AUTOSAR

Document Title

Specification of RTE

Document Owner

AUTOSAR

Document Responsibility AUTOSAR
Document Identification No 084
Document Classification Standard
Document Status Final

Part of AUTOSAR Release 422

Document Change History

Release | Changed by Description
AUTOSAR . ngugging sgpport malrlfed as obsollete.
490 Release e Minor corrections / clarifications / editorial changes;
Management For details please refer to the
ChangeDocumentation
e Efficient NV data handling
AUTOSAR ¢ Introduction of data transformation
4.2.1 Release o Support for variable-size Arrays of arbitrary data
Management types
Various fixes and clarifications
AUTOSAR
4.1.3 Release Various fixes and clarifications
Management
AUTOSAR
4.1.2 Release Various fixes and clarifications
Management
e Adapted to new version of meta model
e Bypass support added
AUTOSAR e Support for parameter serialization of client-server
4.1.1 Administration communication added o
Support for inter-partition communication of BSW
modules added
General consolidation and bug fixes

AUTOSAR

4.0.3

AUTOSAR
Administration

e Adapted to new version of meta model
e Support for mixed compu methods with categories

SCALE_ LINEAR_AND_TEXTTABLE and
SCALE_RATIONAL_AND_

TEXTTABLE added

Support for compatibility of partial record types
added

Consolidation of signal invalidation, data
conversion, and out-of-range handling

General consolidation and bug fixes

4.0.2

AUTOSAR
Administration

e Adapted to new version of meta model
e Backward compatibility to implicit communication

behavior of AUTOSAR 2.1/3.0/3.1 added

Support of inter-runnable variables extended to
composite data types

Clarification which API calls shall be implemented
as macro accesses to the component data
structure in compatibility mode

General consolidation and bug fixes

4.0.1

AUTOSAR
Administration

Adapted to new version of meta model

RTE and Basic Software Scheduler merged
Support of multi core architectures added
Re-scaling at ports added

AP| enhancements added

3.1.2

AUTOSAR
Administration

updated VFB-Tracing

unconnected R-Ports are supported
incompatible function declarations fixed
RTE server mapping updated

3.0.2

AUTOSAR
Administration

Layout adaptations

3.0.1

AUTOSAR
Administration

Adapted to new version of meta model
"RTE ECU Configuration" added
Calibration and measurement revised
Document meta information extended
Small layout adaptations made

2.1.15

AUTOSAR
Administration

"Advice for users" revised

e "Revision Information" added

AUTOSAR

Adapted to new version of meta model

New feature ‘debouncing of runnable activation’
New feature 'runnable activation offset’
'Measurement and Calibration’ added
Semantics of implicit communication enhanced
Legal disclaimer revised

AUTOSAR

2.1 Administration

AUTOSAR

20 Administration | Initial release

AUTOSAR

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for the
purpose of information only. AUTOSAR and the companies that have contributed to it
shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types of
Intellectual Property Rights. The commercial exploitation of the material contained in
this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only. For any other purpose, no part of
the specification may be utilized or reproduced, in any form or by any means, without
permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference models,
"use cases", and/or references to exemplary technical solutions, devices, processes or
software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their pres-
ence in such specifications, nor any later documentation of AUTOSAR conformance of
products actually implementing such exemplary items, imply that intellectual property
rights covering such exemplary items are licensed under the same rules as applicable
to the AUTOSAR Standard.

AUTOSAR

Table of Contents

1 Introduction

1.1 Scope e
1.2 Dependency to other AUTOSAR specifications
1.3 Acronyms and Abbreviations L.
1.4 Technical Terms
1.5 DocumentConventions.
1.6 RequirementsTracing

2 RTE Overview

2.1 The RTE inthe Context of AUTOSAR
22 AUTOSARConcepts o i i i e
2.2.1 AUTOSAR Software-components

2.2.2 Basic SoftwareModules
2.2.3 Communication
2.2.3.1 Communication Paradigms
2.2.3.2 CommunicationModes
2.2.3.3 Static Communication
2.2.3.4 Multiplicity
224 ConcurrenCyo

2.3 The RTE Generator. @ it s
24 DesignDecisions

3 RTE Generation Process

3.1 ContractPhase
3.1.1 RTE ContractPhase
3.1.2 Basic Software Scheduler Contract Phase

3.2 PreBuild Data Set Contract Phase

3.3 Edit ECU Configurationofthe RTE

3.4 GenerationPhase e
3.4.1 Basic Software Scheduler Generation Phase
3.4.2 RTE GenerationPhase
3.4.3 Basic Software Module Description generation

3.4.3.1 Bsw Module Description
3.4.3.2 Bsw Internal Behavior
3.4.3.3 Bsw Implementation

3.5 PreBuild Data Set GenerationPhase

3.6 PostBuild Data Set GenerationPhase

3.7 RTE Configuration interaction with other BSW Modules

4 RTE Functional Specification

41 Architecturalconcepts
411 SCOPE
41.2 RTEandDataTypes.
41.3 RTE and AUTOSAR Software-Components

AUTOSAR

4.2

4.1.3.1 Hierarchical Structure of Software-Components . . . 86
4.1.3.2 Ports, Interfaces and Connections 87
4.1.3.3 Internal Behavior 88
41.3.4 Implementation 93
41.4 Instantiation L o o 94
4.1.4.1 Scope and backgroundo 94
4142 Concepts of instantiation 95
4143 Single instantiation oo 95
41.4.4 Multiple instantiation 96
41.5 RTE and AUTOSAR Services 97
41.6 RTE and ECU Abstraction 98
4.1.7 RTE and Complex Device Driver 98
41.8 Basic Software Scheduler and Basic Software Modules . . . 99
4.1.8.1 Description of a Basic Software Module 99
4.1.8.2 Basic Software Interfaces 99
4.1.8.3 Basic Software Internal Behavior 99
41.8.4 Basic Software Implementation 100
4.1.8.5 Multiple Instances of Basic Software Modules 100
4.1.8.6 AUTOSAR Services / ECU Abstraction / Complex
Device Drivers 100
RTE and Basic Software Scheduler Implementation Aspects 101
4.2.1 Scope 101
4.2.2 OS . . e 104
4.2.2.1 OSObjects 104
4222 Basic Software Schedulable Entities 106
4.2.2.3 Runnable Entities 107
4224 RTEEvents 107
42.2.5 BswEvents 109
4.2.2.6 Mapping of Runnable Entities and Basic Software
Schedulable Entities to tasks (informative) 111
4227 Monitoring of runnable executiontime 117
4228 TimingEvent activated runnables 122
4.2.2.9 Synchronization of TimingEvent activated runnables 123
4.2.2.10 BackgroundEvent activated Runnable Entities and
BasicSoftware Scheduleable Entities 124
4.2.2.11 InitEvent activated Runnable Entities 124
4.2.3 Activation and Start of ExecutableEntitys 126
4.2.3.1 Activation by direct functioncall 133
4.2.3.2 Activation Offset for RunnableEntitys and
BswSchedulableEntityS 135
4.2.3.3 Provide activating RTEevent 136
424 Interrupt decoupling and notifications 138
4241 Basic notification principles 138
4242 Interrupts 139
4243 Decoupling interrupts on RTE level 139

4244 RTE and interrupt categories 140

AUTOSAR

4.3

4.2.4.5 RTE and Basic Software Scheduler and BswExecu-—
tionContext i i i i i i 140
4.2.5 Data Consistency 141
4251 General 141
4252 Communication Patterns 143
4253 Concepts 143
4254 Mechanisms to guarantee data consistency 144
4255 Exclusive Areas 147
4.2.5.6 InterRunnableVariables 150

4.2.6 Multiple trigger of Runnable Entities and Basic Software
Schedulable Entities 153
4.2.7 Implementation of Parameter and Data Elements 154
42.71 General 154
42.7.2 Compatibility rules 155
42.7.3 Implementation of an interface element. 155
4.2.7.4 Initialization of VvariableDataPrototypes 156
4.2.7.5 Initial value calculation 157
428 Measurement and Calibration 158
4.2.8.1 General 158
4.2.8.2 Measurement 161
4.2.8.3 Calibration., 167
4.2.8.4 Generation of McSupportData 185
429 Accessto NVRAMdata 201
4.2.91 General 201
4.2.9.2 Usage of the NvBlockSwComponentType 202
4.2.9.3 Interface of the NvBlockSwComponentType 207
4.29.4 DataConsistency 214
Communication Paradigms 214
4.3.1 Sender-Receiver Lo o 215
4.3.1.1 Introduction oL 215
4.3.1.2 ReceiveModes 215
4.3.1.3 Multiple Data Elements 218
4.31.4 Multiple Receiversand Senders 219
4.3.1.5 Implicit and Explicit Data Reception and Transmission 220
4.3.1.6 Transmission Acknowledgement 233
4.31.7 Communication Time-out 234
4.3.1.8 Data Element Invalidation 237
4.3.1.9 Filters 242
4.3.1.10 Buffering. 243
4.3.1.11 Operation 246
4.3.1.12 “Never received status” for Data Element. 258
4.3.1.13 “Update flag” for Data Element 258
4.3.1.14 Dynamicdatatype 259
4.3.1.15 Inter-ECU communication through TP 260
4.3.1.16 Inter-ECU communication of arrays of bytes 261

4.3.1.17 Handling of acknowledgmentevents 263

AUTOSAR

4.4

4.5

4.3.2 Client-Server 265
4.3.2.1 Introduction 265
43.2.2 Multiplicity 267
4.3.2.3 Communication Time-out 269
43.2.4 Port-Defined argumentvalues 271
4.3.2.5 Buffering. o 272
4.3.2.6 Inter-ECU and Inter-Partition Response to Request

Mapping 273
4.3.2.7 Parameter Serialization 275
4.3.2.8 Operation 276

4.3.3 SWC internal communication 281
4.3.3.1 Inter Runnable Variables 281

434 Inter-Partition communication 282
4.3.4.1 Inter partition data communication using IOC 283
4.3.4.2 Inter partition data communication using Basic Soft-

ware Scheduler oL oL 284
4.3.4.3 Accessing COM from slave core in multicore config-
uration L 285
4.3.4.4 Signaling and control flow support for inter partition
communication L 289
4.3.4.5 Trusted Functions 289
4.3.4.6 Memory Protection and Pointer Type Parameters in
RTEAPI 290

4.3.5 Portinterface Element Mapping and Data Conversion 291
4.3.5.1 Portinterface Element Mapping 291
4.3.5.2 Network Representation 294
4.3.5.3 Data Conversion 295
4.3.5.4 Range Checks during Runtime 301

Modes e 308

441 Mode User 309

442 Mode Manager 311

443 Refinement of the semantics of ModeDeclarations and

ModeDeclarationGroupS « « « v v v v v v e v e e 313

444 Order of actions taken by the RTE / Basic Software Scheduler

upon interception of a mode switch notification 313
4.4.5 Assignment of mode machine instances to RTE and Basic
Software Scheduler L 320

4.4.6 Initialization of mode machine instances 321

447 Notification of mode switches 323

448 Mode switch acknowledgment 326

449 Mode switch errorhandling 327
4491 Mode User gets terminated 327
4.49.2 Mode Manager gets terminated 330

4410 Mapping of ModeDeclarations 331

External and Internal Trigger oL 334

451 External Trigger Event Communication 334

AUTOSAR

4.6

4.7

4.8

4511 Introduction 334
4512 TriggerSink 336
4.5.1.3 Trigger Source 337
4.5.1.4 Multiplicity 338
4.5.1.5 Synchronized Trigger 339
452 Inter Runnable Triggering, 340
4.5.2.1 Multiplicity o 340
45.3 Inter Basic Software Module Entity Triggering 341
454 Inter ECU Trigger Communication 342
4.5.5 Queuing of Triggerso 342
4.5.6 Activation of triggered ExecutableEntities 344
Initialization and Finalization 345
4.6.1 Initialization and Finalization of the RTE 345
4.6.1.1 Initialization of the Basic Software Scheduler 346
46.1.2 Initialization of the RTE 346
4.6.1.3 Stop and restart ofthe RTE 347
46.1.4 Finalizationofthe RTE 348
4.6.1.5 Finalization of the Basic Software Scheduler 348
4.6.2 Initialization and Finalization of AUTOSAR Software-
Components 349
Variant Handling Support. o o 350
4.71 Overview e 350
4.7.2 Choosing a Variant and Binding Variability 351
4.7.2.1 General impact of Binding Times on RTE generation 351
4.7.2.2 Choosing a particular variant 352
4.7.2.3 SystemDesignTime 353
4.7.2.4 CodeGenerationTime 354
4.7.2.5 PreCompileTime 354
4.7.2.6 LinkTime 355
4.7.2.7 PostBuild 355
4.7.3 Variability affecting the RTE generation 356
4.7.3.1 Software Composition 356
4.7.3.2 Atomic Software Component and its Internal Behavior 358
4.7.3.3 NvBlockComponent and its Internal Behavior 361
4.7.3.4 Parameter Component 362
4.7.3.5 DataType 362
4.7.3.6 Constants 363
4.7.3.7 Basic Software Modules and its Internal Behavior . . 364
4.7.3.8 Flat Instance descriptor 364
4.7.4 Variability affecting the Basic Software Scheduler generation 364
4.7.4.1 Basic Software Scheduler APIl which is subject to
variability o 364
4.7.4.2 Basic Software Entities 366
4.7.4.3 APl behavior 366
4.7.5 Variability affecting SWC implementation 366

Defaulterrors 368

AUTOSAR

4.8.1 DET Report Identifiers, 368
4.8.2 DET Error Identifiers 368
4.8.3 DET Error Classification 370
49 BypassSupport e 373
4.9.1 Bypass description. o o L. 373
49.2 Component wrapper method 373
4.9.3 Direct buffer access method 375
410 Data Transformation, 375
4.10.1 Execution of Transformer 376
4.10.1.1 Transformer for inter-ECU communication 376
4.10.1.2 Transformer for intra-ECU communication 377
4.10.2 Transformer Chains 378
4.10.3 BufferHandling 381
4.10.4 Interfaces to Transformer 383
410.5 ErrorHandling 383
4.10.6 COM Based Transformer 384
5 RTE Reference 386
5.1 SCOpe e 386
511 Programming Languages 386
51.2 Generator Principles L. 387
5.1.2.1 OperatingModes, 387
5.1.2.2 Optimization Modes 389
5.1.2.3 Buildsupport 389
5.1.24 Debugging support L. 391
5.1.25 Software Component Namespace 392
513 Generator external configuration switches 392
52 APIPrinciples 393
5.2.1 RTENamespace 394
52.2 Direct APIl. 394
5.2.3 Indirect APl 395
5.2.3.1 Accessing PortHandles 396

524 VariableAccess in the dataReadAccess and
dataWriteAccessroles 396
5.2.5 Per Instance Memory L. 398
5.2.6 APIMapping e 401
5.2.6.1 “RTE Contract’Phase 402
5.2.6.2 “RTE Generation”Phase 405
5.2.6.3 FunctionElision. 405
5.2.6.4 APl Naming Conventions 406
5.2.6.5 APl Parameters 406
5.2.6.6 ReturnValues 408
5.2.6.7 Return References 411
5.2.6.8 ErrorHandling 412
5.2.6.9 Success Feedback 413

527 Unconnected Ports 413

AUTOSAR

5.3

5.2.71 DataElements 414
5.2.7.2 Mode SwitchPorts 416
5.2.7.3 Client-Server, 417
5.2.8 Non-identical portinterfaces 417
RTEModules 418
5.3.1 RTEHeaderFile 418
5.3.2 Lifecycle Header File 419
5.3.3 Application Header File 419
5.3.3.1 FileName 420
5.3.3.2 Scope 420
5.3.3.3 FileContents 422
534 RTE Types Header File 424
5.3.4.1 FileContents 425
5.3.4.2 Classification of Implementation Data Types 426
5.3.4.3 Primitive Implementation Data Type 427
5.3.4.4 Array Implementation Data Type 428
5.3.4.5 Structure Implementation Data Type and Union Im-
plementation Data Type 431
5.3.4.6 Union Implementation Data Type 432
5.3.4.7 Implementation Data Type redefinition 437
5.3.4.8 Pointer Implementation Data Type 437
5.3.4.9 ImplementationDataTypeS With Variation-
PointS e e e e e e 439
5.3.4.10 Naming of datatypes. 439
5.3.4.11 C/CH e 441
5.3.5 RTE Data Handle Types Header File 441
5.3.5.1 FileName 441
5.3.5.2 FileContents 442
5.3.6 Application Types Header File 442
5.3.6.1 FileName 442
5.3.6.2 Scope 443
5.3.6.3 FileContents 444
5.3.6.4 RTEModes 444
5.3.6.5 EnumerationData Types 444
5.3.6.6 RangeDataTypes 444
5.3.6.7 Implementation Data Type symbols 444
5.3.7 VFB Tracing Header File 444
5.8.7.1 C/CH e 445
5.3.7.2 FileContents 445
5.3.8 RTE Configuration Header File 446
5.3.8.1 C/CH e 446
5.3.8.2 FileContents 447
5.3.9 Generated RTE 455
5.3.9.1 HeaderFileUsage 455
5.3.9.2 C/CH e 456

5.3.9.3 FileContents 457

AUTOSAR

5.3.9.4 Reentrancy 459
5.3.10 RTE Post Build VariantSets 459
5.3.10.1 Example 1: File Contents Rte_PBCfg.h 460
5.3.10.2 Example 2: File Contents Rte_PBCfg.h 460
5.3.10.3 Examples: File Contents Rte_PBCfg.c 461

54 RTEDataStructures 462
5.4.1 Instance Handle 463
54.2 Component Data Structure 464
5421 Data Handles Section 466
5.4.2.2 Per-instance Memory Handles Section 470
5423 Inter Runnable Variable Handles Section 471
5424 Exclusive-area APl Section 472
5.4.2.5 Port APl Section 473
5.4.2.6 Calibration Parameter Handles Section. 478
5.4.2.7 Inter Runnable Variable APl Section 479
5.4.2.8 Inter Runnable Triggering APl Section 480
5.4.2.9 Instance ld Section 481
5.4.2.10 RAM Block Data Updated Handles Section 481
5.4.2.11 Vendor Specific Section L. 482

55 APIDataTypes 482
5.5.1 Std_ReturnType oo 483
5.5.1.1 Infrastructure Errors oL 484
5.5.1.2 ApplicationErrorso oL 484
5.5.1.3 Predefined ErrorCodes 485
55.2 Rte Instance 488
5.5.3 Rte_TransformerError 489
5.5.4 RTEModes. it 490
5.5.5 Enumeration Data Types 492
5.5.6 RangeDataTypes 495
5.5.7 Data Types with bitfield conversions 496
56 APIReference. e 498
5.6.1 Rte Ports. 498
5.6.2 Rte NPorts 499
5.6.3 Rte Port 500
5.6.4 Rte Write. 500
5.6.5 Rte Send. 503
5.6.6 Rte Switch 507
5.6.7 Rte Invalidate 508
5.6.8 Rte Feedback 509
5.6.9 Rte SwitchAck o 513
5.6.10 Rte Read. 516
5.6.11 Rte DRead 519
5.6.12 Rte Receive 520
5.6.13 Rte Call 524
5.6.14 Rte Result 527

5.6.15 Rte PiM . . oo 532

AUTOSAR

5.7

5.8

5.6.16 Rte CData 533
5.6.17 Rte Prm 534
5.6.18 Rte IRead 535
5.6.19 Rte IWrite 536
5.6.20 Rte IWriteRef 537
5.6.21 Rte llnvalidate 539
5.6.22 Rte IStatus 540
5.6.23 Rte IrviRead 542
5.6.24 Rte IrviWrite 544
5.6.25 Rte IrviWriteRef oo 545
5.6.26 Rte IrvRead 546
5.6.27 Rte IrvWrite o 548
5.6.28 Rte Enter. 549
5.6.29 Rte Exit 550
5.6.30 Rte Mode 550
5.6.31 Enhanced Rte Mode 553
5.6.32 Rte_Trigger o 556
5.6.33 Rte_IrTrigger o 558
5.6.34 Rte IFeedback 559
5.6.35 Rte_IsUpdated, 561
5.6.36 Rte PBCon., 562
Runnable Entity Reference 563
571 Signature 564
5.7.2 Entry Point Prototype L. 564
5.7.3 Role Parameters 567
5.7.4 ReturnValue oo 567
5.7.5 TriggeringEvents o oo 568
5.7.5.1 TimingEvent oL 568
5.75.2 BackgroundEvent oL 568
5.7.5.3 SwcModeSwitchEvent oL 569
5.7.5.4 AsynchronousServerCallReturnsEvent 569
5.7.5.5 DataReceiveErrorEvent 569
5.75.6 OperationinvokedEvent 569
5.7.5.7 DataReceivedEvent 572
5.7.5.8 DataSendCompletedEvent. 572
5.75.9 ModeSwitchedAckEvent 573
5.7.5.10 SwcModeManagerErrorEvent oo 573
5.7.5.11 ExternalTriggerOccurredEvent 573
5.7.5.12 InternalTriggerOccurredEvent 574
5.7.5.13 DataWriteCompletedEvent 574
5.7.5.14 InitEvent oL 574
5.7.5.15 TransformerErrorEvent, 574
5.7.6 Reentrancy 575
RTE Lifecycle APl Reference 575
5.8.1 Rte Start 576

5.8.1.1 Signature 576

AUTOSAR

5.9

5.8.1.2 Existence 576
5.8.1.3 Description 576
5.8.1.4 ReturnValue 577
5.8.1.5 Notes @ e 577
5.8.2 Rte_ Stop 577
5.8.2.1 Signature 578
5.8.2.2 Existence 578
5.8.2.3 Description o 578
5.8.24 ReturnValue 578
5.8.2.5 Notes 579
5.8.3 Rte PartitionTerminated 579
5.8.3.1 Signature 579
5.8.3.2 Existence 579
5.8.3.3 Description oo 579
5.8.34 ReturnValue 580
5.8.3.5 Notes 580
5.8.4 Rte_PartitionRestarting 580
5.8.4.1 Signature 581
5.8.4.2 Existence 581
5.8.4.3 Description oo 581
5.8.44 ReturnValue 581
5.8.4.5 Notes 581
5.8.5 Rte RestartPartition 582
5.8.5.1 Signature L 582
5.8.5.2 Existence 582
5.8.5.3 Description L 582
5854 ReturnValue 583
5.8.5.5 Notes @ . . e 583
5.8.6 Rte Init 583
5.8.6.1 Signature 584
5.8.6.2 Existence 584
5.8.6.3 Description L 584
5.8.6.4 ReturnValue 584
5.8.6.5 Notes @ . 585
5.8.7 Rte_StartTiming 585
5.8.7.1 Signature 585
5.8.7.2 Existence 585
5.8.7.3 Description 585
5.8.7.4 ReturnValue 586
5.8.7.5 Notes @ 586

RTE Call-backs Reference 586
5.9.1 RTE-COM Message Naming Conventions 586
5.9.2 Communication Service Call-backs 587
5.9.2.1 Call-backs for communication over AUTOSAR COM 587
5.9.2.2 Call-backs for communication over AUTOSAR LdCom 595
5.9.3 NVM Service Call-backs 602

AUTOSAR

5.9.3.1 Rte SetMirror,
5.9.3.2 Rte GetMirror.
5.9.3.3 Rte_NvMNotifyJobFinished
59.3.4 Rte_NvMNotifylnitBlock

510 Expectedinterfaces L o

5.11

6.1
6.2

5.10.1 Expected Interfaces fromCom
5.10.2 Expected Interfaces fromLdCom
5.10.3 Expected Interfaces fromQOs
5.10.4 Expected Interfaces for Data Transformation
5.10.5 Expected Interfaces from NvM L.
VFB Tracing Reference
5111 Principle of Operation
5.11.2 Support for multiple clients o oL,
5.11.3 Support for Multiple Instantiation
5114 Contribution to the Basic Software Module Description
5.11.5 TraceEvents
5.11.5.1 RTE APl TraceEvents
5.11.5.2 COMTraceEvents
5.11.5.3 OSTraceEvents
511.5.4 Runnable Entity Trace Events

5.11.6 Configuration L
511.7 Interaction with Object-code Software-Components
6 Basic Software Scheduler Reference
Scope . ..
APl Principles
6.2.1 Basic Software Scheduler Namespace

6.3

6.4

6.5

6.2.2 BSW Scheduler Name Prefix and Section Name Prefix . . .
6.2.3 BSW Scheduler APl options
Basic Software Schedulermodules

6.3.1 Module Interlink Types Header
6.3.1.1 FileName
6.3.1.2 Scope ...
6.3.1.3 FileContents
6.3.1.4 Basic Software SchedulerModes

6.3.2 Module Interlink Header
6.3.2.1 FileName
6.3.2.2 Scope
6.3.2.3 FileContents

APIDataTypes
6.4.1 Predefined Error Codes for Std_ReturnType

6.4.2 Basic SoftwareModes
6.4.3 Enumeration Data Types
6.4.4 RangeDataTypes
6.4.5 Data Types with bitfield conversions

APl Reference

AUTOSAR

6.5.1 SchM Enter 641
6.5.2 SchM_Exit 643
6.5.3 SchM_Call 644
6.5.4 SchM Result 646
6.5.5 SchM Send 648
6.5.6 SchM Receiveo 649
6.5.7 SchM_Switch. 650
6.5.8 SchM Mode 652
6.5.9 Enhanced SchM Mode 654
6.5.10 SchM_SwitchAck 656
6.5.11 SchM_Trigger 657
6.5.12 SchM_ActMainFunction 659
6.5.13 SchM CData. 660
6.5.14 SchM_Pim 661

6.6 Bsw Module Entity Reference 662
6.6.1 Signature 662
6.6.2 Entry Point Prototype oL 665
6.6.3 Reentrancy 667
6.6.4 Provide activatingBswevent 668

6.7 Basic Software Scheduler Lifecycle APl Reference 668
6.7.1 SchM_Init. o 668
6.7.2 SchM Deinit 669
6.7.3 SchM_GetVersioninfo 670

7 RTE ECU Configuration 672
7.1 Ecu Configuration Variants 672
7.2 RTE Module Configuration 673
7.2.1 RTE Configuration Version Information 675

7.3 RTE Generation Parameters 676
7.4 RTE PreBuild configuration 683
7.5 RTE PostBuild configuration 685
7.6 Handling of Software Component instances 688
7.6.1 RTE Eventtotask mapping 690
7.6.1.1 Evaluation and executionorder 692

7.6.1.2 Direct functioncall 692

7.6.1.3 Schedule Points, 694

7.6.1.4 Timeprotection support 695

7.6.1.5 Oslnteraction, 696

7.6.1.6 Background activation 696

7.6.1.7 Constraints 697

7.6.2 Rte Os Interaction 704
7.6.2.1 Activation using Os features 705

7.6.2.2 Modes and Schedule Tables 708

7.6.3 Exclusive Area implementation 712
7.6.4 NVRam Allocation 716

7.6.5 SWC Triggerqueuing o o 720

AUTOSAR

7.7 Handling of Software Componenttypes. 724
7.7.1 Selection of Software-Component Implementation 724
7.7.2 Component Type Calibration 726

7.8 Implicit communication configuration 729

7.9 Communication infrastructure 732

7.10 Configuration of the BSW Scheduler 732
7.10.1 BSW Scheduler General configuration 734
7.10.2 BSW Module Instance configuration 735

7.10.2.1 BSW ExclusiveArea configuration 737

7.10.2.2 BswEventtotask mapping 740

7.10.2.3 BSW Trigger configuration 746

7.10.2.4 BSW ModeDeclarationGroup configuration 753

7.10.2.5 BSW Client Server configuration 755

7.10.2.6 BSW Sender Receiver configuration 757

7.11 Configuration of Synchronization Points 759
7.12 Configuration of Initialization 761

A Metamodel Restrictions 766

A.1 Restrictions concerning WaitPoint 766

A.2 Restrictions concerning RTEEvent 767

A.3 Restrictions concerning queued implementation policy 767

A.4 Restrictions concerning ServerCallPoint 768

A.5 Restriction concerning multiple instantiation of software components . 769

A.6 Restrictions concerning runnable entity 769

A.7 Restrictions concerning runnables with dependencies on modes . . . 769

A.8 Restriction concerning SwcinternalBehavior 772

A9 Restrictions concerning Initial Value oL 772

A.10 Restriction concerning PerinstanceMemory 773

A.11 Restrictions concerning unconnected r-port 773

A.12 Restrictions regarding communication of mode switch notifications . . 773

A.13 Restrictions regarding Measurement and Calibration 774

A.14 Restriction concerning ExclusiveArealmplMechanism 775

A.15 Restrictions concerning AtomicSwComponentTypeS 775

A.16 Restriction concerning the enableUpdate attribute of Nonqueue-

dReceiverCOomSPECS « « v v v v v v e v e e e e e e e e e 775

A.17 Restrictions concerning the large and dynamic datatype 776

A.18 Restriction concerning REFERENCE types 776

A.19 Restriction concerning ModeDeclarationGroup categories and value

attributes L L 777

A.20 Restrictions concerning C/SInterfaces 777

B External Requirements 778
C MISRA C Compliance 779

D Referenced Meta Classes 781

AUTOSAR

Referenced ECUC Configuration Parameters

E.1 Com . .. e
E.2 LdCom e
E.3 EcuC e
E.4d NVM . . . e
E.5 Os .. e
Examples

F.1 ModeDeclarationGroupMapping
F2 Stability need forreceiveddata
F.3 CompuMethod with bitfield texttable conversion
F.4 Structure type with self-reference
F.5 Multiple calibration parametersinstances

Changes History

G.1 Changes in Rel. 4.0 Rev. 2 comparedto Rel. 40Rev. 1
G.1.1 Deleted SWSltems
G.1.2 Changed SWSltems
G.1.3 Added SWSltems o

G.2 Changesin Rel. 4.0 Rev. 3comparedto Rel. 40Rev.2
G.2.1 Deleted SWSltems
G.2.2 Changed SWSltems
G.2.3 Added SWSltems o

G.3 Changesin Rel. 4.1 Rev. 1 comparedto Rel. 40Rev.3
G.3.1 Renamed SWSltems
G.3.2 Added constraints L o
G.3.3 Deleted SWSltems
G.3.4 Changed SWSltems
G.3.5 Added SWSltems o

G.4 Changesin Rel. 4.1 Rev. 2comparedto Rel. 41 Rev. 1
G.4.1 Added Traceablesin4.1.2.
G.4.2 Changed Traceablesin4.1.2
G.4.3 Deleted Traceablesin4.1.2
G.4.4 Added Constraintsin4.1.2
G.4.5 Changed Constraintsin4.1.2
G.4.6 Deleted Constraintsin4.1.2

G.5 Changesin Rel. 4.1 Rev. 3comparedto Rel. 41 Rev.2
G.5.1 Added Traceablesin4.1.3.
G.5.2 Changed Traceablesin4.1.3
G.5.3 Deleted Traceablesin4.1.3
G.5.4 Added Constraintsin4.1.3
G.5.5 Changed Constraintsin4.1.3
G.5.6 Deleted Constraintsin4.1.3

G.6 Changesin Rel. 4.2 Rev. 1 comparedto Rel. 41 Rev.3
G.6.1 Added Traceablesin4.21.
G.6.2 Changed Traceablesin4.2.1

AUTOSAR

G.6.3 Deleted Traceablesin4.21 1049
G.6.4 Added Constraintsin4.21 1049
G.6.5 Changed Constraintsin4.2.1 1049
G.6.6 Deleted Constraintsin4.21 1049
G.7 Changesin Rel. 4.2 Rev. 2comparedto Rel. 42 Rev. 1 1050
G.7.1 Added Traceablesin4.2.2. 1050
G.7.2 Changed Traceablesin4.22 1050
G.7.3 Deleted Traceablesin4.2.2 1050
G.7.4 Added Constraintsin4.2.2 1050
G.7.5 Changed Constraintsin4.22 1051

G.7.6 Deleted Constraintsin4.2.2 1051

AUTOSAR

Bibliography
[1] Virtual Functional Bus

AUTOSAR_EXP_VFB

[2] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

[3] Specification of Communication
AUTOSAR_SWS_COM

[4] Specification of Operating System
AUTOSAR_SWS OS

[5] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration

[6] Methodology
AUTOSAR_TR_Methodology

[7] Specification of ECU State Manager
AUTOSAR_SWS_ECUStateManager

[8] System Template
AUTOSAR_TPS_SystemTemplate

[9] Basic Software Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate

[10] Generic Structure Template
AUTOSAR_TPS_GenericStructureTemplate

[11] Glossary
AUTOSAR_TR_Glossary

[12] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral

[13] Requirements on Runtime Environment
AUTOSAR_SRS RTE

[14] Specification of Timing Extensions
AUTOSAR_TPS_TimingExtensions

[15] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture

[16] Specification of ECU Resource Template
AUTOSAR_TPS_ECUResourceTemplate

[17] Specification of I/O Hardware Abstraction
AUTOSAR_SWS |OHardwareAbstraction

AUTOSAR

[18] Requirements on Operating System
AUTOSAR_SRS 0OS

[19] Requirements on Communication
AUTOSAR_SRS _COM

[20] ASAM MCD 2MC ASAP2 Interface Specification
http://www.asam.net
ASAP2-V1.51.pdf

[21] Specification of NVRAM Manager
AUTOSAR_SWS_ NVRAMManager

[22] Collection of blueprints for AUTOSAR M1 models
AUTOSAR_MOD_GeneralBlueprints

[23] Specification of COM Based Transformer
AUTOSAR_SWS COMBasedTransformer

[24] Guide to BSW Distribution
AUTOSAR_EXP_BSWDistributionGuide

[25] Specification of Default Error Tracer
AUTOSAR_SWS DefaultErrorTracer

[26] General Specification on Transformers
AUTOSAR_ASWS_ TransformerGeneral

[27] Gemeinsames Subset der MISRA C Guidelines
HIS_SubSet_ MISRA_C_1.0.3.pdf

[28] Specification of Memory Mapping
AUTOSAR_SWS_MemoryMapping

[29] Specification of Debugging in AUTOSAR
AUTOSAR_SWS_Debugging

[30] General Specification of Basic Software Modules
AUTOSAR_SWS BSWGeneral

[31] Specification of Compiler Abstraction
AUTOSAR_SWS_CompilerAbstraction

[32] Specification of Standard Types
AUTOSAR_SWS_StandardTypes

[33] Specification of Bit Handling Routines
AUTOSAR_SWS_BFXLibrary

[34] Specification of Diagnostic Log and Trace
AUTOSAR_SWS_DiagnosticLogAndTrace

[35] Collection of constraints on AUTOSAR M1 models
AUTOSAR_TR_AutosarModelConstraints

http://www.asam.net

AUTOSAR

Note on XML examples

This specification includes examples in XML based on the AUTOSAR metamodel avail-
able at the time of writing. These examples are included as illustrations of configura-
tions and their expected outcome but should not be considered part of the specification.

1 Introduction

This document contains the software specification of the AUTOSAR Run-Time Environ-
ment (RTE) and the Basic Software Scheduler. Basically, the RTE together with the
OS, AUTOSAR COM and other Basic Software Modules is the implementation of the
Virtual Functional Bus concepts (VFB, [1]). The RTE implements the AUTOSAR Virtual
Functional Bus interfaces and thereby realizes the communication between AUTOSAR
software-components.

This document describes how these concepts are realized within the RTE. Further-
more, the Application Programming Interface (AP/) of the RTE and the interaction of
the RTE with other basic software modules is specified.

The Basic Software Scheduler offers concepts and services to integrate Basic Soft-
ware Modules Hence, the Basic Software Scheduler

e embed Basic Software Module implementations into the AUTOSAR OS context
e trigger main processing functions of the Basic Software Modules
e apply data consistency mechanisms for the Basic Software Modules

e to communicate modes between Basic Software Modules

1.1 Scope

This document is intended to be the main reference for developers of an RTE gener-
ator tool or of a concrete RTE implementation respectively. The document is also the
reference for developers of AUTOSAR software-components and basic software mod-
ules that interact with the RTE, since it specifies the application programming interface
of the RTE and therefore the mechanisms for accessing the RTE functionality. Fur-
thermore, this specification should be read by the AUTOSAR working groups that are
closely related to the RTE (see Section 1.2 below), since it describes the interfaces of
the RTE to these modules as well as the behavior / functionality the RTE expects from
them.

This document is structured as follows. After this general introduction, Chapter 2 gives
a more detailed introduction of the concepts of the RTE. Chapter 3 describes how an
RTE is generated in the context of the overall AUTOSAR methodology. Chapter 4 is
the central part of this document. It specifies the RTE functionality in detail. The RTE
APl is described in Chapter 5.

AUTOSAR

The appendix of this document consists of five parts: Appendix A lists the restrictions to
the AUTOSAR metamodel that this version of the RTE specification relies on. Appendix
B explicitly lists all external requirements, i.e. all requirements that are not about the
RTE itself but specify the assumptions on the environment and the input of an RTE
generator. In Appendix C some HIS MISRA rules are listed that are likely to be violated
by RTE code, and the rationale why these violations may occur.

Note that Chapters 1 and 2, as well as Appendix C do not contain any requirements
and are thus intended for information only.

Chapters 4 and 5 are probably of most interest for developers of an RTE Generator.
Chapters 2, 3, 5 are important for developers of AUTOSAR software-components and
basic software modules. The most important chapters for related AUTOSAR work
packages would be Chapters 4, 5, as well as Appendix B.

The specifications in this document do not define details of the implementation of a
concrete RTE or RTE generator respectively. Furthermore, aspects of the ECU- and
system-generation process (like e.g. the mapping of SW-Cs to ECUs, or schedulability
analysis) are also not in the scope of this specification. Nevertheless, it is specified
what input the RTE generator expects from these configuration phases.

1.2 Dependency to other AUTOSAR specifications

The main documents that served as input for the specification of the RTE are the spec-
ification of the Virtual Functional Bus [1] and the specification of the Software Com-
ponent Template [2]. Also of primary importance are the specifications of those Basic
Software modules that closely interact with the RTE (or vice versa). These are espe-
cially the communication module [3] and the operating system [4]. The main input of
an RTE generator is described (among others) in the ECU Configuration Description.
Therefore, the corresponding specification [5] is also important for the RTE specifica-
tion. Furthermore, as the process of RTE generation is an important part of the overall
AUTOSAR Methodology, the corresponding document [6] is also considered.

The following list shows the specifications that are closely interdependent to the speci-
fication of the RTE:

e Specification of the Virtual Functional Bus [1]

Specification of the Software Component Template [2]
Specification of AUTOSAR COM [3]
Specification of AUTOSAR OS [4]

Specification of ECU State Manager and Communication Manager [7]

Specification of ECU Configuration [5]

Specification of System Description / Generation [8]

AUTOSAR

e AUTOSAR Methodology [6]

e Specification of BSW Module Description Template [9]
e AUTOSAR Generic Structure Template [10]

1.3 Acronyms and Abbreviations

All abbreviations used throughout this document — except the ones listed here — can
be found in the official AUTOSAR glossary [11].

1.4 Technical Terms

All technical terms used throughout this document — except the ones listed here — can
be found in the official AUTOSAR glossary [11] or the Software Component Template

Specification [2].

Term

Description

application mode manager

An application mode manager is an AUTOSAR software-
component that provides the service of switching modes. The
modes of an application mode manager do not have to be
standardized.

AutosarDataPrototype im-

plementation

Definitions and declarations for non automatic’ memory objects
which are allocated by the RTE and implementing AutosarDat-
aPrototypes or their belonging status handling.

BswSchedulableEntity acti-
vation

The activation of a BswSchedulableEntity is defined as the
activation of the task that contains the BswSchedulableEn-
tity and eventually includes setting a flag that tells the glue
code in the task which BswSchedulableEntity is to be exe-
cuted.

BswSchedulableEntity start

A BswSchedulableEntity is started by the calling the C-
function that implements the BswSchedulableEntity from
within a started task.

'C’ typed PerInstanceMem-—
ory

'C’ typed PerInstanceMemory is defined with the class Perin-
stanceMemory. The type of the memory is defined with a 'C’
typedef in the attribute typeDefinition.

client

A client is defined as one ClientServerOperation in one
RPortPrototype of one Software Component instance. For
the definition of the client neither the number of Servercall-
Points nor RunnableEntity accesses to the ServerCall-
Point are relevant. A Software Component instance can appear
as several clients to the same server if it defines SserverCcall-
Points for several PortPrototypes of the same Port Inter—
face’s ClientServerOperation.

CodeGenerationTime variability

Variability defined with an VvariationPoint or Attribute-
ValueVariationPoint with latest bindingTime CodeGenera-
tionTime.

declaration with no static or external specifier defines an automatic variable

AUTOSAR

coherency group

A set of implicit read accesses and implicit write
accesses for which the RTE cares for data coherency. Please
note that in the context of this specification the definition of co-
herency includes that

e read data values of different VvariableDataPrototypes
have to be from the same age, except the values are
changed by implicit write accesses belonging to
the coherency group

e written data values of different variableDataProto-
types are communicated to readers NOT belonging to the
coherency group after the last implicit write ac-
cess belonging to the coherency group.

coherent implicit data access

An implicit read access Or an implicit write ac-
cess which belongs to coherency group. Therefore it is
referenced by a RtevVariableReadAccessRef Or RteVari-
ableWriteAccessRef belonging to a RteImplicitCommu-
nication container which RteCoherentAccess parameter is
set to true.

coherent implicit read access

An implicit read access which belongs to coherency
group. Therefore it is referenced by a RtevariableReadAc—
cessRef belonging to a RteImplicitCommunication con-
tainer which RteCoherentAccess parameter is set to true.

coherent implicit write access

An implicit write access which belongs to coherency
group. Therefore it is referenced by a RtevariableReadAc—
cessRef Or RteVariableWriteAccessRef belonging to
a RteImplicitCommunication container which RteCo-
herentAccess parameter is set to true.

common mode machine in-
stance

A ‘common mode machine instance’ is a special ‘mode machine
instance’ shared by BSW Modules and SW-Cs:

The RTE Generator creates only one mode machine in-
stance if a ModeDeclarationGroupPrototype instantiated in a
port of a software-component is synchronized (synchronized-
ModeGroup of a SweBswMapping) with a providedModeGroup
ModeDeclarationGroupPrototype of a Basic Software Module in-
stance. The related mode machine instance is called com—
mon mode machine instance.

copy semantic

Copy semantic means, that the accessing entities are able to
read or write the "copied" data from their execution context in a
non concurrent and non preempting manner. If all accessing en-
tities are in the same preemption area this might not require
a real physical data copy.

core local mode user group

In the case that mode users belong to different partitions which
in turn are scheduled on different micro controller cores the over-
all mode machine instance needs to be distributed cross core.
Thereby some restrictions are only applicable between the mode
users executed on the same micro controller core.

All mode users of the same mode manager which belong to
EcucPartition which in turn belong to OsApplications re-
ferring to the same EcucCoreDefinition are belonging to the
same core local mode user group.

AUTOSAR

data semantic

When data is distributed, the last received value is of interest
(last-is-best semantics). Therefore the software implementation
policy, stated in the swImplPolicy attribute of the SwbataDef—
Props, shouldn’t be ‘queued’.

event semantic

When events are distributed the whole history of received events
is of interest, hence they must be queued on receiver side. There-
fore the software implementation policy, stated in the swIm-
plPolicy attribute of the swbataDefProps, will have the value
‘queued’(corresponding to event distribution with a queue).

execution-instance

An execution-instance of a ExecutableEntity iS one instance
or call context of an ExecutableEntity with respect to con-
current execution, see section 4.2.3.

implicit read access

VariableAccess aggregated in the role dataReadAccess to
aVariableDataPrototype

implicit write access

VariableAccess aggregatedinthe role dataWriteAccessto
aVariableDataPrototype

incoherent implicit data access

An implicit read access Or an implicit write ac-
cess which does not belong to a coherency group. Therefore
it is NOT referenced by any RtevariableReadAccessRef oOr
RteVariableWriteAccessRef belonging to a RteImplic-
itCommunication container which RteCoherentAccess pa-
rameter is set to true.

incoherent implicit read access

An implicit read access which does not belong to a co-
herency group. Therefore it is NOT referenced by any Rte-
VariableReadAccessRef belonging to a RteImplicitCom-
munication container which RteCoherentAccess parameter
is set to true.

incoherent implicit write access

An implicit write access which does not belong to a
coherency group. Therefore it is NOT referenced by any
RteVariableWriteAccessRef belonging to a RteImplic-
itCommunication container which RteCoherentAccess pa-
rameter is set to true.

inter-ECU communication

The communication between ECUSs, typically using COM is called
inter—ECU communication in this document.

inter-partition communication

The communication within one ECU but between different parti-
tions, represented by different OS applications, is called inter-
partition communication in this document. It typically involves
the use of OS mechanisms like IOC or trusted function calls. The
partitions can be located on different cores or use different mem-
ory sections of the ECU.

intra-ECU communication

The communication within one ECU is called intra-ECU com-
munication in this document. It is a super set of inter-
partition communication and intra-partition communi-
cation.

intra-partition communication

The communication within one partition of one ECU is called
intra-partition communication. In this case, RTE can make
use of internal buffers and queues for communication.

invalidateable

Invalidateable VariableDataPrototypeS are Variable-
DataPrototypesthat have an invalidvalue.

LinkTime variability

Variability defined with an variationPoint or AttributeValue-
VariationPoint with latest bindingTime LinkTime.

AUTOSAR

mode disabling

When a ‘mode disabling’ is active, RTE and Basic Software
Scheduler disables the start of mode disabling dependent
ExecutableEntitys. The ‘mode disabling’ is active during the
mode that is referenced in the mode disabling dependency and
during the transitions that enter and leave this mode. See also
section 4.4.1.

mode disabling dependency

A RTEEvent (respectively a BswEvent) that starts a
RunnableEntity (respectively a BswSchedulableEntity)
can contain a disabledMode (respectively disabledinMode) as-
sociation which references a ModeDeclaration. This association
is called mode disabling dependency in this document.

mode disabling dependent Exe-
cutableEntity

A mode disabling dependent RunnableEntity or a
BswSchedulableEntity is triggered by an RTEEvent
respectively a BswEvent with a mode disabling depen-
dency. RTE and Basic Software Scheduler prevent the start
of those RunnableEntity Or BswSchedulableEntity by
the RTEEvent / BswEvent, when the corresponding mode
disabling is active. See also section 4.4.1.

mode machine instance

The instances of mode machines or ModeDeclarationGroups are
defined by the ModeDeclarationGroupPrototypes of the mode
managers.

Since a mode switch is not executed instantaneously, The RTE
or Basic Software Scheduler has to maintain it's own states. For
each mode manager’s ModeDeclarationGroupPrototype, RTE
or Basic Software Scheduler has one state machine. This state
machine is called mode machine instance. For all mode users
of the same mode manager’s ModeDeclarationGroupPrototype,
RTE and Basic Software Scheduler uses the same mode ma-
chine instance. See also section 4.4.2.

mode manager

Entering and leaving modes is initiated by a mode manager. A
mode manager is either a software component that provides a
p-port typed by a ModeSwitchInterface or a BSW module
which defines in its BswModuleDescription a ModeDeclara-
tionGroupPrototype in the role providedModeGroup. See also
section 4.4.2.

ModeSwitchAck ExecutableEn-
tity

A RunnableEntity or a BswSchedulableEntity thatis trig-
gered by a ModeSwitchedAckEvent respectively a BswMod-
eSwitchedAckEvent connected to the mode manager’s Mod-
eDeclarationGroupPrototype. It is called ModeSwitchAck
ExecutableEntity. See also section 4.4.1.

mode switch notification

The communication of a mode switch from the mode manager
to the mode user using either the ModeSwitchInterface
or providedModeGroup and requiredModeGroup ModeDeclara-
tionGroupPrototypes is called mode switch notification.

mode switch port

The port for receiving (or sending) a mode switch notification. For
this purpose, a mode switch port is typed by a ModeSwitchIn-
terface.

mode user

An AUTOSAR SW-C or AUTOSAR Basic Software Module
that depends on modes is called a mode user. The depen-
dency can occur through a SwcModeSwitchEvent/BswMod-
eSwitchEvent, a ModeAccessPoint for a provided/re-
quired mode switch port, Or a accessedModeGroup for a
providedModeGroup/requiredModeGroup ModeDeclara-
tionGroupPrototype. See also section 4.4.1.

AUTOSAR

NvBlockSwComponent

NvBlockSwComponent is a SwComponentPrototype typed an
NvBlockSwComponentType.

on-entry ExecutableEntity

A RunnableEntity oraBswSchedulableEntity thatis trig-
gered by a SwcModeSwitchEvent respectively a BswMod-
eSwitchEvent with ModeActivationKind ‘entry’ is triggered on
entering the mode. It is called on-entry ExecutableEntity. See
also section 4.4.1.

on-exit ExecutableEntity

A RunnableEntity or a BswSchedulableEntity thatis trig-
gered by a SwcModeSwitchEvent respectively a BswMod-
eSwitchEvent with ModeActivationKind ‘exit’ is triggered on
exiting the mode. It is called on-exit ExecutableEntity. See also
section 4.4.1.

on-transition ExecutableEntity

A RunnableEntity or a BswSchedulableEntity thatis trig-
gered by a SwcModeSwitchEvent respectively a BswMod-
eswitchEvent with ModeActivationKind ‘transition’ is triggered
on a transition between the two specified modes. It is called on-
transition ExecutableEntity. See also section 4.4.1.

post-build variability

Variability defined with an variationPoint having an post-
BuildvVariantCriterion

pre-build variability

Variability defined with an VvariationPoint or AttributeValue-
VariationPoint with latest bindingTime SystemDesignTime,
CodeGenerationTime, PreCompileTime Or LinkTime.

PreCompileTime variability

Variability defined with an variationPoint or AttributeValue-
VariationPoint with latest bindingTime PreCompileTime.

preemption area

A preemption area defines a set of tasks which are sched-
uled cooperatively. Therefore tasks of one preemption area are
preempting each other only at dedicated schedule points. A
schedule point is not allowed to occur during the execution of
a RunnableEntity.

primitive data type

Primitive data types are the types implemented by a boolean,
integer (up to 32 bits), floating point, or opaque type (up to 32
bits).

runnable activation

The activation of a runnable is linked to the RTEEvent that leads
to the execution of the runnable. It is defined as the incident that
is referred to by the RTEEvent.

E. g., for a timing event, the corresponding runnable is activated,
when the timer expires, and for a data received event, the runn-
able is activated when the data is received by the RTE.

runnable start

A runnable is started by the calling the C-function that imple-
ments the runnable from within a started task.

server

A server is defined as one RunnableEnt ity which is the target
of an OperationInvokedEvent. Call serialization is on activa-
tion of RunnableEntity.

server ExecutableEntity

A server that is triggered either by an OperationInvokedE-
vent Or by an BswOperationInvokedEvent. In certain situa-
tions, RTE can implement the client server communication as a
simple function call.

server runnable

A server that is triggered by an OperationInvokedEvent. It
has a mixed behavior between a runnable and a function call. In
certain situations, RTE can implement the client server commu-
nication as a simple function call.

SystemDesignTime variability

Variability defined with an VvariationPoint or AttributeValue-
VariationPoint with latest bindingTime SystemDesignTime.

AUTOSAR

trigger emitter

A trigger emitter has the ability to release triggers which in turn
are activating triggered ExecutableEntitys. trigger emit-
ter are described by the meta model with provide trigger
ports, Trigger in role releasedTrigger, InternalTrig—
geringPoints and BswInternalTriggeringPoints.

trigger port

A PortPrototype which is typed by an TriggerInterface

trigger sink

A trigger sink relies on the activation of Runnable Entities or Ba-
sic Software Schedulable Entities if a particular Trigger is raised.
A trigger sink has a dedicated require trigger port(s) or/
and requiredTrigger Trigger(s) to communicate to the trigger
source(s).

trigger source

A trigger source administrate the particular Trigger and informs
the RTE or Basic Software Scheduler if the Trigger is raised.
A trigger source has dedicated provide trigger port(s) or/
and releasedTrigger Trigger(s) to communicate to the trigger
sink(s).

triggered BswSchedulableEntity

A BswSchedulableEntity that is triggered at least by one
BswExternalTriggerOccurredEvent Or BswInternal-
TriggerOccurredEvent. In particular cases, the Trigger
Event Communication or the Inter Basic Software Schedulable
Entity Triggering is implemented by Basic Software Scheduler as
a direct function call of the triggered ExecutableEntity by the trig-
gering ExecutableEntity.

triggered ExecutableEntity

A Runnable Entity or a Basic Software Schedulable Entity that
is triggered at least by one ExternalTriggerOccurredE—
vent /BswExternalTriggerOccurredEvent Of Internal-
TriggerOccurredEvent / BswInternalTriggerOccurre—
dEvent. In particular cases, the Trigger Event Communication
or the Inter Runnable Triggering is implemented by RTE or Ba-
sic Software Scheduler as a direct function call of the triggered
ExecutableEntity by the triggering ExecutableEntity.

triggered runnable

A Runnable Entity that is triggered at least by one External-
TriggerOccurredEvent Or InternalTriggerOccurredE-
vent. In particular cases, the Trigger Event Communication or
the Inter Runnable Triggering is implemented by RTE as a direct
function call of the triggered runnable by the triggering runnable.

Table 1.1: Technical Terms

1.5 Document Conventions

Requirements in the SRS are referenced using [SRS_Rte_<n>] where <n> is the
requirement id. For example, [SRS_Rte 00098].

Requirements in the SWS are marked with [SWS_Rte_<nnnnn>] as the first text in a
paragraph. The scope of the requirement is marked with the half brackets.

Constraints on the input of the RTE are marked with [constr_<nnnn>].

Technical terms are typeset in monospace font, e.g. Wwarp Core.

AUTOSAR

AUTOSAR Meta Class Names and Attributes are typeset in monospace font, e.g. Ap-
plicationSwComponentType. As a general rule, plural forms of AUTOSAR Meta
Class Names and Attributes are created by adding "s" to the singular form, e.g. Port-
PrototypeS. By this means the document resembles terminology used in the AU-
TOSAR XML Schema.

AUTOSAR ECU Configuration Parameters are typeset in monospace font, e.g. Rte-
CodeVendorId. As a general rule, plural forms of ECU Configuration Parameters
are created by adding "s" to the singular form, e.g. RteEventToTaskMappings. By
this means the document resembles terminology used in the ARXML file of AUTOSAR
ECU Configuration Parameter Definition.

API function calls are also marked with monospace font, like Rte_EjectWarpCore.

1.6 Requirements Tracing

The following table references the requirements specified in [12] as well as [13] and
links to the fulfillment of these. Please note that if column “Satisfied by” is empty for a
specific requirement this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by
[RS_BSWMD_00061] Support for Debugging of [SWS_Rte_05094] [SWS_Rte_05095]
variables [SWS_Rte_05096] [SWS_Rte_05097]

[SWS_Rte 05098] [SWS_Rte 05105]
[SWS_Rte 07692]

All Basic SW Modules shall
perform a pre-processor check
of the versions of all imported
include files

All Basic SW Modules written in
C language shall conform to the
MISRA C 2004 Standard.

[SRS_BSW_00004]

[SRS_BSW _00007] [SWS_Rte 01168] [SWS_Rte_03715]
[SWS_Rte 06804] [SWS_Rte_06805]
[SWS_Rte 06806] [SWS_Rte 06807]
[SWS_Rte_06808] [SWS_Rte_06809]
[SWS_Rte 06810] [SWS_Rte_07086]
[SWS_Rte 07300]

[SWS_Rte 07270] [SWS_Rte_07271]
[SWS_Rte 07273]

[SRS_BSW _00101] | The Basic Software Module shall
be able to initialize variables and
hardware in a separate
initialization function

The AUTOSAR Basic Software
shall provide a microcontroller
abstraction layer which provides
a standardized interface to

higher software layers

[SRS_BSW_00161] [SWS_Rte_02734]

[SRS_BSW_00300]

All AUTOSAR Basic Software
Modules shall be identified by an
unambiguous name

[SWS_Rte_01003] [SWS_Rte_01157]
[SWS_Rte 01158] [SWS_Rte 01161]
[SWS_Rte 01169] [SWS_Rte 01171]
[SWS_Rte 07122] [SWS_Rte 07139]
[SWS_Rte 07284] [SWS_Rte_07288]
[SWS_Rte 07295] [SWS_Rte_07504]
[SWS_Rte 07922]

AUTOSAR

[SRS_BSW_00305]

Data types naming convention

[SWS_Rte 01055] [SWS_Rte_01150]
[SWS_Rte 02301] [SWS_Rte_03714]
[SWS_Rte 03731] [SWS_Rte 03733]

[SRS_BSW _00307]

Global variables naming
convention

[SWS_Rte 01171] [SWS_Rte _03712]
[SWS_Rte 07284]

[SRS_BSW_00308]

AUTOSAR Basic Software
Modules shall not define global
data in their header files, but in
the C file

[SWS_Rte _03786] [SWS_Rte_07121]
[SWS_Rte 07502] [SWS_Rte_07921]

[SRS_BSW _00310]

APl naming convention

[SWS_Rte_01071] [SWS_Rte_01072]
[SWS_Rte 01083] [SWS_Rte _01091]
[SWS_Rte 01092] [SWS_Rte 01102]
[SWS_Rte 01111][SWS_Rte 01118]
[SWS_Rte 01120] [SWS_Rte_01123]
[SWS_Rte 01206] [SWS_Rte_01252]
[SWS_Rte 02569] [SWS_Rte_02631]
[SWS_Rte 02725] [SWS_Rte_03550]
[SWS_Rte 03553] [SWS_Rte_03560]
[SWS_Rte 03565] [SWS_Rte 03741]
[SWS_Rte 03744] [SWS_Rte_03800]
[SWS_Rte 03928] [SWS_Rte_03929]
[SWS_Rte 05509] [SWS_Rte_06207]
[SWS_Rte 07367] [SWS_Rte_07390]
[SWS_Rte 07394] [SWS_Rte_07556]

[SRS_BSW _00312]

Shared code shall be reentrant

[SWS_Rte_01012]

[SRS_BSW_00327]

Error values naming convention

[SWS_Rte _01058] [SWS_Rte_01060]
[SWS_Rte 01061] [SWS_Rte_01064]
[SWS_Rte 01065] [SWS_Rte 01317]
[SWS_Rte 02571] [SWS_Rte_02594]
[SWS_Rte 02702] [SWS_Rte_02739]
[SWS_Rte 02747] [SWS_Rte 02757]
[SWS_Rte 07054] [SWS_Rte_07289]
[SWS_Rte 07290] [SWS_Rte_07384]
[SWS_Rte 07562] [SWS_Rte 07563]
[SWS_Rte 07655] [SWS_Rte_08065]
[SWS_Rte 08551] [SWS_Rte 08725]
[SWS_Rte 08726]

[SRS_BSW _00330]

It shall be allowed to use macros
instead of functions where
source code is used and runtime
is critical

[SWS_Rte_01274]

[SRS_BSW_00336]

Basic SW module shall be able
to shutdown

[SWS_Rte_07274] [SWS_Rte 07275]
[SWS_Rte 07277]

[SRS_BSW _00337]

Classification of development
errors

[SWS_Rte_06630] [SWS_Rte_06631]
[SWS_Rte 06632] [SWS_Rte_06633]
[SWS_Rte 06634] [SWS_Rte 06635]
[SWS_Rte 06637] [SWS_Rte 07675]
[SWS_Rte 07676] [SWS_Rte_07682]
[SWS_Rte 07683] [SWS_Rte_07684]
[SWS_Rte 07685]

AUTOSAR

[SRS_BSW_00342]

It shall be possible to create an
AUTOSAR ECU out of modules
provided as source code and
modules provided as object
code, even mixed

[SWS_Rte 07511]

[SRS_BSW_00345]

BSW Modules shall support
pre-compile configuration

[SWS_Rte 05103]

[SRS_BSW_00346]

All AUTOSAR Basic Software
Modules shall provide at least a
basic set of module files

[SWS_Rte 06638]

[SRS_BSW _00347]

A Naming seperation of different
instances of BSW drivers shall
be in place

[SWS_Rte 06203] [SWS_Rte_06532]
[SWS_Rte 06535] [SWS_Rte_06536]
[SWS_Rte 07093] [SWS_Rte_07250]
[SWS_Rte 07253] [SWS_Rte_07255]
[SWS_Rte 07260] [SWS_Rte_07263]
[SWS_Rte 07266] [SWS_Rte_07282]
[SWS_Rte 07295] [SWS_Rte 07504]
[SWS_Rte 07528] [SWS_Rte_07694]
[SWS_Rte 08765] [SWS_Rte 08789]
[SWS_Rte_08790]

[SRS_BSW_00353]

All integer type definitions of
target and compiler specific
scope shall be placed and
organized in a single type
header

[SWS_Rte 01163] [SWS_Rte 01164]
[SWS_Rte_07104] [SWS_Rte 07641]

[SRS_BSW_00384]

The Basic Software Module
specifications shall specify at
least in the description which
other modules they require

[SWS_Rte 01412]

[SRS_BSW_00397]

The configuration parameters in
pre-compile time are fixed before
compilation starts

[SWS_Rte 05103]

[SRS_BSW_00399]

Parameter-sets shall be located
in a separate segment and shall
be loaded after the code

[SWS_Rte 05104]

[SRS_BSW_00400]

Parameter shall be selected
from multiple sets of parameters
after code has been loaded and
started

[SWS_Rite 05104]

[SRS_BSW_00405]

BSW Modules shall support
multiple configuration sets

[SWS_Rte_06544] [SWS_Rte_06545]

[SRS_BSW_00407]

Each BSW module shall provide
a function to read out the version
information of a dedicated
module implementation

[SWS_Rte 07278] [SWS_Rte_07279]
[SWS_Rte 07280] [SWS_Rte 07281]

[SRS_BSW_00415]

Interfaces which are provided
exclusively for one module shall
be separated into a dedicated
header file

[SWS_Rte 07295] [SWS_Rte_07500]
[SWS_Rte 07501] [SWS_Rte_07503]
[SWS_Rte_07504] [SWS_Rte_07505]
[SWS_Rte 07506] [SWS_Rte_07510]

[SRS_BSW_00447]

Standardizing Include file
structure of BSW Modules
Implementing Autosar Service

[SWS_Rte_07120]

AUTOSAR

[SRS_Com_02044]

AUTOSAR COM and LargeData
COM shall provide a transmit
confirmation function

[SWS_Rte_01407] [SWS_Rte 01411]

[SRS_Rte_00003]

Tracing of sender-receiver
communication

[SWS_Rte_01238] [SWS_Rte_01240]
[SWS_Rte_01241] [SWS_Rte_01242]
[SWS_Rte_01357] [SWS_Rte_03814]
[SWS_Rte_07639]

[SRS_Rte_00004]

Tracing of client-server
communication

[SWS_Rte_01238] [SWS_Rte_01240]
[SWS_Rte_01241] [SWS_Rte_01242]
[SWS_Rte_01357] [SWS_Rte 03814]
[SWS_Rte_07639]

[SRS_Rte_00005]

The RTE generator shall support
"trace" builds

[SWS_Rte_01320] [SWS_Rte_01322]
[SWS_Rte 01323] [SWS_Rte 01327]
[SWS_Rte 01328] [SWS_Rte_03607]
[SWS_Rte 05091] [SWS_Rte 05092]
[SWS_Rte 05093] [SWS_Rte_05106]
[SWS_Rte 06031] [SWS_Rte_08000]

[SRS_Rte_00008]

VFB tracing configuration

[SWS_Rte _01236] [SWS_Rte_01320]
[SWS_Rte 01321] [SWS_Rte_01322]
[SWS_Rte 01323] [SWS_Rte_01324]
[SWS_Rte 01325] [SWS_Rte_03607]
[SWS_Rte 05091] [SWS_Rte_05092]
[SWS_Rte 05093] [SWS_Rte_08000]

[SRS_Rte_00011]

Support for multiple Application
Software Component instances.

[SWS_Rte 01012] [SWS_Rte 01013]
[SWS_Rte 01016] [SWS_Rte_01126]
[SWS_Rte 01148] [SWS_Rte 01349]
[SWS_Rte 02001] [SWS_Rte_02002]
[SWS_Rte 02008] [SWS_Rte_02009]
[SWS_Rte 02015] [SWS_Rte_03015]
[SWS_Rte 03711] [SWS_Rte 03716]
[SWS_Rte 03717] [SWS_Rte 03718]
[SWS_Rte 03719] [SWS_Rte_03720]
[SWS_Rte 03721] [SWS_Rte_03722]
[SWS_Rte 03793] [SWS_Rte_03806]
[SWS_Rte 06031] [SWS_Rte 07132]
[SWS_Rte 07194] [SWS_Rte_07225]
[SWS_Rte 07837] [SWS_Rte_07838]
[SWS_Rte 07839] [SWS_Rte_08091]

[SRS_Rte_00012]

Multiple instantiated AUTOSAR
software components delivered
as binary code shall share code

[SWS_Rte 01007] [SWS_Rte_02015]
[SWS_Rte 03015]

[SRS_Rte_00013]

Per-instance memory

[SWS_Rte _02301] [SWS_Rte_02302]
[SWS_Rte 02303] [SWS_Rte_02304]
[SWS_Rte 02305] [SWS_Rte 03782]
[SWS_Rte 05062] [SWS_Rte_07045]
[SWS_Rte 07133] [SWS_Rte_07134]
[SWS_Rte 07135] [SWS_Rte 07161]
[SWS_Rte 07182] [SWS_Rte_07183]
[SWS_Rte 07184] [SWS_Rte 08303]
[SWS_Rte 08304]

[SRS_Rte_00017]

Rejection of inconsistent
component implementations

[SWS_Rte_01004] [SWS_Rte_02751]
[SWS_Rte 07123] [SWS_Rte 07510]

AUTOSAR

configurations

[SRS_Rte 00018] Rejection of invalid

[SWS_Rte 01287] [SWS_Rte_01313]
[SWS_Rte 01358] [SWS_Rte 01373]
[SWS_Rte 02009] [SWS_Rte 02051]
[SWS_Rte 02204] [SWS_Rte 02254]
[SWS_Rte 02500] [SWS_Rte_02526]
[SWS_Rte 02529] [SWS_Rte_02579]
[SWS_Rte 02662] [SWS_Rte 02663]
[SWS_Rte 02664] [SWS_Rte_02670]
[SWS_Rte 02706] [SWS_Rte 02723]
[SWS_Rte 02730] [SWS_Rte_02733]
[SWS_Rte 02738] [SWS_Rte 02750]
[SWS_Rte 03010] [SWS_Rte_03014]
[SWS_Rte 03018] [SWS_Rte 03019]
[SWS_Rte 03526] [SWS_Rte 03527]
[SWS_Rte 03594] [SWS_Rte_03605]
[SWS_Rte 03755] [SWS_Rte_03764]
[SWS_Rte 03813] [SWS_Rte 03817]
[SWS_Rte 03820] [SWS_Rte_03823]
[SWS_Rte 03826] [SWS_Rte 03831]
[SWS_Rte 03851] [SWS_Rte_03862]
[SWS_Rte 03866] [SWS_Rte_03950]
[SWS_Rte 03951] [SWS_Rte_03970]
[SWS_Rte 03986] [SWS_Rte 03987]
[SWS_Rte 03988] [SWS_Rte_03989]
[SWS_Rte 05111] [SWS_Rte_05149]
[SWS_Rte 06502] [SWS_Rte_06503]
[SWS_Rte 06504] [SWS_Rte 06505]
[SWS_Rte 06508] [SWS_Rte_06509]
[SWS_Rte 06511] [SWS_Rte 06547]
[SWS_Rte 06548] [SWS_Rte_06610]
[SWS_Rte 06613] [SWS_Rte_06719]
[SWS_Rte 06724] [SWS_Rte_06732]
[SWS_Rte 06768] [SWS_Rte 06769]
[SWS_Rte 06770] [SWS_Rte_06801]
[SWS_Rte 06802] [SWS_Rte 06803]
[SWS_Rte 06814] [SWS_Rte_07005]
[SWS_Rte 07006] [SWS_Rte_07007]
[SWS_Rte 07026] [SWS_Rte_07028]
[SWS_Rte 07039] [SWS_Rte_07044]
[SWS_Rte 07057] [SWS_Rte_07075]
[SWS_Rte 07101] [SWS_Rte_07135]
[SWS_Rte 07157] [SWS_Rte_07170]
[SWS_Rte 07175] [SWS_Rte 07181]
[SWS_Rte 07190] [SWS_Rte 07191]
[SWS_Rte 07192] [SWS_Rte 07343]
[SWS_Rte 07347] [SWS_Rte_07353]
[SWS_Rte 07356] [SWS_Rte_07357]
[SWS_Rte 07402] [SWS_Rte_07403]

AUTOSAR

[SWS_Rte 07516] [SWS_Rte 07524]
[SWS_Rte 07545] [SWS_Rte_07548]
[SWS_Rte 07549] [SWS_Rte 07564]
[SWS_Rte 07588] [SWS_Rte_07610]
[SWS_Rte 07621] [SWS_Rte_07638]
[SWS_Rte 07640] [SWS_Rte_07642]
[SWS_Rte 07654] [SWS_Rte 07662]
[SWS_Rte 07667] [SWS_Rte_07670]
[SWS_Rte 07681] [SWS_Rte 07686]
[SWS_Rte 07803] [SWS_Rte_07808]
[SWS_Rte 07809] [SWS_Rte_07810]
[SWS_Rte 07811][SWS_Rte 07812]
[SWS_Rte 07842] [SWS_Rte_07845]
[SWS_Rte 07927] [SWS_Rte 08072]
[SWS_Rte 08076] [SWS_Rte 08311]
[SWS_Rte 08417] [SWS_Rte_08700]
[SWS_Rte 08701] [SWS_Rte 08767]
[SWS_Rte 08768] [SWS_Rte 08788]
[SWS_Rte 08800]

[SRS_Rte_00019]

RTE is the communication
infrastructure

[SWS_Rte _01264] [SWS_Rte_02527]
[SWS_Rte 02528] [SWS_Rte_02610]
[SWS_Rte 02611] [SWS_Rte 02612]
[SWS_Rte 03000] [SWS_Rte_03001]
[SWS_Rte 03002] [SWS_Rte_03004]
[SWS_Rte 03005] [SWS_Rte_03007]
[SWS_Rte 03008] [SWS_Rte 03760]
[SWS_Rte 03761] [SWS_Rte_03762]
[SWS_Rte 03769] [SWS_Rte 03775]
[SWS_Rte 03776] [SWS_Rte_03795]
[SWS_Rte 03796] [SWS_Rte_04515]
[SWS_Rte 04516] [SWS_Rte_04520]
[SWS_Rte 04522] [SWS_Rte 04526]
[SWS_Rte 04527] [SWS_Rte_05065]
[SWS_Rte 05084] [SWS_Rte 05085]
[SWS_Rte_05500] [SWS_Rte_06000]
[SWS_Rte 06011] [SWS_Rte_06023]
[SWS_Rte 06024] [SWS_Rte_07662]
[SWS_Rte 08001] [SWS_Rte_08002]
[SWS_Rte 08586] [SWS_Rte 08587]

[SRS_Rte_00020]

Access to OS

[SWS_Rte_02250]

[SRS_Rte_00021]

Per-ECU RTE customization

[SWS_Rte_01316] [SWS_Rte_05000]

[SRS_Rte_00022]

Interaction with call-backs

[SWS_Rte 01165]

[SRS_Rte_00023]

RTE Overheads

[SWS_Rte_05053]

[SRS_Rte_00024]

Source-code AUTOSAR
software components

[SWS_Rte_01000] [SWS_Rte 01195]
[SWS_Rte 01315] [SWS_Rte_07120]

[SRS_Rte_00025]

Static communication

[SWS_Rte_06026]

[SRS_Rte_00027]

VFB to RTE mapping shall be
semantic preserving

[SWS_Rte_01274] [SWS_Rte_02200]
[SWS_Rte_02201] [SWS_Rte 02649]
[SWS_Rte_02651] [SWS_Rte 02653]
[SWS_Rte_02654] [SWS_Rte 02657]
[SWS_Rte_07346] [SWS_Rte_08700]
[SWS_Rte _08701] [SWS_Rte 08703]
[SWS_Rte_08705] [SWS_Rte 08707]
[SWS_Rte 08709]

AUTOSAR

[SRS_Rte_00028]

"1:n" Sender-receiver
communication

[SWS_Rte 01071] [SWS_Rte_01072]
[SWS_Rte 01082] [SWS_Rte_01091]
[SWS_Rte 01092] [SWS_Rte 01135]
[SWS_Rte 02631] [SWS_Rte_02633]
[SWS_Rte 02635] [SWS_Rte_04526]
[SWS_Rte 06023] [SWS_Rte_06024]
[SWS_Rte 07394] [SWS_Rte 07824]
[SWS_Rte 07825] [SWS_Rte_07826]
[SWS_Rte 07827] [SWS_Rte 08413]
[SWS_Rte 08414] [SWS_Rte_08415]
[SWS_Rte 08586] [SWS_Rte 08587]
[SWS_Rte 08592] [SWS_Rte 08593]
[SWS_Rte 08594] [SWS_Rte 08595]

[SRS_Rte_00029]

"n:1" Client-server
communication

[SWS_Rte _01102] [SWS_Rte_01109]
[SWS_Rte 01133] [SWS_Rte_01166]
[SWS_Rte 01359] [SWS_Rte_02579]
[SWS_Rte 03763] [SWS_Rte 03767]
[SWS_Rte 03768] [SWS_Rte_03769]
[SWS_Rte 03770] [SWS_Rte_04517]
[SWS_Rte 04519] [SWS_Rte 05111]
[SWS_Rte 05193] [SWS_Rte_06019]
[SWS_Rte 07023] [SWS_Rte_07024]
[SWS_Rte 07025] [SWS_Rte_07026]
[SWS_Rte 07027] [SWS_Rte_07845]
[SWS_Rte 08310]

[SRS_Rte_00031]

Multiple Runnable Entities

[SWS_Rte_01016] [SWS_Rte_01126]
[SWS_Rte_01130] [SWS_Rte 01132]
[SWS_Rte_02202] [SWS_Rte 06713]

[SRS_Rte_00032]

Data consistency mechanisms

[SWS_Rte 01122] [SWS_Rte_02740]
[SWS_Rte 02741] [SWS_Rte_02743]
[SWS_Rte 02744] [SWS_Rte_02745]
[SWS_Rte 02746] [SWS_Rte_03500]
[SWS_Rte 03503] [SWS_Rte 03504]
[SWS_Rte 03514] [SWS_Rte_03516]
[SWS_Rte 03517] [SWS_Rte 03519]
[SWS_Rte 03595] [SWS_Rte_03739]
[SWS_Rte 03740] [SWS_Rte_03812]
[SWS_Rte 05164] [SWS_Rte_07005]
[SWS_Rte 08318] [SWS_Rte 08319]
[SWS_Rte 08320] [SWS_Rte 08321]
[SWS_Rte 08322] [SWS_Rte 08419]

[SRS_Rte_00033]

Serialized execution of Server
Runnable Entities

[SWS_Rte _02527] [SWS_Rte_02528]
[SWS_Rte 02529] [SWS_Rte_02530]
[SWS_Rte 04515] [SWS_Rte 04518]
[SWS_Rte_04522] [SWS_Rte_07008]
[SWS_Rte 08001] [SWS_Rte_08002]

[SRS_Rte_00036]

Assignment to OS Applications

[SWS_Rte_07347]

AUTOSAR

[SRS_Rte 00045] Standardized VFB tracing [SWS_Rte_01238] [SWS_Rte_01239]
interface [SWS_Rte_01240] [SWS_Rte_01241]
[SWS_Rte_01242] [SWS_Rte_01243]
[SWS_Rte 01244] [SWS_Rte 01245]
[SWS_Rte 01246] [SWS_Rte 01247]
[SWS_Rte 01248] [SWS_Rte 01249]
[SWS_Rte _01250] [SWS_Rte _01251]
[SWS_Rte_01319] [SWS_Rte_01321]
[SWS_Rte_01326] [SWS_Rte_03814]
[SWS_Rte 06032] [SWS_Rte 07639]

[SRS_Rte_00046] Support for "Executable Entity [SWS_Rte_01120] [SWS_Rte_01122]
runs inside" Exclusive Areas [SWS_Rte_01123] [SWS_Rte_02740]
[SWS_Rte_02741] [SWS_Rte_02743]
[SWS_Rte_02744] [SWS_Rte_02745]
[SWS_Rte_02746] [SWS_Rte_03500]
[SWS_Rte_03515] [SWS_Rte_07250]
[SWS_Rte _07251] [SWS_Rte_07252]
[SWS_Rte_07253] [SWS_Rte_07254]
[SWS_Rte_07522] [SWS_Rte_07523]
[SWS_Rte_07524] [SWS_Rte_07578]
[SWS_Rte_07579] [SWS_Rte_08318]
[SWS_Rte_08319] [SWS_Rte_08320]
[SWS_Rte_08321] [SWS_Rte_08322]

[SRS_Rte 00048] RTE Generator input [SWS_Rte_08769] [SWS_Rte_08770]
[SWS_Rte_08771] [SWS_Rte_08772]
[SWS_Rte_08773] [SWS_Rte_08774]
[SWS_Rte_08775] [SWS_Rte_08776]

[SRS_Rte_00049] Construction of task bodies [SWS_Rte_02204] [SWS_Rte_02254]
[SWS_Rte_06200] [SWS_Rte_06201]
[SWS_Rte_07516] [SWS_Rte_08417]

[SRS_Rte 00051] RTE API mapping [SWS_Rte_01053] [SWS_Rte_01055]
[SWS_Rte_01119] [SWS_Rte_01123]
[SWS_Rte_01132] [SWS_Rte_01146]
[SWS_Rte_01148] [SWS_Rte_01153]
[SWS_Rte 01156] [SWS_Rte 01159]
[SWS_Rte 01197] [SWS_Rte 01266]
[SWS_Rte 01268] [SWS_Rte_01269]
[SWS_Rte_01274] [SWS_Rte_01280]
[SWS_Rte_01281] [SWS_Rte_01282]
[SWS_Rte 01283] [SWS_Rte 01284]
[SWS_Rte 01285] [SWS_Rte 01286]
[SWS_Rte 01287] [SWS_Rte_01288]
[SWS_Rte_01289] [SWS_Rte_01290]
[SWS_Rte_01293] [SWS_Rte_01294]
[SWS_Rte 01296] [SWS_Rte 01297]
[SWS_Rte 01298] [SWS_Rte 01299]
[SWS_Rte 01300] [SWS_Rte 01301]
[SWS_Rte 01302] [SWS_Rte_01303]
[SWS_Rte_01304] [SWS_Rte_01305]
[SWS_Rte_01306] [SWS_Rte_01307]
[SWS_Rte 01308] [SWS_Rte 01309]
[SWS_Rte 01310] [SWS_Rte 01312]
[SWS_Rte 01313] [SWS_Rte_01342]
[SWS_Rte_01343] [SWS_Rte_01349]

AUTOSAR

[SWS_Rte 01354] [SWS_Rte 01355]
[SWS_Rte 01363] [SWS_Rte_01364]
[SWS_Rte 01365] [SWS_Rte_01366]
[SWS_Rte 02301] [SWS_Rte_02302]
[SWS_Rte 02588] [SWS_Rte_02589]
[SWS_Rte 02607] [SWS_Rte_02608]
[SWS_Rte 02613] [SWS_Rte 02614]
[SWS_Rte 02615] [SWS_Rte_02616]
[SWS_Rte 02617] [SWS_Rte 02618]
[SWS_Rte 02619] [SWS_Rte_02620]
[SWS_Rte 02621] [SWS_Rte_02623]
[SWS_Rte 02632] [SWS_Rte_02666]
[SWS_Rte 02676] [SWS_Rte_02677]
[SWS_Rte 02678] [SWS_Rte 02679]
[SWS_Rte 02730] [SWS_Rte_03014]
[SWS_Rte 03562] [SWS_Rte_03567]
[SWS_Rte 03602] [SWS_Rte 03603]
[SWS_Rte 03605] [SWS_Rte_03706]
[SWS_Rte 03707] [SWS_Rte 03716]
[SWS_Rte 03717] [SWS_Rte 03718]
[SWS_Rte 03719] [SWS_Rte_03720]
[SWS_Rte 03721] [SWS_Rte_03723]
[SWS_Rte 03725] [SWS_Rte 03726]
[SWS_Rte 03730] [SWS_Rte 03731]
[SWS_Rte 03733] [SWS_Rte 03734]
[SWS_Rte 03739] [SWS_Rte_03740]
[SWS_Rte 03746] [SWS_Rte_03752]
[SWS_Rte 03791] [SWS_Rte_03799]
[SWS_Rte 03801] [SWS_Rte 03812]
[SWS_Rte 03835] [SWS_Rte 03837]
[SWS_Rte 03927] [SWS_Rte_03930]
[SWS_Rte 03949] [SWS_Rte_03952]
[SWS_Rte 05510] [SWS_Rte 05511]
[SWS_Rte 06205] [SWS_Rte_06208]
[SWS_Rte 06209] [SWS_Rte 06639]
[SWS_Rte 06713] [SWS_Rte_06817]
[SWS_Rte 06818] [SWS_Rte_06819]
[SWS_Rte 06820] [SWS_Rte_06821]
[SWS_Rte 06823] [SWS_Rte 06827]
[SWS_Rte 06831] [SWS_Rte 07137]
[SWS_Rte 07138] [SWS_Rte 07170]
[SWS_Rte 07225] [SWS_Rte_07226]
[SWS_Rte 07227] [SWS_Rte_07228]
[SWS_Rte 07291] [SWS_Rte_07395]
[SWS_Rte 07396] [SWS_Rte_07416]
[SWS_Rte 07677] [SWS_Rte_07837]
[SWS_Rte 07838] [SWS_Rte_07839]
[SWS_Rte 07850] [SWS_Rte_07851]

AUTOSAR

[SWS_Rte 08073] [SWS_Rte 08091]
[SWS_Rte 08092] [SWS_Rte_08093]
[SWS_Rte 08094] [SWS_Rte 08309]
[SWS_Rte 08312] [SWS_Rte 08777]
[SWS_Rte 08778] [SWS_Rte_08779]
[SWS_Rte 08780] [SWS_Rte_08781]
[SWS_Rte 08782] [SWS_Rte 08783]
[SWS_Rte 08784] [SWS_Rte_08785]
[SWS_Rte 08786]

[SRS_Rte_00052]

Initialization and finalization of
components

[SWS_Rte _02503] [SWS_Rte_02562]
[SWS_Rte 02564] [SWS_Rte 02707]
[SWS_Rte 03852] [SWS_Rte_07046]

[SRS_Rte_00055]

RTE use of global namespace

[SWS_Rte 01171] [SWS_Rte_06706]
[SWS_Rte 06707] [SWS_Rte 06708]
[SWS_Rte_06812] [SWS_Rte_06813]
[SWS_Rte_07036] [SWS_Rte_07037]
[SWS_Rte 07104] [SWS_Rte_07109]
[SWS_Rte 07110] [SWS_Rte 07111]
[SWS_Rte 07114] [SWS_Rte_07115]
[SWS_Rte 07116] [SWS_Rte 07117]
[SWS_Rte 07118] [SWS_Rte _07119]
[SWS_Rte 07144] [SWS_Rte_07145]
[SWS_Rte 07146] [SWS_Rte 07148]
[SWS_Rte 07149] [SWS_Rte 07162]
[SWS_Rte 07163] [SWS_Rte 07166]
[SWS_Rte 07284]

[SRS_Rte_00059]

RTE API shall pass "in" primitive
data types by value

[SWS_Rte 01017] [SWS_Rte_01020]
[SWS_Rte 06805] [SWS_Rte_06807]
[SWS_Rte 07069] [SWS_Rte_07070]
[SWS_Rte 07071] [SWS_Rte_07072]
[SWS_Rte 07073] [SWS_Rte_07074]
[SWS_Rte 07076] [SWS_Rte_07077]
[SWS_Rte 07078] [SWS_Rte_07079]
[SWS_Rte 07080] [SWS_Rte_07081]
[SWS_Rte 07083] [SWS_Rte_07084]
[SWS_Rte 07661] [SWS_Rte_08300]

[SRS_Rte_00060]

RTE API shall pass "in"
composite data types by
reference

[SWS_Rte 01018] [SWS_Rte_05107]
[SWS_Rte 05108] [SWS_Rte_06804]
[SWS_Rte 06807] [SWS_Rte_07082]
[SWS_Rte 07084] [SWS_Rte_07086]

[SRS_Rte_00061]

"in/out" and "out" parameters

[SWS_Rte 01017] [SWS_Rte_01018]
[SWS_Rte 01019] [SWS_Rte_01020]
[SWS_Rte 05107] [SWS_Rte_05108]
[SWS_Rte 05109] [SWS_Rte_06806]
[SWS_Rte 07082] [SWS_Rte_07083]
[SWS_Rte 07084] [SWS_Rte 07661]

[SRS_Rte_00062]

Local access to basic software
components

[SWS_Rte_02051]

[SRS_Rte_00065]

Deterministic generation

[SWS_Rte 02514] [SWS_Rte_05150]

[SRS_Rte_00068]

Signal initial values

[SWS_Rte 02517] [SWS_Rte_03852]
[SWS_Rte 05078] [SWS_Rte_07046]
[SWS_Rte 07642] [SWS_Rte_07668]
[SWS_Rte 08311]

AUTOSAR

[SRS_Rte_00069]

Communication timeouts

[SWS_Rte 01064] [SWS_Rte_01095]
[SWS_Rte 01107] [SWS_Rte_01114]
[SWS_Rte 03754] [SWS_Rte 03758]
[SWS_Rte 03759] [SWS_Rte_03763]
[SWS_Rte 03767] [SWS_Rte_03768]
[SWS_Rte 03770] [SWS_Rte 03771]
[SWS_Rte 03772] [SWS_Rte 03773]
[SWS_Rte 06002] [SWS_Rte 06013]
[SWS_Rte 07056] [SWS_Rte_07059]
[SWS_Rte 07060] [SWS_Rte_08310]

[SRS_Rte_00070]

Invocation order of Runnable
Entities

[SWS_Rte_02207]

[SRS_Rte_00072]

Activation of Runnable Entities

[SWS_Rte 01131] [SWS_Rte_01133]
[SWS_Rte 01135] [SWS_Rte 01137]
[SWS_Rte 01166] [SWS_Rte 01292]
[SWS_Rte 01359] [SWS_Rte_02203]
[SWS_Rte 02512] [SWS_Rte_02697]
[SWS_Rte 02758] [SWS_Rte_03520]
[SWS_Rte 03523] [SWS_Rte_03524]
[SWS_Rte 03526] [SWS_Rte 03527]
[SWS_Rte 03530] [SWS_Rte 03531]
[SWS_Rte 03532] [SWS_Rte_05193]
[SWS_Rte 06748] [SWS_Rte_06759]
[SWS_Rte 06760] [SWS_Rte 06771]
[SWS_Rte 07023] [SWS_Rte_07024]
[SWS_Rte 07025] [SWS_Rte 07026]
[SWS_Rte 07027] [SWS_Rte_07061]
[SWS_Rte 07177] [SWS_Rte_07178]
[SWS_Rte 07207] [SWS_Rte_07208]
[SWS_Rte 07379] [SWS_Rte_07403]
[SWS_Rte 07515] [SWS_Rte_07575]
[SWS_Rte 08791]

[SRS_Rte_00073]

Atomic transport of Data
Elements

[SWS_Rte_04527]

[SRS_Rte_00075]

API for accessing per-instance
memory

[SWS_Rte 01118] [SWS_Rte 01119]
[SWS_Rte 06203] [SWS_Rte 06204]
[SWS_Rte_06205]

[SRS_Rte_00077]

Instantiation of per-instance
memory

[SWS_Rte_02303] [SWS_Rte_02304]
[SWS_Rte 02305] [SWS_Rte_03782]
[SWS_Rte 05062] [SWS_Rte_07045]
[SWS_Rte 07133] [SWS_Rte 07161]
[SWS_Rte 07182] [SWS_Rte 07183]
[SWS_Rte 07184] [SWS_Rte_08303]
[SWS_Rte 08304]

AUTOSAR

[SRS_Rte_00078]

Support for Data Element
Invalidation

[SWS_Rte 01206] [SWS_Rte_01282]
[SWS_Rte 02309] [SWS_Rte_02589]
[SWS_Rte 02590] [SWS_Rte 02594]
[SWS_Rte_02599] [SWS_Rte_02600]
[SWS_Rte 02603] [SWS_Rte_02607]
[SWS_Rte 02609] [SWS_Rte_02626]
[SWS_Rte 02629] [SWS_Rte_02666]
[SWS_Rte 02702] [SWS_Rte 03778]
[SWS_Rte 03800] [SWS_Rte 03801]
[SWS_Rte 03802] [SWS_Rte_05024]
[SWS_Rte 05025] [SWS_Rte_05026]
[SWS_Rte 05030] [SWS_Rte_05032]
[SWS_Rte 05048] [SWS_Rte_05049]
[SWS_Rte 05064] [SWS_Rte 06727]
[SWS_Rte 06820] [SWS_Rte_06821]
[SWS_Rte 06822] [SWS_Rte_06823]
[SWS_Rte 06824] [SWS_Rte 06825]
[SWS_Rte 06829] [SWS_Rte_07031]
[SWS_Rte 07032] [SWS_Rte 08004]
[SWS_Rte_08005] [SWS_Rte_08007]
[SWS_Rte 08008] [SWS_Rte_08009]
[SWS_Rte 08046] [SWS_Rte_08047]
[SWS_Rte 08048] [SWS_Rte_08049]
[SWS_Rte 08050] [SWS_Rte_08096]
[SWS_Rte 08097] [SWS_Rte_08098]
[SWS_Rte 08099] [SWS_Rte_08100]
[SWS_Rte 08101] [SWS_Rte 08102]
[SWS_Rte 08405] [SWS_Rte_08406]
[SWS_Rte 08407] [SWS_Rte 08501]

[SRS_Rte_00079]

Single asynchronous
client-server interaction

[SWS_Rte 01105] [SWS_Rte_01109]
[SWS_Rte 01133] [SWS_Rte_01166]
[SWS_Rte 01359] [SWS_Rte_02658]
[SWS_Rte 03765] [SWS_Rte_03766]
[SWS_Rte 03771] [SWS_Rte 03772]
[SWS_Rte 05193] [SWS_Rte_07023]
[SWS_Rte 07024] [SWS_Rte_07025]
[SWS_Rte 07026] [SWS_Rte_07027]
[SWS_Rte 08800]

[SRS_Rte_00080]

Multiple requests of servers

[SWS_Rte _03769] [SWS_Rte_04516]
[SWS_Rte 04520]

[SRS_Rte_00082]

Standardized communication
protocol

[SWS_Rte 02579] [SWS_Rte_02649]
[SWS_Rte 02651] [SWS_Rte_02653]
[SWS_Rte 02654] [SWS_Rte_02655]
[SWS_Rte 02656] [SWS_Rte_02657]
[SWS_Rte 05111] [SWS_Rte_07346]
[SWS_Rte 07413] [SWS_Rte_08700]
[SWS_Rte 08701] [SWS_Rte 08703]
[SWS_Rte 08705] [SWS_Rte_08707]
[SWS_Rte 08709] [SWS_Rte 08711]
[SWS_Rte 08712]

[SRS_Rte_00083]

Optimization for source-code
components

[SWS_Rte_01152] [SWS_Rte 01274]

[SRS_Rte_00084]

Support infrastructural errors

[SWS_Rte 01318] [SWS_Rte_02593]

AUTOSAR

[SRS_Rte_00087]

Software Module Header File
generation

[SWS_Rte_01000] [SWS_Rte_01004]
[SWS_Rte 01006] [SWS_Rte_01132]
[SWS_Rte 01274] [SWS_Rte 03786]
[SWS_Rte 05078] [SWS_Rte_06703]
[SWS_Rte 06704] [SWS_Rte_06705]
[SWS_Rte 06713] [SWS_Rte 07127]
[SWS_Rte 07131][SWS_Rte 07924]

[SRS_Rte_00089]

Independent access to interface
elements

[SWS_Rte_06008]

[SRS_Rte_00091]

Inter-ECU Marshalling

[SWS_Rte 02557] [SWS_Rte_03863]
[SWS_Rte 03864] [SWS_Rte_03865]
[SWS_Rte 04504] [SWS_Rte_04505]
[SWS_Rte 04508] [SWS_Rte_04527]
[SWS_Rte 05081] [SWS_Rte 05173]
[SWS_Rte 07413] [SWS_Rte_08546]
[SWS_Rte 08547] [SWS_Rte_08548]
[SWS_Rte 08549] [SWS_Rte_08551]
[SWS_Rte 08552] [SWS_Rte 08553]
[SWS_Rte 08554] [SWS_Rte_08555]
[SWS_Rte 08556] [SWS_Rte 08557]
[SWS_Rte 08572] [SWS_Rte 08573]
[SWS_Rte 08576] [SWS_Rte_08577]
[SWS_Rte 08578] [SWS_Rte_08579]
[SWS_Rte 08580] [SWS_Rte 08581]
[SWS_Rte 08591] [SWS_Rte_08700]
[SWS_Rte 08701] [SWS_Rte 08703]
[SWS_Rte 08705] [SWS_Rte_08707]
[SWS_Rte 08709] [SWS_Rte 08711]
[SWS_Rte 08712] [SWS_Rte_08725]
[SWS_Rte 08726] [SWS_Rte 08727]
[SWS_Rte 08728] [SWS_Rte 08729]
[SWS_Rte 08731] [SWS_Rte 08793]

[SRS_Rte_00092]

Implementation of VFB model
"waitpoints"

[SWS_Rte 01358] [SWS_Rte_02740]
[SWS_Rte 02741] [SWS_Rte_02743]
[SWS_Rte 02744] [SWS_Rte 02745]
[SWS_Rte 02746] [SWS_Rte_03010]
[SWS_Rte 03018] [SWS_Rte_07402]
[SWS_Rte 07846] [SWS_Rte_07847]
[SWS_Rte 08318] [SWS_Rte 08319]
[SWS_Rte 08320] [SWS_Rte 08321]
[SWS_Rte 08322]

[SRS_Rte_00094]

Communication and Resource
Errors

[SWS_Rte 01034] [SWS_Rte_01084]
[SWS_Rte 01086] [SWS_Rte_01093]
[SWS_Rte 01094] [SWS_Rte_01095]
[SWS_Rte 01103] [SWS_Rte_01104]
[SWS_Rte 01105] [SWS_Rte_01106]
[SWS_Rte 01107] [SWS_Rte 01112]
[SWS_Rte 01113] [SWS_Rte 01114]
[SWS_Rte 01207] [SWS_Rte_01259]
[SWS_Rte 01260] [SWS_Rte _01261]
[SWS_Rte 01262] [SWS_Rte_01318]
[SWS_Rte 01330] [SWS_Rte 01331]
[SWS_Rte 01333] [SWS_Rte_01334]

AUTOSAR

[SWS_Rte 01339] [SWS_Rte 01344]
[SWS_Rte 02524] [SWS_Rte_02525]
[SWS_Rte 02571] [SWS_Rte 02572]
[SWS_Rte 02578] [SWS_Rte_02598]
[SWS_Rte 02602] [SWS_Rte_02674]
[SWS_Rte_02721] [SWS_Rte_02727]
[SWS_Rte 02728] [SWS_Rte 02729]
[SWS_Rte 03606] [SWS_Rte 03774]
[SWS_Rte 03785] [SWS_Rte 03853]
[SWS_Rte 06828] [SWS_Rte_06830]
[SWS_Rte 07258] [SWS_Rte_07374]
[SWS_Rte 07375] [SWS_Rte_07376]
[SWS_Rte 07392] [SWS_Rte 07393]
[SWS_Rte 07636] [SWS_Rte_07637]
[SWS_Rte 07650] [SWS_Rte_07651]
[SWS_Rte 07652] [SWS_Rte_07659]
[SWS_Rte 07660] [SWS_Rte 07673]
[SWS_Rte 07820] [SWS_Rte 07821]
[SWS_Rte 07822] [SWS_Rte 07823]
[SWS_Rte 07848] [SWS_Rte_07849]
[SWS_Rte 08301] [SWS_Rte_08302]
[SWS_Rte 08546] [SWS_Rte_08547]
[SWS_Rte 08548] [SWS_Rte 08549]
[SWS_Rte 08552] [SWS_Rte_08553]
[SWS_Rte 08554] [SWS_Rte 08555]
[SWS_Rte 08556] [SWS_Rte_08557]
[SWS_Rte 08572] [SWS_Rte 08573]
[SWS_Rte 08576] [SWS_Rte 08577]
[SWS_Rte 08578] [SWS_Rte 08579]
[SWS_Rte 08580] [SWS_Rte 08581]
[SWS_Rte 08591] [SWS_Rte 08727]
[SWS_Rte 08728] [SWS_Rte_08729]

[SRS_Rte_00098]

Explicit Sending

[SWS_Rte 01071] [SWS_Rte_06011]
[SWS_Rte 06016]

[SRS_Rte_00099]

Decoupling of interrupts

[SWS_Rte_03530] [SWS_Rte_03531]
[SWS_Rte 03532] [SWS_Rte 03594]
[SWS_Rte_03600]

[SRS_Rte_00100]

Compiler independent API

[SWS_Rte 01314]

[SRS_Rte_00107]

Support for
INFORMATION_TYPE attribute

[SWS_Rte 01135] [SWS_Rte 01137]
[SWS_Rte 01331] [SWS_Rte 02516]
[SWS_Rte 02518] [SWS_Rte_02520]
[SWS_Rte 02521] [SWS_Rte 02522]
[SWS_Rte 02523] [SWS_Rte 02524]
[SWS_Rte 02525] [SWS_Rte 02571]
[SWS_Rte 02572] [SWS_Rte 02718]
[SWS_Rte 02719] [SWS_Rte_02720]
[SWS_Rte 02721] [SWS_Rte_02758]
[SWS_Rte 04500] [SWS_Rte_06010]
[SWS_Rte 06771]

[SRS_Rte_00108]

Support for INIT_VALUE
attribute

[SWS_Rte _01268] [SWS_Rte_02517]
[SWS_Rte 04501] [SWS_Rte_04502]
[SWS_Rte 05078] [SWS_Rte_06009]
[SWS_Rte 07642] [SWS_Rte_07668]
[SWS_Rte 07680] [SWS_Rte 07681]
[SWS_Rte 08311]

AUTOSAR

[SRS_Rte_00109]

Support for RECEIVE_MODE
attribute

[SWS_Rte_02519] [SWS_Rte_03018]
[SWS_Rte_06002] [SWS_Rte_06012]

[SRS_Rte_00110]

Support for BUFFERING
attribute

[SWS_Rte 01331] [SWS_Rte_02515]
[SWS_Rte 02522] [SWS_Rte_02523]
[SWS_Rte 02524] [SWS_Rte_02525]
[SWS_Rte 02526] [SWS_Rte 02527]
[SWS_Rte 02529] [SWS_Rte_02530]
[SWS_Rte 02571] [SWS_Rte_02572]
[SWS_Rte 02719] [SWS_Rte_02720]
[SWS_Rte 02721] [SWS_Rte_02723]
[SWS_Rte 07008]

[SRS_Rte 00111]

Support for CLIENT_MODE
attribute

[SWS_Rte 01293] [SWS_Rte_01294]
[SWS_Rte 06639]

[SRS_Rte_00115]

API for data consistency
mechanism

[SWS_Rte 01120] [SWS_Rte_01122]
[SWS_Rte 01307] [SWS_Rte_01308]

[SRS_Rte_00116]

RTE Initialization and finalization

[SWS_Rte_02535] [SWS_Rte_02536]
[SWS_Rte 02538] [SWS_Rte 02544]
[SWS_Rte 02569] [SWS_Rte_02570]
[SWS_Rte 02584] [SWS_Rte_02585]
[SWS_Rte 03852] [SWS_Rte_06766]
[SWS_Rte 06767] [SWS_Rte_07046]
[SWS_Rte 07270] [SWS_Rte_07586]

[SRS_Rte_00121]

Support for FILTER attribute

[SWS_Rte_05500] [SWS_Rte_05501]
[SWS_Rte 05503] [SWS_Rte 08077]
[SWS_Rte 08078] [SWS_Rte_08079]

[SRS_Rte_00122]

Support for Transmission
Acknowledgement

[SWS_Rte_01080] [SWS_Rte_01083]
[SWS_Rte 01084] [SWS_Rte_01086]
[SWS_Rte 01137] [SWS_Rte_01283]
[SWS_Rte 01284] [SWS_Rte 01285]
[SWS_Rte 01286] [SWS_Rte_01287]
[SWS_Rte 01344] [SWS_Rte_02612]
[SWS_Rte 02676] [SWS_Rte_02677]
[SWS_Rte 02678] [SWS_Rte 02725]
[SWS_Rte 02727] [SWS_Rte_02729]
[SWS_Rte 02758] [SWS_Rte 03002]
[SWS_Rte_03005] [SWS_Rte_03604]
[SWS_Rte 03754] [SWS_Rte_03756]
[SWS_Rte 03757] [SWS_Rte_03758]
[SWS_Rte 03774] [SWS_Rte 03775]
[SWS_Rte 03776] [SWS_Rte_05065]
[SWS_Rte 05084] [SWS_Rte_05085]
[SWS_Rte 05504] [SWS_Rte_06771]
[SWS_Rte 07055] [SWS_Rte_07286]
[SWS_Rte 07367] [SWS_Rte_07374]
[SWS_Rte 07375] [SWS_Rte_07376]
[SWS_Rte 07379] [SWS_Rte_07557]
[SWS_Rte 07558] [SWS_Rte_07560]
[SWS_Rte 07561] [SWS_Rte_07634]
[SWS_Rte 07635] [SWS_Rte_07636]

AUTOSAR

[SWS_Rte 07637] [SWS_Rte 07646]
[SWS_Rte 07647] [SWS_Rte_07648]
[SWS_Rte 07650] [SWS_Rte 07651]
[SWS_Rte 07652] [SWS_Rte_07659]
[SWS_Rte 07660] [SWS_Rte_07846]
[SWS_Rte 07847] [SWS_Rte_07848]
[SWS_Rte 07849] [SWS_Rte_07850]
[SWS_Rte 07851] [SWS_Rte_07927]
[SWS_Rte 08017] [SWS_Rte 08018]
[SWS_Rte 08020] [SWS_Rte_08021]
[SWS_Rte 08022] [SWS_Rte_08023]
[SWS_Rte 08043] [SWS_Rte_08044]
[SWS_Rte 08045] [SWS_Rte 08074]
[SWS_Rte 08075] [SWS_Rte_08076]
[SWS_Rte 08583]

server to client

[SRS_Rte 00123] The RTE shall forward
application level errors from

[SWS_Rte 01103] [SWS_Rte_02576]
[SWS_Rte 02577] [SWS_Rte_02578]
[SWS_Rte 02593] [SWS_Rte 07925]
[SWS_Rte_07926] [SWS_Rte_08705]
[SWS_Rte 08709]

communication

[SRS_Rte_00124] API for application level errors
during Client Server

[SWS_Rte_01103] [SWS_Rte_01130]
[SWS_Rte 02573] [SWS_Rte_02575]

[SRS_Rte_00126] C language support

[SWS_Rte_01005] [SWS_Rte_01162]
[SWS_Rte 01167] [SWS_Rte 01169]
[SWS_Rte 03709] [SWS_Rte_03710]
[SWS_Rte 03724] [SWS_Rte_07124]
[SWS_Rte 07125] [SWS_Rte_07126]
[SWS_Rte 07297] [SWS_Rte_07298]
[SWS_Rte 07299] [SWS_Rte 07507]
[SWS_Rte 07508] [SWS_Rte_07509]
[SWS_Rte 07678] [SWS_Rte_07923]

[SRS_Rte 00128] Implicit Reception

[SWS_Rte_01268] [SWS_Rte_03598]
[SWS_Rte 03599] [SWS_Rte 03741]
[SWS_Rte 03954] [SWS_Rte_03955]
[SWS_Rte 03956] [SWS_Rte_06000]
[SWS_Rte 06001] [SWS_Rte_06004]
[SWS_Rte 06011] [SWS_Rte_07007]
[SWS_Rte 07020] [SWS_Rte_07062]
[SWS_Rte 07063] [SWS_Rte_07064]
[SWS_Rte 07652] [SWS_Rte_08408]

[SRS_Rte 00129] Implicit Sending

[SWS_Rte 03570] [SWS_Rte 03571]
[SWS_Rte 03572] [SWS_Rte 03573]
[SWS_Rte 03574] [SWS_Rte_03598]
[SWS_Rte 03744] [SWS_Rte_03746]
[SWS_Rte 03953] [SWS_Rte 03954]
[SWS_Rte 03955] [SWS_Rte_03957]
[SWS_Rte 05509] [SWS_Rte 06011]
[SWS_Rte_07007] [SWS_Rte_07021]
[SWS_Rte 07041] [SWS_Rte_07062]
[SWS_Rte 07065] [SWS_Rte_07066]
[SWS_Rte 07067] [SWS_Rte_07068]
[SWS_Rte 07367] [SWS_Rte 07374]

AUTOSAR

[SWS_Rte 07375] [SWS_Rte 07376]
[SWS_Rte 07646] [SWS_Rte_07647]
[SWS_Rte 07648] [SWS_Rte_07650]
[SWS_Rte 07651] [SWS_Rte_07660]
[SWS_Rte 08408] [SWS_Rte_08418]

[SRS_Rte_00131]

"n:1" Sender-receiver
communication

[SWS_Rte 01071] [SWS_Rte_01072]
[SWS_Rte 01091] [SWS_Rte _01092]
[SWS_Rte 01135] [SWS_Rte_02631]
[SWS_Rte 02633] [SWS_Rte_02635]
[SWS_Rte 02670] [SWS_Rte_03760]
[SWS_Rte 03761] [SWS_Rte 03762]
[SWS_Rte 07394] [SWS_Rte 07824]
[SWS_Rte 07825] [SWS_Rte_07826]
[SWS_Rte 07827] [SWS_Rte_08788]

[SRS_Rte_00133]

Concurrent invocation of
Runnable Entities

[SWS_Rte_02697] [SWS_Rte_03523]
[SWS_Rte 07007]

[SRS_Rte_00134]

Runnable Entity categories
supported by the RTE

[SWS_Rte_03574] [SWS_Rte_03954]
[SWS_Rte_06003] [SWS_Rte_06007]
[SWS_Rte_07062]

[SRS_Rte _00137]

API for mismatched ports

[SWS_Rte_01368] [SWS_Rte_01369]
[SWS_Rte 01370]

[SRS_Rte_00138]

C++ language support

[SWS_Rte _01005] [SWS_Rte_01011]
[SWS_Rte 03709] [SWS_Rte_03710]
[SWS_Rte 07124] [SWS_Rte 07125]
[SWS_Rte 07126] [SWS_Rte_07297]
[SWS_Rte 07298] [SWS_Rte_07299]
[SWS_Rte 07507] [SWS_Rte_07508]
[SWS_Rte 07509]

[SRS_Rte_00139]

Support for unconnected ports

[SWS_Rte 01329] [SWS_Rte_01330]
[SWS_Rte 01331] [SWS_Rte 01332]
[SWS_Rte 01333] [SWS_Rte_01334]
[SWS_Rte 01344] [SWS_Rte_01346]
[SWS_Rte 01347] [SWS_Rte 01375]
[SWS_Rte 02638] [SWS_Rte_02639]
[SWS_Rte 02640] [SWS_Rte 02641]
[SWS_Rte 02642] [SWS_Rte_02749]
[SWS_Rte 02750] [SWS_Rte_03019]
[SWS_Rte 03783] [SWS_Rte_03784]
[SWS_Rte 03785] [SWS_Rte 03978]
[SWS_Rte 03980] [SWS_Rte_05099]
[SWS_Rte 05101] [SWS_Rte 05102]
[SWS_Rte_05170] [SWS_Rte_06030]
[SWS_Rte 07378] [SWS_Rte_07655]
[SWS_Rte 07659] [SWS_Rte_07660]
[SWS_Rte 07663] [SWS_Rte 07667]
[SWS_Rte 07668] [SWS_Rte_07669]
[SWS_Rte 07847]

[SRS_Rte_00140]

Binary-code AUTOSAR software
components

[SWS_Rte_01000] [SWS_Rte_01195]
[SWS_Rte 01315] [SWS_Rte_07120]

[SRS_Rte_00141]

Explicit Reception

[SWS_Rte 01072] [SWS_Rte_01091]
[SWS_Rte 01092] [SWS_Rte_06011]
[SWS_Rte 07394] [SWS_Rte 07673]

AUTOSAR

[SRS_Rte_00142]

Support for InterRunnable
Variables

[SWS_Rte 01303] [SWS_Rte_01304]
[SWS_Rte 01305] [SWS_Rte_01306]
[SWS_Rte 01350] [SWS_Rte 01351]
[SWS_Rte 02636] [SWS_Rte_03516]
[SWS_Rte 03517] [SWS_Rte_03519]
[SWS_Rte 03550] [SWS_Rte_03553]
[SWS_Rte 03560] [SWS_Rte 03562]
[SWS_Rte 03565] [SWS_Rte 03567]
[SWS_Rte 03580] [SWS_Rte 03582]
[SWS_Rte 03583] [SWS_Rte_03584]
[SWS_Rte 03589] [SWS_Rte 06207]
[SWS_Rte 06208] [SWS_Rte_07007]
[SWS_Rte 07022] [SWS_Rte 07187]

[SRS_Rte_00143]

Mode Switches

[SWS_Rte_02500] [SWS_Rte_02503]
[SWS_Rte 02504] [SWS_Rte 02512]
[SWS_Rte 02544] [SWS_Rte_02546]
[SWS_Rte 02562] [SWS_Rte 02563]
[SWS_Rte 02564] [SWS_Rte_02587]
[SWS_Rte 02630] [SWS_Rte_02631]
[SWS_Rte 02634] [SWS_Rte 02661]
[SWS_Rte 02662] [SWS_Rte_02663]
[SWS_Rte 02664] [SWS_Rte_02665]
[SWS_Rte 02667] [SWS_Rte_02668]
[SWS_Rte 02669] [SWS_Rte_02675]
[SWS_Rte 02679] [SWS_Rte_02706]
[SWS_Rte 02707] [SWS_Rte 02708]
[SWS_Rte 02730] [SWS_Rte_06766]
[SWS_Rte 06767] [SWS_Rte 06768]
[SWS_Rte 06769] [SWS_Rte_06770]
[SWS_Rte 06772] [SWS_Rte_06773]
[SWS_Rte 06774] [SWS_Rte_06775]
[SWS_Rte 06776] [SWS_Rte 06777]
[SWS_Rte 06778] [SWS_Rte_06779]
[SWS_Rte 06780] [SWS_Rte_06785]
[SWS_Rte 06786] [SWS_Rte_06787]
[SWS_Rte 06788] [SWS_Rte_06789]
[SWS_Rte 06790] [SWS_Rte 06791]
[SWS_Rte 06792] [SWS_Rte 06793]
[SWS_Rte 06794] [SWS_Rte 06795]
[SWS_Rte 06796] [SWS_Rte_06797]
[SWS_Rte 07056] [SWS_Rte_07057]
[SWS_Rte 07058] [SWS_Rte_07059]
[SWS_Rte 07060] [SWS_Rte_07150]
[SWS_Rte 07151] [SWS_Rte 07152]
[SWS_Rte 07153] [SWS_Rte_07154]
[SWS_Rte 07155] [SWS_Rte_07157]
[SWS_Rte 07173] [SWS_Rte_07259]
[SWS_Rte 07533] [SWS_Rte_07535]
[SWS_Rte 07559] [SWS_Rte 07564]

AUTOSAR

[SRS_Rte_00144]

RTE shall support the
notification of mode switches via
AUTOSAR interfaces

[SWS_Rte 02508] [SWS_Rte_02544]
[SWS_Rte 02546] [SWS_Rte_02549]
[SWS_Rte 02566] [SWS_Rte 02567]
[SWS_Rte 02568] [SWS_Rte 02624]
[SWS_Rte 02627] [SWS_Rte_02628]
[SWS_Rte 02659] [SWS_Rte_02660]
[SWS_Rte 02732] [SWS_Rte 02738]
[SWS_Rte 03858] [SWS_Rte_03859]
[SWS_Rte 06742] [SWS_Rte 06743]
[SWS_Rte 06744] [SWS_Rte_06745]
[SWS_Rte 06746] [SWS_Rte 06747]
[SWS_Rte 06766] [SWS_Rte_06767]
[SWS_Rte 06772] [SWS_Rte 06773]
[SWS_Rte 06774] [SWS_Rte 06775]
[SWS_Rte 06776] [SWS_Rte_06777]
[SWS_Rte 06778] [SWS_Rte_06779]
[SWS_Rte 06780] [SWS_Rte 06781]
[SWS_Rte 06782] [SWS_Rte_06783]
[SWS_Rte 06784] [SWS_Rte 06785]
[SWS_Rte 06786] [SWS_Rte_06787]
[SWS_Rte 06788] [SWS_Rte_06789]
[SWS_Rte 06790] [SWS_Rte 06791]
[SWS_Rte 06792] [SWS_Rte 06793]
[SWS_Rte 06794] [SWS_Rte 06795]
[SWS_Rte 06796] [SWS_Rte 06797]
[SWS_Rte 07155] [SWS_Rte_07262]
[SWS_Rte 07540] [SWS_Rte_07640]
[SWS_Rte 07666] [SWS_Rte_08500]
[SWS_Rte 08504] [SWS_Rte 08505]
[SWS_Rte 08506] [SWS_Rte_08509]
[SWS_Rte 08510]

[SRS_Rte_00145]

Compatibility mode

[SWS_Rte 01151] [SWS_Rte _01216]
[SWS_Rte_01234] [SWS_Rte 01257]
[SWS_Rte_01277] [SWS_Rte 01279]
[SWS_Rte 01326] [SWS_Rte_03794]

[SRS_Rte_00146]

Vendor mode

[SWS_Rte_01234]

[SRS_Rte_00147]

Support for communication
infrastructure time-out
notification

[SWS_Rte_02589] [SWS_Rte_02590]
[SWS_Rte 02599] [SWS_Rte_02600]
[SWS_Rte 02604] [SWS_Rte 02607]
[SWS_Rte 02609] [SWS_Rte_02610]
[SWS_Rte 02611] [SWS_Rte_02629]
[SWS_Rte 02666] [SWS_Rte_02703]
[SWS_Rte 02710] [SWS_Rte_03759]
[SWS_Rte 05021] [SWS_Rte_06820]
[SWS_Rte 06821] [SWS_Rte 06822]
[SWS_Rte 06823] [SWS_Rte_06824]
[SWS_Rte 06825] [SWS_Rte_06829]
[SWS_Rte 08004] [SWS_Rte_08061]
[SWS_Rte 08062] [SWS_Rte 08103]
[SWS_Rte 08104] [SWS_Rte_08501]

AUTOSAR

[SRS_Rte_00148]

Support "Specification of
Memory Mapping"

[SWS_Rte 03788] [SWS_Rte_05088]
[SWS_Rte 05089] [SWS_Rte 06741]
[SWS_Rte 07047] [SWS_Rte 07048]
[SWS_Rte_07049] [SWS_Rte_07050]
[SWS_Rte 07051] [SWS_Rte_07052]
[SWS_Rte 07053] [SWS_Rte_07194]
[SWS_Rte 07195] [SWS_Rte 07589]
[SWS_Rte 07590] [SWS_Rte 07591]
[SWS_Rte 07592] [SWS_Rte_07593]
[SWS_Rte 07594] [SWS_Rte_07595]
[SWS_Rte 07596] [SWS_Rte_07830]
[SWS_Rte 07831] [SWS_Rte_07832]
[SWS_Rte 08787]

[SRS_Rte_00149]

Support "Specification of
Compiler Abstraction”

[SWS_Rte _01164] [SWS_Rte_03787]
[SWS_Rte 07194] [SWS_Rte_07195]
[SWS_Rte 07593] [SWS_Rte_07594]
[SWS_Rte 07595] [SWS_Rte_07596]
[SWS_Rte 07641]

[SRS_Rte_00150]

Support "Specification of
Platform Types"

[SWS_Rte 01164] [SWS_Rte_07641]

[SRS_Rte 00152]

Support for port-defined
argument values

[SWS_Rte 01166] [SWS_Rte_01360]

[SRS_Rte_00153]

Support for Measurement

[SWS_Rte _03900] [SWS_Rte_03901]
[SWS_Rte 03902] [SWS_Rte_03903]
[SWS_Rte 03904] [SWS_Rte_03950]
[SWS_Rte 03951] [SWS_Rte 03972]
[SWS_Rte 03973] [SWS_Rte 03974]
[SWS_Rte 03975] [SWS_Rte_03976]
[SWS_Rte 03977] [SWS_Rte 03978]
[SWS_Rte 03979] [SWS_Rte_03980]
[SWS_Rte 03981] [SWS_Rte_03982]
[SWS_Rte 05087] [SWS_Rte_05101]
[SWS_Rte 05102] [SWS_Rte_05120]
[SWS_Rte 05121] [SWS_Rte_05122]
[SWS_Rte 05123] [SWS_Rte_05124]
[SWS_Rte 05125] [SWS_Rte_05136]
[SWS_Rte 05168] [SWS_Rte_05169]
[SWS_Rte 05170] [SWS_Rte 05172]
[SWS_Rte 05174] [SWS_Rte_05175]
[SWS_Rte 05176] [SWS_Rte_06206]
[SWS_Rte 06700] [SWS_Rte_06701]
[SWS_Rte 06702] [SWS_Rte_06726]
[SWS_Rte 07160] [SWS_Rte_07174]
[SWS_Rte 07197] [SWS_Rte 07198]
[SWS_Rte 07344] [SWS_Rte_07349]

AUTOSAR

[SRS_Rte_00154]

Support for Calibration

[SWS_Rte 03835] [SWS_Rte_03905]
[SWS_Rte 03906] [SWS_Rte_03907]
[SWS_Rte 03908] [SWS_Rte 03909]
[SWS_Rte 03910] [SWS_Rte_03911]
[SWS_Rte 03912] [SWS_Rte 03913]
[SWS_Rte 03914] [SWS_Rte 03915]
[SWS_Rte 03916] [SWS_Rte 03922]
[SWS_Rte 03932] [SWS_Rte 03933]
[SWS_Rte 03934] [SWS_Rte 03935]
[SWS_Rte 03936] [SWS_Rte_03942]
[SWS_Rte 03943] [SWS_Rte 03947]
[SWS_Rte 03948] [SWS_Rte_03949]
[SWS_Rte 03958] [SWS_Rte_03959]
[SWS_Rte 03960] [SWS_Rte 03961]
[SWS_Rte 03962] [SWS_Rte_03963]
[SWS_Rte 03964] [SWS_Rte_03965]
[SWS_Rte 03968] [SWS_Rte 03970]
[SWS_Rte 03971] [SWS_Rte 05112]
[SWS_Rte 05145] [SWS_Rte 05194]
[SWS_Rte 06815] [SWS_Rte_06816]
[SWS_Rte 07029] [SWS_Rte_07030]
[SWS_Rte 07033] [SWS_Rte_07034]
[SWS_Rte 07035] [SWS_Rte_07096]
[SWS_Rte 07185] [SWS_Rte_07186]
[SWS_Rte 07693]

[SRS_Rte_00155]

API to access calibration
parameters

[SWS_Rte 01252] [SWS_Rte_01300]
[SWS_Rte 03835] [SWS_Rte_03927]
[SWS_Rte 03928] [SWS_Rte 03929]
[SWS_Rte 03930] [SWS_Rte_03949]
[SWS_Rte 03952] [SWS_Rte_07093]
[SWS_Rte 07094] [SWS_Rte_07095]

[SRS_Rte_00156]

Support for different calibration
data emulation methods

[SWS_Rte _03905] [SWS_Rte_03906]
[SWS_Rte 03908] [SWS_Rte_03909]
[SWS_Rte 03910] [SWS_Rte 03911]
[SWS_Rte 03913] [SWS_Rte 03914]
[SWS_Rte 03915] [SWS_Rte_03916]
[SWS_Rte 03922] [SWS_Rte 03932]
[SWS_Rte 03933] [SWS_Rte 03934]
[SWS_Rte 03935] [SWS_Rte_03936]
[SWS_Rte 03942] [SWS_Rte 03943]
[SWS_Rte 03947] [SWS_Rte_03948]
[SWS_Rte 03960] [SWS_Rte 03961]
[SWS_Rte 03962] [SWS_Rte_03963]
[SWS_Rte 03964] [SWS_Rte_03965]
[SWS_Rte 03968] [SWS_Rte_03970]
[SWS_Rte 03971] [SWS_Rte_05145]
[SWS_Rte 06816]

[SRS_Rte 00157]

Support for calibration
parameters in NVRAM

[SWS_Rte_03936]

[SRS_Rte_00158]

Support separation of calibration
parameters

[SWS_Rte_03907] [SWS_Rte_03908]
[SWS_Rte 03911] [SWS_Rte 03912]
[SWS_Rte 03959] [SWS_Rte 05145]
[SWS_Rte 05194] [SWS_Rte_07096]

AUTOSAR

[SRS_Rte_00159]

Sharing of calibration
parameters

[SWS_Rte_02749] [SWS_Rte_02750]
[SWS_Rte_03958] [SWS_Rte 05112]
[SWS_Rte_07186]

[SRS_Rte_00160]

Debounced start of Runnable
Entities

[SWS_Rte_02697]

[SRS_Rte_00161]

Activation offset of Runnable
Entities

[SWS_Rte_07000]

[SRS_Rte_00162]

"1:n" External Trigger
communication

[SWS_Rte_07200] [SWS_Rte_07201]
[SWS_Rte 07207] [SWS_Rte_07212]
[SWS_Rte 07213] [SWS_Rte_07214]
[SWS_Rte 07215] [SWS_Rte_07216]
[SWS_Rte 07218] [SWS_Rte_07229]
[SWS_Rte 07543]

[SRS_Rte_00163]

Support for InterRunnable
Triggering

[SWS_Rte_07203] [SWS_Rte_07204]
[SWS_Rte 07208] [SWS_Rte_07220]
[SWS_Rte 07221] [SWS_Rte_07223]
[SWS_Rte 07224] [SWS_Rte 07226]
[SWS_Rte 07227] [SWS_Rte_07228]
[SWS_Rte 07229] [SWS_Rte_07555]

[SRS_Rte_00164]

Ensure a unique naming of
generated types visible in the
global namespace

[SWS_Rte _06706] [SWS_Rte_06707]
[SWS_Rte 06708] [SWS_Rte 06812]
[SWS_Rte 06813] [SWS_Rte_07110]
[SWS_Rte 07111][SWS_Rte_07114]
[SWS_Rte 07115] [SWS_Rte 07116]
[SWS_Rte 07117] [SWS_Rte_07118]
[SWS_Rte 07119] [SWS_Rte 07144]
[SWS_Rte 07145] [SWS_Rte_07146]

[SRS_Rte_00165]

Suppress identical "C" type
re-definitions

[SWS_Rte 07105] [SWS_Rte_07107]
[SWS_Rte 07112] [SWS_Rte 07113]
[SWS_Rte 07134] [SWS_Rte 07143]
[SWS_Rte 07167] [SWS_Rte_07169]

[SRS_Rte_00166]

Use the AUTOSAR Standard
Types in the global namespace if
the AUTOSAR data type is
mapped to an AUTOSAR
Standard Type

[SWS_Rte_07036] [SWS_Rte_07037]
[SWS_Rte_07104] [SWS_Rte 07109]
[SWS_Rte_07148] [SWS_Rte 07149]
[SWS_Rte_07162] [SWS_Rte _07163]
[SWS_Rte_07166]

[SRS_Rte_00167]

Encapsulate a Software
Component local name space

[SWS_Rte_01004] [SWS_Rte_02575]
[SWS_Rte 03809] [SWS_Rte 03810]
[SWS_Rte 03854] [SWS_Rte_05051]
[SWS_Rte 05052] [SWS_Rte 06513]
[SWS_Rte 06515] [SWS_Rte_06518]
[SWS_Rte 06519] [SWS_Rte 06520]
[SWS_Rte 06530] [SWS_Rte_06541]
[SWS_Rte 06542] [SWS_Rte_06551]
[SWS_Rte 06552] [SWS_Rte_06716]
[SWS_Rte 06717] [SWS_Rte 06718]
[SWS_Rte 07122] [SWS_Rte 07123]
[SWS_Rte 07132] [SWS_Rte_07140]
[SWS_Rte 07410] [SWS_Rte_07411]
[SWS_Rte 07412] [SWS_Rte_07414]
[SWS_Rte 08401] [SWS_Rte_08402]
[SWS_Rte 08416]

[SRS_Rte_00168]

Typing of RTE API.

[SWS_Rte_07104]

AUTOSAR

[SRS_Rte_00169]

Map code and memory allocated
by the RTE to memory sections

[SWS_Rte _05088] [SWS_Rte_05089]
[SWS_Rte 06741] [SWS_Rte_07047]
[SWS_Rte 07048] [SWS_Rte 07049]
[SWS_Rte_07050] [SWS_Rte_07051]
[SWS_Rte 07052] [SWS_Rte_07053]
[SWS_Rte 07589] [SWS_Rte_07590]
[SWS_Rte 07591] [SWS_Rte 07592]
[SWS_Rte 08787]

[SRS_Rte_00170]

Provide used memory sections
description

[SWS_Rte_05086] [SWS_Rte_05089]
[SWS_Rte 06725]

[SRS_Rte_00171]

Support for fixed and constant
data

[SWS_Rte_03930]

[SRS_Rte_00176]

Sharing of NVRAM data

[SWS_Rte 07301]

[SRS_Rte_00177]

Support of NvBlockComponent
Type

[SWS_Rte_07303] [SWS_Rte_07312]
[SWS_Rte 07317] [SWS_Rte 07343]
[SWS_Rte 07353] [SWS_Rte_07355]
[SWS_Rte 07398] [SWS_Rte 07399]
[SWS_Rte 07632] [SWS_Rte_07633]
[SWS_Rte 08063] [SWS_Rte_08064]
[SWS_Rte 08080] [SWS_Rte_08081]
[SWS_Rte 08082] [SWS_Rte 08083]
[SWS_Rte 08084] [SWS_Rte 08085]
[SWS_Rte 08086] [SWS_Rte_08087]
[SWS_Rte 08088] [SWS_Rte_08089]
[SWS_Rte 08090]

[SRS_Rte_00178]

Data consistency of NvBlock
ComponentType

[SWS_Rte 07310] [SWS_Rte 07311]
[SWS_Rte 07315] [SWS_Rte_07316]
[SWS_Rte 07319] [SWS_Rte_07350]
[SWS_Rte 07601] [SWS_Rte_07602]
[SWS_Rte 07613] [SWS_Rte 07614]

[SRS_Rte_00179]

Support of Update Flag for Data
Reception

[SWS_Rte 01413] [SWS_Rte_07385]
[SWS_Rte 07386] [SWS_Rte_07387]
[SWS_Rte 07390] [SWS_Rte_07391]
[SWS_Rte 07392] [SWS_Rte_07393]
[SWS_Rte 07654] [SWS_Rte_07689]

[SRS_Rte_00180]

DataSemantics range check
during runtime

[SWS_Rte 01371] [SWS_Rte_01372]
[SWS_Rte 01374] [SWS_Rte_03839]
[SWS_Rte 03840] [SWS_Rte 03841]
[SWS_Rte 03842] [SWS_Rte 03843]
[SWS_Rte 03845] [SWS_Rte_03846]
[SWS_Rte 03847] [SWS_Rte 03848]
[SWS_Rte 03849] [SWS_Rte 03861]
[SWS_Rte 06829] [SWS_Rte_07038]
[SWS_Rte 08016] [SWS_Rte_08024]
[SWS_Rte 08025] [SWS_Rte_08026]
[SWS_Rte 08027] [SWS_Rte_08028]
[SWS_Rte 08029] [SWS_Rte_08030]
[SWS_Rte 08031] [SWS_Rte_08032]
[SWS_Rte 08033] [SWS_Rte 08034]
[SWS_Rte 08035] [SWS_Rte_08036]
[SWS_Rte 08037] [SWS_Rte_08038]
[SWS_Rte 08039] [SWS_Rte_08040]
[SWS_Rte 08041] [SWS_Rte_08042]
[SWS_Rte 08065]

AUTOSAR

[SRS_Rte_00181]

Conversion between internal
and network data types

[SWS_Rte_03827] [SWS_Rte_03828]
[SWS_Rte_06737] [SWS_Rte_06738]
[SWS_Rte_07828] [SWS_Rte_07829]
[SWS_Rte_07844]

[SRS_Rte_00182]

Self Scaling Signals at Port
Interfaces

[SWS_Rte 01374] [SWS_Rte_03815]
[SWS_Rte 03816] [SWS_Rte 03817]
[SWS_Rte 03818] [SWS_Rte 03819]
[SWS_Rte 03820] [SWS_Rte_03821]
[SWS_Rte 03822] [SWS_Rte_03823]
[SWS_Rte 03829] [SWS_Rte_03830]
[SWS_Rte 03831] [SWS_Rte_03832]
[SWS_Rte 03833] [SWS_Rte_03855]
[SWS_Rte_03856] [SWS_Rte_03857]
[SWS_Rte 03860] [SWS_Rte_07038]
[SWS_Rte 07091] [SWS_Rte_07092]
[SWS_Rte 07099] [SWS_Rte_07925]
[SWS_Rte 07926] [SWS_Rte_07928]
[SWS_Rte 08801]

[SRS_Rte_00183]

RTE Read API returning the
dataElement value

[SWS_Rte_07394] [SWS_Rte_07395]
[SWS_Rte_07396]

[SRS_Rte _00184]

RTE Status "Never Received"

[SWS_Rte_06829] [SWS_Rte_07381]
[SWS_Rte 07382] [SWS_Rte_07383]
[SWS_Rte 07384] [SWS_Rte 07643]
[SWS_Rte 07644] [SWS_Rte_07645]
[SWS_Rte 08005] [SWS_Rte_08008]
[SWS_Rte 08009] [SWS_Rte_08046]
[SWS_Rte 08047] [SWS_Rte_08048]
[SWS_Rte 08096] [SWS_Rte_08097]
[SWS_Rte 08098]

[SRS_Rte_00185]

RTE API with Rte_IFeedback

[SWS_Rte_02589] [SWS_Rte_02590]
[SWS_Rte 02608] [SWS_Rte_02666]
[SWS_Rte 03836] [SWS_Rte_06820]
[SWS_Rte 06821] [SWS_Rte 06822]
[SWS_Rte 06823] [SWS_Rte_06824]
[SWS_Rte 06826] [SWS_Rte_06827]
[SWS_Rte 07367] [SWS_Rte_07374]
[SWS_Rte 07375] [SWS_Rte_07376]
[SWS_Rte 07378] [SWS_Rte 07379]
[SWS_Rte 07646] [SWS_Rte_07647]
[SWS_Rte 07648] [SWS_Rte_07650]
[SWS_Rte 07651] [SWS_Rte_07652]
[SWS_Rte 07660]

[SRS_Rte_00189]

A2L Generation Support

[SWS_Rte_03998] [SWS_Rte_05087]
[SWS_Rte 05118] [SWS_Rte_05119]
[SWS_Rte 05120] [SWS_Rte 05121]
[SWS_Rte 05122] [SWS_Rte 05123]
[SWS_Rte 05124] [SWS_Rte_05125]
[SWS_Rte 05126] [SWS_Rte_05127]
[SWS_Rte 05128] [SWS_Rte_05129]
[SWS_Rte 05130] [SWS_Rte 05131]
[SWS_Rte 05132] [SWS_Rte 05133]
[SWS_Rte 05135] [SWS_Rte_05136]
[SWS_Rte 05137] [SWS_Rte_05138]
[SWS_Rte 05139] [SWS_Rte_05140]

AUTOSAR

[SWS_Rte 05141][SWS_Rte 05142]
[SWS_Rte 05143] [SWS_Rte 05144]
[SWS_Rte 05152] [SWS_Rte 05153]
[SWS_Rte 05154] [SWS_Rte_05155]
[SWS_Rte 05156] [SWS_Rte_05157]
[SWS_Rte 05158] [SWS_Rte_05159]
[SWS_Rte 05160] [SWS_Rte 05161]
[SWS_Rte 05162] [SWS_Rte_06702]
[SWS_Rte 06726] [SWS_Rte 07097]
[SWS_Rte 08313] [SWS_Rte_08314]
[SWS_Rte 08315] [SWS_Rte_08316]
[SWS_Rte 08317]

[SRS_Rte_00190]

Support for variable-length Data
Types

[SWS_Rte _07813] [SWS_Rte_07814]

[SRS_Rte_00191]

Support for Variant Handling

[SWS_Rte 05168] [SWS_Rte_05169]
[SWS_Rte 05174] [SWS_Rte 05175]
[SWS_Rte 05176] [SWS_Rte_06500]
[SWS_Rte 06501] [SWS_Rte_06507]
[SWS_Rte 06509] [SWS_Rte_06510]
[SWS_Rte 06512] [SWS_Rte_06543]
[SWS_Rte 06546] [SWS_Rte 06547]
[SWS_Rte 06549] [SWS_Rte_06550]
[SWS_Rte 06553] [SWS_Rte_06611]
[SWS_Rte 06612] [SWS_Rte_06613]
[SWS_Rte 06814] [SWS_Rte_06815]
[SWS_Rte 06816] [SWS_Rte_08066]
[SWS_Rte 08067] [SWS_Rte_08068]
[SWS_Rte 08069] [SWS_Rte_08070]

[SRS_Rte_00192]

Support multiple trace clients

[SWS_Rte_05086] [SWS_Rte_05091]
[SWS_Rte_05092] [SWS_Rte 05093]
[SWS_Rte_05106] [SWS_Rte 06725]

[SRS_Rte_00193]

Support for Runnable Entity
execution chaining

[SWS_Rte_07800] [SWS_Rte_07802]

[SRS_Rte_00195]

No activation of Runnable
Entities in terminated or
restarting partitions

[SWS_Rte_07604] [SWS_Rte_07606]

[SRS_Rte_00196]

Inter-partition communication
consistency

[SWS_Rte 02761] [SWS_Rte_05147]
[SWS_Rte 07610]

[SRS_Rte_00200]

Support of unconnected R-Ports

[SWS_Rte_01330] [SWS_Rte _01331]
[SWS_Rte_01333] [SWS_Rte 01334]
[SWS_Rte 03785] [SWS_Rte_07655]
[SWS_Rte 07663]

[SRS_Rte_00201]

Contract Phase with Variant
Handling support

[SWS_Rte _05104] [SWS_Rte_06500]
[SWS_Rte 06502] [SWS_Rte_06505]
[SWS_Rte 06514] [SWS_Rte_06515]
[SWS_Rte 06516] [SWS_Rte 06518]
[SWS_Rte 06519] [SWS_Rte_06520]
[SWS_Rte 06521] [SWS_Rte 06522]
[SWS_Rte 06523] [SWS_Rte_06524]
[SWS_Rte 06525] [SWS_Rte_06526]
[SWS_Rte 06527] [SWS_Rte_06528]
[SWS_Rte 06529] [SWS_Rte_06530]
[SWS_Rte 06531] [SWS_Rte_06539]
[SWS_Rte 06540] [SWS_Rte 06541]

AUTOSAR

[SWS_Rte 06542] [SWS_Rte 06543]
[SWS_Rte 06546] [SWS_Rte 06551]
[SWS_Rte 06552] [SWS_Rte_06620]
[SWS_Rte 06638] [SWS_Rte_08095]

[SRS_Rte_00202]

Support for array size variants

[SWS_Rte_06500] [SWS_Rte_06505]
[SWS_Rte_06543] [SWS_Rte_06546]

[SRS_Rte_00203]

APl to read system constant

[SWS_Rte_03854] [SWS_Rte_06513]
[SWS_Rte 06514] [SWS_Rte 06517]

[SRS_Rte_00204]

Support the selection /
de-selection of SWC prototypes

[SWS_Rte_05104] [SWS_Rte_06544]
[SWS_Rte_06545] [SWS_Rte_06601]

[SRS_Rte_00206]

Support the selection of a signal
provider

[SWS_Rte 05104] [SWS_Rte_06544]
[SWS_Rte 06545] [SWS_Rte_06601]
[SWS_Rte 06602] [SWS_Rte_06603]
[SWS_Rte 06604] [SWS_Rte_06605]
[SWS_Rte 06606]

[SRS_Rte_00207]

Support N to M communication
patterns while unresolved
variations are affecting these
communications

[SWS_Rte 05104] [SWS_Rte_06544]
[SWS_Rte 06545] [SWS_Rte_06601]
[SWS_Rte 06602] [SWS_Rte_06603]
[SWS_Rte 06604] [SWS_Rte_06605]
[SWS_Rte 06606]

[SRS_Rte_00210]

Support for inter OS application
communication

[SWS_Rte_02728] [SWS_Rte_02732]
[SWS_Rte 02752] [SWS_Rte_02753]
[SWS_Rte 02754] [SWS_Rte_02755]
[SWS_Rte 02756] [SWS_Rte_03853]
[SWS_Rte 07606] [SWS_Rte_08400]
[SWS_Rte 08504] [SWS_Rte_08506]

[SRS_Rte_00211]

Cyclic time based scheduling of
BSW Schedulable Entities

[SWS_Rte_02697] [SWS_Rte _07282]
[SWS_Rte_07283] [SWS_Rte 07514]
[SWS_Rte_07574] [SWS_Rte 07584]

[SRS_Rte_00212]

Activation Offset of BSW
Schedulable Entities

[SWS_Rte_07520]

[SRS_Rte_00213]

Mode Switches for BSW
Modules

[SWS_Rte_02500] [SWS_Rte_02562]
[SWS_Rte 02563] [SWS_Rte_02564]
[SWS_Rte 02587] [SWS_Rte_02630]
[SWS_Rte 02661] [SWS_Rte 02662]
[SWS_Rte 02663] [SWS_Rte_02664]
[SWS_Rte 02665] [SWS_Rte 02667]
[SWS_Rte 02668] [SWS_Rte_02669]
[SWS_Rte 02707] [SWS_Rte_02708]
[SWS_Rte 07055] [SWS_Rte_07150]
[SWS_Rte 07151] [SWS_Rte 07152]
[SWS_Rte 07153] [SWS_Rte 07154]
[SWS_Rte 07157] [SWS_Rte_07173]
[SWS_Rte 07258] [SWS_Rte_07259]
[SWS_Rte 07260] [SWS_Rte_07282]
[SWS_Rte 07283] [SWS_Rte_07286]
[SWS_Rte 07292] [SWS_Rte_07293]
[SWS_Rte 07294] [SWS_Rte_07514]
[SWS_Rte 07530] [SWS_Rte_07531]
[SWS_Rte 07532] [SWS_Rte_07534]
[SWS_Rte 07535] [SWS_Rte_07538]
[SWS_Rte 07539] [SWS_Rte_07540]
[SWS_Rte 07541] [SWS_Rte 07556]
[SWS_Rte 07557] [SWS_Rte_07558]
[SWS_Rte 07559] [SWS_Rte_07560]

AUTOSAR

[SWS_Rte 07561] [SWS_Rte 07564]
[SWS_Rte_07694] [SWS_Rte_08600]
[SWS_Rte_08601]

[SRS_Rte_00214]

Common Mode handling for
Basic SW and Application SW

[SWS_Rte_02697] [SWS_Rte_07258]
[SWS_Rte 07259] [SWS_Rte_07286]
[SWS_Rte 07535] [SWS_Rte_07564]
[SWS_Rte 07582] [SWS_Rte 07583]

[SRS_Rte_00215]

API for Mode switch notification
to the SchiM

[SWS_Rte_07255] [SWS_Rte_07256]
[SWS_Rte 07261] [SWS_Rte_08507]

[SRS_Rte_00216]

Triggering of BSW Schedulable
Entities by occurrence of
External Trigger

[SWS_Rte_07213] [SWS_Rte _07214]
[SWS_Rte 07216] [SWS_Rte_07218]
[SWS_Rte 07282] [SWS_Rte_07283]
[SWS_Rte 07514] [SWS_Rte 07542]
[SWS_Rte 07544] [SWS_Rte_07545]
[SWS_Rte 07546] [SWS_Rte_07548]
[SWS_Rte 07549]

[SRS_Rte_00217]

Synchronized activation of
Runnable Entities and BSW
Schedulable Entities

[SWS_Rte _02697] [SWS_Rte_07218]
[SWS_Rte 07549]

[SRS_Rte_00218]

API for Triggering BSW modules
by Triggered Events

[SWS_Rte_07263] [SWS_Rte _07264]
[SWS_Rte_07266] [SWS_Rte 07267]

[SRS_Rte _00219]

Support for interlaced execution
sequences of Runnable Entities
and BSW Schedulable Entities

[SWS_Rte_02697] [SWS_Rte_07517]
[SWS_Rte 07518]

[SRS_Rte_00220]

ECU life cycle dependent
scheduling

[SWS_Rte _02538] [SWS_Rte_07580]

[SRS_Rte_00221]

Support for "BSW integration”
builds

[SWS_Rte_07569] [SWS_Rte_07585]

[SRS_Rte_00222]

Support shared exclusive areas
in BSW Service Modules and
the corresponding Service
Component

[SWS_Rte_07250] [SWS_Rte_07251]
[SWS_Rte 07252] [SWS_Rte 07253]
[SWS_Rte 07254] [SWS_Rte_07522]
[SWS_Rte 07523] [SWS_Rte_07524]
[SWS_Rte 07578] [SWS_Rte_07579]

[SRS_Rte_00223]

Callout for partition termination
notification

[SWS_Rte _07330] [SWS_Rte_07331]
[SWS_Rte 07334] [SWS_Rte_07335]
[SWS_Rte 07617] [SWS_Rte_07619]
[SWS_Rte 07620] [SWS_Rte 07622]

[SRS_Rte_00224]

Callout for partition restart
request

[SWS_Rte 07188] [SWS_Rte_07336]
[SWS_Rte 07338] [SWS_Rte_07339]
[SWS_Rte 07340] [SWS_Rte 07341]
[SWS_Rte 07342] [SWS_Rte_07643]
[SWS_Rte 07644] [SWS_Rte_07645]

[SRS_Rte_00228]

Fan-out NvBlock callback
function

[SWS_Rte _07623] [SWS_Rte_07624]
[SWS_Rte 07625] [SWS_Rte 07626]
[SWS_Rte 07627] [SWS_Rte_07628]
[SWS_Rte 07629] [SWS_Rte_07630]
[SWS_Rte 07631] [SWS_Rte_07671]
[SWS_Rte 07672]

AUTOSAR

[SRS_Rte_00229]

Support for Variant Handling of
BSW Modules

[SWS_Rte 05104] [SWS_Rte_06500]
[SWS_Rte 06503] [SWS_Rte_06504]
[SWS_Rte 06507] [SWS_Rte 06508]
[SWS_Rte 06532] [SWS_Rte_06533]
[SWS_Rte 06534] [SWS_Rte_06535]
[SWS_Rte 06536] [SWS_Rte_06537]
[SWS_Rte 06543] [SWS_Rte 06544]
[SWS_Rte 06545] [SWS_Rte_06546]
[SWS_Rte 06548] [SWS_Rte 08789]
[SWS_Rte 08790]

[SRS_Rte_00230]

Triggering of BSW Schedulable
Entities by occurrence of
Internal Trigger

[SWS_Rte_07229] [SWS_Rte _07551]
[SWS_Rte 07552] [SWS_Rte_07553]
[SWS_Rte 07554]

[SRS_Rte_00231]

Support native interface
between Rte and Com for
Strings and uint8 arrays

[SWS_Rte 01377] [SWS_Rte 01378]
[SWS_Rte_07408] [SWS_Rte 07817]

[SRS_Rte_00232]

Synchronization of runnable
entities

[SWS_Rte_07804] [SWS_Rte_07805]
[SWS_Rte_07806] [SWS_Rte_07807]

[SRS_Rte_00233]

Generation of the Basic
Software Module Description

[SWS_Rte_05086] [SWS_Rte_05165]
[SWS_Rte 05166] [SWS_Rte 05167]
[SWS_Rte 05177] [SWS_Rte_05179]
[SWS_Rte 05180] [SWS_Rte 05181]
[SWS_Rte 05182] [SWS_Rte 05183]
[SWS_Rte 05184] [SWS_Rte_05185]
[SWS_Rte 05186] [SWS_Rte 05187]
[SWS_Rte 05188] [SWS_Rte_05189]
[SWS_Rte 05190] [SWS_Rte 05191]
[SWS_Rte 05192] [SWS_Rte 06725]
[SWS_Rte 07085] [SWS_Rte_08305]
[SWS_Rte 08404]

[SRS_Rte_00234]

Support for Record Type
sub-setting

[SWS_Rte_07091] [SWS_Rte_07092]
[SWS_Rte 07099]

[SRS_Rte_00235]

Support queued triggers

[SWS_Rte_06720] [SWS_Rte 06721]
[SWS_Rte_06722] [SWS_Rte 06723]
[SWS_Rte_07087] [SWS_Rte 07088]
[SWS_Rte_07089] [SWS_Rte_07090]

[SRS_Rte_00236]

Support for Modelnterface
Mapping

[SWS_Rte 08511] [SWS_Rte _08512]
[SWS_Rte_08513] [SWS_Rte 08514]

[SRS_Rte_00237]

Time recurrent activation of
Runnable Entities

[SWS_Rte_06728] [SWS_Rte_06729]
[SWS_Rte 06730]

[SRS_Rte_00238]

Allow enabling of RTE-Feature
to get the activating Event of
Executable Entity

[SWS_Rte 01126] [SWS_Rte_07194]
[SWS_Rte 07195] [SWS_Rte_07282]
[SWS_Rte 08051] [SWS_Rte_08052]
[SWS_Rte 08053] [SWS_Rte_08054]
[SWS_Rte 08055] [SWS_Rte_08056]
[SWS_Rte 08057] [SWS_Rte_08058]
[SWS_Rte 08059] [SWS_Rte_08060]
[SWS_Rte 08071]

[SRS_Rte_00239]

Support rule-based initialization
of composite DataPrototypes
and compound primitive Data
Prototypes

[SWS_Rte 06733] [SWS_Rte_06734]
[SWS_Rte 06735] [SWS_Rte_06736]
[SWS_Rte 06764] [SWS_Rte_06765]
[SWS_Rte 08542] [SWS_Rte 08792]

AUTOSAR

[SRS_Rte_00240]

Support of init runnables for
initialization purposes

[SWS_Rte 06748] [SWS_Rte_06749]
[SWS_Rte 06750] [SWS_Rte_06751]
[SWS_Rte 06752] [SWS_Rte 06753]
[SWS_Rte 06754] [SWS_Rte_06755]
[SWS_Rte 06756] [SWS_Rte_06757]
[SWS_Rte 06758] [SWS_Rte_06759]
[SWS_Rte 06760] [SWS_Rte 06761]
[SWS_Rte 06762] [SWS_Rte 06767]
[SWS_Rte 06768] [SWS_Rte_06769]
[SWS_Rte 06770]

[SRS_Rte_00241]

Support for Local or Remote
Handling of BSW Service Calls
on Partitioned Systems

[SWS_Rte_08765]

[SRS_Rte_00243]

Support for inter-partition
communication of BSW modules

[SWS_Rte 08733] [SWS_Rte_08734]
[SWS_Rte 08735] [SWS_Rte_08736]
[SWS_Rte 08737] [SWS_Rte_08738]
[SWS_Rte 08739] [SWS_Rte_08743]
[SWS_Rte 08744] [SWS_Rte 08747]
[SWS_Rte 08748] [SWS_Rte 08751]
[SWS_Rte 08752] [SWS_Rte 08753]
[SWS_Rte 08754] [SWS_Rte_08755]
[SWS_Rte 08756] [SWS_Rte_08763]
[SWS_Rte 08764] [SWS_Rte_08765]
[SWS_Rte 08766]

[SRS_Rte_00244]

Support for bypass

[SWS_Rte_07833] [SWS_Rte_07834]
[SWS_Rte 07835] [SWS_Rte_07836]
[SWS_Rte 07837] [SWS_Rte 07838]
[SWS_Rte 07839] [SWS_Rte 07840]
[SWS_Rte_07841]

[SRS_Rte_00245]

Support of Writing Strategies for
NV data

[SWS_Rte_07416] [SWS_Rte_08080]
[SWS_Rte 08081] [SWS_Rte 08082]
[SWS_Rte_08083] [SWS_Rte_08084]
[SWS_Rte_08085] [SWS_Rte_08086]
[SWS_Rte_08087] [SWS_Rte_08088]
[SWS_Rte 08089] [SWS_Rte 08090]
[SWS_Rte 08091] [SWS_Rte 08092]
[SWS_Rte_08093] [SWS_Rte 08094]

[SRS_Rte_00246]

Support of Efficient COM for
large data

[SWS_Rte_01376] [SWS_Rte_01379]
[SWS_Rte 01380] [SWS_Rte_01381]
[SWS_Rte 01382] [SWS_Rte 01383]
[SWS_Rte 01384] [SWS_Rte_01385]
[SWS_Rte 01386] [SWS_Rte 01387]
[SWS_Rte 01388] [SWS_Rte_01389]
[SWS_Rte 01390] [SWS_Rte 01391]
[SWS_Rte 01392] [SWS_Rte 01393]
[SWS_Rte 01394] [SWS_Rte 01395]
[SWS_Rte 01396] [SWS_Rte 01397]
[SWS_Rte 01398] [SWS_Rte_01399]
[SWS_Rte 01400] [SWS_Rte_01401]
[SWS_Rte 01402] [SWS_Rte_01403]
[SWS_Rte 01404] [SWS_Rte_01405]
[SWS_Rte 01406] [SWS_Rte_01407]
[SWS_Rte 01408] [SWS_Rte_01409]
[SWS_Rte 01410] [SWS_Rte_01411]

AUTOSAR

[SRS_Rte_00247]

The Rte shall execute
transformer chains for SWC
communication

[SWS_Rte 06023] [SWS_Rte_08110]
[SWS_Rte 08515] [SWS_Rte_08516]
[SWS_Rte 08517] [SWS_Rte 08518]
[SWS_Rte 08519] [SWS_Rte 08520]
[SWS_Rte 08521] [SWS_Rte_08522]
[SWS_Rte 08523] [SWS_Rte_08524]
[SWS_Rte 08525] [SWS_Rte 08526]
[SWS_Rte 08527] [SWS_Rte 08528]
[SWS_Rte 08529] [SWS_Rte_08530]
[SWS_Rte 08538] [SWS_Rte_08570]
[SWS_Rte 08571] [SWS_Rte 08587]
[SWS_Rte 08588] [SWS_Rte_08589]
[SWS_Rte 08590] [SWS_Rte 08596]
[SWS_Rte 08597] [SWS_Rte 08598]
[SWS_Rte 08599] [SWS_Rte_08793]
[SWS_Rte 08794] [SWS_Rte_08795]
[SWS_Rte 08796] [SWS_Rte 08797]
[SWS_Rte 08798] [SWS_Rte_08799]

[SRS_Rte_00248]

The Rte shall provide the buffer
for the data transformation

[SWS_Rte_08531] [SWS_Rte_08532]
[SWS_Rte 08533] [SWS_Rte 08534]
[SWS_Rte 08535] [SWS_Rte 08536]
[SWS_Rte_08537] [SWS_Rte 08550]

[SRS_Rte_00249]

The Rte shall provide
transformation errors to the
SWCs

[SWS_Rte_05300] [SWS_Rte_05301]
[SWS_Rte 07417] [SWS_Rte 07418]
[SWS_Rte 07419] [SWS_Rte_07420]
[SWS_Rte 08539] [SWS_Rte 08540]
[SWS_Rte 08541] [SWS_Rte_08543]
[SWS_Rte 08544] [SWS_Rte_08545]
[SWS_Rte 08558] [SWS_Rte_08559]
[SWS_Rte 08560] [SWS_Rte 08561]
[SWS_Rte 08562] [SWS_Rte 08563]
[SWS_Rte 08564] [SWS_Rte_08565]
[SWS_Rte 08566] [SWS_Rte_08567]
[SWS_Rte 08568] [SWS_Rte 08569]
[SWS_Rte 08574] [SWS_Rte 08575]
[SWS_Rte 08582] [SWS_Rte 08584]
[SWS_Rte 08585] [SWS_Rte 08791]

[SRS_Rte_00250]

The Rte shall provide size
indications of variable size
arrays to SWCs

[SWS_Rte 07813] [SWS_Rte_07814]

[SRS_Rte_00251]

Array based signal group
handling with Com

[SWS_Rte 08586]

[SRS_Rte_00252]

Encapsulate a BSW Module
local name space

[SWS_Rte _03983] [SWS_Rte_03984]
[SWS_Rte 03985] [SWS_Rte_03990]
[SWS_Rte 03991] [SWS_Rte 03992]
[SWS_Rte 03994] [SWS_Rte 03995]
[SWS_Rte 03996] [SWS_Rte 03997]
[SWS_Rte 07415]

[SRS_Rte_00253]

The RTE shall execute data
transformation for SWC/BSW
communication within one ECU

[SWS_Rte 08105] [SWS_Rte_08106]
[SWS_Rte 08107] [SWS_Rte_08108]
[SWS_Rte 08109]

Table 1.2: Requirements tracing

AUTOSAR

2 RTE Overview

2.1 The RTE in the Context of AUTOSAR

The Run-Time Environment (RTE) is at the heart of the AUTOSAR ECU architecture.
The RTE is the realization (for a particular ECU) of the interfaces of the AUTOSAR
Virtual Function Bus (VFB). The RTE provides the infrastructure services that enable
communication to occur between AUTOSAR software-components as well as acting as
the means by which AUTOSAR software-components access basic software modules
including the OS and communication service.

The RTE encompasses both the variable elements of the system infrastructure that
arise from the different mappings of components to ECUs as well as standardized RTE
services.

In principle the RTE can be logically divided into two sub-parts realizing:
e the communication between software components
e the scheduling of the software components

To fully describe the concept of the RTE, the Basic Software Scheduler has to be
considered as well. The Basic Software Scheduler schedules the schedulable entities
of the basic software modules. In some documents the schedulable entities are also
called main processing functions.

Due to the situation that the same OS Task might be used for the scheduling of software
components and basic software modules the scheduling part of the RTE is strongly
linked with the Basic Software Scheduler and can not be clearly separated.

The RTE and the Basic Software Scheduler is generated! for each ECU to ensure that
the RTE and Basic Software Scheduler is optimal for the ECU [SRS_Rte 00023].

2.2 AUTOSAR Concepts

This section introduces some important AUTOSAR concepts and how they are imple-
mented within the context of the RTE.

2.2.1 AUTOSAR Software-components

In AUTOSAR, “application” software is conceptually located above the AUTOSAR RTE
and consists of “AUTOSAR application software-components” that are ECU and loca-

'An implementation is free to configure rather than generate the RTE and Basic Software Sched-
uler. The remainder of this specification refers to generation for reasons of simplicity only and these
references should not be interpreted as ruling out either a wholly configured, or partially generated and
partially configured, RTE and Basic Software Scheduler implementation.

AUTOSAR

tion independent and “AUTOSAR sensor-actuator components” that are dependent on
ECU hardware and thus not readily relocatable for reasons of performance/efficiency.
This means that, subject to constraints imposed by the system designer, an AUTOSAR
software-component can be deployed to any available ECU during system configura-
tion. The RTE is then responsible for ensuring that components can communicate
and that the system continues to function as expected wherever the components are
deployed. Considering sensor/actuator software components, they may only directly
address the local ECU abstraction. Therefore, access to remote ECU abstraction shall
be done through an intermediate sensor/actuator software component which broad-
casts the information on the remote ECU. Hence, moving the sensor/actuator software
components on different ECUs, may then imply to also move connected devices (sen-
sor/actuator) to the same ECU (provided that efficient access is needed).

An AUTOSAR software-component is defined by a type definition that defines the com-
ponent’s interfaces. A component type is instantiated when the component is deployed
to an ECU. A component type can be instantiated more than once on the same ECU in
which case the component type is said to be “multiple instantiated”. The RTE supports
per-instance memory sections that enable each component instance to have private
states.

The RTE supports both AUTOSAR software-components where the source is available
(“source-code software-components”) [SRS_Rte 00024] and AUTOSAR software-
components where only the object code (“object-code software components”) is avail-
able [SRS_Rte_00140].

Details of AUTOSAR software-components in relation to the RTE are presented in
Section 4.1.3.

2.2.2 Basic Software Modules

As well as “AUTOSAR software-components” an AUTOSAR ECU includes basic soft-
ware modules. Basic software modules can access the ECU abstraction layer as well
as other basic software modules directly and are thus neither ECU nor location inde-
pendent 2.

An “AUTOSAR software-component” cannot directly access basic software modules —
all communication is via AUTOSAR interfaces and therefore under the control of the
RTE. The requirement to not have direct access applies to all Basic Software Modules
including the operating system [SRS_Rte_00020] and the communication service.

2The functionality provided by a basic software module cannot be relocated in another ECU. However,
the source of some basic software modules can be reused on other ECUs.

AUTOSAR

2.2.3 Communication

The communication interface of an AUTOSAR software-component consists of several
ports (which are characterized by port-interfaces). An AUTOSAR software-component
can communicate through its interfaces with other AUTOSAR software-components
(whether that component is located on the same ECU or on a different ECU) or
with basic software modules that have ports and runnables (i.e ServiceSwCompo-
nents, EcuAbstractionSwComponents and ComplexDeviceDriverSwCompo-
nents) and are located on the same ECU. This communication can only occur via
the component’s ports. A port can be categorized by either a sender-receiver or client-
server port-interface. A sender-receiver interface provides a message passing facility
whereas a client-server interface provides function invocation.

2.2.3.1 Communication Paradigms

The RTE provides different paradigms for the communication between software-
component instances: sender-receiver (signal passing), client-server (function invo-
cation), mode switch, and NvBlockSwComponent Type interaction.

Each communication paradigm can be applied to intra-partition software-component
distribution (which includes both intra-task and inter-task distribution, within the same
Partition), inter-Partition software-component distribution, and inter-ECU software-
component distribution. Intra-task communication occurs between runnable entities
that are mapped to the same OS task whereas inter-task communication occurs be-
tween runnable entities mapped to different tasks of the same Partition and can there-
fore involve a context switch. Inter-Partition communication occurs between runnable
entities in components mapped to different partitions of the same ECU and therefore in-
volve a context switch and crossing a protection boundary (memory protection, timing
protection, isolation on a core). Inter-ECU communication occurs between runnable
entities in components that have been mapped to different ECUs and so is inherently
concurrent and involves potentially unreliable communication.

Details of the communication paradigms that are supported by the RTE are contained
in Section 4.3.

2.2.3.2 Communication Modes

The RTE supports two modes for sender-receiver communication:

e Explicit — A component uses explicit RTE API calls to send and receive data
elements [SRS_Rte_00098].

¢ Implicit — The RTE automatically reads a specified set of data elements before
a runnable is invoked and automatically writes (a different) set of data elements
after the runnable entity has terminated [SRS_Rte_00128] [SRS_Rte_00129].

AUTOSAR

The term “implicit” is used here since the runnable does not actively initiate the
reception or transmission of data.

Implicit and explicit communication is considered in greater detail in Section 4.3.1.5.

2.2.3.3 Static Communication

[SWS_Rte_06026] | The RTE shall support static communication only.
|(SRS_Rte_00025)

Static communication includes only those communication connections where the
source(s) and destination(s) of all communication is known at the point the RTE is
generated. [SRS_Rte_00025]. This includes also connections which are subject to
variability because the variant handling concept of AUTOSAR does only support the
selection of connectors from a superset of possible connectors to define a particular
variant.

Dynamic reconfiguration of communication is not supported due to the run-time and
code overhead which would therefore limit the range of devices for which the RTE is
suitable.

2.2.3.4 Multiplicity

As well as point to point communication (i.e. “1:1”) the RTE supports communication
connections with multiple providers or requires:

e When using sender-receiver communication, the RTE supports both “1:n” (sin-
gle sender with multiple receivers) [SRS_Rte_00028] and “n:1” (multiple senders
and a single receiver) [SRS_Rte_00131] communication with the restriction that
multiple senders are not allowed formode switch notifications, see meta-
model restrictions [SWS_Rte 02670].

The execution of the multiple senders or receivers is not coordinated by the RTE.
This means that the actions of different software-components are independent —
the RTE does not ensure that different senders transmit data simultaneously and
does not ensure that all receivers read data or receive events simultaneously.

e When using client-server communication, the RTE supports “n:1” (multiple clients
and a single server) [SRS_Rte_00029] communication. The RTE does not sup-
port “1:n” (single client with multiple servers) client-server communication.

Irrespective of whether “1:17, “n:1” or “1:n” communication is used, the RTE is respon-
sible for implementing the communication connections and therefore the AUTOSAR
software-component is unaware of the configuration. This permits an AUTOSAR
software-component to be redeployed in a different configuration without modification.

AUTOSAR

2.2.4 Concurrency

AUTOSAR software-components have no direct access to the OS and hence there are
no “tasks” in an AUTOSAR application. Instead, concurrent activity within AUTOSAR
is based around RunnableEntitys within components that are invoked by the RTE.

The AUTOSAR VFB specification [1] defines a runnable entity as a “sequence of in-
structions that can be started by the Run-Time Environment”. A component provides
one® or more runnable entities [SRS_Rte 00031] and each runnable entity has exactly
one entry point. An entry point defines the symbol within the software-component’s
code that provides the implementation of a runnable entity.

The RTE is responsible for invoking runnable entities — AUTOSAR software-
components are not able to (dynamically) create private threads of control. Hence,
all activity within an AUTOSAR application is initiated by the triggering of runnable en-
tities by the RTE as a result of RTEEvents.

An RTEEvent encompasses all possible situations that can trigger execution of a runn-
able entity by the RTE. The different classes of RTEEvent are defined in Section 5.7.5.

The RTE supports runnable entities in any component that has an AUTOSAR interface
- this includes AUTOSAR software-components and basic software modules.*

Runnable entities are divided into multiple categories with each category supporting
different facilities. The categories supported by the RTE are described in Section
4.2.2.3.

2.3 The RTE Generator

The RTE generator is one of a set of tools® that create the realization of the AUTOSAR
virtual function bus for an ECU based on information in the ECU Configuration De-
scription. The RTE Generator is responsible for creating the AUTOSAR software-
component API functions that link AUTOSAR software-components to the OS and
manage communication between AUTOSAR software-components and between AU-
TOSAR software-components and basic software modules.

Additionally the RTE Generator creates both the Basic Software Scheduler and the Ba-
sic Software Scheduler API functions for each particular instance of a Basic Software
Module.

The RTE generation process for SWCs has two main phases:

3The VFB specification does not permit zero runnable entities.

4The OS and COM are basic software modules but present a standardized interface to the RTE and
have no AUTOSAR interface. The OS and COM therefore do not have runnable entities.

5The RTE generator works in conjunction with other tools, for example, the OS and COM generators,
to fully realize the AUTOSAR VFB.

AUTOSAR

e RTE Contract phase — a limited set of information about a component, principally

the AUTOSAR interface definitions, is used to create an application header file
for a component type. The application header file defines the “contract” between
component and RTE.

e RTE Generation phase - all relevant information about components, their de-

ployment to ECUs and communication connections is used to generate the RTE
and optionally the loc configuration [4]. One RTE is generated for each ECU in
the system.

The two-phase development model ensures that the RTE generated application header
files are available for use for source-code AUTOSAR software-components as well
as object-code AUTOSAR software-components with both types of component having
access to all definitions created as part of the RTE generation process.

The RTE generation process, and the necessary inputs in each phase, are considered
in more detail in chapter 3.

2.4

Design Decisions

This section details decisions that affect both the general direction that has been taken
as well as the actual content of this document.

1.

The role of this document is to specify RTE behavior, not RTE implementation.
Implementation details should not be considered to be part of the RTE software
specification unless they are explicitly marked as RTE requirements.

. An AUTOSAR system consists of multiple ECUs each of which contains an RTE

that may have been generated by different RTE generators. Consequently, the
specification of how RTEs from multiple vendors interoperate is considered to be
within the scope of this document.

. The RTE does not have sufficient information to be able to derive a mapping from

runnable entity to OS task. The decision was therefore taken to require that the
mapping be specified as part of the RTE input.

Support for C++ is provided by making the C RTE API available for C++ com-
ponents rather than specifying a completely separate object-oriented API. This
decision was taken for two reasons; firstly the same interface for the C and C++
simplifies the learning curve and secondly a single interface greatly simplifies
both the specification and any subsequent implementations.

. There is no support within the specification for Java.

. The AUTOSAR meta-model is a highly expressive language for defining sys-

tems however for reasons of practicality certain restrictions and constraints have
been placed on the use of the meta-model. The restrictions are described in
Appendix A.

AUTOSAR

3 RTE Generation Process

This chapter describes the methodology of the RTE and Basic Software Scheduler
generation. For a detailed description of the overall AUTOSAR methodology refer to
methodology document [6].

[SWS_Rte_02514] [The RTE generator shall produce the same RTE API, RTE code,
SchM API and SchM code when the input information is the same. | (SRS_Rte_00065)

The RTE Generator gets involved in the AUTOSAR Methodology several times in dif-
ferent roles. Technically the RTE Generator can be implemented as one tool which
is invoked with options to switch between the different roles. Or the RTE Generator
could be a set of separate tools. In the following section the individual applications of
the RTE Generator are described based on the roles that are take, not necessarily the
actual tools.

The RTE Generator is used in different roles for the following phases:
e RTE Contract Phase

Basic Software Scheduler Contract Phase

PreBuild Data Set Contract Phase

Basic Software Scheduler Generation Phase

RTE Generation Phase

PreBuild Data Set Generation Phase

e PostBuild Data Set Generation Phase
RTE Generator for Software-Components

In Figure 3.1 the overall AUTOSAR Methodology wrt. Application SW-Components
and the RTE Generator.

AUTOSAR

N
Configure Extract XML Generate
M M CU-Specifig Base ECU
Information onfi tio
ECU
Collectlon System @a

Extract of
System
Configuration
:System

Configuration
Ava||ab|e Description
SwC :System
Implementations

.obj
N
-C Compiled
XML Generate - BSW
RTE Compile
ECU RTE
Configyration

i N
Vlbes .obj
- Generate .exe
Compiled Executable
Edit ECU ~< RTE ECU
Configuration| RTE T~a Executable
~ ~
Header -~ S
AUTOSAR AN
Generator
Compiled
SwWC
AUTOSAR Implementations

ECU
Configuration
Editors

Figure 3.1: System Build Methodology

The whole vehicle functionality is described with means of CompositionSwCom-
ponentS, SwComponentPrototypeS and AtomicSwComponents [2]. In the
CompositionSwComponent descriptions the connections between the software-
components’ ports are also defined. Such a collection of software-components con-
nected to each other, without the mapping on actual ECUSs, is called the VFB view.

During the ’Configure System’ step the needed software-components, the available
ECUs and the System Constraints are resolved into a System Configuration Descrip-
tion. Now the swComponentPrototypes and thus the associated At omicSwCompo-—
nents are mapped on the available ECUs.

Since in the VFB view the communication relationships between the At omicSwCom-
ponents have been described and the mapping of each SwComponentPrototypes
and AtomicSwComponents to a specific ECU has been fixed, the communication ma-
trix can be generated. In the SwComponentType Description (using the format of
the AUTOSAR Software Component Template [2]) the data that is exchanged through
ports is defined in an abstract way. Now the 'System Configuration Generator’ needs to
define system signals (including the actual signal length and the frames in which they
will be transmitted) to be able to transmit the application data over the network. COM
signals that correspond to the system signals will be later used by the 'RTE Generator’
to actually transmit the application data.

AUTOSAR

In the next step the 'System Configuration Description’ is split into descriptions for
each individual ECU. During the generation of the Ecu Extract also the hierarchical
structure of the CompositionSwComponents of the VFB view is flattened and the
SwComponentPrototypes of the ECU Extract represent actual instances. The Ecu
Extract only contains information necessary to configure one ECU individually and it is
fed into the ECU Configuration for each ECU.

[SWS_Rte_05000] | The RTE is configured and generated for each ECU instance
individually. |(SRS_Rte_00021)

The "ECU Configuration Editors’ (see also Section 3.3) are working iteratively on the
'ECU Configuration Values’ until all configuration issues are resolved. There will be
the need for several configuration editors, each specialized on a specific part of ECU
Configuration. So one editor might be configuring the COM stack (not the communica-
tion matrix but the interaction of the individual modules) while another editor is used to
configure the RTE.

Since the configuration of a specific Basic-SW module is not entirely independent from
other modules there is the need to apply the editors several times to the ’'ECU Config-
uration Values’ to ensure all configuration parameters are consistent.

Only when the configuration issues are resolved the 'RTE Generator’ will be used to
generate the actual RTE code (see also Section 3.4.2) which will then be compiled and
linked together with the other Basic-SW modules and the software-components code.

The 'RTE Generator’ needs to cope with many sources of information since the nec-
essary information for the RTE Generator is based on the 'ECU Configuration Values’
which might be distributed over several files and itself references to multiple other AU-
TOSAR descriptions.

[SWS_Rte_08769] | RTE Generator shall support for reading single files and of sets
of files that are stored in a file system. The tool shall provide a mechanism to select a
specific file and sets of files in the file system. | (SRS_Rte_00048)

An AUTOSAR XML description can be shipped in several files. Some files could con-
tain data types others could contain interfaces, etc.

[SWS_Rte_08770] | An RTE Generator tools SHALL support the merging of AU-
TOSAR models that have been split up and stored in multiple partial models while
reading an set of files. Thereby the to be supported minimum granularity of an AU-
TOSAR model is defined by <atpSplitable>. The Merging of a model also in-
cludes the resolution of references. The RTE Generator SHALL be able to read the
submodels in any order. There is no preference. |(SRS_Rte_00048)

[SWS_Rte_08771] [RTE Generator SHALL support the interpretation and creation of
AUTOSAR XML descriptions. These descriptions SHALL be 'well-formed’ and ’valid’
as defined by the XML recommendation, W3C XML 1.1 Specification, whether used
with or without the document’s corresponding AUTOSAR XML schema(s). In other
words: Even if the tool does not use standard XML mechanisms for validating the XML

AUTOSAR

descriptions it SHALL ensure that the XML descriptions can be successfully validated
against the AUTOSAR XML schema. |(SRS_Rte 00048)

[SWS_Rte_08772] [If an RTE Generator wants to validate an AUTOSAR XML de-
scription against an AUTOSAR schema, it SHALL provide the necessary schema files
in its own resources.

An RTE Generator shall use the SYSTEM-Identifier in the xsi:schemal.ocation to iden-
tify an appropriate schema file. | (SRS_Rte _00048)

[SWS_Rte_08773] | RTE Generator shall provide a serialization for XML.
|(SRS_Rte_00048)

[SWS_Rte_08774] | RTE Generator shall not change model content passed to the
Generator |(SRS_Rte _00048)

[SWS_Rte_08775] [An RTE Generator MAY support the AUTOSAR extension mech-
anism sDGs if applicable.

If the RTE Generator does not need the additional information for its intended purpose
it SHALL ignore the irrelevant extensions spGs. |(SRS_Rte _00048)

[SWS_Rte_08776] | An RTE Generator may use well structured error messages.
|(SRS_Rte_00048)

The following list is a collection of proposed information items in particular applicable
to log files used for exchanging information about errors.

e ErrorCode — A symbolic name for the message text
e StandardErrorCode — The reference to the AUTOSAR error code

e ConstraintCode — Reference to the semantic constraint mentioned in the AU-
TOSAR template specification.

e Signature — Signature of the message for duplicate checks
e Timestamp — A time stamp for the message

e ShortName — A unique identification which allows to refer to particular error mes-
sages
This can also be used to establish references between error messages, e.g. for
screening and also to trace back to root cause

e Desc — The human readable message text

e Component — Such information item may help the user to locate the problem in
the model

e BaseUrl — An url for a base directory which can be used as basis for file refer-
ences in a log file. This is typically the root direactory of a project structure.

e ColumNumber — The column of the error position

e LineNumber — The line number of the error position

AUTOSAR

e LongName — The title of the error message

e ObjectCategory — The category of for example the involved ApplicationPrimitve-
DataType (e.g.VALUE)

e PrimaryErrorReference — Reference to the root cause if applicable
e ScopeEntryReference — Reference to a scoping message if applicable

e Object — The shortName based reference to the AUTOSAR element which
caused the error

e ToolName — The name of the tool which reported the error

e ToolVersion — The version of the tools which reported the error

¢ IncidentUrl — The Url which refers to the artifact in which the error occurs
e Value — The actual found value which caused the problem

This is just a rough sketch of the main steps necessary to build an ECU with AUTOSAR
and how the RTE is involved in this methodology. For a more detailed description of
the AUTOSAR Methodology please refer to the methodology document [6]. In the next
sections the steps with RTE interaction are explained in more detail.

RTE Generator for Basic Software Scheduler

In Figure 3.2 the overall AUTOSAR Methodology wrt. Basis Software Scheduler and
the RTE Generator interaction.

BN

Compile
Code SchM
ECU i N
R— Compiled

Configyration Rte Generate .exe
vales | .h Executable
| Te—_ D ECU
Schm T~ Executable
} Bsw T=x
Header

AUTOSAR Compiled
BSW

Generate

RTE
Generator

AUTOSAR
ECU
Configuration

Editors

Figure 3.2: Basic Software Scheduler Methodology

The ECU Configuration phase is the start of the Basic Software Scheduler configura-
tion where all the requirements of the different Basic Software Modules are collected.
The Input information is provided in the Basic Software Module Descriptions [9] of the
individual Basic Software Modules.

The Basic Software Scheduler configuration is then generated into the Basic Software
Scheduler code which is compiled and built into the Ecu executable.

AUTOSAR

3.1 Contract Phase

3.1.1 RTE Contract Phase

To be able to support the AUTOSAR software-component development with RTE-
specific APls the ‘Component API’ (application header file) is generated from the
'software-component Internal Behavior Description’ (see Figure 3.1) by the RTE Gen-
erator in the so called 'RTE Contract Phase’ (see Figure 3.3).

In the software-component Interface description — which is using the AUTOSAR
Software Component Template — at least the AUTOSAR Interfaces of the particular
software-component have to be described. This means the software-component Types
with Ports and their Interfaces. In the software-component Internal Behavior descrip-
tion additionally the Runnable Entities and the RTE Events are defined. From this
information the RTE Generator can generate specific APls to access the Ports and
send and receive data.

5N
XML
7 .

/ SW-Component
Type
/ .
/ Description

/ H
/ AtomicSwComponentType

\ Implement
Component
.C
XML b
v SW-Component

Implementation
XML
SW-Component Generate

Internal Component .
Behavior API| h Sompile SW-Component
Description Component Implementation
[API Component Description

Generation] | API [fér

Measure
Resources
: | Object:-Code]
SwelntemalBehavior | \ \{
0 ; _
- SW-Component

N jtatio)
.obj P Implementation
- - Description

AUTOSAR [resource
Component needs] :

API Implementation
Generator

Compiled
SW-Component
Implementation

Figure 3.3: RTE Contract Phase

With the generated 'Component API’ (application header file) the Software Compo-
nent developer can provide the Software Component’s source code without being con-
cerned as to whether the communication will later be local or using some network(s).

It has to be considered that the AUTOSAR software-component development process
is iterative and that the AUTOSAR software-component description might be changed
during the development of the AUTOSAR software-component. This requires the ap-
plication header file to be regenerated to reflect the changes done in the software-
component description.

When the software-component has been compiled successfully the '‘Component Im-
plementation Description Generation’ tool will analyze the resulting object files and

AUTOSAR

enhance the software-component description with the information from the specific im-
plementation. This includes information about the actual memory needs for ROM as
well as for RAM and goes into the ‘Component Implementation Description’ section of
the AUTOSAR Software Component Template.

Please note that in case of implemented PreCompileTime variability addition-
ally the PreBuild Data Set Contract Phase is required 3.2 to be able to compile the
software component.

So when a software-component is delivered it will consist of the following parts:
e SW-Component Type Description
e SW-Component Internal Behavior Description
e The actual SW-Component implementation and/or compiled SW-Component
e SW-Component Implementation Description

The above listed information will be needed to provide enough information for the Sys-
tem Generation steps when the whole system is assembled.

3.1.2 Basic Software Scheduler Contract Phase

To be able to support the Basic Software Module development with Basic Software
Scheduler specific APls the Module Interlink Header (6.3.2) and Module Interlink
Types Header (6.3.1) containing the definitions and declaration for the Basic Soft-
ware Scheduler API related to the single Basic Software Module instance is generated
by the RTE Generator in the so called 'Basic Software Scheduler Contract Phase’.

The required input is
e Basic Software Module Description and
e Basic Software Module Internal Behavior and
e Basic Software Module Implementation

Please note that in case of implemented PreCompileTime variability addition-
ally the PreBuild Data Set Contract Phase is required 3.2 to be able to compile the
Basic Software Module.

3.2 PreBuild Data Set Contract Phase

In the RTE PreBuild Data Set Contract Phase are the Condition Value Macros (see
5.3.8.2.2) generated which are required to resolve the implemented pre-build
variability of a particular software component or Basic Software Module.

AUTOSAR

The particular values are defined via PredefinedvVariants. These Predefined-
Variant elements containing definition of SwSystemconstvalues for SwSystem—
consts which shall be applied when resolving the variability during ECU Configuration.

The output of this phase is the RTE Configuration Header File 5.3.8. This file is re-
quired to compile a particular variant of a software component using PreCompile-
Time variability. The Condition Value Macros are used for the implementation
of PreCompileTime variability with preprocessor statements and therefore are
needed to run the C preprocessor resolving the implemented variability.

3.3 Edit ECU Configuration of the RTE

During the configuration of an ECU the RTE also needs to be configured. This is
divided into several steps which have to be performed iteratively: The configuration of
the RTE and the configuration of other modules.

So first the 'RTE Configuration Editor’ needs to collect all the information needed to
establish an operational RTE. This gathering includes information on the software-
component instances and their communication relationships, the Runnable Entities and
the involved RTE-Events and so on. The main source for all this information is the ’'ECU
Configuration Values’, which might provide references to further descriptions like the
software-component description or the System Configuration description.

An additional input source is the Specification of Timing Extensions [14]. This template
can be used to specify the execution order of runnable entities (see section 'Execution
order constraint’). An ’'RTE Configuration Editor’ can use the information to create and
check the configuration of the Rte Event to Os task mapping (see section 7.6.1).

The usage of 'ECU Configuration Editors’ covering different parts of the 'ECU Con-
figuration Values’ will — if there are no cyclic dependencies which do not converge —
converge to a stable configuration and then the ECU Configuration process is finished.
A detailed description of the ECU Configuration can be found in [5]. The next phase is
the generation of the actual RTE code.

AUTOSAR

3.4 Generation Phase

After the ECU has been entirely configured the generation of the actual RTE inclusive
the Basic Software Scheduler part can be performed. Since all the relationships to
and from the other Basic-SW modules have been already resolved during the ECU
Configuration phase, the generation can be performed in parallel for all modules (see
Figure 3.4).

XML

BSW-Module
Description :
BswModuleDescription

B

N
XM Generate H’Z;tlizer Cgmp”e
RTE RTE
ECU Com plled
Configuration RTE
|
'

Values

RTE
Code

AUTOSAR
RTE
Generator

XML

N o
MC-Support

10C-Configuration

Figure 3.4: RTE Generation Phase

The Basic Software Scheduler is a part of the Rte and therefore not explicitly shown in
figure 3.4.

3.4.1 Basic Software Scheduler Generation Phase

Depending on the complexity of the ECU and the cooperation model of the different
software vendors it might be required to integrate the Basic Software stand alone with-
out software components.

Therefore the RTE Generator has to support the generation of the Basic Software
Scheduler without software component related RTE fragments. The Basic Software
Scheduler Generation Phase is only applicable for software builds which are not con-
taining any kind of software components.

[SWS_Rte_07569] | In the Basic Software Scheduler Generation Phase the RTE
Generator shall generate the Basic Software Scheduler without the RTE functional-
ity. |(SRS_Rte_00221)

In this case the RTE Generator generates the API for Basic Software Modules and the
Basic Software Scheduling code only. When the input contains software component
related information this information raises an error.

AUTOSAR

For instance:

e Application Header Files are not generated for the software components con-
tained in the ECU extract.

e Mapped RTEEvents are not permitted and the runnable calls are not generated
into the OS task bodies. Nevertheless all OS task bodies related to the Basic
Software Scheduler configuration are generated.

¢ Mode machine instances mapped to the RTE are not supported.

[SWS_Rte_07585] | In the Basic Software Scheduler Generation Phase the RTE Gen-
erator shall reject input configuration containing software component related informa-
tion. | (SRS_Rte_00221)

The RTE Generator in the Basic Software Scheduler Generation Phase is also respon-
sible to generate additional artifacts which contribute to the further build, deployment
and calibration of the ECU’s software.

[SWS_Rte_06725] | The RTE Generator in Basic Software Scheduler Genera-
tion Phase shall provide its Basic Software Module Description in order to cap-
ture the generated RTE’s / Basic Software Scheduler attributes. |(SRS_Rte_00170,
SRS _Rte 00192, SRS _Rte 00233)

Details about the Basic Software Module Description generation can can be found in
section 3.4.3.

[SWS_Rte_06726] | The RTE Generator in Basic Software Scheduler Generation
Phase shall provide an MC-Support (Measurement and Calibration) description as part
of the Basic Software Module Description. |(SRS_Rte 00153, SRS _Rte 00189)

Details about the MC-Support can be found in section 4.2.8.4.

For software builds which are containing software components the RTE Generation
Phase 3.4.2 is applicable where the Basic Software Scheduler part of the RTE is gen-
erated as well.

3.4.2 RTE Generation Phase

The actual AUTOSAR software-components and Basic-SW modules code will be linked
together with the RTE and Basic Software Scheduler code to build the entire ECU
software.

Please note that in case of implemented PreCompileTime variability addition-
ally the PreBuild Data Set Generation Phase is required (see section 3.5) to be able to
compile the ECU software. Further on in case of implemented post-build vari-
ability PostBuild Data Set Generation Phase is required (see section 3.6) to be able
to link the full ECU software.

AUTOSAR

The RTE Generator in the Generation Phase is also responsible to generate additional
artifacts which contribute to the further build, deployment and calibration of the ECU’s
software.

[SWS_Rte_05086] | The RTE Generator in Generation Phase shall provide its Ba-
sic Software Module Description in order to capture the generated RTE’s attributes.
|(SRS_Rte_00170, SRS_Rte_00192, SRS_Rte _00233)

Details about the Basic Software Module Description generation can can be found in
section 3.4.3.

[SWS_Rte_05087] | The RTE Generator in Generation Phase shall provide an MC-
Support (Measurement and Calibration) description as part of the Basic Software Mod-
ule Description. |(SRS_Rte 00153, SRS _Rte 00189)

Details about the MC-Support can be found in section 4.2.8.4.

[SWS_Rte_05147] | The RTE Generator in Generation Phase shall provide the con-
figuration for the loc module [4] if the loc module is used. |(SRS_Rte _00196)

The RTE generates the 10C configurations and uses an implementation specific deter-
ministic generation scheme. This generation scheme can be used by implementations
to reuse these I0C configurations (e.g. if the configuration switch strictConfigu-
rationCheck is used).

[SWS_Rte_08400] | The RTE Generator in Generation Phase shall generate internal
ImplementationDataTypes types used for IOC configuration. |(SRS_Rte_00210)

The corresponding C data types will be generated into the Rte Type.h. This
Rte_Type.h header file will be used by the 10C to get the types for the IOC API.

Changing the RTE generator will require a new IOC configuration generation.
Details about the loc module can be found in section 4.3.4.1.

[SWS_Rte_08305] | The RTE Generator in Generation Phase shall ignore XML-
Content categorized as ICS. |(SRS_Rte_00233)

ARPackage with category ICS describes an Implementation Conformance Statement.
(See TPS Basic Software Module Description [9] for more details.)

3.4.3 Basic Software Module Description generation

The Basic Software Module Description [9] generated by the RTE Generator in gen-
eration phase describes features of the actual RTE code. The following requirements
specify which elements of the Basic Software Module Description are mandatory to be
generated by the RTE Generator.

AUTOSAR

3.4.3.1 Bsw Module Description

[SWS_Rte_05165] | The RTE Generator in Generation Phase shall provide the
BswModuleDescription element of the Basic Software Module Description for the
generated RTE. |(SRS_Rte 00233)

[SWS_Rte_08404] | The RTE BswModuleDescription shall be provided in
ARPackage AUTOSAR_Rte according to AUTOSAR Generic Structure Template [10]
(chapter "Identifying M1 elements in packages"). |(SRS_Rte_00233)

[SWS_Rte_05177] | The RTE Generator in Generation Phase shall provide the
BswModuleEnt ry and a reference to it from the BswModuleDescription inthe role
providedEntry for each Standardized Interface provided by the RTE (see Layered
Software Architecture [15] page tz76a and page 94ju5). The provided Standardized
Interfaces are the Rte Lifecycle API (section 5.8) and the SchM Lifecycle API (sec-
tion 6.7). |(SRS_Rte_00233)

[SWS_Rte_05179] | The RTE Generator in Generation Phase shall provide the
BswModuleDependency in the BswModuleDescription with the role bswMod-
uleDependency for each callback API provided by the RTE and called by the re-
spective Basic Software Module. The reference from the BswModuleDependency to
the BswModuleEntry shall be in the role expectedCallback. The calling Basic
Software Module is specified in the attribute targetModuleId of the BswModuleDe-
pendency. |(SRS_Rte_00233)

For all the APIs the RTE code is invoking in other Basic Software Modules the depen-
dencies are described via requirement [SWS_Rte_05180].

[SWS_Rte_05180] | The RTE Generator in Generation Phase shall provide the
BswModuleDependency in the BswModuleDescription with the role bswMod-
uleDependency for each API called by the RTE in another Basic Software Module.
The reference from the BswModuleDependency to the BswModuleEntry shall be
in the role requiredEntry. The called Basic Software Module is specified in the
attribute targetModuleId of the BswModuleDependency. |(SRS_Rte_00233)

[SWS_Rte_07085] | If the Basic Software Module Description for the generated RTE
depends from elements in Basic Software Module Descriptions of other Basic Software
Modules the RTE Generator shall use the full qualified path name to this elements ac-
cording the rules in "ldentifying M1 elements in packages" of the document AUTOSAR
Generic Structure Template [10]. |(SRS_Rte_00233)

For instance the description of the the hook function

1 void Rte_Dlt_Task_Activate (TaskType task)

for the DIt needs the TmplementationDataType "TaskType" from the OS in order to
describe the data type of the swServiceArg "task" in the description of the related
BswModuleEntry.

In this case the full qualified path name to the ITmplementationDataType "Task-
Type" shall be

AUTOSAR

1 AUTOSAR_OS/ImplementationDataTypes/TaskType

The full example about the description is given below:

<AR-PACKAGE>
<SHORT-NAME>AUTOSAR_RTE</SHORT-NAME>
<AR-PACKAGES>
<AR-PACKAGE>
<SHORT-NAME>BswModuleEntrys</SHORT-NAME>
<ELEMENTS>
<BSW-MODULE-ENTRY>
<SHORT-NAME>Rte_D1t_Task_Activate</SHORT-NAME>
<ARGUMENTS>
<SW-SERVICE-ARG>
<SHORT-NAME>t ask</SHORT-NAME>
<CATEGORY>TYPE_REFERENCE</CATEGORY>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS—-VARIANTS>
<SW-DATA-DEF-PROPS—CONDITIONAL>
<IMPLEMENTATION-DATA-TYPE-REF DEST="IMPLEMENTATION-
DATA-TYPE">AUTOSAR_OS/ImplementationDataTypes/
TaskType</IMPLEMENTATION-DATA-TYPE-REF>
</SW-DATA-DEF-PROPS—-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>
</SW-SERVICE-ARG>
</ARGUMENTS>
</BSW-MODULE-ENTRY>
</ELEMENTS>
</AR-PACKAGE>

3.4.3.2 Bsw Internal Behavior

[SWS_Rte_05166] | The RTE Generator in Generation Phase shall provide the
BswInternalBehavior elementin the BswModuleDescription of the Basic Soft-
ware Module Description for the generated RTE. |(SRS_Rte_00233)

[SWS_Rte_05181] | The RTE Generator in Generation Phase shall provide the
BswCalledEntity elementin the BswInternalBehavior for each C-function im-
plementing the lifecycle APls (section 5.8) and the SchM Lifecycle API (section 6.7).
The BswCalledEntity shall have a reference to the respective BswModuleEntry
([SWS_Rte_05177]) in the role implementedEntry. |(SRS_Rte_00233)

[SWS_Rte_05182] [The RTE Generator in Generation Phase shall provide the vari-
ableDataPrototype element in the BswInternalBehavior in the role stat-
icMemory for each variable memory object the RTE allocates. |(SRS_Rte_00233)

[SWS_Rte_05183] | The RTE Generator in Generation Phase shall provide
the ParameterDataPrototype element in the BswInternalBehavior in the
role constantMemory for each constant memory object the RTE allocates.
|(SRS_Rte_00233)

AUTOSAR

3.4.3.3 Bsw Implementation

[SWS_Rte_05167] | The RTE Generator in Generation Phase shall provide the
BswIimplementation element and a reference to the BswIinternalBehavior of
the Basic Software Module Description in the role behavior. |(SRS_Rte 00233)

[SWS_Rte_05187] | The RTE Generator in Generation Phase shall provide the pro-
grammingLanguage element in the BswImplementation element according to the
actual RTE implementation. | (SRS_Rte 00233)

[SWS_Rte_05186] | The RTE Generator in Generation Phase shall provide the
swVersion element in the BswImplementation element according to the input in-
formation from the RTE Ecu configuration ([SWS_Rte 05184], [SWS_Rte _05185]).
|(SRS_Rte_00233)

[SWS_Rte_05190] | The RTE Generator in Generation Phase shall provide the ar-
ReleaseVersion element in the BswImplementation element according to AU-
TOSAR release version the RTE Generator is based on. |(SRS_Rte 00233)

[SWS_Rte_05188] | The RTE Generator in Generation Phase shall provide the used-
CodeGenerator element in the BswImplementation element according to the ac-
tual RTE implementation. |(SRS_Rte_00233)

[SWS_Rte_05189] | The RTE Generator in Generation Phase shall provide the ven-
dorId elementin the BswImplementation element according to the input informa-
tion from the RTE Ecu configuration (RteCodevendor1d). |(SRS_Rte_00233)

The RteCodeVendorId specifies the vendor id of the actual user of the RTE Gener-
ator, not the id of the RTE Vendor itself.

[SWS_Rte_05191] | If the generated RTE code is hardware specific (due to ven-
dor specific optimizations of the RTE Generator) then the reference to the applicable
HwElements from the ECU Resource Description [16] shall be provided in the BswIm-
plementation element with the role hwElement. |(SRS_Rte 00233)

[SWS_Rte_05192] | The RTE Generator in Generation Phase shall provide the De-
pendencyOnArtifact element in the BswImplementation with the role gener-
atedArtifact for all c- and header-files which are required to compile the Rte
code. This does not include other Basic Software modules or Application Software.
|(SRS_Rte_00233)

Note: The use case is the support of the build-environment (automatic or manual).
Attributes shall be used in this context as follow:

e category shall be used as defined in Generic Structure Template [10] (e.g.
SWSRC, SWOBJ, SWHDR)

e domain is optional and can be chosen freely

e revisionLabel shall contain the revision label out of RTE Configuration

AUTOSAR

e shortLabel is the name of artifact

Details on the description of DependencyOnArtifact can be found in the Generic
Structure Template [10].

Additional elements of the Basic Software Module Description which shall be exported
are specified in later requirements e.g. in section 4.2.8.4 and sectionsection 5.1.2.4.

3.5 PreBuild Data Set Generation Phase

During the PreBuild Data Set Generation Phase are the Condition Value Macros
(see 5.3.8.2.2) generated which are required to resolve the implemented pre-build
variability of the software components, generated RTE and Basic Software
Scheduler.

The particular values are defined via the EcucvariationResolver configuration
selecting PredefinedVariants. These PredefinedVariant elements containing
definition of SwSystemconstValues for SwSystemconsts which shall be applied
when resolving the variability during ECU Configuration.

The values of the Condition Value Macros are the results of evaluated Condition-
ByFormulas of the related variationPoints. These ConditionByFormulas ref-
erencing swSystemconsts in the formula expressions. It is supported that the as-
sighed swSystemconstValue might contain again a formula expressions referenc-
ing swsystemconsts. Therefore the input might be a tree of formula expressions
and SwSystemconstValues but the leaf SwSystemconstvValues are required to
be values which are not dependent from other SwSystemconsts to ensure that the
evaluation of the tree results in a unique number.

[SWS_Rte_06610] [The RTE generator shall validate the resolved pre-build variants
and check the integrity with regards to the meta model. Any meta model violation shall
result in the rejection of the input configuration. | (SRS_Rte _00018)

The output of this phase is the RTE Configuration Header File 5.3.8.This file is required
to compile a particular variant of ECU software including software component code and
RTE code using PreCompileTime variability. The Condition Value Macros are
used for the implementation of PreCompileTime variability with preprocessor
statements and therefore are needed to run the C preprocessor resolving the imple-
mented variability.

3.6 PostBuild Data Set Generation Phase

In the optional PostBuild Data Set Generation Phase the Predefinedvariant values
are generated which are required to resolve the implemented post-build vari-
ability of the software components and generated RTE.

AUTOSAR

The output of this phase are the RTE Post Build Variant Sets 5.3.10. This file is required
to link the ECU software and to select a particular PostBuild variant in the generated
RTE code during start up when the Basic Software Scheduler is initialized.

[SWS_Rte_06611] | If the DET is enabled then the RTE shall generate validation code
which at runtime (i.e. during initialization) validates the resolved post-build variants and
check the integrity with regards to the active variants. If a violation is detected the RTE
shall report a default error to the DET. To execute this validation RTE initialization will
get a pointer to the RtePostBuildvariantConfiguration instance to allow it to
validate the selected variant. |(SRS_Rte _00191)

[SWS_Rte_06612] | The RTE generator shall create an RTE Post Build Data Set con-
figuration (i.e. Rte_PBCfg.c) representing the collection of Predefinedvariant def-
initions (typically for each subsystem and/or system configuration) providing and defin-
ing the post build variants of the RTE. | (SRS _Rte 00191)

Note that the Rte_PBCfg.h is generated during the Rte Generation phase. An
Rte_PBCfg.c may also have to be generated at that time to reserve memory (with
default values).

Additional details about these configuration files are described in section 5.3.10.

An RTE variant can consist of a collection of Predefinedvariants. Each Pre-
definedVariant contains a collection of PostBuildvariantCriterionValue$S
which assigns a value to a specific PostBuildvVariantCriterion which in turn is
used to resolve the variability at runtime by evaluating a PostBuildvariantCon-
dition. Different Predefinedvariants could assign different values to the same
PostBuildVariantCriterion and as such create conflicts for a specific Post-
BuildVariantCriterionValueSet. It is allowed to have different assignments if
these assignment assign the same value.

[SWS_Rte_06613] | The RTE Generator shall reject configurations where
different PredefinedvVariants assign different values to the same Post-

BuildVariantCriterion forthe same RtePostBuildvVariantConfiguration.
|(SRS_Rte_00018, SRS_Rte _00191)

[SWS_Rte_06814] | The RTE Generator shall reject configurations where multiple
post build variant instances of ParameterDataPrototypes are used but where not
exactly one instance in one RtePostBuildVariantConfiguration is selected.
|(SRS_Rte 00018, SRS _Rte _00191)

Further information can be found in section 4.2.8.3.7.

3.7 RTE Configuration interaction with other BSW Modules

The generated RTE interacts heavily with other AUTOSAR Basic Software Modules
like Com and Os. The configuration values for the different BSW Modules are stored
in individual structures of ECU Configuration it is however essential that the common

AUTOSAR

used values are synchronized between the different BSW Module’s configurations. AU-
TOSAR does not provide a standardized way how the individual configurations can be
synchronized, it is assumed that during the generation of the BSW Modules the input
information provided to the individual BSW Module is in sync with the input information
provided to other (dependent) BSW Modules.

The AUTOSAR BSW Module code-generation methodology is heavily relying on the
logical distinction between Configuration editors and configuration generators. These
tools do not necessarily have to be implemented as two separate tools, it just shall
be possible to distinguish the different roles the tools take during a certain step in the
methodology.

For the RTE it is assumed that tool support for the resolution of interactions between
the Rte and other BSW Modules is needed to allow an efficient configuration of the Rte.
It is however not specified how and in which tools this support shall be implemented.

The RTE Generator in Generation Phase needs information about other BSW Module’s
configurations based on the configuration input of the Rte itself (there are references in
the configuration of the Rte which point to configuration values of other BSW Modules).
If during RTE Generation Phase the provided input information is inconsistent wrt. the
Rte input the Rte Generator will have to consider the input as invalid configuration.

[SWS_Rte_05149] [The RTE Generator in Generation Phase shall consider errors in
the Rte configuration input information as invalid configuration. | (SRS_Rte _00018)

Due to implementation freedom of the RTE Generator it is possible to correct / update
provided input configurations of other BSW Modules based on the RTE configuration
requirements. But to allow a stable build process it is also possible to disallow such an
update behavior.

[SWS_Rte 05150] [If the external configuration switch
strictConfigurationCheck is set to frue the Rte Generator shall not create
or modify any configuration input. |(SRS_Rte_00065)

If the external configuration switch strictConfigurationCheck
(see [SWS_Rte 05148]) is set to false the Rte Generator may update the input
configuration information of the Rte and other BSW Modules.

Example: If the Rte configuration is referencing an 0sTask which is not configured in
the provided Os configuration, the RTE Generator would behave like:

e In case [SWS_Rte 05150] applies: Only show an error message.

e Otherwise: Possible behavior: Show a warning message and modify the Os con-
figuration to contain the 0sTask which is referred to by the Rte configuration (Of
course the Os configuration of this new 0sTask needs to be refined afterwards).

AUTOSAR

4 RTE Functional Specification

4.1 Architectural concepts

41.1 Scope

In this section the concept of an AUTOSAR software-component and its usage within
the RTE is introduced.

The AUTOSAR Software Component Template [2] defines the kinds of software-
components within the AUTOSAR context. These are shown in Figure 4.1. The ab-
stract swComponent Type can not be instantiated, so there can only be either a Com-
positionSwComponentType, @ ParameterSwComponentType, Or a specialized
class ApplicationSwComponentType, ServiceProxySwComponentType, Sen—
sorActuatorSwComponentType, NvBlockSwComponentType, ServiceSwCom—
ponentType, ComplexDeviceDriverSwComponentType, Of EcuAbstraction—
SwComponent Type Of the abstract class At omicSwComponentType.

In the following document the term AtomicSwComponentType is used as collective
term for all the mentioned non-abstract derived meta-classes.

The swComponentType is defining the type of an AUTOSAR software-component
which is independent of any usage and can be potentially re-used several times in
different scenarios. In a composition the types are occurring in specific roles which are
called swComponentPrototypes. The prototype is the utilization of a type within a
certain scenario. In AUTOSAR any swComponentType can be used as a type for a
prototype.

ARElement AtpPrototype

AtpBlueprint
AlpBluzpnntzble +type SwComponentPrototype

AtpType T «isOfType»
SwCormponentType {redefines

atpType}
«atpVariation» Tags: +component | 0.*
vh.latestBindingTime 5 _
postBuild el «atpvariatlon,atpSplnabe>>

AtomicSwComponentType ParameterSwComponentType CompositionSwComponentType

! |

ApplicationSwComponentType NvBlockSwComponentType ComplexDeviceDriverSwComponentType ServiceSwComponentType

EcuAbstractionSwComponentType SensorActuatorSwComponentType ServiceProxySwComponentType

Figure 4.1: AUTOSAR software-component classification

The AUTOSAR software-components shown in Figure 4.1 are located above and below
the RTE in the architectural Figure 4.2.

AUTOSAR

Below the RTE there are also software entities that have an AUTOSAR Interface.
These are the AUTOSAR services, the ECU Abstraction and the Complex Device
Drivers. For these software not only the AUTOSAR Interface will be described but
also information about their internal structure will be available in the Basic Software
Module Description.

Application
Software

Actuator
Software

Software

Application
Software

AUTOSAR
Software

Component Component Component Component

g

The software component
template describes these
components completely

11 A
Standardized ? S?S.?g'gzsd Standardized
Interface z Interface Interface
Services Communication
Standardized Standardized Standardized
_ % Interface Interface Interface
= 3
& o
Operating g-.) A Cgér\l’?(lzzx
System |0 & .
® N Drivers
o Standardized
Interface

Microcontroller

TS

o

FTFFFITTTA

Abstraction

Of these software components
only the AUTOSAR Interface
side can be fully described in the

software component template
Figure 4.2: AUTOSAR ECU architecture diagram

In the next sections the different AUTOSAR software-components kinds will be de-
scribed in detail with respect to their influence on the RTE.

4.1.2 RTE and Data Types

The AUTOSAR Meta Model defines ApplicationDataTypeS and Implementa-—
tionDataTypeS. A AutosarDataPrototype can be typed by an Application-
DataType Or an ImplementationDataType. But the RTE Generator only imple-
ments ImplementationDataTypes as C data types and uses these C data types
to type the RTE API which is related to DataPrototypes. Therefore it is required
in the input configuration that every ApplicationDataType used for the typing of a

AUTOSAR

DataPrototype which is relevant for RTE generation is mapped to an Implemen-—
tationDataType With @ DataTypeMap. Which DataTypeMap is applicable for an
particular software component respectively Basic Software Module is defined by
the DataTypeMappingSets referenced by the InternalBehavior.

[SWS_Rte_07028] | The RTE Generator shall reject input configurations containing a
AutosarDataPrototype which influences the generated RTE and which is typed
by an ApplicationDataType not mapped to an ImplementationDataType.
|(SRS_Rte_00018)

Nevertheless a subset of the attributes given by the ApplicationDataTypes are
relevant for the RTE generator for instance

e to create the McSupportData (see section 4.2.8.4) information

e to calculate the conversion formula in case of Data Conversion (see section 4.3.5
and 4.3.5.3)

e to calculate numerical representation of values required for the RTE code but
defined in the physical representation (e.g. initialvalues and invalid-
Values).

[SWS_Rte_01374] [When a value is required for the RTE code and is provided as an
ApplicationValueSpecification, if there is an applicable ConstantSpecifi-
cationMapping then the RTE Generator shall use the valueSpecification ref-
erenced by its implConstant as the definitive numerical representation of the value
regardless of any compuMethod. |(SRS_Rte 00180, SRS_Rte 00182)

[SWS_Rte_07038] [When a value is required for the RTE code and is provided as an
ApplicationValueSpecification, if there is no applicable ConstantSpecifi-
cationMapping then the RTE Generator shall calculate the numerical representation
according to the conversion defined by an compuMethod. This shall be supported for
categorys VALUE, VAL_BLK, STRUCTURE, ARRAY, and BOOLEAN. In case of category
VAL_BLK, STRUCTURE and ARRAY, this applies only for the primitive leaf elements. If
there is no CompuMethod provided the conversion is treated like an CompuMethod of
category IDENTICAL. |(SRS_Rte 00180, SRS _Rte 00182)

In [SWS_Rte _01374] and [SWS_Rte_07038], an "applicable ConstantSpecifica-
tionMapping" is one that is aggregated by the relevant SwComponentType and
which references the ApplicationValueSpecification inits applConstant.

4.1.3 RTE and AUTOSAR Software-Components

The description of an AUTOSAR software-component is divided into the sections
e hierarchical structure
e ports and interfaces

e internal behavior

AUTOSAR

e implementation
which will be addressed separately in the following sections.

[SWS_Rte_07196] | The RTE Generator shall respect the precedence of data prop-
erties defined via swhbataDefProps as defined in the Software Component Template

21 J0
Requirement [SWS_Rte_07196] means that:

1. SwhataDefProps defined on ApplicationDataType which may be overwrit-
ten by

2. swhataDefProps defined on ImplementationbDataType which may be over-
written by

3. swhataDefProps defined on AutosarDataPrototype which may be over-
written by

4. swDataDefProps defined on InstantiationDataDefProps wWhich may be
overwritten by

5. swbatabDefProps defined on AccessPoint respectively Argument which may
be overwritten by

6. SwhataDefProps definedon FlatInstanceDescriptor which may be over-
written by

7. SwhataDefProps defined on MchatalInstance

The swhataDefProps defined on MchataInstance are not relevant for the RTE
generation but rather the documentation of the generated RTE.

Especially the attributes swAddrMethod, swCalibrationAccess, swImplPolicy
and dataConstr do have an impact on the generated RTE. In the following document
only the attribute names are mentioned with the semantic that this refers to the most
significant one.

4.1.3.1 Hierarchical Structure of Software-Components

In AUTOSAR the structure of an E/E-system is described using the AUTOSAR Soft-
ware Component Template and especially the mechanism of compositions. Such a
Top Level Composition assembles subsystems and connects their ports.

Of course such a composition utilizes a lot of hierarchical levels where compositions
instantiate other composition types and so on. But at some low hierarchical level each
composition only consists of AtomicSwComponentType instances. And those in-
stances of AtomicSwComponent Types are what the RTE is going to be working with.

AUTOSAR

4.1.3.2 Ports, Interfaces and Connections

Each AUTOSAR software-component (SwComponent Type) can have ports (Port-
Prototype). An AUTOSAR software-component has provide ports (PPortProto-
type) and/or has require ports (RPortPrototype) to communicate with other AU-
TOSAR software-components. The requiredInterface Or providedInterface
(PortInterface) determines if the port is a sender/receiver or a client/server port.
The attribute i sservice is used with AUTOSAR Services (see section 4.1.5).

ARElement
AtpBlueprint AtpBlueprintable
AtpBlueprintable +port AtpPrototype

AtpType

«atpVariation,atpSplitable» (. PortPrototype
SwComponentType 4

«atpVariation» Tags: A
vh.latestBindingTime
preCompileTime

AbstractRequiredPortPrototype AbstractProvidedPortPrototype
RPortPrototype PRPortPrototype PPortPrototype
«isOfType» «isOfType» «isOfType»
1
{redefines ! 1
.)) {redefines . {redefines
+requiredinterface \|/ atpType} +providedRequiredinterface \[/ atpType} +providedinterface atpType}
ARElement
AtpBlueprint
AtpBlueprintable
AtpType

Portinterface

+ isService :Boolean
+ serviceKind :ServiceProviderEnum [0..1]

Figure 4.3: Software-Components and Ports

When compositions are built of instances the ports can be connected either within the
composition or made accessible to the outside of the composition. For the connections
inside a composition the AssemblySwConnector is used, while the Delegation-—
SwConnector is used to connect ports from the inside of a composition to the outside.
Ports not connected will be handled according to the requirement [SRS_Rte_00139].

The next step is to map the SW-C instances on ECUs and to establish the communi-
cation relationships. From this step the actual communication is derived, so it is now

AUTOSAR

fixed if a connection between two instance’s ports is going to be over a communication
bus or locally within one ECU.

[SWS_Rte_02200] | The RTE shall implement the communication paths specified by
the ECU Configuration description. |(SRS_Rte _00027)

[SWS_Rte_02201] [The RTE shall implement the semantic of the communication at-
tributes given by the AUTOSAR software-component description. The semantic of the
given communication mechanism shall not change regardless of whether the commu-
nication partner is located on the same partition, on another partition of the same ECU
or on a remote ECU, or whether the communication is done by the RTE itself or by the
RTE calling COM or IOC. |(SRS_Rte_00027)

E.g., according to [SWS_Rte_02200] and [SWS_Rte_02201] the RTE is not permitted
to change the semantic of an asynchronous client to synchronous because both client
and server are mapped to the very same ECU.

4.1.3.3 Internal Behavior

Only for AtomicSwComponent Types the internal structure is exposed in the SwcIn-
ternalBehavior description. Here the definition of the RunnableEntitys and
used RTEEvents is done (see Figure 4.4).

The AUTOSAR MetaModel enforces that there is at most one SwcInternalBehav-—
ior per AtomicSwComponentType

Identifiable AtpStructureElement AutosarDataPrototype
ExclusveArea | *exclusiveArea IntemalBehavior + Yy P: DataPrototyp:
0..* «atpVariation,atpSplitable» v «atpvariatién.atpsplitable» 0.*
s «al
\ -
0_ FPEEAes . +perinstanceParameter | * +sharedParameter | *
«atpVariation» Tags: : o «atpVariation,atpSplitable»
vh.latestBindingTime «atpVariation» Tags: |, -:szzzz2222}ccmmmnammmmmomn-nn
preCompileTime vh.latestBindingTime «atpVariation,atpSplitable»
preCompileTime
AutosarDataPrototype +staticMemory

SwelnternalBehavior

VariableDataPrototype | 0..* «atpVariation,atpSplitable»
'

+implicitinterRunnableVariable

«atpVariation,atpSplitable»
' '

+explicitinterRunnableVariable
) '

«atpVariation,atpSplitable»

+arTypedPerlnsqn99Memory

<<atpV§r1atign,atpSpI\table»

T
Vo
Vs
P «atpVariation» Tags:
________ vh.latestBindingTime = -4-<____ __
iation» Tags | dee==m7T -="""| preCompileTime - T
CEUIELERD UL «atpVariation,atpSplitable» B B

vh.latestBindingTime «atpVariation,atpSplitable»
preCompileTime «atpVariation,atpSplitable»

«atpVariation,atpSplitable»

+perinstanceMemory | * +portAPIOption 0. +runnable [1.* +event|*

AtpStructureElement POMtAPIOption AtpStructureElement AbstractEvent
Identifiable P ExecutableEntity AtpStructureElement
PerinstanceMemory RunnableEntity RTEEvent

Figure 4.4: Software-component internal behavior

AUTOSAR

RunnableEntitys (also abbreviated simply as Runnable) are the smallest code frag-
ments that are provided by AUTOSAR software-components and those basic software
modules that implement AUTOSAR Interfaces. They are represented by the meta-class
RunnableEntity, see Figure 4.5.

In general, software components are composed of multiple RunnableEntitys in or-
der to accomplish servers, receivers, feedback, etc.

[SWS_Rte_02202] | The RTE shall support multiple RunnableEntitysin AUTOSAR
software-components. |(SRS_Rte _00031)

RunnableEntitys are executed in the context of an OS task, their execution is
triggered by RTEEvents. Section 4.2.2.3 gives a more detailed description of the
concept of RunnableEntitys, Section 4.2.2.6 discusses the problem of mapping
RunnableEntitys to OS tasks. RTEEvents and the activation of RunnableEn-
titys by RTEEvents is treated in Section 4.2.2.4.

[SWS_Rte_02203] | The RTE shall trigger the execution of RunnableEntitys in
accordance with the connected RTEEvent. |(SRS_Rte _00072)

[SWS_Rte_02204] | The RTE Generator shall reject configurations where an RTE-
Event instance which can start a RunnableEntity is not mapped to an OS task.
The only exceptions are RunnableEntitys that are invoked by a direct function call.
|(SRS_Rte_00049, SRS _Rte _00018)

[SWS_Rte_07347] | The RTE Generator shall reject configurations where
RunnableEntitys of a SW-C are mapped to tasks of different partitions.
| (SRS_Rte_00036, SRS_Rte_00018)

[SWS_Rte_02207] | The RTE shall respect the configured execution order of
RunnableEntitys within one OS task. | (SRS_Rte 00070)

[SWS_Rte_08768] | The RTE generator shall reject configuration where the scope
of a variableAccess is violated by the system and/or ECU configuration.
|(SRS_Rte_00018)

[constr_9081] Mapping to partition vs the value of VariableAccess.scope | For
every connection between SwComponentPrototypes mapped to different parti-
tions the value of variableAccess.scope shall not be set to VariableAccessS-
copeEnum.communicationintraPartition. |()

AUTOSAR

InternalBehavior

SweclnternalBehavior::SwcinternalBehavior

+ supportsMultiplelnstantiation :Boolean

+ handleTerminationAndRestart :HandleTerminationAndRestartEnum

«atpVariation,atpSplitable» _ _ __ |

+runnable [1..*

«atpVariation» Tags:
vh.latestBindingTime
preCompileTime

AtpStructureElement
ExecutableEntity

SweclinternalBehavior::RunnableEntity

+ canBelnvokedConcurrently :Boolean
+ symbol :Cldentifier

«atpVariation,atpSplitable»

+event|*

AbstractEvent
AtpStructureElement

RTEEvents::RTEEvent

+trigger 1

Identifiable
RTEEvents:WaitPoint

+startOnEvent
0..1
+waitPoint
*
+

timeout :TimeValue

Figure 4.5: Software-component runnable entity, wait points and RTE Events

AUTOSAR

InternalBehavior

SweclnternalBehavior::SwclnternalBehavior

+ supportsMultiplelnstantiation :Boolean

+ handleTerminationAndRestart :HandleTerminationAndRestartEnum

«atpVariation,atpSplitable» _ _ _ |

+runnable | 1..*

AtpStructureElement
ExecutableEntity

SweclinternalBehavior::RunnableEntity

«atpVariation» Tags:
vh.latestBindingTime
preCompileTime

+parameterAccess

N

+ canBelnvokedConcurrently :Boolean
+ symbol :Cldentifier

«atpvériation» 0.*

AtpStructureElement
Identifiable

DataElements::ParameterAccess

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

+dataSendPoint

AtpStructureElement
Identifiable

DataElements::VariableAccess

«atpVariation» 0..*
\
+dataReceivePointByArgument
«atpVariation» 0.*
v
O +dataReceivePointByValue
"
«atpVariation» 0..*
e
Vi
P +dataReadAccess
Vi
s 2 T
«atpVariation» 0..*
g
1 1
nr +dataWriteAccess
| «atpVariation» 0..*
wid)
we o
nor +readLocalVariable
.

v) «atpVariation»

wer s ’

0..*

+writtenLocalVariable

0..*

+ scope :VariableAccessScopeEnum [0..1]

«atpVariation» Tags:
vh.latestBindingTime
preCompileTime

Figure 4.6: Software-component runnable entity and data accesses

AUTOSAR

InternalBehavior

SweclnternalBehavior::SwclnternalBehavior

handleTerminationAndRestart :HandleTerminationAndRestatEnum

+
+ supportsMultiplelnstantiation :Boolean

______ «atpVariation» Tags:
vh.latestBindingTime
AtpStructureElement
Identifiable

preCompileTime

+runnable |1..*
ServerCall::ServerCallPoint

AtpStructureElement
+serverCallPoint

ExecutableEntity
SweclinternalBehavior::RunnableEntity +runnable
; atpVariation - -
canBelnvokedConcurrently :Boolean «atp : » P — .
1

y

ll
AtpStructureElement
Identifiable

+
+ symbol :Cldentifier
1
+asynchronousServerCallResultPoint
ServerCall::AsynchronousServerCallResultPoin{

0.*

+runnable «atpVariation»
L)

"
"
"
"
M

«atpVariation» Tags:
vh.latestBindingTime =

preCompileTime

Trigger::External TriggeringPoint

+externalTriggeringPoint

«atpVariation» 0.*

’

AtpStructureElement
Identifiable

Trigger::Internal TriggeringPoint

+intemalTriggeringPoint

g —
«atpVariation» 0.*
+ swimplPolicy :SwimplPolicyEnum [0..1]

(]

’
’
1

F~ o

«atpVariation» Tags:

vh.latestBindingTime
AtpStructureElement

Identifiable

preCompileTime
+runnable +modeSwitchPoint
— ModeDeclarationGroup::ModeSwitchPoint
«atpVariation»
/
1
1
ll
II
! . ModeDeclarationGroup::ModeAccessPoint
1 +modeAccessPoint
. 2
«atpVariation» *
[

(i
1

«atpVariation» Tags:
vh.latestBindingTime 4

preCompileTime
Figure 4.7: Software-component runnable entity and server invocation, trigger, and

mode switches

AUTOSAR

With the information from SwcInternalBehavior a part of the setup of the AU-
TOSAR software-component within the RTE and the OS can already be configured.
Furthermore, the information (description) of the structure (ports, interfaces) and the
internal behavior of an AUTOSAR software component are sufficient for the RTE Con-

tract Phase.

However, some detailed information is still missing and this is part of the Implementa-

tion description.

4.1.3.4 Implementation

In the Implementation description an actual implementation of an AUTOSAR software-

component is described including the memory consumption (see Figure 4.8).

Identifiable

«atpVariation,atpSplitable»

+stackUsage | 0.

*

ARElement
Implementation
«atpSplitable»
+resourceConsumption | 1
Identifiable
ResourceConsumption

ExecutableEntity

+executableEntity

Identifiable

StackUsage

0.1

+executableEntity

| «atpVariation» Tags:

vh.latestBindingTime
= preCompileTime

«atpVariation

«atpVariation,atpSplitable»

+executionTime|0..*

0.1

+executableEntity

Identifiable

ExecutionTime

atpSplitable»

«atpVariation,atpSplitable»

+memorySection | 0..* +heapUsage |0..*
Identifiable ldentifiable
MemorySection HeapUsage

0..*

Figure 4.8: Software-component resource consumption

Note that the information from the Implementation part are only required for the RTE

Generation Phase, if at all.

AUTOSAR

4.1.4 Instantiation
4.1.4.1 Scope and background

Generally spoken, the term instantiation refers to the process of deriving specific in-
stances from a model or template. But, this process can be accomplished on different
levels of abstraction. Therefore, the instance of the one level can be the model for the
next.

With respect to AUTOSAR four modeling levels are distinguished. They are referred to
as the levels M3 to MO.

The level M3 describes the concepts used to derive an AUTOSAR meta model of level
M?2. This meta model at level M2 defines a language in order to be able to describe
specific attributes of a model at level M1, e.g., to be able to describe an specific type
of an AUTOSAR software component. E.g., one part of the AUTOSAR meta model is
called Software Component Template or SW-C-T for short and specified in [2]. It is
discussed more detailed in section 4.1.3.

At level M1 engineers will use the defined language in order to design components or
interfaces or compositions, say to describe an specific type of a LightManager. Hereby,
e.g., the descriptions of the (atomic) software components will also contain an internal
behavior as well as an implementation part as mentioned in section 4.1.3.

Those descriptions are input for the RTE Generator in the so-called 'Contract Phase’
(see section 3.1.1). Out of this information specific APIs (in a programming language)
to access ports and interfaces will be generated.

Software components generally consist of a set of Runnable Entities. They can now
specifically be described in a programming language which can be refered to as “im-
plementation”. As one can see in section 4.1.3 this “implementation” then corresponds
exactly to one implementation description as well as to one internal behavior descrip-
tion.

MO refers to a specific running instance on a specific car.

Objects derived from those specified component types can only be executed in a spe-
cific run time environment (on a specific target). The objects embody the real and
running implementation and shall therefore be referred to as software component in-
stances (on modeling level 110). E.g., there could be two component instances derived
from the same component type LightManager on a specific light controller ECU each
responsible for different lights. Making instances means that it should be possible to
distinguish them even though the objects are descended from the same model.

With respect to this more narrative description the RTE as the run time environment
shall enable the process of instantiation. Thereby the term instantiation throughout
the document shall refer to the process of deriving and providing explicit particular
descriptions of all occuring instances of all types. Therefore, this section will address
the problems which can arise out of the instantiation process and will specify the needs
for AUTOSAR components and the AUTOSAR RTE respectively.

AUTOSAR

4.1.4.2 Concepts of instantiation

Regardless of the fact that the (aforementioned) instantiation of AUTOSAR software
components can be generally achieved on a per-system basis, the RTE Generator
restricts its view to a per-ECU customization (see [SWS_Rte_05000]).

Generally, there are two different kinds of instantiations possible:

e single instantiation — which refers to the case where only one object or AUTOSAR
software component instance will be derived out of the AUTOSAR software com-
ponent description

e multiple instantiation — which refers to the case where multiple objects or AU-
TOSAR software component instances will be derived out of the AUTOSAR soft-
ware component description

[SWS_Rte_02001] | The RTE Generator shall be able to instantiate one or more AU-
TOSAR software component instances out of a single AUTOSAR software component
description. |(SRS_Rte _00011)

[SWS_Rte_02008] | The RTE Generator shall evaluate the attribute supportsMultiple-
Instantiation of the SwclinternalBehavior of an AUTOSAR software component descrip-
tion. |(SRS_Rte_00011)

[SWS_Rte_02009] [The RTE Generator shall reject configurations where multiple
instantiation is required, but the value of the attribute supportsMultipleinstantiation of
the SwcinternalBehavior of an AUTOSAR software component description is set to
FALSE. | (SRS_Rte 00011, SRS_Rte_00018)

4.1.4.3 Single instantiation

Single instantiation refers to the easiest case of instantiation.

To be instantiated merely means that the code and the corresponding data of a particu-
lar RunnableEnt ity are embedded in a runtime context. In general, this is achieved
by the context of an OS task (see example 4.1).

Example 4.1

Runnable entity R1 called out of a task context:

TASK (Taskl) {

R1();

a A 0 Np =

Since the single instance of the software component is unambigous per se no addi-
tional concepts have to be added.

AUTOSAR

4.1.4.4 Multiple instantiation
[SWS_Rte_02002] | Multiple objects instantiated from a single AUTOSAR software
component (type) shall be identifiable without ambiguity. | (SRS _Rte_00011)
There are two principle ways to achieve this goal —
e by code duplication (of runnable entities)
e by code sharing (of reentrant runnable entities)

For now it was decided to solely concentrate on code sharing and not to support code
duplication.

[SWS_Rte_03015] [The RTE only supports multiple objects instantiated from a sin-
gle AUTOSAR software component by code sharing, the RTE doesn’t support code
duplication. |(SRS_Rte 00011, SRS _Rte 00012)

Multiple instances can share the same code, if the code is reentrant. For a multi core
controller, the possibility to share code between the cores depends on the hardware.

Example 4.2 is similar to the example 4.1, but for a software-component that sup-
port multiple instantiations, and where two instances have their R1 RunnableEntity
mapped to the same task.

Example 4.2

Runnable entity R1 called for two instances out of the same task context:

TASK (Taskl) {

Rl (instancel);
Rl (instance?2);

o g A W N =

The same code for R1 is shared by the different instances.

4.1.4.4.1 Reentrant code

In general, side effects can appear if the same code entity is invoked by different
threads of execution running, namely tasks. This holds particularly true, if the invoked
code entity inherits a state or memory by the means of static variables which are vis-
ible to all instances. That would mean that all instances are coupled by those static
variables.

Thus, they affect each other. This would lead to data consistency problems on one
hand. On the other — and that is even more important — it would introduce a new
communication mechanism to AUTOSAR and this is forbidden. AUTOSAR software
components can only communicate via ports.

AUTOSAR

To be complete, it shall be noted that a calling code entity also inherits the reentrancy
problems of its callee. This holds especially true in case of recursive calls.

4.1.4.4.2 Unambiguous object identification

[SWS_Rte_02015] | The instantiated AUTOSAR software component objects shall be
unambiguously identifiable by an instance handle, if multiple instantiation by sharing
code is required. |(SRS_Rte 00011, SRS_Rte _00012)

4.1.4.4.3 Multiple instantiation and Per-instance memory

An AUTOSAR SW-C can define internal memory only accessible by a SW-C instance
itself. This concept is called PerlnstanceMemory. The memory can only be accessed
by the runnable entities of this particular instance. That means in turn, other instances
don’t have the possibility to access this memory.

PerlnstanceMemory API principles are explained in Section 5.2.5.

The API for PerlnstanceMemory is specified in Section 5.6.15.

4.1.5 RTE and AUTOSAR Services

According to the AUTOSAR glossary [11] “an AUTOSAR service is a logical entity of the
Basic Software offering general functionality to be used by various AUTOSAR software
components. The functionality is accessed via standardized AUTOSAR interfaces”.

Therefore, AUTOSAR services provide standardized AUTOSAR Interfaces: ports typed
by standardized Port Interfaces.

When connecting AUTOSAR service ports to ports of AUTOSAR software components
the RTE maps standard RTE API calls to the symbols defined in the RTE input (i.e.
XML) for the AUTOSAR service runnables of the BSW. The key technique to distin-
guish ECU dependent identifiers for the AUTOSAR services is called “port-defined
argument values”, which is described in Section 4.3.2.4. Currently “port-defined argu-
ment values” are only supported for client-server communication. It is not possible to
use a pre-defined symbol for sending or receiving data.

The RTE does not pass an instance handle to the C-based API of AUTOSAR services
since the latter are single-instantiatable (see [SWS_Rte_03806]).

As displayed on figure 4.2, there can be direct interactions between the RTE and some
Basic Software Modules. This is the case of the Operating System, the AUTOSAR
Communication, and the NVRAM Manager.

AUTOSAR

4.1.6 RTE and ECU Abstraction

The ECU Abstraction provides an interface to physical values for AUTOSAR software
components. It abstracts the physical origin of signals (their pathes to the ECU hard-
ware ports) and normalizes the signals with respect to their physical appearance (like
specific values of current or voltage).

See the AUTOSAR ECU architecture in figure 4.2. From an architectural point of view
the ECU Abstraction is part of the Basic Software layer and offers AUTOSAR interfaces
to AUTOSAR software components.

Seen from the perspective of an RTE, regular AUTOSAR ports are connected. With-
out any restrictions all communication paradigms specified by the AUTOSAR Virtual
Functional Bus (VFB) shall be applicable to the ports, interfaces and connections —
sender-receiver just as well as client-server mechanisms.

However, ports of the ECU Abstraction shall always only be connected to ports of
specific AUTOSAR software components: sensor or actuator software components. In
this sense they are tightly coupled to a particular ECU Abstraction.

Furthermore, it must not be possible (by an RTE) to connect AUTOSAR ports of the
ECU Abstraction to AUTOSAR ports of any AUTOSAR component located on a remote
ECU (see [SWS_Rte_02051].

This means, e.g., that sensor-related signals coming from the ECU Abstraction are
always received by an AUTOSAR sensor component located on the same ECU. The
AUTOSAR sensor component will then process the received signal and deploy it to
other AUTOSAR components regardless of whether they are located on the same or
any remote ECU. This applies to actuator-related signals accordingly, however, the
opposite way around.

[SWS_Rte_02050] | The RTE Generator shall generate a communication path be-
tween connected ports of AUTOSAR sensor or actuator software components and the
ECU Abstraction in the exact same manner like for connected ports of AUTOSAR soft-
ware components. |()

[SWS_Rte_02051] | The RTE Generator shall reject configurations which require a
communication path from a AUTOSAR software component to an ECU Abstraction
located on a remote ECU. | (SRS _Rte 00062, SRS_Rte 00018)

Further information about the ECU Abstraction can be found in the corresponding spec-
ification document [17].

4.1.7 RTE and Complex Device Driver

A Complex Device Driver has an AUTOSAR Interface, therefore the RTE can deal with
the communication on the Complex Device Drivers ports. The Complex Device Driver
is allowed to have code entities that are not under control of the RTE but yet still may
use the RTE API (e.g. ISR2, BSW main processing functions).

AUTOSAR

4.1.8 Basic Software Scheduler and Basic Software Modules
4.1.8.1 Description of a Basic Software Module

The description of a Basic Software Module is divided into the sections
e interfaces
e internal behavior
e implementation

For further details see document [9].

4.1.8.2 Basic Software Interfaces

The interface of a Basic Software Module is described with Basic Software Module
Entries (BswModuleEntry). For the functionality of the Basic Software Scheduler only
BswModuleEntrys from BswCallType SCHEDULED are relevant. Nevertheless for op-
timization purpose the analysis of the full call tree might be required which requires the
consideration of all BswModuleEntry’s

4.1.8.3 Basic Software Internal Behavior

The Basic Software Internal Behavior specifies the behavior of a BSW module or a
BSW cluster w.r.t. the code entities visible by the BSW Scheduler. For the Basic Soft-
ware Scheduler mainly Basic Software Schedulable Entities (BswSchedulableEntity’s)
are relevant. These are Basic Software Module Entities, which are designed for control
by the Basic Software Scheduler. Basic Software Schedulable Entities are implement-
ing main processing functions. Furthermore all Basic Software Schedulable Entities
are allowed to use exclusive areas and for call tree analysis all Basic Software Module
Entities are relevant.

[SWS_Rte_07514] | The Basic Software Scheduler shall support multiple Basic Soft-
ware Module Entities in AUTOSAR Basic Software Modules. |(SRS_Rte 00211,
SRS _Rte 00213, SRS Rte 00216)

[SWS_Rte_07515] | The Basic Software Scheduler shall trigger the execution of
Schedulable Entity’s in accordance with the connected BswEvent. |(SRS_Rte _00072)

[SWS_Rte_07516] | The RTE Generator shall reject configurations where an Bsw-
Event which can start a Schedulable Entity is not mapped to an OS task. The excep-
tions are BswEvent that are implemented by a direct function call. |(SRS_Rte_00049,
SRS_Rte _00018)

[SWS_Rte_07517] | The RTE Generator shall respect the configured execution order
of Schedulable Entities within one OS task. |(SRS_Rte_00219)

AUTOSAR

[SWS_Rte_07518] | The RTE shall support the execution sequences of Runnable
Entities and Schedulable Entities within the same OS task in an arbitrarily configurable
order. | (SRS_Rte_00219)

4.1.8.4 Basic Software Implementation

The implementation defines further details of the implantation of the Basic Software
Module. The vendorApilnfix attribute is of particular interest, because it defines the
name space extension for multiple instances of the same basic software module. Fur-
ther on the category of the codeDescriptor specifies if the Basic Software Module
is delivered as source code or as object.

4.1.8.5 Multiple Instances of Basic Software Modules

In difference to the multiple instantiation concept of software components, where the
same component code is used for all component instances, basic software modules are
multiple instantiated by creation of own code per instance in a different name space.
The attribute vendorApilnfix allows to define name expansions required for global sym-
bols.

4.1.8.6 AUTOSAR Services / ECU Abstraction / Complex Device Drivers

AUTOSAR Services, ECU Abstraction and Complex Device Drivers are hybrid of AU-
TOSAR software-component and Basic Software Module. These kinds of modules
might use AUTOSAR Interfaces to communicate via RTE as well as C-API to directly
access other Basic Software Modules. Caused by the structure of the AUTOSAR Meta
Model some entities of the 'C’ implementation have to be described twice; on the one
hand by the means of the Software Component Template [2] and on the other hand by
the means of the Basic Software Module Description Template [9]. Further on the du-
alism of port based communication between software component and non-port based
communication between Basic Software Modules requires in some cases the coordi-
nation and synchronization between both principles. The information about elements
belonging together is provided by the so called SwcBswMapping.

4.1.8.6.1 RunnableEntity / BswModuleEntity mapping

A Runnable Entity which is mapped to a Basic Software Module Entity has to be treated
as one common entity. This means it describes an entity which can use the features of
a Runnable Entity and a Basic Software Module Entity as well. For instance it supports
to use the port based API as well as Basic Software Scheduler APl in one C function.

AUTOSAR

4.1.8.6.2 Synchronized ModeDeclarationGroupPrototype

Two synchronized ModeDeclarationGroupPrototype are resulting in the implementation
of one common mode machine instance. Consequently the call of the belonging
Rte_Switch APl and the schM_switch API are having the same effect. For opti-
mization purpose the Rte_Switch API might just refer to the SchM_Switch APL.

4.1.8.6.3 Synchronized Trigger

Two synchronized Trigger are behaving like one common Trigger. Consequently the
call of the belonging Rte_Trigger APl and the schM_Trigger API are having the
same effect. For optimization purpose the Rte_Trigger APl might just refer to the
SchM_Trigger APL.

4.2 RTE and Basic Software Scheduler Implementation Aspects

4.2.1 Scope

This section describes some specific implementation aspects of an AUTOSAR RTE
and the Basic Software Scheduler. It will mainly address

e the mapping of logical concepts (e.g., Runnable Entities, BSW Schedulable Enti-
ties) to technical architectures (namely, the AUTOSAR OS)

e the decoupling of pending interrupts (in the Basic Software) and the notification
of AUTOSAR software components

e data consistency problems to be solved by the RTE

Therefore this section will also refer to aspects of the interaction of the AUTOSAR RTE
and Basic Software Scheduler and the two modules of the AUTOSAR Basic Software
with standardized interfaces (see Figure 4.9):

e the module AUTOSAR QOperating System [18, 4]
e the module AUTOSAR COM [19, 3]

AUTOSAR

Application Actuator Sensor Application

Software Software Software AUTOSAR Software

Component omponen omponen Component
e e e SOftWAre mee———
AUTOSAR AUTOSAR AUTOSAR AUTOSAR
Interface Interface Interface Interface

AUTOSAR Runtime Environment (RTE)
T

’ R /: 1
Standardized Standardized | 1} o, o dized] | AUTOSAR AUTOSAR
!l Interface AUTOSAR ’ Interface v Interface Interface
i 5 Interface “ ’
2 —
o - AUTOSAR ECU
% Services Communication Abstraction !
ﬁ § Standardized Standardized Standardized
& e Interface Interface Interface
=
AUTOSAR % 3 Complex
Operating »n (5 Device
System EBE Drivers
s |§ Standardized
» Interface
Microcontroller
Abstraction

ECU-Hardware

FFFFrFrrs

Modules and interfaces in
scope of this section

BSSRRS

1111111

Figure 4.9: Scope of the section on Basic Software modules

Having a standardized interface means first that the modules do not provide or request
services for/of the AUTOSAR software components located above the RTE. They do
not have ports and therefore cannot be connected to the aforementioned AUTOSAR
software components. AUTOSAR OS as well as AUTOSAR COM are simply invisible
for them.

Secondly AUTOSAR OS and AUTOSAR COM are used by the RTE in order to achieve
the functionality requested by the AUTOSAR software components. The AUTOSAR
COM module is used by the RTE to route a signal over ECU boundaries, but this
mechanism is hidden to the sending as well as to the receiving AUTOSAR software
component. The AUTOSAR OS module is used for two main purposes. First, OS is
used by the RTE to route a signal over core and partition boundaries. Secondly, the
AUTOSAR OS module is used by the RTE in order to properly schedule the single
Runnables in the sense that the RTE Generator generates Task-bodies which contain
then the calls to appropriate Runnables.

In this sense the RTE shall also use the available means to convert interrupts to notifi-
cations in a task context or to guarantee data consistency.

AUTOSAR

With respect to this view, the RTE is thirdly not a generic abstraction layer for AU-
TOSAR OS and AUTOSAR COM. It is generated for a specific ECU and offers the
same interface to the AUTOSAR Software Components as the VFB. It implements the
functionality of the VFB using modules of the Basic Software, including a specific im-
plementation of AUTOSAR OS and AUTOSAR COM.

The Basic Software Scheduler offers services to integrate Basic Software Modules for
all modules of all layers. Hence, the Basic Software Scheduler provides the following
functions:

e embed Basic Software Modules implementations into the AUTOSAR OS context
e trigger BswSchedulableEntitys of the Basic Software Modules
e apply data consistency mechanisms for the Basic Software Modules

The integrator’s task is to apply given means (of the AUTOSAR OS) in order to assem-
ble BSW modules in a well-defined and efficient manner in a project specific context.

This also means that the BSW Scheduler only uses the AUTOSAR OS. It is not in the
least a competing entity for the AUTOSAR OS scheduler.

[SWS_Rte_02250] [The RTE shall only use the AUTOSAR OS, AUTOSAR COM, AU-
TOSAR Efficient COM for Large Data, AUTOSAR Transformer and AUTOSAR NVRAM
Manager in order to provide the RTE functionality to the AUTOSAR components.
|(SRS_Rte_00020)

[SWS_Rte_07519] | The Basic Software Scheduler shall only use the AUTOSAR OS
in order to provide the Basic Software Scheduler functionality to the Basic Software
Modules. |()

[SWS_Rte_06200] | The RTE Generator shall construct task bodies for those tasks
which contain RunnableEntitys. |(SRS_Rte_00049)

[SWS_Rte_06201] [The RTE Generator shall construct task bodies for those tasks
which contain Basic Software Schedulable Entities. | (SRS_Rte_00049)

The information for the construction of task bodies has to be given by the ECU Con-
figuration description. The mapping of Runnable Entities to tasks is given as an input
by the ECU Configuration description. The RTE Generator does not decide on the
mapping of RunnableEntitys to tasks.

[SWS_Rte_02254] | The RTE Generator shall reject configurations where input infor-
mation is missing regarding the mapping of BswEvents to OS tasks and RTEEvents
(which trigger runnables) to OS tasks. |(SRS_Rte 00049, SRS _Rte 00018)

Note: Not in all cases an event to task mapping is required. For example runnables
which shall be called via direct function call need no event to task mapping.

[SWS_Rte_08417] | The RTE Generator shall reject configurations where input in-
formation is missing regarding the construction of tasks bodies. |(SRS_Rte 00049,
SRS _Rte _00018)

AUTOSAR

422 OS

This section describes the interaction between the RTE + Basic Software Scheduler
and the AUTOSAR OS. The interaction is realized via the standardized interface of the
OS - the AUTOSAR OS API. See Figure 4.9.

The OS is statically configured by the ECU Configuration. The RTE generator however
may be allowed to create tasks and other OS objects, which are necessary for the run-
time environment (see [SWS_Rte_05150]). The mapping of RunnableEntitys and
BSW Schedulable Entities to OS tasks is not the job of the RTE generator. This map-
ping has to be done in a configuration step before, in the RTE-Configuration phase. The
RTE generator is responsible for the generation of OS task bodies, which contain the
calls for the RunnableEntitys and BSW Schedulable Entities. The RunnableEn-
titys and BSW Schedulable Entities themselves are OS independent and are not
allowed to use OS service calls. The RTE and Basic Software Scheduler have to en-
capsulate such calls via the standardized RTE API respectively Basic Software Sched-
uler API.

4.2.2.1 OS Objects

Tasks

e The RTE generator has to create the task bodies, which contain the calls of the
RunnableEntitys and BswSchedulableEntitys. Note that the term task
body is used here to describe a piece of code, while the term task describes a
configuration object of the OS.

e The RTE and Basic Software Scheduler controls the task activation/resumption
either directly by calling OS services like SetEvent () or ActivateTask () or
indirectly by initializing OS alarms or starting Schedule-Tables for time-based ac-
tivation of RunnableEntitys. If the task terminates, the generated taskbody
also contains the calls of TerminateTask () Or ChainTask ().

e The RTE generator does not create tasks. The mapping of RunnableEntitys
and BswSchedulableEntitys to tasks is the input to the RTE generator and
is therefore part of the RTE Configuration.

e The RTE configurator has to allocate the necessary tasks in the OS configuration.
OS applications

e AUTOSAR OS has in R4.0 a new feature called Inter-OS-Application Commu-
nication (I0OC). I0C is generated by the OS based on the configuration partially
generated by the RTE. The appropriate objects (OS-Applications) are generated
by the OS, and are used by RTE to for task/runnable mapping.

Events

AUTOSAR

The RTE and Basic Software Scheduler may use OS Events for the implementa-
tion of the abstract RTEEvents and BswEvents.

The RTE and Basic Software Scheduler therefore may call the OS service func-
tions SetEvent (), WaitEvent (), GetEvent () and ClearEvent ().

The used OS Events are part of the input information of the RTE generator.

The RTE configurator has to allocate the necessary events in the OS configura-
tion.

Resources

The RTE and Basic Software Scheduler may use OS Resources (standard or
internal) e.g. to implement data consistency mechanisms.

The RTE and Basic Software Scheduler may call the OS services GetRe-—
source () and ReleaseResource ().

The used Resources are part of the input information of the RTE generator.

The RTE configurator has to allocate the necessary resources (all types of re-
sources) in the OS configuration.

Interrupt Processing

An alternative mechanism to get consistent data access is disabling/enabling of
interrupts. The AUTOSAR OS provides different service functions to handle in-
terrupt enabling/disabling. The RTE may use these functions and must not use
compiler/processor dependent functions for the same purpose.

Alarms

The RTE may use Alarms for timeout monitoring of asynchronous client/server
calls. The RTE is responsible for Timeout handling.

The RTE and Basic Software Scheduler may setup cyclic alarms for periodic trig-
gering of RunnableEntitys and BswSchedulableEntitys (RunnableEn-—
tity activation via RTEEvent TimingEvent respectively BswSchedula-
bleEntity activation via BswEvent BswTimingEvent)

The RTE and Basic Software Scheduler therefore may call the OS service func-
tions GetAlarmBase (), GetAlarm(), SetRelAlarm(), SetAbsAlarm/()
and CancelAlarm().

The used Alarms are part of the input information of the RTE generator.

The RTE configurator has to allocate the necessary alarms in the OS configura-
tion.

Schedule Tables

The RTE and Basic Software Scheduler may setup schedule tables for cyclic task
activation (e.g. RunnableEntity activation via RTEEvent TimingEvent)

AUTOSAR

e The used schedule tables are part of the input information of the RTE generator.

e The RTE configurator has to allocate the necessary schedule tables in the OS
configuration.

Common OS features

Depending on the global scheduling strategy of the OS, the RTE can make decisions
about the necessary data consistency mechanisms. E.g. in an ECU, where all tasks
are non-preemptive - and as the result also the global scheduling strategy of the com-
plete ECU is non-preemptive - the RTE may optimize the generated code regarding
the mechanisms for data consistency.

Hook functions
The AUTOSAR OS Specification defines hook functions as follows:

A Hook function is implemented by the user and invoked by the operating system in
the case of certain incidents. In order to react to these on system or application level,
there are two kinds of hook functions.

e application-specific: Hook functions within the scope of an individual OS Appli-
cation.

e system-specific: Hook functions within the scope of the complete ECU (in gen-
eral provided by the integrator).

If no memory protection is used (scalability classes SCC1 and SCC2) only the system-
specific hook functions are available.

In the SRS the requirements to implement the system-specific hook functions were
rejected [RTE00001], [RTE00101], [RTE00102] and [RTE00105], as well as the
application-specific hook functions [RTE00198]. The reason for the rejection is the
system (ECU) global scope of those functions. The RTE is not the only user of those
functions. Other BSW modules might have requirements to use hook functions as well.
This is the reason why the RTE is not able to generate these functions without the
necessary information of the BSW configuration.

It is intended that the implementation of the hook functions is done by the system
integrator and NOT by the RTE generator.

4.2.2.2 Basic Software Schedulable Entities

BswSchedulableEntitys are Basic Software Module Entities, which are designed
for control by the BSW Scheduler. BswSchedulableEntitys are implementing main
processing functions. The configuration of the Basic Software Scheduler allows map-
ping of BswSchedulableEntitys to both types; basic tasks and extended tasks.

BswSchedulableEntitys not mapped to a RunnableEntity are not allowed
to enter a wait state. Therefore such BswSchedulableEntityS are compara-

AUTOSAR

ble to RunnableEntitys of category 1. BswSchedulableEntitys mapped to
a RunnableEntity can enter wait states by usage of the RTE APl and such
BswSchedulableEntitys have to be treated according the classification of the
mapped RunnableEntity. The mapping of BswSchedulableEntitys t0o a
RunnableEntitys is typically used for AUTOSAR Services, ECU Abstraction and
Complex Device Drivers. See sections 4.1.8.6.

4.2.2.3 Runnable Entities

The following section describes the RunnableEntitys, their categories and their
task-mapping aspects. The prototypes of the functions implementing RunnableEn-
titys are described in section 5.7

Runnable Entities are the schedulable parts of SW-Cs. Runnable Entities are either
mapped to tasks or activated by direct function calls in the context of other Rte APIs,
for instance server runnables that are invoked via direct function calls.

The mapping must be described in the ECU Configuration Description. This configura-
tion - or just the RTE relevant parts of it - is the input of the RTE generator.

All RunnableEntitys are activated by the RTE as a result of an RTEEvent. Possi-
ble activation events are described in the meta-model by using RTEEvents (see sec-
tion 4.2.2.4).

If no RTEEvent specifies a particular RunnableEntity in the role starton-
Event then the RunnableEntity is never activated by the RTE. Please note that
a RunnableEntity may be mapped to a BswSchedulableEntity as described in
section 4.2.2.2 which may lead to activations by the BSW Scheduler.

The categories of RunnableEntitys are described in [2].

RunnableEntityS and BswSchedulableEntityS are generalized by Exe-
cutableEntitys.

4.2.2.4 RTE Events

The meta model describes the following RTE events:

Abbreviation | Name

T TimingEvent

BG BackgroundEvent

DR DataReceivedEvent (S/R Communication only)

DRE DataReceiveErrorEvent (S/R Communication only)

DSC DataSendCompletedEvent (explicit S/R Communication only)

DWC DataWriteCompletedEvent (implicit S/R Communication only)

Ol OperationInvokedEvent (C/S Communication only)

ASCR AsynchronousServerCallReturnsEvent (C/S communication only)
MS SwcModeSwitchEvent

AUTOSAR

MSA ModeSwitchedAckEvent

MME SwcModeManagerErrorEvent

ETO ExternalTriggerOccurredEvent
ITO InternalTriggerOccurredEvent
I InitEvent

THE TransformerHardErrorEvent

Table 4.1: Abbreviations of RTEEvents

According to the meta model each kind of RTEEvent can either
ACT activate a RunnableEntity, or
WUP wakeup a RunnableEntity atits WaitPoints

The meta model makes no restrictions which kind of RTEEvents are referred by Wwait -
Points. As a consequence RTE API functions would be necessary to set up the
WaitPoints for each kind of RTEEvent.

Nevertheless in some cases it seems to make no sense to implement all possible com-
binations of the general meta model. E.g. setting up a WwaitPoint, which should be
resolved by a cyclic TimingEvent . Therefore the RTE SWS defines some restric-
tions, which are also described in section A.

The meta model also allows, that the same RunnableEntity can be triggered by
several RTEEventsS. For the current approach of the RTE and restrictions see sec-
tion 4.2.6.

T BG DR | DRE | DSC | DWC | Ol | ASCR
ACT X X X X X X X X
WUuUP X X X
MS | MSA | MME | ETO | ITO | THE
ACT X X X X X X X
WUP X

Table 4.2: activation of RunnableEntity depended on the kind of RTEEvent

The table 4.2 shows, that activation of RunnableEntity is possible for each kind of
RTEEvent. For RunnableEnt ity activation, no explicit RTE APl in the to be activated
RunnableEntity is necessary. The RTE itself is responsible for the activation of the
RunnableEntity depending on the configuration in the SW-C Description.

If the RunnableEntity contains a WaitPoint, it can be resolved by the assigned
RTEEvent(s). Entering the waitPoint requires an explicit call of a RTE API function.
The RTE (together with the OS) has to implement the waitPoint inside this RTE API.

The following list shows which RTE API function has to be called to set up wait-
Points.

e DataReceivedEvent: Rte_Receive ()

e DataSendCompletedEvent: Rte_Feedback ()

AUTOSAR

e ModeSwitchedAckEvent: Rte_SwitchAck ()
e AsynchronousServerCallReturnsEvent: Rte_Result ()

[SWS_Rte_01292] | When a DataReceivedEvent references a RunnableEn-—
tity and a required VariableDataPrototype and no WaitPoint references the
DataReceivedEvent, the RunnableEntity shall be activated when the data is re-
ceived. [SWS_Rte_01135]. | (SRS_Rte _00072)

Requirement [SWS_Rte_01292] merely affects when the runnable is activated —
an API call should still be created, according to requirement [SWS_Rte 01288],
[SWS_Rte_01289], and [SWS_Rte_07395] as appropriate, to actually read the data.

4.2.2.5 BswEvents

The meta model describes the following BswEvents.

AUTOSAR

AbstractEvent ExecutableEntity
BswBehavior::BswEvent +startsOnEvent BswBehavior::BswModuleEntity
1
BswBehavior::

BswBehavior:

BswOperationinvokedEvent BswCalledEntity

BswBehavior::
BswScheduleEvent

BswBehavior::BswTimingEvent

+ period :TimeValue

BswBehavior::BswBackgroundEvent

BswBehavior::BswExternal TriggerOccurredEvent]

BswBehavior::Bswinternal TriggerOccurredEvent

BswBehavior::BswModeSwitchEvent

+ activation :ModeActivationKind

BswBehavior::BswModeSwitchedAckEvent

BswBehavior::BswModeManagerErrorEvent

BswBehavior::BswDataReceivedEvent

BswBehavior::
BswAsynchronousServerCallReturnsEvent

Figure 4.10: Different kinds of BswEvents

BswBehavior:
BswSchedulableEntity

Similar to RTEEvents the activation of Basic Software Schedulable Entities is possi-
ble for each kind of BswEvent. For of BswSchedulableEntitys activation, no ex-

AUTOSAR

plicit Basic Software Scheduler API in the to be activated BswSchedulableEntity
is necessary. The Basic Software Scheduler itself is responsible for the activation of
the BswSchedulableEntity depending on the configuration in the Basic Software
Module Description. In difference to RTEEvents, none of the BswEvents support
WaitPoints. For more details see document [9].

4.2.2.6 Mapping of Runnable Entities and Basic Software Schedulable Entities
to tasks (informative)

One of the main requirements of the RTE generator is "Construction of task bod-
ies" [SRS_Rte_00049]. The necessary input information e.g. the mapping of
RunnableEntitys and BswSchedulableEntity to tasks must be provided by the
ECU configuration description.

The ECU configuration description (or an extract of it) is the input for the RTE Generator
(see Figure 3.4). It is also the purpose of this document to define the necessary input
information. Therefore the following scenarios may help to derive requirements for the
ECU Configuration Template as well as for the RTE-generator itself.

Note: The scenarios do not cover all possible combinations.

The RTE-Configurator uses parts of the ECU Configuration of other BSW Modules,
e.g. the mapping of RunnableEntitys to OsTasks. In this configuration process the
RTE-Configurator expects OS objects (e.g. Tasks, Events, Alarms...) which are used
in the generated RTE and Basic Software Scheduler.

Some figures for better understanding use the following conventions:

Task

RTE gluecode

Runnable entity Cat 1
Category 1 or 2

Figure 4.11: Element description

Note: The following examples are only showing RunnableEntitys. But taking the
categorization of BswSchedulableEntitys defined in section 4.2.2.2 into account,
the scenarios are applicable for BswSchedulableEntitys as well.

Note: The implementations described in this section are examples only and are pre-
sented for information only. The examples must not be viewed as specification of
implementation. The intention is to serve as examples of one possible implementation
and not as specification of the only permitted implementation.

AUTOSAR

4.2.2.6.1 Scenario for mapping of RunnableEntitys to tasks

The different properties of RunnableEntitys with respect to data access and termi-
nation have to be taken into account when discussing possible scenarios of mapping
RunnableEntitys to tasks.

RunnableEntityS using VariableAccesses in the dataReadAccess or
dataWriteAccess roles (implicit read and send) have to terminate.

RunnableEntitys of category 1 can be mapped either to basic or extended
tasks. (see next subsection).

RunnableEntitys using at least one waitPoint are of category 2.

RunnableEntitys of category 2 that contain WwaitPoints will be typically
mapped to extended tasks.

RunnableEntitys that contain a SynchronousServerCallPoint generally
have to be mapped to extended tasks.

RunnableEntitys that contain a SynchronousServerCallPoint can be
mapped to basic tasks if no timeout monitoring is required and the server runn-
able is on the same partition.

RunnableEntitys that contain a SynchronousServerCallPoint can be
mapped to basic tasks if the server runnable is invoked directly and is itself of
category 1.

Note that the runnable to task mapping scenarios supported by a particular RTE im-
plementation might be restricted.

4.2.2.6.1.1 Scenario 1

Runnable entity category 1A: "runnable1”

Ports: only S/R with variableAccesses in the dataReadAccess or
dataWriteAccess role

RTEEventS: TimingEvent
no sequence of RunnableEntitys specified
No VariableAccess inthe dataSendPoint role

NoO WaitPoint

Possible mappings of "runnable1" to tasks:

Basic Task

If only one of those kinds of RunnableEntitysis mapped to a task (task contains only
one RunnableEntity), or if multiple RunnableEntitys with the same activation
period are mapped to the same task, a basic task can be used. In this case, the

AUTOSAR

execution order of the RunnableEntitys within the task is necessary. In case the
RunnableEntitys have different activation periods, the RTE has to provide the glue-
code to guarantee the correct call cycle of each RunnableEntity.

The ECU Configuration-Template has to provide the sequence of RunnableEntitys
mapped to the same task, see RtePositionInTask.

Figure 4.12 shows the possible mappings of RunnableEntitys into a basic task. If
and only if a sequence order is specified, more than one RunnableEntity can be
mapped into a basic task.

Cat 1 Cat 1

Cat 1

Figure 4.12: Mapping of Category 1 RunnableEntitys to Basic Tasks

Extended Task

If more than one RunnableEntity is mapped to the same task and the special con-
dition (same activation period) does not fit, an extended task is used.

If an extended task is used, the entry points to the different RunnableEntitys might
be distinguished by evaluation of different OS events. In the scenario above, the differ-
ent activation periods may be provided by different OS alarms. The corresponding OS
events have to be handled inside the task body. Therefore the RTE-generator needs
for each task the number of assigned OS Events and their names.

The ECU Configuration has to provide the OS events assigned to the RTEEvents
triggering the RunnableEntitys that are mapped to an extended task, see RteUse-
dOsEventRef.

Figure 4.13 shows the possible mapping of the multiple RunnableEntitys of cate-
gory 1 into an Extended Task. Note: The Task does not terminate.

AUTOSAR

Cat 1 Cat 1

Figure 4.13: Mapping of Category 1 RunnableEntitys to Extended Tasks

For both, basic tasks and extended tasks, the ECU Configuration must provide the
name of the task.

The ECU Configuration has to provide the name of the task, see 0sTask.

The ECU Configuration has to provide the task type (BASIC or EXTENDED), which
can be determined from the presence or absence of OS Events associated with that
task, see OsTask.

4.2.2.6.1.2 Scenario 2

Runnable entity category 1B: "runnable2"
e Ports: S/R with variableAccesses in the dataSendPoint role.
e RTEEvents: TimingEvent
e NO WaitPoint
Possible mappings of "runnable2" to tasks:
The following figure shows the different mappings:
e One category 1B runnable

e More than one category 1B runnable mapped to the same basic task with a spec-
ified sequence order

e More than one category 1B runnable mapped into an extended task

The gluecode to realize the variableAccessin the dataReadAccess and
dataWriteAccess roles respectively before entering the runnable and after exiting
is not necessary.

AUTOSAR

Cat 1 Cat 1
é I Cat 1 Cat 1
Cat 1

5

Figure 4.14: Mapping of Category 1 RunnableEntitys using ho VariableAccesses in
the dataReadAccess or dataWriteAccess role

4.2.2.6.1.3 Scenario 3

Runnable entity category 1A: "runnable3"

e Ports: S/R with variableAccesses in the dataReadAccess or
dataWriteAccess role

e RTEEvents: Runnable is activated by a DataReceivedEvent
e N0 VariableAccess in the dataSendPoint role
e NO WaitPoint

There is no difference between Scenario 1 and 3. Only the RTEEvent that activates
the RunnableEntity is different.

4.2.2.6.1.4 Scenario 4

Runnable entity category 2: "runnable4"

e Ports: S/R with VvariableAccesses in the dataReceivePointByValue oOfr
dataReceivePointByArgument role and WwaitPoint (blocking read)

e RTEEventS: WaitPoint referencing a DataReceivedEvent

Runnable is activated by an arbitrary RTEEvent (e.g. by a TimingEvent). When
the RunnableEntity has entered the WaitPoint and the DataReceivedEvent
occurs, the RunnableEnt ity resumes execution.

The runnable has to be mapped to an extended task. Normally each category 2 runn-
able has to be mapped to its own task. Nevertheless it is not forbidden to map multiple
category 2 RunnableEnt itys to the same task, though this might be restricted by an
RTE generator. Mapping multiple category 2 RunnableEntitys to the same task can
lead to big delay times if e.g. a WaitPoint is resolved by the incoming RTEEvent,
but the task is still waiting at a different waitpPoint.

AUTOSAR

.

Cat 2

Figure 4.15: Mapping of Category 2 RunnableEntitys to Extended Tasks

4.2.2.6.1.5 Scenario5

There are two RunnableEntitys implementing a client (category 2) and a server
for synchronous C/S communication and the t imeout attribute of the Sservercall-
Point is 0.

On a single core, there are two ways to invoke a server synchronously:

e Simple function call for intra-partition C/S communication if the canBeInvoked-
Concurrently attribute of the server runnable is set and if the server runnable
is of category 1. In that case the server runnable is executed in the same task
context (same stack) as the client runnable that has invoked the server. The client
runnable can be mapped to a basic task.

e The server runnable is mapped to its own task. If the canBeInvokedConcur-
rent 1y attribute is not set, the server runnable must be mapped to a task.

If the implementation of the synchronous server invocation does not use OS
events, the client runnable can be mapped to a basic task and the task of the
server runnable must have higher priority than the task of the client runnable.
Furthermore, the task to which the client runnable is mapped must be preempt-
able. This has to be checked by the RTE generator. Activation of the server
runnable can be done by ActivateTask () for a basic task or by SsetEvent ()
for an extended task. In both cases, the task to be activated must have higher
priority than the task of the client runnable to enforce a task switch (necessary,
because the server invocation is synchronous).

4.2.2.6.1.6 Scenario 6

There are two RunnableEntitys implementing a client (category 2) and a server for
synchronous C/S communication and the timeout attribute of the ServerCallPoint
is greater than 0.

There are again two ways to invoke a server synchronously:

e Simple function call for intra-partition C/S communication if the canBeInvoked-
Concurrently attribute of the server runnable is set and the server is of cat-

AUTOSAR

egory 1. In that case the server runnable is executed in the same task context
(same stack) as the client runnable that has invoked the server and no timeout
monitoring is performed (see [SWS_Rte_03768]). In this case the client runnable
can be mapped to a basic task.

e The server runnable is mapped to its own task. If the canBeInvokedConcur-
rent 1y attribute is not set, the server runnable must be mapped to a task.

If the implementation of the timeout monitoring uses OS events, the task of the
server runnable must have lower priority than the task of the client runnable and
the client runnable must be mapped to an extended task. Furthermore, both
tasks must be preemptable’. This has to be checked by the RTE generator. The
notification that a timeout occurred is then notified to the client runnable by using
an OS Event. In order for the client runnable to immediately react to the timeout,
a task switch to the client task must be possible when the timeout occurs.

4.2.2.6.1.7 Scenario?7

Runnable entity category 2: "runnable7"
e Ports: only C/S with AsynchronousServerCallPoint and WaitPoint

e RTEEventS: AsynchronousServerCallReturnsEvent (C/S communication
only)

The mapping scenario for "runnable7", the client runnable that collects the result of the
asynchronous server invocation, is similar to Scenario 4.

4.2.2.7 Monitoring of runnable execution time

This section describes how the monitoring of RunnableEntity execution time can
be done.

The RTE doesn’t directly support monitoring of RunnableEntitys execution time but
the AUTOSAR OS support for monitoring of 0sTasks execution time can be used for
this purpose.

If execution time monitoring of a RunnableEntity is required a possible solution is
to map the RunnableEntity alone to an 0sTask and to configure the OS to monitor
the execution time of the OsTask.

This solution can lead to dispatch to individual OsTaskS RunnableEntitys that
should be initially mapped to the same 0sTask because of for example:

1Strictly speaking, this restriction is not necessary for the task to which the client runnable is mapped.
If OS events are used to implement the timeout monitoring and the notification that the server is finished,
the RTE API implementation generally uses the OS service WaitEvent, which is a point of reschedul-

ing.

AUTOSAR

e requirements on execution order of the RunnableEntitys and/or

e requirements on evaluation order of the RTEEvents that activate the
RunnableEntitys and

e constraints to have no preemption between the RunnableEntitys

In order to keep the control on the execution order of the RunnableEntitys, the eval-
uation order of the RTEEvents and the non-preemption between the RunnableEn-
titys when then RunnableEntitys are individually mapped to several OsTasks
for the purpose of monitoring, a possible solution is to replace the calls to the C-
functions of the RunnableEntitys by activations of the 0sTasks to which the moni-
tored RunnableEntitys are mapped.

RE2 is mapped alone in a task for monitoring purpose
but the order of execution and the non-preemption
with RE1 and RE3 are still under control

Task priority

v
TaskB RE2
RTE activates TaskB. TaskB terminates.
TaskA is preempted by TaskB. Execution of TaskA resumes.
TaskA | RTE code RE1 RTE code RTE code RE3 RTE code

Time

Figure 4.16: Inter task activation and mapping of runnable to individual task for monitor-
ing purpose

This behavior of the RTE can be configured with the attributes Rtevirtual-
lyMappedToTaskRef of the RteEventToTaskMapping. RteVirtuallyMapped-
ToTaskRef references the OsTask in which the execution order of the RunnableEn-
titys and/or the evaluation order of the RTEEvents are controlled. RteMapped-
ToTaskRef references the individual 0sTasks to which the RunnableEntitys are
mapped for the purpose of monitoring.

[SWS_Rte_07800] | The RTE Generator shall respect the configured virtual runn-
able to task mapping (RtevirtuallyMappedToTaskRef) in the RTE configuration.
|(SRS_Rte_00193)

Of course this solution requires that the task priorities and scheduling properties are
well configured in the OS to allow immediate preemption by the 0sTasks to which the
monitored RunnableEntitys are mapped. A possible solution is:

e Priority of the 0sTask to which the RunnableEntity is mapped is higher than
the priority of the 0sTask to which the RunnableEntity is virtually mapped
and

AUTOSAR

e the OsTask to which the RunnableEntity is virtually mapped have a full pre-
emptive scheduling or

e the RTE call the OS service Schedule() just after activation of the 0sTask to
which the RunnableEntity is mapped

Example 1: Without OsEvent

Description of the example:

RunnableEntity RE1 is activated by TimingEvent 100ms T1.
RunnableEntity RE2is activated by TimingEvent 100ms T2.
RunnableEntity RES3is activated by TimingEvent 100ms T3.
Execution order of the RunnableEntitys shall be R1, R2 then R3.
RE2 shall be monitored.

Possible RTE configuration:

RE1/T1 is mapped to OsTask TaskA with RtePositionInTask equal to 1.

RE2/T2 is mapped to OsTask TaskB but virtually mapped to TaskA with RtePosi-
tionInTask equal to 2.

RE3/T3 is mapped to OsTask TaskA with RtePositionInTask equal to 3.

Possible RTE implementation:
RTE starts cyclic 0sAlarm with 100ms period.
This 0sAlarm is configured to activate TaskA.
Non preemptive scheduling is configured for Task A.
TaskB priority = TaskA priority + 1
1 void TaskA (void)
2 |
3 RE1 () ;
4 ActivateTask (TaskB) ;
5 Schedule () ;
6 RE3();
7 TerminateTask () ;
8
9

}

10 wvoid TaskB (void)

1 {

12 RE2 () ;

13 TerminateTask () ;
14}

Example 2: With 0sEvent

Description of the example:

RunnableEntity RE1 is activated by DataReceivedEvent DR1.
RunnableEntity RE2 is activated by DataReceivedEvent DR2.
RunnableEntity RES is activated by DataReceivedEvent DR3.
Evaluation order of the RTEEvents shall be DR1, DR2 then DR3.
All the runnables shall be monitored.

Possible RTE configuration:
RE1 is mapped to 0sTask TaskB but virtually mapped to TaskA with a reference to

AUTOSAR

OsEvent EVtA and RtePositionInTask equal to 1.
RE2 is mapped to 0sTask TaskC but virtually mapped to TaskA with a reference to
OsEvent EviB and RtePositionInTask equal to 2.
RE3 is mapped to 0sTask TaskD but virtually mapped to TaskA with a reference to
OsEvent EvtC and RtePositionInTask equal to 3.

Possible RTE implementation:

RTE set EvtA, EviB and EvtC according to the callbacks from COM.
Full preemptive scheduling is configured for Task A.

TaskB priority = TaskC priority = TaskD priority = TaskA priority + 1

void TaskA (void)

{
EventMaskType Event;

{
WaitEvent (EvtA | EvtB | EvtC);
GetEvent (TaskA, &Event);
if (Event & EvVtA)
10 {
11 ClearEvent (EvtA);

1
2
3
4
5 while (1)
6
7
8
9

12 ActivateTask (TaskB) ;
13 }

14 else if (Event & EvVtB)
15 {

16 ClearEvent (EvtB) ;

17 ActivateTask (TaskC) ;
18 }

19 else if (Event & EvtC)
20 {

21 ClearEvent (EvtC);

22 ActivateTask (TaskD) ;

25 }

27 void TaskB (void)

28 |

29 RE1 () ;

30 TerminateTask () ;
31}

33 void TaskC (void)

34

35 RE2 () ;

36 TerminateTask () ;
37}

39 void TaskD (void)

40 |

41 RE3 () ;

42 TerminateTask () ;

AUTOSAR

It is also possible to configure the RTE for the monitoring of group of runnable = moni-
toring of the sum of the runnable execution times.

Example 3: Monitoring of group of runnables

Description of the example:

RunnableEntity RE1 is activated by TimingEvent 100ms T1.
RunnableEntity RE2 is activated by TimingEvent 100ms T2.
RunnableEntity RE3 is activated by TimingEvent 100ms T3.
RunnableEntity RE4 is activated by DataReceivedEvent DR1.
RunnableEntity RES is activated by DataReceivedEvent DR2.
RunnableEntity REG6 is activated by DataReceivedEvent DRS.
RunnableEntity RE7 is activated by DataReceivedEvent DR4.
DataReceivedEvent DR2, DR3 and DR4 references the same dataElement. Eval-
uation order of the RTEEvents shall be T1, T2, T3, DR1, DR2, DR3 then DR4.
RE2 and RES3 shall be monitored as a group.

RE6 and RE7 shall be monitored as a group.

Possible RTE configuration:

RE1 is mapped to OsTask TaskA with a reference to 0OsEvent EVtA and RtePosi-
tionInTask equalto 1.

REZ2 is mapped to 0sTask TaskB but virtually mapped to TaskA with a reference to
OsEvent EVtA and RtePositionInTask equal to 2.

RE3 is mapped to 0sTask TaskB but virtually mapped to TaskA with a reference to
OsEvent EVtA and RtePositionInTask equal to 3.

RE4 is mapped to 0sTask TaskA with a reference to OsEvent EviB and RtePosi-
tionInTask equal to 4.

RE5 is mapped to 0sTask TaskA with a reference to OsEvent EviC and RtePosi-
tionInTask equal to 5.

REG6 is mapped to 0sTask TaskC but virtually mapped to TaskA with a reference to
OsEvent EvtC and RtePositionInTask equal to 6.

RE7 is mapped to 0sTask TaskC but virtually mapped to TaskA with a reference to
OsEvent EvtC and RtePositionInTask equal to 7.

Possible RTE implementation:
RTE starts cyclic 0sAlarm with 100ms period.
This 0sAlarm is configured to set EvtA.
RTE set EviB and EvtC according to the callbacks from COM.
Full preemptive scheduling is configured for Task A.
TaskB priority = TaskC priority = TaskA priority + 1
void TaskA (void)

{
EventMaskType Event;

{
WaitEvent (EvtA | EvtB | EvtC);
GetEvent (TaskA, &Event);

1
2
3
4
5 while (1)
6
7
8
9 if (Event & EvtA)

AUTOSAR

11 ClearEvent (EvtA);

12 REL();

13 ActivateTask (TaskB) ;
14 }

15 else if (Event & EvVtB)
16 {

17 ClearEvent (EvtB) ;

18 RE4 () ;

19 }

20 else if (Event & EvtC)
21 {

22 ClearEvent (EvtC);

23 RE5 () ;

24 ActivateTask (TaskC) ;

28
29 void TaskB (wvoid)
30 |

31 RE2 () ;
32 RE3 () ;
33 TerminateTask () ;

34}

36 wvoid TaskC (void)
37 {

38 REG6 () ;
39 RE7 () :
40 TerminateTask () ;

4.2.2.8 TimingEvent activated runnables

A TimingEvent / BswTimingEvent iS a recurring RTEEvent / BswEvent which is
used to perform recurrent activities in RunnableEntitys Or BswSchedulableEn-—
titys.

[SWS_Rte_06728] | The RTE shall activate RunnableEntitys triggered by a
TimingEvent recurring with the effective period time of an TimingEvent for the
component instance. |(SRS_Rte 00237)

[SWS_Rte_06729] | The RTE Generator shall determine the effective period time of
a TimingEvent from the period attribute of the TimingEvent if N0 Instantia-
tionRTEEventProps are defined for the TimingEvent of the component instance.
|(SRS_Rte_00237)

[SWS_Rte_06730] | The RTE Generator shall determine the effective period time of
a TimingEvent from the period attribute of the InstantiationRTEEventProps if

AUTOSAR

InstantiationRTEEventProps are defined for the TimingEvent of the compo-
nent instance. |(SRS_Rte_00237)

Please note the component instance is defined by RteSoftwareComponentIn-
stanceRef of RteSwComponentInstance referring to the SwComponentProto-
type. See figure 7.2.

4.2.2.9 Synchronization of TimingEvent activated runnables

This

section describes how the synchronization of TimingEvent activated

RunnableEntitys can be done.

The following cases have to be distinguished:

the RunnableEntitys are mapped to the same OsTask

the RunnableEntitys are mapped to different 0sTasks in the same OsAp-
plication

the RunnableEntitys are mapped to different 0sTasks in different OsAppli-
cations on the same core

the RunnableEntitys are mapped to different 0sTasks in different OsAppli-
cations on different cores on the same microcontroler

the RunnableEntitys are mapped to different OsTasks in different OsAppli-
cat ions on different microcontrolers within the same ECU

the RunnableEntitys are mapped to different 0sTasks in different OsAppli-
cat ions on different microcontrolers within different ECUs

As OsAlarms and OsScheduleTableExpiryPoints are used to implement
TimingEvents the following different possible solutions exist to synchronize the
RunnableEntitys according to the different cases:

use the same OsAlarm or OsScheduleTableExpiryPoint to implement all
the TimingEvents

use different OsAlarms or OsScheduleTableExpiryPoints in different 0ss-
cheduleTables based on the same OsCounter and start them with absolute
start offset to control the synchronization between them

use different 0OsScheduleTableExpiryPoints in different explicitely synchro-
nized OsScheduleTables based on different 0sCounters but with same period
and max value

The choice of the OsAlarms or OsScheduleTableExpiryPoints used to imple-
ment the TimingEvents can be configured in the RTE with Rt eUsedOsAlarmRef or
RteUsedOsSchTblExpiryPointRef inthe RteEvent ToTaskMapping.

AUTOSAR

[SWS_Rte_07804] | The RTE Generator shall respect the configured 0Os-
Alarms (RteUsedOsAlarmRef) and OsScheduleTableExpiryPoints (RteUse-

dOsSchTblExpiryPointRef) for the implementation of the TimingEvents.
|(SRS_Rte_00232)

The choice of the absolute start offset of the 0sAlarms and OsScheduleTables can
be configured in the RTE with RteExpectedActivationOffset in the RteUse-
dOsActivation.

[SWS_Rte_07805] | The RTE Generator shall respect the configured absolute
start offset (RteExpectedActivationOffset) when it starts the OsAlarms
and OsScheduleTables used for the implementation of the TimingEvents.
| (SRS_Rte_00232)

The RTE / Basic Software Scheduler is not responsible to synchronize/desynchronize
the explicitly synchronized 0sscheduleTables. The RTE / Basic Software Scheduler
is only responsible to start the explicitly synchronized 0sScheduleTables. In this
case no RteExpectedActivationOffset has to be configured.

4.2.2.10 BackgroundEvent activated Runnable Entities and BasicSoftware
Scheduleable Entities

A BackgroundEvent is a recurring RTEEvent / BswEvent which is used to perform
background activities in RunnableEntitys of BswSchedulableEntitys. Itis sim-
ilar to a TimingEvent but has no fixed time period and is typically activated only with
lowest priority.

A BackgroundEvent triggering can be implemented in two principle ways by the
RTE Generator. Either the background activation is done by a real background
OS task; or the BackgroundEvents are activated like TimingEvents on a fixed
recurrence which is defined by the ECU integrator (see [SWS_ Rte 07179] and
[SWS_Rte_07180]). The second way might be required to overcome the limitation of a
single real background OS task if BackgroundEvents are used in several partitions.

If the background activation is done by a real background OS task, the OS Task has
to have the lowest priority on the CPU core (see [SWS_Rte_07181]). If a implemen-
tation is used where the OS Task terminates (BasicTask) the background OS Task is
immediately reactivated after its termination, e.g. by usage of ChainTask call of the
Os.

4.2.2.11 InitEvent activated Runnable Entities
An InitEvent which is used to activate RunnableEntitys for initialization purpose
in case of start of the RTE or restart of a partition.

[SWS_Rte_06761] | The RTE shall activate RunnableEntitys triggered by a
InitEvent once when Rte_sStart is executed. | (SRS_Rte 00240)

AUTOSAR

[SWS_Rte_06762] | The RTE shall activate RunnableEntitys triggered by
a InitEvent once when Rte_RestartPartition Iis executed for those
RunnableEntitys belonging to the restarted partition. |(SRS_Rte_00240)

The activation of RunnableEntitys for initialization purpose can basically imple-
mented in two ways. Either the InitEvent is mapped to an OsTask or the
InitEvent is mappedto an RteInitializationRunnableBatch.

In case of an OsTask the RunnableEntitys are scheduled once when the related
task gets active. In this case the RtePositionInTask decides in which order the
RunnableEntitys are scheduled in the whole task. For instance if the InitEvent
is mapped after an TimingEvent ans the TimingEvent is already triggered when
the OsTask gets active the initialization runnable is called after time periodic runn-
able. Therefore its in the responsibility of the ECU integrator to ensure the correct and
intended order.

In the case the InitEvent is mapped to an RteInitializationRunnableBatch
the RunnableEntitys are scheduled when the related Rte_1Init function is called.
In this case the RtePositionInTask decides in which order in which order the
RunnableEntitys are scheduled in the same Rte_Init function.

The triggering of the recurrent RTEEvents is released with the call of
Rte_StartTiming.

AUTOSAR

4.2.3 Activation and Start of ExecutableEntitys

This section defines the activation of ExecutableEntity execution—-instances
by using a state machine (Fig. 4.17).
3 [RTE / SchM of the partition is running]

is

- activations: int=0

«continuously increasing timer»
- debounceTimer: float = minimumStartinterval

Main Activation ModeDisabling

IdebounceTimer =
minimumStartinterval
activate
terminate~_("suspended not Jactivations = enabled
activated [~1°

running [Activation in
wai state activated] [ModeDisabling
& in state enabled|

started

[ModeDisabling

in state disabled] exitsDisablingMode

entersDisablingMode]

disabled

disabled

preempt_resume

7777777777 - -~ < [activations == 0]

state disabled]

~
I ModeDisabling in
to be started) | activated [g
I disabled
sart I activation debounce
! activations > 0] [ModeDisabling in| activation
I state enabled]
corresponds to task state "ready” |
)

activate
Jactivations +=
(activations <=
queue length) 1:0

disabled
activated

[ModeDisabling

[ModeDisabling in
in state enabled],

state disabled]

activate
Jactivations += (activations <= queue length) 1:0

[RTE / SchM of the partition is stopped]

Figure 4.17: General state machine of an ExecutableEntity execution-instance.

[debounceTimer >=

start minimumStartinterval]

[activations -= 1;
debounceTimer = 0

An ExecutableEntity execution—-instance is one execution-instance of an Ex—
ecutableEntity (RunnableEntity Of BswSchedulableEntity) with respect to
concurrent execution.

For a RunnableEntity with canBeInvokedConcurrently = false or for a
BswSchedulableEntity whose referenced BswModuleEntry in the role im-
plementedEntry has a isReentrant attribute set to false, there is only one
execution-instance. For a RunnableEntity with canBeInvokedConcurrently =
true or for a BswSchedulableEntity whose referenced BswModuleEntry in the
role implementedEntry has its isReentrant attribute set to t rue, there is a well
defined number of execution-instances.

E.g., fora server runnable thatis executed as direct function call, each server-
CallPoint relates to exactly one ExecutableEnt ity execution-instance.

The main principles for the activation of runnables are:
e RunnableEntitys are activated by RTEEvents
e BswSchedulableEntitys are activated by BswEvents

e Only server runnables (RunnableEntitys$ activated by an OperationIn-
vokedEvent) are queued. All other ExecutableEntitys are unqueued.

AUTOSAR

If a RunnableEntity is activated due to several DataReceivedEvents of
dataElements with swImplPolicy = queued, it is the responsibility of the
RunnableEntity to dequeue all queued data.

e A minimumStartInterval will delay the activation of RunnableEntitys
and BswSchedulableEntitys to prevent that a RunnableEntity or a
BswSchedulableEntity is started more than once within the minimum-
StartInterval.

Each ExecutableEntity execution—-instance has its own state machine. The
full state machine is shown in Fig. 4.17.

Note on Figure 4.17: the debounce timer debounceTimer is an increasing timer. It
is local to the ExecutableEntity execution—instance. The activation counter
activations is a local integer to count the pending activations. The runnable de-
bounce timer and the activation counter are like the whole state machine just concepts
for the specification of the behavior, not for the implementation.

AUTOSAR

The pending activations are only counted for server runnables when RTE imple-
ments a call serialization of their invocation. In all other cases, RTE does not queue ac-
tivations and the state machine for the activation of ExecutableEntity execution—
instances simplifies as shown in Figure 4.18.

sm state machine for an EcexutableEntity execution-instance with unqueued activation/

! [RTE / SchM of the partition isrunning]

ExecutableEntity execution-instance is schedulable

continuously increasing timer
- debounceTimer: float = minimumStartinterval

constraints
{queue length == 0}

Main Activ ation

/ started \ ‘

minimum§Startinterval
terminate suspended not
activated
i m [Activation in
wait state activated]

debounce
m preempt resume activation
release\L_g -
activated
start
/debounceTimer:O- [debounceTimer >=
minimumStartinterval]

preempted to be started
[RTE / SchM of the partition is stopped]

/debounceTimer =

activate

start

.

corresponds to task state "ready"”

Figure 4.18: Statemachine of an unqueued execution-instance (not a server runnable)

If RTE implements an ExecutableEntity execution-instance by direct func-
tion call, as described in section 4.2.3.1, the simplified state machine is shown in Fig-
ure 4.21.

The state machine of an ExecutableEntity execution—instance is notidentical
to that of the task containing the ExecutableEntity execution-instance, but
there are dependencies between them. E.g., the ExecutableEntity execution—
instance can only be ‘running’ when the corresponding task is ‘running’.

Table 4.3 describes all ExecutableEntity execution—-instance states in de-
tail. The ExecutableEntity execution-instance state machine is split in
two threads. The Main states describe the real state of the ExecutableEntity
execution-instance and the transitions between a suspended and a running Ex—
ecutableEntity execution-instance, while the supporting Activation states de-
scribe the state of the pending activations by RTEEvents or BswEvents.

AUTOSAR

ExecutableEntity description

execution-instance state

ExecutableEntity execution- | This super state describes the life time of the state machine.
instance is schedulable Only when RTE or the SchM that runs the ExecutableEntity

execution-instance is started in the corresponding partition, this
state machine is active.

ExecutableEntity execution-instance Main states

suspended The ExecutableEntity execution-instance is not started and
there is no pending request to start the ExecutableEntity
execution-instance.

to be started The ExecutableEntity execution-instance is activated but
not yet started. Entering the to be started state, usually im-
plies the activation of a task that starts the ExecutableEn-
tity execution-instance. The ExecutableEntity execution-
instance stays in the ‘to be started’ state, when the task is already
running until the gluecode of the task actually calls the function
implementing the ExecutableEntity.

running The function, implementing the ExecutableEntity code is be-
ing executed. The task that contains the ExecutableEntity
execution-instance is running.

waiting A task containing the ExecutableEnt ity execution-instance is
waiting at a WwaitPoint within the ExecutableEntity.

preempted A task containing the ExecutableEntity execution-instance is
preempted from executing the function that implements the Ex-
ecutableEntity.

started ‘started’ is the super state of ‘running’, ‘waiting’ and ‘pre-

empted’ between start and termination of the ExecutableEn-
t ity execution-instance.
ExecutableEntity execution-instance Activation states

not activated No RTEEvent / BswEvent requires the activation of the Exe-
cutableEntity execution-instance.
debounce activation One or more RTEEvents with a startOnEvent relation to the

ExecutableEntity execution-instance have occurred 2, but
the debounce timer has not yet exceeded the minimumStart-
Interval. The activation will automatically advance to acti-
vated, when the debounce timer reaches the minimumStart-
Interval.

activated One or more RTEEventS Or BswEvents with a startOnEvent
relation to the ExecutableEntity have occurred, and the
debounce timer has exceeded the minimumStartInterval.
While the activated state is active, the Main state of the Ex—
ecutableEntity execution-instance automatically advances
from the suspended to the ’to be started’ state.

Fora server runnable where RTE implements a serialization
of server calls, an activation counter counts the number of acti-
vations.

When the ExecutableEntity execution-instance starts, the
activation counter will be decremented. When there is still a
pending activation, the Activation state will turn to debounce ac-
tivation and otherwise to no activation.

2Note that, e.g., the same OperationInvokedEvent may lead to the activation of different Exe-
cutableEntity execution-instances, depending on the client that caused the event.

AUTOSAR

Table 4.3: States defined for each ExecutableEntity execution-instance.

Note: For tasks, the equivalent state machine does not distinguish between preempted
and to be started. They are subsumed as ‘ready’.

cutableEntity execution-instance
is schedulable’

ExecutableEntity description of event and actions

execution-instance transi-

tion

initial ~ transition to ‘Exe- | RTE or the SchM that runs the ExecutableEnt ity execution-

instance is being started in the corresponding partition.

termination transition from ‘Exe-
cutableEntity execution-instance
is schedulable’

RTE or the SchM that runs the ExecutableEnt ity execution-
instance gets stopped in the corresponding partition.

transitions to ExecutableEntity execution-instance Main states

initial transition to suspended

the suspended state is the initial state of the ExecutableEn-
tity execution-instance Main states.

from started to suspended

The ExecutableEnt ity execution-instance has run to comple-
tion.

from suspended to ‘to be

started’

This transition is automatically executed, while the Activation
state is ’activated’.

from ‘to be started’ to running

The function implementing the ExecutableEntity is called
from the context of this execution-instance.

from preempted to running

A task that is preempted from executing the ExecutableEn-—
tity execution-instance changes state from preempted to run-
ning.

from running to waiting

The runnable enters a WaitPoint.

from waiting to preempted

The task that contains a runnable waiting at a wait point changes
from waiting to preempted.

from running to preempted

A task containing the ExecutableEntity execution-instance
gets preempted from executing the function that implements the
ExecutableEntity.

transitions to ExecutableEnt ity execution-instance Activation states

initial transition to ‘not activated’

The ‘not activated’ state is the initial state of the ExecutableEn-
t ity execution-instance Activation states.

The debounce timer is set to the minimumStartInterval
value, to prevent a delay for the first activation of the Exe-
cutableEntity execution-instance.

from activated to ‘not activated’

The function implementing the ExecutableEntity is called
from the context of this execution-instance and no further acti-
vations are pending.

The debounce timer is reset to 0.

from ‘not activated’ to ‘debounce
activation’

The occurrence of an RTEEvent or BswEvent requires the acti-
vation of the ExecutableEnt ity execution-instance.

A local activation counter is setto 1. If N0 minimumStartIn-
terval is configured, or the debounce timer has already ex-
ceededtheminimumStartInterval, the ‘debounce activation’
state will be omitted and the transition leads directly to the acti-
vated state.

AUTOSAR

from activated to ‘debounce ac- | The function implementing the ExecutableEntity is called
tivation’ from the context of this execution-instance (start), and another
activation is pending (only for server runnable).

The activation counter is decremented and the debounce timer
reset to 0.

lfnominimumStartInterval is configured, the ‘debounce ac-
tivation’ state will be omitted and the transition returns directly at
the activated state.

from ‘debounce activation’ to | If RTE implements server call serialization for a server runn-
‘debounce activation’ able, and an OperationInvokedEvent occurs for the server
runnable.

The activation counter is incremented (at most to the queue
length).

from 'debounce activation’ to ac- | The debounce timer is expired,
tivated debounce timer > minimumStartInterval.

from activated to activated If RTE implements server call serialization for a server runn-
able, and an OperationInvokedEvent occurs for the server
runnable.

The activation counter is incremented (at most to the queue
length).

Table 4.4: States defined for each ExecutableEntity execution-instance.

[SWS_Rte_02697] | The activation of ExecutableEntity execution-instances
shall behave as described by the state machine in Fig. 4.17, Table 4.3, and Ta-
ble 4.4. |(SRS_Rte 00072, SRS_Rte 00160, SRS_Rte 00133, SRS _Rte 00211,
SRS _Rte 00214, SRS Rte 00217, SRS _Rte 00219)

The RTE will not activate, start or release ExecutableEntity execution-—
instances of a terminated or restarting partition (see [SWS_Rte_07604]), or when
RTE is stopped in that partition (see [SWS_Rte_02538]).

The following examples in Fig. 4.19 and Fig. 4.20 show the different timing situations
of the ExecutableEntity execution—-instances with or without a minimum-
StartInterval. The minimumStartInterval can reduce the number of activa-
tions by collecting more activating RTEEvents / BswEvents within that interval. No
activation will be lost. The activations are just delayed and combined to keep the min-
imumStartInterval. The started state of the ExecutableEntity execution-
instance Main states and the activated state of the Activation states are shown in the
figures. Each flash indicates the occurrence of an RTEEvent or BswEvent.

AUTOSAR

start start start start start

[started | | | | | \ |

7 77| gy 7| 7

| activated | | \

Figure 4.19: Activation of a ExecutableEntity execution-instance without minimum-
StartInterval

Figure 4.19 illustrates the activation of an ExecutableEntity execution-
instance without minimumStartInterval. The execution-instance can only
be activated once (does not apply for server runnables). The activation is not
queued. The execution-instance can already be activated again when it is still
started (see Figure 4.17).

With configuration of the RteEventToTaskMapping such activation can even be
used for an immediately restart of the ExecutableEntity before other Exe-
cutableEntitys which are mapped subsequently in the task are getting started.

[SWS_Rte_07061] | When the parameter RteImmediateRestart / RteBswIimme—
diateRestart is TRUE the RTE shall immediately restart the ExecutableEntity
after termination if the ExecutableEntity was activated by this RTEEvent / Bsw—
Event while it was already started. |(SRS_Rte_00072)

This can be utilized to spread a long-lasting calculation in several smaller slices with
the aim to reduce the maximum blocking time of Tasks in a Cooperative Environment.
Typically between each iteration one Schedule Point has to be placed and the number
of iteration might depend on operating conditions of the ECU. Further on in a calcu-
lation chain the long-lasting calculation shall be completed before consecutive Exe—
cutableEntitys are called.

Example 4.3

Example of RunnableEntity code:

1 LongLastingRunnable ()

2

3 /+* the very long calculation */

4 if(!finished)

5 {

6 /* further call is required to complete the calculation#*/
7 Rte_IrTrigger_LonglastingCalculation_ProceedCalculation();
8

9

AUTOSAR

Therefore the ExecutableEntity with a long lasting calculation issues a trigger as
long as the calculation is not finished. These trigger activates the ExecutableEntity
again. The first activation of the ExecutableEntity might be triggered by another
RTEEvent / BswEvent.

start start start start start

[started | \ | | | \

etivation 4 4 5 4| 44

[activated | | | — | -— >« 1

v

minimumsStartinterval
—

Figure 4.20: Activation of an ExecutableEntity with @aminimumStartInterval

Figure 4.20 illustrates the activation of an ExecutableEntity with @ minimum-
StartInterval. (Here no execution-instances have to be distinguished, there
is only one.) The red arrows in this figure indicate the minimumStartInterval af-
ter each start of the ExecutableEntity. An RTEEvent or BswEventwithin this
minimumStartInterval leads to the debounce activation state. When the min-
imumStartInterval ends, the debounce activation state changes to the activated
state.

When a data received event activates a runnable when it is still running, it might be
that the data is already dequeued during the current execution of the runnable. Still,
the runnable will be started again. So, it is possible that a runnable that is activated by
a data received event finds an empty receive queue.

4.2.3.1 Activation by direct function call

In many cases, ExecutableEntity execution-instances can be implemented
by RTE by a direct function call if allowed by the canBeInvokedConcurrently.
In these cases, the activation and start of the ExecutableEntity execution-
instance collapse to one event. The states ‘to be started’, ‘debounce activation’,
and ‘activated’ are passed immediately.

Obviously, debounce activation is not possible (see meta model restriction
[SWS_Rte_02733]).

There is one ExecutableEntity execution—-instance per call point, trigger
point, mode switch point, etc.. The state chart simplifies as shown in Figure 4.21.

AUTOSAR

sm statemachine for direct function calls of an E ity execution-i /

[RTE / SchM of the patrtition isrunning]

- E TGO T OB ™

constraints
{queue length == 0}
{debounceTimer == 0}
{canBelnvocecConcurrently == true}
{runnable not mapped to task}

Main

/ started \

suspended

waiting preempt resume

re\eaae\l’s N
preempted activate

- /

corresponds to task state "ready”

~ -

- /

RTE / SchM of the partition is stopped]

Figure 4.21: State machine of an ExecutableEntity execution-instance that is imple-
mented by direct function calls.

A triggered ExecutableEntity is activated at least by one ExternalTrig-
gerOccurredEvent Of InternalTriggerOccurredEvent. |In some cases, the
Trigger Event Communication or the Inter Runnable Triggering is implemented by RTE
generator as a direct function call of the t riggered ExecutableEntity by the trig-
gering ExecutableEntity.

An on-entry ExecutableEntity, on-transition ExecutableEntity, on-
exit ExecutableEntity Or a ModeSwitchAck ExecutableEntity might be
executed in the context of the Rte_switch API if an asynchronous mode switch pro-
cedure is implemented.

A server runnable is exclusively activated by OperationInvokedEvents and
implements the server in client server communication. In some cases, the client server
communication is implemented by RTE as a direct function call of the server by the
client.

AUTOSAR

4.2.3.2 Activation Offset for RunnableEntitys and BswSchedulableEntitys

In order to allow optimizations (smooth cpu load, mapping of RunnableEntitys and
BswSchedulableEntitys with different periods in the same task to avoid data shar-
ing, etc.), the RTE has to handle the activation offset information from a task shared
reference point only for time trigger RunnableEntitys and BswSchedulableEn—
titys. The maximum period of a task can be calculated automatically as the great-
est common divisor (GCD) of all runnables period and offset.It is assumed that the
runnables worst case execution is less than the GCD. In case of the worst case execu-
tion is greater than the GCD, the behavior becomes undefined.

[SWS_Rte_07000] | The RTE shall respect the configured activation offset of
RunnableEntitys mapped within one OS task. |(SRS_Rte_00161)

[SWS_Rte_07520] | The Basic Software Scheduler shall respect the config-
ured activation offset of BswSchedulableEntitys mapped within one OS task.
|(SRS_Rte 00212)

[constr_9010] Worst case execution time shall be less than the GCD | The
RunnableEntityS Or BswSchedulableEntitys worst case execution time shall
be less than the GCD of all BswSchedulableEntitys and RunnableEntitys pe-
riod and offset in activation offset context for RunnableEntitys and BswSchedula-—
bleEntitys. |()

Note: The following examples are showing RunnableEntitys only. Nevertheless it
is applicable for BswSchedulableEntitys or a mixture of RunnableEntitys and
BswSchedulableEntitys as well.

Example 1:
This example describes 3 runnables mapped in one task with an activation offset de-
fined for each runnables.

Runnable Period | Activation Offset
R1 100ms 20ms
R2 100ms 60ms
R3 100ms 100ms

Table 4.5: Runnables timings

The runnables R1, R2 and R3 are mapped in the task T1 at 20 ms which is the GCD
of all runnables period and activation offset.

.%.,.

| |
0 30
First Task activation
R1 executed at activation n® 2, 7...
R2 executed at activation n° 4, 9...
R3 executed at activation n° 6, 11...

Activatiok offset of R1 withir} T1

Activation offset of R2 withir§ T1

Activation offset of R3 within T1
<

)
»

Figure 4.22: Example of activation offset for runnables

Example 2:
This example describes 4 runnables mapped in one task with an activation offset and
position in task defined for each runnables.

Runnable Period | Position in task | Activation Offset
R1 50ms 1 Oms
R2 100ms 2 Oms
R3 100ms 3 70ms
R4 50ms 4 20ms

Table 4.6: Runnables timings with position in task

The runnables R1, R2, R3 and R4 are mapped in the task T1 at 10 ms which is the
GCD of all runnables period and activation offset.

%Mﬁx %%ﬁ\?%ﬁ%\%\

First Tas| act/vat/on

1, 2, 3

AR

runnable offset of R4 wAthin T1

R1 executed at activation n® 1, 6, 11, 16...

R2 executed at activation n® 1, 11...

R3 executed at activation n° 8, 18...
R4 executed at activation n° 3, 8, 13, 18...

runnable offset of R3 within T1
<

Figure 4.23: Example of activation offset for runnables with position in task

4.2.3.3 Provide activating RTE event

It is possible to define the activation of one runnable entity by several RTE events. But
when the runnable entity is invoked by the RTE it is shall be possible to query which of
the RTE events actually triggered the execution of this runnable entity run.

AUTOSAR

Contract Phase:

The provide activating event feature is enabled if the runnable entity has at least one
activationReason defined.

[SWS_Rte_08051] | If the provide activating event feature is enabled, the RTE gen-
erator in contract phase shall generate the runnable entity signature according to
[SWS_Rte_01126] and [SWS_Rte_08071]. | (SRS_Rte_00238)

[SWS_Rte_08052] | If the provide activating event feature is en-
abled, the RTE generator in contract phase shall generate the type
Rte_ActivatingEvent_<name> (activation vector), where <name> IS
the symbol describing the runnable entity’s entry point, to store the activation bits.
Based on the highest value of ExecutableEntityActivationReason.bitPosi—
tion for this runnable entity the type shall be either uint8, uint16, or uint32 so
that the highest value of bitPosition fits into the data type. |(SRS_Rte 00238)

Note that it is considered an invalid configuration if ExecutableEntityActiva-
tionReason.bitPosition has a value higher than 31 (see [constr_1226] in soft-
ware component template [2])

[SWS_Rte_08053] | If the provide activating RTE event feature is enabled, the RTE
generator in contract phase shall generate for each ExecutableEntityActiva-
tionReason of one executable entity a definition to provide the specific bit position in
the Rte_ActivatingEvent_<name> data type:

#define Rte_ActivatingEvent_<name>_<activation> xxU
The value of xx is defined by the bitPosition xx = 2"bitPosition. |(SRS_Rte _00238)

Example: runnable entity symbol = "greek" and has 3 ExecutableEntityActiva-
tionReasons aggregated. Those are referenced by 4 RTE events:

e RTEEvent: "alpha" symbol: aleph
e RTEEvent: "beta™ symbol: beth

e RTEEvent: "gamma" symbol: gimel
e RTEEvent: "delta" symbol: gimel

This will result in a unit8 Rte_ActivatingEvent_<name> data type:
typedef uint8 Rte_ActivatingEvent_greek and 3 definitions:

e #define Rte_ActivatingEvent_greek_aleph 01U

e #define Rte_ActivatingEvent_greek_beth 02U

e #fdefine Rte_ActivatingEvent_greek_gimel 04U
Generation Phase:

[SWS_Rte_08054] | If the provide activating RTE event feature is enabled, the RTE
shall collect the activating RTE events, which have the activationReasonRep-

AUTOSAR

resentation reference defined, in the context of the OS task the runnable entity
is mapped to in an activation vector at the corresponding bit position as defined in
[SWS_Rte_08053]. | (SRS _Rte _00238)

[SWS_Rte_08055] | If the provide activating RTE event feature is enabled, the RTE
shall provide the collected activating RTE events (activation vector) to the runnable
entity APl when the runnable entity is "started". The activation vector shall be reset
immediately after it has been provided. | (SRS_Rte_00238)

Since it is possible that there is a time gap between the activation and the execution
(start) of a runnable entity the subsequent activations are summed up and provided
with the start of the runnable entity.

Activations during the execution of a runnable entity are collected for the next start of
that runnable entity.

4.2.4 Interrupt decoupling and notifications
4.2.4.1 Basic notification principles

Several BSW modules exist which contain functionality which is not directly activated,
triggered or called by AUTOSAR software-components but by other circumstances, like
digital input port level changes, complex driver actions, CAN signal reception, etc. In
most cases interrupts are a result of those circumstances. For a definition of interrupts,
see the VFB [1].

Several of these BSW functionalities create situations, signalled by an interrupt, when
AUTOSAR SW-Cs have to be involved. To inform AUTOSAR software components of
those situations, runnables in AUTOSAR software components are activated by no-
tifications. So interrupts that occur in the basic software have to be transformed into
notifications of the AUTOSAR software components. Such a transformation has to take
place at RTE level at the latest! Which interrupt is connected to which notification is
decided either during system configuration/generation time or as part of the design of
Complex Device Drivers or the Microcontroller Abstraction Layer.

This means that runnables in AUTOSAR SW-Cs have to be activated or "waiting" cat2
runnables in extended tasks have to be set to "ready to run" again. In addition some
event specific data may have to be passed.

There are two different mechanisms to implement these notifications, depending on
the kind of BSW interfaces.

1. BSW with Standardized interface. Used with COM and OS.
Basic-SW modules with Standardized interfaces cannot create RTEEvents. So
another mechanism must be chosen: "callbacks"
The typical callback realization in a C/C++ environment is a function call.

AUTOSAR

2. BSW with AUTOSAR interface: Used in all the other BSW modules.
Basic-SW modules with AUTOSAR-Interfaces have their interface specified in an
AUTOSAR BSW description XML file which contains signal specifications accord-
ing to the AUTOSAR specification. The BSW modules can employ RTE API calls
like Rte_Send — see 5.6.5). RTEEvents may be connected with the RTE API
calls, so realizing AUTOSAR SW-C activation.

Note that an AUTOSAR software component can send a notification to another AU-
TOSAR software component or a BSW module only via an AUTOSAR interface.

4.24.2 Interrupts

The AUTOSAR concept as stated in the VFB specification [1] does not allow AUTOSAR
software components to run in interrupt context. Only the Microcontroller Abstraction
Layer, Complex Device Drivers and the OS are allowed to directly interact with inter-
rupts and implement interrupt service routines (see Requirement [SRS_BSW_00164].
This ensures hardware independence and determinism.

If AUTOSAR software components were allowed to run in interrupt context, one AU-
TOSAR software component could block the entire system schedule for an unaccept-
ably long period of time. But the main reason is that AUTOSAR software components
are supposed to be independent of the underlying hardware so that exchangeability
between ECUs can be ensured. The schedule of an ECU is more predictable and bet-
ter testable if the timing effects of interrupts are restricted to the basic software of that
ECU.

Furthermore, AUTOSAR software components are not allowed to explicitly block inter-
rupts as a means to ensure data consistency. They have to use RTE functions for this
purpose instead, see Section 4.2.5.

4.2.4.3 Decoupling interrupts on RTE level

Runnables in AUTOSAR SW-Cs may be running as a consequence of an interrupt but
not in interrupt context, which means not within an interrupt service routine! Between
the interrupt service routine and an AUTOSAR SW-C activation there must always be
a decoupling instance. AUTOSAR SW-C runnables are only executed in the context of
tasks.

The decoupling instance is latest in the RTE. For the RTE there are several options to
realize the decoupling of interrupts. Which option is the best depends on the configu-
ration and implementation of the RTE, so only examples are given here.

Example 1:
Situation:

e An interrupt routine calls an RTE callback function

AUTOSAR

Intention:
e Start a runnable
RTE job:

e RTE starts a task containing the runnable activation code by using the Acti-
vateTask()" OS service call.

e Other more sophisticated solutions are possible, e.g. if the task containing the
runnable is activated periodically.

Example 2:
Situation:
e An interrupt routine calls an RTE callback function

Intention:

e Make a runnable wake up from a wait point
RTE job:
e RTE sets an OS event

These scenarios described in the examples above not only hold for RTE callback func-
tions but for other RTE API functions as well.

[SWS_Rte_03600] | The RTE shall prevent runnable entities of AUTOSAR software-
components to run in interrupt context. |(SRS_Rte_00099)

4.2.4.4 RTE and interrupt categories

Since category 1 interrupts are not under OS control the RTE has absolutely no pos-
sibility to influence their execution behavior. So no category 1 interrupt is allowed to
reach RTE. This is different for interrupt of category 2.

[SWS_Rte_03594] | The RTE Generator shall reject the configuration if a SwcB-
swRunnableMapping associates a BswInterruptEntity with @ RunnableEn-
tity and the attribute interruptCategory of the BswInterruptEntity is equal
to cat 1. |(SRS_Rte_00018, SRS_Rte_00099)

[constr_9012] Category 1 interrupts shall not access the RTE. | Category 1 inter-
rupts shall not access the RTE. |()

4.2.4.5 RTE and Basic Software Scheduler and BswExecutionContext

The RTE and Basic Software Scheduler do support the invocation triggered Exe-
cutableEntity via direct function call in some special cases. Nevertheless it shall

AUTOSAR

be prevented that an ExecutableEntity from a particular execution context calls
a triggered ExecutableEntity witch requires an execution context with more
permissions.

The constraint [constr_4086] in document [9] describes the possible invocation of Ex—
ecutableEntitys by direct function call dependent from BswExecutionContext.

This applies to the invocation of a triggered ExecutableEntity by the
SchM_Trigger, SchM_ActMain Or Rte_Trigger APIs, or to the invocation
of an on-entry ExecutableEntity, on-transition ExecutableEntity,
on-exit ExecutableEntity Or ModeSwitchAck ExecutableEntity by the
SchM_Switch or Rte_Switch APIs.

4.2.4.5.1 Interrupt decoupling for COM

COM callbacks are used to inform the RTE about something that happened indepen-
dently of any RTE action. This is often interrupt driven, e.g. when a data item has been
received from another ECU or when a S/R transmission is completed.

It is the RTE’s job e.g. to create RTEEvents from the interrupt.

[SWS_Rte_03530] | The RTE shall provide callback functions to allow COM to signal
COM events to the RTE. |(SRS_Rte 00072, SRS_Rte _00099)

[SWS_Rte_03531] | The RTE shall support runnable activation by COM callbacks.
|(SRS_Rte_00072, SRS_Rte _00099)

[SWS_Rte_03532] | The RTE shall support category 2 runnables to wake up from a
wait point as a result of COM callbacks. | (SRS _Rte 00072, SRS_Rte 00099)

See RTE callback API in chapter 5.9.

4.2.5 Data Consistency
4.2.5.1 General

Concurrent accesses to shared data memory can cause data inconsistencies. In gen-
eral this must be taken into account when several code entities accessing the same
data memory are running in different contexts - in other words when systems using
parallel (multicore) or concurrent (singlecore) execution of code are designed. More
general: Whenever task context-switches occur and data is shared between tasks,
data consistency is an issue.

AUTOSAR systems use operating systems according to the AUTOSAR-OS specifica-
tion which is derived from the OSEK-OS specification. The Autosar OS specification
defines a priority based scheduling to allow event driven systems. This means that

AUTOSAR

tasks with higher priority levels are able to interrupt (preempt) tasks with lower priority
level.

The "lost update" example in Figure 4.24 illustrates the problem for concurrent read-
modify-write accesses:
1) Get X=5
é 2) X'+=2

_ 2) X*++ =>X*=6
R X*‘:\ 3) X =X* =>X=6

DataX 5555555557777766666666

Time
Figure 4.24: Data inconsistency example - lost update

v

There are two tasks. Task A has higher priority than task B. A increments the commonly
accessed counter X by 2, B increments X by 1. So in both tasks there is a read
(step1) — modify (step2) — write (step3) sequence. If there are no atomic accesses (fully
completed read-modify-write accesses without interruption) the following can happen:

1. Assume X=5.

2. B makes read (step1) access to X and stores value 5 in an intermediate store
(e.g. on stack or in a CPU register).

3. B cannot continue because it is preempted by A.

4. A does its read (step1) — modify (step2) — write (step3) sequence, which means
that A reads the actual value of X, which is 5, increments it by 2 and writes the
new value for X, which is 7. (X=5+2)

5. Ais suspended again.

6. B continues where it has been preempted: with its modify (step2) and write
(step3) job. This means that it takes the value 5 form its internal store, incre-
ments it by one to 6 and writes the value 6 to X (X=5+1).

7. Bis suspended again.

The correct result after both Tasks A and B are completed should be X=8, but the
update of X performed by task A has been lost.

AUTOSAR

4.2.5.2 Communication Patterns

In AUTOSAR systems the RTE has to take care that a lot of the communication is not
corrupted by data consistency problems. RTE Generator has to apply suitable means
if required.

The following communication mechanisms can be distinguished:

Communication within one atomic AUTOSAR SW-C:

Communication between Runnables of one atomic AUTOSAR SW-C running in
different task contexts where communication between these Runnables takes
place via commonly accessed data. If the need to support data consistency by
the RTE exists, it must be specified by using the concepts of "ExclusiveAreas" or
"InterRunnableVariables" only.

Intra-partition communication between AUTOSAR SW-Cs:

Sender/Receiver (S/R) communication between Runnables of different AU-
TOSAR SW-Cs using implicit or explicit data exchange can be realized by the
RTE through commonly accessed RAM memory areas. Data consistency in
Client/Server (C/S) communication can be put down to the same concepts as
S/R communication. Data access collisions must be avoided. The RTE is re-
sponsible for guaranteeing data consistency.

Inter-Partition communication

The RTE has to guarantee data consistency. The different possibilities pro-
vided to the RTE for the communication between partitions are discussed in sec-
tion 4.3.4.

Intra-ECU communication between AUTOSAR SW-Cs and BSW modules with
AUTOSAR interfaces:
This is a special case of the above two.

Inter ECU communication

COM has to guarantee data consistency for communication between ECUs on
complete path between the COM modules of different ECUs. The RTE on each
ECU has to guarantee that no data inconsistency might occur when it invokes
COM send respectively receive calls supplying respectively receiving data items
which are concurrently accessed by application via RTE API call, especially when
queueing is used since the queues are provided by the RTE and not by COM.

[SWS_Rte_03514] [The RTE has to guarantee data consistency for communication
via AUTOSAR interfaces. |(SRS_Rte _00032)

4.2.5.3 Concepts

In the AUTOSAR SW-C Template [2] chapter "Interaction between runnables within
one component", the concepts of

1.

ExclusiveAreas (see section 4.2.5.5 below)

AUTOSAR

2. InterRunnableVariables (see section 4.2.5.6 below)

are introduced to allow the user (SW-Designer) to specify where the RTE shall guar-
antee data consistency for AUTOSAR SW-C internal communication and execution
circumstances. This is discussed in more detail in next sections.

Additionally exclusive areas are also available for Basic Software Modules to protect
access to module internal data. See [9]. The exclusive areas for Basic Software Mod-
ules are handled by the Basic Software Scheduler.

The AUTOSAR SW-C template specification [2] also states that AUTOSAR SW-Cs may
define PerInstanceMemory Or arTypedPerInstanceMemory, allowing reserva-
tion of static (permanent) need of global RAM for the SW-C. Nothing is specified about
the way Runnables might access this memory. RTE only provides a reference to this
memory (see section 5.6) but doesn’t guarantee data consistency for it.

The implementer of an AUTOSAR SW-C has to take care by himself that accesses
to RAM reserved as PerlnstanceMemory out of Runnables running in different task
contexts don’t cause data inconsistencies. On the other hand this provides more
freedom in using the memory.

4.2.5.4 Mechanisms to guarantee data consistency

ExclusiveAreas and InterRunnableVariables are only mentioned in association with
AUTOSAR SW-C internal communication. Nevertheless the data consistency mecha-
nisms behind can be applied to communication between AUTOSAR SW-Cs or between
AUTOSAR SW-Cs and BSW modules too. Everywhere where the RTE has to guaran-
tee data consistency.

The data consistency guaranteeing mechanisms listed here are derived from AU-
TOSAR SW-C Template and from further discussions. There might be more (see sec-
tion 4.3.4 for the mechanisms involved for inter-partition communication).

The RTE has the responsibility to apply such mechanisms if required. The details how
to apply the mechanisms are left open to the RTE supplier.

Mechanisms:

e Sequential scheduling strategy
The activation code of Runnables is sequentially placed in one task so that no
interference between them is possible because one Runnable is only activated
after the termination of the other. Data consistency is guaranteed.

e Interrupt blocking strategy
Interrupt blocking can be an appropriate means if collision avoidance is required
for a very short amount of time. This might be done by disabling respectively
suspending all interrupts, Os interrupts only or - if hardware supports it - only
of some interrupt levels. In general this mechanism must be applied with care

AUTOSAR

because it might influence SW in tasks with higher priority too and the timing of
the complete system.

e Usage of OS resources
Usage of OS resources. Advantage in comparison to Interrupt blocking strat-
egy is that less SW parts with higher priority are blocked. Disadvantage is that
implementation might consume more resources (code, runtime) due to the more
sophisticated mechanism. Appropriateness of this mechanism may vary depend-
ing on the number of OSs/cores and/or the number of available resources.

e Task blocking strategy
Mutual task preemption is prohibited. This might be reached e.g. by assigning
same priorities to affected tasks, by assigning same internal OS resource to af-
fected tasks or by configuring the tasks to be non-preemptive. This mechanism
may be inappropriate in multi-partitioned systems.

e Cooperative Runnable placement strategy

The principle is that tasks containing Runnables to be protected by "Cooper-
ative Runnable placement strategy" are not allowed to preempt other tasks also
containing Runnables to be protected by "Cooperative Runnable placement strat-
egy", when one of the Runnables to protect is active - but are allowed between
Runnable executions. The RTE’s job is to create appropriate task bodies and
use OS services or other mechanisms to achieve the required behavior. This
mechanism may be inappropriate in multi-partitioned systems.

To point out the difference to "Task blocking strategy":

In "Task blocking strategy" no task containing Runnables with access to the Ex-
clusiveArea at all is allowed to preempt another task containing Runnables with
access to same ExclusiveArea. In "Cooperative Runnable placement strategy”
this task blocking mechanism is limited to tasks defined to be within same coop-
erative context.

Example to explain the cooperative mechanism:

— Runnables R2 and R3a are marked to be protected by cooperative mecha-
nism.

— Runnables R1, R3b and R4 have no cooperative marking.

— R1 is activated in Task T1, R2 is activated in Task T2, R3a is activated in
Task T3a, R3b is activated in Task T3b, R4 is activated in Task T4.

— Task priorities are: T4 > T3a > T2 > T1, T3b has same priority as T3a
This setup results in this behavior:

— T4 can always preempt all other tasks (Higher prio than all others).

— T3b can preempt T2 (higher prio of T3b, no cooperative restriction)

— T8a cannot preempt T2 (Higher prio of T3a but same cooperative context).
So data access of Runnable R2 to common data cannot interfere with data

AUTOSAR

access by Runnable R3a. Nevertheless if both tasks T3a and T2 are ready
to run, it's guaranteed that T3a is running first.

— T1 can never preempt one of the other tasks because of lowest assigned
prio.

e Copy strategy
Idea: The RTE creates copies of data items so that concurrent accesses in dif-
ferent task contexts cannot collide because some of the accesses are redirected
to the copies.

How it can work:

— Application for read conflicts:
For all readers with lower priority than the writer a read copy is provided.

Example:

There exist Runnable R1, Runnable R2, data item X and a copy data
item X*. When Runnable R1 is running in higher priority task context than
R2, and R1 is the only one writing X and R2 is reading X it is possible to
guarantee data consistency by making a copy of data item X to variable X*
before activation of R2 and redirecting write access from X to X* or the read
access from X to X* for R2.

— Application for write conflicts:
If one or more data item receiver with a higher priority than the sender exist,
a write copy for the sender is provided.

Example:

There exist Runnable R1, Runnable R2, data item X and copy data item X*.
When Runnable R1 (running in lower priority task context than R2) is
writing X and R2 is reading X, it is possible to guarantee data consistency
by making a copy of data item X to data item X* before activation of R1
together with redirecting the write access from X to X* for R1 or the read
access from X to X* for R2.

Usage of this copy mechanism may make sense if one or more of the following
conditions hold:

— This copy mechanism can handle those cases when only one instance does
the data write access.

— R2 is accessing X several times.
— More than one Runnable R2 has read (resp. write) access to X.
— To save runtime is more important than to save code and RAM.

— Additional RAM requirements to hold the copies is acceptable.

AUTOSAR

Further issues to be taken into account:

— AUTOSAR SW-Cs provided as source code and AUTOSAR SW-Cs pro-
vided as object code may or have to be handled in different ways. The
redirecting mechanism for source code could use macros for C and C++
very efficiently whereas object-code AUTOSAR SW-Cs most likely are
forced to use references.

Note that the copy strategy is used to guarantee data consistency for implicit
sender-receiver communication (VariableAccesses in the dataReadAccess
or dataWriteAccess role) and for AUTOSAR SW-C internal communication
using InterRunnableVariables with implicit behavior.

4.2.5.5 Exclusive Areas

The concept of ExclusiveArea is more a working model. It's not a concrete imple-
mentation approach, although concrete possible mechanisms are listed in AUTOSAR
SW-C template specification [2].

Focus of the ExclusiveArea concept is to block potential concurrent accesses
to get data consistency. ExclusiveAreas implement critical section

ExclusiveAreas are associated with RunnableEntitys. The RTE is forced to guar-
antee data consistency when the RunnableEntity runs in an ExclusiveArea. A
RunnableEntity can run inside one or several ExclusiveAreas completely or can
enter one or several ExclusiveAreas during their execution for one or several times

e If an AUTOSAR SW-C requests the RTE to look for data consistency for it’s inter-
nally used data (for a part of it or the complete one) using the ExclusiveArea
concept, the SW designer can use the API calls "Rte_Enter()" in 5.6.28 and
"Rte_Exit()" in 5.6.29 to specify where he wants to have the protection by RTE
applied.

"Rte_Enter()" defines the begin and "Rte_Exit()" defines the end of the code se-
quence containing data accesses the RTE has to guarantee data consistency
for.

o If the SW designer wants to have the mutual exclusion for complete
RunnableEntitys he can specify this by using the ExclusiveArea in the role
"runsInsideExclusiveArea" in the AUTOSAR SW-C description.

In principle the ExclusiveArea concept can handle the access to single data items
as well as the access to several data items realized by a group of instructions. It
also doesn’t matter if one Runnable is completely running in an ExclusiveArea and
another Runnable only temporarily enters the same ExclusiveArea. The RTE has
to guarantee data consistency.

AUTOSAR

[SWS_Rte_03500] | The RTE has to guarantee data consistency for arbitrary ac-
cesses to data items accessed by Runnables marked with the same ExclusiveArea.
|(SRS_Rte_00032, SRS_Rte _00046)

[SWS_Rte_03515] | RTE has to provide an API enabling the SW-Cs to access and
leave ExclusiveAreas. |(SRS_Rte _00046)

If Runnables accessing same ExclusiveArea are assigned to be executing in dif-
ferent task contexts, the RTE can apply suitable mechanisms, e.g. task blocking, to
guarantee data consistency for data accesses in the common ExclusiveArea. How-
ever, specials attributes can be set that require certain data consistency mechanisms
in which case the RTE generator is forced to apply the selected mechanism.

The Basic Software Scheduler provides ExclusiveAreas for the Basic Software
Modules. Basic Software Modules have to use the API calls SchM_Enter()" in 6.5.1
and schM_Exit()"in 6.5.2 to specify where the protection by Basic Software Sched-
uler has to be applied.

[SWS_Rte_07522] | The Basic Software Scheduler has to guarantee data consistency
for arbitrary accesses to data items accessed by BswModuleEnt itys marked with the
same ExclusiveArea. |(SRS_Rte 00222, SRS_Rte 00046)

[SWS_Rte_07523] | Basic Software Scheduler has to provide an AP| enabling the
Basic Software Module to access and leave ExclusiveAreas. |(SRS_Rte 00222,
SRS _Rte 00046)

It is not supported, that a BswModuleEntity which is not a BswSchedulableEn—
tity uses an ExclusiveArea inthe role runsInsideExclusiveArea This is not
possible, because such BswSchedulableEntity might be called directly by other
Basic Software Modules and therefore the Basic Software Scheduler is not able to
enter and exit the ExclusiveArea automatically.

[SWS_Rte_07524] | The RTE generator shall reject a configuration where a BswMod-
uleEntity which is not a BswSchedulableEntity US€S an ExclusiveArea
in the role runsInsideExclusiveArea. [(SRS_Rte 00222, SRS_Rte 00046,
SRS _Rte 00018)

4.2.5.5.1 Assignment of data consistency mechanisms

The data consistency mechanism that has to be applied to anExclusiveArea might
be domain, ECU or even project specific. The decision which mechanism has to be
applied by RTE / Basic Software Scheduler is taken during ECU integration by set-
ting the ExclusiveArea configuration parameter RteExclusiveAreaImplMecha-
nism. This parameter is an input for RTE generator.

As stated in section 4.2.5.4 there might be more mechanisms to realize Exclu-
siveAreas as mentioned in this specification. So RTE implementations might provide
other mechanisms in plus by a vendor specific solutions. This allows further optimiza-
tions.

AUTOSAR

Actually following values for configuration parameter RteExclusiveAreaImplMech—
anism must be supported:

e ALL_INTERRUPT_BLOCKING
This value requests enabling and disabling of all Interrupts and is based on the
Interrupt blocking strategy.

e OS_INTERRUPT_BLOCKING
This value requests enabling and disabling of Os Interrupts and is based on the
Interrupt blocking strategy.

e OS_RESOURCE
This value requests to apply the Usage of OS resources mechanism.

e COOPERATIVE_RUNNABLE_PLACEMENT
This value requires to apply the Cooperative Runnable Placement Strategy.

e OS_SPINLOCK
This value is used to co-ordinate concurrent access by TASKs/ISR2s on different
cores to a shared resource.

The strategies / mechanisms are described in general in section 4.2.5.4.

[SWS_Rte_03504] | If the configuration parameter RteExclusiveAreaImplMech-
anism of an ExclusiveArea is set to value ALL_INTERRUPT_BLOCKING the RTE
generator shall use the mechanism of Interrupt blocking (blocking all interrupts) to guar-
antee data consistency if data inconsistency could occur. |(SRS_Rte 00032)

[SWS_Rte_05164] | If the configuration parameter RteExclusiveAreaImplMech—
anism oOf an ExclusiveArea is set to value 0OS_INTERRUPT_BLOCKING the RTE
generator shall use the mechanism of Interrupt blocking (blocking Os interrupts only)
to guarantee data consistency if data inconsistency could occur. | (SRS_Rte 00032)

[SWS_Rte_03595] | If the configuration parameter RteExclusiveAreaImplMech—
anism of an ExclusiveArea is set to value 0S_RESOURCE the RTE generator shall
use OS resources to guarantee data consistency if data inconsistency could occur.
|(SRS_Rte_00032)

The requirements above have the limitation "if data inconsistency could occur"
because it makes no sense to apply a data consistency mechanism if no potential
data inconsistency can occur. This can be relevant if e.g. the "Sequential scheduling
strategy" (described in section 4.2.5.4) still has solved the item by the ECU integrator
defining an appropriate runnable-to-task mapping.

[SWS_Rte_03503] | If the configuration parameter RteExclusiveAreaImplMech-
anismofan ExclusiveArea is setto value COOPERATIVE_RUNNABLE_PLACEMENT
the RTE generator shall generate code according the Cooperative Runnable Place-
ment Strategy to guarantee data consistency. |(SRS_Rte 00032)

AUTOSAR

Since the decision to select the Cooperative Runnable Placement Strategy to prohibit
data access conflicts affects the behavior of several tasks and potentially many Ex-
clusiveAreas the RTE generator is not allowed to override the decision.

[SWS_Rte_08419] | If the configuration parameter RteExclusiveAreaImplMech—
anism of an ExclusiveAreais set to value 0s_sPINLOCK the RTE generator shall
use OS spinlocks to guarantee data consistency if data inconsistency could occur.
| (SRS_Rte_00032)

In a SWC code, it is not allowed to use WaitPoints inside an ExclusiveArea:
The RTE generator might use OSEK services to implement ExclusiveAreas and
waiting for an OS event is not allowed when an OSEK resource has been taken for
example. For RunnableEntityEntersExclusiveArea, the RTE generator cannot check if
WaitPoints are inside an ExclusiveArea. Therefore, it is the responsibility of the
SWC Code writer to ensure that no waitPoints are used inside an exclusive area.
But for RunnableEntitys running inside a ExclusiveArea, the RTE generator is
able to do the following check.

[SWS_Rte_07005] | The RTE generator shall reject a configuration with a waitPoint
applied to a RunnableEntity which is using the ExclusiveArea in the role run-
sInsideExclusiveArea |(SRS_Rte_ 00032, SRS_Rte_00018)

4.2.5.6 InterRunnableVariables

AtomicSwComponents (except for NvBlockComponents) can reserve InterRunnable-
Variables which can be accessed by the Runnables of this one AtomicSwComponent
(also see section 4.3.3.1). Read and write accesses are possible. There is a separate
set of those variables per AUTOSAR SW-C instance.

Again the RTE has to guarantee data consistency. Appropriate means will depend on
Runnable placement decisions which are taken during ECU configuration.

[SWS_Rte_03516] | The RTE has to guarantee data consistency for communication
between Runnables of one AUTOSAR software-component instance using the same
InterRunnableVariable. |(SRS_Rte 00142, SRS_Rte_00032)

Next the two kinds of InterRunnableVariables are treated:
1. InterRunnableVariables with implicit behavior
(implicitInterRunnableVariable)
2. InterRunnableVariables with explicit behavior

(explicitInterRunnableVariable)

AUTOSAR

4.2.5.6.1 InterRunnableVariables with implicit behavior

In applications with very high SW-C communication needs and much real time con-
straints (like in powertrain domain) the usage of a copy mechanism to get data con-
sistency might be a good choice because during RunnableEnt ity execution no data
consistency overhead in form of concurrent access blocking code and runtime during
its execution exists - independent of the number of data item accesses.

Costs are code overhead in the RunnableEntity prologue and epilogue which is
often be minimal compared to other solutions. Additional RAM need for the copies
comes in plus.

When InterRunnableVariables with implicit behavior are used the RTE is required to
make the data available to the Runnable using the semantics of a copy operation
but is not necessarily required to use a unique copy for each RunnableEntity.

Focus of InterRunnableVariable with implicit behavior is to avoid concurrent ac-
cesses by redirecting second, third, .. accesses to data item copies.

[SWS_Rte_03517] [The RTE shall guarantee data consistency for InterRunnable Vari-
ables with implicit behavior by avoiding concurrent accesses to data items specified by
implicitInterRunnableVariable using one or more copies and redirecting ac-
cesses to the copies.

|(SRS_Rte_00142, SRS _Rte_00032)

Compared with Sender/Receiver communication

e Like with VariableAccesses in the dataReadAccess and dataWriteAc—
cess roles, the Runnable IN data is stable during Runnable execution, which
means that during an Runnable execution several read accesses to an implic-
itInterRunnableVariable always deliver the same data item value.

e Like with variableAccesses in the dataReadAccess and dataWriteAc—
cess roles, the Runnable OUT data is forwarded to other Runnables not before
Runnable execution has terminated, which means that during an Runnable ex-
ecution write accesses to implicitInterRunnableVariable are not visible
to other Runnables.

This behavior requires that Runnable execution terminates.

[SWS_Rte_03582] | The value of several read accesses to implicitInter—
RunnableVariable during a RunnableEnt ity execution shall only change for write
accesses performed within this RunnableEntity tothe implicitInterRunnabl-
evVariable |(SRS_Rte _00142)

[SWS_Rte_03583] | Several write accesses t0 implicitInterRunnableVari-
able during a RunnableEntity execution shall result in only one update of the im-
plicitInterRunnableVariable content visible to other RunnableEntitys with
the last written value.

|(SRS_Rte_00142)

AUTOSAR

[SWS_Rte_03584] | The update of implicitInterRunnableVariable done dur-
ing @ RunnableEntity execution shall be made available to other RunnableEn-
titys after the RunnableEntity execution has terminated.

|(SRS_Rte_00142)

[SWS_Rte_07022] | If a RunnableEntity has both read and write access to an
implicitInterRunnableVariable the result of the write access shall be imme-
diately visible to subsequent read accesses from within the same runnable entity.
|(SRS_Rte_00142)

The usage of implicitInterRunnableVariables is permitted for all categories of
runnable entities. For runnable entities of category 2, the behavior is guaranteed only
if it has a finite execution time. A category 2 runnable that runs forever will not have its
data updated.

For APl of implicitInterRunnableVariable see sections 5.6.23 and 5.6.24.

For more details how this mechanism could work see "Copy strategy" in section 4.2.5.4.

4.2.5.6.2 InterRunnableVariables with explicit behavior

In many applications saving RAM is more important than saving runtime. Also some
application require to have access to the newest data item value without any delay,
even several times during execution of a Runnable.

Both requirements can be fulfilled when RTE supports data consistency by blocking
second/third/.. concurrent accesses to a signal buffer if data consistency is jeopar-
dized. (Most likely RTE has nothing to do if SW is running on a 16bit machine and
making an access to an 16bit value when a 16bit data bus is present.)

Focus of InterRunnableVariables with explicit behavior is to block potential con-
current accesses to get data consistency.

The mechanism behind is the same as in the ExclusiveArea concept (see section
4.2.5.5). But although ExclusiveAreas can handle single data item accesses too, their
API is made to make the RTE to apply data consistency means for a group of in-
structions accessing several data items as well. So when using an ExclusiveArea to
protect accesses to one single common used data item each time two RTE API calls
grouped around are needed. This is very inconvenient and might lead to faults if the
calls grouped around might be forgotten.

The solution is to support InterRunnable Variables with explicit behavior.

[SWS_Rte_03519] | The RTE shall guarantee data consistency for InterRunnable Vari-
ables with explicit behavior by blocking concurrent accesses to data items specified by
explicitInterRunnableVariable.

|(SRS_Rte 00142, SRS Rte_00032)

The RTE generator is not free to select on it's own if implicit or explicit behavior shall
be applied. Behavior must be known at AUTOSAR SW-C design time because in case

AUTOSAR

of InterRunnableVariables with implicit behavior the AUTOSAR SW-C designer might
rely on the fact that several read accesses always deliver same data item value.

[SWS_Rte_03580] [The RTE shall supply different APIs for InterRunnableVariables
with implicit behavior and InterRunnableVariables with explicit behavior.
|(SRS_Rte_00142)

For API of InterRunnableVariables with explicit behavior see sections 5.6.26 and
5.6.27.

4.2.6 Multiple trigger of Runnable Entities and Basic Software Schedulable En-
tities

Concurrent activation

The AUTOSAR SW-C template specification [2] states that runnable entities (further
called "runnables") might be invoked concurrently several times if the Runnables at-
tribute canBeInvokedConcurrently is set. It's then in the responsibility of the AU-
TOSAR SW-C designer that no data might be corrupted when the Runnable is activated
several times in parallel.

If a SW-C has multiple instances, they have distinct runnables. Two runnables that
use the same RunnableEntity description of the same SwcInternalBehavior
description but are instantiated with two different SW-C instances are treated as two
distinct runnables in the following. This kind of concurrency is always allowed between
SW-Cs, even if the runnables have their canBeInvokedConcurrently attribute set
to false.

[SWS_Rte_03523] | The RTE shall support concurrent activation of the same instance
of a runnable entity if the associative attribute canBeInvokedConcurrently is set
to TRUE. This includes concurrent activation in several tasks. If the attribute is not
set resp. set to FALSE, concurrent activation of the runnable entity is forbidden. (see
requirement [SWS_Rte_05083]) |(SRS_Rte_00072, SRS_Rte_00133)

The Basic Software Module Description Template [9] specifies the possible concurrent
activation of BswModuleEntitys by the attribute i sReentrant.

[SWS_Rte_07525] | The Basic Software Scheduler shall support concurrent activation
of the same instance of a BswSchedulableEntity if the attribute i sReentrant of
the referenced BswModuleEntry in the role implementedEntry is set to true.
This includes concurrent activation in several tasks. If the attribute is set to false
concurrent activation of the BswSchedulableEntity is forbidden. (see requirement
[SWS_Rte_07588]) |()

Concurrent activation of the same instance of a ExecutableEntity results in mul-
tiple ExecutableEntity execution—-instances. One for each context of activa-
tion.

AUTOSAR

Activation by several RTEEvents and BswEvents

Nevertheless a Runnable whose attribute canBeInvokedConcurrently is NOT set
might be still activated by several RTEEvents if activation configuration guarantees
that concurrent activation can never occur and the minimumStartInterval condi-
tion is kept. This includes activation in different tasks. In this case, the runnable is
still considered to have only one ExecutableEntity execution—-instances. A
standard use case is the activation of same instance of a runnable in different modes.

[SWS_Rte_03520] | The RTE shall support activation of same instance of a runnable
entity by multiple RTEEvents. |(SRS_Rte_00072)

RTEEvents are triggering runnable activation and may supply 0..several role param-
eters, see section 5.7.3. Role parameters are not visible in the runnables signature -
except in those triggered by an OperationInvokedEvent. With the exception of the
RTEEvent OperationInvokedEvent all role parameters can be accessed by user
with implicit or explicit Receiver API.

[SWS_Rte_03524] [The RTE shall support activation of same instance of a runnable
entity by RTEEvents of different kinds. |(SRS_Rte_00072)

The RTE does NOT support a runnable entity triggered by an RTEEvent Opera-
tionInvokedEvent to be triggered by any other RTEEvent except for other Opera-
tionInvokedEvents of compatible operations. This limitation is stated in appendix
in section A.2 ([SWS_Rte_03526]).

The similar configuration as mentioned for the RunnableEntitys might be used for
BswSchedulableEntitys. Therefore even a BswSchedulableEntity whose ref-
erenced BswModuleEntry in the role implementedEntry has its isReentrant
attribute set to false can be activated by several BswEvents.

[SWS_Rte_07526] | The Basic Software Scheduler shall support activation of same
instance of a BswSchedulableEntity by multiple BswEvents. |()

[SWS_Rte_07527] [The Basic Software Scheduler shall support activation of same
instance of a BswSchedulableEntity by BswEvents of different kinds. | ()

4.2.7 Implementation of Parameter and Data Elements
4.2.7.1 General

A SWC communicates with other SWCs through ports. A port is characterized by a
PortInterface and there are several kinds of PortInterfaces. In this section,
we focus on the ParameterInterface, the SenderReceiverInterface, and the
NvDataInterface. These three kinds of Port Interfaces aggregate some specific
interface elements. For example, a ParameterInterface aggregates 0..* Parame—
terDataPrototypes.

AUTOSAR

4.2.7.2 Compatibility rules

A receiver port can only be connected to a compatible provider port. The compatibility
rules are explained in the AUTOSAR Software Component Template [2]. The compat-
ibility mainly depends on the attribute swImplPolicy attached to the element of the
interface. The table 4.7 below gives an overview of compatibility rules.

Provide Port Require Port
Port Interface Prm S/R NvD
Interface Element PDP VDP VDP
swimplPolicy | fixed const standard| standard| queued | standard

fixed yes yes yes yes no yes

Prm PDP const no yes yes yes no yes

standard | no no yes yes no yes

S/R VDP standard | no no no yes no yes

queued no no no no yes no

NvD VDP standard | no no no yes no yes

Table 4.7: Overview of compatibility of ParameterDataPrototype and VariableDataProto-
types

Interface Element

PDP . ParameterDataPrototype
VDP . VariableDataPrototype
Port Interface

Prm . ParameterInterface

S/R . SenderReceiverInterface
NvD . NvDatalnterface

Table 4.8: Key to table 4.7

For examples, a Require Port that expects a fixed parameter - i.e produced by a macro
#define - can only be connected to a Port that provides a fixed Parameter. This is be-
cause this fixed data may be used in a compilation directive like #IF and only macro
#define (fixed data) can be compiled in this case. On the other hand, this provided fixed
parameter can be connected to almost every require port, except a queued Sender/re-
ceiver interface.

The RTE doesn’t have to check the compatibility between ports since this task is per-
formed at the VFB level. But it shall provide the right implementation of interface el-
ement and API according the attribute swImplPolicy attached to the interface ele-
ment.

4.2.7.3 Implementation of an interface element

The implementation of an interface element depends on the attribute swImplPolicy.
The attribute swCalibrationAccess determines how the interface element can be

AUTOSAR

accessed by e.g. an external calibration tool. The table 4.9 defines the supported
combinations of swImplPolicy and swCalibrationAccess attribute setting and
gives the corresponding implementation by the RTE.

swimplPolicy SwCalibrationAccess
not Accessi- | readOnly readWrite Implementation
ble
fixed yes not sup- | not supported macro defini-
ported tion or ¢ const
declaration de-
pendent from
RTE optimiza-
tion
const yes yes not supported ¢ const declara-
tion
standard yes yes yes standard im-
plementation
i.e. a variable
for Variable-
DataPrototype
in RAM or a
calibration pa-
rameter in ROM
3
queued yes not sup- | not supported FIFO Queue
ported
measurement not sup- | yes not supported Variable
Point ported

Table 4.9: Data implementation according swImplPolicy

4.2.7.4 Initialization of VvariableDataPrototypes

Basically the need for initialization of any variableDataPrototypes is specified by
the Software Component Descriptions defining the variableDataPrototypes. This
information is basically defined by the existence of an initvalue, the sectionIni-
tializationPolicy of the related swAddrMethod. As described in section 7.12
additionally the initialization strategy can be adjusted by the integrator of the RTE to
adjust the behavior to the start-up code.

[SWS_Rte_07046] | Variables implementing VvariableDataPrototypes shall be
initialized if
e an initValue is defined
AND

e NO SwAddrMethod is defined for variableDataPrototype.

Scalibration parameter have to be allocated in RAM if data emulation with SW support is required,
see 4.2.8.3.5

AUTOSAR

|(SRS_Rte_00052, SRS_Rte 00068, SRS _Rte _00116)

[SWS_Rte_03852] | Variables implementing variableDataPrototypes shall be
initialized if
e an initVvalue is defined
AND
e a SwAddrMethod is defined for variableDataPrototype
AND

e the RteInitializationStrategy for the sectionInitializa-
tionPolicy of the related swAddrMethod is NOT configured to
RTE_INITIALIZATION_STRATEGY_NONE.

|(SRS_Rte_00052, SRS_Rte 00068, SRS _Rte 00116)

4.2.7.5 Initial value calculation

Basically the Meta Model defines two different flavors of rule based value specifica-
tions:

e ApplicationRuleBasedValueSpecification
e NumericalRuleBasedValueSpecification

The ApplicationRuleBasedValueSpecification defines the values in the
physical representation whereas the NumericalRuleBasedValueSpecification
defines the values in the numerical representation. (See document [2], section Data
Description) But both are using the RuleBasedValueSpecification to define a
set of values based on a rule and arguments for the rule.

Especially in case of large arrays an high amount of initial values are required. But
many arrays are initialized with identical values or at least filled up to the end with iden-
tical values. For such use case the RuleBasedvalueSpecification of category
FILL_UNTIL_END can be used to avoid the creation and maintenance of redundant
ValueSpecifications.

[SWS_Rte_06764] | The RTE Generator shall support 2ApplicationRuleBased-

ValueSpecifications for DataPrototypes typed by ApplicationArray-
DataTypes. |(SRS_Rte 00239)

[SWS_Rte_06765] | The RTE Generator shall support NumericalRuleBasedvVal-—
ueSpecifications for DataPrototypes typed by ImplementationDataTypeS
of category ARRAY and for Compound Primitive Data TypeS which are
mapped to ImplementationDataTypes of category ARRAY. |(SRS_Rte 00239)

[SWS_Rte_06733] | The RTE Generator shall support RuleBasedvValueSpecifi-
cations with the rule FILL_UNTIL_END. |(SRS_Rte 00239)

AUTOSAR

[SWS_Rte_08542] | The RTE Generator shall support RuleBasedValueSpecifi-
cations with the rule FILL_UNTIL_MAX_SIZE. |(SRS_Rte 00239)

[SWS_Rte_06734] | The RTE shall initialize the elements of the array ac-
cording the values defined by RuleBasedvValueSpecification.arguments
if a RuleBasedValueSpecification with the rule FILL_UNTIL_END oOf
FILL_UNTIL_MAX_SIZE is applicable.

Thereby the order of arguments corresponds to the order of elements in the array, i.e.
the first argument corresponds to the first element of the array, the second argument
corresponds to the second element of the array, and so on. | (SRS_Rte 00239)

AUTOSAR defines a standardized behavior of RuleBasedvalueSpecifications
only for the rules FILL_UNTIL_END and FILL_UNTIL_MAX_SIZE. RTE vendors are
free to add additional, non-standardized rules (see [TPS_SWCT_01495]).

[SWS_Rte_06735] | The RTE Generator shall apply the value of the last RuleBased-
ValueSpecification argument to any following element of the array until the last
element of the array if the rule is set to FILL_UNTIL_END and the number of ar-
guments is smaller than the number of elements of the array to which it is applied.
|(SRS_Rte_00239)

[SWS_Rte_08792] | The RTE Generator shall apply the value of the last Rule-
BasedValueSpecification argument to so many following elements of the ar-
ray until first maxSizeToFill elements of the array are filled if the rule is set to
FILL_UNTIL_MAX_SIZE and the number of arguments is smaller than the number of
elements of the array to which it is applied. | (SRS_Rte 00239)

[SWS_Rte_06736] | The RTE Generator shall ignore arguments that go beyond the
last element of the array if the number of arguments exceeds the number of elements
of the array to which it is applied. |(SRS_Rte 00239)

4.2.8 Measurement and Calibration
4.2.8.1 General

Calibration is the process of adjusting an ECU SW to fulfill its tasks to control physical
processes respectively to fit it to special project needs or environments. To do this two
different mechanisms are required and have to be distinguished:

1. Measurement
Measure what’s going on in the ECU e.g. by monitoring communication data
(Inter-ECU, Inter-Partition, Intra-partition, Intra-SWC). There are several ways to
get the monitor data out of the ECU onto external visualization and interpretation
tools.

2. Calibration
Based on the measurement data the ECU behavior is modified by changing
parameters like runtime SW switches, process controlling data of primitive or

AUTOSAR

composite data type, interpolation curves or interpolation fields. In the following
for such parameters the term calibration parameter is used.

With AUTOSAR, a calibration parameter is instantiated with a ParameterbDataPro-
totype class that aggregates a SwhataDefProps with properties swCalibra-
tionAccess = readWrite and swImplPolicy = standard.

Nevertheless it is supported, that variableDataPrototype is instantiated that
aggregates a SwhataDefProps With properties swCalibrationAccess = read-
Write and swImplPolicy = standard. Butin this case the implementation of such
VariableDataPrototype is treated identical to swCalibrationAccess = read-
only and the RTE Generator has not to implement further measures (for instance
"Data emulation with SW support" 4.2.8.3.5).

It's possible that different swhataDefProps settings are specified for a Vvariable-
DataPrototype and its referenced AutosarDataType. In this case the rules spec-
ified in the SWC-T shall be applied. See as well [SWS_Rte 07196].

SwhataDefProps contain more information how measurement values or characteris-
tics are to be interpreted and presented by external calibration tools. This information
is needed for the ASAM2 respectively A2L file generation. Afterwards the A2L file is
used by ECU-external measurement and calibration tools so that these tools know e.g.
how to interpret raw data received from ECU and how to get them.

4.2.8.1.1 Definition of Calibration Parameters

Calibration parameters can be defined in AUTOSAR SW as well as in Basic-SW. In
the AUTOSAR Architecture there are two possibilities to define calibration parameters.
Which one to choose is not in the focus of this RTE specification.

1. RTE provides the calibration parameter access if they are specified via a Param-
eterSwComponentType. A ParameterSwComponentType can be defined
in order to provide ParameterDataPrototypes (via ports) to other Software
Components.

2. Calibration parameter access invisible for RTE

Since multiple instantiation with code sharing is not allowed for Basic-SW and
multiple instantiation is not always required for software components it's possi-
ble for these software to define own methods how calibration parameters are
allocated. Nevertheless these calibration parameters shall be described in the
belonging Basic Software Module Description respectively Software Component
Description. In case data emulation with SW-support is used, the whole software
and tool chain for calibration and measurement, e.g. Basic-SW (respectively XCP
driver) which handles emulation details and data exchange with external calibra-
tion tools then has to deal with several emulation methods at once: The one
the RTE uses and the other ones each Basic-SW or SWC using local calibration
parameters practices.

AUTOSAR

4.2.8.1.2 Online and offline calibration

The way how measurement and calibration is performed is company, domain and
project specific. Nevertheless two different basic situations can be distinguished and
are important for understanding:

1. Offline calibration
Measure when ECU is running, change calibration data when ECU is off.
Process might look like this:

a) Flash the ECU with current program file
b) PowerUp ECU in target (actual or emulated) environment

(@)
(b)
(c) Measure running ECU behavior - log or monitor via external tooling
(d) Switch off ECU

(e)

e) Change calibration parameters and create a new flashable program file (hex-
file) e.g. by performing a new SW make run

(f) Back to (a).

Do loop as long as a need for calibration parameter change exists or the Flash
survives.

2. Online calibration

Do measurement and calibration in parallel.

In this case in principle all steps mentioned in "Offline calibration" above have
to be performed in parallel. So other mechanisms are introduced avoiding ECU
flashing when modifying ECU parameters. ECU works temporarily with changed
data and when the calibration process is over the result is an updated set of
calibration data. In next step this new data set might be merged into the existing
program file or the new data set might be an input for a new SW make run. In
both cases the output is a new program file to flash into the ECU.

Process might look like this:
(a) Flash the ECU with current program file
(b) PowerUp ECU in target environment

(c) Measure running ECU behavior and temporarily modify calibration parame-
ters. Store set of updated calibration parameters (not on the ECU but on the
calibration tool computer). Actions in step ¢) may be done iteratively.

(d) Switch off ECU

(e) Create a new flashable program file (hex-file) containing the new calibration
parameters

Procedure over

AUTOSAR

4.2.8.2 Measurement
4.2.8.2.1 What can be measured

The AUTOSAR SW-C template specification [2] explains to which AUTOSAR proto-
types a measurement pattern can be applied.

RTE provides measurement support for

1. communication between Ports
Measurable are

e VariableDataPrototypeS Of a SenderReceiverInterface used in
a PortPrototype (of a SwComponentPrototype) to capture sender-
receiver communication or between swComponentPrototypes

e VariableDataPrototypesofaNvDataInterfaceusedinaPortPro-
totype (of a SwComponentPrototype) to capture non volatile data com-
munication or between swComponentPrototypes

e ArgumentDataPrototypes Of an ClientServerOperation in a
ClientServerInterface to capture client-server communication be-
tween SswComponentPrototypeSs

2. communication inside of AUTOSAR SW-Cs
Measurable are implicitInterRunnableVariable, explicitInter-
RunnableVariable Or arTypedPerInstanceMemory

3. data structures inside a AUTOSAR NvBlockSwComponent
Measurable are ramBlocks and romBlocks of a NvBlockSwComponent’s
NvBlock

4. Communication inside of AUTOSAR Basic Software Modules
Measurable are VariableDataPrototypes defined in role of arTyped-
PerInstanceMemory.

Further on AUTOSAR SW-Cs and Basic Software Modules can define measurables
which are not instantiated by RTE. These are described by VariableDataProto-
typesintherole staticMemory. Hence those kind of measurables are not described
in the generated McSupportData of the RTE (see 4.2.8.4).

4.2.8.2.2 RTE support for Measurement

The way how measurement data is read out of the ECU is not focus of the RTE spec-
ification. But the RTE structure and behavior must be specified in that way that mea-
surement values can be provided by RTE during ECU program execution.

To avoid synchronization effort it shall be possible to read out measurement data asyn-
chronously to RTE code execution. For this the measurement data must be stable. As
a consequence this might forbid direct reuse of RAM locations for implementation of

AUTOSAR

several AUTOSAR communications which are independent of each other but occurring
sequentially in time (e.g. usage of same RAM cell to store uint8 data sender receiver
communication data between Runnables at positions 3 and 7 and later the same RAM
cell for the communication between Runnables at positions 9 and 14 of same periodi-
cally triggered task). So applying measurable elements might lead to less optimizations
in the generated RTE’s code and to increased RAM need.

There are circumstances when RTE will store same communication data in different
RAM locations, e.g. when realizing implicit sender receiver communication or Inter
Runnable Variables with implicit behavior. In these cases there is only the need to
have the content of one of these stores made accessible from outside.

The information that measurement shall be supported by RTE is defined in applied
SwDataDefProps:

The value readOnly or readWrite of the property swCalibrationAccess defines
that measurement shall be supported, any other value of the property swCalibra-
tionAccess is to be ignored for measurement.

Please note that the definition of [SWS_Rte 03900] and [SWS_Rte 03902] do
not have further conditions when the location in memory has to be provided to
support the usage of VariableDataPrototype with the swImplPolicy = mea-
surementPoint. In case that the MCD system is permitted to access such a
VariableDataPrototype the RTE is not allowed to do optimization which would
prevent such measurement even if there is no consuming software component in the
input configuration.

The memory locations containing measurement values are initialized according to
[SWS_Rte_07046] and [SWS_Rte_03852].

[SWS_Rte_07044] | The RTE generator shall reject input configurations in which a
RunnableEntity defines aread access (VariableAccess intherole readlLocal-
Variable, dataReadAccess, dataReceivePointByValue Or dataReceive-
PointByArgument) t0 an VariableDataPrototype With a swImplPolicy set to
measurementPoint. |(SRS_Rte 00018)

For sender-receiver resp. client-server communication same or compatible interfaces
are used to specified connected ports. So very often measurement will be demanded
two times for same or compatible variableDataPrototype on provide and require
side of a 1:1 communication resp. multiple times in case of 1:N or M:1 communication.
In that case providing more than one measurement value for a VariableDataPro-
totype doesn’t make sense and would increase ECU resources need excessively.
Instead only one measurement value shall be provided.

AUTOSAR

Sender-receiver communication

[SWS_Rte_03900] | If the swCalibrationAccess ofavariableDataPrototype
used in an interface of a sender-receiver port of a SwComponentPrototype is set
to readOnly or readWrite the RTE generator has to provide one reference to
a location in memory where the actual content of the instance specific data of the
corresponding VariableDataPrototype of the communication can be accessed.
| (SRS_Rte_00153)

To prohibit multiple measurement values for same communication:
(Note that affected variableDataPrototypes might be specified in same or com-
patible port interfaces.)

[SWS_Rte_03972] | For 1:1 and 1:N sender-receiver communication the RTE shall
provide measurement values taken from sender side if measurement is demanded in
provide and require port. | (SRS_Rte_00153)

[SWS_Rte_03973] | For N:1 intra-ECU sender-receiver communication the RTE shall
provide measurement values taken from receiver side if measurement is demanded in
provide and require ports. |(SRS_Rte _00153)

Note:
See further below for support of queued communication.

[SWS_Rte_03974] | For a variableDataPrototype With measurement demand
associated with received data of inter-ECU sender-receiver communication the RTE
shall provide only one measurement store reference containing the actual received
data even if several receiver ports demand measurement. |(SRS_Rte_00153)

[SWS_Rte_07344] | For a variableDataPrototype with measurement demand
associated with received data of inter-Partition sender-receiver communication the
RTE shall provide only one measurement store reference per partition containing the
actual received data even if several receiver ports demand measurement in the Parti-
tion. | (SRS_Rte _00153)

Client-Server communication

[SWS_Rte_03901] | If the swCalibrationAccess of an ArgumentDataProto-
type used in an interface of a client-server port of a SwComponentPrototype is set
to readonly the RTE generator has to provide one reference to a location in memory
where the actual content of the instance specific argument data of the communication
can be read. | (SRS_Rte _00153)

To prohibit multiple measurement values for same communication:
(Note that affected ArgumentDataPrototypes might be specified in same or com-
patible port interfaces.)

[SWS_Rte_03975] | For intra-ECU client-server communication the RTE shall provide
measurement values taken from client side if measurement of an ArgumentDataPro-—
totypes is demanded by provide and require ports. | (SRS_Rte 00153)

AUTOSAR

[SWS_Rte_03976] | For inter-ECU client-server communication with the client being
present on same ECU as the RTE, the RTE shall provide measurement values taken
from client side. | (SRS_Rte _00153)

[SWS_Rte_03977] | For inter-ECU client-server communication with the server being
present on same ECU as the RTE, the RTE shall provide measurement values taken
from server if no client present on same ECU as the server is connected with that
server too. | (SRS_Rte _00153)

[SWS_Rte_07349] | For inter-Partition client-server communication with the server
being present on the same ECU as the RTE, the RTE shall provide measurement
values taken from server if no client present on the same Partition as the server is
connected with that server too. | (SRS _Rte 00153)

Note:

When a measurement is applied to a client-server call additional copy code might be
produced so that a zero overhead direct server invocation is no longer possible for this
call.

Mode Switch Communication

[SWS_Rte_06700] | If the swCalibrationAccess of a ModeDeclarationGroup—
Prototype used in an interface of a mode switch port of a SwComponentPro-
totype is set to readoOnly the RTE generator has to provide three references to
locations in memory where the current mode, the previous mode and the next mode of
the related mode machine instance can be accessed. |(SRS_Rte_00153)

The affected ModeDeclarationGroupPrototypes might be used at different ports
with the same or compatible port interfaces. [SWS_Rte_06701] prohibits the occur-
rence of multiple measurement values for the same communication:

[SWS_Rte_06701] | For 1:1 and 1:N mode switch communication the RTE shall pro-
vide measurement values taken from mode manager side if measurement is de-
manded in provide and require port. |(SRS_Rte _00153)

Inter Runnable Variables

[SWS_Rte_03902] | If the swCalibrationAccess ofavariableDataPrototype
in the role implicitInterRunnableVariable Or explicitInterRunnable-
Variable is setto readOnly or readWrite the RTE generator has to provide one
reference to a location in memory where the actual content of the Inter Runnable Vari-
able can be accessed for a specific instantiation of the AUTOSAR SWC.

| (SRS_Rte_00153)

PerinstanceMemory

[SWS_Rte_07160] | If the swCalibrationAccess ofavariableDataPrototype
intherole arTypedPerInstanceMemory is setto readOnly or readWrite the RTE
generator has to provide one reference to a location in memory where the actual con-
tent of the arTypedPerInstanceMemory can be accessed for a specific instantiation

AUTOSAR

of the AUTOSAR SWC.
|(SRS_Rte 00153)

[SWS_Rte_06206] | If the swCalibrationAccess ofavariableDataPrototype
in the role arTypedPerInstanceMemory iS set t0 readOnly or readWrite the
RTE Generator has to provide exactly one reference to a location in memory where the
actual content of the arTypedPerInstanceMemory can be accessed for a specific
instantiation of the Basic Software Module.

|(SRS_Rte_00153)

Nv RAM Block

[SWS_Rte_07174] | If the swCalibrationAccess ofavariableDataPrototype
in the role ramBlock of a NvBlockSwComponentType’s NvBlockDescriptor is
setto readOnly or readWrite the RTE generator has to provide one reference to a
location in memory where the actual content of the Nv RAM Block can be accessed
for a specific instantiation of the AUTOSAR NvBlockSwComponent Type.

| (SRS_Rte_00153)

Non Volatile Data communication

[SWS_Rte_07197] | If the swCalibrationAccess ofavariableDataPrototype
used in an NvDataInterface of a non volatile data port of a SwComponentPro-
totype is set t0 readOnly or readWrite the RTE generator has to provide one
reference to a location in memory where the actual content of the instance specific
data of the corresponding variableDataPrototype Of the communication can be
accessed. |(SRS_Rte_00153)

To prohibit multiple measurement values for same communication:
(Note that affected variableDataPrototypes might be specified in same or com-
patible port interfaces.)

[SWS_Rte_07198] | For 1:1 and 1:N non volatile data communication the RTE
shall provide measurement values taken from ramBlock if measurement is de-
manded either in provide port, any require port ([SWS_Rte_07197] or ramBlock
(ISWS_Rte_07174]). |(SRS_Rte_00153)

Unconnected ports or compatible interfaces
As stated in section 5.2.7 RTE supports handling of unconnected ports.

Measurement support for unconnected sender-receiver provide ports makes sense
since a port might be intentionally added for monitoring purposes only.

Measurement support for unconnected sender-receiver require ports makes sense
since the measurement is specified on the type level of the Software Component and
therefore independent of the individual usage of the Software Component. In case
of unconnected sender-receiver require ports the measurement shall return the initial
value.

Support for unconnected client-server provide port does not make sense since the
server cannot be called and with this no data can be passed there.

AUTOSAR

Support for unconnected client-server require port makes sense since the measure-
ment is specified on the type level of the Software Component and therefore inde-
pendent of the individual usage of the Software Component. In case of unconnected
client-server require ports the measurement shall return the actually provided and re-
turned values.

[SWS_Rte_03978] | For sender-receiver communication the RTE generator
shall respect measurement demands enclosed in unconnected provide ports.
|(SRS_Rte 00139, SRS _Rte 00153)

[SWS_Rte_05101] | For sender-receiver communication the RTE generator shall re-
spect measurement demands enclosed in unconnected require ports and deliver the
initial value. |(SRS_Rte 00139, SRS _Rte 00153)

[SWS_Rte_03980] | For client-server communication the RTE generator shall ignore
measurement demands enclosed in unconnected provide ports. |(SRS_Rte 00139,
SRS _Rte 00153)

[SWS_Rte_05102] | For client-server communication the RTE generator shall respect
measurement demands enclosed in unconnected require ports. The behavior shall be
similar as if the require port would be connected and the server does not respond.
|(SRS_Rte_00139, SRS_Rte_00153)

[SWS_Rte_05170] | For client-server communication the RTE generator shall ignore
measurement requests for queued client-server communication. |(SRS_Rte 00139,
SRS _Rte _00153)

In case the measurement of client-server communication is not possible due
to requirement [SWS_Rte 05170] the McSupportData need to reflect this
(see [SWS_Rte 05172]).

In principle the same thoughts as above are applied to unused VariableDataProto-
types for sender-receiver communication where ports with compatible but not same
interfaces are connected. It's no issue for client-server due to compatibility rules for
client-server interfaces since in compatible client-server interfaces all ClientServer-
Operations have to be present in provide and require port (see AUTOSAR SW-C
Template [2]).

[SWS_Rte_03979] | For sender-receiver communication the RTE generator shall re-
spect measurement demands of those vVariableDataPrototype$ in connected
ports when provide and require port interfaces are not the same (but only compat-
ible) even when a variableDataPrototype in the provide port has no assigned
VariableDataPrototype in the require port.

| (SRS_Rte_00153)

General measurement disabling switch

To support saving of ECU resources for projects where measurement isn’t required at
all whereas enclosed AUTOSAR SW-Cs contain SwDataDefProps requiring it, it shall
be possible to switch off support for measurement. This shall not influence support for
calibration (see 4.2.8.3).

AUTOSAR

[SWS_Rte_03903] [The RTE generator shall have the option to switch off support for
measurement for generated RTE code. This option shall influence complete RTE code
at once. |(SRS_Rte_00153)

There also might be projects in which monitoring of ECU internal behavior is required
but calibration is not.

[SWS_Rte_03904] [The enabling of RTE support for measurement shall be indepen-
dent of the enabling of the RTE support for calibration. | (SRS _Rte 00153)

Queued communication
Measurement of queued communication is not supported yet. Reasons are:
e A queue can be empty. What’s to measure then?

o Which of the queue entries is the one to take the data from might differ out of user
view?

e Only quite inefficient solutions possible because implementation of queues en-
tails storage of information dynamically at different memory locations. So always
additional copies are required.

[SWS_Rte_03950] | RTE generator shall reject configurations where measure-
ment for queued sender-receiver communication is configured. |(SRS_Rte 00153,
SRS _Rte _00018)

4.2.8.3 Calibration

The RTE and Basic Software Scheduler has to support the allocation of calibration
parameters and the access to them for SW using them. As seen later on for some
calibration methods the RTE and Basic Software Scheduler must contain support SW
too (see 4.2.8.3.5). But in general the RTE and Basic Software Scheduler is not re-
sponsible for the exchange of the calibration data values or the transportation of them
between the ECU and external calibration tools.

The following sections are mentioning only the RTE but this has to be understood in
the context that the support for Calibration is a functionality which affects the Basic
Software Scheduler part of the RTE as well. In case of the Basic Software Scheduler
Generation Phase (see 3.4.1) this functionality might even be provided with out any
other software component related RTE functionality.

With AUTOSAR, a calibration parameter (which the AUTOSAR SW-C template spec-
ification [2] calls ParameterSwComponent Type) is instantiated with a Parameter—
DataPrototype that aggregates a swbataDefProps with properties swCalibra-
tionAccess = readWrite and swImplPolicy = standard. This chapter applies
to this kind of ParameterswComponent Types. For other combinations of these prop-
erties, consult the section 4.2.7

AUTOSAR

4.2.8.3.1 Calibration parameters

Calibration parameters can be defined in ParameterSwComponentTypes, in AU-
TOSAR SW-Cs, NvBlockSwComponent TypeS and in Basic Software Modules.

1. ParameterSwComponent TypeS don’t have an internal behavior but contain

ParameterDataPrototypes and serve to provide calibration parameters used
commonly by several AUTOSAR SW-Cs. The use case that one or several of the
user SW-Cs are instantiated on different ECUs is supported by instantiation of
the ParameterSwComponent Type on the affected ECUs too.
Of course several AUTOSAR SW-Cs allocated on one ECU can commonly ac-
cess the calibration parameters of ParameterSwComponent Types too. Also
several instances of an AUTOSAR SW-Cs can share the same calibration pa-
rameters of a ParameterSwComponent Type.

2. Calibration parameters defined in AUTOSAR SW-Cs can only be used inside
the SW-C and are not visible to other SW-Cs. Instance individual and common
calibration parameters accessible by all instances of an AUTOSAR SW-C are
possible.

3. For NnvBlockSwComponent Types it is supported to provide calibration access
to the ParameterDataPrototype defining the romBlock. These values can
not be directly accessed by AUTOSAR SW-Cs but are used to serve as default
values for the NVRAM Block applied via InitBlockCallbackFunction.

4. Calibration parameters defined in Basic Software Modules can only be used in-
side the defining Basic Software Module and are not visible to other Basic Soft-
ware Modules. In contrast to AUTOSAR SW-Cs, Basic Software Modules can
only define instance specific calibration parameters.

[SWS_Rte_03958] | Several AUTOSAR SW-Cs (and also several instances of AU-
TOSAR SW-Cs) shall be able to share same calibration parameters defined in Param-
eterSwComponentTypesS. |(SRS_Rte 00154, SRS_Rte 00159)

[SWS_Rte_07186] | The generated RTE shall initialize the memory objects im-
plementing ParameterDataPrototypes in p-ports of ParameterSwComponent—
TypesS according the valueSpecification of the ParameterProvideComSpec
referring the ParameterDataPrototype in the p-port,

e if such ParameterProvideComSpec exists and

e if NO CalibrationParameterValue refers to the FlatInstanceDescrip-
tor associated to the ParameterDataPrototype

This is also applicable if the swImplPolicy = fixed and if the related Parameter-
DataPrototype is implemented as preprocessor define which does not immediately
allocate a memory object. |(SRS_Rte 00154, SRS_Rte _00159)

[SWS_Rte_07029] | The generated RTE shall initialize the memory objects im-
plementing ParameterDataPrototypes in p-ports of ParameterSwComponent—
Types according the ValueSpecificationintherole implInitvalue ofthe Cal-

AUTOSAR

ibrationParameterValue referring the FlatInstanceDescriptor associated
to the ParameterDataPrototype if such CalibrationParameterValue is de-
fined. |(SRS_Rte_00154)

Note: the initialization according [SWS_Rte_07029] and [SWS_Rte_07030] precedes
the initialization values defined in the context of an component type and used in
[SWS_Rte 07185] and [SWS_Rte 07186]. This enables to provide initial values for
calibration parameter instances to:

e predefine start values for the calibration process
¢ utilizes the result of the calibration process
e take calibration parameter values from previous projects

[SWS_Rte_03959] | If the SwcInternalBehavior aggregates an ParameterDat—
aPrototype inthe role perinstanceParameter the RTE shall support the access
to instance specific calibration parameters of the AUTOSAR SW-C. |(SRS_Rte 00154,
SRS_Rte _00158)

[SWS_Rte_05112] | If the SwcInternalBehavior aggregates an ParameterDat—
aPrototype in the role sharedParameter the RTE shall create a common access
to the shared calibration parameter. | (SRS_Rte 00154, SRS_Rte 00159)

[SWS_Rte_07096] | If the BswInternalBehavior aggregates an ParameterDat—
aPrototype in the role perInstanceParameter the Basic Software Scheduler
shall support the access to instance specific calibration parameters of the Basic Soft-
ware Module. | (SRS _Rte 00154, SRS _Rte 00158)

[SWS_Rte_07185] | The generated RTE and Basic Software Scheduler shall initialize
the memory objects implementing ParameterDataPrototype in the role perIn-
stanceParameter Or sharedParameter

e ifithasavalueSpecificationintherole initvalue according to this val-
ueSpecification and

e ifnoCalibrationParametervValue refertothe FlatInstanceDescriptor
associated to the ParameterDataPrototype

This is also applicable if the swImplPolicy = fixed and if the related Parameter-
DataPrototype is implemented as preprocessor define which does not immediately
allocate a memory object. |(SRS_Rte _00154)

[SWS_Rte_07030] [The generated RTE and Basic Software Scheduler shall initialize
the memory objects implementing ParameterDataPrototypes in the role perIn-
stanceParameter Or sharedParameter according the valueSpecification in
the role the implInitvalue of the CalibrationParameterValue referring the
FlatInstanceDescriptor associated to the ParameterDataPrototype if such
CalibrationParameterValue is defined. | (SRS_Rte 00154)

AUTOSAR

It might be project specific or even project phase specific which calibration parameters
have to be calibrated and which are assumed to be stable. So it shall be selectable
on ParameterSwComponentTypes and AUTOSAR SW-C granularity level for which
calibration parameters RTE shall support calibration.

If an r-port contains a ParameterDataPrototype, the following requirements spec-
ify its behavior if the port is unconnected.

[SWS_Rte_02749] | In case of an unconnected parameter r-port, the RTE shall set the
values of the ParameterDataPrototypes of the r-port according to the initvalue
of the r-port's ParameterRequireComSpec referring to the ParameterDataPro-
totype. |(SRS_Rte 00139, SRS_Rte 00159)

If the port is unconnected, RTE expects an init value, see [SWS_Rte_02750].
ParameterDataPrototypes in role romBlock

[SWS_Rte_07033] | If the swCalibrationAccess of a ParameterDataProto-
type in the role romBlock is set to readirite the RTE generator has to provide
one reference to a location in memory where the actual content of the romBlock can
be accessed. |(SRS_Rte _00154)

[SWS_Rte_07034] [The generated RTE shall initialize any ParameterDataProto-
type inthe role romBlock

e ifithas a valueSpecificationintherole initvalue according to this val-
ueSpecification and

e ifnoCalibrationParameterValue refertothe FlatInstanceDescriptor
associated to the ParameterDataPrototype

|(SRS _Rte _00154)

[SWS_Rte_07035] | The generated RTE shall initialize the memory objects imple-
menting ParameterDataPrototypes in the role romBlock according the value-
Specification inthe role the implInitvalue ofthe CalibrationParameter-—
Value referringthe Flat InstanceDescriptor associated to the ParameterDat -
aPrototypeifsuch CalibrationParameterValue is defined. | (SRS_Rte 00154)

ParameterDataPrototype used as romBlock are instantiated according to
[SWS_Rte 07693].

Configuration of calibration support

[SWS_Rte_03905] | It shall be configurable for each ParameterSwComponent Type
if RTE calibration support for the enclosed ParameterDataPrototypes is enabled
or not. | (SRS_Rte 00154, SRS_Rte_00156)

[SWS_Rte_03906] | It shall be configurable for each AUTOSAR SW-C if RTE cal-
ibration support for the enclosed ParameterDataPrototypes is enabled or not.
|(SRS_Rte_00154, SRS_Rte _00156)

AUTOSAR

RTE calibration support means the creation of SW as specified in section 4.2.8.3.5
"Data emulation with SW support".

Require ports on ParameterSwComponent TypeS don't make sense. Parameter—
SwComponent Types only have to provide calibration parameters to other Component
types. So the RTE generator shall reject configurations containing require ports at-
tached to ParameterSwComponent TypeS. (see section A.13)

4.2.8.3.1.1 Separation of calibration parameters

Sometimes it is required that one or more calibration parameters out of the mass of cal-
ibration parameters of an ParameterswComponentType respectively an AUTOSAR
SW-C shall be placed in another memory location than the other parameters of the Pa-
rameterSwComponent Type respectively the AUTOSAR SW-C. This might be due to
security reasons (separate normal operation from monitoring calibration data in mem-
ory) or the possibility to change calibration data during a diagnosis session (which the
calibration parameter located in NVRAM).

[SWS_Rte_03907] | The RTE generator shall support separation of calibration param-
eters from ParameterSwComponent Types, AUTOSAR SW-Cs and Basic Software
Modules depending on the ParameterDataPrototype property swAddrMethod.
|(SRS_Rte_00154, SRS _Rte _00158)

4.2.8.3.2 Support for offline calibration

As described in section 4.2.8.1 when using an offline calibration process measure-
ment is decoupled from providing new calibration parameters to the ECUs SW. During
measurement phase information is collected needed to define to which values the cal-
ibration parameters are to be set best. Afterwards the new calibration parameter set is
brought into the ECU e.g. by using a bootloader.

[SWS_Rte_03971] | The RTE generator shall have the option to switch off all data
emulation support for generated RTE code. This option shall influence complete RTE
code at once. |(SRS_Rte 00154, SRS _Rte 00156)

The term data emulation is related to mechanisms described in section 4.2.8.3.3.

Out of view of RTE the situation is same as when data emulation without SW support
(described in section 4.2.8.3.4) is used:

The RTE is only responsible to provide access to the calibration parameters via the
RTE API as specified in section 5.6. Exchange of ParameterDataPrototype con-
tent is done invisibly for ECU program flow and with this for RTE too.

When no data emulation support is required calibration parameter accesses to param-
eters stored in FLASH could be performed by direct memory read accesses without
any indirection for those cases when accesses are coming out of single instantiated

AUTOSAR

AUTOSAR SW-Cs or from Basic Software Modules. Nevertheless it’s not goal of this
specification to require direct accesses since this touches implementation. It might be
ECU HW dependent or even be project dependent if other accesses are more efficient
or provide other significant advantages or not.

4.2.8.3.3 Support for online calibration: Data emulation

To allow online calibration it must be possible to provide alternative calibration param-
eters invisible for application. The mechanisms behind are described here. We talk of
data emulation.

In the following several calibration methods are described:
1. Data emulation without SW support and
2. several methods of data emulation with SW-support.

The term data emulation is used because the change of calibration parameters is
emulated for the ECU SW which uses the calibration data. This change is invisible for
the user-SW in the ECU.

RTE is significantly involved when SW support is required and has to create calibration
method specific SW. Different calibration methods means different support in Basic
SW which typically is ECU integrator specific. So it does not make sense to support
DIFFERENT data emulation with SW support methods in ANY one RTE build. But
it makes sense that the RTE supports direct access (see section 4.2.8.3.4) for some
AUTOSAR SW-Cs resp. ParameterSwComponent Type$ resp. Basic Software Mod-
ules and one of the data emulation with SW support methods (see section 4.2.8.3.5)
for all the other AUTOSAR SW-Cs resp. ParameterSwComponent TypesS resp. Basic
Software Modules at the same time.

[SWS_Rte_03909] | The RTE shall support only one of the data emulation with SW
support methods at once. |(SRS_Rte 00154, SRS_Rte _00156)

4.2.8.3.4 Data emulation without SW support (direct access)

For "online calibration" (see section 4.2.8.1) the ECU is provided with additional
hardware which consists of control logic and memory to store modified calibration
parameters in. During ECU execution the brought in control logic redirects memory
accesses to new bought in memory whose content is modified by external tooling
without disturbing normal ECU program flow. Some microcontrollers contain features
supporting this. A lot of smaller microcontrollers don’t. So this methods is highly HW
dependent.

AUTOSAR

To support these cases the RTE doesn’t have to provide e.g. a reference table like
described in section 4.2.8.3.5. Exchange of ParameterDataPrototype content is
done invisibly for program flow and for RTE too.

[SWS_Rte_03942] | The RTE generator shall have the option to switch off data emu-
lation with SW support for generated RTE code. This option shall influence complete
RTE code at once. |(SRS_Rte 00154, SRS_Rte_00156)

4.2.8.3.5 Data emulation with SW support

In case "online calibration" (see section 4.2.8.1) is required, quite often data emulation
without support by special SW constructs isn’t possible. Several methods exist, all
have the consequence that additional need of ECU resources like RAM, ROM/FLASH
and runtime is required.

Data emulation with SW support is possible in different manners. During calibration
process in each of these methods modified calibration data values are kept typically in
RAM. Modification is controlled by ECU external tooling and supported by ECU internal
SW located in AUTOSAR basic SW or in complex driver.

If calibration process isn’t active the accessed calibration data is originated in
ROM/FLASH respectively in NVRAM in special circumstances (as seen later on).

Since multiple instantiation is to be supported several instances of the same
ParameterDataPrototypes have to be allocated. Because the RTE is the only
one SWin an AUTOSAR ECU able to handle the different instances the access to these
calibration parameters can only be handled by the RTE. So the RTE has to provide
additional SW constructs required for data emulation with SW support for calibration.

However the RTE doesn’t know which of the ECU functionality shall be calibrated dur-
ing a calibration session. To allow expensive RAM to be reused to calibrate different
ECU functionalities in one or several online calibration sessions (see 4.2.8.1) in case of
the single and double pointered methods for data emulation with SW support described
below the RTE has only to provide the access to ParameterDataPrototypes dur-
ing runtime but allowing other SW (a BSW module or a complex driver) to redirect the
access to alternative calibration parameter values (e.g. located in RAM) invisibly for
application.

The RTE is neither the instance to supply the alternative values for ParameterbDat-
aPrototypes nor in case of the pointered methods for data emulation with SW sup-
port to do the redirection to the alternative values.

[SWS_Rte_03910] | The RTE shall support data emulation with SW support for cali-
bration. |(SRS_Rte 00154, SRS _Rte 00156)

[SWS_Rte_03943] | The RTE shall support these data emulation methods with SW
support:

e Single pointered calibration parameter access
further called "single pointered method"

AUTOSAR

e Double pointered calibration parameter access further called "double pointered
method"

e Initialized RAM parameters further called "initRAM parameter method"
|(SRS_Rte_00154, SRS_Rte _00156)

Please note that the support data emulation methods is applicable for calibration pa-
rameters provided for software components as well as calibration parameters provided
for basic software modules.

ParameterElementGroup

To save RAM/ROM/FLASH resources in single pointered method and double point-
ered method ParameterDataPrototype allocation is done in groups. One entry
of the calibration reference table references the begin of a group of Parameter-—
DataPrototypes. For better understanding of the following, this group is called
ParameterElementGroup (which is no term out of the AUTOSAR SW-C template
specification [2]). One ParameterElementGroup can contain one or several
ParameterDataPrototypesS.

[SWS_Rte_03911] [If data emulation with SW support is enabled, the RTE gen-
erator shall allocate all ParameterDataPrototypes marked with same property
swAddrMethod of one instance of a ParameterSwComponent Type consecutively.
Together they build a separate ParameterElementGroup. |(SRS_Rte 00154,
SRS _Rte 00156, SRS Rte 00158)

[SWS_Rte_03912] [If data emulation with SW support is enabled, the RTE shall
guarantee that all non-shared ParameterDataPrototypes marked with same prop-
erty swAddrMethod of an AUTOSAR SWC instance are allocated consecutively.
Together they build a separate ParameterElementGroup. [|(SRS_Rte 00154,
SRS_Rte _00158)

[SWS_Rte_05194] [If data emulation with SW support is enabled, the RTE shall
guarantee that all shared ParameterDataPrototypes marked with same property
swAddrMethod of an AUTOSAR SWC type are allocated consecutively. Together they
build a separate ParameterElementGroup. |(SRS_Rte 00154, SRS_Rte_00158)

It is not possible to access same calibration parameter inside of a ParameterSwCom-
ponentType via several ports. This is a consequence of the need to support the
use case that a ParameterSwComponent Type shall be able to contain several cali-
bration parameters derived from one ParameterDataPrototype wWhich is contained
in one interface applied to several ports of the ParameterSwComponentType. Us-
ing only the ParameterDataPrototype names for the names of the elements of a
ParameterElementGroup would lead to a name clash since then several elements
with same name would have to created. So port prototype and ParameterDataPro-
totype name are concatenated to specify the ParameterElementGroup member
names.

AUTOSAR

This use case cannot be applied to AUTOSAR SW-C internal calibration parameters
since they cannot be accessed via AUTOSAR ports.

[SWS_Rte_03968] | The names of the elements of a ParameterElementGroup
derived from a ParameterSwComponent Type shall be <port>_<element> where
<port> is the short-name of the provided AUTOSAR port prototype and <element>
the short-name of the ParameterDataPrototype within the ParameterInter-
face categorizing the PPort. |(SRS_Rte 00154, SRS _Rte 00156)

4.2.8.3.5.1 Single pointered method

There is one calibration reference table in RAM with references to one or several
ParameterElementGroups. Accesses to calibration parameters are indirectly per-
formed via this reference table.

Action during calibration procedure e.g. calibration parameter value exchange is not
focus of this specification. Nevertheless an example is given for better understanding.

Example how the exchange of calibration parameters could be done for single point-
ered method:

1. Fill a RAM buffer with the modified calibration parameter values for complete
ParameterElementGroup

2. Modify the corresponding entry in the calibration reference table so that a redi-
rection to new ParameterElementGroup is setup

Now calibration parameter accesses deliver the modified values.

Figure 4.25 illustrates the method.

ParameterElement ParameterElementGroup

/\/l\[I I I I l<}> 7777777777
S Se—
[T &
(1] [TT T Ja e
L TTT TT1 14,;7;;,:/7;:,
r “_ Calibration
ED‘” reference
table

Figure 4.25: ParameterElementGroup in single pointered method context

[SWS_Rte_03913] | If data emulation with SW support with single pointered method
is enabled, the RTE generator shall create a table located in RAM with references

AUTOSAR

to ParameterElementGroups. The type of the table is an array of void pointers.
|(SRS_Rte_00154, SRS_Rte_00156)

One reason why in this approach the calibration reference table is realized as an array
is to make ECU internal reference allocation traceable for external tooling. Another is to
allow a Basic-SW respectively a complex driver to emulate other calibration parameters
which requires the standardization of the calibration reference table too.

[SWS_Rte_03947] | If data emulation with SW support with single method
is enabled the name (the label) of the calibration reference table shall be
<RteParameterRefTab>. |(SRS_Rte 00154, SRS_Rte 00156)

Calibration parameters located in NVRAM are handled same way (also see section
4.2.8.3.6).

[SWS_Rte_03936] | If data emulation with SW support with single or double point-
ered method is enabled and calibration parameter respectively a ParameterEle-
mentGroups IS located in NVRAM the corresponding calibration reference table
entry shall reference the PerinstanceMemory working as the NVRAM RAM buffer.
|(SRS_Rte 00154, SRS _Rte 00156, SRS _Rte 00157)

4.2.8.3.5.2 Double pointered method

There is one calibration reference table in ROM respectively Flash with references
to one or several ParameterElementGroups. Accesses to calibration parameters
are performed through a double indirection access. During system startup the base
reference is initially filled with a reference to the calibration reference table.

Action during calibration procedure e.g. calibration parameter value exchange is not
focus of this specification. Nevertheless an example is given for better understanding.

Example how the exchange of calibration parameters could be done for double point-
ered method:

1. Copy the calibration reference table into RAM

2. Fill a RAM buffer with modified calibration parameter values for complete Param-
eterElementGroup

3. Modify the corresponding entry in the RAM copy of the reference table so that a
redirection to new ParameterElementGroup is setup

4. Change the content of the base reference so that it references the calibration
reference table copy in RAM.

Now calibration parameter accesses deliver the modified values.

AUTOSAR

ParameterElement ParameterElementGroup

Base reference

L *I__LI

EE——
[TT J«
.
CTTT TTT Je
7 “_Calibration
T reference
table

Figure 4.26: ParameterElementGroup in double pointered method context

[SWS_Rte_03914] | If data emulation with SW support with double pointered method
is enabled, the RTE generator shall create a table located in ROM respectively FLASH
with references t0 ParameterElementGroups. The type of the table is an array of
void pointers. | (SRS_Rte 00154, SRS_Rte 00156)

Figure 4.26 illustrates the method.

To allow a Basic-SW respectively a complex driver to emulate other calibration param-
eters the standardization of the base reference is required.

[SWS_Rte_03948] | If data emulation with SW support with double method is enabled
the name (the label) of the calibration base reference shall be <RteParameterBase>.
This label and the base reference type shall be exported and made available to other
SW on same ECU.

|(SRS_Rte 00154, SRS _Rte 00156)

Calibration parameters located in NVRAM are handled same way (also see section
4.2.8.3.6).

For handling of calibration parameters located in NVRAM with single or double point-
ered method see [SWS_Rte_03936] in section 4.2.8.3.5.1. General information is
found in section 4.2.8.3.6).

4.2.8.3.5.3 InitRam parameter method

For each instance of a ParameterDataPrototype the RTE generator creates a cali-
bration parameter in RAM and a corresponding value in ROM/FLASH. During startup of
RTE the calibration parameter values of ROM/FLASH are copied into RAM. Accesses
to calibration parameters are performed through a direct access to RAM without any
indirection.

Action during calibration procedure e.g. calibration parameter value exchange is not
focus of this specification. Nevertheless an example is given for better understanding:

AUTOSAR

An implementation simply would have to exchange the content of the RAM cells during
runtime.

[SWS_Rte_03915] | If data emulation with SW support with initRam parameter method
is enabled, the RTE generator shall create code guaranteeing that

1. calibration parameters are allocated in ROM/Flash and
2. a copy of them is allocated in RAM made available latest during RTE startup

for those ParameterDataPrototypes for which calibration support is enabled.
|(SRS_Rte_00154, SRS_Rte_00156)

RTE access
YYvYyy
I [I | I I I |
I [[1 1 I I [1 |
L1 T T 1T T 1] = L1 [I [T |
L 1 T TITITTl] L1 [TTTPTT]
Parameter in Copied parameter in
ROM / FLASH RAM

Figure 4.27: initRam Parameter method setup

Figure 4.27 illustrates the method.

A special case is the access of ParameterDataPrototypes instantiated in NVRAM
(also see section 4.2.8.3.6). In this no extra RAM copy is required because a RAM
location containing the calibration parameter value still exists.

[SWS_Rte_03935] | If data emulation with SW support with initRam parameter method
is enabled, the RTE generator shall create direct accesses to the PerlnstanceMem-
ory working as RAM buffer for the calibration parameters defined to be in NVRAM.
|(SRS_Rte_00154, SRS_Rte _00156)

4.2.8.3.5.4 Arrangement of a ParameterElementGroup for pointered methods

For data emulation with SW support with single or double pointered methods the RTE
has to guarantee access to each single member of a ParameterElementGroup for
source code and object code delivery independent if the member is a primitive or a
composite data type. For this the creation of a record type for a ParameterElement -
Group was chosen.

[SWS_Rte_03916] | One ParameterElementGroup shall be realized as one record
type. | (SRS_Rte 00154, SRS_Rte _00156)

AUTOSAR

The sequence order of ParameterDataPrototypeinaParameterElementGroup
and the order of ParameterElementGroups in the reference table will be docu-
mented by the RTE Generator by the means of the McSwEmulationMethodSupport,
see 4.2.8.4.4.

4.2.8.3.5.5 Further definitions for pointered methods

As stated in section 4.2.8.3.1.1, dependent of the value of property swAddrMethod
calibration parameters shall be separated in different memory locations.

[SWS_Rte_03908] | If data emulation with SW support with single or double point-
ered method is enabled the RTE shall create a separate instance specific Parame-
terElementGroup for all those ParameterDataPrototypes with a common value
of the appended property swAddrMethod. Those ParameterDataPrototypes
which have no property swAddrMethod appended, shall be grouped together too.
|(SRS_Rte 00154, SRS _Rte 00156, SRS _Rte _00158)

To allow traceability for external tooling the sequence order of ParameterDataPro-
totype INn @ ParameterElementGroup and the order of ParameterElement—
Groups in the reference table will be documented by the RTE Generator by the means
of the McSwEmulationMethodSupport, see 4.2.8.4.4.

4.2.8.3.5.6 Calibration parameter access

Calibration parameters are derived from ParameterbDataPrototypes. The RTE has
to provide access to each calibration parameter via a separate API call.

APl is specified in 5.6.

[SWS_Rte_03922] | If data emulation with SW support and single or double pointered
method is enabled the RTE generator shall export the label of the calibration reference
table. | (SRS _Rte 00154, SRS _Rte 00156)

[SWS_Rte_03960] | If data emulation with SW support and double pointered method
is enabled the RTE generator shall export the label and the type of the calibration base
reference. |(SRS_Rte 00154, SRS_Rte_00156)

[SWS_Rte_03932] | If data emulation with SW support with single pointered method
is enabled the RTE generator shall create API calls using single indirect access via
the calibration reference table for those ParameterDataPrototypes which are in
a ParameterElementGroup for which calibration is enabled. |(SRS_Rte 00154,
SRS Rte 00156)

[SWS_Rte_03933] [If data emulation with SW support with double pointered method
is enabled the RTE generator shall create API calls using double indirection access
via the calibration base reference and the calibration reference table for those Param-

AUTOSAR

eterDataPrototypes wWhich are in a ParameterElementGroup for which calibra-
tion is enabled. |(SRS_Rte 00154, SRS _Rte 00156)

[SWS_Rte_03934] | If data emulation with SW support with double pointered method
is enabled, the calibration base reference shall be located in RAM. |(SRS_Rte 00154,
SRS _Rte 00156)

4.2.8.3.5.7 Calibration parameter allocation

Since only the RTE knows which instances of AUTOSAR SW-Cs, ParameterSwCom—
ponentTypes and Basic Software Modules are present on the ECU the RTE has
to allocate the calibration parameters and reserve memory for them. This approach
is also covering multiple instantiated object code integration needs. So memory for
instantiated ParameterDataPrototypes is neither provided by ParameterSwCom—
ponentTypes nor by AUTOSAR SW-C.

Nevertheless AUTOSAR SW-Cs and Basic Software Modules can define calibration
parameters which are not instantiated by RTE. These are described by Parameter-
DataPrototypes in the role constantMemory. Further on the RTE can not imple-
ment any software support for data emulation for such calibration parameters. Hence
those kind of calibration parameters are not described in the generated McSupportData
of the RTE (see 4.2.8.4).

[SWS_Rte_03961] [The RTE shall allocate the memory for calibration parameters.
|(SRS_Rte_00154, SRS _Rte _00156)

A ParameterDataPrototype can be defined to be instance specific or can be
shared over all instances of an AUTOSAR SW-C or a ParameterSwComponent—
Type. The input for the RTE generator contains the values the RTE shall apply to the
calibration parameters.

To support online and offline calibration (see section 4.2.8.1) all parameter values for
all instances have to be provided.
Background:

e For online calibration often initially the same default values for calibration param-
eters can be applied. Variation is then handled later by post link tools. Initial
ECU startup is not jeopardized. This allows the usage of a default value e.g. by
AUTOSAR SW-C or ParameterSwComponent Type supplier for all instances of
ad ParameterDataPrototype.

e On the other hand applying separate default values for the different instances of
aParameterDataPrototype Will be required often for online calibration too, to
make a vehicle run initially. This requires additional configuration work e.g. for
integrator.

AUTOSAR

e Offline calibration based on new SW build including new RTE build and com-
pilation process requires all calibration parameter values for all instances to be
available for RTE.

Shared ParameterDataPrototypes

[SWS_Rte_03962] | For accesses to a shared ParameterDataPrototype the RTE
API shall deliver the same one value independent of the instance the calibration pa-
rameter is assigned to. | (SRS_Rte 00154, SRS_Rte 00156)

[SWS_Rte_03963] | The calibration parameter of a shared ParameterDat-
aPrototype shall be stored in one memory location only. |(SRS_Rte 00154,
SRS_Rte _00156)

Requirements [SWS_Rte 03962] and [SWS_Rte_03963] are to guarantee that only
one physical location in memory has to be modified for a change of a shared Param-
eterDataPrototype. Otherwise this could lead to unforeseeable confusion.
Multiple locations are possible for calibration parameters stored in NVRAM. But there
a shared parameterDataPrototype is allowed to have only one logical data too.

Instance specific ParameterDataPrototypes

[SWS_Rte_03964] | For accesses to an instance specific ParameterDataProto-—
type the RTE API shall deliver a separate calibration parameter value for each in-
stance of a ParameterDataPrototype. |(SRS_Rte 00154, SRS_Rte 00156)

[SWS_Rte_03965] | For an instance specific ParameterDataPrototype the cali-
bration parameter value of each instance of the ParameterDataPrototype shall be
stored in a separate memory location. |(SRS_Rte 00154, SRS _Rte 00156)

Usage of swAddrMethod

SwhataDefProps contain the optional property swAddrMethod. It contains meta
information about the memory section in which a measurement data store resp. a
calibration parameter shall be allocated in. This abstraction is needed to support the
reuse of unmodified AUTOSAR SW-Cs resp. ParameterSwComponentTypeS in
different projects but allowing allocation of measurement data stores resp. calibration
parameters in different sections.

Section usage typically depends on availability of HW resources. In one project the
micro controller might have less internal RAM than in another project, requiring that
most measurement data have to be placed in external RAM. In another project one
addressing method (e.g. indexed addressing) might be more efficient for most of the
measurement data - but not for all. Or some calibration parameters are accessed
less often than others and could be - depending on project specific FLASH availability
- placed in FLASH with slower access speed, others in FLASH with higher access
speed.

AUTOSAR

[SWS_Rte_03981] | The memory section used to store measurement values in shall
be the memory sections associated with the swAddrMethod enclosed in the Sw-
DataDefProps of a measurement definition. | (SRS_Rte 00153)

Since it's measurement data obviously this must be in RAM.

[SWS_Rte_03982] [The memory section used to store calibration parameters in shall
be the memory sections associated with the swAddrMethod enclosed in the Sw-
DataDefProps of a calibration parameter definition. |(SRS_Rte_00153)

4.2.8.3.6 Calibration parameters in NVRAM

Calibration parameters can be located in NVRAM too. One use case for this is to have
the possibility to modify calibration parameters via a diagnosis service without need for
special calibration tool.

To allow NVRAM calibration parameters to be accessed, NVRAM with statically allo-
cated RAM buffer in form of PIM memory for the calibration parameters has to be de-
fined or the ramBlock of a NvBlockSwComponent Type defines readWrite access
for the MCD system. Please see as well [SWS_Rte 07174] and [SWS_Rte_07160].

Note:

As the NVRAM Manager might not be able to access the PerInstanceMemory
across core boundaries in a multi core environment, the support of Calibration pa-
rameters in NVRAM for multi core controllers is limited. See also note in 4.2.9.1.

4.2.8.3.7 Multiple calibration parameters instances

In complex systems the situation occur that calibration parameter values may depend
on the configuration of the vehicle due to functional side effects. The difficulty is that
those dependencies are typically detected after design of the software components and
shall not change the software component design. In addition the overall ECU SW has
to support all vehicle variants and therefore the detection and selection of the concrete
vehicle variant needs to be done post build.

[SWS_Rte_06815] | The RTE Generator shall provide one separate memory location
per FlatInstanceDescriptor pointing to the identical ParameterDataProto-
type instance in the root software composition. |(SRS_Rte 00154, SRS_Rte _00191)

Thereby the FlatInstanceDescriptor needs to have different postBuildvari-
antConditions as described in [constr_3114]. As a consequence at most one lo-
cation in memory location created according [SWS_Rte 06815] can be active in a
specific post build variant. This value needs to be accessed by the according RTE
APIs Rte_CData and Rte_Prm accessing parameters.

AUTOSAR

[SWS_Rte_06816] | For accesses to a ParameterDataPrototype the RTE API
shall deliver the value of the memory location which belongs to the currently selected
post build variant. | (SRS_Rte 00154, SRS_Rte 00156, SRS_Rte_00191)

In order to ensure the functionality of Rte_CbData and Rte_Prm depending on post
build variability it needs to be ensured, that exactly one FlatInstanceDescriptor
is selected in a specific post build variant when the RTE generator creates an RTE Post
Build Data Set, see section 3.6.

The binding of the post build variability is done at the call of SchM_1Init according the
passed post build data set as described in sections section 4.7.2 and section 5.3.10

Please note that the requirements [SWS_Rte 07029] and [SWS_Rte 07030] also
apply in this scenario and therefore the different memory locations due to multiple
FlatInstanceDescriptors can get different initial values.

The following example shall illustrate the usage of post build variant FlatIn-
stanceDescriptors in combination with multiple instantiation. The raw ARXML is
listed in the section F.5.

In the given configuration a ParameterSwComponent Type 'PSWC’ is defined with on
PPortPrototype 'EP’ typed by the Parameterinterface 'Ep’. The root software com-
position defines two SwComponentPrototypes 'SWC_PA’ and 'SWC_PB’.

The ApplicationSwComponentType 'ASWC’ defines RPortPrototype 'EP’, a
perInstanceParameter PIP’ and a sharedParameter 'SP’ The root software
composition defines two SwComponentPrototypes 'SWC_A’ and ’SWC_B’ and there-
fore two component instances for the component type ASWC exist. PPortPrototype
'EP’ of 'sSwC_PA’is connected to RPortPrototype 'EP’ 0f 'SWC_A’, PPortPrototype
'EP’ of 'sSWC_PB’ is connected to RPortPrototype 'EP’ of 'SWC_B’. (not shown in the
figure 4.28)

SwComponentPrototype SwComponentPrototype SwC P SwC

SWC_PA SWC_PB SWC_A SWC_B
Parame:sr;gc\t;\rlng;\,enﬁype REEl ;‘ASWC” vee
e A\ E Pll perInstanceParameter " PI P"
sharedParameter " S P"
t RPolrt “EP”
param:tEerI;n’t’erface Rte_Cdata_ PIP(Rte Instance)

Rte Cdata SP(Rte Instance)
ParameterDataPrototype -_— —_ —

“Prm1” Rte_Prm EP_Prml (Rte Instance)

Figure 4.28: Example of component model

When the feature of multiple FlatInstanceDescriptorS per ParameterDat-—
aPrototype is NOT applied the following locations in memory and access by Rte
APIs would result:

AUTOSAR

memory locations

SWC_A PIP <—|
Rte Cdata PIP(Rte Instance)
" _ _ _

SWC_B_PIP

|Depends on instance handle

WC A SWC B SP [K
S S B S _l—Rte_Cdata_SP(Rte_Instance)

SWC_PA EP_Prm1 [<—

Rte_Prm EP_Prml (Rte_ Instance)

SWC_PB_EP_Prm1 K—

|Depends on instance handle|

Figure 4.29: Resulting memory location of component model

Please note that the resulting names of the memory locations are not standardized but
the applied pattern shall illustrate to which information in the input model they belong
to. Assuming now following configuration in the Flat Map:

'SWC_A_PIP_z0 {depends on PostBuildVariantCriterion 'z’= 0}
'SwWC_A_PIP_z1’ {depends on PostBuildVariantCriterion’z’ =1}
'SWC_B_PIP’

"SWC_A_SWC_B_SP_z0’ {depends on PostBuildVariantCriterion 'z’= 0}
'SWC_A_SWC_B_SP_z1' {depends on PostBuildVariantCriterion 'Z’'= 1}
'SWC_PA_EP_Prml_2z0’ {depends on PostBuildVariantCriterion 'z’= 0}
'SWC_PA_EP_Prml_2z1" {depends on PostBuildVariantCriterion 'z’= 1}
'SWC_PB_EP_Prml’

memory locations

SWC_A_PIP_Z0 <] _——| Depends on post build variant |

SWC_A PIP_z1 < Rte_Cdata_ PIP(Rte Instance)

|Depends on instance handle|

SWC_B PIP <

SWC A SWC B SP 70 <—|
Rte Cdata SP(Rte Instance)
< _ _ _

SWC_A_SWC_B_SP_z1

<
SWC_PA_EP_Prm1_20 /—| Depends on post build variant |

SWC_PA EP Prm1_Z1 [< Rte_Prm EP Prml (Rte Instance)

|Depends on instance handle|

SWC_PB_EP_Prm1 K

Figure 4.30: Resulting memory location of component model

AUTOSAR

There are different possibility to implement this mechanism. Nevertheless there are
cross dependencies to the requirements concerning '‘Data emulation with SW support’
in section 4.2.8.3.5.

One possibility is to create an array of parameter values which contains one array el-
ement for each different Post Build Variant. The used index for this parameter value
array in the relate RTE API is determined by the chosen variant in the post build con-
figuration of the RTE and indexes the active array element. With this approach its
easier to combine multiple calibration data instances with the 'Data emulation with SW
support’ feature since the number of ParameterElementGroups are not changed.

An other approach is to create one base pointer per identical combination of post -
BuildVariantConditions applied to calibration parameters. The related calibra-
tion parameters are grouped into a structure and for each combination of postBuild-
VariantConditions one instance of the structure is created. The base pointer is
initialized according chosen variant in the post build configuration of RTE and points to
the active structure instance.

4.2.8.4 Generation of McSupportData

The RTE Generator supports the definition, allocation and access to measurement
and calibration data for Software Components as well as for Basic Software. The
specific support of measurement and calibration tools however is neither in the focus
of the RTE Generator nor AUTOSAR. This would require the generation of an "A2L"-
file (like specified in [20]) which is the standard in this domain — but out of the focus of
AUTOSAR.

The RTE Generator however shall support an intermediate exchange format called
McSupportData which is building the bridge between the ECU software and the fi-
nal "A2L"-file needed by the measurement and calibration tools. The details about
the McSupportData format and the involved methodology are described in the Basic
Software Module Description Template document [9].

In this section the requirements on the RTE Generator are collected which elements
shall be provided in the McSupportData element.

4.2.8.4.1 Export of the McSupportData

Figure 4.31 shows the structure of the McSupportData element. The McSupport-
Data element and its sub-content is part of the Tmplementation element. In case
of the RTE this is the BswImplementation element which is generated / updated by
the RTE Generator in the Generation Phase (see [SWS_Rte_05086] in chapter 3.4.2).

[SWS_Rte_05118] | The RTE Generator in Generation Phase shall create the McSup-
portData element as part of the BswImplementation description of the generated
RTE. | (SRS_Rte_00189)

AUTOSAR

+ecucValue

ARElement «atpVariation» ARElement
EcucModuleConfigurationValues T EcucValueCollection
o 0.1
+moduleDescription
Bswimplementation
«atpVariation» Tags:
vh.latestBindingTime +ecuExtract\|/1
syssemDesignTime -
Sl ARElement
RN AtpStructureElement
ARElement ARElement el System
Implementation SwSystemconstantValueSet Teel N
+measurableSystemConstantValues, 0..* S~ .
«atpVariation,atpSplitable»
«atpSplitable» +rootSoftwareComposition | 0..1
+mcSupport | 0.1 AtpPrototype
Identifiable
McSupportData RootSwCompositionPrototype

«atpSplitable»

+flatMap\|/0.-1

«atpVariation» Tags:
vh.latestBindingTime
| preCompileTime

«atpVariation,atpSplitable» ARElement
AtpBlueprint

. AtpBlueprintable
a Var};tion '\ === ---<---._|zz=:=4 «atpVariation» Tags: FlatMap
« » \ . . .
P \ «atpVariation,atpSplitable» vh.latestBindingTime 5
' postBuild AT
\ RS
' +mcParameterinsiance TmcVariablelnstance «atpVariation,atpSplitable»
+emulationSupport | 0..* ' | 0..* | 0..* +instance| 1..*
McSwEmulationMethodSupport Y ldentifiable Identifiable
Y McDatalnstance FlatinstanceDescriptor
+ category :ldentifier v
+ shortLabel :ldentifier “ + arraySize :Positivelnteger [0..1] HlatMapEntry [, 51e :Identifier [0..1]
+ displayldentifier :Mcdldentifier [0..1] et
+ role :ldentifier[0..1] "
+ symbol :SymbolString [0..1]

+subElement
«atpVariation» 0..* {ordered}

+resultingProperties| o 1

«atpVariation»
SwbDataDefProps

Figure 4.31: Overview of the McSupportData element

The individual measurable and calibratable data is described using the element Mc-
DataInstance. This is aggregated from McSupportData in the role mcvariable-
Instance (for measurement) or mcParameterInstance (for calibration).

Usage of the FlatMap

The FlatMap is part of the Ecu Extract of System Description and contains a collection
of FlatInstanceDescriptor elements. The details of the FlatMap are described
in the Specification of the System Template [8].

In particular the FlatMap may be request several parameter instances for the identical
ParameterDataPrototype as described in section 4.2.8.3.7.

Common attributes of McDatalnstance

AUTOSAR

The element McDataInstance specifies one element of the McSupportData. The
following requirement specify common attributes which shall to be filled in a harmo-
nized way.

[SWS_Rte_05130] | The RTE Generator shall use the shortName of the
FlatInstanceDescriptor as the shortName of the McDatalInstance.
|(SRS_Rte_00189)

[SWS_Rte_03998] | The RTE Generator shall use the AliasNameAssign-—
ment .shortLabel referencing the according FlatInstanceDescriptor as the
displayIdentifier ofthe McDataInstance. |(SRS_Rte _00189)

[SWS_Rte_05131] | If the input element (e.g. ApplicationDataType Of Im-—
plementationDataType) has a category specified the category value shall be
copied to the McDataInstance element. | (SRS _Rte 00189)

[SWS_Rte_05132] | If the input element (e.g. ApplicationDataType Of Imple—
mentationDataType) specifies an array, the attribute arraysSize of McbataIn-
stance shall be set to the size of the array. |(SRS_Rte_00189)

[SWS_Rte_05133] | If the input element (e.g. ApplicationDataType Of Im-—
plementationDataType) specifies a record, the McDataInstance shall ag-
gregate the record element’s parts as subElements of type McDataInstance.
|(SRS_Rte_00189)

[SWS_Rte_05119] | The McSupportData element and its sub-structure shall be self-
contained in the sense that there is no need to deliver the whole upstream descriptions
of the ECU (including the ECU Extract, Software Component descriptions, Basic Soft-
ware Module descriptions, ECU Configuration Values descriptions, Flat Map, etc.) in
order to later generate the final "A2L"-file. This means that the RTE Generator has
to copy the required information from the upstream descriptions into the McSupport -
Data element. |(SRS_Rte _00189)

[SWS_Rte_05129] | The RTE Generator in Generation Phase shall export the effec-
tive swhbatabefProps (including all of the referenced and aggregated sub-elements
like e.g. CompuMethod or SwRecordLayout) in the role resultingProperties
for each MchataInstance after resolving the precedence rules defined in the SW-
Component Template [2] chapter Properties of Data Definitions. Thereby the Im-
plementationDataType properties compuMethod and dataConstraint are not
taken in consideration for effective swbataDefProps of the McDataInstance due to
their refinement nature of C and Al. | (SRS _Rte 00189)

[SWS_Rte_05135] | If a ParameterDataPrototype is associated with a Param-
eterAccess the corresponding swbataDefProps and their sub-structure shall be
exported. |(SRS_Rte _00189)

For each flatMapEntry referencing to measurable or calibratible data prototype or
measureable ModeDeclarationGroupPrototype the McDataInstance shall be
generated in the McsupportData. Thereby the effected swbataDefProps shall be
taken from the data prototype according the precedence rules defined in the SWCT.

AUTOSAR

[SWS_Rte_08313] | The RTE Generator shall create McDataInstance element(s)
in the McSupportData for each measurable or calibratible DataPrototype / Mod-

eDeclarationGroupPrototype referenced by a FlatInstanceDescriptor.
|(SRS_Rte_00189)

Explanation: In case of connected ports it may occur that the DataPrototype in the
Datalnterface of the PPortPrototype and the DataPrototype in the Datalnterface
of the RPortPrototype are referenced by FlatInstanceDescriptors. In this
case its intended to get two McDataInstance in order to access the value by MCD
system with two different names and may be with two different scaling (typically offset
and resolution).

In case of composite data FlatInstanceDescriptors may point to one or several
ApplicationCompositeElementDataPrototypes in order to define a individual
name for each record or array element. Thereby it is even possible that a F1atIn-
stanceDescriptor exists for the "whole" DataPrototype typed by an Appli-
cationCompositeDataType and additional FlatInstanceDescriptors exist for
the ApplicationCompositeElementDataPrototypes of such bataPrototype.

In this case a McDataInstance as child of McSupportData exists due to
the FlatInstanceDescriptors for the "whole" DataPrototype and addi-
tional McDatalInstances as child of McSupportData exists for each FlatIn-
stanceDescriptor pointing to a ApplicationCompositeElementDataProto—
types in the "whole" bataPrototypes type.

[SWS_Rte_08314] | If the input element is typed by an ApplicationDataType the
subElements structure of the McDataInstance is determined by the Applica-
tionDataType. This means

e in case of ApplicationRecordDataType the number and shortName
of the subElement is determined by the ApplicationRecordElement if
[SWS_Rte 05133] and [SWS_Rte_08316] is applied,

e in case of ApplicationArrayDataType the number of the subElements is
determined by the ApplicationArrayElement if [SWS_Rte 08315] is ap-
plied,

e in case of a ApplicationPrimitiveDataType, inclusive compound primi-
tives, no subElements are applicable.

|(SRS_Rte_00189)

[SWS_Rte_08315] | If the input element (e.g. ApplicationDataType Of Imple-—
mentationDataType) specifies an array, the McDataInstance shall aggregate
subElementss for each array element. The MchataInstance.subElements.sym-
bol shall express the array index in the C-notation. (e.g. [0], [4]). |(SRS_Rte_00189)

[SWS_Rte_08316] | If the input element (e.g. ApplicationDataType Of Imple-—
mentationDataType) specifies arecordand no FlatInstanceDescriptor is de-
fined for the record element, the McbatalInstance.subElement shortName shall be
set copied either from the related ApplicationRecordElement. Or from the Tm-

AUTOSAR

plementationDataTypeElement if N0 ApplicationDataType istypingthe Dat-
aPrototype. The McDatalInstance.subElement.symbol is set to the related Im-
plementationDataTypeElement.shortName |(SRS_Rte 00189)

General handling of the symbol attribute: The concatenation of all symbol strings start-
ing from the root element over the hierarchy of McDataInstances shall represent
the full combined symbol in the programming language for all hierarchy levels in the
McDataInstance tree. When the concatenation is applied the subElements of Mc—
DatalInstances of category STRUCTURE are separated by a dot.

[SWS_Rte_08317] | The RTE Generator shall document the Rte internal grouping
of measurement and calibration data in composite data datatypes in each symbol at-
tribute of the McDataInstances representing the data which is grouped.

This means the RTE Generator has to document the insertion of structures for Rte in-
ternal purpose in the symbol attribute of the related McDataInstance. Forinstance if
the Rte groups a set of measurable inside a Rte internal structure (here called Rtelnter-
nalBuffer) the McDataInstance.symbol of the first measurable child element carries
the information about the internal structure element. e.g. McDataInstance.short-
Name: "MyMeasurable" McDataInstance.symbol: "RtelnternalBuffer.measurable1”
|(SRS_Rte_00189)

4.2.8.4.2 Export of Measurement information

Sender-Receiver communication

[SWS_Rte_05120] | If the swCalibrationAccess ofavariableDataPrototype
used in an interface of a sender-receiver port of a SwComponentPrototype is set
to readOnly or readWrite and RteMeasurementSupport is set to true the RTE
Generator shall create a McDataInstance element with

e symbol set to the C-symbol name used for the allocation (see also
[SWS_Rte_03900])

e flatMapEntry referencing to the corresponding Flat InstanceDescriptor
element of the variableDataPrototype

|(SRS_Rte_00153, SRS _Rte _00189)
Client-Server communication

[SWS_Rte_05121] | If the swCalibrationAccess oOf an ArgumentDataProto-
type used in an interface of a client-server port of a SwComponentPrototype is set
to readOnly and RteMeasurement Support is set to frue the RTE Generator shall
create a McDataInstance element with

e symbol set to the C-symbol name used for the allocation (see also
[SWS_Rte_03901])

AUTOSAR

e flatMapEntry referencing to the corresponding Flat InstanceDescriptor
element of the ArgumentDataPrototype

|(SRS_Rte_00153, SRS _Rte_00189)

[SWS_Rte_05172] [If the measurement of client-server communication is ignored due
to requirement [SWS_Rte 05170] the corresponding McbhataInstance in the Mc-

SupportData shall have a resultingProperties swCalibrationAccess set
to notAccessible. |(SRS_Rte _00153)

Mode Switch Communication

[SWS_Rte_06702] | If the swCalibrationAccess of a ModeDeclarationGroup—
Prototype used in an interface of a mode switch port of a SwComponentPro-
totype is set t0 readOnly and RteMeasurementSupport is set to true the RTE
Generator shall create three McDataInstance elements with

e symbol set to the C-symbol name used for the allocation (see also
[SWS_Rte_06700])

e flatMapEntry referencing to the corresponding Flat InstanceDescriptor
element of the ModeDeclarationGroupPrototype

Thereby the McDataInstance element corresponding to the

e current mode has to reference the Flat InstanceDescriptor wWhich role at-
tribute is set to CURRENT_MODE,

e previous mode has to reference the FlatInstanceDescriptor which role
attribute is set to PREVIOUS_MODE and

e next mode has to reference the FlatInstanceDescriptor which role at-
tribute is set to NEXT_MODE

|(SRS_Rte 00153, SRS _Rte 00189)

Please note that the resultingProperties ofthe McDataInstance elements cor-
responding to the ModeDeclarationGroupPrototype may get associated with a
CompuMethod if a CompuMethod is defined at the FlatInstanceDescriptor due
to [SWS_Rte_05129]. Those compuMethod may specify a literal display of the mea-
sured modes.

InterRunnableVariable

[SWS_Rte_05122] [If the swCalibrationAccess ofavariableDataPrototype
in the role implicitInterRunnableVariable Or explicitInterRunnable-—
Variable is sett0 readOnly Or readWrite and RteMeasurement Support is set
to true the RTE Generator shall create a McDataInstance element with

e symbol set to the C-symbol name used for the allocation (see also
[SWS_Rte_03902])

AUTOSAR

e flatMapEntry referencing to the corresponding Flat InstanceDescriptor
element of the variableDataPrototype

|(SRS_Rte 00153, SRS _Rte _00189)
PerinstanceMemory

[SWS_Rte_05123] | If the swCalibrationAccess of a VariableDataProto-—
type in the role arTypedPerInstanceMemory iS set 10 readOnly Or readWrite
and RteMeasurement Support is set to frue the RTE Generator shall create a Mc—
DataInstance element with

e symbol set to the C-symbol name used for the allocation (see also
[SWS_Rte_07160])

e flatMapEntry referencing to the corresponding Flat InstanceDescriptor
element of the variableDataPrototype

|(SRS_Rte 00153, SRS _Rte _00189)
Nv RAM Block

[SWS_Rte_05124] [If the swCalibrationAccess ofavariableDataPrototype
in the role ramBlock of a NvBlockSwComponent Type’s NvBlockDescriptor is
set 10 readOnly or readWrite and RteMeasurementSupport is set to true the
RTE Generator shall create a MchataInstance element with

e symbol set to the C-symbol name used for the allocation (see also
[SWS_Rte 07174])

e flatMapEntry referencing to the corresponding Flat InstanceDescriptor
element of the NvBlockSwComponent Type

|(SRS_Rte 00153, SRS _Rte _00189)
Non Volatile Data communication

[SWS_Rte_05125] | If the swCalibrationAccess ofavariableDataPrototype
used in an NvDatalInterface oOf a non volatile data port of a SwComponentProto-
type is set t0 readOnly Or readWrite and RteMeasurementSupport IS set to
true the RTE Generator shall create a McDataInstance element with

e symbol set to the C-symbol name used for the allocation (see also
[SWS_Rte_07197])

e flatMapEntry referencing to the corresponding Flat InstanceDescriptor
element of the variableDataPrototype

|(SRS_Rte_00153, SRS_Rte_00189)

AUTOSAR

4.2.8.4.3 Export Calibration information

Calibration can be either actively supported by the RTE using the pre-defined cali-
bration mechanisms of section 4.2.8.3.5 or calibration can be transparent to the RTE.
In both cases the location and attributes of the calibratable data has to be provided
by the RTE Generator in the Generation Phase in order to support the setup of the
measurement and calibration tools.

ParameterDataPrototypes of ParameterSwComponentType

[SWS_Rte_05126] | For each FlatInstanceDescriptor referencing a Parame-—
terDataPrototypeinstanceinaPortPrototype ofaParameterSwComponent—
Type With the swCalibrationAccess setto readOnly Or readWrite an entry in
the McSupportData with the role mcParameterInstance shall be created with the
following attributes:

e symbol set to the C-symbol name used for the allocation

e flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ParameterDataPrototype

|(SRS_Rte_00189)
Shared ParameterDataPrototypes

[SWS_Rte_05127] | For each FlatInstanceDescriptor referencing a Parame—
terDataPrototype instance of a AtomicSwComponentType’s SwcInternalBe—
havior aggregated in the role sharedParameter withthe swCalibrationAccess
setto readOnly or readWrite an entry in the McSupportData with the role mcPa-
rameterInstance shall be created with the following attributes:

e symbol set to the C-symbol name used for the allocation

e flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ParameterDataPrototype

|(SRS_Rte_00189)
Instance specific ParameterDataPrototypes

[SWS_Rte_05128] | For each FlatInstanceDescriptor referencing a Param-
eterDataPrototype instance of a AtomicSwComponentType’s SwcInternal-—
Behavior aggregated in the role perInstanceParameter with the swCalibra-
tionAccess setto readOnly or readWirite an entry in the McSupportData with
the role mcParameterInstance shall be created with the following attributes:

e symbol set to the C-symbol name used for the allocation

e flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ParameterDataPrototype

|(SRS_Rte_00189)

AUTOSAR

[SWS_Rte_07097] | For each ParameterDataPrototype of a BswMod-
uleDescription’s BswInternalBehavior aggregated in the role perInstan-
ceParameter Withthe swCalibrationAccess setto readOnly or readWrite an
entry in the McSupportData with the role mcParameterInstance shall be created
with the following attributes:

e symbol set to the C-symbol name used for the allocation

e flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ParameterDataPrototype

|(SRS_Rte_00189)
Default values for RAM Block

[SWS_Rte_05136] | If the swCalibrationAccess of a ParameterDataProto-
type inthe role romBlock is setto readOnly or readWrite an entry in the McSup-
portData with the role mcParameterInstance shall be created with the following
attributes:

e symbol setto the C-symbol name used for the allocation in [SWS_Rte_07033]

e flatMapEntry referencing to the corresponding Flat InstanceDescriptor
element of the ParameterDataPrototype

|(SRS _Rte 00153, SRS _Rte 00189)

4.2.8.4.4 Export of the Calibration Method

The RTE does provide several Software Emulation Methods which can be selected in
the Ecu Configuration of the RTE (see section 7.3).

Which Software Emulation Method has been used for a particular RTE Generation shall
be documented in the McSupportData in order to allow measurement and calibration
tools to support the RTE’s Software Emulation Methods. Additionally it is also possible
for an RTE Vendor to add custom Software Emulation Methods which needs to be
documented as well. The structure of the McSwEmulationMethodSupport is shown
in figure 4.32.

AUTOSAR

InternalBehavior

AtpStructureElement

«atpVariation,atpSplitable»

'

«atpVariation,atpSplitable»

«atpVariation» Tags. [~~~)
vh.latestBindingTime
preCompileTime

'

+staticMemory | 0..*

AutosarDataPrototype
VariableDataPrototype

+baseReference

ARElement

Implementation

«atpSplitable»

+mcSupport | 0..1

McSupportData

«atpVari ation»

+emulationSupport | 0..*

McSwEmulationMethodSupport

+ category :ldentifier
+ shortLabel :ldentifier

0.1

+referenceTable

0.1

+ramLocation

+e|ementGroupT0..*

1

'

0.*

AutosarDataPrototype
ParameterDataPrototype

+romLocation

+constantMemory

McParameterElementGroup

+ shortLabel :ldentifier

1

«atpVariation» Tags:
vh.latestBindingTime
preCompileTime

Providesthe possible
names for the category.
This could include vendor
specific methods.

RteCalibrationSupport :

EcucEnumerationParamDef

defaultvalue = NONE

Figure 4.32: Structure of the McSwEmulationMethodSupport element

[SWS_Rte_05137] [The RTE Generator in Generation Phase shall create the Mc—
SwEmulationMethodSupport element as part of the McSupportData description
of the generated RTE. | (SRS_Rte_00189)

[SWS_Rte_05138] [The RTE Generator in Generation Phase shall set the value of the
category attribute of McSwEmulationMethodSupport element according to the
implemented Software Emulation Method based on the Ecu configuration parameter
RteCalibrationSupport:

e NONE

|(SRS_Rte_00189)

SINGLE_POINTERED
DOUBLE_POINTERED

INITIALIZED_RAM

custom category name: vendor specific Software Emulation Method

The description of the generated structures is using the existing mechanisms already

available in the Basic Software Module Description Template [9].

AUTOSAR

Description of ParameterElementGroup

For the description of the ParameterElementGroup an Implementation-
DataType representing a structure of the group is created ([SWS_Rte 05139]).

[SWS_Rte_05139] | For each generated ParameterElementGroup an Implemen—
tationDataType shall be created. The contained ParameterDataPrototypes
are aggregated with the role subElement as ImplementationDataTypeElement.
|(SRS_Rte_00189)

In the example figure 4.33 the ImplementationDataTypes are called RteMcSup-
portGroupTypel and RteMcSupportGroupType?2.

McSupport description of the InitRam parameter method

For the description of the InitRam parameter method the specific ParameterEle-
mentGroups allocated in ram and rom are specified ([SWS_Rte 05140] and
[SWS_Rte 05141]). Then the collection and correspondence of these groups is spec-
ified (in [SWS_Rte_05142]).

[SWS_Rte_05140] | If the RTE Generator is configured to support the
(INITIALIZED_RAM) method the RTE Generator in generation phase shall gener-
ate for each ParameterElementGroup @ ParameterDataPrototype with the role
constantMemory in the InternalBehavior of the RTE’s Basic Software Module
Description. The ParameterDataPrototype shall have a reference to the corre-
sponding ImplementationDataType from [SWS_Rte 05139] with the role type.
|(SRS_Rte_00189)

[SWS_Rte_05141] | If the RTE Generator is configured to support the
(INITIALIZED_RAM) method the RTE Generator in generation phase shall gener-
ate for each ParameterElementGroup a VariableDataPrototype with the role
staticMemory in the InternalBehavior of the RTE’s Basic Software Module
Description. The variableDataPrototype shall have a reference to the corre-
sponding ImplementationDataType from [SWS_Rte 05139] with the role type.
|(SRS_Rte_00189)

[SWS_Rte_05142] | If the RTE Generator is configured to support the
(INITIALIZED_RAM) method the RTE Generator in generation phase shall gener-
ate for each ParameterElementGroup a McParameterElementGroup with the
role elementGroup in the McSwEmulationMethodSupport [SWS_Rte 05137] el-
ement.

e The McParameterElementGroup shall have a reference to the corresponding
ParameterDataPrototype from [SWS_Rte 05140] with the role romLoca-
tion.

e The McParameterElementGroup shall have a reference to the correspond-
ing VariableDataPrototype from [SWS_Rte 05141] with the role ramLo-
cation.

|(SRS_Rte_00189)

AUTOSAR

McSupport description of the Single pointered method

For the description of the Single pointered method the specific ParameterElement -
Groups allocated in rom are specified ([SWS_Rte_05143]). Then an array data type
is specified which contains as many number of elements (void pointers) as there are
ParameterElementGroups ([SWS_Rte 05144]). Then the instance of this array is
specified in ram ([SWS_Rte_05152]) and referenced from the McSwEmulationMeth-
odsupport ([SWS_Rte_05153]). The actual values for each array element are speci-
fied as references to the ParameterElementGroup prototypes ([SWS_Rte 05154]).

[SWS_Rte_05143] | If the RTE Generator is configured to support the
(SINGLE_POINTERED) method the RTE Generator in generation phase shall gener-
ate for each ParameterElementGroup a ParameterDataPrototype with the role
constantMemory in the InternalBehavior of the RTE’s Basic Software Module
Description. The parameterDataPrototype shall have a reference to the corre-
sponding ImplementationDataType from [SWS_Rte 05139] with the role type.
|(SRS_Rte_00189)

[SWS_Rte_05144] | If the RTE Generator is configured to support the
(SINGLE_POINTERED) method the RTE Generator in generation phase shall gener-
ate an ImplementationDataType With one ImplementationDataTypeElement
in the role subElement.

e The ImplementationDataTypeElement shall have the attribute arraysize
set to the number of ParameterElementGroups from [SWS_Rte_05139].

e The ImplementationDataTypeElement shall have a swbataDefProps el-
ement with a reference to an ImplementationDataType representing a void
pointer, in the role implementationDataType.

|(SRS_Rte_00189)

[SWS_Rte_05152] | If the RTE Generator is configured to support the
(SINGLE_POINTERED) method the RTE Generator in generation phase shall gen-
erate a VariableDataPrototype with the role staticMemory in the Inter-
nalBehavior of the RTE’s Basic Software Module Description. The vari-
ableDataPrototype shall have a reference to the ImplementationDataType
from [SWS_Rte_05144] with the role type. |(SRS_Rte _00189)

[SWS_Rte_05153] | If the RTE Generator is configured to support the
(SINGLE_POINTERED) method the RTE Generator in generation phase shall generate
a reference from the McSwEmulationMethodSupport [SWS_Rte 05137] element
to the variableDataPrototype [SWS_Rte 05152] in the role referenceTable.
| (SRS_Rte_00189)

[SWS_Rte_05154] | If the RTE Generator is configured to support the
(SINGLE_POINTERED) method the RTE Generator in generation phase shall generate
an ArrayValueSpecification as the initvalue of the array [SWS_Rte 05152]
and for each ParameterElementGroup a ReferenceValueSpecification el-

AUTOSAR

ement in the ArrayValueSpecification defining the references to the individual
ParameterElementGroup prototypes [SWS_Rte_05143]. |(SRS_Rte _00189)

McSupport description of the Double pointered method

The description of the Double pointered method is quite similar to the Single point-
ered method, but the allocation to ram and rom is different and it allocates the addi-
tional pointer parameter. The specific ParameterElementGroups allocated in rom
are specified ([SWS_Rte _05155]). Then an array data type is specified which con-
tains as many number of elements (void pointers) as there are ParameterEle-
mentGroups ([SWS_Rte 05156]). Then the instance of this array is specified in
rom ([SWS_Rte 05157]) and referenced from the McSwEmulationMethodSupport
([SWS_Rte 05158]). The actual values for each array element are specified as refer-
ences to the ParameterElementGroup prototypes ([SWS_Rte 05159]). Then the
type of the base pointer is then created ([SWS_Rte 05160]) and an instance is al-
located in ram ([SWS_Rte _05161]). The reference is initialized to the array in rom
([SWS_Rte 05162]).

[SWS_Rte_05155] [If the RTE Generator is configured to support the (DOU-
BLE_POINTERED) method the RTE Generator in generation phase shall generate
for each ParameterElementGroup a ParameterDataPrototype with the role
constantMemory in the InternalBehavior of the RTE’s Basic Software Module
Description. The parameterDataPrototype shall have a reference to the corre-
sponding ImplementationDataType from [SWS_Rte 05139] with the role type.
|(SRS_Rte_00189)

In the example figure 4.33 the ParameterDataPrototypes are called RteMcSup-
portParamGroupl and RteMcSupportParamGroupl.

[SWS_Rte_05156] [If the RTE Generator is configured to support the (DOU-
BLE_POINTERED) method the RTE Generator in generation phase shall generate an
ImplementationDataType With one ImplementationDataTypeElement in the
role subElement.

e The ITmplementationDataTypeElement shall be of category ARRAY with the
attribute arraysize set to the number of ParameterElementGroups from
[SWS_Rte_05139].

e The ImplementationDataTypeElement shall have a swhataDefProps el-
ement with a reference to an TmplementationDataType representing a void
pointer, in the role implementationDataType.

|(SRS_Rte_00189)

In the example figure 4.33 the ImplementationDataType is called RteMcSup-
portPointerTableType.

[SWS_Rte_05157] | If the RTE Generator is configured to support the (DOU-
BLE_POINTERED) method the RTE Generator in generation phase shall gener-
ate a ParameterDataPrototype with the role constantMemory in the Inter-
nalBehavior of the RTE’s Basic Software Module Description. The Parame-

AUTOSAR

terDataPrototype shall have a reference to the ImplementationDataType
from [SWS_Rte_05156] with the role type. |(SRS_Rte _00189)

In the example figure 4.33 the ParameterDataPrototype is called RteMcSup-—
portPointerTable.

[SWS_Rte_05158] | If the RTE Generator is configured to support the (DOU-
BLE_POINTERED) method the RTE Generator in generation phase shall generate a
reference from the McSwEmulationMethodSupport [SWS_Rte 05137] element to
the ParameterDataPrototype [SWS_Rte _05157] in the role referenceTable.
|(SRS_Rte_00189)

[SWS_Rte_05159] | If the RTE Generator is configured to support the (DOU-
BLE_POINTERED) method the RTE Generator in generation phase shall generate an
ArrayValueSpecification asthe initvalue of the array [SWS_Rte 05157] and
for each ParameterElementGroup @ ReferenceValueSpecification element
inthe ArrayvalueSpecification defining the references to the individual Param-
eterElementGroup prototypes [SWS_Rte_05155]. |(SRS_Rte_00189)

In the example figure 4.33 the ArrayValueSpecification is called RteMc-
SupportPointerTablelInit. The ReferenceValueSpecifications are called
RteMcSupportParamGrouplRef and RteMcSupportParamGroup2Ref.

[SWS_Rte_05160] | If the RTE Generator is configured to support the (DOU-
BLE_POINTERED) method the RTE Generator in generation phase shall generate an
ImplementationDataType With one ITmplementationDataTypeElement being
a reference to the array type from [SWS_Rte_05156]. | (SRS_Rte 00189)

In the example figure 4.33 the ImplementationDataType is called RteMcSup-
portBasePointerType.

[SWS_Rte_05161] | If the RTE Generator is configured to support the (DOU-
BLE_POINTERED) method the RTE Generator in generation phase shall generate a
VariableDataPrototype withtherole staticMemoryinthe InternalBehavior
of the RTE’s Basic Software Module Description. The variableDataPrototype
shall have a reference to the ImplementationDataType from [SWS Rte 05160]
with the role type. |(SRS_Rte _00189)

In the example figure 4.33 the VariableDataPrototype is called RteMcSupport -
BasePointer.

[SWS_Rte_05162] [If the RTE Generator is configured to support the (DOU-
BLE_POINTERED) method the RTE Generator in generation phase shall generate
a ReferenceValueSpecification to the array from [SWS_Rte 05157] as the
initValue of the reference [SWS_Rte_05161]. |(SRS_Rte_00189)

In the example figure 4.33 the ReferencevalueSpecification is called RteMc-
SupportBasePointerInit.

AUTOSAR

BswinternalBehavior

RtelnternalBehavior :

+staticMemory

RteMcSupportBasePointer :

+type | RteMcSupportBasePointerType :

VariableDataPrototype

+initvValue

RteMcSupportBasePointerlnit :

ReferenceValueSpecification

+referenceValue

+constantMemory

RteMcSupportPointerTable :
ParameterDataPrototype

ImplementationDataType

+stataDefProps?

«atpVariation»
RteMcSupportBaseTypePointerDDP :

SwDataDefProps

+swPointerTargetProps?

RteMcSupportBaseTypePointerTargetP :
SwPointerT argetProps

+s~DataDefProps?

«atpVariation»
RteMcSupportBaseTypePointerTargetDDP :
SwbDataDefProps

+implementationDataType

+type | RteMcSupportPointerTableType :

+initvalue

RteMcSupportPointerTablelnit :

ArrayValueSpecification

ImplementationDataType

+subEIement?

RteMcSupportPointerTableElement :
ImplementationDataTypeElement

arraySize = 2

+element

RteMcSupportParamGroupl1Ref :

ReferenceValueSpecification

+referenceValue

+constantMemory

RteMcSupportParamGroupl :
ParameterDataPrototype

+constantMemory| RteMcSupportParamGroup?2 :

+element

RteMcSupportParamGroup2Ref :
ReferenceValueSpecification

+referenceValue

+type

RteMcSupportGroupTypel :
ImplementationDataType

ParameterDataPrototype

+type

RteMcSupportGroupType2 :
ImplementationDataType

+subElement MngIParamlll :
ImplementationDataTypeElement

+subElement MyCalParam22 :

ImplementationDataTypeElement

+subElement

MyCalParam13 :
ImplementationDataTypeElement

Figure 4.33: Example of the structure for Double Pointered Method

AUTOSAR

4.2.8.4.5 Export of Variant Handling

The Rte Generator shall provide information on values of system constants. The values
are part of the input information and need to be collected and copied into a dedicated
artifact to be delivered with the McSupportData.

[SWS_Rte_05168] | The Rte Generator in generation phase shall create an elements
of type SswSystemconstantValueSet and create copies of all system constant val-
ues found in the input information of type SwSystemconstvalue where the refer-
enced SwSystemconst element has the swCalibrationAccess setto readOnly.
|(SRS_Rte_00153, SRS_Rte _00191)

In case the swSystemconstValue is subject to variability and the variability can be
resolved during Rte generation phase

[SWS_Rte_05176] | If a swSystemconst with swCalibrationAccess set to
readOnly has an assigned sSwSystemconstValue which is subject to variabil-
ity with the latest binding time SystembDesignTime Or CodeGenerationTime
the related SwSystemconstValue copy in the SwSystemconstantValueSet ac-
cording to [SWS_Rte_05168] shall contain the resolved value. |(SRS_Rte 00153,
SRS _Rte 00191)

[SWS_Rte_05174] | If a swSystemconst with swCalibrationAccess set to
readOnly has an assigned SwSystemconstValue wWhich is subject to variability with
the latest binding time PreCompileTime the related SwSystemconstvalue copy
in the swSystemconstantValueSet according to [SWS_Rte 05168] shall have an
AttributeValueVariationPoint. The PreBuild conditions of the Attribute-
ValueVariationPoint shall correspond to the PreBuild conditions of the input
SwSystemconstValue’s conditions. |(SRS_Rte 00153, SRS_Rte_00191)

[SWS_Rte_05169] [The Rte Generator in generation phase shall create a reference
from the McSupportData element ([SWS_Rte 05118]) to the SwSystemconstant-
ValueSet element ((SWS_Rte_05168]). |(SRS_Rte 00153, SRS_Rte 00191)

In case the RTE Generator implements variability on a element which is accessible by
a MCD system the related existence condition has to be documented in the McSup-
portData structure as well.

[SWS_Rte_05175] [If an element in the McSupportData is related to an element
in the input configuration which is subject to variability with the latest binding time
PreCompileTime or PostBuild the RTE Generator shall add a variationPoint for
such element. The PreBuild and PostBuild conditions of the variationPoint shall
correspond to the PreBuild and PostBuild conditions of the input element’s conditions.
|(SRS_Rte_00153, SRS_Rte _00191)

AUTOSAR

4.2.9 Access to NVRAM data
4.2.9.1 General

There are different methods available for AUTOSAR SW-Cs to access data stored in
NVRAM.

e “Calibration data” — Calibrations can be stored in NVRAM, but are not modified
during a "normal" execution of the ECU. Calibrations are usually directly read from
their memory location, but can also be read from a RAM buffer when the access
time needs to be optimized (e.g. for interpolation tables). They are described in
section 4.2.8.

e “Access to NVRAM blocks” — This method uses PerInstanceMemory as a
RAM Block for the NVRAM blocks. While this method is efficient, its use is
restricted.

The NVRAM Manager [21] is a BSW module which provides services for SW-C
to access NVRAM Blocks during runtime. The NVM block data is not accessed
directly, but through a RAM Block, which can be a PerInstanceMemory in-
stantiated by the RTE, or a SW-C internal buffer. When this method is used, the
RTE does not provide any data consistency mechanisms (i.e. different runnables
from the SW-C and the NVM can access the RAM Block concurrently without
being protected by the RTE).

Note:

This mechanism permits efficient usage of NVRAM data, but requires the SW-C
designer to take care that accesses to the PerInstanceMemory from different
task contexts don’t cause data inconsistencies. The “Access to NVRAM blocks”
should not be used in multi core environments. In AUTOSAR release 4.0, it can
not be expected that the NVRAM Manager can access the perInstanceMem-
ory of another core. The presence of a shared memory section is not required by
AUTOSAR. Only in the case of arTypedPerInstanceMemory, a SwhDataDef-
Props item is available to assign the PerInstanceMemory to a shared memory
section.

e “Access to NVRAM data with a NvBlockSwComponent Type — The data is ac-
cessed through a NvDataInterface connected to a NvBlockSwComponent —
Types. This access is modeled at the VFB level, and, when necessary, protected
by the RTE against concurrent accesses. It will be described further in this sec-
tion.

Please note that the terms NVRAM Block, NV Block, RAM Block, ROM Block and
RAM mirror used in this document are defined in the specification of the NVRAM
Manager [21].

AUTOSAR

4.2.9.2 Usage of the NvBlockSwComponentType

The code of NvBlock swComponentPrototypes is implemented by the RTE Gener-
ator. NvBlockSwComponent Types provide a port interface for the access and man-
agement of data stored in NVRAM.

SW-C SW-C SW-C
~ AVIAIA O

NvBlockDescriptor || NvBlockDescriptor C

NvBlockComponentType
RTE /

NvM WriteBlock Rte SetMirror

NvM ReadBlock | 4 Rte GetMirror

Rte NvMNotifyJobFinished
Rte NvMNotifyInitBlock

NVM

Figure 4.34: Connection to the NvBlockSwComponent Type

Figure 4.34 illustrates the usage of a NvBlockSwComponentType. Depending on
the use-case SW-Cs can be connected to a NvBlockSwComponent Type in different
ways. For example by S/R communication only or by S/R and C/S communication. S/R
communication is used to provide access to NV data and C/S communication is used
for the management of NV data. Managing NV data by SW-Cs is useful in order to copy
data of the RAM Block to NV block and vice versa at certain points in time (SW-Cs
are clients). Additionally SW-Cs can get notifications from NVM (SW-Cs are servers).

In the following sections the requirements for the usage of NvBlockSwComponent -
Type will be given.

[SWS_Rte_07301] | Several AUTOSAR SW-Cs (and also several instances of a AU-
TOSAR SW-C) shall be able to read the same variableDataPrototypes of a
NvBlockSwComponentType. |(SRS_Rte 00176)

AUTOSAR

AtomicSwComponentType
NvBlockSwComponentType

«atpVariation» Tags:
vh.latestBindingTime
_----"7 preCompileTime

«atpVariation,atpSplitable»

+nvBlockDescriptor | 0..*

AtpStructureElement

Identifiable
NvBIlockDescriptor
+ supportDirtyFlag :Boolean [0..1]
+ramBlock|1 +romBlock|0..1 +timingEvent\|/0..1
AutosarDataPrototype AutosarDataPrototype RTEEvent

VariableDataPrototype

ParameterDataPrototype

TimingEvent

+initvValue | 0..1

+initvalue | 0..1

ValueSpecification

+ shortLabel :ldentifier[0..1]

[N

+nvBlockNeeds

+ period :TimeValue

ServiceNeeds
NvBlockNeeds

«enumeration»
NvBlockNeedsReliabilityEnum

calcRamBlockCrc :Boolean [0..1]

checkStaticBlockld :Boolean [0..1]

cyclicWritingPeriod :TimeValue [0..1]

nDataSets :Positivelnteger [0..1]

nRomBlocks :Positivelnteger [0..1]
ramBlockStatusControl :RamBlockStatusControlEnum [0..1]
readonly :Boolean [0..1]

reliability :NvBlockNeedsReliabilityEnum [0..1]
resistantToChangedSw :Boolean [0..1]

restoreAtStart :Boolean [0..1]

storeAtShutdown :Boolean [0..1]

storeCyclic :Boolean [0..1]

storeEmergency :Boolean [0..1]

storelmmediate :Boolean [0..1]
useAutoValidationAtShutDown :Boolean [0..1]
useCRCCompMechanism :Boolean [0..1]
writeOnlyOnce :Boolean [0..1]

writeVerification :Boolean [0..1]

writingFrequency :Positivelnteger [0..1]

writingPriority :NvBlockNeedsWritingPriorityEnum [0..1]

B A T A T A I

noProtection
errorDetection
errorCorrection

«enumeration»
RamBlockStatusControlEnum

api
nvRamManager

«enumeration»

NvBlockNeedsWritingPriorityEnum

low
medium
high

Figure 4.35: NvBlockSwComponentType and NvBlockDescriptor

A NvBlockSwComponentType contains multiple NvBlockDescriptors. Each of
these NvBlockDescriptor is associated to exactly one NVRAM Block.

AUTOSAR

A NvBlockDescriptor contains a VariableDataPrototype Which acts as a RAM
Block for the NVRAM Block, and optionally a ParameterDataPrototype to act as
the default ROM value for the NVRAM Block.

[SWS_Rte_07353] | The RTE Generator shall reject configurations where a
NvBlockDescriptor of a NvBlockSwComponentType contains a romBlock
whose data type is not compatible with the type of the ramBlock. |(SRS_Rte_00177,
SRS_Rte _00018)

[SWS_Rte_07303] | The RTE shall allocate memory for the ramBlock Variable-
DataPrototype of the NvBlockDescriptor instances. |(SRS_Rte 00177)

[SWS_Rte_07632] [The variables allocated for the ramB1locks shall be initialized if
the general initialization conditions in [SWS_Rte_07046] are fulfilled. The initialization
as to be applied during Rte_Start and Rte_RestartPartition depending from
the configured RteInitializationStrategy. |(SRS_Rte _00177)

Note: When blocks are configured to be read by NvM_Readal1, the initialization may
erase the value read by the NVM. These blocks should not have an initvalue.

[SWS_Rte_07355] | For each NvBlockDescriptor with a romBlock Parame-—
terDataPrototype, the RTE shall allocate a constant block of default values.
|(SRS_Rte_00177)

[SWS_Rte_07633] [The constants allocated for the romB1ocks shall be initialized to
the value of the initvalue, if they have an initvalue. |(SRS_Rte _00177)

AUTOSAR

ARElement
AtpType

AutosarDataType

+type 1

{redefines atpType}
«isOfType»

AtomicSwComponentType
NvBlockSwComponentType

Datalnterface
NvDatalnterface

DataPrototype
AutosarDataPrototype

AtpBlueprint
AtpBlueprintable
ImplementationDataType

+nvBlockDescriptor

0.*

«atpVariation» Tags:
vh.latestBindingTime
preCompileTime

+nvData |1..*

AtpStructureElement
Identifiable

NvBlockDescriptor

«atpVariation» Tags:
vh.latestBindingTime

preCompileTime

«atpVariation»

+subElement | 0..* {ordered}

VariableDataPrototype

+ramBlock

1

«atpVariation»

«atpVariation» Tags:
vh.latestBindingTime
preCompileTime

, -

, «atpVariation»

0.*

+instantiationDataDefProps

ldentifiable
ImplementationDataTypeElement

0.1

+rootVariableDataPrototype
{subsets atpContextElement}

+rootVariableDataPrototype

+targetDataPrototype
+contextDataPrototype
0..*
{ordered}

AtpinstanceRef

ArVariableInimplementationDatalnstance Ref

VariableInAtomicSWCTypelnstanceRef

+autosarVariable 0.1

0.1

+autosarVariableInimplDatatype

InstantiationDataDefProps

+variablelnstance

AutosarVariableRef

0.1

+nvBlockDataMapping

NvBlockDataMapping

+writtenReadNvData

0.1

+writtenNvData

0.1
+readNvData

0.1

+nvRamBlockElement

gt
gt
>
gt

1

Figure 4.36: NvBlockDataMapping

For each element stored in the NVRAM Block of a NvBlockDescriptor, there
should be one NvBlockDataMapping to associate the variableDataPrototypes
of the ports used for read and write access and the variableDataPrototype defin-
ing the location of the element in the ramBlock. Thereby the Implementation-
DataTypes of the VvariableDataPrototypes have to compatible.

AUTOSAR

[SWS_Rte_03866] | The RTE Generator shall reject any configuration that violates
[constr_1395], [constr_1403] and [constr_1404]. |(SRS_Rte_00018)

[SWS_Rte_07621] | The RTE Generator shall reject configurations where [con-
str_2013] or [constr_1285] is violated. |(SRS_Rte _00018)

Note: This is required to ensure that the default values in romBlock are structurally
matching data in the ramB1lock and therefore can be copied to the ramBlock in case
that the callback Rte_NvMNotifyInitBlock of the related NvBlock is called.

[SWS_Rte_07343] | The RTE Generator shall reject configurations where a vari-
ableDataPrototype instance in the role ramBlock is accessed by SW-C instances
of different partitions. | (SRS_Rte 00177, SRS_Rte _00018)

The rational for [SWS_Rte_07343] is to allow the implementation of cleanup activities
in case of termination or restart of a partition. These cleanup activities may require to
invalidate the RAM Block or reload data from the NVRAM device, which would impact
other partitions if a the ramB1ock is accessed by SW-Cs of different partitions.

ANvBlockSwComponentType can be used to reduce the quantity of NVRAM Blocks
needed on an ECU:

¢ the same block can be used to store different flags or other small data elements;

e the same data element can be used by different SW-Cs or different instances of
a SW-C.

It also permits to simplify processes and algorithms when it must be guaranteed that
two SW-Cs of an ECU use the same NVRAM data.

Note: this feature can increase the RAM usage of the ECU because it forces the
NVRAM Manager to instantiate an additional RAM buffer, called RAM mirror. How-
ever, when the same data elements have to be shared between SW-Cs, it reduces the
number of RAM Blocks needed to be instantiated by the RTE, and can reduce the
overall RAM usage of the ECU.

[SWS_Rte_07356] | The RTE Generator shall reject configurations where a vari-
ableDataPrototype referenced by a NvDataInterface has a queued swIm-—
plPolicy. |(SRS_Rte_00018)

[SWS_Rte_07357] | The RTE Generator shall reject configurations where a DataRe—
ceivedEvent is referenced by a WwaitPoint and references a VvariableDataPro-
totype referenced by a NvDatalInterface. |(SRS_Rte_00018)

[constr 9011] NvMBlockDescriptor related to a RAM Block of a NvBlock-
SwComponent Type shall use NvmBlockUseSyncMechanism [The NVRAM Block
associated to the NvBlockDescriptors of a NvBlockSwComponentType shall
be configured with the NvMBlockUseSyncMechanism feature enabled, and
the NvMWriteRamBlockToNvCallback and NvMReadRamBlockFromNvCallback
parameters set to the Rte_GetMirror and Rte_SetMirror API of the NvBlock-
Descriptor. |()

AUTOSAR

An NvBlockSwComponentType may have unconnected p-ports or r-ports (see
[SWS_Rte_01329]).

[SWS_Rte_07669] | An NvBlockSwComponentType with an unconnected r-port
shall behave as if no updated data were received for VariableDataPrototype$s
this unconnected r-port. |(SRS_Rte _00139)

4.2.9.3 Interface of the NvBlockSwComponentType
4.2.9.3.1 Access to the NVRAM data

The NvBlockSwComponentType provides PPortPrototypeS and RPortProto-
types with an NvDataInterface data Sender-Receiver semantic to read the value
of the NVRAM data or write the new value.

Like the SenderReceiverInterfaces, each ofthese NvDataInterfaces can pro-
vide access to multiple variableDataPrototypes.

The same Rte_Read, Rte_IRead, Rte_DRead, Rte_Write, Rte_IWrite,
Rte_IWriteRef APIs are used to access these variableDataPrototypes as for
SenderReceiverInterfaces.

Due to the usage of the implicit APIs Rte_TRead and Rte_TIWriteRef multiple
buffering can be avoided, i.e. the RunnableEntitys of application SW-Cs or Ex-
ecutableEntitys of BSW modules (e.g. DCM) can directly access the variable—
DataPrototypes onthe RAM Block. To guarantee this behavior one of the following
preconditions must apply:

e VariableDataPrototypeS On a RAM Block are only accessed by
dataReadAccess

e VariableDataPrototypeS On aRAM Block are accessed by dataReadAc-
cess and dataWriteAccess and there is no mutual preemption between the
write accesses or between the write and read accesses

e No PortInterfaceMappings are applied which requiring data conversions
See also chapter 4.3.1.5.1 about ConsistencyNeeds.

[SWS_Rte_07667] | The RTE Generator shall reject configurations where an r-port
typed with an NvDataInterface is not connected and no NvRequireComSpec with
a initValue are provided for each variableDataPrototype of this NvDataIn-
terface. This requirement does not apply if the r-port belongs to a NvBlockSwCom—
ponentType. |(SRS_Rte 00018, SRS _Rte _00139)

[SWS_Rte 07667] is required to avoid unconnected r-port without a defined init-
Value. Please note that for NvBlockSwComponent unconnected r-ports without init
values are not a fault because the init values are defined in the NvBlockDescriptors
ramBlock (see as well [SWS_Rte_07632], [SWS_Rte 07669])

AUTOSAR

[SWS_Rte_07668] | The RTE shall initialize the variableDataPrototypes of anr-
port according to the initvalue of the r-port’s NvRequireComSpec referring to the
VariableDataPrototype. |(SRS_Rte 00139, SRS Rte 00108, SRS _Rte 00068)

In order to write updated NV data of NVRAM Blocks to NV memory with a certain
timing schema the RTE provides a functionality called "dirty flag mechanism". This
mechanism interacts directly with the NvM module when write APIs of the RTE are
invoked by an At omicSwComponent Type USing a PortPrototype typed by an Nv-
DataInterface. The behavior of the dirty flag mechanism depends on the writing
strategy of the related NvBlockDescriptors.

[SWS_Rte_08080] | If an AtomicSwComponentType USINg @ PortPrototype
with an NvDatalInterface invokes the explicit APl Rte_Write and the at-
tributes NvBlockDescriptor.dirtyFlagSupport and NvBlockNeeds.storeAt—
Shutdown are set to true, the RTE shall mark the associated RAM Block(s) as
CHANGED by calling the NvM_SetRamBlockStatus function of the NvM module
with the BlockChanged parameter set to true. The NvM_SetRamBlockStatus
function shall be called in the context of an NvBlockDescriptor’s RunnableEn—
tity (see requirements [SWS_Rte 08086], [SWS_Rte 08087], [SWS_Rte 08088],
[SWS_Rte_08089], [SWS_Rte_08090]) after the data accessed by the Rte_Write
function is written back to the RaM Block(s). |(SRS_Rte 00177, SRS_Rte _00245)

[SWS_Rte_08081] [If an AtomicSwComponent Type USing @ PortPrototype With
an NvDatalInterface invokes the implicit APIs Rte_IWrite / Rte_IWriteRef
and the attributes NvBlockDescriptor.dirtyFlagSupport and NvBlock-
Needs.storeAtShutdown are set to true, the RTE shall mark the associated
RAM Block(s) as CHANGED by calling the NvM_SetRamBlockStatus function of
the NvM module with the BlockChanged parameter set to true. The function
NvM_SetRamBlockStatus shall be called in the context of an NvBlockDescrip—
tor’s RunnableEntity (see requirements [SWS_Rte 08086], [SWS_Rte 08087],
[SWS_Rte_08088], [SWS_Rte 08089], [SWS_Rte 08090]) after the data accessed
by the Rte_IWrite / Rte_IWriteRef functions is written back from the preemp-
tion area buffer to the RAM Block(s) (for further details see chapter 4.3.1.5.1).
|(SRS_Rte 00177, SRS_Rte_00245)

[SWS_Rte_08082] | If an AtomicSwComponentType USINg a PortPrototype
with an NvDataInterface invokes the explicit APl Rte_Write and the at-
tributes NvBlockDescriptor.dirtyFlagSupport and NvBlockNeeds.store-
Cyclic are set to true, the RTE shall write the associated RAM Block(s) to
NV memory by calling the NvM_wWriteBlock function of the NvM module in the
next cycle of a periodic activity after the data accessed by the Rte_write func-
tion is written back to the RAM Block(s). The periodic activity shall be imple-
mented in the context of an NvBlockDescriptor’s RunnableEntity (see require-
ments [SWS_Rte_08086], [SWS_Rte_08087], [SWS_Rte_08088], [SWS_Rte_08089],
[SWS_Rte_08090]) according to the cycle period defined in the attribute NvBlockDe-
scriptor.timingEvent.period. |(SRS_Rte 00177, SRS_Rte 00245)

AUTOSAR

[SWS_Rte_08083] | If an AtomicSwComponent Type USing @ PortPrototype With
an NvDatalInterface invokes the implicit APls Rte_IWrite / Rte_IWriteRef
and the attributes NvBlockDescriptor.dirtyFlagSupport and NvBlock-
Needs.storeCyclic are set to true, the RTE shall write the associated rRAM
Block(s) to NV memory by calling the NvM_writeBlock function of the NvM mod-
ule in the cycle of a periodic activity after the data accessed by the Rte_TuWrite /
Rte_IWriteRef functions is written back from the preemption area buffer to the rRaM
Block(s) (for further details see chapter 4.3.1.5.1). The periodic activity shall be imple-
mented in the context of an NvBlockDescriptor’s RunnableEntity (See require-
ments [SWS_Rte_08086], [SWS_Rte _08087], [SWS_Rte 08088], [SWS_Rte_08089],
[SWS_Rte_08090]) according to the cycle period defined in the attribute NvBlockDe-
scriptor.timingEvent.period. |(SRS_Rte_ 00177, SRS_Rte_00245)

[SWS_Rte_08084] [If an AtomicSwComponentType USINg a PortPrototype
with an NvDataInterface invokes the explicit APl Rte_Write and the at-
tributes NvBlockDescriptor.dirtyFlagSupport and NvBlockNeeds.storeIm-
mediate are set to true, the RTE shall write the associated RAM Block(s) to
NV memory by calling the NvM_WriteBlock function of the NvM module. The
NvM_WriteBlock function shall be called in the context of an NvBlockDescrip—
tor’s RunnableEntity (see requirements [SWS_Rte 08086], [SWS_Rte 08087],
[SWS_Rte_08088], [SWS_Rte 08089], [SWS_Rte 08090]) after the data accessed
by the Rte_write function is written back to the RAM Block(s). |(SRS_Rte 00177,
SRS_Rte _00245)

[SWS_Rte_08085] [If an AtomicSwComponent Type USing a PortPrototype with
an NvDatalInterface invokes the implicit APls Rte_IWrite / Rte_IWriteRef
and the attributes NvBlockDescriptor.dirtyFlagSupport and NvBlock-—
Needs.storeImmediate are set to true, the RTE shall write the associated
RAM Block(s) to NV memory by calling the NvM_WriteBlock function of the
NvM module. The function NvM_writeBlock shall be called in the context of
an NvBlockDescriptor’s RunnableEntity (see requirements [SWS_Rte 08086],
[SWS_Rte 08087], [SWS_Rte 08088], [SWS_Rte 08089], [SWS_Rte 08090]) after
the data accessed by the Rte_IWrite / Rte_IWriteRef functions is written back
from the preemption area buffer to the RaM Block(s) (for further details see chapter
4.3.1.5.1). |(SRS_Rte_00177, SRS_Rte_00245)

Note: Notifications received from the NVM module (e.g. NvMNotifyJobFinished)
will not be forwarded to the SW-Cs by the dirty flag mechanism. The standardized
NvM Client-Server interfaces can be used (see chapter 4.2.9.3.2) if a SW-C needs to
be informed regarding the NvM job result.

4.2.9.3.2 NVM interfaces

The NvBlockSwComponent Type can also have ports used for NV data management
and typed by Client-Server interfaces derived from the NVRAM Manager [21] stan-
dardized ones. Note that these ports shall always have a PortInterface with the

AUTOSAR

attribute i sservice setto FALSE. The definition of blueprints for these interfaces can
be found in document MOD_GeneralBlueprints [22] in the ARPackage AUTOSAR/N-
vBlockSoftwareComponentType/ClientServerinterfaces_Blueprint.

The standardized NvM Client-Server interfaces are composed as follows:
e NvMService

This interface is used to send commands to the NVM. The NvBlockSwCompo-
nentType provides a server port intended to be used by the SW-C users of this
NvBlockSwComponentType.

e NvMNotifyJobFinished

This interface is used by the NVM to notify the end of job. The NvBlockSwCom-
ponentType provides a server port intended to be used by the NVM, and client
ports intended to be connected to the SW-C users of this NvBlockSwCompo—
nentType.

e NvMNotifyInitBlock

This interface is used by the NVM to request users to provide the default values
in the RAM Block. The NvBlockSwComponentType provides a server port
intended to be used by the NVM, and client ports intended to be connected to the
SW-C users of this NvBlockSwComponent Type.

e NvMAdmin

This interface is used to order some administrative operations to the NVM. The
NvBlockSwComponent Type provides a server port intended to be used by the
SW-C users of this NvBlockSwComponent Type.

For the implementation of NvBlockSwComponent Types that have NvM service ports
the RTE has to call the APl of NvM. In order to access NvM API the NvM. h file has to
be included.

[SWS_Rte_08063] | The RTE shall include the NvM. h file, if it has to access NvM API.
|(SRS_Rte_00177)

Note: no restrictions have been added to the NVM interfaces. However, some op-
erations of the NVM might require cooperation between the different users of the
NvBlockSwComponentType. For example, a ReadBlock operation will overwrite the
RAM Block, which might affect multiple SW-Cs.

AUTOSAR

AtpBlueprintable

ARElement| +component +port
AtpBlueprint @ — - AtpPrototype
AtpBlueprintable «atpVanatlop,atpSpI|tab|e» 0.* P D
Appe ! +portPrototype
SwConponentType
«atpVariation» Tags: 1
vh.latestBindingTime N +oort
preCompileTime K P
;!
AtomicSwComponentType Relation of PortPrototype to
Portinterface is documented
elsewhere.
\
¢ Z} :
.
:
NvBlockSwComponentType :
ARElement
AtpBlueprint
AtpBlueprintable
AtpType
Portinterface
«atpVariation» Tags: + isService :Boolean
vh.latestBindingTime = _ _ + serviceKind :ServiceProviderEnum [0..1]
preCompileTime T ZF
.
e «atpVariation,atpSplitable»
7 +nvBlockDescriptor | 0..* ClientServerinterface
P
’ AtpStructureElement
«atpVariation,atpSplitable» ldentifiable
NvBlockDescriptor
- «atpVariation» Tags:
+ supportDirtyFlag :Boolean [0..1] «atpVariation» =~~~ " vh.latestBindingTime
+operation| 1.* blueprintDerivationTim
e
«atpVariation» Tags: alpeutcll reEI_?_meInt
vh.latestBindingTime =~~~ 2 Jhvariations» dentifiable
preCompileTime ClientServerOperation
+clientServerPort|0..*
+operation A
q 1
RoleBasedPortAssignment <<insIanlceRef»
+ role :ldentifier |
+internalBehavior | 0..1 OperationinvokedEvent
InternalBehavior AtpStructureElement
SwecintemalBehavior ExecutableEntity
RunnableEntity
+runnable [1.* 0.1 +startOnEvent
AbstractEvent
«atpVariation,atpSplitable» AtpStructureElement
. +event
I RTEEvent
«atpVariation,atpSplitable» *
\ ;
\ '
\ 1
v .]
\ . +pOMAPIOption RortaRlOption
o S
«atpVariation,atpSplitable» 0.*
Voo
I

Vo
v

«atpVariation» Tags:
vh.latestBindingTime
preCompileTime

0..*

+portArgValue | {ordered}

PortDefinedArgumentValue

Figure 4.37: SwcInternalBehavior of NvBlockSwComponent TypeS

|

AUTOSAR

ARElement +port AtpBlueprintable
AtpBlueprint — - AtpPrototype
AtpBlueprintable «atpVariation,atpSplitable» g * PortPrototype
AtpType .
SwComponentType '
'
. 1 +portPrototype Zﬁ Zﬁ
'
'
b :
'
! AbstractProvidedPortPrototype AbstractRequiredPortPrototype
AtomicSwComponentType !
'
'
ll
'
'
'
'
ll
'
NvBlockSwComponentType .
' PPortPrototype PRPortPrototype RPortPrototype
‘
'
'
«atpVariation» Tags: «isOfType»
«atpVariation,atpSplitable»- - - - =~] vh.latestBindingTime))
preCompileTime «isOfType» § «isOfType»
+nvBlockDescriptor | 0..* E
@ -~ £ -~ -~
AtpStructureElement 2) K) 3 2
Identifiable < > £ > £ 2
) —D € =3 = =y 2 =3
NvBlockDescriptor E © 2 © £ ©
«atpVariation» Tags: 2 9 5 @ 2 2
+ supportDirtyFlag :Boolean [0..1] vh.latestBindingTime 5 3 £ S £ = £
_--"] preCompileTime I s H 2 3 3
? I s 8 2 8 ¥ 3
- — &= ¥ — &= - =
«atpVariatiE)n» AREIemeyt
. AtpBlueprint
+clientServerPort|0..* AtpBlueprintable
AtpType

RoleBasedPortAssignment
Portinterface

+ role :ldentifier - .
+ isService :Boolean

+ serviceKind :ServiceProviderEnum [0..1]

ClientServerinterface

«atpVariation»

+operation|1..*

AtpStructureElement
Identifiable

ClientServerOperation

Figure 4.38: NVM notifications

The requests received from the SW-C side are forwarded by the NvBlockSwCompo-
nentType’s runnables to the NVM module, using the NVM C API indicated by the
RoleBasedPortAssignment. See figure 4.37.

Notifications received from the NVM are forwarded to all the SW-C connected to the
notification interfaces of the NvBlockSwComponent Type witha RoleBasedPortAs—
signment of the corresponding type. See figure 4.38.

AUTOSAR

[SWS_Rte_07398] | The RTE Generator shall implement runnables for each con-
nected server port of a NvBlockSwComponentType. |(SRS_Rte _00177)

[SWS_Rte_07399] | The NvBlockSwComponentType’s runnables used as servers
connected to the SW-C shall forward the request to the NVM by calling the associated
NVM API. | (SRS_Rte _00177)

[SWS_Rte_08064] [The symbol attribute of RunnableEntitys triggered by an 0p-
erationInvokedEvent Of NvBlockSwComponent Types shall be used by the RTE
generator to identify the to be called NvM API function (see [constr_1234] in software
component template [2]). |(SRS_Rte_00177)

Note: A BlockId PortDefinedArgumentValue is also provided to runnables and
used as a first argument in the NVM APIs.

Besides forwarding requests from the SW-C side to the NVM module via NvM ser-
vice ports, the NvBlockSwComponent Type also supports the dirty flag mechanism
mentioned in chapter 4.2.9.3.1. In order to realize the behavior of the dirty flag mech-
anism the RTE implements RunnableEntitys for each NvBlockDescriptor that
can be triggered by RTEEvents. Depending on the writing strategy different kind of
RTEEvents will be used for triggering the RunnableEntitys.

The configuration of the NvBlockSwComponentType (i.€. defining RTEEvents for
triggering the RunnableEntitys for the NvBlockDescriptors and mapping of
RTEEvents$ to tasks) is usually not in the responsibility of the SW-C developer. For
this reason the SW-C developer can provide the required writing strategy in the Swc-
ServiceDependency.serviceNeeds by using the attributes storeAtShutdown,
storeCyclic, cyclicWritingPeriod, storeEmergency and storeImmediate
(for more details see Software Component Template [2]).

[SWS_Rte_08086] | The RTE generator shall implement RunnableEntitys for
each NvBlockDescriptor of an NvBlockSwComponentType Wwith the attribute
dirtyFlagSupport setto true. |(SRS_Rte 00177, SRS_Rte _00245)

[SWS_Rte_08087] [The RunnableEntity of an NvBlockDescriptor shall be ac-
tivated by a TimingEvent if the attribute NvBlockNeeds.storeCyclic is set to
true. |(SRS_Rte 00177, SRS_Rte _00245)

[SWS_Rte_08088] | The RunnableEntity of an NvBlockDescriptor shall be ac-
tivated by a DataReceivedEvent if the attribute NvBlockNeeds.storeAtShut-
down Or NvBlockNeeds.storeImmediate is set to true. [(SRS_Rte 00177,
SRS _Rte 00245)

[SWS_Rte_08089] | For NvBlockDescriptors which need to combine several writ-
ing strategies, i.e. several NvBlockNeeds attributes referring to a writing strategy
are set to true, the RunnableEntity of the NvBlockDescriptor shall be acti-
vated by one TimingEvent or DataReceivedEvent per writing strategy according
to the requirements [SWS_Rte_08087] and [SWS_Rte_08088]. |(SRS_Rte 00177,
SRS_Rte _00245)

AUTOSAR

[SWS_Rte_08090] | If no RteEventToTaskMapping is defined for RTEEvents
which are responsible for activating RunnableEntitys of NvBlockDescriptors
(see [SWS_Rte _08087] and [SWS_Rte_08088]), the according activities shall be pro-
cessed in the RTE code issuing the RTEEvents. For explicit communication this
shall be done in the related Rte_write function and for implicit communication
in the task bodies where the preemption buffers are handled. |(SRS_Rte 00177,
SRS _Rte 00245)

4.2.9.4 Data Consistency

A VariableDataPrototype contained in a NvBlockSwComponentType iS ac-
cessed when SW-Cs read the value or write a new value. It is also accessed by the
NVM when read or write requests are processed by the NVM for the associated block.

The NVM does not access directly the variableDataPrototypes, but shall use the
Rte_GetMirror, and Rte_SetMirror APIs specified in section 5.9.3

The RTE has to ensure the data consistency of the variableDataPrototypes, with
any of the data consistency mechanisms defined in section 4.2.5. Depending on the
user’s input, an efficient scheduling with the use of implicit APIs should permit a low
resources (OS resources, RAM, and code) implementation.

4.3 Communication Paradigms

AUTOSAR supports two basic communication paradigms: Client-Server and Sender-
Receiver. AUTOSAR software-components communicate through well defined ports
and the behavior is statically defined by attributes. Some attributes are defined on
the modeling level and others are closely related to the network topology and must be
defined on the implementation level.

The RTE provides the implementation of these communication paradigms. For inter-
ECU communication the RTE uses the functionalities provided by COM. For inter-
Partition communication (within the same ECU) the RTE uses functionalities provided
by the IOC module. For intra-Partition the RTE provides the functionality on its own.

Both communication paradigms can be used together with data transformation which
is described in chapter 4.10.

With Sender-Receiver communication there are two main principles: Data Distribu-
tion and Event Distribution. When data is distributed, the last received value is of
interest (last-is-best semantics). When events are distributed the whole history of re-
ceived events is of interest, hence they must be queued on receiver side. Therefore
the software implementation policy can be queued or non queued. This is stated in the
swImplPolicy attribute of the swbataDefProps, which can have the value queued
(corresponding to event distribution with a queue) or standard (corresponding to last-
is-best data distribution). If a data element has event semantics, the swImplPol-

AUTOSAR

icy is set to queued. The other possible values of this attribute correspond to data
semantics.

[SWS_Rte_07192] | The RTE generator shall reject the configuration when an r-
port is connected to an r-port or a p—-port is connected to a p—port with an
AssemblySwConnector|(SRS_Rte _00018)

For example, a require port (r-port) of a component typed by an AUTOSAR sender-
receiver interface can read data elements of this interface. A provide port (p-port) of
a component typed by an AUTOSAR sender-receiver interface can write data elements
of this interface.

[SWS_Rte_07006] | The RTE generator shall reject the configuration violating the
[constr_1032], so when an r-port is connected to a p-port or a p-port is con-
nected to an r-port with a DelegationSwConnector. |(SRS_Rte _00018)

[SWS_Rte_08767] | In case of functionality depending on attributes of ComSpecs the
RTE Generator shall consider only the ComSpecs defined in the context of Atomic-
SwComponentTypeS Of ParameterSwComponentTypeS. |(SRS_Rte_00018)

4.3.1 Sender-Receiver
4.3.1.1 Introduction

Sender-receiver communication involves the transmission and reception of signals con-
sisting of atomic data elements that are sent by one component and received by one
or more components. A sender-receiver interface can contain multiple data elements.
Sender-receiver communication is one-way - any reply sent by the receiver is sent as
a separate sender-receiver communication.

A require port (r-port) of a component typed by an AUTOSAR sender-receiver interface
can read data elements of this interface. A provide port (p-port) of a component typed
by an AUTOSAR sender-receiver interface can write data elements of this interface.

4.3.1.2 Receive Modes

The RTE supports multiple receive modes for passing data to receivers. The four
possible receive modes are:

¢ “Implicit data read access” — when the receiver's runnable executes it shall
have access to a “copy” of the data that remains unchanged during the execution
of the runnable.

[SWS_Rte_06000] | For data elements specified with implicit data read access,
the RTE shall make the receive data available to the runnable through the se-
mantics of a copy. |(SRS_Rte 00128, SRS_Rte 00019)

AUTOSAR

[SWS_Rte_06001] | For data elements specified with implicit data read ac-
cess the receive data shall not change during execution of the runnable.
|(SRS_Rte_00128)

When “implicit data read access” is used the RTE is required to make the data
available as a “copy”. It is not necessarily required to use a unique copy for each
runnable. Thus the RTE may use a unique copy of the data for each runnable
entity or may, if several runnables (even from different components) need the
same data, share the same copy between runnables. Runnable entities can only
share a copy of the same data when the scheduling structure can make sure the
contents of the data is protected from modification by any other party.

[SWS_Rte_06004] | The RTE shall read the data elements specified with
implicit data read access before the associated runnable entity is invoked.
|(SRS_Rte_00128)

Composite data types shall be handled in the same way as primitive data types,
i.e. RTE shall make a “copy” available for the RunnableEntity.

[SWS_Rte_06003] | The “implicit data read access” receive mode shall be valid
for all categories of runnable entity (i.e. 1A, 1B and 2). | (SRS _Rte _00134)

e “Explicit data read access” — the RTE generator creates a non-blocking API
call to enable a receiver to poll (and read) data. This receive mode is an “explicit”
mode since an explicit API call is invoked by the receiver.

The explicit “data read access” receive mode is only valid for category 1B or 2
runnable entities [SRS_Rte_00134].

¢ “wake up of wait point” — the RTE generator creates a blocking API call that the
receiver invokes to read data.

[SWS_Rte_06002] | The “wake up of wait point” receive mode shall support a
time-out to prevent infinite blocking if no data is available. |(SRS_Rte 00109,
SRS _Rte 00069)

The “wake up of wait point” receive mode is inherently only valid for a category 2
runnable entity.

A category 2 runnable entity is required since the implementation may need to
suspend execution of the caller if no data is available.

e “activation of runnable entity” — the receiving runnable entity is invoked auto-
matically by the RTE whenever new data is available. To access the new data, the
runnable entity either has to use “implicit data read access” or “explicit data read
access”, i.e. invoke an Rte_IRead, Rte_Read, Rte_DRead Or Rte_Receive
call, depending on the input configuration. This receive mode differs from “im-
plicit data read access” since the receiver is invoked by the RTE in response to a
DataReceivedEvent.

[SWS_Rte_06007] | The “activation of runnable entity” receive mode shall be
valid for category 1A, 1B and 2 runnable entities. | (SRS_Rte _00134)

AUTOSAR

The validity of receive modes in conjunction with different categories of runnable entity
is summarized in Table 4.10.

Receive Mode Cat1A | Cat1B | Cat 2
Implicit Data Read Access Yes Yes Yes
Explicit Data Read Access No Yes Yes
Wake up of wait point No No Yes
Activation of runnable entity Yes Yes Yes

Table 4.10: Receive mode validity

The category of a runnable entity is not an inherent property but is instead determined
by the features of the runnable. Thus the presence of explicit API calls makes the
runnable at least category 1B and the presence of a waitPoint forces the runnable
to be category 2.

4.3.1.2.1 Applicability

The different receive modes are not just used for receivers in sender-receiver commu-
nication. The same semantics are also applied in the following situations:

e Success feedback — The mechanism used to return transmission acknowledg-
ments to a component. See Section 5.2.6.9.

e Asynchronous client-server result — The mechanism used to return the result
of an asynchronous client-server call to a component. See Section 5.7.5.4.

4.3.1.2.2 Representation in the Software Component Template

The following list serves as a reference for how the RTE Generator determines the
Receive Mode from its input [SRS_Rte_00109]. Note that references to “the vari-
ableDataPrototype” within this sub-section will implicitly mean “the variable-
DataPrototype for which the APl is being generated”.

e “wake up of wait point” — A variableAccess inthe dataReceivePointBy-
Value Or dataReceivePointByArgument role references a variableDat—
aPrototype and a WaitPoint references a DataReceivedEvent which in
turn references the same variableDataPrototype.

e “activation of runnable entity” — a DataReceivedEvent references the vari-
ableDataPrototype and a runnable entity to start when the data is received.

e “explicit data read access” — A VariableAccess in the dataReceive-
PointByValue Or dataReceivePointByArgument role references the
VariableDataPrototype.

e “implicit data read access” — A VariableAccess in the dataReadAccess
role references the variableDataPrototype.

AUTOSAR

It is possible to combine certain access methods; for example ‘activation of runnable
entity’ can be combined with ‘explicit’ or ‘implicit’ data read access (indeed, one of these
pairings is necessary to cause API generation to actually read the datum) but it is an
input error if ‘activation of runnable entity’ and ‘wakeup of wait point’ are combined (i.e.
awWaitPoint references a DataReceivedEvent that references a runnable entity).
It is also possible to specify both implicit and explicit data read access simultaneously.

For details of the semantics of “implicit data read access” and “explicit data read ac-
cess” see Section 4.3.1.5.

4.3.1.3 Multiple Data Elements

A sender-receiver interface can contain one or more data elements. The transmission
and reception of elements is independent — each data element, e.g. AUTOSAR signal,
can be considered to form a separate logical data channel between the “provide” port
and a “require” port.

[SWS_Rte_06008] | Each data element in a sender-receiver interface shall be sent
separately. | (SRS_Rte_00089)

Example 4.4

Consider an interface that has two data elements, speed and freq and that a compo-
nent template defines a provide port that is typed by the interface. The RTE generator
will then create two API calls; one to transmit speed and another to transmit fregq.

Where it is important that multiple data elements are sent simultaneously they should
be combined into a composite data structure (Section 4.3.1.11.1). The sender then
creates an instance of the data structure which is filled with the required data before
the RTE is invoked to transmit the data.

4.3.1.3.1 Initial Values

[SWS_Rte_06009] | For each data element in an interface specified with data se-
mantics, the RTE shall support the initvalue attribute. |(SRS_Rte _00108)

The initvalue attribute is used to ensure that AUTOSAR software-components al-
ways access valid data even if no value has yet been received. This information is re-
quired for inter-ECU, inter-Partition, and intra-Partition communication. For inter-ECU
communication initial values can be handled by COM but for intra-ECU communication
RTE has to guarantee that initvalue is handled.

In general, the specification of an initvalue is mandatory for each data element
prototype with data semantics, see [SWS_Rte_07642]. If all senders and receivers
are located in the same partition, this restriction is relaxed, see [SWS_Rte 04501].

AUTOSAR

[SWS_Rte_06010] | The RTE shall use any specified initial value to prevent the
receiver performing calculations based on invalid (i.e. uninitialized) values when
the swImplPolicy is not queued and if the general initialization conditions in
[SWS_Rte_07046] are fulfilled. | (SRS_Rte _00107)

The above requirement ensures that RTE API calls return the initialized value until a
“real” value has been received, possibly via the communication service. The require-
ment does not apply when “event” semantics are used since the implied state change
when the event data is received will mean that the receiver will not start to process
invalid data and would therefore never see the initialized value.

[SWS_Rte_04500] | An initial value cannot be specified when the implementation pol-
icy is set to 'queued’ attribute is specified as true. |(SRS_Rte_00107)

For senders, an initial value is not used directly by the RTE (since an AUTOSAR SW-C
must supply a value using Rte_Send) however it may be needed to configure the com-
munication service - for example, an un-initialised signal can be transmitted if multiple
signals are mapped to a single frame and the communication service transmits the
whole frame when any contained signal is sent by the application. Note that it is not
the responsibility of the RTE generator to configure the communication service.

It is permitted for an initial value to be specified for either the sender or receiver. In this
case the same value is used for both sides of the communication.

[SWS_Rte_04501] [If in context of one partition a sender specifies an initial value and
the receiver does not (or vice versa) the same initial value is used for both sides of the
communication. |(SRS_Rte _00108)

It is also permitted for both sender and receiver to specify an initial value. In this case
it is defined that the receiver’s initial value is used by the RTE generator for both sides
of the communication.

[SWS_Rte_04502] | If in context of one partition both receiver and sender specify an
initial value the specification for the receiver takes priority. |(SRS_Rte_00108)

4.3.1.4 Multiple Receivers and Senders

Sender-receiver communication is not restricted to communication connections be-
tween a single sender and a single receiver. Instead, sender receiver communica-
tion connection can have multiple senders ('n:1’ communication) or multiple receivers
('1:m’ communication) with the restrictions that multiple senders are not allowed for
mode switch notifications, see metamodel restriction [SWS_Rte 02670].

The RTE does not impose any co-ordination on senders — the behavior of senders is
independent of the behavior of other senders. For example, consider two senders A
and B that both transmit data to the same receiver (i.e. 'n:1’ communication). Trans-
missions by either sender can be made at any time and there is no requirement that
the senders co-ordinate their transmission. However, while the RTE does not impose

AUTOSAR

any co-ordination on the senders it does ensure that simultaneous transmissions do
not conflict.

In the same way that the RTE does not impose any co-ordination on senders there is no
co-ordination imposed on receivers. For example, consider two receivers P and Q that
both receive the same data transmitted by a single sender (i.e. '1:m’ communication).
The RTE does not guarantee that multiple receivers see the data simultaneously even
when all receivers are on the same ECU.

4.3.1.5 Implicit and Explicit Data Reception and Transmission

[SWS_Rte_06011] | The RTE shall support ’explicit’ and ’implicit’ data recep-
tion and transmission. |(SRS_Rte 00019, SRS _Rte 00098, SRS_Rte 00129,
SRS _Rte 00128, SRS Rte 00141)

Implicit data access transmission means that a runnable does not actively initiate the
reception or transmission of data. Instead, the required data is received automatically
when the runnable starts and is made available for other runnables at the earliest when
it terminates.

Explicit data reception and transmission means that a runnable employs an explicit
API call to send or receive certain data elements. Depending on the category of the
runnable and on the configuration of the according ports, these API calls can be either
blocking or non-blocking.

4.3.1.5.1 Implicit

Implicit Read

For the implicit reading of data, variableAccesses aggregated with a dataReadAc-
cess role [SRS_Rte _00128], the data is made available when the runnable starts us-
ing the semantics of a copy operation and the RTE ensures that the ‘copy’ will
not be modified until the runnable terminates.

If data transformation shall be executed for this data element, the data transformation
takes place after reception of the data from the Com stack and before start of the
runnable execution. (See [SWS_Rte 08570], [SWS_Rte 08108])

When a runnable R is started, the RTE reads all variableDataPrototypes refer-
enced by a variableAccess inthe dataReadAccess role, if the data elements may
be changed by other runnables a copy is created that will be available to runnable R.
The runnable R can read the data element by using the RTE APIs for implicit read
(see the API description in Section 5.6.18). That way, the data is guaranteed not to
change (e.g. by write operations of other runnables) during the entire lifetime of R. If
several runnables (even from different components) need the data, they can share the
same buffer. This is only applicable when the scheduling structure can make sure the
contents of the data is protected from modification by any other party.

AUTOSAR

Note that this concept implies that the runnable does in fact terminate. Therefore, while
implicit read is allowed for category 1A and 1B runnable entities as well as category 2
only the former are guaranteed to have a finite execution time. A category 2 runnable
that runs forever will not see any updated data.

VariableAccess in the dataReadAccess role is only allowed for variableDat -
aPrototypes with their swImplPolicy different from 'queued’ ([constr_2020]).

Implicit Write

Implicit writing, VariableAccesses aggregated with a dataWriteAccess role
[SRS_Rte 00129], is the opposite concept. variableDataPrototypes referenced
by a variableAccess in the dataWriteAccess role are sent by the RTE after the
runnable terminates. The runnable can write the data element by using the RTE APls
for implicit write (see the API description in Sect. 5.6.19 and 5.6.20). The sending is
independent from the position in the execution flow in which the Rte_IwWrite is per-
formed inside the Runnable. When performing several write accesses during runnable
execution to the same data element, only the last one will be recognized. Here we
have a last-is-best semantics.

If data transformation shall be executed for this data element, the data transformation
takes place after termination of the runnable and before sending the data to the Com
stack. (See [SWS_Rte_08571], [SWS_Rte_08109])

[SWS_Rte_08418] | The contentof a preemption area specific buffer which is used
exclusively for an implicit write access t0 a VariableDataPrototype shall
be initialized by the generated RTE with a copy of the global buffer between the be-
ginning of the task and the execution of the first RunnableEnt ity with access to this
VariableDataPrototype inthe task. |(SRS_Rte 00129)

Note:

[SWS_Rte_08418] ensures that no undefined values are written back to a preemp-
tion area specific buffer at runnable termination if a VariableDataPrototype is
referenced by a VariableAccess in the dataWriteAccess role and no RTE API
for implicit write of this variableDataPrototype is called during an execution of the
Runnable. For the first entry to the preemption area the "global buffer" will contain
the initvalue of the variableDataPrototype (if N0 initvalue is configured
then the value will depend on the initialization strategy of the startup code). For sec-
ond and subsequent entries the "global buffer" will contain the previously written value
(if any).

[SWS_Rte_03570] | For variableAccessesinthe dataWriteAccess role the RTE
shall make the sent data available to others (other runnables, other AUTOSAR SWCs,
Basic SW, ..) with the semantics of a copy. |(SRS_Rte_00129)

[SWS_Rte_03571] [For variableAccessesinthe dataWriteAccess role the RTE
shall make the sent data available to others (other runnables, other AUTOSAR SWCs,
Basic SW, ..) at the earliest when the runnable has terminated. |(SRS_Rte_00129)

AUTOSAR

[SWS_Rte_03572] [For variableAccessesinthe dataWriteAccess role several
accesses to the same variableDataPrototype performed inside a runnable during
one runnable execution shall lead to only one transmission of the variableDataPro-
totype. |(SRS_Rte_00129)

[SWS_Rte_03573] | If several VvariableAccesses in the dataWriteAccess role
referencing the same variableDataPrototype are performed inside a runnable
during the runnable execution, the RTE shall use the last value written. (last-is-best
semantics) |(SRS_Rte _00129)

AvVariableAccess inthe dataWriteAccess role is only sensible for runnable enti-
ties that are guaranteed to terminate, i.e. category 1A and 1B. If it is used for a category
2 runnable which does not terminate then no data write-back will occur.

[SWS_Rte_03574] [variableAccess inthe dataWriteAccess role shall be valid
for all categories of runnable entity. | (SRS_Rte_00129, SRS_Rte_00134)

To get common behavior in RTEs from different suppliers further requirements
defining the semantic of implicit communication exist:

Please note that the behavior of Implicit Communication can be adjusted with ECU
Configuration. For further information see section 7.8.

Implicit Communication Behavior in case of incoherent implicit data access

[SWS_Rte_03954] | The RTE generator shall use exactly one buffer to contain data
copies of the same variableDataPrototype per preemption area for the im-
plementation of the copy semantic of incoherent implicit data access.

|(SRS_Rte_00128, SRS_Rte_00129, SRS_Rte_00134)

Requirement [SWS_Rte 03954] means that all runnable entities mapped to tasks of a
preemption areaWwithaincoherent implicit read accessOfr incoherent
implicit write access access the same buffers.

[SWS_Rte_03598] [For implicit communication, the RTE shall provide a single shared
read/write buffer when no runnable entity mapped to tasks of the preemption area
has VvariableAccess in both incoherent implicit read access and inco-
herent implicit write access referencing the same variableDataProto-
type. | (SRS_Rte_00128, SRS_Rte _00129)

If either the sender or the receiver uses a data element with status and the
other uses a data element without status, a data element with status
can be implemented and casted in the component data structure when a pointer to a
data element without status iS needed.

[SWS_Rte_03955] | For implicit communication, in case that dedicated RPortPro-
totype and PPortPrototype are used, separate read and write buffers shall be
used when at least one RunnableEntity mapped to tasks of the preemption
areahas implicit read accessandimplicit write access referencingthe
same VariableDataPrototype. |(SRS_Rte 00128, SRS _Rte 00129)

AUTOSAR

In the case that a RunnableEntity defines dataWriteAccess and dataReadAc—
cess to the same variableDataPrototype inthe context of a PRPortPrototype
[SWS_Rte_03955] does not apply. In such configuration the writing RunnableEntity
immediately sees its own updates of the data values even before the RunnableEn-
tity has terminated.

[SWS_Rte_08408] | If a RunnableEntity has both dataWriteAccess and
dataReadAccess 10 a VariableDataPrototype in the context of a PRPort-
Prototype the result of the write access shall be immediately visible to subse-
quent read accesses from within the same RunnableEntity. |(SRS_Rte 00128,
SRS _Rte 00129)

Please note that the content of the write buffers are copied into the read buffer of the
preemption area afterthe RunnableEntity with the write access terminates (see
[SWS_Rte_07041]). Therefore the write buffer might be implemented as temporary
buffer.

[SWS_Rte_03599] | For implicit communication with incoherent implicit data
access all readers within a preemption area shall access the same buffer.
|(SRS_Rte_00128)

[SWS_Rte_03953] | For implicit communication with incoherent implicit data
access all writers within a preemption area shall access the same buffer.
|(SRS_Rte_00129)

The content of a shared buffer (see [SWS_Rte_03598]) is not guaranteed to stay con-
stant during the whole task since a writer will change the shared copy and hence
readers mapped in the task after the writer will access the updated copy. When buffers
are shared, written data is visible to other RunnableEnt itys within the same execu-
tion of the task. However since no runnable within the task will both read and write the
same buffer (([SWS_Rte 03598] and [SWS_Rte_03955]) consistency within a runnable
is ensured.

When separate buffers used for implicit communication (see [SWS_Rte_03955]) any
data written by a runnable is not visible (to either other RunnableEntitys or to the
writing runnable) until the data is written back after the runnable has terminated.

Implicit Communication Behavior in case of coherent implicit data access

[SWS_Rte_07062] | The RTE generator shall use exactly one buffer to contain
data copies of the same vVariableDataPrototype per coherency group for the
implementation of the copy semantic of coherent implicit data access.
|(SRS_Rte_00128, SRS_Rte 00129, SRS _Rte _00134)

Requirement [SWS_Rte 07062] means that all runnable entities with coherent im-
plicit data accesses access the same buffers. Please note that it is only sup-
ported t0 group implicit read accesses Or implicit write accesses of
RunnableEntitys executed in the same OS Task. Therefore a coherent im-
plicit data access results in a task local buffer as it was specified in previous

AUTOSAR

AUTOSAR releases. With this means a backward compatible bahavior of the RTE can
be ensured.

Please note that [SWS_Rte 03955] applies as well for coherent implicit data access.
[SWS_Rte_07062] includes already that a single shared read/write buffer shall be used
when no runnable entity has coherent implicit read access and coherent
implicit write access belonging to the same coherency group.

Implicit Communication buffer handling

The preemption area specific buffer should not be updated or made available more
often than required. The following requirements detail how to obtain that for read and
write access.

[SWS_Rte_03956] | The content of a preemption area specific buffer used for an
incoherent implicit read access to a data element shall be filled with actual
data by a copy action between the beginning of the task and the execution of the first
RunnableEntity with access to this data element in the task. | (SRS_Rte 00128)

[SWS_Rte_07020] | If the RteImmediateBufferUpdate = TRUE is configured for a
incoherent implicit read access to adata elementthe content of a preemp-
tion area specific buffer used for that variableAccess shall be filled with actual
data by a copy action immediately before the RunnableEntity with the related im-
plicit read access to the data element starts. | (SRS_Rte 00128)

[SWS_Rte_07041] [The content of a separate write buffer (see [SWS_Rte_03955])
modified by a incoherent implicit write access Of @ RunnableEntity
shall be made available to RunnableEntitys using a implicit read access
allocated in the same preemption area immediately after the execution of the
RunnableEntity with the related implicit write access to the data element.
|(SRS_Rte_00129)

[SWS_Rte_03957] | The content of a preemption area specific buffer modified by
a incoherent implicit write access in one task shall be made available to
RunnableEntitys using an implicit read access allocated in other preemp-
tion areas atlatest after the execution of the last RunnableEnt ity mapped to the
task. |(SRS_Rte_00129)

[SWS_Rte_07021] | If the RteImmediateBufferUpdate = TRUE is configured for a
incoherent implicit write access the content of a preemption area spe-
cific buffer shall be made available to RunnableEntitys using a implicit read
access allocated in other preemption areasimmediately after the execution of the
RunnableEntity with the related implicit write access to the data element.
| (SRS_Rte_00129)

Note:
It's the semantic of implicit communication that a variableAccess in the
dataWriteAccess role is interpreted as writing the whole dataElement.

Explicit Schedule Points defined by RteOsSchedulePoints are placed be-
tween RunnableEntitys after the data written with implicit write access by the

AUTOSAR

RunnableEntity are propagated to other RunnableEntitys and before the
preemption area specific buffer used for a implicit read access of the suc-
cessor RunnableEntity are filled with actual data by a copy action according
[SWS_Rte_07020]. This ensures that the data produced by one RunnableEn-
tity is propagated before RunnableEntitys assigned to other Os Tasks are ac-
tivated due to Task scheduling caused by the explicit Schedule Point. See as well
[SWS_Rte_07042] and [SWS_Rte_07043].

The requirements regarding buffer handling for implicit communication do not apply in
case of filters. Buffer handling of RTE for filters is specified in chapter 4.3.1.9 (require-
ments: [SWS_Rte _08077], [SWS_Rte _08078] and [SWS_Rte_08079]).

Implicit Communication buffer handling for coherent implicit data access

[SWS_Rte_07063] | The content of a coherency group specific buffer used for an
coherent implicit read access to one or more data elements shall be filled
with actual data by a copy action between the beginning of the task and the execution
of the first RunnableEntityinthetask witha coherent implicit read access
belonging to the coherency group. |(SRS_Rte _00128)

[SWS_Rte_07064] | If the RteImmediateBufferUpdate = TRUE is configured for
coherent implicit read accesses the content of a coherency group spe-
cific buffer used for these variableAccesses shall be filled with actual data by
a copy action immediately before the first RunnableEntity in the task with a

coherent implicit read access belonging to the coherency group starts.
|(SRS_Rte_00128)

[SWS_Rte_07065] | The content of a separate write buffer (see [SWS_Rte_03955])
modified by a coherent implicit write access of @ RunnableEntity shall
be made available to RunnableEntityS using a coherent implicit read ac-—
cess belonging to the same coherency group immediately after the execution

of the RunnableEntity with the related coherent implicit write access.
|(SRS_Rte_00129)

[SWS_Rte_07066] | The content of a coherency group specific buffer modified
by coherent implicit write accesses in one task shall be made available to
other RunnableEntitys at earliest after the execution of the last RunnableEntity

with a coherent implicit write access belonging to this coherency group.
|(SRS_Rte_00129)

[SWS_Rte_07067] | The content of a coherency group specific buffer modified
by coherent implicit write accesses in one task shall be made available to
other RunnableEntitys at latest after the execution of the last RunnableEntity
mapped to the task. | (SRS _Rte _00129)

[SWS_Rte_07068] | If the RteImmediateBufferUpdate = TRUE is configured for a
coherent implicit write accesses the content of a coherency group spe-
cific buffer modified by coherent implicit write accesses inone task shall be
made available to other readers not belonging to this coherency group immediately

AUTOSAR

after the execution of the last RunnableEntity witha coherent implicit write
access belonging to this coherency group |(SRS_Rte_00129)

Handling of ConsistencyNeeds

ConsistencyNeeds are not directly processed by the RTE Generator but provid-
ing an important information for the correct configuration of the RTE and OS with
respect to preemption, RteEventToTaskMapping and RteImplicitCommunica—
tion. Therefore following constraints apply:

[constr_9001] Whole DataPrototypeGroup in role dpgRequiresCoherency
shall be propagated coherently |

All RunnableEntitys in @ RunnableEntityGroup With dataWriteAccess to
data belonging to the same DataPrototypeGroup in the role dpgRequiresCo-
herency shall

e Be mapped to the same OS Task
AND shall

e A) either be scheduled in a way that these RunnableEntitys can not be inter-
rupted by RunnableEntitys with dataReadAccess to (more than one) data
belonging to the DataPrototypeGroup.

e B) orthe RteImplicitCommunication shall be configured to ensure a coher-
ent propagation (RteCoherentAccess == true) for reading RunnableEntitys
4

10

Please note that the interruption of RunnableEntitys and between RunnableEn-—
titys depends from many factors like the configuration of the OS and the configuration
of the RTE (e.g. RteOsSchedulePoint).

[constr_9002] The whole DataPrototypeGroup shall be read stable for the
whole RunnableEntityGroup in the role regRequiresStability |.

All RunnableEntitys with dataReadAccess to data belonging to the same Dat-
aPrototypeGroup and which are belonging to the same RunnableEntityGroup
in the role regRequiresStability shall

e cither be configured in a way that the chain of RunnableEntitys with
dataReadAccess to the data of the bataPrototypeGroup can not be inter-
rupted by any of the RunnableEntity(s) with dataWriteAccess to data of
the DataPrototypeGroup

e orthe RteImplicitCommunication shall be configured to ensure stable data
values (RteCoherentAccess == true) for reading RunnableEntitys belong-
ing to the RunnableEntityGroup.

4RunnableEntitys with have as well dataWriteAccess to data belonging to the DataProto-
typeGroup are excluded because inside the calculation chain the latest data values are visible

AUTOSAR

10

Examples

Following examples shall illustrate how ConsistencyNeeds can be implemented with
either scheduling or coherency groups.

Example 4.5
Common definition of Portinterfaces

In order to simplify the examples all PortInterfaces are of type Sender-
ReceiverInterface and contain exactly one variableDataPrototype with iden-
tical shortName. For example SenderReceiverInterface "A" contains vari-
ableDataPrototype "A"

Additionally the shortName of the SenderReceiverInterface is identical to the
shortName of the PortPrototype. For example PPortPrototype "A" is typed by
SenderReceiverInterface "A".

Example 4.6

Stability need for received data

Setup of SWCs

ApplicationSwComponentType "ASWC_A" withthe PPortPrototypes: "A","B"

and the RunnableEntity "ASWC_A_RUN1" which in turn has following
dataWriteAccesses

e "DWP_ASWC_A_RUN1_A_A" referencing variableDataPrototype "A" in
PPortPrototype "A"

e "DWP_ASWC_A_RUN1_B_B" referencing variableDataPrototype "B" in
PPortPrototype "B"

ApplicationSwComponentType "ASWC_B" with the RPortPrototypes: "A","B"
and the RunnableEntity "ASWC_B_RUN1" which in turn has dataReadAccesses

e "DRP_ASWC_B_RUN1_A_A" referencing VariableDataPrototype "A" in
RPortPrototype "A"

e "DRP_ASWC_B_RUN1_B_B" referencing variableDataPrototype "B" in
RPortPrototype "B"

ApplicationSwComponentType "ASWC_C" with the RPortPrototypes: "A","B"

and the RunnableEntity "ASWC_C_RUN1" which in turn has dataReadAccesses

AUTOSAR

e "DRP_ASWC_C_RUN1_A_A" referencing variableDataPrototype "A" in
RPortPrototype "A"

e "DRP_ASWC_C_RUN1_B_B" referencing variableDataPrototype "B" in
RPortPrototype "B"

The ConsistencyNeeds "CN_BC" defines a RunnableEntityGroup in the role
regRequiresStability with the members "ASWC_B_RUN1", "ASWC_C_RUN1"
In addition the ConsistencyNeeds "CN_BC" defines a DataPrototypeGroup
in the role dpghoesNotRequireCoherency to the VariableDataPrototypes
ASWC_B.A.A.A, ASWC_C.A.A.A, ASWC_B.B.B.B and ASWC_C.B.B.B The com-
plete example is listed as ARXML in Appendix F.2.

Assuming now a configuration:
ASWC_A_RUN1 is mapped to OsTask T10MS
ASWC_B_RUNL1 is mapped to OsTask T100MS
ASWC_C_RUNI1 is mapped to OsTask T100MS

where T10MS can NOT interrupt T100Ms during the execution of ASwC_B_RUN1 and
ASWC_C_RUN1. This configuration fulfills [constr_9002] with respect to "CN_BC" due
the scheduling conditions. Since the producer of "A" and "B" can NOT interrupt the
RunnableEntitys with the dataReadAccesses it is guaranteed that the value for
all accesses of ASWC_B_RUN1 and ASWC_C_RUN1 to the same data is identical (and
therefore stable) during one execution of 0OsTask T100MS.

Assuming now a configuration:
ASWC_A_RUN1 is mapped to OsTask T10MS

ASWC_B_RUN1 is mapped to OsTask T100MS + RteOsSchedulePoint == UNCON-
DITIONAL

ASWC_C_RUNL1 is mapped to OsTask T100MS

where T10MS can interrupt T100Ms after the execution of Aswc_B_RUN1. Without
further means this configuration would violate [constr_9002] due the scheduling con-
ditions. Since the producer of "A" and "B" can interrupt the RunnableEntitys
with the dataReadAccesse it is not guaranteed that the value for all accesses of
ASWC_B_RUN1 and ASWC_C_RUNI1 to the same data is kept stable during one execu-
tion of OsTask T100MS.

With the additional configuration RteTmplicitCommunication "CN_BC_A":
e RteVariableReadAccessRef referencing "DRP_ASWC_B_RUN1_A A"
e RteVariableReadAccessRef referencing "DRP_ASWC_C_RUN1_A_ A"

e RteCoherentAccess = true

AUTOSAR

and

RteImplicitCommunication "CN_BC_B":
e RteVariableReadAccessRef referencing "DRP_ASWC_B_RUN1_B_B"
e RteVariableReadAccessRef referencing "DRP_ASWC_C_RUN1_B_B"
e RteCoherentAccess =true

"ASWC_B_RUN1_A_A" and "ASWC_C_RUN1_A_A" as well as "ASWC_B_RUN1_B_B"
and "ASWC_C_RUN1_B_B" are in the same coherency group. Therefore the read
data values for "A" and "B" are from the same age in one execution of OsTask
T100MS for ASWC_B_RUN1 and ASWC_C_RUNLI.

Please note, since it is not requested that data "A"™ and "B" are communicated coher-
ently the setup of RteImplicitCommunication for "A" and "B" can be handled
independently from each other. In particular if there a further RunnableEntitys with
dataReadAccesses to "A" or "B" mapped to the OsTask T100Ms the buffers for
"A"™ and "B" can be loaded at different points in the execution sequence. Further on
it is not requested that "A" and "B" is produced in the same recurrence as it is show
in this example.

Example 4.7

Coherency need and stability need for received data

Setup of SWCs
ApplicationSwComponentType "ASWC_H" with the PPortPrototype: "X"

and the RunnableEntity "ASWC_H_RUN1" which in turn has following
dataWriteAccesses

e "DWP_ASWC_H_RUN1_X_X" referencing variableDataPrototype "X" in
PPortPrototype "X"

ApplicationSwComponentType "ASWC_I" with the RPortPrototype: "Y"

and the RunnableEntity "ASWC_I_RUN1" which in turn has following
dataWriteAccesses

e "DWP_ASWC_T_RUN1_Y_Y" referencing variableDataPrototype "Y" in
RPortPrototype "Y"

ApplicationSwComponentType "ASWC_J" withthe RPortPrototypes: "X","Y"

and the RunnableEntity "ASWC_J_RUN1" which in turn has following
dataReadAccesses

AUTOSAR

e "DRP_ASWC_J_RUN1_X_X" referencing variableDataPrototype "X" in
RPortPrototype "X"

e "DRP_ASWC_J_RUN1_Y_Y" referencing vVariableDataPrototype "Y" in
RPortPrototype "Y"

ApplicationSwComponentType "ASWC_K" with the RPortPrototype: "X"

and the RunnableEntity "ASWC_K_RUN1" which in turn has following
dataReadAccesses

e "DRP_ASWC_K_RUN1_X_X" referencing variableDataPrototype "X" in
RPortPrototype "X"

The ConsistencyNeeds "CN_J" defines a RunnableEntityGroup in the role
regDoesNotRequireStability with the member "AswCc_I_RUN1" In addi-
tion the ConsistencyNeeds "CN_J" defines a DataPrototypeGroup in the
role dpgRequiresCoherency to the VariableDataPrototypeS ASWC_J.X.X.X,
ASWC_K.Y.Y.Y

The ConsistencyNeeds "CN_JK" defines a RunnableEntityGroup in the role
regRequiresStability with the member "ASWC_I_RUNI", "ASWC_J_RUN1"
In addition the ConsistencyNeeds "CN_JK" defines a DataPrototypeGroup
in the role dpghoesNotRequireCoherency to the VariableDataPrototype$s
ASWC_J.X.X.X,ASWC_K.X.X.X

Assuming now a configuration:

ASWC_H_RUN1 is mapped to OsTask T100MS + RteOsSchedulePoint == UNCON-
DITIONAL

ASWC_TI_RUNI is mapped to OsTask T100MS
ASWC_J_RUN1 is mapped to OsTask T10MS
ASWC_K_RUNI1 is mapped to OsTask T10MS

where T10MS can interrupt T100Ms Without further means this configuration would vi-
olate [constr_9001] with respect to "cN_J" due to the scheduling conditions. Since
the consumer of "x" and "Y" can interrupt the RunnableEntitys witch are produc-
ing "x" and "Y"it is not guaranteed that the value for all accesses of ASWC_J_RUN1
and ASWC_K_RUN1 returning data of the same age during one execution of Os-
Task T10MS. The ConsistencyNeeds "CN_JK" is already fulfilled since the con-
sumers "ASWC_J_RUN1" and "ASWC_K_RUNL1" can’t be interrupted by the producing
RunnableEntity ASWC_H_RUNI1

With the additional configuration RteImplicitCommunication "CN_J":
e RteVariableWriteAccessRef referencing "DWP_ASWC_H_RUN1_X_X"

e RteVariableReadAccessRef referencing "DWP_ASWC_T_RUNI1_Y_Y"

AUTOSAR

e RteCoherentAccess = true

the write accesses to "x" and "y" are in the same coherency group. Due to this
"cN_J" is fulfilled since the propagation of "x" and "y" is delayed until the termination
of ASWC_T_RUNI.

4.3.1.5.2 Explicit

The behavior of explicit reception depends on the category of the runnable and on the
configuration of the according ports.

An explicit API call can be either non-blocking or blocking. If the call is non-blocking
(i.e. there is a VvariableAccess in the dataReceivePointByValue Or dataRe—
ceivePointByArgument role referencing the variableDataPrototype for which
the APl is being generated, but no WwaitPoint referencing a DataReceivedEvent
which references the VvariableDataPrototype for which the API is being gener-
ated), the API call immediately returns the next value to be read and, if the communi-
cation is queued (event reception), it removes the data from the receiver-side queue,
see Section 4.3.1.10

[SWS_Rte_06012] | A non-blocking RTE API “read” call shall indicate if no data is
available. |(SRS_Rte 00109)

In contrast, a blocking call (i.e. the variableDataPrototype, referenced by a
VariableAccess in the role dataReceivePointByArgument, and for which the
APl is being generated, is referenced by a DataReceivedEvent which is itself refer-
enced by a waitPoint) will suspend execution of the caller until new data arrives (or
a timeout occurs) at the according port. When new data is received, the RTE resumes
the execution of the waiting runnable. ([SRS_Rte_00092])

To prevent infinite waiting, a blocking RTE API call can have a timeout applied. The RTE
monitors the timeout and if it expires without data being received returns a particular
error status.

[SWS_Rte_06013] [A blocking RTE API “read” call shall indicate the expiry of a time-
out. |(SRS_Rte _00069)

The “timeout expired” indication also indicates that no data was received before the
timeout expired.

Blocking reception of data (“wake up of wait point” receive mode as described in Sec-
tion 4.3.1.2) is only applicable for category 2 runnables whereas non-blocking reception
(“explicit data read access” receive mode) can be employed by runnables of category
2 or 1B. Neither blocking nor non-blocking explicit reception is applicable for category
1A runnable because they must not invoke functions with unknown execution time (see
table 4.10).

AUTOSAR

[SWS_Rte_06016] | The RTE API call for explicit sending (VariableAccessin the
dataSendPoint role, [SRS_Rte_00098]) shall be non-blocking. |(SRS_Rte_00098)

Using this API call, the runnable can explicitly send new values of the variableDat -
abPrototype.

Explicit writing is valid for runnables of category 1b and 2 only. Explicit writing is not al-
lowed for a category 1A runnable since these require API calls with constant execution
time (i.e. macros).

Although the API call for explicit sending is non-blocking, it is possible for a cate-
gory 2 runnable to block waiting for a notification whether the (explicit) send oper-
ation was successful. This is specified by the AcknowledgementRequest attribute
and occurs by a separate API call Rte_Feedback. If the feedback method is
‘'wake_up_of wait_point’, the runnable will block and be resumed by the RTE either
when a positive or negative acknowledgment arrives or when the timeout associated
with the WaitPoint expires.

4.3.1.5.3 Concepts of data access

Tables 4.11 and 4.12 summarize the characteristics of implicit versus explicit data re-
ception and transmission.

Implicit Read

Explicit Read

Receiving of data element values is
performed only once when runnable
starts

Runnable decides when and how often
a data element value is received

Values of data elements do not change
while runnable is running.

Runnable can always decide to receive
the latest value

Several API calls to the same signal
always yield the same data element
value

Several API calls to the same signal
may yield different data element values

Runnable must terminate (all cate-
gories)

Runnable is of cat. 1B or 2

Table 4.11: Implicit vs. explicit read

AUTOSAR

Implicit Write Explicit Write

Sending of data element values is only | Runnable can decide when sending of

done once after runnable returns data element values is done via the
API call

Several usages of the API call inside | Several usages of the API call inside
the runnable cause only one data ele- | the runnable cause several transmis-
ment transmission sions of the data element content. (De-
pending on the behavior of COM, the
number of API calls and the number
of transmissions are not necessarily
equal.)

Runnable must terminate (all cate- | Runnable is cat. 1B or 2

gories)

Table 4.12: Implicit vs. explicit write

4.3.1.6 Transmission Acknowledgement

When TransmissionAcknowledgementRequest is specified, the RTE will inform
the sending component if the data has been sent correctly or not. Note that a posi-
tive transmission acknowledgement gives no guaranty that the data is actually sent on
a physical bus nor that it has been received correctly by the corresponding receiver
AUTOSAR software-component. Instead the transmission acknowledgement just con-
firms that the data was accepted for transmission and subsequent transmissions will
not override the sent data.

[SWS_Rte_05504] [The RTE shall support the use of TransmissionAcknowl—
edgementRequest independently for each data item of an AUTOSAR software-
component’s AUTOSAR interface. | (SRS_Rte_00122)

[SWS_Rte_08076] | The RTE generator shall reject configurations violating [con-
str_3074] in System Template [8]. |(SRS_Rte 00122, SRS_Rte _00018)

[SWS_Rte_07927] | The RTE generator shall reject configurations violating [con-
str_1256] in Software Component Template [2]. | (SRS_Rte 00122, SRS_Rte 00018)

The result of the feedback can be collected using “wake up of wait point”, “explicit data

read access”, “implicit data read access” or “activation of runnable entity”.
The TransmissionAcknowledgementRequest allows to specify a time-out.

[SWS_Rte_03754] [If TransmissionAcknowledgementRequest is specified, the
RTE shall ensure that time-out monitoring is performed, regardless of the receive mode
of the acknowledgment. |(SRS_Rte_00069, SRS_Rte_00122)

For inter-ECU communication, AUTOSAR COM provides the necessary functionality,
for intra-ECU communication, the RTE has to implement the time-out monitoring.

AUTOSAR

If awaitPoint is specified to collect the acknowledgment, two time-out values have
to be specified, one for the TransmissionAcknowledgementRequest and one for
the WwaitPoint.

[SWS_Rte_03755] | The RTE generator shall reject the configuration, violating the
[constr_20833]. | (SRS_Rte _00018) The DataSendCompletedEvent associated with
the variableAccess inthe dataSendPoint role fora variableDataPrototype
shall indicate that the transmission was successful or that the transmission was not
successful. The status information about the success of the transmission shall be
available as the return value of the generated RTE API call.

[SWS_Rte_03756] | For each transmission of a VariableDataPrototype only one
acknowledgment shall be passed to the sending component by the RTE. The acknowl-
edgment indicates either that the transmission was successful or that the transmission
was not successful. |(SRS_Rte _00122)

[SWS_Rte_03757] | The status information about the success or failure of the trans-
mission shall be available as the return value of the RTE API call to retrieve the ac-
knowledgment. | (SRS _Rte 00122)

[SWS_Rte_03604] | The status information about the success or failure of the trans-
mission shall be buffered with last-is-best semantics. When a data item is sent, the
status information is reset. |(SRS_Rte 00122)

[SWS_Rte_03604] implies that once the DataSendCompletedEvent has occurred,
repeated API calls to retrieve the acknowledgment shall always return the same result
until the next data item is sent.

[SWS_Rte_03758] | If the time-out value of the TransmissionAcknowledgemen—
tRequest is 0, no time-out monitoring shall be performed. |(SRS_Rte 00069,
SRS Rte 00122)

4.3.1.7 Communication Time-out

When sender-receiver communication is performed using some physical network there
is a chance this communication may fail and the receiver does not get an update of
data (in time or at all). To allow the receiver of a data element to react appropriately
to such a condition the SW-C template allows the specification of a time-out which the
infrastructure shall monitor and indicate to the interested software components.

A data element is the actual information exchanged in case of sender-receiver commu-
nication. In the COM specification this is represented by a ComSignal. In the SW-C
template a data element is represented by the instance of a VariableDataProto-

type.

When present, the aliveTimeout attribute® enables the monitoring of the timely re-
ception of the data element with data semantics transmitted over the network.

5This attribute is called “LIVELIHOOD” in the VFB specification

AUTOSAR

[SWS_Rte_08061] [If the aliveTimeout attribute is present
the RTE shall provide the RTE COM Rx time-out callback
(Rte_COMCbkRxTOut_<sg> or Rte_COMCbkRxTOut_<sn>). |(SRS_Rte 00147)

The monitoring functionality is provided by the COM module, the RTE transports the
event of reception time-outs to software components as “data element outdated”. The
software components can either subscribe to that event (activation of runnable entity)
or get that situation passed by the implicit and explicit status information (using API
calls).

[SWS_Rte_08062] | If COM indicates a reception time-out (via RTE COM Rx time-out
callback) the RTE shall raise an event of reception time-out to software components as
“data element outdated”. |(SRS_Rte 00147)

[SWS_Rte_05021] | The RTE shall have time-out monitoring disabled for commu-
nications local to the partition, independently of the presence of aliveTimeout.
|(SRS_Rte_00147)

In such case, The RTE does not raise events of reception time-out to software compo-
nents.

Therefore the Software Component shall not rely in its functionality on the time-out
notification, because for local communication the notification will never occur. Time-out
notification is intended as pure error reporting.

[SWS_Rte_02710] | If aliveTimeout is present, and the communication is between
different partitions of the same ECU, time-out monitoring is disabled. Instead, a time-
out notification of the receiver will occur immediately, when the partition of the sender
is stopped and the last correctly received value shall be provided to the software com-
ponents. |(SRS_Rte 00147)

Therefore the Software Component shall not rely in its functionality on the time-out
notification, because for local communication the notification will never occur. Time-out
notification is intended as pure error reporting.

[SWS_Rte_03759] | If the aliveTimeout attribute is 0, no time-out monitoring shall
be performed. |(SRS_Rte 00069, SRS_Rte _00147)

[SWS_Rte_08004] | If a signal is received, even if the signal is marked as invalid, the
time-out for the same signal shall be restarted. | (SRS_Rte 00078, SRS _Rte _00147)

Note: time-out detection may already be implemented by COM. Nevertheless this is
the expected behavior towards the software components.

The time-out support (called “deadline monitoring” in COM) provided by COM has
some restrictions which have to be respected when using this mechanism. Since the
COM module is configured based on the System Description the restrictions mainly
arise from the data element to I-PDU mapping. This already has to be considered
when developing the System Description and the RTE Generator can only provide
warnings when inconsistencies are detected. Therefore the RTE Generator needs to
have access to the configuration information of COM.

AUTOSAR

In case time-out is enabled on a data element with update bit, there shall
be a separate time-out monitoring for each data element with an update bit
[SWS_Com_00292].

There shall be an |-PDU based time-out for data elements without an update bit
[SWS_Com_00290]. For all data elements without update bits within the same |-PDU,
the smallest configured time-out of the associated data elements is chosen as time-out
for the I-PDU [SWS_Com_00291]. The notification from COM to RTE is performed per
data element.

In case one data element coming from COM needs to be distributed to several
AUTOSAR software-components the AUTOSAR Software Component Template allows
to configure different aliveTimeout values at each Port. In this case the RTE has to
ensure that the time-out notifications for each port will occur according to the configured
aliveTimeout value in the NonqueuedReceiverComSpec.

[SWS_Rte_08103] | The RTE shall pass time-out notifications to the SW-Cs accord-
ing to the configured aliveTimeout values in the NonqueuedReceiverComSpec.
Depending on the configuration of the COM module following rules shall apply:

e ComSignal.ComTimeout/ComSignalGroup.ComTimeout configured to 0: No
time-out notifications shall occur.

e ComSignal.ComTimeout/ComSignalGroup.ComTimeout not configured to O
(ComSignals/ComSignalGroups With update bits): Time-out notifications shall
occur according to the greatest multiple of the ComSignal.ComTimeout/Com-
SignalGroup.ComTimeout value of the associated ComSignal/ComSignal-
Group lower than or equal to the aliveTimeout value in the Nonqueue-
dReceiverComSpec.

¢ |-PDU based time-out not equal to 0 (ComSignals/ComSignalGroups without
update bits): Time-out notifications shall occur according to the greatest multiple
of the I-PDU based time-out value lower than or equal to the aliveTimeout
value in the NonqueuedReceiverComSpec.

|(SRS_Rte_00147)

Following example illustrates how the value of the ComTimeout parameter of a Com-
Signal is derived and the time-out monitoring in RTE is performed in case one data
element coming from COM needs to be distributed to several SW-Cs.

Consider 3 SW-Cs receiving same data element with different aliveTimeout values
specified in the NonqueuedReceiverComSpec:

e SW-C1: aliveTimeout = 500ms
e SW-C2: aliveTimeout = Oms (or not specified)
e SW-C3: aliveTimeout = 1200ms

The derived ComTimeout value of the ComSignal the data element is mapped to
will be in this case 500ms. l.e. the smallest aliveTimeout value of the associated

AUTOSAR

SW-Cs (This value must be bigger or equal to the main function cycle of the COM
module).

The RTE will pass time-out notifications to the 3 SW-Cs in case of a reception time-out
indicated by COM as follows:

e SW-C1: directly
e SW-C2: no time-out notification

e SW-C3: after 500ms (i.e. the RTE has to count internally further 500ms before
notifying SW-C3)

[SWS_Rte_08104] | The RTE shall implement a replacement strategy according to
the handleTimeout Type attribute defined by the NonqueuedReceiverComSpec in
each receiving SWC:

e handleTimeoutType configured to none: SWC observes the latest received
value.

e handleTimeoutType configured to replace: SWC observes the Nonqueue-
dReceiverComSpec’s initValue.

|(SRS_Rte 00147)

Note: In the case of receiving SWCs with different handleTimeout-
Type values it's expected that the related ComSignal/ComSignalGroup has
attribute ComSignal.ComRxDataTimeoutAction/ComSignalGroup.ComRxData-
TimeoutAction equal to NONE to ensure that the RTE always has access to the
last received value.

4.3.1.8 Data Element Invalidation

The Software Component template allows to specify whether a data element, de-
fined in an AUTOSAR Interface, can be invalidated by the sender. The communication
infrastructure shall provide means to set a data element to invalid and also indicate an
invalid data element to the receiving software components. This functionality is called
“data element invalidation”. For an overview see figure 4.48.

[SWS_Rte_05024] | If the handleInvalid attribute of the InvalidationPolicy
(when present) is set to keep, replace Or externalReplacement the invalidation
support for this dataElement is enabled on sender side. The actual value used to
represent the invalid data element shall be specified in the Data Semantics part of the
data element definition defined in invalidvalue®. |(SRS_Rte 00078)

For data element invalidation, it is intended that the Rte_Invalidate () APl is used
by the software component. Nevertheless, passing the invalid value as a parameter
of the Rte_write () APl may intentionally occur. In this case, the handleInvalid

6When InvalidationPolicy is setto keep, replace Of externalReplacement but there is
no invalidvalue specified it is considered as an invalid configuration.

AUTOSAR

is only allowed to be set to the value dontInvalidate in order to avoid undesired
behaviour and additional effort in the RTE implementation (see [TPS_SWCT _01646]
and [constr_1390]).

[SWS_Rte_05032] [On receiver side the handleInvalid attribute of the associ-
ated InvalidationPolicy specifies how to handle the reception of the invalid value.
|(SRS_Rte_00078)

Data element invalidation is only supported for data elements with a swIim-
plPolicy different from ‘queued’. Configurations violating this constraint are rejected
by the RTE generator, see [SWS_Rte_06727].

[SWS_Rte_06727] [The RTE generator shall reject configurations which are violating
[constr_1219]. | (SRS _Rte_00078)

The API to set a dataElement to invalid shall be provided to the RunnableEntitys
on data element level.

In case an invalidated data element is received a software component can be notified
using the activation of runnable entity. If an invalidated data element is read by the
SW-C the invalid status shall be indicated in the status code of the API.

[SWS_Rte_08005] | If the initvalue of an unqueued data element equals the
invalidvValue and handlelInvalid is set t0 keep and the handleNever-—
Received is set to FALSE, the RTE APIs Rte_Read() and Rte_IStatus/()
shall return RTE_E_INVALID until first reception of data element. In this case
the APIs Rte_Read() and Rte_IRead() shall provide the invalidvalue.
|(SRS_Rte_00078, SRS_Rte_00184)

[SWS_Rte_08008] | If the initvalue of an unqueued data element equals
the invalidvalue and handleInvalid is set t0 keep and the handleNev-
erReceived is not defined, the RTE APIs Rte_Read() and Rte_IStatus ()
shall return RTE_E_INVALID until first reception of data element. In this case
the APIs Rte_Read() and Rte_IRead() shall provide the invalidvalue.
|(SRS_Rte_00078, SRS _Rte _00184)

[SWS_Rte_08009] | If the initvalue of an unqueued data element equals the in-
validValue and handleInvalid is setto keep and the handleNeverReceived
is set to TRUE, the RTE APIs Rte_Read() and Rte_IStatus () shall return
RTE_E_NEVER_RECEIVED until first reception of data element. In this case the APIs
Rte_Read () and Rte_IRead () shall provide the initvalue. |(SRS_Rte 00078,
SRS _Rte 00184)

[SWS_Rte_08007] | The RTE Generator shall reject configurations in which the init-
Value of an unqueued data element equals the invalidvalue and handleIn-
validis setto replace. |(SRS_Rte _00078)

[SWS_Rte_08046] | If the initvalue of an unqueued data element equals the in-
validvValue and handleInvalid is set to dontInvalidate and the handleN-
everReceived is set to FALSE, the RTE APIs Rte_Read () and Rte_IStatus ()
shall return RTE_E_OK until first reception of data element. In this case the APIs

AUTOSAR

Rte_Read () and Rte_IRead () shall provide the initvalue. |(SRS_Rte 00078,
SRS _Rte 00184)

[SWS_Rte_08047] | If the initvalue of an unqueued data element equals the in-
validvValue and handleInvalid is set to dontInvalidate and the handleN-
everReceived is not defined, the RTE APIs Rte_Read () and Rte_IStatus ()
shall return RTE_E_OK until first reception of data element. In this case the APIs
Rte_Read () and Rte_IRead () shall provide the initvalue. |(SRS_Rte 00078,
SRS Rte 00184)

[SWS_Rte_08048] | If the initVvalue of an unqueued data element equals the in-
validvValue and handleInvalid is set to dontInvalidate and the handleN-
everReceived is set to TRUE, the RTE APIs Rte_Read () and Rte_IStatus ()
shall return RTE_E_NEVER_RECEIVED until first reception of data element. In
this case the APIs Rte_Read () and Rte_IRead () shall provide the initValue.
|(SRS_Rte_00078, SRS_Rte _00184)

[SWS_Rte_08096] | If the initvalue of an unqueued data element equals
the invalidvalue and handleInvalid is set t0 externalReplacement and
the handleNeverReceived is set to FALSE, the RTE APIs Rte_Read () and
Rte_IStatus () shall return RTE_E_OK until first reception of data element. In this
case the APIs Rte_Read () and Rte_TIRead () shall provide the value sourced from
the ReceiverComSpec.replacewith. |(SRS_Rte 00078, SRS Rte 00184)

[SWS_Rte_08097] | If the initvalue of an unqueued data element equals
the invalidvalue and handleInvalid is set t0 externalReplacement and
the handleNeverReceived is not defined, the RTE APIs Rte_Read() and
Rte_TIStatus () shall return RTE_E_OK until first reception of data element. In this
case the APIs Rte_Read () and Rte_IRead () shall provide the value sourced from
the ReceiverComSpec.replaceWith. |(SRS_Rte 00078, SRS_Rte 00184)

[SWS_Rte_08098] | If the initvalue of an unqueued data element equals
the invalidvalue and handleInvalid is set {0 externalReplacement and
the handleNeverReceived is set to TRUE, the RTE APIs Rte_Read() and
Rte_TIStatus () shall return RTE_E_NEVER_RECEIVED until first reception of data
element. In this case the APIs Rte_Read () and Rte_IRead () shall provide
the value sourced from the ReceiverComSpec.replaceWith. |(SRS_Rte 00078,
SRS Rte 00184)

4.3.1.8.1 Data Element Invalidation in case of Inter-ECU communication

Sender:
If data element invalidation is enabled and the communication is Inter-ECU:
e explicit data transmission:

— data transformation for this communication enabled: data element invalida-
tion will be performed by RTE.

AUTOSAR

— no data transformation enabled: data element invalidation will be performed
by COM (COM needs to be configured properly).

e implicit data transmission: the RTE is responsible for flagging the implicit buffer
in the case of invalidation. An implicit valid transmission may occur before the
write back at the end of the task, resetting the invalidation flag. The actual data
element invalidation after runnable termination is done in COM.

Receiver:

If data element invalidation is enabled and the communication is Inter-ECU
and:

e if all receiving software components requesting the same value for handleIn-
valid attribute of the InvalidationPolicy associated to one dataElement
and no data transformation is configured for the communication:
data element invalidation will be performed by COM (COM needs to be configured
properly), see [SWS_Rte 05026], [SWS_Rte 05048].

e if the receiving software components requesting different values for handleIn-
valid attribute of the InvalidationPolicy associated to one dataElement
or data transformation is configured for the communication:
data element invalidation will be performed by RTE, see [SWS_Rte_07031],
[SWS_Rte 070832]. This can occur in case of 1:n communication where for one
connector a VariableAndParameterInterfaceMapping is applied to two
SenderReceiverInterfaces with different InvalidationPolicys for the
mapped VariableDataPrototype.

[SWS_Rte_05026] | If a data element has been received invalidated in case of Inter-
ECU communication and the attribute handleInvalidis setto keep for all receiving
software components and no data transformation is configured for the communication
— the query of the value shall return the value provided by COM together with an indi-
cation of the invalid case. |(SRS_Rte _00078)

[SWS_Rte_08405] [In case of Inter-ECU communication with the attribute han-
dleInvalid set to keep for all receiving software components, the RTE shall
raise a DataReceiveErrorEvent in case of reception of a data element invalid.
|(SRS_Rte_00078)

[SWS_Rte_05048] | If a data element has been received invalidated in case of Inter-
ECU communication and the attribute handleInvalid is set to replace for all re-
ceiving software components — the query of the value shall return the initvalue
(ComDataInvalidAction is REPLACE [SWS_Com_00314]). |(SRS_Rte _00078)

[SWS_Rte_08406] | In case of Inter-ECU communication with the attribute han-
dleInvalid set to replace for all receiving software components, in case of re-
ception of a data element invalid, the RTE shall raise a DataReceivedEvent as if a
valid value would have been received. |(SRS_Rte _00078)

[SWS_Rte_07031] | If a data element has been invalidated in case of Inter-ECU com-
munication where receiving software components requesting different values for han-

AUTOSAR

dleInvalid andthe attribute handleInvalidis setto keep for a particular r-port
— the query of the value shall return for the r-port the same value as if COM would
have handled the invalidation (copy COM behavior). |(SRS_Rte_00078)

[SWS_Rte_08407] | In case of Inter-ECU communication where receiving software
components requesting different values for the attribute handleInvalid and this at-
tribute is set to keep for a particular R-Port, in case of reception of a data element
invalid, the RTE shall raise a DataReceiveErrorEvent. |(SRS_Rte _00078)

[SWS_Rte_07032] | If a data element has been received invalidated in case of Inter-
ECU communication where receiving software components requesting different val-
ues for handleInvalid and the attribute handleInvalid is setto replace for an
particular r-port — RTE shall perform the "invalid value substitution" with the init-
Value for the r-port. Then the reception will be handled as if a valid value would
have been received (activation of runnable entities using the DataReceivedEvent).
|(SRS_Rte_00078)

[SWS_Rte_08049] | If a data element has been received invalidated in case of Inter-
ECU communication and the attribute handleInvalidis setto dontInvalidate —
the query of the value shall return the value provided by COM. Then the reception will
be handled as if a valid value would have been received (activation of runnable entities
using the DataReceivedEvent). |(SRS_Rte _00078)

[SWS_Rte_08099] | If a data element has been received invalidated in case of Inter-
ECU communication and the attribute handleInvalidis setto externalReplace-
ment for all receiving software components — the query of the value shall return the
value sourced from the ReceiverComSpec.replaceWith (e.g. constant, NVRAM
parameter). |(SRS_Rte_00078)

[SWS_Rte_08100] | In case of Inter-ECU communication with the attribute han-
dleInvalid set to externalReplacement for all receiving software components,
in case of reception of a data element invalid, the RTE shall raise a DataReceivedE—
vent as if a valid value would have been received. |(SRS_Rte_00078)

[SWS_Rte_08101] | If a data element has been received invalidated in case of Inter-
ECU communication where receiving software components requesting different values
forhandleInvalid andthe attribute handleInvalidissetto externalReplace-
ment for an particular r-port — RTE shall perform the "invalid value substitution" with
the value sourced from the ReceiverComSpec.replaceWith for the r-port. Then
the reception will be handled as if a valid value would have been received (activation
of runnable entities using the DataReceivedEvent). |(SRS_Rte 00078)

4.3.1.8.2 Data Element Invalidation in case of Intra-ECU communication

Sender:

AUTOSAR

[SWS_Rte_05025] | If data element invalidation is enabled, and the com-
munication is Intra-ECU, data element invalidation shall be implemented by the RTE.
|(SRS_Rte_00078)

The actual invalid value is specified in the SW-C template invalidvalue.
Receiver:

[SWS_Rte_05030] | If a data element has been invalidated in case of Intra-ECU com-
munication and the attribute handleInvalid is set to keep — the query of the value
shall return the same value as if COM would have handled the invalidation (copy COM
behavior). Then the reception of the invalid value will be handled as an error and the ac-
tivation of runnable entities can be performed using the DataReceiveErrorEvent.
|(SRS_Rte_00078)

[SWS_Rte_05049] | If a data element has been received invalidated in case of Intra-
ECU communication and the attribute handleInvalidis setto replace — RTE shall
perform the "invalid value substitution" with the initvalue. Then the reception will
be handled as if a valid value would have been received (activation of runnable entities
using the DataReceivedEvent). |(SRS_Rte _00078)

[SWS_Rte_08050] | If a data element has been received invalidated in case of Intra-
ECU communication and the attribute handleInvalid is set to dontInvalidate
— the query of the value shall return the received value. Then the reception will be
handled as if a valid value would have been received (activation of runnable entities
using the DataReceivedEvent). |(SRS_Rte 00078)

[SWS_Rte_02308] | If data invalidation is enabled for a composite VariableDat-
aPrototype, and the communication is Intra-ECU, the RTE shall invalidate all invali-
dateable primitive elements of the variableDataPrototype. |()

[SWS_Rte_02309] [The RTE generator shall reject configurations which are violating
[constr_1302]. | (SRS _Rte_00078)

[SWS_Rte_08102] | If a data element has been received invalidated in case of Intra-
ECU communication and the attribute handleInvalidis setto externalReplace-
ment — RTE shall perform the "invalid value substitution" with the value sourced from
the ReceiverComSpec.replaceWith (e.g. constant, NVRAM parameter). Then the
reception will be handled as if a valid value would have been received (activation of
runnable entities using the DataReceivedEvent). |(SRS_Rte 00078)

4.3.1.9 Filters

By means of the filter attribute [SRS_Rte 00121] an additional filter layer can be
added on the receiver side of unqueued S/R-Communication. Value-based filters can
be defined, i.e. only signal values fulfilling certain conditions are made available for the
receiving component. The possible filter algorithms are taken from OSEK COM version
3.0.2. They are listed in the meta model (see [2]. According to the SW-C template [2],
filters are only allowed for signals that are compatible to C language unsigned integer

AUTOSAR

types (i.e. characters, unsigned integers and enumerations). Thus, filters cannot be
applied to composite data types like for instance ApplicationRecordDataType Or
ApplicationArrayDataType.

[SWS_Rte_05503] | The RTE shall provide value-based filters on the receiver-
side of unqueued S/R-Communication as specified in the SW-C template [2].
|(SRS_Rte_00121)

[SWS_Rte_05500] | For inter-ECU communication, the filter implementation is per-
formed/done by the COM module. For intra-ECU and inter-Partition communication,
the RTE shall perform the filtering itself. | (SRS_Rte 00019, SRS_Rte 00121)

[SWS_Rte_05501] [The RTE shall support a different filter specification for each
dataElement in a component’s AUTOSAR interface. | (SRS_Rte 00121)

[SWS_Rte_08077] | In case that filtering applies the input value shall be calculated
from the "unfiltered buffer" before the RunnableEnt ity starts, the result of the filter
calculation shall be stored in a "filtered buffer" and the RunnableEntity accessing
a datakElement in a Receiver Port with a filter shall get access to the "filtered buffer"
instead of the "unfiltered buffer". | (SRS_Rte _00121)

[SWS_Rte_08078] | For optimization reasons no "filtered buffer" should be provided,
if filtering applies for a datakElement and the "unfiltered buffer" is not used at all. The
"unfiltered buffer" should be used for filtering instead. |(SRS_Rte_00121)

[SWS_Rte_08079] | Separate "filtered buffers" shall be provided, if the same
dataElement is accessed by RunnableEntitys via different Receiver Ports and
filters with different semantics are applied in each Port. |(SRS_Rte_00121)

4.3.1.10 Buffering

[SWS_Rte_02515] | The buffering of sender-receiver communication shall be done
on the receiver side. This does not imply that COM does no buffering on the sender
side. On the receiver side, two different approaches are taken for the buffering of
‘data’ and of ‘events’, depending on the value of the software implementation policy.
| (SRS_Rte_00110)

4.3.1.10.1 Last-is-Best-Semantics for ‘data’ Reception

[SWS_Rte_02516] | On the receiver side, the buffering of ‘data’ (swImplPolicy not
queued) shall be realized by the RTE by a single data set for each data element
instance. |(SRS_Rte_00107)

The use of a single data set provides the required semantics of a single element queue
with overwrite semantics (new data replaces old). Since the RTE is required to ensure
data consistency, the generated RTE should ensure that non-atomic reads and writes

AUTOSAR

of the data set (e.g. for composite data types) are protected from conflicting concurrent
access. RTE may use lower layers like COM to implement the buffer.

[SWS_Rte_02517] | The RTE shall initialize this data set [SWS_Rte_02516] with a
startup value depending on the ports attributes and if the general initialization condi-
tions in [SWS_Rte_07046] are fulfilled. |(SRS_Rte_00068, SRS_Rte_00108)

[SWS_Rte_02518] | Implicit or explicit read access shall always return the last re-
ceived data. | (SRS_Rte _00107)

Requirement [SWS_Rte_02518] applies whether or not there is a DataReceivedE-
vent referencing the variableDataPrototype for which the APl is being gener-
ated.

[SWS_Rte_02519] | Explicit read access shall be non blocking in the sense that it
does not wait for new data to arrive. The RTE shall provide mutual exclusion of read
and write accesses to this data, e.g., by ExclusiveAreas. |(SRS_Rte _00109)

[SWS_Rte_02520] | When new data is received, the RTE shall silently discard the pre-
vious value of the data, regardless of whether it was read or not. |(SRS_Rte 00107)

4.3.1.10.2 Queueing for ‘event’ Reception

The application of event semantics implies a state change. Events usually have
to be handled. In many cases, a loss of events can not be tolerated. Hence the
swIimplPolicy is set to queued to indicate that the received ‘events’ have to be
buffered in a queue.

[SWS_Rte_02521] | The RTE shall implement a receive queue for each event-like data
element (swImplPolicy = queued) of a receive port. | (SRS_Rte 00107)

The queuelLength attribute of the QueuedReceiverComSpec referencing the event
assigns a constant length to the receive queue.

[SWS_Rte_02522] | The events shall be written to the end of the queue and
read (consuming) from the front of the queue (i.e. the queue is first-in-first-out).
|(SRS_Rte 00107, SRS_Rte _00110)

[SWS_Rte_02523] | If a new event is received when the queue is already filled,
the RTE shall discard the received event and set an error flag. |(SRS_Rte_00107,
SRS Rte 00110)

[SWS_Rte_02524] [The error flag described in [SWS_Rte_02523] shall be reset
during the next explicit read access on the queue. In this case, the status value
RTE_E_LOST_DATA shall be presented to the application together with the data.
|(SRS_Rte_00107, SRS_Rte_00110, SRS_Rte_00094)

[SWS_Rte_02525] | If an empty queue is polled, the RTE shall return with a sta-
tus RTE_E_NO_DATA to the polling function, (see chap. 5.5.1). |(SRS_Rte 00107,
SRS _Rte 00110, SRS _Rte _00094)

AUTOSAR

The minimum size of the queue is 1.

[SWS_Rte_02526] | The RTE generator shall reject a queuelLength attribute of
an QueuedReceiverComSpec Wwith a queue length < 0. |(SRS_Rte 00110,
SRS_Rte _00018)

4.3.1.10.3 Queueing of mode switches

The communication of mode switch notifications is typically event driven. Ac-
cordingly, RTE offers a similar queueing mechanism as for the ’‘queued’ sender receiver
communication, described above.

[SWS_Rte_02718] [The RTE shall implement a receive queue for the mode switch
notifications of each mode machine instance. |(SRS_Rte_00107)

The queuelLength attribute of the ModeSwitchSenderComSpec referencing the
mode machine instance, assigns a constant length to the receive queue. In con-
trast to the event communication, for mode switch communication, the length is asso-
ciated with the sender side, the mode manager, because it is unique for the mode
machine instance.

[SWS_Rte_02719] | The mode switch notification shall be written to the end
of the queue and read (consuming) from the front of the queue (i.e. the queue is
first-in-first-out). | (SRS_Rte_00107, SRS_Rte_00110)

[SWS_Rte_02720] | If a new mode switch notification is received when
the queue is already filled, the RTE shall discard the received notification.
|(SRS_Rte_00107, SRS_Rte_00110) In this case, Rte_switch will return an error,
see [SWS_Rte_02675].

[SWS_Rte_02721] [RTE shall dequeue a mode switch notification, when the
mode switch is completed. | (SRS_Rte 00107, SRS_Rte 00110, SRS_Rte _00094)

The minimum size of the queue is 1.

[SWS_Rte_02723] | The RTE generator shall reject a queuelLength attribute of
an ModeSwitchSenderComSpec with a queue length < 0. |[(SRS_Rte 00110,
SRS_Rte _00018)

In case of a queue length of 1, RTE will reject new mode switch notifications during the
mode transition.

AUTOSAR

4.3.1.11 Operation
4.3.1.11.1 Inter-ECU Mapping

This section describes the mapping from VvariableDataPrototypesto COM signals
or COM signal groups for sender-receiver communication. The mapping is described in
the input of the RTE generator, in the DataMapping section of the System Template [8].

If a variableDataPrototype is mapped to a COM signal or COM signal group but
the communication is local, the RTE generator can use the COM signal/COM signal
group for the transmission or it can use its own direct implementation of the communi-
cation for the transmission.

4.3.1.11.1.1 Primitive Data Types

[SWS_Rte_04504] | If a data element is a primitive type and the communication is
inter-ECU, the DataMappings element shall contain a mapping of the data element to
at least one COM signal, else the missing data mapping shall be interpreted as an
unconnected port. |(SRS_Rte_00091)

The mapping defines all aspects of the signal necessary to configure the communi-
cation service, for example, the network signal endianess and the communication bus
either by the COM configuration or the configured data transformation. The RTE gen-
erator only requires the COM signal handle id since this is necessary for invoking the
COM API and the configuration of the data transformation to execute it.

[SWS_Rte_04505] [The RTE shall use the ComHand1leId of the corresponding Com-
Signal when invoking the COM API for signal. |(SRS_Rte 00091)

The actual COM handle id has to be gathered from the ECU configuration of the COM
module. The input information ComSignalHandleId is used to establish the link
between the ComSignal of the COM module’s configuration and the corresponding
ISignal of the System Template.

4.3.1.11.1.2 Composite Data Types

When a data prototype has a composite data type the RTE must marshall the data.
This can be achieved by two means: Explicit mapping the atomic sub-elements of the
composite type to their own COM signals or mapping of the whole composite type to
one COM signal if data transformation is used.

The DataMappings element of the ECU configuration and configuration of the data
transformer contain (or references) sufficient information to allow the data item or op-
eration parameters to be transmitted by indicating the COM signals or signal groups to
be used. It is not necessary to provide a mapping for each primitive typed leaf element
within the composite type.

AUTOSAR

[SWS_Rte_03863] | The RTE generator shall support the partial mapping to System-
Signals of the leaf elements of a VariableDataPrototype (typed by a composite data
type) in a PPort. | (SRS _Rte _00091)

A partial mapping means that a subset of the composite data type’s leaf elements are
mapped to SystemSignals in the relevant SystemSignalGroup (e. g. a record with
leaf elements A, B, C, D where only B and C are mapped to SystemSignals of the
SystemSignalGroup). Elements omitted from the partial mapping are simply ignored
by the RTE generator.

For RPorts it is necessary to define how the RTE generator handles the partial mapping
of a composite data type, in particular, how elements omitted from the mapping are
treated.

[SWS_Rte_03864] | For the included element of a partial mapping from SystemSig-
nals to the leaf elements of a VariableDataPrototype (typed by a composite data type)
in a RPort the RTE generator shall use the data provided by COM. | (SRS_Rte 00091)

[SWS_Rte_03865] | For the omitted elements from a partial mapping from SystemSig-
nals to the leaf elements of a VariableDataPrototype (typed by a composite data type)
in a RPort the RTE generator shall use the initial value when receiving the composite
data type. |(SRS_Rte _00091)

[SWS_Rte_08793] | If a data element is a composite data type, the communication
is inter-ECU and data transformation is used (except COM Based Transformer), the
DataMapping element shall map the composite data type directly to one COM signal
to use the data transformation. |(SRS_Rte 00091, SRS_Rte _00247)

The above requirements for mapping atomic sub-elements for them own to distinct
COM signals have two key features; firstly, COM is responsible for endianness con-
version (if any is required) of primitive types and, secondly, differing structure member
alignment between sender and receiver is irrelevant since the COM signals are packed
into I-PDUs by the COM configuration.

The DataMappings shall contain sufficient COM signals to map each primitive element’
of the AUTOSAR signal.

The above requirements for mapping the whole composite data type to one COM signal
on the other hand leaves those features to the data transformation.

[SWS_Rte_04508] | The RTE generator shall reject configuration violating the con-
straint [constr_3059]. | (SRS _Rte _00091)

[SWS_Rte_02557] |

1. Each signal that is mapped to an element of the same composite data item shall
be mapped to the same signal group.

7An AUTOSAR signal that is a primitive data type contains exactly one primitive element whereas a
signal that is a composite data type one or more primitive elements.

AUTOSAR

2. If two signals are not mapped to an element of the same composite data item,
they shall not be mapped to the same signal group.

3. If a signal is not mapped to an element of a composite data item, it shall not be
mapped to a signal group.

|(SRS_Rte_00091)

[SWS_Rte_05081] [The RTE shall use the ComHand1leId of the corresponding Com—
SignalGroup when invoking the COM API for signal groups. This also applies for
the array based signal group access with the Com_SendSignalGroupArray () and
Com_ReceiveSignalGroupArray (). |(SRS_Rte 00091)

[SWS_Rte_05173] [The RTE shall use the ComHand1leId of the corresponding Com—
GroupSignal when invoking the COM API for shadow signals. |(SRS_Rte _00091)

The actual COM handle id has to be gathered from the ECU configuration of the COM
module. The input information ComHandleId is used to establish the link between the
ComSignalGroup of the COM module’s configuration and the corresponding ISig-
nalGroup of the System Template.

The input information ComHandleId of shadow signals is used to establish the link be-
tween the ComGroupSignal of the COM module’s configuration and the correspond-
ing Isignal of the System Template.

4.3.1.11.2 Atomicity

[SWS_Rte_04527] | The RTE is required to treat AUTOSAR signals transmitted using
sender-receiver communication atomically [SRS_Rte_00073]. To achieve this

e either the “signal group” mechanisms provided by COM shall be utilized. See
[SWS_Rte_02557] for the mapping.

e or the “Data Transformation” approach (see section 4.10) shall be utilized.
|(SRS_Rte_00019, SRS_Rte 00073, SRS_Rte _00091)

The RTE decomposes the composite data type into single signals as de-
scribed above and passes them to the COM module by using the COM API
call Com_SendSignal (if parameter RteUseComShadowSignalApi IS FALSE) or
Com_UpdateShadowSignal (if parameter RteUseComShadowSignalApi iS TRUE).
As this set of single signals has to be treated as atomic, it is placed in a “signal group”.
A signal group has to be placed always in a single I-PDU. Thus, atomicity is estab-
lished. When all signals have been updated, the RTE initiates transmission of the
signal group by using the COM API call Com_SendSignalGroup.

As would be expected, the receiver side is the exact reverse of the transmission
side: the RTE must first call Com_ReceiveSignalGroup precisely once for the sig-
nal group and then call Com_ReceiveSignal (if parameter RteUseComShadowSig-

AUTOSAR

nalApi is FALSE) Or Com_ReceiveShadowSignal (if parameter RteUseComShad-
owSignalApi iS TRUE) to extract the value of each signal within the signal group.

A signal group has the additional property that COM guarantees to inform the receiver
by invoking a call-back about its arrival only after all signals belonging to the signal
group have been unpacked into a shadow buffer.

The Data Transformation approach is described in section 4.10.

4.3.1.11.3 Fan-out

Fan-out can be divided into two scenarios; PDU fanout where the same |[-PDU is sent
to multiple destinations and signal fan-out where the same signal, i.e. data element is
sent in different I-PDUs to multiple receivers.

For Inter-ECU communication, the RTE does not perform PDU fan-out. Instead, the
RTE invokes Com_SendSignal once for a primitive data element or for transformed
data and expects the fan-out to multiple PDU destinations to occur lower down in the
AUTOSAR communication stack. However, it is necessary for the RTE to support
signal fan-out since this cannot be performed by any lower level layer of the AUTOSAR
communication stack.

The data mapping in the System Template[8] is based on the SystemSignal and
SystemSignalGroup. The COM module however uses the I1Signal and ISignal-
Group counterparts (ComSignal, ComSignalGroup, ComGroupSignal) to define
the COM API. The RTE Generator needs to identify whether there are several 1sig-
nal or ISignalGroup elements defined for the SystemSignal or SystemSignal-—
Group and implement the fan-out accordingly. Then the corresponding elements in
the COM ecu configuration (ComSignal, ComSignalGroup, ComGroupSignal) are
required to establish the interaction between Rte and COM.

With the usage of “Data Transformation” a mixture of different serialization technologies
for signal fan-out in the RTE can be used. This is determined by the ISignal or
ISignalGroup association to DataTransformation.

[SWS_Rte_06023] | For inter-ECU transmission of a primitive data type, the RTE shall
perform for each 1Signal to which the primitive data element is mapped

e the transformation if the 1signal references a TransformationTechnology
¢ the invocation of Com_SendSignal
|(SRS_Rte_00019, SRS_Rte 00028, SRS _Rte _00247)

For the invocation the ComHandleId fromthe ComSignal of COM’s ecu configuration
shall be used (see [SWS_Rte 04505]).

AUTOSAR

If the data element is typed by a composite data type several scenarios shall to be
considered for each of the signal fan-out based on the ISignal or ISignalGroup
association to DataTransformation:

e no “Data Transformation”: RTE invokes Com_SendSignal (if parameter
RteUseComShadowSignalApi IS FALSE) Or Com_UpdateShadowSignal (if
parameter RteUseComShadowSignalApi is TRUE) for each primitive element
(Isignal) in the composite data type and each COM signal to which that primi-
tive element is mapped, and Com_SendSignalGroup for each ISignalGroup
that does not require a “Data Transformation” to which the data element is
mapped.

e “Data Transformation” without COM Based Transformer: RTE performs the trans-
formation and then invokes Com_SendSignal for each I1Signal that has the
dataTransformation association to the DataTransformation defined.

e “Data Transformation” with COM Based Transformer: RTE performs the trans-
formation and then invokes Com_SendSignalGroupArray for each I1Signal-
Group that has the comBasedSignalGroupTransformation association to
the DataTransformation defined.

Note:
It is also possible to configure the system to use multiple of these scenarios at the
same time. Then the RTE executes all configured scenarios.

[SWS_Rte_04526] Inter-ECU transmission of composite data without Data Trans-
formation | For inter-ECU transmission of composite data type where

e a SenderReceiverToSignalGroupMapping to the VvariableDataProto-
type is defined

e and the respective ISignalGroup has no comBasedSignalGroupTrans-—
formation defined

the RTE shall invoke Com_SendSignal (if parameter RteUseComShadowSignalApi
IS FALSE) or Com_UpdateShadowSignal (if parameter RteUseComShadowSig-
nalApi is TRUE) for each ISignal to which an element in the composite data type
is mapped and Com_SendSignalGroup for each 1signalGroup to which the com-
posite data element is mapped. | (SRS _Rte 00019, SRS Rte _00028)

For the invocation the ComHandleId from the ComGroupSignal and ComSig-
nalGroup of COM’s ecu configuration shall be used (see [SWS_Rte 05173] and
[SWS_Rte 05081]).

[SWS_Rte_08586] Inter-ECU transmission of composite data with COM Based
Data Transformation | For inter-ECU transmission of composite data type where

e a SenderReceiverToSignalGroupMapping to the VariableDataProto-
type is defined

e and the respective TSignalGroup has a comBasedSignalGroupTransfor-
mat ion reference defined

AUTOSAR

the RTE shall perform the transformation and then invoke
Com_SendSignalGroupArray for the ISignalGroup to which the composite
data type is mapped. |(SRS_Rte 00019, SRS_Rte 00028, SRS _Rte 00251)

For the invocation the ComHandleId from the ComSignalGroup of COM’s ecu con-
figuration shall be used (see [SWS_Rte 05081]).

[SWS_Rte_08587] Inter-ECU transmission of composite data with Data Transfor-
mation | For inter-ECU transmission of composite data type where

e A SenderReceiverToSignalMapping to the VariableDataPrototype is
defined

e and the respective ISignal has a dataTransformation reference defined

the RTE shall perform the transformation and then invoke Com_SendSignal for
the Isignal to which composite data type is mapped. |(SRS_Rte 00019,
SRS _Rte 00028, SRS _Rte 00247)

Note:

A systemSignal can be added to a SystemSignalGroup in the role transform-
ingSystemSignal to support the configuration where a complex data element is
transferred via Sender/Receiver communication both using transformation and tradi-
tional mapping of RTE and COM.

For the invocation the ComHandle1d from the ComSignal of COM'’s ecu configuration
shall be used (see [SWS_Rte_04505]).

For intra-ECU transmission of data elements, the situation is slightly different; the RTE
handles the communication (the lower layers of the AUTOSAR communication stack
are not used) and therefore must ensure that the data elements are routed to all re-
ceivers. For inter—-partition communication, RTE may use the IOC.

[SWS_Rte_06024] [For inter-partition transmission of data elements, the RTE
shall perform the fan-out to each receiver. |(SRS_Rte 00019, SRS _Rte _00028)

4.3.1.11.4 Fan-in

When receiving data from multiple senders in inter-ECU communication, either the
RTE on the receiver side has to collect data received in different COM signals or COM
signal groups and pass it to one receiver or the RTE on the sender side has to pro-
vide shared access to a COM signal or COM signal group to multiple senders. The
receiver RTE, which has to handle multiple COM signals or signal groups, is notified
about incoming data for each COM signal or COM signal group separately but has
to ensure data consistency when passing the data to the receiver. The sender RTE,
which has to handle multiple senders sharing COM signals or signal groups, has to
ensure consistent access to the COM API, since COM API calls for the same signal
are not reentrant.

AUTOSAR

[SWS_Rte_03760] | If multiple senders use different COM signals or signal groups
for inter-ECU transmission of a data element prototype with swImplPolicy different
from queued to a receiver, the RTE on the receiver side has to pass the last received
value to the receiver component while ensuring data consistency. |(SRS_Rte 00019,
SRS _Rte _00131)

[SWS_Rte_03761] | If multiple senders use different COM signals or signal groups
for inter-ECU transmission of a data element prototype with event semanticsto a
receiver, the RTE on the receiver side has to queue all incoming values while ensuring
data consistency. |(SRS_Rte 00019, SRS _Rte 00131)

[SWS_Rte_03762] | If multiple senders share COM signals or signal groups for inter-
ECU transmission of a data element prototype to a receiver, the RTE on the sender
side shall ensure that the COM API for those signals is not invoked concurrently.
|(SRS_Rte 00019, SRS _Rte 00131)

4.3.1.11.5 Sequence diagrams of Sender Receiver communication

Figure 4.39 shows a sequence diagram of how Sender Receiver communication for
data transmission and non-blocking reception may be implemented by RTE. The se-
guence diagram also shows the Rte_Read API behavior if an initvalue is specified.

In case the COM Based Transformer [23] is used the sequence in fig-
ure 4.39 is the same, but Com_SendSignalGroupArray () is used instead of
Com_SendSignal () and Com_ReceiveSignalGroupArray () is used instead of
Com_ReceiveSignal ().

AUTOSAR

Sender Sender's Sender's Sender's COM Receiver's Receiver's Receiver
Application Transformer Transformer Network Receiver's Transformer Transformer application
COM

(1) The initValue is
stored in the RTE buffer
allocated for data item
a.

]

(2) The buffer for data
item a is copied to the
receiver's OUT
parameter.

RTE_E_OK()

Rte_Write_p_a(),
L Xfrm_<name>()

(3) init value is
stored in the

receiver's OUT
(4) The data element is parameter.
transformed to an array

and transferred to the

|

| T |
| | _Rte_Read_p_a() |
| Bl

|

|
|
|
|
|
|
|
| [l
COM stack : :
| | |
> | |
| |
__________________ | |
| |
| T | |
RTE_E_OK() | | | |
<-—-=-—-- | | | —B
- - | | |
L (6) RTE receives the data
: : ! RtefCOM?bk7<sn>() ! item a from COM and
| | (5) The received data item is | replace the previous
| | copied to the COM buffer for data Com_ReceiveSignal() value in the RTE buffer
| | item a and the notification []d | for data item a.
| | callback provided by RTE is [Ll Note! The callback must
! ! invoked. E CI)K() | block the RTERead_p_a
: : ————————— B S
| | |
| | |
I I STt T I
| |
| |
| |
| |
| |
| |
| |
1

Inter-ECU communication
Explicit Sender-Receiver communication:

Port name = p

Data element name = a

VariableDataPrototype with a standard swImplPolicy (Data distribution)
The sender VariableDataPrototype is referenced by a VariableAccess in
role dataSendPoint

The receiver VariableDataPrototype is referenced by a VariableAccess in
role dataReceivePointByArgument

(7) The received data in the
buffer are retransformed. | | |- -2 =—="Y =
The result is copied to the
receiver's OUT buffer

RTE_E_OK()

parameter.

(9) The last received

data item a is stored
in the receiver's OUT
parameter

|

Figure 4.39: Sender Receiver communication with data semantics and dataReceive-
PointByArgument as reception mechanism

AUTOSAR

Figure 4.40 shows a sequence diagram of how Sender Receiver communication for
event transmission and non-blocking reception may be implemented by RTE. The se-
guence diagram shows the Rte_Receive APl behavior when the queue is empty.

In case the COM Based Transformer [23] is used the sequence in fig-
ure 4.40 is the same, but Com_SendSignalGroupArray () is used instead of
Com_SendSignal () and Com_ReceiveSignalGroupArray () is used instead of
Com_ReceiveSignal ().

AUTOSAR

Sender Sender'sRTE Sender's Sender's COM Receiver's Receiver's RTE Receiver
Application Transformer Netwok Receiver's Transformer application
COM

T T
| |
|
(1) The RTE -

queue for event
p_e is initialized
(flushed).

Rte_Receive_p_e()

(2) The RTE - queue for event p_e
is empty => RTE_E_NO_DATA is
returned to Receiver application. RTE_E_NO_DATA

Rte_Send_p_e()

T
|
I
|
I
|
|
I
|
I
|
|
I
I
I
|
I
I
I
|
)

Xfrm_<name>(

1
Com_SendSignal()

RTE_E_OK()

Rte_COMCbk_<sn>()
t

|
Com_RecéiveSignaI()

(4) RTE receives the event
item e from COM and puts
it into the RTE - queue for
evente.

(3) The receiver's COM
invokes the callback []‘
function provided by RTE.]

<] !

Rte_Receive_p_e():

N

Xf'rm_lnv_<name>()

(5) RTE fetches an event
from the event e queue,
retransforms and copies it
to the Receiver's OUT

parameter.

RTE_E_OK()

]
e |

(6) The received
event item a is
stored in the
receiver's OUT
parameter

Inter-ECU communication

Explicit Sender-Receiver communication:

Port name = p

Data element name = e

VariableDataPrototype with a queued swImplPolicy (Event distribution)

The sender VariableDataPrototype is referenced by a VariableAccess in role dataSendPoint

The receiver VariableDataPrototype is referenced by a VariableAccess in role dataReceivePointByArgument
No WaitPoint is referencing the DataReceivedEvent that references the VariableDataPrototype (non-blocking
reception)

Figure 4.40: Sender Receiver communication with event semantics and dataReceive-
PointByArgument as reception mechanism

AUTOSAR

Figure 4.41 shows a sequence diagram of how Sender Receiver communication for
event transmission and activation of runnable entity on the receiver side may be imple-
mented by RTE.

In case the COM Based Transformer [23] is used the sequence in fig-
ure 4.41 is the same, but Com_SendSignalGroupArray () is used instead of
Com_SendSignal () and Com_ReceiveSignalGroupArray () is used instead of
Com_ReceiveSignal ().

Sender Sender'sRTE Sender's Sender's COM Receiver's Receiver's RTE Receiver runnable
Application Transformer Netwok Receiver's Transformer
COM
T T T T T
Rte_Send_p_e			
Xfrm_<name>()			
< ------ I I			
Com_SendSignal()			
T			
E_OK()			
<--—-—-—--- T I			
RTE_E_OK() :			

Rte_COMCbk_<sn>()
|

]
Com_ReceiveSignal()

(2) RTE receives the event
item e from COM and

] puts it into the RTE -
queue for event e.

(1) The receiver's COM
invokes the callback
function provided by RTE. EI‘

]—

|
Activate an OSEK Task()
|

_________ [

I ReceiversRunnable()

—_————e e e e e e e — —]
S
m
o
2

(3) The AUTOSAR OS

Inter-ECU communication
Port name = p
Data element name = e

dataSendPoint

VariableDataPrototype with a queued swimplPolicy (Event distribution)
The sender VariableDataPrototype is referenced by a VariableAccess in role

The receiver VariableDataPrototype is referenced by a DataReceivedEvent
which in turn references the receiver RunnableEntity.

task that will execute
the receiver's runnable
is started.

(4) RTE fetches an event
from the event e queue
and calls the receiver's
runnable.

(5) The task is
completed

Figure 4.41: Sender Receiver communication with event semantics and activation of
runnable entity as reception mechanism

AUTOSAR

Figure 4.42 shows a sequence diagram of how Sender Receiver communication for
data transmission and non-blocking reception may be implemented by RTE when using
LdCom.

Sender Sender's RTE Sender Sender's LdCom Reciever Receiver's RTE Receiver
Application Transformer and -Netwok- Transformer and Application
Detransformer Receiver's LdCom Detransformer

| Rte_Wite_p_a(Q _ |

opt Transformer /

(1) RTE transforms all data
elements into a byte array

T

|

|

|

|

|

|

|

|

|

|

(2) RTE calls LdCom_Transmit for the transformed| :
byte array. In case LdComApiType == |
LDCOM_TP the RTE buffer is now locked. |
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
RTE_E_OK() | |
< -—--——--"7 | | |
Ll | | |
| | | |
alt LdComApiType of LdComlPdu/: : : :
[LdComApiType == LDCOM_TP] | | | |
| | | |
Rte_Write_p_a) _ | : :
| |
| |
| |
the buffer is locked ! ! !
| Rte_LdComCbkStartOfReception_<sn>() :BufReq_RetwmnType
| T L (4) The Receiver's RTI
| BUFREQ_OK() buffer is locked
e Fo—————————
| |
: : : (5) Subsequent Read
| | | requests on the same
| | | buffer will return
| | | RTE_E_COM _BUSY as
| | | long as the buffer is
L L L L locked
loop CopyRxData | | |
[pntil all data received] : : :
.) | Rte_LdComCbkCopyTxData_<sn>(BufReq_ReturnType) |
(6) Data is copied from RTE into =+ |
buffer provided by lower layer. | |
This step may repeated until all | |
data has been processed by a ! !
lower layer copy_data() ! :
,,,,,,,, BUFREQ OK0_ | |
| |
- | Rte_LdComCbkCopyRxData_<sn>() :BufReqiRelumﬂ‘E
| | | T
| | | | (7) Data is copied from lower
| | | | layer
| | | | into buffer provided by RTE.
| | | | copy_data() This step is repeated upon
| | | BUFREQ_OK() reception of each segment of|
: : : <———————== [t the segmented transmission
| | | | | |
: i - Rte_LdComTpTxConfirmation() i i :
I I I I I
| E_OK(| | |
N N e e > | | |
| | | | |
| 1 | Rte_LdComCbKTpRxindication_<sn>(Std_RetumType) |
| | | 1 1 |
| | | |
| | | Xfm_inv0 (9) The Receiver's RTE
| | | buffer are unlocked,
| | | Data Received Event can
| | | be fired if configured
| | | 1
| | | |
I B L] (I,
[LdComA})lType : : :
| | | |
| | | |
| | | copy_data() |
1 1 | |
N I
Inter-ECU communication ! !
Explicit Sender-Receiver communication: : :
Port name = p : :
Data element name = a | |
VariableDataPrototype with a standard swimplPolicy (Data distribution) | L) |
The sender VariableD: ype is by a Variabl inrole | | | |
dataSendPoint t t t
The receiver VariableD: ype is by a Vari; inrolef | | Rte_Read_p_a() |
dataReceivePointByArgument | | — — .
| |
: : E_OK()
| | | |
| |
| |

Figure 4.42: Sender Receiver communication with data semantics over LdCom

AUTOSAR

4.3.1.12 “Never received status” for Data Element

The Software Component template allows specifying whether an unqueued data, de-
fined in an AUTOSAR Interface, has been updated since system start (or partition
restart) or not. This additional optional status establishes the possibility to check
whether a data element has been changed since system start (or partition restart).

[SWS_Rte_07381] | On receiver side the handleNeverReceived attribute of the
NongueuedReceiverComSpec shall specify the handling of the never received sta-
tus. | (SRS_Rte _00184)

[SWS_Rte_07382] | The initial status of the data elements with the attribute handleN-
everReceived setto TRUE shall be RTE_E_NEVER_RECEIVED. |(SRS_Rte_00184)

[SWS_Rte_07383] | The initial status of the data elements with the attribute han-
dleNeverReceived set to TRUE shall be cleared when the first reception occurs.
|(SRS_Rte_00184)

[SWS_Rte_07645] | The status of data elements shall be reset on the re-
ceiver side to RTE_E_NEVER_RECEIVED when the receiver’s partition is restarted.
|(SRS_Rte_00184, SRS_Rte _00224)

4.3.1.13 “Update flag” for Data Element

The Software Component template allows specifying whether an unqueued data, de-
fined in an AUTOSAR Interface, has been updated since last read or not. This addi-
tional optional status establishes the possibility to check, whether a data element has
been updated since last read.

Onreceiver side the “enableUpdate” attribute of the NonqueuedReceiverComSpec
has to activate the handling of the update flag.

[SWS_Rte_07385] | The RTE shall provide one update flag per dataElement
in @ RPortPrototype Where the “enableUpdate” attribute of the Nongqueue-
dReceiverComSpec is set to true and where at least one RunnableEnt ity defines
a VariableAccess in the dataReceivePointByArgument Of dataReceive-—

PointByValue role. |(SRS_Rte _00179)

[SWS_Rte_07386] | The update flag of the data elements configured with the “en-
ableUpdate” attribute shall be set by receiving new data from COM or from a local
software-conponent. | (SRS_Rte 00179)

[SWS_Rte_01413] [In case a data element with configured “enableUpdate” at-
tribute is received as “invalid” the status of it's update flag shall be determined ac-
cording to the handling of the DataReceivedEvent/DataReceiveErrorEvent:

e The update flag shall be set, if the DataReceivedEvent is triggered.

e The update flag shall keep the previous state, if the DataReceiveErrorEvent
is triggered.

AUTOSAR

|(SRS _Rte _00179)

[SWS_Rte_07387] | The update flag of a particular dataElement in @ RPortPro-
totype shall be cleared after each read by Rte_Read or Rte_DRead of the data
element. |(SRS_Rte_00179)

Please note that the "UpdateFlag" for datakElements is only available for explicit com-
munication, see [SWS_Rte 07391].

[SWS_Rte_07689] | The update flag shall be cleared when the RTE is started or when
the partition of the software-component is restarted. | (SRS_Rte _00179)

The update flag can be queried by the Rte_TIsUpdated API, see 5.6.35.

4.3.1.14 Dynamic data type

Dynamic data are data whose length varies at runtime.
This includes:

e arrays with variable number of elements

e structures including arrays with variable number of elements
This excludes:

e structures including variable number of elements

The length information which specifies how many elements of the dynamic size array
are valid has to be provided by the SWC to the RTE. There are two ways to achieve
this: Usage of a dynamic size array with explicit size indicator (see [2] chapter "Appli-
cationArrayDataType") or usage of the optional <length> parameter of the RTE APIs
for communication.

Please note:
The optional <length> parameter of the RTE APIs for communication is obsolete and
should not be used any more.

If the explicit size indicator is used, the dynamic size array is represented in the imple-
mentation by a structure which contains the size indicator and the dynamic size array
with the payload. The size indicator shall be hold consistent to the number of valid
elements in the dynamic size array by the SWC.

In case of inter-ECU communication, dynamic data are mapped to dynamic signals
and received/transmitted through the TP by the COM stack.

With the current release of SWS_COM, COM limits the dynamic signals to the com-
SignalType UINT_8DYN (see the requirement COM569).

The usage of dynamic size arrays with size indicators together with data transformation
with inter-ECU communication circumvents these restrictions and allows dynamic size

AUTOSAR

arrays also for other data types because the output of data transformation is of the type
uint8[n] which is supported by COM.

In order to respect the VFB concept the capability of inter-ECU and intra-ECU commu-
nication should be equal. So it has been decided to extend these limitation from COM
also to the intra-ECU communication.

As a consequence dynamic data types different from uint8[n] are only supported by
the RTE (independent whether the communication is intra or inter-ECU) if variable
size arrays with size indicators and data transformation for inter-ECU communication
is used. See [SWS_Rte_07810].

4.3.1.15 Inter-ECU communication through TP

Inter-ECU communication can be configured in COM to be supported by the TP. This
is especially necessary if:

e Size of the signal exceed the size of the L-PDU (large signals)
e Size of the signal group exceed the size of the L-PDU

In the current release of SWS_COM, COM APIs to access signal values might return
the error code COM_BUSY for the signals mapped to N-PDU. This error code indicates
that the access to the signal value has failed (internally rejected by COM) and should
be retried later. This situation might only be possible when the transmission or the
reception of the corresponding PDU is in progress in COM at the time the access to
the signal value is requested.

This is a problem for the handling of data with data semantic (last is best behavior)
because:

e "COM_BUSY like" errors are not compatible with real time systems that should
have predictable response time.

e Forwarding this error code to the application implies that every applications
should handle it (implement a retry) even if it will never comes (data is not be
mapped to N-PDU).

e Error code can not be forwarded to the application in case of direct read or implicit
write.

This is not a problem for the handling of data with event semantic (queued behav-
ior) because:

e The COM_BUSY error should not be possible during the execution of COM call-
backs (Rx indication and Tx confirmation) that can be used by the RTE to handle
the queue.

e Data are queued internally by RTE and accessible at any time by the application.

AUTOSAR

Note: First point is especially true if the ComIPdusSignalProcessing is configured
as IMMEDIATE. But if the ComIPduSignalProcessing is configured as DEFFERED
and 2 events are closely received, it is possible that at the time the RTE tries to access
the corresponding COM signal the second event reception has already started. In this
case the RTE will received COM_BUSY and the event will be lost but it is more a
problem of configuration than a limitation from COM.

As a consequence it has been decided to limit the data mapped to N-PDU to the event
semantic (queued behavior). See [SWS_Rte 07811].

Note: As the data mapping is not mandatory for the RTE contract phase, it is possible
that a configuration is accepted at contract phase but rejected at generation phase
when the data mapping is known.

Dynamic data are always mapped to N-PDU in case of inter-ECU communication. So
in order to avoid such situation (late rejection at generation phase) and in order to
respect the VFB concept (intra and inter-ECU should be equal) it has been decided
to extend this limitation to every dynamic data whatever the communication is intra or
inter-ECU. See [SWS_Rte 07812].

4.3.1.16 Inter-ECU communication of arrays of bytes
4.3.1.16.1 COM

Generally the communication of arrays in the case of inter-ECU communication
must make use of the signal group mechanisms to send an array to COM.
This implies sending each array element to a shadow buffer in COM (with
Com_SendSignal () API, if parameter RteUseComShadowSignalApi iS FALSE Or
Com_UpdateShadowSignal () API, if parameter RteUseComShadowSignalApi IS
TRUE), and in the end send the signal group (with Com_SendSignalGroup () API).

An exception to this general rule is for arrays of bytes. In this case, the RTE shall use
the native COM interface to send directly the data.

[SWS_Rte_07408] | The RTE shall use the Com _SendSignal or
Com_ReceiveSignal APls to send or receive fixed-length arrays of bytes

if the according variableDataPrototype is mapped to a SystemSignal.
|(SRS_Rte_00231)

[SWS_Rte_07817] | The RTE shall use the Com_SendDynSignal of
Com_ReceiveDynSignal APIs to send or receive variable-length arrays of bytes

if the according variableDataPrototype is mapped to a SystemSignal.
|(SRS_Rte_00231)

If the variableDataPrototype of a fixed-length or variable-length array is mapped
to a SystemSignalGroup then requirement [SWS_Rte 04526] applies.

AUTOSAR

4.3.1.16.2 Efficient COM for large data

The rules for the decision whether to use Efficient COM for large data (L.dCom) are
described in System Template [8], chapter 6.2.

[SWS_Rte_01376] [The RTE shall use Ldcom for sending/receiving arrays of bytes if
the corresponding ComSignal is mapped to LdComIPdu. |(SRS_Rte_00246)

Transmission

[SWS_Rte_01377] [The RTE shall use the LdCom_Transmit APl if LdComApiType
is setto LDCOM_1IF in LdComIPdu. |(SRS_Rte 00231)

In case 1£-APlis used upon LdCom_Transmit, the transmit request is passed imme-
diately to the lower layer. After return of the API the data does not need to be locked.

[SWS_Rte_01378] | The RTE shall use the LdCom_Transmit APl if LdComApiType
is set to LDCOM_TP in LdComIPdu. |(SRS_Rte 00231)

In case TP-API is used, after LdCom_ Transmit one or more invocations of
Rte_LdComCbkCopyTxData_<sn> by LdCom will occur asynchronously. The Trans-
mission is finalized by Rte_TLdComCbkTpTxConfirmation_<sn>.

During this time the data has to be available for being passed to LdCom.

[SWS_Rte_01379] | The RTE shall lock the signal buffer after it initiated a Tp Trans-
mission (LdCom_Transmit returned RTE_E_OK). |(SRS_Rte_00246)

During the signal buffer is locked no further transmit requests are permitted on
that item. For data semantics this means that Rte_Write/Rte_Call will return
RTE_F_COM_BUSY.

[SWS_Rte_01380] | The RTE shall unlock the signal buffer after
Rte_LdComCbkTpTxConfirmation_<sn> has been invoked (independent of
the result). |(SRS_Rte _00246)

[SWS_Rte_01381] | The RTE shall copy the indicated number of bytes to
the provided destination in each invocation of Rte_LdComCbkCopyTxData_<sn>.
|(SRS_Rte_00246)

[SWS_Rte_01382] | For signals for which the Rte_LdComCbkTriggerTransmit_<sn>
APl is configured the data of the corresponding signal has to be available during the
whole runtime of the RTE. |(SRS_Rte_00246)

Rationale: A call to TriggerTransmit may happen at any time, since it originates from
lower BSW layers.

Hint: Main use case for [SWS_Rte 01382] is the transmission of the current value for
newly (late) subscribed receivers in ServiceDiscovery.

[SWS_Rte_01383] | If Rte_LdComCbkTriggerTransmit_<sn> is invoked, data
shall be copied to the provided destination. | (SRS_Rte 00246)

AUTOSAR

Reception

[SWS_Rte_01384] | If Rte_LdComCbkRxIndication_<sn> is invoked RTE shall
provide the following steps:

e copy the passed signal data to the buffer
e fire aDataReceivedEvent (if configured)
e return

|(SRS_Rte_00246)

[SWS_Rte_01385] [If Rte_LdComCbkStartOfReception_<sn> is invoked RTE
shall lock the corresponding reception buffer. | (SRS _Rte 00246)

[SWS_Rte_01386] | If Rte_LdComCbkCopyRxData_<sn> is invoked RTE shall copy
the passed signal data (or the indicated portion) to the previously locked reception
buffer. |(SRS_Rte_00246)

[SWS_Rte_01387] | If Rte_LdComCbkTpRxIndication_<sn> isinvoked RTE shall
unlock the previously locked reception buffer. | (SRS_Rte 00246)

[SWS_Rte_01388] [When Rte_LdComCbkTpRxIndication_<sn> is invoked and
the passed result code is RTE_E_OK, it shall fire the DataReceivedEvent. Otherwise
the signal value shall be set to the invalidValue for data elements with a swImplPol-
icy different from queued. |(SRS_Rte_00246)

4.3.1.17 Handling of acknowledgment events

As a general rule, the acknowledgment events DataWriteCompletedEvent and
DataSendCompletedEvent shall be raised immediately after the sending to all re-
ceivers has been performed and in case of Inter-ECU communication all acknowledg-
ments from COM or LdCom have been received. As part of the implementation detailed
rules for the following communication scenarios have to be considered:

Intra-Partition communication

[SWS_Rte_08017] | For intra-partition communication with implicit dataWriteAc—
cess the DataWriteCompletedEvent shall be fired if and only if a task ter-
minates and the write-back copy actions to the global RTE-buffer are completed.
The transmission status shall be RTE_E_TRANSMIT_ACK and can be collected with
Rte_IFeedback API. |(SRS_Rte 00122)

[SWS_Rte_08043] | For intra-partition communication with incoherent implicit
dataWriteAccess no write-back copy actions to a global RTE-buffer will be
performed, if the involved runnables are all running in one preemption area.
In this case the DataWriteCompletedEvent shall be fired after the termina-
tion of the last sending runnable in the sending task. The transmission status

AUTOSAR

shall be RTE_E_TRANSMIT_ACK and can be collected with Rte IFeedback API.
|(SRS_Rte_00122)

[SWS_Rte_08018] | For intra-partition communication with explicit dataSendPoint
the DatasendCompletedEvent shall be fired if and only if the sending to all receivers
has been performed. The transmission status shall be RTE_E_TRANSMIT_ACK and
can be collected with Rte_Feedback API. |(SRS_Rte_00122)

Inter-Partition communication

[SWS_Rte_08020] | For inter-partition communication with implicit dataWriteAc—
cess the DataWriteCompletedEvent shall be fired if and only if a task terminates
and the write-back copy actions to the global RTE-buffer are completed. In addition
the execution of the data write operations at the data receiver partitions must have
taken place. Thereby the return status of the 10c for the different write operations can
be neglected. The transmission status shall be RTE_E_TRANSMIT_ACK and can be
collected with Rte_IFeedback API. |(SRS_Rte_00122)

[SWS_Rte_08044] | For inter-partition communication with incoherent implicit
dataWriteAccess no write-back copy actions to a global RTE-buffer will be per-
formed, if the involved runnables are all running in one preemption area. In this
case the DataWriteCompletedEvent shall be fired after the termination of the last
sending runnable in the sending task and after the execution of the data write oper-
ations at the data receiver partitions have taken place. Thereby the return status of
the ToC for the different write operations can be neglected. The transmission sta-
tus shall be RTE_E_TRANSMIT_ACK and can be collected with Rte_TFeedback API.
|(SRS_Rte_00122)

[SWS_Rte_08021] | For inter-partition communication with explicit dataSendPoint
the DatasendCompletedEvent shall be fired if and only if the sending to all
receivers has been performed and the execution of the data write operations at
the data receiver partitions have taken place. Thereby the return status of the
10C for the different write operations can be neglected. The transmission status
shall be RTE_E_TRANSMIT_ACK and can be collected with Rte_Feedback API.
|(SRS_Rte_00122)

Inter-ECU communication

[SWS_Rte_08022] | For inter-ECU communication with implicit dataWriteAccess
the DataWriteCompletedEvent shall be fired if and only if a task terminates and
the write-back copy actions to the global RTE-buffer are completed. In addition the
transmission acknowledgment from COM or LdCom must be complete, i.e. the ac-
knowledgment has been received and in case of RTE-fanout all acknowledgments
have been received. The transmission status shall be RTE_E_TRANSMIT_ACK and
can be collected with Rte_IFeedback API. |(SRS_Rte _00122)

[SWS_Rte_08045] | For inter-ECU communication with incoherent implicit
dataWriteAccess no write-back copy actions to a global RTE-buffer will be per-
formed, if the involved runnables are all running in one preemption area. In this case
the DataWriteCompletedEvent shall be fired after the termination of the last send-

AUTOSAR

ing runnable in the sending task and after the transmission acknowledgment from
COM or LdCom is complete, i.e. the acknowledgment has been received and in
case of RTE-fanout all acknowledgments have been received. The transmission sta-
tus shall be RTE_E_TRANSMIT_ACK and can be collected with Rte_TFeedback APL.
|(SRS_Rte_00122)

[SWS_Rte_08023] | For inter-ECU communication with explicit datasendPoint
the DatasendCompletedEvent shall be fired if and only if the sending to all re-
ceivers has been performed and the transmission acknowledgment from COM or
LdCom is complete, i.e. the acknowledgment has been received and in case
of RTE-fanout all acknowledgments have been received. The transmission status
shall be RTE_E_TRANSMIT_ACK and can be collected with Rte_Feedback API.
| (SRS_Rte_00122)

4.3.2 Client-Server
4.3.2.1 Introduction

Client-server communication involves two entities, the c1ient which is the requirer (or
user) of a service and the server that provides the service.

The client initiates the communication, requesting that the server performs a ser-
vice, transferring a parameter set if necessary. The server, in the form of the RTE,
waits for incoming communication requests from a client, performs the requested
service and dispatches a response to the client’s request. So, the direction of initia-
tion is used to categorize whether a AUTOSAR software-componentis a client or a
server.

A single component can be both a c1ient and a server depending on the software
realization.

The invocation of a server is performed by the RTE itself when a request is made by
a client. The invocation occurs synchronously with respect to the RTE (typically via
a function call) however the client’s invocation can be either synchronous (wait for
server to complete) or asynchronous with respect to the server.

Note: servers which have an asynchronous operation (i.e. they accept a request
and another provide a feedback by invoking a server of the caller) should be avoided
as the RTE does not know the link between these 2 client-server communications. In
particular, the server should have no OUT (or INOUT) parameters because the RTE
cannot perform the copy of the result in the caller’s environment when the request was
processed.

[SWS_Rte_06019] [The only mechanism through which a server can be invoked is
through a client-server invocation request from a client. |(SRS_Rte_00029)

The above requirement means that direct invocation of the function implementing the
server outside the scope of the RTE is not permitted.

AUTOSAR

A server has a dedicated provide port and a c1ient has a dedicated require port.
To be able to connect a client and a server, both ports must be categorized by the
same interface.

The client can be blocked (synchronous communication) respectively non-blocked
(asynchronous communication) after the service request is initiated until the response
of the server is received.

A server implemented by a RunnableEntity with attribute canBeInvokedCon-
currently set to FALSE is not allowed to be invoked concurrently and since a
server can have one or more clients the server may have to handle concur-
rent service calls (n:1 communication) the RTE must ensure that concurrent calls do
not interfere.

[SWS_Rte_04515] [The RTE shall ensure that call serialization® of the operation is en-
forced when the server runnable attribute canBeInvokedConcurrently is FALSE.
|(SRS_Rte_00019, SRS_Rte_00033)

Note that the same server may be called using both synchronous and asynchronous
communication.

Note also that even when canBelInvokedConcurrently is FALSE, an Atomic-—
SwComponent Type might be instantiated multiple times. In this case, the implemen-
tation of the RunnableEntity can still be invoked concurrently from several tasks.
However, there will be no concurrent invocations of the implementation with the same
instance handle.

[SWS_Rte_04516] | The RTE’s implementation of the client-server communication
shall ensure that a service result is dispatched to the correct c1ient if more than one
client uses a service. | (SRS_Rte 00019, SRS_Rte _00080)

The result of the client/server operation can be collected using “wake up of wait point”,
“explicit data read access” or “activation of runnable entity”.

[SWS_Rte_07409] [If all the following conditions are satisfied:
e the server runnable’s property canBeInvokedConcurrently is setto TRUE

e the client and server execute in the same partition, i.e. intra-partition
Client-Server communication

e the serverCallPoint is Synchronous

e the OperationInvokedEvent is not mapped to an OsTask

8Call Serialization ensures at most one thread of control is executing an instance of a runnable
entity at any one time. An AUTOSAR software-component can have multiple instances (and therefore
a runnable entity can also have multiple instances). Each instance represents a different server and
can be executed in parallel by different threads of control thus serialization only applies to an individual
instance of a runnable entity — multiple runnable entities within the same component instance may also
be executed in parallel.

AUTOSAR

the RTE Generator shall implement the Client-Server communication as a direct func-
tion call. |()

Note: In case the conditions in [SWS_Rte 04522] are fulfilled the RTE Generator may
implement a client-server call with a direct function call, even when the server runn-
able’s property canBeInvokedConcurrently is set to FALSE.

Since the communication occurs conceptually via the RTE (it is initiated via an RTE API
call) the optimization does not violate the requirement that servers are only invoked via
client-server requests (see Sect. 5.6.13, [SWS_Rte_06019]).

[SWS_Rte_07662] | The RTE Generator shall reject configurations where an
ClientServerOperation has an ArgumentDataPrototype Whose Implemen-
tationDataType is of category DATA_REFERENCE and whose direction is
INOUT. |(SRS_Rte 00018, SRS _Rte 00019)

[SWS_Rte_08731] | If the return value of the serialization call is not equal to E_OK the
RTE shall not call Com_sendSignal |(SRS_Rte 00091)

4.3.2.2 Multiplicity

Client-server interfaces contain two dimensions of multiplicity; multiple clients invoking
a single server and multiple operations within a client-server interface.

4.3.2.2.1 Multiple Clients Single Server

Client-server communication involves an AUTOSAR software-component invoking a
defined “server” operation in another AUTOSAR software-component which may or
may not return a reply.

[SWS_Rte_04519] | The RTE shall support multiple clients invoking the same server
operation ('n:1” communication where n > 1). | (SRS_Rte_00029)

4.3.2.2.2 Multiple operations

A client-server interface contains one or more operations. A port of a AUTOSAR
software-component that requires an AUTOSAR client-server interface to the com-
ponent can independently invoke any of the operations defined in the interface
[SRS_Rte_00089].

[SWS_Rte_04517] | The RTE API shall support independent access to operations in
a client-server interface. |(SRS_Rte _00029)

Example 4.8

AUTOSAR

Consider a client-server interface that has two operations, op1 and op2 and that an
AUTOSAR software-component definition requires a port typed by the interface. As
a result, the RTE generator will create two API calls; one to invoke op1 and another
to invoke op2. The calls can invoke the server operations either synchronously or
asynchronously depending on the configuration.

Recall that each data element in a sender-receiver interface is transmitted indepen-
dently (see Section 4.3.1.3) and that the coherent transmission of multiple data items
is achieved through combining multiple items into a single composite data type. The
transmission of the parameters of an operation in a client-server interface is simi-
lar to a record since the RTE guarantees that all parameters are handled atomically
[SRS_Rte_00073].

[SWS_Rte_04518] | The RTE shall treat the parameters and the results of a client-
server operation atomically. |(SRS_Rte _00033)

However, unlike a sender-receiver interface, there is no facility to combine multiple
client-server operations so that they are invoked as a group.

4.3.2.2.3 Single Client Multiple Server

The RTE is not required to support multiple server operations invoked by a single client
component request ('1:n’ communication where n > 1) (see [constr_1037] in [2]).

4.3.2.2.4 Call Serialization

Each client can invoke the server simultaneously and therefore the RTE is required to
support multiple requests of servers. If the server requires call serialization, the RTE
has to ensure it.

[SWS_Rte_04520] | The RTE shall support simultaneous invocation requests of a
server operation. | (SRS_Rte 00019, SRS_Rte_00080)

[SWS_Rte_04522] | The RTE shall ensure that the RunnableEntity implementing
a server operation has completed the processing of a request before it begins process-
ing the next request, if serialization is required by the server operation, i.e canBeIn-
vokedConcurrent 1y attribute of the server is set to FALSE and client RunnableEn-
titys to OsTask mapping (RteEventToTaskMapping) may lead to concurrent in-
vocations of the server. |(SRS_Rte 00019, SRS _Rte _00033)

When this requirement is met the operation is said to be “call serialized”. A call se-
rialized server only accepts and processes requests atomically and thus avoids the
potential for conflicting concurrent access.

AUTOSAR

Client requests that cannot be serviced immediately due to a server operation being
“busy” are required to be queued pending processing. The presence and depth of the
queue is configurable.

If the RunnableEntity implementing the server operation is reentrant , i.e. can-
BeInvokedConcurrently attribute set to TRUE, no serialization is necessary. This
allows to implement invocations of reentrant server operations as direct function calls
without involving the RTE.

But even when the canBeInvokedConcurrently attribute is set to FALSE the
RTE Generator still can utilize a direct function call, if the mapping of the client
RunnableEntitys to OsTasks will not imply a concurrent execution of the server.

[SWS_Rte_08001] | If two operations are mapped to the same RunnableEntity,
and [SWS_Rte_04522] requires a call serialization, then the operation invoked events
shall be mapped to same task and they shall have the same position in task. Otherwise
the RTE Generator shall reject configuration. |(SRS_Rte_00019, SRS_Rte_00033)

[SWS_Rte_08002] | If two operations are mapped to the same RunnableEntity,
and [SWS_Rte_04522] requires a call serialization, then a single queue is imple-
mented for invocations coming from any of the operations. |(SRS_Rte 00019,
SRS_Rte _00033)

4.3.2.3 Communication Time-out

The serverCcallPoint allows to specify a timeout so that the client can be notified
that the server is not responding and can react accordingly. If the client invokes the
server synchronously, the RTE API call to invoke the server reports the timeout. If
the client invokes the server asynchronously, the timeout notification is passed to the
client by the RTE as a return value of the API call that collects the result of the server
operation.

[SWS_Rte_03763] | The RTE shall ensure that timeout monitoring is performed
for client-server communication, regardless of the receive mode for the result.
|(SRS_Rte_00069, SRS_Rte_00029)

If the server is invoked asynchronously and a waitPoint is specified to collect the
result, two timeout values have to be specified, one for the serverCallPoint and
one for the waitPoint.

[SWS_Rte_03764] | The RTE generator shall reject the configuration if different
timeout values are specified for the AsynchronousServerCallPoint and for the
WaitPoint associated with the AsynchronousServerCallReturnsEvent for this
AsynchronousServerCallPoint. |(SRS_Rte 00018)

In asynchronous client-server communication the AsynchronousServerCall-
ReturnsEvent associated with the AsynchronousServerCallPoint for an
ClientServerOperation indicates that the server communication is finished or that

AUTOSAR

a timeout occurred. The status information about the success of the server operation
is available as the return value of the RTE API call generated to collect the result.

[SWS_Rte_03765] | For each asynchronous invocation of an operation prototype only
one AsynchronousServerCallReturnsEvent shall be passed to the client com-
ponent by the RTE. The AsynchronousServerCallReturnsEvent shall indicate
either that the transmission was successful or that the transmission was not success-
ful. |(SRS_Rte_00079)

[SWS_Rte_03766] | The status information about the success or failure of the asyn-
chronous server invocation shall be available as the return value of the RTE API call to
retrieve the result. |(SRS_Rte_00079)

After a timeout was detected, no result shall be passed to the client.

[SWS_Rte 03770] | In <case Rte_ Call APl returns RTE_E_LIMIT,
RTE_E_TRANSFORMER_LIMIT, RTE_E_COM_STOPPED, RTE_E_TIMEOUT,
RTE_E_UNCONNECTED, RTE_E_IN_EXCLUSIVE_AREA Or RTE_E_SEG_FAULT,
the RTE shall not modify the ouT and INOUT parameters. |(SRS_Rte 00069,
SRS _Rte 00029)

[SWS Rte 08310] [In case Rte_Result API returns
RTE_E_NO_DATA,RTE_E_HARD_TRANSFORMER_ERROR, RTE_E_COM_STOPPED,
RTE_E_TIMEOUT, RTE_E_UNCONNECTED, RTE_E_IN_EXCLUSIVE_AREA Or
RTE_FE_SEG_FAULT, the RTE shall not modify the ouT and INOUT parameters.
|(SRS_Rte_00069, SRS_Rte_00029)

Since an asynchronous client can have only one outstanding server invocation at a
time, the RTE has to monitor when the server can be safely invoked again. In normal
operation, the server can be invoked again when the result of the previous invocation
was collected by the client.

[SWS_Rte_03773] | If a server is invoked asynchronously and no timeout occurred,
the RTE shall ensure that the server can be invoked again by the same client, after the
result was successfully passed to the client. | (SRS_Rte _00069)

In intra-partition client-server communication, the RTE can determine whether the
server runnable is still running or not.

[SWS_Rte_03771] [If a timeout was detected in asynchronous intra-partition client-
server communication, the RTE shall ensure that the server is not invoked again
by the same client until the server runnable has terminated. |(SRS_Rte 00069,
SRS_Rte _00079)

In inter-ECU communication, the client RTE has no knowledge about the actual status
of the server. The response of the server could have been lost because of a commu-
nication error or because the server itself did not respond. Since the client-side RTE
cannot distinguish the two cases, the client must be able to invoke the server again
after a timeout expired. As partitions in one ECU are decoupled in a similar way like
separate ECUs, and can be restarted separately, client server communication should
behave similar for inter-ECU and intra-partition communication.

AUTOSAR

[SWS_Rte_03772] [If a timeout was detected in asynchronous inter-ECU ofr
inter-partition client-server communication, the RTE shall ensure that the server
can be invoked again by the same client after the timeout notification was passed to
the client. | (SRS_Rte 00069, SRS_Rte _00079)

Note that this might lead to client and server running out of sync, i.e. the response of
the server belongs to the previous, timed-out invocation of the client. The application
has to handle the synchronization of client and server after a timeout occurred.

[SWS_Rte_03767] | If the timeout value of the ServerCallPoint is 0, no timeout
monitoring shall be performed. |(SRS_Rte 00069, SRS _Rte 00029)

[SWS_Rte_03768] | If the canBelnvokedConcurrently attribute of the server runn-
able is set to TRUE, no timeout monitoring shall be performed if the RTE API call
to invoke the server is implemented as a direct function call. |(SRS_Rte 00069,
SRS_Rte _00029)

[SWS_Rte_02709] | In case of inter partition communication, if the partition of the
server is stopped or restarting at the invocation time of the server call or during the
operation of the server call, the RTE shall immediately provide a timeout indication to
the client. | ()

Note: In case of inter-ECU or interpartition client-server communication it is recom-
mended to always specify a timeout>0 when synchronous server calls are used. Oth-
erwise in case of a full server queue the client would wait for the server response
infinitely.

4.3.2.4 Port-Defined argument values

Port-defined argument values exist in order to support interaction between Application
Software Components and Basic Software Modules.

Several Basic Software Modules use an integer identifier to represent an object that
should be acted upon. For instance, the NVRAM Manager uses an integer identifier
to represent the NVRAM block to access. This identifier is not known to the client,
as the client must be location independent, and the NVRAM block to access for a
given application software component cannot be identified until components have been
mapped onto ECUs.

There is therefore a mismatch between the information available to the client and that
required by the server. Port-defined argument values bridge that gap.

The required port-defined arguments (the fact that they are required, their data type
and their values) are specified within the input to the RTE generator.

[SWS_Rte_01360] | When invoking the runnable entity specified for an Operationin-
vokedEvent, the RTE shall include the port-defined argument values between the in-
stance handle (if it is included) and the operation-specific parameters, in the order they
are given in the Software Component Template Specification [2]. |(SRS_Rte_00152)

AUTOSAR

Requirement [SWS_Rte_01360] means that a client will make a request for an opera-
tion on a require (Client-Server) port including only its instance handle (if required) and
the explicit operation parameters, yet the server will be passed the implicit parameters
as it requires.

Note that the values of implicit parameters are constant for a particular server runnable
entity; it is therefore expected that using port-defined argument values imposes no
RAM overhead (beyond any extra stack required to store the additional parameters).

4.3.2.5 Buffering

Client-Server-Communication is a two-way-communication. A request is sent from the
client to the server and a response is sent back.

Unless a server call is implemented as direct function call, the RTE has to store or
buffer the communication on the corresponding receiving sides, requests on server
side and responses on client side, respectively:

e [SWS_Rte 02527] [Unless a server call is implemented as a direct function call,
the RTE shall buffer a request on the server side in a first-in-first-out queue as
described in chapter 4.3.1.10.2 for queued data elements.

Note: The data that shall be buffered is implementation specific but at least RTE
should store the IN parameters, the IN/OUT parameters and a client identifer.
|(SRS_Rte_00019, SRS_Rte 00033, SRS_Rte _00110)

e [SWS_Rte 02528] [Unless a server call is implemented as a direct function call,
RTE shall keep the response on the client side in a queue with queue length 1.

Note: The data that shall be buffered is implementation specific but at least RTE
should store the IN/OUT parameters, the OUT parameters and the error code.
|(SRS_Rte_00019, SRS _Rte_00033)

For the server side, the queueLength attribute of ServerComsSpec specifies the
length of the queue.

[SWS_Rte_02529] | The RTE generator shall reject a queueLength attribute of a
ServerComSpec With a queue length < 0. |(SRS_Rte 00033, SRS_Rte 00110,
SRS _Rte _00018)

[SWS_Rte_02530] [The RTE shall use the queue of requests to call serialise access
to a server. | (SRS_Rte 00033, SRS_Rte_00110)

A buffer overflow of the server is not reported to the client. The client will receive a time
out.

[SWS_Rte_07008] | If a server call is implemented by direct function call the RTE
shall not create any copy for parameters passed by reference. |(SRS_Rte 00033,
SRS _Rte 00110)

AUTOSAR

Therefore, it is the responsibility of the application to provide consistency mechanisms
for referenced parameters if necessary.

4.3.2.6 Inter-ECU and Inter-Partition Response to Request Mapping

RTE is responsible to map a response to the corresponding request. With this map-
ping, RTE can activate or resume the corresponding runnable and provide the re-
sponse to the correct client. The following situations can be distinguished:

e Mapping of a response to the correct request within one ECU. In general, this is
solved already by the call stack. The details are implementation specific and will
not be discussed in this document.

e Mapping of a response coming from a different partition or a different ECU.

The problem of request to response mapping in inter-ECU and inter-Partition commu-
nication can be split into:

e Mapping of a response to the correct client. This is discussed in 4.3.2.6.1.

e Mapping of a response to the correct request within of one client. This is dis-
cussed in 4.3.2.6.2.

The general approach for the inter-ECU and inter-Partition request response mapping
is to use transaction handles.

[SWS_Rte_02649] | In case of inter-ECU client-server communication, the transaction
handle shall contain two parts of unsigned integer type:

e Client Identifier
e Client Sequence Counter
|(SRS_Rte_00027, SRS_Rte_00082)

[SWS_Rte_08711] | The Client Identifier of the transaction handle used for a inter-
ECU client server communication shall be of type uintle. [(SRS_Rte 00082,
SRS _Rte 00091)

[SWS_Rte_07413] | The Client Identifier of the transaction handle used for a inter-ECU
client server communication may be defined at the ClientIdDefinition belonging
to the Ecu Extract and referring the operation instance. If defined the RTE generator
shall take the clientId from the ClientIdDefinition. If not defined the RTE
generator shall setthe client1dto 0. |(SRS_Rte 00082, SRS Rte 00091)

[SWS_Rte_08712] | The Client Sequence Counter part of the transaction han-
dle used for a inter-ECU client server communication shall be of type uint1leé.
|(SRS_Rte_00082, SRS_Rte _00091)

AUTOSAR

[SWS_Rte_07346] | In case of inter-Partition client-server communication, the RTE
shall not communicate any response to the client if the client is part of a partition that
was restarted since the request was sent. |(SRS_Rte 00027, SRS _Rte_00082)

[SWS_Rte_07346] could be implemented with a transaction handle that contains a
sequence counter.

[SWS_Rte_02651] | In case of inter-ECU client-server communication, the transaction
handle shall be used for the identification of client server transactions communicated
via COM or LdCom. |(SRS_Rte 00027, SRS _Rte 00082)

[SWS_Rte_02653] | The RTE on the server side shall return the transaction handle
of the request without modification together with the response. |(SRS_Rte 00027,
SRS _Rte 00082)

Since there is always at most one open request per client (see [SWS_Rte 02658]), the
transaction handle can be kept within the RTE and does not have to be exposed to the
AUTOSAR SW-C.

4.3.2.6.1 Client Identifier

In case of a server on one ECU with clients on other ECUSs, the inter-ECU client-server
communication has to use different unique Systemsignals for each client-ECU to
allow the identification of the client-ECU associated with each client call.

[SWS_Rte_02579] [The RTE Generator shall reject configurations where there is
inter-ECU client-server communication from several client-ECUs using the same Sys—
temSignals. |(SRS_Rte 00029, SRS_Rte 00082, SRS _Rte _00018)

With this mechanism, the server-side RTE must handle the fan-in. This is done in the
same way as for sender-receiver communication.

However it is allowed to have several clients in one client-ECU communicating using
inter-ECU client-server communication with a server on a different ECU, if the client
identifier is used to distinguish the different clients.

[SWS_Rte_05111] [The RTE Generator shall reject configurations where there is
inter-ECU client-server communication from several clients on the same client-ECU
and no client identifier is configured for at least one of these inter-ECU client-server
communications. |(SRS_Rte 00018, SRS _Rte 00029, SRS _Rte 00082)

[SWS_Rte_03769] | If multiple clients have access to one server, the RTE on the
server side has to queue all incoming server invocations while ensuring data consis-
tency. |(SRS_Rte_00019, SRS_Rte 00029, SRS_Rte _00080)

AUTOSAR

4.3.2.6.2 SequenceCounter

The purpose of sequence counters is to map a response to the correct request of a
known client.

[SWS_Rte_02658] | In case of inter-ECU and inter-Partition communication, RTE shall
allow only one request per client and server operation at any time. |(SRS_Rte_00079)

[SWS_Rte_02658] does not apply to intra-partition communication because there can
be several execution—-instances.

[SWS_Rte_02658] implies under normal operation that a response can be mapped to
the previous request. But, when a request or response is lost or delayed, this order
can get out of phase. To allow a recovery from lost or delayed signals, a sequence
counter is used. The sequence counter can also be used to detect stale responses
after a restart of the client side RTE and SW-C.

[SWS_Rte_02654] | RTE shall support a sequence counter for the inter ECU client
server connection where configured in the input information. |(SRS_Rte 00027,
SRS _Rte 00082)

[SWS_Rte_02655] | RTE shall initialize all sequence counters with zero during
Rte_Start. |(SRS_Rte_00082)

[SWS_Rte_02656] | RTE shall increase each sequence counter in a cyclic man-
ner after a client server operation has finished successfully or with a timeout.
|(SRS_Rte_00082)

[SWS_Rte_02657] | RTE shall ignore incoming responses that do not match the se-
quence counter. |(SRS_Rte 00027, SRS_Rte_00082)

4.3.2.7 Parameter Serialization

[SWS_Rte_08700] | The RTE generator shall reject an input configuration where a
configured inter-ECU client-server communication of a client ECU (aClientServer-—
Operation of a PortPrototype of one Software Component instance) is not refer-
enced by one and only one ClientServerToSignalMapping. |(SRS_Rte 00018,
SRS _Rte 00027, SRS _Rte 00082, SRS Rte 00091)

[SWS_Rte_08701] | The RTE generator shall reject an input configuration
where a configured inter-ECU client-server communication of a server ECU (a
ClientServerOperation Of a PortPrototype of one Software Component
instance) is not referenced by at least one ClientServerToSignalMapping.
|(SRS_Rte_00018, SRS_Rte_00027, SRS_Rte 00082, SRS_Rte_00091)

[SWS_Rte_08703] | For an inter-ECU client-server communication, the RTE of the
client ECU shall communicate the request to a remote server using the callsignal
of the ClientServerToSignalMapping Which references the operation instance.
|(SRS_Rte_00027, SRS_Rte_00082, SRS_Rte _00091)

AUTOSAR

[SWS_Rte_08705] | For an inter-ECU client-server communication, the RTE of the
client ECU shall receive the results of a remote server using the returnsignal
of the ClientServerToSignalMapping Which references the operation instance.
|(SRS_Rte_00027, SRS _Rte 00082, SRS _Rte 00091, SRS _Rte _00123)

[SWS_Rte_08707] | For an inter-ECU client-server communication, the RTE of
the server ECU shall receive a request of a remote client using the callSignal
of the ClientServerToSignalMapping Which references the operation instance.
|(SRS_Rte_00027, SRS_Rte 00082, SRS _Rte _00091)

[SWS_Rte_08709] | For inter-ECU client-server communication, the RTE of the server
ECU shall communicate the results to a remote client using the returnsSignal

of the ClientServerToSignalMapping wWhich references the operation instance.
|(SRS_Rte_00027, SRS _Rte 00082, SRS _Rte 00091, SRS Rte _00123)

4.3.2.8 Operation
4.3.2.8.1 Inter-ECU Mapping

The client server protocol defines how a client call and the server response are mapped
onto the communication infrastructure of AUTOSAR in case of inter-ECU communica-
tion. This allows RTE implementations from different vendors to interpret the client
server communication in the same way.

The AUTOSAR System Template [8] does specify a protocol for the client server com-
munication in AUTOSAR.

4.3.2.8.2 Atomicity

The requirements for atomicity from Section 4.3.1.11.2 also apply for the composite
data types described in Section 4.3.2.8.1.

4.3.2.8.3 Fault detection and reporting

Client Server communication may encounter interruption like:
e Buffer overflow at transformation
e Buffer overflow at the server side.
e Communication interruption.

e Server might be inaccessible for some reason.

AUTOSAR

The client specifies a timeout that will expire in case the server or communication fails
to complete within the specified time. The reporting method of an expired timeout
depends on the communication attributes:

e If the C/S communication is synchronous the RTE returns RTE_E_TIMEOUT oOn
the Rte_Call function (see section 5.6.13).

e If the C/S communication is asynchronous the RTE returns RTE_E_TIMEOUT On
the Rte_Result function (see section 5.6.14).

In the case that RTE detects that the COM service is not available when forwarding sig-
nals to COM, the RTE returns RTE_E_COM_STOPPED on the Rte_Call (see section
5.6.13).

In the case a transmission is ongoing (e.g. LdCom transmission using TP-API
with pending TxConfirmation) when forwarding signals to LdCom, the RTE returns
RTE_E_COM_BUSY onthe Rte_Call (see section 5.6.13).

If the client still has an outstanding server invocation when the server is invoked again,
the RTE returns RTE_E_LIMIT on the Rte_Call (see chapter 5.6.13).

In the absence of structural errors, application errors will be reported if present.

4.3.2.8.4 Asynchronous Client Server communication

Figure 4.43 shows a sequence diagram of how asynchronous client server communi-
cation may be implemented by RTE.

AUTOSAR

Client Application Client'sRTE Client's Client's COM Server's Server's RTE Server
Transformer Netwok Server's Transformer
COM
T T T
I Rte_Call_p_o() I |

Xfrm_<name1>()

(1) RTE transforms all IN
parameters of the operation

!
alt dynamicLength of SystemSignal /

[dy icLength == true] [l
Com_SendDynSignal()
T

_OK(

R ———

(2) RTE calls Com_SendSignal for the
byte array to transfer all IN parameters
using it's COM

[dy

RTE_E_OKI
| RTEEOK)] : '

! Rie_COMChK <s5>()
[1 |

It dynamicLength of SystemSignal /

(3) The Server's COM
invokes RTE callback
when transformed data
have been received.

»

(4) The Server's COM
dypamicLength == true] | receives the transformed
byte array

1
Com_ReceievDynSignal()

d

R
R

T
|
I -
| T
I I
I B N L L E L E T, o et 4- (5) RTE calls transformer to
| [icLength == false] ! deserialize the byte array into
! . Com_ReceiveSignal() parameters. Additionally, the RTE
| - receives the Client ID and puts
|I§ lL ! them into the RTE queue. The
———————— = Server Task is activated.
Inter-ECU communication r
Asynchronous Client-Server communication

Port name = p
Operation name = o

The ClientResponseRunnable is referencing an
AsynchronousServerCallRetumsEvent.

The client runnable that invokes the server call is referencing an
AsynchronousServerCallPoint

The server runnable is refered by an OperationInvokedEvent
ServerComSpec attribute queueLength = number of possible
queued server calls =

Activate Server's Task()

I ServerRunnable()

(6) RTE fetches the server
parameter from its queue
and calls the Server
runnable.

<
| u ___EOKO___ = (7) RTE calls the transformer for
I the response OUT parameters

Xfrm_<name2>()

T T
I I
I I
| |
I I
I I
I I N N and sends the resulting aray
| | alt dynamicLength of SystemSignal / bl (1o @i
: : [dJInamicLeng(== true] !
I I i < Com_SendDynSignal()
| | |
! N EOK0
I I i >
I L O A o] |- -
! ! [d)}namicLenglh == false] '
! ! ! Com_SendSignal()
I I o
| | !
E_OK()
I L S e
I I I >
' Rte_COMCbk_<sg>() 1 :
N '
Activate Client's response task() @) The Client's
B i
: COM invokes RTE
| callback when
e it > transformed data
| have been
alt dynamicLength of SystemSignal /

[dyriamicLength == true] |

T -
T received.
|
|
| Com_ReceiveDynSignal() :

ClientResponseRunnable(;

(9) RTE deserializes all OUT parameters and activates the
Client's response runnable.

g

Figure 4.43: Client Server asynchronous

AUTOSAR

4.3.2.8.5 Synchronous Client Server communication

Figure 4.44 shows a sequence diagram of how synchronous client server communica-
tion may be implemented by RTE.

AUTOSAR

Client Application Client'sRTE Client's Client's COM Servers Server's RTE Server
Transformer Netwok Server's Transformer
com
: Rte_Call_p_o() : : T :
Xfrm_<name1>() I —‘_B I
> (1) RTE allIN |
parameters of the operation into| I
e BOK0__ _“ a byte array |

(2) RTE calls Com_SendSignal

1 f
alt dynamicLength of SystemSignal / |

I for the byte array to transfer all
I
I
L

ength == true] ;
Com_SendDynSignal()

IN parameters using its COM

Client Application i
blocked. Client task is
set waiting

Rte_COMCbk_<sg>()
T

(3) The Server's COM
invokes RTE callback
when transformed data
have been received.

alt dynamicLength of SystemSignal /

[dynamicLength == true] :
Com_ReceiveDynSignal()
T

(4) The Server's COM
- receives the transformed
byte array

(5) RTE calls transformer to
deserialize the byte array into
parameters. Additionally, the RTE|
receives the Client ID and puts

Inter-ECU communication o] them into the RTE queue. The
Synchronous Client-Server communication E_OK() Server Task is activated.
Pottname=p L e - >

Operation name = o
[

|
The client runnable that invokes the server call is I Activate Server's task()
] I
I

referencing an SynchronousServerCallPoint
The server runnable is refered by an
OperationInvokedEvent [<-——--——-—-—- r————-—-----4

ServerComSpec attribute queuelength = number of .
possible queued server calls ! I ServerRunnable()
| (6) RTE fetches the server parameter >
! from its queue and calls the Server
| runnable. <—--———-==
I I
: : Xfrm_<name2>()
I <
I
[N ittt =
| (7) RTE calls the transformer
for the response OUT
alt dynamicLength of SystemSignal / parameters and sends the
[dinamicLength == true] fliseﬂ:mg array back to the

I Com_SendDynSignal()
T

[dynamicLength == false] I
'
! Com_SendSignal()

g

1
|
1
|
|
1
| @ |
| 1
E_OK() |
——————————— H-—————— === > I
- Rte_COMCbk_<sg>() i i [|
; [1 1 1
Client task
olemsed || | sendEventEventxy) ! ! !
1 1 1
| | |
---------- i il 1 1 1
| L] | | |
1 1 1 1 1 I
alt dynamicLength of SystemSignal / ! ! ! !
Clienttask is | | jqynamicLength == true] | | | I I
started | Com_ReceiveDynSignal() o 1 1 1
T > | | |
1 1 1
| | |
1 1 1
d | | |
[dynamicLength == false] : : : :
Com_ReceiveSignal() o | | |
> 1 1 1
| | |
| |
1 1
! (8) RTE receives byte ! !
1 armay and transforms it 1 1
| back to the OUT | |
] parameters 1 1
Client Application : : : :
continues 1 1 1 1
_ RIEEOKO__ | ! ! ! ! !
1 1 1 1 1
T T | | | | |
1 1 1 1 1

Figure 4.44: Client Server synchronous

AUTOSAR

4.3.3 SWC internal communication
4.3.3.1 Inter Runnable Variables

Sender/Receiver and Client/Server communication through AUTOSAR ports are the
model for communication between AUTOSAR SW-Cs.

For communication between Runnables inside of an AUTOSAR SW-C the AUTOSAR
SW-C Template [2] establishes a separate mechanism. AtomicSwComponents (ex-
cept for NvBlockComponents) can reserve InterRunnableVariables which can only be
accessed by the Runnables of this one AtomicSwComponent. The Runnables might
be running in the same or in different task contexts. Read and write accesses are
possible.

[SWS_Rte_03589] [The RTE shall support Inter Runnable Variables for single and
multiple instances of AUTOSAR SW-Cs. |(SRS_Rte _00142)

[SWS_Rte_07187] | The generated RTE shall initialize a defined implicitInter—
RunnableVariable and explicitInterRunnableVariable according to the
ValueSpecification oOf the vVariableDataPrototype defining the implic-
itInterRunnableVariable respectively explicitInterRunnableVariable if
the general initialization conditions in [SWS_Rte_07046] and [SWS_Rte 03852] are
fulfilled. | (SRS_Rte_00142)

InterRunnableVariables have a behavior corresponding to Sender/Receiver commu-
nication between AUTOSAR SW-Cs (or rather between Runnables of different AU-
TOSAR SW-Cs).

But why not use Sender/Receiver communication directly instead? Purpose is data
encapsulation / data hiding. Access to InterRunnableVariables of an AUTOSAR SW-C
from other AUTOSAR SWCs is not possible and not supported by RTE. InterRunnabl-
eVariable content stays SW-C internal and so no other SW-C can use it. Especially not
misuse it without understanding how the data behaves.

Like in Sender/Receiver (S/R) communication between AUTOSAR SW-Cs two different
behaviors exist:

1. Inter Runnable Variables with implicit behavior (implicitInterRunnable-
Variable)
This behavior corresponds with VariableAccesses in the dataReadAccess
and dataWriteAccess roles of Sender/Receiver communication and is sup-
ported by implicit S/R APl in this specification.

Note:

If a VariableAccess in the writtenLocalVariable role referring to a
VariableDataPrototype in the implicitInterRunnableVariable role
is specified for a certain interrunnable variable, but no RTE API for implicit write
of this interrunnable variable is called during an execution of the runnable, an
undefined value is written back when the runnable terminates.

AUTOSAR

For more details see section 4.2.5.6.1.
For APIs see sections 5.6.23 and 5.6.24.

Note 2:

As for the Implicit Sender/Receiver communication, the implicit concept for Inter-
RunnableVariables implies that the runnable does terminate. For runnable enti-
ties of category 2, the behavior is guaranteed only if it has a finite execution time.
A category 2 runnable that runs forever will not have its data updated.

2. Inter Runnable Variables with explicit behavior (explicitInterRunnable-
Variable)
This behavior corresponds with VariableAccesses in the dataSendPoint,
dataReceivePointByValue, Or dataReceivePointByArgument roles of
Sender/Receiver communication and is supported by explicit S/R API in this
specification.

For more details see section 4.2.5.6.2
For APIs see sections 5.6.26 and 5.6.27.

4.3.4 Inter-Partition communication

Partitions are used to decompose an ECU into functional units. Partitions can
contain both SW-Cs and BSW modules. The partitioning is done to protect the software
contained in the partitions against each other or to increase the performance by running
the partitions on different cores of a multi core controller.

Since the partitions may be separated by core boundaries or memory boundaries and
since the partitions can be stopped and restarted independently, the observable be-
havior to the SW-Cs for the communication between different partitions is rather similar
to the inter ECU communication than to the intra partition communication. The RTE
needs to use special mechanisms to communicate from one partition to another.

Like for the inter ECU communication, inter partition communication uses the connec-
tionless communication paradigm. This means, that a send operation is successful for
the sender, even if the receiving partition is stopped. A receiver will only, by means of
a timeout, be notified if the partition of the sender is stopped.

Unlike most basic software, the RTE does not have a main processing function. The
execution logic of the RTE is contained in the generated task bodies, the wrapper code
around the runnables whose execution RTE manages.

As the tasks that contain the SW-Cs runnables are uniquely assigned to partitions (see
page 11EER of [15]), the execution logic of the RTE is split among the partitions. It
can not be expected that the RTE generated wrapper code running in one partition can
directly access the memory objects assigned to the RTE part of another partition.

In this sense, there is one RTE per partition, that contains runnable entities.

AUTOSAR

Still, RTE is responsible to support the communication between SW-Cs allocated to the
different partitions. According to the AUTOSAR software layered architecture [], RTE
has to be independent of the micro controller architecture. AUTOSAR supports a wide
variety of multi core and memory protection architectures.

[SWS_Rte_02734] [The RTE generator shall support a mode in which the generated
code is independent of the micro controller. |(SRS_BSW _00161)

It can not be generally assumed that a cache coherent, shared memory is available
for the communication between partitions. Direct memory access and function calls
across partition boundaries are generally not possible. In the extreme case, communi-
cation might even be limited to a message passing interface.

To allow memory protection and multi core support in spite of [SWS_Rte 02734], the
AUTOSAR OS provides a list of mechanisms, that can be used for the communication
across cores (see [4]). Especially, the IOC has been designed to support the commu-
nication needs of RTE in a way that should not introduce additional run time overhead.

If a communication between Basic Software Modules is necessary for which the I0C
does not suffice, for example Sender-Receiver or Client-Server communication, there
are also mechanisms provided by the Basic Software Scheduler. These mechanisms
follow the Client-Server communication pattern or the Sender-Receiver communica-
tion pattern of the VFB but cannot be used for inter-ECU communication. The Basic
Software Scheduler can internally use the 10C to cross the partition boundaries. See
[24].

The following sections describe the use of some OS mechanisms that are designed for
inter partition communication.

4.3.4.1 Inter partition data communication using 10C

The general idea to allow the data communication between partitions in a most efficient
way and still be independent of the micro controller implementation is to take the buffers
and queues from the intra partition communication case and replace them with so
called IOC communication objects in the inter partition communication case.

In the ideal case, the access macros to the IOC communication object resolve to a
direct access to shared memory.

The 10C (Inter OS-Application Communication) is a feature of the AUTOSAR OS, which
provides a data oriented communication mechanism between partitions. The I0C pro-
vides communication buffers, queues, and protected access functions/macros to these
buffers that can be used from any pre-configured partitions concurrently.

The 10C offers communication of data to another core or between memory protected
partitions with guarantee of data consistency.

AUTOSAR

All data communications including the passing of parameters and return values in client
server communication, can be implemented by using the IOC. The basic principle for
using the 10C is to replace the RTE internal communication buffers by IOC buffers.

The 10C supports 1:1 and N:1 communication. For 1:N communication, N IOC com-
munication objects have to be used. The IOC is configured and provides generated
APIs for each IOC communication object. In case of N:1 communication, each sender
has a separate API.

The 10C API is not reentrant.

[SWS_Rte_02737] | RTE shall prevent concurrent access to the same IOC API from
different ExecutableEntity execution—-instances. ()

The 10C will use the appropriate mechanism to communicate between the partitions,
whether it requires communicating with another core, communicating with a partition
with a different level of trust, or communicating with another memory partition.

The 10C channels are configured in the OS Configuration. Their configurations has to
be provided as inputs for the RTE generator when the external configuration switch
strictConfigurationCheck [SWS_Rte 05148] is set to true, and can be pro-
vided by the RTE Generator or RTE Configuration Editor when strictConfigura-
tionCheck is set to false (see [SWS_Rte 05150]).

The 10C APIs use:

1. types declared by user on input to RTE (sender-receiver communication across
OsApplication boudaries).

2. types created by RTE to collect client-server operation arguments into single data
structure.

For the second item, RTE uses internal types that have to be described as Tmple-
mentationDataTypes (see [SWS_Rte 08400]).

The signaling between partitions is not covered by the I0C. The callbacks of IOC are
in interrupt context and are mainly intended for direct use by BSW. For the signaling
between partitions, RTE can use the activation of tasks or setting of events, see section
4.3.4.4.

[SWS_Rte_02736] [The RTE shall not execute ExecutableEntitys in the context
of IOC callbacks. |()

This is necessary to ensure that ExecutableEntitys will not be executed in interrupt
context or when a partition is terminated or restarted.

4.3.4.2 Inter partition data communication using Basic Software Scheduler

The Basic Software Scheduler provides Sender-Receiver and Client-Server communi-
cations mechanisms for communication between Basic Software Modules in different

AUTOSAR

partitions. Therefore these communication paradigms can be used by Basic Software
Modules in a multi core environment.

The usage is described in [9].

For Sender-Receiver communication currently only "explicit" transmission of data ele-
ments with "event" semantic (queued) is supported.

[SWS_Rte_08763] | For inter-ECU Sender-Receiver communication the length of the
queue is specified by the attribute queuelLength of the BswQueuedDataRecep-
tionPolicy which references through receivedData the VariableDataProto-
type of the Sender-Receiver communication. |(SRS_Rte _00243)

[SWS_Rte_08764] | The RTE generator shall reject a queueLength attribute of a
BswQueuedDataReceptionPolicy with a queue length < 0. |(SRS_Rte 00243)

4.3.4.3 Accessing COM from slave core in multicore configuration

In case of a multi core configuration, if a software component on the slave core wants
to send data to a software component on another ECU, the RTE has to send data
from the slave core through the IOC to the master core which in turn calls the send
API of COM. The same behavior is required for receive case where the master core is
responsible for forwarding received COM data to slave core through IOC.

[SWS_Rte_08306] | It is the RTEs responsibility to interact with COM whenever it is
needed. |()

This requires some special handling by the RTE since it implies, at least in the send
case, the need of a scheduable entity to do the actual call of COM send API.

[SWS_Rte_08307] [The RTE shall generate two (BswSchedulableEntity’s):
e Rte_ComSendSignalProxyPeriodic.
e Rte_ComSendSignalProxyImmediate.

Rte_ComSendSignalProxyPeriodic shall handle the sending of periodic signals
and Rte_ComSendSignalProxyImmediate shall handle the sending of immediate

signals. |()

[SWS_Rte_08308] | It shall be a possible to configure whether the return value of RTE
APIs is based on RTE-IOC interaction or RTE-COM interaction using the configuration
parameter RteTocInteractionReturnvValue. A warning should preferably be is-
sued in case RTE-COM interaction return value is chosen since that will cause major
performance decrease. |()

AUTOSAR

4.3.4.3.1 Example sequence diagrams of accessing COM from Slave core

Figure 4.45 shows a sequence diagram of how receive data through COM from slave
core may be implemented by RTE.

Master Core Slave Core

I I
Com_cbk (x) |

IocWrite <id>(x) j

IocRead_<id> (&x) Rte_Read()

Figure 4.45: Receive data through COM from slave core

AUTOSAR

Figure 4.46 shows a sequence diagram of how send from COM to slave core may be
implemented by RTE.

Master Core Slave Core

ComSendSignal
| cov [proxyimmediate oc il kel swe
! ! RTE_Write (x) !

TocWritel <id> returnInch <

.

(*IocRead[returnInfo]) (x) ,

]

I

I

| sh (buffer <id>,returnInfo) <

I I

| | ITocWrite <id>(x
1 1 push (buffer <id>,x) e ——

: : Sw_Interrupt%

1 1 1 WaitEvent (returnInfo.event)
! % ! IocRead <id>(&x) !

I T =

| U

I I

I

I

(_:anendSignal (x)

" I
|
(*returnInfo.IocWriteReturn) (r)
—

SetEvent (returnInfo.event>) !
IocRead <id> (&r)
t - r

Figure 4.46: Send data through COM from slave core

AUTOSAR

Figure 4.47 shows a sequence diagram of how send from COM to slave core using
return value based on RTE-IOC interaction may be implemented by RTE.

Master Core Slave Core

ComSendSignal
Prowyimmediate B T
| |

RTE_Write (x)
push (

e s LT
uffer <id>, signal|iq) | TocWrite <id>(signal id)

push (buffer <id>,x) 1 IocWrite <id>(x)

Sw_Interrupt

el

% IocRead <id>(&signal_id)

—

*IocRead[signal_iJl]) (x) D

NG
»

ComSendSignal (x) [|

—_— e e e e e =]

R _

Figure 4.47: Send data through COM from slave core using return value based on RTE-
10C interaction

AUTOSAR

4.3.4.4 Signaling and control flow support for inter partition communication

The OS representation of a partition is an OS Application.

This is a (non-exhaustive) summary of OS features that can be used for signaling and
control flow across partition boundaries:

e activation of tasks

start and stop of schedule tables

event signaling

alarms

spin locks (for inter core synchronization)

The following are not available for inter core signaling:
e OS Resource
e DisableAllinterrupts

For inter core synchronization, spin locks are provided. But, for efficiency reasons they
should be used with care.

4.3.4.5 Trusted Functions

The call-trusted-function mechanism of AUTOSAR OS can be used in a memory pro-
tected controller to implement a function call from an untrusted to a trusted partition.

This Trusted Partition is a partition that may have full access to the OS objects of other
partitions on the same core. The Basic Software is assumed to reside in a trusted
partition. It is assumed that the trusted partition cannot be terminated or restarted.

The typical use case for the call-trusted-function mechanism are AUTOSAR services
which are usually provided by a client/server interface where the service side resides
together with the basic software in the trusted partition.

Beware that this mechanism can not be used between two untrusted partitions or be-
tween cores.

The trusted functions are configured in the OS Configuration. Their configurations
shall be provided as inputs for the RTE generator when the external configuration
switch strictConfigurationCheck [SWS_Rte 05148] is set to true, and can be
provided by the RTE Generator or RTE Configuration Editor when strictConfigu-
rationCheck is set to false (see [SWS_Rte 05150]).

[SWS_Rte_07606] | Direct start of an ExecutableEnt ity execution-instance by the
mean of a trusted function shall only be used for the start of an ExecutableEntity
in the Trusted Partition. | (SRS _Rte 00195, SRS_Rte 00210)

AUTOSAR

The OS ensures that the partition of the caller is not terminated or restarted when a
trusted function is executed. If needed, the termination or restart of the caller’s partition
is delayed after the trusted function returns.

RTE has to ensure, that the OS does not kill an RTE-generated task due to stopping
or restarting a partition while this task is executing a function call to BSW or to the
software component of another partition when this call is not a pure function.

For this purpose, RTE can use either the OS mechanism of trusted function call, or it
can allocate the server to a different task than the client.

[SWS_Rte_02761] [In a partitioned system that supports stop or restart of partitions,
the RTE shall not use a direct function call (without use of OS call trusted function)
from a task of an untrusted partition to BSW or to the SW-C of another partition unless
this is a pure function. | (SRS_Rte _00196)

Please note that [SWS_Rte 02761] might require the use of OS call trusted function
for a partitioned system even without memory protection.

4.3.4.6 Memory Protection and Pointer Type Parameters in RTE API

In a memory protected ECU, a SW-C from an untrusted partition might misuse the
transition to the trusted context to modify memory in another partition. This can occur
when a pointer to a different memory partition is passed from the untrusted partition to
the trusted context. The RTE shall avoid this misuse by at least checking the validity
of the address of the pointer, and, where possible, also checking the integrity of the
associated memory object.

[SWS_Rte_02752] | When a SW-C in an untrusted partition receives (OUT parameter)
or provides (IN parameter with composite data type) an ArgumentDataPrototype
or VariableDataPrototype, it hands over a pointer to a memory object to an RTE
API. The RTE shall only forward this pointer to a trusted SW-C after it has checked that
the whole memory object is owned by the caller’s partition. | (SRS_Rte_00210)

[SWS_Rte_02753] | When a SW-C in an untrusted partition passes an Argument -
DataPrototype Of VariableDataPrototype, as a reference type to a SW-C
in a trusted partition (DATA_REFERENCE as an IN parameter), the RTE shall only
check that the caller's partition owns the start address of the referenced memory.
|(SRS_Rte_00210)

Note to [SWS_Rte _02753]: The RTE only checks whether the start address refer-
enced directly by the bataPrototypes belongs to the calling partition. Because the
RTE is not aware of the semantic of the pointed reference, it cannot check if the ref-
erenced object is completely contained in the calling partition (e.g. the RTE does not
know the size and does not know if the referenced object also contains references
to other objects). The BSW is responsible to make sure that the referenced memory
object does not cross memory section boundaries.

AUTOSAR

The OS API CheckTaskMemoryAccess can be used to fulfill [SWS_Rte_02752] and
[SWS_Rte_02753].

4.3.5 Portinterface Element Mapping and Data Conversion

AUTOSAR supports the connection of an R-port to a P-port with an interface that is not
compatible in the sense of the AUTOSAR compatibility rules. In addition, for sender-
receiver communication it is possible to specify how data elements are represented
given that the communication requires the usage of a dedicated communication bus.
In these cases the generated RTE has to support the conversion and re-scaling of
data.

4.3.5.1 Portinterface Element Mapping

Per default the shortNames of PortInterface elements are used to identify the
matching element pairs of connected ports. In case of non fitting names — might
be caused due to distributed development, off-the-shelf development, or re-use of soft-
ware components — it is required to explicitly specify which Port Interface elements
shall correlate. This is modelled with Port InterfaceMappings. A connection of two
ports can be associated with a set of PortInterfaceMappings. If two ports are
connected and a Port InterfaceMapping for the pair of interfaces of the two ports
is associated with the connection, the interface elements are mapped and converted
as specified inthe Port InterfaceMapping. If nO Port InterfaceMapping for the
respective pair of interfaces is associated with the connection, the ordinary interface
compatibility rules are applied.

The general approach is to perform the data conversion in the RTE of the ECU imple-
menting the R-port. The reason for this design decision is that in case of 1:n sender-
receiver communication it is inefficient to perform all the data conversions for the mul-
tiple receivers on the sender side and then send multiple sets of the same data just in
different representations over the communication bus.

[SWS_Rte_03815] | The RTE shall support the mapping of sender-receiver interfaces,
parameter interfaces and non-volatile data interface elements. |(SRS_Rte _00182)

[SWS_Rte_03816] | If a P-port specified by a SenderReceiverInterface Or Nv-
DatalInterface is connected to an R-port with an incompatible interface and a
VariableAndParameterInterfaceMapping for both interfaces is associated with
the connection, the RTE of the ECU implementing the R-port shall map and convert the
data elements of the sender’s interface to the data elements of the receiver’s interface.
|(SRS_Rte_00182)

[SWS_Rte_07091] | The RTE shall support the Mapping of elements of composite
data types in the context of a mapping of SenderReceiverInterface, NvDataln-
terface Ofr ParameterInterface elements. |(SRS_Rte 00182, SRS _Rte 00234)

AUTOSAR

[SWS_Rte_07092] [The RTE of the ECU implementing the R-port shall map and con-
vert the composite data type elements of bataPrototypes of the sender’s interface
to the composite data type elements of DataPrototypes of the receiver’s interface
according the SsubElementMapping

if a P-port specified by a SenderReceiverInterface, NvDataInterface Of Pa—
rameterInterface is connected to an R-port with an incompatible interface and
aVariableAndParameterInterfaceMapping exists for both interfaces and is as-
sociated with the connection and

the subElementMapping maps composite data type elements of the provided inter-
face to composite data type elements of the required interface. |(SRS_Rte 00182,
SRS _Rte 00234)

[SWS_Rte_07099] [The RTE of the ECU implementing the R-port shall map and con-
vert the composite data type elements of DataPrototype of the sender’s interface
to the primitive DataPrototype of the receiver’s interface according the SubEle-
mentMapping

if a P-port specified by a SenderReceiverInterface, NvDatalnterface Or Pa—
rameterInterface is connected to a R-port with an incompatible interface and

a VariableAndParameterInterfaceMapping exists for both interfaces and is
associated with the connection and the SubElementMapping exclusively maps
one composite data type element of the provided interface |(SRS_Rte 00182,
SRS Rte 00234)

According to [TPS_SWCT_01551], incomplete subElementMappings are allowed
for unqueued communication, when unmapped dataElements on the receiver side
have an initvalue.

Please note that the DataPrototypes of the provide port and DataPrototypes of
the require port might use exclusively ApplicationDataTypes, exclusively Tmple-
mentationDataTypes or both kinds of AutosarDataTypes in @ mixed manner.

[SWS_Rte_02307] | The RTE generator shall reject configurations that violate [con-
str_1300]. |()

[SWS_Rte_03817] | If a P-port specified by a SsenderReceiverInterface Or Nv—
DataInterface is connected to an R-port with an incompatible interface and no
VariableAndParameterInterfaceMapping for this pair of interfaces is associ-
ated with the connection, the RTE generator shall reject the input as an invalid config-
uration. | (SRS _Rte 00182, SRS_Rte 00018)

[SWS_Rte_03818] | The RTE shall support the mapping of client-server interface ele-
ments. | (SRS_Rte_00182)

[SWS_Rte_03819] | If a P-port specified by a ClientServerInterface is con-
nected to an R-port with an incompatible interface and a ClientServerInter—
faceMapping for both interfaces is associated with the connection, the RTE of the
ECU implementing the R-port, i. e. the client, shall map the operation and map and
convert the operation arguments of the client’s interface to the operation arguments of
the server’s interface. |(SRS_Rte _00182)

AUTOSAR

[SWS_Rte_07925] | If a ClientServerApplicationErrorMapping exists, the
RTE shall translate the error codes of the server into the corresponding error codes
described by the mapping. |(SRS_Rte 00182, SRS _Rte 00123)

[SWS_Rte_07926] [If a ClientServerApplicationErrorMapping exists and a
particular error of the server is not mapped, this error shall be translated to RTE_E_OX.
|(SRS_Rte_00182, SRS_Rte_00123)

[SWS_Rte_03820] [If a P-port specified by a ClientServerInterface is con-
nected to an R-port with an incompatible interface and no ClientServerInter—
faceMapping for this pair of interfaces is associated with the connection, the
RTE generator shall reject the input as an invalid configuration. |(SRS_Rte 00182,
SRS_Rte _00018)

[SWS_Rte_03821] [The RTE shall support the mapping of ModeSwitchInterface
elements. |(SRS_Rte_00182)

[SWS_Rte_03822] [If a P-port specified by a ModeSwitchInterface is connected
to an R-port with an incompatible interface and a ModeInterfaceMapping for both
interfaces is associated with the connection, the RTE of the ECU implementing the
R-port shall map and convert the mode elements of the sender’s interface to the mode
elements of the receiver’s interface. |(SRS_Rte_00182)

[SWS_Rte_03823] [If a P-port specified by a ModeSwitchInterface is connected
to an R-port with an incompatible interface and no ModeInterfaceMapping for this
pair of interfaces is associated with the connection, the RTE generator shall reject the
input as an invalid configuration. | (SRS_Rte 00182, SRS_Rte 00018)

[SWS_Rte_03824] | The RTE shall support the mapping of trigger interface elements.
10

[SWS_Rte_03825] | If a P-port specified by a TriggerInterface is connected to
an R-port with an incompatible interface and a TriggerInterfaceMapping for both
interfaces is associated with the connection, the RTE of the ECU implementing the
R-port shall map the trigger of the sender’s interface to the trigger of the receiver’'s
interface. |()

[SWS_Rte_03826] [If a P-port specified by a TriggerInterface is connected to
an R-port with an incompatible interface and no TriggerInterfaceMapping for this
pair of interfaces is associated with the connection, the RTE generator shall reject the
input as an invalid configuration. | (SRS_Rte 00018)

In order to generate the RTE for the ECU implementing the R-ports, the RTE generator
has to know the interfaces of the P-ports that are connected over the bus. This infor-
mation is provided in the ECU extract via the networkRepresentationProps (see
section 4.3.5.2) specified at the Tsignal representing the data element.

AUTOSAR

4.3.5.2 Network Representation

For sender-receiver communication it is possible to specify how data elements are
represented given that the communication requires the usage of a dedicated commu-
nication bus. For this purpose networkRepresentationProps can be specified at
the Isignal, describing the representation of the data element on the communication
bus via the attributes compuMethod and baseType.

[SWS_Rte_07842] | The RTE generator shall reject any input that violates
[TPS_SYST_02001] as an invalid configuration. |(SRS_Rte _00018)

[SWS_Rte_03827] | The RTE of the transmitting ECU shall perform the conversion
of the data element that has to be sent over a communication bus to the represen-
tation specified by the baseType and compuMethod of the networkRepresen-
tationProps oOf the respective 1Signal if the dataTypePolicy of the ISig-
nal is set to override or legacy. The converted data shall be passed to COM.
|(SRS_Rte_00181)

[SWS_Rte_06737] | If the dataTypePolicy of the respective Isignal is set to
networkRepresentationFromComSpec and the networkRepresentation of
the respective senderComSpec is defined, the RTE of the transmitting ECU shall per-
form the conversion of the data element that has to be sent over a communication
bus to the representation specified by the baseType and compuMethod of the net -
workRepresentation of the respective SenderComsSpec. The converted data shall
then be passed to COM. | (SRS _Rte 00181)

[SWS_Rte_03828] | The RTE of the receiving ECU shall perform the conversion of
the data element that is received over a communication bus from the representation
specified by the baseType and compuMethod of the networkRepresentation-
Props of the respective Tsignal to the data element’s application data type if the
dataTypePolicy of the ISignal is set to override or legacy. In this case
[SWS_Rte_03816] shall not be applied. |(SRS_Rte _00181)

[SWS_Rte_06738] | If the dataTypePolicy of the respective ISsignal is set to
networkRepresentationFromComSpec and the networkRepresentation of
the respective ReceiverComSpec is defined, the RTE of the receiving ECU shall
perform the conversion of the data element that is received over a communica-
tion bus from the representation specified by the baseType and compuMethod of
the networkRepresentation of the respective ReceiverComSpec. In this case
[SWS_Rte_03816] shall not be applied. |(SRS_Rte _00181)

[SWS_Rte_07844] | If the dataTypePolicy of the respective I1Signal is set to
networkRepresentationFromComSpec but there is N0 networkRepresenta-
tion defined by the ReceiverComSpec (respectively SenderComSpec) then no con-
version shall be performed by RTE. | (SRS_Rte _00181)

As an alternative to networkRepresentationProps the representation of the
VariableDataPrototypeS and ArgumentDataPrototypeS on the communica-
tion bus can be expressed by the used DataTypes in the PortInterfaces on the

AUTOSAR

outerPorts of the CompositionSwComponentType describing the ecu extract. In
this case the conversion between the network representation and the representation
for the software components on the ecu are described by a Port InterfaceMapping
which in turn is referenced by the DelegationSwConnector connecting the in-
nerPort of the software component and the outerport. These supports especially
conversions of texttable data representation where a Text TableMapping is needed
to describe the particular conversion rule.

[SWS_Rte_07828] | If a Port InterfaceMapping is specified at the Delegation-
SwConnector of a P-port, the RTE of the transmitting ECU shall perform the conver-
sion of the VariableDataPrototypeS Or ArgumentDataPrototypes that has to
be sent over a communication bus to the representation specified by the outerpPort.
The converted data shall be passed to COM. | (SRS _Rte 00181)

[SWS_Rte_07829] | d If a PortInterfaceMapping is specified at the Delega-
tionSwConnector of a R-port, the RTE of the receiving ECU shall perform the con-
version of the VariableDataPrototypes Or ArgumentDataPrototypes thatisre-
ceived over a communication bus from the representation specified by the outerport
to the representation specified by the innerPort. In this case [SWS_Rte_03816]
shall not be applied. |(SRS_Rte 00181).

4.3.5.3 Data Conversion

[SWS_Rte_03829] | The RTE shall support the conversion of an identical or linear
scaled data representation to another identical or linear scaled data representation. In
this context, the term "linear scaled data representation" also includes floating-point
data representations. | (SRS_Rte 00182)

[SWS_Rte_08801] | The RTE shall support the conversion integer-to-float and float-
to-integer. | (SRS _Rte _00182)

Today the RTE Specification does not define any specific behavior supporting float to
integer and integer to float conversions. This enables the RTE implementers to develop
the most efficient, stable and robust solution.

[SWS_Rte_03830] | The RTE shall support the conversion of a texttable data
representation (enumeration or bitfield) to another texttable data representation.
|(SRS_Rte_00182)

[SWS_Rte_03855] | The RTE shall support the conversion of a mixed linear scaled
and texttable data representation to another mixed linear scaled and texttable data
representation. |(SRS_Rte _00182)

[SWS_Rte_03856] | The RTE shall support the conversion between a texttable data
representation (enumeration) and a mixed linear scaled and texttable data represen-
tation. In this case only the enumeration part of the data representation shall be con-
verted, the linear scaled part shall be handled as out of range data. |(SRS_Rte _00182)

AUTOSAR

[SWS_Rte_03857] | The RTE shall support the conversion between an identical or
linear scaled data representation and a mixed linear scaled and texttable data repre-
sentation. A scale with a compuConst shall be handled as out of range data if the
mapping to a value is not defined by a TextTableMapping. |(SRS_Rte_00182)

[SWS_Rte_03860] | The RTE shall support the conversion of composite data
representations. In this case, the respective requirements [SWS_Rte 03829],
[SWS_Rte_03830], [SWS_Rte_03855], [SWS_Rte_03856], [SWS_Rte_03857],
[SWS_Rte_03831], [SWS_Rte 03832], and [SWS_Rte_03833] are applicable to the
individual composite elements. | (SRS _Rte 00182)

[SWS_Rte_03831] | The RTE generator shall reject any input that requires a con-
version which is not supported according to [SWS_Rte 03829], [SWS_Rte 03830],
[SWS_Rte_03855], [SWS_Rte_03856], or [SWS_Rte_03860] as an invalid configura-
tion. |(SRS_Rte 00182, SRS _Rte 00018)

[SWS_Rte_07928] | The data conversion shall be supported for data
types that refer to CompuMethods of category LINEAR, IDENTICAL,
SCALE_LINEAR_AND_TEXTTABLE, TEXTTABLE , BITFIELD_TEXTTABLE and
CompuMethods of category RAT_FUNC with a reciprocal linear data scaling.
|(SRS_Rte_00182)

Note: The definition of a reciprocal linear data scaling is given in Software Component
Template [2], [TPS_SWCT_01550]

[SWS_Rte_03832] | For the conversion between two data representations with lin-
ear scaling described either by an ApplicationDataType or a combination of
BaseType and CompuMethod (used for the specification of the network represen-
tation at the ComsSpec respectively the SystemsSignal) the RTE generator shall
derive the data conversion code automatically from the referred CompuMethods
of the two representations. In this context the scaling of a data representa-
tion is linear if the referred CompuMethod is of category IDENTICAL, LINEAR,
RAT_FUNC or SCALE_LINEAR_AND_TEXTTABLE. In case of a CompuMethod of cat-
egory SCALE_LINEAR_AND_TEXTTABLE this requirement applies to the linear scaled
part only. | (SRS_Rte _00182)

For a linear conversion the linear conversion factor can be calculated out of the fac-
torSiToUnit and offsetSiToUnit attributes of the referred units and the Com-
puRationalCoeffs of a compuInternalToPhys of the referred CompuMethods.

Further information about Linear Data Scaling is given in document Software Compo-
nent Template [2].

Example 4.9

A software component swca on an ECU Ecua sends a data element u of an uint16
type t_voltageAtSender via its port senderport. The referenced CompuMethod
iS cm_voltageAtSender, describing a fixpoint representation with offset 0 and LSB
1 = 272, The port senderport is connected to the port Receiverport of a soft-

4
ware component swcB that is deployed on a different ECU EcuB. The sent data ele-

AUTOSAR

ment u is mapped to a data element u of an uint16 type t_voltageAtReceiver ON
the receiving side that references a CompuMethod named cm_voltageAtReceiver.
cm_VoltageAtReceiver describes a fixpoint representation with offset ¥ = 2 and
LSB ; = 27%. For transportation over the bus a networkRepresentation that refer-
ences an uint8 type t_voltageOnNetwork is specified, using a fixpoint representation
described by the CompuMethod cm_voltageOnNetwork with offset % = 0.5 and LSB
$=2"1

Definition of the CompuMethods in XML:

<COMPU-METHOD>
<SHORT-NAME>cm_VoltageAtSender</SHORT-NAME>
<CATEGORY>LINEAR</CATEGORY>
<COMPU-INTERNAL-TO-PHYS>
<COMPU-SCALES>
<COMPU-SCALE>
<COMPU-RATIONAL-COEFFS>
<COMPU-NUMERATOR><V>0</V><V>1</V></COMPU-NUMERATOR>
<COMPU-DENOMINATOR><V>4</V></COMPU-DENOMINATOR>
</COMPU-RATIONAL-COEFFS>
</COMPU-SCALE>
</COMPU-SCALES>
</COMPU-INTERNAL-TO-PHYS>
</COMPU-METHOD>

<COMPU-METHOD>
<SHORT-NAME>cm_VoltageAtReceiver</SHORT-NAME>
<CATEGORY>LINEAR</CATEGORY>
<COMPU-INTERNAL-TO-PHYS>
<COMPU-SCALES>
<COMPU-SCALE>
<COMPU-RATIONAL-COEFFS>
<COMPU-NUMERATOR><V>16</V><V>1</V></COMPU-NUMERATOR>
<COMPU-DENOMINATOR><V>8</V></COMPU-DENOMINATOR>
</COMPU-RATIONAL-COEFFS>
</COMPU-SCALE>
</COMPU-SCALES>
</COMPU-INTERNAL-TO-PHYS>
</COMPU-METHOD>

<COMPU-METHOD>
<SHORT-NAME>cm_VoltageOnNetwork</SHORT-NAME>
<CATEGORY>LINEAR</CATEGORY>
<COMPU-INTERNAL-TO-PHYS>
<COMPU-SCALES>
<COMPU-SCALE>
<COMPU-RATIONAL-COEFFS>
<COMPU-NUMERATOR><V>1</V><V>1</V></COMPU-NUMERATOR>
<COMPU-DENOMINATOR><V>2</V></COMPU-DENOMINATOR>
</COMPU-RATIONAL-COEFFS>
</COMPU-SCALE>
</COMPU-SCALES>
</COMPU-INTERNAL-TO-PHYS>
</COMPU-METHOD>

AUTOSAR

Implementation of Rte_Send on the sending ECU EcuA:

Std_ReturnType

) * 2

1

2 Rte_Send_SwcA_SenderPort_u(t_voltageAtSender u)
3

4 ...

5 / *

6 u_NetworkRepresentation

7 = ((u # LSB sender + off_sender) - off network) / LSB network
8 = ((u / 4 + 0) — 0.5

9 = (u/ 2) — 1

10