
Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

1 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

Document Title Explanation of Error Handling
on Application Level

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 378

Document Classification Auxiliary

Document Status Final

Part of AUTOSAR Release 4.2.2

Document Change History
Release Changed by Change Description

4.2.2 AUTOSAR
Release
Management

 minor corrections / clarifications / editorial
changes; For details please refer to the
ChangeDocumentation

4.2.1 AUTOSAR
Release
Management

 Editorial changes

4.1.1 AUTOSAR
Administration

 Finalized for Release 4.1

4.0.3 AUTOSAR
Administration

 Initial release

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

2 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only. For any other purpose, no part of
the specification may be utilized or reproduced, in any form or by any means, without
permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference
models, "use cases", and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their
presence in such specifications, nor any later documentation of AUTOSAR
conformance of products actually implementing such exemplary items, imply that
intellectual property rights covering such exemplary items are licensed under the
same rules as applicable to the AUTOSAR Standard.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

3 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

Table of Contents

1 Introduction .. 8

2 Relation to other documents .. 9

3 References .. 10

4 Guide to the document .. 12

5 Terms and definitions .. 14

5.1 Basic dependability terms .. 14

5.2 Fault Detection, Isolation and Recovery (FDIR) ... 15

6 Scope .. 17

7 Error model .. 18

8 Error handling mechanisms ... 21

8.1 Plausibility checks .. 21

8.1.1 Description .. 21

8.1.2 Applicability ... 22

8.1.3 Application level vs. BSW ... 23

8.1.4 AUTOSAR References ... 24

8.2 Substitute Values ... 24

8.2.1 Description .. 24

8.2.2 Applicability ... 25

8.2.3 Application level vs. BSW ... 25

8.2.4 AUTOSAR References ... 26

8.3 Voting ... 26

8.3.1 Description .. 26

8.3.2 Applicability ... 27

8.3.3 Application level vs. BSW ... 27

8.3.4 AUTOSAR References ... 27

8.4 Agreement .. 27

8.4.1 Description .. 27

8.4.2 Applicability ... 28

8.4.3 Application level vs. BSW ... 28

8.4.4 AUTOSAR References ... 29

8.5 Checksums/Codes ... 29

8.5.1 Description .. 29

8.5.2 Applicability ... 29

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

4 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

8.5.3 Application level vs. BSW ... 30

8.5.4 AUTOSAR References ... 30

8.6 Execution sequence monitoring ... 31

8.6.1 Description .. 31

8.6.2 Applicability ... 31

8.6.3 Application level vs. BSW ... 32

8.6.4 AUTOSAR References ... 32

8.7 Aliveness monitoring .. 33

8.7.1 Description .. 33

8.7.2 Applicability ... 33

8.7.3 Application level vs. BSW ... 33

8.7.4 AUTOSAR References ... 34

8.8 Status and Mode Management .. 34

8.8.1 Description .. 34

8.8.2 Applicability ... 35

8.8.3 Application level vs. BSW ... 36

8.8.4 AUTOSAR References ... 36

8.9 Reconfiguration .. 37

8.9.1 Description .. 37

8.9.2 Applicability ... 38

8.9.3 Application level vs. BSW ... 38

8.9.4 AUTOSAR References ... 39

8.10 Reset .. 40

8.10.1 Description .. 40

8.10.2 Applicability ... 41

8.10.3 Application level vs. BSW ... 41

8.10.4 AUTOSAR References ... 41

8.11 Error Filtering ... 43

8.11.1 Description .. 43

8.11.2 Applicability ... 43

8.11.3 Application level vs. BSW ... 43

8.11.4 AUTOSAR References ... 43

8.12 Memory Protection ... 44

8.12.1 Description .. 44

8.12.2 Applicability ... 44

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

5 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

8.12.3 Application level vs. BSW ... 44

8.12.4 AUTOSAR References ... 45

8.13 Timing Protection ... 46

8.13.1 Description .. 46

8.13.2 Applicability ... 46

8.13.3 Application level vs. BSW ... 46

8.13.4 AUTOSAR References ... 47

9 Aspect mapping ... 49

9.1 Mapping to FDIR process and Error Model .. 49

9.2 Mapping to implementation level .. 52

10 Terminating and restarting partitions ... 54

10.1 Introduction .. 54

10.1.1 Automotive Applications .. 55

10.1.2 Software Partitioning & Error Containment Regions 55

10.2 Rationale – Use Cases ... 56

10.2.1 Use Case 1: Software Partitioning [UC1] .. 56

10.2.2 Use Case 2: Application-level Error Handling [UC2] 57

10.2.2.1 Error handling of distributed automotive applications 57

10.2.2.2 OEM-specific error handling ... 57

10.2.2.3 Application-level Error Managers ... 58

10.3 Approach for Terminating and Restarting Partitions 59

10.3.1 OS features ... 59

10.3.1.1 OS-Applications ... 59

10.3.1.2 Protection Hook ... 60

10.3.1.3 TerminateApplication() API .. 60

10.3.1.4 OSRestartTask .. 61

10.3.1.5 OS-Application state machine .. 61

10.3.2 Going from OS-Applications to partitions .. 63

10.3.2.1 Partition state machine... 63

10.3.2.2 Error handling strategy in the Protection Hook 70

10.3.2.3 Clean-up activities in the OSRestartTask..................................... 71

10.3.2.4 Externally triggered restart or termination 75

10.3.3 Sequence diagram for termination and restart of a partition 76

10.3.4 Support for Use Cases .. 77

10.3.4.1 UC1: SW Partitioning ... 77

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

6 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

10.3.4.2 UC2: OEM Specific Error Handling .. 77

10.3.5 Consistency Aspects ... 77

10.3.5.1 Application-level consistency ... 77

10.3.5.2 BSW consistency ... 77

10.3.5.3 Communication consistency .. 77

10.4 Integrator Responsibility ... 78

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

7 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

Known Limitations

There are no known limitations.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

8 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

1 Introduction

The purpose and aim of this document is to survey application level error handling
mechanisms common in the automotive industry and available for use with
AUTOSAR. This includes both handling of errors at the application level and handling
of application level errors.

Error handling in this context refers to the complete handling chain, i.e., detection,
isolation/identification and recovery. A set of error handling mechanisms useful for
automotive systems is presented, which cover all three phases of error handling.
Each mechanism is first described in a high-level manner, describing applicability for
error handling and technical aspects. Then, AUTOSAR functionality related to the
mechanism is reviewed and it is detailed where in an AUTOSAR system the
mechanism is implemented or supported. Consequently, the list of mechanisms
includes both mechanisms fully (or partially) supplied by AUTOSAR and mechanisms
that should be implemented at SW-C-level by application developers, if incorporated
into the system. Note that the set of mechanisms covered is not complete and limited
to mechanisms that can be implemented for systems built on AUTOSAR release 4.0.
Alternate and additional mechanisms are possible and future releases of AUTOSAR
may enable even more error handling functionality. Also, this document does not
prescribe the use of any mechanisms – the decision is of course solely up to the
application developers and integrators.

This document is intended as a description of possible mechanisms and is primarily
aimed at application/SW-C developers. However, it can also be of use to developers
of BSW-modules. Focus is on random faults, not on systematic design faults (such
as SW bugs). Examples of such faults include HW faults affecting the application,
communication or peripheral devices. It focuses on errors most suitably handled by
SW-Cs, not covering error handling within or below the RTE, such as COM and OS
error handling.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

9 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

2 Relation to other documents

This document is related to many other documents published within AUTOSAR,
especially those handled by the AUTOSAR Functional Safety team. The purpose of
this document is not to replace any of these other documents, but to view the work
done in other work packages from an application developer’s point of view.
Consequently there is a significant amount of overlap between this document and
other documents, which shows the maturity reached within AUTOSAR.

For each mechanism a list of related AUTOSAR documentation is presented, which
forms the explicit relation between this document and other AUTOSAR documents.

Information about functional safety mechanisms and measures is distributed
throughout the AUTOSAR specification documents. Unless one knows how
functional safety mechanisms are supported and where the necessary information is
specifically located, it is difficult to evaluate how a safety-relevant system can be
implemented using AUTOSAR efficiently.

The AUTOSAR document “Overview of Functional Safety Measures in AUTOSAR”
summarizes the key points related to functional safety in AUTOSAR, explains how
functional safety mechanisms and measures can be used and references the
respective documents. Furthermore, it helps to establish a mapping between
ISO26262 requirements and AUTOSAR measures and mechanisms.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

10 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

3 References

[1] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

[2] Specification of RTE
AUTOSAR_SWS_RTE

[3] Specification of Operating System
AUTOSAR_SWS_OS

[4] Specification of Communication
AUTOSAR_SWS_COM

[5] Specification of Communication Manager
AUTOSAR_SWS_COMManager

[6] Specification of Diagnostic Communication Manager
AUTOSAR_SWS_DiagnosticCommunicationManager

[7] Specification of ECU State Manager
AUTOSAR_SWS_ECUStateManager

[8] Specification of Function Inhibition Manager
AUTOSAR_SWS_FunctionInhibitionManager

[9] Specification of Diagnostic Event Manager
AUTOSAR_SWS_DiagnosticEventManager

[10] Specification of Watchdog Manager
AUTOSAR_SWS_WatchdogManager

[11] Specification of NVRAM Manager
AUTOSAR_SWS_NVRAMManager

[12] Specification of CRC Routines
AUTOSAR_SWS_CRCLibrary

[13] Specification of Crypto Service Manager
AUTOSAR_SWS_CryptoServiceManager

[14] Specification of Crypto Abstraction Library
AUTOSAR_SWS_CryptoAbstractionLibrary

[15] Specification of Basic Software Mode Manager
AUTOSAR_SWS_BSWModeManager

[16] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

11 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

[17] Glossary
AUTOSAR_TR_Glossary

[18] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture

[19] Specification of SW-C End-to-End Communication Protection Library
AUTOSAR_SWS_E2ELibrary

[20] Specification of Module Core Test Driver
AUTOSAR_SWS_CoreTest

[21] Specification of Flash Test
AUTOSAR_SWS_FlashTest

[22] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr, “Basic

Concepts and Taxonomy of Dependable and Secure Computing”, IEEE
Transactions on Dependable and Secure Computing, Vol. 1, No. 1, January-
March 2004

[23] Jim Gray, “Why Do Computers Stop and What Can We Do About It”, Technical

Report TR 85.5, Tandem, 1985.

[24] ISO CD 26262-1 Road vehicles – Functional Safety – Part 1: Glossary

[25] EASIS Deliverable D1.2-8, “Fault management framework”
http://www.easis-online.org/

http://www.easis-online.org/

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

12 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

4 Guide to the document

Depending on the familiarity of the reader to the various terms and definitions used in
the area of dependable systems, some parts of the document can be flipped through
quite quickly or even skipped. If you are very familiar with the area of dependable
system, you might even go to Section 9 directly. In Table 4-1 you will find a summary
of the subsequent chapters in order to identify which parts are of most interest to you.

Table 4-1: Overview of the contents of the remainder of this document.

Section Description

5 Terms and definitions This section contains an overview of the terms used
in this document, including descriptions of the terms
fault, error, failure, a description of the FDIR (Fault
Detection, Isolation and Recovery) process, and a
description of various failure modes. If you are
familiar with the concepts in the area of dependable
systems, you can browse through this part rather
quickly.

6 Scope This section describes the assumptions made in this
document. The assumptions concern for example
existence of some basic dependability mechanisms
in the BSW.

7 Error model This section describes the types of errors that we
have considered to be the most important ones from
an automotive application point-of-view. The
mechanisms listed in the subsequent chapters are all
categorized according to their respective applicability
to the handling of these errors.

8 Error handling mechanisms This section lists and describes the error handling
mechanisms provided or supported by AUTOSAR.
for implementing application-level error handling.
Each mechanism has a high-level description, a
discussion on applicability, a discussion on
implementation level (application vs. BSW) and an
overview of the available AUTOSAR concepts and
services that can be used for this type of mechanism.

9 Aspect mapping This section provides an overview of the presented
mechanisms and the mapping of these to the FDIR
process, error models and implementation level.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

13 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

10 Terminating and
restarting partitions

This section describes an approach for incorporating
termination and restart capabilities of partitions in
AUTOSAR R4.0. This section is more AUTOSAR
specific than other parts of this document and
collects all descriptions and notes on error handling
at the level of partitions within AUTOSAR.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

14 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

5 Terms and definitions

5.1 Basic dependability terms

The fundamental concepts and terms of dependability used in this document are
adopted directly from [22]. This section contains a short overview of the main terms
and definitions used for dependable systems. It should be noted here that the word
“system” is used in a very wide sense in this context. A system can denote anything
from a single SW-C to a complete vehicle with multiple networks and ECUs.
However, as the document is aimed at application level error handling, a system in
the rest of the document should denote a software application, potentially consisting
of multiple SW-Cs, possibly mapped over a set of (distributed) ECUs.

The term dependability is defined as “the trustworthiness of a system such that
reliance can justifiably be placed on the service it provides”. This means that a
dependable system is one upon which the user (either human or non-human) can
place its trust in that the services provided by the system are correct. The
dependability of a system is characterized by a set of attributes, compromised by a
set of impairments, and achieved and analyzed by a set of means.

The dependability attributes characterize, and profile, the dependability of a given
system. Some examples of attributes are availability, reliability, safety, confidentiality,
integrity, and maintainability.

During the construction and the operation of a system (here used in a wide sense – a
system can be any bounded entity, such as an entire ECU or a single SW-C), events
may occur which reduce the trustworthiness of the system by introducing faults into
the system. A fault is a transient or permanent change of the system such that its
integrity deviates from the expected correct integrity. During system operation, faults
may prevent the system from providing its intended service. These faults may be
from an internal source (such as software defects) or an external source (such as
external disturbances or aging of components). The events that may reduce the
dependability of a system are referred to as the impairments of dependability.

The mere presence of faults is, however, not sufficient to reduce the dependability of
a system. A fault must be activated, i.e., the part of the system in which the fault is
located must be exercised in some way during system operation (e.g., faulty code
must be executed, defective memory locations must be read, etc.). If this happens,
the result may be an error. If a fault is viewed as a disease, an error can be said to
be a symptom of that disease. An error is defined as an erroneous (soft) state in the
system, i.e., the state is different from the state the system would have had if the fault
had not been present. An error which is activated may cause other errors to occur in
the system. This process is called error propagation.

If errors propagate beyond the system barrier, i.e., if they are visible to the
environment of the system, the error transforms into a failure, which means that the
system no longer provides its specified functionality.

The causality chain, fault  error  failure, is also recursive in nature. Thus, a failure
of one system is perceived as a fault by the enclosing system (i.e. the former is a

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

15 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

sub-system of the latter). For instance, a failure in a specific software component can
be seen as a fault in the overall application (consisting of a set of SW-Cs).

Therefore, we get the following sequence:

… failure  fault  error  failure  fault …

The methods used to achieve and analyze the dependability of a system are called
the means of dependability. The purpose of this document is to document and
investigate the means provided by AUTOSAR for the disposal of application
developers for implementing error handling.

Note that this document covers mechanisms which are active during system
operation. It does not cover means such as processes and methodologies for
achieving functional safety, as these apply during system development rather than
system operation.

5.2 Fault Detection, Isolation and Recovery (FDIR)

The process of handling faults during system operation is often referred to as FDIR,
which stands for Fault Detection, Isolation, and Recovery.

Detection: The crucial first step in handling a fault is of course to become aware that
it has occurred. Without this detection, no further activities can be performed. When it
comes to detection, the original fault is often very hard to detect. What can be
detected are the effects of the fault, that is, errors. These are detected by monitoring
the state of the system.

Errors can manifest in different ways. The main manifestations are

1. erroneous values in the system (data errors),

2. erroneous execution time (timing errors),

3. erroneous sequence or execution order (program flow errors).

4. erroneous access to system resources, such as memory

Errors may propagate and generate consecutive faults which in turn may result in
new errors, e.g., an erroneous data value is used as a pointer and causes a memory
access violation, which may create an erroneous value in another data value if a
value is written to the erroneous memory location. Most mechanisms used for
detection of errors allows the system to perform some action to find out more
regarding the source of the error (isolation) and to issue corrective or compensating
actions (recovery). Ideally, detection is done before the error has propagated any
further, thus making it possible to stop further propagation. However, in most cases
additional recovery actions are needed, such as stopping the offending component or
reconfiguring to alternate functionality.

Isolation: Once a fault (or error) has been successfully detected, damage
assessment and damage control needs to be performed, i.e. there is a need for
isolation. During isolation, efforts are made to find the root cause for the erroneous
state in the system, and information (e.g. regarding the spread and cause of the
error) is gathered for subsequent use during error recovery. It may not always be
possible (or practical) to find the root cause of the erroneous state. Note that isolation

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

16 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

in this document refers to isolating the source of the errors, such that recovery is
possible. It does not refer to isolation of specific components of a system with the
purpose of stopping errors from propagating. In a sense, the word identification may
have been a better choice, but as the commonly used word in descriptions of the
FDIR process is isolation we will use it here.

Recovery: When the isolation is complete, recovery actions will be initiated. These
actions aim at transferring the system into a controlled state, which can be a
completely recovered state where nominal service is provided, or a safe degraded
state where a limited or no service is provided. The better the isolation results are,
the better the recovery actions can perform.

If recovery is not successful, a failure may occur, i.e., the system is in an uncontrolled
state and its service is not defined.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

17 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

6 Scope

This document concerns error handling from an application’s point of view. That is, it
describes mechanisms for detection, isolation and recovery at application level, as
well as mechanisms that can handle faults relevant for applications (e.g. memory
access violations or timing violations).

The focus is on handling of errors which mainly are the effects of random external
faults. Even though systematic faults (i.e. design faults) can manifest themselves in
the same way as external faults, these are not the primary target of this document.
The handling of systematic faults is related to development (e.g., processes, design
methodologies, and debugging) rather than error handling during system operation.

Error handling in AUTOSAR is not restricted to application level error handling. The
BSW has a number of built-in error handling mechanisms which are able to provide
e.g. reliable communication, synchronization, etc. However, these mechanisms will
not be described in this document.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

18 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

7 Error model

Design of dependable systems is based on a systematic analysis of potential faults
(fault models) i.e., a set of postulated faults, derived from the operating environment
of the system, which helps the designer or user to predict the consequences of these
fault and define mechanisms for handling (detect, recover from etc.) those particular
faults.

Faults can manifest on all levels of a system, from pure random HW faults (e.g., bit-
flips) to SW (e.g., design defects) and faults in the interaction between components
(e.g., incomplete interface specifications). Similarly faults are introduced throughout
the design process (requirements, analysis, design, implementation, etc.). As this
document is aimed at application level error handling focus is on errors that are
expected to be handled by AUTOSAR SW components, either because application
level knowledge is needed for the FDIR process, or because they have propagated
from lower layers. Note that some errors of those types considered in this document
can be handled by the BSW, but some may propagate to the application level and
must therefore be handled there..

It is important to note that the focus is on handling of errors, which are the effects of
faults. Even though design faults can manifest themselves in the same way as
external faults, these are not the primary target of this document. The handling of
design faults is related to debugging rather than error handling.

This document only considers error handling during operation. Techniques for fault-
avoidance and fault-removal through rigorous or formalized development processes
are not in scope.

The focus is mainly on random external faults, i.e., faults whose appearance can be
modeled as a random process. However, this does not mean that the presented
mechanisms cannot handle systematic faults, as the consequences of such faults
(the errors) can manifest the same way as random faults. Both transient and
permanent faults are considered, where some mechanisms are more suitable for one
or the other.

As only SW mechanisms are considered in this documents it is actually errors that
are detected, and not faults directly. Consequently the term error model will be used
throughout the rest of the document instead of fault model. As errors are faults that
have been activated and propagated, a single error can (theoretically) have many
possible root causes, i.e., faults.

To simplify the discussion, error models have been divided into a number of broader
error classes as seen from Table 7-1. These classes were chosen as they are easily
mapped onto SW mechanisms. However, it is important to note that the error models
are interrelated. An erroneous data value used in a branch instruction may propagate
and become a program flow error, which may delay (or change) the output of the
execution causing for instance a late response, i.e., a timing error.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

19 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

Table 7-1: Considered error types

Error Type Description

Data A data error is characterized by an erroneous value of a
parameter, variable or message. The source of the error can
be either internal (e.g., SW defect) or external (e.g.,
malfunctioning sensor, other faulty SW-component).

Handling of data errors can break a causality chain that
would lead to subsequent errors that are more complicated
to handle, such as program flow or access violations.

Program flow Program flow errors (also “control flow errors”) manifest as
actual program flows different than expected, possibly
leading to missed, wrong or superfluous operations being
carried out. The source of the program flow error can be both
internal (SW defects) and external (data errors).

Access For increased separation between executing components
the system designer can partition the SW and restrict access
to resources from the partition, e.g., memory access. When
a component tries to access a resource in another partition
without the proper access rights an access violation occurs.

Access errors can be the result of a data or program flow
error, e.g., an invalid program counter or pointer.

Timing A communication (message, function invocation, etc.) is time
critical when the delivery time has an effect on the
correctness/usefulness of the communication. A timing error
can be a message being delivered early, late or missing
completely (omission).

The last type of timing error, omission, is of special interest
and is sometimes referred to as crash or fail-silent behaviour
(note that it may be impossible to distinguish between crash,
which is an uncontrolled state, and fail-silence, which is a
controlled state).

Timing errors also refer to execution time, where strict
deadlines can be defined on how long a component is
allowed access to the CPU.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

20 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

Asymmetric When errors propagate from one SW-component to another
using some means of communication one differentiates
between symmetric and asymmetric errors. In the symmetric
case all receivers receive the same (erroneous) value. When
the component can fail by sending different values (all of
which may be valid) the error is said to be asymmetric.

This error model is sometimes also referred to as the
Byzantine model, which implies that no assumptions
whatsoever are made on the behaviour of a malfunctioning
component. Byzantine errors can only be detected by use of
redundant components exchanging values to reach a
common result.

Since the scope of the document is limited to errors handled at the application level,
not all error types are considered for the mechanisms presented in Section 8. The
following error types are not considered explicitly:

 Communication Errors: These errors are not included since it is assumed
that reliable communication is available to SW-Cs. The only communication
errors possible would then be caused by design faults, i.e., bugs in SW-Cs.
Note that SW-Cs are still expected to handle communication errors that are
reported from COM, or COM is configured to handle the error in the BSW.

 Deadlocks and livelocks: Deadlock and livelock situations are detected by
watchdog mechanisms in the BSW and are thus not considered further in this
document. These situations can of course lead to other timing errors which
can be detected at application level. In that case, applications can deal with
the effects of deadlock or livelock situations, but not necessarily the root cause
of these situations.

 Occurring faults and errors in instruction code: At application level, it is in
general impossible to detect instructions which have become faulty as a result
of a fault in the storage medium or the internals of the processor. However,
such faults in most cases result in illegal instructions which are detected when
the processor attempts to execute them. If the resulting instruction is a legal
one, it is likely this will instead transform to other types of errors in the system
(e.g. data errors, timing errors, etc.) which could then be detected and handled
by other means, such as those described in this document. In the BSW, there
are components for testing the core of the processor, the flash memory and
the RAM. These may detect anomalies which could lead to instruction code
errors.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

21 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

8 Error handling mechanisms

This section describes a number of mechanisms on a high, conceptual level. These
mechanisms can be used by application developers to incorporate error handling in
the description or in the realization of applications.

Each mechanism is classified as being applicable or not applicable to a certain error
type (as defined in Section 7). If a mechanisms is applicable this indicates that the
mechanism is suitable for use to detect (or isolate or recover from) a specific set of
errors. It is important to note that it does not imply that all errors of a specific type are
detected. Each mechanism needs to be tuned to detect the specific errors required,
and may only be able to handle a subset of the errors in an error class.

Some mechanisms are only partially applicable if they can be used in a
straightforward manner in conjunction with some other mechanisms. For instance,
when detecting that the value received from a sensor is wrong a substitute (safe)
value can be used instead as a form of recovery. However, this only partially solves
the recovery from the failed sensor, additional mechanisms are needed as well to
fully recover, e.g., re-initialization of sensor. Partially applicable mechanisms are also
marked as applicable.

When a mechanism is not applicable it means that the mechanism does not have
straightforward use for the specific step and error model. In some cases
modifications could potentially give the mechanism some utility, but a better option
most likely exists.

Note that some of the mechanisms listed below may have side-effects, such as
memory access patterns and timing behaviour of the system. Especially the timing
behaviour may be affected and this needs to be explicitly addressed by the designer,
such that all timing characteristics of the system are known, both during normal
operation and during error handling.

Note also that even if many mechanisms are described, it is not always needed to
combine different mechanisms, and mechanisms may even interact badly with other
mechanisms.

8.1 Plausibility checks

8.1.1 Description

One of the most common ways to incorporate application specific knowledge is to
construct monitors which check that the current value of a variable or a set of
variables maintains some predefined condition, i.e., that they are plausible. A
plausibility check is a predicate defined over set of variables in the application that
can be checked dynamically at run time. The values that are being checked may
represent values used for calculations, state values, or other kinds of values.
Plausibility checks come in mainly two different flavours: i) checking the validity of a
single value, and ii) comparing multiple values.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

22 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

Checking the validity of a single value.. As the name suggests, checks are made
for the validity of a value, i.e., if the value falls in a range of “good” values, if it follows
a known pattern or behaviour etc. Such discrimination can typically only be made
using specific knowledge regarding the application and/or its environment, such as
maximum vehicle speed, minimum engine temperature etc.

Checks can be of range type (within a range or set of “good” values) or of differential
nature (change from previous value, less than etc). Differential changes can
additionally be temporal, where the periodicity of the check can add additional
conditions (speed cannot change more than x km/h within time T). Here further
application specific information is needed such as periodicity of checks etc.

Comparison of multiple values. Checking the validity of a set of single values may
bring that all values are valid. However, performing a comparison across all values in
the set may reveal errors which otherwise would be missed, by detecting that a given
combination of seemingly valid values is not plausible. These comparisons can be
computed using physical relations between several values (e.g., engine speed
compared with vehicle speed and gear ratio), or by comparing data from redundant
sources (e.g. multiple temperature sensors measuring the same temperature). The
main problem in this case is to discriminate the erroneous value from the correct
values. For some applications (especially safety-related ones) redundant sources for
data values can be used to increase confidence in data validity, for instance by using
multiple sensor readings (e.g., redundant sensors or reading values twice). When
two values exist a comparison can be made between the two values, where the
result is either that they are identical (possibly within some tolerance margin) and
thus deemed correct or dissimilar indicating an error (in one of the values). After error
detection additional measures are needed for isolating and recovering from the error.
Comparison as a mechanism differs from validity checks in that it is based solely on
comparing two values, disregarding the plausibility of the values. Comparison differs
from voting (Section 8.3) since it is handled within a single SW-C, whereas voting
may span multiple SW-Cs, for instance by executing redundant SW-Cs (either
diverse or identical) and voting on the outcome. Comparisons are made locally and
are always binary, i.e., two values are compared

We choose to differentiate between plausibility checks and status checking. The
latter can be made independent of application knowledge and is presented as a
separate mechanism (Section 8.8: Status and Mode Management). However, as a
result of a failed plausibility check an application may set status flags which other
application and BSW can check and act upon.

8.1.2 Applicability

Table 8-1: Applicability matrix for plausibility checks.

Step\Error
Model

Data Program
flow

Access Timing Asymmetric

Detection X

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

23 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

Isolation X

Recovery

Validity checks are used to detect data errors in an application, where ranges of
allowed/disallowed values can be defined. It is limited to the designer’s ability to
define such ranges based on requirements and/or application knowledge.
Maintenance and traceability of such ranges must be handled within the development
process. Undocumented or not up-to-date checks remaining in production code
present a risk for the dependability of the application.

In some cases “safe” values can be defined to be used instead of a value outside the
range of valid values, which is defined as a separate mechanism (Section 8.2:
Substitute Values).

Validity checks are only useful for detecting data errors. Checks can in some cases
be part of the isolation step, where additional information regarding an error is gained
by use of additional plausibility checks, for instance by determining which value (out
of several) is erroneous when comparison or voting (Section 8.3) is used. This way
application specific knowledge can be used when isolating errors.

Comparison can detect data errors by identifying a discrepancy between multiple
values. Since comparisons are based on data values no other error models are
supported. It may be difficult to isolate which of the multiple values are the ones
which are erroneous. If validity checks show no invalid values, it is not possible to
indicate which value is erroneous.

Plausibility checks are not generally applicable for detecting program flow, timing or
asymmetric errors.

Plausibility checks cannot generally be used for recovery.

8.1.3 Application level vs. BSW

Plausibility checks can be implemented as executable assertions, where the values
of one or more variables are checked using simple if-statements. It is implemented in
the source code of the SW-Component, but does not generally affect the overall
structure of the application. Checks can in most cases be implemented with
deterministic timing characteristics (not considering de-bouncing). Memory
requirements for data are typically low, restricted to saving values for differential
checks.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

24 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

8.1.4 AUTOSAR References

Table 8-2: AUTOSAR References for plausibility checks.

Name Type1 Document Comment

SW-C End to End
Communication
Protection

SWS E2E Library [19] Definition of protocols
between sender and
receiver.

Flash Test

Core Test

SWS FLSTST [21]

CORTST [20]

Comparison with known
signature.

RTE SWS RTE [2] Supports range checks for
scaled values.

AUTOSAR COM SWS COM [4] PDU replication and
comparison

The SW-C End to End Communication Protection Library can be used to check
whether a signal is coming from an unexpected SW-C sender, or when the received
signal is providing the information that it is not supposed to provide. It also permits to
define SW-Cs able to check whether a stream of instances of a signal have been
received in sequence (depending on the use cases, this can also be configured at
the AUTOSAR COM level).

The Flash Test and Core Test modules can be configured in the context of single
processor or multi-processor ECUs to perform checks on the ECU’s hardware. These
checks are compared with known good signatures of the hardware.

The RTE can check if communicated values matches with their allowed range.

8.2 Substitute Values

8.2.1 Description

Once an error has been detected that would prohibit the correct value to be assigned
to a signal, a substitute value may be assigned to that signal. This substitute value
can then be used in subsequent calculations such that these render useful results,
albeit possibly degraded in quality. Examples of situations where substitute values
could be assigned are:

 A sensor is malfunctioning, or operating outside of its operating range (e.g.,
detected by a plausibility check), and the corresponding physical entity cannot

1
 SWS = Software Specification, SRS = Software Requirements Specification

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

25 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

be measured reliably. A substitute value can be assigned that will allow
subsequent algorithms using this value to proceed with their calculations.

 The providing SW-C of an input signal was reported as malfunctioning and
thus its results may not be trusted even though a particular value seems to be
within its valid domain.

 Transitory checking (e.g., close time after boot sequence) necessary to fulfil
plausibility check when sensors are not yet available. Generally, “pending”
status flag is set.

Since a substitute value is used it may be useful to notify the receiver that the original
value is not available using a signal qualifier. The receiver can then decide on how to
interpret and use the value.

Note that there are no generic signal qualifier mechanisms in AUTOSAR.
Applications should define their own mechanism, for example by transmitting a
record with a value and a qualifier.

8.2.2 Applicability

Table 8-3: Applicability matrix for substitute values.

Step\Error
Model

Data Program
flow

Access Timing Asymmetric

Detection

Isolation

Recovery X X X X

Assigning a substitute provides means for subsequent operations to proceed in a
way that makes an end result useful. However, it will not provide recovery from an
error as it is not alleviating the situation that lead to the erroneous state in first place.
Thus, it is partially applicable to recovery as it allows an existing error to be masked
to a certain degree.

As the erroneous state that is to be masked with substitute values can be the result
of any type of underlying error, it is partially applicable to all types.

8.2.3 Application level vs. BSW

Substitute values often require application knowledge that is not present at platform
level and assignment is in these cases performed in the SW-Cs. At configuration time
BSW modules can be configured with default substitute values. However, application
specific knowledge is still typically needed.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

26 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

8.2.4 AUTOSAR References

Table 8-4: AUTOSAR References for substitute values.

Name Type Document Comment

Software
Component
Template, RTE,
AUTOSAR COM

SWS

Template

SWC-T [1]

RTE [2] & COM [4]

Usage of initial and
default values.

Software
Component
Template, NVM

SWS

Template

SWC-T [1]

NVM [11]

Usage of default ROM
block or redundant block.

The SW-C designer can specify an initValue on the UnqueuedReceiverComSpec.

This value is used when no values were received, but the application reads the
value. It can also be used in case of invalid values, depending on the

UnqueuedReceiverComSpec’s handleInvalid attribute (dontInvalidate, keep,

replace). These initValues are implemented by COM ([4]) or RTE ([2]) based on

the SW-C XML description (see the Software Component Template [1]).

An initValue can also be specified for UnqueuedSenderComSpec,

InterRunnableVariables, PerInstanceMemory, or the ramBlocks of

NvBlockComponentTypes (see the Software Component Template [1]).

The NVM ([11]) can use a default ROM block in case of failure. This block can be

defined by the SW-C designer with a ParameterDataPrototype in the defaultData

role (see RoleBasedDataAssignment in the Software Component Template [1]).

8.3 Voting

8.3.1 Description

A basic principle for building fault-tolerant systems is to execute fragments
(“components”) redundantly and then consolidate the results of each component by
performing a vote on the results. The actual vote is typically performed by a
dedicated component called “voter”. Common voting algorithms include “simple
majority”, “2 out-of 3” etc.

Voting can be performed at multiple levels, from replicated runnables in one SW-C to
application level voting across ECUs. Replication can be made on the binary/source
code level or on the specification level. In the former case each component is a copy

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

27 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

of the same original component, whereas in the latter case components are different,
but are built using the same specification.

Contrary to the comparison mechanism presented in Section 8.1, voting can handle
more than two replicas and, depending on the number of replicas voting also provide
isolation (identification of faulty replica) and partial recovery (a good value is output).

8.3.2 Applicability

Table 8-5: Applicability matrix for voting.

Step\Error
Model

Data Program
flow

Access Timing Asymmetric

Detection X

Isolation X

Recovery X

Voting is used to detect data errors. Furthermore, the source of the erroneous value
can be identified if three or more values are voted upon (and at most one value is
erroneous). As a correct value can be produced despite the presence of an error,
voting partially supports recovery. Additional means are needed to fully recover from
the error.

8.3.3 Application level vs. BSW

Voting is performed in SW-Cs.

8.3.4 AUTOSAR References

AUTOSAR does not provide a voting service. Since voting mechanisms are not
provided by the AUTOSAR BSW, these need to be implemented at application level
in the SW-Cs who require them. AUTOSAR supports multiple instantiation of SW-Cs.
This feature can be used by a SW-C implementer to implement a specific voting
mechanism for an application.

8.4 Agreement

8.4.1 Description

When redundant components are used to increase the reliability of an application
agreement may be needed for components (called participants) to agree on the value

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

28 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

used (including the result of some computation) by exchanging the result of local
computations as messages2.

The difference between agreement and voting mechanisms is that when using
agreement components interact to reach a decision, whereas in voting it is left to the
voter to decide. Agreement protocols could be compared with closed loop systems,
where the feedback consists of the sent messages received by all other parties.
Voting can analogously be compared to an open loop system where the voter
collects values and decides.

Agreement protocols can also handle asymmetric faults through multiple rounds of
information exchange. Thus all (correct) participants agree on the same value as well
as on the correctness of the other participants.

8.4.2 Applicability

Table 8-6: Applicability matrix for agreement.

Step\Error
Model

Data Program
flow

Access Timing Asymmetric

Detection X X

Isolation X X

Recovery X X

As values are compared similar to voting, agreement mechanisms can detect and
isolate data value errors. The extra rounds of information exchange allow also for
detection and isolation of asymmetric errors. Agreement cannot handle either
program flow or timing errors.

Recovery is partially supported in that a faulty participant can be identified and its
behavior masked from affecting the system. Additional means are needed to fully
recover from the error.

8.4.3 Application level vs. BSW

Basic services are implemented on BSW-level, but applications using agreement
protocol must be aware of the fact they participate. Proposal of new values and
adoption of agreed values are examples of situations where applications need to be
aware of the protocol.

2
 Obviously other communication paradigms can be used, messages are used as illustration.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

29 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

8.4.4 AUTOSAR References

No true agreement service exists in AUTOSAR. If specific agreement semantics are
needed for application level communication it shall be implemented specifically for
these applications.

8.5 Checksums/Codes

8.5.1 Description

A technique for increased data consistency is to add redundant information to the
data values to protect. The extra information allows for detection of modifications of
(parts of) the data, and in some cases even correction and restoration of the original
data values. The cost is both in terms of performance (time to calculate and check
the checksum, additional communication needs) and in terms of the additional
memory requirements for storage. Extensions also include cryptographic algorithms
providing digital signatures and encryption/decryption of data.

There are multiple uses of checksums/codes, including:

 Safely storing data in both volatile and non-volatile memory

 Dependable communication between SW-C, both inter- and intra- ECU

 Protecting data from tampering (data integrity) by unauthorized entities

 Sending and receiving of encrypted data across unsafe channels

Please note the difference between the first two cases, which are concerned with
benign errors, whereas the latter two are concerned with malicious errors (attackers,
intruders etc). However, the same mechanisms can often be used for multiple
purposes.

Additional threats to data security include spoofing (pretending to be someone else),
repudiation (denying a performed action), denial of service, and elevation of
privileges. In general this document is focused on benign errors. However, these
threats may be of importance for some applications.

8.5.2 Applicability

Table 8-7: Applicability matrix for checksums/codes.

Step\Error
Model

Data Program
flow

Access Timing Asymmetric

Detection X X

Isolation X X

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

30 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

Recovery X X

Checksums and codes are mainly targeted at protection of data throughout the FDIR
process. Depending on the type of code used, all steps of the process can be
supported.

Codes are also used as part of certain protocols (e.g., agreement) for handling
asymmetric faults.

8.5.3 Application level vs. BSW

Checksums and cryptographic libraries are implemented on BSW-level or as
libraries, due to performance and portability reasons. The use of dedicated peripheral
circuits further decreases the use of application level mechanisms.

8.5.4 AUTOSAR References

Table 8-8: AUTOSAR References for checksums/codes.

Name Type Document Comment

Crypto Service
Manager

SWS CSM [13]

CAL [14]

Cryptographic checksum
and codes

CRC Routines SWS CRC [12] CRC routines

SW-C End to End
Communication
Protection

SWS E2E Library [19] Additional CRC added to
signals by SW-Cs

The CSM can be used by SW-Cs to compute cryptographic checksums or codes
through a port interface.

The CAL and CRC are libraries which can be used directly by SW-Cs to compute
checksums.

The SW-C End-to-End communication protection library can be used to define a
protocol and protect with a checksum or code the data sent by SW-C through port
interfaces.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

31 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

8.6 Execution sequence monitoring

8.6.1 Description

Correct execution of an application includes that the sequence of executable entities
is correct. Monitoring execution sequence will enable the detection of erroneous
execution paths that may result in erroneous results.

Monitoring of execution sequence can be performed at different levels of granularity.
Some examples of levels of granularity are:

 Individual statements – This is the finest granularity with which execution
sequence can be monitored at source code level. The sequence of individual
statements in the code is monitored.

 Basic blocks – A basic block is a block of code that has exactly one entry point
and one exit point and cannot be entered or exited outside of these two entry
and exit points. Thus execution from entry point to exit point is strictly
sequential. Note that the minimum basic block is a single statement. The
execution sequence of basic blocks can be specified in a so called control flow
graph, and monitoring execution sequence at this granularity would be to
ensure that execution is performed according to this graph. Control flow in this
context is synonymous to program flow.

 Runnables – A runnable has one entry point but may potentially have multiple
exit points and several valid execution paths from entry point to these exit
points. Also, the paths may include loops. At this level the execution sequence
of the runnables of one (or more) application(s) is monitored.

Depending on the granularity of the monitor, the resource requirements may range
from fairly low to very high. Monitoring the sequence of individual statements is likely
to require huge amounts of memory and processing time, whereas the sequence of
runnables could likely be monitored with very low overhead in memory and execution
time.

8.6.2 Applicability

Table 8-9: Applicability matrix for execution sequence monitoring.

Step\Error
Model

Data Program
flow

Access Timing Asymmetric

Detection X

Isolation

Recovery

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

32 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

Monitoring of execution sequence will detect errors in program flow. These errors
may be the result of previous data errors, timing errors or asymmetric errors.
However, this cannot be distinguished by the monitor itself.

A monitor can not be used to recover from an error as it only checks the current state
against some predefined notion of correctness (this is true for all kinds of monitors,
not only those for execution sequence).

8.6.3 Application level vs. BSW

The most practical approach is probably cooperation between applications and the
BSW where the application provides the BSW with information on where it is in the
execution trajectory and the BSW then checks whether this location is a valid one.
This requires predefined valid trajectories. One approach could be to configure valid
successors from a given location in the execution trajectory for a set of locations. The
granularity (instruction, basic block, runnable) could then be defined at configuration
time.

8.6.4 AUTOSAR References

Table 8-10: AUTOSAR References for execution sequence monitoring.

Name Type Document Comment

Watchdog Manager SWS WdgM [10] supervision counter and
program flow monitoring

SW-C End-to-End
Communication
Protection

SWS E2E Library [19] Data sequence control on
messages

AUTOSAR COM SWS COM [4] Sequence counters for
messages sent over the
bus.

The Watchdog Manager can monitor heartbeats from application components not
only for time but also for sequence. The correct sequence of execution is configured
by the developers. The configuration contains the definition of a set of checkpoints or
spy points and for each such point a set of allowed successors. It is then the
responsibility of the SW-Cs (i.e. the developers) to make sure that each
checkpoint/spy point is reported to the Watchdog Manager, which then checks the
execution for temporal as well as logical sequence. In case of error detection, the
ordinary recovery capabilities of the Watchdog Manager are utilized.

AUTOSAR COM and the SW-C E2E Communication Protection Library permit to
check whether a stream of instances of a signal have been received in sequence.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

33 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

8.7 Aliveness monitoring

8.7.1 Description

Aliveness monitoring deals with checking whether entities in a system are alive and
well, i.e., are running as expected, in terms of periodicity or execution instances. A
common way of monitoring aliveness is to monitor heartbeats from the parts that
shall be monitored. If the heartbeat is within a certain range (minimum and maximum
pulse), the monitored entity is said to be alive and well.

This mechanism is complementary to execution time monitoring, and deals with
arrival rates rather than the time spent in a calculation.

Aliveness monitoring could be done at several levels:

 At application level – for example, if the application wants to monitor its
internal components and thus, the various SW-Cs of the application could
provide heartbeat signals.

 At BSW level – for example, the BSW could monitor that the application
components on an ECU behave as specified (within the limitations of the used
monitoring principle).

8.7.2 Applicability

Table 8-11: Applicability matrix for aliveness monitoring.

Step\Error
Model

Data Program
flow

Access Timing Asymmetric

Detection X

Isolation

Recovery

8.7.3 Application level vs. BSW

The heartbeats would have to be generated by the applications, but the checking of
the pulse could be done in the BSW. Each stream of heartbeats can be configured
for a certain pulse range (minimum and maximum thresholds) and ECU mode
(Heartbeats depend from the ECU mode: boot, standby, etc.).

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

34 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

8.7.4 AUTOSAR References

Table 8-12: AUTOSAR References for aliveness monitoring.

Name Type Document Comment

Watchdog Manager SWS WdgM [10] The hub for collecting
aliveness proofs and
triggering the hw
watchdogs through the
Watchdog interface and
drivers.

AUTOSAR OS SWS OS [3] Provides the possibility to
restart tasks.

The watchdog manager can be used to supervise SW-Cs and/or BSW Modules.
Which “entities” to supervise is pre-configured, together with the supervision
parameters (no complete list, see WatchdogManager SWS [10]):

 The expected number of aliveness indications within a certain amount of
supervision reference cycles.

 Tolerance levels on the detection.

 The tolerable number of failed reference cycles

A supervised entity can be in one of three states, WDGM_MONITORING_OK,
WDGM_MONITORING_FAILED or WDGM_MONITORING_EXPIRED. When the
state changes from WDGM_MONITORING_OK to WDGM_MONITORING_FAILED
recovery can be initiated and if successful (the number of aliveness indications has
reached the tolerable limit before the number of tolerable failed reference cycles is
reached) the watchdog is triggered and no actions are performed. When the number
of allowed failed reference cycles is exceeded (the monitoring of the supervised
entity has failed permanently), the state changes from
WDGM_MONITORING_FAILED to WDGM_MONITORING_EXPIRED and the
watchdog will not be triggered anymore.

8.8 Status and Mode Management

8.8.1 Description

Status and mode management deals with meta information for signals, applications,
devices, etc. This meta information can be used to analyse the state of the system in
order to isolate a faulty subsystem/component and modify its behaviour accordingly.
This type of information is defined at various levels:

 Signal status: In addition to the value, a signal may have meta information
associated with it, such as

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

35 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

o Signal quality: This indicates the quality of the value, such as nominal
value, modelled value, replacement value, and default value. The
receiver of the signal may react differently depending on the quality of
the signal.

o Signal timestamp: This indicates when the value was created and can
be used to check the age of a signal. If a calculation uses several input
signals, one can check that all input signals are created within a
tolerable time window.

o Signal sequence number: It may be of interest to check that signal
values are received in a certain order, and that no values or lost
between reads. Also, sequence numbers can be used in a similar
fashion as timestamps in that they allow a check that all values in a
group are from a particular creation window (same sequence number,
or with a minimum/maximum deviation).

o Update information: A consumer of a signal may want to know whether
a signal has been updated since the last read or not.

 Device status: An application may want to know the status of the devices it
uses, such as sensors and actuators. If a device is not in normal operation,
applications may want to choose to deliver some form of degraded service.

 Application status/mode: An application can also have a status, or a mode,
which indicates the overall health or operating situation of the application. This
status/mode can be used for recovery purposes, both internally in the said
application and externally by other application.

 Vehicle mode: A vehicle may be in a number of different modes (e.g. normal
operation, parked, limp-home) and the applications will have to behave
accordingly.

 ECU Mode: An ECU may be in different states, such as sleeping, running,
powered down, and transitional states between such states.

In order to provide support for this kind of status and mode management, it must be
possible to set and get this information at application level (although there may only
be one producer of a particular piece of status information there may be many
consumers).

8.8.2 Applicability

Table 8-13: Applicability matrix for status and mode management.

Step\Error
Model

Data Program
flow

Access Timing Asymmetric

Detection

Isolation X X X X

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

36 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

Recovery

From an error handling point-of-view, status and mode information can be used in the
isolation phase. We have chosen to tag this mechanism as applicable for recovery as
this mechanism in itself is not useable for recovery. Recovery can of course be
triggered as a result of the status or mode on the monitored entity. However, the
action of recovering itself is not part of this mechanism.

8.8.3 Application level vs. BSW

BSW modules manage meta information and distribute this information from
producers to consumers. The definition, setting and getting of this information is done
at application level though.

8.8.4 AUTOSAR References

Table 8-14: AUTOSAR References for status and mode management.

Name Type Document Comment

ComM SWS ComM [5] ComM handles the
communication modes of
the ECU and can trigger a
shutdown of the bus if no
communication is
required. It also implicitly
keeps the ECU alive
(interactions with EcuM-
Fixed or BswM).

RTE SWS RTE [2] RTE Spec, including
application mode
management

Communication of modes

Software Component
Template

SWS SWC-T [1] Application modes defined

Modelling of the modes
communication

BSW Mode Manager SWS BswM [15] Modes and transitions
management.

ECU State Manager SWS EcuM [7] The ECU State manager
manages the state of a
single ECU.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

37 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

Operating System SWS OS [3] States of OS Applications.

OS has states for other
OS objects (tasks,
resources, etc.) but those
are not directly accessed
by applications.

The RTE defines status for read data values, through the Rte_Read, Rte_IStatus.
Status can be RTE_E_OK, RTE_E_INVALID or RTE_E_MAX_AGE_EXCEEDED.
RTE_E_INVALID refers to an explicitly invalidated data value and
RTE_E_MAX_AGE_EXCEEDED refers to an outdated data element.

The RTE allows a SW-C to specify mode, which can be use to execute or inhibit
runnables. Modes can be defined for application specific purposes. This should be
sufficient for error handling purposes as well.

The ECU State manager (and the Basic Software Mode Manager when it is used)
manages the state of a single ECU.

8.9 Reconfiguration

8.9.1 Description

A technique for building fault-tolerant systems is to detect and isolate faults and then
reconfigure the system to no longer use the faulty component, or to reconfigure to
provide only a degraded set of services (or level of service).

Examples of reconfiguration strategies

 Isolating faulty components by hindering further communication. This could
also include shutting down components selectively.

 Reconfiguration of protocol parameters, for instance voting algorithms,
tolerance levels etc.

 Degraded functionality, such as providing only ABS and no ESP or a special
“limp home” mode.

Reconfiguration is typically controlled using static policies, which are configured at
system configuration time. The policies define when a reconfiguration is triggered,
and how it is performed. Common triggers include error signals, as is the case for the
Function Inhibition Manager (FIM) defined in AUTOSAR, which is triggered by
messages from the DEM upon error. The FIM is limited to only informing an
application of a request to inhibit parts of SW-Cs (so called “functionalities”) and
cannot actively inhibit anything or trigger a reconfiguration.

Note that there is a difference between mode management (Section 8.8: Status and
Mode Management) and reconfiguration. Mode Management is an infrastructure to

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

38 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

transfer information on states (i.e., modes) in the system, such that certain actions
can be taken. These actions may be reconfiguration actions.

8.9.2 Applicability

Table 8-15: Applicability matrix for reconfiguration.

Step\Error
Model

Data Program
flow

Access Timing Asymmetric

Detection

Isolation

Recovery X X X X X

Reconfiguration of SW-Cs is part of the recovery step and cannot aid in either
detection or isolation. It can possibly apply to any error, given that a reconfiguration
policy is defined.

8.9.3 Application level vs. BSW

Reconfiguration can be performed at the application level and with support by the
BSW services. Reconfiguration due to errors may require pure BSW support (such as
Reset, Section 8.10).

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

39 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

8.9.4 AUTOSAR References

Table 8-16: AUTOSAR References for reconfiguration.

Name Type Document Comment

Function Inhibition
Manager

SWS FIM [8] The FIM can be used to
selectively deactivate SW-
C functionalities.

BSW Mode
Manager

SWS BswM [15] The BswM arbitrates
mode requests from SW-
Cs in the application layer
and performs mode
switches based on pre-
defined rules.

Terminate or
Restart Partitions

Implementa
tion note

Section 10 Defines requirements for
terminating and restarting
partitions, which is a
feature involving multiple
BSW Modules.

AUTOSAR OS SWS OS [3] The OS handles
termination of OS-
Applications.

RTE and Software
Component
Template

SWS

Template

RTE [2]

SWC-T [1]

Definition and support of
modes.

Definition and support for
termination and restart.

The FIM provides a control mechanism for SW-Cs and the functionality therein. In
this context, a functionality can be built up of the contents of one, several or parts of
runnable entities with the same set of permission / inhibit conditions. By means of the
FIM, inhibiting ( deactivation of application function) these functionalities can be
configured and during runtime facilitating reconfiguration of the application.

The BswM can be configured to switch mode of the BSW based on mode requests.
The interaction with SW-Cs is performed through the RTE using
ModeDeclarationGroups. The BswM thus performs two basic tasks: Mode Arbitration
and Mode Control. The Mode Arbitration part initiates mode switches resulting from
rule based arbitration of mode requests and mode indications received from SW-Cs
or other BSW modules. The Mode Control part performs the mode switches by
execution of action lists containing mode switch operations of other Basic Software
modules. The action lists associated with a mode switch can be used to reconfigure
the application, such as start/stop of I-PDUs (COM), disable all communication (NM)
or changed PduR routing etc.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

40 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

Termination/reconfiguration using the FIM requires cooperation with the affected SW-
Cs implying correct behaviour from the SW-C. In case of malfunctioning SW-Cs a
more brute force approach is required which terminates SW-Cs independently of the
correctness of their behaviour. Using an approach as described in Chapter 10, SW-
Cs belonging to a partition can be forcibly terminated.

The AUTOSAR OS handles termination of OS-Applications, to which tasks and other
OS resources belong. The OS provides a service to terminate an OS-Application
(TerminateApplication). This OS service can be called from an SW-C belonging to a
trusted OS-Application.

8.10 Reset

8.10.1 Description

An application may try to recover in a number of ways, ranging from setting
replacement values and wait, hoping that the error will disappear by itself
(transient/intermittent errors) to full reconfiguration of its structure in order to
shutdown faulty components and launch backups and replacement components
(permanent faults). Sometimes, it may not be possible to do these things though and
a complete reset is necessary to start from a known good state. This holds not only
for transient HW faults, but also for “soft” SW faults (systematic faults), sometimes
referred to as Heisenbugs [2]. Such faults are transient in nature and cannot be
easily repeated. A reset of the SW state typically removes Heisenbugs, as it puts the
SW back in a known and well tested state.

Resets are used to recovery from transient faults. Permanent faults (e.g.,
permanently defect HW or SW bugs) cannot be recovered from. Other mechanisms
to isolate transient faults are therefore needed to avoid using resets for permanent
faults.

Reset can potentially be performed at the following levels:

 SW-C reset. An SW-C is found to be faulty and is reset in order to get it back
into a safe state. The reset takes place at the application level.

 Application reset. If it is not sufficient to just reset single SW-Cs, it may be
necessary to restart the whole application so that it can resume its normal
service. The reset affects several SW-Cs at the application level, and may
involve SW-Cs at multiple ECUs.

 ECU reset. If all else fails, it may be necessary to reset the entire ECU on
which the fault or error has been found. This kind of reset will affect all
applications that have SW-Cs located on the ECU as well as the BSW. The
reset will also likely be visible to other ECU’s on the network.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

41 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

8.10.2 Applicability

Table 8-17: Applicability matrix for reset.

Step\Error
Model

Data Program
flow

Access Timing Asymmetric

Detection

Isolation

Recovery X X X X X

A reset is a last resort to recovery and is only applicable in that phase.

8.10.3 Application level vs. BSW

Reset at SW-C and application level could be controlled at application level, i.e., a
dedicated SW-C could detect that an application has failed and request a reset. The
RTE/OS shall provide services that enable the distribution of reset commands to the
affected SW-Cs. For ECU reset, the BSW must be responsible for performing this. In
the ECU case, all affected applications could be made aware of the impending reset
in order to prepare themselves for it.

Note that even though the reset is initiated at the application level it will always
require RTE/OS support for performing it.

8.10.4 AUTOSAR References

Table 8-18: AUTOSAR references for reset.

Name Type Document Comment

Watchdog Manager SWS WdgM [10] The hub for collecting
aliveness proofs and
triggering the hw
watchdogs through the
Watchdog interface and
drivers.

AUTOSAR OS SWS OS [3] Provides the possibility to
terminate and restart OS-
Applications. Controls and
monitors timing behaviour
of tasks.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

42 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

ECU State Manager SWS EcuM [7] An SW-C can select the
shutdown target, i.e.,
which activity shall be
performed after an EcuM
controlled shutdown.

Terminate or
Restart Partitions

Implementa
tion Note

Section 10 Defines requirements for
terminating and restarting
partitions, which is a
feature involving multiple
BSW Modules.

Diagnostic
Communication
Manager

SWS DCM [6] Diagnostic Communication
Manager can initiate resets
through MCU

The ECU State Manager provides an interface to SW-Cs for selecting different
shutdown targets, that is, what the ECU shall do when a shutdown is performed by
the EcuM. The shutdown target can be either sleep, reset or off.

The WdgM monitors SW-Cs based on the aliveness indications made. The WdgM
provides three mechanisms for the aliveness monitoring: a) supervised entities, b)
temporal program flow monitoring, and c) logical program flow monitoring [10].
Missing aliveness proofs from applications can trigger a variety of actions by the
WdgM:

 Inform the offending SW-C using the mode management mechanism in the
RTE (“Local Failure Recovery”).

 Inform the DEM. SW-Cs (the offending one and/or others) can then react upon
DEM notifications. (“Global Failure Recovery”).

 Termination or restart of a partition using the TerminateApplication service
provided by the OS.

 Indicate to the watchdog driver that it shall cease triggering the HW watchdog,
eventually leading to an ECU reset.

 Directly resetting the ECU through the MCU.

The AUTOSAR OS provides the possibility to terminate or restart an OS-Application,
which is a set of OS resources (including tasks, i.e., SW-Cs). This can be triggered
either by a protection violation (such as memory or timing) or manually by a trusted
SW-C. The manual reset request from a SW-C makes it possible to reset even
distributed applications in a coordinated fashion. When the OS-Application is
restarted a dedicated restart task is used to perform restart activities and is
responsible for notifying involved BSW Modules of the restart.

The DCM can perform an ECU reset upon a diagnostic request from an external
diagnostic client (Tester). Such clients could potentially be vehicle-internal and would
then be able to request ECU resets based on the observed state of the vehicle.
However, this is marginally at application level and will not be considered further
here.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

43 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

8.11 Error Filtering

8.11.1 Description

In some situations taking recovery actions due to errors, for instance transients, may
cause more damage than it does good. Reacting to such errors may cause an over-
reaction, where the recovery actions may put the system in a state where it is less
safe than previously (for instance while restarting ECUs). In such cases a filtering of
the errors may be needed before certain recovery actions are taken.

A common example is discrimination between transient and permanent errors using
counters, where erroneous behavior increases the counter and correct behavior
decreases it. When it reaches a specific threshold, the error is classified as
permanent (a failure) and recovery is initiated.

8.11.2 Applicability

Table 8-19: Applicability matrix for filtering.

Step\Error
Model

Data Program
flow

Access Timing Asymmetric

Detection

Isolation X X X X

Recovery

Error filtering is only applicable as a means for isolation. It requires additional
detection mechanisms and can trigger recovery mechanisms. However, filtering of
errors may alleviate the need for unnecessary recovery actions, and thus contribute
also to a better recovery strategy by gaining information on the nature of the error.

8.11.3 Application level vs. BSW

A central debouncing mechanism is provided by the DEM within BSW. On the
application level, application-specific error filtering can be applied, e.g., classifying
transient errors. Such classification needs to be implemented by the SW-Cs.

8.11.4 AUTOSAR References

Table 8-20: AUTOSAR references for filtering.

Name Type Document Comment

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

44 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

Specification of
Diagnostics Event
Manager

SWS DEM [9] The DEM provides de-
bouncing mechanisms to
confirm errors.

8.12 Memory Protection

8.12.1 Description

Memory protection is used to protect against errors propagating from one protection
domain (partition) to another. Partitions are defined to form error confinement
regions, where applications can be placed for mutual protection. Such protection
enables separation between applications and thus enables multiple suppliers of SW-
Cs to deliver SW for an ECU. This is important both for analyzing and enforcing
safety issues.

8.12.2 Applicability

Table 8-21: Applicability matrix for memory protection.

Step\Error
Model

Data Program
flow

Access Timing Asymmetric

Detection X

Isolation3

Recovery X

Memory protection is mainly an error detection mechanism (for memory access
errors). However, as the execution is halted before the write has been performed
error propagation is confined. To achieve full recovery additional mechanisms are
required, for instance to terminate or restart the execution of the offending
runnable/task/SW-C/partition without endangering the execution of other applications
(See Section 8.9 - Reconfiguration). Therefore memory protection only partially
supports recovery from memory access violations.

8.12.3 Application level vs. BSW

Memory protection mechanisms are implemented in the BSW with HW support. To
fully support recovery the RTE needs to also be aware of the protection mechanisms
and act when applications are terminated or restarted. The application needs not be

3
 See the definition of isolation in section 5.2. A memory protection mechanism can be used to stop

the propagation of an error, but it cannot identify the source of the error.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

45 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

aware that it is running in a specific partition, but if restart is enabled it must be built
to handle consistency issues arising from differing internal states as a result of a
restart.

Memory protection is not a mechanism used directly by SW-Cs, but it is configured
by application developers/ECU integrators and is therefore relevant for application
developers.

8.12.4 AUTOSAR References

Table 8-22: AUTOSAR references for memory protection.

Name Type Document Comment

AUTOSAR OS SWS OS [3] Provides basic memory
protection, the possibility to
terminate and restart OS-
Applications, and is involved
in communication across
protection boundaries.

RTE SWS RTE [2] The RTE is involved in the
termination and restart of
partitions, and is involved in
communication across
protection boundaries by
ensuring communication
consistency.

Terminate or
Restart Partitions

Impleme
ntation
Note

Section 10 Defines requirements for
terminating and restarting
partitions, which is a feature
involving multiple BSW
Modules.

The AUTOSAR OS together with the RTE implements the memory protection
facilities in the system. The OS provides the fundamental protection mechanisms
together with HW support and the OS and the RTE facilitate the communication
across protection boundaries.

For an application developer it is important to know if the application is to be put in a
partition for protection and what actions will be taken in case of protection violations.
In case of restarts of a partition the applications must handle any inconsistencies that
may arise when partitions are terminated or restarted. The system only guarantees
consistency of communication while restarting and that init runnables will be
executed during restart. The developer must therefore cooperate with the system
integrator, which is responsible for the restart code, to find suitable solutions.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

46 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

8.13 Timing Protection

8.13.1 Description

Timing protection refers to protecting the system against activities requiring too much
time to complete, such as an executing component taking too much execution time
on the processor and thereby hindering the execution of other components,
communication delays, peripheral units not responding in time, etc.

For activities, one may define time budgets providing an upper limit on how much
time a given acitivy may use. For example, one may choose to set execution time
budgets for components, or a maximum response times for communication.

8.13.2 Applicability

Table 8-23: Applicability matrix for timing protection.

Step\Error
Model

Data Program
flow

Access Timing Asymmetric

Detection X

Isolation

Recovery X

Execution time monitoring can be used to detect that a SW-C (actually a task) has
exceeded its assigned execution time budget. It cannot detect timing errors in
communication directly. Communication time-out monitoring can detect when a
response is not received within the expected time.

To fully recover additional mechanisms are needed (reset, reconfiguration, etc.) and
thus timing protection only partially supports recovery.

8.13.3 Application level vs. BSW

Timing protection is implemented in the BSW, i.e., the BSW performs the actual
monitoring. Violations may be reported to SW-Cs. Execution time budgets and
communication response deadlines are configured by application developers/ECU
integrators and are therefore relevant for application developers.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

47 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

8.13.4 AUTOSAR References

Table 8-24: AUTOSAR references for timing protection.

Name Type Document Comment

AUTOSAR OS SWS OS [3] Provides the possibility to
terminate and restart OS-
Applications. Monitors timing
behaviour of tasks.

RTE SWS RTE [2] The RTE is involved in the
termination and restart of
partitions and ensures
platform consistency.

Timeout monitoring

Terminate or
Restart Partitions

Impleme
ntation
Note

Section 10 Defines requirements for
terminating and restarting
partitions, which is a feature
involving multiple BSW
Modules.

AUTOSAR COM SWS COM [4] COM provides deadline
monitoring for signals.

Watchdog Manager SWS WdgM [10] The hub for collecting
aliveness proofs and
triggering the hw watchdogs
through the Watchdog
interface and drivers.

Software
Component
Template

Template SWC-T [1] The SWC-T defines the
requirements for the timeout
handling, whether a SW-C
supports restart, the
Watchdog service needs

The AUTOSAR OS provides basic timing protection facilities to monitor execution of
tasks and ISRs. When a timing violation occurs the ECU-wide protection hook is
called which has the possibility to terminate tasks or OS-Applications, shut down the
OS or do nothing. As the scope for timing violation reactions can also be OS-
Application wide, one can consider these mechanisms to act on partitions, and the
developer/integrator can partition the system accordingly.

For an application developer it is important to know if the application is to be put in a
partition for protection and what actions will be taken in case of protection violations.
In case of restarts of a partition the applications must handle any inconsistencies that
may arise when partitions are terminated or restarted. The system only guarantees
consistency of communication while restarting and that init runnables will be

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

48 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

executed during restart. The developer must therefore cooperate with the system
integrator, which is responsible for the restart code, to find suitable solutions.

Timeouts (called aliveTimeout in RTE [2]) can be defined for data elements
exchanged using the RTE using sender-receiver communication. For communication
on busses these correspond to signals for COM, which provides deadline monitoring,
both for reception and transmission. Similarly, the RTE provides communication
timeout monitoring for client-server communication. These types of deadline
monitoring can be used to (for instance) detect that SW-Cs residing in terminated
partitions no longer execute.

The WdgM monitors SW-Cs based on the aliveness indications made. The WdgM
provides three mechanisms for the aliveness monitoring: a) supervised entities, b)
temporal program flow monitoring, and c) logical program flow monitoring. See
Section 8.10 and [10] for more information.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

49 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

9 Aspect mapping

Each error handling mechanism is characterized by a number of properties, such as
where in the FDIR process it applies or which error models it can handle. To give an
overview of these different aspects of the different mechanism this section presents a
number of mapping tables, where each mechanism is mapped onto the different
properties. Each table gives references to the mechanisms covered individually in
Section 8.

9.1 Mapping to FDIR process and Error Model

Not all mechanisms can be used for all steps in the FDIR process, and similarly they
are applicable only for specific error models. To illustrate these 3-dimensional
relationships (Mechanism x FDIR step x Error Model) we present three tables in this
section. Each table shows an overview of the mechanisms and their applicability in
each respective step of the FDIR process with respect to each of the error types
defined in the error model.

More information regarding the capabilities of each error handling mechanism is
found in Section 8, where each mechanism is presented in more detail.

In Table 9-1, the mechanisms are mapped to the first step of the FDIR process –
detection, Table 9-2 contains the mapping to the second step – isolation, and Table
9-3 shows the mapping to the third and last step – recovery.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

50 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

Table 9-1: Mapping of mechanisms to the steps of the FDIR process. Error detection.

Mechanism Ref Data Program
flow

Access Timing Asym
metric

Plausibility checks 8.1 X

Substitute values 8.2

Voting 8.3 X

Agreement 8.4 X X

Checksums/Codes 8.5 X

Execution sequence
monitoring

8.6 X

Aliveness monitoring 8.7 X

Status & Mode
Management

8.8

Reconfiguration 8.9

Reset 8.10

Error filtering 8.11

Memory protection 8.12 X

Timing protection 8.13 X

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

51 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

Table 9-2: Mapping of mechanisms to the steps of the FDIR process. Error isolation.

Mechanism Ref Data Program
flow

Access Timing Asym
metric

Plausibility checks 8.1 X

Substitute values 8.2

Voting 8.3 X

Agreement 8.4 X X

Checksums/Codes 8.5

Execution sequence
monitoring

8.6

Aliveness monitoring 8.7

Status & Mode
Management

8.8 X X X X

Reconfiguration 8.9

Reset 8.10

Error Filtering 8.11 X X X X

Memory protection 8.12

Timing protection 8.13

For error isolation it is important to note that the explicit information gained by
detecting the error is not considered in Table 9-3. For example, when detecting that
an entity has crashed by some aliveness monitoring mechanism the crashed entity is
explicitly identified, however, no additional information is gained from the monitoring
mechanism that can help in recovery, like the underlying reason for the crash. This is
in contrast to for instance agreement on a data value, where not only the error is
detected (some participant is faulty), but additionally also which participant.

The main purpose of status and mode management is the spread of error
information, making it available to interested parties, and thereby making error
isolation possible.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

52 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

Table 9-3: Mapping of mechanisms to the steps of the FDIR process. Error recovery.

Mechanism Ref Data Program
flow

Access Timing Asym
metric

Plausibility checks 8.1

Substitute values 8.2 X X X X

Voting 8.3 X

Agreement 8.4 X X

Checksums/Codes 8.5 X

Execution sequence
monitoring

8.6

Aliveness monitoring 8.7

Status & Mode
Management

8.8

Reconfiguration 8.9 X X X X X

Reset 8.10 X X X X X

Error Filtering 8.11

Memory protection 8.12 X

Timing protection 8.13 X

9.2 Mapping to implementation level

The implementation level refers to the level where the mechanism is most suitably
implemented. However, the use and control of the mechanism is still in SW-Cs (or at
least by application developers), i.e., on the application level.

Two implementation levels are relevant for the presented mechanisms, application
level (SW-C) and basic SW level (BSW). The fundamental difference lies in where
the mechanism is implemented, as a “service” provided to SW-Cs from the BSW
level or as a pure application level mechanism, not requiring any specific BSW
support. HW-based solutions are included at the BSW-level since direct access to
HW is generally not permitted. As an example, dedicated cryptographic peripherals
could be accessed through the same BSW interface as SW-based solutions.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

53 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

Table 9-4: Mapping of mechanisms to implementation level

Mechanism Reference Implementation
level

Plausibility checks 8.1 SW-C

Substitute values 8.2 SW-C / BSW

Voting 8.3 SW-C

Agreement 8.4 SW-C

Checksums/Codes 8.5 SW-C / BSW

Execution sequence
monitoring

8.6 SW-C / BSW

Aliveness monitoring 8.7 SW-C / BSW

Status & Mode
Management

8.8 SW-C / BSW

Reconfiguration 8.9 SW-C / BSW

Reset 8.10 SW-C / BSW

Error Filtering 8.11 SW-C / BSW

Memory protection 8.12 BSW

Timing protection 8.13 BSW

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

54 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

10 Terminating and restarting partitions

This section presents an approach for enabling the termination and restarting of the
execution of partitions as an error handling alternative to cooperative recovery or
ECU reset.

10.1 Introduction

A partition denotes the abstract notion of a logical grouping of SW-Cs and BSW
resources and defines an error containment region, whereas the term OS-Application
is used as the basis for the implementation of such a partition in the AUTOSAR OS.
OS-Applications contain tasks, ISRs, OS Alarms etc. that are grouped together and
are handled by the OS independently. As an OS-Application is a strictly OS-level
notion, the existence of these is not known to SW-Cs and other BSW Modules (Basic
Software Modules).

The main focus is on handling faults which lead to one of the following:

 Protection violation caused by erroneous memory access. This is detected by
the OS (with support from an MMU).

 Protection violation caused by exceeding of allocated execution time budget.
This is detected by the OS.

 Detection of application states which do not trigger a protection violation but
require termination or restart of a partition.

Terminating or restarting a partition is achieved by terminating or restarting the
underlying OS-Applications and performing any BSW and other cleanup necessary to
set related resources into a consistent state. OS-Applications can be terminated and
restarted independently, thereby forming error containment regions at the OS-level.
Terminating or restarting a partition of course means terminating or restarting the
SW-Cs contained in that partition. Being based on OS-Application, a partition is fully
mapped to one ECU (i.e. cannot be spread over several ECUs).

This concept describes how terminating/restarting is performed, which modules are
involved and how consistency is ensured. The basic principle is that communication
across partitions behaves similar to inter-ECU communication, even when a partition
is terminated or restarted. That is, there should be no difference in the semantics or
behaviour when interacting partitions are mapped to the same physical ECU or
different physical ECUs. The concept is intended for non-trusted OS-Applications
containing SW-Cs only. In particular, this means that the partition(s) containing the
BSW cannot be terminated or restarted. Moreover, the functionality is optional and
only provides basic support for termination/restart activities. To get proper termination
and restart of partitions working in a system, additional work is required from the
developer/integrator (e.g. configuration, supporting code, definition of cleanup
activities, etc.).

The approach can be used when no assumptions can be made on the correctness of
the error handling capabilities of the application software. That is, no support is
required from the application software. In fact, the application software in a partition
is not even executing during termination and restart.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

55 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

Note that the approach can potentially handle external transient faults as well as
internal design faults. The only requirement is that the faults cause one of the failure
scenarios mentioned above.

This document describes the basic support provided in the BSW, lists the
responsibilities of the developer/integrator for successfully employing the functionality
and provides suggestions on solution approaches.

10.1.1 Automotive Applications

An application in an automotive system built using AUTOSAR can consist of several
interacting SW-Cs mapped over potentially several partitions. There may be mapping
decision affecting the locations of SW-Cs/partitions, e.g. to save resources, or due to
mapping constraints (such as sensors/actuators), or to provide fault-tolerance
through redundancy and/or separation. Consequently, an application consists of a
set of potentially distributed SW-Cs/partitions.

The mapping of which SW-Cs belong to an application or partitions is not explicitly
modelled in AUTOSAR. However, the mapping is known to the system designer, who
is also responsible for specifying how errors should be handled. It is therefore
assumed that the designer can define whether terminating or restarting a partition is
an appropriate response to errors for a specific application and if so, which partitions
(and thereby which SW-Cs) can be terminated or restarted. This information is then
used by the OEM to build an overall recovery policy for the vehicle. It is important to
note that AUTOSAR SW-Cs cannot be generally restarted without the designer being
aware of this fact and designing the application accordingly.

10.1.2 Software Partitioning & Error Containment Regions

Software partitioning is one of the chief goals for a general-purpose OS and is seeing
increased attention in embedded systems as the complexity of embedded software
increases. The AUTOSAR glossary defines partitioning as: “Decomposition, the
separation of the whole system into functional units and further into software
components”. In the context of error handling and safety the term partitioning is
enhanced to also mean the definition and enforcement of error containment regions,
i.e., the system (most of the time the OS) ensures that errors of certain types are
contained in the (predefined) regions where they occur and will not propagate outside
causing new errors in other regions. This includes, among other things, protecting the
memory of one error containment region from illegal writes from other error
containment regions and preventing application software from monopolizing the
CPU. Also, enforcing strict access rules to system resources, such as system
services and peripheral devices, from applications is an important issue.

When the software in a partition violates the protection rules set up by the OS its
execution is typically forcibly halted and the user can choose to restart the offending
software with the hope that the fault causing the violation was transient and will not
be present when the application is restarted, or in case the error is deemed non-
recoverable terminate the offending software in order to avoid causing interference in
other partitions.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

56 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

For automotive systems, error recovery is typically performed by either having the
application recover using dedicated recovery mechanisms, here termed cooperative
recovery as it requires a partially functional application to invoke the recovery
mechanisms, or to reset the ECU on which the violation occurred. The first approach
is effective when the fault causing the failure does not constitute a hindrance for the
code of the recovery mechanism. In the AUTOSAR case, this could be implemented
using, e.g., the functionality provided by FIM, DEM or BswM to modify the behaviour
of SW-Cs. However, faults which put the software in a state not envisioned by the
designer can generally not be handled by such an approach, and an ECU reset is
instead used. Such resets are benign if they can be performed fast enough to not
violate application deadlines and do not adversely affect other applications. A
solution to the latter problem is to not co-locate applications which may, in case of
ECU reset, adversely affect each other. However, in order to reduce manufacturing
time, complexity and weight, it is desired to increase the level of integration, where
multiple applications, possibly independent and with mixed criticality, share a single
ECU. In such systems software partitioning is needed to ensure that error
propagation is minimized across applications and independence in case of failures is
upheld.

10.2 Rationale – Use Cases

Terminating and restarting an application is a basic approach to minimizing error
propagation and performing error recovery (mainly the restart functionality). Two
main use cases have been identified for AUTOSAR error handling and are presented
in this section.

10.2.1 Use Case 1: Software Partitioning [UC1]

Software partitioning is used to prevent the effects of faults in one partition from
spreading to other partitions on the same ECU, by specifying well defined boundaries
in the space and time dimensions for the software of the partitions to execute within.
By terminating a partition, so called fail silent [17] behaviour can be implemented.
Additionally, this is an important aspect for building safety cases and for liability
considerations when mixed-criticality applications execute on one ECU. See also the
OS SWS [3] for more information. Commonly used examples of such techniques are
memory partitioning and execution time (deadline) monitoring.

Memory partitioning and execution time monitoring can be used to detect memory
access errors and timing errors, and to prevent them from corrupting software in
other partitions. However, when such errors occur, a reaction from the system is
necessary. The most straightforward approach is to not allow the offending software
to continue its execution, i.e., to forcibly terminate it. This will prevent errors from
propagating but it may put the system in an inconsistent state, since the software in
the partition may have been interacting with software in other partitions and/or BSW
at the time of termination. The behaviour of the system and its consistency rules
must therefore be well specified, such that a partition can continue to execute without
inadvertent disturbance from a sudden termination or restart of another partition.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

57 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

AUTOSAR supports memory partitioning and execution time monitoring. It is possible
to define time boundaries which a SW-C must execute within, and memory partitions
which cannot be overridden, thus protecting SW-Cs in one partition from erroneous
memory accesses SW-Cs in other partitions.

Both concepts use an OS-level feature called OS-Application [3]. For OS-
Applications, the OS provides timing and memory protection, given that they are
configured and HW support (for memory protection) is available. When an error (a
protection violation) is detected, a proper reaction is called for.

10.2.2 Use Case 2: Application-level Error Handling [UC2]

Application level error handling can be used for two main purposes:

 Error handling of distributed automotive applications

 OEM-specific error handling

10.2.2.1 Error handling of distributed automotive applications

In general, an automotive application can (as discussed in Section 10.1.1) be divided
into several partitions which form different error containment regions. These partitions
could possibly be mapped to different ECUs.

The management of this distribution of application parts needs to be handled at
application level, as the information of division into partitions and mapping of
partitions to ECUs is not available at BSW level.

An application-level error manager (ALEM) would deal with issues that arise from
such distribution. For example, if the termination of a partition leads to a need to
terminate other partitions (not necessarily on the same ECU), this would be triggered
by the ALEM.

10.2.2.2 OEM-specific error handling

Errors affecting a partition do not necessarily lead to protection violations as in UC1,
but can force the partition into a state where it cannot itself recover and continue
executing. It must either be terminated to minimize error propagation or restarted
from a known “good” state to make progress. For such errors, the decision and action
to terminate or restart a partition must be made by an external entity, since the error
affecting the state of the partition could also affect its ability to recover. However, the
decision on which recovery policy to use (terminate/restart, which partitions/SW-Cs
etc) is OEM-specific and cannot be generalized and standardized by AUTOSAR.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

58 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

10.2.2.3 Application-level Error Managers

Dealing with the two aspects described above would require the introduction of “error
managers”, i.e., software applications4 that monitor the health of the system and
initiate recovery if necessary. Figure 1 shows an example of such a setup.

Recovery may range from sending application-specific instructions, initiating
reconfiguration of applications to terminating/restarting applications or the entire
ECU. In this concept we focus on the termination and restarting of SW applications.

Figure 1: An Application-level Error Manager (ALEM) monitors the health of the system and
initiates recovery actions according to application or OEM-specific recovery policies.

This use case is similar to the Fault Management Framework (FMF) developed in the
EASIS project [25]. The proposed features in this document have corresponding
functionalities defined in the FMF.

Furthermore, error management at application level would be able to take distribution
into account. That is, if an automotive application is distributed over several
partitions, and possibly even ECUs, and the BSW would not be able to perform a
coordinated termination/restart. The case where the termination or restarting of
partitions across several ECUs shall be coordinated (not necessarily synchronized)
could be managed by ALEMs.

NB1: In the remainder of this section, we will refer to Application-level error manager
(ALEM) whenever we mean a SW-C which is allowed to trigger partition termination
and restart.

NB2: This approach does not aim to standardize an ALEM, its behaviour or its
interfaces.

4
 The ALEM could also be implemented as a BSW Module, but this is a less flexible solution. This

would also entail more effort on specifying an AUTOSAR BSWM for this purpose as well as
introducing the notion of a BSW Module that is potentially distributed over several ECUs. This is not
within the scope of this concept.

Complex

Drivers

AUTOSAR Runtime Environment (RTE)

I/O Hardware Abstraction

SW-C 1

COM

Watchdog Memory Diagnostics
 Mode Managers

Debug

SW-C 2

SW-C 3 Application-level

Error Manager

OS

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

59 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

10.3 Approach for Terminating and Restarting Partitions

In the subsequent sections, the text describes the support in AUTOSAR OS, BSW
and RTE.

10.3.1 OS features

This section describes the basic functionalities and mechanisms provided by the OS
that will be used to incorporate the possibility to terminate or restart a partition.
Comments on how these fit with the actions necessary for termination and restart of
partitions is provided here and more detailed descriptions are then described later in
Section 10.3.2.

10.3.1.1 OS-Applications

The AUTOSAR OS uses a construct called “OS-Applications” (see [3]). An OS-
Application is a set of OS objects, such as tasks, interrupt service routines, alarms,
schedule tables, etc. From the OS point of view an OS-Application forms a cohesive
functional unit. For instance application specific hook functions can be defined, such
as startup and shutdown hook functions.

OS-Applications are used as a basis for partitions, i.e., protection across partitions is
enforced at the OS-Application level. Software Partitioning is used for instance for
memory access control or timing control, but is a general approach to address error
propagation in the system. Partitions are defined to be error containment regions,
i.e., with proper enforcement errors occurring in one partition cannot spread out to
other partitions.

For OS controlled objects, there are a number of protection mechanisms available
(see [3]). The mechanisms relevant for the termination/restart approach are memory
protection and timing protection. Memory protection covers stack and data and,
optionally, code of OS-Applications. Timing protection is based on execution time
budgets and arrival rates.

OS-Applications are divided into i) trusted OS-Applications and ii) non-trusted OS-
Applications (see [3]).

Trusted OS-Applications run in privileged mode and may execute with all (OS level)
monitoring shut off. That is, a trusted application is assumed to never violate memory
access rights or deadlines.

Non-trusted OS-Applications run in non-privileged mode are automatically monitored
by the OS w.r.t. memory access and deadline violations. SW-Cs are allocated either
to non-trusted OS-Application, or to one trusted OS-Application of BSW. There are
zero, one or more SW-Cs per OS-Application.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

60 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

10.3.1.2 Protection Hook

The system has a single global Protection Hook. The Protection Hook is called by the
OS when a protection violation occurs, and its role is to decide which action is to be
performed as a reaction to the error. The Protection Hook is called with a parameter
value indicating the detected violation. The Protection Hook can query which OS-
Application5 caused the violation and then decide on necessary actions the OS shall
perform once the hook returns (see above). If no protection hook is configured, the

OS will call ShutdownOS(). The return value of the protection hook defines further

action performed by the OS.

 PRO_IGNORE: Do nothing

 PRO_TERMINATETASK: Forcibly terminate the faulty Task/Category 2 OsIsr

 PRO_TERMINATEAPPL: Forcibly terminate the faulty OS-Application

 PRO_TERMINATEAPPL_RESTART: Forcibly terminate the faulty OS-Application

and trigger the execution of the OSRestartTask.

 PRO_SHUTDOWN: Call ShutdownOS().

It is expected that the integrator, together with the application designer, decides on
the error handling strategy, i.e., whether to perform a termination, restart, error
filtering etc.

When an application-level request for termination or restart is issued (for details, see
Section 10.3.2.4), the decision is already taken and the OS only executes the
request. The Protection Hook is not executed for such an externally triggered
termination or restart.

Terminating or restarting an OS-Application is an activity solely performed in the OS.
In order to terminate or restart a partition, there are a set of cleanup activities which
have to be performed in the BSW and potentially also in the SW-Cs of the partition.
These cleanup activities will be placed in the OSRestartTask which is only triggered

when the return code from the Protection Hook is PRO_TERMINATEAPPL_RESTART.

Important: For terminating or restarting a partition, the Protection Hook must return

PRO_TERMINATEAPPL_RESTART in both cases. Otherwise there will be no

opportunity to perform clean-up activities.

10.3.1.3 TerminateApplication() API

The OS provides an API for explicit termination or restart of OS-Applications. This
API enables SW-C level triggering of the same mechanisms as triggered by the
Protection Hook.

The API looks as follows:

StatusType TerminateApplication

5
 It is assumed that the integrator knows the mapping between Os-Application Ids (returned by the OS

GetApplicationId() API), partitions, and the name of partitions (used to inform the RTE of a termination
or request a restart).

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

61 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

(

 ApplicationType Application,

 RestartType RestartOption

)

Where Application refers to the ID of the OS-Application (generated during OS

configuration), and RestartOption is either RESTART which will trigger the

OSRestartTask (equivalent to PRO_TERMINATEAPPL_RESTART from the Protection

Hook) or NO_RESTART which simply terminates the OS-Application (equivalent to

PRO_TERMINATEAPPL from the Protection Hook).

10.3.1.4 OSRestartTask

The OSRestartTask is a task which is started when the Protection Hook returns

PRO_TERMINATEAPPL_RESTART. When this task is executing it will be the only task

running in the partition. The contents of the OSRestartTask are not standardized by
AUTOSAR.

In the OSRestartTask, one can perform any cleanup activities necessary for being
able to terminate or restart a partition. It should be noted that even though the task is
named OSRestartTask, there is no automatic restart of the OS-Application (or the OS
for that matter). During the execution of the OSRestartTask, there is still an active
decision to make whether to terminate or restart the OS-Application (and thereby the
partition).

10.3.1.5 OS-Application state machine

An OS-Application can be in one of the following states (see OS SWS [3] and Figure
2):

 APPLICATION_ACCESSIBLE: In this state, no protection violations have
been detected and the software in the OS-Application runs normally.

 APPLICATION_RESTARTING: The OS-Application is in a state of emergency
after the detection of a serious error. No resources of the OS-Application can
be accessed from other OS-Applications and only the OSRestartTask is
running. All other tasks/OsIsrs/Alarms/etc. are terminated. The only way to get
information into the OS-Application is to poll from the inside (i.e. from inside
the OSRestartTask).

 APPLICATION_TERMINATED: The OS-Application is no more. Nothing is
running. No access allowed from other OS-Applications. The only way to exit
this state is to restart the OS (by restarting the ECU).

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

62 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

stm OS Application State Machine

APPLICATION_ACCESSIBLE

APPLICATION_TERMINATEDAPPLICATION_RESTARTING

Initial

PRO_TERMINATEAPPL,

TerminateApplication(AppID,

NO_RESTART)

TerminateApplication(self, NO_RESTART)

AllowAccess(AppID)

PRO_TERMINATEAPPL_RESTART,

TerminateApplication(AppID,

RESTART)

Figure 2: OS-Application State Machine

The OS-Application is set in the APPLICATION_ACCESSIBLE state by the StartOS()
call. Once it has entered this state, all OS internal setup activities are completed, and
the OS-Application is ready for execution. All state changes after startup are due to
exceptional events which trigger the Protection Hook, or explicit requests to change
the state of an OS-Application by calls to TerminateApplication().

After the Protection Hook returns PRO_TERMINATEAPPL_RESTART to the OS, or the

application-level request for restart is issued, the state of the OS-Application changes
from APPLICATION_ACCESSIBLE to APPLICATION_RESTARTING. This means
that resources held by the OS-Application are made inaccessible to other OS-
Applications and no tasks belonging to the OS-Applications are running (or being
activated). The OS then starts the OSRestartTask which can perform any necessary
cleaning (e.g., in the SW-Cs and the BSW) before a decision is made to either restart
or completely terminate the OS-Application.

Going from APPLICATION_RESTARTING to APPLICATION_ACCESSIBLE is
achieved by allowing access to OS-Application resources using the call
AllowAccess() in the OSRestartTask.

Going from APPLICATION_RESTARTING to APPLICATION_TERMINATED is
achieved by an explicit request for termination from within the OSRestartTask, i.e., a

call to TerminateApplication() with the ego-ID and NO_RESTART as parameters.

Going from APPLICATION_ACCESSIBLE to APPLICATION_TERMINATED is

achieved by returning PRO_TERMINATEAPPL from the Protection Hook or by an

external request using the TerminateApplication() call with NO_RESTART as

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

63 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

parameter. This transition should not be used when dealing with partitions as no
cleanup activities will be performed here and thus the partition is potentially left in an
inconsistent state which may persist in future starts of the ECU.

When in APPLICATION_RESTARTING calling TerminateApplication() with ego-ID

and RESTART does not make sense. In fact may lead to an infinite loop (a new

OSRestartTask is started, which may again call TerminateApplication with the ego-ID

and RESTART).

10.3.2 Going from OS-Applications to partitions

At the OS level, an OS-Application can be terminated or restarted, as described
above. Taking the step to partitions, we need to recognize that a partition is based on
OS-Applications, but also encompasses BSW resources as well as SW-Cs, and may
potentially have links and dependencies to external resources such as CDDs. Simply
terminating or restarting an OS-Application will not be sufficient for terminating or
restarting a partition: cleanup activities in the BSW as well as the SW-Cs (and
potentially CDDs) may be necessary.

The description provided in this section uses the Protection Hook, the
OSRestartTask and suitable functionalities in the RTE and BSW to implement the
termination and restart of partitions. It should be noted that this is only one example
of how this functionality can be incorporated – other solutions may be defined. The
error handling strategy is not standardized by AUTOSAR. Using the basic
mechanisms provided by AUTOSAR, different approaches to error handling could be
implemented.

This description presents a suggestion for a partition state machine, usage of both
Protection Hook and OSRestartTask and relevant calls to RTE and BSW, as well as
necessary glue to get termination/restart working with AUTOSAR.

Error handling at partition level starts with the detection of an error which is serious
enough to trigger a termination or restart of the said partition. Two sources for such
errors are possible in AUTOSAR: 1) The OS detects (using HW support) protection
violations (either memory access violation or timing protection violation) performed by
a partition, corresponding to UC1 in Section 10.2.1, and 2) A SW-C can also detect
(or be notified) of an error which requires a partition to be terminated or restarted and
then requests this action by the OS, corresponding to UC2 in Section 10.2.2. A
dedicated API exists for this and can also be used to terminate the own Partition
(suicide).

10.3.2.1 Partition state machine

During its lifetime, a partition can be in a number of different states with respect to
error handling6. These states are described in Figure 3.

6
 The state machine described here is not provided by the AUTOSAR BSW. It is used here as a vessel

for explaining the various states of a partition and which activities and conditions apply in these states

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

64 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

Figure 3 shows the states and transitions, and Table 10-1 and Table 10-2 give the
corresponding state information and actions, and triggering conditions, respectively.

stm Partition State Machine

P_PREACTIVE P_ACTIVE P_TERMINATING

P_TERMINATEDP_RESTARTING

Initial

ECU Reset

6

8

7
5

4
3

20

1

Figure 3: Partition state machine

The state machine has two stable states, P_ACTIVE and P_TERMINATED.
Additionally, the transient states P_TERMINATING and P_RESTARTING are where
the termination and restarting activities are being carried out. The P_PREACTIVE
state indicates that the partition is not yet operational. This should be interpreted as a
form of UNDEFINED state. Note that the state machine only captures the error
handling state at system level of the partition; all other states and modes related to
the partition and the SW-Cs within it are encapsulated in the P_ACTIVE state. This
state machine is linked to the overall ECU state machine, since an ECU reset triggers
a “restart” of the state machine.

In the state machine, we have included an entity called “ECU reset” to illustrate that a
controlled ECU Reset (i.e. managed by EcuM) is possible only in the stable states
P_ACTIVE and P_TERMINATED. It should be noted however, that an uncontrolled
ECU reset (triggered via the reset pin on the micro controller) can occur in any state.

Table 10-1: The states of a partition w.r.t. Error Handling.

Partition state OS-Application state Description

P_PREACTIVE N/A Partition is not yet up and running.

and the transitions between them. If this state machine is to be implemented, this should be designed
specifically for a given ECU.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

65 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

All activities performed during normal
ECU Startup are being performed.
The RTE part of each partition is
started, BSW resources are
initialised, OS-Applications are set
up, etc. These activities are the
normal start-up activities of the ECU.

P_ACTIVE APPLICATION_ACCESSIBLE Partition running normally.

In this state, the partition adheres to
the overall ECU state. The partition
remains in the P_ACTIVE state also
while the Protection Hook is executed
as a result of a protection violation.

Upon entry into this state, the
following needs to be done:

 RTE performs actions
necessary to start partition
execution (init runnables,
activating schedule tables,
etc.).

P_TERMINATING APPLICATION_RESTARTING Partition is being terminated.

In this state, some of the following
actions may have to be performed:

 Report to DEM. Note that this
is suggested to be done by the
Protection Hook or the caller
of TerminateApplication(), not
by the OSRestartTask.

 OS-Application is in the state
APPLICATION_RESTARTING
. Access from other OS-
Applications to resources in
the terminating OS-Application
is not allowed by the OS.

 Avoid shutdown, sleep, or
reset of the ECU by requesting
a certain mode to EcuM-Fixed
or to the BswM. While a
partition is in this state, the

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

66 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

ECU must not be shut down.

 Notify COM to stop
communication for relevant
signals.

 Issue “No Communication” to
ComM on behalf of the
partition.

 Stop relevant supervised
entities in WdgM (according to
configuration).

 Invalidate relevant NvM-blocks
(according to configuration).

 Cancel pending jobs in the
NvM on relevant NvM blocks
(according to configuration).

 Notify relevant CDDs that the
partition is terminated such
that they can perform
necessary clean-up.

 Notify IOHW abstraction layer
that the partition is terminated,
such that appropriate actions
can be taken.

 RTE shall ensure
communication consistency
(Section 10.3.5).

 The RTE shall not activate any
tasks in a terminating partition.

 Trigger transition of the
partition to the
P_TERMINATED state.

 Trigger transition of the OS-
Application to the
APPLICATION_TERMINATED
state.

P_TERMINATED APPLICATION_TERMINATED Partition is terminated and will no
longer execute any SW-Cs until the
ECU is reset.

RTE ensures communication
consistency (Section 10.3.5).

P_RESTARTING APPLICATION_RESTARTING The partition is being restarted and
will return to the P_ACTIVE state
when finished.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

67 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

In this state, some of the following
actions may have to be performed:

 Report to DEM. Note that this
is suggested to be done by the
Protection Hook or the caller
of TerminateApplication(), not
by the OSRestartTask.

 Partition is restarted at OS-
level  The end results shall
be an OS-Application
(partition) ready-to-be-started
by the RTE. Access from other
OS-Applications to resources
in the restarting OS-
Application is disallowed.

 Notify RTE to perform
partition-specific clean-up and
re-initialization.

 Avoid shutdown, sleep, or
reset of the ECU by requesting
a certain mode to EcuM-Fixed
or to the BswM. While a
partition is in this state, the
ECU must not be shut down.

 Notify COM to restart
communication for relevant
signals.

 Issue “No Communication” to
ComM on behalf of the
partition

 Reset relevant supervised
entities in WdgM.

 Cancel pending jobs in the
NvM on relevant NvM blocks
(according to configuration).

 Notify relevant CDDs that the
partition is restarting such that
they can perform necessary
re-initialization.

 Notify IOHW abstraction layer
that the partition is restarting,
such that appropriate actions
can be taken.

 RTE shall ensure
communication consistency
(Section 10.3.5). [RTE]

 RTE shall not activate any

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

68 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

tasks in a terminated partition.

 Trigger transition of the
partition to the P_ACTIVE
state. [BswM]

 Trigger transition of the OS-
Application to the
APPLICATION_ACCESSIBLE
state which will notify the OS
to once again allow access
from other OS-Applications.

NOTE: If an application shall be
restartable, the application has to
take care of its NvM blocks itself.
That is, it must perform consistency
checks and any refresh or write-back
activities necessary after a restart.

ECU Startup N/A Normal ECU startup. Not affected by
error handling. All partitions are set in
the P_PREACTIVE state.

ECU Reset N/A ECU reset (here this also includes a
complete shut-off and cold start of
the ECU) will set the partition in the
P_ACTIVE state after a normal
startup. This is the only way to leave
the P_TERMINATED state. Note that
this means that even after a
sleep/wakeup, the partition remains
in the P_TERMINATED state.

Table 10-2: The transitions between states in the error handling state machine.

Transition Description

0
ECU Startup 
P_PREACTIVE

When the ECU begins its startup, all partitions are in the
P_PREACTIVE state indicating that they are not yet up and
running.

1

P_PREACTIVE 
P_ACTIVE

When RTE is started, the partition can move to the P_ACTIVE
state. Triggered when OS and RTE startup is finished.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

69 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

2

P_ACTIVE 
P_TERMINATING

An event has occurred that initiates the termination of a partition:

 The OS receives PRO_TERMINATEAPPL_RESTART from a

call to the Protection Hook.

 A call to TerminateApplication() is made with parameter set

to RESTART.

The OS triggers the OSRestartTask. In that task, all actions
necessary for terminating the partition are initiated.

Note: The OS cannot distinguish between this transition and the
transition P_ACTIVE  P_RESTARTING. This distinction needs to
be communicated to the OSRestartTask by other means.

3

P_TERMINATING 
P_TERMINATED

When all clean-up activities related to termination are completed
the partition is considered terminated. The transition to the
P_TERMINATED state is linked with the transition of the OS-
Application from INACCESSIBLE to TERMINATED.

4

P_ACTIVE 
P_RESTARTING

An event has occurred that initiates the restart of the partition:

 The OS receives PRO_TERMINATEAPPL_RESTART from a

call to the Protection Hook.

 A call to TerminateApplication() is made with the parameter

set to RESTART.

The OS triggers the OSRestartTask. In that task, all actions
necessary for terminating the partition are initiated.

Note: The OS cannot distinguish between this transition and the
transition P_ACTIVE  P_TERMINATING. This distinction needs
to be communicated to the OSRestartTask by other means.

5

P_RESTARTING 
P_ACTIVE

When all clean-up activities related to termination are completed
the partition can go back to the P_ACTIVE state.

The transition to the P_ACTIVE state is linked with the transition of
the OS-Application from APPLICATION_RESTARTING to
APPLICATION_ACCESSIBLE.

6

P_ACTIVE 
P_ACTIVE

Protection Hook is executed and returns PRO_IGNORE.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

70 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

7

P_ACTIVE 
ECU Reset

An event occurred that initiates the shutdown of the OS (i.e., ECU),

i.e., the OS receives a PRO_SHUTDOWN from the Protection Hook.

This will eventually lead to ECU reset.

This could also be the result of an ECU shutdown triggered by
another source (external watchdog) and managed by the EcuM.

8

P_TERMINATED 
ECU Reset

After an ECU reset the partition will move to the P_ACTIVE state
after normal start-up. This is the only transition for the partition from
the P_TERMINATED state. Note that this means that, even after
sleep/wakeup a terminated partition is still terminated.

10.3.2.2 Error handling strategy in the Protection Hook

The Protection Hook implements the overall error handling strategy for the partition
related to protection violations. When the OS detects a protection violation, the
Protection Hook will be called and a decision on proper reaction to the detected error
can be made.

The following information should be gathered to form the basis for the decision on
how to react to the violation:

 Partition ID: in which partition has the protection violation occurred? There is
only one Protection Hook for the entire ECU, so the partition ID is necessary
to implement partition specific error handling strategies. The partition ID can
be found using GetApplicationID(). This call will return the identifier of the OS-
Application to which the offending task belongs.

 Error type: what was the reason for the protection violation? Depending on
the type of violation, different reactions may be selected. The error type is
provided as a parameter to the Protection Hook.

 Partition restart counter: how many times has the partition been restarted
(since the last ECU startup)? If a partition has been restarted a certain number
of times (pre-defined threshold) it may be more suitable to terminate the
partition instead of attempting another restart. The restart counter needs to be
implemented by the integrator/developer, e.g., using a static structure to store
the counters of the relevant partitions.

 OS-Application State: what is the state of the offending OS-Application? If
the OS-Application is in the APPLICATION_RESTARTING state, this is an
indication that there is an error in the error handling. This can only occur if a
protection violation occurs while executing the OSRestartTask.

This information allows the integrator/developer to define an error handling strategy
which takes into account relevant information about the partition, the error and the
error handling history.

Based on the input the Protection Hook needs to decide what to do:

 Do nothing. If the cause of the protection violation was identified as transient
and benign and continued execution is not foreseen to experience any

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

71 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

problems, this may be a viable option. For this, the Protection Hook shall

return PRO_IGNORE.

 Restart the partition. If the cause of the protection violation was identified
transient and a re-initialisation of the partition is foreseen to ensure that
execution will not experience any problems, this may be a viable option. For

this, Protection Hook shall return PRO_TERMINATEAPPL_RESTART as this will

trigger the OSRestartTask where additional clean-up/re-initialisation of the
BSW and SW-Cs will be performed. Note that the same return code is used for
termination of a partition, so the decision has to be communicated to the
OSRestartTask in some other way.

 Terminate the partition. If the cause of the protection violation is deemed
permanent, or a re-initialisation is not seen as being a successful reaction,
termination may be a viable option. For this, Protection Hook shall return

PRO_TERMINATEAPPL_RESTART as this will trigger the OSRestartTask where

additional clean-up/re-initialisation of the BSW and SW-Cs will be performed.
Note that the same return code is used for termination of a partition, so the
decision has to be communicated to the OSRestartTask in some other way.

 Shutdown OS/ECU. If the cause of the protection violation is deemed so
severe that the only alternative is to shut down the ECU, then this is done by

return PRO_SHUTDOWN. This will trigger a shutdown of the OS which in turn will

eventually shut down the entire ECU. The OSRestartTask is not triggered.

The Protection Hook may also return PRO_TERMINATEAPPL. This will terminate the

OS-Application at the OS level but will not trigger the OSRestartTask. Therefore,
there is no way to perform clean-up activities in the BSW or SW-Cs or elsewhere and
the risk for an inconsistent state in the ECU is very high. Thus, in the approach
described here, this return code is not used.

The option to terminate only the offending task by returning PRO_TERMINATETASK

shall not be used, since it does not terminate the whole partition. This way,
consistency issues only arise in inter-partition communication, where they are more
easily identified and handled.

When a decision has been made on the proper reaction to the error, a report must be
made to the DEM to log this event. If this report is not made by the Protection Hook,
the decision needs to be communicated to the reporting entity. Note that the
OSRestartTask will only be triggered if the return value is

PRO_TERMINATEAPPL_RESTART.

Before returning to the OS and thereby notifying the OS of the decision the
Protection Hook must notify the RTE such that the RTE can guarantee data and
communication consistency across partitions (and ECUs). This is done with the call
Rte_PartitionTerminated_<partition>() if the partition is to be terminated or
Rte_PartitionRestarting_<partition>() if the partition is to be restarted.

10.3.2.3 Clean-up activities in the OSRestartTask

In the OSRestartTask the integrator/developer places all the clean-up and notification
activities necessary for terminating or restarting a partition.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

72 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

As the OSRestartTask is triggered for restarting as well as terminating partitions, the
first thing to do is to find out what the required actions shall be. There are no
standard AUTOSAR mechanisms to communicate the decision from the Protection
Hook to the OSRestartTask, so this would have to be implemented explicitly. A
suggested solution is to implement the presented partition state machine and let the
OSRestartTask check the state variable holding the current state of the partition. If it
is P_TERMINATING the partition shall be terminated and if it is P_RESTARTING it
shall be restarted.

Once it is known whether the partition shall be restarted or terminated, proper clean-
up actions can be performed. Table 10-3 contains some actions which may have to
be performed for restart and termination.

Module Clean-up activities

COM Terminate:

 Issue a request to stop sending signals (I-PDU groups) for the
terminated partition.

Restart:

 Issue a request to stop sending signals (I-PDU groups) for the
partition being restarted. After other cleanup activities are
finished, sending of signals is started again and their values are
re-initialized.

ComM Terminate:

 Issue a “No communication” request on behalf of the partition to
ComM.

Restart:

 Issue a “No communication” request on behalf of the partition to
ComM.

DCM Terminate:

 No explicit clean-up necessary. However, calls from DCM to
terminated partitions will be left unanswered. The RTE will
indicate a time-out to the caller.

Restart:

 No explicit clean-up necessary. However, calls from DCM to will
be left unanswered during restart. The RTE will indicate a time-
out to the caller.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

73 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

Module Clean-up activities

DEM Terminate:

 No explicit clean-up necessary. However, monitors contained in
terminated partitions need to be managed, e.g., shut off.

Restart:

 Run-time information of monitors located in the restarted partition
needs to be managed.

EcuM Terminate:

 Avoid shutdown, sleep, or reset of the ECU by requesting a
certain mode to EcuM-Fixed or to the BswM. When clean-up is
completed, this request can be cancelled.

Restart:

 Avoid shutdown, sleep, or reset of the ECU by requesting a
certain mode to EcuM-Fixed or to the BswM. When clean-up is
completed, this request can be cancelled. The SW-Cs of the
partition will issue similar requests when execution commences.

NvM Terminate:

 Invalidate relevant blocks belonging to the partition (note that not
all blocks of a partition may require invalidation). Outstanding
requests from the terminated partition shall be removed from the
job queue.

Restart:

 No impact. Restart activities and consistency checks for NvM
must be handled by the SW-Cs. This may include invalidating
invalid blocks after a restart.

Note: An integrator may decide which blocks can be “trusted” also in
case of a termination. This makes different policies for “normal”
shutdown and “exceptional” shutdown of partitions possible.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

74 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

Module Clean-up activities

WdgM Terminate:

 Stop all supervised entities belonging to the partition.

Restart:

 The integrator has to choose either to temporarily stop the
supervision during restart or configure the watchdog by taking
the time to restart the partition into account

RTE Terminate:

 The local RTE of the partition has already been notified by the
Protection Hook that the partition is being terminated. No further
actions necessary.

Restart:

 Once all clean-up activities in the BSW have been completed
and the partition is ready for execution again, the RTE needs to
be restarted.

IoHwAb Terminate:

 Set relevant IOs of IoHwAb to proper values. This is likely to be
very application specific.

Restart:

 Reset relevant IOs of IoHwAb to proper values. This is likely to
be very application specific.

CDD Terminate:

 Notify relevant CDDs that the partition is being terminated. The
CDDs will then have to take appropriate actions.

Restart:

 Notify relevant CDDs that the partition is being restarted. The
CDDs will then have to take appropriate actions

Table 10-3. Clean-up activities for BSW

All clean-up activities in BSW must be initiated with CallTrustedFunction() in order to
switch to the BSW OS-Application, since the OSRestartTask is running in an OS-
Application that is currently in the state APPLICATION_RESTARTING.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

75 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

Note that clean-up activities in BSW modules are not necessarily synchronous. Thus,
there may be a need to wait for all activities to be completed.

Once all relevant BSW clean-up activities are completed, the OSRestartTask can
perform the final activities:

 If the partition is to be restarted
o Request a restart of the partition local RTE by calling

Rte_RestartPartition_<partition>().
o Request the OS to allow access to the OS-Application by calling

AllowAccess(). This will set the OS-Application state to
APPLICATION_ACCESSIBLE.

o Set the partition state to P_ACTIVE.
o Call TerminateTask() to terminate the OSRestartTask.

 If the partition is to be terminated
o Set the partition state to P_TERMINATED.

o Call TerminateApplication(self, NO_RESTART) which will terminate the

OS-Application without triggering the OSRestartTask again. This will set
the OS-Application in the APPLICATION_TERMINATED state.

10.3.2.4 Externally triggered restart or termination

In UC2, a trusted SW-C can trigger a termination/restart of another partition. Such an
external trigger requires the following actions to be made in the SW-C:

1. Notify RTE whether the partition will be terminated using the call
Rte_PartitionTerminated_<partition>() or will be restarted using the call
Rte_PartitionRestarting_<partition>().

2. Make sure to post the decision (termination or restart) such that the
OSRestartTask can decide which actions to take once the clean-up activities
commence.

3. Initiate termination/restart of the partition with the call

TerminateApplication(<partition>, RESTART). The value RESTART is needed to

trigger the OSRestartTask so that clean-up activities can be performed.
4. Report to DEM.

From this point, the actions will be the same as when the Protection Hook returns its
decision.

Automotive applications can be distributed over several partitions and thus over
several ECUs. The TerminateApplication() call only covers local partitions (i.e. on the
same ECU as the caller), so the handling of distributed applications needs to be
considered at application level.

One way to implement a distributed monitoring and control of related partitions is to
have a dedicated application-level error manager (ALEM) in each ECU. The ALEM
will monitor and control the partitions in an ECU and can communication relevant
information and requests for termination or restart of remote partitions to the ALEMs
concerned.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

76 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

10.3.3 Sequence diagram for termination and restart of a partition

The sequence of events for terminating or restarting a partition is shown in Figure 4.
The details are described in Section 10.3.2.

sd TerminateRestartPartition

RTE BSW modulesOSRestartTaskOS ProtectionHook

opt ReInitExample

APPLICATION_ACCESSIBLE

APPLICATION_RESTARTING

APPLICATION_ACCESSIBLE

opt CleanupExample

loop Polling

[not CLEANUP_FINISHED]

alt wait

[not CLEANUP_FINISHED]

APPLICATION_TERMINATED

alt Restart

[Restart]

[Terminate]

loop Polling

[not REINIT_FINISHED]

alt wait

[not REINIT_FINISHED]

Cleanup activities can be

individually triggered from the

OSRestartTask (note:

CallTrustedFunction shall be used to

switch to the BSW partition), or the

RestartTask can trigger the BSW

Mode Manager (BswM) which can

be configured with an action list

containing the cleanup activities

(the BswM must also be triggered

using CallTrustedFunction).

The cleanup activities are project

specific. This example contains

synchronous and asynchronous

activities.

For both Termination and Restart,

the OS is requested to terminate the

Os-Application and start the

Os-Application's OSRestartTask.

Os-Application

state for the

considered

Partition.

Re-initialization of the BSW

resources for the considered

Partition.

ProtectionHook

Rte_PartitionTerminated_<Partition> / Rte_PartitionRestarting_<partition>

PRO_TERMINATEAPPL_RESTART

ActivateTask

CallTrustedFunction(cleanup_IO)

CallTrustedFunction(cleanupNVM)

CallTrustedFunction(isNVMcleanupFinished)

delay

(OsAlarm)

CallTrustedFunction(Init_IO)

CallTrustedFunction(Init_NVM)

CallTrustedFunction(IsNvmReInitFinished)

delay

(OsAlarm)

Rte_RestartPartition_<Partition>

AllowAccess

TerminateTask

TerminateApplication(<self>, NO_RESTART)

Figure 4: Sequence diagram showing the interactions when terminating or restarting a
partition.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

77 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

10.3.4 Support for Use Cases

10.3.4.1 UC1: SW Partitioning

By placing each application requiring protection in an OS-Application, partitioning
between applications is achieved. Possible reactions to errors include terminating
and restarting of the affected partition. UC1 is therefore fully covered.

Applications may also be spread across multiple partitions to provide more fine-
grained protection, but this may incur communication overhead during run-time, due
to communication across partition boundaries.

10.3.4.2 UC2: OEM Specific Error Handling

An OEM requiring specific error handling policies needs to place applications in
different partitions. Furthermore, if forcible termination and restart of applications (i.e.,
partitions) is required, dedicated trusted SW-Cs can request this by the OS. UC2 is
therefore fully covered.

10.3.5 Consistency Aspects

10.3.5.1 Application-level consistency

Any application-level inconsistencies arising from restarting a partition are expected
to be handled by the SW-Cs themselves. However, SW-Cs can trust the RTE to
behave consistently and in a defined way w.r.t. terminated/restarting partitions.
Section 10.3.5.3 presents the consistency requirements needed for the RTE to
achieve this.

10.3.5.2 BSW consistency

BSW consistency needs to be ensured by clean-up activities performed when
restarting or terminating a partition. Details about these activities are described in
Section 10.3.2.3.

10.3.5.3 Communication consistency

When a partition is terminated or restarted, this may lead to a (temporary) loss of
communication between communicating parties. In all such cases, AUTOSAR must
ensure that the system is consistent, i.e., the system can still make progress without
undesired side-effects. It is the job of the application developers to handle cases
where SW-Cs (contained in the partitions) are terminated or restarted.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

78 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

To handle the case where a partition is terminated and consequently no longer able
to react to events, the behaviour of the system w.r.t. the terminated partition must be
defined. Note that since the error containment region is the partition, consistency for
intra-partition communication is irrelevant, since all tasks in the partition are
terminated. Thus only inter-partition (superset of inter-ECU) communication can lead
to consistency problems.

The main principle shall be as follows: Consider the case where we have two
partitions interacting with each other. At some point, one of the partitions is
terminated (restarted). For the remaining partition, the perception of this shall be the
same regardless of whether the terminated (restarted) partition resides on the same
ECU or another ECU. As a consequence, the RTE behaviour shall be the same in
both cases.

This principle implies that timeout monitoring shall be used to detect if the receiver of
information (both in SR and CS communication) is terminated. Trying to initiate
communication with a partition which is terminated (or being restarted) shall result in
a timeout notification, the same as if the original signal had been lost or the receiving
ECU did not respond. Also, it does not impose on the partition to “know” if
communication is local or remote, even in case of failure. After a partition is restarted
its state might be inconsistent with other partitions’ view of the state. For instance, if
there is a dependency between two messages (both CS & SR) it may be broken by a
restart.

10.4 Integrator Responsibility

The integrator has the overall responsibility for implementing the terminate and
restart actions required by providing the code for the Protection Hook and the Restart
Task as well as any glue code necessary for coordination and proper incorporation of
the functionality.

The following is a checklist of things that need to be done by the integrator or
developer in order to get proper handling of termination and restart of partitions:

1. Decompose applications into SW-Cs and group the SW-Cs according to
chosen partitions/error containment regions.

2. Configure partitions and OS-Applications in accordance with outcome of
decomposition.

3. Indicate for each SW-C whether it can be terminated or restarted (and of
course, make sure the implementation of the SW-C supports this).

4. Indicate for each partition whether it can be terminated or restarted.
5. Decide upon error handling policies and strategies for the partitions. Base

decision of restart and termination of a given partition on e.g. error type and
number of previous restarts, and any other information relevant for the
decision.

6. Implement the chosen policies and strategies in the Protection Hook
(remember that there is one global Protection Hook for the entire ECU). Notify
the RTE of the decision using Rte_PartitionTerminated_<partition>() or
Rte_PartitionRestarting_<partition>(). Return the proper code representing the
decision.

o PRO_IGNORE if nothing shall be done.

Explanation of Error Handling on Application Level
AUTOSAR Release 4.2.2

79 of 79 Document ID 378: AUTOSAR_TR_ApplicationLevelErrorHandling

 - AUTOSAR confidential -

o PRO_TERMINATEAPPL_RESTART if the partition shall be restarted or

terminated.

o PRO_SHUTDOWN if the OS (and thus eventually the ECU) shall be shut

down.
7. Implement the necessary clean-up actions in the OSRestartTask of the

partition (there is one such task per partition) and configure the BSW
accordingly. Remember that this task should be triggered both when
terminating and when restarting a partition, and that the necessary clean-up
actions are not necessarily the same for both activities. Thus, the
OSRestartTask must be able to find out whether the partition shall be
terminated or restarted in order to perform the correct clean-up actions. The
suggested way to do this is to implement the partition state machine described
in Section 10.3.2.

8. If there is a need for application-level coordination of error handling across
multiple partitions, implement an application-level error manager (ALEM)
either as a dedicated SW-C or as part of another SW-C. Note that such an
ALEM must not be in any of the partitions it is set to monitor. Use the
TerminateApplication() API to control the termination and restart of partitions
from an ALEM.

	1 Introduction
	2 Relation to other documents
	3 References
	4 Guide to the document
	5 Terms and definitions
	5.1 Basic dependability terms
	5.2 Fault Detection, Isolation and Recovery (FDIR)

	6 Scope
	7 Error model
	8 Error handling mechanisms
	8.1 Plausibility checks
	8.1.1 Description
	8.1.2 Applicability
	8.1.3 Application level vs. BSW
	8.1.4 AUTOSAR References

	8.2 Substitute Values
	8.2.1 Description
	8.2.2 Applicability
	8.2.3 Application level vs. BSW
	8.2.4 AUTOSAR References

	8.3 Voting
	8.3.1 Description
	8.3.2 Applicability
	8.3.3 Application level vs. BSW
	8.3.4 AUTOSAR References

	8.4 Agreement
	8.4.1 Description
	8.4.2 Applicability
	8.4.3 Application level vs. BSW
	8.4.4 AUTOSAR References

	8.5 Checksums/Codes
	8.5.1 Description
	8.5.2 Applicability
	8.5.3 Application level vs. BSW
	8.5.4 AUTOSAR References

	8.6 Execution sequence monitoring
	8.6.1 Description
	8.6.2 Applicability
	8.6.3 Application level vs. BSW
	8.6.4 AUTOSAR References

	8.7 Aliveness monitoring
	8.7.1 Description
	8.7.2 Applicability
	8.7.3 Application level vs. BSW
	8.7.4 AUTOSAR References

	8.8 Status and Mode Management
	8.8.1 Description
	8.8.2 Applicability
	8.8.3 Application level vs. BSW
	8.8.4 AUTOSAR References

	8.9 Reconfiguration
	8.9.1 Description
	8.9.2 Applicability
	8.9.3 Application level vs. BSW
	8.9.4 AUTOSAR References

	8.10 Reset
	8.10.1 Description
	8.10.2 Applicability
	8.10.3 Application level vs. BSW
	8.10.4 AUTOSAR References

	8.11 Error Filtering
	8.11.1 Description
	8.11.2 Applicability
	8.11.3 Application level vs. BSW
	8.11.4 AUTOSAR References

	8.12 Memory Protection
	8.12.1 Description
	8.12.2 Applicability
	8.12.3 Application level vs. BSW
	8.12.4 AUTOSAR References

	8.13 Timing Protection
	8.13.1 Description
	8.13.2 Applicability
	8.13.3 Application level vs. BSW
	8.13.4 AUTOSAR References

	9 Aspect mapping
	9.1 Mapping to FDIR process and Error Model
	9.2 Mapping to implementation level

	10 Terminating and restarting partitions
	10.1 Introduction
	10.1.1 Automotive Applications
	10.1.2 Software Partitioning & Error Containment Regions

	10.2 Rationale – Use Cases
	10.2.1 Use Case 1: Software Partitioning [UC1]
	10.2.2 Use Case 2: Application-level Error Handling [UC2]
	10.2.2.1 Error handling of distributed automotive applications
	10.2.2.2 OEM-specific error handling
	10.2.2.3 Application-level Error Managers

	10.3 Approach for Terminating and Restarting Partitions
	10.3.1 OS features
	10.3.1.1 OS-Applications
	10.3.1.2 Protection Hook
	10.3.1.3 TerminateApplication() API
	10.3.1.4 OSRestartTask
	10.3.1.5 OS-Application state machine

	10.3.2 Going from OS-Applications to partitions
	10.3.2.1 Partition state machine
	10.3.2.2 Error handling strategy in the Protection Hook
	10.3.2.3 Clean-up activities in the OSRestartTask
	10.3.2.4 Externally triggered restart or termination

	10.3.3 Sequence diagram for termination and restart of a partition
	10.3.4 Support for Use Cases
	10.3.4.1 UC1: SW Partitioning
	10.3.4.2 UC2: OEM Specific Error Handling

	10.3.5 Consistency Aspects
	10.3.5.1 Application-level consistency
	10.3.5.2 BSW consistency
	10.3.5.3 Communication consistency

	10.4 Integrator Responsibility

