<APPLICATION-SW—-COMPONENT-TYPE>
<SHORT-NAME NAME-PATTERN="DevDrvrSnsr{anyNamePart}">DevDrvrSnsr</
SHORT-NAME >
<LONG-NAME >
<L-4 L="EN">Device Driver for Sensor</L-4>
</LONG-NAME>
<!—-— Ports to be added ——>
</APPLICATION-SW-COMPONENT-TYPE>
<APPLICATION-SW-COMPONENT-TYPE>
<SHORT-NAME NAME-PATTERN="DevSnsrVirt{anyNamePart}">DevSnsrVirt</
SHORT-NAME>
<LONG—-NAME>
<L-4 L="EN">Virtual Device Driver for Sensor</L-4>
</LONG-NAME>

<!—— Ports to be added -—>
</APPLICATION-SW-COMPONENT-TYPE>
</ELEMENTS>

</AR-PACKAGE>
<AR-PACKAGE>
<SHORT-NAME>HwTypes_Blueprint</SHORT-NAME>
<CATEGORY>BLUEPRINT</CATEGORY>
<ELEMENTS>
<HW-TYPE>
<SHORT-NAME NAME-PATTERN="{anyName}">SensorActuatorType</SHORT-
NAME>
<HW-CATEGORY-REFS>
<HW-CATEGORY-REF DEST="HW-CATEGORY" BASE="HwCategorys">
HwCategorys/SensorActuator</HW-CATEGORY—-REF>
</HW-CATEGORY-REFS>
</HW-TYPE>
</ELEMENTS>
</AR-PACKAGE>
<AR-PACKAGE>
<SHORT-NAME>HwElements_Blueprint</SHORT-NAME>
<CATEGORY>BLUEPRINT</CATEGORY>
<ELEMENTS>
<HW-ELEMENT>

AUTOSAR

<SHORT-NAME NAME-PATTERN="{anyName}">mySensorActuatorElement</
SHORT-NAME>
<HW-TYPE-REF DEST="HW-TYPE" BASE="HwTypes">HwTypes/
SensorActuatorType</HW-TYPE-REF>
</HW-ELEMENT>
</ELEMENTS>
</AR-PACKAGE>

The HwCategorys should be provided centrally because they are standardized. Defi-
nition of HwCategory "SensorActuator” is shown in Listing 3.7.

Listing 3.7: HW Categories as used in Sensor/Actuator Pattern

<AR-PACKAGE>

<SHORT-NAME>HwCategorys_Blueprint</SHORT-NAME>
<CATEGORY>BLUEPRINT</CATEGORY>
<ELEMENTS>

<HW-CATEGORY>

<SHORT-NAME NAME-PATTERN="blueprintName">SensorActuator</SHORT-
NAME>
</HW-CATEGORY>

3.8 Known Uses

None.

3.9 Related Patterns

Pattern Description

Layering Pattern The layered architecture of AUTOSAR specifies the allowed relationships be-
tween different types of software components and basic software modules
[12]. It is the basis for the sensor/actuator pattern as well. The layering pat-
tern itself was applied within the pattern to separate concerns, especially with
respect to hardware dependency.

Arbitration Pattern | The sensor/actuator pattern is typically combined with the arbitration pattern
to allow several set point requesters and not only one like assumed in the
sensor/actuator pattern.

Diagnosis Pattern | The sensor/actuator pattern is typically combined with the diagnosis pattern
because diagnosis of the sensors or actuators, resp. is essential part of device
abstraction.

Table 3.6: Related Patterns

3.10 Anti-Patterns One Should be Aware of

None.

AUTOSAR

3.11 Further Readings

More information could be found in [12] and [13].

AUTOSAR

4 Arbitration between Several Set-point Requester

Classification Design Pattern

4.1 Problem

Arbitration between several different setpoint requesters.

4.2 Applicability

This pattern can be applied in the context of Sensor/Actuator Design Pattern. The
number of requesters has to be known at pre-compile time. The number of requesters
has to be known at implementation or generation time of the arbiter component.

4.3 Solution

A new component for managing all requests from different setpoint requesters is intro-
duced. In Figure 4.2 the overall pattern is shown in case sender receiver interfaces are
used. When using sender/receiver interfaces the arbitration component, also called
“arbiter”, needs to have unique names for the different requests. This is realized by
different request ports, one per requester. The port interface or at least the application
data type is typically the same for all of these requesters and the resulting request.

oo
O
[] []]
SW-C SW-C Arbiter Device
Abstraction?)
Application Application Application .
Software Software Software Software
Component Component Component Component

{anyName}Reqd | {anyName}Reqd | {anyName}Reqd

Virtual Function Bus

) Sensor and Actuator Design Pattern (PSnsrActr)

Figure 4.1: Pattern ”Arbitration between Several Set-point Requester”

AUTOSAR

Figure 4.2 shows the pattern in the context of the RTE. The Device Abstraction is
designed as one large composition but this is not requested by the Sensor/Actuator
pattern.

] L] [l T
]
SW-C SW-C Arbiter Device
Abstraction”
Application Application Application .
Software Software Software Software
Component Component Component Component

{anyName}Reqd | {anyName}Reqd | {anyName}Reqd

Virtual Function Bus

") Sensor and Actuator Design Pattern (PSnsrActr)

Figure 4.2: Arbitration between Several Set-point Requesters via RTE

4.4 Naming

In grammar 4.1 it is described how the provide ports of the requesters as well as
the request ports of the arbiter should be named: they all have the prefix "Reqd” for

"Required”. So terms like "desired”, "wished” etc. should not be used to avoid that too
many terms with similar meanings are used without being able to distinguish them.

Listing 4.1: Name Pattern for Ports of Arbiter and Requesters
grammar PArbSpReqgPortNames;

portName
({anyName}) {'Regd’ } ;

anyName
("keyword’) x ;

4.5 Example

None.

AUTOSAR

4.6 Sample Code and Model

None.

4.7 Known Uses

This pattern is typically applied in the context of usage of the Sensor/Actuator Design

Pattern.

4.8 Related Patterns

Pattern

Description

Sensor Actuator Pattern

The sensor/actuator pattern is typically combined with the arbitration pattern
to allow several set point requesters and not only one like assumed in the
sensor/actuator pattern.

Manager Pattern

A manager component manages respectively controls a set of entities of the
same type.

Coordinator Pattern

A coordinator component also allows arbitration between several different set-
point requesters but the number of requesters is not fixed at implementation
time of the arbiter/coordinator.

Table 4.1: Related Patterns

AUTOSAR

A History of Constraints and Specification ltems

A.1 Constraint History of this Document related to AUTOSAR
R4.2.2

A.1.1 Changed Constraints in R4.2.2

No constraints were changed in this release.

A.1.2 Added Constraints in R4.2.2

No constraints were added in this release.

A.1.3 Deleted Constraints in R4.2.2

No constraints were deleted in this release.

A.1.4 Added Specification Items in R4.2.2

Number Heading

[TR_AIDPC_00001] | Access to Hardware by PSnsrAct

[TR_AIDPC_00002] | Collaboration supported by PSnsrAct

[TR_AIDPC_00003] | Deployment/Relocation supported by PSnsrAct

[TR_AIDPC_00004] | Layers of PSnsrAct

[TR_AIDPC_00005] | Naming within PSnsrAct

Table A.1: Added Specification Iltems in 4.2.2

A.2 Constraint History of this Document related to AUTOSAR
R4.2.1

A.2.1 Added Constraints in R4.2.1

No constraints were added in this initial release.

A.2.2 Added Specification Items in R4.2.1

No specification items were added in this initial release.

AUTOSAR

B Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class ApplicationSwComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note The ApplicationSwComponentType is used to represent the application software.

Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement,ARObject,AtomicSwComponentType,AtpBlueprint,AtpBlueprintable,Atp
Classifier,AtpType,CollectableElement,Identifiable,Multilanguage
Referrable,PackageableElement,Referrable,SwComponentType

Attribute Datatype Mul. | Kind | Note

Table B.1: ApplicationSwComponentType

Class CompositionSwComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Composition
Note A CompositionSwComponentType aggregates SwComponentPrototypes (that in turn

are typed by SwComponentTypes) as well as SwConnectors for primarily connecting
SwComponentPrototypes among each others and towards the surface of the
CompositionSwComponentType. By this means hierarchical structures of
software-components can be created.

Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,Atp
Type,CollectableElement,ldentifiable,MultilanguageReferrable,Packageable
Element,Referrable,SwComponentType

Attribute | Datatype | Mul. | Kind | Note

AUTOSAR

Attribute

Datatype

Mul.

Kind

Note

component

SwComponentP
rototype

aggr

The instantiated components that are part of this
composition. The aggregation of
SwComponentPrototype is subject to variability
with the purpose to support the conditional
existence of a SwComponentPrototype. Please be
aware: if the conditional existence of
SwComponentPrototypes is resolved post-build
the deselected SwComponentPrototypes are still
contained in the ECUs build but the instances are
inactive in in that they are not scheduled by the
RTE.

The aggregation is marked as atpSplitable in order
to allow the addition of service components to the
ECU extract during the ECU integration.

The use case for having 0 components owned by
the CompositionSwComponentType could be to
deliver an empty CompositionSwComponentType
to e.g. a supplier for filling the internal structure.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=postBuild

connector

SwConnector

aggr

SwConnectors have the principal ability to
establish a connection among PortPrototypes.
They can have many roles in the context of a
CompositionSwComponentType. Details are
refined by subclasses.

The aggregation of SwConnectors is subject to
variability with the purpose to support variant data
flow.

The aggregation is marked as atpSplitable in order
to allow the extension of the ECU extract with
AssemblySwConnectors between
ApplicationSwComponentTypes and
ServiceSwComponentTypes during the ECU
integration.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=postBuild

constantVa
lueMappin

g

ConstantSpecifi
cationMappingS
et

ref

Reference to the ConstantSpecificationMapping to
be applied for initValues of PPortComSpecs and
RPortComSpec.

Stereotypes: atpSplitable
Tags: atp.Splitkey=constantValueMapping

AUTOSAR

Attribute Datatype Mul. | Kind | Note
dataTypeM | DataTypeMappi * ref | Reference to the DataTypeMapping to be applied
apping ngSet for the used ApplicationDataTypes in
Portinterfaces.
Background: when developing subsystems it may
happen that ApplicationDataTypes are used on
the surface of CompositionSwComponentTypes.
In this case it would be reasonable to be able to
also provide the intended mapping to the
ImplementationDataTypes. However, this mapping
shall be informal and not technically binding for
the implementers mainly because the RTE
generator is not concerned about the
CompositionSwComponentTypes.
Rationale: if the mapping of ApplicationDataTypes
on the delegated and inner PortPrototype matches
then the mapping to ImplementationDataTypes is
not impacting compatibility.
Stereotypes: atpSplitable
Tags: atp.Splitkey=dataTypeMapping
instantiatio | InstantiationRT * aggr | This allows to define instantiation specific
nRTEEven | EEventProps properties for RTE Events, in particular for
tProps instance specific scheduling.
Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortLabel, variation
Point.shortLabel
vh.latestBindingTime=codeGenerationTime
Table B.2: CompositionSwComponentType
Class EcuAbstractionSwComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note The ECUADbstraction is a special AtomicSwComponentType that resides between a
software-component that wants to access ECU periphery and the Microcontroller
Abstraction. The EcuAbstractionSwComponentType introduces the possibility to link
from the software representation to its hardware description provided by the ECU
Resource Template.
Tags: atp.recommendedPackage=SwComponentTypes
Base ARElement,ARObject,AtomicSwComponentType,AtpBlueprint,AtpBlueprintable,Atp
Classifier,AtpType,CollectableElement,ldentifiable,Multilanguage
Referrable,PackageableElement,Referrable,SwComponentType
Attribute Datatype Mul. | Kind | Note
hardwareE | HwDescriptionE * ref Reference from the
lement ntity EcuAbstractionComponentType to the description
of the used HwElements.

Table B.3: EcuAbstractionSwComponentType

AUTOSAR

Class FlatinstanceDescriptor
Package M2::AUTOSARTemplates::CommonStructure::FlatMap
Note Represents exactly one node (e.g. a component instance or data element) of the
instance tree of a software system. The purpose of this element is to map the various
nested representations of this instance to a flat representation and assign a unique
name (shortName) to it.
Use cases:
e Specify unique names of measurable data to be used by MCD tools
e Specify unique names of calibration data to be used by MCD tool
e Specify a unique name for an instance of a component prototype in the ECU
extract of the system description
Note that in addition it is possible to assign alias names via AliasNameAssignment.
Base ARObiject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. | Kind | Note
ecuExtract | AtpFeature 0..1 iref | Refers to the instance in the ECU extract. This is
Reference valid only, if the FlatMap is used in the context of
an ECU extract.
The reference shall be such that it uniquely
defines the object instance. For example, if a data
prototype is declared as a role within an
SweclnternalBehavior, it is not enough to state the
SweclnternalBehavior as context and the
aggregated data prototype as target. In addition,
the reference shall also include the complete path
identifying instance of the component prototype
and the AtomicSoftwareComponentType, which is
refered by the particular SwcinternalBehavior.
Tags: xml.sequenceOffset=40
role Identifier 0..1 ref | The role denotes the particular role of the
downstream memory location described by this
FlatinstanceDescriptor.
It applies to use case where one upstream object
results in multiple downstream objects, e.g.
ModeDeclarationGroupPrototypes which are
measurable. In this case the RTE will provide
locations for current mode, previous mode and
next mode.
swDataDef | SwDataDefProp | 0..1 | aggr | The properties of this FlatinstanceDescriptor.
Props S

AUTOSAR

Attribute Datatype Mul. | Kind | Note
upstreamR | AtpFeature 0..1 iref | Refers to the instance in the context of an
eference "upstream” descriptions, wich could be the system
or system extract description, the basic software
module description or (if a flat map is used in
preliminary context) a description of an atomic
component or composition. This reference is
optional in case the flat map is used in ECU
context.
The reference shall be such that it uniquely
defines the object instance in the given context.
For example, if a data prototype is declared as a
role within an SwcinternalBehavior, it is not
enough to state the SwcinternalBehavior as
context and the aggregated data prototype as
target. In addition, the reference shall also include
the complete path identifying the instance of the
component prototype that contains the particular
instance of SwclnternalBehavior.
Tags: xml.sequenceOffset=20
Table B.4: FlatinstanceDescriptor
Class HwCategory
Package M2::AUTOSARTemplates::EcuResourceTemplate::HwElementCategory
Note This metaclass represents the ability to declare hardware categories and its particular
attributes.
Tags: atp.recommendedPackage=HwCategorys
Base ARElement,ARObject,AtpDefinition,CollectableElement,Identifiable,Multilanguage
Referrable,PackageableElement,Referrable
Attribute Datatype Mul. | Kind | Note
hwAttribute | HwAttributeDef * aggr | This aggregation describes particular hardware
Def attribute definition.
Table B.5: HwCategory
Class HwDescriptionEntity (abstract)
Package M2::AUTOSARTemplates::EcuResourceTemplate
Note This meta-class represents the ability to describe a hardware entity.
Base ARODbject,Referrable
Attribute Datatype Mul. | Kind | Note
hwAttribute | HwAttributeValu * aggr | This aggregation represents a particular hardware
Value e attribute value.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=50

AUTOSAR

Attribute

Datatype

Mul.

Kind

Note

hwCategor
y

HwCategory

ref

One of the associations representing one
particular category of the hardware entity.

Tags: xml.sequenceOffset=30

hwType

HwType

0..1

ref

This association is used to assign an optional
HwType which contains the common attribute
values for all occurences of this
HwDescriptionEntity. Note that HwTypes can not
be redefined and therefore shall not have a
hwType reference.

Table B.6: HwDescriptionEntity

Class

HwElement

Package

M2::AUTOSARTemplates::EcuResourceTemplate

Note

This represents the ability to describe Hardware Elements on an instance level. The
particular types of hardware are distinguished by the category. This category
determines the applicable attributes. The possible categories and attributes are
defined in HwCategory.

Tags: atp.recommendedPackage=HwElements

Base

ARElement,ARObject,CollectableElement,HwDescription
Entity,Identifiable,MultilanguageReferrable,PackageableElement,Referrable

Attribute

Datatype

Mul.

Kind

Note

hwElement
Connectio
n

HwElementCon

nector

*

aggyr

This represents one particular connection
between two hardware elements.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=110

hwPinGrou
p

HwPinGroup

aggr

This aggregation is used to describe the
connection facilities of a hardware element. Note
that hardware element has no pins but only
pingroups.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=90

nestedEle
ment

HwElement

ref

This association is used to establish hierarchies of
hw elements. Note that one particular HwElement
can be target of this association only once. l.e.
multiple instantiation of the same HwElement is
not supported (at any hierarchy level).

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=70

Table B.7:

HwElement

AUTOSAR

Class HwType
Package M2::AUTOSARTemplates::EcuResourceTemplate::HwElementCategory
Note This represents the ability to describe Hardware types on an abstract level. The
particular types of hardware are distinguished by the category. This category
determines the applicable attributes. The possible categories and attributes are
defined in HwCategory.
Tags: atp.recommendedPackage=HwTypes
Base ARElement,ARObject,CollectableElement,HwDescription
Entity,ldentifiable,MultilanguageReferrable,PackageableElement,Referrable
Attribute Datatype Mul. | Kind | Note
Table B.8: HwType
Primitive Identifier
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Primitive
Types
Note An Identifier is a string with a number of constraints on its appearance, satisfying the
requirements typical programming languages define for their Identifiers.
This datatype represents a string, that can be used as a c-Identifier.
It shall start with a letter, may consist of letters, digits and underscores.
Tags: xml.xsd.customType=IDENTIFIER; xml.xsd.maxLength=128;
xml.xsd.pattern=[a-zA-Z][a-zA-Z0-9_]*; xml.xsd.type=string
Attribute Datatype Mul. | Kind | Note
namePatte | String 0..1 attr | This attribute represents a pattern which shall be
rn used to define the value of the identifier if the
identifier in question is part of a blueprint.
For more details refer to
TPS_StandardizationTemplate.
Tags: xml.attribute=true
Table B.9: Identifier
Class Keyword
Package M2::AUTOSARTemplates::StandardizationTemplate::Keyword
Note This meta-class represents the ability to predefine keywords which may subsequently
be used to construct names following a given naming convention, e.g. the AUTOSAR
naming conventions.
Note that such names is not only shortName. It could be symbol, or even longName.
Application of keywords is not limited to particular names.
Base ARObiject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype \ Mul. \ Kind \ Note

AUTOSAR

Attribute Datatype Mul. | Kind | Note
abbrName | NameToken 1 attr | This attribute specifies an abbreviated name of a
keyword. This abbreviation may e.g. be used for
constructing valid shortNames according to the
AUTOSAR naming conventions.
Unlike shortName, it may contain any name token.
E.g. it may consist of digits only.
classificati | NameToken * attr | This attribute allows to attach classification to the
on Keyword such as MEAN, ACTION, CONDITION,
INDEX, PREPOSITION
Table B.10: Keyword
Class PortPrototype (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note Base class for the ports of an AUTOSAR software component.
The aggregation of PortPrototypes is subject to variability with the purpose to support
the conditional existence of ports.
Base ARObject,AtpBlueprintable,AtpFeature,AtpPrototype,ldentifiable,Multilanguage
Referrable,Referrable
Attribute Datatype Mul. | Kind | Note
clientServe | ClientServerAnn * aggr | Annotation of this PortPrototype with respect to
rAnnotatio | otation client/server communication.
n
delegated DelegatedPortA | 0..1 aggr | Annotations on this delegated port.
PortAnnota | nnotation
tion
ioHwAbstr | loHwAbstraction * aggr | Annotations on this IO Hardware Abstraction port.
actionServ | ServerAnnotatio
erAnnotati | n
on
modePortA | ModePortAnnot * aggr | Annotations on this mode port.
nnotation ation
nvDataPort | NvDataPortAnn * aggr | Annotations on this non voilatile data port.
Annotation | otation
parameter | ParameterPortA * aggr | Annotations on this parameter port.
PortAnnota | nnotation
tion
senderRec | SenderReceiver * aggr | Collection of annotations of this ports
eiverAnnot | Annotation sender/receiver communication.
ation
triggerPort | TriggerPortAnn * aggr | Annotations on this trigger port.
Annotation | otation
Table B.11: PortPrototype

AUTOSAR

Class PortPrototypeBlueprint
Package M2::AUTOSARTemplates::StandardizationTemplate::BlueprintDedicated::Port
ProtoypeBlueprint
Note This meta-class represents the ability to express a blueprint of a PortPrototype by
referring to a particular Portinterface. This blueprint can then be used as a guidance
to create particular PortPrototypes which are defined according to this blueprint. By
this it is possible to standardize application interfaces without the need to also
standardize software-components with PortPrototypes typed by the standardized
Portinterfaces.
Tags: atp.recommendedPackage=PortPrototypeBlueprints
Base ARElement,ARObject,AtpBlueprint,AtpClassifier,AtpFeature,AtpStructure
Element,CollectableElement,ldentifiable,MultilanguageReferrable,Packageable
Element,Referrable
Attribute Datatype Mul. | Kind | Note
initValue PortPrototypeBl * aggr | This specifies the init values for the dataElements
ueprintInitValue in the particular PortPrototypeBlueprint.
interface Portinterface 1 ref | This is the interface for which the blueprint is
defined. It may be a blueprint itself or a
standardized PortInterface
providedC | PPortComSpec * aggr | Provided communication attributes per interface
omSpec element (data element or operation).
requiredCo | RPortComSpec * aggr | Required communication attributes, one for each
mSpec interface element.
Table B.12: PortPrototypeBlueprint
Class SensorActuatorSwComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note The SensorActuatorSwComponentType introduces the possibility to link from the
software representation of a sensor/actuator to its hardware description provided by
the ECU Resource Template.
Tags: atp.recommendedPackage=SwComponentTypes
Base ARElement,ARObject,AtomicSwComponentType,AtpBlueprint,AtpBlueprintable,Atp
Classifier,AtpType,CollectableElement,Identifiable,Multilanguage
Referrable,PackageableElement,Referrable,SwComponentType
Attribute Datatype Mul. | Kind | Note
sensorActu | HwDescriptionE 1 ref | Reference from the Sensor Actuator Software
ator ntity Component Type to the description of the actual
hardware.
Table B.13: SensorActuatorSwComponentType
Class SwComponentPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Composition
Note Role of a software component within a composition.
Base ARObject,AtpFeature,AtpPrototype,ldentifiable,MultilanguageReferrable,Referrable
Attribute | Datatype | Mul. | Kind | Note

AUTOSAR

Attribute Datatype Mul. | Kind | Note

type SwComponentT 1 tref | Type of the instance.
ype

Stereotypes: isOfType
Table B.14: SwComponentPrototype

Class SwComponentType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Base class for AUTOSAR software components.

Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,Atp
Type,CollectableElement,ldentifiable,MultilanguageReferrable,Packageable
Element,Referrable

Attribute Datatype Mul. | Kind | Note

consistenc | ConsistencyNee * aggr | This represents the colelction of

yNeeds ds ConsistencyNeeds owned by the enclosing

SwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

port PortPrototype * aggr | The ports through which this component can

communicate. The aggregation of PortPrototype is

subject to variability with the purpose to support

the conditional existence of PortPrototypes.

Stereotypes: atpSplitable; atpVariation

Tags: atp.Splitkey=shortName, variation

Point.shortLabel

vh.latestBindingTime=preCompileTime
portGroup | PortGroup * aggr | A port group being part of this component.

Stereotypes: atpVariation

Tags: vh.latestBindingTime=preCompileTime
swCompon | SwComponentD | 0..1 | aggr | This adds a documentation to the

entDocum | ocumentation SwComponentType.

entation

Stereotypes: atpSplitable; atpVariation

Tags: atp.Splitkey=swComponentDocumentation,
variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=-10

unitGroup UnitGroup * ref | This allows for the specification of which

UnitGroups are relevant in the context of
referencing SwComponentType.

Table B.15: SwComponentType

	1 Introduction
	1.1 Document conventions
	1.2 Requirements Tracing

	2 About Patterns
	2.1 Types of Pattern
	2.2 Describing Patterns

	3 Sensor and Actuator Pattern
	3.1 Problem
	3.2 Also Known As
	3.3 Applicability
	3.4 Solution
	3.5 Naming
	3.6 Example
	3.6.1 Throttle Valve
	3.6.2 Turbo Charger
	3.6.3 Turbo Charger with Stages and Banks
	3.6.4 Actuator without Feedback Loop
	3.6.5 Standard Sensor
	3.6.6 Standard Sensor for Environment Temperature
	3.6.7 Distributing Device Abstraction

	3.7 Sample Code and Model
	3.8 Known Uses
	3.9 Related Patterns
	3.10 Anti-Patterns One Should be Aware of
	3.11 Further Readings

	4 Arbitration between Several Set-point Requester
	4.1 Problem
	4.2 Applicability
	4.3 Solution
	4.4 Naming
	4.5 Example
	4.6 Sample Code and Model
	4.7 Known Uses
	4.8 Related Patterns

	A History of Constraints and Specification Items
	A.1 Constraint History of this Document related to AUTOSAR R4.2.2
	A.1.1 Changed Constraints in R4.2.2
	A.1.2 Added Constraints in R4.2.2
	A.1.3 Deleted Constraints in R4.2.2
	A.1.4 Added Specification Items in R4.2.2

	A.2 Constraint History of this Document related to AUTOSAR R4.2.1
	A.2.1 Added Constraints in R4.2.1
	A.2.2 Added Specification Items in R4.2.1

	B Mentioned Class Tables

