AUTO SAR

General Specification of Basic Software Modules

V1.2.0
R4.1 Rev 3

Document Title

General Specification of Basic
Software Modules

Document Owner

AUTOSAR

Document Responsibility

AUTOSAR

Document Identification No 578

Document Classification Standard
Document Version 1.2.0
Document Status Final
Part of Release 4.1
Revision 3
Document Change History
Date Version |Changed by Change Description
31.03.2014 1.2.0 |AUTOSAR e Update of include file structure and
Release required header files requirement
Management specification
¢ Update of inter-module version check —
removed REVISION/PATCH_VERSION
from the required check
e Formating and spelling corrections
31.10.2013 1.1.0 |AUTOSAR e Moved declarations of MainFunctions
Release and BswModuleClientServerEntrys from
Management the module header files to
RTE/BswScheduler
e Modified the Published Information
definitions
e Added the NULL pointer checking
mechanism description
¢ Removed the "Fixed cyclic", "Variable
cyclic" and "On pre condition” from the
Scheduled Functions description
o Editorial changes
05.03.2013 1.0.0 |AUTOSAR Initial release

Administration

10f77

Document ID 578: AUTOSAR_SWS_BSWGeneral

- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.

For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

2 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules

V1.2.0
R4.1 Rev 3

Table of Contents
1 Introduction and fuNCtioNal OVEIVIEWcuvviiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeee e 5
3 O I = Yol 111U 5
HDZ2 D To Tt U [=T o1 ot0] 0NV 7=T o] 1 5
2 Acronyms and abbreVviationsooeuuiuiiiiiiiee e 7
3 Related dOCUMENTALION.uuuuuiiiiiiiiiiiiiiiiiib bbb enneenanaanes 8
3.1 INPUEAOCUMENTSo 8
3.2 Related standards and NOIMScoooiiiiiiiiiii 9
4 Constraints and asSUMPLIONScoooeieiiieeeeeee e 10
4.1 LIMITALIONS cooieeeeieeee e 10
4.2 Applicability t0 Car dOMAINS..........uuuiiieiieiiieiier e 10
5 Dependencies to other modules................uoiiiiiiiiiiiiiiii e 11
5.1 FHl& SITUCIUIE ...t e et e e e e e e e esaan s 11
5.1.1 Module implementation PrefiX ... 11
5.1.2 Module implementation fileS...........ccccoiiiiiiiii 12
5.1.3 Imported and exported informationcccooeeeeiiiiiiiiii e, 13
5.1.4 BSW Module DeSCIPLIONccceviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 14
5.1.5 Module documentation............cceeviiiiiiiiiiiiiiiiiieeeeeeeeeeeee e 14
5.1.6 COde fil@ SITUCTUIEuiie e e e e e s 15
5.1.7 Header file StrUCIUIe.........ccoviiiiiiiiiiieeeeeeeeeeeeeee e 20
5.1.8 VErSION CHECK ...cceviiiiiee et e e e e s 25
6 Requirements traceabilitycoooiiiiiiiiiiiii e 26
7 Functional SPeCIfICAtIONuuuiiiie e e e eeeee 32
7.1 General implementation specification..............ccccooeeeeiiiiiiiiiii e, 32
7.1.1 Conformance t0 MISRA Couuiiiiiieeeeeeeeie e 32
7.1.2 Conformance to AUTOSAR Basic Software Requirements................... 32
7.1.3 Conformance to AUTOSAR Methodology........cccccevviiiiiiiiiiiiiiiiiiiiinenen. 32
7.1.4 Platform independency and compiler abstractionccccceeeeeeennn. 33
7.1.5 Configurabilityooooiiiiiiiii 35
7.1.6 Various Naming CONVENTIONSoeeiiiiiiiieeiiiie e ee e e e e e e eeaans 36
7.1.7 Configuration Parameters ... 37
7.1.8 SAred COUC......coouiiiiiiee e e 37
7.1.9 Global datacovvuiiiieieeeeeeee e 38
7.1.10 Usage of macros and inline functions.............cccceeevieiiiiii e, 38
7.1.11 Calling Scheduled functions (Main processing functions).................. 39
7.1.12 EXCIUSIVE GIrEASuiieieiiiiiiiiiiie ettt e s 39
4000 0t T T O (o U U 40
7.1.14 AUTOSAR INtEITACES.....cceiiiiiiiiie e 41
7.1.15 INterrupt SErviCe rOULINESccoiviiiiiiiiiiiiiiiieeeeeeeeeeeeee et 41
7.1.16 Restricted OS functionality @CCESSuuuiiiiieeiiiiiiiiiiii e 42
7.1.17 Access to hardware regiStersccoovvvvvviiiiiie e 44
7.1.18 Debugging SUPPOIT ...cceeieiiiieiiiiee e ee et e et e e e e e eannn s 45
30f 77 Document ID 578: AUTOSAR_SWS_BSWGeneral

- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules

V1.2.0

R4.1 Rev 3

7.01.19 DaAlA LYPOS et 45
7.1.20 Distributed execution on multi-partitioned systems...........ccccccvveveeeee. 48

7.2 Error HandliNgooooeeiiiiii e 49
7.2.1 Handling of Symbolic Name Values..........cccccccooiiiiiiiiiiiiiiiiiiiiiiiiiieeee, 49
7.2.2 Error ClassifiCation..........ccouiiiiiiiiiiiiieeee e 50
7.2.3 Development ErrOrS ... 51
7.2.4 Production Errors and Extended Production EITOrsccccccvvvvveeeeennnn. 53

8 AP SPECITICALION ...ttt 56
S 00 R 1491 oo ¢ (=T I 1Y/ 1= 1S P 56
8.2 Type definitioNScooeeeeeeeee e 56
8.3 FUNCHION defiNitiONS .cccoeee e 57
8.3.1 General specification on API fuNClIONSccoevvviiiiiiiiiiiiiiiiiiiieeeeeeeee 57
8.3.2 Initialization fUNCHION..........coooviiiiiii e 59
8.3.3 De-Initialization fUNCLIONciiiiiiiiieiic e 61
8.3.4 Get Version INformationccovviiiiiiiiiiiiiieeeeeeee e 62

8.4 Callback NOIfICALIONS.iiieeiiiieiiiiiiee e 63
8.5 Scheduled fUNCHIONSccooei i 64
8.6 EXpected INTEITACES.ccooe e 65
8.6.1 Mandatory INterfacesooovuuuiiii i 65
8.6.2 Optional INterfaces..........oooviiiiiiiiiiiii 66
8.6.3 Configurable INterfaCesciiiiii i 66

S B ST To (U] g [of 3o [=T | £= 1 0 £ 1SRN 67
10 Configuration SpecifiCation................cceiiiiiiiiiiii e 68
10.1 Introduction to configuration SPecifiCationcccccueveuiemiiiiiiiiiiiiiiiiinens 68
10.1.1 Configuration and configuration parameters...........cccccccvveeeeeeeeeeeennnnns 68

O I V- 4 - 1 | £ SRS 68
10.1.3 CONTAINEIS ...cceeeeeeeeieie e et e e e e e e e e e et e e e e e e e eeeaasnnnaaeeeeeeeeennnes 69
10.1.4 Configuration parameter tablesccccoiiiiiii i, 69
10.1.5 Configuration class 1abels...........cooooiiii 70
10.2 General configuration Specificationccooovuiiiiiiii e, 71
10.2.1 Configuration fileScooeeeieeeeeeee e 71
10.2.2 Implementation names for configuration parameters......................... 71
10.2.3 Pre-compile time configurationccccoeeeeeeieie e, 72
10.2.4 Link time configuration............cccouiiiiiiiiiiii e 73
10.2.5 Post-build time configuration ... 73
10.3 Published INfOrmation.............ooooiiiiiiiiiiii e 75

4 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral

- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

1 Introduction and functional overview

This document is the general basic software specification on AUTOSAR Basic
Software modules. It complements the specification of BSW modules with as a
common specification, which is valid for various BSW modules.

1.1 Traceability

The Specification items from this document describe the work products from the
BSW Module implementation or their parts with regard to the Basic Software
Requirements, which are described in AUTOSAR General Requirements on Basic
Software Modules [3].

For every BSW Module, the traceability between Specification items and Basic
Software Requirements is in scope of this document and the according BSW Module
Software Specification. See also chapter 6 - Requirements traceability.

The BSW Module implementation must guarantee traceability to the corresponding
Specification items of this document and of the corresponding BSW Module
specification.

Some Specification items are not applicable to every BSW Module. In such a case,
its description explicitly mentions the condition for its applicability. If no condition is
mentioned, the Specification item is applicable for all BSW Modules.

Please refer to AUTOSAR Standardization Template [14], chapter “Support for
traceability” for further information.

1.2 Document conventions

Code examples, symbols and other technical terms in general are typeset in
monospace font, e.g. const.

Terms and expressions defined in AUTOSAR Glossary [7], within this specification
(see chapter 2 - Acronyms and abbreviations) or in related documentation are
typeset in italic font, e.g. Module implementation prefix.

The Basic Software Requirements are described in document SRS BSW General [3].
These are referenced using SRS_BSW_<n> where <n> is its requirement id. For
instance: SRS_BSW_00009.

Every Specification item starts with [SWS_BSW_<nr>], where <nr> is its unique
identifier number of the Specification item. This number is followed by the
Specification item title. The scope of the Specification item description is marked with
half brackets and is followed by the list of related requirements from SRS BSW
General, between braces.

5of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0
R4.1 Rev 3

Example:

[SWS_BSW_<nr>] Specification item title
[Specification item description. |[(SRS_BSW_00001, SRS_BSW_00002)

References to Specification items from other AUTOSAR documents use the
conventions from the according document, for instance [SWS_CANIF_00001].

6 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTO SAR

General Specification of Basic Software Modules
V1.2.0
R4.1 Rev 3

2 Acronyms and abbreviations

Abbreviation / | Description:

Acronym:

BSW driver For a list of BSW drivers see the List of Basic Software Modules [1],
column “AUTOSAR SW layer”.

Camel case This document does not aim to specify rules for the camel case
notation. Definition of CamelCase according to Wikipedia (see
chapter 3.1):
‘camelCase (...) is the practice of writing compound words or
phrases in which the elements are joined without spaces, with each
element's initial letter capitalized within the compound and the first
letter either upper or lower case (...).”
Example: GetVersioninfo

<Ie> Implementation specific file name extension, see SWS BSW _00103.

<Ma> Module abbreviation, see SWS BSW 00101.

<MA> Capitalized module abbreviation. The Capitalized module abbreviation
<MA> is the Module abbreviation <ma> (see bsw_constr_001)
completely written in upper case.

MCAL The MCAL, Microcontroller Abstraction Layer, is defined in
AUTOSAR Layered Software Architecture [2]

<Mip> Module implementation prefix, see SWS BSW_00102.

<MIP> Capitalized module implementation prefix. The Capitalized module
implementation prefix <MIP> is the Module implementation prefix
<Mip> (SWS BSW_00102) completely written in upper case.

Module Module implementation prefix, see SWS BSW_00102.

implementation

prefix

Module Module abbreviation, see SWS BSW_00101.

abbreviation

WCET Worst case execution time.

7 of 77

Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0
R4.1 Rev 3

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules
AUTOSAR_TR_BSWModuleList.pdf

[2] AUTOSAR Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[3] AUTOSAR General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral.pdf

[4] AUTOSAR Specification of BSW Module Description Template
AUTOSAR_TPS BSWModuleDescriptionTemplate.pdf

[5] AUTOSAR Specification of RTE
AUTOSAR_SWS_RTE.pdf

[6] AUTOSAR Specification of Memory Mapping
AUTOSAR_SWS_ MemoryMapping.pdf

[7] AUTOSAR Glossary
AUTOSAR_TR_Glossary.pdf

[8] AUTOSAR Specification of Operating System
AUTOSAR_SWS_OS.pdf

[9] AUTOSAR Specification of Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate.pdf

[10] AUTOSAR Specification of Diagnostic Event Manager
AUTOSAR_SWS_DiagnosticEventManager.pdf

[11] AUTOSAR Methodology
AUTOSAR_TR_Methodology.pdf

[12] AUTOSAR Specification of Debugging
AUTOSAR_SWS_Debugging.pdf

[13] AUTOSAR Specification of Standard Types
AUTOSAR_SWS_PlatformTypes.pdf

[14] AUTOSAR Standardization Template
AUTOSAR_TPS_StandardizationTemplate.pdf

8 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
) V1.2.0

R4.1 Rev 3

[15] AUTOSAR Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration.pdf

[16] AUTOSAR Specification of Development Error Tracer
AUTOSAR_SWS DevelopmentErrorTracer.pdf

[17] CamelCase — Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/CamelCase

3.2 Related standards and norms

[18] MISRA C 2004 Standard
Homepage: http://www.misra.org.uk/

[19] IEC 7498-1 The Basic Model, IEC Norm, 1994

[20] HIS Software Supplier Identifications
http://www.automotive--his.de/his--ergebnisse.htm

9 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

http://en.wikipedia.org/wiki/CamelCase
http://www.misra.org.uk/
http://www.automotive--his.de/his--ergebnisse.htm

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3
4 Constraints and assumptions

4.1 Limitations

This specification is common to all AUTOSAR BSW Modules [1] and contains only
general Specification items on BSW Modules. Some of these specification items may
not be relevant to particular BSW Modules, whenever the conditions specified are not
fulfilled.

4.2 Applicability to car domains

This document can be used for all domain applications when AUTOSAR Basic
Software modules are used.

10 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3
5 Dependencies to other modules

This specification is common to all AUTOSAR BSW Modules [1] and contains only
general Specification items, which complement every single BSW Module
specification. It shall not be used as a standalone specification.

Example: The CAN Interface module is specified by this specification (General
Specification for BSW Modules) and by the document Specification on CAN Interface
(SWS CAN Interface).

5.1 File structure
This specification does not completely define the BSW Module file structure.

Nevertheless, names of implementation files not specified here must anyway follow
SWS BSW_00103.

5.1.1 Module implementation prefix

The BSW Module implementation prefix is used to form various identifiers used in
work products of the BSW Module implementation, e.g. APl names, parameter
names, symbols and file names. This prefix is mainly formed by the Module
abbreviation and, when necessary, additional vendor specific information.

The list of Module abbreviations is available in the List of Basic Software Modules [1]
within the column “Module Abbreviation™.

[SWS_BSW_00101] Module abbreviation
[The Module abbreviation <Ma> of a BSW Module shall be the same as defined in
the List of Basic Software Modules [1].](SRS_BSW_00300)

The Capitalized module abbreviation <MA> is the Module abbreviation completely
written in upper case.

Examples of BSW Module abbreviations: EcuM, Canlf, OS, Com. The corresponding
Capitalized module abbreviations are ECUM, CANIF, OS, COM.

[SWS_BSW_00102] Module implementation prefix
[The Module implementation prefix <Mip> shall be formed in the following way:

<Ma>[<vi> <ai>]

Where <Ma> is the Module abbreviation of the BSW Module (SWS_BSW_00101),
<vi>isits vendorId and <ai> isits vendorApiInfix. The sub partin square
brackets [<vi> <ai>] is omitted if no vendorApiInfix is defined for the BSW
Module.|(SRS_BSW 00300, SRS _BSW_00347)

The elements vendorId and vendorApiInfix are defined in BSW Module
Description Template [4]. Their usage may be obligatory in some situations, like in

11 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR

General Specification of Basic Software Modules
V1.2.0
R4.1 Rev 3

case of multiple instantiation of BSW Driver modules. These constraints are not in
scope of SWS BSW General.

The Capitalized module implementation prefix <MIP> is the Module implementation
prefix completely written in upper case.

In some situations, the Module implementation prefix is written in the same way as
the Module abbreviation. Nevertheless, their meanings are different: The usage of
Module implementation prefix is requested whenever a differentiation within the same
module type could be necessary, e.g. to differentiate symbols from different module
instances.

Examples of Module implementation prefixes:
e FrIf: Prefix for FlexRay Interface module implementation, where no
vendorId and vendorApiInfix are defined.
e Eep 21 LDExtEepDriver: Prefix for EEPROM driver implementation,
where vendorApiInfix and vendorId are identified by “LDExtEepDriver’
and “21” respectively.

Examples of Module abbreviations:
e FrIf: FlexRay Inteface module abbreviation
e Eep: EEPROM driver module abbreviation

5.1.2 Module implementation files

This specification defines the following file types. Some of these types are mandatory
for all BSW Modules, other depend on the according BSW Module specification:

File type, for all BSW Modules Classification | Example: Com
Module documentation mandatory Not defined.
BSW Module description mandatory Not defined. See [4].
Implementation source mandatory Com.c
Implementation header mandatory Com.h
Callback header conditional Com Cbk.h
Debugging header conditional Com Dbg.h
Pre-compile time configuration source conditional Com Cfg.c
Pre-compile time configuration header conditional Com Cfg.h
Link time configuration source conditional Com Lcfg.c
Link time configuration header conditional Com Lcfg.h
Post-build time configuration source conditional Com PBcfg.c
Post-build time configuration header conditional Com PBcfg.h
Interrupt frame implementation source conditional Gpt Irg.c

Table 1: Module Implementation Files

12 of 77

Document ID 578: AUTOSAR_SWS_BSWGeneral

- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

Note that according to AUTOSAR Methodology [11] it is possible to deliver a BSW
Module with its object files and only part of the source code. See also
SWS BSW_00117.

[SWS_BSW_00103] General file naming convention
[The name of all BSW Module implementation files shall be formed in the following
way:

<Mip>[<Ie>]*.*

The sup-part in square brackets [<Ie>] is an optional implementation specific file
name extension. The wildcards * are replaced according to the different types of files
specified for the module.|(SRS_BSW_00300)

Example:
Implementation sources for Can Interface module with vendor specific file name
extensions added: CanIf MainFncs.c, CanIf Api.c.

[SWS _BSW _00170] File names are case sensitive
[File names shall be considered case sensitive regardless of the file system in which
they are used.|(SRS_BSW_00464)

[SWS_BSW _00171] File names are non-ambiguous
[1t shall not be allowed to name any two files so that they only differ by the case of
their letters.|(SRS_BSW_00465)

5.1.3 Imported and exported information

[SWS_BSW_00104] Restrict imported information
[The BSW Module shall import only the necessary information (i.e. header files) that
is required to fulfill its functional requirements.|(SRS_BSW_00301)

Note that the availability of other modules in the basic software depends on the used
configuration. This has to be considered before including header files of these
modules.

Example: The BSW module implementation is generated by an AUTOSAR toolchain.
The module generator has to check before including header files of other modules if
the respective module is available in the system according to the used configuration.

[SWS_BSW_00105] Restrict exported information
[The BSW Module shall export only that kind of information in their corresponding
header files that is explicitly needed by other modules. |[(SRS_BSW_00302)

This is necessary to avoid modules importing or exporting functionality that could be
misused. Also compile time might possibly be shortened through this restriction.

13 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

Example: The NVRAM Manager does not need to know all processor registers just
because some implementation has included the processor register file in another
header file used by the NVRAM Manager.

Note: After the module configuration, some imported or exported information may
also become unnecessary, as part of the implementation may be disabled.

5.1.4 BSW Module Description

[SWS_BSW_00001] Provide BSW Module description

[The BSW Module description (.arxml) shall be provided for the module according
to the AUTOSAR Specification of BSW Module Description Template
[4].](SRS_BSW_00423, SRS BSW 00426, SRS BSW_00427, SRS BSW_00334)

This specification does not define any file of the package structure for the BSW
Module Description, as this delivery is specified in AUTOSAR Specification of BSW
Module Description Template [4].

5.1.5 Module documentation

[SWS_BSW_00002] Provide BSW Module documentation
[The BSW Module documentation shall be provided with the BSW Module
implementation.
The following content shall be part of it:
e Cover sheet with title, version number, date, company, document status,
document name;
¢ Change history with version number, date, company, change description,
document status;
Table of contents (navigable);
Functional overview;
Source file list and description;
Deviations to specification
Deviations to requirements;
Used resources (interrupts, uC peripherals etc.);
Integration description (OS, interface to other modules etc.);
Configuration description with parameter, description, unit, valid range, default
value, relation to other parameters.
e Examples for:
o The correct usage of the API;
o The configuration of the module.
The following content may be part of it:
¢ Memory footprint (RAM, ROM, stack size) together with the module
configuration, platform information, compiler and compiler options, which were
used for the calculation.|(SRS_BSW_00009, SRS BSW_00010)

If possible the Memory footprint documentation may include a dependency

14 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

formula between configuration elements and used memory (e.g. each configured
DTC additionally requires x bytes ROM and y bytes RAM).

[SWS_BSW_00003] Provide information on supported microcontroller and used
toolchain
[If the BSW Module implementation depends on microcontroller, then the BSW
Module documentation shall also contain the following information:

e Microcontroller vendor
Microcontroller family
Microcontroller derivative
Microcontroller stepping (mask revision), if relevant
Toolchain name and version

e Toolchain options which were used for development / qualification of module
|(SRS_BSW_00341)

The scheduling strategy that is built inside the BSW Modules shall be compatible with
the strategy used in the system. To achieve this, the scheduling strategy of module
implementation shall be accordingly documented:

[SWS_BSW_00054] Document calling sequence of Scheduled functions

[The BSW Module documentation shall provide information about the execution order
of his Scheduled functions, i.e. for every one of these functions, if it has to be
executed in a specific order or sequence with respect to other BSW Scheduled
function (or functions).](SRS_BSW_00428)

The BSW Module own specification provides further details on the intended
sequence order of its Scheduled functions. This information shall be considered in
documentation either.

[SWS_BSW_00061] Document configuration rules and constraints

[The BSW Module implementation shall provide configuration rules and constraints in
the Module documentation to enable plausibility checks of configuration during ECU
configuration time where possible.|(SRS_BSW_00167)

5.1.6 Code file structure

The code file structure for the BSW Module implementation is provided in this
chapter. Note that the file structure delivered to user may be different.

Example:
Source code is not delivered; various post-build configuration sets are delivered.
5.1.6.1 Implementation source

The Implementation source provides the implementation for functionality of the BSW
Module.

15 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

[SWS_BSW_00004] Provide Implementation source files

[The code file structure shall contain one or more files for the implementation of the
provided BSW Module functionality: the Implementation source files. The file names
shall be formed in the following way:

<Mip>[<Ie>].c

|(SRS_BSW_00346)

[SWS_BSW_00060] Declarations within Implementation source files are restricted
[The Implementation source files of the BSW Module shall declare all constants,
global data types and functions that are only used by the module internally. Pre-link
time configuration parameters are an exception of this rule.|()

To allow the compiler to check for consistency between declaration and definition of
global variables and functions, the Implementation source shall include its own
header file.

[SWS_BSW_00005] Include Implementation header
[The module Implementation source files of the BSW Module shall include its own
Implementation header .|(SRS_BSW_00346)

The Memory mapping header is necessary to enable the BSW Module to access the
module specific functionality provided by the BSW Memory Mapping [6].

[SWS_BSW_00006] Include Memory mapping header
[The Implementation source files of the BSW Module shall include the BSW Memory
mapping header (<Mip>_MemMap . h).|(SRS_BSW_00436)

The Module interlink header is necessary in order to access the module specific
functionality provided by the BSW Scheduler.

Example:
The CAN Driver Module implementation file Can. c includes the header file
SchM Can.h.

[SWS_BSW _00007] Include Module interlink header

[If the BSW Module uses BSW Scheduler API or if it implements
BswSchedulableEntitys, then the corresponding Implementation source files
shall include the Module interlink header file in order to access the module specific
functionality provided by the BSW Scheduler.|(SRS_BSW _00435)

The Module Interlink Header (SchM_<Mip>.h) defines the Basic Software Scheduler
API and any associated data structures that are required by the Basic Software
Scheduler implementation [5]. BswSchedulableEntitys are defined in BSW
Module Description Template [4].

To retrieve Production error EventID symbols and their values the Implementation
header of Diagnostic Event Manager (Dem) is necessary:

16 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

[SWS_BSW_00008] Include Implementation header of Dem

[If the BSW Module reports errors to Dem, then the corresponding Implementation
source files of the BSW Module shall include the Implementation header of Dem —
Diagnostic Event Manager (Dem.h).|(SRS_BSW_00409)

For further information, see also chapter 7.2 — Error .

[SWS_BSW_00009] Include own Callback header

[If the BSW Module implementation contains Callback functions, then its
Implementation source files shall include the BSW Modules’ own Callback header
J(SRS_BSW_00370)

To access callbacks from other modules, the according Callback headers must be
included either. It must be taken in consideration that some headers are not
necessary if the usage of the according callbacks is not part of implementation after
configuration. See also SWS BSW_00104.

[SWS_BSW_00010] Include Callback headers

[If the BSW Module implementation calls Callback functions from other modules,
then the Implementation source files of the BSW Module shall include the Callback
headers from all modules defining the called Callback functions. In case the callback
functions are located on application layer, then the BSW module shall include the
RTE exported application header file instead. |

(SRS_BSW_00370)

The inclusion of application header file is specified in SWS BSW_00023.

The implementation of Interrupt service routines called from Interrupt frames is done
in the Implementation source. See also SWS_BSW_00021.

[SWS_BSW_00017] Implement ISRs

[If the BSW Module implements Interrupt Service Routines, then these routines shall
be implemented in one or more of its Implementation source
files.](SRS_BSW_00314)

[SWS_BSW _00181] Implement ISRs in a separate file

[If the BSW Module implements Interrupt Service Routines, then these routines
should be implemented in a file or in files separated from the remaining
implementation.|(SRS_BSW_00314)

5.1.6.2 Pre-compile time configuration source

The Pre-compile time configuration source contains definitions of pre-compile time
configuration parameters for the BSW Module. More specifically, for those
parameters that are defined as const.

17 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

[SWS_BSW_00011] Provide Pre-compile time configuration source files

[If the BSW Module implementation contains pre-compile time configuration
parameters defined as const, then the code file structure shall contain one or more
files for their definition: the Pre-compile time configuration source files. The file
names shall be formed in the following way:

<Mip>[<Ie>] Cfg.c

|(SRS_BSW_00346, SRS BSW 00345, SRS BSW_00419)

[SWS_BSW_00012] Define all Pre-compile time configuration parameters (const)
[The Pre-compile time configuration source shall contain definitions for all pre-
compile time configuration parameters that are defined as const and are specified
for this module.|(SRS_BSW_ 00158, SRS BSW_00345, SRS _BSW_00419)

See also chapter 10.2.3 - Pre-compile time configuration.

5.1.6.3 Link time configuration source

The Link time configuration source contains definitions of link time configuration
parameters for the BSW Module.

[SWS_BSW_00013] Provide Link time configuration source files

[If the BSW Module implementation contains link time configuration parameters, the

code file structure shall contain one or more files for their definition: the Link time

configuration source files. The file names shall be formed in the following way:
<Mip>[<Ie>] Lcfg.c

|(SRS_BSW_00346)

[SWS_BSW_00014] Define all Link time configuration parameters

[The Link time configuration source shall contain definitions for all link time
configuration parameters specified for this module.|(SRS_BSW _00158,
SRS _BSW_00380)

See also chapter 10.2.4 - Link time configuration.

5.1.6.4 Post-build time configuration source

The Post-build time configuration source contains definitions of post-build time
configuration parameters for the BSW Module.

[SWS_BSW_00015] Provide Post-build time configuration source files

[If the BSW Module implementation contains post-build time configuration
parameters, then the code file structure shall contain one or more files for their
definition: the Post-build time configuration source files. The file names shall be
formed in the following way:

18 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

<Mip>[<Ie>] PBcfg.c

|(SRS_BSW_00346)

[SWS_BSW_00063] Define all Post-build time configuration parameters

[The Post-build time configuration source shall contain definitions for all post-build
time configuration parameters specified for this module.|(SRS_BSW_00158,

SRS BSW_00380)

See also chapter 10.2.5 - Post-build time configuration.

5.1.6.5 Interrupt frame implementation source

The Interrupt frame implementation source contains implementation of Interrupt
frame routines of the BSW Module.

The implementation of Interrupt frames, done within the Interrupt frame
implementation source, is separated from the implementation of Interrupt service
routines, which is done within the Implementation source (SWS_BSW_00017)

This separation enables flexibility in the usage of different compilers and or OS
integrations. For instance, the interrupt could be realized as ISR frame of the
operating system or implemented directly without changing the driver code. The
service routine can be called directly during module test without the need of causing
an interrupt.

[SWS_BSW _00016] Provide Interrupt frame implementation source files

[If the BSW Module implements Interrupt frames, then the code file structure shall
contain one or more files for their implementation: the Interrupt frame implementation
source files. The file names shall be formed in the following way:

<Mip>[<Ie>] Irqg.c

|(SRS_BSW_00314)

[SWS_BSW_00021] Implement Interrupt frame routines
[The Interrupt frame implementation source shall contain implementation of all
Interrupt frame routines specified for this BSW Module.|(SRS_BSW_00314)

The declaration of Interrupt frames routines is done in the Implementation header.
See also SWS_BSW_00018.

[SWS_BSW_00019] Include Implementation Header to Interrupt frame
implementation source

[The Interrupt frame implementation source files of a BSW Module shall include the
Implementation Header of this BSW Module.|[(SRS_BSW_00314)

19 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

The implementation of Interrupt service routines called from Interrupt frames is done
in the Implementation source. See also SWS_BSW_00017.

5.1.7 Header file structure

5.1.7.1 Implementation header

The Implementation header of the BSW Module provides the declaration of the
modules’ API. This header file or files are included by other modules that use the
BSW Modules’ API.

[SWS_BSW_00020] Provide Implementation header file
[The header file structure shall contain one or more files that provide the declaration
of functions from the BSW Module API: the Implementation header files. The file
names shall be formed in the following way:

<Mip>[<Ie>].h

At least the file <Mip>.h shall be available. |(SRS_BSW _00346)

[SWS _BSW_00110] Content of Implementation header

[The Implementation header files may contain extern declarations of constants,
global data and services. They shall at least contain those declarations of constants,
global data and services that are available to users of the BSW Module. |()

To avoid double and inconsistent definition of data types in both BSW Module and
Software Components, common data types are defined in the RTE Type header file.
This file is included in BSW Module indirectly through its Application Types Header
File.

[SWS_BSW_00023] Include Application Types Header File to Implementation
header

[If the BSW Module implements AUTOSAR Services, then it shall include its
Application Types Header File in its Implementation header file or
files.|(SRS_BSW_00447)

The Application Types Header File is named Rte <swc> Type.h, where <swc> is
the Short Name of the according Software Component Type. More information about
this file can be found in the Specification of RTE [5] — section “Application Types
Header File”.

Example:
The same data Data Type NvM_RequestResultType is used in BSW C-API
NvM_GetErrorStatus and in the AUTOSAR Interface NvMService operation
GetErrorStatus (OUT NvM RequestResultType RequestResultPtr).
This implies: a

e The proper types shall be generated in Rte Type.h.

20 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

e Rte Type.h shall be included in Implementation header of BSW Module
(NvM.h) via Rte NvM Type.h
e Rte Type.h shall be included in the application types header file
(Rte <swc> Type.h) of SW-C modules that are using the service
GetErrorStatus.
This header is included in the application header file (Rte <swc>.h), which is used
by the SW-C implementation. These headers are generated by the RTE Generator.

[SWS_BSW_00024] Include AUTOSAR Standard Types Header to Implementation
header

[If the BSW Module implementation uses AUTOSAR Standard Types, then its
Implementation header file or files shall include the AUTOSAR Standard Types
Header (Std Types.h).](SRS_BSW_00348)

The AUTOSAR Standard Types Header includes the following headers:
e Platform Specific Types Header (Platform Types.h)
e Compiler Specific Language Extension Header (Compiler.h)

For more information on AUTOSAR Standard Types, see also chapter 7.1.19 - Data
types.

[SWS_BSW_00048] Declare API services in Implementation header
[If the BSW Module implements API services, then their declaration shall be done in
its Implementation header file or files. |()

See also 8.3.1 - General specification on API functions.

[SWS_BSW_00018] Declare Interrupt frame routines

[If the BSW Module implements Interrupt frame routines (SWS_BSW_00021), then
their declaration shall be done in its Implementation header file or files.
|(SRS_BSW_00314)

[SWS_BSW_00043] Declare Interrupt Service Routines

[If the BSW Module implements Interrupt Service Routines (ISR), then their
declaration shall be done in its Implementation header file or
files.|(SRS_BSW_00439)

[SWS_BSW_00068]

Support Interrupt Service Routines categories 1 and 2

[If the BSW Module implements Interrupt Service Routines (ISR) and provides
declarations for both interrupt categories CAT1 and CAT2, then the interrupt category
shall be selectable via configuration. |[(SRS_BSW_00439)

See also chapter 7.1.15 - Interrupt service routines.

21 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

[SWS_BSW_00210] Exclusion of MainFunction and BswModuleClientServerEntrys
from the Implementation header

[The module header files shall not include the prototype declarations of
MainFunctions and BswModuleClientServerEntrys that are expected to be invoked
by the RTE/BswScheduler.|()

5.1.7.2 Application Header File

If the BSW Module implements AUTOSAR Services, the according Application
Header File is generated with the RTE. This file provides interfaces for the interaction
of the BSW Module with the RTE. The Application Header File is named

Rte <swc>.h, where <swc> is the Short Name of the according Software
Component Type.

[SWS_BSW_00025] Include Application Header File
[If the BSW Module implements AUTOSAR Services, then it shall include its
Application Header File in module files using RTE interfaces. |(SRS_BSW_00447)

[SWS_BSW_00069] Restrict inclusion for Application Header File
[The Application Header File shall not be included in BSW Module files that are
included directly or indirectly by other modules.|(SRS_BSW_00447)

If the Application Header File is included in module files which are included directly or
indirectly by other modules, other Services or CDDs would also include several
Application Header Files and this is not supported by RTE. See Specification of RTE
[5] — section “File Contents”, requirement [SWS_Rte 1006].

More information about the Application Header File can be found in the Specification
of RTE [5] — section “Application Header File”.

Note that the application header file includes by its own the Application Types
Header File. See Specification of RTE [5], [SWS_Rte_7131], and SWS_BSW_00023.

5.1.7.3 Callback header
[SWS_BSW _00026] Provide Callback header files
[If the BSW Module implementation contains Callback functions, then the header file
structure shall contain one or more files that provide their declarations: the Callback
header files. The file names shall be formed in the following way:

<Mip>[<Ie>] Cbk.h

|(SRS_BSW_00346, SRS BSW_00370)

Example:
The Callback header content for module NVRAM Manager may look like this:

/* File: NvM Cbk.h */

22 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

void NvM NotifyJobOk (wvoid);
void NvM NotifyJobError (void);

The separation of callback declaration from explicitly exported module functions is
necessary to prevent misuse of unintentionally exposed API. Only modules calling
callbacks of this module need to include its Callback header.

Please refer to chapter 8.4 “Callback notifications” of according BSW Module SWS
for information on callbacks defined for this module.

5.1.7.4 Debugging header

The implementation of debugging features is optional in AUTOSAR modules. The
debugging support is helped by the definition of Debugging variables.

[SWS_BSW _00027] Provide Debugging header files

[If the BSW Module implementation contains Debugging variables the header file
structure shall contain one or more files that provide their declarations: the
Debugging header files. The file name shall be formed in the following way:

<Mip>[<Ie>] Dbg.h

|(SRS_BSW_00346, SRS BSW_00442)

[SWS_BSW _00028] Declare Debugging variables
[If the BSW Module implementation contains Debugging variables, their declaration
shall be provided in its Debugging header file or files.|(SRS_BSW_00442)

[SWS_BSW _00141] Access to type definitions of Debugging variables

[If the BSW Module implementation contains Debugging variables, all type definitions
of Debugging variables shall be accessible by including the module Implementation
header.|(SRS_BSW_00442)

For further information, see chapter 7.1.18 - Debugging support.
5.1.7.5 Pre-compile time configuration header

The Pre-compile time configuration header contains definitions of pre-compile time
configuration parameters for the BSW Module.

[SWS_BSW_00030] Provide Pre-compile time configuration header files

[All BSW Module implementation contains definitions of pre-compile time
configuration parameters which are defined as pre-processor directives (#define).
The code file structure shall contain one or more files for the definition of these
parameters: the Pre-compile time configuration header files. The file names shall be
formed in the following way:

23 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
) V1.2.0

R4.1 Rev 3
<Mip>[<Ie>] Cfg.h

|(SRS_BSW_00346, SRS BSW_00381)

[SWS_BSW_00031] Define all Pre-compile time configuration parameters
(#define)

[The Pre-compile time configuration header shall contain definitions for all Pre-
compile time configuration parameters defined as pre-processor directive (#define)
which are specified for this BSW Module.|[(SRS_BSW 00158, SRS BSW_00345,
SRS BSW _00381)

Example:
The pre-processor switches for Eep module are defined in
Eep 21 LDExtEepDriver Cfg.h.

See also chapter 10.2.3 - Pre-compile time configuration.

5.1.7.6 Link time configuration header

The Link time configuration header contains declarations of link time configuration
parameters for this BSW Module.

[SWS_BSW_00032] Provide Link time configuration header files

[If the BSW Module implementation contains link time configuration parameters, the
code file structure shall contain one or more files for their declaration: the Link time
configuration header files. The file names shall be formed in the following way:

<Mip>[<Ie>] Lcfg.h

|(SRS_BSW_00346)

[SWS_BSW_00033] Declare all Link time configuration parameters

[The Link time configuration header files shall contain declarations for all link time
configuration parameters specified for this BSW Module.|(SRS_BSW_ 00158,
SRS _BSW_00380)

See also chapter 10.2.4 - Link time configuration.

5.1.7.7 Post-build time configuration header

The Post-build time configuration header contains declarations of post-build time
configuration parameters for the BSW Module.

[SWS_BSW_00034] Provide Post-build time configuration header files

[If the BSW Module implementation contains post-build time configuration
parameters, the code file structure shall contain one or more files for declaration of
these parameters: the Post-build time configuration header files. The file names shall
be formed in the following way:

24 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

<Mip>[<Ie>] PBcfg.h

|(SRS_BSW_00346)

[SWS_BSW_00035] Declare all Post-build time configuration parameters

[The Post-build time configuration header files shall contain declarations for all post-
build time configuration parameters specified for this BSW
Module.|(SRS_BSW_00158, SRS BSW_00380)

See also chapter 10.2.5 - Post-build time configuration.

5.1.8 Version check

The integration of AUTOSAR BSW Modules is supported by the execution of Inter
Module Checks: Each BSW Module performs a pre-processor check of the versions
of all imported include files. During configuration, a methodology supporting tool
checks whether the version numbers of all integrated modules belong to the same
AUTOSAR major and minor release, i.e. if all modules are from the same AUTOSAR
baseline. If not, an error is reported.

The execution of Inter Module Checks is necessary to avoid integration of
incompatible modules. Version conflicts are then detected in early integration phase.

[SWS_BSW_00036] Perform Inter Module Checks

[The BSW Module shall perform Inter Module Checks to avoid integration of
incompatible files: For every included header file that does not belong to this module,
the following Published information elements (SWS _BSW_00059) shall be verified
through pre-processor checks:

e Major AUTOSAR Release Number (<MIP> AR RELEASE MAJOR_ VERSION)
e Minor AUTOSAR Release Number (<MIP> AR RELEASE MINOR_VERSION)

If the values are not identical to the values expected by the implementation of this
module, an error shall be reported.|(SRS_BSW_00004)

Note: The intention of the AUTOSAR standard is to keep revisions of the same
AUTOSAR Major and Minor release compatible.

25 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules

6 Requirements traceability

V1.2.0
R4.1 Rev 3

For every BSW Module, both the according BSW specification and this document
(SWS BSW General) satisfy requirements from AUTOSAR General Requirements on
Basic Software Modules [3]. The following situations are possible:

Requirement traceability from:

Result for BSW Module

Module SWS SWS BSW General

implementation:

1 | “Not applicable.” “See module’s SWS.” | Requirement is not applicable

for BSW Module.

2 | “Not applicable.” Specified

Requirement is not applicable
for BSW Module.

The module implementation can
ignore specification items from
SWS BSW General that are
tracing to this requirement.
Please attempt also to
comments in module’s own
SWS document.

3 | Specified “See module’s SWS.” | Requirement is applicable to

BSW Module.
The module specific SWS
satisfies this requirement.

4 | “Satisfied by SWS | Specified

Requirement is applicable to

BSW General” BSW Module.
SWS BSW General satisfies this
requirement.
5 | Specified Specified Requirement is applicable to

BSW Module.

Both general SWS and module
specific SWS are needed to
satisfy this requirement.

I.e. module specific specification
items complement general
specification items from SWS
BSW General.

Requirements traceability to document:

General Requirements on Basic Software Modules [3]

[SRS_BSW_00344] Reference to link-time SWS BSW_00056

configuration

[SRS_BSW_00404] Reference to post build time | SWS BSW_ 00160

configuration

[SRS_BSW_00405] Reference to multiple SWS BSW_00160

configuration sets

[SRS_BSW_00345] Pre-compile time SWS BSW 00011, SWS BSW_00012,
configuration SWS BSW 00031
[SRS BSW 00159] Tool-based configuration SWS BSW 00116
[SRS BSW 00167] Static configuration checking | SWS BSW 00061

26 of 77

Document ID 578: AUTOSAR_SWS_BSWGeneral

- AUTOSAR confidential -

AUTOSAR

General Specification of Basic Software Modules

V1.2.0
R4.1 Rev 3

[SRS_BSW_00171] Configurability of optional
functionality

SWS BSW_00029

[SRS_BSW_00170] Data for reconfiguration of
SW-components

SWS_BSW_SPEC

[SRS_BSW_00380] Separate C-Files for
configuration parameters

SWS BSW_ 00014, SWS BSW_ 00063,

SWS BSW_00033, SWS BSW_00035

[SRS_BSW_00419] Separate C-Files for pre-
compile time configuration parameters

SWS BSW_ 00011, SWS BSW_ 00012

[SRS_BSW_00381] Separate configuration
header file for pre-compile time parameters

SWS BSW_00030, SWS BSW_ 00031

[SRS_BSW_00412] Separate H-File for
configuration parameters

Clarification necessary.

[SRS_BSW_00383] List dependencies of
configuration files

SWS_BSW_SPEC

[SRS_BSW_00384] List dependencies to other
modules

SWS_BSW_SPEC

[SRS_BSW_00387] Specify the configuration
class of callback function

SWS_BSW_SPEC

[SRS BSW 00388] Introduce containers

SWS_BSW_SPEC

[SRS_BSW_00389] Containers shall have names

SWS_BSW_SPEC

[SRS_BSW_00390] Parameter content shall be
unigue within the module

SWS_BSW_SPEC

[SRS_BSW_00391] Parameter shall have unique
names

SWS_BSW_SPEC

[SRS_BSW_00392] Parameters shall have a type

SWS_BSW_SPEC

[SRS_BSW_00393] Parameters shall have a
range

SWS_BSW_SPEC

[SRS_BSW_00394] Specify the scope of the
parameters

SWS_BSW_SPEC

[SRS_BSW_00395] List the required parameters
(per parameter)

SWS_BSW_SPEC

[SRS BSW 00396] Configuration classes

SWS_BSW_SPEC

[SRS BSW 00397] Pre-compile-time parameters | SWS BSW_ 00183

[SRS BSW 00398] Link-time parameters SWS BSW 00184

[SRS_BSW_00399] Loadable Post-build time SWS BSW_ 00159

parameters

[SRS_BSW_00400] Selectable Post-build time SWS BSW_00050, SWS BSW_ 00058
parameters

[SRS_BSW_00438] Post Build Configuration Data | SWS BSW_00057, SWS BSW_00158,
Structure SWS BSW_ 00050
[SRS_BSW_00402] Published information SWS BSW_ 00059

[SRS_BSW_00375] Notification of wake-up SWS BSW_SPEC

reason

[SRS BSW _00101] Initialization interface

SWS BSW_00150, SWS_BSW_SPEC

[SRS BSW _00416] Sequence of Initialization

SWS_BSW_SPEC

[SRS_BSW_00406] Check module initialization

SWS_BSW_SPEC

[SRS_BSW_00467] Calling of init / deinit

SWS BSW_00150, SWS BSW_00152

[SRS_BSW_00437] Nolnit--Area in RAM

SWS_BSW_SPEC

[SRS_BSW_00168] Diagnostic Interface of SW
components

SWS_BSW_SPEC

[SRS_BSW_00407] Function to read out SWS BSW_00052, SWS BSW_00164,

published parameters SWS BSW_00059, SWS BSW_00064,
SWS BSW 00168,

[SRS_BSW_00423] Usage of SW-C templateto |SWS _BSW_00001, SWS BSW_00040

describe BSW modules with AUTOSAR Interfaces

[SRS_BSW_00424] BSW main processing SWS BSW_00156

function task allocation

[SRS_BSW_00425] Trigger conditions for SWS BSW_SPEC

schedulable objects

27 of 77

Document ID 578: AUTOSAR_SWS_BSWGeneral

- AUTOSAR confidential -

AUTOSAR

General Specification of Basic Software Modules

V1.2.0
R4.1 Rev 3
[SRS_BSW_00426] Exclusive areas in BSW SWS BSW_00001, SWS BSW_00038,
modules SWS BSW 00134,
[SRS_BSW_00427] ISR description for BSW SWS BSW_00001, SWS BSW_00041,
modules SWS BSW 00065, SWS BSW_SPEC
[SRS_BSW_00428] Execution order SWS BSW_00054
dependencies of main processing functions
[SRS_BSW_00429] Restricted BSW OS SWS BSW 00138
functionality access
[SRS_BSW_00432] Modules should have SWS_BSW_SPEC
separate main processing functions for
read/receive and write/transmit data path
[SRS_BSW_00433] Calling of main processing SWS BSW_00133
functions
[SRS_BSW_00450] Main Function Processing for | SWS _BSW_00037; SWS_BSW_00071;
Un-Initialized Modules SWS BSW _00072;
[SRS_BSW_00442] Debugging Support in SWS BSW_ 00027, SWS BSW_ 00028,
Modules SWS BSW 00141, SWS BSW_00139,
SWS BSW_ 00140, SWS BSW_00044,
SWS BSW SPEC
[SRS_BSW_00461] SWS BSW SPEC
[SRS BSW 00336] Shutdown interface SWS BSW _ SPEC
[SRS_BSW_00337] Classification of errors SWS BSW_00144, SWS BSW_00042,
SWS BSW_00073
[SRS_BSW_00338] Detection and Reporting of SWS BSW_ 00045, SWS BSW_00042
development errors
[SRS_BSW_00369] Do not return development SWS _BSW_SPEC
error codes via API
[SRS_BSW_00339] Reporting of production SWS BSW_00046, SWS BSW_ 00066

relevant error status

[SRS_BSW_00422] Pre--de--bouncing of
production relevant error status

SWS BSW_00166

[SRS_BSW_00417] Reporting of Error Events by
Non-Basic Software

SWS_BSW_SPEC

[SRS BSW 00323] API parameter checking

SWS BSW_00049 SWS_BSW_SPEC

[SRS BSW 00004] Version check

SWS BSW_00036

[SRS_BSW_00409] Header files for production
code error IDs

SWS BSW_00008, SWS BSW_ 00143

[SRS_BSW_00385] List possible error
notifications

SWS_BSW_SPEC

[SRS_BSW_00386] Configuration for detecting an
error

SWS_BSW_SPEC

[SRS_BSW_00455]

SWS_BSW_SPEC

[SRS_BSW_00161] Microcontroller abstraction

SWS_BSW_SPEC

[SRS BSW 00162] ECU layout abstraction

SWS_BSW_SPEC

[SRS_BSW_00005] No hard coded horizontal
interfaces within MCAL

SWS_BSW_SPEC

[SRS BSW _00415] User dependent include files

SWS_BSW_SPEC

[SRS_BSW_00164] Implementation of interrupt
service routines

SWS BSW_00137

[SRS_BSW_00325] Runtime of interrupt service
routines

SWS BSW_00167

[SRS_BSW_00326] Transition from ISRs to OS
tasks

SWS BSW_00182

[SRS_BSW_00342] Usage of source code and
object code

SWS BSW_00117

[SRS_BSW_00343] Specification and
configuration of time

SWS_BSW_SPEC

[SRS_BSW_00160] Human-readable
configuration data

SWS BSW_00157

28 of 77

Document ID 578: AUTOSAR_SWS_BSWGeneral

- AUTOSAR confidential -

AUTOSAR

General Specification of Basic Software Modules

V1.2.0
R4.1 Rev 3

[SRS_BSW_00453] — Harmonization of BSW
Modules

SWS_BSW_SPEC

[SRS_BSW_00456] - Header file for Harmonizing
BSW Modules

SWS_BSW_SPEC

[SRS_BSW_00457] - Callback functions of
Application software components

SWS_BSW_SPEC

[SRS_BSW_00007] HIS MISRA C SWS BSW 00115

[SRS BSW 00300] Module naming convention SWS BSW 00101, SWS BSW_ 00103

[SRS_BSW_00413] Accessing instances of BSW |SWS BSW_00047, SWS _BSW_00148

modules

[SRS_BSW_00347] Naming separation of SWS BSW_00102, SWS _BSW_00148,

different instances of BSW drivers SWS BSW_ 00153, SWS BSW_00126,
SWS BSW 169

[SRS_BSW_00441] Enumeration literals and SWS BSW 00124, SWS_BSW_SPEC

#define naming

[SRS_BSW_00305] Data types naming SWS BSW 00146, SWS_BSW_SPEC

convention

[SRS_BSW_00307] Global variables naming SWS BSW_ 00130

convention

[SRS BSW 00310] APl naming convention SWS BSW 00148, SWS BSW_SPEC

[SRS_BSW_00373] Main processing function SWS BSW_ 00153, SWS BSW_ 00154,

naming convention SWS BSW_SPEC

[SRS_BSW_00327] Error values naming SWS BSW 00125, SWS_BSW_SPEC

convention

[SRS_BSW_00335] Status values naming SWS BSW_00124, SWS BSW_SPEC

convention

[SRS_BSW_00350] Development error detection | SWS BSW_ 00042

keyword

[SRS_BSW_00408] Configuration parameter SWS BSW_00126, SWS BSW_SPEC

naming convention

[SRS_BSW_00410] Compiler switches shall have | SWS BSW_00123

defined values

[SRS BSW 00411] Get version info keyword SWS BSW 00051

[SRS_BSW_00463] Callout function prototype SWS BSW 00135, SWS BSW 00136

generation

[SRS BSW 00464]File names’ case sensitivity SWS BSW 00170

[SRS_BSW_00465] Disambiguation rules on SWS BSW 00171

module names

[SRS_BSW_00346] Basic set of module files SWS BSW_00004, SWS BSW_00011,
SWS BSW 00013, SWS BSW_00015,
SWS BSW_ 00020, SWS BSW_00026,
SWS BSW_ 00027, SWS BSW_00030,
SWS BSW 00032, SWS BSW 00034

[SRS_BSW_00158] Separation of configuration SWS BSW_00012, SWS BSW_00014,

from implementation SWS BSW_00063, SWS BSW_00031,
SWS BSW_ 00033, SWS BSW_00035

[SRS_BSW_00314] Separation of interrupt frames | SWS _BSW_00016, SWS _BSW_00017,

and service routines SWS BSW_00018, SWS _BSW_00019,
SWS BSW_00021,

SWS BSW_00066sws BSwW_00181

[SRS_BSW_00370] Separation of callback SWS BSW_ 00009, SWS BSW_ 00010,
interface from API SWS BSW 00026
[SRS_BSW_00435] Module Header File Structure | SWS BSW_00007

for the Basic Software Scheduler

[SRS_BSW_00436] Module Header File Structure | SWS BSW_00006

for the Basic Software Memory Mapping

[SRS_BSW_00447] Standardizing Include file SWS BSW_00023, SWS BSW_025,
structure of BSW Modules Implementing SWS BSW_00147, SWS BSW_00069

AUTOSAR Service

29 of 77

Document ID 578: AUTOSAR_SWS_BSWGeneral

- AUTOSAR confidential -

AUTOSAR

General Specification of Basic Software Modules

V1.2.0

R4.1 Rev 3
[SRS BSW 00348] Standard type header SWS BSW_00024
[SRS BSW 00353] Platform specific type header | SWS BSW_ 00120, SWS BSW_ 00122
[SRS_BSW_00361] Compiler specific language SWS BSW_ 00121
extension header
[SRS BSW _00301] Limit imported information SWS BSW 00104, SWS BSW_SPEC
[SRS BSW 00302] Limit exported information SWS BSW 00105, SWS _BSW_SPEC
[SRS BSW _00328] Avoid duplication of code SWS BSW_ 00127

[SRS_BSW_00312] Shared code shall be
reentrant

SWS_BSW_SPEC

[SRS_BSW_00006] Platform independency

SWS BSW_00119

[SRS_BSW_00439] Declaration of interrupt
handlers and ISRs

SWS BSW_ 00043, SWS BSW_ 00068

[SRS_BSW_00448] Module SWS shall not
contain requirements from Other Modules

SWS_BSW_SPEC

[SRS_BSW_00449] BSW Service APIs used by
Autosar Application Software shall return a
Std_ReturnType

SWS_BSW_SPEC

[SRS BSW 00357] Standard API return type

SWS_BSW_SPEC

[SRS_BSW_00377] Module Specific API return
type

SWS_BSW_SPEC

[SRS_BSW_00304] AUTOSAR integer data types | SWS BSW 00120

[SRS_BSW_00355] Do not redefine AUTOSAR SWS BSW_ 00122\

integer data types

[SRS BSW 00378] AUTOSAR Boolean type SWS BSW 00142

[SRS_BSW_00306] Avoid direct use of compiler |SWS BSW_00121

and platform specific keywords

[SRS_BSW_00308] Definition of global data SWS BSW 00129

[SRS_BSW_00309] Global data with read-only SWS BSW_00131

constraint

[SRS_BSW_00371] Do not pass function pointers | SWS BSW_ 00149

via API

[SRS_BSW_00358] Return type of init() functions | SWS BSW_ 00185

[SRS_BSW_00414] Parameter of init function SWS BSW_ 00049, SWS BSW_ 00050,
SWS BSW 00151, SWS BSW_SPEC

[SRS_BSW_00376] Return type and parameters | SWS BSW_ 00154

of main processing functions

[SRS_BSW_00359] Return type of callback SWS BSW_00172

functions

[SRS_BSW_00360] Parameters of call-out SWS BSW 00173, SWS_BSW_SPEC

functions

[SRS_BSW_00440] Function prototype for SWS BSW_00180

callback functions of AUTOSAR Services

[SRS_BSW_00329] Avoidance of generic SWS BSW_SPEC

interfaces

[SRS_BSW_00330] Usage of macros instead of
functions

SWS BSW_00132

[SRS_BSW_00331] Separation of error and status
values

SWS_BSW_SPEC

[SRS_BSW_00462] Requirement Id for
Standardized Autosar Interface

SWS_BSW_SPEC

[SRS BSW _00009] Module User Documentation

SWS BSW_00002

[SRS_BSW_00401] Documentation of multiple
instances of configuration parameters

SWS_BSW_SPEC

[SRS_BSW_00172] Compatibility and
documentation of scheduling strategy

SWS_BSW_SPEC

SRS _BSW_00010] Memory resource
documentation

SWS BSW_00002

[SRS_BSW_00333] Documentation of callback
function context

SWS BSW 00167, SWS_BSW_SPEC

30 of 77

Document ID 578: AUTOSAR_SWS_BSWGeneral

- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules

V1.2.0
R4.1 Rev 3
[SRS_BSW _00374] Module vendor identification |SWS BSW 00059, SWS BSW_ 00161
[SRS_BSW_00379] Module identification SWS BSW_ 00059
[SRS_BSW_00003] Version identification SWS BSW_ 00059
[SRS_BSW_00318] Format of module version SWS BSW_ 00059
[SRS_BSW_00321] Enumeration of module SWS BSW_00162
version numbers
[SRS_BSW_00341] Microcontroller compatibility |SWS BSW_00003
documentation
[SRS_BSW_00334] Provision of XML file SWS BSW_00001
[SRS_BSW _00451] Acces to HW registers SWS BSW 00179

31 0f 77

- AUTOSAR confidential -

Document ID 578: AUTOSAR_SWS_BSWGeneral

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0
R4.1 Rev 3

7 Functional specification

7.1 General implementation specification

7.1.1 Conformance to MISRA C

MISRA C describes programming rules for the C programming language and a
process to implement and follow these rules.

[SWS_BSW_00115] Conformance to MISRA C
[If the BSW Module implementation is written in C language, then it shall conform to
the MISRA C 2004 Standard [18].](SRS_BSW_00007)

Only in technically reasonable and exceptional cases, a MISRA violation is
permissible. Such violations against MISRA rules shall be clearly identified and
documented within comments in the C source code.

7.1.2 Conformance to AUTOSAR Basic Software Requirements

The BSW Module implementation shall conform to all applicable Basic Software
Requirements, which are described in document SRS BSW General [3].

Note that some BSW Module specifications, in particular included code examples,
may ignore some General BSW requirement for sake of simplicity. Examples:
e Memory abstraction is not used within the BSW specification text because of
readability.
e The use of pre-processor directives (#defines) without “u” or “s” is widely
present in the specifications, but this violates MISRA.

However, the implementation shall not interpret this as a simplification, redefinition or
relaxation of general BSW requirements.

7.1.3 Conformance to AUTOSAR Methodology

The BSW Module implementation shall consider the AUTOSAR (see chapter 3.1):,
e.g. supporting the capability use cases Develop Basic Software and Integrate
Software for ECU.

[SWS_BSW_00116] Support to tool-based configuration
[The BSW Module implementation shall support a tool based configuration, as
described in AUTOSAR Methodology [11].](SRS_BSW_00159)

For more information about ECU configuration, see also AUTOSAR Specification of
ECU Configuration [15].

32 0of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

With the AUTOSAR Methodology it is possible to configure an AUTOSAR ECU out of
BSW Modules provided as source code and out of BSW Modules provided as object
code, or even mixed. This must be of course supported by the implementation, i.e. it
shall not require that the source code is always part of the delivery.

[SWS_BSW_00117] Support object code delivery and configuration

[The BSW Module implementation shall support configuration of its link-time and
post-build configuration parameters even if only the object code is available, i.e. even
if the source code files are not available.](SRS_BSW_00342)

7.1.4 Platform independency and compiler abstraction

According to their dependency on implementation platform, this specification
classifies BSW Modules in two distinct categories:

¢ Platform independent BSW Modules: All BSW Modules except Complex
Drivers, MCAL modules and the OS.

¢ Platform dependent BSW Modules: MCAL modules, Complex Drivers, OS.

The platform dependency comprises dependencies on used toolchain and hardware,
e.g. compiler and processor dependencies

Platform dependent BSW Modules have or may have direct access to microcontroller
hardware. Thus, their implementation is platform specific.

Platform independent BSW Modules can be developed once and then be compilable
for all platforms without any changes. Any necessary processor or compiler specific
instructions (e.g. memory locators, pragmas, use of atomic bit manipulations etc.)
have to be encapsulated by macros and imported through include files. This is
necessary to minimize number of variants and the according development effort.

The Microcontroller Abstraction Layer (MCAL) is defined in AUTOSAR Layered
Software Architecture [2]. The list of BSW Modules from MCAL is available in the List
of BSW Modules [1]: Microcontroller Drivers, I/O Drivers, Communication Drivers and
Memory Drivers.

[SWS_BSW_00119] Platform independent BSW Modules
[If the BSW Module is classified as Platform independent BSW Module, then its
source code shall not be processor dependent.|(SRS_BSW_00006)

The direct use of not standardized keywords like near, far, pascalinthe
source code would create compiler and platform dependencies, that must strictly be
avoided. If no precautions are made, portability and reusability of affected code is
deteriorated and effective release management is costly and hard to maintain.

[SWS_BSW _00121] Usage of platform or compile specific keywords is restricted

33 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

[The BSW Module implementation shall not use compiler and platform specific
keywords directly.|(SRS_BSW_00306)

[SWS_BSW_00178] Mapping of compile specific keywords

[If the BSW Module implementation needs compiler specific keywords, then these
keywords shall be redefined (mapped) in a separate file, the Compiler Specific
Language Extension Header (Compiler.h).](SRS_BSW 00361)

Example: Compiler specific keywords can be mapped to compiler independent
keywords by defining macros in Compiler.h:

/* Compiler.h */
#define FAR(X) _far @ (X);

This enables the usage of this macro within source code in the following way:
FAR (void) function():;

In this example, the compiler dependency is encapsulated in a separate file
(Compiler.h) which can be exchanged if a new compiler is used. This enables the
provision of a compiler specific header containing proprietary pre-processor
directives as well as wrapper macros for all specialized language extensions.

Note that different compilers can require extended keywords to be placed in different
places. Example:

Compiler 1 requires:
void _ far function();

Compiler 2 requires:
__far wvoid function();

In this case it is not possible to accommodate the different implementations with

inline macros, so a function-like macro style is adopted instead. This macro wraps

the return type of the function and therefore permits additions to be made, such as
far , either before or after the return type.

Example:
Compiler 1:
/* Compiler.h */
#define FAR(x) x far
Compiler 2:
/* Compiler.h */
#define FAR(x) _ far b

The following usage can expand to the examples given above:

34 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3
FAR (void) function();

Although this last example conflicts with the MISRA Rule 19.4, see chapter 3.1, itis a
reasonable solution and this exception is acceptable when necessary.

7.1.5 Configurability

Plausibility checks on configuration parameters can be made by a configuration tool
during configuration or by the pre-processor during runtime. See also
BSW_SWS 061

Detailed configuration rules and constraints may also be part of module’s own
specification and the according BSW Module documentation, which is delivered with
the module implementation.

Optional functionalities of a BSM Module shall not consume resources (RAM, ROM
and runtime). These functionalities are enabled or disabled at pre-compile time by
the according configuration parameters, like defined in chapter 10 of the respective
BSW Module specification.

[SWS_BSW_00029] Implement configuration of optional functionality

[If the BSW Module contains optional functionality, then this functionality shall be
enabled (STD ON) or disabled (STD OFF) by a Pre-compile time configuration
parameter.|(SRS_BSW_00171)

Disabled functionality will not become part of compiled code. If the code is
automatically generated, e.g. after configuration, the disabled functionality may even
not be part of source code. It may also never have been implemented, if the BSW
software provider does not support this configuration.

These symbols, STD ON and STD_OFF, and their values are defined in
Std Types.h (SWS BSW_00024).

The module configuration shall be according to the AUTOSAR Methodology, see
chapter 3.1, see SWS _BSW_118. The module configuration parameters are defined
in chapter 10 of the corresponding BSW Module specification.

[SWS_BSW_00123] Check compiler switches by comparison with defined values
[Compiler switches shall be compared with defined values. Simply checking if a
compiler switch is defined shall not be used in implementation.|(SRS_BSW_00410)

Example:
#if (EEP DEV_ERROR DETECT == STD ON)

Example of a wrong implementation:
#ifdef EEP DEV ERROR DETECT

35 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
) V1.2.0

R4.1 Rev 3

7.1.6 Various naming conventions

[SWS_BSW_00124] Naming convention for enumeration literals, status values and
pre-processor directives

[All enumeration literals, status values and pre-processor directives (#define) shall
be labeled in the following way:

<MIP> <SN>

Where here <MIP> is the Capitalized module implementation prefix of this BSW
Module (SWS_BSW_00102) and <SN> is the specific name. Only capital letters shall
be used. If <sN> consists of several words, they shall be separated by underscore.
The pre-processor directives E OK and E_NOT_ OK are exceptions to this
rule.](SRS_BSW_00441, SRS BSW_00335)

Example: The Eeprom driver has the following status values:
EEP UNINIT
EEP IDLE
EEP BUSY

Examples for pre-processor directives
#define EEP PARAM CONFIG
#define EEP SIZE

Example for enumeration literals:
typedef enum

{
EEP_DRA CONFIG,
EEP ARE,
EEP EV
} Eep NotificationType;

[SWS_BSW_00125] Naming convention for Error values
[Error values shall be named in the following way:

<MIP> E_<EN>

Where here <MIP> is the Capitalized module implementation prefix of this BSW
Module (SWS_BSW_00102) <sN> is the error name. Only capital letters shall be
used. If <EN> consists of several words, they shall be separated by
underscore.|(SRS_BSW_00327)

Example: The EEPROM driver has the following error values:
EEP_E BUSY
EEP E PARAM ADDRESS
EEP E PARAM LENGTH
EEP E WRITE FAILED

36 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

7.1.7 Configuration parameters

The BSW Module implementation must use Configuration parameter names and
Configuration parameter labels derived from the respective configuration parameters
specification. For further information, see also chapter 10.2.2- Implementation
names.

[SWS_BSW_00126] Naming conventions for Configuration parameters names and
Configuration parameter labels

[Configuration parameter names and Configuration parameter labels for
configuration parameters which are not published shall be named in one of the
following ways:

Camel case: <Ma><Pn>
Upper case: <MA><PN>

If the configuration parameter is published, then one of the following conventions
shall be used:

Camel case: <Mip><Pn>
Upper case: <MIP><PN>

Where:
e <Pn> is the specific parameter name in camel case;
e <PN> is the specific parameter name in upper case;

The term <Pn> (or <PN>) may consist of several words which may or may not be
separated by underscore.

The usage of the camel case or upper case notation shall be chosen according to the
original Configuration parameter name specification and the respective Configuration
parameter label specification.|[(SRS_BSW_00408, SRS _BSW_00347)

Examples:
e CanIfTxConfirmation
e PDUR E INIT FAILED
e EEP 21 LDEXT NORMAL WRITE BLOCK SIZE

7.1.8 Shared code

Duplicated code may result in bugs during code maintenance. This can be avoided
by sharing code whenever necessary. Shared code eases functional composition,
reusability, code size reduction and maintainability.

[SWS_BSW_00127] Avoid duplication of code
[The BSW Module implementation shall avoid duplication of
code.|(SRS _BSW _00328)

37 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

[Note that if the BSW Module implements shared code, then the implementation may
need to ensure reentrancy for this code if it is exposed to preemptive environments.
Reentrancy support is part of the API specification. See also chapter 8.3.1.]

7.1.9 Global data

To avoid multiple definition and uncontrolled spreading of global data, the visibility of
global variables must be limited. Except Debugging variables — see chapter 7.1.18.
“Debugging support” — the BSW Module shall not define global data in its header file.

[SWS_BSW_00129] Definition of global variables

[If the BSW Module defines global variables, then their definition shall take place in
the Implementation source file. Exception: Debugging Variables are not affected by
this rule, see SWS _BSW_00028.|(SRS_BSW_00308)

[SWS_BSW_00130] Naming convention for global variables
[All global variables defined by the BSW Module shall be labeled according to the
following:

<Mip> <Vn>

Where <Mip> is the Module implementation prefix of the BSW Module
(SWS _BSW_00102) and <vn> is the Variable name, which shall be written in camel
case.|(SRS_BSW_00307)

Example of global variable names:
e Can MessageBuffer [CAN BUFFER LENGTH]
e Nm RingData[NM RINGDATA LENGTH]

In principle, all global data shall be avoided due to extra blocking efforts when used
in preemptive runtime environments. Unforeseen effects may occur if no precautions
were made. If data is intended to serve as constant data, global exposure is
permitted only if data is explicitly declared read-only using the const modifier
keyword.

[SWS_BSW _00131] Definition of constant global variables
[If the BSW Module defines global variables with read-only purpose, this shall be
formalized by assigning the const modifier to their definitions. |(SRS_BSW_00309)

7.1.10 Usage of macros and inline functions

The usage of macros and inline functions instead of functions is allowed to improve
the runtime behavior. Special attention has to be paid with regard to reentrant
functions.

38 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

[SWS_BSW_00132] Usage of macros and inline functions
[The usage of macros and inline functions is allowed, for instance, to improve
runtime behavior.|(SRS_BSW_00330)

Macros can be used instead of functions where source code is used and runtime is
critical. Inline functions can be used for the same purpose. Inline functions have the
advantage (compared to macros) that the compiler can do type checking of function
parameters and return values.

7.1.11 Calling Scheduled functions (Main processing functions)

Main Processing Functions, also called Scheduled Functions, are defined in chapter
8.5.

To avoid indirect and non-transparent timing dependencies between BSW Modules,
the calling of Scheduled functions is restricted to task bodies provided by the BSW
Scheduler — see the Specification of RTE [5].

[SWS_BSW_00133] Calling Scheduled functions is restricted
[The BSW Module implementation shall not contain calls to Scheduled functions
(Main processing functions).|(SRS_BSW_00433)

Calling Scheduled functions of an un-initialized BSW Module may result in undesired
and non-defined behavior.

[SWS_BSW_00037] Behavior of un-initialized Scheduled functions

[If a Scheduled functions (Main processing functions) of un-initialized BSW Module is
called from the BSW Scheduler, then it shall return immediately without performing
any functionality and without raising any errors.|(SRS_BSW_00450)

7.1.12 Exclusive areas

Exclusive areas are defined to allow priority determination for preventing
simultaneous access to shared resources. Every Exclusive area has a unique name.
The description of Exclusive areas includes the accessing Scheduled functions (Main
processing functions), API services, Callback functions and ISR functions.

[SWS_BSW_00038] Define and document Exclusive areas

[The Exclusive areas of the BSW Module shall be defined and documented as
described in the specification of BSW Module Description Template [4] within the
BSW Module Description.|(SRS_BSW_00426)

[SWS_BSW _00134] Restriction to usage of Exclusive areas
[The Exclusive areas of the BSW Module shall only protect module internal
data.|(SRS_BSW_00426)

39 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
) V1.2.0
R4.1 Rev 3

7.1.13 Callouts

[SWS_BSW_00039] Define prototypes of Callout functions
[If the BSW Module uses Callout functions, then it shall define the prototype of the
callouts in its own Implementation header.|(BSW00460)

The file containing the implementation of the Callout function can include this header
to check if declaration and definition of callout match.

Example: Operating System
/* File: Os.h */
/* Callout declaration */

void ErrorHook (StatusType);

[SWS_BSW_00135] Conventions for Callout functions prototype declaration
[The following convention shall be used for declaration of Callout functions
prototypes:

/* --- Start section definition: --- */

#define <MIP> START SEC_ <CN> CODE

/* --- Function prototype definition: --- */

FUNC (void, <MIP> <CN> CODE) <Mip> <Cn> (void);

/* --- Stop section definition: --- */

#define <MIP> STOP_SEC_<CN> CODE

Where MIP is the Module implementation prefix of the calling module, <CN> is the
Callback name, which shall have the same spelling of the Callback name, including
module reference, but written in upper case and <Cn> is the Callback name, using
the conventional camel case notation for APl names.|(SRS_BSW_00463)

The memory segment used for a Callout function is not known to the module
developer. The integrator needs the freedom to map these functions independently
from the module design.

[SWS_BSW_00136] Memory section and memory class of Callout functions
[Each Callout function shall be mapped to its own memory section and memory
class. These memory classes will then be mapped to the actually implemented
memory classes at integration time.|(SRS_BSW_00463)

40 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

For example:

#define COM START SEC_COM SOMECALLOUT CODE

#include “Com MemMap.h”

FUNC (void, COM SOMECALLOUT CODE) Com SomeCallout (void);
#define COM STOP SEC COM SOMECALLOUT CODE

#include “Com MemMap.h”

7.1.14 AUTOSAR Interfaces

AUTOSAR Services are located in the BSW, but have to interact with AUTOSAR
Software Components above the RTE via ports, which realize AUTOSAR Interfaces.
Therefore, the RTE generator shall be able to read the interface description to
generate the RTE properly.

[SWS_BSW_00040] Define and document implemented AUTOSAR Interfaces
[If the BSW Module implements AUTOSAR Services, then the related AUTOSAR
Interfaces shall be defined and documented as described in the specification of
Software Component Template [9] within the BSW Module
Description.|(SRS_BSW_00423)

Note that the BSW Module Description Template inherits the according description
classes from the Software Component Template.

7.1.15 Interrupt service routines

The implementation of Interrupt Service Routines (ISR) is highly microcontroller
dependent. See also chapter 7.1.4 - Platform independency and compiler
abstraction.

[SWS_BSW_00137] ISR implementation is platform dependent
[If the BSW Module is classified as Platform independent BSW Module, it shall not
implement interrupt service routines.|(SRS_BSW _00164)

For more explanation on Platform independent BSW Modules, see the section 7.1.4 -
Platform independency and compiler abstraction.

[SWS_BSW_00167] Keep runtime of ISR as short as possible

[The runtime of Interrupt Service Routines (ISR) and functions that are running in
interrupt context should be kept short. This affects also, for instance, Callback
functions which are called from ISRs.

Where an ISR is likely to take a long time, an Operating System task should be used
instead.|(SRS_BSW_00325, SRS _BSW_00333)

ISR functions are defined with a name and the category according to the AUTOSAR
OS, see chapter 3.1.

41 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

[SWS_BSW_00041] Define and document ISR routines

[If the BSW Module implements Interrupt service routines (ISR), then these functions
shall be defined and documented as described in the specification of BSW Module
Description Template [4] within the BSW Module Description.|[(SRS_BSW_00427)

[SWS_BSW_00065] Support for memory protection
[If the BSW Module implements Interrupt service routines (ISR), then the
implementation shall at least support interrupt category CAT2.|(SRS_BSW_00427)

The AUTOSAR architecture does not allow execution in interrupt context on
application level. Considering this, special care is needed with nested functions
called by interrupt routines.

[SWS_BSW_00182] The transition from ISR to OS task is restricted
[If the BSW Module has implementation of Interrupt Service Routines (ISR) and a
transition from an ISR to an OS task is needed, then this transition shall take place at
the lowest level possible of the Basic Software:

e Inthe case of CAT2 ISR this shall be at the latest in the RTE.

¢ Inthe case of CAT1 ISR this shall be at the latest in the MCAL layer.
|(SRS_BSW_00326)

The definition of ISR categories CAT1 and CAT2 is available in AUTOSAR General
Requirements on Basic Software Modules [3]. For more information see also the
Specification of RTE [5], chapter “Interrupt decoupling and notification”.

A BSW Module that handles interrupts shall be delivered partially or completely as
source code so that it can be compiled to use CAT1 or CAT2 interrupts. See also
SWS BSW_00043.

Example: A BSW Module from MCAL layer is delivered as object code. The interrupt
handler could be written as a pair of small stubs (a CAT1 stub and a CAT2 stub) that
are delivered as source code. During the module integration the code is compiled as
necessary — the main handler is called.

7.1.16 Restricted OS functionality access

To avoid too much complexity in the OS integration of BSW Modules, some
restrictions in the usage of OS services are necessary.

[SWS_BSW_00138] Restriction to usage of OS services
[The BSW Module implementation is only allowed to use OS services according to
the following table:

42 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR

General Specification of Basic Software Modules

V1.2.0
R4.1 Rev 3

OS Services

RTE , EcuM
BSW
Sched
uler,
BswM,

CDD

MCAL | StbM | Other
BSW

Modules

Activate Task

Terminate Task

Chain Task

Schedule

GetTaskID

GetTaskState

DisableAllinterrupts

EnableAllinterrupts

AN

SuspendAllinterrupts

ResumeAlllnterrupts

SuspendOSinterrupts

ANERRSAN

ResumeOSinterrupts

GetResource

ReleaseResource

SetEvent

ClearEvent

GetEvent

WaitEvent

GetAlarmBase

GetAlarm

SetRelAlarm

SetAbsAlarm

CancelAlarm

GetActiveApplicationMode

A RN RN RN R A AN AN AN A A AN NN RN ENENENENENENENAN

StartOS

ShutdownOS

AANEN

GetApllicationID

StartScheduleTable

StopScheduleTable

NextScheduleTable

SyncScheduleTable

GetScheduleTableStatus

AN

SetScheduleTableAsync

ASANENANENEN

IncrementCounter

GetCounterValue

GetElapsedCounterValue

<<

TerminateApplication

AllowAccess

GetApplicationState

Controlldle

GetNumberOfActivatedCores

GetCorelD

S ASENENANANENENANENANENENENENAN

v v v

StartCore

43 of 77

- AUTOSAR confidential -

Document ID 578: AUTOSAR_SWS_BSWGeneral

AUTOSAR General Specification of Basic Software Modules

V1.2.0
R4.1 Rev 3
OS Services RTE, EcuM | MCAL | StbM | Other
BSW BSW
Sched Modules
uler,
BswM,
CDD
StartNonAutosarCore v
GetSpinlock v v v
ReleaseSpinlock v v v
TryToGetSpinlock v v v
ShutdownAllCores v

Table 2: OS Services and associated permissions

(SRS_BSW_00429)

The according services are described in AUTOSAR OS.

7.1.17 Access to hardware registers

[SWS_BSW_00179] Concurent access to registers
[All BSW modules with direct access to hardware registers shall tolerate
concurrent access to these registers from other modules, especially from
Complex Drivers. This is required for the following registers:
- registers which are currently not used due to configuration reasons,

e.g. channel or group not configured/enabled
- common registers with fields or bits which are used widely,

e.g. interrupt mask, memory protection bits
BSW modules shall tolerate concurrent access to HW registers using defensive
behavior and the techniques like:
- Protecting the read-modify-write access from interruption
- Using atomic (non-interruptible) instructions for read-modify-write access
- Protecting the access to set of registers, which have to be modified together, from
interruption|(SRS_BSW_00451)

Note:

- Memory mapped hardware registers in multi-master systems (multi-core systems,
systems with DMA) are assumed to be manipulated by one master only

- Memory mapped hardware registers are not assumed to be manipulated by the
non-maskable interrupt routines or non-maskable exception/trap routines

[SWS_BSW_00188] Access to “write-once” registers

[If a MCAL driver initializes "write-once" registers, then the driver shall offer
configuration options to disable the functionalities that have access those register, or
have dependencies to them.|()

44 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

Example:

In MCU, there should be a switch to disable the call to Mcu_InitClock(), if the clock
set-up is performed during the start-up code, before AUTOSAR platform is started
and the hardware does not allow reconfiguration.

7.1.18 Debugging support

The AUTOSAR architecture supports standardized debugging and tracing features
for basic software, RTE and software components. The debugging feature is
optional. Mainly, the debugging feature is supported by the definition of Debugging
variables in the module implementation. See also the see chapter 3.1 [12].

Debugging variables are an individual implementer choice and cannot be
standardized. If a BSW Module contains such variables, these variables have to be
described in the BSW Module Description. According to this description, it is possible
to derive their data size and data names and to configure the Debugging module
(Dbg) [12].

[SWS_BSW_00044] Describe Debugging variables

[All Debugging variables shall be described within the respective BSW Module
Description (SWS_BSW_00001) like specified in BSW Module Description Template
[4].]|(SRS_BSW _00442)

[SWS_BSW _00139] Debugging variables are global variables

[If the BSW Module supports debugging, each variable that shall be accessible for
debugging (Debugging variables) shall be defined as global
variable.|(SRS_BSW_00442)

[SWS_BSW_00140] Enable calculation of Debugging variables’ size
[The declaration of Debugging variables shall be such, that it is possible to calculate
the size of each variable by using the C operator sizeof.|(SRS_BSW_00442)

The declaration of Debugging variables is provided in the Debugging header of the
BSW Module, see chapter 5.1.7.4 - Debugging header and requirements
SWS BSW_00027 and SWS_BSW_00028.

7.1.19 Data types

7.1.19.1 AUTOSAR Standard Types

All AUTOSAR standard types and constants are placed and organized in the
AUTOSAR Standard Types Header (std_ Types.h). This header:

includes the Platform Specific Types Header (Platform Types.h)
includes the Compiler Specific Language Extension Header (Compiler.h)
defines the type std ReturnType

defines E OK and E_NOT OK symbols and their values

45 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
) V1.2.0
R4.1 Rev 3

e defines STD ON and STD OFF symbols and their values

See also SWS BSW 00024.

7.1.19.2 Platform Specific Types

Changing the microcontroller and or compiler shall only affect a limited number of
files. Thus in AUTOSAR all integer type definitions of target and compiler specific
scope are placed and organized in a single file, the Platform Specific type header
(Platform Types.h).

See also the Specification of Platform Types [13].

7.1.19.2.1 AUTOSAR Integer Data Types
The usage of native C-data types (char, int, short, 1long)isin general not
portable and reusable throughout different platforms.

[SWS_BSW _00120] Do not use native C data types

[The BSW Module shall not use native C data types. AUTOSAR Integer Data Types
shall be used instead. These types are defined in the Platform Specific Types Header
(Platform Types.h)|(SRS_BSW_00304, SRS BSW_ 00353)

The Platform Specific Types Header (Platform Types.h) is included through the
AUTOSAR Standard Types Header (Std_Types.h). See SWS_BSW_00024.

The following AUTOSAR Integer Data Types are available:

1. Fixed size guaranteed:

Data type Representation
uint8 8 bit
uintl6 16 bit
uint32 32 bit
sint8 7 bit + 1 bit sign
sintl6 15 bit + 1 bit sign
sint32 31 bit + 1 bit sign

2. Minimum size guaranteed, best type is chosen for specific platform (only
allowed for module internal use, not for APl parameters)

Data type Representation
uint8 least At least 8 bit
uintlé least At least 16 bit
uint32 least At least 32 bit
sint8 least At least 7 bit + 1 bit sign
sintl6 least At least 15 bit + 1 bit sign
sint32 least At least 31 bit + 1 bit sign
46 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral

- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

The data types with suffix 1east can be chosen if optimal performance is required
(e.g. for loop counters).

Example: Both uint8 least and uint32 least could be compiled as 32 bit on a
32 bit platform.

[SWS_BSW_00122] Redefinition of integer data types is restricted

[The implementation shall not define own types on top of the AUTOSAR Integer Data
Types if this is not necessary and the data size is known at specification
time.](SRS_BSW_00355, SRS BSW_00353)

Example 1:
The data size of parameter DeviceIndex is known at specification time (8 bit).
Hence the following is not allowed:

typedef uint8 DevicelndexType /* wrong! */
ééétic DeviceIndexType DeviceIndex

Use the following instead:
static uint8 Devicelndex

Example 2:
The parameter DeviceAddress is platform dependent (could by 16..32 bit). It is
required for runtime efficiency, that the best type is chosen for a specific platform.

On 16 bit platforms:
typedef uintl6 DeviceAddressType

On 32 bit platforms:
typedef uint32 DeviceAddressType

7.1.19.2.2Boolean type

For simple logical values, for their checks and for API return values the AUTOSAR
type boolean, defined in Platform Types.h, can be used. For usage with this
type, the following values are also defined:

FALSE = 0
TRUE 1

[SWS_BSW_00142] Allowed operations with boolean variables
[The only allowed operations with variables from type boolean are: assignment,
return and test for equality with TRUE or FALSE.|[(SRS_BSW_00378)

Note: Compiler vendors that provide a boolean data type that cannot be disabled
have to change their compiler (i.e. make it ANSI C compliant).

Example: API returns boolean value

47 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

/* File Eep.h: */

/* this automatically includes Platform Types.h: */
#include "Std Types.h"

boolean Eep Busy(void) {..}

/* File: calling module */

If (Eep Busy () == FALSE) {..}

7.1.20 Distributed execution on multi-partitioned systems

The AUTOSAR architecture supports the execution of BSW modules functionality on
multiple partitions, possibly running on different cores. If a module provides services
on multiple partitions, then either
1. the RTE transports the service call to the partition where the BSW module
entity that shall execute the call is located, or
2. the BSW module entity receives the call on the partition where it has been
called and handles its execution autonomously (new in Release 4.1). That
means, it can execute the call on the same partition, forward it to another
partition or do a combination of both — depending on the implementation
strategy of the BSW vendor.

[SWS_BSW_00190] Same API on each partition

[If a BSW module entity shall be accessible from multiple partitions (e.g. multiple
cores), then it shall provide the same API on each partition where the module entity
shall be accessible. |()

[SWS_BSW _00191] Multi-core safety
[If a BSW module entity shall be executable on multiple partitions (e.g. multiple
cores), then the whole module entity code shall be “concurrency safe”.. |()

Note: “Concurrency safe” refers to the overall design of the BSW module entity that
shall be executable in multiple partitions on different cores in parallel. If, for example,
the module code in different partitions accesses the same data, then the shared data
shall be protected by exclusive areas.

[SWS_BSW_00192] Reentrant function code

48 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

[If a BSW module entity is provided to SWCs and it shall be executable on multiple
partitions (e.g. multiple cores), then the module entity’s function code shall be
implemented according to the level “concurrency safe”.|()

This allows the usage of the same entry point in the code for a module function called
from different partitions. The partition specific handling of the module function shall
then be implemented by partition dependent branching within the module.

7.2 Error Handling

7.2.1 Handling of Symbolic Name Values

[SWS_BSW_00200] Symbolic Name values
[Symbolic Name Values shall be imported through the header of the BSW module
that provides the value.| ()

Symbolic Name Values in the implementation are using the short name of the
Container in the ECUC prefixed with <ModuleAbbreviation>Conf (of the
providing module) and the short name of the EcucParamConfContainerDef
container [TPS_ECUC_02108].

Example: For production errors, which are provided by the Dem, and are configured
as DemEventParameter within the ECUC of the Dem, the #define provided through
Dem.h is DemConf_DemEventParameter_<short-name>.

The following two code integration examples show the utilization of a production code
event ID (14) and its symbol

(DemConf DemEventParameter EEP E COM FAILURE) for the module Eep:

1. Example for source code integration:
/* File: Dem.h */

/* DEM specifies the production code error ID: */
#define DemConf DemEventParameter EEP E COM FAILURE
((Dem EventIdType) 14u)

/* File: Eep.c */
#include “Dem.h”

Dem ReportErrorStatus (DemConf DemEventParameter EEP E COM
FAILURE, DEM EVENT STATUS PREFAILED) ;

2. Example for object code integration:
/* File: Dem.h */
49 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules

V1.2.0
R4.1 Rev 3

/* DEM specifies the production code error ID: */
#define DemConf DemEventParameter EEP E COM FAILURE
((Dem EventIdType) 14u)

/* File: Eep PBcfg.c

Post-build configuration source

This file needs to be compiled and linked with the
object code delivery: */

#include “Dem.h”

#include “Eep cfg.h”

const Dem EventIdType Eep E Com Failure =
DemConf_DemEventParameter_EEP_E_COM_FAILURE;

/* File: Eep cfg.h
This file needs to be compiled and linked with the
object code delivery: */

extern const Dem EventIdType Eep E Com Failure;
/* File: Eep.c

This file is delivered as object file. */
#include “Dem.h”

#include “Eep cfg.h”

Dem ReportErrorStatus(Eep E Com Failure,
DEM EVENT STATUS PREFAILED) ;

7.2.2 Error Classification

[SWS_BSW_00144] Error classification
[All errors, which may be detected and/or reported by the BSW Module, are classified
in two different types:

Development errors and integration errors are expected to occur only during
development, and detect problems of the implementation or the integration. ()
Production errors and extended production errors which detect problems of
the hardware, which may lead to fail-safe operation and/or can be repaired by
the garage. ()

|(SRS_BSW_00337)

The error classification is available in chapter 7 of the corresponding BSW Module
specification.

[SWS_BSW_00073] Implementation specific errors

50 of 77

Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

[If the BSW Module implementation defines additional errors, then these shall be
described in the BSW module documentation. The error classification table shall be
extended by implementation specific errors. |(SRS_BSW_00337)

Example of Development errors:
For the first SW integration, the extended error detection and reporting are enabled
for all BSW Modules. Detected errors like

e EEPROM address access out of valid range

e Sending on non-existent CAN channel

e API service called without former module initialization

are reported to the Development Error Tracer (Det). The calls to the API function of
the Det are counted and logged for later evaluation. After successful software
integration, the reporting is disabled.

Example of Production errors:
¢ NVRAM data block checksum error
e EEPROM cell write failure
e SPI device failure

7.2.3 Development Errors

7.2.3.1 Documentation

The SWS shall list the development errors in chapter 7 in accordance with the
classification of SRS _BSW_00337 and SRS _BSW_00350.

[SWS_BSW_00201] Development error type
[Development error values are of Type uint8. |()

7.2.3.2 Configuration of Development Errors

[SWS_BSW_00202] Activation of Development Errors

[The activation of development errors is configurable (ON / OFF) at pre-compile time.
The switch <MODULE PREFIX> DEV_ERROR_DETECT (see chapter 10 of the
respective module SWS) shall activate or deactivate the detection of all development
errors. |()

[SWS_BSW_00203] API parameter checking

If the <MODULE PREFIX>_DEV_ERROR_DETECT switch is enabled API parameter
checking is enabled. The detailed description of the detected errors can be found in
chapter 7.2 and chapter 8 of the respective module SWS.

51 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
) V1.2.0

R4.1 Rev 3

[SWS_BSW_00042] Detection of Development errors

[The detection and reporting of Development errors shall be performed only if the
configuration parameter for detection of Development errors is set. |
(SRS_BSW_00338).

The detection of development errors is configurable. It enables extended debugging
capabilities for the according BSW Module.

Example: The EEPROM driver provides internal checking of API parameters which is
only activated for the first software integration test (“development build”) and disabled
afterwards (“deployment build”).

The detection of Development errors is configurable at Pre-compile time for every
single BSW Module (SRS _BSW_00338). The configuration parameter is specified in
chapter 10 of the respective BSW Module. Its name is formed in the following way
(SRS_BSW_00350):

<Mip>DevErrorDetect {<MIP> DEV ERROR DETECT}

Example:

The implementation code is generated automatically by the supporting tool chain
considering the configuration parameter for the detection of Development errors. If
the detection is not configured, the generated code does not contain error detection
and reporting implementation.

Example:
The implementation code contains compiler switches, which implement the
configuration of error detection:

/* File: Nm Cfg.h */
/* Pre-compile configuration parameters for Network Manager */
/* NM_DEV_ERROR DETECT */
/* To activate (STD ON) or deactivate (STD OFF) detection of */
/* development errors. */
/* Satisfies BSW _SWS 042. */
#define NM DEV_ERROR DETECT STD_ON

/* File: Nm.c */
/* Network Manager implementation */

#include “Nm_Cfg.h”
#1f (NM DEV_ERROR DETECT == STD ON)
.. /* development errors to be detected */

#endif /* NM _DEV_ERROR_DETECT */

Note that for switching this configuration through compiler switches the standard
types STD_ON and STD OFF shall be used (SWS_BSW_00029).

52 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

The configuration parameter for detection of Development errors is listed in the
Chapter 10 of the respective BSW Module specification.

If the detection of Development errors is active, then API parameter checking is
enabled (SWS_BSW_00049). The detailed description of the detected errors can be
found in chapter 7 and chapter 8 of the according BSW Module specification.

7.2.3.3 Reporting Development errors

If detection of Development errors is configured (see SWS_BSW_00042) than any
detected error shall be reported:

[SWS_BSW_00045] Report detected Development errors to Det
[The BSW Module shall report detected Development errors to the Development
error tracer (Det) using the service Det ReportError.|(SRS_BSW_00338)

Note that the reported development error values must be of type uint8, in order to
comply with the signature of Det ReportError.

See chapter 7.2.3 — “Development Errors” for more information about activation and

deactivation of Development error detection. See the Specification of Det[16] for
more information about the service Det ReportError.

7.2.4 Production Errors and Extended Production Errors

7.2.4.1 Production errors and extended production errors

[SWS_BSW_00204] Documentation of production errors

[For each production error and extended production error,

appropriate documentation shall be provided according to the AUTOSAR SWS
template. |()

7.2.4.2 Configuration of Production Errors and Extended Production Errors
[SWS_BSW_00205] Detection of production errors

[The detection of production code errors and extended production errors cannot be
switched off, unless the Module SWS describes configuration parameters or other
conditions, which define the activation of certain (extended) production errors. |()

7.2.4.3 Reporting Production Errors and Extended Production Errors

Event IDs of (extended) production errors are provided as symbolic name values by
Dem through Dem.h.

The EventId symbols of production errors are the short name of the SericeNeeds

53 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUT(\ SAR General Specification of Basic Software Modules
V1.2.0

R4.1 Rev 3

of the BSW module (through the Dem ECUC) prefixed with

DemConf DemEventParameter

See ecuc_sws_2108 (AUTOSAR_TPS_ECUConfiguration.pdf “3.4.5.2
Representation of Symbolic Names”).

[SWS_BSW _00143] Values for Event IDs of production errors and extended
production errors are imported

[Values for Event IDs of (extended) production errors are assigned externally by the
configuration of the Dem module..|(SRS_BSW_00409)

For reporting production errors and extended production errors, the Dem interface
Dem ReportErrorStatus is used:

[SWS_BSW_00046] Report Production errors to Dem

[The BSW Module shall report all detected Production errors to the Diagnostic Event
Manager (Dem) using the service Dem ReportErrorStatus if this specific
Production error has been configured for this BSW Module.|(SRS_BSW_00339)

Note that the configuration of Production errors is optional in the ECU Configuration
of the BSW Modules.Note that not only error events from failed conditions checking
may be reported. The

BSW Module specification shall also require reporting events when error-checking
conditions are passed.

[SWS_BSW_00066] Report EventStatus to Dem
[For reporting an error state the following BSW specific interface of DEM shall be
called:
void Dem ReportErrorStatus (
Dem:EventIdType Eventld,
Dem EventStatusType EventStatus
)
If an error event occurred EventStatus shall be equal to:
‘DEM EVENT STATUS FAILED'.
If an error event is not detected with sufficient precision and requires maturing by
pre-debouncing EventStatus shall be equal to:
‘DEM EVENT STATUS PREFAILED’.
If the BSW modules has explicitly detected that the error is not present
EventStatus shall be equal to: *‘DEM EVENT STATUS PASSED’.
If a failure free detection is not pOSSIb|e with sufficient precision and requires further
maturing by predebouncing EventStatus shall be equal to:
‘DEM _EVENT STATUS PREPASSED’.
If a check is not possnble (e.g., requires specific operating mode), no result shall be
reported.|(SRS_BSW_00339)

The error state information could be reported either by a state change or when the
state is checked (event or cyclic) depending upon the configuration of the error event.
Checks are not required to be cyclic. [references to the requirements xxxx]

54 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

Pre-de-bouncing is handled inside the Diagnostic event manager using AUTOSAR
predefined generic signal de-bouncing algorithms.

[Note]

The callback service <Module>_InitMonitorForEvent<EventName> is principally
specified by the specification [Dem256] within Section 8.4.3.1.1 of the
specification document for the module Diagnostic Event Manager (Dem). This
document only specifies extensions which matter for the correct functionality

of error monitors.

[SWS_BSW_00206] Only event-based error monitors shall implement the callback
service
[<Module>_InitMonitorForEvent<EventName>.

[Note]

The BSW module Dem calls an implemented callback service
<Module>_InitMonitorForEvent<EventName> to trigger the re-initialization of an
event-based error monitor depending on the EnableConditions or
ControlDTCSettings. The re-initialization reason is passed by the parameter
InitMonitorReason. |()

[SWS_BSW_00207] On each trigger of the callback service
[<Module>_InitMonitorForEvent<EventName>, the particular BSW module shall
re-initialize the monitor functionality and report a new error status to the

BSW module Dem immediately, if the error status could be evaluated anytime,
otherwise at the next opportunity. |()

[SWS_BSW_00208] If a particular BSW module implements a callback service
[<Module>_InitMonitorForEvent<EventName>, then the BSWMD shall specify a
corresponding ServiceNeeds. |()

7.2.4.4 Example use case: Error is detected and notified

“Real” Error

P P F F \ F I]:
|

| | hrme 4| | 1])
ReportError Timer |

Dem
LibraryTimer
Dem ‘
Main Function

Error Event
\ Error Event treated as

T T T T T
o 20 40 60 80 100 t
P: DEM_PASSED
F: DEM_FAILED

The timer function shall be provided (in this example) in the pre-de-bouncing library
of the Diagnostic event manager.

55 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0
R4.1 Rev 3

8 API specification

8.1 Imported types

A list with imported types and the according included header files is specified in
chapter 8 of the according BSW Module specification.

8.2 Type definitions

[SWS_BSW_00146] Naming conventions for data types
[All data types defined by the BSW Module shall be labeled according to the
following convention:

<Ma> <Tn>Type

Where <Ma> is the Module abbreviation (SWS_BSW_00101) and <Tn> is the Type
name, which shall be written in camel case.|(SRS_BSW_00305)

Examples:
e Eep LengthType
e Dio SignalType
e Nm StateType

Note that Basic AUTOSAR types (SRS_BSW_00304) do not need to support the
naming convention defined in SWS BSW_00146.

The BSW Module type definitions are specified in chapter 8 of the according BSW
Module specification. Type definitions are defined using the following template:

[SWS_BSW_00209]"

Name: Name of type

Type: Allowed entries: ‘enumeration’, ‘structure’, ‘reference to’ (pointer) a type, allowed
AUTOSAR integer data types (SRS_BSW_00304)

Range: Range of legal Meanings, units, etc..
values

Description: Informal description of the use of this type.

Constants of this |Predefined names of this type.

type: (optional)

10

To avoid double and inconsistent definition of data types in both BSW Module and
Software Components, common data types are defined in RTE Types header files.
See also SWS_BSW_00023.

[SWS_BSW_00147] Definition of data types used in Standard Interfaces and
AUTOSAR Interfaces

56 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

[Data types used in Standard Interface and AUTOSAR Interface shall only be defined
in RTE Types header file (Rte Type.h).](SRS_BSW_00447)

8.3 Function definitions

8.3.1 General specification on API functions

The function definitions for this module are specified in chapter 8 of the according
BSW Module specification. These functions are defined using the following template:

Service name: Name of API call

Syntax: Syntax of call including return type and parameters.

Service ID [hex]: | This is the ID of service. Numbering starts for each BSW Module at 0x00. This ID
is used as parameter for the error report API of Development Error Tracer

Sync/Async: Behavior of this service (Synchronous / Asynchronous)
Reentrancy: Reentrant / Non Reentrant
Parameters (in): [Parameter 1 Description of parameter 1
Parameter 2 Description of parameter 2
Parameters Parameter 3 Description of parameter 3
(inout):
Parameters (out): [Parameter 4 Description of parameter 4
Return value: Range of legal values Description and the circumstances under which that value

is returned, and the values of configuration attributes in
which the value can be returned

Description: Short description of the API call

Reentrancy terms and definitions:

e Concurrency safe: Unlimited concurrent execution of this interface is
possible, including preemption and parallel execution on multi core systems.

e Reentrant: Pseudo-concurrent execution (i.e. preemption) of this interface is
possible on single core systems.

e Not reentrant: Concurrent execution of this interface is not possible.

e Conditionally reentrant: Concurrent execution of this interface may be
possible under certain conditions. These conditions are part of API
specification.

Please note that the implementation of a module entity shall be “concurrency safe”
whenever its implemented entry is reentrant and the function is supposed to be
executed on a multi-partitioned system.

The following reentrancy techniques are suggested:

Avoid use of static and global variables

Guard static and global variables using blocking mechanisms
Use dynamic stack variables

57 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
) V1.2.0

R4.1 Rev 3

To avoid name clashes, all modules API functions have unique names. The Module
implementation prefix is part of API functions nhame, what also eases the code
reading, as every API shows to which module it belongs.

[SWS_BSW_00148] Naming convention for API services
[In the BSW Module implementation, all services from modules API shall be named
in the following way:

<Mip> <Sn>

Where <Mip> is the Module implementation prefix (SWS_BSW_00102) and <Sn> is
the API Service name.|[(SRS_BSW_00310, SRS BSW_00413, SRS BSW_00347)

Note that the Module implementation prefix includes additional information from BSW
Module provider in case of BSW Driver modules. This information is also part of the
modules APl names (SWS_BSW_00102).

For instance, the following API names are defined:
e Eep 21 LDExt Init() /* BSW Driver API */
e Can TransmitFrame ()
¢ Nm RequestBusCommunication ()
e Com DeInit()

[SWS_BSW _00186] Input Pointer Parameters
[All input parameters which are passed as pointers shall use the type qualifier
“const”. The compiler abstraction macro P2CONST must be use.|()

For example:
Std ReturnType <MIP> DoWithInputBuffer (void* Buffer)

Shall be changed to

Std ReturnType <MIP> DoWithInputBuffer (
P2CONST (void, AUTOMATIC,<MIP> APPL DATA))

[SWS_BSW_00187] Input-Output Pointer parameters
[AIlINOUT / OUT parameters which are passed as pointers shall use the compiler
abstraction macro P2VAR.|()

For example:
Std ReturnType <MIP> DoWithInOutBuffer (uint8* Buffer)

Shall be changed to

Std ReturnType <MIP> DoWithInOutBuffer (
P2VAR (uint8, AUTOMATIC, <MIP> APPL DATA))

58 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

[SWS_BSW_00049] Implement APl parameter checking

[If the detection of Development errors is active for this BSW Module (see
SWS _BSW_00042), then parameter checking for all API services shall be
enabled,|(SRS_BSW_ 00323, SRS BSW_00414)

Details about API parameter checking, especially the definitions which values of
passed API parameters are invalid (e.g. check for maximum Pduld value), are
available in the according BSW Module specifications.

[SWS_BSW_00149] Do not pass function pointers as API parameter
[Function pointers shall not be passed as API parameter.|[(SRS_BSW_00371)

If different instances of the BSW Module are used, it may be necessary to
differentiate API calls through an instance index.

[SWS_BSW_00047] Implement index based API services
[If different instances of the BSW Module are characterized by:
e same vendor and
¢ same functionality and
e same hardware device
then their API shall be accessed index based. |(SRS_BSW_00413)

Example:
MyFunction (uint8 MyIdx, MyType MyParameters, ...);

Or, optimized for source-code delivery:
#define MyInstance (index, p) Function##index (p)

The BSW Module API is further specified in chapter 8 of the according BSW Module
specification.

8.3.2 Initialization function

When the BSW Module needs to initialize variables and hardware resources, this is
done in a separate Initialization function. This section contains general requirements
valid for all module specific implementations of an Initialization function service.

The Initialization function APl name follows SWS BSW 00148 and has Init as
Service name.

Examples:
e Can Init()
e Eep 21 LDExt Init()

Not all BSW Module have an Initialization function. Refer to chapter 7 and 8 of the
according BSW Module specification for further details.

59 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

To protect the system against faulty initialization of the ECU or parts of the BSW, the
usage of the Initialization function of a BSW Module is restricted.

[SWS_BSW_00150] Call to Initialization functions is restricted
[Only the ECU State Manager and Basic Software Mode Manager are allowed to call
Initialization functions.|(SRS_BSW_ 00101, SRS BSW_00467)

The Initialization function signature has always the same pattern, where the main
argument is the Configuration pointer for the selected configuration variant to be
used. For instance:

void Eep 21 LDExt Init (const Eep ConfigType *ConfigPtr)
SWS BSW_00047[SWS_BSW_00185] Return type of initialization functions
[The return type of Initialization functions is always void |(SRS_BSW_00358).

The Initialization function is responsible to set the selection of configuration
parameters for the module. This selection is passed as argument to the function by
ECU State Manager (EcuM) or by the Basic Software Mode Manager (BswM). See
also SWS BSW_00058.

[SWS_BSW_00050] Check parameters passed to Initialization functions

[If the parameter checking for the Initialization function is enabled
(SWS_BSW_00049), the Configuration pointer argument shall be checked with the
following conditions:

e If the initialization function does not need nor evaluate the passed argument,
the Configuration pointer shall have a NULL value.

¢ If the initialization function requires the passed argument, the Configuration
pointer shall be different from NULL.

If these conditions are not satisfied, a Development error with type "Invalid
configuration set selection” shall be reported to Development Error Tracer (Det), see
SWS BSW_00151. |[(SRS_BSW 00414, SRS BSW_00400, SRS BSW_00438)

[SWS_BSW_00151] Name convention for error “Invalid configuration set selection”
[The name for the Development error “Invalid configuration set selection” should be
formed in the following way:

<MIP> E INIT FAILED

Where <MIP> is the Module implementation prefix of this BSW
Module.|(SRS_BSW_00414)

See chapter 7, Error classification, of the according BSW Module specification for
additional information about this error — for instance, the Error ID.

60 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

[SWS_BSW_00212] NULL pointer checking

['lf the detection of development errors is active for this BSW Module (see
SWS_BSW_00042), then pointer parameters shall be checked against NULL_PTR

unless NULL_PTR is explicitly allowed as a valid pointer address value in the API
parameter specification. If such a violation is detected a development error shall be

raised. |()

Note: The name for the development errors for NULL pointer violations is usually
<MIP>_E_PARAM_POINTER

Examples for legal NULL_PTR parameters are the configuration pointers for pre-
compile variants in the <Mip>_Init functions, PdulnfoPtr->SduDataPtr in CopyRxData
and CopyTxData with SduLength set to zero, or the RetrylnfoPtr in CopyTxData if
retry is not supported.

[SWS_BSW_00071] Set module initialization status
[The module initialization status must be set at the end of Initialization function
execution. |[(SRS_BSW_00450)

8.3.3 De-Initialization function

When the BSW Module needs to perform functionality during ECU shutdown, change
to sleep and similar phases, this is in general done in a separate De-initialization
function. This section contains general requirements valid for all module specific
implementations of a De-initialization function service.

The De-initialization function APl name follows SWS BSW 00148 and has DeInit
as Service name.

Example:
The AUTOSAR COM modules function Com DeInit () stops all started [-PDU
groups.

To protect the system against faulty de-initialization of the ECU or parts of the BSW,
the usage of the De-Initialization function of a BSW Module is restricted.

[SWS_BSW _00152] Call to De-Initialization functions is restricted
[Only the ECU State Manager and Basic Software Mode Manager are allowed to call
De-Initialization functions. [(SRS_BSW_00467)

[SWS_BSW_00072] Module state after De-Initialization function
[The state of a BSW Module shall be UNINIT after a call to its De-Initialization
function.](SRS_BSW_00450)

Not all BSW Module have a De-Initialization function. Refer to chapter 7 and 8 of the
according BSW Module specification for further details.

61 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
) V1.2.0

R4.1 Rev 3

8.3.4 Get Version Information

This section contains general requirements valid for all module specific
implementations of the Get Version Information service.

[SWS_BSW_00168] Get Version Information function name
[The Get Version Information API name follows SWS BSW_ 00148 and has
GetVersionInfo as Service name.|(SRS_BSW_00407)

Example:
void Eep GetVersionInfo (
Std VersionInfoType *versioninfo

)

[SWS_BSW_00064] Execution behavior of Get Version Information
[Get Version Information function shall be executed synchronously to its call and
shall be reentrant.](SRS_BSW_00407)

[SWS_BSW_00052] Return result from Get Version Information

[Get Version Information function shall have only one parameter. This parameter
shall return the version information of this BSW Module with type

Std VersionInfoType, imported from Standard Types header

(Std Types.h).|(SRS_BSW_00407)

Note that the parameter name is part of each BSW Module specification.

The returned version information has type Std VersionInfoType, which includes
Published information from this module (see also SWS _BSW_00059 and AUTOSAR
Specification of Standard Types [13]):

e VendorId

e Module Id

e Vendor specific version number

[SWS_BSW _00051] Configuration parameter for enabling Check Version
Information service

[The BSW Module shall provide a Pre-compile time configuration parameter for
enabling or disabling the Get Version Information API. The configuration parameter
name shall be formed in the following way:

<MIP> VERSION INFO API

|(SRS_BSW_00411)

Example:
/* File: Eep Cfg.h */
#define EEP VERSION INFO APT STD ON /*APT is enabled */

62 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

Note that for switching this configuration, the standard types STD ON and STD OFF
shall be used (SWS_BSW_00029).

[Note that if source code for both caller and callee of Get Version Information service
are available, the Implementation source of the BSW Module may realize
<Mip> GetVersionInfo as a macro, defined in its Implementation header file. |

Note: If <Mip> GetVersionInfo is provided as a macro and a function is required,
the provided macro could additionally be wrapped by a function definition.

[SWS_BSW _00164] No restriction to Get Version Information calling context
[1t shall be possible to call Get Version Information function at any time (e.g. before
the Initialization function is called). |(SRS_BSW _00407)

API configuration:
e The configuration of Published information (SWS_BSW_00059) of this BSW
Module affects the API return values.

Please refer to the according BSW Module specification for further implementation
details.

8.4 Callback notifications

Callbacks are functions, which are used for notifications to other modules.

The function prototypes of the callback functions shall be provided in the Callback
header file, see SWS BSW_00026, chapter 5.1.7.3.

Callbacks, which are AUTOSAR Services, follow the signature expected by the RTE.
In this case, the return value of these functions has the type Std ReturnType and
the caller can assume, that always E_OK is returned. Callback functions should never
fail, but this can happen, e.g. in partitioned systems

[SWS_BSW_00180] Signature of Callback functions of AUTOSAR Services

[If the BSW Module provides Callback functions which are AUTOSAR Services, i.e.
the function invocation is routed via RTE, then the signature of these functions shall
follow the signature provided by the RTE to invoke servers via RTE Call
APIL.|(SRS_BSW_00440)

[SWS_BSW _00172] Avoid return types other than void in Callback functions

63 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

[If the BSW Module provides Callback functions which are not AUTOSAR Services,
then the return type of these functions shall avoid types other than
void.|(SRS_BSW_00359)

If Callback functions do serve as simple triggers, no parameter is necessary to be
passed. If additional data is to be passed to the caller within the callback scope, it
must be possible to forward the content of that data using a parameter.

[SWS_BSW_00173] Callback function parameters
[Callback functions are allowed to have parameters.|(SRS_BSW_00360)

Some Callback functions are called in interrupt context. According to

SRS BSW_00333 the BSW Module specification contains the information, for each
Callback function, if it is called in interrupt context or not. The implementation of
Callback functions called in interrupt context must be kept as short as possible, as
specified in SWS_BSW_00167.

Example: A callback from CAN Interface could be called from an ISR of the CAN
driver. In this case, this information is part of the callback specification within the
SWS for the CAN Interface module.

The list of callbacks is specific for every BSW Module. Please refer to the respective
BSW Module specification for further details.

8.5 Scheduled functions

Many BSW Modules have one or more Scheduled Functions (also called Main
processing functions) that have to be called cyclically or upon an event (e.g. within an
OS Task) and that do the main work of the module.

Scheduled functions are directly called by Basic Software Scheduler. They have no
return value and no parameter. Calling of Scheduled functions is restricted to the
BSW Scheduler, see chapter 7.1.11.

The according BSW Module specification either defines one Scheduled function and
handles all the processing internally or defines multiple Scheduled functions with
appropriate module specific extensions. This depends on specific BSW Module
requirements.

Scheduled functions are specified in chapter 8 of the corresponding BSW Module
specification. These functions are defined using the following template:

Service name: Name of API call

Syntax: Syntax of call including return type and parameters.

Service ID[hex]: [Number of service ID. This ID is used as parameter for the error report API of
Development Error Tracer.

Description: Short description of the scheduled function

[SWS_BSW_00153] Naming convention for Scheduled functions
64 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

[Scheduled functions of a BSW Module shall be named according to the following:
<Mip> MainFunction[<Sd>]

Where <Mip> is the Module implementation prefix (SWS_BSW_00102) . The content
between brackets shall be used only if the module defines more than one Scheduled
function, where <sd> is a module specific name extension given to every
function.|(SRS_BSW_00373, SRS BSW_00347)

Examples (for illustration only):

a) Possible main processing function of EEPROM driver:
void Eep MainFunction (void)

b) Possible main processing functions of FlexRay driver:
void Fr MainFunction TxClstl (void)
void Fr MainFunction TxClst2 (void)
void Fr MainFunction RxClstl (void)
void Fr MainFunction RxClst2 (void)

[SWS_BSW _00154] Scheduled functions have no parameters
[Scheduled functions shall have no parameters and no return value. Their return type
is always void.|(SRS_BSW_ 00373, SRS BSW_00376)

Note: Scheduled functions are typically not reentrant.

Scheduled functions must be able to be allocated to a basic task. Because of this,
they are not allowed to enter any wait state.

[SWS_BSW_00156] Scheduled functions do not enter a wait state
[Scheduled functions shall not enter any wait state.|[(SRS_BSW_00424)

Typically, basic tasks are more efficient then extended tasks. Extended and basic
task are classified in the Specification of Operating System [8].

The scheduling strategy that is built inside the BSW Modules must be properly
documented, see also SWS _BSW_00054.

8.6 Expected Interfaces

8.6.1 Mandatory Interfaces

The list of mandatory interfaces is specific for every BSW Module. Please refer to the
corresponding BSW Module specification.

65 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3
8.6.2 Optional Interfaces

The list of optional interfaces is specific for every BSW Module. Please refer to the
corresponding BSW Module specification.

8.6.3 Configurable interfaces

Please refer to the corresponding BSW Module specification. In this chapter, all
interfaces are listed where the target function could be configured. The target
function is usually a callback function. The name of this kind of interfaces is not fixed
because they are configurable.

66 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules

V1.2.0
R4.1 Rev 3
9 Sequence diagrams
Please refer to according BSW Module specification.
67 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral

- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3
10 Configuration specification

This chapter complements chapter 10 of according BSW Module specification.

10.1Introduction to configuration specification

In addition to this section, it is highly recommended to read the documents:
e AUTOSAR Layered Software Architecture [2]
e AUTOSAR ECU Configuration Specification
e This document describes the AUTOSAR configuration methodology and
the AUTOSAR configuration metamodel in detail.

The following is only a short survey of the topic and it will not replace the ECU
Configuration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic parts of an
implementation of a BSW Module. This means that only generic or configurable
module implementation can be adapted to the environment (software and hardware)
in use during system and ECU configuration.

The configuration of parameters can be achieved at different times during the
software process: before compile time, before link time or after build time. In the
following, the term “configuration class” of a parameter is used in order to refer to a
specific configuration point in time.

Different configuration classes will result in different implementations and design
processes, as specified in this document and in the BSW Module own specification.

10.1.2 Variants

Variants describe sets of configuration parameters. E.g., Variant 1: only pre-compile
time configuration parameters; Variant 2: mix of pre-compile- and post build time-
configuration parameters. In one variant, a parameter can only be of one
configuration class.

The possible configuration variants of a BSW Module are described in its
specification. Each Variant has a uniqgue name, which could be referenced to in later
chapters. The maximum number of allowed variants is three. Note that each variant
has its own requirement ID in the BSW Module specification.

68 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUT(©o OoOSAR General Specification of Basic Software Modules
V1.2.0

R4.1 Rev 3
10.1.3 Containers

Containers structure the set of configuration parameters. This means:
e All configuration parameters are kept in containers.
e (sub-) containers can reference (sub-) containers. It is possible to assign a
multiplicity to these references. The multiplicity then defines the possible
number of instances of the contained parameters.

Configuration parameters are clustered into a container whenever:
e The configuration parameters logically belong together (e.g., general
parameters which are valid for the entire module NVRAM manager)
e The configuration parameters need to be instantiated (e.g., parameters of the
memory block specification of the NVRAM manager — those parameters must
be instantiated for each memory block)

10.1.4 Configuration parameter tables

The tables for configuration parameters are divided in three sections:
e General section
e Configuration parameter section
e Section of included/referenced containers

10.1.4.1 General section:
SWS Item Requirement ID
Container Name Identifies the container by a name, e.g.,
CanDriverConfiguration
Description Explains the intention and the content of the container .
Configuration Parameters
10.1.4.2 Configuration parameter section:
Name Identifies the parameter by name.
Description Explains the intention of the configuration parameter.
Type Specifies the type of the parameter (e.g., uint8..uint32) if possible or
mark it “-*,
Unit Specifies the unit of the parameter (e.g., ms) if possible or mark it “--*
Range Specifies the range (or Describes the value(s) or ranges.

possible values) of the
parameter (e.g., 1..15,
ON,OFF) if possible or

mark it “--*,

Configuration Class Pre-compile see® | Reference to (a) variant(s).
Link time see’ | Reference to (a) variant(s).
Post Build see’ | Reference to (a) variant(s).

Scope

see the explanation for configuration class label: Pre-compile time
see the explanation for configuration class label: Link time
® see the explanation for configuration class label: Post Build time
69 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTO SAR General Specification of Basic Software Modules

V1.2.0
R4.1 Rev 3
e LOCAL : The parameter is applicable only for the module it is
defined in
e ECU : The parameter may be shared with other modules (i.e.
exported)
Dependency Describe the dependencies with respect to the scope if known ot mark it
as il_ _Ii.
10.1.4.3 Section of included/referenced containers:
Included Containers
Container Name Multiplicity Scope / Dependency
Reference to a valid Specifies the .
(sub)container by its possible number Describes the scope of the referenced sub-

container if known or mark it as “ -*.

The scope describes the impact of the
configuration parameter: Does the setting affect
only one instance of the module (instance), all

name, e.g. CanController of instances of
the referenced
container and its

cont_amed_ instances of this module (module), the ECU or a
configuration

network.
parameters.

Possible values of scope :

Possible values: instance, module, ECU, network>

<multiplicity>
<min_multiplicity..

S Describes the dependencies with respect to the
max_multiplicity>

scope if known or mark it as “- -*,

10.1.5 Configuration class labels

The configuration parameter section is complemented by a label with additional
specification for each type of configuration class:

Pre-compile time: Specifies whether the configuration parameter shall be of
configuration class Pre-compile time or not.

Label Description
X The configuration parameter shall be of configuration class Pre-compile time.
-- The configuration parameter shall never be of configuration class Pre-compile time.

Link time: Specifies whether the configuration parameter shall be of configuration
class Link time or not.

Label Description

X The configuration parameter shall be of configuration class Link time.

-- The configuration parameter shall never be of configuration class Link time.

Post Build: Specifies whether the configuration parameter shall be of configuration
class Post Build or not.

70 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

Label Description

The configuration parameter shall be of configuration class Post Build and no specific
implementation is required.

Loadable - the configuration parameter shall be of configuration class Post Build and only
one configuration parameter set resides in the ECU.

Multiple - the configuration parameter shall be of configuration class Post Build and is
M selected out of a set of multiple parameters by passing a dedicated pointer to the init
function of the module.

-- The configuration parameter shall never be of configuration class Post Build.

10.2General configuration specification

10.2.1 Configuration files

See chapter 5.1 for more information about the configuration file structure.

[SWS_BSW_00157] Configuration files shall be human-readable
[Files holding configuration data for the BSW Module shall have a format that is
readable and understandable by human beings.|[(SRS_BSW_00160)

10.2.2 Implementation names for configuration parameters

Configuration parameters’ names are specified in chapter 10 of the according BSW
Module specification.

Example:
Name EepNormalWriteBlockSize
{EEP_NORMAL_WRITE_BLOCK_SIZE}
Description Number of bytes written within one job processing cycle in
normal mode. Implementation Type: Eep_LengthType.

Two distinct names are specified:

e Configuration parameter name specification: It specifies the Configuration
parameter name of this configuration parameter object in the AUTOSAR
Model, for instance: EepNormalWriteBlockSize.

e Configuration parameter label specification: It specifies the Configuration
parameter label to be used for this parameter in implementation files, for
instance: EEP. NORMAL WRITE BLOCK SIZE.

The same principles used for defining the names of implementation files and API

functions also apply for the naming of parameters.

71 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
) V1.2.0

R4.1 Rev 3

Note that according to SWS_BSW_00126 all Configuration parameter names and
Configuration parameter labels shall start with the Module implementation prefix
(SWS_BSW_00102) or its capitalized form. This is achieved by replacing the Module
abbreviation term within the respective Configuration parameter name specification
and Configuration parameter label specification through the Module implementation
or its capitalized form.

Example:

The Configuration parameter label specification EEP NORMAL WRITE BLOCK SIZE,
results in the derived Configuration parameter label

EEP 21 LDEXT NORMAL WRITE BLOCK SIZE for the vendor with VendorID==21
and with vendorApiInfix==LDEXT.

These rules allow configuration of multiple BSW driver modules from the same
module type, even modules provided by same vendor.

10.2.3 Pre-compile time configuration

[SWS_BSW _00183] Pre-Compile time configuration

[The configuration parameters in pre-compile time are set before compilation starts.
Thus, the related configuration must be done at source code level. Pre-compile time
configuration allows decoupling of the static configuration from implementation
|(SRS_BSW_00397).

All Pre-compile time configuration parameters are defined in the Pre-compile time
configuration source (SWS_BSW_00012) or in the Pre-compile time configuration
header (SWS_BSW_00031).

Example:
/* File: Tp Cfg.h */
/* Pre-compile time configuration */
#define TP _USE NORMAL ADDRESSING KTPOFF
#define TP USE NORMAL FIXED ADDRESSING KTPOFF
#define TP _USE EXTENDED ADDRESSING KTPON
/* File: Tp.c */

#include "Tp Cfg.h"
#if (TP_USE NORMAL ADDRESSING == KTPOFF)

#endif

72 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

The separation of configuration dependent data at compile time furthermore
enhances flexibility, readability and reduces efforts for version management, as no
source code is affected.

10.2.4 Link time configuration

The usage of link time parameters allows configurable functionality in BSW Modules
that are delivered as object code. This is common, for instance, for BSW drivers.

[SWS_BSW_00184] Link time configuration

[The configuration of BSW Modules with link time parameters is achieved on object
code basis in the stage after compiling and before linking| (SRS_BSW_00398). See
also SWS BSW_00117.

[SWS_BSW_00056] Configuration pointer to link-time configurable data

[If the BSW Module depends on link-time configurable data at runtime, then it shall
use a read only reference (Configuration pointer) to an external configuration
instance.|(SRS_BSW_00344)

All Link time configuration parameters are defined in the Link time configuration
source (SWS _BSW_00014) and declared in the Link time configuration header
(SWS_BSW_00033).

10.2.5 Post-build time configuration

Post-build time configuration mechanism allows configurable functionality of BSW
Modules that are deployed as object code. Usually those modules are BSW drivers.

[SWS_BSW_00057] Implement Post-build configuration data structure

[If the BSW Module has Post-build time configuration parameters, the post-build
configuration data shall be defined in a structure: the Post-build configuration data
structure.|[(SRS_BSW_00438)

[SWS_BSW _00158] Use of Configuration pointers to Post-build configuration data
structure is restricted

[The Post-build configuration data structure shall be pointed to by Configuration
pointers. Only EcuM contains Configuration pointers to the Post-build configuration
data structure.|(SRS_BSW _00438)

There are two types of post-build time configuration parameter sets: Loadable and
selectable post-build time configurations.

Loadable post-build configuration sets are located in a separate segment and can be
loaded independently of the actual code [7]. This is the case, for instance, for
loadable CAN configuration. To enable loadable configuration, the memory layout of
these parameters must be known:

73 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

[SWS_BSW_00159] Avoid pointer indirection to Loadable post-build time
configuration

[If the BSW Module has Loadable post-build time configuration parameters, these
parameters should be optimized in a way that pointer indirection is avoided, i.e. the
configuration is always located in the same address.|(SRS_BSW_00399)

Selectable post-build time configurations enable the reuse of ECUs, as different
configurations can be supported without reprogramming the ECU. These parameters
will be selected from multiple sets of parameters after code has been loaded and
started. This configuration is a data structure that contains the relevant parameter
values.

[SWS_BSW_00058] Set selection of Selectable post-build time configuration

[If the BSW Module has Selectable post-build time configuration parameters, than
one of several configurations shall be selected during module startup, i.e. within its
Initialization function. See also SWS BSW_00050.|(SRS_BSW_00400)

If there is at least one module with the configuration class “post build selectable” then
the EcuM or the BswM (SWS_BSW_00150) will determine which pointer to the
configuration parameters is required to be passed to the Initialization functions of
BSW Modules (SWS_BSW_00050).

If there are no modules in the configuration class “post build selectable” but one or
more modules are in the “post build” class then a fixed pointer will be passed to the
Initialization functions.

If there is only one set of configuration data (i.e. there are no multiple configuration
sets) the references can be resolved as constant pointers. The indirections shall be
kept as simple as possible.

[SWS_BSW _00160] Reference pointer to Post-build time configurable data

[If the BSW Module operates on one Post-build time configurable data, then it shall
use a reference (pointer) to an external configuration instance. This reference shall
be read-only if only one configuration set is used.|(SRS_BSW_00404,

SRS BSW_00405)

Example:
/* File: ComM Cfg.h */

/* Type declaration of the Configuration Type */
typedef struct ComM ConfigType Tag {

} ComM ConfigType;

/* File: ComM.h */

/* Forward declaration: */
typedef struct ComM ConfigType Tag ComM ConfigType;
extern void ComM (ComM ConfigType * ComMConfigPtr);

74 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
’ V1.2.0

R4.1 Rev 3

All Post-build time configuration parameters are defined in the Post-build time
configuration source (SWS_BSW_00015) and declared in the Post-build time
configuration header (SWS_BSW_00035).

10.3Published Information

Published information contains data defined by the implementer of the BSW Module
that does not change when the module is adapted (i.e. configured) to the actual
hardware and software environment. It contains version and manufacturer
information.

This is necessary to provide unambiguous version identification for each BSW
Module and enable version cross check as well as basic version retrieval facilities.
Thus, the module compatibility is always visible.

[SWS_BSW_00059] Define Published information elements

[The Published information of the BSW Module shall be provided within all header
files by defining pre-processor directives (#define) and protect them against multiple
definition. The preprocessor identifier is formed in the following way:

<MIP> <PI>

Where <P1I> is the according Published information element name. The module
shall provide definitions for the Published information elements listed in the table
below. These definitions shall have values with range as specified in this table:

75 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules

V1.2.0
R4.1 Rev 3
Published information elements
Information element Type / Range Information element description
<MIP> VENDOR ID #define/uintl16 |Vendor ID (vendorId) of the

dedicated implementation of this
module according to the AUTOSAR
vendor list. The ID is the same as in
HIS Software Supplier Identifications
[20].

<MIP> MODULE ID #define/uint16 |Module ID of this module, as defined
in the BSW Module List [1].

<MIP> AR RELEASE MAJOR VERSION #tdefine/uint8 |Major version number of AUTOSAR
release on which the appropriate
implementation is based on.

<MIP> AR RELEASE MINOR VERSION #define/uint8 |Minor version number of AUTOSAR
release on which the appropriate
implementation is based on.

<MIP> AR RELEASE_REVISION_VERSION|#define/uint8 [Revision version number of
AUTOSAR release on which the
appropriate implementation is based
on.

<MIP> SW MAJOR VERSION #define/uint8 |Major version number of the vendor
specific implementation of the
module. The numbering is vendor
specific.

<MIP> SW MINOR VERSION #tdefine/uint8 |Minor version number of the vendor
specific implementation of the
module. The numbering is vendor
specific.

<MIP> SW PATCH VERSION #define/uint8 |Patch level version number of the
vendor specific implementation of
the module. The numbering is
vendor specific.

The Published information is configured in the BSW Module Description [4] for this
module.|(SRS_BSW_00402, SRS _BSW_00003, SRS _BSW_00379,
SRS BSW 00374, SRS _BSW_00318, SRS BSW_00407)

[SWS_BSW_00161] Restriction to declaration of vendor identification
[The vendor identification shall be declared only in the following way, without any
cast, to allow verification in a pre-processor.
#define <MIP> VENDOR ID <vi>
Where <vi> is the corresponding Vendor Id, as required in
SWS BSW_00059.|(SRS_BSW_00374)

The following example shows the declaration of Published information for the CAN
module implementation version 1.2.3 of vendor 43 developed according to
AUTOSAR Release 4.0.3. The module ID is obtained from BSW Modules List [1].

Example:
/* File: Can.h */
/* Published information */
#define CAN MODULE ID CFG 0x0050u
#define CAN VENDOR ID CFG 0x002Bu
76 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral

- AUTOSAR confidential -

AUTOSAR General Specification of Basic Software Modules
) V1.2.0

R4.1 Rev 3

#define CAN AR RELEASE MAJOR VERSION CFG 0x04u
#define CAN AR RELEASE MINOR VERSION CFG 0x00u
#define CAN AR RELEASE PATCH VERSION CFG 0x03u
#define CAN SW MAJOR VERSION CFG 0x0lu
#define CAN SW MINOR VERSION CFG 0x02u
#define CAN SW PATCH VERSION CFG 0x03u

Note that the Published information elements <MIP> SW MAJOR_ VERSION,
<MIP> SW MINOR VERSION and <MIP> SW PATCH VERSION are defined by
software vendor.

[SWS_BSW_00162] Convention for version numbers
[The version numbers of successive BSW Module implementations shall be
enumerated according to the following rules:
e Increasing a more significant digit of a version number resets all less
significant digits.
e The <MIP> sw_ PATCH VERSION is incremented if the module is still upwards
and downwards compatible (e.g. bug fixed)
e The <MIP> sw MINOR VERSION is incremented if the module is still
downwards compatible (e.g. new functionality added)
e The <MIP> sw MAJOR VERSION is incremented if the module is not
compatible any more (e.g. existing API changed)
The digit <MIP>_sw_MAJOR VERSION is more significant than
<MIP>_ swW _MINOR_ VERSION, which is more significant than
<MIP> SW PATCH VERSION.|](SRS _BSW_ 00321)

Example:

Take an ADC module implementation with version 1.14.2. Then:
Versions 1.14.2 and 1.14.9 are exchangeable.

Version 1.14.2 may contain bugs which are corrected in 1.14.9
Version 1.14.2 can be used instead of 1.12.0, but not vice versa
Version 1.14.2 cannot be used instead of 1.15.4 or 2.0.0

77 of 77 Document ID 578: AUTOSAR_SWS_BSWGeneral
- AUTOSAR confidential -

	1 Introduction and functional overview
	1.1 Traceability
	1.2 Document conventions

	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Module implementation prefix
	5.1.2 Module implementation files
	5.1.3 Imported and exported information
	5.1.4 BSW Module Description
	5.1.5 Module documentation
	5.1.6 Code file structure
	5.1.6.1 Implementation source
	5.1.6.2 Pre-compile time configuration source
	5.1.6.3 Link time configuration source
	5.1.6.4 Post-build time configuration source
	5.1.6.5 Interrupt frame implementation source

	5.1.7 Header file structure
	5.1.7.1 Implementation header
	5.1.7.2 Application Header File
	5.1.7.3 Callback header
	5.1.7.4 Debugging header
	5.1.7.5 Pre-compile time configuration header
	5.1.7.6 Link time configuration header
	5.1.7.7 Post-build time configuration header

	5.1.8 Version check

	6 Requirements traceability
	7 Functional specification
	7.1 General implementation specification
	7.1.1 Conformance to MISRA C
	7.1.2 Conformance to AUTOSAR Basic Software Requirements
	7.1.3 Conformance to AUTOSAR Methodology
	7.1.4 Platform independency and compiler abstraction
	7.1.5 Configurability
	7.1.6 Various naming conventions
	7.1.7 Configuration parameters
	7.1.8 Shared code
	7.1.9 Global data
	7.1.10 Usage of macros and inline functions
	7.1.11 Calling Scheduled functions (Main processing functions)
	7.1.12 Exclusive areas
	7.1.13 Callouts
	7.1.14 AUTOSAR Interfaces
	7.1.15 Interrupt service routines
	7.1.16 Restricted OS functionality access
	7.1.17 Access to hardware registers
	7.1.18 Debugging support
	7.1.19 Data types
	7.1.19.1 AUTOSAR Standard Types
	7.1.19.2 Platform Specific Types
	7.1.19.2.1 AUTOSAR Integer Data Types
	7.1.19.2.2 Boolean type

	7.1.20 Distributed execution on multi-partitioned systems

	7.2 Error Handling
	7.2.1 Handling of Symbolic Name Values
	7.2.2 Error Classification
	7.2.3 Development Errors
	7.2.3.1 Documentation
	7.2.3.2 Configuration of Development Errors
	7.2.3.3 Reporting Development errors

	7.2.4 Production Errors and Extended Production Errors
	7.2.4.1 Production errors and extended production errors
	7.2.4.2 Configuration of Production Errors and Extended Production Errors
	7.2.4.3 Reporting Production Errors and Extended Production Errors
	7.2.4.4 Example use case: Error is detected and notified

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 General specification on API functions
	8.3.2 Initialization function
	8.3.3 De-Initialization function
	8.3.4 Get Version Information

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	10 Configuration specification
	10.1 Introduction to configuration specification
	10.1.1 Configuration and configuration parameters
	10.1.2 Variants
	10.1.3 Containers
	10.1.4 Configuration parameter tables
	10.1.4.1 General section:
	10.1.4.2 Configuration parameter section:
	10.1.4.3 Section of included/referenced containers:

	10.1.5 Configuration class labels

	10.2 General configuration specification
	10.2.1 Configuration files
	10.2.2 Implementation names for configuration parameters
	10.2.3 Pre-compile time configuration
	10.2.4 Link time configuration
	10.2.5 Post-build time configuration

	10.3 Published Information

