AUTSSAR

Document Title

SOME/IP Protocol Specification

Document Owner

AUTOSAR

Document Responsibility AUTOSAR
Document Identification No 696
Document Status published
Part of AUTOSAR Standard Foundation
Part of Standard Release R25-11

Document Change History

Date

Release

Changed by

Description

2025-11-27

R25-11

AUTOSAR
Release
Management

» Added Configuration parameters for
(de-)serialization and referenced them in
existing requirements

» Updated error handling flowchart,
corresponding requirements and return
codes table

» Reverted the handling of receiving less
data than expected and substitution of
missing data with default values during
deserialization

* Clarified the requirements of
deserialization with duplicate members
and invalid wire type

» Editorial Changes and bug fixes

2024-11-27

R24-11

AUTOSAR
Release
Management

* Protocol updates for interoperability
issues between AP and CP regarding
SOME/IP Error responses

» Added configurable timer for
SOME/IP-TP reception timeout time

« Editorial Changes

AUTSSAR

AUTOSAR

2023-11-23 R23-11 Release
Management

* Clarifications in Payload Compatibility
Rules table

» Changed [PRS_SOMEIP_00163] to
allow sharing of local endpoint between
different required service instances of
the same service

* Made length field required in dynamic
arrays

« Editorial Changes

AUTOSAR
R22-11 Release
Management

2022-11-24

* Clarification of SOME/IP-TP
segmentation

* Removed
implementsSOMEIPStringHandling

* [PRS_SOMEIP_00300] extended by
uint64

» Corrected serialization with BOM in
[PRS_SOMEIP_00374]

* Corrected multiple Bugs in
[PRS_SOMEIP_00043],
[PRS_SOMEIP_00739],
[PRS_SOMEIP_00043],
[PRS_SOMEIP_00241],
[PRS_SOMEIP_00101],
[PRS_SOMEIP_00942] and
[PRS_SOMEIP_00922]

» Added [PRS_SOMEIP_00245] to correct
mismatch in size of Method-ID

» Editorial Changes

AUTOSAR

2021-11-25 R21-11 Release
Management

» Added Restriction of Server Connection
from Clients

» Added Restriction of Client Connection
to Server

« Clarification on String Handling in
SOME/IP

« SOME/IP Header shall be encoded in
network byte order

« Editorial Changes

AUTSSAR

* Removed Draft Status from TLV
Requirements

» Fixed discrepancies between SWS and

AUTOSAR PRS
2020-11-30 | R20-11 Release « Clarified usage of length field
Management
* Restricted alignment of variable length
arrays to 8, 16, 32, 64, 128 or 256 Bits
« Editorial Changes
* Added
— Support for unit64 / sint64
— Error-Codes for E2E-Protection
* Clarify
— Serialization of fixed length array data
— Support for Data Accumulation feature
AUTOSAR o _
2019-11-28 | R19-11 Release — Contradicting requirements
Management « Introduce
implementsLegacyStringSerialization
tag (as successor of
implementsSOMEIPStringHandling)
» Editorial Changes
» Changed Document Status from Final to
published
AUTOSAR
2019-03-29 1.5.1 Release * No content changes
Management
AUTOSAR » Backward-incompatibility statement
2018-10-31 | 1.5.0 Release removed
Management « Some statements improved
AUTOSAR
2018-03-29 | 1.4.0 Release * Improved traceability
Management
AUTOSAR
2017-12-08 | 1.3.0 Release * No content changes
Management
AUTOSAR
2017-10-27 1.2.0 Release * Editorial changes

Management

AUTSSAR

AUTOSAR » Serialization of Structured Datatypes
2017-03-31 1.1.0 Release and Arguments with Identifier and
Management optional members
AUTOSAR
2016-11-30 | 1.0.0 Release « Initial Release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and overview 9
1.1 Protocol purpose and objectives 9
1.2 Applicability of the protocol oL 9

1.2.1 Constraints and assumptions 9
1.2.2 Limitations 10
1.3 Dependencies 10
1.4 Document Structure 10

2 Use Cases 11

3 Protocol Requirements 12
3.1 Requirements Traceability 12

4 Acronyms and Abbreviations 16

5 Protocol specification 17
5.1 Specification of SOME/IP Message Format (Serialization) 17

51.1 Header 17
5.1.1.1 Message ID[32Bit] 19
51.1.2 MethodID[16Bit]. 19
51.1.3 Length[32Bit]. 20
5.1.1.4 RequestID[32Bit] 20
5.1.1.5 Protocol Version[8Bit] 23
5.1.1.6 Interface Version[8Bit] 23
5.1.1.7 Message Type [8Bit], 24
51.1.8 ReturnCode[8Bit] 25
5.1.1.9 Payload [variable size] 25

51.2 Endianness 26

5.1.3 Serialization of Data Structures 26
5.1.3.1 BasicDatatypes. L 29
5.1.8.2 Structured Datatypes (structs) 29
5.1.3.3 Structured Datatypes and Arguments with Identifier and op-

tional members (TLV’) oL 30
518344 Strings e 40
5.1.35 Arrays 43
5136 Enumeration., 47
5.1.3.7 Bitfield 47
5.1.3.8 Union/Variant 47

5.1.4 De-serialization of Data Structures 50
5.1.4.1 Structured DataTypes (structs) 50
5.1.4.2 Structured Datatypes and Arguments with Identifier and op-

tional members (TLV’)o 51

AUTSSAR

5143 Strings
51.4.4 Arrays e

5145 Enumeration.
5.1.4.6 Bitfield
5.1.4.7 Union/Variant
5.2 Specification of SOME/IP Protocol
5.2.1 Transport Protocol Bindings
5211 UDPBIinding.
52.1.2 TCPBinding.
5.2.1.3 Multiple Service-Instances
5.2.1.4 Transporting large SOME/IP messages of UDP (SOME/IP-TP)
5.2.2 Request/Response Communication
5.2.3 Fire&Forget Communication
5.2.4 NotificationEvents o o
5.2.4.1 Strategy for sending notifications
525 Fields e
52.6 ErrorHandling
52.6.1 ReturnCode.
5.2.6.2 ErrorMessage
5.2.6.3 Error Processing Overview
5.3 Compatibility Rules for Interface Version

Configuration Parameters

Protocol usage and guidelines

7.1 Choosing the transport protocol
7.2 Security Considerations for SOME/IP

Change history of AUTOSAR traceable items

A.1 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e
A.1.1 Added Specification ltemsin R25-11
A.1.2 Changed Specification Itemsin R25-11
A.1.3 Deleted Specification ltemsin R25-11
A.1.4 Added Constraintsin R25-11
A.1.5 Changed Constraintsin R25-11
A.1.6 Deleted Constraintsin R25-11
A.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e
A.2.1 Added Specification ltemsin R24-11
A.2.2 Changed Specification Itemsin R24-11
A.2.3 Deleted Specification Iltemsin R24-11
A.3 Traceable item history of this document according to AUTOSAR Release
R23-11 . . e

88

88
88

90

AUTSSAR

A.3.1 Added Specification ItemsinR23-11 94
A.3.2 Changed Specification Itemsin R23-11 94
A.3.3 Deleted Specification ltemsin R23-11 94
A.4 Traceable item history of this document according to AUTOSAR Release
R22-11 . . . e 95
A.4.1 Added Specification ltemsin R22-11 95
A.4.2 Changed Specification Itemsin R22-11 95

A.4.3 Deleted Specification ltemsinR22-11 96

AUTSSAR

1 Introduction and overview

This protocol specification specifies the format, message sequences and seman-
tics of the AUTOSAR Protocol "Scalable service-Oriented MiddlewarE over IP
(SOME/IP)".

SOME/IP is an automotive/embedded communication protocol which supports remote
procedure calls, event notifications and the underlying serialization/wire format. The
only valid abbreviation is SOME/IP. Other abbreviations (e.g. Some/IP) are wrong and
shall not be used.

1.1 Protocol purpose and objectives

SOME/IP was created as existing solutions were not compatible to automotive use
cases as well as incompatible to the AUTOSAR Classic Platform architecture. The
major design goals were as follows:

* Fulfills the hard requirements regarding resource consumption of embedded
ECUs

* |s compatible through as many use-cases and communication partners as possi-
ble

» Compatible with AUTOSAR at least on the wire-format level; i.e., SOME/IP was
introduced with minimal architecture changes in the AUTOSAR Classic Platform.

* Provides the features required by automotive use-cases

* Is scalable from tiny to large platforms

1.2 Applicability of the protocol

SOME/IP shall be implemented on different operating system (i.e., AUTOSAR,
GENIVI/COVESA, and OSEK) and even embedded devices without operating system.
SOME/IP shall be used for inter-ECU Client/Server Serialization. An implementation
of SOME/IP allows AUTOSAR to parse the RPC PDUs and transport the parameters
to the application.

1.2.1 Constraints and assumptions

The "Support for serialization of extensible data structs" has been introduced - which
SOME/IP serializers based on AUTOSAR Foundation Standard 1.0.0 (AUTOSAR Clas-
sic Standard 4.3.0) as well as most non-AUTOSAR implementations cannot process.
To indicate this interoperability issue [PRS_SOMEIP_00220] requires to increase the
major interface version of the respective serialized data.

AUTSSAR

The support for "complementary default value" during reception of less data than ex-
pected is no longer supported by AUTOSAR.

1.2.2 Limitations

[constr_00001] Reordering limitation for a SOME/IP message segment
[Reordering of out-of-order segments of a SOME/IP message is not supported. |

1.3 Dependencies
There are no dependencies to AUTOSAR SWS modules.

1.4 Document Structure
The SOME/IP PRS will describe the following two aspects of SOME/IP.

Specification of SOME/IP on wire-format (Serialization)
» Structure of Header Format
« How the different data types are serialized as per SOME/IP
Specification of Protocol for Event and RPC-based communication
» Transport Protocol
* Rules that govern the RPC for SOME/IP

In addition to this document, the PRS SOME/IP-SD [1] describes the Service Discovery
and other functionalities of SOME/IP.

AUTSSAR

2 Use Cases

ID Name Description
UC_SOMEIP_00001 Remote A Client application sends request to the server
Procedure application and expects back a response from
Call: Re- Server application. A Server application sends
quest/Re- back response to the Client application on
sponse receiving a request.
Methods
UC_SOMEIP_00002 Remote A Client application sends request to the server
Procedure application and does not expect any response.
Call: Fire
and Forget
Methods
UC_SOMEIP_00003 Event A Server application sends events to relevant
based com- | client applications that are determined via
munication | SOME/IP-SD.
UC_SOMEIP_00004 Field based | Applications communicate using fields that can
communica- | have an optional notifier (event to be sent
tion cyclically or on-change), an optional setter (a
request/response method to update the field),
and an optional getter (a request/response
method to read out the current value of the field).
UC_SOMEIP_00005 Communi- Applications communicate over UDP or TCP as
cation using | an underlying transport protocol.
various
transport
protocols
UC_SOMEIP_00006 Communi- Server applications dynamically offer and publish
cation data to the required client applications in the
based on network. Client applications dynamically
Publish and | subscribe and receive data from the required
Subscribe server applications in the network.
model
UC_SOMEIP_00007 Message Applications process the messages in a
Processing | structured way and perform the error handling
and Error using specific Return Codes and Error
Handling Messages.
UC_SOMEIP_00008 Different Applications based on different implementation
platform platforms and Operating Systems communicate
support with each other fulfilling the hard requirements of

resource consumption.

AUTSSAR

3 Protocol Requirements

3.1 Requirements Traceability

Requirement Description

Satisfied by

[RS_SOMEIP_00002] SOME/IP protocol shall provide
service-based communication

[PRS_SOMEIP_00703] [PRS_SOMEIP_00909]
[PRS_SOMEIP_00946] [PRS_SOMEIP_00947]

[RS_SOMEIP_00003] SOME/IP protocol shall provide
support of multiple versions of a
service interface

[PRS_SOMEIP_00053] [PRS_SOMEIP_00758]
[PRS_SOMEIP_00937] [PRS_SOMEIP_00938]

[RS_SOMEIP_00004] SOME/IP protocol shall support event
communication

[PRS_SOMEIP_00925] [PRS_SOMEIP_00926]

[RS_SOMEIP_00005] SOME/IP protocol shall support
different strategies for event
communication

[PRS_SOMEIP_00183]

[RS_SOMEIP_00006] SOME/IP protocol shall support
uni-directional RPC communication

[PRS_SOMEIP_00171] [PRS_SOMEIP_00382]
[PRS_SOMEIP_00924]

[RS_SOMEIP_00007] SOME/IP protocol shall support
bi-directional RPC communication

[PRS_SOMEIP_00920] [PRS_SOMEIP_00921]
[PRS_SOMEIP_00922] [PRS_SOMEIP_00923]
[PRS_SOMEIP_00927] [PRS_SOMEIP_00928]

[RS_SOMEIP_00008] SOME/IP protocol shall support error
handling of RPC communication

[PRS_SOMEIP_00055] [PRS_SOMEIP_00058]
[PRS_SOMEIP_00187] [PRS_SOMEIP_00188]
[PRS_SOMEIP_00189] [PRS_SOMEIP_00190]
[PRS_SOMEIP_00191] [PRS_SOMEIP_00195]
[PRS_SOMEIP_00385] [PRS_SOMEIP_00537]
[PRS_SOMEIP_00539] [PRS_SOMEIP_00576]
[PRS_SOMEIP_00701] [PRS_SOMEIP_00757]
[PRS_SOMEIP_00901] [PRS_SOMEIP_00902]
[PRS_SOMEIP_00903] [PRS_SOMEIP_00904]
[PRS_SOMEIP_00905] [PRS_SOMEIP_00910]

[RS_SOMEIP_00009] SOME/IP protocol shall support field
communication

[PRS_SOMEIP_00179] [PRS_SOMEIP_00180]
[PRS_SOMEIP_00181] [PRS_SOMEIP_00182]
[PRS_SOMEIP_00183] [PRS_SOMEIP_00909]

[RS_SOMEIP_00010] SOME/IP protocol shall support
different transport protocols
underneath

[PRS_SOMEIP_00137] [PRS_SOMEIP_00139]
[PRS_SOMEIP_00140] [PRS_SOMEIP_00141]
[PRS_SOMEIP_00142] [PRS_SOMEIP_00154]
[PRS_SOMEIP_00160] [PRS_SOMEIP_00378]
[PRS_SOMEIP_00379] [PRS_SOMEIP_00382]
[PRS_SOMEIP_00535] [PRS_SOMEIP_00706]
[PRS_SOMEIP_00707] [PRS_SOMEIP_00708]
[PRS_SOMEIP_00709] [PRS_SOMEIP_00710]
[PRS_SOMEIP_00711] [PRS_SOMEIP_00720]
[PRS_SOMEIP_00721] [PRS_SOMEIP_00722]
[PRS_SOMEIP_00723] [PRS_SOMEIP_00724]
[PRS_SOMEIP_00725] [PRS_SOMEIP_00726]
[PRS_SOMEIP_00727] [PRS_SOMEIP_00728]
[PRS_SOMEIP_00729] [PRS_SOMEIP_00730]
[PRS_SOMEIP_00731] [PRS_SOMEIP_00732]
[PRS_SOMEIP_00733] [PRS_SOMEIP_00734]
[PRS_SOMEIP_00735] [PRS_SOMEIP_00736]
[PRS_SOMEIP_00738] [PRS_SOMEIP_00740]
[PRS_SOMEIP_00741] [PRS_SOMEIP_00742]
[PRS_SOMEIP_00743] [PRS_SOMEIP_00744]
[PRS_SOMEIP_00745] [PRS_SOMEIP_00746]
[PRS_SOMEIP_00747] [PRS_SOMEIP_00749]
[PRS_SOMEIP_00750] [PRS_SOMEIP_00751]
[PRS_SOMEIP_00752] [PRS_SOMEIP_00753]
[PRS_SOMEIP_00754] [PRS_SOMEIP_00940]
[PRS_SOMEIP_00942] [PRS_SOMEIP_00943]

AUTSSAR

A

Requirement

Description

Satisfied by

[RS_SOMEIP_00011]

SOME/IP protocol shall support
messages of different lengths

[PRS_SOMEIP_00722]

[RS_SOMEIP_00012]

SOME/IP protocol shall support
session handling

[PRS_SOMEIP_00521] [PRS_SOMEIP_00533]
[PRS_SOMEIP_00720] [PRS_SOMEIP_00721]
[PRS_SOMEIP_00739] [PRS_SOMEIP_00935]
[PRS_SOMEIP_00936] [PRS_SOMEIP_00939]

[RS_SOMEIP_00014]

SOME/IP protocol shall support
handling of protocol errors on
receiver side

[PRS_SOMEIP_00195] [PRS_SOMEIP_00378]
[PRS_SOMEIP_00385] [PRS_SOMEIP_00576]
[PRS_SOMEIP_00910]

[RS_SOMEIP_00015]

SOME/IP protocol shall support
multiple instances of a service

[PRS_SOMEIP_00138] [PRS_SOMEIP_00162]
[PRS_SOMEIP_00163]

[RS_SOMEIP_00016]

SOME/IP protocol shall support
combining multiple RPC methods,
events and fields in one service

[PRS_SOMEIP_00245] [PRS_SOMEIP_00366]
[PRS_SOMEIP_00755]

[RS_SOMEIP_00017]

SOME/IP protocol shall support
grouping events into eventgroups

[PRS_SOMEIP_00365] [PRS_SOMEIP_00366]

[RS_SOMEIP_00018]

SOME/IP protocol shall support
grouping fields in eventgroups

[PRS_SOMEIP_00366]

[RS_SOMEIP_00021]

SOME/IP protocol shall identify RPC
methods of services using unique
identifiers

[PRS_SOMEIP_00034]

[RS_SOMEIP_00022]

SOME/IP protocol shall identify
events of services using unique
identifiers

[PRS_SOMEIP_00034]

[RS_SOMEIP_00023]

SOME/IP protocol shall identify event
groups of services using unique
identifiers

[PRS_SOMEIP_00034]

[RS_SOMEIP_00024]

SOME/IP protocol shall define
reserved identifiers

[PRS_SOMEIP_00191] [PRS_SOMEIP_00907]

[RS_SOMEIP_00025]

SOME/IP protocol shall support the
identification of callers of an RPC
using unique identifiers

[PRS_SOMEIP_00043] [PRS_SOMEIP_00044]
[PRS_SOMEIP_00532] [PRS_SOMEIP_00702]
[PRS_SOMEIP_00703]

[RS_SOMEIP_00026]

SOME/IP protocol shall define the
endianness of header and payload

[PRS_SOMEIP_00368] [PRS_SOMEIP_00369]
[PRS_SOMEIP_00759]

[RS_SOMEIP_00027]

SOME/IP protocol shall define the
header layout of messages

[PRS_SOMEIP_00030] [PRS_SOMEIP_00031]
[PRS_SOMEIP_00034] [PRS_SOMEIP_00042]
[PRS_SOMEIP_00043] [PRS_SOMEIP_00046]
[PRS_SOMEIP_00050] [PRS_SOMEIP_00051]
[PRS_SOMEIP_00052] [PRS_SOMEIP_00053]
[PRS_SOMEIP_00055] [PRS_SOMEIP_00058]
[PRS_SOMEIP_00141] [PRS_SOMEIP_00245]
[PRS_SOMEIP_00365] [PRS_SOMEIP_00366]
[PRS_SOMEIP_00367] [PRS_SOMEIP_00521]
[PRS_SOMEIP_00532] [PRS_SOMEIP_00533]
[PRS_SOMEIP_00701] [PRS_SOMEIP_00702]
[PRS_SOMEIP_00703] [PRS_SOMEIP_00704]
[PRS_SOMEIP_00723] [PRS_SOMEIP_00724]
[PRS_SOMEIP_00725] [PRS_SOMEIP_00726]
[PRS_SOMEIP_00727] [PRS_SOMEIP_00728]
[PRS_SOMEIP_00739] [PRS_SOMEIP_00755]
[PRS_SOMEIP_00757] [PRS_SOMEIP_00931]
[PRS_SOMEIP_00932] [PRS_SOMEIP_00933]
[PRS_SOMEIP_00934] [PRS_SOMEIP_00935]
[PRS_SOMEIP_00936] [PRS_SOMEIP_00940]
[PRS_SOMEIP_00941]

AUTSSAR

A

Requirement

Description

Satisfied by

[RS_SOMEIP_00028]

SOME/IP protocol shall specify the
serialization algorithm for data

[PRS_SOMEIP_00004] [PRS_SOMEIP_00101]
[PRS_SOMEIP_00130] [PRS_SOMEIP_00210]
[PRS_SOMEIP_00211] [PRS_SOMEIP_00212]
[PRS_SOMEIP_00213] [PRS_SOMEIP_00214]
[PRS_SOMEIP_00216] [PRS_SOMEIP_00220]
[PRS_SOMEIP_00569] [PRS_SOMEIP_00611]
[PRS_SOMEIP_00612] [PRS_SOMEIP_00613]
[PRS_SOMEIP_00712] [PRS_SOMEIP_00921]
[PRS_SOMEIP_00923]

[RS_SOMEIP_00029]

SOME/IP protocol shall specify how
data in the payload are aligned

[PRS_SOMEIP_00222] [PRS_SOMEIP_00569]
[PRS_SOMEIP_00611] [PRS_SOMEIP_00612]
[PRS_SOMEIP_00613] [PRS_SOMEIP_00730]

[RS_SOMEIP_00030]

SOME/IP protocol shall support
transporting integer data types

[PRS_SOMEIP_00065] [PRS_SOMEIP_00300]
[PRS_SOMEIP_00615] [PRS_SOMEIP_00705]

[RS_SOMEIP_00031]

SOME/IP protocol shall support
transporting boolean data type

[PRS_SOMEIP_00065] [PRS_SOMEIP_00615]

[RS_SOMEIP_00032]

SOME/IP protocol shall support
transporting float data types

[PRS_SOMEIP_00065] [PRS_SOMEIP_00615]

[RS_SOMEIP_00033]

SOME/IP protocol shall support
transporting structured data types

[PRS_SOMEIP_00077] [PRS_SOMEIP_00079]
[PRS_SOMEIP_00300] [PRS_SOMEIP_00370]
[PRS_SOMEIP_00371] [PRS_SOMEIP_00705]
[PRS_SOMEIP_00712] [PRS_SOMEIP_00900]

[RS_SOMEIP_00034]

SOME/IP protocol shall support
transporting union data types

[PRS_SOMEIP_00118] [PRS_SOMEIP_00119]
[PRS_SOMEIP_00121] [PRS_SOMEIP_00122]
[PRS_SOMEIP_00123] [PRS_SOMEIP_00126]
[PRS_SOMEIP_00127] [PRS_SOMEIP_00129]
[PRS_SOMEIP_00130] [PRS_SOMEIP_00906]
[PRS_SOMEIP_00907] [PRS_SOMEIP_00915]
[PRS_SOMEIP_00916]

[RS_SOMEIP_00035]

SOME/IP protocol shall support
transporting one-dimensional and
multi-dimensional array data types

[PRS_SOMEIP_00099] [PRS_SOMEIP_00101]

[RS_SOMEIP_00036]

SOME/IP protocol shall support
transporting array data types with a
fixed length

[PRS_SOMEIP_00099] [PRS_SOMEIP_00101]
[PRS_SOMEIP_00207] [PRS_SOMEIP_00917]
[PRS_SOMEIP_00944]

[RS_SOMEIP_00037]

SOME/IP protocol shall support
transporting array data types with
flexible length

[PRS_SOMEIP_00001] [PRS_SOMEIP_00114]
[PRS_SOMEIP_00375] [PRS_SOMEIP_00376]
[PRS_SOMEIP_00377] [PRS_SOMEIP_00919]

[RS_SOMEIP_00038]

SOME/IP protocol shall support
transporting string types with a fixed
length

[PRS_SOMEIP_00084] [PRS_SOMEIP_00085]
[PRS_SOMEIP_00086] [PRS_SOMEIP_00087]
[PRS_SOMEIP_00372] [PRS_SOMEIP_00373]
[PRS_SOMEIP_00374] [PRS_SOMEIP_00760]
[PRS_SOMEIP_00911] [PRS_SOMEIP_00912]
[PRS_SOMEIP_00913] [PRS_SOMEIP_00948]

[RS_SOMEIP_00039]

SOME/IP protocol shall support
transporting string data types with
flexible length

[PRS_SOMEIP_00002] [PRS_SOMEIP_00089]
[PRS_SOMEIP_00090] [PRS_SOMEIP_00091]
[PRS_SOMEIP_00092] [PRS_SOMEIP_00095]
[PRS_SOMEIP_00914]

[RS_SOMEIP_00040]

SOME/IP protocol shall support
providing the length of a serialized
data element in the payload

[PRS_SOMEIP_00001] [PRS_SOMEIP_00002]
[PRS_SOMEIP_00042] [PRS_SOMEIP_00079]
[PRS_SOMEIP_00208] [PRS_SOMEIP_00221]
[PRS_SOMEIP_00370]

[RS_SOMEIP_00041]

SOME/IP protocol shall provide
support of multiple versions of the
protocol

[PRS_SOMEIP_00050] [PRS_SOMEIP_00051]
[PRS_SOMEIP_00052]

Y

AUTSSAR

A

Requirement Description

Satisfied by

[RS_SOMEIP_00042] SOME/IP protocol shall support
unicast and multicast based event
communication

[PRS_SOMEIP_00930]

[RS_SOMEIP_00050] SOME/IP protocol shall support
serialization of extensible data structs

[PRS_SOMEIP_00003] [PRS_SOMEIP_00201]
[PRS_SOMEIP_00202] [PRS_SOMEIP_00203]
[PRS_SOMEIP_00204] [PRS_SOMEIP_00205]
[PRS_SOMEIP_00206] [PRS_SOMEIP_00208]
[PRS_SOMEIP_00209] [PRS_SOMEIP_00210]
[PRS_SOMEIP_00211] [PRS_SOMEIP_00212]
[PRS_SOMEIP_00213] [PRS_SOMEIP_00214]
[PRS_SOMEIP_00216] [PRS_SOMEIP_00217]
[PRS_SOMEIP_00220] [PRS_SOMEIP_00221]
[PRS_SOMEIP_00222] [PRS_SOMEIP_00223]
[PRS_SOMEIP_00224] [PRS_SOMEIP_00225]
[PRS_SOMEIP_00226] [PRS_SOMEIP_00227]
[PRS_SOMEIP_00228] [PRS_SOMEIP_00229]
[PRS_SOMEIP_00230] [PRS_SOMEIP_00231]
[PRS_SOMEIP_00241] [PRS_SOMEIP_00242]
[PRS_SOMEIP_00243] [PRS_SOMEIP_00244]
[PRS_SOMEIP_00383] [PRS_SOMEIP_00384]

[RS_SOMEIP_00051] SOME/IP protocol shall provide
support for segmented transmission
of large data

[PRS_SOMEIP_00367] [PRS_SOMEIP_00729]
[PRS_SOMEIP_00730] [PRS_SOMEIP_00731]
[PRS_SOMEIP_00732] [PRS_SOMEIP_00733]
[PRS_SOMEIP_00734] [PRS_SOMEIP_00735]
[PRS_SOMEIP_00736] [PRS_SOMEIP_00738]
[PRS_SOMEIP_00740] [PRS_SOMEIP_00741]
[PRS_SOMEIP_00742] [PRS_SOMEIP_00743]
[PRS_SOMEIP_00744] [PRS_SOMEIP_00745]
[PRS_SOMEIP_00746] [PRS_SOMEIP_00747]
[PRS_SOMEIP_00749] [PRS_SOMEIP_00750]
[PRS_SOMEIP_00751] [PRS_SOMEIP_00752]
[PRS_SOMEIP_00753] [PRS_SOMEIP_00754]

Table 3.1: Requirements Tracing

AUTSSAR

4 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the SOME/IP
specification that are not included in the [2, AUTOSAR glossary].

Abbreviation / Acronym:

Description:

The byte order mark (BOM) is a Unicode character, U+FEFF byte

Byte Order Mark order mark (BOM), whose appearance as a magic number at the
start of a text stream is used to indicate the used encoding.
A method, procedure, function, or subroutine that is called/in-
Method
voked.
Parameters input, output, or input/output arguments of a method or an event

Remote Procedure Call (RPC)

A method call from one ECU to another that is transmitted using
messages

Request

a message of the client to the server invoking a method

Response

a message of the server to the client transporting results of a
method invocation

Request/Response communica-
tion

a RPC that consists of request and response

A uni-directional data transmission that is only invoked on

Event changes or cyclically and is sent from the producer of data to
the consumers.
Field A field does represent a status and thus has an valid value at all

times on which getter, setter and notifier act upon.

Notification Event

An event message of the notifier of a field.

Getter A Request/Response call that allows read access to a field.

Setter A Request/Response call that allows write access to a field.

Notifier Sequ out event message with the fields .valuelon change, on
epsilon change, or cyclically based on configuration.

Service A logical combination of zero or more methods, zero or more

events, and zero or more fields.

Service Interface

the formal specification of the service including its methods,
events, and fields

Eventgroup

A logical grouping of events and notification events of fields inside
a service in order to allow subscription

Service Instance

Implementation of a service, which can exist more than once in
the vehicle and more than once on an ECU

Server

The ECU offering a service instance shall be called server in the
context of this service instance.

Client

The ECU using the service instance of a server shall be called
client in the context of this service instance.

Fire and Forget

Requests without response message are called fire&forget.

User Datagram Protocol

A standard network protocol using a simple connectionless com-
munication model.

Union

A data structure that dynamically assumes different data types.

non-extensible (standard) struct

A struct which is serialized without tags. At most, new members
can be added in a compatible way at the end of the struct and
optional members are not possible.

extensible struct

A struct which is serialized with tags. New members can be
added in a compatible way at arbitrary positions and optional
members are possible.

TLV

Tag Length Value

Table 4.1: Acronyms and Abbreviations

AUTSSAR

5 Protocol specification

SOME/IP provides service oriented communication over a network. It is based on
service definitions that list the functionality that the service provides. A service can
consist of combinations of zero or multiple events, methods and fields.

Events provide data that are sent cyclically or on change from the provider to the sub-
scriber.

Methods provide the possibility to the subscriber to issue remote procedure calls which
are executed on provider side.

Fields are combinations of one or more of the following three

+ a notifier which sends data from the provider to the subscribers on change, on
epsilon change, or cyclically based on configuration.

* a getter which can be called by the subscriber to explicitly query the provider for
the value

* a setter which can be called by the subscriber when it wants to change the value
on provider side

The major difference between the notifier of a field and an event is that events are
only sent on change, the notifier of a field additionally sends the data directly after
subscription.

5.1 Specification of SOME/IP Message Format (Serialization)

Serialization describes the way data is represented in protocol data units (PDUs) as
payload of either UDP or TCP messages, transported over an IP-based automotive
in-vehicle network.

5.1.1 Header

[PRS_SOMEIP_00030]
Upstream requirements: RS_SOMEIP_00027

[The structure of header layout shall consist of

* Message ID (Service ID/Method ID) [32 Bits]
Length [32 Bits]
Request ID (Client ID/Session ID) [32 Bits]

Protocol Version [8Bits]

Interface Version [8 Bits]

AUTSSAR

* Message Type [8 Bits]
* Return Code [8 Bits]

|
[PRS_SOMEIP_00030] is shown in Table 5.1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Message ID (Service ID / Method ID) [32 Bit]
Length [32 Bit]
Request ID (Client ID / Session ID) [32 Bit]
Protocol Version [8 Bit] ‘ Interface version [8 Bit] ‘ Message Type [8 Bit] ‘ Return Code [8 Bit]
Payload [variable size]

Table 5.1: SOME/IP Header Format

[PRS_SOMEIP_00941]
Upstream requirements: RS_SOMEIP_00027

[In case of E2E communication protection being applied, the E2E header is placed
after Return Code, depending on the chosen Offset value for the E2E header. The
default Offset value is 64 bit, which puts the E2E header exactly between Return Code
and Payload. |

[PRS_SOMEIP_00941] ss shown in the Table 5.2.

0 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Message ID (Service ID / Method ID) [32 Bit]

Length [32 Bit]
Request ID (Client ID / Session ID) [32 Bit]
Protocol Version [8 Bit] | Interface version [8 Bit] | Message Type [8 Bit] | Return Code [8 Bit]
E2E Header (variable size/ Dependent on selected E2E profile]

Payload [variable size]

Table 5.2: SOME/IP Header and E2E header Format

[PRS_SOMEIP_00031]
Upstream requirements: RS_SOMEIP_00027

[For interoperability reasons the header layout shall be identical for all implementations
of SOME/IP. The fields are presented in transmission order i.e. the fields on the top left
are transmitted first. |

Note: For the sake of proper processing (see e.g. Chapter 5.2.6.3 Error Processing
Overview) involving different protocol versions, the location, the length and the en-
coding of the following SOME/IP header fields will remain the same in all upcoming
SOME!/IP protocol versions:

AUTSSAR

» Message ID (consisting of Service ID and Event/Method ID)
* Length

» Protocol Version

5.1.1.1 Message ID [32 Bit]

[PRS_SOMEIP_00034]

Upstream requirements: RS_SOMEIP_00021, RS_SOMEIP_00022, RS_SOMEIP_00023, RS_-
SOMEIP_00027

[The Message ID shall be a 32 Bit identifier that is used to identify
» the RPC call to a method of an application

* or to identify an event.
]

Note: The assignment of the Message ID is up to the user / system designer. However,
the Message ID is assumed be unique for the whole system (i.e. the vehicle).

5.1.1.2 Method ID [16 Bit]

[PRS_SOMEIP_00245]
Upstream requirements: RS_SOMEIP_00016, RS_SOMEIP_00027

[The Message ID header field shall be structured into a 16 Bit Service ID header field
(to distinguish up to 2!¢ services) and a 16 bit Method ID header field to distinguish
up to 2'¢ service elements (namely methods and/or events). This structuring of the
Message ID header field is illustrated as shown in [PRS_SOMEIP_00755]. |

Note: It is common practice and recommended to split the ID space of the Method ID
between Methods and Events/Notifications. Methods would be in the range 0x0000-
0x7FFF (first bit of Method-ID is 0) and Events/Notifications would use the range
0x8000-0x8FFF (first bit of the Method-ID is 1).

[PRS_SOMEIP_00755] Message ID header field
Upstream requirements: RS_SOMEIP_00016, RS_SOMEIP_00027

[

Service ID [16 Bit] Method ID [16
Bit]

AUTSSAR

Eventgroup is a logical grouping of events and notification events of fields inside a
service in order to allow subscription.

[PRS_SOMEIP_00365]
Upstream requirements: RS_SOMEIP_00027, RS_SOMEIP_00017
[A SOME/IP Eventgroup shall at least contain one event. |

[PRS_SOMEIP_00366]

Upstream requirements: RS_SOMEIP_00027, RS_SOMEIP_00016, RS_SOMEIP_00017, RS_-
SOMEIP_00018

[Events as well as field notifiers shall be mapped to at least one SOME/IP Eventgroup. |

5.1.1.3 Length [32 Bit]

[PRS_SOMEIP_00042]
Upstream requirements: RS_SOMEIP_00027, RS_SOMEIP_00040

[Length field shall contain the length in Byte starting from Request ID/Client ID until
the end of the SOME/IP message. |

5.1.1.4 Request ID [32 Bit]

The Request ID allows a server and client to differentiate multiple parallel uses of the
same method, getter or setter.

[PRS_SOMEIP_00043]

Upstream requirements: RS_SOMEIP_00025, RS_SOMEIP_00027
[The Request ID shall be unique for a request-response pair to differentiate between
multiple calls of the same method. |

[PRS_SOMEIP_00704]
Upstream requirements: RS_SOMEIP_00027

[When generating a response message, the provider shall copy the Request ID from
the request to the response message. |

Note:
This allows the client to map a response to the issued request even with more than one
request outstanding.

AUTSSAR

[PRS_SOMEIP_00044]
Upstream requirements: RS_SOMEIP_00025

[Request IDs must not be reused until the response has arrived or is not expected to
arrive anymore (timeout). |

Structure of the Request ID

[PRS_SOMEIP_00046] Request ID
Upstream requirements: RS_SOMEIP_00027

[

| Client ID [16 Bits] | Session ID [16 Bits]

]

Note:

This means that the implementer of an ECU can define the Client-IDs as required by
his implementation and the provider does not need to know this layout or definitions
because he just copies the complete Request-ID in the response.

[PRS_SOMEIP_00702]

Upstream requirements: RS_SOMEIP_00025, RS_SOMEIP_00027
[The Client ID is the unique identifier for the calling client inside the ECU. The Client
ID allows an ECU to differentiate calls from multiple clients to the same method. |

[PRS_SOMEIP_00703]
Upstream requirements: RS_SOMEIP_00002, RS_SOMEIP_00025, RS_SOMEIP_00027

[The Session ID is a unique identifier that allows to distinguish sequential messages
or requests originating from the same sender from each other. |
[PRS_SOMEIP_00532]

Upstream requirements: RS_SOMEIP_00025, RS_SOMEIP_00027

[The Client ID shall also support being unique in the overall vehicle by having a con-
figurable prefix or fixed value (e.g. the most significant byte of Client ID being the
diagnostics address or a configured Client ID for a given application/SW-C). |

For example:

Client ID Prefix [8 Client ID [8 Bits] Session ID [16 Bits]
Bits]

Table 5.3: Example of Client ID

AUTSSAR

[PRS_SOMEIP_00932]
Upstream requirements: RS_SOMEIP_00027

[In case Session Handling is not active, the Session ID shall be set to 0x00. |

[PRS_SOMEIP_00933]
Upstream requirements: RS_SOMEIP_00027

[In case Session Handling is active, the Session ID shall be set to a value within the
range [0x1, OxFFFF].]

[PRS_SOMEIP_00934]
Upstream requirements: RS_SOMEIP_00027

[In case Session Handling is active, the Session ID shall be incremented according to
the respective use case (detailed information about dedicated use cases is contained
in separate specification items (e.g., [PRS_SOMEIP_00533]). |

[PRS_SOMEIP_00533]
Upstream requirements: RS_SOMEIP_00012, RS_SOMEIP_00027

[Request/Response methods shall use session handling with Session IDs. Session ID
should be incremented after each call. |

[PRS_SOMEIP_00521]
Upstream requirements: RS_SOMEIP_00012, RS_SOMEIP_00027

[When the Session ID reaches OxFFFF, it shall wrap around and start again with 0x01 |

[PRS_SOMEIP_00739]
Upstream requirements: RS_SOMEIP_00012, RS_SOMEIP_00027

[For request/response methods, a client has to ignore a response if the Session ID of
the response does not match the Session ID of the request |

[PRS_SOMEIP_00935]
Upstream requirements: RS_SOMEIP_00012, RS_SOMEIP_00027

[For notification messages, a receiver shall ignore the Session ID in case Session
Handling is not active. |

[PRS_SOMEIP_00936]
Upstream requirements: RS_SOMEIP_00012, RS_SOMEIP_00027

[For notification messages, a receiver shall treat the Session ID according to the re-
spective use case (detailed information about dedicated use cases is contained in
separate specification items [e.g., [PRS_SOMEIP_00741]] in case Session Handling
is active). |

AUTSSAR

[PRS_SOMEIP_00939] Session Handling for REQUEST NO_RETURN Messages
Upstream requirements: RS_SOMEIP_00012

[Session Handling shall not be used for messages of type REQUEST_NO_RETURN,
i.e, the Session ID part of the Request ID field of the SOME/IP header shall be 0x00
for messages of type REQUEST_NO_RETURN if segmentation (SOME/IP-TP) is not re-
quired as per [PRS_SOMEIP_00720].

5.1.1.5 Protocol Version [8 Bit]

The Protocol Version identifies the used SOME/IP Header format (not including the
Payload format).

[PRS_SOMEIP_00052]
Upstream requirements: RS_SOMEIP_00027, RS_SOMEIP_00041

[Protocol Version shall be an 8 Bit field containing the SOME/IP protocol version. |

[PRS_SOMEIP_00050]
Upstream requirements: RS_SOMEIP_00027, RS_SOMEIP_00041

[The Protocol Version shall be increased, for all incompatible changes in the SOME/IP
header. A change is incompatible if a receiver that is based on an older Protocol
Version would not discard the message and process it incorrectly.

Note:
The Protocol Version will not be increased for changes that only affect the payload
format. |

Note:
Message processing and error handling is defined in chapter 4.2.6.3 (error processing
overview)

[PRS_SOMEIP_00051]
Upstream requirements: RS_SOMEIP_00027, RS_SOMEIP_00041
[The Protocol Version shall be 1. |

5.1.1.6 Interface Version [8 Bit]

[PRS_SOMEIP_00053]
Upstream requirements: RS_SOMEIP_00003, RS_SOMEIP_00027

[Interface Version shall be an 8 Bit field that contains the Major Version of the Service
Interface. |

AUTSSAR

5.1.1.7 Message Type [8 Bit]

[PRS_SOMEIP_00055] Message Type field

Upstream requirements: RS_SOMEIP_00008, RS_SOMEIP_00027

[
Number Value Description
0x00 REQUEST A request expecting a response (even
void)
0x01 REQUEST_NO_RETURN A fire&forget request
0x02 NOTIFICATION A request of a notification/event callback
expecting no response
0x80 RESPONSE The response message
0x81 ERROR The response containing an error
0x20 TP_REQUEST A TP request expecting a response (even
void)
0x21 TP_REQUEST_NO_RETURN A TP fire&forget request
0x22 TP_NOTIFICATION A TP request of a notification/event call-
back expecting no response
0xal TP_RESPONSE The TP response message
Oxal TP_ERROR The TP response containing an error
]

[PRS_SOMEIP_00701]
Upstream requirements: RS_SOMEIP_00008, RS_SOMEIP_00027

[Regular request (message type 0x00) shall be answered by a response (message
type 0x80) with return code 0x00 (E_OK) when no error occurred. If error occurs, then
either a response message (message type 0x80) or an error message (message type
0x81) with return code not equal to 0x00 (E_OK) shall be sent. |

Note: Refer [PRS_SOMEIP_00901] and [PRS_SOMEIP_00903], that describe when
messages with message type response and message type error can be sent.

It is also possible to send a request that does not have a response message (mes-
sage type 0x01). For updating values through notification a callback interface exists
(message type 0x02).

[PRS_SOMEIP_00367]
Upstream requirements: RS_SOMEIP_00027, RS_SOMEIP_00051

[The 3rd highest bit of the Message Type (=0x20) shall be called TP-Flag and shall be
set to 1 to signal that the current SOME/IP message is a segment. The other bits of
the Message Type are set as specified in this Section. |

Note:

Segments of the Message Type Request (0x00) have the Message Type (0x20), seg-
ments of the Message Type Response (0x80) have the Message Type (0xa0), and so
on. For details see (Chapter 5.2.1.4)

AUTSSAR

5.1.1.8 Return Code [8 Bit]

[PRS_SOMEIP_00058]

Upstream requirements: RS_SOMEIP_00008, RS_SOMEIP_00027
[The Return Code shall be used to signal whether a request was successfully pro-
cessed. For simplification of the header layout, every message transports the field

Return Code. The allowed Return Codes for specific message types are shown
[PRS_SOMEIP_00757].|

[PRS_SOMEIP_00757] Return Codes
Upstream requirements: RS_SOMEIP_00008, RS_SOMEIP_00027

[
Message Type Allowed Return Codes
REQUEST N/A set to 0x00 (E_OK)
REQUEST_NO_RETURN N/A set to 0x00 (E_OK)
NOTIFICATION N/A set to 0x00 (E_OK)
RESPONSE See Return Codes in [PRS_SOMEIP_00191]
ERROR See Return Codes in [PRS_SOMEIP_00191]. Shall not be
0x00 (E_OK).
]

5.1.1.9 Payload [variable size]

In the payload field the parameters are carried. The serialization of the parameters will
be specified in the following section.

The size of the SOME/IP payload field depends on the transport protocol used.

[PRS_SOMEIP_00382] SOME/IP payload size using UDP
Upstream requirements: RS_SOMEIP_00006, RS_SOMEIP_00010
[With UDP the SOME/IP payload size should be between 0 and 1400 Bytes. Payload

sizes greater than 1400 Bytes should be supported with TCP and segmentation of
payload (see also [PRS_SOMEIP_00730]). |

Note:
The recommendation to 1400 Bytes improves change compatibility on the protocol
stack (e.g. changing to IPv6 or adding security means).

Payload might consists of data elements for events or parameters for methods.

AUTSSAR

5.1.2 Endianness

[PRS_SOMEIP_00368]
Upstream requirements: RS_SOMEIP_00026

[All SOME/IP Header Fields shall be encoded in network byte order (big endian). |

[PRS_SOMEIP_00759]
Upstream requirements: RS_SOMEIP_00026

[The following fields in the payload of SOME/IP messages shall be encoded in network
byte order (big endian):
« the optional length field of extensible structs ([PRS_SOMEIP_00079]),

« the TLV tag ([PRS_SOMEIP_00203]) and the length field ([PRS_SOMEIP_-
00221]) of structured datatypes and arguments with identifier and optional mem-
bers,

+ the optional length field for fixed length strings ([PRS_SOMEIP_00760]),
+ the length field for dynamic length strings ([PRS_SOMEIP_00089]),

 the optional length field for extensible fixed length arrays ([PRS_SOMEIP_-
00944]),

+ the length field of dynamic length arrays ([PRS_SOMEIP_00376]),
» the length field of unions ([PRS_SOMEIP_00126]),
+ and the type field of unions ([PRS_SOMEIP_00129]).

]

[PRS_SOMEIP_00369]
Upstream requirements: RS_SOMEIP_00026

[The byte order of the parameters inside the payload shall be determined by configura-
tion parameter BYTE_ORDER in the allowed values according to the 'Allowed Range
or Values' column in [PRS_SOMEIP_00004]. If not configured explicitly via the config-
uration parameter BYTE_ORDER, the default value defined in [PRS_SOMEIP_00004]
shall be used as the byte order of the parameters. Exceptions are some of the fields
in the payload of SOME/IP messages listed in [PRS_SOMEIP_00759], which shall
be encoded in Network Byte Order regardless of the value of configuration parameter
BYTE_ORDER.|

5.1.3 Serialization of Data Structures

The serialization is based on the parameter list defined by the interface specification.
The interface specification defines the exact position of all data structures in the PDU
and has to consider the memory alignment.

AUTSSAR

Alignment is used to align the beginning of data by inserting padding elements after
the data in order to ensure that the aligned data starts at certain memory addresses.

There are processor architectures which can access data more efficiently (i.e. master)
when they start at addresses which are multiples of a certain number (e.g multiples of
32 Bit).

[PRS_SOMEIP_00611]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00029

[Alignment of data shall be realized by inserting padding elements after the variable
size data if the variable size data is not the last element in the serialized data stream. |

Note:
Please note that the padding value is not defined.

Example: Structure with 5 Members

- Member1: UINT16

- Member2: One dimensional variableSize Array with uint8 elements
- Member3: UINT32

- Member4: UINT64

- Member5: One dimensional variableSize Array with uint8 elements

SOME/IP Header

UINT16 Lengthfield uint8 uint8 uint8 uint8
(16BiIt)
uint8 uint8 uint8 uint8

UINT32 UINT64
UINT64 Lengthfield uint8 uint8
(16Bit)
uint8 uint8 uint8 uint8

64 bit
Table 5.4: SOME/IP Padding Example 01

AUTSSAR

Example: Structure with 5 Members

- Member1: UINT16

- Member2: One dimensional variableSize Array with uint8 elements
- Member3: UINT32

- Member4: UINT64

- Member5: One dimensional variableSize Array with uint8 elements

SOME/IP Header

UINT16 Lengthfield uint8 uint8 uint8
(16Bit)

UINT32 UINT64

UINT64 Lengthfield uint8 uint8
(16Bit)
uint8 uint8 uint8 uint8 uint8 uint8

64 bit
Table 5.5: SOME/IP Padding Example 02

[PRS_SOMEIP_00569]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00029

[Alignment shall always be calculated from start of SOME/IP message. |

[PRS_SOMEIP_00612]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00029

[There shall be no padding behind fixed length data elements to ensure alignment of
the following data. |

Note:
If data behind fixed length data elements shall be padded, this has to be explicitly
considered in the data type definition.

[PRS_SOMEIP_00613]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00029

[The alignment for the data element immediately following a variable length data
element (if it is not the last element in the serialized data stream) shall be deter-
mined by the configuration parameter ALIGNMENT in the allowed range according
to the 'Allowed Range or Values' column in [PRS_SOMEIP_00004]. If not config-
ured explicitly via the configuration parameter ALIGNMENT, the default value defined
in [PRS_SOMEIP_00004] shall be used as alignment. |

AUTSSAR

5.1.3.1 Basic Datatypes

[PRS_SOMEIP_00065] Supported basic Data Types
Upstream requirements: RS_SOMEIP_00030, RS_SOMEIP_00031, RS_SOMEIP_00032

[

Type Description Size [bit] Remark

boolean TRUE/FALSE value 8 FALSE (0), TRUE (1)

uint8 unsigned Integer 8

uint16 unsigned Integer 16

uint32 unsigned Integer 32

uint64 unsigned Integer 64

sint8 signed Integer 8

sint16 signed Integer 16

sint32 signed Integer 32

sint64 signed Integer 64

float32 floating point number 32 IEEE 754 binary32 (Single Preci-
sion)

float64 floating point number 64 IEEE 754 binary64 (Double Preci-
sion)

]

The Byte Order is specified for each parameter by configuration.
[PRS_SOMEIP_00615]
Upstream requirements: RS_SOMEIP_00030, RS_SOMEIP_00031, RS_SOMEIP_00032

[For the evaluation of a Boolean value only the lowest bit of the uint8 is interpreted and
the rest is ignored. |

5.1.3.2 Structured Datatypes (structs)

The serialization of a struct shall be close to the in-memory layout. This means, only
the parameters shall be serialized sequentially into the buffer. Especially for structs it
is important to consider the correct memory alignment.

AUTSSAR

uint32 a
float32 b 1
float32 b 2
float32 b[2] uint32 d
float32e 1
Example: struct 2c¢ | [Struct 2] float32 e 2

float32 e[2]

Figure 5.1: Serialization of Structs

[PRS_SOMEIP_00077]
Upstream requirements: RS_SOMEIP_00033

[The SOME/IP implementation shall not automatically insert dummy/padding data. |

[PRS_SOMEIP_00079]

Upstream requirements: RS_SOMEIP_00033, RS_SOMEIP_00040
[A length field may be inserted in front of the Struct depending on the configuration
parameter SIZE_OF STRUCT_LENGTH_FIELD in the allowed range according to the
'‘Allowed Range or Values' column in [PRS_SOMEIP_00004]. If not configured explic-
itly via the configuration parameter SIZE_OF_STRUCT_LENGTH_FIELD, the default
value defined in [PRS_SOMEIP_00004] shall be used for the length of the length field. |

[PRS_SOMEIP_00370]
Upstream requirements: RS_SOMEIP_00033, RS_SOMEIP_00040

[The length field of the struct shall describe the number of bytes this struct occupies
for SOME/IP transport. |

[PRS_SOMEIP_00712]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00033

[The serialization of structs shall follow the depth-first-traversal of the structured data
type. |

5.1.3.3 Structured Datatypes and Arguments with Identifier and optional mem-
bers ('TLV’)

To achieve enhanced forward and backward compatibility, an additional Data ID can
be added in front of struct members or method arguments. The receiver then can
skip unknown members/arguments, i.e. where the Data ID is unknown. New member-

AUTSSAR

s/arguments can be added at arbitrary positions when Data IDs are transferred in the
serialized byte stream.

Moreover, the usage of Data IDs allows describing structs and methods with optional
members/arguments. Whether a member/argument is optional or not, is defined in the
data definition.

Whether an optional member/argument is actually present in the struct/method or not,
must be determined during runtime. How this is realized depends on the used pro-
gramming language or software platform (e.g. using a special available flag, using a
special method, using pointers which might be null, ...).

[PRS_SOMEIP_00201]

Upstream requirements: RS_SOMEIP_00050
[A Data ID shall be unique within the direct members of a struct or arguments of a
method. |

Note:
Please note that a Data ID does not need to be unique across different structs or
methods.

Note:

Please note that neither the AUTOSAR Methodology nor AUTOSAR CP RTE, nor
AUTOSAR AP ara::com support the definition or usage of optional method arguments
at the time being.

[PRS_SOMEIP_00230]
Upstream requirements: RS_SOMEIP_00050

[A Data ID shall be defined either for all members of the same hierarchical level of a
struct or for none of them. |

[PRS_SOMEIP_00231]
Upstream requirements: RS_SOMEIP_00050
[A Data ID shall be defined either for all arguments of a method or for none of them. |

In addition to the Data ID, a wire type encodes the datatype of the following member.
Data ID and wire type are encoded in a so-called tag.

[PRS_SOMEIP_00202]

Upstream requirements: RS_SOMEIP_00050
[The length of a tag shall be two bytes. |
[PRS_SOMEIP_00203]

Upstream requirements: RS_SOMEIP_00050
[The tag shall consist of

AUTSSAR

* reserved (Bit 7 of the first byte)

 wire type (Bit 6-4 of the first byte)

« Data ID (Bit 3-0 of the first byte and bit 7-0 of the second byte)
J

Refer to the Figure 5.2 for the layout of the tag. Bit 7 is the highest significant bit of a
byte, bit 0 is the lowest significant bit of a byte.

7 0o 7 0 | 7/15/31 0

Data ID (Higher

g Wire Type Sig. Part)

Data ID (Lower Sig. Part) Length Field (8/16/32 bit) Member Data ...

Byten Byten+1 Byten+2...

Figure 5.2: Tag Layout

[PRS_SOMEIP_00204]
Upstream requirements: RS_SOMEIP_00050
[The lower significant part of the Data ID of the member shall be encoded in bits 7-0

of the second byte of the tag. The higher significant part of the Data ID of the member
shall be encoded in bits 3-0 of the first byte. |

Example:
The Data ID of the member is 0x04F2. Then bits 3-0 of the first byte are set to 0x4.
The second byte is set to OxF2.

[PRS_SOMEIP_00205] Wire Type and type of following data
Upstream requirements: RS_SOMEIP_00050

[

Wire Type Following Data

8 Bit Data Base data type

16 Bit Data Base data type

32 Bit Data Base data type

64 Bit Data Base data type
Complex Data Type: Array, Struct,
String, Union with length field of
static size (configured in data defi-
nition)

5 Complex Data Type: Array, Struct,
String, Union with length field size 1
byte (ignore static definition)

6 Complex Data Type: Array, Struct,
String, Union with length field size 2
byte (ignore static definition)

7 Complex Data Type: Array, Struct,
String, Union with length field size 4
byte (ignore static definition)

IWIN[F]|O

AUTSSAR

]

Note:

wire type 4 ensures the compatibility with the current approach where the size of length
fields is statically configured. This approach has the drawback that changing the size
of the length field during evolution of interfaces is always incompatible. Thus, wire
types 5, 6 and 7 allow to encode the size of the used length field in the transferred byte
stream. A serializer may use this, if the statically configured size of the length field is
not sufficient to hold the current size of the data struct.

[PRS_SOMEIP_00206]
Upstream requirements: RS_SOMEIP_00050

[On reception side, if the wire type is set to 5, 6 or 7, the size of the length field defined
in the data definition shall be ignored and the size of the length field shall be selected
according to the wire type. |

If a Data ID is configured for a member of a struct/argument of a method, a tag shall
be inserted in the serialized byte stream.

Note:
regarding the existence of Data IDs, refer to [PRS_SOMEIP_00230] and
[PRS_SOMEIP_00231].

[PRS_SOMEIP_00003] Selection of to-be-used wire type and length of the Length
field

Upstream requirements: RS_SOMEIP_00050

[On transmission side, the selection of the to-be-used wire type and the corresponding
length of the length field shall depend on the configuration parameter IS_DYNAMIC_
LENGTH_FIELD_SIZE. If the configuration parameter |IS_DYNAMIC_LENGTH_
FIELD_SIZE is set to TRUE then a wire type of 5, 6 or 7 and a corresponding length
for the length field (i.e., 1, 2, or 4 Bytes) shall be used depending on the actual
size of the member data If the configuration parameter IS_DYNAMIC LENGTH
FIELD_SIZE is set to FALSE, then a wire type of 4 shall be used and the length
of the length field shall be selected according to [PRS_SOMEIP_00001](SIZE_
OF_ARRAY_LENGTH_FIELD),[PRS_SOMEIP_00002](SIZE_OF_STRING_
LENGTH_FIELD),[PRS_SOMEIP_00079](IS_DYNAMIC_LENGTH_FIELD_SIZE)
and [PRS_SOMEIP_00121](SIZE_OF_UNION_LENGTH_FIELD). If not configured
explicitly via the configuration parameter IS_DYNAMIC_LENGTH_FIELD_SIZE, the
default value defined in [PRS_SOMEIP_00004] shall be used for the selection of the
to-be-used wire type and the corresponding length of the length field. |

[PRS_SOMEIP_00212]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00050

[

AUTSSAR

If the datatype of the serialized member/argument is a basic datatype (wire types 0-3)
and a Data ID is configured, the tag shall be inserted directly in front of the member/ar-
gument. No length field shall be inserted into the serialized stream. |

[PRS_SOMEIP_00213]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00050

[If the datatype of the serialized member/argument is not a basic datatype (wire type
4-7) and a Data ID is configured, the tag shall be inserted in front of the length field. |

[PRS_SOMEIP_00214]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00050

[If the datatype of the serialized member/argument is not a basic datatype and a Data
ID is configured, a length field shall always be inserted in front of the member/argu-
ment. |

Rationale:
The length field is required for the de-serialization of known members/arguments and
to skip unknown members/arguments during deserialization.

[PRS_SOMEIP_00221]
Upstream requirements: RS_SOMEIP_00040, RS_SOMEIP_00050

[The length field shall always contain the length up to the next tag of the struct. |

[PRS_SOMEIP_00208]
Upstream requirements: RS_SOMEIP_00040, RS_SOMEIP_00050
[If the members/arguments itself are of type struct, there shall be exactly one length

field. The length field is added according to requirements [PRS_SOMEIP_00079] and
[PRS_SOMEIP_00370].|

[PRS_SOMEIP_00225]

Upstream requirements: RS_SOMEIP_00050
[If the members/arguments itself are of type dynamic length string, there shall
be exactly one length field. The length field is added according to require-

ments [PRS_SOMEIP_00089], [PRS_SOMEIP_00090], [PRS_SOMEIP_00002] and
[PRS_SOMEIP_00095].|

[PRS_SOMEIP_00224]
Upstream requirements: RS_SOMEIP_00050

[If the members/arguments itself are of type fixed length string, there shall be exactly
one length field corresponding to dynamic length strings. |

Note:
when serialized without tag, fixed length strings do not have a length field. For the

AUTSSAR

serialization with tag, a length field is also required for fixed length strings in the same
way as for dynamic length strings.

[PRS_SOMEIP_00227]
Upstream requirements: RS_SOMEIP_00050

[If the members/arguments itself are of type dynamic length array, there shall be
exactly one length field. The length field is added according to requirements
[PRS_SOMEIP_00376], [PRS_SOMEIP_00001], [PRS_SOMEIP_00377] with a size
of 8, 16 or 32 bit. |

[PRS_SOMEIP_00226]
Upstream requirements: RS_SOMEIP_00050

[If the members/arguments itself are of type fixed length array, there shall be exactly
one length field corresponding to dynamic length arrays. |

[PRS_SOMEIP_00228]
Upstream requirements: RS_SOMEIP_00050

[If the members/arguments itself are of type union, there shall be exactly one length
field. The length field is added according to requirements [PRS_SOMEIP_00119],
[PRS_SOMEIP_00121] with a size of 8,16 or 32 bit. |

[PRS_SOMEIP_00229]
Upstream requirements: RS_SOMEIP_00050

[If the members/arguments itself are of type union, the length field shall cover the size
of the type selector field, data and padding bytes. |

Note:

For the serialization without tags, the length field of unions does not cover the type
selector field (see [PRS_SOMEIP_00126]). For the serialization with tags, it is required
that the complete content of the serialized union is covered by the length field.

[PRS_SOMEIP_00210]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00050

[A member of a non-extensible (standard) struct which is of type extensible struct, shall
be serialized according to the requirements for extensible structs. |

[PRS_SOMEIP_00211]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00050

[A member of an extensible struct which is of type non-extensible (standard) struct,
shall be serialized according to the requirements for standard structs. |

AUTSSAR

[PRS_SOMEIP_00222]
Upstream requirements: RS_SOMEIP_00029, RS_SOMEIP_00050

[The alignment of variable length data according to [PRS_SOMEIP_00611] shall al-
ways be 8 bit. |

Rationale:

When alignment greater 8 bits is used, the serializer may add padding bytes after
variable length data. The padding bytes are not covered by the length field. If the
receiver does not know the Data ID of the member, it also does not know that it is
variable length data and that there might be padding bytes.

[PRS_SOMEIP_00241]
Upstream requirements: RS_SOMEIP_00050

[If TLV is used the size of the length field for arrays, structs, unions and strings shall
be greater than 0. |

Rationale:

The TLV serialization requires the usage of length fields. When wire type 4 is used, the
length field size must be statically configured. When wire types 5-7 (dynamic length
field size) are used, the static configuration of the length field size must also be present
since not all length fields are preceded by a tag, e.g. structs contained in an array or
the top-level struct contained in a SOME/IP event. Not using length fields here would
result in ambiguities.

[PRS_SOMEIP_00242]
Upstream requirements: RS_SOMEIP_00050

[The configured size of the length field for arrays, structs, unions and strings shall be
identical. |

Rationale:
In case of an unknown member or argument, the deserializer cannot determine the
actual datatype of the member/argument when wire type 4 is used.

[PRS_SOMEIP_00243]
Upstream requirements: RS_SOMEIP_00050

[The size of the length field shall be configured for the top-level struct or method re-
quest/response. All arrays, unions, structs and strings used within a struct or all ar-
guments within a method shall inherit the size of the length field from the top-level
definition. |

Rationale:

In case of an unknown member or argument, the deserializer needs to know the size of
the length field when wire type 4 is used. The easiest way is that the size of the length
field is then only defined at the top-level element.

AUTSSAR

[PRS_SOMEIP_00244]
Upstream requirements: RS_SOMEIP_00050

[Overriding the size of the length field at a subordinate array, union, struct or string or
at an individual method argument shall not be allowed. |

[PRS_SOMEIP_00216]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00050

[The serializer shall not include optional members/arguments in the serialized byte
stream if they are marked as not available. |

[PRS_SOMEIP_00220]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00050

[If the serialization with tags will be introduced for an existing service interface where
tags have not been used, the major interface version shall be incremented and used to
indicate this. |

Note:

The receiver only handles received messages that match all configured val-
ues of Message ID, Protocol Version, Interface Version and Message-Type (see
[PRS_SOMEIP_00195]).

AUTSSAR

Example for serializing structures with tags

struct myStruct

unit8 a /* Data

uint8 b /* Data

struct ¢ /* Data
uint8 cl
uint8 c2
struct c3

uint8 31

struct c32

uint8
uint8[]
uint8

uint8 ¢33
uint8[]c4
uint8 c5

uint8 d /* Data

struct e /* Data
uint8 el
uint8 e2

uint8 £ /* Data

uint8 g /* Data

ID
ID

c321
c322
c323

ID =
ID =

ID =

0 */
1 */

=2 %/

myStruct length
a_tag = 0x0000

a

b_tag = 0x0001

b

c_tag = 0x4002

c_length

cl

c3 _length

c3l

c32_length

c321

c322 length
q c322

c323

c33

c4_length

c

cS

d tag = 0x0003

d

e _tag = 0x4004

e_length
[;[el
e2

£ tag = 0x0005
£
g_tag = 0x0006
g

Figure 5.3: Example 01 for serializing structures with tags

AUTSSAR

struct myStruct

unit8 a
uint8 b
struct c

uint8 «cl
uint8 c2
struct c3
uint8 c¢31 /* Data ID =
struct c¢32 /* Data ID =

I
N o
* *
~~

uint8

c321

uint8[] c322

uint8

c323

uint8

c33 /* Data ID = 1 */

uint8[]c4
uint8 c5
uint8 d
struct e
uint8 el
uint8 e2
uint8 £
uint8 g

myStruct length
a
b

c_length

cl

c2

c3_length
c31_tag = 0x0000
c31l

c32_tag = 0x4002
c32_length
c321

c322 length

r{ c322

c323
c33_tag = 0x0001

c33

c4_length
c4d

c5
d

e length
el
e2

£
g

Figure 5.4: Example 02 for serializing structures with tags

struct myStruct

unit8 a
uint8 b
struct c

uint8 «cl
uint8 c2
struct c3
uint8 c31
struct c32
uint8 c321 /* Data ID = 2 */
uint8[] ¢322 /* Data ID = 1 */
uint8 c323 /* Data ID = 0 */
uint8 ¢33
uint8[]c4
uint8 c5
uint8 d
struct e
uint8 el
uint8 e2
uint8 f
uint8 g

myStruct_length
a

b

c_length

cl

c2

c3_length

c31
c32_length
c321_tag = 0x0002
c321

€322_tag = 0x4001

e c322 length

c322

¢323_tag = 0x0000
c323
c33
N c4_length
c4

c5

d

e _length
el

e2

£

g

Figure 5.5: Example 03 for serializing structures with tags

AUTSSAR

Example for serialization of arguments with tags

|

a_ tag d tag
a d

b _tag e_tag
b e
c_tag

Figure 5.6: Example for serialization of arguments with tags

Note:

In the example Figure 5.6 there is no additional length field between the end of the
SOME/IP header and the first tag. This would be redundant to the message length
field in the SOME/IP header.

5.1.3.4 Strings
Following requirements are common for both fixed length and dynamic length strings.

[PRS_SOMEIP_00372]
Upstream requirements: RS_SOMEIP_00038

[Unicode encoding shall be determined by configuration parameter STRING_EN-
CODING:.Different unicode encodings shall be supported according to the 'Allowed
Range or Values' column in [PRS_SOMEIP_00004].If not configured explicitly via
the configuration parameter STRING_ENCODING, the default value defined in
[PRS_SOMEIP_00004] shall be used as the string encoding. |

[PRS_SOMEIP_00948]
Upstream requirements: RS_SOMEIP_00038

[UTF-8 strings shall be zero terminated with a "\0" character. This means they shall
end with a 0x00 Byte. |

AUTSSAR

[PRS_SOMEIP_00084]
Upstream requirements: RS_SOMEIP_00038

[UTF-16LE and UTF-16BE strings shall be zero terminated with a "\0" character. This
means they shall end with (at least) two 0x00 Bytes. |

[PRS_SOMEIP_00085]
Upstream requirements: RS_SOMEIP_00038

[UTF-16LE and UTF-16BE strings shall have an even length. |

[PRS_SOMEIP_00086]
Upstream requirements: RS_SOMEIP_00038

[UTF-16LE and UTF-16BE strings having an odd length the last byte shall be ignored. |

[PRS_SOMEIP_00087]
Upstream requirements: RS_SOMEIP_00038

[All strings shall always start with a Byte Order Mark (BOM) in the first three (UTF-8)
or two (UTF-16) bytes of the to be serialized array containing the string. The BOM shall
be included in fixed-length-strings as well as dynamic-length strings. BOM allows the
possibility to detect the used encoding. |

5.1.3.4.1 Strings (fixed length)

[PRS_SOMEIP_00760]
Upstream requirements: RS_SOMEIP_00038

[Fixed length strings may have a length field that is added in front of the
string (for the sake of backwards compatible extension).The length of this length
field shall be determined by the configuration parameter SIZE_OF_STRING_
LENGTH_FIELD in the allowed range according to the 'Allowed Range or Val-
ues' column in [PRS_SOMEIP_00004].If not configured explicitly via the configu-
ration parameter SIZE_OF_STRING_LENGTH_FIELD, the default value defined in
[PRS_SOMEIP_00004] shall be used. |

[PRS_SOMEIP_00373]

Upstream requirements: RS_SOMEIP_00038
[Strings shall be terminated with a "\0"-character despite having a fixed length. |
[PRS_SOMEIP_00374]

Upstream requirements: RS_SOMEIP_00038

[The length of the string (this includes the "\0") in Bytes has to be specified in the data
type definition. |

AUTSSAR

5.1.3.4.2 Strings (dynamic length)

[PRS_SOMEIP_00089]
Upstream requirements: RS_SOMEIP_00039

[Strings with dynamic length shall start with a length field. The length is measured in
Bytes. |

[PRS_SOMEIP_00090]
Upstream requirements: RS_SOMEIP_00039

[The length field is placed before the BOM, and the BOM is included in the length. |

[PRS_SOMEIP_00091]
Upstream requirements: RS_SOMEIP_00039

[String are terminated with a "\0". |

Note:
The maximum number of bytes of the string (including termination with "\0") shall also
be derived from the data type definition.

[PRS_SOMEIP_00092]
Upstream requirements: RS_SOMEIP_00039

[[PRS_SOMEIP_00084], [PRS_SOMEIP_00085] and [PRS_SOMEIP_00086] shall
also be valid for strings with dynamic length. |

[PRS_SOMEIP_00002] Length field for Dynamic length strings
Upstream requirements: RS_SOMEIP_00039, RS_SOMEIP_00040

[Dynamic length strings shall have a length field that is added in front of the string. The
length of this length field shall be determined by the configuration parameter SIZE_
OF_STRING_LENGTH_FIELD in the allowed range according to the 'Allowed Range
or Values' column in [PRS_SOMEIP_00004]. If not configured explicitly via the con-
figuration parameter SIZE_OF_STRING_LENGTH_FIELD, the default value defined in
[PRS_SOMEIP_00004] shall be used. |

[PRS_SOMEIP_00095]
Upstream requirements: RS_SOMEIP_00039

[The length of the Strings length field is not considered in the value of the length field;
i.e. the length field does not count itself. |

AUTSSAR

5.1.3.5 Arrays
5.1.3.5.1 Arrays (fixed length)

Fixed length arrays are easier for use in very small devices. Dynamic length arrays
might need more resources on the ECU using them.

[PRS_SOMEIP_00944]
Upstream requirements: RS_SOMEIP_00036

[Fixed length arrays may have a length field that is added in front of the array
(for the sake of backwards compatible extension). The length of this length field
shall be determined by the configuration parameter SIZE_OF_ARRAY_LENGTH_
FIELD in the allowed range according to the 'Allowed Range or Values' col-
umn in [PRS_SOMEIP_00004]. If not configured explicitly via the configura-
tion parameter SIZE_OF_ARRAY_LENGTH_FIELD, the default value defined in
[PRS_SOMEIP_00004] shall be used. |

Note: Overruns of fixed-size arrays can only be detected with a length field.

One-dimensional

[PRS_SOMEIP_00099]
Upstream requirements: RS_SOMEIP_00035, RS_SOMEIP_00036

[The one-dimensional arrays with fixed length "n" shall carry exactly "n" elements
of the same type. An optional length field may precede the first element (see
[PRS_SOMEIP_00944]. |

Note: If a length field is defined for a specific fixed-length array, then this array is rep-
resented on the bus as a composite of the length field and the collection of n elements
of the same data type.

The layout of [PRS_SOMEIP_00099] is shown in Figure 5.7.

AUTSSAR

\ 4

<
<«

1 1
1 1
i Static Array [n] i
1 1 1 1
: : : ‘
1| |LengthField [! |Element_1 | ! |Element_2 | |Element_3 Element_n]
i (optional) i i eee i
i i i i
1 1 1 !
1 1 1 1
1 1 1 1
| i i i
] i i]
1 1 . 1 1
! I element size e !]
1 1 1
i H n*e E
1 1
1 1
1 1
1]
1 1
; d

LengthField + n*e

a
\ 4

Figure 5.7: One-dimensional array (fixed length)

Multidimensional

[PRS_SOMEIP_00101]

Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00035, RS_SOMEIP_00036
[The serialization of multidimensional arrays follows the in-memory layout of multidi-
mensional arrays in the C/C++ programming language (row-major order). |

Note: If a length field is defined for a specific multidimensional fixed-length array, then
this array is represented on the bus as a composite of a length field and n collections
consisting each of a length field and m elements of the same data type.

The layout of [PRS_SOMEIP_00101] is shown in Figure 5.8.

AUTSSAR

a
A\

n*(LengthField + m*e)

a

\ 4

1 1
1 I
i Static Array [n][m] i
1 1 1 1
: 1 1 :
i||LengthField i| Element_1 i | Element_2 Element_n i
' (optional) i ! : E !
1 1 | | LengthField |1 1 1 | | LengthField 1
H ! (optgional) ! El'l ! Ellm | | tontionan) E2,1 Ez,m oo !
1 1 1 | see 1 eee 1
1 1 1 1 1 1
I 1 1 1 1 1
I 1 1 1 1 1
1 1 1 1 1 1
I 1 I I 1 !
1 1 1 1 1 1
1 1 1 1 1 :
i i i € ! i i
1 1 1 1 1
I 1 1 1 1
1 1 C 1 1
: - :
1 I
1 1
I 1
1]
1 1

LengthField + n*(LengthField + m*e)

a
\ 4

Figure 5.8: Multidimensional array (fixed length)

5.1.3.5.2 Dynamic Length Arrays

[PRS_SOMEIP_00375]
Upstream requirements: RS_SOMEIP_00037

[The layout of arrays with dynamic length shall be based on the layout of fixed length
arrays. |
[PRS_SOMEIP_00376]
Upstream requirements: RS_SOMEIP_00037
[A length field at the beginning of a dynamic length array shall be used to specify the
length of the array in Bytes. |
[PRS_SOMEIP_00377]
Upstream requirements: RS_SOMEIP_00037
[The length does not include the size of the length field. |
Note:

If the length of the length field is set to 0 Bits, the number of elements in the array has
to be fixed; thus, being an array with fixed length.

The layout of dynamic arrays is shown in Figure 5.9 and Figure 5.10.

AUTSSAR

Length n Element_1 Element_2 Element_3 Element_n

32 Bit element size e

n [Bytes]

&
<

) 4

Figure 5.9: One-dimensional array (dynamic length)

In the one-dimensional array one length field is used, which carries the number of bytes
used for the array.

The number of static length elements can be easily calculated by dividing by the size
of an element.

In the case of dynamical length elements the number of elements cannot be calculated,
but the elements must be parsed sequentially.

Figure 5.10 shows the structure of a Multidimensional Array of dynamic length.

))))
| Length n [if Element_a[1][j...k_1] | Element_a[2][j...k_2] 5
| | 1 |) |
i -1 [Evq || Eo2 Evea | [i]] -2 E Eiq1 || Ev2 Eik o 3"_
: : [XN] : h [XX] :
]))]]
])) []
])) !]
]] [}] [}]
]) T) v]
: : E L_1 [Bytes] : E L_2 [Bytes] :
| 32Bit | 32Bit te—= > 32 Bit 1e—= >
n [Bytes]

o
<

v

Figure 5.10: Multidimensional array (dynamic length)

[PRS_SOMEIP_00114]
Upstream requirements: RS_SOMEIP_00037

[In multidimensional arrays every sub array of different dimensions shall have its own
length field. |

AUTSSAR

If static buffer size allocation is required, the data type definition shall define the maxi-
mum length of each dimension.

Rationale: When measuring the length in Bytes, complex multi-dimensional arrays can
be skipped over in deserialization.

SOME/IP also supports that different length for columns and different length for rows
in the same dimension. See k_1 and k_2 in Figure 5.10. A length indicator needs to
be present in front of every dynamic length array. This applies for both outer and all
inner/nested arrays.

[PRS_SOMEIP_00001] Length field for Dynamic length arrays
Upstream requirements: RS_SOMEIP_00037, RS_SOMEIP_00040

[Dynamic length arrays shall have a length field that is added in front of the array. The
length of this length field shall be determined by the configuration parameter SIZE_
OF _ARRAY_LENGTH_FIELD in the allowed range according to the 'Allowed Range
or Values' column in [PRS_SOMEIP_00004]. If not configured explicitly via the con-
figuration parameter SIZE_OF_ARRAY_LENGTH_FIELD, the default value defined in
[PRS_SOMEIP_00004] shall be used. |

5.1.3.6 Enumeration

[PRS_SOMEIP_00705]
Upstream requirements: RS_SOMEIP_00030, RS_SOMEIP_00033

[Enumerations are not considered in SOME/IP. Enumerations shall be transmitted as
unsigned integer datatypes. |

5.1.3.7 Bitfield

[PRS_SOMEIP_00300]
Upstream requirements: RS_SOMEIP_00033, RS_SOMEIP_00030

[Bitfields shall be transported as unsigned datatypes uint8/uint16/uint32/uint64. |

The data type definition will be able to define the name and values of each bit.

5.1.3.8 Union / Variant

There are use cases for defining data as unions on the network where the payload can
be of different data types.

AUTSSAR

A union (also called variant) is such a parameter that can contain different types of
data. For example, if one defines a union of type uint8 and type uint16, the union shall
carry data which are a uint8 or a uint16.

Which data type will be transmitted in the payload can only be decided during execu-
tion. In this case, however, it is necessary to not only send the data itself but add an
information about the applicable data type as a form of "meta-data" to the transmission.

By the means of the attached meta-data the sender can identify the applicable data
type of the union and the receiver can accordingly access the data properly.

[PRS_SOMEIP_00118]
Upstream requirements: RS_SOMEIP_00034
[A union shall be used to transport data with alternative data types over the network. |

[PRS_SOMEIP_00119] Union (length field, type selector field and payload)
Upstream requirements: RS_SOMEIP_00034

[

Length field [32, 16, 8, 0 bit]

Type selector field [32, 16, 8 bit]

Payload including padding [length of padding = value of length field - actual payload length]
J

[PRS_SOMEIP_00126]
Upstream requirements: RS_SOMEIP_00034

[The length field shall define the size of the payload and padding in bytes and does
not include the size of the length field and type selector field. |

Note:
The padding can be used to align following data in the serialized data stream if config-
ured accordingly.

[PRS_SOMEIP_00121]
Upstream requirements: RS_SOMEIP_00034

[The length of the length field shall be defined by configuration parameter SIZE_OF _
UNION_LENGTH_FIELD and shall be in the allowed range according to the 'Allowed
Range or Values' column in [PRS_SOMEIP_00004].If not configured explicitly via the
configuration parameter SIZE_OF_UNION_LENGTH_FIELD ,the default value defined
in [PRS_SOMEIP_00004] shall be used as length of the length field that is added in
front of the union. |

AUTSSAR

[PRS_SOMEIP_00122]
Upstream requirements: RS_SOMEIP_00034

[A length of the length field of 0 Bit means that no length field will be written to the
PDU. |

[PRS_SOMEIP_00123]
Upstream requirements: RS_SOMEIP_00034

[If the length of the length field is 0 Bit, all types in the union shall be of the same
length. |

[PRS_SOMEIP_00129]
Upstream requirements: RS_SOMEIP_00034

[The type selector field shall specify the payload type of the payload. |

[PRS_SOMEIP_00127]

Upstream requirements: RS_SOMEIP_00034
[The length of the type selector field shall be defined by configuration parameter SIZE_
OF_UNION_TYPE_SELECTOR_FIELD and shall be in the allowed range according to
the 'Allowed Range or Values' column in [PRS_SOMEIP_00004]. If not configured ex-
plicitly via the configuration parameter SIZE_OF_UNION_TYPE_SELECTOR_FIELD ,
the default value defined in [PRS_SOMEIP_00004] shall be used as length of the type
selector field that is added in front of the union. |

[PRS_SOMEIP_00906]

Upstream requirements: RS_SOMEIP_00034
[Possible values of the type selector field shall be defined by the configuration for each
union separately. |
[PRS_SOMEIP_00907]

Upstream requirements: RS_SOMEIP_00024, RS_SOMEIP_00034
[The value 0 of the type selector field shall be reserved for the NULL type. In this case
the length of the payload shall be 0. |

Note:
This denotes an empty union.

[PRS_SOMEIP_00130]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00034
[The payload is serialized depending on the type in the type selector field. |
In the following example a length of the length field is specified as 32 Bits. The union

shall support a uint8 and a uint16 as data. Both are padded to the 32 bit boundary
(length=4 Bytes).

AUTSSAR

A uint8 will be serialized like shown in Table 5.6.

Length = 4 Bytes
Type = 1
uint8 | Padding 0x00 | Padding 0x00 | Padding 0x00

Table 5.6: Example: uint8

A uint16 will be serialized like shown in Table 5.7.

Length = 4 Bytes
Type =2
uint16 | Padding 0x00 | Padding 0x00

Table 5.7: Example: uint16

5.1.4 De-serialization of Data Structures

The de-serialization process need to inspect the payload (serialized byte stream) of
the received SOME/IP message. Thereby the de-serialization process need to identify
the elements within the received byte stream and compare the identified elements with
the configured data type(s) of the corresponding service interface (please note, the
data type is derived from the interface specification, which defines the exact position
of all data structures in a SOME/IP message). The possibility to identify elements in a
dedicated SOME/IP serialized byte stream depend on the interface specification and
the serialization properties. The serialization properties define among others:

« if structured data types are serialized with a length field in front

« if tag-length-value are used for encoding, which include data ids and the possi-
bility specify optional data members

The de-serialization process of a SOME/IP messages need to consider the received
message length and deal with a message length which may be larger than expected
according the interface specification. This is needed to support backward compatible
communication, where ECUs of a heterogeneous in-vehicle network (re-used ECUs
and new developed ECUs) communicate via SOME/IP serialized byte streams. Note
that the feature of "complementary default value during reception of less data than
expected" is no longer supported by AUTOSAR. The subsequential chapters describe
the expected behavior of the de-serialization process.

5.1.4.1 Structured DataTypes (structs)

If more data than expected was received, then the de-serialization process should ac-
cept all received elements of the SOME/IP message payload which correspond to the
configured service interface data type and skip the unknown identified elements of the
de-serialized SOME/IP message payload. If less data than expected was received,

AUTSSAR

then the de-serialization should be aborted and the message shall be treated as mal-
formed.

[PRS_SOMEIP_00371]
Upstream requirements: RS_SOMEIP_00033

[If the length is greater than the length of the struct as specified in the data type defi-
nition only the bytes specified in the data type shall be interpreted and the other bytes
shall be skipped based on the length field. |

[PRS_SOMEIP_00900]
Upstream requirements: RS_SOMEIP_00033

[If the length is less than the sum of the lengths of all struct members, then the dese-
rialization shall be aborted and the message shall be treated as malformed. |

5.1.4.2 Structured Datatypes and Arguments with Identifier and optional mem-
bers ('TLV’)

If the de-serialization process detect an unknown optional member according the con-
figured service interface data type, then the de-serialization process should ignore this
member. If the de-serialization process detect a missing member/argument, which is
required according the configured service interface data type, then the SOME/IP mes-
sage is treated as malformed.

[PRS_SOMEIP_00223]
Upstream requirements: RS_SOMEIP_00050

[The deserializer shall ignore optional members/arguments which are not available in
the serialized byte stream. |

[PRS_SOMEIP_00217]
Upstream requirements: RS_SOMEIP_00050

[If the deserializer reads an unknown Data ID (i.e. not contained in its data definition),
it shall skip the unknown member/argument by using the information of the wire type
and length field. |

[PRS_SOMEIP_00209] Behaviour if a required member/argument is missing in
the received SOME/IP message

Upstream requirements: RS_SOMEIP_00050
[If the deserializer cannot find a required (i.e. non-optional) member/argument defined

in its data definition in the serialized byte stream, the deserialization shall be aborted
and the message shall be treated as malformed. |

AUTSSAR

[PRS_SOMEIP_00384] Behaviour if a required member/argument is found multi-
ple times in the received SOME/IP message

Upstream requirements: RS_SOMEIP_00050

[If the deserializer finds a member/argument defined in its data definition in the se-
rialized byte stream multiple times, then the deserialization shall be aborted and the
message shall be treated as malformed. |

[PRS_SOMEIP_00383] Behaviour if a required member/argument is found with
invalid wire type in the received SOME/IP message

Upstream requirements: RS_SOMEIP_00050

[If the deserializer finds a required (i.e. non-optional) member/argument defined in its
data definition in the serialized byte stream with invalid wire type, then the deserializa-
tion shall be aborted and the message shall be treated as malformed. |

5.1.4.3 Strings

Strings could be configured with a fixed length or dynamic length. Independent a string
has fixed length or dynamic length configured, a serialized string, which is received
with a larger length than expected according the configured service interface data type,
should be treated as malformed. For strings with fixed length and received with a length
which is less than expected and this string is correctly terminated, the string should be
processed. Otherwise the message shall be treated as malformed.

5.1.4.3.1 Strings (fixed length)

[PRS_SOMEIP_00911]
Upstream requirements: RS_SOMEIP_00038
[If the length of a string with fixed length is greater than expected (expectation shall

be based on the data type definition), the deserialization shall be aborted and the
message shall be treated as malformed. |

[PRS_SOMEIP_00912]
Upstream requirements: RS_SOMEIP_00038
[If the length of a string with fixed length is less than expected (expectation shall be

based on the data type definition) and it is correctly terminated using "\0", it shall be
accepted. |

AUTSSAR

[PRS_SOMEIP_00913]
Upstream requirements: RS_SOMEIP_00038

[If the length of a string with fixed length is less than expected (expectation shall be
based on the data type definition) and it is not correctly terminated using "\0", the
deserialization shall be aborted and the message shall be treated as malformed. |

Instead of transferring application strings as SOME/IP strings with BOM and "\0" ter-
mination, strings can also be transported as plain dynamic length arrays without BOM
and "\0" termination (see chapter 5.1.3.5.2). Please note that this requires the full string
handling (e.g. endianness conversion) to be done in the applications.

5.1.4.3.2 Strings (dynamic length)

[PRS_SOMEIP_00914]
Upstream requirements: RS_SOMEIP_00039

[If the length of a string with variable length is greater than expected (expectation
shall be based on the data type definition), the deserialization shall be aborted and the
message shall be treated as malformed. |

5.1.4.4 Arrays

Arrays could be configured with a fixed length or dynamic length. Independent if an
array has fixed length or dynamic length configured, if a serialized array was received
with a larger length than expected according the configured service interface data type,
then all known elements according the configured service interface data type should
be considered and the remaining elements should be skipped by the de-serialization
process.

For arrays with fixed length and the de-serialization process detect a missing ele-
ment, which is required according the configured service interface data type, then the
SOME/IP message is treated as malformed.

5.1.4.41 Arrays (fixed length)

[PRS_SOMEIP_00917]
Upstream requirements: RS_SOMEIP_00036
[If the length of a fixed length array is greater than expected (expectation shall be

based on the data type definition) only the elements specified in the data type shall be
interpreted and the other bytes shall be skipped based on the length field. |

AUTSSAR

[PRS_SOMEIP_00207] Behaviour if a required element is missing in the received
SOME/IP message

Upstream requirements: RS_SOMEIP_00036

[If the length of a fixed length array is less than expected (expectation shall be based
on the data type definition) and no substitution for the missing data can be provided
locally by the receiver, the deserialization shall be aborted and the message shall be
treated as malformed. |

Note: Overruns of fixed-size arrays can only be detected with a length field.

5.1.4.4.2 Arrays (dynamic length)

[PRS_SOMEIP_00919]
Upstream requirements: RS_SOMEIP_00037

[If the length of a variable length array is greater than expected (expectation shall be
based on the data type definition) only the elements specified in the data type shall be
interpreted and the other bytes shall be skipped based on the length field. |

5.1.4.5 Enumeration

No further requirements considered for the deserialization.

5.1.4.6 Bitfield

No further requirements considered for the deserialization.

5.1.4.7 Union / Variant

[PRS_SOMEIP_00915]
Upstream requirements: RS_SOMEIP_00034

[If the length of a union is greater than expected (expectation shall be based on the
data type definition) only the bytes specified in the data type shall be interpreted and
the other bytes shall be skipped based on the length field. |

[PRS_SOMEIP_00916]
Upstream requirements: RS_SOMEIP_00034

[If the length of a union is less than expected (expectation shall be based on the
data type definition) it shall depend on the inner data type whether valid data can be
deserialized or the deserialization shall be aborted and the message shall be treated
as malformed. |

AUTSSAR

5.2 Specification of SOME/IP Protocol

This chapter describes the Remote Procedure Call(RPC), Event Notifications and Error
Handling of SOME!/IP.

5.2.1 Transport Protocol Bindings

In order to transport SOME/IP messages different transport protocols may be used.
SOME!/IP currently supports UDP and TCP. Their bindings are explained in the follow-
ing sections, while Chapter 7 discusses which transport protocol to choose.

[PRS_SOMEIP_00138]
Upstream requirements: RS_SOMEIP_00015
[If a server runs different instances of the same service, messages belonging to differ-

ent service instances shall be mapped to the service instance by the transport protocol
port on the server side. |

For details of see Chapter 5.2.1.3

[PRS_SOMEIP_00535]
Upstream requirements: RS_SOMEIP_00010

[All Transport Protocol Bindings shall support transporting more than one SOME/IP
message in a Transport Layer PDU (i.e. UDP packet or TCP segment). |

[PRS_SOMEIP_00142]
Upstream requirements: RS_SOMEIP_00010

[The receiving SOME/IP implementation shall be capable of receiving unaligned
SOME/IP messages transported by UDP or TCP. |

Rationale:

When transporting multiple SOME/IP payloads in UDP or TCP the alignment of the
payloads can be only guaranteed, if the length of every payloads is a multiple of the
alignment size (e.g. 32 bits).

[PRS_SOMEIP_00140]
Upstream requirements: RS_SOMEIP_00010

[The header format allows transporting more than one SOME/IP message in a single
packet. The SOME/IP implementation shall identify the end of a SOME/IP message by
means of the SOME/IP length field. Based on the packet length field, SOME/IP shall
determine if there are additional SOME/IP messages in the packet. This shall apply for
UDP and TCP transport. |

AUTSSAR

[PRS_SOMEIP_00141]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027

[Each SOME/IP payload shall have its own SOME/IP header. |
[PRS_SOMEIP_00940]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027

[One Service-Instance can use the following setup for its communication of all the
methods, events, and notifications:

 up to one TCP connection
 up to one UDP unicast connection

 up to one UDP multicast connection

5.2.1.1 UDP Binding

[PRS_SOMEIP_00139]
Upstream requirements: RS_SOMEIP_00010

[The UDP binding of SOME/IP shall be achieved by transporting SOME/IP messages
in UDP packets. |

[PRS_SOMEIP_00137]
Upstream requirements: RS_SOMEIP_00010

[SOME/IP protocol shall not restrict the usage of UDP fragmentation. |

[PRS_SOMEIP_00943]
Upstream requirements: RS_SOMEIP_00010
[The client and server shall use a single UDP unicast connection for all methods,

events, and notifications of a Service-Instance which are configured to be communi-
cated using UDP unicast. |

[PRS_SOMEIP_00942]
Upstream requirements: RS_SOMEIP_00010

[The client and server shall use a single UDP multicast address combination ("connec-
tion") per eventgroup, which is configured to be communicated using UDP multicast.

If the same multicast address is shared between different service instances of the same
service, then the port number of the UDP multicast address combination used for each
of these service instances shall be different, at least on server side. |

AUTSSAR

Note: Please refer to [PRS_SOMEIP_00163] and the rational below [PRS_SOMEIP_
00163] for detailed information.

5.2.1.2 TCP Binding

The TCP binding of SOME/IP is heavily based on the UDP binding. In contrast to the
UDP binding, the TCP binding allows much bigger SOME/IP messages and uses the
robustness features of TCP (coping with loss, reorder, duplication, etc.).

In order to lower latency and reaction time, Nagle’s algorithm should be turned off
(TCP_NODELAY).

[PRS_SOMEIP_00706]

Upstream requirements: RS_SOMEIP_00010
[When the TCP connection is lost, pending requests shall be handled if a timeout
occurred. |
Since TCP handles reliability, additional means of reliability are not needed.
[PRS_SOMEIP_00707]

Upstream requirements: RS_SOMEIP_00010

[The client and server shall use a single TCP connection for all methods, events, and
notifications of a Service-Instance which are configured to be communicated using
TCP.|

[PRS_SOMEIP_00708]

Upstream requirements: RS_SOMEIP_00010
[The TCP connection shall be opened by the client, when the first method call shall be
transported or the client tries to receive the first notifications. |
The client is responsible for re-establishing the TCP connection whenever it fails.
[PRS_SOMEIP_00709]

Upstream requirements: RS_SOMEIP_00010
[The TCP connection shall be closed by the client, when the TCP connection is not
required anymore. |
[PRS_SOMEIP_00710]

Upstream requirements: RS_SOMEIP_00010

[The TCP connection shall be closed by the client, when all Services using the TCP
connections are not available anymore (stopped or timed out). |

AUTSSAR

[PRS_SOMEIP_00711]

Upstream requirements: RS_SOMEIP_00010
[The server shall not stop the TCP connection when stopping all services. Give the
client enough time to process the control data to shutdown the TCP connection itself. |

Rational:
When the server closes the TCP connection before the client recognized that the TCP
is not needed anymore, the client will try to reestablish the TCP connection.

Allowing resync to TCP stream using Magic Cookies

[PRS_SOMEIP_00154]
Upstream requirements: RS_SOMEIP_00010

[In order to allow testing tools to identify the boundaries of SOME/IP Message
transported via TCP, the SOME/IP Magic Cookie Message may be inserted into the
SOME/IP messages over TCP message stream at regular distances. |

[PRS_SOMEIP_00160]
Upstream requirements: RS_SOMEIP_00010

[The layout of the Magic Cookie Messages shall consist of the following fields:
« for communication from Client to Server:

— Message ID (Service ID/Method ID): 0xFFFF 0000

Length: 0x0000 0008

Request ID (Client ID/Session ID): 0xDEAD BEEF

Protocol Version: 0x01

Interface Version: 0x01

Message Type: 0x01
— Return Code: 0x00

» for communication from Server to Client:

Message ID (Service ID/Method ID): OxFFFE 8000

Length: 0x0000 0008

Request ID (Client ID/Session ID): 0xDEAD BEEF

Protocol Version: 0x01

Interface Version: 0x01

Message Type: 0x02

AUTSSAR

— Return Code: 0x00
]

The layout of the Magic Cookie Messages is shown in Figure 5.11.

Client> Server:

0 \ 1 \ 2\ 3 \ 4 \ 5\ 6\7 \ 8\9 \10\11\12\13\14\15\16\17\18\19\20\21\22\23\24\25\26\27\28\29\30\31

bit offset

Message ID (Service ID / Method ID) [32 bit]
(= OxFFFF 0000)

Length [32 bit]
= 0x0000 0008

Request ID (Client ID / Session ID) [32 bit]
= OxDEAD BEEF

ﬁ

Protocol Version [8 bit]
=0x01

Interface Version [8 bit]
=0x01

Message Type [8 bit]
=0x01

Return Code [8 bit]
=0x00

Covered
by Length

-

Server > Client

o[1]2]3]4|5[6]7]8]9][10]11]12[13]14]15[16]17]18]19]20] 21]22]23|24] 25| 26] 27| 28|29 30] 31

bit offset

Message ID (Service ID / Method ID) [32 bit]
(= OXFFFF 8000)

Length [32 bit]
= 0x0000 0008

Request ID (Client ID / Session ID) [32 bit]
= OxDEAD BEEF

Protocol Version [8 bit]
=0x01

Interface Version [8 bit]
=0x01

Message Type [8 bit]
=0x02

Return Code [8 bit]
=0x00

by Length

F Covered »‘

Figure 5.11: SOME/IP Magic Cookie Message for SOME/IP

5.2.1.3 Multiple Service-Instances

[PRS_SOMEIP_00162]
Upstream requirements: RS_SOMEIP_00015

[Service-Instances of the same Service are identified through different Instance IDs. It
shall be supported that multiple Service-Instances reside on different ECUs as well as

multiple Service-Instances of one or more Services reside on one single ECU.

[PRS_SOMEIP_00163]
Upstream requirements: RS_SOMEIP_00015

]

[While several Service-Instances of different Services shall be able to share the same

port number of the transport layer protocol used on both the provided/server

and the

consumed/client side, multiple Service-Instances of the same Service on the pro-
vided/server side on one single ECU shall use different port numbers per Service-

Instance. Multiple Service-Instances of the same Service on the required/cli
on one single ECU may use the same port number per Service-Instance. |

ent side

AUTSSAR

Rationale: Normal SOME/IP (not SOME/IP-SD) messages do not carry the Service-
Instance ID as a dedicated field in the SOME/IP header. - Thus port numbers (and per-
haps the transport protocol) need to be used to distinguish different Service-Instance
of the same Service of a single ECU. This way a Service-Instance can be identified
through the combination of the Service ID combined with the endpoint information (i.e.,
IP-address, transport protocol (UDP/TCP), and port number). It is sufficient to use dif-
ferent port numbers for the different Service-Instances of the same Service on either
the server or the client side, since only a single difference in the 4-tuple <src IP, src
port, dst IP, dst port > is sufficient as a distinguishing criterion. As the server is the
one actually providing the different Service-Instances, the server is also the natural
place to handle the distinction. = > The server shall use different port numbers for
providing different Service-Instances of the same Service.

Recommendation: It is recommended that instances use the same port number for
UDP and TCP. If a Service-Instance uses UDP port x, only this Service-Instance of the
Service and not another Service-Instance of the same Service should use exactly TCP
port x for its Service provision.

5.2.1.4 Transporting large SOME/IP messages of UDP (SOME/IP-TP)

The UDP binding of SOME/IP can only transport SOME/IP messages that fit directly
into an IP packet. If larger SOME/IP messages need to be transported over UDP
(e.g. of 32 KB) the SOME/IP Transport Protocol (SOME/IP-TP) shall be used. The
SOME/IP message too big to be transported directly with the UDP binding shall be
called "original" SOME/IP message. The "pieces" of the original SOME/IP message
payload transported in SOME/IP-TP messages shall be called "segments".

Use TCP only if very large chunks of data need to be transported (> 1400 Bytes) and
no hard latency requirements in the case of errors exists

[PRS_SOMEIP_00720]

Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00012
[SOME/IP messages using SOME/IP-TP shall activate Session Handling (Session 1D
must be unique for the original message). |

[PRS_SOMEIP_00721]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00012

[All SOME/IP-TP segments shall carry the Session ID of the original message; thus,
they have all the same Session-ID. |
[PRS_SOMEIP_00722]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00011
[SOME/IP-TP segments shall have the TP-Flag of the Message Type setto 1.]

AUTSSAR

[PRS_SOMEIP_00723]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027

[SOME/IP-TP segments shall have a TP header right after the SOME/IP header (i.e.
before the SOME/IP payload) with the following structure (bits from highest to lowest):

+ Offset [28 bits]

Reserved Flag [1 bit]
Reserved Flag [1 bit]
Reserved Flag [1 bit]

More Segments Flag [1 bit]

]
SOME-IP-TP-Header is as shown in Table 5.8.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Message ID (Service ID / Method ID) [32 Bit]
Length [32 Bit]
Request ID (Client ID / Session ID) [32 Bit]
Protocol Version [8 Bit] Interface version [8 Bit] | Message Type [8 Bit] Return Code [8 Bit]
Offset [28 bit] RES M
000
Payload [variable size]

Table 5.8: SOME/IP TP header

[PRS_SOMEIP_00931]
Upstream requirements: RS_SOMEIP_00027

[SOME/IP-TP Header shall be encoded in network byte order (big endian). |

[PRS_SOMEIP_00724]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027

[The Offset field shall transport the upper 28 bits of a uint32. The lower 4 bits shall be
always interpreted as 0. |

Note:
This means that the offset field can only transport offset values that are multiples of 16
bytes.

[PRS_SOMEIP_00725]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027

[The Offset field of the TP header shall be set to the offset in bytes of the transported
segment in the original message. |

AUTSSAR

[PRS_SOMEIP_00726]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027

[The Reserved Flags shall be set to 0 by the sender and shall be ignored (and not
checked) by the receiver. |

[PRS_SOMEIP_00727]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027

[The More Segments Flag shall be set to 1 for all segments but the last segment. For
the last segment it shall be set to 0. |

[PRS_SOMEIP_00728]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00027

[The SOME/IP length field shall be used as specified before. This means it covers the
first 8 bytes of the SOME/IP header and all bytes after that. |

Note:

This means that for a SOME/IP-TP message transporting a segment, the SOME/IP
length covers 8 bytes of the SOME/IP header, the 4 bytes of the TP header, and the
segment itself.

[PRS_SOMEIP_00729]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051
[The length of a segment must reflect the alignment of the next segment based on the

offset field. Therefore, all but the last segment shall have a length that is a multiple of
16 bytes. |

[PRS_SOMEIP_00730] Maximum segement length
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00029, RS_SOMEIP_00051

[In accordance with the recommended payload size (see [PRS_SOMEIP_00382]), the
maximum length of a segment that is correctly aligned should be 1392 bytes. |

[PRS_SOMEIP_00731]
Upstream requirements: RS_SOMEIP_00010, RS _SOMEIP_00051

[SOME/IP-TP messages shall use the same Message ID (i.e. Service ID and Method
ID), Request ID (i.e. Client ID and Session ID), Protocol Version, Interface Version,
and Return Code as the original message. |

Note:
As described above the Length, Message Type, and Payload are adapted by SOME/IP-
TP.

AUTSSAR

Example

This example describes how an original SOME/IP message of 5880 bytes payload has
to be transmitted. The Length field of this original SOME/IP message is set to 8 + 5880
bytes.

0 1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Message ID (Service ID / Method ID) [32 Bit]
0x0101 0009
Length [32 Bit]
=8 + 5880

Request ID (Client ID / Session ID) [32 Bit]
0x0001 0005

Protocol Version [8 Bit] Interface version [8 Bit] Message Type [8 Bit] Return Code [8 Bit]
0x01 0x01 b00000000 [0x00] 0x00

Payload [5880 Bytes]
0x00 0x00 0x30 0x00
0x00 0x01 0x02 0x03

Table 5.9: Example: Header of Original SOME/IP message

This original SOME/IP message will now be segmented into 5 consecutive SOME/IP
segments. Every payload of these segments carries at most 1392 bytes in this exam-

ple.

For these segments, the SOME/IP TP module adds additional TP fields (marked red).
The Length field of the SOME/IP carries the overall length of the SOME/IP segment
including 8 bytes for the Request ID, Protocol Version, Interface Version, Message Type
and Return Code. Because of the added TP fields (4 bytes), this Length information is
extended by 4 additional SOME/IP TP bytes.

The following figure provides an overview of the relevant SOME/IP header settings for
every SOME/IP segment:

Length (Bytes) Message Type [TP-Flag] Offset Value More Segment Flag
15t segment 8+ 4 +1392 = 1404 TP-Flag =1’ 0 1
ond segment 8 +4+1392 = 1404 TP-Flag =1’ 87]
3 segment 8 +4 + 1392 = 1404 TP-Flag =1’ 174 1
4 segment 8 +4 + 1392 = 1404 TP-Flag ="1’ 261 1
5t segment 8+4+312=324 TP-Flag =1’ 348 0

Table 5.10: Example: Overview of relevant SOME/IP TP headers

Note:
Please be aware that the value provided within the Offset Field is given in units of 16
bytes, i.e.: The Offset Value of 87 correspond to 1392 bytes Payload.

The complete SOME/IP headers of the SOME/IP segments message will look like this
in detail:

AUTSSAR

» The first 4 segments contain 1392 Payload bytes each with "More Segments
Flag" setto '1’:

0 1t 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Message ID (Service ID / Method ID) [32 Bit]
0x0101 0009
Length [32 Bit]
8+4+1392 (1404)

Request ID (Client ID / Session ID) [32 Bit]
0x0001 0005

Protocol Version [8 Bit] Interface version [8 Bit] Message Type [8 Bit] Return Code [8 Bit]
0x01 0x01 00100000 [0x20] 0x00
Offset [28 bit] RES M
000 1

Payload [1392 Bytes]
0x00 0x17 0x28 0x33
0x28 0x03 0x18 0x32

Table 5.11: Example: Header of the SOME/IP segments

» The last segment (i.e. #5) contains the remaining 312 Payload bytes of the origi-
nal 5880 bytes payload. This last segment is marked with "More Segments flag"
setto’0’.

01t 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Message ID (Service ID / Method ID) [32 Bit]
0x0101 0009
Length [32 Bit]
8+4+312 (324)

Request ID (Client ID / Session ID) [32 Bit]
0x0001 0005

Protocol Version [8 Bit] Interface version [8 Bit] Message Type [8 Bit] Return Code [8 Bit]
0x01 0x01 b00100000 [0x20] 0x00
Offset [28 bit] RES M
000 0

Payload [312 Bytes]

Ox4d 0xB5 0x67 0x61
OxBe 0x46 Ox6f 0x78

Table 5.12: Example: Header of the last SOME/IP segments

Sender specific behavior

[PRS_SOMEIP_00732]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

[The sender shall segment only messages that were configured to be segmented. |

AUTSSAR

[PRS_SOMEIP_00733]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

[The sender shall send segments in ascending order. |
[PRS_SOMEIP_00734]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051
[The sender shall segment in a way that all segments with the More Segment Flag set
to 1 are of the same size. |

[PRS_SOMEIP_00735]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

[The sender shall try to maximize the size of segments within limitations imposed by
this specification. |
[PRS_SOMEIP_00736]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051
[The sender shall not send overlapping or duplicated segments. |

Receiver specific behavior

[PRS_SOMEIP_00738]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

[The receiver shall match segments for reassembly based on the configured values of
Message-ID, Protocol-Version, Interface-Version and Message-Type (w/o TP Flag). |

[PRS_SOMEIP_00740]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

[t shall be supported to reassemble multiple messages with the same Message ID but
sent from different clients (difference in Sender IP, Sender Port, or Client ID) in parallel.
This should be controlled by configuration and determines the amount of "reassembly
buffers”. |

[PRS_SOMEIP_00741]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051
[The Session ID shall be used to detect the next original message to be reassembled. |

[PRS_SOMEIP_00742]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051
[The receiver shall start a new reassembly (and may throw away old segments that

were not successfully reassembled), if a new segment with a different Session-ID is
received. |

AUTSSAR

[PRS_SOMEIP_00743]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

[The receiver should only reassemble up to its configured buffer size and skip the rest
of the message. |

[PRS_SOMEIP_00744]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

[Only correctly reassembled message of up to the configured size shall be passed to
an application. |

Note:

This means that the implementation must make sure that all bytes of the message must
be bytes that were received and reassembled correctly. Counting non-overlapping,
non-duplicated bytes and comparing this to the length could be a valid check.

[PRS_SOMEIP_00379] .
Upstream requirements: RS_SOMEIP_00010

[The receiver shall cancel the current assembly process, when no segment
has been received during a configured SOMEIPTP_REASSEMBLY_TIMEOUT (see
[PRS_SOMEIP_00378]) period. |

[PRS_SOMEIP_00745]

Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051
[The Return Code of the last segment used for reassembly shall be used for the re-
assembled message. |
[PRS_SOMEIP_00746]

Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051
[During reassembling the SOME/IP TP segments into a large unsegmented message,
the Message Type shall be adapted, the TP Flag shall be reset to 0. |
[PRS_SOMEIP_00747]

Upstream requirements: RS_SOMEIP_00010, RS _SOMEIP_00051
[The receiver shall support reassembly of segments that are received in ascending
and descending order. |
[PRS_SOMEIP_00749]

Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051
[When a missing segment is detected during assembly of a SOME/IP message, the
current assembly process shall be canceled. |

Note:
This means that reordering is not supported.

AUTSSAR

[PRS_SOMEIP_00750]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

[Interleaving of different segmented messages using the same buffer (e.g. only the
Session-ID and payload are different) is not supported. |

Note:

This prohibits that equal events (same Message-ID, IP-Addresses, ports numbers, and
transport protocol) arrive in the wrong order, when some of their segments get re-
ordered.

[PRS_SOMEIP_00751]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

[Reordering of segments of completely different original messages (e.g. Message 1D
is different) is not of concern since those segments go to different buffers. |

[PRS_SOMEIP_00752]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

[The receiver shall correctly reassemble overlapping and duplicated segments by over-
writing based on the last received segment. |

[PRS_SOMEIP_00753]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

[The receiver may cancel reassembly, if overlapping or duplicated segments change
already written bytes in the buffer, if this feature can be turned off by configuration. |

[PRS_SOMEIP_00754]
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00051

[The receiver shall be able to detect and handle obvious errors gracefully. E.g. cancel
reassembly if segment length of a segment with MS=1 is not a multiple of 16.

Note:
This means that buffer overflows or other malfunction shall be prevented by the receiv-
ing code.

5.2.2 Request/Response Communication

One of the most common communication patterns is the request/response pattern.
One communication partner (Client) sends a request message, which is answered by
another communication partner (Server).

AUTSSAR

[PRS_SOMEIP_00920]
Upstream requirements: RS_SOMEIP_00007

[For the SOME/IP request message the client has to do the following for payload and
header:

» Construct the payload
» Set the Message ID based on the method the client wants to call

» Set the Length field to 8 bytes (for the part of the SOME/IP header after the length
field) + length of the serialized payload

+ Optionally set the Request ID to a unique number (shall be unique for client only)
+ Set the Protocol Version according [PRS_SOMEIP_00052]

+ Set the Interface Version according to the interface definition

» Set the Message Type to REQUEST (i.e. 0x00)

» Set the Return Code to 0x00

]

[PRS_SOMEIP_00921]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00007

[To construct the payload of a request message, all input or inout arguments of the
method shall be serialized according to the order of the arguments within the signature
of the method. |

[PRS_SOMEIP_00922]
Upstream requirements: RS_SOMEIP_00007

[The server builds the header of the response based on the header of the client’s
request and does in addition:

» Construct the payload

take over the Message ID from the corresponding request

Set the length to the 8 Bytes + new payload size

+ take over the Request ID from the corresponding request

Set the Message Type to RESPONSE (i.e. 0x80) or ERROR (i.e. 0x81)
set Return Code to a return code according to [PRS_SOMEIP_00191].

AUTSSAR

[PRS_SOMEIP_00923]
Upstream requirements: RS_SOMEIP_00028, RS_SOMEIP_00007

[To construct the payload of a response message, all output or inout arguments of the
method shall be serialized according to the order of the arguments within the signature
of the method. |

[PRS_SOMEIP_00927]
Upstream requirements: RS_SOMEIP_00007
[A server shall not sent a response message for a request with a specific Request ID
until the corresponding request message has been received. |
[PRS_SOMEIP_00928]
Upstream requirements: RS_SOMEIP_00007

[A client shall ignore the reception of a response message with a specific Request ID,
when the corresponding request message has not yet been sent completely. |

5.2.3 Fire&Forget Communication
Requests without response message are called fire&forget.

[PRS_SOMEIP_00924]
Upstream requirements: RS_SOMEIP_00006

[For the SOME/IP request-no-return message the client has to do the following for
payload and header:

» Construct the payload

Set the Message ID based on the method the client wants to call

Set the Length field to 8 bytes (for the part of the SOME/IP header after the length
field) + length of the serialized payload

Optionally set the Request ID to a unique number (shall be unique for client only)
Set the Protocol Version according [PRS_SOMEIP_00052]

Set the Interface Version according to the interface definition

Set the Message Type to REQUEST_NO_RETURN (i.e. 0x01)

Set the Return Code to 0x00

AUTSSAR

[PRS_SOMEIP_00171]
Upstream requirements: RS_SOMEIP_00006

[Fire & Forget messages shall not return an error. Error handling and return codes
shall be implemented by the application when needed. |

5.2.4 Notification Events

Notifications describe a general Publish/Subscribe-Concept. Usually the server pub-
lishes a service to which a client subscribes. On certain cases the server will send the
client an event, which could be for example an updated value or an event that occurred.

SOME/IP is used only for transporting the updated value and not for the publishing and
subscription mechanisms. These mechanisms are implemented by SOME/IP-SD.

[PRS_SOMEIP_00925]
Upstream requirements: RS_SOMEIP_00004

[For the SOME/IP notification message the server has to do the following for payload
and header:

» Construct the payload
» Set the Message ID based on the event the server wants to send

» Set the Length field to 8 bytes (for the part of the SOME/IP header after the length
field) + length of the serialized payload

« Set the Client ID to 0x00. Set the Session ID according to
[PRS_SOMEIP_00932], [PRS_SOMEIP_00933], and [PRS_SOMEIP_00521].
In case of active Session Handling the Session ID shall be incremented upon
each transmission.

Set the Protocol Version according [PRS_SOMEIP_00052]

Set the Interface Version according to the interface definition

Set the Message Type to NOTIFICATION (i.e. 0x02)

Set the Return Code to 0x00

]

[PRS_SOMEIP_00926]
Upstream requirements: RS_SOMEIP_00004

[The payload of the notification message shall consist of the serialized data of the
event. |

AUTSSAR

[PRS_SOMEIP_00930]
Upstream requirements: RS_SOMEIP_00042

[When more than one subscribed client on the same ECU exists, the system shall han-
dle the replication of notifications in order to save transmissions on the communication
medium. |

This is especially important, when notifications are transported using multicast mes-
sages.

5.2.4.1 Strategy for sending notifications

For different use cases different strategies for sending notifications are possible. The
following examples are common:

» Cyclic update — send an updated value in a fixed interval (e.g. every 100 ms for
safety relevant messages with Alive)

» Update on change — send an update as soon as a "value" changes (e.g. door
open)

* Epsilon change — only send an update when the difference to the last value is
greater than a certain epsilon. This concept may be adaptive, i.e. the prediction is
based on a history; thus, only when the difference between prediction and current
value is greater than epsilon an update is transmitted.

5.2.5 Fields

A field represents a status and has a valid value. The consumers subscribing for the
field instantly after subscription get the field value as an initial event.

[PRS_SOMEIP_00179]
Upstream requirements: RS_SOMEIP_00009
[A field shall be a combination of getter, setter and notification event. |

[PRS_SOMEIP_00180]
Upstream requirements: RS_SOMEIP_00009

[A field without a setter and without a getter and without a notifier shall not exist. The
field shall contain at least a getter, a setter, or a notifier. |
[PRS_SOMEIP_00181]

Upstream requirements: RS_SOMEIP_00009

[The getter of a field shall be a request/response call that has an empty payload in the
request message and the value of the field in the payload of the response message. |

AUTSSAR

[PRS_SOMEIP_00182]
Upstream requirements: RS_SOMEIP_00009
[The setter of a field shall be a request/response call that has the desired value of the

field in the payload of the request message and the value that was set to the field in
the payload of the response message. |

Note:
If the value of the request payload was adapted (e.g. because it was out of limits) the
adapted value will be transported in the response payload.

[PRS_SOMEIP_00909]
Upstream requirements: RS_SOMEIP_00002, RS_SOMEIP_00009

[The notifier shall send an event message that transports the value of the field to the
client when the client subscribes to the field. |

[PRS_SOMEIP_00183]
Upstream requirements: RS_SOMEIP_00005, RS_SOMEIP_00009
[The notifier shall send an event message that transports the value of a field and shall

follow the rules for events. Sending strategies include on change, on epsilon change,
and cyclic sending. |

5.2.6 Error Handling

Error handling can be done in the application or the communication layer below. There-
fore SOME/IP supports two different mechanisms:

» Return Codes in the Response Messages of methods
 Explicit Error Messages

Which one of both is used, depends on the configuration.

[PRS_SOMEIP_00901]
Upstream requirements: RS_SOMEIP_00008

[Return Codes in the RESPONSE Messages (Message Type 0x80) of methods shall
be used to transport application errors and the response data of a method from the
provider to the caller of a method. Message Type RESPONSE 0x80 shall be used
in cases where no additional/extended error information (apart from the error code
encoded in the Return Code field) needs to be propagated to the caller. |

Note:

Please be aware that return codes of the Request and Response methods are not
treated as errors from the point of view of SOME/IP. This means that the message type
is still 0x80 if a request/response method exits with a return code not equal to 0x00

AUTSSAR

(message type is still 0x80 if ApplicationError of AUTOSAR ClientServerOperation is
different from E_OK).

[PRS_SOMEIP_00902]
Upstream requirements: RS_SOMEIP_00008

[Explicit Error Messages shall be used to transport application errors and the response
data or generic SOME/IP errors from the provider to the caller of a method. |

[PRS_SOMEIP_00903]
Upstream requirements: RS_SOMEIP_00008

[If more detailed error information (apart from an error code encoded in the Return
Code field) needs to be propagated to the caller, an ERROR message (Message type
0x81) shall be used. The payload of the Error Message shall be filled with serialized
error specific data, e.g. an exception string, or other error information. This additional
error information shall be modeled in the interface description, or defined by the stan-
dard. |

This can be used to handle all different application errors that might occur in the server.
In addition, problems with the communication medium or intermediate components
(e.g. switches) may occur, which have to be handled e.g. by means of reliable trans-
port.

All messages have a return code field in their header. (See chapter 5.1.1)
[PRS_SOMEIP_00904]
Upstream requirements: RS_SOMEIP_00008

[Only responses (Response Messages (message type 0x80) and Error Messages
(message type 0x81) shall use the return code field to carry a return code to the request
(Message Type 0x00) they answer. |

[PRS_SOMEIP_00905]
Upstream requirements: RS_SOMEIP_00008

[All other messages than 0x80 and 0x81 shall set this field to 0x00. |

For message type see Chapter 5.1.1.7.

5.2.6.1 Return Code

[PRS_SOMEIP_00187]
Upstream requirements: RS_SOMEIP_00008

[The return code shall be UINTS. |

AUTSSAR

[PRS_SOMEIP_00191] Return Codes

Upstream requirements: RS_SOMEIP_00008, RS_SOMEIP_00024

[

ID Name Description

0x00 E_OK No error occurred.

0x01 E_NOT_OK An unspecified error occurred.

0x02 E_UNKNOWN_SERVICE The requested Service ID is unknown.

0x03 E_UNKNOWN_METHOD The requested Method ID is unknown. Service ID is
known.

0x04 E_NOT_READY deprecated.

0x05 E_NOT_REACHABLE deprecated.

0x06 E_TIMEOUT deprecated.

0x07 E_WRONG_PROTOCOL _ Version of SOME/IP protocol not supported.

VERSION
0x08 E_WRONG_INTERFACE_ Interface version mismatch.
VERSION

0x09 E_MALFORMED_MESSAGE Deserialization error, so that payload cannot be de-
serialized.

0x0a E_WRONG_MESSAGE_TYPE An unexpected message type was received
(e.g.received REQUEST for a method defined as
REQUEST_NO_RETURN).

0x0b E_E2E_REPEATED Repeated E2E calculation error.

0x0c E_E2E WRONG_SEQUENCE Wrong E2E sequence error.

0x0d E_E2E Not further specified E2E error.

0x0e E_E2E_NOT_AVAILABLE E2E not available.

0xOf E E2E NO_NEW_DATA No new data for E2E calculation present.

0x10 RESERVED Reserved for generic SOME/IP errors. These errors

ox1f will be specified in future versions of this document.

0x20 RESERVED Reserved for specific errors of services and meth-

Ox5E ods. These errors are specified by the interface
specification.

J

Generation and handling of return codes shall be configurable.

[PRS_SOMEIP_00539]

Upstream requirements: RS_SOMEIP_00008

[A SOME/IP error message (i.e. return code 0x01 - 0x1f) shall not be answered with
an error message. |

5.2.6.2 Error Message

For more flexible error handling, SOME/IP allows a different message layout specific
for Error Messages instead of using the message layout of Response Messages.

The recommended layout for the exception message is the following:

AUTSSAR

+ Union of specific exceptions. At least a generic exception without fields needs to
exist.

» Dynamic Length String for exception description.

Rationale: The union gives the flexibility to add new exceptions in the future in a type-
safe manner. The string is used to transport human readable exception descriptions to
ease testing and debugging.

[PRS_SOMEIP_00188]
Upstream requirements: RS_SOMEIP_00008

[The receiver of a SOME/IP message shall not return an error message for events/no-
tifications. |

[PRS_SOMEIP_00189]
Upstream requirements: RS_SOMEIP_00008

[The receiver of a SOME/IP message shall not return an error message for fire&forget
methods. |

[PRS_SOMEIP_00537]
Upstream requirements: RS_SOMEIP_00008

[The receiver of a SOME/IP message shall only return an error message if the received
message type is set to REQUEST. |

Rationale:

If the server maps the message ID to a NOTIFICATION or RE-
QUEST_NO_RESPONSE type, the client that sends a message wrongly with
type REQUEST would expect to receive a RESPONSE. RESPONSE with
E_ WRONG_MESSAGE_TYPE would make sense. On the other hand, if a client
sends a message wrongly with type REQUEST_NO_RESPONSE, even if the server
maps the message ID to a RESPONSE type, sending back an error RESPONSE is
not helpful, as the client will simply ignore it.

[PRS_SOMEIP_00190]
Upstream requirements: RS_SOMEIP_00008

[For Request/Response methods the error message shall copy over the fields of the
SOME/IP header (i.e. Message ID, Request ID, and Interface Version) but not the
payload. In addition Message Type and Return Code have to be set to the appropriate
values. |

AUTSSAR

5.2.6.3 Error Processing Overview

[PRS_SOMEIP_00576]
Upstream requirements: RS_SOMEIP_00008, RS_SOMEIP_00014

[Error handling shall be based on the message type received (e.g. only methods
can be answered with a return code) and shall be checked in a defined order of
[PRS_SOMEIP_00195]. |

[PRS_SOMEIP_00910]
Upstream requirements: RS_SOMEIP_00008, RS_SOMEIP_00014
[For SOME/IP messages received over UDP, the following shall be checked:

» The UDP datagram size shall be at least 16 Bytes (minimum size of a SOME/IP
message)

» The value of the length field shall be less than or equal to the remaining bytes in
the UDP datagram payload

If one check fails, a malformed error shall be issued. |
[PRS_SOMEIP_00195]
Upstream requirements: RS_SOMEIP_00008, RS_SOMEIP_00014

[SOME/IP messages shall be checked by error processing. This does not include the
application based error handling but just covers the error handling in messaging and
RPC. |

An overview of the error processing is shown in Figure 5.12.

<SAR

[PRS_SOMEIP_00910]

SOME/IP header

Receive SOME/IP Message incomplete?

Discard Message

[PRS_SOMEIP_00220]

Message ID
configured
?

[PRS_SOMEIP_00220]
[PRS_SOMEIP_00050]

[PRS_SOMEIP_00191]

Protocol Version Error handling with Return code =
supported? E_WRONG_PROTOCOL_VERSION

[PRS_SOMEIP_00220]
[PRS_SOMEIP_00055]
[PRS_SOMEIP_00191]

Message Type
configured for
corresponding
Message ID?

Error handling with Return

o=

cod
E_WRONG_MESSAGE_TYPE

ssage Typé
consistent with
first bit of
Method ID?,

" [PRS_SOMEIP_00245]

TP_REQUEST,
TP_REQUEST_NO_RETURN,
or TP_NOTIFICATION,
TP-Flag of yes TP_RESPONSE, TP_ERROR
Message Type

»

REQUEST,
REQUEST_NO_RETURN,
NOTIFICATION
RESPONSE, ERROR

SOME/IP-TP
Protocol
Handling Discard Message
successful

?

EST,
REQUEST_NO_RETURN,
NOTIFICATION
RESPONSE, ERROR

Reassembled and
unsegmented SOME/IP
Message

[PRS_SOMEIP_00904]
Roturn Code ™+, [PRS_SOMEIP_00905]
consistent
with Message
Type?

[PRS_SOMEIP_00757]
[PRS_SOMEIP_00191]

Message Ty
ERROR and Return
Code==0?

Discard Message

[PRS_SOMEIP_00220] [PRS_SOMEIP_00191]

Error handling with Return code =
E_UNKNOWN_SERVICE

Service ID
configured?

[PRS_SOMEIP_00220] [PRS_SOMEIP_00191]

Interface Version no [Error handling with Return code =
configured for above >L E_WRONG_INTERFACE_VERSION
Service ID?

[PRS_SOMEIP_00191]

Error handling with Return code =
E_UNKNOWN_METHOD

A4
—

[PRS_SOMEIP_00739]
[PRS_SOMEIP_00704]
[PRS_SOMEIP_00928]

yes

Discard Message

corresponding
unanswered message of
WMessage Type

4.1.5 De-serialization of Data Structures [PRS_SOMEIP_00191]

Failed

Payload
Deserialization

Error Handling with
Return code = E_MALFORMED_MESSAGE

Succeeded

[Process SOME/IP Message]

Figure 5.12: Message Validation and Error Handling in SOME/IP

Consistency checks

[PRS_SOMEIP_00539]
[PRS_SOMEIP_00188]
[PRS_SOMEIP_00189]
yes [PRS_SOMEIP_00537]

Message

Type
REQUEST?

Send ERROR Message
Return Code = E_XYZ

AUTSSAR

Note: Certain sequence of the steps shown in this diagram can vary based on the
specific implementation, e.g. Classic Platform splits the check for 'SOME/IP header
incomplete?' between SocketAdaptor and SOME/IP Transformer.

[PRS_SOMEIP_00385] Conditions to discard received SOME/IP Message
Upstream requirements: RS_SOMEIP_00008, RS_SOMEIP_00014

[Receiver shall discard SOME/IP message for the following scenarios of SOME/IP
Header:

Incomplete Message as per 'Length' Value
'Message ID' is invalid
'Message Type' is ERROR but Return Code is '0x00'

'Client ID" and 'Session ID' of messages with message type 'RESPONSE' or 'ER-
ROR' are not set to the 'Client ID' and 'Session ID' of unanswered message with
message type 'REQUEST'

If the message type is not set to 'REQUEST' and below conditions are met:
— 'Protocol Version' is not supported.
— 'Service ID' is not configured
— 'Interface Version' is not configured for received 'Service ID'
— 'Method ID' is not configured for received 'Service ID' and 'Interface Version'

— 'Message Type' is not configured for corresponding '‘Message ID'(i.e,value of
the 'Message Type' field in the received SOME/IP message does not match
the 'Message Type' that is configured (according to the recipient’s local con-
figuration) for the value of the 'Message ID' field in the received SOME/IP
message).

For example,'Message ID' (according to local configuration) is configured for
reception of method call RESPONSE(or ERROR) but 'Message Type' field
in the actual received message is different from RESPONSE or ERROR.
OR 'Message ID' (according to local configuration) is configured for recep-
tion of method REQUEST but 'Message Type' field in the actual received
message is REQUEST _NO_ RETURN.

5.2.6.3.1 Handling of Communication Errors

When considering the transport of RPC messages different reliability semantics exist:

» Maybe — the message might reach the communication partner

At least once — the message reaches the communication partner at least once

AUTSSAR

» Exactly once — the message reaches the communication partner exactly once

When using the above terms, in regard to Request/Response the term applies to both
messages (i.e. request and response or error).

While different implementations may implement different approaches, SOME/IP cur-
rently achieves "maybe" reliability when using the UDP binding and "exactly once" reli-
ability when using the TCP binding. Further error handling is left to the application.

For "maybe" reliability, only a single timeout is needed, when using request/response
communication in combination of UDP as transport protocol. Figure 5.13 shows the
state machines for "maybe" reliability. The client's SOME/IP implementation has to
wait for the response for a specified timeout. If the timeout occurs SOME/IP shall
signal E_TIMEOUT to the client application.

Client

/ sendReq Y\ rspReceived
>l waitingForResponse

o

rspTimeout
Error: NoResponse
Server
reqReceived ﬁ / sendRsp
> processing >©

Figure 5.13: State Machines for Reliability "Maybe"

For "exactly once" reliability the TCP binding may be used, since TCP was defined to
allow for reliable communication.

5.3 Compatibility Rules for Interface Version

The Interface Version identifies the Payload format. The Payload format is affected by
« the Service Interface specification

* the serialization configuration (e.g. usage of variable size arrays, size of length
fields, padding, TLV, SOME/IP-TP).

[PRS_SOMEIP_00937]
Upstream requirements: RS_SOMEIP_00003

[The Interface Version shall be increased for any of the following reasons:

* incompatible changes in the Payload format

AUTSSAR

« incompatible changes in the service behavior
* required by application design
|

Note: The Interface Version shall not be increased for compatible changes in the Pay-
load format.

[PRS_SOMEIP_00938]
Upstream requirements: RS_SOMEIP_00003
[The rules in [PRS_SOMEIP_00758] shall define the compatibility of changes of the

payload format. For complex data types the rules shall be applied recursively. x de-
notes a compatible change, an empty cell denotes an incompatible change. |

Note:

This table is based on the specification of the SOME/IP protocol. As a rule of thumb,
interfaces are compatible if the receiver of data finds all expected information on the
expected locations.

[PRS_SOMEIP_00758] Compatibility of changes of the payload format
Upstream requirements: RS_SOMEIP_00003

Classes of Protocol / Serialization Capa-
bilities
[
B
[
Q2
£
[
£
®
(7]
c
3]
2 (] =
Y- E o
= [o
<) = °
c < c
2 = ©
5 5 = =
3 o - -
K= = K= K=
S S S S
c c c c
] 0]]
- - - -
© © © ©
N N N N
B S B B
Q [Q Q
n (77} n n
1 B B S
[] [} [] []
= s E | 5| 2| 5] E 5
Elz2|E|2]|E|l2]|E|2
5| 8|5|8|5(3|5]8
Change of Interface Elecl|lfF|le|fF || FE| e
Add a struct member not to the end of the struct MAX1MUM-MESSAGE-SIZE (MMS) X X | X
Add a struct member to the end of the toplevel struct MAXIMUM-MESSAGE-SIZE (MMS) | X X X X | X
Add a struct member to the end of a sub-struct "AXIMUM-MESSAGE-SIZE (MMS) X X X X
Remove struct member not from the end of the struct MAXIMUM-MESSAGE-SIZE (MMS) X X X

\Y

AUTSSAR

Classes of Protocol / Serialization Capa-
bilities

Serialization with TLV and optional members

(7]
k)
2 (]
= K/
£ 2
m -
S £
= 2 >
3 8 =
£ £ £
E H H
(= [= (=
] 2]
T © T
N N N
@ @ @
(77} (77} (77}
k3 s s s
[] [] [] [
S| 8|8|8|E|8|8|8
Change of Interface Ele | Fle ||| fF | c
Remove struct member from the end of the toplevel struct
MAXIMUM-MESSAGE-SIZE (MMS) p X X X X X
Remove struct member from the end of a sub-struct MAXIHMUM-MESSAGE-SIZE (MMS) X X | X | X
Reorder struct members X X X X
Change the non-highest union member (redefine or remove)
Add a new union member with previously unused type selector X X X X
Remove union member with highest type selector X X X X
Change of data type:
« to a larger one (e.g. uint8 to uint16)
« to a smaller one (e.g. uint16 to uint8
« to a semantically different one (e.g. integer to struct, integer to float, string to
string with different character size)
* byte order
» number of dimensions of arrays
« size of length field of array, struct or union type selector
Add new enumeration valugs®NUM-REMARK X X X X
Change existing enumeration valueg®NVH REMARK
Remove enumeration values®UM REMARK X X X X
Increase the length of a fixed size array X X X
Decrease the length of a fixed size array X X X
Increase the length of a fixed size string?2r0-TERMINATED X X X
Decrease the length of a fixed size string=RO-TERMINATED X X X
Decrease maximum length of variable size string N/A|NA| X X X
Increase maximum length of variable size string N/A | N/A X X X
Change maximum length of variable size array N/AIN/A| X X X X X X
Add argument not to the end of the argument list of a method request
Remove argument not from the end of the argument list of a method response X X X
MAXIMUM-MESSAGE-SIZE (MMS), OPTIONAL-METHOD-ARGUMENTS-REMARK

V

AUTSSAR

Classes of Protocol / Serialization Capa-
bilities

4
3
£
(&
£
8
<) =
=] Q.
< ° o
S - T
g =]
2 <)
5 5 2 2
] 2 = =
= K= = £
= = = =
3 H 3 3
(= [= (= =
=] =] =] =]
- - - -
© (V] © ©
N N N N
E s E s E s E s
[[[[
7] 7] 7] 7]
T £ 1 Y £ 3
2 2 2 2
= s El 5| 2| 5| E 5
Elz|E|2|E| 2| E|2
c| 8|c|8|c| 8| |8
o Q o) [) [)
Change of Interface Ele | Fle ||| fF | c
Add argument to the end of the argument list of a method request
Remove argument from the end of the argument list of a method response X X X X X
MAXIMUM-MESSAGE-SIZE (MMS), OPTIONAL-METHOD-ARGUMENTS-REMARK, DEFAULT-VALUE
Remove argument not from the end of the argument list of a method request
Add argument not from the end of the argument list of a method response X X X
OPTIONAL-METHOD-ARGUMENTS-REMARK, DEFAULT-VALUE
Remove argument from the end of the argument list of a method request
Add argument from the end of the argument list of a method response X X X X X

OPTIONAL-METHOD-ARGUMENTS-REMARK

Reorder arguments of methods

Change optionality of argument

N/A | N/A | N/A | N/A | N/A | N/A

Change the return type of a method (e.g void to uint8)

Add return codes of a method

Remove return codes of a method

Change of the name of a service interface, method or event

X
x
x
>
x
x
x
>

Add event ot eventgroup

Remove event from eventgroup

Add setter or getter to a field
Remove notifier from a field

Remove setter or getter from a field
Add notifier to a field

Extend service interface by new method, event or field

Remove method, event or field from a service interface

Change Method ID

AUTSSAR

Classes of Protocol / Serialization Capa-
bilities

[
T
]
£
[
£
©
3 5
<) =
=] Q.
£ 8 o
[S)) - T
c =]
2 =3
- c 3 3
3 2 - -
= K= = =
3 H 3 3
(= [= (= =
=] =] =] =]
- - - -
© (V] © ©
N N N N
E s E s E s E s
[[[[
7] 7] 7] 7]
T £ 1 Y £ 3
2 2 2 2
El 5 E|lslE2E|51E2|5
Elz|E|2|E| 2| E|2
c| 8|c|8|c| 8| |8
Tl o 8|le| &8 o &0
Change of Interface Ele | Fle ||| fF | c
Change data ID of argument
9 9 N/A | N/A | N/A | N/A
Reuse data ID of previously removed argument

The following legend to the table applies:

ENUM-REMARK: The "Receiver" of an Enumeration needs to know all values it can re-
ceive, while the "Transmitter" does not have to send all values the "Receiver" knows.

MAXIMUM-MESSAGE-SIZE (MMS): The compatibility in Classic Platform is limited by
the maximum configured size of message. This means that if the message size is configured
larger than necessary, additional text could be added and, independently of the message size
on tag, can be replaced by a new one.

OPTIONAL-METHOD-ARGUMENTS-REMARK: See note above [PRS_SOMEIP_00230].
DEFAULT-VALUE: A default value is required for this change to be compatible.

ZERO-TERMINATED: Strings are terminated with a "\0"-character(see [PRS_SOMEIP_00373],
[PRS_SOMEIP_00911], [PRS_SOMEIP_00912] and [PRS_SOMEIP_00913])

]

The column "Transmitter" refers to the side transmitting a SOME/IP message, which
can be the transmitter of an event (provider of the interface) or the method arguments
used by the caller of a method (user of the interface) or the method result returned by
the callee of a method (provider of the interface). The column "Receiver" refers to the
side receiving a SOME/IP message, which can be the receiver of an event (user of the
interface) or the method arguments forwarded to the callee of a method (provider of the
interface) or the method result forwarded to the caller of a message (user of the inter-
face). For fields, compatibility is only given if both the "Transmitter" and the "Receiver"

AUTSSAR

columns are marked as compatible, because the same content will be transmitted by
the side defined by the provider of the interface (notification event, getter method) and
the user of the interface (setter method).

AUTSSAR

6 Configuration Parameters

The following chapter summarizes the configuration parameters that are used in this

specification.

[PRS_SOMEIP_00378] SOMEIPTP_REASSEMBLY TIMEOUT
Upstream requirements: RS_SOMEIP_00010, RS_SOMEIP_00014

[SOME/IP Protocol

shall

provide a

configurable

SOMEIPTP_REASSEMBLY_TIMEOUT for the reception timeout time of SOME/IP-

TP segments. |

[TPS_MANI_03330]

Parameter Descrip- Parameter support | Parameter support
tion in AP in CP
SOMEIPTP_REASSEMBLY_ | Config- SomeipEventDe— SomeipTpChan—
TIMEOUT urable timer | ployment. nel.
([PRS_SOMEIP_00378]) for the segmentRecep- SomeipTpRxTime-
reception tionTimeoutTime | outTime
timeout [TPS_MANI_03328], | see [ECUC_
time SomeipMethodDe— | SomelpTp_00023]
between ployment.
SOME/IP- segmentRecep-—
TP tionTimeout-
segments TimeRequest
[TPS_MANI_03329],
SomeipMethodDe-
ployment.
segmentRecep-
tionTimeout—
TimeResponse

Table 6.1: Mapping Table - SOME/IP Protocol Parameters

[PRS_SOMEIP_00004] Configuration Parameters for SOME/IP (De)Serialization
Upstream requirements: RS_SOMEIP_00028

[The following table summarizes the configuration parameters that are used for

SOME/IP (De)Serialization. |

timer

AUTSSAR

Parameter

Description

Allowed Range or
Values

Default
values(in case
parameter is
not explicitly
configured)

ALTGNMENT

Defines the alignment
requirement for the data
element immediately
following a variable length
data element (if it is not the
last element in the serialized
data stream) in units of
bytes.

1,2,4,8,16,32

1

BYTE_ORDER

Defines the byte order of the
payload message.

mostSignificantByte-
First,
mostSignificantByteLast,
opaque

mostSignificant-
ByteFirst
(BigEndian)

IS_
DYNAMIC_
LENGTH_
FIELD_SIZE

This parameter shall be
used to determine the size
of the length field based on
wire type in the context of
using the TLV encoding. If
set to TRUE, the size of the
length field defined in the
data definition shall be
ignored and the size of the
length field shall be selected
according to the wire type.

TRUE,FALSE

TRUE

SIZE_OF_
ARRAY_
LENGTH_
FIELD

Defines the size of the
length field (in bytes) that
will be put in front of an
array (see Chapter 5.1.3.5)
in the SOME/IP message.

0, 1, 2, 4 for fixed
length arrays (see
[PRS_SOMEIP_00944])
where 0 indicates that
there is no length field
present.

1, 2, 4 for dynamic
length arrays (see
[PRS_SOMEIP_00001])
where 0 is not allowed
since a dynamic length
array has a mandatory
length field.

AUTSSAR

A
SIZE_OF Defines the size of the 0, 1, 2, 4 for fixed 4
STRING_ length field (in bytes) that length strings(see
LENGTH_ will be put in front of a string | [PRS_SOMEIP_00760])
FIELD (see Chapter 5.1.3.4) in the | where 0 indicates that
SOME/IP message. there is no length field
present.
1, 2, 4 for dynamic
length strings(see
[PRS_SOMEIP_00002])
where 0 is not allowed
since a dynamic length
string has a mandatory
length field.
SIZE_OF_ Defines the size of the 0,1,2,4 0
STRUCT__ length field (in bytes) that
LENGTH_ will be put in front of a struct
FIELD (see Chapter 5.1.3.2) in the
SOME/IP message.
SIZE_OF_ Defines the size of the 0,1,2,4 4
UNION_ length field (in bytes) that
LENGTH_ will be put in front of a union
FIELD (see Chapter 5.1.3.8) in the
SOME/IP message.
SIZE_OF_ Defines the size of the 1,2,4 4
UNTION_ payload selector field (in
TYPE_ bytes) that will be put in
SELECTOR_ front of a union (see
FIELD Chapter 5.1.3.8) in the
SOME/IP message.
STRING_ Defines the types of unicode | UTF-8, UTF-16BE and | UTF-8
ENCODING encodings supported for a UTF-16LE

string (see Chapter 5.1.3.4)
in the SOME/IP message.

Table 6.2: SOME/IP Serialization Configuration Parameters

AUTSSAR

7 Protocol usage and guidelines

7.1 Choosing the transport protocol

SOME/IP supports User Datagram Protocol (UDP) and Transmission Control Protocol
(TCP). While UDP is a very lean transport protocol supporting only the most important
features (multiplexing and error detecting using a checksum), TCP adds additional
features for achieving a reliable communication. TCP not only handles bit errors but
also segmentation, loss, duplication, reordering, and network congestion.

Inside a vehicle many applications requires very short timeout to react quickly. These
requirements are better met using UDP because the application itself can handle the
unlikely event of errors. For example, in use cases with cyclic data it is often the best
approach to just wait for the next data transmission instead of trying to repair the last
one. The major disadvantage of UDP is that it does not handle segmentation. Hence,
only being able to transport smaller chunks of data.

Guideline:

» Use TCP only if very large chunks of data need to be transported (> 1400 Bytes)
and no hard latency requirements in the case of errors exists

» Use UDP if very hard latency requirements (<100ms) in case of errors is needed

» Use UDP together with SOME/IP-TP if very large chunks of data need to be
transported (> 1400 Bytes) and hard latency requirements in the case of errors
exists

* Try using external transport or transfer mechanisms (Network File System, APIX
link, 1722, ...) when they are more suited for the use case. In this case SOME/IP
can transport a file handle or a comparable identifier. This gives the designer
additional freedom (e.g. in regard to caching).

The transport protocol used is specified by the interface specification on a per-message
basis. Methods, Events, and Fields should commonly only use a single transport pro-
tocol.

7.2 Security Considerations for SOME/IP

[PRS_SOMEIP_00946] Restricting Server Connection from Clients
Upstream requirements: RS_SOMEIP_00002
[A server may enforce communication policies to protect the server from malicious

or unauthorized clients. l.e. the server may reject subscriptions to eventgroups, or
method calls from unauthorized clients. |

Note: These policies are beyond the scope of this specification. Such policies can be
based on the IP address of the client or any other means to identify the client.

AUTSSAR

[PRS_SOMEIP_00947] Restricting Client Connection to Server

Upstream requirements: RS_SOMEIP_00002
[A client may enforce communication policies to protect the client from malicious
servers. |.e. the client may deny communication to unauthorized servers. |

Note: These policies are beyond the scope of this specification. Such policies can be
based on the IP address of the server or any other means to identify the client.

AUTSSAR

A Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

A.1 Traceable item history of this document according to
AUTOSAR Release R25-11

A.1.1 Added Specification Items in R25-11

Number Heading

%%ggﬂSOMEIP— Length field for Dynamic length arrays

E)%ESE]SOMEIP— Length field for Dynamic length strings

E)F()ESQT]SOMEIP— Selection of to-be-used wire type and length of the Length field
E)%FSSZ]SOMEIP— Configuration Parameters for SOME/IP (De)Serialization

E)%F;(S)ﬂSOMEIP— Behaviour if a required element is missing in the received SOME/IP message
[PRS_SOMEIP_ Behaviour if a required member/argument is missing in the received SOME/
00209] IP message

[PRS_SOMEIP_ Behaviour if a required member/argument is found with invalid wire type in
00383] the received SOME/IP message

[PRS_SOMEIP_ Behaviour if a required member/argument is found multiple times in the
00384] received SOME/IP message

gz)l;{gg]SOMEIP_ Conditions to discard received SOME/IP Message

%F;ggg]SOMEIP— Session Handling for REQUEST_NO_RETURN Messages

Table A.1: Added Specification Iltems in R25-11

A.1.2 Changed Specification Iltems in R25-11

Number

Heading

[PRS_SOMEIP_
00050]

[PRS_SOMEIP_
00079]

AUTSSAR

Number

Heading

[PRS_SOMEIP_
00121]

[PRS_SOMEIP_
00127]

[PRS_SOMEIP_
00191]

Return Codes

[PRS_SOMEIP_
00206]

[PRS_SOMEIP_
00225]

[PRS_SOMEIP_
00227]

[PRS_SOMEIP_
00369]

[PRS_SOMEIP_
00372]

[PRS_SOMEIP_
00613]

[PRS_SOMEIP_
00701]

[PRS_SOMEIP_
00760]

[PRS_SOMEIP_
00900]

[PRS_SOMEIP_
00944]

Table A.2: Changed Specification Items in R25-11

A.1.3 Deleted Specification ltems in R25-11

Number

Heading

[PRS_SOMEIP_
00093]

[PRS_SOMEIP_
00094]

[PRS_SOMEIP_
00107]

[PRS_SOMEIP_
00380]

IP message

Behaviour if a required member/argument is missing in the received SOME/

[PRS_SOMEIP_
00381]

Behaviour if a required element is missing in the received SOME/IP message

Y%

AUTSSAR

Number

Heading

[PRS_SOMEIP_
00614]

[PRS_SOMEIP_
00945]

Table A.3: Deleted Specification Items in R25-11

A.1.4 Added Constraints in R25-11

Number

Heading

[constr_00001]

Reordering limitation for a SOME/IP message segment

Table A.4: Added Constraints in R25-11

A.1.5 Changed Constraints in R25-11

none

A.1.6 Deleted Constraints in R25-11

none

A.2 Traceable item history of this document according to
AUTOSAR Release R24-11

A.2.1 Added Specification Items in R24-11

Number Heading

[PRS_SOMEIP_

00378] SOMEIPTP_REASSEMBLY TIMEOUT

[PRS_SOMEIP_

00379]

[PRS_SOMEIP_ Behaviour if a required member/argument is missing in the received SOME/
00380] IP message

EJF;F;ST]SOMEIP_ Behaviour if a required element is missing in the received SOME/IP message

\Y

AUTSSAR

A
Number Heading
E)F())F;gg]SOMEIP— SOME/IP payload size using UDP

Table A.5: Added Specification Iltems in R24-11

A.2.2 Changed Specification Iltems in R24-11

Number

Heading

[PRS_SOMEIP_
00119]

Union (length field, type selector field and payload)

[PRS_SOMEIP_
00706]

[PRS_SOMEIP_
00730]

Maximum segement length

[PRS_SOMEIP_
00758]

Compeatibility of changes of the payload format

[PRS_SOMEIP_
00900]

[PRS_SOMEIP_
00901]

[PRS_SOMEIP_
00903]

[PRS_SOMEIP_
00907]

[PRS_SOMEIP_
00942]

Table A.6: Changed Specification Iltems in R24-11

A.2.3 Deleted Specification Iltems in R24-11

Number

Heading

[PRS_SOMEIP_
00218]

[PRS_SOMEIP_
00908]

[PRS_SOMEIP_
00918]

Table A.7: Deleted Specification Items in R24-11

AUTSSAR

A.3 Traceable item history of this document according to
AUTOSAR Release R23-11

A.3.1 Added Specification Items in R23-11

Number Heading

[PRS_SOMEIP_

00755] Message ID header field

E)F(’;ES;;]SOMEIP_ Return Codes

[PRS_SOMEIP_

00758] Compatibility of changes of the payload format

[PRS_SOMEIP_
00759]

[PRS_SOMEIP_
00760]

Table A.8: Added Specification Items in R23-11

A.3.2 Changed Specification Items in R23-11

Number Heading

[PRS_SOMEIP_

00046] Request ID

[PRS_SOMEIP_
00107]

[PRS_SOMEIP_
00163]

[PRS_SOMEIP_
00183]

[PRS_SOMEIP_

00205] Wire Type and type of following data

[PRS_SOMEIP_
00369]

[PRS_SOMEIP_
00376]

Table A.9: Changed Specification Items in R23-11

A.3.3 Deleted Specification ltems in R23-11

none

AUTSSAR

A.4 Traceable item history of this document according to
AUTOSAR Release R22-11

A.4.1 Added Specification ltems in R22-11

Number Heading

[PRS_SOMEIP_
00245]

Table A.10: Added Specification Items in R22-11

A.4.2 Changed Specification ltems in R22-11

Number Heading

[PRS_SOMEIP_
00043]

[PRS_SOMEIP_
00101]

[PRS_SOMEIP_
00137]

[PRS_SOMEIP_
00241]

[PRS_SOMEIP_
00300]

[PRS_SOMEIP_
00365]

[PRS_SOMEIP_
00366]

[PRS_SOMEIP_
00374]

[PRS_SOMEIP_

00730] Maximum segement length

[PRS_SOMEIP_
00739]

[PRS_SOMEIP_
00922]

[PRS_SOMEIP_
00942]

Table A.11: Changed Specification Iltems in R22-11

AUTSSAR

A.4.3 Deleted Specification Iltems in R22-11

Number Heading

[PRS_SOMEIP_
00038]

[PRS_SOMEIP_
00040]

Table A.12: Deleted Specification Iltems in R22-11

AUTSSAR

[1] Specification of Service Discovery
AUTOSAR_CP_SWS_ServiceDiscovery

[2] Glossary
AUTOSAR_FO_TR_Glossary

	1 Introduction and overview
	1.1 Protocol purpose and objectives
	1.2 Applicability of the protocol
	1.2.1 Constraints and assumptions
	1.2.2 Limitations

	1.3 Dependencies
	1.4 Document Structure

	2 Use Cases
	3 Protocol Requirements
	3.1 Requirements Traceability

	4 Acronyms and Abbreviations
	5 Protocol specification
	5.1 Specification of SOME/IP Message Format (Serialization)
	5.1.1 Header
	5.1.1.1 Message ID [32 Bit]
	5.1.1.2 Method ID [16 Bit]
	5.1.1.3 Length [32 Bit]
	5.1.1.4 Request ID [32 Bit]
	5.1.1.5 Protocol Version [8 Bit]
	5.1.1.6 Interface Version [8 Bit]
	5.1.1.7 Message Type [8 Bit]
	5.1.1.8 Return Code [8 Bit]
	5.1.1.9 Payload [variable size]

	5.1.2 Endianness
	5.1.3 Serialization of Data Structures
	5.1.3.1 Basic Datatypes
	5.1.3.2 Structured Datatypes (structs)
	5.1.3.3 Structured Datatypes and Arguments with Identifier and optional members ('TLV')
	5.1.3.4 Strings
	5.1.3.5 Arrays
	5.1.3.6 Enumeration
	5.1.3.7 Bitfield
	5.1.3.8 Union / Variant

	5.1.4 De-serialization of Data Structures
	5.1.4.1 Structured DataTypes (structs)
	5.1.4.2 Structured Datatypes and Arguments with Identifier and optional members ('TLV')
	5.1.4.3 Strings
	5.1.4.4 Arrays
	5.1.4.5 Enumeration
	5.1.4.6 Bitfield
	5.1.4.7 Union / Variant

	5.2 Specification of SOME/IP Protocol
	5.2.1 Transport Protocol Bindings
	5.2.1.1 UDP Binding
	5.2.1.2 TCP Binding
	5.2.1.3 Multiple Service-Instances
	5.2.1.4 Transporting large SOME/IP messages of UDP (SOME/IP-TP)

	5.2.2 Request/Response Communication
	5.2.3 Fire&Forget Communication
	5.2.4 Notification Events
	5.2.4.1 Strategy for sending notifications

	5.2.5 Fields
	5.2.6 Error Handling
	5.2.6.1 Return Code
	5.2.6.2 Error Message
	5.2.6.3 Error Processing Overview

	5.3 Compatibility Rules for Interface Version

	6 Configuration Parameters
	7 Protocol usage and guidelines
	7.1 Choosing the transport protocol
	7.2 Security Considerations for SOME/IP

	A Change history of AUTOSAR traceable items
	A.1 Traceable item history of this document according to AUTOSAR Release R25-11
	A.1.1 Added Specification Items in R25-11
	A.1.2 Changed Specification Items in R25-11
	A.1.3 Deleted Specification Items in R25-11
	A.1.4 Added Constraints in R25-11
	A.1.5 Changed Constraints in R25-11
	A.1.6 Deleted Constraints in R25-11

	A.2 Traceable item history of this document according to AUTOSAR Release R24-11
	A.2.1 Added Specification Items in R24-11
	A.2.2 Changed Specification Items in R24-11
	A.2.3 Deleted Specification Items in R24-11

	A.3 Traceable item history of this document according to AUTOSAR Release R23-11
	A.3.1 Added Specification Items in R23-11
	A.3.2 Changed Specification Items in R23-11
	A.3.3 Deleted Specification Items in R23-11

	A.4 Traceable item history of this document according to AUTOSAR Release R22-11
	A.4.1 Added Specification Items in R22-11
	A.4.2 Changed Specification Items in R22-11
	A.4.3 Deleted Specification Items in R22-11

