AUTO SAR

Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

Document Title Specification of Compiler
Abstraction

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 051

Document Classification Standard

Document Status Final

Part of AUTOSAR Release 422

Document Change History

Release |Changed by

Change Description

4.2.2 |AUTOSAR

e Cleanup the requirements traceability

Release e Clarify the list of compiler symbols
Management

4.2.1 |AUTOSAR e The compiler symbol definitions are not allowed
Release to contain any value behind the symbol
Management e Rework the document structure in order to

follow TMPS_SRS SWS and replace
hardcoded diagrams with artifacts

e Remove all MISRA/ C/ C++ related statements
and references

e Correct the unresolved references that point in
SRS BSWGeneral

4.1.2 |AUTOSAR
Release
Management

e Editorial changes
e Removed chapter(s) on change documentation

4.1.1 AUTOSAR
Administration

e Added abstraction macro CONSTP2FUNC for a
constant pointer to a function

e Improved consistency to Memory Mapping
(several MemMap.h files)

e Reworked Configuration Specification

4.0.3 |AUTOSAR
Administration

¢ Added macros ,FUNC _P2CONST"‘ and
‘FUNC_P2VAR'’

e Added pointer class ‘REGSPACE’ (for register
access)

e Updated the compiler symbols list

3.1.5 |AUTOSAR
Administration

e Put more emphasize on SwComponentType’s
name in SWS_COMPILER_00054,
COMPILERO44

e Corrected compiler used in the example
(chapter 7.1.5)

e Corrected include structure in the example
(chapter 7.1.5)

1of 50

Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTO SAR

Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

Document Change History

Release

Changed by

Change Description

3.14

AUTOSAR
Administration

Compiler Abstraction has been extended to be
suitable for Software Components

"STATIC" declaration keyword has been
removed

The declaration keyword "LOCAL_INLINE" has
been added for implementation of "static inline"-
functions

Legal disclaimer revised

3.1.1

AUTOSAR
Administration

Legal disclaimer revised

3.0.1

AUTOSAR
Administration

Keyword "_STATIC_" has been renamed to
"STATIC"

Keyword " _INLINE_" has been renamed to
"INLINE"

Keyword "TYPEDEF" has been added as empty
memory qualifier for use in type definitions
Document meta information extended

Small layout adaptations made

2.1.15

AUTOSAR
Administration

Add: COMPILERO58

Add: COMPILERO57

Change: SWS COMPILER 00040
Legal disclaimer revised

Release Notes added

“Advice for users” revised
“Revision Information” added

2.0

AUTOSAR
Administration

Initial Release

2 of 50

Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only. For any other purpose, no part of
the specification may be utilized or reproduced, in any form or by any means, without
permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference
models, "use cases", and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their
presence in such specifications, nor any later documentation of AUTOSAR
conformance of products actually implementing such exemplary items, imply that
intellectual property rights covering such exemplary items are licensed under the
same rules as applicable to the AUTOSAR Standard.

3 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

Table of Contents

1 Introduction and funNctional OVEIVIEWoiiiiiiiiiiiiiiiiie e 6
2 Acronyms and abbreVviationscoeuuuiuiiiiii e 7
3 Related dOCUMENTALION.uuuiiiiii e e e e 8
I 200 R [01 01U e (oo 41T o1 £ PO 8
3.2 Related SPeCIfICAtIONiiiei e 9

4 Constraints and asSUMPLIONSccoovvviiiiiiee e e e e e e 10
o R {1 011 = 11 0] 3 10
4.2 Applicability to car dOMaiNS...........ceiiieieiiiiiiiee e 10
4.3 Applicability to safety related environmMentsccccovvvvvvviiineeeeeeeeeeiinnnnn. 10

5 Dependencies to other modules...............uuiiiiiiiiiiiiiiiii e, 11
o0 R e 1 1= 3 1 (1101 (1 ST 11

6 Requirements traceabilitycccooeiiiiiiiiiiii e 12
7 Functional SPeCIfICAtIONuuuiiiie e e e e e aeaees 18
7.1 General DENAVION...........uiiii e 18
7.1.1 List of Compiler SymbOIScoooiiiiiiee 18
7.1.2 Requirements on implementations using compiler abstraction 18
7.1.3 Contents of Compiler.n ..o 23
7.1.4 Contents of Compiler_ Cfg.N....ccoooiiiiiiiii e, 24
7.1.5 Comprehensive exampleccccccoviiiiiiiiii 25
7.1.6 PropOSEA PrOCESS ...uuiiiieeeiieeetie et e e e 27

7.2 DeVelOPMENT EITOIS ...coooeeeeeeeeeeeeeeeeeee e 28
7.3 ProducCtion EITOIScuuuuiiii et e et e e e e e e e s 28
7.4 Extended ProducCtion EITOISuuuuiiiiieeeiieiiiiei e e e e e e e e 28
A T = ¢ (o g 1= (= Tox 1o o [P PUTRRR 28
7.6 Error NOLFICALIONo i 28
7.7 Version ChECK.......coooe e e 28
7.8 Support for Debuggingcoooeieiiieiee 28

8 API SPECIHICALION ... uuiii e e e aaaaa 29
8.1 IMPOIEA (Y PES. oo 29

S T2 \Y = Tl fo I o (= 1 1110 ISP 29
8.2.1 General defiNitioNScoiiiiiiii e 29
8.2.1.1 Memory class AUTOMATIC ... 29
8.2.1.2 Memory class TYPEDEFuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiee 29

S 220 I N N[I I 30
S I S | N 30
8.2.1.5 LOCAL_INLINEcutttiiiutuuiiiuiiiiiinuiinieeenuennnnsenenaeesennsneeseeneennnsnnnnnnnnne 30

8.2.2 FUNCtion defiNitioNScooouuiiiii e e 30

S 22 A 1 [32
8.2.2.2 FUNGC _P2CONST ...uutiiiiiiriuuiiiinueuenuneresrrnnnsnnnnernsnnnnnnnr————————— 33
8.2.2.3 FUNGC _P2VAR ... oottt abeseeasaessasssssseensnssnnnnes 34

8.2.3 Pointer defiNitioNS.........coouuiiiii e e 34

4 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

S T O A A 39

S I O @]\ S I 40
8.2.3.3 CONSTP2VARotitiiiieiietiiiuieitueeauataersaaeaesssnrsrarrraresnesrsenessrarnnnnsnnnnes 41
8.2.3.4 CONSTP2CONST ..uttitiuuuuuiuuiiitrrintnnirrssnnereeereeesrereeaeeee .. 41
S RS T 2 L U1\ 42
8.2.3.6 CONSTP2FUNC......uutiitiiiiiiiiiiiiiiiiniietrieenreeeeeeeareeeeeeeeeeeeeeee.s 43

8.2.4 Constant defiNItiONS.........uueiiiie e 43
S O 1N 1S 43

8.2.5 Variable definitionS........cooveiiiiiiii 44

S 2 T N 44

8.3 TypPe definitiONSccoeeeeeeee e 45
8.4 FUNCHiON defiNitiONS ...ccooeieeeeeeeee e 45
8.5 Call-back NOtIfICALIONSccoeeeeeeeeeiicee e 45
8.6 Scheduled fFUNCLIONScoooeiie e 45
8.7 EXpected INTEITACES.ccoeeeeeeeeee e 45
8.7.1 Mandatory INterfacesuuiiiiiii i 45
8.7.2 Optional INTErfacescoevviiiiiiiiiiiiee e 45
8.7.3 Configurable interfacesccooviieiiiiiiiiiii e 45

8.8 SerVICE INEITACES......cuiiiii i 46
8.8.1 Scope of this Chapter............uuiiiiiii e, 46
8.8.2 L@ YT V= S 46
8.8.3 Specification of the Ports and Port Interfacesccccoeeeeeeiiviiiinnnnnnn. 46
8.8.3.1 General APProachuuuuiiiiiiiiiiiiiiiiiiiiiii 46
8.8.3.2 DaAlA TYPBS covuiiiiiiiiiiiie ettt 46
8.8.3.3 POM INTEITACEuuii e 46

8.8.4 Definition of the Service ..., 46
8.8.5 Configuration of the DETccciiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee 46

O SeqUENCE AIAQIAIMS.......ccoiiiieiiie et e e e e e e e e e e e e e et eeaeaeeeaeane 47
10 Configuration SPECITICALIONuuuuuiiiiiiiiiiiiiiiiii bbb 48
10.1 How to read this Chapterccoooiiiiiiii e 48
10.2 Containers and configuration Parametersccccceueeuemmmmimmnmnnnnneeinenennns 48
L10.2.1 VaAlANTS e 48
10.2.2 Module-Specific MemMOry CIaSSESccooeveeeieeieeeeeeeeeeeeeeeeeeeeeeeeeen 48
10.2.3 Global MemMOry CIASSEScccovviiiiiiiiee e et e e e e e eannes 49
10.3 Published INfOrmMation...........ccoooeiiiiieiiiee e e 49
11 Not applicable reqUIrEMENtSccooiiiiiiii e 50
5 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

1 Introduction and functional overview

This document specifies macros for the abstraction of compiler specific keywords
used for addressing data and code within declarations and definitions.

Mainly compilers for 16-bit platforms (e.g. Cosmic and Metrowerks for S12X or
Tasking for ST10) are using special keywords to cope with properties of the
microcontroller architecture caused by the limited 16 bit addressing range. Features
like paging and extended addressing (to reach memory beyond the 64k border) are
not chosen automatically by the compiler, if the memory model is not adjusted to
‘large’ or ‘huge’. The location of data and code has to be selected explicitly by special
keywords. Those keywords, if directly used within the source code, would make it
necessary to port the software to each new microcontroller family and would prohibit
the requirement of platform independency of source code.

If the memory model is switched to ‘large’ or ‘huge’ by default (to circumvent these
problems) the project will suffer from an increased code size.

This document specifies a three-step concept:

1. The file Compiler.h provides macros for the encapsulation of definitions and
declarations.

2. Each single module has to distinguish between at least the following different
memory classes and pointer classes. Each of these classes is represented by
a define (e.g. EEP_CODE).

3. The file Compiler_Cfg.h allows to configure these defines with the appropriate
compiler specific keywords according to the modules description and memory
set-up of the build scenario.

6 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction

AUTOSAR Release 4.2.2

2 Acronyms and abbreviations

Acronyms and abbreviations that have a local scope are not contained in the
AUTOSAR glossary. These must appear in a local glossary.

Acronym: Description:

Large, huge Memory model configuration of the microcontroller's compiler. By default, all access
mechanisms are using extended/paged addressing.
Some compilers are using the term ‘huge’ instead of ‘far’.

Tiny, small Memory model configuration of the microcontroller's compiler. By default, all access
mechanisms are using hormal addressing.
Only data and code within the addressing range of the platform’s architecture is
reachable (e.g. 64k on a 16 bit architecture).

far Compiler keyword for extended/paged addressing scheme (for data and code that
may be outside the normal addressing scheme of the platform’s architecture).

near Compiler keyword for normal addressing scheme (for data and code that is within
the addressing range of the platform’s architecture).

7 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction

AUTOSAR Release 4.2.2

3 Related documentation

3.1
[1]

[2]

[3]

[4]

[5]
[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

8 of 50

Input documents

List of Basic Software Modules,
AUTOSAR_TR_BSWModuleList.pdf

General Requirements on Basic Software Modules,
AUTOSAR_SRS_BSWGeneral.pdf

Layered Software Architecture,
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

Specification of ECU Configuration,
AUTOSAR_TPS_ECUConfiguration.pdf

Cosmic C Cross Compiler User’s Guide for Motorola MC68HC12,V4.5
ARM ADS compiler manual

GreenHills MULTI for V850 V4.0.5:
Building Applications for Embedded V800, V4.0, 30.1.2004

TASKING for ST10 V8.5:

C166/ST10 v8.5 C Cross-Compiler User's Manual, V5.16

C166/ST10 v8.5 C Cross-Assembler, Linker/Locator, Utilities User's Manual,
V5.16

Wind River (Diab Data) for PowerPC Version 5.2.1:
Wind River Compiler for Power PC - Getting Started, Edition 2, 8.5.2004
Wind River Compiler for Power PC - User's Guide, Edition 2, 11.5.2004

TASKING for TriCore TC1796 V2.0R1:
TriCore v2.0 C Cross-Compiler, Assembler, Linker User's Guide, V1.2

Metrowerks CodeWarrior 4.0 for Freescale HC9S12X/XGATE (V5.0.25):
Motorola HC12 Assembler, 2.6.2004

Motorola HC12 Compiler, 2.6.2004

Smart Linker, 2.4.2004

General Specification of Basic Software Modules
AUTOSAR_SWS BSWGeneral.pdf

Specification of Memory Mapping
AUTOSAR_SWS_MemoryMapping.pdf

Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

3.2 Related specification
AUTOSAR provides a General Specification on Basic Software modules [12] (SWS
BSW General), which is also valid for Compiler Abstraction.

Thus, the specification SWS BSW General shall be considered as additional and
required specification for Compiler Abstraction.

9 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

4 Constraints and assumptions

4.1 Limitations

During specification of abstraction and validation of concept, the compilers listed in
chapter 3.1 have been considered. If any other compiler requires keywords that
cannot be mapped to the mechanisms described in this specification this compiler
will not be supported by AUTOSAR. In this case, the compiler vendor has to adapt its
compiler.

If the physically existing memory is larger than the logically addressable memory in
either code space or data space and more than the logically addressable space is
used, logical addresses have to be reused. The C language (and other languages as
well) can not cope with this situation.

4.2 Applicability to car domains

No restrictions.

4.3 Applicability to safety related environments

No restrictions. The compiler abstraction file does not implement any functionality,
only symbols and macros.

10 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

5 Dependencies to other modules

[SWS_COMPILER_00048] [The SWS Compiler Abstraction is applicable for each
AUTOSAR basic software module and application software components. Therefore,
the implementation of the memory class (memclass) and pointer class (ptrclass)
macro parameters (see SWS_COMPILER _00040) shall fulfill the implementation and
configuration specific needs of each software module in a specific build scenario.
| (SRS_BSW_00328, SRS_BSW_00384)

5.1 File structure

«header» «header»
Compiler.h < ———————— Std_Typesh
«includes»
]
[
I
[
«includesy

I
[
I
v
«header» B

Compiler_Cfg.h

Figure 1: Include structure of Compiler.h

The following notes shall describe the connections to modules, which are indirectly
linked to each other.

Note 1: The compiler abstraction is used to configure the reachability of elements
(pointers, variables, function etc.).

Note 2: The memory mapping is used to perform the sectioning of memory. The user
can define sections for optimizing the source code.

Note 3: The linker settings are responsible with the classification which elements are
assigned to which memory section.

11 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

6 Requirements traceability

Requirement Description Satisfied by

- - SWS_COMPILER_00001

- - SWS_COMPILER_00005

- - SWS_COMPILER_00006

- - SWS_COMPILER_00013

- - SWS_COMPILER_00023

- - SWS_COMPILER_00026

- - SWS_COMPILER_00030

- - SWS_COMPILER_00031

- - SWS_COMPILER_00032

- - SWS_COMPILER_00039

- - SWS_COMPILER_00040

- - SWS_COMPILER_00041

- - SWS_COMPILER_00042

- - SWS_COMPILER_00046

- - SWS_COMPILER_00047

- - SWS_COMPILER_00050

- - SWS_COMPILER_00051

- - SWS_COMPILER_00053

- - SWS_COMPILER_00054

- - SWS_COMPILER_00057

- - SWS_COMPILER_00058

- - SWS_COMPILER_00059

- - SWS_COMPILER_00060

- - SWS_COMPILER_00061

- - SWS_COMPILER_00062

- - SWS_COMPILER_00063

- - SWS_COMPILER_00064

- - SWS_COMPILER_00065

- - SWS_COMPILER_00066

- - SWS_COMPILER_00067

- - SWS_COMPILER_00068

SRS _BSW_00004 | All Basic SW Modules shall perform a pre- |SWS_COMPILER_00999
processor check of the versions of all
imported include files

SRS_BSW_00005 | Modules of the AuC Abstraction Layer SWS_COMPILER_00999

12 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTO SAR

Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

(MCAL) may not have hard coded
horizontal interfaces

SRS_BSW_00006

The source code of software modules
above the AuC Abstraction Layer (MCAL)
shall not be processor and compiler
dependent.

SWS_COMPILER_00010,
SWS_COMPILER_00035,
SWS_COMPILER_00036

SRS_BSW_00007

All Basic SW Modules written in C language
shall conform to the MISRA C 2004
Standard.

SWS_COMPILER_00999

SRS_BSW_00009

All Basic SW Modules shall be documented
according to a common standard.

SWS_COMPILER_00999

SRS_BSW_00010

The memory consumption of all Basic SW
Modules shall be documented for a defined
configuration for all supported platforms.

SWS_COMPILER_00999

SRS_BSW_00158

All modules of the AUTOSAR Basic
Software shall strictly separate
configuration from implementation

SWS_COMPILER_00999

SRS_BSW_00161

The AUTOSAR Basic Software shall
provide a microcontroller abstraction layer
which provides a standardized interface to
higher software layers

SWS_COMPILER_00999

SRS_BSW_00162

The AUTOSAR Basic Software shall
provide a hardware abstraction layer

SWS_COMPILER_00999

SRS_BSW_00164

The Implementation of interrupt service
routines shall be done by the Operating
System, complex drivers or modules

SWS_COMPILER_00999

SRS_BSW_00167

All AUTOSAR Basic Software Modules
shall provide configuration rules and
constraints to enable plausibility checks

SWS_COMPILER_00999

SRS_BSW_00168

SW components shall be tested by a
function defined in a common API in the
Basis-SW

SWS_COMPILER_00999

SRS_BSW_00170

The AUTOSAR SW Components shall
provide information about their dependency
from faults, signal qualities, driver demands

SWS_COMPILER_00999

SRS_BSW_00171

Optional functionality of a Basic-SW
component that is not required in the ECU
shall be configurable at pre-compile-time

SWS_COMPILER_00999

SRS_BSW_00172

The scheduling strategy that is built inside
the Basic Software Modules shall be
compatible with the strategy used in the
system

SWS_COMPILER_00999

SRS_BSW_00300

All AUTOSAR Basic Software Modules
shall be identified by an unambiguous
name

SWS_COMPILER_00999

SRS_BSW_00301

All AUTOSAR Basic Software Modules
shall only import the necessary information

SWS_COMPILER_00999

SRS_BSW_00302

All AUTOSAR Basic Software Modules
shall only export information needed by
other modules

SWS_COMPILER_00999

SRS_BSW_00305

Data types naming convention

SWS_COMPILER_00999

13 of 50

Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTO SAR

Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

SRS_BSW_00306

AUTOSAR Basic Software Modules shall
be compiler and platform independent

SWS_COMPILER_00010,
SWS_COMPILER_00035,
SWS_COMPILER_00036

SRS_BSW_00307

Global variables naming convention

SWS_COMPILER_00999

SRS_BSW_00308

AUTOSAR Basic Software Modules shall
not define global data in their header files,
but in the C file

SWS_COMPILER_00999

SRS_BSW_00309

All AUTOSAR Basic Software Modules
shall indicate all global data with read-only
purposes by explicitly assigning the const
keyword

SWS_COMPILER_00999

SRS_BSW_00310

API naming convention

SWS_COMPILER_00999

SRS_BSW_00312

Shared code shall be reentrant

SWS_COMPILER_00999

SRS_BSW_00314

All internal driver modules shall separate
the interrupt frame definition from the
service routine

SWS_COMPILER_00999

SRS_BSW_00323

All AUTOSAR Basic Software Modules
shall check passed API parameters for
validity

SWS_COMPILER_00999

SRS_BSW_00325

The runtime of interrupt service routines
and functions that are running in interrupt
context shall be kept short

SWS_COMPILER_00999

SRS_BSW_00327

Error values naming convention

SWS_COMPILER_00999

SRS_BSW_00328

All AUTOSAR Basic Software Modules
shall avoid the duplication of code

SWS_COMPILER_00048

SRS_BSW_00330

It shall be allowed to use macros instead of
functions where source code is used and
runtime is critical

SWS_COMPILER_00999

SRS_BSW_00331

All Basic Software Modules shall strictly
separate error and status information

SWS_COMPILER_00999

SRS_BSW_00333

For each callback function it shall be
specified if it is called from interrupt context
or not

SWS_COMPILER_00999

SRS_BSW_00334

All Basic Software Modules shall provide an
XML file that contains the meta data

SWS_COMPILER_00999

SRS_BSW_00335

Status values naming convention

SWS_COMPILER_00999

SRS_BSW_00336

Basic SW module shall be able to shutdown

SWS_COMPILER_00999

SRS_BSW_00339

Reporting of production relevant error
status

SWS_COMPILER_00999

SRS_BSW_00341

Module documentation shall contains all
needed informations

SWS_COMPILER_00999

SRS_BSW_00342

It shall be possible to create an AUTOSAR
ECU out of modules provided as source
code and modules provided as object code,
even mixed

SWS_COMPILER_00999

SRS_BSW_00343

The unit of time for specification and
configuration of Basic SW modules shall be
preferably in physical time unit

SWS_COMPILER_00999

SRS_BSW_00344

BSW Modules shall support link-time

SWS_COMPILER_00999

14 of 50

Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTO SAR

Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

configuration

SRS_BSW_00346

All AUTOSAR Basic Software Modules
shall provide at least a basic set of module
files

SWS_COMPILER_00999

SRS_BSW_00348

All AUTOSAR standard types and
constants shall be placed and organized in
a standard type header file

SWS_COMPILER_00003,
SWS_COMPILER_00004

SRS_BSW_00350

All AUTOSAR Basic Software Modules
shall apply a specific naming rule for
enabling/disabling the detection and
reporting of development errors

SWS_COMPILER_00999

SRS_BSW_00353

All integer type definitions of target and
compiler specific scope shall be placed and
organized in a single type header

SWS_COMPILER_00999

SRS_BSW_00357

For success/failure of an API call a
standard return type shall be defined

SWS_COMPILER_00999

SRS_BSW_00358

The return type of init() functions
implemented by AUTOSAR Basic Software
Modules shall be void

SWS_COMPILER_00999

SRS_BSW_00359

All AUTOSAR Basic Software Modules
callback functions shall avoid return types
other than void if possible

SWS_COMPILER_00999

SRS_BSW_00360

AUTOSAR Basic Software Modules
callback functions are allowed to have
parameters

SWS_COMPILER_00999

SRS_BSW_00361

All mappings of not standardized keywords
of compiler specific scope shall be placed
and organized in a compiler specific type
and keyword header

SWS_COMPILER_00003,
SWS_COMPILER_00004,
SWS_COMPILER_00055

SRS_BSW_00369

All AUTOSAR Basic Software Modules
shall not return specific development error
codes via the API

SWS_COMPILER_00999

SRS_BSW_00371

The passing of function pointers as API
parameter is forbidden for all AUTOSAR
Basic Software Modules

SWS_COMPILER_00999

SRS_BSW_00373

The main processing function of each
AUTOSAR Basic Software Module shall be
named according the defined convention

SWS_COMPILER_00999

SRS_BSW_00375

Basic Software Modules shall report wake-
up reasons

SWS_COMPILER_00999

SRS_BSW_00377

A Basic Software Module can return a
module specific types

SWS_COMPILER_00999

SRS_BSW_00378

AUTOSAR shall provide a boolean type

SWS_COMPILER_00999

SRS_BSW_00380

Configuration parameters being stored in
memory shall be placed into separate c-
files

SWS_COMPILER_00999

SRS_BSW_00384

The Basic Software Module specifications
shall specify at least in the description
which other modules they require

SWS_COMPILER_00048

SRS_BSW_00385

List possible error notifications

SWS_COMPILER_00999

15 of 50

Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTO SAR

Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

SRS_BSW_00386

The BSW shall specify the configuration for
detecting an error

SWS_COMPILER_00999

SRS_BSW_00390

Parameter content shall be unique within
the module

SWS_COMPILER_00999

SRS_BSW_00392

Parameters shall have a type

SWS_COMPILER_00999

SRS_BSW_00393

Parameters shall have a range

SWS_COMPILER_00999

SRS_BSW_00394

The Basic Software Module specifications
shall specify the scope of the configuration
parameters

SWS_COMPILER_00999

SRS_BSW_00395

The Basic Software Module specifications
shall list all configuration parameter
dependencies

SWS_COMPILER_00999

SRS_BSW_00398

The link-time configuration is achieved on
object code basis in the stage after
compiling and before linking

SWS_COMPILER_00999

SRS_BSW_00399

Parameter-sets shall be located in a
separate segment and shall be loaded after
the code

SWS_COMPILER_00999

SRS_BSW_00400

Parameter shall be selected from multiple
sets of parameters after code has been
loaded and started

SWS_COMPILER_00999

SRS_BSW_00401

Documentation of multiple instances of
configuration parameters shall be available

SWS_COMPILER_00999

SRS_BSW_00404

BSW Modules shall support post-build
configuration

SWS_COMPILER_00999

SRS_BSW_00405

BSW Modules shall support multiple
configuration sets

SWS_COMPILER_00999

SRS_BSW_00406

A static status variable denoting if a BSW
modaule is initialized shall be initialized with
value 0 before any APIs of the BSW
module is called

SWS_COMPILER_00999

SRS_BSW_00407

Each BSW module shall provide a function
to read out the version information of a
dedicated module implementation

SWS_COMPILER_00999

SRS_BSW_00408

All AUTOSAR Basic Software Modules
configuration parameters shall be named
according to a specific naming rule

SWS_COMPILER_00999

SRS_BSW_00409

All production code error ID symbols are

defined by the Dem module and shall be

retrieved by the other BSW modules from
Dem configuration

SWS_COMPILER_00999

SRS_BSW_00410

Compiler switches shall have defined
values

SWS_COMPILER_00999

SRS_BSW_00411

All AUTOSAR Basic Software Modules
shall apply a naming rule for
enabling/disabling the existence of the API

SWS_COMPILER_00999

SRS_BSW_00413

An index-based accessing of the instances
of BSW modules shall be done

SWS_COMPILER_00999

SRS_BSW_00414

Init functions shall have a pointer to a
configuration structure as single parameter

SWS_COMPILER_00999

16 of 50

Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTO SAR

Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

SRS_BSW_00415

Interfaces which are provided exclusively
for one module shall be separated into a
dedicated header file

SWS_COMPILER_00999

SRS_BSW_00416

The sequence of modules to be initialized
shall be configurable

SWS_COMPILER_00999

SRS _BSW 00417

Software which is not part of the SW-C
shall report error events only after the DEM
is fully operational.

SWS_COMPILER_00999

SRS_BSW_00419

If a pre-compile time configuration
parameter is implemented as "const" it
should be placed into a separate c-file

SWS_COMPILER_00999

SRS_BSW_00422

Pre-de-bouncing of error status information
is done within the DEM

SWS_COMPILER_00999

SRS_BSW_00423

BSW modules with AUTOSAR interfaces
shall be describable with the means of the
SW-C Template

SWS_COMPILER_00999

SRS_BSW_00424

BSW module main processing functions
shall not be allowed to enter a wait state

SWS_COMPILER_00999

SRS_BSW_00425

The BSW module description template shall
provide means to model the defined trigger
conditions of schedulable objects

SWS_COMPILER_00999

SRS_BSW_00426

BSW Modules shall ensure data
consistency of data which is shared
between BSW modules

SWS_COMPILER_00999

SRS_BSW_00427

ISR functions shall be defined and
documented in the BSW module description
template

SWS_COMPILER_00999

SRS_BSW_00428

A BSW module shall state if its main
processing function(s) has to be executed
in a specific order or sequence

SWS_COMPILER_00999

SRS_BSW_00429

BSW modules shall be only allowed to use
OS objects and/or related OS services

SWS_COMPILER_00999

SRS_BSW_00432

Modules should have separate main
processing functions for read/receive and
write/transmit data path

SWS_COMPILER_00999

SRS_BSW_00433

Main processing functions are only allowed
to be called from task bodies provided by
the BSW Scheduler

SWS_COMPILER_00999

SRS_BSW_00464

File names shall be considered case
sensitive regardless of the filesystem in
which they are used

SWS_COMPILER_00004,
SWS_COMPILER_00055

17 of 50

Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTO SAR

Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

7 Functional specification

7.1 General behavior

[SWS_COMPILER_00003] [
abstraction has to be provided. | (SRS_BSW_00348, SRS_BSW_00361)

For each compiler and platform an own compiler

7.1.1 List of Compiler symbols

The following

table

defines

target compiler symbols according to

SWS COMPILER _00010. This table contains only examples and is not listing all the

possible compilers supported by AUTOSAR!

Platform Compiler Compiler symbol

S12X Code Watrrior _CODEWARRIOR C S12X

S12X Cosmic _COSMIC C S12X

TC1796/ Tasking _TASKING C TRICORE
TC1766

ST10 Tasking _TASKING C ST10

ST30 ARM Developer Suite _ADS C ST30

V850 Greenbhills _ GREENHILLS C V850
MPC5554 Diab Data _DIABDATA C ESYS

TMS470 Texas Instruments _TEXAS INSTRUMENTS C TMS470
ARM Texas Instruments _ TEXAS INSTRUMENTS C ARM

Note: In order to avoid incompatibilities and/ or inconsistencies, the compiler symbol
definitions are not allowed to contain any value behind the symbol.

7.1.2 Requirements on implementations using compiler abstraction

[SWS_COMPILER_00040] [Each AUTOSAR software module and application
software component shall support the distinction of at least the following different
memory classes and pointer classes.

It is allowed to add module specific memory classes and pointer classes as they are
mapped and thus are configurable within the Compiler_Cfg.h file.

18 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction

AUTOSAR Release 4.2.2

<PREFIX>is

composed according <snp>[_<vi>_<ai>] for basic software modules where

o <snp> is the Section Name Prefix which shall be the
BswModuleDescription’s shortName converted in upper case
letters if no SectionNamePrefix is defined for the MemorySection in the
Basic Software Module Description or Software Component
Description.

o <snp> shall be the symbol of the Section NamePrefix associated to the
MemorySection if a SectionNamePrefix is defined for the
MemorySection.

o <vi>isthe vendorId of the BSW module

o <ai>isthe vendorApiInfix of the BSW module

The sub part in squared brackets [<vi>_<ai>] is omitted if no

vendorApiInfix is defined for the Basic Software Module which

indicates that it does not use multiple instantiation.
the shortName of the software component type for software components
(case sensitive)

<INIT_POLICY> is the initialization policy of variables. Possible values are:

NO _INIT: Used for variables that are never cleared and never initialized.
CLEARED: Used for variables that are cleared to zero after every reset.
POWER_ON_CLEARED: Used for variables that are cleared to zero only after
power on reset.

INIT: Used for variables that are initialized with values after every reset.
POWER_ON_INIT: Used for variables that are initialized with values only after
power on reset.

Memory

type

Syntax of memory class
(memclass) and pointer class Comments Located in
(ptrclass) macro parameter

Code

To be used for code.

PERIOD is the typical period time value
and unit of the ExecutableEntitys in this
MemorySection. The name part

[<PERIOD>] is optional.

units are:

US microseconds
<PREFIX> CODE[<PERIOD>] I\S/Iien;glrlljecond Cog}gn:r_
For example: 100US, 400US, 1MS, 5MS,
10MS, 20MS, 100MS, 1S

Please note that deviations from this
typical period time are possible due to
integration decisions (e.g. RTEEvent To
Task Mapping). Further, in special modes
of the ECU the code may be scheduled
with a higher or lower period.

19 of 50

Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTO SAR

Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

Memory
type

Syntax of memory class
(memclass) and pointer class
(ptrclass) macro parameter

Comments

Located in

Code

<PREFIX> <CN> CODE

To be used for callout code.

<CN> is the callback name (including
module reference) written in uppercase
letters.

Code

<PREFIX> CODE_FAST

To be used for code that shall go into fast
code memory segments.

The FAST sections should be used when
the execution does not happen in a well-
defined period time but with the
knowledge of high frequent access and
/or high execution time, for example, a
callback for a frequent notification.

Code

<PREFIX> CODE SLOW

To be used for code that shall go into
slow code memory segments.

The SLOW sections should be used
when the execution does not happen in a
well-defined period time but with the
knowledge of low frequent access, for
example, a callback in case of seldom
error.

Constants

<PREFIX> CONST

To be used for global or static constants.

Constants

<PREFIX> CALIB

To be used for calibration constants.

Constants

<PREFIX> CONFIG DATA

To be used for module configuration
constants.

Constants

<PREFIX> CONST SAVED RECOV
ERY ZONE<X>

To be used for ROM buffers of variables
saved in non-volatile memory.

Pointer

<PREFIX> APPL DATA

To be used for references on application
data (expected to be in RAM or ROM)
passed via API

Pointer

<PREFIX> APPL CONST

To be used for references on application
constants (expected to be certainly in
ROM, for instance pointer of Init-function)
passed via API

Pointer

REGSPACE

To be used for pointers to registers (e.g.
static volatile

CONSTP2VAR (uintl6, PWM CONST,
REGSPACE)).

Pointer

<PREFIX> APPL CODE

To be used for references on application
functions. (e.g. call back function
pointers).

This section is DEPRECATED and shall
not be used in fotore development. This
memory class identifier has been
replaced by <PREFIX>_<CN>_CODE.

Variables

<PREFIX> VAR <INIT POLICY>

To be used for all global or static
variables.

20 of 50

Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTO SAR

Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

Memory
type

Syntax of memory class
(memclass) and pointer class
(ptrclass) macro parameter

Comments

Located in

Variables

<PREFIX> VAR FAST <INIT PO
LICY>

To be used for all global or static

variables that have at least one of the

following properties:

e accessed bitwise

o frequently used

e high number of accesses in source
code

Some platforms allow the use of bit

instructions for variables located in this

specific RAM area as well as shorter

addressing instructions. This saves code

and runtime.

Variables

<PREFIX> VAR SLOW <INIT PO
LICY>

To be used for all infrequently accessed
global or static variables.

Variables

<PREFIX> INTERNAL VAR <INI
T POLICY>

To be used for global or static variables
which are accessible from a calibration
tool.

Variables

<PREFIX> VAR SAVED ZONE<X>

To be used for RAM buffers of variables
saved oin non-volatile memory.

Variables

<PREFIX> CALLOUT CODE

To be used for references on application
functions. (e.g. callout function pointers)

This section is DEPRECATED and shall
not be used in fotore development. This
memory class identifier has been
replaced by <PREFIX> <CN>_ CODE.

Variables

<PREFIX> VAR NOINIT

To be used for all global or static
variables that are never initialized.

This section is DEPRECATED and shall
not be used in fotore development. This
memory class identifier has been
replaced by
<PREFIX> VAR _<INIT POLICY>.

Variables

<PREFIX> VAR POWER ON_INIT

To be used for all global or static
variables that are initialized only after
power on reset

This section is DEPRECATED and shall
not be used in fotore development. This
memory class identifier has been
replaced by
<PREFIX> VAR _<INIT_POLICY>.

21 of 50

Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

Syntax of memory class
(memclass) and pointer class Comments Located in
(ptrclass) macro parameter

Memory
type

To be used for all global or static

variables that have at least one of the

following properties:

e accessed bitwise

o frequently used

e high number of accesses in source

Variables |<PREFIX> VAR FAST code

e This section is DEPRECATED and
shall not be used in fotore
development. This memory class
identifier has been replaced by
<PREFIX>_VAR_FAST <INIT_POLI
CY>.

To be used for global or static variables
that are initialized after every reset.

This section is DEPRECATED and shall
not be used in fotore development. This
memory class identifier has been
replaced by

<PREFIX> VAR <INIT POLICY>.

Variables |<PREFIX> VAR

Variables |AUTOMATIC To be used for local non static variables | Compiler.h

Type Y PEDEF To be used in type definitions, where no

Definitions memory qualifier can be specified. Compiler.h

For the memory classes that have the form <PREFIX>_<NAME>, one can specify
the part <NAME> in the the MemorySections of a Basic Software Module Description
or Software Component Description as follows. This is especially required for
generated code:
¢ <NAME> is the shortName (case sensitive) of the SwAddrMethod referred
from the MemorySection if if the MemorySection has no memClassSymbol
attribute defined.
e Only for Basic Software: <NAME> is the memClassSymbol (case sensitive) of
the MemorySection if this attribute is defined.
10

[SWS_COMPILER_00041] | Each AUTOSAR software module and application
software component shall wrap declaration and definition of code, variables,
constants and pointer types using the following keyword macros: | ()

22 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

For instance:

native C-API:
Std ReturnType Spi SetupBuffers

(

Spi ChannelType Channel,
const Spi DataType *SrcDataBufferPtr,
Spi DataType *DesDataBufferPtr,

Spi NumberOfDataType Length
)

Is encapsulated:
FUNC (Std ReturnType, SPI CODE) Spi SetupBuffers
(

Spi ChannelType Channel,
P2CONST (Spi_DataType, AUTOMATIC, SPI_APPL DATA) SrcDataBufferPtr,
P2VAR (Spi DataType, AUTOMATIC, SPI APPL DATA,) DesDataBufferPtr,

Spi NumberOfDataType Length

7.1.3 Contents of Compiler.h

[SWS_COMPILER_00004] [The file name of the compiler abstraction shall be
‘Compiler.h’. | (SRS_BSW_00348, SRS_BSW_00361, SRS_BSW_00464)

[SWS_COMPILER_00053] [The file Compiler.h shall contain the definitions and
macros specified in chapter 7.1.5. Those are fix for one specific compiler and
platform. | ()

[SWS_COMPILER_00005] [If a compiler does not require or support the usage of
special keywords; the corresponding macros specified by this specification shall be
provided as empty definitions or definitions without effect.

Example:

#define FUNC (type, memclass) type

/* not required for DIABDATA */ | ()

[SWS_COMPILER_00010] [The compiler abstraction shall define a symbol for the
target compiler according to the following naming convention:
<COMPILERNAME> C<PLATFORMNAME> _

23 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

Note 1: In order to avoid incompatibilities and/ or inconsistencies, the compiler
symbol definitions are not allowed to contain any value behind the symbol.

Note 2: These defines can be used to switch between different implementations for
different compilers, e.g.

e inline assembler fragments in drivers

e special pragmas for memory alignment control

¢ localization of function calls

e adaptions to memory models | (SRS_BSW_00306, SRS_BSW_00006)

List of symbols: see chapter 7.1.1.

[SWS_COMPILER_00030] [“Compiler.n” shall provide information of the supported
compiler vendor and the applicable compiler version. | ()

[SWS_COMPILER_00035] [The macro parameters memclass and ptrclass shall
not be filled with the compiler specific keywords but with one of the configured values
in SWS_COMPILER_00040. | (SRS_BSW_00306, SRS_BSW_00006)

The rationale is that the module’s implementation shall not be affected when
changing a variable’s, a pointer’s or a function’s storage class.

[SWS_COMPILER_00036] [C forbids the use of the far/near-keywords on function
local variables (auto-variables). For this reason when using the macros below to
allocate a pointer on stack, the memclass-parameter shall be set to AUTOMATIC.
| (SRS_BSW_00306, SRS_BSW_00006)

[SWS_COMPILER_00047] [The Compiler.h header file shall protect itself against
multiple inclusions.
For instance:
#ifndef COMPILER H
#define COMPILER H
/* implementation of Compiler.h */

#endif /* COMPILER H */
There may be only comments outside of the ifndef - endif bracket. | ()

[SWS_COMPILER_00050] [It is allowed to extend the Compiler Abstraction
header with vendor specific extensions. Vendor specific extended elements shall
contain the AUTOSAR Vendor ID in the name. | ()

7.1.4 Contents of Compiler_Cfg.h

[SWS_COMPILER_00055] [The file Compiler_Cfg.h shall contain the
module/component specific parameters (ptrclass and memclass) that are passed
to the macros defined in Compiler.h. See SWS_COMPILER 00040 for memory
types and required syntax. | (SRS_BSW_00361, SRS _BSW_00464)

24 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

[SWS_COMPILER_00054] [Module specific extended elements shall contain the
module abbreviation of the BSW module in the name. Application software
component specific extended elements shall contain the Software Component Type’s
name. | ()

7.1.5 Comprehensive example

This example shows for a single API function where which macro is defined, used
and configured.

Module: Eep

API function: Eep_Read

Platform: S12X

Compiler: Cosmic

File Eep.c:

#include “Std Types.h” /* This includes also Compiler.h */

FUNC (Std ReturnType, EEP CODE) Eep Read

(
Eep AddressType EepromAddress,
P2VAR (uint8, AUTOMATIC, EEP_APPL DATA) DataBufferPtr,
Eep LengthType Length

File Compiler.h:

#include “Compiler Cfg.h”
#define AUTOMATIC

#define FUNC (rettype, memclass) rettype memclass
#define P2VAR (ptrtype, memclass, ptrclass) ptrclass ptrtype * memclass

File Compiler_Cfg.h:

#define EEP_CODE
#define EEP_APPL DATA @far /* RAM blocks of NvM are in banked RAM */

25 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

What are the dependencies?

EEP APPL DATA is defined as ‘far’. This means that the pointers to the RAM blocks
managed by the NVRAM Manager have to be defined as ‘far’ also. The application
can locate RAM mirrors in banked RAM but also in non-banked RAM. The mapping
of the RAM blocks to banked RAM is done in <Mip>_MemMap.h (see [12] for more
information on <Mip>).

Because the pointers are also passed via Memory Interface and EEPROM
Abstraction, their pointer and memory classes must also fit to EEP APPL DATA.

What would be different on a 32-bit platform?

Despite the fact that only the S12X has an internal EEPROM, the only thing that
would change in terms of compiler abstraction are the definitions in Compiler_Cfg.h.
They would change to empty defines:

#define EEP_CODE
#define EEP_APPL DATA

26 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTO SAR

7.1.6 Proposed process

Specification of Compiler Abstraction

AUTOSAR Release 4.2.2

To allow development and integration within a multi supplier environment a certain
delivery process is indispensable. The following description can be seen as proposal:

Compiler_Cfg.h

AUTOSAR Module
Suppliers

Implements Source files and documents
Assigns version and vendor numbers

Implements module specific part of
Compiler_Cfg.h and <Mip>_MemMap.h

Builds package

constructs

Module
source
files

B -

4

f Package

Memory

Documents

Development Environment

1

Step 1:
Delivery of basic files

<

Compiler.h
Std_Types.h
Platform_Types.h

%

Step 2:
Delivery of modules /

AARA A~ A~ +m

AUTOSAR
Integrator

Compiler_Cng
Module B

Receives and checks packages
Integrates modules

Integrates the single Compiler_Cfg.h
files into main Compiler_Cfg.h

Configures <Mip>_MemMap.h and
Compiler_Cfg.h

Integration Environment

intearates

Compiler_Cfg.h of
Module A

A

Compiler_Cfg.h

Compiler_Cfg.h of
Module C

et
O |

Figure 2: Proposal of integration-process

27 of 50

Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

7.2 Development Errors

Not applicable.

7.3 Production Errors

Not applicable.

7.4 Extended Production Errors

Not applicable.

7.5 Error detection

Not applicable.

7.6 Error notification

Not applicable.

7.7 Version check

Not applicable.

7.8 Support for Debugging

Not applicable.

28 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction

AUTOSAR Release 4.2.2

8 API specification

8.1 Imported types

Not applicable.

8.2 Macro definitions

These kind of items are the only API applicable to this module.

8.2.1 General definitions

8.2.1.1 Memory class AUTOMATIC
SWS COMPILER 00046][

Define: AUTOMATIC
Range: “empty” -
Description: The memory class AUTOMATIC shall be provided as empty definition, used for
the declaration of local pointers.
Caveats: SWS COMPILER 00040
10

8.2.1.2 Memory class TYPEDEF
SWS COMPILER 00059]]

Define: TYPEDEF

Range: “empty” --

Description: The memory class TYPEDEF shall be provided as empty definition. This memory
class shall be used within type definitions, where no memory qualifier can be
specified. This can be necessary for defining pointer types, with e.g. P2VAR,
where the macros require two parameters. First parameter can be specified in the
type definition (distance to the memory location referenced by the pointer), but
the second one (memory allocation of the pointer itself) cannot be defined at this
time. Hence, memory class TYPEDEF shall be applied.

Caveats: SWS COMPILER 00040

10
29 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

8.2.1.3 NULL_PTR
SWS_COMPILER_00051][

Define: NULL_PTR

Range: void pointer ((void *)0)

Description: The compiler abstraction shall provide the NULL_PTR define with a void pointer
to zero definition.

Caveats: SWS_COMPILER 00040

10

8.2.1.4 INLINE

SWS COMPILER 00057][

Define: INLINE

Range: inline/”empty” -

Description: The compiler abstraction shall provide the INLINE define for abstraction of the
keyword inline.

Caveats: SWS COMPILER 00040

10

8.2.1.5 LOCAL_INLINE
SWS_COMPILER_00060][

Define: LOCAL_INLINE

Range: static inline/’empty” -

Description: The compiler abstraction shall provide the LOCAL_INLINE define for abstraction
of the keyword inline in functions with “static” scope.

Caveats: Different compilers may require a different sequence of the keywords “static” and
“inline” if this is supported at all.

10

8.2.2 Function definitions

The following tables do not contain requirements. They just give an overview of used
function keywords and their syntax within different compilers. This analysis is
required for a correct and complete specification of methods and keywords and as
rationale for those people who doubt the necessity of a compiler abstraction in
AUTOSAR. These tables are not the complete overview of all existing compilers and
platforms and their usage in AUTOSAR. However, the tables show examples that
cover most use cases, from which the concepts are derived.

On platforms with memory exceeding the addressable range of the architecture
(e.g. S12X with 512k of Flash) the compiler needs to know if a called function is
reachable within normal addressing commands (‘near’) or extended/paged
addressing commands (‘far’).

30 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

Compiler analysis for near functions:

Compiler Required syntax

Cosmic, S12X @near void MyNearFunction (void) ;
Call of a near function results in a local page call or to a call into
direct page.

Dependent of compiler settings the compiler controls only the
calling convention or allocation and calling convention.

Metrowerks, S12X void near MyNearFunction (void);
Call of a near function results in a local page call or to a call into
direct page.

IAR, HCS12 C/C++ void non banked MyNearFunction (void);

Tasking, ST10 void near MyNearFunction (void);

_near void MyNearFunction (void);
Call of a near function results in a local segment code access
(relevant in large model).

Tasking, TC1796 void MyNearFunction (void);
(No keywords required)

Greenhills, V850 void MyNearFunction (void);
(No keywords required)

ADS, ST30 void MyNearFunction (void);
(No keywords required)

DIABDATA, MPC5554 void MyNearFunction (void);

(No keywords required)

Compiler analysis for far functions:

Compiler Required syntax
Cosmic, S12X @far void MyFarFunction (void) ;
Dependent of compiler settings the compiler controls only the
calling convention or allocation and calling convention.
Metrowerks, S12X void far MyFarFunction (void) ;
IAR, HCS12 C/C++ void banked MyFarFunction (void);
Tasking, ST10 void huge MyFarFunction (void);
huge void MyFarFunction (void);
Tasking, TC1796 void MyFarFunction (void);
(No keywords required)
Greenhills, V850 void MyFarFunction (void);
(No keywords required)
ADS, ST30 void MyFarFunction (void);
(No keywords required)
DIABDATA, MPC5554 void MyFarFunction (void);
(No keywords required)

31 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

8.2.2.1 FUNC
[SWS_COMPILER_00001][

Macro name: FUNC

Syntax: #define FUNC (rettype, memclass)

Parameters retype return type of the function

(in): memclass classification of the function itself

Parameters None -

(out):

Return value: None --

Description: The compiler abstraction shall define the FUNC macro for the declaration and
definition of functions that ensures correct syntax of function declarations as
required by a specific compiler.

Caveats: -

Configuration: |--

10
Example (Cosmic, S12X):
#define <PREFIX> CODE @near

#define FUNC (rettype, memclass) memclass rettype

Required usage for function declaration and definition:
FUNC (void, <PREFIX> CODE) ExampleFunction (void);

[SWS_COMPILER_00058][In the parameter list of this macro no further Compiler
Abstraction macros shall be nested. Instead, use a previously defined type as return
type or use FUNC_P2CONST/FUNC_P2VAR.

10

Example:

typedef P2VAR (uint8, AUTOMATIC, <PREFIX> VAR) NearDataType;
FUNC (NearDataType, <PREFIX> CODE)
FarFuncReturnsNearPtr (void) ;

32 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

8.2.2.2 FUNC_P2CONST
[SWS_COMPILER_00061][

Macro name: FUNC_P2CONST

Syntax: #define FUNC_ P2CONST (rettype, ptrclass, memclass)

Parameters rettype return type of the function

(in): ptrclass defines the classification of the pointer’s distance
memclass classification of the function itself

Parameters none -

(out):

Return value: none --

Description: The compiler abstraction shall define the FUNC_P2CONST macro for the

declaration and definition of functions returning a pointer to a constant. This shall
ensure the correct syntax of function declarations as required by a specific
compiler

Caveats: --

Configuration: |--

10

Example (Cosmic, S12X):

#define <PREFIX> PBCFG @far

#define <PREFIX> CODE @near

#define FUNC P2CONST (rettype, ptrclass, memclass)\
const ptrclass rettype * memclass

Required usage for function declaration and definition:
FUNC P2CONST (uintl6, <PREFIX> PBCFG, <PREFIX> CODE)
ExampleFunction (void);

[SWS_COMPILER_00062][In the parameter list of the FUNC_P2CONST, no
further Compiler Abstraction macros shall be nested.

10

33 0f 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

8.2.2.3 FUNC_P2VAR
[SWS_COMPILER_00063][

Macro name: FUNC_P2VAR

Syntax: #define FUNC_ P2VAR (rettype, ptrclass, memclass)

Parameters rettype return type of the function

(in): ptrclass defines the classification of the pointer’s distance
memclass classification of the function itself

Parameters none -

(out):

Return value: none --

Description: The compiler abstraction shall define the FUNC_P2VAR macro for the declaration
and definition of functions returning a pointer to a variable. This shall ensure the
correct syntax of function declarations as required by a specific compiler.

Caveats: -

Configuration: |--

10

Example (Cosmic, S12X):

#define <PREFIX> PBCFG @Qfar
#define <PREFIX> CODE @near

#define FUNC P2VAR (rettype, ptrclass, memclass)\
ptrclass rettype * memclass

Required usage for function declaration and definition:
FUNC P2VAR (uintl6, <PREFIX> PBCFG, <PREFIX> CODE)
ExampleFunction (void);

[SWS_COMPILER_00064][In the parameter list of the macro FUNC_P2VAR, no
further Compiler Abstraction macros shall be nested.

10

8.2.3 Pointer definitions

The following tables do not contain requirements. They just give an overview of used
pointer keywords and their syntax within different compilers. This analysis is required
for a correct and complete specification of methods and keywords and as rationale
for those people who doubt the necessity of a compiler abstraction in AUTOSAR.
These tables are not the complete overview of all existing compilers and platforms
and their usage in AUTOSAR. However, the tables show examples that cover most
use cases, from which the concepts are derived.

On platforms with memory exceeding the addressable range of the architecture
(e.g. S12X with 512k of Flash) the compiler needs to know if data referenced by a
pointer is accessible by normal addressing commands (‘near’) or extended/paged
addressing commands (‘far’).

Compiler analysis for near pointers pointing to variable_data in RAM (use case:
pointer to data buffer where data has to be copied to):

34 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTO SAR

Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

Compiler

Required syntax

Cosmic, S12X

@near uint8* MyNearPointer;

Metrowerks, S12X

uint8* near MyNearPointer;

IAR, HCS12 C/C++

uint8* datal6 MyNearPointer;

Tasking, ST10

_near uint8* MyNearPointer;

Tasking, TC1796

uint8* MyNearPointer;

(No keywords required)

Greenhills, V850

uint8* MyNearPointer

(No keywords required)

ADS, ST30

uint8* MyNearPointer
(No keywords required)

DIABDATA, MPC5554

uint8* MyNearPointer
(No keywords required)

Compiler analysis for far pointers pointing to variable data in RAM:

Compiler Required syntax

Cosmic, S12X @far uint8* MyFarPointer;

Metrowerks, S12X uint8* far MyFarPointer;

IAR, HCS12 C/C++ (Information not available yet)

Tasking, ST10 _far uint8* MyFarPointer; /*14 bit arithmetic*/

_huge uint8* MyFarPointer; /*24 bit arithmetic*/
_shuge uint8* MyFarPointer; /*16 bit arithmetic*/
/* My personal note: CRAZY */

Tasking, TC1796

uint8* MyFarPointer;
(No keywords required)

Greenhills, V850

uint8* MyFarPointer

(No keywords required)

ADS, ST30

uint8* MyFarPointer
(No keywords required)

DIABDATA, MPC5554

uint8* MyFarPointer
(No keywords required)

Compiler analysis for near pointers pointing to constant data in RAM (use case
pointer to data buffer where data has to be read from):

Compiler

Required syntax

Cosmic, S12X

@near uint8* MyNearPointer;
(Results in access of direct memory area)

Metrowerks, S12X

const uint8* near MyNearPointer;
(Results in access of direct memory area)

IAR, HCS12 C/C++

const uint8* MyNearPointer;
(Results in access of direct memory area)

Tasking, ST10

const near uint8* MyNearPointer;

Tasking, TC1796

const near uint8* MyNearPointer;

Greenhills, V850

const uint8* MyNearPointer
(No additional keywords required)

ADS, ST30

const uint8* MyNearPointer
(No additional keywords required)

DIABDATA, MPC5554

const uint8* MyNearPointer
(No additional keywords required)

Compiler analysis for far pointers pointing to constant data in RAM:

35 of 50

Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction

AUTOSAR Release 4.2.2

Compiler

Required syntax

Cosmic, S12X

@far uint8* MyFarPointer;

Metrowerks, S12X

const uint8* far MyFarPointer;

IAR, HCS12 C/C++

(Information not available yet)

Tasking, ST10

const far uint8* MyFarPointer;

Tasking, TC1796

uint8* MyFarPointer;
(No keywords required)

Greenhills, V850

const uint8* MyFarPointer
(No additional keywords required)

ADS, ST30

const uint8* MyFarPointer
(No additional keywords required)

DIABDATA, MPC5554

const uint8* MyFarPointer
(No additional keywords required)

Compiler analysis for near pointers pointing to data in ROM (use case pointer to
display data in ROM passed to SPI Driver):

Compiler

Required syntax

Cosmic, S12X

const uint8* MyNearPointer;
(Without near keyword because this is by default near!)

Metrowerks, S12X

const uint8* near MyNearPointer;

IAR, HCS12 C/C++

const uint8* MyNearPointer;
(Without near keyword because this is by default near!)

Tasking, ST10

const near uint8* MyNearPointer;

Tasking, TC1796

const uint8* MyNearPointer;

(No keywords required)

Greenhills, V850

const uint8* MyNearPointer

(No additional keywords required)

ADS, ST30

const uint8* MyNearPointer

(No additional keywords required)

DIABDATA, MPC5554

const uint8* MyNearPointer
(No additional keywords required)

36 of 50

Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

Compiler analysis for far pointers pointing to constant data in ROM:

Compiler Required syntax

Cosmic, S12X not possible

Metrowerks, S12X const uint8* far MyFarPointer;

IAR, HCS12 C/C++ Access function and the banked constant data are located in the same
bank:

const uint8* MyFarPointer;
but caller shall use the address 24 of macro

Access function is located in non-banked memory:
PPAGE register has to be handled manually

Access function and the banked constant data are located in different

banks:
Not possible
Tasking, ST10 const far uint8* MyFarPointer;
Tasking, TC1796 const uint8* MyFarPointer;
(No keywords required)
Greenhills, V850 const uint8* MyFarPointer
(No additional keywords required)
ADS, ST30 const uint8* MyFarPointer

(No additional keywords required)

DIABDATA, MPC5554 const uint8* MyFarPointer
(No additional keywords required)

The HW architecture of the S12X supports different paging mechanisms with
different limitations e.g. supported instruction set or pointer distance. Therefore the
IAR, HCS12 C/C++ and the Cosmic, S12X compilers are limited in the usage of
generic pointers applicable for the whole memory area because of the expected code
overhead.

Conclusion: These vendors should adapt their compilers, because a generic SW
architecture as described by AUTOSAR cannot be adjusted in every case to the
platform specific optimal solution.

Compiler analysis for pointers, where the symbol of the pointer itself is placed in
near-memory:

Compiler Required syntax
Cosmic, S12X uint8* @near MyPointerInNear;
Metrowerks, S12X __near uint8* MyPointerInNear;
Tasking, ST10 uint8* near MyPointerInNear;
Tasking, TC1796 uint8* MyPointerInNear;

(No keywords required)
Greenhills, V850 uint8* MyPointerInNear

(No keywords required)
ADS, ST30 uint8* MyPointerInNear

(No keywords required)
DIABDATA, MPC5554 uint8* MyPointerInNear

(No keywords required)

37 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

Compiler analysis for pointers, where the symbol of the pointer itself is placed in far-
memory:

Compiler Required syntax
Cosmic, S12X uint8* @far MyPointerInFar;
Metrowerks, S12X _ far uint8* MyPointerInFar;
Tasking, ST10 uint8* far MyPointerInFar;
Tasking, TC1796 uint8* MyPointerInFar;

(No keywords required)
Greenhills, V850 uint8* MyPointerInFar

(No keywords required)
ADS, ST30 uint8* MyPointerInFar

(No keywords required)
DIABDATA, MPC5554 uint8* MyPointerInFar

(No keywords required)

The examples above lead to the conclusion, that for definition of a pointer it is not
sufficient to specify only one memory class. Instead, a combination of two memory
classes, one for the pointer's ‘distance’ and one for the pointer's symbol itself, is
possible, e.g.:

/* Tasking ST10, far-pointer in near memory
* (both content and pointer in RAM)
*/

_far uint8* near MyFarPointerInNear;

Compiler analysis for function pointers:

Compiler Required syntax

Cosmic, S12X @near void (* const Irg InterruptVectorTable[]) (void)
Call of a near function results in an interpage call or to a call into direct
page:

Metrowerks, S12X void (*const _ near Irqg InterruptVectorTable[]) (void)
Call of a near function results in an interpage call or to a call into direct
page:

Near functions and far functions are not compatible because of other ret-
statements:

IAR, HCS12 C/C++ __non_banked void (* const
Irqg InterruptVectorTable[]) (void)

Casting from __non_banked to __banked is performed through zero

extension:
Casting from __banked to __non_banked is an illegal operation.
Tasking, ST10 _far void (*NvM_AsyncCbkPtrType)

(NvM_ModuleIdType Moduleld,

NvM ServicelIdType Serviceld)
Call of a near function results in a local segment code access (relevant in
large model):

Tasking, TC1796 void (*NvM AsyncCbkPtrType)
(NvM_ModuleIdType ModuleId,
NvM ServiceIdType Serviceld)
(No additional keywords required)

Greenhills, V850 void (*NvM_AsyncCbkPtrType)
(NvM ModuleIdType ModulelId,

38 0f 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction

AUTOSAR Release 4.2.2

Compiler Required syntax
NvM ServicelIdType Serviceld)
(No additional keywords required)
ADS, ST30 void (*NvM_AsyncCbkPtrType)
(NvM_ModuleIdType ModuleId,
NvM ServicelIdType Serviceld)
(No additional keywords required)
DIABDATA, MPC5554 void (*NvM AsyncCbkPtrType)
(NvM_ModuleIdType ModulelId,
NvM ServicelIdType ServicelId)
(No additional keywords required)
8.2.3.1 P2VAR

SWS_COMPILER 00006][

Macro name:

P2VAR

Syntax: #define P2VAR (ptrtype, memclass, ptrclass)

Parameters ptrtype type of the referenced variable

(in): memclass classification of the pointer’s variable itself
ptrclass defines the classification of the pointer’s distance

Parameters none -

(out):

Return value: none --

Description: The compiler abstraction shall define the P2VAR macro for the declaration and
definition of pointers in RAM, pointing to variables.
The pointer itself is modifiable (e.g. ExamplePtr++).
The pointer’s target is modifiable (e.g. *ExamplePtr = 5).

Caveats: -

Configuration:

10

Example (Metrowerks, S12X):
#define P2VAR (ptrtype, memclass, ptrclass) \

ptrclass ptrtype * memclass

Required usage for pointer declaration and definition:
#define SPI APPL DATA Qfar
#define SPI VAR FAST (near

P2VAR (uint8, SPI VAR FAST, SPI APPL DATA) Spi FastPointerToApplData;

39 of 50

Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction

AUTOSAR Release 4.2.2

8.2.3.2 P2CONST
SWS_COMPILER_00013][

Macro name: P2CONST
Syntax: #define P2CONST (ptrtype, memclass, ptrclass)
Parameters (in): [ptrtype type of the referenced constant
memclass classification of the pointer’s variable itself
ptrclass defines the classification of the pointer’s distance
Parameters (out): [none -
Return value: none -

Description: The compiler abstraction shall define the P2CONST macro for the declaration
and definition of pointers in RAM pointing to constants
The pointer itself is modifiable (e.g. ExamplePtr++).
The pointer’s target is not modifiable (read only).

Caveats: --

Configuration:

10

Example (Metrowerks, S12X):
#define P2CONST (ptrtype, memclass, ptrclass) \

const ptrtype memclass * ptrclass

Example (Cosmic, S12X):
#define P2CONST (ptrtype, memclass, ptrclass) \

const ptrtype ptrclass * memclass

Example (Tasking, ST10):
#define P2CONST (ptrtype, memclass, ptrclass) \

const ptrclass ptrtype * memclass

Required usage for pointer declaration and definition:
#define EEP APPL CONST Qfar
#define EEP VAR (near

P2CONST (Eep ConfigType, EEP VAR, EEP APPL CONST) Eep ConfigurationPtr;

40 of 50

Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

8.2.3.3 CONSTP2VAR
[SWS_COMPILER_00031][

Macro name: CONSTP2VAR

Syntax: #define CONSTP2VAR (ptrtype, memclass, ptrclass)

Parameters ptrtype type of the referenced variable

(in): memclass classification of the pointer’s constant itself
ptrclass defines the classification of the pointer’s distance

Parameters None -

(out):

Return value: None --

Description: The compiler abstraction shall define the CONSTP2VAR macro for the

declaration and definition of constant pointers accessing variables.

The pointer itself is not modifiable (fix address).
The pointer’s target is modifiable (e.g. *ExamplePtr = 18).

Caveats: --

Configuration: |-

10

Example (Tasking, ST10):
#define CONSTP2VAR (ptrtype, memclass, ptrclass) \
ptrclass ptrtype * const memclass

Required usage for pointer declaration and definition:

/* constant pointer to application data */
CONSTPZVAR (uint8, NVM VAR, NVM APPL DATA)
NvM PointerToRamMirror = Appl RamMirror;
8.2.3.4 CONSTP2CONST

[SWS_COMPILER_00032][

Macro name: CONSTP2CONST

Syntax: #define CONSTP2CONST (ptrtype, memclass, ptrclass)

Parameters ptrtype type of the referenced constant

(in): memclass classification of the pointer’s constant itself
ptrclass defines the classification of the pointer’s distance

Parameters none -

(out):

Return value: none -

Description: The compiler abstraction shall define the CONSTP2CONST macro for the

declaration and definition of constant pointers accessing constants.

The pointer itself is not modifiable (fix address).
The pointer’s target is not modifiable (read only).

Caveats: --

Configuration: |--

10

41 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

Example (Tasking, ST10):
#define CONSTP2CONST (ptrtype, memclass, ptrclass) \
const memclass ptrtype * const ptrclass

Required usage for pointer declaration and definition:
#define CAN PBCFG CONST @gpage
#define CAN CONST @near

/* constant pointer to the constant postbuild configuration
data */

CONSTPZCONST (Can PBCfgType, CAN CONST, CAN PBCFG CONST)
Can PostbuildCfgData = CanPBCfgDataSet;

8.2.3.5 P2FUNC

[SWS_COMPILER_00039][

Macro name: P2FUNC

Syntax: #define P2FUNC (rettype, ptrclass, fctname)

Parameters rettype return type of the function

(in): ptrclass defines the classification of the pointer’s distance
fctname function name respectively name of the defined type

Parameters None -

(out):

Return value: None --

Description: The compiler abstraction shall define the P2FUNC macro for the type definition of
pointers to functions.

Caveats: -

Configuration: |--

10

Example (Metrowerks, S12X):
define P2FUNC (rettype, ptrclass, fctname)\
rettype (*ptrclass fctname)

Example (Cosmic, S12X):
#define P2FUNC (rettype, ptrclass, fctname) \
ptrclass rettype (*fctname)

Required usage for pointer type declaration:
#define EEP APPL CONST @far
#define EEP_VAR (@near

typedef P2FUNC (void, NVM APPL CODE, NvM CbkFncPtrType)
(void) ;

42 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTO SAR

Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

8.2.3.6 CONSTP2FUNC
[SWS_COMPILER_00065][

Macro name: CONSTP2FUNC

Syntax: #define CONSTP2FUNC (rettype, ptrclass, fctname)

Parameters rettype return type of the function

(in): ptrclass defines the classification of the pointer’s distance
fctname function name respectively name of the defined type

Parameters None -

(out):

Return value: None --

Description: The compiler abstraction shall define the CONSTP2FUNC macro for the type
definition of constant pointers to functions.

Caveats: -

Configuration:

10

Example (PowerPC):

#define CONSTP2FUNC (rettype,

ptrclass, fctname)\

rettype (* const fctname)

Example (CodeWarrior, S12X):

#define CONSTP2FUNC (rettype,

ptrclass, fctname)\

rettype (* const ptrclass fctname)

8.2.4 Constant definitions

8.2.4.1 CONST

[SWS_COMPILER_00023][

Macro name:

CONST

Syntax: #define CONST (consttype, memclass)

Parameters consttype type of the constant

(in): memclass classification of the constant itself

Parameters none -

(out):

Return value: none --

Description: The compiler abstraction shall define the CONST macro for the declaration and
definition of constants.

Caveats: -

Configuration:

10

Example (Cosmic, S12X):

#define CONST (type,

43 of 50

memclass) memclass const type

Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

Required usage for declaration and definition:
#define NVM CONST Q@gpage

CONST (uint8, NVM CONST) NvM ConfigurationData;

8.2.5 Variable definitions

8.2.5.1 VAR

[SWS_COMPILER_00026]|

Macro name: VAR

Syntax: #define VAR (vartype, memclass)

Parameters vartype type of the variable

(in): memclass classification of the variable itself
Parameters None --

(out):

Return value: [None --

Description: The compiler abstraction shall define the VAR macro for the declaration and

definition of variables.

Caveats: --

Configuration: |--
10

Example (Tasking, ST10):
#define VAR (type, memclass) memclass type

Required usage for declaration and definition:
#define NVM FAST VAR near

VAR (uint8, NVM FAST VAR) NvM VeryFrequentlyUsedState;

44 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

8.3 Type definitions

Not applicable.

8.4 Function definitions

Not applicable.

8.5 Call-back notifications

Not applicable.

8.6 Scheduled functions

Not applicable.

8.7 Expected Interfaces
8.7.1 Mandatory Interfaces
Not applicable.

8.7.2 Optional Interfaces

Not applicable.

8.7.3 Configurable interfaces

Not applicable.

45 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

8.8 Service Interfaces

8.8.1 Scope of this Chapter

Not applicable.

8.8.2 Overview

Not applicable.

8.8.3 Specification of the Ports and Port Interfaces

8.8.3.1 General Approach
Not applicable.

8.8.3.2 Data Types
Not applicable.

8.8.3.3 Port Interface
Not applicable.

8.8.4 Definition of the Service

Not applicable.

8.8.5 Configuration of the DET

Not applicable.

46 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

9 Sequence diagrams

Not applicable.

47 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into
containers. In order to support the specification, Chapter 10.1 describes
fundamentals. We intend to leave Chapter 10.1 in the specification to guarantee
comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of this module.
Chapter 10.3 specifies published information of this module.

The Compiler Abstraction has no separate configuration interface by means of
specifying a separate parameter definition. Instead, configuration of the
Memory Mapping has been extended (see [13]) by the parameters described in
this chapter.

10.1How to read this chapter

In addition to this section, it is highly recommended to read the documents:
Layered Software Architecture [3]
Specification Of ECU Configuration [4]

The following is only a short summary of the topic and it will not replace the ECU
Configuration Specification document.

10.2Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters describe Chapters 8 and Chapter 9.

10.2.1 Variants

Variant PC (Pre Compile): This is the only variant because all configuration
parameters are pre-compile time parameters, which influence the compilation
process.

Each of the different memory classes (memclass) and pointer classes (ptrclass) is
represented by a define.

10.2.2 Module-Specific Memory Classes

[13] defines module-specific memory classes in the container
‘MemMapAddressingModeSet’. This container has been extended by the parameter
‘MemMapCompilerAddressingMode’.

48 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

[SWS_COMPILER_00066][The parameter ‘MemMapCompilerAddressingMode’
shall contain the implementation behind a module-specific memory class symbol.| ()

10.2.3 Global Memory Classes

Furthermore, there are global memory classes that are valid for all modules. These
can be configured in the container ‘MemMapGenericCompilerClass’.

[SWS_COMPILER_00067] [Global memory classes (e.g. REGSPACE) shall be
configured in the container ‘MemMapGenericCompilerClass’.| ()

[SWS_COMPILER_00068][The parameter
‘MemMapGenericCompilerAddressingMode’ shall contain the implementation behind
a global memory class symbol.| ()

[SWS_COMPILER_00042] [The file Compiler.h is specific for each build scenario.
Therefore there is no standardized configuration interface specified.| ()

10.3Published Information

Not applicable.

49 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
AUTOSAR Release 4.2.2

11 Not applicable requirements

[SWS_COMPILER_00999] [These requirements are not applicable to this

specification. | (SRS_BSW_00300, SRS_BSW_00301, SRS_BSW_00302,

SRS_BSW_00305, SRS_BSW_00307, SRS_BSW_00308, SRS_BSW_00309,
SRS_BSW_00310, SRS_BSW_00312, SRS _BSW_00314, SRS_BSW_00323,
SRS_BSW_00325, SRS_BSW_00327, SRS_BSW_00330, SRS_BSW_00331,
SRS_BSW_00333, SRS_BSW_00334, SRS_BSW_00335, SRS_BSW_00336,
SRS_BSW_00339, SRS_BSW_00341, SRS _BSW_00342, SRS_BSW_00343,
SRS_BSW_00344, SRS_BSW_00346, SRS_BSW_00350, SRS_BSW_00353,
SRS_BSW_00357, SRS_BSW_00358, SRS_BSW_00359, SRS_BSW_00360,
SRS_BSW_00369, SRS_BSW_00371, SRS_BSW_00373, SRS_BSW_00375,
SRS_BSW_00377, SRS_BSW_00378, SRS_BSW_00380, SRS_BSW_00385,
SRS_BSW_00386, SRS_BSW_00390, SRS_BSW_00392, SRS_BSW_00393,
SRS_BSW_00394, SRS_BSW_00395, SRS_BSW_00398, SRS_BSW_00399,
SRS_BSW_00004, SRS_BSW_00400, SRS_BSW_00401, SRS_BSW_00404,
SRS_BSW_00405, SRS_BSW_00406, SRS_BSW_00407, SRS_BSW_00408,
SRS_BSW_00409, SRS_BSW_00410, SRS_BSW_00411, SRS_BSW_00413,
SRS_BSW_00414, SRS_BSW_00415, SRS_BSW_00416, SRS_BSW_00417,
SRS_BSW_00419, SRS_BSW_00422, SRS _BSW_00423, SRS_BSW_00424,
SRS_BSW_00425, SRS_BSW_00426, SRS_BSW_00427, SRS_BSW_00428,
SRS_BSW_00429, SRS_BSW_00432, SRS_BSW_00433, SRS_BSW_00005,
SRS_BSW_00007, SRS_BSW_00009, SRS_BSW_00010, SRS_BSW_00158,
SRS_BSW_00161, SRS_BSW_00162, SRS _BSW_00164, SRS_BSW_00167,
SRS_BSW_00168, SRS_BSW_00170, SRS_BSW_00171, SRS_BSW_00172)

50 of 50 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains
	4.3 Applicability to safety related environments

	5 Dependencies to other modules
	5.1 File structure

	6 Requirements traceability
	7 Functional specification
	7.1 General behavior
	7.1.1 List of Compiler symbols
	7.1.2 Requirements on implementations using compiler abstraction
	7.1.3 Contents of Compiler.h
	7.1.4 Contents of Compiler_Cfg.h
	7.1.5 Comprehensive example
	7.1.6 Proposed process

	7.2 Development Errors
	7.3 Production Errors
	7.4 Extended Production Errors
	7.5 Error detection
	7.6 Error notification
	7.7 Version check
	7.8 Support for Debugging

	8 API specification
	8.1 Imported types
	8.2 Macro definitions
	8.2.1 General definitions
	8.2.1.1 Memory class AUTOMATIC
	8.2.1.2 Memory class TYPEDEF
	8.2.1.3 NULL_PTR
	8.2.1.4 INLINE
	8.2.1.5 LOCAL_INLINE

	8.2.2 Function definitions
	8.2.2.1 FUNC
	8.2.2.2 FUNC_P2CONST
	8.2.2.3 FUNC_P2VAR

	8.2.3 Pointer definitions
	8.2.3.1 P2VAR
	8.2.3.2 P2CONST
	8.2.3.3 CONSTP2VAR
	8.2.3.4 CONSTP2CONST
	8.2.3.5 P2FUNC
	8.2.3.6 CONSTP2FUNC

	8.2.4 Constant definitions
	8.2.4.1 CONST

	8.2.5 Variable definitions
	8.2.5.1 VAR

	8.3 Type definitions
	8.4 Function definitions
	8.5 Call-back notifications
	8.6 Scheduled functions
	8.7 Expected Interfaces
	8.7.1 Mandatory Interfaces
	8.7.2 Optional Interfaces
	8.7.3 Configurable interfaces

	8.8 Service Interfaces
	8.8.1 Scope of this Chapter
	8.8.2 Overview
	8.8.3 Specification of the Ports and Port Interfaces
	8.8.3.1 General Approach
	8.8.3.2 Data Types
	8.8.3.3 Port Interface

	8.8.4 Definition of the Service
	8.8.5 Configuration of the DET

	9 Sequence diagrams
	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Variants
	10.2.2 Module-Specific Memory Classes
	10.2.3 Global Memory Classes

	10.3 Published Information

	11 Not applicable requirements

