AUTSSAR

Document Title

Specification of Health Monitoring

Document Owner

AUTOSAR

Document Responsibility AUTOSAR
Document Identification No 850
Document Status published
Part of AUTOSAR Standard Foundation
Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 | R25-11 Release * Minor editorial changes
Management
AUTOSAR
2024-11-27 | R24-11 Release * No content changes
Management
AUTOSAR » Added Cha.lpte'r History of Constraints
2023-11-23 | R23-11 | Release and Specification Items
Management « Several editorial changes
* Introduced Elementary Supervision
AUTOSAR Status for Adaptive platform
2022-11-24 | R22-11 Release
Management * Determination of Supervision Status is
now platform specific
AUTOSAR » Add Application Int.erf.aces for
2021-11-25 | R21-11 | Release SystemHealthMonitoring
Management « Add Mode Dependent Configuration
» Change document type from SWS to
ASWS
* Remove arbitration rules and actions
AUTOSAR
2020-11-30 | R20-11 Release » Remove HealthChannel supervision
Management o
» Add SystemHealthMonitoring
* Remove spec item numbers from API
chapter

AUTSSAR

» Clarifications in specification of
supervisions
* Deleted parameter "number of
AUTOSAR instances” from HealthChannel and
2019-11-28 | R19-11 Release SupervisedEntity
Management
* Removed SWS_HM_00071
» Changed Document Status from Final to
published
* Updated acronyms table
» Added chapter with not applicable
requirements
AUTOSAR * Added SWS_HM_00460 and
2019-03-29 | 1.5.1 Release SWS_HM_00461
Management _
» Updated traceability to requirements of
RS Health Monitoring
* Moved figures out of requirement trace
items
» Added API for retrieving supervision
status
AUTOSAR . _
2018-10-29 | 1.5.0 Release « Clarified error recovery actions
Management « Modified parameter configuration
» Several editorial changes
AUTOSAR
2018-03-29 | 1.4.0 Release « Initial release as "draft"
Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional overview
1.1 Input documents and related standards andnorms
2 Acronyms and abbreviations
3 Related documentation 9
4 Constraints and assumptions 10
4.1 Limitations and conditionsofuse 10
5 Requirements Tracing 11
6 Functional specification 13
6.1 Functional Overview 13
6.1.1 Functional Interfaces 13
6.1.2 Basic concepts - Supervised Entitys, Checkpoints$, Graphs,
Supervision Modet i i e e e e e e e e 14
6.1.3 Execution of Supervision Functions 15
6.1.3.1 Alive Supervision 15
6.1.3.2 Deadline Supervision 16
6.1.3.3 Logical Supervision 16
6.1.4 Determination of Supervision Status 16
6.1.4.1 Watchdog Control 16
6.1.4.2 ErrorHandling. 17
6.1.5 Functional Decomposition 17
6.2 Execution of Supervision Functions and Determination of Supervision
Results 18
6.2.1 Alive SUPETrvISION . . v v v v v v it e e e e e e e 19
6.2.1.1 Alive Supervision Configuration 19
6.2.1.2 Alive Supervision Algorithm 21
6.2.2 Deadline SUPErviSION v v v v v i v vt e 22
6.2.2.1 Deadline Supervision Configuration 22
6.2.2.2 Deadline Supervision Algorithm 23
6.2.3 Logical SupervisSion v v v v it 24
6.2.3.1 Logical Supervision Configuration 25
6.2.3.2 Logical Supervision Algorithm 26
6.3 System Health Monitoring 28
6.3.1 System Health Monitoring Architecture 29
6.3.2 Concept of Health Indicator 31
6.3.3 Applicationinterfaces 32

6.3.4 Usage of Healthindicators 32

AUTSSAR

7 Health Monitoring API specification 34
7.1 Provided APl 34
7.1.1 Reporting CheckpointS o i v i 34
7.1.2 Reporting healthstatus 34
7.1.3 Forwarding information between health monitoring components. . . 34
714 Init/Delnit 34
7.1.5 Retrieving Supervision Status from application 35

7.2 Assumed APl 35
7.2.1 Triggeringerrorhandling 35
7.2.2 Controllingwatchdog 35

8 Configuration Parameters 36
8.1 Overall configuration, 36
8.2 Mode-independent settings L. 38
8.2.1 Supervised Entity i 38

8.3 Mode-dependentsettings 39
8.3.1 Alive SuUpervision i e 39
8.3.2 Deadline Supervision i 40
8.3.3 Logical SupervisSion« v i i i 40
8.3.4 Gilobal Supervision 41

9 Service Interfaces 42
9.1 Typedefinitions 42
9.2 Provided Service Interfaces L. 45
9.2.1 Healthindicator 45
9.22 Healthinfo. 46

A History of Constraints and Specification ltems 47
A.1 Change History of this document according to AUTOSAR Release R25-11 47
A.1.1 Added Specification ltemsin R25-11 47
A.1.2 Changed Specification Itemsin R25-11 47
A.1.3 Deleted Specification ltemsin R25-11 47

A.2 Change History of this document according to AUTOSAR Release R24-11 47
A.2.1 Added Specification ltemsin R24-11 47
A.2.2 Changed Specification Itemsin R24-11 47
A.2.3 Deleted Specification ltemsinR24-11 48

A.3 Change History of this document according to AUTOSAR Release R23-11 48
A.3.1 Added Specification ItemsinR23-11 48
A.3.2 Changed Specification Itemsin R23-11 48
A.3.3 Deleted Specification ltemsin R23-11 48

A.4 Change History of this document according to AUTOSAR Release R22-11 48
A.4.1 Added Specification ltemsin R22-11 48
A.4.2 Changed Specification ltemsin R22-11 48

A.4.3 Deleted Specification ltemsinR22-11 48

AUTSSAR

1 Introduction and functional overview

1.1 Input documents and related standards and norms

This document specifies the functionality on the Health Monitoring and System
Health Monitoring.

Health Monitoring is required by [1, ISO 26262] (under the terms control flow
monitoring, external monitoring facility, watchdog, logical monitoring, temporal moni-
toring, program sequence monitoring) and this specification is supposed to address all
relevant requirements from this standard.

Health monitoring has the following error detection functions:

1. Alive Supervision - checking if Checkpoints happens with a correct fre-
quency

2. Deadline Supervision - checking the delta time between two Checkpoints

3. Logical Supervision - checking for correct sequence of execution of
Checkpoints

The Health Monitoring is supposed to be implemented by AUTOSAR classic plat-
form and AUTOSAR adaptive platform. It may be implemented by other platforms as
well.

The Health Monitoring requirements are specified in [2, RS HealthMonitoring].

The System Health Monitoring introduces platform agnostic health monitoring. It aims
to abstract the health monitoring on a system level by sharing of health information be-
tween different Adaptive, Classic or non-AUTOSAR platforms. The health information
shall be shared between different platforms using a standardized format of Health
Indicators. The abstract interfaces for exchanging the health information across
several platforms are provided in this document.

AUTSSAR

2 Acronyms and abbreviations

The glossary below includes acronyms and abbreviations relevant to Health Monitoring
that are not included in the AUTOSAR Gilossary [3].

Abbreviation / Acronym: Description:
SE Supervised Entity.
SOTIF Safety Of The Intended Functionality [4].

Table 2.1: List of acronyms and abbreviations

Technical Term: Description:

Alive Indication An indication of a Supervised Entity to signal its aliveness
by calling a checkpoint used for Alive Supervision.

Alive Supervision Kind of supervision that checks if a Supervised Entity executed
in a correct frequency.

Checkpoint A point in the control flow of a Supervised Entity where the activity
is reported.

Deadline Supervision Kind of supervision that checks if the execution time between two

Checkpoints is within minimum/maximum time limit.

Elementary Supervision Status | Status that represents the current state of an Alive Supervi-
sion, Deadline Supervision Or Logical Supervision,
based on the evaluation (correct/incorrect) of the supervision.

Final Checkpoint The ending Checkpoint of a Graph. There can be zero or more
Final Checkpoints for each Graph.
Global Supervision Status Cumulative Supervision Status. In Classic Platform, it summa-

rizes the Local Supervision Status of all Supervised En-
tities. In Adaptive Platform, it is calculated based on a set of
Elementary Supervision Status within a single Function
Group.

Graph A set of Checkpoints connected through Transitions, where at
least one of Checkpoints is an Initial Checkpoint. There is a path
(through Transitions) between any two Checkpoints of the Graph.
Health Channel Channel providing information about the health status of a
(sub)system. This might be the Global Supervision Status of an
application, the result any test routine or the status reported by
a (sub)system (e.g. voltage monitoring, OS kernel, ECU status,

)-

Health Channel Supervision Kind of supervision that checks if the health indicators registered
by the supervised software are within the tolerances/limits.

Health Indicator Interface Health Indicator Interface is an interface used for communication
of Health Indicators using a standardized service field.

Health Monitoring Supervision of the software behaviour for correct timing and se-
guence.

Health Status A set of states that are relevant to the supervised software (e.g.

a Voltage State, an application state, the result of a RAM moni-
toring algorithm).

Health Status Supervision Check if the health indicators registered by the supervised soft-
ware are within the tolerances/limits.

Initial Checkpoint The starting Checkpoint of a Graph. There can be one or more
Initial Checkpoints for each Graph.

Local Health Monitor Local Health Monitor gathers health information of the platform

on which it is deployed.

AUTSSAR

Local Supervision Status

Status that represents the current result of Alive Supervision,
Deadline Supervision and Logical Supervision of a single Super-
vised Entity.

Logical Supervision

Kind of online supervision of software that checks if the soft-
ware (Supervised Entity or set of Supervised Entities) is executed
in the sequence defined by the programmer (by the developed
code).

Platform Health Management

Health Monitoring for the Adaptive Platform

Supervised Entity

A whole or part of a software component type which is included
in the supervision. A Supervised Entity denotes a collection of
Checkpoints within the corresponding software component type.
A software component type can include zero, one or more Super-
vised Entities. A Supervised Entity may be instantiated multiple
times, in which case each instance is independently supervised.

Supervision Mode

An overall state of a microcontroller or virtual machine or state
of a Function Group (in case of Adaptive Platform). Modes are
mutually exclusive. A mode can be e.g. Startup, Shutdown, Low
power.

SystemHealthMonitor

A platform agnostic component which could be deployed any-
where.

Table 2.2: Technical terms used in the Scope of this Document

AUTSSAR

3 Related documentation

[1] ISO 26262:2018 Road vehicles -— Functional Safety
https://www.iso.org

[2] Requirements on Health Monitoring
AUTOSAR_FO_RS HealthMonitoring

[3] Glossary
AUTOSAR_FO_TR_Glossary

[4] ISO/PAS 21448:2019 — Road vehicles — Safety of the intended functionality
https://www.iso.org

[5] Specification of Watchdog Manager
AUTOSAR_CP_SWS_WatchdogManager

[6] Specification of Platform Health Management
AUTOSAR_AP_SWS_PlatformHealthManagement

[7] Explanation of System Health Monitoring
AUTOSAR_FO_EXP_SystemHealthMonitoring

https://www.iso.org
https://www.iso.org

AUTSSAR

4 Constraints and assumptions

4.1 Limitations and conditions of use

The logic for determination of Health Indicator values is not standardized as a part of
AUTOSAR.

Logical Supervisions always start with the report of the first Checkpoint. The
application / the integrator has to ensure that the processes coordinate each other
accordingly (sequences according to configured graph), even if one or multiple of the
processes restarts or the processes have to be configured to always restart together
during Function Group State changes.

AUTSSAR

5 Requirements Tracing

Requirement

Description

Satisfied by

[RS_HM_09125]

Health Monitoring shall provide an
Alive Supervision

[ASWS_HM_00074] [ASWS_HM_00083]
[ASWS_HM_00098]

[RS_HM_09163]

Health Monitoring shall provide
configurable tolerances for detected
errors and configurable delays of
error reactions.

[ASWS_HM_00075] [ASWS_HM_00079]

[RS_HM_09222]

Health Monitoring shall provide a
Logical Supervision

[ASWS_HM_00252] [ASWS_HM_00271]
[ASWS_HM_00273] [ASWS_HM_00295]
[ASWS_HM_00296] [ASWS_HM_00297]
[ASWS_HM_00331]

[RS_HM_09235]

Health Monitoring shall provide a
Deadline Supervision

[ASWS_HM_00228] [ASWS_HM_00229]
[ASWS_HM_00294] [ASWS_HM_00299]
[ASWS_HM_00354]

[RS_HM_09242]

Health Monitoring shall support the
supervision within and across
Supervised Entities.

[ASWS_HM_00460]

[RS_HM_09243]

Health Monitoring shall support the
supervision of concurrent and parallel
Supervised Entities.

[ASWS_HM_00461]

[RS_HM_09249]

Health Monitoring shall support
building safety-related systems.

[ASWS_HM_00074] [ASWS_HM_00083]
[ASWS_HM_00098] [ASWS_HM_00228]
[ASWS_HM_00229] [ASWS_HM_00252]
[ASWS_HM_00271] [ASWS_HM_00273]
[ASWS_HM_00294] [ASWS_HM_00295]
[ASWS_HM_00296] [ASWS_HM_00297]
[ASWS_HM_00299] [ASWS_HM_00331]
[ASWS_HM_00354] [ASWS_HM_00460]
[ASWS_HM_00461]

[RS_HM_09300]

System Health Monitor shall transmit
Health Indicators as standardized
service events

[ASWS_HM_00510]

[RS_HM_09301]

SHM shall receive relevant health
information from local health monitors

[ASWS_HM_00501] [ASWS_HM_00513]

[RS_HM_09302]

Communication between SHM and
local health monitors shall be E2E
protected

[ASWS_HM_00503]

[RS_HM_09303]

SHM shall be platform agnostic

[ASWS_HM_00501] [ASWS_HM_00502]
[ASWS_HM_00503] [ASWS_HM_00504]
[ASWS_HM_00505] [ASWS_HM_00506]
[ASWS_HM_00509] [ASWS_HM_00510]
[ASWS_HM_00511] [ASWS_HM_00512]
[ASWS_HM_00513] [ASWS_HM_00514]
[ASWS_HM_00515] [ASWS_HM_00516]
[ASWS_HM_00517] [ASWS_HM_00518]
[ASWS_HM_00519] [ASWS_HM_00520]
[ASWS_HM_00521] [ASWS_HM_00522]
[ASWS_HM_00523]

[RS_HM_09304]

SHM shall determine Health
Indicators.

[ASWS_HM_00501] [ASWS_HM_00504]

[RS_HM_09305]

SHM should support redundancy
concepts

[ASWS_HM_00504] [ASWS_HM_00505]

[RS_HM_09308]

Communication between SHM
instances shall be E2E protected

[ASWS_HM_00506]

Y%

AUTSSAR

A

Requirement

Description

Satisfied by

[RS_HM_09309]

Cyclic communication between SHM
and local health monitors shall be
used for aliveness checks

[ASWS_HM_00502] [ASWS_HM_00509]

[RS_HM_09310]

Cyclic communication between SHM
instances shall be used for aliveness
checks

[ASWS_HM_00509]

Table 5.1: Requirements Tracing

AUTSSAR

6 Functional specification

6.1 Functional Overview

This section presents black-box functional overview of the Health Monitoring. It
does not define any requirements nor details on the functionality.

6.1.1 Functional Interfaces

The Health Monitoring supervises the execution of a configurable number of su-
pervised Entitys and it also supervises their Health Status. When it detects
a violation of the configured temporal and/or logical constraints on program execution
or a violation of the configured health constraints, it triggers the appropriate error han-
dlers. Health Monitoring controls also the Watchdogs correspondingly, see Figure

‘Health Monitoring 8:]
:Error handling g:]
Emor handler D to be triggered

class HM_OwverallFlow

Chedkpoint 1D === "uflown

I T L _Zm |- —
:Supervised {] wflows
Entity
Health Status
o ST — - = I

- Triggering of watchdog

cflows ™~ o -
=& Watchdog E:]

Figure 6.1: Scope of Health Monitoring

The Health Monitoring function can be split as a daisy chain. Each Health Mon-
itoring instance has the same interface to Supervised Entitys, Error handling
and Watchdog. In addition, the interface between the instances of Health Moni-
toring is standardized as well - it carries the results of Health Monitoring as
well as "raw data" (Checkpoint IDs, Health Status together with necessary context in-
formation). Each instance adds some context-specific data to Checkpoints (e.g.
process/task id).

In the example below (Figure 6.2), there are three instances of Health Monitoring,
each having different usage scenarios.

AUTSSAR

class HM_OwerallFlowDaisyChain /

:Error handling g:] :Error handling g:] :Supervised E:]
Entity
Ky
| | b

Emor handler ID to be triggered Emor handler ID to be triggered Chedtpaint ID
\

«flows «flows wflows
' '

M
Chedkpoint ID ! ! N

_heckeant . Chedpaints, Health Status Checkpoints, Health Status
‘Supervised 3] aflows Heath B]| and Menitoring resulis Health B and Manitaring results Heath 3]
Entity Maonitoring F—————————— Maonitoring t——————————————==! Monitoring
Heslth Status wflows aflows

aflowe |]
[!
Triggering of watchdog Triggering of watchdog
' '
«flows «flows
| |

B g]

Figure 6.2: Scope of Health Monitoring Daisy Chain example

The data exchanged between Health Monitoring instances is configurable.
These are known use cases for Health Monitoring instances:

» The first instance is typically the same process/executable/application as the
Supervised Entity.

» Further instance(s) can be realized as services/daemons on the microcontroller
 Further or final instance can be realized on a remote machine.

A systemHealthMonitor is responsible for combining health information of different
platforms and calculate Health Indicators on different abstraction levels. These
Health Indicators can then be used within the platform for stabilizing the system
or enhancing services with some kind of Health of Service. The SystemHealthMon-
itor is defined as a platform agnostic component which could be deployed anywhere
in the system.

6.1.2 Basic concepts - Supervised Entitys, Checkpoints, Graphs, Super-
vision Mode

The Health Monitoring supervises the execution of software. The logical units
of supervision are Checkpoints that belong t0 Supervised Entitys. There is
no fixed relationship between supervised Entitys and the architectural building
blocks software, but typically a Supervised Entity may represent one software
component.

The Checkpoints and Transitions between the Checkpoints form a Graph. The
Checkpoints of agraph can belong to the same Supervised Entity orto different
Supervised Entitys.

AUTSSAR

[ASWS_HM_00460]
Upstream requirements: RS_HM_09242, RS_HM_09249

[The Health Monitoring shall supervise graphs with checkpoints belonging to the
same or different Supervised Entitys.]

[ASWS_HM_00461]
Upstream requirements: RS_HM_09243, RS_HM_09249

[The Health Monitoring shall simultaneously supervise graphs of Supervised
Entitys preempeted by other Supervised Entitys.]

A Graph may have one or more initial Checkpoints and one or more final Check—-
points. Any sequence of starting with any ITnitial Checkpoint and finishing with
any Final Checkpoint iscorrect (assuming that the checkpoints belong to the same
Graph). After the final Checkpoint, any initial Checkpoint can be reported.

At runtime, Health Monitoring verifies if the configured Graphs are executed. This
is called Logical Supervision. Health Monitoring verifies also the timing of
Checkpoints and Transitions. The mechanism for periodic Checkpoints is called
Alive Supervision and for aperiodic Checkpoints it is called Deadline Su-
pervision.

The granularity of Checkpoints is not fixed by the Health Monitoring. Few
coarse-grained Checkpoints limit the detection abilities of the Health Monitor-
ing. For example, for an application with only one Checkpoint the Health Moni-
toring is only capable of detecting that this application (or one part of this application)
is cyclically running and check the timing constraints. In contrast, if that application has
Checkpoints at each block and branch, the Health Monitoring may also detect
failures in the control flow of that application. Fine granularity of Checkpoints causes
a complex and large configuration of the Health Monitoring.

Health Monitoring allows the definition of different Supervision Modes. Differ-
ent behavior of supervision functions can be configured for each Supervision Mode.

6.1.3 Execution of Supervision Functions

Health Monitoring offers Alive Supervision, Deadline Supervision,
Logical Supervision and Health Channel Supervision. All supervision
functions can be invoked independently.

6.1.3.1 Alive Supervision

Periodic supervised Entitys have constraints on the number of times they are ex-
ecuted within a given time span. By means of Alive Supervision, The Health
Monitoring checks periodically if the Checkpoints of a Supervised Entity

AUTSSAR

have been reached within the given limits. This means that Health Monitoring
checks if a Supervised Entity is run not too frequently or not too rarely.

6.1.3.2 Deadline Supervision

Non-cyclic supervised Entitys have individual constraints on the timing between
two Checkpoints. By means of Deadline Supervision, Health Monitoring
checks the time span of transitions between two Checkpoints (one Source Checkpoint
and one Target Checkpoint) of a Supervised Entity (for detection of early arrivals and
delays), and elapsed time after the Source Checkpoints (for detection of timeouts). This
means that Health Monitoring checks if some steps in a Supervised Entity
take a time that is within the configured minimum and maximum limits.

6.1.3.3 Logical Supervision

Logical Supervision is a fundamental technique for checking the correct execu-
tion of embedded system software. Please refer to the safety standards (IEC 61508
or ISO26262) when Logical Supervision is required. Logical Supervision
focuses on control flow errors, which cause a divergence from the valid (i.e. coded/-
compiled) program sequence during the error-free execution of the application. An
incorrect control flow occurs if one or more program instructions are processed either
in the incorrect sequence or are not even processed at all. Control flow errors can lead
to data corruption, microcontroller resets, or fail-silence violations.

For the control flow graph this implies that every time the Supervised Entity re-
ports a new Checkpoint, it must be verified that there is a Transition configured be-
tween the previous Checkpoint and the reported one.

6.1.4 Determination of Supervision Status

Based on the results of the Alive, Deadline and Logical supervision Functions, the
Cumulative Supervision Status is calculated. Each status is determined by a state
machine. For details of the state machine, please refer the specification in the corre-
sponding platform ([5] and [6]).

6.1.4.1 Watchdog Control

Health Monitoring controls the hardware watchdog. When the Supervised En-
titys are not correctly evaluated due to a programming error or memory failure in the
watchdog protocol itself, it may still happen that the watchdog protocol erroneously
sets the triggering condition and no watchdog reset will be caused. Therefore, it may
be needed to use Supervised Entitys and Checkpoints (or some other inter-

AUTSSAR

nal supervision mechanism) within watchdog protocol itself, while avoiding recursion in
watchdog protocol.

6.1.4.2 Error Handling

Depending on the Local Supervision Status of each Supervised Entity
and on the Global Supervision Status, the Health Monitoring initiates
mechanisms to recover from supervision failures. These range from notifying a central
error handler to a global reset of the ECU.

6.1.5 Functional Decomposition

The Health Monitoring has the following logical steps:
1. Execution of all Supervision Functions - see 6.2
2. Determination of Supervision Status - see 6.1.4
3. Determination of Actions - see 6.1.4.1 and 6.1.4.2

The behavior of Health Monitoring is mode-dependent (see description of super-
vision mode in 6.1.2 and [2]).

AUTSSAR

dass HM_InternalFlow /'

I

Supervision Results, Local Supenyision Statuses, Global Supervizsion
Status I
]

» B i g:] “Supervised Entity g] “Health channel E]
Monitoring
| - !
| Checkpaint Health Status
: aflows afiows
| ! i
| R — &) '
| Checkpoints, Health Statuses, Supervision Resuits, Hea'ﬂ,"mm |
| Local Supervision Status, Global Supervision Status, |
Watchdog Commands, Error Handler [Ds -Exeqution |
:_ o Exeaution of |
______________________ == Supervision Funciions |
|
|
Supervision |
RES ciow :
‘Determination of |
Supervision Status :
|
|
|
|
|
|
|
|
|
|

afiows
[
v
Determinationof le= __ _ ____ _ |
Actions
Checkpaints, Health Statuses, Supervision Results, Loca
: : f Supervision Status, Global Supervizion Status, Watchdog
i i | commands, Emor Handler IDs
| | |
dos O P | |
uadzconmants || sroriandrios o beimokes fo
| aflow | 1
v -y '
“Watchdog 8:] “External error S:]

Figure 6.3: Main functions of Health Monitoring

6.2 Execution of Supervision Functions and Determination of Su-
pervision Results

Supervised Entitys are the units of supervision for the Health Monitoring.
Each supervised Entitys (SupervisedEntity)can be supervised by a different
supervision function or a combination of them.

The following three supervision functions are executed at this stage:
* Alive Supervision (see 6.2.1)
* Deadline Supervision (See 6.2.2)
* Logical Supervision (see 6.2.3)

Each of three Supervision Functions results with a list of Results of Supervision Func-
tion for each Supervised Entity (SupervisedEntity) (highlighted in Blue on
Figure 6.3), where each Result is either correct or incorrect.

At Health Monitoring initialization, all the Results are set to correct. This means
that for every Supervised Entity (SupervisedEntity) there are three partial re-

AUTSSAR

sults (one from Alive Supervision, one from Deadline Supervision and one
from Logical Supervision).

In a given mode, each Supervised Entity (SupervisedEntity) may have zero,
oneormore Alive Supervisions (AliveSupervision), each having one correc-
t/incorrect result.

In a given mode, each Supervised Entity (SupervisedEntity) may have zero,
one or more Deadline SupervisionS (DeadlineSupervision), each having
one correct/incorrect result.

In a given mode, each Supervised Entity (SupervisedEntity) may have zero,
one or more Logical SupervisionS (LogicalSupervision) (i.e. graphs) con-
figured, each having one correct/incorrect result.

In case there are zero active supervisions in a given mode, then Health Monitoring
sees no EXPIRED local stati, so the watchdog trigger condition can be invoked.

6.2.1 Alive Supervision

The Alive Supervision (AliveSupervision) offers a mechanism to periodically
check the execution reliability of one or several Supervised Entitys. This mecha-
nism supports a check of cyclic timing constraints of independent Supervised En-
titys.

6.2.1.1 Alive Supervision Configuration

To provide Alive Supervision (AliveSupervision), the Checkpoints and
their timing constraints need to be configured. The simplest configuration for
AliveSupervision is one Checkpoint without any Transitions, as shown in Figure
6.4)

SE3

CP3-1

+ ExpectedAlivelndications

+ MaxMargin

+ MinMargin

+ AliveReferenceCycle

+ FailedReferenceCyclesTolerance

Figure 6.4: Simplest Alive Supervision Checkpoint Configuration for a given Super-
vision Mode

AUTSSAR

Moreover, it is also possible to have more than one Checkpoint as shown in Figure
6.5)

SE3

]

+ ExpectedAlivelndications

+ MaxMargin
+ MinMargin
+ AliveReferenceCycle

+ FailedReferenceCyclesTaolerance

"

+ ExpectedAlivelndications

+ MaxMargin
+ MinMargin

+ AliveReferenceCycle

+ FailedReferenceCyclesTolerance

Figure 6.5: Multiple Checkpoints for Alive Supervision in ohe SupervisedEntity
for a given Supervision Mode

Each Checkpoint can have its own set of AliveSupervision Parameters. Transi-
tions are not used by AliveSupervision. Although each Checkpoint has its own
parameters, it is the supervisedEnt ity for which status is determined based on the
frequency of Checkpoints.

The parameters of the AliveSupervision depend onthe Supervision Mode and
are defined per Checkpoint (and not globally for the whole SupervisedEntity).

None, some, or all of theCheckpoints of a SupervisedEntity can be configured
for AliveSupervision in a given Mode. Moreover, in each Mode the AliveSuper-
vision options of Checkpoints can be different.

The ExpectedAliveIndications (EAI) specifies the amount of expected alive in-
dications from a given Checkpoint, within a fixed period of supervision cycles. The
period length is defined by AliveReferenceCycle.

An acceptable negative variation (MinMargin) and acceptable positive variation (Max—
Margin) can be configured.

The Health Monitoring has to support a configurable amount of independent su-
pervised Entitys.

AUTSSAR

6.2.1.2 Alive Supervision Algorithm

To send an Alive Indication, a Ssupervised Entity (SupervisedEntity) invokes
the function ReportCheckpoint, which results with incrementation of an Alive
Counter for the Checkpoint.

The periodic examination of the Counter of each Checkpoint of a SupervisedEn-—
tity by the Health Monitoring happens at every AliveReferenceCycle.

The Alive Reference Cycle (see AliveReferenceCycle) is the property of an
AliveSupervision of a Checkpoint in a given Supervision Mode.

[ASWS_HM_00098]
Upstream requirements: RS_HM_09125, RS_HM_09249

[The Health Monitoring shall perform for each Alive Supervision (AliveSu-
pervision) configured in the active Mode, the examination of the Alive Counter of
each Checkpoint of the SupervisedEntity. The examination shall be done at
the period AliveReferenceCycle of the corresponding Alive Supervision (
AliveSupervision).]

[ASWS_HM_00074]
Upstream requirements: RS_HM_09125, RS_HM_09249

[The Health Monitoring shall examine an Alive Counter by checking if it is within
the allowed tolerance (Expected - Min Margin; Expected + Max Margin) (see Ex-
pectedAliveIndications, MinMargin, MaxMargin).]

If any Checkpoint of a SupervisedEntity fails the examination, then the result of
Alive Supervision atthis AliveReferenceCycle forthe SupervisedEntity
is set to incorrect. Otherwise, it is set to correct.

[ASWS_HM_00075]
Upstream requirements: RS_HM_09163

[On examination of the Alive Counter, if the result of Alive Supervision is determined
to be incorrect then, counter for failed alive supervision reference cycles shall be in-
cremented unless it exceeds (is not greater than) configured Failure Tolerance (see
configuration parameter FailedReferenceCyclesTolerance).]

[ASWS_HM_00079]
Upstream requirements: RS_HM_09163
[On examination of the Alive Counter, if the result of Alive Supervision is determined

to be correct then, counter for failed alive supervision reference cycles shall be decre-
mented unless it is zero. |

Health Monitoring only checks the Checkpoints that are configured for the current
Supervision Mode.

AUTSSAR

[ASWS_HM_00083]
Upstream requirements: RS_HM_09125, RS_HM_09249

[The Health Monitoring shall not perform the examination of the Alive Counter of a
Checkpoint if no corresponding Alive Supervision (AliveSupervision) is
defined in the current Supervision Mode.]

6.2.2 Deadline Supervision

Deadline Supervision (DeadlineSupervision) checks the timing constraints
of non-cyclic Supervised Entitys. In these Supervised Entitys, a certain
event happens and a following event happens within a given time span. This time
span can have a maximum and minimum deadline (time window).

6.2.2.1 Deadline Supervision Configuration

For every DeadlineSupervision, two Checkpoints connected by a Transition are
configured. The Deadline is attached to the Transition from the Source Checkpoint
to the Target Checkpoint. The simplest DeadlineSupervision configuration con-
tains two Checkpoints and one Transition, as shown in Figure 6.6)

SE4

cP4-1

+ MinDeadline +
MaxDeadline

Figure 6.6: Simplest Deadline Supervision Configuration for a given Supervision
Mode

More than one Transition can be defined in a SupervisedEntity. The Transitions
and the Checkpoints do not have to form a closed graph. Since only the Source
and the Target Checkpoints are considered by this Supervision Function, there can
be independent graphs, as shown in Figure 6.7). Moreover, the Checkpoints can be
chained.

AUTSSAR

SE4

CP4-1

CP4-3

C
L

+MinDeadline +
MaxDeadline
+MinDeadline, +
MaxDeadline

cP4-2
CP44

U
5

+MinDeadline +
MaxDeadline

CP4-5

5

Figure 6.7: Multiple Transitions for Deadline Supervision in one Supervised En-
tity for a given Supervision Mode

The configuration of DeadlineSupervision is similar to the one of AliveSuper-
vision.

The parameters of the Deadline Supervision (see DeadlineSupervision) de-
pend on the Supervision Mode (ModeDependentSettings) and are defined for per
a set of two Checkpoints. None, some, or all of the Checkpoints of a Super-
visedEntity can be configured for DeadlineSupervision in a given Mode.

A DeadlineSupervision is defined as a set of Transitions with time constraints. A
Transition is defined as two references to two Checkpoints, called Source Check-
point and Target Checkpoint (see DeadlineSupervision). A Transition has min-
imum and maximum time MinDeadline, MaxDeadline.

6.2.2.2 Deadline Supervision Algorithm

When a Source Checkpoint (i.e. the Source Checkpoint referenced by the
CheckpointTransition, See DeadlineSupervision) or a Target Checkpoint
is reached, a SupervisedEntity invokes the function ReportCheckpoint, which
will calculate the time expired between the Source Checkpoint and the Target Check-
point.

The calculation is performed either at the occurrence of the Target Checkpoint or at
the moment the elapsed time after Source Checkpoint is above the maximum limit (
MaxDeadline).

AUTSSAR

[ASWS_HM_00294]
Upstream requirements: RS_HM_09235, RS_HM_09249

[If the time difference between the Target Checkpoint and the Source Checkpoint
is not within the minimum and the maximum limits (that is, the time difference is either
less than MinDeadline or greater than MaxDeadline), then the result of Deadline-
Supervision for this SupervisedEntity shall be defined as incorrect. Otherwise,
it shall be defined as correct. |

[ASWS_HM_00228]
Upstream requirements: RS_HM_09235, RS_HM_09249

[If the Target Checkpoint is not reached even though the time since reaching the
Source Checkpoint has crossed the maximum limit (that is, the time elapsed since
reaching Source Checkpoint is greater than MaxDeadline), then the result of Dead-
lineSupervision for this SupervisedEntity shall be defined as incorrect. |

[ASWS_HM_00229]
Upstream requirements: RS_HM_09235, RS_HM_09249

[When a given Source Checkpoint is reached two or more times on or before the ex-
piration of the maximum limit without reaching the corresponding Target Checkpoint,
this shall be considered as an error and the result of the DeadlineSupervision for
this SupervisedEntity shall be considered as incorrect. |

[ASWS_HM_00354]

Upstream requirements: RS_HM_ 09235, RS HM_ 09249
[When a given Target Checkpoint is reached before the occurrence of the corre-
sponding Source Checkpoint, the function ReportCheckpoint [SWS_HM_00447]

shall ignore this Checkpoint and not update the result of the Deadline Supervision
for the Supervised Entity. |

This means also that it is not considered as an error by DeadlineSupervision if a
given Target Checkpoint is reached several times in a sequence.

[ASWS_HM_00299]
Upstream requirements: RS_HM_09235, RS_HM_09249

[For any reported Checkpoint that is neither a Source Checkpoint nor a Target
Checkpoint , the function ReportCheckpoint shall ignore this Checkpoint and
not update the result of the Deadline Supervision for the Supervised Entity. |

6.2.3 Logical Supervision

Logical Supervision checks if the code of Supervised Entitys is executedin
the correct sequence.

AUTSSAR

6.2.3.1 Logical Supervision Configuration

For every Logical Supervision (LogicalSupervision), there is a Graph of
Checkpoints connected by Transitions. The Graph abstracts the behavior of the
SupervisedEntity. There is a 1 to 1 correspondance between a Graph and the
LogicalSupervision container.

In addition, a Checkpoint shall belong to maximum one internal Graph.

As an example for a SsupervisedEntity, let us consider the following code fragment,
which contains the Checkpoints CP0-0 to CP0-6.

ceo-1 , Whlle (subsystem is running) { X
IS TTT TS T TS TS TS T T ST TS ST T T ST T T T TS ST T TSI T TS T TS T T I TSI ST AT T T TS T T s T T e T e T 1
Ceo-z ____if f(eomdition B) ... |
CPO-3 | run subtask &4; E
Im e e o O L D T T D T L L e e e emmme oo
| else |
CEO-4 | run subtask B; :
I o e e e e e e e e e e e e e e == T __ 1
1 1
cPo-5 | TUR SubTAsk C ... :
CPO-6 :} !

Figure 6.8: Example of Checkpoints

This supervisedEntity can be represented by the Graph shown in Figure 6.9.

SEO

CPO-0

CPO-1
CP0-2

e

Figure 6.9: Example Control Flow Graph

AUTSSAR

A more abstract view of the SupervisedEntity is given by the Graph shown in
Figure 6.10), where the Checkpoint CPO-1 represents the complete while loop.

SEO

CPO0-0

CPO-1

CPO0-6

®

Figure 6.10: Abstracted Example Control Flow Graph

In a Graphs, Checkpoints can belong to the same SupervisedEntity or to dif-
ferent Supervised Entitys, no restriction is imposed. The transitions between
Checkpointsin a Graph are dependent on the Supervision Mode.

The parameters of the Graphs (see LogicalSupervision) are the Transitions that
are contained in a Supervision Mode (see ModeDependentSettings). Each Tran-
sition connects two Checkpoints. The Checkpoints exist irrespective if they are
connected by any transitions.

6.2.3.2 Logical Supervision Algorithm

Immediately after initialization of the Health Monitoring, there has not yet been a
Checkpoint reported, i.e. all the Supervised Entitys are passive. Each Graph
is considered as inactive.

Each Graph represents one LogicalSupervision, but it may spans across possibly
several Supervised Entitys. Assuming N Graphs that cross a Supervised En-
tity, thisimplies N results from the LogicalSupervision forthe SupervisedEn-
tity

[ASWS_HM_00271]
Upstream requirements: RS_HM_09222, RS_HM_09249

[The Health Monitoring shall mantain the activity status of each Graph. |

AUTSSAR

[ASWS_HM_00296]
Upstream requirements: RS_HM_09222, RS_HM_09249

[At the initialization, the Health Monitoring shall consider each Graph as inactive. |

Each Graph may have one or more Initial Checkpoints. Initial Checkpoints are
Checkpoints with which a Graph can start.

To notify reaching a Checkpoint, a SupervisedEntity invokes the function Re-
portCheckpoint, which results with execution of Logical Supervision algo-
rithm.

Because a Checkpoint can belong to only one internal Graph, the function Re-
portCheckpoint is able to identify to which Graph a Checkpoint belongs to.

[ASWS_HM_00295]
Upstream requirements: RS_HM_09222, RS_HM_09249

[The function ReportCheckpoint shall identify to which one Graph a reached
Checkpoint belongs. |

If a Graph is active, the function ReportCheckpoint checks for each new Check-
point if the Transition between the stored Checkpoint and the newly reported
Checkpoint is allowed.

[ASWS_HM_00252]
Upstream requirements: RS_HM_09222, RS _HM_09249

[The function ReportCheckpoint shall verify if the reported Checkpoint belonging
to a Graph is a correct one by the following checks:

1. If the Graph of the reported Checkpoint is inactive, then:

a. If the Checkpoint is an Initial Checkpoint (see LogicalSupervision),
then the result of this Logical Supervision withinthe SupervisedEntity
of the reported Checkpoint is correct, otherwise incorrect.

2. Else if the Graph is active and all previously called Checkpoints of this Graph
were called in the right sequence, then:

a. If the reported Checkpoint is a successor of the stored Checkpoint within
the Graph of the reported Checkpoint (this means there is a Transition with
Source and Target), then the result of this Logical Supervision for su-
pervisedEntity of the reported Checkpoint is correct, otherwise incorrect.

3. Else (i.e. the Graph is active, but at least one Checkpoint in this Graph was
previously called in a wrong sequence):

a. The result of this Logical Supervision of the Supervised Entity keeps incorrect.

AUTSSAR

The above requirement means that in case of an incorrect transition, the su-
pervisedEntity that is considered as erroneous is the one that reported the
incorrect Checkpoint.

]

If a Checkpoint is one of the initial Checkpoints of a Graph, then the Graph is set
as active.

Note that if a Graph contains multiple initial Checkpoints, either of them are allowed
to be entered when the Graph is inactive: when an initial Checkpoint is reported, the
corresponding Graph becomes active, so another initial Checkpoint is allowed only if
a Transition is configured from the first Checkpoint to the second one as a Graph can
have only one active checkpoint at a specific time.

[ASWS_HM_00331]
Upstream requirements: RS_HM_09222, RS_HM_09249

[If the result of the Logical Supervision triggered by ReportCheckpoint is cor-
rect and the Checkpoint is defined as a final one, then the function ReportCheck-
point shall set Graph as inactive. After a final checkpoint, only initial checkpoints are
possible. |

[ASWS_HM_00297]
Upstream requirements: RS_HM_09222, RS_HM_09249

[For any reported Checkpoint that does not belong to any Graph, the function
ReportCheckpoint shall ignore it and not update the result of the Logical Su-
pervision for the SupervisedEntity. |

This is because the checkpoint may be used by other Supervision Functions (Alive or
Deadline).

[ASWS_HM_00273]
Upstream requirements: RS_HM_09222, RS _HM_09249

[If the function ReportCheckpoint determines that the result of the Logical Su-
pervision for the given Checkpoint is true, and the Checkpoint is the initial one
(see LogicalSupervision), then the Graph corresponding to the Checkpoint
shall be considered as active. |

6.3 System Health Monitoring

The previous chapters described Health Monitoring on platform level. In a distributed
system using different platforms AP, CP, Non-AUTOSAR, a global monitor is necessary
for evaluating and sharing health information on a vehicle level.

AUTSSAR

A standardized format for Health Indicator will be introduced for sharing health
information of platforms, features, domains or even vehicles. These Health Indi-
cator can either be used for platform level recovery actions, or to enhance services
with a Health of Service, similar to Quality of Service (QoS).

Abstract interfaces for System Health Monitor to local health monitors shall be speci-
fied, allowing platform agnostic health management of several Adaptive, Classic and
third-party platforms.

6.3.1 System Health Monitoring Architecture

The systemHealthMonitor is intended for platform agnostic safety monitoring. For
this reason the SystemHealthMonitor is introduced as an abstract component ac-
cording to AUTOSAR_TPS_AbstractPlatformSpecification. A SystemHealthMoni-
tor gathers health information of abstract LocalHealthMonitors. These Local-
HealthMonitors are deployed on platform level and collect the health information
of the platform itself. The LocalHealthMonitor on platform level might be imple-
mented as a client SystemHealthMonitor as seen in the [7, EXP-SHM], or some
functional cluster. The local information might include monitoring results of Platform
Health Monitor(in AP)/Watchdog Manager(in CP), State Manager(in AP)/Basic Soft-
ware Mode Manager(in CP) or hardware information e.g highTemp. Components like
the State Manager are highly project specific and it can thus not be fully standardized
which information the LocalHealthMonitor reports.

yatem Health Monitor N
- oo - !
Determination of Health Indicatorfs) |« .y "
Health Indicator + I I
+ Healthinfo Health Indicator e s === = I
+ Healthinfo
Health
Adaptive Platform Indicator
Execution of Supervision Functions Execution of Supenvision Functions
+* +
Determination of Supenvision Determination of Supervision
Status Status
* ¥
—t—1 Local Platform Recovery Action Local Platform Recovery Action =
Execution system Recovery Action Execution system Recovery Action

Figure 6.11: Overview of Health Information exchange between different platforms

The collected information can be used to create a platform Health Indicator, giv-
ing an overall estimation of the platform health.

AUTSSAR

[ASWS_HM_00501]
Status: DRAFT
Upstream requirements: RS_HM_09301, RS_HM_09304, RS_HM_09303

[The LocalHealthMonitor shall create a platform Health Indicator, based on
the locally reported health information. |

Information exchanged with SHM is considered safety relevant. Therefore, communi-
cation between SHM instance and local monitors and between multiple SHM instances
shall be cyclic. Safety mechanisms like E2E protection shall be used to detect possi-
ble message loss, delay, alteration etc. The detectable errors depend on the chosen
E2E profile and are project specific. Cycle exchange of Health Indicators can be used
as periodical heart beat, giving an indication on the availability of the platforms and of
SHM. A missed message means no confidence of correct behavior and should be con-
sidered in Health Indicator determination on SHM side and for recovery action
on platform level.

[ASWS HM_00502]
Status: DRAFT
Upstream requirements: RS_HM_09309, RS_HM_09303

[The platform Health Indicator and the local health information shall be cyclically
reported to the SystemHealthMonitor.]

[ASWS_HM _00509]
Status: DRAFT
Upstream requirements: RS_HM_09309, RS_HM_09310, RS_HM_09303

[The Health Indicator calculated by SHM shall be reported cyclically to sub-
scribers. |

[ASWS_HM_00503]
Status: DRAFT
Upstream requirements: RS_HM_09302, RS_HM_09303

[Information exchange between LocalHealthMonitor and SystemHealthMoni-
tor shall be E2E protected. |

[ASWS HM 00504]
Status: DRAFT
Upstream requirements: RS_HM_09305, RS_HM_09304, RS_HM_09303

[The systemHealthMonitor shall gather and evaluate health information of all Lo-
calHealthMonitors in its subsystem. Together with Health Indicators of other
SystemHealthMonitors the subsystem information can be used to create Health
Indicators at a higher level of abstraction. |

AUTSSAR

As one systemHealthMonitor poses the threat of a single point of failure for its
subsystem, multiple SystemHealthMonitors might receive the local health infor-
mation, but only one of them should be actively calculating and providing the Health
Indicators.

[ASWS HM 00505]
Status: DRAFT
Upstream requirements: RS_HM_09305, RS_HM_09303

[A dedicated/particular Health Indicator shall be provided by only one Sys-
temHealthMonitor at a given point of time. |

6.3.2 Concept of Health Indicator

Health Indicators provide an evaluation metric of current system performance
with regard to safety requirements. Health information of safety monitors is analyzed
and used to determine Health Indicators on different abstraction levels. The

Health Indicator is defined as a tuple of ID, Performance, Reliability, Timestamp
and SubsystemState. The Performance rates the performance with respect to mal-
functioning behavior. Reliability evaluates how much to trust the system due to un-
certainties. SubsystemState is a systemspecific Health status of the Subsystem Sub
= {suby,..., sub,}. Different SubsystemStates are based on availability and availability
requirements. Health Indicators can be results of supervisions on hardware, software,
user, or the vehicle’s environment. Combining monitoring results with well-defined
safety properties, a corresponding health triple is determined. The three core param-
eters of the Health Indicator are supposed to capture different safety aspects required
by different safety standards. The Degradation parameter is operating at the most ab-
stract level. Only based on binary availability indications an overall degradation state is
determined. ISO-26262 [1] and ISO-21448 [4] take further aspects into consideration
than just the availability. 1ISO-26262 focuses on hazards arising from malfunctioning
of E/E Systems whereas SOTIF refers to hazards caused by performance limitations.
To this end, the scope of SOTIF demands including the vehicle’s interaction with its
environment, users, and other cars to capture uncertainties introduced by them. To in-
clude 1SO-26262 and SOTIF into the Health Indicator, the Performance and Reliability
parameters are used.

The timestamp can be used to store information when the Healthindicator was created.
A unique HealthindicatorID shall be used to distinguish Health Indicators and
assign them to a specific subsystem (e.g feature,platform,domain).

SystemHealthMonitors can operate on different abstraction levels. Monitoring re-
sults on platform level can be grouped on the level of functional features. Functional
features might then be grouped in domains and all of this might give an health indi-
cation for the vehicle. These abstraction levels are not standardized and just given as
an example. Each SystemHealthMonitor can handle multiple subsystems at different
abstraction levels and thus provides multiple HealthIindicators.

AUTSSAR

Subsystems Domain

| |
| |
| |
T \, , :
I - |

|

.

|

|

omain HII

Features . I
I 0 le | e C — Feature Feature HI, | Domain Health i
"o Z Health Mode| | ————» Model Domain HI _ l
5] Vehicle Health
8 Scalin — i |
J ;;;] 9

|
DomainH/' |

Features
In | o

Sc@ing

Feature HI

—_— I Feature Domain Health

—_— Model

Indicators

Features I Degradation 1
In R | s

- Degradation 2 I Degradation 2
Scaling Degradation 3

|
|
Degradation 1 |
|
|

Indicators

System Health Monitor Degradation 3

Figure 6.12: Example abstraction levels for Health Indicators

Health Indicators of subsystems can be used to build Health Indicators on
feature level. These can then be combined to build Health Indicators on domain
level and finally on vehicle level. Further explanation how these Health Indicators
could look like for their respective domain can be found in the EXP_SHM.

[ASWS_HM_00506]
Status: DRAFT
Upstream requirements: RS_HM_09308, RS_HM_09303

[Reporting of Health Indicators from SHM to subscribers shall be E2E pro-
tected. |

6.3.3 Application interfaces

For reporting the actual health information a standardized interface shall be
used. The platform Healthindicator can be provided over the interface defined in
[ASWS_HM_00510] and local health information defined in [ASWS_HM_00513]. Local
health information can contain health information from functional clusters e.g. supervi-
sion results from PHM/SM or external monitors (e.g voltage monitor). These interfaces
are described as service interfaces in Chapter 9

6.3.4 Usage of Healthindicators

Health Indicators can be used for directly exchanging health information of sub-
systems. Each consumer interested in a specific Health Indicator can access

AUTSSAR

it over the HealthIndicatorInterface. Local platform managers (State Man-
ager/Basic Software Mode Manager) could use the Hls of other platforms to degrade
their own platform or activate backup functions, for platforms with bad health. This
would allow decentralized system degradation across multiple platforms. Similarly ap-
plications might want to know the HI of features providing them with input, in order to
decide whether to trust this information.

AUTSSAR

7 Health Monitoring API specification

This chapter specifies the API of Health Monitoring that is referred in other doc-
ument parts. It is defined in generic/abstract way, so that it can be implemented on
different platforms. For exact APl name and semantics please refer to corresponding
Platform specific documents ([5] in case of Classic Platform and [6] in case of Adaptive
platform).

7.1 Provided API

7.1.1 Reporting Checkpoints

Health Monitoring provides a method to report the current code location, repre-
sented by a Checkpoint

1 ReportCheckpoint (CheckpointID id)

7.1.2 Reporting health status

Health Monitoring provides a method to report the health status information

1 ReportHealthStatus (HealthStatusID id, HealthStatus status)

7.1.3 Forwarding information between health monitoring components

Health Monitoring provides a method to report the information collected and de-
termined by one Health Monitoring component, so that they can be forwarded to
another Health Monitoring component.

1 ReportHealthMonitoring(HealthMonitoring montoringData)

7.1.4 |Init/ Delnit

Health Monitoring provides a method to initialize the service.

1 Init ()

Health Monitoring provides a method to deinitialize the service.

1 DelInit ()

AUTSSAR

7.1.5 Retrieving Supervision Status from application

Health Monitoring provides a method to report the Local Status of a Supervised
Entity to the application.

1 GetLocalStatus (LocalStatusType* LocalStatus)

Health Monitoring provides a method to report the Global Status to which the
specified supervised Entity belongs to the application.

1 GetGlobalStatus (GlobalStatusTypex GlobalStatus)

7.2 Assumed API

This section specified an API that is used by Health Monitoring.

7.2.1 Triggering error handling

Health Monitoring provides a method to trigger a defined error handler, providing
the identifier of this error.

t TriggerErrorHandler (ErrorID id)

7.2.2 Controlling watchdog

Health Monitoring provides a method to control the watchdog drivers.

1 ControlWatchdog (ControlData control)

AUTSSAR

8 Configuration Parameters

This chapter specifies a configuration model of Health Monitoring. The options
defined here are referenced/used in chapter 6.

This configuration, which is abstract and platform-independent is supposed to be im-
plemented/instantiated by the specific platforms, e.g. by AUTOSAR AP.

8.1 Overall configuration

The configuration of a machine (representing MCU, virtual machine, partition) is split
into two categories:

1. ModeIndependentSettings - containing only static information: what are pos-
sible SsupervisedEntitys and possible Health Channels

2. ModeDependentSettings - containing all supervision function configurations.
It means all supervision configuration is fully mode-dependent.

A system is made of several machines. Therefore, Health Monitoring is allocated
to a specific machine.

It is possible that there are several independent suppliers of software for the same
machine. Therefore, each of suppliers can supply any part of the configuration, for any
configuration classes.

ModeDependentSettings contains also the configuration of watchdogs - but this
part is not standardized (marked in blue).

The definitions of machines (machines/virtual machines/partitions) are assumed to be
provided externally (by other specifications) therefore they are only referenced here.

AUTSSAR

dass HM_Configuration

HealthiMonitoring

contribuwtion to

ModeindependentSettings

ModeDependentSettings

SupervisedEntity

HealthChannel

Figure 8.1: Overall configuration

AUTSSAR

8.2 Mode-independent settings

ModeIndependentSettings contain static information: what are possible Super-
visedEntitys and possible Health Channel.

Implementation hint: This part of configuration is typically used to generate the type-
safe API to Applications.

8.2.1 Supervised Entity

A SupervisedEntity is a collection of Checkpoints that can occur during the
runtime of a software.

A supervisedEntity has the following options:
1. Name: Globally unique name identifier, used by Applications
2. 1D: Globally unique identifier (number)

Note that on AUTOSAR AP, the uniqueness of the name can be ensured by using a
namespace as a part of the identificaiton.

A Checkpoint has the following options:
1. Name: Name, used by Applications, unique within the SupervisedEntity.

2. 1D: Identifier of the Checkpoint, unique within the SupervisedEntity.

class HM_SupervisedEntity /

SupervisedEntity Checkpoint

D
Name

D
Name

Figure 8.2: Supervised Entity

Note: On AUTOSAR AP, a Supervised Entity results with an enum, named af-
ter the Ssupervised Entitys namespace and name, with the enumerations corre-
sponding to the checkpoints.

AUTSSAR

8.3 Mode-dependent settings

ModeDependentSettings contain all supervision function configurations.

Implementation hint: This part of configuration is typically used by non-generated code
to perform the supervision at runtime.

8.3.1 Alive Supervision

AliveSupervision checks the amount of reported alive indications within the
AliveReferenceCycle, which is to be within ExpectedAliveIndications -
MinMargin and ExpectedAliveIndications + MaxMargin.

AliveSupervision has the following options:

1. AliveReferenceCycle: time period at which the Alive Supervision
mechanism compares the amount of received Alive Indications of the
Checkpoint against the expected/configured amount.

2. ExpectedAliveIndications: the amount of expected alive indications of the
Checkpoint within AliveReferenceCycle

3. MaxMargin: amount of acceptable additional alive indications within A1iveRef-
erenceCycle

4. MinMargin: amount of acceptable missing alive indications within A1iveRef-
erenceCycle

5. FailedReferenceCyclesTolerance: acceptable amount of AliveRefer-
enceCycles with incorrect/failed alive supervision

A checkpoint uniquely identifies a specific location in source code. Different execu-
tions of the same code (e.g. due to multithreading or running the same application in
several instances) share the same Checkpoint identification.

dass HM_alivesupe rvision /J

Alivesuperision

AfveReferencelycle _ _ J checkpoint
Expectedaliveindications SupenvizedChackpoint

FailedreferencelyclesTolerance i
Maxhiar

=
Minhiarg

—
—

Figure 8.3: Alive Supervision

AUTSSAR

8.3.2 Deadline Supervision

DeadlineSupervision has the following options:
1. MaxDeadline: longest time span allowed.

2. MinDeadline: shortest time span allowed.

dass HM_DeadiineSupervision /

‘ DeadlineSupervision ‘(&r&ckpﬂinﬂr&nﬂﬂn’ ion Source Checkpoint

Target
- MinDeadiine 1 =

‘ - MaxDeadline

Figure 8.4: Deadline Supervision

8.3.3 Logical Supervision

LogicalSupervision is a collection of CheckpointTransitions.
A LogicalSupervision can be seen one graph.

As LogicalSupervision represents a graph, so it is possible to configure the initial
and/or the final Checkpoints by referring to those Checkpoints.

A CheckpointTransition has its Source and Target Checkpoint. One
Checkpoint can have multiple Transitions - this way it is possible to configure merges
and forks in the graph (e.g. from A you can go to B or to C).

dass HM_LogicalSupervision /

N o Source o
g ‘ CheckpointTransition checkpoint

i |

Target

InitialCheckpoint

FinalCheckpoint

Figure 8.5: Logical Supervision

AUTSSAR

8.3.4 Global Supervision

There can be one or a few GlobalSupervisions per machine.
GlobalSupervision is a "worst-of" of all contained LocalSupervisions.

LocalSupervision represents the state of a SupervisedEntity. It comprises of
all AliveSupervisions, DeadlineSupervisions and LogicalSupervisions pertaining to a
SupervisedEntity.

AUTSSAR

9 Service Interfaces

9.1 Type definitions

[ASWS HM 00511]
Status:

DRAFT

Upstream requirements: RS_HM_09303

Name

HealthIndicator

Kind

STRUCTURE

Sub-elements

HealthIndicatorID uint8_t

Timestamp uint32_t (optional)
Performance int16_t (optional)

Reliability int16_t (optional)
SubsystemState enum [uint8_t] (optional)

Derived from

Description

Health Indicator provides an evaluation metric of current system performance with regard
to safety requirements

]

[ASWS_HM_00515]
Status:

DRAFT

Upstream requirements: RS_HM_09303

Name

Healthinfo

Kind

STRUCTURE

Sub-elements

GlobalSupervisioninfoVector (optional)
HealthChannellnfoVector (optional)
FunctionGrouplInfoVector (optional)
LocalSupervisionInfoVector (optional)
BswMModeName string (optional)

Derived from

Description

Structure containing different Health Information pairs [Shortname+Value].

]

[ASWS_HM_00516]
Status:

DRAFT

Upstream requirements: RS_HM_09303

[

Name GlobalSupervisioninfo
Kind STRUCTURE
Sub-elements Name string

Status enum[uint8_t]

Derived from

AUTSSAR

JAN
‘ Description Structure containing Global Supervision Status information.
[ASWS_HM _00517]
Status: DRAFT
Upstream requirements: RS_HM_09303
Name GlobalSupervisioninfoVector
Kind VECTOR <GlobalSupervisionInfo>
Sub-elements GlobalSupervisioninfo
Derived from -
Description A list of Global Supervision Status Information
[ASWS_HM 00518]
Status: DRAFT
Upstream requirements: RS_HM_09303
Name FunctionGrouplnfo
Kind STRUCTURE
Sub-elements Name string
State string
Derived from -
Description Structure containing a Function Group State.
[ASWS_HM_00519]
Status: DRAFT
Upstream requirements: RS_HM_09303
Name FunctionGrouplnfoVector
Kind VECTOR <FunctionGrouplInfo>
Sub-elements FunctionGrouplnfo
Derived from -
Description A list of Function Group State Information

AUTSSAR

[ASWS_HM_00520]
Status: DRAFT
Upstream requirements: RS_HM_09303

Name HealthChannellnfo
Kind STRUCTURE
Sub-elements Name string

Status string

Derived from -

Description A structure containing a Health Channel Status information.

]

[ASWS_HM_00521]
Status: DRAFT
Upstream requirements: RS_HM_09303

Name HealthChannellnfoVector

Kind VECTOR <HealthChannellnfo>
Sub-elements HealthChannellnfo

Derived from -

Description A list of Health Channel Status information.

]

[ASWS_HM_00522]
Status: DRAFT
Upstream requirements: RS_HM_09303

Name LocalSupervisioninfo
Kind STRUCTURE
Sub-elements Name string
Status enum[uint8_t]
Derived from -
Description Structure containing a Local Supervision Status

AUTSSAR

[ASWS_HM_00523]
Status:

DRAFT

Upstream requirements: RS_HM_09303

[
Name LocalSupervisionlnfoVector
Kind VECTOR <LocalSupervisionInfo>
Sub-elements LocalSupervisioninfo
Derived from
Description A list of Local Supervision Status Information
]

Note: Following Health Information are supported in Adaptive Platform:

» GlobalSupervisioninfo

» HealthChannelinfo

» FunctionGrouplnfo

Following Health Information are supported in Classic Platform:

* GlobalSupervisionInfo

* LocalSupervisioninfo

 BswMModeName

9.2 Provided Service Interfaces

9.2.1 Healthindicator

Port

[ASWS_HM_00510]
Status:

DRAFT

Upstream requirements: RS_HM_09300, RS_HM_09303

[
Name HealthIndicatorPort
Kind ProvidedPort Interface HealthIndicatorinterface
Description Report HealthIndicator
Variation
J

Service Interface

AUTSSAR

[ASWS_HM_00512]
Status: DRAFT
Upstream requirements: RS_HM_09303

Name Healthindicator

Event HealthindicatorEvent
Description The reported Health Indicator.
Type Healthindicator

9.2.2 Healthinfo
Port

[ASWS HM 00513]
Status: DRAFT
Upstream requirements: RS_HM_09301, RS_HM_09303

Name HealthinfoPort

Kind ProvidedPort Interface HealthInfolnterface
Description Report Healthinfo

Variation

]

Service Interface

[ASWS_HM_00514]
Status: DRAFT
Upstream requirements: RS_HM_09303

Name HealthInfo

Event HealthinfoEvent

Description The reported Health Information
Type HealthInfo

AUTSSAR

A History of Constraints and Specification ltems

Please note that the lists in this chapter also include constraints and specification items
that have been removed from the specification in a later version. These constraints and
specification items do not appear as hyperlinks in the document.

A.1 Change History of this document according to AUTOSAR Re-
lease R25-11

A.1.1 Added Specification Items in R25-11

none

A.1.2 Changed Specification Iltems in R25-11

Number Heading

[ASWS_HM_00460]

[ASWS_HM_00461]

[ASWS_HM_00504]

[ASWS_HM_005086]

[ASWS_HM_00510]

[ASWS_HM_00513]

Table A.1: Changed Specification Items in R25-11

A.1.3 Deleted Specification ltems in R25-11

none

A.2 Change History of this document according to AUTOSAR Re-
lease R24-11

A.2.1 Added Specification Items in R24-11

none

A.2.2 Changed Specification Iltems in R24-11

none

AUTSSAR

A.2.3 Deleted Specification Iltems in R24-11

none

A.3 Change History of this document according to AUTOSAR Re-
lease R23-11

A.3.1 Added Specification Iltems in R23-11

none

A.3.2 Changed Specification Items in R23-11

none

A.3.3 Deleted Specification Items in R23-11

none

A.4 Change History of this document according to AUTOSAR Re-
lease R22-11

A.4.1 Added Specification Iltems in R22-11

none

A.4.2 Changed Specification Iltems in R22-11

none

A.4.3 Deleted Specification Items in R22-11

none

	1 Introduction and functional overview
	1.1 Input documents and related standards and norms

	2 Acronyms and abbreviations
	3 Related documentation
	4 Constraints and assumptions
	4.1 Limitations and conditions of use

	5 Requirements Tracing
	6 Functional specification
	6.1 Functional Overview
	6.1.1 Functional Interfaces
	6.1.2 Basic concepts - Supervised Entitys, Checkpoints, Graphs, Supervision Mode
	6.1.3 Execution of Supervision Functions
	6.1.3.1 Alive Supervision
	6.1.3.2 Deadline Supervision
	6.1.3.3 Logical Supervision

	6.1.4 Determination of Supervision Status
	6.1.4.1 Watchdog Control
	6.1.4.2 Error Handling

	6.1.5 Functional Decomposition

	6.2 Execution of Supervision Functions and Determination of Supervision Results
	6.2.1 Alive Supervision
	6.2.1.1 Alive Supervision Configuration
	6.2.1.2 Alive Supervision Algorithm

	6.2.2 Deadline Supervision
	6.2.2.1 Deadline Supervision Configuration
	6.2.2.2 Deadline Supervision Algorithm

	6.2.3 Logical Supervision
	6.2.3.1 Logical Supervision Configuration
	6.2.3.2 Logical Supervision Algorithm

	6.3 System Health Monitoring
	6.3.1 System Health Monitoring Architecture
	6.3.2 Concept of Health Indicator
	6.3.3 Application interfaces
	6.3.4 Usage of HealthIndicators

	7 Health Monitoring API specification
	7.1 Provided API
	7.1.1 Reporting Checkpoints
	7.1.2 Reporting health status
	7.1.3 Forwarding information between health monitoring components
	7.1.4 Init / DeInit
	7.1.5 Retrieving Supervision Status from application

	7.2 Assumed API
	7.2.1 Triggering error handling
	7.2.2 Controlling watchdog

	8 Configuration Parameters
	8.1 Overall configuration
	8.2 Mode-independent settings
	8.2.1 Supervised Entity

	8.3 Mode-dependent settings
	8.3.1 Alive Supervision
	8.3.2 Deadline Supervision
	8.3.3 Logical Supervision
	8.3.4 Global Supervision

	9 Service Interfaces
	9.1 Type definitions
	9.2 Provided Service Interfaces
	9.2.1 HealthIndicator
	9.2.2 HealthInfo

	A History of Constraints and Specification Items
	A.1 Change History of this document according to AUTOSAR Release R25-11
	A.1.1 Added Specification Items in R25-11
	A.1.2 Changed Specification Items in R25-11
	A.1.3 Deleted Specification Items in R25-11

	A.2 Change History of this document according to AUTOSAR Release R24-11
	A.2.1 Added Specification Items in R24-11
	A.2.2 Changed Specification Items in R24-11
	A.2.3 Deleted Specification Items in R24-11

	A.3 Change History of this document according to AUTOSAR Release R23-11
	A.3.1 Added Specification Items in R23-11
	A.3.2 Changed Specification Items in R23-11
	A.3.3 Deleted Specification Items in R23-11

	A.4 Change History of this document according to AUTOSAR Release R22-11
	A.4.1 Added Specification Items in R22-11
	A.4.2 Changed Specification Items in R22-11
	A.4.3 Deleted Specification Items in R22-11

