AUTSSAR

Document Title

Explanation of Adaptive and
Classic Platform Software
Architectural Decisions

Document Owner

AUTOSAR

Document Responsibility AUTOSAR
Document Identification No 1078
Document Status published
Part of AUTOSAR Standard Foundation
Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR . -
2025-11-27 | R25-11 Release . gggt_aﬁarchltectural decision for release
Management
» Added architectural decisions for release
R24-11
AUTOSAR . , o
2024-11-27 | R24-11 Release . .C|?rl.fled the use of the final specifier
Management in “Final specifier for types and virtual
member functions”
* Removed obsolete decisions
» Added architectural decisions for release
R23-11
» Clarified the expected handling of errors
B o s
2023-11-23 | R23-11 | Release © r?n i nf, g
Management connectio
» Adapted architectural decision “
Granularity of diagnostics” due to the
removal of structural dependencies
between Software Clusters
AUTOSAR
2022-11-24 | R22-11 Release « Initial release
Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction

1.1 Objectives
1.2 SCOpe . . . e

2 Definition of Terms and Acronyms
2.1 Acronyms and Abbreviations Lo oL
2.2 Definitionof Terms

3 Related Documentation
3.1 References

4 Qverview

5 Architectural Decisions

5.1 Common Decisions

5.1.1 Influence of PRS document changeson APandCP
5.1.2 Guidelines on standardizing SW functionalities

5.2 Adaptive Platform

5.2.1 Dynamic memory allocation,
5.2.2 Final specifier for types and virtual member functions
5.2.3 Usageofoutparameters,
5.2.4 Usage of named constructors for exception-less object creation . . .
5.2.5 Introduction of a monotonic clock APl
5.2.6 Responsibilities of State Management, Execution Management, and
Platform Health Management
5.2.7 Use of local proxy objects for shared access to objects
5.2.8 Functional Clusters shall standardize their production errors
5.2.9 Default arguments are not allowed in virtual functions
5.2.10 Assert that only APIs from properly initialized functional clusters can
becalled
5.2.11 The AUTOSAR Runtime for Adaptive Applications shall define only
interfaces that are intended to be used by AUTOSAR applications
and other Functional Clusters
5.2.12 AUTOSAR Runtime for Adaptive Applications APIls should follow the
C++ Core Guidelines
5.2.13 Harmonized error handling for lost daemon connection
5.2.14 Granularity of diagnostics oL
5.2.15 Potentially throwing constructors
5.2.16 The scope for restarting processes is a FunctionGroup
5.2.17 Platform-independent development of Software Clusters of category
APPLICATION_LAYER o
5.2.18 Functional Clusters shall standardize their logging/tracing
5.2.19 Guidance whether to define a service or a C++ interface
5.2.20 Support only functional dependencies between Software Clusters

© © 0 NN OO0 o 0101 O;n

15
17
18
19

19

20

21
21
23
23
25

26
26
27

AUTSSAR

5.2.21 The introduction of virtual functions requires approval 29
5.2.22 Guidelines for Extension Interfaces 30
5.2.23 Messages for unrecoverableerrors 31
5.2.24 No named constructors for abstractclasses 32
5.2.25 Modeling of the interaction of application-layer software with Func-

tional Clusters 33

5.2.26 Extent of allowed behavioral specification in API table description field 34
5.2.27 Namespace for AUTOSAR Adaptive Platform Extension Interfaces . 35
5.2.28 Guidelines on documenting re-specified external APIs in AUTOSAR 36

5.3 ClassicPlatformo 37
5.3.1 The ordering of structure elements is a binding part of the standard 37
5.3.2 Types of standardized headerfiles 38
5.3.3 Guidance for incompatible APlchanges 39
5.3.4 Handling of Time in the AUTOSAR Classic Platform 40
5.3.5 Providing configurable notification functions in BSW modules 41

5.3.6 Architectural considerations for the V2X stack in the AUTOSAR
Classic Platform 42

AUTSSAR

1 Introduction

This explanatory document provides additional information on architectural decisions
made for the AUTOSAR standards.

1.1 Objectives

The main objective of this document is to provide a documentation of architectural de-
cisions made for the AUTOSAR standards that makes such decisions comprehensible
and reviewable in the future and ultimately get more maintainable standards.

1.2 Scope

This document covers decisions made for the software architecture of AUTOSAR stan-
dards. The main audience of this document are architects of the AUTOSAR standards
as well as members of other working groups.

AUTSSAR

2 Definition of Terms and Acronyms

2.1 Acronyms and Abbreviations

Abbreviation / Acronym

Description

API

Application Programming Interface

STL

Standard Template Library

2.2 Definition of Terms

Term

Description

Adaptive Application

See [1, AUTOSAR Glossary].

Execution Management

A Functional Cluster in the AUTOSAR Adaptive Platform.
See [2, EXP_SWArchitecture] for an overview.

Functional Cluster

See [1, AUTOSAR Gilossary]. [2, EXP_SWArchitecture] provides
an overview of all Functional Clusters in the AUTOSAR Adaptive
Platform.

Platform Health Management

A Functional Cluster in the AUTOSAR Adaptive Platform.
See [2, EXP_SWArchitecture] for an overview.

Process

See [1, AUTOSAR Glossary].

State Management

A Functional Cluster in the AUTOSAR Adaptive Platform.
See [2, EXP_SWArchitecture] for an overview.

Software Cluster

See [1, AUTOSAR Glossary] and [2, EXP_SWArchitecture].

Thread

See [1, AUTOSAR Glossary].

Watchdog

An external component that supervises execution of the AU-
TOSAR Adaptive Platform. See [2, EXP_SWArchitecture] for an
overview.

AUTSSAR

3 Related Documentation

This document provides an overview of the architectural decisions that have
been made for the AUTOSAR standards and their rationale. A high-level
overview of the architecture of the AUTOSAR standards is provided in [3,
EXP_LayeredSoftwareArchitecture] (AUTOSAR Classic Platform) as well as [4,
EXP_PlatformDesign] and [2, EXP_SWArchitecture] (AUTOSAR Adaptive Platform).

3.1 References

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] Explanation of Adaptive Platform Software Architecture
AUTOSAR_AP_EXP_SWArchitecture

[3] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[4] Explanation of Adaptive Platform Design
AUTOSAR_AP_EXP_PlatformDesign

[5] Dynamic Memory Allocation and Fragmentation
https://www.researchgate.net/publication/295010953_Dynamic_Memory_-
Allocation_and_Fragmentation

[6] Dynamic Memory Allocation on Real-Time Linux
https://static.lwn.net/images/conf/rtlws-2011/proc/Jianping.pdf

[7] TLSF: a new dynamic memory allocator for real-time systems
https://doi.org/10.1109/EMRTS.2004.1311009

[8] The Memory Fragmentation Problem: Solved?
https://doi.org/10.1145/286860.286864

[9] C++ Core Guidelines of May 11, 2024

https://github.com/isocpp/CppCoreGuidelines/blob/50afe02/CppCoreGuide-
lines.md

[10] Specification of Adaptive Platform Core
AUTOSAR_AP_SWS_Core

[11] General Requirements specific to Adaptive Platform
AUTOSAR_AP_RS_General

https://www.researchgate.net/publication/295010953_Dynamic_Memory_Allocation_and_Fragmentation
https://www.researchgate.net/publication/295010953_Dynamic_Memory_Allocation_and_Fragmentation
https://static.lwn.net/images/conf/rtlws-2011/proc/Jianping.pdf
https://doi.org/10.1109/EMRTS.2004.1311009
https://doi.org/10.1145/286860.286864
https://github.com/isocpp/CppCoreGuidelines/blob/50afe02/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/50afe02/CppCoreGuidelines.md

AUTSSAR

4 Overview

Architectural decisions refer to design choices that address architecturally significant
requirements, particularly those related to non-functional or quality attributes. These
decisions are typically regarded as challenging to make and costly to alter and there-
fore also alternative possibilities are considered / presented. Specifically, they impact
multiple modules or functional clusters within the AUTOSAR standards.

Architectural decisions may also provide general guidelines how to design modules /
functional clusters. In such cases the architectural decision provides a rational and the
guideline will be added to the respective RS document.

This chapter provides an overview of the organization and structure of architectural
decisions listed in this document. All architectural decisions are structured as a table
(see table 4.1 for a template). The architectural decisions are organized into sections
according to the platform they apply to.

Applies to A list of AUTOSAR platforms to which this architectural decision applies to.

The decision itself. The impact or direct consequences (for example, changes
Decision to interfaces) of the decision are not documented. Changes to the specifications
are made during the roll-out process after the decision has been made.

Rationale A rationale for the decision.

Category Category of the decision.

Application States if the decision has an direct impact on existing applications.
affected

Lists the assumptions that have been made before making the decision itself.
Assumptions These assumptions are documented in order to be able to review decisions in
the future and check if some assumptions probably no longer hold.

Provides an overview of the constraints that were identified to have an impact
Constraints on possible solutions. The constraints are also documented in order to be
reference points for future reviews of the decision.

Lists the alternatives that were considered and a rationale why they are worse
than the decision that has been made.

Alternatives

Remarks Lists remarks on the decisions.

Related Lists requirements related to the decision.

requirements

Release First AUTOSAR release that contained the documented decision.

Table 4.1: Template for Architectural Decisions

AUTSSAR

5 Architectural Decisions

5.1 Common Decisions

This chapter lists architectural decisions that have been made for the AUTOSAR Adap-
tive Platform and Classic Platform.

5.1.1 Influence of PRS document changes on AP and CP

Applies to AP, CP
If multiple protocol versions shall be supported by AUTOSAR, they shall be
standardized in one PRS document in the same release. Each platform can

Decision define the level of support by itself. One approach to document the different
levels of support can be the use of chapter 4 of the SWS to describe the
limitations. (Alternative 3)
We see use cases where different versions of a protocol are used on the

Rati I different platforms, e.g. AP might support the "old" and the "new" version

Szl whereas CP only supports the "old" version. The same applies to "features" of

protocols of the same protocol version.

Category None

Application None

affected

Assumptions

No assumptions were made.

Constraints

AUTOSAR follows a trunk-based development approach without any bugfix
branches. This means current PRS document versions simply replace older
ones. There is no maintenance of older PRS document versions.

Alternatives

Allow reference to an older AUTOSAR release
Allow reference to an older AUTOSAR release like in the DLT v2 example.

Support several versions in the same AUTOSAR release

Support several versions of a PRS document in the same AUTOSAR release.
Introduce "variant-aware" traceability to express different levels of support by
AP and CP.

Support several versions in a single document

If multiple protocol versions shall be supported by AUTOSAR, they shall be
standardized in one PRS document in the same release. Each platform can
define the level of support by itself. One approach to document the different
levels of support can be the use of chapter 4 of the SWS to describe the
limitations.

Support only one version in the same AUTOSAR release
Avoid any ambiguity and allow only one PRS version supported by both AP and
CP within one AUTOSAR release.

Remarks No remarks.
Related None
requirements

Release R22-11

AUTSSAR

5.1.2 Guidelines on standardizing SW functionalities

Applies to AP, CP
Criteria which favor a standardization:
+ Function is reusable by multiple OEMs and multiple projects
* Function abstracts standardized communication protocol(s)
* Function provides a functionality defined by other standards towards
application(s)
+ Function abstracts direct access to commonly used hardware
* Function is required by multiple ECUs/Machines within a car
Decision
Criteria which discourage standardization:
+ Function has potential for competitive advantage of OEM/T1 business
* Function implements mainly OEM-specific requirement(s)
« Function is already established in the market -implementations are available.
A potential standardization should also consider the Layered Software
Architecture [3] (CP) / Platform Design [4] (AP).
Rationale No rationale provided.
Category None
Application Yes
affected

Assumptions

No assumptions were made.

Constraints

No constraints were identified.

Alternatives

No alternatives were considered.

There are no generally applicable rules for assigning a SW function into the

Remarks architecture. Therefore, this architectural decision should be understood as a
guide to support such assignment decisions.

Related No related requirements.

requirements

Release R24-11

5.2 Adaptive Platform

This section lists architectural decisions that have been made for the AUTOSAR Adap-

tive Platform only.

AUTSSAR

5.2.1 Dynamic memory allocation

Applies to

AP

Decision

The use of dynamic memory allocation by Adaptive Applications and Functional
Clusters is allowed and assumed upon designing the AUTOSAR Adaptive
Platform standard.

Rationale

The use of dynamic memory allocation is essentially indispensable as the
AUTOSAR Adaptive Platform standard employs C++ as the language for its
API.

As the AUTOSAR Adaptive Platform standard will be used in safety-related
systems, dynamic memory allocation can cause non-deterministic behavior.
Two typical issues are the fragmentation and non-deterministic
allocation/de-allocation processing time. Memory allocators designed for
non-safety-critical systems often exhibit such issues, as they are more or less
designed for memory efficiency and/or average processing performance.
These issues can be controlled by using deterministic memory allocators.
Memory allocation is a well-studied area and various techniques have been
reported (Refer to references below for some examples). Multiple AUTOSAR
partners within the architecture group reportedly have such deterministic
memory allocators implemented and have been used in mass-production
systems.

Note that such allocators should replace the default malloc ()/free ()
implementations provided in the standard C library, that sits underneath the
C++ runtime library providing new () /delete () and also STL that AUTOSAR
Adaptive Platform also uses. This frees applications from providing its own
custom deterministic allocators and installing it to custom-allocator-aware
classes.

Please refer to [5], [6], [7], and [8] for further information on memory
fragmentation and memory allocation in real-time systems.

Category

Safety

Application
affected

No

Assumptions

Platform vendors and/or compiler vendors can replace the default memory
allocation/deallocation functions to use deterministic versions of those functions
during critical phases of the runtime when such determinism is required for
safety purposes.

Constraints

During certain phases of the runtime determinism is required. These are the
phases in which the allocators need to be replaced with deterministic versions.

Alternatives

Do not use dynamic memory allocation
Not using dynamic memory allocation is not an alternative for using C++.

Limit dynamic memory allocation to certain phases

Disallow dynamic memory allocation during certain phases of the runtime in
which determinism is required. This makes it very difficult to run complex code
during these phases.

Remarks No remarks.

Related + [RS_AP_00129] Public types defined by functional clusters shall be designed
requirements to allow implementation without dynamic memory allocation

Release R20-11

AUTSSAR

5.2.2 Final specifier for types and virtual member functions

Applies to AP
Adaptive Runtime types shall use the final specifier unless they are

Decision meant to be used as a base class. All virtual functions of a non-final class
that are not intended to be overwritten by a user of the APl shall be final.
Making classes and virtual functions £inal that are not intended to be used
as base classes or to be overwritten expresses the design (in particular the

) class hierarchy) more explicitly. This will avoid problems such as
Rationale « to derive from a class that is not prepared for sub-classing,
+ to inadvertently create a new virtual function instead of overwriting a
function from the base class due to a slightly different signature.

Category None

Application No

affected

Assumptions

A clear expression of the intended design of the public AUTOSAR Runtime for
Adaptive Applications class hierarchy.

Constraints

No constraints were identified.

Alternatives

Ensure proper use of AUTOSAR types by code review

The alternative is to have a code review of the application code using
AUTOSAR types. This is far out-of-scope of AUTOSAR. Therefore, it is not a
real alternative.

Remarks No remarks.

Related » [RS_AP_00140] Usage of "final specifier" in ara types
requirements

Release R20-11

5.2.3 Usage of out parameters

Applies to AP
Decisi Out parameters can be used for in-place modifications but shall not be used for
ecision returning values.
Harmonized look and feel.
C++ Core Guidelines [9]: “F.20: For "out" output values, prefer return values to
Rational output parameters. [...] A return value is self-documenting, whereas a & could
ationale be either in-out or out-only and is liable to be misused. This includes large
objects like standard containers that use implicit move operations for
performance and to avoid explicit memory management.”
Category None
Application No
affected

Assumptions

Dynamic memory allocation is allowed for all cases in which the APIs are used,
even when running time critical safety related code including ASIL D.

V

AUTSSAR

A

Constraints

In/out parameters, i.e. modifying an already existing parameter within a function
is allowed. For example, a function that clears or writes to a buffer should
receive that buffer as a non-const in/out parameter.

Alternatives

No alternatives were considered.

Remarks No remarks.

Related + [RS_AP_00141] Usage of out parameters
requirements

Release R20-11

5.2.4 Usage of named constructors for exception-less object creation

Applies to

AP

Decision

Exceptionless functions for creation of objects which returns an ara: :core::
Result should use the "named constructor idiom".

Rationale

Disadvantages of constructor token approach are avoided as follows:
 The constructor token type is an implementation detail of a cC1ass and
should thus not be specified, or even accessible from outside. This makes
the use of auto for obtaining a token mandatory because the token type
cannot be referred to in any other way.

» Moving the token’s content to the SomeClass instance has to be done very
carefully to fulfill the always-successful guarantee, which can be tricky if
multiple resources need to be acquired.

* The token object is "destroyed" by std: :move-ing its value into the
SomeClass constructor (actually, it is to be in a "valid" but unspecific state
according to the C++ standard), but it is easily possible to mistakenly use it
again for attempting to create another instance, with undefined results.

Category

Safety

Application
affected

Yes

Assumptions

No assumptions were made.

Constraints

No constraints were identified.

Alternatives

Constructor token approach
It was not considered due to the drawbacks described in the rationale of this
decision.

Regular constructor calls
Regular constructor calls were not considered because regular constructors
may throw exceptions and thus cannot be used in an exception-less design.

Remarks No remarks.

Related No related requirements.
requirements

Release R20-11

AUTSSAR

5.2.5 Introduction of a monotonic clock API

Applies to

AP

Decision

The AUTOSAR Runtime for Adaptive Applications shall provide its own
monotonic std: : chrono: : SteadyClock representing the power-up time of
the machine. The accuracy of this clock is defined by the platform vendor.
The accuracy of this clock could be used as a characteristic value of the
platform so that the projects could check whether this clock meets the
project-specific requirements (e.g. time synchronization requires typically a
clock with higher accuracy).

The system start of the machine defines the epoch of the clock. So this clock
represents the power-up time of the machine.

Functional Clusters dealing with timestamps or clocks should use this clock as
a basis.

Rationale

The timestamps used in the time synchronization cluster should be based on
std: :chrono. Time synchronization requires a monotonic clock with special
accuracy.

Category

None

Application
affected

Yes

Assumptions

The time synchronization cluster is typically a daemon-based architecture due
to a single communication endpoint of the time sync messages. A standardized
clock with a special accuracy as a common basis is required to synchronize the
daemon with the library.

Constraints

No constraints were identified.

Alternatives

Pass clock type as template argument

The used clock could also be passed as a template argument. But a
standardized clock with a special accuracy as a common basis is required
anyway in case the time synchronization cluster is daemon based.

Remarks

The monotonic clock APl is realized by means of ara: : core: : SteadyClock.

Related
requirements

* [RS_AP_00130] AUTOSAR Adaptive Platform shall represent a rich and
modern programming environment.

Release

R20-11

AUTSSAR

5.2.6 Responsibilities of State Management, Execution Management, and Plat-
form Health Management

Applies to AP

State Management, Execution Management,andPlatform Health
Management are the fundament/basis of the AUTOSAR Adaptive Platform. A
failure in either state Management, Platform Health Management, Or
Execution Management process will typically lead to stop triggering the
watchdog. Platform Health Management Supervises State
Management and Execution Management. Platform Health
Management controls the watchdog and is thus in turn supervised by the
hardware watchdog.

Triggering of a Machine reset as a last resort should not be an option at all in
case of a failing of an Adaptive Application supervision (i.e. apart from
Operating System/Execution Management /State Management /
Platform Health Management). A supervision failure in an Adaptive
Application shall be reported to State Management. State Management
may forward this failure based on the criticality to Plat form Health
Management to wrongly trigger or stop triggering the serviced watchdog.
Platform Health Management performs a logical supervision of
checkpoints within a process or between processes within a Function
Group. Platform Health Management reports any supervision failures to
State Management. State Management is responsible to perform recovery
actions including a switch of the Function Group State, by delegating to
the Adaptive Application, or, as a last resort, by advising Plat form Health
Management to perform a hardware reset. Platform Health Management
is intended for supervision of safety-critical processes. Thus, Plat form
Health Management is an optional part of the AUTOSAR Adaptive Platform
for non safety-critical applications.

Processes shall never be restarted on their own because they may have
unknown runtime dependencies. The relation between a Process and a
Function Group is comparable to the relation between a thread and a
process. State Management should always trigger a request (Function
Group State change) to restart processes even in the
simplistic/non-dependent cases. Thus, Platform Health Management
does not have a direct interface to Execution Management.

The unrecoverable state interface of Platform Health Management shall
be removed.

The chosen solution leads to a simpler design of Plat form Health
Management with a single and well-defined responsibility. The chosen solution
also adheres to the single responsibility principle for State Management
(control system state) and Execution Management (control processes) as
well.

Recovery actions can be added by extension (open-closed principle) to State
Management. There is no need to modify or configure Plat form Health
Management.

Supervision failures may be handled by an Adaptive Application as well if
State Management chooses to delegate recovery to the Adaptive Application.

Category Safety

Decision

Rationale

V

AUTSSAR

A

Application
affected

Yes

Assumptions

* State Management is a mandatory part of the AUTOSAR Adaptive
Platform.

 Performance impact / delay of indirect reporting of supervision failures to an
Adaptive Application via State Management is negligible in comparison to
execution of reasonable recovery actions (such as starting processes).

Constraints

No constraints were identified.

Alternatives

Failure recovery coordinated by Plat form Health Management
Recovery in case of a systematic failure is coordinated by P1lat form Health
Management. Several components (Adaptive Application, Execution
Management, State Management, watchdog) are involved based on
priorities. Platform Health Management coordinates the recovery in the
following manner:

1. Platform Health Management asks the Adaptive Application to recover

2. In case of failure, Plat form Health Management asks Execution
Management to restart failed processes

3. In case of failure, Plat form Health Management asks State
Management to recover by switching the Function Group State

4. In case of failure, Plat form Health Management stops triggering the
watchdog and resets the Machine

5. In case of failure, Plat form Health Management switches to
unrecoverable state (not yet fully defined)

This alternative was not considered due to not adhering to the single
responsibility principle because several components are responsible for
recovery actions. This solution would also require Plat form Health
Management to have application knowledge because it has to determine the
appropriate Function Group State in step 3. Restarting single processes
may not be appropriate (step 2) due to runtime dependencies.

Distributed failure recovery

Recovery in case of a systematic failure is coordinated by P1at form Health
Management and State Management. Several components (Adaptive
Application, Execution Management, watchdog) are involved based on
priorities. Platform Health Management and State Management
coordinate the recovery in the following manner:

1. Platform Health Management asks the Adaptive Application to recover

2. In case of failure, Plat form Health Management asks State
Management to coordinate recovery by restarting the application

3. State Management asks Execution Management to change state /
switch to degraded state or safe state

4. In case of failure, State Management asks Adaptive Application to recover

5. In case step 2 failed due to application dependencies, Platform Health

Management stops triggering the watchdog and resets the Machine
\Y%

V

AUTSSAR

A

A
This alternative was not considered due to not adhering to the single
responsibility principle because Plat form Health Management and State
Management share responsibility for coordinating recovery actions.

« According to ISO 26262, it has to be ensured that a reaction is triggered after
a safety-relevant failure occurred. Therefore, Platform Health
Management shall make sure that State Management receives the
notification on a detected failure even if they communicate via an unreliable
communication channel, for example, an inter-process communication
mechanism. To achieve this, Platform Health Management should
implement a timeout monitoring. If no response by State Management is
received after a configurable timeout and number of tries, P1atform
Health Management shall trigger a reaction via hardware Watchdog.

For release R19-11 of the AUTOSAR Adaptive Platform, the configuration of
Remarks Platform Health Management included rules for monitoring (
PhmSupervision), arbitration and recovery actions. With this decision,
Platform Health Management is only responsible for monitoring. The
rules for monitoring (PhmSupervision) are unaffected. However, the
responsibilities for arbitration and recovery actions are moved to State
Management. In the current design, State Management is a piece of
project-specific, coded software with only little configuration. The
configuration for State Management should be extended to support
arbitration and recovery actions as well. This will allow to validate such
configurations based on standardized rules which is extremely hard to
achieve on source code level.

Related No related requirements.
requirements
Release R20-11

5.2.7 Use of local proxy objects for shared access to objects

Applies to AP

Local proxy object(s) shall be used to provide shared access to object

Decision instance(s) via the AUTOSAR Runtime for Adaptive Applications interface.

Local proxy objects hide the implementation details of the shared access. The
AUTOSAR Runtime for Adaptive Applications interface shall return a proxy
object by value. The caller shall use the object as a local proxy for subsequent
communication. Return by value is the most straightforward way to return data.
This decision enforces harmonization of the AUTOSAR Runtime for Adaptive
Applications interface. Stack vendors may freely choose how to implement the
Rationale shared access inside the proxy class.

An example for the use of a local proxy object by the caller is the following:

Result<void> myFunc () {
Result<void> myFunc () {
Result<KeyValueStorage> kvsRes

v

\Y%

AUTSSAR

A

AN
= KeyValueStorage: :Create (KVS_ID);
if (kvsRes) {

KeyValueStorage kvs = std::move (kvsRes) .Value();
auto keyRes = kvs.GetAllKeys(); // Value semantics
//

} else {

return {std::move (kvsRes) .Error() };
}
}

Category None
Application Yes
affected

Assumptions

No assumptions were made.

Constraints

No constraints were identified.

Use handles for shared access

Alternatives The alternative of using proxy classes is the usage of handles. These handles
would however reveal the implementation details of the shared access.

Remarks No remarks.

Related » [RS_AP_00135] Avoidance of shared ownership

requirements

Release R20-11

5.2.8 Functional Clusters shall standardize their production errors

Applies to AP
Functional clusters shall standardize production errors for common use-cases
Decision demanded by the market. The standardization shall summarize all production
errors by a standardized table in all SWS documents specifying production
errors.
Production errors are a fact. In order to be able to (semi-)automatically analyze
Rationale them and react to them, they and their documentation/persistence and their
healing needs to be standardized.
Category None
Application Yes
affected

Assumptions

Conceptually production errors are taken over from the AUTOSAR Classic
Platform. A differentiation between production errors and extended production
errors is not necessary.

Constraints

No constraints were identified.

Alternatives

Introduce interfaces for monitoring production errors
Functional clusters provide interfaces to allow applications to monitor
production errors.

Remarks

None

V

AUTSSAR

AN
Related None
requirements
Release R21-11

5.2.9 Default arguments are not allowed in virtual functions

Applies to AP

Decision Default arguments shall not be used at all in virtual functions.
The according RQ of the "C++ core guidelines" are too weak .. (they state, that

Rational it needs be made sure that a default argument is always the same) ... this

ationale would lead to code duplication with dependencies and high risks of

inconsistencies, which can easily lead to unexpected behavior.

Category None

Application Yes

affected

Assumptions No assumptions were made.

Constraints No constraints were identified.

Alternatives No alternatives were considered.

Remarks No remarks.

Related * [RS_AP_00148] Default arguments are not allowed in virtual functions

requirements

Release R21-11

5.2.10 Assert that only APIs from properly initialized functional clusters can be

called
Applies to AP
If functionality is called that depends on prior initialization via ara: : core: :
Decisi Initialize and ara::core::Initialize has not been called, the
ecision functional cluster implementation shall treat this as a violation and shall follow
SWS_CORE_00003 from [10, Specification of Adaptive Platform Core].
Calling APIs from uninitialized functional clusters that depend on prior
initialization cannot perform properly. This results in undefined behavior. The
Rationale problem is typically caused by misconfiguration or incomplete initialization at an

earlier stage of the system startup. This cannot be handled by the caller of the
API at the point in time where the error is detected. Aborting execution is the
only way to signal this kind of systematic error and prevent later failures.

Category None

Application Yes
affected

AUTSSAR

A

Assumptions

Parts of the system need to be initialized statically.

Constraints

No constraints were identified.

Alternatives

Extend all APIs to report a specific error code

Extend every API that depends on prior initialization with a specific error code
(e.g. kNotlnitialized) and force callers to check this error code at every call
(and let them abort themselves).

Remarks No remarks.
Related None
requirements

Release R21-11

5.2.11 The AUTOSAR Runtime for Adaptive Applications shall define only inter-
faces that are intended to be used by AUTOSAR applications and other

Functional Clusters

Applies to AP
It is explicitly prohibited to standardize implementation details, like:
* Classes, base-classes, functions etc. that are not used on the application
level or in platform extension APls
Decision « Implementation inheritance in the public APIs
* C++ SFINAE techniques of any kind
* Private members of classes
* Provide only narrow interfaces to avoid coupling to implementation details.
Rationale « Hide implementation details because by AUTOSAR definition the
implementation details are on the platform vendor.
Category None
Application Yes
affected

Assumptions

No assumptions were made.

Constraints

No constraints were identified.

Alternatives

No alternatives were considered.

Remarks

No remarks.

Related
requirements

* [RS_AP_00150] Provide only interfaces that are intended to be used by
AUTOSAR applications and other Functional Clusters

Release

R21-11

AUTSSAR

5.2.12 AUTOSAR Runtime for Adaptive Applications APIs should follow the C++
Core Guidelines

Applies to

AP

Decision

AUTOSAR C++ APIs should follow the [9, C++ Core Guidelines]. The
exceptions for hard-real-time systems shall apply. The AUTOSAR guidelines
defined in RS-General shall overrule the "C++ Core Guidelines" in case of
conflict. If a part of the AUTOSAR C++ API cannot follow the "C++ Core
Guidelines" for some other reason, its specification shall state the rationale
(how this is done in detail, shall be aligned with the architecture group).

Rationale

These guidelines are well accepted in the market. Their aim is to help C++
programmers writing simpler, more efficient, and more maintainable code.

Specific guidelines for the automotive domain for C++ 14 are not available.
When the upcoming version of the MISRA C++ standard is published, this

decision/requirement may be replaced by a decision/requirement to follow

MISRA C++.

Category

None

Application
affected

Yes

Assumptions

No assumptions were made.

Constraints

Some exceptions apply like the exception-less handling of the ARA APlIs.

Alternatives

No alternatives were considered.

Remarks No remarks.

Related * [RS_AP_00151] C++ Core Guidelines
requirements

Release R21-11

5.2.13 Harmonized error handling for lost daemon connection

Applies to

AP

Decision

If a functional cluster communicates with a remote peer (e.g. IPC
communication to a daemon) adequate error cases for communication failures
shall be identified (e.g. lost communication). These error cases shall be
grouped (according to the same error recovery mechanism) and if the user of
the API shall receive notification (e.g. by callbacks or returning error codes) for
a particular group, a suitable notification mechanism shall be selected. Please
note that there might be scenarios where the user of an API will not receive any
notification by design (e.g. fire-and-forget methods).

If an immediate action is required on error occurrence the type of action should
be determined in the following way:

* Functions that are currently defined with return type void (fire-and-forget
methods) require no immediate action. Therefore, no return type and error
code needs to be provisioned for such functions. The Adaptive Platform
should defer the effects of such functions until the connection to the daemon

has been (re-)established. Example: calling 0ffer () on a skeleton in
\Y%

V

AUTSSAR

A

A
Diagnostic Management should defer the internal registration of
callbacks until the daemon connection has been (re-)established.

» Synchronous functions (e.g. getters and setters) require immediate action.
One of the following options shall be implemented for synchronous functions:

— provision of error code, e.g. kServiceNotAvailable of type ara: :
core: :ErrorDomain: :CodeType.

— mapping to functional status information inside the returned data structure
(e.g. class object), which represent an error status

» Asynchronous functions (e.g., functions that return a ara: : core: : Future)
are a case-by-case decision based on the chance to be able to (re-)connect
to the daemon within the usual time-bounds for these functions. If notification
of the client is required as immediate action on error occurrence, the
notification mechanism shall be based on the mechanisms in ara: :core::
Future or a client callback. A client callback uses registration of a state
change callback handler before a client can make use of a service.

The application needs to be informed in case of disrupted communication
infrastructure in order to handle the error and take countermeasures (if any).
The provided guide for choosing the type of action increases the usability of the

Rationale Adaptive Platform APls because the errors are signaled in a natural way based
on the type of API. In addition, the error handling is partially done in the
Adaptive Platform.

Category None

Application Yes

affected

Assumptions

The following assumptions were made:
» The implementation does not depend on the type of communication
interface, e.g. process local, ara::com or native IPC mechanisms are in
scope of the decision.

* There is no polling of communication status required by user of the API.

* The cause of disconnected service shall be kept agnostic to the user of the
API.

« Connection oriented communication is out of scope due to inherent detection
mechanisms of the protocol.

Constraints

No constraints were identified.

Alternatives

No alternatives were considered.

Remarks No remarks.
Related None
requirements

Release R21-11

AUTSSAR

5.2.14 Granularity of diagnostics

Applies to

AP

Decision

Diagnostic entity shall be identical to the deployable unit within a vehicle.
Deployable unit means from hardware units (ECUs), up to Software Clusters.

Rationale

AUTOSAR focused on the Software Cluster approach because it offers a more
easy option to keep the two worlds consistent. A Software Cluster is the
individual deployable unit from the OEM perspective. Therefore, it is easy to
keep the offboard world consistent if the diagnostic has identical boundaries.
The production and workshop systems are often bound to the physical device.
Thus, many OEMs want to start also with this approach in Adaptive.
Consequently, until there is no individual software setup with a car (e.g.
because the installed options can be chosen by the driver itself) the offboard
systems could be kept consistent by stringent workflows.

Category

None

Application
affected

No

Assumptions

DM core doesn’t mind if a further diagnostic server is installed (in the context of
a new Software Cluster) or the current diagnostic server is just extended.

Constraints

Diagnostics is a (non-verbose) offboard-communication using external
description to document the communication content. For the development of a
vehicle the AUTOSAR DEXT is used; for the offboard world typically the ASAM
ODX format is used, because it offers higher flexibility across different carlines.
Today it is often already a challenge to keep the two worlds consistent. But with
the dynamic deployment (offered by Adaptive Platform) it is even more
challenging because in worst cases each vehicle has an individual setup of
installed Software Clusters.

Alternatives

None, because both options are requested by the market.

Remarks No remarks.
Related None
requirements

Release R21-11

5.2.15 Potentially throwing constructors

Applies to AP

Decisi Constructors that may throw exceptions shall not participate in overload
ecision resolution when C++ exceptions are disabled in the compiler toolchain.

Rational Similar solution to other functions that use C++ exceptions as their error
U handling mechanism e.g., ara: :core: :Result::ValueOrThrow ()

Category None

Application Yes

affected

AUTSSAR

A

Assumptions

» There are use cases targeted by AUTOSAR, when C++ exceptions are
disabled in the compiler toolchain.

« By this decision the overload set might be changed, which may result in an
unintended change to the program flow. Thus, the existence of two
constructors of the same class that fulfill the following conditions:

— one is potentially throwing, the other one noexcept,
— both accept the same number of parameters

— the corresponding parameters have to be convertible from the potentially
throwing one to the noexcept one

would be problematic. It is assumed that this situation will never occur

because AUTOSAR follows [11, RS General] and users use C++ best

practices, in particular [9, C++ Core Guidelines] C.164: Avoid implicit

conversion operators.

Constraints

No constraints were identified.

Alternatives

Assert that exception-throwing constructors cannot be used

Calling a constructor that may throw exceptions as part of its defined behavior

shall result in a compilation error when C++ exceptions are disabled in the

compiler toolchain. The compilation error shall result from a static_assert

with the error message "This constructor requires exception support.".

* (Con) This is not implementable. If a constructor is neither part of a class

template, nor is the constructor a function template itself, a static assertion
failure is triggered even if the constructor is not called anywhere in the code.

Constructors that may throw exceptions shall call abort instead of
throwing an exception
Constructors that may throw exceptions shall call abort instead of throwing an
exception when C++ exceptions are disabled in the compiler toolchain.
* (Pro) Constructors that may throw may be used even when C++ exceptions
are disabled in the compiler toolchain if it can be precluded that an exception
is thrown.

* (Con) May be difficult to support by vendors, unless they make large-scale
changes to their C++ standard library if it does not happen to follow the
AR-specified style.

* (Con) Unintended calls to such constructors are only detected at runtime and
only in the case of an error.

Implementation-specific behavior
* (Con) Violates [RS_AP_00111]

Declare all public constructors as noexcept
All public constructors shall be declared as noexcept. Instead of public
constructors that may throw, the named constructor idiom shall be used (even
when C++ exceptions are enabled in the compiler toolchain).
* (Pro) Unintended calls to constructors that may throw are detected at
compile time.

* (Con) Unnecessary restriction when C++ exceptions are enabled in the
compiler toolchain.

Remarks

No remarks.

Y

AUTSSAR

A

Related
requirements

* [SWS_CORE_90007] Potentially throwing constructors

Release

R21-11 (updated in R24-11)

5.2.16 The scope for restarting processes is a FunctionGroup

Applies to

AP

Decision

Applications can be restarted in the scope of a FunctionGroup. Ideally, the
recovery of supervision errors should be handled in the own FunctionGroup.
If the recovery cannot be handled within the own FunctionGroup, it has to be
escalated within the state Management. There the coordination for the
recovery should take place. This could typically be:

* the shutdown/restart of multiple FunctionGroups,

« the start of other FunctionGroups or
« the restart of the entire Machine.

The coordination of the restart of the entire Machine has to be coordinated
within the sState Management of the platform-core Software Cluster.

Rationale

Software Clusters are independently deployable units. They could be
added later to the same Machine and then should not harm other Software
Clusters (freedom from interference between software Clusters).
Recovery shall always be tried within the Software Cluster.

Category

Safety

Application
affected

No

Assumptions

The platform-core Software Cluster is the housekeeping initial Software
Cluster which Execution Management, Platform Health
Management, and State Management are a mandatory part of (if it is a
safety relevant Machine).

Constraints

No constraints were identified.

Alternatives

Restart individual application processes

Applications can be restarted in the scope of a Software Cluster. The
Software Cluster is for deployment and not visible in runtime. Thus, it
cannot be used in this context.

Remarks No remarks.
Related None
requirements

Release R21-11

AUTSSAR

5.2.17 Platform-independent development of Software Clusters of category AP-
PLICATION_LAYER

Applies to AP
Decisi Functional Cluster daemons and their startup coordination shall be part
ecision of Software Clusters of category PLATFORM_CORE Or PLATFORM.
This allows uniform and platform-independent integration of Software
Rational Clusters of category APPLICATION_LAYER. Consequently, it shall not be
ationale necessary to take care of the platform software when developing an Software
Cluster of category APPLICATION_LAYER.
Category None
Application Yes
affected

Assumptions

Market demand is to deliver Machines with pre-installed Adaptive Platform
software.

Constraints

No constraints were identified.

Alternatives

No limitation for allocation of platform software to Software Clusters
Do not make any limitations of platform software. This can lead to a
non-uniform integration of the platform software.

Remarks No remarks.
Related None
requirements

Release R21-11

5.2.18 Functional Clusters shall standardize their logging/tracing

Applies to AP
Functional Clusters shall standardize their logging/tracing for common
use-cases demanded by the market. The standardization shall be for the

Decision non-verbose logging/tracing. If applicable it shall be summarized by two
standardized tables (one for logging and a second for tracing) listing all
standardized log-/trace messages.

Rati I Standardized logging/tracing within Functional Clusters allows a

ationale harmonized evaluation of logging/tracing on vehicle-level.

Category None

Application Yes

affected

Assumptions

Logging/tracing is necessary for a variety of use cases (root cause analysis,
auditing, debugging). Especially, in a distributed environment a harmonization
is necessary to enable automated analysis.

Constraints

No constraints were identified.

Alternatives

No standardized logging
Do not standardize logging at all.

Remarks

No remarks.

Y%

AUTSSAR

AN
Related None
requirements
Release R21-11

5.2.19 Guidance whether to define a service or a C++ interface

Applies to

AP

Decision

The decision for a service interface or a C++ library interface should be based
on design criteria associated with usability of an interface for the APl consumer,
efficient usage of Adaptive Platform resources and required capabilities of the
communication. In case of conflicting criteria an interface should be
implemented by means of a library interface. The decision should consider the
various design aspects.
Criteria to favor a service based interface design:

» Using modelled data types that can be used for code generation.

* Support for various features of service oriented communications: A service
interface offers elements such as method, event, trigger, field to satisfy
certain types of communication patterns. In addition it is possible to
aggregate any types of these elements in a single service interface. Such
communication features are not offered via library interface.

 Support for flexible discovery of communication endpoints — if a
service interface is implemented, consumer of the service does not
have to care about location of service instances. Possibly a service
might be deployed among different machines.

* Is focused on data transport.
Criteria to favor a library based interface design:

» Reduced effort in respect to configuration.

* Reduced overhead on communication control - a library interface doesn’t
require maintenance of the communication channel between provider and
consumer. Certain types of communication patterns might show better
performance like infrequent exchange of data, peer-to-peer communication.

» Additional functionality beyond the pure data transport can be realized.

\Y%

AUTSSAR

A

Rationale

The quality requirements demand that "the use of the standard shall be as easy
as possible for suppliers and application developers".

If endpoint configuration, service discovery or remote calls are required, it is
sensible to use the existing functionality for services instead of individual
solutions. The quality requirements also demand that "the holistic approach
shall not be broken (avoid different approaches in one standard)".

C++ library interfaces are simpler and may be more efficient. They also leave
more freedom for the implementation because they allow an implementation
that runs in the process of the Adaptive Application. The quality requirements
demand that "the specification shall allow for a run-time efficient
implementation. Runtime efficiency refers to all resource consumption, CPU,
RAM, ROM". Therefore, C++ library interfaces should be preferred if it is
unsure whether a service interface is beneficial.

Category

None

Application
affected

No

Assumptions

No assumptions were made.

Constraints

No constraints were identified.

Alternatives

Always use service interfaces
Advantages:
» Same kind of interface for all Functional Clusters.

Disadvantages:
* Not always the most natural way for application developers. Unnecessary

complexity and implementation restrictions if functionality of Communication
Management is not required.

Always use C++ library interfaces
Advantages:
« Same kind of interface for all Functional Clusters.

Disadvantages:

* Not always the most natural way for application developers. Would require
individual solutions for service discovery and selection.

An in-process implementation to be run in the process of the calling Adaptive
Application is only possible for Functional Clusters with a C++ library interface.
Functional Clusters with a service interface require a dedicated process.

o According to this decision, Network Management should provide a C++ library
interface. Nevertheless, Network Management keeps using a service interface
to maintain backward compatibility.

Related None

requirements

Release R22-11

AUTSSAR

5.2.20 Support only functional dependencies between Software Clusters

Applies to AP

Decision Only functional dependencies between Software Clusters shall be supported.
A Software Cluster is already a structural deployment entity and is technically
the smallest unit that can be individually installed and updated on a Machine

Rationale (by means of a Software Package). This means that also a delta-update (like
updating only a single process within this Software Cluster) requires a new
version of the Software Cluster.

Category None

Application No

affected

Assumptions

No assumptions were made.

Constraints

No constraints were identified.

Alternatives

Support nested Software Clusters

The alternative of structurally nested Software Cluster was realized in
AUTOSAR, but the market use-cases could also be realized via Software
Cluster with their functional dependencies.

Remarks Discontinue structurally nested Software Clusters (aka Sub-SWCL).
Related None

requirements

Release R22-11

5.2.21 The introduction of virtual functions requires approval

Applies to AP
Any change to the AUTOSAR Adaptive Platform APIs that introduces new

Decision virtual functions shall be presented to the architecture working group for
approval.
The AUTOSAR Adaptive Platform APIs are designed to be directly
implemented by a stack vendor. For example, there are in general no abstract
classes or virtual functions defined that a stack vendor has to implement. Thus,

Rationale there is no need to define virtual functions in general. However, for some use
cases such virtual functions may be required (for example callbacks that shall
be implemented by an application). Such use cases will be collected and
afterwards general design patterns should be derived from them.

Category None

Application No

affected

Assumptions

The AUTOSAR Adaptive Platform APIs are designed to be directly
implemented by a stack vendor (in general no abstract classes, no virtual
functions that need to be implemented by a stack vendor).

Constraints

No constraints were identified.

Alternatives

No alternatives were considered.

V

AUTSSAR

A
R K The roll-out shall not affect classes with virtual functions that are already
emarks specified in a released document.
Related None
requirements
Release R22-11

5.2.22 Guidelines for Extension Interfaces

Applies to

AP

Decision

The Adaptive Platform shall support extensions of its behavior by means of
standardized extension interfaces, so called Platform Extension Interfaces. An
implementation of a Platform Extension Interface is provided e.g., by an OEM,
an integrator, or other third-party application. Such extensions would be
implemented in a programming language without any code generation support
or any runtime configuration in the Manifest.

The use of Platform Extension interfaces shall be limited to cases in which it is
well justified to provide an implementation of a behavior rather than configuring
a generic behavior via the Manifest. Platform Extension Interfaces that make
use of the Plugin pattern (see [2] Chapter 8.5.5.3 “Plugin”) require review and
approval by the architecture working group.

Rationale

The rationale for allowing Platform Extension Interfaces is a better usability of
the Adaptive Platform standard. In particular, the level of fulfillment of following
quality attributes is raised:
* "The AUTOSAR Adaptive Platform Standard elements should be easy to use
and hard to misuse." because in those cases in which Platform Extension
interfaces are applicable they are more convenient to use.

Providing patterns for Platform Extension interfaces (see [2] Chapter 8.5.5
“Platform Extensions”) contributes to fulfill the following quality attributes:

* "The AUTOSAR Adaptive Platform Standard should document its decisions
including their rationale and consequences."

» "The AUTOSAR Adaptive Platform Standard should follow a holistic
approach and avoid different approaches in one standard."

Platform Extension interfaces do not interfere with the quality attribute "An
application developer should not be able to supply a custom implementation for
pre-defined platform functionality" because an implementation of a Platform
Extension interfaces does provide functionality that is not provided by the
platform itself.

Category

None

Application
affected

No

AUTSSAR

A

Assumptions

It is assumed that a full customization of an Adaptive Platform stack
implementation by means of the Manifest does not provide the best usability.
For some variation points it is assumed to be easier to provide an
implementation of a behavior rather than configuring a generic behavior. In
such cases the Adaptive Platform needs to be extensible by means of
standardized Platform Extension Interfaces that are implemented by an OEM,
an integrator, or other third-party application.

Constraints

No constraints were identified.

Alternatives

Use Manifest only

This alternative would forbid any Platform Extension Interfaces. Any kind of
variation in the behavior of the AUTOSAR Adaptive Platform needs to be
configured via the Manifest. This alternative is not considered because for
some variation points it is extremely complicated to configure a generic
behavior rather than providing an implementation of the behavior itself.

Supported patterns for Platform Extension Interfaces are described in

Remarks [2] Chapter 8.5.5 “Platform Extensions”.
Related None

requirements

Release R23-11

5.2.23 Messages for unrecoverable errors

Applies to

AP

Decision

Functional clusters should standardize their messages for violations. Other
kinds of unrecoverable errors messages should be standardized by ara::core.
In case of an unrecoverable error, (if possible) the message should be
immediately delivered to the standard error stream of the affected process and
to the log sinks as fatal log (like defined by ara::log for the affected process or
the Execution Management). The implementation of this mechanism should
minimize the delay to terminate the affected process. In order to support root
cause analysis, the message should contain additional information like

* type of error

* source code position information
* process information

« additional context on the error

V

AUTSSAR

A

Rationale

Standardized messages within functional clusters support a common
appearance of unrecoverable errors and a straightforward input to track root
cause on system (e.g. vehicle) level. For these log messages the standardized
logging capability of the diagnostic log and trace (DLT) functional cluster is not
usable within the affected process for following reasons:

* may cause a significant delay of the process abortion

» DLT may not work properly after the error is detected

* logging of violations may be required even if the application is not initialized
(for using AP libraries)

Execution Management functional cluster can take the task of logging, if
DLT is not capable due to the aforementioned reasons. Standard error stream
may be used as a fallback mechanism for analysis in case the logs could not be
transmitted to the log sinks of ara::log. But this stream is not suitable to
exchange log information between different processes. As a consequence,
such mechanism is implementation specific.

Category

None

Application
affected

No

Assumptions

The following assumptions were made:
» Log messages containing information about unrecoverable errors that
occurred are useful for debugging.

* Using ara::log for creating these logs could significantly delay the termination
of the process, which may result in poor user experience.

Constraints

There are some potential constraints as follows:
» Compliance with data protection may inhibit projects to reveal development
related information (e.g. filenames)

* Relevant log information is not at all or only partially available

+ Creation of log message not possible (e.g. when the process is terminated
through std::terminate() call in code that cannot be modified by the
implementer)

Alternatives

No alternatives were considered.

Remarks No remarks.
Related None
requirements

Release R24-11

5.2.24 No named constructors for abstract classes

Applies to

AP

Decision

Abstract classes that are intended for specialization by the user of the ARA
shall not have recoverable errors in their constructors.

V

AUTSSAR

A

Specifying a recoverable error would make a named constructor necessary.
However, this pattern can not be applied to abstract classes where the concrete
class is not known by the AUTOSAR Adaptive Platform stack. In the described
situation the concrete class is user-defined. The stack has no knowledge of it. It

T therefore can not create an object of the type of the abstract class. Thus a
named constructor is not implementable.
If there are no recoverable errors during the construction the constructor can be
declared noexcept and there is no need for the named constructor.

Category None

Application No

affected

Assumptions

The following assumptions were made:
* There are currently no situations in the ARA where an abstract class
construction requires recoverable errors.

Constraints

No constraints were identified.

Alternatives

Alternative 1 One alternative is to define a solution approach for implementing
recoverable errors for constructors of abstract classes without relying on
exceptions. Since there was no need identified for this, that alternative was not
chosen.

In case there arises a situation in which an abstract class construction requires
recoverable errors, this arc decision and possible alternatives shall be

Remarks discussed. As a result, an alternative solution might be found, the decision
might be altered, or an exception might be granted.

Related None

requirements

Release R24-11

5.2.25 Modeling of the interaction of application-layer software with Functional

Clusters

Applies to

AP

PortPrototypes defined for the interaction of application-layer software with

Decision the Functional Cluster shall always be modeled as RPortPrototypes,
irrespective of the Port Interface that types the RPortPrototype.
All PortPrototypes that are created in a Software Component for the
interaction with Functional Clusters are of one kind, irrespective of the

Rationale interaction semantics and of the used Port Interface.
This approach harmonizes and simplifies the modeling approach for the
interaction of application-layer software with all Functional Clusters.

Category None

Application No

affected

AUTSSAR

A

Assumptions

The following assumptions were made:
* The current decision reflects the current status of the majority of the
documents.

Constraints

No constraints were identified.

Alternatives

The semantic of the interaction determines the type of the Port

In case the application is calling a method on the Functional Cluster then a
RPortPrototype is used (e.g., reporting of a Diagnostic Event). In case that
the application is providing a method that is used by the functional cluster then
aPPortPrototype is used (e.g., DebouncingCounterCallback,
DiagnosticRoutine).

Disadvantage: Such an approach would require to design the port interfaces in
a way that only one direction is applicable.

For backward compatibility reasons modeling approaches for the interaction of
application-layer software with the Functional Cluster that were released before
R23-11 may deviate from this decision.

Please note that in contrast to the conventions on the AUTOSAR Classic

AEEGLE Platform, the RPorts are only used on the application side of this
communication relation. The PPorts on the Foundation Functional Cluster side
are not modeled and therefore also the connection between the application and
the Functional cluster is not modeled as well.

Related None

requirements

Release R24-11

5.2.26 Extent of allowed behavioral specification in API table description field

Applies to

AP

Decision

"Trivial" behavioral definitions can be made in the description fields of the API
tables in [10] Chapter 8 “API specification”, [10] Chapter 9 “Service Interfaces”,
and [10] Appendix C “Platform Extension Interfaces (normative)”. Then this
behavior does not need to be specified in [10] Chapter 7 “Functional
specification”.
Additional information:

» What exactly can be considered "trivial" has to be decided case-by-case.

« If this is done in the row "description", no additional behavioral specification
shall be made in [10] Chapter 7 “Functional specification”.

* This includes behavioral definitions in the following rows of the table:
"description”, "errors", "exceptions", and "violations".

Rationale

Having trivial behavior as part of the API tables saves an additional spec item in
[10] Chapter 7 “Functional specification” that is difficult for a reader to find and
consider (usability) and can become inconsistent to the content of the API table
(maintainability).

Category

None

Application
affected

No

AUTSSAR

A

Assumptions

The following assumptions were made:
* The definition of behavior describes a function. Therefore it can be part of
the "Description" fields in the API table.

» Doc owners and reviewers make sensible judgement of what behavior can
be considered "trivial".

Constraints

No constraints were identified.

Alternatives

Alternative 1 Mandate all behavior specifications to be done in [10] Chapter 7
“Functional specification”.

Remarks

All specification items (including their "Description” row) in [10] Chapter 8 “AP/

specification”, [10] Chapter 9 “Service Interfaces”, and [10] Appendix C

“Platform Extension Interfaces (normative)” are binding but might be

incomplete. The complete picture only forms when also considering the

specification items from [10] Chapter 7 “Functional specification”. If there is

such a behavioral definition in the row "Description”, it shall use one of the

keywords defined by Requirements Management (e.g., "shall").

If there are spec items for the behavior in [10] Chapter 7 “Functional

specification” for an item in [10] Chapter 8 “API specification”, [10] Chapter 9

“Service Interfaces”, or [10] Appendix C “Platform Extension Interfaces

(normative)”, there shall not be a behavioral specification in the row

"Description”.

However, it is still allowed and desired to make matter of fact statements to

better describe the behavior (e.g., use "the function does...", instead of "the

function shall...").

Examples:

* API tables where the behavior is clear from the C++ semantics like
constructors and destructors usually do not need separate specification
items in [10] Chapter 7 “Functional specification” defining their behavior.

* Errors that are simple to understand and sufficiently explained in the API
table do not need a separate specification item in [10] Chapter 7 “Functional
specification”, for example in ara: :core: :InstanceSpecifier::
Create the error description for kInvalidMetaModelPath: if the
metaModelldentifier is not a valid path to a model element.

Related
requirements

None

Release

R24-11

5.2.27 Namespace for AUTOSAR Adaptive Platform Extension Interfaces

Applies to AP
All AUTOSAR Adaptive Platform Extension Interfaces shall belong under a
top-level namespace apext, which stands for AUTOSAR Adaptive Platform
Decision Extension Interface. The namespace shall have a sub-namespace representing

the Functional Cluster that specifies the Platform Extension Interface, for
example, apext: :1log.

\Y%

AUTSSAR

A

The ara which stands for AUTOSAR Runtime for Adaptive Applications, is an
interface for applications. The purpose of the AUTOSAR Adaptive Platform

Rationale Extension Interfaces is to extend the platform’s capabilities. Therefore, it should
be in a separate top-level namespace to clearly distinguish the intention of the
interface.

Category None

Application Yes

affected

Assumptions

The following assumptions were made:
» Based on the definition of the Platform Extensions described in the [2,
EXP_SWArchitecture] and the existing instances of such extensions in
multiple Functional Clusters.

Constraints

No constraints were identified.

Alternatives

Alternative 1
Not to define this namespace and mix it in the ara namespace.

Remarks No remarks.
Related None
requirements

Release R24-11

5.2.28 Guidelines on documenting re-specified external APls in AUTOSAR

Applies to AP
When documenting external APIs which are re-specified in AUTOSAR (e.g.
AUTOSAR implementations of ISO C++), those AUTOSAR definitions should
not duplicate the specification of:
« function behavioral descriptions
« function parameters
» C++ function template parameters
« return types IF they do not deviate from the external specification
AUTOSAR provides doxygen processing tags to avoid this duplication. In place
Declsi of the function behavioral description the following template general statement
ecision

shall be used: "As per <fully-qualified-function-name> in <citation>".

Example: "As per std::pmr::memory_resource::deallocate in [11]". Further
examples can be seen in [SWS_CORE_06506] or [SWS_CORE_06507]

If an AUTOSAR re-specified function is different in signature or behavior to its
externally specified function, it is sufficient to document only the deltas. In place
of the function behavioral description the following general statement shall be
used: "As per <fully-qualified-function-name> in <citation> except for the
following deviations:

1. signature deviation 1

AUTSSAR

2. signature deviation 2

Example: "As per std::pmr::memory_resource::deallocate in [11] except for the
following deviations:

1. Function is noexcept

2. If unsuccessful: the returned pointer shall be nullptr

3. ...

Further examples can be seen in [SWS_CORE_06503] or [SWS_CORE_
06504]

1. Avoidance of potential copyright issues

Rationale 2. Uniformity and consistence of AUTOSAR external references
3. Automatic maintenance and management of the AUTOSAR bibliography
Category None
Application No
affected

Assumptions

No assumptions were made.

Constraints

No constraints were identified.

Alternatives

No alternatives were considered.

Remarks No remarks.
Related None
requirements

Release R25-11

5.3 Classic Platform

This section lists architectural decisions that have been made for the AUTOSAR Clas-

sic Platform only.

5.3.1 The ordering of structure elements is a binding part of the standard

Applies to CP
The order of structure elements as defined by the SWS is considered as part of

Decisi the standard. Implementation specific optimizations, e.g. a re-ordering of

ecision structure elements by size to avoid alignment gaps, are therefore not standard

compliant.

Rationale Obj.e(?tl code interoperability could be jeopardized by deviating structure type
definitions.

Category None

Y%

AUTSSAR

A

Application
affected

Yes

Assumptions

Structure elements are usually accessed via name, which means that the order
shouldn’t matter. There are however valid use-cases like the initialization of
structures without designated initializers (e.g. my_struct x = {0, 42})
where no element names are involved at all.

Constraints

None

Alternatives

No standardized order of structure elements
The order of structure elements in the SWS is not prescribed by the standard.
An implementation is free to do any desired re-ordering.

In resource optimized implementations, structure elements are usually ordered
by size to avoid alignment gaps. This helps to increase efficiency and reduces

FEIELS memory consumption. Nevertheless some structures defined in AUTOSAR do
not follow this rule.

Related None

requirements

Release R21-11

5.3.2 Types of standardized header files

Applies to

CP

Decision

There shall be only 3 types of headers:
1. The module header (e.g. NvM.h, CanIf.h, EcuM.h, ...)

2. The private header between two modules (e.g. BswM_Sd.h, Adc_SchM. h,
Dcm_Externals.h,...)

3. The shared header (e.g. PlatformTypes.h, StandardTypes.h,
Can_GeneralTypes.h, ComStackTypes.h, ...)

Any additional headers are no longer necessary and are dropped/removed from
the SWS. This means that they are no longer standardized. An implementation
is however free to have such headers for its own purpose.

Rules:

« All header files are self-contained

* A module which uses types of another BSW in its own interface must
consider moving such types into a shared header (Exception: types of
service interfaces which are generated by the RTE and are available via
Rte_<Mip>.h)

* A library cannot have private headers by definition
+ Shared headers only consist of types and enums (No function prototypes...)
» Shared headers do never depend on other module or private headers

* For callouts to integration code or CDDs: The prototypes are available via

<Mip>_Externals.h
\Y%

V

AUTSSAR

Consequences:

* The tables for types and APIs (C interface) shall have a line "Available via" to
indicate the name of the header which exports the type/function

This is sufficient for an external view to answer the question which header is

Rationale needed by a user.
Category None
Application No

affected

Assumptions None
Constraints None

Alternatives

BSW implementation focused header file concept
Keep the current BSW implementation focused header file concept.

Remarks None
Related None
requirements

Release R21-11

5.3.3 Guidance for incompatible APl changes

Applies to

CP

Decision

If a function from a BSW module requires an incompatible change, the change
of the APl name shall be based on this decision matrix:

[change]
—-> [API shall be renamed (==new API, old to obsolete)]

[Adding/removing of a parameter with change of behavior]

--> [YES]

[Adding/removing of a parameter without change of behavior]

—-> [NO: Direct change, "Bug", "Optimization"]

[Changing an existing type / return type with change of behavior]

-—> [YES]

[Changing an existing type / return type without change of behavior]

—-—> [NO]

[Major change of the behavior of a function without a change of the prototype]

—--> [YES]

If a new API replaces the old one, the old (obsoleted) API shall contain
information which new API shall be used instead.
A) For external APls, that are not also used by other BSW modules, the
following life cycle changes shall apply:

1. Introduction of the new function AND setting the existing old one to "obsolete"
2. In the release + 1: remove the old function
B) For other APls, which are mainly or exclusively used between the BSW

modules, the change shall become immediately visible (direct change of the
existing function, no "obsolete" setting)

Rationale

The approach provides the best backward compatibility rating and offers a
migration time for users.

V

AUTSSAR

A
Category None
Application No
affected

Assumptions

The changed function is a normal service function. Callouts (functions where
the prototype is defined by the module, but not the code) may be handled
differently.

Constraints

None

Alternatives

Directly change existing function
Instead of adding a new function the existing one can also be directly changed.
* (Pro) If only i.e. arguments were added/removed, then the name of the
function does not change

* (Con) Does not support a migration phase for users

Prepare function for future changes
If it is already known that the function may change in the future then the
arguments could be provided as tag/value pairs.

* (Pro) Allows compatible extensions of arguments for future use cases

* (Con) Requires variable length arguments ("...") which cause MISRA issues

(?)

The drawback of the decision is that the new function requires a new function
name.

For real bugs where the existing prototype can not support the already defined
behavior ("does not work at all") a direct change without migration phase is

R preferable.
If a C type is changed (e.g. a structure gets a new field) and such type is used
in a prototype, the change of the type is considered compatible. So no
mandatory change of the function prototype (e.g. function name) is needed.

Related None

requirements

Release R22-11

5.3.4 Handling of Time in the AUTOSAR Classic Platform

Applies to CP
The Tm module shall handle all use cases related to local time handling. This

Decision includes all cases where currently Os is used (e.g. service interface for time
handling).

Rationale This reduces overlap and ambiguity of existing time services in the AUTOSAR
Classic Platform.

Category None

Application Yes

affected

Assumptions

No assumptions were made.

Y

AUTSSAR

A

Constraints

Global time synchronization still requires separate modules (e.g. StbM).
Furthermore there are specific timing uses cases in EcuM which are not
impacted by this decision.

Alternatives

Integrate functionality in Os module
Remove the Tm module and integrate the functionality in the 0s module.

Remove Tm module
Remove the Tm module with no replacement of functionality.

Integrate functionality in StbM module
Remove the Tm module and integrate the functionality in the stbM module.

Remarks No remarks.
Related None
requirements

Release R23-11

5.3.5 Providing configurable notification functions in BSW modules

Applies to CP
Use only one model element for configurable callback. Based on this element
multiple API tables for caller and callee side can then be provided.
Currently the APIs are modeled for each SWS separately. We could adapt the

Decision BSW UML model in a way that only the "calling SWS" does contain the model
element for the API and the "providing" SWS contains just a reference. The
artifact generator can then provide for each SWS an own table, which would be
just a copy of the model element, just with an own spec item id.

Rationale Use only one element to avoid inconsistent changes.

Category None

Application No

affected

Assumptions

No assumptions were made.

Constraints

No constraints were identified.

Alternatives

Alternative 1

The "providing" SWS shall only have a spec item in Chapter 8 (own subchapter)
which references to the API in the "calling" SWS like "The <own_module> shall
provide a notification function with name <xyz> which comply to the API of
<ARTraceRef to API>in <calling_module>." and the reference is
checked by tooling.

Alternative 2
Same as Alternative 1, but no formal spec item. Reference may be placed in
Chapter 5.

Remarks No remarks.
Related None
requirements

Release R24-11

AUTSSAR

5.3.6 Architectural considerations for the V2X stack in the AUTOSAR Classic

Platform
Applies to CP
The v2x handling in the AUTOSAR Classic Platform shall be placed on top of a
Decision separate wireless Ethernet stack which exists in parallel to the existing wired

Ethernet interfaces. So the v2x modules are placed on top of EthIf.

The following aspects contributed to the decision:

* The content and format of v2x data messages is specified outside of
AUTOSAR and may depend on several topics: e.g. the region where v2X is
used, government regulation, used physical connection (WLAN and/or cellular
networks) and so on. This means we have a wide range of possible
variations which would require support.

* The existing external v2x specifications require a lot of extra data types. This
would blow up a solution which uses the classical approach via PduR. Also
the fact that such messages could not be fully modeled contradicts a use in

Rationale the classic stack.

» The communication paradigm in a v2x system is mainly a broadcast
communication (day 1 scenario), where the sender does not expect answers.
E.g., a car may broadcast information that a specific road segment is slippery
to warn other drivers of this fact.

» The v2x modules are placed above the EthIf to allow future use cases,
e.g., allow also regular I communication over wireless interfaces. This
could be useful for day 2 scenarios. To enable these use cases, the
interfaces used for wired and wireless communication would need to be fully

harmonized.
Category None
Application No

affected

The following assumptions were made:
* V2X is not yet established in the market. This is somehow a chicken-egg
problem which might be solved via regulation. On the other side this also

. means that not all use cases are known and new features will show up.
Assumptions _ _
» We assume that v2x is solved by own standards and is not handled as an

extension to existing ones (e.g., the v2x is using some proprietary
communication format and not standard Tcp/1P). If v2X would be only a
TCP/IP based protocol other AUTOSAR-based solutions are possible.

Constraints No constraints were identified.

Alternative 1

Do not standardize the support of v2x within the AUTOSAR Classic Platform.
This could mean that v2x is covered by CDDs.

Alternati
HEEIAES Alternative 2

Use the standard communication stack mechanism and realize the message
handling above the PduR.

Remarks No remarks.

V

AUTSSAR

Related None
requirements

Release R24-11

	1 Introduction
	1.1 Objectives
	1.2 Scope

	2 Definition of Terms and Acronyms
	2.1 Acronyms and Abbreviations
	2.2 Definition of Terms

	3 Related Documentation
	3.1 References

	4 Overview
	5 Architectural Decisions
	5.1 Common Decisions
	5.1.1 Influence of PRS document changes on AP and CP
	5.1.2 Guidelines on standardizing SW functionalities

	5.2 Adaptive Platform
	5.2.1 Dynamic memory allocation
	5.2.2 Final specifier for types and virtual member functions
	5.2.3 Usage of out parameters
	5.2.4 Usage of named constructors for exception-less object creation
	5.2.5 Introduction of a monotonic clock API
	5.2.6 Responsibilities of State Management, Execution Management, and Platform Health Management
	5.2.7 Use of local proxy objects for shared access to objects
	5.2.8 Functional Clusters shall standardize their production errors
	5.2.9 Default arguments are not allowed in virtual functions
	5.2.10 Assert that only APIs from properly initialized functional clusters can be called
	5.2.11 The AUTOSAR Runtime for Adaptive Applications shall define only interfaces that are intended to be used by AUTOSAR applications and other Functional Clusters
	5.2.12 AUTOSAR Runtime for Adaptive Applications APIs should follow the C++ Core Guidelines
	5.2.13 Harmonized error handling for lost daemon connection
	5.2.14 Granularity of diagnostics
	5.2.15 Potentially throwing constructors
	5.2.16 The scope for restarting processes is a FunctionGroup
	5.2.17 Platform-independent development of Software Clusters of category APPLICATION_LAYER
	5.2.18 Functional Clusters shall standardize their logging/tracing
	5.2.19 Guidance whether to define a service or a C++ interface
	5.2.20 Support only functional dependencies between Software Clusters
	5.2.21 The introduction of virtual functions requires approval
	5.2.22 Guidelines for Extension Interfaces
	5.2.23 Messages for unrecoverable errors
	5.2.24 No named constructors for abstract classes
	5.2.25 Modeling of the interaction of application-layer software with Functional Clusters
	5.2.26 Extent of allowed behavioral specification in API table description field
	5.2.27 Namespace for AUTOSAR Adaptive Platform Extension Interfaces
	5.2.28 Guidelines on documenting re-specified external APIs in AUTOSAR

	5.3 Classic Platform
	5.3.1 The ordering of structure elements is a binding part of the standard
	5.3.2 Types of standardized header files
	5.3.3 Guidance for incompatible API changes
	5.3.4 Handling of Time in the AUTOSAR Classic Platform
	5.3.5 Providing configurable notification functions in BSW modules
	5.3.6 Architectural considerations for the V2X stack in the AUTOSAR Classic Platform

