AUTSSAR

Document Title E2E Protocol Specification
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 849

Document Status published

Part of AUTOSAR Standard Foundation

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
+ Constraints and use cases removed or
AUTOSAR changed to spec items
2025-11-27 R25-11 Release
Management » Check of E2E counter at server side for
methods removed
AUTOSAR » E2EPW Support removed
2024-11-27 | R24-11 Release
Management * Profile 76 added
AUTOSAR D ot t EoF hi
2023-11-23 | R23-11 | Release escrl'(pc'jon 0 state machine
Management reworke

* New chapter 6.3 added with generalized
flowcharts and SWS items for non
method profiles.

* Protocol specific flowcharts and SWS
items for method (P04m and PO7m) and
non method profiles replaced by
generalized flowcharts and items

AUTOSAR « Use consistent function names (e.g.
2022-11-24 | R22-11 Release E2EXf_handling_PXXm_server,
Management E2EXf_handling_PXXm_client)

* Corrections of Min/MaxDatalLength in
P04m, PO7m and PO8m

» Corrections of errors in state machine
specification

 Counter handling for client/server
communication updated

AUTSSAR

AUTOSAR « New profiles 08m,44m
2021-11-25 | R21-11 Release _
Management * New protocol independent flowcharts

« E2E f hods.

AUTOSAR or methods
2020-11-30 R20-11 Release * New profiles 08,44,4m,7m
Management _
 Extension of E2E State Machine

* Introduction of Constraints for
Client-Server Communication.

» Added E2E_PXXForward functionality to
provide a mechanism for replicating
received E2E Errors.

AUTOSAR * Incorporated new configuration options
2019-11-28 | R19-11 I?/Iilr?zsgment for switching between valid and invalid
g state of E2E State Machine.

* Fixed interoperability issues between
P01 and P11, P02 and P22.

» Changed Document Status from Final to
published.

AUTOSAR e . .
« clarification on choosing suitable
2019-03-29 | 1.5.1 Release maximum data lengths for E2E profiles.
Management

» Migrated all functional specifications
from Classic Platform’s SWS E2ELibrary
into Foundation’s E2E Protocol
Specification

» Moved all figures and tables out of

AUTOSAR specifications and added references to
2018-10-31 1.5.0 Release them
Management

* Fixed duplicate/missing figures in
profiles 2 (Calculate DeltaCounter), 5
(Read CRC), 6 (Read Counter) and 11
(Read DatalDNibble).

» Added protocol examples for each profile

AUTOSAR
2018-03-29 | 1.4.0 Release * No content changes

Management

AUTSSAR

AUTOSAR

2017-12-08 | 1.3.0 Release * No content changes
Management
AUTOSAR

2017-10-27 | 1.2.0 Release « Initial Release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

—

Introduction and functional overview 13
Acronyms and Abbreviations 16
Related documentation 17
3.1 Inputdocuments 17
3.2 Standardsand Norms 17
Constraints and assumptions 18
4.1 Limitations 18
411 Limitationsingeneral 18
4.1.2 Limitations in signal based communication 18
4.1.3 Limitations in service oriented communication with events 19
4.1.4 Limitations in service oriented communication in Client/Server archi-
tecture. L 19
4.1.5 Signal to Service Translation 20
4.2 Applicability tocardomains L. 20
Requirements Tracing 21
Functional specification 27
6.1 Overview of communication protection 27
6.2 Overview of E2E Profiles oL 27
6.2.1 Errordetection 29
6.2.2 Common Types of E2E Profiles 29
6.2.2.1 Profile Xm Message Type Enumeration 29
6.2.2.2 Profile Xm Message Result Enumeration 30
6.2.3 General Functionality of an E2E-Profile 30
6.2.3.1 Functionality of the Counter 31
6.2.3.2 Timeoutdetection. 31
6.2.3.3 Cyclic Redundancy Check 32
6.3 Specification of E2E Profiles - GeneralizedPart 32
6.3.1 Counter 33
6.3.2 DatalD e 33
6.3.3 Length 34
6.3.4 CRC e 34
6.3.5 Timeoutdetection, 34
6.3.6 Creationof E2E-Header, 34
6.3.6.1 E2E_PXXProtect() 34
6.3.6.2 E2E PXXForward() 39
6.3.7 Evaluation of the E2E-Header 42
6.3.7.1 E2E_PXXCheck() L 42

6.3.8 GetHeaderInfo 47

AUTSSAR

6.3.9 ProfileDataTypes 48
6.3.9.1 Profile Protect State Type 48
6.3.9.2 Profile Check Status Type 49
6.3.9.3 Profile Check Status Enumeration 49
6.3.9.4 GetHeaderInfoDataTypes 50

6.4 Specification of E2E Profiles for Methods - Generalized Part 50

6.4.1 Counter e 51

6.42 DatalD 52

6.4.3 Length 52

6.44 CRC e 52

6.45 Message Type e 53

6.46 MessageResult 53

6.4.7 SourceID 54

6.4.8 Timeoutdetection, 54

6.4.9 Creationofthe E2Eheader 55
6.4.9.1 E2E_PXXmProtect(), 55
6.4.9.2 E2E_PXXmForward() L. 61

6.4.10 Evaluation of the E2EHeader. 66
6.4.10.1 E2E_PXXmSourceCheck() 66
6.4.10.2 E2E_PXXmSinkCheck() 73

6.4.11 GetHeaderInfo 78

6.4.12 Profile Data Types 79
6.4.12.1 Profile XXm Protect State Type 79
6.4.12.2 Profile XXm Check State Type 80
6.4.12.3 Profile XXm Check Status Enumeration 80
6.4.12.4 GetHeaderInfoData Types 81

6.5 Specification of E2E Profile 1 82

6.5.1 HeaderlLayout 83
6.5.1.1 Counter e 83
6.5.1.2 DatalD. 84
6.5.1.3 CRCcalculation. 86

6.5.2 Creationof E2E-Header 88
6.5.2.1 E2E PO1Protect, 88
6.5.2.2 Calculate CRC 89
6.5.2.3 E2E PO1Forward 92

6.5.3 Evaluation of E2E-Header, 95
6.5.3.1 E2E_PO1Check 95

6.5.4 ProfileDataTypes 101
6.5.4.1 Profile 1 ProtectState Type 101
6.5.4.2 Profile1 Check Status Type 101
6.5.4.3 Profile 1 Check Status Enumeration. 102
6.5.4.4 Profile 1 Configuration Type 104

6.5.5 EZ2E Profile 1 Protocol Examples 105

AUTSSAR

6.5.5.1 DatalDMode set to E2E_PO1_DATAID_ALT 105
6.5.5.2 DatalDMode set to E2E_PO1_DATAID LOW 106
6.5.5.3 DatalDMode set to E2E_PO1_DATAID_NIBBLE 106
6.6 Specification of E2E Profile2 107
6.6.1 HeaderlLayout 108
6.6.1.1 Counter 108
6.6.1.2 DatalD 109
6.6.1.3 CRC e 109
6.6.2 Creationof E2E-Header 110
6.6.2.1 E2E PO2Protect 110
6.6.2.2 E2E PO2Forward 112
6.6.3 Evaluation of the E2E-Check 114
6.6.3.1 E2E_P02Check 114
6.6.4 ProfileDataTypes 125
6.6.4.1 Profile 2 Protect State Type 125
6.6.4.2 Profile2 Check Status Type 125
6.6.4.3 Profile 2 Check Status Enumeration. 126
6.6.4.4 Profile 2 Configuration Type 127
6.6.5 EZ2E Profile 2 Protocol Examples 128
6.7 Specification of E2E Profile4 129
6.7.1 HeaderLayout 130
6.7.2 Profile 4 ConfigurationType 131
6.7.3 EZ2E Profile 4 Protocol Examples 131
6.8 Specification of E2E Profile5 132
6.8.1 Headerlayout 134
6.8.1.1 Counter 134
6.8.1.2 DatalD. e 134
6.8.1.3 Length 135
6.8.1.4 CRC e 135
6.8.2 Creationofthe E2E-Header. 135
6.8.2.1 E2E PO5Protect, 135
6.8.22 E2E POSForward 138
6.8.3 Evaluation of the E2E-Header 140
6.8.3.1 E2E_PO5Check 140
6.8.4 ProfileDataTypes 141
6.8.4.1 Profile 5 Protect State Type 141
6.8.4.2 Profile 5Check Status Type 141
6.8.4.3 Profile 5 Check Status Enumeration. 142
6.8.4.4 Profile 5 Configuration Type 143
6.8.5 EZ2E Profile 5 Protocol Examples 143
6.9 Specification of E2E Profile6 144
6.9.1 Headerlayout 145

6.9.1.1 Counter 146

AUTSSAR

6.9.1.2 DatalD. 146
6.9.1.3 Length 147
6.9.1.4 CRC 147
6.9.2 Creationof E2E-Header L. 147
6.9.2.1 E2E PO6Protect 147
6.9.2.2 E2E PO6Forward 149
6.9.3 Evaluation of E2E-Headero L 151
6.9.3.1 E2E_PO06Check 151
6.9.4 ProfileDataTypes 153
6.9.4.1 Profile 6 Protect State Type 153
6.9.4.2 Profile 6 Check Status Type 153
6.9.4.3 Profile 6 Check Status Enumeration. 154
6.9.4.4 Profile 6 Configuration Type 155
6.9.5 EZ2E Profile 6 Protocol Examples 155
6.10Specification of E2E Profile 7 oo L 156
6.10.1 Header layout 157
6.10.2 Profile 7 Configuration Type 158
6.10.3 E2E Profile 7 Protocol Examples 158
6.11Specification of E2E Profile8, 160
6.11.1 Headerlayout 160
6.11.2 Profile 8 Configuration Type 161
6.11.3 E2E Profile 8 Protocol Examples 162
6.12Specification of E2E Profile 11 163
6.12.1 Header Layout 164
6.12.1.1 Counter 165
6.121.2DatalD. 166
6.12.1.3 Length L 167
6.121.4 CRC 167
6.12.2 Creation of the E2E-Header 167
6.12.2.1 E2E_P11Protect oL 167
6.12.2.2 E2E P11Forwardo 171
6.12.3E2E_P11Check 175
6.12.4 Profile 11 Data Types o i 180
6.12.4.1 Profile 11 Protect State Type 180
6.12.4.2 Profile 11 Check Status Type 180
6.12.4.3 Profile 11 Check Status Enumeration 181
6.12.4.4 Profile 11 Configuration Type 181
6.12.5 E2E Profile 11 Protocol Examples 182
6.12.5.1 DatalDMode set to E2E_P11DATAID_NIBBLE 183
6.12.5.2 DatalDMode set to E2E_P11DATAID_NIBBLE, Offset setto 64 183
6.13Specification of E2E Profile22 184
6.13.1 Headerlayout 185

6.13.1.1 Counter 186

AUTSSAR

6.13.1.2DatalD. 186
6.13.1.3 Length 187
6.13.1.4 CRC 187
6.13.2Creationof E2E-Header 187
6.13.2.1 E2E_P22Protect 187
6.13.2.2 E2E_P22Forwardo 190
6.13.3 Evaluation of E2E-Header 192
6.13.3.1 E2E_P22Check 192
6.13.4 Profile22 Data Types 194
6.13.4.1 Profile 22 Configuration Type 194
6.13.5 E2E Profile 22 Protocol Examples 195
6.13.5.1 Offsetsetto64, 196
6.14Specification of E2E Profile44 196
6.14.1 Header Layout 197
6.14.2 Profile 44 Configuration Type 198
6.14.3 E2E Profile 44 Protocol Examples 198
6.15Specification of E2E Profile 76 199
6.15.1 Header Layout 200
6.15.1.1 Counter 201
6.15.1.2 Length L 201
6.15.1.3 CRC e 201
6.15.2 Creation of the E2E-Header 201
6.15.2.1 E2E_P76Protect Lo 201
6.15.3 Evaluation of the E2E-Header 204
6.15.3.1 E2E_P76Check 204
6.15.4 Profile Data Types 207
6.15.4.1 Profile 76 Protect State Type 207
6.15.4.2 Profile 76 Check State Type 207
6.15.4.3 Profile 76 Check Status Enumeration 208
6.15.4.4 Profile 76 Configuration Type 209
6.15.5 E2E Profile 76 Protocol Examples 209
6.16Specification of E2E Profiledm 210
6.16.1 Header Layout 211
6.16.2 Profile 4m Configuration Type 212
6.16.3 E2E Profile 4m Protocol Examples 212
6.16.4 Request Example 213
6.16.5Response Example Lo L 213
6.16.6 Error Response Example oo 214
6.17Specification of E2E Profile 7/m 214
6.17.1 Header Layout 215
6.17.2 Profile 7m Configuration Type 216
6.17.3 E2E Profile 7m Protocol Examples 217

6.17.4 Request Example o 217

AUTSSAR

6.17.5Response Example oL
6.17.6 Error Response Example oo
6.18Specification of E2E Profile8m
6.18.1 HeaderLayout
6.18.2 Profile 8m Configuration Type
6.18.3 E2E Profile 8m Protocol Examples
6.18.4RequestExample Lo
6.18.5Response Example oL
6.18.6 Error Response Example oL
6.19Specification of E2E Profile44m oo
6.19.1 Header Layout
6.19.2 Profile 44m Configuration Type
6.19.3 E2E Profile 44m Protocol Examples
6.19.4 Request Exampleo
6.19.5Response Example L
6.19.6 Error Response Example oL
6.20Specification of E2E state machine
6.20.1 Overview of the state machine
6.20.2 State machine specification o oL
6.20.2.1 Transition from E2E_SM _NODATA
6.20.2.2 Transitionfrom E2E_SM INIT
6.20.2.3 TransitionfromE2E SM VALID
6.20.2.4 Transition from E2E_SM INVALID
6.20.3 State Machine Types
6.20.3.1 E2E State Machine Configuration Type
6.20.3.2 E2E State Machine State Type
6.20.3.3 E2E State Machine Status Enumeration
6.20.3.4 Profile specific Check Status to State Machine Check Status
Mappings
6.20.4 FTTl and E2E Parameters,

7 EZ2E API specification

7.1 APl of middleware to applications
7.2 APIof E2E

8 Configuration Parameters

8.1 GeneralConstraints
8.1.1 EZ2E State Machine Settings

9 Protocol usage and guidelines

9.1 E2Eand SOME/IP e
9.2 Client-Server Communication
9.3 Periodicuse of E2Echeck L.
9.4 Errorhandling
9.5 Maximal lengths of Data, communicationbuses

AUTSSAR

9.6 Functional Safety Requirements 256
9.7 Message Layout 257
9.7.1 Alignment of signals to byte limits 257
9.7.2 Unusedbits e 258
9.7.3 Byteorder (Endianness) Lo oL 258
9.8 Configuration constraintsonDatalDs 259
9.8.1 DatalDs e 259
9.8.2 Double Data ID configuration of E2E Profiletand 11 260
9.8.3 Alternating Data ID configuration of E2E Profile 1 and 11 260
9.8.4 Nibble configuration of E2E Profiletand11. 260
A Usage and generation of DatalD Lists for E2E profile 2 and 22 262
A.1 Example A (persistent routingerror) 262
A1 Assumptions 262
A1.2 Solution L 263
A.1.3 Example B (forbidden configuration) 264
A2 Conclusion e e 265
A3 DatalD Listexample 265
B Change history of AUTOSAR traceable items 274
B.1 Traceable item history of this document according to AUTOSAR Release
R19-11 . . e 274
B.1.1 Added Constraints 274
B.1.2 Changed Constraints 274
B.1.3 Deleted Constraints 274
B.1.4 Added Specificationltems o oL 275
B.1.5 Changed Specificationltems 275
B.1.6 Deleted Specificationltems 275
B.2 Traceable item history of this document according to AUTOSAR Release
R20-11 e 275
B.2.1 Added Constraintsin R20-11 275
B.2.2 Changed Constraints in R20-11 275
B.2.3 Deleted Constraints in R20-11 275
B.2.4 Added Specification ltemsin R20-11 275
B.2.5 Changed Specification ltemsin R20-11 282
B.2.6 Deleted Specification Itemsin R20-11 284
B.3 Traceable item history of this document according to AUTOSAR Release
R21-11 . . e 285
B.3.1 Added Constraintsin R21-11 285
B.3.2 Changed Constraintsin R21-11 285
B.3.3 Deleted Constraintsin R21-11 285
B.3.4 Added Specification ltemsinR21-11 286
B.3.5 Changed Specification ltemsinR21-11 288

B.3.6 Deleted Specification ItemsinR21-11 293

AUTSSAR

B.4 Traceable item history of this document according to AUTOSAR Release

R22-11 . . . e 293
B.4.1 Added Constraintsin R22-11 293
B.4.2 Changed Constraintsin R22-11 293
B.4.3 Deleted Constraints in R22-11 294
B.4.4 Added Specification ltemsinR22-11 294
B.4.5 Changed Specification ltemsinR22-11 295
B.4.6 Deleted Specification Itemsin R22-11 296

B.5 Traceable item history of this document according to AUTOSAR Release

R23-11 . . e 302
B.5.1 Added Constraints in R23-11 302
B.5.2 Changed Constraintsin R23-11 302
B.5.3 Deleted Constraints in R23-11 303
B.5.4 Added Specification ltemsin R23-11 303
B.5.5 Changed Specification ltems in R23-11 303
B.5.6 Deleted Specification temsin R23-11 304

B.6 Traceable item history of this document according to AUTOSAR Release

R24-11 . . . e 304
B.6.1 Added Constraintsin R24-11 304
B.6.2 Changed Constraintsin R24-11 304
B.6.3 Deleted Constraintsin R24-11 304
B.6.4 Added Specification ItemsinR24-11 304
B.6.5 Changed Specification ItemsinR24-11 307
B.6.6 Deleted Specification Itemsin R24-11 309

B.7 Traceable item history of this document according to AUTOSAR Release

R25-11 . . e 310
B.7.1 Added Constraintsin R25-11 310
B.7.2 Changed Constraints in R25-11 310
B.7.3 Deleted Constraintsin R25-11 310
B.7.4 Added Specification Itemsin R25-11 311
B.7.5 Changed Specification ltemsin R25-11 312

B.7.6 Deleted Specification ltemsin R25-11 313

AUTSSAR

1 Introduction and functional overview

The concept of E2E communication protection assumes that safety-related [1] data
exchange shall be protected at runtime against the effects of faults on the communica-
tion link (see Figure 1.1). Faults detected between a sender and a receiver using E2E
communication protection include systematic software faults, such as faults that are
introduced on the lower communication layers of sender or receiver, and random hard-
ware faults introduced by the MCU hardware, communication peripherals, transceivers,
communication lines or other communication infrastructure.

Examples for such faults are random HW faults (e.g. corrupt registers of a CAN
transceiver), interference (e.g. due to EMC), and systematic faults of the lower com-
munication layers (e.g. RTE, I0C, COM and network stacks).

ECU 1 ECU 2
Sender Receiver

upper upper
Communication Communication
Layers Layers
E2E E2E
Communication Communication
Protection Protection
Lower Lower
Communication Communication
Layers Layers

MCU Hardware MCU Hardware

Communication
Infrastructure

Figure 1.1: Overview of E2E communication protection between a sender and a receiver

By using E2E communication protection mechanisms, faults in lower software and
hardware layers can be detected and handled at runtime. The E2E Supervision pro-
vides mechanisms for E2E communication protection, adequate for safety-related com-
munication having requirements up to ASIL D.

The algorithms of protection mechanisms are implemented in the E2E Supervision.
The callers of the E2E Supervision are responsible for the correct usage of the E2E
Supervision, in particular for providing correct parameters the E2E Supervision rou-
tines.

AUTSSAR

The E2E communication protection allows the following:
1. It protects the safety-related data to be sent by adding control data,
2. It verifies the safety-related data received using this control data, and
3. It provides the check result to the receiver, which then has to handle it sufficiently.

To provide the appropriate solution addressing flexibility and standardization,
AUTOSAR specifies a set of flexible E2E profiles that implement an appropriate combi-
nation of E2E communication protection mechanisms. Each specified E2E profile has
a fixed set of mechanisms, as well as configuration options to configure the protocol
header layout and status evaluation on the receiver side.

The E2E Supervision can be invoked from communication middleware e.g. from Adap-
tive Platform’s ara::com, Classic Platform’s RTE. It can be also invoked in a non-
standardized way from other software, e.g. non-volatile memory managers, local IPCs,
or intra-ECU bus stacks.

Appropriate usage of the E2E Supervision to fulfill the specific safety requirements for
communication depends on several aspects. The specified profiles are capable, to
a high probability, of detecting a large variety of communication faults. However, the
use of a specific E2E profile requires the user to demonstrate that the selected pro-
file provides sufficient error detection capabilities for the considered use case (taking
into account various contributing factors, such as hardware failure rates, bit error rates,
number of nodes in the network, repetition rate of messages, the usage of a gateway,
potential software faults on the communication channel), as well as appropriate reac-
tion on detected faults (e.g. by revoking repeated messages, determining timed-out
communication or reacting on corrupt messages by initiating a safety reaction).

This specification specifies also the functionality, APl and the configuration of the CRC
routines.

The following routines for CRC calculation are specified:
+ CRC8: SAEJ1850

CRC8H2F: CRC8 0x2F polynomial

CRC16

CRC32

CRC32P4: CRC32 0xF4ACFB13 polynomial

CRC64: CRC-64-ECMA

For all routines (CRC8, CRC8H2F, CRC16, CRC32, CRC32P4 and CRC64), the fol-
lowing calculation methods are possible:

 Table based calculation: Fast execution, but larger code size (ROM table)

» Runtime calculation: Slower execution, but small code size (no ROM table)

AUTSSAR

» Hardware supported CRC calculation (device specific): Fast execution, less CPU
time

All routines are re-entrant and can be used by multiple applications at the same time.
Hardware supported CRC calculation may be supported by some devices in the future.

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Communica-
tion Management that are not included in the [2, AUTOSAR glossary].

, Abbreviation / Acronym:

Description:

Data ID

An identifier that uniquely identifies the message / data element /
data.

Source ID An identifier that uniquely identifies the source of the message /
data element / data (i.e., in case different sources produce the
same message / data element / data — like different clients invok-
ing the same method at a server).

Repetition The same message was received more than once.

Loss A message was not received.

Delay A message was received later than expected.

Insertion Unexpected information or an extra message was inserted.

Masquerade non-authentic information is accepted as authentic information

by a receiver.

Incorrect addressing

information is accepted from an incorrect sender or by an incor-
rect receiver.

Corruption

A communication fault, which changes information.

Asymmetric information

Receivers do receive different information from the same sender.

Subset

Information from a sender received by only a subset of the re-
ceivers.

Blocking Blocking access to a communication channel.

FTTI Fault tolerant time interval, maximum time a fault can be active
before a hazard occurs.

tFD Fault detection time interval. Time between occurence of a fault
and its detection.

tFR Fault reaction time interval. Time between fault detection and

the reaction to the fault (switching to safe state or starting an
emergency operation).

Table 2.1: Acronyms and Abbreviations

AUTSSAR

3

3.1
[1]

[2]
[3]

[4]

3.2

1.
2.

Related documentation

Input documents

ISO 26262:2018 Road vehicles -— Functional Safety
https://www.iso.org

Glossary
AUTOSAR_FO_TR_Glossary

Specification of CRC Library
AUTOSAR_CP_SWS CRCLibrary

Specification of SW-C End-to-End Communication Protection Library
AUTOSAR_CP_SWS_EZ2ELibrary

Standards and Norms

SAE-J1850 8-bit CRC
CCITT-FALSE 16-bit CRC. Refer to:

ITU-T Recommendation X.25 (10/96) (Previously ,CCITT Recommendation”)
SERIES X: DATA NETWORKS AND OPEN SYSTEM COMMUNICATION

Public data networks - Interfaces

Interface between Data Terminal Equipment (DTE) and Data Circuit-terminating
Equipment (DCE) for terminals operating in the packet mode and connected to
public data networks by dedicated circuit

Section 2.2.7.4 ,Frame Check Sequence (FCS) field” and Appendix | ,Examples
of data link layer transmitted bit patterns by the DCE and the DTE”
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.
25-199610-1I!!PDF-E&type=items

IEEE 802.3 Ethernet 32-bit CRC
”32-Bit Cyclic Redundancy Codes for Internet Applications” [Koopman 2002]

Collection and evaluation of CRC polynomials by Philip Koopman, Carnegie Mel-
lon University https://users.ece.cmu.edu/~koopman/crc/

https://www.iso.org
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.25-199610-I!!PDF-E&type=items
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.25-199610-I!!PDF-E&type=items
https://users.ece.cmu.edu/~koopman/crc/

AUTSSAR

4 Constraints and assumptions

4.1 Limitations

E2E communication protection is limited depending on the used type of communica-
tion. From E2E perspective the following types are distinguished:

+ Signal based communication

« Service oriented communication with events

 Service oriented communication in Client/Server architecture
» Signal to Service Translation

In general, the behavior of the E2E protection mechanisms should be the same. How-
ever, some limitations exist depending on the communication type.

4.1.1 Limitations in general

« Communication errors which are detected at lower layer (e.g. by Ethernet FCS,
IP header checksum, UDP checksum, SOME/IP header irregularities) will lead to
discarding the related message. Thus, these messages might not reach the
application at all.

4.1.2 Limitations in signhal based communication

It is also called sender/receiver communication.

« E2E communication protection is limited to periodic or semi-periodic data com-
munication paradigm, where the receiver has any expectancy on the regular re-
ception of data and in case of communication loss/timeout or error, it performs an
error handling.

* If one of E2E functions to protect (sender) or to check (receiver) is not called
periodically, then some communication failure modes (loss, delay) may not be
detected.

« If E2E protection is invoked at the level of data elements (e.g. from SW-Cs) and
1:N communication model is used and the data elements are sent using more
than one IPDU, then all these I-PDUs shall have the same layout.

» Currently AUTOSAR does not provide the functionality to describe and handle
more than one layout for the same data element (e.g. within the RTE) by using
different protection mechanisms depending on Intra-ECU and Inter-ECU commu-
nication. Thus, for a 1:N sender-receiver relationship the user of E2E-protection
is responsible to select one appropriate layout for the to be protected data ele-
ments. E.g. for a 1:N sender-receiver relationship the message layout can be

AUTSSAR

used for the transmission of data elements protected by protection to receivers
located within and without the ECU.

« If a given sender-receiver communication is only intra-ECU (within microcon-
troller), then it is not defined within the configuration what the layout of the se-
rialized Data shall be. On the other side, as the communication is intra-ECU, on
both sides the software is probably generated by the same RTE generator, so
the decision on the layout can be specific to the generator. It is recommended
to serialize the data to have the CRC at the profile-specific position of the CRC
and the Counter at the profile-specific position of the Counter (like for inter-ECU
communication).

» Non-blocking characteristics of queued sender-receiver communication only is
considered (blocking characteristic for queued communication is not supported).

4.1.3 Limitations in service oriented communication with events

It is also called event communication. (Note that here the name event is a bit confusing
as a periodic communication is required. This is taken from the SOME/IP event.)

« E2E communication protection is limited to periodic or semi-periodic data com-
munication paradigm, where the receiver has any expectancy on the regular re-
ception of data and in case of communication loss/timeout or error, it performs an
error handling.

« If one of the E2E functions to protect (sender) or to check (receiver) data is not
called periodically, then some communication failure modes (loss, delay) may not
be detected.

4.1.4 Limitations in service oriented communication in Client/Server architec-
ture

The specified E2E communication protection for methods is limited to

« Communication between N clients and one dedicated server (N:1); this means,
an E2E protected service is provided by exactly one server per system. In other
words, if E2E protection is invoked at the level of data elements, then N:1 multi-
plicity, implicit communication, and remaining communication models (in particu-
lar client-server model) are not supported.

The specified E2E communication protection for methods may not detect all communi-
cation failure modes:

+ If method requests are not invoked periodically, then some communication failure
modes (loss, delay) may not be detected for received requests at the server.

» For C/S communication the following use cases need to be considered:

AUTSSAR

In case of using any PXX profile the defined E2E protection mechanisms assume
no a priori knowledge at the server about the client that is requesting data (N:1
communication), communication failure modes (repetition, insertion) which are
client specific may not be detected for received requests at the server. In this
case, additional measures need to be implemented at application level to address
those non-detected failure modes and complete E2E protection or arguments are
to be provided showing that these failure modes are not relevant for a particular
project.

In case of using E2E PXXm profiles, those failure modes could be covered.
These profiles include the sourcelD of the calling client which give the servers
the possibility to distinguish them.

The values of the following E2E parameters are defined by the standard and shall not
be changed.

dataldMode
counterOffset
crcOffset
dataldNibbleOffset

offset

E2E Profiles 1, 2, 11 and 22 are not suggested to be used in Client-Server Communi-
cation.

4.1.5 Signal to Service Translation

Signal to service translation is limited to translation between sender/receiver and ser-
vice oriented communication with events.

4.2

Applicability to car domains

The E2E supervision is applicable for the realization of safety-related automotive sys-
tems implemented by various SW-Cs distributed across different ECUs in a vehicle,
interacting via communication links. The Supervision may also be used for intra-ECU
communication (e.g. between memory partitions, processes, OSes/VMs in the same
microcontroller, between CPU cores or microcontrollers).

AUTSSAR

5 Requirements Tracing

Requirement

Description

Satisfied by

[RS_E2E_08527]

Implementation of E2E protocol shall
fulfill ISO 26262

[PRS_E2E_00219] [PRS_E2E_00372]
[PRS_E2E_00394] [PRS_E2E_00479]
[PRS_E2E_00480] [PRS_E2E_00503]
[PRS_E2E_00522] [PRS_E2E_00870]
[PRS_E2E_00875] [PRS_E2E_00877]
[PRS_E2E_00882] [PRS_E2E_00888]
[PRS_E2E_00894] [PRS_E2E_00904]
[PRS_E2E_01318] [PRS_E2E_01456]

[RS_E2E_08528]

E2E protocol shall provide different
E2E profiles

[PRS_E2E_00012] [PRS_E2E_00075]
[PRS_E2E_00076] [PRS_E2E_00085]
[PRS_E2E_00117] [PRS_E2E_00118]
[PRS_E2E_00119] [PRS_E2E_00120]
[PRS_E2E_00121] [PRS_E2E_00122]
[PRS_E2E_00123] [PRS_E2E _00124]
[PRS_E2E_00125] [PRS_E2E_00126]
[PRS_E2E_00127] [PRS_E2E_00128]
[PRS_E2E_00129] [PRS_E2E_00130]
[PRS_E2E_00132] [PRS_E2E_00133]
[PRS_E2E_00134] [PRS_E2E_00135]
[PRS_E2E_00136] [PRS_E2E_00137]
[PRS_E2E_00138] [PRS_E2E_00139]
[PRS_E2E_00140] [PRS_E2E_00141]
[PRS_E2E_00142] [PRS_E2E_00143]
[PRS_E2E_00145] [PRS_E2E_00146]
[PRS_E2E_00147] [PRS_E2E_00148]
[PRS_E2E_00149] [PRS_E2E_00150]
[PRS_E2E_00151] [PRS_E2E_00163]
[PRS_E2E_00169] [PRS_E2E_00190]
[PRS_E2E_00195] [PRS_E2E_00196]
[PRS_E2E_00298] [PRS_E2E_00299]
[PRS_E2E_00300] [PRS_E2E_00301]
[PRS_E2E_00306] [PRS_E2E_00400]
[PRS_E2E_00420] [PRS_E2E_00508]
[PRS_E2E_00526] [PRS_E2E_00540]
[PRS_E2E_00541] [PRS_E2E_00588]
[PRS_E2E_00589] [PRS_E2E_00591]
[PRS_E2E_00592] [PRS_E2E_00594]
[PRS_E2E_00596] [PRS_E2E_00597]
[PRS_E2E_00598] [PRS_E2E_00599]
[PRS_E2E_00600] [PRS_E2E_00608]
[PRS_E2E_00609] [PRS_E2E_00610]
[PRS_E2E_00611] [PRS_E2E_00612]
[PRS_E2E_00613] [PRS_E2E_00614]
[PRS_E2E_00641] [PRS_E2E_00644]
[PRS_E2E_00645] [PRS_E2E_00646]
[PRS_E2E_00647] [PRS_E2E_00648]
[PRS_E2E_00651] [PRS_E2E_00652]
[PRS_E2E_00653] [PRS_E2E_00654]
[PRS_E2E_00655] [PRS_E2E_00656]
[PRS_E2E_00657] [PRS_E2E_00660]
[PRS_E2E_00661] [PRS_E2E_00662]
[PRS_E2E_00663] [PRS_E2E_00666]
[PRS_E2E_00667] [PRS_E2E_00668]
[PRS_E2E_00669] [PRS_E2E_00670]
[PRS_E2E_00673] [PRS_E2E_00677]
[PRS_E2E_00706] [PRS_E2E_00735]
[PRS_E2E_00739] [PRS_E2E_00743]
[PRS_E2E_00851] [PRS_E2E_00852]
[PRS_E2E_00855] [PRS_E2E_00856]
[PRS_E2E_00857] [PRS_E2E_00858]
v

AUTSSAR

Requirement

Description

Satisfied by

yAN
[PRS_E2E_00859] [PRS_E2E_00860]
[PRS_E2E_00862] [PRS_E2E_00863]
[PRS_E2E_00864] [PRS_E2E_00866]
[PRS_E2E_00867] [PRS_E2E_00868]
[PRS_E2E_00869] [PRS_E2E_00871]
[PRS_E2E_00872] [PRS_E2E_00873]
[PRS_E2E_00874] [PRS_E2E_00876]
[PRS_E2E_00878] [PRS_E2E_00879]
[PRS_E2E_00880] [PRS_E2E_00881]
[PRS_E2E_00883] [PRS_E2E_00884]
[PRS_E2E_00885] [PRS_E2E_00886]
[PRS_E2E_00887] [PRS_E2E_00889]
[PRS_E2E_00891] [PRS_E2E_00892]
[PRS_E2E_00893] [PRS_E2E_00898]
[PRS_E2E_00900] [PRS_E2E_00902]
[PRS_E2E_00905] [PRS_E2E_00907]
[PRS_E2E_00909] [PRS_E2E_00911]
[PRS_E2E_00912] [PRS_E2E_00913]
[PRS_E2E_00914] [PRS_E2E_00915]
[PRS_E2E_00916] [PRS_E2E_00917]
[PRS_E2E_00918] [PRS_E2E_00919]
[PRS_E2E_00920] [PRS_E2E_00921]
[PRS_E2E_01154] [PRS_E2E_01159]
[PRS_E2E_01160] [PRS_E2E_01161]
[PRS_E2E_01162] [PRS_E2E 01163]
[PRS_E2E_01164] [PRS_E2E_01165]
[PRS_E2E_01166] [PRS_E2E_01199]
[PRS_E2E_01200] [PRS_E2E_01201]
[PRS_E2E_01202] [PRS_E2E_01203]
[PRS_E2E_01206] [PRS_E2E_01250]
[PRS_E2E_01251] [PRS_E2E_01252]
[PRS_E2E_01401] [PRS_E2E_01409]
[PRS_E2E_01410] [PRS_E2E_01411]
[PRS_E2E_01412] [PRS_E2E 01413]
[PRS_E2E_01414] [PRS_E2E_01415]
[PRS_E2E_01416] [PRS_E2E_01447]
[PRS_E2E_01448] [PRS_E2E_01449]
[PRS_E2E_01450] [PRS_E2E_01451]
[PRS_E2E_01452] [PRS_E2E_01453]
[PRS_E2E_01454] [PRS_E2E_01455]
[PRS_E2E_01457] [PRS_E2E_01458]
[PRS_E2E_01459] [PRS_E2E_01460]
[PRS_E2E_01461] [PRS_E2E_01462]
[PRS_E2E_01463] [PRS_E2E_01464]
[PRS_E2E_01466] [PRS_E2E_01467]
[PRS_E2E_01468] [PRS_E2E_01469]

[RS_E2E_08529]

Each E2E profile shall use an
appropriate subset of specific
protection mechanisms

[PRS_E2E_00070] [PRS_E2E_00218]
[PRS_E2E_00219] [PRS_E2E_00372]
[PRS_E2E_00394] [PRS_E2E_00479]
[PRS_E2E_00480] [PRS_E2E_00503]
[PRS_E2E_00522] [PRS_E2E_00707]
[PRS_E2E_00736] [PRS_E2E_00740]
[PRS_E2E_00783] [PRS_E2E_00865]
[PRS_E2E_00870] [PRS_E2E_00875]
[PRS_E2E_00877] [PRS_E2E_00882]
[PRS_E2E_00888] [PRS_E2E_00894]
[PRS_E2E_00899] [PRS_E2E_00901]
[PRS_E2E_00903] [PRS_E2E_00904]
[PRS_E2E_00906] [PRS_E2E_00908]
[PRS_E2E_00910] [PRS_E2E_01107]
[PRS_E2E_01155] [PRS_E2E 01318]

AUTSSAR

A

Requirement

Description

Satisfied by

[RS_E2E_08530]

Each E2E profile shall define a set of
protection mechanisms and its
behavior

[PRS_E2E_00196] [PRS_E2E_00218]
[PRS_E2E_00219] [PRS_E2E_00372]
[PRS_E2E_00394] [PRS_E2E _00479]
[PRS_E2E_00480] [PRS_E2E_00503]
[PRS_E2E_00522] [PRS_E2E_00707]
[PRS_E2E_00736] [PRS_E2E_00740]
[PRS_E2E_00783] [PRS_E2E_00865]
[PRS_E2E_00870] [PRS_E2E_00875]
[PRS_E2E_00877] [PRS_E2E_00882]
[PRS_E2E_00888] [PRS_E2E_00894]
[PRS_E2E_00899] [PRS_E2E_00901]
[PRS_E2E_00903] [PRS_E2E_00904]
[PRS_E2E_00906] [PRS_E2E_00908]
[PRS_E2E_00910] [PRS_E2E_01107]
[PRS_E2E_01155] [PRS_E2E _01318]

[RS_E2E_08531]

E2E Library shall call the CRC
routines of CRC library

[PRS_E2E_00082] [PRS_E2E_00125]
[PRS_E2E_00126] [PRS_E2E_00134]
[PRS_E2E_00401] [PRS_E2E_00421]
[PRS_E2E_00527] [PRS_E2E_00613]
[PRS_E2E_01207] [PRS_E2E_01402]

[RS_E2E_08533]

CRC used in a E2E profile shall be
different than the CRC used by the
underlying physical communication
protocol

[PRS_E2E_00070] [PRS_E2E_00218]
[PRS_E2E_00219] [PRS_E2E_00372]
[PRS_E2E_00394] [PRS_E2E_00479]
[PRS_E2E_00480] [PRS_E2E_00503]
[PRS_E2E_00522] [PRS_E2E_00707]
[PRS_E2E_00736] [PRS_E2E_00740]
[PRS_E2E_00783] [PRS_E2E_00865]
[PRS_E2E_00870] [PRS_E2E_00875]
[PRS_E2E_00877] [PRS_E2E_00882]
[PRS_E2E_00888] [PRS_E2E_00894]
[PRS_E2E_00899] [PRS_E2E_00901]
[PRS_E2E_00903] [PRS_E2E_00904]
[PRS_E2E_00906] [PRS_E2E_00908]
[PRS_E2E_00910] [PRS_E2E_01107]
[PRS_E2E_01155] [PRS_E2E_01318]

[RS_E2E_08534]

E2E protocol shall provide E2E
Check status to the application

[PRS_E2E_00318] [PRS_E2E_00319]
[PRS_E2E_00320] [PRS_E2E_00322]
[PRS_E2E_00323] [PRS_E2E_00324]
[PRS_E2E_00677] [PRS_E2E_00678]
[PRS_E2E_00828] [PRS_E2E_00853]
[PRS_E2E_00921] [PRS_E2E_00922]
[PRS_E2E_00923] [PRS_E2E_00924]
[PRS_E2E_00925] [PRS_E2E_01443]

[RS_E2E_08537]

SW-Cs shall tolerate a number of
invalid/corrupted received data
elements

[PRS_E2E_00646] [PRS_E2E_00648]
[PRS_E2E_00651] [PRS_E2E_00654]
[PRS_E2E_00657] [PRS_E2E_00660]
[PRS_E2E_00663] [PRS_E2E_00666]
[PRS_E2E_00706] [PRS_E2E_00735]
[PRS_E2E_00851] [PRS_E2E_00852]
[PRS_E2E_00869] [PRS_E2E_00872]
[PRS_E2E_00876] [PRS_E2E_00881]
[PRS_E2E_00886] [PRS_E2E_00887]
[PRS_E2E_00893] [PRS_E2E_00898]
[PRS_E2E_00900] [PRS_E2E_00902]
[PRS_E2E_00905] [PRS_E2E_00907]
[PRS_E2E_01415] [PRS_E2E_01416]

AUTSSAR

A

Requirement

Description

Satisfied by

[RS_E2E_08539]

An E2E protection mechanism for
inter-ECU communication of short to
large data shall be provided

[PRS_E2E_00345] [PRS_E2E_00354]
[PRS_E2E_00375] [PRS_E2E_00397]
[PRS_E2E_00399] [PRS_E2E_00400]
[PRS_E2E_00401] [PRS_E2E_00403]
[PRS_E2E_00404] [PRS_E2E_00405]
[PRS_E2E_00406] [PRS_E2E_00407]
[PRS_E2E_00409] [PRS_E2E_00411]
[PRS_E2E_00412] [PRS_E2E_00413]
[PRS_E2E_00414] [PRS_E2E_00416]
[PRS_E2E_00417] [PRS_E2E_00419]
[PRS_E2E_00420] [PRS_E2E_00421]
[PRS_E2E_00423] [PRS_E2E_00424]
[PRS_E2E_00425] [PRS_E2E_00426]
[PRS_E2E_00427] [PRS_E2E_00428]
[PRS_E2E_00429] [PRS_E2E_00430]
[PRS_E2E_00431] [PRS_E2E_00432]
[PRS_E2E_00433] [PRS_E2E_00434]
[PRS_E2E_00436] [PRS_E2E_00466]
[PRS_E2E_00467] [PRS_E2E_00469]
[PRS_E2E_00470] [PRS_E2E_00504]
[PRS_E2E_00505] [PRS_E2E_00506]
[PRS_E2E_00507] [PRS_E2E_00508]
[PRS_E2E_00509] [PRS_E2E_00510]
[PRS_E2E_00511] [PRS_E2E_00512]
[PRS_E2E_00513] [PRS_E2E_00514]
[PRS_E2E_00515] [PRS_E2E_00516]
[PRS_E2E_00517] [PRS_E2E_00518]
[PRS_E2E_00519] [PRS_E2E_00521]
[PRS_E2E_00523] [PRS_E2E_00524]
[PRS_E2E_00525] [PRS_E2E_00526]
[PRS_E2E_00527] [PRS_E2E_00528]
[PRS_E2E_00529] [PRS_E2E_00530]
[PRS_E2E_00531] [PRS_E2E_00532]
[PRS_E2E_00533] [PRS_E2E_00534]
[PRS_E2E_00535] [PRS_E2E_00536]
[PRS_E2E_00537] [PRS_E2E_00539]
[PRS_E2E_00582] [PRS_E2E_00583]
[PRS_E2E_00607] [PRS_E2E_00619]
[PRS_E2E_00620] [PRS_E2E_00621]
[PRS_E2E_00622] [PRS_E2E_00623]
[PRS_E2E_00624] [PRS_E2E_00625]
[PRS_E2E_00630] [PRS_E2E_00631]
[PRS_E2E_00632] [PRS_E2E_00633]
[PRS_E2E_00634] [PRS_E2E_00635]
[PRS_E2E_00636] [PRS_E2E_00637]
[PRS_E2E_00639] [PRS_E2E_00640]
[PRS_E2E_00654] [PRS_E2E_00675]
[PRS_E2E_00676] [PRS_E2E_00881]
[PRS_E2E_01156] [PRS_E2E_01157]
[PRS_E2E_01159] [PRS_E2E_01161]
[PRS_E2E_01162] [PRS_E2E_01163]
[PRS_E2E_01164] [PRS_E2E_01165]
[PRS_E2E_01166] [PRS_E2E_01167]
[PRS_E2E_01169] [PRS_E2E_01170]
[PRS_E2E_01171] [PRS_E2E_01172]
[PRS_E2E_01173] [PRS_E2E_01174]
[PRS_E2E_01175] [PRS_E2E_01176]
[PRS_E2E_01177] [PRS_E2E 01178]
[PRS_E2E_01179] [PRS_E2E_01180]
[PRS_E2E_01181][PRS_E2E 01182]
[PRS_E2E_01183] [PRS_E2E_01184]
[PRS_E2E_01185] [PRS_E2E_01186]
[PRS_E2E_01187] [PRS_E2E_01188]
v

AUTSSAR

Requirement

Description

Satisfied by

yAN

[PRS_E2E_01189] [PRS_E2E_01190]
[PRS_E2E 01191] [PRS_E2E 01192]
[PRS_E2E_01193] [PRS_E2E_01194]
[PRS_E2E_01195] [PRS_E2E_01196]
[PRS_E2E_01197] [PRS_E2E_01198]
[PRS_E2E_01203] [PRS_E2E_01205]
[PRS_E2E_01206] [PRS_E2E_01209]
[PRS_E2E_01210] [PRS_E2E_01211]
[PRS_E2E_01212] [PRS_E2E_01213]
[PRS_E2E_01214] [PRS_E2E_01215]
[PRS_E2E_01216] [PRS_E2E 01217]
[PRS_E2E_01218] [PRS_E2E_01219]
[PRS_E2E_01220] [PRS_E2E_01221]
[PRS_E2E_01222] [PRS_E2E_01223]
[PRS_E2E_01224] [PRS_E2E_01225]
[PRS_E2E_01226] [PRS_E2E_01227]
[PRS_E2E_01228] [PRS_E2E_01253]
[PRS_E2E_01254] [PRS_E2E _01255]
[PRS_E2E_01400] [PRS_E2E_01401]
[PRS_E2E_01402] [PRS_E2E_01403]
[PRS_E2E_01405] [PRS_E2E_01406]
[PRS_E2E_01407] [PRS_E2E_01408]
[PRS_E2E_01415] [PRS_E2E_01416]
[PRS_E2E_01420] [PRS_E2E_01422]
[PRS_E2E_01424] [PRS_E2E _01427]
[PRS_E2E_01429] [PRS_E2E_01430]
[PRS_E2E_01433] [PRS_E2E_01437]
[PRS_E2E_01438] [PRS_E2E_01439]
[PRS_E2E_01440] [PRS_E2E_01441]
[PRS_E2E_01442] [PRS_E2E _01471]
[PRS_E2E_01472]

[RS_E2E_08540]

E2E protocol shall support protected
periodic/mixed periodic
communication

[PRS_E2E_01444] [PRS_E2E_01445]
[PRS_E2E_01446]

[RS_E2E_08541]

E2E protocol shall support protected
non-periodic communication

[PRS_E2E_01444] [PRS_E2E_01446]
[PRS_E2E_01465]

[RS_E2E_08542]

E2E protocol shall support dynamic
restart of communication peers

[PRS_E2E_00324] [PRS_E2E_00923]
[PRS_E2E_00924] [PRS_E2E_00925]

[RS_E2E_08543]

E2E protocol shall support variable
length of transmitted data

[PRS_E2E_00218] [PRS_E2E_00219]
[PRS_E2E_00372] [PRS_E2E_00394]
[PRS_E2E_00479] [PRS_E2E_00480]
[PRS_E2E_00503] [PRS_E2E_00522]
[PRS_E2E_00865] [PRS_E2E_00870]
[PRS_E2E_00875] [PRS_E2E_00877]
[PRS_E2E_00882] [PRS_E2E_00888]
[PRS_E2E_00894] [PRS_E2E_00904]
[PRS_E2E_01318]

[RS_E2E_08544]

E2E protocol shall provide a timeout
detection mechanism

[PRS_E2E_00218] [PRS_E2E_00219]
[PRS_E2E_00372] [PRS_E2E_00394]
[PRS_E2E_00479] [PRS_E2E_00480]
[PRS_E2E_00503] [PRS_E2E_00522]
[PRS_E2E_00865] [PRS_E2E_00870]
[PRS_E2E_00875] [PRS_E2E_00877]
[PRS_E2E_00882] [PRS_E2E_00888]
[PRS_E2E_00894] [PRS_E2E_00904]
[PRS_E2E 01318]

AUTSSAR

A

Requirement

Description

Satisfied by

[RS_E2E_08545]

E2E protocol shall provide a detection
mechanism for corrupted data

[PRS_E2E_00218] [PRS_E2E_00219]
[PRS_E2E_00372] [PRS_E2E_00394]
[PRS_E2E_00479] [PRS_E2E_00480]
[PRS_E2E_00503] [PRS_E2E_00522]
[PRS_E2E_00865] [PRS_E2E_00870]
[PRS_E2E_00875] [PRS_E2E_00877]
[PRS_E2E_00882] [PRS_E2E_00888]
[PRS_E2E_00894] [PRS_E2E_00904]
[PRS_E2E 01318]

[RS_E2E_08546]

E2E protocol shall provide a
detection mechanism for masquerade
or incorrect addressing

[PRS_E2E_00218] [PRS_E2E_00219]
[PRS_E2E_00372] [PRS_E2E_00394]
[PRS_E2E_00479] [PRS_E2E_00480]
[PRS_E2E_00503] [PRS_E2E_00522]
[PRS_E2E_00865] [PRS_E2E_00870]
[PRS_E2E_00875] [PRS_E2E_00877]
[PRS_E2E_00882] [PRS_E2E_00888]
[PRS_E2E_00894] [PRS_E2E_00904]
[PRS_E2E_01318]

[RS_E2E_08547]

E2E protocol shall provide a detection
mechanism for repetition, insertion or
incorrect sequence of data

[PRS_E2E_00218] [PRS_E2E_00219]
[PRS_E2E_00372] [PRS_E2E_00394]
[PRS_E2E_00479] [PRS_E2E_00480]
[PRS_E2E_00503] [PRS_E2E_00522]
[PRS_E2E_00865] [PRS_E2E_00870]
[PRS_E2E_00875] [PRS_E2E_00877]
[PRS_E2E_00882] [PRS_E2E_00888]
[PRS_E2E_00894] [PRS_E2E_00904]
[PRS_E2E 01318]

[RS_E2E_08548]

E2E protocol shall provide E2E
overall state to the application

[PRS_E2E_00218] [PRS_E2E_00219]
[PRS_E2E_00372] [PRS_E2E_00394]
[PRS_E2E_00479] [PRS_E2E_00480]
[PRS_E2E_00503] [PRS_E2E_00522]
[PRS_E2E_00678] [PRS_E2E_00865]
[PRS_E2E_00870] [PRS_E2E_00875]
[PRS_E2E_00877] [PRS_E2E_00882]
[PRS_E2E_00888] [PRS_E2E_00894]
[PRS_E2E_00904] [PRS_E2E_00922]
[PRS_E2E_01318]

[RS_E2E_08549]

Each E2E profile shall have a unique
Profile ID

[PRS_E2E_00372] [PRS_E2E_00394]
[PRS_E2E_00479] [PRS_E2E_00503]
[PRS_E2E_00522] [PRS_E2E_00736]
[PRS_E2E_00875] [PRS_E2E_00877]
[PRS_E2E_00882] [PRS_E2E_00888]
[PRS_E2E_00894] [PRS_E2E_00901]
[PRS_E2E_01318]

[RS_E2E_08550]

The implementation of the E2E
Supervision shall provide at least one
of the E2E Profiles

[PRS_E2E_00372] [PRS_E2E_00875]
[PRS_E2E_01318]

Table 5.1: Requirements Tracing

AUTSSAR

6 Functional specification

This chapter contains the specification of the internal functional behavior of the E2E
supervision, this includes how the layout of the E2E-Header is defined, how the
E2E-Header is created and how the E2E-Header is evaluated, and how the E2E-
Statemachine is defined. For general introduction of the E2E supervision, see
Chapter 1.

6.1 Overview of communication protection

An important aspect of a communication protection mechanism is its standardization
and its flexibility for different purposes. This is resolved by having a set of E2E Profiles,
that define a combination of protection mechanisms, a message format, and a set of
configuration parameters.

Moreover, some E2E Profiles have standard E2E variants. An E2E variant is simply
a set of configuration options to be used with a given E2E Profile. For example, in
E2E Profile 1, the positions of CRC and counter are configurable. The E2E variant 1A
requires that CRC starts at bit 0 and counter starts at bit 8.

E2E communication protection works as follows:
« Sender: addition of control fields like CRC or counter to the transmitted data;

» Receiver: evaluation of the control fields from the received data, calculation of
control fields (e.g. CRC calculation on the received data), comparison of calcu-
lated control fields with an expected/received content.

Appdataelement

Appdataelement l E2EHeader |

| CF1 |) | |CF[xJ |
.
. _

Data element forRTE

Figure 6.1: Safety protocol concept (with exemplary location of the E2E header)

Each E2E Profile has a specific set of control fields with a specific functional behavior
and with specific properties for the detection of communication faults.

6.2 Overview of E2E Profiles

The E2E Profiles provide a consistent set of data protection mechanisms, designed to
protecting against the faults considered in the fault model.

AUTSSAR

Each E2E Profile provides an alternative way to protect the communication, by means
of different algorithms. However, E2E Profiles have similar interfaces and behavior.

Each E2E Profile uses a subset of the following data protection mechanisms:
1. A CRC, provided by CRC Supervision;

2. A Sequence Counter incremented at every transmission request, the value is
checked at receiver side for correct incrementation;

3. An Alive Counter incremented at every transmission request, the value checked
at the receiver side if it changes at all, but correct incrementation is not checked;

4. A specific ID for every port data element sent over a port or a specific ID for ev-
ery message-group (global to system, where the system may contain potentially
several ECUs);

5. A specific ID for every source (e.g., client) of a data element or message group

6. A message type distinguishing between requests and responses in case of E2E
communication protection for methods

7. A message result distinguishing between normal and error responses in case of
E2E communication protection for methods

8. Timeout detection:
(a) Receiver communication timeout.
(b) Sender acknowledgement timeout.

Depending on the used communication and network stack, appropriate subsets of
these mechanisms are defined as E2E communication profiles.

Some of the above mechanisms are implemented in RTE, COM, and/or communication
stacks. However, to reduce or avoid an allocation of safety requirements to these
modules, they are not considered: E2E Supervision provides all mechanisms internally
(only with usage of CRC Supervision).

The E2E Profiles can be used for both inter and intra ECU communication. The E2E
Profiles were specified for specific communication infrastructure, such as CAN, CAN
FD, FlexRay, LIN, Ethernet.

Depending on the system, the user selects which E2E Profile is to be used, from the
E2E Profiles provided by E2E Supervision.

AUTSSAR

6.2.1 Error detection

[PRS_E2E 00012]

Upstream requirements: RS_E2E_08528
[The internal Supervision mechanisms error detection and reporting shall be imple-
mented according to the pre-defined E2E Profiles specified in this document. |

[PRS_E2E_00673]

Upstream requirements: RS_E2E_08528

[The AUTOSAR E2E-Protocol shall use the error codes defined in
[PRS_E2E_00855]. |

[PRS_E2E _00855] Error Codes
Upstream requirements: RS_E2E_08528

[
Type or error or status Related code
At least one pointer parameter is a NULL pointer E2E_E_INPUTERR_NULL
At least one input parameter is erroneous, e.g. out of range | E2E_E_INPUTERR_WRONG
Function completed successfully E2E_E_OK
]

6.2.2 Common Types of E2E Profiles

Some E2E profile make use of common data types which are shared among the differ-
ent profiles. — Those shared types are introduced in this section instead of the profile
specific sections.

6.2.2.1 Profile Xm Message Type Enumeration

[PRS_E2E_00739]
Upstream requirements: RS_E2E_08528

[The MessageType argument of the E2E_PXXmProtect, E2E_PXXmForward, and

E2E_PXXmCheck functions shall be set to one of the following enumeration values
(see [PRS_E2E_00856)). |

[PRS_E2E_00856] E2E Profile Xm Message Type Enumeration
Upstream requirements: RS_E2E_08528

[

| Name | Value | Description

AUTSSAR

STD_MESSAGETYPE_REQUEST 0 The type of the message is a request mes-
sage which is sent from the client to the
server.

STD_MESSAGETYPE_RESPONSE 1 The type of the message is a response
message which is sent from the server to
the client.

6.2.2.2 Profile Xm Message Result Enumeration

[PRS_E2E_00743]
Upstream requirements: RS_E2E_08528

[The MessageResult argument of the E2E_PXXmProtect, E2E_PXXmForward, and
E2E_PXXmCheck functions shall be set to one of the following enumeration values
(see [PRS_E2E_00857]).]

[PRS_E2E_00857] E2E Profile Xm Message Result Enumeration
Upstream requirements: RS_E2E_08528

[

Name Value | Description
STD_MESSAGERESULT_OK 0 The type of the result in the response mes-
sage is a normal (i.e., a non erroneus) re-
sult. This value is also used for the re-
quest messages, where the value of this
field is fixed to this value.
STD_MESSAGERESULT_ERROR 1 The type of the result int the response
message is an error (i.e., an erroneus) re-
sult.

6.2.3 General Functionality of an E2E-Profile

Each E2E-Profile provides the following 3 functionalities:
1. Protect
2. Forward
3. Check

The ’protect’ functionality, simply called the ’protect function’ creates the E2E-Header
and therefore protects the data to be sent over a communication medium.

AUTSSAR

The ’forward’ functionality, simply called the *forward function’, is similar to the protect
function and creates the header for the data to be transmitted but allows the additional
replication of a received E2E-State. The main use-case for this function is Signal-
Service-Translation where e.g. a E2E-protected signal is received, and the E2E-Status
shall be replicated on the outgoing side.

The ’check’ functionality, simply called the 'check function’, evaluates the E2E-Header
of the received message and checks for occurred communication faults. These faults
are mirrored in the returned E2E-States.

In addition to the single E2E-Profiles a E2E-Statemachine evaluates the returned E2E-
States over a longer period.

6.2.3.1 Functionality of the Counter

On the receiver side, by evaluating the counter of received data against the counter of
previously received data, the following is detected:

1. Repetition:

a. no new data has arrived since last invocation of E2E Supervision check func-
tion,

b. the data is repeated
2. OK:
a. counter is incremented by one (i.e. no data lost),

b. counter is incremented more than by one, but still within allowed limits (i.e.
some data lost),

3. Error: a. counter is incremented more than allowed (i.e. too many data lost).

Case 1 corresponds to the failed alive counter check, and case 3 correspond to failed
sequence counter check.

The above requirements are specified in more details by the UML diagrams in the
following document sections.

6.2.3.2 Timeout detection

The previously mentioned mechanisms (e.g. for Profile 5: CRC, Counter, Data ID)
enable to check the validity of received data element, when the receiver is running
independently from the data transmission, i.e. when receiver is not blocked waiting for
Data Elements or respectively messages, but instead if the receiver reads the currently
available data (i.e. checks if new data is available). Then, by means of the counter, the
receiver can detect loss of communication and timeouts.

AUTSSAR

The attribute State->NewDataAvailable == FALSE means that the transmission
medium (e.g RTE) reports that no new data element is available at the transmission
medium. The attribute State->Status = E2E_ PXXSTATUS_REPEATED means that
the transmission medium (e.g. RTE) provided new valid data element, but this data
element has the same counter as the previous valid data element. Both conditions
represent an unavailability of valid data that was updated since the previous cycle.

6.2.3.3 Cyclic Redundancy Check

The Cyclic Redundancy Check, short CRC, is used to determine if bits flipped during
the transmission of a message.

In contrast to errors indicated based on the evaluation of the counter - CRC-errors are
unlikely to be a ,false alarm’ (e.g. when using a good CRC-polynomial a detected CRC-
error indicates that a data corruption occurred). Considering this fact, it is implausible
that a stream of data without any detected CRC-errors contains a significant number
of undetected corrupted data.

Due to this, a more stringent reaction upon CRC-errors is adequate. After detection of
the first CRC-error on the subsequent data stream may contain a significant number of
undetected corrupted data.

The maximum number of CRC-errors a receiver tolerates shall be limited, because the
probability of receiving more than one undetected erroneous, within its error detection
and qualification time interval, messages cannot be neglected. A wrong CRC indicates,
that the integrity of the communication channel is affected.

The fault tolerance designed into the receiver (see UC_E2E_00170) may be exceeded
as a possible consequence.

6.3 Specification of E2E Profiles - Generalized Part

This chapter contains the part of the specification for E2E profiles that is used in more
than one profile specification. The behavior of E2E profiles is described independently
of a specific profile. Text and figures use placeholder like "XX” which are replaced by a
profile-specific value or text. All profile-specific content, including these placeholders,
is defined in the corresponding profile-specific sub-chapter. This chapter does not
apply to method profiles. This chapter does only apply to profiles where the fields of
DatalD and Length are part of the profile header. The E2E mechanisms can detect the
following faults or effects of faults:

Fault Main safety mechanisms
Repetition of information Counter

Loss of information Counter

Delay of information Counter

Insertion of information Data ID

Masquerading Data ID, CRC

AUTSSAR

Incorrect addressing Data ID
Incorrect sequence of information Counter
Corruption of information CRC

Asymmetric information sent from a sender to | CRC (to detect corruption at any of receivers)
multiple receivers
Information from a sender received by only a | Counter (loss on specific receivers)
subset of the receivers
Blocking access to a communication channel | Counter (loss or timeout)

Table 6.1: Detectable communication faults

6.3.1 Counter

In E2E Profiles the counter is initialized, incremented, reset and checked by E2E profile.
The counter is not manipulated or used by the caller of the E2E Supervision.

[PRS_E2E_01205]
Upstream requirements: RS_E2E_08539

[In E2E Profiles, on the sender side, for the first transmission request of a data element
the counter shall be initialized with 0 and shall be incremented by 1 for every subse-
quent send request. When the counter reaches the maximum value, then it shall restart
with 0 for the next send request. The maximum value of the counter depends on the
size of the counter It is OXFF (8bit counter), OXFF’FF (16bit counter) or OXFF’'FF'FF’'FF
(32 bit). |

6.3.2 DatalD

The unique Data IDs are to verify the identity of each transmitted safety-related data
element.

[PRS_E2E_01438] Uniqueness of Data IDs
Replaces: PRS_E2E_UC 01204
Upstream requirements: RS_E2E_08539

[In E2E profiles, the Data IDs should be globally unique within the network of commu-
nicating system (made of several ECUs each sending different data). |

In case of usage of E2E Supervision for protecting data elements (i.e invocation from
RTE), due to multiplicity of communication (1:1 or 1:N), a consumer of a data element
expects only a specific data element, which is checked by E2E Supervision using Data
ID.

In case of usage of E2E Supervision for protecting messages (i.e. invocation from
COM), the receiver COM expects at a reception only a specific message, which is
checked by E2E Supervision using Data ID.

AUTSSAR

6.3.3 Length

The Length field is introduced to support variable-size length - the Data [] array storing
the serialized data can potentially have a different length in each cycle. The Length
includes user data + E2E Header (CRC + Counter + Length + DatalD).

6.3.4 CRC

E2E Profiles use CRC of different length depending on the length of the message to
ensure a high detection rate and high Hamming Distance.

[PRS_E2E_01206]
Upstream requirements: RS_E2E_08528, RS_E2E_08539

[E2E Profiles shall use the CRC functions listed in chapters Chapter 6.7, Chapter 6.10,
Chapter 6.11, Chapter 6.14, for calculating the CRC. |

Note: The Crc_CalculateCRC32P4() is different from the 32 bit CRCs used by FlexRay,
CAN and TCP/IP. It is also provided by different software modules (FlexRay, CAN and
TCP/IP stack CRCs/checksums are provided by hardware support in Communication
Controllers or by communication stack software, but not by CRC Supervision).

[PRS_E2E_01207]
Upstream requirements: RS_E2E 08531

[The CRC shall be calculated over the entire E2E header (excluding the CRC bytes)
and over the user data. |

6.3.5 Timeout detection

The previously mentioned mechanisms (CRC, Counter, Data ID, Length) enable to
check the validity of received data element, when the receiver is executed indepen-
dently from the data transmission, i.e. when receiver is not blocked waiting for Data
Elements or respectively messages, but instead if the receiver reads the currently avail-
able data (i.e. checks if new data is available). Then, by means of the counter, the
receiver can detect loss of communication and timeouts.

6.3.6 Creation of E2E-Header
6.3.6.1 E2E_PXXProtect()

The function E2E_PXXProtect() performs the steps as specified by the following dia-
grams in this section.

AUTSSAR

[PRS_E2E_01209]
Upstream requirements: RS_E2E_08539

[The function E2E_PXXProtect() shall have the overall behavior as shown in
Figure 6.2. |

"XX" indicates one E2E_PXXProtect(Config, State, Data,
specific E2E profile. Length)

Placeholders are defined
on profile level.
function
[input

Compute offset ~c
Write Length ~c

[wrong
input]

[null
input]

Write Counter ~c

Write DatalD

Compute CRC ~c

Write CRC oo
Increment Countero_o
O,

®
return return return

E2E_E_INPUTERR_NULL E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.2: Behaviour of E2E_PXXProtect()

[PRS_E2E_01210]
Upstream requirements: RS_E2E_08539

[The step "Verify inputs of the protect function” in E2E_PXXProtect() shall behave as
shown in Figure 6.3.

AUTSSAR

EZE_PXXPmteC&())-o “XX" indicates one

specific E2E profile.
Placeholders are defined
on profile level.

(Config I= NULL) && (State != NULL) &&
(Data l=NULL)

[FALSE]
[TRUE]
(Length >= Config->MinDataLength/8) && (Length <= Config-
>MaxDataLength/8)
[FALSE]
[TRUE]
O
.nuII input wrong
input ok input

Figure 6.3: E2E_PXXProtect() step ’Verify inputs of the protect function”

[PRS_E2E_01211]
Upstream requirements: RS_E2E_08539

[The step “Compute offset” in E2E_PXXProtect(), E2E_PXXForward() and
E2E_PXXCheck() shall behave as shown in Figure 6.4. |

E2E_PXXProtect()

8

"XX" indicates one
specific E2E profile.
Placeholders are defined
on profile level.

E2E_PXXSourceCheck

0 (o o)
E2E_PXXForward()
(os o)
(Offset = Config->Offset / 8]

:

Figure 6.4: E2E_PXXProtect(), E2E_PXXForward() and E2E_PXXCheck() step Compute
offset”

compute local varable uint16
Offset, which is in [byte]

[PRS_E2E 01212]
Upstream requirements: RS_E2E_08539

[The step "Write Length” in E2E_PXXProtect() and E2E_PXXForward() shall behave
as shown in Figure 6.5. |

E2E_PXXProtect()

"XX" indicates one specific E2E profile.
Placeholders are defined on profile level.
E2E_PXXForward()

ll

Copy parameter Length to bytestring Data.]
@ Parameter Length has length PXXLENGTH_LEN (in bytes).
Bytes need to be stored in Data at positions Offset + PXXLENGTH_POS
to Offset + PXXLENGTH_POS + PXXLENGTH_LEN - 1.

Figure 6.5: E2E_PXXProtect() and E2E_PXXForward() step Write Length”

[PRS_E2E_01213]
Upstream requirements: RS_E2E_08539

[The step "Write Counter” in E2E_PXXProtect() shall behave as shown in Figure 6.6. |

(=43 [POIREEEl) "XX" indicates one specific E2E
oo
‘ profile. Placeholders are

defined on profile level.

[Copy parameter State->Counter to bytstring Data.]

Parameter State->Counter has length PXXCOUNTER_LEN (in

bytes).
Bytes need to be stored in Data at positions Offset + °
PXXCOUNTER_POS to Offset + PXXCOUNTER POS +

PXXCOUNTER LEN - 1.

Figure 6.6: E2E_PXXProtect() step "Write Counter”

[PRS_E2E_01214]
Upstream requirements: RS_E2E_08539

[The step "Write DatalD” in E2E_PXXProtect() shall behave as shown in Figure 6.7. |

E2E_PXXProtect()
O "XX" indicates one
specific E2E profile.

Placeholders are defined
on profile level.

Copy parameter Config->DatalD to bytestring Data in Big
Endian order.

Parameter Config->DatalD has length PXXDATAID_LEN (in bytes).
Bytes need to be stored in Data at positions Offset +
PXXDATAID_POS to Offset + PXXDATAID_POS + PXXDATAID_LEN
=k

Figure 6.7: E2E_PXXProtect() step "Write DatalD”

AUTSSAR

[PRS_E2E_01215]
Upstream requirements: RS_E2E_08539

[The step "Compute CRC” in E2E_PXXProtect(), E2E_PXXForward() and in
E2E_PXXCheck() shall behave as shown in Figure 6.8.]

E2E_PXXProtect()

"XX" indicates one specific E2E
profile.

Placeholders are defined on profile
E2E_PXXCheck() level.

!!

First execution of "CRC_Calculate" for bytes before CRC
has the following parameters:

Cre_DataPtr: &Data[(0]

Crc_Length: Offset+PXXCRC_POS

_ { Crc_StartValue32: only bytes OxFF (OxFF'FF'FF'FF for 32 bit

T | ero
[ComputedCRC = PXXCALCULATE_CRC] Cre_IsFirstCall: True

Offset +
PXXCRC_POS +

[true] PXXCRC_LEN <) . N]
Length Function for "CRC_Calculate” is defined in placeholder

\|/ PXXCALCULATE_CRC.

[false]
ComputedCRC = PXXCALCULATE_CRC

-] Second execution of "CRC_Calculate” for bytes after CRC has
the following parameters:

Crc_DataPtr: &Data[Offset + PXXCRC_POS + PXXCRC_LEN]
Crc_Length: Length - (Offset + PXXCRC_POS + PXXCRC_LEN)
Crc_StartValue32: ComputedCRC

Cre_|sFirstCall: FALSE

At this step, there is a ready ComputedCRC value, over the
entire E2E-Prodected Data (includung E2E Header (length, ID,
CRC etc) and the user data).

Figure 6.8: E2E_PXXProtect(), E2E_PXXCheck() and E2E_PXXForward() step "Compute
CRC”

[PRS_E2E_01216]
Upstream requirements: RS_E2E_08539

[The step "Write CRC” in E2E_PXXProtect() and E2E_PXXForward() shall behave as
shown in Figure 6.9. |

AUTSSAR

E2E_PXXProtect()
oo "XX" indicates one
. specific E2E profile.

Placeholders are defined

on profile level.
E2E_PXXForward()
O

(Copy variable CRC to bytestring Data in Big Endian order]

Bytes need to be stored in Data at positions Offset
PXXCRC_POS to Offset + PXXCRC_POS +
PXXCRC_LEN - 1.

Variable CRC has length PXXCRC_LEN (in bytes). A‘
¥

@
Figure 6.9: E2E_PXXProtect() and E2E_PXXForward() step ”"Write CRC”

[PRS_E2E_01217]
Upstream requirements: RS_E2E_08539

[The step "Increment Counter” in E2E_PXXProtect() and E2E_PXXForward() shall be-
have as shown in Figure 6.10. |

"XX" indicates one

E2E_PXXProtect() specific E2E profile.
o0 Placeholders are defined
on profile level.
E2E_PXXForward()
(el e)
[State->Counter++ J
After Counter has
@ reached its maximum
value the next Counter
value is 0.

Figure 6.10: E2E_PXXProtect() and E2E_PXXForward() step ”Increment Counter”

6.3.6.2 E2E_PXXForward()

The E2E_PXXForward() function of an E2E profile is called by a SW-C to protect its
application data and to forward an received E2E status for use cases like translation
of signal based to service oriented communication. If the received E2E status equals
E2E_P_OK the behavior of the function shall be the same like E2E_PXXProtect(). The
function E2E_PXXForward() performs the steps as specified by the following diagrams
in this section.

AUTSSAR

[PRS_E2E_01218]
Upstream requirements: RS_E2E_08539

[The function E2E_PXXForward() shall have the overall behavior as shown in

Figure 6.11.]
"XX" indicates one
specific E2E profile.
E2E_PXXForward(Config, State, Data, .
Length, ForwardStatus) v """""" JYReioiCHeckstatels

described in [PRS_E2E_

00597]
[wrong
input]

Verify inputs of the pr%
function

Protect_Compute C%g_o
Write CRC oo
Increment Countero_o

O,

®
retun return retum

E2E_E_INPUTERR_NULL E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.11: Behaviour of E2E_PXXForward()

Following steps are described in section 6.3.6.1
» "Compute Offset” see [PRS_E2E_01211]
» "Write Length” see [PRS_E2E_01212]
» "Compute CRC” see [PRS_E2E_01215]
« "Write CRC” see [PRS_E2E_01216]
* “Increment Counter” see [PRS_E2E 01217]

[PRS_E2E_01228]
Upstream requirements: RS_E2E_08539

[The step "Verify inputs of the forward function” in E2E_PXXForward() shall behave as
shown in Figure 6.12. |

AUTSSAR

"XX" indicates one

E2E_PXXForward() specific E2E profile.
- o

(Config 1= NULL) &&
(State 1= NULL) &&
(Data 1= NULL)

[TRUE]
(FALSE] (Length >= Config->MinDataLength/8) &&
(Length <= Config->MaxDatalLength/8) &&
ForwardStatus = E2E_P_NONEWDATA
[FALSE]
[TRUE]
O,
null input wrong
input ok input

Figure 6.12: E2E_PXXForward() step “Verify inputs of the forward function”

[PRS_E2E_01219]
Upstream requirements: RS_E2E_08539

[The step "Write Counter” in E2E_PXXForward() shall behave as shown in
Figure 6.13.]

E2E_PXXForward()

(os o)
"XX" indicates one specific E2e profile.
Placeholders are defined on profile level.
ForwardStatus ==
E2E_P_WRONGSEQUENCE
ForwardStatus ==
E2E_P_REPEATED [FALSE]
[TRUE] [TRUE] [FALSE]

Config->MaxDeltaCounter

S EaTiEr=~ [State->Counter = State->Counter +]

State->Counter has length
PXXCOUNTER_LEN (in
bytes).

Take care of wrap around
(under-/overflow) over the
whole length of State->
Counter.

b

(Copy parameter State->Counter to bytestring Data in Big Endian order)

Parameter State->Counter has length PXXCOUNTER_LEN
(in bytes).

Bytes needs to be stored in Data at positions Offset +
PXXCOUNTER_POS to Offset + PXXCOUNTER_POS +
PXXCOUNTER_LEN - 1.

Figure 6.13: E2E_PXXForward() step "Write Counter”

AUTSSAR

[PRS_E2E_01220]
Upstream requirements: RS_E2E_08539

[The step "Write DatalD” in E2E_PXXForward() shall behave as shown in Figure 6.14. |

E2E_PXXForward() “"XX" indicates one specific E2E proﬂlelj
(e o)

ForwardStatus ==

E2E_P_ERROR [TRUE] [FALSE]
Copy parameter Config->DatalD + Copy parameter Config-
1 to bytestring Data in Big Endian >DatalD to bytestring Data in
order. Big Endian order.

:

Parameter Config->DatalD has length PXXDATAID_LEN (in bytes). 7

Bytes need to be stored in Data at position Offset +
PXXDATAID_POS to Offset + PXXDATAID_POS + PXXDATAID _LEN
1

Figure 6.14: E2E_PXXForward() step "Write DatalD”

6.3.7 Evaluation of the E2E-Header
6.3.7.1 E2E_PXXCheck()

The function E2E_PXXCheck() performs the actions as specified by the following dia-
grams in this section and according to diagram Figure 6.15.

[PRS_E2E_01221]
Upstream requirements: RS_E2E_08539

[The function E2E_PXXCheck() shall have the overall behavior as shown in
Figure 6.15.]

AUTSSAR

"XX" indicates one
specific E2E profile.

E2E_PXXCheck(Config, State, Data,
Length)

Verify inputs of the Ch%
function
[null

' [input
input [FALSE] oK

[wrong
NewDataAvailable == input
TRUE

L

[TRUE]

Compute offset

)

Read Length

|

Read Counter

Read DatalD

HiHY

Read CRC

Auran

8

Compute CRC

(oo

Do checks

® ®
retum return return

E2E_E_INPUTERR_NULL E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.15: Behaviour of E2E_PXXCheck()

Following steps are described in section 6.3.6.1
» "Compute Offset” see [PRS_E2E_01211]
» "Compute CRC” see [PRS_E2E_01215]
[PRS_E2E_01222]
Upstream requirements: RS_E2E_08539

[The step "Verify inputs of the check function” in E2E_PXXCheck() shall behave as
shown in Figure 6.16. |

AUTSSAR

E2E_PXXCheck() ‘
"XX" indicates one specific Ezlﬁ

profile.

local variable, no need
to store it in the State
- = | structure.

NewDataAvailable
= FALSE

(Config != NULL) && (State !=

NULL)
[FALSE]
[TRUE]
Check: Either both Data
and Length mean that | ---- -
a message is available, (Data = NULL && Length = 0) || (Data == NULL && |
or both mean the Length == 0) [FALSE]
opposite.
[TRUE]
Data !=
| NULL
[FALSE]
[TRUE]
(Length >= Config->MinDatalLength/8) &&
(Length <= Config->MaxDatalLength/8)
This path may
happen at runtime if
queued TRUE
communication is [1 [FALSE]
used and no data is
available (in this case
both Data is NULL NewDataAvailable
and Length is 0). =TRUE
® ®
null input wrong
input ok input

Figure 6.16: E2E_PXXCheck() step ’Verify inputs of the check function”

[PRS_E2E_01223]
Upstream requirements: RS_E2E_08539

[The step "Read Length” in E2E_PXXCheck() shall behave as shown in Figure 6.17.]

E2E_PXXCheck) “XX" indicates one specific E2E profilelﬁ

®

[Copy length value from bytestring Data to local variable ReceivedLength in Big Endian order.]

®

Length has length PXXLENGTH_LEN (in bytes).
Bytes need to be extraced from position Offset +
PXXLENGTH_POS to Offset + PXXLENGTH_POS +
PXXLENGTH_LEN - 1.

Figure 6.17: E2E_PXXCheck() step "Read Length”

AUTSSAR

[PRS_E2E_01224]
Upstream requirements: RS_E2E_08539

[The step "Read Counter” in E2E_PXXCheck() shall behave as shown in Figure 6.18. |

E2E_PXXCheck() "XX" indicates one specific E2E pmﬁle‘.l‘ .
(e o)

Copy counter from bytestring Data to local variable ReceivedCounter in
Big Endian order.

Bytes must be extracted from prosition Offset + PXXCOUNTER_POS to Offset +
PXXCOUNTER_POS + PXXCOUNTER_LEN - 1.

Counter has length PXXCOUNTER_LEN (in bytes). A‘

®

Figure 6.18: E2E_PXXCheck() step ’Read Counter”

[PRS_E2E_01225]
Upstream requirements: RS_E2E_08539

[The step "Read DatalD” in E2E_PXXCheck() shall behave as shown in Figure 6.19. |

E2E_PXXCheck(ey f
XX" indicates one specific E2E pmﬁlelj

Copy DatalD from bytestring Data to local variable
ReceivedDatalD in Big Endian order.

ReceivedDatalD has length PXXDATAID_LEN (in bytes). j

Bytes need to be extracted from position Offset + PXXDATAID_POS to

Offset + PXXDATAID_POS + PXXDATAID_LEN - 1. O
(J

Figure 6.19: E2E_PXXCheck() step ’Read DatalD”

[PRS_E2E_01226]
Upstream requirements: RS_E2E_08539

[The step "Read CRC” in E2E_PXXCheck() shall behave as shown in Figure 6.20. |

AUTSSAR

E2E_PXXCheck()
oo "XX" indicates one specific E2E profile.

Copy CRC from bytestring Data to local variable
ReceivedCRC in Big Endian order.

Bytes need to be extracted from position Offset + PXXCRC_POS to Offset
+ PXXCRC_POS + PXXCRC_LEN - 1.

CRC has length PXXCRC_LEN (in bytes). j

Figure 6.20: E2E_PXXCheck() step ”"Read CRC”

[PRS_E2E_01227]
Upstream requirements: RS_E2E_08539

[The step "Do Checks” in E2E_PXXCheck() shall behave as shown in Figure 6.21. |

E2E_PXXCheck() "XX" indicates one specific E2E proﬁlelj
oo
[FALSE] NewDataAvailable ==
\l/ TRUE
State->Status = [TRUE]
E2E_PXXSTATUS_NONEWDAT [FALSE] ReceivedCRG ==
ComputedCRC
[TRUE]
if applicable for the chosen Profile
[FALSE] =
— ReceivedDatalD == Config-
>DatalD
i [TRUE]
if applicable for the chosen Proﬁl? ReceivedLength ==
[FALSE] ...
L Length
\l/ [TRUE]
v

State->Status =
E2E_PXXSTATUS_ERROR

(Compute local variable DeltaCounter: ReceivedCounter - State->Counter J

State->Status = \ (DeltaGounter <= Config-
E2E PXXSTATUS WRONGSEQUENCE) [FALSE] >MaxDeItapoumer) && (DeltaCounter
T — >=0)
[TRUE]
Counter has length
State->Status = \ [FALSE] DeltaCounter | PXXCOUNTER LEN (in
E2E7PXXSTATU37REPEATEE9 S0 bytes). Take care of
wrap around
[TRUE] (under-/overflow) of
counter over the
whole length of
State->Status = : Counter.
DeltaCount
(EZE_PXXSTATUS_OKSOMELOS'I)élFALSE] _oountet
[T\Fi}JE]
State->Status =
E2E_PXXSTATUS_OK
(State->Counter = ReceivedCounter)

B4

Figure 6.21: E2E_PXXCheck() step ’Do Checks”

6.3.8 Get Header Info

[PRS_E2E 01471] PXX_GetHeaderlInfo
Upstream requirements: RS_E2E_08539

[The function E2E_PXXGetHeaderInfo() shall behave as shown in Figure 6.22. |

AUTSSAR

‘ E2E_PXXGetHeaderinfo (
"XX' stands for one ConfigPtr,
profile DataPtr,
Length,

HeaderlnfoPtr)

ConfigPtr == NULL
yes I

DataPtr == NULL ||
Length == NULL ||
HeaderinfoPtr ==
NULL

no
yes ConfigPtr->Offset +
PXXCOUNTER_POS +
PXXCOUNTER_LEN >
Length

no

Retrieve message counter from
DataPtrand store itto ~ fF------.___ consider profile
HeaderInfoPtr->SequenceCounter matching
endianess

® O
Return Return Return
E2E_E_INPUTERR_NULL E2E_E_INPUTERR_WRONG E2E_E_OK

Figure 6.22: PXX_GetHeaderInfo

6.3.9 Profile Data Types
6.3.9.1 Profile Protect State Type

[PRS_E2E 01250]

Upstream requirements: RS_E2E_08528
[The E2E_PXXProtect and E2E_PXXForward functions ’'state’ shall have the members
defined in [PRS_E2E_00858]. |

[PRS_E2E 00858] E2E Profile Protect State Type
Upstream requirements: RS_E2E_08528

[

Name Type Description

Counter Unsigned Integer Counter to be used for protecting the next
Data. The initial value is 0, which means
that in the first cycle, Counter is 0. Each
time E2E_PXXProtect() is called, it incre-
ments the counter up to the maximum
value (OxFF for 8 bit counter, OxFF’FF for a
16 bit counter and OXxFF'FF’FF’FF for a 32
bit counter). After the maximum value is
reached, the next value is 0x0. The over-
flow is not reported to the caller.

AUTSSAR

6.3.9.2 Profile Check Status Type

[PRS_E2E 01251]

Upstream requirements: RS_E2E_08528

[The E2E_PXXCheck functions ’State’ shall have the members defined in
[PRS_E2E_00859].

[PRS_E2E_00859] E2E Profile XX Check State Type
Upstream requirements: RS_E2E_08528

[
Name Type Description
Counter Unsigned Integer Counter of the data in previous cycle.
Status Enumeration Result of the verification of the Data in this
cycle, determined by the Check function.
]

6.3.9.3 Profile Check Status Enumeration

[PRS_E2E 01252]

Upstream requirements: RS_E2E_08528
[The E2E_PXXCheck functions ’State->Status’ enumeration type shall consist of the
following enumeration values (see [PRS_E2E_00860])). |

[PRS_E2E _00860] E2E Profile Check Status Enumeration
Upstream requirements: RS_E2E_08528

[
Name State | Description
Type
E2E PXXSTATUS OK OK The checks of the Data in this cycle

were successful (including counter check,
which was incremented by 1).

E2E PXXSTATUS NONEWDATA Error The Check function has been invoked but
no new Data is available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E
checks of Data have been consequently
executed. This may be considered similar
to E2E_PXXSTATUS_REPEATED.
E2E_PXXSTATUS_ERROR Error Error not related to counters occurred (e.g.
wrong crc, wrong length, wrong options,
wrong Data ID).

AUTSSAR

E2E PXXSTATUS REPEATED Error The checks of the Data in this cycle were
successful, with the exception of the repe-
tition.

E2E PXXSTATUS OKSOMELOST OK The checks of the Data in this cycle

were successful (including counter check,
which was incremented within the allowed
configured delta).

E2E PXXSTATUS WRONGSEQUENCE | Error The checks of the Data in this cycle were
successful, with the exception of counter
jump, which changed more than the al-
lowed delta

6.3.9.4 GetHeaderinfo Data Types

[PRS_E2E_01466] Data Types of PXX_GetHeaderinfo

Upstream requirements: RS_E2E_08528
[The PXX_GetHeaderinfo type shall have the members defined in
[PRS_E2E_01467].]

[PRS_E2E 01467] Data Types Description
Upstream requirements: RS_E2E_08528

[

Name Type Description
SequenceCounter Unsigned Integer Counter to be retrieved from Data

6.4 Specification of E2E Profiles for Methods - Generalized Part

This chapter contains the part of the specification for E2E profiles for methods that is
used in more than one profile specification. The behavior of E2E profiles is described
independently of a specific profile. Text and figures use placeholder like "XXm” which
are replaced by a profile-specific value or text. All profile-specific content, including
these placeholders, is defined in the corresponding profile-specific sub-chapter. This
chapter applies to all method profiles where the fields of DatalD and Length are part of
the profile header.

The E2E mechanisms can detect the following faults or effects of faults:

Fault Main safety mechanisms
Repetition of information Counter

AUTSSAR

Loss of information

Counter

Delay of information

Counter

Insertion of information

Data ID, Message type, Message Result,
Source ID

Masquerading

Data ID, Message type, Message Result,
Source ID, CRC

Incorrect addressing

Data ID, Message type, Message Result,
Source ID

Incorrect sequence of information

Counter

Corruption of information

CRC

Asymmetric information sent from a sender to
multiple receivers

CRC (to detect corruption at any of receivers)

Information from a sender received by only a
subset of the receivers

Counter (loss on specific receivers)

Blocking access to a communication channel

Counter (loss or timeout)

Table 6.2: Detectable communication faults using method profiles

6.4.1 Counter

In E2E profiles for methods, the counter is initialized, incremented, reset and checked
by the E2E profile. The counter is not manipulated or used by the caller of the E2E
supervision.

[PRS_E2E_01156]
Upstream requirements: RS_E2E_08539

[In E2E profiles for methods, the counter on the sender side shall be initialized with
0 for the first transmission request of a data element the counter and shall be in-
cremented by 1 for every subsequent send request. When the counter reaches the
maximum value (OxFF'FF for a 16bit counter, OXFF'FF’FF’FF for a 32bit counter,
OxFF'FFFF'FF FFFF'FF'FF for a 64bit counter), then it shall restart with 0 for the
next send request. |

Note that the maximum counter value (OxFF’FF for a 16bit counter, OxFF'FF'FF’FF for
a 32bit counter, OXFF°'FF'FF'FF’ FF'FF'FF’FF for a 64bit counter) is not reserved as a
special invalid value, but it is used as a normal counter value.

In E2E profiles for methods, the following is detected on the receiver side by evaluating
the counter of received data against the counter of previously received data:

1. Repetition:

a. no new data has arrived since last invocation of E2E supervision check func-
tion,

b. the data is repeated
2. OK:

a. counter is incremented by one (i.e. no data lost),

AUTSSAR

b. counter is incremented by more than one, but still within allowed limits (i.e.
some data lost),

Case 1 corresponds to the failed alive counter check, and case 2 correspond to suc-
cessful alive counter check.

The above requirements are specified in more details by the UML diagrams in the
following document sections.

6.4.2 DatalD

The unique Data IDs are to verify the identity of each transmitted safety-related data
element.

[PRS_E2E_01157]
Upstream requirements: RS_E2E_08539

[In the E2E profiles for methods, the Data ID shall be explicitly transmitted, i.e. it shall
be the part of the transmitted E2E header. |

[PRS_E2E_01439] Uniqueness of Data IDs

Replaces: PRS_E2E UC 01158
Upstream requirements: RS_E2E_08539

[In the E2E profiles for methods, the Data IDs should be globally unique within the net-
work of communicating systems (made of several ECUs each sending different data). |

In case of usage of E2E supervision to protect data elements (i.e invocation from RTE),
due to multiplicity of communication (1:1 or 1:N), a consumer of a data element expects
only a specific data element, which is to be checked by E2E supervision using Data ID.

In case of usage of E2E Supervision for protecting messages (i.e. invocation from
COM), the receiver COM expects at a reception only a specific message, which is
checked by E2E Supervision using Data ID.

6.4.3 Length

The Length field is introduced to support variable-size length - the Data [] array storing
the serialized data can potentially have a different length in each cycle. The Length
includes user data + E2E Header (CRC + Counter + Length + DatalD).

6.44 CRC

E2E profiles for methods uses a suitable CRC, to ensure a high detection rate and high
Hamming Distance.

AUTSSAR

[PRS_E2E 01159]

Upstream requirements: RS_E2E_08528, RS_E2E_08539
[E2E profiles for methods shall use the function defined in PXXMCALCULATE_CRC
of the SWS CRC supervision for calculating the CRC. |

Note: The CRC used by E2E profiles for methods is different from the CRCs used by
FlexRay, CAN and TCP/IP. It is also provided by different software modules (FlexRay,
CAN and TCP/IP stack CRCs/checksums are provided by hardware support in Com-
munication Controllers or by communication stack software, but not by CRC supervi-
sion).

[PRS_E2E_01160]
Upstream requirements: RS_E2E_08528

[In E2E profiles for methods, the CRC shall be calculated over the entire E2E header
(excluding the CRC bytes) and over the user data. |

6.4.5 Message Type

The Message Type field is used to distinguish request messages from response mes-
sages in method communication.

[PRS_E2E 01161]
Upstream requirements: RS_E2E_08528, RS_E2E_08539
[In the E2E profiles for methods the Message Type field shall be explicitly transmitted,
i.e. it shall be the part of the transmitted E2E header. |
[PRS_E2E 01162]
Upstream requirements: RS_E2E_08528, RS_E2E_08539
[A Message Type field with a value of 0 indicates a request message. |
[PRS_E2E 01163]
Upstream requirements: RS_E2E_08528, RS_E2E_08539
[A Message Type field with a value of 1 indicates a response message. |

6.4.6 Message Result

The Message Result field is used to distinguish normal response messages from error
response messages in method communication.

AUTSSAR

[PRS_E2E_01203]
Upstream requirements: RS_E2E_08528, RS_E2E_08539

[In the E2E profiles for methods the Message Result field shall be explicitly transmitted,
i.e. it shall be the part of the transmitted E2E header. |

[PRS_E2E_01164]
Upstream requirements: RS_E2E_08528, RS_E2E_08539

[A Message Result field with a value of 0 indicates a normal response message. |

[PRS_E2E_01165]
Upstream requirements: RS_E2E_08528, RS_E2E_08539

[A Message Result field with a value of 1 indicates an error response message. |

[PRS_E2E_01166]
Upstream requirements: RS_E2E_08528, RS_E2E_08539

[The Message Result field shall be set to 0 for request messages (i.e., in case the
Message Type field is set to 0). |

6.4.7 Source ID

The unique Source IDs are to verify the identity of the source of each transmitted
safety-related data element. In case of method communication, the Source ID identifies
the client which performs a method call.

[PRS_E2E_01167]
Upstream requirements: RS_E2E_08539

[In the E2E profiles for methods, the Source ID shall be explicitly transmitted, i.e. it
shall be the part of the transmitted E2E header. |

[PRS_E2E_01440] Uniqueness of Data IDs
Replaces: PRS_E2E UC 01168
Upstream requirements: RS_E2E_08539

[In the E2E profiles for methods, the Source IDs should be globally unique within the
network of communicating systems (made of several ECUs). |

6.4.8 Timeout detection

The previously mentioned mechanisms (CRC, Counter, Data ID, Length, Message
Type, Message Result, and Source ID) enable to check the validity of received mes-
sages, when the receiver is executed independently from the data transmission, i.e.
when receiver is not blocked waiting for messages, but instead if the receiver reads the

AUTSSAR

currently available data (i.e. checks if new data is available). Then, by means of the
counter, the receiver can detect loss of communication and timeouts.

6.4.9 Creation of the E2E header
6.4.9.1 E2E_PXXmProtect()

The function E2E_PXXmProtect() performs the steps as specified by the following dia-
grams in this section.

[PRS_E2E_01169]
Upstream requirements: RS_E2E_08539

E2E_PXXmProtect(Config, State, SourcelD,
MessageType, MessageResult, Data, Length)

[The function E2E_PXXmProtect() shall have the overall behavior as shown in

Figure 6.283.]
"XX" stands for one
method profile.
[input

[null [wrong

O, O,
return returmn retumn

E2E_E_INPUTERR_NULL E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.23: Behavior of E2E_PXXmProtect()

AUTSSAR

[PRS_E2E_01170]
Upstream requirements: RS_E2E_08539

[The step "Verify inputs of the protect function” in E2E_PXXmProtect() shall behave as
shown in Figure 6.24. |

E2E_PXXmProtect()
oo "XX" stands for one
method profile.

(Config = NULL) && (State != NULL) &&

(Data T="NULL)
[TRUE]
(Length >= Config->MinDatalLength/8) && (Length <= Config-
>MaxDatalength/8)
TRUE
[FALSE] []
SourcelD <=
[TRUE]
[FALSE]
(MessageType >= 0) && (MessageType
=1 [FALSE]
[TRUE]
[FALSE]
(MessageResult >= 0) && (MessageResult
=1y
[FALSE]
[TRUE]
@ input wrong
null ok input

input

Figure 6.24: E2E_PXXmProtect() step ”Verify inputs of the protect function”

[PRS_E2E_01171]
Upstream requirements: RS_E2E_08539
[The step “Compute offset” in E2E_PXXmProtect(), E2E_PXXmForward(),

E2E_PXXmSourceCheck() and E2E_PXXmSinkCheck() shall behave as shown
in Figure 6.25. |

AUTSSAR

E2E_PXXmProtect()
"XX" stands for one
method profile.

E2E_PXXmSinkCheck()

E2E_PXXmSourceChecl
0

l

6

!

Offset = Config->Offset / 8]

E2E_PXXmForward()
compute local vanable uint16
Offset, which is in [byte]

Figure 6.25: E2E_PXXmProtect(), E2E_PXXmForward(), E2E_PXXmSourceCheck() and
E2E_PXXmSinkCheck() step "Compute offset”

=

b

8

[PRS_E2E_01172]
Upstream requirements: RS_E2E_08539

[The step "Write Length” in E2E_PXXmProtect() and E2E_PXXmForward() shall be-
have as shown in Figure 6.26. |

E2E_PXXmProtect()
oo
"XX" stands for one
method profile.
Placeholder are defined
E2E_PXXmForward() on profile level.
oo
[Copy parameter Length to bytestring Data in Big Endian order.]
Parameter Length has length PXXMLENGTH_LEN (in bytes).
Bytes must be stored in Data at positions Offset + PXXMLENGTH_POS to
Offset + PXXMLENGTH_POS + PXXMLENGTH_LEN - 1

Figure 6.26: E2E_ PXXmProtect() and E2E_PXXmForward() step ”Write Length”

[PRS_E2E_01173]
Upstream requirements: RS_E2E_08539

[The step "Write Counter” in E2E_PXXmProtect() shall behave as shown in
Figure 6.27.]

AUTSSAR

E2E_PXXmProtect()
(o o)
"XX" stands for one
method profile.

{ Copy parameter State->Counter to bytstring Data in Big Endian order.]

Parameter State->Counter has length PXXCOUNTER_LEN (in
bytes). Bytes must be stored in Data at positions Offset +
PXXMCOUNTER POS to Offset + PXXMCOUNTER_POS + °

PXXMCOUNTER LEN - 1.

Figure 6.27: E2E_PXXmProtect() step ’Write Counter”

[PRS_E2E_01174]
Upstream requirements: RS_E2E_08539

[The step "Write DatalD” in E2E_PXXmProtect() shall behave as shown in

Figure 6.28. |
oo

"XX" stands forone
method profile.

Placeholder are defined
on profile level.

Copy parameter Config->DatalD to bytestring Data in Big
Endian order.

Parameter Config->DatalD has length PXXMDATAID_LEN (in
bytes).

Bytes must be stored in Data at positions Offset +
PXXMDATAID_POS to Offset + PXXMDATAID_POS +
PXXMDATAID_LEN - 1

Figure 6.28: E2E_PXXmProtect() step "Write DatalD”

[PRS_E2E_01175]
Upstream requirements: RS_E2E_08539

[The step "Write SourcelD” in E2E_PXXmProtect() shall behave as shown in
Figure 6.29. |

AUTSSAR

E2E_PXXmProtect()
(o o)

"XX" stands forone
method profile.

Placeholder are defined
on profile level.

[Copy 28 bit SourcelD to Data in Big Endian order.]

position Offset + PXXMMESSAGE_POS to Offset +

28 bits of SourcelD must be stored at least significant bits atlj
PXXMESSAGE POS + 3

Figure 6.29: E2E_ PXXmProtect() step ’Write SourcelD”

[PRS_E2E_01176]
Upstream requirements: RS_E2E_08539

[The step "Write Message Type” in E2E_PXXmProtect() shall behave as shown in

Figure 6.30. |
O

"XX" stands forone
method profile.

Placeholder are defined
on profile level.

Copy parameter MessageType to byte string Data in Big
Endian order.

PXXMMESSAGE_POS.

2 bits must be copied to bits 0 and 1 of the byte at position Offset +
MessageType must be shifted 6 bits left to fit into position 0 and 1.

Figure 6.30: E2E_PXXmProtect() step "Write Message Type”

[PRS_E2E_01177]
Upstream requirements: RS_E2E_08539

[The step "Write Message Result” in E2E_PXXmProtect() shall behave as shown in
Figure 6.31.]

AUTSSAR

E2E_PXXmProtect()
(o o)

"XX" stands forone
method profile.

Placeholder are defined
on profile level.

[Copy parameter MessagelD to Data in Big Endian order. J

Offset + PXXMMESSAGE_POS.
MessagelD must be shifted 4 bits left to fit into position 2 and

2 bits must be copied to bits 2 and 3 of the byte at position
38

Figure 6.31: E2E_PXXmProtect() step "Write Message Result”

[PRS_E2E_01178]
Upstream requirements: RS_E2E_08539
[The step "Compute CRC” in E2E_PXXmProtect(), E2E_PXXmForward(),

E2E_PXXmSourceCheck() and E2E_PXXmSinkCheck() shall behave as shown
in Figure 6.32. |

E2E_PXXmProtect()

b

"XX*" stands for one method profile.
Placeholders are defined on profile
E2E_PXXmSinkCheck level.

0 (o o)

First execution of "CRC_Calculate” for bytes before CRC
has the following parameters:

E2E_PXXmSourceChecl Crc_DataPtr: &Data[0]

0 oo Crc_Length: Offset+PXXCRC_POS
_] Crc_StartValue32: only bytes OxFF (OxFF'FF'FF'FF for 32 bit
CRO)
E2E_PXXmForward irstCall:
(eIt Oo) [ComputedCRC = PXXMCALCULATE_CRC] il shi=teal e
Offset +

PXXMCRC_POS +
PXXMCRC_LEN <

Length
[true] Function for “CRC_Calculate" is defined in placeholder

PXXMCALCULATE_CRC.

i

se]
[ComputedCRC = PXXMCALCULATE_CRC]

- - - | Second execution of "CRC_Calculate” for bytes after CRC has
the following parameters:

Crc_DataPtr: &Data[Offset + PXXCRC_POS + PXXCRC_LEN]
Cre_Length: Length - (Offset + PXXCRC_POS + PXXCRC_LEN)
Crc_StartValue32: ComputedCRC

Cre_|sFirstCall: FALSE

entire E2E-Prodected Data (includung E2E Header (length, |
CRC etc) and the user data).

At this step, there is a ready ComputedCRC value, over the IT
D,

Figure 6.32: E2E_PXXmProtect(), E2E_PXXmForward(), E2E_PXXmSourceCheck() and
E2E_PXXmSinkCheck() step "Compute CRC”

AUTSSAR

[PRS_E2E_01179]
Upstream requirements: RS_E2E_08539

[The step "Write CRC”in E2E_PXXmProtect() and E2E_PXXmForward() shall behave
as shown in Figure 6.33.

E2E_PXXmProtect
0 << "XX" stands for one
method profile. .
Placeholder are defined

on profile level.

E2E_PXXmForward
0 (o o)

[Copy variable CRC to bytestring Data in Big Endian order J

Bytes must be stored in Data at positions Offset +
PXXMCRC_POS to Offset + PXXMCRC_POS +
PXXMCRC_LEN -1.

Variable CRC has length PXXMCRC_LEN (in bytes). j

®
Figure 6.33: E2E_PXXmProtect() and E2E_PXXmForward() step ”Write CRC”

[PRS_E2E_01180]
Upstream requirements: RS_E2E_08539

[The step "Increment Counter” in E2E_PXXmProtect() and E2E_PXXmForward() shall
behave as shown in Figure 6.34. |

"XX" stands for one
E2E_PXXmProtect() method profile.
(o o)
E2E_PXXmForward()
(o o)
After Counter has

State->Counter++ fr-------- reached its maximum
value the next Counter
value is 0.

O,
Figure 6.34: E2E_ PXXmProtect() and E2E_PXXmForward() step "Increment Counter”

6.4.9.2 E2E_PXXmForward()

The E2E_PXXmForward() function of E2E profiles for methods is called by a SW-C
to protect its application data and to forward a received E2E status for use cases
like translation of signal-based to service-oriented communication. If the received
E2E status equals E2E_P_OK the behavior of the function shall be the same like

AUTSSAR

E2E_PXXmProtect(). The function E2E_PXXmForward() performs the steps as speci-
fied by the following diagrams in this section.

[PRS_E2E_01181] Draft
Upstream requirements: RS_E2E_08539

[The function E2E_PXXmForward() shall have the overall behavior as shown in
Figure 6.35.]

"XX" stands for one
method profile
E2E_PXXmForward(Config, Length,
ForwardStatus, State, SourcelD, (S -------_____ Type of ForwardState is

MessageType, MessageResult, Data) described in [PRS_E2E_
00597]

Verify inputs of the forgard [wrong
function input]

Type

Protect_Write SourcelD
Protect_Write Message
Result
Protect_Compute C@O
Protect_Write CRCO_O
Increment Counteb_o

@ return @ return

return E2E_E_OK
E2E_E_INPUTERR_NULL

Figure 6.35: Behavior of E2E_ PXXmForward()

E2E_E_INPUTERR_WRONG

Following steps are described in section 6.4.9.1
» "Compute offset” see [PRS_E2E_01171]
» "Write Length” see [PRS_E2E_01172]
» "Write SourcelD” see [PRS_E2E _01175]
» "Write Message Type” see [PRS_E2E_01176]

AUTSSAR

"Write Message Result” see [PRS_E2E_01177]
"Compute CRC” see [PRS_E2E 01178]

"Write CRC” see [PRS_E2E_01179]

* “Increment Counter” see [PRS_E2E_01180]

[PRS_E2E_01182] Draft
Upstream requirements: RS_E2E_08539

[The step "Verify inputs of the forward function” in E2E_PXXmForward() shall behave
as shown in Figure 6.36. |

AUTSSAR

"XX" stands for one

E2E_PXXmForward() method profile
(@ @]

(Config != NULL) &&
(State = NULL) &&
(Data != NULL)

[TRUE]
(Length >= Config->MinDataLength/8) &&
(Length <= Config->MaxDataLength/8) &&
ForwardStatus |= E2E_P_NONEWDATA
[TRUE]
SourcelD <=
OxFFFFFFF
FALSE] [TRUE] [FALSE]
(MessageType >=0)
&& (MessageType <=
1)
[FALSE]
[TRUE]
(MessageResult >= 0) [FALSE]
&& (MessageResult <=
1)
[FALSE]
[TRUE]
a‘g
null input wrong
input ok input

Figure 6.36: E2E_PXXmForward() step “’Verify inputs of the forward function”

[PRS_E2E_01183] Draft
Upstream requirements: RS_E2E_08539

[The step "Write Counter” in E2E_PXXmForward() shall behave as shown in
Figure 6.37.]

AUTSSAR

"XX" stands for one method profile.
Placeholder are defined on profile
level.

LV

E2E_PXXmForward()

oo
if ForwardStatus ==
E2E_P_WRONGSEQUENCE else
if Forwardstalus />
E2E_P_REPEATED [FALSE] Y
[TRUE] [TRUE]

State->Counter = State-
State->Counter - - >Counter + Config-
>MaxDeltaCounter

After (PXXCOUNTR_LEN x
OxFF) the next value is 0.

(Copy State->Counter to Data in Big Endian order.]

®
Counter has length PXXMCOUNTER_LEN (in bytes).
Bytes must be stored ar position Offset + PXXMCOUNTER_POS to Offset

+ PXXMCOUNTER_POS + PXXMCOUNTER_LEN - 1.

Figure 6.37: E2E_PXXmForward() step "Write Counter”

[PRS_E2E_01184] Draft
Upstream requirements: RS_E2E_08539

[The step "Write DatalD” in E2E_PXXmForward() shall behave as shown in
Figure 6.38.]

AUTSSAR

"XX" stands for one method profile.
Placeholder are defined on profile

level.

E2E_PXXmForward()
SO

if ForwardStatus ==
E2E_P_ERROR

[TRUE] [FALSE]

Copy parameter Config->DatalD + Copy parameter Config-
1 to bytestring Data in Big Endian >DatalD to bytestring Data in

order. Big Endian order.

DatalD must be copied to Data at position Offset + j

..............

PXXMDATAID_POS to Offset + PXXMDATAID_PQOS +
PXXMDATAID_LEN - 1.

Figure 6.38: E2E_PXXmForward() step "Write DatalD”

6.4.10 Evaluation of the E2E Header

There are two check functions: E2E PXXmSourceCheck() for the client side and
E2E_PXXmSinkCheck() for the server side.

6.4.10.1 E2E_PXXmSourceCheck()

The function E2E_PXXmSourceCheck() for the client side performs the actions as
specified by the following diagrams in this section.

[PRS_E2E_01185]
Upstream requirements: RS_E2E_08539

["The function E2E_PXXmSourceCheck() for the client side shall have the overall be-
havior as shown in Figure 6.39. |

AUTSSAR

"XX" stands for one
method profile

E2E_PXXmSourceCheck(Config, State,
SourcelD, MessageType, MessageResult,
Data, Length)

Verify inputs of the chgl_(o
function

[input
oK

— 3

[TRUE]

T

NewDataAvailable ==
TRUE

[null

input’ [FALSE] Compute offset

[wrong
input;

Read Length

|

HRLRHEEEY

Read Counter

Read DatalD

Read SourcelD

Read Message Typ:

Read Message Resu

Read CRC

b

o
=
e
(Lo
(e
C =

Compute CRC ~c

Do checks

® ®
retum returm return

E2E_E_INPUTERR_NULL E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.39: Behavior of E2E_PXXmSourceCheck()

[PRS_E2E_01186]
Upstream requirements: RS_E2E_08539

[The step "Verify inputs of the function” in E2E_PXXmSourceCheck() shall behave as
shown in Figure 6.40. |

AUTSSAR

local variable, no need
to store it in the State

E2E_PXXmSourceCheck
0 "XX" stands for one method profile. j
~ | structure.

Placeholder are defined on profile
NewDataAvailable
= FALSE

level.
(Config I= NULL) && (State !=
NULL)

(Data != NULL && Length !=0) || (Data == NULL &&
Length == 0)

[TRUE]

Check: Either both Data
and Length mean that
a message is available,
or both mean the
FALSE] opposite.

—<>é

Data !=
NULL

<=

[FALSE]
SourcelD <=

5
T
c
m

[FALSE] [TRUE]

(Length >= Config->MinDatalLength/8) &
(Length <= Config->MaxDatalLength/8)

This path may
happen at runtime if
queued
communication is
used and no data is
available (in this case
both Data is NULL
and Length is 0).

[TRUE]

%

[FALSE]

(MessageType >=0)
&& (MessageType <=

[FALSE]

(MessageResult >= 0)
&& (MessageResult <=

[TRUE] 1)

NewDataAvailable
=TRUE

[FALSE]

[FALSE]

O}

null

input

input ok wrong

input

Figure 6.40: E2E_PXXmSourceCheck() step Verify inputs of the check function”

[PRS_E2E_01187]
Upstream requirements: RS_E2E_08539

[The step "Read Length” in E2E_PXXmSourceCheck() and E2E_PXXmSinkCheck()
shall behave as shown in Figure 6.41.]

AUTSSAR

E2E_PXXmSourceCheck "XX" stands for one method profile.
0 Placeholder are defined on profile
level.
E2E_PXXmSinkCheck()
O
[Copy length value from bytestring Data to local variable ReceivedLength in Big Endian order.]

®
ReceivedLength has length PXXMLENGTH_LEN (in bytes).

Bytes must be extraced from position Offset +
PXXMLENGTH_POS to Offset + PXXMLENGTH_POS +

PXXMLENGTH_LEN - 1.

Figure 6.41: E2E_PXXmSourceCheck()/E2E_PXXmSinkCheck() step "Read Length”

[PRS_E2E_01188]
Upstream requirements: RS_E2E_08539

[The step "Read Counter” in E2E_PXXmSourceCheck() and E2E_PXXmSinkCheck()
shall behave as shown in Figure 6.42. |

E2E_PXXmSourceCheck "XX" stands for one method profile. IT .

0 (e o) Placeholder are defined on profile
E2E_PXXmSinkCheck()
(e o)

level.

Copy counter from bytstring Data to local variable ReceivedCounterin
Big Endian order.

Bytes must be extracted from prosition Offset + PXXMCOUNTER_POS to Offset
PXXMCOUNTER _POS + PXXMCOUNTER LEN - 1.

Counter has length PXXMCOUNTER _LEN (in bytes). T
¥

O,
Figure 6.42: E2E_PXXmSourceCheck()/E2E_PXXmSinkCheck() step "Read Counter”

[PRS_E2E_01189]
Upstream requirements: RS_E2E_08539

[The step "Read DatalD” in E2E_PXXmSourceCheck() and E2E_PXXmSinkCheck()
shall behave as shown in Figure 6.43. |

E2E_PXXmSourceg:g "XX" stands for one method profile.
0 Placeholder are defined on profile
level.
E2E_PXXmSinkCheck()
O

Copy DatalD from bytestring Data to local variable
ReceivedDatalD in Big Endian order.

Bytes must be copied from position Offset + PXXMDATAID_POS to Offset
+ PXXMDATAID_POS + PXXMDATAID_LEN - 1.

ReceivedDatalD has length PXXMDATAID_LEN. j
t

Figure 6.43: E2E_PXXmSourceCheck()/E2E_PXXmSinkCheck() step ”"Read DatalD”

[PRS_E2E 01190]
Upstream requirements: RS_E2E_08539

[The step "Read SourcelD” in E2E_PXXmSourceCheck() shall behave as shown in
Figure 6.44. |

E2E_PXXmSourceChec -
0 oo XX" stands for one method profile. '
Placeholder are defined on profile

level.

Copy MessagelD from bytestring Data to output argument
SourcelD in Big Endian order.

MessagelD is 28 bits long. Bytes must be extracted from
position Offset + PXXMMESSAGE_POS to Offset +
PXXMMESSAGE_POS + 3. @

MessagelD holds the 28 least significant bits starting at
position Offset + PXXMMESSAGE_POS.

Figure 6.44: E2E_PXXmSourceCheck() step ”"Read SourcelD”

[PRS_E2E_01191]
Upstream requirements: RS_E2E_08539

[The step "Read Message Type” in E2E_PXXmSourceCheck() and
E2E_PXXmSinkCheck() shall behave as shown in Figure 6.45. |

AUTSSAR

Placeholder are defined on profile

E2E_PXXmSourceChech
0 oo "XX" stands for one method profile.
level.

E2E_PXXmSinkCheck

° h

Copy the 2 bit message type from bytestring Data to local
variable ReceivedMessageType.

They must be copied to the least significant
bits of ReceivedMessageType.

The bits are the most significant bits at
position Offset + PXXMMESSAGE _POS.

Figure 6.45: E2E_PXXmSourceCheck()/E2E_PXXmSinkCheck() step "Read Message
Type”

[PRS_E2E_01192]
Upstream requirements: RS_E2E_08539

[The step "Read Message Result” in E2E_PXXmSourceCheck() and
E2E_PXXmSinkCheck() shall behave as shown in Figure 6.46. |

Placeholder are defined on profile

level.
E2E_PXXmSinkCheck()
(ose)

E2E_PXXmSourceCheck
0 oo "XX" stands for one method profile.

Copy the 2 bit message result from bytestring Data to local
variable ReceivedMessageResult.

Offset + PXXMMESSAGE_POS.
They must be copied to least significant bits of
Received MessageResult.

The bits are third and fourth most significant bits at position j

Figure 6.46: E2E_PXXmSourceCheck()/E2E_PXXmSinkCheck() step "Read Message Re-
sult”

[PRS_E2E_01193]
Upstream requirements: RS_E2E_08539

[The step "Read CRC” in E2E_PXXmSourceCheck() and E2E_PXXmSinkCheck()
shall behave as shown in Figure 6.47.]

AUTSSAR

E2E_PXXmSourceChecl
0 oo "XX" stands for one method profile.
Placeholder are defined on profile

level.

E2E_PXXmSinkCheck

0 (o o)

Copy CRC from bytestring Data to local variable
ReceivedCRC in Big Endian order.

CRC has length PXXMCRC_LEN (in bytes).
Bytes must be copied from position Offset + PXXMCRC_POS to Offset +
PXXMCRC_POS + PXXMCRC_LEN - 1.

Figure 6.47: E2E_PXXmSourceCheck()/E2E_PXXmSinkCheck() step "Read CRC”

[PRS_E2E_01194]
Upstream requirements: RS_E2E_08539

[The step "Do Checks” in E2E_PXXmSourceCheck() shall behave as shown in
Figure 6.48. |

AUTSSAR

E2E_PXXmSourceChetk "XX" stands for one method profile.
0 oo Placeholder are defined on profile

level.
[FALSE]

NewDataAvailable ==
TRUE

=
o)
[
m

[State->Status = 3
E2E_PXXMSTATUS_NONEWDAT. ReceivedCRC oo

3/> ComputedCRC
[FALSE] [TRUE]
ReceivedDatalD == Config-
>DatalD
FALSE]

ReceivedSourcelD ==

SourcelD
[FALSE]
[ReceivedMessageType ==
[FALSE] MessageType

ReceivedMessageResult ==
MessageResult
[FALSE]

\V[FALSEJ

State->Status =
E2E_PXXMSTATUS_ERROR

ReceivedLength ==
Length

3 5 =] = 3
<D o o o >
c c c c Z
m m m m m

(Compute local variable DeltaCounter: ReceivedCounter - State->Counter]

State->Status = [FALSE] (DeltaCuupter <= Config-
E2E7PXXMSTATU87WRONGSEQUENC§] L ! >Moa)xDe|taeoynter) && (DeltaCounter
>=| S,
[TRUE]
-,
E2E_PXXMSTATUS_REPEATED 20 i e

[TRUE] around (overflow) of
counter over the whole
length of Counter.

DeltaCounter

=1

[TRUE]

State->Status =
E2E_PXXMSTATUS_OK

State->Status =
[EZEiPXXM STATUS_OKSOME LOS}[FALSE]

<

[State->Counter = ReceivedCounter J

Figure 6.48: E2E_ PXXmSourceCheck() step Do Checks”

6.4.10.2 E2E_PXXmSinkCheck()

The function E2E_PXXmSinkCheck() for the server side performs the actions as spec-
ified by the following diagrams in this section.

AUTSSAR

[PRS_E2E_01195]
Upstream requirements: RS_E2E_08539

[The function E2E_PXXmSinkCheck() for the server side shall have the overall behav-
ior as shown in Figure 6.49. |

"XX" stands for one
method profile

E2E_PXXmSinkCheck(Config,
State, SourcelD,
MessageType, MessageResult,
Data, Length)

Verify inputs of the chgsl_(o
function

[input
ok’

—

NewDataAvailable ==
TRUE

[TRUE]

Compute offset

)

[FALSE]

Read

b

o

ounter

Read

o

HELRHEOEY

Read SourcelD [wrong

input]

[null

input

Read Message Typ:

Read Message Resu

CRC

b

Compu

ANARFRARARARR

s

Do ¢

y

® ®
retum returm return

E2E_E_INPUTERR_NULL E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.49: Behavior of E2E_PXXmSinkCheck()

®

Following steps are the same as for the client side and thus already described previ-
ously

AUTSSAR

» "Read Length” see [PRS_E2E_01187]

» "Read Counter” see [PRS_E2E_01188]

* "Read DatalD” see [PRS_E2E _01189]

» "Read Message Type” see [PRS_E2E_01191]

* "Read Message Result” see [PRS_E2E 01192]
* "Read CRC” see [PRS_E2E 01193]

* “Increment Counter” see [PRS_E2E_01180]

[PRS_E2E _01196]
Upstream requirements: RS_E2E_08539

[The step "Verify inputs of the check function” in E2E_PXXmSinkCheck() shall behave
as shown in Figure 6.50. |

AUTSSAR

(Length >= Config->MinDatalLength/8) &

E2E_PXXmSinkCheck
0 "XX" stands for one method profile.
Placeholder are defined on profile local variable, no need
level. to store it in the State
- - | structure.
NewDataAvailable
= FALSE
(Config = NULL) && (State =
NULL)
[TRUE]
Check: Either both Data
and Length mean that | ----
a message is available, (Data != NULL && Length = 0) || (Data == NULL &&
or both mean the Length == 0)
[FALSE] ORROSED [TRUE]
Data !=
NULL
[TRUE]
[FALSE] i

This path may
happen at runtime if
queued
communication is
used and no data is
available (in this case
both Data is NULL
and Length is 0).

©

(Length <= Config->MaxDatalLength/8)

[TRUE]

¢

(MessageType >=0)
&& (MessageType <=
1)

[TRUE]
[FALSE]
(MessageResult >= 0)
&& (MessageResult <= [FALSE]
[TRUE] 1)
[FALSE]

NewDataAvailable
= TRUE

null
input

input
ok

[FALSE]

wrong
input

Figure 6.50: E2E_PXXmSinkCheck() step ’'Verify inputs of the check function”

[PRS_E2E_01197]

Upstream requirements: RS_E2E_08539
[The step "Read SourcelD” in E2E_PXXmSinkCheck() shall behave as shown

Figure 6.51.]

AUTSSAR

E2E_PX><mSkaCr;eék "XX" stands for one method profile. .
0 Placeholder are defined on profile

level.

Copy MessagelD from bytestring Data to local variable
ReceivedSourcelD in Big Endian order.

MessagelD is 28 bits long.

Bytes must be extracted from least significant bits at position
Offset + PXXMMESSAGE_POS to Offset + PXXMMESSAGE_POS +
&

(J
MessagelD holds the 28 least significant bits starting at position O
Offset + PXXMMESSAGE_POS.

Figure 6.51: E2E_PXXmSinkCheck() step "Read SourcelD”

[PRS_E2E 01198]
Upstream requirements: RS_E2E_08539

[The step "Do Checks” in E2E_PXXmSinkCheck() shall behave as shown in
Figure 6.52. |

0 oo Placeholder are defined on profile

E2E_PXXmSinkCheck “XX" stands for one method profile.
level.

NewDataAvailable ==
TRUE

\\/ [FALSE]

State->Status = [TRUE]
E2E_PXXMSTATUS_NONEWDAT.

o<

ReceivedCRC ==
ComputedCRC

<<

[FALSE]
[TRUE]

ReceivedDatalD == Config-
>DatalD

=
)_

»

m

[TRUE]

ReceivedMessageType ==
MessageType

=<

[FALSE] [TRUE]

ReceivedMessageResult ==
MessageResult

[
[FALSE]
[TRUE]

ReceivedLength ==
Length

[
[FALSE]
[TRUE]

OGO

State->Status = State->Status =
E2E_PXXMSTATUS_ERROR E2E_PXXMSTATUS_OK

[State->Counter = ReceivedCounter)

®

Figure 6.52: E2E_PXXmSinkCheck() step ”Do Checks”

6.4.11 Get Header Info

[PRS_E2E_01472] PXXm_GetHeaderInfo
Upstream requirements: RS_E2E_08539

[The function E2E_PXXmGetHeaderInfo() shall behave as shown in Figure 6.53. |

AUTSSAR

‘ E2E_PXXmGetHeaderinfo (
ConfigPtr,
DataPtr,
" . Length,
rﬁ);?;ozta;riiirecmne HeaderlnfoPtr)
ConfigPtr == NULL
yes I
DataPtr== NULL ||
Length == NULL ||
ho HeaderInfoPtr ==
NULL
ConfigPtr->Offset +
——jes PXXMCOUNTER_POS
+
PXXMCOUNTER_LEN
no >
Length
ConfigPtr->Offset +
PXXMMESSAGE_POS
yes +
4 > Length
no
(" A
Retrieve message counter from DataPtr
and store it to HeaderInfoPtr-
>SequenceCounter
- q/ J
4 A
Retrieve SourcelD from DataPtr and
store it to HeaderInfoPtr->SourcelD
- J
® % %
Retum Return Return
E2E_E_INPUTERR_NULIE2E_E_INPUTERR_WRONG E2E_E_OK

Figure 6.53: PXXm_GetHeaderInfo

6.4.12 Profile Data Types
6.4.12.1 Profile XXm Protect State Type

[PRS_E2E 01199]

Upstream requirements: RS_E2E_08528
[The E2E_PXXmProtect() and E2E_PXXmForward() functions’ "state” shall have the
members defined in [PRS_E2E_00862]. |

[PRS_E2E_00862] E2E Profile XXm Protect State Type
Upstream requirements: RS_E2E_08528

[

| Name | Type | Description

AUTSSAR

Counter Unsigned Integer Counter to be used for protecting the
next Data. The initial value is 0, which
means that in the first cycle, counter
is 0. Each time E2E_PXXmProtect() is
called, it increments the counter up to
its maximum value (OxFF’FF for a 16
bit counter, OXFF'FF'FF’FF for a 32 bit
counter, OxXFF'FF'FF'FF’ FF'FF’FF’FF for
a 64 bit counter). After the maximum value
is reached, the next value is 0x0. The
overflow is not reported to the caller.

6.4.12.2 Profile XXm Check State Type

[PRS_E2E 01200]

Upstream requirements: RS_E2E_08528
[The E2E_PXXmSourceCheck() and E2E_PXXmSinkCheck() functions’ "state” shall
have the members defined in [PRS_E2E_00863]. |

[PRS_E2E_00863] E2E Profile XXm Check State Type
Upstream requirements: RS_E2E_08528

[
Name Type Description
Counter Unsigned Integer Counter of the data in previous cycle.
Status Enumeration Result of the verification of the Data in this
cycle, determined by the Check function.
J

6.4.12.3 Profile XXm Check Status Enumeration

[PRS_E2E 01201]
Upstream requirements: RS_E2E_08528

[The step "Do Checks” in E2E_PXXmSourceCheck() and E2E_PXXmSinkCheck()
shall set State->Status to one of the following enumeration values (see
[PRS_E2E_00864]). |

[PRS_E2E_00864] E2E Profile XXm Check Status Enumeration
Upstream requirements: RS_E2E_08528

[

AUTSSAR

Name

State
Type

Description

E2E_PXXMSTATUS_OK

OK

The checks of the Data in this cycle
were successful (including counter check,
which was incremented by 1).

E2E_PXXMSTATUS_NONEWDATA

Error

The Check function has been invoked but
no new Data is available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E
checks of Data have been consequently
executed. This may be considered similar
to E2E_PXXMSTATUS_REPEATED.

E2E_PXXMSTATUS_ERROR

Error

Error not related to counters occurred (e.g.
wrong CRC, wrong Length, wrong Op-
tions, wrong Data ID).

E2E_PXXMSTATUS_REPEATED

Error

The checks of the Data in this cycle were
successful, except for the repetition.

E2E_PXXMSTATUS_OKSOMELOST

OK

The checks of the Data in this cycle
were successful (including counter check,
which was incremented within the allowed
configured delta).

E2E_PXXMSTATUS_WRONGSEQUENCE

Error

The checks of the Data in this cycle were
successful, except for a counter jump,
which changed more than the allowed
delta

6.4.12.4 GetHeaderinfo Data Types

[PRS_E2E 01468] Data Types of PXXm_GetHeaderInfo

[

Upstream requirements: RS_E2E_08528
[The

PXXm_GetHeaderInfo type shall have the members defined
[PRS_E2E_01469]. |
[PRS_E2E _01469] Data Types Description
Upstream requirements: RS_E2E_08528
Name Type Description
SequenceCounter Unsigned Integer Counter to be retrieved from Data
SpurcelD Unsigned Integer SourcelD to be retrieved from Data

in

AUTSSAR

6.5 Specification of E2E Profile 1

Profile 1 is a Legacy Profile and is only maintained for compatibility reasons. New
Projects shall use Profile 11.

[PRS_E2E_00218]

Upstream requirements: RS_E2E_08529, RS _E2E_08530, RS _E2E_ 08533, RS _E2E_08543,
RS_E2E 08544, RS E2E 08545, RS _E2E 08546, RS E2E 08547,
RS _E2E_08548

[Profile 1 shall provide the following mechanisms: Counter, Timeout monitoring, Data
ID, CRC (see [PRS_E2E_00865]). |

[PRS_E2E_00865] E2E Profile 1 mechanisms
Upstream requirements: RS_E2E_08529, RS_E2E 08530, RS E2E 08533, RS E2E 08543,
RS _E2E 08544, RS _E2E 08545, RS _E2E 08546, RS _E2E 08547,
RS_E2E 08548

Mechanism Description

Counter 4bit (explicitly sent) representing numbers from 0 to 14 in-
cremented on every send request. Both Alive Counter and
Sequence Counter mechanisms are provided by E2E Pro-
file 1, evaluating the same 4 bits.

Timeout monitoring Timeout is determined by E2E Supervision by means
of evaluation of the Counter, by a nonblocking read
at the receiver. Timeout is reported by E2E Super-
vision to the caller by means of the status flags in
E2E_PO01CheckStatusType.

Data ID 16 bit, unique number, included in the CRC calculation.
For dataldMode equal to 0, 1 or 2, the Data ID is not trans-
mitted, but included in the CRC computation (implicit trans-
mission). For dataldMode equal to 3:

+ the high nibble of high byte of DatalD is not used (it
is 0x0), as the DatalD is limited to 12 bits,

+ the low nibble of high byte of DatalD is transmit-
ted explicitly and covered by CRC calculation when
computing the CRC over Data.

» the low byte is not transmitted, but it is included
in the CRC computation as the first value (implicit
transmission, like for datalDMode equal to 0, 1 or 2)

AUTSSAR

CRC CRC-8-SAE J1850 - Ox1D (x8 + x4 + x3 + x2 + 1), but with
different start and XOR values (both start value and XOR
value are 0x00).

This CRC is provided by CRC Supervision. Starting with
AUTOSAR R4.0, the SAE8 CRC function of the CRC Su-
pervision uses OxFF as start value and XOR value. To
compensate a different behavior of the CRC Supervision,
the E2E Supervision applies additional XOR 0xFF oper-
ations starting with R4.0, to come up with 0x00 as start
value and XOR value.

Note: This CRC polynomial is different from the CRC-
polynomials used by FlexRay, CAN and LIN.

J
The E2E mechanisms can detect the following faults or effects of faults:
E2E Mechanism Detected communication faults
Counter Repetition, Loss, insertion, incorrect sequence, blocking

Transmission on a regular ba- | Loss, delay, blocking
sis and timeout monitoring using
E2E-Supervision '

Data ID + CRC Masquerade and incorrect addressing, insertion
CRC Corruption, Asymmetric information 2

Table 6.3: Detectable communication faults using Profile 1

6.5.1 Header Layout

In the E2E Profile 1, the layout is in general free to be defined by the user, as long as
the basic limitations of signal alignment are followed:

+ signals that have length < 8 bits should be allocated to one byte of an I-PDU, i.e.
they should not span over two bytes.

* signals that have length >= 8 bits should start or finish at the byte limit of a mes-
sage.

However, predefined E2E Profile 1 variants define specific data layouts regarding the
protocol data fields, see subsection 6.3.6.

6.5.1.1 Counter

In E2E Profile 1, the counter is initialized, incremented, reset and checked by E2E
profile.

'Implementation by sender and receiver, which are using E2E-Supervision
2for a set of data protected by same CRC

AUTSSAR

[PRS_E2E 00075]
Upstream requirements: RS_E2E_08528

[In E2E Profile 1, on the sender side, for the first transmission request of a data el-
ement the counter shall be initialized with 0 and shall be incremented by 1 for every
subsequent send request (from sender SW-C). When the counter reaches the value
14 (OxE), then it shall restart with 0 for the next send request (i.e. value OxF shall be
skipped). All these actions shall be executed by E2E Supervision.

]

[PRS_E2E_00076]
Upstream requirements: RS_E2E_08528

[In E2E Profile 1, on the receiver side, by evaluating the counter of received data
against the counter of previously received data, the following shall be detected by the
E2E Supervision: (1) no new data has arrived since last invocation of E2E Supervision
check function, (2) no new data has arrived since receiver start, (3) the data is re-
peated (4) counter is incremented by one (i.e. no data lost), (5) counter is incremented
more than by one, but still within allowed limits (i.e. some data lost), (6) counter is
incremented more than allowed (i.e. too many data lost).

]

Case 3 corresponds to the failed alive counter check, and case 6 correspond to failed
sequence counter check.

The above requirements are specified in more details by the UML diagrams in the
following document sections.

6.5.1.2 DatalD

The unique Data IDs are used to verify the identity of each transmitted safety-related
data element.

[PRS_E2E_00163]
Upstream requirements: RS_E2E_08528

[There shall be following four inclusion modes for the two-byte Data ID into the calcu-
lation of the one-byte CRC:

1. E2E_PO1_DATAID_BOTH: both two bytes (double ID configuration) are in-
cluded in the CRC, first low byte and then high byte (see variant 1A -
PRS_E2EProtocol_00227) or

2. E2E_PO1_DATAID_ALT: depending on parity of the counter (alternating ID
configuration) the high and the low byte is included (see variant 1B -
PRS_E2EProtocol_00228). For even counter values the low byte is included and
for odd counter values the high byte is included.

AUTSSAR

3. E2E_PO1_DATAID_LOW: only the low byte is included and high byte is never
used. This equals to the situation if the Data IDs (in a given application) are only
8 bits.

4. E2E_PO1_DATAID_NIBBLE:

« the high nibble of high byte of DatalD is not used (it is 0x0), as the DatalD is
limited to 12 bits,

+ the low nibble of high byte of DatalD is transmitted explicitly and covered by
CRC calculation when computing the CRC over Data.

« the low byte is not transmitted, but it is included in the CRC computation as
start value (implicit transmission, like for the inclusion modes BOTH, _ALT
and _LOW)

]

[PRS_E2E 00085]
Upstream requirements: RS_E2E_08528

[In E2E Profile 1, with E2E_P01DatalDMode equal to E2E_P01_DATAID_BOTH or
E2E_PO01_DATAID_ALT the length of the Data ID shall be 16 bits (i.e. 2 byte). |

[PRS_E2E _00169]
Upstream requirements: RS_E2E_08528

[In E2E Profile 1, with E2E_P01DatalDMode equal to E2E_P01_DATAID_LOW, the
high byte of Data ID shall be set to 0x00. |

The above requirement means that when high byte of Data ID is unused, it is set to
0x00.

[PRS_E2E_00306]
Upstream requirements: RS_E2E_08528

[In E2E Profile 1, with E2E_P01DatalDMode equal to E2E_P01_DATAID_NIBBLE, the
high nibble of the high byte shall be 0x0. |

The above requirement means that the address space with
E2E_P01_DATAID_NIBBLE is limited to 12 bits.

In case of usage of E2E Supervision for protecting data elements, due to multiplicity
of communication (1:1 or 1:N), a receiver of a data element receives it only from one
sender. In case of usage of E2E Supervision for protecting messages, because each
message has a unique Data ID, the receiver COM of a message receives it only from
one sender COM. As a result (regardless if the protection is at data element level or
at messages), the receiver expects data with only one Data ID. The receiver uses the
expected Data ID to calculate the CRC. If CRC matches, it means that the Data ID
used by the sender and expected Data ID used by the receiver are the same.

AUTSSAR

6.5.1.3 CRC calculation

E2E Profile 1 uses CRC-8-SAE J1850, but using different start and XOR values. This
checksum is already provided by AUTOSAR CRC Supervision, which typically is quite
efficient and may use hardware support.

[PRS_E2E_00070]

Upstream requirements: RS_E2E_08529, RS_E2E_08533
[E2E Profile 1 shall use the polynomial of CRC-8-SAE J1850, i.e. the polynomial 0x1D
(x8 + x4 + x3 + x2 + 1), but with start value and XOR value equal to 0x00. |

Note: To calculate a CRC with CRCLib function Crc_CalculateCRC8() with start value
= 0x00 this function must be called with third parameter (Crc_StartValue8) equal to the
complement of the intended start value. For start value = 0x00 this parameter must be
equal to OxFF.

See also [PRS_E2E_00865](E2E Profile 1 mechanisms) and Figure 6.58, used by
E2E_PO1Protect() and E2E_P01Check()).

For details of CRC calculation, the usage of start values and XOR values see also
SWS_CRCLibrary[3].

[PRS_E2E_00190]
Upstream requirements: RS_E2E_08528

[E2E Profile 1 shall use the Crc_CalculateCRCS8 () function of the SWS CRC Supervi-
sion for calculating CRC checksums. |

Note: The CRC used by E2E Profile 1 is different than the CRCs used by FlexRay
and CAN and is provided by different software modules (FlexRay and CAN CRCs are
provided by hardware support in Communication Controllers, not by CRC Supervision).

The CRC calculation is illustrated by the following two examples.

Figure 6.54 and Figure 6.55 show how the CRC for signal based communication would
be calculated. Figure 6.54 uses the following configuration

1. CRC is the 0th byte in message (i.e. starts with bit offset 0)

2. Alive counter is located in lowest 4 bits of 1st byte (i.e. starts with bit offset 8)
3. E2E_P01DatalDMode = E2E_P01_DATAID_BOTH

4. unusedBitPattern = OxFF.

AUTSSAR

Datald ||ERC |[:WWHSig1 ‘C"xFF J|5ig1 |

|

CRC =CRCS over(1) Data Id, (2) all serialized si gnal (including em pty areas, excluding CRC byteitseff)

Figure 6.54: E2E Profile 1 variant 1A CRC calculation example

Figure 6.55 uses the following configuration
1. CRC is the 0th byte in the message (i.e. starts with bit offset 0)
2. Alive counter is located in lowest 4 bits of 1st byte (i.e. starts with bit offset 8)

3. The Data ID nibble is located in the highest 4 bits of 1st byte (i.e. starts with bit
offset 12)

4. E2E_PO1DatalDMode = E2E_P01_DATAID NIBBLE
5. unusedBitPattern = OxFF.

‘anbyte UfDataID| |CRC ||3°“‘“J |Sig1 ||IZI><FF | |Sig1 ‘

]

CRC = CRCEover (1) Data ld, (2) all serialized signal (induding em pty aress, exduding CRC byte itzelf)

Legend:
¥ Lowwnibble of high knte of Data 1D

Figure 6.55: E2E Profile 1 variant 1C CRC calculation example

The Data ID can be encoded in CRC in different ways, see [PRS_E2E_00163].
[PRS_E2E 00082]

Upstream requirements: RS_E2E_08531
[In E2E Profile 1, the CRC is calculated over:

1. First over the one or two bytes of the Data ID (depending on Data ID configura-
tion), and

2. then over all transmitted bytes of a safety-related complex data element/signal
group (except the CRC byte).

AUTSSAR

[PRS_E2E_00640]
Upstream requirements: RS_E2E_08539

[If DatalDMode is set to E2E_P01_DATAID_NIBBLE, the CRC calculation shall be
done by first calculating over the low byte of the Data ID, then a zero-byte (0x00), and
then the user data. |

6.5.2 Creation of E2E-Header
6.5.2.1 E2E_PO01Protect

[PRS_E2E_00195]
Upstream requirements: RS_E2E_08528

[The function E2E_PO01Protect() shall:

—

. write the Counter in Data,

write DatalD nibble in Data, if E2E_P01_DATAID_NIBBLE configuration is used
compute the CRC

write CRC in Data

o &~ 0 Dn

increment the Counter (which will be used in the next invocation of
E2E_PO01Protect()),as specified by Figure 6.56 and Figure 6.57

AUTSSAR

E2E_PO01Protect(Config, State,

Data)
[TRUE] [FALSE]
Config->CounterOffset % 8
(Data+(Config->CounterOffset/8)) = ((Data *(Data+(Config->CounterOffset/8)) = (*(Data
+(Config->CounterOffset/8)) & 0xFO) | (State- +(Config->CounterOffset/8)) & 0xOF) | ((State-
>Counter & 0x0F) >Counter<<4) & 0xF0)
Write the counter in the Data, at the configured
CounterOffset. The counter goes either into low [FALSE]
nibble (left branch) or high nibble (right branch) of)
Data. Note that the nibble next to Counter may be Config->DatalDMode ==
e By eppetm E2E_P01_DATAID_NIBBLE
[TRUE]
Config->DatalDNibbleOffset %
8 ==
[TRUE] [FALSE]
(Data+(Config->DatalDNibbleOffset/8)) = (*(Data+(Config->DatalDNibbleOffset/8)) = (*
(Data+(Config->DatalDNibbleOffset/8)) & (Data+(Config->DatalDNibbleOffset/8)) &
0XFO0) | ((Config->DatalD>>8) & 0xOF) 0xO0F) | ((Config->DatalD>>4) & 0xF0)
Write the low nibble of high byte of Data ID - T
only for E2E_PO1_DATAID_NIBBLE
configuration.

CRC = Calculate CRC over Data
(o o)
*(Data+(Config->CRCOffset/8)) = CRC - |CRC is written to the Data at configured
location.

v N

Increment the counter modulo 15 (ie.
next value after 14 is 0).

AN

(State->Counter ++) % 15

return

Figure 6.56: E2E_PO01Protect()

6.5.2.2 Calculate CRC

The diagram of the function E2E PO1Protect() (see above chapter),
E2E_PO1Forward() and E2E_P01Check() (see below chapters) have a sub-diagram
specifying the calculation of CRC:

AUTSSAR

AN
All invocations of CRC library, apart
from the first one, get as start value the
CRC computed in the previous step.
The CRC value does not need to be
XORed OxFF because:
1. The "previous" CRC function XORs
the computed CRC with OxFF just
before retuming
2. The "next" CRC function XORs the
received strart value with OxFF at the
beginning.

As a result, the XORing done by "next"
step negates the XORing done by
"previous" - CRC ~ OxFF ~ OxFF = CRC.
This menas, the behavior is as if there
was no XORing (which is equal to
XORing with 0x00).

To negate the last XOR OxFF operation
done on computed CRC by the last
CalculateCRC8(), there is a XORing
done externally by E2E Library.

Figure 6.57:

Calculate CRC over Datald
and Data

CRC = E2E_PO01_getDatalDCRC(Config->DatalD, Config->DatalDMode)
SO

Compute CRC over the area before the CRC (if CRC is
not the first byte)

[FALSE] --

Config->CRCOffset
>=8
[TRUE]

CRC = Crc_CalculateCRC8 (Data, (Config->CRCOffset / 8), CRC, FALSE)

Compute the area after CRC, if CRC is not the last byte.
Start with the byte after CRC, finish with the last byte of

[FALSE] - -~ | Data.

S Config->CRCOffset / 8 < (Config-

.l R [TRUE] >DatalLength /8) -1

CRC = Crc_CalculateCRC8 (& Data[Config->CRCOffset/8 + 1], (Config-
>DatalLength / 8 - Config->CRCOffset / 8 - 1), CRC, FALSE)

Subdiagram ,Calculate CRC over Data ID and Data”,

CRC = CRC " OxFF

used by

E2E_PO1Protect(), E2E_P01Forward() and E2E_P01Check()

The diagram of the function "Calculate CRC over Data ID and Data” has a sub-diagram
specifying the calculation of DatalD CRC, which is shown by Figure 6.58.

AUTSSAR

E2E_PO01_getDatalDCRC(DatalD,

DatalD e)
Compute CRC over DatalD, depending on DatalDMode setting.
The first invocation of Crc_CalculateCRC8() is done with start value OxFF.
The CalculateCRC8() is XORing the start value provided by the caller (equal
OxFF) with OxFF, resulting with actual intemal start value equal to 0x00.
switch
[case [case DatalDMode [case] [case
E2E_P01_DATAID_BOTH] E2E_P01_DATAID_LOW] E2E_PO1_DATAID_ALT] E2E_PO01_DATAID_NIBBLE]
Alternating inclusion depending on Counter
CRC = Bty | CRC =
Crc_CalculateCRC8 [TRUE]— [FALSE] Crc_CalculateCRC8
(DatalD, 1, OXFF, FALSE) State->Counter % 2 (DatalD, 1, OxFF, FALSE)
=0

CRC = CRC =
CRC over 2 ﬁ CRC over low byte Iﬁ Crc_CalculateCRC8 Crc_CalculateCRC8
bytes only (DatalD, 1, OxFF, FALSE) (DatalD>>8, 1, OxFF,
K '\ FALSE)

CRC = CRC = CRC =
Crc_CalculateCRC8 Crc_CalculateCRC8 Crc_CalculateCRCS8 (0,
(DatalD>>8, 1, CRC, (DatalD, 1, OxFF, FALSE) 1, CRC, FALSE)

FALSE)

AN

All invocations of CRC library, apart from the first one, get as start value the CRC
computed in the previous step. The CRC value does not need to be XORed
OxFF because:

1. The "previous" CRC function XORs the computed CRC with OxFF just before
retuming

2. The "next" CRC function XORs the received strart value with OxFF at the
beginning.

ActivityFinal

As a result, the XORing done by "next" step negates the XORing done by
“previous" - CRC A OxFF A OxFF = CRC. This menas, the behavior is as if there
was no XORing (which is equal to XORing with 0x00).

Figure 6.58: Subdiagram “getDatalDCRC”, used by E2E PO1Protect() and
E2E_P01Check()

It is important to note that the function Crc_CalculateCRC8 of CRC Supervision / CRC
routines have changed is functionality since R4.0, i.e. it is different in R3.2 and >=R4.0:

1. There is an additional parameter Crc_IsFirstCall

2. The function has different start value and different XOR values (changed from
0x00 to OxFF).

This results with a different value of computed CRC of a given buffer.

To have the same results of the functions E2E_P01Protect() and E2E_P0-2-1Check()
in >=R4.0 and R3.2, while using differently functioning CRC Supervision, E2E ,,com-
pensates” different behavior of the CRC Supervision. This results with different invo-
cation of the CRC Supervision by E2E Supervision Figure 6.57 in >=R4.0 and R3.2.
This means Figure 6.57 is different in >=R4.0 and R3.2.

AUTSSAR

6.5.2.3 E2E_PO1Forward

[PRS_E2E_00608]
Upstream requirements: RS_E2E_08528

[The function E2E_PO1Forward() shall calculate the e2e header data based on the
current value of the IN parameter ForwardStatus. |

The E2E_P01Forward() has additional requirements to the E2E_P01Protect() since it
shall be used to reconstruct an E2E-State on an outgoing message.

[PRS_E2E_00609]
Upstream requirements: RS_E2E_08528

[If ForwardStatus equals to E2E_P_OK the function E2E_P01Forward() shall:
1. write the Counter in Data
2. write DatalD nibble in Data, if E2E_P01_DATAID_NIBBLE configuration is used
3. compute the CRC over DatalD and Data
4. write CRC in Data
5

. increment the Counter (which will be used in the next invocation of
E2E_P01Forward()), as specified by Figure 6.59 and Figure 6.57

]

[PRS_E2E_00610]
Upstream requirements: RS_E2E_08528

[If ForwardStatus equals to E2E_P_REPEATED the function E2E_P01Forward() shall

1. decrement the Counter

write Counter in Data

write DatalD nibble in Data, if E2E_P01_DATAID_NIBBLE configuration is used
compute the CRC over DatalD and Data

write CRC in Data

2 T o

increment the Counter (which will be used in the next invocation of
E2E_PO1Forward()), as specified by Figure 6.59 and Figure 6.57

AUTSSAR

[PRS_E2E 00611]
Upstream requirements: RS_E2E_08528

rlf

ForwardStatus equals to E2E P WRONGSEQUENCE the function

E2E_PO1Forward() shall use counter + MaxDeltaCounterlnit :

1.

o g k& WD

]

calculate Counter = Counter + MaxDeltaCounterInit

write the Counter in Data

write DatalD nibble in Data, if E2E_PO01_DATAID_NIBBLE configuration is used
compute the CRC over DatalD and Data

write CRC in Data

increment the Counter (which will be used in the next invocation of
E2E_PO01Forward()), as specified by Figure 6.59 and Figure 6.57

[PRS_E2E_00612]
Upstream requirements: RS_E2E_08528

[If ForwardStatus equals to E2E_P_ERROR the function E2E_P01Forward() shall use
DatalD + 1:

1.

I

DatalD = DatalD+1

write the Counter in Data

write DatalD nibble in Data, if E2E_P01_DATAID_NIBBLE configuration is used
compute the CRC over DatalD and Data

write CRC in Data

increment the Counter (which will be used in the next invocation of
E2E_PO1Forward()), as specified by Figure 6.59 and Figure 6.57

AUTSSAR

E2E_PO01Forward(Config, State, Data,

ForwardStatus) g

[FALSE]

DatalD = Config->DatalD

if ForwardStatus ==
E2E_P_ERROR

[True]
V

(DatalD = Config->DatalD+1)

if ForwardStatus ==

Create local variable

in CRC Calculation

DatalD to be later used

if ForwardStatus

E2E_P_Repeated

if State->Counter

E2E_P_WRONGSEQUENCE

[TRUE]

[TRUE]

[FALSE]
\'4

[FALSE]

Set counter to 14, 15 is

special error value [TRUE]

State->Counter = (State-
>Counter + Config-
>MaxDeltaCounterlnit) % 15

(State->Counter - -) (State->Counter = 14) [J

[FALSE]

Config->CounterOffset % 8
=0

I |
[TRUE] [FALSE]

(Data+(Config->CounterOffset/8)) = ((Data

+(Config->CounterOffset/8)) & 0xFO) | (State-
>Counter & 0x0F)

[)

>Counter<<4) & 0xF0)

(Data+(Config->CounterOffset/8)) = ((Data
+(Config->CounterOffset/8)) & 0xOF) | ((State-

)

Write the counter in the Data, at the configured
CounterOffset. The counter goes either into low

Config->DatalDMode ==
nibble (left branch) or high nibble (right branch) of

BLE

Data. Note that the nibble next to Counter may be

used by application. [TRUE]

Config->DatalDNibbleOffset %

[FALSE]

I 8=="0 1
[TRUE] [FALSE]
(Data+(Config->DatalDNibbleOffset/8)) = (*(Data+(Config->DatalDNibbleOffset/8)) = (*
(Data+(Config->DatalDNibbleOffset/8)) & (Data+(Config->DatalDNibbleOffset/8)) &
0xFO) | ((DatalD>>8) & OxOF) 0x0F) | ((DatalD>>4) & 0xF0)

)

Write the low nibble of high byte of Data ID - only for B S
E2E_PO1_DATAID_NIBBLE configuration. -

CRC = Calculate CRC over Data

)

-| location.

CRC is written to the Data at configured

[*(Data+(Config->CRCOffset/8)) = CRC)

Increment the counter
modulo 15 (i.e. next
value after 14 is 0).

(State->Counter ++) % 15

return

Figure 6.59: E2E_PO01Forward()

AUTSSAR

6.5.3 Evaluation of E2E- Header
6.5.3.1 E2E_PO01Check

[PRS_E2E_00196]
Upstream requirements: RS_E2E_08528, RS_E2E_08530

[The function E2E_P01Check shall
1. Check the CRC

2. Check the Data ID nibble, i.e. compare the expected value with the received
value (for E2E_PO0O1_DATAID_NIBBLE configuration only)

3. Check the Counter,
4. determine the check Status,as specified by Figure 6.60 and Figure 6.57.

AUTSSAR

E2E_PO01Check(Config, State,

Data) v

Increase MaxDeltaCounter by 1, butnot | ____________._ { State->MaxDeltaCounter = min (State->MaxDe|taCounter]

above 14 ++, 14)

If any NEW data is available to be checked
(e.g. from COM, RTE, bus).

[FALSE} .-

State->NewDataAvailable ==
TRUE
Read the Counter from Data, at the [TRUE]

configured offset.

[TRUE] [FALSE]

Config->CounterOffset % 8
=0

& 0x0F

Recei = (*(D fig- ff 4
[ReceivedCoumer: *(Data+(Config->CounterOffset/8)) & OXOF] [BreeieE Catmin = (e {Comig=ConniEOiE=ia) = d) J

(dataValid = E2E_P01_CRCAndDatalDNibble)é[TRUE] [FALSE] >@

ReceivedCounter return
<15 E2E_E_INPUTERR_WRONG

Check if any correct data has already been Iﬁ
received.

[TRUE] [FALSE]
dataValid == State->WaitForFirstData ==
TRUE TRUE
[FALSE] [TRUE] ™

This is the first message with
correct CRC, WaitForFirstData
is therefore set to false.
Counter is not checked as it
cannot be done yet.

State->WaitForFirstData=
FALSE

State->MaxDeltaCounter =
Config->MaxDeltaCounterlnit

E2E_PO01_process NoNewOrRepeatedDataCounte
SO

State->LastValidCounter =
ReceivedCounter

State->Status= E2E_PO01_process_counter
E2E_PO1STATUS_INTIAL SO

N N N

State->Status = State->Status=
E2E_P01STATUS_NONEWDATA E2E_PO1STATUS_WRONGCRC

return

Figure 6.60: E2E_P01Check()

The diagram of the function E2E_P01Check() has a sub-diagram
E2E_PO01_CRCAndDatalDNibble specifying the calculation of CRC and compar-
ing it with the received CRC, which is shown by Figure 6.57. The subroutines of
Figure 6.61 are described in Figure 6.57 and Figure 6.58

AUTSSAR

_____________ ReceivedCRC = *(Data+(Config-
Read CRC from Data >CRCOffset/8))
[FALSE]

™ Config->DatalDMode ==
Read low nibble of high byte E2E_PO01_DATAID_NIBBLE
of Data ID from Data.

[TRUE]
[TRUE] [FALSE]————————————
Config->DatalDNibbleOffset %
8==0
ReceivedDatalDNibble = (*(Data+(Config->DatalDNibbleOffset/8))) & ReceivedDatalDNibble = (*(Data+(Config->DatalDNibbleOffset/8)) >>
0xOF 4) & OXOF
[I

[AN
Calculate CRC in the same way
asthe Senderdid. ~ f----o____

CalculatedCRC = E2E_P01_Calculate CRC over Datald

N and Data oo
Check if received nibble is
identical to the one in DatalD. |

[TRUE|—== [FALSE]

ReceivedCRC == CalculatedRCR
&8& ReceivedDatalDNibble ==
DatalDNibble

retum TRUE return FALSE

return

Figure 6.61: E2E Profile Check step "E2E_P01_CRCAndDatalDNibble”

The diagram of the function E2E_P01Check() has a sub-diagram
E2E_PO1_process_ NoNewOrRepeatedDataCounter specifying the evaluation of
the different counter states, which is shown in Figure 6.62.

AUTSSAR

Compute the delta,
taking into account the
overflow. R

ReceivedCounter >= State-
>LastValidCounter

DeltaCounter =
ReceivedCounter - State-
>LastValidCounter

DeltaCounter = 15 +
ReceivedCounter - State-
>LastValidCounter

The previous and the
current data have
correct CRC, verify the
counter.

[FALSE] [FALSE]
DeltaCounter DeltaCounter > State-
=0 >MaxDeltaCounter
[TRUE] [TRUE]
E2E_PO01_process_NoNewOrRepeatedDataCounter E2E_P01_handle_wrongSequence returnvalue =
oo oo E2E7P017hand|efokfandfokSomeLosto_o

returnvalue =
[returnvalue = E2E_P01STATUS_REPEATED][E2E_P01STATUS_ WRONGSEQUENGE]

retun
returnvalue

Figure 6.62: E2E Profile Check step "E2E_P01_process_counter”

The diagram of the function E2E_P01Check() and "E2E_PO01_process_counter” have a
sub-diagram E2E_PO01_process_NoNewOrRepeatedDataCounter specifying the han-
dling of receiving a repeated message and receiving no message, which is shown in
Figure 6.63.

AUTSSAR

>—[FALSE]

State-
>NoNewOrRepeatedDataCounter <
14

[TRUE]

(State->NoNewOrRepeatedDataCounter++]

®

Figure 6.63: E2E Profile Check step "E2E_P01_process_NoNewOrRepeatedDataCounter”

The diagram of the step “E2E_PO01_process_counter” has a sub-diagram
"E2E_PO01_handle_wrongSequence” specifying the handling of receiving a message
where the counter exceeded the maximum between two messages, which is shown in
Figure 6.64.

[State->NoNewOrRepeatedDataCounter = 0]

[State->SyncCounter = Config->SyncCounterlnit]

>—[FALSE]—
State->SyncCounter

>0

[TRUE]

State->MaxDeltaCounter = Config-
>MaxDeltaCounterlnit

[State->LastValidCounter = ReceivedCounter]

®

Figure 6.64: E2E Profile Check step "E2E_P01_handle_wrongSequence”

AUTSSAR

The diagram of the step

sage of valid messages where the no fault was detected,

in Figure 6.65.

?

State->MaxDeltaCounter = Config-
>MaxDeltaCounterlnit

State->LastValidCounter =
ReceivedCounter

(State->LostData = deltacounter - 1]

"E2E_PO01_process_counter”
"E2E_PO01_handle_ok_and_okSomeLost” specifying the handling of receiving a mes-

some messages where lost
but this particular is valid or the the profile is synchronizing the counter, which is shown

{TRUE]—<>—[FALSE}
State-

Config-
>MaxNoNewOrRepeatedData

State->SyncCounter = Config-
>SyncCounterlnit

[
(

)
<

Stal
NoNewOrRepeate

te->

dDataCounter = 0 State->SyncCounter--

>NoNewOrRepeatedDataCounter >

]%[TRUE]—Q

State->SyncCounter
>0

[FALSE]

(

State->NoNewOrRepeatedDataCounte r]
=0

deltacounter

[TRUE} =1

[FALSE]

returnvalue =
E2E_P01STATUS_SYNC

)

(returnvalue = E2E_P01STATUS_OK]

(

returnvalue =
E2E_PO1STATUS_OKSOMELOST

)

(J
return
retumvalue

Figure 6.65: E2E Profile Check step

”E2E_P01_handle_ok_and_okSomeLost”

has a sub-diagram

AUTSSAR

6.5.4 Profile Data Types

6.

5.4.1 Profile 1 Protect State Type

[PRS_E2E_00644]
Upstream requirements: RS_E2E_08528

[The E2E_PO01Protect and E2E_P01Forward functions 'state’ shall have the members
defined in [PRS_E2E_00866]. |

[PRS_E2E_00866] Profile 1 Protect State Type
Upstream requirements: RS_E2E_08528

[

Name

Type

Description

Counter

Unsigned Integer

Counter to be used for protecting the next Data. The ini-
tial value is 0, which means that the first Data will have the
counter 0. After the protection by the Counter, the Counter is
incremented modulo OxF. The value OxF is skipped (after OXE
the next is 0x0), as 0xF value represents the error value. The
four high bits are always 0.

6.5.4.2 Profile 1 Check Status Type

[PRS_E2E_00645]
Upstream requirements: RS_E2E_08528

[The E2E_PO01Check functions ’'State’ shall have the members defined in
[PRS_E2E_00867].
[PRS_E2E 00867] E2E Profile 1 Check Status Type Members
Upstream requirements: RS_E2E_08528
[
Member Name Type Description
LastValidCounter Unsigned Integer Counter value most recently received. If

no data has been yet received, then the
value is 0x0. After each reception, the
counter is updated with the value re-
ceived.

MaxDeltaCounter

Unsigned Integer MaxDeltaCounter specifies the maximum
allowed difference between two counter
values of consecutively received valid
messages.

AUTSSAR

WaitForFirstData Boolean If true, that means no correct data (with
correct Data ID and CRC) has been yet
received after the receiver initialization or
reinitialization.

NewDataAvailable Boolean Indicates that new data is available to be
checked. This attribute has to be set by
the caller of the E2E_P01Check function.
LostData Unsigned Integer Number of data (messages) lost
since reception of last valid one.
This attribute is set only if Sta-
tus equals E2E_PO1STATUS_OK or
E2E_PO1STATUS _OKSOMELOST. For
other values of Status, the value of
LostData is undefined.

Status Enumeration Result of the verification of the Data, de-
termined by the Check function.
SyncCounter Unsigned Integer Number of Data required for validating the

consistency of the counter that must be re-
ceived with a valid counter (i.e. counter
within the allowed lock-in range) after the
detection of an unexpected behavior of a
received counter.
NoNewOrRepeatedData Unsigned Integer Amount of consecutive reception cycles in
which either (1) there was no new data, or
(2) when the data was repeated.

6.5.4.3 Profile 1 Check Status Enumeration

[PRS_E2E 00588]

Upstream requirements: RS_E2E_08528
[The E2E_P01Check function ’State->Status’ enumeration type shall have the follow-
ing enumeration values (see [PRS_E2E_00868])). |

[PRS_E2E_00868] E2E Profile 1 Check Status Enumeration
Upstream requirements: RS_E2E_08528

[

Name State Type | Description

E2E PO1STATUS OK OK The new data has been received accord-
ing to communication medium, the CRC
is correct, the Counter is incremented by
1 with respect to the most recent Data re-
ceived with Status _INITIAL, _OK, or _OK-
SOMELOST. This means that no Data has
been lost since the last correct data recep-
tion.

AUTSSAR

E2E_PO1STATUS_NONEWDATA

Error

The Check function has been invoked but
no new Data is available since the last call,
according to communication medium (e.g.
RTE, COM). As a result, no E2E checks of
Data have been consequently executed

E2E_P01STATUS_WRONGCRC

Error

The data has been received accord-
ing to communication medium, but 1.
the CRC is incorrect (applicable for
all E2E Profile 1 configurations) or 2.
the low nibble of the high byte of
Data ID is incorrect (applicable only for
E2E Profile 1 with E2E_P01DatalDMode
= E2E_PO1_DATAID_NIBBLE). The two
above errors can be a result of corruption,
incorrect addressing or masquerade.

E2E_PO1STATUS_SYNC

Not Valid

The new data has been received after
detection of an unexpected behavior of
counter. The data has a correct CRC and
a counter within the expected range with
respect to the most recent Data received,
but the determined continuity check for the
counter is not finalized yet.

E2E_PO1STATUS_INITIAL

Initial

The new data has been received accord-
ing to communication medium, the CRC
is correct, but this is the first Data since
the receiver’s initialization or reinitializa-
tion, so the Counter cannot be verified yet.

E2E_PO1STATUS_REPEATED

Error

The new data has been received accord-
ing to communication medium, the CRC
is correct, but the Counter is identical to
the most recent Data received with Status
INITIAL, OK, or OKSOMELOST.

E2E_PO1STATUS_OKSOMELOST

OK

The new data has been received accord-
ing to communication medium, the CRC
is correct, the Counter is incremented
by DeltaCounter (1 < DeltaCounter =
MaxDeltaCounter) with respect to the
most recent Data received with Status
_INITIAL, _OK, or _OKSOMELOST. This
means that some Data in the sequence
have been probably lost since the last cor-
rect/initial reception, but this is within the
configured tolerance range.

E2E_PO1STATUS_WRONGSEQUENCE

Error

The new data has been received ac-
cording to communication medium, the
CRC is correct, but the Counter Delta is
too big (DeltaCounter > MaxDeltaCounter)
with respect to the most recent Data re-
ceived with Status _INITIAL, OK, or _OK-
SOMELOST. This means that too many
Data in the sequence have been probably
lost since the last correct/initial reception.

AUTSSAR

6.5.4.4 Profile 1 Configuration Type

[PRS_E2E 00646]

Upstream requirements: RS_E2E_08528, RS_E2E_08537
[The E2E_P01Protect, E2E_PO01Forward and E2E_P01Check functions 'Config’ shall
have the following members defined in [PRS_E2E_00869]. |

[PRS_E2E_00869] E2E Profile 1 Configuration Type
Upstream requirements: RS_E2E_08528, RS_E2E_08537

[

MemberName Type Description

CounterOffset Unsigned Integer | Bit offset of Counter in MSB first order. Coun-
terOffset shall be a multiple of 4. In variants
1A, 1B, and 1C, CounterOffset is 8.
CRCOffset Unsigned Integer | Bit offset of CRC (i.e. since *Data) in MSB
first order. The offset shall be a multiple of 8.
In variants 1A, 1B, and 1C, CRCOffset is 0.
DatalD Unsigned Integer | A unique identifier, for protection against
masquerading. There are some constraints
on the selection of ID values, described in
section "Configuration constraints on Data

IDs".

DatalDNibbleOffset Unsigned Integer | Bit offset of the low nibble of the high byte of
Data ID.

DatalDMode Enumeration Inclusion mode of ID in CRC computation
(both bytes, alternating, or low byte only of
ID included).

DatalLength Unsigned Integer | Length of data, in bits. The value shall be a
multiple of 8 and shall be <= 256.

MaxDeltaCounterlnit Unsigned Integer | Initial maximum allowed gap between two

counter values of two consecutively received
valid Data. For example, if the receiver gets
Data with counter 1 and MaxDeltaCounterlnit
is 1, then at the next reception the receiver
can accept Counters with values 2 and 3, but
not 4. Note that if the receiver does not re-
ceive new Data at a consecutive read, then
the receiver increments the tolerance by 1.
MaxNoNewOrRepeatedDatal Unsigned Integer | The maximum amount of missing or repeated
Data which the receiver does not expect to
exceed under normal communication condi-
tions.

SyncCounterlnit Unsigned Integer | Number of Data required for validating the
consistency of the counter that must be re-
ceived with a valid counter (i.e. counter within
the allowed lock-in range) after the detec-
tion of an unexpected behavior of a received
counter.

AUTSSAR

6.5.5 EZ2E Profile 1 Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated

to be different:

E2E_PO01ConfigType field Value

CounterOffset 8

CRCOffset 0

DatalD 0x123
DatalDNibbleOffset 12

DatalDMode E2E_P01_DATAID_BOTH
DatalLength 64

MaxDeltaCounterlnit 1
MaxNoNewOrRepeatedData 15

SyncCounterlnit 0

Table 6.4: E2E Profile 1 protocol example configuration

E2E_PO1ProtectStateType field

Value

Counter

0

Table 6.5: E2E Profile 1 example state initialization

Result data of E2E_PO01Protect() with data equals all zeros (0x00), counter = 0:

Byte

0

1

2

3

4

5

6

7

Oxcc

0x00

0x00

0x00

0x00

0x00

0x00

0x00

Table 6.6: E2E Profile 1 protect result DatalDMode = E2E_P01_DATAID_BOTH, counter 0

Result data of E2E_PO01Protect() with data equals all zeros (0x00), counter = 1:

Byte

0

1

2

3

4

5

6

7

0x91

0x01

0x00

0x00

0x00

0x00

0x00

0x00

Table 6.7: E2E Profile 1 protect result DatalDMode = E2E_P01_DATAID BOTH, counter 1

6.5.5.1

DatalDMode set to E2E_P01_DATAID ALT

Result data of E2E_PO01Protect() with data equals all zeros (0x00), counter = 0:

Byte

0

1

2

3

4

5

6

7

0xCE

0x00

0x00

0x00

0x00

0x00

0x00

0x00

Table 6.8: E2E Profile 1 protect result DatalDMode = E2E_P01_DATAID_ALT, counter 0

Result data of E2E_PO01Protect() with data equals all zeros (0x00), counter = 1:

AUTSSAR

Byte

0

1

2

3

4

5

6

7

0x02

0x01

0x00

0x00

0x00

0x00

0x00

0x00

Table 6.9: E2E Profile 1 protect result DatalDMode = E2E_P01_DATAID_ ALT, counter 1

6.5.5.2 DatalDMode set to E2E_P01_DATAID_LOW

Result data of E2E_PO01Protect() with data equals all zeros (0x00), counter = 0:

Byte

0

1

2

3

4

5

6

7

0xCE

0x00

0x00

0x00

0x00

0x00

0x00

0x00

Table 6.10: E2E Profile 1 protect result DatalDMode = E2E_P01_DATAID LOW, counter 0

Result data of E2E_PO01Protect() with data equals all zeros (0x00), counter = 1:

Byte

0

1

2

3

4

5

6

7

0x93

0x01

0x00

0x00

0x00

0x00

0x00

0x00

Table 6.11: E2E Profile 1 protect result DataIDMode = E2E_P01_DATAID_LOW, counter 1

6.5.5.3 DatalDMode set to E2E_P01_DATAID_NIBBLE

Result data of E2E_PO01Protect() with data equals all zeros (0x00), counter = 0:

Byte

0

1

2

3

4

5

6

7

0x2a

0x10

0x00

0x00

0x00

0x00

0x00

0x00

Table 6.12: E2E Profile 1 protect result DatalDMode = E2E_P01_DATAID_NIBBLE, counter

0

Result data of E2E_PO01Protect() with data equals all zeros (0x00), counter = 1:

Byte

0

1

2

3

4

5

6

7

0x77

Ox11

0x00

0x00

0x00

0x00

0x00

0x00

Table 6.13: E2E Profile 1 protect result DatalDMode = E2E_P01_DATAID_NIBBLE, counter

1

AUTSSAR

6.6 Specification of E2E Profile 2

Profile 2 is a Legacy Profile and is only maintained for compatibility reasons. New
Projects shall use Profile 22.

[PRS_E2E_00219]

Upstream requirements: RS_E2E_08527, RS_E2E_08529, RS E2E_08530, RS _E2E_08533,
RS _E2E_08543, RS E2E_ 08544, RS _E2E 08545, RS _E2E 08546,
RS _E2E_08547, RS _E2E_08548

[Profile 2 shall provide the following mechanisms: Sequence Number (Counter), Mes-
sage Key used for CRC calculation (Data ID), Data ID + CRC, Safety Code (CRC) (see
[PRS_E2E_00870]).]

[PRS_E2E_00870] E2E Profile 2 mechanisms

Upstream requirements: RS_E2E_08527, RS_E2E_08529, RS_E2E_08530, RS_E2E_08533,
RS_E2E_08543, RS_E2E_08544, RS_E2E_08545, RS_E2E_08546,
RS_E2E_08547, RS_E2E_08548

Mechanism Description

Counter (Sequence Number) 4bit (explicitly sent) representing numbers from 0 to 15 in-
cremented by 1 on every send request (Bit 0:3 of Data[1])
at sender side. The counter is incremented on every call of
the E2E_PO02Protect() function, i.e. on every transmission
request of the SW-C

Data ID (Message Key used for | 8 bit (not explicitly sent) The specific Data ID used to cal-
CRC calculation) culate the CRC depends on the value of the Counter and is
an element of an pre-defined set of Data IDs (value of the
counter as index to select the particular Data ID used for
the protection). For every Data element, the List of Data
IDs depending on each value of the counter is unique.
Data ID + CRC Masquerade and incorrect addressing, insertion

Safety Code(CRC(Safety | 8 bit explicitly sent (Data[0]) Polynomial: 0x2F (x8 + x5 +
Code)) x3 + x2 + x + 1) Start value: 0xFF Final XOR-value: OxFF
Note: This CRC polynomial is different from the CRC-
polynomials used by FlexRay and CAN.

Timeout monitoring Timeout is determined by E2E Supervision by means
of evaluation of the Counter, by a nonblocking read
at the receiver. Timeout is reported by E2E Super-
vision to the caller by means of the status flags in
E2E_P02CheckStatusType.

]

The mechanisms provided by Profile 2 enable the detection of the relevant failure
modes except message delay (for details see the table in [PRS_E2E_00870]):

Since this profile is implemented in a Supervision, the Supervision’s E2E_P02Check()
function itself cannot ensure to be called in a periodic manner. Thus, a required pro-
tection mechanism against undetected message delay (e.g. Timeout) must be imple-
mented in the caller.

AUTSSAR

The E2E mechanisms can detect the following faults or effects of faults:

E2E Mechanism Detected communication faults

Counter Repetition, Loss, insertion, incorrect sequence, blocking
Transmission on a regular ba- | Loss, delay, blocking

sis and timeout monitoring using
E2E-Library 3

Data ID + CRC Masquerade and incorrect addressing, insertion
CRC Corruption, Asymmetric information #

Table 6.14: Detectable communication faults using Profile 2

6.6.1 Header Layout

[PRS_E2E_00121]
Upstream requirements: RS_E2E_08528

[In E2E Profile 2, the layout of the data buffer (Data) shall be as depicted in Figure
6.66. |

Data[0] Data[1] Data[2] Data[N-1] Data[N]
[CRC gy g ™cp . B I S) S
Figure 6.66: E2E Profile 2 data buffer layout

6.6.1.1 Counter

[PRS_E2E_00123]
Upstream requirements: RS_E2E_08528

[In E2E Profile 2, the Counter shall be the low nibble (Bit 0...Bit 3) of Data[1]. |

[PRS_E2E 00128]
Upstream requirements: RS_E2E_08528

[In E2E Profile 2, the range of the value of the Counter shall be [0...15]. |

[PRS_E2E_00129]
Upstream requirements: RS_E2E_08528

[When the Counter has reached its upper bound of 15 (0xF), it shall restart at O for the
next call of the E2E_PO2Protect() from the sending SW-C. |

3Implementation by sender and receiver
“for a set of data protected by same CRC

AUTSSAR

6.6.1.2 DatalD

[PRS_E2E_00119]

Upstream requirements: RS_E2E_08528
[In E2E Profile 2, the specific Data ID used to calculate a specific CRC shall be of
length 8 bit. |

[PRS_E2E_00120]

Upstream requirements: RS_E2E_08528
[In E2E Profile 2, the specific Data ID used for CRC calculation shall be selected from
a pre-defined DatalDList[16] using the value of the Counter as an index. |

Each data, which is protected by a CRC owns a dedicated DatalDList which is de-
posited on the sender site and all the receiver sites.

The pre-defined DatalDList[16] is generated offline. In general, there are several fac-
tors influencing the contents of DatalDList, e.g:

—

. length of the protected data

2. number of protected data elements

3. number of cycles within a masquerading fault has to be detected
4. number of senders and receivers

5. characteristics of the CRC polynomial.

Due to the limited length of the 8bit polynomial, it is possible that a masquerading fault
cannot be detected in a specific cycle when evaluating a received CRC value. Due to
the adequate Data IDs in the DatalDList, a masquerading fault can be detected in one
of the successive communication cycles.

Due to the underlying rules for the DatalDList, the system design of the application has
to take into account that a masquerading fault is detected not until evaluating a certain
number of communication cycles.

6.6.1.3 CRC

[PRS_E2E 00117]
Upstream requirements: RS_E2E_08528

[E2E Profile 2 shall use the Crc_CalculateCRC8H2F() function of the SWS CRC Su-
pervision for calculating CRC checksums. |

AUTSSAR

[PRS_E2E 00118]
Upstream requirements: RS_E2E_08528

[E2E Profile 2 shall use OxFF as the start value CRC_StartValue8 for CRC calcula-
tion. |

[PRS_E2E_00122]
Upstream requirements: RS_E2E_08528

[In E2E Profile 2, the CRC shall be Data[0]. |

6.6.2 Creation of E2E-Header

[PRS_E2E_00124]
Upstream requirements: RS_E2E_08528

[In E2E Profile 2, both the E2E_P02Protect() and the E2E_P02Forward() function shall
not modify any bit of Data except the bits representing the CRC and the Counter. |

6.6.2.1 E2E_PO02Protect

The E2E_P02Protect() function of E2E Profile 2 is called by a SW-C in order to protect
its application data against the failure modes as shown in table in [PRS_E2E_00870].
E2E_PO02Protect() therefore calculates the Counter and then the CRC and puts both
into the data buffer (Data). A flow chart with the visual description of the function
E2E_PO2Protect() is depicted in Figure 6.67 and Figure 6.68.

[PRS_E2E_00126]
Upstream requirements: RS_E2E 08528, RS_E2E_08531

[In E2E Profile 2, the E2E_P02Protect() function shall perform the activities as speci-
fied in Figure 6.67 and Figure 6.68. |

AUTSSAR

E2E_PO02Protect(Config, State, Data)

Increment State->Counter
O

(*(Data+1) = (*(Data+1) & 0>’<:F0) | (State- } Counter is written to Bits
>Count\z& 0x0F) 0..3 of Datal[1]

DatalD = Config->DatalDList[State-
>Counter]

CRC = Crc_CalculateCRC8H2F() computed over Data[1], Data[2], ... Data[Config-
>DatalLength/8-1], DatalD

(Data[0] = CRC } ---------- CRC is written to Data[0] Ij

©®

retum

Figure 6.67: E2E_PO02Protect()

Increment State-
>Count

State->Counter <
[TRUE] 152

[FALSE]

(State->Counter ++) (State-> Counter =0)

Figure 6.68: Increment Counter

[PRS_E2E 00127]
Upstream requirements: RS_E2E_08528
[In E2E Profile 2, the E2E_PO02Protect() function shall increment the Counter of the

state (E2E_P02ProtectState Type) by 1 on every transmission request from the sending
SW-C, i.e. on every call of E2E_PO02Protect(). |

[PRS_E2E 00130]
Upstream requirements: RS_E2E_08528
[In E2E Profile 2, the E2E_PO02Protect() function shall update the Counter (i.e. low

nibble (Bit 0...Bit 3) of Data byte 1) in the data buffer (Data) after incrementing the
Counter. |

AUTSSAR

The specific Data ID used for this send request is then determined from a DatalDList[]
depending on the value of the Counter (Counter is used as an index to select the Data
ID from DatalDList[]). The DatalDList[] is defined in E2E_P02ConfigType.

[PRS_E2E_00132]
Upstream requirements: RS_E2E_08528

[In E2E Profile 2, after determining the specific Data ID, the E2E_P02Protect()
and E2E_PO02Forward() functions shall calculate the CRC over Data[1], Data[2], ...
Data[Config->Datalength/8-1] of the data buffer (Data) extended with the Data ID. |

[PRS_E2E 00133]
Upstream requirements: RS_E2E_08528

[In E2E Profile 2, the E2E_P02Protect() and E2E_PO02Forward() functions shall update
the CRC (i.e. Data[0]) in the data buffer (Data) after computing the CRC. |

The specific Data ID itself is not transmitted on the bus. It is just a virtual message key
used for the CRC calculation.

6.6.2.2 E2E_PO2Forward

The E2E_P02Forward() function of E2E Profile 2 is called by a SW-C in order to protect
its application data and forward a received E2E-Status for use cases like translation of
signal based to service oriented communication. If the received E2E status equals
E2E_P_OK the behavior of the function shall be the same like E2E_P02Protect(). A
flow chart with the visual description of the function E2E_PO02Forward() is depicted in
Figure 6.69 and Figure 6.70.

[PRS_E2E 00613]
Upstream requirements: RS_E2E_08528, RS_E2E_08531

[In E2E Profile 2, the E2E_P02Forward() function shall perform the activities as spec-
ified in Figure 6.69 and Figure 6.68. |

AUTSSAR

E2E_PO02Forward(Config, State, Data,

ForwardStatus) t
Increment State->Counter
O

“(Data+1) = (*(Data+1) & 0xFO) | (State- | _______._.__| Counteris witten o Bits
>Counter & 0xOF) 0.3 of Datal]
if ForwardStatus ==
E2E_P_ERRG?
ITRUE—— > —(raLsE———

DatalD = Config->DatalDList[State- DatalD = Config->DatalDList[State-
>Counter] + 1 >Counter]

CRC = Crc_CalculateCRC8H2F() computed over Data[1], Data[2], ... Data[Config-
>DatalLength/8-1], DatalD

[Data[0] = CRC } ---------- CRC is written to Data[0] Ij

®

retum

Figure 6.69: E2E_PO02Forward()

[PRS_E2E 00614]
Upstream requirements: RS_E2E_08528

[In E2E Profile 2, the E2E_P02Forward() function shall increment the Counter accord-
ing to Figure 6.70.

Increment State-

>Count?

if ForwardStatus ==
E2E_P_WRONGSEQUENCE - =
if ForwardStatus _P_WRONGSEQUENC State->Counter >

— 157?
T M 1 n 1
E2E_p_REPEATE [FALSE=X - [FALSE] /Y [FALSE]
[T:[/UE]

[TRUE] [TRUE]

SRS Gy = State-> Counter = 0 State->Counter ++
Config-
>MaxDeltaCounterinit + 1

Figure 6.70: Increment Counter

AUTSSAR

6.6.3 Evaluation of the E2E-Check

[PRS_E2E_00125]
Upstream requirements: RS_E2E 08528, RS_E2E_08531

[In E2E Profile 2, the E2E_P02Check() function shall not modify any bit in Data. |

6.6.3.1 E2E_P02Check

The E2E_P02Check() function is used as an error detection mechanism by a caller in
order to check if the received data is correct with respect to the failure modes men-
tioned in the profile summary.

A flow chart with the visual description of the function E2E_P02Check() is depicted in
Figure 6.71, Figure 6.72 and Figure 6.73.

[PRS_E2E_00134]
Upstream requirements: RS_E2E 08528, RS_E2E_08531

[In E2E Profile 2, the E2E_P02Check() function shall perform the activities as specified
in Figure 6.71, Figure 6.72 and Figure 6.73. |

AUTSSAR

E2E_P02Check(Config, State,

Data) .

Increase MaxDeltaCounter by 1, but not above 15 ____| State->MaxDeltaCounter = min (State->MaxDeltaCounter+
+, 15)
[FALSE]
State->NewDataAvailable ==
TRUE
[TRUE]
the counter is on lower nibble of byte | ---- ReceivedCounter = (*(Data + 1) &0xF)
1.

v

DatalD = Config->DatalDList{ReceivedCounter]

v

FALSE] Checksum OK
L 1 (e o)
k T
[TRUE]
[TRUE]
State->WaitForFirstData ==
- ~ TRUE
State->WaitForFirstData = [FALSE]
FALSE
G J

v

State->MaxDeltaCounter =
Config-
>MaxDeltaCounterlnit

v

4 2\

State->LastValidCounter =
ReceivedCounter

~

E2E_P02_process NoNewOrRepeatedDataCouhtp State->Status = E2E_P02_processCounter
[e o) [e o)

4

State->Status=
E2E_P02STATUS_WRONGCRC

State->Status = State->Status=
E2E_P02STATUS_NONEWDATA E2E_P02STATUS_INITIAL

return

Figure 6.71: E2E_P02Check

AUTSSAR

Checksum
OK

over Data[1], Data[2], ... Data[Config->DatalLength/8-

(CalcualtedCRC = Crc_CalculateCRC8H2F() computed]
1], DatalD

[TRUE] [FALSE]

CalculatedCRC ==
Datal[0]

return return
TRUE FALSE

Figure 6.72: Checksum OK

Calculate
DeltaCounter

DeltaCounter =
ReceivedCounter - State-

>LastValidCounter

(sint8) DeltaCounter <
0 ?

[TRUE]

[FALSE]

(DeltaCounter = DeltaCounter +]
16

®

retumn

Figure 6.73: Calculate Delta Counter

AUTSSAR

DeltaCounter =
k E2E_P02_calculateDeltaCounter &

DeltaCounter
==0

[FALSE] [FALSE]
DeltaCounter >
State>MaxDeltaCounter
[TRUE] [TRUE]
E2E_P02_process_NoNewOrRepeatedDataCounjer E2E_P02_handle_wrongSequence returnvalue =
oSO SO E2E_P02_handle_ok and_okSomeLo&>O
returnvalue =
[retumvalue = E2E_POZSTATUS_REPEATEDJ [E2E_P02STATUS_WRONGSEQUENCE j

O,
return
returnvalue

Figure 6.74: E2E Profile Check step "E2E_P02_process_counter”

[FALSE]
State-
>NoNewOrRepeatedDataCounter <
15
[TRUE]

(State->NoNewOrRepeatedDataCounter)
+=1

Figure 6.75: E2E Profile Check step "E2E_P02_process_NoNewOrRepeatedDataCounter”

AUTSSAR

(State->NoNewOrRepeatedDataCounter = 0]

(State->SyncCounter = Config->SyncCounterinit]

[FALSE]
State->SyncCounter

[TRUE] >0

(State->MaxDeltaCounter = Config->MaxDeltaCounterlnit]

[State-> LastValidCounter = ReceivedCounter J

®
Figure 6.76: E2E Profile Check step "E2E_P02_handle_wrongSequence”

AUTSSAR

(State->MaxDeltaCounter = Config->MaxDeltaCounterlnit]

~—

[State->LastValidCounter = ReceivedCounter

(State->LostData = DeltaCounter - 1]

[FALS E]<>—[T RUE]
State-

>NoNewOrRepeatedDataCounter <=
Config->MaxNoNewOrRepeatedData

[State->SyncCounter = Config->SyncCounterlnit]

State->SyncCounter
State->SyncCounter -= 1 [TRUE] >0

[FALSE]

DeltaCounter
[TRUE] -1

[FALSE]
returnvalue =
[returnvalue = E2E_P02STATUS_SYNC J [retumvalue = E2E_P02STATUS_OK] (E2E_P02STATUS_OKSOMELOST]
(State->NoNewOrRepeatedDataCounter = 0]
O,

return
retumvalue

Figure 6.77: E2E Profile Check step "E2E_P02_handle_ok_and_okSomeLost”

First, the E2E_P02Check() function increments the value MaxDeltaCounter by 1 up
to maximum value 15. MaxDeltaCounter specifies the maximum allowed difference
between two Counter values of two consecutively received valid messages. Note:
MaxDeltaCounter is used in order to perform a plausibility check for the failure mode
re-sequencing. If the flag NewDataAvailable is set, the E2E_P02Check() function
continues with the evaluation of the CRC. Otherwise, it returns with Status set to
E2E_PO02STATUS_NONEWDATA. To evaluate the correctness of the CRC, the follow-
ing actions are performed:

AUTSSAR

» The specific Data ID is determined using the value of the Counter as provided in
Data.

» Then the CRC is calculated over Data payload extended with the Data ID as
last Byte: CalculatedCRC = Crc_CalculateCRC8H2F() calculated over Data[1],
Data[2], ... Data[Config->DatalLength/8-1], Data ID

+ Finally, the check for correctness of the received Data is performed by comparing
CalculatedCRC with the value of CRC stored in Data.

In case CRC in Data and CalculatedCRC do not match, the E2E_P02Check() func-
tion returns with Status E2E_PO2STATUS WRONGCRC, otherwise it continues with
further evaluation steps.

The flag WaitForFirstData specifies if the SW-C expects the first message after startup
or after a timeout error. This flag should be set by the SW-C if the SW-C expects the
first message e.g. after startup or after reinitialization due to error handling. This flag
is allowed to be reset by the E2E_P02Check() function only. The reception of the first
message is a special event because no plausibility checks against previously received
messages is performed.

If the flag WaitForFirstData is set by the SW-C, E2E_P02Check() does not evaluate
the Counter of Data and returns with Status E2E__PO2STATUS_INITIAL. However, if
the flag WaitForFirstData is reset (the SW-C does not expect the first message) the
E2E_P02Check() function evaluates the value of the Counter in Data.

For messages with a received Counter value within a valid range, the
E2E_P02Check() function returns either with E2E_PO2STATUS_OK or
E2E_P02STATUS OKSOMELOST. In LostData, the number of missing messages
since the most recently received valid message is provided to the SW-C.

For messages with a received Counter value outside of a valid range, E2E_P02Check()
returns with one of the following states: E2E_P02STATUS WRONGSEQUENCE or
E2E P02STATUS REPEATED.

[PRS_E2E_00135]
Upstream requirements: RS_E2E_08528

[In E2E Profile 2, the local variable DeltaCounter shall be calculated by subtracting
LastValidCounter from Counter in Data, considering an overflow due to the range of
values [0...15].]

Details on the calculation of DeltaCounter are depicted in Figure 6.74.

[PRS_E2E_00136]
Upstream requirements: RS_E2E_08528

[In E2E Profile 2, MaxDeltaCounter shall specify the maximum allowed difference be-
tween two Counter values of two consecutively received valid messages. |

AUTSSAR

[PRS_E2E 00137]
Upstream requirements: RS_E2E_08528

[In E2E Profile 2, MaxDeltaCounter shall be incremented by 1 every time the
E2E_P02Check() function is called, up to the maximum value of 15 (0xF). |

[PRS_E2E_00138]
Upstream requirements: RS_E2E_08528

[In E2E Profile 2, the E2E_P02Check() function shall set Status to
E2E_PO02STATUS_NONEWDATA if the attribute NewDataAvailable is FALSE. |

[PRS_E2E_00139]
Upstream requirements: RS_E2E_08528

[In E2E Profile 2, the E2E_P02Check() function shall determine the specific Data 1D
from DatalDList using the Counter of the received Data as index. |

[PRS_E2E 00140]
Upstream requirements: RS_E2E_08528
[In E2E Profile 2, the E2E_P02Check() function shall calculate CalculatedCRC over

Data[1], Data[2], ... Data[Config->DataLength/8-1] of the data buffer (Data) extended
with the determined Data ID. |

[PRS_E2E_00141]
Upstream requirements: RS_E2E_08528

[In E2E Profile 2, the E2E_P02Check() function shall set Status to
E2E_P02STATUS _WRONGCRC if the calculated CalculatedCRC value differs
from the value of the CRC in Data.

]

[PRS_E2E 00142]
Upstream requirements: RS_E2E_08528

[In E2E Profile 2, the E2E_P02Check() function shall set Status to
E2E_PO02STATUS_INITIAL if the flag WaitForFirstData is TRUE. |

[PRS_E2E_00143]
Upstream requirements: RS_E2E_08528

[In E2E Profile 2, the E2E_P02Check() function shall clear the flag WaitForFirstData if
it returns with Status E2E_P02STATUS_INITIAL. |

For the first message after start up no plausibility check of the Counter is possible.
Thus, at least a minimum number of messages need to be received in order to per-
form a check of the Counter values and in order to guarantee that at least one correct
message was received.

AUTSSAR

[PRS_E2E 00145]
Upstream requirements: RS_E2E_08528

[The E2E_P02Check() function shall
 set Status to E2E_ PO2STATUS WRONGSEQUENCE; and
* re-initialize SyncCounter with SyncCounterlnit
if the calculated value of DeltaCounter exceeds the value of MaxDeltaCounter. |

[PRS_E2E_00146]
Upstream requirements: RS_E2E_08528

[The E2E_P02Check() function shall set Status to E2E_P02STATUS_REPEATED if
the calculated DeltaCounter equals O. |
[PRS_E2E 00147]

Upstream requirements: RS_E2E_08528

[The E2E_P02Check() function shall set Status to E2E_P02STATUS_OK if the follow-
ing conditions are true:

* the calculated DeltaCounter equals 1; and

» the value of the NoNewOrRepeatedDataCounter is less than or equal to
MaxNoNewOrRepeatedData (i.e. State —> NoNewOrRepeatedDataCounter <=
Config —> MaxNoNewOrRepeatedData); and

 the SyncCounter equals 0.

]

[PRS_E2E_00298]
Upstream requirements: RS_E2E_08528

[The E2E_P02Check() function shall
* re-initialize SyncCounter with SyncCounterlnit; and
 set Status to E2E_P02STATUS_SYNC,; if the following conditions are true:

* the calculated DeltaCounter is within the parameters of 1 and MaxDeltaCounter
(i.e. 1 =/< DeltaCounter =/< MaxDeltaCounter); and

» the value of the NoNewOrRepeatedDataCounter exceeds MaxNoNewOrRe-
peatedData. (i.e. State NoNewOrRepeatedDataCounter > Config MaxNoNewOr-
RepeatedData)

AUTSSAR

[PRS_E2E 00299]
Upstream requirements: RS_E2E_08528

[The E2E_P02Check() function shall

» decrement SyncCounter by 1 and set Status to E2E_P02STATUS_SYNC if the
following conditions are true:

« the calculated DeltaCounter is within the parameters of 1 and MaxDeltaCounter
(i.e. 1 =/< DeltaCounter =/< MaxDeltaCounter); and

» the value of the NoNewOrRepeatedDataCounter is less than or equal to
MaxNoNewOrRepeatedData (i.e. State NoNewOrRepeatedDataCounter =/<
Config MaxNoNewOrRepeatedData); and

 the SyncCounter exceeds 0.

]

[PRS_E2E_00148]
Upstream requirements: RS_E2E_08528

[The E2E_P02Check() function shall set Status to E2E_P02STATUS_OKSOMELOST
if the following conditions are true:

« the calculated DeltaCounter is greater-than 1 but less-than or equal to MaxDelta-
Counter (i.e. 1 < DeltaCounter =/< MaxDeltaCounter); and

» the NoNewOrRepeatedDataCounter is less than or equal to MaxNoNewOr-
RepeatedData (i.e. State NoNewOrRepeatedDataCounter =/< Config
MaxNoNewOrRepeatedData); and

 the SyncCounter equals 0.

]

[PRS_E2E_00149]
Upstream requirements: RS_E2E_08528

[The E2E_P02Check() function shall set the value LostData to (DeltaCounter - 1) if the
calculated DeltaCounter is greater-than 1 but less-than or equal to MaxDeltaCounter. |

[PRS_E2E 00150]
Upstream requirements: RS_E2E_08528

[The E2E_P02Check() function shall re-initialize MaxDeltaCounter with MaxDelta-
Counterlnit if it returns one of the following Status:

« E2E_PO02STATUS_OK; or
+ E2E_PO2STATUS_OKSOMELOST; or
« E2E_PO2STATUS_INITIAL; or

AUTSSAR

. E2E_P02STATUS_SYNC; or

« E2E_P02STATUS WRONGSEQUENCE on condition that SyncCounter exceeds
0 (i.e. SyncCounter > 0).

]

[PRS_E2E 00151]
Upstream requirements: RS_E2E_08528

[The E2E_P02Check() function shall set LastValidCounter to Counter of Data if it re-
turns one of the following Status:

« E2E_PO02STATUS_OK; or
E2E_P02STATUS_OKSOMELOST; or
E2E_PO2STATUS_INITIAL; or
E2E_PO02STATUS_SYNC; or

E2E_PO02STATUS WRONGSEQUENCE on condition that SyncCounter exceeds
0 (i.e. SyncCounter > 0).

]

[PRS_E2E_00300]
Upstream requirements: RS_E2E_08528

[The E2E_P02Check() function shall reset the NoNewOrRepeatedDataCounter to 0 if
it returns one of the following status:

« E2E_PO02STATUS_OK; or

« E2E_PO2STATUS_OKSOMELOST; or

« E2E_PO2STATUS_SYNC; or

« E2E_PO2STATUS_WRONGSEQUENCE

]

[PRS_E2E 00301]
Upstream requirements: RS_E2E_08528

[The E2E_PO02Check() function shall increment NoNewOrRepeatedData-
Counter by 1 if it returns the Status E2E_PO02STATUS_NONEWDATA or
E2E_PO2STATUS_REPEATED up to the maximum value of Counter (i.e. 15 or
0xF). |

AUTSSAR

6.6.4 Profile Data Types
6.6.4.1 Profile 2 Protect State Type

[PRS_E2E 00647]

Upstream requirements: RS_E2E_08528
[The E2E_P02Protect and E2E_P02Forward functions ’state’ shall have the members
defined in [PRS_E2E_00871]. |

[PRS_E2E_00871] E2E Profile 2 Protect State Type
Upstream requirements: RS_E2E_08528

[
Name State Type Description
Counter Unsigned Integer Counter to be used for protecting the Data.
The initial value is 0. As the counter is in-
cremented before sending, the first Data
will have the counter value 1
J

6.6.4.2 Profile 2 Check Status Type

[PRS_E2E 00648]

Upstream requirements: RS_E2E_08528, RS_E2E_08537

[The E2E_PO02Check functions ’'State’ shall have the members defined in
[PRS_E2E_00872].]

[PRS_E2E _00872] E2E Profile 2 Check Status Type
Upstream requirements: RS_E2E_08528, RS_E2E_08537

Member Name Type Description
LastValidCounter Unsigned Integer Counter of last valid received message.
MaxDeltaCounter Unsigned Integer MaxDeltaCounter specifies the maximum

allowed difference between two counter
values of consecutively received valid
messages.

WaitForFirstData Boolean If true, that means no correct data (with
correct Data ID and CRC) has been yet
received after the receiver initialization or
reinitialization.

NewDataAvailable Boolean Indicates that a new data is available to
be checked. This attribute is set by the
E2E_P02Check function caller, and not by
the function itself.

AUTSSAR

LostData Unsigned Integer Number of data (messages) lost since re-
ception of last valid one.

Status Enumeration Result of the verification of the Data, de-
termined by the Check function.

SyncCounter Unsigned Integer Number of Data required for validating the

consistency of the counter that must be re-
ceived with a valid counter (i.e. counter
within the allowed lock-in range) after the
detection of an unexpected behavior of a
received counter.
NoNewOrRepeatedData Unsigned Integer Amount of consecutive reception cycles in
which either (1) there was no new data, or
(2) when the data was repeated.

6.6.4.3 Profile 2 Check Status Enumeration

[PRS_E2E 00589]

Upstream requirements: RS_E2E_08528
[The E2E_P02Check functions ’State->Status’ enumeration type shall consist of the
following enumeration values (see [PRS_E2E_00873)). |

[PRS_E2E_00873] E2E Profile 2 Check Status Enumeration
Upstream requirements: RS_E2E_08528

[

Name State | Description
Type
E2E PO2STATUS OK OK The new data has been received accord-

ing to communication medium, the CRC
is correct, the Counter is incremented by
1 with respect to the most recent Data re-
ceived with Status _INITIAL, OK, or OK-
SOMELOST. This means that no Data has
been lost since the last correct data recep-
tion.

E2E PO2STATUS NONEWDATA Error The Check function has been invoked but
no new Data is available since the last call,
according to communication medium (e.g.
RTE, COM). As a result, no E2E checks of
Data have been consequently executed.
E2E_P02STATUS_WRONGCRC Error The data has been received according to
communication medium, but the CRC is
incorrect.

AUTSSAR

E2E PO2STATUS SYNC Not The new data has been received after
Valid detection of an unexpected behavior of
counter. The data has a correct CRC and
a counter within the expected range with
respect to the most recent Data received,
but the determined continuity check for the
counter is not finalized yet.

E2E _PO2STATUS INITIAL Initial The new data has been received accord-
ing to communication medium, the CRC
is correct, but this is the first Data since
the receiver’s initialization or reinitializa-
tion, so the Counter cannot be verified yet.
E2E PO2STATUS REPEATED Error The new data has been received accord-
ing to communication medium, the CRC
is correct, but the Counter is identical to
the most recent Data received with Status
_INITIAL, _OK, or _OKSOMELOST.
E2E_P0O2STATUS OKSOMELOST OK The new data has been received ac-
cording to communication medium, the
CRC is correct, the Counter is incre-
mented by DeltaCounter (1 < Delta-
Counter =MaxDeltaCounter) with respect
to the most recent Data received with Sta-
tus _INITIAL, _OK, or _OKSOMELOST.
This means that some Data in the se-
quence have been probably lost since
the last correct/initial reception, but this is
within the configured tolerance range.
E2E _P02STATUS WRONGSEQUENCE | Error The new data has been received ac-
cording to communication medium, the
CRC is correct, but the Counter Delta is
too big (DeltaCounter > MaxDeltaCounter)
with respect to the most recent Data re-
ceived with Status _INITIAL, _OK, or _OK-
SOMELOST. This means that too many
Data in the sequence have been probably
lost since the last correct/initial reception.

6.6.4.4 Profile 2 Configuration Type

[PRS_E2E_00667]
Upstream requirements: RS_E2E_08528

[The E2E_PO02Protect, E2E_PO02Forward and E2E_P02Check functions 'Config’ shall
have the following members defined in [PRS_E2E_00874]. |

AUTSSAR

[PRS_E2E_00874] E2E Profile 2 Configuration Type

Upstream requirements: RS_E2E_08528

[

Member Name Type Description
DatalLength Unsigned Integer Length of Data, in bits. The value shall be
a multiple of 8.
DatalDList Unsigned Integer | An array of appropriately chosen Data IDs
Array for protection against masquerading.
MaxDeltaCounterlnit Unsigned Integer Initial maximum allowed gap between two

counter values of two consecutively re-
ceived valid Data.

MaxNoNewOrRepeatedData | Unsigned Integer

The maximum amount of missing or re-
peated Data which the receiver does not
expect to exceed under normal communi-
cation conditions.

SyncCounterlnit Unsigned Integer

Number of Data required for validating the
consistency of the counter that must be re-
ceived with a valid counter (i.e. counter
within the allowed lock-in range) after the
detection of an unexpected behavior of a
received counter.

Offset Unsigned Integer

Offset of the E2E header in the Data[] ar-
ray in bits. It shall be: 0 <= Offset <=
Datalength-(2*8).Note that if the receiver
does not receive new Data at a consecu-
tive read, then the receiver increments the
tolerance by 1.

6.6.5 EZ2E Profile 2 Protocol Examples

E2E_P02ConfigType field Value
DatalLength 64
DatalDList 0x01, 0x02, 0x03, 0x04,

0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0xOc,
0x0d, 0x0e, 0x0f, 0x10

MaxDeltaCounterlnit

1

MaxNoNewOrRepeatedData 15
SyncCounterlnit 0
Offset 0

Table 6.15: E2E Profile 2 protocol example configuration

E2E_PO02ProtectStateType field

Value

Counter

0

Table 6.16: E2E Profile 2 example state initialization

AUTSSAR

Result data of E2E_P02Protect() with data equals all zeros (0x00), counter starting with
1 (note: first used counter is 1, although counter field is initialized with 0, as counter is
incremented before usage):

Counter DatalD Byte
0 1 2 3 4 5 6 7
1 0x02 0x1b 0x01 0x00 0x00 0x00 0x00 0x00 0x00
2 0x03 0x98 0x02 0x00 0x00 0x00 0x00 0x00 0x00
3 0x04 0x31 0x03 0x00 0x00 0x00 0x00 0x00 0x00
4 0x05 0xod 0x04 0x00 0x00 0x00 0x00 0x00 0x00
5 0x06 0x18 0x05 0x00 0x00 0x00 0x00 0x00 0x00
6 0x07 0x9b 0x06 0x00 0x00 0x00 0x00 0x00 0x00
7 0x08 0x65 0x07 0x00 0x00 0x00 0x00 0x00 0x00
8 0x09 0x08 0x08 0x00 0x00 0x00 0x00 0x00 0x00
9 0x0a 0ox1d 0x09 0x00 0x00 0x00 0x00 0x00 0x00
10 0x0b 0x9e 0x0a 0x00 0x00 0x00 0x00 0x00 0x00
11 0x0c 0x37 0x0b 0x00 0x00 0x00 0x00 0x00 0x00
12 0x0d 0x0b 0x0c 0x00 0x00 0x00 0x00 0x00 0x00
13 0x0e Ox1e 0x0d 0x00 0x00 0x00 0x00 0x00 0x00
14 0xof 0x9d 0x0e 0x00 0x00 0x00 0x00 0x00 0x00
15 0x10 Oxcd 0xOf 0x00 0x00 0x00 0x00 0x00 0x00
0 0x01 0x0e 0x00 0x00 0x00 0x00 0x00 0x00 0x00
CRC 4 bit Data
Data + 4
bit
Counter

Table 6.17: E2E Profile 2 example protect result

6.7 Specification of E2E Profile 4

[PRS_E2E_00372]

Upstream requirements: RS_E2E_08527, RS_E2E_08529, RS_E2E_08530, RS_E2E_08533,
RS _E2E_08543, RS _E2E_08544, RS _E2E 08545, RS _E2E 08546,
RS _E2E 08547, RS _E2E 08548, RS _E2E 08549, RS_E2E_08550

[Profile 4 shall provide the following control fields, transmitted at runtime together with
the protected data: Length, Counter, CRC, Data ID (see [PRS_E2E_00875]). |

[PRS_E2E_00875] E2E Profile 4 mechanisms
Upstream requirements: RS_E2E_08527, RS_E2E_08529, RS_E2E_08530, RS_E2E_08533,
RS_E2E_08543, RS_E2E 08544, RS_E2E_08545, RS_E2E_08546,
RS_E2E_08547, RS_E2E_08548, RS_E2E_08549, RS_E2E_08550

Control field Description
Length 16 bits, to support dynamic-size data.
Counter 16-bits.

AUTSSAR

CRC 32 bits, polynomial in normal form 0xF4ACFB13, provided
by CRC library.

Note: This CRC polynomial is different from the CRC-
polynomials used by FlexRay, CAN and LIN and TCP/IP.
Data ID 32-bits, unique system-wide.

]

For details of CRC calculation, the usage of start values and XOR values see
SWS_CRCLibrary[3].

The specification of the profile uses the following placeholders:

Placeholder Replacement
PO4LENGTH_POS 0
PO4LENGTH_LEN
PO4COUNTER_POS
PO4COUNTER_LEN
PO4DATAID_POS
PO4DATAID_LEN
P04CRC_POS
PO4CRC_LEN 4

P04CALCULATE_CRC Crc_CalculateCRC32P4()

O | (NN N

Table 6.18: Profile 4-specific data

For behavior and flowcharts of E2E Profile 04 see Chapter 6.3.

6.7.1 Header Layout

In the E2E Profile 4, the user data layout (of the data to be protected) is not constrained
by E2E Profile 4 - there is only a requirement that the length of data to be protected is
multiple of 1 byte.

The header of the E2E Profile 4 has one fixed layout, as follows:

BytelBit I 5 I T I z I 3 |

0(1]2|2|4|5 |65 | 7|25 |00 23 |03|24|15|05(07 |12 |19 |20 (21 |22(23|24|35 |26 |27 |28|25(30] 31

=]
4
=

Figure 6.78: E2E Profile 4 Header

The bit numbering shown above represents the order in which bits are transmitted. The
E2E header fields (e.g. E2E Counter) are encoded as:

1. Big Endian (most significant byte first) - imposed by profile
2. LSB First (least significant bit within byte first) - imposed by TCP/IP bus

The header can be placed at a specific location in the protected data, by configuring
the offset of the entire E2E header.

AUTSSAR

6.7.2 Profile 4 Configuration Type

[PRS_E2E 00651]

Upstream requirements: RS_E2E_08528, RS_E2E_08537
[The E2E_PO04Protect, E2E_P04Forward and E2E_P04Check functions 'Config’ shall
have the following members defined in [PRS_E2E_00876]. |

[PRS_E2E_00876] E2E Profile 4 Configuration Type
Upstream requirements: RS_E2E_08528, RS_E2E_08537

[

Member Name Type Description

DatalD Unsigned Integer A system-unique identifier of the Data.
Offset Unsigned Integer Bit offset of the first bit of the E2E header
from the beginning of the Data (bit num-
bering: bit 0 is the least important). The
offset shall be a multiple of 8 and 0 <=
Offset <= MaxDatalLength-(12*8). Exam-
ple: If Offset equals 8, then the high byte
of the E2E Length (16 bit) is written to Byte
1, the low Byte is written to Byte 2.
MinDatalength Unsigned Integer Minimal length of Data, in bits. EZ2E
checks that Datalength is >= MinDatal-
ength. The value shall be <= MaxDatal-
ength and shall be >= 12*8. The value
shall be a multiple of 8.

MaxDatalength Unsigned Integer Maximal length of Data, in bits. EZ2E
checks that Datalength is <= MaxDatalL-
ength. The value shall be <= 40968
(4KB) and it shall be >= MinDataLength.
The value shall be a multiple of 8.
MaxDeltaCounter Unsigned Integer Maximum allowed gap between two
counter values of two consecutively re-
ceived valid Data.

6.7.3 EZ2E Profile 4 Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated
to be different:

E2E_P04ConfigType field Value
DatalD 0x0a0b0c0d
Offset 0x0000
MinDatalLength 96
MaxDatalLength 32768
MaxDeltaCounter 1

Table 6.19: E2E Profile 4 protocol example configuration

AUTSSAR

E2E_PO04ProtectStateType field Value
Counter 0

Table 6.20: E2E Profile 4 example state initialization

Result data of E2E_P04Protect() with short data length (length 16 bytes, means 4
actual data bytes), offset = 0, counter = 0:

Byte 0 1 2 3 4 5 6 7
Data 0x00 0x10 0x00 0x00 0x0a 0x0b 0x0c 0x0d
Field Length Counter DatalD

Byte 8 9 10 11 12 13 14 15
Data 0x86 0x2b 0x05 0x56 0x00 0x00 0x00 0x00
Field CRC Data

Table 6.21: E2E Profile 4 example short

Result data of E2E_P04Protect() with minimum data length (4 data bytes), offset = 64
(as with SOME/IP header use case), datalength = 24, counter = 0:

Byte 0 1 2 3 4 5 6 7
Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Field Data (upper header)

Byte 8 9 10 11 12 13 14 15
Data 0x00 0x18 0x00 0x00 0x0a 0x0b 0x0c 0x0d
Field Length Counter DatalD

Byte 16 17 18 19 20 21 22 23
Data 0x69 0xd7 0x50 0x2e 0x00 0x00 0x00 0x00
Field CRC Data

Table 6.22: E2E Profile 4 example short with SOME/IP use case

6.8 Specification of E2E Profile 5

[PRS_E2E_00394]

Upstream requirements: RS_E2E_08527, RS_E2E_08529, RS_E2E_08530, RS_E2E_08533,
RS _E2E_08543, RS E2E_08544, RS _E2E 08545, RS _E2E 08546,
RS _E2E 08547, RS _E2E 08548, RS _E2E 08549

[Profile 5 shall provide the following control fields, transmitted at runtime together with
the protected data: Counter, CRC, Data ID (see [PRS_E2E_00877]). |

AUTSSAR

[PRS_E2E_00877] E2E Profile 5 mechanisms
Upstream requirements: RS_E2E_08527, RS_E2E_08529, RS_E2E_08530, RS_E2E_08533,
RS_E2E_08543, RS_E2E 08544, RS_E2E_08545, RS_E2E_08546,
RS_E2E_08547, RS_E2E_08548, RS_E2E_08549

[
Control field Description
Counter 8 bits. (explicitly sent)
CRC 16 bits, polynomial in normal form 0x1021 (Autosar notation),
provided by CRC library. (explicitly sent)
Data ID 16 bits, unique system-wide. (implicitly sent)E2E

]

The E2E mechanisms can detect the following faults or effects of faults:
Fault Main safety mechanisms
Repetition of information Counter
Loss of information Counter
Delay of information Counter
Insertion of information Data ID, CRC
Masquerading Data ID, CRC
Incorrect addressing Data ID
Incorrect sequence of information Counter
Corruption of information CRC
Asymmetric information sent from a senderto | CRC (to detect corruption at any of receivers)
multiple receivers
Information from a sender received by only a | Counter (loss on specific receivers)
subset of the receivers
Blocking access to a communication channel | Counter (loss or timeout)

Table 6.23: Detectable communication faults using Profile 5

For details of CRC calculation, the usage of start values and XOR values see
SWS_CRCLibrary[3].

The specification of the profile uses the following placeholders:

Placeholder Replacement
POSLENGTH_POS 0

POSLENGTH_LEN 0
POSCOUNTER_POS 2
POSCOUNTER_LEN 1
POSDATAID_POS 0
PO5DATAID_LEN 0
PO5CRC_POS 0
PO5CRC_LEN 2
POSCALCULATE_CRC Crc_CalculateCRC16()

Table 6.24: Profile 5-specific data

AUTSSAR

6.8.1 Header layout

In the E2E Profile 5, the user data layout (of the data to be protected) is not constrained
by E2E Profile 5 - there is only a requirement, that the length of data to be protected is
multiple of 1 byte.

The header of the E2E Profile 5 has one fixed layout, as follows:

Byte/Bit [o [1 [2 |
o|l1]z2|3|a|s|e|7 8] 9fw|unfiz|13f1a|1s|1s]|17|18]|19 20|21 |22 |23

Figure 6.79: E2E Profile 5 header

The bit numbering shown above represents the order in which bits are transmitted. The
E2E header fields (e.g. CRC) are encoded like in CAN and FlexRay, i.e.:

1. Little Endian (least significant byte first) applicable for both implicit and explicit
header fields - imposed by profile

2. MSB First (most significant bit within byte first) - imposed by Flexray/CAN bus.

6.8.1.1 Counter

In E2E Profile 5, the counter is initialized, incremented, reset and checked by E2E
profile. The counter is not manipulated or used by the caller of the E2E Supervision.

[PRS_E2E_00397]
Upstream requirements: RS_E2E_08539

[In E2E Profile 5, on the sender side, for the first transmission request of a data el-
ement the counter shall be initialized with 0 and shall be incremented by 1 for every
subsequent send request. When the counter reaches the maximum value (OxFF), then
it shall restart with 0 for the next send request. |

Note :The counter value OxFF is not reserved as a special invalid value, but it is used
as a normal counter value.

6.8.1.2 DatalD

The unique Data IDs are to verify the identity of each transmitted safety-related data
element.

[PRS_E2E_00399]
Upstream requirements: RS_E2E_08539

[In the E2E Profile 5, the Data ID shall be implicitly transmitted, by adding the Data ID
after the user data in the CRC calculation. |

AUTSSAR

The Data ID is not a part of the transmitted E2E header (similar to Profile 2 and 6).

[PRS_E2E_01441] Uniqueness of Data IDs
Replaces: PRS_E2E _UC 00463
Upstream requirements: RS_E2E_08539

[In the E2E profile 5, the Data IDs should be globally unique within the network of
communicating system (made of several ECUs each sending different data). |

In case of usage of E2E Supervision for protecting data elements (i.e invocation from
RTE), due to multiplicity of communication (1:1 or 1:N), a consumer of a data element
expects only a specific data element, which is checked by E2E Supervision using Data
ID.

In case of usage of E2E Supervision for protecting messages (i.e. invocation from
COM), the receiver COM expects at a reception only a specific message, which is
checked by E2E Supervision using Data ID.

6.8.1.3 Length

In Profile 5 there is no explicit transmission of the length.

6.8.1.4 CRC

E2E Profile 5 uses a 16-bit CRC, to ensure a sufficient detection rate and sufficient
Hamming Distance.

[PRS_E2E 00400]
Upstream requirements: RS_E2E_08528, RS_E2E_08539
[E2E Profile 5 shall use the Crc_CalculateCRC16() function of the SWS CRC Super-
vision for calculating the CRC (Polynomial: 0x1021; Autosar notation). |
[PRS_E2E 00401]
Upstream requirements: RS_E2E_08539, RS_E2E_08531

[In E2E Profile 5, the CRC shall be calculated over the entire E2E header (excluding
the CRC bytes), including the user data extended at the end with the Data ID. |

6.8.2 Creation of the E2E-Header
6.8.2.1 E2E_PO05Protect

The function E2E_PO05Protect() performs the steps as specified by the following dia-
grams (see also Chapter 6.3).

AUTSSAR

[PRS_E2E_00403]
Upstream requirements: RS_E2E_08539

[The function E2E_PO05Protect() shall have the overall behavior as shown in Figure
6.80. |

E2E_PO05Protect(Config, State, Data,
Length)

Verify inputs of the pro%
function

[null [input [wrong
input] ok input]

Compute offset

I

Write Counter

Compute CRC

fimpn
il

Write CRC

Increment Counter

f
Ll

@<

return return return

E2E_E_INPUTERR_NULL E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.80: E2E Profile 5 Protect

[PRS_E2E_00404]
Upstream requirements: RS_E2E_08539

[The step "Verify inputs of the protect function” in E2E_PO5Protect() shall behave as
shown in Figure 6.3. |

[PRS_E2E_00469]
Upstream requirements: RS_E2E_08539

[The step “Compute offset” in E2E_PO5Protect(), E2E_P05Forward() and
E2E_P05Check() shall behave as shown in Figure 6.4. |

AUTSSAR

[PRS_E2E_00405]
Upstream requirements: RS_E2E_08539

[The step "Write Counter” in E2E_P05Protect() shall behave as shown in Figure 6.6. |

[PRS_E2E_00406]
Upstream requirements: RS_E2E_08539

[The step "Compute CRC” in E2E_PO05Protect() and in E2E_P05Check shall behave
as shown in Figure 6.81. |

E2E_PO5Protect()

E2E_P05Check()
O
Config->Offset > 0

[TRUE] [FALSE]
uintl6 ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr: uintl6 ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:
&Data[0], Crc_Length: Offset, Crc_StartValue16: OXFFFF, &Data[Offset+2], Crc_Length: Length-Offset-2,

Crc_lIsFirstCall: TRUE) Crc_StartValuel6: OxFFFF, Crc_lIsFirstCall: TRUE)

[Offset+2], Crc_Length: Length-Offset-2, Crc_StartValuel6:

ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:&Data
ComputedCRC, Crc_IsFirstCall: FALSE)

ComputedCRC= Crc_CalculateCRC16(Config->DatalD &
OxFF, Crc_Length: 1, Crc_StartValue16: ComputedCRC,
Crc_IsFirstCall: FALSE)

OxFF, Crc_Length: 1, Crc_StartValue16: computedCRC,

ComputedCRC= Crc_CalculateCRC16(Config->DatalD>>8 &
Crc_|sFirstCall: FALSE)

®
Figure 6.81: E2E Profile 5 Protect and Check step "Compute CRC”

[PRS_E2E_00407]
Upstream requirements: RS_E2E_08539

[The step "Write CRC” in E2E_PO05Protect() and E2E_P05Forward() shall behave as
shown in Figure 6.9. |

[PRS_E2E_00409]
Upstream requirements: RS_E2E_08539

[The step "Increment Counter” in E2E_PO05Protect() and E2E_PO05Forward() shall be-
have as shown in Figure 6.10. |

AUTSSAR

6.8.2.2 E2E_PO5Forward

The E2E_PO05Forward() function of E2E Profile 5 is called by a SW-C in order to protect
its application data and forward an received E2E-Status for use cases like translation
of signal based to service oriented communication. If the received E2E status equals
E2E_P_OK the behavior of the function shall be the same like E2E_PO05Protect(). The
function E2E_PO05Forward() performs the steps as specified by the following diagrams
(see also Chapter 6.3).

[PRS_E2E_00639]
Upstream requirements: RS_E2E_08539

[The function E2E_PO05Forward() shall have the overall behavior as shown in Figure
6.82.]

E2E_PO05Forward(Config, State, Data, Length,

ForwardStatus)
Verify inputs of the pm%
function

Compute offset
‘ Write Counter

Compute CRC

it

[wrong

oo input]

Write CRC
(o e)

Increment Counter

[ece)

O,
return @ return

E2E_E_INPUTERR_NULL E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.82: E2E Profile 5 Forward

return

Following steps are described in Section in Section 6.8.2.1
» "Compute Offset” see [PRS_E2E_00469]
» "Write CRC” see [PRS_E2E_00407]
* “Increment Counter” see [PRS_E2E_00409]

AUTSSAR

[PRS_E2E_00619]

Upstream requirements: RS_E2E_08539
[The step "Verify inputs of the forward function” in E2E_P05Forward() shall behave as
shown in Figure 6.12. |

[PRS_E2E_00620]
Upstream requirements: RS_E2E_08539

[The step "Write Counter” in E2E_PO5Forward() shall behave as shown in Figure
6.13.]
[PRS_E2E_00621]
Upstream requirements: RS_E2E_08539
[The step "Compute CRC” in E2E_PO0O5Forward() shall behave as shown in Figure

6.83.
oo

Config->Offset

>0
[TRUE] [FALSE]
uintl6 ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr: uintl6 ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:
&Data[0], Crc_Length: Offset, Crc_StartValue16: OXFFFF, &Data[Offset+2], Crc_Length: Length-Offset-2,
Crc_lIsFirstCall: TRUE) Crc_StartValuel6: OXFFFF, Crc_lIsFirstCall: TRUE)

ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:&Data

[Offset+2], Crc_Length: Length-Offset-2, Crc_StartValuel6:

ComputedCRC, Crc_IsFirstCall: FALSE)
if ForwardStatus ==
E2E_P_ERROR
[FALSE] [TRUE]

ComputedCRC= Crc_CalculateCRC16(Config->DatalD & ComputedCRC= Crc_CalculateCRC16((Config->DatalD+1) &
OxFF, Crc_Length: 1, Crc_StartValue16: ComputedCRC, OxFF, Crc_Length: 1, Crc_StartValue16: ComputedCRC,
Crc_|sFirstCall: FALSE) Crc_|sFirstCall: FALSE)

ComputedCRC= Crc_CalculateCRC16(Config->DatalD>>8 & ComputedCRC= Crc_CalculateCRC16((Config->DatalD
OxFF, Crc_Length: 1, Crc_StartValue16: computedCRC, +1)>>8 & OxFF, Crc_Length: 1, Crc_StartValuel16:
Crc_IsFirstCall: FALSE) computedCRC, Crc_lsFirstCall: FALSE)

s

Figure 6.83: E2E Profile 5 Forward step "Compute CRC”

AUTSSAR

6.8.3 Evaluation of the E2E-Header
6.8.3.1 E2E_PO05Check

The function E2E_P05Check() performs the actions as specified by the following dia-
grams (see also Chapter 6.3).

[PRS_E2E_00411]
Upstream requirements: RS_E2E_08539

[The function E2E_P05Check() shall have the overall behavior as shown in Figure
6.84. |

E2E_P05Check(Config, State, Data, Length)

Verify inputs of the chgslgo
function

[null input] [input ok [wrong input]

NewDataAvailable
== TRUE

[TRUE]

(Compute offset O-O)

Read Counter oo

[FALSE]

Read CRC S5O

Compute CRC oo ’

Do checks oo
® @
retum retum E2E B OK otum

E2E_E_INPUTERR_NULL E2E_E_INPUTERR_WRONG

Figure 6.84: E2E Profile 5 Check

[PRS_E2E_00412]

Upstream requirements: RS_E2E_08539
[The step "Verify inputs of the check function” in E2E_P05Check() shall behave as
shown in Figure 6.16. |

[PRS_E2E 00413]
Upstream requirements: RS_E2E_08539

[The step "Read Counter” in E2E_P05Check() shall behave as shown in Figure 6.18. |

AUTSSAR

[PRS_E2E_00414]
Upstream requirements: RS_E2E_08539

[The step "Read CRC” in E2E_P05Check() shall behave as shown in Figure 6.20. |

[PRS_E2E_00416]
Upstream requirements: RS_E2E_08539

[The step "Do Checks’ in E2E_P05Check() shall behave as shown in Figure 6.21. |

6.8.4 Profile Data Types
6.8.4.1 Profile 5 Protect State Type

[PRS_E2E 00652]
Upstream requirements: RS_E2E_08528

[The E2E_PO05Protect and E2E_PO05Forward functions ’state’ shall have the members
defined in [PRS_E2E_00878]. |

[PRS_E2E_00878] E2E Profile 5 Protect State Type
Upstream requirements: RS_E2E_08528

[

Name State Type Description

Counter Unsigned Integer Counter to be used for protecting the next
Data. The initial value is 0, which means
that in the first cycle, Counter is 0. Each
time E2E_PO5Protect() is called, it incre-
ments the counter up to OxFF.

6.8.4.2 Profile 5 Check Status Type

[PRS_E2E_00653]

Upstream requirements: RS_E2E_08528

[The E2E_PO05Check functions ’'State’ shall have the members defined in
[PRS_E2E_00879].]

[PRS_E2E_00879] E2E Profile 5 Check Status Type
Upstream requirements: RS_E2E_08528

[

| Member Name | State Type | Description

AUTSSAR

Counter Unsigned Integer Counter of the data in previous cycle.
Status Enumeration Result of the verification of the Data in this
cycle, determined by the Check function.

6.8.4.3 Profile 5 Check Status Enumeration

[PRS_E2E_00591]

Upstream requirements: RS_E2E_08528
[The E2E_PO05Check functions 'State->Status’ enumeration type shall consist the fol-
lowing enumeration values (see [PRS_E2E_00880]). |

[PRS_E2E_00880] E2E Profile 5 Check Status Enumeration
Upstream requirements: RS_E2E_08528

[
Name State | Description
Type
E2E_PO5STATUS_OK OK The checks of the Data in this cycle

were successful (including counter check,
which was incremented by 1).
E2E_PO5STATUS_NONEWDATA Error The Check function has been invoked but
no new Data is available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E
checks of Data have been consequently
executed. This may be considered similar
to E2E_PO5STATUS_REPEATED.
E2E_PO5STATUS _ERROR Error Error not related to counters occurred (e.g.
wrong crc, wrong length, wrong options,
wrong Data ID).

E2E PO5STATUS REPEATED Error The checks of the Data in this cycle were
successful, with the exception of the repe-
tition.

E2E PO5STATUS OKSOMELOST OK The checks of the Data in this cycle

were successful (including counter check,
which was incremented within the allowed
configured delta).

E2E PO5STATUS WRONGSEQUENCE | Error The checks of the Data in this cycle were
successful, with the exception of counter
jump, which changed more than the al-
lowed delta

AUTSSAR

6.8.4.4 Profile 5 Configuration Type

[PRS_E2E 00654]

Upstream requirements: RS_E2E_08528, RS_E2E_08537, RS_E2E_08539
[The E2E_PO5Protect, E2E_PO05Forward and E2E_P05Check functions 'Config’ shall
have the following members defined in [PRS_E2E_00881]. |

[PRS_E2E_00881] E2E Profile 5 Configuration Type
Upstream requirements: RS_E2E_08528, RS_E2E_08537, RS_E2E_08539

[

Member Name Type Description
DatalD Unsigned Integer A system-unique identifier of the Data.
Offset Unsigned Integer Bit offset of the first bit of the E2E header

from the beginning of the Data (bit num-
bering: bit 0 is the least important). The
offset shall be a multiple of 8 and 0 <=
Offset <= DatalLength-(3*8). Example: If
Offset equals 8, then the low byte of the
E2E Crc (16 bit) is written to Byte 1, the
high Byte is written to Byte 2.

Datalength Unsigned Integer Length of Data, in bits. The value shall be
<= 4096"8 (4kB) and shall be >= 3*8. The
value shall be a multiple of 8.
MaxDeltaCounter Unsigned Integer Maximum allowed gap between two
counter values of two consecutively re-
ceived valid Data.

6.8.5 EZ2E Profile 5 Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated
to be different:

E2E_P05ConfigType field Value
DatalD 0x1234
Offset 0x0000
DatalLength 24
MaxDeltaCounter 1

Table 6.25: E2E Profile 5 protocol example configuration

E2E_PO05ProtectStateType field Value
Counter 0

Table 6.26: E2E Profile 5 example state initialization

AUTSSAR

Result data of E2E_P05Protect() with short data length (length 8 bytes, with 5 actual
data bytes), offset = 0, counter = 0:

Byte 0 1 2 3 4 5 6 7
Data 0x01c Oxca 0x00 0x00 0x00 0x00 0x00 0x00
Field CRC Counter Data

Table 6.27: E2E Profile 5 example short

Result data of E2E_PO05Protect() with short data length (length 16 bytes, with 5 actual
data bytes), offset = 64 (as with SOME/IP header use case), counter = 0:

Byte 0 1 2 3 4 5 6 7

Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Field Data (upper header)

Byte 8 9 10 11 12 13 14 15

Data 0x28 0x91 0x00 0x00 0x00 0x00 0x00 0x00
Field CRC Counter Data

Table 6.28: E2E Profile 5 example short with SOME/IP use case

6.9 Specification of E2E Profile 6

[PRS_E2E_00479]

Upstream requirements: RS_E2E_08527, RS_E2E_08529, RS _E2E_08530, RS _E2E_08533,
RS _E2E_08543, RS E2E 08544, RS _E2E 08545, RS _E2E 08546,
RS _E2E 08547, RS _E2E_08548, RS _E2E_08549

[Profile 6 shall provide the following control fields, transmitted at runtime together with
the protected data: Length, Counter, CRC, Data ID (see [PRS_E2E_00882)). |

[PRS_E2E_00882] E2E Profile 6 mechanisms
Upstream requirements: RS_E2E_08527, RS_E2E_08529, RS_E2E_08530, RS_E2E_08533,
RS_E2E_08543, RS_E2E_08544, RS_E2E_08545, RS_E2E_08546,
RS_E2E_08547, RS_E2E_08548, RS_E2E_08549

[
Control field Description
Length 16 bits, to support dynamic-size data. (explicitly sent)
Counter 8-bits. (explicitly sent)
CRC 16-bits, polynomial in normal form 0x1021 (Autosar nota-
tion), provided by CRC library. (explicitly sent)
Data ID 16-bits, unique system-wide. (implicitly sent)
]

The E2E mechanisms can detect the following faults or effects of faults:

AUTSSAR

Fault Main safety mechanisms
Repetition of information Counter

Loss of information Counter

Delay of information Counter

Insertion of information Data ID

Masquerading Data ID, CRC

Incorrect addressing Data ID

Incorrect sequence of information Counter

Corruption of information CRC

Asymmetric information sent from a senderto | CRC (to detect corruption at any of receivers)
multiple receivers

Information from a sender received by only a | Counter (loss on specific receivers)
subset of the receivers

Blocking access to a communication channel | Counter (loss or timeout)

Table 6.29: Detectable communication faults using Profile 6

For details of CRC calculation, the usage of start values and XOR values see
SWS_CRCLibrary[3].

The specification of the profile uses the following placeholders:

Placeholder Replacement
POBLENGTH_POS 2

PO6LENGTH_LEN 2
PO6COUNTER_POS 4
PO6COUNTER_LEN 1
PO6DATAID_POS 0
PO6DATAID_LEN 0
PO6CRC_POS 0
PO6CRC_LEN 2
PO6CALCULATE_CRC Crc_CalculateCRC16()

Table 6.30: Profile 6-specific data

6.9.1 Header layout

In the E2E Profile 6, the user data layout (of the data to be protected) is not constrained
by E2E Profile 6 - there is only a requirement that the length of data to be protected is
multiple of 1 byte.

The header of the E2E Profile 6 has one fixed layout, as follows:

Byte/Bit [] I 1 [z I 3 |

0 1]2]3]4|5]|65|7]|=3]3|10]31)22)13|24)15|025] 27 (1=)15 |20 (21)|22)123|24]|35 |26 |27 |22]|25)30] 31

=]
a

Figure 6.85: E2E Profile 6 header

The bit numbering shown above represents the order in which bits are transmitted. The
E2E header fields (e.g. E2E Counter) are encoded as:

AUTSSAR

1. Big Endian (most significant byte first), applicable for both implicit and explicit
header fields - imposed by profile

2. LSB First (least significant bit within byte first) - imposed by TCP/IP bus

6.9.1.1 Counter

In E2E Profile 6, the counter is initialized, incremented, reset and checked by E2E
profile. The counter is not manipulated or used by the caller of the E2E Supervision.

[PRS_E2E 00417]
Upstream requirements: RS_E2E_08539

[In E2E Profile 6, on the sender side, for the first transmission request of a data el-
ement the counter shall be initialized with 0 and shall be incremented by 1 for every
subsequent send request. When the counter reaches the maximum value (OxFF), then
it shall restart with 0 for the next send request. |

Note that the counter value OxFF is not reserved as a special invalid value, but it is
used as a normal counter value.

The above requirements are specified in more details by the UML diagrams in the
following document sections.

6.9.1.2 DatalD

The unique Data IDs are to verify the identity of each transmitted safety-related data
element.

[PRS_E2E 00419]
Upstream requirements: RS_E2E_08539

[In the E2E Profile 6, the Data ID shall be implicitly transmitted, by adding the Data ID
after the user data in the CRC calculation. |

The Data ID is not a part of the transmitted E2E header (similar to Profile 2 and 5).

[PRS_E2E_01442] Uniqueness of Data IDs
Replaces: PRS_E2E_UC 00464
Upstream requirements: RS_E2E_08539

[In the E2E profile 6, the Data IDs should be globally unique within the network of
communicating system (made of several ECUs each sending different data). |

In case of usage of E2E Supervision for protecting data elements (i.e invocation from
RTE), due to multiplicity of communication (1:1 or 1:N), a consumer of a data element
expects only a specific data element, which is checked by E2E Supervision using Data
ID.

AUTSSAR

In case of usage of E2E Supervision for protecting messages (i.e. invocation from
COM), the receiver COM expects at a reception only a specific message, which is
checked by E2E Supervision using Data ID.

6.9.1.3 Length

In Profile 6 the length field is introduced to support variable-size length - the Data []
array storing the serialized data can potentially have a different length in each cycle. In
Profile 6 there is an explicit transmission of the length. The Length includes user data
+ E2E Header (CRC + Counter + Length).

6.9.1.4 CRC

E2E Profile 6 uses a 16-bit CRC, to ensure a sufficient detection rate and sufficient
Hamming Distance.

[PRS_E2E 00420]

Upstream requirements: RS_E2E_08528, RS_E2E_08539
[E2E Profile 6 shall use the Crc_CalculateCRC16() function of the SWS CRC Super-
vision for calculating the CRC (Polynomial: 0x1021; Autosar notation). |

[PRS_E2E_00421]
Upstream requirements: RS_E2E 08539, RS _E2E 08531

[In E2E Profile 6, the CRC shall be calculated over the entire E2E header (excluding
the CRC bytes), including the user data extended with the Data ID. |

6.9.2 Creation of E2E-Header
6.9.2.1 E2E_PO06Protect

The function E2E_PO06Protect() performs the steps as specified by the following dia-
grams (see also Chapter 6.3).

[PRS_E2E_00423]
Upstream requirements: RS_E2E_08539

[The function E2E_PO06Protect() shall have the overall behavior as shown in Figure
6.86. |

AUTSSAR

E2E_PO06Protect(Config, State, Data,
Length)

Verify inputs of the pro%

function
[null [input [wrong
input] oK \l/ input]

Compute offset

m
&)

Write Length

Write Counter

Compute CRC

AN

Write CRC

3

Increment Counter

ARpEnNARp

i

® ® ®

return return return
E2E_E_INPUTERR_NULL E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.86: E2E Profile 6 Protect

[PRS_E2E_00424]

Upstream requirements: RS_E2E_08539
[The step "Verify inputs of the protect function” in E2E_PO6Protect() shall behave as
shown in Figure 6.3.]

[PRS_E2E_00470]

Upstream requirements: RS_E2E_08539
[The step “Compute offset” in E2E_PO6Protect(), E2E_P06Forward() and
E2E_P06Check() shall behave as shown in Figure 6.4. |

[PRS_E2E 00425]

Upstream requirements: RS_E2E_08539
[The step "Write Length” in E2E_PO06Protect() and E2E_P06Forward() shall behave as
shown in Figure 6.5. |

[PRS_E2E_00426]
Upstream requirements: RS_E2E_08539

[The step "Write Counter” in E2E_P06Protect() shall behave as shown in Figure 6.6. |

AUTSSAR

[PRS_E2E_00427]
Upstream requirements: RS_E2E_08539

[The step "Compute CRC” in E2E_PO06Protect() and E2E_P06Check() shall behave
as shown in Figure 6.87.

E2E_P06Check()

E2E_PO6Protect()

!!

Config->Offset > 0

[TRUE]
uint16 ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr: uint16 ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:
&Datal[0], Crc_Length: Offset, Crc_StartValue16: OXFFFF, &Data[Offset+2], Crc_Length: Length-Offset-2,

Crc_lIsFirstCall: TRUE) Crc_StartValue16: OxFFFF, Crc_IsFirstCall: TRUE)

ComputedCRC= Crc_Calculate CRC16(Crc_DataPtr:&Data
[Offset+2], Crc_Length: Length-Offset-2, Crc_StartValuel16:
ComputedCRC, Crc_IsFirstCall: FALSE)

ComputedCRC= Crc_CalculateCRC16(Config->DatalD>>8 &
OxFF, Crc_Length: 1, Crc_StartValuel6: computedCRC,
Crc_IsFirstCall: FALSE)

ComputedCRC= Crc_CalculateCRC16(Config->DatalD &
OxFF, Crc_Length: 1, Crc_StartValuel6: ComputedCRC,
Crc_IsFirstCall: FALSE)

O,
Figure 6.87: E2E Profile 6 Protect and Check step "Compute CRC”

[PRS_E2E_00428]
Upstream requirements: RS_E2E_08539

[The step "Write CRC” in E2E_PO06Protect() and E2E_P06Forward() shall behave as
shown in Figure 6.9. |

[PRS_E2E 00429]
Upstream requirements: RS_E2E_08539

[The step "Increment Counter” in E2E_PO6Protect() and E2E_PO06Forward() shall be-
have as shown in Figure 6.10. |

6.9.2.2 E2E_PO6Forward

The E2E_P06Forward() function of E2E Profile 6 is called by a SW-C in order to protect
its application data and forward an received E2E-Status for use cases like translation
of signal based to service oriented communication. If the received E2E status equals

AUTSSAR

E2E_P_OK the behavior of the function shall be the same like E2E_PO0O6Protect(). The
function E2E_PO06Forward() performs the steps as specified by the following diagrams
(see also Chapter 6.3).

[PRS_E2E_00622]
Upstream requirements: RS_E2E_08539

[The function E2E_P06Forward() shall have the overall behavior as shown in Figure
6.88.]

E2E_PO06Forward(Config, State, Data, Length,
ForwardStatus)

Verify inputs of the protect
function oo

[input

oK
Compute offset
oo
Write Length
SO
Write Counter
oo
Compute CRC
oo
Write CRC
oo
Increme unter
O

nt Co
o return @ return

E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.88: E2E Profile 6 Forward

[wrong
input]

®
return

E2E_E_INPUTERR_NULL

Following steps are described in Section in Section 6.9.2.1
» "Compute Offset” see [PRS_E2E_00470]
» "Write Length” see [PRS_E2E_00425]
» "Write CRC” see [PRS_E2E_00428]
* “Increment Counter” see [PRS_E2E_00429]

[PRS_E2E_00623]
Upstream requirements: RS_E2E_08539

[The step "Verify inputs of the forward function” in E2E_P06Forward() shall behave as
shown in Figure 6.12. |

AUTSSAR

[PRS_E2E_00624]

Upstream requirements: RS_E2E_08539
[The step "Write Counter” in E2E_PO6Forward() shall behave as shown in Figure
6.13.]

[PRS_E2E_00625]
Upstream requirements: RS_E2E_08539

[The step "Compute CRC” in E2E_PO06Forward() shall behave as shown in Figure
6.89. |

E2E_PO06Forward()
O

Config->Offset

>0
[TRUE]
uintl6 ComputedCRC= Crc_Calculate CRC16(Crc_DataPtr: uintl6 ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:
&Data[0], Crc_Length: Offset, Crc_StartValuel6: OXFFFF, &Data[Offset+2], Crc_Length: Length-Offset-2,
Crc_IsFirstCall: TRUE) Crc_StartValuel16: OXFFFF, Crc_lsFirstCall: TRUE)
ComputedCRC= Crc_CalculateCRC16(Crc_DataPtr:&Data
[Offset+2], Crc_Length: Length-Offset-2, Crc_StartValuel6:
ComputedCRC, Crc_lIsFirstCall: FALSE)
if ForwardStatus ==
E2E_P_ERROR
[FALSE] [TRUE]
ComputedCRC= Crc_CalculateCRC16(Config->DatalD>>8 & ComputedCRC= Crc_CalculateCRC16((Config->DatalD
OxFF, Crc_Length: 1, Crc_StartValuel6: computedCRC, +1)>>8 & OxFF, Crc_Length: 1, Crc_StartValuel6:
Crc_lsFirstCall: FALSE) computedCRC, Crc_lsFirstCall: FALSE)
ComputedCRC= Crc_CalculateCRC16(Config->DatalD & ComputedCRC= Crc_CalculateCRC16((Config->DatalD+1) &
OxFF, Crc_Length: 1, Crc_StartValue16: ComputedCRC, OxFF, Crc_Length: 1, Crc_StartValue16: ComputedCRC,
Crc_IsFirstCall: FALSE) Crc_lIsFirstCall: FALSE)

Figure 6.89: E2E Profile 6 Forward step "Compute CRC”

6.9.3 Evaluation of E2E-Header
6.9.3.1 E2E_P06Check

The function E2E_P06Check() performs the actions as specified by the following dia-
grams (see also Chapter 6.3).

AUTSSAR

[PRS_E2E_00430]
Upstream requirements: RS_E2E_08539

[The function E2E_P06Check() shall have the overall behavior as shown in Figure
6.90. |

E2E_P06Check(Config, State, Data,
Length)

Verify inputs of the Ch(égk

function [wrong

[l input]

input] [input

ok]
———————————I[FALSE] NewDataAvailable
== TRUE

[TRUE]

Compute offset oo
Read Length ~c

return @ retum
E2E_E_OK E2E_E_INPUTERR_WRONG

@ retumn

E2E_E_INPUTERR_NULL

Figure 6.90: E2E Profile 6 Check

[PRS_E2E 00431]
Upstream requirements: RS_E2E_08539

[The step "Verify Inputs” in E2E_P06Check() shall behave as shown in Figure 6.16. |

[PRS_E2E_00432]
Upstream requirements: RS_E2E_08539

[The step "Read Length” in E2E_P06Check() shall behave as shown in Figure 6.17. |

[PRS_E2E_00433]
Upstream requirements: RS_E2E_08539

[The step "Read Counter” in E2E_P06Check() shall behave as shown in Figure 6.18. |

AUTSSAR

[PRS_E2E_00434]
Upstream requirements: RS_E2E_08539

[The step "Read CRC” in E2E_P06Check() shall behave as shown in Figure 6.20. |

[PRS_E2E_00436]
Upstream requirements: RS_E2E_08539

[The step "Do Checks” in E2E_P06Check() shall behave as shown in Figure 6.21. |

6.9.4 Profile Data Types
6.9.4.1 Profile 6 Protect State Type

[PRS_E2E 00655]
Upstream requirements: RS_E2E_08528

[The E2E_PO06Protect and E2E_P06Forward functions ’state’ shall have the members
defined in [PRS_E2E_00883]. |

[PRS_E2E_00883] E2E Profile 6 Protect State Type
Upstream requirements: RS_E2E_08528

[

Name Type Description

Counter Unsigned Integer Counter to be used for protecting the next Data. The
initial value is 0, which means that in the first cycle,
Counter is 0. Each time E2E_PO06Protect() is called,
it increments the counter up to OxFF. After the max-
imum value is reached, the next value is 0x0. The
overflow is not reported to the caller.

6.9.4.2 Profile 6 Check Status Type

[PRS_E2E 00656]
Upstream requirements: RS_E2E_08528

[The E2E_P06Check functions ’'State’ shall have the members defined in
[PRS_E2E_00884]. |

[PRS_E2E _00884] E2E Profile 6 Check Status Type
Upstream requirements: RS_E2E_08528

[

AUTSSAR

Member Name Type Description

Counter Unsigned Integer Counter of the data in previous cycle.

Status Enumeration Result of the verification of the Data in this
cycle, determined by the Check function.

6.9.4.3 Profile 6 Check Status Enumeration

[PRS_E2E_00592]

Upstream requirements: RS_E2E_08528
[The E2E_P06Check functions ’State->Status’ enumeration type shall consist of the
following enumeration values (see [PRS_E2E_00885]). |

[PRS_E2E 00885] E2E Profile 6 Check Status Enumeration
Upstream requirements: RS_E2E_08528

Name State | Description
Type
E2E_PO6STATUS_OK OK The checks of the Data in this cycle

were successful (including counter check,
which was incremented by 1).
E2E_PO6STATUS _NONEWDATA Error The Check function has been invoked but
no new Data is available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E
checks of Data have been consequently
executed. This may be considered similar
to E2E_PO6STATUS_REPEATED.
E2E_PO6STATUS ERROR Error Error not related to counters occurred (e.g.
wrong crc, wrong length, wrong options,
wrong Data ID).

E2E PO6STATUS REPEATED Error The checks of the Data in this cycle were
successful, with the exception of the repe-
tition.

E2E PO6STATUS OKSOMELOST OK The checks of the Data in this cycle

were successful (including counter check,
which was incremented within the allowed
configured delta).

E2E PO6STATUS WRONGSEQUENCE | Error The checks of the Data in this cycle were
successful, with the exception of counter
jump, which changed more than the al-
lowed delta

AUTSSAR

6.9.4.4 Profile 6 Configuration Type

[PRS_E2E_00657]

Upstream requirements: RS_E2E_08528, RS_E2E_08537

[The E2E_PO06Protect, E2E_P06Forward and E2E_P06Check functions 'Config’ shall
have the following members defined in [PRS_E2E_00886]. |

[PRS_E2E_00886] E2E Profile 6 Configuration Type
Upstream requirements: RS_E2E_08528, RS_E2E_08537

Description

A system-unique identifier of the Data.

Bit offset of the first bit of the E2E header from the
beginning of the Data (bit numbering: bit 0 is the
least important). The offset shall be a multiple of
8 and 0 <= Offset <= MaxDatalLength-(5*8). Exam-
ple: If Offset equals 8, then the high byte of the E2E
Length (16 bit) is written to Byte 1, the low Byte is
written to Byte 2. This may be considered similar to
E2E_PO6STATUS_REPEATED.

Minimal length of Data, in bits. E2E checks that Datal-
ength is >= MinDatalength. The value shall be <= Max-
DataLength and shall be >= 5*8. The value shall be a
multiple of 8.

Maximal length of Data, in bits. E2E checks that Datal-
ength is <= MaxDatalLength. The value shall be <=
4096*8 (4KB) and it shall be >= MinDatalLength. The
value shall be a multiple of 8.

Maximum allowed gap between two counter values of
two consecutively received valid Data. For example,
if the receiver gets Data with counter 1 and MaxDelta-
Counter is 3, then at the next reception the receiver can
accept Counters with values 2, 3 or 4.

[
Member Name State Type
DatalD Unsigned Integer
Offset Unsigned Integer
MinDatalLength Unsigned Integer
MaxDatalLength Unsigned Integer
MaxDeltaCounter Unsigned Integer

J

6.9.5 EZ2E Profile 6 Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated

to be different:

E2E_P06ConfigType field Value
DatalD 0x1234
Offset 0x0000
MinDatalLength 40
MaxDatalLength 32768
MaxDeltaCounter 1

Table 6.31: E2E Profile 6 protocol example configuration

AUTSSAR

E2E_PO6ProtectStateType field Value
Counter 0

Table 6.32: E2E Profile 6 example state initialization

Result data of E2E_P06Protect() with short data length (length 8 bytes, with 3 actual
data bytes), offset = 0, counter = 0:

Byte 0 1 2 3 4 5 6 7
Data 0xb1 0x55 0x00 0x08 0x00 0x00 0x00 0x00
Field CRC Length Counter Data

Table 6.33: E2E Profile 6 example short

Result data of E2E_PO06Protect() with short data length (length 16 bytes, with 3 actual
data bytes), offset = 64 (as with SOME/IP header use case), counter = 0:

Byte 0 1 2 3 4 5 6 7
Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Field Data (upper header)

Byte 8 9 10 11 12 13 14 15
Data Ox4e 0xb7 0x00 0x10 0x00 0x00 0x00 0x00
Field CRC Length Counter Data

Table 6.34: E2E Profile 6 example short with SOME/IP use case

6.10 Specification of E2E Profile 7

[PRS_E2E_00480]

Upstream requirements: RS_E2E_08527, RS_E2E_08529, RS_E2E_08530, RS_E2E_08533,
RS_E2E_08543, RS_E2E_08544, RS_E2E_08545, RS_E2E_ 08546,
RS_E2E_08547, RS_E2E_08548

[Profile 7 shall provide the following control fields, transmitted at runtime together with
the protected data: Length, Counter, CRC, Data ID (see [PRS_E2E_00904)). |

[PRS_E2E_00904] E2E Profile 7 mechanisms
Upstream requirements: RS_E2E_08527, RS_E2E_08529, RS_E2E_08530, RS_E2E_08533,
RS_E2E_08543, RS_E2E 08544, RS_E2E_08545, RS_E2E_08546,
RS_E2E_08547, RS_E2E_08548

Control field Description
Length 32 bits, to support dynamic-size data.
Counter 32 bits.

AUTSSAR

CRC 64 bits, polynomial in normal form 0x42FOE1EBA9EA3693, pro-
vided by CRC library.

Note: This CRC polynomial is also known as “CRC-64 (ECMA)”.
Data ID 32 bits, unique system-wide.

]

For details of CRC calculation, the usage of start values and XOR values see
SWS_CRCLibrary[3].

The specification of the profile uses the following placeholders:

Placeholder Replacement
PO7LENGTH_POS 8

PO7LENGTH_LEN 4

P07COUNTER_POS 12
PO7COUNTER_LEN 4

PO7DATAID_POS 16

PO7DATAID_LEN 4

P07CRC_POS 0

P07CRC_LEN 8
PO7CALCULATE_CRC Crc_CalculateCRC64()

Table 6.35: Profile 7-specific data

For behavior and flowcharts of E2E Profile 07 see Chapter 6.3.

6.10.1 Header layout

In the E2E Profile 7, the user data layout (of the data to be protected) is not constrained
by E2E Profile 7 - there is only a requirement that the length of data to be protected is
multiple of 1 byte.

The header of the E2E Profile 7 has one fixed layout, as follows:

Figure 6.91: Profile 7 Header

The bit numbering shown above represents the order in which bits are transmitted. The
E2E header fields (e.g. E2E Counter) are encoded as:

1. Big Endian (most significant byte first) - imposed by profile
2. LSB First (least significant bit within byte first) - imposed by TCP/IP bus

AUTSSAR

The header can be placed at a specific location in the protected data, by configuring
the offset of the entire E2E header.

6.10.2 Profile 7 Configuration Type

[PRS_E2E_00660]

Upstream requirements: RS_E2E 08528, RS _E2E 08537
[The E2E_PO07Protect, E2E_PO07Forward and E2E_P07Check functions 'Config’ shall
have the following members defined in [PRS_E2E_00887]. |

[PRS_E2E_00887] E2E Profile 7 Configuration Type
Upstream requirements: RS_E2E_08528, RS_E2E_08537

[

Member Name Type Description

DatalD Unsigned Integer A system-unique identifier of the Data.

Offset Unsigned Integer Bit offset of the first bit of the E2E header from
the beginning of the Data (bit numbering: bit 0 is
the least important). The offset shall be a mul-
tiple of 8 and 0 <= Offset <= MaxDatalLength-
(20*8). Example: If Offset equals 8, then the first
byte of the E2E Length (32 bit) is written to byte
1, the next byte is written to byte 2 and so on.
MinDatalLength Unsigned Integer Minimal length of Data, in bits. E2E checks that
DataLength is >= MinDataLength. The value
shall be >= 20*8 and <= MaxDatalLength. The
value shall be a multiple of 8.

MaxDatalLength Unsigned Integer Maximal length of Data, in bits. E2E checks that
DatalLength is <= MaxDataLength. The value
shall be >= MinDataLength and it should be <=
4194304*8. The value shall be a multiple of 8.
MaxDeltaCounter Unsigned Integer Maximum allowed gap between two counter val-
ues of two consecutively received valid Data.

6.10.3 EZ2E Profile 7 Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated
to be different:

E2E_P07ConfigType field Value
DatalD 0x0a0b0c0d
Offset 0x0000
MinDatalength 160
MaxDatalength 32768
MaxDeltaCounter 1

AUTSSAR

Table 6.36: E2E Profile 7 protocol example configuration

E2E_PO07ProtectStateType field Value
Counter 0

Table 6.37: E2E Profile 7 example state initialization

Result data of E2E_PO07Protect() with short data length (length 24 bytes, means 4
actual data bytes), offset = 0, counter = 0:

Byte 0 1 2 3 4 5 6 7
Data Ox1f 0xb2 Oxe7 0x37 Oxfc Oxed Oxbc 0xd9
Field CRC

Byte 8 9 10 1 12 13 14 15
Data 0x00 0x00 0x00 0x18 0x00 0x00 0x00 0x00
Field Length Counter

Byte 16 17 18 19 20 21 22 23
Data 0x0a 0x0b 0x0c 0x0d 0x00 0x00 0x00 0x00
Field DatalD Data

Table 6.38: E2E Profile 7 example short

Result data of E2E_PO07Protect() with short data length (length 32, means 4 actual
data bytes), offset = 64 (as with SOME/IP header use case), counter = 0:

Byte 0 1 2 3 4 5 6 7
Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Field Data (upper header)

Byte 8 9 10 11 12 13 14 15
Data 0x17 0xf7 0xc8 0x17 0x32 0x38 0x65 0xa8
Field CRC

Byte 16 17 18 19 20 21 22 23
Data 0x00 0x00 0x00 0x20 0x00 0x00 0x00 0x00
Field Length Counter

Byte 24 25 26 27 28 29 30 31
Data 0x0a 0x0b 0x0c 0x0d 0x00 0x00 0x00 0x00
Field DatalD Data

Table 6.39: E2E Profile 7 example short with SOME/IP use case

AUTSSAR

6.11 Specification of E2E Profile 8

[PRS_E2E_00736]

Upstream requirements: RS_E2E_08529, RS_E2E_08530, RS_E2E_08533, RS_E2E_08549
[Profile 8 shall provide the following control fields, transmitted at runtime together with
the protected data: Length, Counter, CRC, Data ID (see [PRS_E2E_00901]). |

[PRS_E2E_00901] E2E Profile 8 mechanisms
Upstream requirements: RS_E2E_08529, RS_E2E_08530, RS_E2E_08533, RS_E2E_08549

[

Control field Description

Length 32 bits, to support dynamic-size data.

Counter 32 bits.

CRC 32 bits, polynomial in normal form OxF4ACFB13, provided by
CRC library.

Note: This CRC polynomial is different from the CRC polynomials
used by FlexRay, CAN and LIN and TCPIP.
Data ID 32 bits, unique system-wide.

]

For details of CRC calculation, the usage of start values and XOR values see
SWS_CRCLibrary[3].

The specification of the profile uses the following placeholders:

Placeholder Replacement
POSLENGTH_POS 4

POSLENGTH_LEN 4

PO8BCOUNTER_POS 8

POSCOUNTER_LEN 4

PO8DATAID_POS 12

POSDATAID_LEN 4

PO8CRC_POS 0

POS8CRC_LEN 4

POSCALCULATE_CRC Crc_CalculateCRC32P4()

Table 6.40: Profile 8-specific data

For behavior and flowcharts of E2E Profile 08 see Chapter 6.3.

6.11.1 Header layout

In the E2E Profile 8, the user data layout (of the data to be protected) is not constrained
by E2E Profile 8 - there is only a requirement that the length of data to be protected is
multiple of 1 byte.

The header of the E2E Profile 8 has one fixed layout, as follows:

AUTSSAR

| Byte/Bit

o i ¥
ol l| | sl il '.-l nl L |i| '|: I.:|| :II.| I.ll :1| 4] 15| :lul L:| :|||| i% .'|.|| 1| Hl il J\-ll .l'al 8 H| .':|| ‘""l II'I| 5

-] E2E CRC

4 EIE Length

2 EIE Counter

Lz EIE DatalD

Figure 6.92: Profile 8 Header

The E2E header fields (e.g. E2E Counter) are encoded as:
1. Big Endian (most significant byte first) - imposed by profile
2. LSB First (least significant bit within byte first) - imposed by TCP/IP bus

The header can be placed at a specific location in the protected data, by configuring
the offset of the entire E2E header.

6.11.2 Profile 8 Configuration Type

[PRS_E2E_00706]
Upstream requirements: RS_E2E_08528, RS_E2E_08537

[The E2E_PO08Protect, E2E_PO08Forward and E2E_P08Check functions 'Config’ shall

have the following members defined in [PRS_E2E_00902]. |

[PRS_E2E_00902] E2E Profile 8 Configuration Type
Upstream requirements: RS_E2E_08528, RS_E2E_08537

[

Member Name

Type

Description

DatalD

Unsigned Integer

A system-unique identifier of the Data.

Offset

Unsigned Integer

Bit offset of the first bit of the E2E header from
the beginning of the Data (bit numbering: bit 0 is
the least important). The offset shall be a mul-
tiple of 8 and 0 <= Offset <= MaxDatalLength-
(16*8). Example: If Offset equals 8, then the first
byte of the E2E Length (32 bit) is written to byte
1, the next byte is written to byte 2 and so on.

MinDatalength

Unsigned Integer

Minimal length of Data, in bits. E2E checks that
DatalLength is >= MinDataLength. The value
shall be >= 16*8 and <= MaxDatalLength. The
value shall be a multiple of 8.

MaxDatalLength Unsigned Integer Maximal length of Data, in bits. E2E checks that
DatalLength is <= MaxDataLength. The value
shall be <= 536870912*8 and >= MinDatalL-
ength. The value shall be a multiple of 8.

MaxDeltaCounter Unsigned Integer Maximum allowed gap between two counter val-

ues of two consecutively received valid Data.

AUTSSAR

6.11.3 EZ2E Profile 8 Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated
to be different:

E2E_P08ConfigType field Value
DatalD 0x0a0b0c0d
Offset 0x0000 0000
MinDatalength 128
MaxDatalLength 4294967288
MaxDeltaCounter 1

Table 6.41: E2E Profile 8 protocol example configuration

E2E_PO08ProtectStateType field Value
Counter 0

Table 6.42: E2E Profile 8 example state initialization

Result data of E2E_PO08Protect() with short data length (length 20 bytes, means 4
actual data bytes), offset = 0, counter = 0:

Byte 1 2 3 4 5 6 7 8
Data 0x41 0x49 Ox4e 0x52 0x00 0x00 0x00 0x14
Field CRC32 Length

Byte 9 10 11 12 13 14 15 16
Data 0x00 0x00 0x00 0x00 0x0a 0x0b 0x0c 0x0d
Field Counter DatalD

Byte 17 18 19 20

Data 0x00 0x00 0x00 0x00

Field Data

Table 6.43: E2E Profile 8 example short

Result data of E2E_P08Protect() with minimum data length (4 data bytes), offset = 64
(as with SOME/IP header use case), datalength = 28, counter = 0:

Byte 1 2 3 4 5 6 7 8
Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Field Data (upper header)

Byte 9 10 11 12 13 14 15 16
Data 0xe8 0x91 0xe5 Oxa8 0x00 0x00 0x00 Ox1c
Field CRC32 Length

Byte 17 18 19 20 21 22 23 24
Data 0x00 0x00 0x00 0x00 0x0a 0x0b 0x0c 0x0d
Field Counter DatalD

AUTSSAR

A

Byte

25

26

27

28

Data

0x00

0x00

0x00

0x00

Field

Data

Table 6.44: E2E Profile 8 example short with SOME/IP use case

6.12 Specification of E2E Profile 11

Profile 11 is bus-compatible to profile 1, but provides "new" profile behavior similar to
profiles 4 to 7 on receiver side. Moreover, the following legacy DatalDModes are by
now obsolete and omitted: E2E P11 DATAID LOW, E2E P11 DATAID ALT.

[PRS_E2E_00503]

Upstream requirements: RS_E2E_08527, RS_E2E_08529, RS_E2E_08530, RS_E2E_08533,
RS_E2E_08543, RS_E2E_08544, RS_E2E_08545, RS_E2E_ 08546,
RS_E2E_08547, RS_E2E_08548, RS_E2E_08549

[Profile 11 shall provide the following control fields, transmitted at runtime together with
the protected data: Counter, CRC, Data ID (see [PRS_E2E_00888]). |

[PRS_E2E_00888] E2E Profile 11 mechanisms

Upstream requirements: RS_E2E_08527, RS_E2E_08529, RS_E2E_08530, RS_E2E_08533,
RS_E2E_08543, RS_E2E_08544, RS_E2E_08545, RS_E2E_08546,
RS_E2E_08547, RS_E2E_08548, RS_E2E_08549

[

Control field Description

Counter 4 bits. (explicitly sent)

CRC 8 bits, CRC-8-SAE J1850, provided by CRC library. (explicitly
sent)

Data ID 16 bits or 12 bit, unique system-wide. (either implicitly sent (16
bits) or partly explicitly sent (12 bits; 4 bits explicitly and 8 bits
implicitly sent))

]

The E2E mechanisms can detect the following faults or effects of faults:

Fault Main safety mechanisms
Repetition of information Counter

Loss of information Counter

Delay of information Counter

Insertion of information Data ID

Masquerading Data ID, CRC

Incorrect addressing Data ID

Incorrect sequence of information Counter

Corruption of information CRC

AUTSSAR

Asymmetric information sent from a senderto | CRC (to detect corruption at any of receivers)
multiple receivers
Information from a sender received by only a | Counter (loss on specific receivers)
subset of receivers and the receivers
Blocking access to a communication channel | Counter (loss or timeout)

Table 6.45: Detectable communication faults using Profile 11

For details of CRC calculation, the usage of start values and XOR values see
SWS_CRCLibrary[3].

6.12.1 Header Layout

In the E2E Profile 11, the user data layout (of the data to be protected) is not con-
strained by E2E Profile 11 - there is only a requirement, that the length of data to be
protected is multiple of 1 byte.

Profile 11 is backward compatible to the bus-layout of profile 1. This means that while
all the header fields are configurable, the profile variants of profile 1 are also applicable.
Namely, profile 1 variant 1A and variant 1C.

Byte/Bit 0 1
0(1|2|3|4|5|6|7| 8|9 |10(11(12|13|14]|15

0

Figure 6.93: E2E Profile 11 Variant C

The figure above shows Profile 11 variant 11C where the configuration is given as: The
E2E header fields (e.g. CRC) are encoded like in CAN and FlexRay, i.e.:

1. CRCOffset =0
2. CounterOffset = 8 by Flexray/CAN bus.
3. DatalDNibbleOffset = 12

For Profile 11 Variant 11A, DatalDNibble is not used. Instead, user data can be placed
there.

[PRS_E2E_00540]
Upstream requirements: RS_E2E_08528

[The E2E Profile variant 11A is defined as follows:
1. CRC is the 0th byte in the signal group (i.e. starts with bit offset 0)
2. Alive counter is located in lowest 4 bits of 1st byte (i.e. starts with bit offset 8)
3. E2E_P11DatalDMode = E2E_P11_DATAID_BOTH

AUTSSAR

4. SignallPdu.unusedBitPattern = OxFF.
]

Below is an example compliant to 11A:

Byte/Bit 0 1
ol1]2[3[a|s|6|7]8]|0|10]11]12[13][1a]15
0 H

Figure 6.94: E2E Profile 11 Variant A

[PRS_E2E_00541]
Upstream requirements: RS_E2E_08528

[The E2E Profile variant 11C is defined as follows:
1. CRC is the 0Oth byte in the signal group (i.e. starts with bit offset 0)
2. Alive counter is located in lowest 4 bits of 1st byte (i.e. starts with bit offset 8)

3. The Data ID nibble is located in the highest 4 bits of 1st byte (i.e. starts with bit
offset 12)

4. E2E_P11DatalDMode = E2E_P11_DATAID_NIBBLE
5. SignallPdu.unusedBitPattern = OxFF

]

E2E Profile variants 11A and 11C relate to the recommended Configuration of E2E
Profile 11 configuration settings 11A and 11C in system template (system template is
more specific).

For comparability to the figures of profile 1 the bit order is given. The E2E header fields
(e.g. CRC) are encoded like in CAN and FlexRay, i.e.:

1. Little Endian (least significant byte first) applicable for both implicit and explicit
header fields - imposed by profile

2. MSB First (most significant bit within byte first) - imposed by Flexray/CAN bus.

6.12.1.1 Counter

In E2E Profile 11, the counter is initialized, incremented, reset and checked by E2E
profile. The counter is not manipulated or used by the caller of the E2E Supervision.

AUTSSAR

[PRS_E2E_00504]
Upstream requirements: RS_E2E_08539

[In E2E Profile 11, on the sender side, for the first transmission request of a data
element the counter shall be initialized with 0 and shall be incremented by 1 for every
subsequent send request. When the counter reaches the maximum value (Ox0E), then
it shall restart with 0 for the next send request. |

Note that the counter value OxOF is reserved as a special invalid value, and shall never
be used by the E2E profile 11.

The above requirements are specified in more details by the UML diagrams in the
following document sections.

6.12.1.2 DatalD

The unique Data IDs are to verify the identity of each transmitted safety-related data
element.

[PRS_E2E_00583]
Upstream requirements: RS_E2E_08539

[The following two Data ID modes shall be supported:

1. E2E_P11_DATAID_BOTH: both bytes of the 16 bit Data ID are used in the CRC
calculation: first the low byte and then the high byte.

2. E2E_P11_DATAID_NIBBLE:

the high nibble of high byte of DatalD is not used (it is 0x0), as the DatalD is
limited to 12 bits,

the low nibble of high byte of DatalD is transmitted explicitly and covered by CRC
calculation when computing the CRC over Data.

the low byte is not transmitted, but it is included in the CRC computation as start
value.

]

[PRS_E2E_00507]
Upstream requirements: RS_E2E_08539

[In the E2E profile 11, the Data IDs shall be globally unique within the network of
communicating system (made of several ECUs each sending different data). |

In case of usage of E2E Supervision for protecting data elements (i.e invocation from
RTE), due to multiplicity of communication (1:1 or 1:N), a consumer of a data element
expects only a specific data element, which is checked by E2E Supervision using Data
ID.

AUTSSAR

In case of usage of E2E Supervision for protecting messages (i.e. invocation from
COM), the receiver COM expects at a reception only a specific message, which is
checked by E2E Supervision using Data ID.

6.12.1.3 Length

In Profile 11 there is no explicit transmission of the length.

6.12.1.4 CRC

E2E Profile 11 uses a 8-bit CRC, to ensure a sufficient detection rate and sufficient
Hamming Distance.

[PRS_E2E_00508]
Upstream requirements: RS_E2E_08528, RS_E2E_08539

[E2E Profile 11 shall use the Crc_CalculateCRC8 function of the SWS CRC Supervi-
sion for calculating the CRC (CRC-8-SAE J1850). |

[PRS_E2E_00505]
Upstream requirements: RS_E2E_08539

[In the E2E Profile 11 with DatalDMode set to E2E_P11_DATAID_BOTH, the Data ID
shall be implicitly transmitted, by adding first the Data ID low byte, then the Data ID
high byte before the user data in the CRC calculation |

[PRS_E2E_00506]
Upstream requirements: RS_E2E_08539

[In E2E Profile 11 with DatalDMode set to E2E_P11_DATAID_NIBBLE, the lower nib-
ble of the high byte of the DatalD shall be placed in the transmitted data at bit position
DatalDNibbleOffset, and the CRC calculation shall be done by first calculating over the
low byte of the Data ID, then a 0-byte, and then the user data. |

Note: the byte containing the CRC is always omitted from the CRC calculation.

6.12.2 Creation of the E2E-Header
6.12.2.1 E2E_P11Protect

The function E2E_P11Protect() performs the steps as specified by the following seven
diagrams in this section.

AUTSSAR

[PRS_E2E_00509]
Upstream requirements: RS_E2E_08539

[The function E2E_P11Protect() shall have the overall behavior as shown in Figure
6.95. |

E2E_P11Protect(Config, State, Data,
Length)

Verify inputs of the protect
function oo

[null [input [wrong
input’ oK input]

Write DatalDNibble,

]

Write Counter

Compute CRC

il

Write CRC

8

Increment Counter

L

i

® ® ®

return return return
E2E_E_INPUTERR_NULL E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.95: E2E Profile 11 Protect

[PRS_E2E 00510]
Upstream requirements: RS_E2E_08539

[The step "Verify inputs of the protect function” in E2E_P11Protect() shall behave as
shown in Figure 6.96. |

AUTSSAR

E2E_P11Protect()
(o o)

(Config = NULL) && (State != NULL) && (Data = NULL)

[FALSE]
[TRUE]

Length == Config->DatalLength/8

[TRUE] [FALSE]

input ok wrong input

no
input

Figure 6.96: E2E Profile 11 Protect step "Verify inputs of the protect function”

[PRS_E2E_00511]
Upstream requirements: RS_E2E_08539

[The step ,Write DatalDNibble” in E2E_P11Protect() shall behave as shown in Figure
6.97.]

E2E_P11Protect()
O

Config->DatalDMode == E2E_P11_DATAID_NIBBLE

[FALSE]
[TRUE]

______ Data[Config->Datal DNibbleOffset > > 3]
Nibble position within byte can be obtained by:
((Config->DatalD & 0xOF00) >> 8) << (Config->CounterOffset & 0x7)

data array at position Config->DatalDNibblerOffset,

Copy lower 4 bits of second byte of State->DatalD to
using little-endian byte-order.

] Byte position in data array can be obtained by:

Figure 6.97: E2E Profile 11 Protect step ”Write DatalDNibble”

[PRS_E2E_00512]
Upstream requirements: RS_E2E_08539

[The step "Write Counter” in E2E_P11Protect() shall behave as shown in Figure 6.98. |

E2E_P11Protect() ‘
oo

Copy lower 4 bits of State->Counter to data array at position Config-
>CounterOffset, using little-endian byte-order.

----- Data[Config->CounterOffset >> 3]
Nibble position within byte can be obtained by:

} Byte position in data array can be obtained by:
(State->Counter & OxF) << (Config->CounterOffset & 0x7)

®
Figure 6.98: E2E Profile 11 Protect step ”Write Counter”

AUTSSAR

[PRS_E2E_00513]
Upstream requirements: RS_E2E_08539

[The step "Compute CRC” in E2E_P11Protect() and in E2E_P11Check shall behave
as shown in Figure 6.99. |

E2E_P11Check()
oo v
E2E_P11Protect()
O
Offset = Config->CRCOffset / 8

T

"
r L [
E2E_P11_DATAID_BOTH] switchE2E_P11_DATAID_NIBBLE]
>DatalDMode

Crc_Length: 1, Crc_StartValue8: OxFF, Crc_IsFirstCall: FALSE) Crc_Length: 1, Crc_Startvalue8: Oxff, Crc_IsFirstCall: FALSE)

!

ComputedCRC= Crc_CalculateCRC8(0, Crc_Length: 1,]

uint8 ComputedCRC= Crc_CalculateCRC8(Config->DatalD, (uint8 ComputedCRC= Crc_CalculateCRC8(Config->DatalD,]

OxFF, Crc_Length: 1, Crc_StartValue8: computedCRC,

N Crc_StartValue8: computedCRC, Crc_lsFirstCall: FALSE)
Crc_IsFirstCall: FALSE)

[ComputedCRC= Crc_Calculate CRC8(Config->DatalD>>8 &] (

[TRUE] [FALSE]
Offset >
0
ComputedCRC= Crc_CalculateCRC8(Crc_DataPtr:&Data[0], ComputedCRC= Crc_CalculateCRC8(Crc_DataPtr:&Data[1],
Crc_Length: Offset, Crc_StartValue8: ComputedCRC, Crc_Length: Length-1, Crc_StartValue8: ComputedCRC,
Crc_lIsFirstCall: FALSE) Crc_IsFirstCall: FALSE)

[FALSE]
Length > Offset
+1
[TRUE]

+1], Crc_Length: Length-Offset-1, Crc_StartValue8:

ComputedCRC= Crc_CalculateCRC8(Crc_DataPtr:&Data[Offset
ComputedCRC, Crc_lIsFirstCall: FALSE)

ComputedCRC = ComputedCRC
~ Oxff

!

Figure 6.99: E2E Profile 11 Protect and Check step "Compute CRC”

[PRS_E2E_00514]
Upstream requirements: RS_E2E_08539

[The step "Write CRC” in E2E_P11Protect() and E2E_P11Forward() shall behave as
shown in Figure 6.100. |

AUTSSAR

E2E_P11Protect()
(o o)
E2E_P11Forward()
(o o)

[Copy 1-byte local variable ComputedCRC on bytes Data[Config- J

>CRCOffset/g]

®
Figure 6.100: E2E Profile 11 Protect and Forward step "Write CRC”

[PRS_E2E_00515]
Upstream requirements: RS_E2E_08539

[The step "Increment Counter” in E2E_P11Protect() and E2E_P11Forward() shall be-
have as shown in Figure 6.101. |

E2E_P11Protect() ‘
O
E2E_P11Forward()
O
State->Counter++ Lo _______] The type is uint8, but only 15
values are used. After OxE, the
next value is 0.
[State->Counter %= 15]
®

Figure 6.101: E2E Profile 11 Protect and Forward step ’Increment Counter”

6.12.2.2 E2E P11Forward

The E2E_P11Forward() function of E2E Profile 11 is called by a SW-C in order
to protect its application data and forward an received E2E-Status for use cases
like translation of signal based to service oriented communication. |If the received
E2E status equals E2E_P_OK the behavior of the function shall be the same like
E2E_P11Protect(). The function E2E_P11Forward() performs the steps as specified
by the following five diagrams in this section.

[PRS_E2E_00630]
Upstream requirements: RS_E2E_08539

[The function E2E_P11Forward() shall have the overall behavior as shown in Figure
6.102.]

AUTSSAR

E2E_P11Forward(Config,
Length, ForwardStatus,
State, Data)

Verify inputs of the protect
function oo

[input
ok

Write DatalDNibble
O

Write Counter
O

Compute CRC [wrong
oo input]

Write CRC
O

Increment Counter
O

® ®
retum return return

E2E_E_INPUTERR_NULL E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.102: E2E Profile 11 Forward

Following steps are described in Section in Section 6.12.2.1
» "Write CRC” see [PRS_E2E_00514]
* "Increment Counter” see [PRS_E2E_00515]

[PRS_E2E_00631]
Upstream requirements: RS_E2E_08539

[The step "Verify inputs of the forward function” in E2E_P11Forward() shall behave as
shown in Figure 6.103.

AUTSSAR

E2E_P11Forward () .
SO
(Config I= NULL)
&& (State =
NULL) && (Data !
= NULL)
[TRUE]

Length == Config->DataLength/8
&& (ForwardStatus =
E2E_P_NONEWDATA)

[FALSE] [TRUE] [FALSE]
input wrong
no) ok input
inpu

Figure 6.103: E2E Profile 11 Forward step ”Verify inputs of the forward function”

[PRS_E2E_00632]
Upstream requirements: RS_E2E_08539

[The step ,Write DatalDNibble” in E2E_P11Forward() shall behave as shown in Figure

6.104. |

Config->DatalDMode ==
E2E_P11_DATAID_NIBBLE

[FALSE]
[TRUE]
if ForwardStatus
== [FALSE]
E2E_P_ERROR
Byte position in data array can be obtained by:
Data[Config->DatalDNibbleOffset >> 3]
TRUE: Nibble position within byte can be obtained by:
[TRUE] | ((Config->DatalD & 0xOF00) >> 8) << (Config->
CounterOffset & 0x7)
Copy lower 4 bits of second byte of (State->DatalD+1) Copy lower 4 bits of second byte of State->DatalD to
to data array at position Config->DatalDNibblerOffset, data array at position Config->DatalDNibblerOffset,
using little-endian byte-order. using little-endian byte-order.

Figure 6.104: E2E Profile 11 Forward step ”Write DatalDNibble”

AUTSSAR

[PRS_E2E_00633]
Upstream requirements: RS_E2E_08539

[The step "Write Counter” in E2E_P11Forward() shall behave as shown in Figure

6.105.
.

if ForwardStatus ==
E2E_P_WRONGSEQUENCE else

if ForwardStatus,
E2E_P_REPEAT [FALSE] [FALSE]

[TRUE] [TRUE]

State->Counter = State-
State->Counter - - >Counter + Config-
A >MaxDeltaCounter
The type is uint8, but only 15 \L
values are used. After OxE, the X

next value is 0.
Copy lower 4 bits of State->Counter to data array at position Config-
>CounterOffset, using little-endian byte-order.

..... Data[Config->CounterOffset >> 3]
Nibble position within byte can be obtained by:
(State->Counter & OxF) << (Config->CounterOffset & 0x7)

} Byte position in data array can be obtained by:

Figure 6.105: E2E Profile 11 Forward step ”Write Counter”

[PRS_E2E_00634]
Upstream requirements: RS_E2E_08539

[The step "Compute CRC” in E2E_P11Forward() shall behave as shown in Figure
6.106. |

AUTSSAR

E2E_P11Forward()
oo

(Offset = Config->CRCOffset / 8)

if ForwardStatus ==
E2E_P_ERROR

\|I
[FALSE]

DatalD = Config- DatalD = Config-
>DatalD+1 >DatalD
\L switch Config-

>DatalDMode

case case
E2E_P11_DATAID_BOTH] E2E_P11_DATAID_NIBBLE]
(uint8 ComputedCRC= Crc_CalculateCRC8(DatalD,] [uint8 ComputedCRC= Crc_CalculateCRC8(DatalD, J

Crc_Length: 1, Crc_StartValue8: OxFF, Crc_IsFirstCall: Crc_Length: 1, Crc_StartValue8: Oxff, Crc_IsFirstCall:
FALSE) FALSE)

ComputedCRC= Crc_CalculateCRC8(DatalD>>8 & OxFF, ComputedCRC= Crc_CalculateCRC8(0, Crc_Length: 1,
Cre_Length: 1, Crc_StartValue8: computedCRC, Crc_StartValue8: computedCRC, Crc_lsFirstCall: FALSE)
Crc_|sFirstCall: FALSE)

Offset >
Q
[TRUE] [FALSE]
ComputedCRC= Crc_CalculateCRC8(Crc_DataPtr:&Data[0], ComputedCRC= Crc_Calculate CRC8(Crc_DataPtr:&Data[1],
Crc_Length: Offset, Crc_StartValue8: ComputedCRC, Crc_Length: Length-1, Crc_StartValue8: ComputedCRC,
Crc_l|sFirstCall: FALSE) Crc_IsFirstCall: FALSE)

[Offset+1], Crc_Length: Length-Offset-1, Crc_StartValue8:

ComputedCRC= Crc_CalculateCRC8(Crc_DataPtr:&Data
ComputedCRC, Crc_IsFirstCall: FALSE)

M

(CoumptedCRC "= OxFF j

Figure 6.106: E2E Profile 11 Forward step "Compute CRC”

6.12.3 E2E_P11Check

The function E2E_P11Check performs the actions as specified by the following six
diagrams in this section.

[PRS_E2E 00516]
Upstream requirements: RS_E2E_08539

[The function E2E_P11Check() shall have the overall behavior as shown in Figure
6.107.]

AUTSSAR

E2E_P11Check(Config, State, Data,
Length)

Verify inputs of the check
function oo

[null
input’ [input
oK

[wrong
input]

NewDataAvailable
== TRUE

(Read DatalDNibble O—C)

Read Counter

5

[FALSE]

Read CRC

Compute CRC

L1

ol

Do checks

® ® ®

retum return retum
E2E_E_INPUTERR_NULL E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.107: E2E Profile 11 Check

[PRS_E2E_00517]
Upstream requirements: RS_E2E_08539

[The step "Verify inputs of the check function” in E2E_P11Check() shall behave as
shown in Figure 6.108. |

AUTSSAR

E2E_P11Check() .
oo

NewDataAvailable | _ __ _| local variable, no need
= FALSE to store it in the State
structure.

(Config = NULL) 8& (State != NULL)

[TRUE]

(Data != NULL && Length |=0) || (Data == NULL && Length == 0)

[FALSE] [TRUE]
[FALSE]
Data = NULL

[FALSE]
[TRUE]

This path may happen at __ .
runtime if queued Length == Config->DatalLength/8

communication is used and
no data is available.

[FALSE]
[TRUE]
NewDataAvailable
=TRUE
® ®
null input input ok wrong

input

Figure 6.108: E2E Profile 11 Check step ”Verify inputs of the check function”

[PRS_E2E_00582]
Upstream requirements: RS_E2E_08539

[The step "Read DatalDNibble” in E2E_P11Check() shall behave as shown in Figure

6.109.]

Config->DatalDMode ==
E2E_P11_DATAID_NIBBLE

[TRUE]

Byte position in data array can be obtained by:
-| Byte = Data[Config->NibbleOffset >> 3]
Nibble within byte can be obtained by:

Copy DatalDNibble from bit-position Config->NibbleOffset in Data in Little .
SE]
Counter = (Byte >> (Config->NibbleOffset & 0x7)) & OxF

[FAl Endian order to uint8 local variable ReceivedNibble

Figure 6.109: E2E Profile 11 Check step "Read DatalDNibble”

AUTSSAR

[PRS_E2E_00518]
Upstream requirements: RS_E2E_08539

[The step "Read Counter" in E2E_P11Check() shall behave as shown in Figure 6.110. |

E2E_P11Check)
o

Byte position in data array can be obtained by:
Copy nibble from bit-position Config->CounterOffset in Data in Little | Byte = Data[Config->CounterOffset > > 3]
Endian order to uint8 local variable ReceivedCounter Nibble within byte can be obtained by:
Counter = (Byte >> (Config->CounterOffset & 0x7)) & OxF
®

Figure 6.110: E2E Profile 11 Check step ”"Read Counter”

[PRS_E2E_00519]
Upstream requirements: RS_E2E_08539

[The step "Read CRC” in E2E_P11Check() shall behave as shown in Figure 6.111.]

E2E_P11Check() .
O

[Copy byte Data[Config->CRCOffset/8] to local variable]

ReceivedCRC

®
Figure 6.111: E2E Profile 11 Check step "Read CRC”

[PRS_E2E_00521]
Upstream requirements: RS_E2E_08539

[The step "Do Checks’ in E2E_P11Check() shall behave as shown in Figure 6.112. |

AUTSSAR

E2E_P11Check()

SO

<o

[FALSE] NewDataAvailable ==
TRUE
[TRUE]
{FALSE] ReceivedCRC ==
ComputedCRC
[TRUE]

[TRUE]

Config->DatalDMode ==
E2E_P11_DATAID_NIBBLE &&

e

0x0F))
[FALSE]

Compute local variable DeltaCounter: ReceivedCounter -
State->Counter (taking into wrap around 0xE)

[FALSE]
(DeltaCounter <= Config-
>MaxDeltaCounter) && (DeltaCounter
>=0)

[TRUE]

—=

[FALSE] DeltaCounter

>0

<

[TRUE]

[FALSE] [TRUE]

State->Status = State->Status =
E2E_P11STATUS_ERROR E2E_P11STATUS_REPEATED ==

<>é

DeltaCounter

State->Status =
E2E_P11STATUS_NONEWDAT

[State->Status =
E

2E_P11STATUS_WRONGSEQUENCH

(ReceivedNibble != ((Config->DatalD>>8) &

State->Status = State->Status =
E2E_P11STATUS_OKSOMELOST) E2E_P11STATUS_OK

)

[State->Counter = ReceivedCounter j

®

Figure 6.112: E2E Profile 11 Check step "Do Checks”

AUTSSAR

6.12.4 Profile 11 Data Types
6.12.4.1 Profile 11 Protect State Type

[PRS_E2E 00661]

Upstream requirements: RS_E2E_08528
[The E2E_P11Protect and E2E_P11Forward functions ’State’ shall have the members
defined in [PRS_E2E_00889]. |

[PRS_E2E 00889] E2E Profile 11 Protect State Type
Upstream requirements: RS_E2E_08528

[
Name Type Description
Counter Unsigned Integer Counter to be used for protecting the next Data.
The initial value is 0, which means that in the first
cycle, Counter is 0. Each time E2E_P11Protect()
is called, it increments the counter up to OxFF.
]

6.12.4.2 Profile 11 Check Status Type

[PRS_E2E 00662]
Upstream requirements: RS_E2E_08528

[The E2E_P11Check functions ’'State’ shall have the members defined in
[PRS_E2E_00891].]

[PRS_E2E_00891] E2E Profile 11 Check Status Type
Upstream requirements: RS_E2E_08528

[
Member Name Type Description
Counter Unsigned Integer Counter of the data in previous cycle.
Status Enumeration Result of the verification of the Data in this cycle,
determined by the Check function.

AUTSSAR

6.12.4.3 Profile 11 Check Status Enumeration

[PRS_E2E_00594]

Upstream requirements: RS_E2E_08528
[The E2E_P11Check functions ’State->Status’ shall consist of the following enumera-
tion values (see [PRS_E2E_00892]). |

[PRS_E2E_00892] E2E Profile 11 Check Status Enumeration
Upstream requirements: RS_E2E_08528

[

Name State | Description
Type
E2E P11STATUS OK OK The checks of the Data in this cycle
were successful (including counter check,
which was incremented by 1).

E2E P11STATUS NONEWDATA Error The Check function has been invoked but
no new Data is available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E
checks of Data have been consequently
executed. This may be considered similar
to E2E_P11STATUS_REPEATED.
E2E_P11STATUS_ERROR Error Error not related to counters occurred (e.g.
wrong crc, wrong length, wrong options,
wrong Data ID).

E2E P11STATUS REPEATED Error The checks of the Data in this cycle were
successful, with the exception of the repe-
tition.

E2E P11STATUS OKSOMELOST OK The checks of the Data in this cycle
were successful (including counter check,
which was incremented within the allowed
configured delta).

E2E P11STATUS WRONGSEQUENCE | Error The checks of the Data in this cycle were
successful, with the exception of counter
jump, which changed more than the al-
lowed delta

6.12.4.4 Profile 11 Configuration Type

[PRS_E2E 00663]
Upstream requirements: RS_E2E 08528, RS _E2E 08537

[The E2E_P11Protect, E2E_P11Forward and E2E_P11Check functions ’Config’ shall
have the following members defined in [PRS_E2E_00893]. |

AUTSSAR

[PRS_E2E_00893] E2E Profile 11 Configuration Type
Upstream requirements: RS_E2E_08528, RS_E2E_08537

[

Member Name Type Description

CounterOffset Unsigned Integer Bit offset of Counter in MSB first order. In vari-
ants 1A and 1B, CounterOffset is 8. The offset
shall be a multiple of 4.

CRCOffset Unsigned Integer Bit offset of CRC (i.e. since *Data) in MSB first
order. The offset shall be a multiple of 8. In vari-
ants 11A and 11C, CRCOffset is 0.

DatalD Unsigned Integer A unique identifier, for protection against mas-
querading. There are some constraints on the
selection of ID values, described in section "Con-
figuration constraints on Data IDs".
DatalDNibbleOffset Unsigned Integer Bit offset of the low nibble of the high byte of Data

ID.

DatalDMode Enumeration Inclusion mode of ID in CRC computation (both
bytes, alternating, or low byte only of ID in-
cluded).

MaxDeltaCounter Unsigned Integer Maximum allowed gap between two counter val-

ues of two consecutively received valid Data. For
example, if the receiver gets Data with counter 1
and MaxDeltaCounter is 3, then at the next re-
ception the receiver can accept Counters with
values 2, 3 or 4.

DatalLength Unsigned Integer Length of data, in bits. The value shall be a mul-
tiple of 8 and shall be <= 256.

6.12.5 EZ2E Profile 11 Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated
to be different:

E2E_P11ConfigType field Value

CounterOffset 8

CRCOffset 0

DatalD 0x123
DatalDNibbleOffset 12

DatalDMode E2E_P11DATAID_BOTH
DatalLength 64

MaxDeltaCounter 1
MaxNoNewOrRepeatedData 15

SyncCounterlnit 0

Table 6.46: E2E Profile 11 protocol example configuration

E2E_P11ProtectStateType field | Value

AUTSSAR

| Counter | 0

Table 6.47: E2E Profile 11 example state initialization

Byte
0 1 2 3 4 5 6 7
Oxcc 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Table 6.48: E2E Profile 11 protect result DatalDMode = E2E_P11DATAID_BOTH, counter
0

Result data of E2E_P11Protect() with data equals all zeros (0x00), counter = 1:

Byte
0 1 2 3 4 5 6 7
0x91 0x01 0x00 0x00 0x00 0x00 0x00 0x00

Table 6.49: E2E Profile 11 protect result DatalDMode = E2E_P11DATAID_BOTH, counter
1

6.12.5.1 DatalDMode set to E2E_P11DATAID_NIBBLE

Result data of E2E_P11Protect() with data equals all zeros (0x00), counter = 0:

Byte
0 1 2 3 4 5 6 7
0x2a 0x10 0x00 0x00 0x00 0x00 0x00 0x00

Table 6.50: E2E Profile 11 protect result DatalDMode = E2E_P11DATAID_NIBBLE, counter
0

Result data of E2E_P11Protect() with data equals all zeros (0x00), counter = 1:

Byte
0 1 2 3 4 5 6 7
0x77 0x11 0x00 0x00 0x00 0x00 0x00 0x00

Table 6.51: E2E Profile 11 protect result DatalDMode = E2E_P11DATAID_NIBBLE, counter
1

6.12.5.2 DatalDMode set to E2E_P11DATAID NIBBLE, Offset set to 64

This is a typical use-case for using P11 with SOME/IP serializer, which puts an 8 byte
header in front of the serialized user data. The CRC calculation includes the 8 byte
header and then the payload data, excluding the CRC byte itself. “Offset 64” means

AUTSSAR

CRCOffset set to 64, CounterOffset set to 72, DatalDNibbleOffset set to 76. Result

data of E2E_P11Protect() with data equals all zeros (0x00), counter = 0:

Byte 0 1 2 3 4 5 6 7
Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Field Data (upper header)
Byte 8 9 10 11 12 13 14 15
Data 0x7d 0x10 0x00 0x00 0x00 0x00 0x00 0x00
Field CRC DatalD- Data
Nibble
|Counter

Table 6.52: E2E Profile 11 example protect result with short data and SOME/IP

6.13 Specification of E2E Profile 22

[PRS_E2E_00522]

Upstream requirements: RS_E2E_08527, RS_E2E_08529, RS _E2E_08530, RS_E2E_08533,
RS _E2E_08543, RS _E2E_08544, RS _E2E 08545, RS _E2E 08546,
RS _E2E 08547, RS _E2E 08548, RS _E2E_08549

[Profile 22 shall provide the following control fields, transmitted at runtime together with
the protected data: Counter, CRC, Data ID (see [PRS_E2E_00894]). |

[PRS_E2E_00894] E2E Profile 22 mechanisms
Upstream requirements: RS_E2E_08527, RS_E2E 08529, RS E2E 08530, RS E2E 08533,
RS_E2E 08543, RS_E2E 08544, RS _E2E 08545, RS E2E 08546,
RS_E2E 08547, RS _E2E_08548, RS_E2E_ 08549

[

Control field Description

Counter 4 bits. (explicitly sent)

CRC 8 bits, polynomial in normal form Ox2F (Autosar notation), pro-
vided by CRC library. (explicitly sent)

Data ID List 16 8 bits values, linked to Counter value. Effectively 16 different
values, one for each counter value. The Data ID List shall be
unique system-wide.

|

The E2E mechanisms can detect the following faults or effects of faults:

Detected communication faults
Repetition, loss, insertion, incorrect sequence, blocking
Loss, delay, blocking

E2E Mechanism
Counter

Transmission on a regular
basis and timeout moni-
toring using E2E-Library °

SImplementation by sender and receiver

AUTSSAR

Data ID + CRC Masquerade and incorrect addressing, insertion
CRC Corruption, asymmetric information ©

Table 6.53: Detectable communication faults using Profile 22

For details of CRC calculation, the usage of start values and XOR values see
SWS_CRCLibrary[3].

The specification of the profile uses the following placeholders:

Placeholder Replacement

P22LENGTH_POS 0

P22LENGTH_LEN 0

P22COUNTER_POS 1

P22COUNTER_LEN 1 (only 4 bits are used, the
maximum counter value is
15)

P22DATAID_POS 0

P22DATAID_LEN 0

P22CRC_POS 0

P22CRC_LEN 1

P22CALCULATE_CRC Crc_CalculateCRC8H2F()

Table 6.54: Profile 22-specific data

For behavior and flowcharts of E2E Profile 22 see Chapter 6.3.

6.13.1 Header layout

In the E2E Profile 22, the user data layout (of the data to be protected) is not con-
strained by E2E Profile 22. The total length of transmitted data shall be a multiple of
8 bit (full bytes). Also, as the header only used 12 bit, there are 4 bit unused and
available for user data in the byte where the 4 bit of the counter are placed.

Profile 22 is backward compatible to the bus-layout of profile 2. In addition, the configu-
ration field offset can be used to offset the header fields, then breaking with backward-
compatibility to profile 2 bus-layout.

Bvte/Bit 0 1

ol1]|2]3]a|s|6|7][8]|0|10]11]12]13]1a]15
0 H

Figure 6.113: E2E Profile22 header with offset 0

The Figure 6.113 above shows Profile 22 with offset configured with 0. Offset is always
given in bit and a multiple of 8 (full bytes).

Sfor a set of data protected by same CRC

AUTSSAR

Byte Order 0 1

TransmissionOrder |0 | 1| 2|3 | 4| 5|67 8|9 |10|11|[12(13| 14|15
Bit Order 7|!6|5|4|3|2(1|0|15|14 |13 |12|11(10| 9 | 8
0 [e] [counter |

Figure 6.114: E2E Profile22 header with offset 0 and bit order MSB

For comparability to the figures of profile 2 in Figure 6.114 the bit order is added. The
E2E header fields (e.g. CRC) are encoded like in CAN and FlexRay, i.e.:

1. Little Endian (least significant byte first) applicable for both implicit and explicit
header fields - imposed by profile

2. MSB First (most significant bit within byte first) - imposed by Flexray/CAN bus.

6.13.1.1 Counter

In E2E Profile 22, the counter is initialized, incremented, reset and checked by E2E
profile check and protect functions. The counter is not manipulated or used by the
caller of the E2E Supervision.

[PRS_E2E_00523]
Upstream requirements: RS_E2E_08539

[In E2E Profile 22, on the sender side, for the first transmission request of a data
element the counter shall be initialized with 0 and shall be incremented by 1 for every
subsequent send request. When the counter reaches the maximum value (0xOF), then
it shall restart with 0 for the next send request. |

Note that the counter value OxOF is not reserved as a special invalid value.

The above requirements are specified in more details by the UML diagrams in the
following document sections.

6.13.1.2 DatalD

The unique Data ID List is used to verify the identity of each transmitted safety-related
data element.

[PRS_E2E_00524]
Upstream requirements: RS_E2E_08539

[In the E2E Profile 22, the Data ID shall be implicitly transmitted, by adding the Data
ID after the user data in the CRC calculation. |

AUTSSAR

[PRS_E2E_00525]
Upstream requirements: RS_E2E_08539

[In the E2E profiles 2 and 22, the Data ID Lists shall be globally unique within the net-
work of communicating system (made of several ECUs each sending different data.) |

In case of usage of E2E Supervision for protecting data elements (i.e invocation from
RTE), due to multiplicity of communication (1:1 or 1:N), a consumer of a data element
expects only a specific data element, which is checked by E2E Supervision using Data
ID.

In case of usage of E2E Supervision for protecting messages (i.e. invocation from
COM), the receiver COM expects at a reception only a specific message, which is
checked by E2E Supervision using Data ID.

6.13.1.3 Length

In Profile 22 there is no explicit transmission of the length.

6.13.1.4 CRC

E2E Profile 22 uses an 8-bit CRC, to ensure a sufficient detection rate and sufficient
Hamming Distance. The CRC polynomial is the same as used in profile 2.

[PRS_E2E_00526]

Upstream requirements: RS_E2E_08528, RS_E2E_08539
[E2E Profile 22 shall use the Crc_CalculateCRC8H2F() function of the SWS CRC
Supervision for calculating the CRC (Polynomial 0x2F, see also SWS_E2E_00117) |

[PRS_E2E_00527]
Upstream requirements: RS_E2E_08539, RS_E2E_08531

[In E2E Profile 22, the CRC shall be calculated over the entire E2E header (excluding
the CRC byte), including the user data extended at the end with the corresponding
Data ID from the Data ID List. |

6.13.2 Creation of E2E-Header
6.13.2.1 E2E_P22Protect

The function E2E_P22Protect() performs the steps as specified by the following dia-
grams in this section.

AUTSSAR

[PRS_E2E_00528]
Upstream requirements: RS_E2E_08539

[The function E2E_P22Protect() shall have the overall behavior as shown in Figure
6.115.]

E2E_P22Protect(Config, State, Data,
Length)

[null
input]

[wrong
input]

®

®
retumn return return

E2E_E_INPUTERR_NULL E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.115: E2E Profile 22 Protect

[PRS_E2E_00529]

Upstream requirements: RS_E2E_08539
[The step "Verify inputs of the protect function” in E2E_P22Protect() shall behave as
shown in Figure 6.3.]

[PRS_E2E 01253] Compute Offset of Protect Function
Upstream requirements: RS_E2E_08539

[The step "Compute Offset of the protect function” in E2E_P22Protect(),
E2E_P22Forward() and E2E_P22Check() shall behave as shown in Figure 6.4. |

[PRS_E2E_00530]
Upstream requirements: RS_E2E_08539

[The step "Write Counter” in E2E_P22Protect() and E2E_P22Forward() shall behave
as shown in Figure 6.116. |

AUTSSAR

E2E_P22Protect() $

[Copy lower 4 bits of State->Counter to data array at bit position Config-]_ . Byte position in data aray can be obtainedj

>Offset+8 by:

%
DataPtr[(Config->Offset >> 3) + 1]

Figure 6.116: E2E Profile 22 Protect step "Write Counter”

[PRS_E2E 00531]
Upstream requirements: RS_E2E_08539

[The step "Compute CRC” in E2E_P22Protect(), E2E_P22Forward() and in

E2E_P22Check shall behave as shown in Figure 6.8. |

[PRS_E2E_01254] Compute CRC - Data ID (Protect and Check Function)
Upstream requirements: RS_E2E_08539

[The step "Compute CRC - Data ID” in E2E_P22Protect() and E2E_P22Check() shall
behave as shown in Figure 6.117_ |

E2E_P22Check() .
O
E2E_P22Protect()
Counter = State->Counter
O

ComputedCRC=Crc_CalculateCRC8H2F(Config->DatalDList
[Counter], Crc_Length:1, Crc_StartValue8: ComputedCRC,
Crc_isFirstCall: FALSE)

@
Figure 6.117: E2E Profile 22 Protect and Check step "Compute CRC - Data ID”

[PRS_E2E 00532]
Upstream requirements: RS_E2E_08539

[The step "Write CRC” in E2E_P22Protect() and E2E_P22Forward() shall behave as
shown in Figure 6.9. |

[PRS_E2E_00533]
Upstream requirements: RS_E2E_08539

[The step "Increment Counter” in E2E_P22Protect() and E2E_P22Forward() shall be-
have as shown in Figure 6.10. |

AUTSSAR

6.13.2.2 E2E_P22Forward

The E2E_P22Forward() function of E2E Profile 22 is called by a SW-C in order
to protect its application data and forward an received E2E-Status for use cases
like translation of signal based to service oriented communication.
E2E status equals E2E_P_OK the behavior of the function shall be the same like
E2E_P22Protect(). The function E2E_P22Forward() performs the steps as specified

by the following diagrams in this section.

[PRS_E2E_00635]

Upstream requirements: RS_E2E_08539

[The function E2E_P22Forward() shall have the overall behavior as shown in Figure
6.118.]

E2E_P22Forward(Config, Length,
FowardStatus, State, Ig

[null
input

®

return
E2E_E_INPUTERR_NULL

Compute offset

O
Write Counter

(e o)
Compute CRC

(e o)

Compute CRC - DatalD
(e o)
Write CRC
(e o)
Increment Counter
(e o)

return
E2E_E_OK

[wrong
input]

return

®

E2E_E_INPUTERR_WRONG

Figure 6.118: E2E Profile 22 Forward

Following steps are described in Section in Section 6.13.2.1

"Compute Offset” see [PRS_E2E_01253]
“"Increment Counter” see [PRS_E2E_00533]
"Compute CRC” see [PRS_E2E_00531]
"Write CRC” see [PRS_E2E_00532]

If the received

AUTSSAR

[PRS_E2E_00636]

Upstream requirements: RS_E2E_08539
[The step "Verify inputs of the forward function” in E2E_P22Forward() shall behave as
shown in Figure 6.12. |

[PRS_E2E_00637]
Upstream requirements: RS_E2E_08539

[The step "Write Counter” in E2E_P22Forward() shall behave as shown in Figure

6.119.]

if ForwardStatus ==
E2E_P_WRONGSEQUENCE

if ForwardStatus

are [FALSE]
E2E_P_REPEATED
[TRUE] [TRUE]
U State->Counter = State->Counter +
ate->Counter-- Config->MaxDeltaCounter

The type is uint8, but only
16 values are used. After
OxF, the next value is 0.
Take care of wrap around
over the maximum
counter value.

..... copied to the lower 4 bits of

the position (1Byte

placeholder) identified by
nfig->Off

. . i X The 4-bit counter has to be
Copy lower 4 bits of State->Counter to data array at bit position Config->Offset
+8

®
Figure 6.119: E2E Profile 22 Forward step ”Write Counter”

[PRS_E2E_01255] Compute CRC - Data ID (Forward Function)
Upstream requirements: RS_E2E_08539

[The step "Compute CRC - Data ID” in E2E_P22Forward() shall behave as shown in
Figure 6.120. |

AUTSSAR

E2E_P22Forward()
O
(Counter = State->Counter J

[TRUE] [FALSE]
if ForwardStatus
E2E_P_ERROR
DatalD=Config->DatalDList _ - B
[[Counter+1] DataID—Conflg->DaIaIDL|s([Counter]]
ComputedCRC=Crc_CalculateCRC8H2F(DatalD,
Crc_Length: 1, Crc_StartValue8: ComputedCRC,
Crc_|IsFirstCall: FALSE)

O,
Figure 6.120: E2E Profile 22 Forward step "Compute CRC - Data ID”

6.13.3 Evaluation of E2E-Header
6.13.3.1 E2E_P22Check

The function E2E_P22Check performs the actions as specified by the following dia-
grams in this section.

[PRS_E2E_00534]
Upstream requirements: RS_E2E_08539

[The function E2E_P22Check() shall have the overall behavior as shown in Figure
6.121.]

AUTSSAR

E2E_P22Check(Config, State, Data,
Length)

Verify inputs of the check
function oo

[input
oK NewDataAvailable

== TRUE [wrong
input]

[null
input]

[FALSE]

éé 8-)
return return return

E2E_E_INPUTERR_NULL E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.121: E2E Profile 22 Check

Following steps are described in Section in Section 6.13.2.1
» "Compute Offset” see [PRS_E2E_01253]
» "Compute CRC” see [PRS_E2E_00531]
« "Compute CRC - Data ID” see [PRS_E2E 01254]
[PRS_E2E_00535]

Upstream requirements: RS_E2E_08539

[The step "Verify inputs of the check function” in E2E_P22Check() shall behave as
shown in Figure 6.16. |

[PRS_E2E_00536]
Upstream requirements: RS_E2E_08539

[The step "Read Counter” in E2E_P22Check() shall behave as shown in Figure 6.122. |

AUTSSAR

E2E_P22Check()
o

Little Endian order to uint8 local variable Counter

Copy 4 bit counter value from bit-position Config->Offset+8 in Data in
Counter = Data[(Config->Offset >> 3)+1] & OxOF

----- Counter in data array can be obtained by: ﬁ

®
Figure 6.122: E2E Profile 22 Check step "Read Counter”

[PRS_E2E_00537]
Upstream requirements: RS_E2E_08539

[The step "Read CRC” in E2E_P22Check() shall behave as shown in Figure 6.20. |
[PRS_E2E_00539]

Upstream requirements: RS_E2E_08539
[The step "Do Checks’ in E2E_P22Check() shall behave as shown in Figure 6.21. |

6.13.4 Profile 22 Data Types

6.13.4.1 Profile 22 Configuration Type

[PRS_E2E_00666]

Upstream requirements: RS_E2E_08528, RS_E2E_08537
[The E2E_P22Protect, E2E_P22Forward and E2E_P22Check functions 'Config’ shall
have the following members defined in [PRS_E2E_00898]. |

[PRS_E2E _00898] E2E Profile 22 Configuration Type
Upstream requirements: RS_E2E_08528, RS_E2E_08537

[

Member Name Type Description

MinDatalLength Unsigned Integer Length of Data, in bits. The value shall be a mul-
tiple of 8. It shall be : MinDataLength >= Off-
set+(2*8). The value must be the same as Max-
DatalLength.

MaxDatalLength Unsigned Integer Length of Data, in bits. The value shall be a mul-
tiple of 8. In Profile 22 the value must be the
same as MinDatalLength.

DatalDList Unsigned Integer | An array of appropriately chosen Data IDs for
Array protection against masquerading.

AUTSSAR

MaxDeltaCounter Unsigned Integer Initial maximum allowed gap between two
counter values of two consecutively received
valid Data.

Offset Unsigned Integer Offset of the E2E header in the Data[] array in
bits. It shall be: 0 <= Offset <= DataLength-(2*8).

6.13.5 EZ2E Profile 22 Protocol Examples

E2E_P22ConfigType field

Value

MinDatalLength, MaxDatalLength, DataLength

64

DatalDList

0x01, 0x02, 0x03, 0x04,
0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0xOc,
0x0d, 0x0e, Ox0f, Ox10

MaxDeltaCounter

7

MaxNoNewOrRepeatedData 15
SyncCounterlnit 0
Offset 0

Table 6.55: E2E Profile 22 protocol example configuration

E2E_P22ProtectStateType field

Value

Counter

0

Table 6.56: E2E Profile 22 example state initialization

Result data of E2E_P22Protect() with data equals all zeros (0x00), counter starting

with O:
Counter Byte
0 1 2 3 4 5 6 7
0 0x0e 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1 0x1b 0x01 0x00 0x00 0x00 0x00 0x00 0x00
2 0x98 0x02 0x00 0x00 0x00 0x00 0x00 0x00
3 0x31 0x03 0x00 0x00 0x00 0x00 0x00 0x00
4 0xod 0x04 0x00 0x00 0x00 0x00 0x00 0x00
5 0x18 0x05 0x00 0x00 0x00 0x00 0x00 0x00
6 0x9b 0x06 0x00 0x00 0x00 0x00 0x00 0x00
7 0x65 0x07 0x00 0x00 0x00 0x00 0x00 0x00
8 0x08 0x08 0x00 0x00 0x00 0x00 0x00 0x00
9 0x1d 0x09 0x00 0x00 0x00 0x00 0x00 0x00
10 0x9e 0x0a 0x00 0x00 0x00 0x00 0x00 0x00
11 0x37 0x0b 0x00 0x00 0x00 0x00 0x00 0x00
12 0x0b 0x0c 0x00 0x00 0x00 0x00 0x00 0x00

AUTSSAR

JAN
Counter Byte
[} 1 2 3 4 5 6 7
13 Oxle 0x0d 0x00 0x00 0x00 0x00 0x00 0x00
14 0x9d 0x0e 0x00 0x00 0x00 0x00 0x00 0x00
15 Oxcd 0x0f 0x00 0x00 0x00 0x00 0x00 0x00
Table 6.57: E2E Profile 22 example protect result
6.13.5.1 Offset set to 64

This is a typical use-case for using P22 with SOME/IP serializer, which puts an 8 byte
header in front of the serialized user data. Result data of E2E_P22Protect() with data
equals all zeros (0x00), counter = 1:

Byte 0 1 2 3 4 5 6 7
Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Field Data (upper header)
Byte 8 9 10 11 12 13 14 15
Data 0x14 0x01 0x00 0x00 0x00 0x00 0x00 0x00
Field CRC DatalD Data

|Counter

Table 6.58: E2E Profile 22 example protect result with short data and SOME/IP

6.14 Specification of E2E Profile 44

[PRS_E2E_00707]

Upstream requirements: RS_E2E_08529, RS_E2E_08530, RS_E2E_08533
[Profile 44 shall provide the following control fields, transmitted at runtime together with
the protected data: Length, Counter, CRC, Data ID (see [PRS_E2E_00906]). |

[PRS_E2E_00906] E2E Profile 44 mechanisms
Upstream requirements: RS_E2E_08529, RS_E2E_08530, RS_E2E_08533

Control field Description

Length 16 bits, to support dynamic-size data.

Counter 16-bits.

CRC 32 bits, polynomial in normal form 0xF4ACFB13, provided
by CRC library.
Note: This CRC polynomial is different from the CRC-
polynomials used by FlexRay, CAN and LIN and TCP/IP.

Data ID 32-bits, unique system-wide.

AUTSSAR

For details of CRC calculation, the usage of start values and XOR values see
SWS_CRCLibrary[3].

The specification of the profile uses the following placeholders:

Placeholder Replacement
P44LENGTH_POS 0
P44LENGTH_LEN
P44COUNTER_POS
P44COUNTER_LEN
P44DATAID_POS
P44DATAID_LEN
P44CRC_POS
P44CRC_LEN 4

P44CALCULATE_CRC Crc_CalculateCRC32P4()

Q| | NN

Table 6.59: Profile 44-specific data

For behavior and flowcharts of E2E Profile 44 see Chapter 6.3.

6.14.1 Header Layout

In the E2E Profile 44, the user data layout (of the data to be protected) is not con-
strained by E2E Profile 44 - there is only a requirement that the length of data to be
protected is multiple of 1 byte.

The header of the E2E Profile 44 has one fixed layout, as follows:

Byte/Bit [[] I 1 I z I 3]

0(1]2|2|4|5 |65 | 7|25 |00 23 |03|24|15|05(07 |12 |19 |20 (21 |22(23|24|35 |26 |27 |28|25(30] 31

=]
4
=

Figure 6.123: E2E Profile 44 Header

The bit numbering shown above represents the order in which bits are transmitted. The
E2E header fields (e.g. E2E Counter) are encoded as:

1. Big Endian (most significant byte first) - imposed by profile
2. LSB First (least significant bit within byte first) - imposed by TCP/IP bus

The header can be placed at a specific location in the protected data, by configuring
the offset of the entire E2E header.

AUTSSAR

6.14.2 Profile 44 Configuration Type

[PRS_E2E_00735]
Upstream requirements: RS_E2E_08528, RS_E2E_08537

[The E2E_P44Protect, E2E_P44Forward and E2E_P44Check functions 'Config’ shall
have the following members defined in [PRS_E2E_00907]. The current DataLength
shall be a multiple of 8 as well as the MaxDatalLength and MinDatalLength. |

[PRS_E2E _00907] E2E Profile 44 Configuration Type
Upstream requirements: RS_E2E_08528, RS_E2E_08537

[

Member Name Type Description

DatalD Unsigned Integer A system-unique identifier of the Data.
Offset Unsigned Integer Bit offset of the first bit of the E2E header
from the beginning of the Data (bit num-
bering: bit 0 is the least important). The
offset shall be a multiple of 8 and 0 <=
Offset <= MaxDatalLength-(12*8). Exam-
ple: If Offset equals 8, then the high byte
of the E2E Length (16 bit) is written to Byte
1, the low Byte is written to Byte 2.
MinDatalLength Unsigned Integer Minimal length of Data, in bits. EZ2E
checks that DataLength is >= MinDatal-
ength. The value shall be a multiple of 8.
The value shall be >= 12*8 and <= Max-
DataLength. The value shall be a multiple
of 8.

MaxDatalength Unsigned Integer Maximal length of Data, in bits. EZ2E
checks that Datalength is <= MaxDatal-
ength. The value shall be <= 655358 and
>= MinDataLength. The value shall be a
multiple of 8.

MaxDeltaCounter Unsigned Integer Maximum allowed gap between two
counter values of two consecutively re-
ceived valid Data.

6.14.3 EZ2E Profile 44 Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated
to be different:

E2E_P44ConfigType field Value
DatalD 0x0a0b0c0d
Offset 0x0000 0000
MinDatalLength 96
MaxDatalLength 524280

AUTSSAR

| MaxDeltaCounter L

Table 6.60: E2E Profile 44 protocol example configuration

E2E_P44ProtectStateType field Value
Counter 0

Table 6.61: E2E Profile 44 example state initialization

Result data of E2E_P44Protect() with short data length (length 16 bytes, means 4
actual data bytes), offset = 0, counter = 0:

Byte 1 2 3 4 5 6 7 8
Data 0x00 0x10 0x00 0x00 0x0a 0x0b 0x0c 0x0d
Field Length Counter DatalD

Byte 9 10 11 12 13 14 15 16
Data 0x86 0x2b 0x05 0x56 0x00 0x00 0x00 0x00
Field CRC Data

Table 6.62: E2E Profile 44 example short

Result data of E2E_P44Protect() with minimum data length (4 data bytes), offset = 64
(as with SOME/IP header use case), datalength = 24, counter = 0:

Byte 1 2 3 4 5 6 7 8
Data 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
Field Data (upper header)

Byte 9 10 11 12 13 14 15 16
Data 0x00 0x18 0x00 0x00 0x0a 0x0b 0x0c 0x0d
Field Length Counter DatalD

Byte 17 18 19 20 21 22 23 24
Data 0x69 0xd7 0x50 0x2e 0x00 0x00 0x00 0x00
Field CRC Data

Table 6.63: E2E Profile 44 example short with SOME/IP use case

6.15 Specification of E2E Profile 76

[PRS_E2E 01318] Profile 76 Mechanisms
Status: DRAFT

Upstream requirements: RS_E2E_08527, RS_E2E_08529, RS _E2E_08530, RS_E2E_08533,
RS _E2E_08543, RS _E2E_ 08544, RS _E2E 08545, RS _E2E 08546,
RS _E2E_08547, RS _E2E_08548, RS _E2E_08549, RS _E2E_08550

[Profile 76 shall provide the following control fields, transmitted at runtime together with
the protected data: Counter, CRC (see Table 6.64). |

AUTSSAR

Control field Description
Counter 5 bits.
CRC 32 bits, polynomial in normal form 0x6938392D, provided

by CRC library.

Note: This CRC polynomial is different from the CRC-
polynomials used by FlexRay, CAN and LIN and TCP/IP.
Data ID This profile does not use Data ID in the profile header and
not as input for CRC calculation.

Table 6.64: E2E Profile 76 Control Fields

P76 in the current version does not use an E2E Data ID. The reason is that SAE J1939-
76 currently does not require the CRC to be calculated over the PGN and the source
address, which together have the role of a Data ID. But the underlying J1939Fscp
module ensures a correct sequence of SHM and SDM, so that most masquerading
and addressing errors can still be detected.

For details of CRC calculation, the usage of start values and XOR values see
SWS_CRCLibrary[3].

The specification of the profile uses the following placeholders:

Placeholder Replacement

P76 COUNTER_POS 0

P76 COUNTER_LEN 1

P76CRC_POS 1

P76CRC_LEN 4

P76CALCULATE_CRC Crc_CalculateCRC32_J1939()

Table 6.65: Profile 76 specific data

6.15.1 Header Layout

In the E2E Profile 76, the data to be protected is between 1 and 8 bytes payload data
and the length of data to be protected is multiple of 1 byte.

The header of the E2E Profile 76 has one fixed layout, as follows:

1 2 3

I I I]
| CRC [CRC | CRC {(MSE]

Bvie |]]
| 000 EZECounter | CRC [L5B]

Figure 6.124: E2E Profile 76 Header

1. Little Endian (least significant byte first) - imposed by profile
2. E2E counter is stored in lower 5 bits. Higher 3 bits of byte are set to 0.

The header is placed upfront of the message.

AUTSSAR

6.15.1.1 Counter

In E2E Profile 76, the counter is initialized, incremented, reset and checked by E2E
profile. The counter is not manipulated or used by the caller of the E2E Supervision.

[PRS_E2E 01400] Profile 76 Initialization of counter
Status: DRAFT
Upstream requirements: RS_E2E_08539

[In E2E Profile 76, on the sender side, for the first transmission request of a data
element the counter shall be initialized with 0 and shall be incremented by 1 for every
subsequent send request. When the counter reaches the maximum value (0x1F), then
it shall restart with 0 for the next send request. |

6.15.1.2 Length

In Profile 76 there is no explicit transmission of the length.

6.15.1.3 CRC

E2E Profile 76 uses a 32-bit CRC, to ensure a sufficient detection rate and sufficient
Hamming Distance.

[PRS_E2E_01401] Profile 76 CRC Calculation Algorithm
Status: DRAFT
Upstream requirements: RS_E2E_08528, RS_E2E_08539

[E2E Profile 76 shall use the Crc_CalculateCRC SAE J1939-76 CRC function for cal-
culating the CRC (Polynomial: 0X6938392D; Autosar notation). |

[PRS_E2E 01402] Profile 76 CRC Calculation over E2E Header
Status: DRAFT
Upstream requirements: RS_E2E_08539, RS_E2E_08531

[In E2E Profile 76, the CRC shall be calculated over the entire E2E header (excluding
the CRC bytes), including the user data extended at the end. |

6.15.2 Creation of the E2E-Header
6.15.2.1 E2E_P76Protect

The function E2E_P76Protect() performs the steps as specified by the following dia-
grams.

AUTSSAR

[PRS_E2E_01420] Profile 76 Protect Function
Status: DRAFT
Upstream requirements: RS_E2E_08539

[The function E2E_P76Protect() shall have the overall behavior as shown in Figure
6.125

]

E2E_P76Protect(Config, State, Data,
Length)

Verify inputs of the prog:_b
function

[null
input]

[wrong
input]
Write Counter

Compute CRC oo
Write CRC ~O

5

O,
retumn return return

E2E_E_INPUTERR_NULL E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.125: E2E Profile 76 Protect

[PRS_E2E_01422] Profile 76 Verification of Inputs of Protect Function
Status: DRAFT
Upstream requirements: RS_E2E_08539

[The step "Verify inputs of the protect function” in E2E_P76Protect() shall behave as
shown in Figure 6.3

]

[PRS_E2E_01424] Profile 76 Write Counter
Status: DRAFT
Upstream requirements: RS_E2E_08539

[The step "Write Counter” in E2E_P76Protect() shall behave as shown in Figure 6.126 |

AUTSSAR

E2E_P76Protect()
R o

[Copy parameter State->Counter to bytstring Data.]

(Set upper 3 bits of byte 0 in data to 0.]

Limit counter to
values 0 to Ox1F @

Figure 6.126: E2E Profile 76 Protect step "Write Counter”

[PRS_E2E_01427] Profile 76 Compute CRC
Status: DRAFT
Upstream requirements: RS_E2E_08539

[The step "Compute CRC” in E2E_P76Protect() and in E2E_P76Check shall behave
as shown in Figure 6.127 |

E2E_P76Protect()
E2E_P76Check() I
(o)

uint32 ComputedCRC =
Crc_CalculateCrc32_J1939(Crc_DataPtr: &Data,
Crc_Length: 1, Crc_StartValue32: OxFFFF FFFF,

Crc_lsFirstCall: TRUE)

ComputedCRC = CrcCalculateCrc_J1939
(Crc_DataPtr: &Data[4], Crc_Length: Length -5,
Crc_StartValue: ComputedCRC, Crc_|IsFirstCall:

FALSE)

Figure 6.127: E2E Profile 76 Protect and Check step "Compute CRC”

[PRS_E2E_01429] Profile 76 Write CRC
Status: DRAFT
Upstream requirements: RS_E2E_08539

[The step "Write CRC” in E2E_P76Protect() shall behave as shown in Figure 6.9 |

AUTSSAR

[PRS_E2E_01430] Profile 76 Increment Counter
Status: DRAFT
Upstream requirements: RS_E2E_08539

[The step "Increment Counter” in E2E_P76Protect() shall behave as shown in Figure

E2E_P76Protect()
O
{ State->Counter++]
After Counter has
@ reached its maximum
0x1F, the next Counter
value is 0

Figure 6.128: E2E Profile 76 Protect step "Increment Counter”

6.15.3 Evaluation of the E2E-Header
6.15.3.1 E2E P76Check

The function E2E_P76Check() performs the actions as specified by the following dia-
grams.

[PRS_E2E_01403] Profile 76 Check function
Status: DRAFT
Upstream requirements: RS_E2E_08539

[The function E2E_P76Check() shall have the overall behavior as shown in Figure
6.129|

AUTSSAR

E2E_P76Check(Config, State, Data,
Length)

Verify inputs of the chgsl_&o
function

[null
input]

[wrong

linput input]

NewDataAvailable ==
TRUE

[FAL!

g-) é-)
retum return return

E2E_E_INPUTERR_NULL E2E_E_OK E2E_E_INPUTERR_WRONG

Figure 6.129: E2E Profile 76 Check

[PRS_E2E_01405] Profile 76 Verification of inputs of Check function
Status: DRAFT
Upstream requirements: RS_E2E_08539

[The step "Verify inputs of the check function” in E2E_P76Check() shall behave as
shown in Figure 6.16 |

[PRS_E2E_01406] Profile 76 Read Counter
Status: DRAFT
Upstream requirements: RS_E2E_08539

[The step "Read Counter” in E2E_P76Check() shall behave as shown in Figure 6.18 |

[PRS_E2E_01407] Profile 76 Read CRC
Status: DRAFT
Upstream requirements: RS_E2E_08539

[The step "Read CRC” in E2E_P76Check() shall behave as shown in Figure 6.20 |

[PRS_E2E _01433] Profile 76 Compute CRC
Status: DRAFT
Upstream requirements: RS_E2E_08539

[The step "Compute CRC” in E2E_P76Check() shall behave as shown in Figure
6.127.]

AUTSSAR

[PRS_E2E_01408] Profile 76 Perform checks
Status: DRAFT
Upstream requirements: RS_E2E_08539

[The step "Do Checks’ in E2E_P76Check() shall behave as shown in Figure 6.130.

E2E_P76Check()

NewDataAvailable ==

[FALSE]
\l/ TRUE
[State-»Status = j [TRUE]
E2E_P76STATUS_NONEWDATA [FALSE] ReceivedCRC -
ComputedCRC
State->Status =
E2E_P76STATUS_ERROR
Compute local variable DeltaCounter: ReceivedCounter - State->Counter

(DeltaGounter <= Config-
>MaxDeIta90unter) && (DeltaCounter
>=0) N

State->Status = \ IFALSE]
L 1
E2E7P7GSTATU87WHONGSEQUENCE)

ey

Counter has length
P76COUNTER_LEN (in
bytes). Take care of
wrap around

[TRUE] (under-/overflow) of
counter over the
whole length of
Counter.

DeltaCounter
>0

i
o}
c
m

State->Status = \ [FALSE]
E2E7P768TATU87REPEATED)

DeltaCounter

==1

[TRUE]

State->Status =
E2E_P76STATUS_OK

State->Status =
&2E7P7GSTATUS70KSOMELOST] {FALSE]

5 e

B

[State->Counter = ReceivedCounter J

A

Figure 6.130: E2E Profile 76 Do Checks

AUTSSAR

6.15.4 Profile Data Types
6.15.4.1 Profile 76 Protect State Type

[PRS_E2E_01409] Profile 76 Protect Function
Status: DRAFT
Upstream requirements: RS_E2E_08528

[The E2E_P76Protect function ’state’ shall have the members defined in
[PRS_E2E_01410].]

[PRS_E2E 01410] E2E Profile 76 Protect State Type

Status: DRAFT
Upstream requirements: RS_E2E_08528
[
Name State Type Description
Counter Unsigned Integer Counter to be used for protecting the next
Data. The initial value is 0, which means
that in the first cycle, Counter is 0. Each
time E2E_P76Protect() is called, it incre-
ments the counter up to Ox1F.

6.15.4.2 Profile 76 Check State Type

[PRS_E2E_01411] Profile 76 Check Function
Status: DRAFT
Upstream requirements: RS_E2E_08528

[The E2E_P76Check functions ’'State’ shall have the members defined in
[PRS_E2E_01412].]

[PRS_E2E_01412] E2E Profile 76 Check State Type

Status: DRAFT
Upstream requirements: RS_E2E_08528
[
Member Name State Type Description
Counter Unsigned Integer Counter of the data in previous cycle.
Status Enumeration Result of the verification of the Data in this
cycle, determined by the Check function.

AUTSSAR

6.15.4.3 Profile 76 Check Status Enumeration

[PRS_E2E_01413] Profile 76 Status
Status: DRAFT
Upstream requirements: RS_E2E_08528

[The E2E_P76Check functions ’State->Status’ enumeration type shall consist the fol-
lowing enumeration values (see [PRS_E2E_01414]). |

[PRS_E2E_01414] E2E Profile 76 Check Status Enumeration

Status: DRAFT
Upstream requirements: RS_E2E_08528
[
Name State | Description
Type
E2E P76STATUS OK OK The checks of the Data in this cycle

were successful (including counter check,
which was incremented by 1).

E2E P76STATUS NONEWDATA Error The Check function has been invoked but
no new Data is available since the last
call, according to communication medium
(e.g. RTE, COM). As a result, no E2E
checks of Data have been consequently
executed. This may be considered similar
to E2E_P76STATUS_REPEATED.
E2E_P76STATUS_ERROR Error Error not related to counters occurred (e.g.
wrong crc, wrong length, wrong options,
wrong Data ID).

E2E _P76STATUS_REPEATED Error The checks of the Data in this cycle were
successful, with the exception of the repe-
tition.

E2E P76STATUS OKSOMELOST OK The checks of the Data in this cycle

were successful (including counter check,
which was incremented within the allowed
configured delta).
E2E_P76STATUS_WRONGSEQUENCE | Error The checks of the Data in this cycle were
successful, with the exception of counter
jump, which changed more than the al-
lowed delta

AUTSSAR

6.15.4.4 Profile 76 Configuration Type

[PRS_E2E_01415] Profile 76 Configuration
Status: DRAFT
Upstream requirements: RS_E2E_08528, RS_E2E_08537, RS_E2E_08539

[The E2E_P76Protect and E2E_P76Check functions 'Config’ shall have the following
members defined in [PRS_E2E_01416]. |

[PRS_E2E_01416] E2E Profile 76 Configuration Type
Status: DRAFT
Upstream requirements: RS_E2E_08528, RS_E2E_08537, RS_E2E_08539

[

Member Name Type Description

MinDatalLength Unsigned Integer Minimal length of Data, in bits. EZ2E
checks that DataLength is >= MinDatal-
ength. The value shall be <= MaxDatal-
ength and shall be >= 6*8. The value shall
be a multiple of 8.

MaxDatalLength Unsigned Integer Maximal length of Data, in bits. EZ2E
checks that DataLength is <= MaxDataL-
ength. The value shall be <= 13*8 (13
byte) and it shall be >= MinDatalLength.
The value shall be a multiple of 8.
MaxDeltaCounter Unsigned Integer Maximum allowed gap between two
counter values of two consecutively re-
ceived valid Data.

6.15.5 E2E Profile 76 Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated
to be different:

E2E_P76ConfigType field Value
MinDatalLength 48
MaxDatalength 104

Table 6.66: E2E Profile 76 protocol example configuration

E2E_P76ProtectStateType field Value
Counter 0

Table 6.67: E2E Profile 76 example state initialization

Result data of E2E_P76Protect() with full data length (length 13 bytes, means 8 actual
data bytes, f.e. 0x01 0x02 0x03 .. 0x07), counter = O:

AUTSSAR

Byte 0 1 2 3 4 5 6 7
Data 0x00 0xC5 0x50 0x53 0x7D 0x00 0x01 0x02
Field Counter CRC Payload

Byte 8 9 10 11 12 13 14 15
Data 0x03 0x04 0x05 0x06 0x07

Field Payload unused

Result data of E2E_P76Protect() with full data length (length 13 bytes, means 8 actual
data bytes, f.e. 0x12 0x34 0x56 ... 0xXDE 0xF0), counter = 0:

Table 6.68: E2E Profile 76 example short with 8 bytes payload

Byte 0 1 2 3 4 5 6 7
Data 0x00 0xD7 0x71 0x3A 0x27 0x12 0x34 0x56
Field Counter CRC Payload

Byte 8 9 10 11 12 13 14 15
Data 0x87 0x9A 0xBC 0xDE 0xFO

Field Payload unused

Table 6.69: E2E Profile 76 example short with 8 bytes payload

6.16 Specification of E2E Profile 4m

[PRS_E2E_00740]

Upstream requirements: RS_E2E_08529, RS_E2E_08530, RS_E2E_08533

[Profile 4m shall provide the following control fields, transmitted at runtime together
with the protected data: Length, Counter, CRC, Data ID, Source ID, Message Type,

Message Result (see [PRS_E2E_00899)). |

[PRS_E2E 00899] E2E Profile 4m mechanisms
Upstream requirements: RS_E2E_08529, RS_E2E_08530, RS_E2E_08533

[

Control field Description

Length 16 bits, to support dynamic-size data.

Counter 16 bits.

CRC 32 bits, polynomial in normal form 0xF4ACFB13, provided
by CRC library.
Note: This CRC polynomial is different from the CRC-
polynomials used by FlexRay, CAN and LIN and TCP/IP.

Data ID 32 bits, unique system-wide.

Message Type 2-bits, request (0) vs. response (1).

Message Result 2-bits, OK (0) vs. error (1) - fixed to OK (0) for Message
Type ‘request’.

Source ID 28-bits, unique system-wide.

AUTSSAR

]

For details of CRC calculation, the usage of start values and XOR values see
SWS_CRCLibrary[3].

The specification of the profile uses the following placeholders:

Placeholder Replacement
PO4AMLENGTH_POS 0
PO4AMLENGTH_LEN 2
PO4AMCOUNTER_POS 2
PO4MCOUNTER_LEN 2
PO4MDATAID_POS 4
PO4MDATAID_LEN 4
P0O4MCRC_POS 8
PO4MCRC_LEN 4
PO4AMMESSAGE_POS 12
PO4MCALCULATE_CRC Crc_CalculateCRC32P4()

Table 6.70: Profile 4m-specific data

For behavior and flowcharts of E2E method Profile 4m see Chapter 6.4.

6.16.1 Header Layout

In the E2E Profile 4m, the user data layout (of the data to be protected) is not con-
strained by E2E Profile 4m - there is only a requirement that the length of data to be
protected is multiple of 1 byte.

The header of the E2E Profile 4m has one fixed layout, as follows:

Byte/Bit 0 1 2 3
00| 01| 02| 03] 04| 05/ 06| 07| 08| 09| 10| 11] 12 13] 14] 15| 16] 17] 18] 19] 20| 21| 22| 23| 24| 25| 26 27 28] 29] 30] 31
E2E Length E2E Counter
E2E Data ID
8 E2E CRC
12 T | R | E2E Source ID

Table 6.71: E2E Profile 4m Header

Hereby ‘T’ denotes the E2E Message Type and ‘R’ denotes the E2E Message Result.
The bit numbering shown above represents the order in which bits are transmitted. The
E2E header fields (e.g. E2E Counter) are encoded as:

1. Big Endian (most significant byte first) - imposed by profile
2. LSB First (least significant bit within byte first) - imposed by TCP/IP network

AUTSSAR

The header can be placed at a specific location in the protected data, by configuring
the offset of the entire E2E header.

6.16.2 Profile 4m Configuration Type

[PRS_E2E_00852]
Upstream requirements: RS_E2E 08528, RS _E2E 08537

[The E2E_P04mProtect, E2E_P0O4mForward, E2E_P04mSourceCheck and
E2E_P04mSinkCheck functions “Config” shall have the following members defined in
[PRS_E2E_00900]. |

[PRS_E2E_00900] E2E Profile 4m Configuration Type
Upstream requirements: RS_E2E 08528, RS_E2E 08537

[

Name Type Description

DatalD Unsigned Integer A system-unique identifier of the Data.
Offset Unsigned Integer Bit offset of the first bit of the E2E header
from the beginning of the Data (bit num-
bering: bit 0 is the least important). The
offset shall be a multiple of 8 and 0 <=
Offset <= MaxDatalLength-(16*8). Exam-
ple: If Offset equals 8, then the high byte
of the E2E Length (16 bit) is written to Byte
1, the low Byte is written to Byte 2.
MinDatalLength Unsigned Integer Minimal length of Data, in bits. EZ2E
checks that DataLength is >= MinDatal-
ength. The value shall be <= MaxDatal-
ength and shall be >= 16*8. The value
shall be a multiple of 8.

MaxDatalLength Unsigned Integer Maximal length of Data, in bits. EZ2E
checks that DataLength is <= MaxDatal-
ength. The value shall be <= 4096*8
(4KB) and it shall be >= MinDataLength.
The value shall be a multiple of 8.
MaxDeltaCounter Unsigned Integer Maximum allowed gap between two
counter values of two consecutively re-
ceived valid Data.

6.16.3 EZ2E Profile 4m Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated
to be different:

| E2E_P04mConfigType field | Value |

AUTSSAR

DatalD 0x0a0b0c0d
Offset 0x0000
MinDatalength 128
MaxDatalLength 32768
MaxDeltaCounter 1

Table 6.72: E2E Profile 4m protocol example configuration

E2E_P04mProtectStateType field Value
Counter 0

Table 6.73: E2E Profile 4m example state initialization

6.16.4 Request Example

The result data of an E2E_P04mProtect() call with short data length (length
20 bytes, means 4 actual data bytes), offset = 0, counter = 0, Source ID =
0x0123456, Message Type = STD_MESSAGETYPE_REQUEST, Message Result =
STD_MESSAGERESULT_OK is depicted in Table 6.74.

Byte

2

3

4

Data

0x00

0x00

0x0a

0x0b

0x0c

0x0d

Field

Counter

DatalD

Byte

10

11

12

13

14

15

Data

Ox4c

0xa0

0x00

0x12

0x34

0x56

Field

Message Type, Message Result, Source ID

Byte

16

17

18

19

n/a

Data

0x00

0x00

0x00

0x00

n/a

Field

Data

n/a

Table 6.74: E2E Profile 4m example short - request (Message Type =
STD_MESSAGETYPE_REQUEST; Message Result = STD_MESSAGERESULT_OK)

6.16.5 Response Example

The result data of an E2E_P04mProtect() call with short data length (length
20 bytes, means 4 actual data bytes), offset = 0, counter = 0, Source ID =
0x0123456, Message Type = STD_MESSAGETYPE_RESPONSE, Message Result
= STD_MESSAGERESULT_OK is depicted in Table 6.75.

Byte

0

1

2

3

4

5

6

Data

0x00

0x14

0x00

0x00

0x0a

0x0b

0x0c

0x0d

Field

Length

Counter

DatalD

Y%

AUTSSAR

A
Byte 8 9 10 11 12 13 14 15
Data 0x85 0x25 0x76 0x19 0x40 0x12 0x34 0x56
Field CRC Message Type, Message Result, Source ID
Byte 16 17 18 19 n/a
Data 0x00 0x00 0x00 0x00 n/a
Field Data n/a
Table 6.75: E2E Profile 4m example short - normal response (Message Type =

STD_MESSAGETYPE_RESPONSE; Message Result = STD_MESSAGERESULT_OK)

6.16.6 Error Response Example

The result data of an E2E_P04mProtect() call with short data length (length
20 bytes, means 4 actual data bytes), offset = 0, counter = 0, Source ID =
0x0123456, Message Type = STD_MESSAGETYPE_RESPONSE, Message Result
= STD_MESSAGERESULT ERROR is depicted in Table 6.76.

Byte

2

3

4

5

Data

0x00

0x00

0x0a

0x0b

0x0c

0x0d

Field

Counter

DatalD

Byte

10

11

12

13

14

15

Data

0x57

0x0f

0x50

0x12

0x34

0x56

Field

Message Type, Message Result, Source ID

Byte

16

17

18

19

n/a

Data

0x00

0x00

0x00

0x00

n/a

Field

Data

n/a

Table 6.76: E2E Profile 4m example short - ERROR reponse (Message Type =
STD_MESSAGETYPE_RESPONSE; Message Result = STD_MESSAGERESULT_ERROR)

6.17 Specification of E2E Profile 7m

[PRS_E2E_00783]
Upstream requirements: RS_E2E_08529, RS_E2E_08530, RS_E2E_08533

[Profile 7m shall provide the following control fields, transmitted at runtime together
with the protected data: Length, Counter, CRC, Data ID, Source ID, Message Type,
Message Result (see [PRS_E2E_00903])). |

[PRS_E2E 00903] E2E Profile 7m mechanisms
Upstream requirements: RS_E2E_08529, RS_E2E_08530, RS_E2E_08533

[

AUTSSAR

Control field Description

Length 32 bits, to support dynamic-size data.

Counter 32 bits.

CRC 64 bits, polynomial in normal form 0x42FOE1EBA9EA3693, pro-

vided by CRC library.
Note: This CRC polynomial is also known as “CRC-64 (ECMA)”.
Data ID 32 bits, unique system-wide.

Message Type 2-bits, request (0) vs. response (1).

Message Result 2-bits, OK (0) vs. error (1) - fixed to OK (0) for Message Type
‘request’.

Source ID 28-bits, unique system-wide.

]

For details of CRC calculation, the usage of start values and XOR values see
SWS_CRCLibrary[3].

The specification of the profile uses the following placeholders:

Placeholder Replacement
PO7MLENGTH_POS 8
PO7MLENGTH_LEN 4
PO7MCOUNTER_POS 12
PO7MCOUNTER_LEN 4
PO7MDATAID_POS 16
PO7MDATAID_LEN 4
PO7MCRC_POS 0
PO7MCRC_LEN 8
PO7MMESSAGE_POS 20
PO7MCALCULATE_CRC Crc_CalculateCRC64()

Table 6.77: Profile 8m-specific data

For behavior and flowcharts of E2E method Profile 7m see Chapter 6.4.

6.17.1 Header Layout

In the E2E Profile 7m, the user data layout (of the data to be protected) is not con-
strained by E2E Profile 7m - there is only a requirement that the length of data to be
protected is multiple of 1 byte.

The header of the E2E Profile 7m has one fixed layout, as follows:

AUTSSAR

Byte/Bit 0 1 2 3
00| 01 02| 03] 04| 05| 06| 07| 08| 09] 10| 11] 12] 13[14] 15| 16| 17] 18] 19] 20] 21| 22] 23] 24 25| 26] 27| 28] 29] 30] 31

0 E2E CRC

2 E2E CRC

8 E2E Length

12 E2E Counter

16 E2E Data ID

20 T | R | E2E Source ID

Table 6.78: E2E Profile 7m Header

Hereby ‘T’ denotes the E2E Message Type and ‘R’ denotes the E2E Message Result.
The bit numbering shown above represents the order in which bits are transmitted. The
E2E header fields (e.g. E2E Counter) are encoded as:

1. Big Endian (most significant byte first) - imposed by profile
2. LSB First (least significant bit within byte first) - imposed by TCP/IP network

The header can be placed at a specific location in the protected data, by configuring
the offset of the entire E2E header.

6.17.2 Profile 7m Configuration Type

[PRS_E2E_00851]
Upstream requirements: RS_E2E_08528, RS_E2E_08537

[The E2E_PO7mProtect, E2E_PO7mForward, E2E_P07mSourceCheck and
E2E_P07mSinkCheck functions “Config” shall have the following members defined in
[PRS_E2E_00905]. |

[PRS_E2E_00905] E2E Profile 7m Configuration Type
Upstream requirements: RS_E2E_08528, RS_E2E_08537

Name Type Description
DatalD Unsigned Integer A system-unique identifier of the Data.
Offset Unsigned Integer Bit offset of the first bit of the E2E header

from the beginning of the Data (bit num-
bering: bit 0 is the least important). The
offset shall be a multiple of 8 and 0 <= Off-
set <= MaxDatalLength-(24*8). Example:
If Offset equals 8, then the first byte of the
E2E Length (32 bit) is written to byte 1, the
next byte is written to byte 2 and so on.

AUTSSAR

MinDataLength Unsigned Integer Minimal length of Data, in bits. EZ2E
checks that Datalength is >= MinDatal-
ength. The value shall be <= MaxDatal-
ength and it shall be >= 24*8. The value
shall be a multiple of 8.

Maximal length of Data, in bits. EZ2E
checks that Datalength is <= MaxDatal-
ength. The value shall be >= MinDatal-
ength and it should be <= 4194304*8
(4MB). The value shall be a multiple of 8.
Maximum allowed gap between two
counter values of two consecutively re-

ceived valid Data.

MaxDatalLength Unsigned Integer

MaxDeltaCounter Unsigned Integer

6.17.3 EZ2E Profile 7m Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated
to be different:

E2E_P07mConfigType field Value
DatalD 0x0a0b0c0d
Offset 0x0000
MinDatalLength 192
MaxDatalLength 32768
MaxDeltaCounter 1

Table 6.79: E2E Profile 7m protocol example configuration

E2E_PO07mProtectStateType field Value
Counter 0

Table 6.80: E2E Profile 7m example state initialization

6.17.4 Request Example

The result data of an E2E_PO07mProtect() call with short data length (length
28 bytes, means 4 actual data bytes), offset = 0, counter = 0, Source ID =
0x0123456, Message Type = STD_MESSAGETYPE_REQUEST, Message Result =
STD_MESSAGERESULT_OK is depicted in Table 6.81.

Byte

0

1

2

3

4

Data

Oxae

0x96

Oxa7

0xd0

0xab5

0x01

0x75

0x94

Field

CRC

Y%

AUTSSAR

Byte

10

11

12

13

14

15

Data

0x00

0x00

0x00

Oxic

0x00

0x00

0x00

0x00

Field

Length

Counter

Byte

16

17

18

19

20

21

22

23

Data

0x0a

0x0b

0x0c

0x0d

0x00

0x12

0x34

0x56

Field

DatalD

Message Type, Message Result, Source ID

Byte

24

25

26

27

n/a

Data

0x00

0x00

0x00

0x00

n/a

Field

Data

n/a

Table 6.81: E2E Profile 7m example short - request (Message Type =
STD_MESSAGETYPE_REQUEST; Message Result = STD_MESSAGERESULT_OK)

6.17.5 Response Example

The result data of an E2E_PO07mProtect() call with short data length (length
28 bytes, means 4 actual data bytes), offset = 0, counter = 0, Source ID =
0x0123456, Message Type = STD_MESSAGETYPE_RESPONSE, Message Result
= STD_MESSAGERESULT_OK is depicted in Table 6.82.

Byte 0 1 2 3 4 5 6 7
Data 0xab 0x2d 0x64 0x86 Oxe8 0x3f 0x2c Oxaf
Field CRC
Byte 8 9 10 11 12 13 14 15
Data 0x00 0x00 0x00 Ox1c 0x00 0x00 0x00 0x00
Field Length Counter
Byte 16 17 18 19 20 21 22 23
Data 0x0a 0x0b 0x0c 0x0d 0x40 0x12 0x34 0x56
Field DatalD Message Type, Message Result, Source ID
Byte 24 25 26 27 n/a
Data 0x00 0x00 0x00 0x00 n/a
Field Data n/a

Table 6.82: E2E Profile 7m example short - normal response (Message Type =

STD_MESSAGETYPE_RESPONSE; Message Result = STD_MESSAGERESULT_OK)

6.17.6 Error Response Example

The result data of an E2E_PO07mProtect() call with short data length (length
28 bytes, means 4 actual data bytes), offset = 0, counter = 0, Source ID =
0x0123456, Message Type = STD_MESSAGETYPE_RESPONSE, Message Result
= STD_MESSAGERESULT_ERROR is depicted in Table 6.83.

AUTSSAR

Byte 0 1 2 3 4 5 6 7
Data 0x09 0xd9 0xe8 0x0c 0x47 0x34 0x32 0x02
Field CRC

Byte 8 9 10 1 12 13 14 15
Data 0x00 0x00 0x00 Ox1c 0x00 0x00 0x00 0x00
Field Length Counter

Byte 16 17 18 19 20 21 22 23
Data 0x0a 0x0b 0x0c 0x0d 0x50 0x12 0x34 0x56
Field DatalD Message Type, Message Result, Source ID
Byte 24 25 26 27 n/a

Data 0x00 0x00 0x00 0x00 n/a

Field Data n/a

Table 6.83: E2E Profile 7m example short - ERROR response (Message Type

STD_MESSAGETYPE_RESPONSE; Message Result = STD_MESSAGERESULT_ERROR)

6.18 Specification of E2E Profile 8m

[PRS_E2E_01107]

Upstream requirements: RS_E2E_08529, RS_E2E_08530, RS_E2E_08533

[Profile 08m shall provide the following control fields, transmitted at runtime together

with the protected data: Length, Counter, CRC, Data ID (see [PRS_E2E_00908]). |

[PRS_E2E_00908] E2E Profile 8m mechanisms
Upstream requirements: RS_E2E_08529, RS_E2E_08530, RS_E2E_08533

[
Control field Description
Length 32 bits, to support dynamic-size data.
Counter 32 bits.
CRC 32 bits, polynomial in normal form 0x1F4ACFB13, provided by
CRC library.
Note: This CRC polynomial is different from the CRC polynomials
used by FlexRay, CAN and LIN and TCPIP.
Data ID 32 bits, unique system-wide.
Message Type 2-bits, request (0) vs. response (1).
Message Result 2-bits, OK (0) vs. error (1) - fixed to OK (0) for Message Type
‘request’.
Source ID 28-bits, unique system-wide.
|

For details of CRC calculation, the usage of start values and XOR values see
SWS_CRCLibrary[3].

The specification of the profile uses the following placeholders:

AUTSSAR

Placeholder Replacement
POSMLENGTH_POS 4
POSMLENGTH_LEN 4
POBMCOUNTER_POS 8
POSBMCOUNTER_LEN 4
POSMDATAID_POS 12
POSMDATAID_LEN 4
POBMCRC_POS 0
POSBMCRC_LEN 4
POBMMESSAGE_POS 16
POSMCALCULATE_CRC Crc_CalculateCRC32P4()

Table 6.84: Profile 8m-specific data

For behavior and flowcharts of E2E method Profile 8m see Chapter 6.4.

6.18.1 Header Layout

In the E2E Profile 8m, the user data layout (of the data to be protected) is not con-
strained by E2E Profile 8m - there is only a requirement that the length of data to be
protected is multiple of 1 byte.

The header of the E2E Profile 8m has one fixed layout, as follows:

Byte/Bit 0 1 2 3
00| 01 02 03] 04| 05| 06| 07| 08| 09] 10| 11] 12] 13[14] 15| 16| 17] 18] 19] 20] 21| 22] 23] 24 25| 26] 27| 28] 29] 30] 31

0 E2E CRC

4 E2E Length

8 E2E Counter

12 E2E Data ID

16 T | R | E2E Source ID

Table 6.85: E2E Profile 8m Header

The bit numbering shown above represents the order in which bits are transmitted. The
E2E header fields (e.g. E2E Counter) are encoded as:

1. Big Endian (most significant byte first) - imposed by profile
2. LSB First (least significant bit within byte first) - imposed by TCPIP bus

For example, the 32 bits of the E2E Counter are transmitted in the following order
(higher number meaning higher significance): 24 25 26 27 28 29 3031 16 17 18 19 20
2122238910111213141501234567.

The header can be placed at a specific location in the protected data, by configuring
the offset of the entire E2E header.

AUTSSAR

6.18.2 Profile 8m Configuration Type

[PRS_E2E 01154]

Upstream requirements: RS_E2E_08528
[The E2E_P08mProtect, E2E_P08mForward, and E2E_P08mCheck functions “Con-
fig” shall have the following members defined in [PRS_E2E_00909]. |

[PRS_E2E_00909] E2E Profile 8m Configuration Type
Upstream requirements: RS_E2E_08528

[

Name Type Description

DatalD Unsigned Integer A system-unique identifier of the Data.
Offset Unsigned Integer Bit offset of the first bit of the E2E header
from the beginning of the Data (bit num-
bering: bit 0 is the least important). The
offset shall be a multiple of 8 and 0 <= Off-
set <= MaxDatalLength-(20*8). Example:
If Offset equals 8, then the first byte of the
E2E Length (32 bit) is written to byte 1, the
next byte is written to byte 2 and so on.
MinDatalength Unsigned Integer Minimal length of Data, in bits. EZ2E
checks that Datalength is >= MinDatal-
ength. The value shall be >= 20*8 and <=
MaxDatalength. The value shall be a mul-
tiple of 8.

MaxDatalength Unsigned Integer Maximal length of Data, in bits. EZ2E
checks that DataLength is <= Max-
DataLength. The value shall be <=
536870912*8 and >= MinDatalLength.
The value shall be a multiple of 8.
MaxDeltaCounter Unsigned Integer Maximum allowed gap between two
counter values of two consecutively re-
ceived valid Data.

6.18.3 EZ2E Profile 8m Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated
to be different:

E2E_P08mConfigType field Value
DatalD 0x0a0b0c0d
Offset 0x0000
MinDatalLength 160
MaxDatalLength 32768
MaxDeltaCounter 1

Table 6.86: E2E Profile 8m protocol example configuration

AUTSSAR

E2E_P08mProtectStateType field Value
Counter 0

Table 6.87: E2E Profile 8m example state initialization

6.18.4 Request Example

The result data of an E2E_P08mProtect() call with short data length (length
24 bytes, means 4 actual data bytes), offset = 0, counter = 0, Source ID =
0x0123456, Message Type = STD_MESSAGETYPE_REQUEST, Message Result =
STD_MESSAGERESULT_OK is depicted in Table 6.88.

Byte

0

3

4

Data

0x6d

Oxba

0x00

0x00

0x00

0x18

Field

Length

Byte

11

12

13

14

15

Data

0x00

0x00

0x0a

0x0b

0x0c

0x0d

Field

DatalD

Byte

16

17

18

19

20

21

22

23

Data

0x00

0x12

0x34

0x56

0x00

0x00

0x00

0x00

Field

Message Type, Message Result, Source ID

Data

Table 6.88: E2E Profile 8m example short - request (Message Type =
STD_MESSAGETYPE_REQUEST; Message Result = STD_MESSAGERESULT_OK)

6.18.5 Response Example

The result data of an E2E_P08mProtect() call with short data length (length
24 bytes, means 4 actual data bytes), offset = 0, counter = 0, Source ID =
0x0123456, Message Type = STD_MESSAGETYPE_RESPONSE, Message Result
= STD_MESSAGERESULT_OK is depicted in Table 6.89.

Byte

0

3

4

Data

0x46

0x03

0x00

0x00

0x00

0x18

Field

Length

Byte

11

12

13

14

15

Data

0x00

0x00

0x0a

0x0b

0x0c

0x0d

Field

DatalD

Byte

16

17

18

19

20

21

22

23

Data

0x40

0x12

0x34

0x56

0x00

0x00

0x00

0x00

Field

Message Type, Message Result, Source ID

Data

Table 6.89:

E2E Profile 8m example short - normal response (Message Type

STD_MESSAGETYPE_RESPONSE; Message Result = STD_MESSAGERESULT_OK)

AUTSSAR

6.18.6 Error Response Example

The result data of an E2E_P08mProtect() call with short data length (length
24 bytes, means 4 actual data bytes), offset = 0, counter = 0, Source ID =
0x0123456, Message Type = STD_MESSAGETYPE_RESPONSE, Message Result

= STD_MESSAGERESULT_ERROR is depicted in Table 6.90.

Byte 0 1 2 3 4 5 6 7
Data 0xe0 0xd2 0x45 0x15 0x00 0x00 0x00 0x18
Field CRC Length

Byte 8 9 10 11 12 13 14 15
Data 0x00 0x00 0x00 0x00 0x0a 0x0b 0x0c 0x0d
Field Counter DatalD

Byte 16 17 18 19 20 21 22 23
Data 0x50 0x12 0x34 0x56 0x00 0x00 0x00 0x00
Field Message Type, Message Result, Source ID Data

Table 6.90: E2E Profile 8m example short - normal response (Message Type =

STD_MESSAGETYPE_RESPONSE; Message Result = STD_MESSAGERESULT_OK)

6.19 Specification of E2E Profile 44m

[PRS_E2E_01155]
Upstream requirements: RS_E2E_08529, RS_E2E_08530, RS_E2E_08533

[Profile 44m shall provide the following control fields, transmitted at runtime together
with the protected data: Length, Counter, CRC, Data ID, Source ID, Message Type,
Message Result (see [PRS_E2E_00910]). |

[PRS_E2E_00910] E2E Profile 44m mechanisms
Upstream requirements: RS_E2E_08529, RS_E2E_08530, RS_E2E_08533

[

Control field Description

Length 16 bits, to support dynamic-size data.

Counter 16 bits.

CRC 32 bits, polynomial in normal form 0x1F4ACFB13, pro-
vided by CRC library.
Note: This CRC polynomial is different from the CRC-
polynomials used by FlexRay, CAN and LIN and TCP/IP.

Data ID 32 bits, unique system-wide.

Message Type 2-bits, request (0) vs. response (1).

Message Result 2-bits, OK (0) vs. error (1) - fixed to OK (0) for Message
Type ‘request’.

Source ID 28-bits, unique system-wide.

AUTSSAR

For details of CRC calculation, the usage of start values and XOR values see
SWS_CRCLibrary[3].

The specification of the profile uses the following placeholders:

Placeholder Replacement
P44MLENGTH_POS 0
P44MLENGTH_LEN 2
P44MCOUNTER_POS 2
P44MCOUNTER_LEN 2
P44MDATAID_POS 4
P44MDATAID_LEN 4
P44MCRC_POS 8
P44MCRC_LEN 4
P44MMESSAGE_POS 12
P44MCALCULATE_CRC Crc_CalculateCRC32P4()

Table 6.91: Profile 44m-specific data

For behavior and flowcharts of E2E method Profile 44m see Chapter 6.4.

6.19.1 Header Layout

In the E2E Profile 44m, the user data layout (of the data to be protected) is not con-
strained by E2E Profile 44m - there is only a requirement that the length of data to be
protected is multiple of 1 byte.

The header of the E2E Profile 44m has one fixed layout, as follows:

Byte/Bit 0 1 2 3
00| 01 02| 03] 04| 05| 06| 07| 08| 09] 10| 11] 12] 13] 14] 15| 16| 17] 18] 19] 20] 21| 22] 23] 24 25| 26] 27| 28] 29] 30] 31
E2E Length E2E Counter
E2E Data ID
8 E2E CRC
12 T | R | E2E Source ID

Table 6.92: E2E Profile 44m Header

Hereby ‘T’ denotes the E2E Message Type and ‘R’ denotes the E2E Message Result.
The bit numbering shown above represents the order in which bits are transmitted. The
E2E header fields (e.g. E2E Counter) are encoded as:

1. Big Endian (most significant byte first) - imposed by profile
2. LSB First (least significant bit within byte first) - imposed by TCP/IP network

The header can be placed at a specific location in the protected data, by configuring
the offset of the entire E2E header.

AUTSSAR

6.19.2 Profile 44m Configuration Type

[PRS_E2E 01202]

Upstream requirements: RS_E2E_08528
[The E2E_P44mProtect, E2E_P44mForward, and E2E_P44mCheck functions “Con-
fig” shall have the following members defined in [PRS_E2E_00911]. |

[PRS_E2E_00911] E2E Profile 44m Configuration Type
Upstream requirements: RS_E2E_08528

[

Name Type Description

DatalD Unsigned Integer A system-unique identifier of the Data.
Offset Unsigned Integer Bit offset of the first bit of the E2E header
from the beginning of the Data (bit num-
bering: bit 0 is the least important). The
offset shall be a multiple of 8 and 0 <=
Offset <= MaxDatalLength-(16*8). Exam-
ple: If Offset equals 8, then the high byte
of the E2E Length (16 bit) is written to Byte
1, the low Byte is written to Byte 2.
MinDatalength Unsigned Integer Minimal length of Data, in bits. EZ2E
checks that Datalength is >= MinDatal-
ength. The value shall be <= MaxDatal-
ength and it shall be >= 16*8. The value
shall be a multiple of 8.

MaxDatalength Unsigned Integer Maximal length of Data, in bits. EZ2E
checks that Datalength is <= MaxDatalL-
ength. The value shall be <= 655358 and
it shall be >= MinDataLength. The value
shall be a multiple of 8.

MaxDeltaCounter Unsigned Integer Maximum allowed gap between two
counter values of two consecutively re-
ceived valid Data.

6.19.3 EZ2E Profile 44m Protocol Examples

The default configuration assumed for the following examples, if not otherwise stated
to be different:

E2E_P44mConfigType field Value
DatalD 0x0a0b0c0d
Offset 0x0000
MinDatalLength 128
MaxDatalLength 32768
MaxDeltaCounter 1

Table 6.93: E2E Profile 44m protocol example configuration

AUTSSAR

E2E_P44mProtectStateType field Value
Counter 0

Table 6.94: E2E Profile 44m example state initialization

6.19.4 Request Example

The result data of an E2E_P44mProtect() call with short data length (length
20 bytes, means 4 actual data bytes), offset = 0, counter = 0, Source ID =
0x0123456, Message Type = STD_MESSAGETYPE_REQUEST, Message Result =
STD_MESSAGERESULT_OK is depicted in Table 6.95.

Byte 0 1 2 3 4 5 6 7
Data 0x00 0x14 0x00 0x00 0x0a 0x0b 0x0c 0x0d
Field Length Counter DatalD

Byte 8 9 10 11 12 13 14 15
Data Oxae 0x67 Ox4c 0xa0 0x00 0x12 0x34 0x56
Field CRC Message Type, Message Result, Source ID
Byte 16 17 18 19 n/a

Data 0x00 0x00 0x00 0x00 n/a

Field Data n/a

Table 6.95: E2E Profile 44m example short - request (Message Type =
STD_MESSAGETYPE_REQUEST; Message Result = STD_MESSAGERESULT_OK)

6.19.5 Response Example

The result data of an E2E_P44mProtect() call with short data length (length
20 bytes, means 4 actual data bytes), offset = 0, counter = 0, Source ID =
0x0123456, Message Type = STD_MESSAGETYPE_RESPONSE, Message Result
= STD_MESSAGERESULT_OK is depicted in Table 6.96.

Byte 0 1 2 3 4 5 6 7
Data 0x00 0x14 0x00 0x00 0x0a 0x0b 0x0c 0x0d
Field Length Counter DatalD

Byte 8 9 10 11 12 13 14 15
Data 0x85 0x25 0x76 0x19 0x40 0x12 0x34 0x56
Field CRC Message Type, Message Result, Source ID
Byte 16 17 18 19 n/a

Data 0x00 0x00 0x00 0x00 n/a

Field Data n/a

Table 6.96: E2E Profile 44m example short - normal response (Message Type =
STD_MESSAGETYPE_RESPONSE; Message Result = STD_MESSAGERESULT_OK)

AUTSSAR

6.19.6 Error Response Example

The result data of an E2E_P44mProtect() call with short data length (length
20 bytes, means 4 actual data bytes), offset = 0, counter = 0, Source ID =
0x0123456, Message Type = STD_MESSAGETYPE_RESPONSE, Message Result
= STD_MESSAGERESULT_ERROR is depicted in Table 6.97.

Byte

2

3

4

5

Data

0x00

0x00

0x0a

0x0b

0x0c

0x0d

Field

Counter

DatalD

Byte

10

11

12

13

14

15

Data

0x57

0x0f

0x50

0x12

0x34

0x56

Field

Message Type, Message Result, Source ID

Byte

16

17

18

19

n/a

Data

0x00

0x00

0x00

0x00

n/a

Field

Data

n/a

Table 6.97: E2E Profile 44m example short - ERROR response (Message Type =
STD_MESSAGETYPE_RESPONSE; Message Result = STD_MESSAGERESULT_ERROR)

6.20 Specification of E2E state machine

The E2E Profile check()-function verifies data received in one cycle. This function only
determines if data in that cycle are correct or not. In contrary, the state machine builds
up a state out of several results of check() function within a reception window, which is
then provided to the consuming application via middleware interfaces (e.g. RTE API).

The E2E state machine is applicable for all E2E profiles. It can be configured via pa-
rameters (see [PRS_E2E_00923]). The use of the E2E state machine is enabled/dis-
abled by the disableEndToEndStateMachine parameter.

The configuration parameter "disableEndToEndStateMachine" determines if the state
machine is used. If this parameter is set to TRUE then no state machine shall be used.
In this case the application shall only receive the result of the latest E2E check but not
any state information.

6.20.1 Overview of the state machine

This chapter gives an overview of the state machine function and contains a simplified
representation of the behavior of the state machine. The states and transitions are
included in full, but the transition conditions are generalized for better understanding.

The state machine provides the summarized result about the state of the communi-
cation channel by the following state information - E2E_SM_DEINIT, E2E_SM_INIT,
E2E_SM_NODATA, E2E_SM_VALID, E2E_SM_INVALID (see [PRS_E2E_00596]).

AUTSSAR

The state transition depends on the current ProfileStatus of the E2E Profile check()
and the ProfileStatus values of previous checks.

The state machine can be adjusted with the help of the parameter Config-
>transitTolnvalidExtended.

[PRS_E2E_00675]

Upstream requirements: RS_E2E_08539
[By Config->transitTolnvalidExtended==0 (false): The state machine shall behave ac-
cording to Figure 6.131. There is no direct transition from E2E_SM_ NODATA to

E2E _SM _INVALID, no transition from E2E _SM INIT to E2E_SM INVALID due to
counter-related faults (Autosar R19-11 or former behavior). |

[PRS_E2E_00676]
Upstream requirements: RS_E2E_08539

[By Config->transitTolnvalidExtended==1 (true): The state machine shall behave
according to Figure 6.132. The direct transition from E2E_SM_NODATA to
E2E_SM_INVALID is covered, transition from E2E_SM _INIT to E2E_SM_INVALID due
to counter-related faults is covered (state machine extended). |

E2E_SM_DEINIT

init

E2E_SM_NODATA - wait for 1st reception - do
NOT use data

1st Data with no
ERROR

E2E_SM_INIT - COMMUNICATION E2E_SM_VALID - communication within limits -
INITIALIZATION - for queued reception: do NOT [NOT (too many ERRORs or too okto USE data
use data. For unqueued reception: configured

i - 8 -few OKs)]
InitValue might be provided. t

[too man [too many ERRORSs ortoo few [NOT (too many ERRORSs or too
ERRORS OKs] few OKs)]

E2E_SM_INVALID - communication not within
limits - do NOT use data

Figure 6.131: E2E state machine overview - [Config->transitTolnvalidExtended == 0]

AUTSSAR

E2E_SM_DEINIT

init

E2E_SM_NODATA - wait for 1st reception - do
NOT use data

1st Data with no

[too many errors or ERROR

NoNewData]

E2E_SM_INIT - COMMUNICATION
INITIALIZATION - for queued reception: do NOT
use data. For unqueued reception: configured

InitValue might be provided.

fZE_SM_VALID - communication within limits -

[NOT (too many ERRORs or too eliito Usl= et

ew OKs)] t

[too many ERRORs or [too many ERRORs or too few [NOT (too many ERRORSs or to
WrongSequence or NoNewData OKs] few OKs)]
or Repeated]

/E2E78M7INVALID - communication not within
limits - do NOT use data

(N
Figure 6.132: E2E state machine overview - [Config->transitTolnvalidExtended == 1]

6.20.2 State machine specification

This chapter contains the detailed description of the behavior of the state machine. All
transition conditions are described in full.

[PRS_E2E 00354]

Upstream requirements: RS_E2E_08539
[The E2E state machine shall be implemented by the functions E2E_SMCheck() and
E2E_SMChecklnit() |

[PRS_E2E_00345]
Upstream requirements: RS_E2E_08539

[Depending on the configuration parameter Config->transitTolnvalidExtended, the E2E
State machine shall exhibit the behavior with respect to the function E2E_SMCheck()
as shown in Figure 6.133 or Figure 6.134:

1. In case of Config->transitTolnvalidExtended==0 (false): The E2E_SMCheck()
shall behave according to Figure 6.133.

2. In case of Config->transitTolnvalidExtended==1 (true): The E2E_SMCheck()
shall behave according to Figure 6.134.

3. The current state (e.g. E2E_SM_VALID) is stored in State->SMState.

AUTSSAR

4. At every invocation of E2E_SMCheck, the ProfileStatus can be processed (as
shown by logical step E2E_SMAddStatus()).

5. After that, there is an examination of three counters: State->ErrorCount and
State->OKCount (continuously used through all different states) and State-
>NoDatalnitCount (used in E2E_SM_NODATA and E2E_SM_INIT only). De-
pending on their values, there is a transition to a new state, stored in State-
>SMState.

6. The transitioning to another state triggers a reset of some
values by E2E_SMClearStatus() (see [PRS_E2E 00467]) or
E2E_SMClearRemainingStatus() (see [PRS_E2E_00607]).

AUTSSAR

E2E_SM_DEINIT

[E2E_SMCheck(ProfileStatus, Config,
State)]
/return E2E_E_WRONGSTATE

Transition through
E2E_SMChecklnit()

E2E_SM_NODATA

E2E_SMCheck(ProfileStatus, Config,
State) [ELSE]
/E2E_SMAddStatus(ProfileStatus,
State)

[ProfileStatus != E2E_P_ERROR && ProfileStatus I=
E2E_P_NONEWDATA]
___IE2E_SMClearStatus(State, Config)

E2E_SM_INIT

/~ E2E_SM_VALID \|

E2E_SMCheck(ProfileStatus, Config,

State)
JE2E_SMAddStatus(ProfileStatus, E2E_SMCheck(ProfileStatus, Config,
State) State)
IE2E_SMAddStatus(ProfileStatus,
State)

[(State->ErrorCount <= Config-
>MaxEmorStatelnit) && (State->OkCount >=
Config->MinOkStatelnit)]
[ELSE] /E2E_SMClearRemainingStatus(State,
Config, E2E_SM_VALID)

[(State->ErrorCount <= Config-
>MaxErrorStateValid) && (State-
>0OkCount >= Config-

[ELSE] >MinOkStateValid)]

[ELSE]

[State->ErrorCount >
Config-
>MaxErrorStatelnit]

—
[ELSE] [Config->clearFromValidTolnvalid ==
TRUE]]

[Config->clearFromValidTolnvalid == /E2E_SMClearStatus(State, Config)

TRUE]
/E2E_SMClearStatus(State, Config)

E2E_SM_INVALID E2E_SMCheck(ProfileStatus, Config,
State),
/E2E_SMAddStatus(ProfileStatus,
[ELSE] \ State)
/E2E_SMClearRemainingStatus
(State, Config,
E2E_SM_INVALID) [ELSE] [(State->ErrorCount <= Config-
>MaxErrorStatelnvalid) && (State-
[ProfileStatus == >0OkCount >= Config-
E2E_P_ERROR] >MinOkStatelnvalid)]
/E2E_SMClearStatus(State, JE2E_SMClearRemainingStatus
Config) [ELSE] (State, Config, E2E_SM_VALID)

Figure 6.133: E2E state machine check - [Config->transitTolnvalidExtended == 0]

AUTSSAR

E2E_SM_DEINIT

. [E2E_SMCheck(ProfileStatus, Config,
State)]

Transition through fretum E2E_E_WRONGSTATE
E2E_SMCheckInit()

E2E_SM_NODATA

E2E_SMCheck(ProfileStatus, Config,
State) . ’
/E2E_SMAddStatus(ProfileStatus, Transition to INVALID State if ProfileStatusWindow
'Sta1e7) ’ 1. contains too many errors or
2. does not contain enough entries of Type
| \2 E2E_P_OK and ProfileStatuswindow is full
(>= WindowsSizelnit) or
[State->NoDatalnitCount ELSE F € 1s. contains too many entries of Type I=
>= Config- [ELSE] E2E_P_OK so that a transition to VALID State
>WindowSizelnit] is not possible.

[ELSE]

1
[ProfileStatus = E2E_P_ERROR && ProfileStatus =
E2E_P_NONEWDATA]

——/E2E_SMClearStatus(State, Config)

E2E_SM_INIT

E2E78MCheck(Prof|IeStalus Config, State

~
/" E2E_SM_VALID "\
N E2E SMCheck(ProflleStatus Config,
State) E /E2E SMAddStatus(ProflIeStatus,
/E2E SMAddStatus(ProflIeSlatus ! S ate
State) !
N
[(State->ErrorCount <= Config-
>MaxErrorStatelnit) && (State->OkCount >=

[ELSE] Config->MinOkStatelnit)]
. - State->ErmorCount <= Config-
/E2E_SMCIIearRema|n|ngStatqs{State, [>(MaxErrorStateVaIid) & (StZte—
[ELSE] Config, E2E_SM_VALID) [ELSE] >OkCount >= Config-
et >MinOkStateValid)]
[(State->ErmorCount > Config- [ELSE]
>MaxErrorStatelnit) || (State- >OkCoum +

(Config->WindowSizelnit - State—
>NoDatalnitCount) < Config-
>MinOkStatelnit)]

., [Config->clearFromValidTolnvalid ==
\[Coniig—>clearFromValidToInvaIid == TRUE]]

TRUE] /E2E_SMClearStatus(State, Config)
/E2E_SMClearStatus(State, Config)——

\(EZE_SM_INVALID PE—

E2E_SMCheck(ProfileStatus, Config,

[ELSE] o State)
/E2E_SMClearRemainingStatus /E2E_SMAddStatus(ProfileStatus,
(State, Config, State)

E2E_SM_INVALID)

[(State->ErrorCount <= Config-
[ELSE] >MaxEmorStatelnvalid) && (State-
>OkCount >= Config-
>MinOkStatelnvalid)]
/E2E_SMClearRemainingStatus
(State, Config, E2E_SM_VALID)

[ProfileStatus ==
E2E_P_ERROR]
/E2E_SMClearStatus(State,
Config)

[ELSE]

Figure 6.134: E2E state machine check - [Config->transitTolnvalidExtended == 1]

The conditions for the transitions between the states are included in the graphical rep-
resentation in Figure 6.133 and Figure 6.134. However the following textual explanation
of the state transitions is added for better understanding.

AUTSSAR

Any transition is triggered based on the result of the E2E check function and the current
E2E state machine state. The result of the E2E check function can be summarized as
one of the following:

+ valid data - the E2E check gives the value E2E_P_OK.
» corrupted data - the E2E check gives the value E2E_P_ERROR.
* no new data - the E2E check gives the value E2E_P_NONEWDATA.

Most transitions are independent of the value set for Config->transitTolnvalidExtended.
The transitions that are valid only for a specific setting of Config-
>transitTolnvalidExtended are marked at the end with (if Config-
>transitTolnvalidExtended==1) or (if Config->transitTolnvalidExtended==0).

6.20.2.1 Transition from E2E_SM_NODATA

The transition from E2E_SM_NODATA to E2E_SM_INIT is triggered whenever the lat-
est received data is no corrupted data from E2E point of view.

The State->NoDatalnitCount sums up count of invalid data in both states
E2E_SM_NODATA and E2E_SM_INIT. The following behavior in E2E_SM_INIT can
be adjusted with the help of the parameter Config->combinedNoDatalnitCount (see
[PRS_E2E_01437]).

In case of Config->combinedNoDatalnitCount == 0 (false): the value of State-
>NoDatalnitCount will be reset while transitioning from E2E_SM_NODATA to
E2E_SM_INIT. Therefore, State->NoDatalnitCount will not change the behavior of the
statemachine compared to R23-11. In case of Config->combinedNoDatalnitCount ==
1 (true): the value of State->NoDatalnitCount will not be reset while transitioning from
E2E_SM_NODATA to E2E_SM_INIT. Therefore, State->NoDatalnitCount will change
the behavior of the statemachine compared to R23-11. Please see Chapter 6.20.4
(FTTI and E2E parameters) for more information.

The transition from E2E_SM NODATA to E2E_SM _INVALID is triggered whenever
within an interval of WindowSizelnit message cycles either no new data or corrupted
data or a mixture of both have been detected. (if Config->transitTolnvalidExtended==1)

6.20.2.2 Transition from E2E_SM_INIT

The transition from E2E_SM_INIT to E2E_SM_VALID is triggered whenever within an
interval of WindowSizelnit message cycles less than the number of configured cor-
rupted data and more or equal than the number of configured valid data have been
detected.

The transition from E2E_SM_INIT to E2E_SM_INVALID is triggered whenever within
an interval of WindowSizelnit message cycles more than the configured number of cor-
rupted data have been detected. (if Config->transitTolnvalidExtended==0)

AUTSSAR

The transition from E2E_SM_INIT to E2E_SM_INVALID is triggered whenever within
an interval of WindowSizelnit message cycles more than the configured number of cor-
rupted data or less than the configured number of valid data have been detected. (if
Config->transitTolnvalidExtended==1) This behavior can be adjusted with the help of
the parameter Config->combinedNoDatalnitCount (see [PRS_E2E_01437]). In case
of Config->combinedNoDatalnitCount ==1 (true): The State->NoDatalnitCount sums
up the total count of invalid data in both states E2E_SM_NODATA and E2E_SM_INIT.
Therefore, the value of State->NoDatalnitCount will not be reset while transitioning
from E2E_SM_NODATA to E2E_SM_INIT and can reach the threshold of the config-
ured number of corrupted data earlier then in statemachine version of R23-11. Please
see Chapter 6.20.4 (FTTI and E2E parameters) for more information.

6.20.2.3 Transition from E2E_SM_VALID

The transition from E2E_SM_VALID to E2E_SM_INVALID is triggered whenever within
an interval of WindowSizeValid message cycles more than the configured number of
corrupted data or less than the configured number of valid data have been detected.

6.20.2.4 Transition from E2E_SM_INVALID

The transition from E2E_SM_INVALID to E2E_SM_VALID is triggered whenever within
an interval of WindowSizelnvalid message cycles less than the number of configured
corrupted data and more than the number of configured valid data have been detected.

A number of functions are used in the state machine:
« E2E_SMAddStatus()

E2E_SMCheckinit()

E2E_SMClearStatus()

E2E_SMClearRemainingStatus()

E2E_SMAddStatus is just a logical step in the algorithm, it may (but does not have to
be) implemented as a separate function. It is not a module API function. The value
State->OKCount represents the number of received E2E_P_OK status. The value
State->Error Counter represents the number of E2E_P_ERROR status. The remaining
status values represent counter errors, which doo not contribute to State->OKCount ir
State->ErrorCount.

[PRS_E2E_00466]
Upstream requirements: RS_E2E_08539

[The step E2E_SMAddStatus(ProfileStatus, State) in E2E_SMCheck() shall behave
as shown in Figure 6.135. |

AUTSSAR

E2E_SMAddStatus(ProfileStatus,
State)

[State->ProfileStatusWindow[State->WindowTopIndex] = ProfileStatus]

(Config->transitTolnvalidExtended ==
1) &&
(State->SMState == [TRUE]
E2E_SM_NODATA ||
State->SMState == E2E_SM_INIT) \l/
[FALSE]
State->NoDatalnitCount++
State->SMState == [TRUE]
E2E_SM_NODATA No evaluation of
window needed in state
[FALSE] E2E_SM_NODATA
4 N\ !

CurrentWindowSize = WindowSizeValid, WindowSizelnvalid,
WindowSizelnit, dependent on State->SMState

In State->ProfileStatusWindow[] count E2E_P_OK from State- '
>WindowTopIndex down to State->WindowTopIndex - CurrentWindowSize N
L + 1 (with wraparound). Store number of E2E_P_OK to State->OKCount) !

v

N

In State->ProfileStatusWindow[] count E2E_P_ERROR from State- !

>WindowToplndex down to State->WindowToplndex - CurrentWindowSize '
+ 1 (with wraparound). Store number of E2E_P_ERROR to State-
>ErorCount
- \l/ J !
4 N\
If State->WindowTopIndex >= WindowSizeValid -1 State-
>WindowToplndex = 0 (wraparound) else State->WindowTopIndex++

- J

WindowSizeValid >=
WindowSizelnvalid,
WindowSizelnit

Figure 6.135: E2E state machine step E2E_SMAddStatus

E2E_SMChecklinit() is applied to initialize the state machine based on the selected
configuration.

[PRS_E2E 00375]
Upstream requirements: RS_E2E_08539

[The E2E State machine shall have the behavior with respect to the function
E2E_SMChecklnit() as shown in Figure 6.136. |

AUTSSAR

E2E_SM_DEINIT

[E2E_SMCheckinit(State,
Config)]

/State->NoDatalnitCount = 0;
== SNl E2E_SMClearProfileStatus
ProfileStatus, State).

E2E_SM_INIT E2E_SM_VALID
[E2E_SMCheckinit(State, [E2E_SMCheckinit(State,
onfig)] Config)]

. E2E_SM_INVALID
[E2E_SMCheckinit(State, - -
Config)]

Figure 6.136: E2E state machine step E2E_SMChecklInit

E2E_SMClearStatus() initializes the whole monitoring window (ProfileStatusWindow)
to start with a cleared window. This clearing is done by setting all entries of ProfileSta-
tusWindow to value E2E_P_NOTAVAILABLE.

[PRS_E2E_00467]
Upstream requirements: RS_E2E_08539

[The step E2E_SMClearStatus(State, Config) in E2E_SMCheck() shall behave as
shown in Figure 6.137.

[PRS_E2E_01437] Parameter Config->combinedNoDatalnitCount
Upstream requirements: RS_E2E_08539
[Depending on the configuration parameter Config->combinedNoDatalnitCount,

the E2E_SMClearStatus shall exhibit the behavior with respect to the function
E2E_SMCheck() as shown in Figure 6.137.]

AUTSSAR

. E2E_SMClearStatus
(State,Config)

Clear each element of State->ProfileStatusWindow]] = E2E_P_NOTAVAILABLE)
the T

ProfileStatusWindowf]
array.

(State->OKCount = 0 j

(State->ErrorCount = 0 J

(State->WindowToplindex = 0)

Config-
>combinedNoDatalnitCount == 1

[FALSE]

[TRUE] [State->NoDatalnitCount = 0]

®

Figure 6.137: E2E state machine step E2E_SMClearStatus

E2E_SMClearRemainingStatus() initializes a part of the monitoring window (Pro-
fileStatusWindow) if the WindowSize increases due to a state transition. In this
case the additional Window entries at the beginning are cleared by setting them to
E2E P_NOTAVAILABLE.

[PRS_E2E_00607]
Upstream requirements: RS_E2E_08539

[The step E2E_SMClearRemainingStatus(Config, State, NextState) in
E2E_SMCheck() shall have the following behavior: Figure 6.138. |

AUTSSAR

E2E_SMClearRemainingStatus(State, Config,

NextStat

Set CurrentWindowSize to WindowSizeValid if State->SMState equals E2E_SM_VALID or E2E_SM_NODATA
WindowSizelnvalid if State->SMState equals E2E_SM_INVALID WindowSizelnit if State->SMState equals
E2E_SM_INIT

v

[NextWindowSize = WindowSizeValid or WindowSizelnvalid, dependent on NextState]

CurrentWindowSize < NextWindowSize

next free position in State->
CumentWindowsize I ProfileStatusWindow. From_there, the last
n messages can be determined by
decreasing the index (considering the

wrap-around at/after index 0).

State->WindowToplndex points to the
Set all elementsin State->ProfileStatuswindow(] to E2E_P_NOTAVAILABLE except the latest n elements, forn =

O,
Figure 6.138: E2E state machine step E2E_SMClearRemainingStatus

E2E_SMClearStatus() and E2E_SMClearRemainingStatus() are both applied
if a transition to E2E_SM_INVALID is triggered. The parameter Config—
>clearFromValidTolnvalid indicates which function is to be applied:

Config->clearFromValidTolnvalid = True: E2E_SMClearStatus()
Config->clearFromValidTolnvalid = False: E2E_SMClearRemainingStatus()

6.20.3 State Machine Types
6.20.3.1 EZ2E State Machine Configuration Type

[PRS_E2E_00668]

Upstream requirements: RS_E2E_08528
[The E2E State Machines 'Config’ object shall have the members as defined in
[PRS_E2E_00912].]

[PRS_E2E_00912] E2E State Machine Configuration Type
Upstream requirements: RS_E2E_08528

Name Type Description
WindowSizeValid Unsigned Integer | Size of the monitoring window for the state ma-
chine during state VALID.

AUTSSAR

WindowsSizelnit Unsigned Integer | Size of the monitoring windows for the state
machine during state INIT.

WindowsSizelnvalid Unsigned Integer | Size of the monitoring window for the state ma-
chine during state INVALID.

MaxErrorStatelnit Unsigned Integer | Maximal number of checks in which Pro-

fileStatus equals to E2E_P_ERROR was de-
termined, within the last WindowSize checks
(for the state E2E_SM_INIT).

MinOkStateValid Unsigned Integer | Minimal number of checks in which ProfileSta-
tus equals to E2E_P_OK was determined
within the last WindowSize checks (for the
state E2E_SM_VALID) required to keep in
state E2E_SM_VALID.

MaxErrorStateValid Unsigned Integer | Maximal number of checks in which Pro-
fileStatus equals to E2E_P_ERROR was de-
termined, within the last WindowSize checks
(for the state E2E_SM_VALID).
MinOkStatelnvalid Unsigned Integer | Minimum number of checks in which Pro-
fileStatus equals to E2E_P_OK was deter-
mined within the last WindowSize checks
(for the state E2E_SM_INVALID) required to
change to state E2E_SM_VALID.
MaxErrorStatelnvalid Unsigned Integer | Maximal number of checks in which Pro-
fileStatus equals to E2E_P_ERROR was de-
termined, within the last WindowSize checks
(for the state E2E_SM_INVALID).

clearFromValidTolnvalid Boolean Clear monitoring window data on transition to
state INVALID.
transitTolnvalidExtended | Boolean E2E State machine behavior concerning tran-

sition E2E_SM_NODATA or E2E_SM_INIT to
E2E_SM_INVALID.
combinedNoDatalnitCount| Boolean E2E State machine behavior concerning tran-
sition E2E_SM_NODATA or E2E_SM_INIT to
E2E_SM_INVALID.

6.20.3.2 EZ2E State Machine State Type

[PRS_E2E_00669] E2E State Machine State Type
Upstream requirements: RS_E2E_08528

[The E2E State Machines ’'State’ object shall have the members defined in
[PRS_E2E_00913].]

[PRS_E2E_00913] E2E State Machine State Type
Upstream requirements: RS_E2E_08528

[

AUTSSAR

Name Type Description
ProfileStatusWindow Unsigned Integer | An array in which the ProfileStatus values of
Array the last E2E-checks are stored. The array size

shall be WindowSizeValid. This array holds the
results of the E2E checks for latest WindowsSize
(see table 'E2E State Machine Check Status
Enumeration’). To initialize the elements of the
array the value E2E_P_NOTAVAILABLE is used.
Therefore the whole or parts of the array are to
be initialized with E2E_P_NOTAVAILABLE
(see E2E_SMClearStatus,
E2E_SMClearRemainingStatus)

The values to be stored in the array are
the results of the latest E2E check (see
table ’E2E State Machine Check Status
Enumeration’) and the initialization value
E2E_P_NOTAVAILABLE. If no results of E2E
checks shall be stored (E2E_SMClearStatus,
E2E_SMClearRemainingStatus) entries shall be
initialized with value E2E_P_NOTAVAILABLE.

WindowToplIndex Unsigned Integer index in the array, at which the next ProfileStatus
is to be written.
OkCount Unsigned Integer Count of checks in which ProfileStatus equal to

E2E_P_OK was determined, within the last Win-
dowSize checks.

ErrorCount Unsigned Integer Count of checks in which ProfileStatus equal to
E2E_P_ERROR was determined, within the last
WindowSize checks.

NoDatalnitCount Unsigned Integer Count of checks in the state E2E_SM_NODATA
or E2E_SM_INIT without transitioning to the
state E2E_SM_VALID.

SMState Enumeration The current state in the state machine. The value
is not explicitly used in the pseudocode of the
state machine, because it is expressed in UML
as UML states.

6.20.3.3 EZ2E State Machine Status Enumeration

[PRS_E2E_00596]

Upstream requirements: RS_E2E_08528
[The E2E State Machine uses the following enumeration values to indicate its current
status as defined in [PRS_E2E_00914]). |

[PRS_E2E_00914] E2E State Machine Check Status Enumeration
Upstream requirements: RS_E2E_08528

[

AUTSSAR

Name Description
E2E_SM_VALID Communication functioning properly according to E2E, data can be
used.

E2E_SM_DEINIT State before E2E_SMChecklnit() is invoked, data cannot be used.
E2E_SM _NODATA | No data from the sender is available since the initialization, data cannot
be used.

E2E_SM_INIT There has been some data received since startup, but it is not yet pos-
sible use it, data cannot be used.

E2E_SM_INVALID | Communication not functioning properly, data cannot be used.

6.20.3.4 Profile specific Check Status to State Machine Check Status Mappings

This section targets the single mappings between each Profile specific check state to
the check states used by the E2E State Machine.

[PRS_E2E_00597]

Upstream requirements: RS_E2E_08528
[The E2E State Machine uses the following enumeration values as input from the
Profile specific check functions as defined in [PRS_E2E_00915]). |

[PRS_E2E_00915] E2E State Machine Check Status Enumeration
Upstream requirements: RS_E2E_08528

[
Name Description
E2E_P_OK Check of the message was successful and no error was
found
E2E_P_ERROR An error was detected in the received message.
E2E P _REPEATED A repeated counter was received
E2E_P_NONEWDATA No new message was received
E2E_P_WRONGSEQUENCE The received message contains wrong counter
]

[PRS_E2E 00598] Mapping Profile 1 to State Machine

Upstream requirements: RS_E2E_08528
[The mapping between Profile 1 specific check states to the input for the E2E State
Machine since R4.2 is described in [PRS_E2E_00916]). |

[PRS_E2E_00916] E2E Profile 1 specific Check Status Mapping since R4.2
Upstream requirements: RS_E2E_08528

[

AUTSSAR

Profile Specific State State Machine State
E2E_PO1STATUS_OK, E2E_P_OK
E2E_PO01STATUS_OKSOMELOST,
E2E_PO1STATUS_SYNC

E2E_PO1STATUS_WRONGCRC E2E_P_ERROR
E2E_PO01STATUS_REPEATED E2E_P_REPEATED
E2E_PO1STATUS_NONEWDATA E2E_P_NONEWDATA
E2E_PO01STATUS_WRONGSEQUENCE E2E_P_WRONGSEQUENCE

E2E_PO1STATUS_INITIAL

]

[PRS_E2E_00641] Mapping Profile 1 to State Machine

Upstream requirements: RS_E2E_08528
[The mapping between Profile 1 specific check states to the input for the E2E State
Machine prior to R4.2 is described in [PRS_E2E_00917]. |

[PRS_E2E_00917] E2E Profile 1 specific Check Status Mapping prior to R4.2
Upstream requirements: RS_E2E_08528

[
Profile Specific State State Machine State
E2E_PO1STATUS_OK, E2E_P_OK
E2E_P0O1STATUS_OKSOMELOST,
E2E_PO1STATUS_INITIAL
E2E_PO1STATUS_WRONGCRC E2E_P_ERROR
E2E_PO1STATUS_REPEATED E2E_P_REPEATED
E2E_PO1STATUS_NONEWDATA E2E_P_NONEWDATA
E2E_PO1STATUS_WRONGSEQUENCE E2E_P_WRONGSEQUENCE
E2E_PO1STATUS_SYNC

]

[PRS_E2E_00599] Mapping Profile 2 to State Machine

Upstream requirements: RS_E2E_08528
[The mapping between Profile 2 specific check states to the input for the E2E State
Machine since R4.2 is described in [PRS_E2E_00918]). |

[PRS_E2E_00918] E2E Profile 2 specific Check Status Mapping since R4.2
Upstream requirements: RS_E2E_08528

[

Profile Specific State State Machine State
E2E_PO2STATUS_OK, E2E_P_OK
E2E_PO2STATUS_OKSOMELOST,
E2E_PO02STATUS_SYNC
E2E_P02STATUS_WRONGCRC E2E_P_ERROR

AUTSSAR

E2E_PO2STATUS_REPEATED E2E_P_REPEATED
E2E_PO2STATUS_NONEWDATA E2E_P_NONEWDATA
E2E_P02STATUS_WRONGSEQUENCE, E2E_P_WRONGSEQUENCE
E2E_PO02STATUS_INITIAL

]

[PRS_E2E_00670] Mapping Profile 2 to State Machine

Upstream requirements: RS_E2E_08528
[The mapping between Profile 2 specific check states to the input for the E2E State
Machine prior to R4.2 is described in [PRS_E2E_00919]. |

[PRS_E2E_00919] E2E Profile 2 specific Check Status Mapping prior to R4.2
Upstream requirements: RS_E2E_08528

[
Profile Specific State State Machine State
E2E_PO2STATUS_OK, E2E_P_OK
E2E_PO2STATUS_OKSOMELOST,
E2E_PO02STATUS_INITIAL
E2E_PO2STATUS_WRONGCRC E2E_P_ERROR
E2E_P02STATUS_REPEATED E2E_P_REPEATED
E2E_PO2STATUS_NONEWDATA E2E_P_NONEWDATA
E2E_P02STATUS_WRONGSEQUENCE, E2E_P_WRONGSEQUENCE
E2E_PO02STATUS_SYNC

|

[PRS_E2E_00600] Mapping Profile 4,5,6,7,8,11,22,44,4m,7m,8m,44m to State Ma-
chine

Upstream requirements: RS_E2E_08528
[The mapping between Profile 4 specific check states to the input for the

E2E State Machine is described in [PRS_E2E 00920] (yy is one of the profiles
04,05,06,07,08,11,22,44,04m,07m,08m,44m). |

[PRS_E2E_00920] E2E Profile specific Check Status Mapping
Upstream requirements: RS_E2E_08528

[
Profile Specific State State Machine State
E2E_PyySTATUS_OK, E2E_P_OK
E2E_PyySTATUS_OKSOMELOST
E2E_PyySTATUS_ERROR E2E_P_ERROR
E2E_PyySTATUS_REPEATED E2E_P_REPEATED
E2E_PyySTATUS_NONEWDATA E2E_P_NONEWDATA
E2E_PyySTATUS_WRONGSEQUENCE E2E_P_WRONGSEQUENCE

AUTSSAR

6.20.4 FTTI and E2E Parameters

Considering the suggestion, switching to safe state by INVALID, the E2E state machine
parameters can be chosen in such a way that the FTTI of the E2E fault can be fulfilled.
Usually, FTTI =tFD+tFR, where tFD is fault detection time (E2E fault-debouncing time),
and tFR is fault reaction time (time for SW/HW fault reaction to switch to safe state after
the fault detection). By neglectable tFR, FTTI=tFD.

The following hints can be considered by determining the E2E parameters:

1. WindowSizelnit-1 <= tFD/cycleTime. For example, by state E2E_SM_NODATA,

the state machine will switch to E2E_SM_INVALID if the number of NoNew-
Data reaches WindowSizelnit, and the duration is (WindowSizelnit-1)*CycleTime.
By state E2E_SM_INIT, the fault detection time is then (WindowSizelnit-
MinOkStatelnit)*CycleTime.
In case of Config->combinedNoDatalnitCount ==0(false): By state transition from
E2E_SM_NODATA to E2E_SM_INIT, and then to E2E_SM_INVALID (e.g. first
NoNewData, then WrongSequence), the total duration might exceed tFD. If this
is relevant, then the following calculation can be used: 2 * WindowSizelnit-2 <=
tFD/cycleTime.

2. WindowSizeValid-MinOkStateValid <= tFD/cycleTime. For example, by state
E2E_SM_VALID, the state machine will switch to E2E_SM_INVALID, if the num-
ber of WrongSequence reaches (WindowSizeValid-MinOkStateValid+1), and the
duration is (WindowSizeValidMinOkStateValid)*CycleTime.

AUTSSAR

7 E2E API specification

This chapter defines an abstract AP| of E2E supervision. E2E is supposed to be in-
voked by middleware, but the results of checks are visible to the application, so this
chapter is split into two parts.

7.1 API of middleware to applications

The API to the applications is imposed by the middleware (e.g. RTE or ara::com). E2E
provides an additional output object providing E2E check results.

[PRS_E2E 01443] Interface to middleware
Replaces: PRS_E2E_UC 00321
Upstream requirements: RS_E2E_08534

[The middleware should provide, for each exchanged dataRecord, a set of functions:
» middleware_send(in dataRecord)

« middleware_receive(out dataRecord, out e2eResult)

]

[PRS_E2E_00322]
Upstream requirements: RS_E2E_08534

[The e2eResult shall contain information:

« e2eStatus: Profile-independent status of the reception on one single Data in
one cycle. Possible values are: OK, REPEATED, WRONGCRC, WRONGSE-
QUENCE, NONEWDATA.

]

[PRS_E2E_00853]
Upstream requirements: RS_E2E_08534

[The e2eResult shall contain information:

» e2eState: Status of the communication channel exchanging the data. Possible
values are: VALID, DEINIT, NODATA, INIT, INVALID if the state machine is en-
abled (disableEndToEndStateMachine = FALSE).

If the state machine is disabled then e2eResult shall not contain a status information
of the communication channel. |

AUTSSAR

[PRS_E2E_00677]
Upstream requirements: RS_E2E_08534, RS_E2E_08528
[The mapping between profile independent and profile specific states

shall be as described in [PRS_E2E_00921]): (yy is one of the profiles
01,02,04,05,06,07,08,11,22,44,04m,07m,08m,44m) |

[PRS_E2E_00921] Mapping between profile independent and specific states
Upstream requirements: RS_E2E_08534, RS_E2E_08528

[
Profile independent result Profile specific result with yy one of profiles
(01,02,04,05,06,07,08,11,22,44,04m,07m,08m,44m)
OK E2E_PyySTATUS_OK
OK E2E_PyySTATUS_OKSOMELOST
WRONGCRC E2E_PyySTATUS_ERROR
REPEATED E2E_PyySTATUS_REPEATED
NONEWDATA E2E_PyySTATUS_NONEWDATA
WRONGSEQUENCE E2E_PyySTATUS_WRONGSEQUENCE
]

[PRS_E2E_00678]
Upstream requirements: RS_E2E_08534, RS_E2E_08548

[The mapping between communication channel status and state machine states shall
be as defined in [PRS_E2E_00922]. |

[PRS_E2E_00922] Mapping between Communication Channel and State Machine
States

Upstream requirements: RS_E2E_08534, RS_E2E_08548

[
Communication channel status Result of E2E_SMCheck
VALID E2E SM _VALID
NODATA E2E_SM_NODATA
DEINIT E2E SM DEINIT
INIT E2E_SM_INIT
INVALID E2E SM_INVALID

J

7.2 API of E2E

The E2E interface is independent from any middleware. It is designed with SOME/IP in
mind, but it could work for any other middleware or software services, e.g. a database
requesting to protect its data.

AUTSSAR

The interface between the middleware and E2E operates on the serialized data, where:
E2E adds E2E header (sender side) and E2E check E2E header (receiver side).

[PRS_E2E_00323]
Upstream requirements: RS_E2E_08534

[E2E protocol shall provide the following interface:
« E2E_check(in datalD, inout serializedData): e2eResult
« E2E_protect(in datalD, inout serializedData)
« E2E forward(in datalD, inout serializedData)

where:

« datalD is a unique identifier of the exchanged data/information. In case of multiple
instantiation, each single instance gets typically a separate datalD, even if the
same type of information is transmitted

« serializedData - vector/array of serialized data, where E2E header is located, next
to serialized data

» e2eResult - result of E2E checks, see previous section for the definition.

]

[PRS_E2E 00828]
Upstream requirements: RS_E2E_08534

[For C/S (method) communication the E2E protocol shall provide the following inter-
face:

« E2E_check(in datalD, in messageType, in messageResult, in sourcelD, in serial-
izedData): e2eResult

« E2E_check(in datalD, in messageType, in messageResult, out sourcelD, in seri-
alizedData): e2eResult

« E2E_protect(in datalD, in messageType, in messageResult, in sourcelD, inout
serializedData)

« E2E_forward(in datalD, in messageType, in messageResult, in sourcelD, inout
serializedData)

where:

« datalD is a unique identifier of the exchanged data/information. In case of multiple
instantiation, each single instance gets typically a separate datalD, even if the
same type of information is transmitted

» message Type is used to distinguish between request and response messages

* messageResult is used to distinguish between normal response and error re-
sponse messages

AUTSSAR

« sourcelD is a unique identifier of the source of the exchanged data/information. In
case C/S (method) communication, each single client gets a separate sourcelD.

« serializedData - vector/array of serialized data, where E2E header is located, next
to serialized data

» e2eResult - result of E2E checks, see previous section for the definition.

Note that there are two overloads for E2E_check() that differ w.r.t. the direction of
the sourcelD. On the source side (i.e., the client side in case of C/S communication)
the sourcelD shall be provided by the caller to the E2E_check() in order to have the
sourcelD in the E2E header verified against the passed one. On the sink side (i.e., the
server side in case of C/S communication) the sourcelD shall be extracted from the
E2E header by E2E_check() and shall be provided to caller. |

The middleware is responsible to provide an adaptation to E2E functional interface.

[PRS_E2E 00318]
Upstream requirements: RS_E2E_08534

[The middleware shall determine the DatalD, the Message Type, the Message Result,
and the SourcelD of the currently exchanged information. |

For example, in case of SOME/IP events, it needs to determine DatalD based on ser-
viceid/eventid/instanceid tuple.

[PRS_E2E 00319]
Upstream requirements: RS_E2E_08534

[The middleware invokes E2E functions providing them the DatalD the Message Type,
the Message Result, and the SourcelD together with the data. |

[PRS_E2E_00320]
Upstream requirements: RS_E2E_08534

[On the receiver side, the middleware shall provide the e2eResult determined by E2E
to the receiver. |

AUTSSAR

8 Configuration Parameters

E2E supervision has the following configuration options for each protected data. Note
that it is platform-specific how middleware associates a middleware communication
channel with E2E communication protection.

For each DatalD, which uniquely represents data exchanged, there is a set of configu-
ration options.

[PRS _E2E 00324]

Upstream requirements: RS_E2E_08534, RS_E2E_08542
[The options for a E2E-protected data shall be available as defined in
[PRS_E2E_00923], [PRS_E2E_00924] and [PRS_E2E_00925]. |

[PRS_E2E_00923] Disable/enable configuration parameters
Upstream requirements: RS_E2E_08534, RS_E2E_08542

[

Parameters Description

disableEndToEndCheck Disables/Enables the E2E check.
The E2Eheader is removed from the payload regardless from the setting of this
attribute.

disableEndToEndStateMachine Disables/Enables the E2E state machine.

The E2E check is applied regardless from the setting of this attribute. In case
disableEndToEndCheck is set, then disableEndToEndStateMachine should be
set as well.

]

[PRS_E2E_00924] E2E profile specific configuration parameters
Upstream requirements: RS_E2E_08534, RS_E2E_08542

Parameters Profile Description
profileName all This represents the identification of the concrete E2E profile. Possible profiles: 1
(only CP), 2 (only CP), 4,5, 6,7, 8, 11, 22, 44, 4m, 7m, 8m, 44m.
datalD 1,4,5, This represents a unique numerical identifier. Note: ID is used for protection
6,7,8, against masquerading. The details concerning the maximum number of values
11, 44, (this information is specific for each E2E profile) applicable for this attribute are
4m, 7m, controlled by a semantic constraint that depends on the category of the EndToEnd-
8m, 44m | Protection.
datald is used as a unique identifier of a configuration object. One datald can
appear only once in the configuration.
sourcelD 4m, 7m, This represents a unique numerical identifier. Note: ID is used for protection
8m, 44m | against masquerading among different sources producing the same data w.r.t.
the datalD.
sourceld is used as a unique identifier of the source producing certaing data. One
sourceld can appear only once in the configuration.
datalLength 1,2,5, For fixed size data: length of data in bits.
11, 22

V

AUTSSAR

A
minDatalLength 4,6,7, For variable size data: minimum length of data in bits.
8, 44,
4m, 7m,
8m, 44m
maxDatalength 4,6,7, For variable size data: maximum length of data in bits.
8, 44,
4m, 7m,
8m, 44m
dataldList 2,22 List of 16 datalD values, where a different value is transmitted depending on
counter value.
dataldMode 1, 11 This attribute describes the inclusion mode that is used to include the two-byte
Data ID in E2E communication protection.
offset 2,4,5, Offset of the E2E header in the Data[] array in bits.
6,7,8,
22, 44,
4am, 7m,
8m, 44m
counterOffset 1, 11 Offset of the counter in the Data[] array in bits. Fixed for AP to 8.
crcOffset 1, 11 Offset of the CRC in the Data[] array in bits. Fixed for AP to 0.
dataldNibbleOffset 1, 11 Offset of the datalD nibble in the Data[] array in bits. Fixed for AP to 12.
maxDeltaCounter 4,5, 6, Maximum allowed difference between the counter value of the current message
7,8,11, and the previous valid message.
22, 44,
4am, 7m,
8m, 44m
Parameters of legacy profiles (Only CP)
maxDeltaCounterlnit 1,2 Initial maximum allowed gap between two counter values of two consecutively
received valid Data. The maxDeltaCounter is increased on each reception try but
only reset when receiving a valid message. This is to compensate for and tolerate
lost messages.
maxNoNewOrRepeated- 1,2 The maximum amount of missing or repeated Data which the receiver does not
Data expect to exceed under normal communication conditions.
syncCounterlnit 1,2 The number of messages required for validating the consistency of the counter
after exceeding the maxNoNewOrRepeatedData threshold.
profileBehavior 1,2 Mapping of specific profile status values to unified profileStatus. False: legacy

behavior, as before AUTOSAR Classic Platform Release 4.2, True: mapping ac-
cording to new profiles (profile 4 and newer) interpretation of status, introduced in

AUTOSAR Classic Platform Release 4.2.

[PRS_E2E_00925] E2E state machine configuration parameters
Upstream requirements: RS_E2E_08534, RS_E2E_08542

[

Parameters

Description

transitTolnvalidExtended

value=1

E2E State machine behavior concerning transition from
E2E_SM_NODATA or E2E_SM_INIT to E2E_SM_INVALID

Value=0 (false): no direct transition from E2E_SM_NODATA to E2E_SM_INVALID, no
transition from E2E_SM_INIT to E2E_SM_INVALID due to counter-related faults (behavior
as in Autosar R19-11 or before)

(true): direct transition from E2E_SM_NODATA to E2E_SM_INVALID covered,

transition from E2E_SM_INIT to E2E_SM_INVALID due to counter-related faults covered
(state machine extended)

V

AUTSSAR

A

combinedNoDatalnitCount E2E State machine behavior concerning transition from
E2E_SM_NODATA or E2E_SM_INIT to E2E_SM_INVALID

Value=0 (false) or not defined: Count of E2E checks in state E2E_SM_NODATA or
E2E_SM_INIT without transitioning to the state E2E_SM_INVALID is separated per state.
See Chapter 6.20.4 for hints with respect to FTTI. (Behavior as in AUTOSAR R23-11 or
before).

value=1 (true): Count of E2E checks in the state E2E_SM_NODATA or E2E_SM_INIT
without transitioning to the state E2E_SM_INVALID is combined.

windowSizeValid Size of the monitoring window of state Valid for the E2E state machine.

windowSizelnvalid Size of the monitoring window of state Invalid for the E2E state machine.

windowSizelnit Size of the monitoring window of state Init for the E2E state machine.

clearFromValidTolnvalid Clear monitoring window on transition from state Valid to state Invalid.

maxErrorStatelnit Maximum number of checks in which ProfileStatus equal to E2E_P_ERROR was
determined, within the last WindowSizelnit checks, for the state E2E_SM_INIT.

maxErrorStatelnvalid Maximum number of checks in which ProfileStatus equal to E2E_P_ERROR was
determined, within the last WindowSizelnvalid checks, for the state E2E_SM_INVALID.

maxErrorStateValid Maximum number of checks in which ProfileStatus equal to E2E_P_ERROR was
determined, within the last WindowSizeValid checks, for the state E2E_SM_VALID.

minOkStatelnit Minimum number of checks in which ProfileStatus equal to E2E_P_OK was determined,
within the last WindowSizelnit checks, for the state E2E_SM_INIT.

minOkStatelnvalid Minimum number of checks in which ProfileStatus equal to E2E_P_OK was determined,
within the last WindowSizelnvalid checks, for the state E2E_SM_INVALID.

minOkStateValid Minimum number of checks in which ProfileStatus equal to E2E_P_OK was determined,

within the last WindowSizeValid checks, for the state E2E_SM_VALID.

8.1 General Constraints

This section contains general platform independent constraints. These belong to the
configuration parameters mentioned in [PRS_E2E_00925].

8.1.1 E2E State Machine Settings

[PRS_E2E_01457] Value range of windowSizeValid
Replaces: PRS_E2E CONSTR 03176
Upstream requirements: RS_E2E_08528

[The value of the windowSizeVvalidattribute shall be greater or equal to 1. |

[PRS_E2E_01458] Dependency between windowSizeInvalid and window-

SizeValid
Replaces: PRS_E2E CONSTR_06301
Upstream requirements: RS_E2E_08528

[The following restriction shall be respected: windowSizeInvalid <= window-
Sizevalid]

AUTSSAR

[PRS_E2E_01459] Dependency between windowSizeInit and windowSize-

Valid
Replaces: PRS_E2E CONSTR_06302

Upstream requirements: RS_E2E 08528

[The following restriction shall be respected: windowSizeInit <= windowSize-
Valid]|

[PRS_E2E_01460] Dependency between maxErrorStatevValid
Replaces: PRS_E2E_CONSTR_03177
Upstream requirements: RS_E2E_08528

[maxErrorStateInit and maxErrorStateInvalid The following restriction
shall be respected: maxErrorStatevValid >= maxErrorStateInit >= maxEr-
rorStateInvalid>=0|

[PRS_E2E 01461] Dependency between minOkStateValid, minOkStateInit

and minOkStateInvalid
Replaces: PRS_E2E _CONSTR_ 03178
Upstream requirements: RS_E2E_08528

[The following restriction shall be respected:
1 <=minOkStateValid <=minOkStateInit <=minOkStateInvalid]|

[PRS_E2E_01462] Dependency between minOkStateInit, maxEr-
rorStateInit and windowSizeInit
Replaces: PRS _E2E_CONSTR_03179

Upstream requirements: RS_E2E_08528

[The following restriction shall be respected:
minOkStateInit + maxErrorStatelInit <= windowSizeInitJ

[PRS_E2E 01463] Dependency between minOkStateValid, maxErrorState-

Valid and windowSizeValid
Replaces: PRS_E2E _CONSTR_03180

Upstream requirements: RS_E2E_08528

[The following restriction shall be respected: minOkStatevValid + maxErrorStat-
eValid <= windowSizeValid]

[PRS_E2E_01464] Dependency between minOkStateInvalid, maxEr-

rorStateInvalid and windowSizeInvalid
Replaces: PRS _E2E_CONSTR_03181
Upstream requirements: RS_E2E_08528

[The following restriction shall be respected: minOkStateInvalid + maxEr-
rorStateInvalid <= windowSizeInvalid]

AUTSSAR

9 Protocol usage and guidelines

This chapter contains requirements on usage of E2E Supervision when designing and
implementing safety-related systems, which are depending on E2E communication
protection and which are not directly related to some specific functionality. Note that
Chapter 6 also provides several requirements on usages.

9.1 EZ2E and SOME/IP

For the combination of E2E communication protection with SOME/IP, there needs to
be a common definition of the on-wire protocol. Depending on architecture properties,
the implementing components need to be configured and used accordingly.

In general, all available E2E profiles can be used in combination with SOME/IP. How-
ever, they may have limitations, as for the maximum usable length of data, or being
limited to fixed length messages.

The size of the E2E Header is dependent on the selected E2E profile.

[PRS_E2E_01444] Some/IP coverage
Replaces: PRS E2E UC_ 00239
Upstream requirements: RS_E2E_08540, RS_E2E_08541

[For profiles 1, 2, 4, 5, 6, 7, 11, and 22 the E2E CRC should be calculated over the
following parts of the serialized SOME/IP message.

. Request ID (Client ID / Session ID) [32 bit]

—

Protocol Version [8 bit]
Interface Version [8 bit]
Message Type [8 bit]
Return Code [8 bit]

o gk~ WD

Payload [variable size]

]

[PRS_E2E_01445] E2E for methods
Replaces: PRS_E2E _USE_00741
Upstream requirements: RS_E2E_08540

[For profiles 4m, 7m, 8m and 44m the E2E CRC shall be calculated over the following
parts of the serialized SOME/IP message.

1. Payload [variable size]

AUTSSAR

[PRS_E2E_01446] Some/IP coverage
Replaces: PRS_E2E _UC_00238
Upstream requirements: RS_E2E 08540, RS_E2E_ 08541

[The E2E header should be placed after the Return Code depending on the chosen
Offset value. The default Offset is 64 bit, which puts the E2E header exactly after the
Return Code. |

9.2 Client-Server Communication

[PRS_E2E_01465] transfer counter from request to response
Replaces: PRS_E2E _UC 00606
Upstream requirements: RS_E2E_08541

[When a client sends a request to the server, the server should use the received
counter as sequence counter for the response, no matter if regular response or error
response. |

Some special profile for Client Server communication were created. These profiles are
identified by letter "m" in their names. They contain special functionality for the use in
Client-Server communication (see Chapter 6.4).

However, all other profiles not mentioned in Chapter 4.1.4 (see Chapter 6.3) can also
be used for Client-Server communication. In this case the following has to be consid-
ered:

[PRS_E2E 01447] MaxDeltaCounter for Client-Server Communication (server)
Replaces: PRS_E2E CONSTR_06300
Upstream requirements: RS_E2E_08528

[For Client-Server Communication the MaxDeltaCounter on server-side shall be set to
the maximum of the value range of the sequence counter. |

[PRS_E2E_01448] MaxDeltaCounter for Client-Server Communication (client)
Replaces: PRS_E2E CONSTR_06303
Upstream requirements: RS_E2E_08528

[For Client-Server Communication the MaxDeltaCounter on client-side shall be set to

1.]

Due to different send intervals of Clients the used counters will increment in a different
rate, therefore counter jumps are inevitable. Due to the usage of the maximum value
of the counter range all possible jumps are valid.

Nonetheless the server could receive the same counter from two or more clients, which
will raise a E2E_P_REPEATED error on the server side. Since the E2E-protection
of Client-Server Communication cannot detect counter related errors reliably on the

AUTSSAR

server side, the potentially raised E2E_P_REPEATED status code from the check func-
tion can be interpreted as E2E_P_OK.

To detect specific communication failure modes e. g. loss a deadline monitoring on
client side is required. Since the request and the response counter have to be equal,
no deadline monitoring is possible via the E2E Protocol, this has to be implemented by
the E2E Protocol user.

9.3 Periodic use of E2E check

[PRS_E2E 01449] cyclic call FTTI
Replaces: PRS_E2E _UC 00325
Upstream requirements: RS_E2E_08528

[The E2E check function should be invoked at least once within FTTI (FTTI is for the
safety goals from which the requirements for this E2E checks are derived). |

9.4 Error handling

The E2E Supervision itself does not handle detected communication errors. It only
detects such errors for single received data elements and returns this information to
the callers (e.g. SW-Cs), which have to react appropriately. A general standardization
of the error handling of an application is usually not possible.

[PRS_E2E_01450] cyclic reception
Replaces: PRS_E2E_UC 00235
Upstream requirements: RS_E2E_08528

[The user (caller) of E2E Supervision, in particular the receiver, should provide the
error handling mechanisms for the faults detected by the E2E Supervision. |

9.5 Maximal lengths of Data, communication buses

The length of the message and the achieved hamming distance for a given CRC are
related. To ensure the required diagnostic coverage the maximum length of data ele-
ments protected by a CRC needs to be selected appropriately. The E2E profiles are
intended to protect inter-ECU communication with lengths as listed in Table 9.1

All length values stated in this section are based on assumptions on suitable hamming
distances for specific scenarios, without explicitly listing those assumptions. As such,
actual suitable values may differ based on the use case scenarios.

E2E Profile Suggested maximum applicable length including control
fields for inter-ECU communication

AUTSSAR

E2E Profile 1 and 11 32B
E2E Profile 2 and 22 32B
E2E Profile 4 and 4m 4 kB
E2E Profile 5 4 kB
E2E Profile 6 4 kB
E2E Profile 7 and 7m 4 MB

Table 9.1: E2E maximum data length

In E2E Profiles 1 and 2, the Hamming Distance is 2, up to the given lengths. Due to 8
bit CRC, the burst error detection is up to 8 bits.

9.6 Functional Safety Requirements

When using E2E Supervision, the designer of the functional or technical safety concept
of a particular system using E2E Supervision should evaluate the maximum permitted
length of the protected Data in that system, to ensure an appropriate error detection
capability.

Thus, the specific maximum lengths for a particular system may be shorter (or maybe
in some rare cases even longer) than the recommended maximum applicable lengths
defined for the E2E Profiles.

If the protected data length exceeds the network bus frame limit (or payload limit), the
data can be segmented on the sender side after the E2E communication protection,
and be assembled on the receiver side before the E2E evaluation. The possible faults
happening during segmentation/desegmentation can be considered as "corruption of
information”.

In other words, SW-C shall be able to tolerate the reception of one erroneous data
element, whose error was not detected by the E2E Supervision. What is not required is
that an SW-C tolerates two consecutive undetected erroneous data elements, because
it is enough unlikely that two consecutive Data are wrong AND that for both Data the
error remains undetected by the E2E Supervision.

When using LIN as the underlying communication network the residual error rate on
protocol level is several orders of magnitude higher (compared to FlexRay and CAN)
for the same bit error rate on the bus. The LIN checksum compared to the protocol
CRC of FlexRay (CRC-24) and CAN (CRC-15) has different properties (e.g. hamming
distance) resulting in a higher number of undetected errors coming from the bus (e.g.
due to EMV). In order to achieve a maximum allowed residual error rate on application
level, different error detection capabilities of the application CRC may be necessary,
depending on the strength of the protection on the bus protocol level.

E2E Profile 1 with E2E_P0O1DatalDMode = E2E_P01_DATAID_BOTH and E2E Pro-
file 11 with E2E_P11DatalDMode = E2E_P11_DATAID_BOTH uses an implicit 2-byte
Data ID, over which CRCS8 is calculated. As a CRC over two different 2-byte numbers

AUTSSAR

may result with the same CRC, some precautions must be taken by the user. See
SWS_EZ2ELibrary items PRS_E2E_UC_00072 and PRS_E2E_UC_00073 [4].

9.7 Message Layout

This chapter provides some requirements and recommendations on how safety-related
messages shall or should be defined. These recommendations can be also extended
to non-safety-related data transmissions.

9.7.1 Alignment of signals to byte limits

This chapter provides some requirements and recommendation on how safety-related
data structures shall or can be defined. They could also be extended to non-safety-
related data structures if found adequate.

[PRS_E2E 01451] Alignment
Replaces: PRS_E2E_UC_00062
Upstream requirements: RS_E2E_08528

[When using E2E Profiles, messages that have length < 8 bits should be allocated to
one byte of a message, i.e. they should not span over two bytes. |

[PRS_E2E_01452] Alignment
Replaces: PRS E2E UC 00063
Upstream requirements: RS_E2E_08528

[When using E2E Profiles, messages that have length >= 8 bits should start or finish
at the byte limit of a message |

[PRS_E2E_01453] length of data
Replaces: PRS_E2E _UC_00320
Upstream requirements: RS_E2E_08528

[When using E2E Profiles, the length of the data to be protected should be multiple of
8 bits. |

The previous recommendations cause that signals of type uint8, uint16 and uint32 fit
exactly to respectively one, two or four byte(s) of a message. These recommendations
also cause that for uint8, uint16 and uint32, the bit offsets are a multiple of 8.

Figure Figure 9.1 is an example of signals (CRC, Alive and Sig1) that are not aligned
to the Byte limits.

AUTSSAR

- | @ | cm—

Figure 9.1: Example for alignment not following recommendations

9.7.2 Unused bits

It can happen that some bits in a protected data structure are unused. In such a case,
the sender does not send signals represented by these bits, and the receiver does not
expect to receive signals represented by these bits. In order to have a systematically
defined data structure and sender-receiver behavior, the unused bits are set to the
defined default value before calculation of the CRC.

[PRS_E2E_01454] unused areas of messages
Replaces: PRS_E2E _UC 00173
Upstream requirements: RS_E2E_08528

[Any sender, which uses the E2E-Profiles, should fill all unused areas of a messages
to a default value configured for the message). |

For signal based communication of I-PDU’s this is defined in the system template pa-
rameter ISignallpdu.unusedBitPattern. The attribute unusedBitPattern is actually an
8-bit Byte pattern. It can take any value from 0x00 to OxFF. Often OxFF is used.

9.7.3 Byte order (Endianness)

For each signal that is longer than 1 byte (e.g. uint16, uint32), the bytes of the signal
need to be placed in associated endianness. There are two ways to do it:

1. start with the least significant byte first - the significance of the byte increases
with the increasing byte significance. This is called little Endian (i.e. little end
first).

2. start with the most significant byte first - the significance of the byte decreases
with the increasing byte significance. This is called big Endian (i.e. big end first).

For signal communication the underlaying COM-stack in contrary is responsible for
copying each signal into/from an I-PDU (i.e. for serialization of set of variables into an
array). An |-PDU is transmitted over a network without any alteration. Before placing a
signal in an I-PDU, COM can, if needed, change the byte Endianness the value:

1. Sender converts the byte Endianness of the data

AUTSSAR

2. Sender copies the converted data on I-PDU (serializes the signal), while copying
only used bits from the signals,

3. Sender COM delivers unaltered I-PDU to receiver COM (an I-PDU is just a byte
array unaltered by lower layers of the network stack),

4. Receiver COM converts the Endianness of the signals in the received I-PDU (if
configured). It may also do the sign extension (if configured),

5. Receiver COM returns the converted signals.

To achieve high level of interoperability, the automotive networks recommend a partic-
ular byte order, which is depicted in table Table 9.2.

Network Byte order
FlexRay Little Endian
CAN Little Endian
LIN Little Endian
TCP/IP Big Endian
Byteflight Big Endian
MOST Big Endian

Table 9.2: Networks and their byte order

The networks that have been initially targeted by E2E, which have been FlexRay, CAN
and LIN are Little Endian, which results with the following requirement:

9.8 Configuration constraints on Data IDs
9.8.1 DatalDs

To be able to verify the identity of the data elements or signal groups, none of two are
allowed to have the same Data ID (E2E Profiles 1, 4, 5, 6, 7, 11, 4m, 7m) or same
DatalDList[] (E2E Profile 2, 22) within one system of communicating ECUs.

It is recommended that the value of the Data ID be assigned by a central authority
rather than by the developer of the software-component. The Data IDs are defined in
Software Component Template, and then realized in E2E_PXXConfig structures.

Note: For Profile 1 requirement (PRS_E2E_UC_00071) may not be sufficient in some
cases, because Data ID is longer than CRC, which results with additional requirements
PRS _E2E UC 00072 and PRS_E2E_UC _00073. In Case of Profile 1 the ID can be
encoded in CRC by double Data ID configuration (both bytes of Data ID are included in
CRC every time), or in alternating Data ID configuration (high byte or low byte of Data
ID are put in CRC alternatively, depending of parity of Counter), there are different
additional requirements/constraints described in the sections below.

AUTSSAR

9.8.2 Double Data ID configuration of E2E Profile 1 and 11

In E2E Profiles 1 and 11, the CRC is 8 bits, whereas Data ID is 16bits. In the double
Data ID configuration (both bytes of Data ID are included in CRC every time), like
it is in the E2E variant 1A, all 16 bits are always included in the CRC calculation. In
consequence, two different 16 bit Data IDs DI1 and DI2 of data elements DE1 and DE2
may have the same 8 bit CRC value. Now, a possible failure mode is for example that
a gateway incorrectly routes a safety-related signal DE1 to the receiver of DE2. The
receiver of DE2 receives DE1, but because the DI1 and DI2 are identical, the receiver
might accept the message (this assumes that by accident the counter was also correct
and that possibly data length was the same for DE1 and DE2).

To resolve this, there are additional requirements limiting the usage of ID space. Data
elements with ASIL B and above shall have unique CRC over their Data ID, and signals
having ASIL A requirements shall have a unique CRC over their Data IDs for a given
data element/signal length.

The above requirement limits the usage of Data IDs of data having ASIL B, C, D to 255
distinct values in a given ECU, but gives the flexibility to define the Data IDs within the
16-bit naming space.

For data elements having ASIL A requirements, the requirement is weaker - it requires
that there are no CRC collisions for the ASIL A signals of the same length:

9.8.3 Alternating Data ID configuration of E2E Profile 1 and 11

In the alternating Data ID configuration, either high byte or low byte of Data ID is put
in CRC alternatively, depending of parity of Counter. In this configuration, two consec-
utive Data are needed to verify the data identity. This is not about the reliability of the
checksum or software, but really the algorithm constraint, as on every single Data only
a single byte of the Data ID is transmitted and therefore it requires two consecutive
receptions to verify the Data ID of received Data.

9.8.4 Nibble configuration of E2E Profile 1 and 11

In the nibble Data ID configuration of E2E Profile 1 and 11, the low byte is not trans-
mitted, but included in the CRC. Because the low byte has the length of 8 bits, it is the
same as the CRC.Therefore, if two Data IDs are different in the low byte, this results
with a different CRC over the Data ID low byte.

[PRS_E2E 01455] high nibble value at profiles 1 and 11
Replaces: PRS_E2E _UC_00308
Upstream requirements: RS_E2E_08528

[Any user of Profile 1 or 11 in Nibble Data ID configuration should ensure that:

1. the high nibble of high byte of Data ID is equal to 0

AUTSSAR

2. the low nibble of high byte of Data ID is within the range 0x1..0xE (to avoid colli-
sions with other E2E Profile 1 configurations that have 0x0 on this nibble, and to
exclude the invalid value OxF).

3. The low byte of Data ID is different to low byte of any Data ID present in the same
bus that uses E2E Profile in Double Data ID configuration.

]

[PRS_E2E_01456] Data ID values
Replaces: PRS_E2E_UC 00317
Upstream requirements: RS_E2E_08527

[When using E2E Profile Variants 1/11A and 1/11C in one bus/system, the following
should be respected:

1. 1/11A data should use IDs that are < 256 (this means high byte shall be always
=0)

2. 1/11C data should use IDs that are >= 256 (this means high byte is always != 0)
and < 4'096 (0x10°00 - it means they fit to 12 bits).

3. Any low byte of 1/11C data id should be different to any low byte of 1/11A data
ID.

]

Thanks to the Data ID distribution according to the above requirement, addressing
errors can be detected: in particular, it can be detected when 1/11C message arrives
to 1/11A destination. If 1/11C message receives to a 1/11A destination, then the CRC
check will pass if low byte of the sent 1/11C message equals to the expected 1/11A
address - and this is excluded by the above requirement.

Example: 1A may use addresses 0 to 199, while 1C may use addresses where low
byte is 200 to 255 and high byte is between 1 and 15. This allows to use additional
(256-200)*15 = 840 Data IDs. Once it is known, the corresponding E2E Library CRC
routines should be used.

AUTSSAR

A Usage and generation of DatalD Lists for E2E
profile 2 and 22

An appropriate selection of DatalDs for the DatalDList in E2E Profiles 2 and 22 allows
increasing the number of messages for which detection of masquerading is possible.
The DatalD is used when calculating the CRC checksum of a message, whereas the
DatalD is not part of the transmitted message itself, i.e. the message received by the
receiver does not contain this information.

Any receiver of the intended message needs to know the DatalD a priori. The per-
formed check of the received CRC at the receiver side does only match if and only if
the assumed DatalD on the receiver side is identical to the DatalD used at the sender
side. Thus, the DatalD allows protecting messages against masquerading. It is im-
portant that the used DatalD is known solely by the intended sender and the intended
receiver.

With a constant DatalD (independent of the Counter) the maximum number of mes-
sages that can be protected independently using E2E Profile 2 is limited by the length
of the CRC (i.e. with a CRC length of 8 bits the number of independent DatalD is 2 * 8
= 256, this equates to the maximum number of independent messages for detection of
masquerading).

However, E2E Profiles 2 and 22 uses a method to allow more messages to be protected
against masquerading by exploiting the prerequisite that a single erroneously received
message content does not violate the safety goal (a basic assumption taken in the
design of applications of receiving SW-Cs).

The basic idea in E2E Profiles 2 and 22 is to use a DatalDList with several DatalDs
that are selected in a dynamic behavior for the calculation of the CRC checksum. The
DatalD is determined by selecting one element out of DatalDList, using the value of
Counter as an index (for detailed description see E2E profile 2).

The examples given below were selected to show two exemplary use cases. It is
demonstrated how the detection of masquerading is performed.

Although the examples take some assumptions on the configuration, the argumentation
is valid without loss of generality. For sake of simplicity, these additional constraints are
not explained in the following examples.

A.1 Example A (persistent routing error)
A.1.1 Assumptions

Consider a network with one or more nodes as sender (messages A to F) and one node
as the intended receiver of the safety relevant message (message B). The messages
are configured to use the DatalDList as shown in Figure A.1 and Figure A.2.

AUTSSAR

Sender-ECU DatalDList
DatalD for Counter =

messagel| 0| 1| 2| 3]|4|5]|6]|7]|8]9]10]11]12]13]|14]15
Sender A 177|103| 29 (206(132| 58 |235|161| 87 | 13 |190(116(42 [219(145| 71
Sender B 146| 41 (187 82 (228(123| 18 | 164| 59 |205|100|246(141| 36 (182 77
Sender C 102|204| 55 (157 8 [110|212| 63 |165| 16 |118(220(71 [173| 24 | 126
Sender D 225(199|173|147|121| 95| 69 | 43 | 17 (242(216(190|164|138|112| 86
Sender E 181|112| 43 [225(156| 87 | 18 |200|131| 62 |244(175(106(37 (219|150
Sender F 244|244|244(244)|244(244)|244(244|244|244|244|244(244)|244| 244|244 —special case of static DatalD

Figure A.1: Example for alignment not following recommendations -> Sender-ECU IDs

Receiver-ECU DatalDList
Counter =
messagef| 0| 1| 2| 3]|4|5]|6]|7]|8]9]10]11]12]13]14]15

Receiver B |[146] 41 [187] 82 |228]| 123 18 [164| 59 |205]| 100|246 141] 36 |182] 77
Figure A.2: Example for alignment not following recommendations -> Receiver-ECU IDs

In the example of Figure A.3 it is assumed that a routing error occurs at a specific point
in time. All messages are of same length. The routing error persists until it is detected.
For instance a bit flip of the routing table in a gateway could lead to such a constant
misrouting. It is further assumed that the senders of messages B and E have the same
sequence counter (worst case situation for detection in the receiver).

The receiver should only receive message B and expects therefore the DatalDs of
DatalDList of message B. Every time the expected DatalD matches with the used
DatalD in the CRC-protected message, the result of the CRC check will be valid. In any
other case the CRC checksum in the message differs from the expected CRC result
and the outcome of the CRC check is not valid.

A.1.2 Solution

As depicted, the first routing error occurs when both senders reach Counter = 6. Since
the DatalDList in both senders have DatalD = 18 for Counter = 6, the receiver will not
detect the erroneously routed message of sender E. However, for any other Counter
the values of DatalDs do not match, thus the CRC check in the receiver will be not
valid. With this, it is obvious that the misrouting is detected at least for the second
received misrouted message (even if some messages were not received at all).

AUTSSAR

Sender of B Sender of E Receiver expects message B
Counter DatalD Counter DatalD Counter DatalD check DatalD result of CRC-Check
used expected

0 146 0 181 0 146 = 146 |valid
1 41 1 112 1 Y| = 41 valid
2 187 2 43 2 187 = 187 |valid
3 82 3 225 3 82 = 82 |valid
4 228 4 156 4 228 = 228 |valid
5 123 5 87 5 123 = 123 |valid

here 1% — 6 18 6 18 6 18 = 18 erroneously undetected! (valid)

routing error 7 164 7 200 7 200 # 164 |error detected (not valid)
8 59 8 131 8 131 # 59 error detected (not valid)
9 205 9 62 9 62 # 205 [error detected (not valid)
10 100 10 244 10 244 # 100 |error detected (not valid)
1 246 1 175 1 175 # 246 |error detected (not valid)
12 141 12 106 12 106 # 141 |error detected (not valid)
13 36 13 37 13 37 #* 36 error detected (not valid)
14 182 14 219 14 219 # 182 |error detected (not valid)
15 77 15 150 15 150 # 77 error detected (not valid)
5 123 5 87 5 87 | # 123 |error detected (not valid)

Figure A.3: Example A configuration

A.1.3 Example B (forbidden configuration)

Not every DatalDList is allowed to be used for every message length. A short explana-
tion to demonstrate this is shown in this example.

Consider a message G with a total length of 8 bytes. Both, sender and receiver are
configured to use the DatalDList depicted in Figure A.4

Receiver-ECU DatalDList
Counter =
messagel| 0| 1| 2| 3| 4]|5]|6]7]|8]9]|10]11]12]13]|14]15
Receiver G |[73]144|215] 35 [106]177|248] 68 [139]210] 30 [101]172]243] 63 [134

Figure A.4: Example B configuration (forbidden configuration)

Without loss of generality the payload is assumed to be [22,33,44,55,66,77].

For the defined CRC generator polynomial in profile 2 and 22 the CRC checksums are
as follows:

Counter Data DataID CRC-result
CRC(0,22,33,44,55,66,77, = 114

CRC
CRC
CRC

9,22,33,44,55,66,77, 210
10,22,33,44,55,66,77,
11,22,33,44,55,66,77, 101

= 44
= 110
= 23

3)
CRC(1,22,33,44,55,66,77, 144) = 197
CRC(2,22,33,44,55,66,77, 215) = 66
CRC(3,22,33,44,55,66,77, 35) = 66
CRC(4,22,33,44,55,66,77, 106) = 207
CRC(5,22,33,44,55,66,77,177) = 38
CRC(6,22,33,44,55,66,77, 248) = 20
CRC(7,22,33,44,55,66,77, 68) = 165
CRC(8,22,33,44,55,66,77, 139) = 120

()

(0)

()

AUTSSAR

CRC(12,22,33,44,55,66,77,172) = 121
CRC(13,22,33,44,55,66,77, 243) = 207
CRC(14,22,33,44,55,66,77, 63) = 141
CRC(15,22,33,44,55,66,77, 134) = 175

One can see that DatalD = 215 for Counter = 2 leads to the same CRC checksum as
DatalD = 35 for Counter = 3. Moreover, DatalD = 106 for Counter = 4 leads to the
same CRC checksum as DatalD = 243 for Counter = 13.

A routing error of a non-CRC-protected message with constant payload and a se-
guence counter could be undetected at the receiver side if

1. the first routing error occurs at Counter = 2 and is persistent, or
2. the routing error occurs only at Counter = 4 and Counter = 13.
In both cases the second masquerading error is not detected.

Thus, the considered DatalDList of message G in Figure A.4 shall not be used for mes-
sages with a total length of 8 bytes. (Remember: the DatalD itself is never transmitted
on the bus).

A.2 Conclusion

The proposed method with dynamic DatalDs for CRC calculation allows protecting
significantly (several orders of magnitude) more messages against masquerading than
with a static DatalD.

The set of DatalDList needs to be generated with appropriate care to utilize the strength
of the shown method. Every DatalDList is only allowed to be assigned once to a
message within the network/system. The message length needs to be considered in
the assignment process since not every DatalDList is allowed to be used for every
message length.

A.3 DatalD List example

This section presents a part of exemplary DatalDList. The example has 500 lines,
which means that this enables to identify 500 different data.

This DatalDList of 9 subtables has been selected and tested with appropriate care
to comply with current safety standards. Every user of the provided DatalDLists is
responsible to check if the following list is suitable to fulfill his constraints of the intended
target network.

AUTSSAR

cooonan]s

204

a0

02 25
137 12

3

Il

5 B

7

2

For each value of counter: DatalD value to be used
11

L]

210 115
130 o4

s Nz
229 24
121
v
21 243
159 00
123
56 248
16 220
85 128
42 8
157 o7
23 103

or for a message with length [bytes]: = ®: not yet assigned , "X": not allowed

4 1507 3 4 5 6 7 B 9 10 11 12 13 44 15 96 17 18 19 20 M 27 23 24 35 36 27 28 29 30 34 32 33 M 35 36 37 38 30 40 4 42
E X XX A X X XX KX X K A XK XK A X X XK A K
X XX X K A A X X X X X XX A XXX X XX A
X XXX XX X X X X X X X X X X X X X X X X X
XXX X XX XX XXX XX X X X X X X X X X X X X
X X X X XXX XX X X X XX X XX X X X X x X
XX X XX XX XX X XX X X XX XX X X X X x X
X XX X X X X X XX x X XXX XXX XX X X X
XXX X X X X XX XX XX X X X X XX X XX X X X XXX XXX
XX X X X X L KAEKKEXX XK X X XXX XX XX
KKK KA X KKK XX KK x XX X KK x XXX XKKKEX
XA K X KKK KX XX X XK X XXX X K X
X XXX X X KKK XK KXHKKX X EKKXXXX X XX
X XX X X X X X X X X X XX X XX X X X X X X X
X X XX XX XXX X X X XX X X XXX XX XX X XX X X X X X X
X X X X X X XX X X X X x X X X X X X X XX
X X X X XX XX XX X XX XXX X X X X X X X
XX X XX XX X X X X X X X X X XXX XX XXX
XX KX XK XX E X XXX XX XK XX x X X X XK X XK x X XX
A X X XX X X X A KK A X X XX X A X X A X K XX
X XXX X XK XX A X KX XX XX X A X K A X X A
X K X X X X X X X X X X X XK X X X X X X X X x X x
x X X X x X X X x X X X x X X X X X X X X
X X X X X X X X x K x X X X x X x XX X XXX X X
X X K X X X X X X x X X X XK X XX XX X X X X X X X X X X x
X X X X X X X X X X x X X X X X X X X x X x x
X X X X X X X X X X X x x X X X X X XX X X X X
XA KK KX X XX KKK KKK KK X XK XX KKK XX X
KEAKKKKAERK XXX X KK Lo XX XX X KKK XK XX
X X X AK XX XX XX KX X XK K X XXX XXX XX
X KX XX XXX XA KXK XXX LA A 4 X XX X XXX
X X X X XX X X X X X X X X X X X X X X
XX XXX XXX X X X X XX XX X XX X XXX X X X X
X X XX XX XXX X X X X X X X X XX XX X X X X X
X X X X XX X X X X XX XX XXX XX X X X X X X X X
X X X X X XX XXX X XX XX X X X XX X X X X
XXX XX X X X X X X X XX XX X X X XX XX X X X
XXX X XX XX XXX XX X XXX XXX X X X X X X XX XX
XXX XX HA KX XNX X X X X X X X X X X XX XX X X X X
XXX X XX X X X X XX X X X X X X X XX X X X X
X X XX x X XXX XX X X X X XX X
X X XK X X X X X X x X X X X X X x K X X X X X XX X X x
X X X X XXX XXX X XXX XX X XX X XK X X X X X x
ZgX X XX X XX X X X XK X X x X X X X XK X X X X XX X X X
X X K X X X X X X x K X X X X XK X X X X X x X x
F. x X X X X X X X X X X x X X X X X X X X XK X X
90 188 X X X x X X X X x X X XK X X X XK X X X X X XX
hEL -] KA KK KK KKK A . A KK X x X KR KK KRR KR K
AR E-1Y P A KK K X KA KEKKKEAKLRKEKXKKER XK KK A K KKK X KK
35 By XA K KKK X X AKX A A K X AR X X A K A KX KK
161 36X X X X XX X XX XX X X X X X X XXX X X X X X
130X X X X XX X X X X X X X X XX X XXX
218 47X X X X XXX XX X X X X X XX X X X X X X X X X X X
43 107X X X X X X X X X X X X XXX XXX XX XX X XX X X XX
77 230f% X XX XX X X X X X X XX X X XX X X XX X X X X
72 145 X XX XX X XX XX X X X X X X XX XX X X X o X
261 202Q% X X X X XX XXX X X X X X X XX XX XXX XX XXX
3| ATEx X X X x X X X X X X X X X X X X X X X X X Lo o 4
6 GOfX X X X X X KX X X X XX XX X X X X X XX X

Figure A.5

AUTSSAR

For each value of counter: DatalD value to be used or for a message with length [bytes]: = *: not yet assigned , "X™: not allowed I
2 3 4 E 6 T B O 0 41 12 13 14 95 95 47 18 19 10 M 22 23 M 35 15 I 28 3 3 2 35 30 40 41 42
- . Foay P . P o x PN S S x . .y .y
61 X X XX XXX X X XX X XX XX XXX X XX X X X X
62 B2QX X X XX XX X X X X X X XX X X X X X X X X X X X
63 X X XX X X X X X X X X X X X X X X X X X X x X X X X
64 X X X X X XX XX XXX X X X X X X XX XX X X
65 X X XX X X X X X X XX X XXX XXX XX X XXX X X X X X X
66 X XXX XX XX X X X X X X X X X XX XX XX X X X XX
&7 X X X X XX XXX X X X XXX XXKXX X X X XX X
2] XXX XXX XXXX XX KX XXX X X XX XXXX X XXX XX XX
69 X XX XXXX XXX XXX XXX XX XX XXX XXX X X XX XX
70 X X X XX X X X KX XXX XXX X X X X XXX X X X
71 X X X XXX X X XXX X X XXX X XX XXX
72 XXX X XXX XX XX XX XX X X X X X X X
73 XXX X X XX X XX XXX XXX XX XXX XX X
T4 X X X XXX XXX X XXX X X X X XX XXX XXX
75 N oM M X XX N XX X X XXX X X X X X XX X XX
s X X XXX X X XXX XX X A X XXX XX XX XX XXX
mw L 4 X X EA X X X XK XXX X X A XXX X XX A X X XX
-] B E X A X A KK KK Ea 4 XXX A K A KK A X X XK A
i X x X X XX XX X X x X x x X X X X XX
8o X X x X X X XX XXX XXXX x X x X X X x X X X X X X X
LAl X XK X X K X X X XXX x X x X x X X X X X K X X X
-3 X x X X X X XXX X X X x X X X XX x X X X K X X
-] XK X X X x X X X X XX XXX X x X X XX XXX
a4 X X X X X X X X XX X X X X XX X XX X X X X X
a5 X XX XX XX X X X X X X X X X X X XX XXX
88 X X X X X X XXX XX X X XXX X XK XX XXXXXX
ar X X X XXX XXX X X X X X X XX KX X XX XX
a8 X X X XX KX XXX X XX X X XXX XXX X X
ag X X X X X X X X XXX XXX X XXX X X XXX XX XX
90 XXX XX X X XX X X X XX XX XX XX XX XX X
91 X X X X X X X X X X XXX X X L SN O 4 O 4 4 X
92 MK NN XXX XX XXX XXX X XX X X X X
93 XX XXX XX XX X XMX X X X X X
94 X X X X X X XX XX X X oM oM M X X X XXX X
95 XK X X MMM X X XXM MM XXX NN XX X XX X XX X
96 X KK X X X XX X X X X XXX XX X X
a7 x XK KX XXX X X X X XX X XX X X X
] X X X M XX XX XXX X XX XXX XXX X
EC) X XX XXX X X X X X XX x XX X XX X X XX X X
100y 2 XK X KX XXX X X XX X X X X X XX X XK x x X X XXX
101Q 2 X X X XK XX X X X X XK X X X X X x X x X X X
02 X x XXX XXX XXXXZ=XZX X X X X X K X X XXX X X X X
03 X X x XX XXX XXX x X x X x x X X X
104 X X X X X x X X X X X X X X X x X X X
05 K KR KX X KK X K A XX KK Y A A
04 E A KK A KK XKEA KKK X Y x K KRR KKK
107| X X XXX X XXX XXX X X X XXX XXX X XX
108) X X X XX XXX X XXX XXX XX X X X X X
109) Mo oMM XXX X X XX XM X XXX XX XXX X X X
110) XXX XX XXX X X X X XM XXX X X XM o) X X XXX
111 X XXX XXX XK HX X X X oM oMM M X X XXX X X
112 XX X NN MMM M OX MM X XXX XXX X X XX XX XX X
113 X XK XX XXX XX X XX XM XXX XXX X XXX
114 XX X XX MK X XX X X X XX X XXX X
115 X X K X XX X X X x X XX X X X X X
116 X X M XNXK XX X X XXX NX XXX X X X X X X X
117] X
118] X X X X X X X X X X X X XX X X X X

Figure A.6

AUTSSAR

For each value of counter: DatalD value to be used

o 1.2 3 4

180 216

5

127
245
36

240
90
172
111
220
43
29
141
33
105

188 65 102

=

204

109
112 230 211

123

179
250

126
35
219
ar
210
105
25

138

i
1 2 19 G

16
1w Er 81
182 B0 B
183 131 EZ
116 105 43
44 120 08
233
63 202 174
173
189
105
107 182 200
67 210 182
46 53 144
92 84 50
14 42 89

For for 8 message with length [bytes]: ™ =: not yet assigned , "X™: not allowed

z

LR & 5 & S L 3 8

ER T I S S 4

L 4

EE 39

3 4 5 6 7 B 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 35 26 27 28 29 30 3 32 33 M 35 36 37 38 30 40 41 42
X X X X XX X X X X X XX X XX X X X XX X X X
XK X KX KKXEK X XXX X EKXEKX X XXX XK XX
X X X X XXX X X XXX KK XK X XK K XX XX
X X XK XX XX XXXXX XXX X KK KX X XX KX X X
X KKK XX X XK XXX XX XX X XXX XK X X XX XX
X X X XK X X KK XX X X XA KKK X X XX XA K
X X X X X X XX X X X X X X X X X X X X XX X
XX X X X X X X X X X XX XX XXX X X X XX XX X XX
X X X X XXX XX X XX X X XX x XX X X X XX X X X X
XX XX X X X X X X X X X X X X X XX XX XX XX
X XX XX XX XXX XXX X XX X X XXX X XX XX X X
X X X X X XX X X X X X X X XX XX X X X X
X X X X X X X X XX X b o X X X X X X X X
X X X X X XX X X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X XX X X X X X X X X X
X X X X X X X X X X X X X X X x X x X X X X X X X
X X X XX XX XX X x X X X X X X XXX XXX XX
X X X X XX XX XX X X X X X X X X X X x X X X X X KX
x X x X X X X X XK X X X X X X X X X X X X X X
X x X X X X X X X X X X X XX x X X X X X X X X X
X X X X XK X x X X X X X X x X X X X X X x x X X X X
. A KK X XK LY X xR K KR KR K AKX K XKEAREK x
B K X X LA xR K X A A K .3 A K A AKXXEKKXK
XX X X XX X X X X X X XX X x X X X XX XX XX X X
X X X X X X XX X X X X X XX X XX X X X X X X
XX X X X X X XXX X XX x X X X X X X XX
X X X XX X X X XX X X X XX X X X XX X X X X X XX
X X XX X X X X XX X XX X X X X X X
X X X XX X X X X X X X X X X X X X X XX X
XX X X X XX X XX XX X X X X X X X X XX X XX X
XX XX X X X XX XX X X X X XXX X XX X X
XX X XX ¥ X X X WX X XX X X X X X XX XX
X X X KK HX X X X X X X X X X X X X X
X X X X X X X X X XX X X XXX X X X XX
X XX XX XXX XX XXXXXX X x X XXX X X X X X X
X X X X X XXX X X X X X X X XXX X X XX X X X X
X X X X X X X X XX X X XX X X XX X X
X X X X X X X X X X X X X X X XX X X X X XX X X
X X XK X X X X X X X X X X X X X X X X XX XXX
KRR X X X . A KKK X XK AR XX KX KK K x
. X X X X KR X A KK K KR KEKKER X X A X x
kS A K KKK X AR R X KA K KX AR R X A X X
A A XA K KX LAY A KKK XK XK KKK A KKK X x
K XK KX X K K X KX KX K X X KK KX X X KK X X
ES X X X X K K X XK XK X KK KX XK KX X K X
kA X KX KX XK x XX X K E XK KX XK X x
XX X X X X X X X X X X X X X X X X X X X
X X X XX X X X X X X X X X XX X X XXX XX XXX
X X X XX X X X X X X X X X X XX X KX X X X X
X XXX XXX XX X X XX X X X X XX X X X XX X X X XX X
X X X X X X X X X XX X XXX XX X X X XX XX
X XXX XXX X X X X X X X WX AN X X X X X
X X X X X X X X X X X X X X X XX X XX X X x X X
X X XX X X X X X X X X X X X X X XX X XXX X X
XX X X X XX XX XX X X X X X X X X XX X X X XX XXX X X
XX X X X X X X X XXX X XXX XX XX X X X X X X X XXX
X X X X X X X XX X X X XX X X X X X X
KKK KX x X X XK X KK X XXX X x

Figure A.7

AUTSSAR

For each value of counter: DatalD value to be used
1

2

El

a

5

7

157 46 65

45
218
245
130
163
206
124
200

13

84

138 82 7

131

173
228
128
T

151 2

w3
wr

189 2
i 116 2
215 2

140
100
174
136
88
106
241
a4
157
112
38
230

]

For for 8 message with length [bytes]: ™ = not yet assigned , "X™: not allowed
13 14 15 % 17 18

34 5

8 9 10 11 12

13

20 29 22 23

24

26

H

&

78
1

186

0 25 112

g W

186

250 B4

MM MMM M M MM MM RN MMM o

Bt 31

T
Moo O MMMMMNMMN MM MMM

k]

E i i 3

PR
N

o e Bl

> %

B 8 L
1

E S 2]
M N 2
A S
b4
S

B
R 4

E I
B

B
Ed
ER R R

22 2 2 5
Bl
ks HEEEm =

MW X I M M ;. MMM X
x

PO B MK KM KM MK
BB MOMOMOMOMM MM MM

B

BE O BEBE BE B BB b 2 34 3

x X
M M MM M MMM O MMMNMMMN XM MMMMNMMX

HMEHEHEX

3

x
E A 2 Rt

M MMM MM M
MMM MMMM MM MMM MMM MMM
MO OMKX X X mER

3

Figure A.8

x
X
X

Ed

M O MEE X HEEEMKK MK

HEMMKKEX

B]
BE B bbb BB BB BB BB BB B

s
X

B B B B B B

Y 5

B 5

I
MMM MM MMM NN R MMM

P
X
X

B3¢ BE BE BE BB B B BB B

B

E- S M OMMHNK K KX
HOMMMHENN HEEN M

g
B b

=

Bttt 4.

T A 4

HMM HMEX

x

X

4
M DI M

IR S S

LR

MM MMM MMM M MMM MMMN M MMMMNMNM

x

O x X MMM M M X

R

xx

X

<

EAEE S Rttt

*®

L

s

X
X
X

KHEHKH Hx

LI

»

R

HOMMKK KEX KEx

P
X
X

BB B BB BB

BB B 33

e
E A A]

bt

€ 5€ 20

B

MMM KK KK
E

HEREMMMN MM MM X HMXH

2 KK

bl

o oEHEX X

E A

o

Bt

] E

b

B

PR My M

HooMm mm Ead PR PP MM

BB MMM M M M

X
X

B3¢ BEBE B0 BEBE BB BB

BE BE BE B B B B e B B 3

3 5 5
-

2
MMM M MMM MMM M MMM

.

B

34
E A S

o = ox MK M OHEEMHHEHEX XK 4 S
E EE S 4 54

25

-

L 2 I

LR

LS S 4 4
E R T S

WX X M M X 2 MM e

b3

€ C 2 2 2 2 X

B S 2

B A

B

E S
HEHEE MK XK K KEXXK X X X

*

o
Bt
Ead

®x R
2 0

E R A

]

HHEHHKE HEKKX

.t

Bt A

B

®oOoXX XK X
B b

MMM M MMM M M MM MMMNMX X

=

L -
EaRa ol

3

B
B

»

> K

MMM I 22N K

B I

=
el

R N S shatatatal

bl

bkl

Ead

]

B MMM MMM MMM MM MMM M BEBE BB MMM

MMM MM MM

oMK
E S & 4

R

=

BEBEBC b e Be e B B B € 3¢ B Bl

EE

L 4 4 3

*®

E S S S

O M X X XX M MMM M MMMNX
B A A A R B

LR b A

L+ E
B S I
BB 2 2 2

E
R KK

E A A S

B

x X

»
=

KKK HEHEH R
KM ¥ oMK X

E A I R A

R

B
KK K XA

B BEBC BB B

B3 BB
E A)

3

*
Mook ok M MMM M O MMMMMX

B

o

MK MM

3

MM MMM M O MMMMMNMN MMM MMKMEMEMN MM

®om mmm
M MMM

MM E X

Bt

td

Hx M MMM

2

b

0

L

AUTSSAR

For each value of counter: DatalD value to be used [For for & message with langth [bytes]: ® *: not yet assigned , "X™: not allowed
2 3 4 5 6 7 & 9 10 11 12 13 14 15 % 17 18 19 30 21 22 23 34 35 36 I7 28 39 30 31 37 33 M 35 35 37 38 30 40 41 42
Py x 3 o Fo Y o o x x F N
X X X X X X XX XXX X XXX X X X XX XXX XX
X X XX X X X X X XX XX X X XX
X X XXX X X X XM X M X X X X X X X XXX X
XN X HOX XM X XK XX X XX X X KX XX HoX
XX XXM XX XX X KM XX XX XXX XX XX
XX X X X XM X X X X X XM MX X XXX XXX
XX K XM X X X XK XXX XX XX X X XK KX x X X X
X XX X X x XXM oX XX XXX XX XXX XX X
X XXX XX X XX XX X X X X X X X X X X X X X X X
x XX X XX X X X X X X X X XX XX XX XXX X X X X
X XX XX X X X X X X X X X X XX X X XX X X X X X X X
X X XX XX X X X X X X X X X XX XXX X X X X
XX XX XX X X x X X X X X X X X X X X X X X X X X
X X X XX X XK XXX XX X XK XXX X XXX X
X X X XXX X X XX XX XXX XX XX X X XXX X XXX X
A X X A K Y K X A K KR KA KKEA X A X A K
X AKX X KK KA KK AR KKK x L AR K KKK A
X K X X K K X X A X X A X X KKK X KK
X KX X X X X K XK KX X X AKX E X KX XK XKX X KK
E KX X KX XX KX X X X K X X X X X X K i X XX KK
X A XK KX X X A X X kA XK X X i KK X X X A
X X X X X X X X X X X XX X XXX X X XX X XX X X
X X XXX X X X X X XXX X X X X XX XX X X X XK
X XXX X X XX XK E A 8 4 XXX XX X X X XX X XX
XX A O 45 5 O 4 8 4 KK XX X X X X X X KX X
XXX X X X XXX X XK XXX XX X XXX X XX
XX X X X X X X XX X X XX XX XX XX XX XX XX X X X
XX XXX X X X X X X X X X X X X X X X X X X
X XX XX X X X X X X XX X X X X X X XX X X XX X
x XX X XX X X XX X X XX X X X XX X X XX X
XX X X X XX XX XXX XX XX XXX X X XX X X X XX
x XXX x X X X X X XX XXX X XX X XXX
X X XXX XXXX X XX XKXX X X X X X X X XX
X XXX X XK XXX X XXX XX XXX XK XXX XX XXXXX X
X X X XX X XXX X XXXX XX XXX X XXX
XXX XXX XX XX XXX XXX XXX XXX X X X X X
X XX XX XXX X X XX XXX X X XX XX XXX X X X X X
X X X MoK X X X X XXX XX X X X XX
X X XXX X XK A A E XK XX XXX XX XX
X X X E XXX X X XX XX X X X X X X X
X X X X X E XXX X X XX XX X X X X XX XXX
A KKK B XK KX KX XK E XK X A LA A 3 X X X A X X X
A XX XX X A X XK B X X XX X X KX XK XXX XXX A
X XX X X XK X X X x X X x X X XK X XK XX X X
XX X XX XXX X K XXX XX XKXKXXXXX X X X X x X X XX
X XX XXX XK X X X X XXX XX X X X X XX X X X X
X X X XX XX X X X X XX XX X x X
x XX X x X X X X X XX XX XX X X X X X X
XX X X X X X XXX X X X X X X XX X X X X XX X X X XX
X XXX XX XXX X X XXX XXXXX X X X XX XX XXX X X
X X XXX XXXX XX K XXX XX XXXX XXX XXX XX XX
X X X XXX X XX XX X XX X XK KX X X XX
X X X X XX XX X X XX X XX X X X X XX
X X X X X XXX XXX XX X X X X XXX XXX
88 X X XXX X X X X XX X XX XXX XXX X XX XX X
2030 B0 206 130 214 157 240 217 19 100 20 21 168 150 109 145 2360 X XX XM oX XX XXX X X X X X XX XX X XX XX XX X
2o04f 04 O7 220 133 202 186 113 108 200 42 100 222 150 13 160 203| XXX XX XX XXX X X X X L b 4 4 4 X XX
205186 222 131 12 121 15 108 5 183 227 115 45 151 16 &7 70 KX X XN XX XX XX X X XX X X X X X X

Figure A.9

AUTSSAR

For each value of counter: DatalD value to be used
&

or for 8 message with length [bytes]: = =: not yet assigned . "X": not allowed l
2 3 4 5 & T B 9 10 11 12 13 14 15 9 17 18 19 20 2 22 23 M4 I 6

48
127 44 80 122 27 3B 147
5T 33 22 242 132 149 T 105
6

x

170
0

@
-
=
8
&
m
8
H
o
]
(=]
=
]
o
I
=]
E
® oMM X
=
>
¢
=
g
3
> 3¢ 3¢ 3 3
XM R o
B
oM XX
B33
2%
3¢ 3¢ 3¢ 3¢
%
¢3¢ 3¢

BRI A Rttt

B

e
HoOoM O OHMHNNX

B
MK KX

E S ¥
o
b3
o
HrE MM X HKX
b
EL R
HMEpMM X
E A S T -
.
HooMMMMK
A

x
€ 2
R S T

x
I A S S

L
HEHE MMM KK KX

MMM HHK X
e
HMEMMNM M

M MMMMMMM MM M
B 3 5 B

P b b b
B I Ll
MM MMM M MMMM M

H M M MMM
xx

HE KKK KKK
E 4 4 4

E 4
o
i

HEEK KX
o

x x
B A 3

R A YT
b

Moo MM MO O MO0 D M I M M X
B3 E MK

B
LR

oxox
L A A T
LR
B

b

o=

oMM MM MM MMM
]

R

R
R

kL
*
L A T

R

HKOKK KKKKHEK XK K R

EEE 4.4

»
»
B
B

w0

B
Ea o T
b3

MMM x
HoOoMM MMM X X X XK MM MMM MMXX

w
Y
g
&
E
B
H
-
w
g
I
=
£
o
H
o
o
&
&
o
2
w
g
B
I
|5
o
&
M
i

FEEEEE S

MOMMN X MM

»

K oM x

B R
ot

>

Ha MMM EE MM M MMM M OX
HOKKEERRRRARR
=

L - B

L 3 4
o

HoOM O OMEXXR
o

2
x

€ 2 2 0

34

>

€2

MM MMM MMM

B
B
B
B
B
B
g
4
2
8
8
R
g
©
g
M MMM M
o

Bttt 4.

€

13
E T A

MMM MMMM N MO MMM

MMM MMM MMM MM K MK M MK KK

Etatad
EX A4
xx
M M MMMM M MM
x
BB 2 M M M

kS
KHEKKK HEHHHHX

®ox o ox o=
BE BB 3B

E A

E

»

Bt
3 P T

D€ BE BE B BEC BB B B B
BEBE MO BB BC O 333
BEBEBE BE BE B B B B B B

L &
B

M MM MM MMM M MM MMM MMMMMMN MMM
B

S

E
x®
k]
g4
HKxx X
B
)
==
S
=

=
E R B S I 4
*

ks
E S T R R

L
PEEE
e
= >
-
-
-

MMORMOMMMM MM MM MMM HMRNX
Y

MM MMMMNMNM MKMMMN M X

E
-

O
EEE I 0 0 S S S & 4

b
HEMME MM KKK KN

&
«
E
&
o
N
i g
B
=
3
]
]
i
: -
2
&
]
&
2
]
: =
I
g
0«
w
>
MMM MM X X
R > K

B

M mm
B
5 5 b
E]
E
b3
e R
O MMM M I MMM DI MMM M D M
Bl R
LR
2 2
KHEH mEx
B MM MMM O MMMM MMNK
»
R

bttt
E A A A

€ 5€ 5

L 3

E S R -
kS

E 4 4 5 - R
S
2 € 2
Ed
E A -

B3 B

BB M MMM MM
MMM AKX X

B
5
£
”
"
>
-
[
=1
]
E1
-
ha
B
4
w
&
@
]
B
N
3
&
&
2
MW MM
g - S

R

EE 5 8 3
b
MMMMM M M m

wx M

3
=
o

x
K M MMM
o 2O 4
XM M R MEEEANRENNNR
L

MM MM MM MM

K M
KX MMM X

H®OMMM X
E R

L
My MM X

N

Er 5 59
MMM MMM MMM

KK KK KK KX ®
HIEMM M MM M

®

"

o

g

n

=

E

%

>
o ke
b4

>
o
KK
¢ 3¢
o
%

>

>
3¢ 5

233 4 82 85 33
354174 54 61 246 216 101 80 151 160 142 233 28 170 109 86 81X X

x

Figure A.10

AUTSSAR

For each value of counter: DatalD value to be used

H

3

a

5 &

7

41
413) 62

126

TLE
245
13
203
218
105
183
208
114
234

9

143
128

161

-
=

2% 21

H

3 4 5 &

9

01112

13

14

rur for 8 message with length [bytes]: ® =: not yet assigned ,

15 16 17 15 19 20

"X™: not allowed
]

4

]

i

243

E S ¥ T A

O O MMMMNMMX MM M MMM

MMM KX RN HER

E g4

B

x

=
HEHKE HNEKNK A6
B4 3 B

MM oM M

£

Mo MMM MMM O MMNMNX
B K K

oMM oMM MEXXEKXX X XN

B B
B

B

3 5 5

E
»
MM O OMMMMN XN MM

B
MOMMMMMMMK X oMM M O MMMM MK KX X X

E
HOMMKMMHNX KX

ks
BB BB BB

R
B

HEE oMM K M M MM X KX
E
MM O MMMM MM MNN MMM

A .
B

Ed

b
L
HoORK MM X

B MMM MBI B
Bt

.
bt

Figure A.11

E A S

E R R

ER A Y ettt

I

2

RN

X
X

DCDC D0 D00 2 DC D 2

M MM XK

B i

e
b3 4
L 4
e

M M M MM
OO MM MM MM

E T
HE O OMMNMX X MMM XXXX A

R

B33 33
B3
Bttt - N

B S

B

B

b

B

MMM MM MM MMM

be324
>

E

2

-

]

X

HoOMMM O MEMX XX HMEX XX EX XK X

LR

Moo MMM O MXXX M oMM M M MMMK

MMM MM M M MMM MK KM

0

X

Ea T

O
B

Ea I B

Ealatatatat bt B I T I

A
X
X

R

ERE
S

BB MM MMM M

B

B

BB BB B B

L

X
X
X
X
X
X
X
X
X
X
X

=

HEHH oM OHMMK KK X KX
Ed

B

B BB B

X
X

x
Bt

E S S S 4

MM MMM M MMM KK

MW MM X
MM XK

M
MM OKMK K OKNX K OKHKXX

B A

B

LR

2
B A S

€
€€

oo
N

xx
KK MEEEEMMHNN HEKKKKKX

3

D€ D DEDC D0 D0 M

b
KoMK KKK

HoOM KHEEER

2

»

EEE

2 5
O

~

3
X

o E - B T

E A S]

X woomw xR

LR
BRI

LR
Eaa ot T

M HEX

oMM XX

.

L

M MMM M MM MMM MK MMM MM MMM K

M X KX

R

Eatata B T T T I A R alatatal

xOK MM
EE Y

e

R

B

BB B¢ BB BB B B B
E

B BB BB
A A Tt t

E A R R

E
M U NI MMM M

x EE S

EE 8

LR

L P A S 8
B T A S L

b
¢

B

S
E I S S

I S]
LI R

A S -

2

o
M OKMMMMKNKK KX X

HHH HHEK

L A 3

x

R
HoOoME O MEEK MHXKX

i
bR
B
B

£

EEE

E

B

BB B B B BB

b3

ke
4

L]
R I I
B

M M

EE

3

LR

b4
MMM MK xx

Bt 4 B

B

kS
Ed

B

»

PP e DD D D

it i I I A S el

PR M M

B

=

2 MM MMM MMM MM KM

BB BB BB B

2 >4

M
M MM
MMM M

»

B M MMM M B
M MM M

Y
B4

MM MMM

B4
EE S S R R B

B B

4

E A A B

E P S S

x X

Moo M MM MCHMMMMN M MM

>

PO D e e M MM OMMX XXX M

E

o bt

=

B A

AUTSSAR

For each walue of counter: DatalD value to be used
|

For for @ message with length [bytes]:

=: not yet assigned . "X": not allowed

0 1z 3 4 5 6 T B 8 10 11 12 13 14 1502 3 4 5 & 7 & 9 1011 12 13 14 15 16 17 15 19 20 21 22 23 24 25 26 7 28 29 30 31 32 33 M 35 36 37 33 30 40 41 42
L N B B A R T L L L R T L 11 P s S — P S rrr -
4150232 248 130 100 © B 185 14 241 242 03 43 157 103 211 TTPX X X XM XX XX X X LA 4 XX XXX XXX XX X
416] 5 70 26 237 53 56 165 17 24 30 102 TE 140 233 120 169 XX X XXX XXX X X X X X XXX X XX oKX XX X
A1TP12T 51 B2 61 235 126 141 101 210 B85 47 160 5 0O 25 2BPX X X X X X X X X L X XM XXX X ¥ X LA XX
4180161 148 116 00 200 155 127 210 146 147 45 &6 90 51 18 106 XK X MM KX XX MM X X XX L X X X
4100154 02 & 55 107 230 70 250 B4 146 235 B0 185 237 226 184 X X XXX XX XX XX k4 MK X X XXX XX X
7 X XX XXX X X X X X X XX XX
175 X X XXX XX XX XM oKX XX XX XX XX X XXX XM M X X
140 M OXN X X X X X X XM oKX X X X X H X oA X X M X X
197 x X X X X XM X X XX X X X oM oMK X X XX X X X
x X X X X X X X X X X X oM X W X X X X XX XX XXX
x X X X X X X X X XX X oM oMK X X X M X X XX
x X X X XX X oM ox MK X X X M X X XX
XX KKK KX X X X L X X XK XXX XK kS X X KK
X XX X XX X X X XX X X X X XK EKXEXX
X x X X X X XX XX XXX XXX XK KX X X X X XXX
k 5 X X KX X X KX X x X K X X XXX K £ K XK x X X X
k 36 X X X X XX X X XX X X X X X X X X X X
k¥ F. X X X X XXX XX XK XXX XX XX XXXXXXX X X X XX x
3: ¥ 212X X X X X X x XX XX XXXXXXX X X X X X X X X X
k ¥ i X X X X X XX XX X X X XX XX X X X X X X XX X
k 3 X X X X X X X x XX XXX XXX X X X X XX X X X X X X
k 247 K k 5 : z X X X X X X XX X XXX X X X X X X XX X XX XX
A3TRITI 21 34 185 N2 XY T2 183 58 114 27 47 125 140 134 U6 X XX X X X XX XX X XXX XX X X X X X X X X
4380 51 61 126 101 65 160 O 28 231 86 133 36 T0 242 173 1EYX X X XXX XXX X XXX XX X XXX XX XXM X WX XX XX
4300 28 118 243 230 138 163 115 188 90 137 85 TO 160 46 103 250X X X X X X XX XXX XXX XXX X X X X XX X
4400236 105 123 226 108 44 240 95 207 16 175 110 134 120 247 157X X X X X X XX M oX X XX X X X X XX X XX X X X X
4414 B3 100 137 183 154 104 180 136 6 92 127 41 38 37 6 178 MoK X XXX X X X XX KX X X XXX X XX X XXX
4420158 127 38 51 188 B2 143 61 30 235 94 126 12 141 177 10X X XXX XXX XM ox X X X X X H X X X X X MK X
4430 32 240 250 120 66 164 202 125 206 T4 142 &4 104 42 OB 196 X X L 4 HOXN X X XX X X X X X XX X HoHoM X XX X
444181 27 120 232 143 124 173 248 233 141 B84 130 226 21 20 190 X X X X X X X X M X X X X oM ox X XXX X XX x X
4450251 144 128 47 28 234 14 158 227 118 213 40 229 77 243 127X X XXX XXX X X XK XX XX K XX XK XX XXX X X KX
4460 58 83 138 100 90 137 23 183 193 154 158 104 160 189 2283 13§ X X X X X X EXKXEXK XXX X X X XXX X X KKK KX X
44TR142 58 204 B3 10 138 122 100 185 90 47 137 126 23 149 183X X X X X X X X X KK X X XX x X XXX XK K XK XX
4480131 15 183 45 87 136 247 26 41 32 174 178 118 94 55 56 XX X X XX XX X X X X X X X XK XX XX XX X
4490153 11 213 198 241 63 155 16 189 135 117 247 109 68 85 197X XX X X XX XK KX XXX X XX X XX X XX X X
4500 73 213 23 63 203 180 146 247 B8 85 182 3T M2 12 5 S4X X X X X X X X X x XX XXX XXX XX XX X X
4510 30 210 125 231 176 106 144 161 192 T8 200 215 178 47 X2 148QX X X X X XX XWX X XWX X XXX XXX XX M} X X X
4520 7 244 B1 2 200 T2 82 167 230 131 43 140 251 123 100 BEQX X X X X x XX X XX XX XX XX XX XX X M X XXX X
4531178 24 184 0 164 208 186 YO 212 B4 2B 140 177 222 4 184 X X X X X X X X XX X XXX X X X X X X X X X X
ASMTEZ 120 165 124 49 233 7H 130 133 XU M4 4 44 34 251 o8 XX X X XX XX X XXX XXX XXX X X X XX XX XXX
ASSQZET 1T TE OTBY 219 A7 4 121 B0 Z31 244 190 6 241 198 227 X X X XX X X X X X X XX X X X X X X X X X X
ASERZ214 1Y 6B ZE5 153 82 oHy 1ub 1F2 11 183 13 152 E2 N3 22X X X X X X X X XX XXX XXX X X X X
asr 46 150 54 W 66 PG T30 7 101 91 124 151 218 240 142 zda]x X XXXXX X XXX XX X X XXX X XXX X x
asal 75 1EZ 197 129 3 165 176 124 97 49 206 233 123 78wy 1aelx x oxox x x x x x X X XXX XXXKX X X KX X
asfl1ss 135 41 8 55 162 71 24 179 250 61 184 163 w9 sy w0 x X XX X x XX X XK XXXX XXKXXXX X XX
acuf BB 115 a8 4B 167 174 B4 150 51 BE 132 54 241 67 191 102 X KX XXXXX X XXX XX X XX XX x x X
461 67 130 B0 240 69 100 90 168 242 145 34 105 27 154 201 82 X X X X X XXX XXX oM oKX X X X X X XX
4624198 BT 92 32 116 55 170 240 230 155 191 250 138 60 146 120 XX X X X X X X XXX XX X X X L X X X X XX
463 2 167 140 B2 15 191 44 166 235 45 3 216 47 110 136 91X X XX X KKK X XK X X KK KKK XX XX
4640121 227 BT 1 148 32 218 53 55 90 88 240 83 50 155 30 X X XK K X EXXKXKEK XX X X X XK XK KXX X kS X XX
4650221 33 T 201 220 244 19 122 81 186 190 2 49 236 200 23X X X X KX X XX X XX X X KKK X X XX XX
4660191 216 65 142 178 86 33 58 173 24 251 204 38 201 184 B3 X XX X XX XX XK XAXKXX X XX XK XXX X XXX XX
46TQ 81 72 230 140 100 188 156 191 79 183 218 235 128 207 104 2186 XX X XX XXX XXX X X KX X KX x X X XX x
46BQ BB 166 216 91 26 142 69 35 86 56 20 5B 127 145 24 200 X X XXX XXX XXX XX XX XX X X XX X X XXX
460Q 60 202 17 42 126 160 130 128 217 160 201 121 166 B 231 234X X XM X XXX XX X X XX X X X X X X
4T0Q201 122 2 23 XX} 167 105 180 140 12 77 BB 67 226 15 3TPX X X X X x X X X XX KX X KK X XXX X X X X XXX
ATIQ157 20 145 153 233 73 215 11 122 4 114 213 220 116 108 198 X X XXX XX X XXX XX XX X X X X XX XXX
AT2]115 46 174 150 88 54 67 102 61 166 120 135 130 116 7 XX X XXX X X X X X XX XXX XM KX
Figure A.12
of counter: DatalD value to be used [For for & message with length [bytes]: = =: not yet assigned , "X™: not allowed l
3 4 5 B 7 & 3 10 1 1z 13 14 150z 3 4 5 6 7 & 9 1011 12 13 14 15 16 17 15 19 20 21 22 23 24 35 26 I 28 29 30 31 3 33 34 35 3 37 34 39 40 41 a2
(LR ey || | U I 1)) P S S S S T rrffr s P ¥
19 20 168 190 236 105 153 185 &2 224 &F T3 195 XX X X X XXX X X N XX XX XXX X XX X
213 108 23 107 B3 167 203 31 180 O 46 12 4TPM X X X X X M X X X X XX XX XX LA A O S § XXX XX X
21 103 34 81 185 223 2112 121 200 120 T2 52 193X X ¥ X XK XX X XXM XX X X X X X ¥ X XM N X
40 243 1 238 38 32 163 180 53 200 3 40 &2 XX X X X X X X X X M XX X X X X X X X X
22 62 17 124 42 76 126 33 160 BB 139 210 12X X X X X X X XK X X X X XMW WX XX XX
200 52 59 230 147 104 134 87 18 B4 188 14 119QX X X X X X X X X X XX XX X XX X X X oM X XX
235 104 177 150 65 106 41 60 245 227 102 175 86 XX X X X X X X X X X X X XX M X X X XX X
145 97 201 192 73 244 133 52 122 143 93 186 213 X X X X X XX X X XXX X X X XX X oA X X X X x
T4 181 98 126 205 157 27 24 180 & 160 120 22QX X X X X A 4 X X X XM ox X X XX X X X X X XX
155 53 146 38 66 226 18 136 112 149 &2 75 T4 X X X XM KX X XXX LA A A A X X M X X X X X
83 113 236 227 107 82 13 137 195 103 1 11 148)X XX KK X X EXXAKX KK KXK XK KX A X X KK kS X X KK
200 TE 83 T3 131 138 217 211 100 &1 213 90 15X X X L X XX KK X X X X X XXX XX X KK
103 67 152 58 212 248 130 231 52 66 &3 B0 14X X X X X XX XX XXX X X X x XX XX XKEKEHKXKXEXX
210 147 86 51 106 112 119 26 T4 154 &1 181 176|X X XX XX XX X X XX L A O O 4 X KK XX
137 149 193 167 104 147 228 40 96 231 8B 225 41X XXX XX x XXX X XX XX XXX X X XX KK X KK XX XX
184 & 188 W /5 B3 43 6 16 240 210 135 13X XX XX XX X X XK X x X X X XK X X X X X X X X
154 U2 ZE 12 U2 OZ2% U3 30 B 173 5 238 S5 X x X X X XX XX XXX X XX XX XX X X X XX XX X
T80 129 20 Z31 113 145 124 208 153 B4 161 233 13X X XX XXX XXX X X X X XX X X X X X X X X X X X
22 ZE 113 3B X223 153 248 9O 13 BY 243 139 SUEX X X X X X XX X XX X XX XX X X X X X X X X
& 120 10 133 297 208 125 1571 90 235 108 B4 199 X X XX X X X X X XX X XX X X X X XX XX
Y 33 242 149 105 211 201 223 B8 1249 22y 244 172 X X X XX X X X X X X X XX X X X X XX X X X X
16 223 W7 40 155 195 5U 183 146 208 38 104 BEX X
GO 38 Z3F 120 22 56 BZ ZN T 6T 124 30 a2 XX X XX X X X XX X X X X XX X XX X X
168 145 105 154 82 68 T3 200 172 232 92 122 123X XX XX X X X X XXX X X XM XXX XXX XXM X
31 105 7T 104 182 238 172 155 25 113 41 115 30X X H XX X X X X X X XM XX MK X X X X oM X XX
181 77 132 A7F 27 197 25 250 120 236 245 3 232X X X X X X XX MMM X XXX X X X X H X X XX X XX X X X
4 102 57 212 242 144 T 113 211 187 114 151 @B X X X X X X X X X XX oM ox XXX XWX X MK X

Figure A.13

AUTSSAR

B Change history of AUTOSAR traceable items

B.1 Traceable item history of this document according to
AUTOSAR Release R19-11

B.1.1 Added Constraints

Number Heading

Constraint [PRS_E2E_- | Value range of windowSizevValid

CONSTR_03176] in Chapter

8.1.1

Constraint [PRS_E2E_- | Dependency between maxErrorStatevValid, maxEr-
CONSTR_03177] in Chapter rorStatelInit and maxErrorStateInvalid

8.1.1

Constraint [PRS_E2E_- | Dependency between minOkStatevValid, minOkStateInit
CONSTR_03178] in Chapter and minOkStateInvalid

8.1.1

Constraint [PRS_E2E_- | Dependency between minOkStateInit, maxErrorStatelInit
CONSTR_03179] in Chapter and windowSizeInit

8.1.1

Constraint [PRS_E2E_- | Dependency between minOkStatevValid, maxErrorState-
CONSTR_03180] in Chapter | valid and windowSizeValid

8.1.1

Constraint [PRS_E2E_- | Dependency between minOkStatelInvalid, maxEr-
CONSTR_03181] in Chapter rorStateInvalid and windowSizeInvalid

8.1.1

Constraint [PRS_E2E_- | MaxDeltaCounter for Client-Server Communication
CONSTR_06300] in Chapter

9.2

Constraint [PRS_E2E - | Dependency between windowSizeInvalid and windowSize-
CONSTR_06301] in Chapter Valid

8.1.1

Constraint [PRS_E2E - | Dependency between windowSizeInit and windowSizeValid
CONSTR_06302] in Chapter

8.1.1

Table B.1: added Constraints in R19-11

B.1.2 Changed Constraints

N/A

B.1.3 Deleted Constraints

N/A

AUTSSAR

B.1.4 Added Specification Items
N/A

B.1.5 Changed Specification Items
N/A

B.1.6 Deleted Specification ltems

N/A

B.2 Traceable item history of this document according to
AUTOSAR Release R20-11

B.2.1 Added Constraints in R20-11

none

B.2.2 Changed Constraints in R20-11

none

B.2.3 Deleted Constraints in R20-11

none

B.2.4 Added Specification Iltems in R20-11

Number Heading
[PRS_E2E_00640]
[PRS_E2E_00641] Mapping Profile 1 to State Machine

[PRS_E2E_00644]

[PRS_E2E_00645]

[PRS_E2E_00646]

[PRS_E2E_00647]

[PRS_E2E_00648]

AUTSSAR

Number

Heading

[PRS_E2E_00649]

[PRS_E2E_00650]

[PRS_E2E_00651]

[PRS_E2E_00652]

[PRS_E2E_00653]

[PRS_E2E_00654]

[PRS_E2E_00655]

[PRS_E2E_00656]

[PRS_E2E_00657]

[PRS_E2E_00658]

[PRS_E2E_00659]

[PRS_E2E_00660]

[PRS_E2E_00661]

[PRS_E2E_00662]

[PRS_E2E_00663]

[PRS_E2E_00664]

[PRS_E2E_00665]

[PRS_E2E_00666]

[PRS_E2E_00667]

[PRS_E2E_00668]

[PRS_E2E_00669]

[PRS_E2E_00670]

Mapping Profile 2 to State Machine

[PRS_E2E_00673]

[PRS_E2E_00675]

[PRS_E2E_00676]

[PRS_E2E_00677]

[PRS_E2E_00678]

[PRS_E2E_00679]

[PRS_E2E_00680]

[PRS_E2E_00681]

[PRS_E2E_00682]

[PRS_E2E_00683]

[PRS_E2E_00684]

[PRS_E2E_00685]

[PRS_E2E_00686]

[PRS_E2E_00687]

[PRS_E2E_00688]

[PRS_E2E_00689]

AUTSSAR

Number Heading

[PRS_E2E_00690]

[PRS_E2E_00691]

[PRS_E2E_00692]

[PRS_E2E_00693]

[PRS_E2E_00694]

[PRS_E2E_00695]

[PRS_E2E_00696]

[PRS_E2E_00697]

[PRS_E2E_00698]

[PRS_E2E_00699]

[PRS_E2E_00700]

[PRS_E2E_00701]

[PRS_E2E_00702]

[PRS_E2E_00703]

[PRS_E2E_00704]

[PRS_E2E_00705]

[PRS_E2E_00706]

[PRS_E2E_00707]

[PRS_E2E_00708]

[PRS_E2E_00709]

[PRS_E2E_00710]

[PRS_E2E_00711]

[PRS_E2E_00712]

[PRS_E2E_00713]

[PRS_E2E_00714]

[PRS_E2E_00715]

[PRS_E2E_00716]

[PRS_E2E_00717]

[PRS_E2E_00718]

[PRS_E2E_00719]

[PRS_E2E_00720]

[PRS_E2E_00721]

[PRS_E2E_00722]

[PRS_E2E_00723]

[PRS_E2E_00724]

[PRS_E2E_00725]

[PRS_E2E_00726]

[PRS_E2E_00727]

AUTSSAR

Number

Heading

[PRS_E2E_00728]

[PRS_E2E_00729]

[PRS_E2E_00730]

[PRS_E2E_00731]

[PRS_E2E_00732]

[PRS_E2E_00733]

[PRS_E2E_00734]

[PRS_E2E_00735]

[PRS_E2E_00736]

[PRS_E2E_00737]

[PRS_E2E_00738]

Mapping Profile 44 to State Machine

[PRS_E2E_00739]

[PRS_E2E_00740]

[PRS_E2E_00741]

[PRS_E2E_00742]

[PRS_E2E_00743]

[PRS_E2E_00744]

[PRS_E2E_00745]

[PRS_E2E_00746]

[PRS_E2E_00747]

[PRS_E2E_00748]

[PRS_E2E_00749]

[PRS_E2E_00750]

[PRS_E2E_00751]

[PRS_E2E_00752]

[PRS_E2E_00753]

[PRS_E2E_00756]

[PRS_E2E_00757]

[PRS_E2E_00758]

[PRS_E2E_00759]

[PRS_E2E_00760]

[PRS_E2E_00761]

[PRS_E2E_00762]

[PRS_E2E_00763]

[PRS_E2E_00764]

[PRS_E2E_00765]

[PRS_E2E_00766]

[PRS_E2E_00767]

AUTSSAR

Number Heading
[PRS_E2E_00768] Draft
[PRS_E2E_00769] Draft
[PRS_E2E_00770] Draft
[PRS_E2E_00771] Draft

[PRS_E2E_00772]

[PRS_E2E_00773]

[PRS_E2E_00774]

[PRS_E2E_00775]

[PRS_E2E_00776]

[PRS_E2E_00777]

[PRS_E2E_00778]

[PRS_E2E_00779]

[PRS_E2E_00780]

[PRS_E2E_00781]

[PRS_E2E_00783]

[PRS_E2E_00784]

[PRS_E2E_00785]

[PRS_E2E_00787]

[PRS_E2E_00788]

[PRS_E2E_00789]

[PRS_E2E_00790]

[PRS_E2E_00791]

[PRS_E2E_00792]

[PRS_E2E_00793]

[PRS_E2E_00794]

[PRS_E2E_00795]

[PRS_E2E_00796]

[PRS_E2E_00799]

[PRS_E2E_00800]

[PRS_E2E_00801]

[PRS_E2E_00802]

[PRS_E2E_00803]

[PRS_E2E_00804]

[PRS_E2E_00805]

[PRS_E2E_00806]

[PRS_E2E_00807]

[PRS_E2E_00808]

[PRS_E2E_00809]

AUTSSAR

JAN
Number Heading
[PRS_E2E_00810]
[PRS_E2E_00811] Draft
[PRS_E2E_00812] Draft
[PRS_E2E_00813] Draft
[PRS_E2E_00814] Draft

[PRS_E2E_00815]

[PRS_E2E_00816]

[PRS_E2E_00817]

[PRS_E2E_00818]

[PRS_E2E_00819]

[PRS_E2E_00820]

[PRS_E2E_00821]

[PRS_E2E_00822]

[PRS_E2E_00823]

[PRS_E2E_00824]

[PRS_E2E_00825]

[PRS_E2E_00826]

Mapping Profile 4m to State-Machine

[PRS_E2E_00827]

Mapping Profile 7m to State-Machine

[PRS_E2E_00828]

[PRS_E2E_00829]

[PRS_E2E_00830]

[PRS_E2E_00831]

[PRS_E2E_00832]

[PRS_E2E_00834]

[PRS_E2E_00835]

[PRS_E2E_00836]

[PRS_E2E_00837]

[PRS_E2E_00840]

[PRS_E2E_00841]

[PRS_E2E_00842]

[PRS_E2E_00843]

[PRS_E2E_00844]

[PRS_E2E_00848]

[PRS_E2E_00849]

[PRS_E2E_00850]

Mapping Profile 8 to State Machine

[PRS_E2E_UC_
00055]

V

AUTSSAR

Number

Heading

[PRS_E2E_UC_
00062]

[PRS_E2E_UC_
00063]

[PRS_E2E_UC_
00071]

[PRS_E2E_UC_
00072]

[PRS_E2E_UC_
00073]

[PRS_E2E_UC_
00171]

[PRS_E2E_UC_
00173]

[PRS_E2E UC _
00235]

[PRS_E2E_UC_
00238]

[PRS_E2E_UC_
00239]

[PRS_E2E_UC_
00308]

[PRS_E2E_UC_
00317]

[PRS_E2E_UC_
00320]

[PRS_E2E_UC_
00321]

[PRS_E2E_UC_
00325]

[PRS_E2E_UC_
00328]

[PRS_E2E_UC_
00606]

[PRS_E2E_UC_
00743]

[PRS_E2E_UC_
00754]

[PRS_E2E_UC_
00786]

[PRS_E2E_UC_
00797]

AUTSSAR

Number

Heading

[PRS_E2E USE_
00741]

Table B.2: Added Specification Iltems in R20-11

B.2.5 Changed Specification Items in R20-11

Number

Heading

[PRS_E2E_00070]

[PRS_E2E_00082]

[PRS_E2E_00117]

[PRS_E2E_00118]

[PRS_E2E_00119]

[PRS_E2E_00120]

[PRS_E2E_00125]

[PRS_E2E_00126]

[PRS_E2E_00134]

[PRS_E2E_00150]

[PRS_E2E_00195]

[PRS_E2E_00218]

[PRS_E2E_00219]

[PRS_E2E_00299]

[PRS_E2E_00318]

[PRS_E2E_00319]

[PRS_E2E_00322]

[PRS_E2E_00323]

[PRS_E2E_00324]

[PRS_E2E_00330]

[PRS_E2E_00345]

[PRS_E2E_00372]

[PRS_E2E_00394]

[PRS_E2E_00401]

[PRS_E2E_00421]

[PRS_E2E_00479]

[PRS_E2E_00480]

[PRS_E2E_00484]

[PRS_E2E_00485]

[PRS_E2E_00503]

AUTSSAR

Number

Heading

[PRS_E2E_00522]

[PRS_E2E_00527]

[PRS_E2E_00588]

[PRS_E2E_00589]

[PRS_E2E_00590]

[PRS_E2E_00591]

[PRS_E2E_00592]

[PRS_E2E_00593]

[PRS_E2E_00594]

[PRS_E2E_00595]

[PRS_E2E_00598]

Mapping Profile 1 to State Machine

[PRS_E2E_00599]

Mapping Profile 2 to State Machine

[PRS_E2E_00600]

Mapping Profile 4 to State Machine

[PRS_E2E_00601]

Mapping Profile 5 to State Machine

[PRS_E2E_00602]

Mapping Profile 6 to State Machine

[PRS_E2E_00603]

Mapping Profile 7 to State Machine

[PRS_E2E_00604]

Mapping Profile 11 to State Machine

[PRS_E2E_00605]

Mapping Profile 22 to State Machine

[PRS_E2E_00608]

[PRS_E2E_00609]

[PRS_E2E_00610]

[PRS_E2E_00611]

[PRS_E2E_00612]

[PRS_E2E_00613]

[PRS_E2E_00614]

[PRS_E2E_00615]

[PRS_E2E_00616]

[PRS_E2E_00617]

[PRS_E2E_00618]

[PRS_E2E_00619]

[PRS_E2E_00620]

[PRS_E2E_00621]

[PRS_E2E_00622]

[PRS_E2E_00623]

[PRS_E2E_00624]

[PRS_E2E_00625]

[PRS_E2E_00626]

[PRS_E2E_00627]

AUTSSAR

Number

Heading

[PRS_E2E_00628]

[PRS_E2E_00629]

[PRS_E2E_00630]

[PRS_E2E_00631]

[PRS_E2E_00632]

[PRS_E2E_00633]

[PRS_E2E_00634]

[PRS_E2E_00635]

[PRS_E2E_00636]

[PRS_E2E_00637]

[PRS_E2E_00638]

[PRS_E2E_00639]

[PRS_E2E_UC_
00051]

[PRS_E2E_UC_
00061]

[PRS_E2E_UC_
00170]

[PRS_E2E_UC_
00316]

[PRS_E2E UC_
00351]

[PRS_E2E UC_
00466]

Table B.3: Changed Specification Iltems in R20-11

B.2.6 Deleted Specification Items in R20-11

Number

Heading

[PRS_E2E_00217]

[PRS_E2E_00221]

[PRS_E2E_00227]

[PRS_E2E_00228]

[PRS_E2E_00307]

[PRS_E2E_00584]

[PRS_E2E_00585]

[PRS_E2E_00586]

[PRS_E2E_00587]

AUTSSAR

Number Heading

[PRS_E2E_UC
00237]

[PRS_E2E_USE_
00235]

[PRS_E2E_USE_
00236]

[PRS_E2E USE_
00237]

[PRS_E2E_USE_
00321]

[PRS_E2E_USE_
00325]

[PRS_E2E_USE_
00606]

Table B.4: Deleted Specification Items in R20-11

B.3 Traceable item history of this document according to
AUTOSAR Release R21-11

B.3.1 Added Constraints in R21-11

none

B.3.2 Changed Constraints in R21-11

none

B.3.3 Deleted Constraints in R21-11

Number Heading

[constr_3176] Value range of windowSizevalid

Dependency between maxErrorStatevValid, maxErrorStateInit and

[constr_3177] ,
maxErrorStateInvalid

[constr_3178] Dependency between minOkStatevalid, minOkStateInit and

minOkStateInvalid
[constr_3179] Dgpendeqcy betwgen minOkStateInit, maxErrorStateInit and
- windowSizeValid
[constr_3180] DgpendehcybehNeenminOkStateValid,maxErrorStateValidand
windowSizeValid

\Y%

AUTSSAR

A
Number Heading
[constr_3181] ngggie;rlczye?gzvieden minOkStateInvalid, maxErrorStateInvalid and
[constr_6300] MaxDeltaCounter for Client-Server Communication
[constr_6301] Dependency between windowSizeInvalid and windowSizevalid
[constr_6302] Dependency between windowSizeInit and windowSizevValid

Table B.5: Deleted Constraints in R21-11

B.3.4 Added Specification Items in R21-11

Number

Heading

[PRS_E2E_00507]

[PRS_E2E_01107]

[PRS_E2E_01154]

[PRS_E2E_01155]

[PRS_E2E_01156]

[PRS_E2E_01157]

[PRS_E2E_01159]

[PRS_E2E_01160]

[PRS_E2E_01161]

[PRS_E2E_01162]

[PRS_E2E_01163]

[PRS_E2E_01164]

[PRS_E2E_01165]

[PRS_E2E_01166]

[PRS_E2E_01167]

[PRS_E2E_01169]

[PRS_E2E_01170]

[PRS_E2E_01171]

[PRS_E2E_01172]

[PRS_E2E_01173]

[PRS_E2E_01174]

[PRS_E2E_01175]

[PRS_E2E_01176]

[PRS_E2E_01177]

[PRS_E2E_01178]

[PRS_E2E_01179]

[PRS_E2E_01180]

AUTSSAR

Number Heading
[PRS_E2E_01181] Draft
[PRS_E2E_01182] Draft
[PRS_E2E_01183] Draft
[PRS_E2E_01184] Draft

[PRS_E2E_01185]

[PRS_E2E_01186]

[PRS_E2E_01187]

[PRS_E2E_01188]

[PRS_E2E_01189]

[PRS_E2E_01190]

[PRS_E2E_01191]

[PRS_E2E_01192]

[PRS_E2E_01193]

[PRS_E2E_01194]

[PRS_E2E_01195]

[PRS_E2E_01196]

[PRS_E2E_01197]

[PRS_E2E_01198]

[PRS_E2E_01199]

[PRS_E2E_01200]

[PRS_E2E_01201]

[PRS_E2E_01202]

[PRS_E2E_01203]

[PRS_E2E_02355]

[PRS_E2E_02356]

[PRS_E2E_02357]

[PRS_E2E_02358]

[PRS_E2E_02359]

[PRS_E2E_02360]

[PRS_E2E_02361]

[PRS_E2E_02362]

[PRS_E2E_02363]

[PRS_E2E_02364]

[PRS_E2E_02365]

[PRS_E2E_02366]

[PRS_E2E_02367]

[PRS_E2E_02368]

[PRS_E2E_02369]

AUTSSAR

Number

Heading

[PRS_E2E_02376]

[PRS_E2E_02615]

[PRS_E2E_02616]

[PRS_E2E_02617]

[PRS_E2E_02618]

[PRS_E2E_ . . .

CONSTR_03176] Value range of windowSizevalid

[PRS_E2E_ .

CONSTR_03177] Dependency between maxErrorStatevalid

[PRS_E2E_ Dependency between minOkStatevValid, minOkStateInit and
CONSTR_03178] minOkStateInvalid

[PRS_E2E_ Dependency between minOkStateInit, maxErrorStateInit and
CONSTR_03179] windowSizeInit

[PRS_E2E_ Dependency between minOkStatevalid, maxErrorStatevalid and
CONSTR_03180] windowSizeValid

[PRS_E2E_ Dependency between minOkStateInvalid, maxErrorStateInvalid
CONSTR_03181] and windowSizeInvalid

[PRS_E2E . L

CONSTR_06300] MaxDeltaCounter for Client-Server Communication

[PRS_E2E
CONSTR_06301] Dependency between windowSizeInvalid and windowSizevValid
[PRS_E2E
CONSTR_06302] Dependency between windowSizeInit and windowSizevValid
[PRS_E2E UC_

01158]

[PRS_E2E _UC_

01168]

Table B.6: Added Specification Items in R21-11

B.3.5 Changed Specification Items in R21-11

Number

Heading

[PRS_E2E_00329]

[PRS_E2E_00355]

[PRS_E2E_00356]

[PRS_E2E_00357]

[PRS_E2E_00358]

[PRS_E2E_00359]

[PRS_E2E_00360]

AUTSSAR

Number Heading

[PRS_E2E_00361]

[PRS_E2E_00362]

[PRS_E2E_00363]

[PRS_E2E_00364]

[PRS_E2E_00365]

[PRS_E2E_00366]

[PRS_E2E_00367]

[PRS_E2E_00368]

[PRS_E2E_00369]

[PRS_E2E_00372]

[PRS_E2E_00376]

[PRS_E2E_00394]

[PRS_E2E_00404]

[PRS_E2E_00405]

[PRS_E2E_00407]

[PRS_E2E_00409]

[PRS_E2E_00412]

[PRS_E2E_00413]

[PRS_E2E_00414]

[PRS_E2E_00416]

[PRS_E2E_00424]

[PRS_E2E_00425]

[PRS_E2E_00426]

[PRS_E2E_00428]

[PRS_E2E_00429]

[PRS_E2E_00431]

[PRS_E2E_00432]

[PRS_E2E_00433]

[PRS_E2E_00434]

[PRS_E2E_00436]

[PRS_E2E_00469]

[PRS_E2E_00470]

[PRS_E2E_00479]

[PRS_E2E_00486]

[PRS_E2E_00487]

[PRS_E2E_00488]

[PRS_E2E_00489]

[PRS_E2E_00490]

AUTSSAR

Number Heading

[PRS_E2E_00491]

[PRS_E2E_00492]

[PRS_E2E_00493]

[PRS_E2E_00494]

[PRS_E2E_00495]

[PRS_E2E_00496]

[PRS_E2E_00497]

[PRS_E2E_00498]

[PRS_E2E_00499]

[PRS_E2E_00500]

[PRS_E2E_00501]

[PRS_E2E_00503]

[PRS_E2E_00522]

[PRS_E2E_00615]

[PRS_E2E_00616]

[PRS_E2E_00617]

[PRS_E2E_00618]

[PRS_E2E_00619]

[PRS_E2E_00620]

[PRS_E2E_00623]

[PRS_E2E_00624]

[PRS_E2E_00626]

[PRS_E2E_00627]

[PRS_E2E_00628]

[PRS_E2E_00629]

[PRS_E2E_00646]

[PRS_E2E_00648]

[PRS_E2E_00651]

[PRS_E2E_00654]

[PRS_E2E_00657]

[PRS_E2E_00660]

[PRS_E2E_00663]

[PRS_E2E_00666]

[PRS_E2E_00683]

[PRS_E2E_00684]

[PRS_E2E_00685]

[PRS_E2E_00686]

[PRS_E2E_00687]

AUTSSAR

Number Heading

[PRS_E2E_00688]

[PRS_E2E_00689]

[PRS_E2E_00690]

[PRS_E2E_00691]

[PRS_E2E_00692]

[PRS_E2E_00693]

[PRS_E2E_00694]

[PRS_E2E_00695]

[PRS_E2E_00696]

[PRS_E2E_00697]

[PRS_E2E_00698]

[PRS_E2E_00699]

[PRS_E2E_00700]

[PRS_E2E_00701]

[PRS_E2E_00702]

[PRS_E2E_00706]

[PRS_E2E_00712]

[PRS_E2E_00713]

[PRS_E2E_00714]

[PRS_E2E_00715]

[PRS_E2E_00716]

[PRS_E2E_00717]

[PRS_E2E_00718]

[PRS_E2E_00719]

[PRS_E2E_00720]

[PRS_E2E_00721]

[PRS_E2E_00722]

[PRS_E2E_00723]

[PRS_E2E_00724]

[PRS_E2E_00725]

[PRS_E2E_00726]

[PRS_E2E_00727]

[PRS_E2E_00728]

[PRS_E2E_00729]

[PRS_E2E_00730]

[PRS_E2E_00731]

[PRS_E2E_00735]

[PRS_E2E_00736]

AUTSSAR

Number

Heading

[PRS_E2E_00824]

[PRS_E2E_00831]

[PRS_E2E_00836]

[PRS_E2E_00840]

[PRS_E2E_UC_
00055]

[PRS_E2E UC_
00071]

[PRS_E2E_UC_
00072]

[PRS_E2E_UC_
00073]

[PRS_E2E_UC_
00170]

[PRS_E2E_UC_
00171]

[PRS_E2E_UC_
00173]

[PRS_E2E_UC_
00235]

[PRS_E2E_UC_
00236]

[PRS_E2E UC _
00238]

[PRS_E2E_UC_
00239]

[PRS_E2E_UC_
00308]

[PRS_E2E_UC_
00316]

[PRS_E2E_UC_
00317]

[PRS_E2E_UC_
00320]

[PRS_E2E_UC_
00321]

[PRS_E2E_UC_
00325]

[PRS_E2E_UC_
00327]

[PRS_E2E_UC_
00328]

AUTSSAR

Number Heading

[PRS_E2E_UC_
00351]

[PRS_E2E_UC_
00463]

[PRS_E2E_UC_
00464]

[PRS_E2E_UC_
00606]

[PRS_E2E_UC_
00743]

[PRS_E2E_UC_
00754]

[PRS_E2E UC_
00786]

[PRS_E2E_UC_
00797]

[PRS_E2E_USE_
00741]

Table B.7: Changed Specification Items in R21-11

B.3.6 Deleted Specification Iltems in R21-11

Number Heading

[PRS_E2E_0507]

Table B.8: Deleted Specification Items in R21-11

B.4 Traceable item history of this document according to
AUTOSAR Release R22-11

B.4.1 Added Constraints in R22-11

none

B.4.2 Changed Constraints in R22-11

none

AUTSSAR

B.4.3 Deleted Constraints in R22-11

none

B.4.4 Added Specification Iltems in R22-11

Number

Heading

[PRS_E2E_00851]

[PRS_E2E_00852]

[PRS_E2E_01205]

[PRS_E2E_01206]

[PRS_E2E_01207]

[PRS_E2E_01209]

[PRS_E2E_01210]

[PRS_E2E 01211]

[PRS_E2E_01212]

[PRS_E2E_01213]

[PRS_E2E_01214]

[PRS_E2E_01215]

[PRS_E2E_01216]

[PRS_E2E_01217]

[PRS_E2E_01218]

[PRS_E2E_01219]

[PRS_E2E_01220]

[PRS_E2E_01221]

[PRS_E2E_01222]

[PRS_E2E_01223]

[PRS_E2E_01224]

[PRS_E2E_01225]

[PRS_E2E_01226]

[PRS_E2E_01227]

[PRS_E2E_01228]

[PRS_E2E_01250]

[PRS_E2E_01251]

[PRS_E2E_01252]

[PRS_E2E_
CONSTR_06303]

MaxDeltaCounter for Client-Server Communication (client)

[PRS_E2E_UC_
01204]

Table B.9: Added Specification Iltems in R22-11

AUTSSAR

B.4.5 Changed Specification Items in R22-11

Number Heading

[PRS_E2E_00404]

[PRS_E2E_00405]

[PRS_E2E_00407]

[PRS_E2E_00409]

[PRS_E2E_00412]

[PRS_E2E_00413]

[PRS_E2E_00414]

[PRS_E2E_00416]

[PRS_E2E_00424]

[PRS_E2E_00425]

[PRS_E2E_00426]

[PRS_E2E_00428]

[PRS_E2E_00429]

[PRS_E2E_00431]

[PRS_E2E_00432]

[PRS_E2E_00433]

[PRS_E2E_00434]

[PRS_E2E_00436]

[PRS_E2E_00469]

[PRS_E2E_00470]

[PRS_E2E_01171]

[PRS_E2E_01178]

[PRS_E2E_01185]

[PRS_E2E_01186]

[PRS_E2E_01187]

[PRS_E2E_01188]

[PRS_E2E_01189]

[PRS_E2E_01190]

[PRS_E2E_01191]

[PRS_E2E_01192]

[PRS_E2E_01193]

[PRS_E2E_01194]

[PRS_E2E_01195]

[PRS_E2E_01196]

[PRS_E2E_01197]

[PRS_E2E_01198]

AUT<

SAR

Number

Heading

[PRS_E2E_01200]

[PRS_E2E_01201]

[PRS_E2E_
CONSTR_06300]

MaxDeltaCounter for Client-Server Communication (server)

Table B.10: Changed Specification Items in R22-11

B.4.6 Deleted Specification Items in R22-11

Number

Heading

[PRS_E2E_00326]

[PRS_E2E_00329]

[PRS_E2E_00330]

[PRS_E2E_00355]

[PRS_E2E_00356]

[PRS_E2E_00357]

[PRS_E2E_00358]

[PRS_E2E_00359]

[PRS_E2E_00360]

[PRS_E2E_00361]

[PRS_E2E_00362]

[PRS_E2E_00363]

[PRS_E2E_00364]

[PRS_E2E_00365]

[PRS_E2E_00366]

[PRS_E2E_00367]

[PRS_E2E_00368]

[PRS_E2E_00369]

[PRS_E2E_00376]

[PRS_E2E_00478]

[PRS_E2E_00481]

[PRS_E2E_00482]

[PRS_E2E_00483]

[PRS_E2E_00484]

[PRS_E2E_00485]

[PRS_E2E_00486]

[PRS_E2E_00487]

[PRS_E2E_00488]

AUTSSAR

Number Heading

[PRS_E2E_00489]

[PRS_E2E_00490]

[PRS_E2E_00491]

[PRS_E2E_00492]

[PRS_E2E_00493]

[PRS_E2E_00494]

[PRS_E2E_00495]

[PRS_E2E_00496]

[PRS_E2E_00497]

[PRS_E2E_00498]

[PRS_E2E_00499]

[PRS_E2E_00500]

[PRS_E2E_00501]

[PRS_E2E_00590]

[PRS_E2E_00593]

[PRS_E2E_00615]

[PRS_E2E_00616]

[PRS_E2E_00617]

[PRS_E2E_00618]

[PRS_E2E_00626]

[PRS_E2E_00627]

[PRS_E2E_00628]

[PRS_E2E_00629]

[PRS_E2E_00649]

[PRS_E2E_00650]

[PRS_E2E_00658]

[PRS_E2E_00659]

[PRS_E2E_00679]

[PRS_E2E_00680]

[PRS_E2E_00681]

[PRS_E2E_00682]

[PRS_E2E_00683]

[PRS_E2E_00684]

[PRS_E2E_00685]

[PRS_E2E_00686]

[PRS_E2E_00687]

[PRS_E2E_00688]

[PRS_E2E_00689]

AUTSSAR

Number Heading

[PRS_E2E_00690]

[PRS_E2E_00691]

[PRS_E2E_00692]

[PRS_E2E_00693]

[PRS_E2E_00694]

[PRS_E2E_00695]

[PRS_E2E_00696]

[PRS_E2E_00697]

[PRS_E2E_00698]

[PRS_E2E_00699]

[PRS_E2E_00700]

[PRS_E2E_00701]

[PRS_E2E_00702]

[PRS_E2E_00703]

[PRS_E2E_00704]

[PRS_E2E_00705]

[PRS_E2E_00708]

[PRS_E2E_00709]

[PRS_E2E_00710]

[PRS_E2E_00711]

[PRS_E2E_00712]

[PRS_E2E_00713]

[PRS_E2E_00714]

[PRS_E2E_00715]

[PRS_E2E_00716]

[PRS_E2E_00717]

[PRS_E2E_00718]

[PRS_E2E_00719]

[PRS_E2E_00720]

[PRS_E2E_00721]

[PRS_E2E_00722]

[PRS_E2E_00723]

[PRS_E2E_00724]

[PRS_E2E_00725]

[PRS_E2E_00726]

[PRS_E2E_00727]

[PRS_E2E_00728]

[PRS_E2E_00729]

AUTSSAR

Number Heading

[PRS_E2E_00730]

[PRS_E2E_00731]

[PRS_E2E_00732]

[PRS_E2E_00733]

[PRS_E2E_00734]

[PRS_E2E_00737]

[PRS_E2E_00741]

[PRS_E2E_00742]

[PRS_E2E_00744]

[PRS_E2E_00745]

[PRS_E2E_00746]

[PRS_E2E_00747]

[PRS_E2E_00748]

[PRS_E2E_00749]

[PRS_E2E_00750]

[PRS_E2E_00751]

[PRS_E2E_00752]

[PRS_E2E_00753]

[PRS_E2E_00756]

[PRS_E2E_00757]

[PRS_E2E_00758]

[PRS_E2E_00759]

[PRS_E2E_00760]

[PRS_E2E_00761]

[PRS_E2E_00762]

[PRS_E2E_00763]

[PRS_E2E_00764]

[PRS_E2E_00765]

[PRS_E2E_00766]

[PRS_E2E_00767]

[PRS_E2E_00768] Draft
[PRS_E2E_00769] Draft
[PRS_E2E_00770] Draft
[PRS_E2E_00771] Draft

[PRS_E2E_00772]

[PRS_E2E_00773]

[PRS_E2E_00774]

[PRS_E2E_00775]

AUTSSAR

Number Heading

[PRS_E2E_00776]

[PRS_E2E_00777]

[PRS_E2E_00778]

[PRS_E2E_00779]

[PRS_E2E_00780]

[PRS_E2E_00781]

[PRS_E2E_00784]

[PRS_E2E_00785]

[PRS_E2E_00787]

[PRS_E2E_00788]

[PRS_E2E_00789]

[PRS_E2E_00790]

[PRS_E2E_00791]

[PRS_E2E_00792]

[PRS_E2E_00793]

[PRS_E2E_00794]

[PRS_E2E_00795]

[PRS_E2E_00796]

[PRS_E2E_00799]

[PRS_E2E_00800]

[PRS_E2E_00801]

[PRS_E2E_00802]

[PRS_E2E_00803]

[PRS_E2E_00804]

[PRS_E2E_00805]

[PRS_E2E_00806]

[PRS_E2E_00807]

[PRS_E2E_00808]

[PRS_E2E_00809]

[PRS_E2E_00810]

[PRS_E2E_00811] Draft
[PRS_E2E_00812] Draft
[PRS_E2E_00813] Draft
[PRS_E2E_00814] Draft

[PRS_E2E_00815]

[PRS_E2E_00816]

[PRS_E2E_00817]

[PRS_E2E_00818]

AUTSSAR

Number Heading

[PRS_E2E_00819]

[PRS_E2E_00820]

[PRS_E2E_00821]

[PRS_E2E_00822]

[PRS_E2E_00823]

[PRS_E2E_00824]

[PRS_E2E_00825]

[PRS_E2E_00829]

[PRS_E2E_00830]

[PRS_E2E_00831]

[PRS_E2E_00832]

[PRS_E2E_00834]

[PRS_E2E_00835]

[PRS_E2E_00836]

[PRS_E2E_00837]

[PRS_E2E_00840]

[PRS_E2E_00841]

[PRS_E2E_00842]

[PRS_E2E_00843]

[PRS_E2E_00844]

[PRS_E2E_00848]

[PRS_E2E_00849]

[PRS_E2E_02355]

[PRS_E2E_02356]

[PRS_E2E_02357]

[PRS_E2E_02358]

[PRS_E2E_02359]

[PRS_E2E_02360]

[PRS_E2E_02361]

[PRS_E2E_02362]

[PRS_E2E_02363]

[PRS_E2E_02364]

[PRS_E2E_02365]

[PRS_E2E_02366]

[PRS_E2E_02367]

[PRS_E2E_02368]

[PRS_E2E_02369]

[PRS_E2E_02376]

AUTSSAR

Number Heading

[PRS_E2E_02615]

[PRS_E2E_02616]

[PRS_E2E_02617]

[PRS_E2E_02618]

[PRS_E2E_UC_
00327]

[PRS_E2E UC_
00328]

[PRS_E2E_UC_
00743]

[PRS_E2E_UC_
00754]

[PRS_E2E_UC_
00786]

[PRS_E2E_UC_
00797]

Table B.11: Deleted Specification Iltems in R22-11

B.5 Traceable item history of this document according to
AUTOSAR Release R23-11

B.5.1 Added Constraints in R23-11

none

B.5.2 Changed Constraints in R23-11

Number Heading

[PRS_E2E_ . . .

CONSTR Dependency between minOkStateInit, maxErrorStateInit and

03179] - windowSizeInit

[PRS_E2E , . .
CONSTR Dependency between minOkStateInvalid, maxErrorStateInvalid and
03181] - windowSizeInvalid

[PRS_E2E_

CONSTR_ Dependency between windowSizeInvalid and windowSizevValid
06301]

\Y

AUTSSAR

A
Number Heading
[PRS_E2E
CONSTR_ Dependency between windowSizeInit and windowSizevalid
06302]

Table B.12: Changed Constraints in R23-11

B.5.3 Deleted Constraints in R23-11

none

B.5.4 Added Specification Items in R23-11

Number

Heading

[PRS_E2E_00853]

Table B.13: Added Specification Items in R23-11

B.5.5 Changed Specification Items in R23-11

Number

Heading

[PRS_E2E_00121]

[PRS_E2E_00322]

[PRS_E2E_00324]

[PRS_E2E_00345]

[PRS_E2E_00480]

[PRS_E2E_00600] Mapping Profile 4,5,6,7,8,11,22,44,4m,7m,8m,44m to State Machine

[PRS_E2E_00607]

[PRS_E2E_00675]

[PRS_E2E_00676]

[PRS_E2E_00677]

Table B.14: Changed Specification Iltems in R23-11

AUTSSAR

B.5.6 Deleted Specification Iltems in R23-11

Number

Heading

[PRS_E2E_00601]

Mapping Profile 5 to State Machine

[PRS_E2E_00602]

Mapping Profile 6 to State Machine

[PRS_E2E_00603]

Mapping Profile 7 to State Machine

[PRS_E2E_00604]

Mapping Profile 11 to State Machine

[PRS_E2E_00605]

Mapping Profile 22 to State Machine

[PRS_E2E_00738]

Mapping Profile 44 to State Machine

[PRS_E2E_00826]

Mapping Profile 4m to State-Machine

[PRS_E2E_00827]

Mapping Profile 7m to State-Machine

[PRS_E2E_00850]

Mapping Profile 8 to State Machine

Table B.15: Deleted Specification Iltems in R23-11

B.6 Traceable item history of this document according to
AUTOSAR Release R24-11

B.6.1 Added Constraints in R24-11

none

B.6.2 Changed Constraints in R24-11

none

B.6.3 Deleted Constraints in R24-11

none

B.6.4 Added Specification Items in R24-11

Number

Heading

[PRS_E2E_00855]

Error Codes

[PRS_E2E_00856]

E2E Profile Xm Message Type Enumeration

[PRS_E2E_00857]

E2E Profile Xm Message Result Enumeration

[PRS_E2E_00858]

E2E Profile Protect State Type

[PRS_E2E_00859]

E2E Profile XX Check State Type

\Y%

AUTSSAR

A

Number

Heading

[PRS_E2E_00860]

E2E Profile Check Status Enumeration

[PRS_E2E_00862]

E2E Profile XXm Protect State Type

[PRS_E2E_00863]

E2E Profile XXm Check State Type

[PRS_E2E_00864]

E2E Profile XXm Check Status Enumeration

[PRS_E2E_00865]

E2E Profile 1 mechanisms

[PRS_E2E_00866]

Profile 1 Protect State Type

[PRS_E2E_00867]

E2E Profile 1 Check Status Type Members

[PRS_E2E_00868]

E2E Profile 1 Check Status Enumeration

[PRS_E2E_00869]

E2E Profile 1 Configuration Type

[PRS_E2E_00870]

E2E Profile 2 mechanisms

[PRS_E2E_00871]

E2E Profile 2 Protect State Type

[PRS_E2E_00872]

E2E Profile 2 Check Status Type

[PRS_E2E_00873]

E2E Profile 2 Check Status Enumeration

[PRS_E2E_00874]

E2E Profile 2 Configuration Type

[PRS_E2E_00875]

E2E Profile 4 mechanisms

[PRS_E2E_00876]

E2E Profile 4 Configuration Type

[PRS_E2E_00877]

E2E Profile 5 mechanisms

[PRS_E2E_00878]

E2E Profile 5 Protect State Type

[PRS_E2E_00879]

E2E Profile 5 Check Status Type

[PRS_E2E_00880]

E2E Profile 5 Check Status Enumeration

[PRS_E2E_00881]

E2E Profile 5 Configuration Type

[PRS_E2E_00882]

E2E Profile 6 mechanisms

[PRS_E2E_00883]

E2E Profile 6 Protect State Type

[PRS_E2E_00884]

E2E Profile 6 Check Status Type

[PRS_E2E_00885]

E2E Profile 6 Check Status Enumeration

[PRS_E2E_00886]

E2E Profile 6 Configuration Type

[PRS_E2E_00887]

E2E Profile 7 Configuration Type

[PRS_E2E_00888]

E2E Profile 11 mechanisms

[PRS_E2E_00889]

E2E Profile 11 Protect State Type

[PRS_E2E_00891]

E2E Profile 11 Check Status Type

[PRS_E2E_00892]

E2E Profile 11 Check Status Enumeration

[PRS_E2E_00893]

E2E Profile 11 Configuration Type

[PRS_E2E_00894]

E2E Profile 22 mechanisms

[PRS_E2E_00898]

E2E Profile 22 Configuration Type

[PRS_E2E_00899]

E2E Profile 4m mechanisms

[PRS_E2E_00900]

E2E Profile 4m Configuration Type

[PRS_E2E_00901]

E2E Profile 8 mechanisms

[PRS_E2E_00902]

E2E Profile 8 Configuration Type

\Y

AUTSSAR

A

Number

Heading

[PRS_E2E_00903]

E2E Profile 7m mechanisms

[PRS_E2E_00904]

E2E Profile 7 mechanisms

[PRS_E2E_00905]

E2E Profile 7m Configuration Type

[PRS_E2E_00906]

E2E Profile 44 mechanisms

[PRS_E2E_00907]

E2E Profile 44 Configuration Type

[PRS_E2E_00908]

E2E Profile 8m mechanisms

[PRS_E2E_00909]

E2E Profile 8m Configuration Type

[PRS_E2E_00910]

E2E Profile 44m mechanisms

[PRS_E2E_00911]

E2E Profile 44m Configuration Type

[PRS_E2E_00912]

E2E State Machine Configuration Type

[PRS_E2E_00913]

E2E State Machine State Type

[PRS_E2E_00914]

E2E State Machine Check Status Enumeration

[PRS_E2E_00915]

E2E State Machine Check Status Enumeration

[PRS_E2E_00916]

E2E Profile 1 specific Check Status Mapping since R4.2

[PRS_E2E_00917]

E2E Profile 1 specific Check Status Mapping prior to R4.2

[PRS_E2E_00918]

E2E Profile 2 specific Check Status Mapping since R4.2

[PRS_E2E_00919]

E2E Profile 2 specific Check Status Mapping prior to R4.2

[PRS_E2E_00920]

E2E Profile specific Check Status Mapping

[PRS_E2E_00921]

Mapping between profile independent and specific states

[PRS_E2E_00922]

Mapping between Communication Channel and State Machine States

[PRS_E2E_00923]

Disable/enable configuration parameters

[PRS_E2E_00924]

E2E profile specific configuration parameters

[PRS_E2E_00925]

E2E state machine configuration parameters

[PRS_E2E_01253]

Compute Offset of Protect Function

[PRS_E2E_01254]

Compute CRC - Data ID (Protect and Check Function)

[PRS_E2E_01255]

Compute CRC - Data ID (Forward Function)

[PRS_E2E_01318]

Profile 76 Mechanisms

[PRS_E2E_01400]

Profile 76 Initialization of counter

[PRS_E2E_01401]

Profile 76 CRC Calculation Algorithm

[PRS_E2E_01402]

Profile 76 CRC Calculation over E2E Header

[PRS_E2E_01403]

Profile 76 Check function

[PRS_E2E_01404]

E2E Profile 76 Check

[PRS_E2E_01405]

Profile 76 Verification of inputs of Check function

[PRS_E2E_01406]

Profile 76 Read Counter

[PRS_E2E_01407]

Profile 76 Read CRC

[PRS_E2E_01408]

Profile 76 Perform checks

[PRS_E2E_01409]

Profile 76 Protect Function

[PRS_E2E_01410]

E2E Profile 76 Protect State Type

\Y

AUTSSAR

A

Number

Heading

[PRS_E2E_01411]

Profile 76 Check Function

[PRS_E2E_01412]

E2E Profile 76 Check State Type

[PRS_E2E_01413]

Profile 76 Status

[PRS_E2E_01414]

E2E Profile 76 Check Status Enumeration

[PRS_E2E_01415]

Profile 76 Configuration

[PRS_E2E_01416]

E2E Profile 76 Configuration Type

[PRS_E2E_01420]

Profile 76 Protect Function

[PRS_E2E_01421]

E2E Profile 76 Protect

[PRS_E2E_01422]

Profile 76 Verification of Inputs of Protect Function

[PRS_E2E_01424]

Profile 76 Write Counter

[PRS_E2E_01427]

Profile 76 Compute CRC

[PRS_E2E_01428]

E2E Profile 76 Protect and Check step "Compute CRC"

[PRS_E2E_01429]

Profile 76 Write CRC

[PRS_E2E_01430]

Profile 76 Increment Counter

[PRS_E2E_01431]

E2E Profile 76 Protect step "Increment Counter CRC"

[PRS_E2E_01433]

Profile 76 Compute CRC

[PRS_E2E_01434]

E2E Profile 76 Protect step "Write Counter”

[PRS_E2E_01436]

E2E Profile 76 Check

[PRS_E2E_01437]

Parameter Config->combinedNoDatalnitCount

Table B.16: Added Specification ltems in R24-11

B.6.5 Changed Specification ltems in R24-11

Number

Heading

[PRS_E2E_00218]

[PRS_E2E_00219]

[PRS_E2E_00322]

[PRS_E2E_00324]

[PRS_E2E_00345]

[PRS_E2E_00372]

[PRS_E2E_00394]

[PRS_E2E_00479]

[PRS_E2E_00480]

[PRS_E2E_00503]

[PRS_E2E_00522]

[PRS_E2E_00531]

AUTSSAR

Number

Heading

[PRS_E2E_00533]

[PRS_E2E_00588]

[PRS_E2E_00589]

[PRS_E2E_00591]

[PRS_E2E_00592]

[PRS_E2E_00594]

[PRS_E2E_00596]

[PRS_E2E_00597]

[PRS_E2E_00598]

Mapping Profile 1 to State Machine

[PRS_E2E_00599]

Mapping Profile 2 to State Machine

[PRS_E2E_00600]

Mapping Profile 4,5,6,7,8,11,22,44,4m,7m,8m,44m to State Machine

[PRS_E2E_00637]

[PRS_E2E_00641]

Mapping Profile 1 to State Machine

[PRS_E2E_00644]

[PRS_E2E_00645]

[PRS_E2E_00646]

[PRS_E2E_00647]

[PRS_E2E_00648]

[PRS_E2E_00651]

[PRS_E2E_00652]

[PRS_E2E_00653]

[PRS_E2E_00654]

[PRS_E2E_00655]

[PRS_E2E_00656]

[PRS_E2E_00657]

[PRS_E2E_00660]

[PRS_E2E_00661]

[PRS_E2E_00662]

[PRS_E2E_00663]

[PRS_E2E_00666]

[PRS_E2E_00667]

[PRS_E2E_00668]

[PRS_E2E_00669]

E2E State Machine State Type

[PRS_E2E_00670]

Mapping Profile 2 to State Machine

[PRS_E2E_00673]

[PRS_E2E_00675]

[PRS_E2E_00676]

[PRS_E2E_00677]

AUT<=

SAR

Number

Heading

[PRS_E2E_00678]

[PRS_E2E_00706]

[PRS_E2E_00707]

[PRS_E2E_00735]

[PRS_E2E_00736]

[PRS_E2E_00739]

[PRS_E2E_00740]

[PRS_E2E_00743]

[PRS_E2E_00783]

[PRS_E2E_00851]

[PRS_E2E_00852]

[PRS_E2E_01107]

[PRS_E2E_01154]

[PRS_E2E_01155]

[PRS_E2E_01199]

[PRS_E2E_01200]

[PRS_E2E_01201]

[PRS_E2E_01202]

[PRS_E2E_01250]

[PRS_E2E_01251]

[PRS_E2E_01252]

Table B.17: Changed Specification ltems in R24-11

B.6.6 Deleted Specification Items in R24-11

Number

Heading

[PRS_E2E_00595]

[PRS_E2E_00638]

[PRS_E2E_00664]

[PRS_E2E_00665]

Table B.18: Deleted Specification Items in R24-11

AUTSSAR

B.7 Traceable item history of this document according to

AUTOSAR Release R25-11

B.7.1 Added Constraints in R25-11

none

B.7.2 Changed Constraints in R25-11

none

B.7.3 Deleted Constraints in R25-11
Number Heading
[PRS_E2E_
CONSTR_ Value range of windowSizevalid
03176]
[PRS_E2E_
CONSTR_ Dependency between maxErrorStatevalid
03177]
[PRS_E2E_
CONSTR Dependency between minOkStatevalid, minOkStateInit and
03178] - minOkStateInvalid
[PRS_E2E_ , . :
CONSTR Dependency between minOkStateInit, maxErrorStateInit and
03179] - windowSizelInit
[PRS_E2E_ , , ,
CONSTR Dependency between minOkStatevValid, maxErrorStatevalid and
03180] - windowSizeValid
[PRS_E2E_ , . .
CONSTR Dependency between minOkStateInvalid, maxErrorStateInvalid and
03181] - windowSizeInvalid
[PRS_E2E_
CONSTR_ MaxDeltaCounter for Client-Server Communication (server)
06300]
[PRS_E2E_
CONSTR_ Dependency between windowSizeInvalid and windowSizeValid
06301]
[PRS_E2E_
CONSTR_ Dependency between windowSizeInit and windowSizevalid
06302]
[PRS_E2E_
CONSTR_ MaxDeltaCounter for Client-Server Communication (client)
06303]

Table B.19: Deleted Constraints in R25-11

AUTSSAR

B.7.4 Added Specification Iltems in R25-11

Number

Heading

[PRS_E2E_01438]

Uniqueness of Data IDs

[PRS_E2E_01439]

Uniqueness of Data IDs

[PRS_E2E_01440]

Uniqueness of Data IDs

[PRS_E2E 01441]

Uniqueness of Data IDs

[PRS_E2E_01442]

Unigueness of Data IDs

[PRS_E2E_01443]

Interface to middleware

[PRS_E2E_01444]

Some/IP coverage

[PRS_E2E_01445]

E2E for methods

[PRS_E2E_01446]

Some/IP coverage

[PRS_E2E_01447]

MaxDeltaCounter for Client-Server Communication (server)

[PRS_E2E_01448]

MaxDeltaCounter for Client-Server Communication (client)

[PRS_E2E_01449]

cyclic call FTTI

[PRS_E2E_01450]

cyclic reception

[PRS_E2E_01451]

Alignment

[PRS_E2E_01452]

Alignment

[PRS_E2E_01453]

length of data

[PRS_E2E_01454]

unused areas of messages

[PRS_E2E_01455]

high nibble value at profiles 1 and 11

[PRS_E2E_01456]

Data ID values

[PRS_E2E_01457]

Value range of windowSizevalid

[PRS_E2E_01458]

Dependency between windowSizeInvalid and windowSizevalid

[PRS_E2E_01459]

Dependency between windowSizeInit and windowSizevValid

[PRS_E2E_01460]

Dependency between maxErrorStatevalid

[PRS_E2E_01461]

Dependency between minOkStatevalid, minOkStateInit and
minOkStateInvalid

[PRS_E2E_01462]

Dependency between minOkStateInit, maxErrorStateInit and
windowSizeInit

[PRS_E2E_01463]

Dependency between minOkStatevalid, maxErrorStatevalid and
windowSizeValid

[PRS_E2E_01464]

Dependency between minOkStateInvalid, maxErrorStateInvalid
and windowSizeInvalid

[PRS_E2E_01465]

transfer counter from request to response

[PRS_E2E_01466]

Data Types of PXX_GetHeaderInfo

[PRS_E2E_01467]

Data Types Description

[PRS_E2E_01468]

Data Types of PXXm_GetHeaderInfo

[PRS_E2E_01469]

Data Types Description

[PRS_E2E_01471]

PXX_GetHeaderInfo

\Y

AUTSSAR

Number

Heading

[PRS_E2E_01472]

PXXm_GetHeaderInfo

Table B.20: Added Specification Iltems in R25-11

B.7.5 Changed Specification Items in R25-11

Number

Heading

[PRS_E2E_00147]

[PRS_E2E_00876]

E2E Profile 4 Configuration Type

[PRS_E2E_00881]

E2E Profile 5 Configuration Type

[PRS_E2E_00886]

E2E Profile 6 Configuration Type

[PRS_E2E_00887]

E2E Profile 7 Configuration Type

[PRS_E2E_00900]

E2E Profile 4m Configuration Type

[PRS_E2E_00902]

E2E Profile 8 Configuration Type

[PRS_E2E_00905]

E2E Profile 7m Configuration Type

[PRS_E2E_00907]

E2E Profile 44 Configuration Type

[PRS_E2E_00909]

E2E Profile 8m Configuration Type

[PRS_E2E_00911]

E2E Profile 44m Configuration Type

[PRS_E2E_01403]

Profile 76 Check function

[PRS_E2E_01405]

Profile 76 Verification of inputs of Check function

[PRS_E2E_01406]

Profile 76 Read Counter

[PRS_E2E_01407]

Profile 76 Read CRC

[PRS_E2E_01408]

Profile 76 Perform checks

[PRS_E2E_01416]

E2E Profile 76 Configuration Type

[PRS_E2E_01420]

Profile 76 Protect Function

[PRS_E2E_01422]

Profile 76 Verification of Inputs of Protect Function

[PRS_E2E_01424]

Profile 76 Write Counter

[PRS_E2E 01427]

Profile 76 Compute CRC

[PRS_E2E_01429]

Profile 76 Write CRC

[PRS_E2E_01430]

Profile 76 Increment Counter

[PRS_E2E_01433]

Profile 76 Compute CRC

Table B.21: Changed Specification Iltems in R25-11

AUTSSAR

B.7.6 Deleted Specification Items in R25-11

Number

Heading

[PRS_E2E_01404]

E2E Profile 76 Check

[PRS_E2E_01421]

E2E Profile 76 Protect

[PRS_E2E_01428]

E2E Profile 76 Protect and Check step "Compute CRC"

[PRS_E2E_01431]

E2E Profile 76 Protect step "Increment Counter CRC"

[PRS_E2E_01434]

E2E Profile 76 Protect step "Write Counter”

[PRS_E2E_01436]

E2E Profile 76 Check

[PRS_E2E_UC_
00051]

[PRS_E2E _UC_
00055]

[PRS_E2E_UC_
00061]

[PRS_E2E_UC_
00062]

[PRS_E2E_UC_
00063]

[PRS_E2E_UC_
00071]

[PRS_E2E_UC_
00072]

[PRS_E2E_UC_
00073]

[PRS_E2E_UC_
00170]

[PRS_E2E_UC_
00171]

[PRS_E2E_UC_
00173]

[PRS_E2E_UC_
00235]

[PRS_E2E_UC_
00236]

[PRS_E2E_UC_
00238]

[PRS_E2E_UC_
00239]

[PRS_E2E_UC_
00308]

[PRS_E2E_UC_
00316]

AUTSSAR

Number Heading

[PRS_E2E_UC_
00317]

[PRS_E2E_UC_
00320]

[PRS_E2E_UC_
00321]

[PRS_E2E_UC_
00325]

[PRS_E2E_UC_
00351]

[PRS_E2E_UC_
00463]

[PRS_E2E UC_
00464]

[PRS_E2E UC _
00466]

[PRS_E2E_UC_
00606]

[PRS_E2E_UC_
01158]

[PRS_E2E_UC_
01168]

[PRS_E2E_UC_
01204]

[PRS_E2E USE_
00741]

Table B.22: Deleted Specification Iltems in R25-11

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Standards and Norms

	4 Constraints and assumptions
	4.1 Limitations
	4.1.1 Limitations in general
	4.1.2 Limitations in signal based communication
	4.1.3 Limitations in service oriented communication with events
	4.1.4 Limitations in service oriented communication in Client/Server architecture
	4.1.5 Signal to Service Translation

	4.2 Applicability to car domains

	5 Requirements Tracing
	6 Functional specification
	6.1 Overview of communication protection
	6.2 Overview of E2E Profiles
	6.2.1 Error detection
	6.2.2 Common Types of E2E Profiles
	6.2.2.1 Profile Xm Message Type Enumeration
	6.2.2.2 Profile Xm Message Result Enumeration

	6.2.3 General Functionality of an E2E-Profile
	6.2.3.1 Functionality of the Counter
	6.2.3.2 Timeout detection
	6.2.3.3 Cyclic Redundancy Check

	6.3 Specification of E2E Profiles - Generalized Part
	6.3.1 Counter
	6.3.2 Data ID
	6.3.3 Length
	6.3.4 CRC
	6.3.5 Timeout detection
	6.3.6 Creation of E2E-Header
	6.3.6.1 E2E_PXXProtect()
	6.3.6.2 E2E_PXXForward()

	6.3.7 Evaluation of the E2E-Header
	6.3.7.1 E2E_PXXCheck()

	6.3.8 Get Header Info
	6.3.9 Profile Data Types
	6.3.9.1 Profile Protect State Type
	6.3.9.2 Profile Check Status Type
	6.3.9.3 Profile Check Status Enumeration
	6.3.9.4 GetHeaderInfo Data Types

	6.4 Specification of E2E Profiles for Methods - Generalized Part
	6.4.1 Counter
	6.4.2 Data ID
	6.4.3 Length
	6.4.4 CRC
	6.4.5 Message Type
	6.4.6 Message Result
	6.4.7 Source ID
	6.4.8 Timeout detection
	6.4.9 Creation of the E2E header
	6.4.9.1 E2E_PXXmProtect()
	6.4.9.2 E2E_PXXmForward()

	6.4.10 Evaluation of the E2E Header
	6.4.10.1 E2E_PXXmSourceCheck()
	6.4.10.2 E2E_PXXmSinkCheck()

	6.4.11 Get Header Info
	6.4.12 Profile Data Types
	6.4.12.1 Profile XXm Protect State Type
	6.4.12.2 Profile XXm Check State Type
	6.4.12.3 Profile XXm Check Status Enumeration
	6.4.12.4 GetHeaderInfo Data Types

	6.5 Specification of E2E Profile 1
	6.5.1 Header Layout
	6.5.1.1 Counter
	6.5.1.2 Data ID
	6.5.1.3 CRC calculation

	6.5.2 Creation of E2E-Header
	6.5.2.1 E2E_P01Protect
	6.5.2.2 Calculate CRC
	6.5.2.3 E2E_P01Forward

	6.5.3 Evaluation of E2E- Header
	6.5.3.1 E2E_P01Check

	6.5.4 Profile Data Types
	6.5.4.1 Profile 1 Protect State Type
	6.5.4.2 Profile 1 Check Status Type
	6.5.4.3 Profile 1 Check Status Enumeration
	6.5.4.4 Profile 1 Configuration Type

	6.5.5 E2E Profile 1 Protocol Examples
	6.5.5.1 DataIDMode set to E2E_P01_DATAID_ALT
	6.5.5.2 DataIDMode set to E2E_P01_DATAID_LOW
	6.5.5.3 DataIDMode set to E2E_P01_DATAID_NIBBLE

	6.6 Specification of E2E Profile 2
	6.6.1 Header Layout
	6.6.1.1 Counter
	6.6.1.2 DataID
	6.6.1.3 CRC

	6.6.2 Creation of E2E-Header
	6.6.2.1 E2E_P02Protect
	6.6.2.2 E2E_P02Forward

	6.6.3 Evaluation of the E2E-Check
	6.6.3.1 E2E_P02Check

	6.6.4 Profile Data Types
	6.6.4.1 Profile 2 Protect State Type
	6.6.4.2 Profile 2 Check Status Type
	6.6.4.3 Profile 2 Check Status Enumeration
	6.6.4.4 Profile 2 Configuration Type

	6.6.5 E2E Profile 2 Protocol Examples

	6.7 Specification of E2E Profile 4
	6.7.1 Header Layout
	6.7.2 Profile 4 Configuration Type
	6.7.3 E2E Profile 4 Protocol Examples

	6.8 Specification of E2E Profile 5
	6.8.1 Header layout
	6.8.1.1 Counter
	6.8.1.2 Data ID
	6.8.1.3 Length
	6.8.1.4 CRC

	6.8.2 Creation of the E2E-Header
	6.8.2.1 E2E_P05Protect
	6.8.2.2 E2E_P05Forward

	6.8.3 Evaluation of the E2E-Header
	6.8.3.1 E2E_P05Check

	6.8.4 Profile Data Types
	6.8.4.1 Profile 5 Protect State Type
	6.8.4.2 Profile 5 Check Status Type
	6.8.4.3 Profile 5 Check Status Enumeration
	6.8.4.4 Profile 5 Configuration Type

	6.8.5 E2E Profile 5 Protocol Examples

	6.9 Specification of E2E Profile 6
	6.9.1 Header layout
	6.9.1.1 Counter
	6.9.1.2 Data ID
	6.9.1.3 Length
	6.9.1.4 CRC

	6.9.2 Creation of E2E-Header
	6.9.2.1 E2E_P06Protect
	6.9.2.2 E2E_P06Forward

	6.9.3 Evaluation of E2E-Header
	6.9.3.1 E2E_P06Check

	6.9.4 Profile Data Types
	6.9.4.1 Profile 6 Protect State Type
	6.9.4.2 Profile 6 Check Status Type
	6.9.4.3 Profile 6 Check Status Enumeration
	6.9.4.4 Profile 6 Configuration Type

	6.9.5 E2E Profile 6 Protocol Examples

	6.10 Specification of E2E Profile 7
	6.10.1 Header layout
	6.10.2 Profile 7 Configuration Type
	6.10.3 E2E Profile 7 Protocol Examples

	6.11 Specification of E2E Profile 8
	6.11.1 Header layout
	6.11.2 Profile 8 Configuration Type
	6.11.3 E2E Profile 8 Protocol Examples

	6.12 Specification of E2E Profile 11
	6.12.1 Header Layout
	6.12.1.1 Counter
	6.12.1.2 Data ID
	6.12.1.3 Length
	6.12.1.4 CRC

	6.12.2 Creation of the E2E-Header
	6.12.2.1 E2E_P11Protect
	6.12.2.2 E2E_P11Forward

	6.12.3 E2E_P11Check
	6.12.4 Profile 11 Data Types
	6.12.4.1 Profile 11 Protect State Type
	6.12.4.2 Profile 11 Check Status Type
	6.12.4.3 Profile 11 Check Status Enumeration
	6.12.4.4 Profile 11 Configuration Type

	6.12.5 E2E Profile 11 Protocol Examples
	6.12.5.1 DataIDMode set to E2E_P11DATAID_NIBBLE
	6.12.5.2 DataIDMode set to E2E_P11DATAID_NIBBLE, Offset set to 64

	6.13 Specification of E2E Profile 22
	6.13.1 Header layout
	6.13.1.1 Counter
	6.13.1.2 Data ID
	6.13.1.3 Length
	6.13.1.4 CRC

	6.13.2 Creation of E2E-Header
	6.13.2.1 E2E_P22Protect
	6.13.2.2 E2E_P22Forward

	6.13.3 Evaluation of E2E-Header
	6.13.3.1 E2E_P22Check

	6.13.4 Profile 22 Data Types
	6.13.4.1 Profile 22 Configuration Type

	6.13.5 E2E Profile 22 Protocol Examples
	6.13.5.1 Offset set to 64

	6.14 Specification of E2E Profile 44
	6.14.1 Header Layout
	6.14.2 Profile 44 Configuration Type
	6.14.3 E2E Profile 44 Protocol Examples

	6.15 Specification of E2E Profile 76
	6.15.1 Header Layout
	6.15.1.1 Counter
	6.15.1.2 Length
	6.15.1.3 CRC

	6.15.2 Creation of the E2E-Header
	6.15.2.1 E2E_P76Protect

	6.15.3 Evaluation of the E2E-Header
	6.15.3.1 E2E_P76Check

	6.15.4 Profile Data Types
	6.15.4.1 Profile 76 Protect State Type
	6.15.4.2 Profile 76 Check State Type
	6.15.4.3 Profile 76 Check Status Enumeration
	6.15.4.4 Profile 76 Configuration Type

	6.15.5 E2E Profile 76 Protocol Examples

	6.16 Specification of E2E Profile 4m
	6.16.1 Header Layout
	6.16.2 Profile 4m Configuration Type
	6.16.3 E2E Profile 4m Protocol Examples
	6.16.4 Request Example
	6.16.5 Response Example
	6.16.6 Error Response Example

	6.17 Specification of E2E Profile 7m
	6.17.1 Header Layout
	6.17.2 Profile 7m Configuration Type
	6.17.3 E2E Profile 7m Protocol Examples
	6.17.4 Request Example
	6.17.5 Response Example
	6.17.6 Error Response Example

	6.18 Specification of E2E Profile 8m
	6.18.1 Header Layout
	6.18.2 Profile 8m Configuration Type
	6.18.3 E2E Profile 8m Protocol Examples
	6.18.4 Request Example
	6.18.5 Response Example
	6.18.6 Error Response Example

	6.19 Specification of E2E Profile 44m
	6.19.1 Header Layout
	6.19.2 Profile 44m Configuration Type
	6.19.3 E2E Profile 44m Protocol Examples
	6.19.4 Request Example
	6.19.5 Response Example
	6.19.6 Error Response Example

	6.20 Specification of E2E state machine
	6.20.1 Overview of the state machine
	6.20.2 State machine specification
	6.20.2.1 Transition from E2E_SM_NODATA
	6.20.2.2 Transition from E2E_SM_INIT
	6.20.2.3 Transition from E2E_SM_VALID
	6.20.2.4 Transition from E2E_SM_INVALID

	6.20.3 State Machine Types
	6.20.3.1 E2E State Machine Configuration Type
	6.20.3.2 E2E State Machine State Type
	6.20.3.3 E2E State Machine Status Enumeration
	6.20.3.4 Profile specific Check Status to State Machine Check Status Mappings

	6.20.4 FTTI and E2E Parameters

	7 E2E API specification
	7.1 API of middleware to applications
	7.2 API of E2E

	8 Configuration Parameters
	8.1 General Constraints
	8.1.1 E2E State Machine Settings

	9 Protocol usage and guidelines
	9.1 E2E and SOME/IP
	9.2 Client-Server Communication
	9.3 Periodic use of E2E check
	9.4 Error handling
	9.5 Maximal lengths of Data, communication buses
	9.6 Functional Safety Requirements
	9.7 Message Layout
	9.7.1 Alignment of signals to byte limits
	9.7.2 Unused bits
	9.7.3 Byte order (Endianness)

	9.8 Configuration constraints on Data IDs
	9.8.1 Data IDs
	9.8.2 Double Data ID configuration of E2E Profile 1 and 11
	9.8.3 Alternating Data ID configuration of E2E Profile 1 and 11
	9.8.4 Nibble configuration of E2E Profile 1 and 11

	A Usage and generation of DataID Lists for E2E profile 2 and 22
	A.1 Example A (persistent routing error)
	A.1.1 Assumptions
	A.1.2 Solution
	A.1.3 Example B (forbidden configuration)

	A.2 Conclusion
	A.3 DataID List example

	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R19-11
	B.1.1 Added Constraints
	B.1.2 Changed Constraints
	B.1.3 Deleted Constraints
	B.1.4 Added Specification Items
	B.1.5 Changed Specification Items
	B.1.6 Deleted Specification Items

	B.2 Traceable item history of this document according to AUTOSAR Release R20-11
	B.2.1 Added Constraints in R20-11
	B.2.2 Changed Constraints in R20-11
	B.2.3 Deleted Constraints in R20-11
	B.2.4 Added Specification Items in R20-11
	B.2.5 Changed Specification Items in R20-11
	B.2.6 Deleted Specification Items in R20-11

	B.3 Traceable item history of this document according to AUTOSAR Release R21-11
	B.3.1 Added Constraints in R21-11
	B.3.2 Changed Constraints in R21-11
	B.3.3 Deleted Constraints in R21-11
	B.3.4 Added Specification Items in R21-11
	B.3.5 Changed Specification Items in R21-11
	B.3.6 Deleted Specification Items in R21-11

	B.4 Traceable item history of this document according to AUTOSAR Release R22-11
	B.4.1 Added Constraints in R22-11
	B.4.2 Changed Constraints in R22-11
	B.4.3 Deleted Constraints in R22-11
	B.4.4 Added Specification Items in R22-11
	B.4.5 Changed Specification Items in R22-11
	B.4.6 Deleted Specification Items in R22-11

	B.5 Traceable item history of this document according to AUTOSAR Release R23-11
	B.5.1 Added Constraints in R23-11
	B.5.2 Changed Constraints in R23-11
	B.5.3 Deleted Constraints in R23-11
	B.5.4 Added Specification Items in R23-11
	B.5.5 Changed Specification Items in R23-11
	B.5.6 Deleted Specification Items in R23-11

	B.6 Traceable item history of this document according to AUTOSAR Release R24-11
	B.6.1 Added Constraints in R24-11
	B.6.2 Changed Constraints in R24-11
	B.6.3 Deleted Constraints in R24-11
	B.6.4 Added Specification Items in R24-11
	B.6.5 Changed Specification Items in R24-11
	B.6.6 Deleted Specification Items in R24-11

	B.7 Traceable item history of this document according to AUTOSAR Release R25-11
	B.7.1 Added Constraints in R25-11
	B.7.2 Changed Constraints in R25-11
	B.7.3 Deleted Constraints in R25-11
	B.7.4 Added Specification Items in R25-11
	B.7.5 Changed Specification Items in R25-11
	B.7.6 Deleted Specification Items in R25-11

