AUTSSAR

Document Title

AUTOSAR Feature Model
Exchange Format

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 606
Document Status published
Part of AUTOSAR Standard Foundation
Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 | R25-11 Release * No content changes
Management
AUTOSAR
2024-11-27 R24-11 Release * Added imposition time to constraints.
Management
AUTOSAR
2023-11-23 R23-11 Release « Editorial table updates
Management
AUTOSAR
2022-11-24 | R22-11 Release * No content changes
Management
» Changed all lower multiplicities in the
AUTOSAR meta-m'odel to0 aqd mtrodu'ced.
2021-11-25 R21-11 Release constraints that define at which time
Management which model elements need to be
9 available. For details please refer to the
ChangeDocumentation.
AUTOSAR
2020-11-30 | R20-11 Release « Document moved to Foundation
Management
AUTOSAR « Editorial Changes
2019-11-28 | R19-11 Release « Changed Document Status from Final to
Management published
AUTOSAR
2018-10-31 4.4.0 Release « Editorial changes
Management

AUTSSAR

2017-12-08

4.3.1

AUTOSAR
Release
Management

« Editorial changes

2016-11-30

4.3.0

AUTOSAR
Release
Management

« Editorial changes

2015-07-31

422

AUTOSAR
Release
Management

« Editorial changes

2014-10-31

4.2.1

AUTOSAR
Release
Management

* Added [TPS_FMDT_00064]

2013-10-31

41.2

AUTOSAR
Release
Management

« Editorial changes

2013-03-15

411

AUTOSAR
Administration

« Initial release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional Overview
1.1 Variant Handling in AUTOSAR
1.2 Thecasefor FeatureModels
1.3 Sample Feature Model,
1.4 OVEIVIEW e e e e e e e
1.5 Document Conventions

2 Terminology
2.1 Terminology from graphtheory

3 Overview

3.1 Feature Model
3.2 Feature Selection
33 FeatureMap

4 Feature Model

4.1 Class FMFeatureModel v v v v v i e e e e e e e e e e e
4.1.1 Reference feature e
4.1.2 Reference root

4.2 Class FMFeatUre . v v v v v e e e e e e e e e e e e
4.2.1 Name and DocumentationofaFeature
422 Intended Binding Time

4.3 AttributesofaFeature Lo

4.4 Class FMFeatureDecomposition
4.41 Constraints and Terminology for FMFeatureDecomposition . . .
4.4.2 Categories of Feature Decompositions
4.4.3 Attributesminandmax

4.5.1 Identifying and documenting FMFeatureRestrictions
452 Example
4.6 Class FMFeatureRelation v v v v v i i i e e et e e e
4.6.1 Attribute category e
4.6.2 Identifying and documenting FMFeatureRelationS
4.6.3 Predefined Relations
4.7 Hierarchy, Restrictions and Relations

5 Feature Selection
51 Example
5.2 Class FMFeatureSelection . . « . v v v v v v i v i e e e e e e
5.2.1 Reference feature e
5.2.2 Attribute state

AUTSSAR

5.2.3 FMAttributeValue v i i v it 39
5231 Example 40

5.2.4 SelectedBinding Time. 41

5.3 Class FMFeatureSelectionSet v i v v v v v v i v 41
5.3.1 Terminology and constraints 42

5.3.2 Relation include 43

54 stateand include e e e e e 44
5.5 Valid Feature Selection 47

6 Feature Map 48
6.1 Example 48
6.2 OVErvIieW e e 50
6.3 Class FMFeatureMap . . « « v v v v v v et e e e e e e e e 51
6.4 Class FMFeatureMapElement v v v v v v v v i e e e e 51
6.5 Relationship with Predefinedvariant 52
6.6 So, howdoesitwork? 53
6.7 Which variation points are affected by a particular FMFeature? 54

7 Common Concepts 58
7.1 Special Data in Context of Feature Models 58
7.2 Formulasthatuse Features 59
7.2.1 FMFormulaByFeaturesAndAttributes 59
7.2.2 FMConditionByFeaturesAndAttributes 60
7.2.3 FMFormulaByFeaturesAndSwSystemconsts 61
7.24 FMConditionByFeaturesAndSwSystemconsts 62
7.2.5 Evaluating Expressions that use Features and Attributes 62

A Glossary 65
B Reference Material 68
B.1 Imposition Times of Constraints 68

C Mentioned Class Tables 69
D Constraint History 80
D.1 Change History for AUTOSARR4.1.1 80
D.1.1 Added ConstraintsR4.1.1 80
D.1.2 Changed Constraints R4.1.1 80
D.1.3 Deleted Constraints R4.1.1 81
D.1.4 Added Traceables R4.1.1 81
D.1.5 Changed TraceablesR4.1.1 82
D.1.6 Deleted TraceablesR4.1.1 82

D.2 Change History for AUTOSAR R4.2.1 againstR4.1.3 82
D.2.1 Added Constraintsin4.2.1 82
D.2.2 Changed Constraintsin4.2.1 82

D.2.3 Deleted Constraintsin4.2.1 82

AUTSSAR

D.2.4 Added Specification ltemsin4.21 83
D.2.5 Changed Specification ltemsin4.2.1 83
D.2.6 Deleted Specification ltemsin4.21 83
D.3 Change History for AUTOSAR R4.2.2 againstR4.2.1 83
D.3.1 Added Constraintsin4.2.2 83
D.3.2 Changed Constraintsin4.2.2 83
D.3.3 Deleted Constraintsin4.2.2. 83
D.3.4 Added Specification ltemsin4.22 83
D.3.5 Changed Specification Itemsin4.22 83
D.3.6 Deleted Specification ltemsin4.22 84
D.4 Change History for AUTOSAR R4.3.0 againstR4.22 84
D.4.1 Added Constraintsin4.3.0 84
D.4.2 Changed Constraintsin4.3.0 84
D.4.3 Deleted Constraintsin4.3.0. 84
D.4.4 Added Specification ltemsin4.3.0 84
D.4.5 Changed Specification Itemsin4.3.0 84
D.4.6 Deleted Specification ltemsin4.3.0 84
D.5 Change History for AUTOSAR R4.3.1 againstR4.3.0 84
D.5.1 Added Constraintsin4.3.1 84
D.5.2 Changed Constraintsin4.3.1 85
D.5.3 Deleted Constraintsin4.3.1 85
D.5.4 Added Specification ltemsin4.3.1 85
D.5.5 Changed Specification Itemsin4.3.1 85
D.5.6 Deleted Specification ltemsin4.3.1 85
D.6 Change History for AUTOSAR R4.4.0 against R4.3.1 85
D.6.1 Added Constraintsin4.4.0 85
D.6.2 Changed Constraintsin4.4.0 85
D.6.3 Deleted Constraintsin4.4.0. 85
D.6.4 Added Specification ltemsin4.4.0 85
D.6.5 Changed Specification Itemsin4.4.0 86
D.6.6 Deleted Specification ltemsin4.40 86
D.7 Change History for AUTOSAR R19-11 against R4.4.0. 86
D.7.1 Added Constraintsin19-11 86
D.7.2 Changed Constraints in 19-11 86
D.7.3 Deleted Constraints in 19-11 86
D.7.4 Added Specification ltemsin19-11 86
D.7.5 Changed Specification Itemsin19-11 86
D.7.6 Deleted Specification ltemsin19-11 86
D.8 Change History for AUTOSAR R20-11 against R19-11 87
D.8.1 Added Constraints in R20-11 87
D.8.2 Changed Constraints in R20-11 87
D.8.3 Deleted Constraints in R20-11 87

D.8.4 Added Specification ltemsin R20-11 87

AUTSSAR

D.8.5 Changed Specification Itemsin R20-11 87
D.8.6 Deleted Specification ltemsin R20-11 87
D.9 Change History for AUTOSAR R21-11 against R20-11 87
D.9.1 Added Constraintsin R21-11 87
D.9.2 Changed ConstraintsinR21-11 88
D.9.3 Deleted Constraintsin R21-11 88
D.9.4 Added Specification ltemsinR21-11 88
D.9.5 Changed Specification ItemsinR21-11 88
D.9.6 Deleted Specification ltemsinR21-11 88
D.10 Change History for AUTOSAR R22-11 against R21-11 88
D.10.1Added Constraintsin R22-11 88
D.10.2Changed Constraintsin R22-11 88
D.10.3Deleted Constraints in R22-11 89
D.10.4 Added Specification Itemsin R22-11 89
D.10.5Changed Specification ltemsin R22-11 89
D.10.6 Deleted Specification Itemsin R22-11 89
D.11 Change History for AUTOSAR R23-11 against R22-11 89
D.11.1 Added Constraintsin R23-11 89
D.11.2Changed Constraints in R23-11 89
D.11.3Deleted Constraints in R23-11 89
D.11.4 Added Specification Items in R23-11 89
D.11.5Changed Specification ltems in R23-11 90
D.11.6 Deleted Specification Itemsin R23-11 90
D.12 Change History for AUTOSAR R24-11 against R23-11 90
D.12.1Added Constraintsin R24-11 90
D.12.2Changed Constraintsin R24-11 90
D.12.3Deleted Constraints in R24-11 90
D.12.4 Added Specification Itemsin R24-11 90
D.12.5Changed Specification ltemsin R24-11 90
D.12.6 Deleted Specification Itemsin R24-11 90
D.13 Change History for AUTOSAR R25-11 against R24-11 91
D.13.1 Added Constraintsin R25-11 91
D.13.2Changed Constraintsin R25-11 91
D.13.3Deleted Constraints in R25-11 91
D.13.4 Added Specification Itemsin R25-11 91
D.13.5Changed Specification ltems in R25-11 91

D.13.6 Deleted Specification Itemsin R25-11 91

AUTSSAR

References

[1] Generic Structure Template
AUTOSAR_FO_TPS_GenericStructureTemplate

[2] Standardization Template
AUTOSAR_FO_TPS_StandardizationTemplate

[3] Methodology for Classic Platform
AUTOSAR_CP_TR_Methodology

[4] Software Process Engineering Meta-Model Specification
http://www.omg.org/spec/SPEM/2.0/

http://www.omg.org/spec/SPEM/2.0/

AUTSSAR

1 Introduction and functional Overview

1.1 Variant Handling in AUTOSAR

Release 4 of AUTOSAR has added support for Variant Handling, which contributes two
new aspects to the AUTOSAR metamodel as it was defined in release 3.

First, variation points have been introduced to AUTOSAR models. An AUTOSAR model
with variation points describes a set of AUTOSAR models which have a common struc-
ture but differ at certain locations. A variant-free AUTOSAR model is created from such
a model by binding the variation points, that is, by keeping some variations and discard-
ing others.

Second, AUTOSAR defines means to express what constitutes a specific variant, for
example which variation points are selected in an “economy” variant and which varia-
tion points are selected in a “luxury” variant. This is necessary because an AUTOSAR
model with variation points may describe a very large number of variants, but few of
them are actually used.

Variant Handling in AUTOSAR is described in chapter on variant handling of the
Generic Structure Template [1].

1.2 The case for Feature Models

To summarize the previous section, AUTOSAR Variation points are intended to ex-
change information about where variation occurs in an AUTOSAR model, and to state
what the relevant variants are. There are however two aspects that are not yet covered
by this concept:

« Variation points are expressed on a rather low level. For example, the variants
‘economy’ and ’luxury’ typically consist of a large number of variation points, but
the fact that these variation points act conjointly is not explicitly visible in the
model.

» There are dependencies between variation points. For example, ’economy’ and
luxury’ variants are mutually exclusive, but this relationship is again not explic-
itly visible in the model. For variation points that are not PostBuild, this could be
implemented by appropriately extending the formula language used for the con-
ditions, although this would be difficult to maintain and would also intertwine two
independent concepts, variation points and feature modeling. However, such an
extension would not work for PostBuild because such variation points only use
simple conditions.

The Feature Model Exchange Format which we are presenting in this document covers
these additional aspects.

AUTSSAR

1.3 Sample Feature Model

An example for a feature model is shown in Figure 1.1.

| Feature Model: Sample Car |

—| Mandatory: Engine |

—| Alternative: Gasoline Engine

[....... Requires: Gasline Engine Controlleﬁ

—| Alternative: Diesel Engine l

Requires: Diesel Engine
Controller

—| Mandatory: Engine Controller

—| Alternative: Gasoline Engine Controller |

Alternative: Diesel Engine Controller |

—| Mandatory: Doors

_| Mandatory: Two Doors |

—| Optional: Four Doors |
—| Optional: Extras Bl

Conflicts: Sunroof
—| Optional: Convertible |
Optional: Sunroof | Conflicts: Four Doors Iﬁ

_| Mandatory: Electric window lift |

_| Optional: Halogen lights |
Figure 1.1: A sample Feature Model

1.4 Overview

1.

Features reside in the “problem domain”. They are even independent from the im-
plementation respectively the product architecture. They are much more abstract
than variation points which reside in the “solution domain”. Features express
common and variable characteristics of the finished product instead of annotat-
ing individual locations in a model. A feature model provides a high-level view of
an AUTOSAR model with variations.

. A feature model describes the dependencies between individual features. Exam-

ples for dependencies include hierarchical structuring of features, features that
model alternatives, and features that require or prohibit other features.

. An individual product can be described by selecting a set of features. Of course,

such a selection has to obey the dependencies stated in the feature model. A

AUTSSAR

mapping from features to variation points' specifies which variation points are
affected by the selection.

4. The Feature Model Exchange Format establishes an efficient way to exchange
feature models between different feature modeling tools.

5. Feature models will be optional in AUTOSAR. This means that feature models
are an extension; it is still possible to develop and use AUTOSAR models that do
not contain feature models.

1.5 Document Conventions

Technical terms are typeset in mono spaced font, e.g. PortPrototype. As a general
rule, plural forms of technical terms are created by adding "s" to the singular form, e.g.
PortPrototypes. By this means the document resembles terminology used in the
AUTOSAR XML Schema.

This document contains constraints in textual form that are distinguished from the rest
of the text by a unique numerical constraint ID, a headline, and the actual constraint
text starting after the | character and terminated by the | character.

The purpose of these constraints is to literally constrain the interpretation of the
AUTOSAR meta-model such that it is possible to detect violations of the standardized
behavior implemented in an instance of the meta-model (i.e. on M1 level).

Makers of AUTOSAR tools are encouraged to add the numerical ID of a constraint that
corresponds to an M1 modeling issue as part of the diagnostic message issued by the
tool.

The attributes of the classes introduced in this document are listed in form of class
tables. They have the form shown in the example of the top-level element AUTOSAR:

Please note that constraints are not supposed to be enforceable at any given time in an
AUTOSAR workflow. During the development of a model, constraints may legitimately
be violated because an incomplete model will obviously show inconsistencies.

However, at specific points in the workflow, constraints shall be enforced as a safeguard
against misconfiguration.

The points in the workflow where constraints shall be enforced, sometimes also known
as the "binding time" of the constraint, are different for each model category, e.g. on the
classic platform, the constraints defined for software-components are typically enforced
prior to the generation of the RTE while the constraints against the definition of an Ecu
extract shall be applied when the Ecu configuration for the Com stack is created.

"More precisely, features will be mapped to values of system constants, which in turn control variation
points.

AUTSSAR

For each document, possible binding times of constraints are defined and the binding
times are typically mentioned in the constraint themselves to give a proper orientation
for implementers of AUTOSAR authoring tools.

Let AUTOSAR be an example of a typical class table. The first rows in the table have
the following meaning:

Class: The name of the class as defined in the UML model.

Package: The UML package the class is defined in. This is only listed to help locating
the class in the overall meta model.

Note: The comment the modeler gave for the class (class note). Stereotypes and UML
tags of the class are also denoted here.

Base Classes: If applicable, the list of direct base classes.
The headers in the table have the following meaning:

Attribute: The name of an attribute of the class. Note that AUTOSAR does not distin-
guish between class attributes and owned association ends.

Type: The type of an attribute of the class.

Mul.: The assigned multiplicity of the attribute, i.e. how many instances of the given
data type are associated with the attribute.

Kind: Specifies, whether the attribute is aggregated in the class (aggr aggregation),
an UML attribute in the class (attr primitive attribute), or just referenced by it (ref
reference). Instance references are also indicated (iref instance reference) in this
field.

Note: The comment the modeler gave for the class attribute (role note). Stereotypes
and UML tags of the class are also denoted here.

Please note that the chapters that start with a letter instead of a numerical value rep-
resent the appendix of the document. The purpose of the appendix is to support the
explanation of certain aspects of the document and does not represent binding con-
ventions of the standard.

The verbal forms for the expression of obligation specified in [TPS_STDT_00053] shall
be used to indicate requirements, see [2, Standardization Template].

Please note: By intent, TPS documents (and their traceable items) do not trace up to
an RS (requirement item).

[TPS_FMDT_00064] Usage of Life Cycle |
Life Cycles in the FeatureModelExchangeFormat are described by making use of the
Life Cycle Support as described in the Generic Structure Template [1].]

AUTSSAR

2 Terminology

Feature Selection Provides Product Model describes. Product

Variant Selectors . o 1
select features bind variabilities consists of

Feature Model Implements Product Line Model describes Product Line

¢

0..*

Feature

Additions by Feature Model Concept Already exists in AUTOSAR 4.0

Problem Domain Solution Domain

Figure 2.1: Overview of Feature Model Terminology

Figure 2.1 presents an overview of the terminology used for feature modeling. We
define seven terms that are specific to the Feature Model Exchange Format, namely
Feature, Feature Selection, Feature Model, Product Model, Product Line Model, Prod-
uct and Product Line:

« [TPS_FMDT_00002] Definition of Feature |
A Feature describes an essential characteristic of a product. Features usually dif-
ferentiate one product from similar products — in our context, features differentiate
the individual products in a product line. |

- [TPS_FMDT_00003] Definition of Feature Selection |
A Feature Selection is a set of Features that describes a specific product.

A Feature Selection is always paired with a Feature Model. All dependencies and
relations that are defined in the Feature Model shall be obeyed. |

« [TPS_FMDT_00004] Definition of Feature Model |
A Feature Model describes the available features of a product line and their in-
terrelations / interdependencies. In other words, a Feature Model describes a
Product Line Model in the problem domain.

For example, a car may have either a gasoline or a diesel engine, so the fea-
tures Gasoline and Diesel are alternatives. A seven-seat configuration of a car
might require air conditioning, so the feature Seven Seats requires the feature Air
Conditioning.

AUTSSAR

A Feature Model is usually paired with a Product Line Model. |

« [TPS_FMDT_00005] Definition of Product Model |
A Product Model describes a product. A Product Model does not contain varia-
tion points anymore (except for PostBuild variation points). It is derived from the
Product Line Model by “binding” the variation points.

In AUTOSAR, a Product Model is a collection of M1 artifacts that describes a
particular Product.

Except for PostBuild variation points, The Product Model conforms to the Pure
Metamodel as defined in the chapter on variant handling in the Generic Structure
Template [1]. |

« [TPS_FMDT_00006] Definition of Product Line Model |
A Product Line Model is similar to a Product Model, but contains variation points
of all binding times. A Product Model is created out of a Product Line Model by
keeping certain variations, and discarding others (i.e., binding). The only variation
points that are still allowed in a Product Model are PostBuild variation points.

In the context of feature modeling, this selection process is steered by a Feature
Selection (more precisely, the variant selection Process (binding) is controlled by
variant selectors (SwSystemconst) who’s values in turn may be derived from
Feature selection).

In AUTOSAR, A Product Line Model is a collection of M1 artifacts which describe
a set of Product Models with common characteristics. A Product Line Model is an
instance of an extended metamodel as defined in the chapter on variant handling
in the Generic Structure Template [1]. |

« [TPS_FMDT_00007] Definition of Product |
A Product is an artifact that is the outcome of some type of process, for example
a software that runs on one or more ECUs.

In AUTOSAR, a Product is a collection of MO artifacts. In our terminology, it is
described by a Product Model on M1 Level. |

« [TPS_FMDT_00008] Definition of Product Line |
A Product Line is a collection of Products that are related. A Product Line usually
consists of a set of Products that have a certain amount of common aspects and
a number of aspects that differentiate the individual Products from each other.

In our terminology, a Product Line is described by a Product Line Model, which in
turn is described by a Feature Model. |

A note on the terminology

AUTSSAR

In this section, we define several terms that already have a meaning in AUTOSAR or
elsewhere. This is especially true for the terms Feature and Product. A more con-
cise definition might be AUTOSAR Featuremodel Feature or AUTOSAR Featuremodel
Product.

However, it is easy to see that readability of this document would be significantly im-
pacted by such a choice of words. Terms such as Feature have been established in
the literature on feature modeling for some time, so using a different term would not be
helpful for anybody familiar with the field.

Hence, we have decided to go with the established terms despite the overlap with
existing AUTOSAR terminology. Since these terms are only used in the context of
feature modeling, it should always be clear which definition is intended.

2.1 Terminology from graph theory

In this document, we do occasionally use concepts from graph theory to provide formal
descriptions for constraints. The following sections defines these terms.

« A directed’ graphis a tuple (V, E) where E C V x V. V are called the nodes of
G, and F are called the edges of G.

* A path p in a graph G = (V,E) is a sequence p = vy, vs,...,v, Of nodes with
v, e VandVie{l,...n—1}: (v,v;11) € E. p starts at v; and ends at v,,.

* Acirclein agraph G = (V, E) is a path vy, va, ..., v, Where v; = v,.

A self loop in a graph G = (V, E) is an edge (v,v) € E.

An isolated node in a graph G = (V, E) is a node v € V where =3 : ((v,?v') €
E Vv (v',v) € E). In other words, an isolated node is one that has no edges.

» Atreeis a graph G = (V, E') with root r € V that has the following properties:

1. Yo € V : dpathp = {r,vq,...,v}. In other words, for every node v € V, there
exists a path that starts at » and ends at v.

2. ~3v eV : (v,r) € E. In other words, the root node has no incoming edge.

3. YweV,u£r: I eV : (v, v) € E. Inother words, any node that is not the
root node has exactly one incoming edge.

4. G has no circles and no self loops.
5. size(V) = size(F) + 1.

Note: Items 4 and 5 are a consequence of items 1, 2 and 3.

'In this document, we need only directed graphs, so we are using the term graph synonymous with
directed graph.

AUTSSAR

3 Overview

An AUTOSAR feature model consists of three different structures': the feature model
itself, the feature selection, and finally the feature map.

3.1 Feature Model

A feature model (FMFeatureModel) consists of a number of features (FMFeature),
which are organized hierarchically (FMFeatureDecomposition). That is, each fea-
ture may contain a number of subfeatures, which in turn may contain subfeatures of
their own and so on. In other words: a feature model consists of one or more feature
trees.

As a special case, it is possible to distribute (split) feature models over several
AUTOSAR files. It is also possible to partition a large feature tree into subtrees.

Also, there may be interdependencies between features. For example, features may
represent alternatives and are thus mutually exclusive (FMFeatureDecomposition),
or a feature may require one or more other features, contradict other features (FMFea-
tureRelation), or features may include an expression that restricts their applicability
(FMFeatureRestriction).

3.2 Feature Selection

A feature selection is a set of features that describe an actual product. For example,
a specific car model is described by its set of features. This is implemented by a
FMFeatureSelectionSet, which contains a number of FMFeatureSelections,
each of which defines the state of a FMFeature within this particular feature selection.

A feature selection is said to be valid if all the restrictions and relations defined for its
features as well as the hierarchical structure of the feature model are obeyed.

Feature selections are handled separately from feature models because there usually
are many different feature selections for a single feature model. For example, different
cars are represented by different feature selections.

3.3 Feature Map

In AUTOSAR Variant Handling, variation points are controlled by system constants. An
expression that is based on system constants is used to determine whether a particular

"Many concepts described in this document are adapted from Generative Programming: Methods,
Tools, and Applications, Krzysztof Czarnecki and Ulrich W. Eisenecker, ACM Press/Addison-Wesley
Publishing Co, 2000

AUTSSAR

variation point is ‘on’ or ‘off’. One consequence is that the same system constant may
be used to control several variation points.

Hence, features cannot be mapped directly to variation points, but need to choose
values for the system constants which are used in the variation points’ expressions.

This is done by feature maps (FMFeatureMap). In a nutshell, each element of a fea-
ture map (FMFeatureMapElement) contains a set of conditions (FMFeatureMap-
Condition) that are based on features and feature attributes and a set of assertions
(FMFeatureMapAssertion) that are based on features and system constants. If any
of the conditions and all of the assertions evaluate to true, then the mapping lists a
number of system constants and chooses values for them.

AUTSSAR

4 Feature Model

4.1

ARElement
FMFeatureModel
|
«atpSplitable»
+feature\|/0..* +root\(/0..1
o Identifiable srestriction ARElement
FMFeatureRestriction FMFeature
0.*

+restriction YO..J.

FMFormulaByFeaturesAndAttributes
FMConditionByFeaturesAndAttributes

+restrictioni 0.1

Identifiable
FMFeatureRelation

+relation
0.*

+feature

Identifiable
FMAttributeDef

+ defaultvalue: Numerical [0..1]
+ max: Limit [0..1]
+ min: Limit [0..1]

0..*

+attributeDef

0..*

+ maximumIntendedBindingTime: BindingTimeEnum [0..1]
+ minimumintendedBindingTime: BindingTimeEnum [0..1]

+feature
+decomposition | 0..*

FMFeatureDecomposition

+ category: CategoryString [0..1]
+ max: Positivelnteger [0..1]
+ min: Positivelnteger [0..1]

Figure 4.1: Class FMFeatureModel

Class FMFeatureModel

Class FMFeatureModel
Note A Feature model describes the features of a product line and their dependencies. Feature models are an
optional part of an AUTOSAR model.
Tags: atp.recommendedPackage=FMFeatureModels
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
feature FMFeature * ref "feature" holds the list of features of the feature model. No
FMFeature may be contained twice in this list. Also, each
FMFeature may be contained on only one feature model.
Stereotypes: atpSplitable
Tags: atp.Splitkey=feature

AUTSSAR

A

Class FMFeatureModel

root FMFeature 0..1 ref The features of a feature model define a tree. The
attribute root points to the root of this tree.

Table 4.1: FMFeatureModel

[TPS_FMDT_00043] Purpose of FMFeatureModel [A FMFeatureModel describes
the available features of a product line, as defined in [TPS_FMDT_00004]. |

A feature model is implemented by the class FMFeatureModel. As FMFeature-
Model is an ARElement, an AUTOSAR model may contain any number of feature
models, including zero.

[TPS_FMDT_00013] Feature Models are optional [An AUTOSAR model that does
not contain a feature model is still a valid AUTOSAR model. |

Especially, feature models may be empty, i.e., contain no features.

[TPS_FMDT_00001] Feature Models may be empty [A FMFeatureModel may have
zero references to FMFeature elements in the role feature. |

If an AUTOSAR model contains more than one feature model, then these feature mod-
els may interact with each other in two ways. First, feature models may use other
feature models as sub-models, as defined in Section 4.4.4. Second, restrictions (4.5)
and relations (4.6) between features may refer to features that are defined in other
feature models.

4.1.1 Reference feature

Each FMFeatureModel contains a number of FMFeature elements in the role fea-
ture. These elements represent the features of the feature model.

[TPS_FMDT_00035] Definition of Features of a FMFeatureModel [Let F be a FM-
FeatureModel and let {fi, fo,..., .} be the set of FMFeatures that are referenced
from F inthe role feature. Then {fi, fa, ..., f.} are the features of .|

A FMFeature can only be part of a single FMFeatureModel:

[constr_5007] FMFeature shall only be referenced from one FMFeatureModel in
the role feature

Imposition time: 1T_FeatMod

[Let f be a FMFeature, and F,F’ be FMFeatureModels where F references f in
the role feature, and F’ also references f in the role feature. Then F = F. |

Obviously, a FMFeatureModel shall not contain the same feature twice.

AUTSSAR

[constr_5019] FMFeatureModel shall not contain the same FMFeature twice
Imposition time: IT_FeatMod

[Let F be a FMFeatureModel, and let f, f' be FMFeatures that are referenced from
Finthe role feature. Then f # f'.|

On the other hand, there are no “isolated” features; every FMFeature is part of a
FMFeatureModel.

[constr_5020] Every FMFeature shall be contained in a FMFeatureModel
Imposition time: IT_FeatMod

[For every FMFeature f, there shall be a FMFeatureModel that refers to f in the
role feature. |

Constraint [constr_5020] makes sure that there are no “standalone” features, which
would be technically possible because FMFeature is an ARElement, but is not useful
in this context.

Finally, feature models can be distributed over several physical ARXML files if neces-
sary.

[TPS_FMDT_00047] Feature models are splitable [The relation feature has the
stereotype <atpSplitable>>. Thatis, a FMFeatureModel may be distributed over
several ARXML files. |

4.1.2 Reference root

As the features of a feature model are organized in a tree structure (see Section 4.4),
there is exactly one feature that sits at the top of the tree. The feature model has an
extra reference root which points to that feature.

root is not strictly necessary because it would be possible to infer the root feature
from the hierarchical structure of a feature model (see Section 4.4). However, root is
included for convenience and to assist tools in checking the integrity of the model.

[TPS_FMDT_00036] Definition of Root Feature of a FMFeatureModel [Let F' be
a FMFeatureModel that refers to a FMFeature f in the role root. Then f is called
the root feature of F. |

We need to define two constraints for the root feature. First, if the feature model is not
empty — that is, it has features — then one feature shall be the root feature:

AUTSSAR

[constr_5009] Root feature shall be present if and only if the feature model is not
empty

Imposition time: IT_FeatMod

[If a FMFeatureModel refers to one or more FMFeature elements in the role fea-
ture, then exactly one of them shall be referenced by FMFeatureModel in the role
root.

On the contrary, if FMFeatureModel does not refer to any FMFeatures in the role
feature, then root shall be empty. |

Second, the root feature of a feature model shall be one of its own features:

[constr_5008] If present, the root feature shall be part of the feature model
Imposition time: 1T_FeatMod

[Let r be the FMFeature referenced from FMFeatureModel in the role root, and
{f1, f2, ..., fn} the set of features referenced from the same FMFeatureModel in the
role feature.

Then the following condition shall hold: r € {f1, fa,..., fu}.]

We will come back to the root feature later with constraint [constr_5022] where we
require that the root feature points to the root of the feature tree, and [constr_5010]
where we allow a feature to use the root feature (but only that) of another feature
model as a subfeature.

4.2 Class FMFeature

Each FMFeatureModel consists of a number of FMFeatures, which in turn are or-
ganized in a hierarchical, tree-like structure. This hierarchy establishes a parent-child
relation among features, where every feature that is not the root feature has exactly
one parent, and any number of children, including zero.

Class FMFeature

Note A FMFeature describes an essential characteristic of a product. Each FMFeature is contained in exactly
one FMFeatureModel.
Tags: atp.recommendedPackage=FMFeatureModels

Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable

Aggregated by | ARPackage.element

Attribute Type Mult. Kind | Note

attributeDef FMAttributeDef * aggar This defines the attributes of the given feature.

decomposition FMFeature * aggr Lists the sub-features of a feature.
Decomposition

AUTSSAR

JAN

Class FMFeature

maximum BindingTimeEnum 0..1 attr Defines an upper bound for the binding time of the

IntendedBinding variation points that are associated with the FMFeature.

Time This attribute is meant as a hint for the development
process.

minimum BindingTimeEnum 0..1 attr Defines a lower bound for the binding time of the variation

IntendedBinding points that are associated with the FMFeature. This

Time attribute is meant as a hint for the development process.

relation FMFeatureRelation * aggr Defines relations for FMFeatures, for example
dependencies on other FMFeatures, or conflicts with
other FMFeatures. A FMFeature can only be part of a
FMFeatureSelectionSet if all its relations are fulfilled.

restriction FMFeatureRestriction * aggr Defines restrictions for FMFeatures. A FMFeature can
only be part of a FMFeatureSelectionSet if at least one of
its restrictions evaluates to true.

Table 4.2: FMFeature

[TPS_FMDT_00042] Purpose of FMFeature [A FMFeature describes an essential
characteristic of a product, as defined in [TPS_FMDT_00002]. |

A FMFeature aggregates the following elements:

FMFeatureDecomposition A decomposition defines how features are organized
hierarchically. It also imposes certain constraints among features: there are
mandatory, optional, alternative and multiple-features.

Feature decomposition is described in Section 4.4.

FMFeatureRestriction A restriction contains a formula that constrains the inclu-
sion of a feature into a valid feature selection ([TPS_FMDT_00030]). There may
also be more than one restriction. A feature may only be part of a valid feature
selection if at least one its restrictions evaluates to true.

Feature restrictions are described in Section 4.5.

FMFeatureRelation A relation expresses constraints among features. A relation
points from one feature to one or more other features and defines a relationship
between these features. For example, relationships may be used to express that
one feature requires another feature, or conflicts with several other features.

Feature relations are described in Section 4.6.

FMAttributeDef An attribute defines a numerical attribute of a feature. Attributes
are used by restrictions (see Section 4.5) and feature maps (see Section 6 6.4).
Features themselves define only the attribute and an optional default value; the
actual value may be further refined in a feature selection (Section 5).

Feature attributes are described in Section 4.3.

FMFeature has two attributes, maximumIntendedBindingTime and minimu-
mIntendedBindingTime, Which specify the intended binding time for the variation
points that are associated with this feature (see Section 4.2.2).

AUTSSAR

4.2.1 Name and Documentation of a Feature

[TPS_FMDT_00039] Name of a FMFeature [The attribute shortName may be used
to identify a feature. Furthermore, the attribute 1ongName may be used to provide a
human readable name for a FMFeature. |

[TPS_FMDT_00040] Description for a FMFeature [The attributes introduction
and desc may be used to provide a human readable description for a FMFeature. |

As outlined in [1], introduction and desc are intended to be used as follows:

* introduction [TPS_GST_00103] contains introductory documentation about
how the feature may be used.

» desc [TPS_GST_00100] contains a brief description about what the feature is.

The attributes shortName, longName, introduction and desc are not visible in
Figure 4.1, but stem from the fact that FMFeature is based on ARElement, which in
turn is based on Identifiable and Referrable.

4.2.2 Intended Binding Time

The class FMFeature contains two optional attributes minimumIntendedBind-
ingTime and maximumIntendedBindingTime, which define lower and upper
bounds for the intended binding time (binding times are explained in the AUTOSAR
Methodology[3]) of the variation points that are associated with the FMFeature.

[TPS_FMDT _00054] Semantics of attributes minimumIntendedBindingTime
and maximumIntendedBindingTime [Let f be a FMFeature and V be the set
of affected variation points of f as defined in [TPS_FMDT_00038]. Then the following
conditions are implied for every variation point v € V:

1. If the attribute minimumIntendedBindingTime exists and has value min, then
min < bindingtime(v).

2. Ifthe attribute maximumIntendedBindingTime exists and has value mazx, then
bindingtime(v) < max.

]

[TPS_FMDT_00054] refers to the variation points that are associated with a FMFea-
ture. This information is not available through a FMFeatureModel, but is defined in
a FMFeatureMap (see Section 6). Hence, the attributes minimumIntendedBind-
ingTime and maximumIntendedBindingTime can only be interpreted when a FM-
FeatureMap is also available.

AUTSSAR

[TPS_FMDT_00024] Attributes maximumIntendedBindingTime and minimu-
mIntendedBindingTime are only a hint [The values of maximumIntendedBind-
ingTime and minimumIntendedBindingTime are only meant as a hint for the de-
velopment process to guide the selection of correct variability implementation. |

4.3 Attributes of a Feature

Each FMFeature aggregates zero or more FMAttributeDef elements, each of
which defines an attribute of a feature.

Class FMAttributeDef

Note This metaclass represents the ability to define attributes for a feature.

Base ARObject, Identifiable, MultilanguageReferrable, Referrable

Aggregated by | FMFeature.attributeDef

Attribute Type Mulit. Kind | Note

defaultValue Numerical 0..1 attr This represents the default value of the attribute.
max Limit 0..1 attr Maximum possible value for the value of this attribute
min Limit 0..1 attr Minimum possible value for the value of this attribute

Table 4.3: FMAttributeDef

[constr_3657] Multiplicity of FMAttributeDef.max and FMAttributeDef.min
Imposition time: IT_FeatMod

[For each FMAttributeDef the attributes max and min shall exist. |

[TPS_FMDT _00051] Purpose of FMAttributeDef [FMAttributeDef defines at-
tributes for features. Each FMAttributeDef contains an optional defaultvalue
and defines limits for its value with the attributes max and min. |

[constr_5026] Semantics of attributes max and min in class FMAttributeDef
Imposition time: 1T_FeatMod

[The following conditions shall hold for all instances of the class FMAttributeDef:

* min < defaultValue < max (min and max are both closed intervals)

* min < defaultValue < max (min is an open interval, max is a closed interval)
* min < defaultValue < max (min and max are both open intervals)
(

* min < defaultValue < max (min is a closed interval, max is an open interval)

]

Since FMAttributeDefs are Identifiables, they have a shortName that can be
used as the name of the attribute.

An example on how to use attributes is presented in Section 5.2.3.1.

AUTSSAR

4.4 Class FMFeatureDecomposition

Each FMFeature aggregates one or more FMFeatureDecomposition elements. A
FMFeatureDecomposition contains references to other features, and thus estab-
lishes a hierarchical organization of features. This hierarchy imposes certain restric-
tions on FMFeatures, for example declares some features as optional or mutually
exclusive. It may also connect one FMFeatureModel to another FMFeatureModel
by referring to its root feature.

Class FMFeatureDecomposition
Note A FMFeatureDecomposition describes dependencies between a list of features and their parent feature
(i.e., the FMFeature that aggregates the FMFeatureDecomposition). The kind of dependency is defined
by the attribute category.
Base ARObject
Aggregated by | FMFeature.decomposition
Attribute Type Mult. Kind | Note
category CategoryString 0..1 attr The category of a FMFeatureDecomposition defines the
type of dependency that is defined by the FMFeature
Decomposition. There are four different categories:
MANDATORYFEATURE, OPTIONALFEATURE,
ALTERNATIVEFEATURE, and MULTIPLEFEATURE.
feature FMFeature * ref The features that are affected by the dependency defined
by the FMFeatureDecomposition.
max Positivelnteger 0..1 attr For a dependency of category MULTIPLEFEATURE, this
defines the maximum number of features allowed.
min Positivelnteger 0..1 attr For a dependency of category MULTIPLEFEATURE, this
defines the minimum number of features allowed.

Table 4.4: FMFeatureDecomposition

[constr_3658] Multiplicity of FMFeatureDecomposition.category

Imposition time: IT_FeatMod

[For each FMFeatureDecomposition the attribute category shall exist. |

[constr_3659] Multiplicity of FMFeatureDecomposition.feature
Imposition time: IT_FeatMod

[For each FMFeatureDecomposition at least one reference in the role feature
shall exist. |

[TPS_FMDT_00041] Purpose of FMFeatureDecomposition [Each FMFeature
aggregates zero or more FMFeatureDecomposition elements in the role decom-
position. FMFeatureDecomposition thus establishes a hierarchical organization
of FMFeatures. |

A FMFeature that has no FMFeatureDecomposition is a leaf in the feature tree.

AUTSSAR

441 Constraints and Terminology for FMFeatureDecomposition

[TPS_FMDT_00014] Definition of Parent Feature, Child Feature [Let f be a FM-
Feature which aggregates a FMFeatureDecomposition that references a FMFea-
ture f'intherole feature. Then f is the parent feature of f’, and f’ is a child feature

of f.]

Each feature has at most one parent feature, but can have any number of child fea-
tures, including zero. This is established by the fact that a feature model is organized
as a tree, as determined by constraint [constr_5021] below.

[constr_5005] FMFeature shall not be referenced from more than one FMFea-
tureDecomposition

Imposition time: IT_FeatMod

[Let f be a FMFeature that is referenced from a FMFeatureDecomposition in the
role feature. Then no other FMFeatureDecomposition shall reference f in the
role feature. |

Constraint [constr_5005] makes sure that every FMFeature has at most one parent
feature (the number of child features is not limited for obvious reasons). This paves the
way for the following definition of the underlying graph of a FMFeatureModel, which
is in fact an underlying tree.

[TPS_FMDT_00034] Definition of Underlying Graph of a FMFeatureModel [Let F
be a FMFeatureModel and {fi, fa, ..., fn} be the set of FMFeatures that are refer-
enced from F'in the role feature.

Then the underlying graph of F'is a graph G = (V, E') where
V= {flan?"'ﬂfn}

and
E={(fi.f;) | [:is the parent feature of f;}

]

[constr_5021] The underlying graph of a feature model shall be a tree.
Imposition time: IT_FeatMod

[Let I be a FMFeatureModel and G be the underlying graph of F as defined
in [TPS_FMDT_00034]. Then G shall be a tree. Hence, we also refer to G as the
underlying tree of I |

[constr_5022] The root feature of a FMFeatureModel refers to the root of the
underlying tree.

Imposition time: 1T_FeatMod
[Let F be a FMFeatureModel and G be the underlying tree of F as defined

in [TPS_FMDT_00034]. Furthermore, let r be the FMFeature referred to by the
root feature of the FMFeatureModel.

AUTSSAR

Then the node in G which corresponds to r is the root of the tree G. |

4.4.2 Categories of Feature Decompositions

The attribute category of a FMFeatureDecomposition defines the semantics for
the FMFeatures referenced in the role feature. We define four categories for FM-
FeatureDecomposition, namely MANDATORYFEATURE, OPTIONALFEATURE, AL-
TERNATIVEFEATURE and MULTIPLEFEATURE:

« [TPS_FMDT_00015] MANDATORYFEATURE [All FMFeatures referenced in the
role feature from a FMFeatureDecomposition that has the category
MANDATORYFEATURE shall be present in a feature selection if and only if its par-
ent FMFeature is included in the feature selection. |

« [TPS_FMDT_00016] OPTIONALFEATURE [FMFeatures referenced in the role
feature fromaFMFeatureDecomposition that hasthe category OPTION-
ALFEATURE may be present in a feature selection if and only if its parent FMFea-
ture is included in the feature selection. |

« [TPS_FMDT_00017] ALTERNATIVEFEATURE [Exactly one of the FMFeatures
referenced in the role feature from a FMFeatureDecomposition that has
the category ALTERNATIVEFEATURE shall be present in a feature selection if
and only if its parent FMFeature is included in the feature selection. |

« [TPS_FMDT_00018] MULTIPLEFEATURE [One or more of the FMFeatures ref-
erenced in the role feature from a FMFeatureDecomposition that has the
category MULTIPLEFEATURE shall be present in a feature selection if and
only if its parent FMFeature is included in the feature selection. This is fur-
ther constrained by the attributes min and max (see [TPS_FMDT_00012] and
[constr_5013]).]

These definitions are formalized in [TPS_FMDT_00046].

[TPS_FMDT_00046] Semantics of FMFeatureDecomposition [Let S be a set of
FMFeatures and let f, fi1, fo, ..., fn be FMFeatures where f is the parent feature for
fi, f2, ..., fu- Furthermore, let d be the FMFeatureDecomposition that is aggre-
gated by f in the role decomposition where {fi, fo,..., f.} are all referenced from d
in the role feature.

Based on the category of the FMFeatureDecomposition d, the following condi-
tions are defined:

MANDATORYFEATURE
f € S<:>|{f17f277fn}m5|:n

AUTSSAR

OPTIONALFEATURE
f€S<:>0§|{fl7f277fn}mS|§n
ALTERNATIVEFEATURE
fes<l{fi,fo,-- fuafnS|=1
MULTIPLEFEATURE

feS<emin<|{fi,fs,...,[n}NS]| <max
]

Note that [TPS_FMDT _00046] does not require that the conditions are fulfilled. Only
if S is a valid feature selection (see [TPS_FMDT _00030]), then all conditions have
to be fulfilled. This is necessary because a feature selection may be incomplete, for
example if features are selected in a step-by-step process where only the “final” feature
selection fulfills all constraints.

4.4.3 Attributes min and max

If the optional attributes min and max are present, they restrict how many multiple
features may be selected.

[TPS_FMDT_00012] Default values for attributes min and max of FMFeatureDe-
composition [If min and max are missing, then the values 1 (for min) and oo (for
max) are assumed in [TPS_FMDT_00046]. |

In other words, if min and max are not specified, then a valid feature selection shall
contain at least one of the features, but there is no upper bound. Technically, co in
[TPS_FMDT_00012] translates to the maximum number that can be represented by
PositivelInteger.

[constr_5013] Attributes min and max of FMFeatureDecomposition reserved
for category MULTIPLEFEATURE

Imposition time: 1T_FeatMod

[The optional attributes min and max of FMFeatureDecomposition are only allowed
to be present if the category of the FMFeatureDecomposition iS MULTIPLEFEA-
TURE. |

4.4.4 Hierarchical decomposition of Feature Models

There is a special case where FMFeatureDecomposition may reference a feature
in another FMFeatureModel. This is useful for hierarchical decomposition of FM-
FeatureModels. However, this is only allowed if the referenced feature is the root
feature.

AUTSSAR

[constr_5010] FMFeatureDecomposition may refer to a root feature of another
feature model, but only once.

Imposition time: IT_FeatMod

[Let f4 be a FMFeature that is referenced by FMFeatureModel A in the role fea-
ture, but is also referenced from a FMFeatureDecomposition that is aggregated
by a FMFeature fp in the role decomposition.

Furthermore, let B be the FMFeatureModel that references fp in the role feature
with A £ B. Thatis, f4 and fp belong to different feature models.

Then both the following conditions shall hold:
1. f4is referenced from A in the role root.

2. There is no other FMFeatureDecomposition (neither in B nor in any other
FMFeatureModel) that references fz in the role feature.

]

The second condition in [constr_5010] is necessary to make sure that the overall struc-
ture of the combined feature models is still a tree (see also [TPS_FMDT_00034] and
[constr_5021]).

4.4.5 Why use referencing for FMFeature instead of aggregation?

We could also have defined feature models such that FMFeatureModel aggregates a
single FMFeature (the root feature), and FMFeatureModel then recursively aggre-
gates other FMFeatures. With this approach, several of the constraints defined earlier
in this section would have been unnecessary because this aggregation naturally forms
a tree.

However, this approach would not work for the decomposition of feature models as
described in Section 4.4.4. In this case, a FMFeatureDecomposition refers to the
root of a different FMFeatureModel. This cannot easily be done by aggregation.

4.5 Class FMFeatureRestriction

The hierarchy established by FMFeatureDecomposition (see Section 4.4) covers
many use cases for constraining the inclusion of a feature into a feature selection.

There are however circumstances where more elaborate constraints are necessary.
FMFeatureDecomposition defines constraints for features which share the same
parent features. For example, it may express that several features are alternatives
within the context of their parent (typically, a “Car” either contains a “Diesel” or a “Gaso-
line” engine, but not both), but it cannot express that a FMFeature depends on another
FMFeature accross the tree, or contradicts a combination of two other features.

AUTSSAR

A FMFeature may aggregate a number of FMFeatureRestriction elements that
further limit its inclusion in a feature selection. A FMFeatureRestriction aggre-
gates a boolean' expression in the role restriction which constrains whether a
particular feature is allowed to become part of a FMFeatureSelection.

More precisely, a feature may only become part of a feature selection if at least one
of its restrictions evaluate to frue. That is, all the restrictions are merged into a sin-
gle boolean expression; the individual restrictions are combined by a \ operator. For
simlicity, there are no priorities among the restrictions.

Class FMFeatureRestriction

Note Defines restrictions for FMFeatures. A FMFeature can only be part of a FMFeatureSelectionSet if at least
one of its restrictions evaluate to true.

Base ARObject, Identifiable, MultilanguageReferrable, Referrable

Aggregated by | FMFeature.restriction

Attribute Type Mulit. Kind | Note

restriction FMConditionByFeatures 0..1 aggr A formula that contains the actual restriction.
AndAttributes

Table 4.5: FMFeatureRestriction

[TPS_FMDT_00045] Semantics of FMFeatureRestriction [Let S be a feature
selection for a FMFeatureModel, and f be a FMFeature with a set of FMFeatur-
eRestrictions {Ry,Ry,...,R,}. Let {Cy,C,,...,C,} be the FMFormulaByFea-
turesAndAttributes elements that are aggregated by R; inthe role restriction.
Then the feature defines the following condition:

fesS=C =truevC; =truev... vC, =true

]

Note that [TPS_FMDT _00045] only defines a condition, but does not require that
the condition is fulfiled by the feature selection. Only a valid feature selection
(see [TPS_FMDT_00030]) requires that the condition is fulfilled.

The condition stated in [TPS_FMDT _00045] works only in one direction. Even if all
conditions are true, a specific feature may still be left out of a valid feature selection.
On the contrary, if the feature is contained in a valid feature selection, at least one
restriction has to be true. This is different from a FMFeatureRelation, which may
force a feature to be part of a valid feature selection (see Section 4.6).

We do not impose further constraints on the restrictions that can be used with FMFea—
tureRestriction. This means that it is in the responsibility of the creator? of the
restriction to make sure that no circular dependencies or conflicts are introduced. For
example, it is perfectly legal for a feature f to have the restriction # f, although this
may not very useful because the feature can never be selected.

'l.e., its value is interpreted as a boolean value.
2The creator of the restriction can be one or more people, or even a tool.

AUTSSAR

4.5.1 Identifying and documenting FMFeatureRestrictions

Because FMFeatureRestriction is based on Identifiable, it may contain the
optional attributes shortName, introduction, and desc.

[TPS_FMDT_00062] Identifying FMFeatureRestrictions [The attribute short-
Name can be used to distinguish relations in case a FMFeature aggregates several
FMFeatureRestrictions.]

[TPS_FMDT_00063] Documenting FMFeatureRestrictions [The attributes in-
troduction and desc may be used to provide a human readable description for a
FMFeatureRestriction.|

4.5.2 Example

Consider a feature f that has the following restriction:

Hi&& frle&efs

This restriction defines that f may only be part of a feature selection if f;, f> and f5 are
also included in that feature selection. This cannot be expressed with a feature tree
because f would have to be a mandatory child of all three features, which is clearly a
violation of the tree structure.

On the opposite side, it would be possible to define mandatory, optional, alternative
and multiple features solely with restrictions. For example, the fact that features f and
f' are mutually exclusive (that is, alternate features) could be expressed by assigning
the restriction —f’ to f and the restriction —f to f'.

By extending this approach, it would be possible to replace the different categories de-
fined for FMFeatureDecomposition in Section 4.4. We did not follow this direction
because it would be easy to generate such restrictions from a decomposition, but it
would be hard to translate them back into decompositions without proper annotation.

4.6 Class FMFeatureRelation

As we have seen in Section 4.5, a FMFeatureRestriction is a boolean expression
that restricts whether a feature may be included in a feature selection or not. In this
section, we define FMFeatureRelations, which work differently in that they impose
requirements instead of restrictions.

For example, the relation F}requires F;, states that the inclusion of feature F; in a feature
selection requires that feature F; is also selected. Similarly, the relation F; excludes F,
states that if feature F7 is part of a feature selection then it is required that feature F,
is not present.

AUTSSAR

Relations are implemented by the class FMFeatureRelation. A FMFeatureRela-
tion refers to a number of FMFeatures in the role feature; these are the target
features of the relation.

Class FMFeatureRelation

Note Defines relations for FMFeatures, for example dependencies on other FMFeatures, or conflicts with other
FMFeatures. A FMFeature can only be part of a FMFeatureSelectionSet if all its relations are fulfilled.

Base ARObject, Identifiable, MultilanguageReferrable, Referrable

Aggregated by | FMFeature.relation

Attribute Type Mulit. Kind | Note

feature FMFeature * ref The FMFeature that is targeted by this FMFeature

Relation.

restriction FMConditionByFeatures 0..1 aggr If given, the condition shall evaluate to true, in order for

AndAttributes the FMFeatureRelation to be active.

Table 4.6: FMFeatureRelation

[constr_3660] Multiplicity of FMFeatureRelation.feature

Imposition time: IT_FeatMod
[For each FMFeatureRelation at least one reference in the role feature shall
exist. |

[TPS_FMDT_00020] Structure of FMFeatureRelation [A FMFeatureRelation
R establishes a binary relation between two features:

1. The FMFeature f which aggregates R.
2. The FMFeature f’ which R refers to in the role feature.
A FMFeatureRelation is always directed from f to f'.

If R refers to features {fi, fo,..., f»} in the role feature, then R establishes n such
binary relations. |

The particular type of a relation is specified by its category attribute, which is covered
in Section 4.6.1. We have defined a number of predefined relation types, which are
listed in Section 4.6.3.

Obviously, a feature shall not establish a relation to itself.

[constr_5001] FMFeatureRelation shall not establish self-references
Imposition time: 1T_FeatMod

[A FMFeatureRelation that is aggregated by a FMFeature f shall not reference f
in the role feature. In other words: self-references are not allowed. |

[constr_5001] helps to avoid conflicting relations such as “f conflicts f”. Note that [con-
str_5001] cannot prevent all possible conflicts; for example a feature f might require
a feature f’ which in turn conflicts with f. Since the category of a FMFeatureRe-
lation is designed to be extensible (see [TPS_FMDT_00023]), it is not feasible to
formulate constraints that cover all possible conflicts.

AUTSSAR

4.6.1 Attribute category
Because a FMFeatureRelationis an Identifiable, it has a category attribute.

[TPS_FMDT_00021] category attribute of FMFeatureRelation [The attribute
category of a FMFeatureRelation specifies the kind of relation that is imple-
mented here. |

Section 4.6.3 presents an overview of all predefined relations.

[TPS_FMDT_00023] Extensibility of category attribute of FMFeatureRelation
[The attribute category of FMFeatureRelation can be extended by proprietary
relation types that go beyond those that are defined in this section. |

For example, a company may define proprietary relations that are only used in-house
(or shared with selected customers). It is obviously no longer possible to safely ex-
change such a model with everybody, but it is a valid use case for a limited audience.

4.6.2 Identifying and documenting FMFeatureRelations

Because FMFeatureRelation is based on Identifiable, it may contain the op-
tional attributes shortName, introduction, and desc.

[TPS_FMDT_00052] Identifying FMFeatureRelations [The attribute shortName
can be used to distinguish relations in case a FMFeature aggregates several FMFea-
tureRelations. |

[TPS_FMDT _00061] Documenting FMFeatureRelations [The attributes intro-
duction and desc may be used to provide a human readable description for a FM-
FeatureRelation.]

4.6.3 Predefined Relations

[TPS_FMDT_00019] Predefined values for the category of FMFeatureRelation
[In the following list, f is the feature that aggregates a FMFeatureRelation Rinthe
role relation, and fi, fo,..., f, are the features that R refers to in the role feature.

REQUIRES f shall only be part of a feature selection if fi, fo,..., f, are also part of
this feature selection.

EXCLUDES If f is part of a feature selection, then fi, f5,. .., f, shall not be part of this
feature selection.

RECOMMENDED_ FOR If one or more of the referenced features are selected then it is
recommended to also include this one.

AUTSSAR

DISCOURAGED_FOR Opposite of RECOMMENDED_FOR: it is not recommended to in-
clude this feature if one or more of the referenced features are selected.

IMPACTS Selecting this feature has impact on all of the referenced features. “Impacted
by” means that if one or more of the referenced features are selected then this
feature has impact on the selected referenced features.

FUNCTIONAL_ DEPENDENT There is a functional dependency between this feature and
the referenced features.

For the following relation, assume that FMFeatures f1, f5,..., f/ is a set of features
each of which aggregates a FMFeatureRelation R; in the role relation, and
fi, f2, ..., f» are the common? features that all R; refer to in the role feature.

PROVIDES If fi, fo,...,f, are part of a feature selection, then at least one of
f1, 5, .-, fl. shall be part of this feature selection.

The details for RECOMMENDED_FOR, DISCOURAGED_FOR, IMPACTS and FUNC-
TIONAL_DEPENDENT shall be given in attributes introduction and desc because
they cannot be formalized. For tools, this means that these relations give hints to the
user making the configuration. In contrast, a corresponding restriction can be derived
automatically for relations REQUIRES and EXCLUDES.

]

[TPS_FMDT_00044] Semantics of FMFeatureRelation [Let S be a feature selec-
tion and f be a FMFeature with a FMFeatureRelation R that references FMFea-
turesS fi, f2, ..., fnintherole feature. Then R defines the following conditions:

category of R is REQUIRES
Vie{l,....n}:feS=f,eS

category of R is EXCLUDES
Vie{l,....n}: feS=f¢&S

Next, S be a feature selection and f{, f5,..., f], be FMFeatures, each of which ag-
gregates a FMFeatureRelation R; that references a set of features FMFeatures
F; in the role feature. Assume that all R, have the same category, and let
{fi, f2; .-, fu} = FiNFyN...NF,, be the common features of all relations R,. Then R
defines the following condition:

category of RR; is PROVIDES
Vie{l,...,.n}: fieS=3<j<m:fjeS

All other relations do not define formal relations. Instead, the attributes int roduc-
tion and desc (which exist because FMFeatureRelation is based on Tdentifi-
able) may provide a human-readable description of the meaning of the restriction.

]

3The individual R; may to refer to additional FMFeatures, but here we are only interested in the
common subset.

AUTSSAR

Note that a FMFeatureRelation just defines a condition and does not demand that
this condition is actually fulfilled. This is because a feature selection might be incom-
plete. Only in a valid feature selection (see [TPS_FMDT_00030]) the conditions have
to be obeyed.

4.7 Hierarchy, Restrictions and Relations

In this chapter, we have defined three different ways to introduce relationships between
features: the hierarchy (Section 4.4), restrictions (Section 4.5) and relations (Section
4.6):

1. The hierarchy (FMFeatureDecomposition) only affects features of the same
category that have the same parent* in the feature tree. That is, alternative
features only depend on their parent and on siblings that are also alternative
features, multiple features only depend on their parent and on siblings that are
also multiple features, and optional and mandatory features only depend on their
parent.

2. Features with restrictions (FMFeatureRestriction) depend on other features
in the same feature model or even in another feature model. Unlike before, the
relative position within the hierarchy does not play a role here.

This is a more powerful approach than hierarchical dependencies, but restrictions
need to be handled with more care than those defined by hierarchy. For example,
it is easy to introduce circular dependencies or contradictions with restrictions.

3. Relations among features (FMFeatureRelation) may also introduce depen-
dencies between features regardless of their position in the feature tree, but their
scope is more limited.

However, unlike in a restriction, where a feature depends on other features, a
relation may influence other features. |If feature A requires feature B, then a
feature selection which includes A also has to include B.

“More precisely, FMFeature which are referenced from the same FMFeatureDecomposition in
the role feature.

AUTSSAR

5 Feature Selection

A feature model does not describe a single product, but a set of products with com-
mon characteristics — a product line. An individual product is described by a specific
combination of features. To be valid, such a combination of features needs to adhere
to the various constrains defined in the feature model: hierarchical structure (Section
4.4), restrictions (Section 4.5), and relations (Section 4.6).

[TPS_FMDT_00060] Purpose of FMFeatureSelectionSet [In AUTOSAR, a set
of features that describes a product is implemented by the class FMFeatureSelec—
tionSet.]

ARElement ARElement
FMFeatureModel FMFeatureSelectionSet +include
+featureModel 0.*

I

0.*

«atpSplitable»

+feature \[/0..* +selection | 0..*
ARElement Identifiable
FMFeature +eature FMFeatureSelection
+ maximumintendedBindingTime: BindingTimeEnum [0..1] |0--1 + maximumSelectedBindingTime: BindingTimeEnum [0..1]
+ minimumintendedBindingTime: BindingTimeEnum [0..1] + minimumSelectedBindingTime: BindingTimeEnum [0..1]
+ state: FMFeatureSelectionState [0..1]

+attributeDefT0..* +attributeVaIue?0..*

Identifiable

FMAttributeValue
FMAttribute Def

+definition

+ value: Numerical [0..1]

+ defaultvalue: Numerical [0..1]
max: Limit [0..1]
+ min: Limit [0..1]

0..1 «atpldentityContributor»

+

«enumeration»
FMFeatureSelectionState

literals
selected
deselected
undecided

Figure 5.1: Class FMFeatureSelectionSet

AUTSSAR

5.1 Example

Table 5.1 shows an example for a feature selection.

Feature Sports Edition Family Edition
Engine + +
Gasoline Engine + -
Diesel Engine - +
Engine Controller + +
Gasoline Engine Controller + -
Diesel Engine Controller - +
Doors + +
Two Doors + +
Four Doors - +
Convertible + -
Sunroof - +
Electric window lift + +
Halogen lights + +

Table 5.1: Sample Feature Selection

We are re-using the example feature model 1.1 from Section 1.3 here. In our example,
two feature selections are defined: Sports Edition and Family Edition, which corre-
spond to two different car models. Some features, for example the halogen lights, are
available in both models, while others are different: then Sports Edition uses a gasoline
engine, while the Family Edition uses a diesel engine.

So, in its basic form, a feature selection is simply a list of features that are included in
a variant', as indicated by the plus sign in example 5.1.

In our specification, we also allow variants to inherit from other variants. For example,
all feature selections that are specific for a particular country (the famous “wheel on
left/right side” distinction) may be contained in a separate feature model. A car model
that is destined for a particular country can then simply include the country specific
feature model.

5.2 Class FMFeatureSelection

A FMFeatureSelection represents a single FMFeature. The FMFeatureSelec—
t ion has three attributes, state, minimumSelectedBindingTime and maximum-
SelectedBindingTime. The attribute state defines whether the feature is actually

'In our example, there are only variants for models of complete cars. This is of course an oversim-
plification; in the real world, variants are much more fine granular. For example, there could be country
specific variants of Sports Edition or Family Edition.

AUTSSAR

selected or not, or whether this is not yet decided. The attributes minimumSelect-
edBindingTime and maximumSelectedBindingTime define at which binding time
the selection is supposed to happen.

Class FMFeatureSelection

Note A FMFeatureSelection represents the state of a particular FMFeature within a FMFeatureSelectionSet.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable

Aggregated by | FMFeatureSelectionSet.selection

Attribute Type Mult. Kind | Note

attributeValue FMAttributeValue * aggr | This defines a value for the attribute that is referred to in

the role definition.

Note that a FMFeatureSelection cannot include two
FMAttributeValues that refer to the same FMAttributeDef
in the role definition.

Tags: xml.sequenceOffset=50

feature FMFeature 0..1 ref The FMFeature whose state is defined by this FMFeature
Selection.
Tags: xml.sequenceOffset=10
maximum BindingTimeEnum 0..1 attr Defines an upper bound for the binding time of the
SelectedBinding variation points that are associated with the FMFeature,
Time and refines its maximumintendedBindingTime. This

attribute is meant as a hint for the development process.
Tags: xml.sequenceOffset=40

minimum BindingTimeEnum 0..1 attr Defines a lower bound for the binding time of the variation
SelectedBinding points that are associated with the FMFeature, and
Time refines its minimumIntendedBindingTime. This attribute is

meant as a hint for the development process.
Tags: xml.sequenceOffset=30

state FMFeatureSelection 0..1 attr Defines how the FMFeature that is described by this
State FMFeatureSelection contributes to the FMFeature
SelectionSet. A FMFeature may have the state selected,
deselected or undecided.

Tags: xml.sequenceOffset=20

Table 5.2: FMFeatureSelection

[constr_3661] Multiplicity of FMFeatureSelection.feature
Imposition time: IT_FeatMod

[For each FMFeatureSelection the reference in the role feature shall exist. |

[constr_3662] Multiplicity of FMFeatureSelection.state
Imposition time: IT_FeatMod

[For each FMFeatureSelection the attribute state shall exist. |

5.2.1 Reference feature

The reference feature points to the feature that is described by this FMFeaturese-
lection.

AUTSSAR

5.2.2 Attribute state

FMFeatureSelection has an attribute state that defines how the feature referred
to by feature contributes to the selection.

Enumeration FMFeatureSelectionState

Note Defines how a particular FMFeature contributes to a FMFSelectionSet.
Aggregated by FMFeatureSelection.state

Literal Description

deselected The feature is excluded from the selection.

Tags: atp.EnumerationLiteralindex=0

selected The feature is included in the selection.
Tags: atp.EnumerationLiteralindex=1

undecided It is not yet decided whether the feature shall be included into or excluded from the selection.
Tags: atp.EnumerationLiteralindex=2

Table 5.3: FMFeatureSelectionState

The value undecided needs further explanation. In a FMFeatureSelectionSet F
that is not included by another FMFeatureSelectionSet, the value undecided is
not useful — in this case, a FMFeature should either have the state selected or
deselected (or the FMFeatureSelection should be entirely missing).

However, if there is a FMFeatureSelectionSet F” that includes F, then it may be
useful to set the value of state of a particular feature FMFeature fin F’, and not in
F. This cannot be done if f already has a state in F that is it is either selected
or deselected. Hence, there is the need for a third value for state that can be
overridden: undecided. For a more detailed explanation, wee Section 5.4.

In example 5.1, ‘4’ corresponds to the state selected, and ‘—’ corresponds to the
state deselected. There are no undecided features because the example has
deliberately been kept simple and does not use feature selections that include other
feature selections.

5.2.3 FMAttributeValue

Each FMFeatureSelection aggregates a FMAttributeValue in the role at-
tributevalue. This defines the value for a particular attribute of a feature in the
context of this FMFeatureSelection.

Class FMAttributeValue

Note This defines a value for the attribute that is referred to in the role definition.

Base ARObject

Aggregated by | FMFeatureSelection.attributeValue

Attribute Type Mulit. Kind | Note

definition FMAttributeDef 0..1 ref This refers to the definition of this attribute.
Stereotypes: atpldentityContributor

value Numerical 0..1 attr This represents the value of this attribute.

Table 5.4: FMAttributeValue

AUTSSAR

[constr_3663] Multiplicity of FMAttributeValue.definition
Imposition time: IT_FeatMod

[For each FMAttributevalue the reference in the role definition shall exist.

[constr_3664] Multiplicity of FMAttributeValue.value
Imposition time: IT_FeatMod

[For each FMAttributeValue the attribute value shall exist. |

[TPS_FMDT_00053] Semantics of FMAttributeValue [A FMAttributeValue
defines a value for the FMAttributeDef that is referenced in the role definition.
The particular value is stored in the attribute value. |

[constr 5027] Semantics of attributes max and min of FMAttributeDef in class
FMAttributeValue

Imposition time: 1T_FeatMod

[Let v be the attribute value of an FMAttributevalue V that refers to FMAt -
tributeDef Dintherole definition. Furthermore, let min and maz be the values
of the attributes min and max of D.

The following condition shall hold true:

min < v < max

Obviously, we do not want two FMAttributeValues that refer to the same FMAt-
tributeDef. Otherwise, it would not be clear which value to choose.

[constr_5028] Only one FMAttributeValue per FMAttributeDef
Imposition time: IT_FeatMod

[Let S be a FMFeatureSelectionSet whose FMFeatureSelections aggregate
FMAttributeValues {vy,vs,...,v,} intherole attributevalue. For each v, let f;
be the FMFeature to which v; refers to in the role att ributeDef. Then the following
condition shall hold:

Vie{l,...,n}:i#j=fi#[f;

5.2.3.1 Example

A feature may define an attribute named “pc” that specifies the power consumption for
this feature, and whose values need to lie between 0 and 1000 milliwatt. In this case,

AUTSSAR

the feature defines an FMAttributeDef where attribute min has the value 0, and
max has the value 1000.

Furthermore, assume that FMFeature f has child features f1, fs, f3, and f, that are
all optional. All these features define an attribute named “pc”. Then f could add
a FMFeatureRestriction to make sure that the power consumption of its child
features does not exceed the power consumption allocated for f:

fi.pc+ fo.pc+ fz.pc+ fipc < f.pc

This can be useful if not every combination of f1, f5, f3, and f, adheres to the allocated
power consumption for f.

Furthermore, assume that the allowed power consumption of f depends on the car
type. In this case, the FMFeaturesSelection that refers f in the role feature
may define a FMAttributeValue that overrides the default value given in f’s FMAt -
tributeDef.

5.2.4 Selected Binding Time

[TPS_FMDT_00055] Semantics of minimumSelectedBindingTime and maxi-
mumSelectedBindingTime [These two attributes refine the attributes minimu-
mIntendedBindingTime and minimumIntendedBindingTime that are defined at
the FMFeature to which the FMFeatureSelection refers to in the role feature. |

[TPS_FMDT_00056] minimumSelectedBindingTime and maximumSelected-
BindingTime are only hints [The attributes minimumSelectedBindingTime and
maximumSelectedBindingTime are only meant as hints for the development pro-
cess to guide the selection of correct variability implementation. |

5.3 Class FMFeatureSelectionSet

AFMFeatureSelectionSet aggregates an arbitrary number of FMFeatureSelec-
tion elements in the role of selection. Each FMFeatureSelection corresponds
to a particular feature in a feature model, and states whether this feature is included
into the selection or not.

Class FMFeatureSelectionSet

Note A FMFeatureSelectionSet is a set of FMFeatures that describes a specific product.
Tags: atp.recommendedPackage=FMFeatureModelSelectionSets

Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable

Aggregated by | ARPackage.element

V

AUTSSAR

A

Class FMFeatureSelectionSet

Attribute Type Mulit. Kind | Note

featureModel FMFeatureModel * ref All FMFeatures in this FMFeatureSelectionSet shall be
part of the referenced FMFeatureModel.

include FMFeatureSelectionSet * ref Each FMFeatureSelectionSet may include one or more
FMFeatureSelectionSets. This establishes a hierarchy
among FMFeatureSelectionSets. See constr_5003 and
constr_5025 for details.

selection FMFeatureSelection * aggar The set of FMFeatureSelections of this FMFeature
SelectionSet.

Table 5.5: FMFeatureSelectionSet

5.3.1 Terminology and constraints

FMFeatureSelectionSet aggregates its FMFeatureSelections, S0 it is not pos-
sible that a particular FMFeatureSelection is contained twice in a FMFeatureSe-
lectionSet. However, two or more FMFeatureSelections could refer to the same
FMFeature inthe role feature, which could introduce ambiguities if the st ate of the
FMFeatureSelections is different. Hence, we do not allow this.

[constr 5018]FMFeatureSelectionSet shall notinclude the same feature twice
Imposition time: IT_FeatMod

[Let {s1,s9,...,5,} be the set of FMFeatureSelection elements that are aggre-
gated by a FMFeatureSelectionsSet inthe role selection. Furthermore, for each
si, let f; be the FMFeature that is referred to in the role feature. Then the following
condition shall hold true:

Vi,j € {1,2,....n}:i#j=fi#f;
]

Constraint [constr_5018] makes sure that a FMFeatureSelectionSet assigns a
unique state to each FMFeature in its associated FMFeatureModel.

[TPS_FMDT_00009] Definition of Feature Set of a FMFeatureSelectionSet [Let
S be a FMFeatureSelectionSet and {si, ss,...,s,} be the set of FMFeaturese-
lections aggregated by S in the role selection.

Then the feature set of S is the set of FMFeatures {fi, f2,..., fn} Where s; refers to
fiinthe role feature.|

[constr_5018] makes sure that if a FMFeatureSelectionSet aggregates n FMFea-
tureSelections, then its feature set also has the size n. However, a FMFeature-
SelectionSet does not need to enumerate all FMFeatures of the associated FM-
FeatureModel. Nevertheless, all FMFeatures need to come from the same FMFea-—
tureModel, as outlined in [constr_5023]:

AUTSSAR

[constr_5023] FMFeatureSelectionSet may only refer to FMFeatures from the
associated FMFeatureModel

Imposition time: IT_FeatMod
[Let S be a FMFeatureSelectionSet, and {fi, fo,..., f.} be its feature set

([TPS_FMDT_00009]). Furthermore, let {g1, g2, ..., 9n} be the combined feature sets
of the FMFeatureModels to which S refers to in the role featureModel.

Then the following condition shall hold: {fi, fo, ..., fu} € {91, 92, -, m}-]

Note thatif a FMFeature fis missing fromaFMFeatureSelectionSet S, its state
is not automatically equivalent to deselected. This would only be the case if S does
not include another FMFeatureSelectionSet and is not included in another FM-
FeatureSelectionSet (see also 5.4).

5.3.2 Relation include

A FMFeatureSelectionSet may refer to other FMFeatureSelectionSets in the
role include. If FMFeatureSelectionSet A includes FMFeatureSelectionSet
B, then the total features selected by A is the sum of the features selected by A and
the features selected by B.

[constr 5024] FMFeatureSelectionSet shall not include itself
Imposition time: IT_FeatMod

[Let Sbe aFMFeatureSelectionSet andlet S’ be the FMFeatureSelectionSet
to which S refers to in the role include.

Then the following condition shall hold: S # 5'.z]

Next, we define a graph structure that describes the include relations among FM-
FeatureSelectionSets:

[TPS_FMDT_00032] Inclusion graph for FMFeatureSelectionSets |[Let
{51, 5s,...,5,} be the set of all FMFeatureSelectionSetsin an AUTOSAR model.
Then the inclusion graph for all FMFeatureSelectionSetsis a graph G = (V, E)
where

V ={S1, 52 ...,50}

E ={(S;,5;) | S;referstoS;intherole include }

]

Obviously, the inclusion graph for an AUTOSAR model is allowed to contain isolated
nodes —FMFeatureSelectionSets that stand on their own and do not include other
FMFeatureSelectionSet or are included elsewhere.

AUTSSAR

[constr_5024] can also be described in terms of the inclusion graph: the inclusion graph
does not allow self loops. With the next constraint, we generalize this constraint and
disallow cycles in the include relations:

[constr_5002] FMFeatureSelectionSet shall not have cycles in the include
relation
Imposition time: IT_FeatMod

[Let S be a FMFeatureSelectionSet and let G be the inclusion graph for all FM-
FeatureSelectionSets as defined in [TPS_FMDT_00032]. There shall be no cy-
cles in the inclusion graph. |

5.4 state and include

Consider the following situation. FMFeatureSelectionSets S, S; and Sy include
FMFeatureSelections that refer to the same FMFeature f. Let s, s; and s, be the
value of the attribute state of the FMFeatureSelection thatrefersto fin S, S; and
S,, respectively.

Two questions arise from that:
1. If S includes S, which values may s assume?

2. If S includes S; and S,, which combination of values for s; and s, are allowed and
which values may s assume?

In case 1, s should never override s;. That is, if s; is already selected, then s cannot
be deselected, but it may be undecided. Vice versa, if s; is already deselected,
then s cannot be selected, but it may be undecided. Finally, if s; is undecided,
then s may assume any value.

[constr_5003] FMFeatureSelectionSet shall not overwrite the state of included
features

Imposition time: IT_FeatMod

[Let S be a FMFeatureSelectionSet that aggregates a FMFeatureSelection
that has the state s and which refers to a FMFeature f in the role feature. Fur-
thermore, let S; be a FMFeatureSelectionSet that aggregates a FMFeatureS-
election that has the state s; and refers to the same FMFeature f in the role
feature. Finally assume that S refers to S; in the role include.

Then the following conditions shall hold:

1. If the value of the attribute state of s; is undecided, then the value of the
attribute state of s may be one of selected, deselected, and undecided.

2. If the value of the attribute state of s; iS selected or deselected, then the
value of the attribute state of s shall be the same as the attribute state in sy,
or undecided.

AUTSSAR

3. Any other constellation is considered an error.

]

[TPS_FMDT_00065] Summary: FMFeatureSelectionSet S includes S1 |

s (stateinS) s1 (statein Sy)

valid selected selected

invalid selected deselected
valid selected undecided
invalid deselected selected

valid deselected deselected
valid deselected undecided
valid undecided selected

valid undecided deselected
valid undecided undecided

]

The behavior is summarized in [TPS_FMDT_00065]. Some combinations are labeled
as invalid; these are the cases where the state of a feature that is already se-
lected or deselected would be overwritten with a different value.

In case 2, the difference is that there is not just a s;, but also a s,. So, we need to make
sure that s; and s, do not make contradictory statements about f. That is, it should not
happen that s; is selected and s, is deselected, or vice versa. Again, an undecided
in s; Or sy is uncritical.

[constr_5025] FMFeatureSelectionSet shall not overwrite the state of included
features

Imposition time: IT_FeatMod

[Let S be a FMFeatureSelectionSet that aggregates a FMFeatureSelection
that has the state s and which refers to a FMFeature f in the role feature. Fur-
thermore, let S; (S2) be a FMFeatureSelectionSet that aggregates a FMFeature-
Selection that hasthe state s (s2) and refers to the same FMFeature fin the role
feature. Finally assume that S refers to S; and S, in the role include.

Then the following conditions shall hold:

1. If the values of the attributes state of s; and s, are both undecided, then the
value of the attribute state of s may be selected, deselected or unde-
cided.

2. If the value of the attribute state of s; is undecided and the value of the at-
tribute state of sy is selected or deselected, then the value of the attribute
state of s shall be the same as the attribute state in sy, Or undecided.

AUTSSAR

3. If the value of the attribute state of s, is undecided and the value of the at-
tribute state of s; is selected or deselected, then the value of the attribute
state of s shall be the same as the attribute state in s;, or undecided.

4. If the values of the attributes state of s; and s, are both either selected or
deselected, then the value of the attribute state of s shall be the same as in

attribute s;, or undecided.

5. Any other constellation is considered an error.

]

This behavior is summarized in [TPS_FMDT _00066].

[TPS_FMDT_00066] Summary: FMFeatureSelectionSet S includes S1 and S2

[

s (statein S) s1 (statein S1) | so (statein Sy)
valid selected selected selected
invalid selected selected deselected
valid selected selected undecided
invalid selected deselected selected
invalid selected deselected deselected
invalid selected deselected undecided
valid selected undecided selected
invalid selected undecided deselected
valid selected undecided undecided
invalid deselected selected selected
invalid deselected selected deselected
invalid deselected selected undecided
invalid deselected deselected selected
valid deselected deselected deselected
valid deselected deselected undecided
invalid deselected undecided selected
valid deselected undecided deselected
valid deselected undecided undecided
valid undecided selected selected
invalid undecided selected deselected
valid undecided selected undecided
invalid undecided deselected selected
valid undecided deselected deselected
valid undecided deselected undecided
valid undecided undecided selected
valid undecided undecided deselected
valid undecided undecided undecided

AUTSSAR

5.5 Valid Feature Selection

[TPS_FMDT_00030] Definition of Valid Feature Selection [Let S be a FMFeature—
SelectionSet and F be the feature set of S. S is a valid feature selection if all the
following constraints are obeyed:

« [TPS_FMDT_00046] (Semantics of FMFeatureDecomposition)
* [TPS_FMDT_00045] (Semantics of FMFeatureRestriction)
« [TPS_FMDT_00044] (Semantics of FMFeatureRelation)

AUTSSAR

6 Feature Map

In AUTOSAR variant handling, variation points are controlled by system constants.
Each variation point contains a boolean expression' which determines whether this
variation point is “on” or “off”. The AUTOSAR formula language allows references to
SwSystemconsts as operands (see [TPS_GST_00001]). This is the same type of
expressions that are used to model restrictions for FMFeatures, except that those
are based on references to other FMFeatures in place of references to SwSystem-—
consts.

So, in order to associate features with variation points, we need a data structure that
assigns values to swSystemconsts based on which features are selected. This is
implemented by the class FMFeatureMap.

6.1 Example

In example 1.1, we introduced an optional feature “Four Doors” which adds two more
doors to the car model. Example 6.1 shows a small clipping of the XML representation
for a car model which contains two SwComponentPrototypes hamed LeftDoor-
Controller and RightDoorController that are subject to variation.

<SW-COMPONENT-PROTOTYPE>
<SHORT-NAME>LeftDoorController</SHORT-NAME>
<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE" BASE="base">
DoorController</TYPE-TREF>
<VARIATION-POINT>
<SHORT-LABEL>Left</SHORT-LABEL>
<SW-SYSCOND BINDING-TIME="SYSTEM-DESIGN-TIME">
<SYSC-REF DEST="SW-SYSTEMCONST" BASE="base">HAS_ LEFT_DOOR_CNTLR</SYSC
—REF> ==
</SW-SYSCOND>
</VARIATION-POINT>
</SW-COMPONENT-PROTOTYPE>
<SW-COMPONENT-PROTOTYPE>
<SHORT-NAME>RightDoorController</SHORT-NAME>
<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE" BASE="base">
DoorController</TYPE-TREF>
<VARIATION-POINT>
<SHORT—LABEL>Right</SHORT—LABEL>
<SW-SYSCOND BINDING-TIME="SYSTEM-DESIGN-TIME">
<SYSC-REF DEST="SW-SYSTEMCONST" BASE="base">HAS_RIGHT_DOOR_CNTLR</
SYSC—-REF> == 1
</SW-SYSCOND>
</VARIATION-POINT>
</SW-COMPONENT-PROTOTYPE>

Listing 6.1: Sample variation points LeftDoorController and RightDoorController

'We are simplifying here a bit; this is strictly true only for non-PostBuild variation points. PostBuild
variation points do not use expressions, but compare the value of a system constant to a particular
PostBuildVariantCondition.

N o o b

AUTSSAR

The conditions for the variation points are in lines 9 and 21. In these conditions, we
refer to system constants HAS_LEFT_DOOR_CNTLR and HAS_RIGHT_DOOR_CNTLR
and check whether they have the value 1.

Assume we have a FMFeatureSelectionSet which contains a FMFeatureSelec—
tion that refers to the feature named “Four Doors” and has the state selected
(see Section 5.2.2). Then we need to make sure that the value 1 gets assigned to both
the system constants HAS_LEFT_DOOR_CNTLR and HAS_RIGHT_DOOR_CNTLR. In a
pseudo programming language notion, this would look as follows:

if has_feature ('Four Doors’) == 1 then
set_sysc (’HAS_LEFT_DOOR_CNTLR’, 1)
set_sysc(’HAS_RIGHT_DOOR_CNTLR’, 1)
end

This shows that a feature can affect more than one system constant.

To extend our example further, lets assume that there is a constraint that prevents the
controllers in this example to be used in non-european countries. (This could also be
added as a restriction to the feature model, but such technical constraints are some-
times handled as part of the mapping.) Instead, an alternate controller is used in these
countries. We need to extend the above pseudo code accordingly:

if has_feature (’Four Doors’) == 1 && has_feature (' EuropeanCountry’) == 1 then
set_sysc (’HAS_LEFT_DOOR_CNTLR’, 0)
set_sysc (' HAS_RIGHT_DOOR_CNTLR’, 0)

end

if has_feature (’Four Doors’) == 1 && has_feature (' EuropeanCountry’) == 0 then
set_sysc (’HAS_ALTERNATE_LEFT_DOOR_CNTLR’, 1)
set_sysc (’HAS_ALTERNATE_RIGHT_DOOR_CNTLR’, 1)

end

Now, we have two sets of assignments to system constants as well as complex condi-
tions.

AUTSSAR

6.2 Overview

ARElement
FMFeatureMap

+mapping T 0..*

Identifiable Identifiable
FMFeatureMapCondition FMFeatureMapElement

+condition
+fmCond Y 0.1

FMFormulaByFeaturesAndAttributes
FMConditionByFeaturesAndAttributes

0..%

Identifiable
FMFeatureMapAssertion +assertion

+fmSyscond ? 0.1

FMFormulaByFeaturesAnd SwSystemconsts
FMConditionByFeaturesAndSwSystemconsts

0.*

+swSystemconstantValueSet\|/0..* +postBuildVariantCriterionValueSet\|/0..*

ARElement ARElement
SwSystemconstantValueSet PostBuildVariantCriterionValueSet

Figure 6.1: Class FMFeatureMap

A FMFeatureMap aggregates a number of FMFeatureMapElements:

* In the simplest case, a FMFeatureMapElement chooses a value for a system
constant if a certain feature is selected or deselected.

* In the general case, a FMFeatureMapElement chooses values for a set of sys-
tem constants and postbuild variant criteria if a certain combination of features is
selected.

We use the term “chooses” instead of “assigns” in the previous paragraph because
an assignment would imply that a system constant behaves like a variable in a typical
programming language that can be declared, perhaps initialized and later assigned a
value.

This is not the case here. First, AUTOSAR does not have a concept akin to “assign a
value later”. System constants can only be declared and initialized, but not changed
afterwords. Second, feature models are optional, so all systems constants need to be
declared and initialized in the non-optional part of the AUTOSAR model, which does
not (and cannot) know about feature models.

AUTSSAR

6.3 Class FMFeatureMap

A FMFeatureMap aggregates a number of FMFeatureMapElementsin the role map-
pring.

Class FMFeatureMap

Note A FMFeatureMap associates FMFeatures with variation points in the AUTOSAR model. To do this, it
defines value sets for system constants and postbuild variant criterions that shall be chosen whenever a
certain combination of features (and system constants) is encountered.
Tags: atp.recommendedPackage=FMFeatureMaps

Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable

Aggregated by | ARPackage.element

Attribute Type Mult. Kind | Note

mapping FMFeatureMapElement * aggr | Set of mappings defined by this FMFeatureMap.

Table 6.1: FMFeatureMap

6.4 Class FMFeatureMapElement

Class FMFeatureMapElement

Note Defines value sets for system constants and postbuild variant criterions that shall be chosen whenever a
certain combination of features (and system constants) is encountered.

Base ARObject, Identifiable, MultilanguageReferrable, Referrable

Aggregated by | FMFeatureMap.mapping

Attribute Type Mulit. Kind | Note

assertion FMFeatureMap * aggr Defines a boolean expression based on features and
Assertion system constants which needs to evaluate to true for this

mapping to become active.

condition FMFeatureMap * aggr Defines a condition which needs to be fulfilled for this
Condition mapping to become active.

postBuildVariant | PostBuildVariant * ref Selects a set of values for postbuild variant criterions.

CriterionValue CriterionValueSet

Set

Sw SwSystemconstant * ref Selects a set of values for system constants.

Systemconstant | ValueSet

ValueSet

Table 6.2: FMFeatureMapElement

Each FMFeatureMapElement contains two kinds of assertions:

* A number of FMFeatureMapConditions in the role condition.

A FMFeatureMapCondition aggregates a boolean expression of class FM-
FormulaByFeaturesAndAttributes in the role fmCond (see Section 7.2.1).
This is the same kind of expression that is used by FMFeature to implement
FMFeatureRestrictions. In fact, it serves a very similar purpose: the FM-
FeatureMapElement is only active if at least one of its FMFeatureMapCon-—
ditions evaluates to true.

* A number of FMFeatureMapAssertions inthe role assertion.

AUTSSAR

An FMFeatureMapAssertion aggregates a boolean expression FMCondi-
tionByFeaturesAndSwSystemconsts in the role fmSyscond (see Section
7.2.4). The FMFeatureMapElement is only active if all its FMFeatureMa—
pAssertions (more precisely, the formulas aggregated in the role fmSyscond)
evaluate to frue.

Both FMFeatureMapCondition and FMFeatureMapAssertion are Identifi-
ables, which means that each of them has a shortName attribute that can be used
to identify individual conditions and assertions, as well as desc and introduction
for documentation purposes.

There are also two elements that choose values for system constants resp. values for
postbuild variant criteria:

* A number of swSystemconstantValueSet that are referenced in the role
swSystemconstantValueSet.

* Anumberof PostBuildvVariantCriterionValueSets that are referenced in
the role postBuildVariantCriterionValueSet.

The rationale for using choosing values for more than one system constant or post-
build variant criterion per feature is that features are a more high-level concept than
variation points. For example, a feature that switches between two different software
components (such as a “basic” and a “comfort” variant) actually triggers several vari-
ation points: not just the software components change, but also their ports and their
connectors. Unless all variation points depend on the same system constant, this
means that we need to choose values for several system constants.

6.5 Relationship with Predefinedvariant

The classes swSystemconstantValueSet and PostBuildVariantCriterion-
ValueSet are originally part of the Predefinedvariant structure from variant han-
dling ([1]). A Predefinedvariant represents a particular variant as a given combi-
nation of settings of variant selectors represented by SwSystemconstValue respec-
tively PostBuildvariantCriterionValue ([TPS_GST_00280]).

A PredefinedVariant can be seen as a list of SwSystemconstantvValueSets
and PostBuildvVariantCriterionValueSetS. This is very similar to a mapping
that has no conditions and no assertions.

Indeed, we could have used a reference to a Predefinedvariant instead of ref-
erences t0 SwSystemconstantValueSets and PostBuildVariantCriterion-
ValueSets. However, Predefinedvariants usually have a much coarser granu-
larity than what is needed in a FMFeatureMapElement. So, instead of requiring to
adapt the granularity of Predefinedvariants, we refer to individual SwSystemcon-—
stantValueSets and PostBuildvVariantCriterionvValueSets. Usually, these
will be a subset of the same Predefinedvariant.

AUTSSAR

A typical way to construct a FMFeatureMapElement is to look at the corresponding
PredefinedVariant and then select those swSystemconstantValueSets and
PostBuildvVariantCriterionValueSets that are relevant for the given mapping.

6.6 So, how does it work?

[TPS_FMDT_00037] Semantics of FMFeatureMapElement [Let M be a FMFea-
tureMapElement. If the following expressions evaluate to true

1. At least one of the FMFeatureMapCondition elements that are referenced
from M in the role condition

2. All FMFeatureMapAssertions that are referenced from M in the role asser-
tion

then a processor shall use the swSystemconstantvValueSets which are refer-
enced from M inthe role swSystemconstantValueSet as well as the PostBuild-
VariantCriterionValueSets which are referenced from M in the role post-
BuildvVariantCriterionValueSet to choose values for the associated swSys-
temconsts respectively PostBuildvariantCriterions. |

Class FMFeatureMapCondition

Note Defines a condition which needs to be fulfilled for this mapping to become active. The condition is
implemented as formula that is based on features and attributes and is defined by fmCond.

Base ARObject, Identifiable, MultilanguageReferrable, Referrable

Aggregated by | FMFeatureMapElement.condition

Attribute Type Mult. Kind | Note

fmCond FMConditionByFeatures 0..1 aggr | The formula that implements the condition.
AndAttributes

Table 6.3: FMFeatureMapCondition

Class FMFeatureMapAssertion

Note Defines a boolean expression which shall evaluate to true for this mapping to become active. The
expression is a formula that is based on features and system constants, and is defined by fmSyscond.

Base ARObject, Identifiable, MultilanguageReferrable, Referrable

Aggregated by | FMFeatureMapElement.assertion

Attribute Type Mulit. Kind | Note

fmSyscond FMConditionByFeatures 0..1 aggr | The formula that implements the assertion.
AndSwSystemconsts

Table 6.4: FMFeatureMapAssertion

AUTSSAR

Class SwSystemconstantValueSet

Note This meta-class represents the ability to specify a set of system constant values.
Tags: atp.recommendedPackage=SwSystemconstantValueSets

Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable

Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note

aggr | This is one particular value of a system constant.

Sw SwSystemconstValue
Systemconstant
Value

Table 6.5: SwSystemconstantValueSet

Class PostBuildVariantCriterionValueSet

Note This meta-class represents the ability to denote one set of postBuildVariantCriterionValues.
Tags: atp.recommendedPackage=PostBuildVariantCriterionValueSets

Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable

Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note

postBuildVariant | PostBuildVariant aggr This is is one particular postbuild variant criterion/value
CriterionValue CriterionValue pair being part of the PostBuildVariantSet.

Table 6.6: PostBuildVariantCriterionValueSet

6.7 Which variation points are affected by a particular FMFea-
ture?

Because a FMFeatureMap does not directly refer to variationPoint elements, it
is not straightforward to see which variation points are affected by a particular feature.

First, we need to look at SswSystemconstantValueSet and PostBuildVari-
antCriterionValueSet to see which SwSystemconst and PostBuildVari-
antCriterion elements are actually affected by these. Figures 6.2 and 6.3 illustrate
this.

ARElement
SwSystemconstantValueSet

+swSystemconstantValue | 0..*

SwSystemconstValue AREI.er.n.em
+swSystemconst AtpDefinition
«atpVariation» 1 SwSystemconst
+ value: Numerical
GeneralAnnotation
+annotation Annotation
0.*

Figure 6.2: SwSystemconstantValueSet and SwSystemconstValue

AUTSSAR

BT PostBuildVariantCondition
PostBuildVvariantCriterionValueSet

«atpVariation»
+ value: Integer

+postBuildVariantCriterionvalue | 0.* +matchingCriterion\[/1
PostBuildVariantCriterionValue X o AREI»elA'rAent
+variantCriterion AtpDefinition

«atpVariation» PostBuildVariantCriterion

+ value: Integer

GeneralAnnotation
+annotation Annotation

0..*

Figure 6.3: PostBuildVariantCriterionValueSet and PostBuildVariantCrite-
rionValue

Next, we need to look at all variation points to see where those SwSystemconst and
PostBuildVariantCriterion are referenced. Figure 6.4 shows the structure of a
variation point. While the PostBuildvariantCriterion is directly visible in Figure
6.4, a swSystemconst would be referenced from a ConditionByFormula.

VariationPoint MultiLanguageOverviewParagraph
+desc
«atpldentityContributor»
+ shortLabel: Identifier [0..1] 0.1
+sdg Sdg
0.17, gid: NameToken

«enumeration»
. . . BindingTimeEnum
+postBuildVariantCondition | o * 9

+swSyscond | 0..1
literals

SwSystemconstDependentFormula PostBuildVariantCondition systemDesignTime
ConditionByFormula codeGenerationTime

— X - N «atpVariation» preCompileTime
+ bindingTime: BindingTimeEnum + value: Integer linkTime

+blueprintCondition | 0..1
vh.latestBindingtime=preCompileTime

«atpMixed»
DocumentationBlock +matchingCriterion\[/1
ARElement
AtpDefinition i
n . - «enumeration»
+introduction 0.1 gosBUlibarayiCrieron AdditionalBindingTimeEnun|
literals
+formalBlueprintGenerator| 0..1 blueprintDerivationTime
postBuild
i SwSystemconstDependentFormula
BlueprintGenerator
«atpMixedString»
+ expression: VerbatimString [0..1] BlueprintFormula

Figure 6.4: Variation Point

The algorithm to find out which variation points are affected by a single FMFea-
tureMapElement is outlined in [TPS_FMDT_00025].

AUTSSAR

[TPS_FMDT_00025] Set of affected variation points for a FMFeatureMapElement

[

1. Let e be a FMFeatureMapElement.

2. Let S = {s1,59,...,8,} the set of SwSystemconstantvalueSet elements ag-
gregated by e in the role swSystemconstantValueSet.

3. Each swSystemconstantValueSet s; aggregates a number of SwSystem-
constValue elements in the role swSystemconstantValue, which in turn re-
fer to a single swSystemconst element in the role swSystemconst. Let SC;
be the set of these swSystemconst elements for each s;.

4. Each swsSystemconst in SC; is used in the condition of one or more varia-
tionPoints. More precisely, the swSystemconsts are referenced from the
ConditionByFormula elements? that are aggregated by the vVariation-
Point in the role swSyscond. Let V; be the set of these variation points for
all elements in SC;.

5. Let P = {p1,pa,...,pm} be the set of PostBuildvariantCriterionValue-
Set elements aggregated by e in the role postBuildvariantCriterionVa-
lueSet.

6. Each PostBuildvariantCriterionValueSet p; aggregates a number of
PostBuildvVariantCriterionValue elementsinthe role postBuildvari-
antCriterionValue, which in turn refer to a PostBuildVariantCrite-—
rionintherole variantCriterion. Let PC; be the set of PostBuildvari-
antCriterion elements.

7. Each pPostBuildvariantCriterion element is used in a variation point.
More precisely, a VariationPoint aggregates a PostBuildVariantCon-
dition which in turn references a PostBuildvariantCriterion. Let V] be
the set of these variation points for all elements in PC;.

The affected variation points for the FMFeatureMapElement e is now defined as fol-
lows:

affected variation points(e) = | JV;u| JV;
i j

]

With [TPS_FMDT_00025] in place, we can now collect the affected variation points for
a FMFeature.

[TPS_FMDT_00038] Definition of Affected Variation Points for a FMFeature [

1. Let f be a FMFeature.

2conditionByFormula elements are expressions which use SwSystemconst elements as vari-
ables.

AUTSSAR

2. Let C be the set of FMFeatureMapElement elements that aggregate a FM-
FeatureMapCondition in the role fmCond whose aggregated FMFormula—
ByFeaturesAndAttributes element refers to f.

3. Let A be the set of FMFeatureMapElement elements that aggregate a FM-
FeatureMapAssertion in the role fmSyscond whose aggregated FMCondi -
tionByFeaturesAndSwSystemconsts element refers to f.

affected variation points(f) = affected variation points(C')uaffected variation points(A)

]

AUTSSAR

7 Common Concepts

7.1 Special Data in Context of Feature Models

Usually, a feature model is maintained in an external system, and the AUTOSAR rep-
resentation of a feature model is an export of that model. In order to maintain the
relationship with the external model (or with other systems that might interact with the
feature model), it is usually necessary to add application specific data, for example a
custom identifier, to the feature model.

[TPS_FMDT_00033] Special data for feature models [Several of the major classes
in the feature model concept are based on the abstract class ARElement:

* FMFeatureModel
* FMFeature
* FMFeatureSelectionSet
* FMFeatureMap
The following classes are based on the abstract class Tdentifiable:
* FMFeatureRestriction
* FMFeatureRelation
* FMAttributeDef
* FMFeatureMapCondition
* FMFeatureMapAssertion

These classes aggregate AdminDatain the role adminData, which aggregates a
Sdg (special data group) in the role sdg. Sdg is a container that is designed to hold
proprietary, application specific data that may be used by the application that exports
the feature model into the AUTOSAR model to add its own data. |

Obviously, this also means that the data that is contained in the sdg is not suited for

exchange between arbitrary parties, but only between those who know how to interpret
it.

AUTSSAR

7.2 Formulas that use Features

FMConditionByFeaturesAndSwSystemconsts

FMConditionByFeaturesAndAttributes

!

!

FMFormulaByFeaturesAndSwSystenconsts

FMFormulaByFeaturesAndAttributes

V

SwSystemconstDependentFormula

Identifiable
+attribute FMAttributeDef
0.1+ defaultValue: Numerical [0..1]
(subsefss* max: Limit [0..1]
atpReferencé)* min: Limit [0..1]
+anributeDe1$ 0.*
+feature ARElement
0..1 FMFeature
{subsets atpReference - -
+ maximumIntendedBindingTime: BindingTimeEnum [0..1]
A +feature| + minimumIntendedBindingTime: BindingTimeEnum [0..1]
0..1
{subsets atpReference}
A +syscString ARElement
AtpDefinition
0..1
{subsets atpStringReference}, SR EBMEE!
+SySC
T\
0..1
{subsets atpReference}

«atpMixedString»
FormulaExpression

Figure 7.1: Formulas used in Feature Modeling

7.2.1 FMFormulaByFeaturesAndAttributes
Class «atpMixedString» FMFormulaByFeaturesAndAttributes (abstract)
Note An expression that has the syntax of the AUTOSAR formula language but uses only references to
features or feature attributes (not system constants) as operands.

Base ARObject, FormulaExpression

Subclasses FMConditionByFeaturesAndAttributes

Attribute Type Mult. Kind | Note

attribute FMAttributeDef 0..1 ref An expression of type FMFormulaByFeaturesAnd
Attributes may refer to attributes of FMFeatures.

feature FMFeature 0..1 ref An expression of type FMFormulaByFeaturesAnd
Attributes may refer to FMFeatures.

Table 7.1: FMFormulaByFeaturesAndAttributes

AUTSSAR

[constr_3665] Multiplicity of FMFormulaByFeaturesAndAttributes.at-
tribute

Imposition time: IT_FeatMod

[For each FMFormulaByFeaturesAndAttributes the reference in the role at-
tribute shall exist. |

[constr_3666] Multiplicity of FMFormulaByFeaturesAndAttributes.feature
Imposition time: IT_FeatMod

[For each FMFormulaByFeaturesAndAttributes the reference in the role fea-
ture shall exist. |

The class FMFormulaByFeaturesAndAttributes defines expressions that employ
the same structure as the standard AUTOSAR formula language (see [1]), but use
features and feature attributes instead of system constants.

This is expressed by the abstract class FMFormulaByFeaturesAndAttributes,
which is based on FormulaExpression but restricts formulas so that they can only
refer to FMFeatures and FMAttributeDefs, but not to SwSystemconsts.

[constr 5011] FMFormulaByFeaturesAndAttributes can refer to FMFeatures
and FMAttributeDef£s, but not to system constants

Imposition time: IT_FeatMod
[A formula of class FMFormulaByFeaturesAndAttributes is an expression that

can use FMFeatures and FMAttributeDefs, but is not allowed to use swSystem-—
consts.]

System constants are not allowed in this class of formulas because system constants
are considered part of the implementation, whereas features (and feature attributes)
abstract from the implementation.

7.2.2 FMConditionByFeaturesAndAttributes

Class «atpMixedString» FMConditionByFeaturesAndAttributes

Note A boolean expression that has the syntax of the AUTOSAR formula language but uses only references to
features or feature attributes (not system constants) as operands.

Base ARObject, FMFormulaByFeaturesAndAttributes, FormulaExpression

Aggregated by | FMFeatureMapCondition.fmCond, FMFeatureRelation.restriction, FMFeatureRestriction.restriction
Attribute Type Mult. Kind | Note

Table 7.2: FMConditionByFeaturesAndAttributes

[TPS_FMDT_00049] The result of FMConditionByFeaturesAndAttributes is
interpreted as a boolean value. [The result of a formula of class FMCondition-—
ByFeaturesAndAttributes shall be interpreted as a boolean value where 0 shall

AUTSSAR

be interpreted as false and any value different from 0 shall be interpreted as true. This
is the same approach as used by ConditionByFormula. |

An element of class FMConditionByFeaturesAndAttributes is aggregated by
class FMFeatureRestriction in the role restriction and by class FMFea-
tureMapCondition in the role fmCond.

7.2.3 FMFormulaByFeaturesAndSwSystemconsts

Class «atpMixedString» FMFormulaByFeaturesAndSwSystemconsts (abstract)

Note An expression that has the syntax of the AUTOSAR formula language and may use references to
features or system constants as operands.

Base ARObject, FormulaExpression, SwSystemconstDependentFormula

Subclasses FMConditionByFeaturesAndSwSystemconsts

Attribute Type Mult. Kind | Note

feature FMFeature 0..1 ref An expression of type FMFormulaByFeaturesAndSw

Systemconsts may refer to FMFeatures.

Table 7.3: FMFormulaByFeaturesAndSwSystemconsts

[constr_3667] Multiplicity of FMFormulaByFeaturesAndSwSystemconsts.fea-
ture
Imposition time: IT_FeatMod

[For each FMFormulaByFeaturesAndSwSystemconsts the reference in the role
feature shall exist. |

The class FMFormulaByFeaturesAndSwSystemconsts uses the standard
AUTOSAR formula language but extends it with features. That is, unlike SwSystem-
constDependentFormula, which only allows references to SwSystemconsts, FM—
FormulaByFeaturesAndSwSystemconsts allows references to SwSystemconsts
and FMFeatures.

[TPS_FMDT_00048] FMFormulaByFeaturesAndSwSystemconsts can refer to
features and system constants [A formula of class FMFormulaByFeature-
sAndSwSystemconsts iS an expression that can use both FMFeatures and SwSys-—
temconsts. |

AUTSSAR

7.2.4 FMConditionByFeaturesAndSwSystemconsts

Class «atpMixedString» FMConditionByFeaturesAndSwSystemconsts

Note A boolean expression that has the syntax of the AUTOSAR formula language and may use references to
features or system constants as operands.

Base ARObject, FMFormulaByFeaturesAndSwSystemconsts, FormulaExpression, SwSystemconstDependent
Formula

Aggregated by | FMFeatureMapAssertion.fmSyscond

Attribute Type Mult. Kind | Note

Table 7.4: FMConditionByFeaturesAndSwSystemconsts

[TPS_FMDT_00050] The result of FMConditionByFeaturesAndSwSystemcon—-
sts is interpreted as a boolean value. [The result of a formula of class FMCon—
ditionByFeaturesAndSwSystemconsts shall be interpreted as a boolean value
where 0 shall be interpreted as false and any value different from 0 shall be interpreted
as true. This is the same approach as used by ConditionByFormula.]

An element of class FMConditionByFeaturesAndSwSystemconsts is aggregated
by FMFeatureMapAssertion in the role fmSyscond to define assertions for feature
mappings.

7.2.5 Evaluating Expressions that use Features and Attributes

An expression that uses features or feature attributes can only be evaluated in the
context of a FMFeatureSelectionSet. The reason is that in order to evaluate the
expression, we need to substitute values for the references to features (1 if selected
and 0 otherwise) and for the references to feature attributes (the default value or the
one defined in the FMFeatureSelection). This information is only available as part
of a FMFeatureSelectionSet.

First, we need to extend the definition of the feature set of a FMFeatureSelection-
Set to add all features inthe include and FMFeatureSelectionSets:

[TPS_FMDT _00059] Definition of recursive feature set of a FMFeatureSelec-
tionSet [Let S be a FMFeatureSelectionSet that refers to FMFeatureSelec-
tionSets {S1,952,...,5,} intherole include.

Then the recursive feature set of S is defined as

recursive feature set(S) = feature set(S) U U recursive feature set(S;)
Si

]

Next, we define the state of a FMFeature in @ FMFeatureSelectionSet. Again,
this definition includes all include and FMFeatureSelectionSets:

AUTSSAR

[TPS_FMDT_00058] Definition of state of a FMFeature in a FMFeatureSelec-
tionSet [Let f be a FMFeature and S be a FMFeatureSelection where fis in
the recursive feature set of S. Then the state of f in S is defined as follows:

1. If fis in the feature set of S, let s be the FMFeatureSelection that refersto f
in the role feature.

Then the state of f in S is the value of the attribute state of s.

2. If fis not in the feature set of S, let {S1,5,,...,S5,} be the FMFeatureSelec—
tionSets that S refers to in the role include. Because f is in the recursive
feature set of S, there shall be at least one S; that defines the state of f.

Then the state of f in S is the state of f in S;.
]

Note that the second step in [TPS_FMDT_00058] retrieves a consistent result (i.e., no
conflicting states such as selected and deselected) because of constraint [con-
str_5003] and constraint [constr_5025].

[TPS_FMDT_00057] Evaluating an Expression that uses Features and Attributes
[Let S be a FMFeatureSelectionSet. To evaluate an expression that uses at-
tributes, the following steps shall be performed.

1. Replace all reference to swSystemconsts by their values.
2. For each reference to a FMFeature f, we distinguish between two cases.
(@) fisinthe recursive feature set of S.

i. If the state of fin S'is selected, then the reference to f is replaced by
the value 1.

ii. If the state of f in S'is deselected, then the reference to f is replaced
by the value 0.

iii. If the state of f in S is undecided, then this is considered an error.
(b) fis not in the recursive feature set of S. This is considered an error.
3. For each reference to a FMAttributeDef,

(a) If S aggregates a FMFeatureSelection sinthe role selection that ag-
gregates an FMAttributeValue v which refers to a in the role defini-
tion, then the reference is replaced by the contents of the attribute value
of v.

(b) Otherwise, let {S;,S5,,...,S5,} be the FMFeaturesSelectionSets that S
refers to in the role include. Repeat the previous step recursively for all S;
elements.

(c) Otherwise, if a has a defaultVvalue, then the reference is replaced by the
contents of the attribute defaultvalue of a.

AUTSSAR

(d) It is considered an error if none of the above steps can find a value.

]

Note that when we look for the value of an attribute in [TPS_FMDT_00057], then do not
look at the state of a FMFeatureSelection. Thatis, FMAttributeValue could
also be taken from a FMFeatureSelection whose state is deselected. It is up
to the party that creates the feature model, feature selection and feature mapping to
decide if this is appropriate and eventually adapt the condition appropriately.

AUTSSAR

A Glossary

The content of this appendix chapter is informative in nature and shall not be consid-
ered as normative content.

Artifact This is a Work Product Definition that provides a description and definition for
tangible work product types. Artifacts may be composed of other artifacts ([4]).

At a high level, an artifact is represented as a single conceptual file.

AUTOSAR Tool This is a software tool which supports one or more tasks defined as
AUTOSAR tasks in the methodology. Depending on the supported tasks, an
AUTOSAR tool can act as an authoring tool, a converter tool, a processor tool or
as a combination of those (see separate definitions).

AUTOSAR Authoring Tool An AUTOSAR Tool used to create and modify AUTOSAR
XML Descriptions. Example: System Description Editor.

AUTOSAR Converter Tool An AUTOSAR Tool used to create AUTOSAR XML files by
converting information from other AUTOSAR XML files. Example: ECU Flattener

AUTOSAR Definition This is the definition of parameters which can have values. One
could say that the parameter values are Instances of the definitions. But in the
meta model hierarchy of AUTOSAR, definitions are also instances of the meta
model and therefore considered as a description. Examples for AUTOSAR def-
initions are: PortPrototype, PostBuildVariantCriterion, SwSystem—
const.

AUTOSAR XML Description In AUTOSAR this means "filled Template". In fact an
AUTOSAR XML description is the XML representation of an AUTOSAR model.

The AUTOSAR XML description can consist of several files. Each individual file
represents an AUTOSAR partial model and shall validate successfully against the
AUTOSAR XML schema.

AUTOSAR Meta-Model This is an UML2.0 model that defines the language for de-
scribing AUTOSAR systems. The AUTOSAR meta-model is an UML represen-
tation of the AUTOSAR templates. UML2.0 class diagrams are used to describe
the attributes and their interrelationships. Stereotypes, UML tags and OCL ex-
pressions (object constraint language) are used for defining specific semantics
and constraints.

AUTOSAR Meta-Model Tool The AUTOSAR Meta-Model Tool is the tool that gener-
ates different views (class tables, list of constraints, diagrams, XML Schema etc.)
on the AUTOSAR meta-model.

AUTOSAR Model This is a representation of an AUTOSAR product. The AUTOSAR
model represents aspects suitable to the intended use according to the
AUTOSAR methodology.

AUTSSAR

Strictly speaking, this is an instance of the AUTOSAR meta-model. The infor-
mation contained in the AUTOSAR model can be anything that is representable
according to the AUTOSAR meta-model.

AUTOSAR Partial Model In AUTOSAR, the possible partitioning of models is marked
in the meta-model by <atpSplitable>>. One partial model is represented in
an AUTOSAR XML description by one file. The partial model does not need to
fulfill all semantic constraints applicable to an AUTOSAR model.

AUTOSAR Processor Tool An AUTOSAR Tool used to create non-AUTOSAR files by
processing information from AUTOSAR XML files. Example: RTE Generator

AUTOSAR Specification Element An AUTOSAR Specification Element is a named
element that is part of an AUTOSAR specification. Examples: requirement, con-
straint, specification item, class or attribute in the meta model, methodology, de-
liverable, methodology activity, model element, bsw module etc.

AUTOSAR Template The term "Template" is used in AUTOSAR to describe the for-
mat different kinds of descriptions. The term template comes from the idea, that
AUTOSAR defines a kind of form which shall be filled out in order to describe a
model. The filled form is then called the description.

In fact the AUTOSAR templates are now defined as a meta-model.

AUTOSAR Validation Tool A specialized AUTOSAR Tool which is able to check an
AUTOSAR model against the rules defined by a profile.

AUTOSAR XML Schema This is a W3C XML schema that defines the language for
exchanging AUTOSAR models. This Schema is derived from the AUTOSAR
meta-model. The AUTOSAR XML Schema defines the AUTOSAR data exchange
format.

Blueprint This is a model from which other models can be derived by copy and re-
finement. Note that in contrast to meta model resp. types, this process is not an
instantiation.

Instance Generally this is a particular exemplar of a model or of a type.

Life Cycle Life Cycle is the course of development/evolutionary stages of a model
element during its life time.

Meta-Model This defines the building blocks of a model. In that sense, a Meta-Model
represents the language for building models.

Meta-Data This includes pertinent information about data, including information about
the authorship, versioning, access-rights, timestamps etc.

Model A Model is an simplified representation of reality. The model represents the
aspects suitable for an intended purpose.

Partial Model This is a part of a model which is intended to be persisted in one par-
ticular artifact.

AUTSSAR

Pattern in GST This is an approach to simplify the definition of the meta model by ap-
plying a model transformation. This transformation creates an enhanced model
out of an annotated model.

Property A property is a structural feature of an object. As an example a "connector”
has the properties "receive port" and "send port"

Properties are made variant by the <atpvariation>>.

Prototype This is the implementation of a role of a type within the definition of another
type. In other words a type may contain Prototypes that in turn are typed by
"Types". Each one of these prototypes becomes an instance when this type is
instantiated.

Type A type provides features that can appear in various roles of this type.
Value This is a particular value assigned to a "Definition".

Variability Variability of a system is its quality to describe a set of variants. These
variants are characterized by variant specific property settings and / or selections.
As an example, such a system property selection manifests itself in a particular
"receive port" for a connection.

This is implemented using the <atpvariation>>.

Variant A system variant is a concrete realization of a system, so that all its proper-
ties have been set respectively selected. The software system has no variability
anymore with respect to the binding time.

This is implemented using EvaluatedVariantSet.

Variation Binding A variant is the result of a variation binding process that resolves
the variability of the system by assigning particular values/selections to all the
system’s properties.

This is implemented by VariationPoint.

Variation Binding Time The variation binding time determines the step in the method-
ology at which the variability given by a set of variable properties is resolved.

This is implemented by vh.latestBindingTime at the related properties.

Variation Definition Time The variation definition time determines the step in the
methodology at which the variation points are defined.

Variation Point A variation point indicates that a property is subject to variation. Fur-
thermore, it is associated with a condition and a binding time which define the
system context for the selection / setting of a concrete variant.

This is implemented by VariationPoint.

AUTSSAR

B Reference Material

B.1 Imposition Times of Constraints

The constraints formulated in this document have different actual imposition times
which denote the steps in the workflow when the respective constraint has to be
imposed.

The imposition times that are considered applicable in the scope of this docu-
ment (other imposition times may be defined in the context of other AUTOSAR
standard documents) are listed here.

The imposition times are intentionally rendered as technical terms such that it is
possible to link back from each constraint to the definition of the affected imposition
time in the table here.

Imposition Time Description Motivation

IT_FeatMod Feature Model is completed This imposition time denotes the step in the workflow, where the
feature model is about to be finished.

Table B.1: Imposition Times of constraints in this document

AUTSSAR

C Mentioned Class Tables

This chapter contains the remaining set of meta-class tables which are not shown
directly in the main body of this document.

Class ARElement (abstract)

Note An element that can be defined stand-alone, i.e. without being part of another element (except for
packages of course).

Base ARObject, CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable

Subclasses AclObjectSet, AclOperation, AclPermission, AclRole, AliasNameSet, ApplicabilitylnfoSet, AutosarData

Type, BaseType, BlueprintMappingSet, BuildActionManifest, CalibrationParameterValueSet, Clientld
DefinitionSet, Collection, CompuMethod, ConsistencyNeedsBlueprintSet, ConstantSpecification,
ConstantSpecificationMappingSet, CryptoServiceKey, CryptoServicePrimitive, CryptoServiceQueue,
DataConstr, DataTransformationSet, DataTypeMappingSet, DdsCpConfig, DiagnosticCommonElement,
DiagnosticConnection, DiagnosticContributionSet, DItArgumentPropsSet, DItContext, DItEcu,
Documentation, E2EProfileCompatibilityProps, EthlpProps, EthTcplplcmpProps, EthTcplpProps,
EvaluatedVariantSet, FMFeature, FMFeatureMap, FMFeatureModel, FMFeatureSelectionSet, Firewall
Rule, GeneralPurposeConnection, HwCategory, HwElement, HwType, IEEE1722TpConnection, IPSec
ConfigProps, ldsCommonElement, |dsDesign, ImpositionTimeDefinitionGroup, InterpolationRoutine
MappingSet, KeywordSet, LifeCyclelnfoSet, LifeCycleStateDefinitionGroup, LogAndTraceMessage
CollectionSet, MacSecGlobalKayProps, MacSecParticipantSet, McFunction, McGroup, ModeDeclaration
Group, ModeDeclarationMappingSet, PhysicalDimension, PhysicalDimensionMappingSet, Platform
ModuleEndpointConfiguration, Portinterface, PortinterfaceMappingSet, PortPrototypeBlueprint, Post
BuildVariantCriterion, PostBuildVariantCriterionValueSet, PredefinedVariant, RapidPrototypingScenario,
SdgDef, SecureComProps, SignalServiceTranslationPropsSet, SomeipSdClientEventGroupTiming
Config, SomeipSdClientServicelnstanceConfig, SomeipSdServerEventGroupTimingConfig, SomeipSd
ServerServicelnstanceConfig, SwAddrMethod, SwAxisType, SwComponentType, SwRecordLayout, Sw
Systemconst, SwSystemconstantValueSet, System, SystemComSpecDefinitionSet, SystemSignal,
SystemSignalGroup, TimingExtension, TlvDataldDefinitionSet, TransformationPropsSet, Unit, UnitGroup,
UploadablePackageElement, VliewMapSet

Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note

Table C.1: ARElement

Class AUTOSAR
Note Root element of an AUTOSAR description, also the root element in corresponding XML documents.
Tags: xml.globalElement=true

Base ARObject

Attribute Type Mulit. Kind | Note

adminData AdminData 0..1 aggr | This represents the administrative data of an Autosar file.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=adminData
xml.sequenceOffset=10

arPackage ARPackage * aggr | This is the top level package in an AUTOSAR model.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=arPackage.shortName, arPackage.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=30

AUTSSAR

Class

AUTOSAR

fileInfo
Comment

FileInfoComment 0..1 This represents a possibility to provide a structured
comment in an AUTOSAR file.

Stereotypes: atpStructuredComment

Tags:

xml.roleElement=true

xml.sequenceOffset=-10

xml.typeElement=false

aggr

introduction

DocumentationBlock 0..1 This represents an introduction on the Autosar file. It is
intended for example to represent disclaimers and legal
notes.

Tags: xml.sequenceOffset=20

agaor

Table C.2: AUTOSAR

Class

AdminData

Note

AdminData represents the ability to express administrative information and custom extensions for an
element. This administration information is to be treated as meta-data such as revision id or state of the
file. There are basically the following kinds of meta-data

» The language and/or used languages.

* Revision information covering e.g. revision number, state, release date, changes. Note that this
information can be given in general as well as related to a particular company.

» Document meta-data specific for a company
Beside that a custom extension of model-data is possible by

* Special data

Base

ARObject

Aggregated by

AUTOSAR.adminData, Describable.adminData, Identifiable.adminData

Attribute

Type Mulit. Kind | Note

docRevision
(ordered)

This allows to denote information about the current
revision of the object.

Note that information about previous revisions can also
be logged here. The entries shall be sorted descendant
by date in order to reflect the history. Therefore the most
recent entry representing the current version is denoted
first.

Tags:

xml.roleElement=true

xml.roleWrapperElement=true

xml.sequenceOffset=50

xml.typeElement=false

xml.typeWrapperElement=false

DocRevision * aggr

language

LEnum 0..1 attr This attribute specifies the master language of the
document or the document fragment. The master
language is the one in which the document is maintained
and from which the other languages are derived from. In
particular in case of inconsistencies, the information in
the master language is priority.

Tags: xml.sequenceOffset=20

AUTSSAR

A
Class AdminData
sdg Sdg * aggr This property allows to keep special data which is not
represented by the standard model. It can be utilized to
keep e.g. tool specific data.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=sdg.sdgCaption.shortName
xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=60
xml.typeElement=false
xml.typeWrapperElement=false
usedLanguages | MultiLanguagePlainText 0..1 aggr This property specifies the languages which are provided
in the document. Therefore it should only be specified in
the top level admin data. For each language provided in
the document there is one entry in MultilanguagePlain
Text. The content of each entry can be used for
illustration of the language. The used language itself
depends on the language attribute in the entry.
Tags: xml.sequenceOffset=30
Table C.3: AdminData
Class «atpMixedString» ConditionByFormula
Note This class represents a condition which is computed based on system constants according to the
specified expression. The expected result is considered as boolean value.
The result of the expression is interpreted as a condition.
» "0" represents "false";
+ a value other than zero is considered "true"
Base ARObject, FormulaExpression, SwSystemconstDependentFormula
Aggregated by | VariationPoint.swSyscond, VariationPointProxy.conditionAccess
Attribute Type Mult. Kind | Note
bindingTime BindingTimeEnum 1 attr This attribute specifies the point in time when condition
may be evaluated at earliest. At this point in time all
referenced system constants shall have a value.
Tags: xml.attribute=true
Table C.4: ConditionByFormula
Class EvaluatedVariantSet
Note This meta class represents the ability to express if a set of ARElements is able to support one or more
particular variants.
In other words, for a given set of evaluatedElements this meta class represents a table of evaluated
variants, where each PredefinedVariant represents one column. In this column each descendant sw
SystemconstantValue resp. postbuildVariantCriterionValue represents one entry.
In a graphical representation each swSystemconstantValueSet / postBuildVariantCriterionValueSet could
be used as an intermediate headline in the table column.
If the approvalStatus is "APPROVED" it expresses that the collection of CollectableElements is known be
valid for the given evaluatedVariants.
Note that the EvaluatedVariantSet is a CollectableElement. This allows to establish a hierarchy of
EvaluatedVariantSets.
Tags: atp.recommendedPackage=EvaluatedVariantSets
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable
Aggregated by | ARPackage.element
Attribute Type | Mult. | Kind | Note

\Y

AUT<

SSAR

A
Class EvaluatedVariantSet
approvalStatus NameToken 1 attr Defines the approval status of a predefined variant. Two
values are predefined: "APPROVED" and "REJECTED":
« Approved variants are known to work.
* Rejected variants are known NOT to work.
Further values can be approved on a per-company basis;
within AUTOSAR only "APPROVED" and "REJECTED"
should be recognized.

evaluated CollectableElement * ref This represents a particular element which is evaluated in

Element context of the EvaluatedVariants. The approvalStatus

applies to this element (and all of its descendants). In

other words, the referenced elements are those that were

considered when the predefined variant was evaluated.
evaluated PredefinedVariant * ref This metaclass represents one particular variant which

Variant was evaluated. LowerMultiplicity is set to 0 to support a

stepwise approach.
Table C.5: EvaluatedVariantSet

Class «atpMixedString» FormulaExpression (abstract)

Note This class represents the syntax of the formula language. The class is modeled as an abstract class in
order to be specialized into particular use cases. For each use case the referable objects might be
specified in the specialization.

Base ARObject

Subclasses CompuGenericMath, FMFormulaByFeaturesAndAttributes, SwSystemconstDependentFormula, TDEvent
OccurrenceExpressionFormula, TimingConditionFormula

Attribute Type Mult. Kind | Note

atpReference Referrable * ref The referable object shall yield a numerical / boolean

value.
Stereotypes: atpAbstract
atpString Referrable * ref The referable object shall yield a string value.
Reference Stereotypes: atpAbstract
Table C.6: FormulaExpression

Class Identifiable (abstract)

Note Instances of this class can be referred to by their identifier (within the namespace borders). In addition to
this, Identifiables are objects which contribute significantly to the overall structure of an AUTOSAR
description. In particular, Identifiables might contain Identifiables.

Base ARObject, MultilanguageReferrable, Referrable

\Y

AUTSSAR

A

Class

Identifiable (abstract)

Subclasses

ARPackage, AbstractDolpLogicAddressProps, AbstractEvent, AbstractimplementationDataTypeElement,
AbstractSecurityEventFilter, AbstractSecurityldsminstanceFilter, AbstractServicelnstance, Application
Endpoint, ApplicationError, AppliedStandard, ArtifactChecksum, AtpBlueprint, AtoBlueprintable, Atp
Classifier, AtpFeature, AutosarOperationArgumentinstance, AutosarVariablelnstance, BlockState, Build
ActionEntity, BuildActionEnvironment, Chapter, ClientldDefinition, ClientServerOperation, Code,
CollectableElement, ComManagementMapping, CommConnectorPort, CommunicationConnector,
CommunicationController, Compiler, ConsistencyNeeds, ConsumedEventGroup, CouplingPort, Coupling
PortAbstractShaper, CouplingPortStructuralElement, CryptoKeySlot, CryptoServiceMapping, Data
PrototypeGroup, DataPrototypeTransformationPropsldent, DataTransformation, DdsAbstractService
InstanceElementCp, DdsCpDomain, DdsCpPartition, DdsCpQosProfile, DdsCpTopic, DependencyOn
Artifact, DiagEventDebounceAlgorithm, DiagnosticAuthTransmitCertificateEvaluation, Diagnostic
ConnectedIndicator, DiagnosticDataElement, DiagnosticDebounceAlgorithmProps, DiagnosticExtended
DataRecordElement, DiagnosticFunctionlnhibitSource, DiagnosticParameterElement, DiagnosticRoutine
Subfunction, DltApplication, DItArgument, DItArgumentProps, DItMessage, Dolplinterface, DolpLogic
Address, DolpRoutingActivation, EthernetWakeupSleepOnDatalineConfig, EventHandler, ExclusiveArea,
ExecutableEntity, ExecutionTime, FMAttributeDef, FMFeatureMapAssertion, FMFeatureMapCondition,
FMFeatureMapElement, FMFeatureRelation, FMFeatureRestriction, FMFeatureSelection, FlexrayArTp
Node, FlexrayTpPduPool, FrameTriggering, GeneralParameter, GlobalTimeGateway, GlobalTimeMaster,
GlobalTimeSlave, HeapUsage, HwAttributeDef, HwAttributeLiteralDef, HwPin, HwPinGroup, IEEE1722
TpAcfBus, IEEE1722TpAcfBusPart, IPSecRule, IPv6ExtHeaderFilterList, ISignalTolPduMapping, ISignal
Triggering, IdentCaption, ImpositionTime, InternalTriggeringPoint, Keyword, LifeCycleState, Linker, Mac
AddressVlanMembership, MacMulticastGroup, MacSecKayParticipant, McDatalnstance, Memory
Section, ModeDeclaration, ModeDeclarationMapping, ModeSwitchPoint, ModeSwitchSenderComSpec
Props, NetworkEndpoint, NmCluster, NmNode, PackageableElement, ParameterAccess, PduActivation
RoutingGroup, PduToFrameMapping, PduTriggering, PerinstanceMemory, PhysicalChannel, PortGroup,
PortinterfaceMapping, QueuedReceiverComSpecProps, ResourceConsumption, RootSwComposition
Prototype, RptComponent, RptContainer, RptExecutableEntity, RptExecutableEntityEvent, RptExecution
Context, RptProfile, RptServicePoint, RunnableEntityGroup, SdgAttribute, SdgClass, SecOcJob
Requirement, SecureCommunicationAuthenticationProps, SecureCommunicationFreshnessProps,
SecurityEventContextDataElement, SecurityEventContextProps, ServerComSpecProps, ServiceNeeds,
SignalServiceTranslationEventProps, SignalServiceTranslationProps, SocketAddress, SomeipTp
Channel, StackUsage, StaticSocketConnection, StructuredReq, SwGenericAxisParamType, SwService
Arg, SwcServiceDependency, SystemMapping, TimeBaseResource, TimingClock, TimingClockSync
Accuracy, TimingCondition, TimingConstraint, TimingDescription, TimingExtensionResource, Timing
Modelnstance, Topic1, TpAddress, TraceableTable, TraceableText, TracedFailure, TransformationISignal
Propsldent, TransformationProps, TransformationTechnology, Trigger, VariableAccess, VariationPoint
Proxy, ViewMap, VlanConfig, WaitPoint

Attribute

Type Muit. Kind | Note

adminData

AdminData 0..1 aggr This represents the administrative data for the identifiable
object.

Stereotypes: atpSplitable

Tags:

atp.Splitkey=adminData

xml.sequenceOffset=-40

annotation

Annotation aggr Possibility to provide additional notes while defining a
model element (e.g. the ECU Configuration Parameter
Values). These are not intended as documentation but
are mere design notes.

Tags: xml.sequenceOffset=-25

category

CategoryString 0..1 attr The category is a keyword that specializes the semantics
of the Identifiable. It affects the expected existence of
attributes and the applicability of constraints.

Tags: xml.sequenceOffset=-50

desc

MultiLanguageQOverview 0..1 aggr | This represents a general but brief (one paragraph)
Paragraph description what the object in question is about. It is only
one paragraph! Desc is intended to be collected into
overview tables. This property helps a human reader to
identify the object in question.

More elaborate documentation, (in particular how the
object is built or used) should go to "introduction”.

Tags: xml.sequenceOffset=-60

AUT<

SSAR

A

Class Identifiable (abstract)

introduction DocumentationBlock 0..1 aggr | This represents more information about how the object in
question is built or is used. Therefore it is a
DocumentationBlock.
Tags: xml.sequenceOffset=-30

uuid String 0..1 attr The purpose of this attribute is to provide a globally
unique identifier for an instance of a meta-class. The
values of this attribute should be globally unique strings
prefixed by the type of identifier. For example, to include a
DCE UUID as defined by The Open Group, the UUID
would be preceded by "DCE:". The values of this attribute
may be used to support merging of different AUTOSAR
models. The form of the UUID (Universally Unique
Identifier) is taken from a standard defined by the Open
Group (was Open Software Foundation). This standard is
widely used, including by Microsoft for COM (GUIDs) and
by many companies for DCE, which is based on CORBA.
The method for generating these 128-bit IDs is published
in the standard and the effectiveness and uniqueness of
the IDs is not in practice disputed. If the id namespace is
omitted, DCE is assumed. An example is
"DCE:2fac1234-31f8-11b4-a222-08002b34c003". The
uuid attribute has no semantic meaning for an AUTOSAR
model and there is no requirement for AUTOSAR tools to
manage the timestamp.
Tags: xml.attribute=true

Table C.7: Identifiable

Class MultilanguageReferrable (abstract)

Note Instances of this class can be referred to by their identifier (while adhering to namespace borders). They
also may have a longName. But they are not considered to contribute substantially to the overall
structure of an AUTOSAR description. In particular it does not contain other Referrables.

Base ARObject, Referrable

Subclasses Caption, Defltem, DocumentationContext, Identifiable, SdgCaption, TraceReferrable, Traceable

Attribute Type Mult. Kind | Note

longName MultilanguagelLong 0..1 aggr This specifies the long name of the object. Long name is
Name targeted to human readers and acts like a headline.

Table C.8: MultilanguageReferrable

Class PortPrototype (abstract)

Note Base class for the ports of an AUTOSAR software component.

The aggregation of PortPrototypes is subject to variability with the purpose to support the conditional
existence of ports.

Base ARObject, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses AbstractProvidedPortPrototype, AbstractRequiredPortPrototype

Aggregated by | AtpClassifier.atpFeature, SwComponentType.port

Attribute Type Mult. Kind | Note

Table C.9: PortPrototype

AUTSSAR

Primitive Positivelnteger
Note This is a positive integer which can be denoted in decimal, binary, octal and hexadecimal. The value is
between 0 and 4294967295.
Tags:
xml.xsd.customType=POSITIVE-INTEGER
xml.xsd.pattern=0|[\+]?[1-9][0-9]*|0[xX][0-9a-fA-F]+|0[bB][0-1]+|0[0-7]+
xml.xsd.type=string
Table C.10: Positivelnteger
Class PostBuildVariantCondition
Note This class specifies the value which shall be assigned to a particular variant criterion in order to bind the
variation point. If multiple criterion/value pairs are specified, they shall all match to bind the variation
point.
In other words binding can be represented by
(criterion1 == value1) && (condition2 == value?2) ...
Base ARObject
Aggregated by | VariationPoint.postBuildVariantCondition, VariationPointProxy.postBuildVariantCondition
Attribute Type Mult. Kind | Note
matching PostBuildVariant 1 ref This is the criterion which needs to match the value in
Criterion Criterion order to make the PostbuildVariantCondition to be true.
value Integer 1 attr This is the particular value of the post-build variant
criterion.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
Table C.11: PostBuildVariantCondition
Class PostBuildVariantCriterion
Note This class specifies one particular PostBuildVariantSelector.
Tags: atp.recommendedPackage=PostBuildVariantCriterions
Base ARElement, ARObject, AtpDefinition, CollectableElement, Identifiable, MultilanguageReferrable,
PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
compuMethod CompuMethod 1 ref The compuMethod specifies the possible values for the
variant criterion serving as an enumerator.
Table C.12: PostBuildVariantCriterion
Class PostBuildVariantCriterionValue
Note This class specifies the value which shall be assigned to a particular variant criterion in order to bind the
variation point. If multiple criterion/value pairs are specified, they all shall match to bind the variation
point.
Base ARObject
Aggregated by | PostBuildVariantCriterionValueSet.postBuildVariantCriterionValue
Attribute Type Mult. Kind | Note
annotation Annotation * aggr | This provides the ability to add information why the value

is set like it is.
Tags: xml.sequenceOffset=30

V

AUT<

SSAR

Class

PostBuildVariantCriterionValue

value

attr This is the particular value of the post-build variant
criterion.

Stereotypes: atpVariation

Tags:

vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

Integer 1

variantCriterion

This association selects the variant criterion whose value
is specified.
Tags: xml.sequenceOffset=10

PostBuildVariant 1 ref
Criterion

Table C.13: PostBuildVariantCriterionValue

Class PredefinedVariant
Note This specifies one predefined variant. It is characterized by the union of all system constant values and
post-build variant criterion values aggregated within all referenced system constant value sets and post
build variant criterion value sets plus the value sets of the included variants.
Tags: atp.recommendedPackage=PredefinedVariants
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note
includedVariant PredefinedVariant * ref The associated variants are considered part of this
PredefinedVariant. This means the settings of the
included variants are included in the settings of the
referencing PredefinedVariant. Nevertheless the included
variants might be included in several predefined variants.
postBuildVariant | PostBuildVariant * ref This is the postBuildVariantCriterionValueSet contributing

CriterionValue
Set

CriterionValueSet to the predefinded variant.

sw SwSystemconstant * ref This ist the set of Systemconstant Values contributing to
Systemconstant | ValueSet the predefined variant.
ValueSet
Table C.14: PredefinedVariant
Class Referrable (abstract)
Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).
Base ARObject
Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint, BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, DiagnosticEnvModeElement, EthernetPriority
Regeneration, ExclusiveAreaNestingOrder, HwDescriptionEntity, ImplementationProps, ModeTransition,
MultilanguageReferrable, PncMappingldent, SingleLanguageReferrable, SoConlPduldentifier, Tp
Connectionldent
Attribute Type Mult. Kind | Note
shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.
Stereotypes: atpldentityContributor
Tags:
xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100
shortName ShortNameFragment * aggr | This specifies how the Referrable.shortName is
Fragment composed of several shortNameFragments.
Tags: xml.sequenceOffset=-90

Table C.15: Referrable

AUTSSAR

Class Sdg
Note Sdg (SpecialDataGroup) is a generic model which can be used to keep arbitrary information which is not
explicitly modeled in the meta-model.
Sdg can have various contents as defined by sdgContentsType. Special Data should only be used
moderately since all elements should be defined in the meta-model.
Thereby SDG should be considered as a temporary solution when no explicit model is available. If an sdg
Caption is available, it is possible to establish a reference to the sdg structure.
Base ARObject
Aggregated by | AdminData.sdg, BuildActionEnvironment.sdg, BuildActionInvocator.sdg, BuildActionloElement.sdg, File
InfoComment.sdg, RptHook.sdg, SdgContents.sdg, VariationPoint.sdg
Attribute Type Mult. Kind | Note
gid NameToken 1 attr This attributes specifies an identifier. Gid comes from the
SGML/XML-Term "Generic Identifier" which is the
element name in XML. The role of this attribute is the
same as the name of an XML - element.
Tags: xml.attribute=true
sdgCaption SdgCaption 0..1 aggr | This aggregation allows to assign the properties of
Identifiable to the sdg. By this, a shortName etc. can be
assigned to the Sdg.
Stereotypes: atpldentityContributor
Tags: xml.sequenceOffset=20
sdgContents SdgContents 0..1 aggr | This is the content of the Sdg.
Type Tags:
xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=30
xml.typeElement=false
xml.typeWrapperElement=false
Table C.16: Sdg
Class SwComponentPrototype
Note Role of a software component within a composition.
Base ARObject, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | AtpClassifier.atpFeature, CompositionSwComponentType.component
Attribute Type Mult. Kind | Note
type SwComponentType 0..1 tref Type of the instance.
Stereotypes: isOfType
Table C.17: SwComponentPrototype
Class SwSystemconst
Note This element defines a system constant which serves an input to select a particular variation point. In
particular a system constant serves as an operand of the binding function (swSyscond) in a Variation
point.
Note that the binding process can only happen if a value was assigned to to the referenced system
constants.
Tags: atp.recommendedPackage=SwSystemconsts
Base ARElement, ARObject, AtpDefinition, CollectableElement, Identifiable, MultilanguageReferrable,
PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type | Mult. | Kind | Note

\Y

AUT<

SSAR

A

Class SwSystemconst

swDataDef SwDataDefProps 0..1 aggr | This denotes the data definition properties of the system

Props constant. This supports to express the limits and
optionally a conversion within the internal to physical
values by a compu method.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=swDataDefProps
xml.sequenceOffset=40

Table C.18: SwSystemconst

Class «atpMixedString» SwSystemconstDependentFormula (abstract)

Note This class represents an expression depending on system constants.

Base ARObject, FormulaExpression

Subclasses Attribute Value VariationPoint, BlueprintFormula, ConditionByFormula, FMFormulaByFeaturesAndSw

Systemconsts

Attribute Type Mult. Kind | Note

sysc SwSystemconst 0..1 ref This refers to a system constant. The internal (coded)
value of the system constant shall be used.
Tags: xml.sequenceOffset=50

syscString SwSystemconst 0..1 ref syscString indicates that the referenced system constant
shall be evaluated as a string according to [TPS_SWCT_
01431].

Table C.19: SwSystemconstDependentFormula

Class SwSystemconstValue

Note This meta-class assigns a particular value to a system constant.

Base ARObject

Aggregated by | SwSystemconstantValueSet.swSystemconstantValue

Attribute Type Mult. Kind | Note

annotation Annotation * aggr | This provides the ability to add information why the value
is set like it is.
Tags: xml.sequenceOffset=30

swSystemconst SwSystemconst 1 ref This is the system constant to which the value applies.
Tags: xml.sequenceOffset=10

value Numerical 1 attr This is the particular value of a system constant. It is
specified as Numerical. Further restrictions may apply by
the definition of the system constant.
The value attribute defines the internal value of the Sw
Systemconst as it is processed in the Formula Language.
Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

Table C.20: SwSystemconstValue
Class VariationPoint
Note This meta-class represents the ability to express a "structural variation point". The container of the

variation point is part of the selected variant if swSyscond evaluates to true and each postBuildVariant

Criterion is fulfilled.
\V4

AUTSSAR

A
Class VariationPoint
Base ARObject
Attribute Type Mult. Kind | Note
blueprint DocumentationBlock 0..1 aggr This represents a description that documents how the
Condition variation point shall be resolved when deriving objects
from the blueprint.
Note that variationPoints are not allowed within a
blueprintCondition.
Tags: xml.sequenceOffset=28
desc MultiLanguageOverview 0..1 aggr This allows to describe shortly the purpose of the
Paragraph variation point.
Tags: xml.sequenceOffset=20
formalBlueprint BlueprintGenerator 0..1 aggr This represents a description that documents how the
Generator variation point shall be resolved when deriving objects
from the blueprint by using ARMQL.
Note that variationPoints are not allowed within a formal
BlueprintGenerator.
Tags:
atp.Status=draft
xml.sequenceOffset=30
postBuildVariant | PostBuildVariant * aggr This is the set of post build variant conditions which all
Condition Condition shall be fulfilled in order to (postbuild) bind the variation
point.
Tags: xml.sequenceOffset=40
sdg Sdg 0..1 aggr An optional special data group is attached to every
variation point. These data can be used by external
software systems to attach application specific data. For
example, a variant management system might add an
identifier, an URL or a specific classifier.
Tags: xml.sequenceOffset=50
shortLabel Identifier 0..1 attr This provides a name to the particular variation point to
support the RTE generator. It is necessary for supporting
splitable aggregations and if binding time is later than
codeGenerationTime, as well as some RTE conditions. It
needs to be unique with in the enclosing Identifiables with
the same ShortName.
Stereotypes: atpldentityContributor
Tags: xml.sequenceOffset=10
swSyscond ConditionByFormula 0..1 aggr This condition acts as Binding Function for the Variation
Point. Note that the multiplicity is 0..1 in order to support
pure postBuild variants.
Tags: xml.sequenceOffset=30

Table C.21: VariationPoint

AUTSSAR

D Constraint History

The content of this appendix chapter is informative in nature and shall not be consid-
ered as normative content.

This chapter provides the change history of traceable items in this document. The
lists also include traceable items that have been removed from the document in a later
version. These items do not appear as hyperlinks in the document.

D.1 Change History for AUTOSAR R4.1.1

D.1.1 Added Constraints R4.1.1

Id

Heading

[constr_5001]

FMFeatureRelation shall not establish self-references

[constr_5002]

FMFeatureSelectionSet shall not have cycles in the include relation

[constr_5003]

FMFeatureSelectionSet shall not overwrite the state of included features

[constr_5005]

FMFeature shall not be referenced from more than one FMFeatureDecom—
position

[constr_5007]

FMFeature shall only be referenced from one FMFeatureModel in the role
feature

[constr_5008]

If present, the root feature shall be part of the feature model

[constr_5009]

Root feature shall be present if and only if the feature model is not empty

[constr_5010]

FMFeatureDecomposition may refer to a root feature of another feature
model, but only once.

[constr_5011]

FMFormulaByFeaturesAndAttributes can refer to FMFeatures and
FMAttributeDefs, but not to system constants

[constr_5013]

Attributes min and max of FMFeatureDecomposition reserved for cate-
gory MULTIPLEFEATURE

[constr_5018]

FMFeatureSelectionSet shall not include the same feature twice

[constr_5019]

FMFeatureModel shall not contain the same FMFeature twice

[constr_5020]

Every FMFeature shall be contained in a FMFeatureModel

[constr_5021]

The underlying graph of a feature model shall be a tree.

[constr_5022]

The root feature of a FMFeatureModel refers to the root of the underlying
tree.

[constr_5023]

FMFeatureSelectionSet may only refer to FMFeatures from the associ-
ated FMFeatureModel

[constr_5024]

FMFeatureSelectionSet shall not include itself

[constr_5025]

Multiple include in FMFeatureSelectionSet shall be consistent

[constr_5026]

Semantics of attributes max and min in class FMAttributeDef

[constr_5027]

Semantics of attributes max and min of FMAttributeDef in class FMAt -
tributeValue

[constr_5028]

Only one FMAttributeValue per FMAttributeDef

Table D.1: changed Constraints in 4.1.1

D.1.2 Changed Constraints R4.1.1

none

AUTSSAR

D.1.3 Deleted Constraints R4.1.1

none

D.1.4 Added Traceables R4.1.1

Id

Heading

[TPS_FMDT_00001]

Feature Models may be empty

[TPS_FMDT_00002]

Definition of Feature

[TPS_FMDT_00003]

Definition of Feature Selection

[TPS_FMDT_00004]

Definition of Feature Model

[TPS_FMDT_00005]

Definition of Product Model

[TPS_FMDT_00006]

Definition of Product Line Model

[TPS_FMDT_00007]

Definition of Product

[TPS_FMDT_00008]

Definition of Product Line

[TPS_FMDT_00009]

Definition of Feature Set of a FMFeatureSelectionSet

[TPS_FMDT_00012]

Default values for attributes min and max

[TPS_FMDT_00013]

Feature Models are optional

[TPS_FMDT_00014]

Definition of Parent Feature, Child Feature

[TPS_FMDT_00015] MANDATORYFEATURE
[TPS_FMDT_00016] OPTIONALFEATURE
[TPS_FMDT_00017] ALTERNATIVEFEATURE
[TPS_FMDT_00018] MULTIPLEFEATURE

[TPS_FMDT_00019]

Predefined values for the category of FMFeatureRelation

[TPS_FMDT_00020]

Structure of FMFeatureRelation

[TPS_FMDT_00021]

category attribute of FMFeatureRelation

[TPS_FMDT_00023]

Extensibility of category attribute of FMFeatureRelation

[TPS_FMDT_00024]

Attributes maximumIntendedBindingTime and minimumIntended-
BindingTime are only a hint

[TPS_FMDT _00025]

Set of affected variation points for a FMFeatureMapElement

[TPS_FMDT_00030]

Definition of Valid Feature Selection

[TPS_FMDT_00032]

Inclusion graph for FMFeatureSelectionSets

[TPS_FMDT_00033]

Special data for feature models

[TPS_FMDT_00034]

Definition of Underlying Graph of a FMFeatureModel

[TPS_FMDT_00035]

Definition of Features of a FMFeatureModel

[TPS_FMDT_00036]

Definition of Root Feature of a FMFeatureModel

[TPS_FMDT_00037]

Semantics of FMFeatureMapElement

[TPS_FMDT_00038]

Definition of Affected Variation Points for a FMFeature

[TPS_FMDT_00039]

Name of a FMFeature

[TPS_FMDT_00040]

Description for a FMFeature

[TPS_FMDT_00041]

Purpose of FMFeatureDecomposition

[TPS_FMDT_00042]

Purpose of FMFeature

[TPS_FMDT_00043]

Purpose of FMFeatureModel

[TPS_FMDT_00044]

Semantics of FMFeatureRelation

[TPS_FMDT_00045]

Semantics of FMFeatureRestriction

[TPS_FMDT_00046]

Semantics of FMFeatureDecomposition

[TPS_FMDT_00047]

Feature models are splitable

[TPS_FMDT_00048]

FMFormulaByFeaturesAndSwSystemconsts can refer to features and
system constants

[TPS_FMDT_00049]

The result of FMConditionByFeaturesAndAttributes is interpreted as
a boolean value.

AUTSSAR

[TPS_FMDT_00050]

The result of FMConditionByFeaturesAndSwSystemconsts is inter-
preted as a boolean value.

[TPS_FMDT_00051]

Purpose of FMAttributeDef

[TPS_FMDT _00052]

Identifying FMFeatureRelations

[TPS_FMDT_00053]

Semantics of FMAttributeValue

[TPS_FMDT_00054]

Semantics of attributes minimumIntendedBindingTime and maximu-—
mIntendedBindingTime

[TPS_FMDT_00055]

Semantics of minimumSelectedBindingTime and maximumSelected-
BindingTime

[TPS_FMDT_00056]

minimumSelectedBindingTime and maximumSelectedBindingTime
are only hints

[TPS_FMDT_00057]

Evaluating an Expression that uses Features and Attributes

[TPS_FMDT_00058]

Definition of state of a FMFeature in @ FMFeatureSelectionSet

[TPS_FMDT_00059]

Definition of recursive feature set of a FMFeatureSelectionSet

[TPS_FMDT_00060]

Purpose of FMFeatureSelectionSet

[TPS_FMDT_00061]

Documenting FMFeatureRelations

[TPS_FMDT_00062]

Identifying FMFeatureRestrictions

[TPS_FMDT_00063]

Documenting FMFeatureRestrictions

Table D.2: changed Constraints in 4.1.1

D.1.5 Changed Traceables R4.1.1

none

D.1.6

none

Deleted Traceables R4.1.1

D.2 Change History for AUTOSAR R4.2.1 against R4.1.3

D.2.1

none

D.2.2

none

D.2.3

none

Added Constraints in 4.2.1

Changed Constraints in 4.2.1

Deleted Constraints in 4.2.1

AUTSSAR

D.2.4

Added Specification Items in 4.2.1

Id

Heading

[TPS_FMDT_00064] Usage of Life Cycle

D.2.5

none

D.2.6

none

D.3

D.3.1

none

D.3.2

none

D.3.3

none

D.3.4

none

D.3.5

none

Table D.3: Added Traceables in 4.2.1

Changed Specification Items in 4.2.1

Deleted Specification ltems in 4.2.1

Change History for AUTOSAR R4.2.2 against R4.2.1

Added Constraints in 4.2.2

Changed Constraints in 4.2.2

Deleted Constraints in 4.2.2

Added Specification ltems in 4.2.2

Changed Specification Items in 4.2.2

AUTSSAR

D.3.6 Deleted Specification Items in 4.2.2

none

D.4 Change History for AUTOSAR R4.3.0 against R4.2.2

D.4.1 Added Constraints in 4.3.0

none

D.4.2 Changed Constraints in 4.3.0

none

D.4.3 Deleted Constraints in 4.3.0

none

D.4.4 Added Specification ltems in 4.3.0

none

D.4.5 Changed Specification Iltems in 4.3.0

none

D.4.6 Deleted Specification Iltems in 4.3.0

none

D.5 Change History for AUTOSAR R4.3.1 against R4.3.0

D.5.1 Added Constraints in 4.3.1

none

AUTSSAR

D.5.2 Changed Constraints in 4.3.1

none

D.5.3 Deleted Constraints in 4.3.1

none

D.5.4 Added Specification Items in 4.3.1

none

D.5.5 Changed Specification Items in 4.3.1

none

D.5.6 Deleted Specification Iltems in 4.3.1

none

D.6 Change History for AUTOSAR R4.4.0 against R4.3.1

D.6.1 Added Constraints in 4.4.0

none

D.6.2 Changed Constraints in 4.4.0

none

D.6.3 Deleted Constraints in 4.4.0

none

D.6.4 Added Specification ltems in 4.4.0

none

AUTSSAR

D.6.5

none

D.6.6

none

D.7

D.7.1

none

D.7.2

none

D.7.3

none

D.7.4

none

D.7.5

none

D.7.6

none

Changed Specification Items in 4.4.0

Deleted Specification Iltems in 4.4.0

Change History for AUTOSAR R19-11 against R4.4.0

Added Constraints in 19-11

Changed Constraints in 19-11

Deleted Constraints in 19-11

Added Specification Iltems in 19-11

Changed Specification Items in 19-11

Deleted Specification Iltems in 19-11

AUTSSAR

D.8 Change History for AUTOSAR R20-11 against R19-11

D.8.1

none

D.8.2

none

D.8.3

none

D.8.4

none

D.8.5

none

D.8.6

none

Added Constraints in R20-11

Changed Constraints in R20-11

Deleted Constraints in R20-11

Added Specification Iltems in R20-11

Changed Specification Items in R20-11

Deleted Specification Iltems in R20-11

D.9 Change History for AUTOSAR R21-11 against R20-11

D.9.1 Added Constraints in R21-11

Number Heading

[constr_3657] Multiplicity of FMAttributeDef.max and FMAttributeDef.min
[constr_3658] Multiplicity of FMFeatureDecomposition.category
[constr_3659] Multiplicity of FMFeatureDecomposition.feature
[constr_3660] Multiplicity of FMFeatureRelation.feature

[constr_3661] Multiplicity of FMFeatureSelection.feature

[constr_3662] Multiplicity of FMFeatureSelection.state

\Y%

AUTSSAR

A

Number

Heading

[constr_3663]

Multiplicity of FMAttributevValue.definition

[constr_3664]

Multiplicity of FMAttributeValue.value

[constr_3665]

Multiplicity of FMFormulaByFeaturesAndAttributes.attribute

[constr_3666]

Multiplicity of FMFormulaByFeaturesAndAttributes.feature

[constr_3667]

Multiplicity of FMFormulaByFeaturesAndSwSystemconsts.feature

Table D.4: Added Constraints in R21-11

D.9.2 Changed Constraints in R21-11

none

D.9.3 Deleted Constraints in R21-11

none

D.9.4 Added Specification Items in R21-11

none

D.9.5 Changed Specification Iltems in R21-11

none

D.9.6 Deleted Specification Items in R21-11

none

D.10 Change History for AUTOSAR R22-11 against R21-11

D.10.1 Added Constraints in R22-11

none

D.10.2 Changed Constraints in R22-11

none

AUTSSAR

D.10.3 Deleted Constraints in R22-11

none

D.10.4 Added Specification Items in R22-11

none

D.10.5 Changed Specification Iltems in R22-11

none

D.10.6 Deleted Specification Items in R22-11

none

D.11 Change History for AUTOSAR R23-11 against R22-11

D.11.1 Added Constraints in R23-11

none

D.11.2 Changed Constraints in R23-11

none

D.11.3 Deleted Constraints in R23-11

none

D.11.4 Added Specification Items in R23-11

Number Heading

[TPS_FMDT_00065] Summary: FMFeatureSelectionSet Sincludes S1

[TPS_FMDT _00066] Summary: FMFeatureSelectionSet Sincludes S1 and S2

Table D.5: Added Specification Items in R23-11

AUTSSAR

D.11.5 Changed Specification Iltems in R23-11

none

D.11.6 Deleted Specification Iltems in R23-11

none

D.12 Change History for AUTOSAR R24-11 against R23-11

D.12.1 Added Constraints in R24-11

none

D.12.2 Changed Constraints in R24-11

none

D.12.3 Deleted Constraints in R24-11

none

D.12.4 Added Specification Items in R24-11

none

D.12.5 Changed Specification Iltems in R24-11

none

D.12.6 Deleted Specification Items in R24-11

none

AUTSSAR

D.13 Change History for AUTOSAR R25-11 against R24-11

D.13.1

none

D.13.2

none

D.13.3

none

D.13.4

none

D.13.5

none

D.13.6

none

Added Constraints in R25-11

Changed Constraints in R25-11

Deleted Constraints in R25-11

Added Specification ltems in R25-11

Changed Specification Items in R25-11

Deleted Specification Items in R25-11

	1 Introduction and functional Overview
	1.1 Variant Handling in AUTOSAR
	1.2 The case for Feature Models
	1.3 Sample Feature Model
	1.4 Overview
	1.5 Document Conventions

	2 Terminology
	2.1 Terminology from graph theory

	3 Overview
	3.1 Feature Model
	3.2 Feature Selection
	3.3 Feature Map

	4 Feature Model
	4.1 Class FMFeatureModel
	4.1.1 Reference feature
	4.1.2 Reference root

	4.2 Class FMFeature
	4.2.1 Name and Documentation of a Feature
	4.2.2 Intended Binding Time

	4.3 Attributes of a Feature
	4.4 Class FMFeatureDecomposition
	4.4.1 Constraints and Terminology for FMFeatureDecomposition
	4.4.2 Categories of Feature Decompositions
	4.4.3 Attributes min and max
	4.4.4 Hierarchical decomposition of Feature Models
	4.4.5 Why use referencing for FMFeature instead of aggregation?

	4.5 Class FMFeatureRestriction
	4.5.1 Identifying and documenting FMFeatureRestrictions
	4.5.2 Example

	4.6 Class FMFeatureRelation
	4.6.1 Attribute category
	4.6.2 Identifying and documenting FMFeatureRelations
	4.6.3 Predefined Relations

	4.7 Hierarchy, Restrictions and Relations

	5 Feature Selection
	5.1 Example
	5.2 Class FMFeatureSelection
	5.2.1 Reference feature
	5.2.2 Attribute state
	5.2.3 FMAttributeValue
	5.2.3.1 Example

	5.2.4 Selected Binding Time

	5.3 Class FMFeatureSelectionSet
	5.3.1 Terminology and constraints
	5.3.2 Relation include

	5.4 state and include
	5.5 Valid Feature Selection

	6 Feature Map
	6.1 Example
	6.2 Overview
	6.3 Class FMFeatureMap
	6.4 Class FMFeatureMapElement
	6.5 Relationship with PredefinedVariant
	6.6 So, how does it work?
	6.7 Which variation points are affected by a particular FMFeature?

	7 Common Concepts
	7.1 Special Data in Context of Feature Models
	7.2 Formulas that use Features
	7.2.1 FMFormulaByFeaturesAndAttributes
	7.2.2 FMConditionByFeaturesAndAttributes
	7.2.3 FMFormulaByFeaturesAndSwSystemconsts
	7.2.4 FMConditionByFeaturesAndSwSystemconsts
	7.2.5 Evaluating Expressions that use Features and Attributes

	A Glossary
	B Reference Material
	B.1 Imposition Times of Constraints

	C Mentioned Class Tables
	D Constraint History
	D.1 Change History for AUTOSAR R4.1.1
	D.1.1 Added Constraints R4.1.1
	D.1.2 Changed Constraints R4.1.1
	D.1.3 Deleted Constraints R4.1.1
	D.1.4 Added Traceables R4.1.1
	D.1.5 Changed Traceables R4.1.1
	D.1.6 Deleted Traceables R4.1.1

	D.2 Change History for AUTOSAR R4.2.1 against R4.1.3
	D.2.1 Added Constraints in 4.2.1
	D.2.2 Changed Constraints in 4.2.1
	D.2.3 Deleted Constraints in 4.2.1
	D.2.4 Added Specification Items in 4.2.1
	D.2.5 Changed Specification Items in 4.2.1
	D.2.6 Deleted Specification Items in 4.2.1

	D.3 Change History for AUTOSAR R4.2.2 against R4.2.1
	D.3.1 Added Constraints in 4.2.2
	D.3.2 Changed Constraints in 4.2.2
	D.3.3 Deleted Constraints in 4.2.2
	D.3.4 Added Specification Items in 4.2.2
	D.3.5 Changed Specification Items in 4.2.2
	D.3.6 Deleted Specification Items in 4.2.2

	D.4 Change History for AUTOSAR R4.3.0 against R4.2.2
	D.4.1 Added Constraints in 4.3.0
	D.4.2 Changed Constraints in 4.3.0
	D.4.3 Deleted Constraints in 4.3.0
	D.4.4 Added Specification Items in 4.3.0
	D.4.5 Changed Specification Items in 4.3.0
	D.4.6 Deleted Specification Items in 4.3.0

	D.5 Change History for AUTOSAR R4.3.1 against R4.3.0
	D.5.1 Added Constraints in 4.3.1
	D.5.2 Changed Constraints in 4.3.1
	D.5.3 Deleted Constraints in 4.3.1
	D.5.4 Added Specification Items in 4.3.1
	D.5.5 Changed Specification Items in 4.3.1
	D.5.6 Deleted Specification Items in 4.3.1

	D.6 Change History for AUTOSAR R4.4.0 against R4.3.1
	D.6.1 Added Constraints in 4.4.0
	D.6.2 Changed Constraints in 4.4.0
	D.6.3 Deleted Constraints in 4.4.0
	D.6.4 Added Specification Items in 4.4.0
	D.6.5 Changed Specification Items in 4.4.0
	D.6.6 Deleted Specification Items in 4.4.0

	D.7 Change History for AUTOSAR R19-11 against R4.4.0
	D.7.1 Added Constraints in 19-11
	D.7.2 Changed Constraints in 19-11
	D.7.3 Deleted Constraints in 19-11
	D.7.4 Added Specification Items in 19-11
	D.7.5 Changed Specification Items in 19-11
	D.7.6 Deleted Specification Items in 19-11

	D.8 Change History for AUTOSAR R20-11 against R19-11
	D.8.1 Added Constraints in R20-11
	D.8.2 Changed Constraints in R20-11
	D.8.3 Deleted Constraints in R20-11
	D.8.4 Added Specification Items in R20-11
	D.8.5 Changed Specification Items in R20-11
	D.8.6 Deleted Specification Items in R20-11

	D.9 Change History for AUTOSAR R21-11 against R20-11
	D.9.1 Added Constraints in R21-11
	D.9.2 Changed Constraints in R21-11
	D.9.3 Deleted Constraints in R21-11
	D.9.4 Added Specification Items in R21-11
	D.9.5 Changed Specification Items in R21-11
	D.9.6 Deleted Specification Items in R21-11

	D.10 Change History for AUTOSAR R22-11 against R21-11
	D.10.1 Added Constraints in R22-11
	D.10.2 Changed Constraints in R22-11
	D.10.3 Deleted Constraints in R22-11
	D.10.4 Added Specification Items in R22-11
	D.10.5 Changed Specification Items in R22-11
	D.10.6 Deleted Specification Items in R22-11

	D.11 Change History for AUTOSAR R23-11 against R22-11
	D.11.1 Added Constraints in R23-11
	D.11.2 Changed Constraints in R23-11
	D.11.3 Deleted Constraints in R23-11
	D.11.4 Added Specification Items in R23-11
	D.11.5 Changed Specification Items in R23-11
	D.11.6 Deleted Specification Items in R23-11

	D.12 Change History for AUTOSAR R24-11 against R23-11
	D.12.1 Added Constraints in R24-11
	D.12.2 Changed Constraints in R24-11
	D.12.3 Deleted Constraints in R24-11
	D.12.4 Added Specification Items in R24-11
	D.12.5 Changed Specification Items in R24-11
	D.12.6 Deleted Specification Items in R24-11

	D.13 Change History for AUTOSAR R25-11 against R24-11
	D.13.1 Added Constraints in R25-11
	D.13.2 Changed Constraints in R25-11
	D.13.3 Deleted Constraints in R25-11
	D.13.4 Added Specification Items in R25-11
	D.13.5 Changed Specification Items in R25-11
	D.13.6 Deleted Specification Items in R25-11

