
Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

1 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

Document Change History
Release Changed by Change Description

4.2.2 AUTOSAR
Release
Management

 Updated IoHwAb_Init function protoptype

4.2.1 AUTOSAR
Release
Management

 Editorial changes

4.1.3 AUTOSAR
Release
Management

 Adapted the requirement format.

4.1.2 AUTOSAR
Release
Management

 Editorial changes

 Removed chapter(s) on change documentation

4.1.1 AUTOSAR
Administration

 Modified GET and SET operations

 Extended Production Errors recommended by
the Task Force “Production Errors”

 Define a notification function for OCU driver

4.0.3 AUTOSAR
Administration

 Update Version Check requirement

3.1.5 AUTOSAR
Administration

 Names of callback notification APIs have been
corrected.

 Exported files <ModuleName>.h of underlying
modules are used, instead of
<ModuleName>_Types.h

3.1.4 AUTOSAR
Administration

 I/O Hardware Abstraction configuration has
been removed from the EcucParamDef

 Functional Diagnostics' interface has been
added (DCM controls I/O Signals)

 Unnecessary classes, attributes and types
removed

 Legal disclaimer revised

3.1.1 AUTOSAR
Administration

 Legal disclaimer revised

Document Title Specification of I/O Hardware
Abstraction

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 047

Document Classification Auxiliary

Document Status Final

Part of AUTOSAR Release 4.2.2

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

2 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

Document Change History
Release Changed by Change Description

3.0.1 AUTOSAR
Administration

 Auto generation of chapters 8 and 10 with the
Metamodel

 Update of tables and some chapters of the
document to stay compliant with correlated
documents

 Document meta information extended

 Small layout adaptations made

2.1.15 AUTOSAR
Administration

 Various images corrected in PDFversion
(printing problems)

2.1.14 AUTOSAR
Administration

 File structure updated

 Traceability matrix corrected

 Restriction for the usage of the SWC template

 Chapter about IOHWAB Runnable concept
reworked

 Chapter about IOHWAB description reworked

 Adjustments in the configuration chapter

 Legal disclaimer revised

 Release Notes added

 “Advice for users” revised

 “Revision Information” added

2.0 AUTOSAR
Administration

 Initial Release

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

3 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only. For any other purpose, no part of
the specification may be utilized or reproduced, in any form or by any means, without
permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference
models, "use cases", and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their
presence in such specifications, nor any later documentation of AUTOSAR
conformance of products actually implementing such exemplary items, imply that
intellectual property rights covering such exemplary items are licensed under the
same rules as applicable to the AUTOSAR Standard.

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

4 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

Table of Contents

1 Introduction and functional overview ... 7

2 Acronyms and abbreviations ... 8

3 Related documentation.. 10

3.1 Input documents ... 10

3.2 Related standards and norms .. 11

3.3 Related specification ... 11

4 Constraints and assumptions .. 12

4.1 Limitations .. 12

4.2 Applicability to car domains .. 12

5 Dependencies to other modules .. 13

5.1 Interface with MCAL drivers .. 13
5.1.1 Overview ... 13
5.1.2 Summary of interfaces with MCAL drivers .. 14

5.2 Interface with the communication drivers .. 14

5.3 Interface with System Services .. 16

5.4 Interface with DCM .. 17

5.5 File structure ... 17
5.5.1 Code file structure ... 17

5.5.2 Header file structure .. 17

6 Requirements traceability .. 20

7 Functional specification ... 26

7.1 Integration code .. 26
7.1.1 Background & Rationale ... 26

7.1.2 Requirements for integration code implementation 26

7.2 ECU Signals Concept .. 27
7.2.1 Background & Rationale ... 27

7.2.2 Requirements about ECU signals ... 28

7.3 Attributes .. 29
7.3.1 Background & Rationale ... 29
7.3.2 Requirements about ECU signal attributes ... 29

7.3.2.1 Filtering/Debouncing Attribute ... 29
7.3.2.2 Age Attribute .. 29

7.4 I/O Hardware Abstraction and Software Component Template 29
7.4.1 Background & Rationale ... 30
7.4.2 Requirements about the usage of Software Component template 30

7.4.2.1 Ports concept and I/O Hardware Abstraction .. 30
7.4.2.2 Software Component and Runnable concept .. 31

7.5 Scheduling concept for I/O Hardware Abstraction .. 31
7.5.1 Background & Rationale ... 31
7.5.2 Requirements about I/O Hardware Abstraction Scheduling concept ... 32

7.5.2.1 Operations for interfaces provided by Ports .. 32
7.5.2.2 Notification and/or Callback ... 32
7.5.2.3 Main function / job processing function ... 33
7.5.2.4 Initialization, De-initialization and/or Callout .. 33
7.5.2.5 I/O Hardware Abstraction scheduling examples ... 33

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

5 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

7.6 Other requirements ... 35

7.7 Development Errors .. 36

7.8 Production Errors ... 36

7.9 Extended Production Errors .. 36

7.10 Error Detection ... 36

7.11 Error notification .. 36

7.12 I/O Hardware Abstraction layer description .. 36
7.12.1 Background & Rationale ... 36
7.12.2 Requirements .. 37

7.12.2.1 I/O Hardware Abstraction Ports definition .. 37
7.13 Debugging Concept .. 37

7.13.1 Background & Rationale ... 37
7.13.2 Requirements .. 37

7.14 Examples .. 38
7.14.1 EXAMPLE 1: Use case of on-board hardware 38
7.14.2 EXAMPLE 2: Use case of failure monitoring 40
7.14.3 EXAMPLE 3: Output power stage ... 41

7.14.4 EXAMPLE 4: Setting sensor and controlling periphery in low power
state 42

8 API specification .. 44

8.1 Imported types .. 44

8.2 Type definitions .. 45
8.2.1 IoHwAb<Init_Id>_ConfigType ... 45

8.3 Function definitions .. 45
8.3.1 IoHwAb_Init<Init_Id> ... 45

8.3.2 IoHwAb_GetVersionInfo .. 46

8.4 Call-back notifications ... 47
8.4.1 IoHwAb_AdcNotification<#groupID> ... 47

8.4.2 IoHwAb_PwmNotification<#channel> ... 47
8.4.3 IoHwAb_IcuNotification<#channel> .. 48
8.4.4 IoHwAb_GptNotification<#channel> ... 48

8.4.5 IoHwAb_OcuNotification<#channel> ... 49
8.4.6 IoHwAb_Pwm_NotifyReadyForPowerState<#MODE> 49
8.4.7 IoHwAb_Adc_NotifyReadyForPowerState<#MODE> 49

8.5 Scheduled functions .. 50
8.5.1 <Name of scheduled function>.. 50

8.6 Functional Diagnostics Interface .. 50
8.6.1 IoHwAb_Dcm_<EcuSignalName> .. 51
8.6.2 IoHwAb_Dcm_Read<EcuSignalName> .. 51

8.7 Power State Functions ... 52
8.7.1 IoHwAb_PreparePowerState<#MODE> ... 52
8.7.2 IoHwAb_ EnterPowerState <#MODE> .. 53

8.8 Expected Interfaces ... 54
8.8.1 Mandatory Interfaces .. 54

8.8.2 Optional Interfaces .. 56
8.8.3 Job End Notification .. 56

9 Sequence diagrams .. 57

9.1 ECU-signal provided by the I/O Hardware Abstraction (example) 57

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

6 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

9.2 Setting ADC and PWM in a low consumption power state as a result of a
request for an application low power mode (example) .. 59

10 Configuration specification ... 61

10.1 Published Information ... 61

11 Not applicable requirements .. 62

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

7 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

1 Introduction and functional overview

This specification specifies the functionality and the configuration of the AUTOSAR
Basic Software I/O Hardware Abstraction. The I/O Hardware Abstraction is part of the
ECU Abstraction Layer.

The I/O Hardware Abstraction shall not be considered as a single module, as it can
be implemented as more than one module. This specification for the I/O Hardware
Abstraction is not intended to standardize this module or group of modules. Instead,
it is intended to be a guideline for the implementation of its functional interfaces with
other modules.

Aim of the I/O Hardware Abstraction is to provide access to MCAL drivers by
mapping I/O Hardware Abstraction ports to ECU signals. The data provided to the
software component is completely abstracted from the physical layer values.
Therefore, the software component designer does not need detailed knowledge
about the MCAL driver's API and the units of the physical layer values anymore.

The I/O Hardware Abstraction is always an ECU specific implementation, because
the requirements of the software components to the basic software have to be fitted
to the features of a certain MCAL implementation.

The I/O Hardware Abstraction shall provide the service for initializing the whole I/O
Hardware Abstraction.

The intention of this document is:

 to determine which part of the Software Component template shall be used
when defining an I/O Hardware Abstraction.

 to explain the way to define generic ports, where ECU signals are mapped.

The intention of this document is not:

 to provide C-APIs

 to provide a specific formalization for every ECU signal, like it is done via the
standardization of functional data (body domain, powertrain, chassis domain)

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

8 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

2 Acronyms and abbreviations

Abbreviation /
Acronym:

Description:

AUTOSAR AUTomotive Open System ARchitecture

API Application Programming Interface

BSW Basic SoftWare

BSWMD Basic SoftWare Module Description

C/S Client/Server

ECU Electronic Control Unit

HW HardWare

IoHwAb Input/Output Hardware Abstraction

ISR Interrupt Service Routine

MCAL MicroController Abstraction Layer

OS Operating System

RTE RunTime Environment

S/R Sender/Receiver

SW SoftWare

SWC SoftWare Component (see [8] for further infromation)

XML eXtensible Markup Language

Expressions used in this document

Expression Description Example

Callback
Within this document, the term ‘callback’ is used for
API services, which are intended for notifications to
other BSW modules.

Callout
Callouts are function stubs, which can be filled at
configuration time, with the purpose to add
functionality to the module that provides the callout.

Class
A class represents a set of signals that has similar
electrical characteristics.

Analogue class,
Discrete class, …

Client / Server
communication

This definition is an extract from [9]:
Client-server communication involves two entities, the
client which is the
requirer (or user) of a service and the server that
provides the service.
The client initiates the communication, requesting that
the server performs a service, transferring a parameter
set if necessary. The server, in the form of the RTE,
waits for incoming communication requests from a
client, performs the requested service and dispatches
a response to the client's request. So, the direction of
initiation is used to categorize whether an AUTOSAR
Software Component is a client or a server.

Electrical
Signal

An electrical signal is the physical signal on the pin of
the ECU.

Physical input voltage at
an ECU-Pin

ECU pin
An ECU pin is an electrical hardware connection of the
ECU with the rest of the electronic system.

ECU Signal

An ECU Signal is the software representation of an
electrical signal. An ECU signal has attributes and a
symbolic name

Input voltage ,Discrete
Output, PWM Input

ECU Signal
Group

An ECU Signal Group is the software representation
of a group of electrical signals.

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

9 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

Attributes

Characteristics that can be Software (SW) and
Hardware (HW) for each kind of ECU signals existing
in a ECU. Some of the Attributes are fixed by the port
definitions, others can be configured in the I/O
Hardware Abstraction.

Range,
Lifetime / delay

Sender-receiver
communication

This definition is an extract from [9]:
Sender-receiver communication involves the
transmission and reception of signals consisting of
atomic data elements that are sent by one component
and received by one or more components. A sender-
receiver interface can contain multiple data elements.
Sender-receiver communication is one-way - any reply
sent by the receiver is sent as a separate sender-
receiver communication. A port of a component that
requires an AUTOSAR sender-receiver interface can
read the data elements described in the interface and
a port that provides the interface can write the data
elements.

Symbolic name
The symbolic name of a ECU signal is used by the I/O
Hardware Abstraction to make a link (function, pin)

ECU signal attributes

Expression Description Example

Range

This is a functional range and not an
electrical range. All the range is used either
for functional needs or for diagnosis
detections
For analogue ECU signals
[lowerLimit...upperLimit] (Voltage, current).
For the particular case of a resistance
signal and a timing signal (period), the
lowerLimit value can not be negative.

[-12Volts...+12Volts] (voltage)
 [0,1]
(discrete signals)

[0…upperLimit]
(period timing signal)
[-100…100%]
(Duty Cycle based timing signal)

Resolution

This attribute is for many Classes dependent
on the range and the Data Type.
Example: (upperLimit - lowerLimit) /
(2

datatypelength
 -1)

For the others classes, it is known and
defined.

 [-12 Volts…+12Volts]
Data Type : 16 bits
Resolution => 24 / 65535

Accuracy
It depends of hardware peripheral used for
acquisition and/or generation.

ADC converter could be a
8/10/12/16 bits converter

Inversion

Inversion between the physical value and the
logical value. This attribute is not visible but
done by I/O Hardware Abstraction to deliver
expected values to users.

Physical HighState 
(signal=False)
Physical LowState 
(signal=True)

Sampling rate Time period required to get a signal value.
Sampling rate for a sampling
windows (burst)

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

10 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules
AUTOSAR_TR_BSWModuleList.pdf

[2] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[3] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral.pdf

[4] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration.pdf

[5] Glossary
AUTOSAR_TR_Glossary.pdf

[6] General Requirements on SPA
AUTOSAR_SRS_SPALGeneral.pdf

[7] Requirements on I/O Hardware Abstraction
AUTOSAR_SRS_IOHWAbstraction.pdf

[8] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate.pdf

[9] Specification of RTE Software
AUTOSAR_SWS_RTE.pdf

[10] Specification of ECU State Manager
AUTOSAR_SWS_ECUStateManager.pdf

[11] Specification of ECU Resource Template
AUTOSAR_TPS_ECUResourceTemplate.pdf

[12] Specification of ADC Driver
AUTOSAR_SWS_ADCDriver.pdf

[13] Specification of DIO Driver
AUTOSAR_SWS_DIODriver.pdf

[14] Specification of ICU Driver
AUTOSAR_SWS_ICUDriver.pdf

[15] Specification of PWM Driver
AUTOSAR_SWS_PWMDriver.pdf

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

11 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

[16] Specification of PORT Driver
AUTOSAR_SWS_PORTDriver.pdf

[17] Specification of GPT Driver
AUTOSAR_SWS_GPTDriver.pdf

[18] Specification of SPI Handler/Driver
AUTOSAR_SWS_SPIHandlerDriver.pdf

[19] Basic Software Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[20] Specification of Standard Types
AUTOSAR_SWS_StandardTypes.pdf

[21] General Specification of Basic Software Modules
AUTOSAR_SWS_BSWGeneral.pdf

[22] Specification of OCU Driver
AUTOSAR_SWS_OCUDriver.doc

3.2 Related standards and norms

None

3.3 Related specification

AUTOSAR provides a General Specification on Basic Software modules [21] (SWS
BSW General), which is also valid for IO Hardware Abstraction.

Thus, the specification SWS BSW General shall be considered as additional and
required specification for IO Hardware Abstraction.

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

12 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

4 Constraints and assumptions

4.1 Limitations

No limitations

4.2 Applicability to car domains

No restrictions

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

13 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

5 Dependencies to other modules

5.1 Interface with MCAL drivers

5.1.1 Overview

The following picture shows the I/O Hardware Abstraction. It is located above MCAL
drivers. That means the I/O Hardware Abstraction will call the driver’s APIs for
managing on chip devices. The configuration of the MCAL drivers depends on the
quality of the ECU signals that is required by the SWCs. For instance, it could be
necessary to have notifications when a relevant change occurs on the pin level
(rising edge, falling edge). The system designer has to configure the MCAL drivers to
allow notifications for a given signal. Notifications are generated by MCAL drivers
and are handled within the I/O Hardware Abstraction.
Please notice that I/O Hardware Abstraction is not intended to abstract GPT
functionalities, but rather to use them to perform its own functionalities. The
interfacing with GPT driver is shown because it is part of the MCAL.

The following picture shows all interfaces with MCAL drivers:

Figure 5-1: Interfaces with MCAL drivers

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

14 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

5.1.2 Summary of interfaces with MCAL drivers

[SWS_IoHwAb_00078] ⌈ The I/O Hardware Abstraction implementation shall

provide Software Components with access to all MCAL drivers.⌋ (SRS_BSW_00384)

 MCAL drivers

IoHwAb ADC
driver

OCU
driver

PWM
driver

ICU
driver

DIO
driver

PORT
driver

GPT
driver

Calls API of X X X X X X X

Receives
notifications
from

X

X X X - - X

The table above must be read as following:

 The I/O Hardware Abstraction calls API of the ADC driver

 The I/O Hardware Abstraction receives notifications from the ADC driver.

 The I/O Hardware Abstraction does not receive notifications from the DIO
driver.

A complete list of all APIs is given in chapter 8.7.1

5.2 Interface with the communication drivers

[SWS_IoHwAb_00079] ⌈The I/O Hardware Abstraction implementation shall provide
Software Components with access to communication drivers (for instance by SPI), if

on-board devices are managed. ⌋ (SRS_BSW_00384, SRS_IoHwAb_12242)

The following picture shows the I/O Hardware Abstraction, where some signals come
from / are set via the SPI handler / driver.
According to the Layered Software Architecture [2] (ID03-16), the I/O Hardware
Abstraction contains dedicated drivers to manage external devices for instance:

 A driver for external ADC driver, connected via SPI.

 A driver for external I/O realized on an ASIC device, connected via SPI.

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

15 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

Figure 5-2: Interfaces with communication drivers

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

16 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

5.3 Interface with System Services

[SWS_IoHwAb_00044] ⌈The I/O Hardware Abstraction implementation shall
interface with the following system services:

 ECU State Manager (init function)

 DEM: Diagnostic Event Manager

 DET: Development Error Tracer

 BSW Scheduler⌋ (SRS_BSW_00336, SRS_BSW_00384, SRS_BSW_00101)

Figure 5-3: Interfaces with system services

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

17 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

5.4 Interface with DCM

The I/O Hardware Abstraction shall provide interfaces to DCM, for functional
diagnostics of the software components. DCM will use functional diagnostics for
reading and controlling the implemented ECU signals.

The prototypes of the interfaces provided to DCM shall be within a header file
IoHwAb_<ServiceComponentName_>Dcm.h, for each ServiceComponent.
For details of the interfaces, refer Section 8.6.

5.5 File structure

5.5.1 Code file structure

[SWS_IoHwAb_00097] ⌈The code file structure shall not be defined within this

specification. ⌋ (SRS_BSW_00158)

5.5.2 Header file structure

As there can be multiple, project-specific instances of the I/O Hardware Abstraction,
the file structure cannot be specified.

Figure 5-4 gives an example of an I/O Hardware Abstraction that has its ECU signals
categorized in three modules (the partitioning of the signals into separate modules is
implementation-specific):

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

18 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

Figure 5-4: File structure

The I/O Hardware Abstraction C files (represented with name
“IoHwAb_<ComponentName>_<Classification>.c”) shall optionally include the Dem.h
file if any production error will be issued by the implementation. By this inclusion, the
APIs to report errors as well as the required Event Id symbols are included. This
specification defines the name of the Event Id symbols, which are provided by XML
to the DEM configuration tool. The DEM configuration tool assigns ECU dependent
values to the Event Id symbols and publishes the symbols in Dem_IntErrId.h.

IoHwAbstraction

«source»
IoHwAb_<ComponentName>_Cfg.h

«source»
IoHwAb_<ComponentName>.h

«source»
IoHwAb_<ComponentName>_Cbk.h

«source»
IoHwAb_<ComponentName>_Analog.c

«source»
IoHwAb_<ComponentName>_Discrete.c

«source»
IoHwAb_<ComponentName>_Pwm.c

«source»
IoHwAb_<ComponentName>_Types.h

«source»
SchM_IoHwAb_<ComponentName>.h

«source»
SchM.c

include include include

include include include

include

include
«sourc...

Std_Types.h
«source»

Rte_<ComponentName>.h

«source»
Pwm.c

«source»
Adc.c

«source»
Adc.h

«source»
Dio.h

«source»
Pwm.h

include
include

include

include

include

include

include

«source»

Ocu.c

include

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

19 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

[SWS_IoHwAb_00095] ⌈The pre-compile time parameters shall be placed in a

separate header file IoHwAb_<ComponentName>_Cfg.h⌋ (SRS_BSW_00345,

SRS_BSW_00412)
The I/O Hardware Abstraction should be considered as a set of modules. It could be
designed as more than one module-source and header file. This document does not
specify a standard naming scheme.

[SWS_IoHwAb_00112] ⌈File names should be prefixed with
‘IoHwAb_<ComponentName>_<reference>’ (where the field <reference> can be an
implementation-specific category and the field <ComponentName> is the name of
the atomic software component, i.e. the instance of the I/O Hardware Abstraction) in

order to avoid name clashes. ⌋ ()

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

20 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

6 Requirements traceability

Requirement Description Satisfied by

- - SWS_IoHwAb_00019

- - SWS_IoHwAb_00021

- - SWS_IoHwAb_00025

- - SWS_IoHwAb_00037

- - SWS_IoHwAb_00063

- - SWS_IoHwAb_00068

- - SWS_IoHwAb_00069

- - SWS_IoHwAb_00070

- - SWS_IoHwAb_00075

- - SWS_IoHwAb_00104

- - SWS_IoHwAb_00105

- - SWS_IoHwAb_00106

- - SWS_IoHwAb_00107

- - SWS_IoHwAb_00112

- - SWS_IoHwAb_00119

- - SWS_IoHwAb_00120

- - SWS_IoHwAb_00121

- - SWS_IoHwAb_00122

- - SWS_IoHwAb_00123

- - SWS_IoHwAb_00124

- - SWS_IoHwAb_00151

- - SWS_IoHwAb_00152

- - SWS_IoHwAb_00153

- - SWS_IoHwAb_00154

- - SWS_IoHwAb_00155

- - SWS_IoHwAb_00156

SRS_BSW_00005 Modules of the ÂµC Abstraction
Layer (MCAL) may not have hard
coded horizontal interfaces

SWS_IoHwAb_00145

SRS_BSW_00007 All Basic SW Modules written in C
language shall conform to the
MISRA C 2004 Standard.

SWS_IoHwAb_00145

SRS_BSW_00101 The Basic Software Module shall
be able to initialize variables and
hardware in a separate
initialization function

SWS_IoHwAb_00036,
SWS_IoHwAb_00044,
SWS_IoHwAb_00059,
SWS_IoHwAb_00060,
SWS_IoHwAb_00061

SRS_BSW_00158 All modules of the AUTOSAR
Basic Software shall strictly

SWS_IoHwAb_00097

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

21 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

separate configuration from
implementation

SRS_BSW_00160 Configuration files of AUTOSAR
Basic SW module shall be
readable for human beings

SWS_IoHwAb_00145

SRS_BSW_00161 The AUTOSAR Basic Software
shall provide a microcontroller
abstraction layer which provides a
standardized interface to higher
software layers

SWS_IoHwAb_00145

SRS_BSW_00162 The AUTOSAR Basic Software
shall provide a hardware
abstraction layer

SWS_IoHwAb_00145

SRS_BSW_00164 The Implementation of interrupt
service routines shall be done by
the Operating System, complex
drivers or modules

SWS_IoHwAb_00145

SRS_BSW_00167 All AUTOSAR Basic Software
Modules shall provide
configuration rules and constraints
to enable plausibility checks

SWS_IoHwAb_00145

SRS_BSW_00168 SW components shall be tested
by a function defined in a common
API in the Basis-SW

SWS_IoHwAb_00145

SRS_BSW_00170 The AUTOSAR SW Components
shall provide information about
their dependency from faults,
signal qualities, driver demands

SWS_IoHwAb_00145

SRS_BSW_00300 All AUTOSAR Basic Software
Modules shall be identified by an
unambiguous name

SWS_IoHwAb_00145

SRS_BSW_00321 The version numbers of
AUTOSAR Basic Software
Modules shall be enumerated
according specific rules

SWS_IoHwAb_00145

SRS_BSW_00325 The runtime of interrupt service
routines and functions that are
running in interrupt context shall
be kept short

SWS_IoHwAb_00145

SRS_BSW_00326 - SWS_IoHwAb_00145

SRS_BSW_00329 - SWS_IoHwAb_00145

SRS_BSW_00333 For each callback function it shall
be specified if it is called from
interrupt context or not

SWS_IoHwAb_00033

SRS_BSW_00334 All Basic Software Modules shall
provide an XML file that contains
the meta data

SWS_IoHwAb_00145

SRS_BSW_00336 Basic SW module shall be able to
shutdown

SWS_IoHwAb_00036,
SWS_IoHwAb_00044

SRS_BSW_00341 Module documentation shall
contains all needed informations

SWS_IoHwAb_00145

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

22 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

SRS_BSW_00342 It shall be possible to create an
AUTOSAR ECU out of modules
provided as source code and
modules provided as object code,
even mixed

SWS_IoHwAb_00145

SRS_BSW_00343 The unit of time for specification
and configuration of Basic SW
modules shall be preferably in
physical time unit

SWS_IoHwAb_00145

SRS_BSW_00345 BSW Modules shall support pre-
compile configuration

SWS_IoHwAb_00095

SRS_BSW_00376 - SWS_IoHwAb_00145

SRS_BSW_00384 The Basic Software Module
specifications shall specify at least
in the description which other
modules they require

SWS_IoHwAb_00044,
SWS_IoHwAb_00078,
SWS_IoHwAb_00079

SRS_BSW_00398 The link-time configuration is
achieved on object code basis in
the stage after compiling and
before linking

SWS_IoHwAb_00145

SRS_BSW_00399 Parameter-sets shall be located in
a separate segment and shall be
loaded after the code

SWS_IoHwAb_00145

SRS_BSW_00400 Parameter shall be selected from
multiple sets of parameters after
code has been loaded and started

SWS_IoHwAb_00145

SRS_BSW_00404 BSW Modules shall support post-
build configuration

SWS_IoHwAb_00145

SRS_BSW_00405 BSW Modules shall support
multiple configuration sets

SWS_IoHwAb_00145

SRS_BSW_00412 References to c-configuration
parameters shall be placed into a
separate h-file

SWS_IoHwAb_00095

SRS_BSW_00414 Init functions shall have a pointer
to a configuration structure as
single parameter

SWS_IoHwAb_00157,
SWS_IoHwAb_00158

SRS_BSW_00416 The sequence of modules to be
initialized shall be configurable

SWS_IoHwAb_00145

SRS_BSW_00417 Software which is not part of the
SW-C shall report error events
only after the DEM is fully
operational.

SWS_IoHwAb_00145

SRS_BSW_00423 BSW modules with AUTOSAR
interfaces shall be describable
with the means of the SW-C
Template

SWS_IoHwAb_00001

SRS_BSW_00424 BSW module main processing
functions shall not be allowed to
enter a wait state

SWS_IoHwAb_00145

SRS_BSW_00428 A BSW module shall state if its
main processing function(s) has to

SWS_IoHwAb_00145

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

23 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

be executed in a specific order or
sequence

SRS_BSW_00432 Modules should have separate
main processing functions for
read/receive and write/transmit
data path

SWS_IoHwAb_00145

SRS_BSW_00439 Enable BSW modules to handle
interrupts

SWS_IoHwAb_00145

SRS_BSW_00440 The callback function invocation
by the BSW module shall follow
the signature provided by RTE to
invoke servers via Rte_Call API

SWS_IoHwAb_00143

SRS_BSW_00441 Naming convention for type,
macro and function

SWS_IoHwAb_00102

SRS_BSW_00450 A Main function of a un-initialized
module shall return immediately

SWS_IoHwAb_00035

SRS_IoHwAb_00002 The I/O Hardware Abstraction
shall provide an interface to the
DCM that allows to control and
read the configured signals

SWS_IoHwAb_00135,
SWS_IoHwAb_00136,
SWS_IoHwAb_00137,
SWS_IoHwAb_00138,
SWS_IoHwAb_00139,
SWS_IoHwAb_00140,
SWS_IoHwAb_00141,
SWS_IoHwAb_00142

SRS_IoHwAb_12242 The IO Hardware Abstraction
shall hide any communication
over ECU internal onboard
peripherals to access Signals

SWS_IoHwAb_00079

SRS_IoHwAb_12248 The IO Hardware Abstraction
module shall keep the ECU
hardware safe

SWS_IoHwAb_00038

SRS_IoHwAb_12451 The IO Hardware Abstraction
module shall not decide on its
own to switch an output on again
that has been switched off for
hardware protection reasons

SWS_IoHwAb_00039

SRS_SPAL_00157 All drivers and handlers of the
AUTOSAR Basic Software shall
implement notification
mechanisms of drivers and
handlers

SWS_IoHwAb_00145

SRS_SPAL_12056 All driver modules shall allow the
static configuration of notification
mechanism

SWS_IoHwAb_00032,
SWS_IoHwAb_00033,
SWS_IoHwAb_00034

SRS_SPAL_12057 All driver modules shall implement
an interface for initialization

SWS_IoHwAb_00145

SRS_SPAL_12063 All driver modules shall only
support raw value mode

SWS_IoHwAb_00145

SRS_SPAL_12064 All driver modules shall raise an
error if the change of the
operation mode leads to
degradation of running operations

SWS_IoHwAb_00145

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

24 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

SRS_SPAL_12067 All driver modules shall set their
wake-up conditions depending on
the selected operation mode

SWS_IoHwAb_00145

SRS_SPAL_12068 The modules of the MCAL shall
be initialized in a defined
sequence

SWS_IoHwAb_00145

SRS_SPAL_12069 All drivers of the SPAL that wake
up from a wake-up interrupt shall
report the wake-up reason

SWS_IoHwAb_00145

SRS_SPAL_12075 All drivers with random streaming
capabilities shall use application
buffers

SWS_IoHwAb_00145

SRS_SPAL_12077 All drivers shall provide a non
blocking implementation

SWS_IoHwAb_00145

SRS_SPAL_12078 The drivers shall be coded in a
way that is most efficient in terms
of memory and runtime resources

SWS_IoHwAb_00145

SRS_SPAL_12092 The driver's API shall be
accessed by its handler or
manager

SWS_IoHwAb_00145

SRS_SPAL_12125 All driver modules shall only
initialize the configured resources

SWS_IoHwAb_00145

SRS_SPAL_12129 The ISRs shall be responsible for
resetting the interrupt flags and
calling the according notification
function

SWS_IoHwAb_00145

SRS_SPAL_12163 All driver modules shall implement
an interface for de-initialization

SWS_IoHwAb_00145

SRS_SPAL_12169 All driver modules that provide
different operation modes shall
provide a service for mode
selection

SWS_IoHwAb_00145

SRS_SPAL_12263 The implementation of all driver
modules shall allow the
configuration of specific module
parameter types at link time

SWS_IoHwAb_00145

SRS_SPAL_12264 Specification of configuration
items shall be provided

SWS_IoHwAb_00145

SRS_SPAL_12265 Configuration data shall be kept
constant

SWS_IoHwAb_00145

SRS_SPAL_12267 Wakeup sources shall be
initialized by MCAL drivers and/or
the MCU driver

SWS_IoHwAb_00145

SRS_SPAL_12461 Specific rules regarding
initialization of controller registers
shall apply to all driver
implementations

SWS_IoHwAb_00145

SRS_SPAL_12462 The register initialization settings
shall be published

SWS_IoHwAb_00145

SRS_SPAL_12463 The register initialization settings
shall be combined and forwarded

SWS_IoHwAb_00145

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

25 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

26 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

7 Functional specification

7.1 Integration code

The I/O Hardware Abstraction, as a part of the ECU abstraction, has been defined as
integration code.

Figure 7-1: AUTOSAR architecture

7.1.1 Background & Rationale

According to the AUTOSAR glossary [5], integration code is ECU schematic
dependent software located below the AUTOSAR RTE.

7.1.2 Requirements for integration code implementation

The following requirements for the I/O Hardware Abstraction are related to hardware
protection.

[SWS_IoHwAb_00038] ⌈Integration code usually means that this software is
designed to suite a specific ECU hardware layout. All strategies to protect the
hardware shall be included in this software. This document does not intend to

standardize or give a recommendation for such hardware protection. ⌋
(SRS_IoHwAb_12248)

Hardware protection means, that the I/O Hardware Abstraction is able to cut off an
output signal, when a failure (short circuit to ground/power supply, over temperature,
overload ...) is detected on the certain output.

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

27 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

[SWS_IoHwAb_00039] ⌈The I/O Hardware Abstraction shall not contain strategies
for failure recovery. Failure recovery actions can only be decided by the responsible

SWC. ⌋ (SRS_IoHwAb_12451)

The internal behavior of the I/O Hardware Abstraction is project-specific and cannot
be standardized.

There is no I/O Hardware Abstraction scalability. The SWC specifies what is needed
(quality of signal) and the I/O Hardware Abstraction has to provide it.

7.2 ECU Signals Concept

7.2.1 Background & Rationale

The I/O Hardware Abstraction cannot provide Standardized AUTOSAR Interfaces to
AUTOSAR SW-Cs, as its interfaces to the upper layer strongly depend on the chain
of signal acquisition. Instead, the I/O Hardware Abstraction provides AUTOSAR
Interfaces.

These AUTOSAR Interfaces represent an abstraction of electrical signals coming
from the ECU inputs / addressed to ECU outputs.

Alternatively, these electrical signals may also come from other ECUs or be
addressed to other ECUs (e.g. via a CAN network).

Ports are entry points of AUTOSAR components. They are typified by an AUTOSAR
interface. These interfaces correspond to “ECU signals”.

The concept of ECU signals comes from the necessity to guarantee the
interchangeability of hardware platforms.

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

28 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

Figure 7-2: ECU signals

7.2.2 Requirements about ECU signals

The I/O Hardware Abstraction handles all inputs and outputs directly connected to
the ECU (except those that have a dedicated driver, like CAN, see requirement
[SWS_IoHwAb_00063]).
It includes all inputs and outputs, directly mapped to microcontroller ports, or to an
onboard peripheral. All communication between the microcontroller and the
peripherals (except sensors and actuators and peripherals managed by complex
drivers) are hidden by the I/O Hardware Abstraction, while considering the provided
interfaces.

An ECU is connected to the rest of the system through networks and inputs and
output pins. Networks are out of scope of this document.

[SWS_IoHwAb_00063] ⌈An ECU signal represents one electrical signal, which

means at least one input or output ECU pin. ⌋ ()

The software in this layer shall abstract the ECU pins. Looking from this place (for
example using an oscilloscope) inputs and outputs are only electrical signals. Hence,
all that is defined in this document is related to this concept of electrical signals. One
extension of this concept is diagnosis (electrical failure status). Diagnosis is not
visible from ECU connectors but is provided by the I/O Hardware Abstraction.

Electrical signals with similar behavior may form a class. Therefore, ECU signals,
which denote the software representation of electrical signals may have an
association to an implementation-specific class.

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

29 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

7.3 Attributes

7.3.1 Background & Rationale

Even though most of the characteristics of each ECU Signal are defined by the SWC,
some properties have to be added to each signal to provide the signal quality the
SWC expects.

7.3.2 Requirements about ECU signal attributes

To detail the chain of signal-acquisition, a list of Attributes is defined to identify
configurable characteristics of ECU signals.
7.3.2.1 Filtering/Debouncing Attribute

[SWS_IoHwAb_00019] ⌈All ECU Signals shall have a Filtering/Debounce Attribute,
so that the captured ‘raw’- values can be filtered or debounced before passing them
to the upper layer. This attribute is only reasonable for input signals. It influences the

implementation of acquisition and access to the signal values. ⌋ ()
7.3.2.2 Age Attribute
All ECU signals handled by I/O Hardware Abstraction depend on the ECU hardware
design. This means that the time to set ECU Output signals and the time to get ECU
Input signals could be different from one to other ECU signal. So to guarantee a
template behavior for all kind of ECU signals (Input / Output) a common Age Attribute
is defined and it shall be configured for each ECU signal.

[SWS_IoHwAb_00021] ⌈All ECU signals shall have an Age Attribute. The Age
Attribute has two specific names according to the direction of ECU signal (Input /
Output). Anyway, it always contains a maximum time value. Following descriptions
explain the meaning of this Attribute for each kind of ECU signals.

 ECU Input signals: the specific functionality of this attribute is to limit the
signals lifetime. The value defines the maximum allowed age for data of this
signal. If the lifetime is 0, the signal has to be retrieved from the physical
register, immediately. If the lifetime is greater than 0, the signal is valid for the
specified time.

 ECU Output signals: the specific functionality of this attribute is to limit the
signal output to a maximum delay. The value defines the maximum allowed
time until this signal is actually set. If delay is 0, then the signal has to be set
to the physical register, immediately. If the delay is greater than 0, the signal

can be set until the configured time has elapsed. ⌋ ()

7.4 I/O Hardware Abstraction and Software Component Template

Note about this chapter: This chapter refers to document [8].
Changes inside this document may influence the content of this chapter.

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

30 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

7.4.1 Background & Rationale

This approach allows defining the standardization deepness. As explained
previously, the implementation is integration code. Therefore, this chapter only
summarizes how to define the I/O Hardware Abstraction as a Software Component
(SWC), and gives a short overview of the internal behavior. The internal behavior
description mainly covers BSW scheduling mechanisms.

7.4.2 Requirements about the usage of Software Component template

[SWS_IoHwAb_00001] ⌈The I/O Hardware Abstraction shall be based upon the

Software Component Template as specified in document [8]. ⌋ (SRS_BSW_00423)

In the same manner as in any other Software Component, the I/O Hardware
Abstraction might be sub-structured, depending on the complexity of an ECU.
Indeed, the I/O Hardware Abstraction is a classical Component Prototype, that can
be atomic or composed and that provides and requires interfaces. Moreover, I/O

Hardware Abstraction may only interact by means of their PortPrototypes with other

Software Components above the RTE. Hidden dependencies that are not expressed by
means of PortPrototypes are not allowed.

However, the I/O Hardware Abstraction interfaces on one side the MCAL drivers via

Standardized Interfaces and on the other side the RTE. Hence, I/O Hardware
Abstraction shall respect the virtual ports concept.

[SWS_IoHwAb_00025] ⌈The I/O Hardware Abstraction shall be implemented as one

or more instances of the EcuAbstractionComponentType. ⌋ ()

See [8] for further information about the EcuAbstractionComponentType.

An instantiation of EcuAbstractionComponentType provides a set of ports.

During RTE Generation, only those that are connected with Software Components
are taken into account.

This chapter gives an overview of the virtual ports concept and runnable entities
applied to the I/O Hardware Abstraction needs. The following chapters of this
document describe the points set out here in more detail.
7.4.2.1 Ports concept and I/O Hardware Abstraction
This is an overview of recommendations for defining Ports of I/O Hardware
Abstraction using the Software Component template.

 Further chapters in this document go deeper in usage of ports for I/O
Hardware Abstraction. Nevertheless, it is advised to read the Software
Component Template document [8] to be aware of all terms and all concepts
used.

 The attributes described in chapter 7.3 shall be defined by annotating the
ports of the I/O Hardware Abstraction components with an
IoHwAbstractionServerAnnotation (see [8]).

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

31 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

7.4.2.2 Software Component and Runnable concept
Software Components have functions to realize their strategies and internal
behaviors. These are partly described using runnable entities. The former is
contained in runnables and the latter depends of runnables design. Runnable entities
are provided by the Atomic Software Component and are (at least indirectly) a
subject for scheduling by the underlying operating system.

An implementation of an atomic Software Component has to provide an entry-point to
code for each Runnable in its "InternalBehavior". For more information, please refer
to the specification [8].

The runnable entities are the smallest code-fragments, which can be activated
independently. They are provided by the Atomic Software Component and are
activated by the RTE. Runnables are for instance set up to respond to data exchange
or operation invocation on a server.

The runnable entities have three possible states: Suspended, Enabled and Running.
During run-time, each runnable of an atomic Software Component is (by being a
member of an OS task) in one of these states.

For a sight of available choices and attributes to define each runnables of the Atomic
Software Component, please refer to specification [8].

7.5 Scheduling concept for I/O Hardware Abstraction

7.5.1 Background & Rationale

The I/O Hardware Abstraction may consist of several BSW modules (e.g. onboard
device driver).

Each of these BSW modules can provide BSW runnable entities (also called
BswModuleEntity in the RTE Specification (see [9]).

To make a parallel, a BswModuleEntity is the equivalent of SWC runnable entities,
for which the AUTOSAR glossary [5] gives the following definition: „”A Runnable
Entity is a part of an Atomic Software-Component ( definition) which can be
executed and scheduled independently from the other Runnable Entities of this
Atomic Software-Component“.

This means that the I/O Hardware Abstraction can use Runnable Scheduling and
BSW Scheduling simultaneously. The Runnable Scheduling handles the Runnable
Entities and is mandatory. Unlike the Runnable Scheduling, the BSW Scheduling is
optional and the interfacing with the BSW Scheduler has to be done manually.

In case of SWC runnable entities, these are called in AUTOSAR OS Tasks bodies.
Runnables are given in the SWC description. Activation of SWC runnables strongly
depends on RTE events.

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

32 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

In the same way than SWCs are most often activated by RTEEvents, the
schedulables BswModuleEntities can be activated by BswEvents. There is also a
kind of BswModuleEntity which can be activated in interrupt context. This leads to
two sub-classes: BswSchedulableEntity and BswInterruptEntity.

7.5.2 Requirements about I/O Hardware Abstraction Scheduling concept

7.5.2.1 Operations for interfaces provided by Ports
The I/O Hardware Abstraction, described from the interfaces point of view,
implements the counterpart of the PortInterfaces defined by the SW-C, i.e. it provides
Runnable Entities that implement the Provide Ports (Server port, Sender/Receiver
port) required by the SW-C.

[SWS_IoHwAb_00068] ⌈The implementation behind the service of the I/O Hardware
Abstraction's Provide Ports is ECU specific and the mapping to the corresponding

“PortInterface” shall be documented in the Software Component description. ⌋ ()
7.5.2.1.1 Get operation

[SWS_IoHwAb_00069] ⌈For an ECU Signal associated with a PortInterface
configured as an input signal, the I/O Hardware Abstraction shall provide an GET

operation, and the operation short name can be freely choose. ⌋ ()
7.5.2.1.2 Set operation

[SWS_IoHwAb_00070] ⌈For an ECU Signal associated with a PortInterface
configured as an output signal, the I/O Hardware Abstraction shall provide an SET

operation, and the operation shortname can be freely choose. ⌋ ()
7.5.2.2 Notification and/or Callback

[SWS_IoHwAb_00032] ⌈The I/O Hardware Abstraction shall define
BswInterruptEntities (a sub-class class of BswModuleEntity by opposition to
BswSchedulableEntity) to fulfill notification and/or callback mechanisms to exchange

data with other modules below the RTE within an interrupt context. ⌋
(SRS_SPAL_12056)

The I/O Hardware Abstraction may contain one or several callback functions. The
available callback functions need to be hooked up to the notification interfaces of the
MCAL drivers. Therefore, they have to respect the prototype definition of the MCAL
drivers (no passing parameter, no return parameter).

[SWS_IoHwAb_00033] ⌈The implementation has to take into consideration, that the

callback functions will be executed in interrupt context. ⌋ (SRS_BSW_00333,

SRS_SPAL_12056)

Callback functions can additionally provide the capability to trigger Software
Components outside of the I/O Hardware Abstraction. These notifications need to be
handled through the RTE (sender port).

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

33 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

[SWS_IoHwAb_00034] ⌈The number of available callback functions and the order of
execution will be implementation dependent and must be documented in the I/O

Hardware Abstraction BSWMD. ⌋ (SRS_SPAL_12056)

[SWS_IoHwAb_00143] ⌈The function prototype for the callback function functions of
the I/O Hardware Abstraction which are routed via RTE shall be implemented

according to the following rule: StdReturnType

Rte_Call_<p>_<o>(<parameters>)⌋ (SRS_BSW_00440)

The callback functions have to be to be compatible to Rte_Call_<p>_<o> API of

the RTE to enable a type safe configuration and implementation of AUTOSAR
Services and IO Hardware Abstraction.
7.5.2.3 Main function / job processing function

[SWS_IoHwAb_00035] ⌈The I/O Hardware Abstraction may contain one or several
job processing functions that are BswSchedulableEntities (a sub-class of
BswModuleEntity by opposition to BswInterruptEntity, e.g. one for each device
driver). They shall be activated according to their use.
They will be time-triggered by the BSW Scheduler. They could be synchronized to
the execution of the other runnable entities.
The number of BswSchedulableEntities and their order of execution will be
implementation dependent and must be documented in the I/O Hardware Abstraction

description. ⌋ (SRS_BSW_00450)
7.5.2.4 Initialization, De-initialization and/or Callout

[SWS_IoHwAb_00036] ⌈The I/O Hardware Abstraction shall define
BswModuleEntries to exchange data with other software below the RTE outside

interrupt context, for example in case of BSW initialization/de-initialization. ⌋
(SRS_BSW_00336, SRS_BSW_00101)

These BswModuleEntries are linked to a dedicated BswModuleEntity, which will be
called to perform the service / exchange the data.

The I/O Hardware Abstraction may contain one or several initialization and de-
initialization functions (e.g. one for each device driver). Similar to the MCAL drivers
the initialization functions shall contain a parameter to be able to pass different
configurations to the device drivers. This function shall initialize all local and global
variables used by the I/O Hardware Abstraction driver to an initial state.

[SWS_IoHwAb_00037] ⌈The initialization/de-initialization functions shall be
used/handled by the ECU State Manager, exclusively. For more information, refer to
[10].
The number of available functions and the order of execution are implementation-

dependent and must be documented in the I/O Hardware Abstraction description. ⌋ (
)
7.5.2.5 I/O Hardware Abstraction scheduling examples
7.5.2.5.1 Interface provided by ADC and I/O Hardware Abstraction

The following example shows a scheduling example for an ADC conversion.
The I/O Hardware Abstraction shall provide two P-ports.

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

34 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

The Software Component interface in this example is af_pressure.

The ECU state manager is able to trigger a BswModuleEntry for initialization of the
ADC driver (Call of Adc_Init() with the Adc_ConfigType structure).

Use Case: The software component needs the af_pressure value.
1 – RTE triggers the OP_GET operation of the dedicated P-Port.
2 – R1 is a runnable entity and it allows to call the appropriated ADC driver services

ADC_EnableNotification
ADC_StartGroupConversion

3 – At the end of conversion, the ADC triggers the BswModuleEntry R2, within
interrupt context. This is possible since the notification is allowed for this interface.
The ADC_NotificationGroup() function is specified in the ADC driver
4 – The notification is then “sent” to the Software Component via a RTEevent.

Figure 7-3: Example of IoHwAb runnables

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

35 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

The sequence diagram of this example is in chapter 9
7.5.2.5.2 Synchronous scheduling with Runnable Entities and

BswSchedulableEntities

The following example shows a scheduling example for setting a Lamp linked to a
SMART power.
The SMART power is connected to the microcontroller by SPI bus. Hence, the
dedicated piece of code uses the SPI Handler/Driver.

The FrontLeftLamp value to be set by the RTE is in an I/O Hardware Abstraction
buffer.
An output line to another SMART power is set synchronously to trigger an ADC
conversion of the same electrical signal by the ADC driver.

At the end of conversion, the converted result is available and the notification is set to
the Analog input manager to store the value inside a buffer, available for diagnosis
purpose.

In this example, the periodical treatment is realized by a BswSchedulableEntity.

Figure 7-4: Example of IoHwAb runnable – cyclic setting of output and diagnosis

7.6 Other requirements

 For details refer to the chapter 5.1.8 “Version Check” in SWS_BSWGeneral.

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

36 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

7.7 Development Errors

Type or error Relevance Related error code Value [hex]

Up to the implementer to
define error he wants to
report

Development Up to the

implementer

0x01

7.8 Production Errors

There exist no Production Errors for IOHardwareAbstraction layer.

7.9 Extended Production Errors

Error Name: Up to the implementer to define error he wants to report
IOHWAB_E_<DESCRIPTIVE_NAME>[_<INSTANCE>]

Short Description: Up to the implementer

Long Description: Up to the implementer

Detection Criteria:
Fail Up to the implementer

Pass Up to the implementer

Secondary Parameters: Up to the implementer

Time Required: Up to the implementer

Monitor Frequency Up to the implementer

7.10 Error Detection

For details refer to the chapters 7.2 “Error classification” & 7.3 “Error Detection” in
SWS_BSWGeneral.

7.11 Error notification

 For details refer to the chapter 7.4 “Error notification” in SWS_BSWGeneral.

7.12 I/O Hardware Abstraction layer description

7.12.1 Background & Rationale

The I/O Hardware Abstraction layer has some analogies with a Software Component,
especially regarding port definition for communication through the RTE. The main
difference is that the I/O Hardware Abstraction is below the RTE (in the ECU
Abstraction Layer). The I/O Hardware Abstraction is a kind of interface between
Basic Software modules and Application Software.

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

37 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

For the I/O Hardware Abstraction, but also for Services, the current methodology
requires filling out two different templates. For example, in order to integrate an
NVRAM Manager on an AUTOSAR ECU one would use the BSWMD to document its
needs for the BSW Scheduler, OS Resources and so on. In addition, one would use
the SWC to describe the ports towards the RTE.

The I/O Hardware Abstraction is a part of BSW. It could be considered as a group of
modules. Although IOHWAB is integration code, each module of IOHWAB could fit to
the BSWDT. Today, it is known that this point is not sufficiently documented in the
current specification.

However, it is agreed that ECU signal will be mapped to a VFB Port (See chapter 7.2
and chapter 7.4). Moreover, to describe the interfaces between an I/O Hardware
Abstraction implementation and applicative Software Components implementations
(above RTE), one shall use the Software Component Template.

The intention of this chapter is to summarize all recommendations to define Ports,
Interfaces and all other Software Component like elements during configuration
process.

7.12.2 Requirements

7.12.2.1 I/O Hardware Abstraction Ports definition

[SWS_IoHwAb_00075] ⌈The I/O Hardware Abstraction specification defines only
recommendations for the Port usage. The instantiation of the Ports shall be done

during the configuration process and is specific to the ECU electronic design. ⌋ ()

The I/O Hardware Abstraction proposes to create one Port for each ECU signal
identified, exception made for ECU Diagnosis signals that are connected to ECU
Output signals. A relationship between this ECU signal and the Port shall be created.

Example:
The ECU has 10 Analog input pins, 15 PWM output pins, 15 Digital output pins.
The I/O Hardware Abstraction defines at least one Port for each ECU signal. In this
simple example, Ports are instantiated 40 times.

7.13 Debugging Concept

7.13.1 Background & Rationale

The goal of the debugging module is to offer as much information as possible about
the runtime behavior of the systems, making it easier to spot the source of a problem
when the integrated software does not behave as expected.

7.13.2 Requirements

 For details refer to the chapter 7.1.17 “Debugging support” in SWS_BSWGeneral.

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

38 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

7.14 Examples

7.14.1 EXAMPLE 1: Use case of on-board hardware

This example is derived from a power supplier ECU.

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

39 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

Figure 7-5: Use case of on-board hardware

• The ECU has a high number of Digital Inputs (DI).
• One main group is the “slow DI’s” for mechanical switches
• The second main group is the “fast DI’s” for the diagnosis of the Power IC

(this DI indicates that the output current is to high “over current”, these DI’s are
not led out of the ECU)

• The MCU has not enough PIN’s -> the slow DI’s are connected to 8 bit
multiplexers (3 address lines and 1 data line for each multiplexer)

• the maximum time between the occurrence of an “over current” and the switch
of the Power IC is 1 ms

• One OEM requirement is that the reaction of a switch must be not later than
100 ms

• One other OEM requirement is that each DI must be debounced by 3 of 5
voting. However the practice shows that the kind of debouncing is not really
important because the mechanical switches and the power IC do not generate
disturbing signals

The solution today is that all DI (slow and fast) are read every 0,8 ms (cyclic task)
(The scan rate for the slow DI could be lower but the overhead for an additional task
is higher than the runtime savings)

• The debouncing for the slow DI’s is 1 time in every loop (so the worst
cast delay to the debounced value is 3,2 ms)

• If an overcurrent is detected the pin will read again several times but in
the same loop and the power IC will switched off immediately

• The application runs every 10 ms and reads the debounced DI for the
switches and the diagnosis information's

Decomposition on the AUTOSAR architecture:

Layer Multiplexed I/O Power IC

Application Runnable reads the data every
10 ms

gets a notification if the power
IC detects overcurrent.

RTE Handles runnables

I/O Hardware Abstraction 8 signal mapped on ports,
definition of port feature and
Client/Server interface
signal abstraction gives the
debounce time (better than a
debounce voting rule)

A cyclic task performs a reading
of input via DIO service call

I/O Hardware Abstraction
makes decision to switch off the
Power IC if an overcurrent is
detected (in the driver of the
external ASIC)
 a cyclic task performs a
reading of input via DIO service
call.

MCAL driver DIO driver: adress lines, 1 data
line

DIO driver: 1 feedback line from
power IC

PWM driver: 1 line to the power

IC

ECU hardware Multiplexer: Mapping of 8
electrical signal

Power IC: Controls the power
supply of the multiplexer

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

40 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

7.14.2 EXAMPLE 2: Use case of failure monitoring

In this example, an diagnostic output signal shall be defined with the diagnosis
attribute on the level of the I/O Hardware Abstraction.
Therefore, an input is used to perform the diagnosis of the output.

Figure 7-6: Use case of failure monitoring managed by SPI

When the I/O Hardware Abstraction asks for positioning one output
(Dio_WriteChannel), a read-out of the channel is done via a ECU pin configured as
input.

The ICU driver sends a notification to the I/O Hardware Abstraction.
The protection strategy is located in the integration code.

Software Component can get the diagnosis value through the port using the
diagnosis operation.

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

41 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

7.14.3 EXAMPLE 3: Output power stage

The ECU hardware has a power stage ASIC.
Therefore, all ECU pins shall be available as “signals” at the level on the I/O
Hardware Abstraction, just below the RTE.

Figure 7-7: Use case of output power stage

Some outputs are controlled via the SPI driver/handler.
Some inputs are directly controlled via the DIO driver.
Some voltages, frequencies are set via the PWM driver.

A power stage driver provides the view of all outputs. It calls services of PWM, DIO
drivers and SPI handler. The signal abstraction makes all these outputs “visible” from
the point of view of Software Component (signals are mapped on Ports).

• The “Power stage driver” can be configurable.

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

42 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

Diagnosis:

• Every failure can be detected on the level of the power stage. The
diagnosis data flow goes through the SPI communication to the Power
stage driver

• Then, the diagnosis is provided to all Software Component via a S/R
interface.

• The diagnosis information can also be sent to the DEM

7.14.4 EXAMPLE 4: Setting sensor and controlling periphery in low power state

The ECU controls a sensor through its ADC and its DIO Peripherals. Under specific
circumstances, the ECU enters an operation mode in which the sensor is shut down
and the ADC is set in low power state.

Application
Power Mode

Manager

Sensor
SWC

RTE

 Sensor Driver

 Signal Abstraction and Mode Management

 BswM

 DIO Driver ADC Driver

DIO ADC

External Sensor

μC

Service Layer

I/O Abstraction

I/O Drivers

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

43 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

Figure 7.8: Use case low power mode setting

The sequence of actions is as follows:

1- The Application Power Mode Manager issues a Mode Request to BswM to

switch to “LowPowerMode”.
2- BswM evaluates the requests and, if the all pre-conditions are met, issues

a mode switch to the Power Mode Manager and to the Sensor SWC.
3- The sensor SWC stops reading the sensory data (i.e. doesn´t request any

Get operation to the IoHwAbs anymore)
4- The IoHwAbs deregisters its notifications from the ADC and eventually

stop HW cyclical acquisitions.
5- The IoHwAbs commands external sensory HW into a low power mode or

shut it off.
6- The IoHwAbs calls its Low Power Mode preparation Callouts and than its

Low Power Mode setting Callouts, as defined in the configuration in order
to attain the ADC (in this case) power state related to the requested
Application Low Power mode “LowPowerMode”

The process can be controlled step by step by introducing more fine granular mode
requests and reacting on the acknowledgements and/or switches.

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

44 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

8 API specification

8.1 Imported types

In this chapter, all types included from the following files are listed:

Module Imported Type

Adc Adc_GroupType

Adc_StatusType

Adc_StreamNumSampleType

Adc_ValueGroupType

Dem Dem_EventIdType

Dem_EventStatusType

Dio Dio_ChannelGroupType

Dio_ChannelType

Dio_LevelType

Dio_PortLevelType

Dio_PortType

EcuM EcuM_WakeupSourceType

GENERIC TYPES <EcuSignalDataType>

Gpt Gpt_ChannelType

Gpt_ModeType

Gpt_ValueType

Icu Icu_ActivationType

Icu_ChannelType

Icu_DutyCycleType

Icu_EdgeNumberType

Icu_IndexType

Icu_InputStateType

Icu_ValueType

Ocu Ocu_ChannelType

Ocu_PinStateType

Ocu_ReturnType

Ocu_ValueType

Port Port_PinDirectionType

Port_PinModeType

Port_PinType

Pwm Pwm_ChannelType

Pwm_EdgeNotificationType

Pwm_OutputStateType

Pwm_PeriodType

Spi Spi_AsyncModeType

Spi_ChannelType

Spi_DataBufferType

Spi_HWUnitType

Spi_JobResultType

Spi_JobType

Spi_NumberOfDataType

Spi_SeqResultType

Spi_SequenceType

Spi_StatusType

Std_Types Std_ReturnType

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

45 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

Std_VersionInfoType

8.2 Type definitions

8.2.1 IoHwAb<Init_Id>_ConfigType

[SWS_IoHwAb_00157] ⌈

Name: IoHwAb<Init_Id>_ConfigType

Type: Structure

Range: implementation

specific

--

Description: Configuration data structure of the IoHwAb module.

⌋ (SRS_BSW_00414)

8.3 Function definitions

This is a list of functions provided for upper layer modules.

NOTE FOR I/O HARDWARE ABSTRACTION:

As explained in the previous chapters, no functional API will be specified for
the I/O Hardware Abstraction.

8.3.1 IoHwAb_Init<Init_Id>

[SWS_IoHwAb_00119] ⌈

Service name: IoHwAb_Init<Init_Id>

Syntax: void IoHwAb_Init<Init_Id>(

 const IoHwAb<Init_Id>_ConfigType* ConfigPtr

)

Service ID[hex]: 0x01

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): ConfigPtr Pointer to the selected configuration set.

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Initializes either all the IO Hardware Abstraction software or is a part of the IO
Hardware Abstraction.

⌋ ()

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

46 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

[SWS_IoHwAb_00158] ⌈The Configuration pointer ConfigPtr shall always have a

NULL_PTR value ⌋ (SRS_BSW_00414)
The Configuration pointer ConfigPtr is currently not used and shall therefore be set
NULL_PTR value.

[SWS_IoHwAb_00059] ⌈This kind of function initializes either all the I/O Hardware

Abstraction software, or a part of the I/O Hardware Abstraction. ⌋ (SRS_BSW_00101)

[SWS_IoHwAb_00060] ⌈The multiplicity of I/O devices managed by the I/O
Hardware Abstraction software shall be handled via several init functions. Each init
function shall be tagged with an <Init_ID>. Therefore, an external device, having its
driver encapsulated inside the I/O Hardware Abstraction, can be separately

initialized. ⌋ (SRS_BSW_00101)

[SWS_IoHwAb_00061] ⌈This kind of init function shall called by the ECU State
Manager. The ECU integrator is able to configure the init sequence order called by

the ECU State manager. ⌋ (SRS_BSW_00101)

[SWS_IoHwAb_00102] ⌈After having finished the module initialization, the I/O

Hardware Abstraction state shall be set to IOHWAB_IDLE, the job result shall be set

to IOHWAB_JOB_OK. ⌋ (SRS_BSW_00441)

8.3.2 IoHwAb_GetVersionInfo

 [SWS_IoHwAb_00120] ⌈

Service name: IoHwAb_GetVersionInfo

Syntax: void IoHwAb_GetVersionInfo(

 Std_VersionInfoType* versioninfo

)

Service ID[hex]: 0x10

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out):
versioninfo Pointer to where to store the version information of this implementation

of IO Hardware Abstraction.

Return value: None

Description: Returns the version information of this module.

⌋ ()

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

47 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

8.4 Call-back notifications

This is a list of functions provided for lower layer modules. The function prototypes of

the callback functions shall be provided in the file IoHwAb_Cbk.h

8.4.1 IoHwAb_AdcNotification<#groupID>

[SWS_IoHwAb_00121] ⌈

Service name: IoHwAb_AdcNotification<#groupID>

Syntax: void IoHwAb_AdcNotification<#groupID>(

 void

)

Service ID[hex]: 0x20

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Will be called by the ADC Driver when a group conversion is completed for group
<#groupID>.

⌋ ()

[SWS_IoHwAb_00104] ⌈The function IoHwAb_AdcNotification<#groupID> is
intended to be called by the ADC driver when a group conversion is completed for

group <#groupID>.⌋ ()

8.4.2 IoHwAb_PwmNotification<#channel>

[SWS_IoHwAb_00122] ⌈

Service name: IoHwAb_PwmNotification<#channel>

Syntax: void IoHwAb_PwmNotification<#channel>(

 void

)

Service ID[hex]: 0x30

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Will be called by the PWM Driver when a signal edge occurs on channel
<#channel>.

⌋ ()

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

48 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

[SWS_IoHwAb_00105] ⌈The function IoHwAb_PwmNotification<#channel> is
intended to be called by the PWM driver when a signal edge occurs on

channel <#channel>.⌋ ()

8.4.3 IoHwAb_IcuNotification<#channel>

[SWS_IoHwAb_00123] ⌈

Service name: IoHwAb_IcuNotification<#channel>

Syntax: void IoHwAb_IcuNotification<#channel>(

 void

)

Service ID[hex]: 0x40

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Will be called by the ICU driver when a signal edge occurs on channel
<#channel>.

⌋ ()

[SWS_IoHwAb_00106] ⌈The function IoHwAb_IcuNotification<#channel> is
intended to be called by the ICU driver when a signal edge occurs on channel

<#channel>.⌋ ()

8.4.4 IoHwAb_GptNotification<#channel>

[SWS_IoHwAb_00124] ⌈

Service name: IoHwAb_GptNotification<#channel>

Syntax: void IoHwAb_GptNotification<#channel>(

 void

)

Service ID[hex]: 0x50

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Will be called by the GPT driver when a timer value expires on channel
<#channel>.

⌋ ()

[SWS_IoHwAb_00107] ⌈The function IoHwAb_GptNotification<#channel> is
intended to be called by the GPT driver when a timer value expires on channel

<#channel>.⌋ ()

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

49 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

8.4.5 IoHwAb_OcuNotification<#channel>

[SWS_IoHwAb_00155] ⌈

Service name: IoHwAb_OcuNotification<#channel>

Syntax: void IoHwAb_OcuNotification<#channel>(

 void

)

Service ID[hex]: 0xa0

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Will be called by the OCU driver when the current value of the threshold matches
the threshold on the channel<#channel>.

⌋ ()

[SWS_IoHwAb_00156] ⌈ The function IoHwAb_OcuNotification<#channel> is
intended to be called by the OCU driver when the current value of the counter

matches the threshold on channel <#channel>.⌋ ()

8.4.6 IoHwAb_Pwm_NotifyReadyForPowerState<#MODE>

[SWS_IoHwAb_00148]
Service name: IoHwAb_Pwm_NotifyReadyForPowerState<#Mode>

Syntax: void IoHwAb_Pwm_NotifyReadyForPowerState<#Mode>(

 void

)

Service ID[hex]: 0x60

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: The API shall be invoked by the PWM Driver when the requested power state
preparation for mode <#Mode> is completed.

This interface provided by CDD or IoHwAbs is needed if the PWM Driver is
configured to support power state control in asynchronous mode.

8.4.7 IoHwAb_Adc_NotifyReadyForPowerState<#MODE>

[SWS_IoHwAb_00154]

⌈

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

50 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

Service name: IoHwAb_Adc_NotifyReadyForPowerState<#Mode>

Syntax: void IoHwAb_Adc_NotifyReadyForPowerState<#Mode>(

 void

)

Service ID[hex]: 0x70

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: The API shall be invoked by the ADC Driver when the requested power state
preparation for mode <#Mode> is completed.

⌋ ()

This interface provided by CDD or IoHwAbs is needed if the ADC Driver is configured
to support power state control in asynchronous mode.

8.5 Scheduled functions

These functions are directly called by Basic Software Scheduler. The following
functions shall have no return value and no parameter. All functions shall be non-
reentrant.

8.5.1 <Name of scheduled function>

Service name: <Name of API call>

Service ID [hex]: <Number of service ID. This ID is used as parameter for the error report API of
Development Error Tracer. The ID shall not be equal to an ID within chapter 0>

Description: <Set of local software requirements including ID that define the operation of this
API call.>

Timing: <fixed cyclic / variable cyclic / on pre condition>

Pre condition: <List of assumptions about the environment in which the API call must operate.>

Configuration: <Description of statically configurable attributes that affect this API call. For
instance cycle time(s) in case of fixed cyclic timing.>

8.6 Functional Diagnostics Interface

This chapter describes the interface the I/O Hardware Abstraction provides to the
DCM module to realize ‘Functional Diagnostics of Software Components’.

‘Functional Diagnostics of Software Components’ means, that by the provided
interface, the DCM module is able to control and read each implemented ECU signal.

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

51 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

8.6.1 IoHwAb_Dcm_<EcuSignalName>

[SWS_IoHwAb_00135] ⌈

Service name: IoHwAb_Dcm_<EcuSignalName>

Syntax: void IoHwAb_Dcm_<EcuSignalName>(

 uint8 action,

 <EcuSignalDataType> signal

)

Service ID[hex]: --

Sync/Async: --

Reentrancy: --

Parameters (in):

action IOHWAB_RETURNCONTROLTOECU: Unlock the signal
IOHWAB_RESETTODEFAULT: Lock the signal and set it to a configured
default value
IOHWAB_FREEZECURRENTSTATE: Lock the signal to the current value
IOHWAB_SHORTTERMADJUSTMENT: Lock the signal and adjust it to a
value given by the DCM module

signal Value to adjust the signal to (only used for 'short term adjustment').

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This function provides control access to a certain ECU Signal to the DCM module
(<EcuSignalname> is the symbolic name of an ECU Signal). The ECU signal can
be locked and unlocked by this function. Locking 'freezes' the ECU signal to the
current value, the configured default value or a value given by the parameter
'signal'.

⌋ (SRS_IoHwAb_00002)

[SWS_IoHwAb_00136] ⌈This function allows controlling the associated ECU Signal,

i.e. the ECU Signal can be locked, unlocked, and adjusted to a certain value. ⌋
(SRS_IoHwAb_00002)

[SWS_IoHwAb_00137] ⌈This function is intended to be called by the DCM module.
The prototypes shall be provided in a separate header file

‘IoHwAb_<ServiceComponentName_>Dcm.h’. ⌋ (SRS_IoHwAb_00002)

[SWS_IoHwAb_00138] ⌈This function shall be pre compile time configurable

On/Off. ⌋ (SRS_IoHwAb_00002)

Locking a signal means, that the certain signal is software-locked towards the SW-C,
i.e. the SW-C's requests have no effect on the hardware in the locked state. In case
C/S-communication is used for input signals, it might be necessary to have a
IoHwAb-internal buffer, whose value can be adjusted by the DCM.

8.6.2 IoHwAb_Dcm_Read<EcuSignalName>

[SWS_IoHwAb_00139] ⌈

Service name: IoHwAb_Dcm_Read<EcuSignalName>

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

52 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

Syntax: void IoHwAb_Dcm_Read<EcuSignalName>(

 <EcuSignalDataType>* signal

)

Service ID[hex]: --

Sync/Async: --

Reentrancy: --

Parameters (in): None

Parameters
(inout):

None

Parameters (out): signal Pointer to the variable where the current signal value shall be stored

Return value: None

Description: This function provides read access to a certain ECU Signal to the DCM module
(<EcuSignalname> is the symbolic name of an ECU Signal).

⌋ (SRS_IoHwAb_00002)

[SWS_IoHwAb_00140] ⌈This function provides read access to a certain ECU Signal
to the DCM module. The read access is independent from the ECU Signal's current
state (locked/unlocked) and shall always read the current physical value from the

hardware. ⌋ (SRS_IoHwAb_00002)

[SWS_IoHwAb_00141] ⌈This function is intended to be called by the DCM module.
The prototypes shall be provided in a separate header file

‘IoHwAb_<ServiceComponentName_>Dcm.h’. ⌋ (SRS_IoHwAb_00002)

[SWS_IoHwAb_00142] ⌈This function shall be pre compile time configurable On/Off.

⌋ (SRS_IoHwAb_00002)

8.7 Power State Functions

8.7.1 IoHwAb_PreparePowerState<#MODE>

[SWS_IoHwAb_00146]
Service name: IoHwAb_PreparePowerState<#Mode>

Syntax: void IoHwAb_PreparePowerState<#Mode>(

 void

)

Service ID[hex]: 0x80

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: The API shall be invoked by the IoHwAbs in order to prepare the transition to a
given power state. The aim of this API is to incapsulate all actions to prepare the
HW for a predefined power mode, decoupling application power definition from
HW power states.

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

53 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

[SWS_IoHwAb_00149]
This API is a configurable callout and shall be defined per configuration once per
Power Mode to be managed.

[SWS_IoHwAb_00150]
This callout shall be executed in the context of the IoHwAbs SWC, meaning that it
has full access to the MCAL.

Many peripheral power state transition requests can be connected to a given Power
Mode transition to be implemented by this callout, along with any other action needed
to bring the peripherals in the desired power state (cross dependencies between
peripherals can be solved in this context).

8.7.2 IoHwAb_ EnterPowerState <#MODE>

[SWS_IoHwAb_00147]
Service name: IoHwAb_EnterPowerState<#Mode>

Syntax: void IoHwAb_EnterPowerState<#Mode>(

 void

)

Service ID[hex]: 0x90

Sync/Async: Asynchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: The API shall be invoked by the IoHwAbs in order to effectively enter a power
state which was prepared by the API IoHwAb_PreparePowerState<#Mode>() .
The aim of this API is to incapsulate all actions to set the HW in a power state
corresponding to a predefined power mode, decoupling application power
definition from HW power states.

[SWS_IoHwAb_00151]

⌈ This API is a configurable callout and shall be defined per configuration once per

Power Mode to be managed.⌋ ()

[SWS_IoHwAb_00152]

⌈ This callout shall be executed in the context of the IoHwAbs SWC, meaning that it

has full access to the MCAL.⌋ ()

[SWS_IoHwAb_00153]

⌈ This API executes all power state transition prepared by the preceding call to the

correposonding IoHwAb_PreparePowerState<#Mode>.⌋ ()

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

54 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

8.8 Expected Interfaces

In this chapter, all interfaces required from other modules are listed.

8.8.1 Mandatory Interfaces

There are no mandatory interfaces for I/O Hardware Abstraction. Which interfaces
the I/O Hardware Abstraction uses depends on the expected functionality of the
channels that are defined by the SWC.

Example of an I/O Hardware Abstraction using all MCAL drivers APIs :
Note that <module_name>_Init and <module_name>_DeInit functions are not listed
below. The initialization sequence is called by the ECU state manager, and not by
the I/O Hardware Abstraction.
< module_name>_GetVersionInfo functions are also not listed here.

This table has been built according to following documents

 Driver ADC document [12]

 Driver DIO document [13]

 Driver ICU document [14]

 Driver PWM document [15]

 Driver PORT document [16]

 Driver GPT document [17]

 Driver SPI document [18]

 Driver OCU document [22]

API function Description

Adc_DisableGroupNotification Disables the notification mechanism for the requested ADC Channel
group.

Adc_DisableHardwareTrigger Disables the hardware trigger for the requested ADC Channel group.

Adc_EnableGroupNotification Enables the notification mechanism for the requested ADC Channel
group.

Adc_EnableHardwareTrigger Enables the hardware trigger for the requested ADC Channel group.

Adc_GetGroupStatus Returns the conversion status of the requested ADC Channel group.

Adc_GetStreamLastPointer Returns the number of valid samples per channel, stored in the result
buffer.
Reads a pointer, pointing to a position in the group result buffer. With
the pointer position, the results of all group channels of the last
completed conversion round can be accessed.
With the pointer and the return value, all valid group conversion results
can be accessed (the user has to take the layout of the result buffer into
account).

Adc_ReadGroup Reads the group conversion result of the last completed conversion
round of the requested group and stores the channel values starting at
the DataBufferPtr address. The group channel values are stored in
ascending channel number order (in contrast to the storage layout of
the result buffer if streaming access is configured).

Adc_SetupResultBuffer Initializes ADC driver with the group specific result buffer start address
where the conversion results will be stored. The application has to
ensure that the application buffer, where DataBufferPtr points to, can

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

55 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

hold all the conversion results of the specified group. The initialization
with Adc_SetupResultBuffer is required after reset, before a group
conversion can be started.

Adc_StartGroupConversion Starts the conversion of all channels of the requested ADC Channel
group.

Adc_StopGroupConversion Stops the conversion of the requested ADC Channel group.

Dio_ReadChannel Returns the value of the specified DIO channel.

Dio_ReadChannelGroup This Service reads a subset of the adjoining bits of a port.

Dio_ReadPort Returns the level of all channels of that port.

Dio_WriteChannel Service to set a level of a channel.

Dio_WriteChannelGroup Service to set a subset of the adjoining bits of a port to a specified level.

Dio_WritePort Service to set a value of the port.

Gpt_CheckWakeup Checks if a wakeup capable GPT channel is the source for a wakeup
event and calls the ECU state manager service EcuM_SetWakeupEvent
in case of a valid GPT channel wakeup event.

Gpt_DisableWakeup Disables the wakeup interrupt of a channel (relevant in sleep mode).

Gpt_EnableWakeup Enables the wakeup interrupt of a channel (relevant in sleep mode).

Gpt_GetTimeElapsed Returns the time already elapsed.

Gpt_GetTimeRemaining Returns the time remaining until the target time is reached.

Gpt_SetMode Sets the operation mode of the GPT.

Icu_DisableEdgeCount This function disables the counting of edges of the given channel.

Icu_DisableNotification This function disables the notification of a channel.

Icu_DisableWakeup This function disables the wakeup capability of a single ICU channel.

Icu_EnableEdgeCount This function enables the counting of edges of the given channel.

Icu_EnableNotification This function enables the notification on the given channel.

Icu_EnableWakeup This function (re-)enables the wakeup capability of the given ICU
channel.

Icu_GetDutyCycleValues This function reads the coherent active time and period time for the
given ICU Channel.

Icu_GetEdgeNumbers This function reads the number of counted edges.

Icu_GetInputState This function returns the status of the ICU input.

Icu_GetTimeElapsed This function reads the elapsed Signal Low Time for the given channel.

Icu_GetTimestampIndex This function reads the timestamp index of the given channel.

Icu_ResetEdgeCount This function resets the value of the counted edges to zero.

Icu_SetActivationCondition This function sets the activation-edge for the given channel.

Icu_StartSignalMeasurement This function starts the measurement of signals.

Icu_StartTimestamp This function starts the capturing of timer values on the edges.

Icu_StopSignalMeasurement This function stops the measurement of signals of the given channel.

Icu_StopTimestamp This function stops the timestamp measurement of the given channel.

Ocu_DisableNotification This service is used to disable notifications from an OCU channel.

Ocu_EnableNotification This service is used to enable notifications from an OCU channel.

Ocu_GetCounter Service to read the current value of the counter.

Ocu_SetAbsoluteThreshold Service to set the value of the channel threshold using an absolute input
data.

Ocu_SetPinState Service to set immediately the level of the pin associated to an OCU
channel.

Ocu_SetRelativeThreshold Service to set the value of the channel threshold relative to the current
value of the counter.

Ocu_StartChannel Service to start an OCU channel.

Ocu_StopChannel Service to stop an OCU channel.

Port_RefreshPortDirection Refreshes port direction.

Port_SetPinDirection Sets the port pin direction

Port_SetPinMode Sets the port pin mode.

Pwm_DisableNotification Service to disable the PWM signal edge notification.

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

56 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

Pwm_EnableNotification Service to enable the PWM signal edge notification according to
notification parameter.

Pwm_GetOutputState Service to read the internal state of the PWM output signal.

Pwm_SetDutyCycle Service sets the duty cycle of the PWM channel.

Pwm_SetOutputToIdle Service sets the PWM output to the configured Idle state.

Pwm_SetPeriodAndDuty Service sets the period and the duty cycle of a PWM channel

Spi_AsyncTransmit Service to transmit data on the SPI bus.

Spi_Cancel Service cancels the specified on-going sequence transmission.

Spi_GetHWUnitStatus This service returns the status of the specified SPI Hardware
microcontroller peripheral.

Spi_GetJobResult This service returns the last transmission result of the specified Job.

Spi_GetSequenceResult This service returns the last transmission result of the specified
Sequence.

Spi_GetStatus Service returns the SPI Handler/Driver software module status.

Spi_MainFunction_Handling --

Spi_ReadIB Service for reading synchronously one or more data from an IB SPI
Handler/Driver Channel specified by parameter.

Spi_SetAsyncMode Service to set the asynchronous mechanism mode for SPI busses
handled asynchronously.

Spi_SetupEB Service to setup the buffers and the length of data for the EB SPI
Handler/Driver Channel specified.

Spi_SyncTransmit Service to transmit data on the SPI bus

Spi_WriteIB Service for writing one or more data to an IB SPI Handler/Driver
Channel specified by parameter.

8.8.2 Optional Interfaces

This chapter defines all interfaces, which are required to fulfill an optional
functionality of the I/O Hardware Abstraction.

API function Description

Dem_ReportErrorStatus Queues the reported events from the BSW modules (API is only used
by BSW modules). The interface has an asynchronous behavior,
because the processing of the event is done within the Dem main
function.
OBD Events Suppression shall be ignored for this computation.

Det_ReportError Service to report development errors.

EcuM_SetWakeupEvent Sets the wakeup event.

8.8.3 Job End Notification

None

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

57 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

9 Sequence diagrams

9.1 ECU-signal provided by the I/O Hardware Abstraction (example)

This sequence diagram explains the example of chapter 7.5.2.5.

In this example, the Sensor / Actuator Component is the client, the I/O Hardware
Abstraction is the server.

The Sensor/Actuator Component asks for a new value of the af_pressure AUTOSAR
signal that is an ECU signal on the level of the I/O Hardware Abstraction.

After Adc conversion is finished, a notification coming from MCAL driver is converted
into a RTE event for the Sensor / Actuator Component. Then, it can perform a
synchronous read of the value present in the af_pressure signal buffer.

«module»

Adc

«Peripheral»

ADC Conversion

Unit

«module»

IoHwAb

«module»

EcuM

«SensorActuatorHW»

Sensor / Actuator

Component

Group 1:

- Channel 1

- Channel 2

�

- Notification mechanism is activated

Adc_Init(const

Adc_ConfigType*)

Adc_Init()

IoHwAb_Init<Init_Id>(const

IoHwAb<Init_Id>_ConfigType*)

IoHwAb_Init<Init_Id>()

Adc_EnableGroupNotification(Adc_GroupType)

Adc_EnableGroupNotification()

IoHwAb_GetVoltage(af_pressure)

Adc_StartGroupConversion(Adc_GroupType)

start conversion()

Adc_StartGroupConversion()
IoHwAb_GetVoltage()

Interrupt()

IoHwAb_Adc_Notification_Group1()

Adc_OnDemandReadChannel(Adc_ChannelType) :

Adc_ValueType

Adc_OnDemandReadChannel()

SetRTEEvent()

IoHwAb_ReadVoltage(af_pressue, &buffer))

IoHwAb_ReadVoltage()

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

58 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

Figure 9-1: Sequence diagram - ADC conversion

Notes:

1) APIs IoHwAb_GetVoltage(af_pressure) and

IoHwAbReadVoltage(af_pressure, &buffer) are not specified

interfaces, and are given only for the example.

2) The diagram in this example is intended to show the runnables and is not
intended to show the server port to runnable mapping.

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

59 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

9.2 Setting ADC and PWM in a low consumption power state as a
result of a request for an application low power mode (example)

«module»

BswM

«module»

Rte

«module»

IoHwAb

«module»

Adc

«module»

Pwm

At the moment in witch the API <MSN>_PreparePowerState returns, the

preparation process is started and runs in background, driven by the

<MSN>_Main_PowerStateTransitionManager API.

IoHwAbs_PollForResults just indicates a

periodic runnable of the IoHwAbs which

checks if all notifications have been sent and,

if so, activates the second phase of the power

state transition: power state setting.

This Callback is called by the MCAL_B_Main_PowerStateTransitionManager.

The same is valid for MCAL_A.

RTE/SchMSwitch(char)

OnEntryRunnable_LowPowerModeA()

IoHwAb_PreparePowerState_LowPowerModeA()

Adc_GetCurrentPowerState()

Pwm_GetCurrentPowerState()

Adc_PreparePowerState(PwrSts_1)

Pwm_PreparePowerState(PwrSts_3)

PeriodicTask()

IoHwAb_PollForResults()

IoHwAb_Pwm_NotifyReadyForPowerStateLowPowerModeA()

IoHwAb_Adc_NotifyReadyForPowerStateLowPowerModeA()

PeriodicTask()

IoHwAb_PollForResults()

IoHwAb_EnterPowerStateLP1()

Adc_SetPowerState()

Pwm_SetPowerState()

RTE/SchMSwitch(LowPowerModeA_Transition_End)

UpdateModePorts()

Figure 9-2.1: asynchronous power state setting.

The sequence diagram in Figure 9-2 refers to a power state transition, where the
peripherals are configured for asynchronous power state transitions. After having
received a request to prepare a power state, the peripheral´s driver issues a
notification to the caller (in this case IoHwAbs) to inform it of being ready to transition
to the new power state.

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

60 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

In the following sequence diagram a synchronous transition is shown (the peripheral
is immediately ready to transition, as soon as the preparation APIs return):

«module»

BswM

«module»

Rte

«module»

IoHwAb

«module»

Adc

«module»

Pwm

At the moment the <MSN>_PreparePowerTransition

APIs return, the preparation is completed and the

peripherals are ready to be set in the new power state.

RTE/SchMSwitch()

OnEntryRunnable_LowPowerModeA()

IoHwAb_PreparePowerState_LowPowerModeA()

Adc_GetCurrentPowerState()

Pwm_GetCurrentPowerState()

Adc_PreparePowerState(PwrSts_1)

Pwm_PreparePowerState(PwrSrs_3)

IoHwAbs_EnterPowerStateLowPowerModeA()

Adc_SetPowerState()

Pwm_SetPowerState()

RTE/SchMSwitch(LowPowerModeA_Transition_End)

UpdateModePorts()

Figure 9-3.2: synchronous power state setting.

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

61 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

10 Configuration specification

The I/O Hardware Abstraction has no standardized configuration parameters and is
therefore not part of the AUTOSAR ECU-C Parameter Definition. All parameters are
vendor specific parameters.

10.1 Published Information

 For details refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral.

Specification of I/O Hardware Abstraction
AUTOSAR Release 4.2.2

62 of 62 Document ID 047: AUTOSAR_SWS_IOHardwareAbstraction

- AUTOSAR confidential -

11 Not applicable requirements

[SWS_IoHwAb_00145] ⌈These requirements are not applicable to this

specification.⌋ (SRS_BSW_00300, SRS_BSW_00321, SRS_BSW_00325, SRS_BSW_00326,

SRS_BSW_00329, SRS_BSW_00334, SRS_BSW_00341, SRS_BSW_00342, SRS_BSW_00343,
SRS_BSW_00376, SRS_BSW_00398, SRS_BSW_00399, SRS_BSW_00400, SRS_BSW_00404,
SRS_BSW_00405, SRS_BSW_00416, SRS_BSW_00417, SRS_BSW_00424, SRS_BSW_00428,
SRS_BSW_00432, SRS_BSW_00439, SRS_BSW_00005, SRS_BSW_00007, SRS_BSW_00160,
SRS_BSW_00161, SRS_BSW_00162, SRS_BSW_00164, SRS_BSW_00167, SRS_BSW_00168,
SRS_BSW_00170, SRS_SPAL_12057, SRS_SPAL_12063, SRS_SPAL_12064, SRS_SPAL_12067,
SRS_SPAL_12068, SRS_SPAL_12069, SRS_SPAL_12075, SRS_SPAL_12077, SRS_SPAL_12078,
SRS_SPAL_12092, SRS_SPAL_12125, SRS_SPAL_12129, SRS_SPAL_12163, SRS_SPAL_12169,
SRS_SPAL_12263, SRS_SPAL_12264, SRS_SPAL_12265, SRS_SPAL_12267, SRS_SPAL_12461,

SRS_SPAL_12462, SRS_SPAL_12463, SRS_SPAL_00157)

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 Interface with MCAL drivers
	5.1.1 Overview
	5.1.2 Summary of interfaces with MCAL drivers

	5.2 Interface with the communication drivers
	5.3 Interface with System Services
	5.4 Interface with DCM
	5.5 File structure
	5.5.1 Code file structure
	5.5.2 Header file structure

	6 Requirements traceability
	7 Functional specification
	7.1 Integration code
	7.1.1 Background & Rationale
	7.1.2 Requirements for integration code implementation

	7.2 ECU Signals Concept
	7.2.1 Background & Rationale
	7.2.2 Requirements about ECU signals

	7.3 Attributes
	7.3.1 Background & Rationale
	7.3.2 Requirements about ECU signal attributes
	7.3.2.1 Filtering/Debouncing Attribute
	7.3.2.2 Age Attribute

	7.4 I/O Hardware Abstraction and Software Component Template
	7.4.1 Background & Rationale
	7.4.2 Requirements about the usage of Software Component template
	7.4.2.1 Ports concept and I/O Hardware Abstraction
	7.4.2.2 Software Component and Runnable concept

	7.5 Scheduling concept for I/O Hardware Abstraction
	7.5.1 Background & Rationale
	7.5.2 Requirements about I/O Hardware Abstraction Scheduling concept
	7.5.2.1 Operations for interfaces provided by Ports
	7.5.2.1.1 Get operation
	7.5.2.1.2 Set operation

	7.5.2.2 Notification and/or Callback
	7.5.2.3 Main function / job processing function
	7.5.2.4 Initialization, De-initialization and/or Callout
	7.5.2.5 I/O Hardware Abstraction scheduling examples
	7.5.2.5.1 Interface provided by ADC and I/O Hardware Abstraction
	7.5.2.5.2 Synchronous scheduling with Runnable Entities and BswSchedulableEntities

	7.6 Other requirements
	7.7 Development Errors
	7.8 Production Errors
	7.9 Extended Production Errors
	7.10 Error Detection
	7.11 Error notification
	7.12 I/O Hardware Abstraction layer description
	7.12.1 Background & Rationale
	7.12.2 Requirements
	7.12.2.1 I/O Hardware Abstraction Ports definition

	7.13 Debugging Concept
	7.13.1 Background & Rationale
	7.13.2 Requirements

	7.14 Examples
	7.14.1 EXAMPLE 1: Use case of on-board hardware
	7.14.2 EXAMPLE 2: Use case of failure monitoring
	7.14.3 EXAMPLE 3: Output power stage
	7.14.4 EXAMPLE 4: Setting sensor and controlling periphery in low power state

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 IoHwAb<Init_Id>_ConfigType

	8.3 Function definitions
	8.3.1 IoHwAb_Init<Init_Id>
	8.3.2 IoHwAb_GetVersionInfo

	8.4 Call-back notifications
	8.4.1 IoHwAb_AdcNotification<#groupID>
	8.4.2 IoHwAb_PwmNotification<#channel>
	8.4.3 IoHwAb_IcuNotification<#channel>
	8.4.4 IoHwAb_GptNotification<#channel>
	8.4.5 IoHwAb_OcuNotification<#channel>
	8.4.6 IoHwAb_Pwm_NotifyReadyForPowerState<#MODE>
	8.4.7 IoHwAb_Adc_NotifyReadyForPowerState<#MODE>

	8.5 Scheduled functions
	8.5.1 <Name of scheduled function>

	8.6 Functional Diagnostics Interface
	8.6.1 IoHwAb_Dcm_<EcuSignalName>
	8.6.2 IoHwAb_Dcm_Read<EcuSignalName>

	8.7 Power State Functions
	8.7.1 IoHwAb_PreparePowerState<#MODE>
	8.7.2 IoHwAb_ EnterPowerState <#MODE>

	8.8 Expected Interfaces
	8.8.1 Mandatory Interfaces
	8.8.2 Optional Interfaces
	8.8.3 Job End Notification

	9 Sequence diagrams
	9.1 ECU-signal provided by the I/O Hardware Abstraction (example)
	9.2 Setting ADC and PWM in a low consumption power state as a result of a request for an application low power mode (example)

	10 Configuration specification
	10.1 Published Information

	11 Not applicable requirements

