AUTSSAR

Document Title

Specification of Secure Hardware

Extensions
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 948
Document Status published
Part of AUTOSAR Standard Foundation
Part of Standard Release R25-11

Document Change History

Date

Release

Changed by

Description

2025-11-27

R25-11

AUTOSAR
Release
Management

* No content changes

2024-11-27

R24-11

AUTOSAR
Release
Management

* No content changes

2023-11-23

R23-11

AUTOSAR
Release
Management

* No content changes

2022-11-24

R22-11

AUTOSAR
Release
Management

* No content changes

2021-11-25

R21-11

AUTOSAR
Release
Management

* No content changes

2020-11-30

R20-11

AUTOSAR
Release
Management

* No content changes

2019-11-28

R19-11

AUTOSAR
Release
Management

« |nitial release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction 6

2 Definition of terms and acronyms 7

3 Related Documentation 8

3.1 Input documents & related standardsandnorms 8

4 Functional specification 9

4.1 Introduction 9

411 Conventions e 10

4.2 BasicRequirements. L 12

4.3 Algorithms 13

4.3.1 Encryption/decryptiono 13

4.3.2 MAC generation/verification 13

4.3.3 Compression function 13

43.3.1 Keyderivations 14

4.4 Datastorage 15

441 Security flags formemoryslots L. 16

4.41.1 Write-protection of memory slots 17

4.41.2 Disabling keysonbootfailure 17

4.4.1.3 Disabling keys on debugger activation 17

4.4.1.4 Disable wildcard usage forkeyupdates 18

441.5 Keyusagedetermination 18

4416 Plainkeyflag 18

4.4.2 Non-volatile memoryslots 18

4421 MASTER_ECU KEY 19

4422 BOOT_MAC_KEY 19

4423 BOOT_MAC e 19

4424 KEY <n> e 20

4425 PRNG_SEED 20

443 Volatile memoryslots 20

4431 RAM_KEY e 20

4432 PRNG_KEY e 21

4433 PRNG_STATE. 21

444 Read-Onlymemoryslots 21

4441 SECRET_KEY 21

4.4.4.2 Unique identificationitemUID 22

4.4.5 |dentification of memoryslotso 22

4.5 Random number generation oL 24

451 Seedgeneration 24
4.5.1.1 Seed generation through a pseudo random number generator

(PRNG) © o o e e e 24

AUTSSAR

4.5.1.2 Seed generation trough a true random number generator (TRNG) 25

452 Randomgeneration 25
453 Extendingtheseed, 26
4.6 Status Register 27
4.7 User-accessible Functions o oL 28
471 Encryption:CMD_ENC_ECB 29
4.7.2 Encryption: CMD_ENC CBC 29
4.7.3 Decryption: CMD_DEC_ECB, 29
4.7.4 Decryption: CMD_DEC CBC 30
4.7.5 MAC generation: CMD_GENERATE_ MAC 30
4.7.6 MAC verification: CMD_VERIFY MAC. 31
4.7.7 Secure key update: CMD_LOAD KEY 32
4.7.8 Plain key update: CMD_LOAD_PLAIN_KEY 32
4.7.9 Exportkey: CMD_EXPORT_RAM KEY 33
4.7.10 Initialize random number generator: CMD_INIT_RNG 34
4.7.11 Extend the PRNG seed: CMD_EXTEND _SEED 34
4.7.12 Generate random number: CMD RND 35
4.7.13 Bootloader verification (secure booting): CMD_SECURE_BOOT . . 35
4.7.14 Impose sanctions during invalid boot: CMD_BOOT_FAILURE 36
4.7.15 Finish boot verification: CMD_BOOT OK 36
4.7.16 Read status of SHE: CMD_GET _STATUS 37
4.717 Getidentity: CMD_GET_ID 37
4.7.18 Cancel function: CMD_CANCEL 38
4.7.19 Debugger activation: CMD_DEBUG 39
4.8 ErrorCodes e 40
48.1 ERC_NO ERROR e, 40
4.8.2 ERC_SEQUENCE ERROR 40
48.3 ERC_KEY_NOT_AVAILABLE 40
48.4 ERC_KEY_INVALID e 40
4.8.5 ERC_KEY EMPTY e 40
48.6 ERC_NO_SECURE_BOOT, 40
4.8.7 ERC_KEY _WRITE_PROTECTED 41
4.8.8 ERC_KEY UPDATE ERROR 41
489 ERC_RNG_SEED, 41
48.10ERC_NO DEBUGGING 41
4811 ERC BUSY e 41
48.12ERC_MEMORY_FAILURE 41
48.13ERC_GENERAL_ERROR. 41
4.9 Memory update protocol o 42
4.9.1 Description of the memory update protocol 42
4.9.2 Description of the update verification message generation 45
410Securebooting 47
4.10.1 Measurement before application start-up 48

4.10.1.1 Exemplary implementation: extension of the boot code 48

AUTSSAR

4.10.2 Measurement during application start-up 49
4.10.3 Autonomous bootstrap configuration of the secure boot process .. 50
4.10.4 Sanctions on fail of boot measurement 50
4.10.5 Optional: Enforcing authenticated software 50
4.10.6 Optional: Flowcharts, 52
4.11Failure analysis of SHE/ResettingSHE 54
4.12Constantsused withinSHE 56
4 13Examplesand Testvectors 57
413.1 AES-128,ECBmode 57
413.2AES-128,CBCmode 57
4.13.21 encryption 57
413.22 decryption 58
41323 CMAC 59
4.13.2.4 Miyaguchi-Preneel compression function 59
413.2.5 Keyderivation 59
4.13.2.6 Pseudo random generation/Seed generation 59
4.13.2.7 Calculatenewseed 60
4.13.2.8 Calculate newrandomvalue 60
41329 Extendseed 60
4.13.2.10 Memory update protocol 61
4.13.2.11 Failure analysis of SHE/ResettingSHE 61
4140verview Tables 62

A Appendix 67

AUTSSAR

1 Introduction

This technical report represents a republication under AUTOSAR development
partnership of HIS SHE - Functional Specification v1.1, rev 439 specifica-
tion. Errata and amendments to this specification are published in AU-
TOSAR_TR_ListOfKnownlssuesSecureHardwareExtensions.pdf document.

AUTSSAR

2 Definition of terms and acronyms

A general list of acronyms and abbreviations is available in [1].

Abbreviation / Acronym: Description:

HIS Hersteller Initiative Software

SHE Security Hardware Extension

AES Advanced Encryption Standard
TPM Trusted Platform Module

CBC Cipher Block Chaining

ECB Electronic Code Book

MAC Message Authentication Code
CMAC Cipher-based Message Authentication Code
v Initialization Vector

uiD Unique IDentification item

TRNG True Random Number Generator
PRNG Pseudo Random Number Generator

Table 2.1: Definitions of terms and acronyms

AUTSSAR

3 Related Documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] NIST: Announcing the Advanced Encryption Standard (AES)
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[3] NIST Special Publication 800-38A: Recommendation for Block Cipher Modes of
Operation: Methods and Techniques
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

[4] NIST Special Publication 800-38B: Recommendation for Block Cipher Modes of
Operation: The CMAC Mode for Authentication
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

[5] NIST: Updated CMAC Examples
http://csrc.nist.gov/publications/nistpubs/800-38B/Updated_ CMAC_Examples.pdf

[6] Handbook of Applied Cryptography
http://www.cacr.math.uwaterloo.ca/hac/

[7] Recommendation for Key Derivation Using Pseudorandom Functions (Revised)
https://nvipubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf

[8] BSI: A proposal for: Functionality classes and evaluation methodology for true
(physical)random number generators, Version 3.1
http://www.bsi.bund.de/zertifiz/zert/interpr/trngk31e.pdf

[9] BSI: Application Notes and Interpretation of the Scheme (AIS)
http://www.bsi.bund.de/zertifiz/zert/interpr/ais20e.pdf

[10] Trusted Computing Group
https://www.trustedcomputinggroup.org/

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/Updated_CMAC_Examples.pdf
http://www.cacr.math.uwaterloo.ca/hac/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf
http://www.bsi.bund.de/zertifiz/zert/interpr/trngk31e.pdf
http://www.bsi.bund.de/zertifiz/zert/interpr/ais20e.pdf
https://www.trustedcomputinggroup.org/

AUTSSAR

4 Functional specification

4.1 Introduction

The Secure Hardware Extension (SHE) is an on-chip extension to any given microcon-
troller. It is intended to move the control over cryptographic keys from the software
domain into the hardware domain and therefore protect those keys from software at-
tacks. However, it is not meant to replace highly secure solutions like TPM chips or
smart cards, i.e. no tamper resistance is required by the specification.

The main goals for the design at hand are
* Protect cryptographic keys from software attacks
* Provide an authentic software environment

* Let the security only depend on the strength of the underlying algorithm and the
confidentiality of the keys

Allow for distributed key ownerships
+ Keep the flexibility high and the costs low

Basically sHE consists of three building blocks, a storage area to keep the crypto-
graphic keys and additional corresponding information, a implementation of a block
cipher (AES) and a control logic connecting the parts to the CPU of the microcontroller,
see Figure 4.1 for a simplified block diagram. sHE can be implemented in several ways,
e.g. a finite state machine or a small, dedicated CPU core.

AUTSSAR

Controller
Secure Zone :
SHE — Secure Hardware Extension
- AES
CPU ——ip Control
Logic
ik RAM + Flash + ROM
Peripherals (CAN, UART, external memory interface)
f A A A A
v v v v v

Figure 4.1: Simplified logical structure of SHE

This document is intended to provide a detailed description of the technical realization
of SHE which will be complemented by a reference implementation. This document
does not contain the motivation for every single requirement and neither does it contain
concepts how to use SHE in certain applications.

Beware that SHE will not solve all security flaws by simply adding it to a microcontroller.
It has to be supported by the application software and processes.

4.1.1 Conventions

In the following chapters several paragraphs are printed italic. These paragraphs are
not meant as a hard requirement but to provide additional explanation of the underlying
mechanisms.

Throughout the whole document the term "CPU" denotes the actual microprocessor
while "microcontroller” is used to describe the hardware complete chip, i.e. a CPU and
all included peripherals. The term "control logic" refers to the system (e.g. a finite state
machine or a small microprocessor) controlling the algorithms and memories inside of
SHE.

Cryptographic operations are written as

OUTPUT = OPERATIONyopg xev(,1v; (INPUT [, INPUT2, ...])

AUTSSAR

Additionally the following symbols are used to describe the operations:

@ bitwise exclusive or
|concatenation of two values

Whenever interfaces to the CPU are described the internal memory slots of SHE, which
are not exposed to the CPU, are identified by their address. An actual key is generally
written as KEYxey wawz While the identifier of the key is written as IDxgy waue-

All values are given in the form MSB...LSB, i.e. the most significant bit/byte is on the
left.

Bit sequences given in the form
"0...0" 125

shall mean a string of bits with the value ‘0’ and length of 128.

AUTSSAR

4.2 Basic Requirements

SHE has to be realized as an on-chip peripheral of the microcontroller. SHE must not
have any other connections except those explicitly specified within this document. If ad-
ditional resources have to be included to assure proper function during the fabrication
of the chip, all ports have to be physically and permanently deactivated if accessible
on external pins.

SHE can be connected to the CPU in several ways, e.g. through a dedicated interface
or an internal peripheral bus. The interconnection must be implemented in a way that
no other peripheral or an external entity can modify the data transferred between the
CPU and sHE.

SHE does not need to be fabricated in a special process to increase security nor need
any actions to be taken to strengthen the system against physical attacks, e.g. etching
the chip casing open, differential power analysis, glitching attacks.

Note: No sophisticated secure hardware mechanisms are required to meet the spec-
ification of SHE. However, a manufacturer may of course strengthen the design to
provide a higher security level for higher security requirements.

SHE needs to be notified by a status signal whenever internal or external debuggers for
debugging software and hardware are attached and active. Examples for debuggers
are JTAG, BDM etc.

This document does only describe the technical parts of SHE. Processes and environ-
mental conditions, e.g. for inserting keys, are not subject of this specification.

AUTSSAR

4.3 Algorithms

All cryptographic operations of SHE are processed by an AEsS-128 [2]. The latency of
the AES must remain <2us per encryption/decryption of a single block, including the
key schedule.

Additionally, the performance of the AES must be high enough to allow for a secure
boot (see Chapter 4.10 for details) of 5% of the flash memory, but 32kByte at minimum
and 128kByte at maximum, of the microcontroller in <10ms.

In case the flash memory is slower than requested, the flash memory must be the
limiting factor for the secure boot and the limit has to be stated in the datasheet.

4.3.1 Encryption/decryption

For encryption and decryption of data, SHE has to support the electronic cipher book
mode (ECB) for processing single blocks of data and the cipher block chaining mode
(CBC) for processing larger amounts of data, see [3] for details.

The latency for both modes may not exceed the value given in the beginning of Chapter
4.3

SHE can only process multiples of the block length of the AEs, i.e. all necessary
padding has to be done by an application.

The input, output and key input as well as any intermediate results may not be directly
accessible by the CPU but access must be granted depending on the policies by the
controller logic of SHE.

4.3.2 MAC generation/verification

The MAC generation and verification has to be implemented as a CMAC using the AES-
128 as specified by [4]. See [5] for updated examples.

4.3.3 Compression function

The Miyaguchi-Preneel construction (see [6] Algorithm 9.43) with the AES as block
cipher is used as compression function within SHE. Messages have to be preprocessed
before feeding them to the compression algorithm, i.e. they have to be padded and
parsed into 128 bit chunks.

Padding is done by appending one ’1’ bit to the message M of bit-length [, followed by
k 'O’ bits, where k is the smallest, non-negative solution to the equation [+ 1 + k =
88 mod 128. Finally append a 40 bit block that is equal to the number | expressed using
an unsigned binary representation.

AUTSSAR

Before feeding the padded message to the compression function, it has to be parsed
into n 128 bit chunks z1, zs, ..., z,,. The value OUT), is called initialization vector (1V).

AES—-MP (l’,) . OUTI == ENCECB, ouT;_; (ZEZ) D x; D OUTZ_l, 1> 0, OUTO == O,

OuUT,,

yOUT;

Figure 4.2: Miyaguchi-Preneel one-way compression function

4.3.3.1 Key derivations

Keys are derived using the Miyaguchi-Preneel compression algorithm based on [7].
Derived keys are calculated by compressing the correctly preprocessed concatenation
of a secret K and a constant ¢’ with

C’ = 0x01 | counter | "SHE"™ | 0x00

Note that the constants c given in Chapter 4.12 have already been padded according
to Chapter 4.3.3.

KDF (K, C): AES-MP (K | C)

AUTSSAR

4.4 Data storage

SHE needs memory to store keys and MACs. A non-volatile memory is required to
store information that needs to be available after power cycles and resets of the micro-
controller. A volatile memory is required to store temporary information. The volatile
memory may loose its contents on reset or power cycles.

The memory of SHE should only be accessible by the SHE control logic. The CPU or
any other peripherals, including debugging and testing facilities being available without
opening the chip package, should not be able to access the memory.

If data from and to the non-volatile memory of SHE has to be transferred over a bus
shared with other peripherals and it could not be guaranteed that these data will not
be read or modified by any other instance, the following precautions have to be taken
transparently to all functionality of SHE:

» An additional, individual key has to be stored inside of SHE. The key has to meet
the same requirements as SECRET_KEY described in Chapter 4.4.4.1

+ All data has to be encrypted with the AES in ECB mode using the key described
above before being put on the bus or decrypted respectively upon reading

» Write access to the memory must only be possible by sHE, write access to the
connection between sHE and its memory must be prevented for other peripherals
during read/write access by SHE

The memory must be readable and writeable independently by sHE while the CPU
operates on other public/non-public memory blocks of the microcontroller, i.e., time
sharing of memory interfaces is allowed but blocking the CPU for a complete sHE
operation is not allowed.

The persistent memory of SHE is separated into logical blocks called memory slots.
Each has a width of 128 bits plus up to five security bits (see Chapter 4.4.1.1 to Chapter
4.4.1.5 and a saturating, unsigned counter with 22® states.. The segments must be
writable/erasable separately, i.e. when changing a memory slot the other memory
slots may not be affected. See Table 4.4 in Chapter 4.14 for an overview of which
information has to be stored with every key. The information does not necessarily have
to be physically stored in this order.

Note: The slot is separated into the actual key, the protection bits and a counter being
used to protect the memory slot against replay attacks during update.

Precautions have to be taken to keep the current value of a non-volatile memory slot
if a write operation fails due to interruption, e.g. power loss. A write operation must
be treated as an atomic operation, in any case the memory must contain either the old
value or the new value but no corrupted areas.

The write operation may not be interrupted either.

The initial value of all non-volatile memory slots has to be given in the data sheet and
it is referred to as "empty" in the following.

AUTSSAR

Note: The functions of SHE rely on a detection of empty memory cells. If the underlying
technology does not distinguish between erased cells and cells written with the same
logical value, the implementation has to introduce another status bit for every memory
slot to allow for the detection. The additional status bit has to be handled transparently
to the user.

Note: The initial value of the memory slots has to be used in conjunction with the
memory update protocol described in Chapter 4.9 to initialize SHE.

The value of the counter for every non-volatile memory slot has to be 0 after production.

At least 100 successful write-cycles to the non-volatile memory must be guaranteed
per memory slot by the implementation, more write cycles must be possible.

Table4.4 gives a matrix to show which memory slot is used by which function while
Table 4.6 shows which keys can serve as a secret to update another key. Figure 4.3
gives an overview of all keys implemented in SHE.

ECU Controller

SHE
RAM non-volatile

| RAM_KEY (16 Byte) | AES 128 | MASTER_ECU_KEY (16 Byte)

| PRNG_KEY (16 Byte) |] decode | BOOT_MAC_KEY (16 Byte) |
—>
PRNG_STATE (16 Byte) ILO“I BOOT_MAC (16 Byte)

Miyaguchi-
‘ Preneel | PRNG_SEED (16 Byte) |

T i
— Control Logic —

— =
CPU

= =

Regular Peripherals / Busses

Secure Zone

| KEY_<n> (3-10x16 Byte) |

ROM
| SECRET_KEY (16 Byte)

| UID (15 Byte) ‘

Figure 4.3: Detailed logical structure of SHE

4.4.1 Security flags for memory slots

When flags are transmitted in protocols the value “0" shall mean the flag is not set and
“1" shall mean the flag is set. See Table 4.4 for details which key is protected by which
security bits.

AUTSSAR

4.4.1.1 Write-protection of memory slots

Non-volatile keys, see Chapter 4.4.2, can be write-protected, i.e. it is not possible to
change the key anymore, even if the corresponding secret is known.

The write-protection must be irreversible.

The write-protection is stored in a non-volatile memory only accessible by SHE and
evaluated by the state machine controlling SHE upon write access.

Whenever the flag is transmitted in a protocol and it is not applicable to that particular
key, it has to be transmitted as “0" and ignored by SHE.

The flag must not be set for any key after production.

4.41.2 Disabling keys on boot failure

Non-volatile keys, see Chapter 4.4.2, can be disabled separately when the secure boot
mechanism (see Chapter 4.10) detects a manipulation of the software or the secure
boot process is bypassed by other boot mechanisms, e.g., by boot strapping over ex-
ternal interfaces. The memory slots may only be reactivated on next successful boot.

Disabling a key shall mean that SHE refuses to use the memory slot in any operation
except those explicitly stated.

The status of this protection is stored in a non-volatile memory area only accessible by
SHE and evaluated by the state machine controlling SHE upon read and write access.

Whenever the flag is transmitted in a protocol and it is not applicable to that particular
key, it has to be transmitted as “0" and ignored by SHE.

The flag must not be set for any key after production.

4.4.1.3 Disabling keys on debugger activation

Non-volatile keys, see Chapter 4.4.2, can be disabled separately when a debugger
is attached (e.g., JTAG, BDM) or any other mechanism is activated to boot without
measuring the boot process by SHE while secure booting is activated, e.g. bootstrap
over external interfaces. The memory slots may only be reactivated after a reset.

Disabling a key shall mean that SHE refuses to use the memory slot in any operation
except those explicitly stated.

The status of the debugging protection is stored in a non-volatile memory area only
accessible by sHE and evaluated by the state machine controlling SHE upon read and
write access.

Whenever the flag is transmitted in a protocol and it is not applicable to that particular
key, it has to be transmitted as “0" and ignored by SHE.

AUTSSAR
The flag must not be set for any key after production.

4.4.1.4 Disable wildcard usage for key updates

The flag determines if a key may be updated without supplying a valid UID, i.e. by
supplying a special wildcard. For details on updating keys see Chapter 4.9 for details
on the UID see Chapter 4.4.4.2.

If the flag is set, wildcards are not allowed.

The flag must not be set for any key after production.

4.41.5 Key usage determination

The flag determines if a key can be used for encryption/decryption or for MAC genera-
tion/verification.

If the flag is set, the key is used for MAC generation/verification.
The flag has only to be implemented for the keys KEY_<n>, see Chapter 4.4.2.4.

Whenever the flag is transmitted in a protocol and it is not applicable to that particular
key, it has to be transmitted as “0" and ignored by SHE.

4.41.6 Plain key flag

The flag has only to be implemented for RAM_KEY, see Chapter 4.4.3.1. The flag has
to be set by SHE whenever a key is loaded into K EYran xey in plaintext. The flag is
evaluated before exporting a RAM_KEY. The flag has to be reset whenever a key is
loaded by the secure protocol, see Chapter 4.9.

4.4.2 Non-volatile memory slots

The keys and the corresponding policies are described in detail within the following
sections.

Non-volatile memory slots must implement a mechanism to detect empty memory
slots, i.e. memory slots that have not been populated with a key after erasing or after
production. Empty memory slots may not be used by any function but for inserting a
key via the key update protocol described in Chapter 4.9.

AUTSSAR

4.42.1 MASTER _ECU KEY

Note: The MASTER_ECU_KEY is intended to be populated by the “owner" of the
component using SHE and it can be used to reset SHE or change any of the other keys.

The MASTER_ECU_KEY is only used for updating other memory slots inside of SHE,
see Chapter 4.9 for details on updating memory slots.

A new MASTER_ECU_KEY can be written with the knowledge of the current MAS-
TER_ECU_KEY and is protected by the common lock mechanisms described in Chap-
ter 4.4.1.1, Chapter 4.4.1.2, Chapter 4.4.1.3 and Chapter 4.4.1.4.

The MASTER_ECU_KEY must be empty after production.

4.4.2.2 BOOT MAC_KEY

The BOOT_MAC_KEY is used by the secure booting mechanism to verify the authen-
ticity of the software.

The BOOT_MAC_KEY may also be used to verify a MAC.
See Chapter 4.10 for details on the secure booting.

The BOOT_MAC_KEY can be written with the knowledge of the MASTER_ECU_KEY
or BOOT_MAC_KEY and is protected by the common lock mechanisms described in
Chapter 4.4.1.1, Chapter 4.4.1.2, Chapter 4.4.1.3 and Chapter 4.4.1.4.

Note: When changing the BOOT_MAC_KEY the BOOT_MAC usually should be
changed, too, except when first activating secure booting for autonomous MAC learning,
see Chapter 4.10.3.

The BOOT_MAC_KEY must be empty after production.

4.4.2.3 BOOT_MAC

Note: The BOOT_MAC is required for the secure boot mechanism and is therefore
stored inside of SHE. It is not considered to be a secret information, however, it is
treated like any other key inside of SHE for the ease of use.

The BOOT_MAC is used to store the MAC of the Bootloader of the secure booting
mechanism and may only be accessible to the booting mechanism of SHE.

See Chapter 4.10 for details on the secure booting.

The BOOT_MAC can be written with the knowledge of the MASTER_ECU_KEY or
BOOT_MAC_KEY and is protected by the common lock mechanisms described in
Chapter 4.4.1.1, Chapter 4.4.1.2, Chapter 4.4.1.3 and Chapter 4.4.1.4.

The BOOT_MAC must be empty after production.

AUTSSAR

44.24 KEY <n>

Note: The KEY _<n> are actually intended to be used to process bulk data in any given
application.

KEY_<n> can be used for arbitrary functions. n is a number 3..10, i.e. SHE must at
least implement three and at maximum ten keys for arbitrary use.

The usage of the keys has to be selected between encryption/decryption or MAC gen-
eration/verification on programming time by setting the key usage flag accordingly, see
Chapter 4.4.1.5.

KEY_<n> can be written with the knowledge of the MASTER_ECU_KEY or the current
KEY_<n> and is protected by the common lock mechanisms described in Chapter
4.4.1.1, Chapter 4.4.1.2, Chapter 4.4.1.3 and Chapter 4.4.1.4.

The KEY_<n> must be empty after production.

4.4.2.5 PRNG_SEED

PRNG_SEED is used to store the seed for pseudo random number generator as de-
scribed in Chapter 4.5.1.1. If the random number generator is implemented as de-
scribed in Chapter 4.5.1.2 the memory slot is not required.

PRNG_SEED may only be accessed by CMD_INIT_RNG as described in Chapter
4.5.1.1.

PRNG_SEED must be initialized during fabrication of the chip. Its value must be gen-
erated by a certified physical random number generator, e.g. a High Security Module
(HSM), and should meet at least the requirements of class P2 from [8].

Note: PRNG_SEED needs to be recalculated (see Chapter 4.5.1.1) before random
numbers can be requested, i.e. in worst-case scenarios it is written on every power
cycle/reset.

4.4.3 Volatile memory slots

The volatile memory slots should be cleared to “0" on reset or power-on-cycles.

The volatile memory slots are not protected by the lock mechanisms specified in Chap-
ter 4.4.1.1, Chapter 4.4.1.2 and Chapter 4.4.1.3

4.431 RAM_KEY

The RAM_KEY can be used for arbitrary operations.
The RAM_KEY can be written with the knowledge of the KEY_<n> or in plain text.

AUTSSAR

The RAM_KEY can be exported if it was loaded as plaintext, see
CMD_EXPORT_RAM_KEY in Chapter 4.7.9. A key loaded by the secure proto-
col may not be exported. The origin of the key has to be stored in a flag, see Chapter
4.4.1.6.

Note: Since the keys loaded into RAM_KEY are stored externally they are not
under full control of SHE, hence they are vulnerable to several attacks, e.g. replay
attacks and denial of service attacks. It is strongly advised to consider this fact
when designing applications.

4.43.2 PRNG_KEY

The PRNG_KEY is not directly accessible by any user function but is used by the
pseudo random number generator. See Chapter 4.5 for details on usage and data
population.

The PRNG_KEY may also be implemented in non-volatile memory. In this case the key
has to be generated, populated and protected by the same means as SECRET_KEY
(see Chapter 4.4.4.1).

4.4.3.3 PRNG_STATE

This memory slot holds the state of the pseudo random number generator.

The PRNG_STATE is not directly accessible by any user function but is used by the
pseudo random number generator. See Chapter 4.5 for details on usage and data
population.

4.4.4 Read-Only memory slots

Two memory slots are defined read-only during the life-cycle of the controller. Read-
only shall mean that they are at least protected by the controller logic, i.e. they may be
writable during production but not after leaving the fabrication.

4.4.41 SECRET_KEY

SHE must contain a unique secret key SECRET_KEY that shall not only be derived
from the serial number or any other publicly available information.

The SECRET_KEY has to be inserted during chip fabrication by the semiconductor
manufacturer and should not be stored outside of SHE.

The SECRET_KEY must at least meet the requirements of class P2 from [8]. It can be
generated by a certified physical random number generator, e.g. a Hardware Security
Module (HSM).

AUTSSAR
The SECRET_KEY may only be used to import/export keys.

4.4.4.2 Unique identification item UID

SHE or the microcontroller must contain a unique identification item, i.e. a serial num-
ber, of at most 120 bits. The identification item must be directly accessible by the
controller logic of SHE.

Note: The UID is specified to 120 bit because it is always used in conjunction with two
key ids or the status register to form a 128 bit block.

If the identification item is smaller than 120 bits it has to be padded with zero bits on
the MSB side before feeding it into SHE.

The UID has to be inserted during chip fabrication by the semiconductor manufacturer.

The UID may not be 0, i.e. at least one bit has to be set. The UID with the value 0 is
reserved as a wildcard UID for updating keys.

Note: The UID does not have to follow a special format, i.e. already inserted serial
numbers can be reused. It should at least be unique for all chips of a certain manufac-
turer.

The UID may be exported through additional ports from SHE to be used with other
components on the microcontroller. It must not be possible to affect the operation or
status of SHE through this port.

4.4.5 Identification of memory slots

All memory slots being accessible by user-functions must be addressable by a four-bit
value. The internal, physical addressing may differ. Table 4.1 shows the address of
every key.

AUTSSAR

Key name Address Memory area
(hexadecimal)

SECRET_KEY 0x0 ROM

MASTER_ECU_KEY 0x1

BOOT_MAC_KEY 0x2 non-volatile

BOOT_MAC 0x3

KEY_1 0x4

KEY_2 0x5

KEY_3 0x6

KEY_4 0x7

KEY_5 0x8

KEY_6 0x9

KEY 7 Oxa

KEY_8 Oxb

KEY_ 9 Oxc

KEY_10 Oxd

RAM_KEY Oxe volatile

Table 4.1: Key addresses

AUTSSAR

4.5 Random number generation

SHE must include pseudo random number generator. The seed can be generated in
two ways as described in Chapter 4.5.1

Note: Only one of the two described methods has to be implemented

The random numbers may not be generated directly by a true random number gener-
ator.

Note: A "P1 medium" [8] true random number generator (TRNG) may not be directly
used for the purposes of SHE due to cryptographic reasons. Even smart cards or other
advanced security solutions which possess high-quality physical sources of random-
ness usually rely at least on a compression of the TRNG output.

Note: The pseudo random number generator is designed to provide random numbers
at constant quality for generating challenges for authentication at rates only limited by
the performance of the underlying algorithm (AES).

4.5.1 Seed generation

The seed for the pseudo random number generator can be generated in two different
ways. Either by implementing another pseudo random number generator as described
in Chapter 4.5.1.1 or by compressing the output of a true random number generator as
described in Chapter 4.5.1.2.

4.5.1.1 Seed generation through a pseudo random number generator (PRNG)

The seed is a non-volatile 128 bit value used as the input to the random number gen-
erator.

The seed is updated by invoking the command CMD_INIT_RNG, see Chapter 4.7.10

To update the seed, a key is derived with PRNG_SEED_KEY_C from SECRET_KEY
(see Chapter 4.12 for the values of the single constants). The derived key is used to
encrypt PRNG_SEED. The output has to be stored to PRNG_SEED first and must only
be transferred to PRNG_STATE after completing the write transaction to PRNG_SEED.

PRNG_SEED_KEY = KDF (SECRET_KEY, PRNG_SEED_KEY_ C)
PRNG_SEED; = ENCgcg,pruc_seep_xey (PRNG_SEED;_;)

If PRNG_KEY is implemented as a volatile memory slot, a key for running the PRNG
has to be derived from SECRET_KEY and PRNG_KEY_C (see Chapter 4.12 for the
values of the single constants).

PRNG_KEY = KDF (SECRET_KEY, PRNG_KEY_C)

AUTSSAR

4.5.1.2 Seed generation trough a true random number generator (TRNG)

The TRNG must at least fulfill the requirement "P1 medium" as described in [8] in all
operating conditions according to the rating of the chip.

The seed is a 128 bit value used as the input to the random number generator. After
generation it has to be stored as PRNG_STATE.

The seed is generated by invoking the command CMD_INIT_RNG, see Chapter 4.7.10.

The entropy of the seed needs to be at least 80 bits, i.e. if the level of entropy delivered
by the TRNG is lower, enough entropy has to be collected and compressed. The
semiconductor manufacturer has to provide evidence of reaching this entropy level
upon request or in the data sheet.

The compression function has to be called at least once to generate the seed.

To compress the output of the TRNG into the seed the Miyaguchi-Preneel compression
function can be used as defined in Chapter 4.3.3

If PRNG_KEY (see Chapter 4.4.3.2) is implemented as a volatile memory slot, a key
for running the PRNG has to be derived according to Chapter 4.5.1.1.

4.5.2 Random generation

The random number generator must not output any random values before the seed is
updated as described above.

To generate a new random value according to E.4 [9], the content of PRNG_STATE is
encrypted with PRNG_KEY. The output of the encryption is used as the input for the
next random generation (encryption), i.e. it replaces PRNG_STATE, and is also output
to the user, see Figure 4.4 for details on the workflow:

PRNG_STATE; = ENCgcg,pryc_kry (PRNG_STATE; ;)
RND = PRNG_STATE;

That is, the implementation of PRNG must fulfill K3 with strength of mechanisms "high"
according to [9].

AUTSSAR

PRNG - Generate random number

CPU

SHE Controller

Data Storage

Algorithm

CMD_RND

!

CMD_INIT_RNG
done?

m

Stop

ERC_RNG_SEED

Read(IDern starte)

!

Read(IDprns kev)

PRNG_KEY

|
PRNG_STATE

>

ENCpruo_xey(PRNG_STATE)

|

Store
PRNG_STATE

&—RANDOM:-

RANDOM:

RANDOM

Return Random

RANDOM,
ERC_NO_ERROR

» Store(IDprue srate)

4.5.3 Extending

The seed and the current PRNG_STATE can be extended by any user by calling the
function CMD_EXTEND_SEED and supplying 128 bit of entropy. The seed and the
state are extended by compressing the concatenation of the old seed/state and the
entropy input with the Miyaguchi-Preneel compression function described above. The
input to the compression function has to be preprocessed according to Chapter 4.3.3.
Since the compression is a fixed length operation for 2x128 bit = 256 bit the padding be-
comes a constant operation. The padding is given as constant PRNG_EXTENSION_C

in Chapter 4.12.

PRNG_STATE =
PRNG_SEED =

Figure 4.4: Random number generation

the seed

AES-MP (PRNG_STATE ’ ENTROPY)
AES-MP (PRNG_SEED | ENTROPY)

AUTSSAR

4.6 Status Register

A status register can be read by the CPU to check the internal state of SHE. The status
register has a total width of 8 bits. If a bit is set its value is ’1’, if it is cleared its value is
50’-

Bit | Name Description

20 | BUSY The bit is set whenever SHE is processing a command.

21 | SECURE_BOQT | The bit is set if the secure booting is activated.

22 | BOOT_INIT The bit is set if the secure booting has been personalized during

the boot sequence.
23 | BOOT_FINISHED | The bit is set when the secure booting has been finished by

calling either CMD_BOOT_FAILURE or CMD_BOQOT_OK or if
CMD_SECURE_BOQT failed in verifying BOOT_MAC.

24 | BOOT_OK The bit is set if the secure booting (CMD_SECURE_BOOT)
succeeded. If CMD_BOOT_FAILURE is called the bit is erased.

25 | RND_INIT The bit is set if the random number generator has been
initialized.

26 | EXT_DEBUGGER| The bit is set if an external debugger is connected to the chip,
i.e. it reflects the input for debugger activation.

27 | INT_DEBUGGER | The bit is set if the internal debugging mechanisms of SHE are
activated

Table 4.2: Status Register

AUTSSAR

4.7 User-accessible Functions

SHE provides several functions to the CPU. In general, only a single function can be ex-
ecuted at a given time. Only the commands CMD_GET_STATUS (Chapter 4.7.16) and
CMD_CANCEL (Chapter 4.7.18) may be called while another function is processed.

In the following subchapters all available functions are listed together with the neces-
sary parameters, the direction of the parameters and the width of the single parameters
in bits.

The function interface has to be asynchronous, i.e. all functions have to be non-
blocking for the CPU and therefore return immediately.

Despite of returning data, every function must be able to return an error code to com-
municate the status of the processing to the calling application, see Chapter 4.8 for
details on error codes.

If a function returns an error code the output data has to be set to '0’.

Note: If output has been generated and transmitted, e.g., on CBC operations or via DMA
transfer, this output does not have to be deleted but the output of the round containing
an error has to be ‘0’. Especially the CMAC functions may not output anything on errors.

If not stated differently, all functions can only process complete blocks of data, i.e. 128
bits of data, or multiples of the block size.

Note: The functions are described on a high level and should be segmented into sev-
eral sub functions to comply with the requirements above. Handling of data can also
be implemented in a more sophisticated way, e.g. DMA transfers for processing larger
blocks of data.

Note: Implementation of a DMA interface is strongly suggested if supported by the
CPU. This will allow for a larger set of supported use-cases and more efficient software
design.

An interrupt may optionally be implemented to provide information about the status of
the commands, e.g. send an interrupt when the execution of a command is finished.

AUTSSAR

4.7.1 Encryption: CMD_ENC_ECB

Parameter Direction Width
KEY_ID IN 4
PLAINTEXT IN 128
CIPHERTEXT OUT 128

The function encrypts a given PLAINTEXT with the key identified by KEY_ID and returns
the CIPHERTEXT. See Table 4.5 for an overview of the allowed keys for the operation.

CIPHERTEXT = ENCgcp kev xgy 1o (PLAINTEXT)

Error codes: ERC_NO_ERROR, ERC_SEQUENCE_ERROR, ERC_KEY_NOT_AVAILABLE,
ERC_KEY_INVALID, ERC_KEY_EMPTY, ERC_MEMORY_FAILURE, ERC_BUSY,
ERC_GENERAL_ERROR

4.7.2 Encryption: CMD_ENC_CBC

Parameter Direction Width
KEY_ID IN 4
v IN 128
PLAINTEXT IN n = 128
CIPHERTEXT OUT n = 128

The function encrypts a given PLAINTEXT with the key identified by KEY_ID and returns
the CIPHERTEXT. See Table 4.5 for an overview of the allowed keys for the operation. The
plaintext can have a multiple length of the block width of 128 bit, n =1, 2, 3, ...

CIPHERTEXT = ENCcae,key key_1p,1v (PLAINTEXT)

Error codes: ERC_NO_ERROR, ERC_SEQUENCE_ERROR, ERC_KEY_NOT_AVAILABLE,
ERC_KEY_INVALID, ERC_KEY_EMPTY, ERC_MEMORY_FAILURE, ERC_BUSY,
ERC_GENERAL_ERROR

4.7.3 Decryption: CMD_DEC_ECB

Parameter Direction Width
KEY_ID IN 4
CIPHERTEXT IN 128
PLAINTEXT OUT 128

The function decrypts a given CIPHERTEXT with the key identified by KEY_ID and returns
the PLAINTEXT. See Table 4.5 for an overview of the allowed keys for the operation.

PLAINTEXT = DECkcs, ey key 1o (CIPHERTEXT)

Y%

AUTSSAR

A

Parameter Direction | Width

Error codes: ERC_NO_ERROR, ERC_SEQUENCE_ERROR, ERC_KEY_NOT_AVAILABLE,
ERC_KEY_INVALID, ERC_KEY_EMPTY, ERC_MEMORY_FAILURE, ERC_BUSY,
ERC_GENERAL_ERROR

4.7.4 Decryption: CMD_DEC_CBC

Parameter Direction Width
KEY_ID IN 4
v IN 128
CIPHERTEXT IN n * 128
PLAINTEXT OUT n + 128

The function decrypts a given CIPHERTEXT with the key identified by KEY_ID and returns
the PLAINTEXT. See Table 4.5 for an overview of the allowed keys for the operation. The
plaintext can have a multiple length of the block width of 128 bit, n=1, 2, 3, ...

PLAINTEXT = DECcgc,kgy kev 1p,1v (CIPHERTEXT)

Error codes: ERC_NO_ERROR, ERC_SEQUENCE_ERROR, ERC_KEY_ NOT_AVAILABLE,
ERC_KEY_INVALID, ERC_KEY_EMPTY, ERC_MEMORY_FAILURE, ERC_BUSY,
ERC_GENERAL_ERROR

4.7.5 MAC generation: CMD_GENERATE_MAC

Parameter Direction Width
KEY_ID IN 4
MESSAGE_LENGTH IN 64
MESSAGE IN n * 128
MAC OUT 128

The function generates a MAC of a given MESSAGE with the help of a key identified by
KEY_ID. See Table 4.5 for an overview of the allowed keys for the operation.

The function has to discard the calculated MAC and return an error if the provided message
has another length than stated in MESSAGE_LENGTH (bitlength of the message).

All padding is done by SHE according to the length provided by MESSAGE_LENGTH.

n = CEIL'(MESSAGE_LENGTH / 128)

MAC = CMACkgy key 1p (MESSAGE, MESSAGE_LENGTH)

Error codes: ERC_NO_ERROR, ERC_SEQUENCE_ERROR, ERC_KEY_ NOT_AVAILABLE,
ERC_KEY_INVALID, ERC_KEY_EMPTY, ERC_MEMORY_FAILURE, ERC_BUSY,
ERC_GENERAL_ERROR

'Let CEIL be the ceiling function such that CEIL(x) =min{n € X ¢ |n>x} R ={1,23,...}

AUTSSAR

4.7.6 MAC verification: CMD_VERIFY_MAC

Parameter Direction Width
KEY_ID IN 4
MESSAGE_LENGTH IN 64
MESSAGE IN n x 128
MAC IN 128
MAC_LENGTH IN 7
VERIFICATION_STATUS ouT 1

The function verifies the MAC of a given MESSAGE with the help of a key identified by
KEY_ID against a provided MAC. See Table 4.5 for an overview of the allowed keys for the
operation. The number of bits to compare, starting from the leftmost bit of the MAC, are
given in the parameter MAC_LENGTH, the value 0 is not allowed and is interpreted by SHE
as to compare all bits of the MAC.

The function has to return an error if the provided message has another length than stated
in MESSAGE_LENGTH (bitlength of the message).

All padding is done by SHE according to the length provided by MESSAGE_LENGTH.

n = CEIL>(MESSAGE_LENGTH / 128)

MACca1c = TRUNCATE (CMACkgy xey 1p (MESSAGE, MESSAGE_LENGTH),
MAC_LENGTH)

MAC,of = TRUNCATE (MAC, MAC_LENGTH)

VERIFICATION_STATUS = (0 != (MACcaic — MACrer))

Error codes: ERC_NO_ERROR, ERC_SEQUENCE_ERROR, ERC_KEY_NOT_AVAILABLE,
ERC_KEY_INVALID, ERC_KEY_EMPTY, ERC_MEMORY_FAILURE, ERC_BUSY,
ERC_GENERAL_ERROR

2Let CEIL be the ceiling function such that CEIL(x) =min{n e X [n>x},X{={1,23,..}

AUTSSAR

4.7.7 Secure key update: CMD_LOAD_KEY

Parameter Direction Width
M IN 128
My IN 256
M3 IN 128
My ouT 256
Ms oUT 128

The function updates an internal key of SHE with the protocol described in Chapter 4.9
If a protected key is loaded into RAM_KEY, the function has to disable the plain key status
bit.

See Chapter 9 for operation details.

Error codes: ERC_NO_ERROR, ERC_SEQUENCE_ERROR, ERC_KEY_NOT_AVAILABLE,
ERC_KEY_INVALID, ERC_KEY_ WRITE_PROTECTED, ERC_KEY_UPDATE_ERROR,
ERC_MEMORY_FATLURE, ERC_KEY_EMPTY, ERC_BUSY, ERC_GENERAL_ERROR

4.7.8 Plain key update: CMD_LOAD_PLAIN_KEY

Parameter Direction Width

KEY IN 128

A key KEY is loaded without encryption and verification of the key, i.e. the key is handed
over in plaintext. A plain key can only be loaded into the RAM_KEY slot. The command
sets the plain key status bit for the RAM_KEY.

KE YRAM_KEY = KEY
RAM_KEY_PLAIN = 1

Error codes: ERC_NO_ERROR, ERC_SEQUENCE_ERROR, ERC_BUSY,
ERC_GENERAIL_ ERROR

AUTSSAR

4.7.9 Export key: CMD_EXPORT_RAM_KEY

Parameter Direction Width
M ouT 128
My ouT 256
M3 ouUT 128
My ouT 256
Ms oUT 128

be imported again by using CMD_LOAD_KEY.
A RAM_KEY can only be exported if it was written into SHE in plaintext, i.e. by
CMD_LOAD_PLAIN_KEY.

details and contents as well as for arithmetic and padding, see Chapter 4.9.
No other values than M, M,, M5, My, Ms may leave SHE.

the first block of the encrypted message M, becomes a constant zero block.

The function exports the RAM_KEY into a format protected by SECRET_KEY. The key can

For loading a RAM_KEY and therefore for exporting a RAM_KEY the reserved fields for the
security flags and the counter have to be set to 0. For further explanation on message

Note: due to setting counter and flags to zero by definition in case of RAM_KEY updates,

Ki = KDF (KEYgsgcrer xey, KEY_UPDATE_ENC_C)
K, = KDF (KEYspcreT xey, KEY_UPDATE_MAC_C)

Cip = 0 (28 Dbits)

Fip = 0 (5 bits)

M; = UID|IDgram gev | IDsEcreET KEY

Mz = ENCcgec,k1,1v=0 (C1p I F1p1"0...0"95 | KEYRaAM kEY) =
ENCcpe,k1,1v=0 ("0...0" 128 | KEYRAM KEY)

M3 = CMACkz (M |M2)
K3 = KDF (KEYgram key, KEY_UPDATE_ENC_C)
K4 = KDF (KEYgrau_gkgy, KEY_UPDATE_MAC_C)

My = UID|IDgam xey | IDsrcreT _xEY | ENCECE, K3 (C1D)
M5 = CM.ACK4 (M4)

Error codes: ERC_NO_ERROR, ERC_SEQUENCE_ERROR, ERC_KEY_ INVALID,

ERC_MEMORY_FAILURE, ERC_BUSY, ERC_KEY_EMPTY, ERC_GENERAL_ERROR

AUTSSAR

4.7.10 Initialize random number generator: CMD_INIT_RNG

Parameter Direction Width

none

The function initializes the seed and derives a key for the PRNG.

The function must be called before CMD_RND after every power cycle/reset.

See Chapter 4.5.1.1 or Chapter 4.5.1.2 respectively for details on the initialization of the
random number generator.

The command has to ignore active debugger protection or secure boot protection flags on
SECRET_KEY.

Note: The function may need several hundred milliseconds to return.

See Chapter 5.1.1 or Chapter 5.1.2 respectively for operation details.

Error codes: ERC_NO_ERROR, ERC_SEQUENCE_FERROR,
ERC_MEMORY_FAILURE, ERC_BUSY, ERC_GENERAL_ERROR

4.7.11 Extend the PRNG seed: CMD_EXTEND_SEED

Parameter Direction Width

ENTROPY IN 128

The function extends the seed of the PRNG by compressing the former seed value and the
supplied entropy into a new seed which will be used to generate the following random
numbers.

The random number generator has to be initialized by CMD_INIT_RNG before the seed
can be extended.

See Chapter 5.3 for operation details.

Error codes: ERC_NO_ERROR, ERC_SEQUENCE_ERROR, ERC_RNG_SEED,
ERC_MEMORY_FAILURE, ERC_BUSY, ERC_GENERAL_ERROR

AUTSSAR

4.7.12 Generate random number: CMD_RND

Parameter Direction Width

RND ouT 128

The function returns a vector of 128 random bits.
The random number generator has to be initialized by CMD_INIT_RNG before random
numbers can be supplied.

IF (SREGgnp_1n1T == 1)

PRNG_STATE; = ENCgcs, ey pruc_xey (PRNG_STATE; 1)
RND = PRNG_STATE;

END IF

Error codes: ERC_NO_ERROR, ERC_SEQUENCE_ERROR,
ERC_RNG_SEED,ERC_MEMORY FAILURE, ERC_BUSY, ERC_GENERAIL ERROR

4.7.13 Bootloader verification (secure booting): CMD_SECURE_BOOT

Parameter Direction Width

SIZE IN 32

DATA IN SIZE =«
8

The function starts the secure boot process. SHE verifies the MAC of the Bootloader
supplied in DATA of the size SIZE in bytes.

The function must only be used once after every power cycle/reset and has to be locked
afterwards.

See Chapter 10 for operation details.

Error codes: ERC_NO_ERROR, ERC_SEQUENCE_ERROR, ERC_NO_SECURE_BOOT,
ERC_MEMORY_FATILURE, ERC_BUSY, ERC_GENERAL_ERROR

AUTSSAR

4.7.14 Impose sanctions during invalid boot: CMD_BOOT_FAILURE

Parameter Direction Width

none

The command will impose the same sanctions as if CMD_SECURE_BOQOT would detect a
failure but can be used during later stages of the boot process, see Chapter 10.4 for details.
CMD_BOOT_FAILURE may only be called once after every power cycle/reset and may
only be called if CMD_SECURE_BOOT did not detect any errors before and if
CMD_BOOT_OK was not called.

Note: If the secure booting is segmented into several stages and SHE does only provide the
first, autonomous stage, this function can be used during the following stages, to provide
the boot status to SHE.

IF (SREGsgcure_soor == 1 AND SREGpoor ok == 1 AND SREGpoor_rinisgep == 0)
SREGpooT_FINISHED = 1

SREGgoor_ ok = O

END IF

Error codes: ERC_NO_ERROR, ERC_SEQUENCE_ERROR, ERC_NO_SECURE_BOOT,
ERC_BUSY, ERC_GENERAL_ERROR

4.7.15 Finish boot verification: CMD_BOOT_OK

Parameter Direction Width

none

The command is used to mark successful boot verification for later stages than
CMD_SECURE_BOQT. In particular it is meant to lock the command
CMD_BOOT_FAILURE.

CMD_BOOT_OK may only be called once after every power cycle/reset and may only be
called if CMD_SECURE_BOQOT did not detect any errors before and if
CMD_BOOT_FAILURE was not called.

Note: If the secure booting is segmented into several stages and SHE does only provide the
first, autonomous stage, this function can be used during the following stages, to provide
the boot status to SHE.

IF (SREGsgcure_Boor == 1 AND SREGpoor ok == 1 AND SREGgpoor rintsuep == 0)

SREGgoor_rInTSHED = 1
END IF

Error codes: ERC_NO_ERROR, ERC_SEQUENCE_ERROR, ERC_NO_SECURE_BOOT,
ERC_BUSY, ERC_GENERAL_ERROR

AUTSSAR

4.7.16 Read status of SHE: CMD_GET_STATUS

Parameter Direction Width

SREG ouT 8

The function returns the contents of the status register.
The function may be called in every state.

Error codes: ERC_NO_ERROR, ERC_GENERAL_ERROR

4.717 Get identity: CMD_GET _ID

Parameter Direction Width
CHALLENGE IN 128
ID OUT 120
SREG ouT 8
MAC OUT 128

The function returns the identity (UID) and the value of the status register protected by a
MAC over a challenge and the data.
If MASTER_ECU_KEY is empty, the returned MAC has to be set to 0.

ID = UID
MAC = CMACggy masTer_rcu_key (CHALLENGE | ID | SREG)

Error codes: ERC_NO_ERROR, ERC_SEQUENCE_ERROR, ERC_KEY_NOT_AVAILABLE,
ERC_MEMORY_FATILURE, ERC_BUSY, ERC_GENERAL_ERROR

AUTSSAR

4.7.18 Cancel function: CMD_CANCEL

Parameter Direction Width

none

The CMD_CANCEL will interrupt any given function and discard all calculations and results.
If CMD_CANCEL is called during boot verification, the same actions have to be performed
as on failed boot measurement, see Chapter 4.10.4.

If CMD_CANCEL is called during update of a memory slot the former value of the memory
slot has to be kept if called before the physical write operation or the new value has to be
persisted if called during or after the physical write operation.

The command may be called in every state.

The latency (min/average/max) of CMD_CANCEL, i.e. the time between issuing
CMD_CANCEL and clearing SREGzysy, should be denoted in the datasheets.

Note: After calling CMD_CANCEL there may be some latency due to stopping data
transfers and cleaning up internal data before the busy flag (SREGgzysy) is cleared and SHE
becomes available for processing further commands. The application needs to be able to
handle this situation.

Error codes: ERC_NO_ERROR, ERC_GENERAL_ERROR

AUTSSAR

4.7.19 Debugger activation: CMD_DEBUG

Parameter Direction Width
CHALLENGE oUT 128
AUTHORIZATION IN 128

CMD_DEBUG is used to activate any internal debugging facilities of SHE, see Chapter
4.11. Activating the internal debugger implies the deletion of all keys except SECRET_KEY,
UID and PRNG_SEED and will only work, if no key is write-protected.

The command has to ignore active debugger protection and secure boot protection flags as
well as empty keys.

After successful authentication and deletion of all keys, the bit SREGxyp_ryrr has to be
reset to '0’.

Note: The command can also be used to reset SHE to the factory defaults if no key is
writeprotected.

SHE & Backend:
K = KDF(KEYMA&ERjnujmy, DEBUG_KEY_C)

SHE :
CHALLENGE = CMD_RND ()

Backend:
AUTHORIZATION = CMACk (CHALLENGE |UID)

Error codes: ERC_NO_ERROR, ERC_SEQUENCE_ERROR, ERC_WRITE_PROTECTED,
ERC_RNG_SEED, ERC_NO_DEBUGGING, ERC_MEMORY_FAILURE, ERC_BUSY,
ERC_GENERAL_ERROR

AUTSSAR

4.8 Error Codes

The sHE coprocessor will provide error codes after calling a command. The following
error codes are defined and should be handled appropriately by the calling application.
Table 4.7 shows which error codes may occur with the single functions of SHE.

4.8.1 ERC_NO_ERROR

No error has occurred and the command will be executed.

4.8.2 ERC_SEQUENCE_ERROR

This error code is returned by SHE whenever the sequence of commands or subcom-
mands is out of sequence, e.g. when a function is called while another function is still
running.

4.8.3 ERC_KEY_NOT_AVAILABLE

This error code is returned if a key is locked due to failed boot measurement or an
active debugger.

4.8.4 ERC_KEY_INVALID

This error code is returned by SHE whenever a function is called to perform an operation
with a key that is not allowed for the given operation.

4.8.5 ERC_KEY_EMPTY

This error code is returned by sSHE if the application attempts to use a key that has not
been initialized yet.

4.8.6 ERC_NO_SECURE_BOOT

This error is returned by the command CMD_SECURE_BOQOT (see Chapter 4.7.13)
when the conditions for a secure boot process are not met and the secure boot process
has to be canceled. It is also returned if a function changing the boot status is called
without secure booting or after finishing the secure boot process.

AUTSSAR

4.8.7 ERC_KEY_WRITE_PROTECTED

This error is returned when a key update is attempted on a memory slot that has been
write protected or when an attempt to active the debugger is started when a key is
write-protected.

4.8.8 ERC_KEY_UPDATE_ERROR

This error is returned when a key update did not succeed due to errors in verification
of the messages.

4.8.9 ERC_RNG_SEED

The error code is returned by CMD_RND and CMD_DEBUG if the seed has not been
initialized before.

4.8.10 ERC_NO_DEBUGGING

The error code is returned if internal debugging is not possible because the authenti-
cation with the challenge response protocol did not succeed.

4.8.11 ERC_BUSY

This error code is returned whenever a function of SHE is called while another function
is still processing, i.e., when SREGBUSY = 1. It should not matter if the order of
commands is correct. If CMD_CANCEL or CMD_GET_STATUS is called while another
function is processing they should not return ERC_BUSY but be processed in parallel,
as stated in Chapter 4.7.

4.8.12 ERC_MEMORY_FAILURE

This error code can be returned if the underlying memory technology is able to detect
physical errors, e.g. flipped bits etc., during memory read or write operations to notify
the application.

4.8.13 ERC_GENERAL_ERROR

This error code is returned if an error not covered by the error codes above is detected
inside SHE.

AUTSSAR

4.9 Memory update protocol

SHE provides several memory slots to store keys and other required information with
the possibility to change the contents whenever necessary. The memory slots are pro-
tected by different policies, depending on the use-case of the memory slot. However,
when updating a memory slot a secret has to be known to authorize for changing the
memory. There is a single protocol for updating all memory slots. Only a single mem-
ory slot can be updated by running the protocol at once. The protocol is described in
the following subchapters.

The protocol consists of two parts: the memory update itself as well as a verification
message which can be passed back to the issuer of the update to prove the successful
update. The protocol is secured against replay attacks by including a counter value
stored within SHE. Furthermore it provides confidentiality, integrity and authenticity. By
transferring messages back to the external party, the successful update of a memory
position can be proven.

The number of updates for a single memory slot is only limited by the width of the
counter and the physical memory write endurance.

The protocol described in the following sections has to be implemented to update non-
volatile memory slots or the RAM_KEY with the command CMD_LOAD_KEY.

The generation of the messages M,, M,, M5, M,, M5 has to be implemented for the
command CMD_EXPORT_RAM_KEY.

The memory update protocol is segmented into two parts, first the actual memory
update to transfer a confidential and authentic key to SHE and a second verification
part to provide evidence of a successful key update to the backend.

4.9.1 Description of the memory update protocol

To update a memory slot, e.g. a key, the external entity, e.g. the backend, must
have knowledge of a valid authentication secret, i.e. another key, which is identified
by AuthlID. See Table 4.6 for details on which authentication secret must be known to
update a certain memory slot.

The backend has to derive two keys K; and K, (see Chapter 4.3.2) from KEY ,,..1p With
the constants KEY_UPDATE_ENC_C or KEY_UPDATE_MAC_C respectively. Then
three messages M,..M; are generated. M, is a concatenation of the UID of the ad-
dressed SHE module, the ID of the memory slot to be updated and the AuthID. M, is
the CBC-encrypted concatenation of the new counter value C;;,’, the according flags
F.o', a pattern to fill the first block with '0’ bits and the new key K;,’. The initialization
vector for the encryption is IV = 0, the key is K, the message is padded by concatenat-
ing a single "1"-bit followed "0"-bits on the LSB side. The flags F.,’ are given as

Fip/ = WRITE_PROTECTION | BOOT_PROTECTION | DEBUGGER_PROTECTION
| KEY_USAGE | WILDCARD

AUTSSAR

The last message M is a verification message and is calculated as a CMACx, over the
concatenation of M, and M,.

All three messages must be transferred to SHE.

SHE checks the write protection of the memory slot ID and only proceeds if the write
protection is not set.

If the key AuthlID is empty, the key update must only work if AuthlD = ID, otherwise
ERC_KEY_EMPTY is returned.

The debugger protection and secure boot protection (see Chapter 4.4.1.3 and Chap-
ter 4.4.1.2) have to be checked if ID = IDzay xzy- If One of the protections is active,
ERC_KEY_NOT_AVAILABLE is returned. For other IDs and for all AuthIDs the check
of debugger and secure boot protection is omitted.

In case of memory failures, at least AuthID, C,,, F, and U, (if not in wildcard mode)
have to be readable to perform an update, otherwise ERC_MEMORY_FAILURE is
returned.

Note: A key update of non-volatile keys can be performed even if the security bits for
failed secure boot measurement or active debugger would prevent access since the
update process is authentic and confidential by itself.

In the following SHE also derives K, and verifies the message Ms. If the verification
is successful, sHE first checks if the supplied UID’ matches the wildcard value 0. If
the UID’ is a wildcard SHE checks if wildcards are allowed for that particular key by
checking the stored flag and proceeds to read the AuthlD or interrupts the protocol. If
the UID’ in M, is no wildcard it is compared to the actual uTD of SHE and the protocol
only proceeds if the values match.

In the next step K, is derived by sHE to decrypt M,. If the new counter value CID’
from M, is bigger than the internal counter value C.,, SHE has to proceed to store the
transmitted counter value, key and flags.

Note: A physical write operation should only be issued if the new value is different from
the current value

All intermediate values, e.g. K, and decrypted values, may not leave SHE. The update
of a certain memory slot may not affect any other key slot.

See Figure 4.5 for a flow chart of the protocol. After successful storage of all data a
verification message is generated, see next chapter for details. If the protocol is used
to load a RAM_KEY the flags and counter value have to be set to 0 and SHE must
ignore their value.

AUTSSAR

Memory Update

ERC_KEY_UPDATE_ERROR.

ERC_KEY_UPDATE_ERROR—}

Check (Ms=M5*)

Read (AuthID)

Backend CPU SHE Controller Storage Algorithm
K: = KDF(Kauho, KEY_UPDATE_ENC_C)
Kz = KDF(Kiaehio, KEY_UPDATE_MAC_C)
M; = UID'[ID| AuthID
Mo = ENCosccr ool Cio' | Fo' [0..0ss[Kio')
M = CMAGx,(M1|M2)
LMJ\ M| M— CMD_LOAD_KEY I——M1 M| Mz—l
Check write protection
of KEY,s
—ERC. WRITEPROTECTED—‘M,,MZ, AuthID

—Ml,Mz,KEYAumm—l

‘ KDF (KEYaytnip, KEY_UPDATE_MAC_C) ‘

T
Kz

Check(UID’= 0)

Check(Fio, wiocaro = 0)

(Stop

RC_KEY_UPDATE_ERROR

ER[_KEY_UPDATE_ERROR

M.
M;

Check(UID = UID")

Check(Co’ > Cp)

UID

M, AuthD——]

Read(AuthID) '7

CMAC2(M: | M)

7M2,KEYAthID‘l

‘KDF(KEYAMMD, KEY_UPDATE_ENC C) ‘
T

Ki

DECege,a,v-0(M2)

—CVD’; KVD’ FVD’

Cio, Kio” Fip

Store(Co, Kio”Fio')

Verification Message
Generation

Figure 4.5: Memory update protocol

AUTSSAR

4.9.2 Description of the update verification message generation

After updating a memory slot SHE has to generate a verification message which can
be transferred to the backend to prove the successful update. See Figure 4.6 for a flow
chart of the generation.

SHE first derives a key K; (see Chapter 4.3.3) from the updated memory slot ID and
KEY_UPDATE_ENC_C to encrypt the stored counter value C;;, in ECB mode. The
counter value has to be padded with a single "1"-bit followed by "0"-bits on the LSB
side.

Next a message M, is generated by concatenating the Uu1D, the ID of the updated
memory slot, the used authentication secret AuthlD and the encrypted counter value
M,*. Before encryption, the counter value is padded by concatenating a single "1"-bit
followed "0"-bits on the LSB side.

Finally Ms is generated by calculating a cMAC over the message M, with a key K,
derived from the updated memory slot ID and KEY_UPDATE_MAC_C.

The messages M, and M; are then transferred to the backend.

AUTSSAR

Memory Update Verification Message

—UID———

Read(Cpp) }»
4‘ Read(IDyp)

Backend CPU SHE Controller Storage Algorithm
Read(ID)

KEY.D—l

‘ KDF(KEY,, KEY_UPDATE_ENC_C) ‘

[
Ky

_CID » ENCECB.KS(CID)

M,=UID|ID | AuthID] M,* I

Read(ID) i»

>
~

M
Mg

KEYIDT

‘ KDF(KEYpp, KEY_UPDATE_MAC_C)‘

[
Kq

My

Stop

Ms, ERC

E
5

_NO_ERROR

N CMACya(Ma)

Figure 4.6: Verification message generation during memory update

AUTSSAR

4.10 Secure booting

The facilities of SHE can be used to secure the boot process, i.e., to monitor the au-
thenticity of the software on every boot cycle. To achieve this, a task has to be run upon
reset of the CPU and before handing control over to the application. The task could be
implemented as a small addition to the ROM code of the microcontroller, comparable to
the "core root of trust for measurement” (CRTM) as defined by the Trusted Computing
Group, see [10].

The secure boot process verifies an area of the memory against internal data of SHE
and will lock parts of sHE if the verification fails. The verified part is identical to the first
user instructions executed right after initialization of the microcontroller and is called
"SHE Bootloader" in the following sections

Note: The sHE Bootloader can be an additional Bootloader, an existing Bootloader or
a for example a data section that should be protected. However, a data section would
need a jump operation to the actual application in its first memory position..

The sHE Bootloader is located at the memory position SHE_BL_START and has the
size SHE_BL_SIZE. Both values are not critical for security, hence they are not stored
inside of SHE. The sHE Bootloader is not part of the internal ROM but of the user
accessible memory.

The size of the Bootloader SHE BL_SIZE has to be configurable by the application
engineer and should not be fixed by the chip manufacturer. The value SHE_BL_START
has to be writeable by the application engineer if the microcontroller architecture allows
for different positions to boot from.

The actual storage position for these values is controlled by the manufacturer of the
microcontroller and may be specific to every microcontroller. However, only the task
starting the secure boot process has to deal with the values. The task has always to try
to start the secure boot process and evaluate the error code by letting SHE determine
if secure boot is configured.

The secure boot process should not interfere with the regular functionality of the CPU,
i.e. if not explicitly activated; the CPU should perform as if SHE is not present.

To activate the secure boot feature a key has to be written into the BOOT_MAC_KEY
key slot. Upon the next reset of the CPU sHE will personalize itself, see Chapter 4.10.3.

Note: Secure booting does not directly protect the application software but can prevent
a malicious application from using certain keys. To protect the software as well, a de-
pendency between the software and the keys has to be generated, e.g., by encrypting
parts of the software.

Note: Secure booting provides a way to authorize the use of the stored keys by evalu-
ating the integrity and authenticity of the booted configuration.

There have to be two ways to perform the secure boot which have to be configurable
by the software application engineer in a non-volatile memory area provided by the
microcontroller, see Chapter 4.10.1 and Chapter 4.10.2 for details.

AUTSSAR

4.10.1 Measurement before application start-up

In this case, the complete secure boot process is performed before the control over the
microcontroller is handed over to the application.

The secure booting must always be finished before the CPU starts the application
code. If direct memory access techniques are used to implement secure booting, the
CPU must wait the end of the operation before starting the application code. If the
DMA transfer is canceled or interrupted by any means, SHE has to get notified and the
secure boot has to be marked as failed.

4.10.1.1 Exemplary implementation: extension of the boot code

The "boot code" means the internal ROM code of the microcontroller, executed right
after reset to initialize the CPU and the peripherals before starting the user application.

The internal boot code of the microcontroller has to be extended by a small program to
start the verification of a SHE Bootloader.

The boot code extension has to fulfill several tasks in the following order:
* Retrieve the size SHE_BL_SIZE of the sHE Bootloader

* Read the Bootloader data from the address SHE _BL_START to SHE _BL START
+ SHE_BL_SIZE and use CMD_SECURE_BOQOT to send it to SHE

 Start the execution of the sHE Bootloader at SHE_BL STAR

The extension of the boot code must guarantee to start exactly the same code as
verified before, i.e. it has to start execution at SHE_BL START.

Figure 4.7 should illustrate how the extension of the boot code should work. The fol-
lowing variables are used within the example:

SHE_BL_SIZE The length in bytes of the bootloader; stored in internal or
external memory of the CPU as an unsigned value of 32 bit
width

SHE _BL_START Address of the first byte of the bootloader. The address

might be fixed for certain CPU architectures or it might be
stored in internal or external memory.

BOOT_POSITION Address of the first instruction after a regular reset. Can be
the same as SHE_BL_START.

Note: The command CMD_SECURE BOOT has been separated into three sub com-
mands called INIT, UPDATE and FINALIZE. The INIT-part is used to start the function
and hand over the necessary parameters. This first sub function will also check the
conditions to decide if a secure boot process is performed. The second sub command

AUTSSAR

is used to transfer the bulk data from the CPU to SHE and the third command is used
to tell SHE that the process is finished.

// Existing CPU specific initialization instructions

BI, SIZE = READ_FROM MEM(RSHE_BIL SIZE)

IF [CMD_SECURE_BQOOT_ INIT(BL SIZE) == ERC_NO_ERROER] THEN
FOR (1 = 0, i++, 1 < BL_SIZE)

DATA = READ FROM MEM(@SHE BL START + i)

|

MD_SECURE_BOOT__ UPDATE (DATA)
END FOR
CMD_SECURE_BOOT__FINALIZE ()

GOTO SHE_ BI, START

END IF

// A Jump to the regular boot position can be performed here

Figure 4.7: Pseudo code extending the ROM code of a non-DMA microcontroller

4.10.2 Measurement during application start-up

This option only has to be implemented on microcontrollers supporting direct memory
access techniques.

In this case, the secure boot process is only initialized and started before the control
over the microcontroller is handed over to the application, i.e., the direct memory ac-
cess is parametrized and started. The actual measurement of the code is executed in
parallel to the application start-up.

All keys protected with the secure boot flag must be deactivated upon reset and will
only be activated after successful completion of CMD_SECURE_BOOT.

Note: Since SHE can only process a single operation at a given time, SHE will not
be accessible for the application until the secure boot process is finished. However,

the application can boot without delay and can potentially interrupt the secure boot
process.

SHE has to stop the secure boot process and treat it as failed if the data transfer oper-
ation is canceled or manipulated by the application.

No write operations to the memory area being measured are allowed during secure
boot. If the memory is written during secure boot, SHE has to stop the secure boot
process and treat it as failed. Deactivating write capabilities during secure boot is an
equivalent measure.

AUTSSAR

4.10.3 Autonomous bootstrap configuration of the secure boot process

If required an automatic/autonomous learning of the individual MAcrequired for the se-
cure boot process can be achieved. The mechanism does not require to initialize SHE
with a pre-calculated MAC but only with the according key. The bootstrap process is
triggered on the first reset of SHE after writing a key to BOOT_MAC_KEY.

The bootstrap configuration for the secure boot process is done autonomously by the
following mechanism after the first reset after a key is written into the according key
slot.

When SHE detects a boot key but no stored MAC, the CPU will perform the same task
as during a secured boot, i.e. it will read the program flash and pipe it to SHE but SHE
does not validate the calculated MAC but stores it to its internal memory. On the next
reset the boot up will be secured by SHE.

Note: The position and size of the Bootloader must be initialized accordingly.

4.10.4 Sanctions on fail of boot measurement

If SHE detects a failure during the boot process, e.g., if the calculated MAC does
not match the stored MAC, the boot process is disturbed or keys are inaccessi-
ble due to memory failures (ERC_MEMORY_FAILURE) or debugging protected keys
(ERC_KEY_NOT_AVAILABLE), the following sanctions have to be imposed:

The appropriate bits in the status register are set to flag the failed boot process to the
appllcatlon, i.e., SREGBOOT_FINISHED = 1 and SREGBOOT_OK = O.

The commands CMD_BOOT_FAILURE and CMD_BOOT_OK must be locked.
All keys being marked according to Chapter 4.4.1.2 must be locked.

4.10.5 Optional: Enforcing authenticated software

Note: This boot mode is not mandatory for SHE 1.0 compliance.

Note: In this configuration mode the CPU refuses to start any application being not
authentic.

The secure boot operation is performed before starting the application (cf. Chapter
4.10.1.1) but if the secure boot operation is not successful, it has to be restarted.
Compare pseudo code in Figure 4.8 to code in Figure 4.7 for an example how the boot
mode to enforce authenticated software can be implemented if an implementation in
ROM code is chosen.

The configuration of boot modes has to be stored in an one-time-programmable area. If
this optional boot mode is configured to be performed, the CPU must prevent any other
boot option than configured for the secure boot, e.g., reconfiguring the boot memory

AUTSSAR

must not be possible and using boot-strap modes over communication interfaces must
not be possible either.

// Existing CPU specific initialization instructions
BL, SIZE = READ_FROM MEM(@SHE_EBEI_SIZE)
IF [CMD_SECURE_BOOT INIT(EL SIZE) == ERC_NO_ERROR] THEN
LABEL SECURE_BOOT_CHECK:
FOR (1 = 0, i++, 1 < BIL_SIZE)
DATA = READ FROM MEM(ESHE BI,_ START + i)
CMD_ SECURE BOOT UPDATE (DATA)
END FOR
CMD_SECURE_BOOT_FINALIZE ()
//enforce authenticated software upon boot
SREG = CMD_GET_STATUS ()
IF [SREG.BOOT_COK == (0 AND OTPMEM.ENFORCE_AUTH BOOT == 1] THEN
RESET_SHE()
GOTO SECURE_BOOT CHECK
END IF
GOTO SHE EBIL, START
END IF

// A jump to the regular boot position can be performed here

Figure 4.8: Pseudo ROM boot code for enforcing an authentic application

The keys protected with the secure boot flag have to be locked if the boot measurement
fails, even though the process should be restarted immediately.

Note: To make this boot option useful, the decision if the boot measurement has to be
redone should be protected against certain hardware attacks, e.g., glitching attacks.
However, since this boot mode is optional no requirements regarding tamper resistance
are made.

AUTSSAR

4.10.6 Optional: Flow charts

Secure Booting

CPU Boot Code (CRTM) SHE Controller Storage Algorithm

START

Init CPU
(existing code)

Get bootloader size

SIZE
CMD_SECURE_BOOT SIZEAD{ Init Secure Boot }74’{ Read(IDgoor mac_kev)
l—BOOT_MAC_KEYQ
Check if
BOOT_MAC_KEY
is empty

<>

SRE Gs[cunsf&om =0

v
‘ SREGs¢cyre oot = 1 ‘ ‘ Read(IDgoor_mac_kev) |—*BOOT_MAC_KEY

ERC_NO_SECURE_BOOT.

——ERC_NO_ERROR: maoa‘r,MAc,kEvl

Read bootloader

« o 2 N CMACaoor mac_revl
0..0"56 | SIZE | DATA “0...0"55| SIZE | DATA)

Calculate MAC

Read(! DBOOLMAC)

Read stored MAC

ﬁBOOT_MAC
Check if

BOOT_MAC
is empty

MAC*

Compare |
(MAC™, BOOT_MAC)

no yes
p

MAC*

Store(IDgoor_mac)

SRE GBDOLOK =1

—ERC_NO_ERROR g

RESTRICT ACCESS
SREGBOOLOK =0
SREGgqor_finistep = 1

ERC_NO_ERROR—— ‘

SREGBOOTJNIT =1
SREGBooTiox =0
SREGBOOTJlleHED =1

7N07ERROR—I

14 hERC

Start bootloader

Figure 4.9: Flow chart of the secure boot process (without DMA)

oner-onRecet)

Power-on/Resst |

all keys locked
\ SREGex pesuocer= 1 \
SREGaecurs aoor =0
SREGgoom ok =0
SREGaoer reusren=0

debugger
active?

Note:
If a memory failure occures or a required key is not
accessible during secure boot due to secunty flag
restrictions, e.g., the BOOT_MAC_KEY is debug yes
protected and the debugger is active, the secure boot
is treated as failed, e,

SREGscor_rimisken = 1

SREGacor ok =0

AUTSSAR

enforce
authentic

yes application?
optiona

Activate secure boot
SREGezcume oot = 1

background
verification?

¥ ¥

Verify code

Verify code

activated?

¥

< >

<>

Activate secure boot
SREGsseume poor =1

H

Finish boot process
SREGecor_Anisien = 1

SREGext_resucser= 1

h 4 A 4
Activate secure boat Finish boot process Artivate secure boot Activate secure boot Activate secure boot
protected keys SREGeoor_rineHen = 1 protected keys protected keys protectad keys

SREGyoar ok =1 SREGeqr pesvossn= 1 SREGgoor on =1 SREGgoor Finssen = 1 SREGgoo prissen = 1
v v v
- o) (s N]] - -
Start application Start m_u_u__nm:e @m: mvv__nm__e Start m_u_u__nmn.w:\ | Start m_u_u__n&_.w:\ | Start appli 8:@ Start application
A 4 A 4

Finish boot process
SREGeoot_FiasHen = 1
SREGeq pepucosr = 1

Figure 4.10: Boot flow of SHE enabled microcontrollers

AUTSSAR

4.11 Failure analysis of SHE/Resetting SHE

Note: The internal parts of SHE may only be accessible to failure analysis systems if
they have been explicitly activated by SHE. Prior to analyser activation the analysis sys-
tem has to be authenticated via the MASTER_FECU_KFEY and the internal memories
of SHE have to be deleted. See function CMD_DEBUG in Chapter 4.7.19.

In this chapter the term "failure analysis system" refers to low-level systems integrated
by semiconductor manufacturers to analyse breakdowns. It does not include debug-
ging of software applications.

SHE must be able to control the activation of internal failure analysis facilities. Regular
debuggers that are available to developers (e.g. JTAG) may only cover the external
interfaces of SHE.

To activate the internal failure analysis facilities, the following steps have to be exe-
cuted:

1. Check if a write-protection bit is set, only proceed if no key is write-protected

2. A challenge-response protocol is used to unlock the internal failure analysis sys-
tems of SHE. The secret used in the debugging protocol is a key derived from
MASTER_ECU_KEY with DEBUG_KEY_C °

3. After successful authentication all internal memories of SHE have to be deleted,
except for SECRET_KEY, UID and PRNG_SEED

4. SREGgy,_1yir has to be reset to 0.
5. The debugging interface may be unlocked

The challenge-response protocol consists of the following steps. Prior to executing
CMD_DEBUG, the random number generator has to be initialized to allow for the
challenge-response protocol.

1. SHE generates a random number CHALLENGE
2. SHE derives a key Kpegug from MASTER_ECU_KEY and DEBUG_KEY_C
3. sHE sends CHALLENGE to the entity A requesting debugger access

4. A also derives Ky

5. A calculates a MAC over UID and CHALLENGE

AUTHORIZATION = CMACx,..(CHALLENGE | UID)

A sends AUTHORIZATION to sHE

7. sHE verifies AUTHORIZATION. In case of successful verification the internal
memories have to be deleted before the debugger access is activated.

o

The activation must only last until the next reset, i.e. the debugger has to be reactivated
on every reset.

3See Chapter 4.12 for the values of the constants

AUTSSAR

The activation must also work if the debugging or secure boot protection flag is set for
MASTER_ECU_KEY.

Internal debugger activation
Backend CPU SHE Controller Storage Algorithm

Koeaus=KDF (MASTER _ECU_KEY,
" DEBUG_KEY C) CMD_DEBUG l
Check for any
write-protection
ERC_WRITE_PROTECTED—| 4‘
Koesus PRNG Initialized?
—ERC_RNG_SEED— ho yes
Generate Random Number
CMAG, (CHALLENGE| UID) HALLENGE i
Read(IDyiasrer_ecu_kev) ——MASTER_ECU_KEY
KDF(MASTER_ECU_KEY,
DEBUG_KEY_C)
T
Koesua
Read(IDyp) FUIDP| CMAC(CHALLENGE|UID)
Check(
AUTHORIZATION > AUTHORIZATION= AUTHORIZATION"
AUTHORIZATION’)

—ERC_NO_DEBUGGING Q — 1

Delete all keys

]

SREGINLDEBUGGER =1

Activate Debugger

l ERC_NO_ERROR

Stop

Figure 4.11: Activation of internal debugging facilities

AUTSSAR

4.12 Constants used within SHE

The constants are predefined to retain compatibility between different implementations
of SHE. See Chapter 4.3.3.1 for details on how the constants are constructed.

Constant Value

KEY_UPDATE_ENC_C 0x01015348 45008000 00000000 000000BO
KEY_UPDATE_MAC_C 0x01025348 45008000 00000000 000000BO
DEBUG_KEY_C 0x01035348 45008000 00000000 000000BO
PRNG_KEY_C 0x01045348 45008000 00000000 000000BO
PRNG_SEED_KEY_C 0x01055348 45008000 00000000 000000BO
PRNG_EXTENSION_C 0x80000000 00000000 00000000 00000100

Table 4.3: Constant values used within SHE

AUTSSAR

4.13 Examples and Test vectors

To check the correct implementation of SHE, the following sub chapters contain ex-
amples for every cryptographic function and protocol of SHE. The test vectors of the
referenced algorithms, i.e. AES and CMAC, are taken from the cited specification docu-
ments and placed here for convenience.

4.13.1 AES-128, ECB mode

PLAINTEXT 0011223344556677889%aabbccddeeff
KEY 000102030405060708090a0b0c0d0e0f
CIPHERTEXT 69c4e0d86a7b0430d8cdb78070b4c55a

4.13.2 AES-128, CBC mode

4.13.2.1 encryption

KEY 2b7e151628aed2a6abf7158809cf4f3c
v 000102030405060708090a0b0c0d0e0f
Block #1

PLAINTEXT 6bclbee22e409f96e93d7e117393172a
AES INPUT 6bc0bcel2a459991e134741a7£9e1925
AES OUTPUT 7649%9abac81190246cee98e9012e9197d
CIPHERTEXT 7649%9abac81190246cee98e9012e9197d
Block #2

PLAINTEXT ae2d8ab71e03ac9c9eb76fac45af8e51
AES INPUT d86421fb9flaledab05eel375746972¢
AES OUTPUT 5086cb9b507219ee95db113a917678b2
CIPHERTEXT 5086cb9p507219ee95db113a917678b2
Block #3

PLAINTEXT 30c81c46a35cedllebfbcll9lalab2ef
AES INPUT 604ed7ddf32efdf£7020d0238b7c2a5d
AES OUTPUT 73bedbb8e3c1743b7116e69e22229516
CIPHERTEXT 73bedbb8e3c1743b7116e69e22229516
Block #4

PLAINTEXT f69f2445df4f9b17ad2b417be66c3710
AES INPUT 8521f2fd3c8eef2cdc3da’eb5c44ea206

\Y%

AUTSSAR

AES OUTPUT
CIPHERTEXT

4.13.2.2 decryption

KEY
v

Block #1
CIPHERTEXT
AES INPUT
AES OUTPUT
PLAINTEXT

Block #2
CIPHERTEXT
AES INPUT
AES OUTPUT
PLAINTEXT

Block #3
CIPHERTEXT
AES INPUT
AES OUTPUT
PLAINTEXT

Block #4
CIPHERTEXT
AES INPUT
AES OUTPUT
PLAINTEXT

A

3fflcaaloe8l1fac09120eca307586ela’
3fflcaaloe8lfac09120eca307586ela’

2b7el151628aed2a6abf7158809cf4f3c
000102030405060708090a0b0c0d0e0f

7649abac81l19b246cee98e9p12e9197d
7649abac81l19b246cee98e9p12e9197d
6bcObcel2a459991e134741a7£9e1925
6bclbee22e409f96e93d7e117393172a

5086cb9b507219ee95db113a917678b2
5086cb9p507219ee95db113a917678b2
d86421fb9flaleda505eel1375746972c
ae2d8ab71e03ac9c9eb’76fac45af8ebl

73bed6b8e3cl1743b7116e69e22229516
73bed6b8e3cl1743b7116e69e22229516
604ed7ddf32efdf£7020d40238b7c2a5d
30c81lc46a35cedllebfbcll9lalabl2etf

3fflcaal68lfac09120eca307586ela’
3fflcaale8lfac09120eca307586ela’
8521f2fd3c8eef2cdc3da’7e5cd44ea206
£69f2445df4f9b17ad2b417be66c3710

AUTSSAR

4.13.2.3 CMAC

KEY

Subkey generation

CIPHg (0%28)
K1
K2

Example 1 (message
length 128 bit)

MESSAGE
OUTPUT

Example 2 (message
length 320 bit)

MESSAGE

OUTPUT

2b7el151628aed2a6abf7158809cf4£f3c

7df76b0clab899033e42£f047b91b546£

fbeed618357133667c85e08£7236a8de
f7ddac306ae266ccf90bclleed6d513b

6bclbee22e409£96e93d7e117393172a
070al6b46b4d4144£79pdd9dd04a287c

6bclbee22e409f96e93d7e117393172a
ae2d8ab71e03ac9c9eb76fac45af8e51l
30c81lc46a3bcedll

dfa66747de9%9ae63030ca32611497c827

4.13.2.4 Miyaguchi-Preneel compression function

M

PADDING
OUTPUT

4.13.2.5 Key derivation

K
C

KDerived

6bclbee22e409f96e93d7e117393172a
ae2d8ab571e03ac9c9eb76fac45af8e51

80000000000000000000000000000100
c7277a0dclfb853b5£4d9%cbd26be40c6

000102030405060708090a0b0c0d0e0f
010153484500800000000000000000b0
118a46447a770d87828a69c222e2dl7e

4.13.2.6 Pseudo random generation/Seed generation

SECRET_KEY
PRNG_SEED

2b7e151628aed2a6abf7158809cf4f3c
obclbee22e409f96e93d7e117393172a

AUTSSAR

4.13.2.7 Calculate new seed

PRNG_SEED_KEY
PRNG_SEED (new)

8abc8f6e2a8264£d38088be622caldle
41£f21213bcal0434b3eb3bafcb0alod’4

4.13.2.8 Calculate new random value

PRNG_STATE
PRNG_KEY
PRNG_STATE (new)

4.13.2.9 Extend seed

ENTROPY
PRNG_SEED (ext)
PRNG_STATE (ext)

41f21213bca0434b3eb3bafcb0alod74
albe019264992b2b725a4dd4c7767002
6l4aae8a77bb8fff31ac3230e6240506b

ae2d8a571e03ac9c9eb76facd5af8e51
7c92bea252d03015e4f5c2bcab9a6f8a

cf475ceb98£8babbelf55£97£dda%634

AUTSSAR

4.13.2.10 Memory update protocol

KEYnEw

KEYautnip

KEY_ _UPDATE_ENC_C
KEY_UPDATE_MAC_C

UuIiD®
ID

AuthiID

Cmp?

\

F1p

K1l
K2

M1
M2

M3

K3
K4

M4

M5

0£0e0d0c0b0a09080706050403020100
000102030405060708090a0b0c0d0e0f
010153484500800000000000000000b0
010253484500800000000000000000b0
000000000000000000000000000001

4 (KEY_1)

1 (MASTER_ECU_KEY)

0000001

0

118a46447a770d87828a69c222e2dl7e
2ebb2a3da62dbd64bl8ba6493e9fbe22

00000000000000000000000000000141
2b111e2d93£486566bcbbald7£7a9797
c94643b050fc5d4d7del4cff682203c3
b9d745e5ace7d41860bc63c2b9f5bb46

ed2de7864a47f6bac319a9dc496a788¢f
ec9386fefaalc598246144343de5f26a

00000000000000000000000000000141
b472e8d8727d70d57295e74849a27917
820d8d95dc11b4668878160cb2ade23e

4.13.2.11 Failure analysis of SHE/Resetting SHE

MASTER_ECU_KEY

UID*?
DEBUG_KEY_C

CHALLENGE

KpeBuc
AUTHORIZATION

000102030405060708090a0b0c0d0e0£f

000000000000000000000000000001
010353484500800000000000000000b0

40abdeabl6ede77b9599964b3d2dd7261
1b5f959633c8c39%9ec42e965132bcec9b

953cb601d8ffal954795fab3cad72c53

AUTSSAR

4.14 Overview Tables

o | §
=} = —
= © =
S B | 2 o D,

-— — O
ol 5] o = o
— (@] —_ [} ©
o o] <) ge) 2 1y . o
'y o 5 @) ~ Q =
(0] =} > O =) c [—
=) o) ke > = =] ()
= o) o) =) o o >
= n a) = X o &) O
MASTER_ECU_KEY X X X X X 160
BOOT_MAC_KEY X X X X 159
BOOT_MAC X X X X 159
KEY_<n> X X X X X X 161
PRNG_SEED 128
RAM_KEY X 129
PRNG_KEY 128
PRNG_STATE 128
SECRET_KEY X (X (128

INH) | INH)

UID 120

Table 4.4: Information to be stored with keys

The following legend applies to the cells in Table 4.4:
INH SECRET_KEY inherits its protection flags from MASTER_ECU_KEY

AUTSSAR

S
B =
@) N |]
< | |) Bl o~
S| o zZ| = [] [} =) 0
| §3 H | g 5| ol = D
[> < o ey @) (9p] m H =
mlo|lm|o| & [l = | A = [[<< | & | <
olmlo] m § Sl lalelx] o Hlm|]o|le=|lal g
Hmlo|ma|lo = | [l & = 49 | [l +H]®]| O
| | | [El=Hlalalo|l =] @M I | [lOo| D
olo|lovlo]l=Ele|ld]ld]|lalelBH]lalololole|lE]l=]m
glz|l@R|@a|lalm|olo|lX|z|X|zlm]|o|lo|lm|lm|<| @
Lﬂl Lﬂl Q| D| (DI >| H-ll QI Lﬂl HI Lﬂl m| ml ml DQ| wl (DI O| Q|
alalalalaoalalalalalalalalalalalalalala
Zl=l=l=21=2l=2l=21=21=21=21=21=2|1=2l=l=2l=21=1=2|=
olo|lo|lo|lo|lo|lo|lo|lo|lo|lo|lo|lojlolo|lo|lo|lo| O
— O (@]
MAS & % 0
TER_ECU_KEY X >
O
BOOT_MAC_KEY X ; X o)
(@]
BOOT_MAC o ; o
o e e o o By IR
KEY <n> 21 A A A B B > o
S B T T T S
@] O
PRNG_SEED < < o
| >
RAM_KEY XX X|X|[X]|X]o]lol|X o
PRNG_KEY o X X
(@]
PRNG_STATE o ; o o)
SECRET_KEY X X | X
UID X X

Table 4.5: Memory usage by functions (X: used by the function, o: can be modified by
the function)

The following legend applies to the cells in Table 4.5:
DEP Depending on the key usage flag, see Chapter 4.4.1.5

AUTSSAR

non-volatile volatile ROM
> —
[D
N > X
| [0]
) N | > D
O | a = [q
[@) @) [] > < Nt -
| < < A] >] = | ®
~ = = s) [] e w0 = —
3| | | \% | X | |] Q,
= B = |] [)) 4 ~
2ls|8le|2|2|2]2|9]¢

Slot to update S| |o | || ||| v]|Db

MASTER_ECU_KEY X

BOOT_MAC_KEY X X

BOOT_MAC X X

KEY_<n> X X

PRNG_SEED

RAM_KEY X X X

PRNG_KEY

PRNG_STATE

SECRET_KEY

UID

Table 4.6: Memory update policy

AUTSSAR

JOuddd TYIENED Ddd

AINTIVA XHOWHW O¥d

xsnd D¥d

HNIODONNGHT ON D¥dH

adds” 9Nd O¥dd

JOIdd d1vddn XEM 094

QAIDAIOYd AILI¥M AAM O¥dH

1009 TINDES ON D2dd

ALdWH XE¥M DO4d

AITVANI XdM 094

HTIVTIVAY ION XdM O¥d

MOddd HONHNOES D¥dH

JOIdd ON D¥d

CMD_ENC_CBC

CMD_ENC_ECB

CMD_DEC_ECB

CMD_DEC_CBC

CMD_GENERATE_MAC

CMD_VERIFY_MAC

CMD_LOAD_KEY

CMD_LOAD_PLAIN_KEY

CMD_EXPORT_RAM KEY

CMD_INIT_RNG

CMD_EXTEND_SEED

CMD_RND

CMD__SECURE_BOOT

CMD_BOOT_FAILURE

CMD_BOOT_OK

CMD_GET_STATUS

CMD_GET_ID

CMD_CANCEL

CMD_DEBUG

Table 4.7: Error codes returned by the single functions

AUTSSAR

Write-protection

Wildcard UID

Plain key

CMD_ENC_ECB

CMD_ENC_CBC

CMD_DEC_ECB

CMD_DEC_CBC

CMD_GENERATE_MAC

XXX]|>X]|X|Secure boot failure

X || > |]|>]|Debugger activation

CMD_VERIFY_MAC

XXX]X]|*x]|Key usage

XXX |>X]|>X]|Empty state

CMD_LOAD_KEY

o

AUTH)

CMD_LOAD_PLAIN_KEY

CMD_EXPORT_RAM KEY

CMD_INIT_RNG

CMD_EXTEND_SEED

CMD_RND

CMD__SECURE_BOOT

CMD_BOOT_FAILURE

CMD_BOOT_OK

CMD_GET_STATUS

CMD_GET_ID

CMD_CANCEL

CMD_DEBUG

X

Table 4.8: Functions affected by security bits

The following legend applies to the cells in Table 4.8:
RAM Only if ID = IDgay xzv, S€€ Chapter 4.9.1
AUTH Empty state is checked for AuthID, see Chapter 4.9.1

AUTSSAR

A Appendix

No content.

	1 Introduction
	2 Definition of terms and acronyms
	3 Related Documentation
	3.1 Input documents & related standards and norms

	4 Functional specification
	4.1 Introduction
	4.1.1 Conventions

	4.2 Basic Requirements
	4.3 Algorithms
	4.3.1 Encryption/decryption
	4.3.2 MAC generation/verification
	4.3.3 Compression function
	4.3.3.1 Key derivations

	4.4 Data storage
	4.4.1 Security flags for memory slots
	4.4.1.1 Write-protection of memory slots
	4.4.1.2 Disabling keys on boot failure
	4.4.1.3 Disabling keys on debugger activation
	4.4.1.4 Disable wildcard usage for key updates
	4.4.1.5 Key usage determination
	4.4.1.6 Plain key flag

	4.4.2 Non-volatile memory slots
	4.4.2.1 MASTER_ECU_KEY
	4.4.2.2 BOOT_MAC_KEY
	4.4.2.3 BOOT_MAC
	4.4.2.4 KEY_<n>
	4.4.2.5 PRNG_SEED

	4.4.3 Volatile memory slots
	4.4.3.1 RAM_KEY
	4.4.3.2 PRNG_KEY
	4.4.3.3 PRNG_STATE

	4.4.4 Read-Only memory slots
	4.4.4.1 SECRET_KEY
	4.4.4.2 Unique identification item UID

	4.4.5 Identification of memory slots

	4.5 Random number generation
	4.5.1 Seed generation
	4.5.1.1 Seed generation through a pseudo random number generator (PRNG)
	4.5.1.2 Seed generation trough a true random number generator (TRNG)

	4.5.2 Random generation
	4.5.3 Extending the seed

	4.6 Status Register
	4.7 User-accessible Functions
	4.7.1 Encryption: CMD_ENC_ECB
	4.7.2 Encryption: CMD_ENC_CBC
	4.7.3 Decryption: CMD_DEC_ECB
	4.7.4 Decryption: CMD_DEC_CBC
	4.7.5 MAC generation: CMD_GENERATE_MAC
	4.7.6 MAC verification: CMD_VERIFY_MAC
	4.7.7 Secure key update: CMD_LOAD_KEY
	4.7.8 Plain key update: CMD_LOAD_PLAIN_KEY
	4.7.9 Export key: CMD_EXPORT_RAM_KEY
	4.7.10 Initialize random number generator: CMD_INIT_RNG
	4.7.11 Extend the PRNG seed: CMD_EXTEND_SEED
	4.7.12 Generate random number: CMD_RND
	4.7.13 Bootloader verification (secure booting): CMD_SECURE_BOOT
	4.7.14 Impose sanctions during invalid boot: CMD_BOOT_FAILURE
	4.7.15 Finish boot verification: CMD_BOOT_OK
	4.7.16 Read status of SHE: CMD_GET_STATUS
	4.7.17 Get identity: CMD_GET_ID
	4.7.18 Cancel function: CMD_CANCEL
	4.7.19 Debugger activation: CMD_DEBUG

	4.8 Error Codes
	4.8.1 ERC_NO_ERROR
	4.8.2 ERC_SEQUENCE_ERROR
	4.8.3 ERC_KEY_NOT_AVAILABLE
	4.8.4 ERC_KEY_INVALID
	4.8.5 ERC_KEY_EMPTY
	4.8.6 ERC_NO_SECURE_BOOT
	4.8.7 ERC_KEY_WRITE_PROTECTED
	4.8.8 ERC_KEY_UPDATE_ERROR
	4.8.9 ERC_RNG_SEED
	4.8.10 ERC_NO_DEBUGGING
	4.8.11 ERC_BUSY
	4.8.12 ERC_MEMORY_FAILURE
	4.8.13 ERC_GENERAL_ERROR

	4.9 Memory update protocol
	4.9.1 Description of the memory update protocol
	4.9.2 Description of the update verification message generation

	4.10 Secure booting
	4.10.1 Measurement before application start-up
	4.10.1.1 Exemplary implementation: extension of the boot code

	4.10.2 Measurement during application start-up
	4.10.3 Autonomous bootstrap configuration of the secure boot process
	4.10.4 Sanctions on fail of boot measurement
	4.10.5 Optional: Enforcing authenticated software
	4.10.6 Optional: Flow charts

	4.11 Failure analysis of SHE/Resetting SHE
	4.12 Constants used within SHE
	4.13 Examples and Test vectors
	4.13.1 AES-128, ECB mode
	4.13.2 AES-128, CBC mode
	4.13.2.1 encryption
	4.13.2.2 decryption
	4.13.2.3 CMAC
	4.13.2.4 Miyaguchi-Preneel compression function
	4.13.2.5 Key derivation
	4.13.2.6 Pseudo random generation/Seed generation
	4.13.2.7 Calculate new seed
	4.13.2.8 Calculate new random value
	4.13.2.9 Extend seed
	4.13.2.10 Memory update protocol
	4.13.2.11 Failure analysis of SHE/Resetting SHE

	4.14 Overview Tables

	A Appendix

