AUTO SAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

Document Title Virtual Functional Bus
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document ldentification No 056

Document Classification Auxiliary

Document Status Final

Part of AUTOSAR Release 4.2.2

Document Change History

Release |Changed by

Change Description

422 |AUTOSAR

¢ Reference to Application Interfaces

Release
Management

4.2.1 |AUTOSAR ¢ Introduction of PRPortPrototype
Release
Management

4.1.3 |AUTOSAR e Improvement of the consistency to the RTE
Release specification for client-server communication
Management e Introduction of requirements for the graphical

notation

4.1.2 |AUTOSAR
Release
Management

e Support of TEXTTABLE conversion block

4.1.1 AUTOSAR
Administration

e Introduction of Features and Profiles

4.0.3 |AUTOSAR
Administration

e Enhanced graphical notation (NV data interface
support)

¢ [Introduction of a mixed conversion block

e Clarification of the use of AUTOSAR services
within compositions

3.1.5 |AUTOSAR
Administration

e Improved description of port compatibility and
data conversion scaling

e Improved consistency to other AUTOSAR
specifications

¢ Fixed outdated graphical notation in images

o Reformulated description of timing extension

1 of 104

Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

Document Change History

Release |Changed by Change Description
3.1.4 |AUTOSAR ¢ Introduction of new concepts (Variant Handling,
Administration Integrity and scaling at port, Mode
Management, Triggers, Access to NVM, access
to parameters and calibrations)
e Synchronization with the current AUTOSAR
Meta-Model (new interfaces and
SwComponentTypes)
e Timing extension moved to the
AUTOSAR_TPS_TimingExtensions document
e Legal disclaimer revised
3.1.1 |AUTOSAR e Legal disclaimer revised
Administration
3.0.1 |AUTOSAR e |Initial Release

Administration

2 of 104

Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only. For any other purpose, no part of
the specification may be utilized or reproduced, in any form or by any means, without
permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference
models, "use cases", and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their
presence in such specifications, nor any later documentation of AUTOSAR
conformance of products actually implementing such exemplary items, imply that
intellectual property rights covering such exemplary items are licensed under the
same rules as applicable to the AUTOSAR Standard.

3 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUT@\)SAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

Table of Content

1 Introduction to thiS dOCUMENTiiiiiiiieeie e e eeeeees 6
R O 0] (=T 1 £ 3PP 6
O e = €<= o KRR 6
1.3 Relationship to other AUTOSAR specificationsS.........ccccceeevvveeviiiiiiiieeeeeeennnns 7
1.4 Structure and conventions of this dOCUMENtccoevviiiiiiiiiiiiiiiiiee e 8

1.4.1 Structure of this document ... 8
1.4.2 SpPecCification HEBMScoooiiiieeeeee e 8

2 The Virtual FUNCHONAI BUSuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieebeeeeeeeneeeeeneeennee 9

3 Overall mechanisms and CONCEPLS.......uuuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiii e 12
70 A O 0 1 01 o o] aT<] o | £ PP 12
A 0T (=T o = (o = PSR 14
TR S 0] 4 £ SRR 17

3.3.1 P oIt Ty PSS e 17
3.3.2 Port CompatibDilityccooriiiiiiii s 25
3.3.3 Data Type POICIES ... 26
I o] o] g T=Tox (0] = PP 26
34.1 UNCONNECTEA POITS.....ccoieiieiiiiie et 28
3.4.1.1 Unconnected PRPOIMSuuuuuuiiiiiiiiiiiiiiiiiiiiiiieiiieieerieneeneeeneen. 28
3.4.1.2 Unconnected Sender/Receiver POItSccccevveivviiiiiee e 28
3.4.1.3 Unconnected Client/Server POrSuuuuviiiiiiiiiiiiiiiiiiiiei. 28

3.5 Compositions versus atomiC COMPONENTScooeveeeeeeeeieeeeeeeeeee e 29
3.6 Relationship between the VFB and the ECU Software Architecture 30
3.7 Kinds of software COMPONENTSccooeeeieieeeeeeeeeee e 33
3.8 Resources for components and “runnables”cccccociiiiiii e, 36
3.8.1 BacKground ..o 36
3.8.2 The “runnable” CONCEPL.........iiiiiiiii e 37
3.8.3 The implementation of a component and the role of the RTE 39
3.9 Interface Conversion BIOCKS.........ccoooviiiiiiiiii 39
3.9.1 Supported Conversions and Mappingscccceeeeeririieeiiiiiieeeeieeeeeeeeeee 40
3.9.1.1 Interface Element Mapping.........ccoovvimiiiiiiie e 40
3.9.1.2 Linear Data CONVEISIONciiiieeeieeeiiiiiiieeeeeeeeeeeeiins e e e e e e eeeeeennnnnnns 40
3.9.1.3 Data MapPinguceeeeeeeieeeiiiee e e e 41
3.9.1.4 MixXed CONVEISIONccceieiiiiiieeeeeeeeeeeeiiee e e e e e e e et e e e e e e e eeeannn s 41
3.10 Variant HandliNg.........ouuuiiiiie e 41
3.10.1 BiNdiNG TIMES ..cooiiiiiiiiiiiiieeeeeeee et 42
3.10.2 ChooSING @ VaAl@Nt..........cooeiiiiiiii e 42
3.10.3 Variability.......ccooiiiiiiiiii 42
3.10.3.1 Software Component Variability.............cccooeveviiiiiiieiiiiii e 43
3.10.3.2 POrt Variabilityeeuueumuumiiiiiiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeees 43
3.10.3.3 Connector Variability..............coiiiiiiiiiiic e 43

4 Communication ON the VFB.........cooiiiiiiiiii e 44
g R [11 (0 To [T4 1 o] o PP 44
A2 BT O DY P ittt 44
4.3 Sender-Receiver COmMmMUNICALIONcoeiiiiiiiiiiiiiiee e 44

4.3.1 From the point of view of the sender.............cccooo, 45
4.3.2 From the point of view of the receiverccccciiii i, 47
4.3.3 Multiplicity Of SENUEI-rECEIVETccoeeeeeeeeeeeeeeeeeeeee e 51
4.3.4 Filtering between the sender and the receiverccccooveeviiiiieeeennnn, 52
4 of 104 Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUT@\)SAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

4.3.5 Concurrency and ordering within a sender-receiver connector 52

4.4 Client-Server COMMUNICALIONcovvviiiiiiiiiiiiiiieeeeeeeeeee e 53
4.4.1 From the point of view of the client................cco 56
4.4.2 From the point of view of the server ..., 57
4.4.3 Multiplicity Of CIeNt-SEIVer ..o 58
4.4.4 Ordering and concurrency within a client-server connector 58

4.5 Remarks regarding the identification of communication partners............... 59

5 TimMING EXIENSIONS ...uuiiiiiiiieiici e e e e e e et e e e e e e e e e e e e e e e e e eeeennes 61
5.1 Main Purpose of Timing Extensions for AUTOSAR............cccciiiiiiii, 61
5.2 Timing in different phases of the AUTOSAR methodology............cccouuueen. 62

6 Interaction With NArdWAarecooooiiiiiiiiii e e 63
6.1 INrOAUCTION ..o 63
6.2 Microcontroller Abstraction Layer (MCAL) ..o, 64
6.3 ECU ADSIraCHON ..o 65
6.4 Sensor-Actuator Software COmMpPONENt........coooeviiiiiiiiei e 65
6.5 Complex Driver COMPONENtuuuiiiiieeeieeiiiee e e e e 65

T AUTOSAR SEIVICES ...cieiiieiiiiiiiit e e ettt s e e e e e e e et s e e e e e e e e eastnnnn s e aaeeeeeaennes 67
4% S | 1 £ Yo [§ o 1o o TR 67
7.2 VFB ReEPIreSentatioNccoooviieiieeeeeeeeeeeeeee e 67
7.2.1 Selection of a communication mechanismcccccccccvvviiviiiiiiiinnnnnnn. 68
7.2.2 LOCAtiON Of @ SEIVICE......cciieiiiiiiie e 68
7.2.3 Distribution of Requests to Remote Services.........cccoceeeeeeeeeeeeeeiinnnnnnn. 68
7.24 Platform dependent tyPescoooeeeeeeeeeeeee e 69
7.25 CoNfIQUIAtION.......ueiiie e 70

7.3 LISt Of SEIVICES ...t e e e 70

8 MOode MaNAQEMENLcoiiiiiiiie e e e e e e e e e aaaaa 71
S 200 R 01 1 Yo [T £ o P 71
8.2 DefiNiNg MOUEScoooeiiiiii e 71
8.3 CommUNICAING MOUES......ccoi e 72
8.4 Mode-managers: components that control modesccccoeeeeeiiiviiiinnnnnn. 73
8.5 Components that depend 0N MOdEScooovieeiiiiiiii, 74

S T o T A €T (0 11 o PP 76
10 Measurement and Calibration............ooeuuuiiiie i e e 77
IO R R O 111] 1 (o o S 77
10.1.1 Port-based calibrationouuuiiiiiiiiiiii e 77
10.1.1.1 Pure single instantiation................ccoovvviiiiiiiiie e 78
10.1.1.2 Multiple instantiation of the involved software components........... 78
10.1.1.3 Multiple instantiation of the involved calibration components 79
10.1.2 Private calibration............ccooviiiiiiiiiiie e 80
10.2 MEASUIEIMENT ...ttt e et e e et et e e e e eat e e e e esaa e e e eesnanaaaeees 80
11 VFB Features and ProfileS..........coooiiiiiiiiiii e 82
11.1 Motivation and INtrOdUCTIONcooiiiiiiiiiii e 82
11.2 Feature tables ..o 82
11.2.1 INtra-ECU fRALUIESueiii et 83
11.2.2 INtEr-ECU fRALUIESuuuii i et e e e e e e e e eeeenes 95

12 Interaction with NON-AUTOSAR-ECUScoiiiiiiiiiiiiiiie e 101
52200 I [011 o o 18 o 1o U SERPPRPN 101
12.2 Problems of iNteraction............ooooiiiiiiiiiiii e 101
12.3 Description Of INTErACHONuuuuiiiiiiiiiiiiiiiiiiiiiii e 102
13 RETEIENCES ... e 104
5 of 104 Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

1 Introduction to this document

1.1 Contents

This specification describes the AUTOSAR Virtual Functional Bus (VFB).

1.2 Prereads

This document is one of the high-level conceptual documents of AUTOSAR.
Useful pre-reads are the “Main Requirements” [3]. Documents that can be consulted
in parallel to this document include the “Methodology” [1] and the “Glossary” [2].

6 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
B AUTOSAR Release 4.2.2

1.3 Relationship to other AUTOSAR specifications

Main Requirements (054) J

Layered Software

Methodology Virtual Functional Bus Architecture (053) Glossary
(068) (056) j (055)
List of Basic Software
Modules (150)

7
Metamodel and Template
Specifications
Specification of
Software Component RTE (084)
Template (062)
l BSW SWS
I 4
Figure 1.1: Relationship of the Specification of the “Virtual Functional Bus” to

other AUTOSAR specifications®

Figure 1.1 illustrates the relationship between the specification of the “Virtual
Functional Bus” and other major AUTOSAR specifications. The specification of the
“Virtual Functional Bus” is part of a set of specifications describing the overall
concepts of AUTOSAR. These documents give a conceptual overview of AUTOSAR
and serve as requirements to the more detailed specifications. The conceptual
specifications include:

e the “Methodology” [1] describes the method that is used when building

systems with AUTOSAR

e the specification of the “Virtual Functional Bus”

e the “Layered Software Architecture” [5]

e and the “List of Basic Software Modules” [4]

These conceptual documents are refined and made concrete into a large set of
AUTOSAR specifications, which can be grouped into:

' The numbers in brackets refer to the Document Identification Number of the specification.
7 of 104 Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
- AUTOSAR Release 4.2.2

e The specifications defining the AUTOSAR meta-model and templates: In this
group the “Software Component Template” [6] is directly influenced by the
VFB concepts.

e The specifications defining the AUTOSAR basic-software modules and the
RTE: In this group the “Specification of RTE” [7] is directly influenced by the
VFB concepts.

1.4 Structure and conventions of this document

1.4.1 Structure of this document

Figure 1.2 shows the structure of this document. The first chapters define the VFB
concepts generically and should be read in order. The last chapters define and
clarify specific issues, such as the interaction with hardware, mode-management,
AUTOSAR-Services or Measurement and Calibration. The chapter about the timing
model is for information purposes only and is not part of the standard. It is made
available to show the early conceptual work to model time aspects in the VFB.

Generic Chapters - -
. Interaction with Hardware

The Virtual Functional Bus

. . Mode Management

Overall mechanisms and concepts . AUTOSAR Services

. . Measurement and Calibration

Communication on the VFB

Figure 1.2: Structure of the document

1.4.2 Specification Items

The requirements on the “Virtual Functional Bus” resulting from this document are
listed explicitly as numbered “specification items”. Each specification item has a
unique ID of the form “VFB-XXX” and has the following format:

VBF-XXX : Example of a specification Item

8 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR

2 The Virtual Functional Bus

Virtual Functional Bus

AUTOSAR Release 4.2.2

Figure 2.1 shows an overview out of the “Methodology” specification [1]. Figure 2.2
illustrates the “Configure System” activity out of the methodology (top-left), which

focuses on the VFB.

System

I%D%I\

System ~ Configure System
Conflgurat«\on\\ System Configuration
Input: \ AN Description
System \\ \\ :System
N
\ \\ ECU
\ N\ Extract
\ ECU-Specific
N
\\ Q Information
\ — — — —
\ —— -
\ ECU ECU "~ —Configuie-——___ ECU Generate ECU
\ related Extract of ECU Configuration Executable Executable
\\ templates System Description
\ Configuration
:System
\
7
Q Component /
Component Implement Implemented
related Component Component
templates
Figure 2.1: Overview of the AUTOSAR Methodology [1]

9 of 104

- AUTOSAR Confidential -

Document ID 056: AUTOSAR_EXP_VFB

AUT@\)SAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

SW-C SW-C SW-C SW-C
Description Description Description Description

Il

—
AUTOSAR AUTOSAR AUTOSAR AUTOSAR
SW-C1 SW-C2 SW-C3 . SW-Cn

A0V ﬂ@%ﬂ

Virtual Functional Bus

| Tool Supporting development
of SW components
System Constraint
ECU . \ Description
Descriptions EI EI
ECU

ECU
Description Description
ECU | ECUII ECUn

AUTOSAR AUTOSAR AUTOSAR AUTOSAR
SW-C 1 SW-C 2 SW-C3 . SW-Cn

Basic Basic Basic

Software Software Software
i ! Gateway LL—
Flex Ray CAN

Figure 2.2: Detailed view on the activity “Configure System”

In AUTOSAR, an application is modeled as a composition of interconnected
components. This is illustrated in the top half of Figure 2.2 (labeled “VFB view”). The
“virtual functional bus” is the communication mechanism that allows these
components to interact. In a design step called “Configure System”, the components
are mapped on specific system resources (ECUs). Thereby, the virtual connections
between the components are mapped onto local connections (within a single ECU) or
on network-technology specific communication mechanisms (such as CAN or
FlexRay frames). Finally, the individual ECUs in such a system can be configured.
The concrete interface between the individual components and between the
components and the Basic Software (BSW) [5][4] is called the Run-Time
Environment (RTE) [7]

A component encapsulates complete or partial automotive functionality. Components
consist of an implementation and of an associated formal software-component
description (defined in the “Software Component Template” specification [6]). The

10 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

concept of the virtual functional bus allows for a strict separation between
applications and infrastructure. The software components implementing the
application are largely independent of the communication mechanisms through which
the component interacts with other components or with hardware (such as sensor or
actuators). This fulfils AUTOSAR’s goal of relocatability (see also AUTOSAR “Main
Requirements” [3]).
With this the complete communication of a system can be specified including all
communication sources and sinks. The VFB can therefore be used for plausibility
checks concerning the communication of software components. The communication
connections and the connected software components are saved in one description,
which will be used for the next process steps (mapping, software configuration, etc.).
The VFB specification needs to provide concepts for all infrastructure-services that
are needed by a component implementing an automotive application. These include:
e Communication to other components in the system
e Communication to sensors and actuators in the system (see Chapter 6,
Interaction with hardware)
e Access to standardized services, such as reading to or writing from non-
volatile ram (see Chapter 7, AUTOSAR Services)
¢ Responding to mode-changes, such as changes in the power-status of the
local ECU (see Chapter 8, Mode Management)
¢ Interacting with calibration and measurement systems (see Chapter 10)

11 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

3 Overall mechanisms and concepts

3.1 Components

The central structural element used when building a system at the VFB-level is the
‘component”. A component has well-defined “ports”, through which the component
can interact with other components. A port always belongs to exactly one component
and represents a point of interaction between a component and other components.

Figure 3.1 shows an example of the definition of a component-type -called
“SeatHeatingControl”, which controls the heating element in a seat based on several
information sources.

In this example, the component-type requires the following information as input:

e whether a passenger is sitting on the seat (through the port “SeatSwitch”)

¢ the setting of the seat temperature dial (through the port “Setting”)

e and some information from a central power management system (through the
port “PowerManagement”), which could decide to disable seat heating in
certain conditions.

It controls

o the DialLED that is associated with the seat temperature dial (port “DialLED”)

e and the heating element (through the port “HeatingElement”).

Finally, the component can be calibrated (port “Calibration”), needs the status of the
ECU on which the component runs (port “ecuMode”) and requires access to local
non-volatile memory (port “nv”).

SeatHeatingControl D

P [SeatSwitch

HeatingElement |

O [Setting

PowerManagement | <

o [piaeD I

Calibration q

nv ecuMode

A

Figure 3.1: Example of the definition of the component-type
“SeatHeatingControl” with eight ports

12 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

Figure 3.2 shows an example of the definition of a sensor-actuator component® called
“SeatHeating”. This component inputs the desired setting of the heating element
(through the port “Setting”) and directly controls the seat heating hardware (through

the port “10”).
SeatHeating 7\
Setting
O 10
~
Figure 3.2; Example of the definition of a component-type “SeatHeating” with
two ports

A single component can implement both very simple but also very complex
functionality. A component may have a small number of ports providing or requiring
simple pieces of information, but can also have a large number of ports providing or
requiring complex combinations of data and operations.

AUTOSAR supports multiple instantiation of components. This means that there can
be several instances® of the same component in a vehicle system. Figure 3.3 shows
how two instances of the “SeatHeatingControl” component-type are used to control
the left front seat, respectively the right front seat. These components will typically
have their own separate internal state (stored in separate memory locations) but
might for example share the same code (in as far as the code is appropriately written

to support this).

SHCFrontLeft: D
SeatHeatingControl

HeatingElement | (

P> | SeatSwitch P | SeatSwitch

SHCFrontRight: D
SeatHeatingControl

HeatingElement |

O [setting QO [Setting
PowerManagement | <« PowerManagement |«
«[pialLED | |pialeD |
Calibration | <] Calibration | <]
nv ecuMode nv ecuMode
A A
Figure 3.3: Example showing the multiple instantiation of the component

“SeatHeatingControl” as “SHCFrontLeft” and “SHCFrontRight”

2 Chapter 6, Interaction with hardware, defines the exact purpose of the “sensor-actuator” components
® Dynamic instantiation at runtime is not in scope of the present release of AUTOSAR.

13 of 104
- AUTOSAR Confidential -

Document ID 056: AUTOSAR_EXP_VFB

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

[EXP_Vfb_00001] [At configuration time, the component’s ports are known| ()
[EXP_Vfb_00002] | Components interact with each other through their ports only| ()

[EXP_Vfb_00084] [A component-type can be instantiated multiple times on the VFB
1 0

3.2 Port-Interfaces

A port of a component is associated with a “port-interface”. The port-interface
defines the contract that must be fulfiled by the port providing or requiring that
interface.

[EXP_Vfb_00003] | At configuration time, each port is typed by exactly one port-
interface| ()

Table 3.1 lists the port-interfaces supported by AUTOSAR.

14 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR

Virtual Functional Bus

AUTOSAR Release 4.2.2

Kind
interface

of port-

Comment

Further reading

Client-server

The server is provider of operations and
several clients can invoke those
operations.

this section and

Section 4.4

Sender-receiver

A sender distributes information to one or
several receivers, or one receiver gets
information (events) from several
senders*. A mode manager can notify
mode switches to one or several
receivers

this section and

Section 4.3

Parameter Interface

A parameter interface allows software
components access to either constant
data, fixed data or calibration data. It
should be noted that depending on the
type of access (i.e. fixed, const or
standard respectively) that compatibility
rules apply. For example a parameter
interface which uses a fixed
implementation policy will not be allowed
to connect to a port of a Parameter SW
Component if the provider uses a
variable data implementation (i.e.
standard). The reason is plain and
simple; The application will use a #define
(pre-compile value optimization) and so
will not take actual values from the
Parameter SW component at runtime.

Chapter 10

Non volatile
Data Interface

Provide element level access (read only
or read/write) to non volatile data as
opposed to NV block access.

Section 4.3

Trigger Interface

The trigger interface allows software
components to trigger the execution of
other software components. The purpose
of the trigger interface is to allow for fast
response times with regards to the
occurrence of a trigger which might occur
sporadic or at a variable cycle time.
Example: triggering based on the crank
shaft and cam shaft position.

Section 3.8

* In the context of AUTOSAR, sending, receiving and distributing of events is seen as part of the
sender-receiver communication pattern.

15 of 104

Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

Mode Switch The mode switch interface is used to|Section 8
Interface notify a software component of a mode.
The mode manager provides modes that
can be used by mode users to adjust the
behavior according to modes or
synchronize activities to mode switches.

Table 3.1: The kinds of port-interfaces provided by AUTOSAR.

A client-server interface defines a set of operations that can be invoked by a client
and implemented by a server. Figure 3.4 shows an example of the definition of a
simple client-server interface. The interface “HeatingElementControl” defines a
single operation called “SetPower” with a single ingoing argument called “Power”.
The operation can return an application error called “HardwareProblem”.

<<ClientServerinterface>>
HeatingElementControl

ApplicationErrors:
HardwareProblem

Operations:

SetPower(

IN ARGUMENTInt32 Power,
POSSIBLEERROR=HardwareProblem)

Figure 3.4: Example of a client-server interface “HeatingElementControl” with
a single operation

A sender-receiver interface defines a set of data-elements that are sent and received
over the VFB. Figure 3.5 shows the definition of a simple sender-receiver interface
called “SeatSwitch” containing a single data-element called “PassengerDetected”.

<<SenderReceiverinterface>>
SeatSwitch

DataElements:
boolean PassengerDetected

Figure 3.5: Example of a Sender-Receiver Interface “SeatSwitch” with a single
data-element

[EXP_Vib_00004] [At configuration time it is known whether the port-interface is a
client-server interface or a sender-receiver interface| ()

[EXP_Vib_00005] [At configuration time, it is known which operations a client-
server interface contains| ()

[EXP_Vfb_00006] [At configuration time, it is known which data-elements a sender-
receiver interface contains| ()

16 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
) AUTOSAR Release 4.2.2

AUTOSAR has standardized stable and widely accepted application interfaces to
ensure the interoperability of software components from different vendors. The
application interfaces aim to cover a wide range of automotive domains.

Body and Comfort [9]

Powertrain [10]

Chassis [11]

Occupant and Pedestrian Safety Systems [12]
HMI, Multimedia and Telematics [13]

AUTOSAR Application Software
Body Powertrain Chassis Occupant & Multimedia
Electronics Domain Domain Pedestrian Telematics
Domain Safety HMI
Domain Domain
VFB

The application interfaces make use of the concept of blueprint. A blueprint is a pre-
definition of a model element and can be used as a basis for further modeling. A user
guide [14] dedicated to application interfaces is available for more information.

3.3 Ports

As defined before, the ports of a component are the interaction points between
components.

A port of a component is either a “PPort”, a “RPort” or a “PRPort”. A “PPort” or a
“‘PRPort” provides the elements defined in a port-interface. A “RPort” or a “PRPort”
requires the elements defined in a port-interface. A port is thus typed by exactly one
port-interface®.

3.3.1 Port Types

A single port-interface can type several different ports.

[EXP_Vib_00007] [At configuration time, it is known whether a component’s port is
a PPort, a RPort or a PRPort| ()

Table 3.2 shows the port-icons for the various combinations and summarizes the
semantics of those ports. Please note that PRPorts typed by a parameter interface
are not supported.

Kind of Port Kind of Interface | Service | Port-Icon and description
Port

® This implies that a port only provides one elementary communication pattern (either sender-receiver

or client-server). This is necessary because otherwise a reasonable connection of ports is not

possible. Additionally only in this way a reasonable modeling e.g. of data flow is possible.

17 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

RPort

sender-receiver

No

[EXP_Vfb_00096]

<

The component reads/consumes
values of data-elements

PPort

sender-receiver

No

[EXP_Vfb_00097]

>

The component provides values of
data-elements

PRPort

sender-receiver

No

[EXP_Vib_00129]

.

The component provides and reads
values of data-elements

RPort

sender-receiver

Yes

[EXP_Vfb_00098]

A

The component reads/consumes
values of data-elements from an
AUTOSAR service

PPort

sender-receiver

Yes

[EXP_Vib_00099]

a

The component provides values of
data-elements to an AUTOSAR
service

PRPort

sender-receiver

Yes

[EXP_Vifb_00132]

o

18 of 104

Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTO SAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

The ¢

values of data-elements to/from an

omponent provides and reads

AUTOSAR service

RPort

client-server No

The component requires (=uses or
invokes) the operations defined in

[EXP_Vib_00100]

.

the interface

PPort

client-server No

(zimplements) the operations

[EXP_Vfb_00101]

O

The component provides

defined in the interface

PRPort

client-server No

prov

The component requires and

[EXP_Vfb_00133]

(¢}

ides the operations defined in
the interface

RPort

client-server Yes

invo
the

The component requires (=uses or

[EXP_Vifb_00102]

o

kes) the operations defined in
interface from an AUTOSAR
service

PPort

client-server Yes

[EXP_Vib_00103]

0

The component provides

19 of 104

- AUTOSAR Confidential -

Document ID 056: AUTOSAR_EXP_VFB

AUTO SAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

(=implements) the operations
defined in the interface to an
AUTOSAR service

PRPort client-server Yes
[EXP_Vib_00134]
The component provides and
requires the operations defined in
the interface to/from an AUTOSAR
service
RPort parameter (this | No
includes requiring [EXP_Vfb_00104]
calibration data)
d
The component requires parameter
data (either fixed, const or variable)
PPort parameter (this | No
includes [EXP_Vfb_00105]
providing
calibration data)
>
The component provides parameter
data (either fixed, const or variable)
RPort parameter (this | Yes
includes requiring [EXP_Vfb_00106]
calibration data)
The component requires parameter
data (either fixed, const or variable)
from an AUTOSAR service
PPort parameter (this | Yes

includes
providing
calibration data)

[EXP_Vfb_00107]

B

The component provides parameter
data (either fixed, const or variable)
to an AUTOSAR service

20 of 104

Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTO SAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

RPort

Trigger

No

[EXP_Vfb_00108]

<

Component with a trigger sink

PPort

Trigger

No

[EXP_Vib_00109]

>

v

Component with a trigger source

PRPort

Trigger

No

[EXP_Vib_00135]

A

Component with a trigger source and
sink

RPort

Trigger

Yes

[EXP_Vfb_00110]

&

Component with a trigger sink from
an AUTOSAR service

PPort

Trigger

Yes

[EXP_Vfb_00111]

B

Component with a trigger source to
an AUTOSAR service

PRPort

Trigger

Yes

[EXP_Vfb_00136]

=

Component with a trigger source and
sink to/from an AUTOSAR service

RPort

mode switch

No

[EXP_Vib_00112]

21 of 104

Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTO SAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

i

Component with a mode switch user

PPort

mode switch

No

[EXP_Vifb_00113]

i

Component with a mode switch
manager

PRPort

mode switch

No

[EXP_Vfb_00130]

i

Component with a mode switch
manager and user

RPort

mode switch

Yes

[EXP_Vib_00114]

i

Component with a mode switch user
with an AUTOSAR service

PPort

mode switch

Yes

[EXP_Vib_00115]

o

Component with a mode switch
manager with an AUTOSAR service

PRPort

mode switch

Yes

[EXP_Vib_00137]

i

Component with a mode switch
manager and user with an
AUTOSAR service

RPort

NV data

No

[EXP_Vib_00116]

22 of 104

Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTO SAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

<

The component requires access to
non volatile data provided by an NV
Block Component

PPort

NV data

No

[EXP_Vib_00117]

B>

The NV Block Component provides
access to non volatile data

PRPort

NV data

No

[EXP_Vib_00131]

A

The component provides and
requires access to/from non volatile
data

RPort

NV data

Yes

[EXP_Vib_00118]

"

The component requires access to
non volatile data provided by an
AUTOSAR service

PPort

NV data

Yes

[EXP_Vfb_00119]

"

The component provides access to
non volatile data to an AUTOSAR
service

PRPort

NV data

Yes

[EXP_Vib_00138]

.

23 of 104

Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
’ AUTOSAR Release 4.2.2

The component provides and
requires access to/from non volatile
data of an AUTOSAR service

Table 3.2: Semantics of the port-icons

When a PPort of a component provides a client-server interface, the component to
which the port belongs provides an implementation of the operations defined in the
interface.

In the example of Figure 3.6, the component “SeatHeating” implements the operation
“SetPower” and makes it available to other components through the port “Setting”.
The component “SeatHeatingControl” uses the operation “SetPower” and expects
such an operation to be available through the port “HeatingElement”.

SeatHeatingControl D SeatHeating %
Setting
eatSwitc
P [SeatSwitch ,‘O (o]
/ ~
(]
]
HeatingElement | ({ /]
O [setting I \\ [}
N\ <<Interface>>
PowerManagement .
g T N HeatingElementControl
. \
<« [PialLED Calibration | <] \\ ApplicationErrors:
\‘ HardwareProblem
nv ecuMode Operations:
A SetPower(
IN ARGUMENTINnt32 Power,
POSSIBLEERROR=HardwareProblem)
Figure 3.6: Example showing the use of the Client-Server Interface

“HeatingElementControl” to type the Port "HeatingElement” of the component
“SeatHeatingControl” and the port “Setting” of the component “SeatHeating”

A component providing a sender-receiver interface generates values for the data-
elements defined in the interface.

In the example of Figure 3.7, the component “SeatSwitch” generates values for the
Boolean value “PassengerDetected” through its port “Switch”. Similarly, the
component “SeatHeatingControl” can read the data-element “PassengerDetected”
through its port “SeatSwitch”.

24 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
’ AUTOSAR Release 4.2.2

SeatHeatingControl D
SeatSwitch >\
SeatSwitch
/" >
: ’
10 Switch PR
’
Fa v PR |
~ e HeatingElement | C
N ,/’ O [setting
\N_,”
L
<<Interface>> PowerManagement 4
SeatSwitch I
<|DiaILED Calibration |<q
DataElements:

boolean PassengerDetected

nv ecuMode
Figure 3.7: Example showing the use of the Sender-Receiver Interface

“SeatSwitch” to type the Port “SeatSwitch” of the components
“SeatHeatingControl” and the port “Switch” of the component “SeatSwitch”

3.3.2 Port Compatibility

A receiver port can only be connected to a compatible provider port. Table 3.3 gives
an overview over the compatibility of ports. The following comments describe some
basic compatibility rules. Please note that this overview only contains some basic
rules. A more comprehensive and detailed description is given in the “Software
Component Template” [6].

(1) For each element in the interface of the require port there must be a
compatible element in the interface of the provide port. The mapping is
realized implicitly via the shorthame of the element or explicitly via explicit
mappings (see section 3.9.1).

(2) For mode switch ports all elements of the interface of the provide port must
have a corresponding element in the interface of the require port.

(3) Require and provide port are both service ports or are both not service ports.

(4) For connecting ports with Sender Receiver Interface, Parameter Interface or
Non Volatile Data Interface, corresponding elements must have compatible
implementation policies (see “Software Component Template” [6]).

(5) PRPorts typed by a parameter interface is not supported.

For example, a Require Port that expects a fixed parameter can only be
connected to a Port that provides a fixed Parameter. This is because this fixed
data may be used in a compilation directive like #if and only macro #define (fixed
data) can be compiled in this case.

25 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
) AUTOSAR Release 4.2.2

Kind of RPort or PRPort
port
Kind of Sender Parameter | Non Client Trigger | Mode
interface | Receiver Volatile | Server Switch
Data
PPort Sender yes no yes no no no
or Receiver | .34 (1.34)
PRPort | Parameter | yes yes yes no no no
(1,3,4,5) (1,3,4,5) (1,3,4,5)
Non yes no yes no no no
Volatile (1.3.4) (1.34)
Data
Client no no no yes no no
Server (1.3)
Trigger no no no no yes no
1.3
Mode no no no no no yes
Switch (1.23)
Table 3.3: Compatibility of kinds of ports

(numbers in this table correspond to the compatibility rules described before)

3.3.3 Data Type Policies

Data elements on a port are typed properly as part of the port interface description of
a SWC. However it should be noted though that the data type of elements to be
communicated between two ports can be overridden by the integrator by overriding
the data type using a data type policy which allows for reducing the number of bits to
be transmitted over a physical network. The data type has to be compatible and
usually result in loss of precision and introduce quantization artifacts.

3.4 Connectors
During the design of an AUTOSAR system, ports between components that need to

communicate with each other are hooked up using assembly-connectors. Such an
assembly-connector connects one RPort or PRPort with one PPort or PRPort.

26 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
’ AUTOSAR Release 4.2.2

SHCFrontLeft: D
SeatHeatingControl

u SeatSwitch
SHFrontLeft:
SHDialFrontLeft: SeatHeating
HeatingDial
e HeatingElement 10
Position Setting r~1
PowerManagement n
10 LED DialLED
[~ Calibration | <]
| -

PM: D
PowerManagement

SHCFrontRight: D
SeatHeatingControl

[’ SeatSwitch

n WindowDefrost

PowerStatus

SHDialFrontRight: PO T ‘
HeatingDial
Position

Calibration SHFrontRight:
SeatHeating

IO LED DialLED HeatingElement -

[~] [~]

| - 1]

Figure 3.8: Example of the use of eight assembly-connectors to connect the
ports of seven components

For the case of sender-receiver communication, the presence of an assembly-
connector represents the fact that the data generated by the PPort on the connector
is transmitted to the RPort. In the example of Figure 3.8 the data generated on the
PPort “DialLED” of the component “SHCFrontRight” (of component-type
“SeatHeatingControl”) is transmitted to the RPort “LED” of the component
“SHDialFrontRight” (of component-type “HeatingDial”).

For the case of client-server communication, an invocation of the operations provided
on a PPort is possible from the components that have an RPort connected to this
PPort. In the example of Figure 3.8: when the component “SHDialFrontLeft” invokes
an operation through the port “Position”, this operation will be invoked on the port
“Setting” of the component “SHCFrontLeft”.

Both for sender-receiver communication and for client-server communication, one
PPort can be connected to one or more RPorts (for multicast sending and multiple
clients connected to a server, respectively). In the example of Figure 3.8, the data
coming out of the port “SeatHeating” of the component “PM” is sent to both
components “SHCFrontLeft” and “SHCFrontRight”.

Furthermore, in sender-receiver communication one or more PPorts can be
connected to one RPort (e.g. for information collected from different senders in a
single receiver).

The exact communication behavior that such a connector represents depends on the
kind of operations or data that is provided and/or required on the ports that the

connector connects.
27 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
’ AUTOSAR Release 4.2.2

[EXP_Vfb_00008] [At configuration time, all components instantiated on the VFB
are known| ()

[EXP_Vib_00009] [At configuration time, all communication possibilities between
components on the VFB are modeled through the presence of connectors.
Communication between ports not connected through such a connector is not
possible.®] ()

[EXP_Vfb_00010] [An assembly-connector connects exactly one PPort or PRPort
with exactly one RPort or PRPort| ()

[EXP_Vib_00113] [An assembly-connector can connect one PPort or PRPort with
one RPort or PRPort only if their port types, interfaces and attributes, characterizing
their communication abilities, are compatible with each other”.| ()

3.4.1 Unconnected Ports

The occurrence of an unconnected port is not per se a design mistake. It can be valid
when an application provider for the data element is absent and the default init value
is good enough to operate with or it could be that an end point was removed from the
system because it is subjected to variability (See section Variant Handling).

3.4.1.1 Unconnected PRPorts
A PRPort is never considered unconnected, even if there are no connectors actually
referring to it.

3.4.1.2 Unconnected Sender/Receiver Ports

If a PPort of a sender receiver communication is unconnected then the data being
published by the provider will not appear on the VFB and as such will not be
accessible by any other software component.

If an RPort of a sender receiver communication is unconnected then the RPort shall
provide the initial value and report of an unconnected RPort.

3.4.1.3 Unconnected Client/Server Ports

If a PPort of a client server communication is not connected the server will not
receive any requests.

® The AUTOSAR-Services are an exception to this rule. The connections related to AUTOSAR-

Services are made later in the AUTOSAR-method, namely during ECU-configuration. See AUTOSAR

Services, for a deeper explanation.

" The exact meaning of “compatibility” is defined in the Software Component Template [6].

28 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
’ AUTOSAR Release 4.2.2

If an RPort of a client server communication is unconnected then the RPort shall
report of an unconnected RPort.

3.5 Compositions versus atomic components

A sub-system consisting of usages of components and connectors is packaged into a
“‘composition”. In AUTOSAR, the usage of a component-type within a composition is
called a “prototype”. A composition is itself a component-type and can have its own
ports. Compositions can be used as structuring elements to build up hierarchical
systems with an arbitrary number of hierarchies.

Figure 3.9 shows the definition of the composition “SeatHeatingControlAndDrivers”.
This composition contains three prototypes: the prototype “SHDial” (of component-
type “HeatingDial”), the prototype “SHC” (of component-type “SeatHeatingControl”)
and the prototype “SH” (of component-type “SeatHeating”). The composition itself is
a component-type and has seven ports.

...

SeatHeatingControlAndDrivers

E SeatSwitch

SHC:
SeatHeatingControl D
’ SeatSwitch

PowerManagement

PowerManagement I:{] : <|

SHDial:
HeatingDial >\

Position

SH:
SeatHeating %
HeatingElement I:(10
[~]

I0Dial Calibration IOHeating

Figure 3.9: Example of the definition of the Composition
“SeatHeatingControlAndDrivers”

Figure 3.10 shows the use of a composition as a component-type. Figure 3.10
essentially shows another composition containing three prototypes: the prototypes
“SHFrontLeft” and “SHFrontRight” (both of type “SeatHeatingControlAndDrivers”) and
the prototype “PM” of type “PowerManagement”.

A component-type in AUTOSAR is either a “composition” or “atomic”. A composition
is defined through interconnected prototypes (as in Figure 3.9). An atomic
component cannot be further decomposed into smaller components.

When designing a composition, service ports have to be specially handled. The
configuration of AUTOSAR services takes place in the ECU configuration phase by
adding the necessary service components and connecting them to the flattened set
of atomic software components which require access to the services. As a

29 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
' AUTOSAR Release 4.2.2

consequence, compositions are not allowed to have ports for use with services. For
more details about services, see AUTOSAR Services.

SHFrontLeft: oo
SeatHeatingControlAndDrivers a
P> | SeatSwitch PowerManagement |«
I0ODial IOHeating nv Calibration PM: I:I
~ h A A PowerManagement
<« | SeatHeating
SHFrontRight: ao <« | WindowDefrost
SeatHeatingControlAndDrivers o
PowerStatus |«
P> | SeatSwitch PowerManagement |«
IODial IOHeating nv Calibration
Figure 3.10: Example of the use of the Composition

“SeatHeatingControlAndDrivers”

3.6 Relationship between the VFB and the ECU Software
Architecture

When a sub-system consisting of atomic components and assembly-connectors is
deployed on a network of ECUs, all atomic components are mapped on an ECU.
The corresponding connectors between the components are implemented by intra- or
inter-ECU communication mechanisms.

In the example of Figure 3.11, atomic components “SHDialFrontLeft” and
“‘SHCFrontLeft” are mapped onto “ECU1”, whereas the atomic component “PM” is
mapped onto “ECU3”. This implies that the connectors between the first two
components are handled within ECU1, whereas the connection between the
component “SHCFrontLeft” and the component “PM” will run through a network
connection between ECU1 and ECU3.

30 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUT O SAR Virtual Functional Bus
- AUTOSAR Release 4.2.2

SHDialFrontL SHCFrontLeft: HFront SHDialFront SHCFrontRight: HFront 3
eft: SeatHeatingControl Left: Right: SeatHeatingControl Right: PowerManag
HeatingDial SeatHe HeatingDial SeatHe

ECU1 ECU2 ECU3

PM: D

PowerManag

A

SHDialFrontL
eft:
HeatingDial

[} ecuMode

Figure 3.11: Example illustrating the mapping of a composition of components on
three ECUs.

Figure 3.12 shows the standard component-view on the AUTOSAR layered software
architecture, which is the architecture of a single AUTOSAR ECU. The “AUTOSAR
Interface” of a component refers to the full set of ports of a component (as defined
before, a port-interface characterizes a single port of a component). A “Standardized
AUTOSAR Interface” is an AUTOSAR Interface which is standardized by AUTOSAR.
Typically, an AUTOSAR service will have such a “Standardized AUTOSAR
Interface”. For a formal definition of the term AUTOSAR Interface and Standardized
AUTOSAR Interface see specification “Layered Software Architecture” [5].

31 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
- AUTOSAR Release 4.2.2

Application Actuator Sensor Application
AUTOSAR Software Software Software AUTOSAR Software
Software Component Component Component S ft Component
war
(ST AUTOSAR AUTOSAR AUTOSAR Oitware AUTOSAR
Interface Interface Interface Interface
Interface
AUTOSAR Runtime Environment (RTE)
Standard
Software J:[I - J:E I I
Standardized S}\agggg’/fsd Standardized AUTOSAR AUTOSAR
Interface i Interface Interface Interface
“ VFB & RTE Services Communication Abslfr(;l:tion
relevant - - -
» Standardized Standardized Standardized
(:::) RTE s I Interface Interface Interface
relevant =23
Operating | & & Complex
™ Bsw System |24 Drivers
relevant LI Standardized
— = Interface
Possub_le |_nterfaces
Basié"ésgﬁvare Microcontroller
(Eiitiety a1 Abstraction
not specified
within AUTOSAR) ECU_Hardware

Note: This figure is incomplete with respect to the possible interactions between the layers.

Figure 3.12: Component-View on the AUTOSAR layered software architecture

Figure 3.13 shows what a possible concrete architecture of ECUL out of the example
of Figure 3.11 might look like. The atomic software components that are mapped on
ECUL are hooked into the Run-Time Environment that is generated for ECUL. This
Run-Time Environment will typically implement the local connections between the
local components “SHCFrontLeft” and “SHDialFrontLeft”.

In addition, the Run-Time Environment has the responsibility to route information that
is coming from or going to remote components. In the example, the port “Power
Management” is routed to the communication stack in the underlying basic software.
The RTE also hooks up the component “SHCFrontLeft” to local standardized
AUTOSAR services, such as the local non-volatile memory (through the port “nv”
and information on the local state of the ECU (“through the port “ecuMode”).

32 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
B AUTOSAR Release 4.2.2

SHCFrontLeft: SeatHeatingControl D 7\

c E SHDialFrontLeft:
2) g HeatingDial
8 o =
S =} 38
3 = -

3 > 5]
° s E o= 10
Ay

NvBlockSw
Component

il 1 o
Standardized Standardized ECU Abstraction
Interface Intetface Component

ECU State
Manager
NvRam
Manager

Communication

Standardized

I I Intetface

Standdrdized
Interfate

Operating
System

ERLEINENT
paziplepuels

Microcantroller
Abstraction

ECU-Hardware

Figure 3.13: Example showing the relationship between the components mapped
on an ECU and the ECU Software Architecture

3.7 Kinds of software components

This section gives a final overview of the various kinds of components that are
relevant to AUTOSAR.

Kind Description lllustration
Application The Application Software
software Component is an Atomic Software [EXP_Vfb_00120]

component Component that implements (part
of) an application. It can use all
AUTOSAR communication
mechanisms and services. The
Application Software Component
interacts with sensors or actuators
through a Sensor-Actuator Software
Component.

33 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

<<ApplicationSw
ComponentType>>

Sensor- The Sensor-Actuator Software
actuator Component is an Atomic Software [EXP_Vfb_00121]
software Component that handles the
component | specifics of a sensor and/or I SEEUIRSAEHERT N
actuator. It directly interacts with Q| ComponentType>>
the ECU-Abstraction (this s)
illustrated by a port called “10”). See | L
E:hapter 6, Interaction with | [pp o [c
ardware. I
<
I
>
Parameter A Parameter Software Component
software provides parameter values. These [EXP_Vfb_00122]
component can be fixed data, const or variable.
This Software Component allows for
data access to either fixed data or C«Parametersw D>
calibration data. See chapter 10. omponentType>>
Composition | A Composition Software Component
software encapsulates a collaboration of [EXP_Vfb_00123]
component Software Components, thereby

hiding detaill and allowing the
creation of higher abstraction levels.
Through delegation connectors a
composition software component
explicitly specifies, which ports of
the internal components are visible
from the outside.

Composition Software Components
are a specialized type of Software
Components, e.g. they can be part
of further Composition Software
Components.

<<CompositionSw 00O

ComponentType>>
o >
: |
J
D>

AHVHOHN

34 of 104

- AUTOSAR Confidential -

Document ID 056: AUTOSAR_EXP_VFB

AUTO SAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

Service The Service Proxy SW Component
Proxy is responsible for distribution of [EXP_Vib_00124]
software modes throughout the system. Once
component deployed each ECU should have a V - V
copy of every instance of this]
software component type. However <<ServiceProxySw g—l
at the VFB level only one is ComponentType>>
necessary.
Service A Service Software Component
software provides standardized services [EXP_Vfb_00125]
component through standardized interfaces. To
provide these services, this —m—
component may interact directly with)
certain other basic-software c <<SerVI€_(I-E‘SW -
modules (this is represented by the omponentiype
double arrow). See Chapter 7. A\
ECU- The ECU-Abstraction Software
abstraction Component provides access to the [EXP_Vfb_00126]
software ECU’s specific 10 capabilities.
component These services are typically (@)
provided through client-server '_O
PPorts and are used by the sensor- ==ECUAbstractionSw
ComponentType>>
actuator software components. The
ECU-abstraction may directly
interact with certain other basic- A
software modules (this IS ! !
represented by the double arrow).
See Chapter 6, Interaction with
hardware.
Complex The Complex Driver Software
driver Component generalizes the “ECU- [EXP_Vib_00127]
software abstraction component”. It can
component | define ports to interact with other HOHUHAHVHV

components in specific ways and
can also interact directly with other
basic-software modules. The
purpose of the Complex Driver
Software Component is described
further in Section 6.5 Complex
Driver.

<<ComplexDeviceDriverSw
ComponentType>>

AN
v

350f 104

- AUTOSAR Confidential -

Document ID 056: AUTOSAR_EXP_VFB

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

NVBlock The NV Block Software Component
software allows SWC-S access to non [EXP_Vfb_00128]
component volatile data. Specifically this block

allows for the modeling of the NV AHVHOHU

data at the VFB level. It is the

responsibility of the NV Block to <<NvBlockSw

map individual NV data elements to CONMDSITETIEE
NV Blocks and to interact with the
NV Manager in the BSW. The A
behavior of this component is to be
generated based on the port J\ /L
services in the RTE.

Table 3.4: Kinds of software components

3.8 Resources for components and “runnables”

3.8.1 Background

The VFB is a system modeling and communication concept, which allows
components to be distributed in a network of ECUs. The interaction possibilities
between a component and other components are described through the component's
ports and their associated interfaces, which define the operations, data-elements,
mode-groups or calibration parameters that are provided or required by the
component. Through the same communication mechanisms, the component can
interact with standardized AUTOSAR services (available on each properly configured
AUTOSAR ECU) or the ECU-specific 10 capabilities (available on the specific ECU
on which the appropriate hardware is present and to which the correct devices are
connected).
However, implementations of components need access to additional resources,
mainly memory (the component’s implementation typically needs memory to maintain
its internal state) and CPU-power (the component’s implementation contains code
that must be executed according to a certain timing schedule or in response to
certain events).
As these scheduling issues are closely linked to the communication needs of the
component, the RTE must provide both aspects. Therefore, the RTE must provide a
complete environment for the component, including:

e Appropriate mechanisms through which the component’s implementation (for

example in a programming language like “C”) can:

o Provide values for data-elements in the component’s PPorts
Read/Consume values for data-elements in the component’s RPorts
Access the component’s calibration parameters
Provide implementations for the operations in the component’s PPorts
Invoke operations provided by other components through the
component’s RPorts
Etc.

o O O O

o

36 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
- AUTOSAR Release 4.2.2

e Appropriate mechanisms through which the component’s implementation (for
example “C” functions) is invoked in response to:

o Fixed-time schedules (for example: many components need to run
“cyclically”)

o Events related to the communication mechanisms (for example some
components might want to be notified upon the reception of data from
other components)

o Events related to physical occurrences (i.e. a triggered event).

e Appropriate mechanisms through which the component’s implementation can
access other common resources, such as instance-specific memory
e As an AUTOSAR ECU typically is a multi-threaded environment, the RTE
must also provide all common synchronization mechanisms
This section introduces the AUTOSAR construct that addresses these various needs:
the “runnable”.

3.8.2 The “runnable” concept

The “atomicity” of an atomic software-component refers to the fact that the
component cannot be divided in smaller components and must therefore be mapped
onto a single ECU.

For example, Figure 3.14 shows a logical component view of the mapped
application-software component “SHCFrontLeft” on a specific ECU. Through its ports,
the component expresses which information it requires from and provides to other
components.

SHCFrontLeft: SeatHeatingControl

Calibration
ecuMode
Power
Management

> SeatSwitch

Q| setting

Figure 3.14: Component-view on the interaction between an atomic software
component and the RTE on an ECU

However, the actual implementation of a component consists of a set of “runnable
entities™ (also more simply called “runnables”). A “runnable entity” is a sequence of
instructions (provided by the component) that can be started by the Run-Time
Environment®.

® The usage of the word “runnable” is for example consistent with the “Runnable” Interface in Java:
“the Runnable Interface should be implemented by any class whose instances are intended to be
executed by a thread”.

° In certain cases, optimization of the RTE could cause a runnable entity to be started directly from

another software-component without real intervention of the RTE. For example a synchronous call to
37 of 104 Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
N AUTOSAR Release 4.2.2

SHCFrontLeft: SeatHeatingControl D

Implementation

Rte_Read_SeatSwitch_PassengerDetected()

MainCyclic
-
Setting

Management
Setting

ecuMode
Power

c

2

=

[

2

©

5] (7]

Figure 3.15: Implementation-view on the interaction between an atomic software
component and the RTE on an ECU

Figure 3.15 shows an example of this. Logically, the component-type
“SeatHeatingControl” has defined six ports, through which it wants to interact with
other components or services. The implementation of the component on the other
hand contains two runnables: “MainCyclic’ and “Setting”. The component requires
the runnable “MainCyclic” to be invoked cyclically (at a specific rate) by the RTE.
The component requires that the second runnable “Setting” is invoked whenever
another component invokes an operation on the PPort “Setting”. The implementation
of the runnables will use the operations provided by the RTE to actually for
communication via the ports of the component. E.g. to access the information
“PassengerDetected” provided to the component through the RPort “SeatSwitch” the
runnable “Setting” will invoke the operation
“‘Rte_Read_SeatSwitch_PassengerDetected()”.

In general, an atomic software-component can provide just one runnable or it can
contain a large number of runnables. A runnable can be a very simple piece of code
that executes a simple algorithm or a complex program.

[EXP_Vfb_00043] [At configuration time, the runnables of a component must be
known| ()

a component that runs on the same ECU and can execute within the context (task) of the caller could

be implemented as a direct function-call into the calling component.
38 of 104 Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

A “runnable entity” runs in the context of a "task"'®. The task provides the common
resources to the “runnable entities” such as a context and stack-space. Typically the
operating-system scheduler has the responsibility to decide during run-time when
which “task” can run on the CPU (or multiple CPUs) of the ECU. There are many
standard strategies that schedulers can use (e.g. priority-based preemptive, round-
robin, time-triggered...).

3.8.3 The implementation of a component and the role of the RTE

In conclusion, the implementation of an atomic software-component essentially
consists of three aspects:
A model of the component (using the concept of ports and port-interfaces) that is
used to hook up the component with other components at the VFB-level
An implementation (“‘code”). The implementation of the component is structured in
‘runnables” which are pieces of code that can be executed by the RTE
A software-component description [6] in which the component describes
requirements on the RTE. These include:
e Which runnables need to be called cyclically
e Which runnables need to be called in response to events related to
communication or other sources
e How the component would like to access the information in its ports or invoke
the operations that it requires from other components
e Any other resources the component requires, such as AUTOSAR services or
local memory
In a properly configured AUTOSAR ECU, the RTE (in cooperation with a properly
configured basic software), will satisfy the component’s requirements. The RTE will
for example:
e Ensure that the runnables are invoked at the correct times
e Provide the functions that the component needs to access data or invoke
operations
e Provide all other resources the component needs

3.9 Interface Conversion Blocks

When software components are developed by different organizations (e.g. two
distinct suppliers delivering code to an OEM who integrates the SWCs) it may
happen that two or more SWCs have the same engineering semantics but are
represented with different data types. Instead of requiring the integrator to develop
specific SWC conversion software the VFB will add a conversion block to a connector
connecting Sender Receiver ports with mismatched interface definitions at the VFB
level. The addition of this conversion block allows the designer to add which
elements of the provided port map to the elements of the required port as well as
provide the conversion semantics. In the RTE these mappings will be described with
the PortinterfaceMappings. This construct maps an interface pair to the connection.

1% Within this discussion, it is not necessary to make a distinction between “processes” (heavy-weight

tasks which are often protected from other processes through memory-management) and “threads”

(light-weight tasks running inside a process). The “task” refers to both.

39 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

[EXP_Vfb_00140] [If a P-port specified by a Sender Receiver Interface is
connected to an R-port with an incompatible interface then a conversion block must
be added for the connector to allow the designer to describe the conversion.
Incomplete conversion will not be allowed] ()

3.9.1 Supported Conversions and Mappings

3.9.1.1 Interface Element Mapping

In case two interfaces only differentiate in the shortnames of their elements, then a
mapping can be provided which maps the elements of the one interface to the
elements of the other interface.

3.9.1.2 Linear Data Conversion

If the elements of two interfaces are logically equivalent but the range and resolution
are different, then the linear conversion factor can be calculated out of the semantical
information of the elements. In this case the data semantics is described using a
CompuMethod with category IDENTICAL, LINEAR, SCALE_LINEAR or
SCALE_LINEAR_AND_TEXTTABLE, where the
e IDENTICAL category means that the value of the physical representation is
equal to the internal representation and the
e LINEAR, SCALE_LINEAR or SCALE_LINEAR_AND_TEXTTABLE categories
mean that the internal representation is calculated out of the physical
representation by means of a linear formula (factor * external value + offset)
per range in one or more ranges (SCALE_LINEAR only).

[EXP_Vib_00141] [A conversion block involving either IDENTICAL, LINEAR,
TEXTTABLE, SCALE_LINEAR or SCALE_LINEAR_AND_TEXTTABLE data types
shall use the COMPU-METHODS for the respective data types to determine the
conversion function.] ()

The following examples show the conversion of data that is described using
CompuMethods with category LINEAR and IDENTICAL.:

1) A software component (A) that provides the vehicle speed in m/s with
resolution 0,1 m/s can be connected with a component (B) that requires the
vehicle speed in m/s with a resolution of 0,01 m/s if both components assume
a linear relation between physical representation and internal representation.
The foll
internal (A) =10 * physical as m/s
internal (B) = 100 * physical as m/s

internal (B) = 100 * physical as m/s

40 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

=100 * (internal (A) / 10)

=10 * internal (A)
Example: Component A provides the value 100 (internal representation for 10
m/s). Multiplying the value with 10 we get the value 1000 as input for
component B (internal representation of 1000 in component B corresponds to
10 m/s)

2) A special case of data scaling is the conversion of units: Software component
(A) that provides the vehicle speed in m/s can be connected with a component
(B) that requires the vehicle speed in km/h if both components assume a
linear or identical relation between physical representation and internal
representation.
internal (A) = physical as m/s
internal (B) = physical as km/h

internal (B) = physical as km/h

= 3,6 * physical as m/s

= 3,6 * internal (A)
Example: Component A provides the value 10 (internal representation for 10
m/s). Multiplying the value with 3,6 we get the value 36 as input for component
B (internal representation of 36 corresponds to 36 km/h which is equivalent to
10 m/s)

3.9.1.3 Data Mapping

In case the data semantics is described using a list of values (CompuMethod with
category TEXTTABLE) or partially described using a list of values (CompuMethod
with category SCALE_LINEAR_AND_TEXTTABLE), then an explicit mapping needs
to be given for each individual value.

[EXP_Vfb_00142] [A conversion block involving TEXTTABLE or
SCALE_LINEAR_AND_TEXTTABLE data types shall use explicit mapping of each
RPort table element to a PPort table element.| ()

3.9.1.4 Mixed Conversion

It is possible in a conversion block to mix both linear conversion and texttable
mappings (SCALE_LINEAR_AND_TEXTTABLE).

An example would be a conversion block consisting of an input value of type uint8
which is linearly converted in the range 0..200 and has 2 texttable mappings for the
values 254 “SensorNotAvailable” and 255 “SensorFault”.

3.10 Variant Handling

To support variation in automotive applications AUTOSAR has a mechanism referred
to as variant handling. This allows designers at many levels to put together a super
set of functionality and choose which actual pieces of this functionality will be
enabled in a specific variant. The place in the design where a choice is given

41 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

between 2 or more variants is called a variation point. The time at which a choice
must be made is called the latest binding time. Binding earlier is always allowed.

3.10.1 Binding Times

AUTOSAR supports several discreet binding times:
e System Design

Code Generation

Pre Compile

Link Time

Post Build

Although variability could exist at function design time and run-time AUTOSAR
explicitly prohibits the later and does not provide support for the function design time.

3.10.2 Choosing a Variant

To choose a variant the AUTOSAR designer must assign no later than the required
binding time one of a predefined set of values to a Software System Constant or to a
Post Build Variant Criterion. The Post Build Variant Criterion is used for enabling
Post Build binding times while the Software System Constant can be used for
everything that has a latest binding time of Link Time.

By assigning a value to either a Software System Constant or Post Build Variant
Criterion the AUTOSAR system can determine which variant is enabled for each
Variation Point in the design by evaluating either a Software System Dependant
Formula (uses System Constants to determine if a Variation Point is enabled or
disabled) or by evaluating one or more a Post Build Variant Conditions (uses Post
Build Variant Criterions to determine if a Variation Point is enabled or disabled). If the
Variation Points Formula or Condition evaluates to true then the element in the
design which was conditional upon the Variation Point will exist in the design.

Typically designers will define collections of validated assignments for Software
System Constants and Post Build Variant Criterions. These collections of value
assignments are also known as Predefined Variants. Predefined Variant Sets are
typically defined at a composition level like a subsystem or system design. A
complete variant for a system therefore typically exists of a collection of Predefined
Variants binding every Variation Point in the system.

3.10.3 Variability

Although variability exists within the internal behavior of Software Components from
a VFB perspective only three elements of variability are of interest:

e Software Component Variability

e Port Variability

e Connector Variability.

42 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

3.10.3.1 Software Component Variability

The existence of a Software Component either Atomic or Composition can be
subjected to the existence of a Variation Point. If a Variation Point exists and its
conditions (see section choosing a Variant) evaluate to true then the Software
Component exists and its behavior will be scheduled and its ports produce output. If
the Component however is removed from a composition (I.e. application or system
design) then all Software components which are connected to the removed Software
Component will have ports which will be considered unconnected and will behave as
unconnected ports (see section Unconnected Ports for more details) and non of the
behavior of the removed component will execute. Software Components variability in
a Composition can be bound as late as Post Build.

3.10.3.2 Port Variability

Ports on a Software Component can also be subjected to variability. However their
latest binding time is Pre Compile time and as such their variability can only be
constrained using Software System Constants. If a Port is removed from the design
then any connecting port must behave as an unconnected port. In a properly
configured system if a Port is “disabled” the connector connecting to this port should
also be subjected to the same variability conditions.

3.10.3.3 Connector Variability
A connection between two ports can be subjected to variability with a binding time of

Post Build. If a connector is “disabled” then the two ports at either end of the
connector must behave as unconnected ports.

43 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

4 Communication on the VFB

4.1 Introduction

This section specifies the communication mechanisms of the VFB, which atomic
software components can use to communicate with each other.

Section 4.2, Error types, defines the types of errors that can appear in both Sender-
Receiver and Client-Server communication models.

Section 4.3, Sender-Receiver communication, defines the functional semantics of
sender-receiver communication in more detail. This section also defines the
communication attributes that define the exact characteristics of the communication
patterns provided by AUTOSAR. Some details related to mode-switches are covered
in Chapter 8, Mode Management.

Section 4.4, Client-Server communication, does the same for client-server.

4.2 Error types

Errors are divided into two simple classes: infrastructure errors and application
errors.

Infrastructure errors are returned when the infrastructure between the sender and the
receiver, for sender-receiver communication, or between the client and the server, for
client-server communication, failed. A typical example of an infrastructure error is a
timeout. In case the client does not receive a response from the server within a
certain amount of time (because the communication channel between client and
server is not available or a message was lost) a “time-out” infrastructure error is
returned to the client. The possible infrastructure errors are standardized by
AUTOSAR.

Application errors are application-specific and must be defined as part of the sender-
receiver interface, for sender-receiver communication, or client-server interface, for
client-server communication.

4.3 Sender-Receiver communication

The sender-receiver pattern enables the distribution of information where a sender
distributes information to one or several receivers or a receiver receives information
from several senders. Figure 4.1 gives an example how sender-receiver
communication is modeled in the AUTOSAR VFB View.

44 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
’ AUTOSAR Release 4.2.2

Receiver 1 D
—»]

Sender D

Receiver 2 D

Figure 4.1: Example of sender-receiver communication at VFB level

In this example there are two assembly-connectors connecting the PPort of the
component “Sender” with the RPort of “Receiver 1” (respectively “Receiver 2”).

The sender-receiver interface associated with those ports consists of data-elements
that define the data that is sent by the sender and received by the receivers.

The type of a data-element can be something very simple (like an "integer") or can be
a complex (potentially large) data type (e.g. an array or a string). The transfer of a
value, even of a complex data type, is always logically atomic.

[EXP_Vfb_00011] [At configuration time, the data-type of each data-element in a
sender-receiver interface is known| ()

A sender can provide a new value for each data-element defined in the Sender-
Receiver Interface. The precise semantics depend on whether the data-element is
defined to be of type “last-is-best” or whether the data-element is “queued”.

[EXP_Vfb_00012] [At configuration time, each data-element in a sender-receiver
interface must be defined to have either “queued” or “last-is-best” semantics]| ()

Each data-element with “last-is-best” semantics can be configured to support
invalidation. If the “last-is-best” data-element supports invalidation, the sending
component can indicate the receivers that the data-element is “invalid” (see attributes
RECEIVE_INVALID and CAN_INVALIDATE in Table 4.1 and Table 4.2).

[EXP_Vib_00101] [At configuration time, it must be known for each “last-is-best”
data-element in a sender-receiver interface, whether the data-element supports the
ability to be “invalid” or not| ()

4.3.1 From the point of view of the sender

Each data-element with “last-is-best’-semantics in a PPort of a sender-component
always has a current value. The initial current value of such a data-element can be
defined through configuration of the VFB (see attribute “INIT_VALUE” in Table 4.1

45 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
' AUTOSAR Release 4.2.2

and in Table 4.2). The sending component can change the current value of the data-
element, thereby overwriting the previous value of the data-element.

When a data-element has “queued” semantics, the consecutive values produced by
the sender are stored in a queue. The initial queue has length zero (no values are
available). Each time the sender produces a new value, this value is added to the
qgueue, until an arbitrary and configurable number of entries has been reached.

A sending component does not know the identity and the number of receivers. Its
behavior is independent of the presence or absence of receivers. Sender-receiver
communication allows for a strong decoupling between sender and receiver. The
sender just provides the information and the receivers decide autonomously when
and how to use this information. It is the responsibility of the communication
infrastructure to distribute the information. In certain cases, however, the sending
application wants to be notified when the expected quality-of-service of the
communication system between the sender and its receivers is known to be violated
(see attribute “TRANSMISSION_ACKNOWLEDGEMENT” in Table 4.1).

[EXP_Vfb_00103] [At configuration time, it must be known for each data-element in
a PPort or PRPort of a component, whether the component wants to be informed on
successful transmission or timed-out transmission| ()

Table 4.1 gives an overview of the communication attributes that a sender can use to
control the behavior of the sender-receiver communication pattern. These attributes
are defined at the level of a single data-element or mode-group.

Kind of data-
element or
: izati i modeGrou
Attribute/Feature SR " _— 2
software component| Description
Name
template [6] »
s | 5|38
S| 3| E
This attribute defines the
initial value of the data-
attribute “initValue” |element, seen by all N
of receivers of this data- Q
INIT_VALUE “‘UnqueuedSenderCo |element. This initial value = D E
mpSpec” can be overwritten by the| © % g
attribute INIT_VALUE on| 3 |_ 5| I
the receiver side. o (23 2
attribute : , ol o
CAN_INVALIDAT |“caninvalidate” of|'" Case this feature is| | 2} &
« used, the sender can| £ o «©
E NonqueuedSenderC | - iidate a data-element. | 2 |= T|= T
omSpec” | Sl2Fex
This attribute defines the| & | &
‘queuelLength” of | size of the input queue of E @
MODE_QUEUE_L | \odeswitchSenderC [the of mode switch T| 3| T
ENGTH e = z| £
omSpec notifications to a mode| = | 5 | 2
machine. el 8| o

! The initial condition of a queued data-element is the empty queue

'2 The initial mode is defined as part of the ModeDeclarationGroup

46 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

Normally, a sender must
make an explicit function-
call to send a data-
element or change the
current mode. “Implicit
sending” means that a
runnable can modify a
IMPLICIT_SEND | “DataWriteAccess” |data-element while it is
running. After the
runnable
terminates, the RTE will % %
make the latest value| | © | ©
available to receivers off 8 | © | &
the 2| S| 3
data-element. sl 2] 8
The sending component is
« . informed when the data
TransmissionAckno
»|has been sent correctly
wledgementRequest OR when the mode switch
TRANSMISSION _ [with attribute has been executed by the
ACKNOWLEDGE |[“timeout” or| ore iF the tin¥eout
MENT “ModeSwitchedAckR ' ,
. . occurs before this
equest” with attribute K led hel B | B |
“timeout” acknowledgement, thel 8| 8| &
sender is informed of an| 2 | 2 |
infrastructure error. sl g g
When this parameter is
TRUE, the data-element is
“‘isQueued” in|queued (=used for g
IS _ QUEUED “VariableDataPrototy | “events”). When this ©
pe” parameter is false, thef w | ,, | €
“ H (/) (U
data-element has “last-is-| 2 | 2 | &
best” semantics. X E e

Table 4.1: Communication Attributes for a Sender

Details can be found in the “Software Component Template” [6] and the “SWS RTE”
[71.

4.3.2 From the point of view of the receiver

A receiver can access the value of each data-element defined in the Sender-
Receiver Interface associated with the RPort of the receiving component.

For a data-element that has “last-is-best” semantics, the receiver has access to the
latest value of that data-element. Alternatively, the receiver is informed that the data-
element is “invalid” (in case the data-element supports this feature). The receiver
may have access to the livelihood of the data-element, whether its value is valid or
outdated. The livelihood is defined by configuring the VFB (see attributes
“TIME_FOR_RESYNC” and “ALIVE_TIMEOUT” in Table 4.2).

47 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
AUTOSAR Release 4.2.2

[EXP_Vib_00014] [At configuration time, the initial value of each last-is-best data-
element in a RPort or a PRPort of a component must be defined] ()

[EXP_Vfb_00015] [The current value of a data-element seen by a receiving
component, when a sending-component has not provided a value, is the configured
initial value of the RPort or PRPort| ()

[EXP_Vib_00017] [The initial value of the receiving component can be “invalid” if
the data-element supports this| ()

[EXP_Vib_00094] [At configuration time, it must be known for each last-is-best
data-element in a RPort or a PRPort of a component whether the component wants
to get informed of the livelihood of the data-element]| ()

[EXP_Vfb_00095] [A receiver that gets informed of the livelihood of a data-element
must configure the period of time between receptions. This threshold determines the
livelihood of the data-element: actual or outdated| ()

For a data-element that has “queued” semantics, the receiver has essentially one
operation: to obtain the next data-element from the queue. In case the queue is
empty, this fact is returned to the receiver. Otherwise, the next data-element value is
read and taken from the queue (in other words, this is a “consuming read”). The
capacity of the queue is defined by configuring the VFB (see attribute
“‘RECEIVER_QUEUE_LENGTH” in Table 4.2).

[EXP_Vib_00019] [The queue associated with a data-element with “queued”
semantics is initially (before a sender has added values to the queue) empty| ()

[EXP_Vfb_00020] [Logically, the queue is located on the receiver’s side| ()

[EXP_Vfb_00021] [At configuration time, the size of the receiver's queue must be
known] ()

[EXP_Vfb_00022] [The receiver’s queue has first-in first-out semantics| ()

[EXP_Vfb_00023] [When the receiver's queue is full and a new value arrives, this
value is dropped (“queue overflow”)| ()

[EXP_Vfb_00024] [The receiver can be notified of “queue overflow” if it indicates
that it desires this notification at configuration time| ()

Table 4.2 gives an overview of the communication attributes that a receiver can use
to control the behavior of the sender-receiver communication pattern. These
attributes are defined at the level of a single data-element or mode-group.

Kind of data-
Attrib element or
8 ttribute . L.
Attribute Name Description modeGroup
Value = | o
© ShiN=E
s | > |2
© v | £
48 of 104 Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTO SAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

“initValue” of|A receiver can optionally| ol o
“NonqueuedR |specify its own initial value,| @ o 9
INIT_VALUE eceiverComS |which overrides the initial| S |_ =|_ o
pec” value of the sender. g2 3R 3
“ i o |o
”handlelnvahi(:] The receiver can specify how % %
RECEIVE_INVALID |“NonqueuedR |t Wants o respond when an| g | 5 | g
. invalid value for a data-| § | © | &
eceiverComsS . . e
” element is received. 521 818
pec o c | c
13 H ”» G) G)
Ofresynchme Time allowed for % %
TIME_FOR_RESYN |. resynchronization of data| g | T | &
NonqueuedR | 8| S|
C . values after current data is| § | 3 |
eceiverComsS | 21 213
» ost, e.g. after an ECU reset. 5| 8|8
pec o c | c
The receiver specifies the
“aliveTimeout” [maximum period of time it
of may take to receive a data- % %
ALIVE_TIMEOUT “UnqueudRec |element If the data-elementis| | © | ®
eiverComSpe |not received within the defined| & | € | C
o period, the data-element is| & | & [®
"outdated" S| 218
Normally, a runnable wishing
to read a data-element needs
to do this through an explicit
call to the RTE. The
“IMPLICIT_RECEIVE” means
IMPLICIT RECEIVE dat”aReadAcc that the runnable has access
- ess to the value of the data-
element that was available at g g
the time of the start of the| | © |
runnable. It does not need to| & | S [C
invoke an explicit APl to fetch| & | & [8
the latest data. g 28
This implies that the receiving
applications is notified by the
p . RTE when a new value of a
DataReceive
dEvent” and datla-eler_nent or a modg-
RECEIVE_EVENT » .| switch is received. This
SwcModeSwi |; .
” implies that the receiving
tchEvent = | =|=
component does not need to| & | & [&
poll but can wait for new data-| 2 | 2 | 2
elements or mode-changes. e g1

'3 The initial condition of a queued data-element is the empty queue
 The initial mode is defined as part of the ModeDeclarationGroup

49 of 104

Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

When this parameter is TRUE,
the data-element is queued
(Fused for “events”). When
this parameter is false, the
data-element has “last-is-best”
semantics.

Received values are added to
the end of the queue and
values are read (consuming)
gueuelLength |from the front of the queue
RECEIVER_QUEUE |of (i.e. the queue is first-in-first-
_LENGTH QueuedRecei |out). If the queue is full and
verComSpec |another data-item arrives this
data item is discarded and the
receiver is informed by error-
handling mechanisms.

A data-element is only passed
to the application if the value
of the data-element passes
the conditions of the filter. If a
newly received value for a
data-element does not pass
the conditions of the filter, the
value is
discarded (not added to queue
for a queued receiver OR the
current value of the data-
element is not updated for a
last-is-best receiver). The VFB
provides the same filters as
defined in OSEK-COM V3.0.3,
P.12. These filters can only be
applied to data-elements that
are of a primitive type.

When using a parameter
interface one can type the
mechanism for access of the
SW_IMPLEMENTATI | “swimplPolicy |parameters. This will allow for
ON_POLICY ? precompile time and compile
time optimization when
dealing with fixed data
exchange

“isQueued” in
IS_QUEUED “VariableData
Prototype”

not available

FALSE
TRUE

not available
not available

required

Attribute

“ DataFilter”
FILTER of
“ReceiverCom
Spec”

optional
optional
not available

optional
not available
not available

Table 4.2: Communication Attributes for a Receiver

Details can be found in the “Software Component Template” [6] and the “SWS RTE”
[7].

50 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

4.3.3 Multiplicity of sender-receiver

The term multiplicity discussed in the following two sections applies to the connection
multiplicity of a specific port to one or more other ports; it does not concern two
distinct ports of a software component that are connected separately to two distinct
ports of another software component.

Both types of sender receiver semantics (i.e. an interface with data-elements of “last-
is-best” semantics or queued semantics), support either 1:n communication (1 sender
and n receivers, with n > 0) or n:1 communication (n senders and 1 receiver). The
sender(s) own(s) the current value of the data-element. With last-is-best semantics
the receiver(s) of the data always want(s) to have only the most recent value of the
data. It is the responsibility of the communication system to ensure the availability of
the correct value of the data-element on the receiver side. This is illustrated in Figure
4.2.

Model View

SW Component 2

SW Component 1 /@
N J

use A

publish A

A use A SW Component n

Implementation View

Communication System

SW Component 1 SW Component 2

_—7|
read value \ J

transport A I~ of A from .
’’’’’ e [communication - ~
_ %

publish A

~

SW Component n

g J

Figure 4.2: ”last-is-best” semantics. The upper part of this figure shows the
model view of ”last-is-best” semantics. The lower part shows the implementation
view of this pattern.

From an implementation point of view, this could for example be realized by having
the sender periodically broadcast the latest value of the data-element to its receivers.
A second implementation could only communicate actual changes to the receivers.
With “queued” semantics and n:1 communication the queue is on the receiving side
and several senders can add values for the data-element to the single receiver's
gueue. To avoid a further increase of the complexity of the VFB mechanisms all other
communication scenarios like n:m (n, m > 1) are not possible.

51 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
’ AUTOSAR Release 4.2.2

[EXP_Vifb_00025] [For sender-receiver with data-elements with “last-is-best”
semantics, both 1:n as well as n:1 communication (1 sender to multiple receivers) is
possible| ()

[EXP_Vib_00026] [For sender-receiver with data-elements with “queued”
semantics, both 1:n (1 sender to multiple receivers) and n:1 communication (multiple
senders to 1 receiver) is possible| ()

[EXP_Vfb_00120] [For sender-receiver with ModeDeclarationGroups, only 1:n (1
sender to multiple receivers) is possible| ()

As a component can have an arbitrary number of ports, a single component can
assume the role of sender and/or receiver.

4.3.4 Filtering between the sender and the receiver

The VFB supports the definition of an additional filter that sits between the sender
and the receiver.

A new value for a data-element is only passed to the application if the value passes
the conditions of the filter. If a newly received value for a data-element does not
pass the conditions of the filter, the value is rejected (not added to queue for a
queued data-element) or the current value of the data-element is not updated (for a
last-is-best data-element).

The filters supported by AUTOSAR are the same as the filters, defined in OSEK-
COM V3.0.3. These filters can only be applied to data-elements that are of a primitive

type.

[EXP_Vfb_00027] | At configuration time, the optional filter on the receiver’'s side
must be defined| ()

[EXP_Vfb_00028] [The filter has the capabilities of the OSEK-COM V3.0.3 filter| ()

In the VFB-model, such a filter can only be specified on the receiving side. This
however, does not imply that the filtering should be implemented in the RTE on the
receiving side. For example, consider the case that a receiving filter indicates that
the receiver only wants to receive data-elements above a certain value, and that this
is the only receiver hooked up to the sender over a network-connection. In that case
a good implementation might decide to filter out the unnecessary values before they
are sent onto the network (on the sending side).

4.3.5 Concurrency and ordering within a sender-receiver connector
Within the scope of a single connector between a sender’s PPort and a receiver’s

RPort, the VFB preserves the order of the consecutive changes to the value of a
specific data-element.

52 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

<
=
[oe]

sender receiver

data-element d1 changed

data-element d1 changed 2nd time E E
data-element d2 changed »_:_ E
data-element d1 changed '

data-element d2 changed ,

data-element d1 changed 2nd time E

Figure 4. 3: concurrency and ordering within a sender-receiver connector

In the case of a queued data-element, the receiver must see the consecutive queued
values of the data-element in the same order as the order in which they were
produced by one specific sender.

In the case of “last-is-best” semantics, the semantics directly imply that “older” values
should never overwrite “newer” values.

However, the VFB does not guarantee any ordering between changes to different
data-elements (even not within the same interface) or between different connectors.
The VFB does not guarantee any ordering between mode switches of different
ModeDeclarationGroups (even not within the same interface) or between different
connectors.

[EXP_Vfb_00029] | Within an individual sender-receiver connector, the VFB
guarantees ordering in the changes made to an individual data-element] ()

4.4 Client-Server communication

A widely used communication pattern in distributed systems is the client-server
pattern, in which the server is a provider of a service'® and the client is a user of a
service. One simple example is the decoding of encrypted wireless key data
(immobilizer, see Figure 4.4).

!> Service in this chapter is a functionality which is offered by a certain AUTOSAR SW-component, the
server, and which can be used by other AUTOSAR SW-component, the clients. It is not to be mixed

up with an AUTOSAR service, defined more precisely in section 7, AUTOSAR Services.
53 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

«client» Communication «server»
wirelessKeyHandling System cryptology

1 uintl16:= decodeCryptedSignal(uint16 encryptedSignal) .

decodeCryptedSignal

decryptedSignal
S . yptedSignal __ ..

Figure 4.4. Example of a synchronous client-server communication: decoding of
encrypted wireless-key data (immobilizer).

AUTOSAR defines a very simple, static n:1 client-server mechanism (n clients and 1
server, with n > 0)'®. Figure 4.5 gives an example how client-server communication
for a composition of three components and two connections is visualized in the VFB
View.

Client 1 D
[F—

Server D

O
Client 2 D
[« F—
Figure 4.5: Client-server communication in the VFB View

In this example, there are 2 assembly-connectors. They hook up the RPort of “Client
1” (respectively “Client 2”) with the PPort of the server. Each port is associated with
a client-server interface, which defines the operations that are made available by the
server and used by the client.

Each operation in such a client-server interface is associated with arguments, which
are transported between the client and the server. These arguments are typed. The

'® More complex client-server architectures might involve brokers that register services provided by

servers and clients subscribing dynamically to certain services. To support the realization of such

mechanisms, AUTOSAR could be extended by defining additional AUTOSAR Services (see section 7,

AUTOSAR Services).

54 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR

type of an argument in an operation could be a simple elementary data-type (like an

Virtual Functional Bus
AUTOSAR Release 4.2.2

integer in a certain range or a boolean) or complex structures or arrays.

[EXP_Vib_00031] [At configuration time, for each operation in a client-server

interface, the ingoing arguments, the returning arguments and their data-types must
be known]| ()

Figure 4.6 illustrates the client-server mechanism through the VFB.

client :RPort

<
5
(ve}

invoke operation with outgoing arguments

server :PPort

T
'
'
'
'
'
'
'
'
'
'
alt operation reaches server / H
ino] return operation with infrastructure error E
L 1
L o e A
T
[yes] :
'
invoke operation with outgoing arguments '
alt server returns error /
return operation with return-arguments
ol L SR T .
: 1
alt ransmission of response to client / H
'
[error] E
\ return operation with infrastructure-error H
_______________________________________ '
< '
'
'
b o e - 1
'
[successful] !
E return operation with return-arguments E
o< | :
T T '
T T '
'
'
__
[yes] . . L 1
! return operation with application-error !
P - = m e -
'
alt transmission of response to client /
[error]
return operation with infrastructure-error
T
1
'
e — e 1_ [T T " -
[successful] . . -
H return operation with application-error
Ny T
' ' '
'
'
Figure 4.6: Client-server on the VFB (synchronous and asynchronous)

17

Template] .
55 of 104

Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

Details about the data-types supported by AUTOSAR in arguments can be found in [SW-C

AUTO SAR Virtual Functional Bus
' AUTOSAR Release 4.2.2

4.4.1 From the point of view of the client

The client initiates the client-server mechanism by requesting that the server
performs a specific operation defined in the interface. The client thereby provides a
value for each of the outgoing arguments defined for that operation in the Client-
Server Interface.

Eventually, the client will either receive a valid response for the invocation or it will
receive an error in response to the invocation of the operation. A valid response
means that the server has executed the operation. In this case, the client receives a
value for each return argument defined for the operation in the interface.

In case the operations change the state of the server, they should be designed
carefully, so that the client can put the server easily in a known state or can simply
repeat the operation in case of an infrastructure error. A good rule is to make the
operation "idempotent”, which means that an operation (with specific arguments) can
be repeated an arbitrary number of times.

[EXP_Vfb_00032] [A client can invoke an operation defined in a client-server
interface of one of its RPorts| ()

[EXP_Vib_00033] [When invoking an operation, the client must provide a value for
each outgoing argument defined for that operation| ()

[EXP_Vfb_00034] [A client will receive exactly one response for each operation
invocation| ()

[EXP_Vib_00035] [The response which the client receives can be an infrastructure-
error, an application-error or a valid server-response| ()

[EXP_Vib_00036] [When the client receives a valid server-response, it obtains a
value for each return-argument of the operation| ()

[EXP_Vfb_00037] [At configuration time, the possible application-errors that can be
returned by the server to the client for the operation must be known| ()

[EXP_Vib_00038] [The possible infrastructure-errors provided to the client as a
possible response to a client invocation are standardized by AUTOSAR]| ()

Table 4.3 shows the communication attributes of a client.

Attribute Realization in -
software component| Description
Name
template [6]
Covered indirectly by|The developer of a client can choose how to
the interact with the server.
CLIENT_MO |“SynchronousServerC |In case the CLIENT_MODE is
DE allpoint”, the | “synchronous”, the runnable invoking the
“AsynchronousServer |operation is blocked until either a response
Callpoint” and the|has been received from the server, an
56 of 104 Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

‘AsynchronousServer |infrastructure error is returned or the
CallReturnsEvent” configured maximal blocking time expires.

In case the CLIENT_MODE is
“asynchronous - wakeup_of wait_point” the
runnable invoking the operation is not
blocked. A runnable can wait for the
response (from the server or because of an
infrastructure error) in a wait-point.

In case the CLIENT-MODE is “asynchronous
- activation_of_runnable entity”, the runnable
invoking the operation is not blocked. When
the response (from the server or an
infrastructure error) is available, a runnable is
started which can process the response of
the server

Time in seconds before the server call times
out and returns with an error message. How

Attribute “timeout” of

TIMEOUT : this infrastructure-error is reported depends
ServerCallPoint
on the call type (synchronous or
asynchronous).

Table 4.3: Communication Attributes for a Client

4.4.2 From the point of view of the server

A server waits for incoming invocations of operations from its clients. It performs the
requested operation using the argument-values provided by the client. On finishing
the execution of the requested operation, the server provides a value for each of the
return-arguments to the client. In case the server encountered an error, it can
alternatively return an application-error to the client instead of a set of values for the
return-arguments.

Table 4.4 shows the communication attributes of a server.

Attribute Realization in
Name software component| Description
template [6]

On server side, there is a queue with length
n, consuming reading and first-in-first-out

QUEUELEN “Attrlbute » strategy. If the queue is full, and another
queuelength of . o
GTH ServerComnSpec request arrives, the new request is discarded
b=p and the client will receive a “time-out’
infrastructure error.
Table 4.4: Communication Attributes for Server
57 of 104 Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

4.4.3 Multiplicity of client-server

For client-server communication only “n:1”-communication (n clients, n>=0, 1 server)
is supported.

[EXP_Vfb_00039] [For client-server communication, only n:1-communication (n
clients, 1 server) is supported| ()

Each client RPort must be hooked up to exactly one connector, which links that
RPort to exactly one PPort of a server. A PPort of a server on the other hand can be
hooked up to an arbitrary number of client RPorts, i.e. none or more clients can
invoke operations from the same server. The implementation of the client-server
communication has to ensure, that the result of the invocation of an operation is
dispatched to the correct client.

As a component can have an arbitrary number of ports, a single component can
assume the role of both client and server.

4.4.4 Ordering and concurrency within a client-server connector
A client is not allowed to invoke a specific operation on an RPort before the previous

invocation of the same operation in the same RPort has returned (with either a valid
response from the server or with an error). This is illustrated in Figure 4.7.

client :RPort VEB
invoke operation o1 ,
neg :
invoke operation ol '
operation ol returns
e EEHE- THEE PR :
Figure 4.7: Concurrent invocation of the same operation is not allowed

The client is however allowed to make an invocation of a different operation on the
same RPort before the invocation of a first operation has returned. However, in this
case, the VFB does not make any guarantees on the ordering of those invocations.

More specifically, it does not guarantee that the server sees the invocation of
operations in the same order, as the order in which the client made those
invocations. Similarly, there is no guarantee that the responses are made available

58 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

to the client in any specific order (for example, in the order in which the client invoked
those operations).
Although ordering is not guaranteed, the implementation of the VFB must make it
possible for a client to associate a response from a server (or from the infrastructure
in case an infrastructure-error is returned) with the correct corresponding invocation
made by the client.

[EXP_Vfb_00040] [A clientis not allowed to invoke a specific operation on an RPort
before the previous invocation of the same operation has returned] ()

[EXP_Vfb_00042] [It must be possible for a client to associate a response with the
correct corresponding invocation made by the client] ()

Client VEB Server

invoke operation o1 , ,
invoke operation 02 »_E_ i
invoke operation 02 |

operation 02 returns
oo PEERT ST ,
operation 02 returns E

g ---- P s 0

: : invoke operation o1 :

; operation ol returns
! <o o PSRN .
; operation o1 retumns I
[:|<------p -------------------- !

Figure 4.8: The VFB does not support ordering between different operations

4.5 Remarks regarding the identification of communication
partners

One of the main goals of AUTOSAR is the transferability of AUTOSAR software-
components and the possibility to integrate the same component in different systems.
Therefore, the basic communication mechanisms must not depend on the identity of
the communication partners. Which component communicates by which port to which
other port of another component is specified by connectors in the VFB View and is
not visible to a software-component. If a software-component does need to know the
identity of a communication partner for specific communication scenarios the

59 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUT@\)SAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

identification has to be done by the components itself on application level by using
the general AUTOSAR communication patterns®®.

By contrast, the unambiguous identification of communication partners, i.e. instances
of components and their ports/interface elements, is necessary for the
implementation of the RTE and maybe for the basic software™®.

® For future extensions like “‘dynamic components” and “dynamic communication” communication

artners have to provide means to be identified on application level.

° For example, in client-server communication the result of the invocation of an operation has to be
dispatched to the correct client, i.e. the client that invoked the service. Therefore, the identity of the
client, i.e. AUTOSAR SW-component and the port, has to be known - at least at runtime - to the RTE
and the basic software.

60 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

5 Timing Extensions

The research field of real time systems offers a variety of timing models and
specification techniques. This section just serves as a high level introduction to the
‘“AUTOSAR Specification of Timing Extensions” [8] and only has the intent to make
the reader aware of a different and more detailed document which addresses the
concerns of modeling time.

5.1 Main Purpose of Timing Extensions for AUTOSAR

Compared to the specification of a system's functional behavior, the specification of
its timing behavior requires additional information to be captured. Not only the
eventual occurrence of events but also their exact timing or the concurrency of
various events become important. Therefore, in the specification of timing extensions
for AUTOSAR, the event is the basic entity. It is used to refer to an observable
behavior within a system (e.g. the activation of a RunnableEntity, the transmission of
a frame etc.) at a certain point in time.

Having to deal with different abstraction levels and views, and in order to avoid
semantic confusion with existing concepts, a new abstract type
TimingDescriptionEvent is introduced as a formal basis for the timing extensions.
Depending on the concrete model entity and the associated observable behavior,
specific timing events are defined and linked to the different views.

For the analysis of a system's timing behavior usually not only single events but also
the correlation of different events is of interest. To relate timing events to each other,
a further concept called TimingDescriptionEventChain is introduced. Hereby, it is
important to note that for the events referred to within an event chain a functional
dependency is implicitly assumed. This means that an event of a chain somehow
causes subsequent chain events.

Based on events and event chains, it is possible to express various specific timing
constraints derived from the abstract type TimingConstraint. These timing constraints
specify the expected timing behavior. As timing constraints shall be valid
independently from implementation details, they are also expressed on a abstract
level by referencing the above introduced formal basis of TimingDescriptionEvents
and TimingDescriptionEventChains.

Thus, by means of events, event chains and timing constraints defined on top of
these, a separate central timing specification can be provided, decoupling the
expected timing behavior from the actually implemented behavior. This approach
supports timing contracts for AUTOSAR systems in a top-down as well as bottom-up
approach.

61 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

5.2 Timing in different phases of the AUTOSAR methodology

Several timing views can be applied in the different phases of the AUTOSAR
methodology which provides several well defined process steps, and furthermore
artifacts that are provided or needed by these steps. Five different timing views can
be identified:

e VfbTiming — this view deals with timing information related to the interaction
of SwComponentTypes at VFB level.

e SwcTiming — this view deals with timing information related to the
SweclinternalBehavior of AtomicSwComponentTypes.

e SystemTiming — this view deals with timing information related to a System,
utilizing information about topology, software deployment, and signal mapping.

e BswModuleTiming — this view deals with timing information related to the
BswinternalBehavior of a single BswModuleDescription.

e EcuTiming - this view deals with timing information related to the
EcucValueCaollection, particularly with the EcucModuleConfigurationValues.

For each of these views a special focus of timing specification can be applied,
depending on the availability of necessary information, the role a certain artifact is
playing and the development phase, which is associated with the view.

The “AUTOSAR Specification of Timing Extensions” [8] provides a concept for the
description of timing relevant information in AUTOSAR.

62 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

6 Interaction with hardware

6.1 Introduction

The goal of this section is to focus on standardized interaction between application
software-components and hardware via the Virtual Functional Bus. Hardware
interaction means access to the following three kinds of hardware (see also Figure
6.1):
e Microcontroller peripherals
e ECU electronics
e Sensors and Actuators
Actuator and sensor hardware typically needs specialized software to provide an
interface towards application software. This interface typically includes a software
interface to read sensor values, functions to set an actuator, diagnostic interfaces
etc. The integrator needs the flexibility to connect the sensors and actuators of his
system to a suitable ECU of his choice.
In some cases, even specialized hardware on the ECU is needed, and an interaction
with that hardware is not possible over the standardized basic software. In those
cases, complex drivers may be used to interact with this specific hardware. Complex
drivers are supplier specific.
Figure 6.1 shows the typical conversion process from physical signals to software
signals (e.g. car velocity) and back (e.g. car light). This interface architecture is taken
because of 2 reasons:
The best reuse potential (when all other integration requirements like performance
requirements are fulfilled):
o if the uC changes, it is possible to reuse the ECU Abstraction, the sensor-
actuator software-component and the application software-component
o if the ECU changes, it is possible to reuse the sensor-actuator software-
component and the application software-component
o if the sensor or actuator changes, it is still possible to reuse the application
software-component
The various modules can be developed by different experts and/or companies (UC, ECU,
Sensor/Actuator, Application)

63 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
) AUTOSAR Release 4.2.2

Sensor ECU mC
Electronics Peripherals
€.0. L Lieecrece DN) BN
Car Velocity > > >
Application 1 Sensor
D 7\ ECU MCAL
Abstraction
¢ —19] 0 o] —
Application 2 D Actuator >\
¢ 9] © o —
Actuator ECU mC
Electronics Peripherals
€.0. @ececccccss . oo o000 SRR ¢ 00000
Carlight < < <

+++> Electrical/Physical signal

<:> AP0 (standardized interface) “ HW/SW Transition

Figure 6.1: Signhal conversions between physical signals and software signals

6.2 Microcontroller Abstraction Layer (MCAL)

Access to the hardware is routed through the Microcontroller Abstraction Layer
(MCAL) to avoid direct access to microcontroller registers from higher-level software.
MCAL is a hardware specific layer that ensures a standard interface to the
components of the basic software. It manages the microcontroller peripherals and
provides the components of the basic software with microcontroller independent
values. MCAL implements notification mechanisms to support the distribution of
commands, responses and information to different processes.
Among others it can include®:
Digital Input/Output
Analog/Digital Converter
Pulse Width (De)Modulator
EEPROM
FLASH
Capture Compare Unit
Watchdog Timer
Serial Peripheral Interface

e [2C Bus
The MCAL is available on each standard microcontroller.

%0 please consult [List of BSW Modules] for the actual hardware supported by AUTOSAR.
64 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

6.3 ECU Abstraction

The ECU Abstraction provides a software interface to the electrical values of any
specific ECU in order to decouple higher-level software from all underlying hardware
dependencies.

Figure 6.2 shows a typical example for the ECU abstraction. In this case the service
“‘ECU_Set _I” is provided in 3 different ways on the ECU, but the SW-Interface is
always the same.

ECU DIO Set mC POWER
Abstraction <_:e()> MCAL Peripherals <DIO> IC curren&
X seseseees
ECU_Set_I() |O| DIO_ Get()
ECU PWM_Set() mC PWM) POWER
Abstraction MCAL Peripherals IC curren&
Yy teseceses
ECU_Set_I() |0| ;DC Get(): Goovevenns
- ADC
ECU SPI_Write() mC ASIC
Abstraction <:> MCAL Peripherals itnane > curren
ECU_Set |()
SPI_Read()

+++> Electrical/Physical signal

<:> API0 (standardized interface) “ HW/SW Transition

Figure 6.2: example “ECU_Set_|” for the ECU abstraction

6.4 Sensor-Actuator Software Component

A sensor-actuator software-component is an atomic software-component that makes
the functionality of a sensor or actuator usable for other SW-components. That
means that the sensor-actuator software-component provides the application
software-components an interface for the physical values of the sensors and
actuators. A sensor-actuator software-component is written for a concrete sensor or
actuator and uses the ECU abstraction interface.

6.5 Complex Driver Component

The Complex Driver (CDD) allows direct access to the hardware in particular for
resource critical applications.

The Complex Driver is a loosely coupled container, where specific software
implementations can be placed. The only requirement to the software parts is that the
interface to the AUTOSAR world has to be implemented according to the AUTOSAR
port and interface specifications.

65 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

The main task of the complex drivers is to implement complex sensor evaluation and
actuator control with direct access to the uC using specific interrupts and/or complex
MC peripherals (like PCP, TPU), e.g.

¢ injection control

e electric valve control

e incremental position detection

Further on the Complex Drivers will be used to implement drivers for hardware which
is not supported by AUTOSAR.

If for example a new communication system will be introduced in general no
AUTOSAR driver will be available controlling the communication controller. To enable
the communication via this medium, the driver will be implemented proprietarily inside
the Complex Drivers. In case of a communication request via that medium the
communication services will call the Complex Driver instead of the communication
hardware abstraction to communicate.

Another example where non-standard drivers are needed is to support ASICs that
implement a non-standardized functionality.

Last but not least the Complex Drivers are to some extend intended as a migration
mechanism. Due to the fact that direct hardware access is possible within the
Complex Drivers already existing applications can be defined as Complex Drivers. If
interfaces for extensions are defined according to the AUTOSAR standards new
extensions can be implemented according to the AUTOSAR standards, which will not
force the OEM or the supplier to reengineer all existing applications.

66 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
’ AUTOSAR Release 4.2.2

7 AUTOSAR Services

7.1 Introduction

This section describes the handling of AUTOSAR services in the VFB view and
defines how they can be represented graphically.

AUTOSAR services depict a hybrid concept composed of Basic Software Modules as
well as of AUTOSAR Software Components. They provide standardized functionality
of the particular ECU infrastructure (AUTOSAR BSW) for Application Software
Components mapped onto it.

For the sake of simplicity sometimes the term “service” is used instead of the full term
‘AUTOSAR service”. However, it has nothing to do with the service part of a client-
server interface.

ApplicationMonitor

<<Interface>>
OsService

GetActiveApplicationMode(OUT AppModeType CurrentMode)
GetApplicationState(IN ApplicationType Application, OUT
ApplicationState Type Value, ERR{E_OS_ID})

Figure 7.1 A software component accesses services of the Os

Figure 7.1 shows an example for requiring a service: the software component type
ApplicationMonitor has a port typed with the interface OsService. Since this client-
server interface contains operations like GetActiveApplicationMode or
GetApplicationState, the software component ApplicationMonitor is able to query the
Os about the OsApplication states or the Os start mode.

Figure 8.4 shows another example: here, the software component has access to the
ECU state manager of the ECU Basic Software and its capabilities.

7.2 VFB Representation

When it comes to model and configure AUTOSAR services main challenges are:
o the selection of appropriate communication paradigm,
¢ the fulfillment of prerequisites defined by RTE (see [7])
¢ the platform dependent types
¢ the configuration

67 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

7.2.1 Selection of a communication mechanism

In general AUTOSAR services communicate via Standardized AUTOSAR Interfaces.
On the VFB they are only visible at the software components requesting the services.
The corresponding counterparts in the Basic Software are not visible on the VFB, but
inherently present.

Depending on the nature of the service, all kinds of ports are possible:

The most natural way is a service offered to an AUTOSAR component via a provide
port typed by a client-server interface: This acts just like a library call returning some
data. The corresponding software component would then have a require port like in
the example shown in Figure 7.1.

A require port typed by a sender-receiver interface may be used instead, if a service
has to be activated but no immediate answer is needed.

A service may also use a require port typed by a client-server interface in order to
communicate with an AUTOSAR component. An example is a state manager, which
may need an acknowledgement of an AUTOSAR component before it can change a
state.

Instead of the previous case, a service may use the provide port typed by a sender-
receiver interface to inform AUTOSAR components about e.g. state changes, if no
immediate answer is needed.

In general, the selection of the appropriate communication paradigm is use-case
dependent. No general concept except the already defined rules is required.
However, note that many services are already predefined by the module
specifications of the AUTOSAR Basic Software service layer.

In the VFB view the usage of services by AUTOSAR components is modeled by
using a specific graphical notation (see Table 3.2) for ports.

The SWC-Template provides means to attribute the associated interfaces as well as
the software components: interfaces mark the attribute isService as true, software
components set the attribute ServiceNeeds to an appropriate value.

7.2.2 Location of a Service

The examples shown in Figure 7.1 and Figure 8.4 point to a characteristic property of
software components accessing specific AUTOSAR services. They can only be
integrated onto those ECUs which provide the binding counterparts within the
AUTOSAR Basic Software.

This means that the implementation of a service must be located on the same ECU
as the AUTOSAR component instance, which is using the service. This is required for
good performance and reliability as well as for technical reasons. For example, a
timer service is much easier to use locally on the same CPU. For that kind of services
we will have instances on different ECUs.

7.2.3 Distribution of Requests to Remote Services

A direct communication from an application software component to a remote ECU’s
AUTOSAR service is not possible. On the other hand, the concept of application and
vehicle mode management requires the distribution of mode requests from one mode

68 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUT O SAR Virtual Functional Bus
N AUTOSAR Release 4.2.2

requestor to the service of a Basic Software Mode Manager (BswM) on every ECU.
To distribute the requests, service proxy SW components are used.

The service proxy SW component is similar to an application SW component. But,
the same service proxy SW component instance is copied during the system design
to several ECUs while an application SW component instance is mapped to exactly
one ECU in the system.

As a consequence, a connection between an application software component and a
service proxy SW component that is shown as 1:1 connection in the VFB will be a 1:n
connection in the system. This allows the distribution of a request to several ECUs.

O O [=

VCP: Appl:
VehicleClampProxy Applicationl Application2

VCC:
VehicleClampControl

ECU1 ECU2

VCC:

VehicleClampControl

VCP:
VehicleClampProxy

App1l:
Applicationl

VCP:
VehicleClampProxy

App2:
Application2

BswM Service BswM Service

Figure 7.2: Example for distributing a mode request from a
VehicleClampControl to the BswM of several ECUs

7.2.4 Platform dependent types

Many data types within the Basic software are platform dependent to gain efficiency.
For example: the type of IDs can depend on the entities to be handled within a
specific ECU, which would restrict the reusability of application software components.

69 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

For source code integrated SW-C no problem occurs, because the type will be
known at compile time. For SW-C integrated as object code a problem might occur,
because the assumed type during compilation of the SW-C might differ from the type
assumed by the basic software modules during their compilation.

The solution to this problem is currently that at least parts of SW-C’s have to be
recompiled after the contract phase although they should be integrated as object
code. The integrator in this case has to define the appropriate types and provide the
appropriate header file to the suppliers of basic software and application software
components.

This results in the restriction that code optimizations within the SW-C and the basic
software shall not rely on specific platform dependent types, e.g., the size of data
types may vary between different platforms.

7.2.5 Configuration

As most parts of the Basic Software, a service may offer static configuration
parameters (i.e. configuration parameters to be defined prior to compile time) in order
to be implemented efficiently, e.g. by keeping memory usage low. In many cases
these configuration parameters will depend on the number and type of AUTOSAR
components by which the service will be used. In these cases at least parts of the
software for AUTOSAR services on a specific ECU have to be recompiled at system
integration time. Appropriate processes and tools for this have to be specified.
However, this configuration is not part of the VFB view. A good overview of the
necessary configuration process needed for AUTOSAR services is given in the
“Software Component Template” specification [6].

7.3 List of Services

As of AUTOSAR Release 4.0 services of the following BSW modules are available:
NVRAM Manager — NvM

Communication Manager — ComM

Diagnostic Communication Manager — Dcm

Diagnostic Event Manager — Dem

Function Inhibition Manager — Fim

ECU State Manager — EcuM

Watchdog Manager — WdgM

Development Error Tracer — DET

Crypto Service Manager — Csm

©CoNoO~whE

70 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

8 Mode Management

8.1 Introduction

Most software components possess specific runnables for initialization, for finalization
and for an operational or run mode. The behavior of certain software components
might depend in even more complex ways on some system modes. As these
components typically do not change their modes themselves, they need to react to
mode changes triggered by other components.
Ergo, AUTOSAR needs to support
e The definition of modes
¢ Communication mechanisms that allow components (including AUTOSAR
services) to exchange information about modes and mode-changes
e Scheduling mechanisms that allow components to specify how they behave in
different modes
This section briefly describes the generic mechanisms provided by AUTOSAR to
support this. These generic mechanisms can then be applied to typical automotive
use-cases, such as changes in the ECU’s power-state or in the mode of the
communication bus.

8.2 Defining modes

In AUTOSAR the mode switch notification mechanism is used to exchange modes
between components. A mode switch interface includes a so called
“ModeDeclarationGroup”.

Figure 8.1 shows an example of the definition of the mode switch interface
“‘ECUMCurrentMode” containing a single reference to the ModeDeclarationGroup
“ECUMMode”.

<<ModeSwitchinterface >>
EcuMCurrentMode

ModeDeclarationGroups
ECUMMode currentMode

Figure 8.1: Example of a Sender-Receiver Interface “ECUMCurrentMode” with
a single ModeDeclarationGroup

The ModeDeclarationGroup is a set of ModeDeclarations. Within the definition of the
group, one ModeDeclaration describes the initial mode that is assumed at startup.
For example, for the case of the ECU power state, the ModeDeclarationGroup
“‘ECUMMode” could define the group of modes named { STARTUP_SHUTDOWN,
RUN, POST_RUN, SLEEP, WAKE_SLEEP }, with STARTUP_SHUTDOWN as the
initial mode.

The modes are mutually exclusive: at run-time, there is always one active mode in a
ModeDeclarationGroup. The initial mode of a ModeDeclarationGroup is active before
any mode switches occurred.

71 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
- AUTOSAR Release 4.2.2

[EXP_Vib_00115] [There shall be exactly one active mode for each
ModeDeclarationGroup in a mode PPort of a component| ()

[EXP_Vfb_00116] [At configuration time, the initial mode of each
ModeDeclarationGroup in a mode switch interface is known| ()

[EXP_Vfb_00112] [At configuration time, it is known which ModeDeclarationGroup
a mode switch interface contains| ()

[EXP_Vfb_00114] [At configuration time, the modes of each ModeDeclarationGroup
in a mode switch interface are known| ()

8.3 Communicating modes

Modes are transmitted via the mode switch notification mechanism.

There will be software-components that have PPorts typed by mode switch
interfaces. The components that provide these interfaces set the current mode within
the group and are therefore called “mode-managers”.

The counterparts of the “mode-managers” are components whose behavior depends
on the current mode. These modules have RPorts typed by the same interface. If
the corresponding PPorts and RPorts are connected via a connector, these
components are informed about mode-switches and the current mode set by the
mode-manager. Figure 8.2 shows an example of this for the case that the mode-
manager is an AUTOSAR Service. This figure is an extract out of the example of
Figure 3.13.

SHCFrontLeft: SeatHeatingControl D

Power
Management

Ll ecuMode

B> | v

=
S
@
s
3
S

ECU State
Manager

Figure 8.2: Example of a the communication of a mode from the “ECU State
Manager” Service-component to an application software-component

72 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
- AUTOSAR Release 4.2.2

For mode switch interfaces, only 1:n communication (1 mode manager and n mode
users, with n > 0) is possible. The single mode manager owns the current mode of
the ModeDeclarationGroup. The users are informed of any mode switch of the
manager.

For the mode managers of the AUTOSAR basic software, there is typically for each
mode switch based service also a sender receiver based service to request a mode.
E.g., for each ComM user one mode switch interface indicates the currently available
communication mode and a sender receiver interface is used to request the desired
communication mode. In this pattern there is usually one mode requestor that is at
the same time a mode user. Figure 8.3 shows this pattern for the ComM.

MR:ModeRequestor D MU:ModeUser D

communication
communication
communication

ComM Service

Figure 8.3: Example of a the communication of a mode from the “ECU State
Manager” Service-component to an application software-component

Due to the strong synchronization between a mode manager and the mode users,
mode switch communication is only supported in ECU local communication. For a
mode management that spans several ECUs, a communication pattern including
service software proxy components for the distribution of mode requests and the
BswM for the switching of modes on each ECU is recommended (see section 7.2.3).

8.4 Mode-managers: components that control modes

Entering and leaving modes is initiated by a mode manager. A mode manager might
for example be the Communication Manager, the ECU State Manager, or an
application mode manager. An application mode manager is a software-component
that provides the service of switching modes.

73 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

Such a mode manager contains a PPort typed by a mode switch interface which
references the appropriate ModeDeclarationGroup. The state of the mode managers
will be sent to other component using sender-receiver communication.

Optionally, a mode manager can have an RPort typed by a sender receiver interface
with a data element that is mapped to the same ModeDeclarationGroup to receive
mode requests from a mode requestor.

8.5 Components that depend on modes

Some software components need to be capable of reacting to state changes issued
by mode managers and adapt their behavior to the new situation. Such software-
components include an RPort typed by a mode switch interface which references the
appropriate ModeDeclarationGroup.

Figure 8.4 shows an example whereby the mode switch interface
‘EcuMCurrentMode” is used to type the RPort “ecuMode” of the component
“SeatHeatingControl”. As the interface contains the ModeDeclarationGroup
“‘ECUMMode”, this indicates that the component “SeatHeatingControl” wants to be
notified through its port “ecuMode” whenever there is a change in the “ECUMMode”
(this could for example be the current mode of the ECU on which the component
runs). The component could disable the execution of certain runnables during the
mode STARTUP_SHUTDOWN and start initialization runnables on the transition to
the mode RUN.

74 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

SeatHeatingControl D

’ SeatSwitch

HeatingElement | C
QO [setting T
PowerManagement | «
|
L | IDiaILED Calibration | <]
nv ecuMode
\
\
\
\
\
(N
<<ModeSwitchInterface>>
EcuMCurrentMode
ModeDeclarationGroup:
ECUMMode currentMode
Figure 8.4: Example showing the use of the mode switch Interface

“ECUMCurrentMode” to type the Port “ecuMode” of the component
“SeatHeatingControl”

[EXP_Vib_00117] [At configuration time, it must be known which mode switches,
the receiver of a ModeDeclarationGroup in a mode switch interface wants to be
informed of| ()

[EXP_Vfb_00119] [The transition of modes received from the same
ModeDeclarationGroup instance of a mode manager shall be perceived
synchronously by all mode users]| ()

Since the behavior of an atomic software component is mainly determined by its set
of runnables, the component can specify its reaction to mode changes at the level of
runnables: the component can specify that certain runnables are called when mode-
switches occur or that certain runnables only run in specific modes.

75 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

9 Port Groups

There is a natural hierarchical grouping of ports given by the aggregation of port
prototypes in software components. In addition, AUTOSAR supports alternative
grouping of ports according to other aspects of the vehicle system software. This is
expressed by port groups. The main use case for port groups is to express the
required communication resources during a certain mode of operation like a limp
home mode or a diagnostic mode. These modes are usually orthogonal to the
decomposition in components and sub-components.

A port group has the following features:
e aggregated to a software component type
o list of require and provide port prototypes of the software component
o reference to the sub component port groups that are merged into the port group.

As a practical use case, a port group can reflect a ComM user in the VFB. The
configuration of communication channels associated with a ComM user can be
extracted from the VFB model automatically.

There can be independent mode managers for terminal clamp control, for power
saving, for diagnostic mode, etc. Each of these mode mangers can also have
independent partially overlapping port groups.

..
o .

[»] v
P
. [P
A
: PowerSave @
\\
iy
feeerrenemremen] D
Figure 9.1: Example of the use of port groups ‘PowerSave’ that denote ports
that are required during a PowerSave mode. Not required communication
resources could be deactivated during PowerSave mode.
76 of 104 Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

10 Measurement and Calibration

In embedded automotive software design, measurement means "monitoring” of ECU
internal signals, state variables and intermediate data. It's realized by reading content
of memory cells of a running ECU. In AUTOSAR such data is referred to as
measurable.

“Calibration” means the manipulation of particular calibration parameters. In general,
a calibration parameter characterizes the dynamics of a control algorithm. From a
software implementation point of view it is a variable with read-only access during the
normal operation of an ECU. Since the calibration parameter can be set by the
calibration system, it is possible to manipulate and readjust the determining factors of
closed or open control loop algorithms. Thus, calibration plays an important role
during the development process until near completion.

10.1Calibration

AUTOSAR provides two mechanisms for calibration:

e Port-based calibration (based on the Parameter Software Components): this
mechanism is explicitly visible on the VFB and reuses the already described
port- and connector-mechanisms

e Private calibration parameters: these reside within an atomic software-
component.

10.1.1 Port-based calibration

This mechanism builds upon the common VFB patterns in the following way:

A component requiring calibration parameters defines an RPort typed by a parameter
interface.

The components that contain the actual values of the calibration parameters are
called “parameter software components”. In contrast to normal software-components,
parameter software components do not possess an internal behavior but are simple
containers that provide (calibration) parameters. They do this through a PPort typed
by a compatible parameter interface. Note that the parameter interface as well as the
parameter software components are also used for fixed data exchange and not just
used for calibration. The “implementation policy” of the elements on the port interface
determines if it is fixed, const or variable data that is being accessed from the
parameter software component.

The fact that a component is calibrated by a specific parameter software component
is expressed through a connector between the corresponding ports. The calibration
data is made available via the provide port of the parameter software component to a
corresponding require port of any software component (compatibility rules do apply).
Since in this model the parameters are visible on the virtual bus, parameter software
components are the way to express public calibration parameters.

Depending on whether the corresponding components are instantiated or not,
several different cases can be distinguished, described in the following sections.

77 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

Virtual Functional Bus

AUTOSAR
AUTOSAR Release 4.2.2

10.1.1.1 Pure single instantiation

Figure 10.1 shows the simplest case, where a software component has access to a
particular set of calibration parameters by ‘receiving’ them via a connection from a
providing parameter software component.

<<ParameterSw
<
ComponentType>> <<SoftwareComponentType>>
D> > : SWC
Prm

Figure 10.1 A software component has access to a calibration parameter
encapsulated in a parameter software component

It should be noted here that the parameter software components and software
components connected are residing per se on the same ECU. Actually, the
parameter software components are only representing memory containing the
encapsulated (calibration) parameter.

10.1.1.2 Multiple instantiation of the involved software components

Figure 10.2 and Figure 10.3 depict the case, where several software components
(instances) of the same or of different component-type have access to the same set
of (calibration) parameters.

K<SoftwareComponentType>>|

<<ParameterSw <<SoftwareComponentType>3
ComponentType>> D
- Prm B:SWC1

>

A:SWC1

78 of 104

- AUTOSAR Confidential -

<<SoftwareComponentType>3

>

:SWC2

Document ID 056: AUTOSAR_EXP_VFB

AUTO SAR Virtual Functional Bus
’ AUTOSAR Release 4.2.2

Figure 10.2 Two software components of the same type access the same
calibration parameter encapsulated in a parameter software component

Since the (calibration) parameters need to reside on the same ECU as the software
component accessing them, the parameter software component needs to be
duplicated if the different software component instances are mapped onto different
ECUs (see Figure 10.3).

<<ParameterSw
<< >>
S SoftwareComponentType
> > A:SWC
:Prm
<<ParameterSw <<SoftwareComponentType>>
ComponentType>> D D
B:SWC
:Prm

Figure 10.3 Like in Figure 10.1, but the software components are mapped onto different ECUs

10.1.1.3 Multiple instantiation of the involved calibration components

Figure 10.4 shows a configuration, where different software component instances
need to access different sets of the same type of calibration parameter.

Here, it is only required — as explained above — that connected instances of
calibration and software components are integrated on the same ECU. Beyond it, the
different instances can reside on a single or different ECUs.

79 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
’ AUTOSAR Release 4.2.2

C;;F;a;rsg:}etzfre;s;\; <<SoftwareComponentType>>|
A: Prm D D A:SWC

C;;Zfr?;?re;z\; <<SoftwareComponentType>>|
B: Prm D D B:SwWC

Figure 10.4 Two software components of the same type have been assigned different instances
of the same Parameter Software Component Type.

10.1.2 Private calibration

The private calibration mechanism is based on parameters that are private and
internal to a software component. From the software component implementation
point of view a calibration parameter is a variable with only read-access during the
normal operation of the ECU. A calibration parameter can be defined per instance of
a software component (perinstanceParameter) or can be shared between all
instances of a software component (sharedParameter).

Calibration parameters are not visible per se on the virtual functional bus, since it is
considered an element associated to an internal behaviour of a software component.

Unlike the structure of software components and compositions which is considered to
be specified during system design, the internal behaviour can be defined later in time
when particular software components are supplied. With this respect the visibility of
the private calibration parameters is rather a function of time, depending on who
assigns them when.

10.2Measurement

In AUTOSAR systems, only actual instances of the following prototypes if marked as
measurable can be monitored:

Communication between AUTOSAR SW-Components:
e VariableDataPrototypes enclosed in a sender-receiver interface
e Arguments of ClientServerOperations enclosed in a client-server interface

80 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUT@\)SAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

AUTOSAR SW-Component internal:
e Content of InterrunnableVariables which are used for communication
between Runnables of one AUTOSAR SW-Component.

81 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

11 VFB Features and Profiles

11.1Motivation and Introduction

The idea of identifying features and profiles on VFB level came from the fact that
there are many mechanisms on the RTE and communication paradigms between
SW-Cs. The resulting tables of RTE/VFB features enhance the documentation of
RTE/VFB mechanisms to have a high level means to characterize SW-Cs, ECU
platform or even tool capabilities.

The integration effort of SW-Cs into given platforms depends on which features are
used. In case SW-Cs have to be integrated into a given system where design
decisions like scheduling are already made and implemented in CDDs or other SW-
Cs, integrating SW-Cs that use certain RTE features might even lead to a
contradiction.

These tables can support discussions of integration projects in supplier - OEM
collaboration in an early project stage. Here they characterize the bundle of SW-Cs
that have to be integrated into an ECU or to identify the integration capability of a
given system. This means which features on VFB level a given ECU can support.

On the other hand, SW-C code generators and other tools supporting AUTOSAR
methodology might support only a subset of VFB and RTE features. The supported
features may be even configurable to be or not to be used in project context. Also
these subsets of features are worth to be characterized with this approach to simplify
software sharing and integration.

The tables provided also serve to define reduced feature sets (so called VFB/RTE
profiles), which can also be applied in different projects or SW-C integration
scenarios. The definition of these profiles as reduced feature sets is up to the
different partners and not part of the standard. These profiles will probably be OEM,
supplier and even domain specific.

Note that this approach is intentionally different and more fine-grained than the
“Feature Specification of the BSW Architecture and the RTE” document, but focuses
on VFB only."

11.2Feature tables

The features are described in the tables below. They result from real project
experience and forecast of application SW-Cs to be shared. Thus, they can serve as
a basis and can be extended by partners in a feature/profile based technical
discussion.
A table entry i.e. a VFB feature is a single aspect of functionality on VFB/RTE level
relevant from a single ECU’s perspective that have major influence on

e SW-C complexity,

e integration effort,

82 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR

architectural effort, and
compatibility with decisions taken in ECU design.

Virtual Functional Bus
AUTOSAR Release 4.2.2

The tables distinguish between INTRA-ECU (number R) and INTER-ECU (number E)
aspects. The separation of inter-ECU communication (RTE with COM Stack) from the
other RTE features was found to be useful due to their different nature in technical
realisation. Inter-Partition aspects are also covered in the partition part of the Intra-
ECU table.
Note that features can be used to describe single SW-Cs but mainly have the focus
to describe the whole “subsystem” mapped to a particular ECU in a SW sharing

project.
11.2.1 Intra-ECU features
R1 SENDER-REICEIVER IMPLEMENTATION DATA TYPE
Informal CATEGORY Refinements of the feature description in
"Category" SWC terms
R1.1 PRIMITIVE VALUE, category "VALUE", "DATA_REFERENCE"
DATA_REFERENCE, or "FUNCTION_REFERENCE" for
FUNCTION_REFERENC | ImplementationDataType for Sender-
E Receiver Communication is used
R1.2 COMPLEX STRUCTURE, ARRAY, Structures, Unions or arrays are used as
UNION category for ImplementationDataType for
Sender-Receiver Communication
R1.3 DYNAMIC VARIABLE_LENGTH SwBaseType with category =
VARIABLE_LENGTH are used for Sender-
Receiver Communication.
R 2 SENDER-RECEIVER COMMUNICATION
Semantics Feature Refinements of the feature description in
SWC terms
R2.1 Data (Last-is- VariableDataPrototypes configured with
best) swimplPolicy = Standard are used in S/R
PortPrototypes' SenderReceiverinterface
R 2.2 Data (Last-is- INIT value PPortPrototype/RPortPrototypes
best) configured with InitValue attribute in the
NonqueuedSenderComSpec,
NonqueuedReceiverComSpec or at
corresponding VariableDataPrototypes are
used.
R 2.3 Data (Last-is- Invalidation SenderReceiverinterfaces used by
best) PortPrototype are configured with
handlelnvalid attribute of the
InvalidationPolicy is set to keep or
replace.
R24 Data (Last-is- Filter RPortPrototypes configured with Filter
best) attributes in NonqueuedReceiverComSpec
are used.
R 25 Data (Last-is- Alive Timeout One or more RPortPrototype configured
best) with AliveTimeOut attribute greater than 0
in NonqueuedReceiverComSpec
R 2.6 Data (Last-is- Acknowledgement One or more PPortPrototype configured

best)

with Attribute
TransmissionAcknowledgmentRequest in

83 of 104

Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTOSAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

SenderComSpec.
R 27 Data (Last-is- NeverReceived indication | One or more RPortPrototype configured
best) (RevsSide) with Attribute HandleNeverReceived = true
in NonqueuedReceiverComSpec.
R 2.8 Data (Last-is- Enableupdate indication | One or more RPortPrototype configured
best) (RevsSide) with Attribute enableUpdate = true in
NonqueuedReceiverComSpec.

R 2.9 Data (Last-is- Explicit access DataReceivePoint / DataSendPoint exist at

best) (Read/Write API) least in one RunnableEntity.

R 2.10 |Data (Last-is- Implicit access DataReadAccess / DataWriteAccess exist

best) (IRead/lwrite) at least in one RunnableEntity.

R 2.11 |Data (Last-is- Implicit access with DataReadAccess / DataWriteAccess exist

best) special semantics: at least in one RunnableEntity.
coherency groups RtelmplicitCommunication containers are
defined with with RteCoherentAccess set
to "TRUE" (i.e. Coherency groups are
defined)
R 2.12 |Data (Last-is- Implicit access with DataReadAccess / DataWriteAccess exist
best) special semantics: at least in one RunnableEntity.
Immediate buffer update | RtelmplicitCommunication containers are
defined with with
RteimmediateBufferUpdate set to "TRUE"
(i.e. specific buffer update handling is
required for some implicit read/write access)

R 2.13 |Data (Last-is- Handle out of range One or more RPortPrototype /

best) PPortPrototype configured with Attribute
handleOutOfRange (value must be different
that NONE) of the respective
SenderComSpec or ReceiverComSpec.

R 2.14 |Data (Last-is- End to end protection One or more RPortPrototype /

best) PPortPrototype configured with Attribute
useseEndToEndProtection = TRUE in the
ReceiverComSpec and/or
SenderComSpec.

R 2.15 |Event (queued) VariableDataPrototype in
SenderReceiverinterface is configured with
swimplPolicy = Queued

R 2.16 |Event (queued) |Blocking Receive Attribute WaitPoint in a RunnableEntity
with TriggerRef to a DataReceivedEvent is
used.

R 2.17 |Event (queued) |Handle out of range One or more PPortPrototype /
RPortPrototype configured with Attribute
handleOutOfRange attribute in the
respective SenderComSpec or
ReceiverComSpec.

R 2.18 |Event (queued) |End to end protection One or more PPortPrototype /
RPortPrototype configured with Attribute
useseEndToEndProtection = TRUE in the
ReceiverComSpec and/or
SenderComSpec.

R3 INTER-RUNNABLE VARIABLE

Access Feature Refinements of the feature description in
SWC terms

R 3.1 EXPLICIT PRIMITIVE DATA A explicitinterRunnableVariable is
declared as primitive (implementation data
type of category "value")
VariableDataPrototype and used in a

84 of 104 Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTOSAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

SwcinternalBehavior.

R 3.2 EXPLICIT COMPLEX DATA A explicitinterRunnableVariable is
declared as complex (implementation data
type of category "array", "structure" or
"union") VariableDataPrototype and used
in a SwcinternalBehavior.

R 3.3 IMPLICIT PRIMITIVE DATA A implicitinterRunnableVariable is
declared as primitive (implementation data
type of category "value")
VariableDataPrototype and used in a
SwclnternalBehavior.

R34 IMPLICIT COMPLEX DATA A implicitinterRunnableVariable is
declared as complex (implementation data
type of category "array", "structure” or
"union”) VariableDataPrototype and used
in a SwcinternalBehavior.

R4 CLIENT-SERVER COMMUNICATION

Semantics Feature Refinements of the feature description in
SWC terms

R4.1 Synchronous Reentrant server A SynchronousServerCallPoint exists and
the corresponding ServerRunnableEntity is
configured with attribute
"canBelnvokedConcurrently = true"

R 4.2 Synchronous Non-reentrant server A SynchronousServerCallPoint exists and
the corresponding ServerRunnableEntity is
configured with attribute
"canBelnvokedConcurrently = false"

R 4.3 Synchronous Exclusive areas A SynchronousServerCallPoint exists and
the corresponding ServerRunnableEntity
applies ExclusiveAreas
(runsinsideExclusiveArea or
canEnterExclusiveArea)

R 4.4 Synchronous Cross Partition A SynchronousServerCallPoint exists and
the corresponding ServerRunnableEntity is
not in the same RTE partition.

R 4.5 Synchronous With timeout A SynchronousServerCallPoint with
attribute TimeOut > 0 exists.

R 4.6 Asynchronous Clients uses Rte_Result | An AsynchronousServerCallPoint and

API to poll (no corresponding

ASYNCHRONOUS_SER | AsynchronousServerCallResultPoint

VER CALL_RETURNS exists but no correspnding

EVENT Re) AsynchronousServerCallReturnEvent
exists.

R 4.7 Asynchronous Clients uses Rte_Result | An AsynchronousServerCallPoint and

API to poll (with corresponding

ASYNCHRONOUS_SER | AsynchronousServerCallResultPoint

VER CALL_RETURNS exists and a corresponding

EVENT Re) AsynchronousServerCallReturnEvent
triggers a runnbable but no WaitPoint
references it

R 4.8 Asynchronous with WaitPoint i.e. An AsynchronousServerCallReturnEvent

blocking Rte_Result exists and a WaitPoint references it.

R 4.9 Asynchronous with Timeout (also An AsynchronousServerCallPoint with

without Waitpoint) attribute TimeOut > 0 exists.

R 4.10 |PORT-DEFINED A PortAPIOption is configured with attribute

ARGUMENT portArgValue in a SwcinternalBehavior.
85 of 104 Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTO SAR

\ VALUES

Virtual Functional Bus
AUTOSAR Release 4.2.2

R 5 TRIGGER COMMUNICATION
Semantics Feature Refinements of the feature description in
SWC terms
R5.1 External Trigger |Non Queued Portinterface typed by Triggerinterface
with triggers configured with swimplPolicy
= Standard referenced by an
ExternalTriggeringPoint are used
R 5.2 External Trigger | Queued Portinterface typed by Triggerinterface
with triggers configured with swimplPolicy
= Queued referenced by an
ExternalTriggeringPoint are used
R 5.3 Inter runnable Non Queued InternalTriggeringPoint configured with
Trigger swimplPolicy = Standard are used
R5.4 Inter runnable Queued InternalTriggeringPoint configured with
Trigger swimplPolicy = Queued are used
R 6 RTE EVENTS
Reaction Event Type Refinements of the feature description in
SWC terms
R 6.1 RE Activation TIMING_EVENT A TimingEvent references a
RunnableEntity.
R 6.2 RE Activation DATA_RECEIVED_EVE |A DataReceivedEvent references a
NT RunnableEntity, a required
VariableDataPrototype but no WaitPoint
references the DataReceivedEvent.
R 6.3 RE Activation DATA_RECEIVED_ERR | A DataReceivedErrorEvent references a
OR_EVENT RunnableEntity, a required
VariableDataPrototype but no WaitPoint
references the DataReceivedErrorEvent.
R 6.4 RE Activation DATA_SEND_COMPLET | A DataSendCompletedEvent references a
ED_EVENT RunnableEntity, a required
VariableDataPrototype but no WaitPoint
references the DataSendCompletedEvent.
R 6.5 RE Activation OPERATION_INVOKED | An OperationinvokedEvent references a
_EVENT RunnableEntity.
R 6.6 RE Activation MODE_SWITCH_EVENT | A ModeSwitchEvent references a
RunnableEntity.
R 6.7 RE Activation MODE SWITCH ACK A ModeSwitchAckEvent references a
EVENT with Timeout RunnableEntity, a
ModeDeclarationGroupPrototype and the
Attribute ModeSwitchedAckRequest is not
configured in NonqueuedSenderComSpec.
R 6.8 RE Activation MODE SWITCH ACK A ModeSwitchAckEvent references a
EVENT without Timeout |RunnableEntity, a
ModeDeclarationGroupPrototype and the
Attribute TimeOut in
ModeSwitchedAckRequest is configured
in NonqueuedSenderComSpec.
R 6.9 RE Activation ASYNCHRONOUS_SER | An
VER CALL_RETURNS AsynchronousServerCallReturnsEvent
EVENT references a RunnableEntity.
R 6.10 | RE Activation BACKGROUND_EVENT | An BackGroundEvent references a
RunnableEntity.
86 of 104 Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTOSAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

R 6.11 | RE Activation DATA_WRITE_COMPLE | A DataWriteCompletedEvent references a
TED_EVENT RunnableEntity, a provided
VariableDataPrototype but no WaitPoint
references the DataWriteCompletedEvent.
R 6.12 | RE Activation EXTERNAL_TRIGGER_ | An ExternalTriggerOccurredEvent
OCCURED_EVENT references a RunnableEntity.
R 6.13 | RE Activation INTERNAL_TRIGGER_O | An InternalTriggerOccurredEvent
CCURED_EVENT references a RunnableEntity.
R 6.14 | RE Activation INIT_EVENT An InitEvent references a RunnableEntity.
R 6.15 | RE Activation SWC_MODE_MANAGE |An SwcModeManagerErrorEvent
R_ERROR _EVENT references a RunnableEntity.
R 6.16 |Wakeup of DATA RECEIVED_EVE |A DataReceivedEvent references a
Waitpoints NT RunnableEntity and a required
VariableDataPrototype. A WaitPoint
references the DataReceivedEvent.

R 6.17 | Wakeup of DATA_SEND_COMPLET | A DataSendCompletedEvent references a

Waitpoints ED_EVENT RunnableEntity and a provided
VariableDataPrototype. A WaitPoint
references the DataSendCompletedEvent.

R 6.18 |Wakeup of ASYNCHRONOUS_SER | An

Waitpoints VER CALL_RETURNS AsynchronousServerCallReturnsEvent
EVENT references a RunnableEntity and a
WaitPoint references the
AsynchronousServerCallReturnsEvent
R 6.19 | Wakeup of MODE_SWITCH_ACK_E | A ModeSwitchAckEvent references a
Waitpoints VENT RunnableEntity, a
ModeDeclarationGroupPrototype and the
Attribute TransmissionAcknowledge is
configured in NonqueuedSenderComSpec.
One WaitPoint references the
ModeSwitchAckEvent.
R 6.20 |Wakeup of A timout attribute > O is specified for at least
Waitpoints with one WaitPoint
timeout
R7 MEASUREMENT & CALIBRATION
Feature Sub-feature Refinements of the feature description in
SWC terms
R71 Measurement Port-to-Port S/IR A swCalibrationAccess exists for a
communication VariableDataPrototype used in an interface
of a sender-receiver port and is set to
readOnly or readWrite.

R7.2 Measurement IRV One swCalibrationAccess exists for a
VariableDataPrototype in the role
implicitinterRunnableVariable or
explicitinterRunnableVariable and is set to
readOnly or readWrite.

R7.3 Measurement Port-to-Port C/S A swCalibrationAccess exists for an

communication ArgumentDataPrototype used in an
interface of a client-server port and is set to
readOnly.

R7.4 Measurement Non-volatile data One swCalibrationAccess exists for a

communication VariableDataPrototype used in an
NvDatalnterface of a non volatile port of a
SwComponentPrototype is set to
readOnly or readWrite.

R75 Measurement PIM One swCalibrationAccess exists for a
VariableDataPrototype in the role

87 of 104 Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTOSAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

arTypedPerIinstanceMemory and is set to
readOnly or readWrite.

R7.6

Measurement

RAM Block of a NV Block
SW-C Type

One swCalibrationAccess exists for a
VariableDataPrototype in the role
ramBlock of a
NvBlockSwComponentType's
NvBlockDescriptor and is set to readOnly
or readWrite.

R7.7

Calibration

SWC internal: CData API
(Shared Calibration
Parameters)

A ParameterDataPrototype is attached to a
SweclinternalBehavior in sharedParameter
role.

R 7.8

Calibration

SWC internal: CData API

A ParameterDataPrototype is attached to a
SwclinternalBehavior in
PerinstanceParameter role.

R 7.9

Calibration

ParameterSwComponent

A ParameterSwComponentPrototype is
used as a SwComponentPrototype within
a CompositionSwComponentType.

R 7.10

Calibration

Non-volatile data
communication

A swCalibrationAccess of a
VariableDataPrototype is used in an
NvDatalnterface of a non volatile data port
of a SwComponentPrototype and is set to
readWrite.

R7.11

Calibration

ROM Block of a NV Block
SW-C Type

A swCalibrationAccess of a
VariableDataPrototype in the role
romBlock of a
NvBlockSwComponentTypes's
NvBlockDescriptor is set to readWrite.

R 7.12

Calibration

Data emulation without
SW support

The attribute RteCalibrationSupport is
configured with value NONE.

R 7.13

Calibration

Data emulation with SW
support, single-pointed
method

The attribute RteCalibrationSupport is
configured with value
SINGLE_POINTERED.

R 7.14

Calibration

Data emulation with SW
support, double-pointed
method

The attribute RteCalibrationSupport is
configured with value
DOUBLE_POINTERED.

R 7.15

Calibration

Data emulation with SW
support, init-RAM
parameter method

The attribute RteCalibrationSupport is
configured with value INITIALIZED_RAM.

R 8

MODES

Feature

Sub-feature

Refinements of the feature description in
SWC terms

R 8.1

Mode
Dependency

One RTEEvent is configured with attribute
ModeDisablingDependency.

R 8.2

Mode Access
(reading of
current mode)

A ModeAccessPoint exists in at least one
RunnableEntity

R 8.3

ModeSwitchAckn
owledgement

ModeSwitchedAckrequest attribute exists
in the ModeSwitchSenderComSpec.

R 8.4

Synchonous
mode switches

The attribute
supportsAsynchronousModeSwitch is not
configured to TRUE in
ModeSwitchReceiverComSpec (for
software components) or
BswModeReceiverPolicy (for BSW
modules) of at least one ModeUser of a
mode manager => mode machine instance
uses synchronous mode switch behavior

88 of 104

Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTOSAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

R 8.5 Asynchonous The attribute
mode switches supportsAsynchronousModeSwitch is
configured with TRUE in all
ModeSwitchReceiverComSpec (for
software components) or
BswModeReceiverPolicy (for BSW
modules) of all mode users for a mode
manager (same
ModeDeclarationGroupPrototype). => mode
machine instance can use asynchronous
mode switch behavior.
R9 EXCLUSIVE AREA
Feature Sub-feature Refinements of the feature description in
SWC terms
R9.1 RunnableCanEnt An ExclusiveArea exists in
erExclusiveArea SwclinternalBehavior and is used in the
role "canEnterExclusiveArea” in the
RunnableEntity.
R 9.2 RunnableRunsIn An ExclusiveArea exists in
ExclusiveArea SwclinternalBehavior and is used in the
role "runsinsideExclusiveArea" in the
RunnableEntity.
R 10 Partitions
Feature Sub-feature Refinements of the feature description in
SWC terms
R 10.1 | More than one The SwcToEcuMapping element in the
Partiton SystemTemplate references more than one
EcuPartitions for the given ECU.
R 10.2 | More than one Partition used for Partitions are used to separate memory
Partiton Memory Protection area for SWC.
R 10.3 | More than one Partition used for Timing | Partitions are used to separate Timing
Partiton Protection budget for SWC.
R 10.4 | More than one Partitions used on Partitions are used to place SWC on
Partiton MultiCores diiferent cores.
R 10.5 |Partition Restart A Restart of a stopped Partition is
required.
R 10.6 |Inter Partition SenderReceiver (Last-is- | PortPrototypes connections with
Communication | best) SenderReceiverinterfaces of SWCs
mapped to different partitions are used
(corresponding swimplPolicy = Standard)
R 10.7 |Inter Partition SenderReceiver (Event PortPrototypes connections with
Communication | semantics) SenderReceiverinterfaces of SWCs
mapped to different partitions are used
(corresponding swimplPolicy = Queued)
R 10.8 |Inter Partition ModeSwitch PortPrototypes connections with
Communication ModeSwitchiInterfaces of SWCs mapped to
different partitions are used
R 10.9 |Inter Partition ClientServer (Sync) PortPrototypes connections with
Communication ClientServerinterfaces of SWCs mapped to
different partitions are used.
SynchronousServerCallPoint is used
R 10.10 | Inter Partition ClientServer (Async) PortPrototypes connections with
Communication ClientServerinterfaces of SWCs mapped to
different partitions are used.
AsynchronousServerCallPoint is used
89 of 104 Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTOSAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

R 11

Portinterface Mapping & Data Scaling

Feature

Sub-feature

Refinements of the feature description in
SWC terms

R11.1

Connections with
Datalnterfaces

Port connection with
Datalnterface with port
element name mapping

Connections between Portinterfaces of
SenderReceiverinterface,
NvDatalnterface, or Parameterinterface
exist and a
VariableAndParameterinterfaceMapping
is associated with the connection. The
DataProtoTypeMapping are used to
connect compatible DataPrototypes which
different shortnames (element name

mapping).

R11.2

Connections with
Datalnterfaces

Port connection with
Datalnterface with
TEXTTABLE data
conversion

Connections between Portinterfaces of
SenderReceiverinterface,
NvDatalnterface, or Parameterinterface
exist and a
VariableAndParameterinterfaceMapping
is associated with the connection. The
DataProtoTypeMapping uses a
TextTableMapping to connect
DataPrototypes with CompuMethods of
category TEXTTABLE (i.e. to make the RTE
generating a remapping between table
elements).

R 11.3

Connections with
Datalnterfaces

Port connection with
Datalnterface with
LINEAR conversion

Connections between Portinterfaces of
SenderReceiverinterface,
NvDatalnterface, or Parameterinterface
exist and a
VariableAndParameterinterfaceMapping
is associated with the connection. The
DataProtoTypeMapping connects
DataPrototypes with CompuMethods of
category LINEAR or IDENTICAL (with
compatible Units or identical
PhysicalRepresentation) to rescale the
elements (i.e. to make the RTE generating a
linear conversion between port elements).

R11.4

Client/Server
connections

ClientServer mapping
with port element name

mapping

Connections between Portinterfaces of
ClientServerinterface exist and a
ClientServerinterfaceMapping is
associated with the connection to connect
compatible operations which different
shortnames (just name mapping).

R 11.5

Client/Server
connections

ClientServer mapping
with argument mapping

Connections between Portinterfaces of
ClientServerinterface exist and a
ClientServerinterfaceMapping is
associated with the connection including a
DataPrototypeMapping (role
argumentMapping) to map arguments with
different names (just name mapping of
arguments).

R 11.6

Client/Server
connections

ClientServer mapping
with argument
TEXTTABLE data
conversion

Connections between Portinterfaces of
ClientServerinterface exist and a
ClientServerinterfaceMapping is
associated with the connection including a
DataPrototypeMapping (role
argumentMapping) + TextTableMapping

90 of 104

Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTOSAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

to map arguments of types with
CompuMethods of category TEXTTABLE
(i.e. to make the RTE generating a
remapping between operation argument
values).

R 11.7 |Client/Server ClientServer mapping Connections between Portinterfaces of

connections with argument LINEAR ClientServerinterface exist and a

data conversion ClientServerinterfaceMapping is

associated with the connection including a
DataPrototypeMapping (role
argumentMapping) to map arguments of
types with CompuMethods of category
LINEAR or IDENTICAL to rescale the
arguments (i.e. to make the RTE generating
a linear conversion between operation
arguments) .

R 11.8 | Mode Switch Mode Switch mapping, Connections between Portinterfaces of

connections compatiple mode ModeSwitchlinterfaceexist and a
declarations ModelnterfaceMapping is associated with
the connection (the referred
ModeDeclarationGroupPrototypes are
compatible)

R 11.9 | Mode Switch Mode Switch mapping, Connections between Portinterfaces of
connections different number of ModeSwitchinterfaceexist and a

ModeDeclarations ModelnterfaceMapping is associated with
the connection (the referred
ModeDeclarationGroupPrototypes have
different number of ModeDeclarations on
mode
manager and mode user side)

R 11.10 | Trigger Trigger Interface Connections between PortInterfaces of
connections mapping Triggerinterfaces exist and a

TriggerinterfaceMapping is associated with
the connection.

R 11.11 | Element for DataProtoTypeMapping is used for
mapping for ImplementationsDataTyp | Datalnterfaces with SubElementMapping
composite data | es (category ARRAY, to map elements of
types used STRUCTURE) ImplementationDataTypes category

ARRAY, STRUCTURE or to map/select a
composite data type to a primitive element
(n:1) mapping.

R 11.12 | Element for DataProtoTypeMapping is used for
mapping for ApplicationCompositeDat | Datalnterfaces with SubElementMapping
composite data | aTypes to map elements of
types used ApplicationCompositeDataTypes or to

map/select a single element for a n:1
mapping.

R 11.13 | Element Mix between DataProtoTypeMapping is used for
mapping for ImplementationsDataTyp | Datalnterfaces with SubElementMapping
composite data | es and to map elements of
types used ApplicationCompositeDat | ApplicationCompositeDataTypes against

aTypes ImplementationsDataTypes (ARRAY,
STRUCTURE) or vice versa

R 12 RUNNABLE ACTIVATION OPTIONS
Feature Sub-feature Refinements of the feature description in

SWC terms
R 12.1 |Runnable The RteActivationOffset attribute is
91 of 104 Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTOSAR

activation offset
(Load balancing)

Virtual Functional Bus
AUTOSAR Release 4.2.2

configured in RteEventToTaskMapping.

R 12.2 |Runnable The attribute minimumStartinterval is
minimum start configured for a RunnableEntity.
interval
R 12.3 | Wake up of wait Please refer to wake of waitpoints section
point RTEEVENTS.
R 13 Others
Feature Sub-feature Refinements of the feature description in
SWC terms
R 13.1 |SWCs as Source A Code element of Swcimplementation is
code configured with attribute Category =
SWSRC.
R 13.2 |SWCs as Object A Code element of Swcimplementation is
code configured with attribute Category =
SWOBJ.
R 13.3 | Multiple The attribute
Instantiation supportsMultiplelnstantiation is set to
TRUE for one AtomicSwComponentType.
R 13.4 | Per Instance c typed A PerinstanceMemory is defined in a
Memory SwcinternalBehavior
R 13.5 | Per Instance AR typed A VariableDataPrototype is referenced in
Memory the role arTypedPerinstanceMemory in a
SwclnternalBehavior.
R 13.6 |Indirect API The attribute IndirectAPI is set to TRUE in
one PortApiOption Element.
R 13.7 |Enable take Referrable C-functions are enforced for at
address least one port/function. The attribute
enableTakeAddress is set to TRUE in one
PortApiOption Element
R 13.8 | Activating Rte An ExecutableEntity aggregates an
Event ExecutableEntityActivationReason to
retrieve the activating event via RTE API
R 13.9 | Variant handling Variant handling via VariationPoints is used
in the model.
R 13.10 | Variant handling | PreCompileTime Variability defined with VariantionPoint or
Variability AttributeValueVariationPoint with latest
bindingTime PreCompileTime is applied to
VFEB/RTE relevant model elements
R 13.11 | Variant handling | PostBuild Variability Variability defined with VariantionPoint with
postBuildVariantCriterion is applied to
VFB/RTE relevant model elements
R 13.12 | FlatMap A FlatMap is defined (and referenced in the
RootSwCompositionPrototype) for
EcuExtract or SystemExtract (this is mainly
used to refer to elements in the flat ECU
extract) for measurement and calibration
R 13.13 | Combined SwComponentPrototype with
Require and PRPortPrototype as Ports are used
Provide Ports
R 14 Runnable Category
Feature Sub-feature Refinements of the feature description in
SWC terms
R14.1 |[Cat1lA RunnableEntitys without WaitPoints, using
only implicit S/R API's are used
92 of 104 Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTO SAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

R 14.2 |Cat1B RunnableEntitys without WaitPoints, using

implicit and explicit API's are used

R 14.3 |Cat2 RunnableEntitys with at least one

WaitPoint are used

R 15 Component Types

Feature Sub-feature Refinements of the feature description in
SWC terms

R 15.1 | ApplicationSwCo A ComponentPrototype of type
mponent ApplicationSwComponentType exists.

R 15.2 | EcuAbstractionS A ComponentPrototype of type
wComponent EcuAbstractionSwComponentType exists.

R 15.3 | NvBlockSwComp A ComponentPrototype of type
onent NvBlockSwComponenType exists.

R 15.4 | ComplexDeviceD A ComponentPrototype of type
riverSwCompone ComplexDeviceDriverSwComponentType
nt exists.

R 15.5 | SensorActuatorS A ComponentPrototype of type
wComponent SensorActuatorSwComponentType

exists.

R 15.6 | ServiceSwComp A ComponentPrototype of type
onent ServiceSwComponentType exists.

R 15.7 | ServiceProxySw A componentPrototype of type
Component ServiceProxySwComponentType exists.

R 15.8 | ParameterSwCo A ComponentPrototype of type
mponent ParameterSwComponentType exists.

R 16 System Configuration
Feature Refinements of the feature description in

SWC terms

R 16.1 | System Systems with category
Description SYSTEM_DESCRIPTION are exchanged in
exchanged the cooperation

R 16.2 | System Extract Systems with category
exchanged SYSTEM_EXTRACT are exchanged in the

cooperation

R 16.3 | Ecu Extract Systems with category ECU_EXTRACT are
exchanged exchanged in the cooperation

R 17 Interfaces to BSW Services
BSW Module Sub-feature Refinements of the feature description in

SWC terms
R17.1 |NVRAM with A ComponentPrototype is requiring some
Manager — NvM | NvBlockSwComponenTy | NvM Interfaces (example:
pe. ClientServerinterface NvMService) and
NvBlockSwComponenType.
R17.2 without A ComponentPrototype is requiring some
NvBlockSwComponenTy | NvM Interfaces (example:
pe (old style). ClientServerinterface NvMService) and
ServiceSwComponent is used. Data is
represented and accessed as Per Instance
Memory.

R 17.3 | Communication A ComponentPrototype is requiring some

Manager — ComM Interfaces (example:
ComM ClientServerinterface
93 of 104 Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTOSAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

ComM_UserRequest,
ComM_ECUModeLimitation,
ComM_ChannelWakeUp,
ComM_ChannelLimitation or
SenderReceiverinterface
ComM_CurrentMode).

R 17.4 | Diagnostic A ComponentPrototype is requiring some

Communication Dcm Interfaces (example:

Manager — Dcm ClientServerinterface DcmServices,
DCM_Roe, PidDataServices_<PIDData>,
etc...).

R 17.5 | Diagnostic Event A ComponentPrototype is requiring some

Manager — Dem Dem Interfaces (example:
ClientServerinterface DiagnosticMonitor,
Diagnosticlnfo, GeneralDiagnosticlnfo).

R 17.6 |Function A ComponentPrototype is requiring some

Inhibition Fim Interfaces (example:

Manager — Fim ClientServerinterface Functioninhibition).

R 17.7 |ECU State A ComponentPrototype is requiring some

Manager — EcuM EcuM Interfaces (example:
ClientServerinterface
EcuM_ShutdownTarget, EcuM_BootTarget,
EcuM_AlarmClock, etc...).

R 17.8 |Basic Software A ComponentPrototype is requiring some

Mode Manager — BswM Interfaces (example:

BswM ModeSwitchinterface
modeRequestPort<number>,
modeSwitchPort<number>,
modeNotificationPort<number> etc...).

R 17.9 |Watchdog A ComponentPrototype is requiring some

Manager — WdgM Interfaces (example:

WdgM ClientServerinterface
WdgM_AliveSupervision).

R 17.10 | Development A ComponentPrototype is requiring some

Error Tracer — DET Interfaces (example:

DET ClientServerinterface DETService).

R 17.11 | Operating A ComponentPrototype is requiring some

System - OS OS Interfaces (example:
ClientServerinterface OsService).

R 17.12 | Crypto Service A ComponentPrototype is requiring some

Manager — Csm Csm Interfaces (example:
ClientServerinterface Csm<Service>,
CsmHash, CsmMacGenerate, etc...).

R 17.13 | Diagnostic Log A ComponentPrototype is requiring some
and Trace - DIt DLT Interfaces (example:
ClientServerinterface DLTService,
LogTraceSessionControl,
VerboseModeControl, etc...).
R 17.14 | Synchronized A ComponentPrototype is requiring some

Time-Base StbM Interfaces (example:

Manager - StbM ClientServerinterface
StbM_TimeBaseValue or
SenderReceiverInterface
StbM_TimeBase_TriggerCustomer,
StbM_TimeBase_StateNotification).

R 17.15 | Diagnostic over A ComponentPrototype is requiring some

IP - DolP DolP Interfaces (example:
ClientServerinterface
RoutingActivation>_RoutingActivation or
CallbackTriggerGIDSynchronization or

94 of 104 Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTO SAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

CallbackGetPowerMode)

R 18 RTE Integration features
Feature Sub-feature Refinements of the feature description in
SWC terms
R 18.1 |VFB Tracing The RTE Generator RteVfbTrace is set to
TRUE.
R 18.2 |Report RTE The Attribute RteDevErrorDetect is set to
development TRUE.
errors to DET
R 18.3 |Bypass Support | Component wrapper Parameter RteBypassSupport is set to
method COMPONENT_WRAPPER and
RteBypassSupportEnabled is set to true
for a software component type
R 18.4 |Bypass Support | Direct buffer access Parameter RteBypassSupportEnabled is
method set to true for a software component type
Table 11.1: Intra-ECU VFB/RTE features for profile definition
11.2.2 Inter-ECU features

These are features that might be relevant for interaction between ECUs. Their
technical realization and impact might be different in comparison to intra ECU.

E1l SENDER-REICEIVER IMPLEMENTATION DATA TYPE
Informal CATEGORY Refinements of the feature
"Category" description in SWC terms
E1l1 PRIMITIVE VALUE, category "VALUE",
DATA_REFERE "DATA_REFERENCE" or
NCE, "FUNCTION_REFERENCE" for
FUNCTION_RE ImplementationDataType for
FERENCE Sender-Receiver Communication is
used
E1.2 COMPLEX STRUCTURE, Structures, Unions or arrays are
ARRAY, UNION used as category for
ImplementationDataType for
Sender-Receiver Communication
E13 DYNAMIC VARIABLE_LE SwBaseType with category
NGTH VARIABLE_LENGHT are in use for
SenderReceiver Communication.
E 2 SENDER-RECEIVER COMMUNICATION
Inter ECU Semantics Feature Refinements of the feature
Role description in SWC terms
E2.1 As Sender Data (Last-is- VariableDataPrototypes configured

best)

with swimplPolicy = Standard are
used in S/R PortPrototypes'
SenderReceiverinterface as
PPorts

95 of 104

- AUTOSAR Confidential -

Document ID 056: AUTOSAR_EXP_VFB

AUTOSAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

E2.2 As Sender Data (Last-is-

best)

INIT value

PPortPrototype configured with
InitValue attribute in the
NonqueuedSenderComSpec or at
corresponding
VariableDataPrototypes are used.

E2.3 As Sender Data (Last-is-

best)

Invalidation

SenderReceiverinterfaces used by
PortPrototype are configured with
handlelnvalid attribute of the
InvalidationPolicy is set to keep or
replace.

E24 As Sender Data (Last-is-

best)

Acknowledgement

One or more PPortPrototype
configured with Attribute
TransmissionAcknowledgmentRe
guest in SenderComSpec.

E25 As Sender Data (Last-is-

best)

Explicit access
(Write API)

DataSendPoint exist at least in one
RunnableEntity.

E2.6 As Sender Data (Last-is-

best)

Implicit access
(Iwrite API)

DataWriteAccess exist at least in
one RunnableEntity.

E 2.7 As Sender Data (Last-is-

best)

Implicit access with
special semantics:
coherency groups

DataReadAccess /
DataWriteAccess exist at least in
one RunnableEntity.
RtelmplicitCommunication
containers are defined with with
RteCoherentAccess set to "TRUE"
(i.e. Coherency groups are defined)

E 2.8 As Sender Data (Last-is-

best)

Implicit access with
special semantics:
Immediate buffer
update

DataReadAccess /
DataWriteAccess exist at least in
one RunnableEntity.
RtelmplicitCommunication
containers are defined with with
RtelmmediateBufferUpdate set to
"TRUE" (i.e. specific buffer update
handling is required for some implicit
read/write access)

E29 As Sender Data (Last-is-

best)

Handle out of
range

One or more PPortPrototype
configured with Attribute
handleOutOfRange (value must be
different that NONE) of the
respective SenderComSpec.

E 2.10 |As Sender Data (Last-is-

best)

End to end
protection

One or more PPortPrototype
configured with Attribute
usesEndToEndProtection = TRUE
in the SenderComSpec.

E 2.11 |As Sender

Event (queued)

One or more
VariableDataPrototype used in
SenderReceiverinterface
configured with swimplPolicy =
Queued

E 2.12 |As Receiver |Data (Last-is-

best)

VariableDataPrototypes configured
with swimplPolicy = Standard are
used in S/R PortPrototypes'
SenderReceiverinterface as
RPorts

E 2.13 |As Receiver |Data (Last-is-

best)

INIT value

RPortPrototypes configured with
InitValue attribute in the
NonqueuedReceiverComSpec or
at corresponding
VariableDataPrototypes are used.

96 of 104

- AUTOSAR Confidential -

Document ID 056: AUTOSAR_EXP_VFB

AUTOSAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

E2.14

As Receiver

Data (Last-is-
best)

Invalidation

SenderReceiverinterfaces used by
PortPrototype are configured with
handlelnvalid attribute of the
InvalidationPolicy is set to keep or
replace.

E 2.15

As Receiver

Data (Last-is-
best)

Filter

RPortPrototypes configured with
Filter attributes in
NonqueuedReceiverComSpec are
used.

E 2.16

As Receiver

Data (Last-is-
best)

Alive Timeout

One or more RPortPrototype
configured with AliveTimeOut
attribute greater than 0 in
NongqueuedReceiverComSpec

E2.17

As Receiver

Data (Last-is-
best)

NeverReceived
indication
(RcvsSide)

One or more RPortPrototype
configured with Attribute
HandleNeverReceived =true in
NongqueuedReceiverComSpec.

E 2.18

As Receiver

Data (Last-is-
best)

Enableupdate
indication
(RcvSide)

One or more RPortPrototype
configured with Attribute
enableUpdate =true in
NonqueuedReceiverComSpec.

E 2.19

As Receiver

Data (Last-is-
best)

Explicit access
(Read API)

DataReceivePoint exist at least in
one RunnableEntity.

E 2.20

As Receiver

Data (Last-is-
best)

Implicit access
(Iread API)

DataReadAccess exist at least in
one RunnableEntity.

E 221

As Receiver

Data (Last-is-
best)

Implicit access with

special semantics:
coherency groups

DataReadAccess /
DataWriteAccess exist at least in
one RunnableEntity.
RtelmplicitCommunication
containers are defined with with
RteCoherentAccess set to "TRUE"
(i.e. Coherency groups are defined)

E 2.22

As Receiver

Data (Last-is-
best)

Implicit access with

special semantics:
Immediate buffer
update

DataReadAccess /
DataWriteAccess exist at least in
one RunnableEntity.
RtelmplicitCommunication
containers are defined with with
RtelmmediateBufferUpdate set to
"TRUE" (i.e. specific buffer update
handling is required for some implicit
read/write access)

E 2.23

As Receiver

Data (Last-is-
best)

Handle out of
range

One or more RPortPrototype
configured with Attribute
handleOutOfRange (value must be
different that NONE) of the
respective ReceiverComSpec.

E 2.24

As Receiver

Data (Last-is-
best)

End to end
protection

One or more
RPortPrototypeconfigured with
Attribute usesEndToEndProtection
= TRUE in the ReceiverComSpec

E 2.25

As Receiver

Event (queued)

VariableDataPrototype in
SenderReceiverinterface is
configured with swimplPolicy =
Queued

E 2.26

As Receiver

Event (queued)

Blocking Receive

Attribute WaitPoint in a
RunnableEntity with TriggerRef to
a DataReceivedEvent is used.

97 of 104

- AUTOSAR Confidential -

Document ID 056: AUTOSAR_EXP_VFB

AUTO SAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

E3 CLIENT-SERVER COMMUNICATION
Inter ECU Semantics Feature Refinements of the feature
Role description in SWC terms
E3.1 As Client Synchronous A SynchronousServerCallPoint
exists (the client is located on
another ECU)
E 3.2 As Client Synchronous With timeout A SynchronousServerCallPoint
with attribute TimeOut > 0 exists.
E 3.3 As Client Asynchronous | Clients uses An AsynchronousServerCallPoint
Rte_Result API to |and corresponding
poll (no AsynchronousServerCallResultP
ASYNCHRONOUS | oint exists but no corresponding
_SERVER AsynchronousServerCallReturnE
CALL_RETURNS |vent exists.
EVENT Re)
E 3.4 As Client Asynchronous | Clients uses An AsynchronousServerCallPoint
Rte_Result APl to |and corresponding
poll (with AsynchronousServerCallResultP
ASYNCHRONOUS | oint exists and a corresponding
_SERVER AsynchronousServerCallReturnE
CALL_RETURNS |vent triggers a runnbable but no
EVENT Re) WaitPoint references it
E 3.5 As Client Asynchronous | with WaitPoint i.e. | An
blocking AsynchronousServerCallReturnE
Rte_Result vent exists and a WaitPoint
references it.
E 3.6 As Client Asynchronous | with Timeout (also | AsynchronousServerCallPoint
without Waitpoint) | with attribute TimeOut >0
E 3.7 As Server Synchronous/As | reentrant Server runnable attribute
ynchronous "canBelnvokedConcurrently =
tue"
E 3.8 As Server Synchronous/As | not invokeable Server runnable attribute
ynchronous concurrently "canBelnvokedConcurrently =
false"
E4 TRIGGER COMMUNICATION
Inter ECU Semantics Refinements of the feature
Role description in SWC terms
E4.1 As trigger Non Queued Portinterface typed by
source Triggerinterface with triggers
configured with swimplPolicy =
Standard referenced by an
ExternalTriggeringPoint are used
E 4.2 As trigger Non Queued Portinterface typed by
sink Triggerinterface with triggers
configured with swimplPolicy =
Standard and runnables
referenced by an
ExternalTriggerOccurredEvent
are used
ES5 RTE EVENTS
Reaction Event Type Refinements of the feature
description in SWC terms
98 of 104 Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTOSAR

Virtual Functional Bus
AUTOSAR Release 4.2.2

E5.1 RE Activation | DATA_RECEIV A DataReceivedEvent references a
ED_EVENT RunnableEntity, a required
VariableDataPrototype but no
WaitPoint references the
DataReceivedEvent.
E5.2 RE Activation | DATA_RECEIV Triggers a RunnableEntity used to
ED_ERROR_E collect the error status of a
VENT dataelement with data semantics on
the receiver side like AliveTimeOut
attribute greater than 0.
E5.3 RE Activation | DATA _SEND_C A DataSendCompletedEvent
OMPLETED_E references a RunnableEntity, a
VENT required VariableDataPrototype
but no WaitPoint references the
DataSendCompletedEvent.
E5.4 RE Activation | OPERATION_| An OperationinvokedEvent
NVOKED_EVE references a RunnableEntity.
NT
E5.5 RE Activation | ASYNCHRONO An
US_SERVER AsynchronousServerCallReturns
CALL_RETURN Event references a
S EVENT RunnableEntity.
E5.7 RE Activation | DATA WRITE_ A DataWriteCompletedEvent
COMPLETED_ references a RunnableEntity, a
EVENT provided VariableDataPrototype
but no WaitPoint references the
DataWriteCompletedEvent.
E 5.8 RE Activation | EXTERNAL_TR An ExternalTriggerOccurredEvent
IGGER_OCCU references a RunnableEntity.
RED_ EVENT
E5.9 Wakeup of DATA_RECEIV A DataReceivedEvent references a
Waitpoints ED_EVENT RunnableEntity and a required
VariableDataPrototype. One
WaitPoint references the
DataReceivedEvent.
E 5.10 |Wakeup of DATA_SEND_C A DataSendCompletedEvent
Waitpoints OMPLETED_E references a RunnableEntity and a
VENT provided VariableDataPrototype.
One WaitPoint references the
DataSendCompletedEvent
E5.11 |Wakeup of ASYNCHRONO An
Waitpoints US_SERVER AsynchronousServerCallReturns
CALL_RETURN Event references a RunnableEntity
S EVENT and a WaitPoint references the
AsynchronousServerCallReturns
Event
E 6 PortinterfaceElementMapping & Data Scaling over network
Feature Sub-feature Refinements of the feature
description in SWC terms
See Intra
ECU
Portinterface
ElementMap
ping and
Data Scaling
(transfer
similar to
99 of 104 Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
) AUTOSAR Release 4.2.2

InterECU
communicati
on)

E6.1 Conversion The RTE has to convert data to the
to network relevant network representation.
representatio A SwDataDefProps is attached to
n SenderComSpec or

ReceiverComSpec of a S/R port as
"networkRepresentation” or to
corresponding ISignal as
"networkRepresentationProps".

Table 11.2: Inter-ECU VFB/RTE features for profile definition

100 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

12 Interaction with Non-AUTOSAR-ECUs

12.1Introduction

This section describes the interaction with Non-AUTOSAR-ECUs on VFB level. This
kind of interaction is e.g. necessary to provide a migration path.
Non-AUTOSAR-ECUs are:
ECUs that have not been developed according to AUTOSAR mechanisms. This is useful
fore.g.:
o Integration of an AUTOSAR ECU into an already existing system of ECUs
o Connect system of AUTOSAR ECUs to already existing system of ECUs
o Re-use already existing ECU in system of AUTOSAR ECUs
ECUs that have been developed according to AUTOSAR mechanisms once, but stay
unchanged now. This is useful for e.g.:
o Reuse strategies (taking over of complete unchangeable AUTOSAR ()
ECUs)
Intelligent ('Smart") Sensors/Actuators with an ECU which do not implement the
AUTOSAR VFB / AUTOSAR RTE. This is useful for e.g.:
o Using Commercial of the shelf LIN nodes.
Interaction of AUTOSAR SW-C with non AUTOSAR software within one ECU is not
analyzed in this document.

12.2Problems of interaction
The following problems will arise from the interaction with Non-AUTOSAR-ECUs:

Interaction with interfaces of applications on Non-AUTOSAR-ECUs:
o Ports/Interfaces have to be mapped to pre-defined communication messages
(possible to be routed through gateway)
¢ Non-AUTOSAR-SW-Components are currently not modeled at VFB level
o Unconnected ports of AUTOSAR-SW-Components
o Hidden communication load
o Client-Server not supported in old systems.

Interaction/support of services implemented on Non-AUTOSAR ECUs
¢ Old services/protocols have to be supported in parallel, to enable interoperability, e.g.
Network Management.
e Additional services supported by communication system (e.g. bus sleep/bus
wake-up).
¢ LIN nodes inherently are not affected because it is using the master slave paradigm
o services/protocols have to be managed and implemented in any case
by master node (in this case AUTOSAR ECU)
o Required configuration data available in node capability file (NCF)

Problem of support of enhanced services/protocols (e.g. Network Management,
Diagnosis (connection to AUTOSAR SW-C), Transport Protocol Layer, ...)

101 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

Whether the non-AUTOSAR ECUs are connected to the same or a different
communication system is not relevant for VFB, because no hardware is considered
on VFB level. For the same reason gateway configuration is not relevant for the VFB.

12.3Description of interaction

The modeling of the interaction with non-AUTOSAR-ECUs is done the same for all
kinds of non-AUTOSAR-ECUs.
¢ Non-AUTOSAR ECUs are modeled as separate ECUs with separate AUTOSAR
SW-C (with AUTOSAR SW-C Description), which will not be implemented. To
enable communication with the non-AUTOSAR ECU the RTE on the AUTOSAR
ECU must implement wrapper code for the non-AUTOSAR communication
¢ Communication messages, configuration and load is defined by System
Constraint Template (for LIN Nodes the information contained within the node
capability files (NCF) has to be integrated into the System Constraint Template)
The following figure (Figure 12.1: Interaction with non-AUTOSAR ECUSs) shall clarify
the interaction by giving an example of non-AUTOSAR-ECU(s) interacting with an
AUTOSAR ECU. A Port type converter (adapting client server/sender receiver
communication) is shown in the example. The port type converter has to be situated
on an AUTOSAR-ECU; it doesn’t necessarily need to be on the same ECU the final
communication partner is on. Since the converter is here from the class '"AUTOSAR
SW-C' it has to be implemented as a separate component. In later solutions it might
be part of an automatically generated RTE.

For the sender-receiver communication no adaption is shown. But even when using
the same communication paradigm an adaption might be required due to different
communication attributes. This would be done the same way like the port type
conversion. The adaption has to be implemented as a separate AUTOSAR SW-C; in
later solutions it might be done within an automatically generated RTE.

The way between the communication system signals (e.g. signals on CAN) and the
RTE layer is the same for AUTOSAR and non-AUTOSAR signals.

102 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTO SAR Virtual Functional Bus
) AUTOSAR Release 4.2.2

| Non-AUTOSAR ECU
Non-AUTOSAR ECU

AUTOSAR ECU Non-AUTOSAR ECU
AUTOSAR
AUTOSAR Sw-C
SW-C Description
Description
> P Q > N
C 3 Co
()] — S o
20 s Q0o System
ov > (:Q 7 Constraint
;)S 2 o) Description

Figure 12.1: Interaction with non-AUTOSAR ECUs

The support of enhanced services/protocols (e.g. Network Management, Diagnosis
(connection to AUTOSAR SW-C), Transport Protocol Layer ...) may be handled by
Complex Drivers or 'special' implementations of the corresponding basic-software
module(s).

103 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

AUTOSAR Virtual Functional Bus
i AUTOSAR Release 4.2.2

13 References

[1] Methodology
AUTOSAR_MOD_Methodology.pdf

[2] Glossary
AUTOSAR_TR_Glossary.pdf

[3] Main Requirements
AUTOSAR_RS_Main.pdf

[4] List of Basic Software Modules
AUTOSAR_TR_BSWModuleList.pdf

[5] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[6] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate.pdf

[7] Specification of RTE
AUTOSAR_SWS_RTE.pdf

[8] Specification of Timing Extensions
AUTOSAR_TPS_TimingExtensions.pdf

[9] Explanation of Application Interfaces of the Body and Comfort Domain
AUTOSAR_EXP_AIBodyAndComfort.pdf

[10] Explanation of Application Interfaces of the Powertrain Domain
AUTOSAR_EXP_AIPowertrain.pdf

[11] Explanation of Application Interfaces of the Chassis Domain
AUTOSAR_EXP_AIChassis.pdf

[12] Explanation of Application Interfaces of Occupant and Pedestrian Safety
Systems Domain
AUTOSAR_EXP_AlOccupantAndPedestrianSafety.pdf

[13] Explanation of Application Interfaces of the HMI, Multimedia and Telematics
Domain
AUTOSAR_EXP_AIHMIMultimediaAndTelematics.pdf

[14] Application Interfaces User Guide
AUTOSAR_EXP_AlUserGuide.pdf

104 of 104 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

	1 Introduction to this document
	1.1 Contents
	1.2 Prereads
	1.3 Relationship to other AUTOSAR specifications
	1.4 Structure and conventions of this document
	1.4.1 Structure of this document
	1.4.2 Specification Items

	2 The Virtual Functional Bus
	3 Overall mechanisms and concepts
	3.1 Components
	3.2 Port-Interfaces
	3.3 Ports
	3.3.1 Port Types
	3.3.2 Port Compatibility
	3.3.3 Data Type Policies

	3.4 Connectors
	3.4.1 Unconnected Ports
	3.4.1.1 Unconnected PRPorts
	3.4.1.2 Unconnected Sender/Receiver Ports
	3.4.1.3 Unconnected Client/Server Ports

	3.5 Compositions versus atomic components
	3.6 Relationship between the VFB and the ECU Software Architecture
	3.7 Kinds of software components
	3.8 Resources for components and “runnables”
	3.8.1 Background
	3.8.2 The “runnable” concept
	3.8.3 The implementation of a component and the role of the RTE

	3.9 Interface Conversion Blocks
	3.9.1 Supported Conversions and Mappings
	3.9.1.1 Interface Element Mapping
	3.9.1.2 Linear Data Conversion
	3.9.1.3 Data Mapping
	3.9.1.4 Mixed Conversion

	3.10 Variant Handling
	3.10.1 Binding Times
	3.10.2 Choosing a Variant
	3.10.3 Variability
	3.10.3.1 Software Component Variability
	3.10.3.2 Port Variability
	3.10.3.3 Connector Variability

	4 Communication on the VFB
	4.1 Introduction
	4.2 Error types
	4.3 Sender-Receiver communication
	4.3.1 From the point of view of the sender
	4.3.2 From the point of view of the receiver
	4.3.3 Multiplicity of sender-receiver
	4.3.4 Filtering between the sender and the receiver
	4.3.5 Concurrency and ordering within a sender-receiver connector

	4.4 Client-Server communication
	4.4.1 From the point of view of the client
	4.4.2 From the point of view of the server
	4.4.3 Multiplicity of client-server
	4.4.4 Ordering and concurrency within a client-server connector

	4.5 Remarks regarding the identification of communication partners

	5 Timing Extensions
	5.1 Main Purpose of Timing Extensions for AUTOSAR
	5.2 Timing in different phases of the AUTOSAR methodology

	6 Interaction with hardware
	6.1 Introduction
	6.2 Microcontroller Abstraction Layer (MCAL)
	6.3 ECU Abstraction
	6.4 Sensor-Actuator Software Component
	6.5 Complex Driver Component

	7 AUTOSAR Services
	7.1 Introduction
	7.2 VFB Representation
	7.2.1 Selection of a communication mechanism
	7.2.2 Location of a Service
	7.2.3 Distribution of Requests to Remote Services
	7.2.4 Platform dependent types
	7.2.5 Configuration

	7.3 List of Services

	8 Mode Management
	8.1 Introduction
	8.2 Defining modes
	8.3 Communicating modes
	8.4 Mode-managers: components that control modes
	8.5 Components that depend on modes

	9 Port Groups
	10 Measurement and Calibration
	10.1 Calibration
	10.1.1 Port-based calibration
	10.1.1.1 Pure single instantiation
	10.1.1.2 Multiple instantiation of the involved software components
	10.1.1.3 Multiple instantiation of the involved calibration components

	10.1.2 Private calibration

	10.2 Measurement

	11 VFB Features and Profiles
	11.1 Motivation and Introduction
	11.2 Feature tables
	11.2.1 Intra-ECU features
	11.2.2 Inter-ECU features

	12 Interaction with Non-AUTOSAR-ECUs
	12.1 Introduction
	12.2 Problems of interaction
	12.3 Description of interaction

	13 References

