
Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

1 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

Document Title Specification of CAN Transport
Layer

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 014

Document Classification Standard

Document Version 2.6.0

Document Status Final

Part of Release 3.2

Revision 3

Document Change History
Date Version Changed by Change Description

28.02.2014 2.6.0 AUTOSAR
Release
Management

 Added behavior when CanIf_Transmit
returns E_NOT_OK

 Clarification on the PADDING
mechanism

 Clarification on the sending of
FC(OVFLW) and FC(WT)

 Clarification for reaction on
BUFREQ_E_BUSY

 Editorial changes

 Removed chapter(s) on change
documentation

17.05.2012 2.5.0 AUTOSAR
Administration

 Update the
CancelTransmit/CancelReceive
mechanism

27.04.2011 2.4.0 AUTOSAR
Administration

 CanTp supports Full Duplex Mode

 Added possibility to change and read
CanTp parameters

 Changed production errors to
development errors

 BS and STMIN are not changed
during a reception session.

 Legal disclaimer revised

15.09.2010 2.3.0 AUTOSAR
Administration

 Removed CanTp228

 Updated CanTp246, CanTp248

 Legal disclaimer revised

23.06.2008 2.2.1 AUTOSAR
Administration

Legal disclaimer revised

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

2 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

03.12.2007 2.2.0 AUTOSAR
Administration

 Addition of transmit cancellation
feature

 DataLength check only for too small
DLC (CanTp220)

 Restriction on mapping of N-Pdu
(CanTp248)

 Document meta information extended

 Small layout adaptations made

24.01.2007 2.1.1 AUTOSAR
Administration

 “Advice for users” revised

 “Revision Information” added

04.12.2006 2.1.0 AUTOSAR
Administration

 Clarification and correction of error
management: list of
production/development error and
behavior in case of error

 Addition of CanTp166 and CanTp167
to avoid blocking situation in case of
no buffer provided by upper layer

 Remove of CanTpRxWftMax of
container CanTpTxNSdu

 1 parameter added for the call of
Det_ReportError

 Add header files inclusions

 Addition of CanTpNSa container in
configuration chapter

 Legal disclaimer revised

27.04.2006 2.0.0 AUTOSAR
Administration

Document structure adapted to common
Release 2.0 SWS Template.

21.06.2005 1.0.0 AUTOSAR
Administration

Initial Release

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

3 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

4 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

Table of Contents

1 Introduction and functional overview ... 7

2 Acronyms and abbreviations ... 10

3 Related documentation.. 13

3.1 Input documents ... 13
3.2 Related standards and norms .. 14

4 Constraints and assumptions .. 15

4.1 Limitations .. 15
4.2 Applicability in automotive domain ... 15

5 Dependencies on other modules ... 16

5.1 AUTOSAR architecture basic concepts .. 16
5.1.1 CAN Transport Layer connection(s) .. 16

5.1.2 CAN Transport Layer interactions ... 16
5.1.3 Processing mode .. 17
5.1.4 Data consistency ... 17
5.1.5 Static configuration .. 17

5.1.6 PDU Router services ... 18
5.1.7 CAN Interface services ... 18

5.2 File structure .. 18
5.2.1 Code file structure ... 18

5.2.2 Header file structure .. 18
5.2.3 Design Rules ... 20

6 Requirements traceability .. 21

7 Functional specification ... 27

7.1 Services provided to upper layer .. 27

7.1.1 Initialization and shutdown .. 27
7.1.2 Transmit request ... 29

7.1.3 Transmit cancellation .. 29
7.2 Services provided to the lower layer ... 30

7.2.1 Transmit confirmation .. 30
7.2.2 Reception indication .. 30

7.3 Internal behavior... 30
7.3.1 N-SDU Reception .. 31
7.3.2 N-SDU Transmission .. 34
7.3.3 Buffer strategy ... 35
7.3.4 Protocol parameter setting services .. 39

7.3.5 Tx and Rx data flow .. 39
7.3.6 Relationship between CAN NSduId and CAN LSduId 40
7.3.7 Concurrent connection .. 41
7.3.8 N-PDU padding ... 43

7.3.9 Handling of unexpected N-PDU arrival ... 44
7.4 Error classification .. 46
7.5 Error detection .. 48

7.6 Error notification ... 48

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

5 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

8 API specification .. 50

8.1 Imported types.. 50
8.2 Type definitions .. 50
8.3 Function definitions .. 51

8.3.1 CanTp_Init... 51
8.3.2 CanTp_GetVersionInfo ... 51

8.3.3 CanTp_Shutdown ... 52
8.3.4 CanTp_Transmit ... 53
8.3.5 CanTp_CancelTransmit .. 54
8.3.6 CanTp_CancelReceive ... 54
8.3.7 CanTp_ChangeParameter .. 55

8.3.8 CanTp_ReadParameter .. 56
8.3.9 Main Function .. 56

8.4 Call-back notifications .. 57
8.4.1 CanTp_RxIndication .. 57
8.4.2 CanTp_TxConfirmation ... 58

8.5 Expected Interfaces .. 59

8.5.1 Mandatory Interfaces .. 59
8.5.2 Optional Interfaces .. 59

9 Sequence diagrams .. 60

9.1 SF N-SDU received and no buffer provided ... 60
9.1.1 Assumptions.. 60

9.1.2 Sequence diagram .. 60

9.1.3 Transition description .. 62
9.2 Successful SF N-PDU reception .. 62

9.2.1 Assumptions.. 62
9.2.2 Sequence diagram .. 62
9.2.3 Transition description .. 63

9.3 Transmit request of SF N-SDU... 65

9.3.1 Assumptions.. 65
9.3.2 Sequence diagram .. 65

9.3.3 Transition description .. 66
9.4 Transmit request of larger N-SDU .. 67

9.4.1 Assumptions.. 67

9.4.2 Sequence diagram .. 67
9.4.3 Transition description .. 70

9.5 Large N-SDU Reception ... 71
9.5.1 Assumptions.. 71

9.5.2 Sequence diagram .. 71
9.5.3 Transition description .. 74

10 Configuration specification ... 75

10.1 How to read this chapter .. 75
10.1.1 Configuration and configuration parameters 75

10.1.2 Variants ... 75

10.1.3 Containers ... 76
10.1.4 Specification template for configuration parameters 76

10.2 Containers and configuration parameters .. 78
10.2.1 Variants ... 78

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

6 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

10.2.2 CanTp ... 78

10.2.3 CanTpGeneral ... 78
10.2.4 CanTpChannel .. 79
10.2.5 CanTpRxNSdu .. 80
10.2.6 CanTpRxNPdu .. 83
10.2.7 CanTpTxFcNPdu .. 84

10.2.8 CanTpTxNSdu .. 84
10.2.9 CanTpTxNPdu .. 87
10.2.10 CanTpRxFcNPdu .. 87
10.2.11 CanTpNTa ... 88
10.2.12 CanTpNSa ... 88

10.3 Published Information ... 90

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

7 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

1 Introduction and functional overview

This specification defines the functionality, API and the configuration of the
AUTOSAR Basic Software module CAN Transport Layer (CanTp).

CanTp is the module between the PDU Router and the CAN Interface module (see

Figure 1). The main purpose of the CAN TP module is to segment and reassemble
CAN I-PDUs longer than 8 bytes.
The PDU Router deploys AUTOSAR COM and DCM I-PDUs onto different
communication protocols. The routing through a network system type (e.g. CAN, LIN
and FlexRay) depends on the I-PDU identifier. The PDU Router also determines if a
transport protocol has to be used or not. Lastly, this module carries out gateway
functionality, when there is no rate conversion.
CAN Interface (CanIf) provides equal mechanisms to access a CAN bus channel
regardless of its location (µC internal/external). From the location of CAN controllers
(on chip / onboard), it extracts the ECU hardware layout and the number of CAN
drivers. Because CanTp only handles transport protocol frames (i.e. SF, FF, CF and
FC PDUs), depending on the N-PDU ID, the CAN Interface has to forward an I-PDU
to CanTp or PduR.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

8 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

Figure 1 : AUTOSAR Communication Stack

According to AUTOSAR basic software architecture, CanTp provides services for:
- Segmentation of data in transmit direction;
- Reassembling of data in receive direction;
- Control of data flow;
- Detection of errors in segmentation sessions;
- Transmit cancellation.

It is an AUTOSAR decision to base basic software module specifications on existing
standards, thus this AUTOSAR CAN Transport Layer specification is based on the
international standard ISO 15765, which is the most used standard in the automotive
domain.

Generic
NM

AUTOSAR
COM

Communication HW Abstraction

FlexRay Interface CAN Interface LIN Interface
(incl. LIN TP)

PDU Router

N-PDU

NM
Module

Communi
cation

Manager Signals

Communication Drivers

FlexRay Driver CAN Driver LIN Low Level Driver

NM Data

FlexRay TP

I-PDU

DCM

Diagnostic
Communication

Manager

I-PDU

CAN TP

I-PDU

Í-PDU I-PDU I-PDU

I-PDU

Generic
NM

Generic

NM

NM
Module

NM

Module

N-PDU

L-PDU L-PDU L-PDU

PDU
multi-
plexer

I-PDU

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

9 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

ISO 15765 (containing four sections) describes two applicable CAN Transport Layer
specifications: ISO 15765-2 for OEM enhanced diagnostics [13] and ISO 15765-4 for
OBD diagnostics [15]. Concerning the transport layer, ISO 15765-4 (the section of
ISO 15765 which also covers the data link layer and physical layer) is in accordance
with ISO 15765-2 with some restrictions/additions. In order that there is no
incompatibility problem between ISO 15765-2 and ISO 15765-4, differences will be
solved by the CAN Transport Layer configuration.

Although CAN transport protocol is mainly used for vehicle diagnostic systems, it has
also been developed to deal with requirements from other CAN based systems
requiring a transport layer protocol.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

10 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

2 Acronyms and abbreviations

The prefix notation used in this document, is as follows:

Prefix: Description:

I- Relative to AUTOSAR COM Interaction Layer

L- Relative to the CAN Interface module which is equivalent to the Logical Link
Control (the upper part of the Data Link Layer – the lower part is called Media
Access Control)

N- Relative to the CAN Transport Layer which is equivalent to the OSI Network
Layer.

All acronyms and abbreviations, which are specific to the CAN Transport Layer and
are therefore not contained in the AUTOSAR glossary, are described in the following:

Acronym: Description:

CAN L-SDU This is the SDU of the CAN Interface module. It is similar to CAN N-PDU but
from the CAN Interface module point of view.

CAN LSduId This is the unique identifier of a SDU within the CAN Interface. It is used for
referencing L-SDU’s routing properties.
Consequently, in order to interact with the CAN Interface through its API, an
upper layer uses CAN LSduId to refer to a CAN L-SDU Info Structure.

CAN N-PDU This is the PDU of the CAN Transport Layer. It contains a unique identifier, data
length and data (protocol control information plus the whole N-SDU or a part of
it).

CAN N-SDU This is the SDU of the CAN Transport Layer. In the AUTOSAR architecture, it is
a set of data coming from the PDU Router.

CAN N-SDU Info
Structure

This is a CAN Transport Layer internal constant structure that contains specific
CAN Transport Layer information to process transmission, reception,
segmentation and reassembly of the related CAN N-SDU.

CAN NSduId Unique SDU identifier within the CAN Transport Layer. It is used to reference N-
SDU’s routing properties.
Consequently, to interact with the CAN Transport Layer via its API, an upper
layer uses CAN NSduId to refer to a CAN N-SDU Info Structure.

I-PDU This is the PDU of the AUTOSAR COM module.

PDU In layered systems, it refers to a data unit that is specified in the protocol of a
given layer. This contains user data of that layer (SDU) plus possible protocol
control information.
Furthermore, the PDU of layer X is the SDU of its lower layer X-1 (i.e. (X)-PDU =
(X-1)-SDU).

PduInfoType This type refers to a structure used to store basic information to process the
transmission\reception of a PDU (or a SDU), namely an pointer to its payload in
RAM and the corresponding length (in bytes).

SDU In layered systems, this refers to a set of data that is sent by a user of the
services of a given layer, and is transmitted to a peer service user, whilst
remaining semantically unchanged.

Abbreviation: Description:

BS Block Size

Can CAN Driver module

CAN CF CAN Consecutive Frame N-PDU

CAN FC CAN Flow Control N-PDU

CAN FF CAN First Frame N-PDU

CAN SF CAN Single Frame N-PDU

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

11 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

Abbreviation: Description:

CanIf CAN Interface

CanTp CAN Transport Layer

CanTrcv CAN Transceiver module

CF See “CAN CF”

Com AUTOSAR COM module

Dcm Diagnostic Communication Manager module

DEM Diagnostic Event Manager

DET Development Error Tracer

DLC Data Length Code (part of CAN PDU that describes the SDU length)

FC See “CAN FC”

FF See “CAN FF”

FIM Function Inhibition Manager

Mtype Message Type (possible value: diagnostics, remote diagnostics)

N_AI Network Address Information (see ISO 15765-2).

N_Ar Time for transmission of the CAN frame (any N-PDU) on the receiver side (see
ISO 15765-2).

N_As Time for transmission of the CAN frame (any N-PDU) on the sender side (see
ISO 15765-2).

N_Br Time until transmission of the next flow control N-PDU (see ISO 15765-2).

N_Bs Time until reception of the next flow control N-PDU (see ISO 15765-2).

N_Cr Time until reception of the next consecutive frame N-PDU (see ISO 15765-2).

N_Cs Time until transmission of the next consecutive frame N-PDU (see ISO 15765-2).

N_Data Data information of the transport layer

N_PCI Protocol Control Information of the transport layer

N_SA Network Source Address (see ISO 15765-2).

N_TA Network Target Address (see ISO 15765-2).

N_TAtype Network Target Address type (see ISO 15765-2).

OBD On-Board Diagnostic

PDU Protocol Data Unit

PduR PDU Router

SDU Service Data Unit

The following table contains some of the concepts, which are useful in this work:

Definitions: Description:

Development
Error Tracer

The Development Error Tracer is merely a support to SW development and
integration and is not contained in the production code. The API is defined, but the
functionality can be chosen and implemented by the developer according to his
specific needs.

Diagnostic
Event Manager

The Diagnostic Event Manager is a standard AUTOSAR module which is available
in the production code and whose functionality is specified in the AUTOSAR
project.

Extended
addressing
format

A unique CAN identifier is assigned to each combination of N_SA, N_TAtype and
Mtype. N_TA is filed in the first data byte of the CAN frame data field. N_PCI and
N_Data are filed in the remaining bytes of the CAN frame data field.

Full-duplex Point-to-point communication between two nodes is possible in both directions at
any one time.

Function
Inhibition
Manager

The Function Inhibition Manager (FIM) stands for the evaluation and assignment of
events to the required actions for Software Components (e.g. inhibition of specific
“monitoring functions”). The DEM informs and updates the Function Inhibition
Manager (FIM) upon changes of the event status in order to stop or release
functional entities according to assigned dependencies. An interface to the
functional entities is defined and supported by the Mode Manager. The FIM is not
part of the DEM.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

12 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

Definitions: Description:

Functional
addressing

In the transport layer, functional addressing refers to N-SDU, of which parameter
N_TAtype (which is an extension to the N_TA parameter [13] used to encode the
communication model) has the value functional.
This means the N-SDU is used in 1 to n communications. Thus with the CAN
protocol, functional addressing will only be supported for Single Frame
communication.

In terms of application, functional addressing is used by the external (or internal)
tester if it does not know the physical address of an ECU that should respond to a
service request or if the functionality of the ECU is implemented as a distributed
server over several ECUs. When functional addressing is used, the communication
is a communication broadcast from the external tester to one or more ECUs (1 to n
communication).

Use cases are (for example) broadcasting messages, such as “ECUReset” or
“CommunicationControl”

OBD communication will always be performed as part of functional addressing.

Half-duplex Point-to-point communication between two nodes is only possible in one direction
at a time.

Multiple
connection

The CAN Transport Layer should manage several transport protocol
communication sessions at a time.

Normal
addressing
format

A unique CAN identifier is assigned to each combination of N_SA, N_TA,
N_TAtype and Mtype. N_PCI and
N_Data are filed in the CAN frame data field.

Physical
addressing

In the transport layer, physical addressing refers to N-SDU, of which parameter
N_TAtype (which is an extension of the N_TA parameter [13] used to encode the
communication model) has the value physical.
This means the N-SDU is used in 1 to 1 communication, thus physical addressing
will be supported for all types of network layer messages.

In terms of application, physical addressing is used by the external (or internal)
tester if it knows the physical address of an ECU that should respond to a service
request. When physical addressing is used, a point to point communication takes
place (1 to 1 communication).

Use cases are (for example) messages, such as “ReadDataByIdentifier” or
“InputOutputControlByIdentifier”

Single
connection

The CAN Transport Layer will only manage one transport protocol communication
session at a time.

Connection
channel

The CAN Transport Layer is handling resources used by multiple connections in
order to save RAM. When a connection becomes active, the channel that is used
by this connection will be unavailable for other connections.

Connection A transport protocol session, either is a transmission or a reception session on a N-
SDU.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

13 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules,
AUTOSAR_BasicSoftwareModules.pdf

[2] Layered Software Architecture,

AUTOSAR_LayeredSoftwareArchitecture.pdf

[3] General Requirements on Basic Software Modules,

AUTOSAR_SRS_General.pdf

[4] Specification of ECU Configuration,
AUTOSAR_ECU_Configuration.pdf

[5] Glossary
AUTOSAR_Glossary.pdf

[6] Requirements on CAN

AUTOSAR_SRS_CAN.pdf

[7] Specification of CAN Interface

AUTOSAR_SWS_CAN_Interface.pdf

[8] API Specification of Development Error Tracer

AUTOSAR_SWS_DET.pdf

[9] Specification of Function Inhibition Manager

AUTOSAR_SWS_FIM.pdf

[10] Specification of PDU Router

AUTOSAR_SWS_PDU_Router.pdf

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

14 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

[11] Specification of Diagnostic Event Manager (DEM)
AUTOSAR_SWS_DEM.pdf

[12] AUTOSAR Basic Software Module Description Template,
 AUTOSAR_BSW_Module_Description.pdf

3.2 Related standards and norms

[13] ISO 15765-2 (2004-10-12), Road vehicles — Diagnostics on Controller Area

Networks (CAN) — Part2: Network layer services

[14] ISO 15765-3 (2004-10-06), Road vehicles — Diagnostics on Controller Area

Networks (CAN) — Part3: Implementation of diagnostic services

[15] ISO 15765-4 (2005-01-04), Road vehicles — Diagnostics on Controller Area

Networks (CAN) — Part4: Requirements for emissions-related systems

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

15 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

4 Constraints and assumptions

4.1 Limitations

The AUTOSAR architecture defines communication system specific transport layers
(CanTp, LinTp including LinIf, FlexRayTp). Thus the CAN Transport Layer only
covers CAN transport protocol specifics.

The CAN Transport Layer has an interface to a single underlying CAN Interface
Layer and a single upper PDU Router module.

According to the AUTOSAR release plan, this CAN Transport Layer specification has
the following restriction:

- CAN Transport Layer runs only in an event triggered mode.

This CAN Transport Layer implementation supports half and full-duplex
communication; support for full-duplex communication is configurable on channel
base (see Chapter 10).

4.2 Applicability in automotive domain

The CAN Transport Layer can be used for all domains whenever the CAN
communication system is connected to the appropriate ECU.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

16 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

5 Dependencies on other modules

This section sets out relations between the CanTp and other AUTOSAR basic
software modules. It contains short descriptions of some AUTOSAR basic concepts,
configuration information and services, which are required by the CanTp from other
modules.

5.1 AUTOSAR architecture basic concepts

5.1.1 CAN Transport Layer connection(s)

In the AUTOSAR architecture final release, transport protocol facilities will be used to
transport both diagnostic (e.g. OBD and UDS protocols) and AUTOSAR COM I-
PDUs 1 . Therefore, the CanTp module is able to deal with multiple connections
simultaneously (i.e. multiple segmentation sessions in parallel).

The maximum number of simultaneous connections is statically configured. This
configuration has an important impact on complexity and resource consumption
(CPU, ROM and RAM) of the code generated, because resources (e.g. Rx and Tx
state machines, variables used to work on N-PCI data and so on) have to be
reserved for each simultaneous access.

To allow the user to choose which I-PDUs could be received (or sent)
simultaneously, each N-SDU identifier will be internally routed through a configured
CanTp “connection channel”. Since a “connection channel” is not accessible
externally, all necessary information (see chapter 10.2) to transfer an N-SDU will be
linked to the N-SDU identifier (e.g. “connection channel” number, timeouts,
addressing format, and so on).

5.1.2 CAN Transport Layer interactions

The figure below shows the interactions between CanTp, PduR and CanIf modules.

The CanTp’s upper interface offers the PduR module global access, to transmit and
receive data. This access is achieved by CAN N-SDU identifier (CAN NSduId). CAN
NSduId refers to a constant data structure which consists of attributes describing
CAN N-SDU. Each CAN N-SDU specific data structure may contain attributes such
as: type of N-SDU (Tx or Rx), its addressing format, L-SDU identifier of this message
or other attributes that are useful for implementation.

1
 Usage of CAN Transport Layer for AUTOSAR COM I-PDUs is planned for AUTOSAR Phase 2.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

17 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

Figure 2: CAN Transport Layer interactions

5.1.3 Processing mode

The AUTOSAR communication stack supports both polling and event triggering
mode. Therefore, each communication layer can receive information from its lower
layer and propagate information to its upper layer by different mechanisms.
In the case of the CAN Transport Layer, only the event triggering mode is supported.

5.1.4 Data consistency

To optimize the communication stack, AUTOSAR limits the CAN Transport Layer
buffering capacity. Therefore, the CanTp copies N-SDU payload directly from the
upper layer (e.g. DCM or PDU Router – in the case of 1:1 TP routing) to the CAN
driver and vice-versa. Thus to guarantee data consistency, the upper layer will
observe the following rules:

- At transmission time, the N-SDU data payload will remain unchanged, from
transmit request until transmit confirmation has been received

- At reception time, the N-SDU data access will be locked, from buffer allocation
request until the reception indication or the next buffer allocation request has
been received

5.1.5 Static configuration

At runtime the CAN Transport module must have all information required to manage
transport connection. Therefore, the following properties should be statically
configured:

 Number of CAN N-SDU
 Unique identifier of each CAN N-SDU
 Communication direction of each CAN N-SDU (Tx or Rx)
 Addressing type of each CAN N-SDU (physical or functional)

CanTp
N-PCI

N-PDU

CanIf

PduR

N-SDU

L-SDU

CanTp

CanIf

PduR

N-SDU

L-SDU

N-PDU N-PCI

N-PDU

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

18 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

 Addressing format of each connection (standard or extended) and, in the case
of extended addressing format, the N_TA value

 Associated CAN L-SDU identifier of each CAN N-SDU identifier and if
necessary (multiple frame segmentation session) the CAN L-SDU identifier
used to transmit the CAN FC N-PDU

The configuration of the CAN Transport Layer can be performed during compilation
or post-build (See chapter 10).

5.1.6 PDU Router services

The CAN Transport Layer declares and requests certain callback functions to confirm
transmission and notify reception of a message from/to the PDU-Router, and request
a buffer, to reassemble segmented frames:

 PduR_CanTpRxIndication
 PduR_CanTpProvideRxBuffer
 PduR_CanTpProvideTxBuffer
 PduR_CanTpTxConfirmation

For more information about these functions, refer to the PDU Router module
specification [10].

5.1.7 CAN Interface services

The CAN Transport Layer uses the following services of the CAN Interface to
transmit CAN N-PDUs:

 CanIf_Transmit

For more information about this function, refer to the CAN Interface module
specification [7].

5.2 File structure

5.2.1 Code file structure

CanTp159: The code file structure will not be completely defined within this
specification. At this point it should be noted, that the code-file structure should
include the following files:

- CanTp_Lcfg.c – for parameters configurable at link time
- CanTp_PBcfg.c – for parameters, which are configurable post-build.

These files will contain all link time and post-build configurable parameters.

5.2.2 Header file structure

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

19 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

AUTOSAR specifies that an ECU can be created from modules provided as object
code, source code (generated or not) and even mixed.
The decision to provide a module as object code or source code is based on a
compromise between IP protection, test coverage, code efficiency and configurability
at system generation time. Thus depending on the configurability requirements of the
OEM, suppliers may deliver the CanTp module as object code, generated code or
source code.

The header file structure defined in this section allows the separation of platform,
compiler and implementation specific definitions and declarations from general
definitions, as well as the separation of source code and configuration.

CanTp156: The CanTp module shall construct its include file structure as shown in
Figure 3.

includes

CanTp_Cbk.h

includes

ComStack_Types.h CanTp_Cfg.h

includes

Std_Types.h

includes

includes

Dem.h

includes

CanTp.h

Det.h

includes (if development error

detection is turned on)

includes Dem_IntErrId.h
(Event Id Symbols)

CanTp.c

includes

includes

SchM_CanTp.h MemMap.h

Figure 3: File Structure

Global data types and functions that are only used internally by the CAN Transport
Protocol, are given in CanTp.c

CanTp219: CanTp.c shall include CanTp.h.

CanTp157: The file CanTp.h shall only contain 'external' declarations of constants,
global data, type definitions and services that are specified in the CAN Transport
Protocol SWS.

CanTp001: CanTp_Cfg.h shall define constant and customizable data for module

configuration at pre-compile time.

CanTp221: CanTp.h shall include CanTp_Cfg.h.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

20 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

CanTp165: BSW scheduler information is included via SchM_CanTp.h.

CanTp160: References to C-configuration parameters (link time and post-build time)
will be placed in a separate h-file. The h-file should be the same as pre-compilation
parameters.

CanTp024: Each header and C file of the CanTp module shall provide the possibility
of version identification of the CAN Transport module by
CANTP_MAJOR_VERSION, CANTP_MINOR_VERSION and
CANTP_PATCH_VERSION.

Version number macros can then be used for checking and reading out the software
version of a software module, during compile-time and run-time.

The module could include the Dem.h file. By this inclusion the APIs to report errors
as well as the required Event Id symbols are included.
Although this specification does not define any production errors, the eventually
name of the Event Id symbols are provided by XML to the DEM configuration tool.
The DEM configuration tool assigns ECU dependent values to the Event Id symbols
and publishes the symbols in Dem_IntErrId.h.

5.2.3 Design Rules

CanTp150: The CanTp module’s source (as long as it is written in C) shall conform
to the HIS subset of the MISRA C Standard.

CanTp151: The CanTp module’s source shall not use compiler and platform specific
keywords

CanTp152: The CanTp module’s source shall indicate all global data with read-only

properties by explicitly assigning the keyword const.

CanTp153: The CanTp module may use macros (instead of functions) where source
code is used and runtime is critical.

CanTp155: The CanTp module shall not define global data in header files (If global
variables have to be used, the definition should take place in the C file)

CanTp158: The CanTp module’s source shall not be processor and compiler
dependent.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

21 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

6 Requirements traceability

Document: General Requirements on Basic Software Modules [3]

Functional general requirements

Requirement Satisfied by
[BSW00344] Reference to link-time configuration Not applicable

(This module does not use Link Time
configuration parameters)

[BSW00404] Reference to post build time
configuration

Not applicable
(requirement on implementation, not on
specification)

[BSW00405] Reference to multiple configuration
sets

Not applicable
(This module does not use multiple configuration
sets)

[BSW00345] Pre-Build Configuration CanTp001 chapter 10

[BSW159] Tool-based configuration CanTp146

[BSW167] Static configuration checking CanTp147

[BSW171] Configurability of optional functionality chapter 10

[BSW170] Data for reconfiguration of SW-
components

Not applicable.
(Requirement on SWC module)

[BSW380] Separate C-File For configuration
parameters

CanTp159

[BSW00419] Separate C-Files for pre-compile
time configuration parameters

Not applicable
(No “const” pre-compile time parameter)

[BSW381] Separate configuration header file for
pre-compile time parameters

CanTp001

[BSW412] Separate H-File for configuration
parameters

CanTp156

[BSW382] Not-used configuration elements need
to be listed

Not applicable
(there are no not-used configuration elements for
this module)

[BSW383] List dependencies of configuration files Not applicable
(this module does not use configuration files from
other modules)

[BSW384] List dependencies to other modules Fulfilled by chapter 5

[BSW385] List possible error notifications CanTp101

[BSW386] Configuration for detecting an error CanTp101

[BSW387] Specify the configuration class of
callback function

Fulfilled by chapter 8.4

[BSW388] Introduce containers Fulfilled by configuration chapter 10

[BSW389] Containers shall have names Fulfilled by configuration chapter 10

[BSW390] Parameter content shall be unique
within the module

Fulfilled by configuration chapter 10

[BSW391] Parameter shall have unique names Fulfilled by configuration chapter 10

[BSW392] Parameters shall have a type Fulfilled by configuration chapter 10

[BSW393] Parameters shall have a range Fulfilled by configuration chapter 10

[BSW394] Specify the scope of the parameters Fulfilled by configuration chapter 10

[BSW395] List the required parameters (per
parameter)

Fulfilled by configuration chapter 10

[BSW396] Configuration classes Fulfilled by configuration chapter 10

[BSW397] Pre-compile-time parameters Not applicable
(definition)

[BSW398] Link-time parameters Not applicable
(definition)

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

22 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

[BSW399] Loadable Post-build time parameters Not applicable
(definition)

[BSW400] Selectable Post-build time parameters Not applicable
(definition)

[BSW402] Published information CanTp140

[BSW00375] Notification of wake-up reason Not applicable
(this module does not provide any reason for
wake-up)

[BSW101] Initialization interface CanTp208

[BSW00416] Sequence of Initialization Not applicable
(requirement on system design, not on a single
module)

[BSW406] Check module initialization CanTp161

[BSW168] Diagnostic Interface of SW
components

Not applicable
(this module does not support a special diagnostic
interface)

[BSW407] Function to read out published
parameters

CanTp162 CanTp163

[BSW00423] Usage of SW-C template to describe
BSW modules with AUTOSAR Interfaces

Not applicable.
(This module has no interface with RTE)

[BSW00424] BSW main processing function task
allocation

CanTp164

[BSW00425] Trigger conditions for schedulable
objects

Not covered. New template needed

[BSW00426] Exclusive areas in BSW modules Not covered. New template needed

[BSW00427] ISR description for BSW modules Not applicable.
(this module does not provide any ISRs)

[BSW00428] Execution order dependencies of
main processing functions

Not applicable.
(This module has only 1 MainFunction)

[BSW00429] Restricted BSW OS functionality
access

Not applicable
(this module doesn’t use any OS objects or
services)

[BSW00431] The BSW Scheduler module
implements task bodies

Not applicable
(requirement on the BSW scheduler module)

[BSW00432] Modules should have separate main
processing functions for read/receive and
write/transmit data path

Not applicable.
(Mainfunction is used to manage time)

[BSW00433] Calling of main processing functions Not applicable
(requirement on the BSW scheduler module)

[BSW00434] The Schedule Module shall provide
an API for exclusive areas

Not applicable
(requirement on the BSW scheduler module)

[BSW00336] Shutdown interface CanTp010

[BSW00337] Classification of errors CanTp101

[BSW00338] Detection and Reporting of
development errors

[BSW00369] Do not return development error
codes via API

CanTp021

[BSW00339] Reporting of production relevant
errors and exceptions

Not applicable (no production errors)

[BSW00421] Reporting of production relevant
error events

Not applicable (no production errors)

[BSW00422] Debouncing of production relevant
error status

Not applicable
(DEM requirement)

[BSW00420] Production relevant error event rate
detection

Not applicable
(DEM requirement)

[BSW00417] Reporting of Error Events by Non-
Basic Software

Not applicable
(This module is a BSW module)

[BSW00323] API parameter checking CanTp132

[BSW004] Version check CanTp024 CanTp140

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

23 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

[BSW00435] Header File Structure for the Basic

Software Scheduler

CanTp156

[BSW00436] Module Header File Structure for the
Basic Software Memory Mapping

CanTp156

Non-functional general requirements

Software Architecture Requirements

Requirement Satisfied by
[BSW161] Microcontroller abstraction Not applicable

(requirement on AUTOSAR architecture, not a
single module)

[BSW162] ECU layout abstraction Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[BSW00324] Do not use HIS Library Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[BSW005] No hard coded horizontal interfaces
within MCAL

See paragraph 5.1.6 & 5.1.7

[BSW00415] User dependent include files Not applicable
(no interface for specifics)

[BSW166] BSW Module interfaces See paragraph 5.2

Software Integration Requirements

Requirement Satisfied by
[BSW164] Implementation of interrupt service
routines

Fulfilled by API definitions in chapter 8

[BSW00325] Runtime of interrupt service
routines

Not applicable
(this module does not provide any ISRs)

[BSW00326] Transition from ISRs to OS tasks Not applicable
(this module does not provide any ISRs)

[BSW00342] Usage of source code and object
code

Not applicable
(requirement on implementation, not on
specification)

[BSW00343] Specification and configuration of
time

Fulfilled by configuration chapter 10

[BSW160] Human-readable configuration data Fulfilled by configuration chapter 10

Software Module Design Requirements
Software quality

Requirement Satisfied by
[BSW007] HIS MISRA C CanTp150

Naming conventions

Requirement Satisfied by
[BSW00300] Module naming convention Fulfilled by API definitions in chapter 8

[BSW00413] Accessing instances of BSW
modules

Not applicable.
(Only 1 instance of CanTp allowed)

[BSW00347] Naming separation of different
instances of BSW drivers

Not applicable.
(For driver only.)

[BSW00347] Naming separation of drivers Not applicable
(For driver only.)

[BSW00305] Self-defined data types naming
convention

Fulfilled by type definitions in chapter 8

[BSW00307] Global variables naming convention Not applicable
(no global variables are specified for this module)

[BSW00310] API naming convention CanTp003

[BSW00373] Main processing function naming
convention

CanTp164

[BSW00327] Error values naming convention CanTp101

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

24 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

[BSW00335] Status values naming convention Fulfilled by API definitions in chapter 8

[BSW00350] Development error detection
keyword

CanTp006

[BSW00408] Configuration parameter naming
convention

Fulfilled by configuration chapter 10

[BSW00410] Compiler switches shall have
defined values

Fulfilled by configuration chapter 10

[BSW00411] Get version info keyword Fulfilled by configuration chapter 10

Module file structure

Requirement Satisfied by
[BSW00346] Basic set of module files CanTp156

[BSW158] Separation of configuration from
implementation

CanTp156 CanTp001

[BSW00314] Separation of interrupt frames and
service routines

Not applicable
(this module does not provide any ISRs)

[BSW00370] Separation of callback interface
from API

CanTp156

Standard header files

Requirement Satisfied by
[BSW00348] Standard type header See Section 8.1

[BSW00353] Platform specific type header CanTp002

[BSW00361] Compiler specific language
extension header

Not applicable
(requirement on implementation, not on
specification)

Module Design

Requirement Satisfied by
[BSW00301] Limit imported information CanTp156

[BSW00302] Limit exported information CanTp157

[BSW00328] Avoid duplication of code Not applicable
(requirement on implementation, not on
specification)

[BSW00312] Shared code shall be reentrant Fulfilled by API definitions in chapter 8

[BSW006] Platform independency CanTp158

Types and keywords

Requirement Satisfied by
[BSW00357] Standard API return type Fulfilled by API definitions in chapter 8

[BSW00377] Module Specific API return type Fulfilled by API definitions in chapter 8

[BSW00304] AUTOSAR integer data types Fulfilled by API definitions in chapter 8

[BSW00355] Do not redefine AUTOSAR integer
data types

Fulfilled by API definitions in chapter 8

[BSW00378] AUTOSAR Boolean type Not applicable (Not used)

[BSW00306] Avoid direct use of compiler and
platform specific keywords

CanTp151

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

25 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

Global data

Requirement Satisfied by
[BSW00308] Definition of global data CanTp155

[BSW00309] Global data with read-only
constraint

CanTp152

Interface and API

Requirement Satisfied by
[BSW00371] Do not pass function pointers via
API

Fulfilled by API definitions in chapter 8

[BSW00358] Return type of init() functions CanTp208

[BSW00414] Parameter of init function CanTp208

[BSW00376] Return type and parameters of
main processing functions

CanTp164

[BSW00359] Return type of callback functions Fulfilled by API definitions in chapter 8

[BSW00360] Parameters of callback functions Fulfilled by API definitions in chapter 8

[BSW00329] Avoidance of generic interfaces Fulfilled by API definitions in chapter 8

[BSW00330] Usage of macros instead of
functions

CanTp153

[BSW00331] Separation of error and status
values

Chapter 7.1.1 and CanTp101

Software Documentation Requirements

Requirement Satisfied by
[BSW009] Module User Documentation Fulfilled by the whole document

[BSW00401] Documentation of multiple
instances of configuration parameters

Fulfilled by configuration chapter 10

[BSW172] Compatibility and documentation of
scheduling strategy

Not applicable.
(There is no scheduler in the CAN TP)

BSW010] Memory resource documentation Not applicable.
(requirement on implementation, not on
specification)

[BSW00333] Documentation of callback function
context

Fulfilled by API definitions in chapter 8

[BSW00374] Module vendor identification CanTp140

[BSW00379] Module identification CanTp140

[BSW003] Version identification CanTp024 CanTp140

[BSW00318] Format of module version

[BSW00321] Enumeration of module version
numbers

Not applicable.
(requirement on implementation, not on
specification)

[BSW00341] Microcontroller compatibility
documentation

Not applicable.
(requirement on implementation, not on
specification)

[BSW00334] Provision of XML file Not applicable.
(requirement on implementation, not on
specification)

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

26 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

Document: AUTOSAR requirements on Basic Software, cluster CAN

Requirement Satisfied by
[BSW01065]
Usage of ISO 15765-2 specifications

CanTp033

[BSW01065]
Usage of ISO 15765-4 specifications

See Section 7

[BSW01066]
Concurrent connection configuration

CanTp096 CanTp120 CanTp121 CanTp122
CanTp123 CanTp124

[BSW01068]
Unique identifier of N-SDU

CanTp035

[BSW01069]
CAN address information and N-SDU identifier
mapping

CanTp035

[BSW01071]
Unique identifier of N-PDU

CanTp035

[BSW01073]
Fixed N-PDU data length

CanTp116

[BSW01074]
Transport connection properties

CanTp137 CanTp138

[BSW01075]
CAN Transport Layer Initialization

CanTp170, CanTp030

[BSW01076]
CAN Transport Layer Availability

CanTp031

[BSW01078]
Support a subset of ISO 15765-2 addressing
modes formats

CanTp035 CanTp137 CanTp138

[BSW01079]
Compliance with CAN Interface notifications

CanTp019 CanTp020

[BSW01081]
Connection specific timeout values

CanTp137 CanTp138

[BSW01082]
Error handling

CanTp057

[BSW01086]
Data value of unused bytes

CanTp059

[BSW01111]
CAN Transport Layer Interfaces

This requirement is a specification recommendation
fulfilled by chapter 8

[BSW01112]
Independent interface

This requirement is a specification recommendation
fulfilled by chapter 8

[BSW01116]
Usage of different addressing modes formats in
parallel

CanTp137 CanTp138 CanTp139

[BSW01117]
Only half-duplex communication is supported

CanTp057

[BSW01149]
Support of full-duplex communication

Chapter 4.1, CanTp057

[BSW01150]
Selection of half/ full-duplex communication by
configuration

CanTp289

[BSW01120]
Multiple CAN Transport Layer instances

Multiple connections supported and therefore only
one instance required.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

27 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

7 Functional specification

This section provides a description of the CAN Transport Layer functionality. It
explains the services provided to the upper and lower layers and the internal
behavior of the CAN Transport Layer.

The CanTp module offers services for segmentation, transmission with flow control,
and reassembly of messages. Its main purpose is to transmit and receive messages
that may or may not fit into a single CAN frame. Messages that do not fit into a single
CAN frame are segmented into multiple parts, such that each can be transmitted in a
single CAN frame.

While reading this document, it is necessary to bear in mind, that this module will
follow the recommendations ISO 15765-2 (OEM enhanced diagnostics [13]) and
should be able to fulfill ISO 15765-4 (Requirements for emissions-related systems
[15]).

CanTp033: If a recommendation of ISO 15765-2 is not explicitly excluded in the
SWS, the CanTp module shall follow this recommendation.

For further descriptions of SF, FF, CF and FC frames, network layer timing
parameters, and further functionalities of CAN Transport Layer please refer to the
ISO 15765-2 specification [13].

ISO 15765-4 is a particular case of ISO-15765-2. Therefore, the CAN Transport
Layer will be configurable, in order to be able to adapt the module to all ISO 15765-4
use cases (e.g. specific timing, padding configuration, addressing mode). See
chapter 10, Configuration specification, for details.

7.1 Services provided to upper layer

The service interface of the CanTp module can be divided into the following main
categories:

 Initialization and shutdown
 Communication services

The following paragraphs describe the functionality of each services category.

7.1.1 Initialization and shutdown

CanTp027: The CanTp module shall have two internal states, CANTP_OFF and

CANTP_ON.

CanTp168: The CanTp module shall be in the CANTP_OFF state after power up.

CanTp169: In the state CANTP_OFF, the CanTp shall allow an update of the

postbuild configuration.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

28 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

CanTp170: The CanTp module shall change to the internal state CANTP_ON when

the CanTp has been successfully initialized with CanTp_Init().

CanTp238: The CanTp module shall performed segmentation and reassembly tasks

only when the CanTp is in the CANTP_ON state.

CanTp030: The function CanTp_Init shall initialize all global variables of the

module and sets all transport protocol connections in a sub-state of CANTP_ON, in

which neither segmented transmission nor segmented reception are in progress (Rx

thread in state CANTP_RX_WAIT and Tx thread in state CANTP_TX_WAIT).

The COM Manager module should call the function CanTp_Init()before using the

CanTp functionalities.

CanTp031: If development error detection for the CanTp module is enabled: The
CanTp module shall raise an error (CANTP_E_UNINIT) when the PDU Router or
CAN Interface tries to use any function (except CanTp_GetVersionInfo) before the

function CanTp_Init has been called.

CanTp111: If called when the CanTp module is in the global state CANTP_ON, the

function CanTp_Init shall return the module to state Idle (state = CANTP_ON, but

neither transmission nor reception are in progress) and the module shall loose all

current connections.

CanTp010: The function CanTp_Shutdown shall stop the CanTp module properly.

The COM Manager module shall call the function CanTp_Shutdown().

The following figure summarizes all of the above requirements:

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

29 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

stm CanTp Life Cycle

CANTP_ON

[Rx Connection Channel]

[Tx Connection Channel]

[Other Connection Channel]

Init

Init

CANTP_RX_WAIT CANTP_RX_PROCESSING

CANTP_TX_WAIT CANTP_TX_PROCESSING

CANTP_OFF

- Based on the same substates: CANTP_Xx_WAIT and CANTP_Xx_PROCESSING,

- Based on the same transitions: Receive/transmit and no more N-PDU.

Receive N-PDU

CanTp_Init ()

[without error]

CanTp_Init ()
[no more N-PDU expected]

CanTp_Shutdown()

CanTp_Init ()

[with error]

CanTp_Shutdown ()

PowerUp

PowerDown

PowerDown

Transmit N-SDU

[no more N-SDU to transmit]

Figure 4: CAN Transport Layer life cycle

7.1.2 Transmit request

The transmit operation, CanTp_Transmit(), will allow upper layers to ask for data
transfer using CAN transport protocol facilities (segmentation, extended addressing
format and so on).

CanTp176: The function CanTp_Transmit() shall be asynchronous.

CanTp177: The CanTp module shall notify its upper layer if the N-SDU transfer is
fully processed (successfully or not).

CanTp072: The function CanTp_Transmit() shall reject the transmit request and
return the status value E_NOT_OK if there is no hardware resource available.

7.1.3 Transmit cancellation

The transmit cancellation feature allows the upper layer to cancel a transmission in
progress.

Use case: Cancel a diagnostic transmission due to the reception of another
diagnostic protocol with higher priority.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

30 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

CanTp242: This feature shall be (de)activated by static configuration (parameter
CanTpTc). Transmit Cancellation is triggered by the call of CanTp_CancelTransmit().

CanTp243: After the call of the service CanTp_CancelTransmit(), the transfer on this
connection shall be aborted. When the API function returns no transmission is in
progress anymore.

Note that if a transfer is in progress, that will generate a time-out error on the receiver
side.

7.2 Services provided to the lower layer

According to the AUTOSAR specification of the communication stack, the CAN
Transport Layer provides the following two callback functions to the Can interface:

CanTp_TxConfirmation() and CanTp_RxIndication().

7.2.1 Transmit confirmation

CanTp074: The CanIf module shall call the transmit confirmation function to notify
the CAN Transport Layer that a CAN frame transmission, requested by the CanTp,
has been performed successfully. The L-PDU identifier is associated with the call in
order to identify the corresponding transmission.

CanTp075: If the transmit confirmation is not received after a maximum time (equal
to N_As), the CanTp module shall act as if it had received an unsuccessful
transmission confirmation and any late confirmation shall be ignored. The CanTp
module shall cancel (internally) the failed transmission.

CanTp076: For confirmation calls, the CanTp module shall provide the function

CanTp_TxConfirmation().

7.2.2 Reception indication

CanTp077: The CanIf module shall call the reception indication function to notify the
CanTp module that a new CAN N-PDU frame (i.e. a transport protocol frame) has
been received.

The reception indication can be performed in ISR context according to CanIf
configuration.

CanTp078: For reception indication, the CanTp module shall provide

CanTp_RxIndication().

7.3 Internal behavior

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

31 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

The internal operation of the CAN Transport Layer provides basic mechanisms in
order to perform the main purpose of this module, which is to transfer diagnostic
messages in a single CAN frame or in multiple CAN frames.

The entire behavior of the CAN Transport Layer will be event triggered, so that
CanTp can processes transfer of N-SDU (respectively L-SDU) coming from the PDU
Router (respectively CAN Interface) directly.

7.3.1 N-SDU Reception

To optimize communication stack resources, it has been decided to provide the CAN
Transport Layer with limited buffering capacity.

CanTp079: When receiving an SF or an FF N-PDU, the CanTp module shall notify
the upper layer (PDU Router) about this reception and request an Rx buffer to
process the frame reassembly. These two operations shall be performed using the

PduR_CanTpProvideRxBuffer() function.

CanTp080: The Rx buffer provided can be smaller than the expected N-SDU data
length. In this case, when all blocks (defined by BS) that fit into the current buffer
have been received, the CanTp module shall request another buffer by calling the

PduR_CanTpProvideRxBuffer() service again.

To avoid confusion, it should be clarified that the expression “request a buffer” is not
related to dynamic memory allocation. This expression simply means the upper layer
makes a part of its internal buffer available to the CAN Transport Layer (i.e. the Rx

buffer is locked until CanTp calls either PduR_CanTpRxIndication() or

PduR_CanTpProvideRxBuffer()).

If the upper layer cannot provide a buffer because of an error (e.g. in the gateway
case it may indicate that the transport session to the destination network has been
broken) or a resource limitation (e.g. N-SDU length exceeds the maximum buffer size

of the upper layer), the PduR_CanTpProvideRxBuffer() function returns

BUFREQ_E_NOT_OK or BUFREQ_E_OVFL.

CanTp081: After the reception of a First Frame, if the function

PduR_CanTpProvideRxBuffer returns BUFREQ_E_NOT_OK to the CanTp module,

the CanTp module shall abort the N-SDU reception. No Flow Control will be sent in
this case.

CanTp326: After the reception of a First Frame, if the function

PduR_CanTpProvideRxBuffer returns BUFREQ_E_OVFL to the CanTp module,

the CanTp module shall send a Flow Control N-PDU with overflow status
(FC(OVFLW)) and abort the N-SDU reception. If the error occurs after a Consecutive
Frame reception, the Flow Control frame shall not be sent.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

32 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

CanTp327: PduR_CanTpRxIndication() will not be called when the first

PduR_CanTpProvideRxBuffer() returns either BUFREQ_E_NOT_OK or

BUFREQ_E_OVFL.

CanTp315: If the function PduR_CanTpProvideRxBuffer() returns BUFREQ_OK

to the CanTp module for the first call to this function after reception of a FF/SF, the
CanTp shall copy the data of the SF/FF to the buffer, and call

PduR_CanTpProvideRxBuffer() again.

CanTp330: If the function PduR_CanTpProvideRxBuffer() returns BUFREQ_OK

to the CanTp module for the first call to this function after reception of a FF/SF but
does not provide sufficient buffer for the CanTp to copy the data of the SF/FF, the
CanTp module shall abort the N-SDU reception. No Flow Control will be sent in this
case.

CanTp329: If the function PduR_CanTpProvideRxBuffer() returns another value

than BUFREQ_OK, BUFREQ_E_NOT_OK or BUFREQ_E_OVFL, the CanTp module shall

abort the reception. If the development error detection is enabled, a development

error CANTP_E_INVALID_BUFREQ shall be triggered.

CanTp316: After reception of the last CF of the last block that fits completely into the

provided buffer, CanTp shall call PduR_CanTpProvideRxBuffer() again.

CanTp317: In every call to PduR_CanTpProvideRxBuffer() following the first

call after reception of a FF/SF, the CanTp shall use the parameter PduInfoPtr-
>SduLength to report the number of bytes actually copied to the last provided buffer.

CanTp082: If the buffer provided by the function

PduR_CanTpProvideRxBuffer() to the CanTp module is insufficient for the next

block, the CanTp module shall start a time-out N_Br, suspend the N-SDU reception,

and call PduR_CanTpProvideRxBuffer() repeatedly from its MainFunction until

N_Br expires or the buffer length is sufficient for the next block.

CanTp222: Before expiration of the N_Br timer (ISO 15765-2 specification defines
the following performance requirement: (N_Br+N_Ar) < 0.9*N_Bs timeout), the
CanTp module shall send a FC(WAIT).

CanTp223: The CanTp module shall send a maximum of WFTmax consecutive
FC(WAIT) N-PDU. If this number is reached, the CanTp module shall abort the
reception of this N-SDU (the receiver did not send any FC N-PDU, so the N_Bs timer
expires on the sender side and then the transmission is aborted) and a receiving
indication with NTFRSLT_E_NOT_OK occurs.

CanTp224: When the Rx buffer is finally provided, the CanTp module shall send a
Flow Control N-PDU with ClearToSend status (FC(CTS)) and shall carry on the
reception of the Consecutive Frame N-PDUs.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

33 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

CanTp084: When the transport reception session is completed (successfully or not)
the CanTp module shall call the upper layer notification service

PduR_CanTpRxIndication().

With regard to FF N-PDU reception, the content of the Flow Control N-PDU depends

on the PduR_CanTpProvideRxBuffer() service result.

CanTp064: Furthermore, it should be noted that when receiving a FF N-PDU, the
Flow Control shall only be sent after having the result of the

PduR_CanTpProvideRxBuffer() service.

It is important to note that FC N-PDU will only be sent after every block, composed of
a number BS (Block Size) of consecutive frames.

The BS value sent depends on the configuration parameter CanTpStaticBlockSize.

CanTp301: If the configuration parameter CanTpStaticBlockSize is set TRUE then
the CanTp module shall use the same value for BS during the entire segmented
reception. The BS will be calculated based on the result of the first call of

PduR_CanTpProvideRxBuffer() service.

CanTp067: If the configuration parameter CanTpStaticBlockSize is set FALSE then
CanTp could change the BS value during a segmented reception. If the Rx buffer
provided is smaller than the entire N-SDU data length and its length is not a multiple
of BS*7 (or BS*6 in case of extended addressing format), the CanTp module shall
temporarily change the BS value to fill up the buffer reception completely. The
desired behavior is described in the following picture:

Figure 5: Management of the BS value

CanTp318: CanTp shall terminate the current reception connection when

CanIf_Transmit() returns E_NOT_OK when transmitting an FC.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

34 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

7.3.2 N-SDU Transmission

As described in chapter 7.1.2, the upper layer asks for the transmission of a N-SDU

by calling CanTp_Transmit(). The parameters of CanTp_Transmit()describe

the CAN NSduId and a reference to a PduInfoType that indicates the full Tx N-SDU
length given.

CanTp225: The function CanTp_Transmit shall only use the SduLength information
within the PduInfoType parameter and shall not use the pointer to the payload N-
SDU data.

CanTp226: After a transmission request from the upper layer, the CanTp module

shall call PduR_CanTpProvideTxBuffer() at least once to request the necessary

transmit data.

In the gateway case, the first call of PduR_CanTpProvideTxBuffer() will only

provide the FF data, while the following calls of PduR_CanTpProvideTxBuffer()

will always provide a complete block of data.

CanTp167: After a transmission request from upper layer, the CanTp module shall
start time-out N_Cs before requesting Tx data. If data has not been provided before
the timer elapsed, the CanTp module shall abort the communication.

The Tx data length provided can be smaller than the full Tx N-SDU data length.

CanTp086: If the data provided to the CanTp module is smaller than the full Tx N-
SDU data and when the entire data provided has been sent, the CanTp module shall

request data again by calling the function PduR_CanTpProvideTxBuffer().

CanTp117: If the data provided cannot be sent completely, the CanTp layer shall
request new data from the upper layer and shall store the remaining bytes that have
not been sent yet.

If the upper layer cannot provide data because of an error (e.g. in the gateway case it
may indicate that the transport session to the source network has been broken), the

PduR_CanTpProvideTxBuffer() function returns BUFREQ_E_NOT_OK.

CanTp087: If PduR_CanTpProvideTxBuffer() returns BUFREQ_E_NOT_OK, the

CanTp module shall abort the transmit request and notify the upper layer of this

failure by calling the callback function PduR_CanTpTxConfirmation() with the

result NTFRSLT_E_NOT_OK.

If upper layer temporarily has no data available, the

PduR_CanTpProvideTxBuffer() function returns BUFREQ_E_BUSY.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

35 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

CanTp184: If the PduR_CanTpProvideTxBuffer() function returns

BUFREQ_E_BUSY, the CanTp module shall later (implementation specific) retry to

receive data for transmission.

CanTp185: If no data is provided before the expiration of the N_Cs timer (ISO
15765-2 specification defines the following performance requirement: (N_Cs+N_As)
< 0.9*N_Cr timeout), the CanTp module shall abort this transmission session and
notify the upper layer of this failure by calling the callback function

PduR_CanTpTxConfirmation with the result NTFRSLT_E_NOT_OK.

The API PduR_CanTpProvideTxBuffer() contains a parameter length used for

the recovery mechanism. Because ISO 15765-2 does not support such a
mechanism, the CAN Transport Layer does not implement any kind of recovery.
Thus, the length parameter is always set to zero (0) and upper layers can return data
with any length.

CanTp186: The CanTp module shall set the length parameter in the call to

PduR_CanTpProvideTxBuffer to zero (0).

CanTp089: When the Tx data is provided, the CanTp module shall resume the
transmission of the N-SDU.

CanTp090: When the transport transmission session is successfully completed, the
CanTp module shall call a notification service of the upper layer,

PduR_CanTpTxConfirmation(), with the result NTFRSLT_OK.

CanTp319: CanTp shall terminate the current transmission connection when

CanIf_Transmit() returns E_NOT_OK when transmitting an SF, FF, or CF.

7.3.3 Buffer strategy

Because CanTp has limited buffering capability, the N-SDU payload, which is to be
transmitted, is not copied internally and the N-PDU received is not reassembled
internally.

The CAN Transport Layer works directly on the memory area of the upper layers
(e.g. PduR, DCM, or COM). To access these memory areas, the CAN Transport

Layer uses the indicator returned by the PduR_CanTpProvideTxBuffer() or

PduR_CanTpProvideRxBuffer() functions.

Thus, to guarantee data consistency, the upper layer should lock this memory area
until an indication occurs.
When a transmit buffer is locked, the upper layer must not write data inside the buffer
area.
When a receiving buffer is locked the CAN Transport Layer does not guarantee data
consistency of the buffer. The upper layer should neither read nor write data in the
buffer area.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

36 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

sm Buffer lock

LOCK

UNLOCK

PduR_CanTpProvideTxBuffer

return = BUFREQ_OK

call of PduR_CanTpProvideTxBuffer

 OR

call of PduR_CanTpTxConfirmation

LOCK

UNLOCK

PduR_CanTpProvideRxBuffer

return = BUFREQ_OK

call of PduR_CanTpProvideRxBuffer

 OR

 call of PduR_CanTpRxIndication

Transmit Buffer Receiving Buffer

Figure 6: Tx and Rx Buffer locking

The PduR module will lock the buffer when it returns a status BUFREQ_OK to a

PduR_CanTpProvideTxBuffer() or PduR_CanTpProvideRxBuffer() call

and will keep the buffer locked until the CAN transport Layer requests a new buffer

(PduR_CanTpProvideTxBuffer() or PduR_CanTpProvideRxBuffer() call) or

when a confirmation or indication (PduR_CanTpTxConfirmation() or

PduR_CanTpRxIndication() call) occurs.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

37 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

The following figure provides an example, to summarize the process of sending a
frame, with a length of 50 bytes and two sub-buffers of 25 bytes.

Figure 7: Example of transmit process

No sending, waiting for data

0 0 CF / 2 bytes

2 2 CF / 7 bytes

9 9 CF / 7 bytes

16 16 CF / 7 bytes

23 23 CF / 7 bytes

5 30 CF / 7 bytes

12 37 CF / 7 bytes

19 44 FF / 6 bytes

in the
provided

buffer
in the SDU

Remaining bytes
curent frame
and length

No sending, waiting for data

0 0 CF / 2 bytes

2 2 CF / 7 bytes

9 9 CF / 7 bytes

16 16 CF / 7 bytes

23 23 CF / 7 bytes

5 30 CF / 7 bytes

12 37 CF / 7 bytes

19 44 FF / 6 bytes

in the
provided

buffer
in the SDU

Remaining bytes
current frame
and length

*(buf, length=25)

Store the 5 remainig
bytes, and request a
new buffer

Use the 5 stored
bytes, then complete
the frame with bytes
from the new buffer

Start sending data.

*(buf, length=25)

N_Cs

PduR

1

CanTp

PduR_CanTpProvideTxBuffer (id, *(*(buf,
length)), 0)

CanTp_Transmit (id, *(data, length=50))

PduR_CanTpProvideTxBuffer (id, *(*(buf,
length)), 0)

2

3

4

5

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

38 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

1: The PduR asks for the transmission of 50 data bytes.
2: The CanTp asks the PduR for the data. The PduR provides 25 bytes of data (by
conception in this example, it is not able to provide 50 bytes of data directly).
3: The CanTp starts the transmission of the payload data. After the second
consecutive frame transmission, there are still 5 data bytes available in the buffer. As
a consecutive frame will contain 7 data bytes, the CanTp should request new data
from the PduR, in order to have enough data to send. Therefore, it should store the 5
data bytes available and afterwards request the buffer.
4: The CanTp asks the PduR for the data. The PduR provides 25 bytes of data.
5: The CanTp continues the transmission of the payload data.

This figure shows the necessity for CAN Transport Layer to use a local buffer to store
some data before requesting for more data.
The new data should be provided before the N_Cs timer expires. To extend this
timing constraint, the CAN Transport Layer could use a larger internal buffer and

request the next data (PduR_CanTpProvideTxBuffer()) before the current data

is transmitted (or not sufficient to transmit a complete consecutive frame).

The next figure is an example of an N-SDU receiving 49 bytes, with two buffers of 25
bytes provided.

PduR_CanTpProvideRxBuffer (id,
length=49, *(*(buf, length)))

0 22 CF / 7 bytes

No receiving, waiting for available buffer.

1 0 CF / 2 bytes

2 1 CF / 7 bytes

9 8 CF / 7 bytes

16 15 CF / 7 bytes

5 29 CF / 7 bytes

12 36 CF / 7 bytes

19 43 FF / 6 bytes

in the
provided

buffer
in the SDU

Remaining bytes
received

frame and
length

0 22 CF / 7 bytes

No receiving, waiting for available buffer.

1 0 CF / 2 bytes

2 1 CF / 7 bytes

9 8 CF / 7 bytes

16 15 CF / 7 bytes

5 29 CF / 7 bytes

12 36 CF / 7 bytes

19 43 FF / 6 bytes

in the
provided

buffer
in the SDU

Remaining bytes
received

frame and
length

2 bytes have to be
stored in a local
buffer.

Copy the 2 stored bytes
in the new buffer, then
compute the next BS.
Free bytes in the buffer: 23
Bytes remaining in SDU: 22
 BS = 4 (or 0)

Compute the next BS.
Free bytes in the buffer: 25
Bytes remaining in SDU: 43
 BS = 3 (maximum)

PduR_CanTpProvideRxBuffer (id,
length=49, *(*(buf, length)))

3 3

4 4
…

x FlowControl, CTS with BS=x

FlowControl, Wait

*(buf, length=25)

*(buf, length=25)

PduR_CanTpRxIndication (id, OK) PduR_CanTpRxIndication (id, OK)
The last byte(s) of
the last buffer
is(are) not used.

CanTp_RxIndication (id, *(data, length))

CanIf CanTp PduR

1

2

3

4

5

6

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

39 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

Figure 8: Example of receiving process

1: The CanIf notifies a new reception with CanTp_RxIndication(). The CanTp asks
the PduR for a buffer in order to store the received data.
2: The PduR provides a buffer of 25 bytes (by conception in this example, it is not
able to provide a buffer of 49 bytes directly)
3: The CanTp manages the payload data reception until the buffer is full (on the third
consecutive frame). On this third consecutive frame the CAN Transport Protocol can
only store 5 bytes in the buffer. Therefore, it should request a new buffer and
temporarily store the remaining 2 bytes in a local buffer.
4: The CanTp asks the PduR for a new buffer in order to store the data received
subsequently.
5: The CanTp copies the 2 bytes, temporarily stored in local buffer, to the buffer
provided by the PduR and manages the payload data reception until the end of
reception.
6: The CanTp informs the PduR of the end of reception by a call to
PduR_CanTpRxIndication().
The CAN Transport Layer will compute the BS values (See CanTp067) depending
on:
- maximum configured value for this N-SDU,
- number of free bytes inside the buffer provided,
- amount of receiving bytes.

When the last buffer is returned to the upper layer (PduR_CanTpRxIndication()), the
last bytes (in the example just the last byte) could be unused.

The upper layer shall take care identify these unused bytes with the knowledge of the
total N-SDU length (function parameter of PduR_CanTpProvideRxBuffer()).

Another solution to avoid unused bytes is for the upper layer to provide the last buffer
with the exact length, which should be received.

If the BS value is equal to 0 the buffer should be sized to a value equal or larger than
the number of bytes to be received.

7.3.4 Protocol parameter setting services

CanTp091: The CanTp module shall support optional primitives (proposed in ISO
15765-2 specification) for the dynamic setting of some transport protocol internal
parameters (STmin and BS) by application.

The configured BS value is only a maximum value. For reasons of buffer length, the
CAN Transport Layer can adapt the BS value within the limit of the configured
maximum value.

7.3.5 Tx and Rx data flow

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

40 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

The following figures show examples of an un-segmented message transmission and
a segmented one.

Figure 9: Example of single part message

Figure 10: Example of multiple parts message

Flow control is used to adjust the sender to the capabilities of the receiver. The main
usage of this transport protocol is peer-to-peer communication (i.e. 1 to 1
communication – physical addressing [13]).

CanTp092: The CanTp module shall provide 1 to n communication (i.e. functional
addressing [13]), in the form of functionality to SF N-PDUs (and only SF N-SDU).

The configuration tool shall check whether it is only SF N-PDUs that have been
configured with a functional addressing property.

CanTp093: If a multiple segmented session occurs (on both receiver and sender
side) with a handle whose communication type is functional, the CanTp module shall
reject the request and generate, if the development error detection is enabled, a
development error CANTP_E_PARAM_CONFIG.

7.3.6 Relationship between CAN NSduId and CAN LSduId

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

41 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

This chapter describes the connection that exists between CAN NSduId and CAN
LSduId, in order to make transmission and reception of transport protocol data units
possible.

CanTp035: A CAN NSduId shall only be linked to one CAN LSduId that is used to
transmit SF, FF, FC and CF frames.
However, if the message is configured to use an extended addressing format, the
CanTp module must fill the first byte of each transmitted segment (SF, FF and CF)
with the N_TA value. Therefore a CAN NSduId may also be related to a N_TA value.

FC protocol data units give receivers the possibility of controlling senders’ data flow
by authorizing or delaying transmission of subsequent CF N-PDUs. For extended
addressing format, the first data byte of the FC also contains the N_TA value.
CanTp094: Thus the CAN LSduId of a FC frame combined with its N_TA value (e.g.
the N_AI) shall only identify one CAN NSduId.

In the reception direction, the first data byte value of each (SF, FF or CF) transport
protocol data unit will be used to determine the relevant N-SDU.
CanTp095: Therefore, in extended addressing N-PDU reception, the CanTp module
shall extract the N-TA value to establish the related N-SDU.

The following figure summarizes these discussions.

cd Data Model

N-SDU NSduId N_AI

N_TALSduIdL-SDU

FC SF FF CF

Constraint:

- SF, FF and CF use the same LSduId

- FC uses a different LSduId

11

1..*

1

1

0..1

1 11 1

Figure 11: Possible links between NSduId and LSduId

7.3.7 Concurrent connection

In this second release document, the CAN Transport Layer will only be used for
diagnosis communication (i.e. the CanTp is used to transfer DCM I-PDU). However,

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

42 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

the CAN Transport Layer is able to manage several connections simultaneously (e.g.
a UDS and an OBD request can be received at the same time).

CanTp096: The CanTp module shall support several connections simultaneously

CanTp120: It shall be possible to configure concurrent connections in the CanTp
module. The connection channels are only destined for CAN TP internal use, so they
are not accessible externally. All the necessary information (Channel number, Timing
parameter …) is configured inside the CAN Transport Layer module.

CanTp121: Each N-SDU is statically linked to one connection channel. This
connection channel represents an internal path, for the transmission or receiving of
the N-SDU. A connection channel is attached to one or more N-SDU.

CanTp122: Each connection channel is independent of the other connection
channels. This means that a connection channel uses its own resources, such as
internal buffer, timer, or state machine.

CanTp190: The CanTp module shall route the N-SDU through the correctly
configured connection channel.

Note that this mechanism does not allow for the receiving or the transmission of N-
SDU with the same identifier in parallel, because each N-SDU is linked to only one
connection channel.

If a user wants to dedicate a specific connection channel to only one N-SDU, they
should assign this connection channel to one N-SDU only during the configuration
process.

If a connection channel is assigned to multiple N-SDUs, then resources are shared
between different N-SDUs, and the CAN Transport Layer will reject transmission or
abort receiving, if no free connection channels are available.

The number of connection channels is not directly configurable. It will be determined
by the configuration tools during the configuration process, by analyzing the N-
SDU/Channel routing table.

CanTp123: If the configured transmit connection channel is in use (state

CANTP_TX_PROCESSING), the CanTp module shall reject new transmission requests

linked to this channel. To reject a transmission, CanTp returns E_NOT_OK when the

upper layer asks for a transmission with the CanTp_Transmit() function.

CanTp124: When an SF or FF is received, and the corresponding connection

channel is currently receiving (state CANTP_RX_PROCESSING) the same connection

(same N_AI), the CanTp module shall abort the reception in progress and shall
process the received frame as the start of a new reception.
When an SF or FF is received for another connection (different N_AI) on an active
connection channel, the SF or FF shall be ignored.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

43 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

CanTp248: A Tx N-PDU Id shall not be used on two or more different connection
channels. An Rx N-PDU Id can only be used on two or more different connection
channels if extended addressing is used in relation with this N-PDU Id.

7.3.8 N-PDU padding

To guarantee complete compatibility with all upper layer requirements concerning the
frame data length (e.g. OBD requires data length to always be set to 8 bytes,
however UDS does not), the padding activation is configurable at pre-compile time
per N-SDU by using either CanTpRxPaddingActivation for a Rx N-SDU or
CanTpTxPaddingActivation for a Tx N-SDU.

CanTp320: If CanTpRxPaddingActivation is equal to CANTP_ON for an Rx N-SDU,
the CanTp module shall only accept SF Rx N-PDUs or last CF Rx N-PDUs,
belonging to that N-SDU, with a length of eight bytes (i.e. PduInfoPtr. SduLength =
8).

CanTp321: If CanTpRxPaddingActivation is equal to CANTP_ON for an Rx N-SDU,

and the CanTp module receives by means of CanTp_RxIndication() call an SF

Rx N-PDU belonging to that N-SDU, with a length smaller than eight bytes (i.e.
PduInfoPtr. SduLength < 8), the CanTp shall reject the reception. If the development
error detection is enabled, a development error CANTP_E_PADDING shall be
triggered.

CanTp322: If CanTpRxPaddingActivation is equal to CANTP_ON for an Rx N-SDU,
and the CanTp module receives by means of CanTp_RxIndication() call a last CF Rx
N-PDU belonging to that N-SDU, with a length smaller than eight bytes (i.e.
PduInfoPtr. SduLength != 8), the CanTp shall abort the ongoing reception by calling

PduR_CanTpRxIndication() with the result NTFRSLT_PADDING_E_NOT_OK. If

the development error detection is enabled, a development error
CANTP_E_PADDING shall be triggered.

CanTp323: If CanTpRxPaddingActivation is equal to CANTP_ON for an Rx N-SDU,
the CanTp module shall transmit FC N-PDUs with a length of eight bytes. Unused
bytes in N-PDU shall be updated with CANTP_PADDING_BYTE (see CanTp298).

CanTp324: If CanTpTxPaddingActivation is equal to CANTP_ON for a Tx N-SDU,

the CanTp module shall transmit by means of CanIf_Transmit() call, SF Tx N-

PDU or last CF Tx N-PDU that belongs to that Tx N-SDU with the length of eight
bytes(i.e. PduInfoPtr.SduLength = 8). Unused bytes in N-PDU shall be updated with
CANTP_PADDING_BYTE (see CanTp298).

CanTp325: If CanTpTxPaddingActivation is equal to CANTP_ON for a Tx N-SDU,
and if a FC N-PDU is received for that Tx N-SDU on an ongoing transmission, by

means of CanTp_RxIndication() call, and the length of this FC is smaller than

eight bytes (i.e. PduInfoPtr.SduLength < 8) the CanTp module shall abort the

transmission session by calling PduR_CanTpTxConfirmation() with the result

NTFRSLT_PADDING_E_NOT_OK. If the development error detection is enabled, a

development error CANTP_E_PADDING shall be triggered.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

44 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

CanTp116: In both padding and no padding modes, the CanTp module shall only
transfer used data bytes to the upper layer.

CanTp059: The CanTp module shall use the value configured in the
CanTpPaddingByte configuration parameter for the padding bytes.

7.3.9 Handling of unexpected N-PDU arrival

The behavior of the CAN Transport Layer on unexpected N-PDU arrival is greatly
dependent on the communication direction type of the processing N-SDU.

CanTp057: If unexpected frames are received, the CanTp module shall behave
according to the tables below.

Those tables consider the actual CanTp internal status (CanTp status). Table 1
specifies the behavior on the half duplex implementation while Table 2 defines the
behavior for full duplex channels.

It must be understood, that the received N-PDU contains the same address
information (N_AI) as the reception or transmission, which may be in progress at the
time the N_PDU is received.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

45 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

CanTp Reception of

status SF N-PDU FF N-PDU CF N-PDU FC N-PDU Unknow
n

N-PDU

Segment
ed

Transmit
in

progress

Ignore Ignore Ignore If awaited,
process the FC
N-PDU,
otherwise
ignore it.

Ignore

Segment
ed

Receive
in

progress

Terminate the
current
reception,
report an
indication, with
parameter
Result set to
NTFRSLT_E_N
OT_OK, to the
upper layer,
and process
the SF N-PDU
as the start of a
new reception

Terminate the
current reception,
report an
indication, with
parameter Result
set to
NTFRSLT_E_NO
T_OK, to the
upper layer, and
process the FF
N-PDU as the
start of a new
reception

Process the CF
N-PDU in the on-
going reception and
perform the
required checks
(e.g. SN in right
order)

Ignore Ignore

Idle
2
 Process the SF

N-PDU as the
start of a new
reception

Process the FF
N-PDU as the
start of a new
reception

Ignore Ignore Ignore

Table 1: Handling of unexpected N-PDU arrivals

2
 Idle = CANTP_ON.CANTP_RX_WAIT and CANTP_ON.CANTP_TX_WAIT

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

46 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

CanTp Reception of

status SF N-PDU FF N-PDU CF N-PDU FC N-PDU Unknow
n

N-PDU

Segment
ed

Transmit
in

progress

If a reception is
in progress
process it
according to
the cell below,
otherwise
process the SF
N-PDU as the
start of a new
reception

If a reception is in
progress process
it according to the
cell below,
otherwise
process the FF
N-PDU as the
start of a new
reception

If a reception is in
progress process it
according to the cell
below, otherwise
ignore it.

If awaited,
process the FC
N-PDU,
otherwise
ignore it.

Ignore

Segment
ed

Receive
in

progress

Terminate the
current
reception,
report an
indication, with
parameter
Result set to
NTFRSLT_E_N
OT_OK, to the
upper layer,
and process
the SF N-PDU
as the start of a
new reception

Terminate the
current reception,
report an
indication, with
parameter Result
set to
NTFRSLT_E_NO
T_OK, to the
upper layer, and
process the FF
N-PDU as the
start of a new
reception

Process the CF
N-PDU in the on-
going reception and
perform the
required checks
(e.g. SN in right
order)

If a
transmission is
in progress
process it
according to
the cell above,
otherwise
ignore it.

Ignore

Idle
3
 Process the SF

N-PDU as the
start of a new
reception

Process the FF
N-PDU as the
start of a new
reception

Ignore Ignore Ignore

Table 2: Handling of N-PDU arrivals for full duplex channels

7.4 Error classification

This section describes how the CanTp module has to manage the several error
classes that may occur during the life cycle of this basic software.

The general requirements document of AUTOSAR [3] specifies that all basic
software modules must distinguish (according to the product life cycle) two error
types:

- Development errors: these errors should be detected and fixed during
development phase. In most cases, these errors are software errors. The
detection errors that should only occur during development can be switched
off for production code (by static configuration, namely preprocessor
switches).

- Production errors: these errors are hardware errors and software exceptions
that cannot be avoided and are expected to occur in the production (i.e.
series) code.

2
 Idle = CANTP_ON.CANTP_RX_WAIT and CANTP_ON.CANTP_TX_WAIT

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

47 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

CanTp008: On errors and exceptions, the CanTp module shall not modify its current
module state (see Figure 4: CAN Transport Layer life cycle) but shall simply report
the error event.

CanTp101: Development error values are of type uint8.

Type or error Relevance Related error code Value

[hex]
API service called with wrong
parameter(s) :
When CanTp_Transmit is
called for a none configured TX
I-Pdu
On any Null-Pointer given on
API calls

Development

Could be a combination of:
CANTP_E_PARAM_CONFIG
CANTP_E_PARAM_ID
CANTP_E_PARAM_ADDRESS

0x01
0x02
0x04

API service used without
module initialization :
On any API call except
CanTp_Init() and
CanTp_GetVersionInfo() if
CanTp is in state
CANTP_OFF"

Development CANTP_E_UNINIT 0x20

Invalid Transmit PDU identifier
(e.g. a service is called with an
inexistent Tx PDU identifier)

Development CANTP_E_INVALID_TX_ID 0x30

Invalid Receive PDU identifier
(e.g. a service is called with an
inexistent Rx PDU identifier)

Development CANTP_E_INVALID_RX_ID 0x40

Invalid Transmit buffer address
(e.g. the Tx buffer address is
inaccessible or NULL)

Development CANTP_E_INVALID_TX_BUFFER 0x50

Invalid Receive buffer address
(e.g. the Rx buffer address is
inaccessible or NULL)

Development CANTP_E_INVALID_RX_BUFFER 0x60

Invalid data length of the
transmit/receive PDU
(e.g. a transmit N-PDU has a
length equal to 8)

Development CANTP_E_PADDING 0x70

Invalid return value provided by
function
PduR_CanTpProvideRxBuffer()

Development CANTP_E_INVALID_BUFREQ 0x80

CanTp_Transmit() is called for
a configured Tx I-Pdu with
functional
addressing and the length
parameter indicates, that the
message can not be sent with a

SF

Development CANTP_E_INVALID_TATYPE 0x90

Requested operation is not
supported

Development CANTP_E_OPER_NOT_SUPPORTED 0x0A

Another error occurred during a
reception or a transmission

Development CANTP_E_COM 0x0B

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

48 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

7.5 Error detection

CanTp006: The detection of development errors is configurable (ON / OFF) at pre-
compile time.

The switch CanTpDevErrorDetect (see chapter 10) should activate or deactivate

the detection of all development errors.

CanTp132: If the CanTpDevErrorDetect switch is enabled API parameter

checking is enabled. The detailed description of the detected errors can be found in
chapter 7.4 and chapter 8.

CanTp161: A static status variable, denoting whether a BSW module is initialized,
should be initialized with value 0 before any APIs of the BSW module are called.
The initialization function of the BSW modules will set the static status variable to a
value not equal to 0.
This variable is used to check if the module has been initialized before calling an API.

7.6 Error notification

CanTp134: Detected development errors will be reported to the error hook of the
Development Error Tracer (DET) if the pre-processor switch

CanTpDevErrorDetect is set.

The Development Error Tracer module is merely an aid to BSW development and
integration. The API is defined, but the functionality can be chosen and implemented
according to the development needs (e.g. error count, send error information via a
serial interface to an external logger, and so on).

CanTp021: The CanTp module shall use the Development Error Tracer service [8]:

void Det_ReportError(ModuleId, InstanceId, ApiId, ErrorId) to

report development errors.

CanTp115: The header file of the CanTp module, CanTp.h, shall provide a module

ID, called CANTP_MODULE_ID sets, to the value 0x23.

The following figure describes how this function can be used when the Development
Error Tracer is on.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

49 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

Figure 12: Development error reporting

As shown in the above figure, when a development error occurs the CanTp returns

the value E_NOT_OK. The error description is only reported via the API of the

Development Error Tracer module.

CanTp229: If the task was aborted (e.g. As, Bs, Cs, Ar, Br, Cr timeout), the CanTp
module shall call the DET with ErrorId= CANTP_E_COM.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

50 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed:

CanTp209:

Module Imported Type

ComStack_Types BufReq_ReturnType

NotifResultType

PduIdType

PduInfoType

PduLengthType

TPParameterType

Dem Dem_EventIdType

Std_Types Std_ReturnType

Std_VersionInfoType

In order to receive a consistent API for the AUTOSAR communication stack, basic
types have been defined. These types are used by the CAN Transport Layer to
communicate with the Pdu-Router and with the CAN Interface Layer.
For more information, these basic types are presented in depth in the AUTOSAR
COM stack API specification.
These AUTOSAR standard types will be used without any type redefinition.

CanTp002: If, for implementation reasons, some additional types have to be defined,
the CanTp module shall label these types as follows: CanTp_<TypeName>Type,
where <TypeName> is the name of this type adhering to the rules:

- No underscore usage
- First letter of each word upper case, consecutive letters lower case.

The CanTp module shall ensure that implementation-specific types are not "visible"
outside of CanTp. Otherwise, the complete architecture would be corrupted.

8.2 Type definitions

None.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

51 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

8.3 Function definitions

This is a list of functions provided for upper layer modules

CanTp003: The following provides the API Naming convention for the CanTp
services:

- The service name format is CanTp_<ServiceName>(…)
- <ServiceName>: is the name of the service primitive with first letter of each

word upper case and consecutive letters lower case

8.3.1 CanTp_Init

CanTp208:
Service name: CanTp_Init

Syntax: void CanTp_Init(

)

Service ID[hex]: 0x01

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This function initializes the CanTp module.

After power up, CanTp is in a state called CANTP_OFF (see CanTp168). In this
state, the CanTp is not yet configured and therefore cannot perform any
communication task.

The function CanTp_Init initializes all global variables of the CAN Transport Layer
with the given configuration set and set it in the idle state (state = CANTP_ON but
neither transmission nor reception are in progress) (see CanTp170 and CanTp030).

The function CanTp_Init has no return value because configuration data errors
should be detected during configuration time (e.g. by the configuration tools).
Furthermore, if a hardware error occurs, it will be reported via the error manager
modules.

CanTp199: The CanTp module’s environment shall call CanTp_Init before using the
CanTp module for further processing.

8.3.2 CanTp_GetVersionInfo

CanTp210:
Service name: CanTp_GetVersionInfo

Syntax: void CanTp_GetVersionInfo(

 Std_VersionInfoType* versioninfo

)

Service ID[hex]: 0x07

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

52 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): versioninfo Indicator as to where to store the version information of this module.

Return value: None

Description: This function returns the version information of the CanTp module.

CanTp162: The function CanTp_GetVersionInfo shall return the version information
of this module. The version information includes:

- Module Id
- Vendor Id
- Vendor specific version numbers (BSW00407).
-

CanTp163: The function CanTp_GetVersionInfo shall be pre compile time

configurable (On/Off) by the configuration parameter:
CANTP_VERSION_INFO_API.

CanTp218: If source code for caller and callee of CanTp_GetVersionInfo is available,
the CanTp module should realize CanTp_GetVersionInfo as a macro, defined in the
module’s header file.

Note that the function CanTp_GetVersionInfo can be called before initialization of the
CanTp module.

8.3.3 CanTp_Shutdown

CanTp211:
Service name: CanTp_Shutdown

Syntax: void CanTp_Shutdown(

)

Service ID[hex]: 0x02

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This function to shutdown the CanTp module.

CanTp202: The function CanTp_Shutdown shall close all pending transport protocol
connections, free all resources and set the CanTp module into the CANTP_OFF
state.

CanTp200: The function CanTp_Shutdown shall not raise a notification about the
pending frame transmission or reception.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

53 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

8.3.4 CanTp_Transmit

CanTp212:
Service name: CanTp_Transmit

Syntax: Std_ReturnType CanTp_Transmit(

 PduIdType CanTpTxSduId,

 const PduInfoType* PduInfoPtr

)

Service ID[hex]: 0x03

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in):

CanTpTxSduId This parameter contains the unique CanTp module identifier of
the CAN N-SDU to be transmitted.
Range: 0..(maximum number of L-PDU IDs received) - 1

PduInfoPtr An indicator of a structure with CAN N-SDU related data:
indicator of a CAN N-SDU buffer and the length of this buffer.

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: The request can be started successfully

E_NOT_OK: The request cannot be started (e.g. a transmit
request is in progress with the same N-SDU identifier)

Description: This service is used to request the transfer of segmented data.

CanTp231: If data length is less than 7 or 6 (depending on normal or extended
addressing format), the function CanTp_Transmit shall send a SF N-PDU.

CanTp232: If data length is greater than 7 or 6 (depending on normal or extended
addressing format), the function CanTp_Transmit shall initiate a multiple frame
transmission session.

CanTp204: The CanTp module shall notify the upper layer by calling the

PduR_CanTpTxConfirmation callback when the transmit request has been

completed.

CanTp205: The CanTp module shall abort the transmit request and call the

PduR_CanTpTxConfirmation callback function with the appropriate error result

value if an error occurred (over flow, N_As timeout, N_Bs timeout and so on).

CanTp206: The function CanTp_Transmit shall reject a request if the

CanTp_Transmit service is called for a N-SDU identifier which is being used in a

currently running CAN Transport Layer session.

Because CanTp has limited buffering capability, the N-SDU payload to be transmitted
is not copied internally. The CAN Transport Layer works on the memory area
referenced by the CAN N-SDU pointer obtained within the CanTpProvideTxBuffer
service.
Thus, to guarantee the data consistency, the upper layer (e.g. DCM, PduRouter or
AUTOSAR COM) must lock this memory area until the confirmation notification
occurs.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

54 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

When the upper layer calls this function, only the data length information of the
structure indicated by CanTpTxInfoPtr has to be used. Its value indicates the payload
length of the N-SDU, which is to be transmitted.
To access a Tx buffer, the CAN Transport Layer should call the
PduR_CanTpProvideTxBuffer service.

8.3.5 CanTp_CancelTransmit
CanTp246:
Service name: CanTp_CancelTransmit

Syntax: Std_ReturnType CanTp_CancelTransmit(

 PduIdType CanTpTxPduId

)

Service ID[hex]: 0x08

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in):
CanTpTxPduId This parameter contains the CAN TP instance unique identifier of

the CAN N-SDU which transfer has to be cancelled.

Parameters
(inout):

None

Parameters (out): None

Return value:

Std_ReturnType E_OK: Cancellation request of the transfer of the specified CAN
N-SDU is accepted.
E_NOT_OK: Cancellation request of the transfer of the specified
CAN N-SDU is rejected, e. g. cancellation is requested at the
receiver in an 1:n connection or in an unsegmented transfer at
the receiver or cancellation is not allowed for the corresponding
channel.

Description: This service primitive is used to cancel the transfer of pending CAN N-SDUs. The
connection is identified by CanTpTxPduId.
When the function returns, no transmission is in progress anymore with the given
N-SDU identifier.

This function has to be called with the PDU-Id of the CanTp, i.e. the upper layer
has the same PDU-Id as for the FrTp_Transmit() call.

This service cancels the transmission of an N-SDU that has already requested for
transmission by calling CanTp_Transmit service

CanTp308: If development error detection is enabled the function
CanTp_CancelTransmit shall check the validity of CanTpTxPduId parameter. If the
parameter value is invalid (received N-SDU, out of range), the
CanTp_CancelTransmit function shall raise the development error
CANTP_E_PARAM_ID and return E_NOT_OK.
8.3.6 CanTp_CancelReceive
CanTp310:
Service name: CanTp_CancelReceive

Syntax: Std_ReturnType CanTp_CancelReceive(

 PduIdType CanTpRxSduId

)

Service ID[hex]: 0x09

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): CanTpRxSduId Identifier of the received N-SDU.

Parameters None

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

55 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

(inout):

Parameters (out): None

Return value:

Std_ReturnType E_OK: Cancellation request of the specified N-SDU is accepted.
E_NOT_OK: Cancellation request is rejected; the reason can be
that request is issued for an N-SDU that is not segmented or
request is issued for an N-SDU that is not in the reception
process.

Description: This service is used to cancel the reception of an ongoing N-SDU. When the
function returns, no reception is in progress anymore with the given N-SDU
identifier.

The service CanTp_CancelReceive cancels the reception of an N-SDU initiated by
the reception of a First Frame.

CanTp311: If development error detection is enabled the function
CanTp_CancelReceive shall check the validity of CanTpRxSduId parameter. If the
parameter value is invalid, the CanTp_CancelReceive function shall raise the
development error CANTP_E_PARAM_ID and return E_NOT_OK.

CanTp312: The CanTp shall reject the request for receive cancellation in case of a
Single Frame reception or if the CanTp is in the process of receiving the last
Consecutive Frame of the N-SDU (i.e. the service is called after N-Cr timeout is
started for the last Consecutive Frame). In this case the CanTp shall return
E_NOT_OK.

8.3.7 CanTp_ChangeParameter
CanTp302:
Service name: CanTp_ChangeParameter

Syntax: Std_ReturnType CanTp_ChangeParameter(

 PduIdType id,

 TPParameterType parameter,

 uint16 value

)

Service ID[hex]: 0x0a

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in):

id Identifier of the received N-SDU on which the reception
parameter has to be changed.

parameter Specify the parameter to which the value has to be changed (BS
or STmin).

value The new value of the parameter.

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: request is accepted.

E_NOT_OK: request is not accepted.

Description: This service is used to request the change of reception parameters BS and STmin
for a specified N-SDU.

The service CanTp_ChangeParameter is used to change the value of the reception
parameter BS and STmin associated to each received N-SDU.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

56 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

Implementation of this service depends on the configuration parameter
CanTpChangeParameterApi (i.e. the service shall be implemented when the
parameter is set to TRUE).

CanTp305: A parameter change is only possible if the related N-SDU is not in the
process of reception – i.e. a change of parameter value it is not possible after
reception of FF until indication for last CF reception of the related N-SDU.

CanTp306: If the change of a parameter is requested for an N-SDU that is on
reception process the service CanTp_ChangeParameter immediately returns
E_NOT_OK and no parameter value is changed.

CanTp307: If development error detection is enabled the function
CanTp_ChangeParameter shall check the validity of function parameters (Identifier,
parameter and requested value). If any of the parameter value is invalid, the
CanTp_ChangeParameter function shall raise the development error
CANTP_E_PARAM_ID and return E_NOT_OK.

8.3.8 CanTp_ReadParameter
CanTp303:
Service name: CanTp_ReadParameter

Syntax: Std_ReturnType CanTp_ReadParameter(

 PduIdType id,

 TPParameterType parameter,

 uint16* value

)

Service ID[hex]: 0x0b

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in):

id Identifier of the received N-SDU on which the reception
parameter are read.

parameter Specify the parameter to which the value has to be read (BS or
STmin).

Parameters
(inout):

None

Parameters (out): value Pointer where the parameter value is stored.

Return value:
Std_ReturnType E_OK: request is accepted.

E_NOT_OK: request is not accepted.

Description: This service is used to read the current value of reception parameters BS and
STmin for a specified N-SDU.

The service CanTp_ReadParameter is used to read the current value of the
reception parameters BS and STmin for a specific received N-SDU.

CanTp304: If development error detection is enabled the function
CanTp_ReadParameter shall check the validity of function parameters (Identifier,
Parameter and pointer to value). If any of the parameter value is invalid (Tx N-SDU,
undefined parameter, NULL pointer) the CanTp_ReadParameter function shall raise
the development error CANTP_E_PARAM_ID and returns E_NOT_OK.

8.3.9 Main Function
CanTp213:

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

57 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

Service name: CanTp_MainFunction

Syntax: void CanTp_MainFunction(

)

Service ID[hex]: 0x06

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: The main function for scheduling the CAN TP.

CanTp164: The main function for scheduling the CAN TP (Entry point for scheduling)
The main function will be called by the Schedule Manager or by the Free Running
Timer module according of the call period needed.

The function CanTp_MainFunction is affected by configuration parameter
CanTpMainFunctionPeriod.

8.4 Call-back notifications
The following is a list of functions provided for lower layer modules.

CanTp233: The CanTp module shall provide the function prototypes of the callback

functions in the file CanTp_Cbk.h

8.4.1 CanTp_RxIndication
CanTp214:
Service name: CanTp_RxIndication

Syntax: void CanTp_RxIndication(

 PduIdType CanTpRxPduId,

 const PduInfoType* PduInfoPtr

)

Service ID[hex]: 0x04

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in):

CanTpRxPduId ID of CAN L-PDU that has been received. Identifies the data that
has been received.
Range: 0..(maximum number of L-PDU IDs received) - 1

PduInfoPtr Contains the length (SduLength) of the received I-PDU and a
pointer to a buffer (SduDataPtr) containing the I-PDU.

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This function is called by the CAN Interface after a successful reception of a Rx
CAN L-PDU.

CanTp019: The CanIf module shall call this function after a successful reception of a
Rx CAN L-PDU.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

58 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

The data will be copied by the CanTp via the PDU structure PduInfoType. In this
case the L-PDU buffers are not global and are therefore distributed in the
corresponding CAN Transport Layer.

CanTp235: The function CanTp_RxIndication shall be callable in interrupt context (it
could be called from the CAN receive interrupt).

CanTp234: The function CanTp_RxIndication shall be implemented using a pre-
compile macro

8.4.2 CanTp_TxConfirmation

CanTp215:
Service name: CanTp_TxConfirmation

Syntax: void CanTp_TxConfirmation(

 PduIdType CanTpTxPduId

)

Service ID[hex]: 0x05

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in):
CanTpTxPduId ID of CAN L-PDU that has been transmitted.

Range: 0..(maximum number of L-PDU IDs received) - 1

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: All transmitted CAN frames belonging to the CAN Transport Layer will be
confirmed by this function.

CanTp020: The CanIf module shall call the function CanTp_TxConfirmation after the
TP related CAN Frame (SF, FF, CF, FC) has been transmitted through the CAN
network.

CanTp236: The function CanTp_TxConfirmation shall be callable in interrupt context
(it could be called from the CAN transmit interrupt).

CanTp237: The function CanTp_TxConfirmation shall be implemented using a pre-
compile macro

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

59 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

8.5 Expected Interfaces

In this chapter, all interfaces required from other modules are listed.

8.5.1 Mandatory Interfaces

This chapter defines all interfaces, which are required, in order to fulfill the core
functionality of the module.

CanTp216:
API function Description

CanIf_Transmit CANIF005: This service initiates a request for transmission of the CAN
L-PDU specified by the CanTxPduId and CAN related data in the L-PDU
structure. The corresponding CAN controller and HTH have to be
resolved by the CanTxPduId.
A transmit request has not been accepted, if the controller mode is not
STARTED and/or the channel mode at least for the transmit path is not
online or offline active.
One call of this function results in one call of Can_Write(Hth, *PduInfo).

Development errors:
Invalid values of CanTxPduId or PduInfoPtr will be reported to the
development error tracer (CANIF_E_INVALID_TXPDUID or
CANIF_E_PARAM_POINTER).
If the CAN Interface was not initialized before, the call of this function
will be reported to the development error tracer (CANIF_E_UNINIT).
The function returns with E_NOT_OK.

Caveats: During the call of this API the buffer of PduInfoPtr is controlled
by the CAN Interface may not be accessed for read/write from another
call context. After return of this call the ownership changes to the upper
layer.
The CAN Interface must be initialized after Power ON.

Dem_ReportErrorStatus Reports errors to the DEM.

PduR_CanTpProvideRxBuffer Provides Rx buffer for the CAN TP.

PduR_CanTpProvideTxBuffer Provide Tx data for the CAN TP.

PduR_CanTpRxIndication Rx indicator for the CAN TP

PduR_CanTpTxConfirmation Tx confirmation for the CAN TP

Note: As CanTp modules does not define any production errors the
Dem_ReportErrorStatus is not a mandatory interface; however it might be included
for build compatibility reasons or for future possibility of production error definition.

8.5.2 Optional Interfaces

This chapter defines the interface, which is required, in order to fulfill the optional
functionality of the module.

CanTp217:
API function Description

Det_ReportError Service to report development errors.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

60 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

9 Sequence diagrams

The goal of this chapter is to make it easier to understand the CAN Transport Layer
by describing most of the more frequent and complicated use cases. Thus, the
following diagram sequences are not exhaustive and do not reflect all the specified
API possibilities.

9.1 SF N-SDU received and no buffer provided

9.1.1 Assumptions

- All input parameters are OK
- The N-SDU data length is smaller than or equal to 7 bytes (6 bytes in the case

of extended addressing format)
- Upper layer can not provide an Rx buffer

9.1.2 Sequence diagram

 sd CanTp Receiv ed a SF and no buffer prov ided

«module»

PduR

«module»

CanTp

«module»

CanIf

Status: proposed by TO as per SWS CanTp 1.4.0

Description:

Comments:

Comment:

When the lower layer receives a frame (here a

single frame), it notifies CanTp with

CanTp_RxIndication callback. CanTpRxPduId

represent the ID of L-PDU that has been

received, and CanTpRxPduPtr point to the L-

PDU payload and the L-PDU datalength

Comment:

The CAN Transport Layer does an ID

translation and extract the useful data length

from the N-PDU payload.

Then it asks its upper layer to provide a

buffer for this incoming data with

PduR_CanTpProvideRxBuffer callback.

TpSduLength is set to SF_DL (extract from

the N-PCI field). It indicates the overall

amount of bytes to be received.

Comment:

Upper layer can not provide any buffer. So the

BUFREQ_E_NOT_OK value is returned.

The CanTp ends the CanTp_RxIndication

function without copying any data.

CanTp_RxIndication(PduIdType, const

PduInfoType*)

PduR_CanTpProvideRxBuffer(BufReq_ReturnType,

PduIdType, PduLengthType, PduInfoType**)

PduR_CanTpProvideRxBuffer()

CanTp_RxIndication()

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

61 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

Note: This sequence diagram demonstrates the working of the CAN_Tp module only.
However, if the whole system is considered during such reception, more modules are
involved. Since this reception can be triggered in the context of CAN ISR, the
CAN_Tp operation should be as short as possible.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

62 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

9.1.3 Transition description

Transition Name Description

1

CanTp_RxIndication

(

 CanTpRxPduId,

 CanTpRxPduPtr

)

When the lower layer receives a frame (here a single
frame), it notifies CanTp by means of a
CanTp_RxIndication callback. CanTpRxPduId represents
the ID of L-PDU that has been received, and
CanTpRxPduPtr indicates the L-PDU payload and the L-
PDU datalength

2

PduR_CanTpProvideRx

Buffer(

 CanTpRxSduId,

 TpSduLength,

 PduInfoPtr

)

The CAN Transport Layer performs an ID translation and
extracts the useful data length from the N-PDU payload.
It then asks its upper layer to provide a buffer for this
incoming data with a PduR_CanTpProvideRxBuffer
callback.
TpSduLength is set to SF_DL (extracted from the N-PCI
field). It indicates the overall amount of bytes to be
received.

3 BUFREQ_E_NOT_OK

The upper layer cannot provide any buffer, so the

BUFREQ_E_NOT_OK value is returned.

The CanTp ends the CanTp_RxIndication function

without copying any data.

9.2 Successful SF N-PDU reception

9.2.1 Assumptions

- All input parameters are OK
- The N-SDU data length is smaller than or equal to 7 bytes (6 bytes in the case

of extended addressing format)
- The SF N-PDU is successfully received

9.2.2 Sequence diagram

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

63 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

 sd CanTp Successful SF N-PDU reception

«module»

PduR

«module»

CanTp

«module»

CanIf

Comment:

When the lower layer receives a frame (here

a single frame), it notifies CanTp with

CanTp_RxIndication callback.

CanTpRxPduId represent the ID of L-PDU

that has been received, and CanTpRxPduPtr

point to the L-PDU payload and the L-PDU

datalength

Comment:

Upper layer allocates and locks the

required Rx buffer. Then returns

BUFREQ_OK. Comment:

The CanTp copies the

received N-PDU payload

into the provided buffer

Comment:

When the copy is done, a Rx

indication is raised to upper layer.

Result is set to

NOTIF_RESULT_OK.

Comment:

CanTp ends the

CanTp_RxIndication

function.

Comment:

The CAN Transport Layer does an ID

translation and extract the useful data

length from the N-PDU payload.

Then it asks its upper layer to provide a

buffer for this incoming data with

PduR_CanTpProvideRxBuffer callback.

TpSduLength is set to SF_DL (extract

from the N-PCI field). It indicates the

overall amount of bytes to be received.

Status: proposed by TO as per SWS CanTp 1.4.0

Description:

Comments:

CanTp_RxIndication(PduIdType, const

PduInfoType*)

PduR_CanTpProvideRxBuffer(BufReq_ReturnType,

PduIdType, PduLengthType, PduInfoType**)

PduR_CanTpProvideRxBuffer()

Copy data from driver to the

provided buffer()

PduR_CanTpRxIndication(PduIdType, NotifResultType)

PduR_CanIfRxIndication()

CanTp_RxIndication()

Note: This sequence diagram demonstrates the working of the CAN_Tp module only.
However, if the whole system is considered during such reception, more modules are
involved. Since this reception can be triggered in the context of CAN ISR, the
CAN_Tp operation should be as short as possible.

9.2.3 Transition description

Transition Name Description

1

CanTp_RxIndication

(

 CanTpRxPduId,

 CanTpRxPduPtr

)

When the lower layer receives a frame (here a single
frame), it notifies CanTp by means of a
CanTp_RxIndication callback. CanTpRxPduId represents
the ID of the L-PDU that has been received, and
CanTpRxPduPtr indicates the L-PDU payload and the L-
PDU data length.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

64 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

Transition Name Description

2

PduR_CanTpProvideRx

Buffer (

 CanTpRxSduId,

 TpSduLength,

 PduInfoPtr

)

The CAN Transport Layer performs an ID translation and
extract the useful data length from the N-PDU payload.
Then it asks its upper layer to provide a buffer for this
incoming data with a PduR_CanTpProvideRxBuffer
callback.
TpSduLength is set to SF_DL (extracted from the N-PCI
field). It indicates the overall amount of bytes to be
received.

3 BUFREQ_OK
Upper layer allocates and locks the required Rx buffer.

Then returns BUFREQ_E_OK.

4
The CanTp copies the received N-PDU payload into the
buffer provided.

5

PduR_CanTpRxIndicat

ion (

 CanTpRxSduId,

 Result

)

When the copy is complete, an Rx indication is sent to the
upper layer. The result is set to NTFRSLT_OK.

6 CanTp ends the CanTp_RxIndication function.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

65 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

9.3 Transmit request of SF N-SDU

9.3.1 Assumptions

- All input parameters are OK
- The N-SDU data length is smaller than or equal to 7 bytes (6 bytes in case of

extended addressing format)
- The transmission is successfully processed

9.3.2 Sequence diagram

 sd CanTp Transmit request of SF N-PDU

«module»

PduR

«module»

CanTp

«module»

CanIf

Comment:

The PDU Router needs (because of a request from the diagnostic controller

module or a 1:1 TP routing i.e. the PduR itself) to transmit an I-PDU that

requires transport protocol functionality and whose data can be refers to with the

data structure information CanTpTxInfoPtr (see definition of type:

Std_PduInfoType).

So the PduR translates the I-PDU identifier to find which transport layer to use

(CanTp, LinTp or FrTp), and what the associate N-SDU identifier is (identifier

translation). Then PduR calls the CanTp’s primitive CanTp_Transmit.

This function shall perform these following steps:

- Validates input parameters and resource availabil ity

- Searches out the useful information to process the transmit request in the

configuration set of this CanTp entity (e.g. SF/FF/CF N-PDU identifier, FC N-PDU

identifier, N_TA value, and so on)

- Launches an internal transmit task with parameters: CanTpTxSduId and

CanTpTxInfoPtr.

Note: only the length information within the CanTpTxInfoPtr structure shall be

analyzed. The pointer to the payload data shall be discarded.

Comment:

The value E_OK is returned to

indicate upper layer that the

transmit request is accepted

Comment:

The PduR_CanTpProvideTxBuffer is called to request the necessary transmit

buffer.

Length parameter is set to zero because CAN transport Layer dose not request a

specific length (no recovery mechanisms).Comment:

Upper layer allocates and locks

the required Tx buffer. Then

returns BUFREQ_OK.

Comment:

The CanTp performed a translation from CanTpTxSduId to CanTxPduId. In case

of extended addressing format, concatenates the N-SDU payload with the N_TA

value.

And do a transmit request on the CanIf module.

Comment:

The CanIf module can process the transmit request.

Comment:

The N-PDU is successfully transmitted.

Result is normally set to NOTIF_RESULT_OK.

Comment:

Notify the PDU Router that the N-

SDU has be successfully

transmitted. Consequently the

PduInfoType structure has to be

unlocked.

Result is set to

NOTIF_RESULT_E_OK.

Status: proposed by TO as per SWS CanTp 1.4.0

Description:

Comments:

CanTp_Transmit(Std_ReturnType,

PduIdType, const PduInfoType*)

Check

inputs()

Activate a TP

Tx task()

CanTp_Transmit()

PduR_CanTpProvideTxBuffer(BufReq_ReturnType,

PduIdType, PduInfoType**, PduLengthType)

PduR_CanTpProvideTxBuffer()

CanIf_Transmit(Std_ReturnType, PduIdType, const

PduInfoType*)

CanIf_Transmit()

CanTp_TxConfirmation(PduIdType)

PduR_CanTpTxConfirmation(PduIdType, NotifResultType)

PduR_CanTpTxConfirmation()

CanTp_TxConfirmation()

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

66 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

9.3.3 Transition description

Transition Name Description

1

CanTp_Transmit(

 CanTpTxSduId,

 CanTpTxInfoPtr

)

The PDU Router needs (because of a request from the
diagnostic controller module or a 1:1 TP routing – i.e. the
PduR itself) to transmit an I-PDU that requires transport
protocol functionality and whose data can be refered to

with the data structure information CanTpTxInfoPtr

(see definition of type: Std_PduInfoType).

Thus, the PduR translates the I-PDU identifier to establish
which transport layer to use (CanTp, LinTp or FrTp), and
what the associate N-SDU identifier is (identifier
translation). Then PduR calls the CanTp’s primitive

CanTp_Transmit.

This function will perform the following steps:
- Validates input parameters and resource

availability
- Searches for the useful information to process the

transmit request in the configuration set of this
CanTp entity (e.g. SF/FF/CF N-PDU identifier, FC
N-PDU identifier, N_TA value, and so on)

- Launches an internal transmit task with the

parameters: CanTpTxSduId and

CanTpTxInfoPtr.

Note: only information concerning length, within the
CanTpTxInfoPtr structure, will be analyzed. The payload
indicator data should be discarded.

2 E_OK
The value E_OK is returned to indicate to the upper layer
that the transmit request is accepted

3

PduR_CanTpProvideTx

Buffer (

 CanTpTxSduId,

 PduInfoPtr,

 Length=0

)

The PduR_CanTpProvideTxBuffer is called upon to

request the necessary transmit buffer.

Length parameter is set to zero because the CAN

transport Layer does not request a specific length (no
recovery mechanism).

4 BUFREQ_OK
Upper layer allocates and locks the required Tx buffer,

then returns BUFREQ_E_OK.

5

CanIf_Transmit(

 CanTxPduId,

 PduInfoPtr

)

The CanTp performs a translation from CanTpTxSduId to
CanTxPduId. In case of extended addressing format, it
concatenates the N-SDU payload with the N_TA value, to
perform a transmit request on the CanIf module.

6 E_OK The CanIf module can process the transmit request.

7

CanTp_TxConfirmatio

n(

 CanTpTxPduId,

)

The N-PDU is successfully transmitted.

8

PduR_CanTpTxConfirm

ation (

 CanTpTxSduId,

 Result

)

Notifies the PDU Router that the N-SDU has been
successfully transmitted. Consequently, the PduInfoType
structure has to be unlocked.
Result is set to NTFRSLT_OK.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

67 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

9.4 Transmit request of larger N-SDU

9.4.1 Assumptions

- All input parameters are OK
- The N-SDU data length is larger than 7 bytes (6 bytes in case of extended

addressing format)
- The transmission is successfully processed

9.4.2 Sequence diagram

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

68 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

 sd CanTp Transmit request of larger N-PDU

«module»

PduR

«module»

CanTp

«module»

CanIf

loop N-SDU data transfer

[Stil l data to be sent from this N-SDU]

opt Transmission of N-PDU

[All data from this buffer was sent and thereafter, end of the N-SDU payload not reached]

Status: proposed by TO as per SWS CanTp 1.4.0

Description:

1)

The PDU Router needs (because of a request from the diagnostic controller module or a 1:1 TP routing i.e. the PduR itself) to transmit an I-PDU that requires

transport protocol functionality and whose data can be refers to with the data structure information CanTpTxInfoPtr (see definition of type: Std_PduInfoType).

So the PduR translates the I-PDU identifier to find which transport layer to use (CanTp, LinTp or FrTp), and what the associate N-SDU identifier is (identifier

translation). Then PduR calls the CanTp’s primitive CanTp_Transmit.

This function shall perform these following steps:

- Validates input parameters and resource availabil ity

- Searches out the useful information to process the transmit request in the configuration set of this CanTp entity (e.g. SF/FF/CF N-PDU identifier, FC N-PDU

identifier, N_TA value, and so on)

- Launches an internal transmit task with parameters: CanTpTxSduId and CanTpTxInfoPtr.

Note: only the length information within the CanTpTxInfoPtr structure shall be analyzed. The pointer to the payload data shall be discarded.

2)

The PduR_CanTpProvideTxBuffer is called to request the necessary transmit buffer.

Length parameter is set to zero because CAN transport Layer dose not request a specific length (no recovery mechanisms).

3)

Upper layer allocates and locks the required Tx buffer. Then returns BUFREQ_OK.

4)

Within the task, CanTp calls CAN Interface by using CanIf_Transmit where CanTxPduId identify the L-SDU (a translation has to be done between the N-SDU Id

used by CanTp and the L-SDU Id used by CAN Interface), and PduInfoPtr point to data and their length.

5)

CanTp wait a confirmation from CAN Interface (CanTp_TxConfirmation)

6)

If the PDU Router buffer is empty or not sufficient for the next consecutive frame, CanTp ask to PDU Router a new buffer with new data to be sent.

Length parameter is set to zero because CAN transport Layer dose not request a specific length (no recovery mechanisms).

7)

When all data have been sent, or when an error occurs, CanTp notify PDU Router with PduR_CanTpTxConfirmation. CanTpTxPduId identify the N-SDU which

transmission is confirmed, and result indicates if transmission has been completed or not.

Notes:

CanTp_Transmit(Std_ReturnType, PduIdType, const PduInfoType*)

check

inputs()

Active a TP Tx

Task()

CanTp_Transmit()

PduR_CanTpProvideTxBuffer(BufReq_ReturnType, PduIdType, PduInfoType**, PduLengthType)

PduR_CanTpProvideTxBuffer()

CanIf_Transmit(Std_ReturnType, PduIdType, const

PduInfoType*)

CanIf_Transmit()

CanTp_TxConfirmation(PduIdType)

CanTp_TxConfirmation()

PduR_CanTpProvideTxBuffer(BufReq_ReturnType, PduIdType, PduInfoType**, PduLengthType)

PduR_CanTpProvideTxBuffer()

CanTp_TxConfirmation(PduIdType)

PduR_CanTpTxConfirmation(PduIdType, NotifResultType)

PduR_CanTpTxConfirmation()

CanTp_TxConfirmation()

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

69 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

70 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

9.4.3 Transition description

Transition Name Description

1

CanTp_Transmit (

 CanTpTxSduId,

 CanTpTxInfoPtr

)

The PDU Router needs (because of a request from the
diagnostic controller module or a 1:1 TP routing – i.e. the
PduR itself) to transmit an I-PDU that requires transport
protocol functionality and whose data can be referred to

with the data structure information CanTpTxInfoPtr

(see definition of type: Std_PduInfoType).

Thus, the PduR translates the I-PDU identifier to establish
which transport layer to use (CanTp, LinTp or FrTp), and
what the associate N-SDU identifier is (identifier
translation). Then PduR calls the CanTp’s primitive

CanTp_Transmit.

This function should perform the following steps:
- Validate input parameters and resource

availability
- Search for the useful information to process the

transmit request in the configuration set of this
CanTp entity (e.g. SF/FF/CF N-PDU identifier, FC
N-PDU identifier, N_TA value, and so on)

- Launch an internal transmit task with parameters:

CanTpTxSduId and CanTpTxInfoPtr.

Note: only information concerning length within the
CanTpTxInfoPtr structure will be analyzed. The indicactor
to the payload data should be discarded.

2

PduR_CanTpProvideTx

Buffer (

 CanTpTxSduId,

 PduInfoPtr,

 Length=0

)

The PduR_CanTpProvideTxBuffer is called upon to

request the necessary transmit buffer.

Length parameter is set to zero because the CAN

transport Layer does not request a specific length (no
recovery mechanism).

3 BUFREQ_OK
The upper layer allocates and locks the required Tx buffer.

Then returns BUFREQ_OK.

4

CanIf_Transmit (

 CanTxPduId,

 PduInfoPtr

)

Within the task, CanTp calls the CAN Interface by using

CanIf_Transmit, where CanTxPduId identifies the L-

SDU (a translation has to be preformed between the N-
SDU Id used by CanTp and the L-SDU Id used by CAN

Interface), and PduInfoPtr indicator data and their length.

5

CanTp_TxConfirmatio

n(

 CanTpTxPduId,

)

CanTp awaits a confirmation from the CAN Interface

(CanTp_TxConfirmation)

6

PduR_CanTpProvideTx

Buffer (

 CanTpTxTxSduId,

 PduInfoPtr,

 Length=0

)

If the PDU Router buffer is empty or not sufficient for the
next consecutive frame, CanTp asks the PDU Router for a
new buffer, with new data, to be sent.

Length parameter is set to zero because the CAN

transport Layer does not request a specific length (no
recovery mechanism).

7

PduR_CanTpTxConfirm

ation (

 CanTpTxSduId,

 Result

)

When all data has been sent, or when an error occurs,
CanTp notifies the PDU Router by means of

PduR_CanTpTxConfirmation. CanTpTxPduId informs

the N-SDU which transmission has been confirmed, and

result indicates whether the transmission has been

completed or not.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

71 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

9.5 Large N-SDU Reception

9.5.1 Assumptions

- All input parameters are OK
- The N-SDU data length is larger than 7 bytes (6 bytes in case of extended

addressing format)
- Reception is successfully processed

9.5.2 Sequence diagram

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

72 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

 sd CanTp Reception of larger N-SDU

«module»

CanIf

«module»

CanTp

«module»

PduR

alt CanTp task

[interrupt]

[cyclic task]

Status: proposed by TO as per SWS CanTp 1.4.0

Description:

1)

When CAN Interface receives a frame (here a first frame), CAN Interface notify CanTp with CanTp_RxIndication callback. CanTpRxPduId represent the ID of L-PDU

that has been received and CanTpRxPduPtr point to the L-SDU payload and the L-SDU datalength.

2)

CanTp ask PDU Router to provide a buffer for incoming data with PduR_CanTpProvideRxBuffer callback.

3)

CanTp store information about the provided buffer.

4)

CanTp activate a task for sending a FC with a Flow Status set at ContinueToSend. (see step 8.)

5)

When CAN Interface receives a frame (here a consecutive frame), CAN Interface notify CanTp with CanTp_RxIndication callback. CanTpRxPduId represent the ID

of CAN frame that has been received and CanTpRxPduPtr point to the L-SDU payload.

6)

CanTp shall verify the sequence number and if correct, it copy the data to the buffer provided.

7)

Three cases can append :

[Normal Case]: the buffer is not full, and the received consecutive frame is not the last one. CanTp has nothing special to do.

[Buffer Full]: the buffer provided is full. CanTp ask for a new buffer to PDU Router by using PduR_CanTpProvideRxBuffer callback. If the result is correct, he store

pointer and length of this new buffer, else CanTp shall send a wait flow control and ask again a new buffer to PDU-Router. If there are extra bytes from the last CF,

they have to be store in this new buffer.

[Last CF Received]: this consecutive frame is the last (Total length information was, as parameter, in the first frame). CanTp shall notify PDU Router with

PduR_CanTpRxIndication callback.

When flow control needs to be sent, the CanTp cyclic task shall call CAN Interface by using

8)

CanIf_Transmit and wait confirmation from CAN Interface.

Notes:

alt Indication

[normal case]

[Buffer full]

[Last CF received]

CanTp_RxIndication(PduIdType, const PduInfoType*)PduR_CanTpProvideRxBuffer(BufReq_ReturnType,

PduIdType, PduLengthType, PduInfoType**)

PduR_CanTpProvideRxBuffer() Store Pointer

and Length()

Copy data from

driver to buffer

provided()

Activate TP Tx

task()

CanTp_RxIndication()

CanTp_RxIndication(PduIdType, const PduInfoType*)

Copy data from

driver to buffer

provided()

PduR_CanTpProvideRxBuffer(BufReq_ReturnType,

PduIdType, PduLengthType, PduInfoType**)

PduR_CanTpProvideRxBuffer()

Store Pointer and

Length()

If necessary, copy non-stored

extra bytes to the new buffer()

PduR_CanTpRxIndication(PduIdType, NotifResultType)

PduR_CanTpRxIndication()

CanTp_RxIndication()

CanIf_Transmit(Std_ReturnType, PduIdType, const PduInfoType*)

CanIf_Transmit()

CanTp_TxConfirmation(PduIdType)

CanTp_TxConfirmation()

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

73 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

Note : This sequence diagram demonstrates the working of the CAN_Tp module
only. However, if the whole system is considered in such reception, more modules
are involved. Since this reception can be triggered in the context of a CAN ISR, the
CAN Tp operation should be as short as possible.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

74 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

9.5.3 Transition description

Transition Name Description

1

CanTp_RxIndication

(

 CanTpRxPduId,

 CanTpRxPduPtr

)

When the CAN Interface receives a frame (here a first
frame), it notifies CanTp by means of a

CanTp_RxIndication callback. CanTpRxPduId

represents the ID of L-PDU that has been received and

CanTpRxPduPtr indicates payload and L-SDU

datalength to the L-SDU.

2

PduR_CanTpProvideRx

Buffer (

 CanTpRxSduId,

 TpSduLength,

 PduInfoPtr

)

CanTp asks the PDU Router to provide a buffer for
incoming data by means of a

PduR_CanTpProvideRxBuffer callback.

3 CanTp stores information about the buffer provided.

4
CanTp activates a task for sending an FC with a Flow
Status set to ContinueToSend. (see step 8.)

5

CanTp_RxIndication

(

 CanTpRxPduId,

 CanTpRxPduPtr

)

When the CAN Interface receives a frame (here a
consecutive frame), CAN Interface notifies CanTp by

means of a CanTp_RxIndication callback.

CanTpRxPduId represents the ID of the CAN frame that

has been received and CanTpRxPduPtr indicates

payload to the L-SDU.

6
CanTp will verify the sequence number and if correct,
copy the data to the buffer provided.

7

Nothing

or

PduR_CanTpProvideRx

Buffer (

 CanTpRxSduId,

 TpSduLength,

 PduInfoPtr

)

Or

PduR_CanTpRxIndicat

ion (

 CanTpRxSduId,

 Result

)

Three cases can append :

– [Normal Case]: the buffer is not full, and the
received consecutive frame is not the last one.
CanTp has nothing special to do.

– [Buffer Full]: the buffer provided is full. CanTp

asks the PDU Router for a new buffer by means

of a PduR_CanTpProvideRxBuffer callback. If

the result is correct, it stores the indication and
length of this new buffer. Otherwise CanTp sends
a wait flow control and asks the PDU-Router once
again for a new buffer. If there are extra bytes
from the last CF, they have to be stored in this
new buffer.

– [Last CF Received]: this consecutive frame is the

last (Total length information is known using the
FF_DL parameter in the first frame). CanTp
notifies PDU Router by means of a

PduR_CanTpRxIndication callback.

8

When flow control needs to be sent, the CanTp cyclical
task should call the CAN Interface by using

CanIf_Transmit and await confirmation from the CAN

Interface.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

75 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

10 Configuration specification

This chapter defines configuration parameters and their clustering into containers. In
order to support the specification, Chapter 10.1 describes fundamentals.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
CAN Transport Layer.

Chapter 10.3 specifies published information for the module CAN Transport Layer

CanTp146: The listed configuration items can be derived from a network description
database, which is based on the EcuConfigurationTemplate. The configuration tool
should extract all information to configure the CAN Transport Protocol.

CanTp147: The consistency of the configuration must be checked by the
configuration tool at configuration time. Configuration rules and constraints for
plausibility checks will be performed where possible, during configuration time.

10.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:

- AUTOSAR Layered Software Architecture [2]
- AUTOSAR ECU Configuration Specification [4]. This document describes the

AUTOSAR configuration methodology and the AUTOSAR configuration
metamodel in detail.

The following is only a short survey of the topic and will not replace the ECU
Configuration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic part(s) of an
implementation of a module. This means that only generic or configurable module
implementation can be adapted to the environment (software/hardware) in use during
system and/or ECU configuration.
The configuration of parameters can be achieved at different times during the
software process: before compile time, before link time or after build time. In the
following, the term “configuration class” (of a parameter) will be used in order to refer
to a specific point in time during configuration.

10.1.2 Variants

Variants describe sets of configuration parameters. E.g. variant 1: only pre-compile
time configuration parameters, variant 2: mix of pre-compile- and post build time-
configuration parameters. In one variant, a parameter can only be of one
configuration class.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

76 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

10.1.3 Containers

Containers structure the set of configuration parameters. This means:

- all configuration parameters are kept in containers.
- (sub-) containers can reference (sub-) containers. It is possible to assign a

multiplicity to these references. This multiplicity defines the possible number of
occurrences of the contained parameters.

10.1.4 Specification template for configuration parameters

The following tables consist of three sections:

- general section
- configuration parameter section
- section of included/referenced containers

Name Identifies the parameter by name.

Description Explains the intention of the configuration parameter.

Type or Unit Specifies the type of parameter (e.g., uint8..uint32) or specifies the

unit of the parameter (e.g., ms)

Range Specifies the range (or
possible values) of the

parameter (e.g., 1..15,

ON,OFF)

Describes the value(s) or range(s).

Configuration Class Pre-compile see
4
 Refer here to (a) variant(s).

Link time see
5
 Refer here to (a) variant(s).

Post Build see
6
 Refer here to (a) variant(s).

Scope Describes the scope of the parameter.
The scope describes the impact of the configuration parameter: Does
the setting affect only one instance of the module (instance), all
instances of this module (module), the ECU or a network?

Possible values of scope :
instance, module, ECU, network

Dependency Describes the dependencies with respect to the scope.

4
 see the explanation below this table - Pre-compile time

5
 see the explanation below this table - Link time

6
 see the explanation below this table - Post Build

SWS Item

Container Name Identifies the container with a name

Description Explains the intention and content of the container.

Configuration Parameters

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

77 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

Pre-compile time - specifies whether the configuration parameter will be

of the configuration class Pre-compile time or not

Label Description

x The configuration parameter will be of configuration class Pre-compile time.

-- The configuration parameter will never be of configuration class Pre-compile time.

Link time - specifies whether the configuration parameter will be

of configuration class Link time or not

Label Description

x The configuration parameter will be of configuration class Link time.

-- The configuration parameter will never be of configuration class Link time.

Post Build - specifies whether the configuration parameter will be

of configuration class Post Build or not

Label Description

x
The configuration parameter will be of configuration class Post Build and no specific
implementation is required.

L
Loadable - the configuration parameter will be of configuration class Post Build and only
one configuration parameter set resides in the ECU.

M
Multiple - the configuration parameter will be of configuration class Post Build and is
selected from a set of multiple parameters by passing a dedicated pointer to the init
function of the module.

-- The configuration parameter will never be of configuration class Post Build.

Included Containers

Container Name Multiplicity Scope / Dependency

Reference a valid
(sub)container by its
name.

Specifies the
number of
possible
instances of the
referenced
container and its
contained
configuration
parameters.

Possible values:
<multiplicity>
<min_multiplicity..
max_multiplicity>

Describes the scope of the referenced sub-
container.
The scope describes the impact of the
configuration parameter: Does the setting affect
only one instance of the module (instance), all
instances of this module (module), the ECU or a
network?

Possible values of scope :
instance, module, ECU, network>

Describes the dependencies with respect to the
scope.

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

78 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters are described in Chapters 7 and 8.

10.2.1 Variants

Variant 1: all parameters are configured at compile time.
Variant 2: some parameters are configured at compile time, some parameters are
configured at post build time.

10.2.2 CanTp
Module Name CanTp

Module Description Configuration of the CanTp (CAN Transport Protocol) module.

Included Containers

Container Name Multiplicity Scope / Dependency

CanTpChannel 1..*
This container contains the configuration parameters of the
CanTp channel.

CanTpGeneral 1
This container contains the general configuration parameters
of the CanTp module.

10.2.3 CanTpGeneral
SWS Item CanTp238 :

Container Name CanTpGeneral{CanTpConfiguration}

Description
This container contains the general configuration parameters of the CanTp
module.

Configuration Parameters

SWS Item CanTp299 :

Name

CanTpChangeParameterApi {CANTP_CHANGE_PARAMETER_API}

Description This parameter, if set to true, enables the CanTp_ChangeParameter Api for this
Module.

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: ECU

SWS Item CanTp239 :

Name

CanTpDevErrorDetect {CANTP_DEV_ERROR_DETECT}

Description Switches the Development Error Detection and Notification ON or OFF

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build --

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

79 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

time

Scope / Dependency scope: Module

SWS Item CanTp240 :

Name

CanTpMainFunctionPeriod {CANTP_MAIN_FUNCTION_PERIOD}

Description Allow to configure the time for the MainFunction (as float in seconds). Please
note: This configuration value shall be equal to the value in the ScheduleManger
module.

Multiplicity 1

Type FloatParamDef

Range 0 .. 0.255

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time L VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item CanTp298 :

Name

CanTpPaddingByte {CANTP_PADDING_BYTE}

Description Used for the initialization of unused bytes with a certain value

Multiplicity 1

Type IntegerParamDef

Range 0 .. 255

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item CanTp282 :

Name

CanTpTc {CANTP_TC}

Description Preprocessor switch for enabling Transmit Cancellation and Receive
Cancellation.

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: ECU

No Included Containers

10.2.4 CanTpChannel
SWS Item CanTp288 :

Container Name CanTpChannel

Description
This container contains the configuration parameters of the CanTp
channel.

Configuration Parameters

SWS Item CanTp289 :

Name

CanTpChannelMode

Description The CAN Transport Layer supports half and full duplex channel modes.

Multiplicity 1

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

80 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

Type EnumerationParamDef

Range CANTP_MODE_FULL_DUPLEX Full duplex channel.

CANTP_MODE_HALF_DUPLEX Half duplex channel.

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency

Included Containers

Container Name Multiplicity Scope / Dependency

CanTpRxNSdu 0..*
The following parameters needs to be configured for each
CAN N-SDU that the CanTp module receives via the
CanTpChannel.

CanTpTxNSdu 0..*
The following parameters needs to be configured for each
CAN N-SDU that the CanTp module transmits via the
CanTpChannel.

10.2.5 CanTpRxNSdu
SWS Item CanTp137 :

Container Name CanTpRxNSdu{RxNsdu}

Description
The following parameters needs to be configured for each CAN N-SDU
that the CanTp module receives via the CanTpChannel.

Configuration Parameters

SWS Item CanTp242 :

Name

CanTpAddressingFormat {CANTP_ADDRESSING_FORMAT}

Description Declares which communication addressing mode is supported for this Rx N-SDU.
Enum values: CanTpStandard. To use normal addressing format.
CanTpExtended. To use extended addressing format.

Multiplicity 1

Type EnumerationParamDef

Range CANTP_EXTENDED Extended addressing format

CANTP_STANDARD Standard addressing format

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: Module

SWS Item CanTp243 :

Name

CanTpBs {CANTP_BS}

Description Sets the maximum number of N-PDUs the CanTp receiver allows the sender to
send, before waiting for an authorization to continue transmission of the following
N-PDUs.For further details on this parameter value see ISO 15765-2
specification. Note: For reasons of buffer length, the CAN Transport Layer can
adapt the BS value within the limit of this maximum BS

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time L VARIANT-POST-BUILD

Scope / Dependency scope: Module

SWS Item CanTp244 :

Name

CanTpNar {CANTP_NAR}

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

81 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

Description Value in seconds of the N_Ar timeout. N_Ar is the time for transmission of a CAN
frame (any N_PDU) on the receiver side.

Multiplicity 1

Type FloatParamDef

Range -INF .. INF

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time L VARIANT-POST-BUILD

Scope / Dependency scope: Module

SWS Item CanTp245 :

Name

CanTpNbr {CANTP_NBR}

Description Value in seconds of the performance requirement for (N_Br + N_Ar). N_Br is the
elapsed time between the receiving indication of a FF or CF or the transmit
confirmation of a FC, until the transmit request of the next FC.

Multiplicity 1

Type FloatParamDef

Range -INF .. INF

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time L VARIANT-POST-BUILD

Scope / Dependency scope: Module

SWS Item CanTp246 :

Name

CanTpNcr {CANTP_NCR}

Description Value in seconds of the N_Cr timeout. N_Cr is the time until reception of the next
Consecutive Frame N_PDU.

Multiplicity 1

Type FloatParamDef

Range -INF .. INF

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time L VARIANT-POST-BUILD

Scope / Dependency scope: Module

SWS Item CanTp248 :

Name

CanTpRxDl {CANTP_DL}

Description Data Length Code of this RxNsdu. In case of variable message length, this value
indicates the minimum data length. Depending on SF or FF N-SDU the value will
be limited to 7 (6 for an extended addressing format) and 4095 respectively. This
parameter is set to obsolete and will be removed in future.

Multiplicity 0..1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: Module

SWS Item CanTp276 :

Name

CanTpRxNSduId {CANTP_RXNSDU_ID}

Description Unique identifier to a structure that contains all useful information to process the

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

82 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

reception of a RxNsdu.

Multiplicity 1

Type IntegerParamDef (Symbolic Name generated for this parameter)

Range 0 ..

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: Module

SWS Item CanTp249 :

Name

CanTpRxPaddingActivation {CANTP_PADDING_ACTIVATION}

Description Defines if the receive frame uses padding or not. Definition of enumeration
values: CanTpOn: The N-PDU received uses padding for SF, FC and the last CF.
(N-PDU length is always 8 bytes) CanTpOff: The N-PDU received does not use
padding for SF, CF and the last CF. (N-PDU length is dynamic)

Multiplicity 1

Type EnumerationParamDef

Range CANTP_OFF Padding is not used

CANTP_ON Padding is used

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: Module

SWS Item CanTp250 :

Name

CanTpRxTaType {CANTP_TA_TYPE}

Description Declares the communication type of this Rx N-SDU.

Multiplicity 1

Type EnumerationParamDef

Range CANTP_FUNCTIONAL Functional request type

CANTP_PHYSICAL Physical request type

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: Module

SWS Item CanTp251 :

Name

CanTpRxWftMax {CANTP_WFTMAX}

Description This parameter indicates how many Flow Control wait N-PDUs can be
consecutively transmitted by the receiver. It is local to the node and is not
transmitted inside the FC protocol data unit. CanTpRxWftMax is used to avoid
sender nodes being potentially hooked-up in case of a temporarily reception
inability on the part of the receiver nodes, whereby the sender could be waiting
continuously.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time L VARIANT-POST-BUILD

Scope / Dependency scope: Module

SWS Item CanTp252 :

Name

CanTpSTmin {CANTP_STMIN}

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

83 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

Description Sets the duration of the minimum time the CanTp sender shall wait between the
transmissions of two CF N-PDUs. For further details on this parameter value see
ISO 15765-2 specification.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time L VARIANT-POST-BUILD

Scope / Dependency scope: Module

SWS Item CanTp300 :

Name

CanTpStaticBlockSize {CANTP_STATIC_BLOCK_SIZE}

Description If this parameter is TRUE, the BlockSize will remain the same as in the first flow
control. If this parameter is FALSE, the BlockSize is dynamic.

Multiplicity 1

Type BooleanParamDef

Default value false

ConfigurationClass Pre-compile
time

X VARIANT-PRE-COMPILE

Link time --

Post-build
time

X VARIANT-POST-BUILD

Scope / Dependency scope: Module

SWS Item CanTp241 :

Name

CanTpRxNSduRef

Description Reference to a Pdu in the COM-Stack.

Multiplicity 1

Type Reference to [Pdu]

ConfigurationClass Pre-compile
time

X VARIANT-PRE-COMPILE

Link time X VARIANT-POST-BUILD

Post-build
time

--

Scope / Dependency

Included Containers

Container Name Multiplicity Scope / Dependency

CanTpNSa 0..1
Contains the parameters needed to configure each RxNSdu or
TxNSdu with CanTpAddressingFormat set to CanTpExtended.

CanTpNTa 0..1
The following parameters need to be configured for each
RxNsdu or TxNsdu with the CanTpAddressingFormat set to
CanTpExtended.

CanTpRxNPdu 1
Used for grouping of the ID of a PDU and the Reference to a
PDU.

CanTpTxFcNPdu 0..1
Used for grouping of the ID of a PDU and the Reference to a
PDU.

10.2.6 CanTpRxNPdu
SWS Item CanTp256 :

Container Name CanTpRxNPdu

Description Used for grouping of the ID of a PDU and the Reference to a PDU.

Configuration Parameters

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

84 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

SWS Item CanTp258 :

Name

CanTpRxNPduId {CANTP_RXNPDU_ID}

Description The N-PDU identifier attached to the RxNsdu is identified by CanTpRxNSduId.
Each RxNsdu identifier is linked to only one SF/FF/CF N-PDU identifier.
Nevertheless, in the case of extended addressing format, the same N-PDU
identifier can be used for several N-SDU identifiers. The distinction is made by
the N_TA value (first data byte of SF or FF frames).

Multiplicity 1

Type IntegerParamDef (Symbolic Name generated for this parameter)

Range 0 ..

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: module

SWS Item CanTp257 :

Name

CanTpRxNPduRef

Description Reference to a Pdu in the COM-Stack.

Multiplicity 1

Type Reference to [Pdu]

ConfigurationClass Pre-compile
time

X VARIANT-PRE-COMPILE

Link time --

Post-build
time

L VARIANT-POST-BUILD

Scope / Dependency

No Included Containers

10.2.7 CanTpTxFcNPdu
SWS Item CanTp259 :

Container Name CanTpTxFcNPdu

Description Used for grouping of the ID of a PDU and the Reference to a PDU.

Configuration Parameters

SWS Item CanTp260 :

Name

CanTpTxFcNPduRef

Description Reference to a Pdu in the COM-Stack.

Multiplicity 1

Type Reference to [Pdu]

ConfigurationClass Pre-compile
time

X VARIANT-PRE-COMPILE

Link time --

Post-build
time

L VARIANT-POST-BUILD

Scope / Dependency

No Included Containers

10.2.8 CanTpTxNSdu
SWS Item CanTp138 :

Container Name CanTpTxNSdu{TxNsdu}

Description
The following parameters needs to be configured for each CAN N-SDU
that the CanTp module transmits via the CanTpChannel.

Configuration Parameters

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

85 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

SWS Item CanTp262 :

Name

CanTpAddressingMode {CANTP_ADDRESSING_MODE}

Description Declares which communication addressing format is supported for this TxNsdu.
Definition of Enumeration values: CanTpStandard to use normal addressing
format. CanTpExtended to use extended addressing format (the N_TA container
of this TxNsdu will be used).

Multiplicity 1

Type EnumerationParamDef

Range CANTP_EXTENDED Extended addressing format

CANTP_STANDARD Standard addressing format

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: Module

SWS Item CanTp263 :

Name

CanTpNas {CANTP_NAS}

Description Value in second of the N_As timeout. N_As is the time for transmission of a CAN
frame (any N_PDU) on the part of the sender.

Multiplicity 1

Type FloatParamDef

Range -INF .. INF

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time L VARIANT-POST-BUILD

Scope / Dependency scope: Module

SWS Item CanTp264 :

Name

CanTpNbs {CANTP_NBS}

Description Value in seconds of the N_Bs timeout. N_Bs is the time of transmission until
reception of the next Flow Control N_PDU.

Multiplicity 1

Type FloatParamDef

Range -INF .. INF

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time L VARIANT-POST-BUILD

Scope / Dependency scope: Module

SWS Item CanTp265 :

Name

CanTpNcs {CANTP_NCS}

Description Value in seconds of the performance requirement of (N_Cs + N_As). N_Cs is the
time which elapses between the transmit request of a CF N-PDU until the
transmit request of the next CF N-PDU.

Multiplicity 1

Type FloatParamDef

Range -INF .. INF

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time L VARIANT-POST-BUILD

Scope / Dependency scope: Module

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

86 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

SWS Item CanTp267 :

Name

CanTpTxDl {CANTP_DL}

Description Data Length Code of this TxNsdu. In case of variable length message, this value
indicates the minimum data length. This parameter is set to obsolete and will be
removed in future.

Multiplicity 0..1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: Module

SWS Item CanTp268 :

Name

CanTpTxNSduId {CANTP_TXNSDU_ID}

Description Unique identifier to a structure that contains all useful information to process the
transmission of a TxNsdu.

Multiplicity 1

Type IntegerParamDef (Symbolic Name generated for this parameter)

Range 0 ..

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: Module

SWS Item CanTp269 :

Name

CanTpTxPaddingActivation {CANTP_PADDING_ACTIVATION}

Description Defines if the transmit frame use padding or not. Definition of Enumeration
values: CanTpOn The transmit N-PDU uses padding for SF, FC and the last CF.
(N-PDU length is always 8 bytes) CanTpOff The transmit N-PDU does not use
padding for SF, CF and the last CF. (N-PDU length is dynamic)

Multiplicity 1

Type EnumerationParamDef

Range CANTP_OFF Padding is not used

CANTP_ON Padding is used

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: Module

SWS Item CanTp270 :

Name

CanTpTxTaType {CANTP_TA_TYPE}

Description Declares the communication type of this TxNsdu. Enumeration values:
CanTpPhysical. Used for 1:1 communication. CanTpFunctional. Used for 1:n
communication.

Multiplicity 1

Type EnumerationParamDef

Range CANTP_FUNCTIONAL Functional request type

CANTP_PHYSICAL Physical request type

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: Module

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

87 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

SWS Item CanTp261 :

Name

CanTpTxNSduRef

Description Reference to a Pdu in the COM-Stack.

Multiplicity 1

Type Reference to [Pdu]

ConfigurationClass Pre-compile
time

X VARIANT-PRE-COMPILE

Link time X VARIANT-POST-BUILD

Post-build
time

--

Scope / Dependency

Included Containers

Container Name Multiplicity Scope / Dependency

CanTpNSa 0..1
Contains the parameters needed to configure each RxNSdu or
TxNSdu with CanTpAddressingFormat set to CanTpExtended.

CanTpNTa 0..1
The following parameters need to be configured for each
RxNsdu or TxNsdu with the CanTpAddressingFormat set to
CanTpExtended.

CanTpRxFcNPdu 0..1
Used for grouping of the ID of a PDU and the Reference to a
PDU.

CanTpTxNPdu 1
Used for grouping of the ID of a PDU and the Reference to a
PDU.

10.2.9 CanTpTxNPdu
SWS Item CanTp274 :

Container Name CanTpTxNPdu

Description Used for grouping of the ID of a PDU and the Reference to a PDU.

Configuration Parameters

SWS Item CanTp275 :

Name

CanTpTxNPduRef

Description Reference to a Pdu in the COM-Stack.

Multiplicity 1

Type Reference to [Pdu]

ConfigurationClass Pre-compile
time

X VARIANT-PRE-COMPILE

Link time --

Post-build
time

X VARIANT-POST-BUILD

Scope / Dependency

No Included Containers

10.2.10 CanTpRxFcNPdu
SWS Item CanTp271 :

Container Name CanTpRxFcNPdu

Description Used for grouping of the ID of a PDU and the Reference to a PDU.

Configuration Parameters

SWS Item CanTp273 :

Name

CanTpRxFcNPduId {CANTP_RXFC_NPDU_ID}

Description N-PDU identifier attached to the FC N-PDU of this TxNsdu identified by
CanTpTxNSduId. Each TxNsdu identifier is linked to one Rx FC N-PDU identifier
only. However, in the case of extended addressing format, the same FC N-PDU
identifier can be used for several N-SDU identifiers. The distinction is made by

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

88 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

means of the N_TA value (first data byte of FC frames).

Multiplicity 1

Type IntegerParamDef (Symbolic Name generated for this parameter)

Range 0 ..

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: Module

SWS Item CanTp272 :

Name

CanTpRxFcNPduRef

Description Reference to a Pdu in the COM-Stack.

Multiplicity 1

Type Reference to [Pdu]

ConfigurationClass Pre-compile
time

X VARIANT-PRE-COMPILE

Link time --

Post-build
time

L VARIANT-POST-BUILD

Scope / Dependency

No Included Containers

10.2.11 CanTpNTa
SWS Item CanTp139 :

Container Name CanTpNTa{N_Ta}

Description
The following parameters need to be configured for each RxNsdu or
TxNsdu with the CanTpAddressingFormat set to CanTpExtended.

Configuration Parameters

SWS Item CanTp255 :

Name

CanTpNTa {CANTP_NTA}

Description If an RxNsdu or a TxNsdu is configured for extended addressing format, this
parameter contains the transport protocol target address's value.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: Module

No Included Containers

10.2.12 CanTpNSa
SWS Item CanTp253 :

Container Name CanTpNSa{N_Sa}

Description
Contains the parameters needed to configure each RxNSdu or TxNSdu
with CanTpAddressingFormat set to CanTpExtended.

Configuration Parameters

SWS Item CanTp254 :

Name

CanTpNSa {CANTP_NSA}

Description If an RxNSdu ora TxNSdu is configured for extended addressing format, this

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

89 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

parameter contains the transport protocol source address's value.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency

No Included Containers

Specification of CAN Transport Layer
 V2.6.0

R3.2 Rev 3

90 of 90 Document ID 014: AUTOSAR_SWS_CAN_TP

 - AUTOSAR confidential -

10.3 Published Information

Published information contains data defined by the implementer of the SW module
that does not change when the module is adapted (i.e. configured) to the actual
HW/SW environment. It thus contains version and manufacturer information.

The standard common published information like

vendorId (<Module>_VENDOR_ID),
moduleId (<Module>_MODULE_ID),
arMajorVersion (<Module>_AR_MAJOR_VERSION),
arMinorVersion (<Module>_ AR_MINOR_VERSION),
arPatchVersion (<Module>_ AR_PATCH_VERSION),
swMajorVersion (<Module>_SW_MAJOR_VERSION),
swMinorVersion (<Module>_ SW_MINOR_VERSION),
swPatchVersion (<Module>_ SW_PATCH_VERSION),
vendorApiInfix (<Module>_VENDOR_API_INFIX)

is provided in the BSW Module Description Template (see [12] Figure 4.1 and Figure
7.1).

Additional published parameters are listed below if applicable for this module.

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability in automotive domain

	5 Dependencies on other modules
	5.1 AUTOSAR architecture basic concepts
	5.1.1 CAN Transport Layer connection(s)
	5.1.2 CAN Transport Layer interactions
	5.1.3 Processing mode
	5.1.4 Data consistency
	5.1.5 Static configuration
	5.1.6 PDU Router services
	5.1.7 CAN Interface services

	5.2 File structure
	5.2.1 Code file structure
	5.2.2 Header file structure
	5.2.3 Design Rules

	6 Requirements traceability
	7 Functional specification
	7.1 Services provided to upper layer
	7.1.1 Initialization and shutdown
	7.1.2 Transmit request
	7.1.3 Transmit cancellation

	7.2 Services provided to the lower layer
	7.2.1 Transmit confirmation
	7.2.2 Reception indication

	7.3 Internal behavior
	7.3.1 N-SDU Reception
	7.3.2 N-SDU Transmission
	7.3.3 Buffer strategy
	7.3.4 Protocol parameter setting services
	7.3.5 Tx and Rx data flow
	7.3.6 Relationship between CAN NSduId and CAN LSduId
	7.3.7 Concurrent connection
	7.3.8 N-PDU padding
	7.3.9 Handling of unexpected N-PDU arrival

	7.4 Error classification
	7.5 Error detection
	7.6 Error notification

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 CanTp_Init
	8.3.2 CanTp_GetVersionInfo
	8.3.3 CanTp_Shutdown
	8.3.4 CanTp_Transmit
	8.3.5 CanTp_CancelTransmit
	8.3.6 CanTp_CancelReceive
	8.3.7 CanTp_ChangeParameter
	8.3.8 CanTp_ReadParameter
	8.3.9 Main Function

	8.4 Call-back notifications
	8.4.1 CanTp_RxIndication
	8.4.2 CanTp_TxConfirmation

	8.5 Expected Interfaces
	8.5.1 Mandatory Interfaces
	8.5.2 Optional Interfaces

	9 Sequence diagrams
	9.1 SF N-SDU received and no buffer provided
	9.1.1 Assumptions
	9.1.2 Sequence diagram
	9.1.3 Transition description

	9.2 Successful SF N-PDU reception
	9.2.1 Assumptions
	9.2.2 Sequence diagram
	9.2.3 Transition description

	9.3 Transmit request of SF N-SDU
	9.3.1 Assumptions
	9.3.2 Sequence diagram
	9.3.3 Transition description

	9.4 Transmit request of larger N-SDU
	9.4.1 Assumptions
	9.4.2 Sequence diagram
	9.4.3 Transition description

	9.5 Large N-SDU Reception
	9.5.1 Assumptions
	9.5.2 Sequence diagram
	9.5.3 Transition description

	10 Configuration specification
	10.1 How to read this chapter
	10.1.1 Configuration and configuration parameters
	10.1.2 Variants
	10.1.3 Containers
	10.1.4 Specification template for configuration parameters

	10.2 Containers and configuration parameters
	10.2.1 Variants
	10.2.2 CanTp
	10.2.3 CanTpGeneral
	10.2.4 CanTpChannel
	10.2.5 CanTpRxNSdu
	10.2.6 CanTpRxNPdu
	10.2.7 CanTpTxFcNPdu
	10.2.8 CanTpTxNSdu
	10.2.9 CanTpTxNPdu
	10.2.10 CanTpRxFcNPdu
	10.2.11 CanTpNTa
	10.2.12 CanTpNSa

	10.3 Published Information

