AUTSSAR

Document Title Modeling Show Cases Report
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 789

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR . .
2025-11-27 | R25-11 Release Addec_j Iptegratlon Requirements
M description
anagement
AUTOSAR
2024-11-27 | R24-11 Release * No content changes
Management
AUTOSAR
2023-11-23 | R23-11 Release * No content changes
Management
AUTOSAR
2022-11-24 | R22-11 Release * No content changes
Management
AUTOSAR
2021-11-25 | R21-11 Release * No content changes
Management
AUTOSAR
2020-11-30 | R20-11 Release * No content changes
Management
AUTOSAR » Add Show case Structured Requirement
2019-11-28 | R19-11 Release - Changed Document Status from Final to
Management published
AUTOSAR
2018-10-31 4.4.0 Release + Editorial Changes
Management
AUTOSAR
2017-12-08 | 4.3.1 Release « Editorial Changes

Management

AUTSSAR

2016-11-30

4.3.0

AUTOSAR
Release
Management

« Initial Release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction

2 Overview

3 Measurement and Calibration

3.1 Introductory Show Case
3.1.1 Physical System

3.1.1.1
3.1.1.2
3.1.1.3
3.1.1.4

Components Overview
The Environment
ThePlant e
TheController

3.1.2 AUTOSAR Modeling i
3.1.3 RTE Generation, Measurement and Calibration

3.1.3.1
3.1.3.2

FlatMap
ECU Documentation, Measurement and Calibration

3.1.4 A2LFile o e
3.1.5 ImplementationinC
3.1.6 A walk with T_Plant through the Show Case

3.1.6.1

Physical System

3.1.6.1.1 Components
3.16.1.2 Equations.

3.1.6.2

AUTOSAR Modeling

3.1.6.2.1 Physical Dimensionand Unit
3.1.6.2.2 ApplicationDataType
3.1.6.23 Portinterface L
3.1.6.2.4 Software Components.

3.1.6.3
3.1.6.4
3.1.6.5
3.1.6.6
3.1.6.7
3.1.6.8

System
ECU Configuration
RTE Generation
ImplementationinC
A2LFile
Measurement and Calibration Tool

3.1.7 ShowcasesintheExample L.

3.1.7.1
3.1.7.2
3.1.7.3
3.1.7.4
3.1.7.5
3.1.7.6
3.1.7.7
3.1.7.8

CompositionSwComponentTypes
ParameterSwComponentTypes
ApplicationSwComponentTypes
Parameterinterfaces
SenderReceiverinterfaces oL
ApplicationDataTypes, Category VALUE
Units e
PhysicalDimensions

AUTSSAR

3.1.7.9 SwAddrMethods, 62
3.2 Advanced Show Case i 63
3.2.1 General Objectives of the Model Structure 63
3.2.1.1 The Ecu Description 63
3.21.2 TheEcuExtract. 63
32121 TheECUFlatMap 63
3.2.1.3 Data Types and Data Objects 64
3.21.4 Axis,CurvesandMaps 65
3.2.1.5 Axis, Curves and Maps on ApplicationDataType level 65
3.2.1.6 Axis, Curves and Maps on DataPrototype and SwComponent-
Prototypelevel L 67
3.2.1.6.1 Instantiation of Axis, CurvesandMaps 67
3.2.1.6.2 Usage of Axis, Curves and Maps by Software Components 68
3.2.1.6.3 Linking map and curve instances to its axes instances . . . 68
3.2.1.6.4 Linking axes instances to its working point instances 69
3.2.1.6.5 Axis, Curves and Maps inthe ECU FlatMap 71
3.21.7 Arraysof MapsandAxes 72
3.2.1.7.1 Arrays of Maps and Axes inthe ECU FlatMap 72
3.2.1.8 MeasurementofModes 73
3.2.1.8.1 Enabling Measurementof Modes 73
3.2.1.8.2 Modesinthe ECUFlatMap. 73
3.22 ShowcasesintheExample 75
3.2.2.1 CompositionSwComponentTypes 75
3.2.2.2 ParameterSwComponentTypes 80
3.2.2.3 ApplicationSwComponentTypes 82
3.2.2.4 Parameterinterfaces L. 85
3.2.2.5 ModeSwitchinterfaces 87
3.2.2.6 SenderReceiverinterfaces 88
3.2.2.7 ApplicationDataTypes, Category BOOLEAN 90
3.2.2.8 ApplicationDataTypes, Category VALUE 90
3.2.2.9 ApplicationDataTypes, Category COM_AXIS 94
3.2.2.10 ApplicationDataTypes, Category CURVE 95
3.2.2.11 ApplicationDataTypes, Category MAP 95
3.2.2.12 ApplicationArrayDataTypes 96
3.2.2.13 ApplicationRecordDataTypes 97
3.2.2.14 ModeDeclarationGroups 97
3.2215Units 98
3.2.2.16 PhysicalDimensions 99
3.2.2.17 SwAddrMethods oL 100
4 Structured Requirements 103
4.1 Specificationitems asrequirements 103
4.2 Diagnosticrequirementso 104

4.3 Decomposition of requirements L. 105

AUTSSAR

5 Integration Requirements 108
5.1 Defining Integration Requirements using StructuredReq 109
5.1.1 StructuredReg.shortNameo 109
5.1.2 StructuredReq.category . . . v v v v v v v v i e e 110
5.1.3 importance, StructuredReq v v v v v v ... 110
514 rationale, StructuredReq« 110
5.1.5 useCase, StructuredReqg v v v v v i v 110
5.1.6 description, StructuredReq 110
5.1.6.1 DefinitionReference o L. 111
5.1.6.2 Description 112
5.1.6.3 ARVersion 112
5.1.6.4 ModuleVersion 112
516.5 SetValue 112
5.1.6.6 SupportedLowValue 113
5.1.6.7 SupportedHighValue 113
5.1.6.8 SupportedValue L 114
5.2 Applying Integration Requirements 114
5.2.1 Single configuration value in a single container 114
5.2.2 Single configuration value in multiple containers 118
5.2.3 Multiple configuration values in a container 121
5.2.4 Tracing configurationchanges 122
5.3 Ranges in Integration Requirements 122
5.4 Possible Conflicts caused by applied Integration Requirements 123
5.4.1 Merge of Integration Requirements 123
54.1.1 Nomergeoffixedvalues 124
5412 Mergeofranges. 124
5.4.1.3 Order dependency between suggested and mandatory integra-
tionrequirements Lo 125
55 Reporting 126

A Mentioned Class Tables 127

AUTSSAR

References

[1] Methodology for Classic Platform
AUTOSAR_CP_TR_Methodology

[2] Modeling Show Cases Examples
AUTOSAR_CP_EXP_ModelingShowCases

[3] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

[4] Standardization Template
AUTOSAR_FO_TPS_StandardizationTemplate

[5] Specification of Platform Types for Classic Platform
AUTOSAR_CP_SWS_PlatformTypes

AUTSSAR

1 Introduction

The objective of this report is the illustration and execution of AUTOSAR modeling and
the AUTOSAR methodology (see [1]) for selected show cases.

Each show case focuses on a few specific topics and gives an overview of their basic
usage and their application in the field. Where appropriate, the show cases are based
on real world applications of the AUTOSAR standard.

It contains

+ explanatory background on the functional use case for which the specific part of
the AUTOSAR modeling is applied.

« illustration of the AUTOSAR model content in form of interlinked tables

 explanation of the processing results of these AUTOSAR models (e.g. C code,
A2L files, ...)

* snippets of the full-blown examples. The complete examples are provided in the
archive AUTOSAR_EXP_ModelingShowCases.zip [2].

AUTSSAR

2 Overview

The report is organized in chapters according to the main focus of the contained show
cases. Each chapter contains a topic specific overview and at least one show case.
Each chapter is self contained and understandable without reading any other chapter.

The technical report on the AUTOSAR Methodology [1] deserves a special mentioning
as accompanying document for going through the show cases.

In the first version of the technical report, the show cases are targeting the topic of
measurement and calibration, involving the creation of A2L files based on AUTOSAR
models. For these show cases, also the specification of the SoftwareComponent-—
Template [3] is a good accompanying document.

This updated version is extended by an additional show case targeting the topic of
Structured Requirements. For these show cases, also the specification of the Stan-
dardizationTemplate [4]is a good accompanying document.

AUTSSAR

3 Measurement and Calibration

Measurements and Calibration (short: MC) is a major step in the development of elec-
tronic control units (Ecus). Measurement and Calibration systems (MC systems), involv-
ing software tools (MC tools) as well as the hardware to access an ECU (not in focus
here), enable the developer to measure variables and to adapt calibration parameters
(or "characteristics") during the run-time of the Ecu.

For instance, the following tasks are regularly done by "Measurement and Calibration”

» Adaptation to real hardware (e.g. inserting the electrical characteristics of a sen-
Sor)

» Calibration of controllers (e.g. adjusting the parameters of a closed loop con-
troller)

* Tuning of ECU internal environment models (e.g. for "virtual sensors")
+ Validation of ECU functions

+ Tracking of development errors

* Collecting data for automated optimization of parameters

The "Introductory Show Case" (see 3.1), illustrates all basic artifacts on the way from a
physical system that is to be controlled by an ECU until measuring and calibrating with
a MC system.

As didactic simplification only a few data types were used, e.g. neither CURVES' nor
MAPs? were chosen, nor any ApplicationCompositeDataType.

However, those advanced topics, their modeling in AUTOSAR as well as their trans-
fer to a MC tool, is of particular interest: they are regularly needed and used the field.
Therefore, the "Advanced Show Case" in chapter 3.2 especially highlights these top-
ics. This show case is directly derived from the real world modeling and structuring
approach of a major Tier 1 in the powertrain domain. So it also illustrates "good prac-
tices" in the field for designing AUTOSAR systems which are to be measured and
calibrated later on in their development.

'cURVES are two dimensional functions defined via axis points and the corresponding function values.
Interpolation or extrapolation is used to calculate function values that are not directly defined.
2MAPSs are similar to CURVES but three dimensional

AUTSSAR

3.1 Introductory Show Case

As introduction to measurement and calibration with AUTOSAR a simple, artificial
closed-loop control system was chosen. This allows interesting feedback of the system
when using a McC tool. At the same time, the model, the source code and generated
files are still comprehensible.

A drawback is, that not all typical "real world" data types are featured, for instance.
Such topics are covered in the "Advanced Show Case", chapter 3.2.

3.1.1 Physical System

This section contains a description of the physical system setup. It can safely be
skipped, if only the AUTOSAR modeling itself is of interest to the reader.

;

|
Controller
|TEnv

Envinronment Heating Power
ECU

Temperature Input

I

Temperature

u Stream ‘ Sensor

T -
— Env —

Figure 3.1: Physical Overview

Figure 3.1 shows the major physical values and entities of our system. The control
task is the following: The plant is a sensor in an airstream that requires heating. The
temperature T, is to be controlled by the ECU. However, there is no direct way to
measure Triun:-

For the estimation of T'r,,,; the following properties of the system are used:

* Tpiant depends on the temperature of the environment 7x,,, i.e. the temperature
of the air stream. T, can be measured directly.

AUTSSAR

* Tpiant depends on the current Io,.401e- Which is output by the Ecu and controlled
by the controller and therefore known.

» The plant itself acts as a thermal energy storage. So Tp;..; also depends on the
heat quantity that is currently stored within the plant.

* All other influences on T’»,,,.; are considered to be insignificant. So they can safely
be ignored for this control task.

An estimation of Ty, can be calculated by a plant model, which uses 7%,, and
Toontroier @S inputs and has the stored heat quantity as internal state.

3.1.1.1 Components Overview

l,4 [MA]—> Plant —»T,[°C] T,[°Cl— Contro"er —> |, [mA]

Tenv,, [°C]

Tenv, [°C]

T

Environment

Figure 3.2: Component Overview

For this show case, the interaction with a real physical environment is completely left
out, i.e. there is n0 Heating Power Output component and the profile of Tg,,
is randomly generated inside the component Environment. This cuts off a lot of
complexity from the example, and allows to run the software system on a PC without
complex environment simulations.

For completeness: The plant model is calculated inside the component P1ant and the
controller inside the component Controller.

As typical for ECUs the calculations happen in a time-discrete manner, i.e. the calcu-
lations in the components are executed periodically at discrete in time steps. In the
following, the index n € {1, 2, ...} denotes the current time step. The previous time step
is denoted by the index n — 1. The index 0 denotes the initialization value. This also
means that time step 1 is the first, that is actually calculated by the ECU.

Furthermore At denotes the time in seconds, that elapsed between the calculation of
the previous time step and the current time step. In case of time step 1, At denotes
the time that elapsed between initialization of the system and time step 1. For setting

AUTSSAR

the actual value of At the frequency bandwidth of the physical properties in the system
has to be taken into account. Decreasing the value of At usually increases the quality
of the sampling of physical signals up to a certain point where the costs of further
decreasing the value of At outweighs the benefit gained in terms of signal quality.

3.1.1.2 The Environment

Tenv,, [°C]

T

Environment

Figure 3.3: Environment

The modeling and implementation of the environment is not in the focus of this show
case. The temperature Tenv,[°C| is generated (pseudo) randomly. This is done in order
to see the controller and the plant model "in action” during run-time of the system.

The generated profile is a random walk limited by an upper and a lower boundary, with
saturation at these boundaries.

The random walk is configurable via Tiourinit [°C] @Nd TuignLinit [°C], fOr the boundaries,
and Tseepsize [K], for the change of the temperature during one time step.

Assuming rand, [-] € {—1,0,1} and n € {1,2,3, ...} then Tenv, is characterized by this
equation (with Tenv [°C] = —273.15[°C]):

Tenv, [°C] = Tenv,_1 [°C|] + Tstepsize (K] - rand, [-]

if and only if T'env,, would be inside the boundaries, i.e.

Trowrinit < Tenv, < Thignrinit

If Tenv,, would be outside one of the boundaries, it is set to the value of that boundary.

AUTSSAR

3.1.1.3 The Plant

Plant

Tenv, [°C]

Figure 3.4: Plant

The plant is an electrically heated mass that is exposed to the air flow in the environ-
ment. The heat quantity Qplant that is stored inside the plant is considered to always
be directly proportional to the temperature 7" with constant proportionality factor. Nei-
ther the mass of the plant, nor the specific heat capacity changes during the run-time
of our system.

For simplicity, this proportionality factor is considered to be 1[3]. For the calculations
inside the P1ant component, we are always using [K] as unit for temperatures, so the
conversion from and to [°C| only happens at the interface of the component.

With this, we have the following:

Qplant, (3] = T,[K]-1[{]
T [K = —Qplla?f J

This also means, that Qplant,, [J] = 0[J] corresponds 7,, [K|] = 0 [K], i.e. absolute zero.
So Qplant, [J] > 0[J] shall always be true.

In each time step, there are two heat flows: One from the electrical heater to the plant
and one from the plant to the environment. A negative heat flow means that heat
energy is flowing away from the plant. Respectively, a positive heat flow means that
heat energy is stored in the plant.

The heat flow Qheater,, [J] from the electrical heater to the plant in one time step is
considered to be proportional to the current I,, [mA] through the plant during this time
step. The proportionality factor is hyeater [ﬁ]. Of course, the plant can only be heated
up by the electrical heater, i.e. a "negative" current I,, would not cool down the plant,
but causes the same heat up as —1I,,. So we have

Qheater, [J] =| I, | [mA] - hpeater [A } - At [s]

mAs

The cool down of the plant can only happen via the second heat flow, i.e. the heat flow
Qenv,, [J] from the plant to the environment. The flow in one time step is considered

AUTSSAR

to be proportional to the difference between the temperature of the plant (calculated
from the stored heat quantity during the last time step) and the temperature of the
environment (received in this time step, but actually "measured" during the last time
step). With the proportionality factor hg,, [3], we have:

Qenv, [J] = (Tenv, [K] — T,,—1 [K]) - heny [3] - At [s]

The heat quantity that was stored in the plant in last time step Qplant,,_; is now modi-
fied by these two heat flows. This results in the stored heat quantity in the current time
step. With Qplant,[J] = 0[J], we have

Qplant,, [J] = @Qplant,_1 [J] + Qheater,, [J] + Qenv,, [J]

3.1.1.4 The Controller

3¢=s Controller il

Figure 3.5: Controller

For the closed loop control an | controller (by and large) was chosen for component
Controller. This means that the amplification of the input signal is proportional to
the integral of the errors, i.e. the deviation between measured variable and setpoint.
Because the controller cannot actively cool down the temperature of the plant, the
output 7,, >= 0 for all n.

Again, all temperatures are converted to and from [°C| at the interface of the compo-
nent. All internal calculation are done in [K].

The error during the current time step is the difference between Ts..point [K] and the
measured variable 7T, [K]:
€n [K] - TSetPoint [K] - Tn [K]

The integral part of the controller is calculated via summing up all errors from the
previous steps. With eSum,, [Ks| = 0 [Ks] we have:

eSum,, [Ks] = eSum,_1 [Ks] + e, [K] - At

A further design decision for the controller was, to limit the integral and to saturate at
the limits. This has the benefit that it limits the current I,, that is output by the controller.
Furthermore, it enables the controller to react faster after long deviations.

AUTSSAR

The lower limit is 0[Ks]. So if eSum, would fall below zero in time step n, we set
eSum,[Ks| = 0[Ks]. The upper limit iS Lyayesun [Ks]. If eSum,, would exceed L/ rsum
in time step n we set eSum,[Ks] = Lyaxesun [KS]-

The integral state eSum, of the controller is then amplified by k [2] to calculate the
current I,, [mA], i.e. the output of the controller:

I, [mA] = eSum,, [Ks] -k [5]

So the limitations of the eSum,, guarantee, that

0[mA] < I, [mA] < Lysyesun [Ks] - & [2]

3.1.2 AUTOSAR Modeling

This section gives a brief overview of the AUTOSAR modeling. More insight
can be gained by browsing through the hyper-linked tables in section 3.1.7.
These tables are generated from the AUTOSAR model of this show case. If
this is still not sufficient, the complete model is available in .arxml format in
AUTOSAR_EXP_ModelingShowCases.zip [2].

|ﬁ CPT_Plant | |ﬁ CPT_Controller |

[4 CurrentRPP PlantTemperaturePPP [):l [{:l TemperatureRPP CurrentPPP E

ControllerParamsRPP [<l
[4 PlantParamsRPP

['4] EnvTemperatureRPP DtRPP |;<I| [f]] DtRPP
|E CPT_Environment | " CPT_Parameters Parameters
I>| DtPPP
[’:l EnvTemperaturePPP DtRPP (< ControllerPpp [P
EnvironmentParamsRPP| [>| EnvironmentPPP

PlantPPP

Figure 3.6: Example Composition

In this show case the components specified in section 3.1.1.1 are modeled as Appli-
cationSwComponentTypesS.

AUTSSAR

* Environment
s Plant
* Controller

To keep the example simple, N0 SwcImplementations were modeled. For some
tasks, like generation of a MemMap for an embedded controller, this would be needed.

The in- and outputs of the ApplicationSwComponentTypeS are modeled as

SenderReceiverInterface. The internal state is realized as implicitInter—
RunnableVariables. Besides the illustrative aspect, the rationale for this design
decision was that the internal state is likely to be used by more than one runnable in
ApplicationSwComponentTypes (at least "outside" of an introductory show case).

For variables that should just be available for measurement in a MC tool, arTyped-
PerInstanceMemorysS are used. For this use case, no synchronization of access to
the variable needs to be implemented, so the way with the least overhead was chosen.

All parameters in the specification of the components were put in a fourth swCompo-
nentType, in the ParameterSwComponentType "Parameters".

A distinct ParameterInterface was defined for the parameters of each of the three
ApplicationSwComponentTypeS. The respective PPortPrototypes of the Pa-
rameterSwComponent Type holdthe initvalue foreach ParameterDataProto-
type inthe PortPrototypes. Each value is specified in a valueSpecification
aggregated by a ParameterProvideComSpec.

The component types are instantiated in the CompositionSwComponent Type "Com—
position".

This Composition is the type of the rootSoftwareComposition of the
ECU_Extract. This also implies that all SwComponentPrototypes of Composi-
tion are mapped to one EcuIlnstance.

Some information on the F1atMap can be found in section 3.1.3.1.

3.1.3 RTE Generation, Measurement and Calibration

The McsSupport is an interface between the RTE generator and the A21. generator.
A RTE generator provides a McDataInstance for each calibrateable or measurable
object. From logical view the generation of McSupport could be seen in two steps:

1. Provide unique names for all parameters, measurements, component prototypes
which are instantiated one or multiple times. This is done by the used AUTOSAR
Authoring Tool.

2. Generate the McSupport itself. This is usually done by the RTE generator. A2L
supports only one global namespace, while AUTOSAR defines own namespaces within
each ARPackage. This means, that on the one hand unique names are needed for all
objects which are to be accessible during measurement and calibration (parameters,

AUTSSAR

measurements, component prototypes). But on the other hand, unique names are
needed for all other things that will appear in 221, e.g. CompuMethods, Units. For
them the RTE generator will create unique names.

AUTOSAR specifies additionally an AliasNameSet to override names which is not
used here.

See AUTOSAR_EXP_ModelingShowCases.zip [2] for the generated
Rte_McSupportData.arxml file.

3.1.3.1 FlatMap

In this show case, the F1atMap gives unique names to the
* dataElements
* implicitInterRunnableVariableS
* arTypedPerInstanceMemorysS

The RTE-Generator uses this information for the generation of the McSupport file as
well as for generation of the . c and .h files.

The FlatMap consists of a FlatInstanceDescriptor for each instance of these
VariableDataPrototypes.

The concrete modeling of the FlatMap for this use case can be found in
AUTOSAR_EXP_ModelingShowCases.zip [2].

3.1.3.2 ECU Documentation, Measurement and Calibration

When developing an ECU one usual requirement is, that objects described in 221, can
be easily found in the documentation of the EcU. This is a challenge since documen-
tation is on the level of swComponentTypes while 221, is defined on the level of a
System of category "ECU_EXTRACT".

* The names of SwComponentPrototypes are potentially different to the names
of SwComponent TypeS

* The names of McDataInstances are potentially different to the names of Dat -
aPrototypeS

The challenge gets bigger, if types are instantiated multiple times. This issue needs to
be solved by proper architecture, modeling conventions and clever generation of the
FlatMap.

In this show case, this topic is only slightly touched by instantiating TemperatureSRIF
two times, for the interface transporting 7x,., as well as for the interface transporting

TPlant .

AUTSSAR

It is demonstrated that the F1atMap can be used to solve the issue. However, we
manually crafted our F1atMap, which is usually not possible in the field. FlatMaps
are usually automatically generated by customizable, "clever", not standardized tools.

3.1.4 AZ2L File

With the information in the McSupport file an A21 file is generated. However, for this
generation the memory addresses for the variables and characteristics are needed.
They are usually extracted from the map file that is output by the linker of the ECU
executable. The exact process as well as the tool for the A2L file generation is not
standardized.

An example 221 file is provided in AUTOSAR_EXP_ModelingShowCases.zip.

3.1.5 Implementationin C

The implementation in C is a straight forward realization of the physical specification
within the AUTOSAR modeling (see section 3.1.1.1 and 3.1.2). Therefore, the listings
are presented without further explanation besides the comments in the source code.

A remark on the (pseudo) random numbers generated in line 22 of Environment.c
(Listing Listing 3.1): The numbers don’t have good "pseudo randomness" properties
but are sufficient for this show case, nevertheless. This way of generation was only
chosen, because it fits in one line of C code without introducing a dependency to a
library.

#include "Rte_Environment.h"

1
2

3 #define envRE_START_SEC_CODE

4 #include "Environment_MemMap.h"

5

6 FUNC (void, Environment_CODE) envRE_func (void)

7 A

8 /* read parameters for simulation of the temperature profile */
9 float32 lLowLimit = Rte_Prm_ EnvParamsRPP_env_TLowLimit () ;

10 float32 1StepSize = Rte_Prm_EnvParamsRPP_env_TStepSize();

11

12 /* retrieve internal state */
13 uint32 1Seed = Rte_TIrvIRead_envRE_Seed();

14 float32 1TEnv = Rte_IrvIRead_envRE_TEnv () ;

15 float32 direction = (float32) (1Seed % 3) - 1.0;

16

17 /* calc high limit with parameter, store for measurement */
18 *Rte_Pim_ THighLimit ()

19 = lLowLimit + Rte_Prm_ EnvParamsRPP_env_THighLimitDistance();
20

21 /+ update state for pseudo random number generation */
22 1Seed = (8253729 x 1Seed + 2396403);

24 /* calculate environment temperature */

AUTSSAR

25
2
27
28
29
30
31
32
33
34
35
36
37
38
39
40

-

© 0 N o O »~ W N

1TEnv += 1lStepSize * direction;

/* saturating environment temperature at the bounds

if(1TEnv < lLowLimit) { 1TEnv = lLowLimit; }

if(1TEnv > xRte_Pim_THighLimit ())
{ 1TEnv = *Rte_Pim_THighLimit ();

/* Store internal state

Rte_IrvIWrite_envRE_Seed (lSeed);

Rte_IrvIWrite_envRE_TEnv (1TEnv) ;

/+ write output
Rte_IWrite_envRE_EnvTemperaturePPP_T (1TEnv) ;

}
#define envRE_STOP_SEC_CODE
#include "Environment_MemMap.h"

Listing 3.1: Environment.c

#include "Rte_Plant.h"

#define plantRE_START_SEC_CODE
#include "Plant_MemMap.h"

FUNC (void, Plant_CODE) plantRE_func (void)
{

/* read input

float32 1Tenv = Rte_TIRead_plantRE_EnvTemperatureRPP_T () ;

float32 1I

Rte_IRead_plantRE_CurrentRPP_TI();

/* retrieve internal state
float32 1QPlant = Rte_IrvIRead_plantRE_QPlant();

/* read parameters

float32 1Dt = Rte_Prm_DtRPP_Dt ();
float32 lEFactor
float32 1HFactor

/* heat capacity of 1 assumed
float32 1TPlant = 1QPlant;

/* calculate heat flows, store in PIM to make them measurable
Rte_Pim_QEnv () = (1Tenv - 1TPlant) = 1lEFactor x 1Dt;

*Rte_Pim_QHeater () = 1I * lHFactor =* 1Dt;

/* update heat quantity in plant

}

Rte_Prm_PlantParamsRPP_plnt_EnvFactor();
Rte_Prm PlantParamsRPP_plnt_HeaterFactor();

1QPlant = 1lQPlant + *Rte_Pim QHeater () + *Rte_Pim QEnv();

/+ limit heat quantity to absolute zero
1QPlant = 1QPlant < 0 ? 0 : 1lQPlant;

/* heat capacity of 1 assumed
1TPlant = 1QPlant;

/* store internal state of plant: stored heat quantity
Rte_TIrvIWrite_plantRE_QPlant (1QPlant);

*/

*/

*/

*/

*/

*/

AUTSSAR

38
39

41
42
43

-

© O N o o »~ W N

40

/* Write
Rte_IWri
}
#define pla
#include "P

#include "R

#define Con
#include "C

FUNC (void,
{
/* read
float32
float32

/* retri
float32

/* read
float32
float32
float32
float32

/x stor

output of plant: temerature of plant
te_plantRE_PlantTemperaturePPP_T (1TPlant);

ntRE_STOP_SEC_CODE
lant_MemMap.h"

Listing 3.2: Plant.c

te_Controller.h"

trollerRE_START_SEC_CODE
ontroller_MemMap.h"

Controller_CODE) controllerRE_func (void)

input, define output variable
1T = Rte_TIRead_ControllerRE_TemperatureRPP_T () ;
11;

eve internal state: Sum of errors until last time step
1ESum = Rte_TIrvIRead_ControllerRE_ESum() ;

parameters

1Dt = Rte_Prm DtRPP_Dt ();
1SetPoint
1K Rte_Prm_ControllerParamsRPP_ctrl_K();
1MaxESum = Rte_Prm ControllerParamsRPP_ctrl_MaxESum() ;

e current error in PIM to make it measurable

*Rte_Pim _E () = 1lSetPoint - 1T;

/* upda
1ESum +=

/% limit
if (1ESum
if (LESum

/+ Contr
1I = 1ES

/* Store
Rte_TrvI

/* Write
Rte_IWri

#define Con
#include "C

te eSum
*Rte_Pim_E () = 1Dt;

eSum
> 1MaxESum) { 1lESum 1MaxESum; }
< 0) { 1ESum = 0; }

oller equation: Calculation of manipulated variable
um * 1K;

internal state
Write_ControllerRE_ESum (lESum) ;

output of controller
te_ControllerRE_CurrentPPP_I (1I);

trollerRE_STOP_SEC_CODE
ontroller_ MemMap.h"

Listing 3.3: Controller.c

Rte_Prm_ControllerParamsRPP_ctrl_SetPoint ();

*/

*/

*/

4

*/

*/

*/

*/

*/

AUTSSAR

3.1.6 A walk with T_Plant through the Show Case

This section revisits the complete show case, but focuses on one physical value: Tpj,.-
It visits all artifacts and highlights all places that relate to T'r,,.¢ to illustrate the depen-
dencies between all artifacts.

3.1.6.1 Physical System

Our journey begins at the physical system, where the value of the physical system
outside of the ECU is identified with a software value inside the ECU.

1.

/

IController

Heating Power
Output

IController Y,

Temperature

= Stream - Sensor

T
E— Env r—

(W [
M

Figure 3.7: Physical Overview

3.1.6.1.1 Components

It was located at the interface between two architectural components, sent by the
Plant and received by the Controller. Furthermore a sequencing was introduced?,
i.e. in one time step the P1lant is calculated before the Controller.

3Please note that this sequencing is a design decision. As there is also a data flow from the P1ant
to the controller one could also argue for another calculation sequence.

AUTSSAR

1.1 [MA]—> Plant “STra Tra- Controller palLly

—

Tenv, [°C]
Figure 3.8: Component Overview

3.1.6.1.2 Equations

The functional behavior is defined by the equations for the P1ant

i

Qplant, 1] = T, KL i

/T;[K])= Qplanta)
> 1 H

K

Figure 3.9: Dependency between Q) p;,,,; and Tpj1

Qenv, [J] = (Tenv, [K] Tn I[K] [} - At [s]

Figure 3.10: Heat flow from the Plant to the Environment

Triane 1S also used by the physical equations in the component Controller:

€n [K] = TSetPoin.t [K]/_/Tn [K]

Figure 3.11: Calculation of the control error in the Controller

Furthermore, calculations inside the components are done in Kelvin [K]. The conversion
from and to [°C| happens at the interface level.

3.1.6.2 AUTOSAR Modeling

This architecture, i.e. the layout of the physical system, is modeled in AUTOSAR. The
functional behavior defined by the equations will be implemented in C Code later on.

3.1.6.2.1 Physical Dimension and Unit

A PhysicalDimension is defined: Tp,; IS a temperature.

AUTSSAR

Common PhysicalDimension attributes

shortName Temperature

currentExp

lengthExp

luminousIntensity-
Exp

massExp

molarAmountExp

temperatureExp

oO|=-|O|O| ©O |O|O

timeExp

Table 3.1: PhysicalDimension Temparature

The corresponding ARXML description is:

<PHYSICAL-DIMENSION>
<SHORT-NAME>Temperature</SHORT-NAME>
<LENGTH-EXP>(0</LENGTH-EXP>
<MASS-EXP>0</MASS—-EXP>
<TIME-EXP>(0</TIME-EXP>
<CURRENT-EXP>0</CURRENT-EXP>
<TEMPERATURE-EXP>1</TEMPERATURE-EXP>
<MOLAR-AMOUNT-EXP>(0</MOLAR-AMOUNT-EXP>
<LUMINOUS-INTENSITY-EXP>(0</LUMINOUS-INTENSITY-EXP>
</PHYSICAL-DIMENSION>

Listing 3.4: Physical Dimension of Temperature

Trian: Shall have the Unit DegreeCelsius:

Common Unit attributes

shortName DegreeCelsius
displayName °C
offsetSiToUnit -273.15
factorSiToUnit 1.0
physicalDimension Temperature

Table 3.2: Unit DegreeCelsius

The corresponding ARXML description is:

<UNIT>
<SHORT-NAME>DegreeCelsius</SHORT-NAME>
<DISPLAY-NAME>°C</DISPLAY-NAME>
<FACTOR-SI-TO-UNIT>1.0</FACTOR-SI-TO-UNIT>
<OFFSET-SI-TO-UNIT>-273.15</OFFSET-SI-TO-UNIT>
<PHYSICAL-DIMENSION-REF DEST="PHYSICAL-DIMENSION">/McInt/
PhysicalDimensions/Temperature</PHYSICAL-DIMENSION-REF>
</UNIT>

Listing 3.5: Unit Degree Celsius

AUTSSAR

The following is presented for completeness, although not directly needed for Tpjg,;. It
is possible to link more than one unit to a physical dimension. So in the model, there is
also a definition for the unit Kelvin:

Common Unit attributes

shortName Kelvin
displayName K
offsetSiToUnit 0.0
factorSiToUnit 1.0
physicalDimension Temperature

Table 3.3: Unit Kelvin

The corresponding ARXML Code is:

<UNIT>
<SHORT-NAME>Kelvin</SHORT-NAME>
<DISPLAY-NAME>K</DISPLAY-NAME>
<FACTOR-SI-TO-UNIT>1.0</FACTOR-SI-TO-UNIT>
<OFFSET-SI-TO-UNIT>(0.0</OFFSET-SI-TO-UNIT>
<PHYSICAL-DIMENSION-REF DEST="PHYSICAL-DIMENSION">/McInt/
PhysicalDimensions/Temperature</PHYSICAL-DIMENSION-REF>
</UNIT>

Listing 3.6: Unit Kelvin

3.1.6.2.2 Application Data Type

A new ApplicationDataType is defined for temperatures in degree Celsius:

Common ApplicationDataType attributes

shortName Temperature_C
category VALUE
desc Type for a temperature in [°C]
swCalibrationAccess readOnly
unit DegreeCelsius
Range
Conversion
category LINEAR
direction compulnternalToPhys
desc lowerLimit | upperLimit :ﬁﬁiﬁﬁt:ﬁ:::ﬁ::;
) - : Phys — —273.15 + 1 x Internal

Table 3.4: ApplicationDataType Temperature_C

AUTSSAR

The corresponding ARXML Code is split between the definition of the Application-
DataType:

<APPLICATION-PRIMITIVE-DATA-TYPE>
<SHORT-NAME>Temperature_C</SHORT-NAME>
<DESC>
<L-2 L="EN">Type for a temperature in [°C]</L-2>
</DESC>
<CATEGORY>VALUE</CATEGORY>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS—-VARIANTS>
<SW-DATA-DEF-PROPS—-CONDITIONAL>
<SW-CALIBRATION-ACCESS>READ-ONLY</SW-CALIBRATION-ACCESS>
<COMPU-METHOD-REF DEST="COMPU-METHOD">/McInt/CompuMethods/
Temperature_C</COMPU-METHOD—REF>
<UNIT-REF DEST="UNIT">/McInt/Units/DegreeCelsius</UNIT-REF>
</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>
</APPLICATION-PRIMITIVE-DATA-TYPE>

Listing 3.7: Application Data Type

and the CompuMethod, which is referenced by the ApplicationDataType:

<COMPU-METHOD>
<SHORT-NAME>Temperature_C</SHORT-NAME>
<DESC>
<L-2 L="EN">Conversion from [°C] to [K]</L-2>
</DESC>
<CATEGORY>LINEAR</CATEGORY>
<DISPLAY-FORMAT>%.1f</DISPLAY-FORMAT>
<UNIT-REF DEST="UNIT">/McInt/Units/DegreeCelsius</UNIT-REF>
<COMPU-INTERNAL-TO-PHYS>
<COMPU-SCALES>
<COMPU-SCALE>
<COMPU-RATIONAL-COEFFS>
<COMPU-NUMERATOR>
<V>-273.15</V>
<V>1</V>
</COMPU-NUMERATOR>
<COMPU-DENOMINATOR>
<V>1</V>
</COMPU-DENOMINATOR>
</COMPU-RATIONAL-COEFFS>
</COMPU-SCALE>
</COMPU-SCALES>
</COMPU-INTERNAL-TO-PHYS>
</COMPU-METHOD>

Listing 3.8: Conversion

This ApplicationDataType is mapped to the ImplementationDataType
float32. The DataTypeMappingSet that contains this DataTypeMap is referenced
inside the SwcInternalBehaviors of the ApplicationSwComponentTypeS pre-
sented later on.

AUTSSAR

<DATA-TYPE-MAPPING-SET>
<SHORT-NAME>DataTypeMappingSet</SHORT-NAME>
<DATA-TYPE-MAPS>
<DATA-TYPE-MAP>
<APPLICATION-DATA-TYPE-REF DEST="APPLICATION-PRIMITIVE-DATA-TYPE">/
McInt/ApplicationDataTypes/Temperature_C</APPLICATION-DATA-TYPE-
REF>
<IMPLEMENTATION-DATA-TYPE-REF DEST="IMPLEMENTATION-DATA-TYPE">/
AUTOSAR_PlatformTypes/ImplementationDataTypes/float32</
IMPLEMENTATION-DATA-TYPE-REF>
</DATA-TYPE-MAP>
</DATA-TYPE-MAPS>
</DATA-TYPE-MAPPING-SET>

Listing 3.9: Type Mapping

For completeness, also the ARXML containing the definition of f1o0at32 is inserted
here:

<AR-PACKAGE>
<SHORT-NAME>AUTOSAR_PlatformTypes</SHORT-NAME>
<AR-PACKAGES>
<AR-PACKAGE>
<SHORT-NAME>TImplementationDataTypes</SHORT-NAME>
<ELEMENTS>
<IMPLEMENTATION-DATA-TYPE>
<SHORT-NAME>f1loat 32</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS—-CONDITIONAL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR_PlatformTypes/
SwBaseTypes/float32</BASE-TYPE-REF>
</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>
</IMPLEMENTATION-DATA-TYPE>
</ELEMENTS>
</AR-PACKAGE>
<AR-PACKAGE>
<SHORT-NAME>SwBaseTypes</SHORT-NAME>
<ELEMENTS>
<SW-BASE-TYPE>
<SHORT-NAME>f1o0at 32</SHORT-NAME>
<CATEGORY>FIXED_LENGTH</CATEGORY>
<BASE-TYPE-SIZE>32</BASE-TYPE-SIZE>
<BASE-TYPE-ENCODING>IEEE754</BASE-TYPE-ENCODING>
</SW-BASE-TYPE>
</ELEMENTS>
</AR-PACKAGE>
</AR-PACKAGES>
</AR-PACKAGE>

Listing 3.10: Implementation Type and Base Type

AUTSSAR

3.1.6.2.3 Port Interface

The Temperature_C is used to define the SenderReceiverInterface which is
used to type the "transport" of a temperature in degree Celsius between SwCompo-
nent TypeS. Please note that in the show case, this Port Interface is not only used
to type the "transport" of Tr1.,.:, but also to type the "transport” of Tg,,,.

Common SenderReceiverInterface attributes

shortName TemperatureSRIF

desc Interface type for transferring temperatures in [°C]

properties of the dataElements

properties of VariableDataPrototype

shortName T
type Temperature_C
swImplPolicy standard

swCalibrationAccess readOnly

swAddrMethod VAR

Table 3.5: SenderReceiverinterface TemperatureSRIF

In ARXML:

<SENDER-RECEIVER-INTERFACE>
<SHORT-NAME>TemperatureSRIF</SHORT-NAME>
<DESC>
<L-2 L="EN">Interface type for transferring temperatures in [°C]</L-2>
</DESC>
<IS-SERVICE>false</IS-SERVICE>
<DATA-ELEMENTS>
<VARIABLE-DATA-PROTOTYPE>
<SHORT-NAME>T</SHORT-NAME>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS—-VARIANTS>
<SW-DATA-DEF-PROPS—CONDITIONAL>
<SW-ADDR-METHOD-REF DEST="SW-ADDR-METHOD">/McInt/SwAddrMethods/
VAR</SW-ADDR-METHOD-REF>
<SW-CALIBRATION-ACCESS>READ-ONLY</SW-CALIBRATION-ACCESS>
<SW-IMPL-POLICY>STANDARD</SW-IMPL-POLICY>
</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>
<TYPE-TREF DEST="APPLICATION-PRIMITIVE-DATA-TYPE">/McInt/
ApplicationDataTypes/Temperature_C</TYPE-TREF>
</VARIABLE-DATA-PROTOTYPE>
</DATA-ELEMENTS>
</SENDER-RECEIVER-INTERFACE>

Listing 3.11: Port Interface

For completeness, also the referenced swAddrMethod is described here:

AUTSSAR

Common SwAddrMethod attributes

shortName VAR
desc Memory section for variables
sectionType var
memoryAllocation-
. addrMethodShortName
KeywordPolicy
sectionInitializa-
tionPolicy
option safetyQM
Table 3.6: SwAddrMethod VAR
In ARXML:

<SW-ADDR-METHOD>
<SHORT-NAME>VAR</SHORT-NAME>
<DESC>
<L-2 L="EN">Memory section for variables</L-2>
</DESC>
<OPTIONS>
<OPTION>safetyQM</OPTION>
</OPTIONS>
</SW-ADDR-METHOD>

Listing 3.12: Software Address Method

3.1.6.2.4 Software Components

The two ApplicationSwComponentTypeS Controller and Plant are using
TPlant-

In Plant a PPortPrototype, typed by TemperatureSRIF, is defined for sending
out TPlant-

Furthermore dataWriteAccess is granted to the single RunnableEntity in this
ApplicationSwComponentType. You also see the symbol, i.e. the name of the
implementing C function, as well as the TimingEvent that triggers the execution of
the RunnableEntity. These two are of further interest for tying together the system.

AUTSSAR

Common ApplicationSwComponentType attributes

shortName Plant

properties of the ports

propetrties of PPortPrototype
shortName PlantTemperaturePPP
desc Port for sending out the estimated temperature of the plant
providedInterface TemperatureSRIF
[...]
internalBehavior PlantInternalBehavior

[.1]

properties of the runnables

properties of RunnableEntity

shortName plantRE

symbol plantRE_func
properties of the events

properties of TimingEvent

shortName plant100ms

startOnEvent plantRE

period 0.1

Table 3.7: ApplicationSwComponentType Plant

In ARXML:

<APPLICATION-SW-COMPONENT-TYPE>
<SHORT-NAME>Plant </SHORT-NAME>
<PORTS>
<P-PORT-PROTOTYPE>
<SHORT-NAME>Plant TemperaturePPP</SHORT-NAME>
<DESC>
<L-2 L="EN">Port for sending out the estimated temperature of the
plant</L-2>
</DESC>
<PROVIDED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE">/McInt/
PortInterfaces/TemperatureSRIF</PROVIDED-INTERFACE-TREF>
</P-PORT-PROTOTYPE>
</PORTS>
<INTERNAL-BEHAVIORS>
<SWC-INTERNAL-BEHAVIOR>
<SHORT-NAME>PlantInternalBehavior</SHORT-NAME>
<DATA-TYPE-MAPPING-REFS>
<DATA-TYPE-MAPPING-REF DEST="DATA-TYPE-MAPPING-SET">/McInt/
DataTypeMappings/DataTypeMappingSet</DATA-TYPE-MAPPING-REF>
</DATA-TYPE-MAPPING-REFS>
<EVENTS>
<TIMING-EVENT>
<SHORT-NAME>plant100ms</SHORT-NAME>
<START-ON-EVENT-REF DEST="RUNNABLE-ENTITY">/McInt/SwComponents/
Plant/PlantInternalBehavior/plantRE</START-ON-EVENT-REF>

AUTSSAR

<PERIOD>0.1</PERIOD>
</TIMING-EVENT>
</EVENTS>
<RUNNABLES>
<RUNNABLE-ENTITY>
<SHORT-NAME>plantRE</SHORT-NAME>
<DATA-WRITE-ACCESSS>
<VARIABLE-ACCESS>
<SHORT-NAME>DWA_PlantTemperature</SHORT-NAME>
<ACCESSED-VARIABLE>
<AUTOSAR-VARIABLE-IREF>
<PORT-PROTOTYPE-REF DEST="P-PORT-PROTOTYPE">/McInt/
SwComponents/Plant/PlantTemperaturePPP</PORT-PROTOTYPE
—REF>
<TARGET-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-PROTOTYPE"
>/McInt/PortInterfaces/TemperatureSRIF/T</TARGET-DATA-
PROTOTYPE—-REF>
</AUTOSAR-VARIABLE-IREF>
</ACCESSED-VARIABLE>
</VARIABLE-ACCESS>
</DATA-WRITE-ACCESSS>
</RUNNABLE-ENTITY>
</RUNNABLES>
</SWC—-INTERNAL-BEHAVIOR>
</INTERNAL-BEHAVIORS>
</APPLICATION-SW-COMPONENT-TYPE>

Listing 3.13: Plant

In Controller a RPortPrototype, typed by TemperatureSRIF, is defined for
receiving Tpiant-

Furthermore dataReadAccess is granted to the single RunnableEntity in this
ApplicationSwComponentType. You also see the symbol, i.e. the name of the
implementing C function, as well as the TimingEvent that triggers the execution of
the RunnableEntity. These two are of further interest for tying together the system.

AUTSSAR

Common ApplicationSwComponentType attributes

shortName Controller
properties of the ports
properties of RPortPrototype
shortName TemperatureRPP
desc Port to receive the temperature of the plant
requiredInterface TemperatureSRIF
[..-]
internalBehavior ControllerInternalBehavior

[.]

properties of the runnables

properties of RunnableEntity

shortName ControllerRE

symbol controllerRE_func
properties of the events

properties of TimingEvent

shortName controllerl00ms

startOnEvent ControllerRE

period 0.1

Table 3.8: ApplicationSwComponentType Controller

In ARXML:

<APPLICATION-SW-COMPONENT-TYPE>
<SHORT-NAME>Controller</SHORT-NAME>
<PORTS>
<R-PORT-PROTOTYPE>
<SHORT-NAME>TemperatureRPP</SHORT-NAME>
<DESC>
<L-2 L="EN">Port to receive the temperature of the plant</L-2>
</DESC>
<REQUIRED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE">/McInt/
PortInterfaces/TemperatureSRIF</REQUIRED-INTERFACE-TREF>
</R-PORT-PROTOTYPE>
</PORTS>
<INTERNAL-BEHAVIORS>
<SWC-INTERNAL-BEHAVIOR>
<SHORT-NAME>ControllerInternalBehavior</SHORT-NAME>
<DATA-TYPE-MAPPING-REFS>
<DATA-TYPE-MAPPING-REF DEST="DATA-TYPE-MAPPING-SET">/McInt/
DataTypeMappings/DataTypeMappingSet</DATA-TYPE-MAPPING-REF>
</DATA-TYPE-MAPPING-REFS>
<EVENTS>
<TIMING-EVENT>
<SHORT-NAME>controllerl00ms</SHORT-NAME>
<START-ON-EVENT-REF DEST="RUNNABLE-ENTITY">/McInt/SwComponents/
Controller/ControllerInternalBehavior/ControllerRE</START-ON-
EVENT-REF>

AUTSSAR

<PERIOD>0.1</PERIOD>
</TIMING-EVENT>
</EVENTS>
<RUNNABLES>
<RUNNABLE-ENTITY>
<SHORT-NAME>ControllerRE</SHORT-NAME>
<DATA-READ-ACCESSS>
<VARIABLE-ACCESS>
<SHORT-NAME>DRA_temperature</SHORT-NAME>
<ACCESSED-VARIABLE>
<AUTOSAR-VARIABLE-IREF>
<PORT-PROTOTYPE-REF DEST="R-PORT-PROTOTYPE">/McInt/
SwComponents/Controller/TemperatureRPP</PORT-PROTOTYPE
—REF>
<TARGET-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-PROTOTYPE"
>/McInt/PortInterfaces/TemperatureSRIF/T</TARGET-DATA-
PROTOTYPE—-REF>
</AUTOSAR-VARIABLE-IREF>
</ACCESSED-VARIABLE>
</VARIABLE-ACCESS>
</DATA-READ-ACCESSS>
</RUNNABLE-ENTITY>
</RUNNABLES>
</SWC-INTERNAL-BEHAVIOR>
</INTERNAL-BEHAVIORS>
</APPLICATION-SW-COMPONENT-TYPE>

Listing 3.14: Controller

The two ApplicationSwComponentTypesS are then used to type SwComponent—
Prototypes$ in the Composition. The PortPrototypes of the SwComponent-
Prototypes are connected by an AssemblySwConnector:

Common CompositionSwComponentType attributes

shortName ‘ Composition
properties of the components
properties of SwComponentPrototype
shortName CPT_Controller
type Controller
properties of SwComponentPrototype
shortName CPT_Plant
type Plant
[...]

Table 3.9: CompositionSwComponentType Composition

In ARXML:

<COMPOSITION-SW-COMPONENT-TYPE>
<SHORT-NAME>Composition</SHORT-NAME>
<COMPONENTS>
<SW-COMPONENT-PROTOTYPE>
<SHORT-NAME>CPT_Controller</SHORT-NAME>

AUTSSAR

<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE">/McInt/SwComponents/
Controller</TYPE-TREF>
</SW-COMPONENT-PROTOTYPE>
<SW-COMPONENT-PROTOTYPE>
<SHORT-NAME>CPT_Plant</SHORT-NAME>
<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE">/McInt/SwComponents/
Plant</TYPE-TREF>
</SW-COMPONENT-PROTOTYPE>
</COMPONENTS>
<CONNECTORS>
<ASSEMBLY-SW-CONNECTOR>
<SHORT-NAME>
ASC_CPT_Plant_TemperaturePPP_CPT_Controller_TemperatureRPP</SHORT-
NAME >
<PROVIDER-IREF>
<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/McInt/
SwComponents/Composition/CPT_Plant</CONTEXT-COMPONENT-REF>
<TARGET-P-PORT-REF DEST="P-PORT-PROTOTYPE">/McInt/SwComponents/
Plant/PlantTemperaturePPP</TARGET-P-PORT-REF>
</PROVIDER-IREF>
<REQUESTER-IREF>
<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/McInt/
SwComponents/Composition/CPT_Controller</CONTEXT-COMPONENT-REF>
<TARGET-R-PORT-REF DEST="R-PORT-PROTOTYPE">/McInt/SwComponents/
Controller/TemperatureRPP</TARGET-R-PORT-REF>
</REQUESTER-IREF>
</ASSEMBLY-SW-CONNECTOR>
</CONNECTORS>
</COMPOSITION-SW—COMPONENT-TYPE>

Listing 3.15: Composition

3.1.6.3 System

In the ECU_Extract, i.e. a System With category ECU_EXTRACT, the Composi-
tion is used to type the rootSoftwareComposition. All SwComponentProto-
typeS in Composition are mapped to the single EcuInstance in this show case.

<ECU-INSTANCE>
<SHORT-NAME>EcuInstance</SHORT-NAME>
</ECU-INSTANCE>
<SYSTEM>
<SHORT-NAME>EcuExtract</SHORT-NAME>
<CATEGORY>ECU_EXTRACT</CATEGORY>
<MAPPINGS>
<SYSTEM-MAPPING>
<SHORT-NAME>SystemMapping</SHORT-NAME>
<SW-MAPPINGS>
<SWC-TO-ECU-MAPPING>
<SHORT-NAME>SwcToEcuMapping</SHORT-NAME>
<COMPONENT-IREFS>
<COMPONENT-IREF>

AUTSSAR

<CONTEXT-COMPOSITION-REF DEST="ROOT-SW-COMPOSITION-PROTOTYPE">/
McInt/System/EcuExtract/RootSwCompositionPrototype</CONTEXT-
COMPOSITION—-REF>
<TARGET-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/McInt/
SwComponents/Composition/CPT_Controller</TARGET-COMPONENT-REF>
</COMPONENT-IREF>
<COMPONENT-IREF>
<CONTEXT-COMPOSITION-REF DEST="ROOT-SW-COMPOSITION-PROTOTYPE">/
McInt/System/EcuExtract/RootSwCompositionPrototype</CONTEXT-
COMPOSITION-REF>
<TARGET-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/McInt/
SwComponents/Composition/CPT_Plant</TARGET-COMPONENT-REF>
</COMPONENT-IREF>
</COMPONENT-IREFS>
<ECU-INSTANCE-REF DEST="ECU-INSTANCE">/McInt/System/Eculnstance</ECU-
INSTANCE-REF>
</SWC-TO-ECU-MAPPING>
</SW-MAPPINGS>
</SYSTEM-MAPPING>
</MAPPINGS>
<ROOT-SOFTWARE-COMPOSITIONS>
<ROOT-SW-COMPOSITION-PROTOTYPE>
<SHORT-NAME>RootSwCompositionPrototype</SHORT-NAME>
<FLAT-MAP-REF DEST="FLAT-MAP">/McInt/FlatMaps/FlatMap</FLAT-MAP-REF>
<SOFTWARE-COMPOSITION-TREF DEST="COMPOSITION-SW-COMPONENT-TYPE">/McInt/
SwComponents/Composition</SOFTWARE-COMPOSITION-TREF>
</ROOT-SW-COMPOSITION-PROTOTYPE>
</ROOT-SOFTWARE-COMPOSITIONS>
</SYSTEM>

Listing 3.16: System and Eculnstance

The FlatMap that is referenced in the ECU_Extract, gives the name TPlant to a
dataElement (See ecuExtractReference below). The name TPlant is later on
displayed in the MC Tool.

<FLAT-MAP>
<SHORT-NAME>F 1atMap</SHORT-NAME>
<INSTANCES>
<FLAT-INSTANCE-DESCRIPTOR>
<SHORT-NAME>TPlant</SHORT-NAME>
<ECU-EXTRACT-REFERENCE-IREF>
<CONTEXT-ELEMENT-REF DEST="ROOT-SW-COMPOSITION-PROTOTYPE">/McInt/System
/EcuExtract/RootSwCompositionPrototype</CONTEXT-ELEMENT-REF>
<CONTEXT-ELEMENT-REF DEST="SW-COMPONENT-PROTOTYPE">/McInt/SwComponents/
Composition/CPT_Plant</CONTEXT-ELEMENT-REF>
<CONTEXT-ELEMENT-REF DEST="P-PORT-PROTOTYPE">/McInt/SwComponents/Plant/
PlantTemperaturePPP</CONTEXT-ELEMENT-REF>
<TARGET-REF DEST="VARIABLE-DATA-PROTOTYPE">/McInt/PortInterfaces/
TemperatureSRIF/T</TARGET-REF>
</ECU-EXTRACT-REFERENCE-IREF>
</FLAT-INSTANCE-DESCRIPTOR>
</INSTANCES>
</FLAT-MAP>

Listing 3.17: FlatMap

AUTSSAR

3.1.6.4 ECU Configuration

There are further things that need to be defined before the RTE and the 0S can be gen-
erated. For instance, the order in which the RTEEvents for the RunnableEntitys
are invoked and the assignment to an OsTask. This is done via EcucModuleCon-—
figurationValues. The interesting parts of the RTE configuration are:

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>controllerl100ms</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/EcucDefs/
Rte/RteSwComponentInstance/RteEventToTaskMapping</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-NUMERICAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-INTEGER-PARAM-DEF">/AUTOSAR/EcucDefs/Rte/
RteSwComponentInstance/RteEventToTaskMapping/RtePositionInTask</
DEFINITION-REF>
<VALUE>3</VALUE>
</ECUC-NUMERICAL-PARAM-VALUE>

</PARAMETER-VALUES>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/Rte/
RteSwComponentInstance/RteEventToTaskMapping/RteMappedToTaskRef</
DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/McInt/0S/0S_CFG/task_100ms</
VALUE-REF>
</ECUC-REFERENCE-VALUE>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-FOREIGN-REFERENCE-DEF">/AUTOSAR/EcucDefs/Rte
/RteSwComponentInstance/RteEventToTaskMapping/RteEventRef</
DEFINITION—-REF>
<VALUE-REF DEST="TIMING-EVENT">/McInt/SwComponents/Controller/
ControllerInternalBehavior/controller100ms</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>plant100ms</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/EcucDefs/
Rte/RteSwComponentInstance/RteEventToTaskMapping</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-NUMERICAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-INTEGER-PARAM-DEF">/AUTOSAR/EcucDefs/Rte/
RteSwComponentInstance/RteEventToTaskMapping/RtePositionInTask</
DEFINITION-REF>
<VALUE>2</VALUE>
</ECUC-NUMERICAL-PARAM-VALUE>

</PARAMETER-VALUES>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/Rte/
RteSwComponentInstance/RteEventToTaskMapping/RteMappedToTaskRef</
DEFINITION-REF>

AUTSSAR

<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/McInt/0S/0S_CFG/task_100ms</
VALUE-REF>
</ECUC-REFERENCE-VALUE>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-FOREIGN-REFERENCE-DEF">/AUTOSAR/EcucDefs/Rte
/RteSwComponentInstance/RteEventToTaskMapping/RteEventRef</
DEFINITION-REF>
<VALUE-REF DEST="TIMING-EVENT">/McInt/SwComponents/Plant/
PlantInternalBehavior/plant100ms</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>

Listing 3.18: RTE Config

This part of the 0s configuration defines the name of the 0STask, that we see later on
in the generated C code:

<ECUC-MODULE-CONFIGURATION-VALUES>
<SHORT-NAME>0S_ CFG</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-MODULE-DEF">/AUTOSAR/EcucDefs/0Os</DEFINITION-
REF>
<CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>t ask_100ms</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/0s/0sTask</DEFINITION-REF>
</ECUC-CONTAINER-VALUE>
</CONTAINERS>
</ECUC-MODULE-CONFIGURATION-VALUES>

Listing 3.19: OsConfig

These configurations are tied to the ECU_Extract by an EcucvalueCollection:

<ECUC-VALUE-COLLECTION>
<SHORT-NAME>EcucValueCollection</SHORT-NAME>
<ECU-EXTRACT-REF DEST="SYSTEM">/McInt/System/EcuExtract</ECU-EXTRACT-REF>
<ECUC-VALUES>
<ECUC-MODULE-CONFIGURATION-VALUES-REF-CONDITIONAL>
<ECUC-MODULE-CONFIGURATION-VALUES-REF DEST="ECUC-MODULE-CONFIGURATION-
VALUES">/McInt/RTE/RTE_CFG</ECUC-MODULE-CONFIGURATION-VALUES—-REF>
</ECUC-MODULE-CONFIGURATION-VALUES-REF-CONDITIONAL>
<ECUC-MODULE-CONFIGURATION-VALUES—-REF-CONDITIONAL>
<ECUC-MODULE-CONFIGURATION-VALUES—-REF DEST="ECUC-MODULE-CONFIGURATION-
VALUES">/McInt/0S/0S_CFG</ECUC-MODULE-CONFIGURATION-VALUES—-REF>
</ECUC-MODULE-CONFIGURATION-VALUES-REF-CONDITIONAL>
</ECUC-VALUES>
</ECUC-VALUE-COLLECTION>

Listing 3.20: EcuC Value Collection

This completes the presentation of the AUTOSAR modeling in our walk through.

AUTSSAR

3.1.6.5 RTE Generation

In the following, some snippets of the generated RTE are presented. However, they are
examples only and may differ if different RTE generators are used.

Among other things, the OsTask is generated as defined in the ECU configuration
above:

#define RTE_START_SEC_VAR
#include "MemMap.h" /xlint !e537 permit multiple inclusion =/

VAR (float32, RTE_DATA) TPlant;

#define RTE_STOP_SEC_VAR
#include "MemMap.h" /*lint !e537 permit multiple inclusion */

© 00 N oo 0 »~A W N =

10 TASK (task_100ms)
1 {

13 Rte_ImplicitBufs.isa_1._task_100ms.sbufl.value = TPlant;

14 ...
15 plantRE_func();

16 ...

17 controllerRE_func();

18 RN

19 TPlant = Rte_ImplicitBufs.isa_1l._task_100ms.sbufl.value;
20 ...

21} /* task_100ms =*/

Listing 3.21: Rte.c

Also a MACRO to write T’p;,,,; in the Plant

T ..
2 #define Rte_IRead_plantRE_EnvTemperatureRPP_T () ((CONST (float32,
RTE_DATA)) Rte_ImplicitBufs.isa_1._task_100ms.sbufO.value)

Listing 3.22: Rte_Plant.h

and to read Tp,,: in the Controller

1 ...
2 #define Rte_IRead_ControllerRE_TemperatureRPP_T () ((CONST (float32,
RTE_DATA)) Rte_ImplicitBufs.isa_1._task _100ms.sbufl.value)

Listing 3.23: Rte_Controller.h

was generated. Furthermore, the McSupport file is generated as an interface between
the "AUTOSAR world" and the "a21 world". As the reader can see, this is a compilation
of necessary data from the AUTOSAR model presented before:

<BSW-IMPLEMENTATION>
<SHORT-NAME>Rt e</SHORT-NAME>

AUTSSAR

<MC-SUPPORT>
<MC-VARIABLE-INSTANCES>
<MC-DATA-INSTANCE>
<SHORT-NAME>TPlant </SHORT-NAME>
<DESC>
<L-2 L="EN">Type for a temperature in [°C]</L-2>
</DESC>
<CATEGORY>VALUE</CATEGORY>
<FLAT-MAP-ENTRY-REF DEST="FLAT-INSTANCE-DESCRIPTOR">/McInt/FlatMaps/
FlatMap/TPlant</FLAT-MAP-ENTRY-REF>
<RESULTING-PROPERTIES>
<SW-DATA-DEF-PROPS—-VARIANTS>
<SW-DATA-DEF-PROPS—CONDITIONAL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR_PlatformTypes/
SwBaseTypes/float32</BASE-TYPE-REF>
<SW-CALIBRATION-ACCESS>READ-ONLY</SW-CALIBRATION-ACCESS>
<COMPU-METHOD—-REF DEST="COMPU-METHOD">/McInt/CompuMethods/
Temperature_C</COMPU-METHOD-REF>
<DISPLAY-FORMAT>%.1f</DISPLAY-FORMAT>
<UNIT-REF DEST="UNIT">/McInt/Units/DegreeCelsius</UNIT-REF>
</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>
</RESULTING-PROPERTIES>
<SYMBOL>TPlant</SYMBOL>
</MC-DATA-INSTANCE>
</MC-VARIABLE-INSTANCES>
</MC-SUPPORT>
</BSW-IMPLEMENTATION>

Listing 3.24: McSupportData

3.1.6.6 ImplementationinC

The implementation in C-Code is a direct implementation of the physical equations.
The p1lant uses the MACRO, generated by the RTE generator, to write Tru,::

#include "Rte_Plant.h"

1
2 ...

3 FUNC (void, Plant_CODE) plantRE_func (void)

4 |

5 R

6 /+ heat capacity of 1 assumed */
7 float32 1TPlant = 1QPlant;

8 /* calculate heat flows, store in PIM to make them measurable =/
9 *Rte_Pim_ QEnv () = (1lTenv - 1TPlant) =* lEFactor = 1Dt;

10 ce

11 /+ heat capacity of 1 assumed */
12 1TPlant = 1QPlant;

13 R

14 /+ Write output of plant: temerature of plant */
15 Rte_IWrite_plantRE_PlantTemperaturePPP_T (1TPlant);

Listing 3.25: Plant

AUTSSAR

The Ccontroller uses the MACRO, generated by the RTE generator, to read Tpjq;:

{

1
2
3
4
5
6
7
8
9

10
11
12}

3.1.6.7

Using the McSupport file and the map file from the linker, an example A21 file was
generated for this show case. The snippet below is an example only and could differ if

#include "Rte_Controller.h"

FUNC (void, Controller_CODE) controllerRE_func (void)

/+ read input, define output variable */
float32 1T = Rte_IRead_ControllerRE_TemperatureRPP_T();

/* store current error in PIM to make it measurable */
*Rte_Pim_E () = 1lSetPoint - 1T;

Listing 3.26: Controller

A2L File

a different A2L file generator is used:

© 00 N o O~ O N =

/begin MEASUREMENT TPlant

"TPlant"

FLOAT32_IEEE
McInt_CompuMethods_Temperature_C
0

0

-1E+32

1E+32

DISPLAY_ IDENTIFIER "TPlant"
ECU_ADDRESS 0xe000001c
FORMAT "$.1£"

PHYS_UNIT "°C"

14 /end MEASUREMENT

16 /begin UNIT McInt_PhysicalDimensions_Temparature

"McInt_PhysicalDimensions_Temparature"
"McInt_PhysicalDimensions_Temparature"
EXTENDED_ST

SI_EXPONENTS O 0 0 0 1 0 O

21 /end UNIT
22 /begin UNIT McInt_Units_DegreeCelsius

"McInt_Units_DegreeCelsius"

"OC"

DERIVED

REF_UNIT McInt_PhysicalDimensions_Temparature
UNIT_CONVERSION 1 -273.15

28 /end UNIT
29 /begin COMPU_METHOD McInt_CompuMethods_Temperature_C

"McInt_CompuMethods_Temperature_C"
LINEAR

"%f"

AUTSSAR

33
34
35

37

"OC"

COEFFS_LINEAR 1 -273.15
REF_UNIT McInt_Units_DegreeCelsius
36 /end COMPU_METHOD

Listing 3.27: A2L File

3.1.6.8 Measurement and Calibration Tool

The A2L file is then used by a MC tool to measure Tp;.,;- Of course, in addition to the
A2L file a suitable EcU access* must be available, to actually do measurement and
calibration with the AUTOSAR system of this show case. However, the ECU access is
not presented because this is not in the focus of this show case.

Below is a typical screen shot from a Mc tool during an actual measurement and cali-

bration task. You can see T'»,,,; measured and displayed in degree Celsius.

YT Oscilloscope (V7.1) [1]
RAED SR L& -0

Name

Value

Style
R | TPlart 891178
. env_ | LowLimit 300.0
B e 356.000
= 10,263 602
B ctl_SetPoint 900.000
Environment Parameters [2] il Calibration Window [1] =2 Ech ===
env_TStepSize 4 1400 e |ctrLSetPoint 900.000 e ‘
‘ m ‘ ctrl K 2.500 [mA/Ks]
1 ' 1 1 1 ! 1 ' 1 ! 1 ! 1 ' 1 ' 1 ' 1 ctrl MaxES: 2000.000 [K]
0.0 200 400 60.0 300 1000 1200 1400 160.0 180.0 200.0 Tl_Maxtsum : S.

env_TLowLimit

env_THighLimitDistance

300.0

4731

sl [
Saills]

pint_EnvFactor

plnt_HeaterFactor

Figure 3.12: Screenshot of a MC Tool

0.100
0.500

“for instance, a measurement and calibration service like XCP or a hardware access to the memory
of the micro controller

AUTSSAR

3.1.7 Show cases in the Example

3.1.7.1 CompositionSwComponentTypes

Common CompositionSwComponentType attributes

shortName ‘ Composition

properties of the components

properties of SwComponentPrototype

shortName CPT_Controller
type Controller
properties of SwComponentPrototype
shortName CPT_Parameters
type Parameters
properties of SwComponentPrototype
shortName CPT_Plant

type Plant

properties of SwComponentPrototype
shortName CPT_Environment
type Environment

Table 3.10: CompositionSwComponentType Composition

AUTSSAR

3.1.7.2 ParameterSwComponentTypes

Common ParameterSwComponentType attributes

shortName

Parameters

desc

Type for providing the parameters to the ApplicationSwCompoments

properties of the ports

propetrties of PPortPrototype

shortName

ControllerPPP

desc

Port for providing the parameters for the controller

providedInterface

ControllerPIF

properties of PPortPrototype

shortName

PlantPPP

desc

Port for providing the parameters for the plant

providedInterface

PlantPIF

properties of PPortPrototype

shortName

EnvironmentPPP

desc

Port for providing the parameters for the environment

providedInterface

EnvironmentPIF

properties of PPortPrototype

shortName

DtPPP

desc

Time of one time step

providedInterface

DtPIF

Table 3.11: ParameterSwComponentType Parameters

AUTSSAR

3.1.7.3 ApplicationSwComponentTypes

Common ApplicationSwComponentType attributes

shortName

|Controller

properties of the ports

properties of RPortPrototype

shortName TemperatureRPP
desc Port to receive the temperature of the plant
requiredInterface TemperatureSRIF

properties of PPortPrototype

shortName

CurrentPPP

desc

Port for sending out the current output by this controller

providedInterface

CurrentSRIF

properties of RPortPrototype

shortName ControllerParamsRPP
desc Port to get the parameters for the controller
requiredInterface ControllerPIF

properties of RPortPrototype

shortName DtRPP
desc Port to get delta t, i.e. time of one time step
requiredInterface DtPIF

internalBehavior | ControllerInternalBehavior

Table 3.12: ApplicationSwComponentType Controller

AUTSSAR

Common SwcInternalBehavior attributes

shortName

ControllerInternalBehavior

properties of implicitInterRunnableVariableS /explicitInterRunnableVariables

properties of VariableDataPrototype

shortName ESum
desc Internal state of the controller: the sum of control errors
type ESum
swImplPolicy standard
swCalibrationAccess | readOnly
swAddrMethod CODE
properties of the arTypedPerInstanceMemorys
properties of VariableDataPrototype
shortName E
e Measurement point for the control error, the deviatipn between set point
and acutal temperature of the plant, in the current time step
type Temperature_K
swImplPolicy standard
swCalibrationAccess readOnly
swAddrMethod CODE
properties of the runnables
properties of RunnableEntity
shortName ControllerRE
symbol controllerRE_func

-]

roperties of the events

properties of TimingEvent

shortName controllerl100ms
startOnEvent ControllerRE
period 0.1

Table 3.13: SwcinternalBehavior ControllerinternalBehavior

AUTSSAR

Common ApplicationSwComponentType attributes

shortName

Plant

properties of the ports

properties of RPortPrototype

shortName

CurrentRPP

desc

Port to receive the current from the controller

requiredInterface

CurrentSRIF

properties of PPortPrototype

shortName

PlantTemperaturePPP

desc

Port for sending out the estimated temperature of the plant

providedInterface

TemperatureSRIF

properties of RPortPrototype

shortName PlantParamsRPP
desc Port to get the parameters for the plant
requiredInterface PlantPIF

properties of RPortPrototype

shortName EnvTemperatureRPP
desc Port to receive the tempertature of the environment
requiredInterface TemperatureSRIF

properties of RPortPrototype

shortName

DtRPP

desc

Port to get delta t, i.e. time of one time step

requiredInterface

DtPIF

internalBehavior

|PlantInternalBehavior

Table 3.14: ApplicationSwComponentType Plant

AUTSSAR

Common SwcInternalBehavior attributes

shortName

PlantInternalBehavior

properties of implicitInterRunnableVariableS /explicitInterRunnableVariables

properties of VariableDataPrototype

shortName QPlant
e Ipternal state of the plant: the stored eneregy quantity in the current
time step
type Energy
swImplPolicy standard
swCalibrationAccess readOnly
swAddrMethod CODE
properties of the arTypedPerInstanceMemorys
properties of VariableDataPrototype
shortName QHeater
e Measgrement point for heat flow between the electrical heater and the
plant in the current time step.
type Energy
swImplPolicy standard
swCalibrationAccess readOnly
swAddrMethod VAR
properties of VariableDataPrototype
shortName QEnv
v Mee_lsuremen_t point for heat_flow between the plant and the
environment in the current time step.
type Energy
swImplPolicy standard
swCalibrationAccess | readOnly
swAddrMethod CODE
properties of the runnables
properties of RunnableEntity
shortName plantRE
symbol plantRE_func
properties of the events
properties of TimingEvent
shortName plant100ms
startOnEvent plantRE
period 0.1

Table 3.15: SwcinternalBehavior PlantinternalBehavior

AUTSSAR

Common ApplicationSwComponentType attributes

shortName Environment

properties of the ports

propetrties of PPortPrototype

shortName EnvTemperaturePPP
desc Port to send out the temperature of the environment
providedInterface TemperatureSRIF
properties of RPortPrototype
shortName EnvParamsRPP
desc Port to get the parameters for the environment
requiredInterface EnvironmentPIF
properties of RPortPrototype
shortName DtRPP
desc Port to get delta t, i.e. time of one time step
requiredInterface DtPIF
internalBehavior | EnvironmentInternalBehavior

Table 3.16: ApplicationSwComponentType Environment

AUTSSAR

Common SwcInternalBehavior attributes

S

hortName

EnvironmentInternalBehavior

properties of implicitInterRunnableVariableS /explicitInterRunnableVariables

properties of VariableDataPrototype

shortName Seed
v Internal state of the envi_ronment: the current seed for the (pseudo)
random number generation

type uint32
swImplPolicy standard
swCalibrationAccess notAccessible
swAddrMethod CODE
properties of VariableDataPrototype
shortName TEnv
desc Internal state of the environment: the temperture of the environment
type Temperature_C
swImplPolicy standard
swCalibrationAccess | readOnly
swAddrMethod CODE

properties of the arTypedPerInstanceMemorys
propetrties of VariableDataPrototype
shortName THighLimit
e Megsurement point for the upper limit of the generated temperature

profile

type Temperature_C
swImplPolicy standard
swCalibrationAccess | readOnly
swAddrMethod CODE

properties of the runnables
properties of RunnableEntity
shortName envRE
symbol envRE_func

properties of the events
properties of TimingEvent
shortName env100ms
startOnEvent envRE
period 0.1

Table 3.17: SwcinternalBehavior EnvironmentinternalBehavior

AUTSSAR

3.1.7.4 Parameterinterfaces

Common ParameterInterface attributes

shortName

ControllerPIF

desc

Interface with all parameters for the controller

properties of the parameters

properties of ParameterDataPrototype

shortName ctrl_SetPoint

desc Set point for the temperature of the plant
type Temperature_C

swImplPolicy standard
swCalibrationAccess | readWrite

swAddrMethod CALIB

properties of ParameterDataPrototype

shortName ctrl_K

desc Amplification factor for the I-controller
type Amplification

swImplPolicy standard
swCalibrationAccess | readWrite

swAddrMethod CALIB

properties of ParameterDataPrototype

shortName ctrl_MaxESum

desc Upper limit of the integal part of the I-controller
type ESum

swImplPolicy standard

swCalibrationAccess readWrite

swAddrMethod CALIB

Table 3.18: Parameterinterface ControllerPIF

AUTSSAR

Common ParameterInterface attributes

shortName PlantPIF

desc Interface with all parameters for the plant

properties of the parameters

properties of ParameterDataPrototype

shortName plnt_EnvFactor

desc Proportionality factor for the heat flow between plant and environment

type EnvFactor

swImplPolicy standard

swCalibrationAccess readWrite

swAddrMethod CALIB

properties of ParameterDataPrototype

shortName plnt_HeaterFactor

desc Proportionality factor for the heat flow between plant and the electrical
heater

type HeaterFactor

swImplPolicy standard

swCalibrationAccess readWrite

swAddrMethod CALIB

Table 3.19: Parameterinterface PlantPIF

AUTSSAR

Common ParameterInterface attributes

shortName

EnvironmentPIF

desc

Interface with all parameters for the environment

properties of the parameters

properties of ParameterDataPrototype

shortName env_TLowLimit

desc Lower limit of the generated temeprature profile
type Temperature_C

swImplPolicy standard

swCalibrationAccess readWrite

swAddrMethod CALIB

properties of ParameterDataPrototype

shortName env_TStepSize
The maximal temperature diffenrence of the environment in one time
desc
step
type Temperature_K
swImplPolicy standard
swCalibrationAccess | readWrite
swAddrMethod CALIB

properties of ParameterDataPrototype

shortName env_THighLimitDistance

e Distance of the upper limit from the lower limit for the generated
temeprature profile.

type Temperature_K

swImplPolicy standard

swCalibrationAccess | readWrite

swAddrMethod CALIB

Table 3.20: Parameterinterface EnvironmentPIF

Common ParameterInterface attributes

shortName

DtPIF

properties of the parameters

properties of ParameterDataPrototype

shortName Dt

desc Scheduling time of the components
type Time

swImplPolicy standard
swCalibrationAccess readWrite

swAddrMethod CALIB

Table 3.21: Parameterinterface DtPIF

AUTSSAR

3.1.7.5 SenderReceiverinterfaces

Common SenderReceiverInterface attributes

shortName TemperatureSRIF

desc Interface type for transferring temperatures in [°C]

properties of the dataElements

properties of VariableDataPrototype

shortName T
type Temperature_C
swImplPolicy standard

swCalibrationAccess readOnly

swAddrMethod VAR

Table 3.22: SenderReceiverinterface TemperatureSRIF

Common SenderReceiverInterface attributes

shortName CurrentSRIF

desc Interface type for transferring a current in [mA]

properties of the dataElements

properties of VariableDataPrototype

shortName I
type Current
swImplPolicy standard

swCalibrationAccess readOnly

swAddrMethod VAR

Table 3.23: SenderReceiverinterface CurrentSRIF

AUTSSAR

3.1.7.6 ApplicationDataTypes, Category VALUE

Common ApplicationDataType attributes

shortName Temperature_C
category VALUE
desc Type for a temperature in [°C]
swCalibrationAccess readOnly
unit DegreeCelsius
Range
Conversion
category LINEAR
direction compulnternalToPhys
desc lowerLimit | upperLimit e e |

compuDenominator

Phys

_ —27315+ 1% Internal

a 1

Table 3.24: ApplicationDataType Temperature_C

Common ApplicationDataType attributes

shortName Current
category VALUE
desc Type for the current in [mA]
swCalibrationAccess readOnly
unit MilliAmpere
Range
Conversion
category LINEAR
direction compulnternalToPhys
desc lowerLimit | upperLimit :ﬁﬁiﬁgﬁiﬁ:ﬁ:ﬁ:g;
)) ; Phys = 0 + 1000 % Internal

1

Table 3.25: ApplicationDataType Current

AUTSSAR

Common ApplicationDataType attributes

shortName EnvFactor
category VALUE
desc Type for the environt factor in [J/Ks]

swCalibrationAccess

readOnly

unit JoulePerKelvinSecond
Range
Conversion

category IDENTICAL

direction -

Table 3.26: ApplicationDataType EnvFactor

Common ApplicationDataType attributes

shortName Temperature_K
category VALUE
desc Type for a temperature in [K]
swCalibrationAccess readOnly
unit Kelvin
Range
Conversion
category IDENTICAL
direction -

Table 3.27: ApplicationDataType Temperature_K

Common ApplicationDataType attributes

shortName Amplification
category VALUE
desc Type for an amplification factor in a controller in [mMA/Ks]

swCalibrationAccess

readOnly

unit MilliAmperePerKelvinSecond
Range
Conversion

category IDENTICAL

direction -

Table 3.28: ApplicationDataType Amplification

AUTSSAR

Common ApplicationDataType attributes

shortName Energy
category VALUE
desc Type for energy [J]
swCalibrationAccess readOnly
unit Joule
Range
Conversion
category IDENTICAL
direction -

Table 3.29: ApplicationDataType Energy

Common ApplicationDataType attributes

shortName ESum
category VALUE
desc Type for the sum of control errors of an | controller in [Ks]
swCalibrationAccess readOnly
unit KelvinSecond
Range
Conversion
category IDENTICAL
direction -

Table 3.30: ApplicationDataType ESum

Common ApplicationDataType attributes

shortName HeaterFactor
category VALUE
o Type of a proportionality factor for the heat flow from an electrical

heater to a thermal energy storage in [J/mAs]

swCalibrationAccess

readOnly

unit JoulePerMilliAmpereSecond
Range
Conversion

category IDENTICAL

direction -

Table 3.31: ApplicationDataType HeaterFactor

AUTSSAR

Common ApplicationDataType attributes

shortName Time
category VALUE
desc Type for time in [s]
swCalibrationAccess readOnly
unit Second
Range
Conversion
category IDENTICAL
direction -
Table 3.32: ApplicationDataType Time
3.1.7.7 Units

Common Unit attributes

shortName DegreeCelsius
displayName °C
offsetSiToUnit -273.15
factorSiToUnit 1.0
physicalDimension Temperature

Table 3.33: Unit DegreeCelsius

Common Unit attributes

shortName Kelvin
displayName K
offsetSiToUnit 0.0
factorSiToUnit 1.0
physicalDimension Temperature

Table 3.34: Unit Kelvin

Common Unit attributes

shortName Joule
displayName J
offsetSiToUnit 0.0
factorSiToUnit 1.0
physicalDimension Energy

Table 3.35: Unit Joule

AUTSSAR

Common Unit attributes

shortName MilliAmpere
displayName mA
offsetSiToUnit 0.0
factorSiToUnit 1000.0
physicalDimension Current

Table 3.36: Unit MilliAmpere

Common Unit attributes

shortName KelvinSecond
displayName Ks
offsetSiToUnit 0.0
factorSiToUnit 1.0
physicalDimension TemperatureTime

Table 3.37: Unit KelvinSecond

Common Unit attributes

shortName JoulePerKelvinSecond
displayName J/Ks
offsetSiToUnit 0.0
factorSiToUnit 1.0
physicalDimension EnergyPerTemperatureTime

Table 3.38: Unit JoulePerKelvinSecond

Common Unit attributes

shortName JoulePerMilliAmpereSecond
displayName J/mAs
offsetSiToUnit 0.0
factorSiToUnit 0.001
physicalDimension EnergyPerCurrentTime

Table 3.39: Unit JoulePerMilliAmpereSecond

Common Unit attributes

shortName MilliAmperePerKelvinSecond
displayName mA/Ks
offsetSiToUnit 0.0
factorSiToUnit 1000.0
physicalDimension CurrentPerTemperatureTime

Table 3.40: Unit MilliAmperePerKelvinSecond

AUTSSAR

Common Unit attributes

shortName Second
displayName S
offsetSiToUnit 0.0
factorSiToUnit 1.0
physicalDimension Time

Table 3.41: Unit Second

3.1.7.8 PhysicalDimensions

Common PhysicalDimension attributes

shortName Energy

currentExp 0
lengthExp 2
luminousIntensity- 0
Exp

massExp 1
molarAmountExp 0
temperatureExp 0
timeExp -2

Table 3.42: PhysicalDimension Energy

Common PhysicalDimension attributes

shortName

Current

currentExp

lengthExp

luminousIntensity-
Exp

massExp

molarAmountExp

temperatureExp

timeExp

oO|O|O|O| © |O|=—

Table 3.43: PhysicalDimension Current

AUTSSAR

Common PhysicalDimension attributes

shortName

CurrentPerTemperatureTime

currentExp

lengthExp

luminousIntensity-
Exp

massExp

molarAmountExp

]
0
0
0
0

temperatureExp

-1

timeExp

-1

Table 3.44: PhysicalDimension CurrentPerTemperatureTime

Common PhysicalDimension attributes

shortName EnergyPerCurrentTime

currentExp -1
lengthExp 2
luminousIntensity- 0
Exp

massExp 1
molarAmountExp 0
temperatureExp 0
timeExp -3

Table 3.45: PhysicalDimension EnergyPerCurrentTime

Common PhysicalDimension attributes

shortName EnergyPerTemperatureTime

currentExp 0
lengthExp 2
luminousIntensity- 0
Exp

massExp 1
molarAmountExp 0
temperatureExp -1
timeExp -3

Table 3.46: PhysicalDimension EnergyPerTemperatureTime

AUTSSAR

Common PhysicalDimension attributes

shortName

Time

currentExp

lengthExp

luminousIntensity-
Exp

massExp

molarAmountExp

temperatureExp

timeExp

- [OoOlOo|O| © |O|O

Table 3.47: PhysicalDimension Time

Common PhysicalDimension attributes

shortName

Temperature

currentExp

lengthExp

luminousIntensity-
Exp

massExp

molarAmountExp

temperatureExp

timeExp

oO|=-|O|O|] ©O |O|O

Table 3.48: PhysicalDimension Temperature

Common PhysicalDimension attributes

shortName

TemperatureTime

currentExp

lengthExp

luminousIntensity-
Exp

massExp

molarAmountExp

temperatureExp

timeExp

0
0
0
0
0
1
1

Table 3.49: PhysicalDimension TemperatureTime

AUTSSAR

3.1.7.9 SwAddrMethods

Common SwAddrMethod attributes

shortName VAR
desc Memory section for variables
sectionType var
memoryAllocation-—
. addrMethodShortName
KeywordPolicy
sectionInitializa-
tionPolicy
option safetyQM

Table 3.50: SwAddrMethod VAR

Common SwAddrMethod attributes
shortName CALIB
desc Memory section for calibration parameters
sectionType var
memoryAllocation-—
. addrMethodShortName
KeywordPolicy
sectionlInitializa-
tionPolicy
option safetyQM

Table 3.51: SwAddrMethod CALIB

Common SwAddrMethod attributes

shortName CODE

desc Memory section for code
sectionType var
memoryAllocation-
KeywordPolicy addrMethodShortName
sectionInitializa-
tionPolicy
option safetyQM

Table 3.52: SwAddrMethod CODE

AUTSSAR

3.2 Advanced Show Case

3.2.1 General Objectives of the Model Structure
3.2.1.1 The Ecu Description

Since the show case is focusing on measurement and calibra-
tion only a minimal system model is provided. Hereby the file
Pprj_EcuDescr_U_SystemNodeStub.arxml defines the System Sys-
temU_EcuDescr of category ECU_SYSTEM_DESCRIPTION which contains only the
Root SwCompositionPrototype. The file Pprj_EcuDescr_U.arxml contains the
according CompositionSwComponentType describing the hierarchical top-level-
composition of software components shown in table SystemURootComposition_
EcuDescr.

3.2.1.2 The Ecu Extract

The file Pprj_EcuExtract_U_SystemNodeStub.arxml defines the System Sys—
temU_System Of category ECU_EXTRACT which contains only the Root SwCompo-
sitionPrototype SystemU referencing the ECU Flat Map and the flat top-level-
composition SystemU_Root. The file Pprj_EcuExtract_U.arxml contains the ac-
cording CompositionSwComponent Type describing the flat top-level-composition of
software components shown in table SystemU_Root.

Please note that the flat top-level-composition uses the identical software component
types as the hierarchical top-level-composition. Therefore an identification of compo-
nent and data instances in the hierarchical software component structure or in the flat
structure requires the correct iteration from the according Sy stem nodes.

3.2.1.2.1 The ECU Flat Map

The file Pprj_EcuExtract_U_FlatMap.arxml contains the ECU Flat Map.

The ECU Flat Map is utilized to assign unique and comprehensible names to all
DataPrototypes representing measurements and characteristics. This is important
for the calibration engineers®

The applied strategy for the creation of a Flat InstanceDescriptor.shortName iS
to shorten it to the shortName of the DataPrototype when only a single instance of
the DataPrototype is used.

SCalibration engineers in this context means the engineers working with measurement and calibration
tooling e.g. to determine the correct calibration parameter values in order to adopt functionality in the
software components to the mechanical components in the vehicle.

AUTSSAR

3.2.1.3 Data Types and Data Objects

The components are designed top down coming from the physical function down to
the implementation in the target programming language C. Hereby the interfaces of
Software Components are typically typed with ApplicationbDataTypeS in order to
describe the physical meaning of the DataPrototypes. The only exceptions are the
interfaces to AUTOSAR Services which are typed by ImplementationDataTypes
directly as those are standardized. ApplicationPrimitiveDataType$ are mainly
of category

* BOOLEAN
* VALUE
* CURVE
s MAP
* COM_AXIS
and the most important CompuMethod categorys are
* LINEAR
* TEXTTABLE

In case of LINEAR conversions it is supported to differentiate the Unit
used for the implemented calculations and an additional Unit used in the
MCD system. This relationship of such Units are expressed with Unit-
GroupS. The ARElements are structured in a way to support the common
usage of elements relevant for the interface description up to the level of
PortInterfaces by several Component Descriptions. Those elements are lo-
catedunder Tierl/ARPlatforml/DataDictionary/<KindPackage> in the file
Pprj_DataDictionary.arxml.

The CompuMethods and DataConstrs are exclusively used by one Application-—
PrimitiveDataType. The possible reuse between ApplicationPrimitive-
DataTypes supported by AUTOSAR is not used in this model structure. When such a
ApplicationDataType is defined the intended mapping to the reasonable Tmple-
mentationDataType is already considered in order to get an optimal usage of the
possible range of the TmplementationDataType. Nevertheless, the several physical
meanings are not reflected by the definition of individual TmplementationDataType
but only the standardized Platform Types [5] are used to describe primitives on imple-
mentation level. This has the effect that the RTE APIs are typed by the standardized
Platform Types in cases of primitives and arrays of primitives. Only structure types are
getting observable in the types of RTE APIs. This approach allows the direct usage of
data read from RTE in mathematical or interpolation libraries without any type cast.

The memory allocation of the data objects is controlled by the usage of SwaAd-
drMethods. Those are defined for ParameterDataPrototypes and Variable-
DataPrototypes on level of the PortInterfaces. A few examples are shown in

AUTSSAR

the chapter 3.2.2.17 for the basic uses cases like calibration parameter, normal data
and code.

3.2.1.4 Axis, Curves and Maps

The show case contains description for axis, curves and maps which are in AUTOSAR
so called compound primitives. In order to understand the structure and the de-
fined attributes in the example it is helpful to understand how such objects are de-
scribed in AUTOSAR. For this it is necessary to look at the hierarchy of Applica-
tionDataTypeS, DataPrototypeS, PortPrototypes, SwComponentTypeS and
FlatMap.

3.2.1.5 Axis, Curves and Maps on ApplicationDataType level

Figure 3.13 is based on the example of the ApplicationPrimitiveDataType
Map_Time_Lnr_s_uint16. It shows the relationships between the Application-
PrimitiveDataTypes describing the

* MAP itself

* its axis being a group axis

* in turn the properties of a matching working point
ComAxis_Mass_Lnr_Kg_uintd

inputVariableType:
kg_Lnr_0_0d25_0_C8_uintd

wvaluekxisDataType: s Lnr_0_8191d875_0_FFFF_uint16

[&]

2181875 Map_Time_Lnr_s_uint16

sha_x;edAxist;'}.e
-ttt

0

- gwhxisIndex=1

sharedhxisType

’. . . .
; - ComAxis_Temp_Lin_K_uint16
1. b

&
]

inputVariableType:
K_Celsius_Lnr_0_511d9921875_0_FFFF_uint16

Figure 3.13: ApplicationPrimitiveDataType of category MAP and its group axes

AUTSSAR

The ApplicationPrimitiveDataType Map_Time_Lnr_s_uint16 defines adata
type for a MAP with group axes. The physical meaning and range of the con-
tained values is described with the ApplicationPrimitiveDataType s_Lnr_-—
0_8191d875_0_FFFF_uint16. ltis referenced with the valueAxisDataType at-
tribute. This means it’s a value in the range 0 .. 8191.875 [second] with the resolution
of 0.125 [second].

The referenced ApplicationPrimitiveDataType in the role valueAxis-
DataType represents the primitive data type of the value axis within a compound
primitive (e.g. CURVE, MAP). It supersedes CompuMethod, Unit, and BaseType. In
the particular example, the valueAxisDataType provides the properties of the prim-
itive elements of the CURVE or MAP via a valueAxisDataType reference to an Ap-
plicationPrimitiveDataType. This in turn defines the attributes:

e dataConstr

* compuMethod

* displayFormat

* unit

* swCalibrationAccess

Thereby, despite being set, the value of swCalibrationAccess of the referenced
ApplicationPrimitiveDataType is meaningless for the using CURVE and MAP.
Note: The referenced data type needs to be a real primitive (typically of category
VALUE. Category BOOLEAN is also supported).

The ApplicationPrimitiveDataType Of the CURVE and MAP can additionally de-
fine swhbataDefProps which are relevant for the whole compound primitive. Currently
the following attributes are used in the example:

* swCalprmAxisSet
* swRecordLayout
* swCalibrationAccess (but will be refined on DataPrototype level)

Further on, via the dataTypeMapping of the using software component, the proper-
ties of ImplementationDataType and SwBaseType are described

As axes of the MAP two group axes are used. The properties of the group axes are
described by two ApplicationPrimitiveDataTypes of category COM_AXIS. The
attribute swAxisIndex indicates for which dimension the group axis applies (1 = X, 2
=Y). With the attribute sharedaxisType the reference to the ApplicationPrimi-
tiveDataType describing the axis is defined.

In the example, the group axis ComAxis_Temp_Lin_K_uint16 defines the the appli-
cable minimum and maximum number of axis points. Additionally the inputvari-
ableType reference to the ApplicationPrimitiveDataType K_Celsius_-
Lnr_0_511d9921875_0_FFFF_uint16 defines the properties of the input value for

AUTSSAR

the axis. This in turn corresponds to the values stored as axis point. The same principle
applies for the group axis ComAxis_Mass_Lnr_Kg_uint8.

Please note, the above mentioned properties are defined on the level of Applica-
tionDataTypesS and so far not any data instance implementing such properties ex-
ists. This requires an instantiation of such ApplicationDataTypes.

3.2.1.6 Axis, Curves and Maps on DataPrototype and SwComponentPrototype
level

3.2.1.6.1 Instantiation of Axis, Curves and Maps

=CompositionSwComponentTy pe=
“Pcpt_CMscB®

=GwComponentPrototy pe=
“CMscB_par

<types

¥
=ParameterSwComponentTy pe=
“CMscB_par

=PPortPrototy pes=

“P_ComAxis_Temp_Lin_K_uint 16~

<typer
Y

=Parameterinterface=
“ComAxis_Temp_Lin_K_uint16”

=ParameterDataPrototy pe=
“ComAxis_Temp_Lin_K_uint16
swCalibrationAccess = readWrite
swAddrMethod = CAL

<types
L

=PPortPrototypes=

“P_ComAxis_Mass_Lnr_Kg_uintd”

<types
¥

=Parameterinterface=
“ComAxis_Mass_Lnr_Kg_uintg”

=ParameterDataPrototy pe=
“ComAxis_Mass_Lnr_Kg_uintg”
swCalibrationAccess = readiWrite
swhAddrM ethod = CAL

<type>
Y

=PPortPrototy pes=

“P_Map_Time_Lnr_s uint16

<types
Y

=Parameterinterfaces

“Map_Time_Lnr_s_uint16”

=ParameterDataPrototy pe=
“Map_Time_Lnr_s_uint16
swalibrationAccess = readiWrite

swhAddriethod = CAL

<types
Y

=ApplicationPrimitveDataType=
“ComAxis_Temp_Lin_K_uint16

=ApplicationPrimitveDataType=
“ComAxis_Mass_Lnr_Kg_uintg”

=ApplicationPrimitveDataTy pe=
“Map_Time_Lnr_s_uint16”

Figure 3.14: Instantiation of a MAP and its group axes

Figure 3.14 shows the instantiation of the ApplicationPrimitiveDataType
ComAxis_Temp_Lin_K_uintl6, ComAxis_Mass_Lnr_Kg uint8, and Map_-
Time_Lnr_s_uintl6 up to the level of the CompositionSwComponentType
Pcpt_CMscB.

Thereby ParameterDataPrototypes are typed by the mentioned Application-
PrimitiveDataTypeS. Each ParameterDataPrototype is owned by an own
ParameterInterface. This offers the most flexibility to instantiate the map and
axes independently from each other. On the level of the ParameterDataProto-
type additionally the swCalibrationAccess and the swAddrMethod is defined.

AUTSSAR

Further on, the ParameterSwComponentType CMscB_par defines three PPort-
Prototypes typed by the ParameterInterfaces.

Please note that a group axes of a curve or map are not necessarily provided by
the same ParameterSwComponentType as the one providing the curve or map.
This case is illustrated with the map ArrldMap_Time_Lnr_s_uintl6 using the
group axes ArrldComAxis_Temp_Lin_K_uintl6 provided by CMscD_par and
ComAxis_Mass_Lnr_Kg_uint8 provided by CMscB_par.

3.2.1.6.2 Usage of Axis, Curves and Maps by Software Components
3.2.1.6.3 Linking map and curve instances to its axes instances

Consider a software component that uses curves and maps with group axes. It is than
required to denote which instance of curve and map uses which instance of a group
axis as axis of abscissae and, in case of a map, as axis of ordinate.

The AUTOSAR meta model provides hereby two possibilities:
* RunnableEntity.parameterAccess.swhDataDefProps
or

* SwcInternalBehavior.instantiationDataDefProps.swDataDef-
Props.

Inside one software component it’s very unlikely, that the same curve or map is used
with different axes by different RunnableEntitys (note that this cannot be expressed
by ASAM MCD-2MC, also) . Therefore, in this show case the second ability is used.
This avoids the risk of inconsistencies when several RunnableEntitys are defining
parameterAccesses to the same curve or map instance.

The according instantiationDataDefProps.parameterInstance references
the map instance in the scope of the SwComponentType and the swbataDefProps.
swCalprmAxisSet.swCalprmAxis.swCalprmAxisTypeProps.swCalprmRef

references the applied group axes with the according SwCalprmAxis.swAxisIndex

<INSTANTIATION-DATA-DEF-PROPS>
<PARAMETER-INSTANCE>
<AUTOSAR-PARAMETER-IREF>
<PORT-PROTOTYPE-REF DEST="R-PORT-PROTOTYPE">/Tierl/ARPlatforml/
Pcpt_CMscB/CMscB/R_Map_Time_ILnr_s_uintl6</PORT-PROTOTYPE-REF>
<TARGET-DATA-PROTOTYPE-REF DEST="PARAMETER-DATA-PROTOTYPE">/Tierl/
ARPlatforml/DataDictionary/PortInterfaces/V1_0_0/
Map_Time_Lnr_s_uintl6/Map_Time_Lnr_s_uintl6</TARGET-DATA-PROTOTYPE
—REF>
</AUTOSAR-PARAMETER-IREF>
</PARAMETER-INSTANCE>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS—-VARIANTS>
<SW-DATA-DEF-PROPS—CONDITIONAL>
<SW-CALPRM-AXIS-SET>

AUTSSAR

<SW-CALPRM-AXIS>
<SW-AXIS-INDEX>1</SW-AXIS-INDEX>
<SW-AXIS-GROUPED>
<AR-PARAMETER>
<AUTOSAR-PARAMETER-IREF>
<PORT-PROTOTYPE-REF DEST="R-PORT-PROTOTYPE">/Tierl/
ARPlatforml/Pcpt_CMscB/CMscB/
R_ComAxis_Temp_Lin_K_uintl6</PORT-PROTOTYPE-REF>
<TARGET-DATA-PROTOTYPE-REF DEST="PARAMETER-DATA-PROTOTYPE
">/Tierl/ARPlatforml/DataDictionary/PortInterfaces/
V1_0_0/ComAxis_Temp_Lin_K_uintlé6/
ComAxis_Temp_Lin_K_uintl6</TARGET-DATA-PROTOTYPE-REF>
</AUTOSAR-PARAMETER-IREF>
</AR-PARAMETER>
</SW-AXIS-GROUPED>
</SW-CALPRM—-AXIS>
<SW-CALPRM-AXIS>
<SW-AXIS-INDEX>2</SW-AXIS-INDEX>
<SW-AXIS-GROUPED>
<AR-PARAMETER>
<AUTOSAR-PARAMETER-IREF>
<PORT-PROTOTYPE-REF DEST="R-PORT-PROTOTYPE">/Tierl/
ARPlatforml/Pcpt_CMscB/CMscB/
R_ComAxis_Mass_Lnr_Kg_uint8</PORT-PROTOTYPE-REF>
<TARGET-DATA-PROTOTYPE-REF DEST="PARAMETER-DATA-PROTOTYPE
">/Tierl/ARPlatforml/DataDictionary/PortInterfaces/
V1_0_0/ComAxis_Mass_Lnr_Kg_uint8/
ComAxis_Mass_Inr_Kg_uint8</TARGET-DATA-PROTOTYPE-REF>
</AUTOSAR-PARAMETER-IREF>
</AR-PARAMETER>
</SW-AXIS-GROUPED>
</SW-CALPRM—-AXIS>
</SW-CALPRM-AXIS-SET>
</SW-DATA-DEF-PROPS—-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>
</INSTANTIATION-DATA-DEF-PROPS>

Listing 3.28: Example of an InstantiationDataDefProps for a map

3.2.1.6.4 Linking axes instances to its working point instances

When a software component uses compound primitives containing axes (e.g. curves,
maps, or group axes) it's beneficial to indicate which data is used as input for the ac-
cording axis. This enables the measurement and calibration tool to display the current
working point. Like explained in section 3.2.1.6.3, this information can be provided

» at the ParameterAccess.swbataDefProps of the compound primitives con-
taining the axis or

* by means of instantiationDataDefProps.swDataDefProps.

AUTSSAR

In this show case the second ability is used for the same reasons as discussed in
section 3.2.1.6.3.

The according instantiationDataDefProps.parameterInstance references
the axes instance in the scope of the SswComponentType CMscB. The swDatabDef-
Props.swCalprmAxisSet.swCalprmAxis.swCalprmAxisTypeProps.swvVari—
ableRef references the applied working point variable (in this case, a dataElement
in a RPortPrototype) with the according SwCalprmAxis.swAxisIndex.

<INSTANTIATION-DATA-DEF-PROPS>
<PARAMETER-INSTANCE>
<AUTOSAR-PARAMETER-IREF>
<PORT-PROTOTYPE-REF DEST="R-PORT-PROTOTYPE">/Tierl/ARPlatforml/
Pcpt_CMscB/CMscB/R_ComAxis_Temp_Lin_K_uintl6</PORT-PROTOTYPE-REF>
<TARGET-DATA-PROTOTYPE-REF DEST="PARAMETER-DATA-PROTOTYPE">/Tierl/
ARPlatforml/DataDictionary/PortInterfaces/V1_0_0/
ComAxis_Temp_Lin_K uintl6/ComAxis_Temp_Lin_K_uintlé6</TARGET-DATA-
PROTOTYPE—-REF>
</AUTOSAR-PARAMETER-IREF>
</PARAMETER-INSTANCE>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS—VARIANTS>
<SW-DATA-DEF-PROPS—CONDITIONAL>
<SW-CALPRM-AXIS—-SET>
<SW-CALPRM-AXIS>
<SW-AXIS-INDEX>1</SW-AXIS-INDEX>
<SW-AXIS-INDIVIDUAL>
<SW-VARIABLE-REFS>
<AUTOSAR-VARIABLE>
<AUTOSAR-VARIABLE-IREF>
<PORT-PROTOTYPE-REF DEST="R-PORT-PROTOTYPE">/Tierl/
ARPlatforml/Pcpt_CMscB/CMscB/
R_PrimData_Temperature_Lin_K_C_uintl6</PORT-
PROTOTYPE—-REF>
<TARGET-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-
PROTOTYPE">/Tierl/ARPlatforml/DataDictionary/
PortInterfaces/V1_0_0/
PrimData_Temperature_Lin_K_C_uintl16/
PrimData_Temperature_Lin_K_C_uint1l6</TARGET-DATA-
PROTOTYPE—-REF>
</AUTOSAR-VARIABLE-IREF>
</AUTOSAR-VARIABLE>
</SW-VARIABLE-REFS>
</SW-AXIS-INDIVIDUAL>
</SW-CALPRM—-AXIS>
</SW-CALPRM-AXIS-SET>
</SW-DATA-DEF-PROPS—-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>
</INSTANTIATION-DATA-DEF-PROPS>

Listing 3.29: Example of an InstantiationDataDefProps for an axis

AUTSSAR

3.2.1.6.5 Axis, Curves and Maps in the ECU Flat Map

The ECU Flat Map contains entries for all curves, maps, axes and working point vari-
ables. The used naming patterns are described in 3.2.1.2.1.

<FLAT-INSTANCE-DESCRIPTOR>
<SHORT-NAME>Map_Time_Lnr_s_uintl6</SHORT-NAME>
<ECU-EXTRACT-REFERENCE-IREF>
<CONTEXT-ELEMENT-REF DEST="ROOT-SW-COMPOSITION-PROTOTYPE">/Tierl/
ARPlatforml/System/SystemU_System/SystemU</CONTEXT-ELEMENT-REF>
<CONTEXT-ELEMENT-REF DEST="SW-COMPONENT-PROTOTYPE">/Tierl/ARPlatforml/
System/CompositionSwComponentTypes/SystemU_Root/CMscB_par</CONTEXT-
ELEMENT-REF>
<CONTEXT-ELEMENT-REF DEST="P-PORT-PROTOTYPE">/Tierl/ARPlatforml/
Pcpt_CMscB/CMscB_par/P_Map_Time_Lnr_s_uintl6</CONTEXT-ELEMENT-REF>
<TARGET-REF DEST="PARAMETER-DATA-PROTOTYPE">/Tierl/ARPlatforml/
DataDictionary/PortInterfaces/V1_0_0/Map_Time_Lnr_s_uintl6/
Map_Time_Lnr_s_uintl6</TARGET-REF>
</ECU-EXTRACT-REFERENCE-IREF>
</FLAT-INSTANCE-DESCRIPTOR>
<FLAT-INSTANCE-DESCRIPTOR>
<SHORT-NAME>ComAxis_Temp_Lin_K_uintl6</SHORT-NAME>
<ECU-EXTRACT-REFERENCE-IREF>
<CONTEXT-ELEMENT-REF DEST="ROOT-SW-COMPOSITION-PROTOTYPE">/Tierl/
ARPlatforml/System/SystemU_System/SystemU</CONTEXT-ELEMENT-REF>
<CONTEXT-ELEMENT-REF DEST="SW-COMPONENT-PROTOTYPE">/Tierl/ARPlatforml/
System/CompositionSwComponent Types/SystemU_Root/CMscB_par</CONTEXT-
ELEMENT-REF>
<CONTEXT-ELEMENT-REF DEST="P-PORT-PROTOTYPE">/Tierl/ARPlatforml/
Pcpt_CMscB/CMscB_par/P_ComAxis_Temp_Lin_K_uintl6</CONTEXT-ELEMENT-
REF>
<TARGET-REF DEST="PARAMETER-DATA-PROTOTYPE">/Tierl/ARPlatforml/
DataDictionary/PortInterfaces/V1_0_0/ComAxis_Temp_Lin_K_uintl6/
ComAxis_Temp_Lin_K_ uintl6</TARGET-REF>
</ECU-EXTRACT-REFERENCE-IREF>
</FLAT-INSTANCE-DESCRIPTOR>
<FLAT-INSTANCE-DESCRIPTOR>
<SHORT-NAME>PrimData_Temperature_Lin_K_C_uintl6</SHORT-NAME>
<ECU-EXTRACT-REFERENCE-IREF>
<CONTEXT-ELEMENT-REF DEST="ROOT-SW-COMPOSITION-PROTOTYPE">/Tierl/
ARPlatforml/System/SystemU_System/SystemU</CONTEXT-ELEMENT-REF>
<CONTEXT-ELEMENT-REF DEST="SW-COMPONENT-PROTOTYPE">/Tierl/ARPlatforml/
System/CompositionSwComponentTypes/SystemU_Root/CMscA</CONTEXT-
ELEMENT-REF>
<CONTEXT-ELEMENT-REF DEST="P-PORT-PROTOTYPE">/Tierl/ARPlatforml/
Pcpt_CMscA/CMscA/P_PrimData_Temperature_Lin_K_C_uint16</CONTEXT-
ELEMENT-REF>
<TARGET-REF DEST="VARIABLE-DATA-PROTOTYPE">/Tierl/ARPlatforml/
DataDictionary/PortInterfaces/V1_0_0/
PrimData_Temperature_Lin_K_C_uintl6/
PrimData_Temperature_Lin_K_C_uintl6</TARGET-REF>
</ECU-EXTRACT-REFERENCE-IREF>
</FLAT-INSTANCE-DESCRIPTOR>

Listing 3.30: Example of a FlatInstanceDescriptor for map axis and working point
variable

AUTSSAR

3.2.1.7 Arrays of Maps and Axes

The ability of curves, maps and cuboids is usually used to describe the physical de-
pendency of a characteristic on other physical input values. Hereby each input value
is described by an orthogonal axis. In contrast to this, arrays are used to group a set
of values of the same nature which can be handled by the same algorithm. Typically,
in this case the algorithm iterates over the array with an index. Nevertheless, each
array element may represent a particular part of the vehicle, e.g. a specific cylinder or
a specific sensor. It's possible to combine these design principles. This ends up in the
need to describe arrays of curves, maps, cuboids and the according axes.

The show case illustrates the model of those objects by the following elements:
* ArrldMap_Time_Lnr_s_uintl6
* ArrldComAxis_Temp_Lin_K uintl6
* ArrldPrimData_Temperature_Lin_K_ C_uintlb6

Hereby, the array of the map ArrldMap_Time_Lnr_s_uint16 uses for the x-axis
an array of group axes Arrl1dComAxis_Temp_Lin_K_uint16 which in turn uses an
array of primitive values as working points Arr1dPrimData_Temperature_Lin_-
K_C_uint16. Inthis case, the n'th map uses the n’th x-axes which uses the n'th value
as working point. In contrast, the map uses one group axis ComAxis_Mass_Lnr_
Kg_uint8 for the y-axis. In this case all maps in the array are using the same y-axis.

3.2.1.7.1 Arrays of Maps and Axes in the ECU Flat Map

In the ECU Flat Map the ability to reference ApplicationCompositeElementDat-
aPrototypes is used to express the specific meaning of each array element in the
array of map and group axis.

For instance, each element in the array Arr1dMap_Time_Lnr_s_uint16 is named
in a way to indicate the specific meaning:

* ArrldMap_Time_ILnr_s_uintl6_FrontLeft
* ArrldMap_Time_Lnr_s_uintl6_FrontRight
e ArrldMap_Time_ILnr_s_uintl6_RearLeft

* ArrldMap_Time_Lnr_s_uintl6_RearRight

The following listing shows the structure of such an FlatinstanceDescriptior on one
example:

<FLAT-INSTANCE-DESCRIPTOR>
<SHORT-NAME>ArrldMap_Time_Lnr_s_uintl6_FrontLeft</SHORT-NAME>
<ECU-EXTRACT-REFERENCE-IREF>
<CONTEXT-ELEMENT-REF DEST="ROOT-SW-COMPOSITION-PROTOTYPE">/Tierl/
ARPlatforml/System/SystemU_System/SystemU</CONTEXT-ELEMENT—-REF>

AUTSSAR

<CONTEXT-ELEMENT-REF DEST="SW-COMPONENT-PROTOTYPE">/Tierl/ARPlatforml/
System/CompositionSwComponentTypes/SystemU_Root/CMscD_par</CONTEXT-
ELEMENT-REF>

<CONTEXT-ELEMENT-REF DEST="P-PORT-PROTOTYPE">/Tierl/ARPlatforml/
Pcpt_CMscD/CMscD_par/P_ArrldMap_Time_Lnr_s_uintl6</CONTEXT-ELEMENT-
REF>

<CONTEXT-ELEMENT-REF DEST="PARAMETER-DATA-PROTOTYPE">/Tierl/ARPlatforml
/DataDictionary/PortInterfaces/V1_0_0/ArrldMap_Time_Lnr_s_uintl6/
ArrldMap_Time_Lnr_s_uintl6</CONTEXT-ELEMENT-REF>

<TARGET-REF DEST="APPLICATION-ARRAY-ELEMENT" INDEX="0">/Tierl/
ARPlatforml/DataDictionary/ApplicationDataTypes/
Map_Time_Lnr_s_uintl6_ScNoOfWheels/
Map_Time_Lnr_s_uintl6_ScNoOfWheels</TARGET-REF>

</ECU-EXTRACT-REFERENCE-IREF>
</FLAT-INSTANCE-DESCRIPTOR>

Listing 3.31: Example of a FlatInstanceDescriptor for an
ApplicationCompositeElementDataPrototype

Please note the usage of the index attribute in the target reference.

3.2.1.8 Measurement of Modes
3.2.1.8.1 Enabling Measurement of Modes

The measurement of a mode is enabled in the software-component description by set-
ting the ModeDeclarationGroupPrototype.swCalibrationAccess t0 read-
Only. See ModeDirection.

3.2.1.8.2 Modes in the ECU Flat Map

AUTOSAR supports the measurement of the current mode, the previous mode and the
next mode. Hereby the last two are useful when the mode is measured during a on-
going transition to identify the kind of transition. In this show case only the measure-
ment of the current mode is illustrated. For this, the FlatMap contains a FlatIn-—
stanceDescriptor pointing to the ModeDeclarationGroupPrototype which is
to be measured. The role attribute of the FlatInstanceDescriptor is set to
CURRENT_MODE

<FLAT-INSTANCE-DESCRIPTOR>
<SHORT-NAME>ModeDirection</SHORT-NAME>
<ROLE>CURRENT_MODE</ROLE>
<ECU-EXTRACT-REFERENCE—-IREF>
<CONTEXT-ELEMENT-REF DEST="ROOT-SW-COMPOSITION-PROTOTYPE">/Tierl/
ARPlatforml/System/SystemU_System/SystemU</CONTEXT-ELEMENT—-REF>
<CONTEXT-ELEMENT-REF DEST="SW-COMPONENT-PROTOTYPE">/Tierl/ARPlatforml/
System/CompositionSwComponentTypes/SystemU_Root/CMscA</CONTEXT-
ELEMENT-REF>
<CONTEXT-ELEMENT-REF DEST="P-PORT-PROTOTYPE">/Tierl/ARPlatforml/
Pcpt_CMscA/CMscA/P_ModeDirection</CONTEXT-ELEMENT-REF>

AUTSSAR

<TARGET-REF DEST="MODE-DECLARATION-GROUP-PROTOTYPE">/Tierl/ARPlatforml/
DataDictionary/PortInterfaces/V1_0_0/ModeDirection/ModeDirection</
TARGET-REF>
</ECU-EXTRACT-REFERENCE-IREF>
</FLAT-INSTANCE-DESCRIPTOR>

Listing 3.32: Example of a FlatInstanceDescriptor for a
ModeDeclarationGroupPrototype

AUTSSAR

3.2.2 Show cases in the Example

3.2.2.1 CompositionSwComponentTypes

Common CompositionSwComponentType attributes

shortName

Pcpt_CMscA

desc

Modeling show case for primitive measurement and calculation.

properties of the ports

properties of PPortPrototype

shortName

P_ModeDirection

desc

Mode to indicate a direction

providedInterface

ModeDirection

propetrties of PPortPrototype

shortName

P_PrimCal_Mass_Lnr_Kg

desc

Primitive calibration parameter for minimum egg mass.

providedInterface

PrimCal_Mass_Lnr_Kg

properties of PPortPrototype

shortName

P_PrimData_Mass_Lnr_Kg_uint8

desc

Mass in kilogram

providedInterface

PrimData_Mass_Lnr_Kg_uint8

propetrties of PPortPrototype

shortName

P_PrimData_StepsSpeed_Txt_sint8

desc

Stepwise speed indication

providedInterface

PrimData_StepsSpeed Txt_sint8

properties of PPortPrototype

shortName

P_PrimData_Temperature_Lin_K_C_uintl6

desc

Temperature 1 in Kelvin but displayed as degree Celsius

providedInterface

PrimData_Temperature_Lin_ K C_uintlé6

properties of RPortPrototype

shortName R_PrimData_StepsSpeed_Txt_sint8
desc Stepwise speed indication
requiredInterface PrimData_StepsSpeed_Txt_sint8

properties of the components

properties of SwComponentPrototype

shortName CMscA
type CMscA
properties of SwComponentPrototype
shortName CMscA_par
type CMscA_par

AUTSSAR

A

Table 3.53: CompositionSwComponentType Pcpt_CMscA

Common CompositionSwComponentType attributes

shortName

‘ SystemU_Root

properties of the components

properties of SwComponentPrototype

shortName CMscA
type CMscA
properties of SwComponentPrototype
shortName CMscA_par
type CMscA_par
properties of SwComponentPrototype
shortName CMscB
type CMscB
properties of SwComponentPrototype
shortName CMscB_par
type CMscB_par

properties of SwComponentPrototype

shortName CMscC_nvm
type CMscC_nvm
properties of SwComponentPrototype
shortName CMscD

type CMscD

properties of SwComponentPrototype
shortName CMscD_par
type CMscD_par

Table 3.54: CompositionSwComponentType SystemU_Root

Common CompositionSwComponentType attributes

shortName

‘SystemURootComposition_EcuDescr

properties of the components

properties of SwComponentPrototype

shortName

CMscC

type

Pcpt_CMscC

Table 3.55: CompositionSwComponentType SystemURootComposition_EcuDescr

AUTSSAR

Common CompositionSwComponentType attributes

shortName Pcpt_CMscD

desc Modeling show case for arrays of axes and mapes.

properties of the ports

properties of RPortPrototype

shortName R_ComAxis_Mass_Lnr_Kg_uint8
desc Shared axis for mass
requiredInterface ComAxis_Mass_Lnr_Kg_uint8

properties of RPortPrototype

shortName R_PrimData_MassCorrected_Lnr_ Kg_uint8

desc Primitve data for the corrected mass in kg.

requiredInterface PrimData_MassCorrected_Lnr_Kg_uint8
properties of the components

properties of SwComponentPrototype

shortName CMscD

type CMscD

properties of SwComponentPrototype

shortName CMscD_par

type CMscD_par

Table 3.56: CompositionSwComponentType Pcpt_CMscD

AUTSSAR

Common CompositionSwComponentType attributes

shortName

Pcpt_CMscC

desc

Composit of modeling show case C

properties of the ports

properties of PPortPrototype

shortName

P_PrimData_Time_ILnr_s_uintl6

desc

Primitve data holding a time value.

providedInterface

PrimData_Time_Lnr_s_uintl6

propetrties of PPortPrototype

shortName

P_PrimData_ValidState_ Txt_noUnit_boolean

desc

Boolean representing the data validity

providedInterface

PrimData_ValidState_ Txt_noUnit_boolean

properties of the components
properties of SwComponentPrototype
shortName CMscA
type Pcpt_CMscA
properties of SwComponentPrototype
shortName CMscB
type Pcpt_CMscB

properties of SwComponentPrototype

shortName CMscC_nvm
type CMscC_nvm
properties of SwComponentPrototype
shortName CMscD

type Pcpt_CMscD

Table 3.57: CompositionSwComponentType Pcpt_CMscC

AUTSSAR

Common CompositionSwComponentType attributes

shortName

Pcpt_CMscB

desc

Modeling show case for axes, curves and mapes.

properties of the ports

properties of PPortPrototype

shortName

P_ComAxis_Mass_Lnr_Kg_uint8

desc

Shared axis for mass

providedInterface

ComAxis_Mass_Lnr_Kg_uint8

properties of PPortPrototype

shortName

P_PrimData_MassCorrected_Lnr_ Kg_uint8

desc

Primitve data for the corrected mass in kg.

providedInterface

PrimData_MassCorrected_Lnr_Kg_uint8

properties of PPortPrototype

shortName

P_PrimData_Time_Lnr_s_uintl6

desc

Primitve data holding a time value.

providedInterface

PrimData_Time_Lnr_s_uintl6

properties of PPortPrototype

shortName

P_PrimData_ValidState_ Txt_noUnit_boolean

desc

Boolean representing the data validity

providedInterface

PrimData_ValidState_ Txt_noUnit_boolean

properties of RPortPrototype

shortName R_ModeDirection
desc Mode to indicate a direction
requiredInterface ModeDirection

properties of RPortPrototype

shortName

R_PrimData_Mass_Lnr_Kg_uint38

desc

Mass in kilogram

requiredInterface

PrimData_Mass_Lnr_Kg_uint8

properties of RPortPrototype

shortName R_PrimData_StepsSpeed_Txt_sint8
desc Stepwise speed indication
requiredInterface PrimData_StepsSpeed_Txt_sint8

properties of RPortPrototype

shortName R_PrimData_Temperature_Lin_K C_uintl6
desc Temperature 1 in Kelvin but displayed as degree Celsius
requiredInterface PrimData_Temperature_Lin_ K C_uintlé6

properties of the components

properties of SwComponentPrototype

shortName

CMscB

type

CMscB

properties of SwComponentPrototype

AUTSSAR

shortName

CMscB_par

type

CMscB_par

Table 3.58: CompositionSwComponentType Pcpt_CMscB

3.2.2.2 ParameterSwComponentTypes

Common ParameterSwComponentType attributes

shortName

CMscA_par

desc

Modeling show case for primitive measurement and calculation.

properties of the ports

propetrties of PPortPrototype

shortName

P_PrimCal_Mass_Lnr_Kg

desc

Primitive calibration parameter for minimum egg mass.

providedInterface

PrimCal_Mass_Lnr_Kg

Table 3.59: ParameterSwComponentType CMscA_par

Common ParameterSwComponentType attributes

shortName

CMscD_par

desc

Modeling show case for arrays of axes and mapes.

properties of the ports

properties of PPortPrototype

shortName

P_ArrldComAxis_Temp_Lin_K uintl6

desc

Array of shared axis for temperature

providedInterface

ArrldComAxis_Temp_Lin_K uintlé6

properties of PPortPrototype

shortName

P_ArrldMap_Time_Lnr_s_uintl6

desc

Map to get time dependent on temperature and mass.

providedInterface

ArrldMap_Time_Lnr_s_uintl6

Table 3.60: ParameterSwComponentType CMscD_par

AUTSSAR

Common ParameterSwComponentType attributes

shortName

CMscB_par

desc

Modeling show case for axes, curves and mapes.

properties of the ports

properties of PPortPrototype

shortName

P_ComAxis_Mass_Lnr_Kg_uint8

desc

Shared axis for mass

providedInterface

ComAxis_Mass_Lnr_Kg_uint8

properties of PPortPrototype

shortName

P_ComAxis_Steps_Txt_sint8

desc

Shared axis for speed steps

providedInterface

ComAxis_Steps_Txt_sint38

properties of PPortPrototype

shortName

P_ComAxis_Temp_Lin_K uintlé6

desc

Shared axis for temperature

providedInterface

ComAxis_Temp_Lin_K uintlé

properties of PPortPrototype

shortName

P_Curve_Mass_Lnr_Kg_uint8

desc

Curve to get mass according differnt speed steps.

providedInterface

Curve_Mass_Lnr_Kg_uint38

properties of PPortPrototype

shortName

P_Map_Time_Lnr_s_uintlé6

desc

Map to get time dependent on temperature and mass.

providedInterface

Map_Time_Lnr_s_uintl6

Table 3.61: ParameterSwComponentType CMscB_par

AUTSSAR

3.2.2.3 ApplicationSwComponentTypes

Common ApplicationSwComponentType attributes

shortName

CMscD

desc

Modeling show case for arrays of axes and mapes.

properties of the ports

propetrties of PPortPrototype

shortName

P_ArrldPrimData_Temperature_Lin_K_C_uintlé6

desc

Temperature 1 in Kelvin but displayed as degree Celsius

providedInterface

ArrldPrimData_Temperature_Lin K C_uintlé6

properties of RPortPrototype

shortName

R_ArrldComAxis_Temp_Lin_K uintlé6

desc

Array of shared axis for temperature

requiredInterface

ArrldComAxis_Temp_Lin_K uintl6

properties of RPortPrototype

shortName R_ArrldMap_Time_Lnr_s_uintlé6
desc Map to get time dependent on temperature and mass.
requiredInterface ArrldMap_Time_Lnr_s_uintl6

properties of RPortPrototype

shortName

R_ArrldPrimData_Temperature_Lin_K_C_uintl6

desc

Temperature 1 in Kelvin but displayed as degree Celsius

requiredInterface

ArrldPrimData_Temperature_Lin K C_uintlé6

properties of RPortPrototype

shortName

R_ComAxis_Mass_Lnr_Kg_uint$8

desc

Shared axis for mass

requiredInterface

ComAxis_Mass_Lnr_Kg_uint8

properties of RPortPrototype

shortName R_PrimData_MassCorrected_Lnr_Kg_uint8

desc Primitve data for the corrected mass in kg.

requiredInterface PrimData_MassCorrected_Lnr_Kg_uint8
internalBehavior | CMscD

Table 3.62: ApplicationSwComponentType CMscD

Common SwcInternalBehavior attributes

shortName

CMscD

properties of the runnables

properties of RunnableEntity

shortName

CMscD_Process

symbol

CMscD_Process

Table 3.63: SwcinternalBehavior CMscD

AUTSSAR

Common ApplicationSwComponentType attributes

shortName

CMscB

desc

Modeling show case for axes, curves and mapes.

properties of the ports

properties of PPortPrototype

shortName

P_PrimData_MassCorrected_Lnr_ Kg_uint8

desc

Primitve data for the corrected mass in kg.

providedInterface

PrimData_MassCorrected_Lnr_Kg_uint8

propetrties of PPortPrototype

shortName

P_PrimData_Time_Lnr_s_uintl6

desc

Primitve data holding a time value.

providedInterface

PrimData_Time_Lnr_s_uintl6

propetrties of PPortPrototype

shortName

P_PrimData_ValidState_ Txt_noUnit_boolean

desc

Boolean representing the data validity

providedInterface

PrimData_ValidState_ Txt_noUnit_boolean

properties of RPortPrototype

shortName R_ComAxis_Mass_Lnr_Kg_uint8
desc Shared axis for mass
requiredInterface ComAxis_Mass_Lnr_Kg_uint8

properties of RPortPrototype

shortName R_ComAxis_Steps_Txt_sint8
desc Shared axis for speed steps
requiredInterface ComAxis_Steps_Txt_sint38

properties of RPortPrototype

shortName R_ComAxis_Temp_Lin_K_uintl6
desc Shared axis for temperature
requiredInterface ComAxis_Temp_Lin_K_uintl6

properties of RPortPrototype

shortName

R_Curve_Mass_Lnr_Kg_uint8

desc

Curve to get mass according differnt speed steps.

requiredInterface

Curve_Mass_Lnr_Kg_uint38

properties of RPortPrototype

shortName R _Map_Time_Lnr_s_uintl6
desc Map to get time dependent on temperature and mass.
requiredInterface Map_Time_Lnr_s_uintlé6

properties of RPortPrototype

shortName

R_ModeDirection

desc

Mode to indicate a direction

requiredInterface

ModeDirection

properties of RPortPrototype

shortName

R_PrimData_Mass_Lnr_ Kg_uint$8

\Y

AUTSSAR

A

desc

Mass in kilogram

requiredInterface

PrimData_Mass_Lnr_Kg_uint8

properties of RPortPrototype

shortName R_PrimData_MassCorrected_Lnr_Kg_uint8
desc Primitve data for the corrected mass in kg.
requiredInterface PrimData_MassCorrected_Lnr_Kg_uint8

properties of RPortPrototype

shortName

R_PrimData_StepsSpeed_Txt_sint8

desc

Stepwise speed indication

requiredInterface

PrimData_StepsSpeed_Txt_sint8

properties of RPortPrototype

shortName R_PrimData_Temperature_Lin K C_uintl6
desc Temperature 1 in Kelvin but displayed as degree Celsius
requiredInterface PrimData_Temperature_Lin_K_C_uintl6

properties of RPortPrototype

shortName R_PrimData_Time_Lnr_s_uintl6
desc Primitve data holding a time value.
requiredInterface PrimData_Time_ILnr_s_uintlé6

properties of RPortPrototype

shortName R_PrimData_ValidState_Txt_noUnit_boolean

desc Boolean representing the data validity

requiredInterface PrimData_ValidState_Txt_noUnit_boolean
internalBehavior | CMscB

Table 3.64: ApplicationSwComponentType CMscB

Common SwcInternalBehavior attributes

shortName

| cMscB

properties of the runnables

properties of RunnableEntity

shortName CMscB_Process

desc cyclic process for calculation
symbol CMscB_Process

Table 3.65: SwcinternalBehavior CMscB

AUTSSAR

3.2.2.4 Parameterinterfaces

Common ParameterInterface attributes

shortName

ArrldComAxis_Temp_Lin_K uintlé6

desc

Array of shared axis for temperature

properties of the parameters

properties of ParameterDataPrototype

shortName ArrldComAxis_Temp_Lin_K uintlé6

desc Array of shared axis for temperature

type ComAxis_Temp_Lin K uintl6_ScNoOfWheels
swImplPolicy standard

swCalibrationAccess | readWrite

swAddrMethod CAL

Table 3.66: Parameterinterface ArridComAxis_Temp_Lin_K_uint16

Common ParameterInterface attributes

shortName

ArrldMap_Time_Lnr_s_uintl6

desc

Map to get time dependent on temperature and mass.

properties of the parameters

properties of ParameterDataPrototype

shortName ArrldMap_Time_Lnr_s_uintl6

desc Map to get time dependent on temperature and mass.
type Map_Time_Lnr_s_uintl6_ScNoOfWheels
swImplPolicy standard

swCalibrationAccess | readWrite

swAddrMethod CAL

Table 3.67: Parameterinterface ArridMap_Time_Lnr_s_uint16

Common ParameterInterface attributes

shortName

ComAxis_Mass_Lnr_Kg_uint8

desc

Shared axis for mass

properties of the parameters

properties of ParameterDataPrototype

shortName ComAxis_Mass_Lnr_Kg_uint8
desc Shared axis for mass

type ComAxis_Mass_Lnr_Kg_uint8
swImplPolicy standard
swCalibrationAccess readWrite

swAddrMethod CAL

Table 3.68: Parameterinterface ComAxis_Mass_Lnr_Kg_uint8

AUTSSAR

Common ParameterInterface attributes

shortName ComAxis_Steps_Txt_sint38

desc Shared axis for speed steps

properties of the parameters

properties of ParameterDataPrototype

shortName ComAxis_Steps_Txt_sint38
desc Shared axis for speed steps
type ComAxis_Steps_Txt_sint38
swImplPolicy standard
swCalibrationAccess readWrite

swAddrMethod CAL

Table 3.69: Parameterinterface ComAxis_Steps_Txt_sint8

Common ParameterInterfac

e attributes

shortName

ComAxis_Temp_Lin_K uintlé6

desc

Shared axis for temperature

properties of the parameters

properties of ParameterDataPrototype

shortName ComAxis_Temp_Lin_K uintlé
desc Shared axis for temperature
type ComAxis_Temp_Lin_K uintl6
swImplPolicy standard
swCalibrationAccess readWrite

swAddrMethod CAL

Table 3.70: Parameterinterface ComAxis_Temp_Lin_K_uint16

Common ParameterInterfac

e attributes

shortName

Curve_Mass_Lnr_Kg_uint38

desc

Curve to get mass according differnt speed steps.

properties of the parameters

properties of ParameterDataPrototype

shortName Curve_Mass_Lnr_Kg_uint3

desc Curve to get mass according differnt speed steps.
type Curve_Mass_Lnr_ Kg_uint8

swImplPolicy standard

swCalibrationAccess readWrite

swAddrMethod CAL

Table 3.71: Parameterinterface Curve_Mass_Lnr_Kg_uint8

AUTSSAR

Common ParameterInterface attributes

shortName Map_Time_Lnr_s_uintl6

desc Map to get time dependent on temperature and mass.

properties of the parameters

properties of ParameterDataPrototype

shortName Map_Time_Lnr_s_uintlé6

desc Map to get time dependent on temperature and mass.
type Map_Time_Lnr_s_uintl6

swImplPolicy standard

swCalibrationAccess readWrite

swAddrMethod CAL

Table 3.72: Parameterinterface Map_Time_Lnr_s_uint16

Common ParameterInterface attributes

shortName PrimCal_Mass_Lnr_Kg
desc Primitive calibration parameter for minimum egg mass.
properties of the parameters
properties of ParameterDataPrototype
shortName PrimCal_Mass_Lnr_Kg
desc Primitive calibration parameter for minimum egg mass.
type kg_Lnr_0_0d25_0_C8_uint8
swImplPolicy standard
swCalibrationAccess readWrite
swAddrMethod CAL

Table 3.73: Parameterinterface PrimCal_Mass_Lnr_Kg

3.2.2.5 ModeSwitchinterfaces

Common ModeSwitchInterface attributes

shortName ModeDirection

desc Mode to indicate a direction

properties of the modeGroups

shortName ModeDirection

swCalibrationAccess readOnly

type Direction

Table 3.74: ModeSwitchinterface ModeDirection

AUTSSAR

3.2.2.6 SenderReceiverinterfaces

Common SenderReceiverInterface attributes

shortName

ArrldPrimData_Temperature_Lin_K_C_uintl6

desc

Temperature 1 in Kelvin but displayed as degree Celsius

properties of the dataElements

propetrties of VariableDataPrototype

shortName ArrldPrimData_Temperature_Lin_K C_uintlé6

desc Temperature 1 in Kelvin but displayed as degree Celsius

type K_Celsius_ILnr_0_511d9921875_0_FFFF_uintlo6_
ScNoOfWheels

swImplPolicy standard

swCalibrationAccess readOnly

swAddrMethod DATA

Table 3.75: SenderReceiverinterface ArridPrimData_Temperature_Lin_K_C_uint16

Common SenderReceiverInterface attributes

shortName

PrimData_Mass_Lnr_Kg_uint8

desc

Mass in kilogram

properties of the dataEleme

nts

properties of VariableDataPrototype

shortName PrimData_Mass_Lnr_Kg_ uint8
desc Mass in kilogram

type kg_Lnr_0_0d25_0_C8_uint8
swImplPolicy standard
swCalibrationAccess readOnly

swAddrMethod DATA

Table 3.76: SenderReceiverinterface PrimData_Mass_Lnr_Kg_uint8

Common SenderReceiverInterface attributes

shortName

PrimData_MassCorrected_Lnr_Kg_uint8

desc

Primitve data for the corrected mass in kg.

properties of the dataElements

properties of VariableDataPrototype

shortName PrimData_MassCorrected_Lnr_Kg_uint8
desc Primitve data for the corrected mass in kg.
type kg_Lnr_0_0d25_0_C8_uint8
swImplPolicy standard

swCalibrationAccess readOnly

swAddrMethod DATA

Table 3.77: SenderReceiverinterface PrimData_MassCorrected_Lnr_Kg_uint8

AUTSSAR

Common SenderReceiverInterface attributes

shortName

PrimData_Temperature_Lin_K C_uintl6

desc

Temperature 1 in Kelvin but displayed as degree Celsius

properties of the dataElements

properties of VariableDataPrototype

shortName PrimData_Temperature_Lin_K_C_uintl6

desc Temperature 1 in Kelvin but displayed as degree Celsius
type K_Celsius_Lnr_0_511d9921875_0_FFFF_uintlé6
swImplPolicy standard

swCalibrationAccess readOnly

swAddrMethod DATA

Table 3.78: SenderReceiverinterface PrimData_Temperature_Lin_K_C_uint16

Common SenderReceiverInterface attributes

shortName

PrimData_Time_Lnr_s_uintl6

desc

Primitve data holding a time value.

properties of the dataElements

properties of VariableDataPrototype

shortName PrimData_Time_Lnr_s_uintlé
desc Primitve data holding a time value.

type s _Lnr_0_8191d875_0_FFFF_uintl6
swImplPolicy standard

swCalibrationAccess | readOnly

swAddrMethod DATA

Table 3.79: SenderReceiverinterface PrimData_Time _Lnr_s _uint16

Common SenderReceiverInterface attributes

shortName

PrimData_ValidState_ Txt_noUnit_boolean

desc

Boolean representing the data validity

properties of the dataElements

propetrties of VariableDataPrototype

shortName PrimData_ValidState_Txt_noUnit_boolean
desc Boolean representing the data validity

type DataValidityType

swImplPolicy standard

swCalibrationAccess | readOnly

swAddrMethod DATA

Table 3.80: SenderReceiverinterface PrimData_ValidState_Txt_noUnit_boolean

AUTSSAR

3.2.2.7 ApplicationDataTypes, Category BOOLEAN

Common ApplicationDataType attributes

shortName DataValidityType
category BOOLEAN
desc Boolean to represent the data validity
swCalibrationAccess notAccessible
unit NoUnit
Range
lowerLimit upperLimit
physConstrs 0 1
Conversion
category TEXTTABLE
direction compulnternalToPhys
desc lowerLimit | upperLimit | vt symbol
- 0 0 Invalid
- 1 1 Valid

Table 3.81: ApplicationDataType DataValidityType

3.2.2.8 ApplicationDataTypes, Category VALUE

Common ApplicationDataType attributes

shortName K _Celsius_Lnr_0_511d9921875_O0_FFFF_uintl6
category VALUE
desc Temperature
swCalibrationAccess notAccessible
unit K
Range
lowerLimit upperLimit
physConstrs 0 511.9921875
Conversion
category LINEAR
direction compulnternalToPhys
desc lowerLimit | upperLimit e e
: - - Phys — 0+ 0.00781215 x Internal

Table 3.82: ApplicationDataType K_Celsius_Lnr_0_511d9921875_0_FFFF_uint16

AUTSSAR

Common ApplicationDataType attributes

shortName kg_Lnr_0_0d25_0_C8_uint8
category VALUE
desc Mass
swCalibrationAccess notAccessible
unit kg
Range
lowerLimit upperLimit
physConstrs 0 0.25
Conversion
category LINEAR
direction compulnternalToPhys
desc lowerLimit upperLimit compuNumerétor/
compuDenominator
) -) Phys — 0+ 0.001251* Internal

Table 3.83: ApplicationDataType kg_Lnr_0_0d25_0_C8_uint8

Common ApplicationDataType attributes

shortName NoUnit_ILnr_1 4 1 4 uint8
category VALUE
swCalibrationAccess notAccessible
unit NoUnit
Range
lowerLimit upperLimit
physConstrs 1 4
Conversion
category LINEAR
direction compulnternal ToPhys
desc lowerLimit | upperLimit :tzgﬁﬁzzﬁ:::EEZL
)) - Phys 04+ 1% I;nternal

AUTSSAR

Common ApplicationDataType attributes

shortName NoUnit_Lnr_1_65535_1_FFFF_uintl6
category VALUE
swCalibrationAccess notAccessible
unit NoUnit
Range
lowerLimit upperLimit
physConstrs 1 65535
Conversion
category LINEAR
direction compulnternalToPhys
desc lowerLimit upperLimit :ﬁﬁiﬁgﬁ:ﬁ:ﬁ:ﬁ::;
) - : Phys — 0+ 1x Ilnternal

Table 3.85: ApplicationDataType NoUnit_Lnr_1_65535_1_FFFF_uint16

Common ApplicationDataType attributes

shortName s_Lnr_0_8191d875_0_FFFF_uintl6
category VALUE
desc cooking time in seconds
swCalibrationAccess notAccessible
unit S
Range
lowerLimit upperLimit
physConstrs 0 8191.875
Conversion
category LINEAR
direction compulnternalToPhys
desc lowerLimit | upperLimit e e
; - - Phys = 0+ 0.125 >1k Internal

Table 3.86: ApplicationDataType s_Lnr_0_8191d875_0_FFFF_uint16

AUTSSAR

Common ApplicationDataType attributes

shortName speedSteps
category VALUE
desc Possible speed steps
swCalibrationAccess notAccessible
unit NoUnit
Range
lowerLimit upperLimit
physConstrs -1 2
Conversion
category TEXTTABLE
direction compulnternalToPhys
desc lowerLimit upperLimit | vt symbol
- -1 -1 Stop
- 0 0 LightSpeed
- 1 RidiculousSpeed
- 2 2 LudicrousSpeed
Table 3.87: ApplicationDataType speedSteps
Common ApplicationDataType attributes
shortName TxWheelNames
category VALUE
desc Wheel names
swCalibrationAccess notAccessible
unit NoUnit
Range
lowerLimit upperLimit
physConstrs 0 3
Conversion
category TEXTTABLE
direction compulnternalToPhys
desc lowerLimit | upperlLimit | vt symbol
- 0 0 FrontLeft
- 1 1 FrontRight
- 2 2 RearLeft
- 3 3 RearRight

Table 3.88: ApplicationDataType TxWheelNames

AUTSSAR

3.2.2.9 ApplicationDataTypes, Category COM_AXIS

Common ApplicationDataType attributes

shortName ComAxis_Temp_Lin_K_uintlé

category COM_AXIS

swCalibrationAccess notAccessible

swRecordLayout RL20_ ME_AXxis

properties of the axes (swCalprmAxisSet)
properties of SwAxisIndividual (swCalprmAxis and swCalprmAxisTypeProps)
swAxisIndex 1
category COM_AXIS
inputVariableType K_Celsius_Lnr_0_511d9921875_0_FFFF_uintlé6
swMaxAxisPoints 6
swMinAxisPoints 6

Table 3.89: ApplicationDataType ComAxis_Temp_Lin_K_uint16

Common ApplicationDataType attributes

shortName ComAxis_Steps_Txt_sint38
category COM_AXIS
swCalibrationAccess notAccessible
swRecordLayout RL20_ME_AXxis

properties of the axes (swCalprmAxisSet)

properties of SwAxisIndividual (swCalprmAxis and swCalprmAxisTypeProps)
swAxisIndex 1

category COM_AXIS

inputVariableType speedSteps

swMaxAxisPoints 4

swMinAxisPoints 4

Table 3.90: ApplicationDataType ComAxis_Steps_Txt_sint8

Common ApplicationDataType attributes

shortName ComAxis_Mass_Lnr_Kg_uint8
category COM_AXIS
swCalibrationAccess notAccessible
swRecordLayout RL20 ME_AXxis
properties of the axes (swCalprmAxisSet)
properties of SwAxisIndividual (swCalprmAxis and swCalprmAxisTypeProps)
swAxisIndex 1
category COM_AXIS
inputVariableType kg_Lnr_0_0d25_0_C8_uint8
swMaxAxisPoints 4
swMinAxisPoints 4

Table 3.91: ApplicationDataType ComAxis_Mass_Lnr_Kg_uint8

AUTSSAR

3.2.2.10 ApplicationDataTypes, Category CURVE

Common ApplicationDataType attributes

shortName Curve_Mass_Lnr_Kg_uint38
category CURVE
swCalibrationAccess notAccessible

swRecordLayout

RL20_ME_1DimMap

valueAxisDataType

kg_Lnr_0_0d25_0_C8_uint8

properties of the axes (swCalprmAxisSet)

properties of SwAxisGrouped (swCalprmAxis and swCalprmAxisTypeProps)
swAxisIndex 1

category COM_AXIS

sharedAxisType ComAxis_Steps_Txt_sint8

Table 3.92: ApplicationDataType Curve_Mass_Lnr_Kg_uint8

3.2.2.11 ApplicationDataTypes, Category MAP

Common ApplicationDataType attributes

shortName Map_Time_Lnr_s_uintl6

category MAP

swCalibrationAccess notAccessible

swRecordLayout RL20_ME_2DimMap
valueAxisDataType s_Lnr_0_8191d875_O0_FFFF_uintl6

properties of the axes (swCalprmAxisSet)

properties of SwAxisGrouped (swCalprmAxis and swCalprmAxisTypeProps)

swAxisIndex 1

category COM_AXIS

sharedAxisType ComAxis_Temp_Lin_ K uintlé6

properties of SwAxisGrouped (swCalprmAxis and swCalprmAxisTypeProps)
swAxisIndex 2

category COM_AXIS

sharedAxisType ComAxis_Mass_Lnr_Kg_uint8

Table 3.93: ApplicationDataType Map_Time_Lnr_s_uint16

AUTSSAR

3.2.2.12 ApplicationArrayDataTypes

Common ApplicationArrayDataType attributes

shortName ComAxis_Temp_Lin_K_uintl6_ScNoOfWheels
category ARRAY
swCalibrationAccess notAccessible

properties of the elements

properties of ApplicationArrayElement

shortName ComAxis_Temp_Lin_K uintl6_ScNoOfWheels
category COM_AXIS
type ComAxis_Temp_Lin_ K uintlé6

arraySizeSemantics

fixedSize

maxNumberOfElements

Table 3.94: ApplicationArrayDataType ComAxis_Temp_Lin_K_uint16_ScNoOfWheels

Common ApplicationArrayDataType attributes

CLRSERS T K_Celsius_Lnr 0_511d9921875_ 0 FFFF_uint16_ScNoOfWheeld
category ARRAY
swCalibrationAccess notAccessible

properties of the elements

properties of ApplicationArrayElement

IS K _Celsius_Lnr 0 _511d9921875_0 FFFF_uint16_ScNoOfWheeld
category VALUE
type K_Celsius_Lnr_0_511d9921875_0_FFFF_uintlo

arraySizeSemantics

fixedSize

maxNumberOfElements

Table 3.95:
uint16_ScNoOfWheels

ApplicationArrayDataType

K_Celsius Lnr 0 511d9921875 0 FFFF _

Common ApplicationArrayDataType attributes

shortName Map_Time_Lnr_s_uintl6_ScNoOfWheels
category ARRAY
swCalibrationAccess notAccessible

properties of the elements

properties of ApplicationArrayElement

shortName Map_Time_Lnr_s_uintl6_ScNoOfWheels
category MAP

type Map_Time_Lnr_s_uintl6
arraySizeSemantics fixedSize

maxNumberOfElements

Table 3.96: ApplicationArrayDataType Map_Time_Lnr_s_uint16_ScNoOfWheels

AUTSSAR

3.2.2.13 ApplicationRecordDataTypes

Common ApplicationRecordDataType attributes

shortName CMscC_nvm_NvBlockATyp
category STRUCTURE
swCalibrationAccess notAccessible

properties of the elements

properties of ApplicationRecordElement

shortName PrimData_StepsSpeed_Txt_sint8
category VALUE

type speedSteps

Table 3.97: ApplicationRecordDataType CMscC_nvm_NvBlockATyp

3.2.2.14 ModeDeclarationGroups

Common ModeDeclarationGroup attributes

shortName Direction
category EXPLICIT_ORDER
initialMode Halt

properties of the modeDeclarations

properties of ModeDeclaration

shortName Backward
desc Backward direction
value 2

properties of ModeDeclaration

shortName Forward
desc Forward direction
value 1

properties of ModeDeclaration

shortName Halt
desc Standstill
value 0

Table 3.98: ModeDeclarationGroup Direction

AUTSSAR

3.2.2.15 Units

Common Unit attributes

shortName Celsius

desc Degrees Celsius
displayName °C
offsetSiToUnit -273.15
factorSiToUnit 1.0
physicalDimension PD_K

Table 3.99: Unit Celsius

Common Unit attributes

shortName K

desc Temperature
displayName K
offsetSiToUnit 0.0
factorSiToUnit 1.0
physicalDimension PD_K

Table 3.100: Unit K

Common Unit attributes

shortName kg

desc Mass
displayName kg
offsetSiToUnit 0.0
factorSiToUnit 1.0
physicalDimension PD_kg

Table 3.101: Unit kg

Common Unit attributes

shortName NoUnit

desc No Unit
displayName -
offsetSiToUnit 0.0
factorSiToUnit 1.0
physicalDimension PD_NoUnit

Table 3.102: Unit NoUnit

AUTSSAR

Common Unit attributes

shortName s
desc Time
displayName S
offsetSiToUnit 0.0
factorSiToUnit 1.0

physicalDimension PD_s

Table 3.103: Unit s

3.2.2.16 PhysicalDimensions

Common PhysicalDimension attributes

shortName

PD_K

currentExp

lengthExp

luminousIntensity-
Exp

massExp

molarAmountExp

temperatureExp

timeExp

oO|=-|O|O| ©O |O|O

Table 3.104: PhysicalDimension PD_K

Common PhysicalDimension attributes

shortName

PD_kg

currentExp

0

lengthExp

luminousIntensity-
Exp

0
0

massExp

molarAmountExp

temperatureExp

timeExp

oO|Oo|O|—=

Table 3.105: PhysicalDimension PD_kg

AUTSSAR

Common PhysicalDimension attributes

shortName PD_NoUnit

currentExp

lengthExp

luminousIntensity-
Exp

massExp

molarAmountExp

temperatureExp

oO|O|O|O0| © |O|O

timeExp

Table 3.106: PhysicalDimension PD_NoUnit

Common PhysicalDimension attributes

shortName PD_s

currentExp

lengthExp

luminousIntensity-
Exp

massExp

molarAmountExp

temperatureExp

—“[OoO|O|O| © |O|O

timeExp

Table 3.107: PhysicalDimension PD_s

3.2.2.17 SwAddrMethods

Common SwAddrMethod attributes

shortName CAL

Calibratable constants; safety level QM. Constants will be located in

gess different memory sections depending on the alignment of the constant.
sectionType calprm
memoryAllo?atlon— addrMethodShortNameAndAlignment
KeywordPolicy
sectionInitializa-
tionPolicy
option safetyQM

Table 3.108: SwAddrMethod CAL

AUTSSAR

Common SwAddrMethod attributes

shortName CODE_10MS
desc Code of ECU-functions called every 10 ms; safety level QM.
sectionType code
memoryAllocation—
. addrMethodShortName
KeywordPolicy
sectionlInitializa-
tionPolicy
option safetyQM

Table 3.109: SwAddrMethod CODE_10MS

Common SwAddrMethod attributes

shortName CONST_SLOW
Non calibratable constants of ECU-functions called seldom; safety level
desc
QM.
sectionType const
memoryAllocation-
. addrMethodShortName
KeywordPolicy
sectionlInitializa-
tionPolicy
option safetyQM

Table 3.110: SwAddrMethod CONST_SLOW

Common SwAddrMethod attributes

shortName DATA
. Variables of ECU-functions; safety level QM. Variables will be located in
ese different memory sections depending on the alignment of the variable.
sectionType var
memoryAllo?atlon— addrMethodShortNameAndAlignment
KeywordPolicy
sectionInitializa- INIT
tionPolicy
option safetyQM

Table 3.111: SwAddrMethod DATA

AUTSSAR

Common SwAddrMethod attributes

shortName DATA_NVDAT
desc Variables stored in non-volatile memory; safety level QM.
sectionType var
memoryAllocation—
. addrMethodShortName
KeywordPolicy
sectionlInitializa-
. . NO-INIT
tionPolicy
option nvData, safetyQM

Table 3.112: SwAddrMethod DATA_NVDAT

AUTSSAR

4 Structured Requirements

Structured Requirements are available at different sections in the meta model. There
exists a clear definition of the elements of st ructuredreq. Based on these elements
a variety of possible use cases can be applied. The following show cases shall illustrate
this:

* provide specification items as requirements (4.1)
* provide diagnostic requirements (4.2)

* provide decomposition of requirements (4.3)

« provide additional information for configuration (5)

Due to the fact that st ructuredReq offer general usable attributes, they are filled in
a context-specific manner to reflect the dedicated use case. No new and additional
elements have to be introduced in the meta model because St ructuredReq still pro-
vides all needed entities.

4.1 Specification items as requirements

AUTOSAR uses structuredrReq within AUTOSAR RS documents [TPS _STDT -
00060]. They are automatically generated based on the specification generation pro-
cess. Theses specification items use the attributes of StructuredReq including
Traceable, to realize the up tracing. A dedicated example is illustrated in listing 4.1.

<STRUCTURED-REQ>
<SHORT-NAME>SRS_Com_02040</SHORT-NAME>
<LONG-NAME>
<L-4 L="EN">AUTOSAR COM and LargeDataCOM shall be configured by using
XML as configuration language</L-4>
</LONG-NAME>
<CATEGORY>REQUIREMENT_ITEM</CATEGORY>
<DESCRIPTION>
<P>
<L-1 L="EN">AUTOSAR COM and LargeDataCOM shall be configured by
using XML as configuration language as defined by ECU
Configuration Template.</L-1>
</P>
<P>
<L-1 L="EN">It is up to the <TT TYPE="Cite">CP_2d_SWS_2d_COM</TT>
and <TT TYPE="Cite">CP_2d_SWS_2d_LargeDataCOM</TT> to define the
configuration parameters themselves.</L-1>
</P>
</DESCRIPTION>
<RATIONALE>
<P>
<L-1 L="EN">Having a unique configuration language within AUTOSAR.</
L-1>
</P>
</RATIONALE>

AUTSSAR

<DEPENDENCIES>
<P>
<L-1 L="EN">—</L-1>
</P>
</DEPENDENCIES>
<USE-CASE>
<P>
<L-1 L="EN">Configuration of AUTOSAR COM and LargeDataCOM</L-1>
</P>

</USE-CASE>
<SUPPORTING-MATERIAL>
<P>
<L-1 L="EN"><TT TYPE="Cite">CP_2d_TPS_2d_ECUConfiguration</TT></L-1>
</P>
</SUPPORTING-MATERIAL>
</STRUCTURED-REQ>

Listing 4.1: Example for StructuredReq in RS AUTOSAR Specification

The rendering of the SstructuredReq in the RS AUTOSAR Specification is given in
figure 4.1.

[SRS_Com_02040] AUTOSAR COM and LargeDataCOM shall be configured by
using XML as configuration language [

AUTOSAR COM and LargeDataCOM shall be configured by using XML as
Description: configuration language as defined by ECU Configuration Template.
It is up to the [3] and [4] to define the configuration parameters themselves.
Rationale: Having a unique configuration language within AUTOSAR.
Use Case: Configuration of AUTOSAR COM and LargeDataCOM
Dependencies: | —
Supporting [9]
Material:
]

Figure 4.1: Spec item represented by StructuredReq

Using structuredReq a complete requirements description and tracing is available.

4.2 Diagnostic requirements

In this context the structuredReq is embedded in DiagnosticAccessPermis-—
sion. Mainly the description of the two conditions are shown here.

<DIAGNOSTIC-ACCESS-PERMISSION>
<SHORT-NAME>exampleAccessPermission</SHORT-NAME>
<INTRODUCTION>
<STRUCTURED-REQ>
<SHORT-NAME>precondition</SHORT-NAME>
<CATEGORY>DIAG_ACCESS_PERM_PRE_COND</CATEGORY>
<DESCRIPTION>
<P>

AUTSSAR

<L-1 L="EN">This is a textual description of a pre-condition</L-1
>
</P>
</DESCRIPTION>
</STRUCTURED-REQ>
<STRUCTURED—-REQ>
<SHORT-NAME>runcondition</SHORT-NAME>
<CATEGORY>DIAG_ACCESS_PERM_RUN_COND</CATEGORY>
<DESCRIPTION>
<P>
<L-1 L="EN">This is a textual description of a run-condition</L-1
>
</P>
</DESCRIPTION>
</STRUCTURED-REQ>
</INTRODUCTION>
<DIAGNOSTIC-SESSION-REFS>
<DIAGNOSTIC-SESSION-REF DEST="DIAGNOSTIC-SESSION">/AUTOSAR/UseCase_230/
ExampleSession</DIAGNOSTIC-SESSION-REF>
</DIAGNOSTIC-SESSION-REFS>
<SECURITY-LEVEL-REFS>
<SECURITY-LEVEL-REF DEST="DIAGNOSTIC-SECURITY-LEVEL">/AUTOSAR/
UseCase_230/ExampleSecuritylLevel</SECURITY-LEVEL-REF>
</SECURITY-LEVEL-REFS>
</DIAGNOSTIC-ACCESS-PERMISSION>

Listing 4.2: Example for the definition of pre- and run-conditions for
DiagnosticAccessPermission

4.3 Decomposition of requirements

The st ructuredReqg can also be used for decomposition of requirements.

StructuredRegh

StructuredrRegB

StructuredReqBl StructuredReqB2

Figure 4.2: Decomposition of StructuredReq

In figure 4.2 the StructuredRegB has an upstream requirement {0 Structure-
dReqgA realized by Traceable using <TRACE-REF>. The StructuredReqgB itself is
decomposed by structuredRegBl and StructuredRegB2. This is realized by the

AUTSSAR

attribute dependencies of St ructuredReq. It contains two <TRACE>s which in turn
use <TRACE-REF> again.

<STRUCTURED-REQ>
<SHORT-NAME>A</SHORT-NAME>
<CATEGORY>REQUIREMENT_ITEM</CATEGORY>
<DATE>2019-07-19</DATE>
<ISSUED-BY>OEM</ISSUED-BY>
<TYPE>valid</TYPE>
<IMPORTANCE>High</IMPORTANCE>
</STRUCTURED-REQ>
<STRUCTURED-REQ>
<SHORT-NAME>B</SHORT-NAME>
<CATEGORY>REQUIREMENT_ITEM</CATEGORY>
<TRACE-REFS>
<TRACE-REF BASE="ArTrace" DEST="STRUCTURED-REQ">DecompositionExample
/A</TRACE-REF>
</TRACE-REFS>
<DATE>2019-07-19</DATE>
<ISSUED-BY>OEM</ISSUED-BY>
<TYPE>valid</TYPE>
<IMPORTANCE>High</IMPORTANCE>
<DEPENDENCIES>
<TRACE>
<SHORT-NAME>DECOMPB1</SHORT-NAME>
<LONG-NAME>
<L-4 L="EN">Decomposition element 1</L-4>
</LONG-NAME>
<CATEGORY>DECOMPOSITION</CATEGORY>
<TRACE-REFS>
<TRACE-REF BASE="ArTrace" DEST="STRUCTURED-REQ">
DecompositionExample/Bl</TRACE-REF>
</TRACE-REFS>
</TRACE>
<TRACE>
<SHORT-NAME>DECOMPB2</SHORT-NAME>
<LONG-NAME>
<L-4 L="EN">Decomposition element 2</L-4>
</LONG-NAME>
<CATEGORY>DECOMPOSITION</CATEGORY>
<TRACE-REFS>
<TRACE-REF BASE="ArTrace" DEST="STRUCTURED-REQ">
DecompositionExample/B2</TRACE-REF>
</TRACE-REFS>
</TRACE>
</DEPENDENCIES>
</STRUCTURED-REQ>
<STRUCTURED-REQ>
<SHORT-NAME>B1</SHORT-NAME>
<CATEGORY>REQUIREMENT_ITEM</CATEGORY>
<DATE>2019-07-19</DATE>
<ISSUED-BY>OEM</ISSUED-BY>
<TYPE>valid</TYPE>
<IMPORTANCE>High</IMPORTANCE>
</STRUCTURED-REQ>
<STRUCTURED-REQ>

AUTSSAR

<SHORT-NAME>B2</SHORT-NAME>

<CATEGORY>REQUIREMENT_ITEM</CATEGORY>

<DATE>2019-07-19</DATE>

<ISSUED-BY>OEM</ISSUED-BY>

<TYPE>valid</TYPE>

<IMPORTANCE>High</IMPORTANCE>
</STRUCTURED-REQ>

Listing 4.3: Example for decomposition of St ructuredReq

AUTSSAR

5 Integration Requirements

Creating an AUTOSAR Target Configuration (i.e. Ecu Configuration on the Classic
Platform and APMC on the Adaptive Platform) is a challenging task that requires a
deep understanding of the AUTOSAR standards, meticulous attention to detail, and
effective use of tools and methodology. In figure 5.1 a high level workflow of the Target
Configuration creation and refinement is sketched.

Although many configuration parameters can be directly derived from Upstream de-
scriptions (t7in figure 5.1, like System Extract, Diagnostic Extract, etc.) there are still a
significant number of configuration parameters that the integrator of the ECU/Machine
has to define.

The goal of Integration Requirements is to reduce the number of undefined configura-
tion parameters after the initial Target Configuration derivation. Once the initial Target
Configuration is produced, Integration Requirements can be applied to assign values
to some of the yet undefined configuration parameters (2 in figure 5.1).

Integration Requirements provide configuration parameter value definitions that can be
categorized as either mandatory, suggested, or information. Mandatory values
are those that the Target Configuration shall have for all occurrences of a specific
configuration parameter. Suggested values serve as a starting point for the Target
Configuration if the parameter is not yet defined, but it is allowed to deviate from these
suggested values. Information is given as a hint to the integrator as how to set the
value of a configuration parameter.

Even when the integrator works with the Target Configuration and modifies or adds
further configuration elements, the Integration Requirements can be applied repeatedly
to continuously enhance the Target Configuration (also {2 in figure 5.1).

The Integration Requirements can also be used to check the Target Configuration and
make sure that mandatory Integration Requirements values are actually configured
as required by the Integration Requirements definition. This is shown in t3 of figure
5.1, where the current Target Configuration Values are compared to the Integration
Requirements. The resulting report can be used to continuously improve the Target
Configuration and resolve many issues already during the integration phase (3.

The resulting report can also be used as a basis for discussions with customers. Han-
dling deviations from Integration Requirements should be documented and potentially
approved by customers as shown in t4. This is further elaborated in section 5.5.

AUTSSAR

Initial TCV Additional IR data Comparing / Reporting Approval
by Integrator

SYSEXT DEXT I:I Report

Report

derive D apply D compare approve
Ranking of deviations:
- suggested
change D - mandatory
TV TCcV Tcv
t1 t2 t3 t4

Figure 5.1: Target Configuration Workflow

The methodological framework of Integration Requirements is the meta-class St ruc-
turedReq, providing a dedicated set of attributes to characterize Integration Require-
ments values. The concrete design and parametrization of the attributes of Struc-
turedReq in the context of the Integration Requirements is defined in 5.1.

Mandatory integration requirements will always create a parameter. If a parameter
with the same value already exists, it's recommended to skip the creation. Suggested
integration requirements will only create a parameter if it doesn’t exist. This means that
it's advantageous to first apply all mandatory integration requirements, and afterwards
apply the suggested ones.

5.1 Defining Integration Requirements using StructuredReq

Using st ructuredReq in the scope of the Integration Requirements leads to concrete
defined values of some attributes.

If not otherwise stated the attributes of st ructuredReq are used according to their
general definition.

5.1.1 StructuredReq.shortName

The value of St ructuredReqg.shortName is used to identify the Integration Require-
ment and make them referable for further processing and documentation. This may be
useful for tracing of change and reporting (see section 5.5).

AUTSSAR

5.1.2 StructuredReq.category

The value of StructuredReqg.category shall be set to REQUIREMENT_ITEM. This
identifies this st ructuredReq as a dedicated requirement.

5.1.3 StructuredReq.importance

The value of StructuredReq. importance shall be one of the following strings:
* mandatory
* suggested
* information

A structuredReqg With importance equal to mandatory defines a binding value
setting for that parameter. Any deviation of the value shall result in a error reporting.

A structuredReq With importance equal to suggested defines a suggested value
value setting for that parameter. Any deviation of the value may result in a warning
reporting.

A structuredReq With importance equal to information provides some docu-
mentation on how this parameter may be configured. No format checks are expected
for the reporting on this Integration Requirement.

5.1.4 StructuredReq.rationale

The structuredReq.rationale provides the possibility to describe some justifica-
tion why this Integration Requirement is applied in this way.

5.1.5 StructuredReq.useCase

The structuredReqg.useCase attribute shall be set to Integration Require-
ment. This identifies this St ructuredReq as a dedicated Integration Requirement.

5.1.6 StructuredReq.description

The StructuredReqg.description is semi-structured according to the following
definition. Any Integration Requirement implements the structure (or parts) as follows:

* description
— List

*» Ttem with XML attribute ST = DefinitionReference

AUTSSAR

» Item with XML attribute ST = Description

* Ttem with XML attribute ST = ARVersion

« Ttem with XML attribute ST = ModulevVersion

» Item with XML attribute ST = Setvalue

« Item with XML attribute ST = SupportedLowValue
» Item with XML attribute ST = SupportedHighValue

» ITtem with XML attribute ST = Supportedvalue

5.1.6.1 DefinitionReference

Defines an Xref to the target configuration parameter definition this Integration Re-
quirement applies to.

The reference can either point to the Standardized AUTOSAR Target Configuration Pa-
rameter Definition or to the Vendor Specific Target Configuration Parameter Definition.

If the DefinitionReference refers to a Standardized AUTOSAR Target Configu-
ration Parameter Definition, then the corresponding Vendor Specific Target Configu-
ration Parameter Definition needs to be derived. This approach is useful if the Inte-
gration Requirements shall be applicable to all AUTOSAR implementations, regardless
which vendor has implemented the basic software and thus derived his specific Ven-
dor Specific Target Configuration Parameter Definition. Thus Vendor Specific Target
Configuration Parameter Definition references are explicitly avoided in the Integration
Requirement DefinitionReference.

If the DefinitionReference refers to a Vendor Specific Target Configuration Pa-
rameter Definition, then already the specific vendor specific parameter is addressed.
This Integration Requirement is specific to that vendors AUTOSAR implementation.
But with this approach also custom vendor specific parameters can be the target of
Integration Requirements.

<ITEM SI="DefinitionReference">
<P>
<L-1 L="EN">
<XREF>
<REFERRABLE-REF DEST="ECUC-BOOLEAN-PARAM-DEF">/AUTOSAR/EcucDefs/
CanIf/CanIfInitCfg/CanIfRxPduCfg/CanlfRxPduReadData</
REFERRABLE-REF>
</XREF>
</L-1>
</P>
</ITEM>

Listing 5.1: Example DefinitionReference

AUTSSAR

5.1.6.2 Description

Allows to provide a description for this Integration Requirement. This can be used to
describe the motivation and background why this Integration Requirement is defined
that way.

5.1.6.3 ARVersion

Defines the supported AUTOSAR versions this Integration Requirement applies to.
<ITEM SI="ARVersion">
<P>
<L-1 L="EN">4.4.0</L-1>
</P>
<P>
<L-1 L="EN">R25-11</L-1>
</P>
</ITEM>

Listing 5.2: Example ARVersion

5.1.6.4 ModuleVersion

Defines the supported BSW Module implementation versions this Integration Require-
ment applies to.

<ITEM SI="ModuleVersion">
<P>
<L-1 L="EN">12.1.0</L-1>
</P>
</ITEM>

Listing 5.3: Example ModuleVersion

5.1.6.5 SetValue

Defines the value to be set by this Integration Requirement.

If no setvalue is defined, than this Integration Requirement defines the allowed range
(SupportedLowValue and SupportedHighValue)/subset (Supportedvalue) of
possible values to be used.

AUTSSAR

The defined value shall respect the type of target configuration parameter this Integra-
tion Requirement applies to.
<ITEM SI="SetValue">
<P>
<L-1 L="EN">true</L-1>
</P>
</ITEM>

Listing 5.4: Example setVvalue

5.1.6.6 SupportedLowValue

Defines the lowest allowed value to be set by this Integration Requirement. This is
applicable for Numerical Value parameters.

The defined value shall respect the type of target configuration parameter this Integra-
tion Requirement applies to.

<ITEM SI="SupportedLowValue">
<P>
<L-1 L="EN">0</L-1>
</P>
</ITEM>
<ITEM SI="SupportedHighValue">
<P>
<L-1 L="EN">1048575</L-1>
</P>
</ITEM>

Listing 5.5: Example SupportedLowValue and SupportedHighValue

5.1.6.7 SupportedHighValue

Defines the highest allowed value to be set by this Integration Requirement. This is
applicable for Numerical Value parameters.

The defined value shall respect the type of target configuration parameter this Integra-
tion Requirement applies to.

For example see listing for SupportedLowValue

AUTSSAR

5.1.6.8 SupportedValue

Defines possible values to be set by this Integration Requirement. This is applicable
for Enumerations and String parameters.

This is a list of allowed values the referenced parameter value is restricted to use.
If at least one Supportedvalue is defined, then

« Enumeration: only one of the explicitly listed Supportedvalues is allowed to be
used

 String: only strings which match one of the defined Supportedvalues are al-
lowed.

If no Supportedvalue is defined, then

« Enumeration: all available enumeration values of the enumeration parameter def-
inition are supported

» String: no restriction on the string parameter value is defined.

The defined value shall respect the type of target configuration parameter this Integra-
tion Requirement applies to.
<ITEM SI="Supportedvalue">
<P>
<L-1 L="EN">TRUE</L-1>
</P>
<P>
<L-1 L="EN">FALSE</L-1>
</P>
</ITEM>

Listing 5.6: Example Supportedvalue

5.2 Applying Integration Requirements

5.2.1 Single configuration value in a single container

An example of a simple integration requirement is shown in listing 5.7.

The Integration Requirement shall be applied to the configuration parameter can-
IfDevErrorDetect. This parameter is a singular and not optional configuration
parameter of the CanIf module. This means, if a configuration for the CanIf module
exists, then exactly one configuration value for the parameter CanIfDevErrorDe-
tect shall exists and be set to the value FALSE.
<STRUCTURED-REQ>

<SHORT-NAME>CanIfDevErrorDetect</SHORT-NAME>

<LONG—-NAME>

<L-4 L="EN">CanIfDevErrorDetect</L-4>
</LONG-NAME>
<CATEGORY>REQUIREMENT_ITEM</CATEGORY>

AUTSSAR

<DATE>2025-02-20</DATE>
<ISSUED-BY>OEM</ISSUED-BY>
<TYPE>valid</TYPE>
<IMPORTANCE>mandatory</IMPORTANCE>
<DESCRIPTION>
<LIST>
<ITEM SI="Description">
<P>
<L-1 L="EN">Switches the development error detection and
notification on or off. » true: detection and notification is
enabled. * false: detection and notification is disabled.</L
-1>
</P>
</ITEM>
<ITEM SI="DefinitionReference">
<P>
<L-1 L="EN">
<XREF>
<REFERRABLE-REF DEST="ECUC-BOOLEAN-PARAM-DEF">/AUTOSAR/
EcucDefs/CanIf/CanIfPublicCfg/CanIfDevErrorDetect</
REFERRABLE—-REF>
</XREF>
</L-1>
</P>
</ITEM>
<ITEM SI="SetValue">
<P>
<L-1 L="EN">FALSE</L-1>
</P>
</ITEM>
<ITEM SI="SupportedvValue">
<P>
<L-1 L="EN">TRUE</L-1>
</P>
<P>
<L-1 L="EN">FALSE</L-1>
</P>
</ITEM>
<ITEM SI="ARVersion">
<P>
<L-1 L="EN">4.4.0</L-1>
</P>
<P>
<L-1 L="EN">R25-11</L-1>
</P>
</ITEM>
</LIST>
</DESCRIPTION>
<RATIONALE>
<P>
<L-1 L="EN">The feature development error detection shall be
disabled for production code else it has to be ensured that there
will be no side effects from this code.</L-1>
</P>
</RATIONALE>
<USE-CASE>

AUTSSAR

<P>
<L-1 L="EN">IntegrationRequirement</L-1>
</P>
</USE-CASE>
</STRUCTURED-REQ>

Listing 5.7: Example 1 for integration requirement using StructuredReq

The listing 5.8 shows a simplified ecu configuration values model for a CanIf module.

Already a setting for the configuration parameter CanIfversionInfoApi inthe con-
tainer CanIfPublicCfg is provided. However, there is no setting for the value of
CanIfDevErrorDetect.

<ECUC-MODULE-CONFIGURATION-VALUES>
<SHORT-NAME>CanT f</SHORT-NAME >
<DEFINITION-REF DEST="ECUC-MODULE-DEF">/AUTOSAR/EcucDefs/CanIf</
DEFINITION-REF>
<CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>CanIfPublicCfg</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-CONTAINER-DEF">/AUTOSAR/EcucDefs/CanIf/
CanIfPublicCfg</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-NUMERICAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-BOOLEAN-PARAM-DEF">/AUTOSAR/EcucDefs/
CanIf/CanIfPublicCfg/CanIfVersionInfoApi</DEFINITION-REF>
<VALUE>TRUE</VALUE>
</ECUC-NUMERICAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
</CONTAINERS>
</ECUC-MODULE-CONFIGURATION-VALUES>

Listing 5.8: Example 1 for ecu configuration values

If the Integration Requirements of listing 5.7 are applied to the configuration values of
listing 5.8, then the configuration values model of listing 5.9 results: the configuration
values are extended with a value FALSE for CanIfDevErrorDetect.

<ECUC-MODULE-CONFIGURATION-VALUES>
<SHORT-NAME>CanIf</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-MODULE-DEF">/AUTOSAR/EcucDefs/CanIf</
DEFINITION-REF>
<CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>CanIfPublicCfg</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-CONTAINER-DEF">/AUTOSAR/EcucDefs/CanIf/
CanIfPublicCfg</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-NUMERICAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-BOOLEAN-PARAM-DEF">/AUTOSAR/EcucDefs/
CanIf/CanIfPublicCfg/CanlfVersionInfoApi</DEFINITION-REF>
<VALUE>TRUE</VALUE>
</ECUC-NUMERICAL-PARAM-VALUE>
<!—-- created through integration requirements -—>

AUTSSAR

<ECUC-NUMERICAL-PARAM-VALUE>

<DEFINITION-REF DEST="ECUC-BOOLEAN-PARAM-DEF">/AUTOSAR/EcucDefs/
CanIf/CanIfPublicCfg/CanIfDevErrorDetect</DEFINITION-REF>

<VALUE>FALSE</VALUE>

</ECUC-NUMERICAL-PARAM-VALUE>

</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
</CONTAINERS>
</ECUC-MODULE-CONFIGURATION-VALUES>

Listing 5.9: Example 1 for ecu configuration values after applying integration
requirements

Integration Requirements can also be applied to the adaptive platform function cluster
configuration. This approach is identical to classic platform.

An example for the adaptive platform function cluster Integration Requirements is
shown in listing 5.10, where the configuration parameter persistencyCentral-
StorageUri is defined to have a suggested value of "somePath".

<STRUCTURED-REQ>
<SHORT-NAME>PersistencyCentralStorageUri</SHORT-NAME>
<LONG-NAME>
<L-4 L="EN">PersistencyCentralStorageUri</L-4>
</LONG-NAME>
<CATEGORY>REQUIREMENT_ITEM</CATEGORY>
<DATE>2025-02-20</DATE>
<ISSUED-BY>OEM</ISSUED-BY>
<TYPE>valid</TYPE>
<IMPORTANCE>suggested</IMPORTANCE>
<DESCRIPTION>
<LIST>
<ITEM SI="Description">
<P>
<L-1 L="EN">Defines the location of the central storage of this
Persistency instance as a URI.</L-1>
</P>
</ITEM>
<ITEM SI="DefinitionReference">
<P>
<L-1 L="EN">
<XREF>
<REFERRABLE-REF DEST="APMC-STRING-PARAM-DEF">/
FunctionalClusterDefinitions/Persistency/
PersistencyGeneral/PersistencyCentralStorageUri</
REFERRABLE-REF>
</XREF>
</L-1>
</P>
</ITEM>
<ITEM SI="SetValue">
<P>
<L-1 L="EN">somePath</L-1>
</P>
</ITEM>
<ITEM SI="ARVersion">

AUTSSAR

<P>
<L-1 L="EN">R25-11</L-1>
</P>
</ITEM>
</LIST>
</DESCRIPTION>
<RATIONALE>
<P>
<L-1 L="EN">O0EM defines the central storage location explicitly for
all projects.</L-1>
</P>
</RATIONALE>
<USE-CASE>
<P>
<L-1 L="EN">IntegrationRequirement</L-1>
</P>
</USE-CASE>
</STRUCTURED-REQ>

Listing 5.10: Example for adaptive platform integration requirement using
StructuredReq

5.2.2 Single configuration value in multiple containers

The example in listing 5.11 illustrates the definition of an Integration Requirements
which may be applied several times: CanIfRxPduDatalLengthCheck is a boolean
configuration parameter defined as part of the configuration container cCanIfRxpP-
duCfg. CanIfRxPduCfg has an upper multiplicity greater than 1, thus many instances
of canIfRxPduCfg may exists in an ecu configuration values model.

<STRUCTURED-REQ>
<SHORT-NAME>CanIfRxPduDataLengthCheck</SHORT-NAME>
<LONG-NAME>
<L-4 L="EN">CanIfRxPduDatalLengthCheck</L-4>
</LONG-NAME>
<CATEGORY>REQUIREMENT_ITEM</CATEGORY>
<DATE>2025-02-20</DATE>
<ISSUED-BY>0OEM</ISSUED-BY>
<TYPE>valid</TYPE>
<IMPORTANCE>mandatory</IMPORTANCE>
<DESCRIPTION>
<LIST>
<ITEM SI="Description">
<P>
<L-1 L="EN">This parameter switches the message specific data
length check. True: Data length check will be executed during
the reception of this PDU. False: No data length check will
be executed during the reception of this PDU.</L-1>
</P>
</ITEM>
<ITEM SI="DefinitionReference">
<P>
<L-1 L="EN">
<XREF S="">

AUTSSAR

<REFERRABLE-REF DEST="ECUC-BOOLEAN-PARAM-DEF">/AUTOSAR/
EcucDefs/CanIf/CanIfInitCfg/CanIfRxPduCfg/
CanIfRxPduDatalLengthCheck</REFERRABLE-REF>
</XREF>
</L-1>
</P>
</ITEM>
<ITEM SI="SetValue">
<pP>
<L-1 L="EN">FALSE</L-1>
</P>
</ITEM>
<ITEM SI="Supportedvalue">
<P>
<L-1 L="EN">TRUE</L-1>
</P>
<P>
<L-1 L="EN">FALSE</L-1>
</P>
</ITEM>
<ITEM SI="ARVersion">
<P>
<L-1 L="EN">R25-11</L-1>
</P>
</ITEM>
</LIST>
</DESCRIPTION>
<RATIONALE>
<P>
<L-1 L="EN">OEM decision: DLC check shall always be disabled.</L-1>
</P>
</RATIONALE>
<USE-CASE>
<P>
<L-1 L="EN">IntegrationRequirement</L-1>
</P>
</USE-CASE>
</STRUCTURED-REQ>

Listing 5.11: Example 2 for integration requirement for plural application

In the example configuration model of listing 5.12 2 instances of CanI fRxPduCfg are
defined: CanlfRxPduCfg17 and CanlfRxPduCfg32.

<ECUC-MODULE-CONFIGURATION-VALUES>
<SHORT-NAME>CanI f</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-MODULE-DEF">/AUTOSAR/EcucDefs/CanlIf</
DEFINITION-REF>
<CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>CanIfInitCfg</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-CONTAINER-DEF">/AUTOSAR/EcucDefs/CanIf/
CanIfInitCfg</DEFINITION-REF>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>CanIfRxPduCfgl7</SHORT-NAME>

AUTSSAR

<DEFINITION-REF DEST="ECUC-CONTAINER-DEF">/AUTOSAR/EcucDefs/
CanIf/CanIfInitCfg/CanIfRxPduCfg</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-NUMERICAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-INTEGER-PARAM-DEF">/AUTOSAR/
EcucDefs/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduld</
DEFINITION-REF>
<VALUE>17</VALUE>
</ECUC-NUMERICAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>CanIfRxPduCfg32</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-CONTAINER-DEF">/AUTOSAR/EcucDefs/
CanIf/CanIfInitCfg/CanIfRxPduCfg</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-NUMERICAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-INTEGER-PARAM-DEF">/AUTOSAR/
EcucDefs/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduld</
DEFINITION-REF>
<VALUE>32</VALUE>
</ECUC-NUMERICAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>
</CONTAINERS>
</ECUC-MODULE-CONFIGURATION-VALUES>

Listing 5.12: Example 2 for ecu configuration values

If the Integration Requirements of listing 5.11 are applied to the configuration values of
listing 5.12, then the configuration values model of listing 5.13 results: every configura-
tion value container of definition CanIfRxPduCfgqg is extended with a value FALSE for
CanIfRxPduDatalengthCheck.

<ECUC-MODULE-CONFIGURATION-VALUES>
<SHORT-NAME>Can] f</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-MODULE-DEF">/AUTOSAR/EcucDefs/CanIf</
DEFINITION-REF>
<CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>CanIfInitCfg</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-CONTAINER-DEF">/AUTOSAR/EcucDefs/CanIf/
CanIfInitCfg</DEFINITION-REF>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>CanIfRxPduCfgl7</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-CONTAINER-DEF">/AUTOSAR/EcucDefs/
CanIf/CanIfInitCfg/CanIfRxPduCfg</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-NUMERICAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-INTEGER-PARAM-DEF">/AUTOSAR/
EcucDefs/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduld</
DEFINITION-REF>
<VALUE>17</VALUE>

AUTSSAR

</ECUC-NUMERICAL-PARAM-VALUE>
<!—— created through integration requirements —-—>
<ECUC-NUMERICAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-BOOLEAN-PARAM-DEF">/AUTOSAR/
EcucDefs/CanIf/CanIfInitCfg/CanIfRxPduCfg/
CanIfRxPduDatalLengthCheck</DEFINITION-REF>
<VALUE>FALSE</VALUE>
</ECUC-NUMERICAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>CanIfRxPduCfg32</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-CONTAINER-DEF">/AUTOSAR/EcucDefs/
CanIf/CanIfInitCfg/CanIfRxPduCfg</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-NUMERICAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-INTEGER-PARAM-DEF">/AUTOSAR/
EcucDefs/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduld</
DEFINITION-REF>
<VALUE>32</VALUE>
</ECUC-NUMERICAL-PARAM-VALUE>
<!—— created through integration requirements -—>
<ECUC-NUMERICAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-BOOLEAN-PARAM-DEF">/AUTOSAR/
EcucDefs/CanIf/CanIfInitCfg/CanIfRxPduCfg/
CanIfRxPduDatalLengthCheck</DEFINITION-REF>
<VALUE>FALSE</VALUE>
</ECUC-NUMERICAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>
</CONTAINERS>
</ECUC-MODULE—-CONF IGURATION-VALUES>

Listing 5.13: Example 2 for ecu configuration values after applying integration
requirements

5.2.3 Multiple configuration values in a container

Another case is when the upper multiplicity in the parameter definition is bigger than
one. In that case, the convention is that one configuration value is created. When
checking, the integration requirement is applied to all existing configuration values.

The case of multiple values in one container and multiple values in several containers
are not distinguished. Both cases are handled in the same way.

More sophisticated mechanisms to specify the values might be useful (e.g. creating a
certain number of values following a given list or a pattern), are currently not defined
by this document, but could be added in the future.

AUTSSAR

5.2.4 Tracing configuration changes

For debugging, analysis and conflict resolution, it is beneficial to store the fact that
a parameter was created due to an integration requirement. This can be done by a
configuration tool in a vendor specific manner.

This requires storing additional information together with the configuration values,
which can increase file size and slow down tools. However, in many cases it's not
that important to exactly know where a parameter came from, and it's enough to know
which parameter matches to which integration requirement. To avoid storing the in-
formation, it alternatively can be deduced in the report stage. Any parameter that
matches a mandatory integration requirement can be assumed to be caused by that
requirement, and the same applies to any parameter matching a recommended one.
Note that AUTOSAR does not prescribe whether or not this information is stored and
also does not specify a format.

If a tool vendor chooses to store this information in the model, it could be persisted in
the Annotation element of the configuration value. As this is essentially unstructured
data, a tool vendor would have to define the structure of the data. One possibility is to
store the integration requirement shortName (or ShortName path) in the 1abel, and
store the type (recommended or mandatory) in the annotationText

This information can be used for conflict resolution between recommended and manda-
tory parameters - if there is a conflict between two parameter values, one matching (or
created by) a mandatory integration requirement, and one matching (or created by) a
suggested one, the recommended value can be deleted and the mandatory one kept.

5.3 Ranges in Integration Requirements

So far, this document covered cases where an integration requirement prescribes a
single configuration value. There is also the use case to prescribe a range of allowed
values. For example, a parameter can take the values 0-255, but in the context of a
certain project only the values 10-26 make sense.

Another example is to restrict allowed literal values - the parameter definition allows
FEATURE_A, FEATURE_B, FEATURE_C and FEATURE_D. If the integration require-
ment forbids FEATURE_A and FEATURE_D, this leaves only FEATURE_B and FEA-
TURE_C as allowed values. It’'s also possible to specify a list of allowed values.

This shows that ranges can either be formulated as a range (or list) of allowed values,
or as a range (or list) of forbidden values.

Please note that, due to their nature, integration requirements prescribing ranges can-
not directly set a parameter to a fixed value. They can only be used to check a config-
uration model against the requirements.

AUTSSAR

5.4 Possible Conflicts caused by applied Integration Require-
ments

This section will describe the handling of possible conflicts resulting by applying In-
tegration Requirements to parameter values. These can either result from conflicting
Integration Requirements (one requires the value true, another one the value false),
from a difference between an integration requirement and a value derived from the
upstream mapping, or from a difference between an integration requirement and a
manually configured value.

By definition, conflicts can only occur for mandatory Integration Requirements, and not
for suggested ones, because violating a suggested integration requirement is not an
error.

If two sources would lead to a conflicting configuration value, the recommended ap-
proach is to create both values and flag this as an error. The affected parties then
have to agree on the correct value.

This document does not define a method for conflict resolution. Therefore, there are
also no defined precedence rules and no suggested order of applying Integration Re-
quirements. It is, however, assumed that the upstream mappings are processed first,
since these can lead to the creation of configuration containers and values to which
later integration requirements apply. It is also recommended to apply mandatory re-
quirements before suggested ones, but this depends on the workflow and might not
always be possible.

Any conflict resolution requires conflict detection. If the parameter definition has an
upper multiplicity of 1, this means the resulting configuration model will violate the con-
straint and can easily be detected as erroneous. If the upper multiplicity is greater than
1, the conflicting values will coexist in the model and cannot be detected by checking
the configuration model against the parameter definitions. However, since an inte-
gration requirement applies to all instances of a parameter (see chapter 5.2.3), and
any non-range integration requirement leads to a configuration value being created,
the conflict can be detected by checking the created configuration model against all
Integration Requirements. It will violate both sets of Integration Requirements.

5.4.1 Merge of Integration Requirements

As mentioned, this document does not define a method for conflict resolution. It also
currently does not define a merging mechanism. The assumption is that Integration
Requirements from several sources are applied independently from each other in any
order. Nevertheless, this chapter contains a short explanation about merging, and
especially the case of ranges.

AUTSSAR

5.4.1.1 No merge of fixed values

Because Integration Requirements for fixed values always create values, this means
that the Integration Requirements themselves do not have to be merged. Instead,
merging is only done in the configuration model, in the same way how split configu-
rations are merged. The resulting configuration then has to be checked against the
original parameter definitions as well as against all Integration Requirements.

5.4.1.2 Merge of ranges

In the case of ranges, a similar idea applies: The resulting configuration is checked
against all Integration Requirements. This will also show if there are ranges that
conflict. For example, if integration_requirement_1 prescribes a range of 21-44
for param_a, integration_requirement_2 prescribes a range of 10-12 for the same
param_a, then these ranges conflict, and the resulting configuration will always vio-
late one of the requirements.

The result is the same as merging the ranges, and then checking against the merged
range. However, it would be very beneficial if a tool checks ranges for conflicts, since it
is otherwise left to the integrator to find the conflict. This could lead to a lot of trial and
error (set param_a to 11, get a violation of integration_requirement_1, set it to 32, get
a violation of integration_requirement_2).

Finding conflicts between Integration Requirements specifying ranges are created if
the sets of values that the requirements specify have no overlap at all. For a pair of
Integration Requirements specifying the included range, the following cases (for an ex-
cluded range, the conditions are reversed; for more than two Integration Requirements,
the rules are applied to a pair, then the pair is merged into one rule, the next rule is
applied to the merged rule, etc.):

* the two ranges are identical - the sets of allowed values are the same. In case
of number ranges: the lower bound of one range equals the lower bound of the
other range AND the upper bound of one range equals the upper bound of the
other range (trivial case)

» one range lies fully within another one - the sets of allowed values have some
overlap. In case of numbers: the lower bound of one range is larger than or
equal to the lower bound of the other range AND the upper bound of one range
is smaller than or equal to the upper bound of the other range

* one range lies partially within another one - the sets of allowed values have some
overlap. In case of numbers: the lower bound of one range is larger than or equal
to the lower bound of the other range OR the upper bound of one range is smaller
than or equal to the upper bound of the other range

* the ranges are disjunct - the sets of allowed values have no overlap. In case of
numbers: the lower bound of one range is larger than the upper bound of the

AUTSSAR

other range OR the upper bound of one range is smaller than the lower bound of
the other range

In the first case, one integration requirement is superfluous. In the second and third
case, the combined range consists of the set of values allowed by both requirements
(in case of numbers from maximum of the lower bounds to the minimum of the upper
bounds). The last case creates a conflict, since the set of values allowed by both
ranges is empty. This can be detected by a tool and reported.

| | |

»
>

<«

lower upper lower upper

Figure 5.2: Compatible and incompatible ranges. Left side: The green bars show the
case "lower bound of one range is larger than or equal to the lower bound of the other
range". Blue bars show "the upper bound of one range is smaller than or equal to the
upper bound of the other range". Right side: partial overlaps result in a combined range
that covers both lower and upper bounds (top row, green and blue bars). Orange bar
shows "the higher bound of one range is smaller than the lower bound of the other
range", red bar shows "the upper bound of one range is larger than the lower bound of
the other range".

5.4.1.3 Order dependency between suggested and mandatory integration re-
quirements

As mentioned in the introduction, mandatory integration requirements will always cre-
ate a parameter, while suggested integration requirements will only create a parameter
if it does not exist.

If integration requirements are applied at various times in the workflow, this will lead to
different results, depending on the order of application (it introduces an order depen-
dency). This is problematic if the mandatory value and the suggested value differ. If
the mandatory integration requirement is applied first, the recommended one will not
create a value (since one already exists), the resulting configuration contains one value
(the mandatory one). Conversely, if the recommended one is applied first, the resulting
configuration will contain two values (recommended and mandatory).

If the source of configuration is stored (see 5.2.4), then this conflict can be detected
and resolved immediately. Otherwise, it can be detected during reporting, when the
configuration values are checked against the Integration Requirements.

AUTSSAR

5.5 Reporting

In the motivation of the Integration Requirements the reporting aspect is already men-
tioned. The reporting shall base on a formally standardized way to ensure consistent
data comparison with the original configuration parameters derived from Upstream de-
scriptions (t7 in figure 5.3) and the Integration Requirements ({2 in figure 5.3).

The integrator changes or adds further configuration elements. The change information
(change and reason) will be added to affected elements, means on parameter value
level. This take place in 2 in figure 5.3.

In a subsequent step the finalized Target Configuration is compared with values derived
from Upstream descriptions and the mandatory Integration Requirements values. This
takes place in {3 in figure 5.3 on parameter value level too.

All agglomerated change information available up to that point on parameter value level
will be transferred to design level (System Extract, Diagnostic Extract, etc.). This step
is essential to enable an automatic processing of the changes and deviations from the
original data. From a technical point of view the feedback loop could also be realized
by using the st ructuredReq class to compose the report.

Feedback loop

[— = — = = = = = = = — e e e e o o o = o -
I : I I
[[| StructuredReq
| | | Report
A 4
Report
derive apply approve
TCV TCV TCV
t1 t2 t3 t4

Figure 5.3: Feedback loop of change information

AUTSSAR

A Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class ARElement (abstract)

Note An element that can be defined stand-alone, i.e. without being part of another element (except for
packages of course).

Base ARObject, CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable

Subclasses AclObjectSet, AclOperation, AclPermission, AclRole, AliasNameSet, ApplicabilitylnfoSet, Application

Partition, AutosarDataType, BaseType, BlueprintMappingSet, BswEntryRelationshipSet, BswModule
Description, BswModuleEntry, BuildActionManifest, CalibrationParameterValueSet, ClientldDefinitionSet,
ClientServerlnterfaceToBswModuleEntryBlueprintMapping, Collection, CompuMethod, Consistency
NeedsBlueprintSet, ConstantSpecification, ConstantSpecificationMappingSet, CpSoftwareCluster, Cp
SoftwareClusterBinaryManifestDescriptor, CpSoftwareClusterMappingSet, CpSoftwareClusterResource
Pool, CryptoEllipticCurveProps, CryptoServiceCertificate, CryptoServiceKey, CryptoServicePrimitive,
CryptoServiceQueue, CryptoSignatureScheme, DataConstr, DataTransformationSet, DataTypeMapping
Set, DdsCpConfig, DiagnosticCommonElement, DiagnosticConnection, DiagnosticContributionSet, DIt
ArgumentPropsSet, DitContext, DItEcu, Documentation, E2EProfileCompatibilityProps, EcucDefinition
Collection, EcucDestinationUriDefSet, EcucModuleConfigurationValues, EcucModuleDef, EcucValue
Collection, EthlpProps, EthTcplplcmpProps, EthTcplpProps, EvaluatedVariantSet, FMFeature,
FMFeatureMap, FMFeatureModel, FMFeatureSelectionSet, FirewallRule, FlatMap, GeneralPurpose
Connection, HwCategory, HwElement, HwType, IEEE1722TpConnection, IPSecConfigProps, IPv6Ext
HeaderFilterSet, IdsCommonElement, IdsDesign, Implementation, ImpositionTimeDefinitionGroup,
InterpolationRoutineMappingSet, J1939ControllerApplication, KeywordSet, LifeCyclelnfoSet, LifeCycle
StateDefinitionGroup, LogAndTraceMessageCollectionSet, MacSecGlobalKayProps, MacSecParticipant
Set, McFunction, McGroup, ModeDeclarationGroup, ModeDeclarationMappingSet, OsTaskProxy,
PhysicalDimension, PhysicalDimensionMappingSet, Portinterface, PortinterfaceMappingSet, Port
PrototypeBlueprint, PostBuildVariantCriterion, PostBuildVariantCriterionValueSet, PredefinedVariant,
RapidPrototypingScenario, SdgDef, SecureComProps, SignalServiceTranslationPropsSet, SomeipSd
ClientEventGroupTimingConfig, SomeipSdClientServicelnstanceConfig, SomeipSdServerEventGroup
TimingConfig, SomeipSdServerServicelnstanceConfig, SwAddrMethod, SwAxisType, SwComponent
MappingConstraints, SwComponentType, SwRecordLayout, SwSystemconst, SwSystemconstantValue
Set, SwcBswMapping, System, SystemComSpecDefinitionSet, SystemSignal, SystemSignalGroup,
TDCpSoftwareClusterMappingSet, TcpOptionFilterSet, TimingExtension, TlsConnectionGroup, TlvData
IdDefinitionSet, TransformationPropsSet, Unit, UnitGroup, UploadablePackageElement, ViewMapSet

Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note

Table A.1: ARElement

Class ARPackage

Note AUTOSAR package, allowing to create top level packages to structure the contained ARElements.
ARPackages are open sets. This means that in a file based description system multiple files can be used
to partially describe the contents of a package.

This is an extended version of MSR’s SW-SYSTEM.

Base ARObject, AtpBlueprint, AtoBlueprintable, CollectableElement, Identifiable, MultilanguageReferrable,
Referrable

Aggregated by | ARPackage.arPackage, AUTOSAR.arPackage

Attribute Type | Mult. | Kind | Note

\Y

AUTSSAR

Class ARPackage

arPackage ARPackage * aggr | This represents a sub package within an ARPackage,
thus allowing for an unlimited package hierarchy.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=arPackage.shortName, arPackage.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=30

element PackageableElement * agor Elements that are part of this package
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=element.shortName, element.variation
Point.shortLabel
vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=20

referenceBase ReferenceBase aggr This denotes the reference bases for the package. This is
the basis for all relative references within the package.
The base needs to be selected according to the base
attribute within the references.

Stereotypes: atpSplitable

Tags:

atp.Splitkey=referenceBase.shortLabel
xml.sequenceOffset=10

Table A.2: ARPackage

Class AliasNameSet

Note This meta-class represents a set of AliasNames. The AliasNameSet can for example be an input to the
A2L-Generator.
Tags: atp.recommendedPackage=AliasNameSets

Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable

Aggregated by | ARPackage.element

Attribute Type Mulit. Kind | Note

aliasName AliasNameAssignment * aggr AliasNames contained in the AliasNameSet.
Stereotypes: atpSplitable; atpVariation
Tags:

atp.Splitkey=aliasName.shortLabel, aliasName.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

Table A.3: AliasNameSet

Class Annotation
Note This is a plain annotation which does not have further formal data.
Base ARObject, GeneralAnnotation

Aggregated by | EcucAbstractReferenceValue.annotation, EcucParameterValue.annotation, HwAttributeValue.annotation,
Identifiable.annotation, PostBuildVariantCriterionValue.annotation, SwDataDefProps.annotation, Sw
SystemconstValue.annotation

Attribute Type Mulit. Kind | Note

Table A.4: Annotation

AUT<

SSAR

Class AnylnstanceRef
Note Describes a reference to any instance in an AUTOSAR model. This is the most generic form of an
instance ref. Refer to the superclass notes for more details.
Base ARObject, AtpinstanceRef
Aggregated by | ApmclinstanceReferenceValue.value, ApmcUpstreamDoclnstanceReferenceValue.value, ApmcUri
InstanceReferenceValue.value, Collection.collectedinstance, Collection.sourcelnstance, Documentation
Context.feature, EcucinstanceReferenceValue.value, FlatinstanceDescriptor.ecuExtractReference, Flat
InstanceDescriptor.upstreamReference, RptContainer.byPassPoint, RptHook.rptArHook, SecurityEvent
ReportinstanceValue.object, ViewMap.firstElementinstance, ViewMap.secondElementinstance
Attribute Type Mult. Kind | Note
base AtpClassifier 1 ref This is the base from which navigation path begins.
Stereotypes: atpDerived
contextElement AtpFeature * ref This is one step in the navigation path specified by the
(ordered) instance ref.
target AtpFeature 1 ref This is the target of the instance ref.
Table A.5: AnylnstanceRef
Class ApplicationArrayDataType
Note An application data type which is an array, each element is of the same application data type.
Tags: atp.recommendedPackage=ApplicationDataTypes
Base ARElement, ARObject, ApplicationCompositeDataType, ApplicationDataType, AtpBlueprint, Atp
Blueprintable, AtpClassifier, AtpType, AutosarDataType, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
dynamicArray String 0..1 attr Specifies the profile which the array will follow if it is a
SizeProfile variable size array.
element ApplicationArray 0..1 aggr This association implements the concept of an array
Element element. That is, in some cases it is necessary to be able
to identify single array elements, e.g. as input values for
an interpolation routine.
Table A.6: ApplicationArrayDataType
Class ApplicationArrayElement
Note Describes the properties of the elements of an application array data type.
Base ARObject, ApplicationCompositeElementDataPrototype, AtpFeature, AtpPrototype, DataPrototype,
Identifiable, MultilanguageReferrable, Referrable
Aggregated by | ApplicationArrayDataType.element, AtpClassifier.atpFeature
Attribute Type Mulit. Kind | Note
arraySize ArraySizeHandling 0..1 attr The way how the size of the array is handled.
Handling Enum
arraySize ArraySizeSemantics 0..1 attr This attribute controls how the information about the array
Semantics Enum size shall be interpreted.
indexDataType ApplicationPrimitive 0..1 ref This reference can be taken to assign a CompuMethod of

DataType category TEXTTABLE to the array. The texttable entries
associate a textual value to an index number such that
the element with that index number is represented by a

symbolic name.

AUT<

SSAR

A
Class ApplicationArrayElement
maxNumberOf Positivelnteger 0..1 attr The maximum number of elements that the array can
Elements contain.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
Table A.7: ApplicationArrayElement
Class ApplicationCompositeDataType (abstract)
Note Abstract base class for all application data types composed of other data types.
Base ARElement, ARObject, ApplicationDataType, AtpoBlueprint, AtoBlueprintable, AtoClassifier, AtpType,
AutosarDataType, CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement,
Referrable
Subclasses ApplicationArrayDataType, ApplicationRecordDataType
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
Table A.8: ApplicationCompositeDataType
Class ApplicationCompositeElementDataPrototype (abstract)
Note This class represents a data prototype which is aggregated within a composite application data type
(record or array). It is introduced to provide a better distinction between target and context in instance
Refs.
Base ARObject, AtpFeature, AtpPrototype, DataPrototype, Identifiable, MultilanguageReferrable, Referrable
Subclasses ApplicationArrayElement, ApplicationRecordElement
Aggregated by | AtpClassifier.atpFeature
Attribute Type Mult. Kind | Note
type ApplicationDataType 0..1 tref This represents the corresponding data type.
Stereotypes: isOfType
Table A.9: ApplicationCompositeElementDataPrototype
Class ApplicationDataType (abstract)
Note ApplicationDataType defines a data type from the application point of view. Especially it should be
used whenever something "physical" is at stake.
An ApplicationDataType represents a set of values as seen in the application model, such as
measurement units. It does not consider implementation details such as bit-size, endianess, etc.
It should be possible to model the application level aspects of a VFB system by using
ApplicationDataTypes only.
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtoType, AutosarDataType,
CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable
Subclasses ApplicationCompositeDataType, ApplicationPrimitiveDataType
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note

Table A.10: ApplicationDataType

AUT<

SSAR

Class ApplicationPrimitiveDataType
Note A primitive data type defines a set of allowed values.
Tags: atp.recommendedPackage=ApplicationDataTypes
Base ARElement, ARObject, ApplicationDataType, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtpType,
AutosarDataType, CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement,
Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
Table A.11: ApplicationPrimitiveDataType
Class ApplicationRecordDataType
Note An application data type which can be decomposed into prototypes of other application data types.
Tags: atp.recommendedPackage=ApplicationDataTypes
Base ARElement, ARObject, ApplicationCompositeDataType, ApplicationDataType, AtpBlueprint, Atp
Blueprintable, AtpClassifier, AtpType, AutosarDataType, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
element ApplicationRecord * aggr | Specifies an element of a record.
(ordered) Element The aggregation of ApplicationRecordElement is
subject to variability with the purpose to support the
conditional existence of elements inside a
ApplicationRecordData Type.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=element.shortName, element.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
Table A.12: ApplicationRecordDataType
Class ApplicationRecordElement
Note Describes the properties of one particular element of an application record data type.
Base ARObject, ApplicationCompositeElementDataPrototype, AtpFeature, AtpPrototype, DataPrototype,
Identifiable, MultilanguageReferrable, Referrable
Aggregated by | ApplicationRecordDataType.element, AtpClassifier.atpFeature
Attribute Type Mult. Kind | Note
isOptional Boolean 0..1 attr This attribute represents the ability to declare the

enclosing ApplicationRecordElement as optional.
This means the that, at runtime, the
ApplicationRecordElement may or may not have a
valid value and shall therefore be ignored.

The underlying runtime software provides means to set
the ApplicationRecordElement as not valid at the
sending end of a communication and determine its
validity at the receiving end.

Table A.13: ApplicationRecordElement

AUT<

SSAR

Class ApplicationSwComponentType
Note The ApplicationSwComponentType is used to represent the application software.
Tags: atp.recommendedPackage=SwComponentTypes
Base ARElement, ARObject, AtomicSwComponentType, AtpBlueprint, AtpBlueprintable, AtpClassifier, Atp
Type, CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable, Sw
ComponentType
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
Table A.14: ApplicationSwComponentType
Enumeration ArraySizeSemanticsEnum
Note This type controls how the information about the number of elements in an ApplicationArrayDataType
is to be interpreted.
Aggregated by ApplicationArrayElement.arraySizeSemantics, DiagnosticDataElement.arraySizeSemantics,
ImplementationDataTypeElement.arraySizeSemantics, SwTextProps.arraySizeSemantics
Literal Description
fixedSize This means that the ApplicationArrayDataType will always have a fixed number of elements.
Tags: atp.EnumerationLiteralindex=0
variableSize This implies that the actual number of elements in the ApplicationArrayDataType might vary at
run-time. The value of arraySize represents the maximum number of elements in the array.
Tags: atp.EnumerationLiterallndex=1
Table A.15: ArraySizeSemanticsEnum
Class AssemblySwConnector
Note AssemblySwConnectors are exclusively used to connect SwComponentPrototypes in the context of
a CompositionSwComponentType.
Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,
Referrable, SwConnector
Aggregated by | AtpClassifier.atpFeature, CompositionSwComponentType.connector
Attribute Type Mult. Kind | Note
provider AbstractProvidedPort 0..1 iref Instance of providing port.
Prototype InstanceRef implemented by: PPortinComposition
InstanceRef
requester AbstractRequiredPort 0..1 iref Instance of requiring port.
Prototype InstanceRef implemented by: RPortinComposition
InstanceRef
Table A.16: AssemblySwConnector
Class AtomicSwComponentType (abstract)
Note An atomic software component is atomic in the sense that it cannot be further decomposed and
distributed across multiple ECUs.
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, SwComponentType
Subclasses ApplicationSwComponentType, ComplexDeviceDriverSwComponentType, EcuAbstractionSwComponent
Type, NvBlockSwComponentType, SensorActuatorSwComponentType, ServiceProxySwComponent
Type, ServiceSwComponentType
Aggregated by | ARPackage.element
Attribute Type | Mult. | Kind | Note

\Y

AUT<

SSAR

A

Class

AtomicSwComponentType (abstract)

internalBehavior

SweclnternalBehavior 0..1 aggr The swcInternalBehaviors owned by an
AtomicSwComponent Type can be located in a different
physical file. Therefore the aggregation is <<atp
Splitable>>.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=internalBehavior.shortName, internal
Behavior.variationPoint.shortLabel

vh.latestBindingTime=preCompileTime

symbolProps

SymbolProps This represents the symbolProps for the
AtomicSwComponentType.
Stereotypes: atpSplitable

Tags: atp.Splitkey=symbolProps.shortName

agor

Table A.17: AtomicSwComponentType

Class AutosarDataPrototype (abstract)

Note Base class for prototypical roles of an AutosarDataType.

Base ARObject, AtpFeature, AtpPrototype, DataPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses ArgumentDataPrototype, ParameterDataPrototype, VariableDataPrototype

Aggregated by | AtpClassifier.atpFeature

Attribute Type Mult. Kind | Note

type AutosarDataType 0..1 tref This represents the corresponding data type.

Stereotypes: isOfType
Table A.18: AutosarDataPrototype

Class CompositionSwComponentType

Note A CompositionSwComponentType aggregates SwComponentPrototypes (thatin turn are typed by
SwComponent Type)s as well as SwConnectors for primarily connecting SwComponentPrototypes
among each others and towards the surface of the CompositionSwComponentType. By this means, a
hierarchical structures of software-components can be created.
Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, SwComponentType

Aggregated by | ARPackage.element

Attribute Type Mult. Kind | Note

component SwComponent * aggr The instantiated components that are part of this
Prototype composition. The aggregation of

SwComponentPrototype is subject to variability with
the purpose to support the conditional existence of a
SwComponentPrototype. Please be aware: if the
conditional existence of SwComponentPrototypes is
resolved post-build, the deselected
SwComponentPrototypes are still contained in the
ECUs build but the instances are inactive in that they are
not scheduled by the RTE.
The aggregation is marked as atpSplitable in order to
allow the addition of service components to the ECU
extract during the ECU integration.
The use case for having 0 components owned by the
CompositionSwComponentType could be to deliver an
empty CompositionSwComponentType to e.g. a
supplier for filling the internal structure.

v

AUTSSAR

Class

CompositionSwComponentType

A
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=component.shortName, component.variation
Point.shortLabel

vh.latestBindingTime=postBuild

connector

SwConnector

aggr

SwConnectors have the principal ability to establish a
connection among PortPrototypes. They can have
many roles in the context of a
CompositionSwComponent Type. Details are refined
by subclasses.

The aggregation of SwConnectors is subject to
variability with the purpose to support variant data flow.
The aggregation is marked as atpSplitable in order to
allow the extension of the ECU extract with
AssemblySwConnectors between
ApplicationSwComponentTypesS and
ServiceSwComponent Types during the ECU
integration.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=connector.shortName, connector.variation
Point.shortLabel

vh.latestBindingTime=postBuild

constantValue
Mapping

ConstantSpecification
MappingSet

ref

Reference to the ConstantSpecificationMapping to
be applied for initValues of PPortComSpecs and
RPortComSpec.

Stereotypes: atpSplitable

Tags: atp.Splitkey=constantValueMapping

dataType
Mapping

DataTypeMappingSet

ref

Reference to the DataTypeMappingSet to be applied
for the used ApplicationDataTypes in
PortInterfaces.

Background: when developing subsystems it may happen
that ApplicationDataTypes are used on the surface
of CompositionSwComponentTypes. In this case it
would be reasonable to be able to also provide the
intended mapping to the ImplementationDataTypes.
However, this mapping shall be informal and not
technically binding for the implementors mainly because
the RTE generator is not concerned about the
CompositionSwComponentTypesS.

Rationale: if the mapping of ApplicationDataTypes
on the delegated and inner PortPrototype matches
then the mapping to ImplementationDataTypes is not
impacting compatibility.

Stereotypes: atpSplitable

Tags: atp.Splitkey=dataTypeMapping

instantiation
RTEEventProps

InstantiationRTEEvent
Props

aggr

This allows to define instantiation specific properties for
RTE Events, in particular for instance specific scheduling.
Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=instantiationRTEEventProps.shortLabel,
instantiationRTEEventProps.variationPoint.shortLabel
vh.latestBindingTime=codeGenerationTime

This Attribute is only used by the AUTOSAR Classic
Platform.

SSAR

AUT<

A
Class CompositionSwComponentType
physical PhysicalDimension 0..1 ref This reference identifies the
Dimension MappingSet PhysicalDimensionMappingSet that is applicable in
Mapping the context of the enclosing
CompositionSwComponentType. The
PhysicalDimensionMappings contained in the
PhysicalDimensionMappingSet shall be taken into
account for the assessment of the compatibility of
PhysicalDimensions in the context of creation of a
PortInterfaceMapping in the scope of the
CompositionSwComponentType.
Table A.19: CompositionSwComponentType
Class CompuConstTextContent
Note This meta-class represents the textual content of a scale.
Base ARObject, CompuConstContent
Aggregated by | CompuConst.compuConstContentType
Attribute Type Mult. Kind | Note
vt VerbatimString 0..1 attr This represents a textual constant in the computation
method.
Table A.20: CompuConstTextContent
Class CompuMethod
Note This meta-class represents the ability to express the relationship between a physical value and the
mathematical representation.
Note that this is still independent of the technical implementation in data types. It only specifies the
formula how the internal value corresponds to its physical pendant.
Tags: atp.recommendedPackage=CompuMethods
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
compulnternal Compu 0..1 aggr | This specifies the computation from internal values to
ToPhys physical values.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=compulnternalToPhys
xml.sequenceOffset=80
compuPhysTo Compu 0..1 aggr | This represents the computation from physical values to
Internal the internal values.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=compuPhysTolnternal
xml.sequenceOffset=90
displayFormat DisplayFormatString 0..1 attr This property specifies, how the physical value shall be
displayed e.g. in documents or measurement and
calibration tools.
Tags: xml.sequenceOffset=20
unit Unit 0..1 ref This is the physical unit of the Physical values for which
the CompuMethod applies.
Tags: xml.sequenceOffset=30

Table A.21: CompuMethod

AUT<

SSAR

Class CompuRationalCoeffs
Note This meta-class represents the ability to express a rational function by specifying the coefficients of
nominator and denominator.
Base ARObject
Aggregated by | CompuScaleRationalFormula.compuRationalCoeffs
Attribute Type Mult. Kind | Note
compu CompuNominator 0..1 aggr This is the denominator of the expression.
Denominator Denominator Tags: xml.sequenceOffset=30
compu CompuNominator 0..1 aggr | This is the numerator of the rational expression.
Numerator Denominator Tags: xml.sequenceOffset=20
Table A.22: CompuRationalCoeffs
Class CompusScale
Note This meta-class represents the ability to specify one segment of a segmented computation method.
Base ARObject
Aggregated by | CompuScales.compuScale
Attribute Type Mult. Kind | Note
a2|DisplayText String 0..1 attr The value of this attribute shall be taken for generating
one display text (specifically the OutVal) within the
equivalent of the enclosing CompuMethod in A2L.
compulnverse CompuConst 0..1 aggr | This is the inverse value of the constraint. This supports
Value the case that the scale is not reversible per se.
Tags: xml.sequenceOffset=60
compuScale CompuScaleContents 0..1 aggr | This represents the computation details of the scale.
Contents Tags:
xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=70
xml.typeElement=false
xml.typeWrapperElement=false
desc MultiLanguageOverview 0..1 aggr <desc> represents a general but brief description of the
Paragraph object in question.
Tags: xml.sequenceOffset=30
lowerLimit Limit 0..1 attr This specifies the lower limit of the scale.
Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=40
mask PositiveUnlimitedinteger 0..1 attr In difference to all the other computational methods every
COMPU-SCALE will be applied including the bit MASK.
Therefore it is allowed for this type of COMPU-METHOD,
that COMPU-SCALES overlap.
To calculate the string reverse to a value, the string has to
be split and the according value for each substring has to
be summed up. The sum is finally transmitted.
The processing has to be done in order of the
COMPU-SCALE elements.
Tags: xml.sequenceOffset=35
shortLabel Identifier 0..1 attr This element specifies a short name for the particular
scale. The name can for example be used to derive a
programming language identifier.
Tags: xml.sequenceOffset=20

AUT<

SSAR

A

Class CompuScale

symbol Cldentifier 0..1 attr The symbol, if provided, is used by code generators to get
a C identifier for the CompuScale. The name will be used
as is for the code generation, therefore it needs to be
unique within the generation context.
Tags: xml.sequenceOffset=25

upperLimit Limit 0..1 attr This specifies the upper limit of a of the scale.
Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=50

Table A.23: CompuScale
Class DataConstr
Note This meta-class represents the ability to specify constraints on data.
Tags: atp.recommendedPackage=DataConstrs
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable

Aggregated by | ARPackage.element

Attribute Type Mult. Kind | Note

dataConstrRule DataConstrRule * aggr | This is one particular rule within the data constraints.
Tags:

xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=30
xml.typeElement=false
xml.typeWrapperElement=false

Table A.24: DataConstr

Class DataConstrRule

Note This meta-class represents the ability to express one specific data constraint rule.

Base ARObject

Aggregated by | DataConstr.dataConstrRule

Attribute Type Mult. Kind | Note

constrLevel Integer 0..1 attr This attribute describes the category of a constraint. One
of its functions is in the area of constraint violation, where
it can be used from a certain level, to produce error
messages.
The lower the level, the more stringent the check.
Used to distinguish hard or soft limits.
Tags: xml.sequenceOffset=20

internalConstrs InternalConstrs 0..1 aggr Describes the limitations applicable on the internal
domain (as opposed to the physical domain).
Tags: xml.sequenceOffset=40

physConstrs PhysConstrs 0..1 aggr Describes the limitations applicable on the physical
domain (as opposed to the internal domain).
Tags: xml.sequenceOffset=30

Table A.25: DataConstrRule

SSAR

AUT<

Class DataPrototype (abstract)
Note Base class for prototypical roles of any data type.
Base ARObject, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable
Subclasses ApplicationCompositeElementDataPrototype, AutosarDataPrototype
Aggregated by | AtpClassifier.atpFeature
Attribute Type Mult. Kind | Note
swDataDef SwDataDefProps 0..1 aggr | This property allows to specify data definition properties
Props which apply on data prototype level.
Stereotypes: atpSplitable
Tags: atp.Splitkey=swDataDefProps
Table A.26: DataPrototype
Class DataTypeMap
Note This class represents the relationship between ApplicationDataType and its implementing
AbstractImplementationDataType.
Base ARObject
Aggregated by | DataTypeMappingSet.dataTypeMap
Attribute Type Mult. Kind | Note
applicationData ApplicationDataType 0..1 ref This is the corresponding ApplicationDataType
Type
implementation Abstractimplementation 0..1 ref This is the corresponding
DataType DataType AbstractImplementationDataType.
Table A.27: DataTypeMap
Class DataTypeMappingSet
Note This class represents a list of mappings between ApplicationDataTypes and
ImplementationDataTypes. In addition, it can contain mappings between
ImplementationDataTypes and ModeDeclarationGroups.
Tags: atp.recommendedPackage=DataTypeMappingSets
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
dataTypeMap DataTypeMap * aggr This is one particular association between an
ApplicationDataType and its
AbstractImplementationDataType.
modeRequest ModeRequestTypeMap * aggr | This is one particular association between an
TypeMap ModeDeclarationGroup and its
AbstractImplementationDataType.
Table A.28: DataTypeMappingSet
Class DiagnosticAccessPermission
Note This represents the specification of whether a given service can be accessed according to the existence
of meta-classes referenced by a particular DiagnosticAccessPermission.
In other words, this meta-class acts as a mapping element between several (otherwise unrelated) pieces
of information that are put into context for the purpose of checking for access rights.
Tags: atp.recommendedPackage=DiagnosticAccessPermissions
Base ARElement, ARObject, CollectableElement, DiagnosticCommonElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element

vV

AUTSSAR

A
Class DiagnosticAccessPermission
Attribute Type Mult. Kind | Note
authentication DiagnosticAuthRole 0..1 aggr | The existence of this aggregation indicates that an
Enabled Proxy authentication is foreseen. The details are clarified by the
aggregated class.
Stereotypes: atpSplitable
Tags: atp.Splitkey=authenticationEnabled
diagnostic DiagnosticSession * ref This represents the associated DiagnosticSessions
Session Stereotypes: atpSplitable
Tags: atp.Splitkey=diagnosticSession
environmental Diagnostic 0..1 ref This represents the environmental conditions associated
Condition EnvironmentalCondition with the access permission.
Stereotypes: atpSplitable
Tags: atp.Splitkey=environmentalCondition
securityLevel DiagnosticSecurityLevel * ref This represents the associated DiagnosticSecurityLevels
Stereotypes: atpSplitable
Tags: atp.Splitkey=securityLevel
Table A.29: DiagnosticAccessPermission
Class Eculnstance
Note ECUInstances are used to define the ECUs used in the topology. The type of the ECU is defined by a
reference to an ECU specified with the ECU resource description.
Tags: atp.recommendedPackage=Eculnstances
Base ARObject, CollectableElement, FibexElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
associatedCom ISignallPduGroup * ref With this reference it is possible to identify which ISignal
IPduGroup IPduGroups are applicable for which Communication
Connector/ ECU.
Only top level ISignallPduGroups shall be referenced by
an Eculnstance. If an ISignallPduGroup contains other
ISignallPduGroups than these contained ISignallPdu
Groups shall not be referenced by the Eculnstance.
Contained ISignallPduGroups are associated to an Ecu
Instance via the top level ISignallPduGroup.
This Attribute is only used by the AUTOSAR Classic
Platform.
associated ConsumedProvided * ref With this reference it is possible to identify which
Consumed ServicelnstanceGroup ConsumedProvidedServicelnstanceGroups are
Provided applicable for which ECUInstance.
Servicelnstance Stereotypes: atpSplitable; atpVariation
Group Tags:
atp.Splitkey=associatedConsumedProvidedService
InstanceGroup.consumedProvidedServicelnstanceGroup,
associatedConsumedProvidedServicelnstance
Group.variationPoint.shortLabel
vh.latestBindingTime=postBuild
associatedPdur PdurlPduGroup * ref With this reference it is possible to identify which PduR
IPduGroup IPdu Groups are applicable for which Communication
Connector/ ECU.
channel Boolean 0..1 attr If this parameter is available and set to true, then all
Synchronous available channels will be woken up as soon as at least
Wakeup one channel wakeup occurs. If PNCs are configured, then

all PNCs will be requested upon a channel wakeup.

AUTSSAR

A
Class Eculnstance
clientidRange ClientldRange 0..1 aggr Restriction of the Client Identifier for this Ecu to an
allowed range of numerical values. The Client Identifier of
the transaction handle is generated by the client RTE for
inter-Ecu Client/Server communication.
com TimeValue 0..1 attr The period between successive calls to Com_Main
Configuration FunctionRouteSignals of the AUTOSAR COM module in
GwTimeBase seconds.
This Attribute is only used by the AUTOSAR Classic
Platform.
com TimeValue 0..1 attr The period between successive calls to Com_Main
ConfigurationRx FunctionRx of the AUTOSAR COM module in seconds.
TimeBase This Attribute is only used by the AUTOSAR Classic
Platform.
com TimeValue 0..1 attr The period between successive calls to Com_Main
ConfigurationTx FunctionTx of the AUTOSAR COM module in seconds.
TimeBase This Attribute is only used by the AUTOSAR Classic
Platform.
comEnable Boolean 0..1 attr Enables for the Com module of this Eculnstance the
MDTForCyclic minimum delay time monitoring for cyclic and repeated
Transmission transmissions (TransmissionModeTiming has cyclic
Timing assigned or eventControlledTiming with numberOf
Repetitions > 0).
This Attribute is only used by the AUTOSAR Classic
Platform.
commController | Communication * aggr CommunicationControllers of the ECU.
Controller Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=commController.shortName, comm
Controller.variationPoint.shortLabel
vh.latestBindingTime=postBuild
connector Communication * aggr All channels controlled by a single controller.
Connector Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=connector.shortName, connector.variation
Point.shortLabel
vh.latestBinding Time=postBuild
dItConfig DItConfig 0..1 aggr Describes the DIt configuration on this Eculnstance.
Stereotypes: atpSplitable
Tags: atp.Splitkey=dItConfig
This Attribute is only used by the AUTOSAR Classic
Platform.
dolpConfig DolpConfig 0..1 aggr Dolp configuration on this Eculnstance.
Tags: atp.Status=draft
This Attribute is only used by the AUTOSAR Classic
Platform.
ecuTaskProxy OsTaskProxy * ref Reference to OsTaskProxies assigned to the Ecu
Instance.
Stereotypes: atpSplitable
Tags: atp.Splitkey=ecuTaskProxy
This Attribute is only used by the AUTOSAR Classic
Platform.
ethSwitchPort Boolean 0..1 attr Defines whether the derivation of SwitchPortGroups
Group based on VLAN and/or CouplingPort.pncMapping shall be
Derivation performed for this Eculnstance. If not defined the
derivation shall not be done.
This Attribute is only used by the AUTOSAR Classic
Platform.
firewallRule StateDependentFirewall * ref Firewall rules defined in the context of an Eculnstance.

Tags: atp.Status=candidate

AUTSSAR

A
Class Eculnstance
j1939Node J1939Node * aggr Optional collection of J1939Nodes defined on this Ecu
Instance.
This Attribute is only used by the AUTOSAR Classic
Platform.
partition EcuPartition * aggr Optional definition of Partitions within an Ecu.
This Attribute is only used by the AUTOSAR Classic
Platform.
pncNmRequest Boolean 0..1 attr Defines if this Eculnstance shall request Nm on all its
PhysicalChannels which have Nm variant set to FULL
each time a PNC is requested.
pncPrepare TimeValue 0..1 attr Time in seconds the PNC state machine shall wait in
SleepTimer PNC_PREPARE_SLEEP.
pnc Boolean 0..1 attr If this parameter is available and set to true then all
Synchronous available PNCs will be woken up as soon as a channel
Wakeup wakeup occurs. This is ensured by adding all PNCs to all
channel wakeup sources during upstream mapping.
pnResetTime TimeValue 0..1 attr Specifies the runtime of the reset timer in seconds. This
reset time is valid for the reset of PN requests in the EIRA
and in the ERA.
sleepMode Boolean 0..1 attr Specifies whether the ECU instance may be put to a "low
Supported power mode"
« true: sleep mode is supported
- false: sleep mode is not supported
Note: This flag may only be set to "true" if the feature is
supported by both hardware and basic software.
This Attribute is only used by the AUTOSAR Classic
Platform.
teplplcmpProps EthTcplplcmpProps 0..1 ref Eculnstance specific ICMP (Internet Control Message
Protocol) attributes
This Attribute is only used by the AUTOSAR Classic
Platform.
tcplpProps EthTcplpProps 0..1 ref Eculnstance specific Tcplp Stack attributes.
This Attribute is only used by the AUTOSAR Classic
Platform.
v2xSupported V2xSupportEnum 0..1 attr This attribute is used to control the existence of the V2X
stack on the given Eculnstance.
This Attribute is only used by the AUTOSAR Classic
Platform.
wakeUpOver Boolean 0..1 attr Driver support for wakeup over Bus.
BusSupported This Attribute is only used by the AUTOSAR Classic
Platform.
Table A.30: Eculnstance
Class EcucModuleConfigurationValues
Note Head of the configuration of one Module. A Module can be a BSW module as well as the RTE and ECU

Infrastructure.

As part of the BSW module description, the EcucModuleConfigurationValues element has two different
roles:

The recommendedConfiguration contains parameter values recommended by the BSW module vendor.
The preconfiguredConfiguration contains values for those parameters which are fixed by the
implementation and cannot be changed.

These two EcucModuleConfigurationValues are used when the base EcucModuleConfigurationValues
(as part of the base ECU configuration) is created to fill parameters with initial values.

Tags: atp.recommendedPackage=EcucModuleConfigurationValuess

This Class is only used by the AUTOSAR Classic Platform.

\Y

AUT<

SSAR

A

Class

EcucModuleConfigurationValues

Base

ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable

Aggregated by

ARPackage.element

Attribute

Type Mulit. Kind | Note

container

EcucContainerValue Aggregates all containers that belong to this module
configuration.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=container.shortName, container.variation
Point.shortLabel

vh.latestBindingTime=postBuild
xml.sequenceOffset=10

agaor

definition

0..1 ref Reference to the definition of this EcucModule
ConfigurationValues element. Typically, this is a vendor
specific module configuration.

Tags: xml.sequenceOffset=-10

EcucModuleDef

ecucDefEdition

This is the version info of the ModuleDef ECUC
Parameter definition to which this values conform to / are
based on.

For the Definition of ModuleDef ECUC Parameters the
AdminData shall be used to express the semantic
changes. The compatibility rules between the definition
and value revision labels is up to the module’s vendor.

RevisionLabelString attr

implementation
ConfigVariant

attr Specifies the kind of deliverable this EcucModule
ConfigurationValues element provides. If this element is
not used in a particular role (e.g. preconfigured
Configuration or recommendedConfiguration) then the
value shall be one of VariantPreCompile, VariantLink

Time, VariantPostBuild.

EcucConfiguration
VariantEnum

module
Description

Bswimplementation 0..1 ref Referencing the BSW module description, which this
EcucModuleConfigurationValues element is configuring.
This is optional because the EcucModuleConfiguration
Values element is also used to configure the ECU
infrastructure (memory map) or Application SW-Cs.
However in case the EcucModuleConfigurationValues are
used to configure the module, the reference is mandatory
in order to fetch module specific "common" published

information.

postBuildVariant
Used

Boolean 0..1 attr Indicates whether a module implementation has or plans
to have (i.e., introduced at link or post-build time) new
post-build variation points. TRUE means yes, FALSE
means no. If the attribute is not defined, FALSE

semantics shall be assumed.

Table A.31: EcucModuleConfigurationValues

Class EcucValueCollection

Note This represents the anchor point of the ECU configuration description.
Tags: atp.recommendedPackage=EcucValueCollections
This Class is only used by the AUTOSAR Classic Platform.

Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable

Aggregated by | ARPackage.element

Attribute Type | Mult. | Kind | Note

\Y

AUTSSAR

A
Class EcucValueCollection
ecucValue EcucModule * ref References to the configuration of individual software
ConfigurationValues modules that are present on this ECU.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=ecucValue.ecucModuleConfigurationValues,
ecucValue.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
ecuExtract System 0..1 ref Represents the extract of the System Configuration that is
relevant for the ECU configured with that ECU
Configuration Description.
Table A.32: EcucValueCollection
Class FlatinstanceDescriptor
Note Represents exactly one node (e.g. a component instance or data element) of the instance tree of a
software system. The purpose of this element is to map the various nested representations of this
instance to a flat representation and assign a unique name (shortName) to it.
Use cases:
+ Specify unique names of measurable data to be used by MCD tools
« Specify unique names of calibration data to be used by MCD tool
* Specify a unique name for an instance of a component prototype in the ECU extract of the system
description
Note that in addition it is possible to assign alias names via AliasNameAssignment.
This Class is only used by the AUTOSAR Classic Platform.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | FlatMap.instance
Attribute Type Mult. Kind | Note
bsw Bswimplementation 0..1 ref Reference to Bswimplementation that defines the context
Implementation for the AutosarDataPrototype that is referenced by Flat
InstanceDescriptor.dataPrototype.
dataPrototype AutosarDataPrototype 0..1 ref Reference to a DataPrototype that is defined in the Bsw
InternalBehavior in the context of a Bswimplementation
that is defined by the FlatinstanceDescriptor.bsw
Implementation reference.
ecuExtract AtpFeature 0..1 iref Refers to the instance in the ECU extract. This is valid
Reference only, if the FlatMap is used in the context of an ECU
extract.
The reference shall be such that it uniquely defines the
object instance. For example, if a data prototype is
declared as a role within an SwclnternalBehavior, it is not
enough to state the SwcinternalBehavior as context and
the aggregated data prototype as target. In addition, the
reference shall also include the complete path identifying
instance of the component prototype and the Atomic
SoftwareComponentType, which is refered by the
particular SwcinternalBehavior.
Tags: xml.sequenceOffset=40
InstanceRef implemented by: AnylnstanceRef
role Identifier 0..1 attr The role denotes the particular role of the downstream
memory location described by this FlatinstanceDescriptor.
It applies to use case where one upstream object results
in multiple downstream objects, e.g. ModeDeclaration
GroupPrototypes which are measurable. In this case the
RTE will provide locations for current mode, previous
mode and next mode.

AUTSSAR

A
Class FlatinstanceDescriptor
rtePluginProps RtePluginProps 0..1 aggr | The properties of a communication graph with respect to
the utilization of RTE Implementation Plug-in.
Stereotypes: atpSplitable
Tags: atp.Splitkey=rtePluginProps
swDataDef SwDataDefProps 0..1 aggr | The properties of this FlatinstanceDescriptor.
Props Stereotypes: atpSplitable
Tags: atp.Splitkey=swDataDefProps
upstream AtpFeature 0..1 iref Refers to the instance in the context of an "upstream"
Reference description, which could be: the SYSTEM_
DESCRIPTION, or SYSTEM_EXTRACT, or ECU_
SYSTEM_DESCRIPTION, or SW_CLUSTER_SYSTEM_
DESCRIPTION, or the basic software module description
(in this case only the target reference of the Anylnstance
Ref is needed), or (if a flat map is used in preliminary
context) a description of an atomic component or
composition.
This reference is optional in case the flat map is used in
ECU context. The reference shall be such that it uniquely
defines the object instance in the given context. For
example, if a data prototype is declared as a role within
an Swclnternal Behavior, it is not enough to state the Swc
Internal Behavior as context and the aggregated data
prototype as target. In addition, the reference shall also
include the complete path identifying the instance of the
component prototype that contains the particular instance
of Swc InternalBehavior.
Tags: xml.sequenceOffset=20
InstanceRef implemented by: AnylnstanceRef
Table A.33: FlatinstanceDescriptor
Class FlatMap
Note Contains a flat list of references to software objects. This list is used to identify instances and to resolve
name conflicts. The scope is given by the RootSwCompositionPrototype for which it is used, i.e. it can be
applied to a system, system extract or ECU-extract.
An instance of FlatMap may also be used in a preliminary context, e.g. in the scope of a software
component before integration into a system. In this case it is not referred by a RootSwComposition
Prototype.
Tags: atp.recommendedPackage=FlatMaps
This Class is only used by the AUTOSAR Classic Platform.
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
instance FlatinstanceDescriptor * agor A descriptor instance aggregated in the flat map.

The variation point accounts for the fact, that the system
in scope can be subject to variability, and thus the
existence of some instances is variable.

The aggregation has been made splitable because the
content might be contributed by different stakeholders at
different times in the workflow. Plus, the overall size might
be so big that eventually it becomes more manageable if
it is distributed over several files.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=instance.shortName, instance.variation
Point.shortLabel

vh.latestBinding Time=postBuild

Table A.34: FlatMap

AUTSSAR

Class GeneralAnnotation (abstract)

Note This class represents textual comments (called annotations) which relate to the object in which it is
aggregated. These annotations are intended for use during the development process for transferring
information from one step of the development process to the next one.

The approach is similar to the "yellow pads" ...
This abstract class can be specialized in order to add some further formal properties.

Base ARObject

Subclasses Annotation, ClientServerAnnotation, DelegatedPortAnnotation, loHwAbstractionServerAnnotation, Mode
PortAnnotation, NvDataPortAnnotation, ParameterPortAnnotation, SenderReceiverAnnotation, Trigger
PortAnnotation

Attribute Type Mult. Kind | Note

annotation String 1 attr This attribute identifies the origin of the annotation. It is an

Origin arbitrary string since it can be an individual’'s name as well

as the name of a tool or even the name of a process step.
Tags: xml.sequenceOffset=30

annotationText DocumentationBlock 1 aggr | This is the text of the annotation.
Tags: xml.sequenceOffset=40

label MultilanguagelLong 0..1 aggr | This is the headline for the annotation.

Name Tags: xml.sequenceOffset=20
Table A.35: GeneralAnnotation

Class Identifiable (abstract)

Note Instances of this class can be referred to by their identifier (within the namespace borders). In addition to
this, Identifiables are objects which contribute significantly to the overall structure of an AUTOSAR
description. In particular, Identifiables might contain Identifiables.

Base ARObject, MultilanguageReferrable, Referrable

Subclasses ARPackage, AbstractDolplLogicAddressProps, AbstractEvent, AbstractimplementationDataTypeElement,

AbstractSecurityEventFilter, AbstractSecurityldsminstanceFilter, AbstractServicelnstance, AppOsTask
ProxyToEcuTaskProxyMapping, ApplicationEndpoint, ApplicationError, ApplicationPartitionToEcuPartition
Mapping, AppliedStandard, AsynchronousServerCallResultPoint, AtoBlueprint, AtpBlueprintable, Atp
Classifier, AtpFeature, AutosarOperationArgumentinstance, AutosarVariablelnstance, BinaryManifest
AddressableObject, BinaryManifestltemDefinition, BinaryManifestResource, BinaryManifestResource
Definition, BlockState, BswinternalTriggeringPoint, BswModuleDependency, BuildActionEntity, Build
ActionEnvironment, CanTpAddress, CanTpChannel, CanTpNode, Chapter, ClientldDefinition, Client
ServerOperation, Code, CollectableElement, ComManagementMapping, CommConnectorPort,
CommunicationConnector, CommunicationController, Compiler, ConsistencyNeeds, ConsumedEvent
Group, CouplingElementAbstractDetails, CouplingPort, CouplingPortAbstractShaper, CouplingPort
StructuralElement, CpSoftwareClusterResource, CpSoftwareClusterResourceToApplicationPartition
Mapping, CpSoftwareClusterToApplicationPartitionMapping, CpSoftwareClusterToEculnstanceMapping,
CpSoftwareClusterToResourceMapping, CryptoServiceMapping, CyclicHandlingComDataToOsTask
ProxyMapping, DataPrototypeGroup, DataPrototype TransformationPropsldent, DataTransformation, Dds
AbstractServicelnstanceElementCp, DdsCpDomain, DdsCpPartition, DdsCpQosProfile, DdsCpTopic,
DependencyOnAtrtifact, DiagEventDebounceAlgorithm, DiagnosticAuthTransmitCertificateEvaluation,
DiagnosticConnectedindicator, DiagnosticDataElement, DiagnosticDebounceAlgorithmProps, Diagnostic
ExtendedDataRecordElement, DiagnosticFunctionInhibitSource, DiagnosticParameterElement,
DiagnosticRoutineSubfunction, DItApplication, DItArgument, DItArgumentProps, DltLogChannel, DIt
Message, Dolplinterface, DolpLogicAddress, DolpRoutingActivation, ECUMapping, EOCExecutableEntity
RefAbstract, EcuPartition, EcuPartitionToCoreMapping, EcucContainerValue, EcucDefinitionElement,
EcucDestinationUriDef, EcucEnumerationLiteralDef, EcucQuery, EcucValidationCondition, Ethernet
WakeupSleepOnDatalineConfig, EventHandler, ExclusiveArea, ExecutableEntity, ExecutionTime,
FMAttributeDef, FMFeatureMapAssertion, FMFeatureMapCondition, FMFeatureMapElement, FMFeature
Relation, FMFeatureRestriction, FMFeatureSelection, FlatinstanceDescriptor, FlexrayArTpNode, Flexray
TpConnectionControl, FlexrayTpNode, FlexrayTpPduPool, FrameTriggering, GeneralParameter, Global
TimeGateway, GlobalTimeMaster, GlobalTimeSlave, HeapUsage, HwAttributeDef, HwAttributeLiteral
Def, HwPin, HwPinGroup, IEEE1722TpAcfBus, IEEE1722TpAcfBusPart, IPSecRule, IPv6ExtHeader
FilterList, 1SignalTolPduMapping, I1SignalTriggering, /dentCaption, ImpositionTime, InternalTriggering
Point, J1939Node, J1939SharedAddressCluster, J1939TpNode, Keyword, LifeCycleState, LinSchedule
Table, LinTpNode, Linker, MacAddressVIlanMembership, MacMulticastGroup, MacSecKayParticipant, Mc
Datalnstance, MemorySection, ModeDeclaration, ModeDeclarationMapping, ModeSwitchPoint, Mode

v
\Y%

AUTSSAR

A

Class

Identifiable (abstract)

N
SwitchSenderComSpecProps, NetworkEndpoint, NmCluster, NmEcu, NmNode, NvBlockDescriptor,
PackageableElement, ParameterAccess, PduActivationRoutingGroup, PduToFrameMapping, Pdu
Triggering, PerlnstanceMemory, PhysicalChannel, PortElementToCommunicationResourceMapping,
PortGroup, PortinterfaceMapping, QueuedReceiverComSpecProps, ResourceConsumption, RootSw
CompositionPrototype, RptComponent, RptContainer, RptExecutableEntity, RptExecutableEntityEvent,
RptExecutionContext, RptProfile, RptServicePoint, RteEventinCompositionSeparation, RteEventin
CompositionToOsTaskProxyMapping, RteEventinSystemSeparation, RteEventinSystemToOsTaskProxy
Mapping, RunnableEntityGroup, SdgAttribute, SdgClass, SecOcJobRequirement, SecureCommunication
AuthenticationProps, SecureCommunicationFreshnessProps, SecurityEventContextDataElement,
SecurityEventContextProps, ServerCallPoint, ServerComSpecProps, ServiceNeeds, SignalService
TranslationElementProps, SignalServiceTranslationEventProps, SignalServiceTranslationProps, Socket
Address, SomeipTpChannel, StackUsage, StaticSocketConnection, StructuredReq, SwGenericAxis
ParamType, SwServiceArg, SwcServiceDependency, SwcToApplicationPartitionMapping, SwcToEcu
Mapping, SwcTolmplMapping, SwitchAsynchronousTrafficShaperGroupEntry, SwitchAtsInstanceEntry,
SwitchFlowMeteringEntry, SwitchStreamFilterActionDestPortModification, SwitchStreamFilterEntry,
SwitchStreamFilterRule, SwitchStreamGateEntry, SwitchStreamldentification, SystemMapping, System
SignalGroupToCommunicationResourceMapping, SystemSignalToCommunicationResourceMapping,
TDCpSoftwareClusterMapping, TDCpSoftwareClusterResourceMapping, TcpOptionFilterList, Timing
Clock, TimingClockSyncAccuracy, TimingCondition, TimingConstraint, TimingDescription, Timing
ExtensionResource, TimingModelnstance, TIsCryptoCipherSuite, TIsCryptoCipherSuiteProps, Topic1,
TpAddress, TraceableTable, TraceableText, TracedFailure, TransformationlSignalPropsldent,
TransformationProps, TransformationTechnology, Trigger, VariableAccess, VariationPointProxy, View
Map, VlanConfig, WaitPoint

Attribute

Type Mult. Kind | Note

adminData

AdminData 0..1 aggr This represents the administrative data for the identifiable
object.

Stereotypes: atpSplitable

Tags:

atp.Splitkey=adminData

xml.sequenceOffset=-40

annotation

Annotation * aggr Possibility to provide additional notes while defining a
model element (e.g. the ECU Configuration Parameter
Values). These are not intended as documentation but
are mere design notes.

Tags: xml.sequenceOffset=-25

category

CategoryString 0..1 attr The category is a keyword that specializes the semantics
of the Identifiable. It affects the expected existence of
attributes and the applicability of constraints.

Tags: xml.sequenceOffset=-50

desc

MultiLanguageQOverview 0..1 aggr | This represents a general but brief (one paragraph)
Paragraph description what the object in question is about. It is only
one paragraph! Desc is intended to be collected into
overview tables. This property helps a human reader to
identify the object in question.

More elaborate documentation, (in particular how the
object is built or used) should go to "introduction”.

Tags: xml.sequenceOffset=-60

introduction

DocumentationBlock 0..1 aggr | This represents more information about how the object in
question is built or is used. Therefore it is a
DocumentationBlock.

Tags: xml.sequenceOffset=-30

AUTSSAR

Class

Identifiable (abstract)

uuid

String 0..1 attr The purpose of this attribute is to provide a globally
unique identifier for an instance of a meta-class. The
values of this attribute should be globally unique strings
prefixed by the type of identifier. For example, to include a
DCE UUID as defined by The Open Group, the UUID
would be preceded by "DCE:". The values of this attribute
may be used to support merging of different AUTOSAR
models. The form of the UUID (Universally Unique
Identifier) is taken from a standard defined by the Open
Group (was Open Software Foundation). This standard is
widely used, including by Microsoft for COM (GUIDs) and
by many companies for DCE, which is based on CORBA.
The method for generating these 128-bit IDs is published
in the standard and the effectiveness and uniqueness of
the IDs is not in practice disputed. If the id namespace is
omitted, DCE is assumed. An example is
"DCE:2fac1234-31f8-11b4-a222-08002b34c003". The
uuid attribute has no semantic meaning for an AUTOSAR
model and there is no requirement for AUTOSAR tools to
manage the timestamp.

Tags: xml.attribute=true

Table A.36: Identifiable

Class

ImplementationDataType

Note

Describes a reusable data type on the implementation level. This will typically correspond to a typedef in
C-code.
Tags: atp.recommendedPackage=ImplementationDataTypes

Base

ARElement, ARObject, AbstractimplementationDataType, AtpBlueprint, AtoBlueprintable, AtoClassifier,
AtpType, AutosarDataType, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable

Aggregated by

ARPackage.element

Attribute

Type Mult. Kind | Note

dynamicArray
SizeProfile

String 0..1 attr Specifies the profile which the array will follow in case this
data type is a variable size array.

isStructWith
Optional
Element

Boolean 0..1 attr This attribute is only valid if the attribute category is set to
STRUCTURE.

If set to true, this attribute indicates that the
ImplementationDataType has been created with the
intention to define at least one element of the structure as
optional.

subElement
(ordered)

ImplementationData aggr Specifies an element of an array, struct, or union data
TypeElement type.

The aggregation of
ImplementationDataTypeElement is subject to
variability with the purpose to support the conditional
existence of elements inside a
ImplementationDataType representing a structure.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=subElement.shortName, sub
Element.variationPoint.shortLabel

vh.latestBinding Time=preCompileTime

symbolProps

SymbolProps 0..1 aggr | This represents the SymbolProps for the Implementation
DataType.

Stereotypes: atpSplitable

Tags: atp.Splitkey=symbolProps.shortName

AUT<

SSAR

A
Class ImplementationDataType
typeEmitter NameToken 0..1 attr This attribute is used to control which part of the
AUTOSAR toolchain is supposed to trigger data type
definitions.
Table A.37: ImplementationDataType
Class InstantiationDataDefProps
Note This is a general class allowing to apply additional swbataDefProps to particular instantiations of a
DataPrototype.
Typically the accessibility and further information like alias names for a particular data is modeled on the
level of DataPrototypes (especially VariableDataPrototypes, ParameterDataPrototypes).
But due to the recursive structure of the meta-model concerning data types (a composite (data) type
consists out of data prototypes) a part of the MCD information is described in the data type (in case of
ApplicationCompositeDataType).
This is a strong restriction in the reuse of data typed because the data type should be re-used for different
VariableDataPrototypes and ParameterDataPrototypes to guarantee type compatibility on
C-implementation level (e.g. data of a Port is stored in PIM or a ParameterDataPrototype used as
ROM Block and shall be typed by the same data type as NVRAM Block).
This class overcomes such a restriction if applied properly.
Base ARObject
Aggregated by | NvBlockDescriptor.instantiationDataDefProps, ParameterSwComponentType.instantiationDataDefProps,
SwclnternalBehavior.instantiationDataDefProps
Attribute Type Mult. Kind | Note
parameter AutosarParameterRef 0..1 aggr This reference identifies the particular DataPrototype
Instance (defined in the context of a composite
ParameterDataPrototype) on which the swDataDef
Props shall be applied.
swDataDef SwDataDefProps 0..1 aggr These are the particular data definition properties which
Props shall be applied
Stereotypes: atpSplitable
Tags: atp.Splitkey=swDataDefProps
variablelnstance | AutosarVariableRef 0..1 aggr This reference identifies the particular DataPrototype
(defined in the context of a composite
VariableDataPrototype) on which the swDataDef
Props shall be applied.

Table A.38: InstantiationDataDefProps

Class InternalBehavior (abstract)

Note Common base class (abstract) for the internal behavior of both software components and basic software
modules/clusters.

Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,
Referrable

Subclasses BswinternalBehavior, SwcinternalBehavior

Aggregated by | AtpClassifier.atpFeature

Attribute Type | Mult. | Kind | Note

\Y

AUTSSAR

A
Class InternalBehavior (abstract)
constant ParameterData agor Describes a read only memory object containing
Memory Prototype characteristic value(s) implemented by this Internal
Behavior.
The shortName of ParameterDataPrototype has to be
equal to the ”C’ identifier of the described constant.
The characteristic value(s) might be shared between Sw
ComponentPrototypes of the same SwComponentType.
The aggregation of constantMemory is subject to
variability with the purpose to support variability in the
software component or module implementations.
Typically different algorithms in the implementation are
requiring different number of memory objects.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=constantMemory.shortName, constant
Memory.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
constantValue ConstantSpecification ref Reference to the ConstantSpecificationMapping to be
Mapping MappingSet applied for the particular InternalBehavior
Stereotypes: atpSplitable
Tags: atp.Splitkey=constantValueMapping
dataType DataTypeMappingSet ref Reference to the DataTypeMapping to be applied for the
Mapping particular InternalBehavior
Stereotypes: atpSplitable
Tags: atp.Splitkey=dataTypeMapping
exclusiveArea ExclusiveArea aggr This specifies an ExclusiveArea for this InternalBehavior.
The exclusiveArea is local to the component resp.
module. The aggregation of ExclusiveAreas is subject to
variability. Note: the number of ExclusiveAreas might vary
due to the conditional existence of RunnableEntities or
BswModuleEntities.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=exclusiveArea.shortName, exclusive
Area.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
exclusiveArea ExclusiveAreaNesting aggr This represents the set of ExclusiveAreaNestingOrder
NestingOrder Order owned by the InternalBehavior.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=exclusiveAreaNestingOrder.shortName,
exclusiveAreaNestingOrder.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
staticMemory VariableDataPrototype aggr Describes a read and writeable static memory object

representing measurerment variables implemented by
this software component. The term "static" is used in the
meaning of "non-temporary" and does not necessarily
specify a linker encapsulation. This kind of memory is
only supported if supportsMultipleInstantiation is FALSE.
The shortName of the VariableDataPrototype has to be
equal with the ”C’ identifier of the described variable.
The aggregation of staticMemory is subject to variability
with the purpose to support variability in the software
component’s implementations.

Typically different algorithms in the implementation are
requiring different number of memory objects.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=staticMemory.shortName, static
Memory.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table A.39: InternalBehavior

AUT<

SSAR

Class Item
Note This meta-class represents one particular item in a list.
Base ARObject, DocumentViewSelectable, Paginateable
Aggregated by | List.item
Attribute Type Mult. Kind | Note
itemContents DocumentationBlock 1 aggr | this represents the actual content of the item. It is
composed of a DocumentationBlock. This way it is
possible to use simple paragraphs to nested lists,
formula, figures or notes.
Tags:
xml.roleElement=false
xml.roleWrapperElement=false
xml.typeElement=false
xml.typeWrapperElement=false
Table A.40: ltem
Class List
Note This meta-class represents the ability to express a list. The kind of list is specified in the attribute.
Base ARObject, DocumentViewSelectable, Paginateable
Aggregated by | DocumentationBlock.list
Attribute Type Mult. Kind | Note
item Item 1.* aggr this represents a particular list item. Note that this is again
a documentation block.Therefore lists can be arbitrarily
nested. It is discouraged to have a very deep nesting.
Stereotypes: atpVariation
Tags:
vh.latestBindingTime=postBuild
xml.roleElement=true
xml.roleWrapperElement=false
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false
type ListEnum 0..1 attr The type of the list. Default is "UNNUMBER"
Tags: xml.attribute=true
Table A.41: List
Class McDatalnstance
Note Describes the specific properties of one data instance in order to support measurement and/or
calibration of this data instance.
The most important attributes are:
« Its shortName is copied from the ECU Flat map (if applicable) and will be used as identifier and for
display by the MC system.
*» The category is copied from the corresponding data type (ApplicationDataType if defined, otherwise
ImplementationDataType) as far as applicable.
» The symbol is the one used in the programming language. It will be used to find out the actual memory
address by the final generation tool with the help of linker generated information.
It is assumed that in the M1 model this part and all the aggregated and referred elements (with the
exception of the Flat Map and the references from ImplementationElementinParameterinstanceRef and
McAccessDetails) are completely generated from "upstream"” information. This means, that even if an
element like e.g. a CompuMethod is only used via reference here, it will be copied into the M1 artifact
which holds the complete McSupportData for a given Implementation.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | McDatalnstance.subElement, McSupportData.mcParameterinstance, McSupportData.mcVariable

Instance

vV

AUT<

SSAR

A
Class McDatalnstance
Attribute Type Mulit. Kind | Note
arraySize Positivelnteger 0..1 attr The existence of this attribute turns the data instance into
an array of data. The attribute determines the size of the
array in terms of number of elements.
displayldentifier Mcdldentifier 0..1 attr An optional attribute to be used to set the ASAM ASAP2
DISPLAY_IDENTIFIER attribute.
flatMapEntry FlatinstanceDescriptor 0..1 ref Reference to the corresponding entry in the ECU Flat
Map. This allows to trace back to the original specification
of the generated data instance. This link shall be added
by the RTE generator mainly for documentation purposes.
The reference is optional because
» The McDatalnstance may represent an array or struct
in which only the subElements correspond to FlatMap
entries.
» The McDatalnstance may represent a task local buffer
for rapid prototyping access which is different from the
"main instance" used for measurement access.
This Attribute is only used by the AUTOSAR Classic
Platform.
instanceln ImplementationElement 0..1 aggr Reference to the corresponding data instance in the
Memory InParameterinstance description of calibration data structures published by the
Ref RTE generator. This is used to support emulation
methods inside the ECU, it is not required for A2L
generation.
mcDataAccess McDataAccessDetails 0..1 aggr Refers to "upstream" information on how the RTE uses
Details this data instance. Use Case: Rapid Prototyping
mcData RoleBasedMcData * aggr An assignment between McDatalnstances. This supports
Assignment Assignment the indication of related McDataElement implementing
the of "RP global buffer", "RP global measurement
buffer", "RP enabler flag".
resulting SwDataDefProps 0..1 aggr These are the generated properties resulting from
Properties decisions taken by the RTE generator for the actually
implemented data instance. Only those properties are
relevant here, which are needed for the measurement
and calibration system.
resultingRptSw RptSwPrototyping 0..1 aggr Describes the implemented accessibility of data and
Prototyping Access modes by the rapid prototyping tooling.
Access
role Identifier 0..1 attr An optional attribute to be used for additional information
on the role of this data instance, for example in the
context of rapid prototyping.
rptimplPolicy RptimplPolicy 0..1 aggr Describes the implemented code preparation for rapid
prototyping at data accesses for a hook based bypassing.
subElement McDatalnstance * aggr | This relation indicates, that the target element is part of a
(ordered) "struct" which is given by the source element. This

information will be used by the final generator to set up
the correct addressing scheme.

Stereotypes: atpVariation

Tags: vh.latestBindingTime=preCompileTime

AUTSSAR

A
Class McDatalnstance
symbol SymbolString 0..1 attr This String is used to determine the memory address
during final generation of the MC configuration data (e.g.
"A2L" file) . It shall be the name of the element in the
programming language such that it can be identified in
linker generated information.
In case the McDatalnstance is part of composite data in
the programming language, the symbol String may
include parts denoting the element context, unless the
context is given by the symbol attribute of an enclosing
McDatalnstance. This means in particular for the C
language that the "." character shall be used as a
separator between the name of a "struct" variable the
name of one of its elements.
The symbol can differ from the shortName in case of
generated C data declarations.
It is an optional attribute since it may be missing in case
the instance represents an element (e.g. a single array
element) which has no name in the linker map.
Tags: atp.Splitkey=symbol
Table A.42: McDatalnstance
Enumeration MemoryAllocationKeywordPolicyType
Note Enumeration to specify the name pattern of the Memory Allocation Keyword.
Aggregated by SwAddrMethod.memoryAllocationKeywordPolicy
Literal Description
addrMethodShort The MemorySection shortNames of referring MemorySections and therefore the belonging Memory
Name Allocation Keywords in the code are build with the shortName of the SwAddrMethod. This is the
default value if the attribute does not exist.
Tags: atp.EnumerationLiteralindex=0
addrMethodShort The MemorySection shortNames of referring MemorySections and therefore the belonging Memory
NameAndAlignment | Allocation Keywords in the code are build with the shortName of the SwAddrMethod and a variable
alignment postfix.
Thereby the alignment postfix needs to be consistent with the alignment attribute of the related
MemorySection.
Tags: atp.EnumerationLiterallndex=1

Table A.43: MemoryAllocationKeywordPolicyType

Enumeration MemorySectionType

Note Enumeration to specify the essential nature of the data which can be allocated in a common memory
class by the means of the AUTOSAR Memory Mapping.

Aggregated by SwAddrMethod.sectionType

Literal Description

calibrationVariables

This memory section is reserved for "virtual variables" that are computed by an MCD system during a
measurement session but do not exist in the ECU memory.
Tags: atp.EnumerationLiteralindex=2

calprm To be used for calibratable constants of ECU-functions.
Tags: atp.EnumerationLiterallndex=3
code To be used for mapping code to application block, boot block, external flash etc.
Tags: atp.EnumerationLiteralindex=4
configData Constants with attributes that show that they reside in one segment for module configuration.

Tags: atp.EnumerationLiteralindex=5

\Y

AUT<

SSAR

A

Enumeration

MemorySectionType

const

To be used for global or static constants.
Tags: atp.EnumerationLiteralindex=6

excludeFromFlash

This memory section is reserved for "virtual parameters" that are taken for computing the values of
so-called dependent parameter of an MCD system. Dependent Parameters that are not at the same
time "virtual parameters" are allocated in the ECU memory.

Virtual parameters, on the other hand, are not allocated in the ECU memory. Virtual parameters exist
in the ECU Hex file for the purpose of being considered (for computing the values of dependent
parameters) during an offline-calibration session.

Tags: atp.EnumerationLiteralindex=7

var To be used for global or static variables. The expected initialization is specified with the attribute
sectionlnitializationPolicy.
Tags: atp.EnumerationLiteralindex=9
Table A.44: MemorySectionType
Class ModeDeclaration
Note Declaration of one Mode. The name and semantics of a specific mode is not defined in the meta-model.
Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,
Referrable
Aggregated by | AtpClassifier.atpFeature, ModeDeclarationGroup.modeDeclaration
Attribute Type Mult. Kind | Note
value Positivelnteger 0..1 attr The RTE shall take the value of this attribute for
generating the source code representation of this Mode
Declaration.
Table A.45: ModeDeclaration
Class ModeDeclarationGroup
Note A collection of Mode Declarations. Also, the initial mode is explicitly identified.
Tags: atp.recommendedPackage=ModeDeclarationGroups
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, UploadableDesignElement,
UploadablePackageElement
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
initialMode ModeDeclaration 0..1 ref The initial mode of the ModeDeclarationGroup. This
mode is active before any mode switches occurred.
mode ModeDeclaration * aggr The ModeDeclarations collected in this ModeDeclaration
Declaration Group.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=modeDeclaration.shortName, mode
Declaration.variationPoint.shortLabel
vh.latestBinding Time=blueprintDerivationTime
modeManager ModeErrorBehavior 0..1 aggr | This represents the ability to define the error behavior
ErrorBehavior expected by the mode manager in case of errors on the
mode user side (e.g. terminated mode user).
This Attribute is only used by the AUTOSAR Classic
Platform.
modeTransition ModeTransition * aggr | This represents the avaliable ModeTransitions of the
ModeDeclarationGroup
This Attribute is only used by the AUTOSAR Classic
Platform.

AUT<

SSAR

A
Class ModeDeclarationGroup
modeUserError ModeErrorBehavior 0..1 aggr | This represents the definition of the error behavior
Behavior expected by the mode user in case of errors on the mode
manager side (e.g. terminated mode manager).
This Attribute is only used by the AUTOSAR Classic
Platform.
onTransition Positivelnteger 0..1 attr The value of this attribute shall be taken into account by

Value the RTE generator for programmatically representing a
value used for the transition between two statuses.
This Attribute is only used by the AUTOSAR Classic
Platform.
Table A.46: ModeDeclarationGroup
Class ModeDeclarationGroupPrototype
Note The ModeDeclarationGroupPrototype specifies a set of Modes (ModeDeclarationGroup) which is
provided or required in the given context.
Base ARObject, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | AtpClassifier.atpFeature, BswModuleDescription.providedModeGroup, BswModuleDescription.required
ModeGroup, FirewallStateSwitchinterface.firewallStateMachine, FunctionGroupSet.functionGroup, Mode
SwitchInterface.modeGroup, Process.processStateMachine, StateManagementStateNotification.state
Machine
Attribute Type Mult. Kind | Note
swCalibration SwCalibrationAccess 0..1 attr This allows for specifying whether or not the enclosing
Access Enum ModeDeclarationGroupPrototype can be measured at
run-time.
This Attribute is only used by the AUTOSAR Classic
Platform.
type ModeDeclarationGroup 0..1 tref The "collection of ModeDeclarations" (= ModeDeclaration
Group) supported by a component
Stereotypes: isOfType
Table A.47: ModeDeclarationGroupPrototype
Class ModeSwitchinterface
Note A mode switch interface declares a ModeDeclarationGroupPrototype to be sent and received.
Tags: atp.recommendedPackage=PortInterfaces
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note
modeGroup ModeDeclarationGroup 0..1 aggr The ModeDeclarationGroupPrototype of this mode
Prototype interface.
Table A.48: ModeSwitchinterface
Class NumericalValueSpecification
Note A numerical ValueSpecification which is intended to be assigned to a Primitive data element. Note that
the numerical value is a variant, it can be computed by a formula.
Base ARObject, ValueSpecification

\Y

AUT<

SSAR

A
Class NumericalValueSpecification
Aggregated by | ApplicationAssocMapElementValueSpecification.key, ApplicationAssocMapElementValueSpecification.
value, ArrayValueSpecification.element, CalibrationParameterValue.appllnitValue, CalibrationParameter
Value.impllInitValue, ConstantSpecification.valueSpec, CryptoServiceKey.developmentValue, Diagnostic
EnvDataCondition.compareValue, DiagnosticEnvDataElementCondition.compareValue, DiagnosticEnv
SovdDataCondition.compareValue, FieldSenderComSpec.initValue, ISignal.initValue, I1Signal.reception
DefaultValue, ISignal.timeoutSubstitutionValue, NonqueuedReceiverComSpec.initValue, Nonqueued
ReceiverComSpec.timeoutSubstitutionValue, NonqueuedSenderComSpec.initValue, NvProvideCom
Spec.ramBlockInitValue, NvProvideComSpec.romBlocklinitValue, NvRequireComSpec.initValue,
ParameterDataPrototype.initValue, ParameterProvideComSpec.initValue, ParameterRequireComSpec.
initValue, PersistencyDataRequiredComSpec.initValue, PersistencyKeyValuePair.initValue, PortDefined
ArgumentValue.value, PortPrototypeBlueprintinitValue.value, RecordValueSpecification.field, Someip
EventDeployment.eventReceptionDefaultValue, StateManagementCompareCondition.compareValue, Sw
DataDefProps.invalidValue, UserDefinedEventDeployment.eventReceptionDefaultValue, VariableData
Prototype.initValue
Attribute Type Muit. Kind | Note
value Numerical 0..1 attr This is the value itself.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
Table A.49: NumericalValueSpecification
Class PPortPrototype
Note Component port providing a certain port interface.
Base ARObject, AbstractProvidedPortPrototype, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable,
MultilanguageReferrable, PortPrototype, Referrable
Aggregated by | AtpClassifier.atpFeature, SwComponentType.port
Attribute Type Mult. Kind | Note
provided PortInterface 0..1 tref The interface that this port provides.
Interface Stereotypes: isOfType
Table A.50: PPortPrototype
Class ParameterAccess
Note The presence of a ParameterAccess implies that a RunnableEnt ity needs access to a
ParameterDataPrototype.
Base ARObject, AbstractAccessPoint, AtpClassifier, AtoFeature, AtpStructureElement, Identifiable,
MultilanguageReferrable, Referrable
Aggregated by | AtpClassifier.atpFeature, RunnableEntity.parameterAccess
Attribute Type Mulit. Kind | Note
accessed AutosarParameterRef 0..1 aggr Reference to the accessed calibration parameter.
Parameter
swDataDef SwDataDefProps 0..1 aggr | This allows denote instance and access specific
Props properties, mainly input values and common axis.
Stereotypes: atpSplitable
Tags: atp.Splitkey=swDataDefProps
Table A.51: ParameterAccess
Class ParameterDataPrototype
Note A ParameterDataPrototype represents a formalized generic piece of information that is typically

immutable by the application software layer, but mutable by measurement and calibration tools.
ParameterDataPrototype is used in various contexts and the specific context gives the otherwise
generic ParameterDataPrototype a dedicated semantics.

V

AUT<

SSAR

A
Class ParameterDataPrototype
Base ARObject, AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable
Aggregated by | AtpClassifier.atpFeature, BswinternalBehavior.perinstanceParameter, InternalBehavior.constant
Memory, NvBlockDescriptor.romBlock, Parameterinterface.parameter, SwcinternalBehavior.perinstance
Parameter, SwcinternalBehavior.sharedParameter
Attribute Type Mult. Kind | Note
initValue ValueSpecification 0..1 aggr Specifies initial value(s) of the ParameterDataPrototype
Table A.52: ParameterDataPrototype
Class Parameterinterface
Note A parameter interface declares a number of parameter and characteristic values to be exchanged
between parameter components and software components.
Tags: atp.recommendedPackage=PortInterfaces
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Datalnterface, Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note
parameter ParameterData * aggr | The ParameterDataPrototype of this Parameterinterface.
Prototype
Table A.53: Parameterinterface
Class ParameterProvideComSpec
Note "Communication" specification that applies to parameters on the provided side of a connection.
Base ARObject, PPortComSpec
Aggregated by | AbstractProvidedPortPrototype.providedComSpec, PortPrototypeBlueprint.providedComSpec
Attribute Type Mulit. Kind | Note
initValue ValueSpecification 0..1 aggr The initial value applicable for the corresponding
ParameterDataPrototype.
parameter ParameterData 0..1 ref The ParameterDataPrototype to which the Parameter
Prototype ComSpec applies.
Stereotypes: atpldentityContributor
Table A.54: ParameterProvideComSpec
Class ParameterSwComponentType
Note The ParameterSwComponentType defines parameters and characteristic values accessible via provided
Ports. The provided values are the same for all connected SwComponentPrototypes
Tags: atp.recommendedPackage=SwComponentTypes
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtoType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, SwComponentType
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
constant ConstantSpecification * ref Reference to the ConstantSpecificationMapping to be
Mapping MappingSet applied for the particular ParameterSwComponentType

Stereotypes: atpSplitable
Tags: atp.Splitkey=constantMapping

AUTSSAR

A
Class ParameterSwComponentType
dataType DataTypeMappingSet * ref Reference to the DataTypeMapping to be applied for the
Mapping particular ParameterSwComponentType

Stereotypes: atpSplitable
Tags: atp.Splitkey=dataTypeMapping

instantiation
DataDefProps

InstantiationDataDef aggr | The purpose of this is that within the context of a given
Props SwComponentType some data def properties of individual
instantiations can be modified.

The aggregation of InstantiationDataDefProps is subject
to variability with the purpose to support the conditional
existence of PortPrototypes

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=instantiationDataDefProps, instantiationData
DefProps.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table A.55: ParameterSwComponentType

Class

PhysConstrs

Note

This meta-class represents the ability to express physical constraints. Therefore it has (in opposite to
InternalConstrs) a reference to a Unit.

Base

ARObject

Aggregated by

DataConstrRule.physConstrs

Attribute

Type Mult. Kind | Note

lowerLimit

Limit 0..1 attr This specifies the lower limit of the constraint.
Stereotypes: atpVariation

Tags:

vh.latestBinding Time=preCompile Time
xml.sequenceOffset=20

maxDiff

Numerical 0..1 attr Maximum difference that is permitted between two
consecutive values if the constraint is applied to an axis.
Tags: xml.sequenceOffset=60

maxGradient

Numerical 0..1 attr This element specifies the maximum slope that may be
used in curves and maps.
Tags: xml.sequenceOffset=50

monotony

MonotonyEnum 0..1 attr This specifies the monotony constraints on the data
object. Note that this applies only to curves and maps.
Tags: xml.sequenceOffset=70

unit

Unit 0..1 ref This is the unit to which the physical constraints relate to.
In particular, it is the physical unit of the specified limits.
Tags: xml.sequenceOffset=80

upperLimit

Limit 0..1 attr This specifies the upper limit of the constraint.
Stereotypes: atpVariation

Tags:

vh.latestBindingTime=preCompileTime
xml.sequenceOffset=30

Table A.56: PhysConstrs

AUTSSAR

Class PhysicalDimension
Note This class represents a physical dimension. If the physical dimension of two units is identical, then a
conversion between them is possible. The conversion between units is related to the definition of the
physical dimension.
Note that the equivalence of the exponents does not per se define the convertibility. For example Energy
and Torque share the same exponents (Nm).
Please note further the value of an exponent does not necessarily have to be an integer number. It is
also possible that the value yields a rational number, e.g. to compute the square root of a given physical
quantity. In this case the exponent value would be a rational number where the numerator value is 1 and
the denominator value is 2.
Tags: atp.recommendedPackage=PhysicalDimensions
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
currentExp Numerical 0..1 attr This attribute represents the exponent of the physical
dimension "electric current".
Tags: xml.sequenceOffset=50
lengthExp Numerical 0..1 attr The exponent of the physical dimension "length".
Tags: xml.sequenceOffset=20
luminous Numerical 0..1 attr The exponent of the physical dimension "luminous
IntensityExp intensity".
Tags: xml.sequenceOffset=80
massExp Numerical 0..1 attr The exponent of the physical dimension "mass".
Tags: xml.sequenceOffset=30
molarAmount Numerical 0..1 attr The exponent of the physical dimension "quantity of
Exp substance”.
Tags: xml.sequenceOffset=70
temperatureExp | Numerical 0..1 attr The exponent of the physical dimension "temperature”.
Tags: xml.sequenceOffset=60
timeExp Numerical 0..1 attr The exponent of the physical dimension "time".
Tags: xml.sequenceOffset=40
Table A.57: PhysicalDimension
Class Portinterface (abstract)
Note Abstract base class for an interface that is either provided or required by a port of a software component.
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable
Subclasses ClientServerinterface, Datalnterface, ModeSwitchinterface, Triggerinterface
Aggregated by | ARPackage.element
Attribute Type | Mulit. | Kind | Note

V

AUTSSAR

A
Class Portinterface (abstract)
isService Boolean 0..1 attr This flag is set if the Port Interface is to be used for
communication between an
* ApplicationSwComponentType Or
¢ ServiceProxySwComponentType Or
* SensorActuatorSwComponentType Or
* ComplexDeviceDriverSwComponentType
* ServiceSwComponentType
* EcuhAbstractionSwComponentType
and a serviceSwComponent Type (namely an
AUTOSAR Service) located on the same ECU. Otherwise
the flag is not set.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivationTime
This Attribute is only used by the AUTOSAR Classic
Platform.
serviceKind ServiceProviderEnum 0..1 attr This attribute provides further details about the nature of
the applied service.
This Attribute is only used by the AUTOSAR Classic
Platform.
Table A.58: Portinterface
Class PortPrototype (abstract)
Note Base class for the ports of an AUTOSAR software component.
The aggregation of PortPrototypes is subject to variability with the purpose to support the conditional
existence of ports.
Base ARObject, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable
Subclasses AbstractProvidedPortPrototype, AbstractRequiredPortPrototype
Aggregated by | AtpClassifier.atpFeature, SwComponentType.port
Attribute Type Mulit. Kind | Note
clientServer ClientServerAnnotation * aggr Annotation of this PortPrototype with respect to client/
Annotation server communication.
delegatedPort DelegatedPort 0..1 aggr Annotations on this delegated port.
Annotation Annotation
ioHwAbstraction | loHwAbstractionServer * aggr Annotations on this 10 Hardware Abstraction port.
Server Annotation
Annotation
modePort ModePortAnnotation * aggr Annotations on this mode port.
Annotation
nvDataPort NvDataPortAnnotation * aggr Annotations on this non voilatile data port.
Annotation
parameterPort ParameterPort * aggr | Annotations on this parameter port.
Annotation Annotation
senderReceiver SenderReceiver * aggr Collection of annotations of this ports sender/receiver
Annotation Annotation communication.
Stereotypes: atpSplitable
Tags: atp.Splitkey=senderReceiverAnnotation
triggerPort TriggerPortAnnotation * aggr Annotations on this trigger port.
Annotation

Table A.59: PortPrototype

AUT<

SSAR

Class RPortPrototype
Note Component port requiring a certain port interface.
Base ARObject, AbstractRequiredPortPrototype, AtpBlueprintable, AtoFeature, AtpPrototype, Identifiable,
MultilanguageReferrable, PortPrototype, Referrable
Aggregated by | AtpClassifier.atpFeature, SwComponentType.port
Attribute Type Mulit. Kind | Note
mayBe Boolean 0..1 attr If set to true, this attribute indicates that the enclosing
Unconnected RPortPrototype may be left unconnected and that this
aspect has explicitly been considered in the
software-component’s design.
This Attribute is only used by the AUTOSAR Classic
Platform.
required Portinterface 0..1 tref The interface that this port requires.
Interface Stereotypes: isOfType
Table A.60: RPortPrototype
Class RTEEvent (abstract)
Note Abstract base class for all RTE-related events
Base ARObject, AbstractEvent, AtpClassifier, AtoFeature, AtpStructureElement, Identifiable, Multilanguage
Referrable, Referrable
Subclasses AsynchronousServerCallReturnsEvent, BackgroundEvent, DataReceiveErrorEvent, DataReceivedEvent,
DataSendCompletedEvent, DataWriteCompletedEvent, ExternalTriggerOccurredEvent, InitEvent,
InternalTriggerOccurredEvent, ModeSwitchedAckEvent, OperationinvokedEvent, OsTaskExecutionEvent,
SwcModeManagerErrorEvent, SwcModeSwitchEvent, TimingEvent, TransformerHardErrorEvent
Aggregated by | AtpClassifier.atpFeature, SwclnternalBehavior.event
Attribute Type Mult. Kind | Note
disabledMode ModeDeclaration * iref Reference to the Modes that disable the Event.
Stereotypes: atpSplitable
Tags: atp.Splitkey=disabledMode.contextPort, disabled
Mode.contextModeDeclarationGroupPrototype, disabled
Mode.targetModeDeclaration
InstanceRef implemented by: RModelnAtomicSwc
InstanceRef
startOnEvent RunnableEntity 0..1 ref The referenced RunnableEnt ity starts when the
corresponding RTEEvent is raised.
Table A.61: RTEEvent
Primitive Ref
Note This primitive denotes a name based reference. For detailed syntax see the xsd.pattern.
« first slash (relative or absolute reference) [optional]
« Identifier [required]
+ a sequence of slashes and Identifiers [optional]
This primitive is used by the meta-model tools to create the references.
Tags:
xml.xsd.customType=REF
xml.xsd.pattern=/?[a-zA-Z][a-zA-Z0-9_]{0,127}(/[a-zA-Z][a-zA-Z0-9_]{0,127})*
xml.xsd.type=string
Attribute Type Mult. Kind | Note
base Identifier 0..1 attr This attribute reflects the base to be used for this

reference.
Tags: xml.attribute=true

\Y

AUT<

SSAR

Primitive

Ref

blueprintValue

0..1 attr This represents a description that documents how the
value shall be defined when deriving objects from the
blueprint.

Tags:

atp.Status=valid

xml.attribute=true

String

index

attr This attribute supports the use case to point on specific
elements in an array. This is in particular required if
arrays are used to implement particular data objects.
The counting of array indices starts with the value 0, i.e.
the index of the first array element is 0.

Tags: xml.attribute=true

Positivelnteger

Table A.62: Ref

Class

Referrable (abstract)

Note

Instances of this class can be referred to by their identifier (while adhering to namespace borders).

Base

ARObject

Subclasses

AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint, BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, DiagnosticEnvModeElement, EthernetPriority
Regeneration, ExclusiveAreaNestingOrder, HwDescriptionEntity, ImplementationProps, LinSlaveConfig
Ident, ModeTransition, MultilanguageReferrable, PncMappingldent, SingleLanguageReferrable, SoCon
IPduldentifier, TpConnectionldent

Attribute

Type Mulit. Kind | Note

shortName

Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.
Stereotypes: atpldentityContributor

Tags:

xml.enforceMinMultiplicity=true

xml.sequenceOffset=-100

shortName
Fragment

ShortNameFragment This specifies how the Referrable.shortName is
composed of several shortNameFragments.

Tags: xml.sequenceOffset=-90

* aggr

Table A.63: Referrable

Class

RootSwCompositionPrototype

Note

The RootSwCompositionPrototype represents the top-level-composition of software components within a
given System.

According to the use case of the System, this may for example be a more or less complete VFB
description, the software of a System Extract or the software of a flat ECU Extract with only atomic SWCs.
Therefore the RootSwComposition will only occasionally contain all atomic software components that are
used in a complete VFB System. The OEM is primarily interested in the required functionality and the
interfaces defining the integration of the Software Component into the System. The internal structure of
such a component contains often substantial intellectual property of a supplier. Therefore a top-level
software composition will often contain empty compositions which represent subsystems.

The contained SwComponentPrototypes are fully specified by their SwComponentTypes (including Port
Prototypes, Portinterfaces, VariableDataPrototypes, SwcinternalBehavior etc.), and their ports are
interconnected using SwConnectorPrototypes.

Base

ARObject, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Aggregated by

AtpClassifier.atpFeature, System.rootSoftwareComposition

Attribute

Type | Mult. | Kind | Note

V

AUTSSAR

A

Class RootSwCompositionPrototype

calibration CalibrationParameter * ref Used CalibrationParameterValueSet for instance specific

ParameterValue | ValueSet initialization of calibration parameters.

Set Stereotypes: atpSplitable
Tags: atp.Splitkey=calibrationParameterValueSet
This Attribute is only used by the AUTOSAR Classic
Platform.

flatMap FlatMap 0..1 ref The FlatMap used in the scope of this RootSw
CompositionPrototype.

Stereotypes: atpSplitable

Tags: atp.Splitkey=flatMap

This Attribute is only used by the AUTOSAR Classic
Platform.

software CompositionSw 0..1 tref We assume that there is exactly one top-level composition

Composition ComponentType that includes all Component instances of the system.
Stereotypes: isOfType

Table A.64: RootSwCompositionPrototype
Class RunnableEntity
Note A RunnableEntity represents the smallest code-fragment that is provided by an
AtomicSwComponent Type and are executed under control of the RTE. RunnableEntitys are for
instance set up to respond to data reception or operation invocation on a server.
Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, ExecutableEntity, Identifiable, Multilanguage
Referrable, Referrable

Aggregated by | AipClassifier.atpFeature, SwclnternalBehavior.runnable

Attribute Type Mult. Kind | Note

argument RunnableEntity * aggr This represents the formal definition of a an argument to

(ordered) Argument a RunnableEntity.

asynchronous AsynchronousServer * aggr The server call result point admits a runnable to fetch the

ServerCall CallResultPoint result of an asynchronous server call.

ResultPoint The aggregation of AsynchronousServerCallResultPoint
is subject to variability with the purpose to support the
conditional existence of client server PortPrototypes and
the variant existence of server call result points in the
implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=asynchronousServerCallResultPoint.short
Name, asynchronousServerCallResultPoint.variation
Point.shortLabel
vh.latestBinding Time=preCompileTime
This Attribute is only used by the AUTOSAR Classic
Platform.

canBelnvoked Boolean 0..1 attr If the value of this attribute is set to "true" the enclosing

Concurrently

RunnableEntity can be invoked concurrently (even for
one instance of the corresponding
AtomicSwComponentType). This implies that it is the
responsibility of the implementation of the
RunnableEntity to take care of this form of
concurrency.

AUTSSAR

Class RunnableEntity

dataRead VariableAccess aggr RunnableEntity has implicit read access to dataElement
Access of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The aggregation of dataReadAccess is subject to
variability with the purpose to support the conditional
existence of sender receiver ports or the variant existence
of dataReadAccess in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=dataReadAccess.shortName, dataRead
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataReceive VariableAccess aggr RunnableEntity has explicit read access to dataElement
PointBy of a sender-receiver PortPrototype or nv data of a nv data
Argument PortPrototype. The result is passed back to the
application by means of an argument in the function
signature.

The aggregation of dataReceivePointByArgument is
subject to variability with the purpose to support the
conditional existence of sender receiver PortPrototype or
the variant existence of data receive points in the
implementation.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=dataReceivePointByArgument.shortName,
dataReceivePointByArgument.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataReceive VariableAccess aggr RunnableEntity has explicit read access to dataElement
PointByValue of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The result is passed back to the application by means of
the return value. The aggregation of dataReceivePointBy
Value is subject to variability with the purpose to support
the conditional existence of sender receiver ports or the
variant existence of data receive points in the
implementation.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=dataReceivePointByValue.shortName, data
ReceivePointByValue.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataSendPoint VariableAccess aggr RunnableEntity has explicit write access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The aggregation of dataSendPoint is subject to variability
with the purpose to support the conditional existence of
sender receiver PortPrototype or the variant existence of
data send points in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=dataSendPoint.shortName, dataSend
Point.variationPoint.shortLabel

vh.latestBinding Time=preCompile Time

AUTSSAR

Class

RunnableEntity

dataWrite
Access

VariableAccess

aggr

RunnableEntity has implicit write access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The aggregation of dataWriteAccess is subject to
variability with the purpose to support the conditional
existence of sender receiver ports or the variant existence
of dataWriteAccess in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=dataWriteAccess.shortName, dataWrite
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

external
TriggeringPoint

ExternalTriggeringPoint

agor

The aggregation of ExternalTriggeringPoint is subject to
variability with the purpose to support the conditional
existence of trigger ports or the variant existence of
external triggering points in the implementation.
Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=externalTriggeringPoint.ident.shortName,
externalTriggeringPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

internal
TriggeringPoint

InternalTriggeringPoint

aggr

The aggregation of InternalTriggeringPoint is subject to
variability with the purpose to support the variant
existence of internal triggering points in the
implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=internalTriggeringPoint.shortName, internal
TriggeringPoint.variationPoint.shortLabel
vh.latestBinding Time=preCompile Time

modeAccess
Point

ModeAccessPoint

aggr

The runnable has a mode access point. The aggregation
of ModeAccessPoint is subject to variability with the
purpose to support the conditional existence of mode
ports or the variant existence of mode access points in
the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=modeAccessPoint.ident.shortName, mode
AccessPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

modeSwitch
Point

ModeSwitchPoint

aggr

The runnable has a mode switch point. The aggregation
of ModeSwitchPoint is subject to variability with the
purpose to support the conditional existence of mode
ports or the variant existence of mode switch points in the
implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=modeSwitchPoint.shortName, modeSwitch
Point.variationPoint.shortLabel

vh.latestBinding Time=preCompileTime

AUTSSAR

Class RunnableEntity

parameter ParameterAccess aggr | The presence of a ParameterAccess implies that a
Access RunnableEntity needs read only access to a Parameter
DataPrototype which may either be local or within a Port
Prototype.

The aggregation of ParameterAccess is subject to
variability with the purpose to support the conditional
existence of parameter ports and component local
parameters as well as the variant existence of Parameter
Access (points) in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=parameterAccess.shortName, parameter
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

readLocal VariableAccess aggr | The presence of a readLocalVariable implies that a
Variable RunnableEntity needs read access to a VariableData
Prototype in the role of implicitinterRunnableVariable or
explicitinterRunnableVariable.

The aggregation of readLocalVariable is subject to
variability with the purpose to support the conditional
existence of implicitinterRunnableVariable and explicit
InterRunnableVariable or the variant existence of read
LocalVariable (points) in the implementation.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=readLocalVariable.shortName, readLocal
Variable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

serverCallPoint ServerCallPoint * aggr | The RunnableEntity has a ServerCallPoint. The
aggregation of ServerCallPoint is subject to variability with
the purpose to support the conditional existence of client
server PortPrototypes or the variant existence of server
call points in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=serverCallPoint.shortName, serverCall
Point.variationPoint.shortLabel

vh.latestBinding Time=preCompile Time

This Attribute is only used by the AUTOSAR Classic
Platform.

symbol Cldentifier 0..1 attr The symbol describing this RunnableEntity’s entry
point. This is considered the API of the
RunnableEntity and is required during the RTE
contract phase.

waitPoint WaitPoint * aggr The waitPoint associated with the RunnableEntity.

writtenLocal VariableAccess aggr | The presence of a writtenLocalVariable implies that a
Variable RunnableEntity needs write access to a VariableData
Prototype in the role of implicitinterRunnableVariable or
explicitinterRunnableVariable.

The aggregation of writtenLocalVariable is subject to
variability with the purpose to support the conditional
existence of implicitinterRunnableVariable and explicit
InterRunnableVariable or the variant existence of written
LocalVariable (points) in the implementation.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=writtenLocalVariable.shortName, written
LocalVariable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table A.65: RunnableEntity

AUTSSAR

Class SenderReceiverinterface
Note A sender/receiver interface declares a number of data elements to be sent and received.
Tags: atp.recommendedPackage=PortInterfaces
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtpType, CollectableElement,
Datalnterface, Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
dataElement VariableDataPrototype * aggr | The data elements of this SenderReceiverInterface.
invalidation InvalidationPolicy * agor InvalidationPolicy for a particular dataElement
Policy

metaDataltem
Set

MetaDataltemSet * aggr | This aggregation defines fixed sets of meta-data items
associated with dataElements of the enclosing
SenderReceiverInterface

Table A.66: SenderReceiverinterface

Class StructuredReq
Note This represents a structured requirement. This is intended for a case where specific requirements for
features are collected.
Note that this can be rendered as a labeled list.
Base ARObject, DocumentViewSelectable, Identifiable, MultilanguageReferrable, Paginateable, Referrable,
Traceable
Aggregated by | DocumentationBlock.structuredReq
Attribute Type Muit. Kind | Note
appliesTo StandardNameEnum * attr This attribute represents the platform the requirement is
assigned to.
Tags:
xml.namePlural=APPLIES-TO-DEPENDENCIES
xml.sequenceOffset=25
conflicts DocumentationBlock 0..1 aggr | This represents an informal specification of conflicts.
Tags: xml.sequenceOffset=40
date DateTime 1 attr This represents the date when the requirement was
initiated.
Tags: xml.sequenceOffset=5
dependencies DocumentationBlock 0..1 aggr | This represents an informal specification of
dependencies. Note that upstream tracing should be
formalized in the property trace provided by the
superclass Traceable.
Tags: xml.sequenceOffset=30
description DocumentationBlock 0..1 aggr | This represents the general description of the
requirement.
Tags: xml.sequenceOffset=10
importance String 1 attr This allows to represent the importance of the
requirement.
Tags: xml.sequenceOffset=8
issuedBy String 1 attr This represents the person, organization or authority
which issued the requirement.
Tags: xml.sequenceOffset=6
rationale DocumentationBlock 0..1 aggr | This represents the rationale of the requirement.
Tags: xml.sequenceOffset=20
remark DocumentationBlock 0..1 aggr | This represents an informal remark. Note that this is not

modeled as annotation, since these remark is still
essential part of the requirement.
Tags: xml.sequenceOffset=60

AUTSSAR

JAN
Class StructuredReq
supporting DocumentationBlock 0..1 aggr | This represents an informal specification of the
Material supporting material.
Tags: xml.sequenceOffset=50
testedltem Traceable * ref This association represents the ability to trace on the
same specification level. This supports for example the of
acceptance tests.
Tags: xml.sequenceOffset=70
type String 1 attr This attribute allows to denote the type of requirement to
denote for example is it an "enhancement”, "new feature"
etc.
Tags: xml.sequenceOffset=7
useCase DocumentationBlock 0..1 aggr | This describes the relevant use cases. Note that formal
references to use cases should be done in the trace
relation.
Tags: xml.sequenceOffset=35
Table A.67: StructuredReq
Class SwAddrMethod
Note Used to assign a common addressing method, e.g. common memory section, to data or code objects.
These objects could actually live in different modules or components.
Tags: atp.recommendedPackage=SwAddrMethods
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
memory MemoryAllocation 0..1 attr Enumeration to specify the name pattern of the Memory
Allocation KeywordPolicy Type Allocation Keyword.
KeywordPolicy
option Identifier * attr This attribute introduces the ability to specify further
intended properties of the MemorySection in with the
related objects shall be placed.
These properties are handled as to be selected. The
intended options are mentioned in the list.
In the Memory Mapping configuration, this option list is
used to determine an appropriate MemMapAddressing
ModeSet.
section SectionlInitialization 0..1 attr Specifies the expected initialization of the variables
Initialization PolicyType (inclusive those which are implementing VariableData
Policy Prototypes). Therefore this is an implementation
constraint for initialization code of BSW modules
(especially RTE) as well as the start-up code which
initializes the memory segment to which the AutosarData
Prototypes referring to the SwAddrMethod’s are later on
mapped.
If the attribute is not defined it has the identical semantic
as the attribute value "INIT"
sectionType MemorySectionType 0..1 attr Defines the type of memory sections which can be
associated with this addressing method.

Table A.68: SwAddrMethod

SSAR

AUT<

Class SwAXxisGrouped

Note An SwAxisGrouped is an axis which is shared between multiple calibration parameters.

Base ARObject, SwCalprmAxis TypeProps

Aggregated by | SwCalprmAxis.swCalprmAxisTypeProps

Attribute Type Mult. Kind | Note

sharedAxisType | ApplicationPrimitive 0..1 ref This is the datatype of the calibration parameter providing

DataType the shared axis.

swAxisIndex AxisIndexType 0..1 attr Describes which axis of the referenced calibration
parameter provides the values for the group axis. The
index satisfies the following convention:

«» 0 = value axis. in this case, the interpolation result of
the referenced parameter is used as a base point
index.

» The index should only be specified if the parameter
under swCalprm contains more than one axis. It is
standard practice for the axis index of parameters with
more than one axis, to be set to 1, if data has not been
assigned to swAxisIndex.

Tags: xml.sequenceOffset=20

swCalprmRef SwCalprmRefProxy 1 aggr | This property specifies the calibration parameter which
serves as the input axis. In AUTOSAR, the type of the
referenced Calibration parameter shall be compatible to
the type specified by sharedAxisType.
Please note that the multiplicity of this aggregation cannot
be set to 0..1 based on the non-mainstream schema
generation instructions defined at the aggregation.
However, the multiplicity has to be factually considered
0..1 (i.e. a SwAxisGrouped that does not aggregate the
role swCalprmRef is still valid according to the XML
schema, depending on the use case documented in
[constr_1015]).
Tags:
xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=30
xml.typeElement=false
xml.typeWrapperElement=false

Table A.69: SwAxisGrouped
Class SwAXxisIndividual
Note This meta-class describes an axis integrated into a parameter (field etc.). The integration makes this
individual to each parameter. The so-called grouped axis represents the counterpart to this. It is
conceived as an independent parameter (see class SwAxisGrouped).

Base ARObject, SwCalprmAxis TypeProps

Aggregated by | SwCalprmAxis.swCalprmAxisTypeProps

Attribute Type Mult. Kind | Note

compuMethod CompuMethod 0..1 ref This is the compuMethod which is expected for the axis. It
is used in early stages if the particular input-value is not
yet available.
Tags: xml.sequenceOffset=30

dataConstr DataConstr 0..1 ref Refers to constraints, e.g. for plausibility checks.
Tags: xml.sequenceOffset=80

inputVariable ApplicationPrimitive 0..1 ref This is the datatype of the input value for the axis. This

Type DataType allows to define e.g. a type of curve, where the input value

is finalized at the access point.

AUTSSAR

A
Class SwAXxisIndividual
swAxisGeneric SwAxisGeneric 0..1 aggr | this specifies the properties of a generic axis if applicable.
Tags: xml.sequenceOffset=90
swMaxAxis Integer 0..1 attr Maximum number of base points contained in the axis of
Points a map or curve.
Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=60
swMinAxis Integer 0..1 attr Minimum number of base points contained in the axis of a
Points map or curve.
Stereotypes: atpVariation
Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=70
swVariableRef SwVariableRefProxy * aggr Refers to input variables of the axis. It is possible to
(ordered) specify more than one variable. Here the following is
valid:

* The variable with the highest priority shall be given first.
It is used in the generation of the code and is also
displayed first in the application system.

« All variables referenced shall be of the same physical
nature. This is usually detected in that the conversion
formulae affected refer back to the same Sl-units.

In AUTOSAR this ensured by the constraint, that the
referenced input variables shall use a type compatible to
"inputVariableType".

« This multiple referencing allows a base point
distribution for more than one input variable to be used.
One example of this are the temperature curves which
can depend both on the induction air temperature and
the engine temperature.

These variables can be displayed simultaneously by MCD
systems (adjustment systems), enabling operating points
to be shown in the curves.
Tags:
xml.roleElement=false
xml.roleWrapperElement=true
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

unit Unit 0..1 ref This represents the physical unit of the input value of the
axis. It is provided to support the case that the particular
input variable is not yet known.
Tags: xml.sequenceOffset=40

Table A.70: SwAXxisIndividual
Class SwBaseType
Note This meta-class represents a base type used within ECU software.
Tags: atp.recommendedPackage=BaseTypes
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, BaseType, CollectableElement, Identifiable,
MultilanguageReferrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note

Table A.71: SwBaseType

SSAR

AUT<

Enumeration SwCalibrationAccessEnum

Note Determines the access rights to a data object w.r.t. measurement and calibration.

Aggregated by ModeDeclarationGroupPrototype.swCalibrationAccess, SwCalprmAxis.swCalibrationAccess, SwData
DefProps.swCalibrationAccess

Literal Description

notAccessible

The element will not be accessible via MCD tools, i.e. will not appear in the ASAP file.
Tags: atp.EnumerationLiteralindex=0

readOnly The element will only appear as read-only in an ASAP file.
Tags: atp.EnumerationLiteralindex=1
readWrite The element will appear in the ASAP file with both read and write access.
Tags: atp.EnumerationLiteralindex=2
Table A.72: SwCalibrationAccessEnum
Class SwCalprmAxis
Note This element specifies an individual input parameter axis (abscissa).
Base ARObject
Aggregated by | SwCalprmAxisSet.swCalprmAxis
Attribute Type Mult. Kind | Note
category CalprmAxisCategory 0..1 attr This property specifies the category of a particular axis.
Enum Tags: xml.sequenceOffset=30
displayFormat DisplayFormatString 0..1 attr This property specifies how the axis values shall be
displayed e.g. in documents or in measurement and
calibration tools.
Tags: xml.sequenceOffset=100
swAXxisIndex AxisIndexType 0..1 attr This attribute specifies which axis is specified by the
containing SwCalprmAxis.
For example in a curve this is usually "1". In a map this is
v or "on
Tags: xml.sequenceOffset=20
swCalibration SwCalibrationAccess 0..1 attr Describes the applicability of parameters and variables.
Access Enum Tags: xml.sequenceOffset=90
swCalprmAxis SwCalprmAxisType 0..1 aggr specific properties depending on the type of the axis.
TypeProps Props Tags:
xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=40
xml.typeElement=true
xml.typeWrapperElement=false
Table A.73: SwCalprmAxis
Class SwCalprmAxisSet
Note This element specifies the input parameter axes (abscissas) of parameters (and variables, if these are
used adaptively).
Base ARObject
Aggregated by | SwDataDefProps.swCalprmAxisSet
Attribute Type | Mult. | Kind | Note

V

AUT<

SSAR

A
Class SwCalprmAxisSet
swCalprmAxis SwCalprmAxis * aggr One axis belonging to this SwCalprmAxisSet
Tags:
xml.roleElement=true
xml.roleWrapperElement=false
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false
Table A.74: SwCalprmAxisSet
Class SwComponentPrototype
Note Role of a software component within a composition.
Base ARObject, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | AtpClassifier.atpFeature, CompositionSwComponentType.component
Attribute Type Mulit. Kind | Note
type SwComponentType 0..1 tref Type of the instance.
Stereotypes: isOfType
Table A.75: SwComponentPrototype
Class SwComponentType (abstract)
Note Base class for AUTOSAR software components.
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtoType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable
Subclasses AtomicSwComponentType, CompositionSwComponentType, ParameterSwComponentType
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note

consistency
Needs

*

ConsistencyNeeds aggr This represents the collection of ConsistencyNeeds
owned by the enclosing SwComponent Type.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=consistencyNeeds.shortName, consistency
Needs.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

This Attribute is only used by the AUTOSAR Classic
Platform.

port

PortPrototype aggr | The portPrototypes through which this
SwComponent Type €can communicate.

The aggregation of PortPrototype is subject to
variability with the purpose to support the conditional
existence of PortPrototypes.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=port.shortName, port.variationPoint.short
Label

vh.latestBindingTime=preCompileTime

portGroup

PortGroup aggr | A port group being part of this component.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=portGroup.shortName, portGroup.variation
Point.shortLabel

vh.latestBindingTime=preCompileTime

AUTSSAR

Class

SwComponentType (abstract)

swcMapping
Constraint

*

ref Reference to constraints that are valid for this Sw
ComponentType.

This Attribute is only used by the AUTOSAR Classic
Platform.

SwComponentMapping
Constraints

swComponent
Documentation

SwComponent 0..1
Documentation

This adds a documentation to the SwComponent Type.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=swComponentDocumentation, sw
ComponentDocumentation.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=-10

aggr

unitGroup

UnitGroup ref This allows for the specification of which UnitGroups are
relevant in the context of referencing SwComponent Type.
This Attribute is only used by the AUTOSAR Classic

Platform.

Table A.76: SwComponentType

Class

«atpVariation» SwDataDefProps

Note

This class is a collection of properties relevant for data objects under various aspects. One could
consider this class as a "pattern of inheritance by aggregation". The properties can be applied to all
objects of all classes in which SwDataDefProps is aggregated.

Note that not all of the attributes or associated elements are useful all of the time. Hence, the process
definition (e.g. expressed with an OCL or a Document Control Instance MSR-DCI) has the task of
implementing limitations.

SwDataDefProps covers various aspects:

« Structure of the data element for calibration use cases: is it a single value, a curve, or a map, but also
the recordLayouts which specify how such elements are mapped/converted to the DataTypes in the
programming language (or in AUTOSAR). This is mainly expressed by properties like swRecordLayout
and swCalprmAxisSet

* Implementation aspects, mainly expressed by swimplPolicy, swVariableAccessImplPolicy, swAddr
Method, swPointerTagetProps, baseType, implementationDataType and additionalNative TypeQualifier

* Access policy for the MCD system, mainly expressed by swCalibrationAccess

» Semantics of the data element, mainly expressed by compuMethod and/or unit, dataConstr, invalid
Value

» Code generation policy provided by swRecordLayout
Tags: vh.latestBindingTime=codeGenerationTime

Base

ARObject

Aggregated by

AutosarDataType.swDataDefProps, CompositeNetworkRepresentation.networkRepresentation, Cpp
ImplementationDataTypeElement.swDataDefProps, DataPrototype.swDataDefProps, DataPrototype
TransformationProps.networkRepresentationProps, DiagnosticDataElement.swDataDefProps, Diagnostic
EnvDataElementCondition.swDataDefProps, DiagnosticExtendedDataRecordElement.swDataDefProps,
DiagnosticSovdPrimitiveContentElement.swDataDefProps, DItArgumentProps.networkRepresentation,
FlatinstanceDescriptor.swDataDefProps, ImplementationDataTypeElement.swDataDefProps,
InstantiationDataDefProps.swDataDefProps, ISignal.networkRepresentationProps, McDatalnstance.
resultingProperties, ParameterAccess.swDataDefProps, PerinstanceMemory.swDataDefProps, Receiver
ComSpec.networkRepresentation, SecurityEventContextDataElement.networkRepresentation, Sender
ComSpec.networkRepresentation, SomeipDataPrototypeTransformationProps.networkRepresentation,
SwPointerTargetProps.swDataDefProps, SwServiceArg.swDataDefProps, SwSystemconst.swDataDef
Props, SystemSignal.physicalProps

Attribute

Type | Mult. | Kind | Note

\Y

AUTSSAR

Class

«atpVariation» SwDataDefProps

additionalNative
TypeQualifier

NativeDeclarationString

0..1

attr

This attribute is used to declare native qualifiers of the
programming language which can neither be deduced
from the baseType (e.g. because the data object
describes a pointer) nor from other more abstract
attributes. Examples are qualifiers like "volatile", "strict" or
"enum" of the C-language. All such declarations have to
be put into one string.

Tags: xml.sequenceOffset=235

annotation

Annotation

aggr

This aggregation allows to add annotations (yellow pads
...) related to the current data object.

Tags:

xml.roleElement=true

xml.roleWrapperElement=true

xml.sequenceOffset=20

xml.typeElement=false

xml.typeWrapperElement=false

baseType

SwBaseType

ref

Base type associated with the containing data object.
Tags: xml.sequenceOffset=50

compuMethod

CompuMethod

ref

Computation method associated with the semantics of
this data object.
Tags: xml.sequenceOffset=180

dataConstr

DataConstr

ref

Data constraint for this data object.
Tags: xml.sequenceOffset=190

displayFormat

DisplayFormatString

attr

This property describes how a number is to be rendered
e.g. in documents or in a measurement and calibration
system.

Tags: xml.sequenceOffset=210

display
Presentation

DisplayPresentation
Enum

attr

This attribute controls the presentation of the related data
for measurement and calibration tools.

implementation
DataType

Abstractimplementation
DataType

ref

This association denotes the ImplementationDataType of
a data declaration via its aggregated SwDataDefProps. It
is used whenever a data declaration is not directly
referring to a base type. Especially
« redefinition of an ImplementationDataType via a
"typedef" to another ImplementationDatatype

« the target type of a pointer (see SwPointerTarget
Props), if it does not refer to a base type directly

« the data type of an array or record element within an
ImplementationDataType, if it does not refer to a base
type directly

« the data type of an SwServiceArg, if it does not refer to
a base type directly

Tags: xml.sequenceOffset=215

invalidValue

ValueSpecification

aggr

Optional value to express invalidity of the actual data
element.
Tags: xml.sequenceOffset=255

stepSize

Float

0..1

attr

This attribute can be used to define a value which is
added to or subtracted from the value of a DataPrototype
when using up/down keys while calibrating.

swAddrMethod

SwAddrMethod

0..1

ref

Addressing method related to this data object. Via an
association to the same SwAddrMethod it can be
specified that several DataPrototypes shall be located in
the same memory without already specifying the memory
section itself.

Tags: xml.sequenceOffset=30

AUTSSAR

A
Class «atpVariation» SwDataDefProps
swAlignment AlignmentType 0..1 attr The attribute describes the intended typical alignment of
the DataPrototype. If the attribute is not defined the
alignment is determined by the swBaseType size and the
memoryAllocationKeywordPolicy of the referenced Sw
AddrMethod.
Tags: xml.sequenceOffset=33
swBit SwBitRepresentation 0..1 aggr Description of the binary representation in case of a bit
Representation variable.
Tags: xml.sequenceOffset=60
swCalibration SwCalibrationAccess 0..1 attr Specifies the read or write access by MCD tools for this
Access Enum data object.
Tags: xml.sequenceOffset=70
swCalprmAxis SwCalprmAxisSet 0..1 aggr | This specifies the properties of the axes in case of a
Set curve or map etc. This is mainly applicable to calibration
parameters.
Tags: xml.sequenceOffset=90
swComparison SwVariableRefProxy * aggr Variables used for comparison in an MCD process.
Variable Tags:
xml.sequenceOffset=170
xml.typeElement=false
swData SwDataDependency 0..1 aggr Describes how the value of the data object has to be
Dependency calculated from the value of another data object (by the
MCD system).
Tags: xml.sequenceOffset=200
swHostVariable SwVariableRefProxy 0..1 aggr Contains a reference to a variable which serves as a
host-variable for a bit variable. Only applicable to bit
objects.
Tags:
xml.sequenceOffset=220
xml.typeElement=false
swimplPolicy SwimplPolicyEnum 0..1 attr Implementation policy for this data object.
Tags: xml.sequenceOffset=230
swintended Numerical 0..1 attr The purpose of this element is to describe the requested
Resolution quantization of data objects early on in the design
process.
The resolution ultimately occurs via the conversion
formula present (compuMethod), which specifies the
transition from the physical world to the standardized
world (and vice-versa) (here, "the slope per bit" is present
implicitly in the conversion formula).
In the case of a development phase without a fixed
conversion formula, a pre-specification can occur through
swintendedResolution.
The resolution is specified in the physical domain
according to the property "unit".
Tags: xml.sequenceOffset=240
swinterpolation Identifier 0..1 attr This is a keyword identifying the mathematical method to
Method be applied for interpolation. The keyword needs to be
related to the interpolation routine which needs to be
invoked.
Tags: xml.sequenceOffset=250
swisVirtual Boolean 0..1 attr This element distinguishes virtual objects. Virtual objects

do not appear in the memory, their derivation is much
more dependent on other objects and hence they shall
have a swDataDependency .

Tags: xml.sequenceOffset=260

AUTSSAR

Class

«atpVariation» SwDataDefProps

swPointerTarget
Props

SwPointerTargetProps

0..1

aggr

Specifies that the containing data object is a pointer to
another data object.
Tags: xml.sequenceOffset=280

swRecord
Layout

SwRecordLayout

ref

Record layout for this data object.
Tags: xml.sequenceOffset=290

swRefresh
Timing

MultidimensionalTime

0..1

aggr

This element specifies the frequency in which the object
involved shall be or is called or calculated. This timing
can be collected from the task in which write access
processes to the variable run. But this cannot be done by
the MCD system.

So this attribute can be used in an early phase to express
the desired refresh timing and later on to specify the real
refresh timing.

Tags: xml.sequenceOffset=300

swTextProps

SwTextProps

0..1

aggr

the specific properties if the data object is a text object.
Tags: xml.sequenceOffset=120

swValueBlock
Size

Numerical

0..1

attr

This represents the size of a Value Block
Stereotypes: atpVariation

Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=80

swValueBlock
SizeMult
(ordered)

Numerical

attr

This attribute is used to specify the dimensions of a value
block (VAL_BLK) for the case that that value block has
more than one dimension.

The dimensions given in this attribute are ordered such
that the first entry represents the first dimension, the
second entry represents the second dimension, and so
on.

For one-dimensional value blocks the attribute swValue
BlockSize shall be used and this attribute shall not exist.
Stereotypes: atpVariation

Tags: vh.latestBindingTime=preCompileTime

unit

Unit

ref

Physical unit associated with the semantics of this data
object. This attribute applies if no compuMethod is
specified. If both units (this as well as via compuMethod)
are specified the units shall be compatible.

Tags: xml.sequenceOffset=350

valueAxisData
Type

ApplicationPrimitive
DataType

0..1

ref

The referenced ApplicationPrimitiveDataType represents
the primitive data type of the value axis within a
compound primitive (e.g. curve, map). It supersedes
CompuMethod, Unit, and BaseType.

Tags: xml.sequenceOffset=355

Table A.77: SwDataDefProps

Enumeration SwimplPolicyEnum

Note Specifies the implementation strategy with respect to consistency mechanisms of variables.

Aggregated by BswInternalTriggeringPoint.swimplPolicy, InternalTriggeringPoint.swimplPolicy, SwDataDefProps.sw
ImplPolicy, Trigger.swimplPolicy

Literal Description

const forced implementation such that the running software within the ECU shall not modify it. For example

implemented with the "const" modifier in C. This can be applied for parameters (not for those in
NVRAM) as well as argument data prototypes.
Tags: atp.EnumerationLiteralindex=0

\Y

AUT<

SAR

A

Enumeration

SwimplPolicyEnum

fixed

This data element is fixed. In particular this indicates, that it might also be implemented e.g. as in
place data, (#DEFINE).
Tags: atp.EnumerationLiteralindex=1

measurementPoint

The data element is created for measurement purposes only. The data element is never read directly
within the ECU software. In contrast to a "standard" data element in an unconnected provide port is,
this unconnection is guaranteed for measurementPoint data elements.

Tags: atp.EnumerationLiteralindex=2

queued The content of the data element is queued and the data element has 'event’ semantics, i.e. data
elements are stored in a queue and all data elements are processed in ‘first in first out’ order. The
queuing is intended to be implemented by RTE Generator. This value is not applicable for parameters.
Tags: atp.EnumerationLiterallndex=3
standard This is applicable for all kinds of data elements. For variable data prototypes the ’last is best’
semantics applies. For parameter there is no specific implementation directive.
Tags: atp.EnumerationLiteralindex=4
Table A.78: SwimplPolicyEnum
Class Swclmplementation
Note This meta-class represents a specialization of the general Implementation meta-class with respect to the
usage in application software.
Tags: atp.recommendedPackage=Swclmplementations
This Class is only used by the AUTOSAR Classic Platform.
Base ARElement, ARObject, CollectableElement, Identifiable, Implementation, MultilanguageReferrable,
PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note
behavior SwclnternalBehavior 0..1 ref The internal behavior implemented by this
Implementation.
perinstance PerInstanceMemory * aggr Allows a definition of the size of the per-instance memory
MemorySize Size for this implementation. The aggregation of Perlnstance
MemorySize is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects, in this case PerlnstanceMemory.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=perinstanceMemorySize, perinstance
MemorySize.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
required String 0..1 attr Identify a specific RTE vendor. This information is
RTEVendor potentially important at the time of integrating (in
particular: linking) the application code with the RTE. The
semantics is that (if the association exists) the
corresponding code has been created to fit to the
vendor-mode RTE provided by this specific vendor.
Attempting to integrate the code with another RTE
generated in vendor mode is in general not possible.
Table A.79: Swcimplementation
Class SwecinternalBehavior
Note The SwcInternalBehavior of an AtomicSwComponentType describes the relevant aspects of the

software-component with respect to the RTE, i.e. the RunnableEntitys and the RTEEvents they
respond to.

\Y

AUTSSAR

A

Class

SwcinternalBehavior

Base

ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, InternalBehavior, Multilanguage
Referrable, Referrable

Aggregated by

AtomicSwComponentType.internalBehavior, AfpClassifier.atpFeature

Attribute

Type Mult. Kind | Note

arTypedPer
Instance
Memory

*

VariableDataPrototype aggr Defines an AUTOSAR typed memory-block that needs to
be available for each instance of the SW-component.
This is typically only useful if
supportsMultipleInstantiation is setto "true" or
if the component defines NVRAM access via permanent
blocks.

The aggregation of arTypedPerInstanceMemory is
subject to variability with the purpose to support variability
in the software component’s implementations. Typically
different algorithms in the implementation are requiring
different number of memory objects.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=arTypedPerlnstanceMemory.shortName, ar
TypedPerlnstanceMemory.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

event

RTEEvent * aggr This is a RTEEvent specified for the particular
SwcInternalBehavior.

The aggregation of RTEEvent is subject to variability with
the purpose to support the conditional existence of
RTEEvents. Note: the number of RTEEvents might vary
due to the conditional existence of PortPrototypes
using DataReceivedEvents or due to different
scheduling needs of algorithms.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=event.shortName, event.variationPoint.short
Label

vh.latestBindingTime=preCompileTime

exclusiveArea
Policy

SwcExclusiveArea aggr Options how to generate the ExclusiveArea related APls.
Policy When no SwcExclusiveAreaPolicy is specified for an
ExclusiveArea the default values apply.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=exclusiveAreaPolicy, exclusiveArea
Policy.variationPoint.shortLabel

vh.latestBinding Time=preCompile Time

explicitinter
Runnable
Variable

VariableDataPrototype aggr Implement state message semantics for establishing
communication among runnables of the same
component. The aggregation of explicitinterRunnable
Variable is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=explicitinterRunnableVariable.shortName,
explicitinterRunnableVariable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

AUTSSAR

Class SwcinternalBehavior

implicitinter VariableDataPrototype aggr Implement state message semantics for establishing
Runnable communication among runnables of the same

Variable component. The aggregation of implicitinterRunnable
Variable is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=implicitinterRunnableVariable.shortName,
implicitinterRunnableVariable.variationPoint.shortLabel
vh.latestBinding Time=preCompile Time

includedData IncludedDataTypeSet aggr The includedDataTypeSet is used by a software
TypeSet component for its implementation.

Stereotypes: atpSplitable

Tags: atp.Splitkey=includedDataTypeSet

includedMode IncludedMode * aggr This aggregation represents the included Mode
Declaration DeclarationGroupSet DeclarationGroups
GroupSet Stereotypes: atpSplitable

Tags: atp.Splitkey=includedModeDeclarationGroupSet

instantiation InstantiationDataDef aggr | The purpose of this is that within the context of a given
DataDefProps Props SwComponentType some data def properties of individual
instantiations can be modified. The aggregation of
InstantiationDataDefProps is subject to variability with the
purpose to support the conditional existence of Port
Prototypes and component local memories like "per
InstanceParameter" or "arTypedPerIinstanceMemory".
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=instantiationDataDefProps, instantiationData
DefProps.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

perlnstance PerInstanceMemory aggr Defines a per-instance memory object needed by this
Memory software component. The aggregation of PerInstance
Memory is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=perinstanceMemory.shortName, perinstance
Memory.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

perinstance ParameterData aggr Defines parameter(s) or characteristic value(s) that needs
Parameter Prototype to be available for each instance of the
software-component. This is typically only useful if
supportsMultipleInstantiation is set to "true". The
aggregation of perinstanceParameter is subject to
variability with the purpose to support variability in the
software components implementations. Typically different
algorithms in the implementation are requiring different
number of memory objects.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=perinstanceParameter.shortName, per
InstanceParameter.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

AUTSSAR

Class

SwcinternalBehavior

portAPIOption

PortAPIOption

aggr

Options for generating the signature of port-related calls
from a runnable to the RTE and vice versa. The
aggregation of PortPrototypes is subject to variability with
the purpose to support the conditional existence of ports.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=portAPIOption.port, portAPIOption.variation
Point.shortLabel

vh.latestBindingTime=preCompileTime

runnable

RunnableEntity

agaor

This is a RunnableEnt ity specified for the particular
SwcInternalBehavior.

The aggregation of RunnableEntity is subject to
variability with the purpose to support the conditional
existence of RunnableEntitys. Note: the number of
RunnableEntitys might vary due to the conditional
existence of PortPrototypes using
DataReceivedEvents or due to different scheduling
needs of algorithms.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=runnable.shortName, runnable.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

service
Dependency

SwcService
Dependency

aggr

Defines the requirements on AUTOSAR Services for a
particular item.

The aggregation of SwcServiceDependency is subject to
variability with the purpose to support the conditional
existence of ports as well as the conditional existence of
ServiceNeeds.

The SwcServiceDependency owned by an Swcinternal
Behavior can be located in a different physical file in order
to support that SwcServiceDependency might be
provided in later development steps or even by different
expert domain (e.g OBD expert for Obd related Service
Needs) tools. Therefore the aggregation is <<atp
Splitable>>.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=serviceDependency.shortName, service
Dependency.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

shared
Parameter

ParameterData
Prototype

aggr

Defines parameter(s) or characteristic value(s) shared
between SwComponentPrototypes of the same Sw
ComponentType The aggregation of sharedParameter is
subject to variability with the purpose to support variability
in the software components implementations. Typically
different algorithms in the implementation are requiring
different number of memory objects.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=sharedParameter.shortName, shared
Parameter.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

supports
Multiple
Instantiation

Boolean

0..1

attr

Indicate whether the corresponding software-component
can be multiply instantiated on one ECU. In this case the
attribute will result in an appropriate component APl on
programming language level (with or without instance
handle).

variationPoint
Proxy

VariationPointProxy

aggr

Proxy of a variation points in the C/C++ implementation.
Stereotypes: atpSplitable
Tags: atp.Splitkey=variationPointProxy.shortName

Table A.80: SwcinternalBehavior

AUTSSAR

Class System
Note The top level element of the System Description. The System description defines five major elements:
Topology, Software, Communication, Mapping and Mapping Constraints.
The System element directly aggregates the elements describing the Software, Mapping and Mapping
Constraints; it contains a reference to an ASAM FIBEX description specifying Communication and
Topology.
Tags: atp.recommendedPackage=Systems
Base ARElement, ARObject, AtpClassifier, AtpFeature, AtpStructureElement, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, UploadableDesignElement,
UploadablePackageElement
Aggregated by | ARPackage.element, AtpClassifier.atpFeature
Attribute Type Mult. Kind | Note
clientld ClientldDefinitionSet * ref Set of Client Identifiers that are used for inter-ECU
DefinitionSet client-server communication in the System.
This Attribute is only used by the AUTOSAR Classic
Platform.
containerlPdu ByteOrderEnum 0..1 attr Defines the byteOrder of the header in ContainerlPdus.
HeaderByte This Attribute is only used by the AUTOSAR Classic
Order Platform.
ecuExtract RevisionLabelString 0..1 attr Version number of the Ecu Extract.
Version This Attribute is only used by the AUTOSAR Classic
Platform.
fibexElement FibexElement * ref Reference to ASAM FIBEX elements specifying
Communication and Topology.
All Fibex Elements used within a System Description shall
be referenced from the System Element.
atpVariation: In order to describe a product-line, all Fibex
Elements can be optional.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=fibexElement.fibexElement, fibex
Element.variationPoint.shortLabel
vh.latestBinding Time=postBuild
interpolation InterpolationRoutine * ref This reference identifies the InterpolationRoutineMapping
Routine MappingSet Sets that are relevant in the context of the enclosing
MappingSet System.
This Attribute is only used by the AUTOSAR Classic
Platform.
j1939Shared J1939SharedAddress * aggr Collection of J1939Clusters that share a common
AddressCluster Cluster address space for the routing of messages.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=j1939SharedAddressCluster.shortName,
j1939SharedAddressCluster.variationPoint.shortLabel
vh.latestBindingTime=postBuild
This Attribute is only used by the AUTOSAR Classic
Platform.
mapping SystemMapping * aggr Aggregation of all mapping aspects (mapping of SW

components to ECUs, mapping of data elements to
signals, and mapping constraints).

In order to support OEM / Tier 1 interaction and shared
development for one common System this aggregation is
atpSplitable and atpVariation. The content of System
Mapping can be provided by several parties using
different names for the SystemMapping.

This element is not required when the System description
is used for a network-only use-case.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=mapping.shortName, mapping.variation
Point.shortLabel

vh.latestBinding Time=postBuild

AUTSSAR

Class

System

pncVector
Length

Positivelnteger

0..1

attr

Length of the partial networking request release
information vector (in bytes).

pncVectorOffset

Positivelnteger

attr

Absolute offset (with respect to the NM-PDU) of the
partial networking request release information vector that
is defined in bytes as an index starting with 0.

rootSoftware
Composition

RootSwComposition
Prototype

0..1

aggr

Aggregation of the root software composition, containing
all software components in the System in a hierarchical
structure. This element is not required when the System
description is used for a network-only use-case.
atpVariation: The RootSwCompositionPrototype can vary.
Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=rootSoftwareComposition.shortName, root
SoftwareComposition.variationPoint.shortLabel
vh.latestBinding Time=systemDesignTime

This Attribute is only used by the AUTOSAR Classic
Platform.

swCluster

CpSoftwareCluster

ref

CP Software Clusters of this System

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=swCluster.cpSoftwareCluster, sw
Cluster.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime

This Attribute is only used by the AUTOSAR Classic
Platform.

systemCom
SpecDefinition

SystemComSpec
DefinitionSet

ref

Reference to the set of ComSpec definitions that are
used for inter-ECU communication in the System.

system
Documentation

Chapter

agaor

Possibility to provide additional documentation while
defining the System. The System documentation can be
composed of several chapters.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=systemDocumentation.shortName, system
Documentation.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=-10

This Attribute is only used by the AUTOSAR Classic
Platform.

systemVersion

RevisionLabelString

0..1

attr

Version number of the System Description.

Table A.81: System

Class TimingEvent

Note This event is used to start RunnableEntitys that shall be executed periodically.

Base ARObject, AbstractEvent, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, Multilanguage

Referrable, RTEEvent, Referrable

Aggregated by | AtpClassifier.atpFeature, SwcinternalBehavior.event

Attribute Type Mult. Kind | Note

offset TimeValue 0..1 attr The value makes an assumption about the time offset of
the first activation of the RunnableEntity triggered by
the mapped TimingEvent relative to the periodic
activation of the time base of this TimingEvent. Unit:
second.

period TimeValue 0..1 attr Period of timing event in seconds. The value of this
attribute shall be greater than zero.

Table A.82: TimingEvent

AUTSSAR

Class Traceable (abstract)
Note This meta class represents the ability to be subject to tracing within an AUTOSAR model.
Note that it is expected that its subclasses inherit either from MultilanguageReferrable or from
Identifiable. Nevertheless it also inherits from MultilanguageReferrable in order to provide a common
reference target for all Traceables.
Base ARObject, MultilanguageReferrable, Referrable
Subclasses StructuredReq, TimingConstraint, TraceableTable, TraceableText
Attribute Type Mult. Kind | Note
trace Traceable * ref This association represents the ability to trace to
upstream requirements / constraints. This supports for
example the bottom up tracing
ProjectObjectives <- MainRequirements <- Features <-
RequirementSpecs <- BSW/AI
Tags: xml.sequenceOffset=20
Table A.83: Traceable
Class Unit
Note This is a physical measurement unit. All units that might be defined should stem from Sl units. In order to
convert one unit into another factor and offset are defined.
For the calculation from Sl-unit to the defined unit the factor (factorSiToUnit) and the offset (offsetSiTo
Unit) are applied as follows:
x [{unit}] := y * {siUnit} * factorSiToUnit [{unit}/{siUnit}] + offsetSiToUnit [{unit}]
For the calculation from a unit to Sl-unit the reciprocal of the factor (factorSiToUnit) and the negation of
the offset (offsetSiToUnit) are applied.
y [{siUnit}] := (x*{unit} - offsetSiToUnit [{unit}]) / factorSiToUnit [{unit}/{siUnit}]
Tags: atp.recommendedPackage=Units
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
displayName SingleLanguageUnit 0..1 aggr | This specifies how the unit shall be displayed in
Names documents or in user interfaces of tools.The displayName
corresponds to the Unit.Display in an ASAM MCD-2MC
file.
Tags: xml.sequenceOffset=20
factorSiToUnit Float 0..1 attr This is the factor for the conversion from S| Units to units.
The inverse is used for conversion from units to Sl Units.
Tags: xml.sequenceOffset=30
offsetSiToUnit Float 0..1 attr This is the offset for the conversion from and to siUnits.
Tags: xml.sequenceOffset=40
physical PhysicalDimension 0..1 ref This association represents the physical dimension to
Dimension which the unit belongs to. Note that only values with units
of the same physical dimensions might be converted.
Tags: xml.sequenceOffset=50

Table A.84: Unit

AUT<

SSAR

Class

UnitGroup

Note

This meta-class represents the ability to specify a logical grouping of units.The category denotes the unit
system that the referenced units are associated to.

In this way, e.g. country-specific unit systems (CATEGORY="COUNTRY") can be defined as well as
specific unit systems for certain application domains.

In the same way a group of equivalent units, can be defined which are used in different countries, by
setting CATEGORY="EQUIV_UNITS". KmPerHour and MilesPerHour could such be combined to one
group named "vehicle_speed". The unit MeterPerSec would not belong to this group because it is
normally not used for vehicle speed. But all of the mentioned units could be combined to one group
named "speed".

Note that the UnitGroup does not ensure the physical compliance of the units. This is maintained by the
physical dimension.

Tags: atp.recommendedPackage=UnitGroups

Base

ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable

Aggregated by

ARPackage.element

Attribute

Type Mult. Kind | Note

unit

Unit * ref This represents one particular unit in the UnitGroup.

Tags: xml.sequenceOffset=20

Table A.85: UnitGroup

Class

ValueSpecification (abstract)

Note

Base class for expressions leading to a value which can be used to initialize a data object.

Base

ARObject

Subclasses

AbstractRuleBasedValueSpecification, ApplicationValueSpecification, Composite ValueSpecification,
ConstantReference, NotAvailableValueSpecification, NumericalValueSpecification, ReferenceValue
Specification, TextValueSpecification

Aggregated by

ApplicationAssocMapElementValueSpecification.key, ApplicationAssocMapElementValueSpecification.
value, ArrayValueSpecification.element, CalibrationParameterValue.appllnitValue, CalibrationParameter
Value.implInitValue, ConstantSpecification.valueSpec, CryptoServiceKey.developmentValue, Diagnostic
EnvDataCondition.compareValue, DiagnosticEnvDataElementCondition.compareValue, DiagnosticEnv
SovdDataCondition.compareValue, FieldSenderComSpec.initValue, I1Signal.initValue, I1Signal.reception
DefaultValue, ISignal.timeoutSubstitutionValue, NonqueuedReceiverComSpec.initValue, Nonqueued
ReceiverComSpec.timeoutSubstitutionValue, NonqueuedSenderComSpec.initValue, NvProvideCom
Spec.ramBlockInitValue, NvProvideComSpec.romBlocklInitValue, NvRequireComSpec.initValue,
ParameterDataPrototype.initValue, ParameterProvideComSpec.initValue, ParameterRequireComSpec.
initValue, PersistencyDataRequiredComSpec.initValue, PersistencyKeyValuePair.initValue, PortDefined
ArgumentValue.value, PortPrototypeBlueprintinitValue.value, RecordValueSpecification.field, Someip
EventDeployment.eventReceptionDefaultValue, StateManagementCompareCondition.compareValue, Sw
DataDefProps.invalidValue, UserDefinedEventDeployment.eventReceptionDefaultValue, VariableData
Prototype.initValue

Attribute

Type Muit. Kind | Note

shortLabel

Identifier 0..1 attr This can be used to identify particular value specifications

for human readers, for example elements of a record type.

Table A.86: ValueSpecification

Class

VariableDataPrototype

Note

AvariableDataPrototype represents a formalized generic piece of information that is typically
mutable by the application software layer. variableDataPrototype is used in various contexts and
the specific context gives the otherwise generic variableDataPrototype a dedicated semantics.

Base

ARObject, AtpFeature, AtoPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

\Y

AUTSSAR

A

Class VariableDataPrototype

Aggregated by | Applicationinterface.indication, AtpClassifier.atpFeature, BswinternalBehavior.arTypedPerInstance
Memory, BswModuleDescription.providedData, BswModuleDescription.requiredData, BulkNvData
Descriptor.bulkNvBlock, DiagnosticSovdAccessArgument.contentObject, InternalBehavior.staticMemory,
NvBlockDescriptor.ramBlock, NvDatalnterface.nvData, SenderReceiverinterface.dataElement, Service
Interface.event, SwcinternalBehavior.arTypedPerlnstanceMemory, SwcinternalBehavior.explicitinter
RunnableVariable, SwcinternalBehavior.implicitinterRunnableVariable

Attribute Type Muit. Kind | Note

initValue ValueSpecification 0..1 aggr Specifies initial value(s) of the VariableDataPrototype

Table A.87: VariableDataPrototype

Class Xref

Note This represents a cross-reference within documentation.

Base ARObject

Aggregated by | MixedContentForOverviewParagraph.xref, MixedContentForParagraph.xref, MixedContentForVerbatim.
xref

Attribute Type Mult. Kind | Note

labell SingleLanguagelLong 0..1 aggr This allows to specify a replacement text which shall be
Name rendered if showContent is selected.

referrable Referrable 0..1 ref This establishes the reference in Autosar style

resolutionPolicy ResolutionPolicyEnum 0..1 attr Indicates if the content of the xref element follow a

dedicated resolution policy. The default is "NO-SLOPPY".
Tags: xml.attribute=true

showContent

ShowContentEnum 0..1 attr Indicates if the content of the xref element shall be
rendered. The default is "NO-SHOW-CONTENT".
Tags: xml.attribute=true

showResource
AliasName

ShowResourceAlias 0..1 attr This indicates if the alias names of the referenced objects
NameEnum shall be rendered. This means this is some kind of
backward searching: look whether there is an alias for the
referenced object, if yes, print it.

If there is more than one AliasNameSet, Xref might
render all of those.

If no alias is found and showResourceShortName is set to
NoShowShortName, then the shortName of the reference
target shall be displayed. By this showResourceAlias
Name is similar to showResourceShortName but shows
the aliasName instead of the shortName.

Default is NO-SHOW-ALIAS-NAME.

Tags: xml.attribute=true

showResource
Category

ShowResource 0..1 attr Indicates if the category of the referenced resource shall
CategoryEnum be rendered. Default is "NO-SHOW-CATEGORY".
Tags: xml.attribute=true

showResource
LongName

ShowResourcelLong 0..1 attr Indicates if the longName of the referenced resource shall
NameEnum be rendered. Default is "SHOW-LONG-NAME".
Tags: xml.attribute=true

showResource
Number

ShowResourceNumber 0..1 attr Indicates if the Number of the referenced resource shall
Enum be shown. Default is "SHOW--NUMBER"
Tags: xml.attribute=true

showResource
Page

ShowResourcePage 0..1 attr Indicates if the page number of the referenced resource
Enum shall be shown. Default is "SHOW-PAGE"
Tags: xml.attribute=true

showResource
ShortName

ShowResourceShort 0..1 attr Indicates if the shortUName of the referenced resource
NameEnum shall be shown. Default is "SHOW-SHORT-NAME"
Tags: xml.attribute=true

AUTSSAR

A
Class Xref
showResource ShowResourceType 0..1 attr Indicates if the type of the referenced Resource shall be
Type Enum shown. Default is "SHOW-TYPE"
Tags: xml.attribute=true
showSee ShowSeeEnum 0..1 attr Indicates if the word "see " shall be shown before the
reference. Default is "NO-SHOW-SEE". Note that this is
there for compatibility reasons only.
Tags: xml.attribute=true

Table A.88: Xref

	1 Introduction
	2 Overview
	3 Measurement and Calibration
	3.1 Introductory Show Case
	3.1.1 Physical System
	3.1.1.1 Components Overview
	3.1.1.2 The Environment
	3.1.1.3 The Plant
	3.1.1.4 The Controller

	3.1.2 AUTOSAR Modeling
	3.1.3 RTE Generation, Measurement and Calibration
	3.1.3.1 FlatMap
	3.1.3.2 ECU Documentation, Measurement and Calibration

	3.1.4 A2L File
	3.1.5 Implementation in C
	3.1.6 A walk with T_Plant through the Show Case
	3.1.6.1 Physical System
	3.1.6.1.1 Components
	3.1.6.1.2 Equations

	3.1.6.2 AUTOSAR Modeling
	3.1.6.2.1 Physical Dimension and Unit
	3.1.6.2.2 Application Data Type
	3.1.6.2.3 Port Interface
	3.1.6.2.4 Software Components

	3.1.6.3 System
	3.1.6.4 ECU Configuration
	3.1.6.5 RTE Generation
	3.1.6.6 Implementation in C
	3.1.6.7 A2L File
	3.1.6.8 Measurement and Calibration Tool

	3.1.7 Show cases in the Example
	3.1.7.1 CompositionSwComponentTypes
	3.1.7.2 ParameterSwComponentTypes
	3.1.7.3 ApplicationSwComponentTypes
	3.1.7.4 ParameterInterfaces
	3.1.7.5 SenderReceiverInterfaces
	3.1.7.6 ApplicationDataTypes, Category VALUE
	3.1.7.7 Units
	3.1.7.8 PhysicalDimensions
	3.1.7.9 SwAddrMethods

	3.2 Advanced Show Case
	3.2.1 General Objectives of the Model Structure
	3.2.1.1 The Ecu Description
	3.2.1.2 The Ecu Extract
	3.2.1.2.1 The ECU Flat Map

	3.2.1.3 Data Types and Data Objects
	3.2.1.4 Axis, Curves and Maps
	3.2.1.5 Axis, Curves and Maps on ApplicationDataType level
	3.2.1.6 Axis, Curves and Maps on DataPrototype and SwComponentPrototype level
	3.2.1.6.1 Instantiation of Axis, Curves and Maps
	3.2.1.6.2 Usage of Axis, Curves and Maps by Software Components
	3.2.1.6.3 Linking map and curve instances to its axes instances
	3.2.1.6.4 Linking axes instances to its working point instances
	3.2.1.6.5 Axis, Curves and Maps in the ECU Flat Map

	3.2.1.7 Arrays of Maps and Axes
	3.2.1.7.1 Arrays of Maps and Axes in the ECU Flat Map

	3.2.1.8 Measurement of Modes
	3.2.1.8.1 Enabling Measurement of Modes
	3.2.1.8.2 Modes in the ECU Flat Map

	3.2.2 Show cases in the Example
	3.2.2.1 CompositionSwComponentTypes
	3.2.2.2 ParameterSwComponentTypes
	3.2.2.3 ApplicationSwComponentTypes
	3.2.2.4 ParameterInterfaces
	3.2.2.5 ModeSwitchInterfaces
	3.2.2.6 SenderReceiverInterfaces
	3.2.2.7 ApplicationDataTypes, Category BOOLEAN
	3.2.2.8 ApplicationDataTypes, Category VALUE
	3.2.2.9 ApplicationDataTypes, Category COM_AXIS
	3.2.2.10 ApplicationDataTypes, Category CURVE
	3.2.2.11 ApplicationDataTypes, Category MAP
	3.2.2.12 ApplicationArrayDataTypes
	3.2.2.13 ApplicationRecordDataTypes
	3.2.2.14 ModeDeclarationGroups
	3.2.2.15 Units
	3.2.2.16 PhysicalDimensions
	3.2.2.17 SwAddrMethods

	4 Structured Requirements
	4.1 Specification items as requirements
	4.2 Diagnostic requirements
	4.3 Decomposition of requirements

	5 Integration Requirements
	5.1 Defining Integration Requirements using StructuredReq
	5.1.1 StructuredReq.shortName
	5.1.2 StructuredReq.category
	5.1.3 importance, StructuredReq
	5.1.4 rationale, StructuredReq
	5.1.5 useCase, StructuredReq
	5.1.6 description, StructuredReq
	5.1.6.1 DefinitionReference
	5.1.6.2 Description
	5.1.6.3 ARVersion
	5.1.6.4 ModuleVersion
	5.1.6.5 SetValue
	5.1.6.6 SupportedLowValue
	5.1.6.7 SupportedHighValue
	5.1.6.8 SupportedValue

	5.2 Applying Integration Requirements
	5.2.1 Single configuration value in a single container
	5.2.2 Single configuration value in multiple containers
	5.2.3 Multiple configuration values in a container
	5.2.4 Tracing configuration changes

	5.3 Ranges in Integration Requirements
	5.4 Possible Conflicts caused by applied Integration Requirements
	5.4.1 Merge of Integration Requirements
	5.4.1.1 No merge of fixed values
	5.4.1.2 Merge of ranges
	5.4.1.3 Order dependency between suggested and mandatory integration requirements

	5.5 Reporting

	A Mentioned Class Tables

