AUTO SAR

Overview of Functional Safety Measures in
AUTOSAR
AUTOSAR Release 4.2.2

Document Title Overview of Functional Safety
Measures in AUTOSAR

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 664

Document Classification Auxiliary

Document Status Final

Part of AUTOSAR Release 4.2.2

Document Change History

Release |Changed by

Change Description

4.2.2 |AUTOSAR
Release
Management

e New Chapter: ,Hardware Diagnostics“ covers
Core Test and RAM Test.

e Minor corrections / clarifications / editorial
changes.

4.2.1 AUTOSAR
Release
Management

e [nitial Release

1of71

Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only. For any other purpose, no part of
the specification may be utilized or reproduced, in any form or by any means, without
permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference
models, "use cases", and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their
presence in such specifications, nor any later documentation of AUTOSAR
conformance of products actually implementing such exemplary items, imply that
intellectual property rights covering such exemplary items are licensed under the
same rules as applicable to the AUTOSAR Standard.

20of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in

AUTOSAR
AUTOSAR Release 4.2.2

Table of Contents

1

2

30f 71

[T} (oo 18 Tox 1o o AP TRRPTRRN 5
O O I 1= od =V 1.1 USSP 5
O 1ol o] o[PP PPPPPPRPPPPN 5
1.3 PUIPOSE ... 6
1.4 Intended AUGIENCEoooviiiiiiiie et e e e e e e e e e e e e e eeeeenes 6

Functional Safety MeChaniSIMS........ccccoiiiiiiiiie e e e e 7
2.1 MemOry Partitioningoeeeeeeieiiiiiiiiie et e e e e e eeaaans 8

2.1.1 = LU] L 1Y/ o T = £ 8

2.1.2 DESCIIPLION ..o 9

2.1.2.1 Application SOftWAIeuuiiiiiii e 9
2.1.2.2 OS APPIICALIONS ...ttt 11
2.1.2.3 Communication and Code Sharing.........c.cccceevveveiviiiiieee e, 12
2.1.2.4 Memory Partitioning within Application Softwareccccuvueeee 13
2.1.2.5 Memory Partitioning within Software Componentsc.ccc.uue.... 14
2.1.2.6 Implementation of Memory Partitioningcccccuvvvvemmeiinnninnnnnnnns 16

2.1.3 Detection and ReacCtioN.............ccooeeeeiiiiiiiiiiiiie e 19

214 T 71 = U0 PP 20

2.1.5 References to AUTOSAR DOCUMENESceveeeeeiiiiiiiiiiiieee e, 21

2.1.6 References to ISO26262...........covieiiiiiieiiiiiie e 23
P22 12011 To T8\, [a1 (o 1 o PSP 24

221 = LU] 1Y/ o T = £ 24

2.2.2 DTS o3] 011 o] o PP 25

2.2.2.1 SUPErVISEd ENLILIESuuviriiiiiiiiiiiiiiiiiiiiiiiiieiie b 25
2.2.2.2 Watchdog Manageruiiiiiieeiiieeiiee e 25
2.2.2.3 Timing Protection of the Operating SyStemccccvvevevviiiiinnnnnnns 27

2.2.3 Detection and ReacCtioN.............ccoooeeeiiiiiiiiiiiiie e 28

224 T 71 7= U0 PP 29

2.2.5 References to AUTOSAR DOCUMENTSccuuvviiiiiiiiiiiiiiiiieeeeeii e 30

2.2.6 References t0 ISO26262...........covieeeiiieiieiiee e 31
2.3 LOQICaAl SUPEIVISIONvvviiiiei et e e e e e 32

231 = 10] L 1Y/ o T = £ 32

2.3.2 DTS o3] 011 o] o [P RTT 32

2.3.3 Detection and ReaACHONuiiiiiiiiieiiiie e 34

2.3.4 LIMITAtIONS ... 35

2.3.5 References to AUTOSAR DOCUMENESuovevieeriiiiiiiiiiieeeeeeeeeeeiinnnnnn 36

2.3.6 References t0 ISO26262............uoviiiiiiiiiieeiie e 36
2.4 ENd-2-ENd ProteCliONcoii e e e 37

24.1 FaUIt MOEIS.o e 37

24.2 DESCIIPLION .o 39

2.4.2.1 ENd-2-ENd Profilesccouuiiiiiiii e 40
2.4.2.2 ENd-2-End State Machine............coovviiviiiiiii e 44
2.4.2.3 Integration of the End-2-End Protection Library.........c......ccccceeeeiis 45
2.4.2.4 ENd-2-End ProteCtion WIapPer...........uuuuuuuruumeiiieniiinineiiinnninnninnnennnnns 46
2.4.2.5 TranSMISSION MaANAQJETcccevuiiiieeiiiiiie e eeee e ee e e e e e e e eaa e eens 48
2.4.2.6 COM ENnd-2-End CalloUt........ccceeeeiiieiiiiiiiie e 49
2.4.2.7 RTE Data TransSformeroouuiiiiiiiiiiiie e 50
2.4.3 Detection and ReaACHIONiiiiieiiiiiiiiiie e 52
2.4.4] 01 =LA T0] ST 52
Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR

- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in

AUTOSAR

AUTOSAR Release 4.2.2

245 References to AUTOSAR DOCUMENTSuovvvieeiiiiiiiiiiiiieee e 53
2.4.6 References to ISO26262...........covvieeeiiiieeiiiie e 55

3 Functional Safety MEASUIESccoiiiiiiiiiiiiiiie et e e e e eeeees 56
3.1 Functional Safety Measures of AUTOSAR.........cccoeeiviiiiiiiiiiiee e, 56
3.2 TraCEADIILY ... 57
3.3 Development Measures and the Evolution of the Standard 57
3.4 Functional Safety Measures not delivered by AUTOSARcooeeeeeeen. 59
3.5 Safety related Extensions of Methodology and Templates............cc........... 60
3.6 SAfEtY USE CASE ... 60

4 Hardware DIagNOSLICSuuuiiiiieeeiiiieiiii e et e e e e e e e e e e e e e e e e eeeanas 61
e O O T >N 1= 61
4.1.1 = LU] L 1Y/ o T = £ 61
4.1.2 DESCHIPLION ..o 62
4.1.3 Detection and ReaACtiON.............ccoeveiiiiiiiiiiiii e 62
4.1.4 T 01 =LA 0] ST 62
4.1.5 References to AUTOSAR DOCUMENESoeeeeeeeiiiiiiiiiiieee e, 63
4.1.6 References t0 ISO26262...........covieeeiiiiieiiiiie e 66

4.2 RAM TS i 66
4.2.1 = LU] L 1Y/ o T = £ 66
4.2.2 DTS o3] 011 o] o [P 67
4.2.3 Detection and REACHONiiiiiiiiiiiiiiiiie e 67
4.2.4 LIMITAtIONS ... 67
4.2.5 References to AUTOSAR DOCUMENTSucvvieeeriiiiiiiiiineeee e eeeeeiiiinnnn 68
4.2.6 References to ISO26262...........covieeeieiiiiiiiie e 69

ST Y o] 01T o |3 TN 70
5.1 Acronyms and abbreviationsScccooeeeiiiiiiiiiiii e 70
72N == 1= To [o Tox U [=T o1 P 71

4of 71

Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2
1 Introduction

Functional safety is a system characteristic which is taken into account from the
beginning, as it may influence system design decisions. Therefore AUTOSAR
specifications include requirements related to functional safety.

Aspects such as complexity of the system design can be relevant for the
achievement of functional safety in the automotive field.

Software is one parameter that can influence complexity on system level. New
techniques and concepts for software development can be used in order to minimize
complexity and therefore can ease the achievement of functional safety.

AUTOSAR supports the development of safety-related systems by offering safety
measures and mechanisms. However AUTOSAR is not a complete safe solution.

The use of AUTOSAR does not imply 1SO26262 compliance. It is still possible to
build unsafe systems using the AUTOSAR safety measures and mechanisms.

1.1 Disclaimer

This explanatory document represents the functional safety measures and
mechanisms of the latest release of AUTOSAR. Some of the described mechanisms
and measures may be implemented differently or may not be available in previous
releases. The user of this document shall always consult the applicable referenced
documents.

1.2 Scope

The content of this document is structured into separate chapters as follows:

Functional Safety Mechanisms: This chapter contains AUTOSAR functional safety
mechanisms related to freedom from interference between AUTOSAR SW-Cs.

e Memory: Partitioning mechanisms of AUTOSAR with the context of Application
Software development and deployment.

e Timing: Temporal Program Flow Monitoring mechanisms using the Watchdog
Manager and Timing Protection mechanisms using the Operating System.
e Execution: Logical Supervision mechanisms using the Watchdog Manager.

e Exchange of Information: Communication fault detection mechanisms using the
End-2-End Library and Extensions.

Functional Safety Measures: This chapter contains topics related to the development
of safety-relevant systems. The following items are covered:

¢ Functional Safety Measures of AUTOSAR, such as Traceability, Development
Measures and the Evolution of the Standard.

¢ Functional Safety Measures not delivered by AUTOSAR.
o Safety Use Case: An exemplary safety related system using AUTOSAR based on
the guided tour example Front Light Management.

50of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

e Safety Extensions: How safety requirements can be expressed within the
AUTOSAR models and documents by means of the AUTOSAR meta-model.

Hardware Diagnostics: This chapter contains topics related to the premise, that the
provided functionality of the microcontroller can be trusted. The following items are
covered:

e Core Test.

e RAM Test.

1.3 Purpose

Information about AUTOSAR functional safety mechanisms and measures is
currently distributed throughout the referenced documentation. Unless one knows
how functional safety mechanisms are supported and where the necessary
information is specifically located, it is difficult to evaluate how a safety-relevant
system can be implemented using AUTOSAR efficiently.

This explanatory document summarizes the key points related to functional safety in
AUTOSAR and explains how the functional safety mechanisms and measures can
be used.

Note: This document supersedes the AUTOSAR document “Technical Safety
Concept Status Report”, ID: 233.

1.4 Intended Audience

This document gives an overview of the functional safety measures and mechanisms
of AUTOSAR and their implementation to those involved in the development of
safety-relevant (ECU) systems. Therefore this document is intended for the users of
AUTOSAR, including people involved in safety analysis.

6 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2
2 Functional Safety Mechanisms

Modern ECUs contain highly modular embedded software, which can consist of both
non-safety-related and safety-related software components, which perform functions
with different ASIL ratings.

According to ISO 26262, if the embedded software consists of software components
with different ASIL ratings, then either the entire software must be developed
according to the highest ASIL, or freedom from interference shall be ensured for
software components with a higher ASIL rating from elements with a lower ASIL
rating.

Furthermore, the 1SO 262622 standard provides examples for faults, which cause
interference between software components. The faults are grouped as follows:

e Memory

e Timing

e Execution

¢ Exchange of Information

During the course of the following chapter, an overview of AUTOSAR functional
safety mechanisms® is given. Those mechanisms assist with the prevention,
detection and mitigation of hardware and software faults to ensure freedom from
interference between software components.

Note: AUTOSAR functional safety mechanisms are used to support the development
of safety-related systems. Therefore, functional safety mechanisms (software and
hardware) are safety-related and must be developed and integrated accordingly.

' [ISO 26262-6 7.4.10]

2 [ISO 26262-6, Annex D] Freedom from interference between software elements.

® In the context of this document, functional safety mechanisms are a concrete product part, such as
memory protection. They are considered as specialization of functional safety measures, which also
include process steps, like a review. This definition is in line with the definition given in ISO 26262 for
these terms.

7 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

2.1 Memory Partitioning

A modular implementation of embedded systems that consists of both safety-related
software components of different ASILs or of safety-related and non-safety-related
software components is facilitated by AUTOSAR features that support freedom from
interference between such software components.

Software Components which are developed according to a low ASIL rating may
interfere by wrongfully accessing memory regions of software components with a
higher ASIL rating. An execution of software components in separate memory
regions or memory partitions supports the prevention of such memory access
violations. Please see section 2.1.2.6 for further details.

The features described in this chapter are part of the OS and the RTE functionality,
which are required to enable groups of SW-Cs to run in separate memory partitions,
in order to provide freedom from interference between software components.

2.1.1 Fault Models

According to 1SO 26262* the following memory-related effects of faults can be
considered as a cause for interference between software components:

e Corruption of content.

e Read or write access to memory allocated to another software element.

The functional safety mechanism Memory Partitioning provides protection by means
of restricting access to memory and memory-mapped hardware. Memory partitioning
means that OS-Applications reside in different memory areas (partitions) that are
protected from each other. In particular, code executing in one partition cannot
modify memory of a different partition. Moreover, memory partitioning enables to
protect read-only memory segments (e.g. code execution), as well as to protect
memory-mapped hardware.

The memory partitioning and user/supervisor-modes related features address the
following goal: Supporting freedom from interference between software components
by means of memory partitioning (e.g. memory-related faults in SW-Cs do not
propagate to other software modules and SW-Cs executed in user-mode have
restricted access to CPU instructions like e.g. reconfiguration).

* [1ISO 26262-6, Annex D] D.2.3 Memory
8 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

2.1.2 Description

Memory Partitioning is an extension of the RTE and the OS, which is described in the
AUTOSAR Specification as ,One Partition will be implemented using one OS-
Application*® and "SW-Cs grouped in separate user-mode memory partitions"®.

During the course of this chapter, this extension will be described as the relationship
of Runnables, Tasks, Software Components and OS-Applications in the context of

the AUTOSAR Methodology.

2.1.2.1 Application Software

In the AUTOSAR Architecture, Application Software is located above the RTE and
consists of interconnected AUTOSAR Software Components, which atomically
encapsulate parts of the Application Software functionality.

| E———|
ﬂ if_light_request

pa—ry

‘ if outside_brightness

Figure 1: Application Software

AUTOSAR Software Components are hardware-independent, so they can be
integrated onto any available ECU Hardware. To facilitate the inter- and intra-ECU
information exchange, AUTOSAR Software Components communicate exclusively
over the RTE.

AUTOSAR Software Components contain a number of Functions and Variables,
which provide the internal functionality. The internal structure of an AUTOSAR
Software Component, its Variables and Function Calls, is hidden from the public view
via the header files. Only the external RTE calls are presented at the public interface.

> Specification of ECU Configuration, V3.5.0, R4.1 Rev 3, Page 154, ECUC_EcuC_00005
6 Requirements on AUTOSAR Features, V1.2.1, R4.1 Rev 2, Chapter 4.11 Safety

9 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

SwW-C
Description

Virtual Functional Bus

Figure 2: Software Components

AUTOSAR Software Components also contain functions, which must be invoked at
runtime. Those C-functions are referred to as Runnables in AUTOSAR.

Runnables cannot be executed by themselves; they must be assigned to executable
entities of the operating system. Such an assignment can be performed by inserting
function calls of Runnables into OS-Task bodies.

Runnables are then executed cyclically and/or event-driven in the context of their
caller OS-Task. The assignment of Runnables to Tasks is performed according to
Figure 3 and Figure 4.

1 0.*
53 SW-C "7_ Runnable ’
=@
0. [0.*
1 l 3
=i
[Task ’ %
e
0.~ g
1 v 1 g
1 1 o m
{ Partition ormmmmmmeeeees { OS-Application (C)
1 '[110..* é-
0.7
BSW-Ressource
{ (E.g.. NV-block) { pC-Core ’

Figure 3: AUTOSAR Layered Software Architecture - Mapping of Runnables’

’ Layered Software Architecture, V3.4.0, R4.1 Rev 3, Page 105
10 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2
2.1.2.2 OS Applications

Figure 4 presents an interpretation of the relations from Figure 3. Runnables from
AUTOSAR Software Components are assigned to OS-Tasks according to this
diagram.

SW-C1 SW-C2

\ O\

u Runnable M Runnable } Runnable | Runnable

R

Task Task

0S-Application ‘

.\‘
.\‘.

Autosar Software Partition v

Figure 4: Mapping of Software Components to OS-Applications

AUTOSAR OS-Applications are collections of Operating System objects such as
Tasks, ISRs, Schedule Tables, Counters and Alarms that form a cohesive functional
unit. All objects which belong to the same OS-Application have access to each other.

The Operating System objects within an OS-Application may belong to different
AUTOSAR Software Components. The RTE implements a memory area which is
accessible by all members of the OS-Application without restrictions to facilitate
communication between the SW-Cs efficiently.

There are two classes of OS-Applications:

1. “Trusted OS-Applications are allowed to run with monitoring or protection features
disabled at runtime. They may have unrestricted access to memory and the
Operating System module’s API. Trusted OS-Applications need not have their
timing behavior enforced at runtime. They are allowed to run in privileged mode
when supported by the processor.”

2. “Non-Trusted OS-Applications are not allowed to run with monitoring or protection
features disabled at runtime. They have restricted access to memory, restricted
access to the Operating System module’s APl and have their timing behaviour
enforced at runtime. They are not allowed to run in privleged mode when
supported by the processor.”

® Specification of Operating System, V5.3.0 R4.1 Rev 3, Chapter 7.6.1
110f 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

2.1.2.3 Communication and Code Sharing

According to Figure 4 and Figure 3, an OS-Application can contain multiple
AUTOSAR Software Components and associated Runnables. Runnables are only
allowed to directly access variables and to perform function calls within their
respective Software Component.

Internal Function Calls and Variables of a Software Component are not publically
known by other Software Components, as their definitions are not presented by the
header files of the external interface.

Therefore, a direct communication via variables and the execution of Code of other
Software Components is not intended.

In Figure 5, this is illustrated by the example of code-sharing, which is only allowed
within the Software Component and not between Software Components of one OS-
Application. Communication with other Software Components shall be performed via
the RTE. Runnable 4 may not execute functions belonging to SW-C 2.2.

0OS-Application 1 0S-Application 2

Runnable 1 Runnable 2 Runnable 3 Runnable 5

RTE functions of SW-C 1 RTE functions of SW-C 2.1 RTE functions of SW-C 2.2

Figure 5: Code-Sharing within an OS-Application

12 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

2.1.2.4 Memory Partitioning within Application Software

Application Software in an AUTOSAR ECU can consist of safety-related and non-
safety-related Software Components. Freedom from interference between Software
Components with different ASIL ratings shall be ensured according to the
requirements of 1SO 26262°.

The AUTOSAR Operating System provides freedom from interference for memory-
related faults by placing OS-Applications into separate memory regions. This
mechanism is called Memory Partitioning. OS-Applications are protected from each
other, as code executing in the Memory Partition of one OS-Application cannot
modify other memory regions. The corresponding requirements from the AUTOSAR
OS specification are presented in Table 1.

Req. ID Requirement Text

[SWS_Os_ | The Operating System module shall prevent write access to the OS-

00207] Application’s private data sections from other non-trusted OS-
Applications.

[SWS_Os_ | The Operating System module shall prevent write access to all private

00355] stacks of Tasks/Category 2 ISRs of an OS-Application from other non-

trusted OS-Applications.

[SWS_Os_ | The Operating System module shall prevent write access to all private
00356] data sections of a Task/Category 2 ISR of an OS-Application from other
non-trusted OS-Applications.

Table 1: AUTOSAR OS - Memory Partitioning for OS-AppIications10

Application Software can consist of Software Components with different ASIL ratings.
However, Software Components with different ASIL ratings should not be assigned to
the same OS-Application. Memory Partitioning does not provide freedom from
interference between Software Components which are assigned to the same OS-
Application. The Operating System only prevents other OS-Applications from
performing improper accesses. A faulty Software Component would not be prevented
from modifying memory areas of other Software Components within the same OS-
Application.

Note: Please consult the subsequent section for details on Task-level partitioning.

991SO 26262-6 7.4.10]

19 Specification of Operating System, V5.3.0 R4.1 Rev 3

13 0f 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

2.1.2.5 Memory Partitioning within Software Components

A Mixed-ASIL Software Component could consist of Runnables with different ASIL
ratings and therefore requires an execution environment which supports freedom
from interference between those Runnables. An execution of different Runnables of
one Software Component in different Memory Partitions is not possible due to the
following:

Memory Partitioning is performed at the level of OS-Applications. According to Figure
3 and Figure 4 however, a Software Component can only be assigned to one OS-
Application and therefore has only one Memory Partition. Also, Runnables of a
Software Component can only be called by the Tasks of one OS-Application.

As shown in Figure 6, Runnables of a Software Component cannot be distributed to
Tasks of multiple OS-Applications.

0S-Application/partition 1 0S-Application/partition 2

SW-C1

SW-Coode
called by
Runnable 2

Runnable 1 Runnable 2

SW-C 1 RTE functions SW-C 2 RTE functions SW_C 1 RTE functions

Figure 6: SWCs vs. Partitions

Memory Partitioning cannot be used to separate Runnables within the same SW-C. If
it is necessary to have a Software Component comprise Runnables with different
ASIL-ratings and an independent execution with freedom from interference is
required for those Runnables, then memory partitioning at OS-Application level is not
sufficient, memory partitioning has to be performed at Task-level. This approach is
shown in Figure 7.

14 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

0OS-Application/partition 1

SW-C 1withints rnal partitioning

SW-Ceoda
called by
Runnable 2

Runnable 1 Runnable 2

SW-C 1RTE functions
L] L]

Figure 7: Task Partitioning

Requirements related to Memory Partitioning at Task-level are listed in the
AUTOSAR OS specification in Table 2. The use of the weak word “may” shows that
an implementation of Task-level partitioning is optional for the AUTOSAR OS.
Therefore, not every AUTOSAR OS implementation may support Task-level Memory
Partitioning.

Req. ID Requirement Text

[SWS_Os_ | The Operating System module may prevent write access to the private
00208] stack of Tasks/Category 2 ISRs of a non-trusted application from all
other Tasks/ISRs in the same OS-Application.

[SWS_Os_ | The Operating System module may prevent write access to the private
00195] data sections of a Task/Category 2 ISR of a non-trusted application
from all other Tasks/ISRs in the same OS-Application.

Table 2: AUTOSAR OS Requirements — Memory Partitioning for Tasks™

1 Specification of Operating System, V5.3.0 R4.1 Rev 3
150f 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR

- AUTOSAR confidential -

AUT o OSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

2.1.2.6 Implementation of Memory Partitioning

A broad variety of technical safety concepts on the system- and software level can be
implemented using the mechanism Memory Partitioning.

Figure 8 shows a possible implementation whereas all Basic Software Modules are
executed in one trusted/supervisor-mode’® memory partition (highlighted in red in
Figure 8). Some SW-Cs are logically grouped and put in separate non- trusted/user-
mode memory partitions (highlighted in green). Selected SW-Cs belong to the same
trusted/supervisor-mode memory partition as the Basic Software Modules (see fourth
SW-C in Figure 8 highlighted in red). There may be several non-trusted/user-mode*?
partitions, each containing one or more SW-Cs.

Non-trusted OS-Applications, with protection enabled
SW-Cs are allocated to OS-Applications (1 or more)

Memory

OS-App 1 private

m m % AUTOSAR caa
omponen omponen —

Software

data

OS-App n private
ALITACAD Dintinan Fiansivane data
e S

OS-App 1 private
code

OS-App 2 private
) o ECU
Abstraction code

OS-App n private
Complex code
Device
Drivers

Operating
System

2oeeIU]

| poziprepuers [

Optional: shared
OS-App 1 data

Basic Software Microcontroller (buffer used by
Abstraction RTE for IPC)

ECU-Hardware

OS-Application 1, trusted,
with protection disabled

Figure 8: Memory partitioning and modes™

The execution of SW-Cs in non-trusted/user-mode memory partitions is restricted
from modifying other memory regions, whereas the execution of SW-Cs of
trusted/supervisor-mode memory partitions is not restricted.

Modern microcontrollers for safety relevant applications support memory partitioning
via dedicated hardware, a Memory Protection Unit (MPU).

12 Supervisor Mode, Privileged Mode and Elevated Mode are synonyms for the elevated CPU mode.
Trusted Mode is a mode of the Software, which is executed under the elevated CPU Mode.

® User Mode and Non-Privileged Mode are synonyms for a non-elevated CPU mode. Non-Trusted
Mode is a mode of the Software, which is executed under the non-elevated CPU Mode.

 Technical Safety Concept Status Report, V1.2.0, R4.1 Rev 1, Chapter 1.1.6 Memory Partitioning

and User/Supervisor-Modes Related Features
16 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

Note: It is assumed that memory partitioning will be implemented on a microcontroller
which has an MPU or similar hardware features™.

With a typical MPU implementation, access to multiple sections of the microcontroller
address space can be allowed for non-trusted applications. Access control is defined
as a combination of Read, Write and Execute accesses. The configuration of the
MPU is only permissible in supervisor mode.

Note: In some microcontroller implementations the MPU is integrated within the
Processor Core. Therefore that MPU only controls accesses of the associated Core.
Other Bus Masters, such as DMA controllers and additional Cores, are not controlled
by this particular MPU instance.

The following table and use cases illustrate a set of possible scenarios when the
configuration of the memory protection unit is derived from system requirements.
Note: This table may be incomplete with respect to the features of the specific
hardware devices in use.

Address Rationale Read | Write | Execute
Space
Flash Memory | Read, Execute and Write accessesdo | O O O

not modify flash memory contents.
Flash memory must be erased and
enabled for writing by a different
mechanism first.

Note: The following implications arise
from the Security point of view: Reading
and execution of foreign code may be
used to obtain information which is
otherwise not intended for the software.

RAM Write access to RAM may produce @) X @)
memory corruptions, thereby affecting
the behavior of the software.

Peripheral Side effects are possible even when X X X
reading from peripheral address space.
E.g.: Acknowledgement of an Interrupt
is performed via a read access to the
Interrupt Controller, Read access to
peripherals may cause I/O errors.

Table 3: Configuration scenarios for Memory Protection

Legend:

X — Protection is needed

O — Protection is optional

Note: Side effects from performance point of view may arise due to Bus Contention,
arbitration at interfaces, etc.

°[1S026262-6 7.4.11 b)]
17 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

Use Case 1: Software Components in the same Partition.

e Software Components in the same partition have access to each other's RAM
regions, and therefore can corrupt each other’'s memory contents.

e Software components do not have access to peripheral devices by definition,
as they shall be not aware of the underlying microcontroller architecture. An
unsafe system can be created when a software component is given direct
access to peripheral devices.

Use Case 2: Software Components in different Partitions.

e Software Components in different partitions do not have access to each
other's RAM regions, and therefore cannot corrupt each other's memory
contents.

e Software components do not have access to peripheral devices by definition,
as they shall be not aware of the underlying microcontroller architecture. A
potentially unsafe system can be created when a software component is given
direct access to peripheral devices.

Use Case 3: MCAL Drivers
e MCAL Drivers are a collection of functions, such as Read/Write/Initialize. They
must be executed by another entity, such as the BSW or a CDD. Please see
Figure 8 for detalils.
e MCAL Drivers need a Read/Write access to the peripheral space of the
respective peripheral hardware module. Depending on the hardware
architecture, supervisor mode of the processor may be additionally required.

18 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

2.1.3 Detection and Reaction

The functional safety mechanism Memory Partitioning provides protection by means
of restricting access to memory and memory-mapped hardware. Code executing in
one partition cannot modify memory of a different partition. Memory partitioning
enables to protect read-only memory segments, as well as to protect memory-
mapped hardware. Moreover, Software Components which are executed in user-
mode have restricted access to CPU instructions like e.g. reconfiguration.

The mechanism Memory Partitioning can be implemented with the support of
microcontroller hardware such as Memory Protection Unit or Memory Management
Unit. The microcontroller hardware must be configured appropriately by the
Operating System to facilitate detection and prevention of incorrect memory
accesses. The execution of Software Components which are executed in non-
trusted/user-mode memory partitions is then monitored.

In case of a memory access violation or a CPU instruction violation in a non-
trusted/user-mode partition, the faulty access is blocked and an exception is raised
by the microcontroller hardware. The OS and the RTE handle the erroneous software
partition by performing either a partition shut down or restart of all SW-Cs of this
partition.

Note: The actual reaction of the Operating System can be configured though the
Protection Hook implementation. Please consult the OS SWS® document for further
details.

Note: The AUTOSAR Document “Explanation of Error Handling on Application
Level’*” provides additional information on error handling. Within the document it is
explained how error handling can be performed and where the required data (e.g.
substitute values) can be obtained from. Furthermore the document provides a
detailed explanation (user’s manual) on how OS-Application/Partition termination and
restart in AUTOSAR is performed.

10 Specification of Operating System, V5.3.0 R4.1 Rev 3

' Explanation of Error Handling on Application Level, R4.2 Rev 1, Chapter 8, Chapter 10

19 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

2.1.4 Limitations

1. Memory Partitioning of SW-Cs with the same ASIL rating.

The 1S026262'® standard requires freedom from interference between Software
Components of different ASIL ratings. However, freedom from interference between
Software Components of the same ASIL rating is not required by the standard.

OS-Applications which consist of a large number of Software Components are
allowed. In case a single Software Component causes a violation which results in
shutdown or restart of the entire memory partition, all other correctly working SW-Cs
of this memory partition are affected as well.

2. Memory Partitioning is not applicable for trusted OS-Applications.
The execution of trusted/supervisor-mode memory partitions is not controlled by
means of the Operating System and some MMU/MPU hardware implementations.

3. Memory Partitioning not supported on task-level.

The implementation of task-level partitioning is not mandatory for AUTOSAR OS
implementations. Freedom from Interference within the OS-Application may be
therefore not supported.

4. Performance penalty due to Memory Partitioning.

Depending on the architecture of the Application Software and the implementation of
microcontroller hardware and the OS, there is a performance penalty associated with
the use of Memory Partitioning. This penalty increases with the number of context
switches which are performed per time unit.

5. No Basic Software Partitioning.
The current specification of the Basic Software does not specify memory partitioning
for Basic Software Components with different ASIL ratings from different suppliers.

¥ [1ISO 26262-9 Clause 6]
20 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

2.1.5 References to AUTOSAR Documents

Source: Requirements on AUTOSAR Features, V1.2.1, R4.1 Rev 2

[RS_BRF_01232] AUTOSAR OS shall support isolation and protection of
application software

[

Type: Valid

Description: AUTOSAR OS shall support to organize all objects handled by
the OS such that they can be assigned to different entities
(OSApplications) and that access between OSApplications is
restricted. This includes usage of hardware memory protection.

Note: Assignment of Software Components to OSApplications
needs to be done outside the OS

Rationale: This is a pre-requirement to install protection mechanisms for
higher level BSW and Software Components
Use Case: Usage of memory protection properties of microcontrollers to

catch erroneous write access of software components

Dependencies: -

Supporting Material: -

| (RS_Main_00010, RS_Main_00100)

[RS_BRF_02048] AUTOSAR shall support usage of hardware memory
protection features to enhance safety

[

Type: Valid

Description: If adequate memory protection mechanisms are supported by
hardware, AUTOSAR shall support the usage of these
hardware mechanisms in such a way that memory used by SW-
Cs and BSW modules can be protected from illegal or
erroneous access

Rationale: Only if it can be shown that different groups of software
components do not interfere, the groups of software
components can be evaluated separately with respect to their
safety requirements

Use Case: Combine software components of different ASIL level on the
same ECU

Dependencies: -

Supporting Material: ISO 26262-6:2011, Annex D (Freedom from interference
between software elements)

| (RS_Main_00010)

21 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in

AUTOSAR
AUTOSAR Release 4.2.2

[RS_BRF_01248] AUTOSAR OS shall support to terminate and restart

OSApplications
[

Type: Valid

Description: AUTOSAR OS shall support to terminate and — if wanted -
restart OSApplications

Rationale: If an OSApplication encounters an error, the error strategy of
the ECU needs to decide if this OSApplication can be permitted
to continue working, and eventually terminate or terminate and
restart the OSApplication. The OS needs to offer the necessary
functionality

Use Case:

Memory protection error in an OSApplication which cannot be
salvaged without terminating the OSApplication

Dependencies:

Supporting Material:

| (RS_Main_00010, RS_Main_00100)

22 0f 71

Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

2.1.6 References to 1S026262

The following references to the 1SO26262 standard are related to the aspects of
freedom from interference for software components with different ASIL ratings.
Additionally, concepts related to software partitioning and memory-related faults are
covered.

ID 1SO26262 Reference

01 | Part6:[7.4.11]

02 Part 6: [7.4.12]

03 Part 6: [D.2.1]

04 Part 6: [D.2.3]

05 Part 9: [6.2]

06 Part 9: [6.4.4]

07 Part 9: [6.4.5]

Table 4: 1SO26262 Memory Partitioning References

23 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

2.2 Timing Monitoring

Timing is an important property of embedded systems. Safe behavior requires that
the systems actions and reactions are performed within the right time.

The right time can be described in terms of a set of timing constraints that have to be
satisfied. However, an AUTOSAR software component cannot ensure proper timing
by itself. It depends on proper support by the AUTOSAR runtime environment and
the basic software. During integration the timing constraints of the AUTOSAR
software components need to be ensured.

2.2.1 Fault Models

According to 1SO 26262, the following Timing- and Execution-related faults can be
considered as a cause for interference between software components:

¢ Blocking of execution

Deadlocks

Livelocks

Incorrect allocation of execution time

Incorrect synchronization between software elements

Timing protection and monitoring can be described as monitoring of the following
properties: Monitoring that tasks are dispatched at the specified time, meet their
execution time budgets, and do not monopolize OS resources.

To guarantee that safety-related functions will respect their timing constraints, tasks
monopolizing the CPU (such as heavy CPU load, many interrupt requests) shall be
detected and handled.

YISO 26262-6, Annex D] D.2.2 Timing and execution
24 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

2.2.2 Description

The following timing monitoring mechanisms are provided by AUTOSAR:
1. Timing Protection mechanisms using the Operating System.
2. Temporal Program Flow Monitoring using the Watchdog Manager.

This chapter will explain the applicability of the Watchdog Manager for implementing
timing monitoring of Application Software. Temporal Program Flow Monitoring
consists of the mechanisms Deadline Supervision and Alive Supervision, which will
be discussed thereafter.

The Watchdog Manager also provides a mechanism called Logical Supervision,
which can be combined with Deadline Supervision to provide a high diagnostic
coverage. This topic is discussed in Chapter 2.3.

Also, an overview of the Timing Protection mechanisms of AUTOSAR OS will be
given.

2.2.2.1 Supervised Entities

The Watchdog Manager supervises the execution of Application Software in an
AUTOSAR ECU. The logical units of supervision are called Supervised Entities.
There is no fixed relationship between Supervised Entities and the architectural
building blocks in AUTOSAR. Typically a Supervised Entity may represent one SW-
Cs or a Runnable within an SW-C, a BSW module or CDD depending on the choice
of the developer.

Important places in a Supervised Entity are defined as Checkpoints. The code of
Supervised Entities is interlaced with function calls of the Watchdog Manager. Those
calls are used to report to the Watchdog Manager that a Checkpoint is reached.

2.2.2.2 Watchdog Manager

The Watchdog Manager is a basic software module of the AUTOSAR Architecture.
The Watchdog Manager links the triggering of the Watchdog Hardware® to the
supervision of software execution. When a violation of the configured temporal and/or
logical constraints on program execution is detected, a number of configurable
actions to recover from this failure will be taken.

The Watchdog Manager provides the following mechanisms for Temporal Program
Flow Monitoring:

Alive Supervision: Periodic Supervised Entities have constraints on the frequency
with which they are executed. By means of Alive Supervision, Watchdog Manager
checks periodically if the Checkpoints of a Supervised Entity have been reached
within the given limits. This means that Watchdog Manager checks if a Supervised
Entity is run not too frequently or not too rarely.

%% See Layered Software Architecture, V3.4.0, R4.1 Rev 3, Page 42, Page 82.
25 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

Alive Supervision is performed using a single Checkpoint without transitions. The
supervised Entity must cyclically call the Checkpoint to signal its timely operation.
The Watchdog Manager is executed periodically by the Operating System to verify
the Checkpoint parameters.

A Supervised Entity can also be monitored by multiple instances of Alive Supervision,
therefore containing an independent checkpoint per Alive Supervision. Please see
Figure 9.

SE3

4 CP3- N
+ WdgMExpectedAlivelndications

+ WdgMMaxMargin

+ WdgMMinMargin

+ WdgMSupenisonReferenceCycle

CP32 Y

WdgMExpectedAlivelndications
WdgMMaxMargin
WdgMMinMargin
WdgMSupenisionReferenceCycle

.
.
.
.
e CP33

+ WdgMExpectedAlivelndications
+ \WdgMMaxMargin

+ \WdgMMinMargin

+ WdgMSupenisionReferenceCycle

/

Figure 9: Alive Supervision with independent Checkpoints?

Deadline Supervision: Aperiodic or episodic Supervised Entities have individual
constraints on the timing between two Checkpoints. By means of Deadline
Supervision, the Watchdog Manager checks the timing of transitions between two
Checkpoints of a Supervised Entity. This means that the Watchdog Manager checks
if some steps in a Supervised Entity take a time that is within the configured minimum
and maximum. Please see Figure 10.

If the second Checkpoint is never reached, then Deadline Supervision will fail to
detect this issue. This issue appears because the timing checks are performed by the
Watchdog Manager after the second Checkpoint is called.

CP441

+ WdgMDeadlineMin_+
WdgMDeadlineMax

Figure 10: Deadline Supervision22

2 Specification of Watchdog Manager, V2.5.0, R4.1 Rev 3, Page 43, Chapter 7.1.5 Alive Supervision

Functions

26 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2
2.2.2.3 Timing Protection of the Operating System

According to the AUTOSAR OS Specification, a timing fault in a real-time system
occurs when a task or interrupt misses its deadline at runtime.?®

The AUTOSAR OS does not offer deadline supervision for timing protection.
Deadline supervision is insufficient to correctly identify the Task or Interrupt causing a
timing fault in an AUTOSAR system. A deadline violation may be caused by
unrelated Tasks or Interrupts interfering with the execution. Please consult the
AUTOSAR OS Specification® for further details.

Whether a task or interrupt meets its deadline in a fixed priority preemptive operating
system like AUTOSAR OS is determined by the following factors:

e The execution time of Task/Interrupt in the system.

e The blocking time that Task/Interrupt suffers from lower priority Tasks/Interrupts
locking shared resources or disabling interrupts.

e The inter-arrival rate of Task/Interrupt in the system.

For safe and accurate timing protection it is necessary for the operating system to
control these factors at runtime to ensure that Tasks/Interrupts can meet their
respective deadlines. The AUTOSAR OS provides the following timing protection
mechanisms:

1. Execution Time Protection. An upper bound for execution time of Tasks or Cat2?*
Interrupts, the so called Execution Budget, is monitored via the OS to prevent
timing errors.

2. Locking Time Protection. An upper bound for blocking of resources, locking and
suspending of interrupts, the so called Lock Budget, is monitored by the OS.

3. Inter-Arrival Time Protection. A lower bound between tasks being activated or Cat
2 Interrupts arriving, a so called Time Frame, is monitored via the OS to prevent
timing errors.

Note: Execution time enforcement requires hardware support, e.g. a timing
enforcement interrupt. If an interrupt is used to implement the time enforcement, the
priority of this interrupt shall be high enough to “interrupt” the supervised tasks or
interrupts.

22 Specification of Watchdog Manager, V2.5.0, R4.1 Rev 3, Page 61, Chapter 7.3 Watchdog Handling

28 Specification of Operating System, V5.3.0 R4.1 Rev 3, Chapter 7.7.2

24 Category 2 Interrupts are managed by the Operating System. Category 1 Interrupts are executed

outside of the Operating System and therefore cannot be monitored.

27 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

2.2.3 Detection and Reaction

The Watchdog Manager provides three mechanisms for Temporal and Logical
Program Flow Monitoring: Deadline Supervision, Alive Supervision and Logical
Supervision.

The supervision mechanisms are configured statically. For the monitoring of a
Supervised Entity, more than one supervision mechanism can be employed.

Based on the results from each of enabled mechanisms, the status of the Supervised
Entity (called Local Status) is computed. When the status of each Supervised Entity
is determined, then based on each Local Supervision Status, the status of the whole
MCU is determined (called Global Supervision Status).

Depending on the Local Supervision Status of each Supervised Entity and on the
Global Supervision Status, the Watchdog Manager initiates a number of mechanisms
to recover from supervision failures. These range from local error recovery within the
Supervised Entity to a global reset of the ECU.

The following error recovery mechanisms can be employed by the Watchdog
Manager:

1. Error Handling in the Supervised Entity

In case the Supervised Entity is an SW-C or a CDD, then the Watchdog Manager
may inform the Supervised Entity about supervision failures via the RTE Mode
mechanism. The Supervised Entity may then take its actions to recover from that
failure.

The Watchdog Manager may register an entry with the Diagnostic Event Manager
(DEM) when it detects a supervision failure. A Supervised Entity may take recovery
actions based on that error entry.

2. Partition Shutdown

If the Watchdog Manager module detects a supervision failure in a Supervised Entity
which is located in a non-trusted partition, the Watchdog Manager module may
request a partition shutdown by calling the BswM.

3. Reset by Hardware Watchdog

The Watchdog Manager indicates to the Watchdog Interface when Watchdog
Interface shall no longer trigger the hardware watchdog. After the timeout of the
hardware watchdog, the hardware watchdog resets the ECU or the MCU. This leads
to a re-initialization of the ECU and/or MCU hardware and the complete re-
initialization of software.

4. Immediate MCU Reset

In case an immediate, global reaction to the supervision failure is necessary, the
Watchdog Manager may directly cause an MCU reset. This will lead to a re-
initialization of the MCU hardware and the complete software. Usually, a MCU reset
will not re-initialize the rest of the ECU hardware.

28 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in

AUTOSAR
AUTOSAR Release 4.2.2

Note: The AUTOSAR Document “Explanation of Error Handling on Application

Level

"25 provides additional information on error handling. Within the document it is

explained how error handling can be performed and where the required data (e.g.
substitute values) can be obtained from. Furthermore the document provides a
detailed explanation (user’s manual) on how OS-Application/Partition termination and
restart in AUTOSAR is performed.

2.2.4 Limitations

1.

The granularity of Checkpoints is not fixed by the Watchdog Manager. Few
coarse-grained Checkpoints limit the detection abilities of the Watchdog Manager.
For example, if an application SW-C only has one Checkpoint that indicates that a
cyclic Runnable has been started, then the Watchdog Manager is only capable of
detecting that this Runnable is re-started and check the timing constraints. In
contrast, if that SW-C has Checkpoints at each block and branch in the Runnable
the Watchdog Manager may also detect failures in the control flow of that SW-C.
High granularity of Checkpoints causes a complex and large configuration of the
Watchdog Manager.

The Deadline Supervision has a weakness: it only detects the delays (when the
End Checkpoint is reported), but it does not detect the timeouts (when the End
Checkpoint is not reported at all).

The nesting of Deadline Supervision (i.e. start 1, start 2, end 2, end 1) is not
supported.

The Alive Supervision function with more than one checkpoint per Supervised
Entity is not consistently specified within the Specification of Watchdog Manager
document. For now it is recommended to support only one alive supervision
checkpoint per Supervision Entity.

In order to shutdown or restart (as error reaction) a partition containing
Supervised Entities, the integrator code (OS Application's restart task) must
deactivate (or deactivate + activate) all Supervised Entities of the involved
partition, by calling available functions of Watchdog Manager. This is a bit
complex, in future releases of the Specification of Watchdog Manager document it
is considered to add a new function of Watchdog Manager for this.

Libraries cannot call BSWs, so libraries cannot be supervised by Watchdog
Manager. Deadline Supervision could be used however by placing checkpoints
before and after a library call in the module’s code to supervise libraries.

It is not standardized how BSW modules are identified with Supervised Entity IDs.

% Explanation of Error Handling on Application Level, R4.2 Rev 1, Chapter 8, Chapter 10
29 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR

- AUTOSAR confidential -

AUTO SAR

Overview of Functional Safety Measures in
AUTOSAR
AUTOSAR Release 4.2.2

2.2.5 References to AUTOSAR Documents

Source: Requirements on AUTOSAR Features, V1.2.1, R4.1 Rev 2

[RS_BRF_00131] AUTOSAR shall support program flow monitoring

[

Type:

Valid

Description:

AUTOSAR shall support logical and temporal program flow
monitoring to detect if program flow control is violated.
AUTOSAR shall offer support for ensuring that the program flow
monitoring mechanisms are working properly

Rationale:

Using flow control to detect if a software components runs wild
is an established safety feature
Using program flow control to detect if a runnable (or a
sequence of runnables) is executed out of order or not at all is a
well established safety feature

Use Case:

To detect a defective program sequence. A defective program
sequence exists, if the individual elements of a program (for
example, software modules, subprograms or commands) are
processed in the wrong sequence or period of time, or if the
clock of the processor is faulty

Dependencies:

Supporting Material:

ISO 26262-5:2011 Annex D, ISO 26262-6:2011

| (RS_Main_00010)

[RS_BRF_02056] AUTOSAR OS shall support timing protection

[

Type:

Valid

Description:

If configured, AUTOSAR OS shall support to supervise runtime
of tasks and interrupts, together with frequency of task and
interrupt activation, to detect and react if a task or an interrupt
consume more runtime than configured

Rationale:

Systems are usually evaluated based on assumptions
concerning runtime and frequency of tasks and interrupts. The
violation of these assumptions may lead to the violation of the
safety goals

Use Case:

Stop application parts which violate runtime constraints

Dependencies:

Supporting Material:

| (RS_Main_00010)

300f 71

Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

[RS_BRF_01224] AUTOSAR OS shall support timing protection
[

Type: Valid

Description: AUTOSAR OS shall offer functionality to limit runtime and
activation frequency of tasks and interrupts

Rationale: This is a pre-requirement to catch problems with interrupt lines
(babbling idiot) and certain programming bugs

Use Case: Disable an interrupt line if this interrupt line fires too often

Dependencies: -

Supporting Material: -

| (RS_Main_00100)

2.2.6 References to 1SO26262

The following references to the 1SO26262 standard are related to the aspects of
freedom from interference for software components with different ASIL ratings.
Concepts related to timing supervision are covered.

ID 1ISO26262 Reference

03 | Part 6: [D.2.1]

08 Part 6: [D.2.2]

09 Part 6: [7.4.14] Table 4: 1d

Table 5: 1SO26262 Timing Monitoring References

31 0f 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

2.3 Logical Supervision

Logical Supervision is a technique for checking the correct execution of software and
focuses on control flow errors.

Control flow errors cause a divergence from the valid (i.e. coded/compiled) program
sequence during the error-free execution of the application. An incorrect control flow
occurs if one or more program instructions are processed either in the incorrect
sequence or are not even processed at all. Control flow errors can for example lead
to data inconsistencies, data corruption, or other software failures.

2.3.1 Fault Models

According to 1SO 26262%, the following Timing- and Execution-related faults can be
considered as a cause for interference between software components:

¢ Blocking of execution

Deadlocks

Livelocks

Incorrect allocation of execution time

Incorrect synchronization between software elements

Logical and temporal monitoring of program sequences is used in the automotive
industry and mentioned e.g. in ISO 26262 as a measure to detect failures of the
processing units (i.e. CPU, microcontroller) and as measure for the detection of
failures of the HW clock.

Faults in execution of program sequences (i.e. invalid execution of program
sequences) can lead to data corruption, process crashes, or fail-silence violations.
Logical monitoring of program sequences is required/recommended/proposed by ISO
26262, IEC 61508, MISRA.

2.3.2 Description

Logical Supervision of the execution sequence of a program enables the detection of
errors that cause a divergence from the valid program sequence during the error-free
execution of the application. An incorrect program flow occurs if one or more program
instructions are processed either in an incorrect sequence or not even processed at
all.

The Watchdog Manager supervises the execution of Application Software in an
AUTOSAR ECU. The logical units of supervision are called Supervised Entities.
There is no fixed relationship between Supervised Entities and the architectural
building blocks in AUTOSAR. Typically a Supervised Entity may represent one SW-
Cs or a Runnable within an SW-C, a BSW module or CDD depending on the choice
of the developer.

2 [1ISO 26262-6, Annex D] D.2.2 Timing and execution
32 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

Places relevant for logical supervision in a Supervised Entity are defined as
Checkpoints. The code of Supervised Entities is interlaced with function calls of the
Watchdog Manager. Those calls are used to report to the Watchdog Manager that a
Checkpoint is reached.

Each Supervised Entity has one or more Checkpoints. The Checkpoints and
Transitions between the Checkpoints of a Supervised Entity form a Graph.

A Graph may have one or more?’ initial Checkpoints and one or more final
Checkpoints. Any sequence of starting with any initial checkpoint and finishing with
any final checkpoint is correct, assuming that the checkpoints belong to the same
Graph.

A graph within a Supervised Entity is called an Internal Graph. Checkpoints from
different Supervised Entities can be connected by External Transitions, forming an
External Graph.

Figure 11 shows a Graph representation of a While-Loop, which consists of
Checkpoints and Transitions.

SEO

CP0-1

CP0-6

O

Figure 11: Abstract Control Flow Graph of aWhiIe-Loop28

At runtime, the Watchdog Manager verifies if the supervised Entities are executed
according to the configured Graphs. This is called Logical Supervision.

Also, the Watchdog Manager can verify the timing of Checkpoints and Transitions
within a Graph.

The timing of Transitions between Checkpoints can be verified via Deadline
Supervision, whereas Logical Monitoring verifies the correct order of the
Checkpoints. The details of Timing Monitoring mechanisms are described in Chapter
2.2.

" Internal graphs can have only one initial Checkpoint. External graphs can have multiple initial

Checkpoints.

%8 Specification of Watchdog Manager, V2.5.0, R4.1 Rev 3, Chapter 7.1.7 Logical Supervision

33 0f 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

2.3.3 Detection and Reaction

During design phase the valid program sequences are identified and modeled.
During runtime the Watchdog Manager uses this model to supervise or monitor the
proper execution of program sequences.

The Watchdog Manager provides three mechanisms for Temporal and Logical
Program Flow Monitoring: Deadline Supervision, Alive Supervision and Logical
Supervision.

The supervision mechanisms are configured statically. For the monitoring of a
Supervised Entity, more than one supervision mechanism can be employed.

Based on the results from each of enabled mechanisms, the status of the Supervised
Entity (called Local Status) is computed. When the status of each Supervised Entity
is determined, then based on each Local Supervision Status, the status of the whole
MCU is determined (called Global Supervision Status).

Depending on the Local Supervision Status of each Supervised Entity and on the
Global Supervision Status, the Watchdog Manager initiates a number of mechanisms
to recover from supervision failures. These range from local error recovery within the
Supervised Entity to a global reset of the ECU.

The following error recovery mechanisms can be employed:

1. Error Handling in the Supervised Entity:

In case the Supervised Entity is an SW-C or a CDD, then the Watchdog Manager
may inform the Supervised Entity about supervision failures via the RTE Mode
mechanism. The Supervised Entity may then take its actions to recover from that
failure.

The Watchdog Manager may register an entry with the Diagnostic Event Manager
(DEM) when it detects a supervision failure. A Supervised Entity may take recovery
actions based on that error entry.

2. Partition Shutdown

If the Watchdog Manager module detects a supervision failure in a Supervised Entity
which is located in a non-trusted partition, the Watchdog Manager module may
request a partition shutdown by calling the BswM.

3. Reset by Hardware Watchdog

The Watchdog Manager indicates to the Watchdog Interface when Watchdog
Interface shall no longer trigger the hardware watchdog. After the timeout of the
hardware watchdog, the hardware watchdog resets the ECU or the MCU. This leads
to a re-initialization of the ECU and/or MCU hardware and the complete re-
initialization of software.

34 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

4. Immediate MCU Reset

In case an immediate, global reaction to the supervision failure is necessary, the
Watchdog Manager may directly cause an MCU reset. This will lead to a re-
initialization of the MCU hardware and the complete software.

Note: The AUTOSAR Document “Explanation of Error Handling on Application
Level”®® provides additional information on error handling. Within the document it is
explained how error handling can be performed and where the required data (e.g.
substitute values) can be obtained from. Furthermore the document provides a
detailed explanation (user’s manual) on how OS-Application/Partition termination and
restart in AUTOSAR is performed.

2.3.4 Limitations

1. For Logical Supervision, Watchdog manager does not support any overlapping
graphs - a checkpoint shall belong to maximum one Graph. This is required to be
able to allocate a received Checkpoint notification to a Graph.

2. Watchdog Manager does not support Logical Supervision of concurrently
executed Supervised Entities, because it follows only one instance of a Graph at
a time.

3. In order to shutdown or restart (as error reaction) a partition containing
Supervised Entities, the integrator code (OS Application's restart task) must
deactivate (or deactivate + activate) all Supervised Entities of the involved
partition, by calling available functions of Watchdog Manager.

? Explanation of Error Handling on Application Level, R4.2 Rev 1, Chapter 8, Chapter 10
350f 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in

AUTOSAR
AUTOSAR Release 4.2.2

2.3.5 References to AUTOSAR Documents

Source: Requirements on AUTOSAR Features, V1.2.1, R4.1 Rev 2

[RS_BRF_00131] AUTOSAR shall support program flow monitoring

[

Type:

Valid

Description:

AUTOSAR shall support logical and temporal program flow
monitoring to detect if program flow control is violated.
AUTOSAR shall offer support for ensuring that the program flow
monitoring mechanisms are working properly

Rationale:

Using flow control to detect if a software components runs wild
is an established safety feature

Using program flow control to detect if a runnable (or a
sequence of runnables) is executed out of order or not at all is a
well established safety feature

Use Case:

To detect a defective program sequence. A defective program
sequence exists, if the individual elements of a program (for
example, software modules, subprograms or commands) are
processed in the wrong sequence or period of time, or if the
clock of the processor is faulty

Dependencies:

Supporting Material:

ISO 26262-5:2011 Annex D, ISO 26262-6:2011

| (RS_Main_00010)

2.3.6 References to 1S026262

The following references to the 1S026262 standard are related to the aspects of
freedom from interference for software components with different ASIL ratings.
Concepts related to logical supervision are covered.

ID 1SO26262 Reference

03 | Part 6: [D.2.1]

08 Part 6: [D.2.2]

09 Part 6: [7.4.14] Table 4: 1d, 1e

Table 6: 1ISO26262 Logical Supervision References

36 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTO SAR

2.4 End-2-End Protection

Overview of Functional Safety Measures in

AUTOSAR

AUTOSAR Release 4.2.2

In a distributed system, the exchange of data between a sender and the receiver(s)
can affect functional safety, if its safe behavior safety depends on the integrity of
such data (see "Exchange of Information” fault example in the beginning of this
chapter). Therefore, such data shall be transmitted using mechanisms to protect it
against the effects of faults within the communication link.

2.4.1 Fault Models

According to 1SO 26262, the following Exchange of Information-related faults can
be considered for each sender or each receiver software component executed in
different software partitions or ECUs:
e Repetition of information;

Loss of information;

Delay of information;

Insertion of information;

Masquerade or incorrect addressing of information;
Incorrect sequence of information;

Corruption of information;

Asymmetric information sent from a sender to multiple receivers;
Information from a sender received by only a subset of the receivers;
Blocking access to a communication channel.

OS-Application 2

Receiver 1

OS-Application 1

Figure 12: End-2-End Protection®

%0 1ISO 26262-6, Annex D] D.2.4 Exchange of Information
3 Specification of SW-C End-to-End Communication Protection Library, V3.2.1, R4.1 Rev 3

370f 71

Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR

- AUTOSAR confidential -

Typical sources of interferences,
causing errors detected by E2E
protection:

SW-related sources:

§1. Error in mostly generated RTE.
S2. Errorin partially generated and
partially hand-coded COM

$3. Error in network stack

S4. Error in generated I0C or OS

HW-related sources:

H1. Microcontroller error during
core/partition switch

H2. Failure of HW network

H2. Network EMI

H3. Microcontroller failure during
context switch (partition) or on the
ccommunication between cores

Overview of Functional Safety Measures in
AUTOSAR
AUTOSAR Release 4.2.2

AUTO SAR

The concept of End-2-End protection assumes that safety-related data exchange
shall be protected at runtime against the effects of faults within the communication
link (see Figure 12). Examples for such faults are random HW faults (e.g. corrupt
registers of a CAN transceiver), interference (e.g. due to EMC), systematic faults
within the software implementing the VFB communication (e.g. RTE, I0C, COM and
network stacks) inside the ECU and outside, such as on Gateways.

The following faults related to message exchange via communication network have

been considered in the End-2-End Library.

Fault Model Description

Repetition of A type of communication fault, were information is received

information more than once.

Loss of A type of communication fault, were information or parts of

information information are removed from a stream of transmitted
information.

Delay of A type of communication fault, were information is received

information later than expected.

Insertion of A type of communication fault, were additional information is

information inserted into a stream of transmitted information.

Masquerading

A type of communication fault, were non-authentic
information is accepted as authentic information by a
receiver.

Incorrect A type of communication fault, were information is accepted
addressing from an incorrect sender or by an incorrect receiver.
Incorrect A type of communication fault, which modifies the sequence
sequence of of the information in a stream of transmitted information.
information

Corruption of A type of communication fault, which changes information.
information

Asymmetric A type of communication fault, were receivers do receive

information sent
from a sender to

different information from the same sender.

multiple

receivers

Information from | A type of communication fault, were some receivers do not
a sender receive the information

received by only
a subset of the
receivers

Blocking access
toa
communication
channel

A type of communication fault, were the access to a
communication channel is blocked.

Table 7: Fault Models of a Communication Network*

s Specification of SW-C End-to-End Communication Protection Library, V3.2.1, R4.1 Rev 3, Chapter

4.3.3
380f 71

Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR

- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

2.4.2 Description

From the perspective of Software Components, data transmission via the RTE
behaves like a simple point-to-point connection. However, the implementation of this
abstraction requires a highly complex infrastructure made up of software layers,
communication stacks, drivers and the underlying hardware. Along with the
complexity, the number of potential sources for failures also increases.

The use of the End-2-End protection mechanism assumes that the integrity of safety-
relevant data has to be maintained during communication, protecting the data against
the effects of faults within the communication link.

The most important aspects of the End-2-End protection are the standardization of
the protection capabilities and the flexible applicability of the mechanism.
Mechanisms for safe data communication within and between ECUs though the
concept of End-2-End protection will be described in this chapter.

The architecture of the End-2-End protection is implemented as follows: Data
Elements consisting of Application Data are extended on the sender side with
additional control information, the End-2-End header. The control information usually
contains a Checksum, a Counter and other options. The extended data element is
provided to the RTE for transmission, as shown in Figure 13. It shows the principle of
E2E, but not all details required for implementation. Especially the usage of the RTE
Data Transformer to encode/decode complex data elements is omitted for simplicity.

App data element

App data element E2E Header
i
: CF1 CF2 CF(x)
N _
—
Data elementfor RTE

Figure 13: Data Element for RTE*

Data Elements are verified at the receiver side by processing the contents of the
End-2-End header against the Application Data. After the received data element is
processed and accepted as correct, the control information is removed and
Application Data is provided to the target Software Component.

The error handling is performed at the receiver.

% Specification of SW-C End-to-End Communication Protection Library, V3.2.1, R4.1 Rev 3, Chapter

8.1

39 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2
2.4.2.1 End-2-End Profiles

AUTOSAR specifies a set of standardized and configurable End-2-End profiles,
which implement a set of protection mechanisms and specify the data format for the
attached End-2-End header.

An End-2-End Profile uses a subset of the following data protection mechanisms:3*

1. CRC Checksum, provided by the CRC library;

2. Sequence Counter incremented at every transmission request, the value is
checked at receiver side for correct incrementation;

3. Alive Counter incremented at every transmission request, the value checked at
the receiver side if it changes at all, but correct incrementation is not checked

4. A specific ID for every port data element sent over a port (global to system, where
the system may contain potentially several ECUS).

5. Timeout detection: Receiver communication timeout and Sender
acknowledgement timeout

Three End-2-End Profiles are specified in the AUTOSAR Standard, Profile 1 with two
variants, End-2-End Profile 2 and End-2-End Profile 4. Upcoming releases will also
specify Profiles 5 and 6.

Only the standardized End-2-End profiles shall be used, non-standard End-2-End
Profile configurations may only be used in special cases, such as for legacy software.

The protection mechanisms of the End-2-End Profile 1 are described in Table 8 as
follows:

Mechanism | Description Fault Model

Counter A 4Bit Counter is incremented with every Send- | Repetition,
Request. This Value is explicitly sent. deletion,
insertion,
incorrect
sequence

Timeout Using a non-blocking read, the receiver can | Deletion, delay
determine if the value of the counter has been
increased.

Data ID Each sender-receiver port has a unique 16-Bit ID, | Insertion,
which is used in the CRC calculation. The CRC | addressing
calculation is illustrated in Figure 14. faults

The Data ID value is not explicitly sent. As the ID is
only known at the sender and the receiver, the CRC
calculation can only be correctly performed by the
corresponding partners.

CRC A CRC Checksum (8-Bit) calculation is performed | Corruption
over all data elements, the Counter and the Data
ID. This value is explicitly sent.

Table 8: Mechanisms in End-2-End Profile 1

3 Specification of SW-C End-to-End Communication Protection Library, V3.2.1, R4.1 Rev 3,

SWS_E2E 00221
40 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

Figure 14 illustrates how the CRC calculation is performed in the End-2-End Profile 1.
The value of Data ID is calculated into the CRC value, so both communication
partners must use the same Data ID to correctly verify the CRC Checksum of a
message.

Datald CRC OxF |fowter | [sig 1 OxFF Sig1

/

CRC :=CRCBover (1) Datald, (2) all serialized signal (including empty areas, excluding CRC byte itself)

Figure 14: CRC Calculation in End-2-End Profile 1%

Although the length of the Data ID is 16 bits, leading to a large number of individual
Data IDs, the length of the CRC checksum is only 8 bits. This means that different
Data IDs will produce the same CRC checksum, thus limiting the number of
independent Data IDs.

If a message is routed to the wrong destination, e.g. due to Bit-flips in a gateway, and
the Data IDs produce the same CRC checksum, then the receiver would accept the
misdirected message, assuming that the current counter value and the length of the
message are both correct. The extent of the underlying protection against Addressing
Faults is diminished. This fault model is called Masquerading.

It is possible to restrict the Data ID values so there is no overlap in the CRC
Checksums. This however limits the number of independent Data IDs to 255.

% Specification of SW-C End-to-End Communication Protection Library, V3.2.1, R4.1 Rev 3, Chapter

8.34

41 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

The End-2-End Profile 2 takes a different approach in the use of the Data ID
protection mechanisms. Each sender-receiver port pair has a list of Data IDs. The
current value of the sequence counter determines which Data ID is used.

An appropriate selection of Data IDs is required to increase the number of messages
for which detection of masquerading is possible. However, there will be overlaps of
the 8-Bit Data ID and Counter values, limiting the number of independent Data IDs
and Counter values to 256.

If a single erroneously received message does not violate the safety goal of the
system, then the End-2-End Profile 2 allows for protection against masquerading for
a greater number of messages.

Mechanism | Description Fault Model
Sequence A 4Bit Counter is incremented with every Send- | Unintended
Number Request. This Value is explicitly sent. message
(Counter) repetition,
message loss,
insertion of
messages, re-
sequencing
Message 8 bit (not explicitly sent) Insertion of
Key used for | The Data ID used for CRC calculation is an | messages,
CRC element of a pre-defined list and depends on the | masquerading
calculation current value of the Counter. The list of Data IDs is
(Data ID) unique for each Data Element and only known to

the sender and the receiver.

Safety Code | A CRC Checksum (8-Bit) calculation is performed | Message

(CRC) over all data elements, the Counter and the Data | corruption,
ID. This value is explicitly sent. insertion of

messages
(masquerading)

Timeout Timeout detection must be implemented by the | Message loss,

(detection SW-C. message delay

and

handling

implemented

by SW-C)

Table 9: Mechanisms in End-2-End Profile 2

42 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

Overview of Functional Safety Measures in
AUTOSAR
AUTOSAR Release 4.2.2

AUTOSAR supports PDUs up to 4kB in size, either through the TCP/IP stack or
through TP services of FlexRay TP, CAN TP, etc. The End-2-End Profiles 1 and 2
support an ASIL-D compliant transmission of up to 30 or 42 byte PDUs, due to the
short 8-Bit CRC checksum.

The AUTOSAR Release 4.2.1 introduces a new End-2-End Profile. The End-2-End
Profile 4 is specifically designed for ASIL-D compliant transmission of long data. This
is supported by the use of a special 32-Bit CRC polynomial. This polynomial is
superior to the widely used IEEE 802.3 CRC, as it provides a higher Hamming

AUTO SAR

Distance for long data.

Mechanism | Description Fault Model
Counter A 16 Bit Counter is incremented with every Send- Unintended
Request. This Value is explicitly sent. message
repetition,
message loss,
insertion of
messages, re-
sequencing
CRC The 32 Bit CRC is calculated over the entire E2E Message
header (excluding the CRC bytes) and over the corruption,
user data. This Value is explicitly sent. insertion of
messages
Note: This CRC polynomial is different from the (masquerading)
CRC-polynomials used by FlexRay, CAN, LIN and
TCP/IP.
Data ID The 32 Bit Data ID shall be unique for a specific Insertion of
data element within the network of ECUSs. messages,
This Value is explicitly sent. masquerading
Timeout The receiver reads the currently available data, i.e. | Message loss,
(detection checks if new data is available. message delay
and Then, by means of the counter, the receiver can
handling detect loss of communication and timeouts.
implemented
by SW-C)

Table 10: Mechanisms in End-2-End Profile 4

The End-2-End Profile 4 header provides the following control fields, which are
transmitted together with the protected data.

Offset | 0 [1 [2 [3
0o[1[2[3[4[5][6[7[8]9[10[11[12[13][14]15[16]17[18[19[20]21[22[23[24[25[26[27[28]29]30]31

0
4
8

LSB
Figure 15: End-2-End Profile 4 header

Contrary to E2E Profiles 1 and 2, there is an explicit transmission of the data length,
as data packets do not have a standard size. The 16 bits Length field is introduced to
support variable-size data, which can have a different length in each transmission
cycle. Also there is an explicit transmission of the Data ID.

43 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR

- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2
2.4.2.2 End-2-End State Machine

Data Elements are verified at the receiver side by processing the contents of the
End-2-End header against the Application Data using the End-2-End Profile’s check-
function. It determines whether the received data of this cycle is correct and provides
additional information in case of detected faults.

The AUTOSAR Release 4.2.1 introduces a State Machine, which helps to determine
whether the received Application Data is acceptable with a greater level of detail. A
new level of abstraction is introduced, so applications receive an overall status of the
communication, instead of dealing with the status of every single message.

The new state machine supports configurable settings for the number of lost or
repeated packets, recoverable and non-recoverable communication faults, as well as
initialization of communication. Figure 16 illustrates the design and features of the
state machine.

stm E2E SM overall /

E2E_SM_DEINIT

init

!

2E_SM_NODATA - wait for 1st reception - do NO
use data

1st Data with no ERROR

E2E_SM_INITCOM - COMMUNICATION \

NOT (too many ERRORs
INITIALIZATION - do NOT use data

or too few OKs)

2E_SM_VALID - communication within limits - ok
to USE data

—

J

[too many ERRORSs] [too many ERRORs or too few OKs] [NOT (too many ERROR or too few OK)]

E2E_SM_INVALID - communication not within
limits - do NOT use data

Figure 16: End-2-End State Machine®

% Specification of SW-C End-to-End Communication Protection Library, V3.0.0-0.10.4, R4.1 Rev 3,

Chapter 7.8.1

44 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR
AUTOSAR Release 4.2.2

2.4.2.3 Integration of the End-2-End Protection Library

To enable the proper usage of the End-2-End Library, different solutions are
possible. They may depend on the integrity of RTE, COM or other basic software
modules as well as the usage of other SW/HW mechanisms (e.g. memory
partitioning).

The End-2-End Library can be used to protect safety-related data elements
exchanged between SW-Cs by means of End-2-End Protection Wrapper.

Furthermore, the End-2-End Library can be used to protect safety-related I-PDUs by
means of COM Callouts.

It is also possible to have mixed scenarios, where some data elements are protected
at the SW-C level (e.g. with End-2-End protection Wrapper) and some with COM
End-2-End callouts.

Introduced in AUTOSAR Release 4.2.1, the RTE Data Transformer can also be used
to protect data exchange of complex data elements between ECUs at the RTE level.

45 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

2.4.2.4 End-2-End Protection Wrapper

The End-2-End Protection Library can be used to protect the data communication
between SW-Cs at the RTE level. To accomplish this, the End-2-End Protection
Wrapper functions as a wrapper over the Rte_Write and Rte_Read functions, which
are offered to SW-Cs. The End-2-End Protection Wrapper encapsulates the
Rte_Read/Write invocations of the Software Component and protects the data
exchange using the End-2-End Library.

In this approach, every safety-related SW-C has its own additional sub-layer (a .h/.c
file pair) called the End-2-End Protection Wrapper, which is responsible for
marshalling of complex data elements into the layout identical to the corresponding I-
PDUs (for inter-ECU communication), and for correct invocation of End-2-End Library
and of RTE. Please see Figure 17.

The usage of the End-2-End Protection Wrapper allows a use of VFB communication
between SW-Cs, without the need of further measures to ensure VFB’s integrity.

The communication between such SW-Cs can be within an ECU (which means on
the same or different cores or within the same or different memory partitions of a
microcontroller) or across ECUs (SW-Cs connected by a VFB also using a network).

The end-to-end protection is a systematic solution for protecting SW-C
communication, regardless of the communication resources used (e.g. COM and
network, OS/IOC or internal communication within the RTE). Relocation of SW-Cs
may only require selection of other protection parameters, but no changes on SW-C
application code.

Also, the use of the End-2-End protection wrapper supports safe communication
between software components despite a potentially unsafe communication software
stack.

Note: The End-2-End Protection Wrapper does not support multiple instantiation of
the SW-Cs. This means, if an SW-C is supposed to use End-2-End Protection
Wrapper, then this SW-C must be single-instantiated. This limitation is based on the
fact that multiple instances of a Software Component would have the same DatalD,
thus limiting the capabilities of the underlying protection mechanisms.

46 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUT O SAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

OS-Application 1 OS-Application 2

AUTOSAR Runtime Environment (RTE)

Figure 17: End-2-End Protection Wrapper — Communication Overview®’

s Specification of SW-C End-to-End Communication Protection Library, V3.2.1, R4.1 Rev 3, Chapter

13.1.1

47 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

2.4.2.5 Transmission Manager

In an ECU system where integrity of operation is not provided for COM and RTE, it is
possible to transmit safety-related data through the network.

On the sender ECU, there is a dedicated SW-C called the Transmission Manager,
containing End-2-End Protection Wrapper. The Transmission Manager collects
safety-related data from related SW-Cs, combines them and protects them using the
End-2-End Protection Wrapper. Finally, it provides the combined and protected Data
as a Data Element to the RTE. Please see Figure 18.

On the receiver ECU a Transmission Manager does the reverse steps for the
reception of such data.

The Transmission Manager replaces the duties of the RTE and COM, such as
merging of Data Elements into PDUs and ensuring the integrity of data.

Note: The Transmission Manager SW-C module is neither part of End-2-End Library
nor part of AUTOSAR. Also, the integrity of RTE communication between the SW-Cs
and the Transmission Manager shall be protected by other measures.

3:convert (e.g.float->int)

considerunused areas

4:E2E_Protect{&dataEl3...)

protected dataEl2

E2E Library
S:CRC_Comiuie(...}
cOoM
CRC Library
‘ CRC ‘ ‘counter | signal ‘ signal2 |
| PDURouter |
| CRC | |counter | signal ‘ signal2 ‘

‘ FxILIN/CAN Interface \

‘ FX/LIN/CAN Driver \

Figure 18: Transmission Manager — Sender ECU*®

%8 Specification of SW-C End-to-End Communication Protection Library, V3.2.1, R4.1 Rev 3, Chapter

13.1.2

48 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2
2.4.2.6 COM End-2-End Callout

In this approach, the End-2-End Library is used to protect the data exchange
between COM modules. The End-2-End Library is invoked by COM, through COM
End-2-End callouts, to protect and check the I-PDUs. The callout invokes the End-2-
End Library with parameters appropriate for a given I-PDU. Please see Figure 19.

For each I-PDU to be protected and checked there is a separate callout function.
Each callout function “knows” how each I-PDU needs to be protected and checked.
This means that the callout invokes the End-2-End Library functions with settings and
state parameters that are appropriate for the given I-PDU.

This solution works with all communication models, multiplicities offered by RTE for
inter-ECU communication. In contrast to the Transmission Manager, this solution can
only be used in systems where the integrity of operation of COM and RTE is
provided.

0S-Application 1

SW-c1

2 Invoke RTE - RTE_*_<p>_<o>() to transmit the data element

AUTOSAR Runtime Environment (RTE)

Communication i
4.COM Signals

7. E2E_PXXProtect(&Config, &State,
8_Execute E2E Library, wrie control fields {) COM E2E COM) 5. Serialize signals on FPDU
(29. CRC, Counter) in IPduData Callouts

>l

’ 3. Map Data Elements to signals

Libraries

9 Updated parameters State and IPduData | T ¢
: :
1

| 6.IPDU_EZEProtect <IPDU ID>(Pduld, IPduData)
' ' 11.If (ret= TRUE) deliver IPduDats;
i else no action

10. ret TRUE if no error else FALSE; updated IPduData

PDU Router

Figure 19: COM Callout - Overview®

%9 Specification of SW-C End-to-End Communication Protection Library, V3.2.1, R4.1 Rev 3, Chapter

13.2.1

49 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUT O SAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

2.4.2.7 RTE Data Transformer

Introduced in AUTOSAR Release 4.2.1, the RTE Data Transformer can be used to
protect the exchange of complex data elements between ECUs.

The main difference between the previously described mechanisms for End-2-End
Library invocation can be illustrated as follows:

The End-2-End protection wrapper extends the complex data element*® under
protection by adding data elements of the End-2-End header. The additional data
elements can be seen by the SW-C but are ignored. The RTE Protection Wrapper,
therefore, does not support the protection of individual signals, unless they are
embedded within a complex data element.

COM maps the individual signals of a complex data element into PDUs. Using COM
Callouts, the contents of the entire PDU are protected. The maximum PDU size is
however limited by the physical properties of the interconnection bus.

Complex data elements can be prepared for transmission by being specifically
arranged in a Byte-Array by a process called serialization. The serialized data array
can be then protected using the End-2-End Library as a single piece. Furthermore,
the serialized data array size can be dynamic on a transmission cycle basis.

Sending Application Receiving Application
SWcC SWC

Data Data
Transformer Transformer

—enalizer

Figure 20: RTE Data Transformer - Overview**

As illustrated in Figure 20, the RTE Data Transformer accepts complex data (either a
Sender/Receiver data element or a Client/Server operation with its arguments) from

A complex data element is an instance of a complex data type. Inside a complex data type, there
are one or more data types (primitive data types), like in a C struct.
“l Based on Concept “Sender/Receiver Serialization”, V0.51, R4.2 Rev 1, Page 31, Figure 8 “Use

Case 1: Transmission of large composite data types over networks with large PDUs (e.g Ethernet)”
50 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

the RTE, performs a configurable chain of data transformations (such as
Serialization, End-2-End Protection, Cryptographic functions, Compression) and
provides the resulting byte array, which is finally transmitted to the receiver by COM
(or RTE during intra-ECU communication). Data transformation for End-2-End
Protection is implemented by the End-2-End Transformer®, which internally uses the
End-2-End Library.

The complete configuration of the RTE Data Transformer is performed via AUTOSAR
System Template for Inter-ECU communication and Software-Component Template
for Intra-ECU communication. The resulting code is fully generated and executed via
the RTE. The Software Components do not have to be aware of the specific
protection mechanism used, unless detailed knowledge of the detected faults is
required. The RTE Data Transformer can only be used in systems, where the
integrity of operation of RTE is provided.

Note: The serialized data array size is not restricted by the PDU size of the
interconnection network, as large data arrays can be transmitted using existing
transport protocols.

Note: The individual data transformations are performed on data arrays and not
complex data elements, therefore serialization is the first and respectively last data
transformation performed by the RTE Data Transformer.

“2 Specification of Module E2E Transformer, V0.9.1, R4.2 Rev 1
51 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

2.4.3 Detection and Reaction

The End-to-End Communication Protection related features are implemented in
AUTOSAR 4.0 as a standard library. This library provides End-2-End communication
protection mechanisms that enable the sender to protect data prior to transmission
and the receiver to detect and handle errors in the communication link at runtime.

When the End-2-End Library is used, the detection of communication faults is
signaled to the receiver.

Note: The AUTOSAR Document “Explanation of Error Handling on Application
Level™® provides additional information on error handling. Within the document it is
explained how error handling can be performed and where the required data (e.g.
substitute values) can be obtained from. Furthermore the document provides a
detailed explanation (user’s manual) on how OS-Application/Partition termination and
restart in AUTOSAR is performed.

2.4.4 Limitations

1. The appropriate usage of the End-2-End Library alone is not sufficient to achieve
a safe End-2-End communication. Solely the user is responsible to demonstrate
that the selected profile provides sufficient error detection capabilities for the
considered network (e.g. by evaluation hardware failure rates, bit error rates,
number of nodes in the network, repetition rate of messages and the usage of a
gateway).

2. A communication between Software Components over the RTE is more than a
simple Point-to-Point connection. Further fault models have to be considered,
such as RTE errors in Data Conversion, Filtering, missing notifications, wrong
order of parameters in client-server communication and delays in transmission.
Those failure modes also have to be considered during the development of a
safety-relevant system.

Local RTE communication can be protected against some of the faults mentioned
above by other mechanisms, such as an RTE which employs internal partitioning
and other safety mechanisms and measures.

3. The use of the End-2-End protection for all Software Component communications
of an ECU may be prohibitive due to runtime-overheads. Also, the limitations
associated with the uniqueness of DatalDs may prevent this approach on Profile
1 and 2 due to masquerading.

4. The End-2-End Protection does not guarantee data actuality, because the End-2-
End Profiles do not incorporate time stamps in the control data.

3 Explanation of Error Handling on Application Level, R4.2 Rev 1, Chapter 8, Chapter 10
52 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in

AUTOSAR
AUTOSAR Release 4.2.2

2.45 References to AUTOSAR Documents

Source: Requirements on AUTOSAR Features, V1.2.1, R4.1 Rev 2

[RS_BRF_00110] AUTOSAR shall offer methods to protect safety related data
communication against corruption

[

Type: Valid

Description: All currently supported communication stacks (CAN, LIN,
FlexRay, Ethernet) shall have a communication protection that
detects corruption of communication. This includes checks
whether a signal is received in sequence or not

Rationale: To detect when data exchanged between different ECUs is
corrupted or wrongly routed

Use Case:

Two SW-Cs on two ECUs exchange safety-related data

Dependencies:

Supporting Material:

| (RS_Main_00010)

[RS_BRF_02104] AUTOSAR shall provide end-to-end protection support as a

library

[

Type: Valid

Description: In order to support safe communication between application
software components a library shall be provided that supports
implementation of safe communication. This includes checking
of signal integrity e. g. by checksums and sequence counters

Rationale: Support integrity of communication data

Use Case:

Safety-related communication between too ECUs

Dependencies:

Supporting Material:

| (RS_Main_00010, RS_Main_00410)

53 0f 71

Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in

AUTOSAR
AUTOSAR Release 4.2.2

[RS_BRF_02064] AUTOSAR shall use hardware communication data integrity

mechanisms

[

Type: Valid
Description: AUTOSAR shall use data integrity mechanisms which are
offered by communication hardware such that major fault
models described in ISO 26262 are covered
Rationale: Cover the ISO26262 cases like:
- Failure of communication peer
- Message corruption
- Message delay
- Message loss
- Unintended message repetition
- Resequencing
- Insertion of message and
- Masquerading
Use Case:

Exchanging of information between elements executed on
different ECUs including signals, data, messages, etc.
Information can be exchanged using I/O-devices, data busses,
etc.

Dependencies:

Supporting Material:

ISO 26262-5:2011 Annex D, ISO 26262-6:2011 Annex D

| (RS_Main_00010)

54 of 71

Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in

AUTOSAR
AUTOSAR Release 4.2.2

2.4.6 References to 1S026262

The following references to the 1SO26262 standard are related to the aspects of
freedom from interference for software components with different ASIL ratings.
Concepts related to exchange of information are covered.

ID 1ISO26262 Reference

03 Part 6: [D.2.1]

09 Part 6: [D.2.4]

10 Part 6: [7.4.14] Table 4: 1c

550f 71

Table 11: 1ISO26262 Exchange of Information References

Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTO SAR

Overview of Functional Safety Measures in
AUTOSAR
AUTOSAR Release 4.2.2

3 Functional Safety Measures

In addition to Functional

Safety mechanisms provided by AUTOSAR,

the

development of safety-relevant software is supported by Functional Safety measures
which originate from AUTOSAR.

3.1 Functional Safety Measures of AUTOSAR

The following table provides a list of examples of 1SO26262 Requirements mapped
to the definition of AUTOSAR Basic Software.

ID | Functional ISO AUTOSAR Requirement/Feature
Safety Reference
Measures
001 | Enforcement of | ISO26262-6 | AUTOSAR Meta-Model
strong typing Table 1, 1c
002 | Use of 1ISO26262-6 | AUTOSAR Layered Architecture
established Table 1, 1e
design
principles
003 | Use of ISO26262-6 | Standard representation of the AUTOSAR
unambiguous Table 1, 1f Meta-Model
graphical
representation
004 | Use of naming | 1SO26262-6 | AUTOSAR Application Interfaces definition:
conventions Table 1,1h AUTOSAR_MOD_AITable.xls
AUTOSAR_EXP_AlUserGuide.pdf
005 | Semi-formal 1SO26262-6 | AUTOSAR Meta-Model
Notation Table 2, 1b
006 | Restricted size | 1SO26262-6 | Per domain, application interfaces were
of interfaces Table 3, 1c proposed:
AUTOSAR_EXP_AlIBodyAndComfort.pdf
AUTOSAR_EXP_AIChassis.pdf
AUTOSAR_EXP_AIlOccupantAndPedestrianSafety.pdf
AUTOSAR_EXP_AIHMIMultimediaAndTelematics.pdf
AUTOSAR_EXP_AlPowertrain.pdf
007 | Restricted 1ISO26262-6 AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
coupling Table 3, 1e Please see: Interfaces: General Rules Layer
between Interaction Matrix.
software
components
008 | Restricted use | 1ISO26262-6 | AUTOSAR_EXP_
of interrupts Table 3, 1g InterruptHandlingExplanation.pdf
009 | Detection of ISO26262-6 | AUTOSAR_SWS_EZ2ELibrary.pdf
data errors Table 4, 1c AUTOSAR_SWS_CRCLibrary.pdf
010 | Control flow 1ISO26262-6 AUTOSAR_SWS_WatchdogManager.pdf
monitoring Table 4, 1le

56 of 71

Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR

- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in

AUTOSAR
AUTOSAR Release 4.2.2
ID | Functional ISO AUTOSAR Requirement/Feature
Safety Reference
Measures
011 | Graceful 1SO26262-6 | AUTOSAR_EXP_
degradation Table 5, 1b LayeredSoftwareArchitecture.pdf

Please see: Integration and Runtime Aspects

- Partitioning Example of restarting patrtition.
AUTOSAR_SWS_
FunctionInhibitionManager.pdf

012 | Interface test 1ISO26262-6 | Acceptance Test for the AUTOSAR Stack
Table 10, 1b
Table 13, 1b

013 | Document 1ISO26262-8 | Fulfilled by AUTOSAR Quality Management
Management 10.4.3-10.4.6

Table 12: Mapping of 1ISO26262 Requirements to AUTOSAR Basic Software

3.2 Traceability

Traceability is a prerequisite for the implementation of safety-relevant systems.
AUTOSAR provides traceability from the AUTOSAR project objectives to the
software specifications of the AUTOSAR architecture.

3.3 Development Measures and the Evolution of the Standard

The AUTOSAR standard follows a defined life cycle, which is enforced by a
dedicated Change Management. Therefore, the AUTOSAR version which is used
during the product development can be easily referenced.

Systematic Faults during product development can be reduced when a defined
version of AUTOSAR is used, as the specifications, the interfaces and the behavior
can be clearly established.

During the development of AUTOSAR specifications, a tracking of findings and bug
fixes is performed with well-established tools (“Bugzilla”). Therefore it is possible to
follow the incorporation of findings and bug fixes for the users of an AUTOSAR
version well ahead series production.

In model-based development, a hierarchically structured model of function blocks
with well-defined inputs and outputs is used to control complexity, to model the
functionality and to support code generation. Please see 1S0O26262 Part 6, Annex B
for details. Model-based development is supported due to the use of standardized
interfaces and exchange formats, as well as due to the flexibility of the AUTOSAR
methodology to support extensions.

The development process of AUTOSAR Specifications involves a comprehensive
review process by multiple parties and work packages. The development milestones
and the associated review process conditions are defined by AUTOSAR Quality
Management.

57 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR
AUTOSAR Release 4.2.2

AUTOSAR supports the argumentation of Freedom from Interference by providing
functional safety mechanisms. Please see Chapter 2 for details on AUTOSAR
Functional Safety Mechanisms.

AUTOSAR provides a clear definition of people assignment to work packages, based
on the high expertise in the respective fields.

AUTOSAR provides a definition of the generic Software Architecture, based on
modularity, formality and model-based development.

58 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in

AUTOSAR
AUTOSAR Release 4.2.2

3.4 Functional Safety Measures not delivered by AUTOSAR

Not all functional safety measures, which may be required for the development of
safety-relevant applications, are delivered by AUTOSAR. Therefore the implementers
of safety-relevant applications must ensure that the safety development life cycle is
adequate.

As an example, the following functional safety measures are neither enforced nor
delivered by AUTOSAR. This list does not imply completeness.

The AUTOSAR specification does not define Safety Elements out of Context
(SE00C) as described in 1SO26262 Part 10, Chapter 9.

The AUTOSAR Specification does not define the use of systematic and structured
techniques for system examination, risk analysis and management, such as
Hazard Analysis (HARA) and Hazard & Operability Analysis (HAZOP).

¢ No overall safety concept.

¢ No ASIL identification

e No dependent failure analysis is performed.

e No AUTOSAR safety case

¢ No confirmation measures

¢ No functional safety audits

¢ No conformance test

e Implementation technigues of Software Components such as low complexity,
robustness, defensive programming, conventions, coding rules.

e Tracing of AUTOSAR features to Software Component implementation.

e Software integration testing

e Validation and Verification against the AUTOSAR specification.

e Defect reporting, tracking, resolution with regard to implementation.

59 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR

- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

3.5 Safety related Extensions of Methodology and Templates

The document “Safety Extensions” provides requirements upon extensions in
AUTOSAR Methodology and Templates to realize and document functional safety of
AUTOSAR systems. It specifies, how the AUTOSAR meta-model is to be used to
enhance AUTOSAR models by information for functional safety. With the safety
extensions, it is possible to:

e Describe and exchange the part of a (technical) safety concept of a system which
is relevant for the realization of that system using the AUTOSAR architecture in a
standardized form by means of the AUTOSAR templates.

¢ Provide traceability between safety-related elements of the AUTOSAR model and
the safety requirements as part of the AUTOSAR templates.

o Declare the safety mechanisms/safety measures** that are applied for an
AUTOSAR system as part of the AUTOSAR templates.

e Demonstrate the traceability between safety mechanisms/safety measures and
safety requirements as part of the AUTOSAR templates.

All the safety measures and mechanisms described in “Overview of Functional Safety
Measures in AUTOSAR” can be modeled and traced using the Safety Extensions as
explained above.

3.6 Safety Use Case

The “Safety Use Case” is delivered as auxiliary document. It describes an exemplary
safety related system using AUTOSAR based on the AUTOSAR guided tour example
“Front Light Management”.

The document provides an overview of a Functional safety concept as well as the
derived Technical safety concept on ECU level and is focused on AUTOSAR relevant
parts. The example follows the ISO 26262 standard, but does not cover all aspects
and include all details.

The safety use case shall:
e Provide an example to discuss and verify safety related concepts within
AUTOSAR,
¢ Identify improvement potential with respect to functional safety aspects in the
current AUTOSAR specifications and methodology,
e Provide a guideline for safety analyses on top of AUTOSAR methodology

Therefore the example can be adapted or changed in future to include new
AUTOSAR concepts or extend the complexity of the analyzed system.

**In the context of this document, functional safety mechanisms are a concrete product part, such as

memory protection. They are considered as specialization of functional safety measures, which also

include process steps, like a review. This definition is in line with the definition given in ISO 26262 for

these terms.

60 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2
4 Hardware Diagnhostics

Modern microcontrollers for safety-relevant applications are highly complex devices.
To ensure that the desired level of integrity is achieved by the microcontroller as part
of a safety-relevant system, integration and use of functional safety mechanisms and
measures in hardware and software is required.

Microcontrollers must support the premise of the safety-relevant system, that the
provided functionality can be trusted. Execution of Hardware Diagnostic mechanisms
can support this premise. This chapter provides an overview of how hardware
diagnostics are supported using AUTOSAR.

4.1 Core Test

The general objective of test by software is to detect failures in processing units
which lead to incorrect results. Core Test performs test by software of processing
units during microcontroller start-up and runtime.

4.1.1 Fault Models

According to ISO 26262*, detection of failures in the following parts of the
processing units are typically considered for the derivation of diagnostic coverage.
The following table provides a preliminary mapping between 1SO26262 and Core
Test requirements.

ID Processing unit parts Core Test SRS Requirements

001 | ALU Data Path [SRS CoreTst 14106] Core ALU Test

002 | Registers (general purpose | [SRS_CoreTst_14104] Core Register Test
registers bank, DMA
transfer registers...),

internal RAM
003 | Address calculation [SRS_CoreTst_14107] Core Address Generator
(Load/Store Unit, DMA [SRS_CoreTst_14108] Core Memory Interfaces
addressing logic, memory | [SRS_CoreTst _14109] Memory
and bus interfaces) Management/Protection Unit (MMU/MPU)
[SRS CoreTst 14110] Cache Controller
004 | Interrupt Handling [SRS_CoreTst_14105] Core Interrupt and

Exception Detection

005 | Control Logic (Sequencer, | -
coding and execution logic
including flag registers and
stack control)

006 | Configuration Registers -

007 | Other sub-elements not -
belonging to previous
classes

Table 13: Mapping between Processing Unit parts and Core Test requirements

% [ISO 26262-5, Annex D] Table D.1 Processing Units
61 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2
4.1.2 Description

The Core Test Driver is an AUTOSAR Basic Software Module which accesses the
microcontroller core directly without intermediate software layers. It is located in the
Abstraction Layer (MCAL).

The Core Test Driver provides several tests to verify dedicated core functionality like
e.g. general purpose registers or Arithmetical and Logical Unit (ALU). Furthermore,
the Core Test Driver provides services for configuring, starting, polling, terminating
and notifying applications about Core Test results. It also provides services for
returning test results in a predefined way.

The Core Test Driver can be used during ECU power-up and during application
runtime. However it is assumed that each hardware functional block of the core
under test can be accessed by the Core Test Driver exclusively.

4.1.3 Detection and Reaction

If the execution of the Core Test Driver is to be embedded into a system safety
architecture concept, then it is up to the user of the Core Test Driver to choose a
suitable test combination and scheduled execution order to fulfill the safety
requirements of the system.

Core Test reports errors in dedicated memory and bus interfaces (e.g. Tightly Coupled
Memories, caches, systems bus) and dedicated supporting functionality (e.g. interrupt
controller) to the diagnostic event manager (DEM) as production errors.

Errors inside the CPU (e.g. ALU, Prefetch queue, registers) cannot be reliably reported
to DEM, as these faults affect the correct operation of the Core itself.

4.1.4 Limitations

1. Transient faults are not covered by Core Test.
The Core test can be used to detect static hardware errors during power-up and
at runtime. Transient faults and intermittent faults are not covered and cannot be
reliably detected by Core Test.

2. Core Test implementations may be limited to execution during start-up/power-up.
Core Test requires exclusive access to local core resources to avoid unwanted
behavior and interference between test and application during runtime.
Currently, there is no resource managing entity in AUTOSAR upper layers to
support exclusive access to shared resources.

3. Test results are only available to the core which executes Core Test.
MCAL drivers intentionally miss the ability of accessing test results being
executed on other cores. Currently, there is no test managing entity in AUTOSAR
upper layers to handle test result processing.

4. Core Test cannot report detected faults reliably.

Faults within the CPU itself (e.g. ALU, MAC, Registers) cannot be reliably
reported to DEM, as they are being processed by the same faulty CPU.

62 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTO SAR

Overview of Functional Safety Measures in
AUTOSAR
AUTOSAR Release 4.2.2

4.15 References to AUTOSAR Documents

Source: Requirements on Core Test, V1.4.0, R4.2 Rev 1

[SRS_CoreTst_14104] Core Register Test Shall Be Available

[

Type: valid

Description: Shall support test according the automotive standard.

Rationale: The automotive standard requires testing of all critical Core
components.

Use Case:

Part of Core test strategy to detect failures of the Core.

Dependencies:

Supporting Material:

|(RS_BRF_02224)

[SRS_CoreTst_14105] Core Interrupt and Exception Detection Tests Shall Be

Available

[

Type: valid

Description: Shall support test according to the automotive standard.

Rationale: The automotive standard requires testing of all critical Core
components

Use Case: —

Dependencies:

Supporting Material:

|(RS_BRF_02224)

[SRS_CoreTst_14106] Core ALU Test Shall Be Available

[

Type: valid

Description: Shall support test of ‘coding and execution including flag
registers’ as suggested by the automotive standard.

Rationale: The automotive standard requires testing of all critical Core
components.

Use Case: -

Dependencies:

Supporting Material:

|(RS_BRF_02224)

63 of 71

Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTO SAR

Overview of Functional Safety Measures in
AUTOSAR
AUTOSAR Release 4.2.2

[SRS_CoreTst_14107] Core Address Generator Test Shall Be Available

[

Type: valid

Description: Shall support test of ‘address generation’ as suggested by the
automotive standard

Rationale: The automotive standard requires testing of all critical Core
components

Use Case: -

Dependencies:

Supporting Material:

|(RS_BRF_02224)

[SRS_CoreTst_14108] Core Memory Interfaces Test Shall Be Available

[

Type: valid

Description: Shall support Bus test as suggested by the automotive standard

Rationale: The automotive standard requires testing of all critical Core
components

Use Case: —

Dependencies:

Supporting Material:

|(RS_BRF_02224)

[SRS_CoreTst_14109] Memory Management/Protection Unit (MMU/MPU) Test

Shall Be Available
[

Type: valid

Description: Shall support MMU/MPU test as suggested by the automotive
standard.

Rationale: the automotive standard requires testing of all critical Core
components.

Use Case: -

Dependencies:

Supporting Material:

|(RS_BRF_02224)

64 of 71

Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTO SAR

Overview of Functional Safety Measures in
AUTOSAR
AUTOSAR Release 4.2.2

[SRS_CoreTst_14110] Cache Controller Test Shall Be Available

[

Type: valid

Description: Shall support Bus test as suggested by the automotive
standard.

Rationale: The automotive standard requires testing of all critical Core
components. Cache controller, although not explicitly covered
by the automotive standard is a standard component of the
Core.

Use Case: -

Dependencies: -

Supporting Material: -

|(RS_BRF_02224)

[SRS_CoreTst_14123] Shared Resources to Be Tested Shall

Be Made

Exclusively Available to Test

[

Type: Valid

Description: A mechanism for requesting and releasing shared resources in
multi master systems shall be available. The caller has to
handle the state of the shared resource. Saving/restoring the
state prior to the call to APl in NOT handled by the test itself,
but rather a task of the caller.

Rationale: In Cores some resources such as tightly coupled memory
interfaces are shared with external masters, e.g. DMA. These
shared resources need to be made exclusively available for
testing purposes. The test can then freely manipulate them, e.g.
change to test mode if supported, etc. without conflicting with
the rest of the application.

Use Case: -

Dependencies: -

Supporting Material: -

|(RS_BRF_01472,RS_

BRF_01232)

[SRS_CoreTst_14117] Faults Shall Be Treated as Production Errors

[

Type: Valid

Description: The Core test module shall report detected faults inside the core
to the DEM except faults detected inside the CPU itself (e.g.
ALU, MAC, Reqgisters etc.) which cannot be reliably reported.

Rationale: React and reconfigure system according to resource availability.

Use Case: -

Dependencies: -

Supporting Material: --

|(RS_BRF_02024,RS_

65 of 71

BRF_02168)

Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

Overview of Functional Safety Measures in
AUTOSAR
AUTOSAR Release 4.2.2

AUTO SAR

416 References to 1SO26262

The following references to the 1SO26262 standard are related to the aspects of test
by software for Processing Units.

ID 1SO26262 Reference

010 | Part5:[D.2.3.1] Self Test by software

011 | Part 5: [Table D.13] Combinatorial and sequential logic

012 | Part 5: [Table D.4] Processing Units

013 | Part 5: [Table D.1] Specific semiconductor elements — Processing units
Table 14: 1SO26262 Core Test References

4.2 RAM Test

The general objective of RAM Test is to detect permanent failures which can cause
corruption in the volatile memory.

4.2.1 Fault Models

According to ISO 26262%, detection of the following failures in the volatile memory is
typically considered for the derivation of diagnostic coverage. The following table

provides a preliminary mapping between 1ISO26262 and RAM Test requirements.

ID Failure Modes of Volatile Memory RAM Test SRS Requirements

001 | Low Coverage (60%): [SRS_RamTst_13822] A Test
Stuck-at for data, addresses and algorithm with low coverage shall be
control interface, lines and logic. available

002 | Medium Coverage (90%): [SRS _RamTst 13823] A Test
d.c. fault model for data, addresses algorithm with medium coverage shall
(includes address lines within same be available
block and inability to write to cell) and
control interface, lines and logic

003 | Medium Coverage (90%): -
Soft error model for bit cells

004 | High Coverage (99%): [SRS_RamTst _13824] A Test
d.c. fault model for data, addresses algorithm with high coverage shall be
(includes address lines within same available
block and inability to write to cell) and
control interface, lines and logic

005 | High Coverage (99%):
Soft error model for bit cells

Table 15: Mapping between Volatile Memory Failure Modes and RAM Test requirements

 [ISO 26262-5, Annex D] Table D.1 Volatile Memory
66 of 71

Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2
4.2.2 Description

The RAM Test Driver is an AUTOSAR Basic Software Module which accesses the
microcontroller RAM directly without intermediate software layers. It is located in the
Abstraction Layer (MCAL).

The RAM Test driver performs a test of the physical health of the RAM cells, it is not
intended to test the contents of the RAM. Furthermore, RAM used for registers is
also tested.

Different algorithms exist to test RAM. They target different sets of fault models,
achieve different coverages, result in different runtimes and are either destructive or
non-destructive. Coverage also depends on the underlying physical RAM
architecture.

An ECU safety analysis must be performed to determine which RAM Test diagnostic
coverage rate (Low, Medium or High) is required. Appropriate RAM Test algorithms
and further configuration parameters are then selected at compile time. At run time,
the application software may choose between the compiled algorithms (and between
further parameters).

The RAM Test driver supports synchronous test methods called “foreground test’
and asynchronous tests called “background test”. During the execution of a RAM test
algorithm, no other software shall be allowed to modify the RAM area under test.

4.2.3 Detection and Reaction

During the execution of non-destructive tests, the RAM Test module saves the contents
of the RAM area under test and restores the original contents thereafter.
RAM Test reports errors to the diagnostic event manager (DEM) as production errors.

4.2.4 Limitations

1. Transient faults are not covered by RAM Test.

RAM Test can be used to detect static hardware errors during power-up and at
runtime. Transient faults and intermittent faults are not covered and cannot be
reliably detected by RAM Test.

2. During the execution of a RAM test algorithm, no other software and hardware
shall be allowed to modify the RAM area under test The RAM Test module cannot
ensure data consistency (e.g. during NMI, DMA transfers, multiple active cores in
a Multicore system). Therefore the execution of RAM Test may be limited to the
power-up/sleep/shutdown phase of a microcontroller.

3. Destructive tests cause corruption of contents in memory under test.

During the execution of destructive tests, the contents of RAM area under test are
not saved by the RAM Test module.

67 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTO SAR

Overview of Functional Safety Measures in
AUTOSAR
AUTOSAR Release 4.2.2

425 References to AUTOSAR Documents

Source: Requirements on RAM Test, V2.0.1, R4.2 Rev 1

[SRS_RamTst_13822] A Test algorithm with low coverage shall be available

[

Type: New

Description: A test algorithm, which fulfils a diagnostic coverage of 60 %
shall be available.

Rationale: Detect permanent faults in RAM.

Use Case: Support of EOL, quick start-up tests and where low diagnostic

coverage tests are required, e.g. if system has safety goals with
low ISO 26262 ASIL rating only.

Dependencies:

Supporting Material:

ISO 26262-5:2011, Tables 4, 5, D.1 and D.6, sections D.2.5.1,
D.2.5.2and D.2.5.3

|(RS_BRF_00129, RS_BRF_02224,RS_BRF_01472)

[SRS_RamTst_13823] A Test algorithm with medium coverage shall be

available

[

Type: New

Description: A test algorithm, which fulfils a diagnostic coverage of 90 %
shall be available.

Rationale: Detect permanent faults in RAM.

Use Case: Support of EOL, start-up tests and where medium diagnostic

coverage tests are required, e.qg. if the latent fault metric of ISO
26262 for the ASIL level of the safety goals of a system can be
achieved with medium coverage.

Dependencies:

Supporting Material:

ISO 26262-5:2011, Tables 4, 5, D.1 and D.6, sections D.2.5.1,
D.25.2and D.2.5.3

|(RS_BRF_00129, RS_BRF_02224,RS_BRF_01472)

68 of 71

Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTO SAR

[SRS_RamTst_13824]
[

Overview of Functional Safety Measures in
AUTOSAR
AUTOSAR Release 4.2.2

A Test algorithm with high coverage shall be available

Type: New

Description: A test algorithm, which fulfils a diagnostic coverage of 99 %
shall be available.

Rationale: Detect permanent faults in RAM.

Use Case: Support of EOL, diligent start-up, shut-down or runtime tests

and where high diagnostic coverage tests are required, e.g. if
system has a safety goal with high ISO 26262 ASIL rating.

Dependencies:

Supporting Material:

ISO 26262-5:2011, Tables 4, 5, D.1 and D.6, sections D.2.5.1,
D.2.5.2and D.2.5.3

|(RS_BRF_00129, RS_

[SRS_RamTst_13825]
requirements of the d

[

BRF_02224,RS BRF 01472)

The RAM Test Module shall be usable to comply with
ifferent ASIL levels of ISO 26262.

Type: New

Description: The RAM Test Module shall provide and document (fault
models and fault coverage) diagnostic capability for permanent
faults in RAMs to enable fulfillment of the latent fault metric
targets of ISO 26262 for the different ASIL levels.

Rationale: Usability of AUTOSAR for systems which need to comply with
ISO 26262.

Use Case: --

Dependencies: --

Supporting Material: |1SO 26262-5:2011, Tables 4, 5, D.1 and D.6, sections D.2.5.1,
D.2.5.2 and D.2.5.3

|(RS_BRF_02048,RS_

BRF_02064)

4.2.6 References to 1SO26262

The following referenc
RAM Test.

es to the 1SO26262 standard are related to the aspects of

ID 1ISO26262 Reference

015 | Part5:[D.2.5.1] RAM Pattern test

016 Part 5: [D.2.5.3] RAM March test

012 Part 5: [Table D.6] Volatile Memory

013 | Part 5: [Table D.1] General semiconductor elements — Volatile Memory

69 of 71

Table 16: 1SO26262 RAM Test References

Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in

AUTOSAR
AUTOSAR Release 4.2.2

5 Appendix

5.1 Acronyms and abbreviations
<Used acronyms and abbreviations not contained in the AUTOSAR glossary>

Abbreviation /| Description

Acronym:

HARA Hazard Analysis

HAZOP Hazard & Operability Analysis

SEooC Safety Element out of Context

HTM Hardware Test Manager

HTMSS Hardware Test Manager on Startup and Shutdown
ASIL Automotive Safety Integrity Level
DMA Direct Memory Access

EMC Electromagnetic Compatibility

I0C Inter-OS-Application Communicator
CRC Cyclic Redundancy Check

TP Transport Protocol

BIST Built In Self Test

FTTI Fault Tolerant Time Interval

MSTP Microcontroller Specific Test Package

70 of 71

Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

AUTOSAR Overview of Functional Safety Measures in
AUTOSAR

AUTOSAR Release 4.2.2

5.2 Related Documents
[1] 1SO26262 International Standard, First edition 2011-11-15

[2] Specification of Operating System

[3] Requirements on AUTOSAR Features

[4] Layered Software Architecture

[5] Specification of Watchdog Manager

[6] Specification of SW-C End-to-End Communication Protection Library
[7] Specification of Module E2E Transformer

[8] General Specification on Transformers

[9] Specification of ECU State Manager

[10] Specification of ECU State Manager with fixed state machine

[11] Functional Safety analysis of an exemplary system using AUTOSAR
[12] Specifications of Safety Extensions

[13] Specification of ECU Configuration

[14] Technical Safety Concept Status Report

[15] Explanation of Error Handling on Application Level

[16] Specification of Core Test

[17] Requirements on Core Test

[18] Specification of RAM Test

[19] Requirements on RAM Test

71 of 71 Document ID 664: AUTOSAR_TR_OverviewOfFunctionalSafetyMeasuresInAUTOSAR
- AUTOSAR confidential -

	1 Introduction
	1.1 Disclaimer
	1.2 Scope
	1.3 Purpose
	1.4 Intended Audience

	2 Functional Safety Mechanisms
	2.1 Memory Partitioning
	2.1.1 Fault Models
	2.1.2 Description
	2.1.2.1 Application Software
	2.1.2.2 OS Applications
	2.1.2.3 Communication and Code Sharing
	2.1.2.4 Memory Partitioning within Application Software
	2.1.2.5 Memory Partitioning within Software Components
	2.1.2.6 Implementation of Memory Partitioning

	2.1.3 Detection and Reaction
	2.1.4 Limitations
	2.1.5 References to AUTOSAR Documents
	2.1.6 References to ISO26262

	2.2 Timing Monitoring
	2.2.1 Fault Models
	2.2.2 Description
	2.2.2.1 Supervised Entities
	2.2.2.2 Watchdog Manager
	2.2.2.3 Timing Protection of the Operating System

	2.2.3 Detection and Reaction
	2.2.4 Limitations
	2.2.5 References to AUTOSAR Documents
	2.2.6 References to ISO26262

	2.3 Logical Supervision
	2.3.1 Fault Models
	2.3.2 Description
	2.3.3 Detection and Reaction
	2.3.4 Limitations
	2.3.5 References to AUTOSAR Documents
	2.3.6 References to ISO26262

	2.4 End-2-End Protection
	2.4.1 Fault Models
	2.4.2 Description
	2.4.2.1 End-2-End Profiles
	2.4.2.2 End-2-End State Machine
	2.4.2.3 Integration of the End-2-End Protection Library
	2.4.2.4 End-2-End Protection Wrapper
	2.4.2.5 Transmission Manager
	2.4.2.6 COM End-2-End Callout
	2.4.2.7 RTE Data Transformer

	2.4.3 Detection and Reaction
	2.4.4 Limitations
	2.4.5 References to AUTOSAR Documents
	2.4.6 References to ISO26262

	3 Functional Safety Measures
	3.1 Functional Safety Measures of AUTOSAR
	3.2 Traceability
	3.3 Development Measures and the Evolution of the Standard
	3.4 Functional Safety Measures not delivered by AUTOSAR
	3.5 Safety related Extensions of Methodology and Templates
	3.6 Safety Use Case

	4 Hardware Diagnostics
	4.1 Core Test
	4.1.1 Fault Models
	4.1.2 Description
	4.1.3 Detection and Reaction
	4.1.4 Limitations
	4.1.5 References to AUTOSAR Documents
	4.1.6 References to ISO26262

	4.2 RAM Test
	4.2.1 Fault Models
	4.2.2 Description
	4.2.3 Detection and Reaction
	4.2.4 Limitations
	4.2.5 References to AUTOSAR Documents
	4.2.6 References to ISO26262

	5 Appendix
	5.1 Acronyms and abbreviations
	5.2 Related Documents

