AUTOSAR

Requirements on Memory Hardware
Abstraction Layer
AUTOSAR Release 4.2.2

Document Title Requirements on Memory
Hardware Abstraction Layer

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 116

Document Classification Auxiliary

Document Status Final

Part of AUTOSAR Release 4.2.2

Document Change History

Release |Changed by Change Description

4.2.2 |AUTOSAR e Requirements linked to BSW features
Release
Management

4.2.1 |AUTOSAR e Requirements linked to BSW features
Release
Management

4.1.2 |AUTOSAR ¢ Editorial changes
Release
Management

4.1.1 |AUTOSAR o formal rework for requirements tracing
Administration e requirements reworked according to

TPS_STDT_00078
e requirements linked to BSW & RTE features

3.1.4 |AUTOSAR e Legal disclaimer revised
Administration

3.1.1 |AUTOSAR e Legal disclaimer revised
Administration

3.0.1 |AUTOSAR e Document meta information extended
Administration e Small layout adaptations made

2.1.15 |AUTOSAR e “Advice for users” revised
Administration e “Revision Information” added

2.1 AUTOSAR e Legal disclaimer revised
Administration
2.0 AUTOSAR e Initial release

Administration

10of 25

Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

AUT@SAR Requirements on Memory Hardware

Abstraction Layer
AUTOSAR Release 4.2.2

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only. For any other purpose, no part of
the specification may be utilized or reproduced, in any form or by any means, without
permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference
models, "use cases", and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their
presence in such specifications, nor any later documentation of AUTOSAR
conformance of products actually implementing such exemplary items, imply that
intellectual property rights covering such exemplary items are licensed under the
same rules as applicable to the AUTOSAR Standard.

2 of 25 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

AUT@SAR Requirements on Memory Hardware

Abstraction Layer
AUTOSAR Release 4.2.2

Table of Content

S Yoo o =T) I To Yot U o 0= o | RSt 6
2 How to read thiS dOCUMENT.......coiiiiiiiiieiice e 8
2.1 CONVENLIONS USEA....cciiiieiiiieeee e 8
2.2 ReqUIrEMENLS StIUCIUIEcooeiieeeeeeee e 9

3 Acronyms and abbreVviationSccoovvuuiiiiiiii e 10
4 FUNCLONAI OVEIVIEW ...ttt e e e e e e s e e e e e e e eeeeannnnnes 11
4.1 EEPROM ADBSraction LaYer.........cccciieieeiiiiiiiiiiii e 11
4.2 Flash EEPROM EMUIAtIONcccvviiiiiiee e 11
4.3 Memory Abstraction INterfaceoevvvviiiiiiiii e 11

5 Requirements SPECIfICAIONuuuuuuiiiiiiiiiiiiiiiiiiiii e 12
5.1 Functional REQUIFEMENLScooimiiiiiii i 12
5.1.1 Memory Abstraction MOdUIES ... 12
5.1.1.1 CoNfigUuIatioNoooeeeiiiiiiiiee e 12

5.1.1.1.1 [SRS_MemHwAb_14001] The FEE and EA modules shall allow
the configuration of the alignment of the start and end addresses of logical

blocks 12

5.1.1.1.2 [SRS_MemHwAb 14002] The FEE and EA modules shall allow
the configuration of a required number of write cycles for each logical block

12
5.1.1.1.3 [SRS_MemHwAb_14026] The block numbers 0x0000 and
OXFFFF shall NOt e USEM.........uuuiiiiiiiiiiiiiiiiiiiiiiii e 13
5.1.1.2 INIAHZALIONeuiiie e e e e 13
5.1.1.3 Normal OPerationuuuuiiiiiieeiieieiies e 13
5.1.1.3.1 [SRS_MemHwAb_14005] The FEE and EA modules shall
provide upper layers with a virtual 32bit address space............cccccevvvvvnnnnn. 13
5.1.1.3.2 [SRS_MemHwAb_14006] The start address for a block erase or
write operation shall always be aligned to the virtual 64K boundary 14
5.1.1.3.3 [SRS_MemHwAb_14007] The start address and length for
reading a block shall not be limited to a certain alignment......................... 14

5.1.1.3.4 [SRS_MemHwAb_ 14009] The FEE and EA modules shall
provide a conversion between the logical linear addresses and the physical
AL a1 Y=o [0 | €TSS N 15
5.1.1.3.5 [SRS_MemHwAb 14010] The FEE and EA modules shall
provide a write service that operates only on complete configured logical
blocks 15

5.1.1.3.6 [SRS_MemHwAb_ 14029] The FEE and EA modules shall
provide a read service that allows reading all or part of a logical block...... 16
5.1.1.3.7 [SRS_MemHwAb_14031] The FEE and EA modules shall
provide a service that allows canceling an ongoing asynchronous operation

16
5.1.1.3.8 [SRS_MemHwAb_ 14028] The FEE and EA modules shall
provide a service to invalidate a logical blocK...............cccuviiiiiiiiiiiiiiiiiiiiis 16
5.1.1.3.9 [SRS_MemHwAb_ 14012] Spreading of write access 17
3 0of 25 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

AUT@SAR Requirements on Memory Hardware

Abstraction Layer
AUTOSAR Release 4.2.2

5.1.1.3.10 [SRS_MemHwAb_ 14013] Writing of immediate data shall not be
delayed by internal management operations nor by erasing the memory
Area t0 DE WITHEEN 10 .. .uuuiiiiiiiiiii bbb annaee 17
5.1.1.3.11 [SRS_MemHwAb_14032] The FEE and EA modules shall
provide an erase service that operates only on complete logical blocks

containing iIMmediate dataccccouuemimiiiiiiii e 18
5.1.1.4 Shutdown OPEration...........ccceeeeeeeiiieiiiiiiiee e e e e e e e e e e eeeaan 19
5.1.1.5 FaAUIt OPEIratiON.........uuuuruuriiiiiiiiiiiiiiiiitiiiiaeeeiiieeeeeeee e 19

5.1.1.5.1 [SRS_MemHwAb 14014] The FEE and EA modules shall detect
possible data inconsistencies due to aborted / interrupted write operations19
5.1.1.5.2 [SRS_MemHwADb 14015] The FEE and EA modules shall report

possible data INCONSISIENCIESuuuuuiiiiiiiiiiiiiiiiii e 19
5.1.1.5.3 [SRS_MemHwAb 14016] The FEE and EA modules shall not
return inconsistent data to the caller...............ceiiiiiiiiccec e, 20
5.1.2 Memory Abstraction Interfaceccccvvviiiiii e, 20
5.1.2.1 GENEIAL..cciiiiiiiiie et 20

5.1.2.1.1 [SRS_MemHwAb 14019] The Memory Abstraction Interface
shall provide uniform access to the API services of the underlying memory
ADSLraction MOTUIESuuiiiiiiiiiii e eannnee 20
5.1.2.1.2 [SRS_MemHwADb_14020] The Memory Abstraction Interface
shall allow the selection of an underlying memory abstraction module by
USING & AEVICE INUEX . ..uuttiiiiiiiiiiiiiiiiiiiiiibe bbb eeinnnee 21

5.1.2.2 CoNfIQUIAtIONuuiii i e e 21
5.1.2.2.1 [SRS_MemHwADb_ 14021] The Memory Abstraction Interface
shall allow the pre-compile time configuration of the number of underlying
memory abstraction MOAUIESuuuuuiiiiiiiiiiiiiiiiiiiii s 21

5.1.2.3 Normal OPerationuuuuiiiiiieeeiieeiies e e 21
5.1.2.3.1 [SRS_MemHwADb_ 14022] The Memory Abstraction Interface
shall preserve the functionality of the underlying memory abstraction module

21

5.1.2.4 Fault OPEration.........cccovvuiuiiiiiieeeeeeeeeeie e e e 22
5.1.2.4.1 [SRS_MemHwADb_ 14023] The Memory Abstraction Interface
shall only check those parameters that are used within the interface itself 22

5.1.3 Onboard Device ADSLractioncooeevuueiiiiiiieeeiieecie e 22
5.2 Non-Functional Requirements (QualitieS)ccccceeeeeiiiiiiiiiiiiiiee e, 22
521 Memory Abstraction Modules............coooooieoiii 22
5.2.1.1 [SRS_MemHwAb 14017] The EA module shall extend the functional
scope Of an EEPROM dFVETuuuiiiiiiiiiiiiiiiiiiiiiiiii e 22
5.2.1.2 [SRS_MemHwAb 14018] The FEE module shall extend the
functional scope of an internal flash driver...........ccccc 23
5.2.2 Memory Abstraction Interfaceccoooveeviiiiiie i, 23
5.2.2.1 TimiNg REQUIFEMENTSuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieieiiieeeeieeeeeeeeeeeeeeaneees 23

5.2.2.1.1 [SRS_MemHwAb_ 14024] The Memory Abstraction Interface
shall preserve the timing behavior of the underlying memory abstraction

MOAUIES AN thEIr APIS ... 23

5.23 Onboard Device ADSIIaCHIONc.oveeee e 24

B R B BIENCES .. e e 25
6.1 Deliverables Of AUTOSARoniiieeee e e 25
6.2 Related standards and NOIMSoe e 25

4 of 25 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

AUT@SAR Requirements on Memory Hardware

Abstraction Layer
AUTOSAR Release 4.2.2

5 of 25 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

AUT@SAR Requirements on Memory Hardware

Abstraction Layer
AUTOSAR Release 4.2.2

1 Scope of Document

This document specifies requirements on the modules making up the Memory
Hardware Abstraction Layer (MemHwA). The picture below shows the architecture
and context of this Memory Hardware Abstraction Layer.

id Component Model /

NVRAM Manager |

Memory Hardw are Abstraction %\
Memory Hardw are Abstraction::Memory Abstraction Interface
Q .
Memory Memory
Hardw are Hardware
Abstraction:: Abstraction::
Flash EEPROM @\ EEPROM
Emulation Abstraction
(®) O
Memory Driv grs |
Memory Drivers:: Memory Drivers:: Memory Drivers::
Flash Driver Vendor Specific EEPROM Driver
Library

Figure 1: Components and Interfaces of the Memory Hardware Abstraction Layer

The EEPROM Abstraction (EA) module shall abstract from the addressing scheme of
the underlying EEPROM driver and provide a uniform addressing scheme. Also it
shall allow for a configurable, “virtually unlimited” number of erase-write-cycles. Thus
the upper layer (the NVRAM manager) needs not be changed if the underlying
EEPROM driver and device is changed.

The Flash EEPROM Emulation (FEE) module shall abstract from the addressing
scheme of the underlying flash driver and provide a uniform addressing scheme and
a configurable, “virtually unlimited” number of erase-write-cycles. Thus the upper
layer (the NVRAM manager) needs not be changed if the underlying flash driver and
device is changed.

6 of 25 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

AUT@SAR Requirements on Memory Hardware

Abstraction Layer
AUTOSAR Release 4.2.2

The driver interface layers (EEPROM and flash interface) have been skipped in order
to allow for an efficient implementation of the memory abstraction modules (FEE and
EA modules). The FEE and EA directly interface to the underlying memory drivers.
The requirements set forth for those interface layers shall instead apply to the
memory abstraction interface.

The Memory Abstraction Interface (Memlf) shall replace the driver interface layers
(EEPROM and flash interface) and allow the NVRAM manager to access several
memory abstraction modules (FEE and EA modules).

Instead of the combination of FEE / flash driver and / or EA / EEPROM driver, a
vendor specific library might be used that provides the same functionality and API as
those memory abstraction modules. The internals of such a library are of no concern
as long as the functionality and APl are supported. In case the vendor library
replaces all needed FEE and EA modules, the Memory Abstraction Interface shall
only be a bunch of macros.

7 of 25 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

AUT@SAR Requirements on Memory Hardware

Abstraction Layer
AUTOSAR Release 4.2.2

2 How to read this document

Each requirement has its unique identifier starting with the prefix “BSW” (for “Basic
Software”). For any review annotations, remarks or questions, please refer to this
unique ID rather than chapter or page numbers!

2.1 Conventions used

In requirements, the following specific semantics are used

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted . Note that the requirement level of the document in
which they are used modifies the force of these words.

MUST: This word, or the terms "REQUIRED" or "SHALL", mean that the
definition is an absolute requirement of the specification.

MUST NOT: This phrase, or the phrase ,SHALL NOT®“ means that the
definition is an absolute prohibition of the specification.

SHOULD: This word, or the adjective "RECOMMENDED", mean that there
may exist valid reasons in particular circumstances to ignore a particular item,
but the full implications must be understood and carefully weighed before
choosing a different course.

SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED" mean
that there may exist valid reasons in particular circumstances when the
particular behavior is acceptable or even useful, but the full implications
should be understood and the case carefully weighed before implementing
any behavior described with this label.

MAY: This word, or the adjective ,OPTIONAL®, means that an item is truly
optional. One vendor may choose to include the item because a particular
marketplace requires it or because the vendor feels that it enhances the
product while another vendor may omit the same item. An implementation,
which does not include a particular option, MUST be prepared to interoperate
with another implementation, which does include the option, though perhaps
with reduced functionality. In the same vein an implementation, which does
include a particular option, MUST be prepared to interoperate with another
implementation, which does not include the option (except, of course, for the
feature the option provides.)

The representation of requirements in AUTOSAR documents follows the table
specified in [5].

8 of 25

Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

AUT@SAR Requirements on Memory Hardware

Abstraction Layer
AUTOSAR Release 4.2.2

2.2 Requirements structure

Each module specific chapter contains a short functional description of the Basic
Software Module. Requirements of the same kind within each chapter are grouped
under the following headlines (where applicable):

Functional Requirements:

- Configuration (which elements of the module need to be configurable)
- Initialization

- Normal Operation

- Shutdown Operation

- Fault Operation

Non-Functional Requirements:

- Timing Requirements

- Resource Usage

- Usability

Output for other WPs (e.g. Description Templates, Tooling,...)

9 of 25 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

AUT@SAR Requirements on Memory Hardware

Abstraction Layer
AUTOSAR Release 4.2.2

3 Acronyms and abbreviations

Acronyms and abbreviations that have a local scope are not contained in the
AUTOSAR glossary. These must appear in a local glossary.

Acronyms /
abbreviations

Description:

(Logical) Block

Continuous area of memory that can be individually addressed by the module user
(i.e. for read / write / erase / compare operations). The block size is statically
configurable (pre-compile time).

Page Smallest amount of memory that can be written in one pass.
Sector Smallest amount of memory that can be erased in one pass.
FEE Flash EEPROM Emulation

EA EEPROM Abstraction Layer

Memlf Memory Abstraction Interface

As this is a document from professionals for professionals, all other terms are
expected to be known.

10 of 25

Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

AUT@SAR Requirements on Memory Hardware

Abstraction Layer
AUTOSAR Release 4.2.2

4 Functional Overview

4.1 EEPROM Abstraction Layer

The EEPROM Abstraction Layer (EA) shall extend the EEPROM driver such that it
provides upper layers with a virtual segmentation on a linear address space and a
“virtually limitless” number of erase / write cycles. Apart from that it shall provide the
same functionality as an EEPROM driver.

4.2 Flash EEPROM Emulation

The Flash EEPROM Emulation (FEE) shall emulate the behavior of the EEPROM
Abstraction Layer on flash memory technology. Thus it shall have the same
functional scope and API as the EEPROM Abstraction Layer and allow for a similar
configuration based on that of the underlying flash driver and flash device.

4.3 Memory Abstraction Interface
The Memory Abstraction Interface (Memlf) shall abstract from the number of

underlying FEE or EA modules and provide upper layers with a virtual segmentation
on a uniform linear address space.

11 of 25 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

AUTOSAR

Requirements on Memory Hardware
Abstraction Layer
AUTOSAR Release 4.2.2

5 Requirements Specification

5.1 Functional Requirements

5.1.1 Memory Abstraction Modules

5.1.1.1 Configuration

5.1.1.1.1 [SRS_MemHwAb_14001] The FEE and EA modules shall allow the
configuration of the alignment of the start and end addresses of logical

blocks

[

Type: Valid

Description: The FEE and EA modules shall allow the configuration of the alignment of
the start and end addresses of logical blocks.
This configuration parameter shall be used by the configuration tool to
generate the block numbers according to the block start addresses.

Rationale: 1) Ease handling of blocks inside the FEE and EA modules by aligning
logical blocks to the underlying physical memory technology.
2) Allow for FEE and EA modules to calculate block start addresses instead
of requiring a lookup table to map logical to physical addresses.

Use Case: 1) The Freescale Starl2 has an internal EEPROM with 4 byte sector and 2

byte page size. By aligning the block start and end addresses to 4 byte
boundaries the handling of blocks can be simplified since read-modify-write
behavior is no longer needed.

2) Example: The address alignment is set to 4 (bytes). The first logical block
gets the block number 1, its start address is 0 (a device specific base
address is added by the underlying memory driver). The block size is 22
bytes, so it takes up 6 4-byte “pages”. The next logical block should then get
not the number 2 but the number 7, thus allowing the memory abstraction
module to deduce that its start address is 24 ((block number -1) * page size).

Dependencies:

Supporting Material:

|(RS_BRF_01816)

5.1.1.1.2 [SRS_MemHwADb_14002] The FEE and EA modules shall allow the
configuration of a required number of write cycles for each logical block

[

Type: Valid

Description: The FEE and EA modules shall allow the configuration of a required number
of write cycles for each logical block.

Rationale: Abstract from hardware properties of underlying physical devices.

Use Case: An external flash device is specified for 10.000 erase cycles per erase unit.

A logical block is configured that requires 50.000 erase cycles.
The FEE has to make sure that this logical block can be written 50.000 times
while at the same time no flash cell must be erased more than 10.000 times.

Dependencies:

[SRS MemHwAb 14012] Spreading of write access

Supporting Material:

|(RS_BRF_01848, RS_BRF_01850, RS_BRF_01816)

12 of 25

Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

AUT@SAR Requirements on Memory Hardware

Abstraction Layer
AUTOSAR Release 4.2.2

5.1.1.1.3 [SRS_MemHwADb_14026] The block numbers 0x0000 and OxFFFF shall not

be used

[

Type: Valid

Description: The block numbers 0x0000 and OxFFFF shall not be used by the memory
abstraction module / generated by the configuration tool.

Rationale: These numbers can not be distinguished from the erased value of a flash or
EEPROM device.

Use Case: The implementation stores the block number in non-volatile memory e.g. to

mark the start or end of a logical block. When these numbers would be used,
that marker could not be found / distinguished from an empty EEPROM or
flash memory.

Dependencies:

Supporting Material:

|(RS_BFR_01816)

5.1.1.2 Initialization

No additional requirements, the “standard” requirements from the general section of
the SPAL SRS regarding initialization shall be applied.

5.1.1.3 Normal Operation

5.1.1.3.1 [SRS_MemHwADb_14005] The FEE and EA modules shall provide upper
layers with a virtual 32bit address space

[

Type: Valid

Description: The Flash EEPROM Emulation (FEE) and EEPROM Abstraction (EA) shall
provide upper layers with a virtual 32bit address space.
These 32 bit virtual (logical) addresses shall consist of a 16 bit logical block
identifier and a 16 bit address offset within this logical block. Thus the
memory abstraction layer shall support a (theoretical) number of 65534
logical (distinguishable) blocks per underlying physical device. Each block
can have a (theoretical) size of 64 KBytes.

Rationale: Abstract from hardware properties that would require changing the NVRAM
manager if the underlying devices / drivers change.

Use Case: 1) Support systems with a high number of small blocks

2) Support systems with a few big blocks like e.g. MMI systems (fonts,
speech) or navigation (maps, routes).

3) Allow NVRAM manager to encode block management information (e.g.
block type) in the logical block identifier (by making it big enough)

Dependencies:

[SRS MemHwAb 14026] Don’t use certain block humbers

Supporting Material:

Figure 2: Virtual vs. physical address space

|(RS_BRF_01832)

13 of 25

Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

AUT@SAR Requirements on Memory Hardware

Abstraction Layer
AUTOSAR Release 4.2.2

Virtual address space Physical address space
Page size: 64 KBytes Page size: 8 Bytes

. —
16 Bit Block Numbeti Block #1 with 32 byte

uses 4 pages, no
internal residue

Block #5 with 100 byte
uses 13 pages, 4 byte
internal residue

38 Bytes Block #17 with 38 byte
uses 5 pages, 2 byte
internal residue

16 Bit Block Offsey Block 1

Block 2

38 Bytes

Block-3

Note: Sizes not shown to scale

Figure 2: Virtual vs. physical address space

5.1.1.3.2 [SRS_MemHwADb_14006] The start address for a block erase or write
operation shall always be aligned to the virtual 64K boundary

[

Type: Valid

Description: The start address for a block erase or write operation shall always be aligned
to the virtual 64K boundary.

In other words: The offset shall be ignored for block erase / write requests,
every block erase / write request starts at address offset zero.

Rationale: Allow optimized erase / write operations in underlying emulation modules
and drivers if virtual 64K boundaries are mapped to physical sector / page
boundaries.

Use Case: Optimization of FEE and EA, simplify configuration and implementation.

Dependencies: --

Supporting Material: Just to make this clear: you can not erase or write only parts of the
configured block, it's either all or nothing.

|(RS_BRF_01832)

5.1.1.3.3 [SRS_MemHwAb_14007] The start address and length for reading a block
shall not be limited to a certain alignment

14 of 25 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

AUTOSAR

Requirements on Memory Hardware
Abstraction Layer
AUTOSAR Release 4.2.2

Type: Valid

Description: The start address and length for reading a block shall not be limited to a
certain alignment, i.e. it shall be possible to read one byte starting from any
memory address.

Rationale: Byte-wise reading of flash / EEPROM.

Use Case: CRC calculation in the NVRAM manager.

Dependencies:

Supporting Material:

This allows reading a logical block in several passes, e.g. needed for CRC
calculation.

Note 1: If there are certain hardware properties that require an alignment of
the read address, e.g. only 32bit aligned read possible, this shall be handled
by the underlying driver.

Note 2: This requirement shall allow the NVRAM manager to do a byte-wise
read access on a logical block, it does not require the NVRAM manager to
do so.

|(RS_BRF_01832)

5.1.1.3.4 [SRS_MemHwADb_14009] The FEE and EA modules shall provide a
conversion between the logical linear addresses and the physical memory

addresses

[

Type: Valid

Description: The FEE and EA modules shall provide an unambiguous conversion
between the logical linear addresses and the addresses used to access the
underlying flash memory or EEPROM.

Rationale: The physical device and the start address of a logical block shall be derived
from the logical block identifier.

Use Case: Transparent mapping of logical blocks to several physical hon-volatile

memory devices.

Dependencies:

Supporting Material:

The memory addresses obtained by that conversion are address offsets to a
device specific base address as described in the flash and EEPROM driver
specifications.

|(RS_BRF_01832)

5.1.1.3.5 [SRS_MemHwAb_14010] The FEE and EA modules shall provide a write
service that operates only on complete configured logical blocks

15 of 25

Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

AUTOSAR

Requirements on Memory Hardware
Abstraction Layer
AUTOSAR Release 4.2.2

Type: Valid

Description: The FEE and EA modules shall provide a write service that operates only on
complete configured logical blocks.

Rationale: Decouple the upper layer from driver internals.

Use Case: The upper layer shall only make one call to the Memory Abstraction Interface

to write a logical block to non-volatile memory. If there are several passes
needed to write all of the addressed memory area, this shall be handled
internally in the FEE or EA modules or the underlying device drivers.

Dependencies:

Supporting Material:

|(RS_BRF_01816)

5.1.1.3.6 [SRS_MemHwAb_14029] The FEE and EA modules shall provide a read
service that allows reading all or part of a logical block

[

Type: Valid

Description: The FEE and EA modules shall provide a read service that allows reading all
or part of a logical block.

Rationale: Allow for reading of NV memory.

Use Case: Read functionality of the NVRAM manager.

Dependencies:

Supporting Material:

|(RS_BRF_01816)

5.1.1.3.7 [SRS_MemHwAb_14031] The FEE and EA modules shall provide a service
that allows canceling an ongoing asynchronous operation

[

Type: Valid

Description: The FEE and EA modules shall provide a service that allows canceling an
ongoing asynchronous operation like e.g. a read, write, erase or compare
operation.

Rationale: Needed for writing “immediate” data.

Use Case: Immediate data (crash data) has to be written, while a read operation is

currently in process.

Dependencies:

[SRS MemHwAb 14013] Writing of “immediate” data must not be delayed

Supporting Material:

|(RS_BRF_01812)

5.1.1.3.8 [SRS_MemHwAb_14028] The FEE and EA modules shall provide a service
to invalidate a logical block

16 of 25

Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

AUTOSAR

Requirements on Memory Hardware
Abstraction Layer
AUTOSAR Release 4.2.2

Type: Valid

Description: The FEE and EA modules shall provide a service to invalidate a logical
block. This shall be done by setting the module internal block management
data appropriately.
Note: Erasing the contents of the physical memory is an implementation
option but not required.

Rationale: To enable a data block to be marked as invalid by the upper layer.

Use Case: Allow an application to mark data as outdated or no longer valid when

physically erasing the data is not possible or not desirable (e.g. on flash
memory technology).

Dependencies:

Supporting Material:

|(RS_BRF_01816)

5.1.1.3.9 [SRS_MemHwADb_14012] Spreading of write access

[

Type: Valid

Description: If the configured number of write cycles for a logical block exceeds the
number provided by the underlying physical device, the FEE or EA module
has to provide sufficient mechanisms to spread the write requests for that
logical block over a bigger memory area.

Rationale: Allow for “unlimited” number of write cycles while simultaneously preventing
memory cells from being erased more often than specified by the hardware
vendor.

Use Case: An external flash device is specified for 10.000 erase cycles per erase unit.

A logical block is configured that requires 50.000 write cycles.
The FEE has to make sure that this logical block can be written 50.000 times
while at the same time no flash cell must be erased more than 10.000 times.

Dependencies:

[SRS MemHwAb 14002] Configuration of number of required write cycles

Supporting Material:

This requirement replaces [BSWO032] Spreading of write access and
[SRS LIBS 08530] NVRAM block type — walking from MemSvc SRS.

|(RS_BRF_01848, RS_BRF_01850)

5.1.1.3.10

[SRS_MemHwAb_14013] Writing of immediate data shall not be

delayed by internal management operations nor by erasing the memory area
to be written to

17 of 25

Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

AUT@SAR Requirements on Memory Hardware

Abstraction Layer
AUTOSAR Release 4.2.2

Type:

Valid

Description:

Writing of immediate data shall not be delayed by internal management
operations nor by erasing the memory area to be written to.

If internal management operations are under way when immediate data has
to be written, they have to be interrupted until the data has been written to
non-volatile memory.

There has to be a pre-erased memory area for writing of immediate data
available at all times.

Rationale:

Immediate data has to be written immediately (that's what the name implies)
that is as fast as the underlying hardware allows.

Use Case:

The FEE is reorganizing the blocks currently stored in flash when crash data
has to be written.

Dependencies:

If an ongoing hardware access, e.g. an erase operation, can not be aborted
its runtime has to be taken into account as the maximum allowable delay for
immediate write operations.

Supporting Material:

|(RS_BFR_01816)

5.1.1.3.11 [SRS_MemHwADb_14032] The FEE and EA modules shall provide an
erase service that operates only on complete logical blocks containing
immediate data

[

Type: Valid

Description: The FEE and EA modules shall provide an erase service that operates only
on complete logical blocks containing immediate data.

Rationale: SRS _MemHwAb_14013 requires pre-erased memory, therefore this memory
areas have to be somehow erasable.

Use Case: --

Dependencies:

[SRS MemHwAb 14013] Writing of “immediate” data must not be delayed

Supporting Material:

- This service should only be called by a special application like e.g.
diagnostics.

- A possible implementation would be to invalidate the block containing
immediate data and subsequently force a re-organization of blocks.
During this re-organization invalidated blocks shall not be copied to the
new memory location, thus the memory area for the immediate data will
be (left) erased.

|(RS_BRF_01816)

18 of 25

Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

AUTOSAR

Requirements on Memory Hardware
Abstraction Layer
AUTOSAR Release 4.2.2

5.1.1.4 Shutdown Operation

The modules of the Memory Abstraction Layer don’t need any shutdown capabilities
(also there are no shutdown capabilities in the flash or EEPROM driver).

5.1.1.5 Fault Operati

on

5.1.1.5.1 [SRS_MemHwAb_14014] The FEE and EA modules shall detect possible
data inconsistencies due to aborted / interrupted write operations

[

Type: Valid

Description: The FEE and EA modules shall detect possible data inconsistencies due to
aborted / interrupted write operations.

Rationale: The “user” shall not work on inconsistent data therefore it has to be
recognized.

Use Case: 1) A write operation is interrupted by a loss of power, after power-on-reset

the possible inconsistency of data shall be detected upon the next read
access to the affected memory area.

2) A write operation is cancelled by the upper layer. Upon next read access
to the affected memory area the possible data inconsistency shall be
detected.

Dependencies:

Supporting Material:

Depending on the implementation, the physical device and the point in the
write operation at which the interrupt occurs the FEE or EA module might be
able to determine that the operation has failed but not which was the block
that should have been written.

|(RS_BRF_00129,RS _

BRF_01840)

5.1.1.5.2 [SRS_MemHwAb_14015] The FEE and EA modules shall report possible
data inconsistencies

[

Type: Valid

Description: The FEE and EA modules shall report possible data inconsistencies due to
aborted / interrupted write operations to the DEM exactly once. After that the
inconsistent memory area has to be marked such that no further errors are
reported for that block.

Rationale: Avoid “endless loops” in error reporting on every block read operation.

Use Case: A write operation is interrupted or cancelled, the inconsistency is detected

and reported upon the next read access to the affected memory area.

Dependencies:

[SRS MemHwAb 14014] Detection of data inconsistencies

Supporting Material:

Depending on the implementation and the point in the write operation at
which the interrupt occurs the FEE or EA module might be able to determine
that the operation has failed but not which was the block that should have
been written.

In this case a read operation on that block might return old (outdated) data to
the caller if such data is available. If this is not desired from the application,
the block has to be explicitly invalidated before it is overwritten.

|(RS_BRF_00129,RS_

19 of 25

BRF_01840,RS_BRF_02040)

Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

AUT@SAR Requirements on Memory Hardware

Abstraction Layer
AUTOSAR Release 4.2.2

5.1.1.5.3 [SRS_MemHwAb_14016] The FEE and EA modules shall not return
inconsistent data to the caller

[

Type: Valid

Description: The FEE and EA modules shall not return inconsistent data to the caller.

Rationale: The “user” shall not work on inconsistent data.

Use Case: A write operation is interrupted or cancelled, the data of that block thus is
inconsistent. This inconsistency is detected on the next read access to that
block, the data shall then not be returned to the caller.

Dependencies: [SRS MemHwAb 14014] Detection of data inconsistencies

Supporting Material: Depending on the implementation and the point in the write operation at

which the interrupt occurs the FEE or EA module might be able to determine
that the operation has failed but not which was the block that should have
been written.

In this case a read operation on that block might return old (outdated) data to
the caller if such data is available. If this is not desired from the application,
the block has to be explicitly invalidated before it is overwritten.

Providing default data for an inconsistent block is the job of the NVRAM
manager.

|(RS_BRF_00129,RS_BRF_01840)

5.1.2 Memory Abstraction Interface

The following requirements have been taken over from the SPAL SRS on Memory
Abstraction and have been adapted (in wording only) to the architectural concept
shown in Figure 1.

5.1.2.1 General

5.1.2.1.1 [SRS_MemHwAb_14019] The Memory Abstraction Interface shall provide
uniform access to the API services of the underlying memory abstraction

modules

[

Type: Valid

Description: The Memory Abstraction Interface shall provide uniform access to those API
services of the underlying memory abstraction modules that are required for
usage within the NVRAM manager.
Further comments:
The initialization routines and the job processing functions are not mapped
by the memory abstraction interface.

Rationale: Allow usage of memory abstraction modules by one uniform interface.

Use Case: Allow the upper layer access to internal and external memory devices
without any difference.

Dependencies: --

Supporting Material: This requirement shall replace [BSW12172].

|(RS_BRF_01000,RS_BRF_01800,RS_BRF_01808)

20 of 25 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

AUTOSAR

Requirements on Memory Hardware
Abstraction Layer
AUTOSAR Release 4.2.2

5.1.2.1.2 [SRS_MemHwADb_14020] The Memory Abstraction Interface shall allow the
selection of an underlying memory abstraction module by using a device

index
[
Type: Valid
Description: The Memory Abstraction Interface shall allow the selection of an underlying
memory abstraction module (FEE or EA module) by using a device index.
Rationale: Requirement of the NVRAM Manager
Use Case: The NVRAM Manager uses a device index for selecting the appropriate

memory abstraction module.

Dependencies:

Supporting Material:

SWS NVRAM Manager
This requirement shall replace [BSW12173].

|(RS_BRF_01808)

5.1.2.2 Configuration

5.1.2.2.1 [SRS_MemHwADb_14021] The Memory Abstraction Interface shall allow the
pre-compile time configuration of the number of underlying memory
abstraction modules

[

Type: Valid

Description: The Memory Abstraction Interface shall allow the pre-compile time
configuration of the number of underlying memory abstraction modules.

Rationale: Flexibility

Use Case: One ECU only uses internal EEPROM (thus needing one EA module),

another ECU uses both internal plus external EEPROM (thus needing two
EA modules).

Dependencies:

Supporting Material:

WP Architecture
This requirement shall replace [BSW12174].

|(RS_BRF_01808)

5.1.2.3 Normal Operation

5.1.2.3.1 [SRS_MemHwAb_14022] The Memory Abstraction Interface shall preserve
the functionality of the underlying memory abstraction module

21 0f 25

Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

AUTOSAR

Requirements on Memory Hardware
Abstraction Layer
AUTOSAR Release 4.2.2

Type: Valid

Description: The Memory Abstraction Interface shall preserve the functionality of the
underlying memory abstraction module. It shall not provide additional
functionality.

Rationale: Simplicity, efficiency

Use Case: The memory abstraction modules abstract from all hardware properties, the

Memory Abstraction Interface does not need to add anything (it only is
needed to access more than one memory abstraction module).

Dependencies:

Supporting Material:

This requirement shall replace [BSW12175].

|(RS_BRF_01000,RS

5.1.2.4 Fault Operati

BRF_01800)

on

5.1.2.4.1 [SRS_MemHwAb_14023] The Memory Abstraction Interface shall only

check those

parameters that are used within the interface itself

[

Type: Valid

Description: The Memory Abstraction Interface shall only check those parameters that
are used within the interface itself and that are not passed to the underlying
memory abstraction modules.

Rationale: Simplicity, efficiency: avoid double checking of parameters.

Use Case: The device index may be checked (depending on the setting of the

development error detection switch). The block address shall not be
checked.

Dependencies:

Supporting Material:

This requirement shall replace [BSW12176].

|(RS_BRF_02232)

5.1.3 Onboard Device Abstraction

For the Onboard Devi

ce Abstraction the same requirements like for the Memory

Hardware Abstraction apply. One member of the Onboard Device Abstraction is the

Watchdog Interface.

5.2 Non-Functional Requirements (Qualities)

5.2.1 Memory Abstraction Modules

5.2.1.1

[SRS_MemHwADb 14017] The EA module shall extend the functional

scope of an EEPROM driver

22 of 25

Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

AUTOSAR

Requirements on Memory Hardware
Abstraction Layer
AUTOSAR Release 4.2.2

Type: Valid

Description: The EEPROM Abstraction Layer (EA) shall extend the functional scope of an
EEPROM driver. In addition to the properties of an EEPROM driver, the EA
shall work on a virtual 32bit address space and it shall abstract completely
from the limitation of erase / write cycles given by the underlying device.

Rationale: Uniform handling of all EEPROM devices.

Use Case: The NVRAM manager shall not need to be changed if the underlying
EEPROM drivers and devices change.

Dependencies: --

Supporting Material: AUTOSAR SRS EEPROM driver

|(RS_BRF_01000,RS

BRF_01800)

5.2.1.2 [SRS_MemHwADb_14018] The FEE module shall extend the functional
scope of an internal flash driver

[

Type: Valid

Description: The Flash EEPROM Emulation (FEE) shall extend the functional scope of an
internal flash driver. It shall have the same functional scope and API as an
EA module.

Rationale: Uniform handling of all flash devices.

Use Case: The NVRAM manager shall not need to be changed if the underlying flash

drivers and devices change.

Dependencies:

[SRS MemHwAb 14017] Scope of EEPROM Abstraction Layer

Supporting Material:

AUTOSAR SRS EEPROM driver
AUTOSAR SRS Flash driver

|(RS_BRF_01000,RS_

5.2.2 Memory Abstra

5.2.2.1 Timing Requ

BRF_01800)

ction Interface

irements

5.2.2.1.1 [SRS_MemHwADb_14024] The Memory Abstraction Interface shall preserve
the timing behavior of the underlying memory abstraction modules and their

APIs

23 of 25

Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

AUT@SAR Requirements on Memory Hardware

Abstraction Layer
AUTOSAR Release 4.2.2

Type: Valid

Description: The Memory Abstraction Interface shall preserve the timing behavior of the
underlying memory abstraction modules and their APIs by 1:1 mapping of
the Memory Abstraction Interface API to the memory abstraction modules’

API
Rationale: Simplicity, efficiency
Use Case: Example:

The write service of the Memory Abstraction Interface is directly mapped to
the write service of an underlying memory abstraction module (FEE or EA).

Dependencies: --

Supporting Material: WP Architecture
This requirement shall replace [BSW12177].

|(RS_BRF_01000,RS_BRF_01800)
5.2.3 Onboard Device Abstraction
For the Onboard Device Abstraction the same requirements like for the Memory

Hardware Abstraction apply. One member of the Onboard Device Abstraction is the
Watchdog Interface.

24 of 25 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

AUT@SAR Requirements on Memory Hardware

6 References

6.1 Deliverables of AUTOSAR

[1] List of Basic Software Modules
AUTOSAR_TR_BSWModuleList.pdf

[2] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[3] General Requirements on Basic Software Modules,
AUTOSAR_SRS_BSWGeneral.pdf

[4] General Requirements on SPAL
AUTOSAR_SRS_SPALGeneral.pdf

[5] Software Standardization Template
AUTOSAR_TPS_StandardizationTemplate.pdf

6.2 Related standards and norms

None

Abstraction Layer
AUTOSAR Release 4.2.2

25 of 25 Document ID 116: AUTOSAR_SRS_MemoryHWAbstractionLayer

- AUTOSAR confidential -

	1 Scope of Document
	2 How to read this document
	2.1 Conventions used
	2.2 Requirements structure

	3 Acronyms and abbreviations
	4 Functional Overview
	4.1 EEPROM Abstraction Layer
	4.2 Flash EEPROM Emulation
	4.3 Memory Abstraction Interface

	5 Requirements Specification
	5.1 Functional Requirements
	5.1.1 Memory Abstraction Modules
	5.1.1.1 Configuration
	5.1.1.1.1 [SRS_MemHwAb_14001] The FEE and EA modules shall allow the configuration of the alignment of the start and end addresses of logical blocks
	5.1.1.1.2 [SRS_MemHwAb_14002] The FEE and EA modules shall allow the configuration of a required number of write cycles for each logical block
	5.1.1.1.3 [SRS_MemHwAb_14026] The block numbers 0x0000 and 0xFFFF shall not be used

	5.1.1.2 Initialization
	5.1.1.3 Normal Operation
	5.1.1.3.1 [SRS_MemHwAb_14005] The FEE and EA modules shall provide upper layers with a virtual 32bit address space
	5.1.1.3.2 [SRS_MemHwAb_14006] The start address for a block erase or write operation shall always be aligned to the virtual 64K boundary
	5.1.1.3.3 [SRS_MemHwAb_14007] The start address and length for reading a block shall not be limited to a certain alignment
	5.1.1.3.4 [SRS_MemHwAb_14009] The FEE and EA modules shall provide a conversion between the logical linear addresses and the physical memory addresses
	5.1.1.3.5 [SRS_MemHwAb_14010] The FEE and EA modules shall provide a write service that operates only on complete configured logical blocks
	5.1.1.3.6 [SRS_MemHwAb_14029] The FEE and EA modules shall provide a read service that allows reading all or part of a logical block
	5.1.1.3.7 [SRS_MemHwAb_14031] The FEE and EA modules shall provide a service that allows canceling an ongoing asynchronous operation
	5.1.1.3.8 [SRS_MemHwAb_14028] The FEE and EA modules shall provide a service to invalidate a logical block
	5.1.1.3.9 [SRS_MemHwAb_14012] Spreading of write access
	5.1.1.3.10 [SRS_MemHwAb_14013] Writing of immediate data shall not be delayed by internal management operations nor by erasing the memory area to be written to
	5.1.1.3.11 [SRS_MemHwAb_14032] The FEE and EA modules shall provide an erase service that operates only on complete logical blocks containing immediate data

	5.1.1.4 Shutdown Operation
	5.1.1.5 Fault Operation
	5.1.1.5.1 [SRS_MemHwAb_14014] The FEE and EA modules shall detect possible data inconsistencies due to aborted / interrupted write operations
	5.1.1.5.2 [SRS_MemHwAb_14015] The FEE and EA modules shall report possible data inconsistencies
	5.1.1.5.3 [SRS_MemHwAb_14016] The FEE and EA modules shall not return inconsistent data to the caller

	5.1.2 Memory Abstraction Interface
	5.1.2.1 General
	5.1.2.1.1 [SRS_MemHwAb_14019] The Memory Abstraction Interface shall provide uniform access to the API services of the underlying memory abstraction modules
	5.1.2.1.2 [SRS_MemHwAb_14020] The Memory Abstraction Interface shall allow the selection of an underlying memory abstraction module by using a device index

	5.1.2.2 Configuration
	5.1.2.2.1 [SRS_MemHwAb_14021] The Memory Abstraction Interface shall allow the pre-compile time configuration of the number of underlying memory abstraction modules

	5.1.2.3 Normal Operation
	5.1.2.3.1 [SRS_MemHwAb_14022] The Memory Abstraction Interface shall preserve the functionality of the underlying memory abstraction module

	5.1.2.4 Fault Operation
	5.1.2.4.1 [SRS_MemHwAb_14023] The Memory Abstraction Interface shall only check those parameters that are used within the interface itself

	5.1.3 Onboard Device Abstraction

	5.2 Non-Functional Requirements (Qualities)
	5.2.1 Memory Abstraction Modules
	5.2.1.1 [SRS_MemHwAb_14017] The EA module shall extend the functional scope of an EEPROM driver
	5.2.1.2 [SRS_MemHwAb_14018] The FEE module shall extend the functional scope of an internal flash driver

	5.2.2 Memory Abstraction Interface
	5.2.2.1 Timing Requirements
	5.2.2.1.1 [SRS_MemHwAb_14024] The Memory Abstraction Interface shall preserve the timing behavior of the underlying memory abstraction modules and their APIs

	5.2.3 Onboard Device Abstraction

	6 References
	6.1 Deliverables of AUTOSAR
	6.2 Related standards and norms

