
Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Document Title Specification of Memory Mapping
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 128

Document Classification Standard

Document Version 1.5.0

Document Status Final

Part of Release 4.1

Revision 1

Document Change History
Date Version Changed by Description

28.02.2013 1.5.0 AUTOSAR
Administration

• Consistent naming pattern for
memory allocation keywords
• pre-define M1 values for the

option attribute of
MemorySection and
SwAddrMethod
• added configuration for Compiler

Abstraction
• support BSW module specific

MemMap header files
• recommended memory allocation

keywords are reworked

01.12.2011 1.4.0 AUTOSAR
Administration

• Consistent naming pattern for
memory allocation keywords is
introduced
• Refine definition the <PREFIX>

part in memory allocation
keywords

1 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

03.11.2010 1.3.0 AUTOSAR
Administration

• ECU Configuration Parameters
for MemMap defined
• Define generation of MemMap

header files
• New standardised Memory

Allocation Keywords for new
initialisation policy CLEARED
added
• Refinement of <SIZE> suffix of

Memory Allocation Keywords to
<ALIGNMENT> suffix,
• Clarify link MetaModel attribute

values,
– Define MemorySectionType

and
SectionInitializationPolicy for
the standardised Memory
Allocation Keywords

– Define that <NAME> used
for Memory Allocation
Keywords is the
MemorySection shortName

• Application hint for usage of
INLINE and LOCAL_INLINE
added
• Handling structs, arrays and

unions redefined

04.12.2009 1.2.0 AUTOSAR
Administration

• Typo errors are corrected
throughout the document
• Memory Mapping section has

been extended for application
SWC
• Common Published information

has been updated
• Legal disclaimer revised

23.06.2008 1.1.1 AUTOSAR
Administration Legal disclaimer revised

2 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

12.12.2007 1.1.0 AUTOSAR
Administration

• In MEMMAP004,all size postfixes
for memory segment names were
listed, the keyword ’BOOLEAN
was added, taking into account
the particular cases where
boolean data need to be mapped
in a particular segment.
• In MEMMAP004 and

SWS_MemMap_00021,tables
are defining the mapping
segments associated to
#pragmas instructions, adding
some new segments to take into
account some implementation
cases
• Document meta information

extended
• Small layout adaptations made

13.02.2006 1.0.0 AUTOSAR
Administration Initial Release

3 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for the
purpose of information only. AUTOSAR and the companies that have contributed to it
shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types of
Intellectual Property Rights. The commercial exploitation of the material contained in
this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary refer-
ence models, "use cases", and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the Specification Documents for illustration
purposes only, and they themselves are not part of the AUTOSAR Standard. Nei-
ther their presence in such Specification Documents, nor any later documentation of
AUTOSAR conformance of products actually implementing such exemplary items, im-
ply that intellectual property rights covering such exemplary items are licensed under
the same rules as applicable to the AUTOSAR Standard.

4 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Table of Contents

1 Introduction and functional overview 7

2 Acronyms and Abbreviations 8

3 Related documentation 9

3.1 Input documents . 9
3.2 Related standards and norms . 10
3.3 Related specification . 10

4 Constraints and assumptions 11

4.1 Limitations . 11
4.2 Applicability to car domains . 11

5 Dependencies to other modules 12

5.1 File structure . 12
5.1.1 Code file structure . 12
5.1.2 Header file structure . 12

6 Requirements traceability 14

7 Functional specification 19

7.1 General issues . 19
7.2 Mapping of variables and code . 20

7.2.1 Requirements on implementations using memory mapping
header files for BSW Modules and Software Components 20

7.2.2 Requirements on memory mapping header files 31
7.3 Examples . 34

7.3.1 Code Section . 34
7.3.2 Fast Variable Section . 38
7.3.3 Code Section in ICC2 cluster . 44
7.3.4 Callout sections . 45

8 API specification 48

9 Sequence diagrams 49

10 Configuration specification 50

10.1 How to read this chapter . 50
10.2 Containers and configuration parameters 50

10.2.1 Variants . 50
10.2.1.1 VARIANT-PRE-COMPILE 50

10.2.2 MemMap . 50
10.2.3 MemMapAddressingModeSet . 51
10.2.4 MemMapAddressingMode . 57
10.2.5 MemMapAllocation . 58

5 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

10.2.6 MemMapGenericMapping . 61
10.2.7 MemMapSectionSpecificMapping 62
10.2.8 MemMapGenericCompilerMemClass 63

10.3 Published Information . 63

11 Analysis 64

11.1 Memory allocation of variables . 64
11.2 Memory allocation of constant variables 65
11.3 Memory allocation of code . 67

A Referenced Meta Classes 68

B Changes w.r.t. Release 4.1.1 97

B.1 Deleted SWS items . 97
B.2 Changed SWS items . 97
B.3 Added SWS items . 97

C Not applicable requirements 97

6 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

1 Introduction and functional overview

This document specifies mechanisms for the mapping of code and data to specific
memory sections via memory mapping files. For many ECUs and microcontroller plat-
forms it is of utmost necessity to be able to map code, variables and constants module
wise to specific memory sections. Selection of important use cases:

Avoidance of waste of RAM
If different variables (8, 16 and 32 bit) are used within different modules on a 32 bit
platform, the linker will leave gaps in RAM when allocating the variables in the RAM.
This is because the microcontroller platform requires a specific alignment of variables
and some linkers do not allow an optimization of variable allocation.
This wastage of memory can be circumvented if the variables are mapped to specific
memory sections depending on their size. This minimizes unused space in RAM.

Usage of specific RAM properties
Some variables (e.g. the RAM mirrors of the NVRAM Manager) must not be initialized
after a power-on reset. It shall be possible to map them to a RAM section that is not
initialized after a reset.
For some variables (e.g. variables that are accessed via bit masks) it improves both
performance and code size if they are located within a RAM section that allows for bit
manipulation instructions of the compiler. Those RAM sections are usually known as
’Near Page’ or ’Zero Page’.

Usage of specific ROM properties
In large ECUs with external flash memory there is the requirement to map modules
with functions that are called very often to the internal flash memory that allows for fast
access and thus higher performance. Modules with functions that are called rarely or
that have lower performance requirements are mapped to external flash memory that
has slower access.

Usage of the same source code of a module for boot loader and application
If a module shall be used both in boot loader and application, it is necessary to allow
the mapping of code and data to different memory sections.
A mechanism for mapping of code and data to memory sections that is supported by all
compilers listed in chapter 3.1 is the usage of pragmas. As pragmas are very compiler
specific, a mechanism that makes use of those pragmas in a standardized way has to
be specified.

Support of Memory Protection
The usage of hardware memory protection requires a separation of the modules vari-
ables into different memory areas. Internal variables are mapped into protected mem-
ory, buffers for data exchange are mapped into unprotected memory.

Support of partitioning
In some cases it is necessary to separate partition assigned memory. Therefore an
additional separation of the module variables into different memory (partition-)areas is
needed if the BSW Module shall support a split over several Partitions.

7 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Memory Map-
ping specification that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:
BSW Basic Software
ISR Interrupt Service Routine
NVRAM Non-Volatile RAM

8 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

3 Related documentation

3.1 Input documents

[1] Glossary
AUTOSAR_TR_Glossary.pdf

[2] General Specification of Basic Software Modules
AUTOSAR_SWS_BSWGeneral.pdf

[3] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral.pdf

[4] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate.pdf

[5] Basic Software Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[6] Methodology
AUTOSAR_TR_Methodology.pdf

[7] General Requirements on Basic Software Modules
AUTOSAR_SRS_SRSBSWGeneral.pdf

[8] Basic Software Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[9] Specification of RTE Software
AUTOSAR_SWS_RTE.pdf

[10] Cosmic C Cross Compiler User’s Guide for Motorola MC68HC12, V4.5

[11] ARM ADS compiler manual

[12] GreenHills MULTI for V850 V4.0.5
Building Applications for Embedded V800, V4.0, 30.1.2004

[13] TASKING for ST10 V8.5
C166/ST10 v8.5 C Cross-Compiler User’s Manual, V5.16

[14] TASKING for ST10 V8.5
C166/ST10 v8.5 C Cross-Assembler, Linker/Locator, Utilities User’s Manual,
V5.16

9 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

3.2 Related standards and norms

Not applicable.

3.3 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for SWS Memory Mapping.

10 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

4 Constraints and assumptions

4.1 Limitations

During specification of abstraction and validation of concept the compilers listed in
chapter 3.1 have been considered. If any other compiler requires keywords that cannot
be mapped to the mechanisms described in this specification this compiler will not be
supported by AUTOSAR. In this case, the compiler vendor has to adapt its compiler.

The concepts described in this document do only apply to C compilers. C++ is not in
scope of this version.

A dedicated pack-control of structures is not supported. Hence global set-up passed
via compiler / linker parameters has to be used.

A dedicated alignment control of code, variables and constants is not supported.
Hence affected objects shall be assigned to different sections or a global setting passed
via compiler / linker parameters has to be used.

4.2 Applicability to car domains

No restrictions.

11 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

5 Dependencies to other modules

[SWS_MemMap_00020] d The SWS Memory Mapping is applicable for each
AUTOSAR basic software module and software component. Therefore the imple-
mentation of memory mapping files shall fulfill the implementation and configura-
tion specific needs of each software module in a specific build scenario. See
also [Recommendation A], [SWS_MemMap_00003], [SWS_MemMap_00018] and
[SWS_MemMap_00001]. c(SRS_BSW_00384)

5.1 File structure

5.1.1 Code file structure

Not applicable.

5.1.2 Header file structure

[SWS_MemMap_00028] d The Memory Mapping shall provide a BSW memory map-
ping header file if any of the BSW Module Descriptions is describing a Depen-
dencyOnArtifact as requiredArtifact.DependencyOnArtifact.category
= MEMMAP In this case the file name of the BSW memory mapping header file name
is defined by the attribute value requiredArtifact.DependencyOnArtifact.ar-
tifactDescriptor.shortLable in the BSW Module Description. c

Please note that [SWS_MemMap_00028] does support that either several BSW Mod-
ule Descriptions contributing to the same file (e.g MemMap.h for legacy code) or that
the same BSW Module Description specifies a set of memory mapping header files
with differnt names for example in case of a BSW Module Description of an ICC2 clus-
ter.

For instance:
<REQUIRED-ARTIFACTS>

<DEPENDENCY-ON-ARTIFACT>
<SHORT-NAME>MemMap</SHORT-NAME>
<CATEGORY>MEMMAP</CATEGORY>
<ARTIFACT-DESCRIPTOR>

<SHORT-LABEL>MemMap.h</SHORT-LABEL>
<CATEGORY>SWHDR</CATEGORY>

</ARTIFACT-DESCRIPTOR>
</DEPENDENCY-ON-ARTIFACT>

</REQUIRED-ARTIFACTS>

Results in the generation of the requested Memory Allocation Key Words in the file
MemMap.h

12 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

[SWS_MemMap_00032] d For each basic software module description which is part
of the input configuration a basic software module specific memory mapping header
file {Mip}_MemMap.h shall be provided by the Memory Mapping if the BSW Mod-
ule Descriptions is NOT describing a DependencyOnArtifact as requiredArti-
fact.DependencyOnArtifact.category = MEMMAP. Hereby {Mip} is composed
according <Msn>[_<vi>_<ai>] for basic software modules where

• <Msn> is the shortName (case sensitive) of the BswModuleDescription

• <vi> is the vendorId of the BSW module

• <ai> is the vendorApiInfix of the BSW module

The sub part in squared brackets [_<vi>_<ai>] is omitted if no vendorApiInfix is
defined for the Basic Software Module which indicates that it does not use multiple
instantiation. c

«header»
{Mip}_MemMap.h

BSW module

«includes»

Figure 5.1: Basic Software Module specific memory mapping header file

[SWS_MemMap_00029] d For each software component type which is part of the
input configuration a software component type specific memory mapping header file
{componentTypeName}_MemMap.h shall be provided by the Memory Mapping. c

SWC«header»
{componentTypeName}_MemMap.h

«includes»

Figure 5.2: Software Component type specific memory mapping header file

13 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

6 Requirements traceability

The following tables references the requirements specified in [3] and links to the fulfill-
ment of these. Please note that if column ’Satisfied by’ is empty for a specific require-
ment this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by
[SRS_BSW_00004] No description [SWS_MemMap_00999]
[SRS_BSW_00005] Modules of the æC Abstraction Layer (MCAL)

may not have hard coded horizontal interfaces
[SWS_MemMap_00999]

[SRS_BSW_00006] The source code of software modules above
the æC Abstraction Layer (MCAL) shall not be
processor and compiler dependent.

[SWS_MemMap_00003]
[SWS_MemMap_00005]
[SWS_MemMap_00006]
[SWS_MemMap_00007]
[SWS_MemMap_00010]
[SWS_MemMap_00011]
[SWS_MemMap_00013]

[SRS_BSW_00007] All Basic SW Modules written in C language
shall conform to the MISRA C 2004 Standard.

[SWS_MemMap_00999]

[SRS_BSW_00009] All Basic SW Modules shall be documented
according to a common standard.

[SWS_MemMap_00999]

[SRS_BSW_00010] No description [SWS_MemMap_00999]
[SRS_BSW_00101] No description [SWS_MemMap_00999]
[SRS_BSW_00158] All modules of the AUTOSAR Basic Software

shall strictly separate configuration from
implementation

[SWS_MemMap_00999]

[SRS_BSW_00159] No description [SWS_MemMap_00999]
[SRS_BSW_00160] No description [SWS_MemMap_00999]
[SRS_BSW_00161] The AUTOSAR Basic Software shall provide a

microcontroller abstraction layer which
provides a standardized interface to higher
software layers

[SWS_MemMap_00999]

[SRS_BSW_00162] The AUTOSAR Basic Software shall provide a
hardware abstraction layer

[SWS_MemMap_00999]

[SRS_BSW_00164] The Implementation of interrupt service
routines shall be done by the Operating
System, complex drivers or modules

[SWS_MemMap_00999]

[SRS_BSW_00167] No description [SWS_MemMap_00999]
[SRS_BSW_00168] SW components shall be tested by a function

defined in a common API in the Basis-SW
[SWS_MemMap_00999]

[SRS_BSW_00170] The AUTOSAR SW Components shall provide
information about their dependency from
faults, signal qualities, driver demands

[SWS_MemMap_00999]

[SRS_BSW_00171] No description [SWS_MemMap_00999]
[SRS_BSW_00172] The scheduling strategy that is built inside the

Basic Software Modules shall be compatible
with the strategy used in the system

[SWS_MemMap_00999]

[SRS_BSW_00300] All AUTOSAR Basic Software Modules shall
be identified by an unambiguous name

[SWS_MemMap_00999]

[SRS_BSW_00301] All AUTOSAR Basic Software Modules shall
only import the necessary information

[SWS_MemMap_00999]

14 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Requirement Description Satisfied by
[SRS_BSW_00302] All AUTOSAR Basic Software Modules shall

only export information needed by other
modules

[SWS_MemMap_00999]

[SRS_BSW_00304] All AUTOSAR Basic Software Modules shall
use the following data types instead of native
C data types

[SWS_MemMap_00999]

[SRS_BSW_00306] AUTOSAR Basic Software Modules shall be
compiler and platform independent

[SWS_MemMap_00003]
[SWS_MemMap_00005]
[SWS_MemMap_00006]
[SWS_MemMap_00007]
[SWS_MemMap_00010]
[SWS_MemMap_00011]
[SWS_MemMap_00013]

[SRS_BSW_00307] Global variables naming convention [SWS_MemMap_00999]
[SRS_BSW_00308] AUTOSAR Basic Software Modules shall not

define global data in their header files, but in
the C file

[SWS_MemMap_00999]

[SRS_BSW_00309] All AUTOSAR Basic Software Modules shall
indicate all global data with read-only
purposes by explicitly assigning the const
keyword

[SWS_MemMap_00999]

[SRS_BSW_00310] API naming convention [SWS_MemMap_00999]
[SRS_BSW_00312] No description [SWS_MemMap_00999]
[SRS_BSW_00314] All internal driver modules shall separate the

interrupt frame definition from the service
routine

[SWS_MemMap_00999]

[SRS_BSW_00323] All AUTOSAR Basic Software Modules shall
check passed API parameters for validity

[SWS_MemMap_00999]

[SRS_BSW_00325] No description [SWS_MemMap_00999]
[SRS_BSW_00326] No description [SWS_MemMap_00999]
[SRS_BSW_00327] Error values naming convention [SWS_MemMap_00999]
[SRS_BSW_00328] All AUTOSAR Basic Software Modules shall

avoid the duplication of code
[SWS_MemMap_00001]
[SWS_MemMap_00005]

[SRS_BSW_00329] No description [SWS_MemMap_00999]
[SRS_BSW_00330] It shall be allowed to use macros instead of

functions where source code is used and
runtime is critical

[SWS_MemMap_00999]

[SRS_BSW_00331] No description [SWS_MemMap_00999]
[SRS_BSW_00333] For each callback function it shall be specified

if it is called from interrupt context or not
[SWS_MemMap_00999]

[SRS_BSW_00334] All Basic Software Modules shall provide an
XML file that contains the meta data

[SWS_MemMap_00999]

[SRS_BSW_00335] Status values naming convention [SWS_MemMap_00999]
[SRS_BSW_00336] Basic SW module shall be able to shutdown [SWS_MemMap_00999]
[SRS_BSW_00337] Classification of development errors [SWS_MemMap_00999]
[SRS_BSW_00338] No description [SWS_MemMap_00999]
[SRS_BSW_00339] Reporting of production relevant error status [SWS_MemMap_00999]
[SRS_BSW_00341] Module documentation shall contains all

needed informations
[SWS_MemMap_00999]

[SRS_BSW_00342] No description [SWS_MemMap_00999]

15 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Requirement Description Satisfied by
[SRS_BSW_00343] The unit of time for specification and

configuration of Basic SW modules shall be
preferably in physical time unit

[SWS_MemMap_00999]

[SRS_BSW_00344] No description [SWS_MemMap_00999]
[SRS_BSW_00345] BSW Modules shall support pre-compile

configuration
[SWS_MemMap_00999]

[SRS_BSW_00346] All AUTOSAR Basic Software Modules shall
provide at least a basic set of module files

[SWS_MemMap_00999]

[SRS_BSW_00347] No description [SWS_MemMap_00999]
[SRS_BSW_00348] No description [SWS_MemMap_00999]
[SRS_BSW_00350] All AUTOSAR Basic Software Modules shall

apply a specific naming rule for
enabling/disabling the detection and reporting
of development errors

[SWS_MemMap_00999]

[SRS_BSW_00353] All integer type definitions of target and
compiler specific scope shall be placed and
organized in a single type header

[SWS_MemMap_00999]

[SRS_BSW_00355] No description [SWS_MemMap_00999]
[SRS_BSW_00357] For success/failure of an API call a standard

return type shall be defined[
[SWS_MemMap_00999]

[SRS_BSW_00358] The return type of init() functions implemented
by AUTOSAR Basic Software Modules shall
be void

[SWS_MemMap_00999]

[SRS_BSW_00359] All AUTOSAR Basic Software Modules
callback functions shall avoid return types
other than void if possible

[SWS_MemMap_00999]

[SRS_BSW_00360] AUTOSAR Basic Software Modules callback
functions are allowed to have parameters

[SWS_MemMap_00999]

[SRS_BSW_00361] All mappings of not standardized keywords of
compiler specific scope shall be placed and
organized in a compiler specific type and
keyword header

[SWS_MemMap_00002]

[SRS_BSW_00369] All AUTOSAR Basic Software Modules shall
not return specific development error codes
via the API

[SWS_MemMap_00999]

[SRS_BSW_00370] All AUTOSAR Basic Software Modules shall
group and out-source callback declarations in
a separate header file

[SWS_MemMap_00999]

[SRS_BSW_00371] The passing of function pointers as API
parameter is forbidden for all AUTOSAR Basic
Software Modules

[SWS_MemMap_00999]

[SRS_BSW_00373] No description [SWS_MemMap_00999]
[SRS_BSW_00375] Basic Software Modules shall report wake-up

reasons
[SWS_MemMap_00999]

[SRS_BSW_00377] A Basic Software Module can return a module
specific types

[SWS_MemMap_00999]

[SRS_BSW_00378] AUTOSAR shall provide a boolean type [SWS_MemMap_00999]
[SRS_BSW_00380] No description [SWS_MemMap_00999]
[SRS_BSW_00381] No description [SWS_MemMap_00999]

16 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Requirement Description Satisfied by
[SRS_BSW_00383] The Basic Software Module specifications

shall specify which other configuration files
from other modules they use at least in the
description

[SWS_MemMap_00999]

[SRS_BSW_00384] The Basic Software Module specifications
shall specify at least in the description which
other modules they require

[SWS_MemMap_00020]

[SRS_BSW_00385] List possible error notifications [SWS_MemMap_00999]
[SRS_BSW_00386] The BSW shall specify the configuration for

detecting an error
[SWS_MemMap_00999]

[SRS_BSW_00387] The Basic Software Module specifications
shall specify how the callback function is to be
implemented

[SWS_MemMap_00999]

[SRS_BSW_00388] Containers shall be used to group
configuration parameters that are defined for
the same object

[SWS_MemMap_00999]

[SRS_BSW_00389] Containers shall have names [SWS_MemMap_00999]
[SRS_BSW_00390] Parameter content shall be unique within the

module
[SWS_MemMap_00999]

[SRS_BSW_00391] No description [SWS_MemMap_00999]
[SRS_BSW_00392] Parameters shall have a type [SWS_MemMap_00999]
[SRS_BSW_00393] Parameters shall have a range [SWS_MemMap_00999]
[SRS_BSW_00394] The Basic Software Module specifications

shall specify the scope of the configuration
parameters

[SWS_MemMap_00999]

[SRS_BSW_00395] The Basic Software Module specifications
shall list all configuration parameter
dependencies

[SWS_MemMap_00999]

[SRS_BSW_00396] The Basic Software Module specifications
shall specify one classe (of the three) to be
supported

[SWS_MemMap_00999]

[SRS_BSW_00397] No description [SWS_MemMap_00999]
[SRS_BSW_00398] No description [SWS_MemMap_00999]
[SRS_BSW_00399] No description [SWS_MemMap_00999]
[SRS_BSW_00400] No description [SWS_MemMap_00999]
[SRS_BSW_00401] No description [SWS_MemMap_00999]
[SRS_BSW_00404] No description [SWS_MemMap_00999]
[SRS_BSW_00405] No description [SWS_MemMap_00999]
[SRS_BSW_00406] A static status variable denoting if a BSW

module is initialized shall be initialized with
value 0 before any APIs of the BSW module is
called

[SWS_MemMap_00999]

[SRS_BSW_00407] Each BSW module shall provide a function to
read out the version information of a
dedicated module implementation

[SWS_MemMap_00999]

[SRS_BSW_00408] No description [SWS_MemMap_00999]
[SRS_BSW_00409] No description [SWS_MemMap_00999]
[SRS_BSW_00410] Compiler switches shall have defined values [SWS_MemMap_00999]
[SRS_BSW_00411] All AUTOSAR Basic Software Modules shall

apply a naming rule for enabling/disabling the
existence of the API

[SWS_MemMap_00999]

17 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Requirement Description Satisfied by
[SRS_BSW_00412] References to c-configuration parameters

shall be placed into a separate h-file
[SWS_MemMap_00999]

[SRS_BSW_00413] An index-based accessing of the instances of
BSW modules shall be done

[SWS_MemMap_00999]

[SRS_BSW_00414] The init function may have parameters [SWS_MemMap_00999]
[SRS_BSW_00415] Interfaces which are provided exclusively for

one module shall be separated into a
dedicated header file

[SWS_MemMap_00999]

[SRS_BSW_00416] The sequence of modules to be initialized
shall be configurable

[SWS_MemMap_00999]

[SRS_BSW_00417] Software which is not part of the SW-C shall
report error events only after the DEM is fully
operational.

[SWS_MemMap_00999]

[SRS_BSW_00419] No description [SWS_MemMap_00999]
[SRS_BSW_00422] No description [SWS_MemMap_00999]
[SRS_BSW_00423] No description [SWS_MemMap_00999]
[SRS_BSW_00424] No description [SWS_MemMap_00999]
[SRS_BSW_00425] The BSW module description template shall

provide means to model the defined trigger
conditions of schedulable objects

[SWS_MemMap_00999]

[SRS_BSW_00426] No description [SWS_MemMap_00999]
[SRS_BSW_00427] No description [SWS_MemMap_00999]
[SRS_BSW_00428] No description [SWS_MemMap_00999]
[SRS_BSW_00429] No description [SWS_MemMap_00999]
[SRS_BSW_00432] Modules should have separate main

processing functions for read/receive and
write/transmit data path

[SWS_MemMap_00999]

[SRS_BSW_00433] No description [SWS_MemMap_00999]

18 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

7 Functional specification

7.1 General issues

The memory mapping files include the compiler and linker specific keywords for mem-
ory allocation into header and source files. These keywords control the assignment of
variables and functions to specific sections. Thereby implementations are independent
from compiler and microcontroller specific properties. The assignment of the sections
to dedicated memory areas / address ranges is not the scope of the memory mapping
file and is typically done via linker control files.

[SWS_MemMap_00001] d For each build scenario (e.g. Boot loader, ECU Application)
an own set of memory mapping files has to be provided. c(SRS_BSW_00328)

[SWS_MemMap_00002] d The memory mapping file name
shall be {Mip}_MemMap.h for basic software modules and
{componentTypeName}_MemMap.h for software components where {Mip} is
the Module implementation prefix and {componentTypeName} is the name of the
software component type. c(SRS_BSW_00361)

Please note that the information of {Mip} is taken from the Basic Software Module
Description of the related BSW module as described in [SWS_MemMap_00028] and
[SWS_MemMap_00032].

[SWS_MemMap_00010] d If a compiler/linker does not require or support requisite
functionality of SWS Memory Mapping, the Memory Allocation Keyword defines shall
be undefined without further effect. c(SRS_BSW_00006, SRS_BSW_00306)

Example 7.1

1 #ifdef EEP_START_SEC_VAR_CLEARED_16
2 #undef EEP_START_SEC_VAR_CLEARED_16
3 #endif

As described in [SWS_MemMap_00029] the number of files depends on the number
of SwComponentTypes in the input configuration. To determine the number of Mem-
orySections the applicable SwcImplementations have to be known. These are
described in an AUTOSAR environment with the SwcToImplMapping in the Sys-
temMapping and / or via ECU Configuration values RteImplementationRef in a
RteSwComponentType container.
Knowing the SwcImplementations provides as well the number of MemorySec-
tions which have to be identified for [SWS_MemMap_00027]. For more details about
the content of a SwcImplementation see document [4] and [5].

Further on the total number of used MemorySections depends as well on the num-
ber of used BSW modules. These can be determined by the M1 instance of the
EcucValueCollection which refers to the MemMap’s EcucModuleConfigura-
tionValues. This EcucValueCollection refers as well to EcucModuleCon-

19 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

figurationValues of other Bsw Modules which refer again to BswImplementa-
tions via moduleDescription references. Knowing the BswImplementations
provides as well the number of MemorySections which have to be identified for
[SWS_MemMap_00026]. For more details about the content of a BswImplementa-
tion see document [5].

In [6] further information is provided how Memory Mapping is used in the AUTOSAR
Methodology.

7.2 Mapping of variables and code

7.2.1 Requirements on implementations using memory mapping header files
for BSW Modules and Software Components

[Recommendation A] d

Each AUTOSAR basic software module and software component shall support the
configuration of at least the following different memory types as described in table 7.1
and table 7.2.

It is allowed to add module specific sections as they are mapped and thus are config-
urable within the module’s configuration file.

The shortcut <ALIGNMENT> means the variable alignment. In order to avoid memory
gaps in the allocation variables are allocated according their size. Possible ALIGNMENT
postfixes are

BOOLEAN, used for variables and constants of size 1 bit

8, used for variables and constants which have to be aligned to 8 bit. For instance
used for variables and constants of size 8 bit or used for composite data types: arrays,
structs and unions containing elements of maximum 8 bits.

16, used for variables and constants which have to be aligned to 16 bit. For instance
used for variables and constants of size 16 bit or used for composite data types: arrays,
structs and unions containing elements of maximum 16 bits

32, used for variables and constants which have to be aligned to 32 bit. For instance
used for variables and constants of size 32 bit or used for composite data types: arrays,
structs and unions containing elements of maximum 32 bits.

UNSPECIFIED, used for variables, constants, structure, array and unions when SIZE
(alignment) does not fit the criteria of 8,16 or 32 bit. For instance used for variables
and constants of unknown size

In case structures and unions, it shall be allowed to use an alignment larger than the
bit size of the elements. For instance to facilitate copy instruction a structure may have

20 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

minimum 2 byte alignment, even if members are byte aligned. In this case, it should be
possible to use alignment 16 bit instead of 8 bit for this structure.

Please note that the values 8BIT, 16BIT, 32BIT are changed to 8, 16, 32 in order
to reach a harmonization with Meta Model attributes. These values are classified as
deprecated.

The shortcut <INIT_POLICY> means the initialization policy of variables. Possible
INIT_POLICY postfixes are:

• NO_INIT, used for variables that are never cleared and never initialized.

• CLEARED, used for variables that are cleared to zero after every reset.

• POWER_ON_CLEARED, used for variables that are cleared to zero only after power
on reset.

• INIT, used for variables that are initialized with values after every reset.

• POWER_ON_INIT, used for variables that are initialized with values only after
power on reset.

c

[SWS_MemMap_00022] d The keywords to be used before inclusion of the mem-
ory mapping header file shall use the templates <PREFIX>_START_SEC_<NAME> or
<PREFIX>_STOP_SEC_<NAME>

Where:

• <PREFIX> is composed according <snp>[_<vi>_<ai>] for basic software
modules where

– <snp> is the Section Name Prefix which shall be the Module Abbreviation
from the BSW Module list (e.g. "EEP" or "CAN") in upper case letters of the
BSW module. For the generation of the MemMap.h file following rules apply:

∗ <snp> shall be the BswModuleDescription’s shortName converted
in upper case letters if no SectionNamePrefix is defined for the Mem-
orySection.

∗ <snp> shall be the symbol of the SectionNamePrefix associated to
the MemorySection if a SectionNamePrefix is defined for the Mem-
orySection.

– <vi> is the vendorId of the BSW module

– <ai> is the vendorApiInfix of the BSW module The sub part in squared
brackets [_<vi>_<ai>] is omitted if no vendorApiInfix is defined for
the Basic Software Module which indicates that it does not use multiple in-
stantiation.

• <PREFIX> is the shortName of the software component type for software com-
ponents (case sensitive)

21 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

• <NAME> is the shortName of the MemorySection described in Basic Software
Module Description or a Software Component Description (case sensitive) if the
MemorySection has no symbol attribute defined.

• <NAME> is the symbol of the MemorySection described in Basic Software Mod-
ule Description or a Software Component Description (case sensitive) if the Mem-
orySection has a symbol attribute defined.

c

Please note if the Memory Allocation Keywords shall appear in capital letters in the
code the related Memory Sections in the BSWMD or SWC Descriptions have to be
named with capital letters.

The table below defines recommended keywords for variable and constant sections:

Memory Sec-
tion Type /
Section Ini-
tialization
Policy

Syntax of Memory Allocation Keyword Comments

VAR /
<INIT_POLICY>

<PREFIX>_START_SEC_VAR_<INIT_POLICY>
_<ALIGNMENT>

To be used for all global or
static variables.

<PREFIX>_STOP_SEC_VAR_<INIT_POLICY>
_<ALIGNMENT>

VAR /
<INIT_POLICY>

<PREFIX>_START_SEC_VAR_FAST_<INIT_POLICY>
_<ALIGNMENT>

To be used for all global or
static variables that have
at least one of the follow-
ing properties:

<PREFIX>_STOP_SEC_VAR_FAST_<INIT_POLICY>
_<ALIGNMENT>

• accessed bitwise

• frequently used

• high number of ac-
cesses in source
code

Some platforms allow the
use of bit instructions for
variables located in this
specific RAM area as well
as shorter addressing
instructions. This saves
code and runtime.

VAR /
<INIT_POLICY>

<PREFIX>_START_SEC_VAR_SLOW_<INIT_POLICY>
_<ALIGNMENT>

To be used for all infre-
quently accessed global
or static variables.<PREFIX>_STOP_SEC_VAR_SLOW_<INIT_POLICY>

_<ALIGNMENT>

VAR /
<INIT_POLICY>

<PREFIX>_START_SEC_INTERNAL_VAR
_<INIT_POLICY>_<ALIGNMENT>

To be used for global or
static variables those are
accessible from a calibra-
tion tool.

<PREFIX>_STOP_SEC_INTERNAL_VAR
_<INIT_POLICY>_<ALIGNMENT>

22 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Memory Sec-
tion Type /
Section Ini-
tialization
Policy

Syntax of Memory Allocation Keyword Comments

VAR / NO-INIT <PREFIX>_START_SEC_VAR_NOINIT
_<ALIGNMENT>

To be used for all global
or static variables that are
never initialized.
This section is DEPRE-
CATED and shall not be
used in future develop-
ment.1

<PREFIX>_STOP_SEC_VAR_NOINIT
_<ALIGNMENT>

VAR /
POWER-ON-INIT

<PREFIX>_START_SEC_VAR_POWER_ON_INIT
_<ALIGNMENT>

To be used for all global
or static variables that are
initialized with values only
after power on reset.
This section is DEPRE-
CATED and shall not be
used in future develop-
ment.1

<PREFIX>_STOP_SEC_VAR_POWER_ON_INIT
_<ALIGNMENT>

VAR /
POWER-ON-

<PREFIX>_START_SEC_VAR_POWER_ON_CLEARED
_<ALIGNMENT>

To be used for all global
or static variables that are
cleared to zero only after
power on reset.
This section is DEPRE-
CATED and shall not be
used in future develop-
ment.1

CLEARED <PREFIX>_STOP_SEC_VAR_POWER_ON_CLEARED
_<ALIGNMENT>

VAR / INIT <PREFIX>_START_SEC_VAR_<ALIGNMENT> To be used for global or
static variables that are
initialized with values after
every reset.
This section is DEPRE-
CATED and shall not be
used in future develop-
ment.1

<PREFIX>_STOP_SEC_VAR_<ALIGNMENT>

VAR / CLEARED <PREFIX>_START_SEC_VAR_CLEARED_
<ALIGNMENT>

To be used for global or
static variables that are
cleared to zero after every
reset (the normal case).
This section is DEPRE-
CATED and shall not be
used in future develop-
ment.1

<PREFIX>_STOP_SEC_VAR_CLEARED_
<ALIGNMENT>

23 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Memory Sec-
tion Type /
Section Ini-
tialization
Policy

Syntax of Memory Allocation Keyword Comments

VAR / INIT <PREFIX>_START_SEC_VAR_FAST_<ALIGNMENT> To be used for all global or
static variables that have
at least one of the follow-
ing properties:

<PREFIX>_STOP_SEC_VAR_FAST_<ALIGNMENT>

• accessed bitwise

• frequently used

• high number of ac-
cesses in source
code

Some platforms allow the
use of bit instructions for
variables located in this
specific RAM area as well
as shorter addressing
instructions. This saves
code and runtime. Vari-
ables are initialized with
values after every reset
(the normal case).
This section is DEPRE-
CATED and shall not be
used in future develop-
ment.2

24 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Memory Sec-
tion Type /
Section Ini-
tialization
Policy

Syntax of Memory Allocation Keyword Comments

VAR / CLEARED <PREFIX>_START_SEC_VAR_FAST_CLEARED
_<ALIGNMENT>

To be used for all global or
static variables that have
at least one of the follow-
ing properties:

<PREFIX>_STOP_SEC_VAR_FAST_CLEARED
_<ALIGNMENT>

• accessed bitwise

• frequently used

• high number of ac-
cesses in source
code

Some platforms allow the
use of bit instructions for
variables located in this
specific RAM area as well
as shorter addressing
instructions. This saves
code and runtime. Vari-
ables are initialized to
zero after every reset (the
normal case).
This section is DEPRE-
CATED and shall not be
used in future develop-
ment.2

VAR / INIT <PREFIX>_START_SEC_INTERNAL_VAR
_<ALIGNMENT>

To be used for global or
static variables that are
accessible from a cali-
bration tool and initialized
with values after every
reset.
This section is DEPRE-
CATED and shall not be
used in future develop-
ment.3

<PREFIX>_STOP_SEC_INTERNAL_VAR
_<ALIGNMENT>

VAR / CLEARED <PREFIX>_START_SEC_INTERNAL_VAR_CLEARED
_<ALIGNMENT>

To be used for global or
static variables that are
accessible from a calibra-
tion tool and cleared to
zero after every reset.
This section is DEPRE-
CATED and shall not be
used in future develop-
ment.3

<PREFIX>_STOP_SEC_INTERNAL_VAR_CLEARED
_<ALIGNMENT>

25 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Memory Sec-
tion Type /
Section Ini-
tialization
Policy

Syntax of Memory Allocation Keyword Comments

VAR / NO-INIT <PREFIX>_START_SEC_VAR_SAVED_ZONE<X>
_<ALIGNMENT>

To be used for RAM
buffers of variables saved
in non volatile memory.<PREFIX>_STOP_SEC_VAR_SAVED_ZONE<X>

_<ALIGNMENT>

CONST / -- <PREFIX>_START_SEC_CONST_SAVED_RECOVERY
ZONE<X><ALIGNMENT>

To be used for ROM
buffers of variables saved
in non volatile memory.<PREFIX>_STOP_SEC_CONST_SAVED_RECOVERY

ZONE<X><ALIGNMENT>

CONST / -- <PREFIX>_START_SEC_VAR_SAVED_RECOVERY
_ZONE<X>

To be used for ROM
buffers of variables saved
in non volatile memory.
This section is DEPRE-
CATED and shall not be
used in future develop-
ment.4

<PREFIX>_STOP_SEC_VAR_SAVED_RECOVERY
_ZONE<X>

CONST / -- <PREFIX>_START_SEC_CONST_<ALIGNMENT> To be used for global or
static constants.<PREFIX>_STOP_SEC_CONST_<ALIGNMENT>

CAL-PRM / -- <PREFIX>_START_SEC_CALIB_<ALIGNMENT> To be used for calibration
constants.<PREFIX>_STOP_SEC_CALIB_<ALIGNMENT>

CONFIG-DATA /
--

<PREFIX>_START_SEC_CONFIG_DATA
_<ALIGNMENT>

Constants with attributes
that show that they reside
in one segment for mod-
ule configuration.

<PREFIX>_STOP_SEC_CONFIG_DATA
_<ALIGNMENT>

Table 7.1: data sections

1This section was replaced by the generic definition of <PRE-
FIX>_START_SEC_VAR_<INIT_POLICY>_<ALIGNMENT>.

2This section was replaced by the generic definition of <PRE-
FIX>_START_SEC_VAR_FAST_<INIT_POLICY>_<ALIGNMENT>.

3This section was replaced by the generic definition of <PRE-
FIX>_START_SEC_VAR_INTERNAL_VAR_<INIT_POLICY>_<ALIGNMENT>.

4This section was replaced by the generic definition of <PRE-
FIX>_START_SEC_CONST_SAVED_RECOVERY_ZONE<X>_<ALIGNMENT>.

26 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

There are different kinds of execution code sections. This code sections shall be iden-
tified with dedicated keywords. If a section is not supported by the integrator and micro
controller then be aware that the keyword is ignored. The table below defines recom-
mended keywords for code sections:

Memory Sec-
tion Type /
Section Ini-
tialization
Policy

Syntax of Memory Allocation Keyword Comments

CODE / -- <PREFIX>_START_SEC_CODE[_<PERIOD>] To be used for mapping
code to application block,
boot block, external flash
etc.
PERIOD is the typical
period time value and unit
of the ExecutableEn-
titys in this Memory-
Section. The name
part [_<PERIOD>] is
optional.

units are:
US microseconds
MS milli second
S second

For example: 100US,
400US, 1MS, 5MS,
10MS, 20MS, 100MS, 1S
Please note that devia-
tions from this typical pe-
riod time are possible due
to integration decisions
(e.g. RteEventTo-
TaskMapping). Further
on in special modes of
the ECU the code may be
scheduled with a higher
or lower period.

<PREFIX>_STOP_SEC_CODE[_<PERIOD>]

27 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Memory Sec-
tion Type /
Section Ini-
tialization
Policy

Syntax of Memory Allocation Keyword Comments

CODE / -- <PREFIX>_START_SEC_<CN>_CODE To be used for mapping
callouts of the BSW Mod-
ules.
<CN> is the Callback
name, which shall have
the same spelling of the
Callback name, including
module reference, but
written in upper case
Please note the further
definitions concerning
callout in document [1]
[2] and [7].

<PREFIX>_STOP_SEC_<CN>_CODE

CODE / -- <PREFIX>_START_SEC_CODE_FAST To be used for code that
shall go into fast code
memory segments.

The FAST sections
should be used when
the execution does not
happen in a well defined
period times but with
the knowledge of high
frequent access and /or
high execution time.
For example, a callback
for a frequent notification.

<PREFIX>_STOP_SEC_CODE_FAST

CODE / -- <PREFIX>_START_SEC_CODE_SLOW To be used for code that
shall go into slow code
memory segments.

The SLOW sections
should be used when
the execution does not
happen in a well defined
period times but with
the knowledge of low
frequent access.
For example, a callback
in case of seldom error.

<PREFIX>_STOP_SEC_CODE_SLOW

Table 7.2: code sections

28 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

[SWS_MemMap_00003] d Each AUTOSAR basic software module and software com-
ponent shall wrap declaration and definition of code, variables and constants using the
following mechanism:

1. Definition of start symbol for module memory section

2. Inclusion of the memory mapping header file

3. Declaration/definition of code, variables or constants belonging to the specified
section

4. Definition of stop symbol for module memory section

5. Inclusion of the memory mapping header file

For code which is invariably implemented as inline function the wrapping with Memory
Allocation Keywords is not required. c(SRS_BSW_00006, SRS_BSW_00306)

Application hint:
For code which is implemented with the LOCAL_INLINE macro of the "Compiler.h"

the wrapping with Memory Allocation Keywords is required. In the case that the
LOCAL_INLINE is set to the inline keyword of the compiler the related Memory Alloca-
tion Keywords shall not define any linker section assignments or change the addressing
behavior because this is already set by the environment of the calling function where
the code is inlined. In the case that the LOCAL_INLINE is set to empty the related Mem-
ory Allocation Keywords shall be configured like for regular code. For code which his
implemented with the INLINE macro of the "Compiler.h" the wrapping with Memory
Allocation Keywords is required at least for the code which is remaining if INLINE is set
to empty.

Please note as well that in the Basic Software Module Description the MemorySec-
tion related to the used Memory Allocation Keywords has to document the usage of
INLINE and LOCAL_INLINE in the option attribute. For further information see [8].

Additional option attribute values are predifed in document [4], [TPS_SWCT_01456].

The inclusion of the memory mapping header files within the code is a MISRA violation.
As neither executable code nor symbols are included (only pragmas) this violation is
an approved exception without side effects.

The start and stop symbols for section control are configured with section identifiers
defined in the inclusion of memory mapping header file. For details on configuring
sections see " Configuration specification".

Example 7.2

For example (BSW Module):
1 #define EEP_START_SEC_VAR_INIT_16
2 #include "Eep_MemMap.h"
3 static uint16 EepTimer = 100;
4 static uint16 EepRemainingBytes = 16;
5 #define EEP_STOP_SEC_VAR_INIT_16

29 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

6 #include "Eep_MemMap.h"

Example 7.3

For example (SWC):
1 #define Abc_START_SEC_CODE
2 #include "Abc_MemMap.h"
3 /* --- Write a Code here */
4 #define Abc_STOP_SEC_CODE
5 #include "Abc_MemMap.h"

[SWS_MemMap_00018] d Each AUTOSAR basic software module and software com-
ponent shall support, for all C-objects, the configuration of the assignation to one of the
memory types (code, variables and constants). c

Application hint:
An implicit assignment of objects to default sections is not allowed because properties
of default sections are platform and tool dependent and therefore these implementa-
tions are not platform independent.

[SWS_MemMap_00023] d Memory mapping header files shall not be included inside
the body of a function. c

The goal of this requirement is to support compiler which do not support #pragma
inside the body of a function. To force a special memory mapping of a function’s static
variable, this variable must be moved to file static scope.

Application hint concerning callout sections:

According [SWS_BSW_00135] an individual set of memory allocaction keywords per
callout function shall be used. This provides on one hand a high flexibility for the config-
uration of memory allocation. On the other hand this bears the risk of high configuration
effort for the MemMap module because all individual memory sections have to be con-
figured for the MemMap header file generation. To ease the integration of such callout
sections it is recommended that in the Basic Software Module Description all Memory-
Sections which are describing callouts and which typically aretreated with the same
linker properties should refer to the identical SwAddrMethod. According the recom-
mended memory sectons in table 7.2 "code sections" the SwAddrMethod defined by
AUTOSAR would have the reference path:

/AUTOSAR_MemMap/SwAddrMethods/CALLOUT_CODE

For instance:
<MEMORY-SECTION>

<SHORT-NAME>COM_SOMECALLOUT_CODE</SHORT-NAME>
<SW-ADDRMETHOD-REF DEST="SW-ADDR-METHOD">/

AUTOSAR_MemMap/SwAddrMethods/CALLOUT_CODE</SW-
ADDRMETHOD-REF>

</MEMORY-SECTION>

30 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

This enables the integrater either to configer all of the memory sections identical with
the means of the MemMapGenericMapping and additionally to handle the special
cases individually with the means of the MemMapSectionSpecificMapping. See
as well the example 7.3.4 Callout sections

7.2.2 Requirements on memory mapping header files

[SWS_MemMap_00005] d The memory mapping header files shall provide a mecha-
nism to select different code, variable or constant sections by checking the definition
of the module specific Memory Allocation Key Words for starting a section (see [Rec-
ommendation A]). Code, variables or constants declared after this selection shall be
mapped to this section. c(SRS_BSW_00328, SRS_BSW_00006, SRS_BSW_00306)

[SWS_MemMap_00026] d Each BSW memory mapping header file shall support the
Memory Allocation Keywords to start and to stop a section for each belonging Memory-
Section defined in a BswImplementation which is part of the input configuration.
c

[SWS_MemMap_00033] d All MemorySections defined in a BswImplementation
belong to the {Mip}_MemMap.h memory mapping header file if the BswImplementa-
tion does NOT contain a DependencyOnArtifact as requiredArtifact.De-
pendencyOnArtifact.category = MEMMAP c

Please note also [SWS_MemMap_00032].

[SWS_MemMap_00034] d All MemorySection defined in a BswImplementation
belong to the memory mapping header file defined by the attribute requiredArti-
fact.artifactDescriptor.shortLable if the BswImplementation does con-
tain exactly one DependencyOnArtifact as requiredArtifact.Dependency-
OnArtifact.category = MEMMAP c

Please note also [SWS_MemMap_00028].

[SWS_MemMap_00035] d All MemorySection defined in a BswImplementation
and associated with the identical SectionNamePrefix belong to the memory map-
ping header file defined by the attribute requiredArtifact.artifactDescrip-
tor.shortLable of the DependencyOnArtifact which is referenced by the Sec-
tionNamePrefix with a implementedIn reference. c

In this case the if the BswImplementation may contain several DependencyOnArti-
fact as with requiredArtifact. DependencyOnArtifact.category = MEMMAP
This will be used to describe an ICC2 cluster with one BswModuleDescription.
Please note also [SWS_MemMap_00028].

[SWS_MemMap_00027] d The software component type specific memory mapping
header file {componentTypeName}_MemMap.h shall support the Memory Allocation
Keywords to start and to stop a section for each MemorySection defined in a SwcIm-
plementation associated of this software component type. c

31 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

[SWS_MemMap_00015] d The selected section shall be activated, if the section macro
is defined before include of the memory mapping header file. c

[SWS_MemMap_00016] d The selection of a section shall only influence the linker’s
behavior for one of the three different object types code, variables or constants concur-
rently. c

Application hint:
On one side the creation of combined sections (for instance code and constants) is not
allowed. For the other side the set-up of the compiler / linker must be done in a way,
that only the settings of the selected section type is changed. For instance the set-up
of the code section shall not influence the configuration of the constant section and
other way around.

Example 7.4

1 #ifdef EEP_START_SEC_VAR_INIT_16
2 #undef EEP_START_SEC_VAR_INIT_16
3 #define START_SECTION_DATA_INIT_16
4 #elif
5 /*
6 additional mappings of modules sections into project
7 sections
8 */
9 ...

10 #endif
11

12

13 #ifdef START_SECTION_DATA_INIT_16
14 #pragma section data "sect_data16"
15 #undef START_SECTION_DATA_INIT_16
16 #undef MEMMAP_ERROR
17 #elif
18 /*
19 additional statements for switching the project sections
20 */
21 ...
22 #endif

Application hint:
Those code or variables sections can be used for the allocation of objects from more
than one module.
Those code or variables sections can be used for the allocation of objects from different
module specific code or variable sections of one module.

[SWS_MemMap_00006] d The memory mapping header files shall provide a mecha-
nism to deselect different code and variable sections by checking the definition of the
module specific Memory Allocation Key Words for stopping a section (see [Recommen-
dation A]). Code or variables declared after this selection shall be mapped to default

32 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

section. The selected section shall be deactivated if the section macro is defined before
include of the memory mapping header file. c(SRS_BSW_00006, SRS_BSW_00306)

Example 7.5

1 #ifdef EEP_STOP_SEC_CODE
2 #undef EEP_STOP_SEC_CODE
3 #define STOP_SECTION_COMMON_CODE
4 #elif
5 /*
6 additional mappings of modules sections into project
7 sections
8 */
9 ...

10 #endif
11

12

13 /* additional module specific mappings */
14 ...
15

16 #ifdef STOP_SECTION_COMMON_CODE
17 #pragma section code restore
18 #undef STOP_SECTION_COMMON_CODE
19 #undef MEMMAP_ERROR
20 #elif
21 /*
22 additional statements for switching the project sections
23 */
24 #endif

[SWS_MemMap_00007] d The memory mapping header files shall check if they have
been included with a valid memory mapping symbol and in a valid sequence (no START
preceded by a START, no STOP without the corresponding START). This shall be done
by a preprocessor check. c(SRS_BSW_00006, SRS_BSW_00306)

Example 7.6

1 #define MEMMAP_ERROR
2

3 /*
4 mappings of modules sections into project sections and
5 statements for switching the project sections
6 */
7

8 ...
9 #elif STOP_SECTION_COMMON_CODE

10 #pragma section code restore
11 #undef STOP_SECTION_COMMON_CODE
12 #undef MEMMAP_ERROR
13 #endif
14

15 #ifdef MEMMAP_ERROR
16 #error "Eep_MemMap.h, wrong pragma command"
17 #endif

33 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

[SWS_MemMap_00011] d The memory mapping header files shall undefine the mod-
ule or software component specific Memory Allocation Key Words for starting or stop-
ping a section. c(SRS_BSW_00006, SRS_BSW_00306)

Example 7.7

1 #ifdef EEP_STOP_SEC_CODE
2 #undef EEP_STOP_SEC_CODE

[SWS_MemMap_00013] d The memory mapping header files shall use if-else struc-
tures to reduce the compilation effort. c(SRS_BSW_00006, SRS_BSW_00306)

Example 7.8

For instance:
1 #define MEMMAP_ERROR
2 ...
3 /* module and ECU specific section mappings */
4 #if defined START_SECTION_COMMON_CODE
5 #pragma section ftext
6 #undef START_SECTION_COMMON_CODE
7 #undef MEMMAP_ERROR
8 #elif defined START_SECTION_UNBANKED_CODE
9 #pragma section code text

10 #undef START_SECTION_UNBANKED_CODE
11 #undef MEMMAP_ERROR
12 #elif defined ...
13 ...
14

15 #endif

7.3 Examples

The examples in this section shall illustrate the relationship between the Basic Software
Module Descriptions, Software Component Descriptions, the ECU configuration of the
Memory Mapping and the Memory Mapping header files.

7.3.1 Code Section

The following example shows ApplicationSwComponentType "MySwc" which con-
tains in its SwcInternalBehavior a RunnableEntity "Run1". The RunnableEn-
tity "Run1" references the SwAddrMethod "CODE" which sectionType attribute
is set to code. This expresses the request to allocate the RunnableEntity code into
a code section with the name "CODE".

34 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

MemMap relevant

RTE contract relevant

IB_MySwc :
SwcInternalBehavior

MySwc :
ApplicationSwComponentType

Impl_MySwc :
SwcImplementation

CODE :SwAddrMethod

sectionType = code

Run1 :
RunnableEntity

symbol = Run1

MySwcResources :
ResourceConsumption

CODE :
MemorySection

+memorySection

+swAddrmethod

+resourceConsumption

+swAddrmethod

+runnable

+internalBehavior

+behavior

Figure 7.1: Example of ApplicationSwComponentType with code section

According the SWS RTE [9] the Runnable Entity prototype in the Application Header
File of the software component is emitted as:

Example 7.9

Runnable Entity prototype in Application Header File Rte_MySwc.h according
SWS_Rte_7194

1 #define MySwc_START_SEC_CODE
2 #include "MySwc_MemMap.h"
3

4 FUNC(void, MySwc_CODE) Run1 (void);
5

6 #define MySwc_STOP_SEC_CODE
7 #include "MySwc_MemMap.h"

Please note that the same Memory Allocation Keywords have to be used for the func-
tion definition of "Run1" and all other functions of the Software Component which shall
be located to same MemorySection.

The SwcImplementation "Impl_MySwc" associated with the ApplicationSwCom-
ponentType "MySwc" defines that it uses a MemorySection named CODE. The
MemorySection "CODE" refers to SwAddrMethod "CODE". This indicates that the

35 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

module specific (abstract) memory section CODE share a common addressing strat-
egy defined by SwAddrMethod "CODE".

36 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

SWC / BSWM Description

MemMap Ecuc Parameter Value Description

CODE_INTERNAL :EcucContainerValue

definition = MemMapAddressingModeSet

CODE_INTERNAL :EcucContainerValue

definition = MemMapAddressingMode

:EcucTextualParamValue

value = #pragma section code "fls_code" CR LF #pragma
definition = MemMapAddressingModeStart

CNF_SEC_CODE :EcucContainerValue

definition = MemMapGenericMapping

A

CNF_DEFAULT :EcucContainerValue

definition = MemMapAllocation

A

:EcucReferenceValue

definition = MemMapAddressingModeSelection

:EcucReferenceValue

definition = EcucMemoryMappingSwAddrMethodRef

:EcucTextualParamValue

value = #pragma section code "i l legal" CR LF #pragma
definition = MemMapAddressingModeStop

MemMap :EcucModuleConfigurationValues

implementationConfigVariant = PreconfiguredConfiguration

MemMap :EcucModuleDef

lowerMultipl icity = 0
upperMultipl icity = 1

(from MemMap)

MemMap :EcucModuleConfigurationValues

implementationConfigVariant = VariantPreCompile

CODE :SwAddrMethod

sectionType = code

+parameterValue

+definition

+referenceValue

+value

+container

+subContainer

+parameterValue

+referenceValue

+value

+definition

+subContainer

+container

Figure 7.2: Example of MemMap configuration for a code section

37 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

With the means of the MemMapGenericMapping "CNF_SEC_CODE" Memory
Mapping is configured that all module specific (abstract) memory sections re-
ferring to SwAddrMethod "CODE" are using the MemMapAddressingModeSet
"CODE_INTERNAL". MemMapAddressingModeSet "CODE_INTERNAL" defines the
proper statements to start and to stop the mapping of code to the specific linker sec-
tions by the usage of the related Memory Allocation Keywords.

With this information of the Memory Allocation Header for the Software Component
can be generated like:

Example 7.10

Header file MySwc_MemMap.h according [SWS_MemMap_00022]
1

2 #ifdef MySwc_START_SEC_CODE
3 #pragma section_code "fls_code"
4 #pragma ...
5 #undef MySwc_START_SEC_CODE
6

7 #ifdef MySwc_STOP_SEC_CODE
8 #pragma section_code "illegal"
9 #undef MySwc_STOP_SEC_CODE

7.3.2 Fast Variable Section

The following example shows ApplicationSwComponentType "MySwc" which
contains in its SwcInternalBehavior two VariableDataPrototypes "FooBar"
and "EngSpd"’.
The VariableDataPrototype "FooBar" references a ImplementationDataType
which is associated to a SwBaseType defining baseTypeSize = 8. This denotes a
variable size of 8 bit for the data implementing "FooBar".
The VariableDataPrototype "EngSpd" references a Implementation-
DataType which is associated to a SwBaseType defining baseTypeSize = 16. This
denotes a variable size of 16 bit for the data implementing "EngSpd".

Both VariableDataPrototypes references the SwAddrMethod "VAR_FAST"
which sectionType attribute is set to "var" and the memoryAllocationKeyword-
Policy is set to addrMethodShortNameAndAlignment.

This denotes that the variables implementing the associated VariableDataProto-
types have to be sorted according their size into different MemorySections.

38 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

SWC Description

VAR_FAST_INIT :SwAddrMethod

sectionType = var
sectionInitializationPolicy = init
memoryAllocationKeywordPolicy = AddrMethodShortNameAndAlignment

FooBar :
VariableDataPrototype

uint8 :ImplementationDataType

uint8 :BaseType

baseTypeSize = 8

«atpVariation»
:SwDataDefProps

«atpVariation»
:SwDataDefProps

IB_MySwc :
SwcInternalBehavior

MySwc :
ApplicationSwComponentType

Impl_MySwc :
SwcImplementation

uint16 :ImplementationDataType

«atpVariation»
:SwDataDefProps

uint16 :BaseType

baseTypeSize = 16

EngSpd :
VariableDataPrototype

«atpVariation»
:SwDataDefProps

+type

+implicitInterRunnableVariable

+behavior

+internalBehavior

+swDataDefProps

+baseType

+baseType

+swDataDefProps

+swAddrMethod

+swDataDefProps

+type

+explicitInterRunnableVariable

+swAddrMethod

+swDataDefProps

Figure 7.3: Example of ApplicationSwComponentType with VariableDataProto-
types

Please note that in this example both VariableDataPrototypes have to be im-
plemented by RTE. The RTE again has to provide a BSW Module description defin-
ing the used MemorySections. Further on the RTE might allocate additional
buffer for instance to implement implicit communication behavior. In this example
the RTE uses four different MemorySections "VAR_FAST_8", "VAR_FAST_16"’,
"VAR_FAST_TASK_BUF_8" and "VAR_FAST_TASK_BUF_8" to sort variables accord-
ing their size and to allocate additional buffers.

39 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

SWC Description

RTE BSWM Description

VAR_FAST_INIT :SwAddrMethod

sectionType = var
sectionInitial izationPolicy = init
memoryAllocationKeywordPolicy = AddrMethodShortNameAndAlignment

RTE :
BswModuleDescription

RTE_xyz :
BswInternalBehavior

RTE_xyz :
BswImplementation

VAR_FAST_INIT_8 :MemorySection

alignment = 8

RTE_xyz_resources :
ResourceConsumption

VAR_FAST_INIT_16 :
MemorySection

alignment = 16

VAR_FAST_INIT_TASK_BUF_16 :
MemorySection

alignment = 16

VAR_FAST_INIT_TASK_BUF_8 :
MemorySection

alignment = 8

+memorySection

+swAddrmethod

+memorySection

+swAddrmethod

+behavior

+resourceConsumption

+internalBehavior

+memorySection

+swAddrmethod+swAddrmethod

+memorySection

Figure 7.4: Example of Basic Software Module Description of RTE

All of these MemorySections are associated with the SwAddrMethod "VAR_FAST"
This indicates that the module specific (abstract) memory sections "VAR_FAST_8",
"VAR_FAST_16", "VAR_FAST_TASK_BUF_8" and "VAR_FAST_TASK_BUF_8" share
a common addressing strategy defined by SwAddrMethod "VAR_FAST".

40 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

MemMap Ecuc Parameter Value Description

VAR_NEAR_INIT :EcucContainerValue

definition = MemMapAddressingModeSet

:EcucTextualParamValue

value = #pragma section nearbss "data_near_fast_8" CR LF #pragma section neardata "data_near_fast_8"
definition = MemMapAddressingModeStart

:EcucTextualParamValue

value = #pragma section nearbss "il legal" CR LF #pragma section neardata "i llegal"
definition = MemMapAddressingModeStop

:EcucTextualParamValue

value = var
definition = MemMapSectionType

:EcucTextualParamValue

value = init
definition = MemMapSupportedSectionInitializationPolicy

VAR_INIT_NEAR_8 :EcucContainerValue

definition = MemMapAddressingMode

:EcucTextualParamValue

value = 8
definition = MemMapAlignmentSelector

VAR_INIT_NEAR_16 :EcucContainerValue

definition = MemMapAddressingMode

:EcucTextualParamValue

value = #pragma section nearbss "data_near_fast_16" CR LF #pragma section neardata "data_near_fast_16"
definition = MemMapAddressingModeStart

:EcucTextualParamValue

value = #pragma section nearbss "il legal" CR LF #pragma section neardata "i llegal"
definition = MemMapAddressingModeStop

:EcucTextualParamValue

value = 16
definition = MemMapAlignmentSelector

MemMap :EcucModuleConfigurationValues

implementationConfigVariant = PreconfiguredConfiguration

MemMap :EcucModuleDef

lowerMultipl icity = 0
upperMultipl icity = 1

(from MemMap)

:EcucTextualParamValue

value = AddrMethodShortNameAndAlignment
definition = MemMapSupportedMemoryAllocationKeywordPolicy

+container

+parameterValue

+parameterValue

+parameterValue

+parameterValue

+parameterValue

+parameterValue

+subContainer

+definition

+parameterValue

+parameterValue

+parameterValue

+subContainer

Figure 7.5: Example of MemMap configuration for a data section

41 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

The ECU Configuration of Memory Mapping defines a MemMapAddressingModeSet
"VAR_NEAR" This supports the sectionType = var, sectionInitialization-
Policy = "INIT" and memoryAllocationKeywordPolicy = addrMethodShort-
NameAndAlignment. In this example MemMapAddressingModes are shown for the
alignment 8 and 16 (MemMapAlignmentSelector = 8 and MemMapAlignmentSe-
lector = 16).

MemMap Ecuc Parameter Value Description

MemMap :EcucModuleConfigurationValues

implementationConfigVariant = VariantPreCompile

VAR_NEAR_INIT :EcucContainerValue

definition = MemMapAddressingModeSet

CNF_VAR_FAST :EcucContainerValue

definition = MemMapGenericMapping

A

:EcucReferenceValue

definition = MemMapAddressingModeSelection

:EcucReferenceValue

definition = EcucMemoryMappingSwAddrMethodRef

VAR_FAR_INIT :EcucContainerValue

definition = MemMapAddressingModeSet

CNF_DEFAULT :EcucContainerValue

definition = MemMapAllocation A

MemMap :EcucModuleConfigurationValues

implementationConfigVariant = PreconfiguredConfiguration

MemMap :EcucModuleDef

lowerMultiplicity = 0
upperMultiplicity = 1

(from MemMap)

SWC Description

VAR_FAST_INIT :SwAddrMethod

sectionType = var
sectionInitial izationPolicy = init
memoryAllocationKeywordPolicy = AddrMethodShortNameAndAlignment

+referenceValue

+value

+container

+definition

+container

+definition

+container

+container

+value

+referenceValue

Figure 7.6: Example of MemMap configuration for a MemMapGenericMapping

With the means of the MemMapGenericMapping "CNF_VAR_FAST" Memory Map-
ping is configured that all module specific (abstract) memory sections refer-
ring to SwAddrMethod "VAR_FAST" are using the MemMapAddressingModeSet
"VAR_NEAR". MemMapAddressingModeSet "VAR_NEAR" defines the proper state-
ments to start and to stop the mapping of variables with different alignments (in this
example 8 and 16) to the specific linker sections by the usage of the related Memory
Allocation Keywords.

42 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

With this information of the Memory Allocation Header for the BSW can be generated
like:

Example 7.11

MemMap Header file Rte_MemMap.h
1 #ifdef RTE_START_SEC_VAR_FAST_8
2 #pragma section nearbss "data_near_fast_8"
3 #pragma section neardata "data_near_fast_8"
4
5 #pragma ...
6 #undef RTE_START_SEC_VAR_FAST_8
7

8 #ifdef RTE_STOP_SEC_VAR_FAST_8
9 #pragma section_code "illegal"

10 #undef RTE_STOP_SEC_VAR_FAST_8
11

12 #ifdef RTE_START_SEC_VAR_FAST_16
13 #pragma section nearbss "data_near_fast_16"
14 #pragma section neardata "data_near_fast_16"
15
16 #pragma ...
17 #undef RTE_START_SEC_VAR_FAST_16
18

19 #ifdef RTE_STOP_SEC_VAR_FAST_16
20 #pragma section_code "illegal"
21 #undef RTE_STOP_SEC_VAR_FAST_16
22

23 #ifdef RTE_START_SEC_VAR_FAST_TASK_BUF_8
24 #pragma section nearbss "data_near_fast_8"
25 #pragma section neardata "data_near_fast_8"
26
27 #pragma ...
28 #undef RTE_START_SEC_VAR_FAST_TASK_BUF_8
29

30 #ifdef RTE_STOP_SEC_VAR_FAST_TASK_BUF_8
31 #pragma section_code "illegal"
32 #undef RTE_STOP_SEC_VAR_FAST_TASK_BUF_8
33

34 #ifdef RTE_START_SEC_VAR_FAST_TASK_BUF_16
35 #pragma section nearbss "data_near_fast_16"
36 #pragma section neardata "data_near_fast_16"
37
38 #pragma ...
39 #undef RTE_START_SEC_VAR_FAST_TASK_BUF_16
40

41 #ifdef RTE_STOP_SEC_VAR_FAST_TASK_BUF_16
42 #pragma section_code "illegal"
43 #undef RTE_STOP_SEC_VAR_FAST_TASK_BUF_16

43 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

7.3.3 Code Section in ICC2 cluster

The following Basic Software Module Description would result in the support of the
Memory Allocation Keywords in the MemMap header file:

MEM :BswModuleDescription

category = BSW_CLUSTER

NvM_MainFunction :
BswSchedulableEntity

MemIf_SetMode :
BswCalledEntity

MEM :
BswInternalBehavior

MemIf :
BswSchedulerNamePrefix

symbol = MemIf

NvM :
BswSchedulerNamePrefix

symbol = NvM

NvM_WriteBlock :
BswCalledEntity

NvM_MainFunction :
BswModuleEntry

NvM_WriteBlock :
BswModuleEntry

MemIf_SetMode :
BswModuleEntry

CODE :SwAddrMethod

sectionType = code

MEM :
BswImplementation

MEM :
ResourceConsumption

CODE_MEMIF :
MemorySection

symbol = CODE

CODE_NVM :
MemorySection

symbol = CODE

MEMIF_PART :
SectionNamePrefix

symbol = MEMIF

NVM_PART :
SectionNamePrefix

symbol = NVM

NVM_START_SEC_CODE
NVM_STOP_SEC_CODE

MEMIF_START_SEC_CODE
MEMIF_STOP_SEC_CODE

+schedulerNamePrefix

+prefix

+executableEntity

+swAddrmethod

+schedulerNamePrefix

+swAddrMethod

+implementedEntry

+schedulerNamePrefix

+implementedEntry

+swAddrMethod

+memorySection

+memorySection

+sectionNamePrefix

+sectionNamePrefix

+executableEntity

+providedEntry

+schedulerNamePrefix

+entity

+entity

+entity

+prefix

+behavior

+executableEntity

+resourceConsumption

+providedEntry

+providedEntry

+internalBehavior

+implementedEntry

+swAddrMethod

+schedulerNamePrefix

+swAddrmethod

Figure 7.7: Example of BSW Module Description of an ICC2 cluster

44 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Example 7.12

MemMap Header file
1 #ifdef NVM_START_SEC_CODE
2 ...
3 #ifdef NVM_STOP_SEC_CODE
4 ...
5 #ifdef MEMIF_START_SEC_CODE
6 ...
7 #ifdef MEMIF_STOP_SEC_CODE

7.3.4 Callout sections

The following Basic Software Module Description would result in the support of the
Memory Allocation Keywords in the MemMap header file:

45 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

COM :BswModuleDescription

category = BSW_MODULE

Com_TxIpduCallout :
BswModuleEntry

Com_RxIpduCallout :
BswModuleEntry

COM :BswInternalBehavior

COM :
BswImplementation

COM :
ResourceConsumption

COM_TXIPDUCALLOUT_CODE :
MemorySection

symbol = CODE

COM_RXIPDUCALLOUT_CODE :
MemorySection

symbol = CODE

CALLOUT_CODE :
SwAddrMethod

sectionType = code

CNF_SEC_CALLOUT_CODE :
EcucContainerValue

definition = MemMapGenericMapping

A

:EcucReferenceValue

definition = MemMapAddressingModeSelection

:EcucReferenceValue

definition = EcucMemoryMappingSwAddrMethodRef

CNF_DEFAULT :EcucContainerValue

definition = MemMapAllocation
A

CODE_INTERNAL :EcucContainerValue

definition = MemMapAddressingModeSet

CODE_INTERNAL :EcucContainerValue

definition = MemMapAddressingMode

Bsw Module Description

MemMap Ecu Configuration Values

+subContainer

+value

+referenceValue

+subContainer

+value

+referenceValue

+swAddrMethod

+swAddrMethod

+memorySection

+memorySection

+behavior

+resourceConsumption

+internalBehavior

+outgoingCallback

+outgoingCallback

46 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Figure 7.8: Example of description and configuration for callout code

Example 7.13

MemMap Header file
1 #ifdef COM_START_SEC_COM_TXIPDUCALLOUT_CODE
2 ...
3 #ifdef COM_STOP_SEC_COM_TXIPDUCALLOUT_CODE
4 ...
5 #ifdef COM_START_SEC_COM_RXIPDUCALLOUT_CODE
6 ...
7 #ifdef COM_STOP_SEC_COM_RXIPDUCALLOUT_CODE

Nevertheless both memory sections are implemented identical since both are refer-
encing the identical SwAddrMethod and the MemMapGenericMapping is used to
configure the MemMap module.

47 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

8 API specification

Not applicable.

48 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

9 Sequence diagrams

Not applicable.

49 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification section 10.1 describes fundamentals. It
also specifies a template (table) you shall use for the parameter specification. We
intend to leave section 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
MemMap.

Chapter 10.3 specifies published information of the module MemMap.

10.1 How to read this chapter

For details refer to the chapter 10.1 "Introduction to configuration specification" in
SWS_BSWGeneral [2].

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe chapter 7 Functional specification.

10.2.1 Variants

10.2.1.1 VARIANT-PRE-COMPILE

[SWS_MemMap_00024] d Variant 1 - VARIANT-PRE-COMPILE: In this configuration
variant all parameters need to be configured pre compile time. c(SRS_BSW_00344)

10.2.2 MemMap

Module Name MemMap
Module Description Configuration of the Memory Mapping and Compiler Abstraction

module.
Included Containers
Container Name Multiplicity Scope / Dependency
MemMapAddressingMode
Set

0..* Defines a set of addressing modes which might apply
to a SwAddrMethod.

50 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Container Name Multiplicity Scope / Dependency
MemMapAllocation 0..* Defines which MemorySection of a BSW Module or a

Software Component is implemented with which
MemMapAddressingModeSet.

This can either be specified for a set of
MemorySections which refer to an identical
SwAddrMethod (MemMapGenericMapping) or for
individual MemorySections
(MemMapSectionSpecificMapping). If both are defined
for the same MemorySection the
MemMapSectionSpecificMapping overrules the
MemMapGenericMapping.

MemMapGenericCompiler
MemClass

0..* The shortName of the container defines the name of
the generic Compiler memclass which is global for all
using modules, e.g. REGSPACE. The configures the
Compiler Abstraction.

MemMap :EcucModuleDef

lowerMultiplicity = 0
upperMultiplicity = 1

MemMapAddressingModeSet :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

MemMapAllocation :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

MemMapGenericCompilerMemClass :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

MemMapGenericCompilerMemClassSymbolImpl :
EcucStringParamDef

+parameter

+container

+container

+container

Figure 10.1: Overview about MemMap

10.2.3 MemMapAddressingModeSet

MemMapAddressingModeSet

SWS Item [ECUC_MemMap_00002]
Container Name MemMapAddressingModeSet
Description Defines a set of addressing modes which might apply to a

SwAddrMethod.
Configuration Parameters

Name MemMapCompilerMemClassSymbolImpl [ECUC_MemMap_00018]
Description Defines the implementation behind a MemClassSymbol and configures

the Compiler Abstraction.
Multiplicity 1
Type EcucStringParamDef

51 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Default Value
Regular Expression
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

Name MemMapSupportedAddressingMethodOption
[ECUC_MemMap_00009]

Description This constrains the usage of this addressing mode set for Generic
Mappings to swAddrMethods.

The attribute option of a swAddrMethod mapped via
MemMapGenericMapping to this MemMapAddressingModeSet shall
be equal to one of the configured
MemMapSupportedAddressMethodOption’s

Multiplicity 0..*
Type EcucStringParamDef
Default Value
Regular Expression [a-zA-Z]([a-zA-Z0-9]|_[a-zA-Z0-9])*_?
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

Name MemMapSupportedMemoryAllocationKeywordPolicy
[ECUC_MemMap_00017]

Description This constrains the usage of this addressing mode set for Generic
Mappings to swAddrMethods.

The attribute MemoryAllocationKeywordPolicy of a swAddrMethod
mapped via MemMapGenericMapping to this
MemMapAddressingModeSet shall be equal to one of the configured
MemMapSupportedMemoryAllocationKeywordPolicy’s

Multiplicity 0..*
Type EcucEnumerationParamDef
Range MEMMAP_ALLOCATION_

KEYWORD_POLICY_AD
DR_METHOD_SHORT_N
AME

The Memory Allocation Keyword is
build with the short name of the
SwAddrMethod. This is the default
value if the atttribute does not exist in
the SwAddrMethod.

MEMMAP_ALLOCATION_
KEYWORD_POLICY_AD
DR_METHOD_SHORT_N
AME_AND_ALIGNMENT

The Memory Allocation Keyword is
build with the the short name of the
SwAddrMethod and the alignment
attribute of the MemorySection. This
requests a separation of objects in
memory dependent from the alignment
and is not applicable for
RunnableEntitys and
BswSchedulableEntitys.

52 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Configuration Class Pre-compile time X All Variants
Link time –
Post-build time –

Scope / Dependency scope: ECU

Name MemMapSupportedSectionInitializationPolicy
[ECUC_MemMap_00008]

Description This constrains the usage of this addressing mode set for Generic
Mappings to swAddrMethods.

The sectionIntializationPolicy attribute value of a swAddrMethod
mapped via MemMapGenericMapping to this
MemMapAddressingModeSet shall be equal to one of the configured
MemMapSupportedSectionIntializationPolicy’s

Please note that SectionInitializationPolicyType describes the intended
initialization of MemorySections.

The following values are standardized in AUTOSAR Methodology:

• NO-INIT: No initialization and no clearing is performed. Such
data elements must not be read before one has written a value
into it.

• INIT: To be used for data that are initialized by every reset to the
specified value (initValue).

• POWER-ON-INIT: To be used for data that are initialized by
"Power On" to the specified value (initValue). Note: there might
be several resets between power on resets.

• CLEARED: To be used for data that are initialized by every reset
to zero.

• POWER-ON-CLEARED: To be used for data that are initialized
by "Power On" to zero. Note: there might be several resets
between power on resets.

Please note that the values are defined similar to the representation of
enumeration types in the XML schema to ensure backward
compatibility.

Multiplicity 0..*
Type EcucStringParamDef
Default Value
Regular Expression
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

53 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Name MemMapSupportedSectionType [ECUC_MemMap_00007]
Description This constrains the usage of this addressing mode set for Generic

Mappings to swAddrMethods.

The attribute sectionType of a swAddrMethod mapped via
MemMapGenericMapping or MemMapSectionSpecificMapping to this
MemMapAddressingModeSet shall be equal to one of the configured
MemMapSupportedSectionType’s.

Multiplicity 0..*
Type EcucEnumerationParamDef
Range MEMMAP_SECTION_TY

PE_CALIBRATION_OFFLI
NE

Program data which can only be used
for offline calibration.
Note: This value is deprecated and
shall be substituted by calPrm.

MEMMAP_SECTION_TY
PE_CALIBRATION_ONLI
NE

Program data which can be used for
online calibration.
Note: This value is deprecated and
shall be substituted by calPrm.

MEMMAP_SECTION_TY
PE_CAL_PRM

To be used for calibratable constants of
ECU-functions.

MEMMAP_SECTION_TY
PE_CODE

To be used for mapping code to
application block, boot block, external
flash etc.

MEMMAP_SECTION_TY
PE_CONFIG_DATA

Constants with attributes that show
that they reside in one segment for
module configuration.

MEMMAP_SECTION_TY
PE_CONST

To be used for global or static
constants.

MEMMAP_SECTION_TY
PE_EXCLUDE_FROM_FL
ASH

Values existing in the ECU but not
dropped down in the binary file. No
upload should be needed to obtain
access to the ECU data. The ECU will
never be touched by the
instrumentation tool, with the exception
of upload. These are memory areas
which are not overwritten by
downloading the executable.

MEMMAP_SECTION_TY
PE_USER_DEFINED

No specific categorization of
sectionType possible.
Note: This value is deprecated and
shall be substituted by var, code, const,
calPrm, configData, excludeFromFlash
and the appropriate values of the
orthogonal attributes
sectionInitializationPolicy,
memoryAllocationKeywordPolicy and
option.

MEMMAP_SECTION_TY
PE_VAR

To be used for global or static
variables. The expected initialization is
specified with the attribute
sectionInitializationPolicy.

54 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

MEMMAP_SECTION_TY
PE_VAR_FAST

To be used for all global or static
variables that have at least one of the
following properties: - accessed
bit-wise - frequently used - high
number of accesses in source code
Some platforms allow the use of bit
instructions for variables located in this
specific RAM area as well as shorter
addressing instructions. This saves
code and runtime.
Note: This value is deprecated and
shall be substituted by var and the
appropriate values of the orthogonal
attributes sectionInitializationPolicy,
memoryAllocationKeywordPolicy and
option.

MEMMAP_SECTION_TY
PE_VAR_NO_INIT

To be used for all global or static
variables that are never initialized.
Note: This value is deprecated and
shall be substituted by var and the
appropriate values of the orthogonal
attributes sectionInitializationPolicy,
memoryAllocationKeywordPolicy and
option.

MEMMAP_SECTION_TY
PE_VAR_POWER_ON_IN
IT

To be used for all global or static
variables that are initialized only after
power on reset.
Note: This value is deprecated and
shall be substituted by var and the
appropriate values of the orthogonal
attributes sectionInitializationPolicy,
memoryAllocationKeywordPolicy and
option.

Configuration Class Pre-compile time X All Variants
Link time –
Post-build time –

Scope / Dependency scope: ECU

Included Containers
Container Name Multiplicity Scope / Depedency
MemMapAddressing
Mode

1..* Defines a addressing mode with a set of #pragma
statements implementing the start and the stop of a
section.

55 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

MemMapAddressingModeSet :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

MemMapAddressingMode :
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

MemMapAddressingModeStart :EcucMultil ineStringParamDef

upperMultiplicity = 1
lowerMultiplicity = 1

MemMapAddressingModeStop :EcucMultil ineStringParamDef

upperMultiplicity = 1
lowerMultiplicity = 1

MemMapAlignmentSelector :EcucStringParamDef

upperMultiplicity = *
lowerMultiplicity = 1
regularExpression = [1-9][0-9]*|0x[0-9a-f]*|0[0-7]*|0b[0-1]*|UNSPECIFIED|UNKNOWN|BOOLEAN|

MemMapSupportedSectionType :EcucEnumerationParamDef

upperMultiplicity = *
lowerMultiplicity = 0

MemMapSupportedSectionInitial izationPolicy :
EcucStringParamDef

upperMultiplicity = *
lowerMultiplicity = 0

MemMapSupportedAddressingMethodOption :
EcucStringParamDef

upperMultiplicity = *
lowerMultiplicity = 0
regularExpression = [a-zA-Z]([a-zA-Z0-9]|_[a-zA-Z0-9])*_?

MemMapSupportedMemoryAllocationKeywordPolicy :
EcucEnumerationParamDef

upperMultiplicity = *
lowerMultiplicity = 0

Software Component Template, BSW Module
Description Template, Generic Structure

Template

Software Component Template, BSW Module
Description Template, Generic Structure

Template

Generic Structure Template

«enumeration»
Auxil laryObjects::MemorySectionType

 var
 code
 const
 calprm
 configData
 excludeFromFlash
 calibrationVariables
 varFast
 varNoInit
 varPowerOnInit
 cal ibrationOffl ine
 calibrationOnline
 userDefined

«primitive»
PrimitiveTypes::

SectionInitial izationPolicyType

«primitive»
PrimitiveTypes::Identifier

+ namePattern :String [0..1]

«enumeration»
Auxil laryObjects::

MemoryAllocationKeywordPolicyType

 addrMethodShortName
 addrMethodShortNameAndAlignment

«primitive»
PrimitiveTypes::AlignmentType

tags
xml.xsd.customType = ALIGNMENT-TYPE
xml.xsd.pattern = [1-9][0-9]*|0x[0-9a-f]*|0[0-7]*|0b[0-1]*|UNSPECIFIED|UNKNOWN|BOOLEAN
xml.xsd.type = string

MemMapCompilerMemClassSymbolImpl :
EcucStringParamDef

upperMultiplicity = 1
lowerMultiplicity = 1

SWS Compiler Abstraction

+parameter

+subContainer

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

Figure 10.2: Overview about MemMapAddressingModeSet

56 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

10.2.4 MemMapAddressingMode

MemMapAddressingMode

SWS Item [ECUC_MemMap_00003]
Container Name MemMapAddressingMode
Description Defines a addressing mode with a set of #pragma statements

implementing the start and the stop of a section.
Configuration Parameters

Name MemMapAddressingModeStart [ECUC_MemMap_00004]
Description Defines a set of #pragma statements implementing the start of a

section.
Multiplicity 1
Type EcucMultilineStringParamDef
Default Value
Regular Expression
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name MemMapAddressingModeStop [ECUC_MemMap_00005]
Description Defines a set of #pragma statements implementing the start of a

section.
Multiplicity 1
Type EcucMultilineStringParamDef
Default Value
Regular Expression
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name MemMapAlignmentSelector [ECUC_MemMap_00006]
Description Defines a the alignments for which the MemMapAddressingMode

applies. The to be used alignment is defined in the alignment attribute
of the MemorySection. If the MemMapAlignmentSelector fits to
alignment attribute of the MemorySection the set of #pragmas of the
related MemMapAddressingMode shall be used to implement the start
and the stop of a section.

Please note that the same MemMapAddressingMode can be
applicable for several alignments, e.g. "8" bit and "UNSPECIFIED".

Multiplicity 1..*
Type EcucStringParamDef
Default Value
Regular Expression [1-9][0-9]*|0x[0-9a-f]*|0[0-7]*|0b[0-

1]*|UNSPECIFIED|UNKNOWN|BOOLEAN|

57 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Configuration Class Pre-compile time X All Variants
Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

10.2.5 MemMapAllocation

MemMapAllocation

SWS Item [ECUC_MemMap_00010]
Container Name MemMapAllocation
Description Defines which MemorySection of a BSW Module or a Software

Component is implemented with which MemMapAddressingModeSet.

This can either be specified for a set of MemorySections which refer to
an identical SwAddrMethod (MemMapGenericMapping) or for
individual MemorySections (MemMapSectionSpecificMapping). If both
are defined for the same MemorySection the
MemMapSectionSpecificMapping overrules the
MemMapGenericMapping.

Configuration Parameters

58 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Included Containers
Container Name Multiplicity Scope / Depedency
MemMapGeneric
Mapping

0..* Defines which SwAddrMethod is implemented with
which MemMapAddressingModeSet.

The pragmas for the implementation of the
MemorySelectorKeywords are taken from the
MemMapAddressingModeStart and
MemMapAddressingModeStop parameters of the
MemMapAddressingModeSet for the individual
alignments.

That this mapping becomes valid requires matching
MemMapSupportedSectionType’s,
MemMapSupportedSectionInitializationPolicy’s and
MemMapSupportedAddressingMethodOption’s.

The MemMapGenericMapping applies only if it is not
overruled by an MemMapSectionSpecificMapping

MemMapSectionSpecific
Mapping

0..* Defines which MemorySection of a BSW Module or a
Software Component is implemented with which
MemMapAddressingModeSet.

The pragmas for the implementation of the
MemorySelectorKeywords are taken from the
MemMapAddressingModeStart and
MemMapAddressingModeStop parameters of the
MemMapAddressingModeSet for the specific alignment
of the MemorySection.

The MemMapSectionSpecificMapping precedes a
mapping defined by MemMapGenericMapping.

59 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

MemMapAllocation :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

MemMapGenericMapping :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

MemMapSectionSpecificMapping :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

Identifiable

MemorySectionUsage::MemorySection

+ alignment :Al ignmentType [0..1]
+ memClassSymbol :CIdentifier [0..1]
+ option :Identifier [0..*]
+ size :PositiveInteger [0..1]
+ symbol :Identifier [0..1]

ARElement
AtpBlueprint

AtpBlueprintable

Auxil laryObjects::SwAddrMethod

+ memoryAllocationKeywordPolicy :MemoryAllocationKeywordPolicyType [0..1]
+ option :Identifier [0..*]
+ sectionInitializationPolicy :SectionInitial izationPolicyType [0..1]
+ sectionType :MemorySectionType [0..1]

MemMapAddressingModeSetRef :
EcucReferenceDef

upperMultipl icity = 1
lowerMultipl icity = 1

MemMapSwAddressMethodRef :
EcucForeignReferenceDef

upperMultipl icity = 1
lowerMultipl icity = 1
destinationType = SW-ADDR-METHOD

MemMapAddressingModeSetRef :
EcucReferenceDef

upperMultipl icity = 1
lowerMultipl icity = 1

MemMapMemorySectionRef :
EcucForeignReferenceDef

upperMultipl icity = 1
lowerMultipl icity = 1
destinationType = MEMORY-SECTION

+reference

+reference

+subContainer

+subContainer

+reference

+reference

+swAddrmethod 1

Figure 10.3: Overview about MemMapAllocation

60 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

10.2.6 MemMapGenericMapping

MemMapGenericMapping

SWS Item [ECUC_MemMap_00011]
Container Name MemMapGenericMapping
Description Defines which SwAddrMethod is implemented with which

MemMapAddressingModeSet.

The pragmas for the implementation of the MemorySelectorKeywords
are taken from the MemMapAddressingModeStart and
MemMapAddressingModeStop parameters of the
MemMapAddressingModeSet for the individual alignments.

That this mapping becomes valid requires matching
MemMapSupportedSectionType’s,
MemMapSupportedSectionInitializationPolicy’s and
MemMapSupportedAddressingMethodOption’s.

The MemMapGenericMapping applies only if it is not overruled by an
MemMapSectionSpecificMapping

Configuration Parameters

Name MemMapAddressingModeSetRef [ECUC_MemMap_00012]
Description Reference to the MemMapAddressingModeSet which applies to the

MemMapGenericMapping.
Multiplicity 1
Type Reference to MemMapAddressingModeSet
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

Name MemMapSwAddressMethodRef [ECUC_MemMap_00013]
Description Reference to the SwAddrMethod which applies to the

MemMapGenericMapping.
Multiplicity 1
Type Foreign reference to SW-ADDR-METHOD
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

No Included Containers

61 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

10.2.7 MemMapSectionSpecificMapping

MemMapSectionSpecificMapping

SWS Item [ECUC_MemMap_00014]
Container Name MemMapSectionSpecificMapping
Description Defines which MemorySection of a BSW Module or a Software

Component is implemented with which MemMapAddressingModeSet.

The pragmas for the implementation of the MemorySelectorKeywords
are taken from the MemMapAddressingModeStart and
MemMapAddressingModeStop parameters of the
MemMapAddressingModeSet for the specific alignment of the
MemorySection.

The MemMapSectionSpecificMapping precedes a mapping defined by
MemMapGenericMapping.

Configuration Parameters

Name MemMapAddressingModeSetRef [ECUC_MemMap_00015]
Description Reference to the MemMapAddressingModeSet which applies to the

MemMapModuleSectionSpecificMapping.
Multiplicity 1
Type Reference to MemMapAddressingModeSet
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

Name MemMapMemorySectionRef [ECUC_MemMap_00016]
Description Reference to the MemorySection which applies to the

MemMapSectionSpecificMapping.
Multiplicity 1
Type Foreign reference to MEMORY-SECTION
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

No Included Containers

62 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

10.2.8 MemMapGenericCompilerMemClass

MemMapGenericCompilerMemClass

SWS Item [ECUC_MemMap_00019]
Container Name MemMapGenericCompilerMemClass
Description The shortName of the container defines the name of the generic

Compiler memclass which is global for all using modules, e.g.
REGSPACE. The configures the Compiler Abstraction.

Configuration Parameters

Name MemMapGenericCompilerMemClassSymbolImpl
[ECUC_MemMap_00020]

Description Defines the implementation behind the generic MemClassSymbol and
configures the Compiler Abstraction.

Multiplicity 1
Type EcucStringParamDef
Default Value
Regular Expression
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

No Included Containers

MemMap :EcucModuleDef

lowerMultiplicity = 0
upperMultiplicity = 1

MemMapAddressingModeSet :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

MemMapAllocation :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

MemMapGenericCompilerMemClass :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

MemMapGenericCompilerMemClassSymbolImpl :
EcucStringParamDef

+parameter

+container

+container

+container

Figure 10.4: Overview about MemMapGenericCompilerMemClass

10.3 Published Information

For details refer to the chapter 10.3 Published Information in SWS_BSWGeneral [2].

63 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

11 Analysis

This chapter does not contain requirements. It just gives an overview to used keywords
and their syntax within different compilers. This analysis is required for a correct and
complete specification of methods and keywords and is based on the documents [10],
[11], [12], [13] and [14].

11.1 Memory allocation of variables

Compiler analysis for starting/stopping a memory section for variables:

Compiler Required syntax
Cosmic, S12X Initialized variables:

#pragma section {name}
#pragma section {}

Non Initialized variables:
#pragma section [name]}
#pragma section []

Metrowerks, S12X #pragma DATA_SEG (<Modif> <Name> | "DEFAULT")
<Modif>: Some of the following strings may be used:
SHORT, __SHORT_SEG,
DIRECT, __DIRECT_SEG,
NEAR, __NEAR_SEG,
FAR, __FAR_SEG,
DPAGE, __DPAGE_SEG,
RPAGE, __RPAGE_SEG
Pragma shall be used in definition and declaration.

Tasking, ST10 #pragma class mem=name
#pragma combine mem=ctype
#pragma align mem=atype
#pragma noclear
#pragma default_attributes
#pragma clear

atype is one of the following align types:
B Byte alignment
W Word alignment
P Page alignment
S Segment alignment
C PEC addressable
I IRAM addressable

ctype is one of the following combine types:
L private (’Local’)
P Public
C Common
G Global
S Sysstack

64 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Compiler Required syntax
U Usrstack
A address Absolute section AT constant address
(decimal, octal or hexadecimal number)

Tasking, TC1796 #pragma pack 0 / 2
Packing of structs. Shall be visible at type declaration
#pragma section type "string"
#pragma noclear
#pragma clear
#pragma for_extern_data_use_memory
#pragma for_initialized_data_use_memory
#pragma for_uninitialized_data_use_memory

GreenHills, V850 #pragma align (n)
#pragma alignvar (n)
#pragma ghs section sect="name"
#pragma ghs section sect =default
Section Keyword:
data, sdata, tdata, zdata, bss, sbss, zbss

ADS, ST30 #pragma arm section [sort_type[[=]"name"]]
[,sort_type="name"]*
sort_type="rwdata, zidata
Alignment control via key words:
__packed, __align()

DIABDATA, MPC5554 #pragma section class_name [init_name] [uninit_name]
[address_mode] [access]
#pragma section class_name
Pragma shall be used before declaration.
class_name for variables:
BSS, DATA, SDATA

Table 11.1: Memory allocation of variables

11.2 Memory allocation of constant variables

Compiler analysis for starting/stopping a memory section for constant variables:

Compiler Required syntax
Cosmic, S12X Initialized variables:

#pragma section const {name}
#pragma section const {}

Metrowerks, S12X #pragma CONST_SEG (<Modif> <Name> | "DEFAULT")
<Modif>: Some of the following strings may be used:
PPAGE, __PPAGE_SEG,
GPAGE, __GPAGE_SEG,
Pragma shall be used in definition and declaration.

65 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Compiler Required syntax
Tasking, ST10 #pragma class mem=name

#pragma align mem=atype
#pragma combine mem=ctype
#pragma default_attributes

atype is one of the following align types:
B Byte alignment
W Word alignment
P Page alignment
S Segment alignment
C PEC addressable
I IRAM addressable

ctype is one of the following combine types:
L private (’Local’)
P Public
C Common
G Global
S Sysstack
U Usrstack
A address Absolute section AT constant address
(decimal, octal or hexadecimal number)

Tasking, TC1796 #pragma pack 0 / 2
Packing of structs. Shall be visible at type declaration

#pragma section type "string"
#pragma for_constant_data_use_memory

GreenHills, V850 #pragma ghs section sect="name"
#pragma ghs section sect =default
Section Keyword:
rodata, rozdata, rosdata

ADS, ST30 #pragma arm section [sort_type[[=]"name"]]
[,sort_type="name"]*
sort_type="rodata

Alignment control via key words:
__packed, __align()

DIABDATA, MPC5554 #pragma section class_name [init_name]
[uninit_name] [address_mode] [access]
#pragma section class_name
Pragma shall be used before declaration.

class_name for constant variables:
CONST, SCONST, STRING

Table 11.2: Memory allocation of constant variables

66 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

11.3 Memory allocation of code

Compiler analysis for starting/stopping a memory section for code:

Compiler Required syntax
Cosmic, S12X Initialized variables:

#pragma section (name)
#pragma section ()

Metrowerks, S12X #pragma CODE_SEG (<Modif> <Name> | "DEFAULT")
<Modif>: Some of the following strings may be used:
DIRECT, __DIRECT_SEG,
NEAR, __NEAR_SEG,
CODE, __CODE_SEG,
FAR, __FAR_SEG,
PPAGE, __PPAGE_SEG,
PIC, __PIC_SEG,
Pragma shall be used in definition and declaration.

Tasking, ST10 #pragma class mem=name
#pragma combine mem=ctype
#pragma default_attributes

ctype is one of the following combine types:
L private (’Local’)
P Public
C Common
G Global
S Sysstack
U Usrstack
A address Absolute section AT constant address

Tasking, TC1796 #pragma section code "string"
#pragma section code_init
#pragma section const_init
#pragma section vector_init
#pragma section data_overlay
#pragma section type[=]"name"
#pragma section all

GreenHills, V850 #pragma ghs section sect="name"
#pragma ghs section sect =default
Section Keyword: text

ADS, ST30 #pragma arm section [sort_type[[=]"name"]]
[,sort_type="name"]*

sort_type="code

DIABDATA, MPC5554 #pragma section class_name [init_name]
[uninit_name] [address_mode] [access]
#pragma section class_name
Pragma shall be used before declaration.

class_name for code:
CODE

Table 11.3: Memory allocation of code

67 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

A Referenced Meta Classes

Class ApplicationSwComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note The ApplicationSwComponentType is used to represent the application software.

Tags: atp.recommendedPackage=SwComponentTypes
Base ARElement,ARObject,AtomicSwComponentType,AtpBlueprint,AtpBlueprintable,Atp

Classifier,AtpType,CollectableElement,Identifiable,Multilanguage
Referrable,PackageableElement,Referrable,SwComponentType

Attribute Datatype Mul. Kind Note
– – – – –

Table A.1: ApplicationSwComponentType

Class BaseTypeDirectDefinition
Package M2::AUTOSARTemplates::CommonStructure::BaseTypes
Note This BaseType is defined directly (as opposite to a derived BaseType)
Base ARObject,BaseTypeDefinition
Attribute Datatype Mul. Kind Note
baseType
Encoding

BaseTypeEnco
dingString

1 attr This specifies, how an object of the current
BaseType is encoded e.g.. in an ECU in a
message sequence.

Tags: xml.sequenceOffset=90
baseType
Size

PositiveInteger 0..1 attr Describes the length of the data type specified in
the container in bits.

Tags: xml.sequenceOffset=70
byteOrder ByteOrderEnum 0..1 attr This attribute specifies the byte order of the base

type.

Tags: xml.sequenceOffset=110
maxBaseT
ypeSize

PositiveInteger 0..1 attr Describes the maximum length of the BaseType in
bits.

Tags: xml.sequenceOffset=80
memAlign
ment

PositiveInteger 0..1 attr This attribute describes the alignment of the
memory object in bits. E.g. "8" specifies, that the
object in question is aligned to a byte while "32"
specifies that it is aligned four byte. If the value is
set to "0" the meaning shall be interpreted as
"unspecified".

Tags: xml.sequenceOffset=100

68 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Attribute Datatype Mul. Kind Note
nativeDecl
aration

NativeDeclarati
onString

0..1 attr This attribute describes the declaration of such a
base type in the native programming language,
primarily in the Programming language C. This
can then be used by a code generator to include
the necessary declarations into a header file. For
example

BaseType with
shortName: "MyUnsignedInt"

nativeDeclaration: "unsigned short"

Results in
typedef unsigned short MyUnsignedInt;

If the attribute is not defined the referring
ImplementationDataTypes will not be generated
as a typedef by RTE.

If a nativeDeclaration type is given it shall fulfill the
characteristic given by basetypeEncoding and
baseTypeSize. This is required to ensure the
consistent handling and interpretation by software
components, RTE, COM and MCM systems.

Tags: xml.sequenceOffset=120

Table A.2: BaseTypeDirectDefinition

Class BswImplementation
Package M2::AUTOSARTemplates::BswModuleTemplate::BswImplementation
Note Contains the implementation specific information in addition to the generic

specification (BswModuleDescription and BswBehavior). It is possible to have several
different BswImplementations referring to the same BswBehavior.

Tags: atp.recommendedPackage=BswImplementations
Base ARElement,ARObject,CollectableElement,Identifiable,Implementation,Multilanguage

Referrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
arRelease
Version

RevisionLabelSt
ring

1 attr Version of the AUTOSAR Release on which this
implementation is based. The numbering contains
three levels (major, minor, revision) which are
defined by AUTOSAR.

behavior BswInternalBeh
avior

1 ref The behavior of this implementation.

debugInfo BswDebugInfo 0..1 aggr Collects the debug info for this implementation.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

69 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Attribute Datatype Mul. Kind Note
preconfigur
edConfigur
ation

EcucModuleCo
nfigurationValue
s

* ref Reference to the set of preconfigured (i.e. fixed)
configuration values for this BswImplementation.

If the BswImplementation represents a cluster of
several modules, more than one
EcucModuleConfigurationValues element can be
referred (at most one per module), otherwise at
most one such element can be referred.

Tags: xml.roleWrapperElement=true
recommen
dedConfig
uration

EcucModuleCo
nfigurationValue
s

* ref Reference to one or more sets of recommended
configuration values for this module or module
cluster.

vendorApiI
nfix

Identifier 0..1 ref In driver modules which can be instantiated
several times on a single ECU, SRS_BSW_00347
requires that the names of files, APIs, published
parameters and memory allocation keywords are
extended by the vendorId and a vendor specific
name. This parameter is used to specify the
vendor specific name. In total, the implementation
specific API name is generated as follows:
<ModuleName>_<vendorId>_
<vendorApiInfix>_<API name from SWS>.

E.g. assuming that the vendorId of the
implementer is 123 and the implementer chose a
vendorApiInfix of "v11r456" an API name
Can_Write defined in the SWS will translate to
Can_123_v11r456_Write.

This attribute is mandatory for all modules with
upper multiplicity > 1. It shall not be used for
modules with upper multiplicity =1.

See also SWS_BSW_00102.
vendorSpe
cificModule
Def

EcucModuleDef * ref Reference to

• the vendor specific EcucModuleDef used in
this BswImplementation if it represents a
single module

• several EcucModuleDefs used in this
BswImplementation if it represents a cluster
of modules

• one or no EcucModuleDefs used in this
BswImplementation if it represents a library

Tags: xml.roleWrapperElement=true

Table A.3: BswImplementation

70 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Class BswModuleDescription
Package M2::AUTOSARTemplates::BswModuleTemplate::BswOverview
Note Root element for the description of a single BSW module or BSW cluster. In case it

describes a BSW module, the short name of this element equals the name of the
BSW module.

Tags: atp.recommendedPackage=BswModuleDescriptions
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,AtpFeature,Atp

StructureElement,CollectableElement,Identifiable,Multilanguage
Referrable,PackageableElement,Referrable

Attribute Datatype Mul. Kind Note
bswModul
eDepende
ncy

BswModuleDep
endency

* aggr Describes the dependency to another BSW
module.

Stereotypes: atpSplitable; atpVariation
Tags: Vh.latestBindingTime=PreCompileTime
atp.Splitkey=shortName, variationPoint.shortLabel
xml.sequenceOffset=20

bswModul
eDocumen
tation

SwComponentD
ocumentation

0..1 aggr This adds a documentation to the BSW module.

Stereotypes: atpSplitable; atpVariation
Tags: Vh.latestBindingTime=PreCompileTime
atp.Splitkey=bswModuleDocumentation, variation
Point.shortLabel
xml.sequenceOffset=6

internalBe
havior

BswInternalBeh
avior

* aggr The various BswInternalBehaviors associated with
a BswModuleDescription can be distributed over
several physical files. Therefore the aggregation is
«atpSplitable».

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName
xml.sequenceOffset=65

moduleId PositiveInteger 0..1 attr Refers to the BSW Module Identifier defined by
the AUTOSAR standard. For non-standardized
modules, a proprietary identifier can be optionally
chosen.

Tags: xml.sequenceOffset=5
outgoingC
allback

BswModuleEntr
y

* ref Specifies a callback, which will be called from this
module if required by another module.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime
xml.sequenceOffset=15

71 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Attribute Datatype Mul. Kind Note
providedCli
entServerE
ntry

BswModuleClie
ntServerEntry

* aggr Specifies that this module provides a client server
entry which can be called from another parition or
core.This entry is declared locally to this context
and will be connected to the
requiredClientServerEntry of another or the same
module via the configuration of the BSW
Scheduler.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime
xml.sequenceOffset=45

providedD
ata

VariableDataPr
ototype

* aggr Specifies a data prototype provided by this module
in order to be read from another partition or
core.The providedData is declared locally to this
context and will be connected to the requiredData
of another or the same module via the
configuration of the BSW Scheduler.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime
xml.sequenceOffset=55

providedE
ntry

BswModuleEntr
y

* ref Specifies an entry provided by this module which
can be called by other modules. This includes
"main" functions and interrupt routines, but not
callbacks (because the signature of a callback is
defined by the caller).

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime
xml.sequenceOffset=10

providedM
odeGroup

ModeDeclaratio
nGroupPrototyp
e

* aggr A set of modes which is owned and provided by
this module or cluster. It can be connected to the
requiredModeGroups of other modules or clusters
via the configuration of the BswScheduler. It can
also be synchronized with modes provided via
ports by an associated
ServiceSwComponentType,
EcuAbstractionSwComponentType or
ComplexDeviceDriverSwComponentType.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime
xml.sequenceOffset=25

72 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Attribute Datatype Mul. Kind Note
releasedTri
gger

Trigger * aggr A Trigger released by this module or cluster. It can
be connected to the requiredTriggers of other
modules or clusters via the configuration of the
BswScheduler. It can also be synchronized with
Triggers provided via ports by an associated
ServiceSwComponentType,
EcuAbstractionSwComponentType or
ComplexDeviceDriverSwComponentType.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime
xml.sequenceOffset=35

requiredCli
entServerE
ntry

BswModuleClie
ntServerEntry

* aggr Specifies that this module requires a client server
entry which can be implemented on another
parition or core.This entry is declared locally to
this context and will be connected to the
providedClientServerEntry of another or the same
module via the configuration of the BSW
Scheduler.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime
xml.sequenceOffset=50

requiredDa
ta

VariableDataPr
ototype

* aggr Specifies a data prototype required by this module
in oder to be provided from another partition or
core.The requiredData is declared locally to this
context and will be connected to the providedData
of another or the same module via the
configuration of the BswScheduler.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime
xml.sequenceOffset=60

requiredM
odeGroup

ModeDeclaratio
nGroupPrototyp
e

* aggr Specifies that this module or cluster depends on a
certain mode group. The requiredModeGroup is
local to this context and will be connected to the
providedModeGroup of another module or cluster
via the configuration of the BswScheduler.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime
xml.sequenceOffset=30

requiredTri
gger

Trigger * aggr Specifies that this module or cluster reacts upon
an external trigger.This requiredTrigger is declared
locally to this context and will be connected to the
providedTrigger of another module or cluster via
the configuration of the BswScheduler.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime
xml.sequenceOffset=40

Table A.4: BswModuleDescription

73 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Class DependencyOnArtifact
Package M2::AUTOSARTemplates::CommonStructure::Implementation
Note Dependency on the existence of another artifact, e.g. a library.
Base ARObject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
artifactDes
criptor

AutosarEnginee
ringObject

1 aggr The specified artifact needs to exist.

usage DependencyUs
ageEnum

1..* attr Specification for which process step(s) this
dependency is required.

Table A.5: DependencyOnArtifact

Class EcucModuleConfigurationValues
Package M2::AUTOSARTemplates::ECUCDescriptionTemplate
Note Head of the configuration of one Module. A Module can be a BSW module as well as

the RTE and ECU Infrastructure.

As part of tthe BSW module description, the EcucModuleConfigurationValues
element has two different roles:

The recommendedConfiguration contains parameter values recommended by the
BSW module vendor.

The preconfiguredConfiguration contains values for those parameters which are fixed
by the implementation and cannot be changed.

These two EcucModuleConfigurationValues are used when the base
EcucModuleConfigurationValues (as part of the base ECU configuration) is created to
fill parameters with initial values.

Tags: atp.recommendedPackage=EcucModuleConfigurationValuess
Base ARElement,ARObject,CollectableElement,Identifiable,Multilanguage

Referrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
container EcucContainerV

alue
1..* aggr Aggregates all containers that belong to this

module configuration.

atpVariation: [RS_ECUC_00078]

Stereotypes: atpSplitable; atpVariation
Tags: Vh.latestBindingTime=PostBuild
atp.Splitkey=definition, shortName, variation
Point.shortLabel
xml.sequenceOffset=10

definition EcucModuleDef 1 ref Reference to the definition of this
EcucModuleConfigurationValues element.
Typically, this is a vendor specific module
configuration.

Tags: xml.sequenceOffset=-10

74 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Attribute Datatype Mul. Kind Note
ecucDefEd
ition

RevisionLabelSt
ring

1 attr This is the version info of the ModuleDef ECUC
Parameter definition to which this values conform
to / are based on.

For the Definition of ModuleDef ECUC Parameters
the ADMIN-DATA shall be used to express the
semantical changes. The compatibility rules
between the definition and value revision labels is
up to the module’s vendor.

implement
ationConfi
gVariant

EcucConfigurati
onVariantEnum

1 attr Specifies the kind of deliverable this
EcucModuleConfigurationValues element
provides. If this element is not used in a particular
role (e.g. preconfiguredConfiguration or
recommendedConfiguration) then the value must
be one of VariantPreCompile, VariantLinkTime,
VariantPostBuild.

moduleDe
scription

BswImplementa
tion

0..1 ref Referencing the BSW module description, which
this EcucModuleConfigurationValues element is
configuring. This is optional because the
EcucModuleConfigurationValues element is also
used to configure the ECU infrastructure (memory
map) or Application SW-Cs. However in case the
EcucModuleConfigurationValues are used to
configure the module, the reference is mandatory
in order to fetch module specific "common"
published information.

Table A.6: EcucModuleConfigurationValues

Class EcucValueCollection
Package M2::AUTOSARTemplates::ECUCDescriptionTemplate
Note This represents the anchor point of the ECU configuration description.

Tags: atp.recommendedPackage=EcucValueCollections
Base ARElement,ARObject,CollectableElement,Identifiable,Multilanguage

Referrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
ecuExtract System 1 ref Represents the extract of the System

Configuration that is relevant for the ECU
configured with that ECU Configuration
Description.

ecucValue EcucModuleCo
nfigurationValue
s

1..* ref References to the configuration of individual
software modules that are present on this ECU.

atpVariation: [RS_ECUC_0079]

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

Table A.7: EcucValueCollection

75 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Class EngineeringObject (abstract)
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Engineering

Object
Note This class specifies an engineering object. Usually such an object is represented by a

file artifact. The properties of engineering object are such that the artifact can be
found by querying an ASAM catalog file.

The engineering object is uniquely identified by
domain+category+shortLabel+revisionLabel.

Base ARObject
Attribute Datatype Mul. Kind Note
category NameToken 1 attr This denotes the role of the engineering object in

the development cycle. Categories are such as

• SWSRC for source code

• SWOBJ for object code

• SWHDR for a C-header file

Further roles need to be defined via Methodology.

Tags: xml.sequenceOffset=20
domain NameToken 0..1 attr This denotes the domain in which the engineering

object is stored. This allows to indicate various
segments in the repository keeping the
engineering objects. The domain may segregate
companies, as well as automotive domains.
Details need to be defined by the Methodology.

Attribute is optional to support a default domain.

Tags: xml.sequenceOffset=40
revisionLa
bel

RevisionLabelSt
ring

* attr This is a revision label denoting a particular
version of the engineering object.

Tags: xml.sequenceOffset=30
shortLabel NameToken 1 attr This is the short name of the engineering object.

Note that it is modeled as NameToken and not as
Identifier since in ASAM-CC it is also a
NameToken.

Tags: xml.sequenceOffset=10

Table A.8: EngineeringObject

Class ExecutableEntity (abstract)
Package M2::AUTOSARTemplates::CommonStructure::InternalBehavior
Note Abstraction of executable code.
Base ARObject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note

76 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Attribute Datatype Mul. Kind Note
activationR
eason

ExecutableEntit
yActivationReas
on

* aggr If the ExecutableEntity provides at least one
activationReason element the RTE resp. BSW
Scheduler shall provide means to read the
activation vector of this executable entity
execution.

If no activationReason element is provided the
feature of being able to determine the activating
RTEEvent is disabled for this ExecutableEntity.

canEnterE
xclusiveAr
ea

ExclusiveArea * ref This means that the executable entity can
enter/leave the referenced exclusive area through
explicit API calls.

exclusiveA
reaNesting
Order

ExclusiveAreaN
estingOrder

* ref This represents the set of
ExclusiveAreaNestingOrders recognized by this
ExecutableEntity.

minimumSt
artInterval

TimeValue 1 attr Specifies the time in seconds by which two
consecutive starts of an ExecutableEntity are
guaranteed to be separated.

reentrancy
Level

ReentrancyLeve
lEnum

0..1 attr The reentrancy level of this ExecutableEntity. See
the documentation of the enumeration type
ReentrancyLevelEnum for details.

Please note that nonReentrant interfaces can
have also reentrant or multicoreReentrant
implementations, and reentrant interfaces can also
have multicoreReentrant implementations.

runsInside
ExclusiveA
rea

ExclusiveArea * ref The executable entity runs completely inside the
referenced exclusive area.

swAddrMet
hod

SwAddrMethod 0..1 ref Addressing method related to this code entity. Via
an association to the same SwAddrMethod, it can
be specified that several code entities (even of
different modules or components) shall be located
in the same memory without already specifying
the memory section itself.

Table A.9: ExecutableEntity

Class Implementation (abstract)
Package M2::AUTOSARTemplates::CommonStructure::Implementation
Note Description of an implementation a single software component or module.
Base ARElement,ARObject,CollectableElement,Identifiable,Multilanguage

Referrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
buildAction
Manifest

BuildActionMani
fest

0..1 ref A manifest specifying the intended build actions
for the software delivered with this implementation.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=CodeGeneration
Time

77 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Attribute Datatype Mul. Kind Note
codeDescri
ptor

Code 1..* aggr Specifies the provided implementation code.

compiler Compiler * aggr Specifies the compiler for which this
implementation has been released

generated
Artifact

DependencyOn
Artifact

* aggr Relates to an artifact that will be generated during
the integration of this Implementation by an
associated generator tool. Note that this is an
optional information since it might not always be in
the scope of a single module or component to
provide this information.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

hwElement HwElement * ref The hardware elements (e.g. the processor)
required for this implementation.

linker Linker * aggr Specifies the linker for which this implementation
has been released.

mcSupport McSupportData 0..1 aggr The measurement & calibration support data
belonging to this implementation. The aggregtion
is «atpSplitable» because in case of an already
exisiting BSW Implementation model, this
description will be added later in the process,
namely at code generation time.

Stereotypes: atpSplitable
Tags: atp.Splitkey=mcSupport

programmi
ngLanguag
e

Programmingla
nguageEnum

1 attr Programming language the implementation was
created in.

requiredArt
ifact

DependencyOn
Artifact

* aggr Specifies that this Implementation depends on the
existance of another artifact (e.g. a library). This
aggregation of DependencyOnArtifact is subject to
variability with the purpose to support variability in
the implementations. Different algorithms in the
implementation might cause different
dependencies, e.g. the number of used libraries.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

requiredGe
neratorToo
l

DependencyOn
Artifact

* aggr Relates this Implementation to a generator tool in
order to generate additional artifacts during
integration.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

resourceC
onsumptio
n

ResourceConsu
mption

1 aggr All static and dynamic resources for each
implementation are described within the
ResourceConsumption class.

swVersion RevisionLabelSt
ring

1 attr Software version of this implementation. The
numbering contains three levels (like major, minor,
patch), its values are vendor specific.

78 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Attribute Datatype Mul. Kind Note
swcBswMa
pping

SwcBswMappin
g

0..1 ref This allows a mapping between an SWC and a
BSW behavior to be attached to an
implementation description (for AUTOSAR
Service, ECU Abstraction and Complex Driver
Components). It is up to the methodology to
define whether this reference has to be set for the
Swc- or BswImplementtion or for both.

usedCode
Generator

String 0..1 attr Optional: code generator used.

vendorId PositiveInteger 1 attr Vendor ID of this Implementation according to the
AUTOSAR vendor list

Table A.10: Implementation

Class ImplementationDataType
Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes
Note Describes a reusable data type on the implementation level. This will typically

correspond to a typedef in C-code.

Tags: atp.recommendedPackage=ImplementationDataTypes
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,AtpType,Autosar

DataType,CollectableElement,Identifiable,MultilanguageReferrable,Packageable
Element,Referrable

Attribute Datatype Mul. Kind Note
subElemen
t (ordered)

Implementation
DataTypeEleme
nt

* aggr Specifies an element of an arrray, struct, or union
data type.

The aggregation of
ImplementionDataTypeElement is subject to
variability with the purpose to support the
conditional existence of elements inside a
ImplementationDataType representing a structure.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

symbolPro
ps

SymbolProps 0..1 aggr This represents the SymbolProps for the
ImplementationDataType.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName

typeEmitte
r

NameToken 0..1 attr This attribute is used to control which part of the
AUTOSAR toolchain is supposed to trigger data
type definitions.

Table A.11: ImplementationDataType

Enumeration MemoryAllocationKeywordPolicyType
Package M2::AUTOSARTemplates::CommonStructure::AuxillaryObjects
Note Enumeration to specify the name pattern of the Memory Allocation Keyword.
Literal Description

79 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

addrMethod
ShortName

The MemorySection shortNames of referring MemorySections and therefore the
belonging Memory Allocation Keywords in the code are build with the shortName of
the SwAddrMethod. This is the default value if the attribute does not exist.

addrMethod
ShortName
AndAlign-
ment

The MemorySection shortNames of referring MemorySections and therefore the
belonging Memory Allocation Keywords in the code are build with the shortName of
the SwAddrMethod and the alignment attribute of the MemorySection. This
requests a separation of objects in memory dependent from the alignment and is
not applicable for SwAddrMethods referred by RunnableEntitys and
BswSchedulableEntitys.

Table A.12: MemoryAllocationKeywordPolicyType

Class MemorySection
Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::Memory

SectionUsage
Note Provides a description of an abstract memory section used in the Implementation for

code or data. It shall be declared by the Implementation Description of the module or
component, which actually allocates the memory in its code. This means in case of
data prototypes which are allocated by the RTE, that the generated Implementation
Description of the RTE shall contain the corresponding MemorySections.

The attribute "symbol" (if symbol is missing: "shortName") defines the module or
component specific section name used in the code. For details see the document
"Specification of Memory Mapping". Typically the section name is build according the
pattern:

<SwAddrMethod shortName>[_<further specialization nominator>][_<alignment>]
where

• [<SwAddrMethod shortName>] is the shortName of the referenced
SwAddrMethod

• [_<further specialization nominator>] is an optional infix to indicate the
specialization in the case that several MemorySections for different purpose of
the same Implementation Description referring to the same or equally named
SwAddrMethods.

• [_<alignment>] is the alignment attributes value and is only applicable in the
case that the memoryAllocationKeywordPolicy value of the referenced
SwAddrMethod is set to addrMethodShortNameAndAlignment

MemorySection used to Implement the code of RunnableEntitys and
BswSchedulableEntitys shall have a symbol (if missing: shortName) identical to the
referred SwAddrMethod to conform to the generated RTE header files.

In addition to the section name described above, a prefix is used in the corresponding
macro code in order to define a name space. This prefix is by default given by the
shortName of the BswModuleDescription resp. the SwcComponentType. It can be
superseded by the prefix attribute.

Base ARObject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
alignment AlignmentType 0..1 attr The attribute describes the alignment of objects

within this memory section.

80 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Attribute Datatype Mul. Kind Note
executable
Entity

ExecutableEntit
y

* ref Reference to the ExecutableEntitites located in
this section. This allows to locate different
ExecutableEntitities in different sections even if
the associated SwAddrmethod is the same.

This is applicable to code sections only.
memClass
Symbol

CIdentifier 0..1 ref Defines a specific symbol in order to generate the
compiler abstraction "memclass" code for this
MemorySection. The existence of this attribute
supersedes the usage of
swAddrmethod.shortName for this purpose.

The complete name of the "memclass"
preprocessor symbol is constructed as
<prefix>_<memClassSymbol> where prefix is
defined in the same way as for the enclosing
MemorySection. See also
AUTOSAR_SWS_CompilerAbstraction
SWS_COMPILER_00040.

option Identifier * ref This attribute introduces the ability to specify
further intended properties of this MemorySection.
The following two values are standardized (to be
used for code sections only and exclusively to
each other):

• INLINE - The code section is declared with
the compiler abstraction macro INLINE.

• LOCAL_INLINE - The code section is
declared with the compiler abstraction
macro LOCAL_INLINE

In both cases (INLINE and LOCAL_INLINE) the
inline expansion depends on the compiler specific
implementation of these macros. Depending on
this, the code section either corresponds to an
actual section in memory or is put into the section
of the caller. See
AUTOSAR_SWS_CompilerAbstraction for more
details.

prefix SectionNamePr
efix

0..1 ref The prefix used to set the memory section’s
namespace in the code. The existence of a prefix
element supersedes rules for a default prefix
(such as the BswModuleDescription’s
shortName). This allows the user to define several
name spaces for memory sections within the
scope of one module, cluster or SWC.

size PositiveInteger 0..1 attr The size in bytes of the section.

81 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Attribute Datatype Mul. Kind Note
swAddrmet
hod

SwAddrMethod 1 ref This association indicates that this module specific
(abstract) memory section is part of an overall
SwAddrMethod, referred by the upstream
declarations (e.g. calibration parameters, data
element prototypes, code entities) which share a
common addressing strategy. This can be
evaluated for the ECU configuration of the build
support.

This association shall always be declared by the
Implementation description of the module or
component, which allocates the memory in its
code. This means in case of data prototypes
which are allocated by the RTE, that the software
components only declare the grouping of its data
prototypes to SwAddrMethods, and the generated
Implementation Description of the RTE actually
sets up this association.

symbol Identifier 0..1 ref Defines the section name as explained in the main
description. By using this attribute for code
generation (instead of the shortName) it is
possible to define several different
MemorySections having the same name - e.g.
symbol = CODE - but using different
sectionNamePrefixes.

Table A.13: MemorySection

Enumeration MemorySectionType
Package M2::AUTOSARTemplates::CommonStructure::AuxillaryObjects
Note Enumeration to specify the essential nature of the data which can be allocated in a

common memory class by the means of the AUTOSAR Memory Mapping.
Literal Description
calibration
Offline

Program data which can only be used for offline calibration.

Note: This value is deprecated and shall be substituted by calPrm.

Tags: atp.Status=obsolete
calibration
Online

Program data which can be used for online calibration.

Note: This value is deprecated and shall be substituted by calPrm.

Tags: atp.Status=obsolete
calibration
Variables

This memory section is reserved for "virtual variables" that are computed by an
MCD system during a measurement session but do not exist in the ECU memory.

calprm To be used for calibratable constants of ECU-functions.
code To be used for mapping code to application block, boot block, external flash etc.
configData Constants with attributes that show that they reside in one segment for module

configuration.
const To be used for global or static constants.

82 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

excludeFrom
Flash

This memory section is reserved for "virtual parameters" that are taken for
computing the values of so-called dependent parameter of an MCD system.
Dependent Parameters that are not at the same time "virtual parameters" are
allocated in the ECU memory.

Virtual parameters, on the other hand, are not allocated in the ECU memory.
Virtual parameters exist in the ECU Hex file for the purpose of being considered
(for computing the values of dependent parameters) during an offline-calibration
session.

userDefined No specific categorization of sectionType possible.

Note: This value is deprecated and shall be substituted by var, code, const, calprm,
configData, excludeFromFlash and the appropriate values of the orthogonal
attributes sectionInitializationPolicy, memoryAllocationKeywordPolicy and option.

Tags: atp.Status=obsolete
var To be used for global or static variables. The expected initialization is specified with

the attribute sectionInitializationPolicy.
varFast To be used for all global or static variables that have at least one of the following

properties: - accessed bit-wise - frequently used - high number of accesses in
source code Some platforms allow the use of bit instructions for variables located
in this specific RAM area as well as shorter addressing instructions. This saves
code and runtime.

Note: This value is deprecated and shall be substituted by var and the appropriate
values of the orthogonal attributes sectionInitializationPolicy,
memoryAllocationKeywordPolicy and option.

Tags: atp.Status=obsolete
varNoInit To be used for all global or static variables that are never initialized.

Note: This value is deprecated and shall be substituted by var and the appropriate
values of the orthogonal attributes sectionInitializationPolicy,
memoryAllocationKeywordPolicy and option.

Tags: atp.Status=obsolete
varPowerOn
Init

To be used for all global or static variables that are initialized only after power on
reset.

Note: This value is deprecated and shall be substituted by var and the appropriate
values of the orthogonal attributes sectionInitializationPolicy,
memoryAllocationKeywordPolicy and option.

Tags: atp.Status=obsolete

Table A.14: MemorySectionType

83 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Class Referrable (abstract)
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable
Note Instances of this class can be referred to by their identifier (while adhering to

namespace borders).
Base ARObject
Attribute Datatype Mul. Kind Note
shortName Identifier 1 ref This specifies an identifying shortName for the

object. It needs to be unique within its context and
is intended for humans but even more for technical
reference.

Tags: xml.enforceMinMultiplicity=true;
xml.sequenceOffset=-100

Table A.15: Referrable

Class RunnableEntity
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior
Note A RunnableEntity represents the smallest code-fragment that is provided by an

AtomicSwComponentType and are executed under control of the RTE.
RunnableEntities are for instance set up to respond to data reception or operation
invocation on a server.

Base ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Executable
Entity,Identifiable,MultilanguageReferrable,Referrable

Attribute Datatype Mul. Kind Note
argument
(ordered)

RunnableEntity
Argument

* aggr This represents the formal definition of a an
argument to a RunnableEntity.

asynchron
ousServer
CallResult
Point

AsynchronousS
erverCallResult
Point

* aggr The server call result point admits a runnable to
fetch the result of an asynchronous server call.

The aggregation of
AsynchronousServerCallResultPoint is subject to
variability with the purpose to support the
conditional existence of client server
PortPrototypes and the variant existence of server
call result points in the implementation.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

canBeInvo
kedConcur
rently

Boolean 1 attr If the value of this attribute is set to "true" the
enclosing RunnableEntity can be invoked
concurrently (even for one instance of the
corresponding AtomicSwComponentType). This
implies that it is the responsibility of the
implementation of the RunnableEntity to take care
of this form of concurrency. Note that the default
value of this attribute is set to "false".

84 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Attribute Datatype Mul. Kind Note
dataReadA
ccess

VariableAccess * aggr RunnableEntity has implicit read access to
dataElement of a sender-receiver PortPrototype or
nv data of a nv data PortPrototype.

The aggregation of dataReadAccess is subject to
variability with the purpose to support the
conditional existence of sender receiver ports or
the variant existence of dataReadAccess in the
implementation.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

dataReceiv
ePointByAr
gument

VariableAccess * aggr RunnableEntity has explicit read access to
dataElement of a sender-receiver PortPrototype or
nv data of a nv data PortPrototype. The result is
passed back to the application by means of an
argument in the function signature.

The aggregation of dataReceivePointByArgument
is subject to variability with the purpose to support
the conditional existence of sender receiver
PortPrototype or the variant existence of data
receive points in the implementation.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

dataReceiv
ePointByV
alue

VariableAccess * aggr RunnableEntity has explicit read access to
dataElement of a sender-receiver PortPrototype or
nv data of a nv data PortPrototype.

The result is passed back to the application by
means of the return value. The aggregation of
dataReceivePointByValue is subject to variability
with the purpose to support the conditional
existence of sender receiver ports or the variant
existence of data receive points in the
implementation.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

dataSendP
oint

VariableAccess * aggr RunnableEntity has explicit write access to
dataElement of a sender-receiver PortPrototype or
nv data of a nv data PortPrototype.

The aggregation of dataSendPoint is subject to
variability with the purpose to support the
conditional existence of sender receiver
PortPrototype or the variant existence of data
send points in the implementation.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

85 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Attribute Datatype Mul. Kind Note
dataWriteA
ccess

VariableAccess * aggr RunnableEntity has implicit write access to
dataElement of a sender-receiver PortPrototype or
nv data of a nv data PortPrototype.

The aggregation of dataWriteAccess is subject to
variability with the purpose to support the
conditional existence of sender receiver ports or
the variant existence of dataWriteAccess in the
implementation.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

externalTri
ggeringPoi
nt

ExternalTriggeri
ngPoint

* aggr The aggregation of ExternalTriggeringPoint is
subject to variability with the purpose to support
the conditional existence of trigger ports or the
variant existence of external triggering points in
the implementation.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

internalTrig
geringPoin
t

InternalTriggerin
gPoint

* aggr The aggregation of InternalTriggeringPoint is
subject to variability with the purpose to support
the variant existence of internal triggering points in
the implementation.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

modeAcce
ssPoint

ModeAccessPoi
nt

* aggr The runnable has a mode access point. The
aggregation of ModeAccessPoint is subject to
variability with the purpose to support the
conditional existence of mode ports or the variant
existence of mode access points in the
implementation.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

modeSwitc
hPoint

ModeSwitchPoi
nt

* aggr The runnable has a mode switch point. The
aggregation of ModeSwitchPoint is subject to
variability with the purpose to support the
conditional existence of mode ports or the variant
existence of mode switch points in the
implementation.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

86 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Attribute Datatype Mul. Kind Note
parameter
Access

ParameterAcce
ss

* aggr The presence of a ParameterAccess implies that a
RunnableEntity needs read only access to a
ParameterDataPrototype which may either be
local or within a PortPrototype.

The aggregation of ParameterAccess is subject to
variability with the purpose to support the
conditional existence of parameter ports and
component local parameters as well as the variant
existence of ParameterAccess (points) in the
implementation.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

readLocal
Variable

VariableAccess * aggr The presence of a readLocalVariable implies that
a RunnableEntity needs read access to a
VariableDataPrototype in the role of
implicitInterRunnableVariable or
explicitInterRunnableVariable.

The aggregation of readLocalVariable is subject to
variability with the purpose to support the
conditional existence of
implicitInterRunnableVariable and
explicitInterRunnableVariable or the variant
existence of readLocalVariable (points) in the
implementation.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

serverCall
Point

ServerCallPoint * aggr The RunnableEntity has a ServerCallPoint. The
aggregation of ServerCallPoint is subject to
variability with the purpose to support the
conditional existence of client server
PortPrototypes or the variant existence of server
call points in the implementation.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

symbol CIdentifier 1 ref The symbol describing this RunnableEntity’s entry
point. This is considered the API of the
RunnableEntity and is required during the RTE
contract phase.

waitPoint WaitPoint * aggr The WaitPoint associated with the RunnableEntity.

87 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Attribute Datatype Mul. Kind Note
writtenLoc
alVariable

VariableAccess * aggr The presence of a writtenLocalVariable implies
that a RunnableEntity needs write access to a
VariableDataPrototype in the role of
implicitInterRunnableVariable or
explicitInterRunnableVariable.

The aggregation of writtenLocalVariable is subject
to variability with the purpose to support the
conditional existence of
implicitInterRunnableVariable and
explicitInterRunnableVariable or the variant
existence of writtenLocalVariable (points) in the
implementation.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

Table A.16: RunnableEntity

Class SectionNamePrefix
Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::Memory

SectionUsage
Note A prefix to be used for generated code artifacts defining a memory section name in

the source code of the using module.
Base ARObject,ImplementationProps,Referrable
Attribute Datatype Mul. Kind Note
implement
edIn

DependencyOn
Artifact

0..1 ref Optional reference that allows to Indicate the code
artifact (header file) containing the preprocessor
implementation of memory sections with this
prefix.

The usage of this link supersedes the usage of a
memory mapping header with the default name
(derived from the BswModuleDescription’s
shortName).

Table A.17: SectionNamePrefix

Class SwAddrMethod
Package M2::AUTOSARTemplates::CommonStructure::AuxillaryObjects
Note Used to assign a common addressing method, e.g. common memory section, to data

or code objects. These objects could actually live in different modules or components.

Tags: atp.recommendedPackage=SwAddrMethods
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,Collectable

Element,Identifiable,MultilanguageReferrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
memoryAll
ocationKey
wordPolicy

MemoryAllocati
onKeywordPolic
yType

0..1 attr Enumeration to specify the name pattern of the
Memory Allocation Keyword.

88 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Attribute Datatype Mul. Kind Note
option Identifier * ref This attribute introduces the ability to specify

further intended properties of the MemorySection
in with the related objects shall be placed.

These properties are handled as to be selected.
The intended options are mentioned in the list.

In the Memory Mapping configuration, this option
list is used to determine an appropriate
MemMapAddressingModeSet.

sectionIniti
alizationPo
licy

SectionInitializat
ionPolicyType

0..1 attr Specifies the expected initialization of the
variables (inclusive those which are implementing
VariableDataPrototypes). Therefore this is an
implementation constraint for initialization code of
BSW modules (especially RTE) as well as the
start-up code which initializes the memory
segment to which the AutosarDataPrototypes
referring to the SwAddrMethod’s are later on
mapped.

If the attribute is not defined it has the identical
semantic as the attribute value "INIT"

sectionTyp
e

MemorySection
Type

0..1 attr Defines the type of memory sections which can be
associated with this addresssing method.

Table A.18: SwAddrMethod

Class SwBaseType
Package M2::AUTOSARTemplates::CommonStructure::BaseTypes
Note This meta-class represents a base type used within ECU software.

Tags: atp.recommendedPackage=BaseTypes
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,BaseType,Collectable

Element,Identifiable,MultilanguageReferrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
– – – – –

Table A.19: SwBaseType

Class SwComponentType (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note Base class for AUTOSAR software components.
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,Atp

Type,CollectableElement,Identifiable,MultilanguageReferrable,Packageable
Element,Referrable

Attribute Datatype Mul. Kind Note

89 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Attribute Datatype Mul. Kind Note
consistenc
yNeeds

ConsistencyNee
ds

* aggr This represents the colelction of
ConsistencyNeeds owned by the enclosing
SwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

port PortPrototype * aggr The ports through which this component can
communicate. The aggregation of PortPrototype is
subject to variability with the purpose to support
the conditional existence of PortPrototypes.

Stereotypes: atpSplitable; atpVariation
Tags: Vh.latestBindingTime=PreCompileTime
atp.Splitkey=shortName, variationPoint.shortLabel

portGroup PortGroup * aggr A port group being part of this component.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

swCompon
entDocum
entation

SwComponentD
ocumentation

0..1 aggr This adds a documentation to the
SwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags: Vh.latestBindingTime=PreCompileTime
atp.Splitkey=swComponentDocumentation,
variationPoint.shortLabel
xml.sequenceOffset=-10

unitGroup UnitGroup * ref This allows for the specification of which
UnitGroups are relevant in the context of
referencing SwComponentType.

Table A.20: SwComponentType

Class SwcImplementation
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcImplementation
Note This meta-class represents a specialization of the general Implementation meta-class

with respect to the usage in application software.

Tags: atp.recommendedPackage=SwcImplementations
Base ARElement,ARObject,CollectableElement,Identifiable,Implementation,Multilanguage

Referrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
behavior SwcInternalBeh

avior
1 ref The internal behavior implemented by this

Implementation.

90 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Attribute Datatype Mul. Kind Note
perInstanc
eMemoryS
ize

PerInstanceMe
morySize

* aggr Allows a definition of the size of the per-instance
memory for this implementation. The aggregation
of PerInstanceMemorySize is subject to variability
with the purpose to support variability in the
software components implementations. Typically
different algorithms in the implementation are
requiring different number of memory objects, in
this case PerInstanceMemory.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

requiredRT
EVendor

String 0..1 attr Identify a specific RTE vendor. This information is
potentially important at the time of integrating (in
particular: linking) the application code with the
RTE. The semantics is that (if the association
exists) the corresponding code has been created
to fit to the vendor-mode RTE provided by this
specific vendor. Attempting to integrate the code
with another RTE generated in vendor mode is in
general not possible.

Table A.21: SwcImplementation

Class SwcInternalBehavior
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior
Note The SwcInternalBehavior of an AtomicSwComponentType describes the relevant

aspects of the software-component with respect to the RTE, i.e. the RunnableEntities
and the RTEEvents they respond to.

Base ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Identifiable,Internal
Behavior,MultilanguageReferrable,Referrable

Attribute Datatype Mul. Kind Note
arTypedPe
rInstanceM
emory

VariableDataPr
ototype

* aggr Defines an AUTOSAR typed memory-block that
needs to be available for each instance of the
SW-component. This is typically only useful if
supportsMultipleInstantiation is set to "true" or if
the component defines NVRAM access via
permanent blocks. The aggregation of
arTypedPerInstanceMemory is subject to
variability with the purpose to support variability in
the software components implementations.
Typically different algorithms in the implementation
are requiring different number of memory objects.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

91 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Attribute Datatype Mul. Kind Note
event RTEEvent * aggr This is a RTEEvent specified for the particular

SwcInternalBehavior.

The aggregation of RTEEvent is subject to
variability with the purpose to support the
conditional existence of RTE events. Note: the
number of RTE events might vary due to the
conditional existence of PortPrototypes using
DataReceivedEvents or due to different
scheduling needs of algorithms.

Stereotypes: atpSplitable; atpVariation
Tags: Vh.latestBindingTime=PreCompileTime
atp.Splitkey=shortName, variationPoint.shortLabel

explicitInte
rRunnable
Variable

VariableDataPr
ototype

* aggr Implement state message semantics for
establishing communication among runnables of
the same component. The aggregation of
explicitInterRunnableVariable is subject to
variability with the purpose to support variability in
the software components implementations.
Typically different algorithms in the implementation
are requiring different number of memory objects.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

handleTer
minationAn
dRestart

HandleTerminat
ionAndRestartE
num

1 attr This attribute controls the behavior with respect to
stopping and restarting. The corresponding
AtomicSwComponentType may either not support
stop and restart, or support only stop, or support
both stop and restart.

implicitInte
rRunnable
Variable

VariableDataPr
ototype

* aggr Implement state message semantics for
establishing communication among runnables of
the same component. The aggregation of
implicitInterRunnableVariable is subject to
variability with the purpose to support variability in
the software components implementations.
Typically different algorithms in the implementation
are requiring different number of memory objects.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

includedDa
taTypeSet

IncludedDataTy
peSet

* aggr The includedDataTypeSet is used by a software
component for its implementation.

includedM
odeDeclar
ationGroup
Set

IncludedModeD
eclarationGroup
Set

* aggr This aggregation represents the included
ModeDeclarationGroups

92 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Attribute Datatype Mul. Kind Note
instantiatio
nDataDefP
rops

InstantiationDat
aDefProps

* aggr The purpose of this is that within the context of a
given SwComponentType some data def
properties of individual instantiations can be
modified. The aggregation of
InstantiationDataDefProps is subject to variability
with the purpose to support the conditional
existence of PortPrototypes and component local
memories like "perInstanceParameter" or
"arTypedPerInstanceMemory".

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

perInstanc
eMemory

PerInstanceMe
mory

* aggr Defines a per-instance memory object needed by
this software component. The aggregation of
PerInstanceMemory is subject to variability with
the purpose to support variability in the software
components implementations. Typically different
algorithms in the implementation are requiring
different number of memory objects.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

perInstanc
eParamete
r

ParameterData
Prototype

* aggr Defines parameter(s) or characteristic value(s)
that needs to be available for each instance of the
software-component. This is typically only useful if
supportsMultipleInstantiation is set to "true". The
aggregation of perInstanceParameter is subject to
variability with the purpose to support variability in
the software components implementations.
Typically different algorithms in the implementation
are requiring different number of memory objects.

Stereotypes: atpSplitable; atpVariation
Tags: Vh.latestBindingTime=PreCompileTime
atp.Splitkey=shortName, variationPoint.shortLabel

portAPIOpt
ion

PortAPIOption * aggr Options for generating the signature of
port-related calls from a runnable to the RTE and
vice versa. The aggregation of PortPrototypes is
subject to variability with the purpose to support
the conditional existence of ports.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

93 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Attribute Datatype Mul. Kind Note
runnable RunnableEntity 1..* aggr This is a RunnableEntity specified for the

particular SwcInternalBehavior.

The aggregation of RunnableEntity is subject to
variability with the purpose to support the
conditional existence of RunnableEntities. Note:
the number of RunnableEntities might vary due to
the conditional existence of PortPrototypes using
DataReceivedEvents or due to different
scheduling needs of algorithms.

Stereotypes: atpSplitable; atpVariation
Tags: Vh.latestBindingTime=PreCompileTime
atp.Splitkey=shortName, variationPoint.shortLabel

serviceDep
endency

SwcServiceDep
endency

* aggr Defines the requirements on AUTOSAR Services
for a particular item.

The aggregation of SwcServiceDependency is
subject to variability with the purpose to support
the conditional existence of ports as well as the
conditional existence of ServiceNeeds.

The SwcServiceDependency owned by an
SwcInternalBehavior can be located in a different
physical file in order to support that
SwcServiceDependency might be provided in later
development steps or even by different expert
domain (e.g OBD expert for Obd related Service
Needs) tools. Therefore the aggregation is
«atpSplitable».

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

sharedPar
ameter

ParameterData
Prototype

* aggr Defines parameter(s) or characteristic value(s)
shared between SwComponentPrototypes of the
same SwComponentType The aggregation of
sharedParameter is subject to variability with the
purpose to support variability in the software
components implementations. Typically different
algorithms in the implementation are requiring
different number of memory objects.

Stereotypes: atpSplitable; atpVariation
Tags: Vh.latestBindingTime=PreCompileTime
atp.Splitkey=shortName, variationPoint.shortLabel

supportsM
ultipleInsta
ntiation

Boolean 1 attr Indicate whether the corresponding
software-component can be multiply instantiated
on one ECU. In this case the attribute will result in
an appropriate component API on programming
language level (with or without instance handle).

variationPo
intProxy

VariationPointPr
oxy

* aggr Proxy of a variation points in the C/C++
implementation.

Table A.22: SwcInternalBehavior

94 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Class SwcToImplMapping
Package M2::AUTOSARTemplates::SystemTemplate::SWmapping
Note Map instances of an AtomicSwComponentType to a specific Implementation.
Base ARObject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
component SwComponentP

rototype
1..* iref Reference to the software component instances

that are being mapped to the specified
Implementation. The targeted
SwComponentPrototype needs be of the
AtomicSwComponentType being implemented by
the referenced Implementation.

component
Implement
ation

SwcImplementa
tion

1 ref Reference to a specific Implementation
description.

Implementation to be used by the specified SW
component instance. This allows to achieve more
precise estimates for the resource consumption
that results from mapping the instance of an
atomic SW component onto an ECU.

Table A.23: SwcToImplMapping

Class SystemMapping
Package M2::AUTOSARTemplates::SystemTemplate
Note The system mapping aggregates all mapping aspects (mapping of SW components

to ECUs, mapping of data elements to signals, and mapping constraints).
Base ARObject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
dataMappi
ng

DataMapping * aggr The data mappings defined.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PostBuild

ecuResour
ceMapping

ECUMapping * aggr Mapping of hardware related topology elements
onto their counterpart definitions in the ECU
Resource Template.

atpVariation: The ECU Resource type might be
variable.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=SystemDesignTime

mappingC
onstraint

MappingConstr
aint

* aggr Constraints that limit the mapping freedom for the
mapping of SW components to ECUs.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=SystemDesignTime

pncMappin
g

PncMapping * aggr Stereotypes: atpVariationTags: Vh.latestBinding
Time=SystemDesignTime

95 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

Attribute Datatype Mul. Kind Note
resourceE
stimation

EcuResourceEs
timation

* aggr Resource estimations for this set of mappings,
zero or one per ECU instance. atpVariation: Used
ECUs are variable.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=SystemDesignTime

signalPath
Constraint

SignalPathCons
traint

* aggr Constraints that limit the mapping freedom for the
mapping of data elements to signals.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=SystemDesignTime

swImplMa
pping

SwcToImplMap
ping

* aggr The mappings of AtomicSoftwareComponent
Instances to Implementations.

atpVariation: Derived, because
SwcToEcuMapping is variable.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=PreCompileTime

swMappin
g

SwcToEcuMapp
ing

* aggr The mappings of SW components to ECUs.

atpVariation: SWC shall be mapped to other
ECUs.

Stereotypes: atpVariation
Tags: Vh.latestBindingTime=SystemDesignTime

Table A.24: SystemMapping

Class VariableDataPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes
Note A VariableDataPrototype is used to contain values in an ECU application. This means

that most likely a VariableDataPrototype allocates "static" memory on the ECU. In
some cases optimization strategies might lead to a situation where the memory
allocation can be avoided.

In particular, the value of a VariableDataPrototype is likely to change as the ECU on
which it is used executes.

Base ARObject,AtpFeature,AtpPrototype,AutosarDataPrototype,Data
Prototype,Identifiable,MultilanguageReferrable,Referrable

Attribute Datatype Mul. Kind Note
initValue ValueSpecificati

on
0..1 aggr Specifies initial value(s) of the

VariableDataPrototype

Table A.25: VariableDataPrototype

96 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

B Changes w.r.t. Release 4.1.1

B.1 Deleted SWS items

SWS Item Rationale
SWS_MemMap_00030 Deleted during the rework according to the SWS_BSWGeneral

B.2 Changed SWS items

SWS Item Rationale
[SWS_MemMap_00028] Support multiple MemMap header files for BSW
[SWS_MemMap_00029] Support multiple MemMap header files for BSW
[SWS_MemMap_00002] Support multiple MemMap header files for BSW
[SWS_MemMap_00026] Support multiple MemMap header files for BSW
[SWS_MemMap_00027] Support multiple MemMap header files for BSW

B.3 Added SWS items

SWS Item Rationale
[SWS_MemMap_00032] Support multiple MemMap header files for BSW
[SWS_MemMap_00033] Support multiple MemMap header files for BSW
[SWS_MemMap_00034] Support multiple MemMap header files for BSW
[SWS_MemMap_00035] Support multiple MemMap header files for BSW

C Not applicable requirements

[SWS_MemMap_00999] d These requirements are not applicable to this specification.
c(SRS_BSW_00344, SRS_BSW_00404, SRS_BSW_00405, SRS_BSW_00345,
SRS_BSW_00159, SRS_BSW_00167, SRS_BSW_00171, SRS_BSW_00170,
SRS_BSW_00380, SRS_BSW_00419, SRS_BSW_00381, SRS_BSW_00412,
SRS_BSW_00383, SRS_BSW_00387, SRS_BSW_00388, SRS_BSW_00389,
SRS_BSW_00390, SRS_BSW_00391, SRS_BSW_00392, SRS_BSW_00393,
SRS_BSW_00394, SRS_BSW_00395, SRS_BSW_00396, SRS_BSW_00397,
SRS_BSW_00398, SRS_BSW_00399, SRS_BSW_00400, SRS_BSW_00375,
SRS_BSW_00101, SRS_BSW_00416, SRS_BSW_00406, SRS_BSW_00168,
SRS_BSW_00407, SRS_BSW_00423, SRS_BSW_00424, SRS_BSW_00425,
SRS_BSW_00426, SRS_BSW_00427, SRS_BSW_00428, SRS_BSW_00429,
SRS_BSW_00432, SRS_BSW_00433, SRS_BSW_00336, SRS_BSW_00337,
SRS_BSW_00338, SRS_BSW_00369, SRS_BSW_00339, SRS_BSW_00422,
SRS_BSW_00417, SRS_BSW_00323, SRS_BSW_00004, SRS_BSW_00409,
SRS_BSW_00385, SRS_BSW_00386, SRS_BSW_00161, SRS_BSW_00162,
SRS_BSW_00005, SRS_BSW_00415, SRS_BSW_00164, SRS_BSW_00325,

97 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

Specification of Memory Mapping
V1.5.0

R4.1 Rev 1

SRS_BSW_00326, SRS_BSW_00342, SRS_BSW_00343, SRS_BSW_00160,
SRS_BSW_00007, SRS_BSW_00300, SRS_BSW_00413, SRS_BSW_00347,
SRS_BSW_00307, SRS_BSW_00310, SRS_BSW_00373, SRS_BSW_00327,
SRS_BSW_00335, SRS_BSW_00350, SRS_BSW_00408, SRS_BSW_00410,
SRS_BSW_00411, SRS_BSW_00346, SRS_BSW_00158, SRS_BSW_00314,
SRS_BSW_00370, SRS_BSW_00348, SRS_BSW_00353, SRS_BSW_00301,
SRS_BSW_00302, SRS_BSW_00312, SRS_BSW_00357, SRS_BSW_00377,
SRS_BSW_00304, SRS_BSW_00355, SRS_BSW_00378, SRS_BSW_00308,
SRS_BSW_00309, SRS_BSW_00371, SRS_BSW_00358, SRS_BSW_00414,
SRS_BSW_00359, SRS_BSW_00360, SRS_BSW_00329, SRS_BSW_00330,
SRS_BSW_00331, SRS_BSW_00009, SRS_BSW_00401, SRS_BSW_00172,
SRS_BSW_00010, SRS_BSW_00333, SRS_BSW_00341, SRS_BSW_00334)

98 of 98
— AUTOSAR CONFIDENTIAL —

Document ID 128: AUTOSAR_SWS_MemoryMapping

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	6 Requirements traceability
	7 Functional specification
	7.1 General issues
	7.2 Mapping of variables and code
	7.2.1 Requirements on implementations using memory mapping header files for BSW Modules and Software Components
	7.2.2 Requirements on memory mapping header files

	7.3 Examples
	7.3.1 Code Section
	7.3.2 Fast Variable Section
	7.3.3 Code Section in ICC2 cluster
	7.3.4 Callout sections

	8 API specification
	9 Sequence diagrams
	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Variants
	10.2.1.1 VARIANT-PRE-COMPILE

	10.2.2 MemMap
	10.2.3 MemMapAddressingModeSet
	10.2.4 MemMapAddressingMode
	10.2.5 MemMapAllocation
	10.2.6 MemMapGenericMapping
	10.2.7 MemMapSectionSpecificMapping
	10.2.8 MemMapGenericCompilerMemClass

	10.3 Published Information

	11 Analysis
	11.1 Memory allocation of variables
	11.2 Memory allocation of constant variables
	11.3 Memory allocation of code

	A Referenced Meta Classes
	B Changes w.r.t. Release 4.1.1
	B.1 Deleted SWS items
	B.2 Changed SWS items
	B.3 Added SWS items

	C Not applicable requirements

