
Glossary
AUTOSAR FO R25-11

Document Title Glossary
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 55

Document Status published
Part of AUTOSAR Standard Foundation
Part of Standard Release R25-11

Document Change History
Date Release Changed by Description

2025-11-27 R25-11
AUTOSAR
Release
Management

• Replaced abbreviation table by new
macros

• Changed abbreviations: ASIL
(Automotive Safety Integrity Level),
ASAM (Association for Standardization
of Automation and Measuring Systems),
COM (Communication), DET (Default
Error Tracer)

• Added abbreviations: COMM
(COMMunication Manager), CM
(Communication Module), DCA (Data
Class Adapter), DP (Data Point), HMI
(Human Machine Interface), HPC (High
performance computer/computing
machine), VDP (Vehicle Data Protocol)

• Added definitions: Minimum Send
Interval, Middleware, Software Cluster
(CLassic Platform)

• Removed abbreviation: TTCAN (Time
Triggered CAN)

2024-11-27 R24-11
AUTOSAR
Release
Management

• Added terms for Trusted Platform,
Adaptive Platform Machine
Configuration, Inter-Integrated Circuit,
Automotive API (Gateway)

• Changed definition for Adaptive
Application

• Extended abbreviation list
▽

1 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△

2023-11-23 R23-11
AUTOSAR
Release
Management

• Improved definition of Processed
Manifest

• Extended abbreviation list

2022-11-24 R22-11
AUTOSAR
Release
Management

• Added terms for Can XL, Integrity Check
Value, Firewall

• Improved definitions of Foundation,
Software Cluster (Adaptive Platform),
Gateway, Use Case

2021-11-25 R21-11
AUTOSAR
Release
Management

• Added terms for Intermediate PNC
coordinator, PN shutdown message,
Top-level PNC coordinator, PNC leaf
node

• Added terms for Logging, Tracing,
Profiling

• Improved definition of System term

2020-11-30 R20-11
AUTOSAR
Release
Management

Added new terms:
• E2E Protection Alive Counter

• E2E Protection Sequence Counter

• Vehicle State Manager

• Health Indicator

• System Health Monitor

• Wake-up and sleep on dataline

• Foundation

• Intrusion Detection System

• Onboard Security Event

2019-11-28 R19-11
AUTOSAR
Release
Management

• Removed FlexRay specific terms

• Added new terms:

– Secure channel

– Abstract Platform

– Raw Data Stream

– Signal Service Translation

• Changed Document Status from Final to
published

▽

2 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△

2019-03-29 1.5.1
AUTOSAR
Release
Management

• Editorial changes

2018-10-31 1.5.0
AUTOSAR
Release
Management

• Extended abbreviations

• Added terms:

– AUTOSAR Run-Time Interface

– Bus Mirroring

– Cluster

– Executable Entity Cluster

– Execution Order Constraint

– Execution Time

– LIN Bus Idle

– Log and Trace

– Logical Execution Time

– Mappable Element

– Security Event

– Synchronization Points

– Timed Communication

• Changed OSEK references

• Incorporated concepts as draft:

– AUTOSAR Run-Time Interface

– MCAL Multicore Distribution

– Transport Layer Security

2018-03-29 1.4.0
AUTOSAR
Release
Management

• Added terms:

– Access Control Policy

– Access Control Decision

– MetaDataItem

– Policy Decision Point (PDP)

– Policy Enforcement Point (PEP)

– Identity and Access Management
(IAM)

• Removed terms:

– FlexRay Global Time

– Meta-Model

– MetaDataLength
▽

▽

3 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
△

– Model

– Multiple Configuration Sets Shipping

– Template

– Variation Definition Time

• Changed terms:

– AUTOSAR Definition

– AUTOSAR Meta-model

– AUTOSAR Model

– AUTOSAR Service

– AUTOSAR XML description

– Link Time Configuration

– Manifest

– PDU Meta-Data

2017-12-08 1.3.0
AUTOSAR
Release
Management

• No content changes

2017-10-27 1.2.0
AUTOSAR
Release
Management

• No content changes

2017-03-31 1.1.0
AUTOSAR
Release
Management

Added terms:
• Adaptability

• Adaptive Application

• Adaptive Platform Foundation

• Adaptive Platform Services

• ASIL Decomposition

• Audit

• AUTOSAR Adaptive Platform

• AUTOSAR Runtime for Adaptive
Applications

• Cascaded Switch

• Cascading Failure

• Classic Platform

• Common Cause Failure
▽

▽

4 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
△

• Dependent Failures

• Diagnostic Coverage

• Diversity

• Ethernet Switch Port Groups

• Executable

• External Port

• Failure Mode

• Fault Reaction Time

• Fault Tolerant Time Interval

• Freedom from Interference

• Functional Cluster

• Functional Safety Concept

• Functional Safety Requirement

• Host ECU

• Host Port

• Hypervisor

• Independence

• Independent Failures

• Internal Port

• Link State Accumulation

• Machine

• Manifest

• Master Switch

• Microcontroller

• Performance

• Plausibility

• Predictabiliy

• Proven In Use Argument
▽

▽

5 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
△

• Recovery

• Safe State

• Safety Case

• Safety Goal

• Safety Measure

• Safety Mechanism

• Service Discovery

• Service Instance

• Service Interface

• Service Oriented Communication

• Service Proxy

• Service Skeleton

• Slave Switch

• Software package

• Software Unit

• Systematic Fault

• Uplink Port

• Virtualization

Removed terms:

• Accreditation Body

• Accreditation

• Attestation

• Conformance Declaration

• Conformance Test Agency (CTA)

• First party

• Implementation Conformance Statement

• Interrupt Logic
▽

▽

6 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
△

• Partial Model

• Surveillance

• Third party

Changed terms:

• Automotive Safety Integrity Levels

• Availability

• Acceptance Test Suite

• Electronic Control Unit

• Error

• Fail-safe

• Fail-silent

• Failure Rate

• Failure

• Fault Tolerance

• Fault

• FlexRay Bus

• FlexRay Cycle

• FlexRay L-PDU-Identifier

• FlexRay L-SDU-Identifier

• FlexRay Matrix

• FlexRay Slot Multiplexing

• Graceful Degradation

• Fail-degraded

• Implementation Conformance Class 1
(ICC1)

• Implementation Conformance Class 2
(ICC2)

• Implementation Conformance Class 3
(ICC3)

▽
▽

7 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
△

• Link Time Configuration

• Partitioning

• Protocol Control Information

• Protocol Data Unit

• Post-build Time Configuration

• Pre-Compile Time Configuration

• Probability of Failure

• Redundancy

• Risk

• Safety

• Service Data Unit

2016-11-30 1.0.0
AUTOSAR
Release
Management

• Migration of document to standard

• Following terms added:

– AUTOSAR Blueprint

– Bypassing

– Hook

– OS Event

– Post-build Hooking

– Pre-build Hooking

– Rapid Prototyping (RP)

– Rapid Prototyping Memory Interface

– Rapid Prototyping Tool

– Reentrancy

– Standardized AUTOSAR Blueprint

– Standardized Blueprint

– Following terms changed:

– Asset

– Asynchronous Function

– AUTOSAR Application Interface

– Availability

– ECU Abstraction Layer

– Feature
▽

▽

8 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
△

– Function

– Microcontroller Abstraction Layer
(MCAL)

2015-07-31 4.2.2
AUTOSAR
Release
Management

• Following terms changed:

– ECU Abstraction Layer

– Standardized AUTOSAR Interface

– Hook

– OS Event

– Post-build Hooking

– Pre-build Hooking

• Following terms removed:

– Software Module

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Following terms changed:

– Data Variant Coding

– OS-Application

– Post-build time configuration

– Standardized AUTOSAR Interface

2014-03-31 4.1.3
AUTOSAR
Release
Management

• Extended Abbreviations

• Following terms changed:

– Software Component (SW-C)

2013-03-15 4.1.1 AUTOSAR
Administration

• Extended Abbreviations

• Following terms added:

– Application Interface

– Asynchronous Functions

– AUTOSAR Application Interface

– Dynamic PDU

– Life Cycle

– MetaDataLength

– PDU Meta-Data

– Pretended Networking

– Synchronous Functions
▽

9 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△

2011-12-22 4.0.3 AUTOSAR
Administration

• Extended Abbreviations

• Following terms added:

– Callback

– Callout

– ECU

2009-12-18 4.0.1 AUTOSAR
Administration

• Following terms added:

– AUTOSAR Partial Model

– Bus Wake-Up

– Empty Function

2009-02-02 3.1.4 AUTOSAR
Administration

• Following terms added:

– Automotive Safety Integrity Levels
(ASIL)

– Bit Position

– Category 1 Interrupt

– Category 2 Interrupt

– Code Generator

– Coordinate

– E2E Profile

– Error Detection Rate

– Failure Rate

– ICC1 (Implementation Conformance
Class 1)

– ICC2 (Implementation Conformance
Class 2)

– ICC3 (Implementation Conformance
Class 3)

– Interrupt Frames

– Interrupt Handler

– Interrupt Logic

– Meta-Model

– Mode

– Model

– Network Interface (NWI)

– NM Coordination Cluster

– NM Coordinator

– Rate Conversion
▽

▽

10 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
△

– Residual Error Rate

– SAE J1939

– Safety Protocol

– Software Component Interface
(SW-CI)

– Synchronize

– Variability

– Variant

– Variation Binding

– Variation Binding Time

– Variation Definition Time

– Variation Point

– Formal adaptations

• Legal disclaimer revised

2008-08-13 3.1.1 AUTOSAR
Administration

• Legal disclaimer revised

2007-12-21 3.0.1 AUTOSAR
Administration

• Following terms added:

– Debugging

– Implementation Conformance
Statement

– Document meta information extended

– Small layout adaptations made

2007-01-24 2.1.15 AUTOSAR
Administration

• Following terms added:

– FlexRay

– Vendor ID

– Callback

– Interrupt frames

– Interrupt vector table

– Accreditation

– Accreditation Body

– Conformance Test Agency

– Assessment

– Surveillance

– Attestation

– (Conformance) Declaration
▽

▽

11 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
△

– First party and

– Third party

– Safety

– ECU Configuration

– ECU Configuration Description

• Legal disclaimer revised

2006-05-16 2.0 AUTOSAR
Administration

• removed and added some terms

• rework of several descriptions

• formal changes

2006-05-16 1.0 AUTOSAR
Administration

• Initial release

12 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

13 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

Table of Contents

1 Introduction 27

2 Acronyms, Abbreviations (and Initialisms) 28
2.1 Explanation . 28

3 How to read this document 35
3.1 <Term> Template . 35

4 Definitions 36
4.1 Abstract Platform . 36
4.2 Acceptance Test Suite . 36
4.3 Access Control Decision . 36
4.4 Access Control Policy . 37
4.5 Adaptability . 37
4.6 Adaptive Application . 37
4.7 Adaptive Platform Foundation . 38
4.8 Adaptive Platform Services . 38
4.9 Adaptive Platform Machine Configuration 38
4.10Application Programming Interface . 38
4.11Application Software Component . 39
4.12Architecture . 39
4.13Artifact . 39
4.14ASIL Decomposition . 40
4.15Asserted Property . 40
4.16Assessment . 40
4.17Asset . 40
4.18Asynchronous Communication . 41
4.19Asynchronous Function . 41
4.20Atomic Software Component . 41
4.21Audit . 42
4.22Authenticity . 42
4.23Automotive API . 42
4.24Automotive API Gateway . 42
4.25Automotive Safety Integrity Levels . 43
4.26AUTOSAR Adaptive Platform . 43
4.27AUTOSAR Application Interface . 43
4.28AUTOSAR Authoring Tool . 43
4.29AUTOSAR Blueprint . 44
4.30AUTOSAR Converter Tool . 44
4.31AUTOSAR Definition . 44
4.32AUTOSAR Interface . 44
4.33AUTOSAR Meta-model . 45

14 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.34AUTOSAR Model . 45
4.35AUTOSAR Partial Model . 45
4.36AUTOSAR Processor Tool . 46
4.37AUTOSAR Runtime for Adaptive Applications 46
4.38AUTOSAR Run-Time Interface (ARTI) 46
4.39AUTOSAR Service . 46
4.40AUTOSAR Software . 47
4.41AUTOSAR Tool . 47
4.42AUTOSAR XML description . 47
4.43AUTOSAR XML Schema . 48
4.44Availability . 48
4.45Basic Software . 49
4.46Basic Software Module . 50
4.47Bit Position . 50
4.48Blueprint . 50
4.49Bulk Data . 50
4.50Bus Mirroring . 51
4.51Bus Wake-Up . 51
4.52Bypassing . 51
4.53Calibration . 52
4.54Call Point . 52
4.55Callback . 52
4.56Callout . 53
4.57CAN XL . 53
4.58Cascaded Switch . 54
4.59Cascading Failure . 54
4.60Category 1 Interrupt . 54
4.61Category 2 Interrupt . 54
4.62Causality of Transmission . 55
4.63Classic Platform . 55
4.64Client . 55
4.65Client-Server Communication . 56
4.66Client-Server Interface . 56
4.67Cluster Signal . 56
4.68Code Generator . 57
4.69Code Variant Coding . 57
4.70Common Cause Failure . 57
4.71Communication Attribute . 58
4.72Complex Driver . 58
4.73Composition . 58
4.74Compositionality . 59
4.75Conditioned Signal . 59
4.76Confidentiality . 59

15 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.77Configuration . 60
4.78Confirmation . 60
4.79Connector . 60
4.80Control Flow . 60
4.81Coordinate . 61
4.82Data . 61
4.83Data Element . 61
4.84Data Flow . 61
4.85Data Variant Coding . 62
4.86Deadline . 62
4.87Debugging . 62
4.88Dependability . 63
4.89Dependent Failure . 63
4.90Diagnostic Coverage . 63
4.91Diagnostic Event . 63
4.92Diversity . 64
4.93Dynamic PDU . 64
4.94Dynamic Routing . 64
4.95E2E Profile . 65
4.96E2E Protection Alive Counter . 65
4.97E2E Protection Sequence Counter . 65
4.98ECU Abstraction Layer . 66
4.99ECU Configuration . 66
4.100 ECU Configuration Description . 66
4.101 ECU HW . 67
4.102 ECU Instance . 67
4.103 Electrical Signal . 67
4.104 Electronic Control Unit (ECU) . 68
4.105 Empty Function . 68
4.106 Entry Point . 68
4.107 Error . 69
4.108 Error Detection Rate . 69
4.109 Ethernet Switch Port Groups . 69
4.110 Event . 69
4.111 Event Message (SOME/IP) . 70
4.112 Executable . 70
4.113 Executable Entity Cluster . 70
4.114 Execution Order Constraint . 71
4.115 Execution Time . 71
4.116 Exit Point . 72
4.117 External Port . 72
4.118 Fail-operational . 72
4.119 Fail-safe . 73

16 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.120 Fail-silent . 73
4.121 Failure Mode . 73
4.122 Failure . 73
4.123 Failure Rate . 74
4.124 Fault . 74
4.125 Fault Detection . 74
4.126 Fault Reaction . 75
4.127 Fault Reaction Time . 75
4.128 Fault Tolerance . 75
4.129 Fault Tolerant Time Interval . 75
4.130 Feature . 76
4.131 Firewall . 76
4.132 Flag . 76
4.133 FlexRay . 76
4.134 Foundation . 77
4.135 Frame . 77
4.136 Frame PDU . 78
4.137 Freedom from Interference . 78
4.138 Freshness . 78
4.139 Function . 78
4.140 Functional Cluster . 79
4.141 Functional Network . 79
4.142 Functional Safety Concept . 79
4.143 Functional Safety Requirement . 80
4.144 Functional Unit . 80
4.145 Functionality . 80
4.146 Gateway . 80
4.147 Gateway ECU . 81
4.148 Graceful Degradation . 81
4.149 Hardware Abstraction Layer . 81
4.150 Hardware Connection . 81
4.151 Hardware Element . 82
4.152 Hardware Interrupt . 82
4.153 Hardware Port . 82
4.154 Health Indicator . 83
4.155 Hook . 83
4.156 Host ECU . 83
4.157 Host Port . 84
4.158 Hypervisor . 84
4.159 Identity and Access Management (IAM) 84
4.160 Identity Information . 84
4.161 Implementation Conformance Class 1 (ICC1) 85
4.162 Implementation Conformance Class 2 (ICC2) 85

17 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.163 Implementation Conformance Class 3 (ICC3) 86
4.164 Independence . 87
4.165 Independent Failures . 87
4.166 Indication . 87
4.167 Integration . 87
4.168 Integration Code . 88
4.169 Integrity . 88
4.170 Integrity Check Value . 88
4.171 Inter-Integrated Circuit I2C . 88
4.172 Intermediate PNC Coordinator . 89
4.173 Internal Port . 89
4.174 Interrupt Frame . 89
4.175 Interrupt Handler . 90
4.176 Interrupt Service Routine . 90
4.177 Interrupt Vector Table . 90
4.178 Interrupt . 90
4.179 Intrusion Detection System . 91
4.180 Invalid Flag . 91
4.181 Invalid Value of Signal . 91
4.182 I-PDU . 92
4.183 Life Cycle . 92
4.184 LIN Bus Idle . 92
4.185 Link State Accumulation . 92
4.186 Link Time Configuration . 93
4.187 Logical Execution Time (LET) . 93
4.188 Log and Trace . 94
4.189 Logging . 94
4.190 Machine . 95
4.191 Manifest . 95
4.192 Mappable Element . 95
4.193 Mapping . 96
4.194 Master Switch . 96
4.195 MCAL Signal . 96
4.196 Meta-data . 97
4.197 MetaDataItem . 97
4.198 Microcontroller . 97
4.199 Microcontroller Abstraction Layer . 97
4.200 Middleware . 98
4.201 Minimum Send Interval . 99
4.202 Mistake . 99
4.203 Mode . 99
4.204 Multimedia Stream . 100
4.205 Multiplexed PDU . 100

18 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.206 Network . 100
4.207 Network Interface . 101
4.208 NM Coordination Cluster . 101
4.209 NM Coordinator . 102
4.210 Non-repudiation . 102
4.211 Notification . 102
4.212 Onboard Security Event . 103
4.213 OS Application . 103
4.214 OS Event . 103
4.215 Partitioning . 104
4.216 Protocol Control Information . 104
4.217 Protocol Data Unit (PDU) . 104
4.218 PDU Meta-Data . 105
4.219 PDU Timeout . 105
4.220 Performance . 106
4.221 Peripheral Hardware . 106
4.222 Personalization . 106
4.223 Plausibility . 107
4.224 PNC Leaf Node . 107
4.225 PN shutdown message . 107
4.226 Policy Decision Point (PDP) . 108
4.227 Policy Enforcement Point (PEP) . 108
4.228 Port . 108
4.229 Port Interface . 108
4.230 Post-build Time Configuration . 109
4.231 Post-build Hooking . 109
4.232 Pre-build Hooking . 109
4.233 Pre-Compile Time Configuration . 110
4.234 Predictabiliy . 110
4.235 Pretended Networking . 110
4.236 Private Interface . 110
4.237 Probability of Failure . 111
4.238 Procedure Call . 111
4.239 Process . 111
4.240 Processed Manifest . 112
4.241 Profiling . 112
4.242 Proven In Use Argument . 112
4.243 Provide Port . 113
4.244 Rapid Prototyping . 113
4.245 Rapid Prototyping Memory Interface 113
4.246 Rapid Prototyping Tool . 113
4.247 Rate Conversion . 114
4.248 Raw Data Stream . 114

19 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.249 Recovery . 114
4.250 Redundancy . 115
4.251 Reentrancy . 115
4.252 Reliability . 116
4.253 Relocatability . 116
4.254 Require Port . 116
4.255 Required Property . 117
4.256 Residual Error Rate . 117
4.257 Resource . 117
4.258 Resource-Management . 118
4.259 Response Time . 118
4.260 Risk . 118
4.261 Robustness . 118
4.262 RTE Event . 119
4.263 Runnable Entity . 119
4.264 SAE J1939 . 119
4.265 Safe State . 120
4.266 Safety . 120
4.267 Safety Analysis . 120
4.268 Safety Case . 121
4.269 Safety Goal . 121
4.270 Safety Measure . 121
4.271 Safety Mechanism . 122
4.272 Safety Protocol . 122
4.273 Sample Application . 122
4.274 Scalability . 122
4.275 Scheduler . 123
4.276 Service Data Unit . 123
4.277 Security . 123
4.278 Secure Channel . 123
4.279 Security Event . 124
4.280 Sender-Receiver Communication . 124
4.281 Sender-Receiver Interface . 124
4.282 Sensor-Actuator SW-Component . 125
4.283 Server . 125
4.284 Service . 125
4.285 Service Discovery . 126
4.286 Service Instance . 126
4.287 Service Interface . 126
4.288 Service-Oriented Communication . 126
4.289 Service Port . 127
4.290 Service Proxy . 127
4.291 Service Skeleton . 127

20 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.292 Services Layer . 128
4.293 Signal Service Translation . 128
4.294 Slave Switch . 129
4.295 Software Cluster (Adaptive Platform) 129
4.296 Software Cluster (Classic Platform) . 129
4.297 Software Component . 130
4.298 Software Component Interface . 130
4.299 Software Configuration . 130
4.300 Software Interrupt . 131
4.301 Software Package . 131
4.302 Software Platform . 131
4.303 Software Signal . 131
4.304 Software Unit . 132
4.305 Special Periphery Access . 132
4.306 Standard Periphery Access . 132
4.307 Standard Software . 132
4.308 Standardized AUTOSAR Blueprint . 133
4.309 Standardized AUTOSAR Interface . 133
4.310 Standardized Blueprint . 133
4.311 Standardized Interface . 134
4.312 Static Configuration . 134
4.313 Synchronization Points . 134
4.314 Synchronization . 135
4.315 Synchronous Communication . 135
4.316 Synchronous Function . 135
4.317 System . 136
4.318 System Constraint . 136
4.319 System Health Monitor . 136
4.320 System Signal . 137
4.321 Systematic Fault . 137
4.322 Task . 137
4.323 Technical Signal . 137
4.324 Timed Communication . 138
4.325 Timeout . 138
4.326 Top-level PNC Coordinator . 139
4.327 Tracing . 139
4.328 Trusted Platform . 140
4.329 Uplink Port . 140
4.330 Use Case . 140
4.331 Validation . 140
4.332 Variability . 141
4.333 Variant . 141
4.334 Variant Coding . 141

21 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.335 Variation Binding . 142
4.336 Variation Binding Time . 142
4.337 Variation Point . 142
4.338 Vehicle State Manager . 143
4.339 Vehicle Variant . 143
4.340 Vendor ID . 143
4.341 Verification . 144
4.342 VFB View . 144
4.343 Virtual Functional Bus . 144
4.344 Virtual Integration . 145
4.345 Virtualization . 145
4.346 Wake-up and Sleep on Dataline . 145
4.347 Worst Case Execution Time . 146
4.348 Worst Case Response Time . 146

22 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

References

[1] ISO/IEC 9646-1:1994 - Information technology - Open Systems Interconnection -
Conformance testing methodology and framework
https://www.iso.org

[2] ISO 17356-3: Road vehicles – Open interface for embedded automotive applica-
tions – Part 3: OSEK/VDX Operating System (OS)

[3] ITEA Project 00009 EAST-EEA Embedded Electronic Architecture - Glossary Ver-
sion 6.1

[4] IEEE 1471-2000: IEEE Recommended Practice for Architectural Description for
Software- Intensive Systems

[5] ISO 26262-1:2018 Part 1: Vocabulary
https://www.iso.org

[6] IEEE 1517-1999: IEEE Standard for Information Technology – Software Life Cycle
Processes – Reuse Processes

[7] Explanation of Automotive API
AUTOSAR_AP_EXP_AutomotiveAPI

[8] Standardization Template
AUTOSAR_FO_TPS_StandardizationTemplate

[9] Virtual Functional Bus
AUTOSAR_CP_TR_VFB

[10] Unified Modeling Language: Superstructure, Version 2.0, OMG Available Specifi-
cation, ptc/05-07-04
http://www.omg.org/cgi-bin/apps/doc?formal/05-07-04

[11] Specification of AUTOSAR Run-Time Interface
AUTOSAR_CP_SWS_ARTI

[12] CiA 610-1 version 1.0.0 (DSP) - CAN XL specifications and test plans - Part 1:
Data link layer and physical coding sub-layer requirements
http://www.can-cia.org

[13] CiA 611-1 version 1.0.0 (DSP) - CAN XL higher layer functions - Part 1: Definition
of service data unit types
http://www.can-cia.org

[14] Lehrbuch Grundlagen der Informatik

[15] ISO/IEC 61511 Part 1 Information technology – Software life cycle process, First
Edition

[16] ISO 7498 – Information processing systems – Open Systems Interconnection –
Basic Reference Model
https://www.iso.org

23 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

https://www.iso.org
https://www.iso.org
http://www.omg.org/cgi-bin/apps/doc?formal/05-07-04
http://www.can-cia.org
http://www.can-cia.org
https://www.iso.org

Glossary
AUTOSAR FO R25-11

ISO/IEC 7498-1:1994

[17] Binding Specification Version 1.4.1

[18] ISO/IEC 2382 Part 1 Information technology – Vocabulary – Fundamental Terms,
Third Edition

[19] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

[20] Specification of Operating System
AUTOSAR_CP_SWS_OS

[21] Specification of Diagnostic Event Manager
AUTOSAR_CP_SWS_DiagnosticEventManager

[22] ISO 26262-6:2018 Part 6: Product development at the software level
https://www.iso.org

[23] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[24] Specification of ECU Configuration
AUTOSAR_CP_TPS_ECUConfiguration

[25] Specification of Timing Extensions for Classic Platform
AUTOSAR_CP_TPS_TimingExtensions

[26] ISO 15765-2 – Road vehicles – Diagnostics on Controller Area Networks (CAN)
– Part2: Network layer services

[27] ISO 14229-1 – Unified diagnostic services (UDS) – Part 1: Specification and re-
quirements (Release 2006-12)
https://www.iso.org

[28] AUTOSAR Feature Model Exchange Format
AUTOSAR_FO_TPS_FeatureModelExchangeFormat

[29] ISO 17458-1:2013, Road vehicles - FlexRay communication system
https://www.iso.org

[30] Specification of FlexRay Driver
AUTOSAR_CP_SWS_FlexRayDriver

[31] Specification of FlexRay Interface
AUTOSAR_CP_SWS_FlexRayInterface

[32] System Template
AUTOSAR_CP_TPS_SystemTemplate

[33] ISO 17356-1: Road vehicles – Open interface for embedded automotive applica-
tions – Part 1: General structure and terms, definitions and abbreviated terms

[34] Specification of ECU Resource Template

24 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

https://www.iso.org
https://www.iso.org
https://www.iso.org

Glossary
AUTOSAR FO R25-11

AUTOSAR_CP_TPS_ECUResourceTemplate

[35] Translation/Adaptation from VDI Lexikon Informatik und Kommunikationstechnik

[36] Specification of Health Monitoring
AUTOSAR_FO_ASWS_HealthMonitoring

[37] ISO/IEC 2382 Part 20 Information technology – Vocabulary – System Develop-
ment, First Edition

[38] NIST: Secure Hash Standard (SHS)
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

[39] IEEE 1588-2019: IEEE Standard for a Precision Clock Synchronization Protocol
for Networked Measurement and Control Systems

[40] UM10204 - I2C-bus specification and user manual
https://www.nxp.com/docs/en/user-guide/UM10204.pdf

[41] ISO 17356-4: Road vehicles – Open interface for embedded automotive applica-
tions – Part 4: OSEK/VDX Communication (COM)

[42] ISO 17987:2016 (all parts), Road vehicles – Local Interconnect Network (LIN)
https://www.iso.org

[43] Specification of Communication Management
AUTOSAR_AP_SWS_CommunicationManagement

[44] Specification of Manifest
AUTOSAR_AP_TPS_ManifestSpecification

[45] DIN 40041 Ausgabe:1990-12 Zuverlässigkeit; Begriffe

[46] IEEE Standard for a High-Performance Serial Bus
http://www.1394ta.org/Technology/Specifications/specifications.htm

[47] Specification of Network Management Interface
AUTOSAR_CP_SWS_NetworkManagementInterface

[48] ISO/IEC 27000:2018 Information technology - Security techniques - Information
security management systems - Overview and vocabulary
https://www.iso.org

[49] ISO/IEC 2382 Part 15 Information technology – Vocabulary – Programming Lan-
guages, First Edition

[50] ISO/IEC 2382 Part 1 Information technology – Vocabulary – Security, Second
Edition

[51] Specification of Update and Configuration Management
AUTOSAR_AP_SWS_UpdateAndConfigurationManagement

[52] Specification of Software Cluster Connection module
AUTOSAR_CP_SWS_SoftwareClusterConnection

25 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.iso.org
http://www.1394ta.org/Technology/Specifications/specifications.htm
https://www.iso.org

Glossary
AUTOSAR FO R25-11

[53] XML Specification of Application Interfaces
AUTOSAR_CP_MOD_AISpecification

[54] IEEE Standard for System, Software, and Hardware Verification and Validation

26 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

1 Introduction

This document constitutes the comprehensive glossary of AUTOSAR. It contains defi-
nitions of all major abbreviations, acronyms and terms used within AUTOSAR. Please
note that the document is not intended to be exhaustive. It is important to consult the
glossaries of the various working group documents, as these contain additional specific
terms within their respective domains.

27 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

2 Acronyms, Abbreviations (and Initialisms)

2.1 Explanation

An Abbreviation is a shortened form of a word or phrase, like "Temp." for "Tempera-
ture", whereas an Acronym is a specific type of abbreviation formed from the initial
letters of a phrase and pronounced as a single word like "AUTOSAR", which stands
for "AUTomotive Open System Architecture". An Initialism is similar to an Acronym but
is pronounced letter by letter, like "ECU" for "Electronic Control Unit", and there are
hybrid forms of an Initialism and an Acronym, like "VLAN" for "Virtual LAN. However, in
both colloquial and technical contexts, the terms Abbreviation, Acronym and Initialism
are used interchangeably, and that is also the case in this document.

Acronym/
Abbreviation

Description

A
AA Adaptive Application

ABC Abstract Base Class
ABI Application Binary Interface
ADC Analog Digital Converter

AES Advanced Encryption Standard
AMM Application Mode Management
AP AUTOSAR Adaptive Platform
API Application Programming Interface

ARA AUTOSAR Runtime for Adaptive Applications

ARP Address Resolution Protocol
ARTI AUTOSAR Run-Time Interface

ARXML AUTOSAR XML
ASAM Association for Standardization of Automation and Measuring Systems

ASD Abstract System Description
ASIL Automotive Safety Integrity Levels

ASW Application SoftWare
ATP AUTOSAR Template Profile
ATS Acceptance Test Suite

AUTOSAR AUTomotive Open System Architecture
B
BFx Bitfield functions for fixed point
BSW Basic Software

BIST Built-In Self Tests
BSWM BSW Mode manager

▽

28 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Acronym/
Abbreviation

Description

BSWMD Basic Software Module Description
C
CAN Controller Area Network
CC Communication Controller
CCF Common Cause Failure

CD Complex Driver
CP AUTOSAR Classic Platform
COM Communication
COMM COMmunication Manager

CM Communication Module
CRC Cyclic Redundancy Check
D
DAC Digital to Analog Converter

DCA Data Class Adapter
DDS Data Distribution Service

DEM Diagnostic Event Manager

DES Data Encryption Standard
DET Default Error Tracer
DEXT Diagnostic EXTract

DHCP Dynamic Host Configuration Protocol

DIO Digital Input/Output

DLC Data Length Code
DM Diagnostic Manager
DoIP Diagnostics over Internet Protocol

DoS Denial of Service
DP Data Point
DSL Domain Specific Languages

DTC Diagnostic Trouble Code
DTD Document Type Definition
E
E2E End-to-End
ECB Electronic Code Book
ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

ECIES Elliptic Curve Integrated Encryption Scheme

ECU Electronic Control Unit

EDDSA Edwards-Curve Digital Signature Algorithm
▽

29 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Acronym/
Abbreviation

Description

EEC Executable Entity Cluster

EEPROM Electrically Erasable Programmable Read-Only Memory
EM Execution Management

EOC Execution Order Constraint

EOCEERG Execution Order Constraint Executable Entity Reference Groupe
F
FC Functional Cluster

FIFO First In First Out
FIBEX Field Bus Exchange Format

FO AUTOSAR Foundation
FOTA Firmware-Over-The-Air
FPU Floating Point Unit

FQDN Fully-Qualified Domain Name
FW FireWire (by Apple, aka IEEE 1394)
G
GCM Galios/Counter Modester
GENIVI GENeva In-Vehicle Infotainment
GPT General Purpose Timer
GSM Global System for Mobile Communication
H
HMAC Hash-based Message Authentication Code
HMI Human Machine Interface
HPC High performance computer / computing machine

HTMSS Hardware Test Management Startup and Shutdown
I
I-PDU Interaction Layer Protocol Data Unit, see: I-PDU
ICC Implementation Conformance Class, see: Implementation

Conformance Class 1 ff.
ICMP Internet Control Message Protocol

ICOM Intelligent COMmunication controller

ICU Input Capture Unit
ICV Integrity Check Value

ID IDentifier
IDL Interface Description Language

IEC International Electrotechnical Commission
IFI Interpolation Floating point
IFx Interpolation Fixed point

▽

30 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Acronym/
Abbreviation

Description

IO Input/Output
IP Internet Protocol
ISO International Standardization Organization

ISR Interrupt Service Routine

IVC In-Vehicle Communication
J
JSON JavaScript Object Notation
L
LAN Local Area Network
LBAP Language Binding for the Adaptive Platform AP
L-PDU Link Layer Protocol Data Units
L-SDU Link Layer Service Data Units

LET Logical Execution Time

LIFO Last In First Out
LIN Local Interconnected Network
LT Log and Trace

LSB Least Significant Bit
M
MAC Media Access Control
MAC Message Authentication Code

mC Microcontroller

MC Measurement and Calibration
MCAL Microcontroller Abstraction Layer

MCBD Multicore BSW Distribution
MCU MicroController Unit
MD Message Digest

MDIO Management Data Input/Output
ME Mappable Element

MFI Mathematical Floating point
MFx Mathematical Fixed point
MIPS Million Instructions Per Second
MMD MDIO Manageable Device
MMU Memory Management Unit
MMI Man Machine Interface
MOST Media Oriented Systems Transport
mP MicroProcessor
MPU Memory Protection Unit

▽

31 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Acronym/
Abbreviation

Description

MSB Most Significant Bit

MSTP Microcontroller Specific Test Package
MTU Maximum Transmission Unit
N
NM Network Management
N-PDU Protocol Data Unit of the Network layer (transport protocol)
N-SDU Service Data Unit of the Network layer (transport protocol)
NvM Non-Volatile Memory
NVRAM Non-Volatile Random Access Memory
O
OBD On-Board Diagnostic

OEM Original Equipment Manufacturer

OIL ISO 17356-6 (OSEK/VDX Implementation Language)

OS Operating System

OSEK Open Systems and their interfaces for Automotive Electronics1

P
PCI Protocol Control Information

PDEP Profile of Data Exchange Point
PDU Protocol Data Unit

PHM Platform Health Management

PKCS Public Key Cryptography Standards

PNC Partial Network Cluster
POSIX Portable Operating System Interface

PS Product Supplier
PSK Least Significant Bit
PTP Precision Time Protocol
PWM Pulse Width Modulation
R
RAM Random Access Memory
RDG Runnable Dependency Graph
REST Representational State Transfer
RfC Request for Change

ROM Read-Only Memory
RP Rapid Prototyping

▽

1The original German phrase for this acronym is: Offene Systeme und deren Schnittstellen für die
Elektronik im Kraftfahrzeug

32 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Acronym/
Abbreviation

Description

RPC Remote Procedure Call

RSA Cryptographic approach according to Rivest, Shamir, and Adleman
RTE Runtime Environment, see: RTE Event

S
SAE Society of Automotive Engineers, see: SAE J1939

SD Service Discovery

SDG Special Data Group
SDU Service Data Unit

SEooC Safety Element out of Context
SDV Software-Defined Vehicle
SHA Secure Hash Algorithm

SHM System Health Monitoring

SHWA Safe Hardware Acceleration
SIL Safety Integrity Level

SL-LET System Level Logical Execution Time

SM State Management

SOA Service-Oriented Architecture
SOC Service-Oriented Communication

SOME/IP Scalable Service-Oriented Middleware over IP
SOVD Service-Oriented Vehicle Diagnostics

SP Synchronization Points

SPEM Software and Systems Process Engineering Meta-model

SPI Serial Peripheral Interface
SST Signal Service Translation

SWC/SW-C Software Component

SWCT/SWC-T SWC-Template
SYST/SYS-T System Template
T
TC Timed Communication

TC Test Case
TCP Transmission Control Protocol
TD Timing Description
TIMEX TIMing EXTensions

TLS Transport Layer Security
TLV Tag Length Value
TP Transport Protocol
TSN Time Sensitive Network

▽

33 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Acronym/
Abbreviation

Description

TSY Time Synchronization

TTL Time To Live
TTP Time Triggered Protocol
U
UDP User (Universal) Datagram Protocol

UDS Unified Diagnostic Services
UDPNM UDP Network Management
UML Unified Modeling Language

USB Universal Serial Bus
UTF Universal coded character set Transformation Format
UUID Universally Unique Identifier
V
V2X Vehicle-To-Everything
VDP Vehicle Data Protocol
VFB Virtual Functional Bus

VISS Vehicle Information Service Specification
VLAN Virtual Local Area Network
VMM Vehicle Mode Management

VSA Variable Size Array
VSM Vehicle State Manager

W
WCET Worst Case Execution Time

WCRT Worst Case Response Time

X
XCP Universal Calibration Protocol

Table 2.1: Acronyms and Abbreviations

34 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

3 How to read this document

The title of the sub-chapters is identical to the term to be defined.

3.1 <Term> Template

Definition <term to be defined>

Initiator <Functional Cluster which responsible for the term>

Further Explanations <further explanation of the definition>

Comment <comment or hints>

Example <example of the term>

Reference <reference of definition>

35 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4 Definitions

4.1 Abstract Platform

Definition A Software Platform defined by AUTOSAR for the definition of functional level
communications independent of Classic / Adaptive / Offboard deployments.

Initiator System Design

Further Explanations An Abstract Platform exists only in the methodological and modeling sense and is not a physical
deployable platform.
In the context of AUTOSAR Classic and AUTOSAR Adaptive functional level communications
means VFB level communications.

Comment –

Example –

Reference –

4.2 Acceptance Test Suite

Definition A test case description used in the context of Acceptance Testing

Initiator Acceptance Testing

Further Explanations ISO 9646 distinguishes between Abstract Test Suites and Executable Test Suites. For
AUTOSAR the earlier relates to the Acceptance Test Specifications, whereas the latter to the test
implementations or Acceptance Test Suites.

Comment –

Example –

Reference [1], Parts 1,2 and 4

4.3 Access Control Decision

Definition The Access Control Decision is a Boolean value indicating if the requested operation is permitted
or not. It is based on the identity of the caller and the Access Control Policy

Initiator Security

Further Explanations In the case of Identity and Access Management, the ’caller’ is an Adaptive
Applications.

Comment –

Example –

Reference –

36 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.4 Access Control Policy

Definition Access Control Policies are bound to the targets of calls (i.e. Service interfaces) and are used
to express what Identity Information is necessary to access those interfaces.

Initiator Security

Further Explanations Policies can be provided through Configuration / modeling or by statically pre-programming
them into the PDP.

Comment –

Example –

Reference –

4.5 Adaptability

Definition Adaptability is the ability of a system to adjust itself to changed circumstances in its environment
in order to continue to provide the intended Functionality.

Initiator Safety

Further Explanations One should distinguish between changes in the environment of the system/vehicle ("run-time
adaptability") and changes in the development environment where software Architecture (like
AUTOSAR) is used ("design-time predictability").

Comment –

Example –

Reference • Antonio Carlos Schneider Beck, Carlos Arthur Lang Lisboa, Luigi Carro (eds.), Adaptable
Embedded Systems, Springer Science & Business Media, 27 Nov 2012

• Twan Basten, Roelof Hamberg, Frans Reckers, Jacques Verriet, Model-Based Design of
Adaptive Embedded Systems, Springer Science & Business Media, 15 Mar 2013

4.6 Adaptive Application

Definition Software that follows the Adaptive AUTOSAR specifications and therefore can be deployed onto
an Adaptive Platform instance. It consists of its implementation, operational data (e.g. map data)
and its Meta-data given by the Application Design Model. In order to be deployable on different
Adaptive Platforms, it only uses ARA programming interfaces including POSIX profile PSE51
APIs.

Initiator Execution Management

Further Explanations Adaptive Applications are generally more coarse grain than SW-Cs of the Classic
Platform. They use exclusively Adaptive Platform APIs, and may offer and use services. They
are implemented by one or several executables, byte code or libraries with defined entry points
and may comprise multiple parts (e.g. libraries, data files).

Comment The goal of Adaptive Platform is to achieve portability of Adaptive Applications among
different implementations of the Adaptive Platform at least on source-code level, potentially also
on object-code level.

Example –

Reference –

37 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.7 Adaptive Platform Foundation

Definition Part of an Adaptive Platform implementation, which provides standardized platform
Functionality to Applications via software interfaces (APIs).

Initiator Software and Architecture

Further Explanations The Adaptive Platform Foundation includes of core system functionalities such as OS, Execution
Manager, Communication Management and Persistency.

Comment The goal of Adaptive Platform is to achieve portability of Adaptive Applications among
different implementations of the Adaptive Platform at least on source-code level, potentially also
on object-code level.

Example –

Reference –

4.8 Adaptive Platform Services

Definition Standard platform services that is provided by an application which is part of AUTOSAR platform
implementation.

Initiator Communication

Further Explanations –

Comment –

Example –

Reference –

4.9 Adaptive Platform Machine Configuration

Definition Configuration model in the AUTOSAR Adaptive Platform that defines the target Configuration
content whose scope is local to a specific target Machine.

Initiator WG-MT

Further Explanations The Adaptive Platform Machine Configuration is uploaded with executable code to a target
Machine and supports the Integration of Executables onto the machine.

Comment –

Example –

Reference –

4.10 Application Programming Interface

Definition An Application Programming Interface (API) is the prescribed method of a specific software part
by which a programmer writing a program can make requests to that software part.

Initiator WG-MT

Further Explanations –

Comment –
▽

38 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Example [2] (OSEK/VDX Operating System)

Reference –

4.11 Application Software Component

Definition An Application Software Component is a specific Software Component which realizes a
defined Functionality on application level and runs on the AUTOSAR infrastructure. It
communicates only through the AUTOSAR Runtime Environment (RTE).

Initiator Software and Architecture

Further Explanations Application Software Components are located "above" the AUTOSAR Runtime Environment.

Comment –

Example –

Reference –

4.12 Architecture

Definition The fundamental organization of a system embodied in its components, their static and dynamic
relationships to each other, and to the environment, and the principles guiding its design and
evolution.

Initiator Software and Architecture

Further Explanations –

Comment "Static and dynamic" added to definition of [3] .

Example –

Reference [4], [3]

4.13 Artifact

Definition This is a Work Product definition that provides a description and definition for tangible work
product types. Artifacts may be composed of other artifacts. At a high level, an artifact is
represented as a single conceptual file.

Initiator Methodology and Templates

Further Explanations –

Comment –

Example –

Reference –

39 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.14 ASIL Decomposition

Definition See ISO-26262 ([5]) ID 1.7

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.7

4.15 Asserted Property

Definition A property or quality of a design entity (e.g. SW component or system) is asserted, if the design
entity guarantees that this property or quality is fulfilled.

Initiator Software and Architecture

Further Explanations A property or quality of a design unit can be asserted by the design unit itself or in combination
with another design unit.

Comment –

Example If the worst case Execution Time of a Task (w.r.t. a certain CPU etc.) is asserted to be 3 ms,
the execution time of this task will under any circumstances be less than or equal to 3 ms.

Reference Compare Required Property

4.16 Assessment

Definition See ISO-26262 ([5]), ID 1.4

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.4

4.17 Asset

Definition An item that has been designed for use in multiple contexts.

Initiator Software and Architecture

Further Explanations –

Comment –
▽

40 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Example An asset can be design, specifications, source code, documentation, test suits, manual

procedures, etc.
From a security perspective anything that has a value to any of the stakeholders such as critical
data (information, software) and critical functions, that could potentially be subject to attacks and
possibly, but not necessarily, motivates countermeasures.

Reference [6], [3]

4.18 Asynchronous Communication

Definition Asynchronous communication does not block the sending software entity.
The sending software entity continues its operation without getting a response from the
communication partner(s).

Initiator Communication

Further Explanations There could be an acknowledgement by the communication system about the sending of the
information.
A later response to the sending software entity is possible.

Comment –

Example –

Reference –

4.19 Asynchronous Function

Definition A Function is called asynchronous if the described Functionality is not guaranteed to be
completed the moment the Function returns to the caller.

Initiator Software and Architecture

Further Explanations –

Comment –

Example –

Reference –

4.20 Atomic Software Component

Definition Non-composed Software-Component.

Initiator Software and Architecture

Further Explanations An Atomic Software Component might access HW or not, therefore not all Atomic SW-Cs are
relocatable.

Comment –

Example Application Software-Component, Complex Driver

Reference –

41 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.21 Audit

Definition See ISO-26262 ([5]), ID 1.5

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.5

4.22 Authenticity

Definition The property that data originated from its purported source.

Initiator Security

Further Explanations –

Comment –

Example –

Reference NIST SP 800-38B under Authenticity

4.23 Automotive API

Definition The Automotive API is an interface that allows data-centric communication with the vehicle. It
defines how other systems can access selected vehicle data securely and independently of the
in-vehicle representation using a standardized interface across vehicle types and manufacturers.

Initiator Communication

Further Explanations –

Comment –

Example –

Reference See [7]

4.24 Automotive API Gateway

Definition The Automotive API Gateway is the Functional Cluster that offers the Automotive API
and can thus connect clients to vehicle internal data.

Initiator Communication

Further Explanations –

Comment –

Example –

Reference See [7]

42 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.25 Automotive Safety Integrity Levels

Definition See ISO-26262 ([5]), ID 1.7

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.7

4.26 AUTOSAR Adaptive Platform

Definition An adaptive computing platform standardized by AUTOSAR. In a narrow term, it refers to its
specification. In a broad term, it may refer to an instance of Adaptive Platform implementation.

Initiator Software and Architecture

Further Explanations –

Comment –

Example –

Reference –

4.27 AUTOSAR Application Interface

Definition A set of Blueprints which are standardized by AUTOSAR and which can be used for creating
AUTOSAR Interfaces of an Adaptive Application. AUTOSAR Interfaces that are
derived from Standardized AUTOSAR Blueprints are Standardized AUTOSAR
Interfaces.

Initiator Application Interfaces

Further Explanations –

Comment –

Example –

Reference

4.28 AUTOSAR Authoring Tool

Definition An AUTOSAR Tool used to create and modify AUTOSAR XML descriptions.

Initiator Methodology and Templates

Further Explanations –

Comment –

Example System Description Editor

Reference –

43 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.29 AUTOSAR Blueprint

Definition An AUTOSAR Blueprint is a Blueprint for an AUTOSAR element. It also includes that it is
specified within the AUTOSAR project which attributes are mandatory to be specified for the
blueprint of a specific class of AUTOSAR element types as well as how to derive an AUTOSAR
object from that blueprint.

Initiator Application Interfaces

Further Explanations The AUTOSAR meta-model supports the pre-definition of model elements taken as the basis for
further modeling. These pre-definitions are called blueprints. [TPS_STDT_00002]

Comment –

Example –

Reference [8]

4.30 AUTOSAR Converter Tool

Definition An AUTOSAR Tool used to create AUTOSAR XML files by converting information from other
AUTOSAR XML files.

Initiator Methodology and Templates

Further Explanations –

Comment –

Example ECU Flattener

Reference –

4.31 AUTOSAR Definition

Definition This is the definition of parameters which can have values. One could say that the parameter
values are instances of the definitions. But in the meta-model hierarchy of AUTOSAR, definitions
are also instances of the meta-model and therefore considered as a description.

Initiator Methodology and Templates

Further Explanations –

Comment –

Example –

Reference –

4.32 AUTOSAR Interface

Definition The AUTOSAR Interface of a software component refers to the collection of all Ports (Port) of
that component through which it interacts with other components.

Initiator Software and Architecture

Further Explanations –

▽

44 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Comment Note that an AUTOSAR Interface is different from a Port Interface. The latter characterizes

one specific Port of a component.

Example –

Reference See AUTOSAR Specification of [9] Chapter 4 “Communication on the VFB” .

4.33 AUTOSAR Meta-model

Definition The AUTOSAR meta-model is a UML2.0 model that defines the language for describing
AUTOSAR systems and related artifacts.

Initiator Methodology and Templates

Further Explanations –

Comment The AUTOSAR XML Schema is derived from the AUTOSAR meta-model.
Example –

Reference [10]

4.34 AUTOSAR Model

Definition This is an instance of the AUTOSAR Meta-model. The AUTOSAR Model represents aspects
suitable to the intended use according to the AUTOSAR methodology.

Initiator Methodology and Templates

Further Explanations –

Comment –

Example –

Reference –

4.35 AUTOSAR Partial Model

Definition In AUTOSAR, the possible Partitioning of models is marked in the meta-model by <<atp
Splitable>>. One partial model is represented in an AUTOSAR XML description by one file.
The partial model does not need to fulfill all semantic constraints applicable to an AUTOSAR
model.

Initiator Methodology and Templates

Further Explanations –

Comment –

Example –

Reference –

45 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.36 AUTOSAR Processor Tool

Definition An AUTOSAR Tool used to create non-AUTOSAR files by processing information from AUTOSAR
XML files.

Initiator Methodology and Templates

Further Explanations –

Comment –

Example RTE Generator

Reference –

4.37 AUTOSAR Runtime for Adaptive Applications

Definition A set of standard application interfaces provided by Functional Clusters, which belong to
either Adaptive Platform Foundation or Adaptive Platform Services.

Initiator General

Further Explanations –

Comment –

Example –

Reference –

4.38 AUTOSAR Run-Time Interface (ARTI)

Definition The AUTOSAR Run-Time Interface shall define an interface between build tools and
Debugging/Tracing tools.

Initiator Software and Architecture

Further Explanations The interface shall ease and speed up the Debugging, Tracing and Verification of
System behavior as well as round-trip engineering.

Comment
Example –

Reference AUTOSAR Specification of ARTI ([11])

4.39 AUTOSAR Service

Definition The term Service is used in the layered software architecture to denote the highest layer of the
AUTOSAR Software architecture that interacts with the application. The term service is used in
the meaning defined by the service-oriented architecture. This meaning has the strongest relation
to the usage of the term service on the AUTOSAR Adaptive Platform.
The term service is also used to describe the handling of diagnostic services, e.g. UDS service
ReadDataByIdentifier, for the communication between a diagnostic tester and a diagnostic stack
on an (AUTOSAR) Electronic Control Unit (ECU).

Initiator Software and Architecture

▽

46 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Further Explanations –

Comment –

Example –

Reference –

4.40 AUTOSAR Software

Definition Application Software or Basic/Platform Software developed according to the AUTOSAR Standard.

Initiator –

Further Explanations –

Comment –

Example –

Reference –

4.41 AUTOSAR Tool

Definition This is a software tool which supports one or more tasks defined as AUTOSAR tasks in the
methodology. Depending on the supported tasks, an AUTOSAR tool can act as an AUTOSAR
Authoring Tool, an AUTOSAR Converter Tool, an AUTOSAR Processor Tool or as a
combination of those.

Initiator Methodology and Templates

Further Explanations –

Comment –

Example –

Reference –

4.42 AUTOSAR XML description

Definition In AUTOSAR this is a serialized AUTOSAR model. In fact an AUTOSAR XML description is the
XML representation of an AUTOSAR Model. The AUTOSAR XML description can consist of
several files. Each individual file represents an AUTOSAR Partial Model and must validate
successfully against the AUTOSAR XML Schema.

Initiator Methodology and Templates

Further Explanations –

Comment –

Example –

Reference –

47 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.43 AUTOSAR XML Schema

Definition The AUTOSAR XML Schema is an XML language definition for exchanging (AUTOSAR Model)
and descriptions.

Initiator Methodology and Templates

Further Explanations The AUTOSAR XML Schema is a W3C XML schema that defines the language for exchanging
AUTOSAR models. This Schema is derived from the AUTOSAR Meta-model.
The AUTOSAR XML Schema defines the AUTOSAR data exchange format.

Comment –

Example –

Reference –

4.44 Availability

Definition 1. Availability is the ability of the system to perform a Function A completely according to its
specification.
2. The ratio of the total time the system is performing a function A (according to 1) during a given
interval to the length of the interval. Alternative: The probability that the system is performing the
function A at a specified time t.
3. In a degraded Mode the system has the ability to perform a subset B of A if full A is not
available. In this case, the Functionality B is available.

Initiator Safety

Further Explanations see Figure 4.1 for more details.

Comment 1. Degraded modes are covered by this definition (see example)

Example 1. Power Steering: if the support Function fails it is not available while the steering as a base
function has full availability. 2. From a security perspective availability is an attribute that ensures
correct and timely access upon demand by an authorized entity.

Reference See [5], ID 1.8

48 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

A

BC

1

2

3

4

Repair Repair

Full functionality (A)

Degraded
functionality (B)
B < A and B ∩ A ≡ B

Failure F2

Failure F1

Failure F3

Alternative / Safe State
functionality (C)
C ∩ A ≡ Ø
C ∩ B ≡ Ø

Failure F4

Due to F1 - transition to
degraded functionality

System is available
w.r.t functionality A

System is available
w.r.t functionality B
(but not available
w.r.t. functionality A)

System is not available
w.r.t any intended

functionality

Due to F4 - transition to the same
functionality (e.g. due to redundancy)

Due to F3 - (occuring during degraded mode)
 transition to safe / alternative state

Due to F2 - transition directly to
safe / alternative functionality

NOTES:
1. This diagram assumes the system is already in full intended functionality mode and neglects the
start-up, shut-down, reset, etc. transitions which lead to this state.
2. The repair transitions are conceptual transitions for ilustration purposes.

Figure 4.1: Explanation of Availability

4.45 Basic Software

Definition The Basic Software (BSW) provides the infrastructural (schematic dependent and schematic
independent) functionalities of an Electronic Control Unit. It consists of Integration
Code and Standard Software.

Initiator Software and Architecture

Further Explanations –

Comment –

Example Microcontroller Abstraction Layer (MCAL), AUTOSAR Service, Communication
Layer

Reference –

49 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.46 Basic Software Module

Definition A collection of software files (code and description) that define a certain basic software
Functionality present on an Electronic Control Unit.

Initiator Software and Architecture

Further Explanations Standard Software may be composed of several software modules that are developed
independently. A software module may consist of Integration Code and/ or Standard
Software.

Comment –

Example A Digital IO Driver, Complex Driver, OS are examples of Basic Software Modules.

Reference –

4.47 Bit Position

Definition In AUTOSAR the bit position N within an I-PDU denotes the bit I, with I = N
modulo 8, within the byte J, with J = N / 8. The byte J and bit position I is
interpreted in accordance to the definition in ISO 17356-4 (OSEK/VDX Communication).

Initiator Communication

Further Explanations –

Comment –

Example –

Reference –

4.48 Blueprint

Definition This is a model from which other models can be derived by copy and refinement. Note that in
contrast to meta-model resp. types, this process is not an instantiation.

Initiator Methodology and Templates

Further Explanations –

Comment –

Example Standardized Blueprint and AUTOSAR Blueprint.

Reference –

4.49 Bulk Data

Definition "Bulk Data" is a set of data such big in size, that standard mechanisms used to handle smaller
data sets become inconvenient. This implies that bulk data in a software system are modeled,
stored, accessed and transported by different mechanisms than smaller data sets.

Initiator Software and Architecture

Further Explanations Bulk data are typically handled by adding a level of abstraction (e.g. files) which separates the
containment of the data from the internal structure.

▽

50 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Comment The critical size, above which data must be regarded as bulk data depends on the technical

infrastructure (e.g. bus system) and the considered Use Case (transport, storage etc.).

Example Data on a persistent medium which has a capacity of a few kBytes (e.g. EEPROM) can be directly
accessed via memory addresses, address offsets can be mapped to symbols of a programming
language: No bulk data mechanisms are needed. For media with bigger capacity this becomes
inconvenient or even impossible, so that a file system is used: The data are treated as bulk data.

Reference –

4.50 Bus Mirroring

Definition Forwarding information from an internal vehicle bus to an external bus, e.g. the diagnostic
Connector.

Initiator Communication

Further Explanations Bus Mirroring is used to make internal buses accessible to external testers such that internal
buses can be debugged in case of errors.

Comment Because the external (or intermediary) buses typically do not have sufficient bandwidth to
transport all information from an internal bus, filters have to be applied to select the frames that
are relevant to the analysis.

Example An Electronic Control Unit does not go to sleep in a vehicle. The engineer wants to check
the NM traffic to check for irregular behavior, e.g. concerning partial networking information.

Reference –

4.51 Bus Wake-Up

Definition A bus wake-up is caused by a specific wake pulse on the bus defined within the specification of
the dedicated communication standard (e.g. CAN, LIN, FR). A bus wake-up initiates that the
transceiver and controller leave their energy saving Mode and enter normal mode to start bus
communication again.

Initiator Communication

Further Explanations –

Comment –

Example –

Reference –

4.52 Bypassing

Definition The experimental incorporation of new Functionality within an ECU image.

Initiator Runtime Environment

Further Explanations Bypassing involves the incorporation of new Functionality or to replace existing functionality
to an existing ECU image without requiring that the image be rebuilt.

▽

51 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Comment Bypassing can be either "internal" where the new/ replacement Functionality is present on

the ECU image or "external" where an Rapid Prototyping Tool provides the functionality
out with the ECU.

Example An RP tool intercepts the output of a bypassed RunnableEntity via the RP Memory Interface and
replaces the value with the bypass result. Subsequent RunnableEntitys then process the bypass
value rather than the original result.

Reference –

4.53 Calibration

Definition Calibration is the adjustment of parameters of Software Components realizing the control
functionality (namely parameters of AUTOSAR SW-Cs, ECU abstraction or Complex Driver.

Initiator Software and Architecture

Further Explanations Only those software modules can be calibrated, which are above RTE and ECU Abstraction and
CDD. Calibration is always done at post-build time. Used techniques to set Calibration
Data include end-of-line programming, garage programming and adaptive calibration (e.g. in the
case of anti-pinch protection for power window).

Comment –

Example The Calibration of the engine control will take into account the production differences of the
individual motor this System will control.

Reference –

4.54 Call Point

Definition A point in a Software Component where the SWC enforce an execution entity (Entry Point)
in another SWC.

Initiator Software and Architecture

Further Explanations –

Comment –

Example Request Service
Send Information

Reference –

4.55 Callback

Definition Functionality that is defined by an AUTOSAR module so that lower-level modules (i.e. lower in the
Layered Software Architecture) can provide Notification as required (e.g. when certain
events occur or asynchronous processing completes).

Initiator Software and Architecture

▽

52 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Further Explanations In AUTOSAR, modules usually provide a register mechanism for callback functions which is set

through Configuration. A module provides callbacks so that other modules can initiate its
processing while the module calls Callbacks to execute functionality that could not be specified
by AUTOSAR, i.e. Integration Code.

Comment –

Example (from the viewpoint of a particular SWS):
The module being specified (Msws) should be informed about an Event in another module
(Mexternal). In this example, Msws calls Mexternal to perform some processing and can only
resume when Mexternal completes. Upon completion, Mexternal calls Msws’s Callback
Function. That is, the called module (Mexternal) CALLS the calling module (Msws) BACK when
complete ==> a Callback.

Reference –

4.56 Callout

Definition Function stubs that the system designer can replace with code to add functionality to a module
which could not be specified by AUTOSAR.

Initiator Software and Architecture

Further Explanations A module calls callouts to execute functionality that could not be specified by AUTOSAR, i.e.
Integration Code while the module provides Callbacks so that other modules can initiate
its processing.
Callouts can be separated into two classes:
1) callouts that provide mandatory functionality and thus serve as a Hardware Abstraction
Layer
2) callouts that provide optional functionality

Comment –

Example In the EcuM:
For class 1): EcuM_EnableWakeupSources
For class 2): The Init Lists (EcuM_AL_DriverInitZero)

Reference –

4.57 CAN XL

Definition CAN XL specifies a protocol and physical layer with higher Data rate and clearer separation of
concerns, that builds on CAN 2.0/FD and features tunneling of Ethernet frames.

Initiator Communication

Further Explanations Besides supporting tunneled legacy CAN 2.0 / CAN FD communication between any type of
Electronic Control Unit (ECU) it shall be also possible to directly tunnel IEEE 802.3
Ethernet frames for e.g. participation of IP communication. This leads to a vehicle wide possible
communication with same semantic used everywhere regardless physical connection (CAN XL /
Ethernet) or communication paradigm (Signal- and Service-based communication).

Comment CAN XL will help bridge the gap between current CAN implementations and current 100 Mbit
Ethernet solutions. On the same Network segment, both CAN 2.0/FD/XL and Ethernet traffic
can coexist. Baudrate is not fixed to 10 Mbit like at 10BASE-T1S but can be adjusted flexible up
to 20 Mbit

Example Tunneling Ethernet frames to CAN XL connected ECUs.

Reference [12, CiA610-1], [13, CiA-611-1]

53 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.58 Cascaded Switch

Definition A Cascaded Switch is an Ethernet switch that exists of at least two Ethernet switches: a Master
Switch and a Slave Switch. The Master Switch and the Slave Switch are connected by
Uplink Ports.

Initiator Communication

Further Explanations –

Comment –

Example Request Service
Send Information

Reference –

4.59 Cascading Failure

Definition See ISO-26262 ([5]), ID 1.13

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.13

4.60 Category 1 Interrupt

Definition Category 1 (Cat1) Interrupts are supported by the OS but their code is only allowed to call a very
small subset of OS functions. Furthermore they can bypass the OS. The code of Category 1
Interrupts depends (normally) on the used compiler and Microcontroller. Category 1
Interrupts are not allowed to use the ISR() macro. Category 1 Interrupts need to implement/
establish their own Interrupt Frame. Nevertheless they have to be configured in order to be
included in the Interrupt Vector Table.

Initiator Software and Architecture

Further Explanations –

Comment –

Example –

Reference –

4.61 Category 2 Interrupt

Definition Category 2 (Cat2) Interrupts are supported by the OS and their code can call a subset of OS
functions. The definition of the Cat2 Interrupt must use the ISR() macro in order to be recognized
by the OS. The Interrupt Frame of a Category 2 Interrupt is managed by the OS.

Initiator Software and Architecture

▽

54 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Further Explanations –

Comment –

Example ISR(timer1)
{
/* here is the code which handles timer1 interrupts */
...
}

Reference –

4.62 Causality of Transmission

Definition Transmit order of PDUs with the same identifier (instances of Protocol Data Units, PDUs)
from a source Network is preserved in the destination network.

Initiator Communication

Further Explanations Transmission of Protocol Data Unit (PDU) with the same identifier has a particular temporal
order in a given source Network. After routing over a Gateway the temporal order of
transmission of PDUs in a destination network may be changed. Only in case that the temporal
order is the same, causality is given. Otherwise causality is violated. Causality can be in
contradiction to prioritization of PDUs.

Comment –

Example –

Reference –

4.63 Classic Platform

Definition A Software Platform defined by AUTOSAR for deeply embedded systems and Application
Software with high demands regarding predictability, Safety and responsivness.

Initiator General

Further Explanations –

Comment –

Example –

Reference –

4.64 Client

Definition Software entity which uses services of a Server.

Initiator Software and Architecture

Further Explanations The client and the Server might be located on one Client-Server Communication or
distributed on different calculation units (e.g. Electronic Control Unit (ECU), external
diagnostic tester).

Comment Adapted from [14]

▽

55 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Example –

Reference [14]

4.65 Client-Server Communication

Definition A specific form of communication in a possibly distributed system in which software entities act as
Clients, Servers, or both, where 1...n clients are requesting services via a specific protocol
from typically one Server.

Initiator Communication

Further Explanations Client-server communication can be realized by synchronous or asynchronous communication.
• Client takes initiative: requesting that the Server performs a Service, e.g. client triggers

action within server (server does not start action on its own)

• Client is after service request blocked / non-blocked

• Client expects response from server: Data Flow (and control flow, if blocked)

One example for 1 client to n server communication (currently not supported) is a functional
request by diagnosis. This has to be treated as a specific exception.

Comment –

Example Internet (TCP/IP)

Reference –

4.66 Client-Server Interface

Definition The Client-Server interface is a special kind of Port Interface used for the case of Client-
Server Communication. The Client-Server interface defines the operations that are provided
by the Server and that can be used by the Client.

Initiator Communication

Further Explanations –

Comment –

Example –

Reference AUTOSAR Specification of Virtual Functional Bus ([9])

4.67 Cluster Signal

Definition A cluster signal represents the aggregating System Signal on one specific communication
cluster. Cluster signals can be defined independently of frames. This allows a development
methodology where the signals are defined first, and are assigned to frames in a later stage.

Initiator Communication

Further Explanations –

Comment –

Example –

▽

56 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Reference –

4.68 Code Generator

Definition The Code Generator consumes complete and correctly formed XML for a Basic Software
Module (BSW) and generates code and data that configures the module.

Initiator Software and Architecture

Further Explanations –

Comment –

Example –

Reference –

4.69 Code Variant Coding

Definition Adaptation of SW by selection of functional alternatives according to external requirements

Initiator Software and Architecture

Further Explanations Code Variant Coding might influences RTE (Runtime Environment) and Basic Software Modules,
not only the application software modules. Code Variant Coding is always done at pre-compile
time or at link time. Code Variant Coding also includes vehicle-specific (not user-specific) SW
adaptation due to end-customer wishes (e.g. deactivation of speed dependent automatic locking).

Comment In case of the C language the #if or #ifdef directive can be used for creating code variants. Code
Variant Coding is a design time concept.

Example The same window lifter ECU is used for cars with 2 and 4 doors, however different code
segments have to be used in both cases.

Reference

4.70 Common Cause Failure

Definition See ISO-26262 ([5]), ID 1.14

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.14

57 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.71 Communication Attribute

Definition Communication attributes define, according to the development phase, behavioral as well as
implementation aspects of the AUTOSAR communication patterns.

Initiator Communication

Further Explanations The exact characteristics of the communication patterns provided by AUTOSAR (Client-
Server Communication and Sender-Receiver Communication) can be specified more
precisely by communication attributes.

Comment See AUTOSAR Specification of [9] Chapter 4 “Communication on the VFB” .

Example –

Reference AUTOSAR Specification of Virtual Functional Bus ([9])

4.72 Complex Driver

Definition A software entity not standardized by AUTOSAR that can access or be accessed via AUTOSAR
Interfaces and/or Basic Software Module APIs.

Initiator Software and Architecture

Further Explanations CDD used to be the acronym for Complex Device Driver, but is not limited to drivers.

Comment –

Example • Communication stack CDD to support the communication on a bus not supported by
AUTOSAR

• Reuse of legacy SW

• Integration of software with high HW interaction requirements within a standardized AUTOSAR
Architecture

Reference –

4.73 Composition

Definition An AUTOSAR Composition encapsulates a collaboration of Software Components, thereby
hiding detail and allowing the creation of higher abstraction levels. Through Delegation
Connectors a Composition explicitly specifies, which Ports of the internal components are
visible from the outside. AUTOSAR Compositions are a type of Components, e.g. they can be
part of further compositions.

Initiator Software and Architecture

Further Explanations –

Comment See Virtual Functional Bus Specification, [9] Chapter 4 “Communication on the VFB”

Example –

Reference AUTOSAR Specification of Virtual Functional Bus ([9])

58 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.74 Compositionality

Definition Compositionality is given when the behavior of a Software Component or subsystem of a
Systems is independent of the overall system load and Configuration.

Initiator Software and Architecture

Further Explanations Compositionality is an important property of deterministic systems. This property leads to a
complete decoupling of systems. Smooth subsystem Integration without backlashes is then
easily achievable.

Comment –

Example A new component or a subsystem can be added to a system without changing the behavior of the
original components.

Reference –

4.75 Conditioned Signal

Definition The conditioned signal is the internal electrical representation of the Electrical Signal
within the Electronic Control Unit (ECU). It is delivered to the processor and represented
in voltage and time (or, in case of logical signals, by high or low level).

Initiator General

Further Explanations The Electrical Signal usually can not be processed by the peripherals directly, but has to
be adopted. This includes amplification and limitation, conversion from a current into a voltage
and so on. This conversion is performed by some electronic devices in the ECU and the result of
the conversion is called the Conditioned Signal. The description means for the Conditioned
Signal can also be the same as for Technical Signals and Electrical Signals, but limited to
electrical voltage.

Comment –

Example –

Reference –

4.76 Confidentiality

Definition The property that data or information is not made available or disclosed to unauthorized persons
or processes.

Initiator Security

Further Explanations –

Comment –

Example –

Reference NIST SP 800-66 Rev. 1 under Confidentiality from 45 C.F.R., Sec. 164.304

59 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.77 Configuration

Definition The arrangement of hardware and/or software elements in a system.

Initiator Software and Architecture

Further Explanations A configuration in general takes place before runtime.

Comment –

Example –

Reference [3], [15]

4.78 Confirmation

Definition Service primitive defined in the ISO/OSI Reference model ([16]). With the ’confirmation’ service
primitive a service provider informs a service user about the result of a preceding service request
of the service user.

Initiator Software and Architecture

Further Explanations A confirmation is e.g. a specific notification generated by the underlying layer to inform about a
Message Transmission Error.

Comment –

Example –

Reference [17]

4.79 Connector

Definition A Connector connects Ports of Software Components and represents the flow of information
between those ports.

Initiator Software and Architecture

Further Explanations –

Comment For more information see AUTOSAR Specification of VFB ([9])

Example AssemblyConnector, DelegationConnector

Reference [9]

4.80 Control Flow

Definition The directed transmission of information between multiple entities, directly resulting in a state
change of the receiving entity.

Initiator Software and Architecture

Further Explanations A state change could result in an activation of a schedulable entity.

Comment –

Example –

Reference –

60 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.81 Coordinate

Definition To control and harmonize two or more events or operations to act in an organized and predictable
way.

Initiator Communication

Further Explanations –

Comment –

Example Two NM Channels can be coordinated to synchronize different stages of Network sleep.

Reference

4.82 Data

Definition A reinterpretable representation of information in a formalized manner suitable for
communication, interpretation or processing.

Initiator General

Further Explanations –

Comment –

Example Flag, Notification, etc.

Reference [18]

4.83 Data Element

Definition Data elements are declared within the context of a Sender-Receiver Interface. They serve
as the data units that are exchanged between sender and receiver.

Initiator Software and Architecture

Further Explanations –

Comment –

Example –

Reference [19]

4.84 Data Flow

Definition The directed transmission of Data between multiple entities. The transmissioned data are not
directly related to a state change at the receiver side.

Initiator Software and Architecture

Further Explanations –

Comment –

Example Asynchronous communication.

Reference –

61 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.85 Data Variant Coding

Definition Adaptation of SW by setup of certain characteristic Data according to external requirements.

Initiator Software and Architecture

Further Explanations Data Variant Coding might influence RTE (Runtime Environment) and Basic Software
Modules, not only the application software modules (Multiple Configuration parameter sets
are needed). Variant Coding also includes vehicle-specific (not user-specific) SW adaptation
due to end-customer wishes (e.g. deactivation of speed dependent automatic locking). Used
techniques to select variants include end-of-line programming and garage programming.

Comment The major difference with Calibration is that this later doesn’t aim to adapt the SW
Functionality itself but only aims to adjust the characteristic data of the SW to the HW/SW
environment. Characteristic Data in the source code of a software Function have a significant
impact on the functionality of the software.

Example - Steering wheel controller adaptation to the left or right side can be done with Variant
Coding. (Selection of the Configuration.) - Country related adaptation of MMI with respect to
speed and/or temperature unit (km/h vs. mph, °C vs. F).

Reference

4.86 Deadline

Definition The point in time when an execution of an entity must be finished.

Initiator Software and Architecture

Further Explanations A deadline is calculated dependent on its local reference system.

Comment –

Example –

Reference [20]

4.87 Debugging

Definition Debugging is the process of gathering information in case of a software problem. The information
is used to analyze the software problem.

Initiator Software and Architecture

Further Explanations To analyze and later fix a software problem, in many cases more information than the one
provided by the software API is necessary. This can be for example the state of internal variables
of the software or a trace of the communication. The information can be collected by different
means, e.g. an emulator or a Tracing tool for the communication bus.

Comment –

Example –

Reference –

62 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.88 Dependability

Definition Dependability is defined as the trustworthiness of a computer system such that reliance can
justifiable be placed on the Service it delivers.

Initiator Software and Architecture

Further Explanations –

Comment –

Example –

Reference [3]

4.89 Dependent Failure

Definition See ISO-26262 ([5]), ID 1.22

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.22

4.90 Diagnostic Coverage

Definition See ISO-26262 ([5]), ID 1.25

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.25

4.91 Diagnostic Event

Definition A diagnostic event defines the atomic unit that can be handled by the DEM module.
The status of a diagnostic event represents the result of a monitor. The DEM receives the result
of a monitor from a Software Component (SW-C) via the RTE or other Basic Software
Modules.

Initiator Diagnostics

Further Explanations –

Comment For definition of ’monitor’ see chapter [21] Chapter 7.3.5 “Diagnostic monitor definition” in
Specification of DEM.

Example –

▽

63 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Reference [21]

4.92 Diversity

Definition See ISO-26262 ([5]), ID 1.28

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.28

4.93 Dynamic PDU

Definition Protocol Data Unit with dynamic identifier.

Initiator Communication

Further Explanations Dynamic PDUs are PDUs where the <bus> identifier (e.g. CAN ID) is dynamically assigned
(transmission) or evaluated (reception) at run time.

Comment AUTOSAR supports two types of dynamic PDUs in CanIf: CanIf_SetDynamicTxId (only
transmission), and PDUs with Meta-data (reception and transmission).

Example PDU with variable source address, encoded in the CAN ID, e.g. ISO15765 NormalFixed.

Reference –

4.94 Dynamic Routing

Definition The routing of signals or Protocol Data Units in a Gateway can be changed throughout
operation without change of the operation Mode of the Gateway.

Initiator Communication

Further Explanations Dynamic routing requires the change of routing tables during operation. It is not intended to use
dynamic routing in the Gateway.

Comment –

Example –

Reference [3]

64 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.95 E2E Profile

Definition A functional and complete description of a specific communication stack in terms of data
structures, Services, behavioral state-machines, Error handling. E2E Profiles are defined in
AUTOSAR E2E Library. An E2E Profile is configurable by runtime parameters. A specific set of
runtime parameters is called E2E profile Variant. In order to reach interoperability, the
application developers should use the E2E profile variants defined in the E2E library.

Initiator Safety

Further Explanations –

Comment –

Example –

Reference –

4.96 E2E Protection Alive Counter

Definition An Alive Counter is a counter which is incremented in every transmission request. The counter
value is checked at the receiver side, whether it changes at all, but not if the counter was
incremented correctly.

Initiator Safety

Further Explanations With an alive counter, the receiver monitors if new values arrive, this means it checks if the
sender is still alive

Comment –

Example [22] Annex D.2.4 EXAMPLE 3: Communication protocols can contain information such as
identifiers for communication objects, keep-alive messages, alive counters, sequence numbers,
error detection codes and error-correcting codes.

Reference –

4.97 E2E Protection Sequence Counter

Definition A Sequence Counter is a counter which is incremented in every transmission request. The value
of the counter value is checked at the receiver side for each message, whether it was
incremented correctly.

Initiator Safety

Further Explanations A Sequence Counter is used to check whether messages got lost or a message is repeated.

Comment –

Example [22] Annex D.2.4 EXAMPLE 3: Communication protocols can contain information such as
identifiers for communication objects, keep-alive messages, alive counters, sequence numbers,
error detection codes and error-correcting codes.

Reference –

65 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.98 ECU Abstraction Layer

Definition The Electronic Control Unit (ECU) Abstraction Layer is located above the
Microcontroller Abstraction Layer and abstracts from the ECU schematic.
It is implemented for a specific ECU and offers an API for access to peripherals and devices
regardless of their location (onchip/offchip) and their connection to the Microcontroller (
Port pins, type of interface). Task: Make higher software layers independent of the ECU
hardware layout.

Initiator Software and Architecture

Further Explanations The ECU Abstraction Layer consists of the following parts:
• I/O Hardware Abstraction

• Communication Hardware Abstraction

• Memory Hardware Abstraction

• Crypto Hardware Abstraction

• Onboard Device Abstraction

Properties:

• Implementation: µC independent, ECU hardware dependent

• Upper Interface (API): µC and ECU hardware independent, dependent on signal type

Comment –

Example –

Reference See Layered Software Architecture ([23])

4.99 ECU Configuration

Definition Activity of integrating and configuring one ECU’s software.

Initiator Methodology and Templates

Further Explanations Further Explanations: ECU Configuration denotes the activity when one ECU’s software is set up
for a specific usage inside the Electronic Control Unit. In AUTOSAR the ECU
Configuration activity is divided into "Pre-compile time", "Link time" and "Post-build time"
configuration.

Comment –

Example –

Reference ECU Configuration Description, Pre-Compile Time Configuration, Link Time
Configuration, Post-build Time Configuration.

4.100 ECU Configuration Description

Definition Output of the ECU Configuration activity containing the values of Configuration
parameters and references.

Initiator Methodology and Templates

Further Explanations ECU Configuration Description holds the Configuration parameter values and references to
other module’s configurations which have been defined in the ECU Configuration activity.

▽

66 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Comment ECU Configuration Description may contain the whole ECU Configuration information or only

the parts relevant for a specific Configuration step (e.g. Pre-Compile Time
Configuration).

Example –

Reference ECU Configuration Description (see [24]), Pre-Compile Time Configuration, Link Time
Configuration, Post-build Time Configuration.

4.101 ECU HW

Definition A container term for any combination of AP Machines and CP ECUs. In general terms, an
ECU-HW is typically abstracted/independent from physical or virtual realization and does not
convey any HW-Housing i.e. multiple physical ECU-HWs or a physical ECU-HW providing
multiple virtual ECU-HWs (unless otherwise stated).

Initiator Methodology and Templates

Further Explanations –

Comment –

Example –

Reference –

4.102 ECU Instance

Definition An ECU Instance represents a single instantiation of a Classic Platform stack, that may run
on physical ECU-HW (without Hypervisor) or on virtual ECU-HW (with hypervisor).

Initiator Methodology and Templates

Further Explanations –

Comment –

Example –

Reference –

4.103 Electrical Signal

Definition The electrical signal is the electrical representation of Technical Signals. Electrical signals
can only be represented in voltage, current and time

Initiator General

Further Explanations When a sensor processes the Technical Signal it is converted into an Electrical Signal. The
information can be provided in the current, the voltage or in the timely change of the signal (e.g. a
pulse width modulation).

Comment To describe the Electrical Signal the same means as for the Technical Signal can be used,
limited to electrical current and voltage.

Example –

▽

67 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Reference –

4.104 Electronic Control Unit (ECU)

Definition Embedded computer System consisting of at least one CPU and corresponding peripherals
which are placed in one housing.

Initiator General

Further Explanations An ECU is typified by a connection to one or more in-vehicle networks, sensors and actuators.

Comment –

Example –

Reference –

4.105 Empty Function

Definition Any C function defined by an AUTOSAR specification which does not implement or alter behavior
required to accomplish the assigned functional responsibility.

Initiator Software and Architecture

Further Explanations As such an empty function in the context of AUTOSAR can still have code but this code shall not
impact the state Machine other than Error reporting. Auxiliary code like validating arguments to
report to the DET does not constitute functional behavior because without the code and proper
calling this code would still fulfill its architectural responsibility.

Comment –

Example –

Reference –

4.106 Entry Point

Definition A point in a Software Component where an execution entity of the SW-C begins.

Initiator Software and Architecture

Further Explanations –

Comment –

Example • Service of the Server in Client-Server Communication

• Reaction after receive Information (Notification)

Reference –

68 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.107 Error

Definition See ISO-26262 ([5]), ID 1.36

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.36

4.108 Error Detection Rate

Definition Ratio between detected lost/faulty words/symbols/blocks, divided by the total number of symbols/
words/blocks sent.

Initiator Safety

Further Explanations –

Comment –

Example –

Reference –

4.109 Ethernet Switch Port Groups

Definition Ethernet Switch Port groups are Ethernet switch Ports of an Ethernet switch which are grouped
to so called Port groups. Ethernet Switch Port groups are only relevant for the host
Electronic Control Unit (ECU). Ethernet Switch Port Groups are derived from the model
per VLAN and per PNC. The host port is participating in all port groups. A Ethernet Switch Port
Group could be a mix of internal and external ports.

Initiator Communication

Further Explanations –

Comment –

Example –

Reference –

4.110 Event

Definition State change of a hardware and/or software entity.

Initiator Software and Architecture

Further Explanations See OS Event, RTE Event, Diagnostic Event and Event Message (SOME IP)

Comment –

Example –

Reference –

69 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.111 Event Message (SOME/IP)

Definition Event - a message sent by an Electronic Control Unit (ECU) implementing a Service
Instance to an ECU using this service instance (Publish/Subscribe).

Initiator Communication

Further Explanations Eventgroup - a logical grouping of 1 or more events. An eventgroup is part of a Service.

Comment –

Example –

Reference –

4.112 Executable

Definition Part of an application which consists of either a file containing executable code with a defined
entry point and suitable for the platform instance as the target of deployment (deployment time)
or software code which is ready to be integrated for a specific platform.

Initiator Execution Management

Further Explanations In POSIX systems, an executable is typically running within a single Process. Therefore,
intra-executable communication is different from inter-executable communication and should
therefore be considered during design time of an executable.

Comment –

Example –

Reference –

4.113 Executable Entity Cluster

Definition A set of Executable Entities (EEs) and a reference to a set of Execution Order
Constraints (EOCs) between these EEs. The Executable Entity Cluster is formed for the
purpose of Mapping EEs to Logical Execution Time (LET) intervals and to tasks. Several
EECs may be mapped to the same LET interval.

Initiator Software and Architecture

Further Explanations An Executable Entity Cluster (EEC) groups EEs from any Software Component. EEs with
different triggers/periods can be part of the same EEC, if the triggers/periods are harmonic (i.e.
that all periods are integer multiples of the smallest period). The EEC can reference a Logical
Execution Time (LET) interval specification.
See Figure 4.2 for an example.

Comment The set of EOCs is cycle-free.

Example –

Reference –

70 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

Figure 4.2: Executable Entity Cluster Example

4.114 Execution Order Constraint

Definition Defines the execution order between instances of Executable Entities (EEs) within the same LET
interval.

Initiator Software and Architecture

Further Explanations Example in Figure 4.3 shows an EE 2 that is marked as successor/directSuccessor of an EE 1, if
the execution order of the instances of the respective Executable Entities is 12 (2 runs after 1)
within the LET interval.

Comment –

Example –

Reference [25]

Figure 4.3: Example of an Execution Order Constraint

4.115 Execution Time

Definition The time during which a program is actually executing, or more precisely during which a certain
thread of execution is active.

Initiator Software and Architecture

▽

71 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Further Explanations The execution time of software is the time during which the CPU is executing its instructions. The

time the CPU spends on Task switches or on the execution of other pieces of software is not
considered here.
See also: Response Time, Worst Case Execution Time, Worst Case Response
Time.

Comment –

Example –

Reference –

4.116 Exit Point

Definition A point in a Software Component where an execution entity of the SW-C ends.

Initiator Software and Architecture

Further Explanations –

Comment –

Example Return point.

Reference –

4.117 External Port

Definition External Ports are ports of an automotive Ethernet switch used to communicate over an Ethernet
physical connection with other Electronic Control Units (ECUs) (e.g. 100BASE-TX,
100BASE-T1).

Initiator Communication

Further Explanations –

Comment –

Example –

Reference –

4.118 Fail-operational

Definition Property of a system or Functional Unit.
Describes the ability of a system or Functional Unit to continue normal operation at its
output interfaces despite the presence of hardware or software faults.

Initiator Safety

Further Explanations –

Comment 1. Typically, a fail-operational system or Functional Unit has no Safe State.

2. Safety means are not regarded as a part of the normal functionality respectively operation.

Example Braking system

Reference –

72 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.119 Fail-safe

Definition Property of a system or Functional Unit.
In case of a fault the system or Functional Unit transits to a Safe State.

Initiator Safety

Further Explanations Fail safe systems needs to have a Safe State. Note: not all the systems have a safe state.

Comment –

Example –

Reference See also note of [5], ID 1.137

4.120 Fail-silent

Definition Fail-silent is a property of a system in which no output is produced in the presence of a fault.
In automotive domain, fail-silent systems are usually only used if the next hierarchical system
level provides a safe-state.

Initiator Safety

Further Explanations Fail-silent is a special case of the fail-safe property.

Comment –

Example The fail-silent property can be used to avoid that "babbling idiots" disturb the overall
communication.

Reference –

4.121 Failure Mode

Definition See ISO-26262 ([5]), ID 1.40

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.40

4.122 Failure

Definition See ISO-26262 ([5]), ID 1.39

Initiator Safety

Further Explanations Termination is a reduction in, or loss of, ability of an element or an item to perform a Function
as required.
There is a difference between "to perform a function as required" (stronger definition,
use-oriented) and "to perform a function as specified", so a Failure can result from an incorrect
specification.

▽

73 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Comment –

Example –

Reference See [5], ID 1.39

4.123 Failure Rate

Definition See ISO-26262 ([5]), ID 1.41

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.41

4.124 Fault

Definition See ISO-26262 ([5]), ID 1.42

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.42

4.125 Fault Detection

Definition The action of monitoring errors and setting fault states to specific values is called fault detection.

Initiator Software and Architecture

Further Explanations The different states are called "not detected"/ "present"/ "intermittent or maturing"/...
The names of the fault states are following the ISO/SAE norms; however there is a coordination
step in between the states of the DTCs (Diagnostic Trouble Code see definition in ISO 15765/
ISO14229) and the states of the faults. The SW-C’s Fault Detection is executed decentralized,
e.g. each Software Component (SW-C) sets the state of a fault according to the defined fault
qualification (SW-C Template). Therefore the Fault Detection is implemented in the SW-C (SW-C
could be either Application Software Component or Basic Software Component). There
are exceptions; these will be pointed out individually for each fault. The SW-C’s developer will
define the conditions (=fault qualification), when these conditions are fulfilled the SW-C notifies a
fault to the Diagnostic Memory Management.

Comment –

Example –

Reference [26], [27], [9]

74 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.126 Fault Reaction

Definition In case of a Failure of a Software Component (SW-C) there is a specific action to be carried
out. This action is called "Fault Reaction".

Initiator Software and Architecture

Further Explanations –

Comment –

Example Fault Reactions can be implemented decentralized in the SW-C. There might also be the need of
coordinating the fault reactions since there are reactions excluding each other. This will be done
by a central fault reaction manager.

Reference –

4.127 Fault Reaction Time

Definition See ISO-26262 ([5]), ID 1.44

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.44

4.128 Fault Tolerance

Definition Ability to deliver the specified functionality in the presence of one or more specified faults.

Initiator Safety

Further Explanations –

Comment –

Example –

Reference –

4.129 Fault Tolerant Time Interval

Definition See ISO-26262 ([5]), ID 1.45

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.45

75 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.130 Feature

Definition A Feature is a notable characteristic of a system.

Initiator General

Further Explanations AUTOSAR defines and interacts with many entities where the term Feature can be applied (e.g.
the AUTOSAR standard itself, its implementations, Electronic Control Units (ECUs) built
with AUTOSAR, AUTOSAR Authoring Tools, AUTOSAR Feature Model). For each usage the term
Feature may be used in a refined way - which is then defined for that specific usage (e.g. [TPS_
FeatureModelExchangeFormat]).

Comment –

Example CAN FD support, Automatic windshield wiper, Editing of the FlexRay schedule

Reference [3], [28]

4.131 Firewall

Definition Functional element that inspects and filters Network traffic based on firewall rules.

Initiator Security

Further Explanations –

Comment –

Example –

Reference –

4.132 Flag

Definition A piece of data that can take on one of two values indicating whether a logical condition is true or
false.

Initiator Software and Architecture

Further Explanations –

Comment –

Example Notification flag

Reference –

4.133 FlexRay

Definition Automotive time-triggered and fault-tolerant Network communication protocol that is
standardized in the ISO 17458 ([29]) and provides options for deterministic data that arrives in a
predictable time frame as well as dynamic Event-driven data.

Initiator Communication

Further Explanations FlexRay provides a communication cycle with a pre-defined space for static and dynamic data.

Comment –
▽

76 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Example –

Reference For FlexRay specifications please see ISO 17458 ([29]). For more details about FlexRay in
Classic AUTOSAR please see [30], [31], [32]

4.134 Foundation

Definition Foundation contains the generic artifacts that are common for AUTOSAR Adaptive Platform
and AUTOSAR Classic Platform to ensure compatibility between:
• Classic- and AUTOSAR Adaptive Platform

• Non-AUTOSAR platforms to AUTOSAR platforms

In AUTOSAR the particular realization of those generic artifacts is described in AUTOSAR
Adaptive Platform and Classic Platform and may differ.

Initiator General

Further Explanations The role of the Foundation in AUTOSAR is two fold:
1) To group those Artifacts which are agnostic of, or outside of, the immediate scope of the
Classic and AUTOSAR Adaptive Platform.
Example: Protocol specification (PRS), AUTOSAR Abstract Platform or Non-AUTOSAR
platform artifacts.
2) To provide a repository for those artifacts, which have content applicable to both Classic and
AUTOSAR Adaptive Platform.
Example: Requirement Specification (RS), Model (MMOD or MOD), Template Specification
(TPS), Adaptive Software Specification (ASWS) artifacts.
This depth of this commonality between Classic and AUTOSAR Adaptive Platform is
typically detailed further in the respective artifacts.

Comment –

Example

Reference –

4.135 Frame

Definition Data unit according to the data link protocol specifying the arrangement and meaning of bits or
bit fields in the sequence of transfer across the transfer medium.

Initiator Communication

Further Explanations –

Comment –

Example A CAN frame consists of up to 8 bytes of payload Data and additional protocol specific bits / bit
fields (e.g. CAN-Identifier).

Reference [33]

77 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.136 Frame PDU

Definition A PDU that fits into 1 frame instance e.g. it does not need to be fragmented across more than 1
frame for transmission over a Network.

Initiator Communication

Further Explanations –

Comment –

Example –

Reference –

4.137 Freedom from Interference

Definition See ISO-26262 ([5]), ID 1.49

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.49

4.138 Freshness

Definition Data Freshness implies that the data is recent and it ensures that replayed messages in a replay
attack are detected.

Initiator Security

Further Explanations –

Comment –

Example –

Reference –

4.139 Function

Definition 1. A Task, action or activity that must be accomplished to achieve a desired outcome.

2. A part of programming code that is invoked by other parts of the program to fulfill a desired
purpose.

3. In mathematics, a function is an association between two sets of values in which each element
of one set has one assigned element in the other set so that any element selected becomes
the independent variable and its associated element is the dependent variable.

Initiator Software and Architecture

Further Explanations –

▽

78 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Comment Due to the different meanings in texts using the term application the appropriate meaning should

be explained in detail or referenced.

Example 1. C-Code Function

2. Y=f(x)

Reference [3]

4.140 Functional Cluster

Definition A Functional Cluster is a high level logical grouping of functionality.

Initiator Software and Architecture

Further Explanations Note 1: Functional Clusters implement one or more Features or parts of features.
Note 2: Functional Clusters are represented in our logical architecture.

Comment –

Example –

Reference –

4.141 Functional Network

Definition A logical structure of interconnections between defined functional parts of Features.

Initiator Software and Architecture

Further Explanations –

Comment –

Example –

Reference –

4.142 Functional Safety Concept

Definition See ISO-26262 ([5]), ID 1.52

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.52

79 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.143 Functional Safety Requirement

Definition See ISO-26262 ([5]), ID 1.53

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.53

4.144 Functional Unit

Definition An entity of software or hardware, or both, capable of accomplishing a specified purpose.

Initiator Software and Architecture

Further Explanations –

Comment –

Example ECU, Software Component, ...

Reference [18]

4.145 Functionality

Definition Functionality comprises User-visible and User-non-visible functional aspects of a System.

Initiator Software and Architecture

Further Explanations –

Comment
Example Functionality of a communication system is a user-non-visible aspect.

Reference –

4.146 Gateway

Definition A gateway is Functionality within a Classic Platform ECU that performs a Frame or
signal Mapping Function between two communication systems. Communication system in this
context means e.g. a CAN system or one channel of a FlexRay system.

Initiator Communication

Further Explanations –

Comment –

Example –

Reference Gateway ECU

80 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.147 Gateway ECU

Definition A Gateway ECU is an Electronic Control Unit that is connected to two or more
communication channels, and performs Gateway Functionality.

Initiator Communication

Further Explanations –

Comment –

Example –

Reference Gateway

4.148 Graceful Degradation

Definition Graceful Degradation: The system continues to operate in the presence of errors, accepting a
partial degradation of Functionality or Performance during Recovery or repair. Found in
the literature also as "fail soft".

Initiator Safety

Further Explanations –

Comment Safety means are not regarded as a part of the normal Functionality respectively operation.
Also known as: Fail-reduced, Fail-soft

Example "Limp home" Functionality for Electronic Control Unit (ECU) (reduce torque to
assure an arrival at home or service station)

Reference See also: [5]: 3.181 - warning and degradation strategy.

4.149 Hardware Abstraction Layer

Definition A hardware abstraction layer is a software layer that serves as an abstraction layer between the
physical hardware and its software. It allows to access the hardware resources through
programming interfaces.

Initiator –

Further Explanations In AUTOSAR Classic Platform the Hardware Abstraction Layer is realized by the
Microcontroller Abstraction Layer and ECU Abstraction Layer.

Comment –

Example –

Reference Layered Software Architecture

4.150 Hardware Connection

Definition HW Connections are used to describe the connection of Hardware Elements among each
other. It defines/characterizes the interrelationship among HW Elements (for abstract modeling).
The Hardware Ports of HW Elements serve as connection points for this purpose.

▽

81 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Initiator General

Further Explanations In AUTOSAR are 2 kinds of HW Connections defined:
• Assembly HW Connection

• Delegation HW Connection

Comment –

Example –

Reference [34]

4.151 Hardware Element

Definition The HW Element is the main describing element of an Hardware Connection. It provides
Hardware Ports for being interconnected among each others. A generic HW Element
specifies definitions valid for all specific HW Elements.

Initiator General

Further Explanations A HW Element is the piece or a part of the piece to be described with the ECU Resource
Template. It uses other elements as primitives: This means HW elements can be nested (through
HW Containers, a hierarchical structure of HW Elements). At the lowest level a HW Element only
uses primitives

Comment –

Example –

Reference [34]

4.152 Hardware Interrupt

Definition Interrupt triggered by HW Event.

Initiator Software and Architecture

Further Explanations 2 sorts of HW events
• Processor-intern: events as for example division by zero, arithmetical overflow,

non-implemented instruction

• Processor-extern: events as for example response of peripheral device (e.g. PWM), Memory
Error, Timer

Comment –

Example –

Reference Translation/Adaptation from [35]

4.153 Hardware Port

Definition The HW port exposes functionality to the exterior of the Hardware Element. HW elements can
be connected via a Hardware Connection. It defines a connection Endpoint for the HW
Element.

Initiator Communication
▽

82 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Further Explanations HW elements provide HW ports for being interconnected among each others. Each HW port has

a name which is unique within the HW element it is located in.

Comment –

Example –

Reference [34]

4.154 Health Indicator

Definition Health Indicators (HIs) are an evaluation metric of current system Performance with regard to
Safety requirement

Initiator Safety

Further Explanations Health Indicator format: <HI_ID, Performance, Reliability, SubsystemState>

Comment –

Example –

Reference [36]

4.155 Hook

Definition An intervention point within ECU software for the exchange of data.

Initiator Runtime Environment

Further Explanations –

Comment –

Example Hooks used to read Electronic Control Unit (ECU) variables and/ or overwrite ECU
variables with values generated by Rapid Prototyping algorithm.

Reference –

4.156 Host ECU

Definition A Host ECU is a Electronic Control Unit (ECU) that controls one or more automotive
Ethernet switches (e.g. switch on / off the Ethernet switch and its ports, read and write the
Ethernet switch Configuration). For this purpose the Host ECU is connected to the Ethernet
switch over a common control interface (e.g. SPI, MDIO). The Host ECU also take part in the
Network communication. For this purpose the Host ECU is connected by a data interface (e.g.
MII) to a specific Ethernet switch Port (host port). It transmits and receives Ethernet frames.

Initiator Communication

Further Explanations –

Comment –

Example –

Reference –

83 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.157 Host Port

Definition A host port is a port of an automotive Ethernet switch where the data interface (e.g. MII) of the
Host ECU is connected to. The host port could either be an Internal Port or an External
Port. The host port has a special role from the perspective of the software (see link
accumulation and port groups).

Initiator Communication

Further Explanations –

Comment –

Example –

Reference –

4.158 Hypervisor

Definition Low-level software that provides and manages several virtual machines in one physical machine.
Maybe an independent software or contained as an OS functionality.

Initiator Execution Management

Further Explanations Shared physical resources are either exclusively assigned to single virtual machine, or accessed
through virtual device which is managed by Hypervisor. Various hardware and software
mechanisms can support the efficient implementation of virtual devices.

Comment –

Example –

Reference –

4.159 Identity and Access Management (IAM)

Definition IAM is about managing access rights of Adaptive Applications to interfaces of the
Adaptive Platform Foundation and Services.

Initiator Security

Further Explanations –

Comment –

Example –

Reference –

4.160 Identity Information

Definition The access control is decided / enforced upon the identity information which represents
properties of the Adaptive Applications.

Initiator Security

Further Explanations –

▽

84 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Comment –

Example An example for identity information are Capabilities.

Reference –

4.161 Implementation Conformance Class 1 (ICC1)

Definition An ICC1 cluster offers a Software Component Interface and/or Network Interface.
The Software Component Interface and Network Interface of an ICC1 cluster provide the
functional behavior as specified in the AUTOSAR specifications on ICC3 level.

Initiator Software and Architecture

Further Explanations In an ICC1 cluster the basic software is regarded as a black box. It allows legacy platforms to
migrate to AUTOSAR:
- to be integrated into an AUTOSAR Network - to support Software Components (SW-C).
The features of an ICC1 cluster can be a subset of the ICC3 features (e.g. FlexRay not used).
This has to be indicated in the Implementation Conformance Statement (ICS). The
Functionality represented in AUTOSAR by the RTE must be a part of any ICC1 cluster that
provides an SW-CI.
Typically an ICC1 cluster
- is not structured into Basic Software (BSW) modules (ICC3) or BSW module clusters (ICC2) -
has a proprietary internal structure and might consist of legacy/proprietary or highly optimized
code.
An ICC1 cluster shall provide an interface to the boot loader. ICC1 shall support SWC compatible
configuration for SW-CI and AUTOSAR Network compatible Configuration for NWI.

Comment Up to Release 4.0 the boot loader architecture is not standardized in AUTOSAR. Therefore the
term ICC1 is not applicable to the boot loader architecture itself.

Example –

Reference –

4.162 Implementation Conformance Class 2 (ICC2)

Definition ICC2 clusters logically related ICC3 Basic Software (BSW) modules (2...N modules).
The number of Cluster Features in an ICC2 cluster is a subset of the union of the number of
features of the clustered ICC3 modules.

Initiator Software and Architecture

Further Explanations Each ICC2 cluster presents a subset of the clustered ICC3 module’s interfaces.
ICC2 cluster provides the functional behavior as specified in the AUTOSAR specifications on
ICC3 level.
ICC2 cluster have a proprietary internal structure and might consist of proprietary or highly
optimized code.
ICC2 shall support AUTOSAR ECU Configuration description as an input for the Cluster
Configuration
It shall be possible to combine ICC2 Clusters and ICC3 Modules in a Basic Software (BSW)
Architecture.
Application interface Conformance (above RTE, Software Component Interface) and Bus
Conformance (Network Interface) must be testable for a BSW which contain one or more
ICC2 clusters.

Comment –

Example See Figure 4.4 for an example.

Reference –

85 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

Module A

Module C

Module B

Module D

a b

c d

f h

e

g

External Interfaces relevant for ICC2 clustering, subset of ICC3 interfaces to

other BSW modules or clusters

Internal Interfaces not relevant for ICC2 clustering (can be proprietary).

ICC2 Cluster Y  (ICC3 Module A U ICC3 Module B U

 ICC3 Module C U ICC3 Module D)

Figure 4.4: ICC2 Cluster example

4.163 Implementation Conformance Class 3 (ICC3)

Definition For ICC3 the AUTOSAR BSW consists of BSW modules as defined in the Basic Software
Module List, including the RTE.
ICC3 is the highest level of granularity.

Initiator Software and Architecture

Further Explanations All Basic Software Modules as defined in the CP SWS BSWGeneral including the RTE,
must comply with the defined interfaces and Functionality as specified in their respective
software specification document (SWS).

Comment –

Example –

Reference –

86 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.164 Independence

Definition See ISO-26262 ([5]), ID 1.61

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.61

4.165 Independent Failures

Definition See ISO-26262 ([5]), ID 1.62

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.62

4.166 Indication

Definition Service primitive defined in the ISO/OSI Reference Model ([16]). With the service primitive
’indication’ a service provider informs a service user about the occurrence of either an internal
Event or a service request issued by another service user.

Initiator Software and Architecture

Further Explanations An indication is e.g. a specific Notification generated by the underlying layer to inform about
a Message Reception Error.

Comment –

Example –

Reference –

4.167 Integration

Definition The progressive assembling of system components into the whole system.

Initiator Software and Architecture

Further Explanations –

Comment –

Example –

Reference [37]

87 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.168 Integration Code

Definition Code that the Integrator needs to add to an AUTOSAR System, to adapt non-standardized
functionalities. Examples are Callouts of the ECU State Manager and Callbacks of various
other Basic Software Modules.

Initiator Software and Architecture

Further Explanations –

Comment –

Example –

Reference –

4.169 Integrity

Definition The property that data or information have not been altered or destroyed in an unauthorized
manner.

Initiator Security

Further Explanations –

Comment –

Example –

Reference NIST SP 800-66 Rev. 1 under Integrity from 45 C.F.R., Sec. 164.304

4.170 Integrity Check Value

Definition The result of a cryptographic Function used to ensure that unauthorized modifications of a
message are detected.

Initiator Global Time Synchronization

Further Explanations –

Comment See [38]

Example The value might be the result of the keyed hash Function HMAC-SHA256.

Reference [39]

4.171 Inter-Integrated Circuit I2C

Definition I2C (Inter-Integrated Circuit) is a 2-wire serial data bus. It was developed by Philips
Semiconductors (now NXP Semiconductors). I2C is a simply structured bus system and is widely
used in automotive industry.

Initiator Semiconductors

Further Explanations –

Comment –

Example –

▽

88 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Reference See [40]

4.172 Intermediate PNC Coordinator

Definition An intermediate PNC (Partial Network Cluster) coordinator is located beneath a Top-level
PNC Coordinator or a further intermediate PNC coordinator and above a PNC Leaf Node or
a further intermediate PNC coordinator within a PNC network. The intermediate PNC coordinator
forwards received PNC requests and own PNC requests to its Top-level PNC Coordinator.
An intermediate PNC coordinator processes a received PN shutdown message immediately,
forwards it to its subordinated ECUs (either a further intermediate PNC coordinator or a PNC leaf
nodes), releases the indicated PNCs and resets the PN reset timer(s) for those PNCs.

Initiator Partial Networking

Further Explanations –

Comment An intermediate PNC coordinator always immediately processes received PN shutdown
messages

Example –

Reference –

4.173 Internal Port

Definition Internal Ports are ports of an automotive Ethernet switch used for local communication (Host
ECU or Cascaded Switch)

Initiator Communication

Further Explanations –

Comment –

Example –

Reference –

4.174 Interrupt Frame

Definition An interrupt frame is the code which handles the entering/leaving of (C written) Interrupt
Service Routines. This code is Microcontroller specific and often written in assembly
language. Interrupt frames are typically generated by the OS generation tool.

Initiator Software and Architecture

Further Explanations –

Comment –

Example –

Reference

89 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.175 Interrupt Handler

Definition In the case of a Category 2 interrupt, the ISR is synonymous with Interrupt Handler. In the case
of Category 1 interrupt the Interrupt Handler is the Function called by the Hardware
Interrupt vector. In both cases the Interrupt Handler is the user code that is normally a part of
the Basic Software Module.
So the Interrupt Handler is a user level piece of code.

Initiator Software and Architecture

Further Explanations –

Comment –

Example –

Reference –

4.176 Interrupt Service Routine

Definition A software routine called in case of an Interrupt.

Initiator Software and Architecture

Further Explanations ISRs have normally higher priority than normal processes and can only be suspended by another
ISR which presents a higher priority than the one running.

Comment –

Example –

Reference [35]

4.177 Interrupt Vector Table

Definition An interrupt vector table is a table of interrupt vectors that associates the Interrupt Service
Routine with the corresponding interrupt request (typically by an array of jumps or similar
mechanisms).

Initiator Software and Architecture

Further Explanations –

Comment –

Example –

Reference –

4.178 Interrupt

Definition Event that enforces the processor to change its state. This interruption causes the normal
sequence of instructions to be stopped. Once an interrupt occurred, the running software entity is
suspended and an Interrupt Service Routine (the one dedicated to this interrupt) is
called.

Initiator Software and Architecture

▽

90 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Further Explanations Two sorts of interrupts exist: Hardware Interrupts and Software Interrupts.

Comment –

Example –

Reference Translation/Adaptation from [35]

4.179 Intrusion Detection System

Definition A system that is responsible for detecting, recording and reporting Security events.

Initiator Security

Further Explanations An AUTOSAR compliant IDS consist of Security sensors, Intrusion Detection System Manager
(IdsM) and Intrusion Detection System Reporter (Idsr).

Comment –

Example –

Reference –

4.180 Invalid Flag

Definition For a signal in a Protocol Data Unit (PDU) an optional invalid flag can be added to the PDU
payload layout. This Flag indicates the validity of other signals in the payload. In case the invalid
flag of a signal is set to true in a PDU instance, the respective signal in the payload of the PDU
instance does not contain a valid signal value.

Initiator Communication

Further Explanations This mechanism may be used in Gateways to indicate that parts of a PDU do not contain valid
data.

Comment –

Example –

Reference –

4.181 Invalid Value of Signal

Definition For a signal in a Protocol Data Unit (PDU) an optional invalid value can be defined.

Initiator Communication

Further Explanations The invalid value is element of the signal value range that can be represented and transported by
the signal. The invalid value is the value that is used in all situations where the receiver should be
notified that the value in a signal is not valid.

Comment –

Example In case a PDU for a destination network of a Gateway is composed from two PDUs of two
different source Networks, the Failure to receive one PDU can be indicated as invalid values
in the respective signals of the transmitted PDU in the destination Network.

Reference –

91 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.182 I-PDU

Definition Interaction Layer Protocol Data Unit
Collection of messages for transfer between nodes in a Network. At the sending node the
Interaction Layer (IL) is responsible for packing messages into an I-PDU and then sending it to
the Data Link Layer (DLL) for transmission. At the receiving node the DLL passes each I-PDU to
the IL which then unpacks the messages sending their contents to the application.

Initiator Communication

Further Explanations –

Comment –

Example ISO 17356-4 (OSEK/VDX Communication) specifies an Interaction Layer and works on I-PDUs

Reference [41]

4.183 Life Cycle

Definition The course of development/evolutionary stages of a model element during its life time.

Initiator Methodology and Templates

Further Explanations A life cycle consists of a set of life cycle states. A life cycle state can be attached to an element in
parallel to its version information.
A typical life cycle is {valid, obsolete} and means that a valid element is up to date when first
introduced but is substituted later by a new one and therefore gets the life cycle state "obsolete".

Comment –

Example –

Reference –

4.184 LIN Bus Idle

Definition Bus Idle is defined as no transition between recessive and dominant bit values on the LIN bus.

Initiator Communication

Further Explanations LIN slave nodes observe the LIN line for bus idle state. After a specific duration of bus idle (bus
idle timeout), slave nodes enter bus sleep Mode.

Comment Synonym "LIN Bus Inactivity"

Example –

Reference [42]

4.185 Link State Accumulation

Definition The link state of a certain switch Port group is accumulated by embracing the link state of each
port that is part of the port group. The rule how to embracing the link state is specified in the
Ethernet Interface.

Initiator Communication
▽

92 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Further Explanations –

Comment –

Example –

Reference –

4.186 Link Time Configuration

Definition The configuration of the SW module is done until link time.

Initiator Methodology and Templates

Further Explanations The object code of the SW modules receives parts of its configuration from another object code
file or it is defined by linker options.

Comment –

Example Initial value of a signal.

Reference –

4.187 Logical Execution Time (LET)

Definition Is a fixed time interval. Input data is read at the beginning of this interval and output data is
written at the end of the interval. Processing of the data is limited within the time interval.

Initiator Software and Architecture

Further Explanations The logical execution time (LET) is a real-time programming abstraction. Conceptually, a LET
program execution has three steps: read the program input (in zero time), then execute, and
finally write the output (in zero time) exactly when the time has elapsed since reading input.
Hence, communication logically happens instantaneously at fixed points in time and the program
executes within a time window (Execution Time) with a Deadline represented by the LET.
When the execution of a program finishes before the Deadline, writing the output is (logically)
delayed until the Deadline. This makes the Deadline a logical upper and lower bound for the
execution. Thus, using a faster processor does not result in lower Response Time, but in
decreased core utilization. Therefore, the behavior of the application is the same on any platform
able to execute the program within the LET interval.

Comment Practical implementation of the LET may use buffers to avoid write bursts at the end of a LET
interval. Instead, only buffers are switched.

Example See example in Figure 4.5.

Reference Henzinger, T.A. et al: Giotto: A Time-Triggered Language for Embedded Programming. In:
Proceedings of the IEEE, vol.91, 2003. Pp. 94-99

93 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

Figure 4.5: Example of Logical Execution Time

4.188 Log and Trace

Definition Log and Trace provides interfaces for applications to forward logging and Tracing information
onto the communication bus, the console, or to the file system.

Initiator Communication

Further Explanations –

Comment –

Example –

Reference –

4.189 Logging

Definition Logging is the activity of collecting information about arbitrary, not necessarily correlated events
within a System during runtime.

Initiator Software and Architecture

Further Explanations The purpose of logging is to get information for finding and resolving defects of one or multiple
programs running on a System. Therefore, it should also be usable in the field within a released
product and the created logs are intended to be human readable.

Comment Based on the currently active log level thresholds, logging may have a considerable timing and/or
load impact on the System, which must be considered during further analysis. In contrast to
measuring, logging does not focus on raw data values but on aggregated information within a
System that is represented by events. In contrast to tracing, logging does not focus on recording
internal program flow or state variables but focuses on collecting events that are explicitly added
by a software developer on source code level. In contrast to diagnostics, logging does not make a
statement on a system’s health state but focuses on debug information that allows for detection
and resolution of defects.

Example Operation reporting, Error logging, printf output

Reference –

94 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.190 Machine

Definition A Machine is a single instantiation of an AUTOSAR Adaptive Platform stack, that may run on
physical ECU-HW (without Hypervisor) or on virtual ECU-HW (with hypervisor).

Initiator Methodology and Templates

Further Explanations –

Comment –

Example –

Reference –

4.191 Manifest

Definition A Manifest represents a piece of AUTOSAR model description that is created to support the
Configuration of an AUTOSAR Adaptive Platform product and which is uploaded to the
AUTOSAR Adaptive Platform product, potentially in combination with other artifacts (like binary
files) that contain Executable code to which the Manifest applies.

Initiator Methodology and Templates

Further Explanations Manifests are often used to denote a piece of Configuration content that ships along a given
piece of software and is used to deploy the software in the field.
Three examples of manifest are:
- Execution Manifest
- Service Instance Manifest
- Machine Manifest

Comment The Manifest may contain platform implementation dependent data, as well as generic data
derived from Application System Description.

Example –

Reference –

4.192 Mappable Element

Definition A mappable element is a part of a MCAL module which can be assigned to a partition via a
reference parameter in the Base Software Module Description (BSWMD) of the module.
Mappable elements allow the formal description on how MCAL modules are available
respectively- distributed on partitions (and thus cores).

Initiator General

Further Explanations The type- and scope of the Functionality represented by a mappable element strongly
depends on the MCAL module. A mappable element may closely represent the hardware (e.g. a
channel) but can also represent subsets of HW units as well as groups of HW units.

Comment Single partition MCAL driver define the complete driver as mappable element. Thus indicating
that advanced multi-partition use-cases are not supported.

Example Adc channel, CAN controller

Reference –

95 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.193 Mapping

Definition Mapping designates the distribution of elements in the logical view to elements in the physical
view.

Initiator Software and Architecture

Further Explanations In general several entities may be allocated to one container but an entity may be allocated to
only one container.

Comment –

Example a) Mapping of AUTOSAR Signals onto Frames (for inter-ECU communication).
b) Mapping of SWC onto ECUs (Distribution of the SW-Components to the ECUs).

Reference –

4.194 Master Switch

Definition A Master Switch is an Ethernet switch where the host Port is located.

Initiator Communication

Further Explanations –

Comment –

Example –

Reference –

4.195 MCAL Signal

Definition The MCAL signal is the software representation of the Conditioned Signal. It is provided by
the Microcontroller Abstraction Layer (MCAL) and is further processed by the ECU
abstraction.

Initiator General

Further Explanations The processing unit is accessing the Conditioned Signal through some peripheral device
that typically digitizes the Conditioned Signal into a software representation. The
transformation from the Conditioned Signal to the MCAL Signal has to take the digitalization
Error into account in order to provide information about the quality loss between the
Technical Signal and the MCAL Signal.

Comment –

Example –

Reference –

96 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.196 Meta-data

Definition Meta-data is data about data

Initiator Methodology and Templates

Further Explanations Meta-data includes pertinent information about data, including information about the authorship,
versioning, access-rights, timestamps etc..

Comment –

Example –

Reference –

4.197 MetaDataItem

Definition Defined item of Meta-data for a Protocol Data Unit e.g. a diagnostic address, a Message
address, a CAN ID, or a J1939 node address.

Initiator Communication

Further Explanations An ordered list of Meta Data Items defines the layout of PDU Meta Data. Each MetaDataItem
has a fixed type and length, and enables the accessing modules to parse the PDU Meta Data,
and to access items of the types that are relevant for the module.

Comment Meta-data was revised with AUTOSAR 4.3.
Example A PDU exchanged between CanIf and PduR can carry the CAN ID as a MetaDataItem to enable

range routing of CAN messages.

Reference –

4.198 Microcontroller

Definition Hardware Element that integrates computing and communication resources as well as
peripheral circuits in a single chip, including memories.

Initiator General

Further Explanations Microcontrollers are normally designed for small embedded systems and allow hardware designs
with minimal amount of external parts. Microcontroller designs are normally optimized for silicon
area and often support hard real-time and high-Integrity demands.

Comment Classic AUTOSAR is intended for Microcontroller based embedded systems.

Example –

Reference –

4.199 Microcontroller Abstraction Layer

Definition Software layer containing drivers to enable the access of onchip peripheral devices of a
Microcontroller and offchip memory mapped peripheral devices by a defined Application
Programming Interface.
Task: make higher software layers independent of the Microcontroller.

▽

97 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Initiator Software and Architecture

Further Explanations The Microcontroller Abstraction Layer is the lowest software layer of the Basic Software. The
Microcontroller Abstraction Layer consists of the following parts:
• I/O Drivers

• Communication Drivers

• Memory Drivers

• Crypto Drivers

• Microcontroller Drivers

Properties:

• Implementation: µC dependent

• Upper Interface (API): standardizable and µC independent

Comment –

Example Examples of drivers located in the Microcontroller Abstraction Layer are:
• onchip eeprom driver

• onchip adc driver

• offchip flash driver

Reference [23]

4.200 Middleware

Definition A software layer that separates application SW from more technical layers like software stack,
operating system or drivers. Middleware allows the communication of heterogenous applications
with each other by providing an abstraction.

Initiator Safety

Further Explanations Middleware describes SW in a layered structure. It serves as a connection between at least two
other software parts. In embedded software environments they usually consist of an upper layer,
which is closer to application or user and a lower layer, which is closer to technical features or
components. The upper layer passes commands or requests to the middleware whereas the
middleware processes commands or requests and passes them to the lower layer. A Middleware
can be seen as a proxy and allows a higher grade of abstraction, supports portability and
maintainability of software.

Comment The middleware approach is also used in non-embedded software systems.

Example The complete AUTOSAR stack is middleware. It serves an application as upper layer and uses
the MCAL (Microcontroller Abstraction Layer) software as lower layer (physical layer
representation).

Reference Refer to the description of the CP architecture in [23].

98 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.201 Minimum Send Interval

Definition The Minimum Send Interval specifies the minimum amount of time that shall pass between two
consecutive transmissions of an Event, field, trigger or method call, i.e., the Minimum Send
Interval limits the maximum Tx frequency of Service Interface elements in the Network.
The Minimum Send Interval can be configured individually for each event, field and method of a
service interface, through the associated value of
ServiceInterfaceDeploymentElement.minimumSendInterval, referenced by the
ServiceEventDeployment, ServiceFieldDeployment and ServiceMethodDeployment.

Initiator Communication

Further Explanations For each field, event and method, ara::com shall monitor the frequency of transmission requests
by the application. If a transmission is requested faster than allowed and specified by the
configured ServiceInterfaceDeploymentElement.minimumSendInterval, ara::com shall discard
the request and return with an error code. Minimum Send Interval monitoring shall be disabled for
a given event, field or method, if the configured value
ServiceInterfaceDeploymentElement.minimumSendInterval = 0. This shall also be the default
value, to avoid unintended Tx limitation, unless the user explicitly configured a suitable value for
its application.

Comment –

Example If a field has a configured Minimum Send Interval of 0.010 (10 ms), and the application Updates()
the field every 50 ms, ara::com will accept the update and hand over the updated field to the
lower transmission layers and will never discard a transmission request. However, if the
application tries to update every 5 ms, ara::com will discard every second update and return with
an error, because the configured Minimum Send Interval is higher than the time between request.

Reference ara::com::ComErrc::kminimumSendIntervalViolationError ([SWS_CM_10432] of [43])
ServiceInterfaceDeploymentElement.minimumSendInterval in TPS Manifest ([44])

4.202 Mistake

Definition Human Error

Initiator Software and Architecture

Further Explanations –

Comment –

Example –

Reference [45]

4.203 Mode

Definition A Mode is a certain set of states of the various state machines that are running in the vehicle that
are relevant to a particular entity, e.g. a SWC, a BSW module, an application or a whole vehicle.
In its lifetime, an entity changes between a set of mutually exclusive Modes. These changes are
triggered by environmental data, e.g. signal reception, operation invocation.

Initiator Runtime Environment

Further Explanations –

Comment –

Example –

Reference –

99 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.204 Multimedia Stream

Definition A consistent sequence of digital data versus time which is suited as input for devices which
transfer these data into a continuous visible or audible impression to humans. When transferred
over a physical link, multimedia stream data typically are produced at the same rate (by the data
source), as they are consumed (by the data sinks).

Initiator General

Further Explanations A multimedia stream usually follows a certain standard (e.g. MPEG-x). When transferred over a
physical link, a multimedia stream needs a certain minimum bandwidth (in terms of bits/second)
in order to allow continuous impressions. A multimedia stream in a car typically exists for several
seconds (a warning signal, a navigation hint) up to several hours (a video film, a phone call,
playing a radio program). Resources (e.g. bus system channels) needed by the stream have to be
allocated continuously over this lifetime (this is a difference to e.g. file transfer, which may be split
into several chunks of data). The source of a multimedia stream typically is a specialized device
and/or software program (a tuner, a microphone, a text-to-speech engine, etc.). The same holds
for the sinks (an audio amplifier or mixer, a voice recognition software, an MPEG decoder, etc.).

Comment The term "visible or audible impression to humans" should not be taken too literally, because
streams can also be used to transfer machine readable data (e.g. modem, encrypted signals).
But it is this condition, which defines the standards and technology used in multimedia streams.

Example Audio stream as output of or input to a telephone (mono, low bandwidth) Audio stream as output
of a radio tuner (stereo, high bandwidth) Video stream as output of a television tuner An example
for the physical implementation on a multimedia bus is the Firewire isochronous stream. see
reference

Reference [46]

4.205 Multiplexed PDU

Definition A multiplexed PDU is a PDU with a configurable number of different payload layouts.

Initiator Communication

Further Explanations Each instance of a multiplexed PDU has a distinct layout. The set of possible layouts is statically
defined. A selector signal defines which layout is used in a PDU instance. The selector signal
must reside at the same position in all layouts. Each layout is identified by a unique selector
value. The length of each instance of a multiplexed PDU is fixed.

Comment –

Example –

Reference –

4.206 Network

Definition Communication infrastructure between AUTOSAR ECUs/Machines.

Initiator Methodology and Templates

Further Explanations –

Comment –

Example –

Reference –

100 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.207 Network Interface

Definition A Network Interface is the sum of all interfaces offered by the Basic Software towards its
connected Network.

Initiator Communication

Further Explanations The interface that the Basic Software shares via the communication lines with other systems that
behave like AUTOSAR ECUs in order to
- allow distributed Software Components) to exchange inter-ECU signals and to
- operate the communication lines (the Network)
is called Network Interface.
A Network Interface (NWI) denotes the interface between the Basic Software and the
physical network (OSI Layer 0) to which the ECU executing the Basic Software is connected to
(e.g. CAN, LIN, FlexRay). The NWI therefore transports network data packets between the
Basic Software and the physical network.
The interfaces included within the term NWI are:
- Logical interfaces, including
• Network Management

• Data Management

• Data transmission/reception

The interfaces excluded from the term NWI are:

- The physical network interface (CAN, FlexRay etc).

Note that, attention must be given to the physical form of the network, since it is not formally
specified by AUTOSAR. The NWI provided by a given ECU supports the transfer of data to and
from the ECU, and management of the Network. For the purposes of this definition, the Basic
Software can be designed according to ICC1, ICC2 or ICC3.

Comment The term has been introduced as a short-hand to aid in discussion of the conformance of the
content of ICC1 / 2 and to define the backward compatibility between releases and revisions.
However, since from the Network perspective, the clustering of the Basic Software is
invisible, the Network Interface is applicable to all potential Basic Software conformance
classes (ICC1, ICC2, ICC3) in the same way.

Example –

Reference Software Component Interface

4.208 NM Coordination Cluster

Definition A discrete set of NM Channels on which shutdown is coordinated.

Initiator Communication

Further Explanations The NM Coordinator will keep all presently awake NM Channels of an NM Coordination Cluster
awake until it is possible to Coordinate Network sleep on all the awake channels.

Comment –

Example –

Reference [47]

101 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.209 NM Coordinator

Definition A Functionality of the Generic NM Interface which allows coordination of Network sleep for
multiple NM Channels.

Initiator Communication

Further Explanations Depending on Configuration, different level of synchronous Network sleep can be achieved.
The NM Coordinator is using a generic coordination algorithm which, by means of individually
configured Timeout and Synchronization indications can coordinate a synchronized
shutdown of multiple NM Channels.

Comment –

Example –

Reference [47]

4.210 Non-repudiation

Definition Concept that is used in information Security that assures that the sender of information is
provided with proof of delivery and the recipient is provided with proof of the sender’s identity, so
neither can later deny having processed the information.

Initiator Security

Further Explanations –

Comment –

Example –

Reference NIST SP 800-18 Rev. 1 under Non-repudiation from CNSSI 4009

4.211 Notification

Definition Informing a software entity about a state change of a hardware and/or software entity which has
occurred.

Initiator Software and Architecture

Further Explanations The informing about a state change can be done by an activation of a software part or by setting
a Flag.

Comment –

Example –

Reference –

102 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.212 Onboard Security Event

Definition Analogous to ISO/IEC 27000:2018 ([48]) an onboard security event (SEv) is the identified
occurrence of an onboard system, Service or Network state indicating a possible breach of
information Security policy or Failure of controls, or a previously unknown situation that can
be security relevant.

Initiator Security

Further Explanations –

Comment –

Example The failed Verification of a single secured PDU is typically an onboard security event.

Reference

4.213 OS Application

Definition A block of software including tasks, interrupts, hooks and user services that form a cohesive
Functional Unit.

Initiator Software and Architecture

x Further
Explanations

Trusted:
An OS-Application that may be executed in privileged Mode and may have unrestricted access to
the API and hardware resources. Only trusted applications can provide trusted functions.
Non-trusted:
An OS-Application that is executed in non-privileged mode has restricted access to the API and
hardware resources.

Comment The trusted / non-trusted attribute of an OS-Application is not related to Automotive Safety
Integrity Levels (ASIL)/non-ASIL.

Example –

Reference [20]

4.214 OS Event

Definition The event mechanism
• is a means of Synchronization

• is only provided for extended tasks

• initiates state transitions of tasks to and from the waiting state.

Initiator Software and Architecture

Further Explanations –

Comment –

Example –

Reference [2] (OSEK/VDX Operating System) [2] (OSEK/VDX Operating System)

103 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.215 Partitioning

Definition See ISO-26262 ([5]), ID 1.85

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.85

4.216 Protocol Control Information

Definition Information which is needed to pass a Service Data Unit from one instance of a specific
protocol layer to another instance. E.g. it contains source and target information.

Initiator Communication

Further Explanations The PCI is added by a protocol layer on the transmission side and is removed again on the
receiving side.

Comment –

Example –

Reference –

4.217 Protocol Data Unit (PDU)

Definition The Protocol Data Unit (PDU) contains Service Data Unit and Protocol Control
Information.

Initiator Communication

Further Explanations On the transmission side the PDU is passed from the upper layer to the lower layer, which
interprets this PDU as its SDU (as shown in Figure 4.6).

Comment –

Example [41] (OSEK/VDX Communication)

Reference [41] (OSEK/VDX Communication)

104 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

Layer N+1

Layer N

Layer N-1

data structure PDU

data structure SDUPCI

data structurePCI PDU

data structure SDUPCI

LayerN_Tx(*PDU);

void LayerN_Tx(*SDU);

LayerN+1_Tx(*PDU);

TP

CAN

data structure SDUPCI

data structurePCI PDU

data structurePCI

Layer N+1

Layer N

Layer N-1

data structure PDUdata structure PDU

data structure SDUPCI

data structurePCI data structurePCI PDU

data structure SDUPCI

LayerN_Tx(*PDU);

void LayerN_Tx(*SDU);

LayerN+1_Tx(*PDU);

TP

CAN

data structure SDUPCI

data structurePCI data structurePCI PDU

data structurePCI

Figure 4.6: Explanation of Protocol Data Unit

4.218 PDU Meta-Data

Definition Additional data of a Protocol Data Unit, which is not part of the payload.

Initiator Communication

Further Explanations Meta-data is placed alongside the PDU payload in a separate buffer. The layout of the Meta-data
is determined by an ordered list of MetaDataItems.

Comment Meta-data was introduced to transport parts of the CAN ID or addressing information alongside
the data of a PDU.

Example Diagnostics according to ISO 15765/14229, J1939 parameter group handling.

Reference –

4.219 PDU Timeout

Definition Maximum time between the receptions of two instances of one PDU is exceeded.

Initiator Communication

Further Explanations This Timeout indicates that the last reception of a PDU instance is too long in the past. As a
consequence it can be concluded that the data in the last PDU instance is outdated.

Comment –
▽

105 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Example –

Reference –

4.220 Performance

Definition Performance is a set of measurable characteristics (e.g. time, memory, resources usage, power
consumption, etc.) which may be used to compare different system, SW element, algorithm, etc.
implementations.

Initiator Safety

Further Explanations Scalability refers to the characteristic of a system to increase performance by adding
additional resources. If the software performance requirements change (e.g more functions that
impact the Response Time), scalability comes into play. Scalability is the ability of a system to
continue to meet its response time or throughput objectives as the demand for the software
functions increases.

Comment –

Example –

Reference –

4.221 Peripheral Hardware

Definition Hardware devices integrated in micro-controller architecture to interact with the environment.

Initiator Software and Architecture

Further Explanations –

Comment –

Example Memory, CAN-Controller, ADC, DIO, etc.

Reference –

4.222 Personalization

Definition User-specific and memorized adjustment of SW data or selection of functional alternatives.

Initiator Software and Architecture

Further Explanations –

Comment –

Example Seat parameters (position, activation status of drive-dynamic seat) can be stored in correlation to
a user ID. For a given user ID the seat can be adjusted according to the stored position
parameters and the drive-dynamic seat can be activated or deactivated.

Reference –

106 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.223 Plausibility

Definition Runtime Plausibility check is a method to verify during runtime if inputs for a computation/
algorithm or results of a computation/algorithm are reasonable against corresponding values of a
simplified reference model.

Initiator Safety

Further Explanations Range checks are a subset of plausibility checks. The additional knowledge can be taken from
various sources, e.g. the physical domain of the value or from a model representing the
computation/algorithm more roughly and calculating in parallel to the actual computation/
algorithm.

Comment –

Example • Range Check: for determination that a value for a car velocity is plausible, the knowledge that
a normal vehicle cannot be faster than 400km/h.

• Plausibility: for determination that that a value for a car velocity is plausible, the history of the
values can be used and the knowledge that a certain acceleration for a car cannot be
exceeded. E.g. velocity was 10 km/h and increases within 1 Sec to 100 km/h.

Reference –

4.224 PNC Leaf Node

Definition A PNC leaf node is located beneath a Top-level PNC Coordinator or Intermediate PNC
Coordinator. A PNC leaf node represents the lowest level within the hierarchy of a PN
topology. A PNC leaf node does not coordinate PNC request across its local communication
channels. It receives and transmits Nm frames with PN information, but it does not forward
received PNC requests to other local communication channels. A PNC leaf node processes PN
shutdown messages as usual Nm frames with PN information.

Initiator Partial Networking

Further Explanations –

Comment A PNC leaf node represents the lowest level within a PN topology.

Example –

Reference –

4.225 PN shutdown message

Definition A Top-level PNC Coordinator transmits the PN shutdown messages to indicate a PNC
shutdown. A PN shutdown message is a NM message where the PNSR bit (resides in the control
bit vector) and all PNC bits (resides in the PN info) which are indicated for a synchronized
shutdown set to “1”. A receiving Intermediate PNC Coordinator has to process the PN
shutdown message immediately, reset the PN reset timer and forward the PN information as fast
as possible to ensure a synchronized shutdown of the affected PNCs at nearly the same point in
time. A PNC Leaf Node acts independently of the PNSR bit and resets the PN reset timer.

Initiator Partial networking

Further Explanations –

Comment A PN shutdown message always indicates a shutdown of the indicated PNCs.

Example –

Reference –

107 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.226 Policy Decision Point (PDP)

Definition The PDP represents the logic in which the access control decision is made. It determines if the
application is allowed to perform the requested Task.

Initiator Security

Further Explanations The PDP provides an Access Control Decision.

Comment –

Example –

Reference –

4.227 Policy Enforcement Point (PEP)

Definition The PEP represents the logic in which the Access Control Decision is enforced. It
communicates directly with the corresponding Policy Decision Point to receive the
Access Control Decision.

Initiator Security

Further Explanations –

Comment –

Example –

Reference –

4.228 Port

Definition A port belongs to a Software Component and is the interaction point between the component
and other components. The interaction between specific ports of specific components is modeled
using Connectors. A port can either be a Provide Port or an Require Port.

Initiator Software and Architecture

Further Explanations –

Comment –

Example –

Reference For more information see [9]

4.229 Port Interface

Definition A Port Interface characterizes the information provided or required by a Port of a Software
Component.

Initiator Software and Architecture

Further Explanations A Port Interface is either a Client-Server Interface in case Client-Server
Communication is chosen or a Sender-Receiver Interface in case Sender-Receiver
Communication is used.

Comment –
▽

108 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Example –

Reference For more information see [9]

4.230 Post-build Time Configuration

Definition The Configuration of the SW module is possible after building the SW module.

Initiator Methodology and Templates

Further Explanations The SW may receive its Configuration file that can be downloaded to the Electronic
Control Unit (ECU) separately, avoiding a re-compilation and re-build of the ECU SW
modules. In order to make the post-build time re-configuration possible, the re-configurable
elements shall be stored at a known position in the ECU storage area

Comment –

Example Identifiers of the CAN frames

Reference –

4.231 Post-build Hooking

Definition The insertion of Hooks to facilitate Rapid Prototyping support into a (complete)
Electronic Control Unit (ECU) hex image.

Initiator Runtime Environment

Further Explanations –

Comment –

Example Detection of reads and/or writes of ECU variables by analysis of the instruction stream.

Reference –

4.232 Pre-build Hooking

Definition The insertion of Hooks to facilitate Rapid Prototyping support into software source prior to
creating an Electronic Control Unit (ECU) hex image.

Initiator Runtime Environment

Further Explanations –

Comment –

Example –

Reference –

109 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.233 Pre-Compile Time Configuration

Definition The Configuration of the SW module is done at source code level and will be effective after
compile time.

Initiator Methodology and Templates

Further Explanations The source code contains all the Electronic Control Unit (ECU) Configuration data
and when compiled together, it produces the given SW.

Comment –

Example Preprocessor switch for enabling the development Error detection and reporting

Reference –

4.234 Predictabiliy

Definition Predictability is the degree to which a correct prediction or forecast of a system’s state / behavior
can be made either qualitatively or quantitatively.

Initiator Safety

Further Explanations Important type of predictability occurs in the design of systems that are subject to real-time
requirements. A good overview of predictability criteria and how to achieve them can be found in

Comment –

Example –

Reference John A. Stankovic, Krithi Ramamritham, What is predictability for real-time systems?, Journal of
Real-Time Systems, Volume 2 Issue 4, Nov. 1990, 247-254

4.235 Pretended Networking

Definition Method to reduce energy consumption in an existing active Network without changing network
infrastructure.

Initiator Communication

Further Explanations –

Comment –

Example –

Reference –

4.236 Private Interface

Definition A private interface is an interface within the Basic Software of AUTOSAR which is neither
standardized nor defined within AUTOSAR.

Initiator Software and Architecture

▽

110 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Further Explanations The goal of the private interface is to enable a more efficient implementation of Basic

Software Modules. Basic software modules sharing a private interface have to be distributed
as one package. This package has to behave exactly the same as separate modules would. It
must provide the same Standardized Interfaces to the rest of the Basic Software and/
or RTE as separate modules would. It has to be configured exactly the same as separate
modules would be configured.

Comment Private interfaces contradict the goal of exchangeability of Standard Software modules and
should be avoided.

Example –

Reference –

4.237 Probability of Failure

Definition Probability of the occurrence of a Failure in a system or Functional Unit.

Initiator Safety

Further Explanations –

Comment –

Example –

Reference –

4.238 Procedure Call

Definition A simple statement that provides the actual parameters for and invokes the execution of a
procedure (software Function).

Initiator Software and Architecture

Further Explanations A Synchronous Communication mechanism can be implemented by a procedure call.

Comment –

Example –

Reference [49]

4.239 Process

Definition An Executable unit managed by an operating system Scheduler that has its own name space
and resources (including memory) protected against use from other processes.

Initiator Software and Architecture

Further Explanations A process consists of n Task (n>=1)

Comment –

Example –

Reference –

111 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.240 Processed Manifest

Definition A Processed Manifest is a Manifest that is stored in the implementation specific format on the
AUTOSAR Adaptive Platform product. Usually this is done in combination with other artifacts
(like binary files) that contain Executable code to which the Manifest applies.

Initiator Execution Management

Further Explanations Manifests are often used to denote a piece of Configuration content that ships along a
given piece of software and is used to deploy the software in the field. There are several kinds of
manifest, this list includes but is not limited to:
• Execution Manifest

• Machine Manifest

• Service Instance Manifest

Comment The Manifest may contain platform implementation dependent data, as well as generic data
derived from Application System Description.

Example –

Reference –

4.241 Profiling

Definition Profiling refers to the process of evaluating Performance.

Initiator Software and Architecture

Further Explanations Profiling aggregates descriptive statistics of Performance measures of items running in an
AUTOSAR system based on recordings, e.g. measurements or traces. The evaluation can be
done online, i.e. during runtime, or offline.

Comment Items subject to profiling could be functions, tasks, runnables, modules, buses etc.

Example Statistics (min/max/average), worst case analysis

Reference –

4.242 Proven In Use Argument

Definition See ISO-26262 ([5]), ID 1.90

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.90

112 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.243 Provide Port

Definition Specific Port providing Data or providing a Service of a Server.

Initiator Software and Architecture

Further Explanations The Provide Port is sometimes abbreviated as PPort or P-Port.

Comment –

Example • Server Port

• Server Port

Reference –

4.244 Rapid Prototyping

Definition The experimental incorporation of new Functionality.

Initiator Runtime Environment

Further Explanations Rapid Prototyping (RP) permits a user to quickly perform experiments to add new
Functionality, or to replace/bypass existing functionality, without requiring an ECU image to
be built.

Comment –

Example –

Reference –

4.245 Rapid Prototyping Memory Interface

Definition The memory access pattern necessary for Rapid Prototyping Tool.

Initiator Runtime Environment

Further Explanations The RP memory interface provides the well-defined memory access pattern required by RP tool
to ensure consistent and complete access to bypass values.

Comment –

Example A mandated "write-read" cycle within RTE APIs provides the RP tool with an opportunity to
bypass (i.e. substitute with value generated from an alternative algorithm) the written value
before it is read and then subsequently used within the generated code.

Reference –

4.246 Rapid Prototyping Tool

Definition Software and/ or hardware tools to support Rapid Prototyping.

Initiator Runtime Environment

Further Explanations –

Comment –

Example Dedicated prototyping interfaces on ECUs accessed by PC-based software tools.

▽

113 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Reference –

4.247 Rate Conversion

Definition Operation to change the timing between two transmissions of the same PduId on one physical
Network.

Initiator Communication

Further Explanations –

Comment –

Example –

Reference –

4.248 Raw Data Stream

Definition A Raw Data Stream is a collection of data that is unprocessed, basically a series of bytes without
any information on how to interpret it.

Initiator Communication

Further Explanations Raw Data Streams are used in communication links, mainly over ethernet reading streaming data
from sensors. An API for Raw Data Streams is defined for AUTOSAR Adaptive
Applications in SWS Communication Management.

Comment –

Example –

Reference –

4.249 Recovery

Definition Returning to intended Functionality after Fault Detection without violating the Safety
goals.

Initiator Safety

▽

114 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Further Explanations • Restart Mode: Restart Operation from the initial state of operation

• Continue Mode: Restart Operation from the last known state of operation

• Recovery by repetition: repeat until Timeout to cope i.e. random transmission errors.

• Forward Error recovery: relies on continue from an erroneous state by making selective
corrections to the system state. This includes making the controlled environment safe, which
may be damaged because of the Failure

• Backward Error recovery: relies on restoring the system to a previous Safe State and
executing an alternative section of the program. This has the same Functionality but uses
a different algorithm (c.f. N-Version Programming)

• Recovery Point: The point to which a Process is restored is called a recovery point and the
act of establishing it is termed check-pointing (saving appropriate system state)

• Recovery testing is the forced Failure of the software in a variety of ways to verify that
recovery is properly performed.

Comment –

Example –

Reference –

4.250 Redundancy

Definition Existence of means in addition to the means that would be sufficient for an element to perform a
required Function or to represent information. Hardware Element redundancy includes
replicated or additional hardware means added to the system to support Fault Tolerance.
Software element redundancy includes the additional SW units and/or data used to support fault
tolerance.

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.94

4.251 Reentrancy

Definition In AUTOSAR a Function is called reentrant if it can be interrupted in the middle of its execution
and then safely called again ("re-entered") before its previous invocations complete execution.
AUTOSAR differs between
• (full) reentrancy

• non reentrancy

and

• conditional reentrancy.

Initiator Software and Architecture

Further Explanations Reentrancy is always considered from the viewpoint of the caller. A Function which is
conditional reentrant has to document the conditions for the reentrancy. Typical cases for
conditional reentrancy are functions which are reentrant as long as a function parameter is
different to (possible) ongoing calls.

▽

115 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Comment An implementation of a Function might be reentrant for one system but only conditional

reentrant (or even non reentrant) for another one. It always depend how the reentrancy was
realized (e.g. locks). As an example, just consider a function which uses Interrupt locks to
realize full reentrancy on a single core System. If this implementation is used in a multi core
system its reentrancy will only be conditional reentrant for calls from the same core.

Example –

Reference –

4.252 Reliability

Definition Probability of a System or Functional Unit to perform as expected under specified
conditions within a time interval.

Initiator Safety

Further Explanations –

Comment –

Example –

Reference –

4.253 Relocatability

Definition Capability of a software part being executed on different hardware environments without
changing the code of the software part.

Initiator Software and Architecture

Further Explanations –

Comment –

Example –

Reference –

4.254 Require Port

Definition Specific Port requiring Data or requiring a Service of a Server.

Initiator Software and Architecture

Further Explanations The Require Port is sometimes abbreviated as RPort or R-Port.

Comment –

Example • Client Port

• Receiver Port

Reference –

116 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.255 Required Property

Definition A required property or quality of a design entity (e.g. Software Component or System) is a
property or quality which has to be fulfilled by the environment of this design entity.

Initiator Software and Architecture

Further Explanations A property or quality can be required by a stakeholder (e.g. customer) or another design entity.

Comment –

Example 1) In order to meet its Functionality, a Software Component A requires a minimum
temporal resolution of a signal (information on a required Port) which has to be fulfilled by SW
component B. 2) SW component requires to be activated by the runtime environment every
100ms with a jitter of 10ms.

Reference Compare term Asserted Property

4.256 Residual Error Rate

Definition The ratio of the number of bits, unit elements, or blocks incorrectly received and undetected, to
the total number of bits, unit elements, characters, or blocks sent.

Initiator Safety

Further Explanations –

Comment –

Example –

Reference –

4.257 Resource

Definition A resource is a required but limited hardware entity of an Electronic Control Unit, which
in general can be accessed concurrently, but not simultaneously, by multiple software entities.

Initiator Software and Architecture

Further Explanations –

Comment The definition from [2] (OSEK/VDX Operating System) cannot be used, due to the specific usage
in ISO 17356.

Example CPU-load, interrupts (mechanism itself and the resulting CPU-load), memory, peripheral
hardware, communication, ...

Reference –

117 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.258 Resource-Management

Definition Entity which controls the use of Resources.

Initiator Software and Architecture

Further Explanations The main Functionality of resource management is the control of simultaneous use of a
single Resource by several entities, e.g. scheduling of requests, multiple access protection.

Comment –

Example OS-Scheduler (CPU-load management)

Reference –

4.259 Response Time

Definition Time between receiving a stimulus and delivering an appropriate response or reaction.

Initiator Software and Architecture

Further Explanations The response time describes the time between a stimulus like e.g. the state change of hardware
or software entity and the expected reaction of the system (e.g. response, actuator activation).
Synonym: reaction time
See also: Execution Time, Worst Case Execution Time and Worst Case Response
Time.

Comment –

Example –

Reference –

4.260 Risk

Definition See ISO-26262 ([5]), ID 1.99

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.99

4.261 Robustness

Definition Ability of a System or Functional Unit to perform as expected also under unexpected
conditions.

Initiator Safety

Further Explanations –

Comment –

Example –

▽

118 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Reference –

4.262 RTE Event

Definition An RTE Event encompasses all possible situations that can trigger execution of a Runnable
Entity by the RTE. Thus they can address timing, data sending and receiving, invoking
operations, call Server returning, Mode switching, or external events. RTE Events can either
activate a runnable entity or wake-up a runnable entity at its waitpoints.

Initiator Runtime Environment

Further Explanations Note: ’Event’ in this context is not necessarily synonymous with ’RTEEvent’ as defined in the
Virtual Functional Bus (VFB) specification. In particular, RTE Events that result from
communication are handled by communication-triggered runnable entities.

Comment Events can have a variety of sources including time.

Example Scheduling of runnable entities from angular position, e.g. a crankshaft, that are used to trigger
an Interrupt and hence an RTE Notification. A software component needs to perform a
regular interval, e.g. flash an LED, reset a watchdog, etc.

Reference –

4.263 Runnable Entity

Definition A Runnable Entity is a part of an Atomic Software Component which can be executed and
scheduled independently from the other Runnable Entities of this Atomic Software-Component. It
is described by a sequence of instructions that can be started by the RTE. Each runnable entity is
associated with exactly one (1) Entry Point.

Initiator Software and Architecture

Further Explanations A Runnable Entity contains at least two points for the Scheduler: 1 Entry Point and 1 Exit
Point. Due to the reason that an Atomic Software Component is not dividable, all its
Runnable Entities are executed on the same Electronic Control Unit (ECU).

Comment In general a Task in the runtime system consists out of n Runnable Entities of m Atomic
Software-Components.

Example Server Function of a Software Component.

Reference –

4.264 SAE J1939

Definition SAE J1939 is a vehicle bus standard created by the SAE (Society of Automotive Engineers, a
USA standards body) for car and heavy duty truck industries.

Initiator Communication
▽

119 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Further Explanations The J1939 standard encompasses the following areas:

- bus physics (J1939/11, J1939/15)
- CAN message layout (J1939/21)
- request/response and multi packet transport protocols (J1939/21)
- Network management used to assign a unique address to each node (J1939/81)
- diagnostics layer comparable to UDS in complexity (J1939/73)
- standardized application signals and messages (J1939/71)

Comment The J1939 standard is used by most truck manufacturers worldwide and is prescribed for OBD in
some states of the USA. It is also used as a base for other standards for maritime (NMEA 2000),
agricultural (ISO 11783), and military (MilCAN A) applications.

Example –

Reference http://www.sae.org/

4.265 Safe State

Definition See ISO-26262 ([5]), ID 1.102

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.102

4.266 Safety

Definition See ISO-26262 ([5]), ID 1.103

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.103

4.267 Safety Analysis

Definition The objective of Safety Analysis is to examine the consequences of faults and failures on items
and elements considering their functions, behaviour and design.

Initiator Safety

Further Explanations –

Comment –

Example –

▽

120 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Reference ISO 26262 - 9: Automotive Safety Integrity Levels (ASIL)-oriented and

safety-oriented analyses (see also: Safety Analysis)

4.268 Safety Case

Definition See ISO-26262 ([5]), ID 1.106

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.106

4.269 Safety Goal

Definition See ISO-26262 ([5]), ID 1.108

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See I[5], ID 1.108

4.270 Safety Measure

See ISO-26262 ([5]), ID 1.110

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.110

121 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.271 Safety Mechanism

Definition See ISO-26262 ([5]), ID 1.111

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.111

4.272 Safety Protocol

Definition A communication protocol defining the necessary mechanisms to ensure the integrity of
transmitted data and to detect any communication related Error.

Initiator Safety

Further Explanations –

Comment –

Example –

Reference –

4.273 Sample Application

Definition Defined system used for evaluation purposes.

Initiator Software and Architecture

Further Explanations The application may be simplified for better understanding within the evaluation phase.

Comment –

Example Diagnosis Application
Exterior Light Management

Reference –

4.274 Scalability

Definition The degree to which assets can be adapted to specific target environments for various defined
measures.

Initiator Software and Architecture

Further Explanations –

Comment Target environment introduced compared to [3].

Example –

Reference [3]

122 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.275 Scheduler

Definition The scheduler handles the scheduling of the Tasks / Runnable Entitys according to the
priority and scheduling policy (pre-defined or configurable). It has the responsibility to decide
during run-time when which task can run on on the CPU of the Electronic Control Unit
(ECU).

Initiator Software and Architecture

Further Explanations There are many strategies (priority-based, time-triggered, round-robin, ...) a scheduler can use,
depending of the selected and/or implemented algorithms

Comment –

Example –

Reference See AUTOSAR Specification of the Virtual Functional Bus ([9]

4.276 Service Data Unit

Definition Service Data Unit is the data passed by an upper layer, with the request to transmit the data. It is
as well the data, which is extracted after reception by the lower layer and passed to the upper
layer.

Initiator Communication

Further Explanations A SDU is part of a Protocol Data Unit.

Comment –

Example –

Reference –

4.277 Security

Definition Protection of data, software entities or resources from accidental or malicious acts.

Initiator Software and Architecture

Further Explanations –

Comment Slightly adapted norm.

Example –

Reference [50]

4.278 Secure Channel

Definition A secure channel is a communication channel between two parties. A secure channel shall at
least provide Integrity and Authenticity of the communication. It shall provide means to
authenticate at least one participant of the communication. It may provide means to mutually
authenticate both participants of the communication. A secure channel may additionally provide
the Confidentiality of the communication.

Initiator Security

▽

123 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Further Explanations –

Comment –

Example A TLS or IPsec channel for secure SOME/IP communication between two Adaptive Platform (AP)
instances.

Reference –

4.279 Security Event

Definition An Event which is related to the Security of the Electronic Control Unit (ECU) and
should be reported for later analysis.

Initiator Security

Further Explanations –

Comment –

Example Failed negotiation of a shared secret, failed Verification of a download signature, successful
update of a certificate

Reference –

4.280 Sender-Receiver Communication

Definition A communication pattern which offers asyncronous distribution of information where a sender
communicates information to one or more receivers, or a receiver receives information from one
or several senders.

Initiator Software and Architecture

Further Explanations The process of sending data does not block the sender and the sender usually gets no response
from the receivers

Comment Often used for data or Event distribution
Example –

Reference [9]

4.281 Sender-Receiver Interface

Definition A sender-receiver interface is a special kind of a Port Interface for the case of Sender-
Receiver Communication.
The sender-receiver interface defines the data-elements which are sent by a sending component
(which has a p-Port providing the sender-receiver interface) or received by a receiving
component (which has an r-port requiring the sender-receiver interface).

Initiator Software and Architecture

Further Explanations –

Comment A special kind of Port Interface

Example –

▽

124 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Reference [9]

4.282 Sensor-Actuator SW-Component

Definition Software Component dedicated to the control of a sensor or actuator.

Initiator Software and Architecture

Further Explanations There will be several Sensor/ Actuator SW-Cs in each ECU. In general there will be one Sensor/
Actuator SW-C for each sensor and one for each actuator (=> number of Sensor/Actuator SW-C
= number of sensors + number of actuators).

Comment –

Example –

Reference –

4.283 Server

Definition Software entity which provides services for Clients

Initiator Software and Architecture

Further Explanations The Server and the clients using its Service might be located on one ECU or distributed on
different calculation units (e.g. ECU).

Comment Adapted from [14].

Example –

Reference [14]

4.284 Service

Definition A service is a type of operation that has a published specification of interface and behavior,
involving a contract between the provider of the capability and the potential clients.

Initiator Software and Architecture

Further Explanations –

Comment –

Example Diagnosis service, ...

Reference [3]

125 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.285 Service Discovery

Definition Generic Functionality provided by the Communication Management to Applications that
allows Applications at runtime to find locally or remotely available Service Instances
providing the requested Service.

Initiator Communication

Further Explanations Based on Application query, the Communication Management provides list of compatible
Service Instances. Compatibility is defined by compatibility rules and may consider version
or QoS attributes.

Comment –

Example –

Reference –

4.286 Service Instance

Definition The properties of a service instance are described by a specific Service Interface. A
service instance has a unique identity.

Initiator Communication

Further Explanations It is accessible by other Applications by using a Service Requester Proxy at runtime and is typed
by a specific Service Interface It is addressable within the vehicle Network by its Service
Instance ID, an abstraction from of the physical location. Optionally, authentication data is
associated with a Service Instance for authentication at runtime.

Comment –

Example –

Reference –

4.287 Service Interface

Definition A service interface is a special kind of Port Interface used in the Adaptive platform. It
defines both data elements for Event-based communication and operations that are provided by
the service provider and that can be used by the service requester.

Initiator Communication

Further Explanations –

Comment –

Example –

Reference –

4.288 Service-Oriented Communication

Definition Communication, for which communication partners are generally not defined during design time,
but dynamically discovered and bound during runtime.

Initiator Communication
▽

126 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Further Explanations Communication partners are generally not defined during design time, but dynamically

discovered and bound during runtime. Adaptive Applications are therefore developed
agnostic to the concrete context, assuming model of loosely-coupled components.

Comment This is the standard communication paradigm for communication between AUTOSAR Adaptive
Applications.

Example –

Reference –

4.289 Service Port

Definition Special kind of a Port from a Atomic Software Component used to describe Service
communication.

Initiator Software and Architecture

Further Explanations The interface of a Service Port has to be a Standardized AUTOSAR Interface. A Service
Port does not need to be connected to another Port in the Virtual Functional Bus View.

Comment If a Service is provided by the ECU where a specific Atomic Software Component is
located the VFB View is sufficient. If a service is provided by another ECU the connection of the
service call to the service has to be done explicitly during the Mapping step.

Example Write data to non volatile memory.

Reference –

4.290 Service Proxy

Definition A facade that represents a specific Service on code level from the perspective of the service
consumer providing methods for all functionalities offered by the represented service.

Initiator Communication

Further Explanations The service consumer side Application code interacts with this local facade, which then knows
how to propagate these calls to the real service implementation and back. The Service Proxy is
typically an instance of a service proxy class which itself is potentially generated from Service
Interface according to standardized patterns and implemented by platform-specific
Communication Management. The Service Proxy provides placeholder for Service Instance ID,
which is set at runtime by requesting Application implementation using Service Discovery or
statically based on Planned Dynamics.

Comment –

Example –

Reference –

4.291 Service Skeleton

Definition A representation of a specific Service on code level from the perspective of the service
implementation, which provides functionalities according to the service definition and allows to
connect the service implementation to the Communication Management transport layer, so that
the service implementation can be contacted by service consumers.

▽

127 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Initiator Communication

Further Explanations The Service Skeleton is typically an instance of a service skeleton class which itself is potentially
generated from a Service Interface according to standardized patterns and implemented by
platform-specific Communication Management. The skeleton provides placeholder for the
Service Instance ID, which is set by platform implementation, e.g. based on Application
Description at design time, or by the Vehicle Software Configuration Manager at setup.

Comment –

Example –

Reference –

4.292 Services Layer

Definition The Services Layer is the highest layer of the Basic Software which also applies for its
relevance for the application software: while access to I/O signals is covered by the Hardware
Abstraction Layer, the Services Layer offers
Operating system services
Vehicle Network communication and management services
Memory services (NVRAM management)
Diagnosis Services (including KWP2000 interface and Error Memory)
Electronic Control Unit (ECU) state management
Task: Provide basic services for application and Basic Software Modules

Initiator Software and Architecture

Further Explanations The Services Layer consists of the following parts:
Communication Services
Memory Services
System Services

Comment –

Example Network Management, NVRAM Manager, ECU State Manager

Reference [23]

4.293 Signal Service Translation

Definition Signal Service Translation is the standardized way to map the definition of signal-based
communication to Service-Oriented Communication, and vice versa.

Initiator Manifests & Templates

Further Explanations AUTOSAR Adaptive Platform restricts communication paradigm to Service-Oriented
Communication, a major part of the vehicle however still uses signal-based communication
means - therefore a translation of these two approaches has to be performed.

Comment One goal of AUTOSAR is to support the development of a whole vehicle in a seamless way. The
translation of communication paradigms is essential for a holistic design. The AUTOSAR
methodology supports the translation activity on either a Classic Platform Gateway ECU or
on an AUTOSAR Adaptive Platform Machine.

Example –

Reference –

128 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.294 Slave Switch

Definition A Slave Switch is an Ethernet switch which is connected to a Master Switch by uplink ports

Initiator Communication

Further Explanations –

Comment –

Example –

Reference –

4.295 Software Cluster (Adaptive Platform)

Definition An Adaptive Platform Software Cluster groups all AUTOSAR artifacts which are relevant for
deployment on an Adaptive Platform Machine. The content of a Software Cluster is dependent on
the category and "may" (but is not limited to) contain artifacts such as:
• Adaptive Platform Applications (Executables)

• Adaptive Platform Functional Clusters (Modules)

• Manifests

• Persistent Storage Databases

• Platform libraries, e.g. Transformers, Cryptographics

• Bootloader

Initiator Diagnostics

Further Explanations A Software Cluster is deployed on a Machine via UCM inside a Software Package - multiple
Software Packages are encapsulated inside a Vehicle Package to be deployed on multiple
Machines in a vehicle. In the context of diagnostics a Software Cluster might be individually
addressable via its own set of diagnostic addresses.

Comment A Software Cluster is used to partition Applications running on a Machine into individually
updateable clusters.

Example –

Reference [51], [44]

4.296 Software Cluster (Classic Platform)

Definition The purpose of a Software Cluster for CP is to group AUTOSAR artifacts that are relevant for the
static deployment of a software part on an ECU (Electronic Control Unit).

Initiator WG-A-CP

Further Explanations Each Software Cluster is an independent Build Unit and the result of the cluster specific build
processes are the Binary Objects.

Comment The term ’cluster’ (or Software Cluster) is also used in the context of ICC2. In this case, it refers
to a group of Basic Software Modules.

Example –

Reference see [52]

129 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.297 Software Component

Definition Software Components are architectural elements that provide and/or require interfaces and are
connected to each other through the Virtual Functional Bus to fulfill architectural
responsibilities.

Initiator Software and Architecture

Further Explanations A Software Component (SWC) has a formal description defined by the software component
template. SWCs may be atomic components, parameter components or Compositions. Also
the software modules providing the Software Component Interface of a Basic
Software are called Software Components.

Comment –

Example –

Reference –

4.298 Software Component Interface

Definition A Software Component Interface (SW-CI) is the sum of all interfaces offered by the Basic
Software towards the Software Component.

Initiator Software and Architecture

Further Explanations A SW-CI denotes the interface between an SWC and the underlying Basic Software cluster
including the RTE. The SW-CI therefore comprises all Application Programming
Interface Functions and Callbacks that the Software Component requires from and
provides to the Basic Software (generally by means of RTE mechanisms). It includes also the
mechanisms allowing Software Components sharing the SW-CI to communicate with one
another. For the purposes of this definition, the Basic Software clustered on an Electronic
Control Unit (ECU) can be designed according to ICC1, 2 and 3.

Comment The term has been introduced as a short-hand to aid in discussion of the conformance of the
content of Basic Software clusters of conformance class ICC1 / 2 and to define the backward
compatibility between releases and revisions. However, since from the Software Component
perspective, the clustering of the Basic Software is invisible, the Component Interface is
applicable to all potential Basic Software conformance classes (ICC1, ICC2, ICC3) in the
same way.

Example –

Reference Network Interface (NWI)

4.299 Software Configuration

Definition The arrangement of software elements in a SW system.

Initiator Software and Architecture

Further Explanations A software element is a clearly definable software part. A software configuration is a selection
version of software modules, Software Components, parameters and generator
configurations. Calibration and Variant Coding can be regarded as subset of Software
Configuration.

Comment –

Example –

Reference [3]

130 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.300 Software Interrupt

Definition Interrupt triggered by SW Event.

Initiator Software and Architecture

Further Explanations SW events are for example calling an operating system service, starting a Process with higher
priority.

Comment –

Example –

Reference Translation/Adaptation from [35]

4.301 Software Package

Definition Unit for deployment of software onto AUTOSAR Adaptive Platform instances containing zero or
more Executables and the Meta-data to install and execute it on the Machine.

Initiator Software and Architecture

Further Explanations Typically, a software package contains one or more Executables, however it is permitted to
have no Executables to enable update of Configuration Meta-data.

Comment –

Example –

Reference Translation/Adaptation from [35]

4.302 Software Platform

Definition Software environment on which application software is executed.

Initiator –

Further Explanations AUTOSAR Adaptive Platform, AUTOSAR Classic Platform

Comment –

Example –

Reference –

4.303 Software Signal

Definition A Software Signal is an asynchronous Event transmitted between one Process and another.

Initiator Software and Architecture

Further Explanations A SW Signal is the software implementation of an (control-) information. Additionally it may have
attributes (e.g. Freshness, data type, ...). It is exchanged between Software Components.

Comment –

Example –

Reference –

131 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.304 Software Unit

Definition See ISO-26262 ([5]), ID 1.125

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.125

4.305 Special Periphery Access

Definition Special functions to standard peripheral devices or special peripherals.

Initiator Software and Architecture

Further Explanations Is only used when, because of technical issues, no standard periphery access can be used

Comment –

Example –

Reference –

4.306 Standard Periphery Access

Definition Standard functions to typical standard peripheral devices that are available on an ECU (most
Microcontroller integrated) used in automotive embedded applications.

Initiator Software and Architecture

Further Explanations –

Comment –

Example Digital Input/Output, Analog/Digital Converter, Pulse Width (De)Modulator, EEPROM, FLASH,
Capture Compare Unit, Watchdog Timer

Reference –

4.307 Standard Software

Definition Standard Software is software which provides schematic independent infrastructural
functionalities on an ECU. It contains only Standardized AUTOSAR Interfaces,
Standardized Interfaces and/or Private Interfaces.

Initiator Software and Architecture

Further Explanations –

Comment –

Example ISO 17356, MCAL, Services

Reference [33]

132 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.308 Standardized AUTOSAR Blueprint

Definition A Standardized AUTOSAR Blueprint is a Blueprint standardized within the AUTOSAR
project. Its derived objects are considered as being standardized within the AUTOSAR project as
well.

Initiator AUTOSAR Application Interfaces

Further Explanations Blueprints were introduced within the AUTOSAR projects to enable standardization of ports
without standardizing the static view of the architecture (i.e. the software components providing
or requesting the ports). Sometimes it is not possible to standardize all attributes of an AUTOSAR
element because the values of some attributes are project specific. Nevertheless it enables better
collaboration if some of the attributes are standardized. Additionally Blueprints enable adding
descriptions and long names in different languages.

Comment –

Example –

Reference [53]

4.309 Standardized AUTOSAR Interface

Definition This is an AUTOSAR Interface which is standardized within the AUTOSAR project.

Initiator Software and Architecture

Further Explanations AUTOSAR Services interact with other components through a Standardized AUTOSAR
Interface. AUTOSAR Interfaces can be derived from AUTOSAR Application Interfaces.

Comment –

Example –

Reference –

4.310 Standardized Blueprint

Definition A Blueprint is called a Standardized Blueprint if the derived objects are considered as being
standardized as well. It also includes that additionally concrete standardized rules exist how to
specify the blueprint as well as how to derive an object from that blueprint. This is typically not
done for a specific blueprint but for all blueprints of the same class.

Initiator AUTOSAR Application Interfaces

Further Explanations –

Comment –

Example –

Reference –

133 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.311 Standardized Interface

Definition A software interface is called Standardized Interface if a concrete standardized API exists.

Initiator Software and Architecture

Further Explanations Modules in the Basic Software interact which each other through Standardized Interfaces.

Comment –

Example ISO 17356-4 ([41]): COM Interface

Reference –

4.312 Static Configuration

Definition A setup where the routing Configuration cannot be changed during normal operation of the
Gateway.

Initiator Communication

Further Explanations Static configuration doesn’t allow reconfiguration of the routing during normal operation e.g.
during driving. Static configuration does not restrict the update of the configuration in specific
maintenance operation modes (e.g. programming Mode).

Comment –

Example A software update may change a routing Configuration such that a Protocol Data Unit
(PDU) is routed into two instead of one destination Networks.

Reference –

4.313 Synchronization Points

Definition Used to synchronize the execution of EEs of different tasks that execute within the same
Logical Execution Time (LET) interval. A synchronization point realizes the execution order
of EEs that belong to different Executable Entity Clusters (EECs).

Initiator Software and Architecture

Further Explanations This pattern is used when EEs on multiple cores are synchronized, e.g. to ensure Execution
Order Constraints as shown for example in Figure 4.7. Two kinds of Synchronization are
in focus here. The execution of Executable Entity Cluster may be synchronized by
actively waiting at a barrier or by advancing the execution until to relative point in time after LET
interval start.

Comment Synchronization points can be derived directly from the EOCs and the Mapping of EEs to tasks.
The synchronization can be implemented by time (advance) or as a barrier. A synchronization
point between EECs that are mapped to the same Task can already be fulfilled by the EE
positions in the task. It is important to known that direct access before the synchronization point
does not lead to interference, i.e. no other access to the same memory location can take place.
The use of advance requires confident knowledge of the EE’s Worst Case Execution Time
(WCET).

Example Execution Order Constraints between Executable Entities imposed by a data
dependency. A Runnable Entity C waiting for input from Runnable Entity A and B. A
synchronization point before C guarantees that A and B have produced the input for C when it
starts execution.

Reference –

134 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

Figure 4.7: Example for Synchronization Points

4.314 Synchronization

Definition To make two or more events or operations to occur at the same predefined moment in time.

Initiator Communication

Further Explanations –

Comment –

Example Two NM Channels can enter Bus Sleep Mode at the same time ("synchronized network sleep") or
they can be ordered to go to sleep at the same time ("synchronized shutdown initiation").

Reference [47]

4.315 Synchronous Communication

Definition A communication is synchronous when the calling software entity is blocked until the called
operation is evaluated. The calling software entity continues its operation by getting the result.

Initiator Software and Architecture

Further Explanations Synchronous communication between distributed functional units has to be implemented as
Remote Procedure Call (RPC).

Comment
Example –

Reference –

4.316 Synchronous Function

Definition A Function is called synchronous if the described Functionality is guaranteed to be
completed the moment the function returns to the caller.

Initiator Software and Architecture

▽

135 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Further Explanations –

Comment –

Example –

Reference –

4.317 System

Definition Representation of software related parts in a vehicle and their means to communicate with each
other.

Initiator General

Further Explanations –

Comment –

Example Representation of the Network topology of a vehicle with Software Components deployed on
individual Electronic Control Units (ECUs) with a defined description of network
communication between the ECUs.

Reference [32], [44]

4.318 System Constraint

Definition Boundary conditions that restrict the Design-Freedom of the (cars E/E-) System.

Initiator Software and Architecture

Further Explanations The design of Electronic Control Unit (ECU) Networks and the distribution of
functionalities to ECUs are limited by several constrains. These constraints result mostly by the
communication matrix and Safety requirements.

Comment –

Example An existing communication matrix that restricts the distribution of Electrical Signals to
frames is a system constraint. Another system constraint is a Safety requirement that does not
allow to map a specified Software Component to specific ECU.

Reference –

4.319 System Health Monitor

Definition System Health Monitor (SHM) analyzes the health of subsystems.

Initiator Safety

Further Explanations –

Comment –

Example –

Reference [36]

136 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.320 System Signal

Definition The system signal represents the communication system’s view of data exchanged between SW
components which reside on different ECUs. The system signals allow to represent this
communication in a flattened structure, with (at least) one system signal defined for eacData
Element sent or received by a Software Component instance. If data has to be sent over
Gateways, there is still only one system signal representing this Data. The representation of the
Data on the individual communication systems is done by the Cluster Signals.

Initiator Communication

Further Explanations –

Comment –

Example –

Reference –

4.321 Systematic Fault

Definition See ISO-26262 ([5]), ID 1.131

Initiator Safety

Further Explanations –

Comment –

Example –

Reference See [5], ID 1.131

4.322 Task

Definition A Task is the smallest schedulable unit managed by the OS. The OS decides when which task
can run on the CPU of the ECU.

Initiator Software and Architecture

Further Explanations A Runnable Entity of a software component runs in the context of a task. Also the Basic
Software Modules runs in the context of a task.

Comment –

Example –

Reference [9]

4.323 Technical Signal

Definition The technical signal is the physical value of an external Event coupled to an AUTOSAR system.
Technical signals are represented in SI units (e.g. pressure in PA).

Initiator General
▽

137 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Further Explanations The term Technical Signal is used when we are referring to the "real world" signal that is under

consideration. So typical Technical Signals are temperature, velocity, torque, force, electrical
current and voltage, etc.

Comment –

Example –

Reference –

4.324 Timed Communication

Definition Implicit communication with logical publication at the end of a Logical Execution Time
(LET) interval and logical read at the beginning of a LET interval. Access to the timed
communication buffer is available for all EEs that reference the LET interval through EECs.

Initiator Software and Architecture

Further Explanations Data consistency is guaranteed between EECs which reference the same LET interval
(regardless of their Task and core Mapping). Implicit communication crossing LET interval
boundaries is redefined to timed communication. See also the example in Figure 4.8.

Comment One OS Task can have several implicit communication buffers for several LET intervals. Implicit
communication between EEs referencing the same LET interval remains unchanged.

Example –

Reference –

Figure 4.8: Example for Timed Communication

4.325 Timeout

Definition Notification with respect to Deadline violation of an Event or Task (e.g. while working on/
with information: receiving, sending, processing, etc.).

Initiator Software and Architecture

Further Explanations –

Comment –

Example –

▽

138 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Reference –

4.326 Top-level PNC Coordinator

Definition The top-level PNC (Partial Network Cluster) coordinator is the topmost coordinator in a PN
topology, the single root of the directed acyclic graph forming the logical partial Network cluster
for particular PNCs. The top-level PNC coordinator is responsible for the coordinated shutdown
of all PNC members, because it is the only node which has the full overview of the states of all
PNCs. Only the PNC top-level coordinator is allowed to send a PN shutdown messages.
Note that for different PNCs it is possible to have different top-level PNC coordinators. For the
same PNC only one top-level coordinator is supported.

Initiator Partial Networking

Further Explanations –

Comment Partial networking is used to group nodes all over the Network topology into logical clusters. The
clusters can be activated independently from each other. Each partial network cluster has a
defined hierarchy, which spans from top level coordinator across multiple (0...N) levels of
Intermediate PNC Coordinators to the PNC Leaf Nodes. PNC leaf nodes form the
lowest level of the PNCs.

Example –

Reference –

4.327 Tracing

Definition Tracing is the activity of recording a program’s observable state and execution path within the
System over a certain period of time.

Initiator Software and Architecture

Further Explanations Tracing collects events of selected types over time and stores the information in a so called “trace
buffer”, which may be located on-board or off-board. To enable timing measurement and
Performance optimization, the events may be stored together with a timestamp. Tracing is
intended to be mainly used during the development phase, with possibly added extra tracing
software and/or hardware.

Comment The recording may be done by software solutions, e.g. code instrumentation, hardware assisted
solutions like CPU instruction flow tracing or Ethernet sniffers, or a combination of both.
Depending on this, tracing may have a considerable impact on the system’s timing, which must be
considered when doing further analysis. In contrast to Logging, tracing does not target arbitrary
but only correlating events of internal state transitions, variable content, and program flow.

Example Program flow trace, Scheduler Event trace, Ethernet protocol trace, Stack usage trace.

Reference –

139 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.328 Trusted Platform

Definition An execution platform supporting a continuous chain of trust from boot through to application.
The trust chain ensures that all execution is both authenticated (that all code executed is from the
claimed source) and subjected to Integrity Validation (that prevents tampered code/Data
from being executed)

Initiator Software and Architecture

Further Explanations –

Comment –

Example –

Reference –

4.329 Uplink Port

Definition An Uplink Port is a port of an automotive Ethernet switch which is connected to another Ethernet
automotive switch (Cascaded Switch). An Uplink Port could either be an Internal Port or
an External Port. One Uplink Port is connected to another Uplink Port. The Uplink Port
has a special role from the perspective of the software.

Initiator Communication

Further Explanations –

Comment –

Example –

Reference –

4.330 Use Case

Definition A use case defines a list of actions defining the interactions between actors and a system to
achieve a goal.

Initiator General

Further Explanations –

Comment Use cases are used in the system analysis, for example, to identify and to clarify system
requirements, and to define the behavior of a system.

Example –

Reference

4.331 Validation

Definition Confirmation by examination and provisions of objective evidence that the particular requirements
for a specific intended use are fulfilled.

Initiator General
▽

140 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Further Explanations In design and development, validation concerns the process of examining a product to determine

conformity with user needs. Validation is normally performed on the final product under defined
operating conditions. It may be necessary in earlier stages. "Validated" is used to designate the
corresponding status. Multiple validations may be carried out if there are different intended uses.
[ISO 8402: 1994]

Comment –

Example –

Reference [54]

4.332 Variability

Definition Variability of a system is its quality to describe a set of variants. These variants are characterized
by Variant specific property settings and / or selections.

Initiator Methodology and Templates

Further Explanations –

Comment –

Example As an example, such a system property selection manifests itself in a particular "receive Port"
for a connection.

Reference –

4.333 Variant

Definition A system variant is a concrete realization of a system, so that all its properties have been set
respectively selected. The software system has no Variability anymore with respect to the
binding time.

Initiator Methodology and Templates

Further Explanations –

Comment –

Example –

Reference –

4.334 Variant Coding

Definition Adaptation of SW by selection of functional alternatives according to external requirements (e.g.
country-dependent or legal restrictions).

Initiator Software and Architecture

▽

141 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Further Explanations The major difference with Calibration is that this later doesn’t aim to adapt the SW

Functionality itself but only aims to adjust the SW to the HW/SW environment, e.g. the
Calibration of engine control SW that is adjusted to the physical parameters of every engine.
Variant Coding also includes vehicle-specific (not user-specific) SW adaptation due to
end-customer wishes (e.g. deactivation of speed-dependent automatic locking). Variant Coding is
always done after compile time. Used techniques to select variants include end-of-line
programming and garage programming.

Comment –

Example Country related adaptation of MMI with respect to speed and/or temperature unit (km/h vs. mph,
°C vs. F).

Reference –

4.335 Variation Binding

Definition A variant is the result of a variation binding Process that resolves the Variability of the
system by assigning particular values/selections to all the system’s properties.

Initiator Methodology and Templates

Further Explanations –

Comment –

Example –

Reference –

4.336 Variation Binding Time

Definition The variation binding time determines the step in the methodology at which the Variability
given by a set of variable properties is resolved.

Initiator Methodology and Templates

Further Explanations –

Comment –

Example –

Reference –

4.337 Variation Point

Definition A variation point indicates that a property is subject to variation. Furthermore, it is associated with
a condition and a binding time which define the system context for the selection / setting of a
concrete Variant.

Initiator Methodology and Templates

Further Explanations –

Comment –

Example –

▽

142 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

△
Reference –

4.338 Vehicle State Manager

Definition An OEM specific application that controls vehicle level state and interacts with various entities in
the vehicle system.

Initiator Safety and UCM

Further Explanations –

Comment The OEMs may just have one such application and send the vehicle state on the communication
bus or may have one Master Vehicle State Manager and Client Vehicle State Manager
applications on each ECU.

Example –

Reference [51]

4.339 Vehicle Variant

Definition A vehicle variant is a fully characterized product and a subset of the artifacts of the product line.

Initiator –

Further Explanations –

Comment –

Example –

Reference –

4.340 Vendor ID

Definition A vendor ID is a unique identification of the vendor of a Software Component. All Basic
Software Modules conforming to the AUTOSAR Standard shall provide a readable vendor ID.

Initiator General

Further Explanations AUTOSAR Vendor IDs are used to determine vendors of Basic Software Modules before and
during runtime. The mechanism is used to improve bug handling. AUTOSAR currently only
provides Vendor IDs to members of the AUTOSAR partnership.

Comment To apply for an AUTOSAR vendor ID the possible member has to send an E-Mail to
request@autosar.org. Within the request name of the company, company address and contact
person should be listed.

Example Vendor ID for EEPROM driver is called: EEP_VENDOR_ID

Reference SRS_BSW_00374

143 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.341 Verification

Definition Confirmation by examination and provisions of objective evidence that specified requirements
have been fulfilled.

Initiator General

Further Explanations In design and development, verification concerns the process of examining the result of a given
activity to determine conformity with the stated requirement for that activity. "Verified" is used to
designate the corresponding status. [ISO 8402: 1994]

Comment –

Example –

Reference [54]

4.342 VFB View

Definition The VFB View describes systems or subsystems in the car independently of these resources; in
other words, independently of:
• what kind of and how many Electronic Control Units (ECUs) are present in the car

• on what ECUs the entities in the VFB-View run

• how the ECUs are interconnected: what kind of Network technology (CAN, LIN, ...) and what
kind of topology (presence of gateways) is used

Initiator Software and Architecture

Further Explanations In the VFB-View, the system or subsystem under consideration is a Composition which
consists out of Connectors and Components.

Comment –

Example –

Reference [9]

4.343 Virtual Functional Bus

Definition The Virtual Functional Bus is an abstraction of the communication between Atomic Software
Components and AUTOSAR Services. This abstraction is such that specification of the
communication mechanisms is independent from the concrete technology chosen to realize the
communication.

Initiator Software and Architecture

Further Explanations After compilation and linking of software for a dedicated Electronic Control Unit the
Virtual Functional Bus interfaces are realized by the AUTOSAR Runtime Environment.

Comment –

Example –

Reference –

144 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.344 Virtual Integration

Definition The simulated, modeled and/or calculated (not real) combination of software entities forming a
System.

Initiator Software and Architecture

Further Explanations By virtual integration several constraints and/or requirements are checked without the need of
real hardware units, like needed CPU load, needed memory, completeness of interfaces,
fulfillment of timing requirements etc.).

Comment –

Example –

Reference –

4.345 Virtualization

Definition Virtualization is a mechanism which hides the physical characteristics of a computing platform
from the users, presenting instead another abstract computing platform. It can be used to fulfill
functional Safety requirements like Availability, Partitioning, Resource conflict
management, Recovery etc.

Initiator Safety

Further Explanations Different types of hardware virtualization include:
• Full virtualization - almost complete simulation of the actual hardware to allow software, which

typically consists of a guest operating system, to run unmodified.

• Partial virtualization - some but not all of the target environment attributes are simulated. As a
result, some guest programs may need modifications to run in such virtual environments.

• Paravirtualization - a hardware environment is not simulated; however, the guest programs are
executed in their own isolated domains, as if they are running on a separate System. Guest
programs need to be specifically modified to run in this environment.

Comment –

Example –

Reference –

4.346 Wake-up and Sleep on Dataline

Definition Wake-up request or sleep request which is transmitted over a dataline of an Automotive Ethernet
switched Network.

Initiator Communication

Further Explanations Wake-up on dataline is used for Ethernet switched Network and is defined for 100Base-T1. A
wake-up on dataline without an established link between the communication partner is called a
wake-up pulse (WUP). A wake-up on dataline with an established link between the
communication partners is called a wake-up request (WUR). A sleep request is transmitted as a
burst of continues LPS (low power signal)

Comment –

Example –

Reference OPEN ALLIANCE Sleep/Wake-up specification for Automotive Ethernet

145 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

Glossary
AUTOSAR FO R25-11

4.347 Worst Case Execution Time

Definition Maximum possible time during which a program is actually executing

Initiator Software and Architecture

Further Explanations The worst case execution time of a piece of software is the maximum possible time during which
the CPU is executing instructions which belong to this piece. The worst case execution time is
often identified by analytical methods. It is required to determine if a schedule meets the overall
timing requirements.
Abbreviation: WCET
See also: Response Time, Execution Time, Worst Case Response Time

Comment This definition has been extended by WP COM.

Example –

Reference –

4.348 Worst Case Response Time

Definition Maximum possible time between receiving a stimulus and delivering an appropriate response or
reaction.

Initiator Software and Architecture

Further Explanations The worst case response time describes the maximum possible time between a stimulus like e.g.
the state change of hardware or software entity and the expected reaction of the System (e.g.
response, actuator activation).
Typically: worst-case execution-time + infrastructure-overhead + scheduling-policy = worst-case
reaction time
Synonym: Worst Case Reaction Time (WCRT)
See also: Response Time, Execution Time, Worst Case Execution Time

Comment Worst case reaction time was renamed to worst case response time because response time is
the more common terminology. This definition has been extended by WP COM.

Example –

Reference –

146 of 146 Document ID 55: AUTOSAR_FO_TR_Glossary

	1 Introduction
	2 Acronyms, Abbreviations (and Initialisms)
	2.1 Explanation

	3 How to read this document
	3.1 <Term> Template

	4 Definitions
	4.1 Abstract Platform
	4.2 Acceptance Test Suite
	4.3 Access Control Decision
	4.4 Access Control Policy
	4.5 Adaptability
	4.6 Adaptive Application
	4.7 Adaptive Platform Foundation
	4.8 Adaptive Platform Services
	4.9 Adaptive Platform Machine Configuration
	4.10 Application Programming Interface
	4.11 Application Software Component
	4.12 Architecture
	4.13 Artifact
	4.14 ASIL Decomposition
	4.15 Asserted Property
	4.16 Assessment
	4.17 Asset
	4.18 Asynchronous Communication
	4.19 Asynchronous Function
	4.20 Atomic Software Component
	4.21 Audit
	4.22 Authenticity
	4.23 Automotive API
	4.24 Automotive API Gateway
	4.25 Automotive Safety Integrity Levels
	4.26 AUTOSAR Adaptive Platform
	4.27 AUTOSAR Application Interface
	4.28 AUTOSAR Authoring Tool
	4.29 AUTOSAR Blueprint
	4.30 AUTOSAR Converter Tool
	4.31 AUTOSAR Definition
	4.32 AUTOSAR Interface
	4.33 AUTOSAR Meta-model
	4.34 AUTOSAR Model
	4.35 AUTOSAR Partial Model
	4.36 AUTOSAR Processor Tool
	4.37 AUTOSAR Runtime for Adaptive Applications
	4.38 AUTOSAR Run-Time Interface (ARTI)
	4.39 AUTOSAR Service
	4.40 AUTOSAR Software
	4.41 AUTOSAR Tool
	4.42 AUTOSAR XML description
	4.43 AUTOSAR XML Schema
	4.44 Availability
	4.45 Basic Software
	4.46 Basic Software Module
	4.47 Bit Position
	4.48 Blueprint
	4.49 Bulk Data
	4.50 Bus Mirroring
	4.51 Bus Wake-Up
	4.52 Bypassing
	4.53 Calibration
	4.54 Call Point
	4.55 Callback
	4.56 Callout
	4.57 CAN XL
	4.58 Cascaded Switch
	4.59 Cascading Failure
	4.60 Category 1 Interrupt
	4.61 Category 2 Interrupt
	4.62 Causality of Transmission
	4.63 Classic Platform
	4.64 Client
	4.65 Client-Server Communication
	4.66 Client-Server Interface
	4.67 Cluster Signal
	4.68 Code Generator
	4.69 Code Variant Coding
	4.70 Common Cause Failure
	4.71 Communication Attribute
	4.72 Complex Driver
	4.73 Composition
	4.74 Compositionality
	4.75 Conditioned Signal
	4.76 Confidentiality
	4.77 Configuration
	4.78 Confirmation
	4.79 Connector
	4.80 Control Flow
	4.81 Coordinate
	4.82 Data
	4.83 Data Element
	4.84 Data Flow
	4.85 Data Variant Coding
	4.86 Deadline
	4.87 Debugging
	4.88 Dependability
	4.89 Dependent Failure
	4.90 Diagnostic Coverage
	4.91 Diagnostic Event
	4.92 Diversity
	4.93 Dynamic PDU
	4.94 Dynamic Routing
	4.95 E2E Profile
	4.96 E2E Protection Alive Counter
	4.97 E2E Protection Sequence Counter
	4.98 ECU Abstraction Layer
	4.99 ECU Configuration
	4.100 ECU Configuration Description
	4.101 ECU HW
	4.102 ECU Instance
	4.103 Electrical Signal
	4.104 Electronic Control Unit (ECU)
	4.105 Empty Function
	4.106 Entry Point
	4.107 Error
	4.108 Error Detection Rate
	4.109 Ethernet Switch Port Groups
	4.110 Event
	4.111 Event Message (SOME/IP)
	4.112 Executable
	4.113 Executable Entity Cluster
	4.114 Execution Order Constraint
	4.115 Execution Time
	4.116 Exit Point
	4.117 External Port
	4.118 Fail-operational
	4.119 Fail-safe
	4.120 Fail-silent
	4.121 Failure Mode
	4.122 Failure
	4.123 Failure Rate
	4.124 Fault
	4.125 Fault Detection
	4.126 Fault Reaction
	4.127 Fault Reaction Time
	4.128 Fault Tolerance
	4.129 Fault Tolerant Time Interval
	4.130 Feature
	4.131 Firewall
	4.132 Flag
	4.133 FlexRay
	4.134 Foundation
	4.135 Frame
	4.136 Frame PDU
	4.137 Freedom from Interference
	4.138 Freshness
	4.139 Function
	4.140 Functional Cluster
	4.141 Functional Network
	4.142 Functional Safety Concept
	4.143 Functional Safety Requirement
	4.144 Functional Unit
	4.145 Functionality
	4.146 Gateway
	4.147 Gateway ECU
	4.148 Graceful Degradation
	4.149 Hardware Abstraction Layer
	4.150 Hardware Connection
	4.151 Hardware Element
	4.152 Hardware Interrupt
	4.153 Hardware Port
	4.154 Health Indicator
	4.155 Hook
	4.156 Host ECU
	4.157 Host Port
	4.158 Hypervisor
	4.159 Identity and Access Management (IAM)
	4.160 Identity Information
	4.161 Implementation Conformance Class 1 (ICC1)
	4.162 Implementation Conformance Class 2 (ICC2)
	4.163 Implementation Conformance Class 3 (ICC3)
	4.164 Independence
	4.165 Independent Failures
	4.166 Indication
	4.167 Integration
	4.168 Integration Code
	4.169 Integrity
	4.170 Integrity Check Value
	4.171 Inter-Integrated Circuit I2C
	4.172 Intermediate PNC Coordinator
	4.173 Internal Port
	4.174 Interrupt Frame
	4.175 Interrupt Handler
	4.176 Interrupt Service Routine
	4.177 Interrupt Vector Table
	4.178 Interrupt
	4.179 Intrusion Detection System
	4.180 Invalid Flag
	4.181 Invalid Value of Signal
	4.182 I-PDU
	4.183 Life Cycle
	4.184 LIN Bus Idle
	4.185 Link State Accumulation
	4.186 Link Time Configuration
	4.187 Logical Execution Time (LET)
	4.188 Log and Trace
	4.189 Logging
	4.190 Machine
	4.191 Manifest
	4.192 Mappable Element
	4.193 Mapping
	4.194 Master Switch
	4.195 MCAL Signal
	4.196 Meta-data
	4.197 MetaDataItem
	4.198 Microcontroller
	4.199 Microcontroller Abstraction Layer
	4.200 Middleware
	4.201 Minimum Send Interval
	4.202 Mistake
	4.203 Mode
	4.204 Multimedia Stream
	4.205 Multiplexed PDU
	4.206 Network
	4.207 Network Interface
	4.208 NM Coordination Cluster
	4.209 NM Coordinator
	4.210 Non-repudiation
	4.211 Notification
	4.212 Onboard Security Event
	4.213 OS Application
	4.214 OS Event
	4.215 Partitioning
	4.216 Protocol Control Information
	4.217 Protocol Data Unit (PDU)
	4.218 PDU Meta-Data
	4.219 PDU Timeout
	4.220 Performance
	4.221 Peripheral Hardware
	4.222 Personalization
	4.223 Plausibility
	4.224 PNC Leaf Node
	4.225 PN shutdown message
	4.226 Policy Decision Point (PDP)
	4.227 Policy Enforcement Point (PEP)
	4.228 Port
	4.229 Port Interface
	4.230 Post-build Time Configuration
	4.231 Post-build Hooking
	4.232 Pre-build Hooking
	4.233 Pre-Compile Time Configuration
	4.234 Predictabiliy
	4.235 Pretended Networking
	4.236 Private Interface
	4.237 Probability of Failure
	4.238 Procedure Call
	4.239 Process
	4.240 Processed Manifest
	4.241 Profiling
	4.242 Proven In Use Argument
	4.243 Provide Port
	4.244 Rapid Prototyping
	4.245 Rapid Prototyping Memory Interface
	4.246 Rapid Prototyping Tool
	4.247 Rate Conversion
	4.248 Raw Data Stream
	4.249 Recovery
	4.250 Redundancy
	4.251 Reentrancy
	4.252 Reliability
	4.253 Relocatability
	4.254 Require Port
	4.255 Required Property
	4.256 Residual Error Rate
	4.257 Resource
	4.258 Resource-Management
	4.259 Response Time
	4.260 Risk
	4.261 Robustness
	4.262 RTE Event
	4.263 Runnable Entity
	4.264 SAE J1939
	4.265 Safe State
	4.266 Safety
	4.267 Safety Analysis
	4.268 Safety Case
	4.269 Safety Goal
	4.270 Safety Measure
	4.271 Safety Mechanism
	4.272 Safety Protocol
	4.273 Sample Application
	4.274 Scalability
	4.275 Scheduler
	4.276 Service Data Unit
	4.277 Security
	4.278 Secure Channel
	4.279 Security Event
	4.280 Sender-Receiver Communication
	4.281 Sender-Receiver Interface
	4.282 Sensor-Actuator SW-Component
	4.283 Server
	4.284 Service
	4.285 Service Discovery
	4.286 Service Instance
	4.287 Service Interface
	4.288 Service-Oriented Communication
	4.289 Service Port
	4.290 Service Proxy
	4.291 Service Skeleton
	4.292 Services Layer
	4.293 Signal Service Translation
	4.294 Slave Switch
	4.295 Software Cluster (Adaptive Platform)
	4.296 Software Cluster (Classic Platform)
	4.297 Software Component
	4.298 Software Component Interface
	4.299 Software Configuration
	4.300 Software Interrupt
	4.301 Software Package
	4.302 Software Platform
	4.303 Software Signal
	4.304 Software Unit
	4.305 Special Periphery Access
	4.306 Standard Periphery Access
	4.307 Standard Software
	4.308 Standardized AUTOSAR Blueprint
	4.309 Standardized AUTOSAR Interface
	4.310 Standardized Blueprint
	4.311 Standardized Interface
	4.312 Static Configuration
	4.313 Synchronization Points
	4.314 Synchronization
	4.315 Synchronous Communication
	4.316 Synchronous Function
	4.317 System
	4.318 System Constraint
	4.319 System Health Monitor
	4.320 System Signal
	4.321 Systematic Fault
	4.322 Task
	4.323 Technical Signal
	4.324 Timed Communication
	4.325 Timeout
	4.326 Top-level PNC Coordinator
	4.327 Tracing
	4.328 Trusted Platform
	4.329 Uplink Port
	4.330 Use Case
	4.331 Validation
	4.332 Variability
	4.333 Variant
	4.334 Variant Coding
	4.335 Variation Binding
	4.336 Variation Binding Time
	4.337 Variation Point
	4.338 Vehicle State Manager
	4.339 Vehicle Variant
	4.340 Vendor ID
	4.341 Verification
	4.342 VFB View
	4.343 Virtual Functional Bus
	4.344 Virtual Integration
	4.345 Virtualization
	4.346 Wake-up and Sleep on Dataline
	4.347 Worst Case Execution Time
	4.348 Worst Case Response Time

