
Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

1 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

27.02.2013 3.3.0 AUTOSAR
Administration

 Added abstraction macro
CONSTP2FUNC for a constant pointer to
a function

 Improved consistency to Memory Mapping
(several MemMap.h files)

 Reworked Configuration Specification

14.11.2011 3.2.0 AUTOSAR
Administration

 Added macros ‚FUNC_P2CONST‘ and
‘FUNC_P2VAR’

 Added pointer class ‘REGSPACE’ (for
register access)

 Updated the compiler symbols list
29.10.2010 3.1.0 AUTOSAR

Administration
 Put more emphasize on

SwComponentType’s name in
SWS_COMPILER_00054, COMPILER044

 Corrected compiler used in the example
(chapter 12.4)

 Corrected include structure in the example
(chapter 12.4)

02.12.2009 3.0.0 AUTOSAR
Administration

 Compiler Abstraction has been extended
to be suitable for Software Components

 "STATIC" declaration keyword has been
removed

 The declaration keyword "LOCAL_INLINE"
has been added for implementation of
"static inline"-functions

 Legal disclaimer revised
23.06.2008 2.0.1 AUTOSAR

Administration
 Legal disclaimer revised

Document Title Specification of Compiler
Abstraction

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 051

Document Classification Standard

Document Version 3.3.0

Document Status Final

Part of Release 4.1

Revision 1

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

2 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

27.11.2007 2.0.0 AUTOSAR
Administration

 Keyword "_STATIC_" has been renamed
to "STATIC"

 Keyword "_INLINE_" has been renamed to
"INLINE"

 Keyword "TYPEDEF" has been added as
empty memory qualifier for use in type
definitions

 Document meta information extended

 Small layout adaptations made
31.01.2007 1.1.0 AUTOSAR

Administration
 Add: COMPILER058

 Add: COMPILER057

 Change: SWS_COMPILER_00040

 Legal disclaimer revised

 Release Notes added

 “Advice for users” revised

 “Revision Information” added
27.04.2006 1.0.0 AUTOSAR

Administration
Initial Release

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

3 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference
models, "use cases", and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their
presence in such specifications, nor any later documentation of AUTOSAR
conformance of products actually implementing such exemplary items, imply that
intellectual property rights covering such exemplary items are licensed under the
same rules as applicable to the AUTOSAR Standard.

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

4 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

Table of Contents

1 Introduction and functional overview ... 6

2 Acronyms and abbreviations ... 7

3 Related documentation ... 8

3.1 Input documents .. 8

3.2 Related standards and norms .. 9

3.3 Related specification .. 10

4 Constraints and assumptions .. 11

4.1 Limitations .. 11

4.2 Applicability to car domains .. 11

4.3 Applicability to safety related environments .. 11

5 Dependencies to other modules .. 12

5.1 Code file structure .. 12

5.2 Header file structure ... 12

5.3 Connections to other modules .. 12

5.3.1 Compiler Abstraction ... 12

5.3.2 Memory Mapping .. 13

5.3.3 Linker-Settings .. 13

6 Requirements traceability .. 14

7 Analysis... 19

7.1 Keywords for functions ... 19

7.2 Keywords for pointers .. 20

8 Functional specification ... 25

8.1 General issues ... 25

8.2 Contents of Compiler.h .. 25

8.3 Contents of Compiler_Cfg.h ... 26

9 API specification.. 27

9.1 Definitions .. 27

9.1.1 Memory class AUTOMATIC .. 27

9.1.2 Memory class TYPEDEF... 27

9.1.3 NULL_PTR ... 27

9.1.4 INLINE .. 28

9.1.5 LOCAL_INLINE ... 28

9.2 Macros for functions ... 28

9.2.1 FUNC .. 28

9.2.2 FUNC_P2CONST ... 29

9.2.3 FUNC_P2VAR .. 30

9.3 Macros for pointers .. 30

9.3.1 P2VAR .. 30

9.3.2 P2CONST ... 31

9.3.3 CONSTP2VAR .. 32

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

5 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

9.3.4 CONSTP2CONST... 32

9.3.5 P2FUNC ... 33

9.3.6 CONSTP2FUNC ... 34

9.4 Keywords for constants .. 34

9.4.1 CONST ... 34

9.5 Keywords for variables ... 35

9.5.1 VAR .. 35

10 Sequence diagrams ... 37

11 Configuration specification ... 38

11.1 How to read this chapter .. 38

11.2 Containers and configuration parameters ... 38

11.2.1 Variants ... 38

11.2.2 Module-Specific Memory Classes ... 39

11.2.3 Global Memory Classes .. 39

11.3 Published Information .. 39

12 Annex .. 40

12.1 List of Compiler symbols .. 40

12.2 Requirements on implementations using compiler abstraction 40

12.3 Proposed process .. 45

12.4 Comprehensive example.. 46

13 Not applicable requirements .. 47

13.1 Deleted SWS Items: ... 47

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

6 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

1 Introduction and functional overview

This document specifies macros for the abstraction of compiler specific keywords
used for addressing data and code within declarations and definitions.

Mainly compilers for 16-bit platforms (e.g. Cosmic and Metrowerks for S12X or
Tasking for ST10) are using special keywords to cope with properties of the
microcontroller architecture caused by the limited 16 bit addressing range. Features
like paging and extended addressing (to reach memory beyond the 64k border) are
not chosen automatically by the compiler, if the memory model is not adjusted to
‘large’ or ‘huge’. The location of data and code has to be selected explicitly by special
keywords. Those keywords, if directly used within the source code, would make it
necessary to port the software to each new microcontroller family and would prohibit
the requirement of platform independency of source code.

If the memory model is switched to ‘large’ or ‘huge’ by default (to circumvent these
problems) the project will suffer from an increased code size.

This document specifies a three-step concept:

1. The file Compiler.h provides macros for the encapsulation of definitions and
declarations.

2. Each single module has to distinguish between at least the following different

memory classes and pointer classes. Each of these classes is represented by
a define (e.g. EEP_CODE).

3. The file Compiler_Cfg.h allows to configure these defines with the appropriate

compiler specific keywords according to the modules description and memory
set-up of the build scenario.

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

7 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

2 Acronyms and abbreviations

Acronyms and abbreviations that have a local scope are not contained in the
AUTOSAR glossary. These must appear in a local glossary.

Acronym: Description:

Large, huge Memory model configuration of the microcontroller’s compiler. By default, all access
mechanisms are using extended/paged addressing.

Some compilers are using the term ‘huge’ instead of ‘far’.

Tiny, small Memory model configuration of the microcontroller’s compiler. By default, all access
mechanisms are using normal addressing.
Only data and code within the addressing range of the platform’s architecture is
reachable (e.g. 64k on a 16 bit architecture).

far Compiler keyword for extended/paged addressing scheme (for data and code that
may be outside the normal addressing scheme of the platform’s architecture).

near Compiler keyword for normal addressing scheme (for data and code that is within
the addressing range of the platform’s architecture).

C89 ANSI X3.159-1989 Programming Language C

C90 ISO/IEC 9899:1990

C99 ISO/IEC 9899:1999, 2nd edition, 1. December 1999

EmbeddedC ISO/IEC DTR 18037, draft standard, 24. September 2003

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

8 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules,
AUTOSAR_TR_BSWModuleList.pdf

[2] General Requirements on Basic Software Modules,

AUTOSAR_SRS_BSWGeneral.pdf

[3] Layered Software Architecture,

AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[4] Specification of ECU Configuration,
AUTOSAR_TPS_ECUConfiguration.pdf

[5] Cosmic C Cross Compiler User’s Guide for Motorola MC68HC12,V4.5

[6] ARM ADS compiler manual

[7] GreenHills MULTI for V850 V4.0.5:

Building Applications for Embedded V800, V4.0, 30.1.2004

[8] TASKING for ST10 V8.5:

C166/ST10 v8.5 C Cross-Compiler User's Manual, V5.16
C166/ST10 v8.5 C Cross-Assembler, Linker/Locator, Utilities User's Manual,
V5.16

[9] Wind River (Diab Data) for PowerPC Version 5.2.1:

Wind River Compiler for Power PC - Getting Started, Edition 2, 8.5.2004
Wind River Compiler for Power PC - User's Guide, Edition 2, 11.5.2004

[10] TASKING for TriCore TC1796 V2.0R1:

TriCore v2.0 C Cross-Compiler, Assembler, Linker User's Guide, V1.2

[11] Metrowerks CodeWarrior 4.0 for Freescale HC9S12X/XGATE (V5.0.25):

Motorola HC12 Assembler, 2.6.2004
Motorola HC12 Compiler, 2.6.2004
Smart Linker, 2.4.2004

[12] General Specification of Basic Software Modules

AUTOSAR_SWS_BSWGeneral.pdf

[13] Specification of Memory Mapping
AUTOSAR_SWS_MemoryMapping.pdf

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

9 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

3.2 Related standards and norms

[14] ANSI X3.159-1989 Programming Language C

[15] ISO/IEC 9899:1990

[16] ISO/IEC 9899:1999, 2nd edition, 1. December 1999

[17] ISO/IEC DTR 18037, draft standard, 24. September 2003

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

10 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

3.3 Related specification

AUTOSAR provides a General Specification on Basic Software modules [12] (SWS
BSW General), which is also valid for Compiler Abstraction.

Thus, the specification SWS BSW General shall be considered as additional and
required specification for Compiler Abstraction.

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

11 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

4 Constraints and assumptions

4.1 Limitations

During specification of abstraction and validation of concept, the compilers listed in
chapter 3.1 have been considered. If any other compiler requires keywords that
cannot be mapped to the mechanisms described in this specification this compiler
will not be supported by AUTOSAR. In this case, the compiler vendor has to adapt its
compiler.

The concepts described in this document do only apply to C compilers according the
standard C90. C++ is not in scope of this version.
In contradiction to the C-standard, some extensions are required:

- keywords for interrupt declaration
- keywords for hardware specific memory modifier
- uninitialized variables

If the physically existing memory is larger than the logically addressable memory in
either code space or data space and more than the logically addressable space is
used, logical addresses have to be reused. The C language (and other languages as
well) can not cope with this situation.

4.2 Applicability to car domains

No restrictions.

4.3 Applicability to safety related environments

No restrictions. The compiler abstraction file does not implement any functionality,
only symbols and macros.

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

12 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

5 Dependencies to other modules

[SWS_COMPILER_00048] ⌈ The SWS Compiler Abstraction is applicable for each

AUTOSAR basic software module and application software components. Therefore,
the implementation of the memory class (memclass) and pointer class (ptrclass)
macro parameters (see SWS_COMPILER_00040) shall fulfill the implementation and
configuration specific needs of each software module in a specific build scenario.

⌋ (SRS_BSW_00328, SRS_BSW_00384)

5.1 Code file structure

Not applicable

5.2 Header file structure

cd file structure

Compiler.h Std_Types.h

Compiler_Cfg.h

«includes»

«includes»

Figure 1: Include structure of Compiler.h

5.3 Connections to other modules

The following shall describe the connections to modules, which are indirectly linked
to each other.

5.3.1 Compiler Abstraction

As described in this document, the compiler abstraction is used to configure the
reachability of elements (pointers, variables, function etc.)

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

13 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

5.3.2 Memory Mapping

This module is used to do the sectioning of memory. The user can define sections for
optimizing the source code.

5.3.3 Linker-Settings

The classification which elements are assigned to which memory section can be
done by linker-settings.

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

14 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

6 Requirements traceability

Document: AUTOSAR requirements on Basic Software, general

Requirement Satisfied by
[SRS_BSW_00003] Version identification SWS_COMPILER_00001

[SRS_BSW_00300] Module naming convention
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00301] Limit imported information
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00302] Limit exported information
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00304] AUTOSAR integer data types
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00305] Self-defined data types naming
convention

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00306] Avoid direct use of compiler and
platform specific keywords

supported by:
COMPILER001, COMPILER006,
SWS_COMPILER_00010,
SWS_COMPILER_00012, COMPILER013,
COMPILER015, COMPILER023,
COMPILER026, COMPILER031,
COMPILER032, COMPILER033,
SWS_COMPILER_00035,
SWS_COMPILER_00036, COMPILER039,
COMPILER044, COMPILER046

[SRS_BSW_00307] Global variables naming
convention

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00308] Definition of global data
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00309] Global data with read-only
constraint

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00310] API naming convention
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00312] Shared code shall be reentrant
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00314] Separation of interrupt frames and
service routines

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00318] Format of module version numbers SWS_COMPILER_00001
[SRS_BSW_00321] Enumeration of module version
numbers

SWS_COMPILER_00001

[SRS_BSW_00323] API parameter checking
Not applicable
(Compiler Abstraction is not a BSW module)

[BSW00324] Do not use HIS I/O Library
Not applicable
(non-functional requirement)

[SRS_BSW_00325] Runtime of interrupt service
routines

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00326] Transition from ISRs to OS tasks
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00327] Error values naming convention
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00328] Avoid duplication of code supported by: SWS_COMPILER_00048

[SRS_BSW_00329] Avoidance of generic interfaces
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00330] Usage of macros / inline functions
instead of functions

Not applicable
(Compiler Abstraction is not a BSW module)

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

15 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

Requirement Satisfied by
[SRS_BSW_00331] Separation of error and status
values

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00333] Documentation of callback function
context

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00334] Provision of XML file Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00335] Status values naming convention
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00336] Shutdown interface
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00337] Classification of errors
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00338] Detection and Reporting of
development errors

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00339] Reporting of production relevant
error status

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00341] Microcontroller compatibility
documentation

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00342] Usage of source code and object
code

Not applicable
(non-functional requirement)

[SRS_BSW_00343] Specification and configuration of
time

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00344] Reference to link-time configuration
Not applicable
(Compiler Abstraction is specific per build
scenario)

[SRS_BSW_00345] Pre-compile-time configuration Chapter 11.2.1

[SRS_BSW_00346] Basic set of module files
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00347] Naming separation of different
instances of BSW drivers

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00348] Standard type header
SWS_COMPILER_00003,
SWS_COMPILER_00004,
SWS_COMPILER_00052

[SRS_BSW_00350] Development error detection
keyword

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00353] Platform specific type header
Not applicable
(Compiler Abstraction is the C-language
extension header)

[SRS_BSW_00355] Do not redefine AUTOSAR integer
data types

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00357] Standard API return type
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00358] Return type of init() functions
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00359] Return type of callback functions
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00360] Parameters of callback functions
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00361] Compiler specific language
extension header

SWS_COMPILER_00003,
SWS_COMPILER_00004

[SRS_BSW_00369] Do not return development error
codes via API

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00370] Separation of callback interface
from API

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00371] Do not pass function pointers via
API

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00373] Main processing function naming
convention

Not applicable
(Compiler Abstraction is not a BSW module)

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

16 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

Requirement Satisfied by
[SRS_BSW_00374] Module vendor identification SWS_COMPILER_00001

[SRS_BSW_00375] Notification of wake-up reason
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00376] Return type and parameters of
main processing functions

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00377] Module specific API return types
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00378] AUTOSAR boolean type
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00379] Module identification SWS_COMPILER_00001

[SRS_BSW_00380] Separate C-Files for configuration
parameters

Not applicable
(Compiler Abstraction is specific per build
scenario)

[SRS_BSW_00381] Separate configuration header file
for pre-compile time parameters

SWS_COMPILER_00052

[SRS_BSW_00383] List dependencies of configuration
files

Figure 1: Include structure of
Compiler.h

[SRS_BSW_00384] List dependencies to other modules SWS_COMPILER_00048

[SRS_BSW_00385] List possible error notifications
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00386] Configuration for detecting an error
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00387] Specify the configuration class of
callback function

Not applicable
(Compiler Abstraction is specific per build
scenario)

[SRS_BSW_00388] Introduce containers Chapter 11.2

[SRS_BSW_00389] Containers shall have names COMPILER044

[SRS_BSW_00390] Parameter content shall be unique
within the module

Not applicable
(Compiler Abstraction is specific per build
scenario)

[SRS_BSW_00391] Parameter shall have unique
names

Not applicable
(Compiler Abstraction is specific per build
scenario)

[SRS_BSW_00392] Parameters shall have a type
Not applicable
(Compiler Abstraction is specific per build
scenario)

[SRS_BSW_00393] Parameters shall have a range
Not applicable
(Compiler Abstraction is specific per build
scenario)

[SRS_BSW_00394] Specify the scope of the
parameters

Not applicable
(Compiler Abstraction is specific per build
scenario)

[SRS_BSW_00395] List the required parameters (per
parameter)

Not applicable
(Compiler Abstraction is specific per build
scenario)

[SRS_BSW_00396] Configuration classes COMPILER044

[SRS_BSW_00397] Pre-compile-time parameters COMPILER044

[SRS_BSW_00398] Link-time parameters
Not applicable
(Compiler Abstraction is specific per build
scenario)

[SRS_BSW_00399] Loadable Post-build time
parameters

Not applicable
(Compiler Abstraction is specific per build
scenario)

[SRS_BSW_00004] Version check
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00400] Selectable Post-build time
parameters

Not applicable
(Compiler Abstraction is specific per build
scenario)

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

17 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

Requirement Satisfied by
[SRS_BSW_00401] Documentation of multiple
instances of configuration parameters

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00402] Published information SWS_COMPILER_00001

[SRS_BSW_00404] Reference to post build time
configuration

Not applicable
(Compiler Abstraction is specific per build
scenario)

[SRS_BSW_00405] Reference to multiple configuration
sets

Not applicable
(Compiler Abstraction is specific per build
scenario)

[SRS_BSW_00406] Check module initialization
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00407] Function to read out published
parameters

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00408] Configuration parameter naming
convention

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00409] Header files for production code
error IDs

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00410] Compiler switches shall have
defined values

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00411] Get version info keyword
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00412] Separate H-File for configuration
parameters

SWS_COMPILER_00052

[SRS_BSW_00413] Accessing instances of BSW
modules

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00414] Parameter of init function
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00415] User dependent include files
Not applicable
(non-functional requirement)

[SRS_BSW_00416] Sequence of Initialization
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00417] Reporting of Error Events by Non-
Basic Software

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00419] Separate C-Files for pre-compile
time configuration parameters

Not applicable
(Compiler Abstraction is specific per build
scenario)

[BSW00420] Production relevant error event rate
detection

Not applicable
(Compiler Abstraction is not a BSW module)

[BSW00421] Reporting of production relevant error
events

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00422] Debouncing of production relevant
error status

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00423] Usage of SW-C template to
describe BSW modules with AUTOSAR Interfaces

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00424] BSW main processing function task
allocation

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00425] Trigger conditions for schedulable
objects

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00426] Exclusive areas in BSW modules
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00427] ISR description for BSW modules
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00428] Execution order dependencies of
main processing functions

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00429] Restricted BSW OS functionality
access

Not applicable
(Compiler Abstraction is not a BSW module)

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

18 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

Requirement Satisfied by
[BSW00431] The BSW Scheduler module implements
task bodies

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00432] Modules should have separate
main processing functions for read/receive and
write/transmit data path

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00433] Calling of main processing
functions

Not applicable
(Compiler Abstraction is not a BSW module)

[BSW00434] The Schedule Module shall provide an API
for exclusive areas

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00005] No hard coded horizontal interfaces
within MCAL

Not applicable
(non-functional requirement)

[SRS_BSW_00006] Platform independency

supported by:
COMPILER001, COMPILER006,
SWS_COMPILER_00010,
SWS_COMPILER_00012, COMPILER013,
COMPILER015, COMPILER023,
COMPILER026, COMPILER031,
COMPILER032, COMPILER033,
SWS_COMPILER_00035,
SWS_COMPILER_00036, COMPILER039,
COMPILER044, COMPILER046

[SRS_BSW_00007] HIS MISRA C
Not applicable
(Compiler Abstraction is the C-language
extension header)

[SRS_BSW_00009] Module User Documentation
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00010] Memory resource documentation
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00101] Initialization interface
Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00158] Separation of configuration from
implementation

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00159] Tool-based configuration Chapter 0

[SRS_BSW_00160] Human-readable configuration data COMPILER044

[SRS_BSW_00161] Microcontroller abstraction
Not applicable
(non-functional requirement)

[SRS_BSW_00162] ECU layout abstraction
Not applicable
(non-functional requirement)

[SRS_BSW_00164] Implementation of interrupt service
routines

Not applicable
(non-functional requirement)

[SRS_BSW_00167] Static configuration checking
Not applicable
(Compiler Abstraction is specific per build
scenario)

[SRS_BSW_00168] Diagnostic Interface of SW
components

Not applicable
(Compiler Abstraction is not a BSW module)

[SRS_BSW_00170] Data for reconfiguration of
AUTOSAR SW-Components

Not applicable
(Compiler Abstraction is specific per build
scenario)

[SRS_BSW_00171] Configurability of optional
functionality

Not applicable
(Compiler Abstraction is specific per build
scenario)

[SRS_BSW_00172] Compatibility and documentation of
scheduling strategy

Not applicable
(Compiler Abstraction is not a BSW module)

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

19 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

7 Analysis

This chapter does not contain requirements. It just gives an overview of used
keywords and their syntax within different compilers. This analysis is required for a
correct and complete specification of methods and keywords and as rationale for
those people who doubt the necessity of a compiler abstraction in AUTOSAR. This
chapter is no complete overview of existing compilers and platforms and their usage
in AUTOSAR. However, it shows examples that cover most use cases, from which
the concepts specified in the consecutive chapters are derived.

7.1 Keywords for functions

On platforms with memory exceeding the addressable range of the architecture
(e.g. S12X with 512k of Flash) the compiler needs to know if a called function is
reachable within normal addressing commands (‘near’) or extended/paged
addressing commands (‘far’).

Compiler analysis for near functions:

Compiler Required syntax
Cosmic, S12X @near void MyNearFunction(void);

Call of a near function results in a local page call or to a call into
direct page.
Dependent of compiler settings the compiler controls only the
calling convention or allocation and calling convention.

Metrowerks, S12X void __near MyNearFunction(void);

Call of a near function results in a local page call or to a call into
direct page.

IAR, HCS12 C/C++ void __non_banked MyNearFunction (void);

Tasking, ST10 void _near MyNearFunction (void);

_near void MyNearFunction (void);

Call of a near function results in a local segment code access
(relevant in large model).

Tasking, TC1796 void MyNearFunction (void);

(No keywords required)

Greenhills, V850 void MyNearFunction (void);

(No keywords required)

ADS, ST30 void MyNearFunction (void);

(No keywords required)

DIABDATA, MPC5554 void MyNearFunction (void);

(No keywords required)

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

20 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

Compiler analysis for far functions:

Compiler Required syntax
Cosmic, S12X @far void MyFarFunction(void);

Dependent of compiler settings the compiler controls only the
calling convention or allocation and calling convention.

Metrowerks, S12X void __far MyFarFunction(void);

IAR, HCS12 C/C++ void __banked MyFarFunction (void);

Tasking, ST10 void _huge MyFarFunction (void);

_huge void MyFarFunction (void);

Tasking, TC1796 void MyFarFunction (void);

(No keywords required)

Greenhills, V850 void MyFarFunction (void);

(No keywords required)

ADS, ST30 void MyFarFunction (void);

(No keywords required)

DIABDATA, MPC5554 void MyFarFunction (void);

(No keywords required)

7.2 Keywords for pointers

On platforms with memory exceeding the addressable range of the architecture
(e.g. S12X with 512k of Flash) the compiler needs to know if data referenced by a
pointer is accessible by normal addressing commands (‘near’) or extended/paged
addressing commands (‘far’).

Compiler analysis for near pointers pointing to variable data in RAM (use case:
pointer to data buffer where data has to be copied to):

Compiler Required syntax
Cosmic, S12X @near uint8* MyNearPointer;

Metrowerks, S12X uint8* __near MyNearPointer;

IAR, HCS12 C/C++ uint8* __data16 MyNearPointer;

Tasking, ST10 _near uint8* MyNearPointer;

Tasking, TC1796 uint8* MyNearPointer;

(No keywords required)

Greenhills, V850 uint8* MyNearPointer

(No keywords required)

ADS, ST30 uint8* MyNearPointer

(No keywords required)

DIABDATA, MPC5554 uint8* MyNearPointer

(No keywords required)

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

21 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

Compiler analysis for far pointers pointing to variable data in RAM:

Compiler Required syntax
Cosmic, S12X @far uint8* MyFarPointer;

Metrowerks, S12X uint8* __far MyFarPointer;

IAR, HCS12 C/C++ (Information not available yet)

Tasking, ST10 _far uint8* MyFarPointer; /*14 bit arithmetic*/

_huge uint8* MyFarPointer; /*24 bit arithmetic*/

_shuge uint8* MyFarPointer; /*16 bit arithmetic*/

/* My personal note: CRAZY */

Tasking, TC1796 uint8* MyFarPointer;

(No keywords required)

Greenhills, V850 uint8* MyFarPointer

(No keywords required)

ADS, ST30 uint8* MyFarPointer

(No keywords required)

DIABDATA, MPC5554 uint8* MyFarPointer

(No keywords required)

Compiler analysis for near pointers pointing to constant data in RAM (use case
pointer to data buffer where data has to be read from):

Compiler Required syntax
Cosmic, S12X @near uint8* MyNearPointer;

(Results in access of direct memory area)

Metrowerks, S12X const uint8* __near MyNearPointer;

(Results in access of direct memory area)

IAR, HCS12 C/C++ const uint8* MyNearPointer;

(Results in access of direct memory area)

Tasking, ST10 const _near uint8* MyNearPointer;

Tasking, TC1796 const _near uint8* MyNearPointer;

Greenhills, V850 const uint8* MyNearPointer

(No additional keywords required)

ADS, ST30 const uint8* MyNearPointer

(No additional keywords required)

DIABDATA, MPC5554 const uint8* MyNearPointer

(No additional keywords required)

Compiler analysis for far pointers pointing to constant data in RAM:

Compiler Required syntax
Cosmic, S12X @far uint8* MyFarPointer;

Metrowerks, S12X const uint8* __far MyFarPointer;

IAR, HCS12 C/C++ (Information not available yet)

Tasking, ST10 const _far uint8* MyFarPointer;

Tasking, TC1796 uint8* MyFarPointer;

(No keywords required)

Greenhills, V850 const uint8* MyFarPointer

(No additional keywords required)

ADS, ST30 const uint8* MyFarPointer

(No additional keywords required)

DIABDATA, MPC5554 const uint8* MyFarPointer

(No additional keywords required)

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

22 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

Compiler analysis for near pointers pointing to data in ROM (use case pointer to
display data in ROM passed to SPI Driver):

Compiler Required syntax
Cosmic, S12X const uint8* MyNearPointer;

(Without near keyword because this is by default near!)

Metrowerks, S12X const uint8* __near MyNearPointer;

IAR, HCS12 C/C++ const uint8* MyNearPointer;

(Without near keyword because this is by default near!)

Tasking, ST10 const _near uint8* MyNearPointer;

Tasking, TC1796 const uint8* MyNearPointer;

(No keywords required)

Greenhills, V850 const uint8* MyNearPointer

(No additional keywords required)

ADS, ST30 const uint8* MyNearPointer

(No additional keywords required)

DIABDATA, MPC5554 const uint8* MyNearPointer

(No additional keywords required)

Compiler analysis for far pointers pointing to constant data in ROM:

Compiler Required syntax
Cosmic, S12X not possible

Metrowerks, S12X const uint8* __far MyFarPointer;

IAR, HCS12 C/C++ Access function and the banked constant data are located in the same
bank:
const uint8* MyFarPointer;

but caller shall use the __address_24_of macro

Access function is located in non-banked memory:
PPAGE register has to be handled manually

Access function and the banked constant data are located in different
banks:
Not possible

Tasking, ST10 const _far uint8* MyFarPointer;

Tasking, TC1796 const uint8* MyFarPointer;

(No keywords required)

Greenhills, V850 const uint8* MyFarPointer

(No additional keywords required)

ADS, ST30 const uint8* MyFarPointer

(No additional keywords required)

DIABDATA, MPC5554 const uint8* MyFarPointer

(No additional keywords required)

The HW architecture of the S12X supports different paging mechanisms with
different limitations e.g. supported instruction set or pointer distance. Therefore the
IAR, HCS12 C/C++ and the Cosmic, S12X compilers are limited in the usage of
generic pointers applicable for the whole memory area because of the expected code
overhead.

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

23 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

Conclusion: These vendors should adapt their compilers, because a generic SW
architecture as described by AUTOSAR cannot be adjusted in every case to the
platform specific optimal solution.

Compiler analysis for pointers, where the symbol of the pointer itself is placed in
near-memory:

Compiler Required syntax
Cosmic, S12X uint8* @near MyPointerInNear;

Metrowerks, S12X __near uint8* MyPointerInNear;

Tasking, ST10 uint8* _near MyPointerInNear;

Tasking, TC1796 uint8* MyPointerInNear;

(No keywords required)

Greenhills, V850 uint8* MyPointerInNear

(No keywords required)

ADS, ST30 uint8* MyPointerInNear

(No keywords required)

DIABDATA, MPC5554 uint8* MyPointerInNear

(No keywords required)

Compiler analysis for pointers, where the symbol of the pointer itself is placed in far-
memory:

Compiler Required syntax
Cosmic, S12X uint8* @far MyPointerInFar;

Metrowerks, S12X __far uint8* MyPointerInFar;

Tasking, ST10 uint8* _far MyPointerInFar;

Tasking, TC1796 uint8* MyPointerInFar;

(No keywords required)

Greenhills, V850 uint8* MyPointerInFar

(No keywords required)

ADS, ST30 uint8* MyPointerInFar

(No keywords required)

DIABDATA, MPC5554 uint8* MyPointerInFar

(No keywords required)

The examples above lead to the conclusion, that for definition of a pointer it is not
sufficient to specify only one memory class. Instead, a combination of two memory
classes, one for the pointer’s ‘distance’ and one for the pointer’s symbol itself, is
possible, e.g.:

/* Tasking ST10, far-pointer in near memory

 * (both content and pointer in RAM)

 */

_far uint8* _near MyFarPointerInNear;

Compiler analysis for function pointers:

Compiler Required syntax
Cosmic, S12X @near void (* const Irq_InterruptVectorTable[])(void)

Call of a near function results in an interpage call or to a call into direct
page:

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

24 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

Compiler Required syntax
Metrowerks, S12X void (*const __near Irq_InterruptVectorTable[]) (void)

Call of a near function results in an interpage call or to a call into direct
page:
Near functions and far functions are not compatible because of other ret-
statements:

IAR, HCS12 C/C++ __non_banked void (* const

Irq_InterruptVectorTable[])(void)

Casting from __non_banked to __banked is performed through zero
extension:
Casting from __banked to __non_banked is an illegal operation.

Tasking, ST10 _far void (*NvM_AsyncCbkPtrType)

 (NvM_ModuleIdType ModuleId,

 NvM_ServiceIdType ServiceId)

Call of a near function results in a local segment code access (relevant in
large model):

Tasking, TC1796 void (*NvM_AsyncCbkPtrType)

 (NvM_ModuleIdType ModuleId,

 NvM_ServiceIdType ServiceId)

(No additional keywords required)

Greenhills, V850 void (*NvM_AsyncCbkPtrType)

 (NvM_ModuleIdType ModuleId,

 NvM_ServiceIdType ServiceId)

(No additional keywords required)

ADS, ST30 void (*NvM_AsyncCbkPtrType)

 (NvM_ModuleIdType ModuleId,

 NvM_ServiceIdType ServiceId)

(No additional keywords required)

DIABDATA, MPC5554 void (*NvM_AsyncCbkPtrType)

 (NvM_ModuleIdType ModuleId,

 NvM_ServiceIdType ServiceId)

(No additional keywords required)

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

25 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

8 Functional specification

8.1 General issues

[SWS_COMPILER_00003] ⌈ For each compiler and platform an own compiler

abstraction has to be provided. ⌋ (SRS_BSW_00348, SRS_BSW_00361)

8.2 Contents of Compiler.h

[SWS_COMPILER_00004] ⌈ The file name of the compiler abstraction shall be

‘Compiler.h’. ⌋ (SRS_BSW_00348, SRS_BSW_00361)

[SWS_COMPILER_00053] ⌈ The file Compiler.h shall contain the definitions and

macros specified in chapter 9. Those are fix for one specific compiler and platform.

⌋ ()

[SWS_COMPILER_00005] ⌈ If a compiler does not require or support the usage of

special keywords; the corresponding macros specified by this specification shall be
provided as empty definitions or definitions without effect.
Example:
#define FUNC(type, memclass) type

/* not required for DIABDATA */ ⌋ ()

[SWS_COMPILER_00010] ⌈ The compiler abstraction shall define a symbol for the

target compiler according to the following naming convention:
_<COMPILERNAME>_C_<PLATFORMNAME>_

Note: These defines can be used to switch between different implementations for
different compilers, e.g.

 inline assembler fragments in drivers

 special pragmas for memory alignment control

 localization of function calls

 adaptions to memory models ⌋ (BWS00306, SRS_BSW_00006)

List of symbols: see SWS_COMPILER_00012

[SWS_COMPILER_00030] ⌈ “Compiler.h” shall provide information of the

supported compiler vendor and the applicable compiler version. ⌋ ()

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

26 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

[SWS_COMPILER_00035] ⌈ The macro parameters memclass and ptrclass shall

not be filled with the compiler specific keywords but with one of the configured values

in SWS_COMPILER_00040. ⌋ (BWS00306, SRS_BSW_00006)

The rationale is that the module’s implementation shall not be affected when
changing a variable’s, a pointer’s or a function’s storage class.

[SWS_COMPILER_00036] ⌈ C forbids the use of the far/near-keywords on function

local variables (auto-variables). For this reason when using the macros below to
allocate a pointer on stack, the memclass-parameter shall be set to AUTOMATIC.

⌋ (BWS00306, SRS_BSW_00006)

[SWS_COMPILER_00047] ⌈ The Compiler.h header file shall protect itself against

multiple inclusions.
For instance:
#ifndef COMPILER_H

 #define COMPILER_H

 /* implementation of Compiler.h */

 ...

 #endif /* COMPILER_H */

There may be only comments outside of the ifndef - endif bracket. ⌋ ()

[SWS_COMPILER_00050] ⌈ It is allowed to extend the Compiler Abstraction

header with vendor specific extensions. Vendor specific extended elements shall

contain the AUTOSAR Vendor ID in the name. ⌋ ()

8.3 Contents of Compiler_Cfg.h

[SWS_COMPILER_00055] ⌈ The file Compiler_Cfg.h shall contain the

module/component specific parameters (ptrclass and memclass) that are passed

to the macros defined in Compiler.h. See SWS_COMPILER_00040 for memory

types and required syntax. ⌋ ()

[SWS_COMPILER_00054] ⌈ Module specific extended elements shall contain the

module abbreviation of the BSW module in the name. Application software
component specific extended elements shall contain the Software Component Type’s

name. ⌋ ()

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

27 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

9 API specification

9.1 Definitions

9.1.1 Memory class AUTOMATIC

[SWS_COMPILER_00046]⌈

Define: AUTOMATIC

Range: “empty” --

Description: The memory class AUTOMATIC shall be provided as empty definition, used for
the declaration of local pointers.

Caveats: SWS_COMPILER_00040

⌋()

9.1.2 Memory class TYPEDEF

[SWS_COMPILER_00059]⌈

Define: TYPEDEF

Range: “empty” --

Description: The memory class TYPEDEF shall be provided as empty definition. This memory
class shall be used within type definitions, where no memory qualifier can be
specified. This can be necessary for defining pointer types, with e.g. P2VAR,
where the macros require two parameters. First parameter can be specified in the
type definition (distance to the memory location referenced by the pointer), but
the second one (memory allocation of the pointer itself) cannot be defined at this
time. Hence, memory class TYPEDEF shall be applied.

Caveats: SWS_COMPILER_00040

⌋()

9.1.3 NULL_PTR

[SWS_COMPILER_00051]⌈

Define: NULL_PTR

Range: void pointer ((void *)0)

Description: The compiler abstraction shall provide the NULL_PTR define with a void pointer
to zero definition.

Caveats: SWS_COMPILER_00040

⌋()

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

28 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

9.1.4 INLINE

[SWS_COMPILER_00057]⌈

Define: INLINE

Range: inline/”empty” --

Description: The compiler abstraction shall provide the INLINE define for abstraction of the
keyword inline.

Caveats: SWS_COMPILER_00040

⌋()

9.1.5 LOCAL_INLINE

[SWS_COMPILER_00060]⌈

Define: LOCAL_INLINE

Range: static inline/”empty” --

Description: The compiler abstraction shall provide the LOCAL_INLINE define for abstraction
of the keyword inline in functions with “static” scope.

Caveats: Different compilers may require a different sequence of the keywords “static” and
“inline” if this is supported at all.

⌋()

9.2 Macros for functions

9.2.1 FUNC

[SWS_COMPILER_00001]⌈

Macro name: FUNC

Syntax: #define FUNC(rettype, memclass)

Parameters
(in):

retype return type of the function

memclass classification of the function itself

Parameters
(out):

None --

Return value: None --

Description: The compiler abstraction shall define the FUNC macro for the declaration and
definition of functions that ensures correct syntax of function declarations as
required by a specific compiler.

Caveats: --

Configuration: --

⌋ ()

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

29 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

Example (Cosmic, S12X):
#define @near

#define FUNC(rettype, memclass) memclass rettype

Required usage for function declaration and definition:
FUNC(void,) ExampleFunction (void);

[SWS_COMPILER_00058]⌈ In the parameter list of this macro no further Compiler

Abstraction macros shall be nested. Instead, use a previously defined type as return
type or use FUNC_P2CONST/FUNC_P2VAR.

⌋ ()

Example:
 typedef P2VAR(uint8, AUTOMATIC,) NearDataType;

 FUNC(NearDataType,) FarFuncReturnsNearPtr(void);

9.2.2 FUNC_P2CONST

[SWS_COMPILER_00061]⌈

Macro name: FUNC_P2CONST

Syntax: #define FUNC_P2CONST(rettype, ptrclass, memclass)

Parameters
(in):

rettype return type of the function

ptrclass defines the classification of the pointer’s distance

memclass classification of the function itself

Parameters
(out):

none --

Return value: none --

Description: The compiler abstraction shall define the FUNC_P2CONST macro for the
declaration and definition of functions returning a pointer to a constant. This shall
ensure the correct syntax of function declarations as required by a specific
compiler.

Caveats: --

Configuration: --

⌋ ()

Example (Cosmic, S12X):
#define <PREFIX>_PBCFG @far

#define @near

#define FUNC_P2CONST(rettype, ptrclass, memclass)\

const ptrclass rettype * memclass

Required usage for function declaration and definition:
FUNC_P2CONST(uint16, <PREFIX>_PBCFG,) ExampleFunction (void);

[SWS_COMPILER_00062]⌈ In the parameter list of the FUNC_P2CONST, no

further Compiler Abstraction macros shall be nested.

⌋ ()

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

30 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

9.2.3 FUNC_P2VAR

[SWS_COMPILER_00063]⌈

Macro name: FUNC_P2VAR

Syntax: #define FUNC_P2VAR(rettype, ptrclass, memclass)

Parameters
(in):

rettype return type of the function

ptrclass defines the classification of the pointer’s distance

memclass classification of the function itself

Parameters
(out):

none --

Return value: none --

Description: The compiler abstraction shall define the FUNC_P2VAR macro for the declaration
and definition of functions returning a pointer to a variable. This shall ensure the
correct syntax of function declarations as required by a specific compiler.

Caveats: --

Configuration: --

⌋ ()

Example (Cosmic, S12X):
#define <PREFIX>_PBCFG @far

#define @near

#define FUNC_P2VAR(rettype, ptrclass, memclass)\

ptrclass rettype * memclass

Required usage for function declaration and definition:
FUNC_P2VAR(uint16, <PREFIX>_PBCFG,) ExampleFunction (void);

[SWS_COMPILER_00064]⌈ In the parameter list of the macro FUNC_P2VAR, no

further Compiler Abstraction macros shall be nested.

⌋ ()

9.3 Macros for pointers

9.3.1 P2VAR

[SWS_COMPILER_00006]⌈

Macro name: P2VAR

Syntax: #define P2VAR(ptrtype, memclass, ptrclass)

Parameters
(in):

ptrtype type of the referenced variable

memclass classification of the pointer’s variable itself

ptrclass defines the classification of the pointer’s distance

Parameters
(out):

none --

Return value: none --

Description: The compiler abstraction shall define the P2VAR macro for the declaration and

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

31 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

definition of pointers in RAM, pointing to variables.

The pointer itself is modifiable (e.g. ExamplePtr++).

The pointer’s target is modifiable (e.g. *ExamplePtr = 5).

Caveats: --

Configuration: --

⌋ ()

Example (Metrowerks, S12X):
#define P2VAR(ptrtype, memclass, ptrclass) \

 ptrclass ptrtype * memclass

Required usage for pointer declaration and definition:
#define SPI_APPL_DATA @far

#define SPI_VAR_FAST @near

P2VAR(uint8, SPI_VAR_FAST, SPI_APPL_DATA) Spi_FastPointerToApplData;

9.3.2 P2CONST

[SWS_COMPILER_00013]⌈

Macro name: P2CONST

Syntax: #define P2CONST(ptrtype, memclass, ptrclass)

Parameters (in): ptrtype type of the referenced constant

memclass classification of the pointer’s variable itself

ptrclass defines the classification of the pointer’s distance

Parameters (out): none --

Return value: none --

Description: The compiler abstraction shall define the P2CONST macro for the declaration
and definition of pointers in RAM pointing to constants

The pointer itself is modifiable (e.g. ExamplePtr++).

The pointer’s target is not modifiable (read only).

Caveats: --

Configuration: --

⌋()

Example (Metrowerks, S12X):
#define P2CONST(ptrtype, memclass, ptrclass) \

 const ptrtype memclass * ptrclass

Example (Cosmic, S12X):
#define P2CONST(ptrtype, memclass, ptrclass) \

 const ptrtype ptrclass * memclass

Example (Tasking, ST10):
#define P2CONST(ptrtype, memclass, ptrclass) \

 const ptrclass ptrtype * memclass

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

32 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

Required usage for pointer declaration and definition:
#define EEP_APPL_CONST @far

#define EEP_VAR @near

P2CONST(Eep_ConfigType, EEP_VAR, EEP_APPL_CONST) Eep_ConfigurationPtr;

9.3.3 CONSTP2VAR

[SWS_COMPILER_00031]⌈

Macro name: CONSTP2VAR

Syntax: #define CONSTP2VAR (ptrtype, memclass, ptrclass)

Parameters
(in):

ptrtype type of the referenced variable

memclass classification of the pointer’s constant itself

ptrclass defines the classification of the pointer’s distance

Parameters
(out):

None --

Return value: None --

Description: The compiler abstraction shall define the CONSTP2VAR macro for the
declaration and definition of constant pointers accessing variables.

The pointer itself is not modifiable (fix address).

The pointer’s target is modifiable (e.g. *ExamplePtr = 18).

Caveats: --

Configuration: --

⌋()

Example (Tasking, ST10):
#define CONSTP2VAR (ptrtype, memclass, ptrclass) \

 ptrclass ptrtype * const memclass

Required usage for pointer declaration and definition:
/* constant pointer to application data */

CONSTP2VAR (uint8, NVM_VAR, NVM_APPL_DATA)

NvM_PointerToRamMirror = Appl_RamMirror;

9.3.4 CONSTP2CONST

[SWS_COMPILER_00032]⌈

Macro name: CONSTP2CONST

Syntax: #define CONSTP2CONST(ptrtype, memclass, ptrclass)

Parameters
(in):

ptrtype type of the referenced constant

memclass classification of the pointer’s constant itself

ptrclass defines the classification of the pointer’s distance

Parameters
(out):

none --

Return value: none --

Description: The compiler abstraction shall define the CONSTP2CONST macro for the

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

33 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

declaration and definition of constant pointers accessing constants.

The pointer itself is not modifiable (fix address).

The pointer’s target is not modifiable (read only).

Caveats: --

Configuration: --

⌋()

Example (Tasking, ST10):
#define CONSTP2CONST (ptrtype, memclass, ptrclass) \

 const memclass ptrtype * const ptrclass

Required usage for pointer declaration and definition:
#define CAN_PBCFG_CONST @gpage

#define CAN_CONST @near

/* constant pointer to the constant postbuild configuration

data */

CONSTP2CONST (Can_PBCfgType, CAN_CONST, CAN_PBCFG_CONST)

Can_PostbuildCfgData = CanPBCfgDataSet;

9.3.5 P2FUNC

[SWS_COMPILER_00039]⌈

Macro name: P2FUNC

Syntax: #define P2FUNC(rettype, ptrclass, fctname)

Parameters
(in):

rettype return type of the function

ptrclass defines the classification of the pointer’s distance

fctname function name respectively name of the defined type

Parameters
(out):

None --

Return value: None --

Description: The compiler abstraction shall define the P2FUNC macro for the type definition of
pointers to functions.

Caveats: --

Configuration: --

⌋ ()

Example (Metrowerks, S12X):
define P2FUNC(rettype, ptrclass, fctname)\

 rettype (*ptrclass fctname)

Example (Cosmic, S12X):
#define P2FUNC(rettype, ptrclass, fctname) \

 ptrclass rettype (*fctname)

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

34 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

Required usage for pointer type declaration:
#define EEP_APPL_CONST @far

#define EEP_VAR @near

typedef P2FUNC (void, NVM_APPL_CODE, NvM_CbkFncPtrType)

(void);

9.3.6 CONSTP2FUNC

[SWS_COMPILER_00065]⌈

Macro name: CONSTP2FUNC

Syntax: #define CONSTP2FUNC(rettype, ptrclass, fctname)

Parameters
(in):

rettype return type of the function

ptrclass defines the classification of the pointer’s distance

fctname function name respectively name of the defined type

Parameters
(out):

None --

Return value: None --

Description: The compiler abstraction shall define the CONSTP2FUNC macro for the type
definition of constant pointers to functions.

Caveats: --

Configuration: --

⌋ ()

Example (PowerPC):
#define CONSTP2FUNC(rettype, ptrclass, fctname)\

 rettype (* const fctname)

Example (CodeWarrior, S12X):
#define CONSTP2FUNC(rettype, ptrclass, fctname)\

 rettype (* const ptrclass fctname)

9.4 Keywords for constants

9.4.1 CONST

[SWS_COMPILER_00023]⌈

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

35 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

Macro name: CONST

Syntax: #define CONST(consttype, memclass)

Parameters
(in):

consttype type of the constant

memclass classification of the constant itself

Parameters
(out):

none --

Return value: none --

Description: The compiler abstraction shall define the CONST macro for the declaration and
definition of constants.

Caveats: --

Configuration: --

⌋ ()

Example (Cosmic, S12X):
#define CONST(type, memclass) memclass const type

Required usage for declaration and definition:
#define NVM_CONST @gpage

CONST(uint8, NVM_CONST) NvM_ConfigurationData;

9.5 Keywords for variables

9.5.1 VAR

[SWS_COMPILER_00026]⌈

Macro name: VAR

Syntax: #define VAR(vartype, memclass)

Parameters
(in):

vartype type of the variable

memclass classification of the variable itself

Parameters
(out):

None --

Return value: None --

Description: The compiler abstraction shall define the VAR macro for the declaration and
definition of variables.

Caveats: --

Configuration: --

⌋ ()

Example (Tasking, ST10):

#define VAR(type, memclass) memclass type

Required usage for declaration and definition:
#define NVM_FAST_VAR _near

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

36 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

VAR(uint8, NVM_FAST_VAR) NvM_VeryFrequentlyUsedState;

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

37 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

10 Sequence diagrams

Not applicable.

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

38 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

11 Configuration specification

In general, this chapter defines configuration parameters and their clustering into
containers. In order to support the specification, Chapter 11.1 describes
fundamentals. We intend to leave Chapter 11.1 in the specification to guarantee
comprehension.

Chapter 11.2 specifies the structure (containers) and the parameters of this module.

Chapter 11.3 specifies published information of this module.

The Compiler Abstraction has no separate configuration interface by means of
specifying a separate parameter definition. Instead, configuration of the
Memory Mapping has been extended (see [13]) by the parameters described in
this chapter.

11.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:
Layered Software Architecture [3]
Specification Of ECU Configuration [4]

The following is only a short summary of the topic and it will not replace the ECU
Configuration Specification document.

11.2 Containers and configuration parameters

Configuration parameters define the variability the generic part(s) an implementation
of a module. This means that only generic or configurable module implementation
can be adapted to the environment (software/hardware) in use during system and/or
ECU configuration.

The configuration of parameters can be achieved at different times during the
software process: before compile time, before link time or after build time. In the
following, the term “configuration class” (of a parameter) shall be used in order to
refer to a specific configuration point in time.

11.2.1 Variants

Variant PC (Pre Compile): This is the only variant because all configuration
parameters are pre-compile time parameters, which influence the compilation
process.
Each of the different memory classes (memclass) and pointer classes (ptrclass) is
represented by a define.

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

39 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

11.2.2 Module-Specific Memory Classes

[13] defines module-specific memory classes in the container
‘MemMapAddressingModeSet’. This container has been extended by the parameter
‘MemMapCompilerAddressingMode’.

[SWS_COMPILER_00066]⌈ The parameter ‘MemMapCompilerAddressingMode’

shall contain the implementation behind a module-specific memory class symbol.⌋ ()

11.2.3 Global Memory Classes

Furthermore, there are global memory classes that are valid for all modules. These
can be configured in the container ‘MemMapGenericCompilerClass’.

[SWS_COMPILER_00067] ⌈ Global memory classes (e.g. REGSPACE) shall be

configured in the container ‘MemMapGenericCompilerClass’.⌋ ()

[SWS_COMPILER_00068]⌈ The parameter

‘MemMapGenericCompilerAddressingMode’ shall contain the implementation behind

a global memory class symbol.⌋ ()

[SWS_COMPILER_00042] ⌈ The file Compiler.h is specific for each build scenario.

Therefore there is no standardized configuration interface specified.⌋ ()

11.3 Published Information

N/A

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

40 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

12 Annex

12.1 List of Compiler symbols

[SWS_COMPILER_00012] ⌈ The following table defines target compiler symbols

according to SWS_COMPILER_00010. For each compiler supported by AUTOSAR a

symbol has to be defined.⌋ (BWS00306, SRS_BSW_00006)

Platform Compiler Compiler symbol

S12X Code Warrior _CODEWARRIOR_C_S12X_

S12X Cosmic _COSMIC_C_S12X_

TC1796/
TC1766

Tasking _TASKING_C_TRICORE_

ST10 Tasking _TASKING_C_ST10_

ST30 ARM Developer Suite _ADS_C_ST30_

V850 Greenhills _GREENHILLS_C_V850_

MPC5554 Diab Data _DIABDATA_C_ESYS_

TMS470 Texas Instruments _TEXAS_INSTRUMENTS_C_TMS470_

ARM Texas Instruments _TEXAS_INSTRUMENTS_C_ARM_

12.2 Requirements on implementations using compiler abstraction

[SWS_COMPILER_00040] ⌈ Each AUTOSAR software module and application

software component shall support the distinction of at least the following different
memory classes and pointer classes.

It is allowed to add module specific memory classes and pointer classes as they are
mapped and thus are configurable within the Compiler_Cfg.h file.

<PREFIX> is

 composed according <snp>[_<vi>_<ai>] for basic software modules where
o <snp> is the Section Name Prefix which shall be the

BswModuleDescription’s shortName converted in upper case

letters if no SectionNamePrefix is defined for the MemorySection in the
Basic Software Module Description or Software Component
Description.

o <snp> shall be the symbol of the Section NamePrefix associated to the
MemorySection if a SectionNamePrefix is defined for the
MemorySection.

o <vi> is the vendorId of the BSW module

o <ai> is the vendorApiInfix of the BSW module

The sub part in squared brackets [_<vi>_<ai>] is omitted if no

vendorApiInfix is defined for the Basic Software Module which

indicates that it does not use multiple instantiation.

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

41 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

 the shortName of the software component type for software components

(case sensitive)

<INIT_POLICY> is the initialization policy of variables. Possible values are:

 NO_INIT: Used for variables that are never cleared and never initialized.

 CLEARED: Used for variables that are cleared to zero after every reset.

 POWER_ON_CLEARED: Used for variables that are cleared to zero only after
power on reset.

 INIT: Used for variables that are initialized with values after every reset.

 POWER_ON_INIT: Used for variables that are initialized with values only after
power on reset.

Memory
type

Syntax of memory class
(memclass) and pointer class
(ptrclass) macro parameter

Comments Located in

Code <PREFIX>_CODE[_<PERIOD>]

To be used for code.

PERIOD is the typical period time value
and unit of the ExecutableEntitys in this
MemorySection. The name part
[_<PERIOD>] is optional.

units are:
US microseconds
MS milli second
S second

For example: 100US, 400US, 1MS, 5MS,
10MS, 20MS, 100MS, 1S
Please note that deviations from this
typical period time are possible due to
integration decisions (e.g. RTEEvent To
Task Mapping). Further, in special modes
of the ECU the code may be scheduled
with a higher or lower period.

Compiler_
Cfg.h

Code <PREFIX>_<CN>_CODE

To be used for callout code.

<CN> is the callback name (including
module reference) written in uppercase
letters.

Code <PREFIX>_CODE_FAST

To be used for code that shall go into fast
code memory segments.

The FAST sections should be used when
the execution does not happen in a well-
defined period time but with the
knowledge of high frequent access and
/or high execution time, for example, a
callback for a frequent notification.

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

42 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

Memory
type

Syntax of memory class
(memclass) and pointer class
(ptrclass) macro parameter

Comments Located in

Code <PREFIX>_CODE_SLOW

To be used for code that shall go into
slow code memory segments.

The SLOW sections should be used
when the execution does not happen in a
well-defined period time but with the
knowledge of low frequent access, for
example, a callback in case of seldom
error.

Constants <PREFIX>_CONST To be used for global or static constants.

Constants <PREFIX>_CALIB To be used for calibration constants.

Constants <PREFIX>_CONFIG_DATA
To be used for module configuration
constants.

Constants
<PREFIX>_CONST_SAVED_RECOV

ERY_ZONE<X>

To be used for ROM buffers of variables
saved in non-volatile memory.

Pointer <PREFIX>_APPL_DATA

To be used for references on application
data (expected to be in RAM or ROM)
passed via API

Pointer <PREFIX>_APPL_CONST

To be used for references on application
constants (expected to be certainly in
ROM, for instance pointer of Init-function)
passed via API

Pointer REGSPACE

To be used for pointers to registers (e.g.
static volatile

CONSTP2VAR(uint16, PWM_CONST,

REGSPACE)).

Pointer <PREFIX>_APPL_CODE

To be used for references on application
functions. (e.g. call back function
pointers).

This section is DEPRECATED and shall
not be used in fotore development. This
memory class identifier has been
replaced by <PREFIX>_<CN>_CODE.

Variables <PREFIX>_VAR_<INIT_POLICY>
To be used for all global or static
variables.

Variables
<PREFIX>_VAR_FAST_<INIT_PO

LICY>

To be used for all global or static
variables that have at least one of the
following properties:

 accessed bitwise

 frequently used

 high number of accesses in source
code

Some platforms allow the use of bit
instructions for variables located in this
specific RAM area as well as shorter
addressing instructions. This saves code
and runtime.

Variables
<PREFIX>_VAR_SLOW_<INIT_PO

LICY>

To be used for all infrequently accessed
global or static variables.

Variables
<PREFIX>_INTERNAL_VAR_<INI

T_POLICY>

To be used for global or static variables
which are accessible from a calibration
tool.

Variables <PREFIX>_VAR_SAVED_ZONE<X>
To be used for RAM buffers of variables
saved oin non-volatile memory.

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

43 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

Memory
type

Syntax of memory class
(memclass) and pointer class
(ptrclass) macro parameter

Comments Located in

Variables <PREFIX>_CALLOUT_CODE

To be used for references on application
functions. (e.g. callout function pointers)

This section is DEPRECATED and shall

not be used in fotore development. This
memory class identifier has been
replaced by <PREFIX>_<CN>_CODE.

Variables <PREFIX>_VAR_NOINIT

To be used for all global or static
variables that are never initialized.

This section is DEPRECATED and shall

not be used in fotore development. This
memory class identifier has been
replaced by
<PREFIX>_VAR_<INIT_POLICY>.

Variables <PREFIX>_VAR_POWER_ON_INIT

To be used for all global or static
variables that are initialized only after
power on reset

This section is DEPRECATED and shall

not be used in fotore development. This
memory class identifier has been
replaced by
<PREFIX>_VAR_<INIT_POLICY>.

Variables <PREFIX>_VAR_FAST

To be used for all global or static
variables that have at least one of the
following properties:

 accessed bitwise

 frequently used

 high number of accesses in source
code

This section is DEPRECATED and shall

not be used in fotore development. This
memory class identifier has been
replaced by
<PREFIX>_VAR_FAST_<INIT_POLICY>
.

Variables <PREFIX>_VAR

To be used for global or static variables
that are initialized after every reset.

This section is DEPRECATED and shall

not be used in fotore development. This
memory class identifier has been
replaced by
<PREFIX>_VAR_<INIT_POLICY>.

Variables AUTOMATIC To be used for local non static variables Compiler.h

Type
Definitions

TYPEDEF
To be used in type definitions, where no
memory qualifier can be specified.

Compiler.h

For the memory classes that have the form <PREFIX>_<NAME>, one can specify
the part <NAME> in the the MemorySections of a Basic Software Module Description
or Software Component Description as follows. This is especially required for
generated code:

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

44 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

 <NAME> is the shortName (case sensitive) of the SwAddrMethod referred
from the MemorySection if if the MemorySection has no memClassSymbol
attribute defined.

 Only for Basic Software: <NAME> is the memClassSymbol (case sensitive) of
the MemorySection if this attribute is defined.

⌋ ()

[SWS_COMPILER_00041] ⌈ Each AUTOSAR software module and application

software component shall wrap declaration and definition of code, variables,

constants and pointer types using the following keyword macros: ⌋ ()

For instance:
native C-API:
Std_ReturnType Spi_SetupBuffers

(

 Spi_ChannelType Channel,

 const Spi_DataType *SrcDataBufferPtr,

 Spi_DataType *DesDataBufferPtr,

 Spi_NumberOfDataType Length

);

is encapsulated:
FUNC(Std_ReturnType, SPI_CODE) Spi_SetupBuffers

(

 Spi_ChannelType Channel,

 P2CONST(Spi_DataType, AUTOMATIC, SPI_APPL_DATA) SrcDataBufferPtr,

 P2VAR(Spi_DataType, AUTOMATIC, SPI_APPL_DATA,) DesDataBufferPtr,

 Spi_NumberOfDataType Length

);

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

45 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

12.3 Proposed process

To allow development and integration within a multi supplier environment a certain
delivery process is indispensable. The following description can be seen as proposal:

Figure 2: Proposal of integration-process

Module
source
files

Compiler_Cfg.h

Memory
Mapping

Documents

Package

AUTOSAR Module

Suppliers

• Implements Source files and documents

• Assigns version and vendor numbers

• Implements module specific part of
Compiler_Cfg.h and <Mip>_MemMap.h

• Builds package

Development Environment

AUTOSAR

Integrator

• Receives and checks packages

• Integrates modules

• Integrates the single Compiler_Cfg.h

files into main Compiler_Cfg.h

• Configures <Mip>_MemMap.h and
Compiler_Cfg.h

Integration Environment

Step 1:

Delivery of basic files

constructs integrates

Step 2:
Delivery of modules /

components

Compiler.h

Std_Types.h
Platform_Types.h

Compiler_Cfg.h of
Module A

Compiler_Cfg.h of
Module B

Compiler_Cfg.h

Compiler_Cfg.h of
Module C

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

46 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

12.4 Comprehensive example

This example shows for a single API function where which macro is defined, used
and configured.
Module: Eep
API function: Eep_Read
Platform: S12X
Compiler: Cosmic

File Eep.c:

#include “Std_Types.h” /* This includes also Compiler.h */

FUNC(Std_ReturnType, EEP_CODE) Eep_Read

 (

 Eep_AddressType EepromAddress,

 P2VAR(uint8, AUTOMATIC, EEP_APPL_DATA) DataBufferPtr,

 Eep_LengthType Length

)

File Compiler.h:

#include “Compiler_Cfg.h”

#define AUTOMATIC

#define FUNC(rettype, memclass) rettype memclass

#define P2VAR(ptrtype, memclass, ptrclass) ptrclass ptrtype * memclass

File Compiler_Cfg.h:

#define EEP_CODE

#define EEP_APPL_DATA @far /* RAM blocks of NvM are in banked RAM */

What are the dependencies?

EEP_APPL_DATA is defined as ‘far’. This means that the pointers to the RAM blocks

managed by the NVRAM Manager have to be defined as ‘far’ also. The application
can locate RAM mirrors in banked RAM but also in non-banked RAM. The mapping
of the RAM blocks to banked RAM is done in <Mip>_MemMap.h (see [12] for more
information on <Mip>).

Because the pointers are also passed via Memory Interface and EEPROM

Abstraction, their pointer and memory classes must also fit to EEP_APPL_DATA.

What would be different on a 32-bit platform?
Despite the fact that only the S12X has an internal EEPROM, the only thing that
would change in terms of compiler abstraction are the definitions in Compiler_Cfg.h.
They would change to empty defines:

#define EEP_CODE

#define EEP_APPL_DATA

Specification of Compiler Abstraction
 V3.3.0

R4.1 Rev 1

47 of 47 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

13 Not applicable requirements

[SWS_COMPILER_00999] ⌈ These requirements are not applicable to this

specification. ⌋ (SRS_BSW_00300, SRS_BSW_00301, SRS_BSW_00302,

SRS_BSW_00304, SRS_BSW_00305, SRS_BSW_00307, SRS_BSW_00308,
SRS_BSW_00309, SRS_BSW_00310, SRS_BSW_00312, SRS_BSW_00314,
SRS_BSW_00323, BSW00324, SRS_BSW_00325, SRS_BSW_00326,
SRS_BSW_00327, SRS_BSW_00329, SRS_BSW_00330, SRS_BSW_00331,
SRS_BSW_00333, SRS_BSW_00334, SRS_BSW_00335, SRS_BSW_00336,
SRS_BSW_00338, SRS_BSW_00339, SRS_BSW_00341, SRS_BSW_00342,
SRS_BSW_00343, SRS_BSW_00344, SRS_BSW_00346, SRS_BSW_00350,
SRS_BSW_00353, SRS_BSW_00355, SRS_BSW_00357, SRS_BSW_00358,
SRS_BSW_00359, SRS_BSW_00360, SRS_BSW_00369, SRS_BSW_00370,
SRS_BSW_00371, SRS_BSW_00373, SRS_BSW_00375, SRS_BSW_00376,
SRS_BSW_00377, SRS_BSW_00378, SRS_BSW_00380, SRS_BSW_00385,
SRS_BSW_00386, SRS_BSW_00387, SRS_BSW_00390, SRS_BSW_00391,
SRS_BSW_00392, SRS_BSW_00393, SRS_BSW_00394, SRS_BSW_00395,
SRS_BSW_00398, SRS_BSW_00399, SRS_BSW_00004, SRS_BSW_00400,
SRS_BSW_00401, SRS_BSW_00404, SRS_BSW_00405, SRS_BSW_00406,
SRS_BSW_00407, SRS_BSW_00408, SRS_BSW_00409, SRS_BSW_00410,
SRS_BSW_00411, SRS_BSW_00413, SRS_BSW_00414, SRS_BSW_00415,
SRS_BSW_00416, SRS_BSW_00417, SRS_BSW_00419, BSW00420,
SRS_BSW_00422, SRS_BSW_00423, SRS_BSW_00424, SRS_BSW_00425,
SRS_BSW_00426, SRS_BSW_00427, SRS_BSW_00428, SRS_BSW_00429,
BSW00431, SRS_BSW_00432, SRS_BSW_00433, BSW00434, SRS_BSW_00005,
SRS_BSW_00007, SRS_BSW_00009, SRS_BSW_00010, SRS_BSW_00158,
SRS_BSW_00161, SRS_BSW_00162, SRS_BSW_00164, SRS_BSW_00167,
SRS_BSW_00168, SRS_BSW_00170, SRS_BSW_00171, SRS_BSW_00172)

13.1 Deleted SWS Items:

SWS Item Rationale

COMPILER_00044 Removed due to rework of configuration interface

COMPILER_00052 Deleted during the rewronk, accrding to the new SWS_BSWGeneral

COMPILER_00001 Deleted during the rewronk, accrding to the new SWS_BSWGeneral

	Disclaimer
	The word AUTOSAR and the AUTOSAR logo are registered trademarks.
	Advice for users
	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains
	4.3 Applicability to safety related environments

	5 Dependencies to other modules
	5.1 Code file structure
	5.2 Header file structure
	5.3 Connections to other modules
	5.3.1 Compiler Abstraction
	5.3.2 Memory Mapping
	5.3.3 Linker-Settings

	6 Requirements traceability
	7 Analysis
	7.1 Keywords for functions
	7.2 Keywords for pointers

	8 Functional specification
	8.1 General issues
	8.2 Contents of Compiler.h
	8.3 Contents of Compiler_Cfg.h

	9 API specification
	9.1 Definitions
	9.1.1 Memory class AUTOMATIC
	9.1.2 Memory class TYPEDEF
	9.1.3 NULL_PTR
	9.1.4 INLINE
	9.1.5 LOCAL_INLINE

	9.2 Macros for functions
	9.2.1 FUNC
	9.2.2 FUNC_P2CONST
	9.2.3 FUNC_P2VAR

	9.3 Macros for pointers
	9.3.1 P2VAR
	9.3.2 P2CONST
	9.3.3 CONSTP2VAR
	9.3.4 CONSTP2CONST
	9.3.5 P2FUNC
	9.3.6 CONSTP2FUNC

	1.1
	9.4 Keywords for constants
	9.4.1 CONST

	9.5 Keywords for variables
	9.5.1 VAR

	10 Sequence diagrams
	11 Configuration specification
	11.1 How to read this chapter
	1.1
	1.1
	1.1
	1.1
	1.1
	11.2 Containers and configuration parameters
	11.2.1 Variants
	11.2.2 Module-Specific Memory Classes
	11.2.3 Global Memory Classes

	11.3 Published Information

	12 Annex
	12.1 List of Compiler symbols
	12.2 Requirements on implementations using compiler abstraction
	12.3 Proposed process
	12.4 Comprehensive example

	13 Not applicable requirements
	13.1 Deleted SWS Items:

