
Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

Document Title Specification of Memory
Mapping

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 128
Document Classification Standard

Document Version 1.2.0
Document Status Final
Part of Release 4.0
Revision 1

Document Change History
Date Version Changed by Change Description
04.12.2009 1.2.0 AUTOSAR

Administration
 Typo errors are corrected throughout the

document
 Memory Mapping section has been

extended for application SWC
 Common Published information has been

updated
 Legal disclaimer revised

23.06.2008 1.1.1 AUTOSAR
Administration

Legal disclaimer revised

12.12.2007 1.1.0 AUTOSAR
Administration

 In MEMMAP004,all size postfixes for
memory segment names were listed, the
keyword 'BOOLEAN was added, taking
into account the particular cases where
boolean data need to be mapped in a
particular segment.

 In MEMMAP004 and MEMMAP021,tables
are defining the mapping segments
associated to #pragmas instructions,
adding some new segments to take into
account some implementation cases

 Document meta information extended
 Small layout adaptations made

13.02.2006 1.0.0 AUTOSAR
Administration

Initial release

1 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users:

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

2 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

Table of Contents

1 Introduction and functional overview ... 4

2 Acronyms and abbreviations ... 5

3 Related documentation.. 6

3.1 Input documents... 6
3.2 Related standards and norms .. 6

4 Constraints and assumptions .. 7

4.1 Limitations .. 7
4.2 Applicability to car domains.. 7
4.3 Applicability to safety related environments ... 7

5 Dependencies to other modules.. 8

5.1 File structure .. 8
5.1.1 Code file structure ... 8
5.1.2 Header file structure.. 8

6 Requirements traceability .. 9

7 Analysis ... 15

7.1 Memory allocation of variables... 15
7.2 Memory allocation of constant variables .. 16
7.3 Memory allocation of code ... 17

8 Functional specification ... 19

8.1 General issues ... 19
8.2 Mapping of variables and code .. 19

8.2.1 Requirements on implementations using memory mapping header files
for BSW Modules and Software Components ... 19
8.2.2 Requirements on memory mapping header files................................. 22

9 API specification.. 26

10 Sequence diagrams... 27

11 Configuration specification... 28

11.1 Published Information... 28

3 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

1 Introduction and functional overview

This document specifies mechanisms for the mapping of code and data to specific
memory sections via memory mapping files. For many ECUs and microcontroller
platforms it is of utmost necessity to be able to map code, variables and constants
module wise to specific memory sections. Selection of important use cases:

Avoidance of waste of RAM
If different variables (8, 16 and 32 bit) are used within different modules on a 32 bit
platform, the linker will leave gaps in RAM when allocating the variables in the RAM.
This is because the microcontroller platform requires a specific alignment of variables
and some linkers do not allow an optimization of variable allocation.

This wastage of memory can be circumvented if the variables are mapped to specific
memory sections depending on their size. This minimizes unused space in RAM.

Usage of specific RAM properties
Some variables (e.g. the RAM mirrors of the NVRAM Manager) must not be
initialized after a power-on reset. It shall be possible to map them to a RAM section
that is not initialized after a reset.

For some variables (e.g. variables that are accessed via bit masks) it improves both
performance and code size if they are located within a RAM section that allows for bit
manipulation instructions of the compiler. Those RAM sections are usually known as
‘Near Page’ or ‘Zero Page’.

Usage of specific ROM properties
In large ECUs with external flash memory there is the requirement to map modules
with functions that are called very often to the internal flash memory that allows for
fast access and thus higher performance. Modules with functions that are called
rarely or that have lower performance requirements are mapped to external flash
memory that has slower access.

Usage of the same source code of a module for boot loader and application
If a module shall be used both in boot loader and application, it is necessary to allow
the mapping of code and data to different memory sections.

A mechanism for mapping of code and data to memory sections that is supported by
all compilers listed in chapter 3.1 is the usage of pragmas. As pragmas are very
compiler specific, a mechanism that makes use of those pragmas in a standardized
way has to be specified.

Support of Memory Protection

1. The usage of hardware memory protection requires a separation of the
modules variables into different memory areas. Internal variables are mapped
into protected memory, buffers for data exchange are mapped into
unprotected memory.

4 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

2 Acronyms and abbreviations

Abbreviation /
Acronym:

Description:

BSW Basic Software
ISR Interrupt Service Routine
NVRAM Non-Volatile RAM

5 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules,
AUTOSAR_TR_BSWModuleList.pdf

[2] General Requirements on Basic Software Modules,

AUTOSAR_SRS_BSWGeneral.pdf

[3] Basic Software Module Description Template,

AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[4] Cosmic C Cross Compiler User’s Guide for Motorola MC68HC12, V4.5

[5] ARM ADS compiler manual

[6] GreenHills MULTI for V850 V4.0.5:

Building Applications for Embedded V800, V4.0, 30.1.2004

[7] TASKING for ST10 V8.5:

C166/ST10 v8.5 C Cross-Compiler User's Manual, V5.16
C166/ST10 v8.5 C Cross-Assembler, Linker/Locator, Utilities User's Manual,
V5.16

[8] Wind River (Diab Data) for PowerPC Version 5.2.1:

Wind River Compiler for Power PC - Getting Started, Edition 2, 8.5.2004
Wind River Compiler for Power PC - User's Guide, Edition 2, 11.5.2004

[9] TASKING for TriCore TC1796 V2.0R1:

TriCore v2.0 C Cross-Compiler, Assembler, Linker User's Guide, V1.2

[10] Metrowerks CodeWarrior 4.0 for Freescale HC9S12X/XGATE (V5.0.25):

Motorola HC12 Assembler, 2.6.2004
Motorola HC12 Compiler, 2.6.2004
Smart Linker, 2.4.2004

3.2 Related standards and norms

Not applicable.

6 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

4 Constraints and assumptions

4.1 Limitations

During specification of abstraction and validation of concept the compilers listed in
chapter 3.1 have been considered. If any other compiler requires keywords that
cannot be mapped to the mechanisms described in this specification this compiler
will not be supported by AUTOSAR. In this case, the compiler vendor has to adapt its
compiler.

The concepts described in this document do only apply to C compilers. C++ is not in
scope of this version.

A dedicated pack-control of structures is not supported. Hence global set-up passed
via compiler / linker parameters has to be used.

A dedicated alignment control of code, variables and constants is not supported.
Hence affected objects shall be assigned to different sections or a global setting
passed via compiler / linker parameters has to be used.

4.2 Applicability to car domains

No restrictions.

4.3 Applicability to safety related environments

No restrictions. The memory mapping files do not implement any functionality, only
symbols and macros.

7 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

5 Dependencies to other modules

MEMMAP020: The SWS Memory Mapping is applicable for each AUTOSAR basic
software module and software component. Therefore the implementation of memory
mapping files shall fulfill the implementation and configuration specific needs of each
software module in a specific build scenario. See also MEMMAP004, MEMMAP003,
MEMMAP018 and MEMMAP001.

5.1 File structure

5.1.1 Code file structure

cd file structure

BSW moduleMemMap.h

«includes»

5.1.2 Header file structure

cd file structure

BSW moduleMemMap.h

«includes»

8 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

6 Requirements traceability

Document: AUTOSAR General Requirements on Basic Software Modules

Requirement Satisfied by

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00344] Reference to link-time configuration

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00404] Reference to post build time configuration

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00405] Reference to multiple configuration sets

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00345] Pre-compile-time configuration

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW159] Tool-based configuration

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW167] Static configuration checking

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW171] Configurability of optional functionality

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW170] Data for reconfiguration of AUTOSAR SW-
Components

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00380] Separate C-Files for configuration
parameters

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00419] Separate C-Files for pre-compile time
configuration parameters

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00381] Separate configuration header file for pre-
compile time parameters

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00412] Separate H-File for configuration
parameters

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00383] List dependencies of configuration files

[BSW00384] List dependencies to other modules MEMMAP020
Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00387] Specify the configuration class of callback
function

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00388] Introduce containers

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00389] Containers shall have names

[BSW00390] Parameter content shall be unique within
the module

Not applicable
(Memory Mapping is specific per build

9 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

Requirement Satisfied by
scenario)
Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00391] Parameter shall have unique names

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00392] Parameters shall have a type

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00393] Parameters shall have a range

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00394] Specify the scope of the parameters

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00395] List the required parameters (per
parameter)

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00396] Configuration classes

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00397] Pre-compile-time parameters

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00398] Link-time parameters

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00399] Loadable Post-build time parameters

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00400] Selectable Post-build time parameters

[BSW00402] Published information MEMMAP019
Not applicable
(Memory Mapping is not a BSW module)

[BSW00375] Notification of wake-up reason

Not applicable
(Memory Mapping is not a BSW module)

[BSW101] Initialization interface

Not applicable
(Memory Mapping is not a BSW module)

[BSW00416] Sequence of Initialization

Not applicable
(Memory Mapping is not a BSW module)

[BSW00406] Check module initialization

Not applicable
(Memory Mapping is not a BSW module)

[BSW168] Diagnostic Interface of SW components

Not applicable
(Memory Mapping is not a BSW module)

[BSW00407] Function to read out published parameters

[BSW00423] Usage of SW-C template to describe BSW
modules with AUTOSAR Interfaces

Not applicable
(Memory Mapping is not a BSW module)

[BSW00424] BSW main processing function task
allocation

Not applicable
(Memory Mapping is not a BSW module)
Not applicable
(Memory Mapping is not a BSW module)

[BSW00425] Trigger conditions for schedulable objects

Not applicable
(Memory Mapping is not a BSW module)

[BSW00426] Exclusive areas in BSW modules

Not applicable
(Memory Mapping is not a BSW module)

[BSW00427] ISR description for BSW modules

[BSW00428] Execution order dependencies of main
processing functions

Not applicable
(Memory Mapping is not a BSW module)

[BSW00429] Restricted BSW OS functionality access
Not applicable
(Memory Mapping is not a BSW module)

10 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

Requirement Satisfied by
[BSW00431] The BSW Scheduler module implements
task bodies

Not applicable
(Memory Mapping is not a BSW module)

[BSW00432] Modules should have separate main
processing functions for read/receive and write/transmit
data path

Not applicable
(Memory Mapping is not a BSW module)

Not applicable
(Memory Mapping is not a BSW module)

[BSW00433] Calling of main processing functions

[BSW00434] The Schedule Module shall provide an API
for exclusive areas

Not applicable
(Memory Mapping is not a BSW module)
Not applicable
(Memory Mapping is not a BSW module)

[BSW00336] Shutdown interface

Not applicable
(Memory Mapping is not a BSW module)

[BSW00337] Classification of errors

[BSW00338] Detection and Reporting of development
errors

Not applicable
(Memory Mapping is not a BSW module)

[BSW00369] Do not return development error codes via
API

Not applicable
(Memory Mapping is not a BSW module)

[BSW00339] Reporting of production relevant error
status

Not applicable
(Memory Mapping is not a BSW module)

[BSW00421] Reporting of production relevant error
events

Not applicable
(Memory Mapping is not a BSW module)

[BSW00422] Debouncing of production relevant error
status

Not applicable
(Memory Mapping is not a BSW module)

[BSW00420] Production relevant error event rate
detection

Not applicable
(Memory Mapping is not a BSW module)

[BSW00417] Reporting of Error Events by Non-Basic
Software

Not applicable,
(Memory Mapping does not report errors)
Not applicable
(Memory Mapping is not a BSW module)

[BSW00323] API parameter checking

Not applicable
(Memory Mapping is not a BSW module)

[BSW004] Version check

Not applicable
(Memory Mapping is not a BSW module)

[BSW00409] Header files for production code error IDs

Not applicable
(Memory Mapping is not a BSW module)

[BSW00385] List possible error notifications

Not applicable
(Memory Mapping is not a BSW module)

[BSW00386] Configuration for detecting an error

Not applicable
(non-functional requirement)

[BSW161] Microcontroller abstraction

Not applicable
(non-functional requirement)

[BSW162] ECU layout abstraction

Not applicable
(non-functional requirement)

[BSW00324] Do not use HIS I/O Library

[BSW005] No hard coded horizontal interfaces within
MCAL

Not applicable
(non-functional requirement)
Not applicable
(non-functional requirement)

[BSW00415] User dependent include files

Not applicable
(non-functional requirement)

[BSW164] Implementation of interrupt service routines

Not applicable
(Memory Mapping is not a BSW module)

[BSW00325] Runtime of interrupt service routines

Not applicable
(Memory Mapping is not a BSW module)

[BSW00326] Transition from ISRs to OS tasks

[BSW00342] Usage of source code and object code
Not applicable
(non-functional requirement)

11 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

Requirement Satisfied by
Not applicable
(Memory Mapping is not a BSW module)

[BSW00343] Specification and configuration of time

Not applicable
(Memory Mapping is not a BSW module)

[BSW160] Human-readable configuration data

Not applicable,
(Memory Mapping is the C-language
extension header)

[BSW007] HIS MISRA C

Not applicable
(Memory Mapping is not a BSW module)

[BSW00300] Module naming convention

Not applicable
(Memory Mapping is not a BSW module)

[BSW00413] Accessing instances of BSW modules

[BSW00347] Naming separation of different instances
of BSW drivers

Not applicable
(Memory Mapping is not a BSW module)
Not applicable
(Memory Mapping is not a BSW module)

[BSW00305] Self-defined data types naming convention

Not applicable
(Memory Mapping is not a BSW module)

[BSW00307] Global variables naming convention

Not applicable
(Memory Mapping is not a BSW module)

[BSW00310] API naming convention

[BSW00373] Main processing function naming
convention

Not applicable
(Memory Mapping is not a BSW module)
Not applicable
(Memory Mapping is not a BSW module)

[BSW00327] Error values naming convention

Not applicable
(Memory Mapping is not a BSW module)

[BSW00335] Status values naming convention

Not applicable
(Memory Mapping is not a BSW module)

[BSW00350] Development error detection keyword

[BSW00408] Configuration parameter naming
convention

Not applicable
(Memory Mapping is not a BSW module)

[BSW00410] Compiler switches shall have defined
values

Not applicable
(Memory Mapping is not a BSW module)
Not applicable
(Memory Mapping is not a BSW module)

[BSW00411] Get version info keyword

Not applicable
(Memory Mapping is not a BSW module)

[BSW00346] Basic set of module files

[BSW158] Separation of configuration from
implementation

Not applicable
(Memory Mapping is not a BSW module)

[BSW00314] Separation of interrupt frames and service
routines

Not applicable
(Memory Mapping is not a BSW module)
Not applicable
(Memory Mapping is not a BSW module)

[BSW00370] Separation of callback interface from API

Not applicable
(Memory Mapping is not a BSW module)

BSW00348] Standard type header

Not applicable
(Memory Mapping is a C-language
extension header)

[BSW00353] Platform specific type header

[BSW00361] Compiler specific language extension
header

MEMMAP002

Not applicable
(Memory Mapping is not a BSW module)

[BSW00301] Limit imported information

Not applicable
(Memory Mapping is not a BSW module)

[BSW00302] Limit exported information

supported by:
MEMMAP001, MEMMAP005

[BSW00328] Avoid duplication of code

Not applicable
(Memory Mapping is not a BSW module)

[BSW00312] Shared code shall be reentrant

[BSW006] Platform independency supported by:

12 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

Requirement Satisfied by
MEMMAP010, MEMMAP004,
MEMMAP003, MEMMAP005,
MEMMAP006, MEMMAP007,
MEMMAP011, MEMMAP013
Not applicable
(Memory Mapping is not a BSW module)

[BSW00357] Standard API return type

Not applicable
(Memory Mapping is not a BSW module)

[BSW00377] Module specific API return types

Not applicable
(Memory Mapping is not a BSW module)

[BSW00304] AUTOSAR integer data types

[BSW00355] Do not redefine AUTOSAR integer data
types

Not applicable
(Memory Mapping is not a BSW module)
Not applicable
(Memory Mapping is not a BSW module)

[BSW00378] AUTOSAR boolean type

supported by:
MEMMAP010, MEMMAP004,
MEMMAP003, MEMMAP005,
MEMMAP006, MEMMAP007,
MEMMAP011, MEMMAP013

[BSW00306] Avoid direct use of compiler and platform
specific keywords

Not applicable
(Memory Mapping is not a BSW module)

[BSW00308] Definition of global data

Not applicable
(Memory Mapping is not a BSW module)

[BSW00309] Global data with read-only constraint

Not applicable
(Memory Mapping is not a BSW module)

[BSW00371] Do not pass function pointers via API

Not applicable
(Memory Mapping is not a BSW module)

[BSW00358] Return type of init() functions

Not applicable
(Memory Mapping is not a BSW module)

[BSW00414] Parameter of init function

Not applicable
(Memory Mapping is not a BSW module)

[BSW00414] Parameter of init function

Not applicable
(Memory Mapping is not a BSW module)

[BSW00359] Return type of callback functions

Not applicable
(Memory Mapping is not a BSW module)

[BSW00360] Parameters of callback functions

Not applicable
(Memory Mapping is not a BSW module)

[BSW00329] Avoidance of generic interfaces

[BSW00330] Usage of macros / inline functions instead
of functions

Not applicable
(Memory Mapping is not a BSW module)
Not applicable
(Memory Mapping is not a BSW module)

[BSW00331] Separation of error and status values

Not applicable
(Memory Mapping is not a BSW module)

[BSW009] Module User Documentation

[BSW00401] Documentation of multiple instances of
configuration parameters

Not applicable
(Memory Mapping is not a BSW module)

[BSW172] Compatibility and documentation of
scheduling strategy

Not applicable
(Memory Mapping is not a BSW module)
Not applicable
(Memory Mapping is not a BSW module)

[BSW010] Memory resource documentation

[BSW00333] Documentation of callback function
context

Not applicable
(Memory Mapping is not a BSW module)

[BSW00374] Module vendor identification MEMMAP019
[BSW00379] Module identification MEMMAP019
[BSW003] Version identification MEMMAP019
[BSW00318] Format of module version numbers MEMMAP019

13 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

Requirement Satisfied by
[BSW00321] Enumeration of module version numbers MEMMAP019
[BSW00341] Microcontroller compatibility
documentation

Not applicable
(Memory Mapping is not a BSW module)

[BSW00334] Provision of XML file Not applicable
(Memory Mapping is not a BSW module)

14 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

7 Analysis

This chapter does not contain requirements. It just gives an overview to used
keywords and their syntax within different compilers. This analysis is required for a
correct and complete specification of methods and keywords.

7.1 Memory allocation of variables

Compiler analysis for starting/stopping a memory section for variables:

Compiler Required syntax
Cosmic, S12X Initialized variables:

#pragma section {name}
#pragma section {}

Non Initialized variables:
#pragma section [name]
#pragma section []
#pragma DATA_SEG” (<Modif> <Name> | “DEFAULT”)
<Modif>: Some of the following strings may be used:
SHORT, __SHORT_SEG,
DIRECT, __DIRECT_SEG,
NEAR, __NEAR_SEG,
FAR, __FAR_SEG,
DPAGE, __DPAGE_SEG,
RPAGE, __RPAGE_SEG
Pragma shall be used in definition and declaration.

Metrowerks, S12X

#pragma class mem=name
#pragma combine mem=ctype
#pragma align mem=atype
#pragma noclear

#pragma default_attributes
#pragma clear

atype is one of the following align types:
B Byte alignment
W Word alignment
P Page alignment
S Segment alignment
C PEC addressable
I IRAM addressable

ctype is one of the following combine types:
L private ('Local')
P Public
C Common
G Global
S Sysstack
U Usrstack
A address Absolute section AT constant address
(decimal, octal or hexadecimal number)

Tasking, ST10

Tasking, TC1796 #pragma pack 0 / 2
packing of structs. Shall be visible at type declaration

15 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

Compiler Required syntax

#pragma section type "string"
#pragma noclear

#pragma clear

#pragma for_extern_data_use_memory
#pragma for_initialized_data_use_memory
#pragma for_uninitialized_data_use_memory
#pragma align (n)
#pragma alignvar (n)
#pragma ghs section sect=”name”
#pragma ghs section sect =default
Section Keyword: data, sdata, tdata, zdata, bss,
sbss, zbss

GreenHills, V850

#pragma arm section [sort_type[[=]"name"]]
[,sort_type="name"]*
sort_type="rwdata, zidata
alignment control via key words:
__packed, __align()

ADS, ST30

#pragma section class_name [init_name]
[uninit_name] [address_mode] [access]
#pragma section class_name
Pragma shall be used before declaration.

class_name for variables:
BSS, DATA, SDATA

DIABDATA, MPC5554

7.2 Memory allocation of constant variables

Compiler analysis for starting/stopping a memory section for constant variables:

Compiler Required syntax

#pragma section const {name}
#pragma section const {}

Cosmic, S12X

#pragma CONST_SEG” (<Modif> <Name> | “DEFAULT”)
<Modif>: Some of the following strings may be used:
PPAGE, __PPAGE_SEG,
GPAGE, __GPAGE_SEG
Pragma shall be used in definition and declaration.

Metrowerks, S12X

Tasking, ST10 #pragma class mem=name
#pragma align mem=atype
#pragma combine mem=ctype
#pragma default_attributes

atype is one of the following align types:
B Byte alignment
W Word alignment
P Page alignment
S Segment alignment
C PEC addressable
I IRAM addressable

ctype is one of the following combine types:
L private ('Local')
P Public
C Common

16 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

Compiler Required syntax
G Global
S Sysstack
U Usrstack
A address Absolute section AT constant address
(decimal, octal or hexadecimal number)
#pragma pack 0 / 2
Packing of structs. Shall be visible at type declaration

#pragma section type "string"
#pragma for_constant_data_use_memory

Tasking, TC1796

#pragma ghs section sect=”name”
#pragma ghs section sect =default
Section Keyword: rodata, rozdata, rosdata

GreenHills, V850

#pragma arm section [sort_type[[=]"name"]]
[,sort_type="name"]*
sort_type="rodata

alignment control via key words:
__packed, __align()

ADS, ST30

#pragma section class_name [init_name]
[uninit_name] [address_mode] [access]
#pragma section class_name
Pragma shall be used before declaration.

class_name for constant variables:
CONST, SCONST, STRING

DIABDATA, MPC5554

7.3 Memory allocation of code

Compiler analysis for starting/stopping a memory section for code::

Compiler Required syntax

#pragma section (name)
#pragma section ()

Cosmic, S12X

#pragma CODE_SEG” (<Modif> <Name> | “DEFAULT”)
 <Modif>: Some of the following strings may be used:
 DIRECT, __DIRECT_SEG,
 NEAR, __NEAR_SEG,
 CODE, __CODE_SEG,
 FAR, __FAR_SEG,
 PPAGE, __PPAGE_SEG,
 PIC, __PIC_SEG
 Pragma shall be used in definition and declaration.

Metrowerks, S12X

Tasking, ST10 #pragma class mem=name
#pragma combine mem=ctype
#pragma default_attributes

ctype is one of the following combine types:
L private ('Local')
P Public
C Common
G Global
S Sysstack
U Usrstack
A address Absolute section AT constant address

17 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

Compiler Required syntax
#pragma section code "string"
#pragma section code_init
#pragma section const_init
#pragma section vector_init
#pragma section data_overlay
#pragma section type[=]"name"
#pragma section all

Tasking, TC1796

#pragma ghs section sect=”name”
#pragma ghs section sect =default
Section Keyword: text

GreenHills, V850

#pragma arm section [sort_type[[=]"name"]]
[,sort_type="name"]*

sort_type="code"

ADS, ST30

DIABDATA, MPC5554 #pragma section class_name [init_name]
[uninit_name] [address_mode] [access]
#pragma section class_name
Pragma shall be used before declaration.

class_name for code:
CODE

18 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

8 Functional specification

8.1 General issues

The memory mapping files include the compiler and linker specific keywords for
memory allocation into header and source files. These keywords control the
assignment of variables and functions to specific sections. Thereby implementations
are independent from compiler and microcontroller specific properties.
The assignment of the sections to dedicated memory areas / address ranges is not
the scope of the memory mapping file and is typically done via linker control files.

MEMMAP001: For each build scenario (e.g. Boot loader, ECU Application) an own
set of memory mapping files has to be provided.

MEMMAP002: The memory mapping file name shall be ‘MemMap.h’ for basic
software modules and “<SWC>_MemMap.h” for software components where
<SWC> is the name of the software component type.

MEMMAP010: If a compiler/linker does not require or support requisite functionality
of SWS Memory Mapping, the memory allocation keyword defines shall be undefined
without further effect.

For instance:
#ifdef EEP_START_SEC_VAR_16BIT
 #undef EEP_START_SEC_VAR_16BIT
#endif

8.2 Mapping of variables and code

8.2.1 Requirements on implementations using memory mapping header files
for BSW Modules and Software Components

MEMMAP004: Each AUTOSAR basic software module and software component
shall support the configuration of at least the following different memory types.

It is allowed to add module specific sections as they are mapped and thus are
configurable within the module’s configuration file.
The shortcut ‘<SIZE>’ means the variable size. Possible SIZE postfixes are

BOOLEAN, used for variables and constants of size 1 bit
8BIT, used for variables and constants of size 8 bit
16BIT, used for variables and constants of size 16 bit
32BIT, used for variables and constants of size 32 bit
UNSPECIFIED, used for variables and constants of unknown size

19 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

MEMMAP022: The keywords to be used before inclusion of the memory mapping
header file shall use the templates <PREFIX>_START_<NAME> or
<PREFIX>_STOP_<NAME>
Where:

 <PREFIX> is the Module Abbreviation, from the BSW Module list (e.g. ‘EEP’
or ‘CAN’), for basic software modules or name of the software component type
for software components

 <NAME> is the section name (see the tables below)

Memory
type

Syntax of memory allocation keyword Comments

PREFIX_START_SEC_CODE Code

PREFIX_STOP_SEC_CODE

To be used for mapping
code to application block,
boot block, external flash
etc.

PREFIX_START_SEC_CALLOUT_CODE Code
PREFIX_STOP_SEC_CALLOUT_CODE

To be used for mapping
callouts of the BSW
Modules

PREFIX_START_SEC_VAR_NOINIT_<SIZE> Variables
PREFIX_STOP_SEC_VAR_NOINIT_<SIZE>

To be used for all global or
static variables that are
never initialized

PREFIX_START_SEC_VAR_POWER_ON_INIT_<SIZE> Variables

PREFIX_STOP_SEC_VAR_POWER_ON_INIT_<SIZE>

To be used for all global or
static variables that are
initialized only after power
on reset

PREFIX_START_SEC_VAR_FAST_<SIZE> Variables

PREFIX_STOP_SEC_VAR_FAST_<SIZE>

To be used for all global or
static variables that have at
least one of the following
properties:
 accessed bitwise
 frequently used
 high number of

accesses in source
code

Some platforms allow the
use of bit instructions for
variables located in this
specific RAM area as well
as shorter addressing
instructions. This saves
code and runtime.

PREFIX_START_SEC_INTERNAL_VAR_<SIZE> Variables
PREFIX_STOP_SEC_INTERNAL_VAR_<SIZE>

To be used for global or
static variables accessible
from a calibration tool.

PREFIX_START_SEC_VAR_SAVED_ZONE<X>_<SIZE> Variables
PREFIX_STOP_SEC_VAR_SAVED_ZONE<X>_<SIZE>

To be used for RAM
buffers of variables saved
in non volatile memory.

PREFIX_START_SEC_VAR_SAVED_RECOVERY_ZONE<X> Variables
PREFIX_STOP_SEC_VAR_SAVED_RECOVERY_ZONE<X>

To be used for ROM
buffers of variables saved
in non volatile memory.

PREFIX_START_SEC_VAR_<SIZE> Variables To be used for global or
static variables that are
initialized after every reset
(the normal case). PREFIX_STOP_SEC_VAR_<SIZE>

Constants PREFIX_START_SEC_CONST_<SIZE> To be used for global or

20 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

Memory
type

Syntax of memory allocation keyword Comments

PREFIX_STOP_SEC_CONST_<SIZE>
PREFIX_START_SEC_CALIB_<SIZE> Constants
PREFIX_STOP_SEC_CALIB_<SIZE>

To be used for calibration
constants.

PREFIX_START_SEC_CARTO_<SIZE> Constants To be used for cartography
constants. PREFIX_STOP_SEC_CARTO_<SIZE>

PREFIX_START_CONFIG_DATA_<SIZE>
PREFIX_STOP_CONFIG_DATA_<SIZE>

Constants with attributes
that show that they reside
in one segment for module
configuration.

Configurati
on data

MEMMAP021: There are different kinds of execution code sections. This code
sections shall be identified with dedicated keywords. If a section is not supported by
the integrator and micro controller then be aware that the keyword is ignored. The
table below defines the keyword to be used for each code section:

Memory
type

Syntax of memory allocation keyword Comments

PREFIX_START_SEC_CODE_FAST_<NUM>
PREFIX_STOP_SEC_CODE_FAST_<NUM>

To be used for code that shall go into
fast code memory segments.

Fast code

PREFIX_START_SEC_CODE_SLOW
PREFIX_STOP_SEC_CODE_SLOW

To be used for code that shall go into
slow code memory segments.

Slow code

PREFIX_START_SEC_CODE_LIB
PREFIX_STOP_SEC_CODE_LIB

To be used for code that shall go into
library segments for BSW module or
Software Component.

Library code

MEMMAP003: Each AUTOSAR basic software module and software component
shall wrap declaration and definition of code, variables and constants using the
following mechanism:

1. Definition of start symbol for module memory section
2. Inclusion of the memory mapping header file
3. Declaration/definition of code, variables or constants belonging to the

specified section
4. Definition of stop symbol for module memory section
5. Inclusion of the memory mapping header file

The inclusion of the memory mapping header files within the code is a MISRA
violation. As neither executable code nor symbols are included (only pragmas) this
violation is an approved exception without side effects.

The start and stop symbols for section control are configured with section identifiers
defined in the inclusion of memory mapping header file. For details on configuring
sections see “Configuration specification”

For example (BSW Module):

21 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

#define EEP_START_SEC_VAR_16BIT
#include “MemMap.h”
static uint16 EepTimer;
static uint16 EepRemainingBytes;
#define EEP_STOP_SEC_VAR_16BIT
#include “MemMap.h”

For example (SWC):
#define ABC_START_SEC_CODE
#include “ABC_MemMap.h”
/* --- Write a Code here */
#define ABC_STOP_SEC_CODE
#include “ABC_MemMap.h”

MEMMAP018: Each AUTOSAR basic software module and software component
shall support, for all C-objects, the configuration of the assignation to one of the
memory types (code, variables and constants).

Application hint:
An implicit assignment of object to default sections is not allowed because properties
of default sections are platform and tool depended and therefore these
implementations are not platform independent.

MEMMAP023: Memory mapping header files shall not be included inside the body of
a function.

The goal of this requirement is to support compiler which do not support #pragma
inside the body of a function. To force a special memory mapping of a function’s
static variable, this variable must be moved to file static

8.2.2 Requirements on memory mapping header files

MEMMAP005: The memory mapping header files shall provide a mechanism to
select different code, variable or constant sections by checking the definition of the
module specific memory allocation key words for starting a section (see
MEMMAP004). Code, variables or constants declared after this selection shall be
mapped to this section.

MEMMAP015: The selected section shall be activated, if the section macro is defined
before include of the memory mapping header file.

MEMMAP016: The selection of a section shall only influence the linker’s behavior for
one of the three different object types code, variables or constants concurrently.

Application hint:
On one side the creation of combined sections (for instance code and constants) is
not allowed. For the other side the set-up of the compiler / linker must be done in a
way, that only the settings of the selected section type is changed. For instance the

22 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

set-up of the code section shall not influence the configuration of the constant section
and other way around.

For instance:
#ifdef EEP_START_SEC_VAR_16BIT
 #undef EEP_START_SEC_VAR_16BIT
 #define START_SECTION_DATA_16BIT
#elif
/*
 additional mappings of modules sections into project
 sections
*/
...
#endif

#ifdef START_SECTION_DATA_16BIT
 #pragma section data "sect_data16"
 #undef START_SECTION_DATA_16BIT
 #undef MEMMAP_ERROR
#elif
/*
 additional statements for switching the project sections
*/
...
#endif

Application hint:
Those code or variables sections can be used for the allocation of objects from more
than one module.
Those code or variables sections can be used for the allocation of objects from
different module specific code or variable sections of one module.

MEMMAP006: The memory mapping header files shall provide a mechanism to
deselect different code and variable sections by checking the definition of the module
specific memory allocation key words for stopping a section (see MEMMAP004).
Code or variables declared after this selection shall be mapped to default section.
The selected section shall be deactivated, if the section macro is defined before
include of the memory mapping header file.

23 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

For instance:
#ifdef EEP_STOP_SEC_CODE
 #undef EEP_STOP_SEC_CODE
 #define STOP_SECTION_COMMON_CODE
#elif
/*
 additional mappings of modules sections into project
 sections
*/
...
#endif

/* additional module specific mappings */
...

#ifdef STOP_SECTION_COMMON_CODE
 #pragma section code restore
 #undef STOP_SECTION_COMMON_CODE
 #undef MEMMAP_ERROR
#elif
/*
 additional statements for switching the project sections
*/
#endif

MEMMAP007: The file memory mapping header files shall check if they have been
included with a valid memory mapping symbol and in a valid sequence (no START
preceded by a START, no STOP without the corresponding START). This shall be
done by a preprocessor check.

For instance:
#define MEMMAP_ERROR

/*
 mappings of modules sections into project sections and
 statements for switching the project sec
*/

...
#elif STOP_SECTION_COMMON_CODE
 #pragma section code restore
 #undef STOP_SECTION_COMMON_CODE
 #undef MEMMAP_ERROR
#endif

#ifdef MEMMAP_ERROR
 #error "MemMap.h, wrong pragma command"
#endif

24 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

MEMMAP011: The memory mapping header files shall undefine the module or
software component specific memory allocation key words for starting or stopping a
section.

For instance:
#ifdef EEP_STOP_SEC_CODE
 #undef EEP_STOP_SEC_CODE

MEMMAP013: The memory mapping header files shall use if-else structures to
reduce the compilation effort.

For instance:
#define MEMMAP_ERROR
...
/* module and ECU specific section mappings */
#if defined START_SECTION_COMMON_CODE
 #pragma section ftext
 #undef START_SECTION_COMMON_CODE
 #undef MEMMAP_ERROR
#elif defined START_SECTION_UNBANKED_CODE
 #pragma section code text
 #undef START_SECTION_UNBANKED_CODE
 #undef MEMMAP_ERROR
#elif defined ...
...

#endif

25 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

9 API specification

Not applicable.

26 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

10 Sequence diagrams

Not applicable.

27 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

Specification of Memory Mapping
V1.2.0

R4.0 Rev 1

28 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping
- AUTOSAR confidential -

11 Configuration specification

The memory mapping header files are specific for each build scenario. Therefore
there is no standardized configuration interface specified.

11.1 Published Information

[MEMMAP001_PI] The standardized common published parameters as required by
BSW00402 in the General Requirements on Basic Software Modules [2] shall be
published within the header file of this module and need to be provided in the BSW
Module Description. The according module abbreviation can be found in the List of
Basic Software Modules [1].

Additional module-specific published parameters are listed below if applicable.

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains
	4.3 Applicability to safety related environments

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	6 Requirements traceability
	7 Analysis
	7.1 Memory allocation of variables
	7.2 Memory allocation of constant variables
	7.3 Memory allocation of code

	8 Functional specification
	8.1 General issues
	8.2 Mapping of variables and code
	8.2.1 Requirements on implementations using memory mapping header files for BSW Modules and Software Components
	8.2.2 Requirements on memory mapping header files

	9 API specification
	10 Sequence diagrams
	11 Configuration specification
	11.1 Published Information

