AUTO SAR

Specification of Compiler Abstraction
V2.0.1
R3.1 Rev 0001

Document Title

Specification of Compiler
Abstraction

Document Owner

AUTOSAR GbR

Document Responsibility

AUTOSAR GbR

Document Identification No 051
Document Classification Standard
Document Version 2.0.1
Document Status Final
Part of Release 3.1
Revision 0001
Document Change History
Date Version |Changed by Change Description
23.06.2008| 2.0.1 |AUTOSAR Legal disclaimer revised
Administration
27.11.2007| 2.0.0 |AUTOSAR e Keyword " STATIC " has been renamed
Administration to "STATIC"

e Keyword " INLINE_" has been renamed to
"INLINE"

o Keyword "TYPEDEF" has been added as
empty memory qualifier for use in type
definitions

e Document meta information extended

e Small layout adaptations made

31.01.2007| 1.1.0 |AUTOSAR e Add: COMPILERO58
Administration |e Add: COMPILERO57

e Change: COMPILER040

e Legal disclaimer revised

¢ Release Notes added

e “Advice for users” revised

e “Revision Information” added

27.04.2006| 1.0.0 |AUTOSAR Initial Release

Administration

1o0f 43

Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
vV2.0.1

R3.1 Rev 0001

Page left intentionally blank

2 0f 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
VvV2.0.1

R3.1 Rev 0001

Disclaimer

This document of a specification as released by the AUTOSAR Development
Partnership is intended for the purpose of information only. The commercial
exploitation of material contained in this specification requires membership of the
AUTOSAR Development Partnership or an agreement with the AUTOSAR
Development Partnership. The AUTOSAR Development Partnership will not be liable
for any use of this specification. Following the completion of the development of the
AUTOSAR specifications commercial exploitation licenses will be made available to
end users by way of written License Agreement only.

No part of this publication may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying and microfilm, without per-
mission in writing from the publisher." The word AUTOSAR and the AUTOSAR logo
are registered trademarks.

Copyright © 2004-2008 AUTOSAR Development Partnership. All rights reserved.

Advice to users of AUTOSAR Specification Documents:

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

30f43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
VvV2.0.1

R3.1 Rev 0001

Table of Contents

1 Introduction and funNctional OVEIVIEWiiiiiiiiiiiiiiie e 6
2 Acronyms and abbreVviationscoeuuuuuiiiiee e 7
3 Related dOCUMENTALION.uuiiii e 8
3.1 INPUL AOCUMEBNES.....cciieiiieiie et e e e e e e e e et e e e e e e e e e e nnan s 8
3.2 Related standards and NOIMScoooiiiiiiiiiiiii e 9
4 Constraints and aSSUMPLIONScccovvviiiiiiiie e e e e ee e 10
o R {1 011 = £ [0 10
4.2 Applicability to car dOMaiNS..........uuuiiiiiieeiiieece e 10
4.3 Applicability to safety related environmMentscccevevvvviiiiineeeeeeeeeiiinennn. 10

5 Dependencies to other modules..............ouueiiiii i 11
5.1 Code file STIUCTUIcoveiiiiee e 11
5.2 Header file StrUCIUIEiiii e 11
5.3 Connections to other Modules...........ccoooooiiiiiiiiiiii e 11
5.3.1 Compiler ADSTraCtioN...........ceuuuiiiiiiee e e e e e 11
5.3.2 AT g aTe] ALY, F=T o] o] T RSP 11
5.3.3 LINKEI-SEEHNGS ... 12

6 Requirements traceabilityccccoeeiiiiiiiiii e 13
T ANBIYSIS .ttt 18
7.1 Keywords for fUNCLONScccoiiiiiice e 18
7.2 KeYWOrds fOF POINIEIS.ccoieeeeeeeee e 19
8 Functional SPeCIfiCatioNiiiii i 24
8.1 GENEIAIISSUESccieieeeieiiie ettt e e e e e e et e e e e e e e e e e nena s 24
8.2 Contents of COMPIIEr.N......oii i 24
8.3 Contents of Compiler_Cfg.N ... 25
O API SPECIHICALIONuuiee e a e e e aaaaa 26
S R0 R B 1= 1711 o] o P 26
9.1.1 mMemory class AUTOMATIC ... e 26
9.1.2 memory class TYPEDEF ... 26
0.1.3 STATIC i 26
9.14 N1 1 i I 26
9.15 INLINE L 27
9.2 MaACIOS fOr TUNCHONSvviiiee e e e e e e 27
9.2.1 FUN C L 27
9.3 MACIOS TOF POINLEIS. ... 27
9.3.1 P2V AR o 27
9.3.2 P2 ON ST e ————— 28
9.3.3 CONSTP2VAR ... 29
9.3.4 CONSTP2CONST ..ottt 29
9.35 P2FEUNC ... 30
9.4 Keywords fOr CONSTANTScccoeiiieeeeee e 31
0.4. 1 CONST i 31

4 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
VvV2.0.1

R3.1 Rev 0001

9.5 Keywords for variablesS ... 31
0.5.1 VAR 31

10 Y= To [N 1=] g Tt 20 = Vo = o 1P 33
11 Configuration SPeCIfiCAtIONccceuiiiiiiii e 34
11.1 How to read thisS Chaptercccooiiiiiiii e 34
11.1.1 Configuration and configuration parameterscccccuveieeeeeeeeeeennnnns 34
11,02 VaAlANTS e 35
0 R B o ¢ r= 1 L= £ PSPPI 35
11.2 Containers and configuration parameterscccceeeeeeeeeeeeeiiiiinieeeeeeeeennns 35
0 R - T g - | £ PP UUPPTTPPP 35
11.2.2 Module Configuration (Memory and pointer classes)............ccceevevvnnenn 36
11.3 Published INfOrmation............cooooiiiiiiiiiii e 39
12 N 1T PP 40
12.1 List of Compiler SYMDOIScoiiiiiiiiii e 40
12.2 Requirements on implementations using compiler abstraction 40
12.3 PrOPOSEU PrOCESSciiiieiiiiiiiiee e e e e eeeeeitia e e e e e e e e e e eetata e e e e e e eeeeesbsa e e e eaaeeeennns 42
12.4 Comprehensive eXampPle.......cccociiiiieiiiiiiiie e e e e e e e eaaans 43
50f 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
VvV2.0.1

R3.1 Rev 0001
1 Introduction and functional overview

This document specifies macros for the abstraction of compiler specific keywords
used for addressing data and code within declarations and definitions.

Mainly compilers for 16 bit platforms (e.g. Cosmic and Metrowerks for S12X or
Tasking for ST10) are using special keywords to cope with properties of the
microcontroller architecture caused by the limited 16 bit addressing range. Features
like paging and extended addressing (to reach memory beyond the 64k border) are
not chosen automatically by the compiler, if the memory model is not adjusted to
‘large’ or ‘huge’. The location of data and code has to be selected explicitly by special
keywords. Those keywords, if directly used within the source code, would make it
necessary to port the software to each new microcontroller family and would prohibit
the requirement of platform independency of source code.

If the memory model is switched to ‘large’ or ‘huge’ by default (to circumvent these
problems) the project will suffer from an increased code size.

This document specifies a three-step concept:

1. The file Compiler.h provides macros for the encapsulation of definitions and
declarations.

2. Each single module has to distinguish between at least the following different
memory classes and pointer classes. Each of these classes is represented by
a define (e.g. EEP_CODE).

3. The file Compiler_Cfg.h allows to configure these defines with the appropriate
compiler specific keywords according to the modules description and memory
set-up of the build scenario.

Environment

6 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction

V2.0.1
R3.1 Rev 0001

2 Acronyms and abbreviations

Acronyms and abbreviations that have a local scope are not contained in the
AUTOSAR glossary. These must appear in a local glossary.

Acronym: Description:

Large, huge Memory model configuration of the microcontroller’s compiler. By default, all access
mechanisms are using extended/paged addressing.
Some compilers are using the term ‘huge’ instead of ‘far’.

Tiny, small Memory model configuration of the microcontroller’s compiler. By default, all access
mechanisms are using normal addressing.
Only data and code within the addressing range of the platform’s architecture is
reachable (e.g. 64k on a 16 bit architecture).

far Compiler keyword for extended/paged addressing scheme (for data and code that
may be outside the normal addressing scheme of the platform’s architecture).

near Compiler keyword for normal addressing scheme (for data and code that is within
the addressing range of the platform’s architecture).

C89 ANSI X3.159-1989 Programming Language C

C90 ISO/IEC 9899:1990

C99 ISO/IEC 9899:1999, 2nd edition, 1. December 1999

EmbeddedC ISO/IEC DTR 18037, draft standard, 24. September 2003

7 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction

V2.0.1
R3.1 Rev 0001

3 Related documentation

3.1
[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

8 of 43

Input documents

List of Basic Software Modules,
https://svn2.autosar.org/repos2/22 Releases
AUTOSAR_BasicSoftwareModules.pdf

General Requirements on Basic Software Modules,
https://svn2.autosar.org/repos2/22_Releases
AUTOSAR_SRS_General.pdf

Layered Software Architecture,
https://svn2.autosar.org/repos2/22_Releases
AUTOSAR_LayeredSoftwareArchitecture.pdf

Specification of ECU Configuration,
https://svn2.autosar.org/repos2/22 Releases
AUTOSAR_ECU_Configuration.pdf

AUTOSAR Basic Software Module Description Template,
https://svn2.autosar.org/repos2/22 Releases/
AUTOSAR_BSW_Module_Description.pdf

Cosmic C Cross Compiler User’s Guide for Motorola MC68HC12,V4.5
ARM ADS compiler manual

GreenHills MULTI for V850 V4.0.5:
Building Applications for Embedded V800, V4.0, 30.1.2004

TASKING for ST10 V8.5:

C166/ST10 v8.5 C Cross-Compiler User's Manual, V5.16

C166/ST10 v8.5 C Cross-Assembler, Linker/Locator, Utilities User's Manual,
V5.16

Wind River (Diab Data) for PowerPC Version 5.2.1:
Wind River Compiler for Power PC - Getting Started, Edition 2, 8.5.2004
Wind River Compiler for Power PC - User's Guide, Edition 2, 11.5.2004

TASKING for TriCore TC1796 V2.0R1:
TriCore v2.0 C Cross-Compiler, Assembler, Linker User's Guide, V1.2

Metrowerks CodeWarrior 4.0 for Freescale HC9S12X/XGATE (V5.0.25):
Motorola HC12 Assembler, 2.6.2004

Motorola HC12 Compiler, 2.6.2004

Smart Linker, 2.4.2004

Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases
https://svn2.autosar.org/repos2/22_Releases/

AUTOSAR Specification of Compiler Abstraction
VvV2.0.1
R3.1 Rev 0001

3.2 Related standards and norms

[13] ANSI X3.159-1989 Programming Language C

[14] 1SO/IEC 9899:1990

[15] ISO/IEC 9899:1999, 2nd edition, 1. December 1999

[16] ISO/IEC DTR 18037, draft standard, 24. September 2003

9 0f 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
VvV2.0.1

R3.1 Rev 0001
4 Constraints and assumptions

4.1 Limitations

During specification of abstraction and validation of concept the compilers listed in
chapter 3.1 have been considered. If any other compiler requires keywords that
cannot be mapped to the mechanisms described in this specification this compiler
will not be supported by AUTOSAR. In this case, the compiler vendor has to adapt its
compiler.

The concepts described in this document do only apply to C compilers according the
standard C90. C++ is not in scope of this version.
In contradiction to the C-standard, some extensions are required:

- keywords for interrupt declaration

- keywords for hardware specific memory modifier

- uninitialized variables

If the physically existing memory is larger than the logically addressable memory in
either code space or data space and more than the logically addressable space is
used, logical addresses have to be reused. The C language (and other languages as
well) can not cope with this situation.

4.2 Applicability to car domains

No restrictions.

4.3 Applicability to safety related environments

No restrictions. The compiler abstraction file does not implement any functionality,
only symbols and macros.

10 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
VvV2.0.1

R3.1 Rev 0001
5 Dependencies to other modules

COMPILERO48: The SWS Compiler Abstraction is applicable for each AUTOSAR
software module. Therefore the implementation of the of memory class (memclass)
and pointer class (ptrclass) macro parameters (see COMPILERO040) shall fulfill the
implementation and configuration specific needs of each software module in a
specific build scenario.

5.1 Code file structure

Not applicable

5.2 Header file structure

COMPILERO52: Include structure of the compiler specific language extension
header:

cd file structure /

Compiler.h Std_Types.h
«includes»
«includes»
Compiler_Cfg.h

Figure 1: Include structure of Compiler.h

5.3 Connections to other modules

The following shall describe the connections to modules, which are indirectly linked
to each other.

5.3.1 Compiler Abstraction

As described in this document, the compiler abstraction is used to configure the
reachability of elements (pointers, variables, function etc.)

5.3.2 Memory Mapping

This module is used to do the sectioning of memory. The user can define sections for
optimizing the source code.

11 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
VvV2.0.1

R3.1 Rev 0001
5.3.3 Linker-Settings

The classification which elements are assigned to which memory section can be
done by linker-settings.

12 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTO SAR

6 Requirements traceability

Specification of Compiler Abstraction
V2.0.1
R3.1 Rev 0001

Document: AUTOSAR requirements on Basic Software, general

Requirement

Satisfied by

[BSWO003] Version identification

COMPILERO43

[BSWO00300] Module naming convention

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00301] Limit imported information

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00302] Limit exported information

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00304] AUTOSAR integer data types

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00305] Self-defined data types naming convention

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00306] Avoid direct use of compiler and platform
specific keywords

supported by:

COMPILER001, COMPILEROQOS,
COMPILER010, COMPILERO012,
COMPILER013, COMPILERO15,
COMPILER023, COMPILERO26,
COMPILER031, COMPILERO032,
COMPILER033, COMPILERO35,
COMPILER036, COMPILERO39,
COMPILER044, COMPILERO46

[BSWO00307] Global variables naming convention

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00308] Definition of global data

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00309] Global data with read-only constraint

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00310] API naming convention

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00312] Shared code shall be reentrant

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00314] Separation of interrupt frames and service
routines

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00318] Format of module version numbers

COMPILERO43

[BSWO00321] Enumeration of module version numbers

COMPILERO43

[BSWO00323] API parameter checking

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00324] Do not use HIS I/O Library

Not applicable
(non-functional requirement)

[BSWO00325] Runtime of interrupt service routines

Not applicable
(Compiler Abstraction is not a BSW module)

[BSW00326] Transition from ISRs to OS tasks

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00327] Error values naming convention

Not applicable
(Compiler Abstraction is not a BSW module)

[BSW00328] Avoid duplication of code

supported by: COMPILER048

[BSW00329] Avoidance of generic interfaces

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00330] Usage of macros / inline functions instead
of functions

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00331] Separation of error and status values

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00333] Documentation of callback function
context

Not applicable
(Compiler Abstraction is not a BSW module)

13 of 43

Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTO SAR

Specification of Compiler Abstraction
V2.0.1
R3.1 Rev 0001

Requirement

Satisfied by

[BSWO00334] Provision of XML file

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00335] Status values haming convention

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00336] Shutdown interface

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00337] Classification of errors

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00338] Detection and Reporting of development
errors

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00339] Reporting of production relevant error
status

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00341] Microcontroller compatibility
documentation

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00342] Usage of source code and object code

Not applicable
(non-functional requirement)

[BSWO00343] Specification and configuration of time

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00344] Reference to link-time configuration

Not applicable
(Compiler Abstraction is specific per build
scenario)

[BSWO00345] Pre-compile-time configuration

Chapter 11.2.1

[BSWO00346] Basic set of module files

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00347] Naming separation of different instances
of BSW drivers

Not applicable
(Compiler Abstraction is not a BSW module)

[BSW00348] Standard type header

COMPILERO03, COMPILERO004,
COMPILERQ52

[BSWO00350] Development error detection keyword

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00353] Platform specific type header

Not applicable
(Compiler Abstraction is the C-language
extension header)

[BSWO00355] Do not redefine AUTOSAR integer data
types

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00357] Standard API return type

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00358] Return type of init() functions

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00359] Return type of callback functions

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00360] Parameters of callback functions

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00361] Compiler specific language extension
header

COMPILEROO3, COMPILER00O4

[BSWO00369] Do not return development error codes via
API

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00370] Separation of callback interface from API

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00371] Do not pass function pointers via API

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00373] Main processing function naming
convention

Not applicable
(Compiler Abstraction is not a BSW module)

[BSW00374] Module vendor identification

COMPILERO43

[BSWO00375] Notification of wake-up reason

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00376] Return type and parameters of main
processing functions

Not applicable
(Compiler Abstraction is not a BSW module)

14 of 43

Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTO SAR

Specification of Compiler Abstraction
V2.0.1
R3.1 Rev 0001

Requirement

Satisfied by

[BSWO00377] Module specific API return types

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00378] AUTOSAR boolean type

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00379] Module identification

COMPILERO043

[BSWO00380] Separate C-Files for configuration
parameters [approved]

Not applicable
(Compiler Abstraction is specific per build
scenario)

[BSWO00381] Separate configuration header file for pre-
compile time parameters

COMPILER052

[BSWO00383] List dependencies of configuration files

Figure 1. Include structure of Compiler.h

[BSW00384] List dependencies to other modules

COMPILERO48

[BSWO00385] List possible error notifications

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00386] Configuration for detecting an error

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00387] Specify the configuration class of callback
function

Not applicable
(Compiler Abstraction is specific per build
scenario)

[BSWO00388] Introduce containers

Chapter 11.2

[BSWO00389] Containers shall have names

COMPILERO44

[BSWO00390] Parameter content shall be unique within
the module

Not applicable
(Compiler Abstraction is specific per build
scenario)

[BSWO00391] Parameter shall have unique names

Not applicable
(Compiler Abstraction is specific per build
scenario)

[BSW00392] Parameters shall have a type

Not applicable
(Compiler Abstraction is specific per build
scenario)

[BSWO00393] Parameters shall have a range

Not applicable
(Compiler Abstraction is specific per build
scenario)

[BSWO00394] Specify the scope of the parameters

Not applicable
(Compiler Abstraction is specific per build
scenario)

[BSWO00395] List the required parameters (per
parameter)

Not applicable
(Compiler Abstraction is specific per build
scenario)

[BSWO00396] Configuration classes

COMPILERO44

[BSWO00397] Pre-compile-time parameters

COMPILERO44

[BSWO00398] Link-time parameters

Not applicable
(Compiler Abstraction is specific per build
scenario)

[BSWO00399] Loadable Post-build time parameters

Not applicable
(Compiler Abstraction is specific per build
scenario)

[BSWO004] Version check

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00400] Selectable Post-build time parameters

Not applicable
(Compiler Abstraction is specific per build
scenario)

[BSWO00401] Documentation of multiple instances of
configuration parameters

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00402] Published information

COMPILERO43

[BSWO00404] Reference to post build time configuration

Not applicable
(Compiler Abstraction is specific per build
scenario)

15 of 43

Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTO SAR

Specification of Compiler Abstraction
V2.0.1
R3.1 Rev 0001

Requirement

Satisfied by

[BSWO00405] Reference to multiple configuration sets

Not applicable
(Compiler Abstraction is specific per build
scenario)

[BSWO00406] Check module initialization

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00407] Function to read out published parameters

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00408] Configuration parameter naming
convention

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00409] Header files for production code error IDs

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00410] Compiler switches shall have defined
values

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00411] Get version info keyword

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00412] Separate H-File for configuration
parameters

COMPILERQ52

[BSWO00413] Accessing instances of BSW modules

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00414] Parameter of init function

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00415] User dependent include files

Not applicable
(non-functional requirement)

[BSWO00416] Sequence of Initialization

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00417] Reporting of Error Events by Non-Basic
Software

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00419] Separate C-Files for pre-compile time
configuration parameters

Not applicable
(Compiler Abstraction is specific per build
scenario)

[BSW00420] Production relevant error event rate
detection

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00421] Reporting of production relevant error
events

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00422] Debouncing of production relevant error
status

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00423] Usage of SW-C template to describe BSW
modules with AUTOSAR Interfaces

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00424] BSW main processing function task
allocation

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00425] Trigger conditions for schedulable objects

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00426] Exclusive areas in BSW modules

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00427] ISR description for BSW modules

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00428] Execution order dependencies of main
processing functions

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00429] Restricted BSW OS functionality access

Not applicable
(Compiler Abstraction is not a BSW module)

[BSW00431] The BSW Scheduler module implements
task bodies

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00432] Modules should have separate main
processing functions for read/receive and write/transmit
data path

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO00433] Calling of main processing functions

Not applicable
(Compiler Abstraction is not a BSW module)

16 of 43

Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTO SAR

Specification of Compiler Abstraction
V2.0.1
R3.1 Rev 0001

Requirement

Satisfied by

[BSWO00434] The Schedule Module shall provide an API
for exclusive areas

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO005] No hard coded horizontal interfaces within
MCAL

Not applicable
(non-functional requirement)

[BSWO006] Platform independency

supported by:

COMPILER0O01, COMPILEROQS,
COMPILER010, COMPILERO12,
COMPILER013, COMPILERO15,
COMPILER023, COMPILERO26,
COMPILERO031, COMPILERO032,
COMPILER033, COMPILERO035,
COMPILER036, COMPILERO039,
COMPILER044, COMPILER046

[BSW007] HIS MISRA C

Not applicable
(Compiler Abstraction is the C-language
extension header)

[BSWO009] Module User Documentation

Not applicable
(Compiler Abstraction is not a BSW module)

[BSWO010] Memory resource documentation

Not applicable
(Compiler Abstraction is not a BSW module)

[BSW101] Initialization interface

Not applicable
(Compiler Abstraction is not a BSW module)

[BSW158] Separation of configuration from
implementation

Not applicable
(Compiler Abstraction is not a BSW module)

[BSW159] Tool-based configuration

Chapter 11.2.2

[BSW160] Human-readable configuration data

COMPILER044

[BSW161] Microcontroller abstraction

Not applicable
(non-functional requirement)

[BSW162] ECU layout abstraction

Not applicable
(non-functional requirement)

[BSW164] Implementation of interrupt service routines

Not applicable
(non-functional requirement)

[BSW167] Static configuration checking

Not applicable
(Compiler Abstraction is specific per build
scenario)

[BSW168] Diagnostic Interface of SW components

Not applicable
(Compiler Abstraction is not a BSW module)

[BSW170] Data for reconfiguration of AUTOSAR SW-
Components

Not applicable
(Compiler Abstraction is specific per build
scenario)

[BSW171] Configurability of optional functionality

Not applicable
(Compiler Abstraction is specific per build
scenario)

[BSW172] Compatibility and documentation of
scheduling strategy

Not applicable
(Compiler Abstraction is not a BSW module)

17 of 43

Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
v2.0.1

R3.1 Rev 0001
7 Analysis

This chapter does not contain requirements. It just gives an overview of used
keywords and their syntax within different compilers. This analysis is required for a
correct and complete specification of methods and keywords and as rationale for
those people who doubt the necessity of a compiler abstraction in AUTOSAR. This
chapter is no complete overview of existing compilers and platforms and their usage
in AUTOSAR. But it shows examples that cover most use cases, from which the
concepts specified in the consecutive chapters are derived.

7.1 Keywords for functions

On platforms with memory exceeding the addressable range of the architecture
(e.g. S12X with 512k of Flash) the compiler needs to know if a called function is
reachable within normal addressing commands (‘near’) or extended/paged

addressing commands (‘far’).

Compiler analysis for near functions:

Compiler Required syntax

Cosmic, S12X @near void MyNearFunction(void);
Call of a near function results in a local page call or to a call into
direct page.

Dependent of compiler settings the compiler controls only the
calling convention or allocation and calling convention.

Metrowerks, S12X void _ near MyNearFunction(void);
Call of a near function results in a local page call or to a call into
direct page.

IAR, HCS12 C/C++ void _ non_banked MyNearFunction (void);

Tasking, ST10 void _near MyNearFunction (void);

_near void MyNearFunction (void);
Call of a near function results in a local segment code access
(relevant in large model).

Tasking, TC1796 void MyNearFunction (void);
(No keywords required)

Greenhills, V850 void MyNearFunction (void);
(No keywords required)

ADS, ST30 void MyNearFunction (void);
(No keywords required)

DIABDATA, MPC5554 void MyNearFunction (void);

(No keywords required)

18 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTO SAR

Specification of Compiler Abstraction
V2.0.1
R3.1 Rev 0001

Compiler analysis for far functions:

Compiler

Required syntax

Cosmic, S12X

@far void MyFarFunction(void);
Dependent of compiler settings the compiler controls only the
calling convention or allocation and calling convention.

Metrowerks, S12X

void __ far MyFarFunction(void);

IAR, HCS12 C/C++

void _ banked MyFarFunction (void);

Tasking, ST10

void _huge MyFarFunction (void);
_huge void MyFarFunction (void);

Tasking, TC1796

void MyFarFunction (void);
(No keywords required)

Greenhills, V850

void MyFarFunction (void);
(No keywords required)

ADS, ST30

void MyFarFunction (void);
(No keywords required)

DIABDATA, MPC5554

void MyFarFunction (void);
(No keywords required)

7.2 Keywords for pointers

On platforms with memory exceeding the addressable range of the architecture
(e.g. S12X with 512k of Flash) the compiler needs to know if data referenced by a
pointer is accessible by normal addressing commands (‘near’) or extended/paged

addressing commands (‘far’).

Compiler analysis for near pointers pointing to variable_data in RAM (use case:
pointer to data buffer where data has to be copied to):

Compiler

Required syntax

Cosmic, S12X

@near uint8* MyNearPointer;

Metrowerks, S12X

uint8* _ near MyNearPointer;

IAR, HCS12 C/C++

uint8* _ datal6 MyNearPointer;

Tasking, ST10

_hear uint8* MyNearPointer;

Tasking, TC1796

uint8* MyNearPointer;
(No keywords required)

Greenhills, V850

uint8* MyNearPointer
(No keywords required)

ADS, ST30

uint8* MyNearPointer
(No keywords required)

DIABDATA, MPC5554

uint8* MyNearPointer
(No keywords required)

19 of 43

Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction

V2.0.1
R3.1 Rev 0001

Compiler analysis for far pointers pointing to variable data in RAM:

Compiler

Required syntax

Cosmic, S12X

@Ffar uint8* MyFarPointer;

Metrowerks, S12X

uint8* _ far MyFarPointer;

IAR, HCS12 C/C++

(Information not available yet)

Tasking, ST10

_far uint8* MyFarPointer; /*14 bit arithmetic*/
_huge uint8* MyFarPointer; /*24 bit arithmetic*/
_shuge uint8* MyFarPointer; /*16 bit arithmetic*/
/* My personal note: CRAZY */

Tasking, TC1796

uint8* MyFarPointer;
(No keywords required)

Greenhills, V850

uint8* MyFarPointer
(No keywords required)

ADS, ST30

uint8* MyFarPointer
(No keywords required)

DIABDATA, MPC5554

uint8* MyFarPointer
(No keywords required)

Compiler analysis for near pointers pointing to constant data in RAM (use case
pointer to data buffer where data has to be read from):

Compiler

Required syntax

Cosmic, S12X

@near uint8* MyNearPointer;
(Results in access of direct memory area)

Metrowerks, S12X

const uint8* _ near MyNearPointer;
(Results in access of direct memory area)

IAR, HCS12 C/C++

const uint8* MyNearPointer;
(Results in access of direct memory area)

Tasking, ST10

const _near uint8* MyNearPointer;

Tasking, TC1796

const _near uint8* MyNearPointer;

Greenhills, V850

const uint8* MyNearPointer
(No additional keywords required)

ADS, ST30

const uint8* MyNearPointer
(No additional keywords required)

DIABDATA, MPC5554

const uint8* MyNearPointer
(No additional keywords required)

Compiler analysis for far pointers pointing to constant data in RAM:

Compiler

Required syntax

Cosmic, S12X

@Ffar uint8* MyFarPointer;

Metrowerks, S12X

const uint8* _ far MyFarPointer;

IAR, HCS12 C/C++

(Information not available yet)

Tasking, ST10

const _far uint8* MyFarPointer;

Tasking, TC1796

uint8* MyFarPointer;
(No keywords required)

Greenhills, V850

const uint8* MyFarPointer
(No additional keywords required)

ADS, ST30

const uint8* MyFarPointer
(No additional keywords required)

DIABDATA, MPC5554

const uint8* MyFarPointer
(No additional keywords required)

20 of 43

Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
v2.0.1

R3.1 Rev 0001

Compiler analysis for near pointers pointing to data in ROM (use case pointer to
display data in ROM passed to SPI Driver):

Compiler Required syntax
Cosmic, S12X const uint8* MyNearPointer;
(Without near keyword because this is by default near!)
Metrowerks, S12X const uint8* _ near MyNearPointer;
IAR, HCS12 C/C++ const uint8* MyNearPointer;
(Without near keyword because this is by default near!)
Tasking, ST10 const _near uint8* MyNearPointer;
Tasking, TC1796 const uint8* MyNearPointer;
(No keywords required)
Greenhills, V850 const uint8* MyNearPointer
(No additional keywords required)
ADS, ST30 const uint8* MyNearPointer
(No additional keywords required)
DIABDATA, MPC5554 const uint8* MyNearPointer
(No additional keywords required)

Compiler analysis for far pointers pointing to constant data in ROM:

Compiler Required syntax

Cosmic, S12X not possible

Metrowerks, S12X const uint8* _ far MyFarPointer;

IAR, HCS12 C/C++ Access function and the banked constant data are located in the same
bank:

const uint8* MyFarPointer;
but caller shall use the __address 24 of macro

Access function is located in non-banked memory:
PPAGE register has to be handled manually

Access function and the banked constant data are located in different

banks:
Not possible
Tasking, ST10 const _far uint8* MyFarPointer;
Tasking, TC1796 const uint8* MyFarPointer;
(No keywords required)
Greenhills, V850 const uint8* MyFarPointer
(No additional keywords required)
ADS, ST30 const uint8* MyFarPointer

(No additional keywords required)

DIABDATA, MPC5554 const uint8* MyFarPointer
(No additional keywords required)

The HW architecture of the S12X supports different paging mechanisms with
different limitations e.g. supported instruction set or pointer distance. Therefore the
IAR, HCS12 C/C++ and the Cosmic, S12X compilers are limited in the usage of
generic pointers applicable for the whole memory area because of the expected code
overhead.

21 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTO SAR

Specification of Compiler Abstraction
V2.0.1
R3.1 Rev 0001

Conclusion: These vendors should adapt their compilers, because a generic SW
architecture as described by AUTOSAR cannot be adjusted in every case to the
platform specific optimal solution.

Compiler analysis for pointers, where the symbol of the pointer itself is placed in

near-memory:

Compiler

Required syntax

Cosmic, S12X

uint8* @near MyPointerlInNear;

Metrowerks, S12X

__nhear uint8* MyPointeriInNear;

Tasking, ST10

uint8* _near MyPointerlInNear;

Tasking, TC1796

uint8* MyPointerlInNear;
(No keywords required)

Greenhills, V850

uint8* MyPointerlInNear
(No keywords required)

ADS, ST30

uint8* MyPointerlInNear
(No keywords required)

DIABDATA, MPC5554

uint8* MyPointerlInNear
(No keywords required)

Compiler analysis for pointers, where the symbol of the pointer itself is placed in far-

memory:
Compiler Required syntax
Cosmic, S12X uint8* @far MyPointerlInFar;

Metrowerks, S12X

___Ffar uint8* MyPointerlInFar;

Tasking, ST10

uint8* _far MyPointerlInFar;

Tasking, TC1796

uint8* MyPointerlInFar;
(No keywords required)

Greenhills, V850

uint8* MyPointerInFar
(No keywords required)

ADS, ST30

uint8* MyPointerlInFar
(No keywords required)

DIABDATA, MPC5554

uint8* MyPointerlInFar
(No keywords required)

The examples above lead to the conclusion, that for definition of a pointer it is not
sufficient to specify only one memory class. Instead, a combination of two memory
classes, one for the pointer's ‘distance’ and one for the pointer's symbol itself, is

possible, e.qg.:

/* Tasking ST10, far-pointer in near memory

* (both content and pointer in RAM)
*/
_far uint8* _near MyFarPointerinNear;

Compiler analysis for function pointers:

Compiler Required syntax

Cosmic, S12X @near void (* const Irg_InterruptVectorTable[])(void)
Call of a near function results in an interpage call or to a call into direct
page:

22 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction

V2.0.1
R3.1 Rev 0001

Compiler

Required syntax

Metrowerks, S12X

void (*const _ near Irqg_InterruptVectorTable[]) (void)
Call of a near function results in an interpage call or to a call into direct
page:

Near functions and far functions are not compatible because of other ret-
statements:

IAR, HCS12 C/C++

__non_banked void (* const
Irg_InterruptVectorTable[]) (void)

Casting from __non_banked to __banked is performed through zero
extension:
Casting from __banked to __non_banked is an illegal operation.

Tasking, ST10

_far void (*NvM_AsyncCbkPtrType)
(NvM_ModuleldType Moduleld,
NvM_ServiceldType Serviceld)
Call of a near function results in a local segment code access (relevant in
large model):

Tasking, TC1796

void (*NvM_AsyncCbkPtrType)
(NvM_ModuleldType Moduleld,
NvM_ServiceldType Serviceld)
(No additional keywords required)

Greenhills, V850

void (*NvM_AsyncCbkPtrType)
(NvM_ModuleldType Moduleld,
NvM_ServiceldType Serviceld)
(No additional keywords required)

ADS, ST30

void (*NvM_AsyncCbkPtrType)
(NvM_ModuleldType Moduleld,
NvM_ServiceldType Serviceld)
(No additional keywords required)

DIABDATA, MPC5554

void (*NvM_AsyncCbkPtrType)
(NvM_ModuleldType Moduleld,
NvM_ServiceldType Serviceld)
(No additional keywords required)

23 0f 43

Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
VvV2.0.1

R3.1 Rev 0001

8 Functional specification

8.1 General issues

COMPILEROOS3: For each compiler and platform an own compiler abstraction has to
be provided.

8.2 Contents of Compiler.h

COMPILEROO4: The file name of the compiler abstraction shall be ‘Compiler.h’.

COMPILERO53: The file Compiler.n shall contain the definitions and macros
specified in chapter 9. Those are fix for one specific compiler and platform.

COMPILEROQOS: If a compiler does not require or support the usage of special
keywords; the corresponding macros specified by this specification shall be provided
as empty definitions or definitions without effect.

Example:

#define FUNC(type, memclass) type

/* not required for DIABDATA */

COMPILERO010: The compiler abstraction shall define a symbol for the target
compiler according to the following naming convention:
_<COMPILERNAME> C <PLATFORMNAME>

Note: These defines can be used to switch between different implementations for
different compilers, e.g.

inline assembler fragments in drivers

special pragmas for memory alignment control

localization of function calls

adaptions to memory models

List of symbols: see COMPILER012

COMPILERO30: “Compiler.h” shall provide information of the supported compiler
vendor and the applicable compiler version.

COMPILERO35: The macro parameters memclass and ptrclass shall not be filled
with the compiler specific keywords but with one of the configured values in
COMPILERO40. The rationale is that the module’s implementation shall not be
affected when changing a variable’s, a pointer’s or a function’s storage class.

COMPILERO36: C forbids the use of the far/near-keywords on function local
variables (auto-variables). For this reason when using the macros below to allocate a
pointer on stack, the memclass-parameter shall be set to AUTOMATIC.

24 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
VvV2.0.1

R3.1 Rev 0001

COMPILERO47: The Compiler.h header file shall protect itself against multiple
inclusions.
For instance:
#ifndef COMPILER_H
#define COMPILER_H
/* implementation of Compiler.h */

#endift /* COMPILER H */
There may be only comments outside of the ifndef - endif bracket.

COMPILERO50: It is allowed to extend the Compiler Abstraction header with vendor
specific extensions. Vendor specific extended elements shall contain the AUTOSAR
Vendor ID in the name.

8.3 Contents of Compiler_Cfg.h

COMPILERO55: The file Compiler_Cfg.h shall contain the module specific
parameters (ptrclass and memclass) that are passed to the macros defined in
Compiler.h. See COMPILERO040 for memory types and required syntax.

COMPILERO54: Module specific extended elements shall contain the short name of
BSW module list in the name.

25 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTO SAR

Specification of Compiler Abstraction
V2.0.1
R3.1 Rev 0001

9 API specification

9.1 Definitions

9.1.1 memory class AUTOMATIC

Define: AUTOMATIC

Range: “empty” -

Description: COMPILERO046: The memory class AUTOMATIC shall be provided as empty
definition, used for the declaration of local pointers.

Caveats: COMPILER040

9.1.2 memory class TYPEDEF

Define: TYPEDEF

Range: “‘empty” -

Description: COMPILERO059: The memory class TYPEDEF shall be provided as empty
definition. This memory class shall be used within type definitions, where no
memory qualifier can be specified. This can be necessary for defining pointer
types, with e.g. P2VAR, where the macros require two parameters. First
parameter can be specified in the type definition (distance to the memory location
referenced by the pointer), but the second one (memory allocation of the pointer
itself) cannot be defined at this time. Hence memory class TYPEDEF shall be
applied.

Caveats: COMPILER040

9.1.3 STATIC

Define: STATIC

Range: static / “empty” --

Description: COMPILERO049: The compiler abstraction shall provide the STATIC define for
abstraction of compiler keyword static.

Caveats: =

9.1.4 NULL_PTR

Define: NULL_PTR
Range: void pointer ((void *)0)
Description: COMPILERO51: The compiler abstraction shall provide the NULL_PTR define
with a void pointer to zero definition.
Caveats: =
26 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
VvV2.0.1

R3.1 Rev 0001

9.1.5 INLINE

Define: INLINE

Range: inline/"empty” --

Description: COMPILERO57: The compiler abstraction shall provide the INLINE define for
abstraction of the keyword inline.

Caveats: =

9.2 Macros for functions

9.2.1 FUNC

Macro name: FUNC

Syntax: #define FUNC(rettype, memclass)

Parameters rettype return type of the function

(in): memclass classification of the function itself

Parameters none -

(out):

Return value: none -

Description: COMPILERO001: The compiler abstraction shall define the FUNC macro for the
declaration and definition of functions, that ensures correct syntax of function
declarations as required by a specific compiler.

COMPILERO058: In the parameter list of this macro no further Compiler
Abstraction macros shall be nested. Instead use a previously defined type as
return type. Example:
typedef P2VAR(uint8, AUTOMATIC, _near) NearDataType;
FUNC(NearDataType, _far) FarFuncReturnsNearPtr(void);
Caveats: --
Configuration: |-

Example (Cosmic, S12X):
#define FUNC(rettype, memclass) memclass rettype

Required usage for function declaration and definition:
FUNC(void, @near) ExampleFunction (void);

9.3 Macros for pointers

9.3.1 P2VAR

Macro name: P2VAR

Syntax: #define P2VAR(ptrtype, memclass, ptrclass)

Parameters ptrtype type of the referenced variable

(in): memclass classification of the pointer’s variable itself
27 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
VvV2.0.1

R3.1 Rev 0001

ptrclass defines the classification of the pointer’s distance
Parameters none -
(out):
Return value: none -
Description: COMPILEROO06: The compiler abstraction shall define the P2VAR macro for the
declaration and definition of pointers in RAM, pointing to variables.
The pointer itself is modifiable (e.g. ExamplePtr++).
The pointer’s target is modifiable (e.g. *ExamplePtr = 5).
Caveats: -
Configuration: |--

Example (Metrowerks, S12X):
#define P2VAR(ptrtype, memclass, ptrclass) \
ptrclass ptrtype * memclass

Required usage for pointer declaration and definition:

#define SP1_APPL_DATA @far
#define SPI_VAR _FAST (@near

P2VAR(uint8, SPI_VAR FAST, SP1_APPL_DATA) Spi_FastPointerToApplData;

9.3.2 P2CONST

Macro name: P2CONST
Syntax: #define P2CONST(ptrtype, memclass, ptrclass)
Parameters (in): [ptrtype type of the referenced constant
memclass classification of the pointer’s variable itself
ptrclass defines the classification of the pointer’s distance
Parameters (out): | none --
Return value: none -
Description: COMPILERO013: The compiler abstraction shall define the P2CONST macro for

the declaration and definition of pointers in RAM pointing to constants

The pointer itself is modifiable (e.g. ExamplePtr++).
The pointer’s target is not modifiable (read only).

Caveats: --

Configuration: -

Example (Metrowerks, S12X):
#define P2CONST(ptrtype, memclass, ptrclass) \
const ptrtype memclass * ptrclass

Example (Cosmic, S12X):
#define P2CONST(ptrtype, memclass, ptrclass) \
const ptrtype ptrclass * memclass

Example (Tasking, ST10):
#define P2CONST(ptrtype, memclass, ptrclass) \
const ptrclass ptrtype * memclass

28 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
VvV2.0.1

R3.1 Rev 0001

Required usage for pointer declaration and definition:
#define EEP_APPL_CONST @far
#define EEP_VAR (@near

P2CONST (Eep_ConfigType, EEP_VAR, EEP_APPL_CONST) Eep_ConfigurationPtr;

9.3.3 CONSTP2VAR

Macro name: CONSTP2VAR

Syntax: #define CONSTP2VAR (ptrtype, memclass, ptrclass)
Parameters ptrtype type of the referenced variable
(in): memclass classification of the pointer’'s constant itself
ptrclass defines the classification of the pointer’s distance
Parameters none -
(out):
Return value: none -
Description: COMPILERO31: The compiler abstraction shall define the CONSTP2VAR macro

for the declaration and definition of constant pointers accessing variables.

The pointer itself is not modifiable (fix address).
The pointer’s target is modifiable (e.g. *ExamplePtr = 18).

Caveats: --

Configuration: |--

Example (Tasking, ST10):
#define CONSTP2VAR (ptrtype, memclass, ptrclass) \
ptrclass ptrtype * const memclass

Required usage for pointer declaration and definition:
/* constant pointer to application data */
CONSTP2VAR (uint8, NVM_ VAR, NVM_APPL_DATA)
NvM_PointerToRamMirror = Appl_RamMirror;

9.3.4 CONSTP2CONST

Macro name: CONSTP2CONST

Syntax: #define CONSTP2CONST(ptrtype, memclass, ptrclass)

Parameters ptrtype type of the referenced constant

(in): memclass classification of the pointer’s constant itself
ptrclass defines the classification of the pointer’s distance

Parameters none -

(out):

Return value: none -

Description: COMPILERO032: The compiler abstraction shall define the CONSTP2CONST
macro for the declaration and definition of constant pointers accessing constants.
The pointer itself is not modifiable (fix address).
The pointer’s target is not modifiable (read only).

29 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
VvV2.0.1

R3.1 Rev 0001

Caveats:

Configuration:

Example (Tasking, ST10):
#define CONSTP2CONST (ptrtype, memclass, ptrclass) \
const memclass ptrtype * const ptrclass

Required usage for pointer declaration and definition:
#define CAN_PBCFG_CONST @gpage
#define CAN_CONST @near

/* constant pointer to the constant postbuild configuration
data */

CONSTP2CONST (Can_PBCfgType, CAN_CONST, CAN_PBCFG_CONST)
Can_PostbuildCfgData = CanPBCfgDataSet;

9.3.5 P2FUNC
Macro name: P2FUNC
Syntax: #define P2FUNC(rettype, ptrclass, fctname)
Parameters rettype return type of the function
(in): ptrclass defines the classification of the pointer’s distance
fctname function name respectively name of the defined type
Parameters none -
(out):
Return value: none -
Description: COMPILERO039: The compiler abstraction shall define the P2FUNC macro for the
type definition of pointers to functions.
Caveats:
Configuration:

Example (Metrowerks, S12X):
define P2FUNC(rettype, ptrclass, fctname)\
rettype (*ptrclass fctname)

Example (Cosmic, S12X):
#define P2FUNC(rettype, ptrclass, fctname) \
ptrclass rettype (*fctname)

Required usage for pointer type declaration:
#define EEP_APPL_CONST @far
#define EEP_VAR (@near

typedef P2FUNC (void, NVM_APPL_CODE, NvM_CbkFncPtrType) (void);

30 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTO SAR

Specification of Compiler Abstraction
V2.0.1
R3.1 Rev 0001

9.4 Keywords for constants

9.4.1 CONST

Macro name: CONST

Syntax: #define CONST(consttype, memclass)
Parameters consttype type of the constant

(in): memclass classification of the constant itself
Parameters none -

(out):

Return value: none -

Description:

COMPILERO023: The compiler abstraction shall define the CONST macro for the
declaration and definition of constants.

Caveats:

Configuration:

Example (Cosmic, S12X):
#define CONST(type, memclass) memclass const type

Required usage for declaration and definition:
#define NVM_CONST @gpage

CONST(uint8, NVM_CONST) NvM_ConfigurationData;

9.5 Keywords for variables

9.5.1 VAR

Macro name:

VAR

Syntax: #define VAR(vartype, memclass)

Parameters vartype type of the variable

(in): memclass classification of the variable itself

Parameters none --

(out):

Return value: none -

Description: COMPILERO026: The compiler abstraction shall define the VAR macro for the
declaration and definition of variables.

Caveats: -

Configuration:

Example (Tasking, ST10):

#define VAR(type, memclass) memclass type

Required usage for declaration and definition:
#define NVM_FAST VAR _near

31 0f43

Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
VvV2.0.1

R3.1 Rev 0001
VAR(uint8, NVM_FAST_VAR) NvM _VeryFrequentlyUsedState;

32 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
VvV2.0.1
R3.1 Rev 0001

10 Sequence diagrams

Not applicable.

33 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
VvV2.0.1

R3.1 Rev 0001
11 Configuration specification

In general, this chapter defines configuration parameters and their clustering into
containers. In order to support the specification, Chapter 11.1 describes
fundamentals. We intend to leave Chapter 11.1 in the specification to guarantee
comprehension.

Chapter 11.2 specifies the structure (containers) and the parameters of this module.

Chapter 11.3 specifies published information of this module.

11.1How to read this chapter

In addition to this section, it is highly recommended to read the documents:
= AUTOSAR Layered Software Architecture [3]

= AUTOSAR ECU Configuration Specification [4]. This document describes the
AUTOSAR configuration methodology and the AUTOSAR configuration
metamodel in detalil.

The following is only a short survey of the topic and it will not replace the ECU
Configuration Specification document.

11.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic part(s) of an
implementation of a module. This means that only generic or configurable module
implementation can be adapted to the environment (software/hardware) in use during
system and/or ECU configuration.

The configuration of parameters can be achieved at different times during the
software process: before compile time, before link time or after build time. In the
following, the term “configuration class” (of a parameter) shall be used in order to
refer to a specific configuration point in time.

34 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
VvV2.0.1

R3.1 Rev 0001
11.1.2 Variants

Variants describe sets of configuration parameters. E.g., variant 1: only pre-compile
time configuration parameters; variant 2. mix of pre-compile- and post build time-
configuration parameters. In one variant a parameter can only be of one
configuration class.

Thus describe the possible configuration variants of this module. Each Variant must
have a unique name which could be referenced to in later chapters. The maximum
number of allowed variants is 3.

11.1.3 Containers

Containers structure the set of configuration parameters. This means:

= all configuration parameters are kept in containers

* (sub-) containers can reference (sub-) containers. It is possible to assign a
multiplicity to these references. The multiplicity then defines the possible nhumber
of instances of the contained parameters

11.2Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters describe Chapters 8 and Chapter 9.

11.2.1 Variants

Variant PC (Pre Compile): This is the only variant because all configuration
parameters are pre-compile time parameters which influence the compilation
process.

Each of the different memory classes (memclass) and pointer classes (ptrclass) is
represented by a define.

35 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTO SAR

Specification of Compiler Abstraction
V2.0.1
R3.1 Rev 0001

SWS Item

COMPILERO044

Container Name

<MSN>_MemoryAndPointerClasses

Description

This container contains the memory and pointer class parameters of a
single module.

For each module this container has to be provided.

The number of different pointer and memory classes per module
depends on the different types of variables, constants and pointers
used by the module. It is allowed to extend the classes by module
specific classes.

The scope of all parameters is ECU because many parameters depend
on the parameters of other modules. Examples for this are given in the
Annex (starting on page 40).

MSN means Module Short Name.

Configuration Parameters

11.2.2 Module Configuration (Memory and pointer classes)

Name <MSN>_ CODE
Description Configurable memory class for code.
Type #define
Unit Compiler specific, refer to chapter 7
Range Compiler specific, refer to chapter 7 \ e.g. @near, _far
Configuration Class Pre-compile x | Variant PC
Link time - | -
Post Build - | -
Scope ECU
Dependency MemMap.h
Name <MSN>_VAR_NOINIT
Description Configurable memory class for all global or static variables that are
never initialized.
Type #define
Unit Compiler specific, refer to chapter 7
Range Compiler specific, refer to chapter 7 \ e.g. @near, _far
Configuration Class Pre-compile x | Variant PC
Link time - |-
Post Build - |-
Scope ECU
Dependency MemMap.h
36 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTO SAR

Specification of Compiler Abstraction
V2.0.1
R3.1 Rev 0001

Name <MSN> VAR _POWER_ON_INIT
Description Configurable memory class for all global or static variables that are
initialized only after power on reset.
Type #define
Unit Compiler specific, refer to chapter 7
Range Compiler specific, refer to chapter 7 \ e.g. @near, _far
Configuration Class Pre-compile X | Variant PC
Link time - |-
Post Build - |-
Scope ECU
Dependency MemMap.h
Name <MSN> VAR _FAST
Description Configurable memory class for all global or static variables that have at
least one of the following properties:
e accessed bitwise
o frequently used
e high number of accesses in source code
Type #define
Unit Compiler specific, refer to chapter 7
Range Compiler specific, refer to chapter 7 \ e.g. @near
Configuration Class Pre-compile X | Variant PC
Link time - |-
Post Build - |-
Scope ECU
Dependency MemMap.h
Name <MSN>_ VAR
Description Configurable memory class for all global or static variables that are
initialized after every reset.
Type #define
Unit Compiler specific, refer to chapter 7
Range Compiler specific, refer to chapter 7 ‘ e.g. @near
Configuration Class Pre-compile X | Variant PC
Link time - |-
Post Build - |-
Scope ECU
Dependency MemMap.h
Name <MSN> CONST
Description Configurable memory class for global or static constants.
Type #define
Unit Compiler specific, refer to chapter 7
Range Compiler specific, refer to chapter 7
Configuration Class Pre-compile X | Variant PC
Link time - |-
Post Build - |-
Scope ECU
Dependency MemMap.h
37 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction

- AUTOSAR confidential -

AUTO SAR

Specification of Compiler Abstraction
V2.0.1
R3.1 Rev 0001

Name <MSN>_ APPL_DATA

Description Configurable memory class for pointers to application data (expected to
be in RAM or ROM) passed via API.

Type #define

Unit Compiler specific, refer to chapter 7

Range Compiler specific, refer to chapter 7

Configuration Class Pre-compile X | Variant PC
Link time - |-
Post Build - |-

Scope ECU

Dependency MemMap.h

Name <MSN>_APPL_CONST

Description Configurable memory class for pointers to application constants
(expected to be certainly in ROM, for instance pointer of Init-function)
passed via API.

Type #define

Unit Compiler specific, refer to chapter 7

Range Compiler specific, refer to chapter 7

Configuration Class Pre-compile x | Variant PC
Link time - |-
Post Build - |-

Scope ECU

Dependency MemMap.h

Name <MSN>_APPL_CODE

Description Configurable memory class for pointers to application functions
(e.g. call back function pointers).

Type #define

Unit Compiler specific, refer to chapter 7

Range Compiler specific, refer to chapter 7 \

Configuration Class Pre-compile X | Variant PC
Link time - |-
Post Build - |-

Scope ECU

Dependency MemMap.h

Included Containers

Container Name Multiplicity | Scope / Dependency

None

COMPILERO42: The file Compiler.h is specific for each build scenario. Therefore
there is no standardized configuration interface specified.

38 of 43

Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
VvV2.0.1

R3.1 Rev 0001
11.3Published Information

Published information contains data defined by the implementer of the SW module
that does not change when the module is adapted (i.e. configured) to the actual
HW/SW environment. It thus contains version and manufacturer information.

The standard common published information like

vendorld (<Module> VENDOR _ID),

moduleld (<Module>_MODULE_ID),

arMajorVersion (<Module>_ AR_MAJOR_VERSION),
arMinorVersion (<Module>_ AR_MINOR_VERSION),
arPatchVersion (<Module> AR_PATCH_VERSION),
swMajorVersion (<Module>_SW_MAJOR_VERSION),
swMinorVersion (<Module>_ SW_MINOR_VERSION),
swPatchVersion (<Module>_ SW_PATCH_VERSION),
vendorApilnfix (<Module> VENDOR_API_INFIX)

is provided in the BSW Module Description Template (see [5] Figure 4.1 and Figure
7.1).

Additional published parameters are listed below if applicable for this module.

39 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
VvV2.0.1

R3.1 Rev 0001
12 Annex

12.1List of Compiler symbols

COMPILERO12: The following table defines target compiler symbols according to
COMPILEROQ10. For each compiler supported by AUTOSAR a symbol has to be
defined.

Platform Compiler Compiler symbol

S12X Code Warrior _CODEWARRIOR_C_S12X__
S12X Cosmic _COSMIC_C_S12X_
TC1796 Tasking _TASKING_C _TC1796_
TC1766 Tasking _TASKING_C TC1766_
ST10 Tasking _TASKING_C_ST10_
ST30 ARM Developer Suite _ADS_C _ST30_

V850 Greenhills _GREENHILLS C V850
MPC5554 Diab Data _DIABDATA_C_MPC5554

12.2Requirements on implementations using compiler abstraction

COMPILERO40: Each AUTOSAR software module shall support the distinction of at
least the following different memory classes and pointer classes.

It is allowed to add module specific memory classes and pointer classes as they are
mapped and thus are configurable within the Compiler_Cfg.h file. The shortcut ‘MSN’
means ‘module short name of BSW module list’, e.g. ‘EEP’ or ‘CAN'.

Syntax of memory class

{\/Ier:ory (memclass) and pointer class | Comments Located in

yp (ptrclass) macro parameter

Code <MSN>_CODE To be used for code. Compiler_Cfg.h
Constants | <MSN>_CONST To be used for global or static constants

To be used for references on application
Pointer <MSN>_APPL_DATA data (expected to be in RAM or ROM)
passed via API

To be used for references on application
constants (expected to be certainly in
ROM, for instance pointer of Init-
function) passed via API

Pointer <MSN>_APPL_CONST

To be used for references on application
Pointer <MSN>_APPL_CODE functions. (e.g. call back function
pointers)

To be used for all global or static

Variables <MSN>_VAR_NOINIT variables that are never initialized

To be used for all global or static
Variables |<MSN>_VAR_POWER_ON_INIT |variables that are initialized only after
power on reset

40 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTO SAR

Specification of Compiler Abstraction

v2.0.1

R3.1 Rev 0001

Syntax of memory class

{\;I/Er:ory (memclass) and pointer class | Comments Located in
(ptrclass) macro parameter

To be used for all global or static

variables that have at least one of the

following properties:
Variables |<MSN> VAR_FAST e accessed bitwise

o frequently used

e high number of accesses in source

code

Variables | <MSN>_ VAR TobeL§erqrmobaloryaﬁcvaﬂames

that are initialized after every reset.
Variables |AUTOMATIC To be used for local non static variables Compiler.h
Typ'e. _ TYPEDEE To be used in pre definitions,' yvhere no Compiler.h
Definitions memory qualifier can be specified.

COMPILERO41: Each AUTOSAR software module shall wrap declaration and
definition of code, variables, constants and pointer types using the following keyword

macros:

For instance:

native C-API:
Std_ReturnType Spi_SetupBuffers

(
Spi_ChannelType Channel,
const Spi_DataType *SrcDataBufferPtr,
Spi_DataType *DesDataBufferPtr,
Spi_NumberOfDataType Length

)

is encapsulated:
FUNC(Std_ReturnType, SP1_CODE) Spi_SetupBuffers

(

Spi_ChannelType
P2CONST(Spi_DataType, AUTOMATIC, SPI_APPL_DATA)

Channel,

SrcDataBufferpPtr,

P2VAR(Spi_DataType, AUTOMATIC, SPI_APPL_DATA,) DesDataBufferPtr,
Spi_NumberOfDataType Length

41 of 43

Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
VvV2.0.1

R3.1 Rev 0001

12.3Proposed process

To allow development and integration within a multi supplier environment a certain
delivery process is indispensable. The following description can be seen as proposal:

AUTOSAR Module AUTOSAR
Suppliers Integrator
Step 1:
Delivery of basic files
< .
* Implements Source files and documents * Receives and checks packages
L]
* Assigns version and vendor numbers Integrates mOdL_”eS .
* Implements module specific part of m;?iﬁgeﬁqg}ﬁ ggg:e”(é?népfller:_cfg.h
Compiler_Cfg.h and MemMap.h Int tes the si Ip M - l\/? h il
. B * Integrates the single MemMap.h files
Builds package into main MemMap.h
Compiler.h * Configures MemMap.h and
Std_Types.h Compiler_Cfg.h
Platform_Types.h
Example of MemMap.h |
constructs intearates

Compiler_Cfg.h of
Module A

Compiler_Cfg.h

1 Module
source
files

* Compiler_Cfg.N '
Module B
ST e

Compiler_Cfg.h

[D

%

Step 2:
Delivery of modules

D~
4

f Package
MemMap.h

Documents Compiler_Cfg.h of

Module C

Development Environment Intearation Environment

Figure 2: Proposal of integration-process

42 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

AUTOSAR Specification of Compiler Abstraction
VvV2.0.1

R3.1 Rev 0001
12.4Comprehensive example

This example shows for a single API function where which macro is defined, used
and configured.

Module: Eep

API function: Eep_Read

Platform: S12X

Compiler: Metrowerks

File Eep.c:
#include “Std_Types.h” /* This includes also Compiler.h */

FUNC(Std_ReturnType, EEP_CODE) Eep_Read \

Eep_AddressType EepromAddress, \
P2VAR(uint8, AUTOMATIC, EEP_APPL_DATA) DataBufferPtr, \
Eep_LengthType Length

)

File Compiler.h:
#include “Compiler_Cfg.h”

#define AUTOMATIC
#define FUNC(rettype, memclass) rettype memclass
#define P2VAR(ptrtype, memclass, ptrclass) ptrclass ptrtype * memclass

File Compiler_Cfg.h:
#include “Compiler.h”

#define EEP_CODE
#define EEP_APPL_DATA @far /* RAM blocks of NvM are in banked RAM */

What are the dependencies?

If EEP_APPL_DATA is defined as ‘far. This means that the pointers to the RAM
blocks managed by the NVRAM Manager have to be defined as ‘far’ also. The
application can locate RAM mirrors in banked RAM but also in non-banked RAM.
The mapping of the RAM blocks to banked RAM is done in MemMap.h.

Because the pointers are also passed via Memory Interface and EEPROM
Abstraction, their pointer and memory classes must also fit to EEP_APPL_DATA.

What would be different on a 32bit platform?
Despite the fact that only the S12X has an internal EEPROM, the only thing that
would change in terms of compiler abstraction are the definitions in Compiler_Cfg.h.

They would change to empty defines:
#define EEP_CODE
#define EEP_APPL_DATA

43 of 43 Document ID 051: AUTOSAR_SWS_CompilerAbstraction
- AUTOSAR confidential -

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains
	4.3 Applicability to safety related environments

	5 Dependencies to other modules
	5.1 Code file structure
	5.2 Header file structure
	5.3 Connections to other modules
	5.3.1 Compiler Abstraction
	5.3.2 Memory Mapping
	5.3.3 Linker-Settings

	6 Requirements traceability
	7 Analysis
	7.1 Keywords for functions
	7.2 Keywords for pointers

	8 Functional specification
	8.1 General issues
	8.2 Contents of Compiler.h
	8.3 Contents of Compiler_Cfg.h

	9 API specification
	9.1 Definitions
	9.1.1 memory class AUTOMATIC
	9.1.2 memory class TYPEDEF
	9.1.3 STATIC
	9.1.4 NULL_PTR
	9.1.5 INLINE

	9.2 Macros for functions
	9.2.1 FUNC

	9.3 Macros for pointers
	9.3.1 P2VAR
	9.3.2 P2CONST
	9.3.3 CONSTP2VAR
	9.3.4 CONSTP2CONST
	9.3.5 P2FUNC

	9.4 Keywords for constants
	9.4.1 CONST

	9.5 Keywords for variables
	9.5.1 VAR

	10 Sequence diagrams
	11 Configuration specification
	11.1 How to read this chapter
	11.1.1 Configuration and configuration parameters
	11.1.2 Variants
	11.1.3 Containers

	11.2 Containers and configuration parameters
	11.2.1 Variants
	11.2.2 Module Configuration (Memory and pointer classes)

	11.3 Published Information

	12 Annex
	12.1 List of Compiler symbols
	12.2 Requirements on implementations using compiler abstraction
	12.3 Proposed process
	12.4 Comprehensive example

