AUTSSAR

Document Title

Specification of DDS Service
Communication Protocol

Document Owner

AUTOSAR

Document Responsibility AUTOSAR
Document Identification No 1110
Document Status published
Part of AUTOSAR Standard Foundation
Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR

2025-11-27 | R25-11 Release * No content changes
Management
AUTOSAR

2024-11-27 | R24-11 Release
Management

« Initial release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1

Introduction and overview

1.1 Protocol purpose and objectives oL
1.2 Applicability of the protocol oL
1.2.1 Constraints and assumptions,
1.2.2 Limitations
1.3 Dependencies
1.3.1 Dependencies to other protocol layers
1.3.2 Dependencies to other standards andnorms
1.3.3 Dependencies to the Application Layer

Use Cases

Related documentation

3.1 Input documents & related standardsandnorms
3.2 Related specification

Protocol Requirements
4.1 Requirements Traceability,
Definition of terms and acronyms

5.1 Acronyms and abbreviations o oL
5.2 Definitionofterms

Protocol specification

6.1 Introduction
6.2 Messageformat
6.3 Messagetypes
6.4 Services/Commands
6.5 Sequences (lowerlayer)
6.6 Errormessages
6.7 HandlingEvents
6.8 Handling Triggers e
6.9 HandlingMethod Calls
6.10Handling Fields
6.11Serializationof Payload
6.11.1BasicDataTypes.
6.11.2 Enumeration Data Types
6.11.3 Structured Data Types (structs)
6.11.4Strings e
6.11.5Vectorsand Arrays
6.11.6 Associative Maps
6.11.7Variant
6.12End-to-end communication protection

N OO0 oMo O oo O

© 0 0

AUTSSAR

7 Configuration parameters 61
7.1 Service Oriented Communication 62
8 Protocol usage and guidelines 64
A Appendix 65
B Change history of AUTOSAR traceable items 66
B.1 Traceable item history of this document according to AUTOSAR Release
R25-11 . . e 66
B.1.1 Added Specification Itemsin R25-11 66
B.1.2 Changed Specification ltems in R25-11 66
B.1.3 Deleted Specification ltemsin R25-11 66
B.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e e 66
B.2.1 Added Specification ltemsin R24-11 66
B.2.2 Changed Specification ltemsin R24-11 70

B.2.3 Deleted Specification ltemsin R24-11 70

AUTSSAR

1 Introduction and overview

This protocol specification details the OMG® DDS® data types, QoS policies, se-
guences and semantics of the AUTOSAR Protocol for Service-Oriented Communica-
tion over DDS.

AUTOSAR platforms employ, among others, the Service-Oriented Architecture (SOA)
communications paradigm. In SOA systems, Service Interfaces cohesively
grouping Elements of various kinds are provided, required or both as Service In-
stances by Applications.

In this context, OMG® DDS®, as enabled by the Classic Platform Dds Basic Software
Module and the Adaptive Platform DDS Network Binding, can be used to exercise
Service-Oriented Communication between Applications providing (offering) service
Instances and Applications requiring (consuming) them.

1.1 Protocol purpose and objectives

This protocol defines how the OMG® DDS® middleware standard can be employed
to exercise Service-Oriented Communication between Applications providing (offering)
Service Instances and Applications requiring (consuming) them.

1.2 Applicability of the protocol

This protocol applies to DDS Service-Oriented Communication in:
» The AUTOSAR Classic Platform
» The AUTOSAR Adaptive Platform
* Non-AUTOSAR platforms targeting AUTOSAR interoperability

1.2.1 Constraints and assumptions

The following constraints and assumptions apply to the present document:

» The OMG® DDS® family of standards already define wire protocols, data type
description formats, QoS policies and APIs

» Conversely, in this document "protocols" are described in terms of OMG® DDS®
APl interactions, QoS policies configuration and data type definitions involved in
Service Interface advertisement and discovery processes

AUTSSAR

1.2.2 Limitations

Not applicable.

1.3 Dependencies

1.3.1 Dependencies to other protocol layers

The protocols described in this document rely, indirectly, upon the following OMG®
DDS® protocol standards:

« DDS Wire Interoperability protocol (DDSI-RTPS) defined in [1]

» DDS-XTYPES Minimal Programming Interface and Network Interoperability Pro-
files defined in [2]

1.3.2 Dependencies to other standards and norms

The protocols described in this document target the following OMG® DDS® standards
and profiles:

» DDS Minimum Profile defined in [3]
» DDS Wire Interoperability protocol (DDSI-RTPS) defined in [1]

» DDS-XTYPES Minimal Programming Interface and Network Interoperability Pro-
files defined in [2]

1.3.3 Dependencies to the Application Layer

Not applicable.

AUTSSAR

2 Use Cases

tion

ID Name Description

UC_001 Provide An Application offers, and publishes samples of, an Event
event-based of a Service Interface to other Applications in the network.
communica-
tion

UC_002 Require An Application subscribes to, and receives samples of,
event-based an Event of a Service Interface, possibly offered by other
communica- Applications in the network.
tion

UC_003 Provide An Application offers, and publishes samples of, a Trigger
trigger-based | of a Service Interface to other Applications in the network.
communica-
tion

UC 004 Require An Application subscribes to, and receives samples of, a
trigger-based | Trigger of a Service Interface, possibly offered by other
communica- Applications in the network.
tion

UC_005 Provide An Application offers, by publishing/receiving samples of,
method- a Method of a Service Interface to other Applications in
based the network.
communica-
tion

UC_006 Require An Application calls, by publishing/receiving samples of,
method- a Method of a Service Interface, possibly offered by other
based Applications in the network.
communica-
tion

ucC_o007 Provide An Application offers, by publishing/receiving samples of,
field-based a Field of a Service Interface to other Applications in the
communica- network.
tion

uUC_008 Require An Application calls/subscribes to, by publishing/receiving
field-based samples of, a Field of a Service Interface, possibly
communica- offered by other Applications in the network.

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] DDS Interoperability Wire Protocol, Version 2.2
http://www.omg.org/spec/DDSI-RTPS/2.2

[2] Extensible and Dynamic Topic Types for DDS, Version 1.2
https://www.omg.org/spec/DDS-XTypes/1.2

[3] Data Distribution Service (DDS), Version 1.4
http://www.omg.org/spec/DDS/1.4

[4] RPC over DDS, Version 1.0
https://www.omg.org/spec/DDS-RPC/1.0

[5] Interface Definition Language (IDL), Version 4.2
https://www.omg.org/spec/IDL/4.2

[6] E2E Protocol Specification
AUTOSAR_FO_PRS_EZ2EProtocol

3.2 Related specification

Not applicable.

http://www.omg.org/spec/DDSI-RTPS/2.2
https://www.omg.org/spec/DDS-XTypes/1.2
http://www.omg.org/spec/DDS/1.4
https://www.omg.org/spec/DDS-RPC/1.0
https://www.omg.org/spec/IDL/4.2

AUTSSAR

4 Protocol Requirements

Implementation of this protocol requires an OMG® DDS® middleware implementation
supporting:

« DDS Minimum Profile defined in [3]
» DDS Wire Interoperability protocol (DDSI-RTPS) defined in [1]

« DDS-XTYPES Minimal Programming Interface and Network Interoperability Pro-
files defined in [2]

4.1 Requirements Traceability

Requirement Description Satisfied by

[FO_RS_Dds_00001] DDS Compliance [FO_PRS_DDS_00100] [FO_PRS_DDS_00101]
[FO_PRS_DDS_00102] [FO_PRS_DDS_00103]
[FO_PRS_DDS_00104] [FO_PRS_DDS_00105]
[FO_PRS_DDS_00106] [FO_PRS_DDS_00107]
[FO_PRS_DDS_00108] [FO_PRS_DDS_00109]
[FO_PRS_DDS_00110] [FO_PRS_DDS_00111]
[FO_PRS_DDS_00112] [FO_PRS_DDS_00113]
[FO_PRS_DDS_00200] [FO_PRS_DDS_00201]
[FO_PRS_DDS_00202] [FO_PRS_DDS_00203]
[FO_PRS_DDS_00204] [FO_PRS_DDS_00205]
[FO_PRS_DDS_00206] [FO_PRS_DDS_00207]
[FO_PRS_DDS_00208] [FO_PRS_DDS_00209]
[FO_PRS_DDS_00210] [FO_PRS_DDS_00211]
[FO_PRS_DDS_00212] [FO_PRS_DDS_00300]
[FO_PRS_DDS_00301] [FO_PRS_DDS_00302]
[FO_PRS_DDS_00303] [FO_PRS_DDS_00304]
[FO_PRS_DDS_00305] [FO_PRS_DDS_00306]
[FO_PRS_DDS_00307] [FO_PRS_DDS_00308]
[FO_PRS_DDS_00309] [FO_PRS_DDS_00310]
[FO_PRS_DDS_00311] [FO_PRS_DDS_00312]
[FO_PRS_DDS_00313] [FO_PRS_DDS_00400]
[FO_PRS_DDS_00401] [FO_PRS_DDS_00402]
[FO_PRS_DDS_00403] [FO_PRS_DDS_00404]
[FO_PRS_DDS_00405] [FO_PRS_DDS_00406]
[FO_PRS_DDS_00407] [FO_PRS_DDS_00408]
[FO_PRS_DDS_00409] [FO_PRS_DDS_00410]
[FO_PRS_DDS_00411] [FO_PRS_DDS_00412]
[FO_PRS_DDS_00413] [FO_PRS_DDS_00414]
[FO_PRS_DDS_00415] [FO_PRS_DDS_00416]
[FO_PRS_DDS_00417] [FO_PRS_DDS_00418]
[FO_PRS_DDS_00419] [FO_PRS_DDS_00500]
[FO_PRS_DDS_00501] [FO_PRS_DDS_00502]
[FO_PRS_DDS_00503] [FO_PRS_DDS_00504]
[FO_PRS_DDS_00505] [FO_PRS_DDS_00506]
[FO_PRS_DDS_00507] [FO_PRS_DDS_00508]
[FO_PRS_DDS_00509] [FO_PRS_DDS_00510]

[FO_RS_Dds_00002] DDS standard serialization rules [FO_PRS_DDS_00500] [FO_PRS_DDS_00501]
[FO_PRS_DDS_00502] [FO_PRS_DDS_00503]
[FO_PRS_DDS_00504] [FO_PRS_DDS_00505]
[FO_PRS_DDS_00506] [FO_PRS_DDS_00507]
[FO_PRS_DDS_00508] [FO_PRS_DDS_00509]
[FO_PRS_DDS_00510]

AUTSSAR

Requirement

Description

Satisfied by

[FO_RS_Dds_00005]

DDS Quality of Service

[FO_PRS_DDS_00100] [FO_PRS_DDS_00104]
[FO_PRS_DDS_00200] [FO_PRS_DDS_00204]
[FO_PRS_DDS_00300] [FO_PRS_DDS_00304]
[FO_PRS_DDS_00305] [FO_PRS_DDS_00306]
[FO_PRS_DDS_00307] [FO_PRS_DDS_00400]
[FO_PRS_DDS_00404] [FO_PRS_DDS_00405]
[FO_PRS_DDS_00407] [FO_PRS_DDS_00410]
[FO_PRS_DDS_00411] [FO_PRS_DDS_00412]
[FO_PRS_DDS_00413] [FO_PRS_DDS_00603]

[FO_RS_Dds_00007]

Type Definition

[FO_PRS_DDS 00100] [FO_PRS_DDS_00101]
[FO_PRS_DDS_00200] [FO_PRS_DDS_00201]
[FO_PRS_DDS_00301] [FO_PRS_DDS_00302]
[FO_PRS_DDS_00303] [FO_PRS_DDS_00401]
[FO_PRS_DDS_00408] [FO_PRS_DDS_00409]
[FO_PRS_DDS_00501] [FO_PRS_DDS_00502]
[FO_PRS_DDS_00503] [FO_PRS_DDS_00504]
[FO_PRS_DDS_00505] [FO_PRS_DDS_00506]
[FO_PRS_DDS_00507] [FO_PRS_DDS_00508]
[FO_PRS_DDS_00509] [FO_PRS_DDS_00510]

[FO_RS_Dds_00008]

Customization

[FO_PRS_DDS_00100] [FO_PRS_DDS_00104]
[FO_PRS_DDS_00105] [FO_PRS_DDS_00106]
[FO_PRS_DDS_00107] [FO_PRS_DDS_00108]
[FO_PRS_DDS_00109] [FO_PRS_DDS_00110]
[FO_PRS_DDS 00111] [FO_PRS_DDS 00112]
[FO_PRS_DDS_00113] [FO_PRS_DDS_00200]
[FO_PRS_DDS _00202] [FO_PRS_DDS_00203]
[FO_PRS_DDS_00204] [FO_PRS_DDS_00205]
[FO_PRS_DDS_00206] [FO_PRS_DDS_00207]
[FO_PRS_DDS_00208] [FO_PRS_DDS_00209]
[FO_PRS_DDS_00210] [FO_PRS_DDS_00211]
[FO_PRS_DDS 00212] [FO_PRS_DDS_00300]
[FO_PRS_DDS_00304] [FO_PRS_DDS_00305]
[FO_PRS_DDS 00306] [FO_PRS_DDS_00307]
[FO_PRS_DDS_00308] [FO_PRS_DDS_00309]
[FO_PRS_DDS_00310] [FO_PRS_DDS_00311]
[FO_PRS_DDS_00312] [FO_PRS_DDS_00313]
[FO_PRS_DDS_00400] [FO_PRS_DDS_00402]
[FO_PRS_DDS_00403] [FO_PRS_DDS_00404]
[FO_PRS_DDS_00405] [FO_PRS_DDS_00406]
[FO_PRS_DDS _00407] [FO_PRS_DDS_00410]
[FO_PRS_DDS_00411] [FO_PRS_DDS_00412]
[FO_PRS_DDS 00413] [FO_PRS_DDS_00414]
[FO_PRS_DDS_00415] [FO_PRS_DDS_00416]
[FO_PRS_DDS_00417] [FO_PRS_DDS_00418]
[FO_PRS_DDS_00419]

[FO_RS_Dds_00010]

Safety mechanism

[FO_PRS_DDS_00601] [FO_PRS_DDS_00602]
[FO_PRS_DDS_00603] [FO_PRS_DDS_00604]

[FO_RS_Dds_00015]

Publish

[FO_PRS_DDS _00102] [FO_PRS_DDS_00202]
[FO_PRS_DDS_00304] [FO_PRS_DDS_00307]
[FO_PRS_DDS_00308] [FO_PRS_DDS_00309]
[FO_PRS_DDS_00313] [FO_PRS_DDS_00402]
[FO_PRS_DDS 00414] [FO_PRS_DDS_00415]
[FO_PRS_DDS_00419]

AUTSSAR

Requirement

Description

Satisfied by

[FO_RS_Dds_00016]

Subscribe

[FO_PRS_DDS_00103] [FO_PRS_DDS_00104]
[FO_PRS_DDS_00105] [FO_PRS_DDS_00203]
[FO_PRS_DDS _00204] [FO_PRS_DDS_00205]
[FO_PRS_DDS_00211] [FO_PRS_DDS_00212]
[FO_PRS_DDS_00305] [FO_PRS_DDS_00306]
[FO_PRS_DDS_00310] [FO_PRS_DDS_00311]
[FO_PRS_DDS_00312] [FO_PRS_DDS_00403]
[FO_PRS_DDS_00404] [FO_PRS_DDS_00405]
[FO_PRS_DDS_00416]

[RS_CM_00204]

Service Oriented Communication
realization with configured protocol

[FO_PRS DDS 00416]

[RS_CM_00212]

Communication Management shall
provide an interface to call methods
of other applications synchronously

[FO_PRS_DDS_00416]

[RS_CM_00213]

Communication Management shall
provide an interface to call service
methods asynchronously

[FO_PRS_DDS_00416]

[RS_CM_00220]

Communication Management shall
trigger the set method of the
application which provides the field

[FO_PRS DDS _00416]

[RS_CM_00221]

Communication Management shall
trigger the get method of the
application which provides the field

[FO_PRS_DDS_00416]

Table 4.1: Requirements Tracing

AUTSSAR

5 Definition of terms and acronyms

5.1 Acronyms and abbreviations

Abbreviation / Acronym:

Description:

OMG

Object Management Group

QoS Quality of Service

DDSI Data Distribution Service Interoperability
RTPS Real-Time Publish-Subscribe

XTYPES eXtensible Types

Table 5.1: Acronyms and abbreviations used in the scope of this Document

5.2 Definition of terms

Terms:

Description:

Entity

The base class for all other DDS Entities.

DomainParticipant

Represents the participation of the application on a communication plane that
isolates applications running on the same set of physical computers from each
other.

Topic Reprepsents the most basic description of the data to be published and
subscribed.

Publisher Provides the actual dissemination of publications.

DataWriter Provides the application functionality to set the value of the data to be published
under a given Topic.

Subscriber Provides the actual reception of the data resulting from its subscriptions.

DataReader Provides the application with (1) functionality to declare the data it wishes to
receive (i.e., make a subscription) and (2) to access the data received by the
attached Subscriber.

QoS Profile Grouping of QoS Policy values applicable to one or more DDS Entities.

Table 5.2: Definition of terms in the scope of this Document

AUTSSAR

6 Protocol specification

6.1 Introduction

In the scope of the Service-Oriented Discovery protocol protocol three distinct Re-
source ldentification Mechanisms can be configured, defining how Service Inter-
faces and their individual Instances (the "Resources") are uniquely instantiated and
addressable with a particular DDS Domain:

* The Partition -based mechanism, where DDS Publisher and Subscriber En-
tity PARTITION QOS policy is leveraged to isolate each Service Instance
and their consumers into a uniquely named DDS Partition. De-facto choice in:

— DDS pomainParticipant QoS -based discovery protocol.
But also available in:
— DDS Topic -based discovery protocol.

» The DDS Topic Prefix -based mechanism, where unique Service Instance
Identifiers are included in all the DDS Topic names conforming the Service
Interface. Available in:

— DDS Topic -based discovery protocol.

» The Instance -based mechanism, where in-band (i.e. included in AUTOSAR DDS
Data Types) unique Service Instance ldentifier Fields are used to uniquely
identify different Service Instances. Available in:

— DDS Topic -based discovery protocol.

As shown in the protocol specification items to follow, the choice of Resource Identi-
fication Mechanism influences how different Service Instances convey Elements
such as Events, Triggers, Methods and Fields over DDS.

6.2 Message format
Message format is defined by the OMG® DDSI-RTPS standard ([1]).

6.3 Message types
Message types are defined by the OMG® DDSI-RTPS standard ([1]).

6.4 Services / Commands

Not applicable.

AUTSSAR

6.5 Sequences (lower layer)

Sequences are defined by the OMG® DDS® standard ([3]).

6.6 Error messages

Error messages are defined by the OMG® DDSI-RTPS standard ([1]).

AUTSSAR

6.7 Handling Events

[FO_PRS_DDS 00100] Mapping Events to DDS Topics
Status: DRAFT

Upstream requirements: FO_RS_Dds 00001, FO_RS_Dds 00005, FO_RS_Dds 00007, FO_-
RS_Dds_00008

[Every Event of a ServiceInterface shall be mappedto a DDS Topic. This DDS
Topic shall be configured as follows:

» The DDS Topic name shall be derived according to the following rules:

— If the Service Instance has been advertised with the
<DDSServicelInstanceResourceldentifierType> attribute
set to SERVICE_INSTANCE_RESOURCE_PARTITION oOr SER-
VICE_INSTANCE_RESOURCE_INSTANCE_ID, then the DDS Topic name
shall be set t0 ara.com://services/<svcId>/<svcMajVersion>.
<svcMinVersion>/<eventTopicName>

— Additionally, if the provided or consumed Service Instance has been ad-
vertised with the <DDSServicelInstanceResourceldentifierType>
attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, then sam-
ples of this DDS Topic shall be sent and received via DDS DataWriters
and DataReaders whose respective parent DDS Publisher and Sub-
scriber objects include the following partition in the PARTITION QoS pol-

icy: ara.com://services/<svcId>/<svcInId>

— Finally, if the provided or consumed Service Instance has been advertised
with the <DDSServiceInstanceResourceldentifierType> attribute
set t0 SERVICE_INSTANCE_TOPIC_PREFIX, then the topic name shall
besetto ara.com://services/<svcld>/<svcInId>/<eventTopic-—
Name>

— Where:

<sveId> is the value of <DDSServiceInterfaceID> for the Service In-
terface.

<sveInId> is the stringified value of <DDSServiceInstanceID> for the
Service Instance.

<svcMajVersion> is the stringified value of <DDSInterfaceMa-
jorVersion> for the Service Interface.

<svcMinVersion> is the stringified value of <DDSInterfaceMi-
norVersion> for the Service Interface.

<eventTopicName> is the value of <DDSEvent TopicName> for the Ser-
vice Interface Event.

AUTSSAR

» The Topic Data Type of the DDS Topic shall be defined as specified in
[FO_PRS_DDS_00101], and shall be registered under the equivalent data type

name.

]

[FO_PRS_DDS 00101] DDS Topic data type definition
Status: DRAFT

Upstream requirements: FO_RS Dds 00001, FO_RS_Dds 00007
[The data type of the DDS Topic representing an Event shall be constructed accord-
ing to the following IDL definition:

1 struct <EventTypeName>EventType {
2 @key uintl6 instance_id;

3 <EventTypeName> data;
4

}i

Where:

<EventTypeName> is the symbol defined forthe Implementation Data Type as-
sociated with the Event

instance_id is a @key member of the type, which identifies all samples with the
same instance_id as samples of the same DDS Topic Instance.

data is the actual value of the Event, which shall be constructed and encoded ac-
cording to the DDS serialization rules. The @external annotation is optionally
allowed, for cases where references yield implementation benefits over values.

]

[FO_PRS_DDS 00102] Sending an Event sample
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00015

[When instructed to send an Event sample, a new sample shall be constructed of the
equivalent DDS Topic data type according to [FO_PRS_DDS 00101].

* The Instance Id field (instance_id) shall be set to the value of <DDSServi-
celnstancelID>.

» The Data field (data) shall be set to the data to be sent.

This sample shall be then passed as a parameter to the write () function of the DDS
DataWriter associated with the Event, which shall serialize the sample according
to the serialization rules, and publish it over DDS. |

The DDS serialization rules are defined in section 6.11.

AUTSSAR

[FO_PRS_DDS 00103] Subscribing to an Event
Status: DRAFT
Upstream requirements: FO_RS_Dds 00001, FO_RS_Dds 00016

[When instructed to subscribe to an Event with a given cache size, a DDS
DataReader (see [FO_PRS_DDS 00104]) shall be created using a DDS sub-
scriber according to [FO_PRS_DDSSD_00101], [FO_PRS_DDSSD_00105], [FO_
PRS_DDSSD_00201] and [FO_PRS_DDSSD_00205]. |

[FO_PRS_DDS_00104] Creating a DDS DataReader for Event subscription
Status: DRAFT

Upstream requirements: FO_RS_Dds 00001, FO_RS_Dds 00016, FO_RS_Dds 00005, FO_-
RS Dds_ 00008

[A DDS DataReader for the DDS Topic associated with the Event of a Servi-
ceInterface (see [FO_PRS_DDS 00100]) shall be created. If the provided or con-
sumed Service Instance has been advertised with the identifier_ type attribute set
to SERVICE_INSTANCE_RESOURCE_PARTITION, to ensure the proxy communicates
only with the service instance it is bound to, the DDS DDS Subscriber created in
[FO_PRS _DDSSD _00105] or [FO_PRS_DDSSD_00205] shall be used to create the
DDS DataReader.

The DDS pataReader shall be configured as follows:

* DataReaderQos: Defines the DDS QoS Profile to be used for the DDS
DataReader, obtained from <DDSServiceInstanceEventQosProfile>. To
configure the DataReader’s cache size, the value of the DataReader’s HIS-
TORY QoS shall be overridden as follows:

— history.kind = KEEP_LAST_HISTORY_QOS
— history.depth = <cache size wvalue>

* Listener: A DDS DataReader Listener listener as per
[FO_PRS DDS 00105].

* StatusMask: Shall be set to STATUS_MASK_NONE

]

[FO_PRS_DDS_00105] Defining a DDS DataReader Listener for a subscribed

Event
Status: DRAFT

Upstream requirements: FO_RS_Dds_ 00001, FO_RS_Dds_00008, FO_RS Dds_00016

[A DDS DDS pDataReader Listener instance shall be created, capable of handling
notifications when a new sample is received and/or when the matched status of the
Event subscription changes. This object shall handle samples of the DDS Topic
data type specified in [FO_PRS_DDS 00101].

The DDS DataReader Listener shall provide the following callbacks according to
the specified instructions:

AUTSSAR

* An on_data_available () callback that dispatches received event samples
to upper layer handler when valid samples become avilable in the DDS
DataReader cache.

* An on_subscription_matched () callback that forwards the subscription
state to upper layers handlers.

]

[FO_PRS_DDS _00106] Unsubscribing from an Event
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00008

[When instructed to unsubscribe from a service Event, the DDS DataReader asso-
ciated with the Event shall be deleted. |

[FO_PRS_DDS_00107] Obtaining subscription state from an Event
Status: DRAFT
Upstream requirements: FO_RS_Dds 00001, FO_RS_Dds_00008

[When instructed to provide the subscription state, the existence of a DDS
DataReader associated with the Event subscription (see [FO_PRS _DDS_00103])
shall be checked:

«If the DDS DataReader does exist, the DDS DataReader’s
get_subscription_matched_status () function shall be called, then:

— If the total_count attribute of the resulting SubscriptionMatched-
Status is greater than zero, the subscription state shall be determined as
subscribed.

— Otherwise, the subscription state shall be determined as pending.

» Otherwise, if the DDS DataReader does not exist, the subscription state shall
be determined as not subscribed.

]

[FO_PRS_DDS 00108] Retrieving new data samples from an Event
Status: DRAFT
Upstream requirements: FO_RS Dds 00001, FO_RS_Dds 00008

[When instructed to retrieve new Event data samples, a take () operation shall be
performed on the DDS DataReader associated to the Event. |

[FO_PRS_DDS_00109] Requesting nhumber of free sample slots from an Event
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00008

[When instructed to provide the number of free sample slots, the number of free sam-
ple slots in the DDS DataReader cache shall be returned. |

AUTSSAR

[FO_PRS_DDS 00110] Registering an Event reception handler
Status: DRAFT
Upstream requirements: FO_RS_Dds 00001, FO_RS_Dds 00008

[When instructed to register an Event reception handler, the following operations shall
be performed:

+ Get a reference to the DDS DataReader’s Listener (see
[FO_PRS_DDS_00105]) using the get_1listener () function.

» Setthe Listener’s on_data_available callback to the new event reception
handler.

» Update the DDS DataReader’s Listener by calling set_listener () with
listener equal to the new Listener object.

« Set StatusMask as follows:

— If the original value of StatusMask was STATUS_MASK_NONE oOr
DATA_AVAILABLE_STATUS, setitto DATA_AVAILABLE_STATUS.

- If the original value of StatusMask was SUBSCRIP-
TION_MATCHED_STATUS, set it to DATA_AVAILABLE_STATUS|SUB-
SCRIPTION_MATCHED_STATUS.

— If the original value of StatusMask was DATA_AVAILABLE_ STATUS|
SUBSCRIPTION_MATCHED_STATUS, set it to DATA_AVAILABLE_STATUS)|
SUBSCRIPTION_MATCHED_STATUS.

]

[FO_PRS_DDS 00111] Unregistering an Event reception handler
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00008

[When instructed to unregister an Event reception handler, the following operations
shall be performed:

+ Get a reference to the DDS DataReader’s Listener (see
[FO_PRS_DDS_00105]) using the get_1listener () function.

e Setthe Listener’s on_data_available callback to NULL.

» Update the DDS DataReader’s listener by calling set_listener () with 1is-
tener equal to the new Listener object.

* Set statusMask as follows:

— If the original value of StatusMask was STATUS_MASK_NONE oOr
DATA_AVAILABLE_STATUS, setitto STATUS_MASK_NONE.

- If the original value of StatusMask was SUBSCRIP-
TION_MATCHED_STATUS, set it to SUBSCRIPTION_MATCHED_STATUS.

AUTSSAR

— If the original value of StatusMask was DATA_AVAILABLE_STATUS|
SUBSCRIPTION_MATCHED_STATUS, set it to SUBSCRIP-
TION_MATCHED_STATUS.

]

[FO_PRS_DDS 00112] Registering an Event subscription state change handler
Status: DRAFT
Upstream requirements: FO_RS_Dds_ 00001, FO_RS_Dds_00008

[When instructed to register an Event subscription state change handler, the following
operations shall be performed:

- Get a reference to the DDS DataReader’s Listener (see
[FO_PRS _DDS 00105]) using the get_listener () function.

» Set the Listener’s set_subscription_state_change_handler callback
to the new event reception handler.

» Update the DDS DataReader’s listener by calling set_listener () with 1is-
tener equal to the new Listener object.

* Set statusMask as follows:

— If the original value of StatusMask was STATUS_MASK_NONE
or SUBSCRIPTION_MATCHED_STATUS, set it to SUBSCRIP-
TION_MATCHED_STATUS.

— If the original value of StatusMask was DATA_AVAILABLE_STATUS, set it
to DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS.

— If the original value of StatusMask was DATA_AVAILABLE_STATUS|
SUBSCRIPTION_MATCHED_STATUS, set it to DATA_AVAILABLE_STATUS|
SUBSCRIPTION_MATCHED_STATUS.

]

[FO_PRS_DDS 00113] Unregistering an Event subscription state change han-

dler
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00008

[When instructed to unregister an Event subscription state change handler, the fol-
lowing operations shall be performed:

« Get a reference to the DDS DataReader’s Listener (see
[FO_PRS _DDS 00105]) using the get_1listener () function.

» Set the Listener’s set_subscription_state_change_handler callback
o NULL.

» Update the DDS DataReader’s listener by calling set_listener () with 1is-
tener equal to the new Listener object.

AUTSSAR

e Set statusMask as follows:

— If the original value of StatusMask was STATUS_MASK_NONE Or SUB-
SCRIPTION_MATCHED_STATUS, set it to STATUS_MASK_NONE.

— If the original value of StatusMask was DATA_AVAILABLE_STATUS, set it
to DATA_AVAILABLE_STATUS.

— If the original value of StatusMask was DATA_AVAILABLE_STATUS|SUB-
SCRIPTION_MATCHED_STATUS, set it to DATA_AVAILABLE_STATUS.

AUTSSAR

6.8 Handling Triggers

[FO_PRS_DDS 00200] Mapping Triggers to DDS Topics
Status: DRAFT
Upstream requirements: FO_RS_Dds 00001, FO_RS_Dds 00005, FO_RS_Dds 00007, FO_-

RS_Dds_00008

[Every Trigger of a ServiceInterface to a DDS Topic. This DDS Topic shall
be configured as follows:

» The DDS Topic name shall be derived according to the following rules:

- If the Service Instance has been advertised with the
<DDSServicelInstanceResourceldentifierType> attribute
set to SERVICE_INSTANCE_RESOURCE_PARTITION or SER-
VICE_INSTANCE_RESOURCE_INSTANCE_ID, then the DDS Topic name
shall be set t0 ara.com://services/<svcId>/<svcMajVersion>.
<svcMinVersion>/<triggerTopicName>

— Additionally, if the provided or consumed Service Instance hasbeen ad-
vertised with the <DDSServicelInstanceResourceldentifierType>
attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, then sam-
ples of this DDS Topic shall be sent and received via DDS DataWriters
and DataReaders whose respective parent DDS Publisher and Sub-
scriber objects include the following partition in the PARTITION QoS pol-

icy: ara.com://services/<svcId>/<svcInId>

— Finally, if the provided or consumed Service Instance has been adver-
tised with the <DDSServiceInstanceResourceldentifierType> at-
tribute set to SERVICE_INSTANCE_TOPIC_PREFIX, then the topic name
shall be set to ara.com://services/<svcId>/<svcInId>/<trig-
gerTopicName>

— Where:

<sveId> is the value of <DDSServiceInterfaceID> for the Service
Interface.

<sveInId> is the stringified value of <DDSServiceInstanceID> for the
Service Instance.

<svcMajVersion> is the stringified value of <DDSInterfaceMa-
jorVersion> forthe Service Interface.

<svcMinVersion> is the stringified value of <DDSInterfaceMi-
norVersion> for the Service Interface.

<triggerTopicName> is the value of <DDSTriggerTopicName> for the
Service Interface Event.

» The DDS Topic Data Type shall be defined as specified in [FO_PRS _DDS
00201], and shall be registered under the equivalent data type name.

AUTSSAR

]

[FO_PRS_DDS 00201] DDS Topic data type definition
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00007

[The data type of the DDS Topic representing a Trigger shall be constructed ac-
cording to the following IDL definition:
1 struct TriggerType {

2 @key uintl6 instanceldentifier;
3 i

Where:

instance_id is a @key member of the type, which identifies all samples with the
same instance_id as samples of the same DDS Topic Instance.

]

[FO_PRS_DDS 00202] Sending a Trigger sample
Status: DRAFT
Upstream requirements: FO_RS_Dds 00001, FO_RS_Dds_00008, FO_RS Dds 00015

[When instructed to send a Trigger sample, a new sample shall be constructed of
the equivalent DDS Topic data type according to [FO_PRS_DDS_00201].

This sample shall be then passed as a parameter to the write () function of the DDS
DataWriter associated with the Trigger, which shall publish it over DDS. |

[FO_PRS_DDS 00203] Subscribing to a Trigger
Status: DRAFT
Upstream requirements: FO_RS_Dds 00001, FO_RS_Dds_00008, FO_RS Dds 00016

[When instructed to subscribe to a Trigger, a DDS DataReader (see
[FO_PRS_DDS _00204]) shall be created using a DDS Subscriber according
to[FO_PRS _DDSSD_00101], [FO_PRS_DDSSD_00105], [FO_PRS_DDSSD 00201]
and [FO_PRS_DDSSD_00205]. |

[FO_PRS_DDS _00204] Creating a DDS DataReader for Trigger subscription
Status: DRAFT

Upstream requirements: FO_RS_Dds_00001, FO_RS Dds 00005, FO_RS_Dds 00008, FO_-
RS Dds 00016

[A DDS DataReader for the DDS Topic associated with the Trigger of a Ser-
viceInterface (see [FO_PRS_DDS_00200]) shall be created. If the provided or
consumed Service Instance hasbeen advertised withthe identifier_ type at-
tribute setto SERVICE_INSTANCE_RESOURCE_PARTITION, to ensure the proxy com-
municates only with the Sservice Instance it is bound to, the DDS Subscriber
created in [FO_PRS _DDSSD_00105] or [FO_PRS _DDSSD 00205] shall be used to
create the DDS DataReader.

The DDS DataReader shall be configured as follows:

AUTSSAR

* DataReaderQos: Defines the DDS Qos Profile to be used for the DDS
DataReader, obtained from <DDSServiceInstanceTriggerQosProfile>

* Listener: A DDS DataReader Listener instance as per
[FO_PRS_DDS_00205].

* StatusMask: Shall be set to STATUS_ MASK_NONE

J
[FO_PRS_DDS_00205] Defining a DDS DataReader Listener for a subscribed
Trigger

Status: DRAFT

Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00008, FO_RS_Dds_00016

[A DDS DataReader Listener object shall be created, capable of handling notifica-
tions when a new sample is received and/or when the matched status of the Trigger
subscription changes. This object shall handle samples of the DDS Topic data type
specified in [FO_PRS_DDS_00201].

The DDS DataReader Listener shall provide the following callbacks according to
the specified instructions:

* An on_data_available () callback that dispatches received Trigger sam-
ples to upper layer handler when valid samples become avilable in the DDS
DataReader cache.

* An on_subscription_matched () callback that forwards the subscription
state to upper layers handlers.

]

[FO_PRS_DDS_00206] Unsubscribing from an Trigger
Status: DRAFT
Upstream requirements: FO_RS_Dds 00001, FO_RS_Dds_00008

[When instructed to unsubscribe from a service Trigger, the DDS DataReader as-
sociated with the Trigger shall be deleted. |

[FO_PRS_DDS 00207] Obtaining subscription state from a Trigger
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00008

[When instructed to provide the subscription state, the existence of a DDS
DataReader associated with the Trigger subscription (see [FO_PRS DDS_00204])
shall be checked:

«If the DDS DataReader does exist; the DDS DataReader’s
get_subscription_matched_status () function shall be called, then:

AUTSSAR

— If the total_count attribute of the resulting SubscriptionMatched-
Status is greater than zero, the subscription state shall be determined as
subscribed.

— Otherwise, the subscription state shall be determined as pending.

» Otherwise, if the DDS DataReader does not exist, the subscription state shall
be determined as not subscribed.

]

[FO_PRS_DDS_00208] Retrieving new notification from a Trigger
Status: DRAFT
Upstream requirements: FO_RS_Dds_ 00001, FO_RS_Dds_00008

[When instructed to retrieve new Trigger notifications, a take () operation shall be
performed on the DDS DataReader associated to the Trigger, recording the total
cound and discarding the samples themselves. |

[FO_PRS_DDS 00209] Registering a Trigger reception handler
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00008

[When instructed to register a Trigger reception handler, the following operations
shall be performed:

+ Get a reference to the DDS DataReader’s Listener (see
[FO_PRS_DDS_00204]) using the get_1listener () function.

Setthe Listener’s on_data_available callback to the new Trigger recep-
tion handler.

Update the DDS DataReader’s Listener by calling set_listener () with
listener equal to the new Listener object.

e Set statusMask as follows:

— If the original value of StatusMask was STATUS_MASK_NONE of
DATA_AVAILABLE_STATUS, setitto DATA_AVAILABLE_STATUS.

- If the original value of StatusMask was SUBSCRIP-
TION_MATCHED_STATUS, set it to DATA_AVAILABLE_STATUS|SUB-
SCRIPTION_MATCHED_STATUS.

— If the original value of StatusMask was DATA_AVAILABLE_STATUS|
SUBSCRIPTION_MATCHED_STATUS, set it to DATA_AVAILABLE_STATUS|
SUBSCRIPTION_MATCHED_STATUS.

AUTSSAR

[FO_PRS_DDS 00210] Unregistering a Trigger reception handler
Status: DRAFT
Upstream requirements: FO_RS_Dds 00001, FO_RS_Dds 00008

[When instructed to unregister an Trigger, the following operations shall be per-
formed:

+ Get a reference to the DDS DataReader’s Listener (see
[FO_PRS_DDS_00204]) using the get_1listener () function.

* Setthe Listener’s on_data_available callback to NULL.

» Update the DDS DataReader’s listener by calling set_listener () with 1is-
tener equal to the new Listener object.

» Set statusMask as follows:

— If the original value of StatusMask was STATUS_MASK_NONE of
DATA_AVAILABLE_STATUS, setitto STATUS_MASK_NONE.

- If the original value of StatusMask was SUBSCRIP-
TION_MATCHED_STATUS, set it to SUBSCRIPTION_MATCHED_STATUS.

— If the original value of StatusMask was DATA_AVAILABLE_STATUS|
SUBSCRIPTION_MATCHED_STATUS, set it to SUBSCRIP-
TION_MATCHED_STATUS.

]

[FO_PRS_DDS_00211] Registering a Trigger subscription state change handler
Status: DRAFT
Upstream requirements: FO_RS_Dds_ 00001, FO_RS_Dds_00008, FO_RS Dds_00016

[When instructed to register a Trigger subscription state change handler, the follow-
ing operations shall be performed:

« Get a reference to the DDS DataReader’s Listener (see
[FO_PRS _DDS 00204]) using the get_listener () function.

» Set the Listener’s set_subscription_state_change_handler callback
to the new Trigger reception handler.

* Update the DDS DataReader’s listener by calling set_listener () with 1is-
tener equal to the new Listener object.

* Set statusMask as follows:

— If the original value of StatusMask was STATUS_MASK_NONE
Oor SUBSCRIPTION_MATCHED_STATUS, set it to SUBSCRIP-
TION_MATCHED_STATUS.

— If the original value of StatusMask was DATA_AVAILABLE_STATUS, set it
to DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS.

AUTSSAR

— If the original value of StatusMask was DATA_AVAILABLE_STATUS|
SUBSCRIPTION_MATCHED_STATUS, set it to DATA_AVATILABLE_STATUS|
SUBSCRIPTION_MATCHED_STATUS.

]

[FO_PRS_DDS 00212] Unregistering a Trigger subscription state change han-
dler
Status: DRAFT

Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00008, FO_RS_Dds_00016

[When instructed to unregister a Trigger subscription state change handler, the fol-
lowing operations shall be performed:

« Get a reference to the DDS DataReader’s Listener (see
[FO_PRS_DDS _00204]) using the get_1listener () function.

» Set the Listener’s set_subscription_state_change_handler callback
o NULL.

» Update the DDS DataReader’s listener by calling set_listener () with 1is-
tener equal to the new Listener object.

e Set statusMask as follows:

— If the original value of StatusMask was STATUS_MASK_NONE Or SUB-
SCRIPTION_MATCHED_STATUS, set it to STATUS_MASK_NONE.

— If the original value of StatusMask was DATA_AVAILABLE_STATUS, set it
to DATA_AVAILABLE_STATUS.

— If the original value of StatusMask was DATA_AVAILABLE_STATUS|SUB-
SCRIPTION_MATCHED_STATUS, set it to DATA_AVAILABLE_STATUS.

AUTSSAR

6.9 Handling Method Calls

The RPC over DDS Specification (DDS-RPC) [4] introduces the concept of DDS Ser-
vices. These Services provide the mechanisms required to define and implement
methods that can be invoked remotely by DDS "client" applications using the build-
ing blocks of the DDS data-centric publish-subscribe middleware [3]. In this section,
we specify how to handle service-oriented method calls over DDS by defining the ap-
propriate mapping between ara::com service Methods and DDS service methods.

[FO_PRS_DDS 00300] Mapping Methods to DDS Topics
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00005, FO_RS_Dds_00008

[Every Sservice Interface containing one or more Methods shall have an associ-
ated set of DDS Topics enabling Service Instances to offer those Methods, and
to enable client applications to invoke them.

DDS Topics shall be constructed according to the Basic Service Mapping Profile of
the RPC over DDS specification [4], which assigns two DDS Topics to every DDS
Service: a Request DDS Topic and a Reply Topic. Thus, every Service Inter-
face containing one or more Methods shall prompt the creation of two equivalent DDS
Topics.

The equivalent DDS Request Topic shall be configured as follows:

» The Request DDS Topic Name shall be derived from the Manifest according to
the following rules:

— If the Service Instance has been advertised with the
<DDSServicelInstanceResourceldentifierType> attribute
set to SERVICE_INSTANCE_RESOURCE_PARTITION or SER-
VICE_INSTANCE_RESOURCE_INSTANCE_ID, then the DDS Topic name
shall be set t0 ara.com://services/<svcId>/<svcMajVersion>.
<svcMinVersion>/<methodRequestTopicName>

— Additionally, if the provided or consumed Service Instance hasbeenad-
vertised with the <DDSServiceInstanceResourceldentifierType>
attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, then sam-
ples of this DDS Topic shall be sent and received via DDS DataWriters
and DataReaders whose respective parent DDS Publisher and Sub-
scriber objects include the following partition in the PARTITION QoS pol-
icy: ara.com://services/<svcId>/<svcInId>

— Finally, if the provided or consumed Service Instance has been adver-
tised with the <DDSServiceInstanceResourceldentifierType> at-
tribute set to SERVICE_INSTANCE_TOPIC_PREFIX, then the topic name
shall be setto ara.com://services/<svcId>/<svcInId>/<method-
RequestTopicName>

— Where:

AUTSSAR

<sveId> is the value of <DDSServiceInterfaceID> for the Service
Interface.

<sveInId> is the stringified value of <DDSServiceInstanceID> for the
Service Instance.

<svcMajVersion> is the stringified value of <DDSInterfaceMa-
jorVersion> for the Service Interface

<svcMinVersion> is the stringified value of <DDSInterfaceMi-
norVersion> for the Service Interface

<methodRequestTopicName> is the value of <DDSMethodRequest-
TopicName> forthe Service Interface Event

« The Request DDS Topic Data Type shall be defined as specified in
[FO_PRS_DDS_00301], and shall be registered under the equivalent data type’s
name.

The equivalent DDS Reply Topic shall be configured as follows:

» The Reply DDS Topic Name shall be derived from the Manifest according to the
following rules:

— If the Service Instance has been advertised with the
<DDSServiceInstanceResourceldentifierType> attribute
set o SERVICE_INSTANCE_RESOURCE_PARTITION or SER-
VICE_INSTANCE_RESOURCE_INSTANCE_ID, then the DDS Topic name
shall be set t0 ara.com://services/<svcId>/<svcMajVersion>.
<svcMinVersion>/<methodReplyTopicName>

— Additionally, if the provided or consumed Service Instance hasbeenad-
vertised with the <DDSServiceInstanceResourceldentifierType>
attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, then sam-
ples of this DDS Topic shall be sent and received via DDS DataWriters
and DDS DataReaders whose respective parent DDS Publisher and
Subscriber objects include the following partition in the PARTITION QoS
policy: ara.com://services/<svcId>/<svcInId>

— Finally, if the provided or consumed Service Instance has been adver-
tised with the <DDSServiceInstanceResourceldentifierType> at-
tribute set to SERVICE_INSTANCE_TOPIC_PREFIX, then the topic name
shall be setto ara.com://services/<svcId>/<svcInId>/<method-
ReplyTopicName>

— Where:

<sveId> is the value of <DDSServiceInterfaceID> for the Service
Interface.

<sveInId> is the stringified value of <DDSServiceInstanceID> for the
Service Instance.

AUTSSAR

<svcMajVersion> is the stringified value of <DDSInterfaceMa-
jorVersion> forthe Service Interface.

<svcMinVersion> is the stringified value of <DDSInterfaceMi-
norVersion> forthe Service Interface.

<methodReplyTopicName> is the value of <DDSMethodReplyTopic-—
Name> for the Service Interface Event.

« The Reply DDS Topic Data Type shall be defined as specified in
[FO_PRS_DDS_00302], and shall be registered under the equivalent data type’s

name.
]
[FO_PRS_DDS 00301] Mapping Methods to DDS Topic request data type defi-
nition

Status: DRAFT

Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00007

[As specified in section 7.5.1.1.6 of [4], the Request DDS Topic data type is a struc-
ture composed of a Request Header with meta-data, and a Call Structure with data.
The IDL definition of the Request DDS Topic data type is the following:
struct <svcId>Method_Request {
dds: :rpc::RequestHeader header;

1
2
3 <ServicelnterafaceID>Method_Call data;
4 };

Where:
<sveId> is the value of <DDSServiceInterfacelID>.

dds: : rpc: :RequestHeader is the standard Request Header defined in section
7.5.1.1.1 of [4].

<svcId>Method_Call is the union that holds the value of the input parameters of
the corresponding Methods, according to the rules specified in section 7.5.1.1.6
of [4].

dds: :rpc: :RequestHeader shall be constructed as specified in section 7.5.1.1.1 of
[4]. On top of that, instanceName (a member of the RequestHeader structure that
specifies the DDS service Instance name) shall be set to a string representation
of the <DbSServiceInstanceID> value of the Service Instance that provides
the Methods.

<svcId>Method_Call shall be constructed as specified in section 7.5.1.1.6 of [4]:
» The name of the union shall be <svcId>Method_Call.
» The union discriminator shall be a 32-bit signed integer.

» The union shall have a default case of type dds: : rpc: :UnknownOperation
(defined in section 7.5.1.1.1 of [4]) for unsupported and unknown operations.

AUTSSAR

* The union shall have a case label for each Method defined in the Service
Interface, where:

— The integer value of the case label shall be a 32-bit hash of the string rep-

resentation of <DDSServiceInterfaceMethodName>. The DDS Com-
munication Protocol implementation shall compute the hash as specified
in section 7.5.1.1.2 of [4]. Representations of the Service Interface
in OMG IDL [5] shall define 32-bit signed integer constants (i.e., const
int32 <svcId>Method_<methodName>_ Hash; where <methodName>
is <DDSServicelInterfaceMethodName>), in order to simplify the rep-
resentation of the union cases (see below).

— The member name for the case label shall be the value of <DDSServi-

ceInterfaceMethodName>.

— The type for each case label shall be <svcId>Method_ <methodName>

_In, which shall be constructed as specified in section 7.5.1.1.4 of [4] (see
below).

The IDL definition of <svcId>Method_Call is the following:

1
2
3
4
5
6
7
8
9

10
11

union <svcId>Method_Call switch (int32) {
default:

dds::rpc::UnknownOperation unknownOp;

case <svcId>Method_<methodOName>_Hash:

<svcId>Method_<methodOName>_In <methodOName>;

case <svcId>Method_<methodlName>_Hash:

//

<svcId>Method_<methodlName>_In <methodlName>;

case <svcId>Method_ <methodNName>_Hash:

}i

<svcId>Method_<methodNName>_In <methodNName>;

As defined in section 7.5.1.1.4 of [4], the <svcId>Method_<methodName>_In struc-
ture shall contain as members all the input and input/output parameters of the Met hod.
The IDL representation of <svcId>Method_<methodName>_1In is the following:

1
2
3
4
5
6

struct <svcId>Method_<methodName>_ In {

bi

<ArgumentDataPrototype[0]>;
<ArgumentDataPrototypel[l]>;
//

<ArgumentDataPrototype[n]>;

In accordance with [4], for Methods with no input parameters, a <svcId>Method_
<methodName>_1In structure with a single member named dummy of type dds: :
rpc: :UnusedMember (see section 7.5.1.1.1 of [4]) shall be generated.

The resulting Request DDS Topic data type shall be encoded according to the DDS
serialization rules. Unions, such as the <svcId>Method_Call union, shall be serial-
ized as specified in section 7.4.3.5 of [2].]

AUTSSAR

[FO_PRS_DDS 00302] Mapping Methods to DDS Topic reply data type definition
Status: DRAFT
Upstream requirements: FO_RS_Dds 00001, FO_RS_Dds 00007

[As specified in section 7.5.1.1.7 of [4], the Reply DDS Topic data type is a structure
composed of a Reply Header with meta-data and a Return Structure with data. The
IDL definition of the Reply DDS Topic data type is the following:

1 struct <svcId>Method_Reply {

2 dds::rpc::ReplyHeader header;

3 <svcId>Method_Return data;

4 };

Where:
<sveId> is the value of <DDSServiceInterfaceID>.

dds: :rpc: :ReplyHeader is the standard Reply Header defined in section 7.5.1.1.1
of [4].

<svcId>Method_Return isthe union that holds the return values (i.e., return values,
output parameter values, and/or errors) of the corresponding response, according
to the rules specified in section 7.5.1.1.7 of [4].

dds: :rpc: :ReplyHeader shall be constructed as specified in section 7.5.1.1.1 of
[4].

<svcId>Method_Return shall be constructed as specified in section 7.5.1.1.7 of [4]:
» The name of the union shall be <svcId>Method_Return.
» The union discriminator shall be a 32-bit signed integer.

» The union shall have a default case of type dds: : rpc: :UnknownOperation
(defined in section 7.5.1.1.1 of [4]) for unsupported and unknown operations.

* The union shall have a case label for each Method defined in the Service
Interface, where:

— The integer value of the case label shall be a 32-bit hash of the string rep-
resentation of <DDSServiceInterfaceMethodName>. The DDS Com-
munication Protocol implementation shall compute the hash as specified
in section 7.5.1.1.2 of [4]. Representations of the Service Interface
in OMG IDL [5] shall define 32-bit signed integer constants (i.e., const
int32 <svcId>Method_<methodName>_ Hash; where <methodName>
is <DDSServicelInterfaceMethodName>), in order to simplify the rep-
resentation of the union cases (see below).

— The member name for the case label shall be the value of <DDSServi-
celInterfaceMethodName>.

— The type for each case label shall be <svcId>Method_ <methodName>
_Result, which shall be constructed as specified in section 7.5.1.1.4 of [4]
(see below).

AUTSSAR

The IDL definition of <svcId>Method_Return is the following:

union <svcId>Method_Return switch (int32) {

default:
dds::rpc::UnknownOperation unknownOp;

case <svcId>Method_<methodOName>_Hash:
<svcId>Method_<methodOName>_Result <methodOName>;

case <svcId>Method_<methodlName>_ Hash:
<svcId>Method_<methodlName>_Result <methodlName>;

//

case <svcld>Method_<methodNName>_Hash:
<svcId>Method_<methodNName>_Result <methodNName>

© 0 N o o &~ W No=

- o

}i

As defined in section 7.5.1.1.5 of [4], the <svcId>Method_<methodName>_Result
union shall be constructed as follows:

» The union discriminator shall be a 32-bit signed integer.

» The union shall have a case with label dds: : RETCODE_OK to represent a suc-
cessful return:

— The value of RETCODE_OK shall be 0x00, as specified in section 2.3.3 of [3].

— The successful case shall have a single member named result of type
<svcId>Method_<methodName>_Out (see below).

» The union shall also have a case with label dds : : RETCODE_ERROR to represent
the possible application-layer errors the Method may return:

— The value of RETCODE_ERROR shall be 0x01, as specified in section 2.3.3
of [3].

— The error case shall have a single member named error of type ara::
core: :ErrorCode (see [FO_PRS_DDS 00303] below).

The IDL representation of <svcId>Method_<methodName>_Result is the follow-
ing:
union <svcId>Method_<methodName>_Result switch (int32) {
case dds::RETCODE_OK:
<svcIld>Method_<methodName>_Out result;

case dds::RETCODE_ERROR:
ara::core::ErrorCode error;

o g A~ W N =

bi
Lastly, as defined in section 7.5.1.1.5 of [4], the <svcId>Method_<methodName>

_Oout structure be constructed as follows:

» The structure shall contain as members all the input/output and output parame-
ters of the Method.

» The members of the structure representing input/output and output arguments
shall appear in the structure in the same order as they were declared.

AUTSSAR

* If the Method has no input/output and no output arguments, the structure shall
contain a single member named dummy of type dds: : rpc: : UnusedMember (in
accordance with section 7.5.1.1.1 of [4]).

The IDL representation of <svcId>Method_<methodName>_Out is the following:

1 struct <svcId>Method_<methodName>_Out {
2 <ArgumentDataPrototype[0]>;

3 <ArgumentDataPrototypel[l]>;

4 /..

5 <ArgumentDataPrototype[n]>;

6 };

The resulting Reply DDS Topic data type shall be encoded according to the DDS
serialization rules. Unions, such as the <svcId>Method_<methodName>_Result
union, shall be serialized as specified in section 7.4.3.5 of [2].]

[FO_PRS_DDS 00303] Mapping of ara::core::ErrorCode
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00007

[Application-layer errors shall be represented according to the following IDL [5]:

module dds {
module ara {
module core {

struct ErrorCode {
uint64 error_domain_value;
int32 error_code;

}i

© 00 N o O~ W0 N =

10 }; // module core
11 }; // module ara
12 }; // module dds

Where:

error_domain_value is a 64-bit unsigned integer representing the application do-
main of the error (see <DDSServiceInterfaceMethodErrorDomain>).

error_code is a 32-bit signed integer representing the actual error code (see
<DDSServiceInterfaceMethodErrorCode>).

ara::core::ErrorCode shall be serialized according to the DDS serialization
rules. |

The DDS serialization rules are defined in section 6.11.

AUTSSAR

[FO_PRS_DDS 00304] Creating a DDS DataWriter to handle Method requests

on the client side
Status: DRAFT

Upstream requirements: FO_RS_Dds 00001, FO_RS_Dds 00008, FO_RS_Dds 00005, FO_-
RS Dds 00015

[A DDS patawWriter shall be created for the Request DDS Topic associated with
the Methods of the Service Interface (see [FO_PRS_DDS_00301]) upon client
instantiation.

If the provided or consumed Service Instance hasbeen advertised with the iden-
tifier_type attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, to en-
sure the client communicates only with the Service Instance it is bound to, the
DDS pPublisher created in [FO_PRS _DDSSD_00105] (whose partition name is
"ara.com://services/<svcId>_<regSvcInId>") shall be used to create the
DDS DataWriter.

The DDS patawriter shall be configured as follows:

* DataWriterQos shall be setto <DDSServiceInstanceQosProfile>.

]

[FO_PRS_DDS 00305] Creating a DDS DataReader to handle Method responses

on the client side
Status: DRAFT

Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds 00008, FO_RS_Dds 00005, FO_-
RS Dds 00016

[A DDS DataReader shall be created for the Reply DDS Topic associated with the
Methods of the Service Interface (see [FO_PRS_DDS_00302]) upon client in-
stantiation.

If the provided or consumed Sservice Instance hasbeen advertised with the iden-
tifier_type attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, to en-
sure the client communicates only with the Service Instance it is bound to, the
DDS subscriber created in [FO_PRS_DDSSD_00105] (whose partition name is
"ara.com://services/<svcId>_<reqgSvcInId>") shall be used to create the
DDS pDataReader.

The DDS pDataReader shall be configured as follows:

* DataReaderQos shall be setto <DDSServiceInstanceQosProfile>.

AUTSSAR

[FO_PRS_DDS 00306] Creating a DDS DataReader to handle Method requests

on the server side
Status: DRAFT

Upstream requirements: FO_RS_Dds 00001, FO_RS_Dds 00008, FO_RS_Dds 00005, FO_-
RS Dds 00016

[A DDS DataReader shall be created for the Request DDS Topic associated with
the Methods of the Service Interface (see [FO_PRS_DDS 00301]) upon server
instantiation.

If the provided or consumed Service Instance hasbeen advertised with the iden-
tifier_type attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, to en-
sure the clients communicate only with the Service Instance it is bound to, the
DDS subscriber created in [FO_PRS_DDSSD_00101] (whose partition name is
"ara.com://services/<svcId>_<reqgSvcInId>") shall be used to create the
DDS DataReader.

The DDS pDataReader shall be configured as follows:
* DataReaderQos shall be setto <DDSServiceInstanceQosProfile>.

* Listener and StatusMask shall be set according to the desired Method call
processing mode:

— For an asynchronous call processing mode, Listener shall be set
to an instance of the DDS DataReader Listener class spec-
ified in [FO_PRS _DDS 00311], and statusMask shall be set to
DATA_AVAILABLE_STATUS.

— For a synchronous call processing mode, L.i stener shall remain unset, and
StatusMask shall be set to STATUS_MASK_NONE.

]

[FO_PRS_DDS 00307] Creating a DDS DatawWriter to handle Method responses

on the server side
Status: DRAFT

Upstream requirements: FO_RS_Dds_ 00001, FO_RS_Dds 00008, FO_RS_Dds 00005, FO_-
RS_Dds_00015

[A DDS patawriter shall be created for the Reply DDS Topic associated with the
Methods of the Service Interface (see [FO_PRS_DDS_00302]) upon server in-
stantiation.

If the provided or consumed Service Instance hasbeen advertised with the iden-
tifier_type attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, to en-
sure the clients communicate only with the Service Instance it is bound to, the
DDS pPublisher created in [FO_PRS DDSSD_00101] (whose partition name is
"ara.com://services/<svcId>_<reqgSvcInId>") shall be used to create the
DDS DataWriter.

The DDS patawriter shall be configured as follows:

AUTSSAR

* DataReaderQos shall be setto <DDSServiceInstanceQosProfile>.

]

[FO_PRS_DDS 00308] Calling a service Method from the client side
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00008, FO_RS_Dds_00015

[When instructed to call a Method from the client side, a new sample of the
Request Topic—an instance of the Request DDS Topic data type defined in
[FO_PRS DDS 00301])—shall be constructed as follows:

* To initialize the RequestHeader object,
— requestId shall be set according to the rules specified in [4].

— instanceName shall be set to the string-representation value of <bDSsSer—
viceInstanceID> forthe remote Service Instance.

« To initialize the <svcId>Method_Call object, the appropriate union case (as
specified in [FO_PRS_DDS_00301], the hash of the Met hod’s name is the union
discriminator that selects the union case) shall be selected, and then set accord-
ingly the structure containing all the input and input/output arguments.

That sample shall then be passed as a parameter to the write () Method of the DDS
DataWriter created in [FO_PRS_DDS 00304] to handle Method requests on the
client side, which shall serialize the sample according to the DDS serialization rules,
and publish it over DDS. |

The DDS serialization rules are defined in section 6.11.

[FO_PRS_DDS 00309] Notifying the client of a response to a Method call
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00008, FO_RS_Dds_00015

[To notify the client application of a response as a result of a Method call, either the
result or the error values shall be extracted from the Reply DDS Topic sample.

If the discriminator of the <svcId>Method_<methodName>_Result union holding
the response for the specific Method call in the received DDS Reply DDS Topic
sample is dds::RETCODE_OK (i.e., 0 as defined in [3]), the Method result val-
ues shall be set using the members representing the input/output and output argu-
ments in the corresponding <DDSServiceInterfaceID>Method_<methodName>
_Out result (see [FO_PRS_DDS_00302]).

Else, for any other discriminator value, the Method error values shall be set to the
received ara: :core: :ErrorCode (see [FO_PRS_DDS _00302]).

In either case, the associated processing shall be performed upon the reception
of a new Reply DDS Topic sample by the corresponding DDS DataReader (see
[FO_PRS_DDS_00305)).

AUTSSAR

The DDS DataReader’s take () operation shall be used to process the sample.
Moreover, to correlate a request with a response, the header.relatedRequestId
of the received sample shall be compared with the original requestId that was set
and sent in [FO_PRS_DDS _00308]. ' 2

If areceived relatedRequestIddoes not correspondto a request I1dthat has been
sent by the client, the response shall be discarded. |

[FO_PRS_DDS 00310] Processing a Method call on the server side (asyn-
chronous)

Status: DRAFT

Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00008, FO_RS_Dds_00016

[In case asynchronous request processing is expected, a DDS DataReader Lis-
tener shall be created to process the requests asynchronously—as described in
[FO_PRS_DDS_00311]—with an instance of it attached to the DDS DataReader pro-
cessing the requests in accordance with [FO_PRS_DDS _00306]. The listener is re-
sponsible for identifying the internal callback processing the request, and dispatching
request data to it (see [FO_PRS_DDS_00311]).]

[FO_PRS_DDS _00311] Creating a DDS DataReader Listener to process asyn-
chronous requests on the server side

Status: DRAFT

Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00008, FO_RS_Dds_00016

[According to [FO_PRS_DDS_00306], asynchronous request processing requires the
instantiation of a DDS DataReader Listener to process asynchronously requests
on the server side. This object shall handle samples of the DDS Topic data type
specified in [FO_PRS_DDS_00301].

The DDS DataReader Listener shall implement the following Methods according
to the specified instructions:

* An on_data_available () Method responsible for reading the received re-
quests from the DDS DataReader’s cache—using the take () operation—and
dispatching them to the appropriate Methods for processing. To identify the call-
back that shall process each request, on_data_available () shall use the
union discriminator of the <svcId>Method_Call and provide the destination
callback with the specific arguments in the union case.

'The RPC over DDS specification [4] does not mandate a specific mechanism or context to invoke
the take () operation on the DDS DataReader that subscribes to Method replies. Implementers of
this specification may therefore follow different approaches to address this issue.

2For instance, a proxy could use a dictionary-like data structure to temporarily hold the request
data to every request (keyed by their dds::SampleIdentity requestId), and install a DDS
DataReader Listener (on the DDS DataReader created in [FO_PRS_DDS_00305]) with an
on_data_available () Method that could notify of reply reception to the Application layer, using
the relatedRequestId of the received Reply DDS Topic sample to address it. Alternatively, a com-
pliant solution could also call take () in an asynchronous context using a dds: :core: :Waitset [3]
to block until the reception of the expected sample.

AUTSSAR

[FO_PRS_DDS 00312] Processing a Method call on the server side (syn-
chronous)

Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00008, FO_RS_Dds_00016

[In case synchronous request processing is expected, the protocol implementaiton is
responsible for calling take () onthe DDS DataReader processing the Request DDS
Topic associated with the service (see [FO_PRS_DDS 00306]).

Each synchronous operation shall take () only the first sample from the DDS
DataReader’s cache and dispatch the call to the appropriate callback according to
the value of the of the discriminator of the <svcId>Method_Call union and provide
the destination Method with the specific arguments in the union case. |

[FO_PRS_DDS 00313] Sending a Method call response from the server side

Status: DRAFT
Upstream requirements: FO_RS_Dds_ 00001, FO_RS_Dds_00008, FO_RS Dds_ 00015

[Upon the return (either as a result of a normal return or through one of the possible
Application-layer errors) of the Service Instance Method aresponse shall be sent.

To send this response, a new sample of the Reply DDS Topic —an instance of the
Reply DDS Topic data type defined in [FO_PRS_DDS_00302])—shall be constructed
as follows:

* To initialize the ReplyHeader object,

— relatedRequestId shall be set to the value of the header.requestid
attribute of the request that triggered the Method call (see
[FO_PRS_DDS_00308]).

* To initialize the <svcId>Method_Return object:

— Select the appropriate union case (as specified in [FO_PRS_DDS_00302],
the hash of the Method’s name is the union discriminator that selects the
union case).

— Set the <svcId>Method_<methodName>_Result union selecting its
union discriminator based on whether the operation generated a nominal
result or raised an error:

« |f operation generated a nominal result, union case for dds: :RET-
CODE_OK shall be selected, setting the <svcId>Method_<method-
Name>_Out structure with all the output and input/output arguments.

= Otherwise, if the operation raised an error, the union case 0x01 shall be
selected and the corresponding ara: : core: :ErrorCode constructed
(see [FO_PRS DDS 00302]).

The sample shall then be passed as a parameter to the write () Method of the DDS
DataWriter created in [FO_PRS_DDS 00306] to handle Method responses on the

AUTSSAR

server side, which shall serialize the sample according to the DDS serialization rules,
and publish it over DDS. |

The DDS serialization rules are defined in section 6.11.

AUTSSAR

6.10 Handling Fields

[FO_PRS_DDS 00400] Mapping Field Notifiers to DDS Topics

Status:

DRAFT

Upstream requirements: FO_RS_Dds 00001, FO_RS_Dds_00008, FO_RS Dds_00005

[Every Field Notifier of a ServiceInterface shall be mapped to a DDS
Topic. This DDS Topic shall be configured as follows:

* The DDS Topic name shall be derived according to the following rules:

— If the Service Instance has been advertised with the

<DDSServicelnstanceResourceldentifierType> attribute
set to SERVICE_INSTANCE_RESOURCE_PARTITION or SER-
VICE_INSTANCE_RESOURCE_INSTANCE_ID, then the DDS Topic name
shall be set to ara.com://services/<svcId>/<svcMajVersion>.
<svcMinVersion>/<fieldTopicName>

Additionally, if the provided or consumed Service Instance hasbeen ad-
vertised with the <DDSServicelInstanceResourceldentifierType>
attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, then sam-
ples of this DDS Topic shall be sent and received via DDS DataWriters
and DataReaders whose respective parent DDS Publisher and Sub-
scriber objects include the following partition in the PARTITION QoS pol-

icy: ara.com://services/<svcId>/<svcInId>

Finally, if the provided or consumed Service Instance has been adver-
tised with the <DDSServiceInstanceResourceldentifierType> at-
tribute set to SERVICE_INSTANCE_TOPIC_PREFIX, then the topic name
shall be set to ara.com://services/<svcId>/<svcInId>/<field-
TopicName>

Where:

<svecId> is the value of <DDSServiceInterfaceID> for the Service
Interface.

<sveInId> is the stringified value of <DDSServiceInstanceID> for the
Service Instance.

<svcMajVersion> is the stringified value of <DDSInterfaceMa-
jorVersion> forthe Service Interface

<svcMinVersion> is the stringified value of <DDSInterfaceMi-
norVersion> forthe Service Interface.

<fieldTopicName> isthe value of <DDSEventTopicName> forthe Ser—
vice Interface Event.

» The Data Type of the DDS Topic shall be defined as specified in [FO_PRS_
DDS 00101], and shall be registered under the equivalent data type name.

AUTSSAR

]

[FO_PRS_DDS 00401] Field Notifier DDS Topic data type definition
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00007

[The data type of a DDS Topic representinga Field Notifier shall be constructed
according to the following IDL definition:

1 struct <FieldTypeName>FieldNotifierType ({

2 @key uintl6 instance_id;

3 <FieldTypeName> data;

4 };

Where:
<FieldTypeName> is the symbol defined for the Implementation Data Type.

instance_id is a @key member of the type, which identifies all samples with the
same instance_id as samples of the same DDS Topic Instance.

data is the actual value of the Field Notification, which shall be constructed and
encoded according to the DDS serialization rules. The @external annotation
is optionally allowed, for cases where references yield implementation benefits

over values.
J
[FO_PRS_DDS 00402] Sending a Field Notifier sample
Status: DRAFT

Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00008, FO_RS_Dds_00015

[When instructed to send an Field Notification sample, a new sample shall be con-
structed of the equivalent DDS Topi c data type according to [FO_PRS_DDS_00401].

* The Instance Id field (instance_id) shall be set to <DDSServiceInstan-—
celD>.

» The Data field (data) shall be set to the data to be sent.

This sample shall be then passed as a parameter to the write () function of the DDS
DataWriter associated with the Field Notifier, which shall serialize the sample
according to the serialization rules, and publish it over DDS. |

The DDS serialization rules are defined in section 6.11.

[FO_PRS_DDS _00403] Subscribing to a Field Notifier
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00008, FO_RS_Dds_00016

[When instructed to subscribe to a Field Notification with a given cache size, a
DDS DataReader (see [FO_PRS_DDS 00404]) shall be created using a DDS Sub-

AUTSSAR

scriber according to [FO_PRS_DDSSD 00101], [FO_PRS_DDSSD_00105], [FO_
PRS_DDSSD_00201] and [FO_PRS_DDSSD_00205]. |

[FO_PRS_DDS 00404] Creating a DDS DataReader for Field Notifier sub-
scription
Status: DRAFT

Upstream requirements: FO_RS_Dds_ 00001, FO_RS_Dds 00008, FO_RS_Dds 00016, FO_-
RS Dds_ 00005

[A DDS DataReader for the DDS Topic associated with the Field Notifier of a
Service Interface (see [FO_PRS_DDS 00400]) shall be created. If the provided
or consumed Service Instance has been advertised with the identifier_type
attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, to ensure the proxy
communicates only with the Service Instance it is bound to, the DDS DDS sub-
scriber created in [FO_PRS_DDSSD_00105] or [FO_PRS_DDSSD_00205] shall be
used to create the DDS DataReader.

The DDS pataReader shall be configured as follows:

* DataReaderQos: Defines the DDS QoS Profile to be used for the
DDS DataReader, obtained from <DDSServiceInstanceFieldNoti-
fierQosProfile>. To configure the DataReader’s cache size, the value of
the DataReader’s HISTORY QoS shall be overridden as follows:

— history.kind = KEEP_LAST_HISTORY_QOS
— history.depth = <cache size value>

* Listener: An instance of the DDS DataReader Listener concept as per
[FO_PRS _DDS 00405].

* StatusMask: Shall be set to STATUS_MASK_NONE

]

[FO_PRS_DDS_00405] Creating a DataReaderListener for Field subscription
Status: DRAFT

Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds 00008, FO_RS_Dds 00005, FO_-
RS Dds 00016

[The DDS implementation shall define a DDS DataReader Listener to handle
Field notifications when a new sample is received and/or the matched status of the
subscription changes following the instructions specified in [FO_PRS_DDS_00105].

The DDS DataReader Listener shall specify that the samples to be handled are of
the DDS Topic data type specified in [FO_PRS_DDS_00401].

AUTSSAR

[FO_PRS_DDS 00406] Unsubscribing from a Field Notifier
Status: DRAFT
Upstream requirements: FO_RS_Dds 00001, FO_RS_Dds 00008

[When instructed to unsubscribe from a service Field Notifier, the DDS
DataReader associated with the Field shall be deleted. |

[FO_PRS_DDS _00407] Mapping of Field Get and Set operations to DDS Topics

Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00008, FO_RS_Dds_00005

[Every service Interface containing one or more Fields defined to have a Get
and/or Set operations(s) shall have an associated set of DDS Topics to offer those
Methods, and to enable client applications to invoke them.

In alignment with [FO_PRS_DDS_00300], these DDS Services shall be constructed
according to the Basic Service Mapping Profile of the RPC over DDS specification [4].
Thus, every Service Interface containing one or more Fields defined to have
a Get and/or Set operations(s) shall prompt the creation of a pair of DDS Topics: a
Request DDS Topic and a Reply Topic.

The equivalent DDS Request DDS Topic shall be configured as follows:

» The Request DDS Topic Name shall be derived from the Manifest according to
the following rules:

— If the Service Instance has been advertised with the
<DDSServiceInstanceResourceldentifierType> attribute
set to SERVICE_INSTANCE_RESOURCE_PARTITION or SER-
VICE_INSTANCE_RESOURCE_INSTANCE_ID, then the DDS Topic name
shall be set t0 ara.com://services/<svcId>/<svcMajVersion>.
<svcMinVersion>/<fieldRequestTopicName>

— Additionally, if the provided or consumed Service Instance hasbeenad-
vertised with the <DDSServiceInstanceResourceldentifierType>
attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, then sam-
ples of this DDS Topic shall be sent and received via DDS DataWriters
and DataReaders whose respective parent DDS Publisher and Sub-
scriber objects include the following partition in the PARTITION QoS pol-
icy: ara.com://services/<svcId>/<svcInId>

— Finally, if the provided or consumed Service Instance has been adver-
tised with the <DDSServiceInstanceResourceldentifierType> at-
tribute set to SERVICE_INSTANCE_TOPIC_PREFIX, then the topic name
shall be set to ara.com://services/<svcId>/<svcInId>/<field-
RequestTopicName>

— Where:

<sveId> is the value of <DDSServiceInterfaceID> for the Service
Interface.

AUTSSAR

<sveInId> is the stringified value of <DDSServiceInstanceID> for the
Service Instance.

<svcMajVersion> is the stringified value of <DDSInterfaceMa-
jorVersion> forthe Service Interface

<svcMinVersion> is the stringified value of <DDSInterfaceMi-
norVersion> for the Service Interface.

<fieldRequestTopicName> is the value of <DDSFieldRequest-
TopicName> for the Service Interface Event

» The Request DDS Topic Data Type shall be defined as specified in
[FO_PRS_DDS 00408].

The equivalent DDS Reply Topic shall be configured as follows:

» The Reply DDS Topic Name shall be derived from the Manifest according to the
following rules:

— If the Service Instance has been advertised with the
<DDSServicelInstanceResourceldentifierType> attribute
set o SERVICE_INSTANCE_RESOURCE_PARTITION or SER-
VICE_INSTANCE_RESOURCE_INSTANCE_1ID, then the DDS Topic name
shall be set to ara.com://services/<svcId>/<svcMajVersion>.
<svcMinVersion>/<fieldReplyTopicName>

— Additionally, if the provided or consumed Service Instance hasbeen ad-
vertised with the <DDSServicelInstanceResourceldentifierType>
attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, then sam-
ples of this DDS Topic shall be sent and received via DDS DataWriters
and DataReaders whose respective parent DDS Publisher and Sub-
scriber objects include the following partition in the PARTITION QoS pol-

icy: ara.com://services/<svcId>/<svcInId>

— Finally, if the provided or consumed Service Instance has been adver-
tised with the <DDSServiceInstanceResourceldentifierType> at-
tribute set to SERVICE_INSTANCE_TOPIC_PREFIX, then the topic name
shall be set to ara.com://services/<svcId>/<svcInId>/<field-
ReplyTopicName>

— Where:

<sveId> is the value of <DDSServiceInterfaceID> for the Service
Interface.

<sveInId> is the stringified value of <DDSServiceInstanceID> for the
Service Instance.

<svcMajVersion> is the stringified value of <DDSInterfaceMa-
jorVersion> forthe Service Interface

AUTSSAR

<svcMinVersion> is the stringified value of <DDSInterfaceMi-
norVersion> forthe Service Interface.

<fieldReplyTopicName> is the value of <DDSFieldReplyTopic-—
Name> for the Service Interface Event.

« The Reply DDS Topic Data Type shall be defined as specified in
[FO_PRS_DDS _00409].

]

[FO_PRS_DDS 00408] Request DDS Topic data type definition for Field Get
and set operations

Status: DRAFT

Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00007

[As specified in section 7.5.1.1.6 of [4], the Request DDS Topic data type is a struc-
ture composed of a Request Header with meta-data and a Call Structure with data.
The IDL definition of the Request DDS Topic data type for the DDS Service handling
Field Get and set operations is the following:

1 struct <svcId>Field_Request {

2 dds: :rpc::RequestHeader header;

3 <svcId>Field_Call data;

4 };

Where:
<sveId> is the value of <DDSServiceInterfaceID>.

dds: :rpc: :RequestHeader is the standard Request Header defined in section
7.5.1.1.1 of [4].

<svecId>Field_Call is the union that holds the value of the input parameters of the
corresponding Methods, according to the rules specified in section 7.5.1.1.6 of
[4].

dds: :rpc: :RequestHeader shall be constructed as specified in section 7.5.1.1.1 of
[4]. On top of that, instanceName (a member of the RequestHeader structure that
specifies the DDS service Instance name) shall be set to a string representation
of the <DbSServiceInstanceID> value of the Service Instance that provides
the Fields (which have Get or Set operations).

<svcId>Field_cCall shall be constructed as specified in section 7.5.1.1.6 of [4].
» The name of the union shall be <svcId>Field_Call.
» The union discriminator shall be a 32-bit signed integer.

» The union shall have a default case of type dds: : rpc: :UnknownOperation
(defined in section 7.5.1.1.1 of [4]) for unsupported and unknown operations.

AUTSSAR

» The union shall have one case label for each Field defined to have a Get op-
eration, and one case label for each Field defined to have a set operation,
where:

— The integer value of the case label shall be a 32-bit hash of the Field

Get or Set name. That is, "Get<fieldName>" and "Set<fieldName>
": where <fieldName> the value of <DDSServiceInterfaceField-
Name>. The DDS Communication Protocol implementation shall compute
the hash as specified in section 7.5.1.1.2 of [4]. Representations of the
Service Interfacein OMG IDL [5]shall define 32-bit signed integer con-
stants (i.e., const int32 <svcId>Field_Get<fieldName>_Hash oOr
const int32 <svcId>Field_Set<fieldName>_Hash) to simplify the
representation of the union cases (see below).

The member name for the case label shall be get<fieldName> for Get
operations and set<fieldName> for Set operations.

The type for each case label shall be <svcId>Field_Get<fieldName>
_In for Get operations, and <svcId>Field_Set<fieldName>_In for
Set operations, which shall be constructed as specified in section 7.5.1.1.4
of [4] (see below).

The IDL definition of the <svcId>Field_Call union is the following:

© 0 N O O »~ 0 N =

union <svcId>Field_Call switch(int32) {
default:

dds: :rpc: :UnknownOperation unknownOp;

case <svclId>Field_Get<fieldOName>_Hash:

<svcId>Field Get<fieldOName>_In get<fieldOName>;

case <svclId>Field_Set<fieldOName>_Hash:

<svcId>Field_ Set<fieldOName>_In set<fieldOName>;

case <svclId>Field_Get<fieldlName>_Hash:

<svcId>Field_ Get<fieldlName>_In get<fieldlName>;

case <svclId>Field_Set<fieldlName>_Hash:

<svcId>Field_Set<fieldlName>_In set<fieldlName>;

case <svclId>Field _Get<fieldNName>_Hash:

<svcId>Field_Get<fieldNName>_In get<fieldNName>;

case <svcId>Field_Set<fieldNName>_Hash:

<svcId>Field_Set<fieldNName>_In set<fieldNName>;

According to 7.5.1.1.4 of [4], <svcId>Field_Set<FieldName>_TIn structures shall
contain one field representing the value of Field to be set. Conversely, <svcId>
Field_Get<fieldName>_1In shall contain a single member named dummy of type
dds: :rpc: :UnusedMember (see section 7.5.1.1.1 of [4]) to indicate that the method
has no input parameters.

The resulting Request DDS Topic data type shall be encoded according to the DDS
serialization rules. Unions, such as the <svcId>Field_Call union, shall be serial-
ized as specified in section 7.4.3.5 of [2].

AUTSSAR

[FO_PRS_DDS 00409] Reply DDS Topic data type definition for Field Get and
Set operations

Status: DRAFT

Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00007

[

As specified in section 7.5.1.1.7 of [4], the Reply DDS Topic data type is a structure
composed of a Reply Header with meta-data and a Return Structure with data. The IDL
definition of the Request DDS Topic data type for the DDS Service handling Field
Get and Set operations is the following:

1 struct <svcId>Field_Reply {

2 dds::rpc::ReplyHeader header;

3 <svcId>Field_Return data;
s

}i

Where:
<sveId> is the value of <DDSServiceInterfacelID>.

dds: : rpc: :RequestHeader is the standard Request Header defined in section
7.5.1.1.1 of [4].

<svcId>Field Return is the union that holds the value of the input parameters of
the corresponding response, according to the rules specified in section 7.5.1.1.7
of [4].

dds: :rpc: :ReplyHeader shall be constructed as specified in section 7.5.1.1.1 of
[4].

<svcId>Field_Return shall be constructed as specified in section 7.5.1.1.7 of [4],
where:

* The name of the union shall be <svcId>Field_ Return.
» The union discriminator shall be a 32-bit signed integer.

» The union shall have a default case of type dds: : rpc: :UnknownOperation
(defined in section 7.5.1.1.1 of [4]) for unsupported and unknown operations.

» The union shall have one case label for each Field defined to have a Get op-
eration, and one case label for each Field defined to have a set operation,
where:

— The integer value of the case label shall be a 32-bit hash of the Field
Get or Set operation name. That is, "Get<fieldName>" and "Set
<fieldName>"; where <fieldName> the value of <DDSServiceInter—
faceFieldName>. The DDS Communication Protocol implementation shall
compute the hash as specified in section 7.5.1.1.2 of [4]. Representations of
the Service Interface in OMG IDL [5]shall define 32-bit signed integer
constants (i.e., const int32 <svcId>Field_Get<fieldName>_Hash

AUTSSAR

or const int32 <svcId>Field Set<fieldName>_Hash) to simplify
the representation of the union cases (see below).

— The member name of the case label shall be get<fieldName> for Get
operations and set<fieldName> for Set operations.

— The type for each case label shall be <svcId>Field Get<fieldName>
_Result for Get operations and <svcId>Field_Set<fieldName>_Re-
sult for set operationss, which shall be constructed as specified in section
7.5.1.1.4 of [4] (see below).

The IDL definition of <svcId>Field_Return is the following:

union <svcId>Field Return switch (int32) {
default:

dds::rpc::UnknownOperation unknownOp;
case <svcId>Field_Get<fieldOName>_Hash:

<svcId>Field Get<fieldOName>_Result get<fieldOName>;
case <svcId>Field_Set<fieldOName>_Hash:

<svcId>Field_ Set<fieldOName>_Result set<fieldOName>;
case <svcId>Field_Get<fieldlName>_Hash:

<svcId>Field_ Get<fieldlName>_Result get<fieldlName>;
10 case <svcIld>Field_Set<fieldlName>_Hash:
11 <svcId>Field_Set<fieldlName>_Result set<fieldlName>;
12 //
13 case <svcId>Field_Get<fieldNName>_Hash:
14 <svcId>Field_ Get<fieldNName>_Result get<fieldNName>;
15 case <svcIld>Field_Set<fieldNName>_Hash:
16 <svcId>Field_ Set<fieldNName>_Result set<fieldNName>;
17}

© 0 N o g »~ 0 N o=

Get and sSet operations have the same output parameter. Therefore, in accordance
with section 7.5.1.1.5 of [4], both the <svcId>Field_Get<fieldName>_Result
and <svcId>Field_Set<fieldName>_Result unions shall be constructed as fol-
lows:

» The union discriminator shall be a 32-bit signed integer.

» The union shall have a case with label dds: : RETCODE_OK to represent a suc-
cessful return:

— The value of RETCODE_OK shall be 0, as specified in section 2.3.3 of [3].

— The successful case shall have a single member named result_ of type
<svcId>Field_Get<fieldName>_oOut to hold the value to be returned
to the Get operation, or type <svcId>Field_Set<FieldName>_Out to
hold the value to be returned to the set operation (see below).

The IDL representation of <svcId>Field_Get<fieldName>_Result is the follow-
ing:

union <svcId>Field_Get<fieldName>_ Result switch (int32) {

case dds::RETCODE_OK:

1
2
3 <svcId>Field_Get<fieldName>_Out result_;
4 };

AUTSSAR

Likewise, the IDL representation of <svcId>Field Set<fieldName>_Result is
the following:
union <svclId>Field_Set<fieldName>_Result switch (int32) {

case dds::RETCODE_OK:
<svcId>Field_Set<fieldName>_Out result_;

F AR VRN

bi

Both types <svcId>Field_Get<fieldName>_Out and its counterpart <svcId>
Field_Set<fieldName>_oOut shall map to a structure with a single member named
return_ of the data type defined for the Field.

The resulting Reply DDS Topi c data type shall be encoded according to the DDS seri-
alization rules. Unions, such as the <svcId>Field_Return union, shall be serialized
as specified in section 7.4.3.5 of [2]. |

[FO_PRS_DDS 00410] Creating a DDS DataWriter to handle get/set requests

on the client side
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00008, FO_RS_Dds_00005

[A DDS Datawriter shall be created for the Request DDS Topic associated
with the Get and sSet operations of the Service Interface Fieldss (see
[FO_PRS_DDS_00408]) upon client instantiation.

If the provided or consumed Service Instance hasbeen advertised with the iden-
tifier_type attribute setto SERVICE_INSTANCE_RESOURCE_PARTITION, to en-
sure the proxy communicates only with the Service Instance it is bound to, the
DDS pPublisher created in [FO_PRS_DDSSD_00105] (whose partition name is
"ara.com://services/<svcId>_<reqgSvcInId>") shall be used to create the
DDS DataWriter.

The DDS patawriter shall be configured as follows:

* DataWriterQos shall be setto <DDSServiceInstanceQosProfile>.

]

[FO_PRS_DDS_00411] Creating a DDS DataReader to handle get/set responses

on the client side
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00008, FO_RS_Dds_00005

[A DDS DataReader shall be created for the Reply DDS Topic associated with the
Gets and Sets of the Service Interface Fieldss (see [FO_PRS DDS 00409])
upon client instantiation.

If the provided or consumed Service Instance hasbeen advertised with the iden-
tifier_type attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, to en-
sure the proxy communicates only with the Service Instance it is bound to, the
DDS subscriber created in [FO_PRS_DDSSD_00105] (whose partition name is

AUTSSAR

"ara.com://services/<svcId>_<reqgSvcInId>") shall be used to create the
DDS DataReader.

The DDS pataReader shall be configured as follows:

* DataReaderQos shall be setto <DDSServiceInstanceQosProfile>.

]

[FO_PRS_DDS 00412] Creating a DDS DataReader to handle get/set requests

on the server side
Status: DRAFT

Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00008, FO_RS_Dds_00005

[A DDS DataReader shall be created for the Request DDS Topic associ-
ated with the Get and sSet operations of the Service Interface Fields (see
[FO_PRS_DDS 00408]) upon server instantiation.

If the provided or consumed Service Instance hasbeen advertised with the iden-
tifier_type attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, to en-
sure the clients communicate only with the Service Instance it is bound to, the
DDS subscriber created in [FO_PRS _DDSSD 00101] (whose partition name is
"ara.com://services/<svcId>_<regSvcInId>") shall be used to create the
DDS DataReader.

The DDS pataReader shall be configured as follows:
e DataReaderQos shall be setto <DDSServiceInstanceQosProfile>.

* Listener and StatusMask shall be set according to the desired Method call
processing mode:

— For an asynchronous call processing mode, Listener shall be set
to an instance of the DDS DataReader Listener class spec-
ified in [FO_PRS _DDS 00311], and statusMask shall be set to
DATA_AVAILABLE_STATUS.

— For a synchronous call processing mode, L.i stener shall remain unset, and
StatusMask shall be setto STATUS_MASK_NONE.

]

[FO_PRS_DDS 00413] Creating a DDS DatawWriter to handle get/set responses

on the server side
Status: DRAFT

Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00008, FO_RS_Dds_00005

[A DDS DatawWriter shall be created for the Reply DDS Topic associated
with the Get and sSet operations of the Service Interface FieldsS (see
[FO_PRS _DDS 00409]) upon server instantiation.

If the provided or consumed Service Instance hasbeen advertised with the iden-
tifier_type attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, to en-

AUTSSAR

sure the clients communicate only with the Service Instance it is bound to, the
DDS pPublisher created in [FO_PRS_DDSSD_00101] (whose partition name is
"ara.com://services/<svcId>_<reqgSvcInId>") shall be used to create the
DDS pataWriter.

The DDS patawriter shall be configured as follows:

* DataReaderQos shall be setto <DDSServiceInstanceQosProfile>.

]

[FO_PRS_DDS _00414] Calling Get and set operations associated with a Field

from the client side
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00008, FO_RS_Dds_00015

[When instructed to call the Get or set operation associated with a Field from the
client side, a new sample of the corresponding Request Topic—an instance of the Re-
quest DDS Topic data type defined in [FO_PRS_DDS_00408]— shall be constructed
as follows:

 To initialize the RequestHeader object,
— requestId shall be set according to the rules specified in [4].

— instanceName shall be set to the string-representation value of <DDSSer-
viceInstanceID> forthe remote Service Instance.

* To initialize the <svcId>Field_Call object, the appropriate union case (as
specified in [FO_PRS_DDS_00408], the hash of the Field Get/Set operations
name is the union discriminator that selects the union case) shall be selected,
and the set as follows:

— If the call corresponds to a Get operation, the DDS Communication Protocol
shall leave the dummy member of the <svcId>Field_Get<fieldName>
_In structure unset.

— Else, if the call corresponds to a set operation, the DDS Communication
Protocol shall set accordingly the only member of the <svcId>Field_Set
<fieldName>_1In structure with the new value for the Field.

That sample shall then be passed as a parameter to the write () Method of the
DDS patawriter created in [FO_PRS_DDS_00410] to handle get/set requests on
the client side, which shall serialize the sample according to the DDS serialization
rules, and publish it over DDS. |

The DDS serialization rules are defined in section 6.11.

AUTSSAR

[FO_PRS_DDS 00415] Notifying the client of the response to the Get and Set
operations call

Status: DRAFT

Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00008, FO_RS_Dds_00015

[To notify the client application of a response as a result of a call to a Get or set
operation, the result value shall be extracted from the Reply DDS Topic sample, from
either the <svcId>Field_Get<FieldName>_Result structure, for get operations;
or <svcId>Field_Set<FieldName>_Out, for set operations.

The associated set operation shall be performed upon the reception of a new Reply
Topic sample by the corresponding DDS DataReader (see [FO_PRS_DDS_00411]).
The DDS DataReader’s take () Method shall be used to receive sample. More-
over, to correlate a request with a response, the DDS Communication Protocol shall
compare the header.relatedRequestsId of the received sample with the original
requestId that was sentin [FO_PRS DDS 00414]°.

If the relatedRequestId does not correspond to a request1d that has been sent
by the client, the response shall be discarded. |

[FO_PRS_DDS 00416] Processing a Get and Set operations call associated with
a Field on the server side (asynchronous)
Status: DRAFT
Upstream requirements: RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00220, RS _
CM_00221, FO_RS_Dds_00001, FO_RS_Dds_00008, FO_RS_Dds_-
00016
[In case asynchronous request processing is expected, a DDS DataReader Lis-
tener shall be created to process the requests asynchronously—as described in
[FO_PRS_DDS_00417]—with an instance of it attached to the DDS DataReader pro-
cessing the requests in accordance with [FO_PRS_DDS_00412]. The listener is re-
sponsible for identifying the internal callback processing the request, and dispatching
request data to it (see [FO_PRS_DDS_00417]).]

[FO_PRS_DDS 00417] Creating a DataReaderListener to process asyn-
chronous requests for Field Get and Set operations on the server side

Status: DRAFT

Upstream requirements: FO_RS_Dds 00001, FO_RS_Dds_ 00008

[According to [FO_PRS_DDS_00412], asynchronous request processing requires the
instantiation of a DDS DataReader Listener to process asynchronously requests
on the server side. This object shall handle samples of the DDS Topic data type
specified in [FO_PRS_DDS_00408].

The DDS DataReader Listener shall implement the following callback according to
the specified instructions:

* An on_data_available () callback responsible for reading the received re-
quests from the DDS DataReader’s cache—using the take () operation—and

3See footnotes in [FO_PRS_DDS_00309].

AUTSSAR

dispatching it to the upper platform layers. To identify the Field of the Ser-
vice Instance, andthe callback to be invoked forit, on_data_available ()
shall use the union discriminator of the <svcId>Field_Call union (see
[FO_PRS_DDS_00408]).

— In the case of a set operation, the only member of the received <svcId>
Field_<FieldName>_In structure, which contains the new value to be
set, shall be passed to the callback.

— In the case of a Get operation, the callback shall provide the intended result
of the Get operation.

]

[FO_PRS_DDS _00418] Processing a Get and Set operations call associated with
a Field on the server side (synchronous)

Status: DRAFT

Upstream requirements: FO_RS_Dds 00001, FO_RS_Dds_00008

[In case synchronous request processing is expected, the protocol implementaiton is
responsible for calling take () onthe DDS DataReader processing the Request DDS
Topic associated with the service (see [FO_PRS_DDS 00408]).

Each synchronous operation shall take () only the first sample from the DDS
DataReader’s cache and dispatch the call to the appropriate callback according to
the value of the of the discriminator of the <svcId>Field_Call union and provide
the destination callback with the specific arguments in the union case. |

[FO_PRS_DDS 00419] Sending a response for a Get and Set operations call

associated with a Field from the server side
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00008, FO_RS_Dds_00015

[Upon the return of a Service Instance Field Get or Set callback, a response
shall be sent to the client.

To send this response, a new sample of the Reply DDS Topic —an instance of the
Reply DDS Topic data type defined in [FO_PRS_DDS_00409])— shall be constructed
as follows:

* To initialize the ReplyHeader object,

— relatedRequestId shall be set to the value of the header.requestId
attrioute of the request that triggered the Method call (see
[FO_PRS_DDS_00414]).

* To initialize the <svcId>Field_Return object:

— Select the appropriate union case (as specified in [FO_PRS_DDS_00409]),
the hash of the Field’s Get/Set operation is the union discriminator that
selects the union case).

AUTSSAR

— Set the appropriate <svcId>Field_Get<FieldName>_Result—for Get
operations—or <svcId>Field_Set<FieldName>_Result—for Set
operations—. In both cases, the union case for dds: : RETCODE_OK shall
be selected and the corresponding structure be set with the value retrieved
upon the return of the Field Get or Set callback.

The sample shall then be passed as a parameter to the write () function of the DDS
DataWriter created in [FO_PRS _DDS_00413] to handle Get and set operation re-
sponses on the server side, which shall serialize the sample according to the DDS
serialization rules, and publish it over DDS. |

The DDS serialization rules are defined in section 6.11.

AUTSSAR

6.11 Serialization of Payload

The present section outlines generic data type mappings, which AUTOSAR platforms
then specialize for their own native type system.

[FO_PRS_DDS 00500] DDS standard serialization rules
Status: DRAFT
Upstream requirements: FO_RS_Dds_ 00001, FO_RS_Dds 00002

[The serialization of the payload shall be done according to the DDS standard serial-
ization rules defined in section 7.4.3.5 of [2]. |

6.11.1 Basic Data Types

[FO_PRS_DDS 00501] DDS serialization of primitive data types
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00002, FO_RS_Dds_00007

[Primitive data types shall be serialized according to the standard serialization rules
for the equivalent PRIMITIVE_TYPE defined in section 7.4.3.5 of [2], as mapped by
[FO_PRS_DDS _00510].]

[FO_PRS_DDS 00510] Mapping of DDS primitive data types
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00002, FO_RS_Dds_00007

[

Type DDS Type Remark
Boolean Boolean

Unsigned 8-bit | Byte Shall be encoded as a Byte type (opaque 8-bit type).
integer

Unsigned Ulnt16

16-bit integer

Unsigned UlInt32

32-bit integer

Unsigned Uint64

64-bit integer

Signed 8-bit in- | Byte Shall be encoded as a Byte type (opaque 8-bit type).
teger

Signed 16-bit | Int16

integer

Signed 32-bit | Int32

integer

Signed 64-bit | Int64

integer

32-bit floating- | Float32

point decimal

64-bit floating- | Float64

point decimal

AUTSSAR

6.11.2 Enumeration Data Types

[FO_PRS_DDS _00502] DDS serialization of enumeration data types
Status: DRAFT
Upstream requirements: FO_RS_Dds 00001, FO_RS_Dds 00002, FO_RS_Dds_00007

[Enumeration data types shall be serialized according to the standard serialization
rules for ENUM_TYPE defined in section 7.4.3.5 of [2].

The bit bound of the ENUM_TYPE shall be set to the size of the enumeration’s underlying
basic data type in bits. |

6.11.3 Structured Data Types (structs)

[FO_PRS_DDS 00503] DDS serialization of structure data types
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00002, FO_RS_Dds_00007

[Structure data types (also known as records) shall be serialized according to the
standard serialization rules for STRUCT_TYPE defined in section 7.4.3.5 of [2].

Optional members of the structure shall be marked as optional as specified in section
7.2.2.4.4.5of [2].]

6.11.4 Strings

[FO_PRS_DDS 00504] DDS serialization of string types
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00002, FO_RS_Dds_00007

[String data types shall be serialized according to the standard serialization rules for
STRING_TYPE defined in section 7.4.3.5 of [2]. |

[FO_PRS_DDS 00505] Encoding Format and Endianness of Strings in DDS
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00002, FO_RS_Dds_00007

[Section 7.4.1.1.2 of [2] specifies the standard character encoding format for
STRING_TYPE: UTF-8. The serialized version shall not include a Byte Order Mark
(BOM), as byte order information is already available in the RTPS Encapsulation lden-
tifier and the XCDR serialization format [2]. |

AUTSSAR

6.11.5 Vectors and Arrays

[FO_PRS_DDS 00506] DDS serialization of vector types
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00002, FO_RS_Dds_00007

[Vector (also known as variable-length contiguous sequence) types shall be serialized
according to the standard serialization rules for SEQUENCE_TYPE defined in section
7.4.3.5 of [2].

DDS Communication Protocol implementations shall serialize vector types with more
than one dimension, as nested DDS sequences. |

[FO_PRS_DDS_00507] DDS serialization of array types
Status: DRAFT
Upstream requirements: FO_RS Dds 00001, FO_RS_Dds 00002, FO_RS Dds_ 00007

[Array (also known as fixed-length contiguous sequence) types shall be serialized ac-
cording to the standard serialization rules for ARRAY_TYPE defined in section 7.4.3.5
of [2].]

6.11.6 Associative Maps

[FO_PRS_DDS_00508] DDS serialization of dictionary types
Status: DRAFT
Upstream requirements: FO_RS_Dds 00001, FO_RS_Dds 00002, FO_RS_Dds_00007

[Dictionary (also known as associative map) types shall be serialized according to the
standard serialization rules for MAP_ TYPE defined in section 7.4.3.5 of [2].]

6.11.7 Variant

[FO_PRS_DDS _00509] DDS serialization of variant types
Status: DRAFT
Upstream requirements: FO_RS_Dds_00001, FO_RS_Dds_00002, FO_RS_Dds_00007

[Variant types shall be serialized according to the standard serialization rules for
UNION_TYPE defined in section 7.4.3.5 of [2]. |

AUTSSAR

6.12 End-to-end communication protection

The present DDS Communication Protocol is defined in terms of standard DDS types,
QoS policies and APls. Hence, End-to-end communication protection as described for
other protocols doesn’t apply, because API calls can’t be checksummed or payloaded
the same way serialized messages are.

By no means does this imply that DDS is exempt from E2E protection assurances,
they are simply provided by the DDS middleware. Different kinds of faults defined in
[6] (derived from 1SO-26262-6:2011, annex D.2.4) and their corresponding DDS/RTPS
protection mechanism are described by the following items.

[FO_PRS_DDS _00601] Repetition or Insertion of Information
Status: DRAFT
Upstream requirements: FO_RS_Dds_00010

[Submessage 64-bit sequence number, as defined in [1] section 8.3.5.4 "Sequen-
ceNumber", and additional SequenceNumber-typed fields in section 8.3.7 "RTPS Sub-
messages" shall be used to guarantee safety mechanisms against Repetition or Inser-
tion of Information faults.

Those mechanisms can be useful only to detect losses at receiver side; if detection
is required also to sender side, the RELIABILITY DDS QoS policy (defined in [1],
section 2.2.3.14 "RELIABILITY") shall be used in conjuction.

At receiving side, if a message with a duplicated counter is received, the message shall
be discarded and the fault reported to upper platform layers. |

[FO_PRS_DDS 00602] Loss or Incorrect sequence of Information
Status: DRAFT
Upstream requirements: FO_RS_Dds_00010

[Submessage 64-bit sequence number, as defined in [1] section 8.3.5.4 "Sequen-
ceNumber", and additional SequenceNumber-typed fields in section 8.3.7 "RTPS Sub-
messages" shall be used to guarantee safety mechanisms against Loss or Incorrect
sequence of Information faults.

At receiving side, if a message with a non-consecutive counter is received, the mes-
sage shall be discarded and the fault reported to upper platform layers. |

[FO_PRS_DDS _00603] Delay of Information or Blocking Access to a Communi-

cation Channel
Status: DRAFT
Upstream requirements: FO_RS_Dds_00005, FO_RS_Dds_00010

[DDS QoS policies shall be used to monitor Delay of Information faults, such as DEAD-
LINE, LATENCY_BUDGET, LIFESPAN and LIVELINESS (refer to [3] for details on
those QoS policies).

If timing constraints are not fulfilled on either receiver or sender side, the fault shall be
reported to upper platform layers. |

AUTSSAR

[FO_PRS_DDS 00604] Corruption of Information
Status: DRAFT
Upstream requirements: FO_RS_Dds_00010

[rtpsMessageChecksum under HeaderExtension submessage (RTPS 2.5 or
higher) shall be used to guarantee safety mechanisms against Corruption of Infor-

mation faults.
Those mechanisms can be useful only to detect corruption at receiver side.

At receiving side, if a message with an invalid checksum is received, the message shall
be discarded and the fault reported to upper platform layers. |

AUTSSAR

7 Configuration parameters

This chapter lists all parameters the DDS Communication protocol uses.

AUTSSAR

7.1

Service Oriented Communication

a DDS service Interface

DDS Protocol Parameter Description AP Config CP Config
ID of the DDS service DdsServicelnterfaceDe— -
<DDSServiceInterfaceID> Interface ploy-
ment.serviceInterfaceld
<DDSServiceInstanceID> ID of the DDS Service DdsProvidedServicelIn-— -
Instance stance.servicelInstancelId
and
DdsRequiredServicelIn-
stance.requiredServiceIngtancelId
<DDSInterfaceMajorVer- Major Version of the DDS ServicelInter- -
sion> Service Interface face.majorVersion
<DDSInterfaceMinorVer- Minor Version of the DDS Servicelnter— -
sion> Service Interface face.minorVersion
<DDSServiceInstanceR- Resource Identification scheme | DdsProvidedServiceIn- -
essourceldentifierType> for DDS Service Instance stance.resourceldentifiefType
<DDSEventTopicName> Suffix of the DDS Topic name DdsEventDeploy-— -
for an Event within a DDS ment . topicName
Service Interface
<DDSServicelIn- QoS Profile foran Event DdsQosProps.qosProfile -
stanceEventQoSProfile> within a specific DDS service
Instance
<DDSTriggerTopicName> Suffix of the DDS Topic name DdsEventDeploy- -
for an Trigger within a DDS ment .topicName
Service Interface
<DDSServiceIn-— QoS Profileforan Trigger DdsQosProps.qosProfile -
stanceTriggerQoSPro-— within a specific DDS service
file> Instance
<DDSMethodRequest - Suffix of the DDS Topic name DdsServiceInterfaceDe- -
TopicName> conveying all Service ploy-
Instance Method Requests ment .methodRequestTopicNgdme
of a DDS service
Interface
<DDSMethodReplyTopic— Suffix of the DDS Topic name DdsServiceInterfaceDe- -
Name> conveying all Service ploy—
Instance Method Replies of ment .methodReplyTopicNamg
a DDS service Interface
<DDSServicelInter— Name of a Service ClientServerOpera— -
faceMethodName> Interface Method tion.shortName
<DDSServicelInter— Error Domain of an ApApplicationErrorDo— -
faceMethodErrorDomain> Application-layer Error main.value
<DDSServiceInter-— Error Code of an ApApplication- -
faceMethodErrorCode> Application-layer Error Error.errorCode
<DDSServiceInstance-— QoS Profile forall Methods DdsRequiredServicelIn- -
QosProfile> and Field Methods within a stance.qgosProfile
specific DDS service
Instance
<DDSServicelInstance- QoS ProfileforafField DdsQosProps.qgosProfile -
FieldNotifierQosPro- Notifier within a specific DDS
file> Service Instance
<DDSFieldRequestTopic— Suffix of the DDS Topic name DdsServiceInterfaceDe- -
Name> conveying all Service ploy—
Instance Field Requests of ment . fieldRequestTopicNarne

\Y%

AUTSSAR

A

<DDSFieldReplyTopic—
Name>

Suffix of the DDS Topic name
conveying all Service
Instance Field Replies of a
DDS service Interface

DdsServiceInterfaceDe-
ploy-
ment.fieldReplyTopicName

<DDSServicelInterface-
FieldName>

Name of a Service
Interface Field

ClientServerOpera-—
tion.shortName

Table 7.1: Mapping Table - DDS Protocol Parameters

AUTSSAR

8 Protocol usage and guidelines

This section is intentionally left empty.

AUTSSAR

A Appendix

This section is intentionally left empty.

AUTSSAR

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

B.1 Traceable item history of this document according to AU-
TOSAR Release R25-11

B.1.1 Added Specification Iltems in R25-11

none

B.1.2 Changed Specification Items in R25-11

none

B.1.3 Deleted Specification Iltems in R25-11

none

B.2 Traceable item history of this document according to AU-
TOSAR Release R24-11

B.2.1 Added Specification Iltems in R24-11

Number Heading

gzo?ag]RS—DDS— Mapping Events to DDS Topics

E;)?ET]RS—DDS— DDS Topic data type definition

%%?ES]RS—DDS— Sending an Event sample

gi)?ag]RS—DDS— Subscribing to an Event

E)FO?EZ]RS—DDS— Creating a DDS DataReader for Event subscription
E)%?EE]RS—DDS— Defining a DDS DataReader Listener for a subscribed Event

\Y

AUTSSAR

A
Number Heading
E)FO?EE]RS—DDS— Unsubscribing from an Event
E)FO?E%RS—DDS— Obtaining subscription state from an Event
%%?65]RS—DDS— Retrieving new data samples from an Event
g;?ag]RS—DDS— Requesting number of free sample slots from an Event
%%?TE]RS—DDS— Registering an Event reception handler
%’B?TT]RS—DDS— Unregistering an Event reception handler
E;?T:]RS—DDS— Registering an Event subscription state change handler
E)IE)?T:I;’]RS_DDS_ Unregistering an Event subscription state change handler
E)I:()(;EE]RS—DDS— Mapping Triggers to DDS Topics
E)IE)(SEI:]RS_DDS_ DDS Topic data type definition
g:(gE;]RS—DDS— Sending a Trigger sample
E;CZ%;RS—DDS— Subscribing to a Trigger
%IBCZ)az]RS_DDS_ Creating a DDS DataReader for Trigger subscription
g—;)(;ag]RS_DDS_ Defining a DDS DataReader Listener for a subscribed Trigger
gi)gag]RS—DDS— Unsubscribing from an Trigger
E)%CZ)ES]RS—DDS— Obtaining subscription state from a Trigger
E)IZC;EE]RS_DDS_ Retrieving new notification from a Trigger
E)FO(SES]RS_DDS_ Registering a Trigger reception handler
g:(ng]RS—DDS— Unregistering a Trigger reception handler
E)FO(%T]RS_DDS_ Registering a Trigger subscription state change handler
E’BCZ)T;]RS—DDS— Unregistering a Trigger subscription state change handler

V

AUTSSAR

A
Number Heading
B:OCS)EE]RS_DDS— Mapping Methods to DDS Topics
E;)(;EI:]RS_DDS_ Mapping Methods to DDS Topic request data type definition
g:(gB;]RS_DDS— Mapping Methods to DDS Topic reply data type definition
%%C;ag’]RS_DDS_ Mapping of ara::core::ErrorCode
%%C;EZ]RS—DDS— Creating a DDS DataWriter to handle Method requests on the client side
[FO_PRS_DDS_ Creating a DDS DataReader to handle Method responses on the client
00303] side
g?gag]RS—DDS— Creating a DDS DataReader to handle Method requests on the server side
[FO_PRS_DDS_ Creating a DDS Datawriter to handle Method responses on the server
00307] side
E)FOC3)5§]RS_DDS— Calling a service Method from the client side
E)F(gES]RS_DDS_ Notifying the client of a response to a Method call
g:(ng]RS_DDS— Processing a Method call on the server side (asynchronous)
[FO_PRS_DDS_ Creating a DDS DataReader Listener to process asynchronous requests
00311] on the server side
%%C;TE]RS_DDS— Processing a Method call on the server side (synchronous)
%%gTS]RS_DDS— Sending a Method call response from the server side
gi)(‘)‘ag]RS_DDS_ Mapping Field Notifiers to DDS Topics
E%aaf]RS_DDS— Field Notifier DDS Topic data type definition
E)F()aag]RS_DDS— Sending a Field Notifier sample
E)Fo?ﬁg]RS_DDS— Subscribingto aField Notifier
g:OaEI:]RS—DDS— Creating a DDS DataReader for Field Notifier subscription
gi)(‘)lag]RS_DDS_ Creating a DataReaderListener for Field subscription
E)FOC‘)@FS’]RS_DDS_ Unsubscribing from a Field Notifier

V

AUTSSAR

A
Number Heading
E)FO(ZE%RS—DDS— Mapping of Field Get and Set operations to DDS Topics
E)FOEEE]RS—DDS— Request DDS Topic data type definition for Field Get and Set operations
EJFO?‘BS]RS_DDS_ Reply DDS Topic data type definition for Field Get and Set operations
%%C‘)H(F)’]RS_DDS_ Creating a DDS pataWriter to handle get/set requests on the client side
%IBC‘)HI:]RS_DDS_ Creating a DDS DataReader to handle get/set responses on the client side
E)IB(‘)‘T;]RS_DDS_ Creating a DDS DataReader to handle get/set requests on the server side
E)IB(‘)‘TS]RS_DDS_ Creating a DDS DataWriter to handle get/set responses on the server side
E)IB(LDHE]RS_DDS_ Calling Get and set operations associated with a Field from the client side
E)FO(ZTE]RS—DDS— Notifying the client of the response to the Get and Set operations call
[FO_PRS_DDS Processing a Get and set operations call associated with a Field on the
00416] server side (asynchronous)
[FO_PRS _DDS_ Creating a DataReaderListener to process asynchronous requests for
00417] Field Get and Set operations on the server side
[FO_PRS DDS Processing a Get and set operations call associated with a Field on the
00418] server side (synchronous)
[FO_PRS_DDS_ Sending a response for a Get and Set operations call associated with a
00419] Field from the server side

PRS_DD

E)F0250] S_DDS_ DDS standard serialization rules
E)FO%ET]RS—DDS— DDS serialization of primitive data types
E)FO%B;]RS_DDS_ DDS serialization of enumeration data types
%%%6§]RS_DDS_ DDS serialization of structure data types
%%2EZ]RS—DDS— DDS serialization of string types
%IB%EE]RS_DDS_ Encoding Format and Endianness of Strings in DDS
g;%ag]RS—DDS— DDS serialization of vector types
E)FO%ES]RS—DDS— DDS serialization of array types

\Y%

AUTSSAR

A
Number Heading
B%%EE]RS_DDS_ DDS serialization of dictionary types
E)FO%ES]RS_DDS— DDS serialization of variant types
B’B%&RS—DDS— Mapping of DDS primitive data types
E)%CG)ET]RS_DDS_ Repetition or Insertion of Information
[FO_PRS_DDS._ Loss or Incorrect sequence of Information
00602]
%%%ES]RS_DDS_ Delay of Information or Blocking Access to a Communication Channel
gi)%ai]RS_DDS_ Corruption of Information

Table B.1: Added Specification Items in R24-11

B.2.2 Changed Specification Items in R24-11

none

B.2.3 Deleted Specification ltems in R24-11

none

	1 Introduction and overview
	1.1 Protocol purpose and objectives
	1.2 Applicability of the protocol
	1.2.1 Constraints and assumptions
	1.2.2 Limitations

	1.3 Dependencies
	1.3.1 Dependencies to other protocol layers
	1.3.2 Dependencies to other standards and norms
	1.3.3 Dependencies to the Application Layer

	2 Use Cases
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Protocol Requirements
	4.1 Requirements Traceability

	5 Definition of terms and acronyms
	5.1 Acronyms and abbreviations
	5.2 Definition of terms

	6 Protocol specification
	6.1 Introduction
	6.2 Message format
	6.3 Message types
	6.4 Services / Commands
	6.5 Sequences (lower layer)
	6.6 Error messages
	6.7 Handling Events
	6.8 Handling Triggers
	6.9 Handling Method Calls
	6.10 Handling Fields
	6.11 Serialization of Payload
	6.11.1 Basic Data Types
	6.11.2 Enumeration Data Types
	6.11.3 Structured Data Types (structs)
	6.11.4 Strings
	6.11.5 Vectors and Arrays
	6.11.6 Associative Maps
	6.11.7 Variant

	6.12 End-to-end communication protection

	7 Configuration parameters
	7.1 Service Oriented Communication

	8 Protocol usage and guidelines
	A Appendix
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R25-11
	B.1.1 Added Specification Items in R25-11
	B.1.2 Changed Specification Items in R25-11
	B.1.3 Deleted Specification Items in R25-11

	B.2 Traceable item history of this document according to AUTOSAR Release R24-11
	B.2.1 Added Specification Items in R24-11
	B.2.2 Changed Specification Items in R24-11
	B.2.3 Deleted Specification Items in R24-11

