
Virtual Functional Bus
AUTOSAR CP R25-11

Document Title Virtual Functional Bus
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 56

Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History
Date Release Changed by Description

2025-11-27 R25-11
AUTOSAR
Release
Management

• Document type is changed from EXP to
TR

• Removed tracing to "Main
Requirements" (FO-RS-Main)

• Editorial changes: cleaned up image
files, fixed spacing and added missing
titles

2024-11-27 R24-11
AUTOSAR
Release
Management

• References to the document “List of
Basic Software Modules”
(AUTOSAR_CP_TR_BSWModuleList)
changed to “General Specification of
Basic Software Modules”
(AUTOSAR_CP_SWS_BSWGeneral)

• Editorial changes mostly related to
spacing, subtitles and phrasing

2023-11-23 R23-11
AUTOSAR
Release
Management

• Fixed specification items with colliding
ID-s

2022-11-24 R22-11
AUTOSAR
Release
Management

• Replaced “Figure 2.1” in the document
with the “Figure 2.9” from
TR_Methodology

• Changed the caption of “Figure 2.2” to
“Concept of the virtual functional bus”

• Rephrased references to the obsolete
step called “Configure System”

2021-11-25 R21-11
AUTOSAR
Release
Management

• No content changes

▽

1 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

△

2020-11-30 R20-11
AUTOSAR
Release
Management

• Added docproperty
ConfidentialityInformation

• Fixed topmost table on frontpage
(removed additional column)

2019-11-28 R19-11
AUTOSAR
Release
Management

• No content changes

• Changed Document Status from Final to
published

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Add product abbreviations e.g. CP in
page header

• Removed references to EcuMfixed

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Minor corrections / clarifications /
editorial changes; For details pleaserefer
to the ChangeDocumentation

2015-07-31 4.2.2
AUTOSAR
Release
Management

• Reference to Application Interfaces

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Introduction of PRPortPrototype

2014-03-31 4.1.3
AUTOSAR
Release
Management

• Improvement of the consistency to the
RTE specification for client-server
communication

• Introduction of requirements for the
graphical notation

2013-10-31 4.1.2
AUTOSAR
Release
Management

• Support of TEXTTABLE conversion
block

2013-03-15 4.1.1 AUTOSAR
Administration

• Introduction of Features and Profiles

2011-12-22 4.0.3 AUTOSAR
Administration

• Enhanced graphical notation (NV data
interface support)

• Introduction of a mixed conversion block

• Clarification of the use of AUTOSAR
services within compositions

▽

2 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

△

2010-09-30 3.1.5 AUTOSAR
Administration

• Improved description of port
compatibility and data conversion scaling

• Improved consistency to other
AUTOSAR specifications

• Fixed outdated graphical notation in
images

• Reformulated description of timing
extension

2010-02-02 3.1.4 AUTOSAR
Administration

• Introduction of new concepts (Variant
Handling, Integrity and scaling at port,
Mode Management, Triggers, Access to
NVM, access to parameters and
calibrations)

• Synchronization with the current
AUTOSAR Meta-Model (new interfaces
and SwComponentTypes)

• Timing extension moved to the
AUTOSAR_TPS_TimingExtensions
document

• Legal disclaimer revised

2008-08-13 3.1.1 AUTOSAR
Administration

• Legal disclaimer revised

2007-12-21 3.0.1 AUTOSAR
Administration

• Initial release

3 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

4 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Table of Contents

1 Introduction to this document 8

1.1 Contents . 8
1.2 Prereads . 8
1.3 Relationship to other AUTOSAR specifications 8
1.4 Structure and conventions of this document 9

1.4.1 Structure of this document . 9
1.4.2 Specification Items . 10

2 The Virtual Functional Bus 11

3 Overall mechanisms and concepts 15

3.1 Components . 15
3.2 Port-Interfaces . 17
3.3 Ports . 19

3.3.1 Port Types . 20
3.3.2 Port Compatibility . 39
3.3.3 Data Type Policies . 40

3.4 Connectors . 40
3.4.1 Unconnected Ports . 42

3.4.1.1 Unconnected PRPorts . 42
3.4.1.2 Unconnected Sender/Receiver Ports 42
3.4.1.3 Unconnected Client/Server Ports 42

3.5 Compositions versus atomic components 42
3.6 Relationship between the VFB and the ECU Software Architecture . . . 44
3.7 Kinds of software components . 46
3.8 Resources for components and "runnables" 55

3.8.1 Background . 55
3.8.2 The "runnable" concept . 57
3.8.3 The implementation of a component and the role of the RTE 59

3.9 Interface Conversion Blocks . 60
3.9.1 Supported Conversions and Mappings 60

3.9.1.1 Interface Element Mapping . 60
3.9.1.2 Linear Data Conversion . 60
3.9.1.3 Data Mapping . 62
3.9.1.4 Mixed Conversion . 62

3.10Variant Handling . 62
3.10.1 Binding Times . 62
3.10.2 Choosing a Variant . 63
3.10.3 Variability . 63

3.10.3.1 Software Component Variability 63
3.10.3.2 Port Variability . 64
3.10.3.3 Connector Variability . 64

5 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

4 Communication on the VFB 65

4.1 Introduction . 65
4.2 Error types . 65
4.3 Sender-Receiver communication . 65

4.3.1 From the point of view of the sender 67
4.3.2 From the point of view of the receiver 68
4.3.3 Multiplicity of sender-receiver . 72
4.3.4 Filtering between the sender and the receiver 74
4.3.5 Concurrency and ordering within a sender-receiver connector 74

4.4 Client-Server communication . 75
4.4.1 From the point of view of the client 78
4.4.2 From the point of view of the server 79
4.4.3 Multiplicity of client-server . 79
4.4.4 Ordering and concurrency within a client-server connector 80

4.5 Remarks regarding the identification of communication partners 82

5 Timing Extensions 83

5.1 Main Purpose of Timing Extensions for AUTOSAR 83
5.2 Timing in different phases of the AUTOSAR methodology 84

6 Interaction with hardware 85

6.1 Introduction . 85
6.2 Microcontroller Abstraction Layer (MCAL) 86
6.3 ECU Abstraction . 87
6.4 Sensor-Actuator Software Component 87
6.5 Complex Driver Component . 88

7 AUTOSAR Services 89

7.1 Introduction . 89
7.2 VFB Representation . 89

7.2.1 Selection of a communication mechanism 90
7.2.2 Location of a Service . 90
7.2.3 Distribution of Requests to Remote Services 91
7.2.4 Platform dependent types . 92
7.2.5 Configuration . 93

7.3 List of Services . 94

8 Mode Management 95

8.1 Introduction . 95
8.2 Defining modes . 95
8.3 Communicating modes . 96
8.4 Mode-managers: components that control modes 98
8.5 Components that depend on modes . 99

9 Port Groups 101

6 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

10 Measurement and Calibration 102

10.1Calibration . 102
10.1.1 Port-based calibration . 102

10.1.1.1 Pure single instantiation . 103
10.1.1.2 Multiple instantiation of the involved software components . . . 103
10.1.1.3 Multiple instantiation of the involved calibration components . . 105

10.1.2 Private calibration . 106
10.2Measurement . 106

11 VFB Features and Profiles 107

11.1Motivation and Introduction . 107
11.2Feature tables . 107

11.2.1 Intra-ECU features . 108
11.2.2 Inter-ECU features . 119

12 Interaction with Non-AUTOSAR-ECUs 125

12.1Introduction . 125
12.2Problems of interaction . 125
12.3Description of interaction . 126

13 References 128

A Change history of AUTOSAR traceable items 129

A.1 Traceable item history of this document according to AUTOSAR Release
R25-11 . 129

A.1.1 Added Specification Items in R25-11 129
A.1.2 Changed Specification Items in R25-11 129
A.1.3 Deleted Specification Items in R25-11 129

A.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . 129

A.2.1 Added Specification Items in R24-11 129
A.2.2 Changed Specification Items in R24-11 129
A.2.3 Deleted Specification Items in R24-11 130

A.3 Traceable item history of this document according to AUTOSAR Release
R23-11 . 130

A.3.1 Added Advisories in R23-11 . 130
A.3.2 Changed Advisories in R23-11 . 130
A.3.3 Deleted Advisories in R23-11 . 130
A.3.4 Added Constraints in R23-11 . 130
A.3.5 Changed Constraints in R23-11 . 130
A.3.6 Deleted Constraints in R23-11 . 130
A.3.7 Added Specification Items in R23-11 130
A.3.8 Changed Specification Items in R23-11 130
A.3.9 Deleted Specification Items in R23-11 131

7 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

1 Introduction to this document

1.1 Contents

This specification describes the AUTOSAR Virtual Functional Bus (VFB).

1.2 Prereads

This document is one of the high-level conceptual documents of AUTOSAR.

Documents that can be consulted in parallel to this document include the "Methodol-
ogy" [1] and the "Glossary" [2].

1.3 Relationship to other AUTOSAR specifications

Figure 1.1: Relationship of the Specification of the "Virtual Functional Bus" to other
AUTOSAR specifications

8 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Figure 1.11 illustrates the relationship between the specification of the "Virtual Func-
tional Bus" and other major AUTOSAR specifications. The specification of the "Virtual
Functional Bus" is part of a set of specifications describing the overall concepts of
AUTOSAR. These documents give a conceptual overview of AUTOSAR and serve as
requirements to the more detailed specifications. The conceptual specifications in-
clude:

• the "Methodology" [1] describes the method that is used when building systems
with AUTOSAR

• the specification of the "Virtual Functional Bus"

• the "Layered Software Architecture" [3]

• and the "List of Basic Software Modules" [4]

These conceptual documents are refined and made concrete into a large set of AU-
TOSAR specifications, which can be grouped into:

• The specifications defining the AUTOSAR meta-model and templates: In this
group the "Software Component Template" [5] is directly influenced by the VFB
concepts.

• The specifications defining the AUTOSAR basic-software modules and the RTE:
In this group the "Specification of RTE" [6] is directly influenced by the VFB con-
cepts.

1.4 Structure and conventions of this document

1.4.1 Structure of this document

Figure 1.2 shows the structure of this document. The first chapters define the VFB
concepts generically and should be read in order. The last chapters define and clarify
specific issues, such as the interaction with hardware, mode-management, AUTOSAR-
Services or Measurement and Calibration. The chapter about the timing model is for
information purposes only and is not part of the standard. It is made available to show
the early conceptual work to model time aspects in the VFB.

1The numbers in brackets refer to the Document Identification Number of the specification.

9 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Figure 1.2: Structure of the document

1.4.2 Specification Items

The requirements on the "Virtual Functional Bus" resulting from this document are
listed explicitly as numbered "specification items". Each specification item has a unique
ID of the form "VFB-XXX" and has the following format:

VBF-XXX : Example of a specification Item

10 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

2 The Virtual Functional Bus

Figure 2.1 shows an overview out of the "Methodology" specification [1]. Figure 2.2
illustrates the concept of the VFB.

11 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Figure 2.1: Overview of the AUTOSAR Methodology

12 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Figure 2.2: Concept of the virtual functional bus

In AUTOSAR, an application is modeled as a composition of interconnected compo-
nents. This is illustrated in the top half of Figure 2.2 (labeled "VFB view"). The "virtual
functional bus" is the communication mechanism that allows these components to in-
teract. The components are mapped on specific system resources (ECUs). Thereby,
the virtual connections between the components are mapped onto local connections
(within a single ECU) or on network-technology specific communication mechanisms
(such as CAN or FlexRay frames). Finally, the individual ECUs in such a system can be
configured. The concrete interface between the individual components and between
the components and the Basic Software (BSW) [3][4] is called the Run-Time Environ-
ment (RTE) [6].

A component encapsulates complete or partial automotive functionality. Components
consist of an implementation and of an associated formal software-component descrip-

13 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

tion (defined in the "Software Component Template" specification [5]). The concept
of the virtual functional bus allows for a strict separation between applications and
infrastructure. The software components implementing the application are largely in-
dependent of the communication mechanisms through which the component interacts
with other components or with hardware (such as sensor or actuators). This fulfills
AUTOSAR’s goal of relocatability.

With this the complete communication of a system can be specified including all com-
munication sources and sinks. The VFB can therefore be used for plausibility checks
concerning the communication of software components. The communication connec-
tions and the connected software components are saved in one description, which will
be used for the next process steps (mapping, software configuration, etc.).

The VFB specification needs to provide concepts for all infrastructure-services that are
needed by a component implementing an automotive application. These include:

• Communication to other components in the system

• Communication to sensors and actuators in the system (see Chapter 6, Interac-
tion with hardware)

• Access to standardized services, such as reading to or writing from non-volatile
ram (see Chapter 7, AUTOSAR Services)

• Responding to mode-changes, such as changes in the power-status of the local
ECU (see Chapter 8, Mode Management)

• Interacting with calibration and measurement systems (see Chapter 10)

14 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

3 Overall mechanisms and concepts

3.1 Components

The central structural element used when building a system at the VFB-level is the
"component". A component has well-defined "ports", through which the component
can interact with other components. A port always belongs to exactly one component
and represents a point of interaction between a component and other components.

Figure 3.1 shows an example of the definition of a component-type called "SeatHeating
Control", which controls the heating element in a seat based on several information
sources.

In this example, the component-type requires the following information as input:

• whether a passenger is sitting on the seat (through the port "SeatSwitch")

• the setting of the seat temperature dial (through the port "Setting")

• and some information from a central power management system (through the
port "PowerManagement"), which could decide to disable seat heating in certain
conditions.

It controls

• the DialLED that is associated with the seat temperature dial (port "DialLED")

• and the heating element (through the port "HeatingElement").

Finally, the component can be calibrated (port "Calibration"), needs the status of the
ECU on which the component runs (port "ecuMode") and requires access to local non-
volatile memory (port "nv").

Figure 3.1: Example of the definition of the component-type "SeatHeatingControl" with
eight ports

15 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Figure 3.2 shows an example of the definition of a sensor-actuator component1 called
"SeatHeating". This component inputs the desired setting of the heating element
(through the port "Setting") and directly controls the seat heating hardware (through
the port "IO").

Figure 3.2: Example of the definition of a component-type "SeatHeating" with two ports

A single component can implement both very simple but also very complex function-
ality. A component may have a small number of ports providing or requiring simple
pieces of information, but can also have a large number of ports providing or requiring
complex combinations of data and operations.

AUTOSAR supports multiple instantiation of components. This means that there can
2 of the same component in a vehicle system. Figure 3.3 shows how two instances
of the "SeatHeatingControl" component-type are used to control the left front seat, re-
spectively the right front seat. These components will typically have their own separate
internal state (stored in separate memory locations) but might for example share the
same code (in as far as the code is appropriately written to support this).

Figure 3.3: Example showing the multiple instantiation of the component "SeatHeating
Control" as "SHCFrontLeft" and "SHCFrontRight"

1Chapter 6, Interaction with hardware, defines the exact purpose of the "sensor-actuator" compo-
nents

2Dynamic instantiation at runtime is not in scope of the present release of AUTOSAR.

16 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00001] Component ports known at configuration time
Previous identifiers: EXP_VFB_00001

⌈At configuration time, the component’s ports are known⌋

[TR_VFB_00002] Components interact only through ports
Previous identifiers: EXP_VFB_00002

⌈Components interact with each other through their ports only⌋

[TR_VFB_00084] Component type may be instantiated multiple times
Previous identifiers: EXP_VFB_00084

⌈A component-type can be instantiated multiple times on the VFB⌋

3.2 Port-Interfaces

A port of a component is associated with a "port-interface". The port-interface defines
the contract that must be fulfilled by the port providing or requiring that interface.

[TR_VFB_00003] Each port typed by exactly one interface
Previous identifiers: EXP_VFB_00003

⌈At configuration time, each port is typed by exactly one port-interface⌋

Table 3.1 lists the port-interfaces supported by AUTOSAR.

Kind of port-interface Comment Further reading

Client-server The server is provider of operations and several clients can
invoke those operations.

this section and Section 4.4

Sender-receiver A sender distributes information to one or several
receivers, or one receiver gets information (events) from
several senders3. A mode manager can notify mode
switches to one or several receivers

this section and Section 4.3

Parameter Interface A parameter interface allows software components access
to either constant data, fixed data or calibration data. It
should be noted that depending on the type of access (i.e.
fixed, const or standard respectively) that compatibility
rules apply. For example a parameter interface which uses
a fixed implementation policy will not be allowed to connect
to a port of a Parameter SW Component if the provider
uses a variable data implementation (i.e. standard). The
reason is plain and simple; The application will use a
#define (pre-compile value optimization) and so will not
take actual values from the Parameter SW component at
runtime.

Chapter 10

Non volatile
Data Interface

Provide element level access (read only or read/write) to
non volatile data as opposed to NV block access.

Section 4.3

▽

3In the context of AUTOSAR, sending, receiving and distributing of events is seen as part of the
sender-receiver communication pattern.

17 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

△
Kind of port-interface Comment Further reading

Trigger Interface The trigger interface allows software components to trigger
the execution of other software components. The purpose
of the trigger interface is to allow for fast response times
with regards to the occurrence of a trigger which might
occur sporadic or at a variable cycle time.
Example: triggering based on the crank shaft and cam
shaft position.

Section 3.8

Mode Switch
Interface

The mode switch interface is used to notify a software
component of a mode. The mode manager provides
modes that can be used by mode users to adjust the
behavior according to modes or synchronize activities to
mode switches.

Chapter 8

Table 3.1: The kinds of port-interfaces provided by AUTOSAR.

A client-server interface defines a set of operations that can be invoked by a client and
implemented by a server. Figure 3.4 shows an example of the definition of a simple
client-server interface. The interface "HeatingElementControl" defines a single opera-
tion called "SetPower" with a single ingoing argument called "Power". The operation
can return an application error called "HardwareProblem".

Figure 3.4: Example of a client-server interface "HeatingElementControl" with a single
operation

A sender-receiver interface defines a set of data-elements that are sent and received
over the VFB. Figure 3.5 shows the definition of a simple sender-receiver interface
called "SeatSwitch" containing a single data-element called "PassengerDetected".

Figure 3.5: Example of a Sender-Receiver Interface "SeatSwitch" with a single data-
element

[TR_VFB_00004] Port interface type known at configuration time
Previous identifiers: EXP_VFB_00004

⌈At configuration time it is known whether the port-interface is a client-server interface
or a sender-receiver interface⌋

18 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00005] Operations in client-server interfaces known
Previous identifiers: EXP_VFB_00005

⌈At configuration time, it is known which operations a client-server interface contains⌋

[TR_VFB_00006] Data elements in sender-receiver interfaces known
Previous identifiers: EXP_VFB_00006

⌈At configuration time, it is known which data-elements a sender-receiver interface
contains⌋

AUTOSAR has standardized stable and widely accepted application interfaces to en-
sure the interoperability of software components from different vendors. The applica-
tion interfaces aim to cover a wide range of automotive domains.

Body and Comfort [7]

Powertrain [8]

Chassis [9]

Occupant and Pedestrian Safety Systems [10]

HMI, Multimedia and Telematics [11]

Figure 3.6: AUTOSAR Application Software and the VFB

The application interfaces make use of the concept of blueprint. A blueprint is a pre-
definition of a model element and can be used as a basis for further modeling. A user
guide [12] dedicated to application interfaces is available for more information.

3.3 Ports

As defined before, the ports of a component are the interaction points between com-
ponents.

A port of a component is either a "PPort", a "RPort" or a "PRPort". A "PPort" or a
"PRPort" provides the elements defined in a port-interface. A "RPort" or a "PRPort"

19 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

requires the elements defined in a port-interface. A port is thus typed by exactly one
port-interface4.

3.3.1 Port Types

A single port-interface can type several different ports.

[TR_VFB_00007] Port kind known at configuration time
Previous identifiers: EXP_VFB_00007

⌈At configuration time, it is known whether a component’s port is a PPort, a RPort or a
PRPort⌋

The following shows the port-icons for the various combinations and summarizes the
semantics of those ports. Please note that PRPorts typed by a parameter interface are
not supported.

4This implies that a port only provides one elementary communication pattern (either sender-receiver
or client-server). This is necessary because otherwise a reasonable connection of ports is not possible.
Additionally only in this way a reasonable modeling e.g. of data flow is possible.

20 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00096] Receiver port for sender-receiver interface
Previous identifiers: EXP_VFB_00096

⌈

• Kind of Port: RPort

• Kind of Interface: sender-receiver

• Service Port: No

• Port Description: The component reads/consumes values of data-elements

• Port-Icon: see Figure "Sender-Receiver RPort"

⌋

Sender-Receiver RPort

[TR_VFB_00097] Provider port for sender-receiver interface
Previous identifiers: EXP_VFB_00097

⌈

• Kind of Port: PPort

• Kind of Interface: sender-receiver

• Service Port: No

• Port Description: The component provides values of data-elements

• Port-Icon: see Figure "Sender-Receiver PPort"

⌋

Sender-Receiver PPort

21 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00129] Provider-Receiver port for sender-receiver interface
Previous identifiers: EXP_VFB_00129

⌈

• Kind of Port: PRPort

• Kind of Interface: sender-receiver

• Service Port: No

• Port Description: The component provides and reads values of data-elements

• Port-Icon: see Figure "Sender-Receiver PRPort"

⌋

Sender-Receiver PRPort

[TR_VFB_00098] Receiver port for AUTOSAR service data
Previous identifiers: EXP_VFB_00098

⌈

• Kind of Port: RPort

• Kind of Interface: sender-receiver

• Service Port: Yes

• Port Description: The component reads/consumes values of data-elements from
an AUTOSAR service

• Port-Icon: see Figure "Service Sender-Receiver RPort"

⌋

Service Sender-Receiver RPort

22 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00099] Provider port for AUTOSAR service data
Previous identifiers: EXP_VFB_00099

⌈

• Kind of Port: PPort

• Kind of Interface: sender-receiver

• Service Port: Yes

• Port Description: The component provides values of data-elements to an AU-
TOSAR service

• Port-Icon: see Figure "Service Sender-Receiver PPort"

⌋

Service Sender-Receiver PPort

[TR_VFB_00132] Provider-Receiver port for AUTOSAR service data
Previous identifiers: EXP_VFB_00132

⌈

• Kind of Port: PRPort

• Kind of Interface: sender-receiver

• Service Port: Yes

• Port Description: The component provides and reads values of data-elements to/
from an AUTOSAR service

• Port-Icon: see Figure "Service Sender-Receiver PRPort"

⌋

Service Sender-Receiver PRPort

23 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00100] Client port for client-server interface
Previous identifiers: EXP_VFB_00100

⌈

• Kind of Port: RPort

• Kind of Interface: client-server

• Service Port: No

• Port Description: The component requires (=uses or invokes) the operations de-
fined in the interface

• Port-Icon: see Figure "Client-Server RPort"

⌋

Client-Server RPort

[TR_VFB_00200] Server port for client-server interface
Previous identifiers: EXP_VFB_00200

⌈

• Kind of Port: PPort

• Kind of Interface: client-server

• Service Port: No

• Port Description: The component provides (=implements) the operations defined
in the interface

• Port-Icon: see Figure "Client-Server PPort"

⌋

Client-Server PPort

24 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00133] Provider-Receiver port for client-server interface
Previous identifiers: EXP_VFB_00133

⌈

• Kind of Port: PRPort

• Kind of Interface: client-server

• Service Port: No

• Port Description: The component requires and provides the operations defined in
the interface

• Port-Icon: see Figure "Client-Server PRPort"

⌋

Client-Server PRPort

[TR_VFB_00102] Client port for AUTOSAR service interface
Previous identifiers: EXP_VFB_00102

⌈

• Kind of Port: RPort

• Kind of Interface: client-server

• Service Port: Yes

• Port Description: The component requires (=uses or invokes) the operations de-
fined in the interface from an AUTOSAR service

• Port-Icon: see Figure "Service Client-Server RPort"

⌋

Service Client-Server RPort

25 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00201] Server port for client-server AUTOSAR service
Previous identifiers: EXP_VFB_00201

⌈

• Kind of Port: PPort

• Kind of Interface: client-server

• Service Port: Yes

• Port Description: The component provides (=implements) the operations defined
in the interface to an AUTOSAR service

• Port-Icon: see Figure "Service Client-Server PPort"

⌋

Service Client-Server PPort

[TR_VFB_00134] Provider-Receiver port for client-server AUTOSAR service
Previous identifiers: EXP_VFB_00134

⌈

• Kind of Port: PRPort

• Kind of Interface: client-server

• Service Port: Yes

• Port Description: The component provides and requires the operations defined in
the interface to/from an AUTOSAR service

• Port-Icon: see Figure "Service Client-Server PRPort"

⌋

Service Client-Server PRPort

26 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00104] Receiver port for parameter interface
Previous identifiers: EXP_VFB_00104

⌈

• Kind of Port: RPort

• Kind of Interface: parameter (this includes requiring calibration data)

• Service Port: No

• Port Description: The component requires parameter data (either fixed, const or
variable)

• Port-Icon: see Figure "Parameter RPort"

⌋

Parameter RPort

[TR_VFB_00105] Provider port for parameter interface
Previous identifiers: EXP_VFB_00105

⌈

• Kind of Port: PPort

• Kind of Interface: parameter (this includes requiring calibration data)

• Service Port: No

• Port Description: The component provides parameter data (either fixed, const or
variable)

• Port-Icon: see Figure "Parameter PPort"

⌋

Parameter PPort

27 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00106] Receiver port for parameter AUTOSAR service
Previous identifiers: EXP_VFB_00106

⌈

• Kind of Port: RPort

• Kind of Interface: parameter (this includes requiring calibration data)

• Service Port: Yes

• Port Description: The component requires parameter data (either fixed, const or
variable) from an AUTOSAR service

• Port-Icon: see Figure "Service Parameter RPort"

⌋

Service Parameter RPort

[TR_VFB_00107] Provider port for parameter AUTOSAR service
Previous identifiers: EXP_VFB_00107

⌈

• Kind of Port: PPort

• Kind of Interface: parameter (this includes requiring calibration data)

• Service Port: Yes

• Port Description: The component provides parameter data (either fixed, const or
variable) to an AUTOSAR service

• Port-Icon: see Figure "Service Parameter PPort"

⌋

Service Parameter PPort

28 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00108] Trigger sink port
Previous identifiers: EXP_VFB_00108

⌈

• Kind of Port: RPort

• Kind of Interface: Trigger

• Service Port: No

• Port Description: Component with a trigger sink

• Port-Icon: see Figure "Trigger RPort"

⌋

Trigger RPort

[TR_VFB_00109] Trigger source port
Previous identifiers: EXP_VFB_00109

⌈

• Kind of Port: PPort

• Kind of Interface: Trigger

• Service Port: No

• Port Description: Component with a trigger source

• Port-Icon: see Figure "Trigger PPort"

⌋

Trigger PPort

29 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00135] Provider-Receiver trigger port
Previous identifiers: EXP_VFB_00135

⌈

• Kind of Port: PRPort

• Kind of Interface: Trigger

• Service Port: No

• Port Description: Component with a trigger source and sink

• Port-Icon: see Figure "Trigger PRPort"

⌋

Trigger PRPort

[TR_VFB_00110] Trigger sink port for AUTOSAR service
Previous identifiers: EXP_VFB_00110

⌈

• Kind of Port: RPort

• Kind of Interface: Trigger

• Service Port: Yes

• Port Description: Component with a trigger sink from an AUTOSAR service

• Port-Icon: see Figure "Service Trigger RPort"

⌋

Service Trigger RPort

30 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00111] Trigger source port for AUTOSAR service
Previous identifiers: EXP_VFB_00111

⌈

• Kind of Port: PPort

• Kind of Interface: Trigger

• Service Port: Yes

• Port Description: Component with a trigger source to an AUTOSAR service

• Port-Icon: see Figure "Service Trigger PPort"

⌋

Service Trigger PPort

[TR_VFB_00136] Provider-Receiver trigger port for AUTOSAR service
Previous identifiers: EXP_VFB_00136

⌈

• Kind of Port: PRPort

• Kind of Interface: Trigger

• Service Port: Yes

• Port Description: Component with a trigger source and sink to/from an AUTOSAR
service

• Port-Icon: see Figure "Service Trigger PRPort"

⌋

Service Trigger PRPort

31 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00202] Mode switch user port
Previous identifiers: EXP_VFB_00202

⌈

• Kind of Port: RPort

• Kind of Interface: mode switch

• Service Port: No

• Port Description: Component with a mode switch user

• Port-Icon: see Figure "Mode Switch RPort"

⌋

Mode Switch RPort

[TR_VFB_00203] Mode switch manager port
Previous identifiers: EXP_VFB_00203

⌈

• Kind of Port: PPort

• Kind of Interface: mode switch

• Service Port: No

• Port Description: Component with a mode switch manager

• Port-Icon: see Figure "Mode Switch PPort"

⌋

Mode Switch PPort

32 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00130] Provider-Receiver port for mode switch interface
Previous identifiers: EXP_VFB_00130

⌈

• Kind of Port: PRPort

• Kind of Interface: mode switch

• Service Port: No

• Port Description: Component with a mode switch manager and user

• Port-Icon: see Figure "Mode Switch PRPort"

⌋

Mode Switch PRPort

[TR_VFB_00204] Mode switch user port for AUTOSAR service
Previous identifiers: EXP_VFB_00204

⌈

• Kind of Port: RPort

• Kind of Interface: mode switch

• Service Port: Yes

• Port Description: Component with a mode switch user with an AUTOSAR service

• Port-Icon: see Figure "Service Mode Switch RPort"

⌋

Service Mode Switch RPort

33 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00205] Mode switch manager port for AUTOSAR service
Previous identifiers: EXP_VFB_00205

⌈

• Kind of Port: PPort

• Kind of Interface: mode switch

• Service Port: Yes

• Port Description: Component with a mode switch manager with an AUTOSAR
service

• Port-Icon: see Figure "Service Mode Switch PPort"

⌋

Service Mode Switch PPort

[TR_VFB_00137] Provider-Receiver mode switch port for AUTOSAR service
Previous identifiers: EXP_VFB_00137

⌈

• Kind of Port: PRPort

• Kind of Interface: mode switch

• Service Port: Yes

• Port Description: Component with a mode switch manager and user with an AU-
TOSAR service

• Port-Icon: see Figure "Service Mode Switch PRPort"

⌋

Service Mode Switch PRPort

34 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00206] Receiver port for NV data interface
Previous identifiers: EXP_VFB_00206

⌈

• Kind of Port: RPort

• Kind of Interface: NV data

• Service Port: No

• Port Description: The component requires access to non volatile data provided
by an NV Block Component

• Port-Icon: see Figure "NV Data RPort"

⌋

NV Data RPort

[TR_VFB_00207] Provider port for NV data interface
Previous identifiers: EXP_VFB_00207

⌈

• Kind of Port: PPort

• Kind of Interface: NV data

• Service Port: No

• Port Description: The NV Block Component provides access to non volatile data

• Port-Icon: see Figure "NV Data PPort"

⌋

NV Data PPort

35 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00131] Provider-Receiver port for NV data interface
Previous identifiers: EXP_VFB_00131

⌈

• Kind of Port: PRPort

• Kind of Interface: NV data

• Service Port: No

• Port Description: The component provides and requires access to/from non
volatile data

• Port-Icon: see Figure "NV Data PRPort"

⌋

NV Data PRPort

[TR_VFB_00118] Receiver port for NV data AUTOSAR service
Previous identifiers: EXP_VFB_00118

⌈

• Kind of Port: RPort

• Kind of Interface: NV data

• Service Port: Yes

• Port Description: The component requires access to non volatile data provided
by an AUTOSAR service

• Port-Icon: see Figure "Service NV Data RPort"

⌋

Service NV Data RPort

36 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00208] Provider port for NV data AUTOSAR service
Previous identifiers: EXP_VFB_00208

⌈

• Kind of Port: PPort

• Kind of Interface: NV data

• Service Port: Yes

• Port Description: The component provides access to non volatile data to an AU-
TOSAR service

• Port-Icon: see Figure "Service NV Data PPort"

⌋

Service NV Data PPort

[TR_VFB_00138] Provider-Receiver NV data port for AUTOSAR service
Previous identifiers: EXP_VFB_00138

⌈

• Kind of Port: PRPort

• Kind of Interface: NV data

• Service Port: Yes

• Port Description: The component provides and requires access to/from non
volatile data of an AUTOSAR service

• Port-Icon: see Figure "Service NV Data PRPort"

⌋

Service NV Data PRPort

When a PPort of a component provides a client-server interface, the component to
which the port belongs provides an implementation of the operations defined in the
interface.

In the example of Figure 3.6, the component "SeatHeating" implements the operation
"SetPower" and makes it available to other components through the port "Setting". The

37 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

component "SeatHeatingControl" uses the operation "SetPower" and expects such an
operation to be available through the port "HeatingElement".

Figure 3.7: Example showing the use of the Client-Server Interface "HeatingElement
Control" to type the Port "HeatingElement" of the component "SeatHeatingControl" and
the port "Setting" of the component "SeatHeating"

A component providing a sender-receiver interface generates values for the data-
elements defined in the interface.

In the example of Figure 3.7, the component "SeatSwitch" generates values for the
Boolean value "PassengerDetected" through its port "Switch". Similarly, the component
"SeatHeatingControl" can read the data-element "PassengerDetected" through its port
"SeatSwitch".

Figure 3.8: Example showing the use of the Sender-Receiver Interface "SeatSwitch"
to type the Port "SeatSwitch" of the components "SeatHeatingControl" and the port
"Switch" of the component "SeatSwitch"

38 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

3.3.2 Port Compatibility

A receiver port can only be connected to a compatible provider port. Table 3.2 gives
an overview over the compatibility of ports. The following comments describe some
basic compatibility rules. Please note that this overview only contains some basic
rules. A more comprehensive and detailed Port Description is given in the "Software
Component Template" [5].

1. For each element in the interface of the require port there must be a compatible
element in the interface of the provide port. The mapping is realized implicitly
via the shortname of the element or explicitly via explicit mappings (see Sec-
tion 3.9.1).

2. For mode switch ports all elements of the interface of the provide port must have
a corresponding element in the interface of the require port.

3. Require and provide port are both service ports or are both not service ports.

4. For connecting ports with Sender Receiver Interface, Parameter Interface or Non
Volatile Data Interface, corresponding elements must have compatible implemen-
tation policies (see "Software Component Template" [5]).

5. PRPorts typed by a parameter interface is not supported.

For example, a Require Port that expects a fixed parameter can only be connected to
a Port that provides a fixed Parameter. This is because this fixed data may be used in
a compilation directive like #if and only macro #define (fixed data) can be compiled in
this case.

Kind of
port

RPort or PRPort

Kind of
interface

Sender
Receiver

Parameter Non Volatile
Data

Client
Server

Trigger Mode
Switch

Sender
Receiver

yes
(1,3,4)

no yes
(1,3,4)

no no no

Parameter yes
(1,3,4,5)

yes
(1,3,4,5)

yes
(1,3,4,5)

no no no

Non Volatile
Data

yes
(1,3,4)

no yes
(1,3,4)

no no no

Client
Server

no no no yes
(1,3)

no no

Trigger no no no no yes
(1,3)

no

PPort or
PRPort

Mode
Switch

no no no no no yes
(1,2,3)

Table 3.2: Compatibility of kinds of ports

(numbers in this table correspond to the compatibility rules described before)

39 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

3.3.3 Data Type Policies

Data elements on a port are typed properly as part of the port interface Port Description
of a SWC. However it should be noted though that the data type of elements to be
communicated between two ports can be overridden by the integrator by overriding the
data type using a data type policy which allows for reducing the number of bits to be
transmitted over a physical network. The data type has to be compatible and usually
result in loss of precision and introduce quantization artifacts.

3.4 Connectors

During the design of an AUTOSAR system, ports between components that need to
communicate with each other are hooked up using assembly-connectors. Such an
assembly-connector connects one RPort or PRPort with one PPort or PRPort.

Figure 3.9: Example of the use of eight assembly-connectors to connect the ports of
seven components

For the case of sender-receiver communication, the presence of an assembly-
connector represents the fact that the data generated by the PPort on the connector
is transmitted to the RPort. In the example of Figure 3.8 the data generated on the
PPort "DialLED" of the component "SHCFrontRight" (of component-type "SeatHeating

40 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Control") is transmitted to the RPort "LED" of the component "SHDialFrontRight" (of
component-type "HeatingDial").

For the case of client-server communication, an invocation of the operations provided
on a PPort is possible from the components that have an RPort connected to this
PPort. In the example of Figure 3.8: when the component "SHDialFrontLeft" invokes
an operation through the port "Position", this operation will be invoked on the port
"Setting" of the component "SHCFrontLeft".

Both for sender-receiver communication and for client-server communication, one
PPort can be connected to one or more RPorts (for multicast sending and multiple
clients connected to a server, respectively). In the example of Figure 3.8, the data
coming out of the port "SeatHeating" of the component "PM" is sent to both compo-
nents "SHCFrontLeft" and "SHCFrontRight".

Furthermore, in sender-receiver communication one or more PPorts can be connected
to one RPort (e.g. for information collected from different senders in a single receiver).

The exact communication behavior that such a connector represents depends on the
kind of operations or data that is provided and/or required on the ports that the con-
nector connects.

[TR_VFB_00008] Components instantiated on VFB known at configuration time
Previous identifiers: EXP_VFB_00008

⌈At configuration time, all components instantiated on the VFB are known⌋

[TR_VFB_00009] Communication defined by connectors on VFB
Previous identifiers: EXP_VFB_00009

⌈At configuration time, all communication possibilities between components on the
VFB are modeled through the presence of connectors. Communication between ports
not connected through such a connector is not possible5.⌋

[TR_VFB_00010] Assembly connector connects exactly two ports
Previous identifiers: EXP_VFB_00010

⌈An assembly-connector connects exactly one PPort or PRPort with exactly one RPort
or PRPort⌋

[TR_VFB_00113] Connector compatibility requirements
Previous identifiers: EXP_VFB_00113

⌈An assembly-connector can connect one PPort or PRPort with one RPort or PRPort
only if their port types, interfaces and attributes, characterizing their communication
abilities, are compatible with each other6.⌋

5The AUTOSAR-Services are an exception to this rule. The connections related to AUTOSAR-
Services are made later in the AUTOSAR-method, namely during ECU-configuration. See AUTOSAR
Services, for a deeper explanation.

6The exact meaning of "compatibility" is defined in the Software Component Template [5].

41 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

3.4.1 Unconnected Ports

The occurrence of an unconnected port is not per se a design mistake. It can be valid
when an application provider for the data element is absent and the default init value
is good enough to operate with or it could be that an end point was removed from the
system because it is subjected to variability (See Section 3.10, Variant Handling).

3.4.1.1 Unconnected PRPorts

A PRPort is never considered unconnected, even if there are no connectors actually
referring to it.

3.4.1.2 Unconnected Sender/Receiver Ports

If a PPort of a sender receiver communication is unconnected then the data being
published by the provider will not appear on the VFB and as such will not be accessible
by any other software component.

If an RPort of a sender receiver communication is unconnected then the RPort shall
provide the initial value and report of an unconnected RPort.

3.4.1.3 Unconnected Client/Server Ports

If a PPort of a client server communication is not connected the server will not receive
any requests.

If an RPort of a client server communication is unconnected then the RPort shall report
of an unconnected RPort.

3.5 Compositions versus atomic components

A sub-system consisting of usages of components and connectors is packaged into
a "composition". In AUTOSAR, the usage of a component-type within a composition
is called a "prototype". A composition is itself a component-type and can have its
own ports. Compositions can be used as structuring elements to build up hierarchical
systems with an arbitrary number of hierarchies.

Figure 3.9 shows the definition of the composition "SeatHeatingControlAndDrivers".
This composition contains three prototypes: the prototype "SHDial" (of component-
type "HeatingDial"), the prototype "SHC" (of component-type "SeatHeatingControl")
and the prototype "SH" (of component-type "SeatHeating"). The composition itself is a
component-type and has seven ports.

42 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Figure 3.10: Example of the definition of the Composition "SeatHeatingControlAnd
Drivers"

Figure 3.10 shows the use of a composition as a component-type. Figure 3.10 essen-
tially shows another composition containing three prototypes: the prototypes "SHFront
Left" and "SHFrontRight" (both of type "SeatHeatingControlAndDrivers") and the pro-
totype "PM" of type "PowerManagement".

A component-type in AUTOSAR is either a "composition" or "atomic". A composition
is defined through interconnected prototypes (as in Figure 3.9). An atomic component
cannot be further decomposed into smaller components.

When designing a composition, service ports have to be specially handled. The con-
figuration of AUTOSAR services takes place in the ECU configuration phase by adding
the necessary service components and connecting them to the flattened set of atomic
software components which require access to the services. As a consequence, com-
positions are not allowed to have ports for use with services. For more details about
services, see AUTOSAR Services.

Figure 3.11: Example of the use of the Composition "SeatHeatingControlAndDrivers"

43 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

3.6 Relationship between the VFB and the ECU Software Archi-
tecture

When a sub-system consisting of atomic components and assembly-connectors is de-
ployed on a network of ECUs, all atomic components are mapped on an ECU. The
corresponding connectors between the components are implemented by intra- or inter-
ECU communication mechanisms.

In the example of Figure 3.11, atomic components "SHDialFrontLeft" and "SHCFront
Left" are mapped onto "ECU1", whereas the atomic component "PM" is mapped onto
"ECU3". This implies that the connectors between the first two components are han-
dled within ECU1, whereas the connection between the component "SHCFrontLeft"
and the component "PM" will run through a network connection between ECU1 and
ECU3.

Figure 3.12: Example illustrating the mapping of a composition of components on three
ECUs.

Figure 3.12 shows the standard component-view on the AUTOSAR layered software
architecture, which is the architecture of a single AUTOSAR ECU. The "AUTOSAR
Interface" of a component refers to the full set of ports of a component (as defined
before, a port-interface characterizes a single port of a component). A "Standardized
AUTOSAR Interface" is an AUTOSAR Interface which is standardized by AUTOSAR.

44 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Typically, an AUTOSAR service will have such a "Standardized AUTOSAR Interface".
For a formal definition of the term AUTOSAR Interface and Standardized AUTOSAR
Interface see specification "Layered Software Architecture" [3].

Figure 3.13: Component-View on the AUTOSAR layered software architecture

Figure 3.13 shows what a possible concrete architecture of ECU1 out of the example
of Figure 3.11 might look like. The atomic software components that are mapped on
ECU1 are hooked into the Run-Time Environment that is generated for ECU1. This
Run-Time Environment will typically implement the local connections between the local
components "SHCFrontLeft" and "SHDialFrontLeft".

In addition, the Run-Time Environment has the responsibility to route information that
is coming from or going to remote components. In the example, the port "Power Man-
agement" is routed to the communication stack in the underlying basic software.

The RTE also hooks up the component "SHCFrontLeft" to local standardized AU-
TOSAR services, such as the local non-volatile memory (through the port "nv") and
information on the local state of the ECU ("through the port "ecuMode").

45 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Figure 3.14: Example showing the relationship between the components mapped on an
ECU and the ECU Software Architecture

3.7 Kinds of software components

This section gives a final overview of the various kinds of components that are relevant
to AUTOSAR.

46 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00209] Application software component
Previous identifiers: EXP_VFB_00209

⌈

• Kind: Application software component

• Description: The Application Software Component is an Atomic Software Compo-
nent that implements (part of) an application. It can use all AUTOSAR communi-
cation mechanisms and services. The Application Software Component interacts
with sensors or actuators through a Sensor-Actuator Software Component.

• Illustration: see Figure "Application Software Component"

⌋

Application Software Component

47 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00121] Sensor-actuator software component
Previous identifiers: EXP_VFB_00121

⌈

• Kind: Sensor-actuator software component

• Description: The Sensor-Actuator Software Component is an Atomic Software
Component that handles the specifics of a sensor and/or actuator. It directly
interacts with the ECU-Abstraction (this is illustrated by a port called "IO").

• Illustration: see Figure "Sensor-Actuator Software Component"

⌋

Sensor-Actuator Software Component

See Chapter 6, Interaction with hardware.

48 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00122] Parameter software component
Previous identifiers: EXP_VFB_00122

⌈

• Kind: Parameter software component

• Description: A Parameter Software Component provides parameter values.
These can be fixed data, const or variable. This Software Component allows
for data access to either fixed data or calibration data.

• Illustration: see Figure "Parameter Software Component"

⌋

Parameter Software Component

See Chapter 10.

[TR_VFB_00123] Composition software component
Previous identifiers: EXP_VFB_00123

⌈

• Kind: Composition software component

• Description: A Composition Software Component encapsulates a collaboration of
Software Components, thereby hiding detail and allowing the creation of higher
abstraction levels. Through delegation connectors a composition software com-
ponent explicitly specifies, which ports of the internal components are visible from
the outside. Composition Software Components are a specialized type of Soft-
ware Components, e.g. they can be part of further Composition Software Com-
ponents.

• Illustration: see Figure "Composition Software Component"

⌋

49 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Composition Software Component

50 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00124] Service proxy software component
Previous identifiers: EXP_VFB_00124

⌈

• Kind: Service Proxy software component

• Description: The Service Proxy SW Component is responsible for distribution of
modes throughout the system. Once deployed each ECU should have a copy of
every instance of this software component type. However at the VFB level only
one is necessary.

• Illustration: see Figure "Service Proxy Software Component"

⌋

Service Proxy Software Component

[TR_VFB_00125] Service software component
Previous identifiers: EXP_VFB_00125

⌈

• Kind: Service software component

• Description: A Service Software Component provides standardized services
through standardized interfaces. To provide these services, this component may
interact directly with certain other basic-software modules (this is represented by
the double arrow).

• Illustration: see Figure "Service Software Component"

⌋

51 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Service Software Component

See Chapter 7.

52 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00126] ECU-abstraction software component
Previous identifiers: EXP_VFB_00126

⌈

• Kind: ECU-abstraction software component

• Description: The ECU-Abstraction Software Component provides access to the
ECU’s specific IO capabilities. These services are typically provided through
client-server PPorts and are used by the sensor-actuator software components.
The ECU-abstraction may directly interact with certain other basic-software mod-
ules (this is represented by the double arrow).

• Illustration: see Figure "ECU-Abstraction Software Component"

⌋

ECU-Abstraction Software Component

See Chapter 6, Interaction with hardware.

53 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00127] Complex driver software component
Previous identifiers: EXP_VFB_00127

⌈

• Kind: Complex driver software component

• Description: The Complex Driver Software Component generalizes the "ECU-
abstraction component". It can define ports to interact with other components in
specific ways and can also interact directly with other basic-software modules.

• Illustration: see Figure "Complex Driver Software Component"

⌋

Complex Driver Software Component

The purpose of the Complex Driver Software Component is described further in Sec-
tion 6.5, Complex Driver.

54 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00128] NV block software component
Previous identifiers: EXP_VFB_00128

⌈

• Kind: NVBlock software component

• Description: The NV Block Software Component allows SWC-S access to non
volatile data. Specifically this block allows for the modeling of the NV data at
the VFB level. It is the responsibility of the NV Block to map individual NV data
elements to NV Blocks and to interact with the NV Manager in the BSW. The
behavior of this component is to be generated based on the port services in the
RTE.

• Illustration: see Figure "NV Block Software Component"

⌋

NV Block Software Component

3.8 Resources for components and "runnables"

3.8.1 Background

The VFB is a system modeling and communication concept, which allows components
to be distributed in a network of ECUs. The interaction possibilities between a com-
ponent and other components are described through the component’s ports and their
associated interfaces, which define the operations, data-elements, mode-groups or cal-
ibration parameters that are provided or required by the component. Through the same
communication mechanisms, the component can interact with standardized AUTOSAR
services (available on each properly configured AUTOSAR ECU) or the ECU-specific
IO capabilities (available on the specific ECU on which the appropriate hardware is
present and to which the correct devices are connected).

55 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

However, implementations of components need access to additional resources, mainly
memory (the component’s implementation typically needs memory to maintain its inter-
nal state) and CPU-power (the component’s implementation contains code that must
be executed according to a certain timing schedule or in response to certain events).

As these scheduling issues are closely linked to the communication needs of the com-
ponent, the RTE must provide both aspects. Therefore, the RTE must provide a com-
plete environment for the component, including:

• Appropriate mechanisms through which the component’s implementation (for ex-
ample in a programming language like "C") can:

– Provide values for data-elements in the component’s PPorts

– Read/Consume values for data-elements in the component’s RPorts

– Access the component’s calibration parameters

– Provide implementations for the operations in the component’s PPorts

– Invoke operations provided by other components through the component’s
RPorts

– Etc.

• Appropriate mechanisms through which the component’s implementation (for ex-
ample "C" functions) is invoked in response to:

– Fixed-time schedules (for example: many components need to run "cycli-
cally")

– Events related to the communication mechanisms (for example some com-
ponents might want to be notified upon the reception of data from other
components)

– Events related to physical occurrences (i.e. a triggered event).

• Appropriate mechanisms through which the component’s implementation can ac-
cess other common resources, such as instance-specific memory

• As an AUTOSAR ECU typically is a multi-threaded environment, the RTE must
also provide all common synchronization mechanisms

This section introduces the AUTOSAR construct that addresses these various needs:
the "runnable". Note that there are use cases where a SoftwareComponentType might
be defined with no InternalBehavior resp. Runnable. For example, NvBlockSoftware
Component does not require any RunnableEntity if there is no need to proxy any Nv
MService port or NvMAdmin port.

56 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

3.8.2 The "runnable" concept

The "atomicity" of an atomic software-component refers to the fact that the component
cannot be divided in smaller components and must therefore be mapped onto a single
ECU.

For example, Figure 3.14 shows a logical component view of the mapped application-
software component "SHCFrontLeft" on a specific ECU. Through its ports, the compo-
nent expresses which information it requires from and provides to other components.

Figure 3.15: Component-view on the interaction between an atomic software component
and the RTE on an ECU

However, the actual implementation of a component consists of a set of "runnable en-
tities"7 (also more simply called "runnables"). A "runnable entity" is a sequence of
instructions (provided by the component) that can be started by the Run-Time Environ-
ment8.

7The usage of the word "runnable" is for example consistent with the "Runnable" Interface in Java:
"the Runnable Interface should be implemented by any class whose instances are intended to be exe-
cuted by a thread".

8In certain cases, optimization of the RTE could cause a runnable entity to be started directly from
another software-component without real intervention of the RTE. For example a synchronous call to a
component that runs on the same ECU and can execute within the context (task) of the caller could be
implemented as a direct function-call into the calling component.

57 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Figure 3.16: Implementation-view on the interaction between an atomic software com-
ponent and the RTE on an ECU

Figure 3.15 shows an example of this. Logically, the component-type "SeatHeating
Control" has defined six ports, through which it wants to interact with other compo-
nents or services. The implementation of the component on the other hand contains
two runnables: "MainCyclic" and "Setting". The component requires the runnable "Main
Cyclic" to be invoked cyclically (at a specific rate) by the RTE. The component requires
that the second runnable "Setting" is invoked whenever another component invokes
an operation on the PPort "Setting". The implementation of the runnables will use
the operations provided by the RTE to actually for communication via the ports of the
component. E.g. to access the information "PassengerDetected" provided to the com-
ponent through the RPort "SeatSwitch" the runnable "Setting" will invoke the operation
"Rte_Read_SeatSwitch_PassengerDetected()".

In general, an atomic software-component can provide just one runnable or it can con-
tain a large number of runnables. A runnable can be a very simple piece of code that
executes a simple algorithm or a complex program.

[TR_VFB_00043] Component runnables known at configuration time
Previous identifiers: EXP_VFB_00043

⌈At configuration time, the runnables of a component must be known⌋

58 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

A "runnable entity" runs in the context of a "task"9. The task provides the common
resources to the "runnable entities" such as a context and stack-space. Typically
the operating-system scheduler has the responsibility to decide during run-time when
which "task" can run on the CPU (or multiple CPUs) of the ECU. There are many stan-
dard strategies that schedulers can use (e.g. priority-based preemptive, round-robin,
time-triggered. . .).

3.8.3 The implementation of a component and the role of the RTE

In conclusion, the implementation of an atomic software-component essentially con-
sists of three aspects:

A model of the component (using the concept of ports and port-interfaces) that is used
to hook up the component with other components at the VFB-level

An implementation ("code"). The implementation of the component is structured in
"runnables" which are pieces of code that can be executed by the RTE

A software-component description [5] in which the component describes requirements
on the RTE. These include:

• Which runnables need to be called cyclically

• Which runnables need to be called in response to events related to communica-
tion or other sources

• How the component would like to access the information in its ports or invoke the
operations that it requires from other components

• Any other resources the component requires, such as AUTOSAR services or
local memory

In a properly configured AUTOSAR ECU, the RTE (in cooperation with a properly con-
figured basic software), will satisfy the component’s requirements. The RTE will for
example:

• Ensure that the runnables are invoked at the correct times

• Provide the functions that the component needs to access data or invoke opera-
tions

• Provide all other resources the component needs

9Within this discussion, it is not necessary to make a distinction between "processes" (heavy-weight
tasks which are often protected from other processes through memory-management) and "threads"
(light-weight tasks running inside a process). The "task" refers to both.

59 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

3.9 Interface Conversion Blocks

When software components are developed by different organizations (e.g. two distinct
suppliers delivering code to an OEM who integrates the SWCs) it may happen that two
or more SWCs have the same engineering semantics but are represented with differ-
ent data types. Instead of requiring the integrator to develop specific SWC conversion
software the VFB will add a conversion block to a connector connecting Sender Re-
ceiver ports with mismatched interface definitions at the VFB level. The addition of this
conversion block allows the designer to add which elements of the provided port map
to the elements of the required port as well as provide the conversion semantics. In the
RTE these mappings will be described with the PortInterfaceMappings. This construct
maps an interface pair to the connection.

[TR_VFB_00140] Conversion block required for incompatible interfaces
Previous identifiers: EXP_VFB_00140

⌈If a P-port specified by a Sender Receiver Interface is connected to an R-port with
an incompatible interface then a conversion block must be added for the connector
to allow the designer to describe the conversion. Incomplete conversion will not be
allowed⌋

3.9.1 Supported Conversions and Mappings

3.9.1.1 Interface Element Mapping

In case two interfaces only differentiate in the shortnames of their elements, then a
mapping can be provided which maps the elements of the one interface to the elements
of the other interface.

3.9.1.2 Linear Data Conversion

If the elements of two interfaces are logically equivalent but the range and resolution
are different, then the linear conversion factor can be calculated out of the semanti-
cal information of the elements. In this case the data semantics is described using a
CompuMethod with category IDENTICAL, LINEAR, SCALE_LINEAR or SCALE_LIN-
EAR_AND_TEXTTABLE, where the

• IDENTICAL category means that the value of the physical representation is equal
to the internal representation and the

• LINEAR, SCALE_LINEAR or SCALE_LINEAR_AND_TEXTTABLE categories
mean that the internal representation is calculated out of the physical represen-
tation by means of a linear formula (factor * external value + offset) per range in
one or more ranges (SCALE_LINEAR only).

60 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00141] Conversion using COMPU-METHODS for supported data types
Previous identifiers: EXP_VFB_00141

⌈A conversion block involving either IDENTICAL, LINEAR, TEXTTABLE, SCALE_
LINEAR or SCALE_LINEAR_AND_TEXTTABLE data types shall use the COMPU-
METHODS for the respective data types to determine the conversion function.⌋

The following examples show the conversion of data that is described using Compu
Methods with category LINEAR and IDENTICAL:

1. A software component (A) that provides the vehicle speed in m/s with resolution
0,1 m/s can be connected with a component (B) that requires the vehicle speed
in m/s with a resolution of 0,01 m/s if both components assume a linear relation
between physical representation and internal representation. The foll

internal (A) = 10 * physical as m/s

internal (B) = 100 * physical as m/s

internal (B) = 100 * physical as m/s

= 100 * (internal (A) / 10)

= 10 * internal (A)

Example: Component A provides the value 100 (internal representation for 10 m/
s). Multiplying the value with 10 we get the value 1000 as input for component B
(internal representation of 1000 in component B corresponds to 10 m/s)

2. A special case of data scaling is the conversion of units: Software component (A)
that provides the vehicle speed in m/s can be connected with a component (B)
that requires the vehicle speed in km/h if both components assume a linear or
identical relation between physical representation and internal representation.

internal (A) = physical as m/s

internal (B) = physical as km/h

internal (B) = physical as km/h

= 3,6 * physical as m/s

= 3,6 * internal (A)

Example: Component A provides the value 10 (internal representation for 10 m/
s). Multiplying the value with 3,6 we get the value 36 as input for component B
(internal representation of 36 corresponds to 36 km/h which is equivalent to 10
m/s)

61 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

3.9.1.3 Data Mapping

In case the data semantics is described using a list of values (CompuMethod with
category TEXTTABLE) or partially described using a list of values (CompuMethod with
category SCALE_LINEAR_AND_TEXTTABLE), then an explicit mapping needs to be
given for each individual value.

[TR_VFB_00142] Explicit mapping for table-based conversions
Previous identifiers: EXP_VFB_00142

⌈A conversion block involving TEXTTABLE or SCALE_LINEAR_AND_TEXTTABLE
data types shall use explicit mapping of each RPort table element to a PPort table
element.⌋

3.9.1.4 Mixed Conversion

It is possible in a conversion block to mix both linear conversion and texttable mappings
(SCALE_LINEAR_AND_TEXTTABLE).

An example would be a conversion block consisting of an input value of type uint8
which is linearly converted in the range 0..200 and has 2 texttable mappings for the
values 254 "SensorNotAvailable" and 255 "SensorFault".

3.10 Variant Handling

To support variation in automotive applications AUTOSAR has a mechanism referred
to as variant handling. This allows designers at many levels to put together a super set
of functionality and choose which actual pieces of this functionality will be enabled in
a specific variant. The place in the design where a choice is given between 2 or more
variants is called a variation point. The time at which a choice must be made is called
the latest binding time. Binding earlier is always allowed.

3.10.1 Binding Times

AUTOSAR supports several discreet binding times:

• System Design

• Code Generation

• Pre Compile

• Link Time

• Post Build

62 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Although variability could exist at function design time and run-time AUTOSAR explicitly
prohibits the later and does not provide support for the function design time.

3.10.2 Choosing a Variant

To choose a variant the AUTOSAR designer must assign no later than the required
binding time one of a predefined set of values to a Software System Constant or to a
Post Build Variant Criterion. The Post Build Variant Criterion is used for enabling Post
Build binding times while the Software System Constant can be used for everything
that has a latest binding time of Link Time.

By assigning a value to either a Software System Constant or Post Build Variant Crite-
rion the AUTOSAR system can determine which variant is enabled for each Variation
Point in the design by evaluating either a Software System Dependant Formula (uses
System Constants to determine if a Variation Point is enabled or disabled) or by evalu-
ating one or more a Post Build Variant Conditions (uses Post Build Variant Criterions to
determine if a Variation Point is enabled or disabled). If the Variation Points Formula or
Condition evaluates to true then the element in the design which was conditional upon
the Variation Point will exist in the design.

Typically designers will define collections of validated assignments for Software System
Constants and Post Build Variant Criterions. These collections of value assignments
are also known as Predefined Variants. Predefined Variant Sets are typically defined
at a composition level like a subsystem or system design. A complete variant for a
system therefore typically exists of a collection of Predefined Variants binding every
Variation Point in the system.

3.10.3 Variability

Although variability exists within the internal behavior of Software Components from a
VFB perspective only three elements of variability are of interest:

• Software Component Variability

• Port Variability

• Connector Variability.

3.10.3.1 Software Component Variability

The existence of a Software Component either Atomic or Composition can be sub-
jected to the existence of a Variation Point. If a Variation Point exists and its conditions
(see Section 3.10.2, Choosing a Variant) evaluate to true then the Software Component
exists and its behavior will be scheduled and its ports produce output. If the Compo-
nent however is removed from a composition (I.e. application or system design) then
all Software components which are connected to the removed Software Component

63 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

will have ports which will be considered unconnected and will behave as unconnected
ports (see Section 3.4.1, Unconnected Ports for more details) and non of the behavior
of the removed component will execute. Software Components variability in a Compo-
sition can be bound as late as Post Build.

3.10.3.2 Port Variability

Ports on a Software Component can also be subjected to variability. However their
latest binding time is Pre Compile time and as such their variability can only be con-
strained using Software System Constants. If a Port is removed from the design then
any connecting port must behave as an unconnected port. In a properly configured
system if a Port is "disabled" the connector connecting to this port should also be sub-
jected to the same variability conditions.

3.10.3.3 Connector Variability

A connection between two ports can be subjected to variability with a binding time of
Post Build. If a connector is "disabled" then the two ports at either end of the connector
must behave as unconnected ports.

64 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

4 Communication on the VFB

4.1 Introduction

This section specifies the communication mechanisms of the VFB, which atomic soft-
ware components can use to communicate with each other.

Section 4.2, Error types, defines the types of errors that can appear in both Sender-
Receiver and Client-Server communication models.

Section 4.3, Sender-Receiver communication, defines the functional semantics of
sender-receiver communication in more detail. This section also defines the commu-
nication attributes that define the exact characteristics of the communication patterns
provided by AUTOSAR. Some details related to mode-switches are covered in Chap-
ter 8, Mode Management.

Section 4.4, Client-Server communication, does the same for client-server.

4.2 Error types

Errors are divided into two simple classes: infrastructure errors and application errors.

Infrastructure errors are returned when the infrastructure between the sender and the
receiver, for sender-receiver communication, or between the client and the server, for
client-server communication, failed. A typical example of an infrastructure error is a
timeout. In case the client does not receive a response from the server within a certain
amount of time (because the communication channel between client and server is not
available or a message was lost) a "time-out" infrastructure error is returned to the
client. The possible infrastructure errors are standardized by AUTOSAR.

Application errors are application-specific and must be defined as part of the sender-
receiver interface, for sender-receiver communication, or client-server interface, for
client-server communication.

4.3 Sender-Receiver communication

The sender-receiver pattern enables the distribution of information where a sender dis-
tributes information to one or several receivers or a receiver receives information from
several senders. Figure 4.1 gives an example how sender-receiver communication is
modeled in the AUTOSAR VFB View.

65 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Figure 4.1: Example of sender-receiver communication at VFB level

In this example there are two assembly-connectors connecting the PPort of the com-
ponent "Sender" with the RPort of "Receiver 1" (respectively "Receiver 2").

The sender-receiver interface associated with those ports consists of data-elements
that define the data that is sent by the sender and received by the receivers.

The type of a data-element can be something very simple (like an "integer") or can be
a complex (potentially large) data type (e.g. an array or a string). The transfer of a
value, even of a complex data type, is always logically atomic.

[TR_VFB_00011] Data type of each data element known
Previous identifiers: EXP_VFB_00011

⌈At configuration time, the data-type of each data-element in a sender-receiver inter-
face is known⌋

A sender can provide a new value for each data-element defined in the Sender-
Receiver Interface. The precise semantics depend on whether the data-element is
defined to be of type "last-is-best" or whether the data-element is "queued".

[TR_VFB_00012]Sender-receiver data elements defined as queued or last-is-best
Previous identifiers: EXP_VFB_00012

⌈At configuration time, each data-element in a sender-receiver interface must be de-
fined to have either "queued" or "last-is-best" semantics⌋

Each data-element with "last-is-best" semantics can be configured to support invali-
dation. If the "last-is-best" data-element supports invalidation, the sending component
can indicate the receivers that the data-element is "invalid" (see attributes RECEIVE_
INVALID and CAN_INVALIDATE in Table 4.1 and Table 4.2).

66 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00101] Invalid state support known for last-is-best elements
Previous identifiers: EXP_VFB_00101

⌈At configuration time, it must be known for each "last-is-best" data-element in a
sender-receiver interface, whether the data-element supports the ability to be "invalid"
or not⌋

4.3.1 From the point of view of the sender

Each data-element with "last-is-best"-semantics in a PPort of a sender-component al-
ways has a current value. The initial current value of such a data-element can be de-
fined through configuration of the VFB (see attribute "INIT_VALUE" in Table 4.1 and in
Table 4.2). The sending component can change the current value of the data-element,
thereby overwriting the previous value of the data-element.

When a data-element has "queued" semantics, the consecutive values produced by
the sender are stored in a queue. The initial queue has length zero (no values are
available). Each time the sender produces a new value, this value is added to the
queue, until an arbitrary and configurable number of entries has been reached.

A sending component does not know the identity and the number of receivers. Its be-
havior is independent of the presence or absence of receivers. Sender-receiver com-
munication allows for a strong decoupling between sender and receiver. The sender
just provides the information and the receivers decide autonomously when and how
to use this information. It is the responsibility of the communication infrastructure to
distribute the information. In certain cases, however, the sending application wants to
be notified when the expected quality-of-service of the communication system between
the sender and its receivers is known to be violated (see attribute "TRANSMISSION_
ACKNOWLEDGEMENT" in Table 4.1).

[TR_VFB_00103] Transmission notification configuration known
Previous identifiers: EXP_VFB_00103

⌈At configuration time, it must be known for each data-element in a PPort or PRPort of
a component, whether the component wants to be informed on successful transmission
or timed-out transmission⌋

Table 4.1 gives an overview of the communication attributes that a sender can use to
control the behavior of the sender-receiver communication pattern. These attributes
are defined at the level of a single data-element or mode-group.

67 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Kind of data-element or
modeGroup

Attribute/Feature Name
Realization in software
component template [5] Description

da
ta

ev
en

t

m
od

e

INIT_VALUE
attribute "initValue" of
"UnqueuedSenderComp
Spec"

This attribute defines the initial
value of the data-element, seen
by all receivers of this
data-element. This initial value
can be overwritten by the
attribute INIT_VALUE on the
receiver side. re

qu
ire

d

no
ta

va
ila

bl
e

no
ta

va
ila

bl
e

CAN_INVALIDATE
attribute "canInvalidate" of
"NonqueuedSenderCom
Spec"

In case this feature is used, the
sender can invalidate a
data-element.

op
tio

na
l

no
ta

va
ila

bl
e

no
ta

va
ila

bl
e

MODE_QUEUE_LENGTH
"queueLength" of Mode
SwitchSenderComSpec

This attribute defines the size of
the input queue of the of mode
switch notifications to a mode
machine.

no
ta

va
ila

bl
e

no
ta

va
ila

bl
e

re
qu

ire
d

IMPLICIT_SEND "DataWriteAccess"

Normally, a sender must make an
explicit function-call to send a
data-element or change the
current mode. "Implicit sending"
means that a runnable can
modify a data-element while it is
running. After the runnable
terminates, the RTE will make
the latest value available to
receivers of the
data-element. op

tio
na

l

no
ta

va
ila

bl
e

no
ta

va
ila

bl
e

TRANSMISSION_
ACKNOWLEDGEMENT

"Transmission
Acknowledgement
Request" with attribute
"timeout" or "Mode
SwitchedAckRequest" with
attribute "timeout"

The sending component is
informed when the data has been
sent correctly OR when the mode
switch has been executed by the
RTE. If the timeout occurs before
this acknowledgement, the
sender is informed of an
infrastructure error. op

tio
na

l

op
tio

na
l

op
tio

na
l

IS_QUEUED
"isQueued" in "Variable
DataPrototype"

When this parameter is TRUE,
the data-element is queued
(=used for "events"). When this
parameter is false, the
data-element has "last-is-best"
semantics. FA

LS
E

TR
U

E

no
ta

va
ila

bl
e

Table 4.1: Communication Attributes for a Sender

Note that the initial condition of a queued data-element is the empty queue.

Note that the initial mode is defined as part of the ModeDeclarationGroup.

Details can be found in the "Software Component Template" [5] and the "SWS RTE"
[6].

4.3.2 From the point of view of the receiver

A receiver can access the value of each data-element defined in the Sender-Receiver
Interface associated with the RPort of the receiving component.

68 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

For a data-element that has "last-is-best" semantics, the receiver has access to the
latest value of that data-element. Alternatively, the receiver is informed that the data-
element is "invalid" (in case the data-element supports this feature). The receiver may
have access to the livelihood of the data-element, whether its value is valid or outdated.
The livelihood is defined by configuring the VFB (see attributes "TIME_FOR_RESYNC"
and "ALIVE_TIMEOUT" in Table 4.2).

[TR_VFB_00014] Initial values of receiver data elements defined
Previous identifiers: EXP_VFB_00014

⌈At configuration time, the initial value of each last-is-best data-element in a RPort or
a PRPort of a component must be defined⌋

[TR_VFB_00015] Unsent data defaults to configured initial value
Previous identifiers: EXP_VFB_00015

⌈The current value of a data-element seen by a receiving component, when a sending-
component has not provided a value, is the configured initial value of the RPort or
PRPort⌋

[TR_VFB_00017] Initial value can be invalid if supported
Previous identifiers: EXP_VFB_00017

⌈The initial value of the receiving component can be "invalid" if the data-element sup-
ports this⌋

[TR_VFB_00094] Livelihood monitoring configuration known
Previous identifiers: EXP_VFB_00094

⌈At configuration time, it must be known for each last-is-best data-element in a RPort
or a PRPort of a component whether the component wants to get informed of the
livelihood of the data-element⌋

[TR_VFB_00095] Receiver defines data element livelihood period
Previous identifiers: EXP_VFB_00095

⌈A receiver that gets informed of the livelihood of a data-element must configure the
period of time between receptions. This threshold determines the livelihood of the
data-element: actual or outdated⌋

For a data-element that has "queued" semantics, the receiver has essentially one op-
eration: to obtain the next data-element from the queue. In case the queue is empty,
this fact is returned to the receiver. Otherwise, the next data-element value is read
and taken from the queue (in other words, this is a "consuming read"). The capacity
of the queue is defined by configuring the VFB (see attribute "RECEIVER_QUEUE_
LENGTH" in Table 4.2).

69 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00019] Queued data elements start with empty queues
Previous identifiers: EXP_VFB_00019

⌈The queue associated with a data-element with "queued" semantics is initially (before
a sender has added values to the queue) empty⌋

[TR_VFB_00020] Queue located on receiver side
Previous identifiers: EXP_VFB_00020

⌈Logically, the queue is located on the receiver’s side⌋

[TR_VFB_00021] Receiver queue size known at configuration time
Previous identifiers: EXP_VFB_00021

⌈At configuration time, the size of the receiver’s queue must be known⌋

[TR_VFB_00022] Receiver queue has FIFO semantics
Previous identifiers: EXP_VFB_00022

⌈The receiver’s queue has first-in first-out semantics⌋

[TR_VFB_00023] Queue overflow causes new value to be dropped
Previous identifiers: EXP_VFB_00023

⌈When the receiver’s queue is full and a new value arrives, this value is dropped
("queue overflow")⌋

[TR_VFB_00024] Receiver can be notified of queue overflow
Previous identifiers: EXP_VFB_00024

⌈The receiver can be notified of "queue overflow" if it indicates that it desires this noti-
fication at configuration time⌋

Table 4.2 gives an overview of the communication attributes that a receiver can use to
control the behavior of the sender-receiver communication pattern. These attributes
are defined at the level of a single data-element or mode-group.

Kind of data-element or
modeGroup

Attribute/Feature Name Attribute Value Description

da
ta

ev
en

t

m
od

e

INIT_VALUE
" initValue" of
"NonqueuedReceiver
ComSpec"

A receiver can optionally specify its
own initial value, which overrides
the initial value of the sender.

op
tio

na
l

no
ta

va
ila

bl
e

no
ta

va
ila

bl
e

RECEIVE_INVALID
"handleInvalid" in
"NonqueuedReceiver
ComSpec"

The receiver can specify how it
wants to respond when an invalid
value for a data-element is
received.

op
tio

na
l

no
ta

va
ila

bl
e

no
ta

va
ila

bl
e

▽

70 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

△

TIME_FOR_RESYNC
" resyncTime" of
"NonqueuedReceiver
ComSpec"

Time allowed for resynchronization
of data values after current data is
lost, e.g. after an ECU reset.

op
tio

na
l

no
ta

va
ila

bl
e

no
ta

va
ila

bl
e

ALIVE_TIMEOUT
"aliveTimeout" of
"UnqueudReceiver
ComSpec"

The receiver specifies the
maximum period of time it may take
to receive a data-element If the
data-element is not received within
the defined period, the
data-element is "outdated" op

tio
na

l

no
ta

va
ila

bl
e

no
ta

va
ila

bl
e

IMPLICIT_RECEIVE "dataReadAccess"

Normally, a runnable wishing to
read a data-element needs to do
this through an explicit call to the
RTE. The "IMPLICIT_RECEIVE"
means that the runnable has
access to the value of the
data-element that was available at
the time of the start of the runnable.
It does not need to invoke an
explicit API to fetch the latest data. op

tio
na

l

no
ta

va
ila

bl
e

no
ta

va
ila

bl
e

RECEIVE_EVENT
"DataReceived
Event" and "Swc
ModeSwitchEvent"

This implies that the receiving
applications is notified by the RTE
when a new value of a
data-element or a mode-switch is
received. This implies that the
receiving component does not need
to poll but can wait for new
data-elements or mode-changes. op

tio
na

l

op
tio

na
l

op
tio

na
l

IS_QUEUED
"isQueued" in
"VariableData
Prototype"

When this parameter is TRUE, the
data-element is queued (=used for
"events"). When this parameter is
false, the data-element has
"last-is-best" semantics. FA

LS
E

TR
U

E

no
ta

va
ila

bl
e

RECEIVER_QUEUE_
LENGTH

queueLength of
QueuedReceiver
ComSpec

Received values are added to the
end of the queue and values are
read (consuming) from the front of
the queue (i.e. the queue is
first-in-first-out). If the queue is full
and another data-item arrives this
data item is discarded and the
receiver is informed by
error-handling mechanisms. no

ta
va

ila
bl

e

re
qu

ire
d

no
ta

va
ila

bl
e

FILTER
Attribute " DataFilter"
of "ReceiverCom
Spec"

A data-element is only passed to
the application if the value of the
data-element passes the conditions
of the filter. If a newly received
value for a data-element does not
pass the conditions of the filter, the
value is
discarded (not added to queue for a
queued receiver OR the current
value of the data-element is not
updated for a last-is-best receiver).
The VFB provides the same filters
as defined in ISO 17356-4 [13].
These filters can only be applied to
data-elements that are of a
primitive type. op

tio
na

l

op
tio

na
l

no
ta

va
ila

bl
e

▽

71 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

△

SW_IMPLEMENTATION_
POLICY

"swImplPolicy"

When using a parameter interface
one can type the mechanism for
access of the parameters. This will
allow for precompile time and
compile time optimization when
dealing with fixed data exchange op

tio
na

l

no
ta

va
ila

bl
e

no
ta

va
ila

bl
e

Table 4.2: Communication Attributes for a Receiver

Note that the initial condition of a queued data-element is the empty queue.

Note that the initial mode is defined as part of the ModeDeclarationGroup.

Details can be found in the "Software Component Template" [5] and the "SWS RTE"
[6].

4.3.3 Multiplicity of sender-receiver

The term multiplicity discussed in the following two sections applies to the connection
multiplicity of a specific port to one or more other ports; it does not concern two distinct
ports of a software component that are connected separately to two distinct ports of
another software component.

Both types of sender receiver semantics (i.e. an interface with data-elements of "last-
is-best" semantics or queued semantics), support either 1:n communication (1 sender
and n receivers, with n ≥ 0) or n:1 communication (n senders and 1 receiver). The
sender(s) own(s) the current value of the data-element. With last-is-best semantics the
receiver(s) of the data always want(s) to have only the most recent value of the data.
It is the responsibility of the communication system to ensure the availability of the
correct value of the data-element on the receiver side. This is illustrated in Figure 4.2.

72 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Figure 4.2: "last-is-best" semantics. The upper part of this figure shows the model
view of "last-is-best" semantics. The lower part shows the implementation view of this
pattern.

From an implementation point of view, this could for example be realized by having the
sender periodically broadcast the latest value of the data-element to its receivers. A
second implementation could only communicate actual changes to the receivers.

With "queued" semantics and n:1 communication the queue is on the receiving side
and several senders can add values for the data-element to the single receiver’s queue.
To avoid a further increase of the complexity of the VFB mechanisms all other commu-
nication scenarios like n:m (n, m > 1) are not possible.

[TR_VFB_00025] Last-is-best allows 1:n and n:1 communication
Previous identifiers: EXP_VFB_00025

⌈For sender-receiver with data-elements with "last-is-best" semantics, both 1:n as well
as n:1 communication (1 sender to multiple receivers) is possible⌋

[TR_VFB_00026] Queued semantics allow 1:n and n:1 communication
Previous identifiers: EXP_VFB_00026

⌈For sender-receiver with data-elements with "queued" semantics, both 1:n (1 sender
to multiple receivers) and n:1 communication (multiple senders to 1 receiver) is possi-
ble⌋

73 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00120] Mode declaration groups allow only 1:n communication
Previous identifiers: EXP_VFB_00120

⌈For sender-receiver with ModeDeclarationGroups, only 1:n (1 sender to multiple re-
ceivers) is possible⌋

As a component can have an arbitrary number of ports, a single component can as-
sume the role of sender and/or receiver.

4.3.4 Filtering between the sender and the receiver

The VFB supports the definition of an additional filter that sits between the sender and
the receiver.

A new value for a data-element is only passed to the application if the value passes
the conditions of the filter. If a newly received value for a data-element does not pass
the conditions of the filter, the value is rejected (not added to queue for a queued
data-element) or the current value of the data-element is not updated (for a last-is-best
data-element).

The filters supported by AUTOSAR are the same as the filters, defined in OSEK-COM
V3.0.3. These filters can only be applied to data-elements that are of a primitive type.

[TR_VFB_00027] Receiver filter defined at configuration time
Previous identifiers: EXP_VFB_00027

⌈At configuration time, the optional filter on the receiver’s side must be defined⌋

[TR_VFB_00028] Receiver filter conforms to ISO 17356-4
Previous identifiers: EXP_VFB_00028

⌈The filter has the capabilities of the ISO 17356-4 [13] filter⌋

In the VFB-model, such a filter can only be specified on the receiving side. This how-
ever, does not imply that the filtering should be implemented in the RTE on the re-
ceiving side. For example, consider the case that a receiving filter indicates that the
receiver only wants to receive data-elements above a certain value, and that this is the
only receiver hooked up to the sender over a network-connection. In that case a good
implementation might decide to filter out the unnecessary values before they are sent
onto the network (on the sending side).

4.3.5 Concurrency and ordering within a sender-receiver connector

Within the scope of a single connector between a sender’s PPort and a receiver’s
RPort, the VFB preserves the order of the consecutive changes to the value of a spe-
cific data-element.

74 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Figure 4.3: concurrency and ordering within a sender-receiver connector

In the case of a queued data-element, the receiver must see the consecutive queued
values of the data-element in the same order as the order in which they were produced
by one specific sender.

In the case of "last-is-best" semantics, the semantics directly imply that "older" values
should never overwrite "newer" values.

However, the VFB does not guarantee any ordering between changes to different data-
elements (even not within the same interface) or between different connectors.

The VFB does not guarantee any ordering between mode switches of different Mode
DeclarationGroups (even not within the same interface) or between different connec-
tors.

[TR_VFB_00029] VFB guarantees order within a connector
Previous identifiers: EXP_VFB_00029

⌈Within an individual sender-receiver connector, the VFB guarantees ordering in the
changes made to an individual data-element⌋

4.4 Client-Server communication

A widely used communication pattern in distributed systems is the client-server pattern,
in which the server is a provider of a service1 and the client is a user of a service.

1Service in this chapter is a functionality which is offered by a certain AUTOSAR SW-component, the
server, and which can be used by other AUTOSAR SW-component, the clients. It is not to be mixed up
with an AUTOSAR service, defined more precisely in Chapter 7, AUTOSAR Services.

75 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

One simple example is the decoding of encrypted wireless key data (immobilizer, see
Figure 4.4).

Figure 4.4: Example of a synchronous client-server communication: decoding of en-
crypted wireless-key data (immobilizer).

AUTOSAR defines a very simple, static n:1 client-server mechanism (n clients and 1
server, with n ≥ 0)2. Figure 4.5 gives an example how client-server communication for
a composition of three components and two connections is visualized in the VFB View.

Figure 4.5: Client-server communication in the VFB View

In this example, there are 2 assembly-connectors. They hook up the RPort of "Client
1" (respectively "Client 2") with the PPort of the server. Each port is associated with
a client-server interface, which defines the operations that are made available by the
server and used by the client.

2More complex client-server architectures might involve brokers that register services provided by
servers and clients subscribing dynamically to certain services. To support the realization of such mech-
anisms, AUTOSAR could be extended by defining additional AUTOSAR Services (see Chapter 7, AU-
TOSAR Services

76 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Each operation in such a client-server interface is associated with arguments, which
are transported between the client and the server. These arguments are typed. The
type of an argument in an operation could be a simple elementary data-type (like an
integer in a certain range or a boolean) or complex structures or arrays.3

[TR_VFB_00031] Operation argument types known at configuration time
Previous identifiers: EXP_VFB_00031

⌈At configuration time, for each operation in a client-server interface, the ingoing argu-
ments, the returning arguments and their data-types must be known⌋

Figure 4.6 illustrates the client-server mechanism through the VFB.

Figure 4.6: Client-server on the VFB (synchronous and asynchronous)

3Details about the data-types supported by AUTOSAR in arguments can be found in [SW-C Template]

77 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

4.4.1 From the point of view of the client

The client initiates the client-server mechanism by requesting that the server performs
a specific operation defined in the interface. The client thereby provides a value for
each of the outgoing arguments defined for that operation in the Client-Server Interface.

Eventually, the client will either receive a valid response for the invocation or it will
receive an error in response to the invocation of the operation. A valid response means
that the server has executed the operation. In this case, the client receives a value for
each return argument defined for the operation in the interface.

In case the operations change the state of the server, they should be designed care-
fully, so that the client can put the server easily in a known state or can simply repeat
the operation in case of an infrastructure error. A good rule is to make the opera-
tion "idempotent", which means that an operation (with specific arguments) can be
repeated an arbitrary number of times.

[TR_VFB_00032] Client can invoke operations on its RPorts
Previous identifiers: EXP_VFB_00032

⌈A client can invoke an operation defined in a client-server interface of one of its
RPorts⌋

[TR_VFB_00033] Client provides all outgoing arguments when invoking
Previous identifiers: EXP_VFB_00033

⌈When invoking an operation, the client must provide a value for each outgoing argu-
ment defined for that operation⌋

[TR_VFB_00034] Client receives one response per invocation
Previous identifiers: EXP_VFB_00034

⌈A client will receive exactly one response for each operation invocation⌋

[TR_VFB_00035] Response may be error or valid server response
Previous identifiers: EXP_VFB_00035

⌈The response which the client receives can be an infrastructure-error, an application-
error or a valid server-response⌋

[TR_VFB_00036] Valid response returns all return arguments
Previous identifiers: EXP_VFB_00036

⌈When the client receives a valid server-response, it obtains a value for each return-
argument of the operation⌋

[TR_VFB_00037] Possible application errors known at configuration time
Previous identifiers: EXP_VFB_00037

⌈At configuration time, the possible application-errors that can be returned by the
server to the client for the operation must be known⌋

78 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00038] Infrastructure errors standardized by AUTOSAR
Previous identifiers: EXP_VFB_00038

⌈The possible infrastructure-errors provided to the client as a possible response to a
client invocation are standardized by AUTOSAR⌋

Table 4.3 shows the communication attributes of a client.

Attribute Name
Realization in software
component template [5] Description

CLIENT_MODE

Covered indirectly by the
"SynchronousServerCallpoint",
the "AsynchronousServer
Callpoint" and the "Asynchronous
ServerCallReturnsEvent"

The developer of a client can choose how to interact with the server.
In case the CLIENT_MODE is "synchronous", the runnable
invoking the operation is blocked until either a response has been
received from the server, an infrastructure error is returned or the
configured maximal blocking time expires.
In case the CLIENT_MODE is "asynchronous - wakeup_of_wait_
point" the runnable invoking the operation is not blocked. A
runnable can wait for the response (from the server or because of
an infrastructure error) in a wait-point.
In case the CLIENT-MODE is "asynchronous - activation_of_
runnable entity", the runnable invoking the operation is not blocked.
When the response (from the server or an infrastructure error) is
available, a runnable is started which can process the response of
the server

TIMEOUT Attribute "timeout" of ServerCall
Point

Time in seconds before the server call times out and returns with
an error message. How this infrastructure-error is reported
depends on the call type (synchronous or asynchronous).

Table 4.3: Communication Attributes for a Client

4.4.2 From the point of view of the server

A server waits for incoming invocations of operations from its clients. It performs the
requested operation using the argument-values provided by the client. On finishing
the execution of the requested operation, the server provides a value for each of the
return-arguments to the client. In case the server encountered an error, it can al-
ternatively return an application-error to the client instead of a set of values for the
return-arguments.

Table 4.4 shows the communication attributes of a server.

Attribute Name Realization in software
component template [5]

Description

QUEUE-
LENGTH

Attribute "queuelength" of Server
CompSpec

On server side, there is a queue with length n, consuming reading
and first-in-first-out strategy. If the queue is full, and another
request arrives, the new request is discarded and the client will
receive a "time-out" infrastructure error.

Table 4.4: Communication Attributes for Server

4.4.3 Multiplicity of client-server

For client-server communication only "n:1"-communication (n clients, n>=0, 1 server)
is supported.

79 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00039] Only n:1 client-server communication supported
Previous identifiers: EXP_VFB_00039

⌈For client-server communication, only n:1-communication (n clients, 1 server) is sup-
ported⌋

Each client RPort must be hooked up to exactly one connector, which links that RPort to
exactly one PPort of a server. A PPort of a server on the other hand can be hooked up
to an arbitrary number of client RPorts, i.e. none or more clients can invoke operations
from the same server. The implementation of the client-server communication has to
ensure, that the result of the invocation of an operation is dispatched to the correct
client.

As a component can have an arbitrary number of ports, a single component can as-
sume the role of both client and server.

4.4.4 Ordering and concurrency within a client-server connector

A client is not allowed to invoke a specific operation on an RPort before the previous
invocation of the same operation in the same RPort has returned (with either a valid
response from the server or with an error). This is illustrated in Figure 4.7.

Figure 4.7: Concurrent invocation of the same operation is not allowed

The client is however allowed to make an invocation of a different operation on the
same RPort before the invocation of a first operation has returned. However, in this
case, the VFB does not make any guarantees on the ordering of those invocations.

More specifically, it does not guarantee that the server sees the invocation of operations
in the same order, as the order in which the client made those invocations. Similarly,

80 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

there is no guarantee that the responses are made available to the client in any specific
order (for example, in the order in which the client invoked those operations).

Although ordering is not guaranteed, the implementation of the VFB must make it pos-
sible for a client to associate a response from a server (or from the infrastructure in case
an infrastructure-error is returned) with the correct corresponding invocation made by
the client.

[TR_VFB_00040] Client cannot re-invoke before previous returns
Previous identifiers: EXP_VFB_00040

⌈A client is not allowed to invoke a specific operation on an RPort before the previous
invocation of the same operation has returned⌋

[TR_VFB_00042] Client can match responses to invocations
Previous identifiers: EXP_VFB_00042

⌈It must be possible for a client to associate a response with the correct corresponding
invocation made by the client⌋

Figure 4.8: The VFB does not support ordering between different operations

81 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

4.5 Remarks regarding the identification of communication part-
ners

One of the main goals of AUTOSAR is the transferability of AUTOSAR software-
components and the possibility to integrate the same component in different systems.
Therefore, the basic communication mechanisms must not depend on the identity of
the communication partners. Which component communicates by which port to which
other port of another component is specified by connectors in the VFB View and is
not visible to a software-component. If a software-component does need to know the
identity of a communication partner for specific communication scenarios the identifi-
cation has to be done by the components itself on application level by using the general
AUTOSAR communication patterns4.

By contrast, the unambiguous identification of communication partners, i.e. instances
of components and their ports/interface elements, is necessary for the implementation
of the RTE and maybe for the basic software5.

4For future extensions like "dynamic components" and "dynamic communication" communication
partners have to provide means to be identified on application level.

5For example, in client-server communication the result of the invocation of an operation has to be
dispatched to the correct client, i.e. the client that invoked the service. Therefore, the identity of the
client, i.e. AUTOSAR SW-component and the port, has to be known - at least at runtime - to the RTE
and the basic software.

82 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

5 Timing Extensions

The research field of real time systems offers a variety of timing models and specifica-
tion techniques. This section just serves as a high level introduction to the "AUTOSAR
Specification of Timing Extensions" [14] and only has the intent to make the reader
aware of a different and more detailed document which addresses the concerns of
modeling time.

5.1 Main Purpose of Timing Extensions for AUTOSAR

Compared to the specification of a system’s functional behavior, the specification of its
timing behavior requires additional information to be captured. Not only the eventual
occurrence of events but also their exact timing or the concurrency of various events
become important. Therefore, in the specification of timing extensions for AUTOSAR,
the event is the basic entity. It is used to refer to an observable behavior within a system
(e.g. the activation of a RunnableEntity, the transmission of a frame etc.) at a certain
point in time.

Having to deal with different abstraction levels and views, and in order to avoid se-
mantic confusion with existing concepts, a new abstract type TimingDescriptionEvent
is introduced as a formal basis for the timing extensions. Depending on the concrete
model entity and the associated observable behavior, specific timing events are defined
and linked to the different views.

For the analysis of a system’s timing behavior usually not only single events but also the
correlation of different events is of interest. To relate timing events to each other, a fur-
ther concept called TimingDescriptionEventChain is introduced. Hereby, it is important
to note that for the events referred to within an event chain a functional dependency is
implicitly assumed. This means that an event of a chain somehow causes subsequent
chain events.

Based on events and event chains, it is possible to express various specific timing
constraints derived from the abstract type TimingConstraint. These timing constraints
specify the expected timing behavior. As timing constraints shall be valid independently
from implementation details, they are also expressed on a abstract level by referencing
the above introduced formal basis of TimingDescriptionEvents and TimingDescription
EventChains.

Thus, by means of events, event chains and timing constraints defined on top of these,
a separate central timing specification can be provided, decoupling the expected tim-
ing behavior from the actually implemented behavior. This approach supports timing
contracts for AUTOSAR systems in a top-down as well as bottom-up approach.

83 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

5.2 Timing in different phases of the AUTOSAR methodology

Several timing views can be applied in the different phases of the AUTOSAR method-
ology which provides several well defined process steps, and furthermore artifacts that
are provided or needed by these steps. Five different timing views can be identified:

• VfbTiming - this view deals with timing information related to the interaction of
SwComponentTypes at VFB level.

• SwcTiming - this view deals with timing information related to the SwcInternal
Behavior of AtomicSwComponentTypes.

• SystemTiming - this view deals with timing information related to a System, uti-
lizing information about topology, software deployment, and signal mapping.

• BswModuleTiming - this view deals with timing information related to the Bsw
InternalBehavior of a single BswModuleDescription.

• EcuTiming - this view deals with timing information related to the EcucValue
Collection, particularly with the EcucModuleConfigurationValues.

For each of these views a special focus of timing specification can be applied, depend-
ing on the availability of necessary information, the role a certain artifact is playing and
the development phase, which is associated with the view.

The "AUTOSAR Specification of Timing Extensions" [14] provides a concept for the
description of timing relevant information in AUTOSAR.

84 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

6 Interaction with hardware

6.1 Introduction

The goal of this section is to focus on standardized interaction between application
software-components and hardware via the Virtual Functional Bus. Hardware interac-
tion means access to the following three kinds of hardware (see also Figure 6.1):

• Microcontroller peripherals

• ECU electronics

• Sensors and Actuators

Actuator and sensor hardware typically needs specialized software to provide an inter-
face towards application software. This interface typically includes a software interface
to read sensor values, functions to set an actuator, diagnostic interfaces etc. The in-
tegrator needs the flexibility to connect the sensors and actuators of his system to a
suitable ECU of his choice.

In some cases, even specialized hardware on the ECU is needed, and an interaction
with that hardware is not possible over the standardized basic software. In those cases,
complex drivers may be used to interact with this specific hardware. Complex drivers
are supplier specific.

Figure 6.1 shows the typical conversion process from physical signals to software sig-
nals (e.g. car velocity) and back (e.g. car light). This interface architecture is taken
because of 2 reasons:

The best reuse potential (when all other integration requirements like performance
requirements are fulfilled):

• if the µC changes, it is possible to reuse the ECU Abstraction, the sensor-actuator
software-component and the application software-component

• if the ECU changes, it is possible to reuse the sensor-actuator software-
component and the application software-component

• if the sensor or actuator changes, it is still possible to reuse the application
software-component

The various modules can be developed by different experts and/or companies (µC,
ECU, Sensor/Actuator, Application)

85 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Figure 6.1: Signal conversions between physical signals and software signals

6.2 Microcontroller Abstraction Layer (MCAL)

Access to the hardware is routed through the Microcontroller Abstraction Layer (MCAL)
to avoid direct access to microcontroller registers from higher-level software.

MCAL is a hardware specific layer that ensures a standard interface to the components
of the basic software. It manages the microcontroller peripherals and provides the
components of the basic software with microcontroller independent values. MCAL im-
plements notification mechanisms to support the distribution of commands, responses
and information to different processes.

Among others it can include1:

• Digital Input/Output

• Analog/Digital Converter

• Pulse Width (De)Modulator

• EEPROM

• FLASH

1Please consult [List of BSW Modules] for the actual hardware supported by AUTOSAR.

86 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

• Capture Compare Unit

• Watchdog Timer

• Serial Peripheral Interface

• I2C Bus

The MCAL is available on each standard microcontroller.

6.3 ECU Abstraction

The ECU Abstraction provides a software interface to the electrical values of any spe-
cific ECU in order to decouple higher-level software from all underlying hardware de-
pendencies.

Figure 6.2 shows a typical example for the ECU abstraction. In this case the service
"ECU_Set_I" is provided in 3 different ways on the ECU, but the SW-Interface is always
the same.

Figure 6.2: example "ECU_Set_I" for the ECU abstraction

6.4 Sensor-Actuator Software Component

A sensor-actuator software-component is an atomic software-component that makes
the functionality of a sensor or actuator usable for other SW-components. That
means that the sensor-actuator software-component provides the application software-
components an interface for the physical values of the sensors and actuators. A

87 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

sensor-actuator software-component is written for a concrete sensor or actuator and
uses the ECU abstraction interface.

6.5 Complex Driver Component

The Complex Driver (CDD) allows direct access to the hardware in particular for re-
source critical applications.

The Complex Driver is a loosely coupled container, where specific software implemen-
tations can be placed. The only requirement to the software parts is that the interface
to the AUTOSAR world has to be implemented according to the AUTOSAR port and
interface specifications.

The main task of the complex drivers is to implement complex sensor evaluation and
actuator control with direct access to the µC using specific interrupts and/or complex
µC peripherals (like PCP, TPU), e.g.

• injection control

• electric valve control

• incremental position detection

Further on the Complex Drivers will be used to implement drivers for hardware which
is not supported by AUTOSAR.

If for example a new communication system will be introduced in general no AUTOSAR
driver will be available controlling the communication controller. To enable the commu-
nication via this medium, the driver will be implemented proprietarily inside the Com-
plex Drivers. In case of a communication request via that medium the communication
services will call the Complex Driver instead of the communication hardware abstrac-
tion to communicate.

Another example where non-standard drivers are needed is to support ASICs that
implement a non-standardized functionality.

Last but not least the Complex Drivers are to some extend intended as a migration
mechanism. Due to the fact that direct hardware access is possible within the Complex
Drivers already existing applications can be defined as Complex Drivers. If interfaces
for extensions are defined according to the AUTOSAR standards new extensions can
be implemented according to the AUTOSAR standards, which will not force the OEM
or the supplier to reengineer all existing applications.

88 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

7 AUTOSAR Services

7.1 Introduction

This section describes the handling of AUTOSAR services in the VFB view and defines
how they can be represented graphically.

AUTOSAR services depict a hybrid concept composed of Basic Software Modules as
well as of AUTOSAR Software Components. They provide standardized functionality
of the particular ECU infrastructure (AUTOSAR BSW) for Application Software Com-
ponents mapped onto it.

For the sake of simplicity sometimes the term "service" is used instead of the full term
"AUTOSAR service". However, it has nothing to do with the service part of a client-
server interface.

Figure 7.1: A software component accesses services of the Os

Figure 7.1 shows an example for requiring a service: the software component type
ApplicationMonitor has a port typed with the interface OsService. Since this client-
server interface contains operations like GetActiveApplicationMode or GetApplication
State, the software component ApplicationMonitor is able to query the Os about the Os
Application states or the Os start mode.

Figure 8.4 shows another example: here, the software component has access to the
ECU state manager of the ECU Basic Software and its capabilities.

7.2 VFB Representation

When it comes to model and configure AUTOSAR services main challenges are:

• the selection of appropriate communication paradigm,

• the fulfillment of prerequisites defined by RTE (see [6])

• the platform dependent types

89 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

• the configuration

7.2.1 Selection of a communication mechanism

In general AUTOSAR services communicate via Standardized AUTOSAR Interfaces.
On the VFB they are only visible at the software components requesting the services.
The corresponding counterparts in the Basic Software are not visible on the VFB, but
inherently present.

Depending on the nature of the service, all kinds of ports are possible:

The most natural way is a service offered to an AUTOSAR component via a provide
port typed by a client-server interface: This acts just like a library call returning some
data. The corresponding software component would then have a require port like in
the example shown in Figure 7.1.

A require port typed by a sender-receiver interface may be used instead, if a service
has to be activated but no immediate answer is needed.

A service may also use a require port typed by a client-server interface in order to
communicate with an AUTOSAR component. An example is a state manager, which
may need an acknowledgement of an AUTOSAR component before it can change a
state.

Instead of the previous case, a service may use the provide port typed by a sender-
receiver interface to inform AUTOSAR components about e.g. state changes, if no
immediate answer is needed.

In general, the selection of the appropriate communication paradigm is use-case de-
pendent. No general concept except the already defined rules is required. However,
note that many services are already predefined by the module specifications of the
AUTOSAR Basic Software service layer.

In the VFB view the usage of services by AUTOSAR components is modeled by using
a specific graphical notation (see Section 3.3.1) for ports.

The SWC-Template provides means to attribute the associated interfaces as well as
the software components: interfaces mark the attribute isService as true, software
components set the attribute ServiceNeeds to an appropriate value.

7.2.2 Location of a Service

The examples shown in Figure 7.1 and Figure 8.4 point to a characteristic property of
software components accessing specific AUTOSAR services. They can only be inte-
grated onto those ECUs which provide the binding counterparts within the AUTOSAR
Basic Software.

90 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

This means that the implementation of a service must be located on the same ECU
as the AUTOSAR component instance, which is using the service. This is required for
good performance and reliability as well as for technical reasons. For example, a timer
service is much easier to use locally on the same CPU. For that kind of services we
will have instances on different ECUs.

7.2.3 Distribution of Requests to Remote Services

A direct communication from an application software component to a remote ECU’s
AUTOSAR service is not possible. On the other hand, the concept of application and
vehicle mode management requires the distribution of mode requests from one mode
requestor to the service of a Basic Software Mode Manager (BswM) on every ECU. To
distribute the requests, service proxy SW components are used.

The service proxy SW component is similar to an application SW component. But,
the same service proxy SW component instance is copied during the system design to
several ECUs while an application SW component instance is mapped to exactly one
ECU in the system.

As a consequence, a connection between an application software component and a
service proxy SW component that is shown as 1:1 connection in the VFB will be a 1:n
connection in the system. This allows the distribution of a request to several ECUs.

91 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Figure 7.2: Example of a Sender-Receiver Interface "ECUMCurrentMode" with a single
ModeDeclarationGroup

7.2.4 Platform dependent types

Many data types within the Basic software are platform dependent to gain efficiency.
For example: the type of IDs can depend on the entities to be handled within a specific
ECU, which would restrict the reusability of application software components.

For source code integrated SW-C no problem occurs, because the type will be known
at compile time. For SW-C integrated as object code a problem might occur, because
the assumed type during compilation of the SW-C might differ from the type assumed
by the basic software modules during their compilation.

The solution to this problem is currently that at least parts of SW-C’s have to be recom-
piled after the contract phase although they should be integrated as object code. The
integrator in this case has to define the appropriate types and provide the appropriate
header file to the suppliers of basic software and application software components.

92 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

This results in the restriction that code optimizations within the SW-C and the basic
software shall not rely on specific platform dependent types, e.g., the size of data
types may vary between different platforms.

7.2.5 Configuration

As most parts of the Basic Software, a service may offer static configuration parame-
ters (i.e. configuration parameters to be defined prior to compile time) in order to be
implemented efficiently, e.g. by keeping memory usage low. In many cases these con-
figuration parameters will depend on the number and type of AUTOSAR components
by which the service will be used. In these cases at least parts of the software for AU-
TOSAR services on a specific ECU have to be recompiled at system integration time.
Appropriate processes and tools for this have to be specified.

However, this configuration is not part of the VFB view. A good overview of the nec-
essary configuration process needed for AUTOSAR services is given in the "Software
Component Template" specification [5].

93 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

7.3 List of Services

AUTOSAR services of the following BSW modules are available:

• Basic Software Mode Manager - BswM

• Communication Manager - ComM

• Crypto Service Manager - Csm

• Default Error Tracer - Det

• Diagnostic Communication Manager - Dcm

• Diagnostic Communication Manager for SAE J1939 - J1939Dcm

• Diagnostic Event Manager - Dem

• Diagnostic Log and Trace - Dlt

• Diagnostic over IP - DoIP

• ECU State Manager - EcuM

• Secure Onboard Communication - SecOC

• NVRAM Manager - NvM

• Operating System - Os

• Request Manager for SAE J1939 - J1939Rm

• Synchronized Time-Base Manager - StbM

• Watchdog Manager - WdgM

94 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

8 Mode Management

8.1 Introduction

Most software components possess specific runnables for initialization, for finalization
and for an operational or run mode. The behavior of certain software components might
depend in even more complex ways on some system modes. As these components
typically do not change their modes themselves, they need to react to mode changes
triggered by other components.

Ergo, AUTOSAR needs to support

• The definition of modes

• Communication mechanisms that allow components (including AUTOSAR ser-
vices) to exchange information about modes and mode-changes

• Scheduling mechanisms that allow components to specify how they behave in
different modes

This section briefly describes the generic mechanisms provided by AUTOSAR to sup-
port this. These generic mechanisms can then be applied to typical automotive use-
cases, such as changes in the ECU’s power-state or in the mode of the communication
bus.

8.2 Defining modes

In AUTOSAR the mode switch notification mechanism is used to exchange modes
between components. A mode switch interface includes a so called "ModeDeclaration
Group".

Figure 8.1 shows an example of the definition of the mode switch interface "ECUMCur-
rentMode" containing a single reference to the ModeDeclarationGroup "ECUMMode".

Figure 8.1: Example of a Sender-Receiver Interface "ECUMCurrentMode" with a single
ModeDeclarationGroup

The ModeDeclarationGroup is a set of ModeDeclarations. Within the definition of the
group, one ModeDeclaration describes the initial mode that is assumed at startup. For
example, for the case of the ECU power state, the ModeDeclarationGroup "ECUM-
Mode" could define the group of modes named { STARTUP_SHUTDOWN, RUN,
POST_RUN, SLEEP, WAKE_SLEEP }, with STARTUP_SHUTDOWN as the initial
mode.

95 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

The modes are mutually exclusive: at run-time, there is always one active mode in a
ModeDeclarationGroup. The initial mode of a ModeDeclarationGroup is active before
any mode switches occurred.

[TR_VFB_00115] Exactly one active mode per mode declaration group
Previous identifiers: EXP_VFB_00115

⌈There shall be exactly one active mode for each ModeDeclarationGroup in a mode
PPort of a component⌋

[TR_VFB_00116] Initial mode of mode declaration groups known
Previous identifiers: EXP_VFB_00116

⌈At configuration time, the initial mode of each ModeDeclarationGroup in a mode
switch interface is known⌋

[TR_VFB_00112] Mode declaration groups known for mode switch interface
Previous identifiers: EXP_VFB_00112

⌈At configuration time, it is known which ModeDeclarationGroup a mode switch inter-
face contains⌋

[TR_VFB_00114] Modes of mode declaration groups known
Previous identifiers: EXP_VFB_00114

⌈At configuration time, the modes of each ModeDeclarationGroup in a mode switch
interface are known⌋

8.3 Communicating modes

Modes are transmitted via the mode switch notification mechanism.

There will be software-components that have PPorts typed by mode switch interfaces.
The components that provide these interfaces set the current mode within the group
and are therefore called "mode-managers".

The counterparts of the "mode-managers" are components whose behavior depends
on the current mode. These modules have RPorts typed by the same interface. If the
corresponding PPorts and RPorts are connected via a connector, these components
are informed about mode-switches and the current mode set by the mode-manager.
Figure 8.2 shows an example of this for the case that the mode-manager is an AU-
TOSAR Service. This figure is an extract out of the example of Figure 3.13.

96 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Figure 8.2: Example of a the communication of a mode from the "ECU State Manager"
Service-component to an application software-component

For mode switch interfaces, only 1:n communication (1 mode manager and n mode
users, with n ≥ 0) is possible. The single mode manager owns the current mode of the
ModeDeclarationGroup. The users are informed of any mode switch of the manager.

For the mode managers of the AUTOSAR basic software, there is typically for each
mode switch based service also a sender receiver based service to request a mode.
E.g., for each ComM user one mode switch interface indicates the currently available
communication mode and a sender receiver interface is used to request the desired
communication mode. In this pattern there is usually one mode requestor that is at the
same time a mode user. Figure 8.3 shows this pattern for the ComM.

97 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Figure 8.3: Example of a the communication of a mode from the "ECU State Manager"
Service-component to an application software-component

Due to the strong synchronization between a mode manager and the mode users,
mode switch communication is only supported in ECU local communication. For a
mode management that spans several ECUs, a communication pattern including ser-
vice software proxy components for the distribution of mode requests and the BswM
for the switching of modes on each ECU is recommended (see Section 7.2.3).

8.4 Mode-managers: components that control modes

Entering and leaving modes is initiated by a mode manager. A mode manager might for
example be the Communication Manager, the ECU State Manager, or an application
mode manager. An application mode manager is a software-component that provides
the service of switching modes.

Such a mode manager contains a PPort typed by a mode switch interface which ref-
erences the appropriate ModeDeclarationGroup. The state of the mode managers will
be sent to other component using sender-receiver communication.

Optionally, a mode manager can have an RPort typed by a sender receiver interface
with a data element that is mapped to the same ModeDeclarationGroup to receive
mode requests from a mode requestor.

98 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

8.5 Components that depend on modes

Some software components need to be capable of reacting to state changes issued
by mode managers and adapt their behavior to the new situation. Such software-
components include an RPort typed by a mode switch interface which references the
appropriate ModeDeclarationGroup.

Figure 8.4 shows an example whereby the mode switch interface "EcuMCurrentMode"
is used to type the RPort "ecuMode" of the component "SeatHeatingControl". As the in-
terface contains the ModeDeclarationGroup "ECUMMode", this indicates that the com-
ponent "SeatHeatingControl" wants to be notified through its port "ecuMode" whenever
there is a change in the "ECUMMode" (this could for example be the current mode of
the ECU on which the component runs). The component could disable the execution
of certain runnables during the mode STARTUP_SHUTDOWN and start initialization
runnables on the transition to the mode RUN.

Figure 8.4: Example showing the use of the mode switch Interface "ECUMCurrentMode"
to type the Port "ecuMode" of the component "SeatHeatingControl"

[TR_VFB_00117] Receiver subscriptions to mode switches known
Previous identifiers: EXP_VFB_00117

⌈At configuration time, it must be known which mode switches, the receiver of a Mode
DeclarationGroup in a mode switch interface wants to be informed of⌋

99 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

[TR_VFB_00119] Mode transitions perceived synchronously
Previous identifiers: EXP_VFB_00119

⌈The transition of modes received from the same ModeDeclarationGroup instance of
a mode manager shall be perceived synchronously by all mode users⌋

Since the behavior of an atomic software component is mainly determined by its set
of runnables, the component can specify its reaction to mode changes at the level of
runnables: the component can specify that certain runnables are called when mode-
switches occur or that certain runnables only run in specific modes.

100 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

9 Port Groups

There is a natural hierarchical grouping of ports given by the aggregation of port pro-
totypes in software components. In addition, AUTOSAR supports alternative grouping
of ports according to other aspects of the vehicle system software. This is expressed
by port groups. The main use case for port groups is to express the required com-
munication resources during a certain mode of operation like a limp home mode or a
diagnostic mode. These modes are usually orthogonal to the decomposition in com-
ponents and sub-components.

A port group has the following features:

• aggregated to a software component type

• list of require and provide port prototypes of the software component

• reference to the sub component port groups that are merged into the port group.

As a practical use case, a port group can reflect a ComM user in the VFB. The con-
figuration of communication channels associated with a ComM user can be extracted
from the VFB model automatically.

There can be independent mode managers for terminal clamp control, for power sav-
ing, for diagnostic mode, etc. Each of these mode mangers can also have independent
partially overlapping port groups.

Figure 9.1: Example of the use of port groups ’PowerSave’ that denote ports that are
required during a PowerSave mode. Not required communication resources could be
deactivated during PowerSave mode.

101 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

10 Measurement and Calibration

In embedded automotive software design, measurement means "monitoring" of ECU
internal signals, state variables and intermediate data. It’s realized by reading content
of memory cells of a running ECU. In AUTOSAR such data is referred to as measur-
able.

"Calibration" means the manipulation of particular calibration parameters. In general,
a calibration parameter characterizes the dynamics of a control algorithm. From a
software implementation point of view it is a variable with read-only access during
the normal operation of an ECU. Since the calibration parameter can be set by the
calibration system, it is possible to manipulate and readjust the determining factors of
closed or open control loop algorithms. Thus, calibration plays an important role during
the development process until near completion.

10.1 Calibration

AUTOSAR provides two mechanisms for calibration:

• Port-based calibration (based on the Parameter Software Components): this
mechanism is explicitly visible on the VFB and reuses the already described port-
and connector-mechanisms

• Private calibration parameters: these reside within an atomic software-
component.

10.1.1 Port-based calibration

This mechanism builds upon the common VFB patterns in the following way:

A component requiring calibration parameters defines an RPort typed by a parameter
interface.

The components that contain the actual values of the calibration parameters are called
"parameter software components". In contrast to normal software-components, pa-
rameter software components do not possess an internal behavior but are simple con-
tainers that provide (calibration) parameters. They do this through a PPort typed by a
compatible parameter interface. Note that the parameter interface as well as the pa-
rameter software components are also used for fixed data exchange and not just used
for calibration. The "implementation policy" of the elements on the port interface de-
termines if it is fixed, const or variable data that is being accessed from the parameter
software component.

The fact that a component is calibrated by a specific parameter software component
is expressed through a connector between the corresponding ports. The calibration

102 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

data is made available via the provide port of the parameter software component to a
corresponding require port of any software component (compatibility rules do apply).

Since in this model the parameters are visible on the virtual bus, parameter software
components are the way to express public calibration parameters.

Depending on whether the corresponding components are instantiated or not, several
different cases can be distinguished, described in the following sections.

10.1.1.1 Pure single instantiation

Figure 10.1 shows the simplest case, where a software component has access to a
particular set of calibration parameters by ’receiving’ them via a connection from a
providing parameter software component.

Figure 10.1: A software component has access to a calibration parameter encapsulated
in a parameter software component

It should be noted here that the parameter software components and software compo-
nents connected are residing per se on the same ECU. Actually, the parameter soft-
ware components are only representing memory containing the encapsulated (calibra-
tion) parameter.

10.1.1.2 Multiple instantiation of the involved software components

Figure 10.2 and Figure 10.3 depict the case, where several software components (in-
stances) of the same or of different component-type have access to the same set of
(calibration) parameters.

103 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Figure 10.2: Two software components of the same type access the same calibration
parameter encapsulated in a parameter software component

Since the (calibration) parameters need to reside on the same ECU as the software
component accessing them, the parameter software component needs to be duplicated
if the different software component instances are mapped onto different ECUs (see
Figure 10.3).

104 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Figure 10.3: Two software components of the same type have access to a calibration pa-
rameter encapsulated in a parameter software component but the software components
are mapped onto different ECUs

10.1.1.3 Multiple instantiation of the involved calibration components

Figure 10.4 shows a configuration, where different software component instances need
to access different sets of the same type of calibration parameter.

Here, it is only required - as explained above - that connected instances of calibration
and software components are integrated on the same ECU. Beyond it, the different
instances can reside on a single or different ECUs.

Figure 10.4: Two software components of the same type have been assigned different
instances of the same Parameter Software Component Type

105 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

10.1.2 Private calibration

The private calibration mechanism is based on parameters that are private and internal
to a software component. From the software component implementation point of view
a calibration parameter is a variable with only read-access during the normal operation
of the ECU. A calibration parameter can be defined per instance of a software com-
ponent (perInstanceParameter) or can be shared between all instances of a software
component (sharedParameter).

Calibration parameters are not visible per se on the virtual functional bus, since it is
considered an element associated to an internal behaviour of a software component.

Unlike the structure of software components and compositions which is considered to
be specified during system design, the internal behaviour can be defined later in time
when particular software components are supplied. With this respect the visibility of the
private calibration parameters is rather a function of time, depending on who assigns
them when.

10.2 Measurement

In AUTOSAR systems, only actual instances of the following prototypes if marked as
measurable can be monitored:

Communication between AUTOSAR SW-Components:

• VariableDataPrototypes enclosed in a sender-receiver interface

• Arguments of ClientServerOperations enclosed in a client-server interface

AUTOSAR SW-Component internal:

• Content of InterrunnableVariables which are used for communication between
Runnables of one AUTOSAR SW-Component.

106 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

11 VFB Features and Profiles

11.1 Motivation and Introduction

The idea of identifying features and profiles on VFB level came from the fact that there
are many mechanisms on the RTE and communication paradigms between SW-Cs.
The resulting tables of RTE/VFB features enhance the documentation of RTE/VFB
mechanisms to have a high level means to characterize SW-Cs, ECU platform or even
tool capabilities.

The integration effort of SW-Cs into given platforms depends on which features are
used. In case SW-Cs have to be integrated into a given system where design deci-
sions like scheduling are already made and implemented in CDDs or other SW-Cs,
integrating SW-Cs that use certain RTE features might even lead to a contradiction.

These tables can support discussions of integration projects in supplier - OEM collabo-
ration in an early project stage. Here they characterize the bundle of SW-Cs that have
to be integrated into an ECU or to identify the integration capability of a given system.
This means which features on VFB level a given ECU can support.

On the other hand, SW-C code generators and other tools supporting AUTOSAR
methodology might support only a subset of VFB and RTE features. The supported
features may be even configurable to be or not to be used in project context. Also
these subsets of features are worth to be characterized with this approach to simplify
software sharing and integration.

The tables provided also serve to define reduced feature sets (so called VFB/RTE
profiles), which can also be applied in different projects or SW-C integration scenarios.
The definition of these profiles as reduced feature sets is up to the different partners
and not part of the standard. These profiles will probably be OEM, supplier and even
domain specific.

Note that this approach is intentionally different and more fine-grained than the "Fea-
ture Specification of the BSW Architecture and the RTE" document, but focuses on
VFB only."

11.2 Feature tables

The features are described in the tables below. They result from real project experience
and forecast of application SW-Cs to be shared. Thus, they can serve as a basis and
can be extended by partners in a feature/profile based technical discussion.

A table entry i.e. a VFB feature is a single aspect of functionality on VFB/RTE level
relevant from a single ECU’s perspective that have major influence on

• SW-C complexity,

• integration effort,

107 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

• architectural effort, and

• compatibility with decisions taken in ECU design.

The tables distinguish between INTRA-ECU (number R) and INTER-ECU (number E)
aspects. The separation of inter-ECU communication (RTE with COM Stack) from the
other RTE features was found to be useful due to their different nature in technical
realisation. Inter-Partition aspects are also covered in the partition part of the Intra-
ECU table.

Note that features can be used to describe single SW-Cs but mainly have the focus to
describe the whole "subsystem" mapped to a particular ECU in a SW sharing project.

11.2.1 Intra-ECU features

R 1 SENDER-REICEIVER IMPLEMENTATION DATA TYPE
Informal "Category" CATEGORY Refinements of the feature description in

SWC terms
R 1.1 PRIMITIVE VALUE, DATA_REFERENCE,

FUNCTION_REFERENCE
category "VALUE", "DATA_REFERENCE" or
"FUNCTION_REFERENCE" for
ImplementationDataType for
Sender-Receiver Communication is used

R 1.2 COMPLEX STRUCTURE, ARRAY, UNION Structures, Unions or arrays are used as
category for ImplementationDataType for
Sender-Receiver Communication

R 1.3 DYNAMIC VARIABLE_LENGTH SwBaseType with category = VARIABLE_
LENGTH are used for Sender-Receiver
Communication.

R 2 SENDER-RECEIVER COMMUNICATION
Semantics Feature Refinements of the feature description in

SWC terms
R 2.1 Data (Last-is-best) VariableDataPrototypes configured with sw

ImplPolicy = Standard are used in S/R Port
Prototypes’ SenderReceiverInterface

R 2.2 Data (Last-is-best) INIT value PPortPrototype/RPortPrototypes
configured with InitValue attribute in the
NonqueuedSenderComSpec, Nonqueued
ReceiverComSpec or at corresponding
VariableDataPrototypes are used.

R 2.3 Data (Last-is-best) Invalidation SenderReceiverInterfaces used by Port
Prototype are configured with handleInvalid
attribute of the InvalidationPolicy is set to
keep or replace.

R 2.4 Data (Last-is-best) Filter RPortPrototypes configured with Filter
attributes in NonqueuedReceiverComSpec
are used.

R 2.5 Data (Last-is-best) Alive Timeout One or more RPortPrototype configured with
AliveTimeOut attribute greater than 0 in
NonqueuedReceiverComSpec

R 2.6 Data (Last-is-best) Acknowledgement One or more PPortPrototype configured with
Attribute TransmissionAcknowledgment
Request in SenderComSpec.

▽

108 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

△
R 2.7 Data (Last-is-best) NeverReceived indication (Rcv

Side)
One or more RPortPrototype configured with
Attribute HandleNeverReceived = TRUE in
NonqueuedReceiverComSpec.

R 2.8 Data (Last-is-best) Enableupdate indication (Rcv
Side)

One or more RPortPrototype configured with
Attribute enableUpdate = true in
NonqueuedReceiverComSpec.

R 2.9 Data (Last-is-best) Explicit access (Read/Write API) DataReceivePoint / DataSendPoint exist at
least in one RunnableEntity.

R 2.10 Data (Last-is-best) Implicit access (IRead/Iwrite) DataReadAccess / DataWriteAccess exist
at least in one RunnableEntity.

R 2.11 Data (Last-is-best) Implicit access with special
semantics: coherency groups

DataReadAccess / DataWriteAccess exist
at least in one RunnableEntity. RteImplicit
Communication containers are defined with
with RteCoherentAccess set to "TRUE" (i.e.
Coherency groups are defined)

R 2.12 Data (Last-is-best) Implicit access with special
semantics: Immediate buffer
update

DataReadAccess / DataWriteAccess exist
at least in one RunnableEntity. RteImplicit
Communication containers are defined with
with RteImmediateBufferUpdate set to
"TRUE" (i.e. specific buffer update handling is
required for some implicit read/write access)

R 2.13 Data (Last-is-best) Handle out of range One or more RPortPrototype / PPort
Prototype configured with Attribute handle
OutOfRange (value must be different that
NONE) of the respective SenderComSpec
or ReceiverComSpec.

R 2.14 Data (Last-is-best) End to end protection One or more RPortPrototype / PPort
Prototype configured with Attribute usesEnd
ToEndProtection = TRUE in the Receiver
ComSpec and/or SenderComSpec.

R 2.15 Event (queued) VariableDataPrototype in SenderReceiver
Interface is configured with swImplPolicy =
Queued

R 2.16 Event (queued) Blocking Receive Attribute WaitPoint in a RunnableEntity with
TriggerRef to a DataReceivedEvent is
used.

R 2.17 Event (queued) Handle out of range One or more PPortPrototype / RPort
Prototype configured with Attribute handle
OutOfRange attribute in the respective
SenderComSpec or ReceiverComSpec.

R 2.18 Event (queued) End to end protection One or more PPortPrototype / RPort
Prototype configured with Attribute usesEnd
ToEndProtection = TRUE in the Receiver
ComSpec and/or SenderComSpec.

R 3 INTER-RUNNABLE VARIABLE
Access Feature Refinements of the feature description in

SWC terms
R 3.1 EXPLICIT PRIMITIVE DATA A explicitInterRunnableVariable is declared

as primitive (implementation data type of
category "value") VariableDataPrototype
and used in a SwcInternalBehavior.

R 3.2 EXPLICIT COMPLEX DATA A explicitInterRunnableVariable is declared
as complex (implementation data type of
category "array", "structure" or "union")
VariableDataPrototype and used in a Swc
InternalBehavior.

▽

109 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

△
R 3.3 IMPLICIT PRIMITIVE DATA A implicitInterRunnableVariable is declared

as primitive (implementation data type of
category "value") VariableDataPrototype
and used in a SwcInternalBehavior.

R 3.4 IMPLICIT COMPLEX DATA A implicitInterRunnableVariable is declared
as complex (implementation data type of
category "array", "structure" or "union")
VariableDataPrototype and used in a Swc
InternalBehavior.

R 4 CLIENT-SERVER COMMUNICATION
Semantics Feature Refinements of the feature description in

SWC terms
R 4.1 Synchronous Reentrant server A SynchronousServerCallPoint exists and

the corresponding ServerRunnableEntity is
configured with attribute "canBeInvoked
Concurrently = true"

R 4.2 Synchronous Non-reentrant server A SynchronousServerCallPoint exists and
the corresponding ServerRunnableEntity is
configured with attribute "canBeInvoked
Concurrently = false"

R 4.3 Synchronous Exclusive areas A SynchronousServerCallPoint exists and
the corresponding ServerRunnableEntity
applies ExclusiveAreas (runsInside
ExclusiveArea or canEnterExclusiveArea)

R 4.4 Synchronous Cross Partition A SynchronousServerCallPoint exists and
the corresponding ServerRunnableEntity is
not in the same RTE partition.

R 4.5 Synchronous With timeout A SynchronousServerCallPoint with
attribute TimeOut > 0 exists.

R 4.6 Asynchronous Clients uses Rte_Result API to
poll (no ASYNCHRONOUS_
SERVER CALL_RETURNS
EVENT Re)

An AsynchronousServerCallPoint and
corresponding AsynchronousServerCall
ResultPoint exists but no correspnding
AsynchronousServerCallReturnEvent
exists.

R 4.7 Asynchronous Clients uses Rte_Result API to
poll (with ASYNCHRONOUS_
SERVER CALL_RETURNS
EVENT Re)

An AsynchronousServerCallPoint and
corresponding AsynchronousServerCall
ResultPoint exists and a corresponding
AsynchronousServerCallReturnEvent
triggers a runnbable but no WaitPoint
references it

R 4.8 Asynchronous with WaitPoint i.e. blocking Rte_
Result

An AsynchronousServerCallReturnEvent
exists and a WaitPoint references it.

R 4.9 Asynchronous with Timeout (also without
Waitpoint)

An AsynchronousServerCallPoint with
attribute TimeOut > 0 exists.

R 4.10 PORT-DEFINED
ARGUMENT VALUES

A PortAPIOption is configured with attribute
portArgValue in a SwcInternalBehavior.

R 5 TRIGGER COMMUNICATION
Semantics Feature Refinements of the feature description in

SWC terms
R 5.1 External Trigger Non Queued Portinterface typed by TriggerInterface with

triggers configured with swImplPolicy =
Standard referenced by an External
TriggeringPoint are used

▽

110 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

△
R 5.2 External Trigger Queued Portinterface typed by TriggerInterface with

triggers configured with swImplPolicy =
Queued referenced by an External
TriggeringPoint are used

R 5.3 Inter runnable Trigger Non Queued InternalTriggeringPoint configured with sw
ImplPolicy = Standard are used

R 5.4 Inter runnable Trigger Queued InternalTriggeringPoint configured with sw
ImplPolicy = Queued are used

R 6 RTE EVENTS
Reaction Event Type Refinements of the feature description in

SWC terms
R 6.1 RE Activation TIMING_EVENT A TimingEvent references a Runnable

Entity.

R 6.2 RE Activation DATA_RECEIVED_EVENT A DataReceivedEvent references a
RunnableEntity, a required VariableData
Prototype but no WaitPoint references the
DataReceivedEvent.

R 6.3 RE Activation DATA_RECEIVED_ERROR_
EVENT

A DataReceivedErrorEvent references a
RunnableEntity, a required VariableData
Prototype but no WaitPoint references the
DataReceivedErrorEvent.

R 6.4 RE Activation DATA_SEND_COMPLETED_
EVENT

A DataSendCompletedEvent references a
RunnableEntity, a required VariableData
Prototype but no WaitPoint references the
DataSendCompletedEvent.

R 6.5 RE Activation OPERATION_INVOKED_EVENT An OperationInvokedEvent references a
RunnableEntity.

R 6.6 RE Activation MODE_SWITCH_EVENT A ModeSwitchEvent references a Runnable
Entity.

R 6.7 RE Activation MODE SWITCH ACK EVENT with
Timeout

A ModeSwitchAckEvent references a
RunnableEntity, a ModeDeclarationGroup
Prototype and the Attribute ModeSwitched
AckRequest is not configured in
NonqueuedSenderComSpec.

R 6.8 RE Activation MODE SWITCH ACK EVENT
without Timeout

A ModeSwitchAckEvent references a
RunnableEntity, a ModeDeclarationGroup
Prototype and the Attribute TimeOut in
ModeSwitchedAckRequest is configured in
NonqueuedSenderComSpec.

R 6.9 RE Activation ASYNCHRONOUS_SERVER
CALL_RETURNS EVENT

An AsynchronousServerCallReturnsEvent
references a RunnableEntity.

R 6.10 RE Activation BACKGROUND_EVENT An BackGroundEvent references a
RunnableEntity.

R 6.11 RE Activation DATA_WRITE_COMPLETED_
EVENT

A DataWriteCompletedEvent references a
RunnableEntity, a provided VariableData
Prototype but no WaitPoint references the
DataWriteCompletedEvent.

R 6.12 RE Activation EXTERNAL_TRIGGER_
OCCURED_EVENT

An ExternalTriggerOccurredEvent
references a RunnableEntity.

R 6.13 RE Activation INTERNAL_TRIGGER_
OCCURED_EVENT

An InternalTriggerOccurredEvent
references a RunnableEntity.

R 6.14 RE Activation INIT_EVENT An InitEvent references a RunnableEntity.

R 6.15 RE Activation SWC_MODE_MANAGER_
ERROR_EVENT

An SwcModeManagerErrorEvent
references a RunnableEntity.

▽

111 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

△
R 6.16 Wakeup of Waitpoints DATA_RECEIVED_EVENT A DataReceivedEvent references a

RunnableEntity and a required Variable
DataPrototype. A WaitPoint references the
DataReceivedEvent.

R 6.17 Wakeup of Waitpoints DATA_SEND_COMPLETED_
EVENT

A DataSendCompletedEvent references a
RunnableEntity and a provided Variable
DataPrototype. A WaitPoint references the
DataSendCompletedEvent.

R 6.18 Wakeup of Waitpoints ASYNCHRONOUS_SERVER
CALL_RETURNS EVENT

An AsynchronousServerCallReturnsEvent
references a RunnableEntity and a Wait
Point references the AsynchronousServer
CallReturnsEvent

R 6.19 Wakeup of Waitpoints MODE_SWITCH_ACK_EVENT A ModeSwitchAckEvent references a
RunnableEntity, a ModeDeclarationGroup
Prototype and the Attribute Transmission
Acknowledge is configured in Nonqueued
SenderComSpec. One WaitPoint
references the ModeSwitchAckEvent.

R 6.20 Wakeup of Waitpoints
with timeout

A timout attribute > 0 is specified for at least
one WaitPoint

R 7 MEASUREMENT & CALIBRATION
Feature Sub-feature Refinements of the feature description in

SWC terms
R 7.1 Measurement Port-to-Port S/R communication A swCalibrationAccess exists for a Variable

DataPrototype used in an interface of a
sender-receiver port and is set to readOnly
or readWrite.

R 7.2 Measurement IRV One swCalibrationAccess exists for a
VariableDataPrototype in the role implicit
InterRunnableVariable or explicitInter
RunnableVariable and is set to readOnly or
readWrite.

R 7.3 Measurement Port-to-Port C/S communication A swCalibrationAccess exists for an
ArgumentDataPrototype used in an
interface of a client-server port and is set to
readOnly.

R 7.4 Measurement Non-volatile data communication One swCalibrationAccess exists for a
VariableDataPrototype used in an NvData
Interface of a non volatile port of a Sw
ComponentPrototype is set to readOnly or
readWrite.

R 7.5 Measurement PIM One swCalibrationAccess exists for a
VariableDataPrototype in the role arTyped
PerInstanceMemoryand is set to readOnly
or readWrite.

R 7.6 Measurement RAM Block of a NV Block SW-C
Type

One swCalibrationAccess exists for a
VariableDataPrototype in the role ramBlock
of a NvBlockSwComponentType’s NvBlock
Descriptor and is set to readOnly or read
Write.

R 7.7 Calibration SWC internal: CData API (Shared
Calibration Parameters)

A ParameterDataPrototype is attached to a
SwcInternalBehavior in sharedParameter
role.

R 7.8 Calibration SWC internal: CData API A ParameterDataPrototype is attached to a
SwcInternalBehavior in PerInstance
Parameter role.

▽

112 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

△
R 7.9 Calibration ParameterSwComponent A ParameterSwComponentPrototype is

used as a SwComponentPrototype within a
CompositionSwComponentType.

R 7.10 Calibration Non-volatile data communication A swCalibrationAccess of a VariableData
Prototype is used in an NvDataInterface of
a non volatile data port of a SwComponent
Prototype and is set to readWrite.

R 7.11 Calibration ROM Block of a NV Block SW-C
Type

A swCalibrationAccess of a VariableData
Prototype in the role romBlock of a Nv
BlockSwComponentTypes’s NvBlock
Descriptor is set to readWrite.

R 7.12 Calibration Data emulation without SW
support

The attribute RteCalibrationSupport is
configured with value NONE.

R 7.13 Calibration Data emulation with SW support,
single-pointed method

The attribute RteCalibrationSupport is
configured with value SINGLE_POINTERED.

R 7.14 Calibration Data emulation with SW support,
double-pointed method

The attribute RteCalibrationSupport is
configured with value DOUBLE_
POINTERED.

R 7.15 Calibration Data emulation with SW support,
init-RAM parameter method

The attribute RteCalibrationSupport is
configured with value INITIALIZED_RAM.

R 8 MODES
Feature Sub-feature Refinements of the feature description in

SWC terms
R 8.1 Mode Dependency One RTEEvent is configured with attribute

ModeDisablingDependency.

R 8.2 Mode Access (reading
of current mode)

A ModeAccessPoint exists in at least one
RunnableEntity

R 8.3 ModeSwitch
Acknowledgement

ModeSwitchedAckrequest attribute exists in
the ModeSwitchSenderComSpec.

R 8.4 Synchonous mode
switches

The attribute supportsAsynchronousMode
Switch is not configured to TRUE in Mode
SwitchRecieverComSpec (for software
components) or BswModeReceiverPolicy
(for BSW modules) of at least one ModeUser
of a mode manager => mode machine
instance uses synchronous mode switch
behavior

R 8.5 Asynchonous mode
switches

The attribute supportsAsynchronousMode
Switch is configured with TRUE in all Mode
SwitchReceiverComSpec (for software
components) or BswModeReceiverPolicy
(for BSW modules) of all mode users for a
mode manager (same ModeDeclaration
GroupPrototype). => mode machine instance
can use asynchronous mode switch behavior.

R 9 EXCLUSIVE AREA
Feature Sub-feature Refinements of the feature description in

SWC terms
R 9.1 RunnableCanEnter

ExclusiveArea
An ExclusiveArea exists in SwcInternal
Behavior and is used in the role "canEnter
ExclusiveArea" in the RunnableEntity.

R 9.2 RunnableRunsIn
ExclusiveArea

An ExclusiveArea exists in SwcInternal
Behavior and is used in the role "runsInside
ExclusiveArea" in the RunnableEntity.

113 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

R 10 Partitions
Feature Sub-feature Refinements of the feature description in

SWC terms
R 10.1 More than one Partiton The SwcToEcuMapping element in the

SystemTemplate references more than one
EcuPartitions for the given ECU.

R 10.2 More than one Partiton Partition used for Memory
Protection

Partitions are used to separate memory area
for SWC.

R 10.3 More than one Partiton Partition used for Timing
Protection

Partitions are used to separate Timing
budget for SWC.

R 10.4 More than one Partiton Partitions used on MultiCores Partitions are used to place SWC on
diiferent cores.

R 10.5 Partition Restart A Restart of a stopped Partition is required.

R 10.6 Inter Partition
Communication

SenderReceiver (Last-is-best) PortPrototypes connections with Sender
ReceiverInterfaces of SWCs mapped to
different partitions are used (corresponding
swImplPolicy = Standard)

R 10.7 Inter Partition
Communication

SenderReceiver (Event
semantics)

PortPrototypes connections with Sender
ReceiverInterfaces of SWCs mapped to
different partitions are used (corresponding
swImplPolicy = Queued)

R 10.8 Inter Partition
Communication

ModeSwitch PortPrototypes connections with Mode
SwitchInterfaces of SWCs mapped to
different partitions are used

R 10.9 Inter Partition
Communication

ClientServer (Sync) PortPrototypes connections with Client
ServerInterfaces of SWCs mapped to
different partitions are used. Synchronous
ServerCallPoint is used

R 10.10 Inter Partition
Communication

ClientServer (Async) PortPrototypes connections with Client
ServerInterfaces of SWCs mapped to
different partitions are used. Asynchronous
ServerCallPoint is used

R 11 PortInterface Mapping & Data Scaling

Feature Sub-feature Refinements of the feature description in
SWC terms

R 11.1 Connections with Data
Interfaces

Port connection with Data
Interface with port element name
mapping

Connections between PortInterfaces of
SenderReceiverInterface, NvDataInterface,
or ParameterInterface exist and a Variable
AndParameterInterfaceMapping is
associated with the connection. The Data
ProtoTypeMapping are used to connect
compatible DataPrototypes which different
shortnames (element name mapping).

R 11.2 Connections with Data
Interfaces

Port connection with Data
Interface with TEXTTABLE data
conversion

Connections between PortInterfaces of
SenderReceiverInterface, NvDataInterface,
or ParameterInterface exist and a Variable
AndParameterInterfaceMapping is
associated with the connection. The Data
ProtoTypeMapping uses a TextTable
Mapping to connect DataPrototypes with
CompuMethods of category TEXTTABLE
(i.e. to make the RTE generating a remapping
between table elements).

▽

114 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

△
R 11.3 Connections with Data

Interfaces
Port connection with Data
Interface with LINEAR conversion

Connections between PortInterfaces of
SenderReceiverInterface, NvDataInterface,
or ParameterInterface exist and a Variable
AndParameterInterfaceMapping is
associated with the connection. The Data
ProtoTypeMapping connects Data
Prototypes with CompuMethods of
category LINEAR or IDENTICAL (with
compatible Units or identical Physical
Representation) to rescale the elements (i.e.
to make the RTE generating a linear
conversion between port elements).

R 11.4 Client/Server
connections

ClientServer mapping with port
element name mapping

Connections between PortInterfaces of
ClientServerInterface exist and a Client
ServerInterfaceMapping is associated with
the connection to connect compatible
operations which different shortnames (just
name mapping).

R 11.5 Client/Server
connections

ClientServer mapping with
argument mapping

Connections between PortInterfaces of
ClientServerInterface exist and a Client
ServerInterfaceMapping is associated with
the connection including a DataPrototype
Mapping (role argumentMapping) to map
arguments with different names (just name
mapping of arguments).

R 11.6 Client/Server
connections

ClientServer mapping with
argument TEXTTABLE data
conversion

Connections between PortInterfaces of
ClientServerInterface exist and a Client
ServerInterfaceMapping is associated with
the connection including a DataPrototype
Mapping (role argumentMapping) + Text
TableMapping to map arguments of types
with CompuMethods of category TEXTTABLE
(i.e. to make the RTE generating a remapping
between operation argument values).

R 11.7 Client/Server
connections

ClientServer mapping with
argument LINEAR data
conversion

Connections between PortInterfaces of
ClientServerInterface exist and a Client
ServerInterfaceMapping is associated with
the connection including a DataPrototype
Mapping (role argumentMapping) to map
arguments of types with CompuMethods of
category LINEAR or IDENTICAL to rescale
the arguments (i.e. to make the RTE
generating a linear conversion between
operation arguments) .

R 11.8 Mode Switch
connections

Mode Switch mapping,
compatiple mode declarations

Connections between PortInterfaces of
ModeSwitchInterface exist and a Mode
InterfaceMapping is associated with the
connection (the referred ModeDeclaration
GroupPrototypes are compatible)

R 11.9 Mode Switch
connections

Mode Switch mapping, different
number of ModeDeclarations

Connections between PortInterfaces of
ModeSwitchInterface exist and a Mode
InterfaceMapping is associated with the
connection (the referred ModeDeclaration
GroupPrototypes have different number of
ModeDeclarations on mode manager and
mode user side)

R 11.10 Trigger connections Trigger Interface mapping Connections between PortInterfaces of
TriggerInterfaces exist and a Trigger
InterfaceMapping is associated with the
connection.

▽

115 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

△
R 11.11 Element mapping for

composite data types
used

for ImplementationsDataTypes
(category ARRAY, STRUCTURE)

DataProtoTypeMapping is used for Data
Interfaces with SubElementMapping to
map elements of ImplementationDataTypes
category ARRAY, STRUCTURE or to map/
select a composite data type to a primitive
element (n:1) mapping.

R 11.12 Element mapping for
composite data types
used

for ApplicationCompositeData
Types

DataProtoTypeMapping is used for Data
Interfaces with SubElementMapping to
map elements of ApplicationCompositeData
Types or to map/select a single element for a
n:1 mapping.

R 11.13 Element mapping for
composite data types
used

Mix between Implementations
DataTypes and Application
CompositeDataTypes

DataProtoTypeMapping is used for Data
Interfaces with SubElementMapping to
map elements of ApplicationCompositeData
Types against ImplementationsDataTypes
(ARRAY, STRUCTURE) or vice versa

R 12 RUNNABLE ACTIVATION OPTIONS
Feature Sub-feature Refinements of the feature description in

SWC terms
R 12.1 Runnable activation

offset (Load
balancing)

The RteActivationOffset attribute is
configured in RteEventToTaskMapping.

R 12.2 Runnable minimum
start interval

The attribute minimumStartInterval is
configured for a RunnableEntity.

R 12.3 Wake up of wait point Please refer to wake of waitpoints section
RTEEVENTS.

R 13 Others
Feature Sub-feature Refinements of the feature description in

SWC terms
R 13.1 SWCs as Source code A Code element of SwcImplementation is

configured with attribute Category =
SWSRC.

R 13.2 SWCs as Object code A Code element of SwcImplementation is
configured with attribute Category = SWOBJ.

R 13.3 Multiple Instantiation The attribute supportsMultipleInstantiation
is set to TRUE for one AtomicSw
ComponentType.

R 13.4 Per Instance Memory c typed A PerInstanceMemory is defined in a Swc
InternalBehavior

R 13.5 Per Instance Memory AR typed A VariableDataPrototype is referenced in
the role arTypedPerInstanceMemory in a
SwcInternalBehavior.

R 13.6 Indirect API The attribute IndirectAPI is set to TRUE in
one PortApiOption Element.

R 13.7 Enable take address Referrable C-functions are enforced for at
least one port/function. The attribute enable
TakeAddress is set to TRUE in one PortApi
Option Element

R 13.8 Activating Rte Event An ExecutableEntity aggregates an
ExecutableEntityActivationReason to
retrieve the activating event via RTE API

R 13.9 Variant handling Variant handling via VariationPoints is used
in the model.

▽

116 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

△
R 13.10 Variant handling PreCompileTime Variability Variability defined with VariantionPoint or

AttributeValueVariationPoint with latest
bindingTime PreCompileTime is applied to
VFB/RTE relevant model elements

R 13.11 Variant handling PostBuild Variability Variability defined with VariantionPoint with
postBuildVariantCriterion is applied to VFB/
RTE relevant model elements

R 13.12 FlatMap A FlatMap is defined (and referenced in the
RootSwCompositionPrototype) for EcuExtract
or SystemExtract (this is mainly used to refer
to elements in the flat ECU extract) for
measurement and calibration

R 13.13 Combined Require
and Provide Ports

SwComponentPrototype with PRPort
Prototype as Ports are used

R 14 Runnable Category

Feature Sub-feature Refinements of the feature description in
SWC terms

R 14.1 Cat 1A RunnableEntitys without WaitPoints, using
only implicit S/R API’s are used

R 14.2 Cat 1B RunnableEntitys without WaitPoints, using
implicit and explicit API’s are used

R 14.3 Cat 2 RunnableEntitys with at least one WaitPoint
are used

R 15 Component Types

Feature Sub-feature Refinements of the feature description in
SWC terms

R 15.1 ApplicationSw
Component

A ComponentPrototype of type Application
SwComponentType exists.

R 15.2 EcuAbstractionSw
Component

A ComponentPrototype of type Ecu
AbstractionSwComponentType exists.

R 15.3 NvBlockSw
Component

A ComponentPrototype of type NvBlockSw
ComponenType exists.

R 15.4 ComplexDeviceDriver
SwComponent

A ComponentPrototype of type Complex
DeviceDriverSwComponentType exists.

R 15.5 SensorActuatorSw
Component

A ComponentPrototype of type Sensor
ActuatorSwComponentType exists.

R 15.6 ServiceSwComponent A ComponentPrototype of type ServiceSw
ComponentType exists.

R 15.7 ServiceProxySw
Component

A ComponentPrototype of type Service
ProxySwComponentType exists.

R 15.8 ParameterSw
Component

A ComponentPrototype of type Parameter
SwComponentTyp exists.

R 16 System Configuration

Feature Sub-feature Refinements of the feature description in
SWC terms

R 16.1 System Description
exchanged

Systems with category SYSTEM_
DESCRIPTION are exchanged in the
cooperation

▽

117 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

△
R 16.2 System Extract

exchanged
Systems with category SYSTEM_EXTRACT
are exchanged in the cooperation

R 16.3 Ecu Extract
exchanged

Systems with category ECU_EXTRACT are
exchanged in the cooperation

R 17 Interfaces to BSW Services
BSW Module Sub-feature Refinements of the feature description in

SWC terms
R 17.1 NVRAM Manager - Nv

M
with NvBlockSwComponenType. A ComponentPrototype is requiring some

NvM Interfaces (example: ClientServer
Interface NvMService) and NvBlockSw
ComponenType.

R 17.2 without NvBlockSwComponen
Type (old style).

A ComponentPrototype is requiring some
NvM Interfaces (example: ClientServer
Interface NvMService) and ServiceSw
Component is used. Data is represented
and accessed as Per Instance Memory.

R 17.3 Communication
Manager - ComM

A ComponentPrototype is requiring some
ComM Interfaces (example: ClientServer
Interface ComM_UserRequest, ComM_
ECUModeLimitation, ComM_ChannelWake
Up, ComM_ChannelLimitation or Sender
ReceiverInterface ComM_CurrentMode).

R 17.4 Diagnostic
Communication
Manager - Dcm

A ComponentPrototype is requiring some
Dcm Interfaces (example: ClientServer
Interface DcmServices, DCM_Roe, PidData
Services_<PIDData>, etc...).

R 17.5 Diagnostic Event
Manager - Dem

A ComponentPrototype is requiring some
Dem Interfaces (example: ClientServer
Interface DiagnosticMonitor, DiagnosticInfo,
GeneralDiagnosticInfo).

R 17.6 Function Inhibition
Manager - Fim

A ComponentPrototype is requiring some
Fim Interfaces (example: ClientServer
Interface FunctionInhibition).

R 17.7 ECU State Manager -
EcuM

A ComponentPrototype is requiring some
EcuM Interfaces (example: ClientServer
Interface EcuM_ShutdownTarget, EcuM_
BootTarget, EcuM_AlarmClock, etc...).

R 17.8 Basic Software Mode
Manager - BswM

A ComponentPrototype is requiring some
BswM Interfaces (example: ModeSwitch
Interface modeRequestPort<number>, mode
SwitchPort<number>, modeNotification
Port<number> etc...).

R 17.9 Watchdog Manager -
WdgM

A ComponentPrototype is requiring some
WdgM Interfaces (example: ClientServer
Interface WdgM_AliveSupervision).

R 17.10 Default Error Tracer -
DET

A ComponentPrototype is requiring some
DET Interfaces (example: ClientServer
Interface DETService).

R 17.11 Operating System -
OS

A ComponentPrototype is requiring some
OS Interfaces (example: ClientServer
Interface OsService).

R 17.12 Crypto Service
Manager - Csm

A ComponentPrototype is requiring some
Csm Interfaces (example: ClientServer
Interface Csm<Service>, CsmHash, Csm
MacGenerate, etc...).

▽

118 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

△
R 17.13 Diagnostic Log and

Trace - Dlt
A ComponentPrototype is requiring some
DLT Interfaces (example: ClientServer
Interface DLTService, LogTraceSession
Control, VerboseModeControl, etc...).

R 17.14 Synchronized
Time-Base Manager -
StbM

A ComponentPrototype is requiring some
StbM Interfaces (example: ClientServer
Interface StartTimer or SenderReceiver
Interface StatusNotification).

R 17.15 Diagnostic over IP -
DoIP

A ComponentPrototype is requiring some
DoIP Interfaces (example: ClientServer
Interface RoutingActivation>_Routing
Activation or CallbackTrigger
GIDSynchronization or CallbackGetPower
Mode)

R 18 RTE Integration features

Feature Sub-feature Refinements of the feature description in
SWC terms

R 18.1 VFB Tracing The RTE Generator RteVfbTrace is set to
TRUE.

R 18.2 Report RTE
development errors to
DET

The Attribute RteDevErrorDetect is set to
TRUE.

R 18.3 Bypass Support Component wrapper method Parameter RteBypassSupport is set to
COMPONENT_WRAPPER and RteBypass
SupportEnabled is set to TRUE for a
software component type

R 18.4 Bypass Support Direct buffer access method Parameter RteBypassSupportEnabled is
set to TRUE for a software component type

Table 11.1: Intra-ECU VFB/RTE features for profile definition

11.2.2 Inter-ECU features

These are features that might be relevant for interaction between ECUs. Their technical
realization and impact might be different in comparison to intra ECU.

E 1 SENDER-REICEIVER IMPLEMENTATION DATA TYPE
Informal "Category" CATEGORY Feature Refinements of the feature

description in SWC terms

E 1.1 PRIMITIVE VALUE, DATA_
REFERENCE,
FUNCTION_
REFERENCE

category "VALUE", "DATA_
REFERENCE" or "FUNCTION_
REFERENCE" for
ImplementationDataType for
Sender-Receiver Communication
is used

E 1.2 COMPLEX STRUCTURE,
ARRAY, UNION

Structures, Unions or arrays are
used as category for
ImplementationDataType for
Sender-Receiver Communication

E 1.3 DYNAMIC VARIABLE_LENGTH SwBaseType with category
VARIABLE_LENGHT are in use
for SenderReceiver
Communication.

119 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

E 2 SENDER-RECEIVER COMMUNICATION
Inter ECU Role Semantics Feature Refinements of the feature

description in SWC terms

E 2.1 As Sender Data (Last-is-best) VariableDataPrototypes
configured with swImplPolicy =
Standard are used in S/R Port
Prototypes’ SenderReceiver
Interface as PPorts

E 2.2 As Sender Data (Last-is-best) INIT value PPortPrototype configured with
InitValue attribute in the
NonqueuedSenderComSpec or
at corresponding VariableData
Prototypes are used.

E 2.3 As Sender Data (Last-is-best) Invalidation SenderReceiverInterfaces
used by PortPrototype are
configured with handleInvalid
attribute of the Invalidation
Policy is set to keep or replace.

E 2.4 As Sender Data (Last-is-best) Acknowledgement One or more PPortPrototype
configured with Attribute
TransmissionAcknowledgment
Request in SenderComSpec.

E 2.5 As Sender Data (Last-is-best) Explicit access (Write
API)

DataSendPoint exist at least in
one RunnableEntity.

E 2.6 As Sender Data (Last-is-best) Implicit access (Iwrite
API)

DataWriteAccess exist at least
in one RunnableEntity.

E 2.7 As Sender Data (Last-is-best) Implicit access with
special semantics:
coherency groups

DataReadAccess / DataWrite
Access exist at least in one
RunnableEntity. RteImplicit
Communication containers are
defined with with RteCoherent
Access set to "TRUE" (i.e.
Coherency groups are defined)

E 2.8 As Sender Data (Last-is-best) Implicit access with
special semantics:
Immediate buffer
update

DataReadAccess / DataWrite
Access exist at least in one
RunnableEntity. RteImplicit
Communication containers are
defined with with RteImmediate
BufferUpdate set to "TRUE" (i.e.
specific buffer update handling is
required for some implicit read/
write access)

E 2.9 As Sender Data (Last-is-best) Handle out of range One or more PPortPrototype
configured with Attribute handle
OutOfRange (value must be
different that NONE) of the
respective SenderComSpec.

E 2.10 As Sender Data (Last-is-best) End to end protection One or more PPortPrototype
configured with Attribute uses
EndToEndProtection = TRUE
in the SenderComSpec.

E 2.11 As Sender Event (queued) One or more VariableData
Prototype used in Sender
ReceiverInterface configured
with swImplPolicy = Queued

E 2.12 As Receiver Data (Last-is-best) VariableDataPrototypes
configured with swImplPolicy =
Standard are used in S/R Port
Prototypes’ SenderReceiver
Interface as RPorts

▽

120 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

△
E 2.13 As Receiver Data (Last-is-best) INIT value RPortPrototypes configured

with InitValue attribute in the
NonqueuedReceiverComSpec
or at corresponding Variable
DataPrototypes are used.

E 2.14 As Receiver Data (Last-is-best) Invalidation SenderReceiverInterfaces
used by PortPrototype are
configured with handleInvalid
attribute of the Invalidation
Policy is set to keep or replace.

E 2.15 As Receiver Data (Last-is-best) Filter RPortPrototypes configured
with Filter attributes in
NonqueuedReceiverComSpec
are used.

E 2.16 As Receiver Data (Last-is-best) Alive Timeout One or more RPortPrototype
configured with AliveTimeOut
attribute greater than 0 in
NonqueuedReceiverComSpec

E 2.17 As Receiver Data (Last-is-best) NeverReceived
indication (RcvSide)

One or more RPortPrototype
configured with Attribute Handle
NeverReceived = TRUE in
NonqueuedReceiverComSpec.

E 2.18 As Receiver Data (Last-is-best) Enableupdate
indication (RcvSide)

One or more RPortPrototype
configured with Attribute enable
Update = TRUE in Nonqueued
ReceiverComSpec.

E 2.19 As Receiver Data (Last-is-best) Explicit access (Read
API)

DataReceivePoint exist at least
in one RunnableEntity.

E 2.20 As Receiver Data (Last-is-best) Implicit access (Iread
API)

DataReadAccess exist at least
in one RunnableEntity.

E 2.21 As Receiver Data (Last-is-best) Implicit access with
special semantics:
coherency groups

DataReadAccess / DataWrite
Access exist at least in one
RunnableEntity. RteImplicit
Communication containers are
defined with with RteCoherent
Access set to "TRUE" (i.e.
Coherency groups are defined)

E 2.22 As Receiver Data (Last-is-best) Implicit access with
special semantics:
Immediate buffer
update

DataReadAccess / DataWrite
Access exist at least in one
RunnableEntity. RteImplicit
Communication containers are
defined with with RteImmediate
BufferUpdate set to "TRUE" (i.e.
specific buffer update handling is
required for some implicit read/
write access)

E 2.23 As Receiver Data (Last-is-best) Handle out of range One or more RPortPrototype
configured with Attribute handle
OutOfRange (value must be
different that NONE) of the
respective ReceiverComSpec.

E 2.24 As Receiver Data (Last-is-best) End to end protection One or more RPortPrototype
configured with Attribute uses
EndToEndProtection = TRUE
in the ReceiverComSpec

E 2.25 As Receiver Event (queued) VariableDataPrototype in
SenderReceiverInterface is
configured with swImplPolicy =
Queued

▽

121 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

△
E 2.26 As Receiver Event (queued) Blocking Receive Attribute WaitPoint in a

RunnableEntity with Trigger
Ref to a DataReceivedEvent is
used.

E 3 CLIENT-SERVER COMMUNICATION
Inter ECU Role Semantics Feature Refinements of the feature

description in SWC terms

E 3.1 As Client Synchronous A SynchronousServerCall
Point exists (the client is located
on another ECU)

E 3.2 As Client Synchronous With timeout A SynchronousServerCall
Point with attribute TimeOut > 0
exists.

E 3.3 As Client Asynchronous Clients uses Rte_
Result API to poll (no
ASYNCHRONOUS_
SERVER CALL_
RETURNS EVENT
Re)

An AsynchronousServerCall
Point and corresponding
AsynchronousServerCall
ResultPoint exists but no
corresponding Asynchronous
ServerCallReturnEvent exists.

E 3.4 As Client Asynchronous Clients uses Rte_
Result API to poll
(with
ASYNCHRONOUS_
SERVER CALL_
RETURNS EVENT
Re)

An AsynchronousServerCall
Point and corresponding
AsynchronousServerCall
ResultPoint exists and a
corresponding Asynchronous
ServerCallReturnEvent triggers
a runnbable but no WaitPoint
references it

E 3.5 As Client Asynchronous with WaitPoint i.e.
blocking Rte_Result

An AsynchronousServerCall
ReturnEvent exists and a Wait
Point references it.

E 3.6 As Client Asynchronous with Timeout (also
without Waitpoint)

AsynchronousServerCallPoint
with attribute TimeOut > 0

E 3.7 As Server Synchronous/
Asynchronous

reentrant Server runnable attribute "canBe
InvokedConcurrently = true"

E 3.8 As Server Synchronous/
Asynchronous

not invokeable
concurrently

Server runnable attribute "canBe
InvokedConcurrently = false"

E 4 TRIGGER COMMUNICATION
Inter ECU Role Semantics Feature Refinements of the feature

description in SWC terms

E 4.1 As trigger source Non Queued Portinterface typed by Trigger
Interface with triggers
configured with swImplPolicy =
Standard referenced by an
ExternalTriggeringPoint are
used

E 4.2 As trigger sink Non Queued Portinterface typed by Trigger
Interface with triggers
configured with swImplPolicy =
Standard and runnables
referenced by an External
TriggerOccurredEvent are
used

122 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

E 5 RTE EVENTS
Reaction Event Type Feature Refinements of the feature

description in SWC terms

E 5.1 RE Activation DATA_RECEIVED_
EVENT

A DataReceivedEvent
references a RunnableEntity, a
required VariableDataPrototype
but no WaitPoint references the
DataReceivedEvent.

E 5.2 RE Activation DATA_RECEIVED_
ERROR_EVENT

Triggers a RunnableEntity used
to collect the error status of a
dataelement with data semantics
on the receiver side like Alive
TimeOut attribute greater than
0.

E 5.3 RE Activation DATA_SEND_
COMPLETED_
EVENT

A DataSendCompletedEvent
references a RunnableEntity, a
required VariableDataPrototype
but no WaitPoint references the
DataSendCompletedEvent.

E 5.4 RE Activation OPERATION_
INVOKED_EVENT

An OperationInvokedEvent
references a RunnableEntity.

E 5.5 RE Activation ASYNCHRONOUS_
SERVER CALL_
RETURNS EVENT

An AsynchronousServerCall
ReturnsEvent references a
RunnableEntity.

E 5.7 RE Activation DATA_WRITE_
COMPLETED_
EVENT

A DataWriteCompletedEvent
references a RunnableEntity, a
provided VariableData
Prototype but no WaitPoint
references the DataWrite
CompletedEvent.

E 5.8 RE Activation EXTERNAL_
TRIGGER_
OCCURED_EVENT

An ExternalTriggerOccurred
Event references a Runnable
Entity.

E 5.9 Wakeup of Waitpoints DATA_RECEIVED_
EVENT

A DataReceivedEvent
references a RunnableEntity
and a required VariableData
Prototype. One WaitPoint
references the DataReceived
Event.

E 5.10 Wakeup of Waitpoints DATA_SEND_
COMPLETED_
EVENT

A DataSendCompletedEvent
references a RunnableEntity
and a provided VariableData
Prototype. One WaitPoint
references the DataSend
CompletedEvent

E 5.11 Wakeup of Waitpoints ASYNCHRONOUS_
SERVER CALL_
RETURNS EVENT

An AsynchronousServerCall
ReturnsEvent references a
RunnableEntity and a Wait
Point references the
AsynchronousServerCall
ReturnsEvent

E 6 PortInterfaceElementMapping & Data Scaling over network

Feature Sub-feature - Refinements of the feature
description in SWC terms

See Intra ECU Port
InterfaceElement
Mapping and Data
Scaling (transfer
similar to InterECU
communication)

▽

123 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

△
E 6.1 Conversion to

network
representation

The RTE has to convert data to
the relevant network
representation. A SwDataDef
Props is attached to Sender
ComSpec or ReceiverCom
Spec of a S/R port as "network
Representation" or to
corresponding ISignal as
"networkRepresentationProps".

Table 11.2: Inter-ECU VFB/RTE features for profile definition

124 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

12 Interaction with Non-AUTOSAR-ECUs

12.1 Introduction

This section describes the interaction with Non-AUTOSAR-ECUs on VFB level. This
kind of interaction is e.g. necessary to provide a migration path.

Non-AUTOSAR-ECUs are:

ECUs that have not been developed according to AUTOSAR mechanisms. This is
useful for e.g.:

• Integration of an AUTOSAR ECU into an already existing system of ECUs

• Connect system of AUTOSAR ECUs to already existing system of ECUs

• Re-use already existing ECU in system of AUTOSAR ECUs

ECUs that have been developed according to AUTOSAR mechanisms once, but stay
unchanged now. This is useful for e.g.:

• Reuse strategies (taking over of complete unchangeable AUTOSAR (!!!) ECUs)

Intelligent (’Smart’) Sensors/Actuators with an ECU which do not implement the AU-
TOSAR VFB / AUTOSAR RTE. This is useful for e.g.:

• Using Commercial of the shelf LIN nodes.

Interaction of AUTOSAR SW-C with non AUTOSAR software within one ECU is not
analyzed in this document.

12.2 Problems of interaction

The following problems will arise from the interaction with Non-AUTOSAR-ECUs:

Interaction with interfaces of applications on Non-AUTOSAR-ECUs:

• Ports/Interfaces have to be mapped to pre-defined communication messages
(possible to be routed through gateway)

• Non-AUTOSAR-SW-Components are currently not modeled at VFB level

– Unconnected ports of AUTOSAR-SW-Components

– Hidden communication load

• Client-Server not supported in old systems.

Interaction/support of services implemented on Non-AUTOSAR ECUs

• Old services/protocols have to be supported in parallel, to enable interoperability,
e.g. Network Management.

125 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

• Additional services supported by communication system (e.g. bus sleep/bus
wake-up).

• LIN nodes inherently are not affected because it is using the master slave
paradigm

– services/protocols have to be managed and implemented in any case by
master node (in this case AUTOSAR ECU)

– Required configuration data available in node capability file (NCF)

Problem of support of enhanced services/protocols (e.g. Network Management, Diag-
nosis (connection to AUTOSAR SW-C), Transport Protocol Layer, ...)

Whether the non-AUTOSAR ECUs are connected to the same or a different commu-
nication system is not relevant for VFB, because no hardware is considered on VFB
level. For the same reason gateway configuration is not relevant for the VFB.

12.3 Description of interaction

The modeling of the interaction with non-AUTOSAR-ECUs is done the same for all
kinds of non-AUTOSAR-ECUs.

• Non-AUTOSAR ECUs are modeled as separate ECUs with separate AUTOSAR
SW-C (with AUTOSAR SW-C Description), which will not be implemented. To
enable communication with the non-AUTOSAR ECU the RTE on the AUTOSAR
ECU must implement wrapper code for the non-AUTOSAR communication

• Communication messages, configuration and load is defined by System Con-
straint Template (for LIN Nodes the information contained within the node capa-
bility files (NCF) has to be integrated into the System Constraint Template)

The following figure (Figure 12.1: Interaction with non-AUTOSAR ECUs) shall clar-
ify the interaction by giving an example of non-AUTOSAR-ECU(s) interacting with an
AUTOSAR ECU. A Port type converter (adapting client server/sender receiver commu-
nication) is shown in the example. The port type converter has to be situated on an
AUTOSAR-ECU; it doesn’t necessarily need to be on the same ECU the final commu-
nication partner is on. Since the converter is here from the class ’AUTOSAR SW-C’ it
has to be implemented as a separate component. In later solutions it might be part of
an automatically generated RTE.

For the sender-receiver communication no adaption is shown. But even when using the
same communication paradigm an adaption might be required due to different commu-
nication attributes. This would be done the same way like the port type conversion.
The adaption has to be implemented as a separate AUTOSAR SW-C; in later solutions
it might be done within an automatically generated RTE.

The way between the communication system signals (e.g. signals on CAN) and the
RTE layer is the same for AUTOSAR and non-AUTOSAR signals.

126 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

Figure 12.1: Interaction with non-AUTOSAR ECUs

The support of enhanced services/protocols (e.g. Network Management, Diagnosis
(connection to AUTOSAR SW-C), Transport Protocol Layer ...) may be handled by
Complex Drivers or ’special’ implementations of the corresponding basic-software mod-
ule(s).

127 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

13 References

[1] Methodology for Classic Platform
AUTOSAR_CP_TR_Methodology

[2] Glossary
AUTOSAR_FO_TR_Glossary

[3] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[4] General Specification of Basic Software Modules
AUTOSAR_CP_SWS_BSWGeneral

[5] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

[6] Specification of RTE Software
AUTOSAR_CP_SWS_RTE

[7] Explanation of Application Interfaces of the Body and Comfort Domain
AUTOSAR_CP_EXP_AIBodyAndComfort

[8] Explanation of Application Interfaces of the Powertrain Engine Domain
AUTOSAR_CP_EXP_AIPowertrain

[9] Explanation of Application Interfaces of the Chassis Domain
AUTOSAR_CP_EXP_AIChassis

[10] Explanation of Application Interfaces of Occupant and Pedestrian Safety Systems
Domain
AUTOSAR_CP_EXP_AIOccupantAndPedestrianSafety

[11] Explanation of Application Interfaces of the HMI, Multimedia and Telematics Do-
main
AUTOSAR_CP_EXP_AIHMIMultimediaAndTelematics

[12] Application Interfaces User Guide
AUTOSAR_CP_EXP_AIUserGuide

[13] ISO 17356-4: Road vehicles – Open interface for embedded automotive applica-
tions – Part 4: OSEK/VDX Communication (COM)

[14] Specification of Timing Extensions for Classic Platform
AUTOSAR_CP_TPS_TimingExtensions

128 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

A Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

A.1 Traceable item history of this document according to AU-
TOSAR Release R25-11

A.1.1 Added Specification Items in R25-11

none

A.1.2 Changed Specification Items in R25-11

[TR_VFB_00096] [TR_VFB_00097] [TR_VFB_00098] [TR_VFB_00099] [TR_VFB_-
00100] [TR_VFB_00102] [TR_VFB_00104] [TR_VFB_00105] [TR_VFB_00106] [TR_
VFB_00107] [TR_VFB_00108] [TR_VFB_00109] [TR_VFB_00110] [TR_VFB_00111]
[TR_VFB_00118] [TR_VFB_00121] [TR_VFB_00122] [TR_VFB_00123] [TR_VFB_-
00124] [TR_VFB_00125] [TR_VFB_00126] [TR_VFB_00127] [TR_VFB_00128] [TR_
VFB_00129] [TR_VFB_00130] [TR_VFB_00131] [TR_VFB_00132] [TR_VFB_00133]
[TR_VFB_00134] [TR_VFB_00135] [TR_VFB_00136] [TR_VFB_00137] [TR_VFB_-
00138] [TR_VFB_00200] [TR_VFB_00201] [TR_VFB_00202] [TR_VFB_00203] [TR_
VFB_00204] [TR_VFB_00205] [TR_VFB_00206] [TR_VFB_00207] [TR_VFB_00208]
[TR_VFB_00209]

A.1.3 Deleted Specification Items in R25-11

none

A.2 Traceable item history of this document according to AU-
TOSAR Release R24-11

A.2.1 Added Specification Items in R24-11

none

A.2.2 Changed Specification Items in R24-11

none

129 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

A.2.3 Deleted Specification Items in R24-11

none

A.3 Traceable item history of this document according to AU-
TOSAR Release R23-11

A.3.1 Added Advisories in R23-11

none

A.3.2 Changed Advisories in R23-11

none

A.3.3 Deleted Advisories in R23-11

none

A.3.4 Added Constraints in R23-11

none

A.3.5 Changed Constraints in R23-11

none

A.3.6 Deleted Constraints in R23-11

none

A.3.7 Added Specification Items in R23-11

none

A.3.8 Changed Specification Items in R23-11

none

130 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

Virtual Functional Bus
AUTOSAR CP R25-11

A.3.9 Deleted Specification Items in R23-11

none

131 of 131 Document ID 56: AUTOSAR_CP_TR_VFB

	1 Introduction to this document
	1.1 Contents
	1.2 Prereads
	1.3 Relationship to other AUTOSAR specifications
	1.4 Structure and conventions of this document
	1.4.1 Structure of this document
	1.4.2 Specification Items

	2 The Virtual Functional Bus
	3 Overall mechanisms and concepts
	3.1 Components
	3.2 Port-Interfaces
	3.3 Ports
	3.3.1 Port Types
	3.3.2 Port Compatibility
	3.3.3 Data Type Policies

	3.4 Connectors
	3.4.1 Unconnected Ports
	3.4.1.1 Unconnected PRPorts
	3.4.1.2 Unconnected Sender/Receiver Ports
	3.4.1.3 Unconnected Client/Server Ports

	3.5 Compositions versus atomic components
	3.6 Relationship between the VFB and the ECU Software Architecture
	3.7 Kinds of software components
	3.8 Resources for components and "runnables"
	3.8.1 Background
	3.8.2 The "runnable" concept
	3.8.3 The implementation of a component and the role of the RTE

	3.9 Interface Conversion Blocks
	3.9.1 Supported Conversions and Mappings
	3.9.1.1 Interface Element Mapping
	3.9.1.2 Linear Data Conversion
	3.9.1.3 Data Mapping
	3.9.1.4 Mixed Conversion

	3.10 Variant Handling
	3.10.1 Binding Times
	3.10.2 Choosing a Variant
	3.10.3 Variability
	3.10.3.1 Software Component Variability
	3.10.3.2 Port Variability
	3.10.3.3 Connector Variability

	4 Communication on the VFB
	4.1 Introduction
	4.2 Error types
	4.3 Sender-Receiver communication
	4.3.1 From the point of view of the sender
	4.3.2 From the point of view of the receiver
	4.3.3 Multiplicity of sender-receiver
	4.3.4 Filtering between the sender and the receiver
	4.3.5 Concurrency and ordering within a sender-receiver connector

	4.4 Client-Server communication
	4.4.1 From the point of view of the client
	4.4.2 From the point of view of the server
	4.4.3 Multiplicity of client-server
	4.4.4 Ordering and concurrency within a client-server connector

	4.5 Remarks regarding the identification of communication partners

	5 Timing Extensions
	5.1 Main Purpose of Timing Extensions for AUTOSAR
	5.2 Timing in different phases of the AUTOSAR methodology

	6 Interaction with hardware
	6.1 Introduction
	6.2 Microcontroller Abstraction Layer (MCAL)
	6.3 ECU Abstraction
	6.4 Sensor-Actuator Software Component
	6.5 Complex Driver Component

	7 AUTOSAR Services
	7.1 Introduction
	7.2 VFB Representation
	7.2.1 Selection of a communication mechanism
	7.2.2 Location of a Service
	7.2.3 Distribution of Requests to Remote Services
	7.2.4 Platform dependent types
	7.2.5 Configuration

	7.3 List of Services

	8 Mode Management
	8.1 Introduction
	8.2 Defining modes
	8.3 Communicating modes
	8.4 Mode-managers: components that control modes
	8.5 Components that depend on modes

	9 Port Groups
	10 Measurement and Calibration
	10.1 Calibration
	10.1.1 Port-based calibration
	10.1.1.1 Pure single instantiation
	10.1.1.2 Multiple instantiation of the involved software components
	10.1.1.3 Multiple instantiation of the involved calibration components

	10.1.2 Private calibration

	10.2 Measurement

	11 VFB Features and Profiles
	11.1 Motivation and Introduction
	11.2 Feature tables
	11.2.1 Intra-ECU features
	11.2.2 Inter-ECU features

	12 Interaction with Non-AUTOSAR-ECUs
	12.1 Introduction
	12.2 Problems of interaction
	12.3 Description of interaction

	13 References
	A Change history of AUTOSAR traceable items
	A.1 Traceable item history of this document according to AUTOSAR Release R25-11
	A.1.1 Added Specification Items in R25-11
	A.1.2 Changed Specification Items in R25-11
	A.1.3 Deleted Specification Items in R25-11

	A.2 Traceable item history of this document according to AUTOSAR Release R24-11
	A.2.1 Added Specification Items in R24-11
	A.2.2 Changed Specification Items in R24-11
	A.2.3 Deleted Specification Items in R24-11

	A.3 Traceable item history of this document according to AUTOSAR Release R23-11
	A.3.1 Added Advisories in R23-11
	A.3.2 Changed Advisories in R23-11
	A.3.3 Deleted Advisories in R23-11
	A.3.4 Added Constraints in R23-11
	A.3.5 Changed Constraints in R23-11
	A.3.6 Deleted Constraints in R23-11
	A.3.7 Added Specification Items in R23-11
	A.3.8 Changed Specification Items in R23-11
	A.3.9 Deleted Specification Items in R23-11

