
Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

Document Title
Explanation of Adaptive and
Classic Platform Software
Architectural Decisions

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 1078

Document Status published
Part of AUTOSAR Standard Foundation
Part of Standard Release R25-11

Document Change History
Date Release Changed by Description

2025-11-27 R25-11
AUTOSAR
Release
Management

• Added architectural decision for release
R25-11

2024-11-27 R24-11
AUTOSAR
Release
Management

• Added architectural decisions for release
R24-11

• Clarified the use of the final specifier
in “Final specifier for types and virtual
member functions”

• Removed obsolete decisions

2023-11-23 R23-11
AUTOSAR
Release
Management

• Added architectural decisions for release
R23-11

• Clarified the expected handling of errors
in architectural decision “Harmonized
error handling for lost daemon
connection”

• Adapted architectural decision “
Granularity of diagnostics” due to the
removal of structural dependencies
between Software Clusters

2022-11-24 R22-11
AUTOSAR
Release
Management

• Initial release

1 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

Table of Contents

1 Introduction 5
1.1 Objectives . 5
1.2 Scope . 5

2 Definition of Terms and Acronyms 6
2.1 Acronyms and Abbreviations . 6
2.2 Definition of Terms . 6

3 Related Documentation 7
3.1 References . 7

4 Overview 8

5 Architectural Decisions 9
5.1 Common Decisions . 9

5.1.1 Influence of PRS document changes on AP and CP 9
5.1.2 Guidelines on standardizing SW functionalities 10

5.2 Adaptive Platform . 10
5.2.1 Dynamic memory allocation . 11
5.2.2 Final specifier for types and virtual member functions 12
5.2.3 Usage of out parameters . 12
5.2.4 Usage of named constructors for exception-less object creation . . . 13
5.2.5 Introduction of a monotonic clock API 14
5.2.6 Responsibilities of State Management, Execution Management, and

Platform Health Management . 15
5.2.7 Use of local proxy objects for shared access to objects 17
5.2.8 Functional Clusters shall standardize their production errors 18
5.2.9 Default arguments are not allowed in virtual functions 19
5.2.10 Assert that only APIs from properly initialized functional clusters can

be called . 19
5.2.11 The AUTOSAR Runtime for Adaptive Applications shall define only

interfaces that are intended to be used by AUTOSAR applications
and other Functional Clusters . 20

5.2.12 AUTOSAR Runtime for Adaptive Applications APIs should follow the
C++ Core Guidelines . 21

5.2.13 Harmonized error handling for lost daemon connection 21
5.2.14 Granularity of diagnostics . 23
5.2.15 Potentially throwing constructors . 23
5.2.16 The scope for restarting processes is a FunctionGroup 25
5.2.17 Platform-independent development of Software Clusters of category

APPLICATION_LAYER . 26
5.2.18 Functional Clusters shall standardize their logging/tracing 26
5.2.19 Guidance whether to define a service or a C++ interface 27
5.2.20 Support only functional dependencies between Software Clusters . 29

3 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

5.2.21 The introduction of virtual functions requires approval 29
5.2.22 Guidelines for Extension Interfaces 30
5.2.23 Messages for unrecoverable errors 31
5.2.24 No named constructors for abstract classes 32
5.2.25 Modeling of the interaction of application-layer software with Func-

tional Clusters . 33
5.2.26 Extent of allowed behavioral specification in API table description field 34
5.2.27 Namespace for AUTOSAR Adaptive Platform Extension Interfaces . 35
5.2.28 Guidelines on documenting re-specified external APIs in AUTOSAR 36

5.3 Classic Platform . 37
5.3.1 The ordering of structure elements is a binding part of the standard 37
5.3.2 Types of standardized header files 38
5.3.3 Guidance for incompatible API changes 39
5.3.4 Handling of Time in the AUTOSAR Classic Platform 40
5.3.5 Providing configurable notification functions in BSW modules 41
5.3.6 Architectural considerations for the V2X stack in the AUTOSAR

Classic Platform . 42

4 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

1 Introduction

This explanatory document provides additional information on architectural decisions
made for the AUTOSAR standards.

1.1 Objectives

The main objective of this document is to provide a documentation of architectural de-
cisions made for the AUTOSAR standards that makes such decisions comprehensible
and reviewable in the future and ultimately get more maintainable standards.

1.2 Scope

This document covers decisions made for the software architecture of AUTOSAR stan-
dards. The main audience of this document are architects of the AUTOSAR standards
as well as members of other working groups.

5 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

2 Definition of Terms and Acronyms

2.1 Acronyms and Abbreviations

Abbreviation / Acronym Description
API Application Programming Interface
STL Standard Template Library

2.2 Definition of Terms

Term Description
Adaptive Application See [1, AUTOSAR Glossary].
Execution Management A Functional Cluster in the AUTOSAR Adaptive Platform.

See [2, EXP_SWArchitecture] for an overview.
Functional Cluster See [1, AUTOSAR Glossary]. [2, EXP_SWArchitecture] provides

an overview of all Functional Clusters in the AUTOSAR Adaptive
Platform.

Platform Health Management A Functional Cluster in the AUTOSAR Adaptive Platform.
See [2, EXP_SWArchitecture] for an overview.

Process See [1, AUTOSAR Glossary].
State Management A Functional Cluster in the AUTOSAR Adaptive Platform.

See [2, EXP_SWArchitecture] for an overview.
Software Cluster See [1, AUTOSAR Glossary] and [2, EXP_SWArchitecture].
Thread See [1, AUTOSAR Glossary].
Watchdog An external component that supervises execution of the AU-

TOSAR Adaptive Platform. See [2, EXP_SWArchitecture] for an
overview.

6 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

3 Related Documentation

This document provides an overview of the architectural decisions that have
been made for the AUTOSAR standards and their rationale. A high-level
overview of the architecture of the AUTOSAR standards is provided in [3,
EXP_LayeredSoftwareArchitecture] (AUTOSAR Classic Platform) as well as [4,
EXP_PlatformDesign] and [2, EXP_SWArchitecture] (AUTOSAR Adaptive Platform).

3.1 References

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] Explanation of Adaptive Platform Software Architecture
AUTOSAR_AP_EXP_SWArchitecture

[3] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[4] Explanation of Adaptive Platform Design
AUTOSAR_AP_EXP_PlatformDesign

[5] Dynamic Memory Allocation and Fragmentation
https://www.researchgate.net/publication/295010953_Dynamic_Memory_-
Allocation_and_Fragmentation

[6] Dynamic Memory Allocation on Real-Time Linux
https://static.lwn.net/images/conf/rtlws-2011/proc/Jianping.pdf

[7] TLSF: a new dynamic memory allocator for real-time systems
https://doi.org/10.1109/EMRTS.2004.1311009

[8] The Memory Fragmentation Problem: Solved?
https://doi.org/10.1145/286860.286864

[9] C++ Core Guidelines of May 11, 2024
https://github.com/isocpp/CppCoreGuidelines/blob/50afe02/CppCoreGuide-
lines.md

[10] Specification of Adaptive Platform Core
AUTOSAR_AP_SWS_Core

[11] General Requirements specific to Adaptive Platform
AUTOSAR_AP_RS_General

7 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

https://www.researchgate.net/publication/295010953_Dynamic_Memory_Allocation_and_Fragmentation
https://www.researchgate.net/publication/295010953_Dynamic_Memory_Allocation_and_Fragmentation
https://static.lwn.net/images/conf/rtlws-2011/proc/Jianping.pdf
https://doi.org/10.1109/EMRTS.2004.1311009
https://doi.org/10.1145/286860.286864
https://github.com/isocpp/CppCoreGuidelines/blob/50afe02/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/50afe02/CppCoreGuidelines.md

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

4 Overview

Architectural decisions refer to design choices that address architecturally significant
requirements, particularly those related to non-functional or quality attributes. These
decisions are typically regarded as challenging to make and costly to alter and there-
fore also alternative possibilities are considered / presented. Specifically, they impact
multiple modules or functional clusters within the AUTOSAR standards.

Architectural decisions may also provide general guidelines how to design modules /
functional clusters. In such cases the architectural decision provides a rational and the
guideline will be added to the respective RS document.

This chapter provides an overview of the organization and structure of architectural
decisions listed in this document. All architectural decisions are structured as a table
(see table 4.1 for a template). The architectural decisions are organized into sections
according to the platform they apply to.

Applies to A list of AUTOSAR platforms to which this architectural decision applies to.

Decision
The decision itself. The impact or direct consequences (for example, changes
to interfaces) of the decision are not documented. Changes to the specifications
are made during the roll-out process after the decision has been made.

Rationale A rationale for the decision.
Category Category of the decision.

Application
affected

States if the decision has an direct impact on existing applications.

Assumptions
Lists the assumptions that have been made before making the decision itself.
These assumptions are documented in order to be able to review decisions in
the future and check if some assumptions probably no longer hold.

Constraints
Provides an overview of the constraints that were identified to have an impact
on possible solutions. The constraints are also documented in order to be
reference points for future reviews of the decision.

Alternatives Lists the alternatives that were considered and a rationale why they are worse
than the decision that has been made.

Remarks Lists remarks on the decisions.
Related
requirements

Lists requirements related to the decision.

Release First AUTOSAR release that contained the documented decision.

Table 4.1: Template for Architectural Decisions

8 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

5 Architectural Decisions

5.1 Common Decisions

This chapter lists architectural decisions that have been made for the AUTOSAR Adap-
tive Platform and Classic Platform.

5.1.1 Influence of PRS document changes on AP and CP

Applies to AP, CP

Decision

If multiple protocol versions shall be supported by AUTOSAR, they shall be
standardized in one PRS document in the same release. Each platform can
define the level of support by itself. One approach to document the different
levels of support can be the use of chapter 4 of the SWS to describe the
limitations. (Alternative 3)

Rationale

We see use cases where different versions of a protocol are used on the
different platforms, e.g. AP might support the "old" and the "new" version
whereas CP only supports the "old" version. The same applies to "features" of
protocols of the same protocol version.

Category None

Application
affected

None

Assumptions No assumptions were made.

Constraints
AUTOSAR follows a trunk-based development approach without any bugfix
branches. This means current PRS document versions simply replace older
ones. There is no maintenance of older PRS document versions.
Allow reference to an older AUTOSAR release
Allow reference to an older AUTOSAR release like in the DLT v2 example.

Support several versions in the same AUTOSAR release
Support several versions of a PRS document in the same AUTOSAR release.
Introduce "variant-aware" traceability to express different levels of support by
AP and CP.
Support several versions in a single document
If multiple protocol versions shall be supported by AUTOSAR, they shall be
standardized in one PRS document in the same release. Each platform can
define the level of support by itself. One approach to document the different
levels of support can be the use of chapter 4 of the SWS to describe the
limitations.

Alternatives

Support only one version in the same AUTOSAR release
Avoid any ambiguity and allow only one PRS version supported by both AP and
CP within one AUTOSAR release.

Remarks No remarks.
Related
requirements

None

Release R22-11

9 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

5.1.2 Guidelines on standardizing SW functionalities

Applies to AP, CP

Decision

Criteria which favor a standardization:
• Function is reusable by multiple OEMs and multiple projects

• Function abstracts standardized communication protocol(s)

• Function provides a functionality defined by other standards towards
application(s)

• Function abstracts direct access to commonly used hardware

• Function is required by multiple ECUs/Machines within a car

Criteria which discourage standardization:

• Function has potential for competitive advantage of OEM/T1 business

• Function implements mainly OEM-specific requirement(s)

• Function is already established in the market -implementations are available.

A potential standardization should also consider the Layered Software
Architecture [3] (CP) / Platform Design [4] (AP).

Rationale No rationale provided.

Category None

Application
affected

Yes

Assumptions No assumptions were made.

Constraints No constraints were identified.
Alternatives No alternatives were considered.

Remarks
There are no generally applicable rules for assigning a SW function into the
architecture. Therefore, this architectural decision should be understood as a
guide to support such assignment decisions.

Related
requirements

No related requirements.

Release R24-11

5.2 Adaptive Platform

This section lists architectural decisions that have been made for the AUTOSAR Adap-
tive Platform only.

10 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

5.2.1 Dynamic memory allocation

Applies to AP

Decision
The use of dynamic memory allocation by Adaptive Applications and Functional
Clusters is allowed and assumed upon designing the AUTOSAR Adaptive
Platform standard.

Rationale

The use of dynamic memory allocation is essentially indispensable as the
AUTOSAR Adaptive Platform standard employs C++ as the language for its
API.
As the AUTOSAR Adaptive Platform standard will be used in safety-related
systems, dynamic memory allocation can cause non-deterministic behavior.
Two typical issues are the fragmentation and non-deterministic
allocation/de-allocation processing time. Memory allocators designed for
non-safety-critical systems often exhibit such issues, as they are more or less
designed for memory efficiency and/or average processing performance.
These issues can be controlled by using deterministic memory allocators.
Memory allocation is a well-studied area and various techniques have been
reported (Refer to references below for some examples). Multiple AUTOSAR
partners within the architecture group reportedly have such deterministic
memory allocators implemented and have been used in mass-production
systems.
Note that such allocators should replace the default malloc()/free()
implementations provided in the standard C library, that sits underneath the
C++ runtime library providing new()/delete() and also STL that AUTOSAR
Adaptive Platform also uses. This frees applications from providing its own
custom deterministic allocators and installing it to custom-allocator-aware
classes.
Please refer to [5], [6], [7], and [8] for further information on memory
fragmentation and memory allocation in real-time systems.

Category Safety

Application
affected

No

Assumptions

Platform vendors and/or compiler vendors can replace the default memory
allocation/deallocation functions to use deterministic versions of those functions
during critical phases of the runtime when such determinism is required for
safety purposes.

Constraints
During certain phases of the runtime determinism is required. These are the
phases in which the allocators need to be replaced with deterministic versions.

Do not use dynamic memory allocation
Not using dynamic memory allocation is not an alternative for using C++.

Alternatives Limit dynamic memory allocation to certain phases
Disallow dynamic memory allocation during certain phases of the runtime in
which determinism is required. This makes it very difficult to run complex code
during these phases.

Remarks No remarks.
Related
requirements

• [RS_AP_00129] Public types defined by functional clusters shall be designed
to allow implementation without dynamic memory allocation

Release R20-11

11 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

5.2.2 Final specifier for types and virtual member functions

Applies to AP

Decision
Adaptive Runtime types shall use the final specifier unless they are
meant to be used as a base class. All virtual functions of a non-final class
that are not intended to be overwritten by a user of the API shall be final.

Rationale

Making classes and virtual functions final that are not intended to be used
as base classes or to be overwritten expresses the design (in particular the
class hierarchy) more explicitly. This will avoid problems such as
• to derive from a class that is not prepared for sub-classing,

• to inadvertently create a new virtual function instead of overwriting a
function from the base class due to a slightly different signature.

Category None

Application
affected

No

Assumptions A clear expression of the intended design of the public AUTOSAR Runtime for
Adaptive Applications class hierarchy.

Constraints No constraints were identified.

Alternatives

Ensure proper use of AUTOSAR types by code review
The alternative is to have a code review of the application code using
AUTOSAR types. This is far out-of-scope of AUTOSAR. Therefore, it is not a
real alternative.

Remarks No remarks.
Related
requirements

• [RS_AP_00140] Usage of "final specifier" in ara types

Release R20-11

5.2.3 Usage of out parameters

Applies to AP

Decision
Out parameters can be used for in-place modifications but shall not be used for
returning values.

Rationale

Harmonized look and feel.
C++ Core Guidelines [9]: “F.20: For "out" output values, prefer return values to
output parameters. [...] A return value is self-documenting, whereas a & could
be either in-out or out-only and is liable to be misused. This includes large
objects like standard containers that use implicit move operations for
performance and to avoid explicit memory management.”

Category None

Application
affected

No

Assumptions Dynamic memory allocation is allowed for all cases in which the APIs are used,
even when running time critical safety related code including ASIL D.

▽

12 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

△

Constraints
In/out parameters, i.e. modifying an already existing parameter within a function
is allowed. For example, a function that clears or writes to a buffer should
receive that buffer as a non-const in/out parameter.

Alternatives No alternatives were considered.
Remarks No remarks.
Related
requirements

• [RS_AP_00141] Usage of out parameters

Release R20-11

5.2.4 Usage of named constructors for exception-less object creation

Applies to AP

Decision Exceptionless functions for creation of objects which returns an ara::core::
Result should use the "named constructor idiom".

Rationale

Disadvantages of constructor token approach are avoided as follows:
• The constructor token type is an implementation detail of a Class and

should thus not be specified, or even accessible from outside. This makes
the use of auto for obtaining a token mandatory because the token type
cannot be referred to in any other way.

• Moving the token’s content to the SomeClass instance has to be done very
carefully to fulfill the always-successful guarantee, which can be tricky if
multiple resources need to be acquired.

• The token object is "destroyed" by std::move-ing its value into the
SomeClass constructor (actually, it is to be in a "valid" but unspecific state
according to the C++ standard), but it is easily possible to mistakenly use it
again for attempting to create another instance, with undefined results.

Category Safety

Application
affected

Yes

Assumptions No assumptions were made.

Constraints No constraints were identified.
Constructor token approach
It was not considered due to the drawbacks described in the rationale of this
decision.

Alternatives Regular constructor calls
Regular constructor calls were not considered because regular constructors
may throw exceptions and thus cannot be used in an exception-less design.

Remarks No remarks.
Related
requirements

No related requirements.

Release R20-11

13 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

5.2.5 Introduction of a monotonic clock API

Applies to AP

Decision

The AUTOSAR Runtime for Adaptive Applications shall provide its own
monotonic std::chrono::SteadyClock representing the power-up time of
the machine. The accuracy of this clock is defined by the platform vendor.
The accuracy of this clock could be used as a characteristic value of the
platform so that the projects could check whether this clock meets the
project-specific requirements (e.g. time synchronization requires typically a
clock with higher accuracy).
The system start of the machine defines the epoch of the clock. So this clock
represents the power-up time of the machine.
Functional Clusters dealing with timestamps or clocks should use this clock as
a basis.

Rationale
The timestamps used in the time synchronization cluster should be based on
std::chrono. Time synchronization requires a monotonic clock with special
accuracy.

Category None

Application
affected

Yes

Assumptions

The time synchronization cluster is typically a daemon-based architecture due
to a single communication endpoint of the time sync messages. A standardized
clock with a special accuracy as a common basis is required to synchronize the
daemon with the library.

Constraints No constraints were identified.

Alternatives

Pass clock type as template argument
The used clock could also be passed as a template argument. But a
standardized clock with a special accuracy as a common basis is required
anyway in case the time synchronization cluster is daemon based.

Remarks The monotonic clock API is realized by means of ara::core::SteadyClock.

Related
requirements

• [RS_AP_00130] AUTOSAR Adaptive Platform shall represent a rich and
modern programming environment.

Release R20-11

14 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

5.2.6 Responsibilities of State Management, Execution Management, and Plat-
form Health Management

Applies to AP

Decision

State Management, Execution Management, and Platform Health
Management are the fundament/basis of the AUTOSAR Adaptive Platform. A
failure in either State Management, Platform Health Management, or
Execution Management process will typically lead to stop triggering the
watchdog. Platform Health Management supervises State
Management and Execution Management. Platform Health
Management controls the watchdog and is thus in turn supervised by the
hardware watchdog.
Triggering of a Machine reset as a last resort should not be an option at all in
case of a failing of an Adaptive Application supervision (i.e. apart from
Operating System / Execution Management / State Management /
Platform Health Management). A supervision failure in an Adaptive
Application shall be reported to State Management. State Management
may forward this failure based on the criticality to Platform Health
Management to wrongly trigger or stop triggering the serviced watchdog.
Platform Health Management performs a logical supervision of
checkpoints within a process or between processes within a Function
Group. Platform Health Management reports any supervision failures to
State Management. State Management is responsible to perform recovery
actions including a switch of the Function Group State, by delegating to
the Adaptive Application, or, as a last resort, by advising Platform Health
Management to perform a hardware reset. Platform Health Management
is intended for supervision of safety-critical processes. Thus, Platform
Health Management is an optional part of the AUTOSAR Adaptive Platform
for non safety-critical applications.
Processes shall never be restarted on their own because they may have
unknown runtime dependencies. The relation between a Process and a
Function Group is comparable to the relation between a thread and a
process. State Management should always trigger a request (Function
Group State change) to restart processes even in the
simplistic/non-dependent cases. Thus, Platform Health Management
does not have a direct interface to Execution Management.
The unrecoverable state interface of Platform Health Management shall
be removed.

Rationale

The chosen solution leads to a simpler design of Platform Health
Management with a single and well-defined responsibility. The chosen solution
also adheres to the single responsibility principle for State Management
(control system state) and Execution Management (control processes) as
well.
Recovery actions can be added by extension (open-closed principle) to State
Management. There is no need to modify or configure Platform Health
Management.
Supervision failures may be handled by an Adaptive Application as well if
State Management chooses to delegate recovery to the Adaptive Application.

Category Safety
▽

15 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

△
Application
affected

Yes

Assumptions

• State Management is a mandatory part of the AUTOSAR Adaptive
Platform.

• Performance impact / delay of indirect reporting of supervision failures to an
Adaptive Application via State Management is negligible in comparison to
execution of reasonable recovery actions (such as starting processes).

Constraints No constraints were identified.
Failure recovery coordinated by Platform Health Management
Recovery in case of a systematic failure is coordinated by Platform Health
Management. Several components (Adaptive Application, Execution
Management, State Management, watchdog) are involved based on
priorities. Platform Health Management coordinates the recovery in the
following manner:
1. Platform Health Management asks the Adaptive Application to recover

2. In case of failure, Platform Health Management asks Execution
Management to restart failed processes

3. In case of failure, Platform Health Management asks State
Management to recover by switching the Function Group State

4. In case of failure, Platform Health Management stops triggering the
watchdog and resets the Machine

5. In case of failure, Platform Health Management switches to
unrecoverable state (not yet fully defined)

This alternative was not considered due to not adhering to the single
responsibility principle because several components are responsible for
recovery actions. This solution would also require Platform Health
Management to have application knowledge because it has to determine the
appropriate Function Group State in step 3. Restarting single processes
may not be appropriate (step 2) due to runtime dependencies.

Alternatives

Distributed failure recovery
Recovery in case of a systematic failure is coordinated by Platform Health
Management and State Management. Several components (Adaptive
Application, Execution Management, watchdog) are involved based on
priorities. Platform Health Management and State Management
coordinate the recovery in the following manner:
1. Platform Health Management asks the Adaptive Application to recover

2. In case of failure, Platform Health Management asks State
Management to coordinate recovery by restarting the application

3. State Management asks Execution Management to change state /
switch to degraded state or safe state

4. In case of failure, State Management asks Adaptive Application to recover

5. In case step 2 failed due to application dependencies, Platform Health
Management stops triggering the watchdog and resets the Machine

▽

▽

16 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

△
△

This alternative was not considered due to not adhering to the single
responsibility principle because Platform Health Management and State
Management share responsibility for coordinating recovery actions.

Remarks

• According to ISO 26262, it has to be ensured that a reaction is triggered after
a safety-relevant failure occurred. Therefore, Platform Health
Management shall make sure that State Management receives the
notification on a detected failure even if they communicate via an unreliable
communication channel, for example, an inter-process communication
mechanism. To achieve this, Platform Health Management should
implement a timeout monitoring. If no response by State Management is
received after a configurable timeout and number of tries, Platform
Health Management shall trigger a reaction via hardware Watchdog.

• For release R19-11 of the AUTOSAR Adaptive Platform, the configuration of
Platform Health Management included rules for monitoring (
PhmSupervision), arbitration and recovery actions. With this decision,
Platform Health Management is only responsible for monitoring. The
rules for monitoring (PhmSupervision) are unaffected. However, the
responsibilities for arbitration and recovery actions are moved to State
Management. In the current design, State Management is a piece of
project-specific, coded software with only little configuration. The
configuration for State Management should be extended to support
arbitration and recovery actions as well. This will allow to validate such
configurations based on standardized rules which is extremely hard to
achieve on source code level.

Related
requirements

No related requirements.

Release R20-11

5.2.7 Use of local proxy objects for shared access to objects

Applies to AP

Decision
Local proxy object(s) shall be used to provide shared access to object
instance(s) via the AUTOSAR Runtime for Adaptive Applications interface.

Rationale

Local proxy objects hide the implementation details of the shared access. The
AUTOSAR Runtime for Adaptive Applications interface shall return a proxy
object by value. The caller shall use the object as a local proxy for subsequent
communication. Return by value is the most straightforward way to return data.
This decision enforces harmonization of the AUTOSAR Runtime for Adaptive
Applications interface. Stack vendors may freely choose how to implement the
shared access inside the proxy class.
An example for the use of a local proxy object by the caller is the following:

Result<void> myFunc() {
Result<void> myFunc() {

Result<KeyValueStorage> kvsRes
▽

▽

17 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

△
△

= KeyValueStorage::Create(KVS_ID);
if (kvsRes) {

KeyValueStorage kvs = std::move(kvsRes).Value();
auto keyRes = kvs.GetAllKeys(); // Value semantics
// ...

} else {
return {std::move(kvsRes).Error()};

}
}

Category None

Application
affected

Yes

Assumptions No assumptions were made.

Constraints No constraints were identified.

Alternatives
Use handles for shared access
The alternative of using proxy classes is the usage of handles. These handles
would however reveal the implementation details of the shared access.

Remarks No remarks.
Related
requirements

• [RS_AP_00135] Avoidance of shared ownership

Release R20-11

5.2.8 Functional Clusters shall standardize their production errors

Applies to AP

Decision

Functional clusters shall standardize production errors for common use-cases
demanded by the market. The standardization shall summarize all production
errors by a standardized table in all SWS documents specifying production
errors.

Rationale
Production errors are a fact. In order to be able to (semi-)automatically analyze
them and react to them, they and their documentation/persistence and their
healing needs to be standardized.

Category None

Application
affected

Yes

Assumptions
Conceptually production errors are taken over from the AUTOSAR Classic
Platform. A differentiation between production errors and extended production
errors is not necessary.

Constraints No constraints were identified.

Alternatives
Introduce interfaces for monitoring production errors
Functional clusters provide interfaces to allow applications to monitor
production errors.

Remarks None
▽

18 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

△
Related
requirements

None

Release R21-11

5.2.9 Default arguments are not allowed in virtual functions

Applies to AP

Decision Default arguments shall not be used at all in virtual functions.

Rationale

The according RQ of the "C++ core guidelines" are too weak .. (they state, that
it needs be made sure that a default argument is always the same) ... this
would lead to code duplication with dependencies and high risks of
inconsistencies, which can easily lead to unexpected behavior.

Category None

Application
affected

Yes

Assumptions No assumptions were made.

Constraints No constraints were identified.
Alternatives No alternatives were considered.
Remarks No remarks.
Related
requirements

• [RS_AP_00148] Default arguments are not allowed in virtual functions

Release R21-11

5.2.10 Assert that only APIs from properly initialized functional clusters can be
called

Applies to AP

Decision

If functionality is called that depends on prior initialization via ara::core::
Initialize and ara::core::Initialize has not been called, the
functional cluster implementation shall treat this as a violation and shall follow
SWS_CORE_00003 from [10, Specification of Adaptive Platform Core].

Rationale

Calling APIs from uninitialized functional clusters that depend on prior
initialization cannot perform properly. This results in undefined behavior. The
problem is typically caused by misconfiguration or incomplete initialization at an
earlier stage of the system startup. This cannot be handled by the caller of the
API at the point in time where the error is detected. Aborting execution is the
only way to signal this kind of systematic error and prevent later failures.

Category None

Application
affected

Yes

▽

19 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

△
Assumptions Parts of the system need to be initialized statically.

Constraints No constraints were identified.

Alternatives

Extend all APIs to report a specific error code
Extend every API that depends on prior initialization with a specific error code
(e.g. kNotInitialized) and force callers to check this error code at every call
(and let them abort themselves).

Remarks No remarks.
Related
requirements

None

Release R21-11

5.2.11 The AUTOSAR Runtime for Adaptive Applications shall define only inter-
faces that are intended to be used by AUTOSAR applications and other
Functional Clusters

Applies to AP

Decision

It is explicitly prohibited to standardize implementation details, like:
• Classes, base-classes, functions etc. that are not used on the application

level or in platform extension APIs

• Implementation inheritance in the public APIs

• C++ SFINAE techniques of any kind

• Private members of classes

Rationale

• Provide only narrow interfaces to avoid coupling to implementation details.

• Hide implementation details because by AUTOSAR definition the
implementation details are on the platform vendor.

Category None

Application
affected

Yes

Assumptions No assumptions were made.

Constraints No constraints were identified.
Alternatives No alternatives were considered.
Remarks No remarks.
Related
requirements

• [RS_AP_00150] Provide only interfaces that are intended to be used by
AUTOSAR applications and other Functional Clusters

Release R21-11

20 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

5.2.12 AUTOSAR Runtime for Adaptive Applications APIs should follow the C++
Core Guidelines

Applies to AP

Decision

AUTOSAR C++ APIs should follow the [9, C++ Core Guidelines]. The
exceptions for hard-real-time systems shall apply. The AUTOSAR guidelines
defined in RS-General shall overrule the "C++ Core Guidelines" in case of
conflict. If a part of the AUTOSAR C++ API cannot follow the "C++ Core
Guidelines" for some other reason, its specification shall state the rationale
(how this is done in detail, shall be aligned with the architecture group).

Rationale

These guidelines are well accepted in the market. Their aim is to help C++
programmers writing simpler, more efficient, and more maintainable code.
Specific guidelines for the automotive domain for C++ 14 are not available.
When the upcoming version of the MISRA C++ standard is published, this
decision/requirement may be replaced by a decision/requirement to follow
MISRA C++.

Category None

Application
affected

Yes

Assumptions No assumptions were made.

Constraints Some exceptions apply like the exception-less handling of the ARA APIs.

Alternatives No alternatives were considered.
Remarks No remarks.
Related
requirements

• [RS_AP_00151] C++ Core Guidelines

Release R21-11

5.2.13 Harmonized error handling for lost daemon connection

Applies to AP

Decision

If a functional cluster communicates with a remote peer (e.g. IPC
communication to a daemon) adequate error cases for communication failures
shall be identified (e.g. lost communication). These error cases shall be
grouped (according to the same error recovery mechanism) and if the user of
the API shall receive notification (e.g. by callbacks or returning error codes) for
a particular group, a suitable notification mechanism shall be selected. Please
note that there might be scenarios where the user of an API will not receive any
notification by design (e.g. fire-and-forget methods).
If an immediate action is required on error occurrence the type of action should
be determined in the following way:
• Functions that are currently defined with return type void (fire-and-forget

methods) require no immediate action. Therefore, no return type and error
code needs to be provisioned for such functions. The Adaptive Platform
should defer the effects of such functions until the connection to the daemon
has been (re-)established. Example: calling Offer() on a skeleton in

▽

▽

21 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

△
△

Diagnostic Management should defer the internal registration of
callbacks until the daemon connection has been (re-)established.

• Synchronous functions (e.g. getters and setters) require immediate action.
One of the following options shall be implemented for synchronous functions:
– provision of error code, e.g. kServiceNotAvailable of type ara::
core::ErrorDomain::CodeType.

– mapping to functional status information inside the returned data structure
(e.g. class object), which represent an error status

• Asynchronous functions (e.g., functions that return a ara::core::Future)
are a case-by-case decision based on the chance to be able to (re-)connect
to the daemon within the usual time-bounds for these functions. If notification
of the client is required as immediate action on error occurrence, the
notification mechanism shall be based on the mechanisms in ara::core::
Future or a client callback. A client callback uses registration of a state
change callback handler before a client can make use of a service.

Rationale

The application needs to be informed in case of disrupted communication
infrastructure in order to handle the error and take countermeasures (if any).
The provided guide for choosing the type of action increases the usability of the
Adaptive Platform APIs because the errors are signaled in a natural way based
on the type of API. In addition, the error handling is partially done in the
Adaptive Platform.

Category None

Application
affected

Yes

Assumptions

The following assumptions were made:
• The implementation does not depend on the type of communication

interface, e.g. process local, ara::com or native IPC mechanisms are in
scope of the decision.

• There is no polling of communication status required by user of the API.

• The cause of disconnected service shall be kept agnostic to the user of the
API.

• Connection oriented communication is out of scope due to inherent detection
mechanisms of the protocol.

Constraints No constraints were identified.
Alternatives No alternatives were considered.
Remarks No remarks.
Related
requirements

None

Release R21-11

22 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

5.2.14 Granularity of diagnostics

Applies to AP

Decision
Diagnostic entity shall be identical to the deployable unit within a vehicle.
Deployable unit means from hardware units (ECUs), up to Software Clusters.

Rationale

AUTOSAR focused on the Software Cluster approach because it offers a more
easy option to keep the two worlds consistent. A Software Cluster is the
individual deployable unit from the OEM perspective. Therefore, it is easy to
keep the offboard world consistent if the diagnostic has identical boundaries.
The production and workshop systems are often bound to the physical device.
Thus, many OEMs want to start also with this approach in Adaptive.
Consequently, until there is no individual software setup with a car (e.g.
because the installed options can be chosen by the driver itself) the offboard
systems could be kept consistent by stringent workflows.

Category None

Application
affected

No

Assumptions DM core doesn’t mind if a further diagnostic server is installed (in the context of
a new Software Cluster) or the current diagnostic server is just extended.

Constraints

Diagnostics is a (non-verbose) offboard-communication using external
description to document the communication content. For the development of a
vehicle the AUTOSAR DEXT is used; for the offboard world typically the ASAM
ODX format is used, because it offers higher flexibility across different carlines.
Today it is often already a challenge to keep the two worlds consistent. But with
the dynamic deployment (offered by Adaptive Platform) it is even more
challenging because in worst cases each vehicle has an individual setup of
installed Software Clusters.

Alternatives None, because both options are requested by the market.

Remarks No remarks.
Related
requirements

None

Release R21-11

5.2.15 Potentially throwing constructors

Applies to AP

Decision
Constructors that may throw exceptions shall not participate in overload
resolution when C++ exceptions are disabled in the compiler toolchain.

Rationale
Similar solution to other functions that use C++ exceptions as their error
handling mechanism e.g., ara::core::Result::ValueOrThrow()

Category None

Application
affected

Yes

▽

23 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

△

Assumptions

• There are use cases targeted by AUTOSAR, when C++ exceptions are
disabled in the compiler toolchain.

• By this decision the overload set might be changed, which may result in an
unintended change to the program flow. Thus, the existence of two
constructors of the same class that fulfill the following conditions:
– one is potentially throwing, the other one noexcept,
– both accept the same number of parameters
– the corresponding parameters have to be convertible from the potentially

throwing one to the noexcept one
would be problematic. It is assumed that this situation will never occur
because AUTOSAR follows [11, RS General] and users use C++ best
practices, in particular [9, C++ Core Guidelines] C.164: Avoid implicit
conversion operators.

Constraints No constraints were identified.
Assert that exception-throwing constructors cannot be used
Calling a constructor that may throw exceptions as part of its defined behavior
shall result in a compilation error when C++ exceptions are disabled in the
compiler toolchain. The compilation error shall result from a static_assert
with the error message "This constructor requires exception support.".
• (Con) This is not implementable. If a constructor is neither part of a class

template, nor is the constructor a function template itself, a static assertion
failure is triggered even if the constructor is not called anywhere in the code.

Constructors that may throw exceptions shall call abort instead of
throwing an exception
Constructors that may throw exceptions shall call abort instead of throwing an
exception when C++ exceptions are disabled in the compiler toolchain.
• (Pro) Constructors that may throw may be used even when C++ exceptions

are disabled in the compiler toolchain if it can be precluded that an exception
is thrown.

• (Con) May be difficult to support by vendors, unless they make large-scale
changes to their C++ standard library if it does not happen to follow the
AR-specified style.

• (Con) Unintended calls to such constructors are only detected at runtime and
only in the case of an error.

Implementation-specific behavior
• (Con) Violates [RS_AP_00111]

Alternatives

Declare all public constructors as noexcept
All public constructors shall be declared as noexcept. Instead of public
constructors that may throw, the named constructor idiom shall be used (even
when C++ exceptions are enabled in the compiler toolchain).
• (Pro) Unintended calls to constructors that may throw are detected at

compile time.

• (Con) Unnecessary restriction when C++ exceptions are enabled in the
compiler toolchain.

Remarks No remarks.
▽

24 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

△
Related
requirements

• [SWS_CORE_90007] Potentially throwing constructors

Release R21-11 (updated in R24-11)

5.2.16 The scope for restarting processes is a FunctionGroup

Applies to AP

Decision

Applications can be restarted in the scope of a FunctionGroup. Ideally, the
recovery of supervision errors should be handled in the own FunctionGroup.
If the recovery cannot be handled within the own FunctionGroup, it has to be
escalated within the State Management. There the coordination for the
recovery should take place. This could typically be:
• the shutdown/restart of multiple FunctionGroups,

• the start of other FunctionGroups or

• the restart of the entire Machine.

The coordination of the restart of the entire Machine has to be coordinated
within the State Management of the platform-core Software Cluster.

Rationale

Software Clusters are independently deployable units. They could be
added later to the same Machine and then should not harm other Software
Clusters (freedom from interference between Software Clusters).
Recovery shall always be tried within the Software Cluster.

Category Safety

Application
affected

No

Assumptions

The platform-core Software Cluster is the housekeeping initial Software
Cluster which Execution Management, Platform Health
Management, and State Management are a mandatory part of (if it is a
safety relevant Machine).

Constraints No constraints were identified.

Alternatives

Restart individual application processes
Applications can be restarted in the scope of a Software Cluster. The
Software Cluster is for deployment and not visible in runtime. Thus, it
cannot be used in this context.

Remarks No remarks.
Related
requirements

None

Release R21-11

25 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

5.2.17 Platform-independent development of Software Clusters of category AP-
PLICATION_LAYER

Applies to AP

Decision
Functional Cluster daemons and their startup coordination shall be part
of Software Clusters of category PLATFORM_CORE or PLATFORM.

Rationale

This allows uniform and platform-independent integration of Software
Clusters of category APPLICATION_LAYER. Consequently, it shall not be
necessary to take care of the platform software when developing an Software
Cluster of category APPLICATION_LAYER.

Category None

Application
affected

Yes

Assumptions Market demand is to deliver Machines with pre-installed Adaptive Platform
software.

Constraints No constraints were identified.

Alternatives
No limitation for allocation of platform software to Software Clusters
Do not make any limitations of platform software. This can lead to a
non-uniform integration of the platform software.

Remarks No remarks.
Related
requirements

None

Release R21-11

5.2.18 Functional Clusters shall standardize their logging/tracing

Applies to AP

Decision

Functional Clusters shall standardize their logging/tracing for common
use-cases demanded by the market. The standardization shall be for the
non-verbose logging/tracing. If applicable it shall be summarized by two
standardized tables (one for logging and a second for tracing) listing all
standardized log-/trace messages.

Rationale
Standardized logging/tracing within Functional Clusters allows a
harmonized evaluation of logging/tracing on vehicle-level.

Category None

Application
affected

Yes

Assumptions
Logging/tracing is necessary for a variety of use cases (root cause analysis,
auditing, debugging). Especially, in a distributed environment a harmonization
is necessary to enable automated analysis.

Constraints No constraints were identified.

Alternatives
No standardized logging
Do not standardize logging at all.

Remarks No remarks.
▽

26 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

△
Related
requirements

None

Release R21-11

5.2.19 Guidance whether to define a service or a C++ interface

Applies to AP

Decision

The decision for a service interface or a C++ library interface should be based
on design criteria associated with usability of an interface for the API consumer,
efficient usage of Adaptive Platform resources and required capabilities of the
communication. In case of conflicting criteria an interface should be
implemented by means of a library interface. The decision should consider the
various design aspects.
Criteria to favor a service based interface design:
• Using modelled data types that can be used for code generation.

• Support for various features of service oriented communications: A service
interface offers elements such as method, event, trigger, field to satisfy
certain types of communication patterns. In addition it is possible to
aggregate any types of these elements in a single service interface. Such
communication features are not offered via library interface.

• Support for flexible discovery of communication endpoints − if a
service interface is implemented, consumer of the service does not
have to care about location of service instances. Possibly a service
might be deployed among different machines.

• Is focused on data transport.

Criteria to favor a library based interface design:

• Reduced effort in respect to configuration.

• Reduced overhead on communication control - a library interface doesn’t
require maintenance of the communication channel between provider and
consumer. Certain types of communication patterns might show better
performance like infrequent exchange of data, peer-to-peer communication.

• Additional functionality beyond the pure data transport can be realized.
▽

27 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

△

Rationale

The quality requirements demand that "the use of the standard shall be as easy
as possible for suppliers and application developers".
If endpoint configuration, service discovery or remote calls are required, it is
sensible to use the existing functionality for services instead of individual
solutions. The quality requirements also demand that "the holistic approach
shall not be broken (avoid different approaches in one standard)".
C++ library interfaces are simpler and may be more efficient. They also leave
more freedom for the implementation because they allow an implementation
that runs in the process of the Adaptive Application. The quality requirements
demand that "the specification shall allow for a run-time efficient
implementation. Runtime efficiency refers to all resource consumption, CPU,
RAM, ROM". Therefore, C++ library interfaces should be preferred if it is
unsure whether a service interface is beneficial.

Category None

Application
affected

No

Assumptions No assumptions were made.

Constraints No constraints were identified.
Always use service interfaces
Advantages:
• Same kind of interface for all Functional Clusters.

Disadvantages:

• Not always the most natural way for application developers. Unnecessary
complexity and implementation restrictions if functionality of Communication
Management is not required.Alternatives

Always use C++ library interfaces
Advantages:
• Same kind of interface for all Functional Clusters.

Disadvantages:

• Not always the most natural way for application developers. Would require
individual solutions for service discovery and selection.

Remarks

An in-process implementation to be run in the process of the calling Adaptive
Application is only possible for Functional Clusters with a C++ library interface.
Functional Clusters with a service interface require a dedicated process.
According to this decision, Network Management should provide a C++ library
interface. Nevertheless, Network Management keeps using a service interface
to maintain backward compatibility.

Related
requirements

None

Release R22-11

28 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

5.2.20 Support only functional dependencies between Software Clusters

Applies to AP

Decision Only functional dependencies between Software Clusters shall be supported.

Rationale

A Software Cluster is already a structural deployment entity and is technically
the smallest unit that can be individually installed and updated on a Machine
(by means of a Software Package). This means that also a delta-update (like
updating only a single process within this Software Cluster) requires a new
version of the Software Cluster.

Category None

Application
affected

No

Assumptions No assumptions were made.

Constraints No constraints were identified.

Alternatives

Support nested Software Clusters
The alternative of structurally nested Software Cluster was realized in
AUTOSAR, but the market use-cases could also be realized via Software
Cluster with their functional dependencies.

Remarks Discontinue structurally nested Software Clusters (aka Sub-SWCL).

Related
requirements

None

Release R22-11

5.2.21 The introduction of virtual functions requires approval

Applies to AP

Decision
Any change to the AUTOSAR Adaptive Platform APIs that introduces new
virtual functions shall be presented to the architecture working group for
approval.

Rationale

The AUTOSAR Adaptive Platform APIs are designed to be directly
implemented by a stack vendor. For example, there are in general no abstract
classes or virtual functions defined that a stack vendor has to implement. Thus,
there is no need to define virtual functions in general. However, for some use
cases such virtual functions may be required (for example callbacks that shall
be implemented by an application). Such use cases will be collected and
afterwards general design patterns should be derived from them.

Category None

Application
affected

No

Assumptions
The AUTOSAR Adaptive Platform APIs are designed to be directly
implemented by a stack vendor (in general no abstract classes, no virtual
functions that need to be implemented by a stack vendor).

Constraints No constraints were identified.
Alternatives No alternatives were considered.

▽

29 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

△

Remarks
The roll-out shall not affect classes with virtual functions that are already
specified in a released document.

Related
requirements

None

Release R22-11

5.2.22 Guidelines for Extension Interfaces

Applies to AP

Decision

The Adaptive Platform shall support extensions of its behavior by means of
standardized extension interfaces, so called Platform Extension Interfaces. An
implementation of a Platform Extension Interface is provided e.g., by an OEM,
an integrator, or other third-party application. Such extensions would be
implemented in a programming language without any code generation support
or any runtime configuration in the Manifest.
The use of Platform Extension interfaces shall be limited to cases in which it is
well justified to provide an implementation of a behavior rather than configuring
a generic behavior via the Manifest. Platform Extension Interfaces that make
use of the Plugin pattern (see [2] Chapter 8.5.5.3 “Plugin”) require review and
approval by the architecture working group.

Rationale

The rationale for allowing Platform Extension Interfaces is a better usability of
the Adaptive Platform standard. In particular, the level of fulfillment of following
quality attributes is raised:
• "The AUTOSAR Adaptive Platform Standard elements should be easy to use

and hard to misuse." because in those cases in which Platform Extension
interfaces are applicable they are more convenient to use.

Providing patterns for Platform Extension interfaces (see [2] Chapter 8.5.5
“Platform Extensions”) contributes to fulfill the following quality attributes:

• "The AUTOSAR Adaptive Platform Standard should document its decisions
including their rationale and consequences."

• "The AUTOSAR Adaptive Platform Standard should follow a holistic
approach and avoid different approaches in one standard."

Platform Extension interfaces do not interfere with the quality attribute "An
application developer should not be able to supply a custom implementation for
pre-defined platform functionality" because an implementation of a Platform
Extension interfaces does provide functionality that is not provided by the
platform itself.

Category None

Application
affected

No

▽

30 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

△

Assumptions

It is assumed that a full customization of an Adaptive Platform stack
implementation by means of the Manifest does not provide the best usability.
For some variation points it is assumed to be easier to provide an
implementation of a behavior rather than configuring a generic behavior. In
such cases the Adaptive Platform needs to be extensible by means of
standardized Platform Extension Interfaces that are implemented by an OEM,
an integrator, or other third-party application.

Constraints No constraints were identified.

Alternatives

Use Manifest only
This alternative would forbid any Platform Extension Interfaces. Any kind of
variation in the behavior of the AUTOSAR Adaptive Platform needs to be
configured via the Manifest. This alternative is not considered because for
some variation points it is extremely complicated to configure a generic
behavior rather than providing an implementation of the behavior itself.

Remarks
Supported patterns for Platform Extension Interfaces are described in
[2] Chapter 8.5.5 “Platform Extensions” .

Related
requirements

None

Release R23-11

5.2.23 Messages for unrecoverable errors

Applies to AP

Decision

Functional clusters should standardize their messages for violations. Other
kinds of unrecoverable errors messages should be standardized by ara::core.
In case of an unrecoverable error, (if possible) the message should be
immediately delivered to the standard error stream of the affected process and
to the log sinks as fatal log (like defined by ara::log for the affected process or
the Execution Management). The implementation of this mechanism should
minimize the delay to terminate the affected process. In order to support root
cause analysis, the message should contain additional information like
• type of error

• source code position information

• process information

• additional context on the error
▽

31 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

△

Rationale

Standardized messages within functional clusters support a common
appearance of unrecoverable errors and a straightforward input to track root
cause on system (e.g. vehicle) level. For these log messages the standardized
logging capability of the diagnostic log and trace (DLT) functional cluster is not
usable within the affected process for following reasons:
• may cause a significant delay of the process abortion

• DLT may not work properly after the error is detected

• logging of violations may be required even if the application is not initialized
(for using AP libraries)

Execution Management functional cluster can take the task of logging, if
DLT is not capable due to the aforementioned reasons. Standard error stream
may be used as a fallback mechanism for analysis in case the logs could not be
transmitted to the log sinks of ara::log. But this stream is not suitable to
exchange log information between different processes. As a consequence,
such mechanism is implementation specific.

Category None

Application
affected

No

Assumptions

The following assumptions were made:
• Log messages containing information about unrecoverable errors that

occurred are useful for debugging.

• Using ara::log for creating these logs could significantly delay the termination
of the process, which may result in poor user experience.

Constraints

There are some potential constraints as follows:
• Compliance with data protection may inhibit projects to reveal development

related information (e.g. filenames)

• Relevant log information is not at all or only partially available

• Creation of log message not possible (e.g. when the process is terminated
through std::terminate() call in code that cannot be modified by the
implementer)

Alternatives No alternatives were considered.
Remarks No remarks.
Related
requirements

None

Release R24-11

5.2.24 No named constructors for abstract classes

Applies to AP

Decision Abstract classes that are intended for specialization by the user of the ARA
shall not have recoverable errors in their constructors.

▽

32 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

△

Rationale

Specifying a recoverable error would make a named constructor necessary.
However, this pattern can not be applied to abstract classes where the concrete
class is not known by the AUTOSAR Adaptive Platform stack. In the described
situation the concrete class is user-defined. The stack has no knowledge of it. It
therefore can not create an object of the type of the abstract class. Thus a
named constructor is not implementable.
If there are no recoverable errors during the construction the constructor can be
declared noexcept and there is no need for the named constructor.

Category None

Application
affected

No

Assumptions
The following assumptions were made:
• There are currently no situations in the ARA where an abstract class

construction requires recoverable errors.

Constraints No constraints were identified.

Alternatives

Alternative 1 One alternative is to define a solution approach for implementing
recoverable errors for constructors of abstract classes without relying on
exceptions. Since there was no need identified for this, that alternative was not
chosen.

Remarks

In case there arises a situation in which an abstract class construction requires
recoverable errors, this arc decision and possible alternatives shall be
discussed. As a result, an alternative solution might be found, the decision
might be altered, or an exception might be granted.

Related
requirements

None

Release R24-11

5.2.25 Modeling of the interaction of application-layer software with Functional
Clusters

Applies to AP

Decision
PortPrototypes defined for the interaction of application-layer software with
the Functional Cluster shall always be modeled as RPortPrototypes,
irrespective of the PortInterface that types the RPortPrototype.

Rationale

All PortPrototypes that are created in a Software Component for the
interaction with Functional Clusters are of one kind, irrespective of the
interaction semantics and of the used PortInterface.
This approach harmonizes and simplifies the modeling approach for the
interaction of application-layer software with all Functional Clusters.

Category None

Application
affected

No

▽

33 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

△

Assumptions
The following assumptions were made:
• The current decision reflects the current status of the majority of the

documents.
Constraints No constraints were identified.

Alternatives

The semantic of the interaction determines the type of the Port
In case the application is calling a method on the Functional Cluster then a
RPortPrototype is used (e.g., reporting of a Diagnostic Event). In case that
the application is providing a method that is used by the functional cluster then
a PPortPrototype is used (e.g., DebouncingCounterCallback,
DiagnosticRoutine).
Disadvantage: Such an approach would require to design the port interfaces in
a way that only one direction is applicable.

Remarks

For backward compatibility reasons modeling approaches for the interaction of
application-layer software with the Functional Cluster that were released before
R23-11 may deviate from this decision.
Please note that in contrast to the conventions on the AUTOSAR Classic
Platform, the RPorts are only used on the application side of this
communication relation. The PPorts on the Foundation Functional Cluster side
are not modeled and therefore also the connection between the application and
the Functional cluster is not modeled as well.

Related
requirements

None

Release R24-11

5.2.26 Extent of allowed behavioral specification in API table description field

Applies to AP

Decision

"Trivial" behavioral definitions can be made in the description fields of the API
tables in [10] Chapter 8 “API specification” , [10] Chapter 9 “Service Interfaces” ,
and [10] Appendix C “Platform Extension Interfaces (normative)” . Then this
behavior does not need to be specified in [10] Chapter 7 “Functional
specification” .
Additional information:
• What exactly can be considered "trivial" has to be decided case-by-case.

• If this is done in the row "description", no additional behavioral specification
shall be made in [10] Chapter 7 “Functional specification” .

• This includes behavioral definitions in the following rows of the table:
"description", "errors", "exceptions", and "violations".

Rationale

Having trivial behavior as part of the API tables saves an additional spec item in
[10] Chapter 7 “Functional specification” that is difficult for a reader to find and
consider (usability) and can become inconsistent to the content of the API table
(maintainability).

Category None

Application
affected

No

▽

34 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

△

Assumptions

The following assumptions were made:
• The definition of behavior describes a function. Therefore it can be part of

the "Description" fields in the API table.

• Doc owners and reviewers make sensible judgement of what behavior can
be considered "trivial".

Constraints No constraints were identified.

Alternatives
Alternative 1 Mandate all behavior specifications to be done in [10] Chapter 7
“Functional specification” .

Remarks

All specification items (including their "Description" row) in [10] Chapter 8 “API
specification” , [10] Chapter 9 “Service Interfaces” , and [10] Appendix C
“Platform Extension Interfaces (normative)” are binding but might be
incomplete. The complete picture only forms when also considering the
specification items from [10] Chapter 7 “Functional specification” . If there is
such a behavioral definition in the row "Description", it shall use one of the
keywords defined by Requirements Management (e.g., "shall").
If there are spec items for the behavior in [10] Chapter 7 “Functional
specification” for an item in [10] Chapter 8 “API specification” , [10] Chapter 9
“Service Interfaces” , or [10] Appendix C “Platform Extension Interfaces
(normative)” , there shall not be a behavioral specification in the row
"Description".
However, it is still allowed and desired to make matter of fact statements to
better describe the behavior (e.g., use "the function does...", instead of "the
function shall...").
Examples:
• API tables where the behavior is clear from the C++ semantics like

constructors and destructors usually do not need separate specification
items in [10] Chapter 7 “Functional specification” defining their behavior.

• Errors that are simple to understand and sufficiently explained in the API
table do not need a separate specification item in [10] Chapter 7 “Functional
specification” , for example in ara::core::InstanceSpecifier::
Create the error description for kInvalidMetaModelPath: if the
metaModelIdentifier is not a valid path to a model element.

Related
requirements

None

Release R24-11

5.2.27 Namespace for AUTOSAR Adaptive Platform Extension Interfaces

Applies to AP

Decision

All AUTOSAR Adaptive Platform Extension Interfaces shall belong under a
top-level namespace apext, which stands for AUTOSAR Adaptive Platform
Extension Interface. The namespace shall have a sub-namespace representing
the Functional Cluster that specifies the Platform Extension Interface, for
example, apext::log.

▽

35 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

△

Rationale

The ara which stands for AUTOSAR Runtime for Adaptive Applications, is an
interface for applications. The purpose of the AUTOSAR Adaptive Platform
Extension Interfaces is to extend the platform’s capabilities. Therefore, it should
be in a separate top-level namespace to clearly distinguish the intention of the
interface.

Category None

Application
affected

Yes

Assumptions

The following assumptions were made:
• Based on the definition of the Platform Extensions described in the [2,

EXP_SWArchitecture] and the existing instances of such extensions in
multiple Functional Clusters.

Constraints No constraints were identified.

Alternatives
Alternative 1
Not to define this namespace and mix it in the ara namespace.

Remarks No remarks.
Related
requirements

None

Release R24-11

5.2.28 Guidelines on documenting re-specified external APIs in AUTOSAR

Applies to AP

Decision

When documenting external APIs which are re-specified in AUTOSAR (e.g.
AUTOSAR implementations of ISO C++), those AUTOSAR definitions should
not duplicate the specification of:
• function behavioral descriptions

• function parameters

• C++ function template parameters

• return types IF they do not deviate from the external specification

AUTOSAR provides doxygen processing tags to avoid this duplication. In place
of the function behavioral description the following template general statement
shall be used: "As per <fully-qualified-function-name> in <citation>".

Example: "As per std::pmr::memory_resource::deallocate in [11]". Further
examples can be seen in [SWS_CORE_06506] or [SWS_CORE_06507]

If an AUTOSAR re-specified function is different in signature or behavior to its
externally specified function, it is sufficient to document only the deltas. In place
of the function behavioral description the following general statement shall be
used: "As per <fully-qualified-function-name> in <citation> except for the
following deviations:

1. signature deviation 1
▽

▽

36 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

△
△

2. signature deviation 2

Example: "As per std::pmr::memory_resource::deallocate in [11] except for the
following deviations:

1. Function is noexcept

2. If unsuccessful: the returned pointer shall be nullptr

3. ...

Further examples can be seen in [SWS_CORE_06503] or [SWS_CORE_
06504]

Rationale

1. Avoidance of potential copyright issues

2. Uniformity and consistence of AUTOSAR external references

3. Automatic maintenance and management of the AUTOSAR bibliography

Category None

Application
affected

No

Assumptions No assumptions were made.

Constraints No constraints were identified.
Alternatives No alternatives were considered.
Remarks No remarks.
Related
requirements

None

Release R25-11

5.3 Classic Platform

This section lists architectural decisions that have been made for the AUTOSAR Clas-
sic Platform only.

5.3.1 The ordering of structure elements is a binding part of the standard

Applies to CP

Decision

The order of structure elements as defined by the SWS is considered as part of
the standard. Implementation specific optimizations, e.g. a re-ordering of
structure elements by size to avoid alignment gaps, are therefore not standard
compliant.

Rationale Object code interoperability could be jeopardized by deviating structure type
definitions.

Category None
▽

37 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

△
Application
affected

Yes

Assumptions

Structure elements are usually accessed via name, which means that the order
shouldn’t matter. There are however valid use-cases like the initialization of
structures without designated initializers (e.g. my_struct x = {0, 42})
where no element names are involved at all.

Constraints None

Alternatives
No standardized order of structure elements
The order of structure elements in the SWS is not prescribed by the standard.
An implementation is free to do any desired re-ordering.

Remarks

In resource optimized implementations, structure elements are usually ordered
by size to avoid alignment gaps. This helps to increase efficiency and reduces
memory consumption. Nevertheless some structures defined in AUTOSAR do
not follow this rule.

Related
requirements

None

Release R21-11

5.3.2 Types of standardized header files

Applies to CP

Decision

There shall be only 3 types of headers:
1. The module header (e.g. NvM.h, CanIf.h, EcuM.h, ...)

2. The private header between two modules (e.g. BswM_Sd.h, Adc_SchM.h,
Dcm_Externals.h, ...)

3. The shared header (e.g. PlatformTypes.h, StandardTypes.h,
Can_GeneralTypes.h, ComStackTypes.h, ...)

Any additional headers are no longer necessary and are dropped/removed from
the SWS. This means that they are no longer standardized. An implementation
is however free to have such headers for its own purpose.

Rules:

• All header files are self-contained

• A module which uses types of another BSW in its own interface must
consider moving such types into a shared header (Exception: types of
service interfaces which are generated by the RTE and are available via
Rte_<Mip>.h)

• A library cannot have private headers by definition

• Shared headers only consist of types and enums (No function prototypes...)

• Shared headers do never depend on other module or private headers

• For callouts to integration code or CDDs: The prototypes are available via
<Mip>_Externals.h

▽

▽

38 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

△
△

Consequences:

• The tables for types and APIs (C interface) shall have a line "Available via" to
indicate the name of the header which exports the type/function

Rationale
This is sufficient for an external view to answer the question which header is
needed by a user.

Category None

Application
affected

No

Assumptions None

Constraints None

Alternatives
BSW implementation focused header file concept
Keep the current BSW implementation focused header file concept.

Remarks None
Related
requirements

None

Release R21-11

5.3.3 Guidance for incompatible API changes

Applies to CP

Decision

If a function from a BSW module requires an incompatible change, the change
of the API name shall be based on this decision matrix:
[change]
--> [API shall be renamed (==new API, old to obsolete)]
--
[Adding/removing of a parameter with change of behavior]
--> [YES]
[Adding/removing of a parameter without change of behavior]
--> [NO: Direct change, "Bug", "Optimization"]
[Changing an existing type / return type with change of behavior]
--> [YES]
[Changing an existing type / return type without change of behavior]
--> [NO]
[Major change of the behavior of a function without a change of the prototype]
--> [YES]

If a new API replaces the old one, the old (obsoleted) API shall contain
information which new API shall be used instead.
A) For external APIs, that are not also used by other BSW modules, the
following life cycle changes shall apply:
1. Introduction of the new function AND setting the existing old one to "obsolete"

2. In the release + 1: remove the old function

B) For other APIs, which are mainly or exclusively used between the BSW
modules, the change shall become immediately visible (direct change of the
existing function, no "obsolete" setting)

Rationale
The approach provides the best backward compatibility rating and offers a
migration time for users.

▽

39 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

△
Category None

Application
affected

No

Assumptions
The changed function is a normal service function. Callouts (functions where
the prototype is defined by the module, but not the code) may be handled
differently.

Constraints None
Directly change existing function
Instead of adding a new function the existing one can also be directly changed.
• (Pro) If only i.e. arguments were added/removed, then the name of the

function does not change

• (Con) Does not support a migration phase for users

Alternatives Prepare function for future changes
If it is already known that the function may change in the future then the
arguments could be provided as tag/value pairs.
• (Pro) Allows compatible extensions of arguments for future use cases

• (Con) Requires variable length arguments ("...") which cause MISRA issues
(?)

Remarks

The drawback of the decision is that the new function requires a new function
name.
For real bugs where the existing prototype can not support the already defined
behavior ("does not work at all") a direct change without migration phase is
preferable.
If a C type is changed (e.g. a structure gets a new field) and such type is used
in a prototype, the change of the type is considered compatible. So no
mandatory change of the function prototype (e.g. function name) is needed.

Related
requirements

None

Release R22-11

5.3.4 Handling of Time in the AUTOSAR Classic Platform

Applies to CP

Decision
The Tm module shall handle all use cases related to local time handling. This
includes all cases where currently Os is used (e.g. service interface for time
handling).

Rationale This reduces overlap and ambiguity of existing time services in the AUTOSAR
Classic Platform.

Category None

Application
affected

Yes

Assumptions No assumptions were made.
▽

40 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

△

Constraints
Global time synchronization still requires separate modules (e.g. StbM).
Furthermore there are specific timing uses cases in EcuM which are not
impacted by this decision.

Integrate functionality in Os module
Remove the Tm module and integrate the functionality in the Os module.

Remove Tm module
Remove the Tm module with no replacement of functionality.Alternatives

Integrate functionality in StbM module
Remove the Tm module and integrate the functionality in the StbM module.

Remarks No remarks.
Related
requirements

None

Release R23-11

5.3.5 Providing configurable notification functions in BSW modules

Applies to CP

Decision

Use only one model element for configurable callback. Based on this element
multiple API tables for caller and callee side can then be provided.
Currently the APIs are modeled for each SWS separately. We could adapt the
BSW UML model in a way that only the "calling SWS" does contain the model
element for the API and the "providing" SWS contains just a reference. The
artifact generator can then provide for each SWS an own table, which would be
just a copy of the model element, just with an own spec item id.

Rationale Use only one element to avoid inconsistent changes.

Category None

Application
affected

No

Assumptions No assumptions were made.

Constraints No constraints were identified.
Alternative 1
The "providing" SWS shall only have a spec item in Chapter 8 (own subchapter)
which references to the API in the "calling" SWS like "The <own_module> shall
provide a notification function with name <XYZ> which comply to the API of
<ARTraceRef to API> in <calling_module>." and the reference is
checked by tooling.

Alternatives

Alternative 2
Same as Alternative 1, but no formal spec item. Reference may be placed in
Chapter 5.

Remarks No remarks.
Related
requirements

None

Release R24-11

41 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

5.3.6 Architectural considerations for the V2X stack in the AUTOSAR Classic
Platform

Applies to CP

Decision
The V2X handling in the AUTOSAR Classic Platform shall be placed on top of a
separate wireless Ethernet stack which exists in parallel to the existing wired
Ethernet interfaces. So the V2X modules are placed on top of EthIf.

Rationale

The following aspects contributed to the decision:
• The content and format of V2X data messages is specified outside of

AUTOSAR and may depend on several topics: e.g. the region where V2X is
used, government regulation, used physical connection (WLAN and/or cellular
networks) and so on. This means we have a wide range of possible
variations which would require support.

• The existing external V2X specifications require a lot of extra data types. This
would blow up a solution which uses the classical approach via PduR. Also
the fact that such messages could not be fully modeled contradicts a use in
the classic stack.

• The communication paradigm in a V2X system is mainly a broadcast
communication (day 1 scenario), where the sender does not expect answers.
E.g., a car may broadcast information that a specific road segment is slippery
to warn other drivers of this fact.

• The V2X modules are placed above the EthIf to allow future use cases,
e.g., allow also regular IP communication over wireless interfaces. This
could be useful for day 2 scenarios. To enable these use cases, the
interfaces used for wired and wireless communication would need to be fully
harmonized.

Category None

Application
affected

No

Assumptions

The following assumptions were made:
• V2X is not yet established in the market. This is somehow a chicken-egg

problem which might be solved via regulation. On the other side this also
means that not all use cases are known and new features will show up.

• We assume that V2X is solved by own standards and is not handled as an
extension to existing ones (e.g., the V2X is using some proprietary
communication format and not standard TCP/IP). If V2X would be only a
TCP/IP based protocol other AUTOSAR-based solutions are possible.

Constraints No constraints were identified.
Alternative 1
Do not standardize the support of V2X within the AUTOSAR Classic Platform.
This could mean that V2X is covered by CDDs.

Alternatives
Alternative 2
Use the standard communication stack mechanism and realize the message
handling above the PduR.

Remarks No remarks.
▽

42 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R25-11

△
Related
requirements

None

Release R24-11

43 of 43 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

	1 Introduction
	1.1 Objectives
	1.2 Scope

	2 Definition of Terms and Acronyms
	2.1 Acronyms and Abbreviations
	2.2 Definition of Terms

	3 Related Documentation
	3.1 References

	4 Overview
	5 Architectural Decisions
	5.1 Common Decisions
	5.1.1 Influence of PRS document changes on AP and CP
	5.1.2 Guidelines on standardizing SW functionalities

	5.2 Adaptive Platform
	5.2.1 Dynamic memory allocation
	5.2.2 Final specifier for types and virtual member functions
	5.2.3 Usage of out parameters
	5.2.4 Usage of named constructors for exception-less object creation
	5.2.5 Introduction of a monotonic clock API
	5.2.6 Responsibilities of State Management, Execution Management, and Platform Health Management
	5.2.7 Use of local proxy objects for shared access to objects
	5.2.8 Functional Clusters shall standardize their production errors
	5.2.9 Default arguments are not allowed in virtual functions
	5.2.10 Assert that only APIs from properly initialized functional clusters can be called
	5.2.11 The AUTOSAR Runtime for Adaptive Applications shall define only interfaces that are intended to be used by AUTOSAR applications and other Functional Clusters
	5.2.12 AUTOSAR Runtime for Adaptive Applications APIs should follow the C++ Core Guidelines
	5.2.13 Harmonized error handling for lost daemon connection
	5.2.14 Granularity of diagnostics
	5.2.15 Potentially throwing constructors
	5.2.16 The scope for restarting processes is a FunctionGroup
	5.2.17 Platform-independent development of Software Clusters of category APPLICATION_LAYER
	5.2.18 Functional Clusters shall standardize their logging/tracing
	5.2.19 Guidance whether to define a service or a C++ interface
	5.2.20 Support only functional dependencies between Software Clusters
	5.2.21 The introduction of virtual functions requires approval
	5.2.22 Guidelines for Extension Interfaces
	5.2.23 Messages for unrecoverable errors
	5.2.24 No named constructors for abstract classes
	5.2.25 Modeling of the interaction of application-layer software with Functional Clusters
	5.2.26 Extent of allowed behavioral specification in API table description field
	5.2.27 Namespace for AUTOSAR Adaptive Platform Extension Interfaces
	5.2.28 Guidelines on documenting re-specified external APIs in AUTOSAR

	5.3 Classic Platform
	5.3.1 The ordering of structure elements is a binding part of the standard
	5.3.2 Types of standardized header files
	5.3.3 Guidance for incompatible API changes
	5.3.4 Handling of Time in the AUTOSAR Classic Platform
	5.3.5 Providing configurable notification functions in BSW modules
	5.3.6 Architectural considerations for the V2X stack in the AUTOSAR Classic Platform

