
Requirements on Operating System
AUTOSAR Release 4.2.1

1 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

Document Title Requirements on Operating
System

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 008

Document Classification Auxiliary

Document Status Final

Part of AUTOSAR Release 4.2.1

Document Change History
Release Changed by Change Description

4.2.1 AUTOSAR
Release
Management

 Incorporation of concept “Mechanisms and
constraints to protect ASIL BSW against QM
BSW”

4.1.2 AUTOSAR
Release
Management

 Editorial changes

4.1.1 AUTOSAR
Administration

 Requirements added to support power saving
mode

 Formal rework of requirement tracing

 Updated according to TPS_standardization
template as minor changes

4.0.3 AUTOSAR
Administration

 Merging of AUTOSAR_SRS_MultiCoreOS

3.1.5 AUTOSAR
Administration

 Removed requirement for the OS to ensure that
interrupt priority registers are consistent with OS
configuration

 Various minor changes to descriptions to aid
understanding

 Legal disclaimer revised

3.1.1 AUTOSAR
Administration

 Legal disclaimer revised

3.0.1 AUTOSAR
Administration

 Document meta information extended

 Small layout adaptations made

2.1.15 AUTOSAR
Administration

 “Advice for users” revised

 “Revision Information” added

2.1 AUTOSAR
Administration

 Legal disclaimer revised

2.0 AUTOSAR
Administration

 Minor formal changes

1.0 AUTOSAR
Administration

 Initial Release

Requirements on Operating System
AUTOSAR Release 4.2.1

2 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference
models, "use cases", and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their
presence in such specifications, nor any later documentation of AUTOSAR
conformance of products actually implementing such exemplary items, imply that
intellectual property rights covering such exemplary items are licensed under the
same rules as applicable to the AUTOSAR Standard.

Requirements on Operating System
AUTOSAR Release 4.2.1

3 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

Table of Contents

1 Scope of this document ... 5

2 How to Read this Document .. 6

2.1 Conventions to be used ... 6

2.2 Acronyms and abbreviations ... 7

3 Requirements Guidelines .. 8

3.1 Requirements quality ... 8

3.2 Requirements identification ... 8
3.3 Requirements status ... 8

4 Requirement Specification ... 10

4.1 Traceability .. 10
4.2 Real-Time Operating System .. 11

4.2.1 Functional description .. 11
4.2.2 Core Operating System requirements ... 12

4.3 Statically Defined Scheduling .. 14
4.3.1 Functional Overview .. 14

4.3.2 Requirements .. 14
4.4 Monitoring Facilities ... 16

4.4.1 Functional Overview .. 16
4.4.2 Requirements .. 16

4.5 Protection Facilities ... 17
4.5.1 Functional Overview .. 17

4.5.2 Memory Protection requirements .. 17
4.5.3 Timing Protection requirements ... 19
4.5.4 Service Protection requirements ... 19

4.5.5 Protection Errors.. 21
4.6 Timer Services .. 23

4.6.1 Functional Overview .. 23
4.6.2 Functional Requirements ... 23

4.7 Scalability .. 24

4.7.1 Functional Overview .. 24

4.7.2 Functional Requirements ... 24
4.8 Application Error Handling ... 25

4.8.1 Functional Overview .. 25
4.8.2 Functional Requirements ... 25

4.9 General Multi-Core issues ... 27

4.9.1 Overview ... 27
4.9.2 Functional Requirements ... 27
4.9.3 Additional description of the term “One AUTOSAR system controlling
multiple cores” ... 28
4.9.4 Additional description of the term “unbounded blocking” 28

4.10 Assignment of runtime objects to cores ... 29

4.10.1 Overview ... 29

4.10.2 Requirements .. 29
4.11 Startup of Multi-Core systems ... 30

Requirements on Operating System
AUTOSAR Release 4.2.1

4 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4.11.1 Overview ... 30

4.11.2 Requirements .. 30
4.12 Shutdown of Multi-Core systems ... 31

4.12.1 Overview ... 31
4.12.2 Requirements .. 31

4.13 Configuration of Multi-Core systems ... 32

4.13.1 Overview ... 32
4.13.2 Requirements .. 32

4.14 Services in Multi-Core systems ... 32
4.14.1 Overview ... 32
4.14.2 Requirements .. 33

5 References .. 36

5.1 Deliverables of AUTOSAR .. 36

5.2 Related standards and norms ... 36
5.2.1 OSEK .. 36
5.2.2 HIS .. 36
5.2.3 Company Reports, Academic Work, etc .. 37

Requirements on Operating System
AUTOSAR Release 4.2.1

5 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

1 Scope of this document

The goal of this document is to define the high-level requirements for the AUTOSAR
operating system.

Requirements on Operating System
AUTOSAR Release 4.2.1

6 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

2 How to Read this Document

2.1 Conventions to be used

 The representation of requirements in AUTOSAR documents follows the table
specified in [TPS_STDT_0078].

 In requirements, the following specific semantics shall be used (based on the
Internet Engineering Task Force IETF).

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as:

 SHALL: This word means that the definition is an absolute requirement of the
specification.

 SHALL NOT: This phrase means that the definition is an absolute prohibition
of the specification.

 MUST: This word means that the definition is an absolute requirement of the
specification due to legal issues.

 MUST NOT: This phrase means that the definition is an absolute prohibition of
the specification due to legal constraints.

 SHOULD: This word, or the adjective "RECOMMENDED", mean that there
may exist valid reasons in particular circumstances to ignore a particular item,
but the full implications must be understood and carefully weighed before
choosing a different course.

 SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED" mean
that there may exist valid reasons in particular circumstances when the
particular behavior is acceptable or even useful, but the full implications
should be understood and the case carefully weighed before implementing
any behavior described with this label.

 MAY: This word, or the adjective „OPTIONAL“, means that an item is truly
optional. One vendor may choose to include the item because a particular
marketplace requires it or because the vendor feels that it enhances the
product while another vendor may omit the same item. An implementation,
which does not include a particular option, MUST be prepared to interoperate
with another implementation, which does include the option, though perhaps
with reduced functionality. In the same vein an implementation, which does
include a particular option, MUST be prepared to interoperate with another
implementation, which does not include the option (except, of course, for the
feature the option provides.)

Requirements on Operating System
AUTOSAR Release 4.2.1

7 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

2.2 Acronyms and abbreviations

Abbreviation Description

API Application Programming Interface

BSW Basic Software

COM Communications

ECU Electronic Control Unit

HIS Hersteller Initative Software

HW Hardware

ISR Interrupt Service Routine

MC Multi-Core

MCU Microcontroller Unit

MPU Memory Protection Unit

NM Network Management

OIL OSEK Implementation Language

OS Operating System

OSEK/VDX Offene Systeme und deren Schnittstellen für die Elektonik im Kraftfahrzeug

SC Single-Core

SW Software

SWC Software Component

Requirements on Operating System
AUTOSAR Release 4.2.1

8 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

3 Requirements Guidelines

Existing specifications shall be referenced (in form of a single requirement).
Differences to these specifications are specified as additional requirements.

3.1 Requirements quality

All Requirements shall have the following properties:

 Redundancy
Requirements shall not be repeated within one requirement or in other
requirements

 Clearness
All requirements shall allow one possibility of interpretation only. Only
technical terms of the glossary may be used. Furthermore, it must be clear
from the requirement, what object the statement is a requirement on.

Examples:

 The <...> module shall/should/may ...

 The <...> module's environment shall ...

 The <...> configuration shall...

 The function <...> shall ...

 The <...> SWS shall ...

 The hardware shall ...

 Atomicity
Each Requirement shall only contain one requirement. A Requirement is
atomic if it cannot be split up in further requirements.

 Testability
Requirements shall be testable by analysis, review or test.

 Traceability
The source and status of a requirement shall be visible at all times.

 Formulation

All requirements shall be formulated so that they can be interpreted without
the surrounding context (for example: “the function Xyz…" instead of "this
function…").

3.2 Requirements identification

Each requirement has its unique identifier starting with BSW as prefix. For any review
annotations, remarks and/or questions please refer to this unique ID rather than
chapter or page numbers!

3.3 Requirements status

Additionally, each requirement contains a state information. The state can be one of
the following.

Requirements on Operating System
AUTOSAR Release 4.2.1

9 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

State: Description:

Open The requirement has been created by a member of the WP but not
yet discussed in the WP meeting.

Proposed The requirement has been reviewed during the WP meeting. It is
accepted, but there are still open issues pending.

Approved The requirement has been reviewed and approved by all WP
participants.

Conflict The requirement has been reviewed, but there are conflicts (e.g.
contradictions with other requirements) which could not be resolved
so far.

Rejected The requirement has been reviewed and rejected.

Thus, all requirements finalized are in the state “Approved”.

Requirements on Operating System
AUTOSAR Release 4.2.1

10 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4 Requirement Specification

4.1 Traceability

Feature no Feature name

RS_BRF_01200 AUTOSAR OS shall be backwards compatible to OSEK OS

RS_BRF_01232 AUTOSAR OS shall support isolation and protection of application software

RS_BRF_01096 AUTOSAR shall support start-up and shutdown of ECUs

RS_BRF_01208 AUTOSAR OS shall support to start lists of tasks regularly

RS_BRF_01216 AUTOSAR OS shall support to synchronize ScheduleTables to an outside time
source

RS_BRF_01240 AUTOSAR OS shall support communication between OSApplications

RS_BRF_02008 AUTOSAR shall provide mechanisms to protect the system from unauthorized
read access

RS_BRF_01224 AUTOSAR OS shall support timing protection

RS_BRF_01248 AUTOSAR OS shall support to terminate and restart OSApplications

RS_BRF_01256 AUTOSAR OS shall offer support to switch off cores

RS_BRF_01264 AUTOSAR OS shall support multi-core deadlock free mutual exclusion

RS_BRF_01184 AUTOSAR shall support different methods of degradation

RS_BRF_00206 AUTOSAR shall support multi-core MCUs

Requirements on Operating System
AUTOSAR Release 4.2.1

11 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4.2 Real-Time Operating System

4.2.1 Functional description

The real-time operating system in an embedded automotive ECU builds the basis for
the dynamic behavior of the software. It manages the scheduling of tasks and events,
the data flow between different tasks and provides features for monitoring and error
handling.

However, in automotive systems the requirements on an operating system are highly
domain specific. For instance, in the body, powertrain and chassis domains, the
focus is on efficient scheduling of tasks and alarms, handling of shared resources
and deadline monitoring. The used operating system has to be very efficient in
runtime and small in memory footprint.

In multimedia and telematics applications, the feature set provided by the operating
system and also the available computing resources are significantly different. Here,
on top of pure task management, also complex data handling (e.g. streams, flash file
systems, etc.), memory management and often even a graphical user interface are
contained in the OS.

The classic domain of an automotive OS covers the core features of scheduling and
synchronization only. In the AUTOSAR architecture the additional features discussed
above are outside the scope of the OS. Such features are covered by the other
AUTOSAR Basic Software Modules. (e.g. COM provides a communication
abstraction). Integrating the feature sets of other OSs (e.g. QNX, VxWorks and
Windows CE etc.) into a monolithic OS/communication/drivers structure is not
possible under architectural constraints of AUTOSAR. Therefore, the AUTOSAR OS
shall consider only the core features.

Requirements on Operating System
AUTOSAR Release 4.2.1

12 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4.2.2 Core Operating System requirements

4.2.2.1 [SRS_Os_00097] The OS shall provide an API that is backward
compatible to the API of OSEK OS

⌈
Type: Valid

Description: The OS shall provide an API that is backward compatible to the API of
OSEK OS. Valid requirements shall be integrated as an extension of the
functionality provided by OSEK OS.

Rationale: Guarantee migration progress

Use Case: Existing driver software can be reused as its interface to the OS is not
changed.

Dependencies: --

Supporting Material: [STD_OSEK_OS]

⌋(RS_BRF_01200)

4.2.2.2 [SRS_Os_11001] The OS shall provide partitions which allow for fault
isolation and fault recovery capabilities

⌈
Type: Valid

Description: The OS shall provide partitions (Fault Containment Regions) which allow for
fault isolation and fault recovery capabilities.

Rationale: AUTOSAR permits mutliple logical applications to co-exist on the same
processor. The existing specification of OSEK OS is not aware of multiple
logical applications residing on a single processor. There is therefore no
facility for the containment of faults. A fault in one application could
propagate to another application resident on the same processor. For
example, an error in one software component or basic software module may
result in a fault being detected in another software component and/or basic
software module whose only relation to the faulty part is that it is resident on
the same processor.

OSEK OS has the following rules OS object manipulation:

 Tasks and ISRs are the executable objects managed by the OS.

 Standard resources can be manipulated by only those task/ISRs that
declare this at configuration time.

 Events can be set by any task or ISR. Events can only be waited on
or cleared by those tasks that declare this at configuration time.

 Alarms can be manipulated by any task or ISR.

In AUTOSAR:

 Extending this general scheme to table-based schedules
(SRS_Os_00098) means that Schedule Tables can be manipulated
by any task or ISR.

This loose ownership of OS objects (tasks, ISRs, alarms, events, schedule
tables, resources) makes it difficult to contain certain classes of faults at
runtime, for example one software component incorrectly cancelling an
alarm belonging to another software component. It is therefore necessary to
define the relationship between OS objects and the software components or

Requirements on Operating System
AUTOSAR Release 4.2.1

13 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

basic software module to which they belong so that fault containment can be
achieved at runtime.

The OS shall provide a higher-level abstraction to allow the user to group
existing OS objects (tasks, ISRs etc.) so that objects in the group can be
manipulated only by objects in the same group. Such a group is called an
OS-Application.

Furthermore, defining an OS-Application allows a memory protection domain
to be provided (see [SRS_Os_11005]).

Use Case: Under a failure condition the fault handling mechanism needs to stop all
objects associated with a software component from executing.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01232,RS_BRF_01234)

4.2.2.3 [SRS_Os_11018] The OS shall provide interrupt mask functions

⌈
Type: Valid

Description: The OS shall provide interrupt mask functions before calling StartOS() and
after a ShutdownOS() call. These functions are already defined in OSEK OS
and the usage is now extended.

Rationale: Needed by SPAL.

Use Case: The SPAL drivers are required to manipulate the interrupt mask before,
during and after normal OS operation.

Dependencies: C initialization has to be performed before these functions can be used.

Supporting Material:

⌋(RS_BRF_01096)

4.2.2.4 [SRS_Os_11019] The AUTOSAR OS generation tool shall create the
interrupt vector table

⌈
Type: Valid

Description: The AUTOSAR OS generation tool shall create the interrupt vector table for.

Rationale: Each ECU will need to have an interrupt vector table. The operating system
configuration already contains details about all interrupts used by the
system. The AUTOSAR OS generation tool shall be the final tool in the
development process that generates the interrupt vector table.

Use Case: Integration of other modules.

Dependencies: --

Supporting Material: --

⌋()

Requirements on Operating System
AUTOSAR Release 4.2.1

14 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4.3 Statically Defined Scheduling

4.3.1 Functional Overview

In many applications it is necessary to statically define the activation of a set of tasks
related to each other. This can be for guaranteeing data consistency in data-flow
based designs, synchronizing with a time-triggered network, guaranteeing correct
run-time phasing, etc.

A time-triggered operating system is often proposed as a solution to this problem.
However, time is simply an event so any event triggered OS, including OSEK OS,
can implement a scheduler for statically scheduled real-time software in automotive
electronic control units.

The requirements for schedules tables provide an OSEK OS object that can be
manipulated in the same way as an OSEKtime dispatcher table.

4.3.2 Requirements

4.3.2.1 [SRS_Os_00098] The Operating System shall provide statically
configurable schedule tables based on time tables as an optional service

⌈
Type: Valid

Description: The Operating System shall provide statically configurable schedule tables
based on time tables as an optional service.

Rationale: Requirement of Standard Core users. Table based schedules are more
efficient and easier to understand than tasks activated by OSEK alarm
services.
Adding a table-based scheduling mechanism approach as an extension to
OSEK OS provides users with the ability to construct an OSEKtime-like
dispatcher table without needing to introduce the unnecessary restrictions of
the stack-based scheduling policy or an additional OS specification.

Use Case: Release a number of tasks synchronously with a statically defined inter-
arrival time.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01208)

4.3.2.2 [SRS_Os_00099] The Operating System shall provide a mechanism
which allows switching between different schedule tables

⌈
Type: Valid

Description: The Operating System shall provide a mechanism which allows switching
between different schedule tables.

Rationale: For different application states (e.g. init, start-up, pre-start, normal operation,
diagnosis, pre-sleep, shut down) different schedules are necessary.

Use Case: ECU modes controlled by ECU State Manager

Dependencies: SRS_OS_00098

Supporting Material: --

Requirements on Operating System
AUTOSAR Release 4.2.1

15 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

⌋(RS_BRF_01208)

4.3.2.3 [SRS_Os_11002] The operating system shall provide the ability to
synchronize the processing of schedule tables with a global system time base

⌈
Type: Valid

Description: The operating system shall provide the ability to synchronize the processing
of schedule tables with a global system time base. It shall support immediate
(hard) synchronization and gradually adapting (smooth) synchronization.

Rationale: It is necessary for some distributed applications to be synchronized to a
global (to the relevant applications) timebase. This type of feature is needed
for users coming to the AUTOSAR OS from OSEKtime.

Use Case: Users migrating from OSEKtime dispatcher tables can replicate the similar
functionality with schedule tables without needing to introduce an additional
OS specification.

Dependencies: --

Supporting Material: [STD_OSEK_TTOS]

⌋(RS_BRF_01216)

Requirements on Operating System
AUTOSAR Release 4.2.1

16 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4.4 Monitoring Facilities

4.4.1 Functional Overview

A monitoring function detects an error at an appropriate stage in execution and not
the instant that the error occurs. Consequently, any monitoring function is the
detection of a failure at runtime rather than the prevention of a fault.

4.4.2 Requirements

4.4.2.1 [SRS_Os_11003] The operating system shall be able to monitor stack
usage and check for a stack overflow on a per executable object basis

⌈
Type: Valid

Description: The operating system shall be able to monitor stack usage and check for a
stack overflow on a per executable object basis (task/ISR).

Rationale: On some hardware it will not be possible to implement any sophisticated
memory protection. Stack monitoring provides an alternative (but less
secure) solution where some protection is deemed better than none.

Use Case: If a system where an application could overflow its stack is implemented on
hardware that cannot support true memory protection, stack monitoring is a
useful alternative.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01232)

Requirements on Operating System
AUTOSAR Release 4.2.1

17 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4.5 Protection Facilities

4.5.1 Functional Overview

The AUTOSAR concept requires multiply-sourced OS-Applications to co-exist on the
same processor. To prevent unexpected interaction between these OS-Applications
it is necessary to provide mechanisms that protect them from one another. There are
two major use-cases:

1. For a safety-critical system, the development of a safety-case is made much

easier if individual OS-Application safety cases can be integrated into an overall
safety case. This is only feasible if it can be demonstrated that at least a fault in
one OS-Application cannot propagate beyond its own boundary and cause a fault
in another, unrelated, OS-Application.

2. Suppliers can only be expected to take responsibility (and some liability) for their

software components and/or basic software modules if they can be assured that
their software cannot be incorrectly blamed for a processor-wide failure.

Both of these use-cases can be satisfied by the addition of protection mechanisms to
OSEK OS. The following sections outline the areas of protection.

4.5.2 Memory Protection requirements

4.5.2.1 [SRS_Os_11005] The operating system shall prevent an OS-
Application from modifying the memory of other OS-Applications

⌈
Type: Valid

Description: The operating system shall provide the ability of partitioning OS-Applications
with respect to memory and prevent an OS-Application from modifying the
memory of other OS-Applications.

Rationale: Where multiple OS-Applications (of different software integrity) are resident
on the same processor, their memory will be globally writable by any code.
This means that the data of one OS–Application could be corrupted by
another unrelated OS-Application (i.e. there is fault propagation between
OS-Applications). For example a task of an OS-Application may overflow its
stack, causing static data of an unrelated OS-Application to be corrupted,
causing it to fail.
To permit reasoning about adequate independence between the functions of
different integrity levels, it is essential that this is prevented at runtime.
Note that SRS_Os_11003 is different: It only detects fault rather than
preventing a memory access error from generating a fault.

Use Case: --

Dependencies: Note that satisfying this requirement implies the satisfaction of the stack
monitoring requirement as a stack overflow cannot occur if the stack is
bounded by memory write access control.
The write access protection needs appropriate hardware support.

Supporting Material:

⌋(RS_BRF_01232)

Requirements on Operating System
AUTOSAR Release 4.2.1

18 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4.5.2.2 [SRS_Os_11006] The operating system shall allow tasks and ISRs
within an OS-Application to exchange data

⌈
Type: Valid

Description: The operating system shall allow tasks and ISRs within an OS-Application to
exchange data using direct access to shared memory.

Rationale: It is common to exchange data using shared memory for performance
reasons at runtime (e.g. using global variables). However, in AUTOSAR
multiple OS-Applications will share a processor and therefore any data
communication that happens through shared memory breaks the memory
protection scheme.
Therefore, it is necessary to provide OS-Applications with the ability to share
data using memory which is globally accessible to tasks and ISRs within the
application but which is not accessible to other OS-Applications i.e. shared
memory local to scope of an OS-Application.

Use Case: An OS-Application implements communication and uses an ISR to handle
the reception of CAN frames from the vehicle network but uses a task to
process the contents of the CAN frame to reduce ISR level blocking.

Dependencies: --

Supporting Material: [DOC_WP112_REQ],

⌋(RS_BRF_01240)

4.5.2.3 [SRS_Os_11007] The operating system shall allow OS-Applications to
execute shared code

⌈
Type: Valid

Description: The operating system shall allow OS-Applications to execute shared code.

Rationale: If code cannot be shared then any piece of software that is common to a
number of software components/basic software modules will have to be
included multiple times in a software build. This has two implications:

1. a large increase in code space
2. a problem is introduced for software maintenance as a modification

to logically shared code will have to be made to every instance of
the code in a build of an ECU (a single change has become multiple
changes)

Use Case: Using shared libraries.

Dependencies: --

Supporting Material:

⌋(RS_BRF_01240)

4.5.2.4 [SRS_Os_11000] The OS may offer support to protect the memory
sections of an OS-Application against read accesses by all other OS-
Applications

⌈
Type: Valid

Description: The OS may offer support to protect the memory sections of an OS-
Application against read accesses by all other OS-Applications.

Rationale: If a task/ISR can read from any memory then it may operate on incorrect
data. This could result in failures at runtime. Preventing read accesses
provides a way of trapping such faults as soon as they occur.
A secondary issue is security. While it is not anticipated that there are any
security implications between OS-Applications on the same processor, read
accesses does provide protection if required

Requirements on Operating System
AUTOSAR Release 4.2.1

19 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

Use Case: Security: protect secret keys; Debugging support

Dependencies: --

Supporting Material: --

⌋(RS_BRF_02008)

4.5.3 Timing Protection requirements

4.5.3.1 [SRS_Os_11008] The OS shall not allow a timing fault in any OS-
Application to propagate

⌈
Type: Valid

Description: The OS shall not allow a timing fault in any OS-Application to propagate to a
different application resident on the same processor. A timing fault is defined
as:

 exceeding a specified execution time

 exceeding a specified arrival rate

Rationale: When these parameters are specified for every task/Category 2 ISR in the
system it is possible to determine whether or not each task/ Category 2 ISR
always meets its deadline.

Timing correctness on an ECU running any fixed-priority pre-emptive OS,
including OSEK OS, can only be guaranteed using schedulability analysis.
This uses information about the tasks and interrupts (how often they run,
how long they run for, which resources they access, how long they hold
them for) and then calculates that the system will meet its real-time
performance deadlines.

The scope of timing protection is to ensure that an AUTOSAR system that
has been shown to meet its deadlines does not violate the model used for
analysis at runtime due to failures in the functional behavior of applications
(or their constituent parts).

Strict enforcement of the assumptions of the real-time performance analysis
means two important things:

1. A timing fault is detected early, and hence can be picked up earlier in the

software life cycle. For example, a faulty software component from a
supplier can be rejected prior to full integration test. The costs of
remedying a fault are therefore reduced.

2. A timing fault is not propagated. By detecting the fault as it occurs the
effects of the fault are confined to the OS-Application where the fault
occurred. Thus the problems of real-time failures induced in the wrong
sub-system (or even the wrong ECU in a network) are eliminated.

Use Case: An object in one OS-Application executing for too long, causes an object in
another OS-Application to miss its deadline as a result.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01224)

4.5.4 Service Protection requirements

The OS must preserve both its own integrity and the integrity of the OS-Applications
that it schedules at runtime.

Requirements on Operating System
AUTOSAR Release 4.2.1

20 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4.5.4.1 [SRS_Os_11009] The operating system shall prevent the corruption of
the OS by any call of a system service

⌈
Type: Valid

Description: The operating system shall prevent the corruption of the OS by any call of a
system service.

Rationale: If it was possible to place the OS into an unknown state, or corrupt OS data
structures at runtime then this would damage every OS-Application resident
on the same processor. This means that either:

 every OS service call must have defined behavior in all cases; or

 the OS must not allow service calls to be made from contexts that
would potentially result in the OS being placed into an undefined
state.

This increases the integrity of the OS itself.

Use Case: Avoid undefined behavior from e.g. calling services from wrong context.

Dependencies: In case the current specification of OSEK OS allows configurations which do
not protect the OS the AUTOSAR configuration has to make sure that these
configurations can not be selected.

Supporting Material: --

⌋(RS_BRF_01232)

4.5.4.2 [SRS_Os_11010] The operating system shall prevent an OS-
Application modifying OS objects that are not owned by that OS-Application

⌈
Type: Valid

Description: The operating system shall prevent an OS-Application modifying OS objects
that are not owned by that OS-Application.

Rationale: An OS-Application could manipulate objects in another OS-Application that
cause it to behave outside the scope of its design at runtime. Protecting the
integrity of OS-Applications means that one OS-Application cannot
manipulate an object owned by another OS-Application, for example through
OS service calls, causing potential failure in another OS-Application, unless
access to the object expressly granted at configuration time. This increases
the ability to trace faults arising from OS-Application coupling by restricting
the possible sources of the fault.

Use Case: Canceling an alarm that activates a task in another OS-Application

Dependencies: In the case where the current specification of OSEK OS allows
configurations which do not protect OS-Applications, the AUTOSAR
configuration has to make sure that these configurations can not be
selected.

Supporting Material: --

⌋(RS_BRF_01232)

4.5.4.3 [SRS_Os_11011] The OS shall protect itself against OS-
Applications attempting to modify control registers directly which
are managed by the OS

⌈
Type: Valid

Description: The OS shall protect itself against OS-Applications attempting to modify
control registers directly which are managed by the OS.

Rationale: The OS must be protected against OS-Applications attempting (directly or
indirectly) to circumvent the protection mechanisms. Typically this means

Requirements on Operating System
AUTOSAR Release 4.2.1

21 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

that OS-Applications should be prevented from accessing the MCU status
registers and memory protection registers that might be in use.

Use Case: OS uses the processor status word for managing interrupts and the register
is written by a rogue OS-Application at runtime, corrupting the internal data
structures of the OS.

Dependencies: The target hardware must support privileged/non-privileged modes and a
MPU for this protection to be possible. This feature will therefore not be
available on those targets that do not provide sufficient hardware support.

Supporting Material: --

⌋(RS_BRF_01232)

4.5.4.4 [SRS_Os_11012] The OS shall provide scalability for its protection
features

⌈
Type: Valid

Description: The OS shall provide scalability for its protection features.

Rationale: Take full advantage of the processor's hardware features: The key protection
features may not be available on all hardware (e.g. some types of memory
protection are not possible when the processor has no MPU), but this should
not prevent users for using the other protection features that can be
supported.
Customize to specific user's needs: Protection may only be necessary
around some applications (ones where we cannot be sure of their run-time
behavior) and protection can be applied selectively based on assessment of
the risk of failure.

Use Case: Implementing an AUTOSAR compliant OS on a microcontroller without
hardware memory protection.
Where an ECU is engineered using a process that can statically guarantee
that no protection violations will occur at runtime it does not need to dedicate
resources to check for violations. For example, if worst-case execution times
are statically analyzed then timing protection is not needed at runtime.
Furthermore, because the analysis shows that the conditions that trigger
execution of the code will never occur, the code is “dead code” and should
be removed because of the potential safety risk it brings.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01232)

4.5.5 Protection Errors

The OS must be able to identify when an error that violates the protection schemes
has occurred and must also provide facilities through which action can be taken to
correct the fault. However, it is not the task of the OS to define the error handling
scheme.

4.5.5.1 [SRS_Os_11013] The OS shall be capable of notifying the occurrence
of a protection error at runtime

⌈
Type: Valid

Description: The OS shall be capable of notifying the occurrence of a protection error at
runtime.
A protection error is any memory access violation, timing fault, unauthorized
call to OS service or software trap (for example division by zero, illegal

Requirements on Operating System
AUTOSAR Release 4.2.1

22 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

instruction).

Rationale: If protection errors are notified at runtime this provides scope to potentially
correct or handle the error according to a predefined fault handling strategy.

Use Case: The application needs to provide some kind of runtime fault tolerance that
needs to take action on the type and/or number of errors that occur to
improve availability at runtime.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01232)

4.5.5.2 [SRS_Os_11014] In case of a protection error, the OS shall provide an
action for recovery on OS-, OS-Application and task/ISR-level

⌈
Type: Valid

Description: In case of a protection error, the OS shall provide an action for recovery on
OS-, OS-Application and task/ISR-level. The user shall be able to select the
action.

Rationale: The action taken on the occurrence of an error is a function of the failure
modes of the system as a whole. For example, in some cases it will be
appropriate to simply terminate the faulty task, in others this may pose more
of a risk to safety than allowing it to continue to execute.
Therefore, the decision which action is appropriate is up to the application.

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01248)

Requirements on Operating System
AUTOSAR Release 4.2.1

23 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4.6 Timer Services

4.6.1 Functional Overview

Timer Services provide software timers for use in application and basic software.

The core of a timing mechanism is already provided by the counters and alarms in
OSEK OS. Introducing an almost identical mechanism, in the form of Timer Services,
is therefore unnecessary.

However, to provide general purpose software timing a few supplementary features
need to be added to AUTOSAR OS. These are described in SRS_Os_11020 and
SRS_Os_11021.

4.6.2 Functional Requirements

4.6.2.1 [SRS_Os_11020] The OS shall provide a standard interface to tick a
software counter

⌈
Type: Valid

Description: The OS shall provide a standard interface to tick a software counter.

Rationale: OSEK OS does not define the interface between counters and alarms. This
creates a problem when porting applications between different vendors’
implementations. Defining this interface in AUTOSAR OS removes this
portability problem.

Use Case: --

Dependencies: --

Supporting Material: --

⌋()

4.6.2.2 [SRS_Os_11021] The OS shall provide a mechanism to cascade
multiple software counters from a single hardware counter.

⌈
Type: Valid

Description: The OS shall provide a mechanism to cascade multiple software counters
from a single hardware counter.

Rationale: If counters with different resolutions are required it may not be possible (e.g.
because of limited hardware timers) or desirable (e.g. because of interrupt
interference) to use multiple hardware timer sources. In many cases a lower
resolution software counter can be driven from a higher resolution counter by
ticking the lower resolution counter from the higher resolution counter.

Use Case: Drive a 1ms software counter by a 1ms timer interrupt and a 100ms counter
from the 1ms counter.

Dependencies: This requirement implies that an implementation must support more than
one counter (otherwise cascading would not be possible). Specification of
the lower limit on the number of counters that must be supported by an
implementation is provided in the AUTOSAR OS SWS.

Supporting Material: --

⌋()

Requirements on Operating System
AUTOSAR Release 4.2.1

24 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4.7 Scalability

4.7.1 Functional Overview

For a particular application, the operating system can be configured such that it only
comprises the services required for this application. Thus the resource requirements
of the operating system are as small as possible.

Scalability for the core OS is provided by OSEK OS’s conformance classes.
Scalability with regard to AUTOSAR OS features is defined here.

4.7.2 Functional Requirements

4.7.2.1 [SRS_Os_11016] The OS implementation shall offer scalability which
is configurable by a generation tool

⌈
Type: Valid

Description: The OS shall provide the following configurations with at least the specified
features (additional features may be included):
Class1 : OSEK OS + Planned Schedules
Class2 : Class1 + Timing Protection
Class3 : Class1 + Memory Protection
Class4 : Class1+ Class2 + Class3

Rationale: Hardware support is required for Classes 3 and 4. Mandating this
functionality would prevent AUTOSAR OS from being implemented on many
commonly used microcontrollers.
Implementations may choose different strategies for implementation, with a
corresponding increase in performance, if some features are not required.

Use Case: --

Dependencies: SRS_Os_11012

Supporting Material: --

⌋(RS_BRF_01232)

Requirements on Operating System
AUTOSAR Release 4.2.1

25 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4.8 Application Error Handling

4.8.1 Functional Overview

Some errors affecting an application may not lead to protection violations that are
detectable by the OS but nevertheless result in an application entering a state where
it cannot itself recover and continue executing. The detection of such errors is the
responsibility of the application itself, but recovery from such errors requires
interaction with the threads of control managed by the OS. The OS therefore needs
to provide a mechanism upon which applications can build internal recovery
mechanisms.

The core OSEK OS provides some support: tasks can detect internal errors and
terminate themselves; the system can use the alarm mechanism to program
timeouts, implement threshold-based error detection; internal errors can be detected
and the system can be shut down etc. However, the core OS does not provide the
means to implement error recovery for logical applications that are defined by OS-
Applications (see SRS_Os_11001).

This section introduces requirements to provide a framework of application-level and
system-level control of OS-Applications.

4.8.2 Functional Requirements

4.8.2.1 [SRS_Os_11022] The OS shall provide a mechanism to terminate OS-
Application

⌈
Type: Valid

Description: The OS shall provide a mechanism by which an OS-Application can be
terminated as a single unit and all resources held by the OS-Application and
managed by the OS are released.
Termination shall prevent any task owned by the OS-Application from
running and any interrupt handled by an ISR owned by the OS-Application
from occuring.

Rationale: Error handling for AUTOSAR software components requires that the OS can
terminate an OS-Application.
When an application comprises multiple tasks/ISRs it is not possible in the
core OS to stop the application atomically unless the OS itself is shut down.
Shutdown is not practical when there are other OS-Applications for which
termination is not required.
Therefore, the OS must provide a mechanism to terminate an OS-
Application that does not affect other OS-Applications.

Use Case: Error recovery in an OS-Application in response to the detection of an
internal error.

Dependencies: SRS_Os_11023

Supporting Material: --

⌋(RS_BRF_01248)

Requirements on Operating System
AUTOSAR Release 4.2.1

26 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4.8.2.2 [SRS_Os_11023] The OS shall provide a mechanism by which a
terminated OS-Application can be restarted

⌈
Type: Valid

Description: The OS shall provide a mechanism by which a terminated OS-Application
can be restarted.

Rationale: Error handling for AUTOSAR software components requires that the OS can
restart a terminated OS-Application in a controlled way so that the internal
state of the software component can be re-initialized.

Use Case: Error recovery in OS-Application in response to the detection of an internal
error.

Dependencies: SRS_Os_11022

Supporting Material: --

⌋(RS_BRF_01248)

Requirements on Operating System
AUTOSAR Release 4.2.1

27 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4.9 General Multi-Core issues

4.9.1 Overview

The requirements in this section are very general. They define the spirit of the Multi-
Core (MC) capability that will be supported by the AUTOSAR environment. From an
architectural point of view, Multi-Core hardware can be managed in various different
ways. On the one extreme, cores might be understood as almost separate ECU, on
the other extreme, they can be presented to the user almost like a Single-Core (SC)
system with the capability of true parallelism.
In automotive systems the requirements on the MC support is very domain specific.
Efficient scheduling, low resource consumption and short response time are
essential.
The requirements are designed in a way that the introduction of Multi-Core does not
change the overall AUTOSAR philosophy.
The MC concept allows to handle several cores almost like a SC system, but gives
freedom to use cores outside this concept, e.g. as a dedicated I/O controller.
Requirements

4.9.2 Functional Requirements

4.9.2.1 [SRS_Os_80001] The OS shall be able to manage multiple closely
coupled CPU Cores

⌈
Type: valid

Description: The OS shall be able to manage multiple closely coupled CPU Cores.
That does not imply that all cores on a µC are controlled by the OS.

Rationale: Reasons to provide a solution with one OS that controls multiple cores are:

 Enables efficient parallelization of functions.

 Upward and downward scalability in number of cores.

 Allows the restriction of the AUTOSAR Multi-Core extensions to a
subset of available cores to run other OS instances on uncontrolled
cores.

Use Case:  Applications (e.g. signal processing applications) with the need to
achieve high performance computing via algorithm parallelization.

 Multi core systems with common BSW.

 Applications that grow beyond the boundary of the given number of
cores (e.g. one) can easily utilize a higher number of cores (upward
scalability).

 Applications designed for multiple cores can be stripped down (e.g.
for low cost systems) to fewer (e.g. one) cores (downward
scalability).

 Migration of engine control systems to Multi-Core.

 Integration of formerly separated applications into one Multi-Core
ECU.

Dependencies: SRS_Os_80008

Supporting Material:

⌋(RS_BRF_00206)

Requirements on Operating System
AUTOSAR Release 4.2.1

28 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4.9.2.2 [SRS_Os_80003] The multi core extension shall provide the same

degree of predictability as the single core⌈
Type: valid

Description: The multi core extension shall provide the same degree of predictability as
the single core. This covers deadlock free execution and freedom from
unbounded blocking.

Rationale: Real-time capability is a key requirement of the automotive domain.
The existing SC solution is designed in a way that their usage cannot cause
unbounded blocking and guarantees deadlock free execution. The MC
solution shall behave in a similar manner.

Use Case: --

Dependencies: SRS_Os_80005

Supporting Material: --

⌋(RS_BRF_00206)

4.9.3 Additional description of the term “One AUTOSAR system controlling
multiple cores”

When talking about an AUTOSAR system that is controlling multiple cores as in
[SRS_Os_80001] several implications are made:

 The system shall be aware of the existence of multiple cores.

 The system shall be responsible for the scheduling of tasks on multiple cores.

 Parts of the system code shall be able to run concurrently (e.g. by using
reentrant code).

 'All BSW IDs (e.g. IDs of tasks, events, alarms, …) shall be unique across
cores.

 It shall be allowed to access shared objects (e.g. data, peripheral units, …)
from any core, unless restricted by protection mechanisms.

4.9.4 Additional description of the term “unbounded blocking”

Blocking is a situation where a high priority runtime object can not execute because a
low priority runtime object prevents this (e.g. by occupying a needed resource).
Unintentional blocking might be caused by priority inversion.

The term unbounded blocking means that the potential blocking duration is not
limited and therefore the required real-time behaviour cannot be guaranteed.

Requirements on Operating System
AUTOSAR Release 4.2.1

29 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4.10 Assignment of runtime objects to cores

4.10.1 Overview

One major question when defining a Multi-Core system is whether runtime objects
(tasks and ISR) can change between cores dynamically or not.
The ability to dynamically assign runtime objects to different cores would have a
massive impact on all efficiency aspects (code size / data size / speed / response
time / real time capability) of a system.

It is conceivable to bind OsApplications to cores or to define the core binding on the
level of TASKS and ISRs. To minimize the impact and complexity of the Multi-Core
support within AUTOSAR it was decided to define the core binding the level of
OsApplications.

This section defines requirements, that state core binding as the way to handle
runtime objects within a MC AUTOSAR environment.

4.10.2 Requirements

4.10.2.1 [SRS_Os_80005] OsApplications and as a result TASKS and OsISRs
shall be assigned statically to cores

⌈
Type: Valid

Description: OsApplications and as a result TASKS and OsISRs shall be assigned
statically to cores.

Rationale:  If TASKS or OsISRs can change the core during runtime, the real-
time capability might be violated.

 If tasks of a single OsApplication can be bound to different cores the
shutdown of an OsApplication becomes hard. Validmechanisms
would be required.

 To fulfill requirement [BSW00009] and [BSW00010] it shall be
possible to access EVENTS and TASKS of different OsApplications.

 In case of Multi-Core OSApplications shall be used irrespective of
the scalability class. (see AUTOSAR_SWS_OS).

Use Case: --

Dependencies: OS specification; SRS_Os_80003, SRS_Os_80015, SRS_Os_80016

Supporting Material: AUTOSAR_SWS_OS

⌋(RS_BRF_00206)

Requirements on Operating System
AUTOSAR Release 4.2.1

30 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4.11 Startup of Multi-Core systems

4.11.1 Overview

This section contains some high-level requirements on the start-up.

Depending on the used microcontroller, the start-up or reset behavior of the
microcontrollers can differ. The most common behavior after a reset is as follows:

 Only a so-called master core starts to execute while all other cores (slave
cores) remain in halt state. The slave cores need to be started by the master
core.

 A different approach is conceivable with all cores starting to execute
concurrently after a reset. A master core does not exist in this case.

The wakeup mechanism and bootstrap requirements vary across different
microcontrollers and microcontroller derivates.

The progress in the start-up code on the different cores is not reproducible; this is
because the length of time for load and store operations depends on bus arbitration
and other very timing sensitive effects of the HW. Therefore the boot code must be
designed in a way that it does not rely on the knowledge of the boot progress on
other core(s). It is required to synchronize the different cores during start-up.

4.11.2 Requirements

4.11.2.1 [SRS_Os_80026] It shall be possible to start any of the cores in a
multi core system

⌈
Type: valid

Description: It shall be possible to start any of the cores in a multi core system.

Rationale: If cores can not be activated the flexibility is very low.

Use Case: Boot strapping of a MC system.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01256)

4.11.2.2 [SRS_Os_80027] It shall be possible to initialize any of the cores in a
multi core system

⌈
Type: valid

Description: It shall be possible to initialize any of the cores in a multi core system which
are configured to run an AUTOSAR system.

Rationale: --

Use Case: Boot strapping of a MC system.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01256)

Requirements on Operating System
AUTOSAR Release 4.2.1

31 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4.11.2.3 [SRS_Os_80006] Initialization/Start-up of the system shall be
synchronized

⌈
Type: valid

Description: Initialization/Start-up of the system shall be synchronized.

Rationale: To support a wide spectrum of hardware it is necessary to synchronize the
software of the different cores at certain points. Otherwise one cannot rely
on the state of the other core. (While one core already executes a task, the
other is still in the initialization phase.)

Use Case: Boot strapping of a MC system.

Dependencies:  OS specification

 ECU State Manager

 HW

 Applies to NonAUTOSAR cores and AUTOSAR cores.

Supporting Material: --

⌋(RS_BRF_00206)

4.12 Shutdown of Multi-Core systems

4.12.1 Overview

Similar to the startup, the shutdown behavior of a Multi-Core system is different from
the behavior of a Single-Core system.

If a run time object with the proper rights calls “ShutdownOS”, the whole system (all

cores controlled by the MC-OS) have to shut down. Once the shutdown procedure
has been started, validtasks cannot be activated. It is in the responsibility of the
developer/system integrator to make sure that any preparations for shutdown on

application and basic software level are completed before calling “ShutdownOS”.

4.12.2 Requirements

4.12.2.1 [SRS_Os_80007] Shutdown procedure shall be triggered by any core

⌈
Type: valid

Description: The shutdown procedure can be triggered from any core.

Rationale: In case of an error, the related handler may require system shutdown. This
must be possible by any core.

Use Case: Protection hook returns PRO_SHUTDOWN

Dependencies: OS specification

Supporting Material: --

⌋(RS_BRF_00206)

Requirements on Operating System
AUTOSAR Release 4.2.1

32 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4.13 Configuration of Multi-Core systems

4.13.1 Overview

This section contains high-level requirements on the system configuration with
respect to Multi-Core.

4.13.2 Requirements

4.13.2.1 [SRS_Os_80008] It shall be a common OS configuration across

multiple cores ⌈
Type: valid

Description: Disjunctive object IDs have to be generated, if objects are to be addressed
across cores.

Rationale: If, e.g. tasks are activated across cores, IDs have to be unique across cores.
This results in a common configuration and affects flashing/programming
strategies.

Use Case: Activating tasks or setting events across cores

Dependencies: OS specification
SRS_Os_80001
SRS_Os_80015
SRS_Os_80016

Supporting Material: Multi-Core Concept document

⌋(RS_BRF_00206)

4.13.2.2 [SRS_Os_80011] The number of cores that the operating system
manages shall be configurable offline

⌈
Type: valid

Description: The number of cores that the operating system manages shall be
configurable offline.

Rationale: The operating system specification shall not be limited to a certain number of
cores.

Use Case: Use of the operating system in projects with different numbers of cores.

Dependencies:  Configuration specification (e.g. System template)

 Boot procedure (e.g. ECU State manager)

Supporting Material: --

⌋(RS_BRF_00206)

4.14 Services in Multi-Core systems

4.14.1 Overview

The following chapter defines a set of mechanisms / services that allow optimal
usage of a Multi-Core environment. The services might be provided by different
AUTOSAR BSW modules. The AUTOSAR_SWS_Multi-Core defines from which
module which service can be accessed.

Requirements on Operating System
AUTOSAR Release 4.2.1

33 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4.14.2 Requirements

4.14.2.1 [SRS_Os_80013] The behaviour of services shall be identical to
single core systems

⌈
Type: Valid

Description: The behaviour of services (e.g. task activation) should be identical to single
core systems when the originating and the manipulated object (e.g. a task)
reside on the same core.

Rationale: Known services for SC systems should behave identically on a MC system
when used locally, i.e. without crossing core boundaries.

Use Case: --

Dependencies: OS Specification, BSW Specifications

Supporting Material:

⌋(RS_BRF_00206)

4.14.2.2 [SRS_Os_80015] The MC extensions shall provide a mechanism to
activate tasks on different cores

⌈
Type: Valid

Description: The MC extensions shall provide a mechanism to activate tasks on different
cores, in different OsApplications.

Rationale: The offline relocation of tasks between cores in different projects (e.g. low
cost and high-end vehicles) shall be possible without reprogramming all task
activations. Moreover, it shall be possible for the system integrator to assign
sub-functionality to a core with free processing power.

Use Case: Usage of third-party SW delivered as object code.

Dependencies: OS Specification

Supporting Material: --

⌋(RS_BRF_00206)

4.14.2.3 [SRS_Os_80016] Event mechanism shall work across cores ⌈
Type: Valid

Description: The MC extensions shall provide a mechanism to send an event to a task on
a different core, in different OsApplications

Rationale: If events are used and a task is moved to a different core (offline), it shall still
be possible to use events.

Use Case: Monitoring/safety concept.

Dependencies: OS specification

Supporting Material:

⌋(RS_BRF_00206)

4.14.2.4 [SRS_Os_80018] A method to synchronize tasks on more than one

core shall be provided⌈
Type: Valid

Description: A method to synchronize tasks on more than one core shall be provided.

Rationale: Necessity to synchronize tasks across cores in time. This can be done by
several means, e.g. alarms activating tasks across cores, by synchronizing
counters or by using shared hardware timers.

Use Case: Synchronized applications

Requirements on Operating System
AUTOSAR Release 4.2.1

34 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

Dependencies: OS specification

Supporting Material: --

⌋(RS_BRF_00206)

4.14.2.5 [SRS_Os_80020] A data exchange mechanism shall be provided⌈

Type: Valid

Description: A data exchange mechanism shall be provided that guaranties data
consistency independent from the HW

Rationale: To minimize the HW dependency of the RTE a exchange mechanism is
required that can be used by the RTE.

Use Case: Data exchange in a MC system.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01240)

4.14.2.6 [SRS_Os_80021] The MC extension of the AUTOSAR environment
shall support a mutual exclusion mechanism between cores that
shall not cause deadlocks

⌈

⌋(RS_BRF_01264)

4.14.2.7 [SRS_Os_80022] In case no task is going to be scheduled on a
specific core, the OS shall execute a user selectable operation

⌈

Type: Valid

Description: The MC extension of the AUTOSAR environment shall support a mutual
exclusion mechanism between cores that shall not cause deadlocks, if
configured and used properly.
The mechanism shall be usable from task and ISR level.

Rationale: In a MC system, a mutual exclusion mechanism is needed, to synchronize
different cores. This mutual exclusion mechanism shall support the user to
prevent from building deadlocks.

Use Case: Concurrent access to shared resources

Dependencies:  OS specification

 HW support required

Supporting Material: --

Requirements on Operating System
AUTOSAR Release 4.2.1

35 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

⌋(RS_BRF_01184)

4.14.2.8 [SRS_Os_80023] The OS shall execute an operation which can be
selected at runtime, in case no task is going to be scheduled on a
specific core

⌈

⌋(RS_BRF_01184)

Type: Valid

Description: In case no task is going to be scheduled on a specific core, the OS shall
execute a user selectable operation.

Rationale: In order to set a core in a low power mode independently from the others, an
indirect approach is used. Instead of explicitly requesting a core to HALT, a
mechanism similar to the rubber band principle implemented in some
modules such as ECUM is considered: the core remains in normal mode as
long as its activity is required by some task allocated on it and is halted as
soon as no task is in RUNNING or READY state. The core can be woken up
by a SW interrupt (managed by OS) or by a HW interrupt.

Use Case: Reduction of energy consumption by setting unused cores temporarily in a
power saving mode

Dependencies:  OS specification

 HW support required

Supporting Material: --

Type: Valid

Description: The OS shall execute an operation which can be selected at runtime, in case
no task is going to be scheduled on a specific core

Rationale: OS shall offer different options as for the actions to be taken when the
conditions at SRS_Os_80022 are met. It shall be possible to define different
actions, ranging from the predefined NO_HALT mode (no action taken, the
core is left to run) to a number of OS and HW specific options, defined by the
OS-vendor, which set the core in a HALT state.

Use Case: Reduction of energy consumption by setting unused cores temporarily in a
power saving mode

Dependencies:  OS specification

 HW support required

Supporting Material: --

Requirements on Operating System
AUTOSAR Release 4.2.1

36 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

5 References

5.1 Deliverables of AUTOSAR

[AUTOSAR_GLOSSARY] Glossary,
AUTOSAR_TR_Glossary.pdf

[DOC_LAYERED_ARCH] Layered Software Architecture,
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[DOC_VFB] Virtual Function Bus,
AUTOSAR_EXP_VFB.pdf

[DOC_WP112_REQ] General Requirements on Basic Software Modules,
AUTOSAR_SRS_BSWGeneral.pdf

[TPS_STDT_0078] Software Standardization Template
AUTOSAR_TPS_StandardizationTemplate.pdf

5.2 Related standards and norms

5.2.1 OSEK

[STD_OSEK_OS] OSEK/VDX Operating System, Version 2.2.3,
http://www.osek-vdx.org/mirror/os223.pdf

[STD_OSEK_OIL] OSEK / VDX Implementation Language (OIL) V2.5,
OSEK Implementation Language,
http://www.osek-vdx.org/mirror/oil25.pdf

[STD_OSEK_TTOS] OSEK/VDX Time-Triggered Operating System, Version 1.0,
July 24, 2001
http://www.osek-vdx.org/mirror/ttos10.pdf

[STD_OSEK_ORTI] OSEK/VDX ORTI (OSEK RunTime Interface) Part A Version
2.1.1, Part B Version 2.1
http://www.osek-vdx.org/mirror/ORTI-A-211.pdf

5.2.2 HIS

[STD_HIS_PROTECTED_OS_REQ] Requirements for Protected Applications under
OSEK, Version 1, 25.09.2002
http://www.automotive-his.de/download/HIS Protected OS.pdf

[STD_HIS_PROTECTED_OS] Requirements for Protected Applications under
OSEK, Version 1.0, July 27, 2003.
http://www.automotive-his.de/download/HIS_ProtectedOSEK10.pdf

Requirements on Operating System
AUTOSAR Release 4.2.1

37 of 37 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

5.2.3 Company Reports, Academic Work, etc

[REP_DC_PROTECTED_OS] Extensions of OSEK OS for Protected Applications,
OSEK Support Project, DC058_02, Daimler-Chrysler AG

	1 Scope of this document
	2 How to Read this Document
	2.1 Conventions to be used
	2.2 Acronyms and abbreviations

	3 Requirements Guidelines
	3.1 Requirements quality
	3.2 Requirements identification
	3.3 Requirements status

	4 Requirement Specification
	4.1 Traceability
	4.2 Real-Time Operating System
	4.2.1 Functional description
	4.2.2 Core Operating System requirements
	4.2.2.1 [SRS_Os_00097] The OS shall provide an API that is backward compatible to the API of OSEK OS
	4.2.2.2 [SRS_Os_11001] The OS shall provide partitions which allow for fault isolation and fault recovery capabilities
	4.2.2.3 [SRS_Os_11018] The OS shall provide interrupt mask functions
	4.2.2.4 [SRS_Os_11019] The AUTOSAR OS generation tool shall create the interrupt vector table

	4.3 Statically Defined Scheduling
	4.3.1 Functional Overview
	4.3.2 Requirements
	4.3.2.1 [SRS_Os_00098] The Operating System shall provide statically configurable schedule tables based on time tables as an optional service
	4.3.2.2 [SRS_Os_00099] The Operating System shall provide a mechanism which allows switching between different schedule tables
	4.3.2.3 [SRS_Os_11002] The operating system shall provide the ability to synchronize the processing of schedule tables with a global system time base

	4.4 Monitoring Facilities
	4.4.1 Functional Overview
	4.4.2 Requirements
	4.4.2.1 [SRS_Os_11003] The operating system shall be able to monitor stack usage and check for a stack overflow on a per executable object basis

	4.5 Protection Facilities
	4.5.1 Functional Overview
	4.5.2 Memory Protection requirements
	4.5.2.1 [SRS_Os_11005] The operating system shall prevent an OS-Application from modifying the memory of other OS-Applications
	4.5.2.2 [SRS_Os_11006] The operating system shall allow tasks and ISRs within an OS-Application to exchange data
	4.5.2.3 [SRS_Os_11007] The operating system shall allow OS-Applications to execute shared code
	4.5.2.4 [SRS_Os_11000] The OS may offer support to protect the memory sections of an OS-Application against read accesses by all other OS-Applications

	4.5.3 Timing Protection requirements
	4.5.3.1 [SRS_Os_11008] The OS shall not allow a timing fault in any OS-Application to propagate

	4.5.4 Service Protection requirements
	4.5.4.1 [SRS_Os_11009] The operating system shall prevent the corruption of the OS by any call of a system service
	4.5.4.2 [SRS_Os_11010] The operating system shall prevent an OS-Application modifying OS objects that are not owned by that OS-Application
	4.5.4.3 [SRS_Os_11011] The OS shall protect itself against OS-Applications attempting to modify control registers directly which are managed by the OS
	4.5.4.4 [SRS_Os_11012] The OS shall provide scalability for its protection features

	4.5.5 Protection Errors
	4.5.5.1 [SRS_Os_11013] The OS shall be capable of notifying the occurrence of a protection error at runtime
	4.5.5.2 [SRS_Os_11014] In case of a protection error, the OS shall provide an action for recovery on OS-, OS-Application and task/ISR-level

	4.6 Timer Services
	4.6.1 Functional Overview
	4.6.2 Functional Requirements
	4.6.2.1 [SRS_Os_11020] The OS shall provide a standard interface to tick a software counter
	4.6.2.2 [SRS_Os_11021] The OS shall provide a mechanism to cascade multiple software counters from a single hardware counter.

	4.7 Scalability
	4.7.1 Functional Overview
	4.7.2 Functional Requirements
	4.7.2.1 [SRS_Os_11016] The OS implementation shall offer scalability which is configurable by a generation tool

	4.8 Application Error Handling
	4.8.1 Functional Overview
	4.8.2 Functional Requirements
	4.8.2.1 [SRS_Os_11022] The OS shall provide a mechanism to terminate OS-Application
	4.8.2.2 [SRS_Os_11023] The OS shall provide a mechanism by which a terminated OS-Application can be restarted

	4.9 General Multi-Core issues
	4.9.1 Overview
	4.9.2 Functional Requirements
	4.9.2.1 [SRS_Os_80001] The OS shall be able to manage multiple closely coupled CPU Cores
	4.9.2.2 [SRS_Os_80003] The multi core extension shall provide the same degree of predictability as the single core

	4.9.3 Additional description of the term “One AUTOSAR system controlling multiple cores”
	4.9.4 Additional description of the term “unbounded blocking”

	4.10 Assignment of runtime objects to cores
	4.10.1 Overview
	4.10.2 Requirements
	4.10.2.1 [SRS_Os_80005] OsApplications and as a result TASKS and OsISRs shall be assigned statically to cores

	4.11 Startup of Multi-Core systems
	4.11.1 Overview
	4.11.2 Requirements
	4.11.2.1 [SRS_Os_80026] It shall be possible to start any of the cores in a multi core system
	4.11.2.2 [SRS_Os_80027] It shall be possible to initialize any of the cores in a multi core system
	4.11.2.3 [SRS_Os_80006] Initialization/Start-up of the system shall be synchronized

	4.12 Shutdown of Multi-Core systems
	4.12.1 Overview
	4.12.2 Requirements
	4.12.2.1 [SRS_Os_80007] Shutdown procedure shall be triggered by any core

	4.13 Configuration of Multi-Core systems
	4.13.1 Overview
	4.13.2 Requirements
	4.13.2.1 [SRS_Os_80008] It shall be a common OS configuration across multiple cores
	4.13.2.2 [SRS_Os_80011] The number of cores that the operating system manages shall be configurable offline

	4.14 Services in Multi-Core systems
	4.14.1 Overview
	4.14.2 Requirements
	4.14.2.1 [SRS_Os_80013] The behaviour of services shall be identical to single core systems
	4.14.2.2 [SRS_Os_80015] The MC extensions shall provide a mechanism to activate tasks on different cores
	4.14.2.3 [SRS_Os_80016] Event mechanism shall work across cores
	4.14.2.4 [SRS_Os_80018] A method to synchronize tasks on more than one core shall be provided
	4.14.2.5 [SRS_Os_80020] A data exchange mechanism shall be provided
	4.14.2.6 [SRS_Os_80021] The MC extension of the AUTOSAR environment shall support a mutual exclusion mechanism between cores that shall not cause deadlocks
	4.14.2.7 [SRS_Os_80022] In case no task is going to be scheduled on a specific core, the OS shall execute a user selectable operation
	4.14.2.8 [SRS_Os_80023] The OS shall execute an operation which can be selected at runtime, in case no task is going to be scheduled on a specific core

	5 References
	5.1 Deliverables of AUTOSAR
	5.2 Related standards and norms
	5.2.1 OSEK
	5.2.2 HIS
	5.2.3 Company Reports, Academic Work, etc

