AUTSSAR

Document Title

Standardization Template

Document Owner

AUTOSAR

Document Responsibility AUTOSAR
Document Identification No 535
Document Status published
Part of AUTOSAR Standard Foundation
Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
« Taken over content from
TR_PredefinedNames
AUTOSAR « Corrections to traceable
2025-11-27 | R25-11 Release rules/conventions
Management
* Removal of PDEP
» Add Trace groups description
AUTOSAR
» Obsolete categories of traceable
2024-11-27 | R24-11 Release .
Management removed in TPS_STDT 00098
» Add chapter on AUTOSAR Imposition
AUTOSAR Times
2023-11-23 | R23-11 Release .
Management Remove SAFEX traceable item category
* Various editorial changes
* Advisory item
AUTOSAR
2022-11-24 | R22-11 Release « Sentence pattern
Management i
 Extension of namePattern for platform
AUTOSAR - update life cycle states
2021-11-25 | R21-11 Release
Management « improve traceability to RS document
* introduce advisory markup
AUTOSAR
2020-11-30 | R20-11 Release « editorial changes
Management L
» Migration of document to standard FO

AUTSSAR

» harmonize the use of BlueprintCondition,
FormalBlueprintGenerator

AUTOSAR
2019-11-28 R19-11 Release » editorial changes
Management ,
» changed Document Status from Final to
published
* uptraces wrt. life cycles
AUTOSAR
2018-10-31 4.4.0 Release * include ARMQL relevant parts
Management)]
* harmonize Blueprint parts
AUTOSAR
2017-12-08 | 4.3.1 Release » editorial changes
Management
« extend Blueprintables
* update specification levels
AUTOSAR « convert constraints in specification items
2016-11-30 | 4.3.0 Release _ _
Management « introduction of platform based document
structure
« introduction of Profiles for Data
Exchange Points
AUTOSAR « introduction of LifeCycleState for
2015-07-31 4090 Release constraint and specification items
Management « editorial changes
« introduction of Blueprint Policy
AUTOSAR
2014-10-31 4.2.1 Release * include safety extension relevant items
Management))
« extension of acceptance test items
AUTOSAR « editorial changes including tagged
Management - update content of specification levels
« editorial changes including tagged
AUTOSAR specification items
2013-10-31 4.1.2 Release
Management « extension of blueprinting to further

AUTOSAR classes

AUTSSAR

« editorial changes including tagged
specification items

* extension of blueprinting to further
AUTOSAR classes (e.g. build action

2013-03-15 | 4.1.1 AUTOSAR manifest)
Administration
* introduction of life cycle support
« improvement of document traceability
« refinement of traceability support
2011-12-22 | 4.0.3 AUTOSAR * Initial Release

Administration

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction
1.1 AUTOSAR documentconventions

2 AUTOSAR documentation model
2.1 AUTOSAR documentmeta-data
2.2 Documentcategories
2.3 Documentrelationalviews
2.4 Documentlist
2.5 Standardized naming of published files
2.6 Standardized ARPackage.shortNameS o v v ...

3 Tracing

3.1 AUTOSAR document traceableitems

3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6

Specificationltem L
Model Constraint
Software Constraint,
Model Advisory e
Imposition Time of a Model Constraint/Model Advisory
Requirement

3.1.6.1 Phrasingconvention

3.1.7
3.1.8

Applicability of Requirements
Meta-classes supporting Traceable ltems

3.1.8.1 StructuredReq
3.1.8.2 TraceableText/TraceableTable
3.2 Tracelevels
3.3 TraCce groups o e

4 Life Cycle of AUTOSAR definitions
4.1 Life Cycle Statevs Tracing Levels

Blueprints

5.1 The Principles of Blueprints

5.1.1
5.1.2
5.1.3
5.1.4

5.1.5
5.1.6
5.1.7

Abstract pattern for Blueprints L.
Mapping of Blueprints to blueprinted Elements
General Rules for Compliance of blueprint and blueprinted element

Applicable patterns to define attributes when deriving objects from

blueprints
Name Patterns
Blueprint Formula o
Ecu Configuration Parameters and Blueprints

5.2 Blueprintables defined in AUTOSAR Meta Model

5.2.1
5.2.2

Blueprinting AccessControl
Blueprinting AliasNameSet

11
11

13
13
13
14
15
24
24

26
26
26
27
28
28
29
32
33
34
35
36
36
37
38

39
40

41

41
42
45
47

AUTSSAR

5.2.3 Blueprinting ApplicationDataType 61
5.2.4 Blueprinting ARPackage o 61
5.2.5 Blueprinting BswModuleDescription 62
5.2.6 Blueprinting BswModuleEntry 0oL 62
5.2.7 Blueprinting BswEntryRelationshipSet 63
5.2.8 Blueprinting BuildActionManifest 64
5.2.9 Blueprinting CompuMethod L. 65
5.2.10 Blueprinting ConsistencyNeeds 65
5.2.11 Blueprinting DataConstr, 68
5.2.12 Blueprinting DataTypeMappingSet 68
5.2.13 Blueprinting EcucDefinitionCollection 68
5.2.14 Blueprinting EcucModuleDef 68
5.2.15BlueprintingFlatMap o 68
5.2.16 Blueprinting ImplementationDataType 69
5.2.17 Blueprinting KeywordSet oL 69
5.2.18 Blueprinting LifeCycleStateDefinitionGroups and LifeCycleStates . . 69
5.2.19 Blueprinting ModeDeclarationGroup 69
5.2.20 Blueprinting PortPrototype oL 70
5.2.21 Blueprinting Portinterface 74
5.2.22 Blueprinting PortinterfaceMapping and PortinterfaceMappingSet . . 74
5.2.23 Blueprinting SwBaseType oL 76
5.2.24 Blueprinting SwComponentType 76
5.2.25 Blueprinting SwAddrMethods L. 77
5.2.26 Blueprinting VibTiming o 77
5.2.26.1 Example 78
5.2.27 Blueprinting ClientServerinterface ToBswModuleEntryBlueprintMap-
PING .« o o o e e e e 79
5.3 Deriving from AUTOSAR-provided Blueprints 81
Keywords 83
A Examples 85
A1 Example Blueprints 85
A.1.1 Blueprints of PortInterfaceMapping 85
A.1.2 Blueprints of VEbTiming oL 87
A2 Example Keyword ARXMLs 88
A.2.1 Example ARXML for Keywords 88
A.2.2 Example ARXML for Stem Relation of Keywords 88
A.2.3 Example for BlueprintPolicyNotModifiable 89
A.2.4 Example for BlueprintPolicyList v v v v v v v o .. 90
A.2.5 Example for BlueprintPolicySingle 90
B Mentioned Class Tables 93

C Variation Points in this Template 153

AUTSSAR

D Change History 154
D.1 Change History of this document according to AUTOSAR Release R4.3.1 154
D.1.1 Added Specification ltemsin4.3.1 154
D.1.2 Changed Specification ltemsin4.3.1 154
D.1.3 Deleted Specification Itemsin4.3.1 154
D.1.4 Added Constraintsin4.3.1 154
D.1.5 Changed Constraintsin4.3.1 154
D.1.6 Deleted Constraintsin4.3.1 154
D.2 Change History of this document according to AUTOSAR Release R4.4.0 155
D.2.1 Added Specification ltemsin4.4.0 155
D.2.2 Changed Specification ltemsin4.4.0 155
D.2.3 Deleted Specification Itemsin4.4.0 155
D.2.4 Added Constraintsin4.4.0 155
D.2.5 Changed Constraintsin4.4.0 156
D.2.6 Deleted Constraintsin4.4.0. 156
D.3 Change History of this document according to AUTOSAR Release R19-11 156
D.3.1 Added Specification Itemsin19-11 156
D.3.2 Changed Specification ltemsin19-11 156
D.3.3 Deleted Specification Itemsin19-11 156
D.3.4 Added Constraintsin19-11 156
D.3.5 Changed Constraints in 19-11 157
D.3.6 Deleted Constraints in19-11 157
D.4 Change History of this document according to AUTOSAR Release R20-11 157
D.4.1 Added Specification Itemsin R20-11 157
D.4.2 Changed Specification ltemsin R20-11 157
D.4.3 Deleted Specification Itemsin R20-11 157
D.4.4 Added Constraintsin R20-11 157
D.4.5 Changed Constraints in R20-11 157
D.4.6 Deleted Constraintsin R20-11 158
D.5 Change History of this document according to AUTOSAR Release R21-11 158
D.5.1 Added Specification ItemsinR21-11 158
D.5.2 Changed Specification ltemsin R21-11 158
D.5.3 Deleted Specification Itemsin R21-11 158
D.5.4 Added Constraintsin R21-11 158
D.5.5 Changed Constraintsin R21-11 158
D.5.6 Deleted Constraintsin R21-11 159
D.6 Change History of this document according to AUTOSAR Release R22-11 159
D.6.1 Added Specification ItemsinR22-11 159
D.6.2 Changed Specification ltemsin R22-11 159
D.6.3 Deleted Specification Itemsin R22-11 159
D.6.4 Added Constraintsin R22-11 159
D.6.5 Changed Constraintsin R22-11 159
D.6.6 Deleted Constraintsin R22-11 159

AUTSSAR

D.7 Change History of this document according to AUTOSAR Release R23-11 160

D.7.1 Added Specification Itemsin R23-11 160
D.7.2 Changed Specification ltems in R23-11 160
D.7.3 Deleted Specification Itemsin R23-11 160
D.7.4 Added Constraintsin R23-11 160
D.7.5 Changed Constraints in R23-11 161
D.7.6 Deleted Constraints in R23-11 161
D.8 Change History of this document according to AUTOSAR Release R24-11 161
D.8.1 Added Specification ltemsin R24-11 161
D.8.2 Changed Specification ltemsin R24-11 161
D.8.3 Deleted Specification ltemsin R24-11 162
D.8.4 Added Constraintsin R24-11 162
D.8.5 Changed Constraintsin R24-11 162
D.8.6 Deleted ConstraintsinR24-11 162
D.9 Change History of this document according to AUTOSAR Release R25-11 162
D.9.1 Added Specification ltemsin R25-11 162
D.9.2 Changed Specification ltemsin R25-11 163
D.9.3 Deleted Specification Itemsin R25-11 163
D.9.4 Added Constraintsin R25-11 166
D.9.5 Changed Constraintsin R25-11 166
D.9.6 Deleted Constraintsin R25-11 166

AUTSSAR

References

[1] Standardization Template
AUTOSAR_FO_TPS_StandardizationTemplate

[2] Generic Structure Template
AUTOSAR_FO_TPS_GenericStructureTemplate

[8] XML Specification of Application Interfaces
AUTOSAR_CP_MOD_AlSpecification

[4] Technical Report on AUTOSAR Features
AUTOSAR_FO_TR_Features

[5] AUTOSAR Feature Model
AUTOSAR _FO MOD Features

[6] Collection of blueprints for AUTOSAR M1 models
AUTOSAR_FO_MOD_GeneralBlueprints

[7] Standardized M1 Models used for the Definition of AUTOSAR
AUTOSAR_FO_MOD_GeneralDefinitions

[8] General Requirements specific to Adaptive Platform
AUTOSAR_AP_RS_ General

[9] General Requirements on Basic Software Modules
AUTOSAR_CP_RS BSWGeneral

[10] Requirements on BSW Modules for SAE J1939
AUTOSAR_CP_RS_SAEJ1939

[11] Specification of a Transport Layer for SAE J1939
AUTOSAR_CP_SWS_SAEJ1939TransportLayer

[12] Specification of a Request Manager for SAE J1939
AUTOSAR_CP_SWS_SAEJ1939RequestManager

[13] XML Path language (XPath)
http://www.w3.org/TR/xpath/

[14] ANTLR parser generator V3
http://www.antlr.org

[15] Specification of ECU Configuration
AUTOSAR_CP_TPS_ECUConfiguration

[16] Modeling and Naming Aspects for Documentation, Measurement, and Calibration
AUTOSAR_CP_TR_AIMeasurementCalibrationDiagnostics

[17] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

http://www.w3.org/TR/xpath/
http://www.antlr.org

AUTSSAR

[18] Specification of Timing Extensions for Classic Platform
AUTOSAR_CP_TPS_TimingExtensions

[19] Explanation of Application Interfaces of the Powertrain Engine Domain
AUTOSAR _CP_EXP_AlPowertrain

[20] Specification of Platform Types for Classic Platform
AUTOSAR_CP_SWS_PlatformTypes

[21] SW-C and System Modeling Guide
AUTOSAR_CP_TR_SWCModelingGuide

AUTSSAR

1 Introduction

The document describes aspects related to published AUTOSAR documents. The
types of documents and their relation; how to read them; the usage of the AUTOSAR
meta-model for AUTOSAR documentation and in particular tracing in AUTOSAR doc-
uments.

1.1 AUTOSAR document conventions

Technical terms are typeset in mono spaced font, e.g. PortPrototype. As a general
rule, plural forms of technical terms are created by adding "s" to the singular form, e.g.
PortPrototypes. By this means the document resembles terminology used in the
AUTOSAR XML Schema.

This document contains constraints in textual form that are distinguished from the rest
of the text by a unique numerical constraint ID, a headline, and the actual constraint
text starting after the [character and terminated by the | character.

The purpose of these constraints is to literally constrain the interpretation of the
AUTOSAR meta-model such that it is possible to detect violations of the standardized
behavior implemented in an instance of the meta-model (i.e. on M1 level).

Makers of AUTOSAR tools are encouraged to add the numerical ID of a constraint that
corresponds to an M1 modeling issue as part of the diagnostic message issued by the
tool.

The attributes of the classes introduced in this document are listed in form of class
tables. They have the form shown in the example of the top-level element AUTOSAR:

Please note that constraints are not supposed to be enforceable at any given time in an
AUTOSAR workflow. During the development of a model, constraints may legitimately
be violated because an incomplete model will obviously show inconsistencies.

However, at specific points in the workflow, constraints shall be enforced as a safeguard
against misconfiguration.

The points in the workflow where constraints shall be enforced, sometimes also known
as the "binding time" of the constraint, are different for each model category, e.g. on the
classic platform, the constraints defined for software-components are typically enforced
prior to the generation of the RTE while the constraints against the definition of an Ecu
extract shall be applied when the Ecu configuration for the Com stack is created.

For each document, possible binding times of constraints are defined and the binding
times are typically mentioned in the constraint themselves to give a proper orientation
for implementers of AUTOSAR authoring tools.

Let AUTOSAR be an example of a typical class table. The first rows in the table have
the following meaning:

AUTSSAR

Class: The name of the class as defined in the UML model.

Package: The UML package the class is defined in. This is only listed to help locating
the class in the overall meta model.

Note: The comment the modeler gave for the class (class note). Stereotypes and UML
tags of the class are also denoted here.

Base Classes: If applicable, the list of direct base classes.
The headers in the table have the following meaning:

Attribute: The name of an attribute of the class. Note that AUTOSAR does not distin-
guish between class attributes and owned association ends.

Type: The type of an attribute of the class.

Mul.: The assigned multiplicity of the attribute, i.e. how many instances of the given
data type are associated with the attribute.

Kind: Specifies, whether the attribute is aggregated in the class (aggr aggregation),
an UML attribute in the class (attr primitive attribute), or just referenced by it (ref
reference). Instance references are also indicated (iref instance reference) in this
field.

Note: The comment the modeler gave for the class attribute (role note). Stereotypes
and UML tags of the class are also denoted here.

Please note that the chapters that start with a letter instead of a numerical value rep-
resent the appendix of the document. The purpose of the appendix is to support the
explanation of certain aspects of the document and does not represent binding con-
ventions of the standard.

The verbal forms for the expression of obligation specified in [TPS_STDT_00053] shall
be used to indicate requirements, see [1, Standardization Template].

Please note: By intent, TPS documents (and their traceable items) do not trace up to
an RS (requirement item).

AUTSSAR

2 AUTOSAR documentation model

2.1 AUTOSAR document meta-data

The table in [TPS_STDT_00151] lists the meta-data for any given AUTOSAR docu-
ment, the "Example" column shows the meta-data for this document.

[TPS_STDT_00151] AUTOSAR document meta-data |

(abbr)

name

Meta-data attribute Mnemonic Usage Example
Document category doc-cat-full Document category - full name Template
(full) Specification
Document category doc—cat-abbr Document category - abbreviated TPS

Document PDF name

doc-file-name

Document published .pdf file name

AUTOSAR_FO_TPS_Stan-—
dardizationTemplate

document is published

Document identifier doc-id Document unique identifier 535
Document standard doc-std-full AUTOSAR standard - full name. If Foundation
(full) unspecified, the "Part of AUTOSAR

Standard" meta-data applies

implicitly
Document standard doc-std-abbr Abbreviated form of doc-std-full. | FO
(abbr) As per standardNameEnum.
Document status doc-status Document publishing status published
Document release doc-rel-ver AUTOSAR release in which the R25-11

Document name (full)

doc—name—full

Document name (full) - from
[TPS_STDT_00137]

StandardizationTem-
plate

Document name (abbr) doc-name-abbr | Document name (abbreviated) - from | STDT
[TPS_STDT_00137]
Document title doc-title Document title Standardization
Template

2.2 Document categories

The table in [TPS_STDT_00150] lists the different categories of documents pub-
lished by AUTOSAR' and their purpose.

[TPS_STDT_00150] AUTOSAR document categories |

Document Document category (full) Purpose

category

(abbreviation)

ASWS Abstract SWS Software Specification General Specification of AUTOSAR Basic Software
Modules

EXP Explanation Explanatory material discussing contents already shown in
other documents

\Y

1Strictly speaking, MOD, MMOD, SRC are not documents, rather ‘other’ formats of published artifacts

AUT<

SAR

A

Document Document category (full) Purpose

category

(abbreviation)

MMOD MetaModel Modeled contents (a model or generated from a model) on
meta level 2 (Meta-Model)

MOD Model Modeled contents (a model or generated from a model) on
meta level 1 (Model)

PRS Protocol Specification Specification of Protocols standardized by AUTOSAR

RS Requirement Specification Specification of requirements other than for software
specifications

SRC Source Source code artifacts

SWS Software Specification Specification of AUTOSAR Software

TPS Template Specification Specification of AUTOSAR Templates, containing Meta
model information, constraints etc.

TR Technical Report A general technical report describing arbitrary AUTOSAR
related topics

2.3 Document relational views

Documents are published in one of the given standard contexts. Figure 2.1 shows

the placement of an AUTOSAR document category in a respective standard.

4 Classic Platform) 4 Foundation) 4 Adaptive Platform)
+appliesTo=CP +appliesTo=AP
A ——f——==Z—= = e —— == —— -
|
tracesTo /,'\ /:\
tracesTo
:_ traclesTo |
=== L — =
| | e I T -:
5 | | < | | | AP_TPS y

CP_TPS | | FO_TPS I o - | |
| | I | |

1 | | | | I :

. AP_SWS

CP_(A)SWS : FO_ASWS Lo - |

| | |
. | -
CP_TR FO_TR : AP_TR
. ! ~
FO_PRS
N\

Figure 2.1: AUTOSAR document category vs. AUTOSAR standard

In 2.2 it is shown the high-level relation between the AUTOSAR document types.

AUTSSAR

RS
N
implements
|
[m——————————-—-— -t !
| | |
|
PRS [5] | _implements | (A)SWS [F] TPS << :
I I
I I
I I I ! |
: : : instanltiates |
|
b b ———— 4 ull
	MOD
elaborates elaborates	
EXP TR

Figure 2.2: AUTOSAR inter-document relations

In general the relations are:

* «implements»: a PRS, (A) SWS implement requirements from a RS; an SWs im-
plements specification items from a PRS

» «elaborates»: a TR, EXP further explain or further extend technical content from
another specification

* «instantiates»: an (M1) MOD instantiates a (M2) Tps (model) (see [2] Chapter 2.2
“The AUTOSAR meta-model hierarchy”)

Tracing relations between documents are elaborated in chapter 3.2.

2.4 Document list
The table in [TPS_STDT_00137] lists the suite of documents published by AUTOSAR.

[TPS_STDT _00137] AUTOSAR Document Names and Abbreviations for Trace
Prefixes [

Document name (full) Document name Document title
(abbreviation)

ADCDriver Adc Requirements on ADC Driver;
Specification of ADC Driver

AIADASANndVMC n/a Explanation of Application Interface of AD/ADAS vehicle
motion control

AlBodyAndComfort AIBC Explanation of Application Interfaces of the Body and
Comfort Domain

AUTSSAR

A
Document name (full) Document name Document title
(abbreviation)
AlChassis AICS Explanation of Application Interfaces of the Chassis
Domain
AlDesignPatternsCatalogue n/a Application Design Patterns Catalogue
AlHMIMultimediaAndTelematics n/a Explanation of Application Interfaces of the HMI,

Multimedia and Telematics Domain

AlMeasurementCalibrationDiagnostics

MCR; MCA; MCG;
MCM

Modeling and Naming Aspects for Documentation,
Measurement, and Calibration

AlOccupantAndPedestrianSafety AIOPS Explanation of Application Interfaces of Occupant and
Pedestrian Safety Systems Domain
AlPowertrain AIPT Explanation of Application Interfaces of the Powertrain
Engine Domain
AlSpecification n/a XML Specification of Application Interfaces
AlSpecificationExamples n/a Application Interface Examples
AlUserGuide AIUG Application Interfaces User Guide
ARACOomAPI n/a Explanation of ara::com API
ARAHeaderFiles n/a Source of Adaptive Platform ARAHeaderFiles
ARARustApplications n/a Explanation of ARA Applications in Rust
ARTI Arti Explanatory Document for Usage of AUTOSAR Run-Time
Interface;
Specification of AUTOSAR Run-Time Interface
ARXMLSerializationRules ASR ARXML Serialization Rules
AbstractPlatformSpecification APSD Specification of Abstract Platform
ApplicationLevelErrorHandling ALEH Explanation of Error Handling on Application Level
AutomatedDrivinglnterfaces ADI Requirements on Automated Driving Interfaces
AutomotiveAPI n/a Explanation of Automotive API
AutomotiveAPIGateway AAG Requirements on Automotive API Gateway;
Specification of Automotive AP| Gateway
AutosarModelConstraints n/a Collection of constraints on AUTOSAR M1 models
BFXLibrary Bfx Specification of Bit Handling Library
BSWDistributionGuide n/a Guide to BSW Distribution
BSWGeneral BSW General Requirements on Basic Software Modules;
General Specification of Basic Software Modules
BSWModeManager BswM Specification of Basic Software Mode Manager
BSWNModuleDescriptionTemplate BSWMDT Basic Software Module Description Template
BSWNMulticoreLibrary BMC Specification of Basic Software Multicore Library
BSWUMLModel n/a Basic Software UML Model
BSWUMLModelModelingGuide BSWMG Modeling Guidelines of Basic Software EA UML Model
BulkNvDataManager BndM Specification of Bulk NvData Manager
BusMirroring Mirror Requirements on Bus Mirroring;
Specification of Bus Mirroring
CAN Can Requirements on CAN
CANDriver Can Specification of CAN Driver
CANInterface CANIF Specification of CAN Interface
CANNetworkManagement CanNm Specification of CAN Network Management
CANStateManager CanSM Specification of CAN State Manager
CANTransceiverDriver CanTrev Specification of CAN Transceiver Driver

AUTSSAR

A
Document name (full) Document name Document title
(abbreviation)

CANTransportLayer CanTp Specification of CAN Transport Layer
CANXLDriver CanXL Specification for CAN XL Driver
CANXLTransceiverDriver CanXLTrcv Specification of CAN XL Transceiver Driver
CDDDesignAndIntegrationGuideline n/a Complex Driver design and integration guideline
COM Com Requirements on Communication;

Specification of Communication
COMBasedTransformer ComXf Specification of COM Based Transformer
COMManager ComM Specification of Communication Manager
CRCLibrary Crc Specification of CRC Library
CellularV2XDriver CV2x Specification of Cellular Vehicle-2-X Driver
ChangeDocumentation n/a Adaptive Platform Change Documentation;

Classic Platform Change Documentation;

Foundation Change Documentation
ChargingManager ChrgM Requirements on Charging Manager
ChineseV2XCommunication CnVa2X Requirements on Chinese Vehicle-2-X Communication
ChineseV2XManagement CnV2xM Specification of Chinese Vehicle-2-X Management
ChineseV2XMessage CnV2xMsg Specification of Chinese Vehicle-2-X Message
ChineseV2XNetwork CnV2xNet Specification of Chinese Vehicle-2-X Network
ChineseV2XSecurity CnV2xSec Specification of Chinese Vehicle-2-X Security
CommunicationManagement CM Requirements on Communication Management;

Specification of Communication Management
CommunicationStackTypes Comtype Specification of Communication Stack Types
Core CORE Specification of Adaptive Platform Core
CoreTest CoreTst; CorTst Requirements on Core Test;

Specification of Core Test
CryptoDriver Crypto Specification of Crypto Driver
Cryptolnterface Crylf Specification of Crypto Interface
CryptoServiceManager Csm Specification of Crypto Service Manager
CryptoStack CryptoStack Requirements on Crypto Stack
Cryptography CRYPTO; CRYPT Requirements on Cryptography;

Specification of Cryptography

DDSCommunicationProtocol DDS Specification of DDS Service Communication Protocol
DDSSecuritylntegration DDSS Integration of DDS Security
DDSServiceDiscoveryProtocol DDSSD Specification of DDS Service Discovery Protocol
DIODriver Dio Requirements on DIO Driver;
Specification of DIO Driver
DataDistributionService Dds Specification of Data Distribution Service for Classic
Platform;
Requirements on Data Distribution Service
DataDistributionServiceTransformer DdsXf Specification of Data Distribution Service Transformer
DebugTraceProfile Arti; ARTIFO Requirements on Debugging, Tracing and Profiling support
of AUTOSAR Components
DefaultErrorTracer Det Specification of Default Error Tracer
DemandsConstraintsBaseSW APBSW Technical Report on Demands and Constraints on Base
Software
Demonstrator n/a Source of Adaptive Platform Demonstrator

AUTSSAR

A
Document name (full) Document name Document title
(abbreviation)
DemonstratorReleaseNotes n/a Adaptive Platform Demonstrator Release Notes
DiagnosticCommunicationManager Dcm Specification of Diagnostic Communication Manager
DiagnosticEventManager Dem Specification of Diagnostic Event Manager
DiagnosticExtractTemplate DEXT Diagnostic Extract Template
DiagnosticLogAndTrace Dit Specification of Diagnostic Log and Trace
DiagnosticOverIP DolP Specification of Diagnostic over IP
Diagnostics DM; Diag Specification of Diagnostics;
Requirements on Diagnostics
DiagramSource n/a Explanation of Diagram Source
E2E E2E Requirements on E2E
E2ELibrary E2E Specification of SW-C End-to-End Communication
Protection Library
E2EProtocol E2E E2E Protocol Specification
E2ETransformer E2EXf Specification of Module E2E Transformer
ECUConfiguration ECUC; Cdd Specification of ECU Configuration
ECUConfigurationParameters n/a Specification of ECU Configuration Parameters (XML)
ECUResourceTemplate ECUR Specification of ECU Resource Template
ECUStateManager EcuM Specification of ECU State Manager
EEPROMADbstraction Ea Specification of EEPROM Abstraction
EFXLibrary Efx Specification of Extended Fixed Point Library
ErrorDescription ED Description of the AUTOSAR standard errors
Ethernet Eth Requirements on Ethernet Support in AUTOSAR
EthernetDriver Eth Specification of Ethernet Driver
Ethernetinterface Ethlf Specification of Ethernet Interface
EthernetStateManager EthSM Specification of Ethernet State Manager
EthernetSwitchDriver EthSwt Specification of Ethernet Switch Driver
EthernetTransceiverDriver EthTrcv Specification of Ethernet Transceiver Driver
ExecutionManagement EM Requirements on Execution Management;
Specification of Execution Management
FCDesignCommunicationManagement | n/a Demonstrator Design of Functional Cluster Communication
Management
FCDesignDiagnostics n/a Demonstrator Design of Functional Cluster Diagnostics
FCDesignExecutionManagement n/a Demonstrator Design of Functional Cluster Execution
Management
FCDesignldentityAndAccess n/a Demonstrator Design of Functional Cluster Identity and
Management Access Management
FCDesignLogAndTrace n/a Demonstrator Design of Functional Cluster Log and Trace
FCDesignPersistency n/a Demonstrator Design of Functional Cluster Persistency
FCDesignPlatformHealthManagement n/a Demonstrator Design of Functional Cluster Platform Health
Management
FCDesignStateManagement n/a Demonstrator Design of Functional Cluster State
Management
FCDesignTimeSynchronization n/a Demonstrator Design of Functional Cluster Time
Synchronization
FCDesignUpdateAndConfiguration n/a Demonstrator Design of Functional Cluster Update And

Management

Configuration Management

AUTSSAR

A
Document name (full) Document name Document title
(abbreviation)
FeatureModelExchangeFormat FMDT AUTOSAR Feature Model Exchange Format
Features FEAT AUTOSAR Feature Model;
Technical Report on AUTOSAR Features
Firewall Fw Specification of Firewall for Adaptive Platform;
Specification of Firewall for Classic Platform;
Requirements on Firewall
FirmwareOverTheAir FOTA Explanation of Firmware Over-The-Air;
Requirements on Firmware Over-The-Air
FlashEEPROMEmulation Fee Specification of Flash EEPROM Emulation
FlashTest FisTst Requirements on Flash Test;
Specification of Flash Test
FlexRay Fr Requirements on FlexRay
FlexRayARTransportLayer FrArTp Specification of FlexRay AUTOSAR Transport Layer
FlexRayDriver Fr Specification of FlexRay Driver
FlexRaylSOTransportLayer FrTp Specification of FlexRay ISO Transport Layer
FlexRaylInterface Frif Specification of FlexRay Interface
FlexRayNetworkManagement FrNm Specification of FlexRay Network Management
FlexRayStateManager FrSM Specification of FlexRay State Manager
FlexRayTransceiverDriver Frrcv Specification of FlexRay Transceiver Driver
FunctionInhibitionManager Fim Requirements on Function Inhibition Manager;
Specification of Function Inhibition Manager
FunctionalSafetyMeasures n/a Overview of Functional Safety Measures in AUTOSAR
GPTDriver Gpt Requirements on GPT Driver;
Specification of GPT Driver
Gateway GTW Requirements on Gateway
General AP General Requirements specific to Adaptive Platform
GeneralBlueprints n/a Collection of blueprints for AUTOSAR Adaptive Platform
M1 models;
Collection of blueprints for AUTOSAR M1 models
GeneralBlueprintsSupplement n/a Supplementary material of general blueprints for
AUTOSAR
GeneralDefinitions n/a Standardized M1 Models used for the Definition of
AUTOSAR
GenericStructureTemplate GST Generic Structure Template
Glossary n/a Glossary
HWTestManagementintegrationGuide n/a Specification and Integration of Hardware Test
Management at start up and shutdown
HWTestManager HTM; HTMSS Requirements on HWTestManager;
Requirements on Hardware Test Manager on start up and
shutdown;
Specification of Hardware Test Manager on start up and
shutdown
HealthMonitoring HM Specification of Health Monitoring;
Requirements on Health Monitoring
12CDriver 12C Requirements on 12C Driver;
Specification of 12C Driver
ICUDriver lcu Requirements on ICU Driver;
Specification of ICU Driver
IEEE1722 IEEE1722 Requirements on IEEE1722

AUTSSAR

A
Document name (full) Document name Document title
(abbreviation)

IEEE1722TransportLayer IEEE1722Tp Specification of IEEE1722 Transport Protocol Module
IFLLibrary Ifl Specification of Floating Point Interpolation Library
IFXLibrary Ifx Specification of Fixed Point Interpolation Library
IOHWAbstraction loHwWADb Requirements on I/O Hardware Abstraction
IOHardwareAbstraction loHWAb Specification of I/O Hardware Abstraction
IPDUMultiplexer IpduM Requirements on |-PDU Multiplexer;

Specification of I-PDU Multiplexer
IPsecimplementationGuidelines n/a Explanation of IPsec Implementation Guidelines
IPsecProtocol IPSEC Requirements on IPsec Protocol
ISO15118Charging ISO15118Chrg Specification of ISO15118 Charging
IdentityAndAccessManagement n/a Explanation of Identity and Access Management
InterfacesGuidelines n/a Guidelines for using Adaptive Platform interfaces
IntrusionDetectionSystem Ids Specification of Intrusion Detection System Protocol;

Requirements on Intrusion Detection System
IntrusionDetectionSystemManager AIDSM; IdsM Specification of Intrusion Detection System Manager for

Adaptive Platform;

Specification of Intrusion Detection System Manager
KeyManager KeyM Specification of Key Manager
LIN Lin Requirements on LIN
LINDriver Lin Specification of LIN Driver
LINInterface Linlf; LinTp Specification of LIN Interface
LINStateManager LinSM Specification of LIN State Manager
LINTransceiverDriver LinTrcv Specification of LIN Transceiver Driver
LSduRouter LSduR Specification of Linklayer Sdu Routing Module
LanguageBindingForModeled LBAP Specification of Language Binding for modeled AP data
APdatatypes types
LayeredSoftwareArchitecture n/a Layered Software Architecture
Libraries LIBS Requirements on Libraries
ListOfKnownlssuesSecureHardware n/a List of known Issues of Secure Hardware Extensions
Extensions
LogAndTrace LOG; LT Specification of Log and Trace;

Requirements on Log and Trace
LogAndTraceExtract DLTXT Log And Trace Extract Template
LogAndTraceProtocol Dit Log and Trace Protocol Specification
MACsec MACsec Explanation of MACsec and MKA Protocols

implementation and configuration guidelines;

Requirements on MACsec
MACsecKeyAgreement Mka Specification of MACsec Key Agreement
MCUDriver Mcu Requirements on MCU Driver;

Specification of MCU Driver
MFLLibrary Mfl Specification of Floating Point Math Library
MFXLibrary Mfx Specification of Fixed Point Math Library
MSFLibrary Msf Specification of MSFLibrary
MachineConfiguration APMC Adaptive Platform Machine Configuration
MachineConfigurationParameters n/a Specification of Machine Configuration Parameters

AUTSSAR

A
Document name (full) Document name Document title
(abbreviation)
MacroEncapsulationofinterpolation n/a Macro Encapsulation of Interpolation Calls
Calls
ManifestSpecification MANI Specification of Manifest
MemoryAbstractioninterface Memlf Specification of Memory Abstraction Interface
MemoryAccess MemAcc Specification of Memory Access
MemoryDriver Mem Specification of Memory Driver
MemoryHWAbstractionLayer MemHwAb Requirements on Memory Hardware Abstraction Layer
MemoryMapping MemMap Specification of Memory Mapping
MemoryServices Mem Requirements on Memory Services
MetaModel n/a Meta Model
Methodology AMETH; METH Methodology for Adaptive Platform;
Methodology for Classic Platform
MiscSupport n/a AUTOSAR Miscellaneous Support Files
ModeManagement ModeMgm Requirements on Mode Management
ModeManagementGuide MMG Guide to Mode Management
ModelingShowCases n/a Modeling Show Cases Examples;
Modeling Show Cases Report
NVDataHandling n/a NV Data Handling Guideline
NVRAMManager NvM Specification of NVRAM Manager
NetworkManagement ANM; Nm Specification of Network Management;
Requirements on AUTOSAR Network Management
NetworkManagementinterface Nm Specification of Network Management Interface
NetworkManagementProtocol Nm Specification of the AUTOSAR Network Management
Protocol
OCUDriver Ocu Requirements on OCU Diriver;
Specification of OCU Driver
oS Os Requirements on Operating System;
Specification of Operating System
OperatingSysteminterface (O8] Requirements on Operating System Interface;
Specification of Operating System Interface
OperatingSystemTracinglnterface OSTI Technical Report on Operating System Tracing Interface
PDURouter PduR Specification of PDU Router
PWMDriver Pwm Requirements on PWM Driver;
Specification of PWM Driver
ParallelProcessingGuidelines n/a Design guidelines for using parallel processing
technologies on Adaptive Platform
Persistency PER Requirements on Persistency;
Specification of Persistency
PlatformDesign n/a Explanation of Adaptive Platform Design
PlatformHealthManagement PHM Requirements on Platform Health Management;

Specification of Platform Health Management

PlatformTypes APT; Platform Specification of Platform Types for Adaptive Platform;
Specification of Platform Types for Classic Platform
PortDriver Port Requirements on Port Driver;
Specification of Port Driver
ProjectObijectives PO Project Objectives
QoSPoliciesInTheScopeOfSOMEIP n/a Explanation of QoS Policies in the scope of SOME/IP

AUTSSAR

A
Document name (full) Document name Document title
(abbreviation)

RAMTest RamTst Requirements on RAM Test;

Specification of RAM Test
RTE Rte Requirements on Runtime Environment;

Specification of RTE Software
RawDataStream RDS Specification of Raw Data Stream
ReleaseOverview n/a Adaptive Platform Release Overview;

Classic Platform Release Overview;

Foundation Release Overview
RemotePersistency RPER Specification of Remote Persistency
SAEJ1939 J1939 Requirements on BSW Modules for SAE J1939
SAEJ1939DiagnosticCommunication J1939Dcm Specification of a Diagnostic Communication Manager for
Manager SAE J1939
SAEJ1939FunctionalSafetyComm J1939Fscp Specification of a Functional Safety Communication
Protocol Protocol Handler for SAE J1939
SAEJ1939NetworkManagement J1939Nm Specification of Network Management for SAE J1939
SAEJ1939RequestManager J1939Rm Specification of a Request Manager for SAE J1939
SAEJ1939TransportLayer J1939Tp Specification of a Transport Layer for SAE J1939
SOMEIPProtocol SOMEIP SOME/IP Protocol Specification;

Requirements on SOME/IP Protocol
SOMEIPServiceDiscoveryProtocol SOMEIPSD SOME/IP Service Discovery Protocol Specification;

Requirements on SOME/IP Service Discovery Protocol
SOMEIPTransformer SomelpXf Specification of SOME/IP Transformer
SOMEIPTransportProtocol SomelpTp Specification on SOME/IP Transport Protocol
SOVD n/a Explanation of Service-Oriented Vehicle Diagnostics
SPALGeneral SPAL General Requirements on SPAL
SPIHandlerDriver Spi Requirements on SPI Handler/Driver;

Specification of SPI Handler/Driver
SWArchitecturalDecisions n/a Explanation of Adaptive and Classic Platform Software

Architectural Decisions
SWArchitecture n/a Explanation of Adaptive Platform Software Architecture
SWCModeling SWMG Requirements on SW-C and System Modeling
SWCModelingGuide SWMG; SWNR SW-C and System Modeling Guide
SafeHardwareAcceleration SHWA Requirements on Safe Hardware Acceleration;

Specification of Safe Hardware Acceleration
SafeHardwareAccelerationAPI n/a Explanation of Safe API for hardware accelerators
Safety SAF Safety Requirements for AUTOSAR Adaptive Platform and

AUTOSAR Classic Platform
SafetyOverview n/a Explanation of Safety Overview
SafetyUseCase n/a Safety Use Case Example
SecOCProtocol SecOc Specification of Secure Onboard Communication Protocol
SecureHardwareExtensions n/a Specification of Secure Hardware Extensions
SecureOnboardCommunication SecOC Specification of Secure Onboard Communication;

Requirements on Secure Onboard Communication
SecurityEventsSpecification n/a Technical Report on Security Events Specification
SecurityExtractTemplate SECXT Security Extract Template
SecurityOverview n/a Explanation of Security Overview

AUTSSAR

A
Document name (full) Document name Document title
(abbreviation)

Sensorlinterfaces ADI Explanation of Sensor Interfaces;

Specification of Sensor Interfaces
ServiceDiscovery Sd Specification of Service Discovery
SocketAdaptor SoAd Specification of Socket Adaptor
SoftwareClusterConnection SwCluC Requirements on Software Cluster Connection module;

Specification of Software Cluster Connection module
SoftwareComponentTemplate SWCT Software Component Template
SpecificationsARXML n/a Specifications in ARXML format
StandardTypes Std Specification of Standard Types
StandardizationTemplate STDT Standardization Template
StateManagement SM Requirements of State Management;

Specification of State Management
SwClusterDesignAndintegration n/a Explanation of Software Cluster Design And Integration
Guideline Guideline for Classic Platform
SynchronizedTimeBaseManager StbM Specification of Synchronized Time-Base Manager
SystemHealthMonitoring n/a Explanation of System Health Monitoring
SystemTemplate SYST System Template
SystemTests n/a System Tests for Adaptive Platform Demonstrator
Teplp Teplp; IKE Specification of TCP/IP Stack
TimeSensitiveNetworkFeatures n/a Explanation of Time Sensitive Network features
TimeService Tm Requirements on Time Service;

Specification of Time Service
TimeSync TS Requirements on Time Synchronization
TimeSyncOverCAN CanTSyn Specification of Time Synchronization over CAN
TimeSyncOverCANProtocol CanTSyn Time Synchronization over CAN Protocol Specification
TimeSyncOverEthernet EthTSyn Specification of Time Synchronization over Ethernet
TimeSyncOverEthernetProtocol TS Time Synchronization over Ethernet Protocol Specification
TimeSyncOverFlexRay FrTSyn Specification of Time Synchronization over FlexRay
TimeSynchronization TS Specification of Time Synchronization
TimingAnalysis n/a Timing Analysis and Design
TimingExtensions TIMEX Specification of Timing Extensions for Adaptive Platform;

Specification of Timing Extensions for Classic Platform
Transformer Xfrm Requirements on Transformer
TransformerGeneral Xfrm General Specification of Transformers
UDPNetworkManagement UdpNm Specification of UDP Network Management
UpdateAndConfigurationManagement UCM Requirements on Update and Configuration Management;

Specification of Update and Configuration Management
UtilizationOfCryptoServices n/a Utilization of Crypto Services
V2XBasicTransport V2xBtp Specification of Vehicle-2-X Basic Transport
V2XCommunication va2Xx Requirements on Vehicle-2-X Communication
V2XDataManager V2xDM Specification of Vehicle-2-X Data Manager
V2XFacilities V2xFac Specification of Vehicle-2-X Facilities
V2XGeoNetworking V2xGn Specification of Vehicle-2-X Geo Networking
V2XManagement Va2xM Specification of Vehicle-2-X Management
V2XRemoteAccessLayer V2xRAL Vehicle-2-X Remote Access Layer Protocol Specification

AUTSSAR

A
Document name (full) Document name Document title
(abbreviation)

VDP VDP Vehicle Data Protocol Specification;

Requirements on Vehicle Data Protocol
VDPCMRemote VdpCmR Specification of VDP Communication Module Remote
VFB VFB Virtual Functional Bus
VSSRepresentation VSS Technical Report on VSS Representation
VehicleUpdateAndConfiguration VUCM Requirements on Vehicle Update and Configuration
Management Management;

Specification of Vehicle Update and Configuration

Management
WatchdogDriver Wdg Requirements on Watchdog Driver;

Specification of Watchdog Driver
Watchdoglnterface Wdglf Specification of Watchdog Interface
WatchdogManager WdgM Specification of Watchdog Manager
WirelessEthernetDriver WEth Specification of Wireless Ethernet Driver
WirelessEthernetTransceiverDriver WEthTrev Specification of Wireless Ethernet Transceiver Driver
WorkflowExample n/a Technical Report on Supplementary Material of Workflow

Example
XCP Xcp Requirements on Module XCP;

Specification of Module XCP
XMLSchema n/a Meta Model-generated XML Schema
XMLSchemaProductionRules XMLSPR AUTOSAR XML Schema Production Rules
XMLSchemaSupplement n/a Supplementary material of the AUTOSAR XML Schema

2.5 Standardized naming of published files

[TPS_STDT_00050] Standardized naming convention for published AUTOSAR
files [Files publicly released by AUTOSAR shall have the naming convention:

AUTOSAR_{doc—-std-abbr} {doc-cat-abbr} {doc—-name—-full }J

2.6 Standardized ARPackage.shortNames

Selected M1 ARXML models published by AUTOSAR use well-known ARPackage.

shortNames. As stated in [TPS_GST_00080] and [TPS_GST_00081], the top-level
ARPackage=AUTOSAR is fixed, i.e. * /AUTOSAR'. Further, directly under the top-level

ARPackage, the next level ARPackage has also reserved a subset of ARPackage.

shortNames for specific usages. These are listed in [TPS_STDT_00149].

AUTSSAR

[TPS_STDT _00149] AUTOSAR reserved shortNames
ARPackage=AUTOSAR |

under the top-level

shortName Usage Context
Documents Common namespace of AUTOSAR documents -
AlISpecification Specification of application interfaces [3, MOD-AISpecification]
Features ARXML representation AUTOSAR feature graph [5, MOD-Features]

from [4]
Diagnostic Definition of base types used in diagnostic context | [6, MOD-GeneralBlueprints]
GenDef General standardized ARXML definitions [7, MOD-GeneralDefinitions]

NvBlockSoftwareCompo—
nentType

Blueprint of ClientServerInterface between
aApplicationSwComponentType and a
NvBlockSwComponentType

[6, MOD-GeneralBlueprints]

TestCases Blueprint test scenarios to validate AUTOSAR [6, MOD-GeneralBlueprints]
delivered models
StdTypes AUTOSAR Adaptive Platform standardized [7, MOD-GeneralDefinitions]

StdCppImplementationDataTypesS

MachineFunctionGroup—
States

AUTOSAR Adaptive Platform standardized values
formachine function group states

[7, MOD-GeneralDefinitions]

AUTSSAR

3 Tracing

3.1 AUTOSAR document traceable items

AUTOSAR documents utilize a fixed notation to emphasize certain specification texts of
importance to the user. Known in AUTOSAR as traceable items and depending
on the characteristics thereof, they may be decorated with certain other meta-data
attributes. In general, traceables:

+ maintain a unique identifier attribute
» maintain a lifecycle state attribute

» contain a body of specification text between an "Opening Half Bracket" (Uni-
code: Left Ceiling {0x23081}) and a "Closing Half Bracket" (Unicode: Right Floor
{0x230B})

+ shall be tracked for changes over each release

These types of traceables, the general attributes of traceables and further
traceable-specific attributes are explained in the next sub-chapters.

3.1.1 Specification Iltem

[TPS_STDT_00080] Representation of specification items in AUTOSAR docu-
ments [AUTOSAR specification items are represented using the structure with the
following attributes:

» The headline consists of an Id (shortName) which shall be written inside squared
brackets and shall follow [TPS_STDT_00042].

 After the Id the LifeCycleState follows in curly brackets. The allowed values
are VALID, DRAFT and OBSOLETE and shall follow [TPS_GST_00051]. If there
isno LifeCycleState information stated then the state is VALID.

» After the LifeCycleState an optional specification item title (1ongName)
should be stated to improve human readability.

» The next line starts with an opening half bracket and the content of the specifica-
tion item follows. The end of it shall be marked by the closing half bracket.

« After the closing half bracket an opening round bracket indicates the comma sep-
arated list of requirements which are fulfilled by this specification item. The end
of it shall be marked by the closing round bracket. If no up traces are available
the round brackets shall be written with empty content.

» The specification items shall describe the semantics and syntax of models.

AUTSSAR

[TPS_STDT_00042] Naming convention for SPECIFICATION_ ITEMs [AUTOSAR
SPECIFICATION_ITEMS shall follow the naming convention:

[{doc—-std-abbr}_] {doc-cat—-abbr} _ {doc-name-abbr} _ [{special}_]
{num}

where:
* []: optional
* num: unique number (00000 .. 99999)
* special: specialization, one of:
— "CONSTR" as per [TPS_STDT_00089]
— "NA" as per [TPS_STDT_00056]

3.1.2 Model Constraint

[TPS_STDT_00081] Representation of constraint items in AUTOSAR template
documents [AUTOSAR constraint items in template documents are represented using
the structure with the following attributes:

» The constraint Identifier shortName is comprised of:
— a string prefix: "constr_"

— a numerical suffix: 4-5 digits long

— the leading digit of the numerical suffix shall be > 1

On documentation level, this shall be rendered inside [] brackets. The numerical
suffix is globally unique.

 After the Id the LifeCyclestate follows in curly brackets. The allowed values
are VALID, DRAFT and OBSOLETE and shall follow [TPS_GST_00051]. If there
isno LifeCycleState information stated then the state is VALID.

» After the LifeCycleState the constraint title (1ongName) follows.
» The constraint content shall be written inside the opening and closing half bracket.
» The constraint items shall further restrict the validity of models.

 An optional constraint ImpositionTime ([TPS_STDT_00095])

AUTSSAR

3.1.3 Software Constraint

[TPS_STDT_00088] Representation of constraint items in AUTOSAR non tem-
plate documents [AUTOSAR constraint items in AUTOSAR non template documents
are represented using the structure with the following attributes:

» The headline consists of an Id (shortName) which shall be written inside squared
brackets and shall follow [TPS_STDT_00042].

 After the Id the LifeCycleState follows in curly brackets. The allowed values
are VALID, DRAFT and OBSOLETE and shall follow [TPS_GST_00051]. If there
iIsno LifeCycleState information stated then the state is VALID.

» After the LifeCycleState the constraint title (1ongName) follows.
» The constraint content shall be written inside the opening and closing half bracket.

» This Id is independent of a non-specialized Id, i.e. SWS_XXX_12345 !=
SWS_XXX_CONSTR_12345

]

In a constraint according to [TPS_STDT_00088], the term “shall” shall be used inside
the content to underline the mandatory intention of the item.

[TPS_STDT_00089] SPECIFICATION_ITEMs with constraint semantics |
SPECIFICATION_ITEMS which express a constraint semantic may use the infix spe-
cial="CONSTR" (see [TPS_STDT_00042]). This infix is permitted only in an ASWS or
SWS, in other document types this is forbidden |

[TPS_STDT_00148] SPECIFICATION_ITEMS which are not-applicable for up-
tracing [SPECIFICATION_ITEMS which shall be excluded (not applicable) from up-
tracing shall use the infix special="NA" (see [TPS_STDT_00042]). This infix is permit-
ted only in an SWS or PRS, in other document types this is forbidden |

3.1.4 Model Advisory

[TPS_STDT_00093] Representation of advisory items in AUTOSAR template doc-
uments [AUTOSAR advisory items in template documents are represented with the
following format:

* The advisory ldentifier shortName is comprised of:
— a string prefix: "advisory "
— a numerical suffix: 4-5 digits long

— the leading digit of the numerical suffix shall be > 1

AUTSSAR

On documentation level, this shall be rendered inside [] brackets. The numerical
suffix is globally unique.

« After the Identifier the LifeCyclesState follows in curly brackets. The allowed
values are VALID, DRAFT and OBSOLETE and shall follow [TPS_GST_00051].
If there is no LifeCycleState information stated then the state is VALID.

» After the LifeCycleState the advisory title 1ongName follows.

» The advisory content shall be written inside the opening (ceil) and closing (floor)
symbols.

]

In an advisory item according to [TPS_STDT_00093], the term “should” shall be used
inside the content to underline the advisory intention of the item.

3.1.5 Imposition Time of a Model Constraint/Model Advisory

The timing of when precisely an AUTOSAR tool should enforce a model constraint/ad-
visory is in some cases clear and in other cases conditional. For that reason AUTOSAR
constraints/advisories may contain an additional ImpositionTime attribute to stipu-
late the latest point in time in a workflow when the constraint/advisory shall be applied’.
Since AUTOSAR defines separate Methodology workflows for the Classic Platform and
Adaptive Platform, the respective ImpositionTimes are in general also platform de-
pendent.

[TPS_STDT_00095] Semantics of an ImpositionTime
Status: DRAFT

[An AUTOSAR model constraint/advisory contains an ImpositionTime, which spec-
ifies the latest point in the methodology workflow when the respective constraint/advi-
sory shall be imposed on a model. |

[TPS_STDT_00096] Application of an ImpositionTime
Status: DRAFT

[A constraint/advisory may be enforced before the ImpositionTime but shall be
enforced no later than the respective point in the workflow. |

[TPS_STDT_00097] Semantics of an unspecified ImpositionTime
Status: DRAFT

[An AUTOSAR model constraint/advisory with no ImpositionTime, implies "at an
arbitrary point in the workflow". |

Typically by an authoring/modeling tool

AUTSSAR

Imposition Time

Description

Motivation

IT_RteGen

RTE is generated

This imposition time denotes the step in the workflow where the
model is considered complete such that the generation of the
RTE can be executed. At the time when the RTE is generated,
all constraints that need to be imposed at the time when the
contract phase generation is executed and those that are
imposed at any time in the workflow also need to be observed.
In other words, a constraint that is imposed at the time when the
contract phase generation is executed shall also be imposed at
the time when the RTE is generated.

IT_CpgExe

Contract Phase generation is
executed

This imposition time is aimed at the time when a
software-component is ready for generating the contract phase
header files such that the implementation of the
software-component can be started.

IT_CompSwcT

Creation of the CompositionSw
ComponentType is finished

This imposition time applies to the creation of compositions of
software-components. This imposition time is considered
optional. In other words, there may be use cases to deliver
CompositionSwComponent Types that violate constraints with
this imposition time to another party. But it may also make sense
in some cases to make sure, that a
CompositionSwComponentType thatis going to be delivered
to another party fulfills the constraints associated with this
binding time.

IT_Apsd

Creation of the Abstract
Platform System Description is
finished

This imposition time indicates when the Abstract Platform
System Description is complete.

IT_SysDesc

SYSTEM_DESCRIPTION is
completed

This imposition time is aimed at the time when a system
description (e.g. SYSTEM_DESCRIPTION or SYSTEM_
EXTRACT or ECU_SYSTEM_DESCRIPTION) is complete for
exchange between parties and is ready as input for Ecu Extract
and Com Stack generators.

IT_SwCluSysDesc

SW_CLUSTER_SYSTEM_
DESCRIPTION is completed

This imposition time denotes the step in the workflow where the
SW_CLUSTER_SYSTEM_DESCRIPTION model is considered
complete such that the development and integration of the
Software Cluster can start.

IT_EcuExt ECU_EXTRACT is completed This imposition time denotes the step in the workflow where the
ECU_EXTRACT model is considered complete such that it can
be used as input for the generation of the RTE.

IT_ResPool Definition of the resource pool This imposition time denotes the step in the workflow where the

is finished pool of resources which can be provided or required by Software
Clusters is considered complete such that such that the
development and integration of the Software Cluster can start.

IT_VibTd VFB Timing Description is This imposition time is aimed at the time when a VFB Timing is

completed complete.

IT_SwcTd Swc Timing Description is This imposition time is aimed at the time when a Swc Timing is

completed complete.

IT_SysTd System Timing Description is This imposition time is aimed at the time when a System Timing

completed is complete.

IT_BswTd Bsw Timing Description is This imposition time is aimed at the time when a Bsw Timing is

completed complete. This applies for both the Bsw Module Timing and the
Bsw Composition Timing.
IT_EcuTd Ecu Timing Description is This imposition time is aimed at the time when a Ecu-wide

completed

Timing is complete.

V

AUTSSAR

A

Imposition Time

Description

Motivation

IT_SubClasTdEvAss

Imposition time associated with
the concrete subclass of Timing
DescriptionEvent is applied.

This means that the imposition time of the constraint cannot be
unambiguously defined on the level of the abstract meta-class
TimingDescriptionEvent. Sub-classes of
TimingDescriptionEvent have imposition times associated
with them (by means of constraints that refer to the subclasses)
and the constraints that apply in the context of the definition of
TimingDescriptionEvent shall therefore not contain a
concrete imposition time but take over the imposition time from
the applicable subclass. Example: subclass TDEvent Vb is
associated with the imposition time at the time when the VFB
Timing Description is complete.

IT_SubClasTeAss

Imposition time associated with
the concrete subclass of Timing
Extension.

This means that the imposition time is relative to the concrete
subclass of TimingExtension (Timing View) in use, namely:

- at the time when the VFB Timing Description is complete,

- at the time when the Swc Timing Description is complete,

- at the time when the System Timing Description is complete,
- at the time when the Bsw Timing Description is complete,

- at the time when the Ecu Timing Description is complete

IT_SubClasTdEv

Imposition time associated with
the concrete subclass of Timing
DescriptionEvent by condition.

The imposition time is associated with the concrete subclass of
TimingDescriptionEvent if the constraint is applied to a
TimingDescriptionEvent or at the imposition time
associated with the concrete subclass of TimingExtension if the
constraint is applied to @ TimingDescriptionEventChain.

IT_BefAraApiGen

Before the generation of the ara
API starts

This imposition time is aimed at the time when a
software-component is ready for generating the header files
such that the implementation of the software-component can be
started.

IT_DesExe Design of the Executable is This imposition time is aimed at the time when an Executable
completed is finished, i.e. it shall be used in constraints that target the
consistency of the modeling of Executable.

IT_ProDes ProcessDesign is completed This imposition time is aimed at the time when a
ProcessDesign is finished, i.e. it shall be used in constraints
that target the consistency of the modeling of ProcessDesign.

IT_GraDes GrantDesign is completed This imposition time is aimed at the time when a GrantDesign
is finished, i.e. it shall be used in constraints that target the
consistency of the modeling of GrantDesign.

IT_SysDes System design is completed This imposition time denotes the step in the workflow, where the

system design is about to be finished.

IT_SubSysDes

Sub-system design is

This imposition time denotes the step in the workflow, where the

completed sub-system design is about to be finished.
IT_DiagDes Diagnostic design is completed This imposition time denotes the step in the workflow, where the
diagnostic design is about to be finished independent of the
standard where it is applied. This includes the finalization, e.g.,
of the DEXT.
IT_MachDes Machine design is completed This imposition time denotes the step in the workflow, where the
machine design is about to be finished.
IT_Mani Creation of the manifest is This imposition time denotes the step in the workflow, where the
finished manifest is considered complete such that the installation on a
target platform can be started.
IT_FeatMod Feature Model is completed This imposition time denotes the step in the workflow, where the
feature model is about to be finished.
IT_LogTrace Log and Trace Extract is This imposition time denotes the step in the workflow, where the

complete

Log and Trace Extract is about to be finished.

V

AUTSSAR

A
Imposition Time Description Motivation
IT_ValSpec ValueSpecification is applied This imposition time is aimed at the point in time where a

ValueSpecification is applied to data object and
consistency requirements between the VvalueSpecification
and the data object can be checked.

IT_BinObjMetaData The definition of binary object This imposition time denotes the step in the workflow where the

meta-data is finished description of
CpSoftwareClusterBinaryManifestDescriptor is
considered complete so that that the Software Cluster Binary
Manifest can be defined during the integration.

IT_BswMD Configuration of the BSW This imposition time is applicable at the time when the BSW
module is finished module description is complete.

IT_CfgFc Configuration of Functional This imposition time denotes the step in the workflow, where the
Cluster is finished configuration of a functional cluster is considered complete such

that the installation on a target platform can be started.

Table 3.1: Overview Imposition Times

3.1.6 Requirement

[TPS_STDT_00078] Representation of requirements in AUTOSAR documents
[AUTOSAR requirements are represented using the structure of [TPS_STDT_00060]
where the following attributes are presented as a table:

The headline shall contain the Id (shortName), the LifeCycleState (type)
and a unique short text (1ongName) of the requirement.

The value of Type shall be one of "valid", "draft" or "obsolete", see
[TPS_STDT _00064].

The description of requirement contains of a complete English sentence using
the sentence pattern [TPS_STDT _00094] including one of the keywords from
[TPS_STDT 00053]. Additional information: needed to understand the require-
ment, can be added to the description.

The rationale can be used to justify or rationalize the requirement.
Use case can be used to describe the use case of the requirement.

Applies to shall contain a comma separated tag list with one of the following
values from standardNameEnum.

Dependencies may contain references to other requirements in this document
which this requirement depends on.

Supporting material can be used for documenting references to other documents
or models that support the implementation of this requirement.

AUTSSAR

[TPS_STDT_00056] Representation of not-applicable requirements in AUTOSAR
documents [For those requirements which are not-applicable to a particular specifi-
cation, [TPS_STDT_00042] allows the special to be NA.

In order to apply this, specification item with the shortName e.g ([RS_XXX_NA] or
even [RS_XXX_NA_00099]) may be created which traces back to the not-applicable
requirement items.

By this, not-applicable requirements are easily identified in requirements tracing tables.
Requirements tracing is complete since it also explicitly expresses the not-applicable
requirements. |

Notes to [TPS_STDT_00056]:
» Not-applicable requirements shall always trace up to an RS

» Not-applicable requirements shall never trace up to a RS_XXX_NA_ « requirement

3.1.6.1 Phrasing convention

In case no data is available for a dedicated field in a requirement table, it may be empty.
The description of a requirement follows a dedicated sentence pattern.

< OptionalCondition > —> < Subject > —> < Shall > —> < Statement >

[TPS_STDT_00094] Sentence pattern [The sentence pattern is built up by:

* < OptionalCondition >: A condition under which the < Statement > shall be
true. The condition starts with either if or when and ends with then. Where
when identifies an event. l.e. the point in time when the condition becomes
true. In natural language you could use "as soon as" to express the same. If
in contrast identifies a static condition which is independent from time. For static
conditions you may add e1se (optionally) after the < Statement > to express an
alternative requirement by appending it as an additional sentence following the
pattern.

* < Subject >: The item that is to fulfill the < Statement >. Remark: The subject
typically represents your subject under development, a property or a part of it. It
is highly recommended to maintain an overview of the subjects you are specifying
in the introductory section of your specification document.

* shall: Separates the < Subject > from the < Statement > and identifies (partial)
requirements.

» < Statement >: A statement that can either be verified or falsified. If the state-
ment is true, then the < Subject > satisfies the requirement, otherwise it does
not.

AUTSSAR

[TPS_STDT_00053] Expression of obligation [The following verbal forms for the
expression of obligation shall be used to indicate requirements.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as follows.

Note that the requirement level of the document in which they are used modifies the
force of these words.

* MUST: This word, or the adjective "LEGALLY REQUIRED", means that the defi-
nition is an absolute requirement of the specification due to legal issues.

« MUST NOQOT: This phrase, or the phrase "MUST NOT", means that the definition
is an absolute prohibition of the specification due to legal issues.

« SHALL: This phrase, or the adjective "REQUIRED", means that the definition is
an absolute requirement of the specification.

« SHALL NOT: This phrase means that the definition is an absolute prohibition of
the specification.

« SHOULD: This word, or the adjective "RECOMMENDED", means that there may
exist valid reasons in particular circumstances to ignore a particular item, but the
full implications must be understood and carefully weighed before choosing a
different course.

« SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that
there may exist valid reasons in particular circumstances when the particular be-
havior is acceptable or even useful, but the full implications should be understood
and the case carefully weighed before implementing any behavior described with
this label.

* MAY: This word, or the adjective "OPTIONAL", means that an item is truly op-
tional. One vendor may choose to include the item because a particular market-
place requires it or because the vendor feels that it enhances the product while
another vendor may omit the same item.

An implementation, which does not include a particular option, SHALL be prepared
to interoperate with another implementation, which does include the option, though
perhaps with reduced functionality. In the same vein an implementation, which does
include a particular option, SHALL be prepared to interoperate with another implemen-
tation, which does not include the option (except, of course, for the feature the option
provides.) |

3.1.7 Applicability of Requirements

AUTOSAR Requirements may be written such that they may, or may not, be imple-
mentable in a single platform or cross-platform.

AUTSSAR

« If the placement of a Requirement is in AUTOSAR platform=CP or platform=aAp
the scope is "known" to be restricted to the respective platform

* If the placement of a Requirement is in AUTOSAR platform=Fo, it is ambigu-
ous which platform it is applicable to. It must therefore be decorated with the
appliesTo attribute to explicitly state the platform scope of the Requirement

[constr_2603] Use of appliesTo in context of the specification level [On spec-
ification level 1 and 2 only the requirements table including the appliesTo attribute
shall be used. On the specification levels 3 and 4 only the requirements table without
the appliesTo shall be used. Exception: Documents of the foundation which are
handled on specification level 3. |

Rational: This avoids unintentional cross references which disturb the structure of trac-
ing.

[constr_2604] Allowed up-traces in context of appliesTo values [Traces to doc-
uments of upper specification levels shall be conform to the values assigned to ap-
pliesTo.]

Note: Optional requirements on level 1 to 4 of the AUTOSAR requirements hierarchy
are not allowed. An optional part of an implementation is only optional for the end-user
of AUTOSAR. In order to provide this option, the corresponding choice shall be manda-
tory in the according specification. That means, a feature described as "AUTOSAR
should support X" can never be correct, because the underlying requirements layer is
always static and would have no chance to decide whether "X" should be part of it or
not. A correct writing would be e. g. "AUTOSAR shall support optional X".

3.1.8 Meta-classes supporting Traceable Items

[TPS_STDT_00001] Support bottom up tracing [Standardization Template supports
bottom up tracing between these levels by the meta-class Traceable. This allows
to represent traceable entities and to establish traces between those. These entities
reside within @ DocumentationBlock. One prominent place is Documentation-—
Block.trace in particular within Identifiable.introduction.]

The abstract class Traceable is specialized, targeting differing usages in the next
sections.

[constr_2565] Traceable shall not be nested [Due to the intended atomicity of
requirements respectively specification items, Traceable shall not be nested. |

AUTSSAR

3.1.8.1 StructuredReq

[TPS_STDT_00060] st ructuredReq [This represents a structured requirement as it
is used within AUTOSAR RS documents. |

3.1.8.2 TraceableText/TraceableTable

[TPS_STDT_00098] Standardized categorys of TraceableText and Trace-
ableTable |

* CONSTRAINT_ITEM: represents a Traceable with constraint semantics. It is
similar to a specification item but represents issues that may be validated auto-
matically e.g. by a tool.

* ADVISORY_ITEM: represents a Traceable with advisory semantics. It is similar
to a constraint item but represents the characteristic of a WARNING rather than
an ERROR.

* REQUIREMENT_ITEM: represents a requirement in a requirement specification.

* SPECIFICATION_ITEM: represents an AUTOSAR item of specification. Such
an item is a requirement for the implementation of the software specification.

]

[TPS_STDT_00052] Characteristics of TraceableText [TraceableText should?
be:

* identifiable: TraceableText shall be identified by a unique shortName (see
[TPS_STDT _00042]). This is automatically fulfilled by applying the AUTOSAR
meta-model and schema.

* specific: TraceableText should be written such that the content is unambigu-
ous and comprehensive - even if this would not result in an elegant writing style.

« atomic: One TraceableText should cover one particular issue.

« verifiable: The content of TraceableText should be written concrete such that
it can be verified - not necessarily automatically but at least by human experts.

In particular the requirement levels specified in [TPS_STDT_00053] shall be ap-
plied.

]

[TPS_STDT_00054] Organisation of TraceableText [A set of TraceableText
within a specification shall have the following properties:

2This usage of the word "should" indicates that this is not always easy to decide. For example
[TPS_STDT_00052] could also have been divided in one TraceableText per item.

AUTSSAR

+ hierarchical structure: Multiple TraceableTexts shall be structured in several
successive levels - this is mostly ensured by the templates for the different kind
of AUTOSAR specifications.

» completeness: TraceableText at one level shall fully implement all Trace-
ableText of the previous level.

» external consistency: Multiple TraceableTexts shall not contradict each
other.

* no duplication of information within any level of the hierarchical structure:
The content of one TraceableText shall not be repeated in any other Trace-
ableText within the same level of the hierarchical structure.

* maintainability: A set of TraceableText can be modified or extended,
e.g. by introduction of new versions of TraceableText or by adding/removing
TraceableText. The shortName of TraceableText shall not be reused or
changed.

3.2 Trace levels

AUTOSAR permits that SPECIFICATION_ITEMS and Requirements may trace up-
wards. A SPECIFICATION_ITEM may up-trace to a Requirement and a (fine-
grained) Requirement may up-trace to (coarse-grained) Requirement. This is
shown in as shown in 3.1. Identifiers of traceable items are explained in
[TPS_STDT_00042].

4 - ~N
(" Classic Platform) (" Foundation) Adaptive Platform

+appliesTo=CP +appliesTo=AP

< -1 ~|Fo_Rs_abbr_fia} B [~[F—————— =]

> AP_RS_{abbr}_{id B
CP_RS_{abbr}_jid} fabbr)_{id} [F]

A A A

| \

! t IT tracesTo
tracesTo racesto !
PRy S]
| | |
I ! !

I I I
I ! !
CP_(A)SWS_{abbr]._fid) FO_ASWS_{abbr}_{id} | AP_SWS_{abbr} {id}

FO_PRS_{abbr}_{id}

C N N

Figure 3.1: AUTOSAR traceable items up-tracing

Notes:

AUTSSAR

3.3

TPS documents: up-tracing is not permitted

TR, EXP documents: up-tracing is optional

Trace groups

AUTOSAR supports the logical assignment of Requirements into groups, either on
the level of:

a singular structuredReq

all structuredRegs in a document chapter

to one or more Trace Groups (TGS).

[TPS_STDT_00099] Standardized naming convention for trace groups |[Trace
groups shall follow the naming convention: TG_<rs-abbr>_<name> where:

]

<rs—-abbr> =is an abbrName from [TPS_STDT_00137]

<name> = used to further sub-divide the trace group, e.g. if the trace group
targets a specific SWS it can be derived from <rs-abbr>, with the following
caveats:

— <name>="Functional" is forbidden

— <name>="NonFunctional" needs no further refinement (no traces from
SWS/PRS/ASWS to such requirements)

Examples:

TG_AP_NonFunctional: Trace group of "non-functional" requirements in [8,
AP-RS-General]. Note: In this instance the "AP" part of the name corresponds to
the <rs—abbr> of [8])

TG_BSW: Trace group of all requirements in [9, CP-RS-BSWGeneral]

TG_BSW_NonFunctional: Trace group of all non-functional requirements in [9,
CP-RS-BSWGeneral]

TG_J1939_Tp: Trace group of those requirements in [10, CP-RS-SAEJ1939]
- (<rs—abbr>="J1939") which have a relation to the [11, CP-SWS-
SAEJ1939TransportLayer]

TG_J1939_Rm: Trace group of those requirements in [10, CP-RS-SAEJ1939]
- (<rs—abbr>="J1939") which have a relation to the [12, CP-SWS-
SAEJ1939RequestManager]

TG_J1939_NonFunctional: Trace group of non-functional requirements in [10,
CP-RS-SAEJ1939] - (<rs—abbr>="J1939")

AUTSSAR

4 Life Cycle of AUTOSAR definitions

In order to support evolution and backward compatibility of the standardized model
elements like port prototype blueprints, port interfaces, keyword abbreviations, SW-Cs
(in ASW) or of the APl of a BSW module etc., AUTOSAR supports life cycles. The
meta-model and the details of the application of this meta-model is specified in chapter
"Life Cycle Support" of [2].

[TPS_STDT_00038] Life Cycle Support [The Standardization template is able to ex-
press information about the state of the blueprints by references from within a Life-
CycleInfosSet.]

[TPS_STDT_00064] Applied Life Cycle Information Sets on AUTOSAR provided
Models (M1) [The following LifeCycleStates are applied for AUTOSAR provided
model elements:

» VALID: This indicates that the related entity is a valid part of the document. This
is the default.

* DRAFT: This indicates that the related entity is introduced newly in the model
but still experimental. This information is published but is subject to be changed
without backward compatibility management.

* OBSOLETE: This indicates that the related entity is obsolete and kept in the model
for compatibility reasons. If this tag is set, the note shall express the recom-
mended alternative solution.

* REMOVED: This indicates that the related entity is removed from the model. It
shall not be used and should not even appear in documents. An AUTOSAR
release does not contain such elements. It is intended for AUTOSAR internal
development.

Even if such removed elements are not included in an .arxml they can still be
referenced in a LifeCycleInfoSet by using the <atpUriDef>> attribute of
type Referrable: 1cObject, respectively useInstead.

If an object is not referenced ina LifeCycleInfosSet, the related entity is a valid part
of the current model. |

Note that according to [TPS_STDT_00064] if there is no life cycle information for an
element then it is defined that the element is valid. In other words, in general there
is no need to define a LifeCycleInfoSet with defaultLcState=VALID. Never-
theless, there might be use cases when it could be useful to explicitly define such a
LifeCycleInfoSet. For example if element "x" gets LifeCycleState=0BSOLETE
and subsequently this is identified as an error and the life cycle returns back to VALID.

This could be documented in such a LifeCycleInfoSet.

An ARXML representation of the life cycle according is provided with [TPS_GST_-
00051].

AUTSSAR

4.1 Life Cycle State vs Tracing Levels

[constr_2625] Permitted LifeCycleState combinations in a requirement up-
trace |

Trace to: TraceableText.category=REQUIREMENT_ITEM
Trace from: DRAFT VALID OBSOLETE REMOVED
DRAFT 1 1
VALID X 1
OBSOLETE 1 1 1
REMOVED 1 1 1 1
Legend:

x) A "not applicable" requirement - as per [TPS_STDT_00056] with Li feCycleState==VALID may uptrace to
LifeCycleState==DRAFT

1) Permitted

AUTSSAR

5 Blueprints

5.1 The Principles of Blueprints

[TPS_STDT_00002] The Principles of Blueprints [This chapter describes the sup-
port of the AUTOSAR meta-model for the pre-definition of model elements taken as
the basis for further modeling. These pre-definitions are called blueprints. |

For example, an authoring tool provides the such predefined PortInterface as a
kind of toolbox from which the definitions can be copied to a project.

Blueprint Side Blueprinted Element Side
(derived elements)

1 «input» «output» 0.*
\ Derive From
Blueprint

Blueprnt i - Blueprinted
Validate «output»
Blueprinted

Element

Blueprint
Validation
Report
VFB AUTOSAR Standard Package
- —
- —
- —
- 0.1 «input» «output» 1| e—
- —
- Define VFB Interfaces —
?aggregation» VFB Interfaces
1

AUTOSAR Specification of
Application Interfaces

Figure 5.1: Blueprint methodology approach

Figure 5.1 illustrates the use case. The blueprint is on one hand used as an input to de-
rive objects (DeriveFromBlueprint) and later also used to validate the derived objects.
As an example the figure shows that the application interfaces are used to derive VFB
interfaces (namely Port Interfaces).

AUTSSAR

5.1.1 Abstract pattern for Blueprints

The blueprint approach is represented by the abstract blueprint structure as shown in
figure 5.2. It is based on three entities:

* Blueprint, represented by AtpBlueprint, acts as the pre-definition of the ele-
ment. Basically it follows the same structure as the derived elements.

But there might be additional elements to support the fact that it is a blueprint. An
example for thisis that PortPrototypeBlueprint also specifies initvalues
which is not the case for PortPrototype which get their initial values from
appropriate ComSpecs.

 Blueprinted Element, represented by AtpBlueprintable, acts as the ele-
ment which was derived from the Blueprint. These elements are derived from
blueprints mainly by copy and refine. This "refine" may add further attribute val-
ues, update shortName etc. The details of possible refinements are specified
for each blueprint individually.

Note that the subsequent processing of blueprinted elements (e.g. RTE genera-
tion) does not refer to the blueprints anymore.

* Blueprint Mapping, represented by AtpBlueprintMapping, acts as a refer-
ence between blueprints and their derived elements. The main purpose of this
blueprint mapping is to

— provide the ability to validate for each derived element that they conform to
the blueprint.

— reflect the fact that the derived elements are part of a common concept.

ARElement
BlueprintMappingSet

«atpMixed»
DocumentationBlock

BlueprintPolicySingle

+blueprintDerivationGuide .1

b GolicyCE: BlueprintPolicyModifiable
«atpSplitable» «atpVariation»
X . + maxNumberOfElements: Positivelnteger
+blueprintMap | 0.. + minNumberOfElements: Positivelnteger
AtpBlueprintMapping $
lentifiable . .
/atpBlueprint] i BlueprintPolicy
+atp p AtpBlueprint +blueprintPolicy
«atpAbstract,atpUriDef» 74 0.*| «atpldentityContributor»
«atpSplitable» | + attributeName: String
ldentifiable Zﬁ
+/atpBlueprintedElement AtpBlueprintable BlueprintPolicyNotModifiable
«atpAbstract» 1

Figure 5.2: Abstract Blueprint Structure

AUTSSAR

Meta-classes for elements eligible for blueprinting are defined as specializations of
AtpBlueprintable while meta-classes for blueprints are defined as specializations
of AtpBlueprint. An example is given in figure 5.3.

AtpBlueprintMapping
' JA
«atpAbstract,atpUriDef» «atpAbstract»
+/atpBlueprint\|/1 +/atpBlueprintedElement\|/1
Identifiable ldentifiable
AtpBlueprint AtoBlueprintable
+blueprint 1 +derivedObject 1
{redefines {redefines
atpBlueprint} atpBlueprintedElement}
«atpldentityContributor» ARElement! AtoProtcsatpldentityContributor»
AtpStructureElement| PortPrototype
PortPrototypeBlueprint

BlueprintMapping

Figure 5.3: Port Blueprints as an example for separate meta-classes for Blueprint and
blueprinted Element

[TPS_STDT_00072] Same Meta Class For Blueprints and Derived Objects [For
most of the elements eligible for blueprinting, no extra meta-class is required because
the same meta-class applies for blueprints and blueprinted elements. The meta-class
of such an element inherits from both AtpBlueprint and AtpBlueprintable.]

An example is given in figure 5.4.

[TPS_STDT_00041] Constraints may be violated in Blueprints [For blueprints us-
ing the same meta-class as the derived objects, the constraints defined for these ob-
jects may be violated by the blueprints such as:

* Required attributes may be missing.

» Referenced objects may not exist. Strictly speaking, references in blueprints can
all be considered as <atpUriDef>>

AUTSSAR

AtpBlueprintMapping

I T
«atpAbstract,atpUriDef» «atpAbstract»

+/atpBlueprint\ |/ 1 +/atpBlueprintedElement\|/1

Identifiable Identifiable

AtpBlueprint AtpBlueprintable

+blueprint +derivedObject 1
{redefines {redefines
atpBlueprint} atpBlueprintedElement}

ARElement
AtpType

Portinterface . X
«atpldentityContributor» «atpldentityContributor»
+ serviceKind: ServiceProviderEnum [0..1]

«atpVariation»
+ isService: Boolean [0..1]

BlueprintMapping

Figure 5.4: Portinterface Blueprints as an example for using the same meta-class for
Blueprint and blueprinted Element

[TPS_STDT_00033] Recognize Blueprints [According to [2] the blueprints reside in
a package of category "BLUEPRINT". Downstream AUTOSAR Tools such as RTE-
generator shall ignore Elements living in a package of category "BLUEPRINT". |

Blueprints are specializations of AtpBlueprint. Introduction of standardization
therefore does not introduce compatibility problems to existing templates. Note
that since AUTOSAR 4.0.3 AtpBlueprint.shortNamePattern is replaced by
Identifier.namePattern resp. CIdentifier.namePattern. In addition since
AUTOSAR 4.4.0 blueprintValue exists and is used e.g. in the context of ARMQL
(AUTOSAR Model Query Language).

[TPS_STDT_00032] BlueprintPolicy [Blueprintable elements shall be characterized
by BlueprintPolicy to indicate whether they will be modifiable or not.

* BlueprintPolicyNotModifiable means, that the related attribute is not
modifiable during the blueprinting

* BlueprintPolicyList means, that the related attribute is modifiable during
the blueprinting. It applies only to an attribute with upper multiplicity > 1

* BlueprintPolicySingle means, that the related attribute is modifiable during
the blueprinting. It applies only to an attribute with upper multiplicity == 1

]
Example ARXML listings for [TPS_STDT _00032] are shown in:

* BlueprintPolicyNotModifiable: A.8

AUTSSAR

* BlueprintPolicyList: A.9

* BlueprintPolicySingle: A.10

[constr_2590] One BlueprintPolicy is allowed [For each attribute of a blueprint, at

most one BlueprintPolicy is allowed. |

[constr_2591] BlueprintPolicyNotModifiable [If BlueprintPolicyNotModifi-
able is assigned to an attribute, then during blueprinting it is not allowed to modify the

value of the attribute and all its contained content. |

[constr_2592] No BlueprintPolicy [If no BlueprintPolicy is assigned to an at-

tribute, then arbitrary modifications are allowed while deriving from the blueprint. |

[constr_2593] Expression for identifying the attribute a BlueprintPolicy relates to
[The expression language for identifying the related attribute of a BlueprintPolicy
is a subset version of xpath, see [13]. For navigation over the model we use the names

as they are used in XML. |

[TPS_STDT_00039] Permitted XPath Expressions for BlueprintPolicy |

XPath Expression

Description

Notes

nodename

Selects all nodes with the name "nodename"

/

Selects from the root node (the root node is the blueprint
owning the BlueprintPolicy)

@

Selects attributes

@<attribute>=’<value>’

Selects an element node, which has the <attribute>
set to <value>

text ()='<value>’

Selects an element node, which contains the text
<value>

Matches any element node

Selects the n-th element node

Only allowed for ordered
elements

The XPath expression [n] in [TPS_STDT_00039] starts with [1] due to [13]. One

BlueprintPolicy can refine more than one attribute.

In listing A.8 the root node is selected by the nodename (COMPU-INTERNAL-TO-
PHYS). In listing A.9 the root node is selected by nodename/nodename/* (COMPU-

INTERNAL-TO-PHYS/COMPU-SCALES/*).

5.1.2 Mapping of Blueprints to blueprinted Elements

In many cases it will be necessary to identify the relationship of a blueprinted ele-
ment (e.g. PortPrototype) to the corresponding blueprint (e.g. PortPrototype-
Blueprint) after the blueprinted element has been created according to the blueprint.

AUTSSAR

For this purpose it would theoretically be possible to establish a reference from Atp-
Blueprintable to AtpBlueprint that identifies the pair of related model artifacts.
However, this kind of information is relevant only in a narrow scope and does - as
mentioned before - not impact the downstream model handling.

Therefore, a AtpBlueprintMapping is introduced which refers to both Atp-
Blueprintable and AtpBlueprint (see figure 5.2). The AtpBlueprintMap-—
ping is in turn aggregated at a container for the creation of blueprint mappings, the
BlueprintMappingSet.

In previous AUTOSAR Releases a specialization of AtpBlueprintMapping was cre-
ated for each particular meta class eligible for blueprinting. This has been replaced by
one particular specialization (BlueprintMapping)'.

ARElement
BlueprintMappingSet

«atpSplitable»

+blueprintMap | 0..*

AtpBlueprintMapping

«atpAbstract,atpUriDef» «atpAbstract»
+/atpBlueprint\[/1 +/atpBlueprintedElement\|/1
ldentifiable Identifiable
AtpBlueprint AtpBlueprintable
+blueprint 1 +derivedObject 1
{redefines {redefines
atpBlueprint} atpBlueprintedElement}
« atpldemity(liontributor» «atpldemitleontributor»

BlueprintMapping

Figure 5.5: Mapping of Derived Objects and their Blueprints

[constr_2566] Blueprintmapping shall map appropriate elements |
BlueprintMapping shall map elements which represent a valid pair of blueprint / de-
rived object. In most of the cases this means that blueprint and derivedObject
shall refer to objects of the same meta-class. |

Class BlueprintMappingSet

Note This represents a container of mappings between "actual" model elements and the "blueprint" that has
been taken for their creation.
Tags: atp.recommendedPackage=BlueprintMappingSets

\Y%

'For compatibility reasons, the abstract pattern was not changed. The previous specializations
PortInterfaceBlueprintMapping and PortPrototypeBlueprintMapping are removed.

AUTSSAR

A
Class BlueprintMappingSet
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
blueprintMap AtpBlueprintMapping * aggr | This represents a particular blueprint map in the set.

Stereotypes: atpSplitable

Tags: atp.Splitkey=blueprintMap.blueprint, blueprint
Map.derivedObject, blueprintMap.portinterfaceBlueprint,
blueprintMap.portPrototypeBlueprint, blueprint
Map.derivedPortInterface, blueprintMap.derivedPort
Prototype

Table 5.1: BlueprintMappingSet

5.1.3 General Rules for Compliance of blueprint and blueprinted element

[TPS_STDT_00005] Compliance with Blueprints [Constraints [constr_2554] and
[TPS_STDT _00087] apply in general for the compliance of blueprints with the derived
objects. |

[constr_2554] Derived objects shall match the blueprints [Unless specified explic-
itly otherwise, the attributes of the blueprint shall appear in the derived objects. As an
exception namePattern and blueprintValue may not be copied. |

[TPS_STDT_00087] Derived objects may have more attributes than the blueprints
[Unless specified explicitly otherwise, derived objects may have more attributes than
the blueprints. Such attributes can be

+ additional values if the upper multiplicity of the attribute in the meta-model is
greater than 1

+ those specified by the related templates but not specified in the blueprint
]

[TPS_STDT_00085] Compatibility of longName, desc and introduction of
blueprint and blueprinted element [Elements derived from blueprints are allowed
to:

* change longName
* change desc

* change introduction

]
Note that [TPS_STDT _00085] includes the ability to add text in a further language.

AUTSSAR

Note that int roduct ion should not be used to describe the derivation of objects from
the blueprint. See [TPS_STDT_00048] for details.

[TPS_STDT_00086] Specify a name pattern or a blueprint value in blueprints
[For each blueprint, a namePattern or a blueprintvalue shall be specified if the
shortName respectively a symbo1l is not fixed but intended to be defined when objects
are derived from a blueprint. This is used to verify the appropriate naming of the derived
objects ([constr_2553]). |

[constr_2553] shortName shall follow the pattern defined in the Blueprint
[The shortName respectively symbol of the derived objects shall follow the pat-
tern defined in namePattern or blueprintvValue of the blueprint according to
[TPS_STDT_00086]|

[constr_2570] No Blueprints in system descriptions [There shall be no blueprints
in system descriptions. In consequence of this blueprint elements shall be referenced
only from blueprints and AtpBlueprintMappings. Due to <atpUriDef>>, the ref-
erences from AtpBlueprintMapping do not need to be resolved in system descrip-
tions. |

[constr_2571] Outgoing references from Blueprints [Note that outgoing references
from Blueprints are basically not limited. Practically, references to objects living in a
package of category EXAMPLE should not occur. |

Reason for [constr_2571] is the fact that these examples then also shall exist in the
target system description but not as example. In such a case the example would take
the role of a blueprint.

Figure 5.6 illustrates a scenario with standardized objects, blueprints and project re-
lated objects.

AUTSSAR

<<Standard>> <<Standard>>
X y
(1) (2)
<<Blueprint>> (3) <<Blueprint>>
bpl bp2
(1 A (4) obj_x o A (2)
<<derivedI from>> vy <<derivedI from>>
.666(\\
O
\5\0
<<derived>> (3) << derived >>
obj1 0obj2
(4)
v
obj_x

Figure 5.6: Relations between Blueprints, "Derived Objects" and "Standardized Objects"

This diagram in particular illustrates how references in blueprints shall be handled:

[TPS_STDT_00051] Handling references when deriving objects from blueprints |

* Blueprints may reference standardized objects. These references also exist in
the derived objects (1), (2).

 Blueprints may reference other blueprints (3). These references need to be re-
placed in order to meet [constr_2546]. Therefore a reference from a derived
object to a blueprint is not allowed.

 Blueprints may contain references to arbitrary objects (4). According to
[TPS_STDT _00041] it is allowed that these objects even do not exist. Neverthe-
less to meet [constr_2554] such references shall be copied to the derived objects
and the referenced objects shall exist in the target system description.

]

[TPS_STDT_00034] Integrity of Blueprints [The integrity of blueprints can be estab-
lished by applying references to blueprints of related objects. For example, a blueprint
of a BswModuleDescription may refer to a blueprint of BswModuleEntry. |

[constr_2546] References in derived model elements [Model elements derived
from blueprints shall never refer to model elements that are blueprints. |

Note: A blueprint may refer to another blueprint. When deriving objects such a refer-
ence shall be replaced such that the new reference target is an object derived from the
corresponding reference target in the blueprint.

AUTSSAR

[TPS_STDT_00065] Nested Blueprint Can be Used as Blueprint of its own [If spe-
cialization of AtpBlueprint aggregates specialization of AtpBlueprint, then the
such aggregated specialization of AtpBlueprint acts as a blueprint on its own and
can be derived beyond the context of objects derived from the aggregating special-
ization of AtpBlueprint. This definition allows to create blueprints which are not
specializations of ARElement.

In other words, If a blueprint contains blueprints, the "inner" blueprints can be derived
independent from derived objects of the "outer" blueprint. |

See chapter 5.2.8 for an use case of [TPS_STDT_00065].

[TPS_STDT_00047] Ignore Blueprint Attributes in Non Blueprints [AUTOSAR
Tools which do not process blueprints such as RTE-generator shall ignore Tdenti-
fier.namePattern resp. CIdentifier.namePattern and blueprintValue.

The attributes Tdentifier.namePattern resp. CIdentifier.namePattern and
blueprintValue should be removed when deriving objects from blueprints. |

[TPS_STDT_00048] Express Decisions when Deriving Objects [Applying
VariationPoint is a suitable way to express intended decisions to be made
when deriving objects from blueprints. In this case the value of the UML tag
vh.latestBindingTime iS blueprintDerivationTime and VariationPoint.
blueprintCondition,VariationPoint.formalBlueprintGenerator respec-
tively AttributeValueVariationPoint.blueprintValue shall be used to ex-
press the intended derivation. |

[TPS_STDT_00028] Resolving VariationPoint in Blueprints [If a variation-
Point has only blueprintvalue respectively blueprintCondition, formal-
BlueprintGenerator but not swSyscond nor postBuildVariantCondition it
shall be resolved when deriving elements. |

Please refer to Generic Structure Template [2] for the following aspects:

* Even if BindingTimeEnum does not contain the value blueprintDeriva-
tionTime, there are still variationPoints which shall be bound on blueprint
derivation. This is specified as blueprintDerivationTime in the UML tag
vh.latestBindingTime at the variation point in the meta-model.

See chapter 5.2 for such elements.

» See [constr_2557]: System configurations shall not contain variationPoints
with vh.latestBindingTime setto blueprintDerivationTime.

* [constr_2558]: If vh.latestBindingTime iS blueprintDerivationTime
then there shall only be blueprintCondition, formalBlueprintGener-—
ator respectively blueprintvalue.

AUTSSAR

» See [constr_2559]: variationPoints shall not be nested. In particular this
means that there shall not exist a variationPoint within the Documenta-
tionBlock intherole blueprintConditioninavariationPoint.

» See [constr_2567]: Attribute Value Blueprints should contain undefined.

VariationPoint MultiLanguageOverviewParagraph

+desc
«atpldentityContributor» o—
+ shortLabel: Identifier [0..1] 0.1
+sdg

Sd

o] 9

011 gid: NameToken

«enumeration»

. . . BindingTimeE
+postBuildVariantCondition | o * TEllRETCERin

+swSyscond | 0..1

literals
SwSystemconstDependentFormula PostBuildVariantCondition systemDesignTime
ConditionByFormula codeGenerationTime
- N T A «atpVariation» preCompileTime
+ bindingTime: BindingTimeEnum + value: Integer linkTime

+blueprintCondition | 0..1

vh latestBindingtime=preCompileTime Iﬁ

«atpMixed»
DocumentationBlock +matchingCriterion\[/1
ARElement
AtpDefinition enumeration
+introduction 0.1 PostBuildVariantCriterion AdditionalBindingTimeEnu
literals
+formalBlueprintGenerator| 0..1 blueprintDerivationTime
postBuild
i SwSystemconstDependentFormula
BlueprintGenerator
«atpMixedString»
+ expression: VerbatimString [0..1] BlueprintFormula
Figure 5.7: Variation Point
Class VariationPoint
Note This meta-class represents the ability to express a "structural variation point". The container of the
variation point is part of the selected variant if swSyscond evaluates to true and each postBuildVariant
Criterion is fulfilled.
Base ARObject
Attribute Type Mulit. Kind | Note
blueprint DocumentationBlock 0..1 aggr | This represents a description that documents how the
Condition variation point shall be resolved when deriving objects
from the blueprint.
Note that variationPoints are not allowed within a
blueprintCondition.
Tags: xml.sequenceOffset=28
desc MultiLanguageOverview 0..1 aggr | This allows to describe shortly the purpose of the
Paragraph variation point.
Tags: xml.sequenceOffset=20

AUTSSAR

A
Class VariationPoint
formalBlueprint BlueprintGenerator 0..1 aggr This represents a description that documents how the
Generator variation point shall be resolved when deriving objects

from the blueprint by using ARMQL.

Note that variationPoints are not allowed within a formal
BlueprintGenerator.

Tags:

atp.Status=draft

xml.sequenceOffset=30

postBuildVariant | PostBuildVariant aggr | This is the set of post build variant conditions which all
Condition Condition shall be fulfilled in order to (postbuild) bind the variation
point.

Tags: xml.sequenceOffset=40

sdg Sdg 0..1 aggr An optional special data group is attached to every
variation point. These data can be used by external
software systems to attach application specific data. For
example, a variant management system might add an
identifier, an URL or a specific classifier.

Tags: xml.sequenceOffset=50

shortLabel Identifier 0..1 attr This provides a name to the particular variation point to
support the RTE generator. It is necessary for supporting
splitable aggregations and if binding time is later than
codeGenerationTime, as well as some RTE conditions. It
needs to be unique with in the enclosing Identifiables with
the same ShortName.

Stereotypes: atpldentityContributor

Tags: xml.sequenceOffset=10

swSyscond ConditionByFormula 0..1 aggr This condition acts as Binding Function for the Variation
Point. Note that the multiplicity is 0..1 in order to support
pure postBuild variants.

Tags: xml.sequenceOffset=30

Table 5.2: VariationPoint

[TPS_STDT_00030] Blueprint of VariationPoint [A blueprint may contain vari-
ationPoint with vh.latestBindingTime set t0 blueprintDerivationTime.
These are considered as kind of blueprint of variation points which shall be handled
when deriving objects. The following options apply for the container of the varia-
tionPoint according to chosen approach for blueprint derivation:

1. f blueprintCondition is specified: resolved manually

2. If formalBlueprintGenerator is specified: resolved by a module generator.
The resolver approach is formalized using ARMQL. Note that in this case it is
also likely that multiple objects are created by the module generator.

After resolving the variationPoint by one of these conditions the remaining varia-
tion is converted to a subsequent variationPoint. |

[TPS_STDT_00044] Transferring VariationPoint [Unless specified explic-
itly otherwise, VariationPoints with vh.latestBindingTime hot set to
BlueprintDerivationTime should be transferred to the derived objects (see also
[TPS_STDT _00087]). Thereby the shortLabel of the variationPoint may be
adapted according to the specification in the blueprintCondition and formal-
BlueprintGenerator.|

AUTSSAR

[constr_2556] No Blueprint Motivated VariationPoints in AUTOSAR Descrip-
tions [AUTOSAR descriptions which are not blueprints shall not have blueprint-
Condition, formalBlueprintGenerator NOrblueprintvalue. |

[constr_2569] Purely Blueprint Motivated VariationPoints [Variation-
Points with vh.latestBindingTime set t0 blueprintDerivationTime shall
have only blueprintCondition Or formalBlueprintGenerator respectively
blueprintValue.]

[TPS_STDT_00045] Transferring Objects in General [Objects resp. references
without VariationPoint shall be transferred to the derived objects. Thereby the
namePatterns and the blueprintvalues of the referenced Blueprints also apply
for rewriting the shortName path in the reference. |

For more details about variationPoint refer to [2], as all constraints are summa-
rized there.

[TPS_STDT_00046] Configuration dependent properties [Some data types specify
configuration-dependent properties like limits, base types etc. This is supported by an
additional attribute blueprintvalue inthe AttributeValueVariationPoint.]

An example for [TPS_STDT_00046] is:

NvM_BlockIdType Range: 0..2\" (16— NvMDatasetSelectionBits)-1
Dem_RatioIdType Type: uint8, uintlé6

AUTSSAR

«atpMixedString»
FormulaExpression

+8ysC

SwSystemconstDependentFormula

0..1
{subsets atpReference}

+syscString

0.1

{subsets atpStringReference}

ARElement
AtpDefinition
SwSystemconst

AttributeValueVariationPoint

+ o+ o+ o+

bindingTime: FullBindingTimeEnum [0..1]
blueprintValue: String [0..1]

sd: String [0..1]

shortLabel: Primitiveldentifier [0..1]

IntegerValueVariationPoint

ConditionByFormula

+

bindingTime: BindingTimeEnum

Attribute ValueVariationPoint
AbstractEnumerationValueVariationPoint

Q| + base: Identifier[0..1]
+ enumTable: Ref [0..1]

PositivelntegerValueVariationPoint

FloatValueVariationPoint

UnlimitedintegerValueVariationPoint

BooleanValueVariationPoint

TimeValueValueVariationPoint

AbstractNumerical VariationPoint

NumericalValueVariationPoint

LimitValueVariationPoint

+

intervalType: IntervalTypeEnum [0..1]

Figure 5.8: Attribute Value Variation Point

Class «atpMixedString» AttributeValueVariationPoint (abstract)

Note This class represents the ability to derive the value of the Attribute from a system constant (by Sw
SystemconstDependentFormula). It also provides a bindingTime.

Base ARObject, FormulaExpression, SwSystemconstDependentFormula

Subclasses AbstractEnumerationValueVariationPoint, AbstractNumericalVariationPoint, BooleanValueVariationPoint,
FloatValueVariationPoint, IntegerValueVariationPoint, PositivelntegerValueVariationPoint, TimeValue
ValueVariationPoint, UnlimitedintegerValueVariationPoint

Aggregated by | VariationPointProxy.valueAccess

Attribute Type | Mult. | Kind | Note

\Y

AUTSSAR

JAN
Class «atpMixedString» AttributeValueVariationPoint (abstract)
bindingTime FullBindingTimeEnum 0..1 attr This is the binding time in which the attribute value needs
to be bound.

If this attribute is missing, the attribute is not a variation
point. In particular this means that It needs to be a single
value according to the type specified in the pure model. It
is an error if it is still a formula.

Tags: xml.attribute=true

blueprintValue

String 0..1 attr This represents a description that documents how the
value shall be defined when deriving objects from the
blueprint.

Tags: xml.attribute=true

sd

String 0..1 attr This special data is provided to allow synchronization of
Attribute value variation points with variant management
systems. The usage is subject of agreement between the
involved parties.

Tags: xml.attribute=true

shortLabel

Primitiveldentifier 0..1 attr This allows to identify the variation point. It is also
intended to allow RTE support for CompileTime Variation
points.

Tags: xml.attribute=true

Table 5.3: AttributeValueVariationPoint

5.1.4 Applicable patterns to define attributes when deriving objects from
blueprints

5.1.5 Name Patterns

[TPS_STDT_00003] Applying namePattern [When deriving an element from a
blueprint it is often the case that a particular pattern shall be used to determine the
shortName respectively the symbol of the object. This use case is supported by the
attribute namePattern in Identifier respectively CIdentifier.|

Primitive Identifier
Note An Identifier is a string with a number of constraints on its appearance, satisfying the requirements typical
programming languages define for their Identifiers.
This datatype represents a string, that can be used as a c-Identifier.
It shall start with a letter, may consist of letters, digits and underscores.
Tags:
xml.xsd.customType=IDENTIFIER
xml.xsd.maxLength=128
xml.xsd.pattern=[a-zA-Z][a-zA-Z0-9_]*
xml.xsd.type=string
Attribute Type Mult. Kind | Note
blueprintValue String 0..1 attr This represents a description that documents how the
value shall be defined when deriving objects from the
blueprint.
Tags:
atp.Status=draft
xml.attribute=true

AUTSSAR

A

Primitive Identifier

namePattern String 0..1 attr This attribute represents a pattern which shall be used to
define the value of the identifier if the identifier in question
is part of a blueprint.
For more details refer to TPS_StandardizationTemplate.
Tags: xml.attribute=true

Table 5.4: Identifier
Primitive Cldentifier
Note This datatype represents a string, that follows the rules of C-identifiers.
Tags:

xml.xsd.customType=C-IDENTIFIER
xml.xsd.pattern=[a-zA-Z_][a-zA-Z0-9_]*
xml.xsd.type=string

Attribute Type Mulit. Kind | Note

blueprintValue String 1 attr This represents a description that documents how the
value shall be defined when deriving objects from the
blueprint.
Tags:

atp.Status=draft
xml.attribute=true

namePattern String 0..1 attr This attribute represents a pattern which shall be used to
define the value of the identifier if the Cldentifier in
question is part of a blueprint.

For more details refer to TPS_StandardizationTemplate.
Tags: xml.attribute=true

Table 5.5: Cldentifier

[TPS_STDT_00055] General Syntax for Name Patterns [The name pattern uses the
syntax described in ANTLR [14].]

An example ARXML listings for [TPS_STDT_00055] is:

grammar NamePattern;

options { language = Ruby;
output = AST;}

namePattern
(fixedName | placeholder | separator)+ ;

subPattern
T (fixedName | placeholder | separator)+ ')’ (’7?2’ A B A B
placeholder : ' {’

("anyName’ |

"anyNamePart’ |
"blueprintName’ |
"capitalizedCallbackName’ |
"capitalizedMip’ |
"codePeriode’ |

" componentName’ |

" componentTypeName’ |

" componentPrototypeName’ |

AUTSSAR

"ecucValue’ ' (! ecucName ')’
"index’ |
"initPolicy’ |
"keyword’ ' (' kwClass ')’ |
IMipI ‘
"modeName’ |
"nameSpace’ |
"portDir’
"typelId’ |
subPattern
)
!}I ,.
fixedName MyName;
kwClass MyName;
separator
Separator ;
pathSeparator
: PathSeparator ;
ecucName: (anyNamePart | pathSeparator) +;
anyNamePart MyName (separator MyName) *;
MyName : ("a’ Tzl | (TATLLTZT) | (PO L)) =)
Separator : rro;
PathSeparator : '/’ ;

Listing 5.1: Grammar for name pattern

This example illustrates valid name patterns. Note that {blueprintName} etc. de-
notes a placeholder.
{blueprintName}_{anyName}

{portDir}_{blueprintName}_{keyword(Qualifier)}_{componentName}_{index}
——> example for a match: R_EngN_Max Dem_ 3

{componentName}_{ecucValue (iteml) }

h b _{(a_{index}_b_{componentName}_{ (x_{ecucValue (hugo)})*})*}

The semantics of the placeholder is defined as follows:

anyName This represents a string which is valid shortName according to ITdenti-
fier

AUTSSAR

anyNamePart This represents a string [a-zA-Z0-9_]* which is valid part of a short-
Name.

Hint: The place holder "anyNamePart" shall not be used at the beginning of a
shortName pattern to avoid invalid shortNames.

blueprintName This represents the shortName / shortLabel / symbol of the ap-
plied blueprint

capitalizedCallbackName This represents the name of the callback function including
module prefix, but written in upper case.

capitalizedMip This represents the capitalized module implementation prefix accord-
ing to [SWS_BSW _00102]. All characters are converted to uppercase.

codePeriode This represents the period time value and unit. Units are: US micro
seconds, MS milliseconds, S second. For example: 100US, 10MS, 1S.

componentName This represents the shortName of the BSW module resp.
ASW SwComponentType / ASW component prototype related to the derived ob-
ject. "Related" mainly could be both, aggregating or referencing.

[TPS_STDT_00036] Placeholder for Module / Component [The placeholder
componentName in particular supports multiple derivation of a PortProto-
typeBlueprint inthe context of different software component types resp. mod-
ules. |

componentTypeName This represents the shortName of the dedicated SwCompo-
nentType.

componentPrototypeName This represents the shortName of the dedicated
SwComponentPrototype.

ecucValue [TPS_STDT_00040] Influence of ECUC [This indicates an influence of
the ECU configuration. This placeholder takes an argument which is intended as
a keyword reflecting the kind of influence. More details shall be specified in the
blueprintCondition where the argument mentioned before can be taken for
reference. |

index This represents a numerical index applicable for example to arrays.

initPolicy This represents the initialization policy of variables according to Section-
InitializationPolicyType Where the dashes are replaced by underscores,
e.g. NO_INIT, CLEARED, POWER_ON_CLEARED, INIT, POWER_ON_INIT.

keyword [TPS_STDT_00004] Abbreviated Name [This represents the abbrName of
a keyword acting as a name part of the short name. The eligible keywords can
be classified (using the argument kwClass). This classification shall match with
one of the classification of the applied keyword. |

AUTSSAR

Mip This represents the module implementation prefix according to [SWS_BSW_-
00102].

modeName This represents the shortName of the mode e.qg.
Dcm_ {modeName } ModeEntry

portDir This represents the direction of a port.

[TPS_STDT_00037] Port Direction [The placeholder portDir in particular
supports the case that the same blueprint is used for P-Port as well as for an
R-Port. The values represented by this placeholder is p for P-Port respectively R
for R-Port. |

typeld This represents an indicator based on the type of the object.

5.1.6 Blueprint Formula

[TPS_STDT_00006] Applying Expression Pattern [When deriving an element from
a blueprint it is often the case that a particular pattern shall be used to determine the
value and or the condition of the object. This use case is supported by the attribute
blueprintValue.]

[TPS_STDT_00010] General Syntax for Expression Patterns [The expression pat-
tern uses the syntax of the Formula Language as defined in [TPS_GST_00012]. |

[TPS_STDT_00092] Return values of the BlueprintFormula.ecuc query |

Return values Description

EcucContainerDef Ecuc returns the value of the shortName of the EcucContainervalue
EcucBooleanParamDef Ecuc returns the assigned value of the EcucNumericalParamvValue
EcucIntegerParamDef Ecuc returns the assigned value of the EcucNumericalParamValue
EcucFloatParamDef Ecuc returns the assigned value of the EcucNumericalParamvalue

EcucEnumerationParamDef Ecuc returns the assigned value of the EcucTextualParamvalue

EcucAbstractString- Ecuc returns the assigned value of the EcucTextualParamvValue

ParamDef

EcucReferenceDef Ecuc returns the referenced container object qualified by the destination attribute

EcucChoiceReferenceDef Ecuc returns the referenced container objects (list) qualified by the destination
attributes

EcucUriReferenceDef Ecuc returns the referenced container objects (list) qualified by the

destinationUri attribute

If several EcucContainervValue(s) or EcucParameterValue(s) are assigned to the
EcucContainerDef / EcucParameterDef the return value is undefined.

]

[TPS_STDT_00021] Specialization of BlueprintFormula [These specialization(s)
express the extension of the Formula Language to provide formalized blueprint-
Value:

AUTSSAR

» ecuc: queries to the values described for ECUC-DEFINITION-ELEMENT. De-
pending on the ECUC-DEFINITION-ELEMENT a value or a string or an object is
the result, see [TPS_STDT_00092]

* sysc: queries to the values assigned to SW-SYSTEMCONST

 syscString: indicates that the referenced system constant shall be evaluated as
a string according to [TPS_SWCT_01431]

+ <VERBATIM>: defines the ability to specify non formula parts

» ->:. Reference Operator; a -> b the value of object b’ as specified in
[TPS_STDT_00092] which is pointed to by ’a’

SwSystemconstDependentFormula

«atpMixedString»
BlueprintFormula

+verbatim Tl +ecuc\|/1

Paginateable AtpDefinition
MultiLanguageVerbatim ldentifiable
EcucDefinitionElement
+ allowBreak NameToken [0..1]
+ float: FloatEnum [0..1] + scope: EcucScopeEnum [0..1]
+ helpEntry: String [0..1] «atpVariation»
+ pgwide: PgwideEnum [0..1] + lowerMultiplicity: Positivelnteger [0..1]
+ upperMultiplicity: Positivelnteger [0..1]
+ upperMultiplicityInfinite: Boolean [0..1]

Figure 5.9: Blueprint Formula

Listing 5.2 illustrates valid expression patterns. Note that blueprintvalue denotes
a placeholder.

<EXPRESSION xml:space="preserve">

FOR

configClass : ECV.subEltList ("NvM/NvMCommon/NvMApiConfigClass");
LET

isConfigClass2 = configClass.value() == "NVM_API_CONFIG_CLASS_2";

isConfigClass3 = configClass.value() == "NVM_API_CONFIG_CLASS_3";
WHERE

isConfigClass2 OR isConfigClass3;
Listing 5.2: Use of Logical Expression

In listing 5.3 the use of the Reference Operator is illustrated. The Reference Operator
is inserted as a XML entity.

<!-- example for Reference Operator —-—>
<VARIATION-POINT>

<!-- <FORMAL-BLUEPRINT-CONDITION>
Listing 5.3: Use of Reference Operator

AUTSSAR

5.1.7 Ecu Configuration Parameters and Blueprints

[TPS_STDT_00025] Deriving VSMD from STMD Uses its own Mechanism
[Basically the Standard Module Definitions (STMD) specified by AUTOSAR accord-
ing to [15] could also be considered as blueprints. On the other hand, the relationship
between vendor specific module definitions (VSMD) is a very strict one and was there
before the general concept of Blueprints was introduced. Therefore for sake of com-
patibility this relationship is still maintained using refinedModuleDef.

Nevertheless for company specific applications there is some support for ECU config-
uration in Standardization Template. |

See chapter 5.2.13 resp. chapter 5.2.14 for more details.

5.2 Blueprintables defined in AUTOSAR Meta Model

The following sub chapters specify the particular model elements for which blueprints
are supported.

5.2.1 Blueprinting AccessControl

[TPS_STDT_00062] Blueprinting Elements of AccessControl [Ac10bjectSet,
AclOperation, AclPermission, AclRole can be blueprinted.

5.2.2 Blueprinting AliasNameSet

[TPS_STDT 00011] Blueprinting AliasNameSet [AliasNameSet can be
blueprinted. |

5.2.3 Blueprinting ApplicationDataType

[TPS_STDT_00023] Blueprinting ApplicationDataType |[Application-—
DataType can be blueprinted. |

5.2.4 Blueprinting ARPackage

[TPS_STDT_00013] Blueprinting ARPackage [ARPackage can be blueprinted. Main
use case is to support predefined package structures, e.g. those specified in [2]. |

AUTSSAR

5.2.5 Blueprinting BswModuleDescription

[TPS_STDT _00027] Blueprinting BswModuleDescription [BswMod-
uleDescription can be blueprinted. |

Blueprints for BswModuleDescription are used in particular to describe dependen-
cies to other modules. Note that in this case all references to other modules and mod-
ule entries are targeting blueprints of the intended module. These references need to
be replaced when deriving objects from the blueprint of BswModuleDescription.

A blueprint of BswModuleDescription shall specify the references to the standard-
or blueprint- API elements, in particular

* BswModuleDescription.implementedEntry
* BswModuleDescription.expectedEntry

Nevertheless, it is allowed that derived BswModuleDescription adds further ones
of these references.

Furthermore, optional elements like callbacks often come in 0..* multiplicity. In
this case, the blueprint should specify one callback reference (to one blueprint
BswModuleEntry) and express the open multiplicity in its namePattern respec-
tively in the VvariationPoint.blueprintCondition Or VariationPoint.for-
malBlueprintGenerator as illustrated in Figure 5.10.

derived

callback_{index}

callback_1

A

derjved

callback_2

callback_2

1

Figure 5.10: Multiply derived Objects

[constr_2563] BswModuleDescription blueprints should not have a Bswinter-
nalBehavior [A BswModuleDescription blueprint should not have a BswInter-
nalBehavior since this is a matter of implementation and not subject to standardiza-
tion. Exceptions might exist in vendor internal applications. |

5.2.6 Blueprinting BswModuleEntry

[TPS_STDT_00014] Blueprinting BswModuleEntry [BswModuleEntry can be
blueprinted. |

AUTSSAR

The meta-class BswModuleEntry and its composites (SwServiceArg) con-
tain optional as well as mandatory elements which are never or only some-
times standardized, e.g. executionContext, swServicelmplPolicy, parts of SwSer-
viceArg.swDataDefProps. Nevertheless Standardization Template does not explicitly
specify constraint which attributes shall, may or shall not be defined in the blueprint
(see also [TPS_STDT 00049]).

5.2.7 Blueprinting BswEntryRelationshipSet

[TPS_STDT_00090] Blueprinting BswEntryRelationshipSet [BswEntryRela-
tionshipSet can be blueprinted.]

[TPS_STDT_00091] Blueprinting BswEntryRelationshipSet [The BswEn-
tryRelationshipSet describes a collection of BswEntryRelationships. A
BswEntryRelationship describes a relationship between two BswModuleEntrys
and the type of relationship. This is typically used to express that a concrete BswMod-
uleEntry is derived from an abstract BswModuleEntry. In this case the bswEn-
tryRelationshipType is set t0 derivedFrom, the BswEntryRelationship.
from references the abstract BswModuleEntry and the BswEntryRelationship.
to references the concrete BswModuleEntry. |

A?g‘f’em;% BswEntryRelationship
P L.lep +bswEntryRelationship - - - -
AtpBlueprintable > + bswEntryRelationshipType: BswEntryRelationshipEnum [0..1]
BswEntryRelationshipSet 0.*

+from\|/0..1 +to\|/0..1

«enumeration» ARElement

BswEntryRelationshipEnum AtpBlueprint
AtpBlueprintable

literals

BswModuleEntry
derivedFrom

bswEntryKind: BswEntryKindEnum [0..1]
callType: BswCallType [0..1]
executionContext: BswExecutionContext [0..1]

¥
¥
¥
+ functionPrototypeEmitter: NameToken [0..1]
«enumeration» + isReentrant: Boolean [0..1]
BswEntryKindEnum + isSynchronous: Boolean [0..1]
+ role: Identifier [0..1]
+ serviceld: Positivelnteger [0..1]
+ swServicelmplPolicy: SwServicelmplPolicyEnum [0..1]

literals
abstract
concrete

Figure 5.11: BswEntryRelationshipSet

AUTSSAR

Class BswEntryRelationshipSet
Note Describes a set of relationships between two BswModuleEntrys.
Tags: atp.recommendedPackage=BswEntryRelationshipSets
This Class is only used by the AUTOSAR Classic Platform.
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
bswEntry BswEntryRelationship * aggr Relationship between two BswModuleEntrys.
Relationship
Table 5.6: BswEntryRelationshipSet
Class BswEntryRelationship
Note Describes a relationship between two BswModuleEntrys and the type of relationship.
Base ARObject
Aggregated by | BswEntryRelationshipSet.bswEntryRelationship
Attribute Type Mult. Kind | Note
bswEntry BswEntryRelationship 0..1 attr Denotes the type of the relationship.
Relationship Enum Tags: xml.sequenceOffset=5
Type
from BswModuleEntry 0..1 ref Type of relationship that refers to the abstract BswModule
Entry. Please notice that in this case the bswEntry
RelationshipType shall be set to drivedFrom.
This Attribute is only used by the AUTOSAR Classic
Platform.
to BswModuleEntry 0..1 ref Type of relationship that refers to the concrete Bsw
ModuleEntry
This Attribute is only used by the AUTOSAR Classic
Platform.
Table 5.7: BswEntryRelationship
Enumeration BswEntryRelationshipEnum
Note Define the type of relationship between two BswModuleEntrys.
Aggregated by BswEntryRelationship.bswEntryRelationshipType
Literal Description
derivedFrom Describes that the BswModuleEntry referenced as "to" needs to have the same signature as the

"abstract" BswModuleEntry referenced as "from".
Tags: atp.EnumerationLiteralindex=0

Table 5.8: BswEntryRelationshipEnum

5.2.8 Blueprinting BuildActionManifest

[TPS_STDT_00063] Blueprinting BuildActionManifest [BuildActionMani-
fest can be blueprinted. [TPS_STDT_00065] applies such that blueprints of Buil-
dAction and BuildActionEnvironment$ are aggregated in a blueprint of Buil-
dActionManifest.]|

AUTSSAR

5.2.9 Blueprinting CompuMethod

[TPS_STDT 00015] Blueprinting CompuMethod [CompuMethod can be
blueprinted. |

Sometimes it is required to extend a standardized enumeration with vendor specific
elements.

For example [SWS_RamTst_00192] states: If vendor specific algorithms were de-
fined the enumeration fields of RamTst_AlgorithmType should be extended accord-

ingly.

[TPS_STDT_00049] Blueprinting Enumerators [Extensions of enumerator values
shall be expressed in the blueprint of the related CompuMethod by the Vvariation-
Point at CompuScale. |

+com nten
Aﬁj’;iz;ﬁz: +compuPhysTolnternal Compu compuContent CompuContent
AtpBlueprintable «atpSplitable» 0.1 «atpSplitable» 0.1
CompuMethod
+compulnternal ToPhys
+ displayFormat: DisplayFormatString [0..1
ey <Y g(0-1] «atpSplitable» 0.1 CompuScales

*unit\(/0..1 «atpVariation» Tags: o X
ARElement))) ARElement| | msrid = «a}p_\/_a_r@yon,atpSplltabIe»
. +physicalDimension . . q COMPU_scales TYPE_C | -----""" 0..*
Unit PhysicalDimension OMPU-SCALES +compuScale {ordered}
+ factorSiToUnit: Float [0..1] 0.1y currentExp: Numerical [0..1] vh.latestBindingTime =
+ offsetSiToUnit: Float [0..1] + lengthExp: Numerical [0..1] blepripiDervationtime O
+ luminousintensityExp: Numerical + a2lDisplayText: String [0..1]
[0.1] + mask PositiveUnlimitedinteger
+ massExp: Numerical [0..1] [0..1]
+ molarAmountExp: Numerical [0..1] + shortLabel: Identifier [0..1]
+ temperatureExp: Numerical [0..1] + symbol: Cldentifier [0..1]
+ timeExp: Numerical [0..1] «atpVariation»
+ lowerLimit: Limit [0..1]
+ upperLimit: Limit [0..1]

Figure 5.12: A compuMethod and its attributes define data semantics

5.2.10 Blueprinting ConsistencyNeeds

[TPS_STDT_00071] Blueprinting ConsistencyNeeds [ConsistencyNeeds can
be blueprinted. But as it is not derived from ARElement, all such blueprints
are aggregated by ConsistencyNeedsBlueprintSet. This allows to apply
[TPS_STDT_00072].]

AUTSSAR

ARElement
ConsistencyNeedsBlueprintSet

«atpVariation,atpSplitable»

+consistencyNeeds | 0..*

AtpBlueprint
AtpBlueprintable
Identifiable

ConsistencyNeeds

Figure 5.13: Blueprinting ConsistencyNeeds

ARElement
- AtpBlueprint
«atpVariation» Tags: AtpBlueprintable
mmtRestrictToStandards = CP AtpType
vh.latestBindingTime =
preCompileTime - SwConponentType

«atp\?ériation,atpSplitable»

+consistencyNeeds | 0.*

«atpVariation» Tags:

vh latestBindingTime = AtpBlueprint
preCompileTime AtpBlueprintable
Identifiable
ConsistencyNeeds
«atpVariation,atpSplitable» «atpVaria;i;)n,atpSplitable» «atp\farrialion,atpSplitable» «atpV riatit;n.,étpSpIitable>>
+regRequiresStability | 0..* +regDoesNotRequireStability | 0..* +dpgRequiresCoherency | 0..* +dpgDoesNotRequireCoherency | 0..*
| ettt AtpStructureElement| —_—————— —J . AtpStructureElement
«instanceRef,atpVaration,atpSplitable» Hentifiable| “InstanceRef.atoVariation.atpSplitable> Kentifiable
|
L= RunnableEntityGroup | DataPrototypeGroup
+runnableEntityGroup 0..* T +dataPrototypeGroup 0.." — o -
«instanceRef,atpVariation,atpSplitable» «|nstanceHef,atpValilatlon,a1pSpI|tabIe
+runnabIeEmi1y\y0..* +imp|icitDataAccess\l/ 0.*
AtpStructureElement AutosarDataPrototype
ExecutableEntity VariableDataPrototype
RunnableEntity
+ canBelnvokedConcurrently: Boolean [0..1] +dataElement 0..* +nvData 0.*
+ symbol: Cldentifier [0..1]
Datalnterface Datalnterface
SenderReceiverinterface NvDatalnterface

Figure 5.14: ConsistencyNeeds

[TPS_STDT_00073] Early definition of ConsistencyNeeds [Grouping of Data shall
be possible before the RunnableEnt itys with all the details (data access points) are
known. In a top down approach the grouping of DataPrototypes can already be used
to design the system in a way that consistency properties are guaranteed and that
consistency is not required for unrelated DataPrototypes.

Therefore the DataPrototypeGroup in @ ConsistencyNeeds (Blueprint) can ref-
erence VariableDataPrototypes of Port Interfaces without any further context
information. |

[TPS_STDT_00074] Categorization of Blueprints of ConsistencyNeeds [Since
a ConsistencyNeeds(Blueprint) can be designed before the software component is
known in all details it is required to denote the purpose of the DataPrototypeGroup
and the RunnableEntityGroup of a ConsistencyNeeds(Blueprint). Therefore a

AUTSSAR

set of category values is predefined which supports the "abstract" blueprinting of
ConsistencyNeeds. |

[TPS_STDT_00075] Categories for DataPrototypeGroup in a Blueprint of Con-
sistencyNeeds |

ALL PROVIDE DATA_ OF_COMPONENT DataPrototypeGroup Of the Consisten-
cyNeeds shall contain all variableDataPrototypes instantiated in provide
ports of the software component.

ALL_ _REQUIRE DATA OF_ COMPONENT DataPrototypeGroup(ﬁthG(Sonsistenf
cyNeeds shall contain all variableDataPrototypes instantiated in require
ports of the software component.

ALL_PROVIDE_AND_REQUIRE_DATA OF_ COMPONENT DataPrototypeGroup
of the ConsistencyNeeds shall contain all variableDataPrototypeS
instantiated in provide and require ports of the software component.

ALL_PROVIDE_DATA OF_ RUNNABLE_GROUP DataPrototypeGroup of the Con-
sistencyNeeds shall contain all variableDataPrototypes where any
RunnableEntity in the attached RunnableEntityGroup has a implicit write ac-
cess to it.

ALL_REQUIRE_DATA OF_ RUNNABLE_GROUP DataPrototypeGroup of the Con-
sistencyNeeds shall contain all variableDataPrototypeS where any
RunnableEntity in the attached RunnableEntityGroup has a implicit read ac-
cess to it.

ALL_PROVIDE_AND_ REQUIRE_ PORTS_OF_RUNNABLE_GROUP DataPrototype-—
Group of the ConsistencyNeeds shall contain all VariableDataProto-
types where any RunnableEntity in the attached RunnableEntityGroup has
a implicit write or read access to it.

EXPLICIT DATA_ PROTOTYPE_GROUP DataPrototypeGroup of the Consisten-
cyNeeds shall contain variableDataPrototypeS according functional re-
quirements

]

[TPS_STDT_00076] Categories for RunnableEntityGroup in a Blueprint of Con-
sistencyNeeds |

ALL RUNNABLES_OF_ COMPONENT RunnableEntityGroup Of the Consisten-
cyNeeds shall contain all RunnableEntitys of the software component.

ALL RUNNABLES_WRITING_TO_DATA_PROTOTYP_GROUP RunnableEntity-
Group of the ConsistencyNeeds shall contain all RunnableEntitys with a
implicit write access to any of the variableDataPrototypes in the attached
DatabPrototypeGroup.

AUTSSAR

ALL RUNNABLES_READING_FROM DATA PROTOTYPE_GROUP RunnableEntity-
Group of the ConsistencyNeeds shall contain all RunnableEntitys with a
implicit read access to any of the variableDataPrototypes in the attached
DatabPrototypeGroup.

ALL_RUNNABLES_WRITING_TO_OR_READING_FROM DATA_ PROTOTYPE_GROUP
RunnableEntityGroup of the ConsistencyNeed shall contain all RunnableEn-
titys with a implicit write or read access to any of the variableDataProto-
types in the attached DataPrototypeGroup.

EXPLICIT RUNNABLE_ENTITY_ GROUP RunnableEntityGroup of the Consis-
tencyNeeds shall contain RunnableEntitys according functional require-
ments

5.2.11 Blueprinting DataConstr

[TPS_STDT_00016] Blueprinting DataConstr [DataConstr can be blueprinted. |

5.2.12 Blueprinting DataTypeMappingSet

[TPS_STDT_00017] Blueprinting DataTypeMappingSet [DataTypeMappingSet
can be blueprinted. |

5.2.13 Blueprinting EcucDefinitionCollection

[TPS_STDT_00018] Blueprinting EcucDefinitionCollection [EcucDefini-
tionCollection can be blueprinted. |

5.2.14 Blueprinting EcucModuleDef

[TPS_STDT_00019] Blueprinting EcucModuleDef [EcucModuleDef can be
blueprinted. |

Note that this is intended for company internal use. Please refer to chapter 5.1.7.

5.2.15 Blueprinting FlatMap

[TPS_STDT_00035] Blueprinting FlatMap [FlatMap can be blueprinted. |

AUTSSAR
Usecase for blueprints of F1atMap is given in [16].

5.2.16 Blueprinting ImplementationDataType

[TPS_STDT_00020] Blueprinting ImplementationDataType [Implementa-
tionDataType can be blueprinted. |

5.2.17 Blueprinting KeywordSet

[TPS_STDT_00077] Blueprinting KeywordSet [KeywordSet can be blueprinted.
The following derivation rules apply:
» No keywords may be removed from or added to the KeywordSet

* The shortName of Keyword shall not be changed or extended

[TPS_STDT _00085] applies except that 1ongName of Keyword shall not be
changed, but it is allowed to add representations in further languages.

* The abbrName shall not be changed or extended(AbbrName)

*» The classification of a Keyword shall not be changed but it is allowed to
provide additional classification.

5.2.18 Blueprinting LifeCycleStateDefinitionGroups and LifeCycleStates

[TPS_STDT_00043] Blueprinting LifeCycleStateDefinitionGroup [Life-
CycleStateDefinitionGroup and LifeCycleState can be blueprinted.
[TPS_STDT_00065] applies such that blueprints of i feCycleState are aggregated
in a blueprint of LifeCycleStateDefinitionGroup.|

5.2.19 Blueprinting ModeDeclarationGroup

[TPS_STDT_00031] Blueprinting ModeDeclarationGroup [ModeDeclara-
tionGroup can be blueprinted. |

AUTSSAR

5.2.20 Blueprinting PortPrototype

One of the major activities of the AUTOSAR initiative is the standardization of appli-
cation interfaces. That is, in terms of the AUTOSAR meta-model the standardization
mainly applies to the definition of PortPrototypes for specific purposes.

Due to the structure of the AUTOSAR meta-model it is not possible to merely express
a standardized PortPrototype because for good reasons the latter does not exist
on its own but is always owned by a SwComponentType.

Therefore, in the past the standardization of “application interfaces” involuntarily also
involved the creation of SwComponentTypes. This unnecessary complexity can be
overcome by the usage of a PortPrototypeBlueprint.

[TPS_STDT_00007] Blueprinting PortPrototype [PortPrototype can be
blueprinted by the specific meta class PortPrototypeBlueprint. |

For the mapping of PortPrototypeBlueprints see figure 5.3.

ARElement ARElement

AtpBlueprint . AtpBlueprint

AtpStructureElement +interface AtpBlueprintable

PortPrototypeBlueprint 1 AtpType
Portinterface

+ serviceKind: ServiceProviderEnum [0..1]

«atpVariation»
+ isService: Boolean [0..1]

+initValue PortPrototypeBlueprintinitValue

0..*
+va|ue?1

ValueSpecification

+dataPrototype

DataPrototype
AutosarDataPrototype

+ shortLabel: Identifier [0..1]

+providedComSpec PPortComSpec

«atpSplitable»q_*

+requiredComSpec RPortComSpec

«atpSplitable»q, *

Figure 5.15: Blueprinting Port Prototype

A PortPrototypeBlueprint has the following characteristics:

It is an ARElement and does therefore not require any element other than an
ARPackage as context. It is therefore not necessary to involve “auxiliary” model
elements into the definition of a standardized “application interface” for the mere
purpose of conforming to the AUTOSAR meta-model.

* It acts as a “blueprint” for the creation of PortPrototypes. That is, probably
supported by the used authoring tool, the user picks a specific PortProto-
typeBlueprint and creates a PortPrototype out of it. The structure of the
created PortPrototype is indistinguishable from a PortPrototype created
without taking a PortPrototypeBlueprint as a blueprint. An PortProto-

AUTSSAR

typeBlueprint can be taken as the blueprint for as many PortPrototypes
as required.

* It is possible to define additional attributes that are taken over to the created
PortPrototype. For example, in some cases the definition of an initial value? is
part of the definition of a standardized "application interface". Therefore, Port—
PrototypeBlueprint also supports the definition of an initvalue, which
needs to be moved to the appropriate ComSpecs.

* It has a reference to the corresponding PortInterface. If the referenced
PortInterface is not a blueprint, it can directly be taken over by the Port-
Prototype created out of the PortPrototypeBlueprint such that the new
PortPrototype references the PortInterface. If the referenced PortIn-
terface is a blueprint, it is necessary to derive a Port Interface and refer-
ence this in the PortPrototype.

* It does not make any assumptions whether the PortPrototype created out of
it will be a PPortPrototype Or an RPortPrototype.

* It can basically be used for all kinds of PortInterfaces, i.e. it is not con-
strained to e.g. SenderReceiverInterfaces although this kind of Port In-
terface will most likely get a significant share of the usage of PortProto-
typeBlueprint

« It can only be used for the standardization of “application interfaces”. A Port-
PrototypeBlueprint does not play any role in the formal description of any
SwComponent Type or related model artifacts (see also [TPS_STDT_00044]).

[TPS_STDT_00061] PortPrototypeBlueprint can own both RPortComSpecs
and PPortComSpecs [PortPrototypeBlueprint can own both RPortComSpecs
and PPortComSpecs at the same time. The different ComSpecs are applicable for the
derived PPortPrototypes, RPortPrototypes and PRPortPrototypes according
the given communication direction. The [constr_1043] (Portinterface vs. ComSpec) in
Software Component Template ([17]) is also applicable in this context. |

[TPS_STDT_00082] Multiple existence of initValue in the context of a Port-
PrototypeBlueprint [If an initValue exists on the NonqueuedReceiverCom-
Spec or at the NonqueuedSenderComSpec the initValues at PortPrototype-
Blueprint shall be ignored. |

In this context [TPS_SWCT_01219] needs also be respected for a valid blueprint.

<PORT-PROTOTYPE-BLUEPRINT>
<SHORT-NAME NAME-PATTERN="{anyName}">ALgtOnDoorAtFrntLe</SHORT-NAME>
<LONG—-NAME>
<L-4 L="EN">Acceleration Longitudinal on Door at Front Left</L-4>
</LONG-NAME>
<DESC>

2AUTOSAR does not standardize init values for application interfaces, but it is supported for vendor
internal use.

AUTSSAR

<L-2 L="EN">Longitudinal high-g acceleration measured in front left
door of vehicle (locking in driving direction)</L-2>
</DESC>
<INTERFACE-REF DEST="SENDER-RECEIVER-INTERFACE">/AUTOSAR/AISpecification
/PortInterfaces_Blueprint/AExtForOccptPedSftyl</INTERFACE-REF>
<PROVIDED-COM-SPECS>
<NONQUEUED-SENDER-COM-SPEC>
<NETWORK-REPRESENTATION>
<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/uint8</BASE-TYPE-REF>
<COMPU-METHOD-REF DEST="COMPU-METHOD">/AUTOSAR/Example/
CompuMethods_Blueprint/AccelerationOnBus</COMPU-METHOD-REF
>
</SW-DATA-DEF-PROPS—-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>
</NETWORK-REPRESENTATION>
<INIT-VALUE>
<APPLICATION-VALUE-SPECIFICATION>
<CATEGORY>VALUE</CATEGORY>
<SW-VALUE-CONT>
<SW-VALUES-PHYS>
<V>42</V>
</SW-VALUES-PHYS>
</SW-VALUE-CONT>
</APPLICATION-VALUE-SPECIFICATION>
</INIT-VALUE>
</NONQUEUED-SENDER-COM-SPEC>
</PROVIDED-COM-SPECS>
</PORT-PROTOTYPE-BLUEPRINT>

Listing 5.4: PortPrototypeBlueprint with ProvidedComSpecs

Class PortPrototypeBlueprint

Note This meta-class represents the ability to express a blueprint of a PortPrototype by referring to a particular
PortInterface. This blueprint can then be used as a guidance to create particular PortPrototypes which
are defined according to this blueprint. By this it is possible to standardize application interfaces without
the need to also standardize software-components with PortPrototypes typed by the standardized Port
Interfaces.

Tags: atp.recommendedPackage=PortPrototypeBlueprints

Base ARElement, ARObject, AtpBlueprint, AtoClassifier, AtoFeature, AtpStructureElement, Collectable
Element, Identifiable, MultilanguageReferrable, PackageableElement, Referrable

Aggregated by | ARPackage.element, AtpClassifier.atpFeature

Attribute Type Mult. Kind | Note
initValue PortPrototypeBlueprint * aggr | This specifies the init values for the dataElements in the
InitValue particular PortPrototypeBlueprint.
interface Portinterface 1 ref This is the interface for which the blueprint is defined. It
may be a blueprint itself or a standardized Portinterface

vV

AUTSSAR

Class PortPrototypeBlueprint

providedCom PPortComSpec * aggr Provided communication attributes per interface element
Spec (data element or operation).

Stereotypes: atpSplitable

Tags: atp.Splitkey=providedComSpec.dataElement,
providedComSpec.getter, providedComSpec.mode
Group, providedComSpec.operation, providedCom
Spec.parameter, providedComSpec.setter, providedCom
Spec.variable

requiredCom RPortComSpec * aggr Required communication attributes, one for each

Spec interface element.

Stereotypes: atpSplitable

Tags: atp.Splitkey=requiredComSpec.dataElement,
requiredComSpec.getter, requiredComSpec.modeGroup,
requiredComSpec.operation, requiredCom
Spec.parameter, requiredComSpec.setter, requiredCom
Spec.variable

Table 5.9: PortPrototypeBlueprint

Class PortPrototypeBlueprintinitValue
Note This meta-class represents the ability to express init values in PortPrototypeBlueprints. These init values
act as a kind of blueprint from which for example proper ComSpecs can be derived.

Base ARObject

Aggregated by | PortPrototypeBlueprint.initValue

Attribute Type Mulit. Kind | Note

dataPrototype AutosarDataPrototype 1 ref This is the data prototype for which the init value applies
Tags: xml.sequenceOffset=30

value ValueSpecification 1 aggr | This is the init value for the particular data prototype.
Tags: xml.sequenceOffset=40

Table 5.10: PortPrototypeBlueprintinitValue

As an AUTOSAR model taken for downstream model handling (e.g. generation of an
RTE) requires the usage of complete PortInterfaces it is necessary to derive an
“actual” PortInterface out of a blueprinted Port Interface defined in the stan-
dardization process.

[TPS_STDT_00008] Compatibility of PortPrototype with Blueprint [[con-
str_2526], [constr_2527], [constr_2528] and [constr_2529] apply for the compatibility
of PortPrototypes and PortPrototypeBlueprints§]

[constr_2526] PortInterface need to be compatible to the blueprints [Port-
Interface shall be compatible to their respective blueprints according to the compat-
ibility rules. |

[constr_2527] Blueprints shall live in package of a proper category [As ex-
plained in detail in the [2], model artifacts (in this case PortPrototypeBlueprint
and incompletely specified PortInterfaces) created for the purpose of becoming
blueprints shall reside in an ARPackage of category BLUEPRINT. |

AUTSSAR

[constr_2528] PortPrototypes shall not refer to blueprints of a PortInter-
face [A port PortPrototype shall not reference a Port Interface which lives in
a package of category BLUEPRINT. |

[constr_2529] PortPrototypeBlueprints and derived PortPrototypes shall
reference proper PortInterfaces [A PortPrototypeBlueprint may refer-
ence ablueprint of Port Interface. According to [constr_2570], a system description
shall not contain blueprints. Therefore the reference to the Port Interface may need
to be rewritten when a PortPrototype is derived from the blueprint.

In this case the Port Interface referenced by the derived PortPrototype shall be
compatible to the Port Interface (which is a blueprint) referenced by the PortPro-
totypeBlueprint.

According to [constr_2526] this can be ensured if the Port Interface referenced by
the PortPrototypeBlueprint is the blueprint of the PortInterface referenced
by the respective PortPrototype.]

Note that [constr_2529] is obviously also fulfilled if the PortPrototypeBlueprint
and the derived PortPrototype reference a STANDARD PortInterface (which
lives in a ARPackage oOf category "STANDARD").

5.2.21 Blueprinting Portinterface

[TPS_STDT_00066] Blueprinting PortInterface [PortInterface can be
blueprinted. |

[constr_2500] PortInterfaces shall be of same kind [Both objects (Port-
Interfaces) referenced by a blueprint mapping for port interfaces (represented
by BlueprintMapping) shall be of the same kind (e.g. both shall be sender-
ReceiverInterfaces). In other words both interfaces shall be instances of the same
meta class. |

Note that [constr_2500] is a special case of [constr_2566].

5.2.22 Blueprinting PortinterfaceMapping and PortinterfaceMappingSet

[TPS_STDT_00009] Blueprinting PortInterfaceMapping and Port-
InterfaceMappingSet [PortInterfaceMapping can be blueprinted.
[TPS_STDT _00065] applies such that the blueprints of PortInterfaceMapping
are aggregated in a blueprint of Port InterfaceMappingSet. |

The intended use cases for blueprinting Port InterfaceMapping are illustrated by
figure 5.16. This diagram shows an PortInterface(Blueprint) (M), and two ports
typed by PortInterface (S) respectively by portInterface(R). (S) and (R) are

AUTSSAR

mapped to the blueprint (M) by a PortInterfaceMapping(Blueprint) (SMMap and
RMMap). From this, it is possible to

1. derive PortInterfaceMapping (SRMap) between (S and R) which is then

derived from two blueprints (SMMap and RMMap)

2. propose connectors between two components using the interfaces (S and R)

M/b ->S/a
M/a->S/b

<<PortInterfacemapping>> SMMap

Sender |:|

Portinterface blueprint

M

. a

blueprintMappin g

<<PortInterfacemapping>> RMMap

M/a -> R/x
M/b ->R/y

Receiver |:|

S R
a Ny

blué'p.[i ntMa‘Bping

<<PortInterfacemapping>> SRMap
S/a->R/y
S/b -> R/x

derived from

Figure 5.16: Deriving PortinterfaceMapping (1)

The intended derived objects can be determined according to the following steps:

1. find all Port Interface(blueprint)s within the BlueprintMappings of Port -

Interfaces containing S or R (in the example it would be M)

. find all PortInterfaceMapping(Blueprint)s containing one of the PortIn-
terface(Blueprint)s from step #1 and one of the Port Interfaces Sand R (in
our example it would be SMMap and RMMap)

. derive a non blueprint PortInterfaceMapping between S and R from the
ones found in step #2. Note that all PortInterfaceMappings found so far
have a "blueprint reference" and a "non blueprint reference".

Take one of the Port InterfaceMapping(Blueprint)s from step #2 and replace
the "blueprint reference" by the corresponding "non blueprint reference" of the
other Port InterfaceMapping(Blueprint)

M/b (blueprint in SMMap) -> S/a <-> M/b (blueprint in RMmap) -> R/y
M/a (blueprint in SMMap) -> S/b <-> M/a (blueprint in RMmap) -> R/x

For example M/b would be substituted by R/y and M/a by R/x resulting in the final
mapping (S/a — R/y, S/b — R/X).

Same result is achieved if M/b would be substituted by S/a and M/a by S/b result-
ing in the final mapping (S/a — R/y, S/b — R/x).

AUTSSAR

Implicit mappings (i.e. if data element names between PortInterface
and PortInterface(blueprint) are identical then no PortInterfaceMap-
ping(blueprint) is needed) have to be considered too (for example by creating
"temporary" mappings).

4. Create BlueprintMappings for the created PortInterfaceMapping
(SRMap) in step #3 to the involved PortInterfaceMapping(blueprints)
(SMMap and RMMap).

The scenario is shown in these listings:
» Listing A.1 shows the definitions e.g. given by AUTOSAR.
« Listing A.2 shows the part of LeftCompany
» Listing A.3 shows the part of RightCompany
» Listing A.4 shows the part of the integration in a Project

Listing A.2 shows that "LeftCompany" has created the Port Interface named S de-
rived from the Port Interface(Blueprint) M. Thereby the description how this takes
place is given in the blueprint of an appropriate Port InterfaceMapping nhamed
SMMap.

Listing A.3 shows that "RightCompany" has crated the Port Interface named R de-
rived from the Port Interface(Blueprint) M. Thereby the description how this takes
place is given in the blueprint of an appropriate Port InterfaceMapping named
RMMap.

Listing A.4 shows that "Project" used contributions from "RightCompany" and "Left-
Company". Thereby it maps S to R in PortInterfaceMapping SRMap. This is
derived from two blueprints (SMMap and SRMap).

5.2.23 Blueprinting SwBaseType

[TPS_STDT_00022] Blueprinting SwBaseType [SwBaseType can be blueprinted. |

5.2.24 Blueprinting SwComponentType

[TPS_STDT_00024] Blueprinting SwComponentType [SwComponentType can be
blueprinted. |

[constr_2568] swComponentTypes shall be of same kind [Both objects (SwCom-
ponent Types) referenced by a blueprint mapping for port interfaces (represented by
BlueprintMapping) shall be of the same kind (e.g. both shall be At omicSwCom-
ponentTypeS). In other words both components shall be instances of the same meta
class. |

AUTSSAR
Note that [constr_2568] is a special case of [constr_2566].

5.2.25 Blueprinting SwAddrMethods

[TPS_STDT _00026] Blueprinting SwAddrMethod [SwAddrMethod can be
blueprinted. |

5.2.26 Blueprinting VibTiming

[TPS_STDT_00079] Blueprinting VEbTiming [VfbTiming can be blueprinted. |

One of the essential purposes of blueprinting VFB Timing is enabling one to specify
temporal characteristics of interfaces specified in the AUTOSAR Application Interface
Table [3]. In particular, one likes to specify timing constraints imposed on sampling
rate, recurrence, age, latency, etc. for such interfaces.

Figure 5.17 shows the basic structure of a VFB Timing Blueprint and how the spec-
ified timing elements reference other blueprint elements, specifically the elements
PortPrototypeBlueprint and port interface elements which are referenced by the
element Port Interface; like variable data prototypes (data elements), client-server
operations, mode declarations, and triggers.

VFB Timing Blueprint Blueprint Legend:
TDE Timing Description Event

TDEC Timing Description Event Chain

TC TC Timing Constraint
<Ty pe>7 VDPR Variable Data Prototype Received
VDPS Variable Data Prototype Sent
______________ Port Prototype Blueprint SR Sender/Receiver
TDE | Sp PET Periodic Event Triggering
12 AC Age Constraint

<Type> | \£

Port Interface
< Type>
<Element>

Figure 5.17: VFB Timing Blueprint

A VFB Timing Blueprint consists of timing descriptions events related to the AUTOSAR
VFB view, timing description event chains, and timing constraints as defined in the
“AUTOSAR Specification of Timing Extensions” [18].

A VFB Timing references the software component it is associated with. In case of a
VFB Timing Blueprint this reference need not to be set, but in the derived VFB Tim-
ing the vfbTiming.component shall be set properly. In addition, any reference to

AUTSSAR

PortPrototypeBlueprint shall be replaced by the corresponding reference to the
PortPrototype.

The following constraints apply to VFB Timing Blueprints and shall be considered when
creating such blueprints.

[constr_2589] In VFB Timing Blueprint TDEventVfbPort shall reference Port-
PrototypeBlueprint [In a VFB Timing Blueprint TDEventVfbPort shall refer-
ence PortPrototypeBlueprint. In other words, a VFB Timing Description Event
specified in a VFB Timing Blueprint shall always reference a Port Prototype Blueprint. |

5.2.26.1 Example

An example for a VFB Timing Blueprint is shown based on [19].

VFB Timing Blueprint Blueprint Legend:
TDE Timing Description Event

:petAccheleat TDEC Timing Description Event Chain

TC ! TC Timing Constraint
,,,,,,,,,, PET | VDPR Variable Data Prototype Received
AccrPedIRat VDPS Variable Data Prototype Sent
________________________________ Port Prototype Blueprint S/R Sender/Receiver
i tde_Vdpr_AccrPedIRat -—— PET Periodic Event Triggering
' TDE i = 3 ’
1Fo AC Age Constraint

T VOPR] \[

AccrPedIRat1
Port Interface
SIR
AccrPedIRat

Figure 5.18: VFB Timing Blueprint Simple Example

As sketched in Figure 5.18 a VFB Timing Blueprint is specified. This blueprint con-
sists of a timing description event called “tde_Vdpr_AccrPedIRat” that references the
port prototype blueprint called “AccrPedIRat”; and also references the variable data
prototype called “AccrPedIRat” of the port interface called “AccrPedIRat1”. The lat-
ter is referenced by the mentioned port prototype blueprint, too. In addition, a timing
constraint, specifically a periodic event triggering constraint, is imposed on the tim-
ing description event. In essence, this timing model specifies that the variable data
prototype called “AccrPedIRat” shall be received at a rate given by the periodic event
triggering constraint.

The listing A.5 provides the corresponding contents of the ARXML file related to the
example shown in Figure 5.18, but contains further timing description events and an
additional age timing constraint imposed on the reception of the specific variable data
prototype.

AUTSSAR

Figure 5.19 shows the VFB Timing Blueprint and the derived VFB Timing for a specific
software component called “SW-C_A”.

VFB Timing Blueprint Blueprint VFB Timing SwcA SwcA
| pet_AccrPediRat | tcAccrPedIRatSweA
TC i TC
PET-P=10msJ=1ms | PET.P =10msJ = 1ms
AccrPedalRat ‘
________________________________ Port Prototype Blueprint Derive rpAccrPediRat
tde_Vdpr_AccrPedIRat | s Blueprint evAccrPedIRatSweA Required Port
TDE i S TDE >[p]
,,,,,,,,,,,, VOPR I ‘ VOPR /
AccrPedIRat1 AccrPedIRat1
Port Interface PortInterface
SR SIR
AccrPedIRat AccrPedIRat

Legend:
TDE Timing Description Event
TDEC Timing Description Event Chain
TC Timing Constraint
VDPR Variable Data Prototype Received
VDPS Variable Data Prototype Sent
SR Sender/Receiver
PET Periodic Event Triggering
AC Age Constraint

Period
J Jitter

Figure 5.19: Deriving a VFB Timing Blueprint

5.2.27 Blueprinting ClientServerinterfaceToBswModuleEntryBlueprintMapping

[TPS_STDT_00083] Blueprinting ClientServerInterfaceToBswModuleEn-—
tryBlueprintMapping [ClientServerInterfaceToBswModuleEntry-
BlueprintMapping can be blueprinted. |

[TPS_STDT_00084] ClientServerOperationBlueprintMapping predeter-
mines the implementation of an ClientServerOperation [A ClientServer—
OperationBlueprintMapping expresses the intended implementation of a
ClientServerOperation by a specific BswModuleEntry under consideration of
the expected usage of PortDefinedArgumentValues.]

AUTSSAR

ARElement
AtpBlueprint
ClientServerinterface ToBswModuleEntryBlueprintMapping

+clientServerinterface

ClientServerinterface |+possibleError

+operationMapping | 1..*

1

«atpVariation,atpSplitable»

ClientServerOperationBlueprintMapping

Identifiable
ApplicationError

Portinterface

+clientServerOperation

0..*| + errorCode: Integer [0..1]
+possibleEror 0.*
«atpVariation,atpSplitable»
+operation | 0..*
AtpStructureElement
Identifiable

ClientServerOperation

1|+ diagArgintegrity: Boolean [0..1]

«atpVariation,atpSplitable»
+argument 0.*

ordered
b ! AutosarDataPrototype

ArgumentDataPrototype

+
+

direction: ArgumentDirectionEnum [0..1]
serverArgumentimplPolicy: ServerArgumentimplPolicyEnum [0..1]

«atpVariation,atpSplitable»

+blueprintMappingGuide | 0..1

+bswModuleEntry

«atpMixed>»

DocumentationBlock

0..1

0.*

+portDefinedArgumentBlueprint | {ordered}

PortDefinedArgumentBlueprint

+valueType 1

AbstractimplementationData Type
ImplementationDataType

+ dynamicArraySizeProfile: String [0..1]
+ isStructWithOptionalElement: Boolean [0..1]
+ typeEmitter: NameToken [0..1]

+blueprintMappingGuide

ARElement
AtpBlueprint
AtpBlueprintable
BswModuleEntry

bswEntryKind: BswEntryKindEnum [0..1]

callType: BswCallType [0..1]

executionContext: BswExecutionContext [0..1]
functionPrototypeEmitter: NameToken [0..1]
isReentrant: Boolean [0..1]

isSynchronous: Boolean [0..1]

role: Identifier [0..1]

serviceld: Positivelnteger [0..1]

swServicelmplPolicy: SwServicelmplPolicyEnum [0..1]

oo+ o+

«atpVariation,atpSplitable»
+retumType | 0.1 +argument (o.;'dered)

ldentifiable

SwServiceArg

+ direction: ArgumentDirectionEnum [0..1]

Figure 5.20: Client Server Operation Blueprint Mapping

Class ClientServerOperationBlueprintMapping

Note This class describes a specific mapping between a ClientServerOperation in a ClientServerinterface
blueprint and a BswModuleEntry blueprint.

Base ARObject

Aggregated by | ClientServerinterfaceToBswModuleEntryBlueprintMapping.operationMapping

\Y

AUTSSAR

JAN

Class ClientServerOperationBlueprintMapping
Attribute Type Mulit. Kind | Note
blueprint DocumentationBlock 0..1 aggr | This attribute offers the possibility to provide additional
MappingGuide information with respect to the mapping.
bswModule BswModuleEntry 1 ref The referenced BswModuleEntry represents the Bsw
Entry ModuleEntry the mapping is dedicated to.

This Attribute is only used by the AUTOSAR Classic

Platform.
clientServer ClientServerOperation 1 ref The referenced ClientServerOperation represents the
Operation client server operation the mapping is dedicated to.

Table 5.11: ClientServerOperationBlueprintMapping

The ClientServerOperationBlueprintMapping can be used to ensure and/or
track the compatibility of BswModuleEntrys which are supposed to implement
ClientServerOperations. It can already be defined in an early phase of the
methodology when interfaces are defined. Thereby the ClientServerOpera-
tionBlueprintMapping can already be defined without all implementation de-
tails of the later required SwComponentType, SwcInternalBehavior, BswMod-
uleDescription, BswInternalBehavior and SwcBswMapping.

Please note that the ClientServerInterfaceToBswModuleEntry-—
BlueprintMapping has no direct impact to the later generated RTE. The setup of
the RTE is solely determined by the derived objects of ClientServerOperation,
BswModuleEntry and the completed software component descriptions and basic
software module descriptions respectively.

Such a mapping enables the formal check whether the number of arguments and
the data types of arguments of the operation + additional PortDefinedArgument-
Values matches the signature of the BswModuleEntry.

[constr_2597] ClientServerOperationBlueprintMapping constrains hum-
ber of arguments [The number of arguments of the BswModuleEntry referenced
by a bswModuleEntry shall be identical to the number of portDefinedArgu-
mentBlueprints of the owning ClientServerInterfaceToBswModuleEntry—
BlueprintMapping plus the number of ArgumentDataPrototypes aggregated in
the role argument of the clientServerOperation]|

[constr_2598] ClientServerOperationBlueprintMapping constrains the
types of arguments [The arguments in the ordered lists bswModuleEntry and the
matching arguments in the set union of the ordered lists portbDefinedArgument—
Blueprint plus clientServerOperation shall result in the identical C data type
definitions. |

5.3 Deriving from AUTOSAR-provided Blueprints

Model elements provided by AUTOSAR are mainly provided as blueprints. This holds
true in particular for the Application Interfaces [3] but also for the Software Specifica-

AUTSSAR

tions of the BSW layer. These AUTOSAR delivered model elements follow the package
structure specified in [TPS_GST_00080].

Figure 5.21 illustrates the methodology to define data types for BSW module. The BSw
Standard Package contains blueprints. In the above scenario, [TPS_STDT_00067]
shall be followed but of course also holds true for the data types of other modules.

Basic
Software
Module
Developer

Basic
Software
Designer

«performs» «performs»

«input» «inoutput»

BSW Standard Package

Define BSW Types

w
%)
2
-
<
h=]
@
12

Figure 5.21: Define Bsw Types

[TPS_STDT_00067] Standardized Path for Standardized Elements [Objects de-
rived from standardized blueprints, shall follow a package path as specified in [TPS_
GST _00083]. That is, providers of Software components can rely that all AUTOSAR
defined model elements can be accessed through a predicable path. |

For example the Platform types [20] blueprinted in

/AUTOSAR/Platform/ImplementationDatatypes_Blueprint/uint8

shall be implemented in (and therefore safely be accessible through)

/AUTOSAR_Platform/ImplementationDatatypes/uint8

AUTSSAR

6 Keywords

[TPS_STDT_00012] Defining Keywords [The meta-class KeywordSet can be used
to define sets of Keywords. The purpose of a Keyword is to contribute parts of names
for AUTOSAR model elements. |

Keywords are referenced to be part of name pattern as specified in Chapter 5.1.5.

As an example, the shortName “CmftMngt” is composed out of two Keywords with
the abbrName “Cmft” and “Mngt”.

ARElement Identifiable
AtpBlueprint Keyword
AtpBlueprintable +heyword Y
KeywordSet 0.*| + abbrName: NameToken
+ classification: NameToken [0..*]

Figure 6.1: Keyword and KeywordSet

[TPS_STDT_00069] Attributes of Keyword [The meta-class Keyword is derived
from Identifiable. The attributes of Tdentifiable shall be applied for Keyword
as follows.

shortName represents the unique name of the keyword. In the example above it
would be “Cmft”. Note that this is used only for identifying the keyword. The
contributed name part is taken from abbrName.

longName represents the long form of the keyword, typically its an unabbreviated
technical term. In the example above it would be “Comfort”.

desc represents the definition of the keyword in terms of a verbal description allow-
ing to identify whether the keyword applies for a specific case. In the example
above the description would be “This keyword is used to express something as
comfortable or convenient”.

introduction represents a verbal description of a use case. This can be used for
additional explanations or examples.

]

[TPS_STDT_00070] Classification of Keywords [The attribute classification
depends on the applied naming convention. |

For example, the values could be according to table 2 of [21] such as Action-
PhysicalType, Condition-Qualifier, Index, Mean-Environment-Device,
Preposition.

Listing A.6 illustrates an example how to use Keyword.

[TPS_STDT_00068] Expressing "stem"-Relation of Keywords [There are keywords
which basically stem from the same root. This relationship is expressed by an col-
lection where the elementRole is named DECLINATION_OF. The root is denoted

AUTSSAR

sourceElement. The declinations are denoted in element. The root is not a decli-
nation of itself, and therefore is not mentioned as an element again. |

As an example for [TPS_STDT_00068] the keywords Drvr, Drvg stem from Drv'.
This is delivered according to the example in Listing A.7

"Note that Drv is not an element of this Collection since it is not a declination of itself.

AUTSSAR

A Examples

The content of this appendix chapter is informative in nature and shall not be consid-
ered as normative content.

This chapter contains a collection of selected examples that reflect concepts described
in different chapters of this document.

A.1 Example Blueprints

A.1.1 Blueprints of Port InterfaceMapping

<AR-PACKAGE>
<SHORT-NAME>AUTOSAR</SHORT-NAME>
<AR-PACKAGES>
<AR-PACKAGE>
<SHORT-NAME>PortInterfaces_Blueprint</SHORT-NAME>
<CATEGORY>BLUEPRINT</CATEGORY>
<ELEMENTS>
<SENDER-RECEIVER-INTERFACE>
<SHORT-NAME NAME-PATTERN="{anyName }">M</SHORT-NAME>
<DATA-ELEMENTS>
<VARIABLE-DATA-PROTOTYPE>
<SHORT-NAME NAME-PATTERN="{anyName}">a</SHORT-NAME>
</VARIABLE-DATA-PROTOTYPE>
<VARIABLE-DATA-PROTOTYPE>
<SHORT-NAME NAME-PATTERN="{anyName}">b</SHORT-NAME>
</VARIABLE-DATA-PROTOTYPE>
</DATA-ELEMENTS>
</SENDER-RECEIVER-INTERFACE>
</ELEMENTS>
</AR-PACKAGE>
</AR-PACKAGES>
</AR-PACKAGE>

Listing A.1: Scenario for Blueprints of PortinterfaceMapping (1)

<AR-PACKAGE>
<SHORT-NAME>Le ft Company</SHORT-NAME>
<AR-PACKAGES>
<AR-PACKAGE>
<SHORT-NAME>PortInterfaces</SHORT-NAME>
<ELEMENTS>
<SENDER-RECEIVER-INTERFACE>
<SHORT-NAME>S</SHORT-NAME>
<DATA-ELEMENTS>
<VARIABLE-DATA-PROTOTYPE>
<SHORT-NAME>b</SHORT-NAME>
</VARIABLE-DATA-PROTOTYPE>
<VARIABLE-DATA-PROTOTYPE>
<SHORT-NAME>a</SHORT-NAME>
</VARIABLE-DATA-PROTOTYPE>
</DATA-ELEMENTS>
</SENDER-RECEIVER-INTERFACE>
</ELEMENTS>
</AR-PACKAGE>
<AR-PACKAGE>
<SHORT-NAME>BlueprintMappingSets</SHORT-NAME>
<ELEMENTS>
<BLUEPRINT-MAPPING-SET>
<SHORT-NAME>S_isDerivedFrom_M</SHORT-NAME>
<DESC>
<L-2 L="EN">This states <E>that</E> S is derived from M</L-2>
</DESC>
<BLUEPRINT-MAPS>
<BLUEPRINT-MAPPING>
<BLUEPRINT-REF DEST="PORT-INTERFACE">/AUTOSAR/PortInterfaces_Blueprint/M</BLUEPRINT-REF>
<DERIVED-OBJECT-REF DEST="PORT-INTERFACE">/LeftCompany/PortInterfaces/S</DERIVED-OBJECT-REF>
</BLUEPRINT-MAPPING>
</BLUEPRINT-MAPS>
</BLUEPRINT-MAPPING-SET>
</ELEMENTS>
</AR-PACKAGE>
<AR-PACKAGE>
<SHORT-NAME>PortInterfaceMappingSets_Blueprint</SHORT-NAME>
<CATEGORY>BLUEPRINT</CATEGORY>
<ELEMENTS>
<PORT-INTERFACE-MAPPING-SET>
<SHORT-NAME NAME-PATTERN="{anyName}">BP</SHORT-NAME>

AUTSSAR

<DESC>
<L-2 L="EN"></L-2>
</DESC>
<PORT-INTERFACE-MAPPINGS>
<VARIABLE-AND-PARAMETER-INTERFACE-MAPPING>
<SHORT-NAME NAME-PATTERN="{anyName}">SMMap</SHORT-NAME>
<DESC>
<L-2 L="EN">This defines <E>how</E> S is derived (and therefore mapped to) from M</L-2>
</DESC>
<DATA-MAPPINGS>
<DATA-PROTOTYPE-MAPPING>
<FIRST-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-PROTOTYPE">/AUTOSAR/PortInterfaces_Blueprint/M/a</FIRST-
DATA-PROTOTYPE-REF>
<SECOND-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-PROTOTYPE">/LeftCompany/PortInterfaces/S/b</SECOND-DATA-
PROTOTYPE-REF>
</DATA-PROTOTYPE-MAPPING>
<DATA-PROTOTYPE-MAPPING>
<FIRST-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-PROTOTYPE">/AUTOSAR/PortInterfaces_Blueprint/M/b</FIRST—
DATA-PROTOTYPE-REF>
<SECOND-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-PROTOTYPE">/LeftCompany/PortInterfaces/S/a</SECOND-DATA-
PROTOTYPE-REF>
</DATA-PROTOTYPE-MAPPING>
</DATA-MAPPINGS>
</VARIABLE-AND-PARAMETER-INTERFACE-MAPPING>
</PORT-INTERFACE-MAPPINGS>
</PORT-INTERFACE-MAPPING-SET>
</ELEMENTS>
</AR-PACKAGE>
</AR-PACKAGES>
</AR-PACKAGE>

Listing A.2: Scenario for Blueprints of PortinterfaceMapping (2)

<AR-PACKAGE>
<SHORT-NAME>RightCompany</SHORT-NAME>
<AR-PACKAGES>
<AR-PACKAGE>
<SHORT-NAME>PortInterfaces</SHORT-NAME>
<ELEMENTS>
<SENDER-RECEIVER-INTERFACE>
<SHORT-NAME>R</SHORT-NAME>
<DATA-ELEMENTS>
<VARIABLE-DATA-PROTOTYPE>
<SHORT-NAME>x</SHORT-NAME>
</VARIABLE-DATA-PROTOTYPE>
<VARIABLE-DATA-PROTOTYPE>
<SHORT-NAME>y</SHORT-NAME>
</VARIABLE-DATA-PROTOTYPE>
</DATA-ELEMENTS>
</SENDER-RECEIVER-INTERFACE>
</ELEMENTS>
</AR-PACKAGE>
<AR-PACKAGE>
<SHORT-NAME>BlueprintMappingSets</SHORT-NAME>
<ELEMENTS>
<BLUEPRINT-MAPPING-SET>
<SHORT-NAME>R_isDerivedFrom_M</SHORT-NAME>
<DESC>
<L-2 L="EN">This states <E>that</E> S is derived from M</L-2>
</DESC>
<BLUEPRINT-MAPS>
<BLUEPRINT-MAPPING>
<BLUEPRINT-REF DEST="PORT-INTERFACE">/AUTOSAR/PortInterfaces_Blueprint/M</BLUEPRINT-REF>
<DERIVED-OBJECT-REF DEST="PORT-INTERFACE">/RightCompany/PortInterfaces/R</DERIVED-OBJECT-REF>
</BLUEPRINT-MAPPING>
</BLUEPRINT-MAPS>
</BLUEPRINT-MAPPING-SET>
</ELEMENTS>
</AR-PACKAGE>
<AR-PACKAGE>
<SHORT-NAME>PortInterfaceMappingSets_Blueprint</SHORT-NAME>
<CATEGORY>BLUEPRINT</CATEGORY>
<ELEMENTS>
<PORT-INTERFACE-MAPPING-SET>
<SHORT-NAME NAME-PATTERN="{anyName}">BP</SHORT-NAME>
<PORT-INTERFACE-MAPPINGS>
<VARIABLE-AND-PARAMETER-INTERFACE-MAPPING>
<SHORT-NAME NAME-PATTERN="{anyName}">RMMap</SHORT-NAME>
<DESC>
<L-2 L="EN">This defines <E>how</E> R is derived (and therefore mapped to) from M</L-2>
</DESC>
<DATA-MAPPINGS>
<DATA-PROTOTYPE-MAPPING>
<FIRST-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-PROTOTYPE">/AUTOSAR/PortInterfaces_Blueprint/M/a</FIRST-
DATA-PROTOTYPE-REF>
<SECOND-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-PROTOTYPE">/RightCompany/PortInterfaces/R/x</SECOND-DATA-
PROTOTYPE-REF>
</DATA-PROTOTYPE-MAPPING>
<DATA-PROTOTYPE-MAPPING>
<FIRST-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-PROTOTYPE">/AUTOSAR/PortInterfaces_Blueprint/M/b</FIRST-
DATA-PROTOTYPE-REF>
<SECOND-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-PROTOTYPE">/RightCompany/PortInterfaces/R/y</SECOND-DATA-
PROTOTYPE-REF>
</DATA-PROTOTYPE-MAPPING>

AUTSSAR

</DATA-MAPPINGS>
</VARIABLE-AND-PARAMETER-INTERFACE-MAPPING>
</PORT-INTERFACE-MAPPINGS>
</PORT-INTERFACE-MAPPING-SET>
</ELEMENTS>
</AR-PACKAGE>
</AR-PACKAGES>
</AR-PACKAGE>

Listing A.3: Scenario for Blueprints of PortinterfaceMapping (3)

<AR-PACKAGE>
<SHORT-NAME>Project</SHORT-NAME>
<AR-PACKAGES>
<AR-PACKAGE>
<SHORT-NAME>PortInterfaceMappingSets</SHORT-NAME>
<ELEMENTS>
<PORT-INTERFACE-MAPPING-SET>
<SHORT-NAME>Set 1</SHORT-NAME>
<PORT-INTERFACE-MAPPINGS>
<VARIABLE-AND-PARAMETER-INTERFACE-MAPPING>
<SHORT-NAME>SRMap</SHORT-NAME>
<DESC>
<L-2 L="EN">This defines <E>how</E> S is mapped R</L-2>
</DESC>
<DATA-MAPPINGS>
<DATA-PROTOTYPE-MAPPING>
<FIRST-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-PROTOTYPE">/LeftCompany/PortInterfaces/S/b</FIRST-DATA-
PROTOTYPE-REF>
<SECOND-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-PROTOTYPE">/RightCompany/PortInterfaces/R/x</SECOND-DATA-
PROTOTYPE-REF>
</DATA-PROTOTYPE-MAPPING>
<DATA-PROTOTYPE-MAPPING>
<FIRST-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-PROTOTYPE">/LeftCompany/PortInterfaces/S/a</FIRST-DATA-
PROTOTYPE-REF>
<SECOND-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-PROTOTYPE">/RightCompany/PortInterfaces/R/y</SECOND-DATA-
PROTOTYPE-REF>
</DATA-PROTOTYPE-MAPPING>
</DATA-MAPPINGS>
</VARIABLE-AND-PARAMETER-INTERFACE-MAPPING>
</PORT-INTERFACE-MAPPINGS>
</PORT-INTERFACE-MAPPING-SET>
</ELEMENTS>
</AR-PACKAGE>
<AR-PACKAGE>
<SHORT-NAME>BlueprintMappingSets</SHORT-NAME>
<ELEMENTS>
<BLUEPRINT-MAPPING-SET>
<SHORT-NAME>ProjectMapl</SHORT-NAME>
<DESC>
<L-2 L="EN">This states <E>that</E> SRMap is derived from SMMap and RMMap simultaneously</L-2>
</DESC>
<BLUEPRINT-MAPS>
<BLUEPRINT-MAPPING>
<BLUEPRINT-REF DEST="PORT-INTERFACE-MAPPING">/LeftCompany/PortInterfaceMappingSets_Blueprint/BP/SMMap</
BLUEPRINT-REF>
<DERIVED-OBJECT-REF DEST="PORT-INTERFACE-MAPPING">/Project/PortInterfaceMappingSets/Setl/SRMap</DERIVED—
OBJECT-REF>
</BLUEPRINT-MAPPING>
<BLUEPRINT-MAPPING>
<BLUEPRINT-REF DEST="PORT-INTERFACE-MAPPING">/RightCompany/PortInterfaceMappingSets_Blueprint/BP/RMMap</
BLUEPRINT-REF>
<DERIVED-OBJECT-REF DEST="PORT-INTERFACE-MAPPING">/Project/PortInterfaceMappingSets/Setl/SRMap</DERIVED-
OBJECT-REF>
</BLUEPRINT-MAPPING>
</BLUEPRINT-MAPS>
</BLUEPRINT-MAPPING-SET>
</ELEMENTS>
</AR-PACKAGE>
</AR-PACKAGES>
</AR-PACKAGE>

Listing A.4: Scenario for Blueprints of PortinterfaceMapping (4)

A.1.2 Blueprints of VEbTiming

<AR-PACKAGES>
<AR-PACKAGE>
<SHORT-NAME NAME-PATTERN="{anyName}">VfbTimingBlueprint</SHORT-NAME>
<CATEGORY>BLUEPRINT</CATEGORY>
<ELEMENTS>
<VFB-TIMING>
<SHORT-NAME>v fbTiming_AccrPedlRat</SHORT-NAME>
<TIMING-DESCRIPTIONS>
<TD-EVENT-VARIABLE-DATA-PROTOTYPE>
<SHORT-NAME>tde_Vdps_AccrPedlRat</SHORT-NAME>
<IS-EXTERNAL>false</IS—-EXTERNAL>
<PORT-PROTOTYPE-BLUEPRINT-REF DEST="PORT-PROTOTYPE-BLUEPRINT">/AUTOSAR/AISpecification/
PortPrototypeBlueprints_Blueprint/AccrPedlRat</PORT-PROTOTYPE-BLUEPRINT-REF>

AUTSSAR

<DATA-ELEMENT-REF DEST="VARIABLE-DATA-PROTOTYPE">/AUTOSAR/AISpecification/PortInterfaces_Blueprint/AccrPedlRatl/
AccrPedlRat</DATA-ELEMENT-REF>
<TD-EVENT-VARIABLE-DATA-PROTOTYPE-TYPE>VARIABLE-DATA-PROTOTYPE-SENT</TD-EVENT-VARIABLE-DATA-PROTOTYPE-TYPE>
</TD-EVENT-VARIABLE-DATA-PROTOTYPE>
<TD-EVENT-VARIABLE-DATA-PROTOTYPE>
<SHORT-NAME>tde_Vdpr_AccrPedlRat</SHORT-NAME>
<IS-EXTERNAL>false</IS-EXTERNAL>
<PORT-PROTOTYPE-BLUEPRINT-REF DEST="PORT-PROTOTYPE-BLUEPRINT">/AUTOSAR/AISpecification/
PortPrototypeBlueprints_Blueprint/AccrPedlRat</PORT-PROTOTYPE-BLUEPRINT-REF>
<DATA-ELEMENT-REF DEST="VARIABLE-DATA-PROTOTYPE">/AUTOSAR/AISpecification/PortInterfaces_Blueprint/AccrPedlRatl/
AccrPedlRat</DATA-ELEMENT-REF>
<TD-EVENT-VARIABLE-DATA-PROTOTYPE-TYPE>VARIABLE-DATA-PROTOTYPE-RECEIVED</TD-EVENT-VARIABLE-DATA-PROTOTYPE-TYPE>
</TD-EVENT-VARIABLE-DATA-PROTOTYPE>
<TD-EVENT-VARIABLE-DATA-PROTOTYPE>
<SHORT-NAME>tde_Vdp_AccrPedlRat</SHORT-NAME>
<IS-EXTERNAL>false</IS—-EXTERNAL>
<PORT-PROTOTYPE-BLUEPRINT-REF DEST="PORT-PROTOTYPE-BLUEPRINT">/AUTOSAR/AISpecification/
PortPrototypeBlueprints_Blueprint/AccrPedlRat</PORT-PROTOTYPE-BLUEPRINT-REF>
<DATA-ELEMENT-REF DEST="VARIABLE-DATA-PROTOTYPE">/AUTOSAR/AISpecification/PortInterfaces_Blueprint/AccrPedlRatl/
AccrPedlRat</DATA-ELEMENT-REF>
</TD-EVENT-VARIABLE-DATA-PROTOTYPE>
</TIMING-DESCRIPTIONS>
<TIMING-REQUIREMENTS>
<PERIODIC-EVENT-TRIGGERING>
<SHORT-NAME>pet_AccrPedlRat</SHORT-NAME>
<EVENT-REF DEST="TD-EVENT-VARIABLE-DATA-PROTOTYPE">/VfbTimingBlueprint/vfbTiming_AccrPedlRat/tde_Vdp_AccrPedlRat
</EVENT-REF>
<JITTER>
<CSE-CODE>(0</CSE-CODE>
<CSE-CODE-FACTOR>1</CSE-CODE-FACTOR>
</JITTER>
<PERIOD>
<CSE-CODE>(0</CSE-CODE>
<CSE-CODE-FACTOR>10</CSE-CODE-FACTOR>
</PERIOD>
</PERIODIC-EVENT-TRIGGERING>
<AGE-CONSTRAINT>
<SHORT-NAME>ac_AccrPedlRat</SHORT-NAME>
<MAXIMUM>
<CSE-CODE>(0</CSE-CODE>
<CSE-CODE-FACTOR>10</CSE-CODE-FACTOR>
</MAXIMUM>
<SCOPE-REF DEST="TD-EVENT-VARIABLE-DATA-PROTOTYPE">/VfbTimingBlueprint/vfbTiming_AccrPedlRat/
tde_Vdpr_AccrPedlRat</SCOPE-REF>
</AGE-CONSTRAINT>
</TIMING-REQUIREMENTS>
</VFB-TIMING>
</ELEMENTS>
</AR-PACKAGE>
</AR-PACKAGES>

Listing A.5: Example for VFB Timing Blueprint

A.2 Example Keyword ARXMLs

A.2.1 Example ARXML for Keywords

<AR-PACKAGE>
<SHORT-NAME>KeywordSet s</SHORT-NAME>
<ELEMENTS>
<KEYWORD-SET>
<SHORT-NAME>KeywordListComfort</SHORT-NAME>
<KEYWORDS>
<KEYWORD>
<SHORT-NAME>Cmft </SHORT-NAME>
<LONG-NAME>
<L-4 L="EN">Comfort</L-4>
</LONG-NAME>

<DESC>
<L-2 L="EN">comfort. this keyword is used to express something as comfortable or convenient</L-2>
</DESC>
<ABBR-NAME>Cmft </ABBR-NAME>
<CLASSIFICATIONS>
<CLASSIFICATION>Condition-Qualifier</CLASSIFICATION>
</CLASSIFICATIONS>
</KEYWORD>
</KEYWORDS>
</KEYWORD-SET>
</ELEMENTS>

</AR-PACKAGE>

Listing A.6: example for keywords

A.2.2 Example ARXML for Stem Relation of Keywords

<SHORT-NAME>Collections</SHORT-NAME>

AUTSSAR

<ELEMENTS>
<COLLECTION>
<SHORT-NAME>Drv_declinations</SHORT-NAME>
<CATEGORY>RELATION</CATEGORY>
<COLLECTION-SEMANTICS>DECLINATION_OF</COLLECTION-SEMANTICS>
<ELEMENT-REFS>
<ELEMENT-REF BASE="KW" DEST="KEYWORD">KeywordList/Drvr</ELEMENT-REF>
<ELEMENT-REF BASE="KW" DEST="KEYWORD">KeywordList/Drvg</ELEMENT-REF>
</ELEMENT-REFS>
<SOURCE-ELEMENT-REFS>
<SOURCE-ELEMENT-REF BASE="KW" DEST="KEYWORD">KeywordList/Drv</SOURCE-ELEMENT-REF>
</SOURCE-ELEMENT-REFS>
</COLLECTION>
<COLLECTION>
<SHORT-NAME>De f inedView</SHORT-NAME>
<CATEGORY>SET</CATEGORY>
<AUTO-COLLECT>REF-ALL</AUTO-COLLECT>
<ELEMENT-ROLE>PART_OF_SUBSET</ELEMENT-ROLE>
<ELEMENT-REFS>
<ELEMENT-REF BASE="OPEN" DEST="PORT-PROTOTYPE-BLUEPRINT">EngN</ELEMENT-REF>
</ELEMENT-REFS>
</COLLECTION>
<COLLECTION>
<SHORT-NAME>ExpandedView</SHORT-NAME>
<CATEGORY>SET</CATEGORY>
<AUTO-COLLECT>REF -NONE</AUTO-COLLECT>
<ELEMENT-ROLE>PART_OF_SUBSET</ELEMENT-ROLE>
<ELEMENT-REFS>
<ELEMENT-REF BASE="OPEN" DEST="PORT-PROTOTYPE-BLUEPRINT">EngN</ELEMENT-REF>
<ELEMENT-REF BASE="OPEN" DEST="PORT-INTERFACE">EngN1</ELEMENT-REF>
<ELEMENT-REF BASE="OPEN" DEST="APPLICATION-PRIMITIVE-DATA-TYPE">N1</ELEMENT-REF>
<!-- futher elements are not shown in this example -->
</ELEMENT-REFS>
</COLLECTION>
<COLLECTION>
<SHORT-NAME>ViewRelat ion</SHORT-NAME>
<CATEGORY>RELATION</CATEGORY>
<ELEMENT-ROLE>AUTO_COLLECTED_FROM</ELEMENT-ROLE>
<ELEMENT-REFS>
<ELEMENT-REF BASE="Coll" DEST="COLLECTION">ExpandedView</ELEMENT-REF>
</ELEMENT-REFS>
<SOURCE-ELEMENT-REFS>
<SOURCE-ELEMENT-REF BASE="Coll" DEST="COLLECTION">DefinedView</SOURCE-ELEMENT-REF>
</SOURCE-ELEMENT-REFS>
</COLLECTION>
</ELEMENTS>
</AR-PACKAGE>
</AR-PACKAGES>
</AR-PACKAGE>

Listing A.7: Example for Stem Relation of Keywords

A.2.3 Example for BlueprintPolicyNotModifiable

<?xml version="1.0" encoding="utf-8"?>
<AUTOSAR xmlns="http://autosar.org/schema/r4.0" xmlns:xml="http://www.w3.0rg/XML/1998/namespace" xmlns:xsi="http://www.w3.org
/2001/XMLSchema-instance" xsi:schemaLocation="http://autosar.org/schema/r4.0_AUTOSAR_00054.xsd">
<ADMIN-DATA>
<USED-LANGUAGES>
<L-10 L="EN" xml:space="default">English</L-10>
</USED-LANGUAGES>
</ADMIN-DATA>
<AR-PACKAGES>
<AR-PACKAGE>
<SHORT-NAME>CompuMethods_Blueprint</SHORT-NAME>
<CATEGORY>BLUEPRINT</CATEGORY>
<ELEMENTS>
<COMPU-METHOD>
<SHORT-NAME>ComM_InhibitionStatusType</SHORT-NAME>
<CATEGORY>BITFIELD_TEXTTABLE</CATEGORY>
<BLUEPRINT-POLICYS>
<BLUEPRINT-POLICY-NOT-MODIFIABLE>
<ATTRIBUTE-NAME>COMPU-INTERNAL-TO-PHYS</ATTRIBUTE-NAME>
</BLUEPRINT-POLICY-NOT-MODIFIABLE>
</BLUEPRINT-POLICYS>
<COMPU-INTERNAL-TO-PHYS>
<COMPU-SCALES>
<COMPU-SCALE>
<SHORT-LABEL>WakeupInhibitionActive</SHORT-LABEL>
<SYMBOL>WakeupInhibitionActive__FALSE</SYMBOL>

<DESC>

<L-2 L="EN">Bit 0 (LSB): Wake Up inhibition active</L-2>
</DESC>
<MASK>0x01</MASK>

<LOWER-LIMIT INTERVAL-TYPE="CLOSED">(0</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">(0</UPPER-LIMIT>
<COMPU-CONST>
<VT>FALSE</VT>
</COMPU-CONST>
</COMPU-SCALE>
</COMPU-SCALES>
</COMPU-INTERNAL-TO-PHYS>

AUTSSAR

</COMPU-METHOD>
</ELEMENTS>
</AR-PACKAGE>
</AR-PACKAGES>
</AUTOSAR>

Listing A.8: Example for BlueprintPolicyNotModifiable

A.2.4 Example for BlueprintPolicyList

<?xml version="1.0" encoding="utf-8"?>
<AUTOSAR xmlns="http://autosar.org/schema/r4.0" xmlns:xml="http://www.w3.0rg/XML/1998/namespace" xmlns:xsi="http://www.w3.org
/2001/XMLSchema-instance" xsi:schemaLocation="http://autosar.org/schema/r4.0_AUTOSAR_00054.xsd">
<ADMIN-DATA>
<USED-LANGUAGES>
<L-10 L="EN" xml:space="default">English</L-10>
</USED-LANGUAGES>
</ADMIN-DATA>
<AR-PACKAGES>
<AR-PACKAGE>
<SHORT-NAME>CompuMethods_Blueprint</SHORT-NAME>
<CATEGORY>BLUEPRINT</CATEGORY>
<ELEMENTS>
<COMPU-METHOD>
<SHORT-NAME>Dcm_SecLevelType</SHORT-NAME>
<CATEGORY>TEXTTABLE</CATEGORY>
<BLUEPRINT-POLICYS>
<BLUEPRINT-POLICY-LIST>
<ATTRIBUTE-NAME>COMPU-INTERNAL-TO-PHYS/COMPU-SCALES/ «</ATTRIBUTE-NAME>
<BLUEPRINT-DERIVATION-GUIDE>
<P>
<L-1 L="EN">The range 0x0l...0x3F is used configuration dependent</L-1>
</P>
<P>
<L-1 L="EN">The range 0x40...0xFF is reserved by document</L-1>
</P>
</BLUEPRINT-DERIVATION-GUIDE>
<MAX-NUMBER-OF-ELEMENTS BLUEPRINT-VALUE="undefined">undefined</MAX-NUMBER-OF-ELEMENTS>
<MIN-NUMBER-OF-ELEMENTS>1</MIN-NUMBER-OF-ELEMENTS>
</BLUEPRINT-POLICY-LIST>
</BLUEPRINT-POLICYS>
<COMPU-INTERNAL-TO-PHYS>
<COMPU-SCALES>
<COMPU-SCALE>
<LOWER-LIMIT INTERVAL-TYPE="CLOSED">0x00</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">0x00</UPPER-LIMIT>
<COMPU-CONST>
<VT>DCM_SEC_LEV_LOCKED</VT>
</COMPU-CONST>
</COMPU-SCALE>
</COMPU-SCALES>
</COMPU-INTERNAL-TO-PHYS>
</COMPU-METHOD>
</ELEMENTS>
</AR-PACKAGE>
</AR-PACKAGES>
</AUTOSAR>

Listing A.9: Example for BlueprintPolicyL.ist

A.2.5 Example for BlueprintPolicySingle

The listing A.10 illustrates the use of BlueprintPolicySingle.

<AR-PACKAGE>
<SHORT-NAME>PortPrototypeBlueprints_Blueprint</SHORT-NAME>
<CATEGORY>BLUEPRINT</CATEGORY>
<ELEMENTS>
<!-— Use Case POLICY-SINGLE INTERFACE-REF —-->
<PORT-PROTOTYPE-BLUEPRINT>
<SHORT-NAME NAME-PATTERN="{anyName}">AFbForCmft</SHORT-NAME>
<LONG-NAME>
<L-4 L="EN">Acceleration Feedback for Comfort</L-4>
</LONG-NAME>
<DESC>
<L-2 L="EN">Cluster of information regarding acceleration and acceleration saturation feedbacks from
Vehicle Longitudinal Control (VLC) to Adaptive Cruise Control (ACC). This information is used
for comfort reasons.</L-2>
</DESC>
<BLUEPRINT-POLICYS>
<BLUEPRINT-POLICY-SINGLE>
<ATTRIBUTE-NAME>INTERFACE-REF</ATTRIBUTE-NAME>
<BLUEPRINT-DERIVATION-GUIDE>
<P>
<L-1 L="EN">Shall only refer to an interface of vendor xyz with the same shortname.</L-1>
</P>
</BLUEPRINT-DERIVATION-GUIDE>

AUTSSAR

</BLUEPRINT-POLICY-SINGLE>
</BLUEPRINT-POLICYS>
<INTERFACE-REF DEST="SENDER-RECEIVER-INTERFACE">/AUTOSAR/AISpecification/PortInterfaces_Blueprint/
AFbForCmft1l</INTERFACE-REF>
</PORT-PROTOTYPE-BLUEPRINT>
</ELEMENTS>
</AR-PACKAGE>

Listing A.10: Example for BlueprintPolicySingle

In listing A.11 the BlueprintPolicySingle selects an element node with
attribute which equals a defined string (PORTS/P-PORT-PROTOTYPE/SHORT-
NAME[@NAME-PATTERN="{Name}_AsymDecrypt).

<BLUEPRINT-POLICY-SINGLE>
<ATTRIBUTE-NAME>PORTS/P-PORT-PROTOTYPE/SHORT-NAME [@NAME-PATTERN="' {Name}_AsymDecrypt’] </ATTRIBUTE-NAME>
<BLUEPRINT-DERIVATION-GUIDE>
<P>
<L-1 L="EN">Name = {ecuc (Csm/CsmAsymDecrypt/CsmAsymDecryptConfig.SHORT-NAME) }</L-1>
</P>
</BLUEPRINT-DERIVATION-GUIDE>
</BLUEPRINT-POLICY-SINGLE>

Listing A.11: Example for BlueprintPolicySingle with attribute name pattern

This results in the selection of the element node illustrated in listing A.12.

<P-PORT-PROTOTYPE>
<SHORT-NAME NAME-PATTERN="{Name}_AsymDecrypt">AsymDecrypt</SHORT-NAME>
<PROVIDED-INTERFACE-TREF DEST="CLIENT-SERVER-INTERFACE">/AUTOSAR/Csm/ClientServerInterfaces_Blueprint/CsmAsymDecrypt</
PROVIDED-INTERFACE-TREF>
</P-PORT-PROTOTYPE>

Listing A.12: Selected element node <SHORT-NAME>

In listing A.13 the BlueprintPolicySingle selects an element node which con-
tains a defined text pattern (OPERATIONS/CLIENT-SERVER-OPERATION[SHORT-
NAME/text()="ReadData"[J/ARGUMENTS/ARGUMENT-DATA-PROTOTYPE[SHORT-
NAME/text()="Data"]).

<BLUEPRINT-POLICY-SINGLE>

<ATTRIBUTE-NAME>OPERATIONS/CLIENT-SERVER-OPERATION [SHORT-NAME/text () ="ReadData"]/ARGUMENTS/ARGUMENT-DATA-PROTOTYPE [SHORT-NAME
/text ()="Data"]</ATTRIBUTE-NAME>
<BLUEPRINT-DERIVATION-GUIDE>
<p>
<L-1 L="EN">Data = {ecuc (Dem/DemGeneral/DemDataElementClass.SHORT-NAME) }</L-1>
</P>

</BLUEPRINT-DERIVATION-GUIDE>
</BLUEPRINT-POLICY-SINGLE>

Listing A.13: Example for BlueprintPolicySingle with text pattern

This results in the selection of the element node (ARGUMENTS/ARGUMENT-DATA-
PROTOTYPE/SHORT-NAME) with SHORT-NAME equal to 'Data’ in case (CLIENT-
SERVER-OPERATION/SHORT-NAME) is equal to 'ReadData’, see listing A.14.

<OPERATIONS>
<CLIENT-SERVER-OPERATION>
<SHORT-NAME>ReadData</SHORT-NAME>
<INTRODUCTION>
<P>
<L-1 L="EN">The server is not allowed to return E_NOT_OK, but shall always provide a valid data value (e.g. a default/
replacement value in an error-case) to Dcm/Dem nevertheless the signature of the operation includes E_NOT_OK to
ensure compatibility between server runnable and RTE Call API, since the RTE may return negative Std_Return values
in certain cases (e.g. partition of server stopped)</L-1>
</P>
</INTRODUCTION>
<ARGUMENTS>
<ARGUMENT-DATA-PROTOTYPE>
<SHORT-NAME>Dat a</SHORT-NAME>
<TYPE-TREF DEST="IMPLEMENTATION-DATA-TYPE">/AUTOSAR/Dem/ImplementationDataTypes_Blueprint/DataArrayType</TYPE-TREF>
<DIRECTION>OUT</DIRECTION>
</ARGUMENT-DATA-PROTOTYPE>
</ARGUMENTS>
<POSSIBLE-ERROR-REFS>

AUTSSAR

<POSSIBLE-ERROR-REF DEST="APPLICATION-ERROR">/AUTOSAR/Dem/ClientServerInterfaces_Blueprint/DataServices/E_OK</POSSIBLE-
ERROR-REF>
<POSSIBLE-ERROR-REF DEST="APPLICATION-ERROR">/AUTOSAR/Dem/ClientServerInterfaces_Blueprint/DataServices/E_NOT_OK</POSSIBLE
—ERROR-REF>
</POSSIBLE-ERROR-REFS>
</CLIENT-SERVER-OPERATION>
</OPERATIONS>

Listing A.14: Example for BlueprintPolicySingle with text pattern

AUTSSAR

B Mentioned Class Tables

This chapter contains the remaining set of meta-class tables which are not shown
directly in the main body of this document.

Class ARElement (abstract)

Note An element that can be defined stand-alone, i.e. without being part of another element (except for
packages of course).

Base ARObject, CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable

Subclasses AclObjectSet, AclOperation, AclPermission, AclRole, AliasNameSet, ApplicabilitylnfoSet, Application

Partition, AutosarDataType, BaseType, BlueprintMappingSet, BswEntryRelationshipSet, BswModule
Description, BswModuleEntry, BuildActionManifest, CalibrationParameterValueSet, ClientldDefinitionSet,
ClientServerlnterfaceToBswModuleEntryBlueprintMapping, Collection, CompuMethod, Consistency
NeedsBlueprintSet, ConstantSpecification, ConstantSpecificationMappingSet, CpSoftwareCluster, Cp
SoftwareClusterBinaryManifestDescriptor, CpSoftwareClusterMappingSet, CpSoftwareClusterResource
Pool, CryptoEllipticCurveProps, CryptoServiceCertificate, CryptoServiceKey, CryptoServicePrimitive,
CryptoServiceQueue, CryptoSignatureScheme, DataConstr, DataTransformationSet, DataTypeMapping
Set, DdsCpConfig, DiagnosticCommonElement, DiagnosticConnection, DiagnosticContributionSet, DIt
ArgumentPropsSet, DItContext, DItEcu, Documentation, E2EProfileCompatibilityProps, EcucDefinition
Collection, EcucDestinationUriDefSet, EcucModuleConfigurationValues, EcucModuleDef, EcucValue
Collection, EthlpProps, EthTcplplcmpProps, EthTcplpProps, EvaluatedVariantSet, FMFeature,
FMFeatureMap, FMFeatureModel, FMFeatureSelectionSet, FirewallRule, FlatMap, GeneralPurpose
Connection, HwCategory, HwElement, HwType, IEEE1722TpConnection, IPSecConfigProps, IPv6Ext
HeaderFilterSet, IdsCommonElement, IdsDesign, Implementation, ImpositionTimeDefinitionGroup,
InterpolationRoutineMappingSet, J1939ControllerApplication, KeywordSet, LifeCyclelnfoSet, LifeCycle
StateDefinitionGroup, LogAndTraceMessageCollectionSet, MacSecGlobalKayProps, MacSecParticipant
Set, McFunction, McGroup, ModeDeclarationGroup, ModeDeclarationMappingSet, OsTaskProxy,
PhysicalDimension, PhysicalDimensionMappingSet, Portinterface, PortinterfaceMappingSet, Port
PrototypeBlueprint, PostBuildVariantCriterion, PostBuildVariantCriterionValueSet, PredefinedVariant,
RapidPrototypingScenario, SdgDef, SecureComProps, SignalServiceTranslationPropsSet, SomeipSd
ClientEventGroupTimingConfig, SomeipSdClientServicelnstanceConfig, SomeipSdServerEventGroup
TimingConfig, SomeipSdServerServicelnstanceConfig, SwAddrMethod, SwAxisType, SwComponent
MappingConstraints, SwComponentType, SwRecordLayout, SwSystemconst, SwSystemconstantValue
Set, SwcBswMapping, System, SystemComSpecDefinitionSet, SystemSignal, SystemSignalGroup,
TDCpSoftwareClusterMappingSet, TcpOptionFilterSet, TimingExtension, TlsConnectionGroup, TlvData
IdDefinitionSet, TransformationPropsSet, Unit, UnitGroup, UploadablePackageElement, ViewMapSet

Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note

Table B.1: ARElement

Class ARPackage

Note AUTOSAR package, allowing to create top level packages to structure the contained ARElements.
ARPackages are open sets. This means that in a file based description system multiple files can be used
to partially describe the contents of a package.

This is an extended version of MSR’s SW-SYSTEM.

Base ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, MultilanguageReferrable,
Referrable

Aggregated by | ARPackage.arPackage, AUTOSAR.arPackage

Attribute Type | Mult. | Kind | Note

\Y%

AUTSSAR

Class

ARPackage

arPackage

ARPackage

agaor

This represents a sub package within an ARPackage,
thus allowing for an unlimited package hierarchy.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=arPackage.shortName, arPackage.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=30

element

PackageableElement

aggr

Elements that are part of this package
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=element.shortName, element.variation
Point.shortLabel
vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=20

referenceBase

ReferenceBase

aggr

This denotes the reference bases for the package. This is
the basis for all relative references within the package.
The base needs to be selected according to the base
attribute within the references.

Stereotypes: atpSplitable

Tags:

atp.Splitkey=referenceBase.shortLabel
xml.sequenceOffset=10

Table B.2: ARPackage

Class

AUTOSAR

Note

Root element of an AUTOSAR description, also the root element in corresponding XML documents.
Tags: xml.globalElement=true

Base

ARObject

Attribute

Type

Mult.

Kind

Note

adminData

AdminData

0..1

aggr

This represents the administrative data of an Autosar file.
Stereotypes: atpSplitable

Tags:

atp.Splitkey=adminData

xml.sequenceOffset=10

arPackage

ARPackage

agaor

This is the top level package in an AUTOSAR model.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=arPackage.shortName, arPackage.variation
Point.shortLabel

vh.latestBinding Time=blueprintDerivationTime
xml.sequenceOffset=30

filelnfo
Comment

FileInfoComment

agor

This represents a possibility to provide a structured
comment in an AUTOSAR file.

Stereotypes: atpStructuredComment

Tags:

xml.roleElement=true

xml.sequenceOffset=-10

xml.typeElement=false

introduction

DocumentationBlock

0..1

aggr

This represents an introduction on the Autosar file. It is
intended for example to represent disclaimers and legal
notes.

Tags: xml.sequenceOffset=20

Table B.3: AUTOSAR

AUT<

SSAR

Class AbstractVariationRestriction (abstract)
Note Defines constraints on the usage of variation and on the valid binding times.
Base ARObject
Subclasses SdgAggregationWithVariation, SdgForeignReferenceWithVariation, SdgPrimitiveAttributeWithVariation
Attribute Type Mult. Kind | Note
validBinding FullBindingTimeEnum * attr List of valid binding times.
Time Tags: xml.sequenceOffset=20
variation Boolean 0..1 attr Defines if the AUTOSAR model may define a Variation
Point at this location.
Tags: xml.sequenceOffset=10
Table B.4: AbstractVariationRestriction
Class AclObjectSet
Note This meta class represents the ability to denote a set of objects for which roles and rights (access control
lists) shall be defined. It basically can define the objects based on
« the nature of objects
« the involved blueprints
« the artifact in which the objects are serialized
« the definition of the object (in a definition - value pattern)
« individual reference objects
Tags: atp.recommendedPackage=AclObjectSets
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
aclObjectClass ReferrableSubtypes * attr This specifies that the considered objects as instances of
Enum the denoted meta class.
aclScope AclScopeEnum 1 attr this indicates the scope of the referenced objects.
collection Collection 0..1 ref This indicates that the relevant objects are specified via a
collection.
derivedFrom AtpBlueprint * ref This association indicates that the considered objects are
Blueprint the ones being derived from the associated blueprint.
Stereotypes: atpUriDef
engineering AutosarEngineering * aggr This indicates an engineering object. The AclPermission
Object Object relates to all objects in this partial model.
This also implies that the other objects in this set shall be
placed in the specified engineering object.
Note that semantic constraints apply with respect to
<<atpSplitable>>
object Referrable * ref This association applies a particular (usually small) set of
objects (e.g. a singular package). Main usage is, if one
does not want to create a collection specifically for access
control.
objectDefinition AtpDefinition * ref This denotes an object by its definition. For example the
right to manipulate the value of a particular ecuc
parameter is denoted by reference to the definition of the
parameter.
Note that this can also be a reference to a Standard
Module Definition. Therefore it is stereotyped by atpUri
Def.
Stereotypes: atpUriDef

Table B.5: AclObjectSet

AUT<

SSAR

Class AclOperation
Note This meta class represents the ability to denote a particular operation which may be performed on
objects in an AUTOSAR model.
Tags: atp.recommendedPackage=AclOperations
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
implied AclOperation * ref This indicates that the related operations are also implied.
Operation Therefore the permission is also granted for this
operation.
Table B.6: AclOperation
Class AclPermission
Note This meta class represents the ability to represent permissions granted on objects in an AUTOSAR
model.
Tags: atp.recommendedPackage=AclPermissions
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
aclContext NameToken * attr This attribute is intended to specify the context under
which the AclPemission is applicable. The values are
subject to mutual agreement between the involved
stakeholders.
For examples the values can be the names of binding
times.
aclObject AclObjectSet * ref This denotes an object to which the AclPermission
applies.
aclOperation AclOperation * ref This denotes an operation which is granted by the given
AclPermission.
aclRole AclRole * ref This denotes the role (individual or even organization) for
which the AclPermission. is granted.
aclScope AclScopeEnum 1 attr This indicates the scope of applied permissions: explicit,
descendant, dependent;
Table B.7: AclPermission
Class AclRole
Note This meta class represents the ability to specify a particular role which is used to grant access rights to
AUTOSAR model. The purpose of this meta-class is to support the mutual agreements between the
involved parties.
Tags: atp.recommendedPackage=AclRoles
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
ldapUrl UriString 0..1 attr This is an URL which allows to represent users or

organizations taking the particular role.

Table B.8: AclRole

AUT<

SSAR

Class AliasNameSet
Note This meta-class represents a set of AliasNames. The AliasNameSet can for example be an input to the
A2L-Generator.
Tags: atp.recommendedPackage=AliasNameSets
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
aliasName AliasNameAssignment * aggr AliasNames contained in the AliasNameSet.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=aliasName.shortLabel, aliasName.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
Table B.9: AliasNameSet
Class ApplicationDataType (abstract)
Note ApplicationDataType defines a data type from the application point of view. Especially it should be
used whenever something "physical" is at stake.
An ApplicationDataType represents a set of values as seen in the application model, such as
measurement units. It does not consider implementation details such as bit-size, endianess, etc.
It should be possible to model the application level aspects of a VFB system by using
ApplicationDataTypes only.
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, AutosarDataType,
CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable
Subclasses ApplicationCompositeDataType, ApplicationPrimitiveDataType
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
Table B.10: ApplicationDataType
Class ApplicationSwComponentType
Note The ApplicationSwComponentType is used to represent the application software.
Tags: atp.recommendedPackage=SwComponentTypes
Base ARElement, ARObject, AtomicSwComponentType, AtpBlueprint, AtoBlueprintable, AtpClassifier, Atp
Type, CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable, Sw
ComponentType
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
Table B.11: ApplicationSwComponentType
Class ArgumentDataPrototype
Note An argument of an operation, carries direction and implementation information.
Base ARObject, AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable
Aggregated by | AtpClassifier.atpFeature, ClientServerOperation.argument
Attribute Type Mult. Kind | Note
direction ArgumentDirection 0..1 attr This attribute specifies the direction of the argument.
Enum

\Y

AUT<

SSAR

A
Class ArgumentDataPrototype
serverArgument | ServerArgumentimpl 0..1 attr This defines how the argument type of the servers
ImplPolicy PolicyEnum RunnableEntity is implemented.
If the attribute is not defined this has the same semantics
as if the attribute is set to the value useArgument Type
for primitive arguments and structures.
Table B.12: ArgumentDataPrototype
Class AtomicSwComponentType (abstract)
Note An atomic software component is atomic in the sense that it cannot be further decomposed and
distributed across multiple ECUs.
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtpoType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, SwComponentType
Subclasses ApplicationSwComponentType, ComplexDeviceDriverSwComponentType, EcuAbstractionSwComponent
Type, NvBlockSwComponentType, SensorActuatorSwComponentType, ServiceProxySwComponent
Type, ServiceSwComponentType
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
internalBehavior | SwclnternalBehavior 0..1 aggr The swcInternalBehaviors owned by an
AtomicSwComponent Type can be located in a different
physical file. Therefore the aggregation is <<atp
Splitable>>.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=internalBehavior.shortName, internal
Behavior.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
symbolProps SymbolProps 0..1 aggr This represents the SymbolProps for the
AtomicSwComponentType.
Stereotypes: atpSplitable
Tags: atp.Splitkey=symbolProps.shortName

Table B.13: AtomicSwComponentType

Class

AtpBlueprint (abstract)

Note

This meta-class represents the ability to act as a Blueprint. As this class is an abstract one, particular
blueprint meta-classes inherit from this one.

Base

ARObject, Identifiable, MultilanguageReferrable, Referrable

Subclasses

ARPackage, AbstractimplementationDataType, AclObjectSet, AclOperation, AclPermission, AclRole,
AliasNameSet, ApplicationDataType, BswEntryRelationshipSet, BswModuleDescription, BswModule
Entry, BuildActionEntity, BuildActionEnvironment, BuildActionManifest, ClientServerinterfaceToBsw
ModuleEntryBlueprintMapping, CompuMethod, ConsistencyNeeds, DataConstr, DataTypeMappingSet,
EcucDefinitionCollection, EcucDestinationUriDefSet, EcucModuleDef, FlatMap, ImpositionTime,
ImpositionTimeDefinitionGroup, KeywordSet, LifeCycleState, LifeCycleStateDefinitionGroup, Mode
DeclarationGroup, Portinterface, PortinterfaceMapping, PortinterfaceMappingSet, PortPrototype
Blueprint, SecurityEventContextDataElement, SwAddrMethod, SwBaseType, SwComponentType, Vb
Timing

Attribute

Type Mulit. Kind | Note

blueprintPolicy

*

This role indicates whether the blueprintable element will
be modifiable or not modifiable.

Stereotypes: atpSplitable

Tags: atp.Splitkey=blueprintPolicy.attributeName

BlueprintPolicy aggr

Table B.14: AtpBlueprint

AUT<

SSAR

Class AtpBlueprintMapping (abstract)
Note This meta-class represents the ability to express a particular mapping between a blueprint and an
element derived from this blueprint.
Particular mappings are defined by specializations of this meta-class.
Base ARObject
Subclasses BlueprintMapping
Aggregated by | BlueprintMappingSet.blueprintMap
Attribute Type Muit. Kind | Note
atpBlueprint AtpBlueprint 1 ref This represents the blueprint.
Stereotypes: atpAbstract; atpUriDef
Tags: xml.sequenceOffset=50
atpBlueprinted AtpBlueprintable 1 ref This represents the bluprinted elements which shall be
Element mapped to the blueprint.
Stereotypes: atpAbstract
Tags: xml.sequenceOffset=60
Table B.15: AtpBlueprintMapping
Class AtpBlueprintable (abstract)
Note This meta-class represents the ability to be derived from a Blueprint. As this class is an abstract one,
particular blueprintable meta-classes inherit from this one.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Subclasses ARPackage, AbstractimplementationDataType, AclObjectSet, AclOperation, AclPermission, AclRole,
AliasNameSet, ApplicationDataType, BswEntryRelationshipSet, BswModuleDescription, BswModule
Entry, BuildActionEntity, BuildActionEnvironment, BuildActionManifest, CompuMethod, Consistency
Needs, DataConstr, DataTypeMappingSet, EcucDefinitionCollection, EcucDestinationUriDefSet, Ecuc
ModuleDef, FlatMap, ImpositionTime, ImpositionTimeDefinitionGroup, KeywordSet, LifeCycleState, Life
CycleStateDefinitionGroup, ModeDeclarationGroup, Portinterface, PortinterfaceMapping, Portinterface
MappingSet, PortPrototype, SecurityEventContextDataElement, SwAddrMethod, SwBaseType, Sw
ComponentType, VfbTiming
Attribute Type Mult. Kind | Note
Table B.16: AtpBlueprintable
Enumeration BindingTimeEnum
Note This enumerator specifies the applicable binding times for the pre build variation points.
Aggregated by ConditionByFormula.bindingTime, FMFeature.maximumIntendedBindingTime, FMFeature.minimum
IntendedBindingTime, FMFeatureSelection.maximumSelectedBindingTime, FMFeatureSelection.
minimumSelectedBindingTime
Literal Description
codeGeneration » Coding by hand, based on requirements document.
Time » Tool based code generation, e.g. from a model.
» The model may contain variants.
* Only code for the selected variant(s) is actually generated.
Tags: atp.EnumerationLiteralindex=0
linkTime Configure what is included in object code, and what is omitted Based on which variant(s) are selected

E.g. for modules that are delivered as object code (as opposed to those that are delivered as source
code)
Tags: atp.EnumerationLiterallndex=1

\Y%

AUTSSAR

A

Enumeration

BindingTimeEnum

preCompileTime

This is typically the C-Preprocessor. Exclude parts of the code from the compilation process, e.g.,
because they are not required for the selected variant, because they are incompatible with the
selected variant, because they require resources that are not present in the selected variant. Object
code is only generated for the selected variant(s). The code that is excluded at this stage code will
not be available at later stages.

Tags: atp.EnumerationLiteralindex=2

systemDesignTime

* Designing the VFB.

« Software Component types (Portlnterfaces).

» SWC Prototypes and the Connections between SWCprototypes.
+ Designing the Topology

» ECUs and interconnecting Networks

* Designing the Communication Matrix and Data Mapping

Tags: atp.EnumerationLiteralindex=3

Table B.17: BindingTimeEnum

Class «atpMixedString» BlueprintFormula
Note This class express the extension of the Formula Language to provide formalized blueprint-Value resp.
blueprintCondition.

Base ARObject, FormulaExpression, SwSystemconstDependentFormula

Attribute Type Mulit. Kind | Note

ecuc EcucDefinitionElement 1 ref The EcucDefinitionElement serves as a argument for the
formular.
This Attribute is only used by the AUTOSAR Classic
Platform.

verbatim MultiLanguageVerbatim 1 aggr This represents an informal term in the expression as
verbatim text. Note that the result of this is same as
formula keyword "undefined".

Table B.18: BlueprintFormula

Class BlueprintMapping

Note This meta-class represents the ability to map two an object and its blueprint.

Base ARObject, AtpBlueprintMapping

Aggregated by | BlueprintMappingSet.blueprintMap

Attribute Type Mult. Kind | Note

blueprint AtpBlueprint 1 ref This represents the mapped blueprint.
Stereotypes: atpldentityContributor

derivedObject AtpBlueprintable 1 ref This represents the object which was derived from the
blueprint.
Stereotypes: atpldentityContributor

Table B.19: BlueprintMapping
Class BlueprintPolicy (abstract)
Note This meta-class represents the ability to indicate whether blueprintable elements will be modifiable or not
modifiable.
Base ARObject
Subclasses BlueprintPolicyModifiable, BlueprintPolicyNotModifiable

\Y

AUT<

SSAR

A
Class BlueprintPolicy (abstract)
Aggregated by | AtpBlueprint.blueprintPolicy
Attribute Type Mult. Kind | Note
attributeName String 1 attr This identifies the related attribute of a BlueprintPolicy.

For navigation over the model a subset of xpath
expressions is used.
Stereotypes: atpldentityContributor

Table B.20: BlueprintPolicy

Class BlueprintPolicyList
Note The class represents that the related attribute is modifiable during the blueprinting. It applies only to
attribute with upper multiplicity greater than 1.
Base ARObject, BlueprintPolicy, BlueprintPolicyModifiable
Aggregated by | AtpBlueprint.blueprintPolicy
Attribute Type Mult. Kind | Note
maxNumberOf Positivelnteger 1 attr Maximum number of elements in list. If the maximum
Elements number is not constraint it shall be set to "undefined".
Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivationTime
minNumberOf Positivelnteger 1 attr Minimum number of elements in the list. If the minimum
Elements number is not constraint it shall be set to "undefined".
Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivationTime
Table B.21: BlueprintPolicyList
Class BlueprintPolicyNotModifiable
Note The class represents that the related attribute is not modifiable during the blueprinting.
Base ARObject, BlueprintPolicy
Aggregated by | AtpBlueprint.blueprintPolicy
Attribute Type Mult. Kind | Note
Table B.22: BlueprintPolicyNotModifiable
Class BlueprintPolicySingle
Note The class represents that the related attribute is modifiable during the blueprinting. It applies only to
attribute with upper multiplicity equal 1.
Base ARObject, BlueprintPolicy, BlueprintPolicyModifiable
Aggregated by | AtpBlueprint.blueprintPolicy
Attribute Type Mult. Kind | Note
Table B.23: BlueprintPolicySingle
Class BswinternalBehavior
Note Specifies the behavior of a BSW module or a BSW cluster w.r.t. the code entities visible by the BSW

Scheduler. It is possible to have several different BswinternalBehaviors referring to the same BswModule
Description.

\Y

AUTSSAR

A

Class

BswinternalBehavior

Base

ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, InternalBehavior, Multilanguage

Referrable, Referrable

Aggregated by

AtpClassifier.atpFeature, BswModuleDescription.internalBehavior

Attribute

Type

Muit.

Kind

Note

arTypedPer
Instance
Memory

VariableDataPrototype

*

aggr

Defines an AUTOSAR typed memory-block that needs to
be available for each instance of the Basic Software
Module. The aggregation of arTypedPerlnstanceMemory
is subject to variability with the purpose to support
variability in the Basic Software Module’s
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=arTypedPerinstanceMemory.shortName, ar
TypedPerInstanceMemory.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

bswPerInstance
MemoryPolicy

BswPerlInstance
MemoryPolicy

aggr

Policy for a arTypedPerInstanceMemory The policy
selects the options of the Schedule Manager API
generation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=bswPerInstanceMemoryPolicy, bswPer
InstanceMemoryPolicy.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

clientPolicy

BswClientPolicy

aggr

Policy for a requiredClientServerEntry. The policy selects
the options of the Schedule Manager API generation.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=clientPolicy, clientPolicy.variationPoint.short
Label

vh.latestBindingTime=preCompile Time

distinguished
Partition

BswDistinguished
Partition

aggr

Indicates an abstract partition context in which the
enclosing BswModuleEntity can be executed.
Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=distinguishedPartition.shortName,
distinguishedPartition.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=60

entity

BswModuleEntity

aggr

A code entity for which the behavior is described
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=entity.shortName, entity.variationPoint.short
Label

vh.latestBindingTime=preCompileTime
xml.sequenceOffset=5

event

BswEvent

aggr

An event required by this module behavior.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=event.shortName, event.variationPoint.short
Label

vh.latestBindingTime=preCompileTime
xml.sequenceOffset=10

AUTSSAR

Class

BswinternalBehavior

exclusiveArea
Policy

BswExclusiveArea
Policy

aggr

Policy for an ExclusiveArea in this BswinternalBehavior.
The policy selects the options of the Schedule Manager
API generation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=exclusiveAreaPolicy, exclusiveArea
Policy.variationPoint.shortLabel
vh.latestBindingTime=preCompile Time

includedData
TypeSet

IncludedDataTypeSet

aggr

The includedDataTypeSet is used by a basic software
module for its implementation.

Stereotypes: atpSplitable

Tags: atp.Splitkey=includedDataTypeSet

includedMode
Declaration
GroupSet

IncludedMode
DeclarationGroupSet

aggr

This aggregation represents the included Mode
DeclarationGroups

Stereotypes: atpSplitable

Tags: atp.Splitkey=includedModeDeclarationGroupSet

internal
TriggeringPoint

BswinternalTriggering
Point

agaor

An internal triggering point.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=internalTriggeringPoint.shortName, internal
TriggeringPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=2

This Attribute is only used by the AUTOSAR Classic
Platform.

internal
TriggeringPoint
Policy

BswinternalTriggering
PointPolicy

aggr

Policy for an internalTriggeringPoint in this Bswinternal
Behavior.. The policy selects the options of the Schedule
Manager API generation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=internalTriggeringPointPolicy, internal
TriggeringPointPolicy.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

modeReceiver
Policy

BswModeReceiver
Policy

aggr

Implementation policy for the reception of mode switches.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=modeReceiverPolicy, modeReceiver
Policy.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=25

modeSender
Policy

BswModeSenderPolicy

aggr

Implementation policy for providing a mode group.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=modeSenderPolicy, modeSender
Policy.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

parameterPolicy

BswParameterPolicy

aggr

Policy for a perinstanceParameter in this Bswinternal
Behavior. The policy selects the options of the Schedule
Manager API generation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=parameterPolicy, parameterPolicy.variation
Point.shortLabel

vh.latestBindingTime=preCompileTime

AUTSSAR

Class

BswinternalBehavior

perinstance
Parameter

ParameterData
Prototype

aggr

Describes a read only memory object containing
characteristic value(s) needed by this Bswinternal
Behavior. The role name perinstanceParameter is chosen
in analogy to the similar role in the context of Swclinternal
Behavior.

In contrast to constantMemory, this object is not allocated
locally by the module’s code, but by the BSW Scheduler
and it is accessed from the BSW module via the BSW
Scheduler API. The main use case is the support of
software emulation of calibration data.

The aggregation is subject to variability with the purpose
to support implementation variants.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=perinstanceParameter.shortName, per
InstanceParameter.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=45

receptionPolicy

BswDataReception
Policy

aggr

Data reception policy for inter-partition and/or inter-core
communication.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=receptionPolicy, receptionPolicy.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=55

releasedTrigger
Policy

BswReleasedTrigger
Policy

aggr

Policy for a releasedTrigger. The policy selects the
options of the Schedule Manager API generation.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=releasedTriggerPolicy, releasedTrigger
Policy.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

schedulerName
Prefix

BswSchedulerName
Prefix

aggr

Optional definition of one or more prefixes to be used for
the BswScheduler.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=schedulerNamePrefix.shortName, scheduler
NamePrefix.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=50

sendPolicy

BswDataSendPolicy

agor

Policy for a providedData. The policy selects the options
of the Schedule Manager API generation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=sendPolicy, sendPolicy.variationPoint.short
Label

vh.latestBindingTime=preCompileTime

service
Dependency

BswService
Dependency

aggr

Defines the requirements on AUTOSAR Services for a
particular item.

The aggregation is subject to variability with the purpose
to support the conditional existence of ServiceNeeds.
The aggregation is splitable in order to support that
ServiceNeeds might be provided in later development
steps.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=serviceDependency.ident.shortName,
serviceDependency.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=40

AUTSSAR

JAN
Class BswinternalBehavior
triggerDirect BswTriggerDirect * aggr Specifies a trigger to be directly implemented via OS
Implementation Implementation calls.
Stereotypes: atpSplitable; atpVariation
Tags:

atp.Splitkey=triggerDirectimplementation, triggerDirect
Implementation.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=15

variationPoint
Proxy

VariationPointProxy aggr Proxy of a variation points in the C/C++ implementation.
Stereotypes: atpSplitable

Tags: atp.Splitkey=variationPointProxy.shortName

Table B.24: BswinternalBehavior

Class BswModuleDescription
Note Root element for the description of a single BSW module or BSW cluster. In case it describes a BSW
module, the short name of this element equals the name of the BSW module.
Tags: atp.recommendedPackage=BswModuleDescriptions
This Class is only used by the AUTOSAR Classic Platform.
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpFeature, AtpStructureElement,
CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable
Aggregated by | ARPackage.element, AtpClassifier.atpFeature
Attribute Type Mult. Kind | Note
bswModule BswModuleDependency * aggr Describes the dependency to another BSW module.
Dependency Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=bswModuleDependency.shortName, bsw
ModuleDependency.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20
bswModule SwComponent 0..1 aggr This adds a documentation to the BSW module.
Documentation Documentation Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=bswModuleDocumentation, bswModule
Documentation.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=6
expectedEntry BswModuleEntry * ref Indicates an entry which is required by this module.
Replacement of outgoingCallback / requiredEntry.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=expectedEntry.oswModuleEntry, expected
Entry.variationPoint.shortLabel
vh.latestBindingTime=preCompile Time
implemented BswModuleEntry * ref Specifies an entry provided by this module which can be
Entry called by other modules. This includes "main" functions,

interrupt routines, and callbacks. Replacement of
providedEntry / expectedCallback.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=implementedEntry.oswModuleEntry,
implementedEntry.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

AUTSSAR

Class

BswModuleDescription

internalBehavior

BswinternalBehavior

aggr

The various BswinternalBehaviors associated with a Bsw
ModuleDescription can be distributed over several
physical files. Therefore the aggregation is <<atp
Splitable>>.

Stereotypes: atpSplitable

Tags:

atp.Splitkey=internalBehavior.shortName
xml.sequenceOffset=65

moduleld

Positivelnteger

attr

Refers to the BSW Module Identifier defined by the
AUTOSAR standard. For non-standardized modules, a
proprietary identifier can be optionally chosen.

Tags: xml.sequenceOffset=5

providedClient
ServerEntry

BswModuleClientServer
Entry

agaor

Specifies that this module provides a client server entry
which can be called from another partition or core.This
entry is declared locally to this context and will be
connected to the requiredClientServerEntry of another or
the same module via the configuration of the BSW
Scheduler.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=providedClientServerEntry.shortName,
providedClientServerEntry.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=45

providedData

VariableDataPrototype

aggr

Specifies a data prototype provided by this module in
order to be read from another partition or core.The
providedData is declared locally to this context and will be
connected to the requiredData of another or the same
module via the configuration of the BSW Scheduler.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=providedData.shortName, provided
Data.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=55

providedMode
Group

ModeDeclarationGroup
Prototype

agaor

A set of modes which is owned and provided by this
module or cluster. It can be connected to the required
ModeGroups of other modules or clusters via the
configuration of the BswScheduler. It can also be
synchronized with modes provided via ports by an
associated ServiceSwComponentType, EcuAbstraction
SwComponentType or ComplexDeviceDriverSw
ComponentType.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=providedModeGroup.shortName, provided
ModeGroup.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=25

AUTSSAR

A

Class BswModuleDescription

releasedTrigger Trigger aggr A Trigger released by this module or cluster. It can be
connected to the requiredTriggers of other modules or
clusters via the configuration of the BswScheduler. It can
also be synchronized with Triggers provided via ports by
an associated ServiceSwComponentType, Ecu
AbstractionSwComponentType or ComplexDeviceDriver
SwComponentType.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=releasedTrigger.shortName, released
Trigger.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=35

requiredClient BswModuleClientServer aggr Specifies that this module requires a client server entry

ServerEntry Entry which can be implemented on another partition or
core.This entry is declared locally to this context and will
be connected to the providedClientServerEntry of another
or the same module via the configuration of the BSW
Scheduler.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=requiredClientServerEntry.shortName,
requiredClientServerEntry.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=50

requiredData VariableDataPrototype aggr Specifies a data prototype required by this module in oder
to be provided from another partition or core.The required
Data is declared locally to this context and will be
connected to the providedData of another or the same
module via the configuration of the BswScheduler.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=requiredData.shortName, required
Data.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=60

requiredMode ModeDeclarationGroup aggr Specifies that this module or cluster depends on a certain

Group Prototype mode group. The requiredModeGroup is local to this
context and will be connected to the providedModeGroup
of another module or cluster via the configuration of the
BswScheduler.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=requiredModeGroup.shortName, required
ModeGroup.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=30

requiredTrigger Trigger aggr Specifies that this module or cluster reacts upon an

external trigger.This requiredTrigger is declared locally to
this context and will be connected to the providedTrigger
of another module or cluster via the configuration of the
BswScheduler.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=requiredTrigger.shortName, required
Trigger.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=40

Table B.25: BswModuleDescription

AUTSSAR

Class BswModuleEntry

Note This class represents a single API entry (C-function prototype) into the BSW module or cluster.

The name of the C-function is equal to the short name of this element with one exception: In case of
multiple instances of a module on the same CPU, special rules for "infixes" apply, see description of class
Bswimplementation.

Tags: atp.recommendedPackage=BswModuleEntrys

This Class is only used by the AUTOSAR Classic Platform.

Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable

Aggregated by | ARPackage.element

Attribute Type Mult. Kind | Note
argument SwServiceArg * agor An argument belonging to this BswModuleEntry.
(ordered) Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=argument.shortName, argument.variation
Point.shortLabel

vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=45

bswEntryKind BswEntryKindEnum 0..1 attr This describes whether the entry is concrete or abstract.
If the attribute is missing the entry is considered as
concrete.
Tags: xml.sequenceOffset=40
callType BswCallType 0..1 attr The type of call associated with this service.
Tags: xml.sequenceOffset=25
execution BswExecutionContext 0..1 attr Specifies the execution context which is required (in case
Context of entries into this module) or guaranteed (in case of

entries called from this module) for this service.
Tags: xml.sequenceOffset=30

function NameToken 0..1 attr This attribute is used to control the generation of function
Prototype prototypes. If set to "RTE", the RTE generates the
Emitter function prototypes in the Module Interlink Header File.
isReentrant Boolean 0..1 attr Reentrancy from the viewpoint of function callers:

« true: Enables the service to be invoked again, before
the service has finished.

« false: It is prohibited to invoke the service again before
is has finished.

Tags: xml.sequenceOffset=15

isSynchronous Boolean 0..1 attr Synchronicity from the viewpoint of function callers:
« true: This calls a synchronous service, i.e. the service
is completed when the call returns.

« false: The service (on semantical level) may not be
complete when the call returns.

Tags: xml.sequenceOffset=20

returnType SwServiceArg 0..1 aggr | The return type belonging to this bswModuleEntry.
Tags: xml.sequenceOffset=40

role Identifier 0..1 attr Specifies the role of the entry in the given context. It shall
be equal to the standardized name of the service call,
especially in cases where no Serviceldentifier is specified,
e.g. for callbacks. Note that the ShortName is not always
sufficient because it maybe vendor specific (e.g. for
callbacks which can have more than one instance).

Tags: xml.sequenceOffset=10

serviceld Positivelnteger 0..1 attr Refers to the service identifier of the Standardized
Interfaces of AUTOSAR basic software. For
non-standardized interfaces, it can optionally be used for
proprietary identification.

Tags: xml.sequenceOffset=5

AUT<

SSAR

JAN
Class BswModuleEntry
swServicelmpl SwServicelmplPolicy 0..1 attr Denotes the implementation policy as a standard function
Policy Enum call, inline function or macro. This has to be specified on
interface level because it determines the signature of the
call.

Tags: xml.sequenceOffset=35

Table B.26: BswModuleEntry

Class BuildAction

Note This meta-class represents the ability to specify a build action.

Base ARObject, AtpBlueprint, AtpBlueprintable, BuildActionEntity, Identifiable, MultilanguageReferrable,
Referrable

Aggregated by | BuildActionManifest.buildAction

Attribute Type Mult. Kind | Note

createdData BuildActionloElement * aggr | This represents the artifacts which are created by the

processor.
Stereotypes: atpSplitable
Tags: atp.Splitkey=createdData

followUpAction

inputData

BuildAction * ref This association specifies a set of follow up actions.
Tags: xml.sequenceOffset=-80

BuildActionloElement * aggr | This represents the artifacts which are read by the
processor.

Stereotypes: atpSplitable
Tags: atp.Splitkey=inputData

modifiedData

BuildActionloElement aggr | This denotes the data which are modified by the action.
Stereotypes: atpSplitable

Tags: atp.Splitkey=modifiedData

predecessor
Action

BuildAction * ref This association specifies a set of predecessors. These
actions shall be finished before but necessarily
immediately after the given action..

These actions need to be performed in the specified
order.

Tags: xml.sequenceOffset=-90

required
Environment

BuildActionEnvironment 1 ref This represents the environment which is required to use
the specified Processor.

Table B.27: BuildAction

Class BuildActionEnvironment

Note This meta-class represents the ability to specify a build action environment.

Base ARObject, AtpBlueprint, AtoBlueprintable, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | BuildActionManifest.buildActionEnvironment

Attribute Type Mulit. Kind | Note

sdg Sdg * aggr | This represents a general data structure intended to

denote parameters for the BuildActionEnvironment.

Table B.28: BuildActionEnvironment

AUT<

SSAR

Class BuildActionManifest
Note This meta-class represents the ability to specify a manifest for processing artifacts. An example use case
is the processing of ECUC parameter values.
Tags:
atp.recommendedPackage=BuildActionManifests
xml.globalElement=false
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
buildAction BuildAction * aggr | This represents a particular action in the build chain.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=buildAction.shortName, buildAction.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
buildAction BuildActionEnvironment * aggr | This represents a build action environment.
Environment Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=buildActionEnvironment.shortName, build
ActionEnvironment.variationPoint.shortLabel
vh.latestBindingTime=blueprintDerivationTime
dynamicAction BuildAction * ref This denotes an Action which is to be executed as part of
the dynamic action set.
startAction BuildAction * ref This specifies the list of actions to be performed at the
beginning of the process.
Tags: xml.sequenceOffset=-90
tearDownAction | BuildAction * ref This specifies the set of action which shall be performed
after all other actions in the manifest were performed.
Tags: xml.sequenceOffset=-80
Table B.29: BuildActionManifest
Class ClientServerinterface
Note A client/server interface declares a number of operations that can be invoked on a server by a client.
Tags: atp.recommendedPackage=PortInterfaces
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtoType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
operation ClientServerOperation * aggr ClientServerOperation(s) of this
ClientServerInterface.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=operation.shortName, operation.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
This Attribute is only used by the AUTOSAR Classic
Platform.
possibleError ApplicationError * aggr Application errors that are defined as part of this interface.

Table B.30: ClientServerinterface

AUTSSAR

Class ClientServerinterfaceToBswModuleEntryBlueprintMapping
Note This represents a mapping between one ClientServerInterface blueprint and BswModuleEntry blueprint
in order to express the intended implementation of ClientServerOperations by specific BswModuleEntries
under consideration of PortDefinedArguments. Such a mapping enables the formal check whether the
number of arguments and the data types of arguments of the operation + additional PortDefined
Arguments matches the signature of the BswModuleEntry.
Tags: atp.recommendedPackage=BlueprintMappingSets
This Class is only used by the AUTOSAR Classic Platform.
Base ARElement, ARObject, AtpBlueprint, CollectableElement, Identifiable, MultilanguageReferrable,
PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Muit. Kind | Note
clientServer ClientServerinterface 1 ref The referenced ClientServerinterface represents the
Interface client server interface the mapping is dedicated to.
operation ClientServerOperation 1.7 aggr | This specifies the operations used in the mapping
Mapping BlueprintMapping between the ClientServerinterface and the BswModule
Entry.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=operationMapping, operation
Mapping.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
portDefined PortDefinedArgument * aggr This specifies the PortDefinedArguments used in the
Argument Blueprint mapping between the ClientServerinterface and the Bsw
Blueprint ModuleEntry.
(ordered) Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=portDefinedArgumentBlueprint, portDefined
ArgumentBlueprint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
Table B.31: ClientServerinterfaceToBswModuleEntryBlueprintMapping
Class ClientServerOperation
Note An operation declared within the scope of a client/server interface.
Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,
Referrable
Aggregated by | Applicationinterface.command, AtpClassifier.atpFeature, ClientServerlnterface.operation, Diagnostic
DataElementinterface.read, DiagnosticDataldentifierInterface.read, DiagnosticDataldentifierInterface.
write, DiagnosticExtendedDataRecordlInterface.provide, DiagnosticRoutinelnterface.requestResult,
DiagnosticRoutinelnterface.start, DiagnosticRoutinelnterface.stop, PhmRecoveryActioninterface.
recovery, Servicelnterface.method
Attribute Type Mult. Kind | Note
argument ArgumentDataPrototype * aggr An argument of this ClientServerOperation.
(ordered) Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=argument.shortName, argument.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime

AUT<

SSAR

Class

ClientServerOperation

diagArglntegrity

Boolean 0..1 attr This attribute shall only be used in the implementation of
diagnostic routines to support the case where input and
output arguments are allocated in a shared buffer and
might unintentionally overwrite input arguments by
tentative write operations to output arguments.

This situation can happen during sliced execution or while
output parameters are arrays (call by reference). The
value true means that the ClientServerOperation is
aware of the usage of a shared buffer and takes
precautions to avoid unintentional overwrite of input
arguments.

If the attribute does not exist or is set to false the
ClientServerOperation does not have to consider
the usage of a shared buffer.

This Attribute is only used by the AUTOSAR Classic
Platform.

possibleError

ApplicationError ref Possible errors that may by raised by the referring
operation.
This Attribute is only used by the AUTOSAR Classic

Platform.

Table B.32: ClientServerOperation

Class Collection
Note This meta-class specifies a collection of elements. A collection can be utilized to express additional
aspects for a set of elements.
Note that Collection is an ARElement. Therefore it is applicable e.g. for EvaluatedVariant, even if this is
not obvious.
Usually the category of a Collection is "SET". On the other hand, a Collection can also express an
arbitrary relationship between elements. This is denoted by the category "RELATION" (see also [TPS_
GST_00347]).
In this case the collection represents an association from "sourceElement” to "targetElement” in the role
"role".
Tags: atp.recommendedPackage=Collections
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
autoCollect AutoCollectEnum 0..1 attr This attribute reflects how far the referenced objects are
part of the collection.
Tags: xml.sequenceOffset=20
collected AtpFeature * iref This instance ref supports the use case that a particular
Instance instance is part of the collection.
Tags: xml.sequenceOffset=60
InstanceRef implemented by: AnylnstanceRef
collection NameToken 0..1 attr Provides the ability to express the semantics of a
Semantics Collection depending on the intended use case. The
collectionSemantics is specified as a NameToken which
must be agreed by all stakeholders.
Tags: xml.sequenceOffset=25
element Identifiable * ref This is an element in the collection. Note that Collection

itself is collectable. Therefore collections can be nested.
In case of category="RELATION" this represents the
target end of the relation.

Tags: xml.sequenceOffset=40

SSAR

AUT<

A
Class Collection
elementRole Identifier 0..1 attr This attribute allows to denote a particular role of the
collection. Note that the applicable semantics shall be
mutually agreed between the two parties.
In particular it denotes the role of element in the context
of sourceElement.
Tags: xml.sequenceOffset=30
sourceElement Identifiable * ref Only if Category = "RELATION". This represents the
source of a relation.
Tags: xml.sequenceOffset=50
sourcelnstance AtpFeature * iref Only if Category = "RELATION". This represents the
source instance of a relation.
Tags: xml.sequenceOffset=70
InstanceRef implemented by: AnylnstanceRef
Table B.33: Collection
Class CompuMethod
Note This meta-class represents the ability to express the relationship between a physical value and the
mathematical representation.
Note that this is still independent of the technical implementation in data types. It only specifies the
formula how the internal value corresponds to its physical pendant.
Tags: atp.recommendedPackage=CompuMethods
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
compulnternal Compu 0..1 aggr | This specifies the computation from internal values to
ToPhys physical values.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=compulnternalToPhys
xml.sequenceOffset=80
compuPhysTo Compu 0..1 aggr | This represents the computation from physical values to
Internal the internal values.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=compuPhysTolnternal
xml.sequenceOffset=90
displayFormat DisplayFormatString 0..1 attr This property specifies, how the physical value shall be
displayed e.g. in documents or measurement and
calibration tools.
Tags: xml.sequenceOffset=20
unit Unit 0..1 ref This is the physical unit of the Physical values for which
the CompuMethod applies.
Tags: xml.sequenceOffset=30
Table B.34: CompuMethod
Class CompuScale
Note This meta-class represents the ability to specify one segment of a segmented computation method.
Base ARObject
Aggregated by | CompuScales.compuScale
Attribute Type | Muit. | Kind | Note

\Y

AUTSSAR

Class

CompuScale

a2|DisplayText

String 0..1 attr The value of this attribute shall be taken for generating
one display text (specifically the OutVal) within the
equivalent of the enclosing CompuMethod in A2L.

compulnverse
Value

CompuConst 0..1 aggr This is the inverse value of the constraint. This supports
the case that the scale is not reversible per se.
Tags: xml.sequenceOffset=60

compuScale
Contents

CompuScaleContents 0..1 aggr | This represents the computation details of the scale.
Tags:

xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=70

xml.typeElement=false
xml.typeWrapperElement=false

desc

MultiLanguageOverview 0..1 agor <desc> represents a general but brief description of the
Paragraph object in question.
Tags: xml.sequenceOffset=30

lowerLimit

Limit 0..1 attr This specifies the lower limit of the scale.
Stereotypes: atpVariation

Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=40

mask

PositiveUnlimitedInteger 0..1 attr In difference to all the other computational methods every
COMPU-SCALE will be applied including the bit MASK.
Therefore it is allowed for this type of COMPU-METHOD,
that COMPU-SCALES overlap.

To calculate the string reverse to a value, the string has to
be split and the according value for each substring has to
be summed up. The sum is finally transmitted.

The processing has to be done in order of the
COMPU-SCALE elements.

Tags: xml.sequenceOffset=35

shortLabel

Identifier 0..1 attr This element specifies a short name for the particular
scale. The name can for example be used to derive a
programming language identifier.

Tags: xml.sequenceOffset=20

symbol

Cldentifier 0..1 attr The symbol, if provided, is used by code generators to get
a C identifier for the CompuScale. The name will be used
as is for the code generation, therefore it needs to be
unique within the generation context.

Tags: xml.sequenceOffset=25

upperLimit

Limit 0..1 attr This specifies the upper limit of a of the scale.
Stereotypes: atpVariation

Tags:

vh.latestBindingTime=preCompileTime
xml.sequenceOffset=50

Table B.35: CompuScale

Class

ConsistencyNeeds

Note

This meta-class represents the ability to define requirements on the implicit communication behavior.

Base

ARObject, AtpBlueprint, AtpBlueprintable, Identifiable, MultilanguageReferrable, Referrable

Aggregated by

ConsistencyNeedsBlueprintSet.consistencyNeeds, SwComponentType.consistencyNeeds

Attribute

Type | Muit. | Kind | Note

\Y%

AUTSSAR

A

Class ConsistencyNeeds

dpgDoesNot DataPrototypeGroup * aggr | This group of VariableDataPrototypes does not require

Require coherency with respect to the implicit communication

Coherency behavior.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dpgDoesNotRequireCoherency.shortName,
dpgDoesNotRequireCoherency.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dpgRequires DataPrototypeGroup * aggr This group of VariableDataPrototypes requires coherency

Coherency with respect to the implicit communication behavior, i.e. all
read and write access to VariableDataPrototypes in the
DataPrototypeGroup by the RunnableEntitys of the
RunnableEntityGroup need to be handled in a coherent
manner.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dpgRequiresCoherency.shortName, dpg
RequiresCoherency.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

regDoesNot RunnableEntityGroup * aggr | This group of RunnableEntities does not require stability

RequireStability with respect to the implicit communication behavior.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=regDoesNotRequireStability.shortName, reg
DoesNotRequireStability.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

regRequires RunnableEntityGroup * aggr | This group of RunnableEntities requires stability with

Stability respect to the implicit communication behavior, i.e. all
read and write access to VariableDataPrototypes in the
DataPrototypeGroup by the RunnableEntitys of the
RunnableEntityGroup need to be handled in a stable
manner.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=regRequiresStability.shortName, reg
RequiresStability.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table B.36: ConsistencyNeeds
Class ConsistencyNeedsBlueprintSet
Note This meta class represents the ability to specify a set of blueprint for ConsistencyNeeds.
Tags: atp.recommendedPackage=ConsistencyNeedsBlueprintSets
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable

Aggregated by | ARPackage.element

Attribute Type Mulit. Kind | Note

consistency ConsistencyNeeds * aggr | This represents a particular blueprint of consistency

Needs

Needs. Note that it is

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=consistencyNeeds.shortName, consistency
Needs.variationPoint.shortLabel

vh.latestBinding Time=preCompile Time

Table B.37: ConsistencyNeedsBlueprintSet

AUTSSAR

Class DataConstr

Note This meta-class represents the ability to specify constraints on data.
Tags: atp.recommendedPackage=DataConstrs

Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable

Aggregated by | ARPackage.element

Attribute Type Mult. Kind | Note

dataConstrRule DataConstrRule * aggr | This is one particular rule within the data constraints.

Tags:

xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=30
xml.typeElement=false
xml.typeWrapperElement=false

Table B.38: DataConstr

Class DataPrototypeGroup
Note This meta-class represents the ability to define a collection of DataPrototypes that are subject to the
formal definition of implicit communication behavior. The definition of the collection can be nested.
Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,
Referrable
Aggregated by | AtpClassifier.atpFeature, ConsistencyNeeds.dpgDoesNotRequireCoherency, ConsistencyNeeds.dpg
RequiresCoherency
Attribute Type Mult. Kind | Note
dataPrototype DataPrototypeGroup * iref This represents the ability to define nested groups of
Group VariableDataPrototypes.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataPrototypeGroup.contextSwComponent
Prototype, dataPrototypeGroup.targetDataPrototype
Group, dataPrototypeGroup.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
InstanceRef implemented by: InnerDataPrototype
GrouplnCompositioninstanceRef
implicitData VariableDataPrototype * iref This represents a collection of VariableDataPrototypes
Access that belong to the enclosing DataPrototypeGroup
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=implicitDataAccess.contextSwComponent
Prototype, implicitDataAccess.contextPortPrototype,
implicitDataAccess.targetVariableDataPrototype, implicit
DataAccess.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
InstanceRef implemented by: VariableDataPrototypeln
CompositioninstanceRef
Table B.39: DataPrototypeGroup
Class DataTypeMappingSet
Note This class represents a list of mappings between ApplicationDataTypes and
ImplementationDataTypes. In addition, it can contain mappings between
ImplementationDataTypes and ModeDeclarationGroups.
Tags: atp.recommendedPackage=DataTypeMappingSets
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element

V

AUT<

SSAR

A
Class DataTypeMappingSet
Attribute Type Mult. Kind | Note
dataTypeMap DataTypeMap * aggr | This is one particular association between an
ApplicationDataType and its
AbstractImplementationDataType.
modeRequest ModeRequestTypeMap * aggr This is one particular association between an
TypeMap ModeDeclarationGroup and its
AbstractImplementationDataType.
Table B.40: DataTypeMappingSet
Class Documentation
Note This meta-class represents the ability to handle a so called standalone documentation. Standalone
means, that such a documentation is not embedded in another ARElement or identifiable object. The
standalone documentation is an entity of its own which denotes its context by reference to other objects
and instances.
Tags: atp.recommendedPackage=Documentations
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable, UploadableDesignElement, UploadablePackageElement
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
context DocumentationContext * aggr This is the context of the particular documentation.
documentation PredefinedChapter 0..1 aggr This is the content of the documentation related to the
Content specified contexts.
Tags: xml.sequenceOffset=200
Table B.41: Documentation
Class «atpMixed» DocumentationBlock
Note This class represents a documentation block. It is made of basic text structure elements which can be
displayed in a table cell.
Base ARObject
Aggregated by | ApplicabilityInfo.remark, AUTOSAR:.introduction, BlueprintGenerator.introduction, BlueprintPolicy
Modifiable.blueprintDerivationGuide, ClientServerOperationBlueprintMapping.blueprintMappingGuide,
DataMapping.introduction, Defltem.def, Describable.introduction, EcucAddInfoParamValue.value, Ecu
ResourceEstimation.introduction, Entry.entryContents, FrameMapping.introduction, GeneralAnnotation.
annotationText, /dentifiable.introduction, IPduMapping.introduction, I1SignalMapping.introduction, ltem.
itemContents, Labeledltem.itemContents, LifeCyclelnfo.remark, MappingConstraint.introduction, Msr
QueryP2.msrQueryResultP2, Note.noteText, PortDefinedArgumentBlueprint.blueprintMappingGuide,
PrmChar.cond, PrmChar.remark, Schedule TableEntry.introduction, SignalPathConstraint.introduction,
StructuredReq.conflicts, StructuredReq.dependencies, StructuredReq.description, StructuredReq.
rationale, StructuredReq.remark, StructuredReq.supportingMaterial, StructuredReq.useCase, SwAxis
Type.swGenericAxisDesc, TopicContent.blockLevelContent, TraceableText.text, VariationPoint.blueprint
Condition
Attribute Type Mulit. Kind | Note
defList DefList 0..1 aggr This represents a definition list in the documentation
block.
Stereotypes: atpVariation
Tags:
vh.latestBindingTime=postBuild
xml.sequenceOffset=40

AUTSSAR

Class

«atpMixed» DocumentationBlock

figure

MIFigure

0..1

aggr

This represents a figure in the documentation block.
Stereotypes: atpVariation

Tags:

vh.latestBinding Time=postBuild
xml.sequenceOffset=70

formula

MIFormula

aggr

This is a formula in the definition block.
Stereotypes: atpVariation

Tags:

vh.latestBindingTime=postBuild
xml.sequenceOffset=60

labeledList

LabeledList

aggr

This represents a labeled list.
Stereotypes: atpVariation
Tags:
vh.latestBindingTime=postBuild
xml.sequenceOffset=50

list

List

agaor

This represents numbered or unnumbered list.
Stereotypes: atpVariation

Tags:

vh.latestBindingTime=postBuild
xml.sequenceOffset=30

msrQueryP2

MsrQueryP2

aggr

This represents automatically contributed contents
provided by an msrquery in the context of Documentation
Block.

note

Note

aggr

This represents a note in the text flow.
Stereotypes: atpVariation

Tags:
vh.latestBindingTime=postBuild
xml.sequenceOffset=80

MultiLanguage
Paragraph

aggr

This is one particular paragraph.
Stereotypes: atpVariation
Tags:
vh.latestBindingTime=postBuild
xml.sequenceOffset=10

structuredReq

StructuredReq

aggr

This aggregation supports structured requirements
embedded in a documentation block.
Stereotypes: atpVariation

Tags:

vh.latestBindingTime=postBuild
xml.sequenceOffset=100

trace

TraceableText

aggr

This represents traceable text in the documentation block.
This allows to specify requirements/constraints in any
documentation block.

The kind of the trace is specified in the category.
Stereotypes: atpVariation

Tags:

vh.latestBindingTime=postBuild

xml.sequenceOffset=90

verbatim

MultiLanguageVerbatim 0..1

aggr

This represents one particular verbatim text.
Stereotypes: atpVariation

Tags:

vh.latestBindingTime=postBuild
xml.sequenceOffset=20

Table B.42: DocumentationBlock

AUTSSAR

Class «atpVariation» EcucAbstractStringParamDef (abstract)
Note Abstract class that is used to collect the common properties for StringParamDefs, LinkerSymbolDef,
FunctionNameDef and MultilineStringParamDefs.
Tags: vh.latestBindingTime=codeGenerationTime
This Class is only used by the AUTOSAR Classic Platform.
Base ARObject, AtpDefinition, EcucCommonAttributes, EcucDefinitionElement, EcucParameterDef,
Identifiable, MultilanguageReferrable, Referrable
Subclasses EcucFunctionNameDef, EcucLinkerSymbolDef, EcucMultilineStringParamDef, EcucStringParamDef
Aggregated by | EcucDestinationUriPolicy.parameter, EcucParamConfContainerDef.parameter
Attribute Type Muit. Kind | Note
defaultValue VerbatimString 0..1 attr Default value of the string configuration parameter.
maxLength Positivelnteger 0..1 attr Max length allowed for this string.
minLength Positivelnteger 0..1 attr Min length allowed for this string.
regular RegularExpression 0..1 attr This represents the regular expression which shall be
Expression used to validate the string parameter value.
Table B.43: EcucAbstractStringParamDef
Class EcucBooleanParamDef
Note Configuration parameter type for Boolean. Allowed values are true and false.
This Class is only used by the AUTOSAR Classic Platform.
Base ARObject, AtpDefinition, EcucCommonATttributes, EcucDefinitionElement, EcucParameterDef,
Identifiable, MultilanguageReferrable, Referrable
Aggregated by | EcucDestinationUriPolicy.parameter, EcucParamConfContainerDef.parameter
Attribute Type Mult. Kind | Note
defaultValue Boolean 0..1 attr Default value of the boolean configuration parameter.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=codeGenerationTime

Table B.44: EcucBooleanParamDef

Class EcucChoiceReferenceDef
Note Specify alternative references where in the ECU Configuration description only one of the specified
references will actually be used.
This Class is only used by the AUTOSAR Classic Platform.
Base ARObject, AtpDefinition, EcucAbstractinternalReferenceDef, EcucAbstractReferenceDef, EcucCommon
Attributes, EcucDefinitionElement, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | EcucDestinationUriPolicy.reference, EcucParamConfContainerDef.reference
Attribute Type Muit. Kind | Note
destination EcucContainerDef * ref All the possible parameter containers for the reference
are specified.
Stereotypes: atpUriDef
Table B.45: EcucChoiceReferenceDef
Class EcucContainerDef (abstract)
Note Base class used to gather common attributes of configuration container definitions.
This Class is only used by the AUTOSAR Classic Platform.
Base ARObject, AtpDefinition, EcucDefinitionElement, Identifiable, MultilanguageReferrable, Referrable
Subclasses EcucChoiceContainerDef, EcucParamConfContainerDef

\Y%

AUTSSAR

A

Class

EcucContainerDef (abstract)

Aggregated by

EcucDestinationUriPolicy.container, EcucModuleDef.container, EcucParamConfContainerDef.sub

Container

Attribute

Type

Muit.

Kind

Note

destinationUri

EcucDestinationUriDef

*

ref

Several destinationUris can be defined for an Ecuc
ContainerDef. With such destinationUris an Ecuc
ContainerDef is applicable for several EcucUriReference
Defs.

Stereotypes: atpUriDef

multiplicity
ConfigClass

EcucMultiplicity
ConfigurationClass

aggr

Specifies which MultiplicityConfigurationClass this
container is available for which ConfigurationVariant. This
aggregation is optional if the surrounding EcucModuleDef
has the Category STANDARDIZED_MODULE_
DEFINITION. If the category attribute of the EcucModule
Def is set to VENDOR_SPECIFIC_MODULE_
DEFINITION and if the upperMultiplicity is greater than
the lowerMultiplicity then this aggregation is mandatory.
Tags: xml.name
Plural=MULTIPLICITY-CONFIG-CLASSES

origin

String

0..1

attr

This attribute specifies whether this configuration
container is an AUTOSAR standardized container or
whether it is vendor-specific.

postBuildVariant
Multiplicity

Boolean

attr

Indicates if a container may have different number of
instances in different post-build variants (previously
known as post-build selectable configuration sets). TRUE
means yes, FALSE means no.

requiresindex

Boolean

0..1

attr

Used to define whether the value element for this
definition shall be provided with an index.

Table B.46: EcucContainerDef

Class EcucContainerValue
Note Represents a Container definition in the ECU Configuration Description.
This Class is only used by the AUTOSAR Classic Platform.

Base ARObject, EcucindexableValue, Identifiable, MultilanguageReferrable, Referrable

Aggregated by | EcucContainerValue.subContainer, EcucModuleConfigurationValues.container

Attribute Type Mult. Kind | Note

definition EcucContainerDef 0..1 ref Reference to the definition of this Container in the ECU
Configuration Parameter Definition.
Tags: xml.sequenceOffset=-10

parameterValue | EcucParameterValue * agor Aggregates all ECU Configuration Values within this
Container.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=parameterValue, parameterValue.variation
Point.shortLabel
vh.latestBinding Time=postBuild

referenceValue EcucAbstractReference * aggr Aggregates all References with this container.

Value

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=referenceValue, referenceValue.variation
Point.shortLabel

vh.latestBinding Time=postBuild

AUTSSAR

Class

EcucContainerValue

subContainer

EcucContainerValue aggr Aggregates all sub-containers within this container.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=subContainer.shortName, sub
Container.variationPoint.shortLabel

vh.latestBinding Time=postBuild

Table B.47: EcucContainerValue

Class EcucDefinitionCollection
Note This represents the anchor point of an ECU Configuration Parameter Definition within the AUTOSAR
templates structure.
Tags: atp.recommendedPackage=EcucDefs
This Class is only used by the AUTOSAR Classic Platform.
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
module EcucModuleDef * ref References to the module definitions of individual
software modules.
Table B.48: EcucDefinitionCollection
Class EcucEnumerationParamDef
Note Configuration parameter type for Enumeration.
This Class is only used by the AUTOSAR Classic Platform.
Base ARObject, AtpDefinition, EcucCommonAttributes, EcucDefinitionElement, EcucParameterDef,
Identifiable, MultilanguageReferrable, Referrable
Aggregated by | EcucDestinationUriPolicy.parameter, EcucParamConfContainerDef.parameter
Attribute Type Mult. Kind | Note
defaultValue Identifier 0..1 attr Default value of the enumeration configuration parameter.
This string needs to be one of the literals specified for this
enumeration.
literal EcucEnumerationLiteral * aggr Aggregation on the literals used to define this
Def enumeration parameter. This aggregation is optional if the
surrounding EcucModuleDef has the category
STANDARDIZED_MODULE_DEFINITION. If the
category attribute of the EcucModuleDef is set to
VENDOR_SPECIFIC_MODULE_DEFINITION then this
aggregation is mandatory.
Stereotypes: atpSplitable
Tags: atp.Splitkey=literal.shortName
Table B.49: EcucEnumerationParamDef
Class EcucFloatParamDef
Note Configuration parameter type for Float.
This Class is only used by the AUTOSAR Classic Platform.
Base ARObject, AtpDefinition, EcucCommonAttributes, EcucDefinitionElement, EcucParameterDef,
Identifiable, MultilanguageReferrable, Referrable
Aggregated by | EcucDestinationUriPolicy.parameter, EcucParamConfContainerDef.parameter
Attribute Type | Mult. | Kind | Note

V

AUT<

SSAR

Class

EcucFloatParamDef

defaultValue

Float 0..1 attr Default value of the float configuration parameter.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=codeGenerationTime

max Limit 0..1 attr Max value allowed for the parameter defined.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=codeGenerationTime
min Limit 0..1 attr Min value allowed for the parameter defined.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=codeGenerationTime
Table B.50: EcucFloatParamDef
Class EcuclntegerParamDef
Note Configuration parameter type for Integer.
This Class is only used by the AUTOSAR Classic Platform.
Base ARObject, AtpDefinition, EcucCommonATttributes, EcucDefinitionElement, EcucParameterDef,
Identifiable, MultilanguageReferrable, Referrable
Aggregated by | EcucDestinationUriPolicy.parameter, EcucParamConfContainerDef.parameter
Attribute Type Mulit. Kind | Note
defaultValue Unlimitedinteger 0..1 attr Default value of the integer configuration parameter.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=codeGenerationTime

max Unlimitedinteger 0..1 attr Max value allowed for the parameter defined.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=codeGenerationTime
min Unlimitedinteger 0..1 attr Min value allowed for the parameter defined.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=codeGenerationTime
Table B.51: EcuclntegerParamDef
Class EcucModuleDef
Note Used as the top-level element for configuration definition for Software Modules, including BSW and RTE
as well as ECU Infrastructure.
Tags: atp.recommendedPackage=EcucDefs
This Class is only used by the AUTOSAR Classic Platform.
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpDefinition, CollectableElement, Ecuc
DefinitionElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Muit. Kind | Note
apiServicePrefix | Cldentifier 0..1 attr For modules where several instances of the VSMD can

be defined the apiServicePrefix defines the API
namespace of the derived instances, e.g. Cdd, Xfrm
(ComXf, SomelpXf, E2EXf).

container

EcucContainerDef aggr Aggregates the top-level container definitions of this
specific module definition.

Stereotypes: atpSplitable

Tags:

atp.Splitkey=container.shortName
xml.sequenceOffset=11

postBuildVariant
Support

Boolean 0..1 attr Indicates if a module supports different post-build variants
(previously known as post-build selectable configuration
sets). TRUE means yes, FALSE means no.

AUT<

SSAR

A
Class EcucModuleDef
refinedModule EcucModuleDef 0..1 ref Optional reference from the Vendor Specific Module
Def Definition to the Standardized Module Definition it refines.
In case this EcucModuleDef has the category
STANDARDIZED_MODULE_DEFINITION this reference
shall not be provided. In case this EcucModuleDef has
the category VENDOR_SPECIFIC_MODULE_
DEFINITION this reference is mandatory.
Stereotypes: atpUriDef
supported EcucConfiguration * attr Specifies which ConfigurationVariants are supported by
ConfigVariant VariantEnum this software module. This attribute is optional if the Ecuc
ModuleDef has the category STANDARDIZED_
MODULE_DEFINITION. If the category attribute of the
EcucModuleDef is set to VENDOR_SPECIFIC_
MODULE_DEFINITION then this attribute is mandatory.
Table B.52: EcucModuleDef
Class EcucNumericalParamValue
Note Holding the value which is subject to variant handling.
This Class is only used by the AUTOSAR Classic Platform.
Base ARObject, EcuclindexableValue, EcucParameterValue
Aggregated by | EcucContainerValue.parameterValue
Attribute Type Mult. Kind | Note
value Numerical 0..1 attr Value which is subject to variant handling.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
Table B.53: EcucNumericalParamValue
Class EcucParameterDef (abstract)
Note Abstract class used to define the similarities of all ECU Configuration Parameter types defined as
subclasses.
This Class is only used by the AUTOSAR Classic Platform.
Base ARObject, AtpDefinition, EcucCommonAttributes, EcucDefinitionElement, Identifiable, Multilanguage
Referrable, Referrable
Subclasses EcucAbstractStringParamDef, EcucAddInfoParamDef, EcucBooleanParamDef, EcucEnumerationParam
Def, EcucFloatParamDef, EcucintegerParamDef
Aggregated by | EcucDestinationUriPolicy.parameter, EcucParamConfContainerDef.parameter
Attribute Type Mult. Kind | Note
derivation EcucDerivation 0..1 aggr A derivation of a Configuration Parameter value can be
Specification specified by an informal Calculation Formula or by a
formal language that can be used to specify the
computational rules.
symbolicName Boolean 0..1 attr Specifies that this parameter’s value is used, together
Value with the aggregating container, to derive a symbolic name
definition. See chapter "Representation of Symbolic
Names" in Ecuc specification for more details.

AUT<

SSAR

A
Class EcucParameterDef (abstract)
withAuto Boolean 0..1 attr Specifies whether it shall be allowed on the value side to
specify this parameter value as "AUTO".
If withAuto is "true" it shall be possible to set the "isAuto
Value" attribute of the respective parameter to "true". This
means that the actual value will not be considered during
ECU Configuration but will be (re-)calculated by the code
generator and stored in the value attribute afterwards.
These implicit updated values might require a
re-generation of other modules which reference these
values.
If withAuto is "false" it shall not be possible to set the "is
AutoValue" attribute of the respective parameter to "true".
If withAuto is not present the default is "false".
Table B.54: EcucParameterDef
Class EcucParameterValue (abstract)
Note Common class to all types of configuration values.
This Class is only used by the AUTOSAR Classic Platform.
Base ARObject, EcuclndexableValue
Subclasses EcucAddInfoParamValue, EcucNumericalParamValue, EcucTextualParamValue
Aggregated by | EcucContainerValue.parameterValue
Attribute Type Mult. Kind | Note
annotation Annotation * aggr Possibility to provide additional notes while defining the
ECU Configuration Parameter Values. These are not
intended as documentation but are mere design notes.
Tags: xml.sequenceOffset=10
definition EcucParameterDef 0..1 ref Reference to the definition of this EcucParameterValue
subclasses in the ECU Configuration Parameter
Definition.
Tags: xml.sequenceOffset=-10
isAutoValue Boolean 0..1 attr If withAuto is set to "true" for this parameter definition the
isAutoValue can be set to "true". If isAutoValue is set to
"true" the actual value will not be considered during ECU
Configuration but will be (re-)calculated by the code
generator and stored in the value attribute afterwards.
These implicit updated values might require a
re-generation of other modules which reference these
values.
If isAutoValue is not present the default is "false".
Tags: xml.sequenceOffset=20
Table B.55: EcucParameterValue
Class EcucReferenceDef
Note Specify references within the ECU Configuration Description between parameter containers.
This Class is only used by the AUTOSAR Classic Platform.
Base ARObject, AtpDefinition, EcucAbstractinternalReferenceDef, EcucAbstractReferenceDef, EcucCommon
Attributes, EcucDefinitionElement, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | EcucDestinationUriPolicy.reference, EcucParamConfContainerDef.reference
Attribute Type Mult. Kind | Note
destination EcucContainerDef 0..1 ref Exactly one reference to a parameter container is allowed

as destination.
Stereotypes: atpUriDef

Table B.56: EcucReferenceDef

AUT<

SSAR

Class EcucTextualParamValue

Note Holding a value which is not subject to variation.
This Class is only used by the AUTOSAR Classic Platform.

Base ARObject, EcuclindexableValue, EcucParameterValue

Aggregated by | EcucContainerValue.parameterValue

Attribute Type Mult. Kind | Note

value VerbatimString 0..1 attr Value of the parameter, not subject to variant handling.

Table B.57: EcucTextualParamValue

Class EcucUriReferenceDef

Note Definition of reference with a destination that is specified via a destinationUri. With such a reference it is
possible to define a reference to a EcucContainerDef in a different module independent from the
concrete definition of the target container.
This Class is only used by the AUTOSAR Classic Platform.

Base ARObject, AtpDefinition, EcucAbstractinternalReferenceDef, EcucAbstractReferenceDef, EcucCommon
Attributes, EcucDefinitionElement, Identifiable, MultilanguageReferrable, Referrable

Aggregated by | EcucDestinationUriPolicy.reference, EcucParamConfContainerDef.reference

Attribute Type Mult. Kind | Note

destinationUri EcucDestinationUriDef 0..1 ref Any EcucContainerDef with a destinationUri that is

identical to the destinationUri that is referenced here
defines a valid target.
Stereotypes: atpUriDef

Table B.58: EcucUriReferenceDef

Class

FlatMap

Note

Contains a flat list of references to software objects. This list is used to identify instances and to resolve
name conflicts. The scope is given by the RootSwCompositionPrototype for which it is used, i.e. it can be
applied to a system, system extract or ECU-extract.

An instance of FlatMap may also be used in a preliminary context, e.g. in the scope of a software
component before integration into a system. In this case it is not referred by a RootSwComposition
Prototype.

Tags: atp.recommendedPackage=FlatMaps

This Class is only used by the AUTOSAR Classic Platform.

Base

ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable

Aggregated by

ARPackage.element

Attribute

Type Mulit. Kind | Note

instance

*

FlatinstanceDescriptor A descriptor instance aggregated in the flat map.

The variation point accounts for the fact, that the system
in scope can be subject to variability, and thus the
existence of some instances is variable.

The aggregation has been made splitable because the
content might be contributed by different stakeholders at
different times in the workflow. Plus, the overall size might
be so big that eventually it becomes more manageable if
it is distributed over several files.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=instance.shortName, instance.variation
Point.shortLabel

vh.latestBindingTime=postBuild

aggr

Table B.59: FlatMap

AUTSSAR

Class

Identifiable (abstract)

Note

Instances of this class can be referred to by their identifier (within the namespace borders). In addition to
this, Identifiables are objects which contribute significantly to the overall structure of an AUTOSAR
description. In particular, Identifiables might contain Identifiables.

Base

ARObject, MultilanguageReferrable, Referrable

Subclasses

ARPackage, AbstractDolpLogicAddressProps, AbstractEvent, AbstractimplementationDataTypeElement,
AbstractSecurityEventFilter, AbstractSecurityldsminstanceFilter, AbstractServicelnstance, AppOsTask
ProxyToEcuTaskProxyMapping, ApplicationEndpoint, ApplicationError, ApplicationPartitionToEcuPartition
Mapping, AppliedStandard, AsynchronousServerCallResultPoint, AtoBlueprint, AtpBlueprintable, Atp
Classifier, AtpFeature, AutosarOperationArgumentinstance, AutosarVariablelnstance, BinaryManifest
AddressableObject, BinaryManifestltemDefinition, BinaryManifestResource, BinaryManifestResource
Definition, BlockState, BswinternalTriggeringPoint, BswModuleDependency, BuildActionEntity, Build
ActionEnvironment, CanTpAddress, CanTpChannel, CanTpNode, Chapter, ClientldDefinition, Client
ServerOperation, Code, CollectableElement, ComManagementMapping, CommConnectorPort,
CommunicationConnector, CommunicationController, Compiler, ConsistencyNeeds, ConsumedEvent
Group, CouplingElementAbstractDetails, CouplingPort, CouplingPortAbstractShaper, CouplingPort
StructuralElement, CpSoftwareClusterResource, CpSoftwareClusterResourceToApplicationPartition
Mapping, CpSoftwareClusterToApplicationPartitionMapping, CpSoftwareClusterToEculnstanceMapping,
CpSoftwareClusterToResourceMapping, CryptoServiceMapping, CyclicHandlingComDataToOsTask
ProxyMapping, DataPrototypeGroup, DataPrototypeTransformationPropsldent, DataTransformation, Dds
AbstractServicelnstanceElementCp, DdsCpDomain, DdsCpPartition, DdsCpQosProfile, DdsCpTopic,
DependencyOnArtifact, DiagEventDebounceAlgorithm, DiagnosticAuthTransmitCertificateEvaluation,
DiagnosticConnectedindicator, DiagnosticDataElement, DiagnosticDebounceAlgorithmProps, Diagnostic
ExtendedDataRecordElement, DiagnosticFunctionInhibitSource, DiagnosticParameterElement,
DiagnosticRoutineSubfunction, DItApplication, DItArgument, DItArgumentProps, DltLogChannel, DIt
Message, Dolplinterface, DolpLogicAddress, DolpRoutingActivation, ECUMapping, EOCExecutableEntity
RefAbstract, EcuPartition, EcuPartitionToCoreMapping, EcucContainerValue, EcucDefinitionElement,
EcucDestinationUriDef, EcucEnumerationLiteralDef, EcucQuery, EcucValidationCondition, Ethernet
WakeupSleepOnDatalineConfig, EventHandler, ExclusiveArea, ExecutableEntity, ExecutionTime,
FMAttributeDef, FMFeatureMapAssertion, FMFeatureMapCondition, FMFeatureMapElement, FMFeature
Relation, FMFeatureRestriction, FMFeatureSelection, FlatinstanceDescriptor, FlexrayArTpNode, Flexray
TpConnectionControl, FlexrayTpNode, FlexrayTpPduPool, FrameTriggering, GeneralParameter, Global
TimeGateway, GlobalTimeMaster, GlobalTimeSlave, HeapUsage, HwAttributeDef, HwAttributeLiteral
Def, HwPin, HwPinGroup, IEEE1722TpAcfBus, IEEE1722TpAcfBusPart, IPSecRule, IPv6ExtHeader
FilterList, 1SignalTolPduMapping, ISignalTriggering, /dentCaption, ImpositionTime, InternalTriggering
Point, J1939Node, J1939SharedAddressCluster, J1939TpNode, Keyword, LifeCycleState, LinSchedule
Table, LinTpNode, Linker, MacAddressVlanMembership, MacMulticastGroup, MacSecKayParticipant, Mc
Datalnstance, MemorySection, ModeDeclaration, ModeDeclarationMapping, ModeSwitchPoint, Mode
SwitchSenderComSpecProps, NetworkEndpoint, NmCluster, NmEcu, NmNode, NvBlockDescriptor,
PackageableElement, ParameterAccess, PduActivationRoutingGroup, PduToFrameMapping, Pdu
Triggering, PerlnstanceMemory, PhysicalChannel, PortElementToCommunicationResourceMapping,
PortGroup, PortinterfaceMapping, QueuedReceiverComSpecProps, ResourceConsumption, RootSw
CompositionPrototype, RptComponent, RptContainer, RptExecutableEntity, RptExecutableEntityEvent,
RptExecutionContext, RptProfile, RptServicePoint, RteEventinCompositionSeparation, RteEventin
CompositionToOsTaskProxyMapping, RteEventinSystemSeparation, RteEventinSystemToOsTaskProxy
Mapping, RunnableEntityGroup, SdgAttribute, SdgClass, SecOcJobRequirement, SecureCommunication
AuthenticationProps, SecureCommunicationFreshnessProps, SecurityEventContextDataElement,
SecurityEventContextProps, ServerCallPoint, ServerComSpecProps, ServiceNeeds, SignalService
TranslationElementProps, SignalServiceTranslationEventProps, SignalServiceTranslationProps, Socket
Address, SomeipTpChannel, StackUsage, StaticSocketConnection, StructuredReq, SwGenericAxis
ParamType, SwServiceArg, SwcServiceDependency, SwcToApplicationPartitionMapping, SwcToEcu
Mapping, SwcTolmplMapping, SwitchAsynchronousTrafficShaperGroupEntry, SwitchAtsInstanceEntry,
SwitchFlowMeteringEntry, SwitchStreamFilterActionDestPortModification, SwitchStreamFilterEntry,
SwitchStreamFilterRule, SwitchStreamGateEntry, SwitchStreamldentification, SystemMapping, System
SignalGroupToCommunicationResourceMapping, SystemSignalToCommunicationResourceMapping,
TDCpSoftwareClusterMapping, TDCpSoftwareClusterResourceMapping, TcpOptionFilterList, Timing
Clock, TimingClockSyncAccuracy, TimingCondition, TimingConstraint, TimingDescription, Timing
ExtensionResource, TimingModelnstance, TIsCryptoCipherSuite, TIsCryptoCipherSuiteProps, Topic1,
TpAddress, TraceableTable, TraceableText, TracedFailure, TransformationlSignalPropsldent,
TransformationProps, TransformationTechnology, Trigger, VariableAccess, VariationPointProxy, View
Map, VlanConfig, WaitPoint

Attribute

Type | Mult. | Kind | Note

V

AUTSSAR

Class

Identifiable (abstract)

adminData

AdminData

0..1

aggr

This represents the administrative data for the identifiable
object.

Stereotypes: atpSplitable

Tags:

atp.Splitkey=adminData

xml.sequenceOffset=-40

annotation

Annotation

agaor

Possibility to provide additional notes while defining a
model element (e.g. the ECU Configuration Parameter
Values). These are not intended as documentation but
are mere design notes.

Tags: xml.sequenceOffset=-25

category

CategoryString

0..1

attr

The category is a keyword that specializes the semantics
of the Identifiable. It affects the expected existence of
attributes and the applicability of constraints.

Tags: xml.sequenceOffset=-50

desc

MultiLanguageOverview
Paragraph

agaor

This represents a general but brief (one paragraph)
description what the object in question is about. It is only
one paragraph! Desc is intended to be collected into
overview tables. This property helps a human reader to
identify the object in question.

More elaborate documentation, (in particular how the
object is built or used) should go to "introduction".

Tags: xml.sequenceOffset=-60

introduction

DocumentationBlock

aggr

This represents more information about how the object in
question is built or is used. Therefore itis a
DocumentationBlock.

Tags: xml.sequenceOffset=-30

uuid

String

attr

The purpose of this attribute is to provide a globally
unique identifier for an instance of a meta-class. The
values of this attribute should be globally unique strings
prefixed by the type of identifier. For example, to include a
DCE UUID as defined by The Open Group, the UUID
would be preceded by "DCE:". The values of this attribute
may be used to support merging of different AUTOSAR
models. The form of the UUID (Universally Unique
Identifier) is taken from a standard defined by the Open
Group (was Open Software Foundation). This standard is
widely used, including by Microsoft for COM (GUIDs) and
by many companies for DCE, which is based on CORBA.
The method for generating these 128-bit IDs is published
in the standard and the effectiveness and uniqueness of
the IDs is not in practice disputed. If the id namespace is
omitted, DCE is assumed. An example is
"DCE:2fac1234-3118-11b4-a222-08002b34c003". The
uuid attribute has no semantic meaning for an AUTOSAR
model and there is no requirement for AUTOSAR tools to
manage the timestamp.

Tags: xml.attribute=true

Table B.60: Identifiable

Class

ImplementationDataType

Note

Describes a reusable data type on the implementation level. This will typically correspond to a typedef in

C-code.

Tags: atp.recommendedPackage=ImplementationDataTypes

Base

ARElement, ARObject, AbstractimplementationDataType, AtpBlueprint, AtpBlueprintable, AtpClassifier,
AtpType, AutosarDataType, CollectableElement, Identifiable, MultilanguageReferrable, Packageable

Element, Referrable

Aggregated by

ARPackage.element

\Y

AUT<

SSAR

A

Class ImplementationDataType

Attribute Type Mult. Kind | Note

dynamicArray String 0..1 attr Specifies the profile which the array will follow in case this

SizeProfile data type is a variable size array.

isStructWith Boolean 0..1 attr This attribute is only valid if the attribute category is set to

Optional STRUCTURE.

Element If set to true, this attribute indicates that the
ImplementationDataType has been created with the
intention to define at least one element of the structure as
optional.

subElement ImplementationData * aggr Specifies an element of an array, struct, or union data

(ordered) TypeElement type.

The aggregation of
ImplementationDataTypeElement is subject to
variability with the purpose to support the conditional
existence of elements inside a
ImplementationDataType representing a structure.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=subElement.shortName, sub
Element.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

symbolProps SymbolProps 0..1 aggr | This represents the SymbolProps for the Implementation
DataType.

Stereotypes: atpSplitable
Tags: atp.Splitkey=symbolProps.shortName
typeEmitter NameToken 0..1 attr This attribute is used to control which part of the
AUTOSAR toolchain is supposed to trigger data type
definitions.
Table B.61: ImplementationDataType

Class ImpositionTime

Note This meta class represents one particular imposition time.

Base ARObject, AtpBlueprint, AtpBlueprintable, Identifiable, MultilanguageReferrable, Referrable

Aggregated by | ImpositionTimeDefinitionGroup.impositionTime

Attribute Type Mult. Kind | Note

Table B.62: ImpositionTime
Class Keyword
Note This meta-class represents the ability to predefine keywords which may subsequently be used to
construct names following a given naming convention, e.g. the AUTOSAR naming conventions.
Note that such names is not only shortName. It could be symbol, or even longName. Application of
keywords is not limited to particular names.

Base ARObject, Identifiable, MultilanguageReferrable, Referrable

Aggregated by | KeywordSet.keyword

Attribute Type Mulit. Kind | Note

abbrName NameToken 1 attr This attribute specifies an abbreviated name of a

keyword. This abbreviation may e.g. be used for
constructing valid shortNames according to the
AUTOSAR naming conventions.

Unlike shortName, it may contain any name token. E.g. it
may consist of digits only.

AUT<

SSAR

A
Class Keyword
classification NameToken * attr This attribute allows to attach classification to the
Keyword such as MEAN, ACTION, CONDITION, INDEX,
PREPOSITION
Table B.63: Keyword
Class KeywordSet
Note This meta--class represents the ability to collect a set of predefined keywords.
Tags: atp.recommendedPackage=KeywordSets
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
keyword Keyword * aggr | This is one particular keyword in the keyword set.
Table B.64: KeywordSet
Class LifeCyclelnfo
Note LifeCyclelnfo describes the life cycle state of an element together with additional information like what to
use instead
Base ARObject
Aggregated by | LifeCyclelnfoSet.lifeCyclelnfo
Attribute Type Mult. Kind | Note
IcObject Referrable 1 ref Element(s) have the life cycle as described in IcState.
IcState LifeCycleState 0..1 ref This denotes the particular state assigned to the object. If
no IcState is given then the default life cycle state of Life
CyclelnfoSet is assumed.
periodBegin LifeCyclePeriod 0..1 agor Starting point of period in which the element has the
denoted life cycle state IcState. If no periodBegin is given
then the default period begin of LifeCyclelnfoSet is
assumed.
periodEnd LifeCyclePeriod 0..1 aggr Expiry date, i.e. end point of period the element does not
have the denoted life cycle state IcState any more. If no
periodEnd is given then the default period begin of Life
CyclelnfoSet is assumed.
remark DocumentationBlock 0..1 agor Remark describing for example
» why the element was given the specified life cycle
« the semantics of uselnstead
uselnstead Referrable * ref Element(s) that should be used instead of the one
denoted in referrable.
Only relevant in case of life cycle states IcState unlike
"valid". In case there are multiple references the exact
semantics shall be individually described in the remark.
Table B.65: LifeCyclelnfo
Class LifeCyclelnfoSet
Note This meta class represents the ability to attach a life cycle information to a particular set of elements.

The information can be defined for a particular period. This supports the definition of transition plans.
If no period is specified, the life cycle state applies forever.
Tags: atp.recommendedPackage=LifeCycleInfoSets

Y

AUT<

SSAR

A
Class LifeCyclelnfoSet
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
defaultLcState LifeCycleState 1 ref This denotes the default life cycle state. To be used in all
LifeCyclelnfo elements within the LifeCyclelnfoSet if no
life cycle state is stated there explicitly. l.e. the defaultLc
State can be overwritten in LifeCyclelnfo elements.
defaultPeriod LifeCyclePeriod 0..1 aggr Default starting point of period in which all the specified
Begin lifeCyclelnfo apply. Note that the default period can be
overridden for each lifeCyclelnfo individually.
defaultPeriod LifeCyclePeriod 0..1 agor Default expiry date, i.e. default end point of period for
End which all specified lifeCyclelnfo apply. Note that the
default period can be overridden for each lifeCyclelnfo
individually.
lifeCyclelnfo LifeCyclelnfo * agar This represents one particular life cycle information.
usedLifeCycle LifeCycleStateDefinition 1 ref This denotes the life cycle states applicable to the current
StateDefinition Group life cycle info set.
Group
Table B.66: LifeCycleInfoSet
Class LifeCycleState
Note This meta class represents one particular state in the LifeCycle.
Base ARObject, AtpBlueprint, AtpBlueprintable, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | LifeCycleStateDefinitionGroup.IcState
Attribute Type Mult. Kind | Note
Table B.67: LifeCycleState
Class LifeCycleStateDefinitionGroup
Note This meta class represents the ability to define the states and properties of one particular life cycle.
Tags: atp.recommendedPackage=LifeCycleStateDefinitionGroups
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
IcState LifeCycleState * aggr Describes a single life cycle state of this life cycle state
definition group.
Table B.68: LifeCycleStateDefinitionGroup
Class ModeDeclarationGroup
Note A collection of Mode Declarations. Also, the initial mode is explicitly identified.
Tags: atp.recommendedPackage=ModeDeclarationGroups
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtoType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, UploadableDesignElement,
UploadablePackageElement
Aggregated by | ARPackage.element

\Y%

AUTSSAR

A

Class ModeDeclarationGroup

Attribute Type Mult. Kind | Note

initialMode ModeDeclaration 0..1 ref The initial mode of the ModeDeclarationGroup. This

mode is active before any mode switches occurred.
mode ModeDeclaration * aggr The ModeDeclarations collected in this ModeDeclaration

Declaration Group.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=modeDeclaration.shortName, mode

Declaration.variationPoint.shortLabel

vh.latestBindingTime=blueprintDerivationTime
modeManager ModeErrorBehavior 0..1 aggr | This represents the ability to define the error behavior

ErrorBehavior expected by the mode manager in case of errors on the

mode user side (e.g. terminated mode user).
This Attribute is only used by the AUTOSAR Classic
Platform.
modeTransition ModeTransition * aggr This represents the avaliable ModeTransitions of the
ModeDeclarationGroup
This Attribute is only used by the AUTOSAR Classic
Platform.
modeUserError ModeErrorBehavior 0..1 aggr This represents the definition of the error behavior
Behavior expected by the mode user in case of errors on the mode
manager side (e.g. terminated mode manager).
This Attribute is only used by the AUTOSAR Classic
Platform.
onTransition Positivelnteger 0..1 attr The value of this attribute shall be taken into account by
Value the RTE generator for programmatically representing a
value used for the transition between two statuses.
This Attribute is only used by the AUTOSAR Classic
Platform.
Table B.69: ModeDeclarationGroup

Class MultilanguageReferrable (abstract)

Note Instances of this class can be referred to by their identifier (while adhering to namespace borders). They
also may have a longName. But they are not considered to contribute substantially to the overall
structure of an AUTOSAR description. In particular it does not contain other Referrables.

Base ARObject, Referrable

Subclasses Caption, Defltem, DocumentationContext, Identifiable, SdgCaption, TraceReferrable, Traceable

Attribute Type Mult. Kind | Note

longName MultilanguagelLong 0..1 aggr | This specifies the long name of the object. Long name is
Name targeted to human readers and acts like a headline.

Table B.70: MultilanguageReferrable

Class NonqueuedReceiverComSpec

Note Communication attributes specific to non-queued receiving.

Base ARObject, RPortComSpec, ReceiverComSpec

Aggregated by | AbstractRequiredPortPrototype.requiredComSpec, PortPrototypeBlueprint.requiredComSpec

Attribute Type | Mult. | Kind | Note

Y%

AUTSSAR

Class

NonqueuedReceiverComSpec

aliveTimeout

TimeValue

0..1

attr

Specify the amount of time (in seconds) after which the
software component (via the RTE) needs to be notified if
the corresponding data item have not been received
according to the specified timing description.

If the aliveTimeout attribute is 0 no timeout monitoring
shall be performed.

This Attribute is only used by the AUTOSAR Classic
Platform.

enableUpdate

Boolean

attr

This attribute controls whether application code is entitled
to check whether the value of the corresponding Variable
DataPrototype has been updated.

This Attribute is only used by the AUTOSAR Classic
Platform.

filter

DataFilter

aggr

The applicable filter algorithm for filtering the value of the
corresponding dataElement.

handleData
Status

Boolean

attr

If this attribute is set to true, then the Rte_IStatus API
shall exist. If the attribute does not exist or is set to false,
then the Rte_IStatus API may still exist in response to the
existence of further conditions.

This Attribute is only used by the AUTOSAR Classic
Platform.

handleNever
Received

Boolean

attr

This attribute specifies whether for the corresponding
VariableDataPrototype the "never received" flag is
available. If yes, the RTE is supposed to assume that
initially the VariableDataPrototype has not been received
before. After the first reception of the corresponding
VariableDataPrototype the flag is cleared.

« If the value of this attribute is set to "true" the flag is

required.

« If set to "false", the RTE shall not support the "never
received" functionality for the corresponding Variable
DataPrototype.

This Attribute is only used by the AUTOSAR Classic
Platform.

handleTimeout
Type

HandleTimeoutEnum

attr

This attribute controls the behavior with respect to the
handling of timeouts.

This Attribute is only used by the AUTOSAR Classic
Platform.

initValue

ValueSpecification

aggr

Initial value to be used in case the sending component is
not yet initialized. If the sender also specifies an initial
value, then the receiver’s value will be used.

This Attribute is only used by the AUTOSAR Classic
Platform.

returnNoNew
DataEnabled

Boolean

attr

This attribute defines whether the RTE API functions
related to the RPortPrototype shall return No New Data
Error if no new data is received from COM.

This Attribute is only used by the AUTOSAR Classic
Platform.

timeout
Substitution
Value

ValueSpecification

agor

This attribute represents the substitution value applicable
in the case of a timeout.

This Attribute is only used by the AUTOSAR Classic
Platform.

transportError
CountEnabled

Boolean

attr

This attribute defines whether the RTE API functions
related to the RPortPrototype shall return the number of
transport errors (i.e. COM, SecOC errors) that happened
since the last call of the respective API.

This Attribute is only used by the AUTOSAR Classic
Platform.

AUTSSAR

Class

NonqueuedReceiverComSpec

valueErrorCount
Enabled

This attribute defines whether the RTE API functions
related to the RPortPrototype shall return the number of
value errors (i.e. out of range, invalid value) that
happened since the last call of the respective API.

This Attribute is only used by the AUTOSAR Classic
Platform.

Boolean 0..1 attr

Table B.71: NonqueuedReceiverComSpec

Class NonqueuedSenderComSpec
Note Communication attributes for non-queued sender/receiver communication (sender side)
Base ARObject, PPortComSpec, SenderComSpec
Aggregated by | AbstractProvidedPortPrototype.providedComSpec, PortPrototypeBlueprint.providedComSpec
Attribute Type Mult. Kind | Note
dataFilter DataFilter 0..1 aggr | The applicable filter algorithm for filtering the value of the
corresponding dataElement.
initValue ValueSpecification 0..1 aggr Initial value to be sent if sender component is not yet fully
initialized, but receiver needs data already.
Table B.72: NonqueuedSenderComSpec
Class NvBlockSwComponentType
Note The NvBlockSwComponentType defines non volatile data which data can be shared between Sw
ComponentPrototypes. The non volatile data of the NvBlockSwComponentType are accessible via
provided and required ports.
Tags: atp.recommendedPackage=SwComponentTypes
This Class is only used by the AUTOSAR Classic Platform.
Base ARElement, ARObject, AtomicSwComponentType, AtpBlueprint, AtpBlueprintable, AtpClassifier, Atp
Type, CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable, Sw
ComponentType
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
bulkNvData BulkNvDataDescriptor * aggr | This aggregation formally defines the bulk Nv Blocks that
Descriptor are provided to the application software by the enclosing
NvBlockSwComponentType.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=bulkNvDataDescriptor.shortName, bulkNv
DataDescriptor.variationPoint.shortLabel
vh.latestBindingTime=preCompile Time
nvBlock NvBlockDescriptor * aggr Specification of the properties of exactly one NVRAM
Descriptor Block.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=nvBlockDescriptor.shortName, nvBlock
Descriptor.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table B.73: NvBlockSwComponentType

AUTSSAR

Class PPortComSpec (abstract)
Note Communication attributes of a provided PortPrototype. This class will contain attributes that are valid
for all kinds of provide ports, independent of client-server or sender-receiver communication patterns.
Base ARObject
Subclasses ModeSwitchSenderComSpec, NvProvideComSpec, ParameterProvideComSpec, SenderComSpec,
ServerComSpec
Aggregated by | AbstractProvidedPortPrototype.providedComSpec, PortPrototypeBlueprint.providedComSpec
Attribute Type Mulit. Kind | Note
Table B.74: PPortComSpec
Class PPortPrototype
Note Component port providing a certain port interface.
Base ARObject, AbstractProvidedPortPrototype, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable,
MultilanguageReferrable, PortPrototype, Referrable
Aggregated by | AtpClassifier.atpFeature, SwComponentType.port
Attribute Type Mult. Kind | Note
provided Portinterface 0..1 tref The interface that this port provides.
Interface Stereotypes: isOfType
Table B.75: PPortPrototype
Class PRPortPrototype
Note This kind of PortPrototype can take the role of both a required and a provided PortPrototype.
Base ARObject, AbstractProvidedPortPrototype, AbstractRequiredPortPrototype, AtpBlueprintable, Atp
Feature, AtpPrototype, Identifiable, MultilanguageReferrable, PortPrototype, Referrable
Aggregated by | AtpClassifier.atpFeature, SwComponentType.port
Attribute Type Mult. Kind | Note
provided PortInterface 0..1 tref This represents the Port Interface used to type the
Required PRPortPrototype.
Interface Stereotypes: isOfType
Table B.76: PRPortPrototype
Class PackageableElement (abstract)
Note This meta-class specifies the ability to be a member of an AUTOSAR package.
Base ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Referrable
Subclasses ARElement, EnumerationMappingTable, FibexElement
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note
Table B.77: PackageableElement
Class PortDefinedArgumentValue
Note A PortDefinedArgumentValue is passed to a RunnableEntity dealing with the ClientServerOperations
provided by a given PortPrototype. Note that this is restricted to PPortPrototypes of a ClientServer
Interface.
Base ARObject

\Y

AUTSSAR

A
Class PortDefinedArgumentValue
Aggregated by | PortAPIOption.portArgValue
Attribute Type Mult. Kind | Note
value ValueSpecification 0..1 aggr Specifies the actual value.
valueType ImplementationData 0..1 tref The implementation type of this argument value. It should
Type not be composite type or a pointer.
Stereotypes: isOfType
Table B.78: PortDefinedArgumentValue
Class Portinterface (abstract)
Note Abstract base class for an interface that is either provided or required by a port of a software component.
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable
Subclasses ClientServerinterface, Datalnterface, ModeSwitchinterface, Triggerinterface
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
isService Boolean 0..1 attr This flag is set if the Port Interface is to be used for
communication between an
¢ ApplicationSwComponentType Orf
¢ ServiceProxySwComponentType Of
* SensorActuatorSwComponentType Or
¢ ComplexDeviceDriverSwComponentType
¢ ServiceSwComponentType
* EcuAbstractionSwComponentType
and a ServiceSwComponentType (namely an
AUTOSAR Service) located on the same ECU. Otherwise
the flag is not set.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivationTime
This Attribute is only used by the AUTOSAR Classic
Platform.
serviceKind ServiceProviderEnum 0..1 attr This attribute provides further details about the nature of
the applied service.
This Attribute is only used by the AUTOSAR Classic
Platform.
Table B.79: Portinterface
Class PortinterfaceMapping (abstract)
Note Specifies one Port InterfaceMapping to support the connection of Ports typed by two different
PortInterfaces with Portinterface elements having unequal names and/or unequal semantic
(resolution or range).
Base ARObject, AtpBlueprint, AtoBlueprintable, Identifiable, MultilanguageReferrable, Referrable
Subclasses ClientServerInterfaceMapping, ModelnterfaceMapping, TriggerinterfaceMapping, VariableAndParameter
InterfaceMapping
Aggregated by | PortinterfaceMappingSet.portinterfaceMapping
Attribute Type Mult. Kind | Note

Table B.80: PortinterfaceMapping

AUTSSAR

Class PortinterfaceMappingSet
Note Specifies a set of (one or more) Port InterfaceMappings.
Tags: atp.recommendedPackage=PortinterfaceMappingSets
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
portinterface PortInterfaceMapping * agor Specifies one Port InterfaceMapping to support the
Mapping connection of PortPrototypes typed by two different
PortInterfaces with PortInterface elements
having unequal names and/or unequal semantic
(resolution or range).
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=portInterfaceMapping.shortName, port
InterfaceMapping.variationPoint.shortLabel
vh.latestBinding Time=blueprintDerivationTime
Table B.81: PortinterfaceMappingSet
Class PortPrototype (abstract)
Note Base class for the ports of an AUTOSAR software component.
The aggregation of PortPrototypes is subject to variability with the purpose to support the conditional
existence of ports.
Base ARObject, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable
Subclasses AbstractProvidedPortPrototype, AbstractRequiredPortPrototype
Aggregated by | AtpClassifier.atpFeature, SwComponentType.port
Attribute Type Mulit. Kind | Note
clientServer ClientServerAnnotation * aggr Annotation of this PortPrototype with respect to client/
Annotation server communication.
delegatedPort DelegatedPort 0..1 aggr Annotations on this delegated port.
Annotation Annotation
ioHwAbstraction | loHwAbstractionServer * aggr Annotations on this 10 Hardware Abstraction port.
Server Annotation
Annotation
modePort ModePortAnnotation * aggr Annotations on this mode port.
Annotation
nvDataPort NvDataPortAnnotation * aggr Annotations on this non voilatile data port.
Annotation
parameterPort ParameterPort * aggr Annotations on this parameter port.
Annotation Annotation
senderReceiver SenderReceiver * aggr Collection of annotations of this ports sender/receiver
Annotation Annotation communication.
Stereotypes: atpSplitable
Tags: atp.Splitkey=senderReceiverAnnotation
triggerPort TriggerPortAnnotation * aggr Annotations on this trigger port.
Annotation
Table B.82: PortPrototype
Class RPortComSpec (abstract)
Note Communication attributes of a required PortPrototype. This class will contain attributes that are valid for
all kinds of require-ports, independent of client-server or sender-receiver communication patterns.
Base ARObject
Subclasses ClientComSpec, ModeSwitchReceiverComSpec, NvRequireComSpec, ParameterRequireComSpec,

ReceiverComSpec

vV

AUT<

SSAR

A
Class RPortComSpec (abstract)
Aggregated by | AbstractRequiredPortPrototype.requiredComSpec, PortPrototypeBlueprint.requiredComSpec
Attribute Type Mult. Kind | Note
Table B.83: RPortComSpec
Class RPortPrototype
Note Component port requiring a certain port interface.
Base ARObject, AbstractRequiredPortPrototype, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable,
MultilanguageReferrable, PortPrototype, Referrable
Aggregated by | AtpClassifier.atpFeature, SwComponentType.port
Attribute Type Muit. Kind | Note
mayBe Boolean 0..1 attr If set to true, this attribute indicates that the enclosing
Unconnected RPortPrototype may be left unconnected and that this
aspect has explicitly been considered in the
software-component’s design.
This Attribute is only used by the AUTOSAR Classic
Platform.
required Portinterface 0..1 tref The interface that this port requires.
Interface Stereotypes: isOfType
Table B.84: RPortPrototype
Class Referrable (abstract)
Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).
Base ARObject
Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint, BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, DiagnosticEnvModeElement, EthernetPriority
Regeneration, ExclusiveAreaNestingOrder, HwDescriptionEntity, ImplementationProps, LinSlaveConfig
Ident, ModeTransition, MultilanguageReferrable, PncMappingldent, SingleLanguageReferrable, SoCon
IPduldentifier, TpConnectionldent
Attribute Type Mulit. Kind | Note
shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.
Stereotypes: atpldentityContributor
Tags:
xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100
shortName ShortNameFragment * aggr | This specifies how the Referrable.shortName is
Fragment composed of several shortNameFragments.
Tags: xml.sequenceOffset=-90
Table B.85: Referrable
Class RunnableEntity
Note A RunnableEntity represents the smallest code-fragment that is provided by an
AtomicSwComponent Type and are executed under control of the RTE. RunnableEntitys are for
instance set up to respond to data reception or operation invocation on a server.
Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, ExecutableEntity, Identifiable, Multilanguage

Referrable, Referrable

\Y%

AUTSSAR

JAN
Class RunnableEntity
Aggregated by | AtpClassifier.atpFeature, SwcinternalBehavior.runnable
Attribute Type Mulit. Kind | Note
argument RunnableEntity * aggr | This represents the formal definition of a an argument to
(ordered) Argument a RunnableEntity.
asynchronous AsynchronousServer * aggr | The server call result point admits a runnable to fetch the
ServerCall CallResultPoint result of an asynchronous server call.
ResultPoint The aggregation of AsynchronousServerCallResultPoint

is subject to variability with the purpose to support the
conditional existence of client server PortPrototypes and
the variant existence of server call result points in the
implementation.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=asynchronousServerCallResultPoint.short
Name, asynchronousServerCallResultPoint.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

This Attribute is only used by the AUTOSAR Classic
Platform.

canBelnvoked
Concurrently

Boolean 0..1 attr If the value of this attribute is set to "true" the enclosing
RunnableEntity can be invoked concurrently (even for
one instance of the corresponding
AtomicSwComponentType). This implies that it is the
responsibility of the implementation of the
RunnableEntity to take care of this form of
concurrency.

dataRead
Access

VariableAccess * aggr RunnableEntity has implicit read access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The aggregation of dataReadAccess is subject to
variability with the purpose to support the conditional
existence of sender receiver ports or the variant existence
of dataReadAccess in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=dataReadAccess.shortName, dataRead
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataReceive
PointBy
Argument

VariableAccess aggr RunnableEntity has explicit read access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype. The result is passed back to the
application by means of an argument in the function
signature.

The aggregation of dataReceivePointByArgument is
subject to variability with the purpose to support the
conditional existence of sender receiver PortPrototype or
the variant existence of data receive points in the
implementation.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=dataReceivePointByArgument.shortName,
dataReceivePointByArgument.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

AUTSSAR

Class

RunnableEntity

dataReceive
PointByValue

VariableAccess

aggr

RunnableEntity has explicit read access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The result is passed back to the application by means of
the return value. The aggregation of dataReceivePointBy
Value is subject to variability with the purpose to support
the conditional existence of sender receiver ports or the
variant existence of data receive points in the
implementation.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=dataReceivePointByValue.shortName, data
ReceivePointByValue.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataSendPoint

VariableAccess

aggr

RunnableEntity has explicit write access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The aggregation of dataSendPoint is subject to variability
with the purpose to support the conditional existence of
sender receiver PortPrototype or the variant existence of
data send points in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=dataSendPoint.shortName, dataSend
Point.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataWrite
Access

VariableAccess

aggr

RunnableEntity has implicit write access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The aggregation of dataWriteAccess is subject to
variability with the purpose to support the conditional
existence of sender receiver ports or the variant existence
of dataWriteAccess in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=dataWriteAccess.shortName, dataWrite
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

external
TriggeringPoint

ExternalTriggeringPoint

aggr

The aggregation of ExternalTriggeringPoint is subject to
variability with the purpose to support the conditional
existence of trigger ports or the variant existence of
external triggering points in the implementation.
Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=externalTriggeringPoint.ident.shortName,
externalTriggeringPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

internal
TriggeringPoint

InternalTriggeringPoint

aggr

The aggregation of InternalTriggeringPoint is subject to
variability with the purpose to support the variant
existence of internal triggering points in the
implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=internalTriggeringPoint.shortName, internal
TriggeringPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

AUTSSAR

Class RunnableEntity

modeAccess ModeAccessPoint aggr | The runnable has a mode access point. The aggregation
Point of ModeAccessPoint is subject to variability with the
purpose to support the conditional existence of mode
ports or the variant existence of mode access points in
the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=modeAccessPoint.ident.shortName, mode
AccessPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

modeSwitch ModeSwitchPoint * aggr | The runnable has a mode switch point. The aggregation
Point of ModeSwitchPoint is subject to variability with the
purpose to support the conditional existence of mode
ports or the variant existence of mode switch points in the
implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=modeSwitchPoint.shortName, modeSwitch
Point.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

parameter ParameterAccess * aggr | The presence of a ParameterAccess implies that a

Access RunnableEntity needs read only access to a Parameter
DataPrototype which may either be local or within a Port
Prototype.

The aggregation of ParameterAccess is subject to
variability with the purpose to support the conditional
existence of parameter ports and component local
parameters as well as the variant existence of Parameter
Access (points) in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=parameterAccess.shortName, parameter
Access.variationPoint.shortLabel

vh.latestBinding Time=preCompile Time

readLocal VariableAccess aggr | The presence of a readLocalVariable implies that a
Variable RunnableEntity needs read access to a VariableData
Prototype in the role of implicitinterRunnableVariable or
explicitinterRunnableVariable.

The aggregation of readLocalVariable is subject to
variability with the purpose to support the conditional
existence of implicitinterRunnableVariable and explicit
InterRunnableVariable or the variant existence of read
LocalVariable (points) in the implementation.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=readLocalVariable.shortName, readLocal
Variable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

aggr | The RunnableEntity has a ServerCallPoint. The
aggregation of ServerCallPoint is subject to variability with
the purpose to support the conditional existence of client
server PortPrototypes or the variant existence of server
call points in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=serverCallPoint.shortName, serverCall
Point.variationPoint.shortLabel

vh.latestBinding Time=preCompile Time

This Attribute is only used by the AUTOSAR Classic
Platform.

serverCallPoint ServerCallPoint

AUTSSAR

Class

RunnableEntity

symbol

Cldentifier 0..1 attr The symbol describing this RunnableEntity’s entry
point. This is considered the API of the
RunnableEntity and is required during the RTE
contract phase.

waitPoint

WaitPoint * aggr | The waitPoint associated with the RunnableEntity.

writtenLocal
Variable

VariableAccess aggr | The presence of a writtenLocalVariable implies that a
RunnableEntity needs write access to a VariableData
Prototype in the role of implicitinterRunnableVariable or
explicitinterRunnableVariable.

The aggregation of writtenLocalVariable is subject to
variability with the purpose to support the conditional
existence of implicitinterRunnableVariable and explicit
InterRunnableVariable or the variant existence of written
LocalVariable (points) in the implementation.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=writtenLocalVariable.shortName, written
LocalVariable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table B.86: RunnableEntity

Class

RunnableEntityGroup

Note

This meta-class represents the ability to define a collection of RunnableEntities. The collection can be
nested.

Base

ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,
Referrable

Aggregated by

AtpClassifier.atpFeature, ConsistencyNeeds.regDoesNotRequireStability, ConsistencyNeeds.reg
RequiresStability

Attribute

Type Mult. Kind | Note

runnableEntity

*

RunnableEntity iref This represents a collection of RunnableEntitys that
belong to the enclosing RunnableEntityGroup.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=runnableEntity.contextSwComponent
Prototype, runnableEntity.targetRunnableEntity, runnable
Entity.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

InstanceRef implemented by: RunnableEntityln
CompositionIinstanceRef

runnableEntity
Group

RunnableEntityGroup iref This represents the ability to define nested groups of
RunnableEntitys.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=runnableEntityGroup.contextSwComponent
Prototype, runnableEntityGroup.targetRunnableEntity
Group, runnableEntityGroup.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

InstanceRef implemented by: InnerRunnableEntity
GrouplnCompositioninstanceRef

Table B.87: RunnableEntityGroup

Class

SdgClass

Note

An SdgClass specifies the name and structure of the SDG that may be used to store proprietary data in
an AUTOSAR model.
The SdgClass is similar to an UML stereotype.

\Y

AUT<

SSAR

JAN
Class SdgClass
Base ARObject, Identifiable, MultilanguageReferrable, Referrable, SdgElementWithGid
Aggregated by | SdgDef.sdgClass
Attribute Type Mult. Kind | Note
attribute SdgAttribute * agor Defintion of the structure of the Sdg
(ordered) Tags: xml.sequenceOffset=30
caption Boolean 0..1 attr Specifies if a caption is required. Note: only Sdgs that
have a caption can be referenced
Tags: xml.sequenceOffset=20
extendsMeta MetaClassName 0..1 attr The AUTOSAR Meta-Class that may be extended by this
Class SdgClass.
Tags: xml.sequenceOffset=10
sdgConstraint TraceableText * ref Semantic constraints that restrict the structure of the
special data group.
Tags: xml.sequenceOffset=40
Table B.88: SdgClass
Class SdgDef
Note A SdgDef groups several SdgClasses which belong to the same extension.
The concept of an SdgDef is similiar to an UML Profile.
Tags: atp.recommendedPackage=SdgDefs
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
sdgClass SdgClass * aggr | The owned sdgClasses which define the structure of the
Sdgs
Tags: xml.namePlural=SDG-CLASSES
Table B.89: SdgDef
Primitive SectionlnitializationPolicyType
Note SectionInitializationPolicy Type describes the intended initialization of MemorySections. The following

values are standardized in AUTOSAR Methodology:
« INIT: To be used for (explicitly or not explicitly) initialized variables.

+ CLEARED: To be used for not explicitly initialized variables.

+ POWER-ON-CLEARED: To be used for variables that are not explicitly initialized (cleared) during
normal start-up. Instead these are cleared only after power on reset.

Please note that the values are defined similar to the representation of enumeration types in the XML
schema to ensure backward compatibility.

Tags:
xml.xsd.customType=SECTION-INITIALIZATION-POLICY-TYPE
xml.xsd.type=NMTOKEN

Table B.90: SectionlnitializationPolicyType

AUT<

SSAR

Class SenderReceiverinterface
Note A sender/receiver interface declares a number of data elements to be sent and received.
Tags: atp.recommendedPackage=PortInterfaces
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtpoType, CollectableElement,
Datalnterface, Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
dataElement VariableDataPrototype * aggr | The data elements of this SenderReceiverInterface.
invalidation InvalidationPolicy * agor InvalidationPolicy for a particular dataElement
Policy

metaDataltem
Set

MetaDataltemSet * aggr | This aggregation defines fixed sets of meta-data items
associated with dataElements of the enclosing
SenderReceiverInterface

Table B.91: SenderReceiverinterface

Enumeration StandardNameEnum
Note This enumeration lists all allowed standard abbreviations.
Aggregated by AppliedStandard.appliesTo, StructuredReq.appliesTo
Literal Description
AP This values represents the Adaptive Platform.
Tags: atp.EnumerationLiteralindex=0
CcP This Value represents the Classic Platform.
Tags: atp.EnumerationLiteralindex=1
FO This values represents the Foundation.
Tags: atp.EnumerationLiteralindex=2
Table B.92: StandardNameEnum
Class StructuredReq
Note This represents a structured requirement. This is intended for a case where specific requirements for
features are collected.
Note that this can be rendered as a labeled list.
Base ARObject, DocumentViewSelectable, Identifiable, MultilanguageReferrable, Paginateable, Referrable,
Traceable
Aggregated by | DocumentationBlock.structuredReq
Attribute Type Mult. Kind | Note
appliesTo StandardNameEnum * attr This attribute represents the platform the requirement is
assigned to.
Tags:
xml.namePlural=APPLIES-TO-DEPENDENCIES
xml.sequenceOffset=25
conflicts DocumentationBlock 0..1 aggr | This represents an informal specification of conflicts.
Tags: xml.sequenceOffset=40
date DateTime 1 attr This represents the date when the requirement was
initiated.
Tags: xml.sequenceOffset=5
dependencies DocumentationBlock 0..1 aggr | This represents an informal specification of

dependencies. Note that upstream tracing should be
formalized in the property trace provided by the
superclass Traceable.

Tags: xml.sequenceOffset=30

AUT<

SSAR

A
Class StructuredReq
description DocumentationBlock 0..1 aggr | This represents the general description of the
requirement.
Tags: xml.sequenceOffset=10
importance String 1 attr This allows to represent the importance of the
requirement.
Tags: xml.sequenceOffset=8
issuedBy String 1 attr This represents the person, organization or authority
which issued the requirement.
Tags: xml.sequenceOffset=6
rationale DocumentationBlock 0..1 aggr | This represents the rationale of the requirement.
Tags: xml.sequenceOffset=20
remark DocumentationBlock 0..1 aggr | This represents an informal remark. Note that this is not
modeled as annotation, since these remark is still
essential part of the requirement.
Tags: xml.sequenceOffset=60
supporting DocumentationBlock 0..1 aggr This represents an informal specification of the
Material supporting material.
Tags: xml.sequenceOffset=50
testedltem Traceable * ref This association represents the ability to trace on the
same specification level. This supports for example the of
acceptance tests.
Tags: xml.sequenceOffset=70
type String 1 attr This attribute allows to denote the type of requirement to
denote for example is it an "enhancement”, "new feature"
etc.
Tags: xml.sequenceOffset=7
useCase DocumentationBlock 0..1 aggr This describes the relevant use cases. Note that formal
references to use cases should be done in the trace
relation.
Tags: xml.sequenceOffset=35
Table B.93: StructuredReq
Class SwAddrMethod
Note Used to assign a common addressing method, e.g. common memory section, to data or code objects.
These objects could actually live in different modules or components.
Tags: atp.recommendedPackage=SwAddrMethods
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
memory MemoryAllocation 0..1 attr Enumeration to specify the name pattern of the Memory
Allocation KeywordPolicyType Allocation Keyword.

KeywordPolicy

option

Identifier

attr

This attribute introduces the ability to specify further
intended properties of the MemorySection in with the
related objects shall be placed.

These properties are handled as to be selected. The
intended options are mentioned in the list.

In the Memory Mapping configuration, this option list is
used to determine an appropriate MemMapAddressing
ModeSet.

SSAR

AUT<

A
Class SwAddrMethod
section Sectionlnitialization 0..1 attr Specifies the expected initialization of the variables
Initialization PolicyType (inclusive those which are implementing VariableData
Policy Prototypes). Therefore this is an implementation
constraint for initialization code of BSW modules
(especially RTE) as well as the start-up code which
initializes the memory segment to which the AutosarData
Prototypes referring to the SwAddrMethod’s are later on
mapped.
If the attribute is not defined it has the identical semantic
as the attribute value "INIT"
sectionType MemorySectionType 0..1 attr Defines the type of memory sections which can be
associated with this addressing method.
Table B.94: SwAddrMethod
Class SwBaseType
Note This meta-class represents a base type used within ECU software.
Tags: atp.recommendedPackage=BaseTypes
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, BaseType, CollectableElement, Identifiable,
MultilanguageReferrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
Table B.95: SwBaseType
Class SwComponentPrototype
Note Role of a software component within a composition.
Base ARObject, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | AtpClassifier.atpFeature, CompositionSwComponentType.component
Attribute Type Mult. Kind | Note
type SwComponentType 0..1 tref Type of the instance.
Stereotypes: isOfType
Table B.96: SwComponentPrototype
Class SwComponentType (abstract)
Note Base class for AUTOSAR software components.
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtoType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable
Subclasses AtomicSwComponentType, CompositionSwComponentType, ParameterSwComponentType
Aggregated by | ARPackage.element
Attribute Type | Mult. | Kind | Note

V

AUTSSAR

Class

SwComponentType (abstract)

consistency
Needs

*

ConsistencyNeeds aggr This represents the collection of ConsistencyNeeds
owned by the enclosing SwComponent Type.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=consistencyNeeds.shortName, consistency
Needs.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

This Attribute is only used by the AUTOSAR Classic
Platform.

port

PortPrototype aggr The PortPrototypes through which this
SwComponent Type can communicate.

The aggregation of PortPrototype is subject to
variability with the purpose to support the conditional
existence of PortPrototypes.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=port.shortName, port.variationPoint.short
Label

vh.latestBinding Time=preCompile Time

portGroup

PortGroup aggr A port group being part of this component.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=portGroup.shortName, portGroup.variation
Point.shortLabel

vh.latestBindingTime=preCompileTime

swcMapping
Constraint

SwComponentMapping ref Reference to constraints that are valid for this Sw
Constraints ComponentType.

This Attribute is only used by the AUTOSAR Classic
Platform.

swComponent
Documentation

SwComponent 0..1 aggr | This adds a documentation to the SwComponent Type.
Documentation Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=swComponentDocumentation, sw
ComponentDocumentation.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=-10

unitGroup

UnitGroup ref This allows for the specification of which UnitGroups are
relevant in the context of referencing SwComponent Type.
This Attribute is only used by the AUTOSAR Classic

Platform.

Table B.97: SwComponentType

Class

SwServiceArg

Note

Specifies the properties of a data object exchanged during the call of an SwService, e.g. an argument or
a return value.

The SwServiceArg can also be used in the argument list of a C-macro. For this purpose the category
shall be set to "MACRO". A reference to implementationDataType can optional be added if the actual
argument has an implementationDataType.

Base

ARObject, Identifiable, MultilanguageReferrable, Referrable

Aggregated by

BswModuleEntry.argument, BswModuleEntry.returnType

Attribute

Type | Mult. | Kind | Note

\Y

AUTSSAR

JAN
Class SwServiceArg
direction ArgumentDirection 0..1 attr Specifies the direction of the data transfer. The direction
Enum shall indicate the direction of the actual information that is
being consumed by the caller and/or the callee, not the
direction of formal arguments in C.
The attribute is optional for backwards compatibility
reasons. For example, if a pointer is used to pass a
memory address for the expected result, the direction
shall be "out". If a pointer is used to pass a memory
address with content to be read by the callee, its direction
shall be "in".
Tags: xml.sequenceOffset=10
swArraysize ValueList 0..1 aggr This turns the argument of the service to an array.
Tags: xml.sequenceOffset=20
swDataDef SwDataDefProps 0..1 aggr Data properties of this SwServiceArg.
Props Tags: xml.sequenceOffset=30
Table B.98: SwServiceArg
Class SwcBswMapping
Note Maps an SwclnternalBehavior to an BswinternalBehavior. This is required to coordinate the API
generation and the scheduling for AUTOSAR Service Components, ECU Abstraction Components and
Complex Driver Components by the RTE and the BSW scheduling mechanisms.
Tags: atp.recommendedPackage=SwcBswMappings
This Class is only used by the AUTOSAR Classic Platform.
Base ARElement, ARObject, AtpClassifier, AtpFeature, AtpStructureElement, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable
Aggregated by | ARPackage.element, AtpClassifier.atpFeature
Attribute Type Mult. Kind | Note
bswBehavior BswinternalBehavior 0..1 ref The mapped BswinternalBehavior
runnable SwcBswRunnable * aggr A mapping between a pair of SWC and BSW runnables.
Mapping Mapping Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=runnableMapping, runnable
Mapping.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
swcBehavior SwclnternalBehavior 0..1 ref The mapped SwclinternalBehavior.
synchronized SwcBswSynchronized * agor A pair of SWC and BSW mode group prototypes to be
ModeGroup ModeGroupPrototype synchronized by the scheduler.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=synchronizedModeGroup, synchronized
ModeGroup.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
synchronized SwcBswSynchronized * aggr | A pair of SWC and BSW Triggers to be synchronized by
Trigger Trigger the scheduler.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=synchronizedTrigger, synchronized
Trigger.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table B.99:

SwcBswMapping

AUTSSAR

Class SwclinternalBehavior

Note The SwcInternalBehavior of an AtomicSwComponentType describes the relevant aspects of the
software-component with respect to the RTE, i.e. the RunnableEntitys and the RTEEvents they
respond to.

Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, InternalBehavior, Multilanguage

Referrable, Referrable

Aggregated by | AtomicSwComponentType.internalBehavior, AfpClassifier.atpFeature

Attribute Type Mult. Kind | Note

arTypedPer VariableDataPrototype * aggr Defines an AUTOSAR typed memory-block that needs to
Instance be available for each instance of the SW-component.
Memory This is typically only useful if

supportsMultipleInstantiation is setto "true" or
if the component defines NVRAM access via permanent
blocks.

The aggregation of arTypedPerInstanceMemory is
subject to variability with the purpose to support variability
in the software component’s implementations. Typically
different algorithms in the implementation are requiring
different number of memory objects.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=arTypedPerIinstanceMemory.shortName, ar
TypedPerlnstanceMemory.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

event RTEEvent * aggr This is a RTEEvent specified for the particular
SwcInternalBehavior.

The aggregation of RTEEvent is subject to variability with
the purpose to support the conditional existence of
RTEEvents. Note: the number of RTEEvents might vary
due to the conditional existence of PortPrototypes
using DataReceivedEvents or due to different
scheduling needs of algorithms.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=event.shortName, event.variationPoint.short
Label

vh.latestBindingTime=preCompileTime

exclusiveArea SwcExclusiveArea aggr Options how to generate the ExclusiveArea related APls.
Policy Policy When no SwcExclusiveAreaPolicy is specified for an
ExclusiveArea the default values apply.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=exclusiveAreaPolicy, exclusiveArea
Policy.variationPoint.shortLabel

vh.latestBinding Time=preCompile Time

explicitinter VariableDataPrototype * agor Implement state message semantics for establishing
Runnable communication among runnables of the same
Variable component. The aggregation of explicitinterRunnable

Variable is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=explicitinterRunnableVariable.shortName,
explicitinterRunnableVariable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

AUTSSAR

Class SwcinternalBehavior

implicitinter VariableDataPrototype aggr Implement state message semantics for establishing
Runnable communication among runnables of the same

Variable component. The aggregation of implicitinterRunnable
Variable is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=implicitinterRunnableVariable.shortName,
implicitinterRunnableVariable.variationPoint.shortLabel
vh.latestBinding Time=preCompile Time

includedData IncludedDataTypeSet aggr The includedDataTypeSet is used by a software
TypeSet component for its implementation.

Stereotypes: atpSplitable

Tags: atp.Splitkey=includedDataTypeSet

includedMode IncludedMode * aggr This aggregation represents the included Mode
Declaration DeclarationGroupSet DeclarationGroups
GroupSet Stereotypes: atpSplitable

Tags: atp.Splitkey=includedModeDeclarationGroupSet

instantiation InstantiationDataDef aggr | The purpose of this is that within the context of a given
DataDefProps Props SwComponentType some data def properties of individual
instantiations can be modified. The aggregation of
InstantiationDataDefProps is subject to variability with the
purpose to support the conditional existence of Port
Prototypes and component local memories like "per
InstanceParameter" or "arTypedPerIinstanceMemory".
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=instantiationDataDefProps, instantiationData
DefProps.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

perlnstance PerInstanceMemory aggr Defines a per-instance memory object needed by this
Memory software component. The aggregation of PerInstance
Memory is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=perinstanceMemory.shortName, perinstance
Memory.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

perinstance ParameterData aggr Defines parameter(s) or characteristic value(s) that needs
Parameter Prototype to be available for each instance of the
software-component. This is typically only useful if
supportsMultipleInstantiation is set to "true". The
aggregation of perinstanceParameter is subject to
variability with the purpose to support variability in the
software components implementations. Typically different
algorithms in the implementation are requiring different
number of memory objects.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=perinstanceParameter.shortName, per
InstanceParameter.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

AUTSSAR

Class

SwcinternalBehavior

portAPIOption

PortAPIOption

aggr

Options for generating the signature of port-related calls
from a runnable to the RTE and vice versa. The
aggregation of PortPrototypes is subject to variability with
the purpose to support the conditional existence of ports.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=portAPIOption.port, portAPIOption.variation
Point.shortLabel

vh.latestBindingTime=preCompileTime

runnable

RunnableEntity

agaor

This is a RunnableEnt ity specified for the particular
SwcInternalBehavior.

The aggregation of RunnableEntity is subject to
variability with the purpose to support the conditional
existence of RunnableEntitys. Note: the number of
RunnableEntitys might vary due to the conditional
existence of PortPrototypes using
DataReceivedEvents or due to different scheduling
needs of algorithms.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=runnable.shortName, runnable.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

service
Dependency

SwcService
Dependency

aggr

Defines the requirements on AUTOSAR Services for a
particular item.

The aggregation of SwcServiceDependency is subject to
variability with the purpose to support the conditional
existence of ports as well as the conditional existence of
ServiceNeeds.

The SwcServiceDependency owned by an Swcinternal
Behavior can be located in a different physical file in order
to support that SwcServiceDependency might be
provided in later development steps or even by different
expert domain (e.g OBD expert for Obd related Service
Needs) tools. Therefore the aggregation is <<atp
Splitable>>.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=serviceDependency.shortName, service
Dependency.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

shared
Parameter

ParameterData
Prototype

aggr

Defines parameter(s) or characteristic value(s) shared
between SwComponentPrototypes of the same Sw
ComponentType The aggregation of sharedParameter is
subject to variability with the purpose to support variability
in the software components implementations. Typically
different algorithms in the implementation are requiring
different number of memory objects.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=sharedParameter.shortName, shared
Parameter.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

supports
Multiple
Instantiation

Boolean

0..1

attr

Indicate whether the corresponding software-component
can be multiply instantiated on one ECU. In this case the
attribute will result in an appropriate component APl on
programming language level (with or without instance
handle).

variationPoint
Proxy

VariationPointProxy

aggr

Proxy of a variation points in the C/C++ implementation.
Stereotypes: atpSplitable
Tags: atp.Splitkey=variationPointProxy.shortName

Table B.100:

SwcinternalBehavior

SSAR

AUT<

Class TDEventVfbPort (abstract)
Note A TimingDescriptionEvent Ooccuring on a PortPrototype.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable, TDEventVfb, TimingDescription, Timing
DescriptionEvent
Subclasses TDEventModeDeclaration, TDEventOperation, TDEventTrigger, TDEventVariableDataPrototype
Aggregated by | TimingExtension.timingDescription
Attribute Type Mult. Kind | Note
isExternal Boolean 0..1 attr This attribute is used to refer to external events that are
related to hardware /O, like physical sensors and
actuators, at Virtual Functional Bus (VFB) level.
This Attribute is only used by the AUTOSAR Classic
Platform.
portPrototype PortPrototype 0..1 iref PortPrototype on which the TimingEvent occurs
Tags: atp.Status=draft
InstanceRef implemented by: PortinCompositionType
InstanceRef
portPrototype PortPrototypeBlueprint 0..1 ref port on which the TimingEvent shall apply (in the context
Blueprint of an AUTOSAR blueprint)
Table B.101: TDEventVfbPort
Class Traceable (abstract)
Note This meta class represents the ability to be subject to tracing within an AUTOSAR model.
Note that it is expected that its subclasses inherit either from MultilanguageReferrable or from
Identifiable. Nevertheless it also inherits from MultilanguageReferrable in order to provide a common
reference target for all Traceables.
Base ARObject, MultilanguageReferrable, Referrable
Subclasses StructuredReq, TimingConstraint, TraceableTable, TraceableText
Attribute Type Mult. Kind | Note
trace Traceable * ref This association represents the ability to trace to
upstream requirements / constraints. This supports for
example the bottom up tracing
ProjectObjectives <- MainRequirements <- Features <-
RequirementSpecs <- BSW/AI
Tags: xml.sequenceOffset=20
Table B.102: Traceable
Class TraceableTable
Note This meta-class represents a table which can be referenced in order to establish requirements tracing. It
supports specific kinds of tracing such as requirements / constraints.
The following approach applies:
* shortName: represents the tag for tracing
* longName: represents the headline
* category: represents the kind of the tagged table
Base ARObject, DocumentViewSelectable, Identifiable, MultilanguageReferrable, Paginateable, Referrable,
Traceable
Aggregated by | TopicContent.traceableTable
Attribute Type Mult. Kind | Note
table Table 1 aggr | This represents a table with a traceable table.

Table B.103: TraceableTable

AUTSSAR

Class TraceableText
Note Represents a paragraph level text which can be referenced in order to establish tracing. It supports
specific tracing of document items as specified in [TPS_STDT_00098].
The following approach applies:
* shortName: represents the tag for tracing
* longName: represents the headline
* category: represents the kind of the tagged text
Base ARObject, DocumentViewSelectable, Identifiable, MultilanguageReferrable, Paginateable, Referrable,
Traceable
Aggregated by | DocumentationBlock.trace
Attribute Type Mult. Kind | Note
text DocumentationBlock 1 aggr This represents the text to which the tag applies.
Tags:
xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=30
xml.typeElement=false
xml.typeWrapperElement=false
Table B.104: TraceableText
Class VariableDataPrototype
Note AvariableDataPrototype represents a formalized generic piece of information that is typically
mutable by the application software layer. VvariableDataPrototype is used in various contexts and
the specific context gives the otherwise generic variableDataPrototype a dedicated semantics.
Base ARObject, AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable
Aggregated by | Applicationinterface.indication, AtpClassifier.atpFeature, BswinternalBehavior.arTypedPerlInstance
Memory, BswModuleDescription.providedData, BswModuleDescription.requiredData, BulkNvData
Descriptor.bulkNvBlock, DiagnosticSovdAccessArgument.contentObject, InternalBehavior.staticMemory,
NvBlockDescriptor.ramBlock, NvDatalnterface.nvData, SenderReceiverinterface.dataElement, Service
Interface.event, SwclnternalBehavior.arTypedPerInstanceMemory, SwcinternalBehavior.explicitinter
RunnableVariable, SwcinternalBehavior.implicitinterRunnableVariable
Attribute Type Mult. Kind | Note
initValue ValueSpecification 0..1 aggr | Specifies initial value(s) of the VariableDataPrototype
Table B.105: VariableDataPrototype
Class VibTiming
Note A model element used to define timing descriptions and constraints at VFB level.
TimingDescriptions aggregated by VfbTiming are restricted to event chains referring to events which are
derived from the class TDEventVfb.
Tags: atp.recommendedPackage=TimingExtensions
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable, TimingExtension
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
component SwComponentType 0..1 ref This defines the scope of a VfbTiming. All corresponding
timing descriptions and constraints shall be defined within
this scope.

Table B.106: VfbTiming

AUTSSAR

C Variation Points in this Template

This chapter contains a table of all model elements stereotyped <atpvariation>>

in the scope of this document.

Each entry in the table consists of the identification of the specific model ele-
ment itself and the applicable value of the tagged value vh.latestBindingTime.

For more information about the concept of variation points and how model ele-
ments that contain variation points shall be processed in a tool, please refer to

[2]

Variation Point

Latest Binding Time

BlueprintPolicyList.maxNumberOfElements

blueprintDerivationTime

BlueprintPolicyList.minNumberOfElements

blueprintDerivationTime

ClientServerInterfaceToBswModuleEntryBlueprintMapping.operationMapping

preCompileTime

ClientServerinterfaceToBswModuleEntryBlueprintMapping.portDefinedArgument
Blueprint

preCompileTime

ConsistencyNeedsBlueprintSet.consistencyNeeds

preCompileTime

SwDataDefProps

codeGenerationTime

SwDataDefProps.swValueBlockSize

preCompileTime

SwDataDefProps.swValueBlockSizeMult

preCompileTime

SwTextProps.swMaxTextSize

preCompileTime

ValueList.vf

preCompileTime

Table C.1: Usage of variation points

AUTSSAR

D Change History

The content of this appendix chapter is informative in nature and shall not be consid-
ered as normative content.

This chapter provides the change history of traceable items in this document. The
lists also include traceable items that have been removed from the document in a later
version. These items do not appear as hyperlinks in the document.

D.1 Change History of this document according to AUTOSAR Re-
lease R4.3.1

D.1.1 Added Specification Items in 4.3.1

none

D.1.2 Changed Specification ltems in 4.3.1

none

D.1.3 Deleted Specification Iltems in 4.3.1

none

D.1.4 Added Constraints in 4.3.1

none

D.1.5 Changed Constraints in 4.3.1

none

D.1.6 Deleted Constraints in 4.3.1

none

AUTSSAR

D.2 Change History of this document according to AUTOSAR Re-
lease R4.4.0

D.2.1 Added Specification Items in 4.4.0

Number Heading

[TPS_STDT_00092] Return values of the BlueprintFormula.ecuc query

[TPS_STDT_00211] Specification of the AUTOSAR Standards that are part of the Baseline

Table D.1: Added Specification ltems in 4.4.0

D.2.2 Changed Specification Iltems in 4.4.0

Number Heading
[TPS_STDT_00006] Applying Expression Pattern
[TPS_STDT_00021] Specialization of BlueprintFormula

[TPS_STDT_00045] Transferring Objects in General

[TPS_STDT_00047] Ignore Blueprint Attributes in Non Blueprints

[TPS_STDT_00086] Specify a name pattern or a blueprint value in blueprints

Table D.2: Changed Specification Iltems in 4.4.0

D.2.3 Deleted Specification Iltems in 4.4.0

none

D.2.4 Added Constraints in 4.4.0

Number Heading

[constr_2625] Allowed uptraces wrt. life cycles

Table D.3: Added Constraints in 4.4.0

AUTSSAR

D.2.5 Changed Constraints in 4.4.0

Number Heading

[constr_2553] shortName shall follow the pattern defined in the Blueprint
[constr_2554] Derived objects shall match the blueprints

[constr_2569] Purely Blueprint Motivated variationPoints

Table D.4: Changed Constraints in 4.4.0

D.2.6 Deleted Constraints in 4.4.0

none

D.3 Change History of this document according to AUTOSAR Re-
lease R19-11

D.3.1 Added Specification ltems in 19-11

none

D.3.2 Changed Specification Iltems in 19-11

Number Heading
[TPS_STDT_00006] Applying Expression Pattern
[TPS_STDT_00021] Specialization of BlueprintFormula

[TPS_STDT_00028] Resolving variationPoint in Blueprints

[TPS_STDT_00030] Blueprint of variationPoint

[TPS_STDT 00044] Transferring variationPoint

[TPS_STDT_00046] Configuration dependent properties

[TPS_STDT_00048] Express Decisions when Deriving Objects

Table D.5: Changed Specification Items in 19-11

D.3.3 Deleted Specification Items in 19-11

none

D.3.4 Added Constraints in 19-11

none

AUTSSAR

D.3.5 Changed Constraints in 19-11

Number Heading

[constr_2556] No Blueprint Motivated variationPoints in AUTOSAR Descriptions

[constr_2569] Purely Blueprint Motivated VariationPoints

Table D.6: Changed Constraints in 19-11

D.3.6 Deleted Constraints in 19-11

none

D.4 Change History of this document according to AUTOSAR Re-
lease R20-11

D.4.1 Added Specification Items in R20-11

none

D.4.2 Changed Specification Iltems in R20-11

none

D.4.3 Deleted Specification Items in R20-11

none

D.4.4 Added Constraints in R20-11

none

D.4.5 Changed Constraints in R20-11

Number Heading

[constr_2540] Tagged text category

Table D.7: Changed Constraints in R20-11

AUTSSAR

D.4.6 Deleted Constraints in R20-11

none

D.5 Change History of this document according to AUTOSAR Re-
lease R21-11

D.5.1 Added Specification Items in R21-11

none

D.5.2 Changed Specification Iltems in R21-11

Number Heading

[TPS_STDT_00014] Blueprinting BswModuleEntry

[TPS_STDT_00027] Blueprinting BswModuleDescription

[TPS_STDT_00064] Applied Life Cycle Information Sets on AUTOSAR provided Models (M1)

[TPS_STDT_00081] Representation of constraint items in AUTOSAR template documents

[TPS_STDT_00090] Blueprinting BswEntryRelationshipSet
[TPS_STDT_00091] Blueprinting BswEntryRelationshipSet
[TPS_STDT_00092] Return values of the BlueprintFormula.ecuc query

Validation Semantics of global ConcreteClassTailoring.

[TPS_STDT_00107] multiplicityRestriction with validationRoot==true

[TPS_STDT_00115] Analysis of Tool Compatibility

[TPS_STDT_00157] Purpose of DataFormatTailoring

Table D.8: Changed Specification Iltems in R21-11

D.5.3 Deleted Specification Items in R21-11

none

D.5.4 Added Constraints in R21-11

none

D.5.5 Changed Constraints in R21-11

none

AUTSSAR

D.5.6 Deleted Constraints in R21-11

none

D.6 Change History of this document according to AUTOSAR Re-
lease R22-11

D.6.1 Added Specification Items in R22-11

Number Heading

[TPS_STDT_00093] Representation of advisory items in AUTOSAR template documents

[TPS_STDT_00094] Sentence pattern

Table D.9: Added Specification Items in R22-11

D.6.2 Changed Specification Iltems in R22-11

Number Heading

namePattern for shortNames of TraceableText in Standardization

[TPS_STDT_00042]
Documents

[TPS_STDT_00050] namePattern for AUTOSAR delivered Files

[TPS_STDT_00078] Representation of requirements in AUTOSAR documents

Table D.10: Changed Specification Iltems in R22-11

D.6.3 Deleted Specification Items in R22-11

none

D.6.4 Added Constraints in R22-11

none

D.6.5 Changed Constraints in R22-11

none

D.6.6 Deleted Constraints in R22-11

none

AUTSSAR

D.7 Change History of this document according to AUTOSAR Re-
lease R23-11

D.7.1 Added Specification ltems in R23-11

Number Heading

[TPS_STDT_00095] Semantics of an TmpositionTime

[TPS_STDT_00096] Application of an ITmpositionTime

[TPS_STDT_00097] Semantics of an unspecified TmpositionTime

Table D.11: Added Specification Iltems in R23-11

D.7.2 Changed Specification Items in R23-11

Number Heading

[TPS_STDT_00021] Specialization of BlueprintFormula

[TPS_STDT 00042] namePattern for shortNames of TraceableText in Standardization
- - Documents

[TPS_STDT_00081] Representation of constraint items in AUTOSAR template documents

Identifying specification items which are constraints in AUTOSAR
[TPS_STDT_00089] ASWS/SWS/PRS documents

[TPS_STDT_00092] Return values of the BlueprintFormula.ecuc query

Default multiplicityRestriction of Meta—-Attributes (when not

[TPS_STDT_00198] | o iicitly specified)

Default PrimitiveAttributeTailoring.valueRestriction (when

[TPS_STDT_00203] | | axplicitly specified)

Table D.12: Changed Specification Items in R23-11

D.7.3 Deleted Specification Iltems in R23-11

Number Heading

[TPS_STDT_00111] AUTOSAR Standardized Constraints

Table D.13: Deleted Specification Iltems in R23-11

D.7.4 Added Constraints in R23-11

none

AUTSSAR

D.7.5 Changed Constraints in R23-11

Number Heading

[constr_2540] Tagged text category

Table D.14: Changed Constraints in R23-11

D.7.6 Deleted Constraints in R23-11

Number Heading

[constr_2564] VariationPoint in Blueprints of PackageableElement

Table D.15: Deleted Constraints in R23-11

D.8 Change History of this document according to AUTOSAR Re-
lease R24-11

D.8.1 Added Specification Items in R24-11

Number Heading

[TPS_STDT_00098] Standardized categorys of TraceableText and TraceableTable

Table D.16: Added Specification Items in R24-11

D.8.2 Changed Specification Items in R24-11

Number Heading
[TPS_STDT 00042] namePattern for shortNames of TraceableText in Standardization
- - Documents

[TPS_STDT_00050] Standardized naming convention for released AUTOSAR files

[TPS_STDT_00078] Representation of requirements in AUTOSAR documents

Table D.17: Changed Specification ltems in R24-11

AUTSSAR

D.8.3 Deleted Specification Items in R24-11

Number Heading

[TPS_STDT_00029] Representation of test items in AUTOSAR documents

[TPS_STDT_00059] TraceableText

Table D.18: Deleted Specification Items in R24-11

D.8.4 Added Constraints in R24-11

none

D.8.5 Changed Constraints in R24-11

none

D.8.6 Deleted Constraints in R24-11

Number Heading

[constr_2540] Tagged text category

Table D.19: Deleted Constraints in R24-11

D.9 Change History of this document according to AUTOSAR Re-
lease R25-11

D.9.1 Added Specification ltems in R25-11

Number Heading

[TPS_STDT_00099] | Standardized naming convention for trace groups

[TPS_STDT_00137] | AUTOSAR Document Names and Abbreviations for Trace Prefixes
[TPS_STDT_00148] | SPECIFICATION_ITEMS which are not-applicable for up-tracing

AUTOSAR reserved shortNames under the top-level
ARPackage=AUTOSAR

[TPS_STDT 00150] | AUTOSAR document categories
[TPS_STDT_00151] | AUTOSAR document meta-data
Table D.20: Added Specification Items in R25-11

[TPS_STDT_00149]

AUTSSAR

D.9.2 Changed Specification Iltems in R25-11

Number

Heading

[TPS_STDT_00042]

Naming convention for SPECIFICATION_ITEMS

[TPS_STDT_00050]

Standardized naming convention for published AUTOSAR files

[TPS_STDT_00088]

Representation of constraint items in AUTOSAR non template documents

[TPS_STDT_00089]

SPECIFICATION_ITEMS with constraint semantics

Table D.21: Changed Specification Items in R25-11

D.9.3 Deleted Specification Items in R25-11

Number

Heading

[TPS_STDT_00057]

Representation of generally fulfilled requirements in AUTOSAR documents

[TPS_STDT_00058]

Representation of under specified requirements in AUTOSAR documents

[TPS_STDT_00100]

Motivation of Description of Data Exchange Points

[TPS_STDT_00101]

Compatibility of ConcreteClassTailorings

[TPS_STDT_00102]

Referencing AUTOSAR Specification Elements via shortName

[TPS_STDT_00103]

Referencing AUTOSAR Specification Elements via alternativeName

[TPS_STDT_00104]

Referencing Custom Specification Elements

[TPS_STDT_00105]

Serialized Profile

[TPS_STDT_00106]

Effective Profile

[TPS_STDT_00107]

Validation Semantics of global ConcreteClassTailoring.
multiplicityRestriction with validationRoot==true

[TPS_STDT_00108]

Validation Semantics of global ConcreteClassTailoring.
multiplicityRestriction with validationRoot==false

[TPS_STDT_00109]

AUTOSAR Standardized Concrete Meta-Classes

[TPS_STDT_00110]

Identification of Potential Interoperability Issues

[TPS_STDT_00112]

Validation Semantics of ClassTailoring.multiplicityRestriction
in the context of AggregationTailoring.typeTailoring

[TPS_STDT_00113]

Validation Semantics of AbstractClassTailoring.
multiplicityRestriction

[TPS_STDT_00114]

MultiplicityRestrictionWithSeverity inthe context of
ClassTailoring VSs. AggregationTailoring/ReferenceTailoring

[TPS_STDT_00115]

Analysis of Tool Compatibility

[TPS_STDT_00116]

Limitation of Analysis of Profile of Data Exchange Point$s

[TPS_STDT_00117]

Agreed Profile of Data Exchange Point

[TPS_STDT_00118]

Compliance with Profile of Data Exchange Point

[TPS_STDT_00119]

Validation Semantics of ClassTailoring.multiplicityRestriction
in the context of ReferenceTailoring.typeTailoring

[TPS_STDT_00120]

Purpose of DataExchangePoint

Y

AUTSSAR

A

Number

Heading

[TPS_STDT _00121]

High-level Overview Description of DataExchangePoint

[TPS_STDT_00122]

Purpose of Baseline

[TPS_STDT_00123]

Guidance on how to specify SpecificationDocumentScope and
DocumentElement Scope

[TPS_STDT_00124]

Purpose of SpecElementScope

[TPS_STDT_00125]

Trigger for Evaluation of Constraints

[TPS_STDT_00126]

Definition: Data Format Elements

[TPS_STDT_00127]

Validation Environment

[TPS_STDT_00128]

Compatibility of SpecificationDocumentScopes

[TPS_STDT_00129]

Semantics of DataFormatElement Scope With inScope==true

[TPS_STDT_00130]

Navigation strategy for validation

[TPS_STDT _00131]

Compatibility of AggregationTailoring

[TPS_STDT_00132]

Purpose of sSdgTailoring

[TPS_STDT_00133]

Compatibility of ReferenceTailoring

[TPS_STDT _00134]

Compatibility of PrimitiveAttributeTailoring

[TPS_STDT_00135]

Compatibility of ClassContentConditional

[TPS_STDT_00136]

Compatibility of AttributeTailoring

[TPS_STDT _00138]

Purpose of ReferenceTailoring

[TPS_STDT_00139]

AUTOSAR Standardized References of Meta-Class

[TPS_STDT_00140]

Purpose of AggregationTailoring

[TPS_STDT _00141]

AUTOSAR Standardized Aggregations of Meta-Class

[TPS_STDT_00142]

Purpose of PrimitiveAttributeTailoring

[TPS_STDT_00143]

AUTOSAR Standardized Primitive Attributes of Meta-Class

[TPS_STDT_00144]

Purpose of AttributeTailoring

[TPS_STDT_00145]

Purpose of ClassTailoring

[TPS_STDT_00146]

AUTOSAR Standardized Abstract Meta-Classes

[TPS_STDT_00147]

Purpose of ConstraintTailoring

[TPS_STDT_00156]

Purpose of SpecificationScope

[TPS_STDT _00157]

Purpose of DataFormatTailoring

[TPS_STDT_00159]

Semantics of Attribute that is in Scope

[TPS_STDT_00160]

Compatibility of DocumentElementScopes

[TPS_STDT_00163]

Validation Semantics of ConcreteClassTailoring

[TPS_STDT_00164]

Semantics of a Constraint that is out of Scope

[TPS_STDT_00165]

Semantics of Constraint that is in Scope

[TPS_STDT_00167]

Semantics of SdgTailoring that is in scope

[TPS_STDT_00168]

Share documentation of Rationale

[TPS_STDT_00169]

Handling of unresolved references

[TPS_STDT_00170]

Local documentation of Rationale

Y

AUTSSAR

A

Number

Heading

[TPS_STDT 00172]

Purpose of RestrictionWithSeverity

[TPS_STDT_00173]

Purpose of valueRestrictionWithSeverity

[TPS_STDT _00174]

Purpose of MultiplicityRestrictionWithSeverity

[TPS_STDT 00175]

Purpose of VariationRestrictionWithSeverity

[TPS_STDT_00176]

Context specific Tailoring

[TPS_STDT_00177]

Global ClassTailoring

[TPS_STDT_00178]

Role Specific ClassTailoring

[TPS_STDT_00179]

Conditional cClassTailoring

[TPS_STDT_00180]

Invariant Content Model

[TPS_STDT _00181]

Conditional Content Model

[TPS_STDT _00182]

Validation Semantics of AbstractClassTailoring

[TPS_STDT _00183]

Compatibility of Baselines

[TPS_STDT_00186]

Scope and Restrictions of Data Format Elements

[TPS_STDT_00187]

Purpose of DocumentElement Scope

[TPS_STDT _00188]

Purpose of SpecificationDocumentScope

[TPS_STDT_00190]

Default Scope of concrete Meta Classes

[TPS_STDT_00191]

Purpose of Baseline Profile of Data Exchange Point

[TPS_STDT _00192]

Default Scope of AUTOSAR Specifications

[TPS_STDT_00193]

Default Scope of AUTOSAR Specification Elements

[TPS_STDT_00195]

Default Scope of Meta Attributes

[TPS_STDT_00196]

Default Validation Root of concrete Meta Classes

[TPS_STDT_00197]

Default multiplicityRestriction of Meta-Classes (when not
explicitly specified)

[TPS_STDT_00198]

Default multiplicityRestriction of Meta-Attributes (when not
explicitly specified)

[TPS_STDT_00199]

Default variationRestriction of Meta-Attributes (when not
explicitly specified)

[TPS_STDT_00200]

Default variationRestriction of Meta-Classes with
<atpVariation>> (when not explicitly specified)

[TPS_STDT _00201]

Compatibility of variationRestrictionWithSeverity.variation

[TPS_STDT _00202]

Compatibility of variationRestrictionWithSeverity.
validBindingTime

[TPS_STDT_00203]

Default PrimitiveAttributeTailoring.valueRestriction (when
not explicitly specified)

[TPS_STDT_00204]

Default PrimitiveAttributeTailoring.defaultValueHandling

[TPS_STDT_00205]

Compatibility of valueRestrictionWithSeverity

[TPS_STDT_00206]

Compatibility of UnresolvedReferenceRestrictionWithSeverity

[TPS_STDT_00207]

Default ReferenceTailoring.unresolvedReferenceRestriction

[TPS_STDT_00208]

Compatibility of ConstraintTailorings

[TPS_STDT_00209]

Compatibility of SdgTailorings

\Y

AUTSSAR

A

Number

Heading

[TPS_STDT_00210]

Compatibility of MultiplicityRestrictionWithSeverity

[TPS_STDT_00211]

Specification of the AUTOSAR Standards that are part of the Baseline

D.9.4

none

D.9.5

none

Table D.22: Deleted Specification Iltems in R25-11

Added Constraints in R25-11

Changed Constraints in R25-11

D.9.6 Deleted Constraints in R25-11

Number

Heading

[constr_2608]

Custom extensions shall be part of the Documentation that is referenced by the
Baseline

[constr_2609]

Single revision per AUTOSAR standard

[constr_2610]

No alternativeName if matching via shortName

[constr_2611]

Referenced AUTOSAR Specification Elements shall be part of the AUTOSAR
Specification Baseline

[constr_2612]

shortName of ConcreteClassTailoring shall match the name of an
AUTOSAR specified concrete meta-class

[constr_2613]

shortName of AbstractClassTailoring shall match the name of an
AUTOSAR specified abstract meta-class

[constr_2614]

PrimitiveAttributeCondition.attribute shall reference invariant owned
PrimitiveAttributeTailoring, only

[constr_2615]

AggregationCondition.aggregation shall reference invariant owned
AggregationTailoring, only

[constr_2616]

ReferenceCondition.reference shall reference invariant owned
ReferenceTailoring, only

[constr_2617]

ClassTailoring.variationRestriction only applicable for «atpVariation»
classes

[constr_2618]

ShortName of AttributeTailoring shall match owned or inherited attributes

[constr_2619]

No AttributeTailoring for Derived or Abstract Attributes

[constr_2620]

shortName of PrimitiveAttributeTailoring shall be a primitive attribute in
the referenced Baseline

\Y

AUTSSAR

A

Number

Heading

[constr_2621]

The shortName of AggregationTailoring shall match the name of an
AUTOSAR specified aggregation of the meta-class

[constr_2622]

The shortName of ReferenceTailoring shall match the name of an AUTOSAR
specified reference of the meta-class

[constr_2623]

Referenced sdgClass shall be part of a sdgbef that is referenced by the
Baseline

[constr_2624]

AttributeTailoring.variationRestriction only applicable for «atp
Variation» attributes

Table D.23: Deleted Constraints in R25-11

	1 Introduction
	1.1 AUTOSAR document conventions

	2 AUTOSAR documentation model
	2.1 AUTOSAR document meta-data
	2.2 Document categories
	2.3 Document relational views
	2.4 Document list
	2.5 Standardized naming of published files
	2.6 Standardized ARPackage.shortNames

	3 Tracing
	3.1 AUTOSAR document traceable items
	3.1.1 Specification Item
	3.1.2 Model Constraint
	3.1.3 Software Constraint
	3.1.4 Model Advisory
	3.1.5 Imposition Time of a Model Constraint/Model Advisory
	3.1.6 Requirement
	3.1.6.1 Phrasing convention

	3.1.7 Applicability of Requirements
	3.1.8 Meta-classes supporting Traceable Items
	3.1.8.1 StructuredReq
	3.1.8.2 TraceableText/TraceableTable

	3.2 Trace levels
	3.3 Trace groups

	4 Life Cycle of AUTOSAR definitions
	4.1 Life Cycle State vs Tracing Levels

	5 Blueprints
	5.1 The Principles of Blueprints
	5.1.1 Abstract pattern for Blueprints
	5.1.2 Mapping of Blueprints to blueprinted Elements
	5.1.3 General Rules for Compliance of blueprint and blueprinted element
	5.1.4 Applicable patterns to define attributes when deriving objects from blueprints
	5.1.5 Name Patterns
	5.1.6 Blueprint Formula
	5.1.7 Ecu Configuration Parameters and Blueprints

	5.2 Blueprintables defined in AUTOSAR Meta Model
	5.2.1 Blueprinting AccessControl
	5.2.2 Blueprinting AliasNameSet
	5.2.3 Blueprinting ApplicationDataType
	5.2.4 Blueprinting ARPackage
	5.2.5 Blueprinting BswModuleDescription
	5.2.6 Blueprinting BswModuleEntry
	5.2.7 Blueprinting BswEntryRelationshipSet
	5.2.8 Blueprinting BuildActionManifest
	5.2.9 Blueprinting CompuMethod
	5.2.10 Blueprinting ConsistencyNeeds
	5.2.11 Blueprinting DataConstr
	5.2.12 Blueprinting DataTypeMappingSet
	5.2.13 Blueprinting EcucDefinitionCollection
	5.2.14 Blueprinting EcucModuleDef
	5.2.15 Blueprinting FlatMap
	5.2.16 Blueprinting ImplementationDataType
	5.2.17 Blueprinting KeywordSet
	5.2.18 Blueprinting LifeCycleStateDefinitionGroups and LifeCycleStates
	5.2.19 Blueprinting ModeDeclarationGroup
	5.2.20 Blueprinting PortPrototype
	5.2.21 Blueprinting PortInterface
	5.2.22 Blueprinting PortInterfaceMapping and PortInterfaceMappingSet
	5.2.23 Blueprinting SwBaseType
	5.2.24 Blueprinting SwComponentType
	5.2.25 Blueprinting SwAddrMethods
	5.2.26 Blueprinting VfbTiming
	5.2.26.1 Example

	5.2.27 Blueprinting ClientServerInterfaceToBswModuleEntryBlueprintMapping

	5.3 Deriving from AUTOSAR-provided Blueprints

	6 Keywords
	A Examples
	A.1 Example Blueprints
	A.1.1 Blueprints of PortInterfaceMapping
	A.1.2 Blueprints of VfbTiming

	A.2 Example Keyword ARXMLs
	A.2.1 Example ARXML for Keywords
	A.2.2 Example ARXML for Stem Relation of Keywords
	A.2.3 Example for BlueprintPolicyNotModifiable
	A.2.4 Example for BlueprintPolicyList
	A.2.5 Example for BlueprintPolicySingle

	B Mentioned Class Tables
	C Variation Points in this Template
	D Change History
	D.1 Change History of this document according to AUTOSAR Release R4.3.1
	D.1.1 Added Specification Items in 4.3.1
	D.1.2 Changed Specification Items in 4.3.1
	D.1.3 Deleted Specification Items in 4.3.1
	D.1.4 Added Constraints in 4.3.1
	D.1.5 Changed Constraints in 4.3.1
	D.1.6 Deleted Constraints in 4.3.1

	D.2 Change History of this document according to AUTOSAR Release R4.4.0
	D.2.1 Added Specification Items in 4.4.0
	D.2.2 Changed Specification Items in 4.4.0
	D.2.3 Deleted Specification Items in 4.4.0
	D.2.4 Added Constraints in 4.4.0
	D.2.5 Changed Constraints in 4.4.0
	D.2.6 Deleted Constraints in 4.4.0

	D.3 Change History of this document according to AUTOSAR Release R19-11
	D.3.1 Added Specification Items in 19-11
	D.3.2 Changed Specification Items in 19-11
	D.3.3 Deleted Specification Items in 19-11
	D.3.4 Added Constraints in 19-11
	D.3.5 Changed Constraints in 19-11
	D.3.6 Deleted Constraints in 19-11

	D.4 Change History of this document according to AUTOSAR Release R20-11
	D.4.1 Added Specification Items in R20-11
	D.4.2 Changed Specification Items in R20-11
	D.4.3 Deleted Specification Items in R20-11
	D.4.4 Added Constraints in R20-11
	D.4.5 Changed Constraints in R20-11
	D.4.6 Deleted Constraints in R20-11

	D.5 Change History of this document according to AUTOSAR Release R21-11
	D.5.1 Added Specification Items in R21-11
	D.5.2 Changed Specification Items in R21-11
	D.5.3 Deleted Specification Items in R21-11
	D.5.4 Added Constraints in R21-11
	D.5.5 Changed Constraints in R21-11
	D.5.6 Deleted Constraints in R21-11

	D.6 Change History of this document according to AUTOSAR Release R22-11
	D.6.1 Added Specification Items in R22-11
	D.6.2 Changed Specification Items in R22-11
	D.6.3 Deleted Specification Items in R22-11
	D.6.4 Added Constraints in R22-11
	D.6.5 Changed Constraints in R22-11
	D.6.6 Deleted Constraints in R22-11

	D.7 Change History of this document according to AUTOSAR Release R23-11
	D.7.1 Added Specification Items in R23-11
	D.7.2 Changed Specification Items in R23-11
	D.7.3 Deleted Specification Items in R23-11
	D.7.4 Added Constraints in R23-11
	D.7.5 Changed Constraints in R23-11
	D.7.6 Deleted Constraints in R23-11

	D.8 Change History of this document according to AUTOSAR Release R24-11
	D.8.1 Added Specification Items in R24-11
	D.8.2 Changed Specification Items in R24-11
	D.8.3 Deleted Specification Items in R24-11
	D.8.4 Added Constraints in R24-11
	D.8.5 Changed Constraints in R24-11
	D.8.6 Deleted Constraints in R24-11

	D.9 Change History of this document according to AUTOSAR Release R25-11
	D.9.1 Added Specification Items in R25-11
	D.9.2 Changed Specification Items in R25-11
	D.9.3 Deleted Specification Items in R25-11
	D.9.4 Added Constraints in R25-11
	D.9.5 Changed Constraints in R25-11
	D.9.6 Deleted Constraints in R25-11

