AUTSSAR

Document Title AUTOSAR XML Schema
Production Rules

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 122

Document Status published

Part of AUTOSAR Standard Foundation

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR . letlnct produgtlon of IpstanceRefs:
11.07 RO5-11 Release different handling required for abstract
2025-11- 5 InstanceRefs and for InstanceRefs with
Management
abstract target class
AUTOSAR
2024-11-27 | R24-11 Release « Editorial changes
Management
AUTOSAR
2023-11-23 | R23-11 Release « Editorial changes
Management
« clarified usage of the term “properties”
AUTOSAR . .
2022-11-24 | R22-11 Release clarified when to produce xsd:groups
Management » minor corrections / clarifications /
editorial changes
2021-11-25 | R21-11 gg;gS:R * minor corrections / clarifications /
021-11- i editorial changes
Management
« allow additional property configuration,
AUTOSAR see section 3.1.2.3
2020-11-30 | R20-11 Release
Management * minor corrections / clarifications /
editorial changes
AUTOSAR « Editorial ChangeS
2019-11-28 | R19-11 | Release « Changed Document Status from Final to
Management published

AUTSSAR

AUTOSAR
2018-10-31 4.4.0 Release « Editorial changes
Management
AUTOSAR » minor corrections / clarifications /
2017-12-08 | 4.3.1 Release editorial changes; For details please
Management refer to the ChangeDocumentation
* Renamed Document
AUTOSAR * Removed chapter "6 XML description
2016-11-30 | 4.3.0 Release production rules"
Management i o
» Removed section about XML description
conformance from chapter 7
AUTOSAR » Minor corrections / clarifications /
2015-07-31 4.2.2 Release editorial changes; For details please
Management refer to the ChangeDocumentation
AUTOSAR » Formal adaptations concernin
2014-10-31 4.21 Release adap 9
traceability
Management
AUTOSAR , . .
* Minor corrections concerning XML
2014-03-31 | 4.1.3 Release namespace
Management
AUTOSAR Added tabular overview of default
2013-10-31 4.1.2 Release configuration of schema generator
Management ([TPS_XMLSPR_00056])
* Removed references to "Template UML
5013-03-15 | 4.1.1 AUTOSAR Profile and Modeling Guide"
Administration
» Changed chapter 3.2.4.1
» Formal adaptations concerning
traceability
» Harmonized naming proposal for arxml
2011-12-22 | 4.0.3 ﬁgTQ_SAR _ files with AUTOSAR_TR_
ministration InteroperabilityOfAutosarTools
» Updated XML Persistence mechanism
regarding primitive types with attributes
» Added description of tag default
configuration for association without
5010-09-30 | 3.1.5 AUTOSAR stereotype (chapter 3.2.3.1)
Administration
» Enhanced description of tag
‘xml.xsd.customType’

AUTSSAR

» Modeling and handling of primitive types
has been revised

* Inheritance information is visible in
schema now for all superclasses, also

AUTOSAR
2010-02-02 | 3.1.4 Administration for empty abstract classes
+ Variant Handling is handled in Generic
Structure Template
* Legal disclaimer revised
2008-08-13 | 3.1.1 AUTOSAR - Legal disclaimer revised
Administration
AUTOSAR * Document meta information extended
2007-12-21 3.0.1 o ,
Administration « Small layout adaptations made
* "Advice for users" revised
2007-01-24 | 2.1.15 ﬁgTQ.SAR .
ministration « "Revision Information” added
» Updated instanceRef references
* Only absolute paths allowed
AUTOSAR * Naming of instanceRef
2006-11-28 | 2.1 o .
Administration - Destination type of references
* Version info in namespace
* Legal disclaimer revised
2006-05-16 | 2.0 AUTOSAR * Initial Release

Administration

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction

2 XML Schema design principles
2.1 Notes on UML2.0 semantics of the AUTOSAR meta-model
2.1.1 Representation of association (aggregation = composite)
2.1.2 Representation of attribute (aggregation = composite)
2.1.3 Representation of associations (aggregation=none)
2.1.4 Representation of attributes (aggregation=none)
2.2 Notesonuseof W3C XMLschema
2.3 Handling Inheritance
2.4 GenericApproach
2.5 XML element versus attribute o oL
26 XMLnames
2.7 Orderof XML-elements
2.7.1 Orderofxmlelements
2.7.2 Order of xml elements of derived uml:properties
2.8 LiNKINg e
2.9 Transmitting incomplete Data
2.10ldentification of XML schema version in XML descriptions

3 Configuration of XML schema production

3.1 Tailoring schema production
3.1.1 Overview e
3.1.2 Constraintsontags

3.1.2.1 Constraints on tags applied to properties
3.1.2.2 Constraints on tags appliedtoclasses
3.1.2.3 Constraints on values of xml.*Element tagged values

3.2 Default configuration of XML schema production.
3.2.1 Configuration of multiplicites,
3.2.2 Mapping configuration for properties
3.2.3 Mapping configuration for references

3.2.3.1 References without stereotypes
3.2.3.2 Instancereferences.,
3.2.3.3 References with stereotype <isOfType>
3.2.4 Stereotypes appliedtoclasses
3.2.4.1 Stereotype <atpMixed>.
3.2.4.2 Stereotype <atpMixedString>>

4 XML Schema production rules
4.1 Create model representation
411 Createxsd:ischema,
4.2 Createclassrepresentation
421 Create xsd:group« o o v it

AUTSSAR

4.2.2 Create xsd:attributeGroup oL
4.2.3 Create xsd:complexType
4.2.4 Create xsd:complexType with simple content
4.2.5 Create global xsd:element
4.2.6 Create enumerationof subtypes
4.2.7 Create reference to XML predefined datatype
4.2.8 Create acustomsimpletype
4.2.9 Create xsd:simpleType for enumeration
4.3 Create composite property representation (mapping to XML attributes) .
4.3.1 Create xsd:attribute
4.4 Create composite property representation (mapping to XML elements) .
4.41 Create composite property representation (1111)
4.4.2 Create composite property representation (1101)
4.4.3 Create composite property representation (1100)
4.4.4 Create composite property representation (1011)
4.4.5 Create composite property representation (1000)
4.4.6 Create composite property representation (1001)
4.4.7 Create composite property representation (0111)
4.4.8 Create composite property representation (0101)
4.4.9 Create composite property representation (0100)
4.4.10 Create composite property representation (0011)
4.4.11 Create composite property representation (0001)
4.4 .12 Create composite property representation (0000)
4.5 Create reference representation
4.5.1 Create reference property representation (1)
4.5.2 Create reference property representation (0)
4.5.3 Create a reference to attributes in foreign namespaces

AUTOSAR XML schema compliance

Change history of AUTOSAR traceable items

A.1 Specification Item Mapping: Document migration from TRto TPS
A.2 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e
A.2.1 Added Specification ltemsin R25-11
A.2.2 Changed Specification Itemsin R25-11
A.2.3 Deleted Specification ltemsin R25-11
A.3 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e
A.3.1 Added Specification ItemsinR24-11
A.3.2 Changed Specification ltemsin R24-11
A.3.3 Deleted Specification ItemsinR24-11
A.4 Traceable item history of this document according to AUTOSAR Release
R23-11 . . e
A.4.1 Added Specification ltemsin R23-11

AUTSSAR

A.4.2 Changed Specification Items in R23-11

................ 91
A.4.3 Deleted Specification ltemsin R23-11 91
A.5 Traceable item history of this document according to AUTOSAR Release
R22-11 . . . e 92
A.5.1 Added Specification ItemsinR22-11 92
A.5.2 Changed Specification ltemsinR22-11 92
A.5.3 Deleted Specification ItemsinR22-11 92
A.6 Traceable item history of this document according to AUTOSAR Release
R21-11 . . e 92
A.6.1 Added Specification ltemsin R21-11 92
A.6.2 Changed Specification ltemsin R21-11 92

A.6.3 Deleted Specification Items in R21-11

AUTSSAR

References

[1] XML Schema 1.0
http://www.w3.0org/TR/xmlschema-1

[2] Meta Model
AUTOSAR_FO_MMOD_MetaModel

[38] XML Metadata Interchange (XMI) Specification version 2.1
http://www.omg.org/cgi-bin/apps/doc?formal/05-09-01.pdf

[4] XML Metadata Interchange (XMI) Specification version 1.2
http://www.omg.org/cgi-bin/apps/doc?formal/02-01-01.pdf

[5] Unified Modeling Language: Superstructure, Version 2.0, OMG Available Specifi-
cation, ptc/05-07-04
http://www.omg.org/cgi-bin/apps/doc?formal/05-07-04

[6] Unified Modeling Language OCL, Version 2.0, OMG Available Specification, ptc/
05-06-06
http://www.omg.org/cgi-bin/apps/doc?ptc/05-06-06.pdf

[7] ARXML Serialization Rules
AUTOSAR_FO_TPS_ARXMLSerializationRules

[8] MSR-SW
http://www.msr-wg.de/medoc/download/msrsw/v230/msrsw_v230-eadoc-en/
msrsw_v2_3_0.sl-eadoc.pdf

[9] XHTML
http://www.w3.org/TR/xhtml11/

[10] Generic Structure Template
AUTOSAR_FO_TPS_GenericStructureTemplate

[11] Meta-Object Facility MOF, Version 2.0, OMG Available Specification, ptc/04-10-15
http://www.omg.org/cgi-bin/apps/doc?ptc/04-10-15.pdf

http://www.w3.org/TR/xmlschema-1
http://www.omg.org/cgi-bin/apps/doc?formal/05-09-01.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/02-01-01.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/05-07-04
http://www.omg.org/cgi-bin/apps/doc?ptc/05-06-06.pdf
http://www.msr-wg.de/medoc/download/msrsw/v230/msrsw_v230-eadoc-en/msrsw_v2_3_0.sl-eadoc.pdf
http://www.msr-wg.de/medoc/download/msrsw/v230/msrsw_v230-eadoc-en/msrsw_v2_3_0.sl-eadoc.pdf
http://www.w3.org/TR/xhtml11/
http://www.omg.org/cgi-bin/apps/doc?ptc/04-10-15.pdf

AUTSSAR

1 Introduction

The AUTOSAR meta-model describes all information entities which can be used to
describe an AUTOSAR system. XML is chosen as a basis for the exchange of for-
mal descriptions of AUTOSAR systems. This document describes how a W3C XML
schema specification [1] compliant XML schema can be compiled out of the AUTOSAR
meta-model [2]. Using the production rules a new XML schema can be generated
automatically whenever the meta-model is updated. The schema production rules de-
fined in this document exceed the configuration possibilities of comparable approaches
like XMI [3][4] and enables the generic reproduction of a wide range of existing XML
schemas out of well-structured UML models. The numbers in brackets you can find in
this specification identify specification items.

Figure 1.1 describes the XML schema production rules in the overall context. The
meta-levels of the AUTOSAR modeling approach are described on the left side of the
image:

» The syntax and semantics of the language UML2.0 is described on the meta-
meta-level (M3). The AUTOSAR template profile [2] defines, which parts of
UML2.0 are allowed to be used in the AUTOSAR meta-model.

» The AUTOSAR meta-model [2] is a UML2.0 [5] model that defines the language
for describing AUTOSAR systems. The AUTOSAR meta-model is a graphical
representation of a template. UML2.0 class diagrams are used to describe the
attributes and their interrelationships. Stereotypes and OCL [6] (object constraint
language) are used for defining specific semantics and constraints.

+ An AUTOSAR model is an instance of the AUTOSAR meta-model. The infor-
mation contained in the AUTOSAR model can be anything that is representable
according to the AUTOSAR meta-model.

The meta-levels of the XML language are described on the right side of Figure 1.1:

» The W3C XML schema specification [1] defines how a W3C XML schema can
be defined.

* The AUTOSAR XML schema is a W3C XML schema that defines the language
for exchanging AUTOSAR models. This XML schema is derived from the AU-
TOSAR meta-model by means of the rules defined in this document. The AU-
TOSAR XML schema defines the AUTOSAR data exchange format.

« An AUTOSAR XML description describes the XML representation of an AU-
TOSAR model. The AUTOSAR XML description can consist of several fragments
(e.g. files). Each individual fragment must validate successfully against the AU-
TOSAR XML schema.

This document describes how the AUTOSAR meta-model is mapped to the AUTOSAR
XML schema by means of the XML schema production rules.

AUTSSAR

The mapping between AUTOSAR User Models and AUTOSAR XML Descriptions is

described in the ARXML Serialization Rules [7].

umL2.0

«profile»

M3: AUTOSAR Meta Metamodel

AUTOSAR Template Profile

W3C XML Schema specification

e.g.: Class, Property, Association, <
Tagged Value, <<instanceRef>> «import»
A\ 7
| /
| /
| /
«instanceOf» /
/7
: «apply»
| /
AUTOSAR Templates /
M2: AUTOSAR Metamodel //
/
e.g.: PortPrototype, SwComponentType
A XML Schema Production Rules
|

|

|

|

|
«instanceOf»

'

AUTOSAR User Models

AUTOSAR XML Schema

<xsd:schema
xmins:xsd="http://www.w3.0rg/2001/XMLSche
ma" attributeFormDefault="unqualified"
elementFormDefault="qualified"
targ ="http://
r4.0"
xmins:AR="http://autosar.org/schema/r4.0">

.org/sct /

</xsd:schema>

M1: AUTOSAR Model

e.g.: CompositionType
"WindshieldWiper"

______________ =

ARXML Serialization Rules

AUTOSAR XML Description

<... xmins="http://autosar.org"
xmins:xml="http://www.w3.org/XML/1998/na
mespace”
xmins:xsi="http://www.w3.0rg/2001/XMLSche
ma-instance"
xsi:schemalLocation="http://autosar.org
AUTOSAR.xsd">

<Jo>

Figure 1.1: Context of XML schema production rules

This document is structured as follows:

Chapter 1 (this chapter) describes the model XML schema production rules in the
overall context of the AUTOSAR meta-model and the XML language.

Chapter 2 describes the XML schema design principles. Some notes on the
UML2.0 semantics of associations, attributes, references and properties are
given first, followed by a discussion on the basic principles including aspects
such as names of XML elements, transmitting incomplete data, linking, etc.

Chapter 3 describes how the XML schema production rules can be parameterized
by means of tagged values. Additionally a default configuration for mapping the
AUTOSAR meta-model to the AUTOSAR XML schema is given.

Chapter 4 describes the XML schema production rules in more detail. The rela-
tionship between the rules is illustrated graphically.

Note: This document contains examples for illustration of the XML schema production
rules. Some examples are taken out of the AUTOSAR meta-model and simplified for
better readability. Therefore these examples might not be in sync with the latest version
of the AUTOSAR meta-model.

AUTSSAR

2 XML Schema design principles

This chapter first describes some notes on XML schema and on UML2.0 semantics of
the AUTOSAR meta-model and then gives a brief description on some basic principles,
which include a short description of XML names, order of XML elements and linking.

2.1 Notes on UML2.0 semantics of the AUTOSAR meta-model

In UML2.0 [5] attributes and navigable association ends are represented as properties.
Since the AUTOSAR Template Profile only supports associations with two association
ends, attributes and associations can be considered as equivalent for the XML schema
production rules. Therefore the XML schema production rules can concentrate on
classes and properties.

The following four sections give more information on the UML2.0 semantics of these
concepts. Each chapter contains a diagram which shows the concept in the UML
graphical notation (upper half of the diagram) and how it is represented as an instance
of the UML2.0 meta-model (lower part of the diagram).

Please note that in UML2.0 compositions and references are both described by means
of associations. The only difference is the value of the attribute "aggregation" of the
association ends. For a more detailed description of the UML2.0 semantics please
refer to the UML2.0 superstructure specification [5].

In the following sections the value of the attribute "aggregation” of the navigable asso-
ciation end is shown in brackets behind the association.

In the following sections the term "Property" will always mean a primitive attribute of a
class or the target end of an association that is either a reference (aggregation = none)
or a composition (aggregation = composite).

2.1.1 Representation of association (aggregation = composite)

Figure 2.1 depicts how a composite association is represented by means of instances
of the UML2.0 meta-model. The association end 'theC’ is navigable from class A and
is represented as a property that is owned by class ’A’. The association end that is not
navigable is owned by the association.

The information represented by the anonymous association and the not navigable
property is not relevant for the XML schema production rules: From the point of view of
production rules there is not difference between composite association and an attribute
(see also next section).

AUTSSAR

+theC

«metaclass» «metaclass»
:Class :Class
name = A name =C
+type
+ownedAttribut
:Property «metaclass»
+ownedEnd :Property
aggregation = nonel————— <@ :Association +memberEnd e =
upper =1 +memberEnd | ——— aggregation = compositg
lower = 0 name = upper = unbounded
name = lower =0
name = theC

Figure 2.1: Representation of association (aggregation = composite)

2.1.2 Representation of attribute (aggregation = composite)

Figure 2.2 depicts how an attribute is represented by means of instances of the UML2.0

meta-model. The attribute 'theC’ is represented as a property that is owned by class
A

AUTSSAR

A (o]
+ theC: C*[0..*]

«metaclass» «metaclass»

:Class :Class

name = A name =C

+type
+ownedAttribute
«metaclass»
:Property

aggregation = composite
upper = unbounded
lower = 0

name = theC

Figure 2.2: Representation of attribute (aggregation = composite)

2.1.3 Representation of associations (aggregation = none)

Figure 2.3 depicts how a reference (association with aggregation = none) is repre-
sented by means of instances of the UML2.0 meta-model. The association end 'theB’
is navigable from class D and is represented as a property that is owned by class 'D’.

The information represented by the anonymous association and the not navigable
property is not relevant for the XML schema production rules. From the point of view
of the production rules there is no difference between a reference and an attribute
with aggregation=none (see also next section). However, the AUTOSAR meta-model
allows stereotypes for references. The special semantics are handled separately as
described in Chapter 3.2.3.

AUTSSAR

D B
+theB
0 *
«metaclass» «metaclass»
:Class :Class
name =D name = B

+type

+ownedAttribute
«metaclass» ~N

«metaclass»

:Property +memberEnd :Property
- «metaclass» +memberEnd
aggregation = none :Association name = theB
lower = 0 +ownedEnd lower = 0
upper = 1 & name = upper = unbounded

name =

aggregation = none

Figure 2.3: Representation of association (aggregation = none)

2.1.4 Representation of attributes (aggregation = none)

Figure 2.4 depicts how an attribute with aggregation = none is represented by means of
instances of the UML2.0 meta-model. The attribute 'theB’ is represented as a property
that is owned by class 'D’.

Notes:

* A property with ’aggregation = none’ is represented by a "*" in the UML2.0 graph-
ical representation (attribute: theB: B*[0..]).

» According to the AUTOSAR Template Profile only attributes with aggrega-
tion=composite are allowed. However, the XML schema production rules cover
those attributes since they do not add complexity: For the XML schema produc-
tion rules attributes with aggregation=none (described in this section) are equiv-
alent to associations with aggregation=none (described in Chapter 2.1.3).

AUTSSAR

D B

+ theB:B*[0.*]

«metaclass» «metaclass»
:Class :Class

name =D name =B

+type

+ownedAttribute

«metaclass»

ZPI’DEEI’tX

aggregation = none
upper = unbounded
lower =0

name = theB

Figure 2.4: Representation of attribute (aggregation = none)

2.2 Notes on use of W3C XML schema

A W3C XML schema provides means by which a validating XML parser can validate
the syntax and some of the semantics of an XML description.

XML validation can determine e.g.
» whether required XML elements are available,
« whether additional XML attributes or XML elements that are not allowed are used,
» or whether some values fit to a given regular expression.

Although some checking can be done, it is impossible to rely solely on XML validation
to verify that the represented model satisfies all of a model's semantic constraints.

[TPS_XMLSPR_00054] W3C XML Schema Version 1.0 [The AUTOSAR XML
Schema conforms to the W3C XML Schema Version 1.0 (see [1]).]

The production rules described in this document make sure that for each class, at-
tribute and association represented in the AUTOSAR meta-model a representation in
the AUTOSAR XML schema exists. Additionally, they make sure that the mapping
between the AUTOSAR meta-model and the AUTOSAR schema is unambiguous.

In other words:

AUTSSAR

» An instance of the AUTOSAR meta-model maps unambiguously to an AUTOSAR
XML description and

« An AUTOSAR XML description that is valid with respect to the AUTOSAR XML
schema maps unambiguously to an instance of the AUTOSAR metamodel.

This also holds for incomplete XML descriptions.

E.g.: The XML element ATOMIC-SOFTWARE-COMPONENT-TYPE always represents
content that is described by the class AtomicSoftwareComponentType.

2.3 Handling Inheritance

[TPS_XMLSPR_00029] Inheritance in the AUTOSAR XML Schema [Inheritance in
the AUTOSAR meta-model is mapped to XML schema by the following mechanisms:

» For each class in the AUTOSAR meta-model groups are created which contain
the XML-elements and XML-attributes that represent the properties that are di-
rectly defined by the class. Classes without properties with xml.attribute=false
will result in empty groups.

» Additionally an xsd:complexType representing the full content of the concrete
class is created. The structure of this xsd:complexType is defined by referencing
the group that defines the properties of the class itself and the xsd:groups that
define the properties of the super-classes. The group representing the most gen-
eral class (root of inheritance tree) is referenced first. The group representing the
class itself is referenced last.

]

This concept allows for using polymorphism on XML level: The most general properties
can always be found at the beginning of an XML-element. The more specific properties
are appended at the end of a description.

Additionally properties that are directly defined by a class are grouped together. (See
Chapter 2.7 for more details on the order of XML-elements and groups).

2.4 Generic Approach

The AUTOSAR XML schema production rules exceed the configuration possibilities
of comparable approaches like XMI. This enables the generic reproduction of a wide
range of existing XML formats such as MSR-SW [8] and XHTML [9].

AUTSSAR

2.5 XML element versus attribute

In accordance to the MSR-TR-CAP the production rules map all content related in-
formation to XML elements. This default rule can be overwritten by assigning the
tagged value 'xml.attribute=true’ to the respective property. If ’xml.attribute=true’ then
the property is translated to an XML-attribute. (See 3.1.2.1 for more details on this
tagged value).

2.6 XML names

[TPS_XMLSPR_00030] XML Names [All XML-elements, XML-attributes, XML-groups
and XML-types used in the AUTOSAR XML schema are written in upper-case letters.
In order to increase the readability of the XML names, hyphens are inserted in the XML
names which separate parts of the names.

This document refers to a name that is translated as described in this section as a
XML-name.

Non-alphanumeric characters SHALL not be used in UML names.

Formally, the following algorithm describes the translation of the UML names to XML
names:

1. Remove all non-alphanumeric characters from the UML name. If such characters
exist, raise an error.

2. Split up the UML name from left to right into tokens. A new token starts whenever
an uppercase letter or digit is found.
TestECUCIlass12ADC -> [Test, E, C, U, Class, 1, 2, A, D, C]

3. lterate through the list, beginning from the last element and join adjacent single
uppercase letters and join adjacent digits.
E.g.:
[Test, E, C, U, Class, 1, 2, A, D, C] ->
[Test, E, C, U, Class, 1, 2, A, DC] ->
[Test, E, C, U, Class, 1, 2, ADC] ->
[Test, E, C, U, Class, 12, ADC] ->
[Test, E, CU, Class, 12, ADC] ->
[Test, ECU, Class, 12, ADC]

4. Convert all tokens to uppercase:
E.g.: [TEST, ECU, CLASS, 12, ADC]

5. Concatenate the tokens using a hyphen:
E.g.: TEST-ECU-CLASS-12-ADC

AUTSSAR

If the default mapping is not suitable, the XML name can be explicitly defined by spec-
ifying the tagged value 'xml.name’ for the corresponding UML model element. In this
case, the value of xml.name SHALL NOT be empty, only alphanumeric characters and
hyphens SHALL be used as the value of xml.name, and the first and the last character
of the value SHALL be alphanumeric.

[TPS_XMLSPR_00031] XML Name Plurals [A plural XML-name is created by ap-
pending an "S" to the singular XML-name. |

If this rule is not suitable, then the plural XML-name can be explicitly defined by speci-
fying the tagged value ’xml.namePlural’ for the corresponding UML model element.

Examples: XML names of elements, types, groups and attributes

The following table shows some examples of translations from meta-model names to
names used in the XML schema:

Name in AUTOSAR meta-model XML name
SystemConstraintTemplate SYSTEM-CONSTRAINT-TEMPLATE
ECUResourceTemplate ECU-RESOURCE-TEMPLATE
HardwarePowerMode HARDWARE-POWER-MODE

Min MIN

TestECUClass12ADC TEST-ECU-CLASS-12-ADC

Uuid uuiD

testECU TEST-ECU

MiData1 ML-DATA-1

Table 2.1: Examples for mapping of AUTOSAR meta-model names to XML names

2.7 Order of XML-elements

In order to decrease the complexity and to improve the performance of tools that read
AUTOSAR XML descriptions a predictable order of XML-elements is defined. Addition-
ally the order of XML-elements improves the human readability of XML descriptions.

2.7.1 Order of xml elements

[TPS_XMLSPR_00032] Order of XML elements [Properties owned by classes in the
AUTOSAR meta-model are mapped to XML-elements. By default, the AUTOSAR XML
schema defines a certain sequence on XML elements which follows an alphabetical
ordering’. |

The alphabetical ordering applies to the XML-names.

AUTSSAR

This default rule can be overwritten by using the tagged value 'xml.sequenceOffset’.
The value can be all integers between -999 to 999. The default value of
xml.sequenceOffset is 0.

If offsetA is the offset of elementa and offsetB is the offset of elementB then:
offsetA < offsetB = elementA is listed before elementB

Elements with the same offset are ordered alphabetically.

2.7.2 Order of xml elements of derived uml:properties

Chapter 2.7.1 described the order of the XML elements without considering inheri-
tance. In case of inheritance not only the XML elements that are generated out of the
properties that are directly defined by a class need to be considered. Additionally the
XML-elements defined by the super-classes are relevant.

[TPS_XMLSPR_00033] Order of XML elements with Inheritance [The XML ele-
ments that represent XML elements directly owned by a class are grouped together
and ordered as described in [TPS_XMLSPR_00032]. The groups of XML elements
are ordered as described by the pseudo code below:

// global variables
int index = 1;
Hashtable sequencelIndexTable = new Hashtable();

// method setSequencelndex is invoked recursively
void setSequencelndex (Class class) {
List directBaseClasses = getDirectBaseClasses(class);

// 1f class has baseclasses
If (!'directBaseClasses.isEmpty ()) {
// split up set of baseclasses into two groups
List classesWithSupertypeldentifiable =
getClassesWithSupertypeldentifiable (directBaseClasses);
List classesWithoutSupertypeIdentifiable =
getClassesWithoutSupertypeldentifiable (directBaseClasses);

// sort each group as defined above
sort (classesWithSupertypeldentifiable);
sort (classesWithoutSupertypeldentifiable);

// for all classes with supertype identifiable do

for (int i1=0; i<classesWithSupertypeldentifiable ; i++) {
setSequencelIndex (classesWithSupertypeIdentifiable[i]);

}

// for all classes without supertype identifiable do

for (int i=0; i<classesWithoutSupertypeldentifiable ; i++) {
setSequenceIndex (classesWithoutSupertypeldentifiable[i]);

}

} // end if

// if sequence index is not already set, assign a new one.

AUTSSAR

If

return;
} else {

// the sequence index is not yet set
sequencelndexTable.put (class,

index++;

]

(sequencelIndexTable.contains (class)) {
// the sequence is already set.
inheritance

index) ;

This can result from diamond //

Figure 2.5 shows an example of the ordering of XML elements within the XML schema.
The numbers next to class Identifiable indicate the sequenceOffset of directly
owned properties. The comments indicate the sequence of the groups of XML ele-

ments.
LN
3 sequenceOffset
-120
PropertyEvaluator -100
{abstract} 0
0
0
0

1

«atpldentifiable»
Identifiable

{abstract}

Y

+ o+ o+ o+ +

shortName: Identifier
longName: String [0..1]
category: String [0..1]

uuid: String [0..1]
checksum: String [0..1]
timestamp: DateTime [0..1]

JA

T

PropertyContainer
{abstract}

+properti

PropertyPrototype

+ defaultValue: String [0..1]
0.%| 4+ type: Enumeration{Int, Float, Boolean}

I

?lj

i

AtomicSoftwareComponentType

i

«atpldentifiable»
ARElement
{abstract}
5

ComponentType porth

{abstract} |+component +ports S AE
{abstract}
0.*

Figure 2.5: Order of XML elements

First the attributes from Tdentifiable are mapped to the XML schema. After that the
properties from PropertyContainer, PropertyEvaluator, ARElement, Compo-
nentType and AtomicSoftwareComponentType are mapped.

AUTSSAR

An xsd:group is created for all classes. The XML elements in each xsd:group are
ordered as defined in section 2.7.1 (in this example all properties are mapped to XML
elements):

» xsd:group for Identifiable:

<xsd:group name="IDENTIFIABLE">
<xsd:sequence>
<xsd:element name="SHORT-NAME" type="AR:IDENTIFIER"/>
<xsd:element name="LONG-NAME" type="xsd:string" minOccurs="0"/>
<xsd:element name="CATEGORY" type="xsd:string" minOccurs="0"/>
<xsd:element name="CHECKSUM" type="xsd:string" minOccurs="0"/>
<xsd:element name="TIMESTAMP" type="xsd:string" minOccurs="0"/>
<xsd:element name="UUID" type="xsd:string" minOccurs="0"/>
</xsd:sequence>
</xsd:group>

SHORT-NAME is listed first because it has the smallest sequenceOffset (-120).
It is followed by LONG-NAME (sequenceOffset=-100). All other properties have
a sequenceOffset=0 and are sorted in alphabetical order.

» xsd:group for PropertyContainer:

<xsd:group name="PROPERTY-CONTAINER">
<xsd:sequence>
<xsd:element name="PROPERTIES" minOccurs="0" maxOccurs="
unbounded" >

</xsd:element>
</xsd:sequence>
</xsd:group>

» xsd:group for ComponentType:

<xsd:group name="COMPONENT-TYPE">
<xsd:sequence>
<xsd:element name="PORTS" minOccurs="0" maxOccurs="unbounded" >
</xsd:element>
</xsd:sequence>
</xsd:group>

According to the rules for order of elements in case of inheritance these xsd:groups
are composed together in the following order:

<xsd:complexType name="ATOMIC-SOFTWARE-COMPONENT-TYPE" abstract="false"
mixed="false">
<xsd:sequence>
<xsd:group ref="AR:IDENTIFIABLE"/>
<xsd:group ref="AR:PROPERTY-CONTAINER"/>
<xsd:group ref="AR:PROPERTY-EVALUATOR"/>
<xsd:group ref="AR:AR-ELEMENT"/>
<xsd:group ref="AR:COMPONENT-TYPE"/>
<xsd:group ref="AR:ATOMIC-SOFTWARE-COMPONENT-TYPE" />
</xsd:sequence>
</xsd:complexType>

AUTSSAR

2.8 Linking

[TPS_XMLSPR_00034] XML Representation of meta-class references
[References between meta-classes are represented by XML-elements suffixed
with <...-REF> or <...-TREF>. |

For more details about the representation of associations in XML descriptions, please
refer to Generic Structure Template [10].

2.9 Transmitting incomplete Data

[TPS_XMLSPR_00028] Optional XML elements [In order to allow the exchange of
incomplete AUTOSAR descriptions, by default all XML elements are optional. |

This default rule can be overwritten by marking a meta-model element with the tagged
value 'xml.enforceMinimumMultiplicity=true’. In this case the lower value of the multi-
plicity will be used as minimum occurrence of an XML element in the AUTOSAR XML
schema.

2.10 Identification of XML schema version in XML descriptions

[TPS_XMLSPR_00035] XML schema version [The version of the AUTOSAR release
is encoded into the namespace of the AUTOSAR XML schema. The format of the
namespace is defined by http://autosar.org/schema/r<major>.<minor>. |

This allows for parallel use of different versions of AUTOSAR XML schema and AU-
TOSAR XML descriptions. E.g. the namespace of the AUTOSAR XML schema pub-
lished with AUTOSAR release 4.0 is http://autosar.org/schema/r4.0.

AUTSSAR

3 Configuration of XML schema production

In order to reduce the complexity of the mapping rules and to increase the transparency
of the mapping between meta-model classes with their attributes and associations on
the one side, and XML-elements on the other side, the mapping rules do not directly
operate on the AUTOSAR meta-model. Instead it is translated in two steps:

» Step1: Configuration of XML schema production.
In a first step the AUTOSAR meta-model is translated to a simplified intermediate
model’. Content relevant information of the AUTOSAR meta-model is mapped
to classes, properties, enumerations, primitive data types and tagged values. If
not otherwise mentioned missing tagged values are set to their default value as
described in section 3.1.1ff. Some more complex mappings are described in
chapter 3.2.

» Step 2: Schema production.
The schema production rules use the intermediate model as input. The rules are
parameterized by the tagged values defined in Step 1. See chapter 4 for more
details on the schema production rules.

3.1 Tailoring schema production

3.1.1 Overview

[TPS_XMLSPR_00036] Tailoring XML schema production |

Value Default Applica- _
Tag Name Type Value ble to Description
extension- Boolean | False Class If set to true, then the class is
Point mapped as it would have subclasses.
This allows for later adding
subclasses without loosing
compatibility to older XML
descriptions.
xml.attribute Boolean | False Property: If true, serializes the property as an
Attributes | XML attribute. By default all
only properties are mapped to XML
elements.
Vv

'The intermediate model only uses concepts which are available in EMOF [11].

AUTSSAR

A

Tag Name

Value
Type

Default
Value

Applica-
ble to

Description

xml.
attributeRef

Boolean

False

Property

If true, serializes the property as an
XML attribute reference (e.g.
<xsd:attribute ref="xml:space" >).
The namespace is taken from the
value of xml.nsPrefix, the value of
xml.name must be a valid name in
that namespace.

xml.
enforceMax-
Multiplicity

Boolean

True

Property

If true, enforce maximum multiplicity;
otherwise, it is "unbounded". By
default xml.enforceMaxMultiplicity is
true.

xml.enforce
Min
Multiplicity

Boolean

False

Property

If true, enforce minimum multiplicity;
otherwise, it is "0". In order to allow
for transmitting partial information,
the minimum multiplicity is not
enforced by default.

xml.glob-
alElement

Boolean

False

Class

If true, a global xsd:element is
created for the tagged class. This
xsd:element can be used as the root
element of an instance of the
schema. This tag needs to be
explicitly defined in the AUTOSAR
meta-model. Usually only the
meta-class AUTOSAR is represented
by a globally defined XML element.

xml.mds.type

String

Empty

Class with
stereotype
«primitive»

This tag identifies the
xsd:simpleType or xsd:complexType
which represents the primitive data
type in the meta-model. In contrast
to the 'xml.xsd.customType’ tag, this
tagged value indicates a schema
fragment that is predefined within the
schema generator. Therefore types
tagged by 'xml.mds.type’ are not
generated into the schema based on
the tagged class within the model.
Hence using this tag requires
knowledge of the schema generation
process it has to be ensured that only
types created within the generation
process are referenced by this tag.

AUTSSAR

A
Value Default Applica- P
Tag Name Type Value ble to Description
xml.name String See Property, Provides the name of a schema
column Class fragment (element, attribute, group,
"Descrip- etc.) that represents the role or
tion" class. If not explicitly defined in the
AUTOSAR meta-model, then this
value is calculated as explained in
[TPS_XMLSPR_00030].
xml. String See Property, Provides the plural name of a
namePlural column Class schema fragment (element, attribute,
"Descrip- group, etc.) that represents the role
tion" or class. If not explicitly defined in
the AUTOSAR meta-model, then this
value is calculated as explained in
[TPS_XMLSPR_00031].
xml.nsPrefix String AR Package, By default all XML-elements are
Class, assigned to the namespace prefix
Property "AR".
If this namespace prefix is applied to
a package then it is implicitly applied
to all owned classes and packages
not defining their own namespace.
xml.nsURI String http://au- | Package, By default all XML-elements are
tosar.org/ | Class assigned to the namespace http:/
schema/ autosar.org/schema/r<major>.
r<majors. <minor>
<minor> If the namespace is applied to a
package then it is implicitly applied to
all owned classes and packages not
defining their own namespace.

AUTSSAR

Value
Type

Default

Tag Name
g Value

Applica-
ble to

Description

xml.ordered Boolean | True

Class

If true, the order of XML elements
representing the properties of a class
is defined in a fixed order.

If false, the order of XML elements
representing the properties of a class
is defined in arbitrary order.
Additionally all XML-elements may
occur several times.

Please note that the tagged value
'xml.ordered’ applies to the full XML
representation of the class: All
XML-elements are ordered
regardless if they are inherited or not.

xml. Boolean | See
roleElement column
"Descrip-
tion"

Property

If set to true, the xml.name of the role
shows up as an XML-element. If not
explicitly defined in the AUTOSAR
meta-model, then the default rules as
described in [TPS_XMLSPR_00056]
are applied.

xml. Boolean | See
roleWrap- column
perElement "Descrip-
tion"

Property

If set to true, the xml.namePlural of
the role shows up as an
XML-element. This XML element is
usually used to group several role
elements or type elements. If not
explicitly defined in the AUTOSAR
meta-model, then the default rules as
described in [TPS_XMLSPR_00056]
are applied.

xml.se-
quenceOffset

Integer 0

Property,
General-
ization

The sequenceOffset is used to
define the order of XML elements
representing owned and derived
properties. The range of
sequenceOffset varies from -999 to
999. The elements with the smallest
sequenceOffset are created first.
Elements which have the same
sequenceOffset are ordered
alphabetically. If not explicitly defined
in the AUTOSAR meta-model, then
the xml.sequenceOffset is set to 0.

AUTSSAR

Tag Name

Value
Type

Default
Value

Applica-
ble to

Description

xml.text

Boolean

False

Class

If true, text is allowed between the
XML elements representing the
properties. By default no text is
allowed between the properties.
Please note that the tagged value
'xml.text” applies to the full XML
representation of the class: Text may
be written between all
XML-elements, regardless if they are
inherited or not.

xml.
typeElement

Boolean

See
column
"Descrip-
tion"

Property

If set to true, the xml.name of the
type shows up as an XML-element. If
not explicitly defined in the
AUTOSAR meta-model, then the
default rules as described in
[TPS_XMLSPR_00056] are applied.

xml.
typeWrap-
perElement

Boolean

false,
see also
column
"Descrip-
tion"

Property

If set to true, the xml.namePlural of
the type shows up as an
XML-element. The type wrapper
wraps several occurrences of the
same type. If not explicitly defined in
the AUTOSAR, then the default rules
as described in
[TPS_XMLSPR_00056] are applied.

xml.xsd.
customType

String

Empty

Class with
stereotype
«primitive»

This tag is applicable to a
«primitive». It specifies the name of
the xsd:simpleType which represents
the primitive type.

xml.xsd.
maxLength

Integer

Empty

Class with
stereotype
«primitive»

Length restriction for defining a
custom primitive type based on a
string type. xml.xsd.type must be
string.

xml.xsd.
pattern

String

Empty

Class with
stereotype
«primitive»

Regular expression, used as
restriction for defining a custom
primitive type based on a string type.
xml.xsd.type must be string.

\Y

AUTSSAR

A
Value Default Applica- _
Tag Name Description
9 Type Value ble to P

xml.xsd.type | String Empty Class with | This tag identifies the xsd:simpleType
stereotype | which represents the primitive data
«primitive» | type in the meta-model. The value
refers to a W3C XML schema data
type. The value of the tagged value
shall not contain the namespace of
the W3C schema. E.g.: Instead of
'xsd:string’ please use ’string’.
xml.xsd. String Empty Class with | Flag, whether whitespace in the
whitespace stereotype | value of the primitive type needs to
«primitive» | be preserved. Valid values are
{preserve, default}.

Tagged values that can be used for tailoring the mapping rules

3.1.2 Constraints on tags

Some tags are not allowed to be used in combination with other tags. These constraints
are listed in the next two subchapters.

3.1.2.1 Constraints on tags applied to properties

[TPS_XMLSPR_00057] Constraints on tags applied to properties |

Constraints on = = 2 >
tags applied to o _ 2 2 2|3
properties ® s | © S @ o | £ = £
) =] L = L = =) > @)
= e pe 5 S S s 1
€ o [} o o o o] x c (&)
@ 2 | oy w a E o = S
ks E|l o | @ 2 | 8 =2 | 3 g
S c e | = > | = I= S = 3
= IS = o = [= S) 73
b E © E o E c =
x = > 42‘ (o) () E
E E E|E |~
S S €| %
xml.name /
xml.namePlural
xml.roleElement / o]
xml.roleWrap- / o
perElement

AUTSSAR

A
Constraints on = = 2 =
tags applied to o _ 2 2 2 5
properties ® 5 | 2 S o o | £ £ 2
2| 5% 5|82 /2|2|%
I) QL o i Q 2 % c Q
= © 2 © o o @ o) [} =)
£ S e = > | = I O o g
1T E|lE |l 2| E|Y X | & | & | @
S e 6] e & = = _
= = X Z @ [} S
E E E|E |7
> > =<
xml.typeElement / o)
xml.typeWrap- /
perElement 0
xml.attribute 0 0 o] o] / 0] o]
xml.enforceMax- /
Multiplicity °
xml.enforceMin- /
Multiplicity
xml. /
sequenceOffset 0
]

If the tagged value ’'xml.attribute’ is set to true, then an XML attribute is cre-
ated for the respective property. The name of the XML attribute is de-

fined by the tagged value ’'xml.name’. If the lower value of the multi-
plicity of the property is bigger than 0 and ’'xml.enforceMinMultiplicity’ is set
to true, then the ’use’ of the XML attribute is set to ’required’. The

tagged values ’'xml.roleElement’, ’'xml.roleWrapperElement’, ’xml.typeElement’,
'xml.typeWrapperElement’, ’xml.enforceMaxMultiplicity’ and ’xml.sequenceOffset’ are
ignored if the tagged value 'xml.attribute’ is set to 'true’.

Please note, that the tagged value ’xml.attribute’ is only allowed if the upper multiplicity
of the property is 1 and the type of the property is an enumeration or a primitive data

type.

AUTSSAR

3.1.2.2 Constraints on tags applied to classes

[TPS_XMLSPR_00058] Constraints on tags applied to classes |

Constraints on tags — c
- © o ()
applied to classes o 5 3 = L o
£ o 5 ¥ 2 = =
© [o e w o] &}
c e = —_ © n e
= © Q = o] = €
S S | E| | 35| & |E
I= X =2 < g

3 £

x
xml.name / (o] o]
xml.namePlural / 0] 0]
xml.ordered / o] o]
xml.text / (o] o]
xml.globalElement o] (o]
xml.xsd.type / o}
xml.mds.type 0 0 o} o o} /

]

The tagged values xml.xsd.type’ and 'xml.mds.type’ are used to specify a predefined
data type which is defined in the W3C XML schema specification or in the Generic
Structure Template [10]. If these tagged values are applied, then all other tagged
values are ignored.

3.1.2.3 Constraints on values of xml.*Element tagged values

The following table depicts which combinations of values of the xml.*Element tags are
allowed. The column usage defines that a combination is either preferred, alternative,
"handle with care" or not allowed. The first two categories always lead to consistent,
unambiguous XML schema. The "handle with care" category describes mapping rules
which might lead to invalid XML schema. Those mapping rules are allowed in order to
be able to support some MSR-TR-CAP concepits.

AUTSSAR

[TPS_XMLSPR_00059] Constraints on values of xml.*Element tagged values [

xml.roleWrapperElement
xml.roleElement

xml.typeWrapperElement
xml.typeElement

description

Usage (P=preferred,

A

handle
not allowed)

alternative, H=

with care, N

used in standard

Handle with care: The resulting
pattern will result in ambiguous
XML schema

T

MSR

Handle with care: Role
Information is missing - might lead
to ambiguous XML schema if two
roles have the same type

Not allowed: typeWrapperElement
without typeElement

Handle with care: Role
Information is missing - might lead
to ambiguous descriptions if two
roles have the same type

MSR

MSR

Preferred for properties without
inheritance and upper multiplicity
=1, Handle with care if used with
inheritance

XMI2.0,
XMi2.1,
MSR

Preferred for properties with
inheritance and upper multiplicity
=1.

Not allowed: typeWrapperElement
without typeElement

Alternative solution for 0101 if the
typeElements need to be wrapped
by a typeWrapperElements.

XMI1.2

MSR

Handle with care: Type Element
and Role Information is missing -
might lead to ambiguous
descriptions if used with upper
multiplicity > 1 and/or inheritance.
It is a kind of shortchut for
polymorphism and applies to very
specific usecases.

\Y

AUTSSAR

A
£ = ° D
£ £ - T S
] = o = 52| B
E e | % £ FEACII
8 2 8 Qo a8 §
o w o w % ¢ S -
S 2 8 8 S > £ c
= o = > TEZ £
— Q —
© 2 acs 3
o : > g ©o8 3 9
E E R
3 b3 description o5< =
Preferred for properties with upper
L e ¢ L multiplicity > 1 . MSR
’ 0 ’ 0 Not allowed: typeWrapperElement
without typeElement
Alternative mapping for (1001) if
the typeElements need to be
1 0 1 1 wrapped by a A MSR
typeWrapperElements.
alternative for properties without
inheritance and upper multiplicity
L L ¢ E > 1, handle with care if used with & MSR
inheritance
Alternative solution for properties
1 1 0 1 with inheritance and upper A MSR
multiplicity > 1 (1001)
’ 1 ’ 0 Not allowed: typeWrapperElement
without typeElement
1 1 1 1 Alternative solution for (1001) | A MSR

3.2 Default configuration of XML schema production

This chapter describes how the XML schema production rules are configured for map-
ping the AUTOSAR meta-model to the AUTOSAR XML schema. Tagged values that
are already defined in the AUTOSAR meta-model are not overwritten: The configura-
tion rules defined in this chapter add missing tagged values. If the resulting combina-
tion of tagged values is invalid, an error needs to be indicated. The fault needs to be
resolved by editing the tagged values in the AUTOSAR meta-model.

AUTSSAR

3.2.1 Configuration of multiplicities

[TPS_XMLSPR_00037] XML Configuration of multiplicities [The tagged values
'xml.enforceMinMultiplicity’ and 'xml.enforceMaxMultiplicity’ are set to the default val-
ues (see [TPS_XMLSPR_00036]) if not explicitly defined otherwise in the AUTOSAR
metamodel. Additionally, the multiplicities of all properties are updated according to the
following rules:

« If 'xml.enforceMinMultiplicity = false’, then set lower multiplicity’ of property to 0.

« If 'xml.enforceMinMultiplicity = true’, then no changes on ’lower multiplicity’ of
property.

« If ’xml.enforceMaxMultiplicity = false’, then set 'upper multiplicity’ of property to
unbounded.

« If 'xml.enforceMaxMultiplicity = true’, then no changes on ’upper multiplicity’ of
property.

3.2.2 Mapping configuration for properties

A +theB B
el
o {abstract}
N
+theCT1 / \
(o3 B1 B2
+ attC: String + attB1: String + attB2: String

Figure 3.1: Example meta-model

Five cases are distinguished when configuring the mapping of properties in the AU-
TOSAR meta-model:

1. [TPS_XMLSPR_00038] XML Configuration of properties (upper multiplicity
1, no subclasses) [Upper multiplicity of property = 1 and type of property has
no subclasses:

» xml.roleWrapperElement = false
Note: upper multiplicity of property = 1, no need for a wrapper

* xml.roleElement = true

« xml.typeWrapperElement = false
Note: upper multiplicity of property = 1, no need for a wrapper

AUTSSAR

» xml.typeElement = false

Note: the type can uniquely be derived from meta-model

Note: If the tagged value ‘extensionPoint’ is used for a class and set to true, then
the class is mapped as it would have subclasses. This allows for later adding
subclasses without loosing backwards compatibility to older XML descriptions. In
this case the "*Element" tagged values are set according to case 3. |

The property 'theC’ in Figure 3.1 depicts this case.

2. [TPS_XMLSPR_00039] XML Configuration of properties (upper multiplicity
greater than 1, no subclasses) [Upper multiplicity of property > 1 and type of
property has no subclasses:

]

« xml.roleWrapperElement = true

Note: upper multiplicity of property > 1, according to MSR-TR-CAP wrapper
required

xml.roleElement = false
Note: property can be determined by the roleWrapperElement, no need for
an additional roleElement

xml.typeWrapperElement = false
Note: roleWrapperElement is true, no additional wrapper required

« xml.typeElement = true

Note: the content model of each type which occurs more than once needs to
be encapsulated in an XML-element. Either the roleElement or the typeEle-
ment can be chosen. We chose the typeElement since the resulting schema
allows for adding subclasses to the type of the property. (see also case 4)

3. [TPS_XMLSPR_00040] XML Configuration of properties (upper multiplicity
1, with subclasses) [Upper multiplicity of property = 1 and type of property has
subclasses:

» xml.roleWrapperElement = false

Note: upper multiplicity of property = 1, no need for a wrapper

* xml.roleElement = true

« xml.typeWrapperElement = false

Note: upper multiplicity of property = 1, no need for a wrapper

« xml.typeElement = true

Note: If no type information is given, it is not always possible to uniquely
map an element in an XML description to an instance of the meta-model.

AUTSSAR

4. [TPS_XMLSPR_00041] XML Configuration of properties (upper multiplicity
greater than 1, with subclasses) [Upper multiplicity of property > 1 and type of
property has subclasses:

» xml.roleWrapperElement = true
Note: upper multiplicity of property > 1, according to MSR-TR-CAP wrapper
required

» xml.roleElement = false
Note: property can be determined by the roleWrapperElement, no need for
an additional roleElement

« xml.typeWrapperElement = false
Note: roleWrapperElement is true, no additional wrapper required

« xml.typeElement = true
Note: If no type information is given, it is not always possible to uniquely
map an element in an XML description to an instance of the meta-model.

J
The property 'theB’ in Figure 3.1 depicts this case.

5. [TPS_XMLSPR_00042] XML Configuration of properties (upper multiplicity
greater than 1, primitive type or enum or association) [Upper multiplicity of
property > 1 and type of property is primitive or enum or association:

» xml.roleWrapperElement = true
Note: upper multiplicity of property > 1, according to MSR-TR-CAP wrapper
required

* xml.roleElement = true

» xml.typeWrapperElement = false
Note: roleWrapperElement is true, no additional wrapper required

+ xml.typeElement = false
Note: the content model of each type which occurs more than once needs
to be encapsulated in an XML-element. Either the roleElement or the type-
Element can be chosen. For Primitives, we chose the roleElement since the
MetaModel does not use subclassing for primitives.

]

Tagged values 'xml.*Element’ that are already defined in the AUTOSAR meta-model
are not overwritten. Therefore the mapping to XML can individually be configured if the
default mappings are not sufficient.

AUTSSAR

[TPS_XMLSPR_00056] Default settings for the XML Configuration of properties
[

Case Default configuration of Schema
s . '] ‘qc:
% 8 g £
O O © 2
= = w =
) = 3] F - & -
< S g 8 S g @
s | 2|3 § | 5| £ | § | Wrapper
o 2 < = w = W | name
e} s K%) © o} [[)
@ = o 2 < o Q (usually Inner name
k] @ () n o © = =
3 o o | Kind of = = = = xml. (usually
o S‘ = Property E § E E namePlural) | xml.name) Comment
yes | =1 no | Composi- 0 1 0 0 {role}
tion
yes =1 no Reference 0 0 {role}Ref
yes =1 no Concrete 0 1 0 0 {role}Iref
InstanceRef
yes =1 no Abstract 0 1 0 1 {role}lref Subclassing of In-
InstanceRef stanceRef is repre-
sented by typeElement
yes =1 no IsOfType 0 1 0 0 {role}Tref
yes =1 no Attribute 0 1 0 0 {role}
yes =1 yes | Composi- 0 1 0 1 {role} {type}
tion
yes =1 yes | Reference 0 1 0 0 {role}Ref Subclassing is repre-
sented in dest
yes =1 yes | Concrete 0 1 0 0 {role}Iref Subclassing is repre-
InstanceRef sented in dest of atpTar-
get
yes =1 yes | Abstract 0 1 0 1 {role}Iref Subclassing of target is
InstanceRef represented in dest of
atpTarget; Subclassing
of InstanceRef is repre-
sented by typeElement
yes =1 yes | IsOfType 0 1 0 0 {role}Tref Subclassing is repre-
sented in dest
no =1 yes | Attribute 0 1 0 0 {role}
yes >1 no Composi- 1 0 0 1 {role}s {type}
tion
yes >1 no Reference 1 1 0 0 {role}Refs {role}Ref
yes >1 no Concrete 1 1 0 0 {role}lrefs {role}iref
InstanceRef
yes >1 no Abstract 1 1 0 1 {role}lrefs {role}Iref Subclassing of In-
InstanceRef stanceRef is repre-
sented by typeElement
no >1 no IsOfType 1 1 0 0 {role}Trefs {role} Tref
yes >1 no Attribute 1 1 0 0 {role}s {role}
yes >1 yes | Composi- 1 0 0 1 {role}s {type}
tion
yes >1 yes | Reference 1 1 0 0 {role}Refs {role}Ref Subclassing is repre-
sented in dest
yes >1 yes | Concrete 1 1 0 0 {role}Irefs {role}iref Subclassing is repre-
InstanceRef sented in dest of atpTar-
get

AUTSSAR

A
Case Default configuration of Schema
< 2 5 5
n © IS IS
O o © 2
= = w =
2 = [3) = - = =
< S g 8 5 S 5
s | 2|3 § | § £ | § | Wrapper
° S < = i = W | name
re) S K] > o) [0) [}
8 - = 5 = o 2 (usually Inner name
= 3 S | Kind of = = = = | xml (usually
= S‘ = Property E § E E namePlural) | xml.name) Comment
yes >1 yes | Abstract 1 1 0 1 {role}Irefs {role}Iref Subclassing of target is
InstanceRef represented in dest of
atpTarget; Subclassing
of InstanceRef is repre-
sented by typeElement
no >1 yes | IsOfType 1 1 0 0 {role}Trefs {role}Tref Subclassing is repre-
sented in dest
no >1 yes | Attribute 1 1 0 0 {role}s {role}

The default settings for the XML Configuration of properties in production of the AUTOSAR
XML schema

]

3.2.3 Mapping configuration for references

In addition to the configuration defined in the previous section the following configura-

tion is applied to references (association with aggregation = none).

3.2.3.1

References without stereotypes

[TPS_XMLSPR_00043] XML Configuration of references without stereotype [For
references we basically distinguish the following two cases:

1. Upper multiplicity of reference = 1

xml.roleElememt = true

xml.typeElement = false

xml.roleWrapperElement = false

xml.typeWrapperElement = false

2. Upper Multiplicity of reference > 1

» xml.roleWrapperElement = true

» xml.roleElememt = true

« xml.typeWrapperElement = false

AUTSSAR

» xml.typeElement = false

Furthermore 'xml.name’ of properties representing the navigable association end of
references is set to the default 'xml.name’ appended by "-REF" (the default ’xml.name’
is defined in [TPS_XMLSPR_00030]). The ’'xml.namePlural’ is set to the default
'xml.name’ appended by "-REFS". |

3.2.3.2 Instance references

The AUTOSAR Template UML Profile requires that all details of instance references
are properly modeled in the AUTOSAR meta-model.

[TPS_XMLSPR_00044] XML Configuration of instance references [The following
tagged values are applied:

» Composite reference between the source of the instance reference and the meta-
class which contains the references to the context(s) and the target:

— xml.name = xml-name suffixed by "-IREF’
— xml.namePlural = xml-name suffixed by ’-IREFS’

— xml.roleWrapperElement = [false if upper multiplicity of reference = 1; true if
upper multiplicity of reference > 1]

— xml.roleElement = true
— xml.typeWrapperElement = false

— xml.typeElement = [false if InstanceRef class is concrete; true if InstanceRef
class is abstract] (If there are subclasses of the InstanceRef class, the ap-
plied class has to be specified by a typeElement.)

 instanceRef meta-class:

— xml.name = xml-name suffixed by "-IREF". Additionally the
by "--" in order to guarantee the uniqueness of the xml name.

is replaced

« reference from instanceRef meta-class to the target (the reference to the target
is mandatory):

— xml.enforceMinMultiplicity = false (Consequently, this should be set to true
as an InstanceRef shall always point to a target. However, not to break
backward-compatibility this has to remain false.)

— xml.enforceMaxMultiplicity = true

— xml.sequenceOffset = 9999 (the target is the last element in the list of refer-
ences)

» references from instanceRef meta-class to contexts. For each context reference:

AUTSSAR

— xml.enforceMinMultiplicity = false (references to the contexts may be added

later)
— xml.enforceMaxMultiplicity = true
— xml.roleWrapperElement = false
— xml.roleElement = true
— xml.typeElement = false

— xml.typeWrapperElement = false
]

Example

Figure 3.2 shows an example of a detailed representation of an instance reference in

the AUTOSAR meta-model.

SystemTemplate::System

«atpSplitable,atpVariation»

+mapping |0..*

SystemTemplate::SystemMapping

«atpVariation»

+ ecuExtractVersion: RevisionLabelString [0..1]
g + pncVectorLength: Positivelnteger [0..1]

+ pncVectorOffset: Positivelnteger [0..1]

+ systemVersion: RevisionLabelString

+base 0.1

+swMapping |*

SWmapping::SwcToEcuMapping

InstanceRefs::

«atpDerived»

’ {redefines atpBase}

«atpVariation»

+rootSoftwareComposition |0..1

+contextComposition

T

|

|

|

|

|

| +component |1..*
|

|

: ComponentinSystemInstanceRef
|

«instanceRef»

0.1

{subsets atpContextElement}

+targetComponent +contextComponent
1 N
{redefines {ordered,
tpTarget} subsets Components::
+component \l/ 1..* a
p v atpContextEIemethype SwComponentType
Composition::SwComponentPrototype iSOfType
* o« ype»
+component
0.* «atpVariation,atpSplitable»

SystemTemplate::RootSwCompositionPrototype

«isOfType»

+softwareComposition
1
{redefines atpType}

<] Composition::CompositionSwComponentType
P

Figure 3.2: Example of an instanceRef association

AUTSSAR

The following XML snippet shows how this instance reference is represented in the
XML schema:

<!—— complex type for class InstanceRefs::ComponentInCompositionInstanceRef
-

<xsd:complexType name="COMPONENT-IN-COMPOSITION-INSTANCE-REF" abstract="
false" mixed="false">
<xsd:annotation>
<xsd:documentation>The ComponentInCompositionInstanceRef points to a
concrete SwComponentPrototype within a CompositionSwComponentType.</
xsd:documentation>
<xsd:appinfo source="tags">mmt.qualifiedName="
ComponentInCompositionInstanceRef"</xsd:appinfo>
<xsd:appinfo source="stereotypes">atpObject, instanceRef</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>
<xsd:group ref="AR:AR-OBJECT"/>
<xsd:group ref="AR:ATP-INSTANCE-REF"/>
<xsd:group ref="AR:COMPONENT-IN-COMPOSITION-INSTANCE-REF"/>
</xsd:sequence>
<xsd:attributeGroup ref="AR:AR-OBJECT"/>
</xsd:complexType>
<!-- element group for class InstanceRefs::ComponentInSystemInstanceRef -->
<xsd:group name="COMPONENT-IN-SYSTEM-INSTANCE-REF">
<xsd:annotation>
<xsd:appinfo source="tags">mmt.qualifiedName="
ComponentInSystemInstanceRef"</xsd:appinfo>
<xsd:appinfo source="stereotypes">atpObject, instanceRef</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>
<!—— Association <<atpDerived>>base skipped —-—>
<xsd:element name="CONTEXT-COMPOSITION-REF" minOccurs="0">
<xsd:annotation>
<xsd:appinfo source="tags">mmt.qualifiedName="
ComponentInSystemInstanceRef.contextComposition”;pureMM.
maxOccurs="1"; pureMM.minOccurs="0"; xml .sequenceOffset="20"</
xsd:appinfo>
</xsd:annotation>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="AR:REF">
<xsd:attribute name="DEST" type="AR:ROOT-SW-COMPOSITION-
PROTOTYPE--SUBTYPES—-ENUM" use="required"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="CONTEXT-COMPONENT-REF" minOccurs="0" maxOccurs="
unbounded">
<xsd:annotation>
<xsd:appinfo source="tags">mmt.qualifiedName="
ComponentInSystemInstanceRef.contextComponent"; pureMM.maxOccurs=
"-1"; pureMM.minOccurs="0"; xml.sequenceOffset="30"</xsd:appinfo>
</xsd:annotation>
<xsd:complexType>
<xsd:simpleContent>

AUTSSAR

<xsd:extension base="AR:REF">
<xsd:attribute name="DEST" type="AR:SW-COMPONENT-PROTOTYPE--
SUBTYPES-ENUM" use="required"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="TARGET-COMPONENT-REF" minOccurs="0">
<xsd:annotation>
<xsd:appinfo source="tags">mmt.qualifiedName="
ComponentInSystemInstanceRef.targetComponent"; pureMM.maxOccurs="
1";pureMM.minOccurs="1"; xml .sequenceOffset="40"</xsd:appinfo>
</xsd:annotation>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="AR:REF">
<xsd:attribute name="DEST" type="AR:SW-COMPONENT-PROTOTYPE-—
SUBTYPES-ENUM" use="required"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
</xsd: sequence>
</xsd:group>

An example instanceRef looks like:

<...>
<COMPONENT-IREFS>
<COMPONENT-IREF>
<CONTEXT-COMPOSITION-REF DEST="ROOT-SW-COMPOSITION-PROTOTYPE">/
theSystem/aVehicle</CONTEXT-COMPOSITION—-REF>
<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/vendor/
theEngine</CONTEXT-COMPONENT-REF>
<TARGET-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/theEngineVendor/
engineSpeedDetermination</TARGET-COMPONENT-REF>
</COMPONENT-IREF>
</COMPONENT-IREFS>
</...>

3.2.3.3 References with stereotype <isOfType>>

[TPS_XMLSPR_00045] XML Configuration of type references [If the stereotype
<1s0fType>> is applied to an association in the AUTOSAR meta-model then the
tagged value 'xml.name’ of the navigable association end is set to the default xml.name
appended by "-TREF". According to the AUTOSAR Template Profile, the upper mul-
tiplicity of an association with stereotype <isOfType>> is limited to 1. Therefore no
multiplicity wrapper is required and no xml.namePlural needs to be defined. |

AUTSSAR

3.2.4 Stereotypes applied to classes
3.2.4.1 Stereotype <atpMixed>

If the stereotype <atpMixed> is applied to a class in the AUTOSAR meta-model
then the properties are represented by XML elements in arbitrary order and unbounded
multiplicity. This only applies to properties that are not explicitly mapped to attributes
by setting the 'xml.attribute’ tag to 'true’.

[TPS_XMLSPR_00046] XML Configuration of classes with <atpMixed> [The
following values are applied to classes with stereotype <atpMixed> (other values
specified in the meta-model are ignored):

» Values of the stereotyped meta-class:
— xml.ordered=false
— xml.text=false
» Values of the properties of the stereotyped meta-class:
— upper multiplicity = unbounded
— lower multiplicity = 0
— xml.roleWrapperElement = false
— xml.roleElement = true
— xml.typeWrapperElement = false

— xml.typeElement = true (if the type of the property has concrete subclasses),
false (otherwise)

3.2.4.2 Stereotype <atpMixedString>

If the stereotype <atpMixedString>> is applied to a class in the AUTOSAR meta-
model then the properties may be represented by XML elements in arbitrary order
and unbounded multiplicity. In this case the tagged value ’xml.ordered’ is set to false
and the tagged value ’xml.text’ is set to true. See chapter 3.1.1 for more details on
the scope of the tagged value 'xml.text’. No wrappers are created for the properties.
Additionally, the XML elements may have text in-between.

[TPS_XMLSPR_00047] XML Configuration of classes with <atpMixedString>
[The following values are applied to classes with stereotype <atpMixedString>
(other values specified in the meta-model are ignored):

» Values of the stereotyped meta-class:

— xml.ordered=false

AUTSSAR

— xml.text=true

 Values of the properties of the stereotyped meta-class:

upper multiplicity = unbounded

lower multiplicity = 0

xml.roleWrapperElement = false

xml.roleElement = true

xml.typeWrapperElement = false

xml.typeElement = true (if the type of the property has concrete subclasses),
false (otherwise)

AUTSSAR

4 XML Schema production rules

The following sections describe the mapping rules for an automatic generation of the
AUTOSAR XML schema out of the intermediate meta-model. Please note that in the
intermediate meta-model all tagged values and multiplicities are set as defined in chap-

ter 3.

Each rule is described by the following information:

4.1

Applies to:
The meta-meta-model (UML2.0) element the rule applies to

Precondition:
The rule can only be applied if the precondition evaluates to true

Target pattern:

The target pattern describes how the respective meta-model element is mapped
to XML schema. Values that need to be read out of the AUTOSAR meta-model
are denoted by script tags "<%" and "%>":

e.g.: <%=my variable %>.

Description:
The description explains the target pattern and how it can be parameterized.

UML example, XML schema example and XML instance example:
These examples illustrate the application of the rule.

Create model representation

Figure 4.1 depicts how a model is mapped to a XML schema. The header of the
schema is created first, followed by XML representations for each class. After that the
predefined data types and the footer of the schema are created.

AUTSSAR

«list»
metaclasses : Classes

«iterative» for all metaclasses

!
|
|
|
|
|
I .
[XMLSPR_00000] Create Create class Representation Create predefined data types
schema frame - header

metaclasses|

|
|
|
|
|
|
\

[XMLSPR_00000] Create
schema frame - footer

ActivityFinal

Figure 4.1: Model representation

AUTSSAR

4.1.1 Create xsd:schema

[TPS_XMLSPR_00000] XML Schema production rule: xsd:schema |

Applies to Package

Precondition n/a
Target pattern

<xsd:schema xmlns:<%$=xmlNsPrefix%>="<%$=xmlNsUri%>"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="<%=xmINsUri%>"
elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xsd:import namespace="http://www.w3.0rg/XML/1998/
namespace"
schemalocation="http://www.w3.0rg/2001/03/xml
.xsd"/>

<% for all classes { %>
<% call class representation %>
<% } %>

</xsd:schema>

Description: This rule creates the header and footer of the XML schema. By default xmINsPrefix is set to "AR" and
the xmINsUri is set to http://autosar.org/schema/r<realease_number>. The body of the XML schema
is composed of a namespace import of the XML namespace and representations for each class
(including their properties).

XML schema
example: <xsd:schema xmlns:AR="http://autosar.org/schema/r4.0"

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://autosar.org/schema/r4.0"
elementFormDefault="qualified" attributeFormDefault="
unqualified">

</xsd:schema>

XML instance
example: <... xmlns="http://autosar.org/schema/r4.0" xmlns:xsi="

http://www.w3.0rg/2001/XMLSchema—-instance"
xsi:schemalocation="http://autosar.org/schema/r4.0_
autosar.xsd">...

</...>

4.2 Create class representation

Figure 4.2 depicts XML schema fragments created for each class:

* If the stereotype <enumeration>> is applied, then the class is mapped to an
xsd:enumeration [TPS_XMLSPR_00007].

« If the stereotype <primitive>> is applied, then the data type denoted by the
tagged value 'xml.mds.type’ or 'xml.xsd.type’ are used to represent the class
within the schema [TPS_XMLSPR_00006].

AUTSSAR

» Otherwise:

— If the class owns properties with ’xml.attribute=true’ then an
xsd:attributeGroup is created [TPS_XMLSPR_00002].

— Additionally if the class owns properties with 'xml.attribute=false’ then an
xsd:group is created [TPS_XMLSPR_00001].

— Additionally if the class is not abstract then an xsd:complexType is created
[TPS_XMLSPR_00003]. If the tagged value 'xml.globalElement’ is set to
true, then a global XML element declaration is created.

— Additionally if the uml.cclass is referenced then an xsd:simpleType
that represents the lists possible concrete instances of the uml:class
[TPS_XMLSPR_00025].

Cl;
Stereotype
[not enumeration &= not primitive]
[primitive]
g J "xml.xsd.customType' is set]
[class is abstract or has [has property with ‘) bamixsdaypeor [P]
o imple content] . attribute = true'] [is reference d] [enumeration] xml.mds.type" is set]

[TPS_XMLSPR_00001] [TPS_XMLSPR_00002] [TPS_XMLSPR_00025] [TPS_XMLSPR_00007] [TPS_XMLSPR_00006] [TPS_XMLSPR_00026]
Create xsd:group Create xsd: Create xsd:simpleType Create xsd:simpleType for Create reference to Create a custom simple
es] attributeGroup for subtypes enumeration predefined datatype] type
[TPS_XMLSPR_00003] [TPS_XMLSPR_00024]
Create xsd: Create xsd:complexType
complexType with simple content

[xml:globalElement = true]

[TPS_XMLSPR_00002]
Create xsd:
attributeGroup

[TPS_XMLSPR_00005] Create
global xsd:element

RS

Figure 4.2: Class representation

AUTSSAR

4.2.1 Create xsd:group

[TPS_XMLSPR_00001] XML Schema production rule: xsd:group |

Applies to

Class without stereotype <enumeration>>> or stereotype <primitive>>

Precondition

NOT (isAbstract=false AND

number of (owned and derived) properties which are not mapped to an xml attribute = 1 AND

type of property that is not mapped to xml attribute is <primitive>> or Kenumeration>> AND
upper multiplicity of property that is not mapped to xml attribute is 1 AND

xml.*Element tagged values of property that is not mapped to xml attribute is false)

Target pattern

<xsd:group name="<%=xmlName%>">

<% if (ordered) { %>

<xsd:sequence>

<% } else { %>

<xsd:choice>
<xsd:choice maxOccurs="unbounded" minOccurs="0">

<% } // end if %>
<% for all properties {
<% call rule
TPS_XMLSPR_00008 |
TPS_XMLSPR_00009 |
TPS_XMLSPR 00023 |
TPS_XMLSPR 00022 |
TPS_XMLSPR_ 00010 |
TPS_XMLSPR_00011 |
TPS_XMLSPR_00012 |
TPS_XMLSPR 00013 |
TPS_XMLSPR 00014 |
TPS_XMLSPR 00015 |
TPS_XMLSPR_00016 |
TPS_XMLSPR_00055 %>
} // end for %>

<% if (ordered) { %>

</xsd:sequence>

<% } else { %>
</xsd:choice>

</xsd:choice>

<% } // end if %>

</xsd:group>

Description:

If the class is abstract or owns at least one property with 'xml.attribute=false’ the condition for an
xsd:complexType with simple content is not met (see [TPS_XMLSPR_00024]), then a xsd:group is
created. The name of the xsd:group maps to the XML-name of the class. The XML elements nested
in the xsd:sequence are ordered as defined in [TPS_XMLSPR_00032].

If the tagged value 'xml.ordered=true’ is set then the contents are listed in an xsd:sequence.
Otherwise they are listed within an xsd:choice. If there are no child elements of the class (i.e. all
children have 'xml.attribute=false’ or are <atpaAbstract>> or KatpDerived:>), an empty
xsd:sequence is generated.

The XML-elements representing the properties are created by rules [TPS_XMLSPR_00008],
[TPS_XMLSPR_00009], [TPS_XMLSPR_00023], [TPS_XMLSPR_00022], [TPS_XMLSPR_00010],
[TPS_XMLSPR_00011], [TPS_XMLSPR_00012], [TPS_XMLSPR_00013], [TPS_XMLSPR_00014],
[TPS_XMLSPR_00015], [TPS_XMLSPR_00016], [TPS_XMLSPR_00055]

\Y

AUTSSAR

A

XML schema
example:

<xsd:group name="IDENTIFIABLE">
<xsd:sequence>
<!-- property representations created by rules
TPS_XMLSPR 00008, TPS XMLSPR 00009, TPS XMLSPR 00023
, TPS XMLSPR 00022, TPS XMLSPR 00010,
TPS XMLSPR 00011, TPS XMLSPR 00012, TPS XMLSPR 00013
, TPS XMLSPR 00014, TPS XMLSPR 00015,
TPS XMLSPR 00016, TPS XMLSPR 00055 ——>
<xsd:element name="SHORT-NAME" type="AR:IDENTIFIER"
minOccurs="1" maxOccurs="1">
<xsd:element name="LONG-NAME" type="xsd:string"
minOccurs="0" maxOccurs="1">
<xsd:element name="CATEGORY" type="xsd:string"
minOccurs="0" maxOccurs="1">
<!-- end property representations created by rules —-—>
</xsd:sequence>
</xsd:group>

XML instance
example:

<...>
<SHORT-NAME>theShortName</SHORT-NAME>
<LONG-NAME>theLongtName</LONG-NAME>
<CATEGORY>theCategory</ CATEGORY >
</...>

tagged value of shortName:
xml.enforceMinimumM ultiplicity

Identifiable -

shortName: Identifier

longName: String [0..1]
category: String [0..1] S~o
uuid: String TS~-

+ o+ o+ o+

tagged value of uuid:
xml.attribute=true

Figure 4.3: UML example - Create xsd:group

AUTSSAR

4.2.2 Create xsd:attributeGroup

[TPS_XMLSPR_00002] XML Schema production rule: xsd:attributeGroup |

Applies to

Class without stereotype <enumeration>>

Precondition

Exists properties with "xml.attribute=true"

Target pattern

<xsd:attributeGroup name="<%=xmlName%>">

<% for all properties represented as XML attributes {
<% call rule TPS_XMLSPR 00019 %>

} %>

</xsd:attributeGroup>

Description: If at least one property is marked by the tagged value 'xml.attribute=true’, then a xsd:attributeGroup is
created. The name of the xsd:attributeGroup is defined by the XML-name of the class which owns the
property.

XML schema

example: <xsd:attributeGroup name="IDENTIFIABLE">

<!—--attributes defined by rule TPS XMLSPR 00019 -—>
</xsd:attributeGroup>

XML instance n/a
example:
tagged value of shortName:
xml.enforceMinimumM ultiplicity
ldentifiable | ____.---1
+ shortName: Identifier .
+ longName: String [0..1]
+ category: String [0..1] TNl
+ uuid: String \\"\~__ B
tagged value of uuid:
xml.attribute=true

Figure 4.4: UML example - Create xsd:attributeGroup

AUTSSAR

4.2.3 Create xsd:complexType

[TPS_XMLSPR_00003] XML Schema production rule: xsd:complexType [

Applies to

Class without stereotype <enumeration>>> or stereotype <primitive>>

Precondition

isAbstract=false

Target pattern

<xsd:complexType name="<%=xmlName$%>" mixed="<%=xmlText%>">
<% if (ordered) { %>
<xsd:sequence>
<% } else { %>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<% }
<% for (myclass in {class and all baseclasses}) { %>
<xsd:group ref="<%$=baseclassNsPrefix%>:<%=
myclassXmlName%>"/>
<% } %>
<% if (ordered) { %>
</xsd:sequence>
<% } else { %>
</xsd:choice>
<% } %>
<% for (class and all baseclasses) { %>
<xsd:attributeGroup ref="<%=baseclassNsPrefix%>:<%=
baseclassXmlName%>"/>
<% } // for (class and all baseclasses) %>
</xsd:complexType>

Description:

If the class is not abstract then a xsd:complexType is created. The name of the xsd:complexType is
defined by the XML-name of the class. The created xsd:complexType doesn'’t directly define XML
representations of properties. Instead it refers to the xsd:groups and xsd:attributeGroups which have
been created for the class and all super-classes (see rule [TPS_XMLSPR_00001] and
[TPS_XMLSPR_00002]). The groups are ordered as defined in [TPS_XMLSPR_00033].

If the tagged value 'xml.ordered=true’ is set then the xsd:groups are listed in a xsd:sequence.
Otherwise they are listed within a xsd:choice.

If 'xml.text=true’ then the attribute 'mixed’ of the xsd:complexType is set to ‘true’.

XML schema
example:

<xsd:complexType name="AUTOSAR">
<xsd:sequence>
<xsd:group ref="AR:AUTOSAR"/>
</xsd:sequence>
<xsd:attributeGroup ref="AR:AUTOSAR"/>
</xsd:complexType>

XML instance
example:

n/a

AUTOSAR

Figure 4.5: UML example - Create xsd:complexType

AUTSSAR

4.2.4 Create xsd:complexType with simple content

[TPS_XMLSPR_00024] XML Schema production rule: xsd:complexType with sim-
ple content |

Applies to Class without stereotype < enumeration>> or stereotype <primitive >

Precondition isAbstract=false AND

number of (owned and derived) properties which are not mapped to an xml attribute = 1 AND

type of property that is not mapped to xml attribute is <primitive>> or €enumeration>> AND
upper multiplicity of property that is not mapped to xml attribute is 1 AND

xml.*Element tagged values of property that is not mapped to xml attribute is false

Target pattern
<xsd:complexType name="<%=xmlName%>" mixed="<%=xmlText%>">

<xsd:simpleContent>
<xsd:extension base="<%=propertyTypeNsPrefix%$>:<%=
propertyTypeXmlName$>">
<% for (class and all baseclasses) { %>
<xsd:attributeGroup ref="<%=baseclassNsPrefix%>:<%=
baseclassXmlName%>"/>
<% } // for (class and all baseclasses) %>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

Description: If the class is not abstract and it contains exactly one (derived or owned) property that is not mapped
to an xml.attribute and this property is not represented by any XML elements (tagged values
xml.*Element=false) then a xsd:complexType with simpleContent is generated. The simpleContent
contains the data of the property which is not mapped to an xml.attribute.

If the type of the property that is represented as attribute has properties, then these properties cannot
be mapped to simpleContent. In this case an error shall be reported.

XML schema
example: <xsd:complexType name="LIMIT">

<xsd:simpleContent>
<xsd:extension base="AR:INTEGER">
<xsd:attributeGroup ref="AR:LIMIT"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

XML instance

example: <... LIMIT-TYPE="CLOSED">
1000
</...>

AUTSSAR

tagged values of limitType:
xml.attribute=true

Limit «primitive»
Integer

+ limitType: LimitTypeEnum
+ value: Integer

tagged values of value:
xml.roleElement=false
xml.roleWrapperElement=false
xml.typeElement=false
xml.typeWrapperElement=false

Figure 4.6: UML example - Create xsd:complexType with simple content

4.2.5 Create global xsd:element

[TPS_XMLSPR_00005] XML Schema production rule: global xsd:element |

Applies to

Class

Precondition

xml.globalElement=true

Target pattern:

<xsd:element name="<%=typeXmlName%>" type="<%
typeXmlNsPrefix%>:<%$=typeXmlName%>"/>

Description: If the class is marked by the tagged value 'xml.globalElement=true’ then a global xsd:element is
created. The name of the xsd:element is defined by the XML-name of the class and the type is
defined by the xsd:complexType which was defined by [TPS_XMLSPR_00003]. The namespace
prefix is defined by the tagged value 'xml.nsPrefix’.

XML schema

example: <xsd:element name="AUTOSAR" type="AR:AUTOSAR"/>

XML instance
example:

<AUTOSAR>

</AUTOSAR>

AUTOSAR

tags
xml.globalElement = true

Figure 4.7: UML example - Create global xsd:element

AUTSSAR

4.2.6 Create enumeration of subtypes

[TPS_XMLSPR_00025] XML Schema production rule: enumeration of subtypes |

Applies to Class without stereotype <enumeration>>> or stereotype <primitive>>

Precondition Class is referenced
Target pattern:

<xsd:simpleType name="<%$=xmlName$%>--SUBTYPES-ENUM">
<xsd:restriction base="xsd:string">
<% for type and all subtypes { %>
<xsd:enumeration value="<%$=typeXmlName%>"/>
<%} // for type and all subtypes %>
</xsd:restriction>
</xsd:simpleType>

Description: Creates an enumeration which represents the XML names of the class and all its subtypes. This
enumeration is required for describing potential destination types of references.

XML schema

example: <xsd:element name="B--SUBTYPES-ENUM">

<xsd:restriction base="xsd:string">
<xsd:enumeration value="B-1"/>
<xsd:enumeration value="B-2"/>
</restriction>
</xsd:element>

XML instance
example: <THE-B-REF DEST="B-1">/shortname</THE-B-REF>

4.2.7 Create reference to XML predefined data type

[TPS_XMLSPR_00006] XML Schema production rule: reference to XML prede-
fined data type |

Applies to class with stereotype <primitive>>

Precondition tagged value 'xml.xsd.type=... or ’xml.mds.type=...” defined

Target pattern:
type="<%=typeXmlNsPrefix%>:<%=xmlXsdType%>"

Description: Each class with the stereotype <primitive>> is represented by the xsd:simpleType that is defined
by the tagged value 'xml.xsd.type’ or xml.mds.type’, unless a custom xsd:simpleType is defined by
the tagged value 'xml.xsd.customType’. In the latter case rule [TPS_XMLSPR_00026] is applied.

If xml.xsd.type is used, then the type is defined in the W3C xml schema and the typeXmINsPrefix
corresponds to "xsd".

If xml.mds.type is used, then the type is defined in the namespace of the generated XML schema

("AR").
XML schema The predefined W3C XML schema data type string is used to represent the primitive class String.
example:

XML instance

example: <... type="xsd:string" ...>

AUTSSAR

«primitive»
String

tags
xml.xsd.type = string|

Figure 4.8: UML example - Create reference to XML predefined data type

4.2.8 Create a custom simple type

[TPS_XMLSPR_00026] XML Schema production rule: custom simple type |

Applies to

class with stereotype <primitive>>»

Precondition:

tagged value 'xml.xsd.customType=... defined

Target pattern:

<xsd:simpleType name="<%=xmlName%>--SIMPLE">
<xsd:restriction base="<%=xml1XsdType%>">
<xsd:pattern value="<%$=xmlXsdPattern%>"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="<$%=xmlName%>">
<xsd:simpleContent>
<xsd:extension base="AR:<%=xmlName%>--SIMPLE">
<xsd:attributeGroup ref="AR:AR-OBJECT"/>
<% if (class has attributes) { %>
<xsd:attributeGroup ref="<%=xmlName%>" />
<% } // end if (class has attributes) %>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

Description:

Each class with stereotype <primitive>> and tagged value xml.xsd.customType set is
represented by two elements in the schema, a custom xsd:simpleType and a xsd:complexType with
simple content. The name of the xsd:simpleType maps to the XML-name of the class suffixed by
"--SIMPLE", the name of the xsd:complexType maps to XML-name of the class. The base for the
simple type is the type defined in the tagged value xml.xsd.type. The restriction pattern is taken from
the tagged value xml.xsd.pattern.

XML schema
example:

<xsd:simpleType name="POSITIVE-INTEGER--SIMPLE">
<xsd:restriction base="xsd:string">
<xsd:pattern value="[1-9][0-9]*|0x[0-9a-£f]x|0[0-7]*|0b
[0-1]x"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="POSITIVE-INTEGER">
<xsd:simpleContent>
<xsd:extension base="AR:POSITIVE-INTEGER--SIMPLE">
<xsd:attributeGroup ref="AR:AR-OBJECT"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

Y

AUTSSAR

A
XML instance
example: <... type="AR:POSITIVE-INTEGER" ...>
«primitive»

Positivelnteger

tags
xml.xsd.customType = POSITIVE-INTEGER
xml.xsd.pattern = [1-9][0-9]* | 0x[0-9a-f]* | 0[0-7]* | Ob[0-1]*
xml.xsd.type = string

Figure 4.9: UML example - Create a custom simple type

4.2.9 Create xsd:simpleType for enumeration

[TPS_XMLSPR_00007] XML Schema production rule: xsd:simpleType for enu-
meration |

Applies to: class with stereotype <enumeration>>

Precondition: n/a
Target pattern:

<xsd:simpleType name="<%$=xmlName%>--SIMPLE">
<xsd:restriction base="xsd:string">
<% for all attributes { %>
<xsd:enumeration value="<%=attributeXmlName%>"/>
<%} // end for all attributes %>
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="<%=xmlName%>">
<xsd:simpleContent>
<xsd:extension base="AR:<%=xmlName%>--SIMPLE">
<xsd:attributeGroup ref="AR:AR-OBJECT"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

Description: Each class with stereotype <enumeration>> is represented by two elements in the schema, a
custom xsd:simpleType and an xsd:complexType with simple content. The name of the
xsd:simpleType maps to the XML name of the class suffixed by "--SIMPLE", the name of the
xsd:complexType maps to XML name of the class. The xsd:simpleType defines an enumeration. The
enumeration literals are defined by the property names of the class.

V

AUTSSAR

A

XML schema
example:

<xsd:simpleType name="ENUMERATION-INFO-TYPE--SIMPLE">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="DATA"/>
<xsd:enumeration value="EVENT"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="ENUMERATION-INFO-TYPE">
<xsd:simpleContent>
<xsd:extension base="AR:ENUMERATION-INFO-TYPE--SIMPLE">
<xsd:attributeGroup ref="AR:AR-OBJECT"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

XML instance
example:

n data"

«enumeration»
EnumerationinfoType

data
event

Figure 4.10: UML example - Create xsd:simpleType for enumeration

4.3 Create composite property representation (mapping to XML
attributes)

As of [TPS_XMLSPR_00036] the rules in this section are only applicable to attributes
as they are the only properties of a class that may be tagged with xml.attribute=true.

4.3.1 Create xsd:attribute

[TPS_XMLSPR_00019] XML Schema production rule: xsd:attribute |

Applies to:

Property

Precondition:

xml.attribute=true
upper multiplicity of property = 1

V

AUTSSAR

A

Target pattern:
<xsd:attribute name="<%=xmlName%>" type="<%=typeXmlNsPrefix

%> :<%s=typeXmlName%>"
<% if lowerMultiplicity > 0 { %>
use="required"
<% } else { %>
use="optional"
<% } %>
/>

Description: An xsd:attribute is created for each property with the tagged value 'xml.attribute=true’. The name of
the xsd:attribute is defined by the XML name of the represented property. If the lower multiplicity of
the property is bigger than 0 then the use of the attribute is required, otherwise it is optional.

XML schema

example: <xsd:attribute name="UUID" type="xsd:string" use="optional"
/>

XML instance

example: <... UUID="12343-23342-12345-2333"/>

tagged values of shortName:
xml.enforceMinimumM ultiplicity

Identifiable

shortName: Identifier
longName: String [0..1]
category: String [0..1]
uuid: String S-a

+ o+ o+ o+

| tagged value of uuid:
xml.attribute=true

Figure 4.11: UML example - Create xsd:attribute

4.4 Create composite property representation (mapping to XML
elements)

Composite properties are properties with ’aggregation=composite’ (attributes and com-
position target ends). If the tagged value ’xml.attribute=false’ (default), then those
properties are mapped to XML-elements. Depending on the values of the tagged
values 'xml.roleWrapperElement’, 'xml.roleElement’, 'xml.typeWrapperElement’ and
'xml.typeElement’ one of the following rules is chosen. All rules that map composite
properties to XML elements are called 'Composite Property Representation’ extended
by a number denoting the settings of the aforementioned tagged values. The first digit

AUTSSAR

reflects the value of 'xml.roleWrapperElement’, the second digit reflects the value of
‘xml.roleElement’, the third digit reflects the value of 'xml.typeWrapperElement’ and
the last digit reflects the value of 'xml.typeElement’.

Figure 4.12 illustrates how the rules are chosen based on the tagged values.

AUTSSAR

[TPS_XMLSPR_00008] Create
composite property
rep tion(1111)

[xml.roleWrapperElement &&
xml.roleElement &&
xml.typeWrapperElement &&
xml.typeElement]

[TPS_XMLSPR_00009] Create
composite property

repr ion (1101)

[xml.roleWrapperElement &&
xml.roleElement && NOT,
xml.typeWrapperElement &&

xml.typeElement]

[TPS_XMLSPR_00023] Create
composite property
representation (1100)

[xml.roleWrapperElement &&
xml.roleElement && NOT
xml.typeWrapperElement && NOT
xml.typeElement]

[TPS_XMLSPR_00022] Create
composite property
repr jon (1011)

[xml.roleWrapperElement &&
NOT xml.roleElement &&
xml.typeWrapperElement &&
xml.typeElement]

[TPS_XMLSPR_00010] Create
composite property
repr ion (1001)

[xml.roleWrapperElement && NOT
xml.roleElement && NOT
xml.typeWrapperElement &&
xml.typeElement]

[TPS_XMLSPR_00055] Create
composite property
repr ion (1000)

[xml.roleWrapperElement && NOT
xml.roleElement && NOT
xml.typeWrapperElement && NOT

xml.typeElement]

:Property

xml. *E

[otl

herwise]

ement ?

[TPS_XMLSPR_00011] Create
composite property
representation (0111)

[NOT xml.roleWrapperElement
/&& xml.roleElement &&
xml.typeWrapperElement &&
xml.typeElement]

[TPS_XMLSPR_00012] Create
composite property
representation (0101)

[NOT xml.roleWrapperElement
&& xml.roleElement && NOT
xml.typeWrapperElement &&
xml.typeElement]

[TPS_XMLSPR_00013] Create
composite property
representation (0100)

[NOT xml.roleWrapperElement &&
xml.roleElement && NOT
xml.typeWrapperElement && NOT
xml.typeElement]

[TPS_XMLSPR_00014] Create
composite property
representation (0011)

[NOT xml.roleWrapperElement &&
NOT xml.roleElement &&
xml.typeWrapperElement &&
xml.typeElement]

[TPS_XMLSPR_00015] Create
composite property
representation (0001)

[NOT xml.roleWrapperElement &&
NOT xml.roleElement && NOT
xml.typeWrapperElement &&
xml.typeElement]

[TPS_XMLSPR_00016] Create
composite property
representation (0000)

[NOT xml.roleWrapperElement &&
NOT xml.roleElement && NOT
xml.typeWrapperElement && NOT

xml.typeElement]

Figure 4.12: Property representation (aggregation = composite)

Figure 4.13 shows an example meta-model that is used as an example for the following
mapping rules. The class 'A’ owns a property called 'theB’ which is of type 'B’. The

AUTSSAR

multiplicity of this property is 0..*. Additionally the class 'A’ owns a property called
'theC’ which is of type 'C’. The upper multiplicity of 'theC’ is 1 and the lower multiplicity
is 1.

A B
‘ +theB {abstract}
*
+theC|1 / \
C Bl B2
+ attC: String + attB1: String + attB2: String

Figure 4.13: Example meta-model of composite property

Figure 4.14 shows an example instance of the meta-model shown in Figure 4.13. This
instance is used as a basis for the XML instance examples of the following rules.

B1

+theB

‘\ﬂheB
thed,

attB1 = someValueB1

}3

B2

attB2 = someValueB2

+theC

:C

attC = someValueC

Figure 4.14: Example instance of composite property

441 Create composite property representation (1111)

[TPS_XMLSPR_00008] XML Schema production rule: composite property repre-
sentation (1111) |

Applies to: Property

Precondition: xml.roleWrapperElement == true &&
xml.roleElement == true &&
xml.typeWrapperElement == true &&
xml.typeElement == true

\Y

AUTSSAR

A

Target pattern:

<xsd:element name="<%=roleXmlNamePlural%>"
minOccurs="<%if_ (lowerMultiplicity.equals("0")
) L{%5>0<%} _else {%>1<%}3>"
maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="<%=lowerMultiplicity%$>"
maxOccurs="<%$=upperMultiplicity%>">
<xsd:element name="<%$=roleXmlName%>">
<xsd:complexType>
<xsd:all minOccurs="<%if (lowerMultiplicity.
equals ("0")) {%$>0<%} _else_ {%$>1<%}%>">
<% for all types { %>
<xsd:element name="<%$=typeXmlNamePlural%>"
minOccurs="0" maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="<%=lowerMultiplicity
$>" maxOccurs="<%=upperMultiplicity%>">
<xsd:element name="<%=typeXmlName%>" type
="<%=typeXmlNsPrefix%>:<%=typeXmlName
E>"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<% } // end for all types %>
</xsd:all>
</xsd:complexType>
</xsd:element>
</xsd:choice>
</xsd:complexType>
</xsd:element>

Description:

A set of XML elements is created that represent the property:
* A role wrapper XML element with maxOccurs=1. The name of the XML element is defined by the
xml.namePlural of the property.

* Role XML elements are nested within the role wrapper element. The name of these XML-elements
is defined by the xml.name of the property. The minimum occurrence of these elements is the
lower multiplicity of the property; the maximum occurrence is the upper multiplicity.

* For each type and subtype of the property a type wrapper XML element is created. The name of
the XML element is defined by the xml.namePlural of the type of the property.

» Nested in these type wrappers only elements representing the same types as the type wrapper are

allowed.
V

AUTSSAR

A

XML schema
example:

<xsd:element name="THE-BS" minOccurs="0" maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="THE-B" minOccurs="0" maxOccurs="
unbounded">
<xsd:complexType>
<xsd:all minOccurs="0">
<xsd:element name="B1lS" minOccurs="0" maxOccurs
="1">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="
unbounded">
<xsd:element name="Bl" type="AR:B1"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="B2S" minOccurs="0" maxOccurs
="1">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="
unbounded">
<xsd:element name="B2" type="AR:B2"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:all>
</xsd:complexType>
</xsd:element>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="THE-CS" minOccurs="0" maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="1">
<xsd:element name="THE-C" minOccurs="0" maxOccurs="1"
>
<xsd:complexType>
<xsd:all minOccurs="0">
<xsd:element name="CS" minOccurs="0" maxOccurs=
">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="1">
<xsd:element name="C" type="AR:C"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:all>
</xsd:complexType>
</xsd:element>

Y

AUTSSAR

</xsd:choice>
</xsd:complexType>
</xsd:element>

XML instance
example: <...>
<THE-BS>
<THE-B>
<BlS>
<Bl>
<ATT-Bl>someValueBl</ATT-Bl>
</Bl>
</B1s>
<B2S>
<B2>
<ATT-B2>someValueB2</ATT-B2>
</B2>
</B2S>
</THE-B>
</THE-BS>
<THE-CS>
<THE-C>
<CS>
<C>
<ATT-C>someValueC</ATT-C>
</C>
</CS>
</THE-C>
</THE-CS>
</...>

4.4.2 Create composite property representation (1101)

[TPS_XMLSPR_00009] XML Schema production rule: composite property repre-
sentation (1101) |

Applies to: Property

Precondition: xml.roleWrapperElement == true &&
xml.roleElement == true &&
xml.typeWrapperElement == false &&
xml.typeElement == true

Y%

AUTSSAR

A

Target pattern:

<xsd:element name="<%$=roleXmlNamePlural%>"
minOccurs="<%if_ (lowerMultiplicity.equals("0")
) L{%5>0<%} _else {%>1<%}3>"
maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="<%=lowerMultiplicity%$>"
maxOccurs="<%$=upperMultiplicity%>">
<xsd:element name="<%=roleXmlName%>">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="1">
<% for all types { %>
<xsd:element name="<%=typeXmlName$%>" type="<%=
typeXmlNsPrefix%>:<%=typeXmlName%>" />
<% } // end for all types %>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:choice>
</xsd:complexType>
</xsd:element>

Description: A set of XML elements is created that represent the property:
* A role wrapper XML element with maxOccurs=1. The name of the XML element is defined by the
xml.namePlural of the property.
* Role XML elements are nested within the role wrapper element. The minimum occurrence of these
elements is the lower multiplicity of the property; the maximum occurrence is the upper multiplicity.
* Nested in role element at most one XML-element representing the type is allowed.
XML schema
example: <xsd:element name="THE-BS" minOccurs="0" maxOccurs="1">

<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="THE-B">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="1">
<xsd:element name="B1" type="AR:B1"/>
<xsd:element name="B2" type="AR:B2"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="THE-CS" minOccurs="0" maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="1">
<xsd:element name="THE-C">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="1">
<xsd:element name="C" type="AR:C"/>
</xsd:choice>
</xsd:complexType>

\Y

AUTSSAR

</xsd:element>
</xsd:choice>
</xsd:complexType>
</xsd:element>

XML instance
example: <...>
<THE-BS>
<THE-B>
<Bl>
<ATT-Bl>someValueBl</ATT-Bl>
</Bl>
<B2>
<ATT-B2>someValueB2</ATT-B2>
</B2>
</THE-B>
</THE-BS>
<THE-CS>
<THE-C>
<C>
<ATT-C>someValueC</ATT-C>
</C>
</THE-C>
</THE-CS>
</...>

4.4.3 Create composite property representation (1100)

[TPS_XMLSPR_00023] XML Schema production rule: composite property repre-
sentation (1100) |

Applies to: Property

Precondition: xml.roleWrapperElement == true &&
xml.roleElement == true &&
xml.typeWrapperElement == false &&
xml.typeElement == false

Vv

AUTSSAR

A

Target pattern:

<% if (types.length > 1) { %>
<xsd:element name="<%=roleXmlNamePlural%>"
minOccurs="<%_1if (lowerMultiplicity>0)_{%>1<%_
}else {_%>0<%}%>"
maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="<%$=lowerMultiplicity%>"
maxOccurs="<%$=upperMultiplicity%>">
<xsd:element name="<%$=roleXmlName%>">
<xsd:complexType>
<xsd:choice minOccurs="<%_if (lowerMultiplicity
>0) {%>1<%_} _else {_%>0<%}%>"
maxOccurs="1">
<% for all types { %>
<xsd:group ref="<%=typeXmlNsPrefix%>:<%=
typeXmlName%$>"/>
<% } // end for all types %>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<% } else { %>
<xsd:element name="<%$=roleXmlNamePlural%>"
minOccurs="<%_if (lowerMultiplicity>0)_{%>1<%_
}oelse {_%>0<%}%>"
maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="<%$=lowerMultiplicity%>"
maxOccurs="<%$=upperMultiplicity%>">
<xsd:element name="<%=roleXmlName$%>" type="<%=
typeXmlNsPrefix%>:<%=typeXmlName%>"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<% } %>

Description:

A set of XML elements is created that represent the property:
* A role wrapper XML element with maxOccurs=1. The name of the XML element is defined by the
xml.namePlural of the property.

» Role XML elements are nested within the role wrapper element. The minimum occurrence of these
elements is the lower multiplicity of the property; the maximum occurrence is the upper multiplicity.
The content model of the type directly shows up within the declaration of this element.

V

AUTSSAR

A

XML schema
example: <xsd:element name="THE-BS" minOccurs="0" maxOccurs="1">

<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="THE-B">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="1">
<xsd:group ref="AR:B1"/>
<xsd:group ref="AR:B2"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="THE-CS" minOccurs="0" maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="1">
<xsd:element name="THE-C" minOccurs="0" maxOccurs="1"
>
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="1">
<xsd:group ref="AR:C"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:choice>
</xsd:complexType>
</xsd:element>

XML instance
example: <...>
<THE-BS>
<THE-B>
<ATT-Bl>someValueBl</ATT-Bl>
</THE-B>
<THE-B>
<ATT-B2>someValueB2</ATT-B2>
</THE-B>
</THE-BS>
<THE-CS>
<THE-C>
<ATT-C>someValueC</ATT-C>
</THE-C>
</THE-CS>
</...>

AUTSSAR

444 Create composite property representation (1011)

[TPS_XMLSPR_00022] XML Schema production rule: composite property repre-
sentation (1011) |

Applies to: Property

Precondition: xml.roleWrapperElement == true &&
xml.roleElement == false &&
xml.typeWrapperElement == true &&
xml.typeElement == true

Target pattern:
<xsd:element name="<%=roleXmlNamePlural%>"

minOccurs="<%if_ (lowerMultiplicity>0)_{%>1<%}_
else {%>0<%}%>"
maxOccurs="1">
<xsd:complexType>
<xsd:all minOccurs="<%if_ (lowerMultiplicity>0)_{%>1<%}_
else {%>0<%}%>"
maxOccurs="<%=types.length%>">
<% for all types { %>
<xsd:element name="<%$=typeXmlNamePlural%>" minOccurs=
"0" maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="<%=lowerMultiplicity%>"
maxOccurs="<%=upperMultiplicity%>">
<xsd:element name="<%=typeXmlName$%>" type="<%=
typeXmlNsPrefix%>:<%$=typeXmlName$%>"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<% } // end for all types %>
</xsd:all>
</xsd:complexType>
</xsd:element>

Description: A set of XML elements is created that represent the property:
* A role wrapper XML element with maxOccurs=1. The name of the XML element is defined by the

xml.namePlural of the property.
» For each type and subtype of the property a type wrapper XML element is created.

*» Nested in these type wrappers only elements representing the same types as the type wrapper are
allowed.
\Y%

AUTSSAR

A

XML schema
example:

<xsd:element name="THE-BS" minOccurs="0" maxOccurs="1">
<xsd:complexType>
<xsd:all minOccurs="0" maxOccurs="2">
<xsd:element name="B1S" minOccurs="0" maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="B2" type="AR:B2"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="B2S" minOccurs="0" maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="B2" type="AR:B2"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:all>
</xsd:complexType>
</xsd:element>
<xsd:element name="THE-CS" minOccurs="0" maxOccurs="1">
<xsd:complexType>
<xsd:all minOccurs="0" maxOccurs="1">
<xsd:element name="CS" minOccurs="0" maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="1">
<xsd:element name="C" type="AR:C"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:all>
</xsd:complexType>
</xsd:element>

XML instance
example:

<...>
<THE-BS>
<B1lsS>
<Bl>
<ATT-Bl>someValueBl</ATT-Bl>
</B1l>
</B1S>
<B2S>
<B2>
<ATT-B2>someValueB2</ATT-B2>
</B2>
</B2S>
</THE-BS>
<THE-CS>
<CS>
<C>

AUTSSAR

A
A
<ATT-C>someValueC</ATT-C>
</C>
</CS>
</THE-CS>
</...>

4.4.5 Create composite property representation (1000)

[TPS_XMLSPR_00055] XML Schema production rule: composite property repre-
sentation (1000) |

Applies to: Property

Precondition: xml.roleWrapperElement == true &&
xml.roleElement == false &&
xml.typeWrapperElement == false &&
xml.typeElement == false

Target pattern:
<xsd:element name="<%=roleXmlNamePlural%>" minOccurs="<% _if

L (lowerMultiplicity>0) _{%>1<%}_else {%>0<%}%>" maxOccurs
="]">
<xsd:complexType>
<xsd:choice minOccurs="<%$=lowerMultiplicity%>"
maxOccurs="<%=upperMultiplicity%>">
<% for all types { %>
<xsd:group ref="<$=typeXmlNsPrefix%>:<%=typeXmlName%>
I|/>
<% } // end for all types %>
</xsd:choice>
</xsd:complexType>
</xsd:element>

Description: An XML element is created that represents the property:
A role wrapper XML element with maxOccurs=1. The name of the XML element is defined by the
xml.namePlural of the property. The content model of the type directly shows up within the
declaration of this element.

\Y%

AUTSSAR

A

XML schema
example: <xsd:element name="THE-BS" minOccurs="0" maxOccurs="1">

<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:group ref="AR:B1"/>
<xsd:group ref="AR:B2"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="THE-CS" minOccurs="0" maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:group ref="AR:C"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>

XML instance

example: <...>

<THE-BS>
<ATT-Bl>someValueBl</ATT-Bl>
<ATT-B2>someValueB2</ATT-B2>

</THE-BS>

<THE-CS>
<ATT-C>someValueC</ATT-C>

</THE-CS>

</...>

4.4.6 Create composite property representation (1001)

[TPS_XMLSPR_00010] XML Schema production rule: composite property repre-
sentation (1001) |

Applies to: Property

Precondition: xml.roleWrapperElement == true &&
xml.roleElement == false &&
xml.typeWrapperElement == false &&
xml.typeElement == true

V

AUTSSAR

A

Target pattern:

<xsd:element name="<%=roleXmlNamePlural%>"
minOccurs="<%if_ (lowerMultiplicity>0)_{%>1<%}_
else {%>0<%}%>"
maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="<%=lowerMultiplicity%$>"
maxOccurs="<%$=upperMultiplicity%>">
<% for all types { %>
<xsd:element name="<%=typeXmlName$%>" type="<%=
typeXmlNsPrefix%>:<%$=typeXmlName%>"/>
<% } // end for all types %>
</xsd:choice>
</xsd:complexType>
</xsd:element>

Description: A set of XML elements is created that represent the property:
* A role wrapper XML element with maxOccurs=1. The name of the XML element is defined by the
xml.namePlural of the property.
» An XML-element representing the type or subtype of the property. The name of this element is
defined by the xml.name of the type of the property.
XML schema
example: <xsd:element name="THE-BS" minOccurs="0" maxOccurs="1">

<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="B1l" type="AR:B1"/>
<xsd:element name="B2" type="AR:B2"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="THE-CS" minOccurs="0" maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="1">
<xsd:element name="C" type="AR:C"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>

XML instance
example:

<...>
<THE-BS>
<B1l>
<ATT-Bl>someValueBl</ATT-Bl>
</Bl>
<B2>
<ATT-B2>someValueB2</ATT-B2>
</B2>
</THE-BS>
<THE-CS>
<C>
<ATT-C>someValueC</ATT-C>
v

V

AUTSSAR

</C>
</THE-CS>
</...>

4.4.7 Create composite property representation (0111)

[TPS_XMLSPR_00011] XML Schema production rule: composite property repre-
sentation (0111) |

Applies to: Property

Precondition: xml.roleWrapperElement == false &&
xml.roleElement == true &&
xml.typeWrapperElement == true &&
xml.typeElement == true

Target pattern:
<xsd:element name="<%=roleXmlName$%>"

minOccurs="<%=lowerMultiplicity%>"
maxOccurs="<%=upperMultiplicity%>">
<xsd:complexType>
<xsd:all minOccurs="<%if_ (lowerMultiplicity.equals("0")
) L{%5>0<%} _else {%>1<%}%>">
<% for all types { %>
<xsd:element name="<%=typeXmlNamePlural%>" minOccurs=
"0" maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="<%=lowerMultiplicity%>"
maxOccurs="<%=upperMultiplicity%>">
<xsd:element name="<$=typeXmlName%>" type="<%=
typeXmlNsPrefix%>:<%$=typeXmlName%>"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<% } // end for all types %>
</xsd:all>
</xsd:complexType>
</xsd:element>

Description: A set of XML elements is created that represent the property:

* XML elements representing the property name. The name of these XML-elements is defined by
the xml.name of the property. The minimum occurrence of these elements is the lower multiplicity
of the property; the maximum occurrence is the upper multiplicity.

« For each type and subtype of the property a type wrapper XML element is created. The name of
the XML element is defined by the xml.namePlural of the type of the property.

* Nested in these type wrappers only elements representing the same types as the type wrapper are
allowed.
V

AUTSSAR

A

XML schema
example:

<xsd:element name="THE-B" minOccurs="0" maxOccurs="
unbounded">
<xsd:complexType>
<xsd:all minOccurs="0">
<xsd:element name="B1S" minOccurs="0" maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="B1l" type="AR:B1"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="B2S" minOccurs="0" maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="B2" type="AR:B2"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:all>
</xsd:complexType>
</xsd:element>
<xsd:element name="THE-C" minOccurs="0" maxOccurs="1">
<xsd:complexType>
<xsd:all minOccurs="0">
<xsd:element name="CS" minOccurs="0" maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="1">
<xsd:element name="C" type="AR:C"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:all>
</xsd:complexType>
</xsd:element>

XML instance
example:

<...>
<THE-B>
<B1S>
<B1l>
<ATT-Bl>someValueBl</ATT-Bl>
</B1l>
</B1S>
<B2S>
<B2>
<ATT-B2>someValueB2</ATT-B2>
</B2>
</B2S>
</THE-B>
<THE-C>
<CS>

AUTSSAR

A
A
<C>
<ATT-C>someValueC</ATT-C>

</C>
</CS>

</THE-C>

</...>

4.4.8 Create composite property representation (0101)

[TPS_XMLSPR_00012] XML Schema production rule: composite property repre-
sentation (0101) |

Applies to: Property

Precondition: xml.roleWrapperElement == false &&
xml.roleElement == true &&
xml.typeWrapperElement == false &&
xml.typeElement == true

Target pattern:
<xsd:element name="<%=roleXmlName$%>"

minOccurs="<%=lowerMultiplicity%>"
maxOccurs="<%=upperMultiplicity%>">
<xsd:complexType>
<xsd:choice minOccurs="<%$=lowerMultiplicity%>"
maxOccurs="1">
<% for all types { %>
<xsd:element name="<%$=typeXmlName$%>" type="<%=
typeXmlNsPrefix%>:<$=typeXmlName%>"/>
<% } // end for all types %>
</xsd:choice>
</xsd:complexType>
</xsd:element>

Description: A set of XML elements is created that represent the property:

* XML elements representing the property name. The name of these XML-elements is defined by
the xml.name of the property. The minimum occurrence of these elements is the lower multiplicity
of the property; the maximum occurrence is the upper multiplicity.

* Nested in role XML element at most one XML-element representing the type is allowed.

\Y%

AUTSSAR

A

XML schema
example: <xsd:element name="THE-B" minOccurs="0" maxOccurs="

unbounded">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="1">
<xsd:element name="Bl" type="AR:B1"/>
<xsd:element name="B2" type="AR:B2"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="THE-C" minOccurs="0" maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="1">
<xsd:element name="C" type="AR:C"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>

XML instance
example: <...>
<THE-B>
<B1>
<ATT-Bl>someValueBl</ATT-Bl>
</Bl>
</THE-B>
<THE-B>
<B2>
<ATT-B2>someValueB2</ATT-B2>
</B2>
</THE-B>
<THE-C>
<C>
<ATT-C>someValueC</ATT-C>
</C>
</THE-C>
</...>

449 Create composite property representation (0100)

[TPS_XMLSPR_00013] XML Schema production rule: composite property repre-
sentation (0100) |

Applies to: Property
Precondition: xml.roleWrapperElement == false &&
xml.roleElement == true &&

xml.typeWrapperElement == false &&
xml.typeElement == false

\Y

AUTSSAR

A

Target pattern:

<% if (types.length > 1) { %>
<xsd:element name="<%=roleXmlName%$>"
minOccurs="<%=lowerMultiplicity%>"
maxOccurs="<%=upperMultiplicity%>">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="1">
<% for all types { %>
<xsd:group ref="<$=typeXmlNsPrefix%>:<$=typeXmlName%>
"/>
<% } // end for all types %>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<% } else { // NOT type.length >1 %>
<xsd:element name="<%$=roleXmlName%>"
type="<%$=typeXmlNsPrefix%$>:<%=typeXmlName%>"
minOccurs="<%=lowerMultiplicity%>"
maxOccurs="<%=upperMultiplicity%>"/>

<% } %>
Description: An XML element is created that represents the property:
The name of the XML element is defined by the xml.name of the property. The minimum occurrence
of this element is the lower multiplicity of the property; the maximum occurrence is the upper
multiplicity. The content model of the type directly shows up within the declaration of this element.
XML schema
example: <xsd:element name="THE-B" minOccurs="0" maxOccurs="

unbounded">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="1">
<xsd:group ref="AR:B1"/>
<xsd:group ref="AR:B2"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="THE-C" type="AR:C" minOccurs="0"
maxOccurs="1"/>

XML instance
example:

<...>
<THE-B>
<ATT-Bl>someValueBl</ATT-Bl>
</THE-B>
<THE-B>
<ATT-B2>someValueB2</ATT-B2>
</THE-B>
<THE-C>
<ATT-C>someValueC</ATT-C>
</THE-C>
</...>

AUTSSAR

4410 Create composite property representation (0011)

[TPS_XMLSPR_00014] XML Schema production rule: composite property repre-
sentation (0011) |

Applies to: Property

Precondition: xml.roleWrapperElement == false &&
xml.roleElement == false &&
xml.typeWrapperElement == true &&
xml.typeElement == true

Target pattern:
<% for all types { %>

<xsd:element name="<%$=typeXmlNamePlural%>"
minOccurs="<%if_ (lowerMultiplicity>0)_{%>1<%}_
else {%>0<%}%>"
maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="<%$=lowerMultiplicity%>"
maxOccurs="<%=upperMultiplicity%$>">
<xsd:element name="<%=typeXmlName%>" type="<%=
typeXmlNsPrefix%>:<%$=typeXmlName%>"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<% } // end for all types %>

Description: A set of XML elements is created that represent the property:
» For each type and subtype of the property a type wrapper XML element is created. The name of
the XML element is defined by the xml.namePlural of the type of the property.

* Nested in these type wrappers only elements representing the same types as the type wrapper are
allowed.

XML schema
example: <xsd:element name="B1lS" minOccurs="0" maxOccurs="1">

<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="B1" type="AR:B1"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="B2S" minOccurs="0" maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="B2" type="AR:B2"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="CS" minOccurs="0" maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="1">
<xsd:element name="C" type="AR:C"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>

AUTSSAR

XML instance
example: <...>

<B1S>
<B1l>
<ATT-Bl>someValueBl</ATT-Bl>
</Bl>
</B1S>
<B2S>
<B2>
<ATT-B2>someValueB2</ATT-B2>
</B2>
</B2S>
<CS>
<C>
<ATT-C>someValueC</ATT-C>
</C>
</CS>
</...>

4.4.11 Create composite property representation (0001)

[TPS_XMLSPR_00015] XML Schema production rule: composite property repre-
sentation (0001) |

Applies to: Property

Precondition: xml.roleWrapperElement == false &&
xml.roleElement == false &&
xml.typeWrapperElement == false &&
xml.typeElement == true

Target pattern:
<xsd:choice minOccurs="<%$=lowerMultiplicity%>" maxOccurs="

<%=upperMultiplicity%>">
<% for all types { %>
<xsd:element name="<%$=typeXmlName$%>" type="<%=
typeXmlNsPrefix$%>:<%$=typeXmlName%>"/>
<% } // end for all types %>
</xsd:choice>

Description: An XML element is created that represents the property:

The name of the XML element is defined by the xml.name of the type of the property. The minimum
occurrence of this element is the lower multiplicity of the property; the maximum occurrence is the
upper multiplicity. The content model of the type directly shows up within the declaration of this
element.

Y%

AUTSSAR

A

XML schema
example: <xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="B1" type="AR:B1"/>
<xsd:element name="B2" type="AR:B2"/>
</xsd:choice>
<xsd:choice minOccurs="0" maxOccurs="1">
<xsd:element name="C" type="AR:C"/>
</xsd:choice>

XML instance
example: <...>

<B1l>
<ATT-Bl>someValueBl</ATT-Bl>

</Bl>

<B2>
<ATT-B2>someValueB2</ATT-B2>

</B2>

<C>
<ATT-C>someValueC</ATT-C>

</C>

</...>

4412 Create composite property representation (0000)

[TPS_XMLSPR_00016] XML Schema production rule: composite property repre-
sentation (0000) |

Applies to: Property

Precondition: xml.roleWrapperElement == false &&
xml.roleElement == false &&
xml.typeWrapperElement == false &&
xml.typeElement == false

Target pattern:
<xsd:choice minOccurs="<%=lowerMultiplicity%>" maxOccurs="

<%$=upperMultiplicity%>">
<% for all types { %>
<xsd:group ref="<%=typeXmlNsPrefix%>:<%=typeXmlName%>"/>
<% } // end for all types %>
</xsd:choice>

Description: No XML element is defined for the property. The content model of the type and all subtypes of the
property is inserted directly in the xsd:group that represents the class that owns the property.

V

AUTSSAR

A

XML schema
example: <xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:group ref="AR:B1"/>
<xsd:group ref="AR:B2"/>

</xsd:choice>

<xsd:choice minOccurs="0" maxOccurs="1">
<xsd:group ref="AR:C"/>

</xsd:choice>

XML instance
example: <...>

<ATT-Bl>someValueBl</ATT-Bl>

<ATT-B2>someValueB2</ATT-B2>

<ATT-C>someValueC</ATT-C>
</...>

4.5 Create reference representation

Figure 4.15 shows an overview on mapping rules for references (properties with aggre-
gation=none). References are always mapped to XML-elements. If the tagged value
xml.propertyWrapperElement=true is applied to the property, then a wrapper element
is created for the reference.

AUTSSAR

:Property

propertyWrapper?

NOT propertyWrappereElement
[propertyWrapperElement] [NOT propertyWrapp]

[TPS_XMLSPR_00017] Create
reference property (1)

[TPS_XMLSPR_00018] Create
reference property (0)

ActivityFinal

Figure 4.15: Property representation (aggregation = none)

Figure 4.16 shows an example meta-model that uses a reference. This example is
used to illustrate the following two mapping rules.

D Identifiable
+theB B
oe {abstract}
B1 B2
+ attB1: String + attB2: String

Figure 4.16: Example meta-model using a reference

Figure 4.17 shows an example instance of a reference. This example is used to illus-
trate the following two mapping rules.

AUTSSAR

B1

+theB attB1 = someValueB1

/ shortName = instancel
\+theB
It

I

B2

attB2 = someValueB2
shortName = instance2

Figure 4.17: Example instance of reference

4.5.1 Create reference property representation (1)

[TPS_XMLSPR_00017] XML Schema production rule: reference property repre-
sentation with role wrapper element |

Applies to

Property

Precondition

xml.roleWrapperElement=true

Target pattern

<xsd:element name="<%=roleXmlNamePlural%$>" minOccurs="<%=
lowerMultiplicity%>" maxOccurs="1">
<xsd:complexType>
<xsd:choice minOccurs="<%$=lowerMultiplicity%>"
maxOccurs="<%=upperMultiplicity%>">
<xsd:element name="<%$=roleXmlName$%>">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="AR:REF">
<xsd:attribute name="DEST" type="<%=
typeXmlNsPrefix%>:<%=typeXmlName%>—-—
SUBTYPE-ENUM" use="required"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
</xsd:choice>
</xsd:complexType>
</xsd:element>

Description

The following XML elements represent a property (if aggregation=none):

* An XML element that wraps several XML elements of the same XML name. The name of the
wrapper is defined by the xml.namePlural of the property. Please note the default xml.namePlural
is defined by the default singular XML name appended by "-REFS", "-TREFS" (see
[TPS_XMLSPR_00043] and [TPS_XMLSPR_00045]).

» An XML element that represents the reference itself. The name of this element is defined by the
xml.name of the property. Please note the default xml.name is defined by the default singular XML

name appended by by "-REF", "-TREF" (see [TPS_XMLSPR_00043] and [TPS_XMLSPR_00045]).

\Y

AUTSSAR

A

XML schema
example <xsd:element name="THE-B-REFS" >

<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="THE-B-REF">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="AR:REF">
<xsd:attribute name="DEST" type="B--SUBTYPES-
ENUM" use="required"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
</xsd:choice>
</xsd:complexType>
</xsd:element>

XML instance
example <...>

<THE-B-REFS>

<THE-B-REF DEST="B-1">instancel</THE-B-REF>
<THE-B-REF DEST="B-2">instance2</THE-B-REF>
</THE-B-REFS>

</...>

4.5.2 Create reference property representation (0)

[TPS_XMLSPR_00018] XML Schema production rule: reference property repre-
sentation without role wrapper element |

Applies to Property

Precondition xml.roleWrapperElement=false

Target pattern
<xsd:element name="<%=roleXmlName%>"

minOccurs="<%=lowerMultiplicity%>" maxOccurs="<%=
upperMultiplicity%>">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="AR:REF">
<xsd:attribute name="DEST"
type="<%=typeXmlNsPrefix%>:<$=typeXmlName%>--SUBTYPES
-ENUM" use="required"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>

AUTSSAR

A

Description An XML element represents the reference. The name of this element is defined by the xml.name of
the property. Please note the default xml.name is defined by the default singular XML name
appended by "-REF", "-TREF" (see [TPS_XMLSPR_00043] and [TPS_XMLSPR_00045]).

XML schema
example <xsd:element name="THE-B-REF" type="AR:REF"

minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="AR:REF">
<xsd:attribute name="DEST"
type="B--SUBTYPES-ENUM" use="required"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>

XML instance
example <...>

<THE-B-REF DEST="B-1">instancel</THE-B-REF>
<THE-B-REF DEST="B-2">instance2</THE-B-REF>
</...>

]

Remark: If the transformations specified in [TPS_GST_00351] are applied, this pattern
will not occur.

4.5.3 Create a reference to attributes in foreign namespaces

[TPS_XMLSPR_00027] XML Schema production rule: reference to attributes in
foreigh namespaces |

Applies to Property

Precondition xml.attributeRef=true
Target pattern

<xsd:attribute ref="<%=nsPrefix%>:<%=xmlName%>"/>

Description An XML attribute that references attributes from foreign namespaces, e.g. the XML namespace. The
name of the reference is defined by the xml.name of the property concatenated after the namespace
prefix. Currently, only the XML namespace (nsPrefix=xml) is allowed.

Y

AUTSSAR

A

XML schema
example

<xsd:attributeGroup name="WHITESPACE-CONTROLLED">
<xsd:attribute ref="xml:space" use="required">
<xsd:annotation>
<xsd:documentation>This attrbute is used to signal an
intention
that in that element, white space should be preserved
by applications.
It is defined according to xml:space as declared by
W3C.
</xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:attributeGroup>

XML instance
example

<ADMIN-DATA>
<LANGUAGE>EN</LANGUAGE>
<USED-LANGUAGES>
<L-10 L="EN" xml:space="default">English</L-10>
</USED-LANGUAGES>
</ADMIN-DATA>

WhitespaceControlled

+ xmlSpace: XmlISpaceEnum

Figure 4.18: UML example - Create a reference to attributes in foreign namespaces

AUTSSAR

5 AUTOSAR XML schema compliance

AUTOSAR XML Schemas must be equivalent to those generated by the AUTOSAR
XML Schema production rules specified in this document. Equivalence means that:

« XML documents that are valid under the AUTOSAR XML Schema would be valid
in a conforming XML Schema

« and that those XML documents that are not valid under the AUTOSAR XML
Schema are not valid in a conforming XML Schema.

AUTSSAR

A Change history of AUTOSAR traceable items

The content of this appendix chapter is informative in nature and shall not be consid-
ered as normative content.

A.1 Specification Iltem Mapping: Document migration from TR to
TPS

In the course of the migration of this document from a Technical Report (TR)
to a Template Specification (TPS) the specification item IDs were changed from
TR_APRXML_XXXXX to TPS_XMLSPR_XXXXX. The exact mapping of specification
item IDs is shown in table below.

Previous ID

Effective ID

TR_APRXML_00000

TPS_XMLSPR_00000

TR_APRXML_00001

TPS_XMLSPR_00001

TR_APRXML_00002

TPS_XMLSPR_00002

TR_APRXML_00003

TPS_XMLSPR_00003

TR_APRXML_00005

TPS_XMLSPR_00005

TR_APRXML_00006

TPS_XMLSPR_00006

TR_APRXML_00007

TPS_XMLSPR_00007

TR_APRXML_00008

TPS_XMLSPR_00008

TR_APRXML_00009

TPS_XMLSPR_00009

TR_APRXML_00010

TPS_XMLSPR_00010

TR_APRXML_00011

TPS_XMLSPR_00011

TR_APRXML_00012

TPS_XMLSPR_00012

TR_APRXML_00013

TPS_XMLSPR_00013

TR_APRXML_00014

TPS_XMLSPR_00014

TR_APRXML_00015

TPS_XMLSPR_00015

TR_APRXML_00016

TPS_XMLSPR_00016

TR_APRXML_00017

TPS_XMLSPR_00017

TR_APRXML_00018

TPS_XMLSPR_00018

TR_APRXML_00019

TPS_XMLSPR_00019

TR_APRXML_00022

TPS_XMLSPR_00022

TR_APRXML_00023

TPS_XMLSPR_00023

TR_APRXML_00024

TPS_XMLSPR_00024

TR_APRXML_00025

TPS_XMLSPR_00025

TR_APRXML_00026

TPS_XMLSPR_00026

TR_APRXML_00027

TPS_XMLSPR_00027

TR_APRXML_00028

TPS_XMLSPR_00028

AUTSSAR

Previous ID

Effective ID

TR_APRXML_00029

TPS_XMLSPR_00029

TR_APRXML_00030

TPS_XMLSPR_00030

TR_APRXML_00031

TPS_XMLSPR_00031

TR_APRXML_00032

TPS_XMLSPR_00032

TR_APRXML_00033

TPS_XMLSPR_00033

TR_APRXML_00034

TPS_XMLSPR_00034

TR_APRXML_00035

TPS_XMLSPR_00035

TR_APRXML_00036

TPS_XMLSPR_00036

TR_APRXML_00037

TPS_XMLSPR_00037

TR_APRXML_00038

TPS_XMLSPR_00038

TR_APRXML_00039

TPS_XMLSPR_00039

TR_APRXML_00040

TPS_XMLSPR_00040

TR_APRXML_00041

TPS_XMLSPR_00041

TR_APRXML_00042

TPS_XMLSPR_00042

TR_APRXML_00043

TPS_XMLSPR_00043

TR_APRXML_00044

TPS_XMLSPR_00044

TR_APRXML_00045

TPS_XMLSPR_00045

TR_APRXML_00046

TPS_XMLSPR_00046

TR_APRXML_00047

TPS_XMLSPR_00047

TR_APRXML_00054

TPS_XMLSPR_00054

Table A.1: Specification Item Mapping: Document migration from TR to TPS

A.2 Traceable item history of this document according to AU-

TOSAR Release R25-11

A.2.1 Added Specification Items in R25-11

none

A.2.2 Changed Specification Iltems in R25-11

Number

Heading

[TPS_XMLSPR_00044]

XML Configuration of instance references

[TPS_XMLSPR_00056]

Default settings for the XML Configuration of properties

Table A.2: Changed Specification Items in R25-11

AUTSSAR

A.2.3 Deleted Specification Iltems in R25-11

none

A.3 Traceable item history of this document according to AU-
TOSAR Release R24-11

A.3.1 Added Specification Items in R24-11

none

A.3.2 Changed Specification Items in R24-11

none

A.3.3 Deleted Specification Items in R24-11

none

A.4 Traceable item history of this document according to AU-
TOSAR Release R23-11

A.4.1 Added Specification Iltems in R23-11

Number Heading

[TPS_XMLSPR_00057] | Constraints on tags applied to properties
[TPS_XMLSPR_00058] | Constraints on tags applied to classes
[TPS_XMLSPR_00059] | Constraints on values of xml.*Element tagged values

Table A.3: Added Specification Iltems in R23-11

A.4.2 Changed Specification ltems in R23-11

none

A.4.3 Deleted Specification Items in R23-11

none

AUTSSAR

A.5 Traceable item history of this document according to AU-
TOSAR Release R22-11

A.5.1 Added Specification Items in R22-11

none

A.5.2 Changed Specification Items in R22-11

Number Heading

[TPS_XMLSPR_00001] | XML Schema production rule: xsd:group

[TPS_XMLSPR_00002] | XML Schema production rule: xsd:attributeGroup
[TPS_XMLSPR_00003] | XML Schema production rule: xsd:complexType
[TPS_XMLSPR_00024] | XML Schema production rule: xsd:complexType with simple content
[TPS_XMLSPR_00025] | XML Schema production rule: enumeration of subtypes

Table A.4: Changed Specification Items in R22-11

A.5.3 Deleted Specification ltems in R22-11

none

A.6 Traceable item history of this document according to AU-
TOSAR Release R21-11

A.6.1 Added Specification Iltems in R21-11

none

A.6.2 Changed Specification Items in R21-11

Number Heading

[TPS_XMLSPR_00026] | XML Schema production rule: custom simple type
[TPS_XMLSPR_00028] | Optional XML elements

[TPS_XMLSPR_00044] | XML Configuration of instance references

Table A.5: Changed Specification Items in R21-11

AUTSSAR

A.6.3 Deleted Specification ltems in R21-11

none

	1 Introduction
	2 XML Schema design principles
	2.1 Notes on UML2.0 semantics of the AUTOSAR meta-model
	2.1.1 Representation of association (aggregation = composite)
	2.1.2 Representation of attribute (aggregation = composite)
	2.1.3 Representation of associations (aggregation = none)
	2.1.4 Representation of attributes (aggregation = none)

	2.2 Notes on use of W3C XML schema
	2.3 Handling Inheritance
	2.4 Generic Approach
	2.5 XML element versus attribute
	2.6 XML names
	2.7 Order of XML-elements
	2.7.1 Order of xml elements
	2.7.2 Order of xml elements of derived uml:properties

	2.8 Linking
	2.9 Transmitting incomplete Data
	2.10 Identification of XML schema version in XML descriptions

	3 Configuration of XML schema production
	3.1 Tailoring schema production
	3.1.1 Overview
	3.1.2 Constraints on tags
	3.1.2.1 Constraints on tags applied to properties
	3.1.2.2 Constraints on tags applied to classes
	3.1.2.3 Constraints on values of xml.*Element tagged values

	3.2 Default configuration of XML schema production
	3.2.1 Configuration of multiplicities
	3.2.2 Mapping configuration for properties
	3.2.3 Mapping configuration for references
	3.2.3.1 References without stereotypes
	3.2.3.2 Instance references
	3.2.3.3 References with stereotype <<isOfType>>

	3.2.4 Stereotypes applied to classes
	3.2.4.1 Stereotype <<atpMixed>>
	3.2.4.2 Stereotype <<atpMixedString>>

	4 XML Schema production rules
	4.1 Create model representation
	4.1.1 Create xsd:schema

	4.2 Create class representation
	4.2.1 Create xsd:group
	4.2.2 Create xsd:attributeGroup
	4.2.3 Create xsd:complexType
	4.2.4 Create xsd:complexType with simple content
	4.2.5 Create global xsd:element
	4.2.6 Create enumeration of subtypes
	4.2.7 Create reference to XML predefined data type
	4.2.8 Create a custom simple type
	4.2.9 Create xsd:simpleType for enumeration

	4.3 Create composite property representation (mapping to XML attributes)
	4.3.1 Create xsd:attribute

	4.4 Create composite property representation (mapping to XML elements)
	4.4.1 Create composite property representation (1111)
	4.4.2 Create composite property representation (1101)
	4.4.3 Create composite property representation (1100)
	4.4.4 Create composite property representation (1011)
	4.4.5 Create composite property representation (1000)
	4.4.6 Create composite property representation (1001)
	4.4.7 Create composite property representation (0111)
	4.4.8 Create composite property representation (0101)
	4.4.9 Create composite property representation (0100)
	4.4.10 Create composite property representation (0011)
	4.4.11 Create composite property representation (0001)
	4.4.12 Create composite property representation (0000)

	4.5 Create reference representation
	4.5.1 Create reference property representation (1)
	4.5.2 Create reference property representation (0)
	4.5.3 Create a reference to attributes in foreign namespaces

	5 AUTOSAR XML schema compliance
	A Change history of AUTOSAR traceable items
	A.1 Specification Item Mapping: Document migration from TR to TPS
	A.2 Traceable item history of this document according to AUTOSAR Release R25-11
	A.2.1 Added Specification Items in R25-11
	A.2.2 Changed Specification Items in R25-11
	A.2.3 Deleted Specification Items in R25-11

	A.3 Traceable item history of this document according to AUTOSAR Release R24-11
	A.3.1 Added Specification Items in R24-11
	A.3.2 Changed Specification Items in R24-11
	A.3.3 Deleted Specification Items in R24-11

	A.4 Traceable item history of this document according to AUTOSAR Release R23-11
	A.4.1 Added Specification Items in R23-11
	A.4.2 Changed Specification Items in R23-11
	A.4.3 Deleted Specification Items in R23-11

	A.5 Traceable item history of this document according to AUTOSAR Release R22-11
	A.5.1 Added Specification Items in R22-11
	A.5.2 Changed Specification Items in R22-11
	A.5.3 Deleted Specification Items in R22-11

	A.6 Traceable item history of this document according to AUTOSAR Release R21-11
	A.6.1 Added Specification Items in R21-11
	A.6.2 Changed Specification Items in R21-11
	A.6.3 Deleted Specification Items in R21-11

