
Methodology for Classic Platform
AUTOSAR CP R25-11

Document Title Methodology for Classic Platform
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 68

Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History
Date Release Changed by Description

2025-11-27 R25-11
AUTOSAR
Release
Management

• Add methodology for
CpSoftwareClusters

• Remove support for Data Exchange
Points

• Remove Franca Integration

• Editorial changes - removal of FO RS
Methodology

2024-11-27 R24-11
AUTOSAR
Release
Management

• Editorial changes

2023-11-23 R23-11
AUTOSAR
Release
Management

• Be specific when using the term cluster
(e.g. BSW cluster)

• Clarify activity Create ECU System
Description

2022-11-24 R22-11
AUTOSAR
Release
Management

• Deprecate compiler abstraction

2021-11-25 R21-11
AUTOSAR
Release
Management

• Minor corrections and editorial changes

• changed document title to: Methodology
for Classic Platform

2020-11-30 R20-11
AUTOSAR
Release
Management

• Minor corrections and editorial changes

▽

1 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△

2019-11-28 R19-11
AUTOSAR
Release
Management

• Editorial changes

• Handling of Platform/Standard Types as
Blueprints

• Removed references to TR IOAT

• Changed Document Status from Final to
published

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Removal of references to obsolete
requirements

• Editorial changes

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Minor corrections due to the modification
of one requirement

• Editorial changes

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Support for Data Exchange Points added

• Minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

2015-07-31 4.2.2
AUTOSAR
Release
Management

• Minor corrections and editorial changes

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Support for Safety Extensions added

• Support for Diagnostic Extract added

• Support for Rapid Prototyping added

• Support for Sender Receiver
Serialization added

2014-03-31 4.1.3
AUTOSAR
Release
Management

• Alignment of the AUTOSAR
Methodology to the System Description
categories

• Editorial changes

2013-10-31 4.1.2
AUTOSAR
Release
Management

• Harmonization between ECU
Configuration specification and
AUTOSAR Methodology

▽

2 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△

2013-03-15 4.1.1 AUTOSAR
Administration

• Allow the usage of requirement ID
definition and tracing for specification
items

• Updated chapter 3.6 Ecu Integration and
Configuration with support for A2L
function

• Added chapter 2.14 How to resolve
Name Conflicts

• Added sections 3.4.1.15 Define
Consistency Needs and 3.4.2.17
Consistency Needs

• Refine definition of Binding Times

2011-12-22 4.0.3 AUTOSAR
Administration

• Simplification of use case diagrams by
removing task use and introducing
deliverables on use cases level (see
Methodology Concept chapter)

• Readability improvement by generation
of tables with navigable links

• Introduction of Variant Handling, E2E
support, System Constraints Description

• Refinement of Methodology Library,
including the extension of deliverables in
different use cases

2009-12-18 4.0.1 AUTOSAR
Administration

• Changed tool platform for the SPEM
model

• Publish as pdf file instead of html

• Used new table format for the model
elements

• Added SPEM diagrams

• Methodology Concept chapter detailed

• Memory Mapping use case added

• Reworked and restructured use cases
for more readability

• Direct references to meta-model
elements in figures and tables

▽

3 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△

2008-08-13 3.1.1 AUTOSAR
Administration

• Legal Disclaimer revised

2007-12-21 3.0.1 AUTOSAR
Administration

• Subchapter limitations of the current
version enhanced

• Document meta information extended

• Small layout adaptations made

2007-01-24 2.1.15 AUTOSAR
Administration

• Updated chapter 5 ECU-Design

• Updated chapter 6.1 Relationship with
Services

• Legal disclaimer revised

• Release Notes added

• Advice for users revised

• Revision Information added

2006-05-16 2.0 AUTOSAR
Administration

• Initial release

4 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

5 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Table of Contents

1 Introduction 21
1.1 Objective . 21
1.2 Document Conventions . 21
1.3 Scope . 21
1.4 Terms and Abbreviations . 22
1.5 Overview . 22
1.6 Methodology Concepts . 23

1.6.1 Methodology Library Elements . 23
1.6.1.1 Task Definition . 25
1.6.1.2 Work Product Definition . 26
1.6.1.3 Role Definition . 30
1.6.1.4 Tool Definition . 30
1.6.1.5 Guidance . 31

1.6.2 Use Case Specifications . 32
1.6.2.1 Activity . 33
1.6.2.2 Capability Pattern . 33
1.6.2.3 Description of Use Cases . 34

1.7 General Requirements . 36

2 Use Cases 38
2.1 Overall View . 38

2.1.1 Purpose . 38
2.1.2 Description . 38

2.1.2.1 Views on the System . 38
2.1.2.2 Overall Workflow . 39

2.1.3 Workflow . 43
2.2 Develop an Abstract System Description 46

2.2.1 Purpose . 46
2.2.2 Description . 46
2.2.3 Workflow . 48

2.3 Develop a VFB System Description . 49
2.3.1 Purpose . 49
2.3.2 Description . 49
2.3.3 Workflow . 52

2.4 Develop Software Components . 55
2.4.1 Develop an Atomic Software Component 55

2.4.1.1 Purpose . 55
2.4.1.2 Description . 56
2.4.1.3 Workflow . 56

2.4.2 Develop Application Software . 61
2.4.2.1 Purpose . 61

6 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.4.2.2 Description . 61
2.4.2.3 Workflow . 61

2.4.3 Uses Cases for more Specialized Software Components 62
2.4.3.1 Purpose . 62
2.4.3.2 Description . 62
2.4.3.3 Workflow . 62

2.5 Develop System and Subsystems . 66
2.5.1 Overview . 66

2.5.1.1 Purpose . 66
2.5.1.2 Description . 66

2.5.2 Design System . 70
2.5.2.1 Purpose . 70
2.5.2.2 Description . 71
2.5.2.3 Workflow . 72

2.5.3 Generate System Extract . 76
2.5.3.1 Purpose . 76
2.5.3.2 Description . 76
2.5.3.3 Workflow . 76

2.5.4 Create ECU System Description . 77
2.5.4.1 Purpose . 77
2.5.4.2 Description . 77
2.5.4.3 Workflow . 78

2.5.5 Design Sub-System . 79
2.5.5.1 Purpose . 79
2.5.5.2 Description . 79
2.5.5.3 Workflow . 80

2.5.6 Generate CpSoftwareCluster Extract 80
2.5.6.1 Purpose . 80
2.5.6.2 Description . 81
2.5.6.3 Workflow . 81

2.5.7 Generate ECU Extract . 82
2.5.7.1 Purpose . 82
2.5.7.2 Description . 83
2.5.7.3 Workflow . 83

2.5.8 Design Custom Transformer . 84
2.5.8.1 Purpose . 84
2.5.8.2 Description . 84
2.5.8.3 Workflow . 85

2.5.9 Define System Safety Information 86
2.5.9.1 Purpose . 86
2.5.9.2 Description . 86
2.5.9.3 Workflow . 86

2.6 Develop Basic Software . 87

7 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.6.1 Overview . 87
2.6.1.1 Purpose . 87
2.6.1.2 Description . 88
2.6.1.3 Workflow . 88

2.6.2 Design BSW . 89
2.6.2.1 Purpose . 89
2.6.2.2 Description . 89
2.6.2.3 Workflow . 89

2.6.3 Develop BSW Module . 91
2.6.3.1 Purpose . 91
2.6.3.2 Description . 91
2.6.3.3 Workflow . 91

2.7 Integrate Software for ECU . 93
2.7.1 Description . 93
2.7.2 Overview . 93

2.7.2.1 Purpose . 93
2.7.2.2 Description . 94

2.7.2.2.1 Inputs to ECU Configuration 94
2.7.2.2.2 ECU Configuration Values 95

2.7.2.3 Workflow . 96
2.7.3 Prepare ECU Configuration . 98

2.7.3.1 Description . 98
2.7.3.2 Workflow . 99

2.7.4 Configure BSW and RTE . 99
2.7.4.1 Description . 99
2.7.4.2 Workflow . 100

2.7.5 Update ECU Configuration . 101
2.7.5.1 Description . 101
2.7.5.2 Workflow . 102

2.7.6 Model ECU Timing . 103
2.7.6.1 Workflow . 103

2.7.7 Generate BSW and RTE . 103
2.7.7.1 Description . 103
2.7.7.2 Workflow . 104

2.7.8 Build Executable . 107
2.7.8.1 Description . 107
2.7.8.2 Workflow . 108

2.7.9 Configuration Classes . 109
2.7.9.1 Configuration Class: Pre-compile Time 110

2.7.9.1.1 Description . 110
2.7.9.1.2 Workflow . 112

2.7.9.2 Configuration Class: Link Time 113
2.7.9.2.1 Description . 113

8 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.7.9.2.2 Workflow . 115
2.7.9.3 Configuration Class: Post-build Time 116

2.7.9.3.1 Description . 116
2.7.9.3.2 Workflow . 118

2.7.9.4 Handling of different post-build variants in configuration classes 120
2.7.9.4.1 Description . 120

2.8 Components and Services . 120
2.8.1 Purpose . 120
2.8.2 Description . 120
2.8.3 Workflow . 121

2.9 Calibration Overview . 126
2.9.1 Purpose . 126
2.9.2 Description . 126
2.9.3 Workflow . 127

2.10Memory Mapping . 131
2.10.1 Purpose . 131
2.10.2 Description . 131
2.10.3 Workflow . 131

2.11E2E Protection . 134
2.11.1 Purpose . 134
2.11.2 Description . 134
2.11.3 Workflow . 135

2.12Diagnostic Extract . 135
2.12.1 Purpose . 135
2.12.2 Description . 135
2.12.3 Workflow . 139

2.13Rapid Prototyping . 141
2.13.1 Purpose . 141
2.13.2 Description . 141
2.13.3 Workflow . 142

2.14Safety Extensions . 144
2.14.1 Purpose . 144
2.14.2 Description . 145
2.14.3 Workflow . 147

2.15Variant Handling . 148
2.15.1 Overview . 148
2.15.2 Binding Times . 149

2.15.2.1 Latest Binding Time . 149
2.15.2.2 Actual Binding Time . 150

2.15.3 Defining Variants . 150
2.15.4 Choosing Variants . 151

2.16Definition of Binding Times . 152
2.16.1 Overview . 152

9 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.16.2 A Classification of Artifacts with respect to Binding Times 154
2.16.3 Classification of Binding Times . 155

2.16.3.1 BlueprintDerivationTime 156
2.16.3.2 FunctionDesignTime . 156
2.16.3.3 InitialBindingTime . 157
2.16.3.4 SystemDesignTime . 157
2.16.3.5 CodeGenerationTime . 157
2.16.3.6 PreCompileTime . 158
2.16.3.7 CompileTime . 158
2.16.3.8 LinkTime . 158
2.16.3.9 PostBuild . 158
2.16.3.10 Runtime . 159

2.17How to resolve Name Conflicts . 159
2.17.1 Reasons for Name Conflicts . 159
2.17.2 Points in the Methodology where Name Conflicts are resolved . . . 160
2.17.3 Mechanisms for resolving Name Conflicts 161

3 Methodology Library 164
3.1 Common Elements . 164

3.1.1 Work Product Kinds . 164
3.1.2 Tasks . 166

3.1.2.1 Add General Documentation . 166
3.1.2.2 Define Admin Data . 166
3.1.2.3 Define Alias Names . 167
3.1.2.4 Evaluate Variant . 168
3.1.2.5 Define Memory Addressing Modes 169
3.1.2.6 Configure Memmap Allocation 170
3.1.2.7 Generate BSW Memory Mapping Header 171
3.1.2.8 Generate SWC Memory Mapping Header 173

3.1.3 Work Products . 175
3.1.3.1 General Documentation . 175
3.1.3.2 Alias Name Set . 175
3.1.3.3 Evaluated Variant Set . 176
3.1.3.4 Autosar Specification . 176
3.1.3.5 General Autosar Artifact . 177
3.1.3.6 General Deliverable . 178
3.1.3.7 General Non-Autosar Artifact 178
3.1.3.8 Postbuild Variant Set . 179
3.1.3.9 Predefined Variant . 179
3.1.3.10 Standard Header Files . 180
3.1.3.11 System Constant Value Set . 181

3.1.4 Roles . 182
3.1.5 Tools . 190

3.1.5.1 Compiler . 190

10 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.1.5.2 Linker . 190
3.1.6 Diagnostics . 191

3.1.6.1 Work Products . 191
3.1.7 Safety . 193

3.1.7.1 Tasks . 193
3.1.7.1.1 Define Safety Requirement 193
3.1.7.1.2 Define Safety Measure . 193
3.1.7.1.3 Define ASIL For AUTOSAR Element 194
3.1.7.1.4 Refine Safety Requirement 195
3.1.7.1.5 Decompose Safety Requirement 195
3.1.7.1.6 Allocate Safety Measure 196
3.1.7.1.7 Allocate Safety Requirement 197
3.1.7.1.8 Map Safety Requirement to Safety Measure 197
3.1.7.1.9 Add Independence Relation 198

3.1.7.2 Work Products . 199
3.1.7.2.1 Safety Extensions . 199
3.1.7.2.2 Safety Requirement . 200
3.1.7.2.3 Safety Measure . 201

3.2 Virtual Functional Bus . 202
3.2.1 Tasks . 202

3.2.1.1 Define VFB Top Level . 202
3.2.1.2 Define VFB Composition Component 203
3.2.1.3 Extend Composition . 205
3.2.1.4 Define VFB Component Constraints 206
3.2.1.5 Define VFB Application Software Component 207
3.2.1.6 Define VFB Sensor or Actuator Component 208
3.2.1.7 Define VFB Parameter Component 209
3.2.1.8 Define ECU Abstraction Component 210
3.2.1.9 Define Complex Driver Component 211
3.2.1.10 Define VFB NvBlock Software Component 212
3.2.1.11 Define Wrapper Components to Integrate Legacy Software . . 213
3.2.1.12 Define VFB Interfaces . 214
3.2.1.13 Define VFB Types . 215
3.2.1.14 Define VFB Modes . 216
3.2.1.15 Define VFB Constants . 216
3.2.1.16 Define VFB Timing . 217
3.2.1.17 Define VFB Variants . 218
3.2.1.18 Define VFB Integration Connector 219
3.2.1.19 Translate Non-AUTOSAR Description to AUTOSAR Description 220

3.2.2 Work Products . 221
3.2.2.1 VFB System . 221
3.2.2.2 Overall VFB System . 224
3.2.2.3 VFB System Extract . 224

11 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.2.2.4 VFB Top Level System Composition 225
3.2.2.5 VFB Composition Component 226
3.2.2.6 VFB AUTOSAR Standard Package 226
3.2.2.7 AUTOSAR Specification of Application Interfaces 228
3.2.2.8 VFB Atomic Software Component 229
3.2.2.9 VFB Atomic Application Software Component 230
3.2.2.10 Complex Driver Component . 231
3.2.2.11 ECU Abstraction Software Component 231
3.2.2.12 VFB Parameter Component . 232
3.2.2.13 VFB Sensor Actuator Component 232
3.2.2.14 VFB NvBlock Software Component 233
3.2.2.15 VFB Non AUTOSAR Component 233
3.2.2.16 VFB Interfaces . 234
3.2.2.17 VFB Types . 235
3.2.2.18 VFB Data Type Mapping Set . 237
3.2.2.19 VFB Modes . 237
3.2.2.20 VFB Constants . 238
3.2.2.21 VFB Software Component Mapping Constraints 239
3.2.2.22 VFB Timing . 239
3.2.2.23 Description of a Non-AUTOSAR System 240
3.2.2.24 Integration Connector . 240

3.3 System . 241
3.3.1 Tasks . 241

3.3.1.1 Set System Root . 241
3.3.1.2 Assign Top Level Composition 242
3.3.1.3 Define ECU Description . 243
3.3.1.4 Define System Topology . 243
3.3.1.5 Deploy Software Component 244
3.3.1.6 Design CpSoftwareCluster . 245
3.3.1.7 Extend CpSoftwareCluster . 246
3.3.1.8 Generate or Adjust System Flat Map 247
3.3.1.9 Derive Communication Needs 248
3.3.1.10 Define Signal Path Constraints 249
3.3.1.11 Define System Variants . 250
3.3.1.12 Define System Timing . 251
3.3.1.13 Extend Topology . 252
3.3.1.14 Select Software Component Implementation 253
3.3.1.15 Select Design Time Variant . 254
3.3.1.16 Define System View Mapping 254
3.3.1.17 Create Transformer Specification 255
3.3.1.18 Define Rapid Prototyping Scenario 256

3.3.2 Work Products . 257
3.3.2.1 System Description . 257

12 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.2.2 Abstract System Description . 261
3.3.2.3 Complete ECU Description . 261
3.3.2.4 CpSoftwareCluster Extract . 262
3.3.2.5 System Description Root Element 263
3.3.2.6 System Mapping Overview . 263
3.3.2.7 Data Mapping . 265
3.3.2.8 Mapping of Software Components to ECUs 265
3.3.2.9 Mapping of Software Components to Implementations 266
3.3.2.10 Signal Path Constraints . 267
3.3.2.11 Topology . 267
3.3.2.12 Ecu Resources Description . 268
3.3.2.13 System Signal . 269
3.3.2.14 System Signal Group . 269
3.3.2.15 System Flat Map . 270
3.3.2.16 System Timing . 271
3.3.2.17 System View Mapping . 271
3.3.2.18 Transformer Design Bundle . 272
3.3.2.19 Custom Transformer Specification 272
3.3.2.20 Rapid Prototyping Scenario . 273

3.3.3 Communication Matrix and Communication Layers 273
3.3.3.1 Tasks . 274

3.3.3.1.1 Define Communication Matrix 274
3.3.3.1.2 Define Frames . 275
3.3.3.1.3 Define Signal PDUs . 276
3.3.3.1.4 Define Secured PDUs . 277
3.3.3.1.5 Define TP . 278
3.3.3.1.6 Define Network Management 279
3.3.3.1.7 Define PDU Gateway . 279
3.3.3.1.8 Define Signal Gateway . 280
3.3.3.1.9 Define RTE Fan-out . 281
3.3.3.1.10 Define Transformation Technology 281
3.3.3.1.11 Define E2E Transformer Technology 282
3.3.3.1.12 Define Transformation Chain 282

3.3.3.2 Work Products . 283
3.3.3.2.1 Communication Layers . 283
3.3.3.2.2 Communication Matrix . 284
3.3.3.2.3 Data Link Layer . 285
3.3.3.2.4 Interaction Layer . 285
3.3.3.2.5 Diagnostics Interaction Layer 286
3.3.3.2.6 Network Layer . 287
3.3.3.2.7 Serializer Transformer . 287
3.3.3.2.8 E2E Transformer . 287

3.3.4 ECU Extract . 288

13 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.4.1 Tasks . 288
3.3.4.1.1 Extract ECU Topology . 288
3.3.4.1.2 Generate or Adjust ECU Flat Map 289
3.3.4.1.3 Flatten Software Composition 290
3.3.4.1.4 Extract the ECU Communication 291
3.3.4.1.5 Extract the ECU Timing Model 292
3.3.4.1.6 Extract the ECU System Variant Model 293
3.3.4.1.7 Extract ECU Rapid Prototyping Scenario 294

3.3.4.2 Work Products . 295
3.3.4.2.1 ECU Extract . 295
3.3.4.2.2 ECU Extract Root Element 297
3.3.4.2.3 ECU Extract of VFB System 297
3.3.4.2.4 ECU Extract of Data Mapping 298
3.3.4.2.5 ECU Extract of Topology 298
3.3.4.2.6 ECU Extract for Communication 298
3.3.4.2.7 ECU Extract of System Timing 299
3.3.4.2.8 ECU Extract of System Variant Model 300
3.3.4.2.9 ECU Flat Map . 300
3.3.4.2.10 ECU Extract of Rapid Prototyping Scenario 301

3.4 Software Component . 301
3.4.1 Tasks . 302

3.4.1.1 Define Software Component Internal Behavior 302
3.4.1.2 Define Partial Flat Map . 303
3.4.1.3 Define Software Component Timing 304
3.4.1.4 Define SymbolProps for Types 305
3.4.1.5 Add Documentation to the Software Component 306
3.4.1.6 Generate Atomic Software Component Contract Header Files . 307
3.4.1.7 Generate Component Header File in Vendor Mode 309
3.4.1.8 Generate Component Prebuild Data Set 310
3.4.1.9 Implement Atomic Software Component 312
3.4.1.10 Compile Atomic Software Component 313
3.4.1.11 Map Software Component to BSW 314
3.4.1.12 Measure Component Resources 315
3.4.1.13 Recompile Component in ECU Context 316
3.4.1.14 Define Consistency Needs . 317
3.4.1.15 Generate Rapid Prototyping Wrapper 319

3.4.2 Work Products . 320
3.4.2.1 Delivered Atomic Software Components 320
3.4.2.2 Software Component Internal Behavior 322
3.4.2.3 Atomic Software Component Implementation 324
3.4.2.4 Software Component Documentation 325
3.4.2.5 Software Component Timing . 325
3.4.2.6 Software Component to BSW Mapping 326

14 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.4.2.7 Partial Flat Map . 326
3.4.2.8 Application Header File . 327
3.4.2.9 Software Component Data Types Header 328
3.4.2.10 Component RTE Prebuild Configuration Header 328
3.4.2.11 Atomic Software Component Source Code 329
3.4.2.12 Atomic Software Component Object Code 329
3.4.2.13 Optimized Application Header File 330
3.4.2.14 Optimized Software Component Object Code 330
3.4.2.15 Consistency Needs . 330
3.4.2.16 Rapid Prototyping Wrapper Header File 331
3.4.2.17 Rapid Prototyping Wrapper Source Code 331

3.4.3 Tools . 332
3.4.3.1 Component API Generator Tool 332

3.5 Basic Software . 332
3.5.1 Tasks . 333

3.5.1.1 Define BSW Types . 333
3.5.1.2 Define BSW Entries . 333
3.5.1.3 Define BSW Interfaces . 334
3.5.1.4 Define Vendor Specific Module Definition 335
3.5.1.5 Define BSW Behavior . 336
3.5.1.6 Define BSW Module Timing . 337
3.5.1.7 Generate BSW Contract Header Files 338
3.5.1.8 Implement a BSW Module . 339
3.5.1.9 Develop BSW Module Generator 340
3.5.1.10 Create Library . 341
3.5.1.11 Compile BSW Core Code . 342
3.5.1.12 Generate BSW Module Prebuild Dataset 344

3.5.2 Work Products . 345
3.5.2.1 BSW Standard Package . 345
3.5.2.2 BSW Module Bundle . 346
3.5.2.3 BSW Design Bundle . 347
3.5.2.4 BSW Module ICS Bundle . 347
3.5.2.5 BSW Module Delivered Bundle 348
3.5.2.6 AUTOSAR Software Module Specification 350
3.5.2.7 AUTOSAR Standard Types and Blueprints 350
3.5.2.8 AUTOSAR Platform Types and Blueprints 351
3.5.2.9 BSW Module Generator . 351
3.5.2.10 AUTOSAR Standardized ECU Configuration Parameter Definition 352
3.5.2.11 BSW Module Preconfigured Configuration 352
3.5.2.12 BSW Module Recommended Configuration 353
3.5.2.13 BSW Module Vendor Specific Configuration Parameter Definition 353
3.5.2.14 BSW Types . 354
3.5.2.15 Basic Software Entries . 355

15 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.5.2.16 Basic Software Module Description 355
3.5.2.17 Basic Software Module Internal Behavior 356
3.5.2.18 Basic Software Module Implementation Description 356
3.5.2.19 Build Action Manifest . 357
3.5.2.20 Basic Software Module Timing 358
3.5.2.21 Basic Software Module Core Header 358
3.5.2.22 Basic Software Module Core Source Code 359
3.5.2.23 Basic Software Interlink Header 359
3.5.2.24 Basic Software Interlink Types Header 360
3.5.2.25 BSW RTE Prebuild Configuration Header 360
3.5.2.26 Basic Software Module Object Code 360
3.5.2.27 Library Description . 361
3.5.2.28 Library Header Files . 361
3.5.2.29 Library Object Code . 362
3.5.2.30 Custom Transformer . 362

3.6 ECU Integration and Configuration . 363
3.6.1 Tasks . 363

3.6.1.1 Provide RTE Calibration Dataset 363
3.6.1.2 Define Integration Variant . 364
3.6.1.3 Generate Base ECU Configuration 365
3.6.1.4 Generate Updated ECU Configuration 366
3.6.1.5 Define ECU Timing . 367
3.6.1.6 Configure EcuC . 368
3.6.1.7 Configure OS . 369
3.6.1.8 Configure RTE . 370
3.6.1.9 Configure Watchdog Manager 372
3.6.1.10 Configure Mode Management 373
3.6.1.11 Configure NvM . 374
3.6.1.12 Configure Diagnostics . 375
3.6.1.13 Create Service Component . 376
3.6.1.14 Connect Service Component 378
3.6.1.15 Configure COM . 379
3.6.1.16 Configure IO Hardware Abstraction 380
3.6.1.17 Configure MCAL . 381
3.6.1.18 Configure Transformer . 382
3.6.1.19 Generate BSW Configuration Code and Model Extensions . . . 383
3.6.1.20 Generate Local MC Data Support 384
3.6.1.21 Create MC Function Model . 385
3.6.1.22 Generate RTE . 386
3.6.1.23 Generate Scheduler . 388
3.6.1.24 Generate OS . 389
3.6.1.25 Generate RTE Prebuild Dataset 390
3.6.1.26 Compile ECU Source Code . 391

16 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.1.27 Generate ECU Executable . 393
3.6.1.28 Generate RTE Postbuild Dataset 394
3.6.1.29 Generate A2L . 395
3.6.1.30 Measure Resources . 397
3.6.1.31 Refine Rapid Prototyping Scenario 398
3.6.1.32 Merge CpSoftwareCluster . 398

3.6.2 Work Products . 399
3.6.2.1 BSW Module Integration Bundle 399
3.6.2.2 ECU Software Delivered . 400
3.6.2.3 Service Component Description 401
3.6.2.4 ECU Service Connectors . 402
3.6.2.5 ECU Timing . 402
3.6.2.6 BSW Module Interface Extension 403
3.6.2.7 BSW Module Behavior Extension 403
3.6.2.8 BSW Module Implementation Extension 404
3.6.2.9 ECU Configuration Values . 404
3.6.2.10 RTE Implementation Description 406
3.6.2.11 RTE Prebuild Configuration Header 406
3.6.2.12 Calibration Parameter Value Set 407
3.6.2.13 MC Function Model . 408
3.6.2.14 Local Measurement and Calibration Support Data 408
3.6.2.15 RTE Measurement and Calibration Support Data 409
3.6.2.16 RTE Source Code . 410
3.6.2.17 BSW Scheduler Code . 410
3.6.2.18 OS Generated Code . 410
3.6.2.19 RTE Postbuild Variants Dataset 411
3.6.2.20 ECU Object Code . 411
3.6.2.21 ECU Executable . 412
3.6.2.22 Merged ECU Executable . 412
3.6.2.23 Map of the ECU Executable . 412
3.6.2.24 A2L File . 413
3.6.2.25 MC Driver Support Data . 413
3.6.2.26 MC Additional Config . 414

3.6.3 Tools . 414
3.6.3.1 RTE Generator . 414
3.6.3.2 BSW Generator Framework . 414

3.6.4 ECU Config Classes . 415
3.6.4.1 Tasks . 415

3.6.4.1.1 Compile Unconfigured Bsw 415
3.6.4.1.2 Compile Configured Bsw 416
3.6.4.1.3 Compile BSW Configuration Data 417
3.6.4.1.4 Compile Generated BSW 418
3.6.4.1.5 Generate BSW Precompile Configuration Header 418

17 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.4.1.6 Generate BSW Source Code 419
3.6.4.1.7 Generate BSW Configuration Code 420
3.6.4.1.8 Generate BSW Postbuild Configuration Code 420
3.6.4.1.9 Link ECU Code after Precompile Configuration 421
3.6.4.1.10 Link ECU Code During Link Time Configuration 421
3.6.4.1.11 Link ECU Code During Post-build Time 422

3.6.4.2 Work Products . 423
3.6.4.2.1 BSW Module Configuration Header File 423
3.6.4.2.2 BSW Module Completely Generated Source Code 423
3.6.4.2.3 BSW Module Configuration Data Source Code 424
3.6.4.2.4 BSW Module Configuration Data Object Code 424
3.6.4.2.5 BSW Module Configuration Data Loadable to ECU Memory 424

A Mentioned Class Tables 426

B Change History 442
B.1 Change History of this document according to AUTOSAR Release R4.1.1 442

B.1.1 Added Specification Items in 4.1.1 442
B.1.2 Changed Specification Items in 4.1.1 445
B.1.3 Deleted Specification Items in 4.1.1 445

B.2 Change History of this document according to AUTOSAR Release R4.1.2 445
B.2.1 Added Specification Items in 4.1.2 445
B.2.2 Changed Specification Items in 4.1.2 445
B.2.3 Deleted Specification Items in 4.1.2 445

B.3 Change History of this document according to AUTOSAR Release R4.1.3 446
B.3.1 Added Specification Items in 4.1.3 446
B.3.2 Changed Specification Items in 4.1.3 446
B.3.3 Deleted Specification Items in 4.1.3 446

B.4 Change History of this document according to AUTOSAR Release R4.2.1 446
B.4.1 Added Specification Items in 4.2.1 446
B.4.2 Changed Specification Items in 4.2.1 447
B.4.3 Deleted Specification Items in 4.2.1 447

B.5 Change History of this document according to AUTOSAR Release R4.2.2 447
B.5.1 Added Specification Items in 4.2.2 447
B.5.2 Changed Specification Items in 4.2.2 448
B.5.3 Deleted Specification Items in 4.2.2 448

B.6 Change History of this document according to AUTOSAR Release R4.3.0 448
B.6.1 Added Specification Items in 4.3.0 448
B.6.2 Changed Specification Items in 4.3.0 448
B.6.3 Deleted Specification Items in 4.3.0 449

B.7 Change History of this document according to AUTOSAR Release R4.3.1 449
B.7.1 Added Specification Items in 4.3.1 449
B.7.2 Changed Specification Items in 4.3.1 449
B.7.3 Deleted Specification Items in 4.3.1 449

18 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

B.8 Change History of this document according to AUTOSAR Release R4.4.0 449
B.8.1 Added Specification Items in 4.4.0 449
B.8.2 Changed Specification Items in 4.4.0 449
B.8.3 Deleted Specification Items in 4.4.0 453

B.9 Change History of this document according to AUTOSAR Release R19-11 453
B.9.1 Added Specification Items in 19-11 453
B.9.2 Changed Specification Items in 19-11 453
B.9.3 Deleted Specification Items in 19-11 455

B.10 Change History of this document according to AUTOSAR Release R20-11 455
B.10.1Added Specification Items in R20-11 455
B.10.2Changed Specification Items in R20-11 455
B.10.3Deleted Specification Items in R20-11 455

B.11 Change History of this document according to AUTOSAR Release R21-11 455
B.11.1Added Specification Items in R21-11 455
B.11.2Changed Specification Items in R21-11 455
B.11.3Deleted Specification Items in R21-11 456

B.12 Change History of this document according to AUTOSAR Release R22-11 456
B.12.1Added Specification Items in R22-11 456
B.12.2Changed Specification Items in R22-11 456
B.12.3Deleted Specification Items in R22-11 456

B.13 Change History of this document according to AUTOSAR Release R23-11 456
B.13.1Added Specification Items in R23-11 456
B.13.2Changed Specification Items in R23-11 456
B.13.3Deleted Specification Items in R23-11 456

B.14 Change History of this document according to AUTOSAR Release R24-11 457
B.14.1Added Specification Items in R24-11 457
B.14.2Changed Specification Items in R24-11 457
B.14.3Deleted Specification Items in R24-11 457

B.15 Change History of this document according to AUTOSAR Release R25-11 457
B.15.1Added Specification Items in R25-11 457
B.15.2Changed Specification Items in R25-11 457
B.15.3Deleted Specification Items in R25-11 457

19 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

References

[1] Standardization Template
AUTOSAR_FO_TPS_StandardizationTemplate

[2] Glossary
AUTOSAR_FO_TR_Glossary

[3] Software Process Engineering Meta-Model Specification
http://www.omg.org/spec/SPEM/2.0/

[4] Virtual Functional Bus
AUTOSAR_CP_TR_VFB

[5] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

[6] System Template
AUTOSAR_CP_TPS_SystemTemplate

[7] General Specification of Basic Software Modules
AUTOSAR_CP_SWS_BSWGeneral

[8] General Specification of Transformers
AUTOSAR_CP_ASWS_TransformerGeneral

[9] Basic Software Module Description Template
AUTOSAR_CP_TPS_BSWModuleDescriptionTemplate

[10] Specification of ECU Configuration
AUTOSAR_CP_TPS_ECUConfiguration

[11] Specification of Memory Mapping
AUTOSAR_CP_SWS_MemoryMapping

[12] Specification of Module E2E Transformer
AUTOSAR_CP_SWS_E2ETransformer

[13] Diagnostic Extract Template
AUTOSAR_CP_TPS_DiagnosticExtractTemplate

[14] Specification of RTE Software
AUTOSAR_CP_SWS_RTE

[15] ISO 26262:2018 Road vehicles -– Functional Safety
https://www.iso.org

[16] Generic Structure Template
AUTOSAR_FO_TPS_GenericStructureTemplate

[17] Specification of ECU Resource Template
AUTOSAR_CP_TPS_ECUResourceTemplate

20 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

http://www.omg.org/spec/SPEM/2.0/
https://www.iso.org

Methodology for Classic Platform
AUTOSAR CP R25-11

1 Introduction

1.1 Objective

AUTOSAR requires a common technical approach for some steps of system develop-
ment. This approach is called the AUTOSAR methodology. This document defines
and describes this AUTOSAR methodology. It covers all major steps of the develop-
ment of a system with AUTOSAR: from the definition of the Virtual Functional
Bus to the generation of an ECU executable.

1.2 Document Conventions

This document follows a list of document conventions, which are described in the fol-
lowing.

Technical terms of AUTOSAR are typeset in mono spaced font, e.g. ECU. As a general
rule, plural forms of technical terms are created by adding "s" to the singular form, e.g.
ECUs.

This document contains specification items in textual form that are distinguished from
the rest of the text by a unique numerical ID, a headline, and the actual text starting
after the ⌈ character and terminated by the ⌋ character. The conventions for require-
ments traceability follow [TPS_STDT_00080], see Standardization Template ([1, FO
TPS Standardization Template]).

1.3 Scope

[TR_METH_01003] Scope of the AUTOSAR methodology ⌈The AUTOSAR method-
ology is not a complete process description, but rather aggregates the various ele-
ments of AUTOSAR and shows how they are brought together to develop a complete
system.⌋

Note: Sample aggregations are provided as Use Cases in chapter 2.

[TR_METH_01004] Support for various stakeholders by the AUTOSAR method-
ology ⌈The structure of the methodology was designed to help cover the needs of
various AUTOSAR stakeholders:

• Organizations: Methodology is modeled in a modular format to allow organiza-
tions to tailor it and combine the Methodology within their own internal processes,
while identifying points where they interact with other organizations.

• Engineers: Methodology is scoped to allow engineers of various roles quickly find
AUTOSAR information that is relevant to their specific needs.

21 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

• Tool Vendors: Methodology provides a common language to share among all
AUTOSAR members and a common expectation of what capabilities tools should
support.

⌋

[TR_METH_01005] Restrictions of AUTOSAR methodology ⌈Furthermore, the
methodology does not prescribe a precise order in which activities should be carried
out. The methodology is a mere work-product flow: it defines the dependencies of
activities on work-products. This means that when the information specified in the
methodology is available, an activity can be carried out to produce the output work-
products.

This restriction implies that the AUTOSAR methodology does not define an overall
time-line and does not define how and when iterations are carried out. For example
during system and design, the same activity (namely configuring the system) will be
carried out repeatedly with various levels of precision. There will be a first ”rough”
configuration and a final ”precise” configuration which might depend on the feedback
from the actual configuration or even implementation of ECUs. How and when such
refinement steps are to be carried out is NOT defined in the methodology.⌋

Note: The set of defined activities is described in chapter 3.

1.4 Terms and Abbreviations

The main list of terms and abbreviations are defined in [2, FO TR Glossary].

Abbreviation / Acronym Description

SPEM Software and Systems Process Engineering Meta-Model (previously called Software
Process Engineering Metamodel) - a way of modeling processes.

Table 1.1: Acronyms and abbreviations used in the scope of this document

1.5 Overview

[TR_METH_01000] Domains of the AUTOSAR methodology ⌈The AUTOSAR
methodology is structured into several domains of development:

• Virtual Functional Bus

• System

• Software Component

• Basic Software

• ECU

22 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

These domains are depicted in the methodology overview workflow.⌋

Note: See Figure 2.9.

[TR_METH_01001]AUTOSAR methodology assets ⌈For each domain relevant Work
Product, Task, Role, and Tool elements are defined. In addition, there are ele-
ments that are common for all domains.⌋

Note: See chapter 3 and chapter 3.1 for the relevant elements.

[TR_METH_01002] AUTOSAR methodology use cases ⌈Use cases show how these
standard reusable elements are applied to support real-world development. The Over-
all View provides an end to end view on the typical use cases of all domains.⌋

Note: See chapter 2 for the use cases and chapter 2.1 for the overall view.

1.6 Methodology Concepts

[TR_METH_01006] General AUTOSAR methodology concepts ⌈The AUTOSAR
methodology defines activities1 performed by roles that create work products as gen-
eral reusable method patterns. The reusable method pattern elements are described
in the methodology library elements chapter. The methodology also describes sam-
ple process patterns of typical use cases considered for the creation of AUTOSAR
work products. The patterns use process elements that are described in the use case
elements chapter.

The definitions and the figures are made according to the Software Process Engineer-
ing Meta-Model Specification [3]. The symbols are taken from the Enterprise Architect
modeling tool.⌋

Note: See chapter 1.6.1 for the methodology library elements and chapter 1.6.2 for the
use case elements.

1.6.1 Methodology Library Elements

[TR_METH_01007] Methodology Library ⌈The Methodology Library defines
the Methodology Library Elements of every method pattern such as Roles,
Tasks, and Work Product Definitions.⌋

Note: See chapter 3.

1The RS_Methodology document uses the term “Activity” when addressing process elements in gen-
eral. In this document the atomic process elements are called “Tasks”, whereas an “Activity” is used to
organize tasks and to define processes.

23 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

[TR_METH_01008] Methodology Library Element ⌈A Methodology Li-
brary Element contains a description of the element to define its purpose in the
methodology and thus provides the basic contents of the AUTOSAR methodology. The
Methodology Library Elements are used for the description of the related devel-
opment processes. These Methodology Library Elements can been seen as a
standard.⌋

[TR_METH_01009] Relation of Methodology Library and Methodology Li-
brary Element to the SPEM meta model ⌈The Methodology Library and
the Methodology Library Elements correspond to the Method Content and
Method Content Elements in the SPEM meta model [3].⌋

[TR_METH_01010] Overview of Methodology Library Elements ⌈Methodol-
ogy Library Elements comprise:

• Task Definition

• Work Product Definition

• Role Definition

• Tool Definition

• Guidance 2

⌋

Note: See chapter 1.6.1.1 for Task Definition, chapter 1.6.1.2 for Work Prod-
uct Definition, chapter 1.6.1.3 for Role Definition, chapter 1.6.1.4 for Tool
Definition and chapter 1.6.1.5 for Guidance.

The element symbols are shown in Figure 1.1.

Work Products

Deliverable
Guidance

Task1

RoleDefinition Tool1

WorkProduct1

Figure 1.1: Symbols of AUTOSAR Methodology Library Element

s

2The Guidance is currently not used in the AUTOSAR Methodology. It may be used in future
AUTOSAR releases.

24 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

[TR_METH_01028] Usage of tables ⌈Beside the graphical visualization of the different
SPEM diagrams, tables are used to specify and describe the model elements in detail.⌋

[TR_METH_01113] Usage of hyperlinks ⌈Beside the conventional references to
chapters, figures and sections the AUTOSAR methodology document utilizes hyper-
links to the used SPEM elements. These hyperlinks are used across the text and
within the tables. Using the hyperlinks the reader can quickly navigate to the related
elements such as Tasks, Activity, Roles, Work Products and Tools.⌋

1.6.1.1 Task Definition

[TR_METH_01011]Task Definition ⌈According to the SPEM meta model, a Task
Definition is an assignable unit of work that is being performed by specific Roles.
The duration of a task is generally a few hours to a few days. Tasks usually generate
one or more work products. Each Task is associated to input and output Work Prod-
ucts. Inputs are differentiated in mandatory and optional inputs. A Task is used as
one element among others to define a Process.⌋

[TR_METH_01012] Task semantics ⌈A Task has a clear purpose in which the per-
forming roles achieve a well defined goal. It provides complete step-by-step explana-
tions of doing all the work that needs to be done to achieve this goal. This description
is completely independent of when in a process lifecycle the work would actually be
done. It does not describe when what work is being done, but describes all the work
that gets done.⌋

[TR_METH_01013] Task usage ⌈When a Task will be used in a development pro-
cess, it provides the information which pieces of the Task will actually be performed at
any particular point in time. This assumes that the Task will be performed in the pro-
cess over and over again, but each time with a slightly different emphasis on different
steps or aspects of the task description [3].

For the AUTOSAR Methodology, a Task is a reusable element that is used across
multiple methodology use cases. A Task is associated to at least one performing
Role and may have several additional performers. Tasks use Tools to achieve their
outputs. Optional performers and optional input and outputs to the task are described
by the relationship’s multiplicity.⌋

An overview of the Task as it is used in this document is given in Figure 1.2.

25 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition

WorkProduct1 WorkProduct3

WorkProduct2
Tool1

RoleDefinition

+Work Product

consumed by the Task

0..* «input»

«performs»

+Role that performs the Task

«output»

+Work Product produced

by the Task

0..*

«used tool»

+Tool used for the Task

«inoutput»
+Work Product

produced and

consumed by the

Task 0..*

Figure 1.2: Task Definition Overview

Task Definition Task Name
Package Location in the MetaModel package

Brief Description some description as summary

Description some description as more detailed explanation

Extended By on demand: Extended By Task(s)

Extends on demand: extended Task(s)

Relation Type Related Element Mult. Note

Performed by what Role performs the
Task

0..1 or 1 Description of the specific role needed

Consumes what is consumed by the
Task

0..1 or
0..*

Explanation on why this Element is needed.

Produces what is produced by the
Task

0..1 or
0..*

Explanation on why this Element is needed.

In/out what is produced and
consumed by the Task

0..1 or
0..*

Explanation on why this Element is needed.

Used Tool Tool used for that Task 0..1 or 1 Explanation on why this Tool is needed.

Table 1.2: Task Definition

1.6.1.2 Work Product Definition

[TR_METH_01014] Work Product Definition ⌈According to the SPEM meta
model, a Work Product Definition is used, modified, and produced by Tasks
(i.e. a task input and output). Work Products are in most cases tangible work prod-
ucts consumed, produced, or modified by Tasks. They may serve as a basis for defin-
ing reusable assets. A Work Product can be related to other work products by a kind
of nesting relationship, but work products shall not have circular references with other
work products.⌋

26 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

[TR_METH_01015] Relationship between Roles and Work Products ⌈Roles use
Work Products to perform Tasks and produce Work Products in the course of
performing the Tasks. Work Products are in the responsibility of the associated
Roles, thereby also defining a set of skills the performing Role should have. Even
though one Role might own a specific type of Work Product, other Roles can still
use the Work Product for their work, and update them [3].⌋

A Work Product can be of type Artifact or Deliverable:

• [TR_METH_01017] Artifact Definition ⌈Artifact: A tangible Work
Product that is consumed, produced, or modified by one or more Tasks. Ar-
tifacts may be composed of other Artifacts and may serve as a basis for
defining reusable assets [3].⌋

[TR_METH_01018] Kinds of Artifacts ⌈For the AUTOSAR Methodology, typ-
ical kinds of artifacts are:

– AUTOSAR XML

– Source Code

– Object Code

– Executable

– Text

⌋

Note: For more details see chapter 3.1.1.

[TR_METH_01019] Properties of Artifacts ⌈At a high level, an artifact is rep-
resented as a single conceptual file. As a rule of thumb, the AUTOSAR Method-
ology will distinguish artifacts that have most of the following properties:

– Separate versioning is needed

– A dedicated life cycle has to be cared for

– Different exchange requirements need to be fulfilled

– Change in responsible roles

– Change in multiplicities

– Change in physical representation or format

– One of the products may be a separate deliverable to another party

– Separation of standardized from non-standardized parts

⌋

27 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

[TR_METH_01020] Relationship between Artifacts and meta-model ele-
ments ⌈To express a relationship between artifacts of the methodology model
and any AUTOSAR meta-model element, a relationship with the stereotype «at-
pUseMetaModelElement» is used to express this ”dependency”. For AUTOSAR
meta-model elements that are not directly related to methodology elements, there
is usually an indirect relationship via a related meta-model element. The method-
ology can thus focus on the main elements of the meta-model.⌋

• [TR_METH_01021] Deliverable Definition ⌈Deliverable: Used to pre-
define typical or recommended content in the form of Work Products that would
be packaged for delivery. Deliverables are used to represent an output from
a process that has value, material or otherwise, to a client, customer, or other
stakeholder.⌋

[TR_METH_01022] Aggregation of Work Products ⌈A Deliverable is a
Work Product that aggregates other Work Products. The Method Con-
tent maintains pre-configured potential Deliverables [3]. For the AUTOSAR
Methodology, the aggregation relationship is used to indicate which Work Prod-
ucts are contained in a deliverable.⌋

Work Product

Kind

Deliverable

Definition

Artifact

Definition

PackageableElement

ARPackage::ARElement

Task1 Task2

«input»

+task

consuming the

artifact

+task

providing

the artifact

«output»

+task providing

and consuming

the deliverable

«inoutput»

«AtpUseMetaModelElement»

+related Metamodel element

+task providing

the deliverable

«output»

+task providing

and consuming

the artifact

«inoutput»

«input»

+task consuming

the deliverable

+aggregates artifacts and/or deliverables

0..*

«aggregation»

+to which Deliverable is it aggregated

Figure 1.3: Work Product Definition Overview

Category (Work
Product Kind)

Category / Work Product Kind Name

Package Location in the MetaModel package

Brief Description some description as summary

Description some description as more detailed explanation

Table 1.3: Category Definition

28 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Artifact Artifact Name
Package Location in the MetaModel package

Brief Description some description as summary

Description some description as more detailed explanation

Kind Work Product Kind, e.g. ARXML

Extended By on demand: Extended By Work Product(s)

Extends on demand: extended Work Product(s)

Relation Type Related Element Mult. Note

Aggregates What Work Products
(Artifacts) are aggregated

0..1 or
0..*

Description of the Aggregation.

Aggregated by To which Work Product
(Deliverable) is it
aggregated

0..1 or 1 Description of the context of the Aggregation.

Consumed by Which task is consuming
the Work Product

0..1 or 1 Description of the context of the Work Product
production and consumption.

In/out Which task is producing
and consuming the Work
Product

0..1 or 1 Description of the context of the Work Product
production and consumption.

Produced by Which task is producing the
Work Product

0..1 or 1 Description of the context of the Work Product
production.

Use meta model
element

MetamodelElement
Relationship

0..1 or 1 Meta Model Class that implements or contributes to the
implementation of the Work Product

Table 1.4: Artifact Definition

Deliverable Deliverable Name
Package Location in the MetaModel package

Brief Description some description as summary

Description some description as more detailed explanation

Kind Work Product Kind, e.g. ARXML

Extended By on demand: Extended By Work Product(s)

Extends on demand: extended Work Product(s)

Relation Type Related Element Mult. Note

Aggregates What Work Products
(Artifacts) are aggregated

0..1 or
0..*

Description of the Aggregation.

Aggregated by To which Work Product
(Deliverable) is it
aggregated

0..1 or 1 Description of the context of the Aggregation.

Consumed by Which task is consuming
the Work Product

0..1 or 1 Description of the context of the Work Product
production and consumption.

In/out Which task is producing
and consuming the Work
Product

0..1 or 1 Description of the context of the Work Product
production and consumption.

Produced by Which task is producing the
Work Product

0..1 or 1 Description of the context of the Work Product
production.

Use meta model
element

MetamodelElement
Relationship

0..1 or 1 Meta Model Class that implements or contributes to the
implementation of the Work Product

Table 1.5: Deliverable Definition

29 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

1.6.1.3 Role Definition

[TR_METH_01023] Role Definition ⌈According to the SPEM meta model, Role
Definitions define responsibilities of an individual or a set of individuals and thereby
define a set of related skills, competencies, and qualifications needed to perform a
Task. A Role can be filled by one person or multiple people, one person may fill
several Roles. Each Role performs Tasks.⌋

[TR_METH_01024] Role assignment ⌈Roles are not individuals or resources. In-
dividual members of the development organization will wear different hats, or perform
different Roles. The mapping from individual to Role, usually performed by the project
manager when planning and staffing a project, allows different individuals to act as sev-
eral different Roles, and for a Role to be taken by several individuals [3].

In the AUTOSAR Methodology, a Role also assigns the responsibility of a Task and
defines optional performers. Performers that are responsible for e.g. a Task have
a multiplicity of 1 for the relationship to the Task, optional performers have optional
multiplicity assigned. Role Definitions are usually generic and still provide suffi-
cient level of detail for managers to organize a team. Examples of Roles are ”System
Engineer”, ”Safety Engineer”, or ”Software Developer”.⌋

Role Definition RoleDefinition2

Task1 Task2

+responsible for

«performs»

1

«performs»

+supports

«performs»

+ optional performer

0..*

Figure 1.4: Role Definition Overview

Role Role Name
Package Location in the MetaModel package

Brief Description some description as summary

Description some description as more detailed explanation

Relation Type Related Element Mult. Note

Performs In which task the performer
is acting

0..1 or 1 Description of the activities of role in task

Table 1.6: Role Definition

1.6.1.4 Tool Definition

[TR_METH_01025] Tool Definition ⌈According to the SPEM meta model, Tool
Definitions can be used to specify a tool’s participation in a Task. A Tool Defi-

30 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

nition describes the capabilities of a CASE tool, general purpose tool, or any other
automation unit that supports the associated Roles in performing the work defined by
a Task. A Tool can identify a resource as useful, recommended, or necessary for a
task’s completion. A Tool can also be used to manage one or more Work Products
[3].

The AUTOSAR Methodology uses the Tool Definition to describe AUTOSAR spe-
cific (e.g. Software Component Contract Generator) and other general Tools (e.g.
Compilers). The relationship of a Tool to a Task shows which Tools a Role will
need to perform the Task.⌋

Tool Definition

Task1

+supported

by tool

«used tool»

Figure 1.5: Tool Definition Overview

Tool Tool Name
Package Location in the MetaModel package

Brief Description some description as summary

Description some description as more detailed explanation

Kind Tool Kind (e.g. Editor)

Relation Type Related Element Mult. Note

Used Task where the tool is used 0..1 or 1 Description of the activites supported by the tool in this
task

Table 1.7: Tool Definition

1.6.1.5 Guidance

[TR_METH_01026] Guidance definition ⌈According to the SPEM meta model, a
Guidance provides additional information related to e.g. Roles, Work Products,
and Tasks. A Guidance is classified to indicate a specific type for which perhaps a
specific structure and type of content is assumed [3].⌋

[TR_METH_01027] Guidance kinds ⌈A Guidance can be a

• Supporting Material: Supporting Material is a catch-all for other
types of guidance not specifically defined elsewhere. It can be related to all kinds
of Content Elements, i.e., including other guidance elements. The AUTOSAR
Methodology uses the Supporting Material Guidance type to define title
pages, change histories, disclaimers etc.

• Tool Mentor: A Tool Mentor shows how to use a specific Tool to accom-
plish some piece of work either in the context of or independent from a Task or

31 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Activity. In the context of the AUTOSAR Methodology, a Tool Mentor is
used in the same way as the Tool element.

• White Paper: White Papers are concept guidances that have been exter-
nally reviewed or published and can be read and understood in isolation from
other Method Content. AUTOSAR documents are examples of White Pa-
pers.

Other Guidances such as Checklists, Concepts, Estimates, Guidelines, Practices,
Reports, Reusable Assets, Roadmaps, or Templates as defined in [3] are not used
within the AUTOSAR Methodology.⌋

Guidance (Supporting

Material, Tool Mentor,

White Paper)

Task1

RoleDefinition

WorkProduct
«refersTo»

«refersTo»

«refersTo»

Figure 1.6: Guidance Overview

1.6.2 Use Case Specifications

This section explains how the use cases in chapter 2 are specified. The first two sub-
sections introduce the main constituents of the use cases. Afterwards, it is explained
how these elements together with the Methodology Library elements are used for de-
scribing the use cases.

[TR_METH_01031] Adaptability of the AUTOSAR methodology ⌈The main focus of
this section is merely to provide a use case process flow that can be supported by an
AUTOSAR tool chain rather than to define a complete process description. One reason
for doing this is that the AUTOSAR methodology should be adaptable to development
processes of different organizations.⌋

[TR_METH_01032] Use case elements ⌈This section describes the main elements to
build a use case, which are given by the Capability Pattern and the Activity.
Roles, Work Products, Deliverables and Tasks are used directly to describe
the details of an Activity. The SPEM meta model additionally defines the Role Use
, the Work Product Use and the Task Use elements, which are not used in the
AUTOSAR methodology. Whereas these are important elements when applying SPEM

32 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

in an organization, the AUTOSAR methodology does not necessarily need these ele-
ments since no instantiation of the Enterprise Architect model is intended.⌋

Note: The element symbols are shown in Figure 1.7.

Capabili tyPattern Activity

Figure 1.7: Symbols of AUTOSAR Use Case Elements

1.6.2.1 Activity

[TR_METH_01033] Definition of Activities ⌈In the SPEM meta model, an Ac-
tivity is the main building block to define a process. An Activity is usually a
defined task or work to be done that is commonly executed in one sequence.⌋

[TR_METH_01034] Composition of Activities ⌈Activities can include other
Activities and thereby often decompose a flow of work and show which Activity
precedes other Activities [3]. At the lowest level, Activities are collections of
work breakdown elements which in AUTOSAR methodology are Tasks, Roles, and
Work Products.⌋

[TR_METH_01035] Definition of Processes ⌈A Process is a special Activity
in the SPEM meta model that describes a typical structure of development projects
or parts of them. A Process focuses on the lifecycle and the sequencing of work in
breakdown structures. Processes contain sequences of Task and Activities and
thereby express a lifecycle of the product under development. Processes also define
how to get from one milestone to the next by defining sequences of work, operations,
or events [3].⌋

1.6.2.2 Capability Pattern

The methodology library elements (cf. Section 1.6.1) are referenced in order to de-
scribe together with activities the so-called Capability Patterns.

[TR_METH_01029] Capability Pattern definition ⌈A Capability Pattern3

is a process pattern that contains a reusable set of activities.⌋

3In Enterprise Architect a SPEM “Capability Pattern” is called “Process Pattern”.

33 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

[TR_METH_01030] Composition of Capability Patterns ⌈Capability Pat-
terns can be assembled to larger Capability Patterns that describe develop-
ment processes or parts of a development process including typical use cases.⌋

1.6.2.3 Description of Use Cases

For the AUTOSAR Methodology, the main Use Cases are described with 3 types of
diagrams.

[TR_METH_01036] Description of overall Use Cases ⌈In the first diagram, one
Capability Pattern describes the overall Use Case, composing a set of Activ-
ities and their main outputs (Deliverables). In these diagrams, the predecessor
relationship can be used in order to define a sequence of the Activities. However,
the predecessor relationship can be skipped and Deliverables can be extended by
other Deliverables.⌋

Note: See Figure 1.8.

Activity2

Deliverable

Deliverable3

Deliverable2

Capabil ityPattern

Activity

Definition

«nesting»

+what is consumed

by the activity

«input»

«inoutput»

+what is provided and

consumed by the activity

«output»
+what is provided by

the activity

«nesting»

+belongs to

capabil i ty

pattern

«extends»

Figure 1.8: Activity Overview

The diagram is followed by its corresponding table as detailed hereunder:

34 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Process Pattern Capability Pattern Name

Package Location in the MetaModel package

Brief Description some description as summary

Description some description as more detailed explanation

Relation Type Related Element Mult. Note

Aggregates Activity nested to the
Capability Pattern or to
another Activity

0..1 or 1 Context explanation

Consumes Deliverable consumed by
the Capability Pattern

0..1 or
0..*

Why this Capability Pattern needs to consume this
Deliverable

Produces Deliverable produced by the
Capability Pattern

0..1 or
0..*

Why this Capability Pattern is producing this Deliverable

Table 1.8: Capability Pattern

[TR_METH_01037] Precise description of Use Cases ⌈The second type of dia-
gram are Activities and Task Definition diagrams which precise the main
Tasks and Work Products used for the Use Cases but are not as detailed as in
the Methodology Library. The task usage in these diagrams can be expressed by the
role and in the note of the aggregation. This information will be also visible in the gen-
erated table. The Work Products consumed or produced in the use cases will be not
integrated in the table for readability.⌋

Note: See Figure 1.9.

Activity

Definition

Task2

Task1

WorkProduct2

WorkProduct

«output» 1

«extends»

1«input»

+uses Task

«nesting»

+uses Task
«nesting»

Figure 1.9: Activity and Tasks Overview

The diagram is followed by its corresponding table as detailed hereunder:

Activity Activity Name

Package Location in the MetaModel package

Brief Description some description as summary

Description some description as more detailed explanation

Extended By on demand: Extended By Activity(s)

Extends on demand: extended Activity(s)

▽

35 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Activity Activity Name

Relation Type Related Element Mult. Note

Aggregates Nested task definition 0..1 or 1 Task usage description if needed

Consumes What is consumed by the
Activity

0..1 or
0..*

Explanation on why this Element is needed.

In/out What is produced and
consumed by the activity

0..1 or
0..*

Explanation on why this Element is needed.

Produces What is produced by the
activity

0..1 or
0..*

Explanation on why this Element is needed.

Predecessor Predecessor of the activity 0..1 or 1 Explanation on why the Predecessor is needed.

Table 1.9: Activity Definition

[TR_METH_01038] Detailed description of the work flow ⌈The third type of diagram
contains the Tasks and Work Products used by an Activity in order to show
the detailed work flow but not the structure of Activity Definitions. The table
generation is not done for this type of diagram.⌋

Note: See chapter 1.6.1.1, as example see Figure 2.16.

1.7 General Requirements

The following requirements are satisfied by the AUTOSAR methodology in a general
way together with other documents as listed in the following:

[TR_METH_01120] Definition of Consistency Needs ⌈The AUTOSAR methodol-
ogy supports the exchange of implicit communication behavior description as consis-
tency needs.⌋

Note: Chapters 3.4.1.14 and 3.4.2.15 depict the task and the artifact which allow to
define the corresponding consistency needs.

[TR_METH_01121]Building the AUTOSAR methodology document ⌈All AUTOSAR
methodology related model elements are consumed by an internal AUTOSAR tool that
automatically produces the corresponding text, tables, and diagrams. These artifacts
are included into a document which is automatically transformed into the final PDF
file.⌋

Note: See chapter 1.6.

[TR_METH_01122] Relations between AUTOSAR Work Products ⌈Work Prod-
ucts (Deliverables and Artifacts) are designed in such a way that no circular
references with other Work Products exist.⌋

[TR_METH_01123] Traceability to external artifacts ⌈Artifacts considered in the
Methodology model include external artifacts like c-code, libraries, documentation and
generated artifacts. General Non Autosar Artifact is a generic representation

36 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

of non AUTOSAR artifacts. It is aggregated by the General Deliverable and al-
lows linking and tracing of non AUTOSAR artifacts within the AUTOSAR context. Fur-
thermore, several specific artifacts represent non AUTOSAR elements or allow refer-
ring to them. The A2L File artifact is a representation of the measurement and cal-
ibration format that is defined by the ASAM and therefore out of scope of AUTOSAR.
The description of the Atomic Software Component Implementation artifact
explains how external artifacts can be referred from this ARXML artifact.⌋

Note: See e.g. chapter 3.5.2.22 for source code and chapter 3.4.2.4 for documentation.

[TR_METH_01124] Documentation of Work Products ⌈In order to document de-
sign decisions or restrictions during the development process each Work Product
can aggregate the corresponding documentation which is represented by the Gen-
eral Documentation artifact. The General Documentation artifact is added to
Work Products by processing the task Add General Documentation.⌋

37 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2 Use Cases

In the following, the main use cases for building an AUTOSAR system are described.
Chapter 2.1 gives an overall brief description of the main development steps. These
steps are elaborated in detail in chapter 2.2 to chapter 2.7. In addition, chapter 2.8 to
2.17 decribe general topics of interest.

2.1 Overall View

2.1.1 Purpose

This chapter provides a rough outline of the design steps to build an AUTOSAR system.
The main activities are depicted in Figure 2.8. The overall workflow including relevant
work products is given in Figure 2.9. A brief description of these main steps is given
below in section 2.1.2.2. For a detailed description please refer to the relevant chapters
2.2 to 2.7.

2.1.2 Description

2.1.2.1 Views on the System

During the development of an AUTOSAR system different views on the system can
exist. This allows to refine the system step by step as well as to concentrate on the
relevant parts during the development.

[TR_METH_01039] Virtual Functional Bus View ⌈The development of an AUTOSAR
System is based on the definition of the Virtual Functional Bus (VFB). The VFB
is an abstract communication mechanism that allows software components to interact.
This view is independent of any ECUs and networks used. Based on the VFB the
system is designed.⌋

[TR_METH_01040] Support of different system views ⌈The views on the system
might further be restricted to e.g. the functionality only, or a subsystem. These views
are described explicitly, whereas a mapping mechanism is used to express the relation
between them.⌋

In the following, three different views on the system are distinguished:

• [TR_METH_01041] Abstract system ⌈The abstract system abstracts from the
concrete software architecture and describes e.g. the functional view on the sys-
tem.⌋

• [TR_METH_01042] Overall technical system ⌈The overall technical system
is organized from the software architecture perspective including a topology of
ECUs.⌋

38 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

• [TR_METH_01043] Subsystem ⌈The subsystem is a reduced part of the overall
technical system and describes relevant aspects for a dedicated subsystem.⌋

2.1.2.2 Overall Workflow

The main activities in order to develop an AUTOSAR system are described briefly in the
following. The first step focuses on the development of an abstract system, followed
by the description of the VFB development and finally the activities for refining and
developing the system further.

[TR_METH_01044] Development of a functional view on the system ⌈The over-
all workflow starts with an optional activity. In this activity, the Abstract System
Description is developed in advance, which represents the overall system from a
functional or abstract view (functional architecture). On the one hand, this Abstract
System Descriptionmight contain VFB-related parts. This information might serve
as an input for the development of the VFB later and a mapping between those two
views might be established. Please note that during this step the functionality includ-
ing ports is mapped to software components. Therefore some ports used in the ab-
stract view might not be used in the subsequent development. On the other hand, the
Abstract System Description might contain information regarding the topology
and the mapping to ECUs. This is then the basis for the development of the concrete
System Description.⌋

Note: See Figure 2.1. The development of the Abstract System Description is
detailed in chapter 2.2.

VFB
 View

SW-C 1 SW-C 4SW-C 2 SW-C 3

A
bstract View

Functionality A Functionality B Functionality C Functionality D

Figure 2.1: Abstract view on the system (top) and exemplary mapping to the SW-Cs of
the VFB View (bottom)

39 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

[TR_METH_01045] Development of the Overall VFB System ⌈In case of omitting
the optional first step, the development directly starts with the definition of the Overall
VFB System. The VFB is an abstraction of the communication between software
components. It provides a dedicated view of all the software components the system
contains, independent of any ECUs and networks.⌋

Note: See Figure 2.2 and chapter 2.3 for more details.

Virtual Functional Bus

SW-C 3SW-C 2 SW-C 4SW-C 1

Figure 2.2: VFB View

[TR_METH_01046] Development of the system ⌈The VFB is refined into a system by
defining a topology of ECUs and networks and deploying software components to the
ECUs. Additionally, the communication matrices, which are required to interconnect
the distributed features, are derived. As a part of the communication development, a
custom transformation technology can be specified for transforming the data in case
of inter-ECU communication. This transformer specification is the basis for the imple-
mentation of the corresponding basic software module. The development of the system
can be achieved directly in one phase or in several phases.⌋

Note: See Figure 2.3.

Figure 2.3: Scope of the system

[TR_METH_01047] Two phase development approach ⌈The two phase approach is
used when there is an organizational separation of responsibility, where the primary or-
ganization (usually OEM) defines the overall system in the first phase, and several other
organizations (usually suppliers) define the subsystems in parallel during the second
phase. In this case, the primary organization hands over System Extracts, which

40 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

represent the subsystems of the whole system. These subsystems contain subsystem
VFBs, which are parts of the overall VFB.⌋

[TR_METH_01048] The overall system ⌈The overall system defines the major public
ECUs and topologies, and the subsystem design contributes by adding private ECUs
and networks to the system. Please note that portions defined within a subsystem are
not directly visible to any other subsystem or to the overall system.⌋

[TR_METH_01049] Interaction between organizations ⌈Additionally, the software
component structure of the System Extracts delivered by the primary organization
can be transformed into a different structure for each ECU by the receiving organization
(ECU System Description). In this case the System Extract of the primary
organization can be considered as a requirement and the subsystem of the receiving
organization represented by one or more ECU System Descriptions can be seen
as a solution, which has to fulfill the delivered requirements.⌋

Note: See Figure 2.4 for the scope of the System Extract and the ECU System
Description and chapter 2.5.3 to chapter 2.5.5 for details.

Figure 2.4: Scope of System Extract and ECU System Description

[TR_METH_01109] Producing ECU-specific deliverables ⌈After the system design
is complete, the portions that are related to a specific ECU are extracted producing
a deliverable for each ECU, the so-called ECU Extract. Compared to the previous
descriptions of the system or the ECU, the ECU Extract is fully decomposed and
contains atomic software components only. It is the basis for ECU configuration.⌋

Note: The activities for creating the ECU Extract are elaborated further in chapter
2.5.7.

[TR_METH_01110] Development of Software Components ⌈In parallel to the
system design, the software components (Delivered Atomic Software Compo-
nents) are implemented according to the definitions required by the abstract VFB,
the VFB or the subsystem VFB. Based on the external interfaces defined by the VFB,
the internal behavior can be defined and finally the software component can be imple-

41 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

mented. The software components are delivered to be integrated in the ECUs, where
they are deployed. Please note that the implementation of a software component is to
a great extent independent from the configuration of the ECU. This is a key feature of
the AUTOSAR methodology.⌋

Note: See Figure 2.5 and chapter 2.4 for more details.

Figure 2.5: Development of a SW-C

[TR_METH_01111] Development of Basic Software modules ⌈Since the Basic Soft-
ware modules are independent of the VFB, they can be developed at any time before
ECU integration.⌋

Note: See Figure 2.6 and chapter 2.6 for more details.

Figure 2.6: Development of BSW

[TR_METH_01112] Integration of EcuInstances ⌈The integration for an EcuIn-
stance commences when the BSW Module Delivered Bundles, ECU Extract,
and the implementation of all Delivered Atomic Software Components are
available. At this stage, the EcuInstance is configured. The execution order is
defined by scheduling tasks, and assigning Software Component Runnables to
these tasks. Finally, the Basic Software Modules are configured. After the RTE
is generated, the complete code is compiled and linked into an executable.⌋

Note: See Figure 2.7. This step is elaborated in detail in chapter 2.7.

42 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Figure 2.7: Integrate Software for one ECU

2.1.3 Workflow

Methodology
Overview

Develop a VFB
System Description

Develop Application
Software

Integrate Software
for ECU

Develop Basic
Software

Develop System Develop Sub-System

Develop an Abstract
System Description

«nesting»
«nesting»

«nesting» «nesting»«nesting»

«nesting» «nesting»

Figure 2.8: Methodology Overview: Overall Structure

Process Pattern Methodology Overview

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Methodology Overview

Brief Description High level view of the AUTOSAR Methodology

Description This Process Patterns contains the typical activities to develop an AUTOSAR system.

Relation Type Related Element Mult. Note

▽

43 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Process Pattern Methodology Overview

Aggregates Develop Application
Software

1

Aggregates Develop Basic Software 1

Aggregates Develop Sub-System 1

Aggregates Develop System 1

Aggregates Develop a VFB System
Description

1

Aggregates Develop an Abstract
System Description

1

Aggregates Integrate Software for ECU 1

Table 2.1: Methodology Overview

44 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

��������
����
�
�

����������� �������� ������� ��
����
�� ���

Develop a

VFB System

Description

Develop Application

Software

Integrate Software

for ECU

Develop Basic Software

ECU Software Delivered

BSW Module

Delivered Bundle

ECU Extract

Delivered

Atomic

Software

Components

BSW Standard Package

Overall VFB

System

VFB AUTOSAR

Standard Package

System

Constraint

Description

System Extract

Develop System

Develop Sub-

System

Develop an Abstract

System Description

Abstract System

Description

Transformer Design

Bundle

�	�

1

«input»

1

«input»

0..1

«input»

1

«input»

«output»

0..*

«output»

1

«output»
1..*

0..1«input»

1..*«input»

0..*

«input»

0..*

«input»

«output»

1..*

0..1
«input»

«output»

1..*

«output»

1..*

1..*

«input»

0..*

«input»

1

«input»

1..*

«input»

1..*

«input»

«output»

1..*

«output»

1

«output»

0..*

Figure 2.9: Methodology Overview: Workflow

45 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.2 Develop an Abstract System Description

2.2.1 Purpose

This Activity provides a rough outline of the creation of the Abstract System
Description.

2.2.2 Description

[TR_METH_01050] Abstract System Description activity ⌈Due to the fact that
the overall view on vehicle functions can differ from the actual technical definition of
the software architectures of individual ECUs, the optional activity Develop an Ab-
stract System Description allows to define a view on the overall system from
an abstract or functional perspective. This view describes a dedicated abstract VFB.
During the further activities this abstract view is refactored into a technical view of the
software architecture.⌋

For the purpose of this use case, this activity is split into sub-activities and tasks (see
Figure 2.10) that are in detail described in Chapter 2.3 and 2.5.2:

• Data Model Development

• Component Model Development

• VFB Timing Development

• Define VFB Top Level

• Define VFB Component Constraints

• Design System

• Integrate Non AUTOSAR System at VFB level

In the Data Model Development activity, the set of VFB Interfaces, VFB Modes,
and VFB Types that are used throughout the abstract VFB are defined. Please note,
that these objects can be used in later steps by the VFB and the subsystem VFB as
well.

[TR_METH_01051] Creation of an overall abstract system ⌈In the Component
Model Development activity, a component model is created which represents the
overall system from a functional point of view, e.g. from a customer related perspec-
tive of vehicle functions, independent of a concrete vehicle platform design. During this
process compositions might be modeled, which are not further refined into Atomic Soft-
ware Components. However it is also possible to define atomic software components
as well in this abstract VFB view.⌋

46 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

[TR_METH_01052] Definition of a constraints in the context of an abstract sys-
tem ⌈In the context of the abstract VFB, the task Define VFB Component Con-
straints defines constraints w.r.t. software components of the abstract VFB. These
constraints have to be considered when the abstract VFB is transformed into the con-
crete, technical VFB.⌋

[TR_METH_01128] Integration of Non AUTOSAR Systems in the context of an
abstract system ⌈In parallel with the development of the Abstract System De-
scription within an AUTOSAR process there may be functions that are developed
based on another approach. The functionality of in-vehicle infotainment systems for
instance is usually not covered in an AUTOSAR development process. Rather, devel-
opment methods and platforms such as GENIVI (http://www.genivi.org/) for instance
are employed that address the specific needs and conditions of infotainment system
development. The integration of these functions into the overall system should be ad-
dressed as early as possible. For that purpose first a description of the non-AUTOSAR
functionality (Description of a Non-AUTOSAR System) is needed, which must
be provided by the non-AUTOSAR approach. Within the development of the Abstract
System Description the functional interaction of the non-AUTOSAR functions and
the AUTOSAR functions has to be specified that is based on the given descriptions
of both parts. Since the non-AUTOSAR part is typically specified in a non-AUTOSAR
format it must be translated to the corresponding AUTOSAR format (task Translate
Non-Autosar Description to Autosar Description). Moreover, the infor-
mation on the functional interaction must be incorporated in order to obtain one com-
mon view of the integrated system.⌋

[TR_METH_01053] Definition of a System Description in the context of an ab-
stract system ⌈Additionally to the definition of the abstract VFB, parts of the System
Description can already be defined in the Design System activity, e.g. the topol-
ogy and ECUs where SWCs of the abstract VFB are mapped to. This SW-C mapping
from the abstract VFB to ECUs can be used as a methodological step to the definition
of the concrete VFB. Please note that not all tasks of the Design System activity
have to be performed in the context of an abstract system.⌋

47 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.2.3 Workflow

Develop an Abstract
System Description

VFB AUTOSAR
Standard Package

Abstract System
Description

Data Model
Development

Component Model
Development

VFB Timing
Development

Define VFB
Top Level

Define VFB
Component
Constraints

Design System

System Constraint
Description

Integrate Non
AUTOSAR System at

VFB level

0..1

«input»

«nesting»

«nesting»

«output» 1..*

«nesting»

«nesting»

«predecessor»

«nesting»

«nesting»

1..*
«input»

«predecessor»

«nesting»

Figure 2.10: Develop an Abstract System Description

Activity Develop an Abstract System Description

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::Develop System

Brief Description Develop an abstract or functional view on the system.

Description This activity defines an abstract view on the overall system from an abstract or functional point of
view. This activity is optional.

Relation Type Related Element Mult. Note

Consumes System Constraint
Description

0..1 In the context of the "Develop an Abstract System
Description" activity, the constraints for the abstract or
functional view on the system can be provided by the
"System Constraint Description".

Consumes VFB AUTOSAR Standard
Package

1..*

Produces Abstract System
Description

1..*

Aggregates Component Model
Development

1

Aggregates Data Model Development 1

Aggregates Define VFB Component
Constraints

1

Aggregates Define VFB Top Level 1

Aggregates Design System 1 In the context of the "Develop an Abstract System
Description" activity, not all tasks have to be performed.

Aggregates Integrate Non AUTOSAR
System at VFB level

1

Aggregates VFB Timing Development 1

Table 2.2: Develop an Abstract System Description

48 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.3 Develop a VFB System Description

2.3.1 Purpose

This Activity provides a rough outline of the creation of a Virtual Functional
Bus view of a System. [3]

2.3.2 Description

[TR_METH_01054]Virtual Functional Bus ⌈The Virtual Functional Bus
(VFB) view of a System shows how the Systems software functions interact indepen-
dently of any network topology or deployment of features across multiple ECUs.⌋

For more information on the VFB concept see [4, CP TR VFB]. For detailed information
on the meta-model parts relevant for the VFB see [5, CP TPS Software Component
Template].

For the purpose of this use case, this Activity is split into the following sub-activities:

• Data Model Development

• Component Model Development

• VFB Timing Development

• Integrate Non AUTOSAR System at VFB level

• Define VFB Safety Information

[TR_METH_01055] Data Model Development activity ⌈In the Data Model De-
velopment, the set of VFB Interfaces, VFB Modes, and VFB Types that are
used throughout the VFB are defined. Some of these have already been pre-defined
by AUTOSAR (so-called “blueprints”).⌋

Note: See chapter 3.2.2.7.

[TR_METH_01056] Definition of the VFB ⌈In the Component Model Develop-
ment activity, the VFB is defined. This can either be done by the use of the abstract
VFB as a basis, or is done directly by defining the software components. In case of
using the abstract VFB as a basis, a mapping between the abstract and the concrete
VFB can be established by performing the tasks Define System View Mapping.⌋

Note: See chapter 3.3.1.16 for more details.

Two general approaches can be separated:

• [TR_METH_01057] Top-Down approach ⌈Following a Top-Down approach, the
highest level VFB Composition Components are created, and these are itera-
tively broken down to smaller components. At the leaves of the hierarchy the VFB

49 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Atomic Software Component are defined. Note that the activity can be even
finished with empty VFB Composition Components, allowing the detailing of
the further structure at a later stage.⌋

• [TR_METH_01058] Bottom-Up approach ⌈If a Bottom-Up approach is used,
then the VFB Atomic Software Components are first defined, and aggre-
gated into VFB Composition Components.⌋

[TR_METH_01059] Kinds of VFB Atomic Software Components ⌈Several spe-
cial kinds of VFB Atomic Software Components can be modeled in this activity:

• VFB Atomic Application Software Components are the core elements.
They are used to implement the feature algorithms.

• VFB Parameter Component are used to provide characteristic values, such
as calibration parameters, to software components.

• VFB Sensor Actuator Components provide the connection between phys-
ical sensors/actuators and the VFB Atomic Application Software Com-
ponents.

• ECU Abstraction Software Components can be modeled at this level as
well in order to model the ECU input and output interfaces which are used by
sensors and actuators.

• Complex Driver Components also have to be modeled here, though their
implementation is ECU specific, because their ports need to be connected at the
VFB level.

• VFB NvBlock Software Component can be modeled at this level if applica-
tion software accesses non-volatile data via ports.

• Empty VFB Composition Components can be provided in case the detailed
structure of the desired solution is not in the scope of this activity and will be left
open to a later stage in the development.

⌋

[TR_METH_01129] Integrate Non AUTOSAR System at VFB level activity
⌈In addition to the components specified with an AUTOSAR SwComponent Descrip-
tion, there may be application components that are specified in other formats, because
they are developed within another application domain.

In-vehicle infotainment components, for instance, are usually not developed with
AUTOSAR means. Rather, development methods and platforms, such as GENIVI
(http://www.genivi.org/), are employed, which address the specific needs and condi-
tions of infotainment system development.

50 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

The integration of these components into the overall system should be addressed as
early as possible. For this purpose, the Description of a Non-AUTOSAR Sys-
tem must be incorporated into the VFB system description (VFB System). Since the
non-AUTOSAR components are typically specified in a non-AUTOSAR format, their
descriptions must be translated to the corresponding AUTOSAR format (Task Trans-
late Non-Autosar Description to Autosar Description). Moreover, the
information on the interconnection of the components must be incorporated, in order
to obtain one common view of the integrated system.⌋

[TR_METH_01149] Definition of VFB relevant safety information ⌈In the optional
activity Define VFB Safety Information the VFB relevant safety information is
defined. Safety requirements and safety measures created at this development stage
may be detailed (refined, decomposed, allocated, mapped, etc.) later on in the pro-
cess.⌋

Note: See chapter 2.14.

After these activities are completed, the Virtual Functional Bus view of the Sys-
tem is defined. At this point, some VFB Software Component Mapping Con-
straints may already be known by design, or based on an analysis such as De-
fine VFB Timing. These can be described to provide guidance to the downstream
activities.

51 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.3.3 Workflow

Component

Model

Development

Data Model Development

VFB Timing Development

Develop a VFB

System Description

Overall VFB

System

VFB AUTOSAR

Standard Package

Define VFB Modes

Define VFB Interfaces

Define VFB Types

Define VFB

Constants

Define VFB Composition

Component

Define VFB

Application Software

Component

Define VFB Sensor or

Actuator Component

Define VFB

Parameter

Component

Define Wrapper

Components to Integrate

Legacy Software

Define Complex Driver

Component

Define ECU

Abstraction

Component

Define VFB

Variants

Define VFB Component

Constraints

Define VFB Timing

Define VFB Top Level

Define System View

Mapping

Abstract System

Description

Define VFB NvBlock

Software Component

Integrate Non AUTOSAR

System at VFB level

Define VFB Safety

Information

«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

0..*

«input»

«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

«predecessor»

«nesting»

«nesting»

1..*

«input»

«nesting»

«predecessor»

«nesting»

«nesting»

«nesting»

«output»

1

«nesting»

«nesting»

«nesting»

«nesting»

Figure 2.11: Develop a VFB System Description

52 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Integrate Non AUTOSAR
System at VFB level

Define VFB
Integration Connector

Translate Non-Autosar Description to
Autosar Description

«nesting»

«predecessor»

«nesting»

Figure 2.12: Integrate Non AUTOSAR System at VFB level

Define Safety
Information

VFB System VFB Safety ExtensionsDefine VFB Safety
Information

«output»«input»

Figure 2.13: Define VFB Safety Information

Activity Develop a VFB System Description

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::VFB::Develop VFB

Brief Description This pattern describes the methodology to develop the Virtual Functional Bus view of the System.

Description The Virtual Functional Bus (VFB) view of a System shows how the Systems software and hardware
functions interact independent of any network topology or deployment of features across muliple
ECUs. This Activity is split into three sub-activities:
• Data Model Development

• Component Model Development

• Timing Model Development

• Integrate Non AUTOSAR System at VFB level

• Define VFB Safety Information.

Relation Type Related Element Mult. Note

Consumes Abstract System
Description

0..* The abstract System Description is an optional input for
the activity "Develop a VFB System Description". The
VFB-related part of the Abstract System Description can
be than refined to the concrete "Overall VFB System".
Additionally, a mapping between those two views can be
established.

Consumes VFB AUTOSAR Standard
Package

1..*

Produces Overall VFB System 1

Aggregates Component Model
Development

1

Aggregates Data Model Development 1

▽

53 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Activity Develop a VFB System Description

Aggregates Define System View
Mapping

1

Aggregates Define VFB Component
Constraints

1

Aggregates Define VFB Safety
Information

1

Aggregates Define VFB Top Level 1

Aggregates Integrate Non AUTOSAR
System at VFB level

1

Aggregates VFB Timing Development 1

Table 2.3: Develop a VFB System Description

Activity Data Model Development

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::VFB::Develop VFB

Brief Description

Description

Relation Type Related Element Mult. Note

Aggregates Define VFB Constants 1

Aggregates Define VFB Interfaces 1

Aggregates Define VFB Modes 1

Aggregates Define VFB Types 1

Table 2.4: Data Model Development

Activity Component Model Development

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::VFB::Develop VFB

Brief Description

Description

Relation Type Related Element Mult. Note

Aggregates Define Complex Driver
Component

1

Aggregates Define ECU Abstraction
Component

1

Aggregates Define VFB Application
Software Component

1

Aggregates Define VFB Composition
Component

1

Aggregates Define VFB NvBlock
Software Component

1

Aggregates Define VFB Parameter
Component

1

Aggregates Define VFB Sensor or
Actuator Component

1

Aggregates Define VFB Variants 1

Aggregates Define Wrapper
Components to Integrate
Legacy Software

1

Table 2.5: Component Model Development

54 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Activity VFB Timing Development

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::VFB::Develop VFB

Brief Description

Description

Relation Type Related Element Mult. Note

Aggregates Define VFB Timing 1

Predecessor Component Model
Development

1

Predecessor Data Model Development 1

Table 2.6: VFB Timing Development

Activity Integrate Non AUTOSAR System at VFB level

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::VFB::Develop VFB

Brief Description Incorporate the description of the non-AUTOSAR system and its connection with the AUTOSAR
system into the AUTOSAR methodology activities.

Description Based on the description of the non-AUTOSAR system its connection with the AUTOSAR system is
defined and specified using the VFB Integration Connector format. This is translated into an
AUTOSAR description that becomes part of the VFB system description.

Relation Type Related Element Mult. Note

Aggregates Define VFB Integration
Connector

1

Aggregates Translate Non-Autosar
Description to Autosar
Description

1

Table 2.7: Integrate Non AUTOSAR System at VFB level

Activity Define VFB Safety Information

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::VFB::Develop VFB

Brief Description Defines all required safety information at VFB level.

Description In this activity, the safety information at VFB level is defined. The safety information can be refined
or completed in further development phases.

Extends Define Safety Information

Relation Type Related Element Mult. Note

Consumes VFB System 1

Produces VFB Safety Extensions 1

Table 2.8: Define VFB Safety Information

2.4 Develop Software Components

2.4.1 Develop an Atomic Software Component

2.4.1.1 Purpose

This Activity provides a rough outline of the creation of an Atomic Software
Component.

55 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.4.1.2 Description

[TR_METH_01060] Develop an Atomic Software Component activity ⌈This is
the generic Activity valid for several kinds of Atomic Software Components. The
first step is to create design, including the runnables, events, inter-runnable variables,
etc. Once this is complete, the contract header files can be created and the software
component can be implemented.

Optionally, the safety relevant information for the software component and all contained
elements can be defined. If the software component is developed as a SEOOC (Safety
Element out of Context) and the safety requirements are not fully known at develop-
ment time, the ASIL attribute can be set to indicate the integrity level the component
was developed for, i.e. in the development process all development process related
requirements of ISO 26262 for the specified ASIL have been applied.⌋

For safety aspects, see chapter 2.14.

Note that the method of implementation, quality, testing, etc. are beyond the scope of
this activity.

After the component is implemented and successfully compiled, its resources are mea-
sured and stored as part of the software component description for further usage by
downstream processes.

The pattern also includes the optional tasks of creating a timing model, binding pre-
build-variants and evaluating variants, all in the scope of the atomic software compo-
nent. Note that the sequence of these optional tasks within the Activity is only one
possible example.

2.4.1.3 Workflow

Figure 2.14 shows the work breakdown assumed for this use case. The next two fig-
ures 2.16 and 2.17 show all the tasks and work products of the method library involved
in this use case.

56 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Develop an Atomic

Software Component

Evaluate Variant

Measure Component

Resources

Compile Atomic

Software

Component

Implement Atomic

Software Component

Define

Software

Component

Timing

Generate

Component

Prebuild Data

Set

Generate Atomic

Software Component

Contract Header Files

Define Atomic

Software Component

Internal Behavior

Define SymbolProps for

Types

Define Consistency

Needs

Define Software

Component Safety

Information

Figure 2.14: Develop an Atomic Software Component

Define Safety
Information

Overall VFB System

VFB Safety Extensions

Software Component
Internal Behavior

Software Component
Safety Extensions

Define Software Component
Safety Information

«input»

«output»

«input»

«input»

Figure 2.15: Define Software Component Safety Information

Activity Develop an Atomic Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software Component::Develop Atomic
SWC

Brief Description

▽

57 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Activity Develop an Atomic Software Component

Description This is the generic pattern valid for several kinds of Atomic Software Components. The first step is
to create design, including the runnables, events, interrunnable variables, etc. Once this is complete,
the contract header files can be created and the software component can be implemented.
Note that the method of implementation, quality, testing, etc. are beyond the scope of this capability
pattern.
After the component is implemented and successfully compiled, its resources are measured and
stored as part of the software component for further usage by downstream processes.
The pattern also includes the optional tasks of creating a timing model, defining safety relevant
information, binding prebuild-variants and evaluating variants, all in the scope of the Atomic
Software Component. Note that the sequence of these optional tasks within the capability pattern is
only one possible example.

Extended By Develop Application Software, Develop a Complex Driver Component, Develop a Sensor Actuator
Component, Develop an ECU Abstraction Component, Develop an NvBlock Software Component,
Optimize a Software Component for a Specific Target

Relation Type Related Element Mult. Note

Aggregates Compile Atomic Software
Component

1

Aggregates Define Atomic Software
Component Internal
Behavior

1

Aggregates Define Consistency Needs 1 Used for defining the consistency relations between a
group of RunnableEntitys and a group of Data
Prototypes.

Aggregates Define Software
Component Safety
Information

1

Aggregates Define Software
Component Timing

1

Aggregates Define SymbolProps for
Types

1 Used for solving name conflicts on the level of
component or data types.

Aggregates Evaluate Variant 1

Aggregates Generate Atomic Software
Component Contract
Header Files

1

Aggregates Generate Component
Prebuild Data Set

1

Aggregates Implement Atomic Software
Component

1

Aggregates Measure Component
Resources

1

Table 2.9: Develop an Atomic Software Component

58 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Activity Define Software Component Safety Information

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software Component::Develop Atomic
SWC

Brief Description Defines all required safety information for a software component.

Description

Extends Define Safety Information

Relation Type Related Element Mult. Note

Consumes Overall VFB System 1

Consumes Software Component
Internal Behavior

1

Consumes VFB Safety Extensions 1

Produces Software Component
Safety Extensions

1

Table 2.10: Define Software Component Safety Information

Define Atomic
Software Component
Internal Behavior

Define Software
Component Timing

Generate Atomic
Software Component
Contract Header Files

Generate Component
Prebuild Data Set

Predefined VariantSystem Constant
Value Set

Postbuild
Variant
Set

VFB Atomic
Software
Component

VFB Types VFB Modes

VFB
AUTOSAR
Standard
Package

VFB
Interfaces

Software
Component
Internal
Behavior

Software Component
Data Types Header

Application Header
File

Component RTE
Prebuild
Configuration Header

Software
Component
Timing

Define SymbolProps
for Types

VFB Data Type
Mapping Set

Figure 2.16: Develop an Atomic Software Component - Detailed view with work products
(1)

59 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Implement
Atomic Software
Component

Compile Atomic
Software Component

Measure Component
Resources

Evaluate Variant

General
Autosar
Artifact

Predefined
Variant

System Constant
Value Set

Postbuild Variant Set

Evaluated
Variant Set

Library Description

Library
Header
Files

Software Component
Internal Behavior

Software
Component
Data Types
Header

Application
Header File

Component RTE
Prebuild
Configuration Header

Software
Component
Timing

Atomic Software
Component Source
Code

Atomic Software
Component

Implementation

Atomic Software
Component Object

Code

Standard
Header Files

«input»0..*

0..1 «input»

«input»

0..*

1«input»

«input»

1..*

«output» 1

0..*

«input»

«inoutput»

1

«input»

0..*

0..1

«input»

1

«input»

1

«input»

0..*

«input»

1

«input»

1

«input»

«input»

0..1

«input»

0..1

0..* «input»

1

«input»

1

«input»

1
«input»

«output»

1

«output» 1

0..1

«input»

«output»

1

Figure 2.17: Develop an Atomic Software Component - Detailed view with work products
(2)

60 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.4.2 Develop Application Software

2.4.2.1 Purpose

This Activity provides a rough outline of the creation of one or more Application
Software Components.

2.4.2.2 Description

[TR_METH_01061] Develop Application Software activity ⌈This Activity
describes the work flow and the necessary activities in terms of the AUTOSAR method-
ology to develop one or more Application Software Components. The work
flow shall allow a more or less independent development of the software compo-
nents core functionality. These activities have to be performed for each Application
Software Component.⌋

2.4.2.3 Workflow

The detailed workflow can be derived from the generic activity Develop an Atomic
Software Component.

Develop Application
Software

Develop an Atomic Software
Component

Delivered
Atomic
Software
Components

Overall VFB
System

Diagnostic System Extract

«extends»

0..*

«input»
«output»

0..*

«output» 1..*1 «input»

Figure 2.18: Develop Application Software

Activity Develop Application Software

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software Component::Develop
Application SWC

Brief Description

▽

61 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Activity Develop Application Software

Description This pattern describes the workflow and the necessary activities in terms of the AUTOSAR
methodology for the development of application software components.
The workflow shall allow a more or less independent development of the software component core
functionality. These activities have to be performed for every application software component.

Extends Develop an Atomic Software Component

Relation Type Related Element Mult. Note

Consumes Diagnostic System Extract 0..* The Diagnostic System Extract contains diagnostic
information that serves as a requirement for the
software developer.

Consumes Overall VFB System 1 The application software needs to refer to the relevant
elements of the overall VFB system such as Software
Component Types, Port Interfaces and Data Types.

Produces Delivered Atomic Software
Components

1..* Complete description of a set of AtomicSoftware
Components including implementation (incl. source or
object code files)

Produces Diagnostic System Extract 0..* Diagnostic information relevant to the SW-Cs is
provided as a part of the Diagnostic System Extract and
can contain relationships to the SW-C’s service needs.

Table 2.11: Develop Application Software

2.4.3 Uses Cases for more Specialized Software Components

2.4.3.1 Purpose

These Activities provides a rough outline of the creation of more specialized com-
ponents and of the ECU specific optimization of a software component.

2.4.3.2 Description

These Activities describe the work flow and the necessary activities in terms of
the AUTOSAR methodology to develop more specialized components, which could be
partially hardware or ECU dependent.

2.4.3.3 Workflow

These work flows are for the most part derived from the generic activity Develop an
Atomic Software Component. The diagrams show the required extensions.

Note the development of a Service Component does not fall into this category of use
cases, because it is for the most part generated during integration time.

For the development of a VFB Parameter Component refer to the calibration use
case 2.9.

62 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Develop an
Atomic
Software
Component

Develop a
Sensor Actuator
Component

«extends»

Figure 2.19: Develop a Sensor or Actuator Component

Activity Develop a Sensor Actuator Component

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software Component::Develop
Sensor-Actuator Component

Brief Description Show how to develop a Sensor Actuator Component

Description Activities to develop a VFB Sensor Actuator Component, i.e. component that represents a physical
sensor or actuator.

Extends Develop an Atomic Software Component

Relation Type Related Element Mult. Note

Table 2.12: Develop a Sensor Actuator Component

Develop an
Atomic Software
Component

Develop an
ECU
Abstraction
Component

Define BSW Module
Timing

Map Software Component
to BSW

«extends»

«nesting» «nesting»

Figure 2.20: Develop an ECU Abstraction Component

Activity Develop an ECU Abstraction Component

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software Component::Develop
Ecuabs Component

Brief Description Show how to develop an ECU Abstraction Component.

Description Activities to develop an ECU Abstraction Software Component, i.e. a component that implements an
ECU Abstraction..

Extends Develop an Atomic Software Component

Relation Type Related Element Mult. Note

Aggregates Define BSW Module Timing 1

Aggregates Map Software Component
to BSW

1

Table 2.13: Develop an ECU Abstraction Component

63 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Develop an Atomic Software
Component

Develop a Complex Driver
Component

Map Software Component
to BSW

«nesting»«extends»

Figure 2.21: Develop a Complex Driver Component

Activity Develop a Complex Driver Component

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software Component::Develop CDD
Component

Brief Description Show how to develop a Complex Driver Component

Description Show how to develop a Complex Driver Component

Extends Develop an Atomic Software Component

Relation Type Related Element Mult. Note

Aggregates Map Software Component
to BSW

1

Table 2.14: Develop a Complex Driver Component

Develop an
NvBlock
Software
Component

Develop an
Atomic
Software
Component

«extends»

Figure 2.22: Develop an NvBlock Software Component

Activity Develop an NvBlock Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software Component::Develop Nv
Block Software Component

Brief Description

▽

64 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Activity Develop an NvBlock Software Component

Description Activities to develop an NvBlock Software Component. An NvBlockSoftwareComponentType
(designed as part of activity Component Model Development) allows the application software to
access non-volatile data in a convenient way via ports. The NvBlock Software Component takes
over the management and buffering of data within blocks including data exchange with the
underlying basic software (NvM). Optionally, it implements special writing strategies (e.g. cyclic
writing). The development activities are similar to the generic activity Develop an Atomic Software
Component with the following differences:
• The description of the NvBlockNeeds within a NvBlockSoftwareComponentType is done in

response to requirements given by the application software as part of their own NvBlockNeeds.
These are part of their Software Component Internal Behavior which means that this level must
be available when the NvBlockSoftwareComponentType is finally designed.

• The creation of an Software Component Internal Behavior within NvBlockSoftwareComponent
Type is optional. This artifact is only needed if special writing strategies have to implemented by
the RTE or if the application software needs a direct access (via client-server ports) to the NvM.

• The source code of an NvBlockSoftwareComponentType will be generated during integration as
part of the artifact RTE Source Code. Therefore no source code and no Atomic Software
Component Implementation needs to be created during this activity.

Note that if non-volatile data are accessed by the application software via an NvBlockSoftware
ComponentType, it is not required to define a ServiceComponentType for this use case.

Extends Develop an Atomic Software Component

Relation Type Related Element Mult. Note

Table 2.15: Develop an NvBlock Software Component

Develop an
Atomic
Software
Component

Optimize a
Software
Component for a
Specific Target

Re-compile
Component in ECU
context

Generate Component
Header File in Vendor
Mode

Generate Base
Ecu Configuration

Create Service
Component

«extends»

«nesting» «nesting»

+Compile Atomic SWC
ECU Specific

«nesting»

«nesting»

Figure 2.23: Optimize Software Component

Activity Optimize a Software Component for a Specific Target

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software Component::Optimize
Software Component

Brief Description Show how to optimize a software component for a specific target.

▽

65 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Activity Optimize a Software Component for a Specific Target

Description In practice the integration of an application software component has to consider some optimizations
to meet performance or resource requirements. The Component API might be much more efficient,
if it will be generated particularly adapted to the concrete ECU configuration, e.g. via using macro
definitions instead of function calls for some RTE interaction. In fact this should not change the
Component Implementation (i.e. the C-sources).
That means now we have a different set of component headers, which include the
ECU-configuration-specific optimizations.
Note: This use case shows the typical steps needed until the recompilation with the optimized
header file can be done. It does not show all the other steps needed for the ECU build.

Extends Develop an Atomic Software Component

Relation Type Related Element Mult. Note

Aggregates Create Service Component 1

Aggregates Generate Base Ecu
Configuration

1

Aggregates Generate Component
Header File in Vendor Mode

1

Aggregates Re-compile Component in
ECU context

1 Compile Atomic SWC ECU Specific:

Table 2.16: Optimize a Software Component for a Specific Target

2.5 Develop System and Subsystems

2.5.1 Overview

2.5.1.1 Purpose

The Activities to develop the artifacts on the system level include the optional
development of the abstract system (see Chapter 2.2), the development of an overall
(technical) system and optionally the refinement into one or more subsystems. The
reason for this split is, that the latter may be done by another organization, as has
already been pointed out in 2.1.2.

2.5.1.2 Description

[TR_METH_01065] Develop System and Develop Sub-System activities ⌈
Develop System is refined into sub-activities Design System, Define Sys-
tem Safety Information, Design Custom Transformer, Generate ECU
Extract and Generate System Extract. Develop Sub-System is refined
into sub-activities Create ECU System Description, Design Sub-System,
Define System Safety Information and Generate ECU Extract.

Note that the activity Generate ECU Extract and Define System Safety In-
formation can be performed as part of both Develop System and Develop Sub-
System.

66 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Optionally a mapping between two different system views represented by different
System Descriptions can be added and a specification of the transformer technol-
ogy for the communication can be defined.⌋

Note: See Figure 2.24 for Develop System, Figure 2.25 for Develop Sub-System
and chapter 3.3.1.16 for the mapping between different system views.

[TR_METH_01066] Creation of a System Extract and an ECU Extract
⌈Depending on the intended work split, the System Configuration Descrip-
tion produced during this activity can be used as a basis

1. to create one or more so-called System Extracts as a basis for further refine-
ment as sub-systems

2. or to generate ECU Extracts which directly contain all relevant information to
be integrated on an ECU.

In the first case, only an outer system is defined. Based on the outer sys-
tem, one or more System Extracts can be delivered. The System Extract is
not fully decomposed and still needs to be refined before it forms the basis for the
ECU configuration. In order to distinguish between the delivered System Ex-
tracts and the refined sub-system, one or more ECU System Descriptions are
created as a basis for further refinement (See activity Create ECU System De-
scription). Atomic Software Components, additional ECUs, Networks and
the resulting communication will be added during the refinement step in the activity
Design Sub-System.⌋

Note: See chapter 2.5.5 for System Extract and chapter 2.5.7 for ECU Extract.

Generate System

Extract

Develop System

Design

System

Generate ECU

Extract

System

Constraint

Description

System Extract

ECU ExtractOverall VFB

System

Abstract System

Description

Define System

View Mapping

System

Configuration

Description

Design Custom

Transformer

Transformer Design

Bundle

Define System

Safety Information

0..1

«nesting»

«output»
1..*

«output»

0..*

1

«nesting»

«output»

1..*

«output»

0..*

0..1

«input»

0..1

«nesting»

0..*

«nesting»

0..1
«input»

1..*

«nesting»

0..*

«nesting»

0..*

«input»

Figure 2.24: Structure of Activity: Develop System

67 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Design Sub-System

Develop Sub-System

System Extract ECU Extract

Generate ECU

Extract
Create ECU System

Description

Define System

Safety Information

Generate

CpSoftwareCluster

Extract

1

«nesting»

1 «input»

1..*

«nesting»

1..*

«nesting»

0..*

«nesting»
0..1

«nesting»

«output»
1..*

Figure 2.25: Structure of Activity: Develop Subsystem

Figure 2.26 shows how the major deliverables produced during these activities are
related and how they refer to artifacts describing the software.

[TR_METH_01067] Abstract System Description deliverable ⌈The Ab-
stract System Description extends the general System Description. The
System View Mapping maps the different views on the system together, e.g. dif-
ferent overall VFB systems (e.g. Abstract System Description with System
Configuration Description), or the overall VFB system with the VFB System
Extract description.⌋

68 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

System

Software

System

Description

System

Constraint

Description

System

Configuration

Description
System

Extract

ECU

Extract

ECU Extract of

VFB System

Overall VFB

System
VFB System

Extract

System Flat Map ECU Flat Map

Abstract

System

Description

System View

Mapping

ECU System

Description

CpSoftwareCluster Extract

Figure 2.26: Overview on the different roles of deliverables based on System Description

Note that all the deliverables based on the generic deliverable System Description
as well as the ECU Extract consist of ARXML files that are using the meta-model
element System as the root element, from where the other information can be traced
down.

Activity Develop System

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::Develop System

Brief Description

Description Develop the description of an overall AUTOSAR System as a basis to deliver System and/or ECU
extracts.

Relation Type Related Element Mult. Note

Consumes Abstract System
Description

0..* The abstract System Description is an optional input for
the activity "Develop System". Please note, that in this
step the Abstract System Description is refined to a
System Description.

Consumes Overall VFB System 0..1 Usually the System refers to elements of an overall VFB
descriptions. But for the description of a legacy system,
this input might be empty.

▽

69 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Activity Develop System

Consumes System Constraint
Description

0..1

Produces ECU Extract 1..*

Produces System Configuration
Description

1..*

Produces System Extract 0..*

Produces Transformer Design Bundle 0..*

Aggregates Define System Safety
Information

0..1

Aggregates Define System View
Mapping

0..1

Aggregates Design Custom Transformer 0..*

Aggregates Design System 1

Aggregates Generate ECU Extract 1..*

Aggregates Generate System Extract 0..*

Table 2.17: Develop System

Activity Develop Sub-System

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::Develop System

Brief Description

Description Develop the description of a sub-system based on a given System Extract.

Relation Type Related Element Mult. Note

Consumes System Extract 1

Produces ECU Extract 1..*

Aggregates Create ECU System
Description

1

Aggregates Define System Safety
Information

0..1

Aggregates Design Sub-System 1..*

Aggregates Generate CpSoftware
Cluster Extract

0..*

Aggregates Generate ECU Extract 1..*

Table 2.18: Develop Sub-System

2.5.2 Design System

2.5.2.1 Purpose

This Activity provides a rough outline of the design steps leading to an AUTOSAR
System Configuration Description and the system-specific part of the Ab-
stract System Description, including its topology, deployment, communication
matrix, etc.

70 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.5.2.2 Description

[TR_METH_01068] Inputs and Output of the Design System activity ⌈The design
of an AUTOSAR System Configuration Description and the system-specific
part of the Abstract System Description uses input information from a Sys-
tem Constraint Description and is based on an Overall VFB System for
the software part. Optionally, the Abstract System Description that represents
the functional view on the system can be used as an input. Please note that the inputs
and output are depicted in the top-level activities which aggregates the activity Design
System.

The activity involves the creation of a Topology, ECU Resources Descriptions,
and the interconnection between ECU instances.⌋

[TR_METH_01069] Deployment of AUTOSAR Software Components ⌈The
AUTOSAR Software Components defined within the VFB Top Level System Com-
position are then deployed to the ECU instances.⌋

[TR_METH_01070] Description of network signals ⌈The required network signals
are identified and a mapping is done to System Signals to implement the VFB.
System Signal Groups, are defined to keep certain signals grouped together for
consistent transmission. System Signals are then defined and form the initial input
to design the Communication.⌋

[TR_METH_01071] Description of design constraints ⌈During this stage, design
constraints can also be defined Mapping of Software Components to Im-
plementations, Mapping of Software Components to ECUs and Signal
Path Constraints. These constraints serve many purposes including the ability
for tools to use them to optimization a system, to interface with legacy ECUs, and to
”lock” design decision between iterations.⌋

Note: The mapping of software components to implementations is optional and needed
only if those components are specifically required to be used in an ECU.

[TR_METH_01155] Definition of serialization ⌈There are two approaches possible
for defining the serialization. The first approach provides the necessary information
based on the network representation, the second approach based on implementation
data types. For details of these two approaches, please see [6, CP TPS System Tem-
plate].⌋

[TR_METH_01156] Use case: Serialization based on network representation ⌈The
OEM defines the network representation on network signal (ISignal) level. This network
representation is used by the Serializer Transformer to create the byte stream.
If not provided by the OEM, the Tier1s are free to choose implementation data types
for the application software.⌋

71 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

[TR_METH_01157] Use case: Serialization based on implementation data types
⌈The OEM defines the same implementation data types for the root software compo-
sition of communicating Ecu instances. These implementation data types are used
by the Serializer Transformer to create the byte stream. Tier1s are free to use
arbitrary implementation data types for the application SW inside the root software
composition.⌋

2.5.2.3 Workflow

Design
System

Design
Communication

«nesting»

Figure 2.27: Structure overview: Design System

72 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Design System

Set System RootAssign Top Level
Composition

Define ECU
Description

Define System
Topology

Deploy Software
Component

Generate or Adjust
System Flat Map

Derive
Communication
Needs

Define Signal Path
Constraints

Define System
Variants

Define System
Timing

Define Communication Matrix

Select Software
Component
Implementation

Design
Communication

Define Frames

Define Signal PDUs

Define TP

Define PDU Gateway

Define RTE Fan-out

Define Network
Management

Define Signal Gateway

Define Transformation
Technology

Define Secured PDUs

Define E2E Transformer
Technology

Define Transformation
Chain

Figure 2.28: Nesting relationship: Design System

73 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Set System Root

System

Description

Root Element

Assign Top Level

Composition

Define ECU

Description
ECU Resources

Description

Define System

Topology

Topology

Generate or Adjust

System Flat Map
System Flat Map

Deploy Software

Component

Mapping of Software

Components to ECUs

Derive

Communication

Needs

System Signal

Data Mapping

Define Signal Path

Constraints

Signal Path

Constraints

Communication

Layers

VFB Top Level

System Composition

VFB Software

Component

Mapping

Constraints

1

1

1

1

1

1

1..*

1

1

1..*

1

1

1..*

0..1

«input»

1

1

1

1

1

1

1..*

1..*

1

Figure 2.29: Detailed work flow for: Design System

Activity Design System

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::Design System

Brief Description Initial work to create a topology, map a VFB onto that topology and determine the ECU resources
each ECU needs.

▽

74 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Activity Design System

Description The design of an AUTOSAR System involves the creation of a Topology, ECU Resources
Descriptions, and the interconnection between ECU instances.
The software components defined within the VFB Top Level System Composition are then deployed
to the ECU instances.
The required network signals are identified and a mapping is done to System Signals to implement
the VFB. System Signal Groups, are defined to keep certain signals grouped together for atomic
transmission. System Signals are then defined and form the initial input to design the
Communication Matrix.
During this stage, design constraints can also be defined (Mapping of Software Components to
Implementations, Mapping of Software Components to ECUs, Signal Path Constraint). These
constraints serve many purposes including the ability for tools to use them to optimization a system,
to interface with legacy ECUs, and to "lock" design decision between iterations.
Notes: The mapping of software components to implementations is optional and needed only if
those components are specifically required to be used in an ECU.

Relation Type Related Element Mult. Note

Aggregates Assign Top Level
Composition

1

Aggregates Define ECU Description 1

Aggregates Define Signal Path
Constraints

1

Aggregates Define System Timing 1

Aggregates Define System Topology 1

Aggregates Define System Variants 1

Aggregates Deploy Software
Component

1

Aggregates Derive Communication
Needs

1

Aggregates Design Communication 1

Aggregates Generate or Adjust System
Flat Map

1

Aggregates Select Software Component
Implementation

1

Aggregates Set System Root 1

Table 2.19: Design System

Activity Design Communication

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::Design System

Brief Description

Description Describe all communication layers. and define the mapping of the triggering elements within the
Physical Channels to the communication connector ports for the individual ECUs.
Because the triggering elements are aggregated as splitable elements within the Physical Channels
it is possible to define them in an artifact separated from the Topology.

Relation Type Related Element Mult. Note

Aggregates Define Communication
Matrix

1

Aggregates Define E2E Transformer
Technology

1

Aggregates Define Frames 1

Aggregates Define Network
Management

1

Aggregates Define PDU Gateway 1

▽

75 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Activity Design Communication

Aggregates Define RTE Fan-out 1

Aggregates Define Secured PDUs 1

Aggregates Define Signal Gateway 1

Aggregates Define Signal PDUs 1

Aggregates Define TP 1

Aggregates Define Transformation
Chain

1

Aggregates Define Transformation
Technology

1

Table 2.20: Design Communication

2.5.3 Generate System Extract

2.5.3.1 Purpose

This Activity provides an extract of the system description for a specific sub-system.

2.5.3.2 Description

Generate a System Extract which is a basis to develop a sub-system.

2.5.3.3 Workflow

Generate System ExtractSystem
Configuration
Description

System Extract

�������� ��	
	 ��� �
�

�
������

1 «input» «output» 0..*

Figure 2.30: Generate the System Extract

The detailed tasks of Generate System Extract are not modeled since they are
considered as trivial - it just means to reduce the content of the input description to the
subsystem in question.

76 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Activity Generate System Extract

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::Generate System Extract

Brief Description

Description Generate for further development, a System Extract which represents the description of a part of the
system (sub-system). This allows a start of work on ECU’s even if the system is not completely
described.

Relation Type Related Element Mult. Note

Consumes System Configuration
Description

1

Produces System Extract 0..*

Table 2.21: Generate System Extract

2.5.4 Create ECU System Description

2.5.4.1 Purpose

Based on a System Extract, this Activity creates ECU System Descrip-
tions which are refined during the design of the sub-system.

2.5.4.2 Description

[TR_METH_01125] Create ECU System Description activity ⌈Based on the
delivered System Extract, the receiving organization creates one or more ECU De-
scriptions. The ECU Descriptions are used for designing the sub-system arti-
facts (See activity Design Sub-System).⌋

From the methodological point of view there are two choices for creating the ECU Sys-
tem Description.

[TR_METH_01126] Using the System Extract as the structural basis for the
ECU development ⌈The System Extract is taken as the structural basis for the
ECU development. In this case the System Extract becomes an ECU System
Description.⌋

[TR_METH_01127] Creating a new structure for the ECU development ⌈A new
structure is created as a basis for the ECU development. The newly created ECU
System Description is mapped to the initial System Extract. For this purpose
the task Define System View Mapping creates the initial System View Map-
ping artifact which is refined during the sub-system design.⌋

[TR_METH_01078] Mapping of different views ⌈The different views are mapped by
the System View Mapping.⌋

Typical use-cases for this transformation steps are:

77 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

• [TR_METH_01079] Use Case: Substitution of existing components ⌈The
secondary organization has an existing software architecture. By software shar-
ing some of the existing components are substituted by the delivered software
components.⌋

• [TR_METH_01080] Use Case: Mapping of requirements to the solution ⌈The
secondary organization develops one ECU for different primary organizations
and therefore has to map the requirements of different primary organizations to
its solution.⌋

• [TR_METH_01081] Use Case: Reorganization of the software structure ⌈The
primary organization delivers a sub-system description which defines one ECU.
The secondary organization decides to use two ECUs. Therefore the software
structure has to be reorganized by the second organization.⌋

• [TR_METH_01082] Use Case: Description of changes between different ver-
sions of System Descriptions ⌈Additionally the mapping can be used to for-
mally describe changes between different versions of System Descriptions.⌋

2.5.4.3 Workflow

System Extract ECU System Description

Define System View
Mapping

Create ECU System
Description

«output» 1..*

0..*

«nesting»

1 «input»

Figure 2.31: Create ECU System Description

Activity Create ECU System Description

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::Create ECU System
Description

Brief Description

▽

78 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Activity Create ECU System Description

Description During the Develop Sub-System activity the supplier refines the received System Extract so that
valid ECU Extracts can be generated. The refinement of the System Extract is done using the ECU
System Description. Therefore, this activity creates one or more ECU System Descriptions based
on the System Extract. The sub-system artifacts are designed in the ECU System Description
during the activity "Design Sub-System".
From the methodological point of view there are two choices for creating the ECU System
Description.
1) The System Extract is taken as the structural basis for the ECU development. In this case the
System Extract becomes an ECU System Description.
2) A new structure is created as a basis for the ECU development. The newly created ECU System
Description is mapped to the initial System Extract. For this purpose the task "Define System View
Mapping" is performed.

Relation Type Related Element Mult. Note

Consumes System Extract 1

Produces ECU System Description 1..*

Aggregates Define System View
Mapping

0..*

Table 2.22: Create ECU System Description

2.5.5 Design Sub-System

2.5.5.1 Purpose

This Activity details a given ECU System Description (previously created from
the delivered System Extract).

2.5.5.2 Description

[TR_METH_01075]Design Sub-System activity ⌈Based on the ECU System De-
scription, the description of a sub-system is defined.⌋

[TR_METH_01076] Collaboration between different organizations ⌈Additionally,
the software component structure of the System Extracts, delivered by the primary
organization can be transformed into a different structure by the receiving organization
(ECU System Description). In this case the System Extract of the primary or-
ganization can be considered as a requirement and the sub-system of the receiving
organization can be seen as a solution which has to fulfill the delivered requirements.
Thus here again a mapping activity can be defined which maps the newly introduced
solution sub-system to the provided requirement sub-system from the primary organi-
zation.⌋

[TR_METH_01077] Transformation changes during the Design Sub-System ac-
tivity ⌈During this transformation the hierarchical SWC-structure can be changed,
some SWCs can be replaced by other SWCs, some can remain in the resulting view.⌋

This step can affect the System View Mapping. See [TR_METH_01078].

79 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Finally all Atomic Software Components in the resulting sub-system scope are
included in this sub-system description.

2.5.5.3 Workflow

Design Sub-System

ECU System Description

1

«input» «output»

1

Figure 2.32: Overview: Design Sub-System

Note that the ECU System Description appears as input and output of this Activity
because it is refined.

As the detailed work flow for this Activity uses the same elements from the methodology
library as the one described in 2.5.2.3, the breakdown into tasks is not modeled here.

Activity Design Sub-System

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::Design Sub-System

Brief Description

Description Design the sub-system artifacts based on an ECU System Description which was previously created
from the delivered ECU Extract. It consists of the same tasks as the activity Design System.
The description must be completed down to the ECU level, so that valid ECU extracts can be
generated.

Relation Type Related Element Mult. Note

Consumes ECU System Description 1 System Extract as generated from the outer system.

Produces ECU System Description 1 System Extract refined during design of the
corresponding sub-system with elements needed to
generate ECU Extract(s).

Table 2.23: Design Sub-System

2.5.6 Generate CpSoftwareCluster Extract

2.5.6.1 Purpose

This Activity creates the CpSoftwareCluster Extract, in case CpSoft-
wareClusters are used (the System contains at least one CpSoftwareCluster-
ToEcuInstanceMapping). A CpSoftwareCluster Extract is a System with
category SW_CLUSTER_SYSTEM_DESCRIPTION. Similar to a System Extract, it
is not fully decomposed and still contains compositions. It only contains the elements
that belong to a single CpSoftwareCluster.

80 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

In a Top-Down approach, the CpSoftwareCluster Extract is an extract of the
ECU System Description for one CpSoftwareCluster.

In a Bottom-Up approach, the CpSoftwareCluster Extract is created directly.

This extract forms the basis for the ECU Extract for a single CpSoftwareCluster.
It can be developed and built independently of other CpSoftwareClusters on the
same EcuInstance.

2.5.6.2 Description

Generate a CpSoftwareCluster Extract, which is the basis for further develop-
ment on CpSoftwareCluster level.

2.5.6.3 Workflow

The workflow starts with Design CpSoftwareCluster, creating CpSoft-
wareClusters, mapping them to an EcuInstance and assigning Software Com-
ponents to CpSoftwareClusters.

In the Top-Down approach, Design CpSoftwareCluster refines the ECU System
Description, by defining clusters. Afterwards, the CpSoftwareCluster Ex-
tract can be created.

In the Bottom-Up approach, Design CpSoftwareCluster directly creates the Cp-
SoftwareCluster Extract, skiping the ECU System Description. In this ap-
proach, the CpSoftwareCluster can be used as a pre-integrated software building
block. It’s even possible to create a library of those building blocks.

The CpSoftwareCluster Extract can then be handed over to the owner of that
CpSoftwareCluster, who can then continue with development and integration (Ex-
tend CpSoftwareCluster).

In practice, each CpSoftwareCluster Extract is treated like a separate EcuIn-
stance. The steps in Integrate Software for ECU are executed for each Cp-
SoftwareCluster, including Build Executable, which creates a partial binary
for a CpSoftwareCluster. Several partial binaries are then merged together to form
the Merged ECU Executable

81 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Generate CpSoftwareCluster

Extract

Develop Sub-System

Generate ECU Extract

ECU System Description CpSoftwareCluster Extract ECU Extract

Design CpSoftwareCluster Extend CpSoftwareCluster

Integrate Software

for ECU

Build Executable

Generate ECU Executable

ECU Executable

Merge

CpSoftwareCluster
Merged ECU

Executable

1..*

«nesting»

0..*

«input»
0..*

«output»

0..*

«output» 1

«output» 1

0..1

«inoutput»

1 «input»
0..*

1..*

«inoutput»

0..1

«inoutput»

0..1

«nesting»

«input»
0..*

«nesting»

«output»
0..*

0..*

«nesting»

«nesting»

1

«input»

Figure 2.33: Generate the CpSoftwareCluster Extract

.

Activity Generate CpSoftwareCluster Extract

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::CpSoftwareCluster

Brief Description Generate the CpSoftwareCluster Extract

Description Generate the CpSoftwareCluster Extract, either Top-Down out of the System Description, or
Bottom-Up. It is then delivered for integration and further development on CpSoftwareCluster level.
For details, see the chapters "Software Cluster Mapping" and "Software Cluster" in CP TPS System
Template.

Relation Type Related Element Mult. Note

Consumes ECU System Description 1 In case CpSoftwareClusters are used

Produces CpSoftwareCluster Extract 0..* In case CpSoftwareClusters are used in the Top-Down
approach

Aggregates Design CpSoftwareCluster 1

Table 2.24: Generate CpSoftwareCluster Extract

2.5.7 Generate ECU Extract

2.5.7.1 Purpose

This Activity provides an extract of the System description for setting up an ECU
Configuration for specific ECU.

82 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.5.7.2 Description

Generate an ECU Extract basis for setting up the ECU configuration and further
development on ECU level.

2.5.7.3 Workflow

Generate ECU Extract

Extract ECU
Topology

Generate or
Adjust ECU
Flat Map

ECU Flat Map

Flatten Software
Composition

ECU Extract of
Topology

Extract the ECU
Communication

ECU Extract

ECU Extract for
Communication

System Configuration
Description

System Extract

ECU Extract of
Data Mapping

ECU Extract of
VFB System

ECU System
Description

Extract ECU
Rapid
Prototyping
Scenario

ECU Extract of Rapid
Prototyping Scenario

«output» 1

«output»

1

«nesting»

0..1 «input»

0..1

«input»

«output»
1..*

«nesting»

«nesting»

1

«input»

0..1

«input»

«nesting»

«output»
1

«nesting»

«output»
1

1

«inoutput»
1

«output»

1..*

Figure 2.34: Generate the ECU Extract

Activity Generate ECU Extract

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::Generate Ecu Extract

Brief Description Generate the ECU Extract out of the System Description in order to be delivered for integration for
further development on ECU level.

Description Generate the ECU extract which is a basis for setting up the ECU configuration and further
development on ECU level.
It can be generated either from a full system (System Configuration Description), a System Extract
or a ECU System Description.

Relation Type Related Element Mult. Note

Consumes CpSoftwareCluster Extract 1 In case CpSoftwareClusters are used

Consumes ECU System Description 0..1

Consumes System Configuration
Description

0..1

▽

83 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Activity Generate ECU Extract

Consumes System Extract 0..1

Produces ECU Extract 1

Aggregates Extract ECU Rapid
Prototyping Scenario

1

Aggregates Extract ECU Topology 1

Aggregates Extract the ECU
Communication

1

Aggregates Flatten Software
Composition

1

Aggregates Generate or Adjust ECU
Flat Map

1

Predecessor Define Rapid Prototyping
Scenario

1

Table 2.25: Generate ECU Extract

2.5.8 Design Custom Transformer

2.5.8.1 Purpose

This Activity specifies the functional aspects of a transformation technology used
for the serialization of selected system signals.

2.5.8.2 Description

Transformer enable AUTOSAR systems to use a data transformation mechanism to
linearize and transform data. They can be concatenated to transformer chains and
are executed by the RTE for inter-ECU communication which is configured to be trans-
formed.

The transformation technology (which transformer should be used for which commu-
nication) is defined in the context of the Design Communication activity (task De-
fine Transformation Technology). For the transformation of communication
data standardized transformers (e.g. SOME/IP transformer) or custom transformers
can be used.

[TR_METH_01130] Design Custom Transformer activity ⌈In case of custom
transformers the Design Custom Transformer activity has to be performed to
define the functional specification of the custom transformation mechanism (Cus-
tom Transformer Specification) and the corresponding configuration parame-
ters (BSW Module Vendor- Specific Configuration Parameter Defini-
tion). The Design Custom Transformer activity is done during the Develop
System activity because it produces a definition what a transformer does and there-
fore significantly affects the corresponding communication.⌋

84 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

The specified transformer is then implemented (Develop Basic Software) and
can be used in the Design Communication activity. There, inter-ECU communi-
cation can be marked for being transformed.

[TR_METH_01131] Output of Design Custom Transformer activity ⌈The
Design Custom Transformer activity shall result in a set of complete and
unambiguous written Custom Transformer Specifications and the corre-
sponding BSW Module Vendor- Specific Configuration Parameter Def-
inition. A specification of a specific transformer shall adhere to [7, CP SWS BSW
General] and [8, CP ASWS Transformer General].

A specification of a transformer shall contain:

• Functional specification of the transformer. See [8, CP ASWS Transformer Gen-
eral] for details. The most important issue are:

– Specification of the transformers output

– Transformer class

– Transformer errors

• Definition of Development Errors, Production Errors and Extended Production
Errors.

• Transformer APIs

• Extension of the transformer EcuC if necessary for the specific transformer

⌋

2.5.8.3 Workflow

Design Custom Transformer

Create Transformer SpecificationDefine Vendor Specific
Module Definition

Transformer Design Bundle

«output» 1

«nesting»«nesting»

Figure 2.35: Design Custom Transformer activity

85 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Activity Design Custom Transformer

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::Design Custom Transformer

Brief Description

Description In this activity the functional specification of the custom transformer module is created and the
corresponding parameter definition is specified. The creation of the functional specification of the
Transformer can be seen as a part of the communication design.
This activity is performed only if a custom transformer for the communication is required.

Relation Type Related Element Mult. Note

Produces Transformer Design Bundle 1

Aggregates Create Transformer
Specification

1

Aggregates Define Vendor Specific
Module Definition

1

Table 2.26: Design Custom Transformer

2.5.9 Define System Safety Information

2.5.9.1 Purpose

This Activity allows specifying safety information at system level.

2.5.9.2 Description

In this activity, the safety information at system or sub-system level is defined. Obvi-
ously, the safety information defined in previous development stages is detailed. (For
detailed tasks see chapter 2.14).

2.5.9.3 Workflow

Define System Safety
Information

Define Safety
Information

System Description

VFB Safety
Extensions

Software Component
Safety Extensions

System Safety
Extensions

«input»

«input»

«input»

«output»

Figure 2.36: Define System Safety Information

86 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Activity Define System Safety Information

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::Develop System

Brief Description Defines all required safety information at system level.

Description In this activity, the safety information at system level is defined. The safety information can be
refined or completed in further development phases.

Extends Define Safety Information

Relation Type Related Element Mult. Note

Consumes Software Component
Safety Extensions

1

Consumes System Description 1

Consumes VFB Safety Extensions 1

Produces System Safety Extensions 1

Table 2.27: Define System Safety Information

2.6 Develop Basic Software

2.6.1 Overview

2.6.1.1 Purpose

This Activity provides an overall use case how to the develop AUTOSAR Basic
Software.

87 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.6.1.2 Description

2.6.1.3 Workflow

Design Basic
Software

Develop BSW
Module

Develop Basic
Software

Define BSW Types

Define BSW Entries

Define BSW Interfaces

Define BSW
Behavior

Generate BSWM
Contract Header
Files

Implement a BSW
Module

Define BSW
Module Timing

Compile BSW Core
Code

Generate BSW
Module Prebuild
Data Set

Define Vendor Specific
Module Definition

Develop BSW Module
Generator

BSW Module
Delivered Bundle

BSW Standard
Package

Transformer Design
Bundle

«output» 1..*

1

«input»

«nesting»

1..*

«nesting»

«nesting»

«nesting»

«predecessor»
«nesting»

1

«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

0..*
«input»

«nesting»

«nesting»

«nesting»

Figure 2.37: Nesting relationship: Develop Basic Software

Activity Develop Basic Software

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::BSW::develop_bsw

Brief Description

Description Describes the overall activities to develop Basic Software, starting from the design down to delivery
of modules.
In case of custom transformer module development, the Transformer Design Bundle containing the
functional specification and the parameter definition is taken as a basis for all required activities.

Relation Type Related Element Mult. Note

Consumes BSW Standard Package 1

Consumes Diagnostic System Extract 0..*

Consumes Transformer Design Bundle 0..*

Produces BSW Module Delivered
Bundle

1..*

Produces Diagnostic System Extract 0..*

Aggregates Design Basic Software 1

Aggregates Develop BSW Module 1..*

Table 2.28: Develop Basic Software

It consists of two parts:

88 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

• Design Basic Software

• Develop BSW Module

2.6.2 Design BSW

2.6.2.1 Purpose

This Activity provides a rough outline for the Basic Software design for an ECU or
a set of ECUs.

2.6.2.2 Description

[TR_METH_01083] Design Basic Software activity ⌈Design the Basic Software
for an ECU or a set of ECUs. This shall result in a set of complete and unambiguous
Basic Software Module Descriptions.⌋

Note that existing descriptions, especially standardized ones, can be reused, eventu-
ally setting only optional elements or user specific extension.

[TR_METH_01084] Separation of design and development of basic software ⌈This
Activity is conceptually separated from Develop BSW Module, because it might
be performed by a Basic Software Designer responsible for the complete Basic
Software Design on a given ECU, which may be different in general from the Basic
Software Module Developer who develops or delivers the single modules.⌋

2.6.2.3 Workflow

Design Basic Software

Define BSW Types Define BSW Entries Define BSW InterfacesDefine Vendor Specific
Module Definition

BSW Standard
Package

BSW Design Bundle

«nesting»

«nesting»

«nesting»
«nesting»

«output»
1..*1 «input»

Figure 2.38: Nesting Relationship : Design Basic Software

89 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Define BSW
Types

Define BSW Entries

Define BSW
Interfaces

Basic Software
Entries

BSW Types

Basic Software
Module DescriptionECU Resources

Description

Define Vendor Specific
Module Definition

BSW Module Vendor-
Specific Configuration
Parameter Definition

AUTOSAR Standardized ECU
Configuration Parameter Definition

BSW Standard
Package

«inoutput» «input»1

«output» 1
«input»0..1

«input»

1

«input»

1

«output» 1

1

«aggregation»

«input»

«input»

0..1

«input»
0..1

«output» 1
1 «input»

Figure 2.39: Design Basic Software

Activity Design Basic Software

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::BSW::develop_bsw

Brief Description Design the Basic Software for an ECU or a set of ECUs.

Description Design the Basic Software for an ECU or a set of ECUs. This shall result in a set of complete and
unambiguous Basic Software Module Description. Note that existing descriptions, especially
standardized ones, can be reused, eventually setting only optional elements or user specific
extension.
This activity is conceptually separated from the activity Develop Basic Software Module, because it
might be performed by a Basic Software Designer responsible for the complete Basic Software
Design on a given ECU, which may be different (in general) from the Basic Software Module
Developer who develops and/or delivers the single modules.

Relation Type Related Element Mult. Note

Consumes BSW Standard Package 1

Produces BSW Design Bundle 1..*

Aggregates Define BSW Entries 1

Aggregates Define BSW Interfaces 1

Aggregates Define BSW Types 1

Aggregates Define Vendor Specific
Module Definition

1

Table 2.29: Design Basic Software

90 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.6.3 Develop BSW Module

2.6.3.1 Purpose

This Activity provides a rough outline for a single Basic Software module or BSW
cluster development prior to an ECU integration.

2.6.3.2 Description

[TR_METH_01085] Develop BSW Module activity ⌈To develop the core code (i.e.
the code not generated during integration) of a single BSW module or BSW cluster
prior to ECU integration. This Activity focuses on the tasks which are common for
most BSW modules. It is not valid for those modules (RTE, BSW Scheduler) which are
completely generated at integration time.⌋

2.6.3.3 Workflow

Develop BSW Module

Define BSW
Behavior

Define BSW
Module Timing

Generate BSWM
Contract Header
Files

Implement a BSW
Module

Compile BSW Core
Code

Generate BSW
Module Prebuild
Data Set

Develop BSW Module
Generator

BSW Standard
Package

BSW Design Bundle

BSW Module
Delivered Bundle1..*

«input»

«nesting»

«nesting»

«nesting»

«nesting»
«nesting»

1

«input»

«nesting»

«output» 1

«nesting»

Figure 2.40: Nesting relationship : Develop Basic Software Module

91 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Define BSW
Behavior

Define BSW
Module Timing

Generate BSWM
Contract Header
Files

Implement a
BSW Module

Compile BSW
Core Code

Generate BSW
Module Prebuild
Data Set

Basic Software
Module Internal

Behavior

Basic Software
Module Core
Header

Basic Software
Module Core
Source Code

Basic Software
Module Object Code

Basic Software
Module Interl ink
Header

BSW RTE Prebuild
Configuration Header

Basic Software
Module
Implementation
Description

Basic
Software
Module
Description

Basic Software
Module Timing

Develop BSW Module
Generator

BSW Module
Generator

BSW Standard
Package

BSW Module Vendor-
Specific Configuration
Parameter Definition

Build Action Manifest

Figure 2.41: Develop Basic Software Module

Activity Develop BSW Module

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::BSW::develop_bsw

Brief Description Develop a single BSW module or BSW cluster prior to ECU integration.

Description Develop a single BSW module or BSW cluster prior to ECU integration.
To develop the core code (i.e. the code not generated during integration) of a single BSW module or
BSW cluster prior to ECU integration including vendor specific configuration parameters and module
generators. This activity focuses on the tasks which are common for most BSW modules. It is not
valid for those modules (RTE, BSW Scheduler) which are completely generated at integration time.

Relation Type Related Element Mult. Note

Consumes BSW Design Bundle 1..*

▽

92 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Activity Develop BSW Module

Consumes BSW Standard Package 1

Produces BSW Module Delivered
Bundle

1

Aggregates Compile BSW Core Code 1

Aggregates Define BSW Behavior 1

Aggregates Define BSW Module Timing 1

Aggregates Develop BSW Module
Generator

1

Aggregates Generate BSW Module
Prebuild Data Set

1

Aggregates Generate BSWM Contract
Header Files

1

Aggregates Implement a BSW Module 1

Predecessor Design Basic Software 1

Predecessor Design Basic Software 1

Table 2.30: Develop BSW Module

2.7 Integrate Software for ECU

2.7.1 Description

In this chapter, the integration for an EcuInstance is described (note that an EcuIn-
stance represents a single instantiation of a Classic Platform stack that may run di-
rectly on the physical ECU, or under a hypervisor).

[TR_METH_01086] Integrate Software for ECU activity ⌈The main activities
include configuring and/or generating the BSW modules (including the RTE) and build-
ing the executable. The BSW configuration can be done during different steps of devel-
opment. The detailed use cases for these different ways of configuration are introduced
later in the chapter, thanks to the Configuration Classes definition :

• Pre-compile time

• Link time

• Post-build time

⌋

2.7.2 Overview

2.7.2.1 Purpose

This Activity is showing the high level view how to integrate AUTOSAR Software for
an ECU.

93 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.7.2.2 Description

[TR_METH_01087] Scope of Integrate Software for ECU activity ⌈The de-
velopment of an EcuInstance consists of four main activities:

• Prepare ECU Configuration

• Configure BSW and RTE

• Generate BSW and RTE

• Build Executable

In addition, the optional activity Model ECU Timing is shown. The ECU timing model
depends on ECU configuration details (BSW and RTE), but the results shall help to
optimize the configuration in an iterative approach.⌋

The ECU configuration plays a significant role during the integration of the soft-
ware for an ECU. The relevant workflow is depicted in figure 2.431. All three activi-
ties (Prepare ECU Configuration, Configure BSW and RTE, Generate BSW
and RTE) use the work product ECU Configuration Values which contains (i.e.
references) all the configuration information for all BSW modules on the ECU. In or-
der to better understand the three different activities an introduction to configuration
classes is given in chapter 2.7.9.

One can measure resources used by the various BSW modules and applications and
save that information within the Basic Software Module Implementation De-
scription or Atomic Software Component Implementation.

One can also generate an A2L File processing the Generate A2L task at this point.

2.7.2.2.1 Inputs to ECU Configuration

[TR_METH_01114] Input sources for ECU Configuration ⌈ECU Configuration has
two input sources. First of all, all configuration that must be agreed across ECUs
is defined in the System Configuration, which results in a System Configuration
Description (and the resulting ECU Extract for the individual ECUs).

Secondly, the ECU BSW is built using BSW modules. The specifics of these mod-
ule implementation are defined in the BSW Module descriptions covered by the BSW
Module Delivered Bundle.⌋

Note: See figure 2.43.

The latter is described in [9, CP TPS BSW Module Description Template] in more
detail. The concept of the ECU Extract is depicted below:

1In order to be more comprehensible, this figure hides some outputs of the activity Generate BSW
and RTE. For more details see the outputs of all aggregated tasks.

94 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

ECU Extract

ECU Configuration can only be started once a plausible System Configura-
tion Description and the corresponding ECU Extract has been generated (see
figure 2.43). Details on the System Configuration Description can be found
in [6, CP TPS System Template].

The System Configuration Description contains all relevant system-wide con-
figuration, such as

• ECUs present in the system

• Communication systems interconnecting those ECUs and their configuration

• Communication matrices (frames sent and received) for those communication
systems

• Definition of Software Components with their ports and interfaces and connec-
tions (defined in the SWC Description and referenced in the System Configu-
ration Description).

• Mapping of SWCs to ECUs

The ECU Extract is a description in the same format as the System Configura-
tion Description, but with only those elements included that are relevant for the
configuration of one specific ECU.

2.7.2.2.2 ECU Configuration Values

The ECU Extract only defines the configuration elements that must be agreed be-
tween ECUs. In order to generate a working executable that runs on the ECU, much
more configuration information must be provided.

The remaining part of the configuration is about configuring all BSW modules within the
ECU. Typical BSW modules within an ECU can be: RTE, Com, Can, OS, NVRAM etc.
There are also dependencies between BSW modules to consider when configuring the
ECU.

When the configuration is done, the generation of configuration data takes place. I.e.
there are both configuration editors and configuration generators involved in the pro-
cess.

In order to obtain consistency within the overall configuration of the ECU, AUTOSAR
has defined a single format, the ECU Configuration Values to be used for all
BSW modules within an ECU. In the AUTOSAR Methodology the ECU Configuration
Values is represented by the artifact ECU Configuration Values. Both configura-
tion editors and configuration generators are creating ECU Configuration Values.

95 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

[TR_METH_01116] ECU Configuration Values contains the configuration of all
BSW modules in a single ECU ⌈This one description (ECU Configuration Val-
ues) collects the complete configuration of BSW modules in a single ECU. Each mod-
ule generator may then extract the subset of configuration data it needs from that single
format.⌋

2.7.2.3 Workflow

Integrate Software
for ECU

Prepare ECU Configuration

Configure BSW and RTE

Model ECU Timing

Generate BSW and RTE

Build Executable

ECU Software Delivered

ECU Extract
Delivered Atomic Software
Components

BSW Module
Delivered Bundle

Diagnostic ECU
Extract

Update ECU Configuration

1

«input»

«output»

1

«nesting»

«nesting»

1..*

«input»

«nesting»

«nesting»

«nesting»

0..1

«input»

«nesting»

1..*

«input»

Figure 2.42: Integrate Software for ECU Overview

96 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

ECU Extract

Prepare ECU
Configuration

Generate BSW and
RTE

Configure BSW and RTE

BSW Module
Delivered Bundle

ECU
Configuration
Values

BSW Module
Configuration Data
Source Code

BSW Module
Configuration
Header File

RTE Source
Code

«output» 1

1..*

«input»
«output»

1

«inoutput»

1

«output»

1

1 «input» «output» 1

1

«input»

Figure 2.43: ECU Configuration Overview

Activity Integrate Software for ECU

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::Integrate Software for ECU

Brief Description

Description This activity contains all typical sub-activities required to integrate the software components and
modules on an EcuInstance.
ECU in this context means ECUInstance, one "ECU Delivered" will be needed for each
ECUInstance.

Relation Type Related Element Mult. Note

Consumes BSW Module Delivered
Bundle

1..*

Consumes Delivered Atomic Software
Components

1..*

Consumes Diagnostic ECU Extract 0..1 complete DE:

Consumes ECU Extract 1

Produces ECU Software Delivered 1

Aggregates Build Executable 1

Aggregates Configure BSW and RTE 1

Aggregates Generate BSW and RTE 1

Aggregates Model ECU Timing 1

Aggregates Prepare ECU Configuration 1

Aggregates Update ECU Configuration 1

Table 2.31: Integrate Software for ECU

97 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.7.3 Prepare ECU Configuration

2.7.3.1 Description

[TR_METH_01088] Prepare ECU Configuration activity ⌈During the Prepare
ECU Configuration activity, the information available in ECU Extract for the spe-
cific ECU is extended by implementing the Service Needs required by the Soft-
ware Components and BSW Modules and by including their initial configurations as
provided in the BSW Module Preconfigured Configuration or BSW Module
Recommended Configuration. The result of this activity is the base ECU Con-
figuration.

In addition, the BSW Module Vendor- Specific Configuration Parameter
Definition, which defines all possible configuration parameters and their structure,
is incorporated into the ECU Configuration. This is necessary because the output
ECU Configuration has a flexible structure which does not define a fixed number
of configuration parameters a priori.⌋

[TR_METH_01117] BSW implementation shall be chosen for each BSW module
that is present in the ECU ⌈For each BSW module that shall be present in the ECU,
the implementation must be chosen. This is done by referencing the BSW Module
description delivered with the BSW module (BSW Module Delivered Bundle).⌋

The rules that must be followed when building the base ECU Configuration Val-
ues are available in [10] Chapter 2.2 “ECU Configuration Template Structure” .

98 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.7.3.2 Workflow

Prepare ECU
Configuration

Define
Integration
Variant

Generate Base
Ecu Configuration ECU Configuration

ValuesECU Extract

Evaluated Variant Set

Postbuild Variant
Set

Predefined Variant

Diagnostic
ECU Extract

0..1 «input»

«output»

11

«input»

0..1
«input»

«nesting»

1

«input» «inoutput» 0..*

«output» 1

«output»

0..1

«nesting»

1 «input»

Figure 2.44: Prepare ECU Configuration

Activity Prepare ECU Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::Integrate Software for ECU

Brief Description

Description Initial actions required to create the initial ECU Configuration.

Relation Type Related Element Mult. Note

Consumes BSW Module Delivered
Bundle

1..*

Consumes Diagnostic ECU Extract 0..1

Consumes ECU Extract 1

Produces ECU Configuration Values 1

Aggregates Define Integration Variant 1

Aggregates Generate Base Ecu
Configuration

1

Predecessor Refine Rapid Prototyping
Scenario

1

Table 2.32: Prepare ECU Configuration

2.7.4 Configure BSW and RTE

2.7.4.1 Description

[TR_METH_01089] Configure BSW and RTE activity ⌈Once there is a base ECU
Configuration, the complete configuration can be performed. This is mainly editing
work on the ECU Configuration which is typically supported by an editing tool. In

99 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

practice this will require iterations and/or parallel work to configure the RTE and all
participating BSW modules.⌋

The methodology does not prescribe a certain order of these configuration steps. The
ECU Configuration description (e.g. ECU Configuration Values) which was
produced by one activity can be read by another activity (e.g. Configure RTE gener-
ates a description and Configure Com reads this). Usually the configuration activities
for the BSW modules (e.g. COM and OS) read and write the ECU Configuration.

[TR_METH_01090] Configure RTE task ⌈The Configure RTE task is more com-
plex as this additionally needs all the Atomic Software Component Implemen-
tations required for that ECU. Whenever these change, e.g. because software com-
ponents have been moved to or from other ECUs, or simply another implementation of
a software component has been selected, the Configure RTE task must be repeated
as well.⌋

2.7.4.2 Workflow

Configure BSW and RTE

Configure ECUC

Configure OS

Configure RTE

Configure Watchdog
Manager

Configure Mode
Management

Configure NvMConfigure Diagnostics

Create Service
Component

Configure Com

Configure IO
Hardware abstraction

Configure MCAL

Configure
Memmap
Allocation

Connect Service Component

Configure Transformer

Figure 2.45: Configure BSW and RTE

100 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Activity Configure BSW and RTE

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::Integrate Software for ECU

Brief Description

Description All the tasks used to configure the Basic Software Modules on an ECU.

Relation Type Related Element Mult. Note

Aggregates Configure Com 1

Aggregates Configure Diagnostics 1

Aggregates Configure ECUC 1

Aggregates Configure IO Hardware
abstraction

1

Aggregates Configure MCAL 1

Aggregates Configure Memmap
Allocation

1

Aggregates Configure Mode
Management

1

Aggregates Configure NvM 1 Since the configuration of the DEM usually has impact
on the data to be stored in NvM, the task Configure
Diagnostics is assumed to precede the task Configure
NvM.

Aggregates Configure OS 1

Aggregates Configure RTE 1

Aggregates Configure Transformer 1

Aggregates Configure Watchdog
Manager

1

Aggregates Connect Service
Component

1

Aggregates Create Service Component 1

Predecessor Prepare ECU Configuration 1

In/out ECU Configuration Values 1

Table 2.33: Configure BSW and RTE

2.7.5 Update ECU Configuration

2.7.5.1 Description

In a post-build scenario, there are two loadable files generated in the end - one of
them containing the application software, basic software and the pre-compile and link
time configuration of the basic software (referred to as ECU Executable) and the
other one containing only the post-build time configuration of the basic software (BSW
Module Configuration Data Loadable to ECU Memory). These two load-
able files represent the initial configuration. This initial configuration can be updated
in post-build time by generating two new loadable files. In this update, the ECU Exe-
cutable is not modified.

[TR_METH_01151] Update ECU Configuration activity ⌈The update of the
BSW Module Configuration Data Loadable to ECU Memory is usually done
by importing the updated EcuExtract containing the needed post-build updates to the
ECU configuration tool which already contains the initial ECU configuration. Based on

101 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

these updates in the EcuExtract and everything else from the initial ECU configura-
tion, an updated ECU configuration shall be created (therefore we have both input and
output relations between the ECU Configuration Values and the Update ECU
Configuration activity).⌋

2.7.5.2 Workflow

Generate Updated
ECU Configuration

Update ECU
Configuration

Define Integration
Variant

Evaluated Variant Set

Postbuild Variant Set

Predefined Variant

ECU Extract

Diagnostic ECU
Extract

ECU Configuration
Values

«inoutput» 0..*

0..1

«input»

«output»

0..1

«inoutput» 1

1

«input»

1

«input»

«output»

1

«nesting»

0..1

«input»

«nesting»

1

«input»

Figure 2.46: Update ECU Configuration

Activity Update ECU Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::Integrate Software for ECU

Brief Description Tasks required to create the updated ECU Configuration.

Description Tasks required to create the updated ECU Configuration.

Relation Type Related Element Mult. Note

Consumes Diagnostic ECU Extract 0..1

Consumes ECU Extract 1

Aggregates Define Integration Variant 1

Aggregates Generate Updated ECU
Configuration

1

Table 2.34: Update ECU Configuration

102 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.7.6 Model ECU Timing

2.7.6.1 Workflow

Model ECU
Timing

Define ECU
Timing

ECU Timing

ECU Extract

Basic Software
Module Timing

ECU Service
Connectors

ECU Extract of
System Timing

«output»
10..1 «input»

0..1

«input»

«nesting»

0..1

«input»

1..*

«input»

0..1

«aggregation»

Figure 2.47: Model ECU Timing

Activity Model ECU Timing

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::Integrate Software for ECU

Brief Description

Description ECU timing model depends on ECU configuration data (BSW and RTE) but the result of the ECU
timing model shall help to optimize ECU configuration. The relation between "Configure BSW and
RTE" and "Model ECU Timing" must be seen as an iterative work.

Relation Type Related Element Mult. Note

Aggregates Define ECU Timing 1

Predecessor Configure BSW and RTE 1

Table 2.35: Model ECU Timing

2.7.7 Generate BSW and RTE

2.7.7.1 Description

[TR_METH_01092] Generating BSW modules, RTE, and OS source files ⌈After the
ECU Configuration is completed, the BSW modules, RTE, and OS source files are
generated.⌋

Generation is the process of applying the tailored ECU Configuration Values to
the software modules. This can be performed in different ways, and is dependent
on the configuration classes chosen for the different modules (see 2.7.9), and on
implementers choices.

103 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

For each BSW module, a generator reads the relevant parameters from the ECU Con-
figuration Values and creates code that implements the specified configuration.

In this generation step, the abstract parameters of the ECU Configuration Values
are translated to hardware and implementation-specific data structures that fit to the
implementation of the corresponding software module. The AUTOSAR Methodology
specification does not specify the generator tools in detail.

It is assumed however that generators perform error, consistency and completeness
checks on the part of the configuration they require for generation.

When generating code for a specific module, the generator shall also export ARTI infor-
mation if ARTI is configured. The ARTI export shall contain information for debugging
AUTOSAR modules, and tracing via ARTI hook macros, as defined in the appropriate
SWS documents of the module.

If ARTI trace is configured, before building the executable, an additional ARTI source
file (arti.c) is provided by the trace tool and shall be included in the build.

There are some alternative approaches when it comes to generation of configuration
data. See chapter A.1.2 in [10, CP TPS ECU Configuration] for more details.

2.7.7.2 Workflow

Generate BSW and
RTE

Generate
RTE

Generate
OS

Generate RTE
Prebuild Dataset

Generate Local
MC Data Support

Generate SWC
Memory Mapping
Header

Generate BSW
Memory Mapping
Header

Generate BSW
Configuration
Code

«nesting»

«nesting»

«nesting»
«nesting»

«nesting»

«nesting»

«nesting»

Figure 2.48: Generate BSW and RTE

104 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Generate BSW
Configuration
Code

Generate BSW
Memory Mapping
Header

Generate SWC
Memory Mapping
Header

ECU Configuration
Values

Atomic Software
Component
Implementation

BSW Module
Configuration Data
Source Code

BSW Module
Configuration
Header File

Standard Header
Files

BSW Module
Behavior Extension

BSW Module
Interface Extension

BSW Module
Implementation
Extension

BSW Module
Vendor- Specific
Configuration
Parameter
Definition

BSW Module
Generator

BSW Module
Preconfigured
Configuration

VFB
Types

Basic Software
Module
Implementation
Description

Build Action
Manifest

Figure 2.49: Generate BSW and RTE (Part 1)

105 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Generate RTE

Generate OS
Generate RTE
Prebuild Dataset

Generate Local MC
Data Support

ECU
Configuration
Values

Software
Component
Internal Behavior

Basic Software
Module Internal
Behavior

Delivered
Atomic
Software
Components

ECU Extract

RTE Source Code

RTE Prebuild
Configuration
Header

OS Generated Code

BSW Module
Behavior Extension

BSW Module
Integration
Bundle

Local Measurement
and Calibration
Support Data

RTE
Implementation
Description

RTE Measurement
and Calibration
Support Data

BSW Scheduler
Code

ECU Service
Connectors

Service Component
Description

Calibration
Parameter
Value Set

0..*

1

0..*

1

0..1

1

10..1

0..1

0..*

0..1

1

1

0..*

1

0..*

1

1

0..*

0..*

1..*

0..1

1

0..1
1

Figure 2.50: Generate BSW and RTE(Part 2)

106 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Activity Generate BSW and RTE

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::Integrate Software for ECU

Brief Description High Level view showing how to build software for an EcuInstance.

Description High Level view showing how to build software for an EcuInstance.

Relation Type Related Element Mult. Note

Consumes ECU Configuration Values 1

Produces BSW Module Configuration
Data Source Code

1

Produces BSW Module Configuration
Header File

1

Produces RTE Source Code 1

Aggregates Generate BSW
Configuration Code

1

Aggregates Generate BSW Memory
Mapping Header

1

Aggregates Generate Local MC Data
Support

1

Aggregates Generate OS 1

Aggregates Generate RTE 1

Aggregates Generate RTE Prebuild
Dataset

1

Aggregates Generate SWC Memory
Mapping Header

1

Predecessor Configure BSW and RTE 1

Table 2.36: Generate BSW and RTE

2.7.8 Build Executable

2.7.8.1 Description

[TR_METH_01093] Building ECU Executable ⌈After BSW and RTE have been gen-
erated, all the source code is compiled and linked along with all the applications, li-
braries, object code etc. to build the ECU Executable.⌋

Note: The details of the various compiling and linking options are explained in the
chapters 2.7.9.1, 2.7.9.2, 2.7.9.3 and 2.7.9.4.

107 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.7.8.2 Workflow

Compile ECU
Source Code Generate

ECU
Executable

Generate RTE
Postbuild Dataset

Measure Resources

Generate A2L

ECU Object Code ECU
Executable

Map of the
ECU
Executable

RTE Postbuild
Variants Dataset

Atomic Software
Component
Implementation

A2L File

ECU
Configuration
Values

���������� �
 ���

���
������
��

��������� ���
���������

���� �� ��� �������

�����

BSW Module
Implementation
Extension

Build Action Manifest

1

«input»

1

«input»

«output» 1

0..1

«input»

«output» 1

«output»

0..*

«output» 1

1

«input»

«output»

0..*

0..1

«input»

«output»

1

1..* «input»

0..1 «input»

0..1

«input»

«output» 1..*

0..1

«input»

0..1

«input»

Figure 2.51: Build Executable

108 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Activity Build Executable

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::Integrate Software for ECU

Brief Description

Description Describes how to build one executable and related artifacts (A2L file) starting from the source code
(and delivered object code).

Relation Type Related Element Mult. Note

Aggregates Compile ECU Source Code 1

Aggregates Generate A2L 1

Aggregates Generate ECU Executable 1

Aggregates Generate RTE Postbuild
Dataset

1

Aggregates Measure Resources 1

Predecessor Generate BSW and RTE 1

Table 2.37: Build Executable

2.7.9 Configuration Classes

The development of BSW modules involve the following development cycles: com-
piling, linking and downloading of the executable to ECU memory. Configuration of
parameters can be done in any of these process-steps: pre-compile time, link time or
even post-build time.

According to the process-step that does the configuration of parameters, the configu-
ration classes are categorized as below

• pre-compile time

• link time

• post-build time

The configuration in different process-steps has some consequences for the handling
of ECU configuration parameters. If a configuration parameter is defined as pre-
compile time, after compilation this configuration parameter can not be changed any
more.

Or if a configuration parameter is defined at post-build time the configuration parameter
has to be stored at a known memory location. Also, the format in which the BSW
module is delivered determines in what way parameters are changeable. A source
code delivery or an object code delivery of a BSW module has different degrees of
freedom regarding the configuration.

The configuration class of a parameter depends on the chosen implementation vari-
ants of the BSW module it belongs to. However once the module is implemented, the
configuration class for each of the parameters is fixed. Choosing the right implementa-
tion variant for a module depends on the type of application and the design decisions
taken by the module implementer.

Different configuration classes can be combined within one module. For example, for
post-build time configurable BSW implementations only a subset of the parameters

109 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

might be configurable post-build time. Some parameters might be configured as pre-
compile time or link time.

File formats used for describing the configuration classes:

• .arxml (An xml file standardized by AUTOSAR.)

• .exe (An executable that can be downloaded to an ECU.)

• .hex (A binary file that can be downloaded to an ECU , but it can not execute by
its own.)

• .c (A C-source file containing either source code or configuration data.)

• .h (A header file for either source code or configuration data.)

• .obj (A object file for either source code or configuration data.)

[TR_METH_01115] A mix of parameters with different configuration classes
within a BSW module is allowed ⌈In a real implementation of a BSW module all
configuration parameters are most likely not in the same configuration class. I.e it will
be a mix of parameters with different configuration classes within a BSW module.⌋

2.7.9.1 Configuration Class: Pre-compile Time

[TR_METH_01095] Configuration Class: Pre-compile Time ⌈This type of configura-
tion is a standalone configuration done before compiling the source code. That means
parameter values for those configurable elements are selected before compiling and
will be effective after compilation time. The value of the configurable parameter is
decided in earlier stage of software development process and any changes in the pa-
rameter value calls for a re-compilation. The contents of pre-compile time parameters
can not be changed at the subsequent development steps like link time or post-build
time.⌋

2.7.9.1.1 Description

The work breakdown structure shows two approaches:

[TR_METH_01096] Generating header files only ⌈The first approach is to generate a
BSW Module Configuration Header File, then compile the module core code
using this header file. In this case the module core code is not touched by the BSW
Configuration Generator.⌋

BSW Module Configuration Source Files (namely BSW Module Configuration
Header File and BSW Module Configuration Data Source Code, see also
Figure 2.56), however, may still be generated. This allows for the generation of different

110 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

C-structures inside a source file in order to support the use-case where pre-compile
configuration can contain unresolved post-build time variation points.

[TR_METH_01097] Generating header and source files ⌈An alternative approach, in
which the BSW Configuration Generator generates the complete, configuration-
specific BSW Module Configuration Header Files plus BSW Module Com-
pletely Generated Source Code. In this case, no core code exist.⌋

Both approaches are equally valid.

Whenever the decision of parameter value must be taken before the selection of other
dependable parameters, pre-compile time configuration is the right choice. For exam-
ple, the algorithm choice for CRC initial checksum parameter is based on the selection
of CRC type (CRC16 or CRC32). When CRC16 is selected, there will be increase in
processing time but reduction in memory usage. Whereas when CRC32 is selected,
there will be decrease in processing time but increase in memory usage. The correct
choice should be made by the implementer before compilation of source code based
on the requirement and resource availability.

Sample cases where pre-compile time configuration can be adopted are:

• Configure the number of memory tables and block descriptor table of NVRAM
manager.

• Enable the macro for the development error tracing of the software modules.

111 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.7.9.1.2 Workflow

ECU
Configuration
Values

Basic
Software
Module
Object
Code

BSW Module
Completely
Generated Source
Code

BSW Module
Configuration
Header File

Generate
BSW Source
Code

Generate BSW
Precompile
Configuration Header

Compile
Configured BSW

Compile
Generated
BSW

Basic Software
Module Core
Source Code

ECU Executable

������ ���� 	

����
���
�

���������

��
�

����	�����	��

������ 	

���������

Link ECU Code
after Precompile
Configuration

��

	�
� ��	
����� ��

������� ��������	
�

�	�� ���	��	�� ��	��
�

�

 ��������	
� �	��

���	��	�� ��	��
 ���

������

�� ��	
����� ��

������� ��������	
�

�	�� ���	��	�� ��	��
�

�	� ��	�� ��� ��
��

��	
� ���	��	�� ��	��

���
�	

 �� ��������

��

	�
� ��	
����� ��

������� ��������	
�

�	�� ���	��	�� ��	��
�

1

«input»
«output»

1

1

«input»

«output»

1

«output»

1

«output»

1

1
«input»

1

«input»

1

«input»

«output»

1

1

«input»

1..*

«input»

«output»

1

Figure 2.52: Pre-compile time configuration overview

Further description of the PreCompile binding time can be found in Section 2.16.3.6.
Do Pre
Compile
Configuration

Compile Configured BSW Generate BSW
Source Code

Compile
Generated
BSW

Link ECU Code
after Precompile
Configuration

Generate BSW Precompile
Configuration Header

«nesting»

«nesting»

«nesting»«nesting»
«nesting»

Figure 2.53: Pre compile time configuration activities

112 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Activity Do Pre Compile Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::Pre Compile Conf

Brief Description

Description [from ecuc sws 1031] This type of configuration is a standalone configuration done before compiling
the source code. That means parameter values for those configurable elements are defined before
compiling and will be effective after compilation time. The value of the configurable parameter is
decided in an earlier stage of software development process and any changes in the parameter
value calls for a re-compilation. The contents of pre-compile time parameters cannot be changed at
the subsequent development steps like link time or post-build time.

Relation Type Related Element Mult. Note

Aggregates Compile Configured BSW 1

Aggregates Compile Generated BSW 1

Aggregates Generate BSW Precompile
Configuration Header

1

Aggregates Generate BSW Source
Code

1

Aggregates Link ECU Code after
Precompile Configuration

1

Table 2.38: Do Pre Compile Configuration

2.7.9.2 Configuration Class: Link Time

[TR_METH_01098] Configuration Class: Link Time ⌈This type of configuration is
done for the BSW module during link time. That means the object code of the BSW
module receives parts of its configuration from another object code file or it is defined
by linker options. Link time parameters are typically used when delivering object code
to the integrator.⌋

2.7.9.2.1 Description

This configuration class provides a modular approach to the configuration process. A
separate module will handle the configuration details and those parameter values will
be made available to the other modules during the linking process.

[TR_METH_01099] Generation and compilation of BSW Configuration Code
⌈The first step is to Generate BSW Configuration Code, which produces the
BSW Module Configuration Data Source Code and the BSW Module Con-
figuration Header File. These are compiled along with the Basic Soft-
ware Module Core Header into the BSW Module Configuration Data Ob-
ject Code.⌋

[TR_METH_01100] Definition of configuration data ⌈The configuration parameter
data is defined in a common header file Basic Software Module Core Header
and included by both Basic Software Module Core Source Code and BSW
Module Configuration Data Source Code. The module source file needs this
header file to resolve the references and module configuration source file will need it in
order to cross check the declaration of data type against the definition.⌋

113 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

[TR_METH_01101] Separate compilation of module source and configuration file
⌈Both module source file and module configuration source file are compiled separately
to generate Basic Software Module Object Code and BSW Module Config-
uration Data Object Code respectively.⌋

[TR_METH_01102] Linking process ⌈During the linking process, the configuration
data will be available to Basic Software Module Object Code by resolving the
external references.⌋

[TR_METH_01103] Re-generation in case of configuration value changes ⌈When
the values of configuration parameters change the Basic Software Module Ob-
ject Code needs to be re-generated.⌋

Sample cases where Link time configuration can be adopted are:

• Initial value and invalid value of signal

• Unique channel identifier configured for the respective instance of the Network
Management.

• Logical handle of CAN network.

• Identifier and type of Hardware Reception Handle and Hardware Transmission

• Handle for CAN interface.

• Definition of ComFilterAlgorithm.

• COM callback function to indicate RTE about the reception of an invalidated sig-
nal.

114 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.7.9.2.2 Workflow

ECU Configuration
Values

Basic Software
Module Object Code

ECU Executable

Generate BSW
Configuration Code

Basic Software
Module Core
Header

Compile Unconfigured BSW

Basic Software
Module Core
Source Code

BSW Module
Configuration
Header File

BSW Module
Configuration
Data Source
Code

Compile BSW
Configuration Data

BSW Module
Configuration
Data Object
Code

Link ECU Code during
Link Time
Configuration

�������� �	��
���� �

������� ����
���

�����
��� ����
��

�� �	��
���� �

������� ����
���

�����
��� ����
��

������� ���
������

�����
��� ����
� ��� �
���

�	��
�

��� ����
��� �����
���

����
� ��� ������

�� �	��
���� �

������� ����
���

�����
��� ����
�� ���
�

����� �����
��� ����
�

��� �
��� �� ��������

«output» 1

1

«input»

1 «input» «output» 1

1..*

«input»

«output»

1

1 «input»

1

«input»

1..*

«input»

1 «input»«output» 1

«output»

1

1 «input»

Figure 2.54: Overview Link Time Configuration

Further description of the LinkTime binding time can be found in Section 2.16.3.8.
Do Link Time
Configuration

Compile
Unconfigured
BSW

Link ECU Code during
Link Time
Configuration

Compile BSW
Configuration Data

Generate BSW
Configuration Code

«nesting» «nesting»
«nesting»

«nesting»

Figure 2.55: Link time configuration

115 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Activity Do Link Time Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::Link Time Conf

Brief Description

Description [from ecuc sws 1032] This type of configuration is done for the BSW module during link time. That
means the object code of the BSW module receives parts of its configuration from another object
code file or it is defined by linker options. Link time parameters are typically used when delivering
object code to the integrator.

Relation Type Related Element Mult. Note

Aggregates Compile BSW Configuration
Data

1

Aggregates Compile Unconfigured BSW 1

Aggregates Generate BSW
Configuration Code

1

Aggregates Link ECU Code during Link
Time Configuration

1

Table 2.39: Do Link Time Configuration

2.7.9.3 Configuration Class: Post-build Time

[TR_METH_01104] Configuration Class: Post-build Time ⌈This type of configura-
tion is possible after building the BSW module or the ECU software. The BSW module
gets the parameters of its configuration by downloading a separate file to the ECU
memory, avoiding a re-compilation and re-build of the BSW module.⌋

2.7.9.3.1 Description

[TR_METH_01105] Generate BSW Postbuild Configuration Code ⌈In order to make
the post-build time re-configuration possible, the re-configurable parameters shall be
stored at a known memory location of the ECU memory. In this approach the Basic
Software Module Core Source Code is compiled and linked independently of its
configuration data. The BSW Configuration Generator generates the configura-
tion data as BSW Module Configuration Data Source Code that is compiled
and linked independently of the core source code.⌋

Note: Postbuild support for function pointers is limited. In case function pointers are
used as part of postbuild configuration, all functions that might potentially be called
need to be defined first. The only Postbuild variability of such pointers is the choice be-
tween the target functions that existed during Link ECU Code after Precompile
Configuration. After this step, the addresses of these functions are fixed.

The generation of the post-build configuration is a process that can be done multi-
ple times. The first time it is done during the creation of the initial ECU configuration
which includes the generation of both ECU Executable and BSW Module Config-
uration Data Loadable to ECU Memory binary files. This approach is shown
in Figure 2.56. After this, the post-build configuration may be updated (the updates

116 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

usually originate from the ECU Extract) separately from the ECU Executable as
many times as needed according to the process shown in Figure 2.57.

Sample cases where post-build time configuration can be adopted are:

• Identifiers of the CAN frames

• CAN driver baudrate and propagation delay

• COM transmission mode, transmission mode time offset and time period

• Enabling/disabling signal transmission

• Frame packing

• Signal gateway

• LIN/FlexRay schedule

117 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.7.9.3.2 Workflow

ECU
Configuration
Values

Generate BSW Postbuild
Configuration Code

BSW Module
Configuration
Header File

BSW Module
Configuration
Data Source
Code

Compile BSW
Configuration Data

BSW Module
Configuration
Data Object
Code

Link ECU
Code during
Post-Build
Time

BSW Module
Configuration Data
Loadable to ECU
Memory

Compile Unconfigured BSW

Basic Software
Module Core
Header

Basic Software
Module Core
Source Code

Basic Software
Module Object
Code

Generate
ECU
Executable ECU Executable

�������� �	��
���� �

������� ���
������

��� �����
��� ����
��

1..*

«input»

«output» 1

«output» 1

«output»

1

1 «input» «output» 1

1

«input»

1

«input»

0..*«input»

1
«input»

1

«input»

«output»

1

1 «input»

«output» 1

Figure 2.56: Overview of initial Post-Build Configuration

118 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

ECU
Configuration
Values

Generate BSW Postbuild
Configuration Code

BSW Module
Configuration
Header File

BSW Module
Configuration
Data Source
Code

Compile BSW
Configuration Data

BSW Module
Configuration
Data Object
Code

Link ECU
Code during
Post-Build
Time

BSW Module
Configuration Data
Loadable to ECU
Memory

Basic Software
Module Core
Header

�������� �	��
���� �

������� ���
������

��� �����
��� ����
��

1 «input»

1

«input»

1

«input»

1..*

«input»

1 «input»

«output»

1

«output» 1

«output»

1

«output» 1

Figure 2.57: Update of the Post-Build Configuration

Further description of the PostBuild binding time can be found in Section 2.16.3.9.

Do Post Build
Configuration

Link ECU Code during
Post-Build Time

Generate ECU
Executable

Compile
Unconfigured BSW

Compile BSW
Configuration Data

Generate BSW Postbuild
Configuration Code

«nesting»

«nesting»

«nesting»«nesting» «nesting»

Figure 2.58: Work Flow for Post-Build Configuration

Activity Do Post Build Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::Post Build Conf

Brief Description

Description [from ecuc sws 4006] This type of configuration is possible after building the BSW module or the
ECU software. The BSW module gets the parameters of its configuration by downloading a separate
file to the ECU memory, avoiding a re-compilation and re-build of the BSW module.

Relation Type Related Element Mult. Note

Aggregates Compile BSW Configuration
Data

1

▽

119 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Activity Do Post Build Configuration

Aggregates Compile Unconfigured BSW 1

Aggregates Generate BSW Postbuild
Configuration Code

1

Aggregates Generate ECU Executable 1

Aggregates Link ECU Code during
Post-Build Time

1

Table 2.40: Do Post Build Configuration

2.7.9.4 Handling of different post-build variants in configuration classes

2.7.9.4.1 Description

[TR_METH_01108] Generating multiple post-build configuration variants ⌈In this
use case, the BSW Configuration Generator generates two or more variants
of configuration parameters within BSW Module Configuration Header Files
and BSW Module Configuration Data Source Code. The configuration data
is compiled and linked together with the Basic Software Module Core Source
Code. The resulting ECU Executable includes all configuration variants as well as the
source code of the BSW module. I.e. it is not possible to exchange the configuration
data without re-building the entire executable.⌋

[TR_METH_01150] Including different post-build variants ⌈Different post-build vari-
ants are included in the configuration by specifying different variation points which shall
be bound at post-build time.⌋

Note: This can be done regardless of the configuration class, as shown in the notes of
Figure 2.52, Figure 2.54 and Figure 2.56.

2.8 Components and Services

2.8.1 Purpose

This use case focuses on the activities required to use and configure AUTOSAR Ser-
vices. It is therefore a subset of the overall use case (see 2.1).

2.8.2 Description

[TR_METH_02000] Use of AUTOSAR Services ⌈Atomic Software Components can
use AUTOSAR Services. In order to do so, two things have to be defined on the VFB
and Software Component level:

120 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

• The ports which are to be connected to the Service during ECU integration (this is
a sub-task of Define VFB Application Software Component). The port
interfaces used for service ports should be standardized.

• The needs to configure the Service (for example NVM blocks or symbolic
names for diagnostic events) from the perspective of the single Software Compo-
nent (this is a sub-task of Define Atomic Software Component Inter-
nal Behavior.)

⌋

The service ports have impact on the component API just like any other port, so there is
no difference between service ports and "normal" ports with respect to API generation.

When the Application Software Components are mapped to an ECU their description
is put into the corresponding ECU Extract. These activities belong to the System
domain (see 2.5.7) and are not explicitly shown in this use case.

As part of the ECU integration, additional artifacts are generated to connect the service
ports over the RTE: Service Component Descriptions, including their mapping
to the Basic Software Modules, and the connectors between their ports and the service
ports of the Application Software Components.

The use case shows also the creation of ECU configuration of the corresponding Basic
Software Module (e.g. DEM, DCM, Watchdog Manager etc.). This must be done with
respect to the service ports and the Service Needs of all Application Software
Components connected to the corresponding Service Component (the diagram shows
only the configuration activity of diagnostics as an example).

2.8.3 Workflow

Figure 2.59 shows the work sequence assumed for this use case. The next two figures
2.60 and 2.61 show the tasks and work products of the method library involved in the
activities on the VFB and Component resp. the ECU level.

121 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Components and Services

Add Service Ports
and Service Needs

Connect and
Configure Service
Module on ECU

Define VFB
Application Software
Component

Define Atomic
Software Component
Internal Behavior

Generate Atomic Software
Component Contract
Header Files

Implement Atomic
Software Component

Generate Base
Ecu Configuration

Generate BSW
Source Code

Create Service
Component

Generate RTE

«nesting»

+Re-Implement Atomic Software
Component with Service Ports

«nesting»

+Re-generate Contract Header
Files with Service Intefaces

«nesting»

«nesting»

+Add Service Ports to Atomic
Software Component

«nesting»

«nesting»

+Add Service Needs to
Atomic Component

«nesting»

«nesting»

«nesting»

«predecessor»

«nesting»

Figure 2.59: Use Case: Components and Services

Process Pattern Components and Services

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Components and Services

Brief Description This use case focuses on the activities required to use and configure AUTOSAR Services. It is
therefore a subset of the overall use case (Methodology Overview).

▽

122 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Process Pattern Components and Services

Description Atomic Software Components can use AUTOSAR Services. In order to do so, two things have to be
defined: The ports which are to be connected to the Service during ECU integration and in addition
the needs to configure the Service (for example NvM blocks or symbolic names for diagnostic
events) from the perspecive of the single Software Component.
The service ports have impact on the component API just like any other port, so there is no
difference between service ports and "normal" ports with respect to API generation.
Afterwards the Application Software Components are mapped to an ECU and their description is put
into the corresponding ECU extract (deliverable Complete ECU Description). These activities belong
to the system domain and are not explictly shown in this use case (see Methodology Overview).
As part of the ECU integration, additional artifacts are generated to connect the service ports over
the RTE: Service Component Descriptions, including their mapping to the Basic Software Modules,
and the connectors between their ports and the service ports of the Appplication Software
Components.
The ECU configuration of the Basic Software Module (e.g. DEM, DCM, Watchdog Manager etc.) is
then created with respect to the service ports and the SeviceNeeds of the Application Software
Components connected to that Service.

Relation Type Related Element Mult. Note

Aggregates Add Service Ports and
Service Needs

1

Aggregates Connect and Configure
Service Module on ECU

1

Table 2.41: Components and Services

123 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Define VFB
Application Software
Component

VFB Atomic
Application Software
Component

VFB Atomic
Software
Component

Define Atomic Software
Component Internal
Behavior

Generate Atomic Software
Component Contract
Header FilesSoftware Component

Internal Behavior

Application Header File

Implement Atomic
Software Component

Atomic Software
Component Source Code

«output»

1

«output» 1

«extends»

1 «input»

«output»

1

«output»

1

1

«input»

1

«input»

1

«input»

1

«input»

Figure 2.60: Add Service Ports and Service Needs - Detailed view with work products

Activity Add Service Ports and Service Needs

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Components and Services

Brief Description

Description Atomic Software Components can use AUTOSAR Services. In order to do so, two things have to be
defined:
• The ports which are to be connected to the Service during ECU integration (this is a sub-task of

Define VFB Application Software Component). The port interfaces used for service ports should
be standardized.

• The needs to configure the Service (for example NvM blocks or symbolic names for diagnostic
events) from the perspecive of the single Software Component (this is a sub-task of Define Atomic
Software Component Internal Behavior)

The service ports have impact on the component API just like any other port, so there is no
difference between service ports and "normal" ports with respect to API generation.

Relation Type Related Element Mult. Note

▽

124 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Activity Add Service Ports and Service Needs

Aggregates Define Atomic Software
Component Internal
Behavior

1 Add Service Needs to Atomic Component:

Aggregates Define VFB Application
Software Component

1 Add Service Ports to Atomic Software Component:

Aggregates Generate Atomic Software
Component Contract
Header Files

1 Re-generate Contract Header Files with Service
Intefaces:

Aggregates Implement Atomic Software
Component

1 Re-Implement Atomic Software Component with
Service Ports:

Table 2.42: Add Service Ports and Service Needs

Create Service
Component

Generate Base
Ecu Configuration

Generate RTE

ECU Service
Connectors

ECU Extract

Service
Component
Description

Generate BSW
Source Code

ECU
Configuration
Values

Configure
Diagnostics

��������� �� 	�
� ��

��
��
��
 �
�
�

Connect Service
Component

«output» 1

1 «input»

0..1

«input»

«output» 1

0..*

«input»

0..*

«input»

1

«input»

«inoutput»

1

«output» 1

1

«input»

«output»

0..1

1

«input»

1

«input»

0..1«input»

«output» 1..*

1

«input»

1«input»

Figure 2.61: Connect and Configure Service Module on ECU - Detailed view with work
products

125 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Activity Connect and Configure Service Module on ECU

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Components and Services

Brief Description

Description As part of the ECU integration, additional artifacts are generated to connect the service ports over
the RTE: Service Component Descriptions, including their mapping to the Basic Software Modules,
and the connectors between their ports and the service ports of the Appplication Software
Components.
The ECU configuration of the Basic Software Module (e.g. DEM, DCM, Watchdog Manager etc.) is
then created with respect to the service ports and the SeviceNeeds of the Application Software
Components connected to that Service (the diagram shows only the configuration activity of
diagnostics as an example). The code gneration of the service module (e.g. DEM, DCM) and of the
RTE is shown for completeness.

Relation Type Related Element Mult. Note

Aggregates Create Service Component 1

Aggregates Generate BSW Source
Code

1

Aggregates Generate Base Ecu
Configuration

1

Aggregates Generate RTE 1

Predecessor Add Service Ports and
Service Needs

1

Table 2.43: Connect and Configure Service Module on ECU

2.9 Calibration Overview

2.9.1 Purpose

This use case describes the typical activities required from the creation or update of
calibration parameters down to the creation or update of the A2L Files.

2.9.2 Description

The use cases assumes, that calibration parameters are changed in an already existing
system, thus the tasks required to define and build a new system are omitted, only the
calibration relevant steps are shown.

In addition, the use case includes the (optional) task of updating a set of calibration
parameter values as input for the RTE.

As far as AUTOSAR artifacts are involved, this use case can be divided into four major
activities:

[TR_METH_02001] Define Cross-component Calibration Parameters ac-
tivity ⌈Define Cross-component Calibration Parameters: Contains the
tasks used to define or update cross-component calibration parameters. These pa-
rameters have to be provided via ports by Parameter Components.⌋

[TR_METH_02002] Define Local Calibration Parameters activity ⌈Define
Local Calibration Parameters: Contains the tasks used to define or update

126 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

component-local calibration parameters or calibration parameters defined within a
BSW module. These parameters are declared within the Internal Behavior of
the component (or the BSW module) which uses them.⌋

[TR_METH_02003] Provide Unique Parameter Names activity ⌈Provide
Unique Parameter Names: Contains the tasks used to provide unique names for
calibration parameters. A Flat Map is used to provide unique names for MCD tools.
An Alias Name Set can be provided additionally in cases, where this is not suffi-
cient.⌋

[TR_METH_02004] Re-generate RTE and Calibration Support activity ⌈
Re-generate RTE and Calibration Support: Contains the tasks used to re-
generate relevant artifacts during ECU integration (before the final build) after an up-
date of calibration parameters.⌋

2.9.3 Workflow

Figure 2.62 shows the work sequence assumed for this use case.

127 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Calibration Overview

Define Cross-
component
Calibration
Parameters

Define Local
Calibration
Parameters

Provide Unique
Parameter Names

Re-generate RTE and
Calibration Support

Generate ECU Extract

Define VFB
Interfaces

Define VFB
Types

Define VFB
Parameter

Component

Define VFB
Composition
Component

Define Atomic
Software Component
Internal Behavior

Define Partial
Flat Map

Define Alias
Names

Generate or
Adjust System
Flat Map

Generate ECU
Executable

Generate A2L
Generate RTE

Provide RTE
Calibration
Dataset

Generate
Local MC
Data Support

Define BSW
Behavior

Generate BSW
Configuration
Code

Create MC
Function Model

«nesting»

+
D

e
fin

e
 V

F
B

 t
yp

e
s

fo
r

L
o

ca
l C

a
lib

ra
tio

n

«nesting»

«nesting»

+Define local Calibration
Parameters in BSW

«nesting»

«predecessor»

«nesting»

«predecessor»

«nesting»

+Define Calibration Parameters
in Internal Behavior

«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

«predecessor»

«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

+Define VFB Types for
Parameter Interfaces

«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

Figure 2.62: Use Case: Calibration Overview

128 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Process Pattern Calibration Overview
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Calibration Overview

Brief Description Describe the required steps to update the calibrations data down to an update of the A2L files.

Description This use case shows the typical steps required from an updated design of calibration data down to
an update of the A2L file. The use cases assumes, that calibration parameters are changed in an
already existing system, thus the steps required to define and build a new system are omitted, only
the calibration relevant steps are shown.
In addition, the use case includes the (optional) task of updating a set of calibration parameter
values as input for the RTE.

Relation Type Related Element Mult. Note

Aggregates Define Cross-component
Calibration Parameters

1

Aggregates Define Local Calibration
Parameters

1

Aggregates Generate A2L 1

Aggregates Generate ECU Executable 1

Aggregates Provide Unique Parameter
Names

1

Aggregates Re-generate RTE and
Calibration Support

1

Table 2.44: Calibration Overview

Activity Define Cross-component Calibration Parameters

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Calibration Overview

Brief Description

Description Contains the tasks used to define or update cross-component calibration parameters. These
parameters are provided by Parameter Components.

Relation Type Related Element Mult. Note

Aggregates Define VFB Composition
Component

1

Aggregates Define VFB Interfaces 1

Aggregates Define VFB Parameter
Component

1

Aggregates Define VFB Types 1 Define VFB Types for Parameter Interfaces: Use this
task to define VFB Types for Parameter Interfaces

Table 2.45: Define Cross-component Calibration Parameters

Activity Define Local Calibration Parameters

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Calibration Overview

Brief Description

Description Contains the tasks used to define or update component-local (or module-local) calibration
parameters. These parameters are declared within the Internal Behavior of the component (or BSW
module) which uses them.

Relation Type Related Element Mult. Note

Aggregates Define Atomic Software
Component Internal
Behavior

1 Define Calibration Parameters in Internal Behavior: Use
this task to define local calibration parameters as part of
the Internal Behavior of a software component.

Aggregates Define BSW Behavior 1 Define local Calibration Parameters in BSW: Use this
task to define local calibration parameters as part of the
Internal Behavior of a BSW module.

▽

129 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Activity Define Local Calibration Parameters

Aggregates Define Partial Flat Map 1 Define (optionally) a Partial Flat Map for one or more
delivered components.

Aggregates Define VFB Types 1 Define VFB types for Local Calibration: Use this task to
define VFB types for Local Calibration.

Table 2.46: Define Local Calibration Parameters

Activity Provide Unique Parameter Names

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Calibration Overview

Brief Description

Description Contains the tasks used to provide unique names for calibration parameters. A Flat Map is used to
provide unique names for MCD tools. An Alias Name Set can be provided in cases, where this is not
sufficient.

Relation Type Related Element Mult. Note

Aggregates Define Alias Names 1

Aggregates Generate ECU Extract 1 Use this activity to update the ECU Extract. This
includes updating the ECU Flat Map if parameter names
on ECU level have changed.

Aggregates Generate or Adjust System
Flat Map

1 Use this task if parameter names are defined on system
level.

Predecessor Define Cross-component
Calibration Parameters

1

Predecessor Define Local Calibration
Parameters

1

Table 2.47: Provide Unique Parameter Names

Activity Re-generate RTE and Calibration Support

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Calibration Overview

Brief Description

Description Contains the tasks used to re-generate relevant artifacts during ECU integration (before the final
build) after an update of calibration parameters.

Relation Type Related Element Mult. Note

Aggregates Create MC Function Model 1 This use case shows the creation of an MC Function
Model as part of the activity that generates also the RTE
and calibration support data.
This is only one possibility. It is also possible to create
an MC Function Model earlier in the process (as part of
the design activities) or later (shortly before the A2L is
generated).

Aggregates Generate BSW
Configuration Code

1 Use this task to generate the description of calibration
parameters in BSW that are a result of ECU
configuration.
Such parameters will be described within the artifact
BSW Module Behavior Extension.

Aggregates Generate Local MC Data
Support

1 Use this task to generate support for calibration data
that are not handled via the RTE.

Aggregates Generate RTE 1 Use this task to generate support for calibration data
that are handled over the RTE.
This includes cross-component calibration as well as
local calibration (in SWC and BSW) that needs
emulation support by the RTE.

▽

130 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Activity Re-generate RTE and Calibration Support

Aggregates Provide RTE Calibration
Dataset

1

Predecessor Provide Unique Parameter
Names

1

Table 2.48: Re-generate RTE and Calibration Support

2.10 Memory Mapping

2.10.1 Purpose

This use case gives a comprehensive view on the tasks required to define, configure
and generate header files for memory mapping. The underlying concepts are specified
in [11, CP SWS Memory Mapping].

2.10.2 Description

[TR_METH_02005] Memory sections for data and code ⌈AUTOSAR basic software
as well as application software use a standardized preprocessor mechanism in order
to define memory sections for their data and code. The goal of this mechanism is to
maintain the ECU specific mappings separately from the main code.⌋

With AUTOSAR it is possible to derive (i.e. generate) the content of these header
files from XML artifacts. This use case shows how the required artifacts and tasks are
related.

2.10.3 Workflow

Figure 2.63 shows the work sequence assumed for this use case. The next figure 2.64
shows the involved tasks and work products of the method library.

Note that this use case ends with compilation of the code. The assignment of memory
sections to the actual hardware (which is typically done by the configuration of the
linker) is currently not considered to be part of the AUTOSAR methodology.

131 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Memory
Mapping
Overview

Configure
Memmap
Allocation

Define Memory
Addressing
Modes

Generate BSW
Memory Mapping
Header

Compile BSW Core
Code

Compile Atomic
Software
Component

Generate SWC
Memory Mapping
Header

Compile ECU Source
Code

«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

Figure 2.63: Use Case: Memory Mapping

132 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Define Memory
Addressing Modes

Configure Memmap
Allocation

Generate BSW
Memory Mapping
Header

Generate SWC
Memory Mapping

Header

BSW Module
Preconfigured
Configuration

ECU
Configuration
Values

VFB Types

Basic Software
Module
Implementation
Description

Standard
Header Files

Compile Atomic
Software Component

Compile BSW Core
Code

Compile ECU Source
Code

��� ����	
�� �
��
���

��� ��� ����
���
����� ���

��	
� ���	��������

��� ��������� ���

��	
� ���	��������

��� ��	
� ���	��������

Atomic Software
Component
Implementation

+MemorySections1

«input»

«output»

+MemMapAddressingModeSet

1..*

+SwAddrMethods
0..*

«input»

+MemMapAddressingModeSet

1..*

«input»

+MemMapAddressingModeSet

1..*«input»

+MemorySections0..*

«input»

«output»

+BSW_MemMap 1

+MemMapAllocation

1

«input»

«output»

+SWC_MemMap

1

+RteImplementationRef0..1 «input»

+SwAddrMethod1..*

«input»

+moduleDescription

0..1 «input»

1

«input»

+MemMapAllocation1 «input»

«input»

1

+SwAddrMethod1..*

«input»

1 «input»

+MemMapAddressingModeSet

1..*

«input»

+MemorySections

0..*

«input»

+DependencyOnArtifact1 «input»

+MemorySections1 «input»

«output»

+MemMapAllocation

1

Figure 2.64: Memory Mapping - Detailed view with work products

Activity Memory Mapping Overview

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Memory Mapping
Overview

Brief Description

Description Overview of the work sequence for defining and configuration of memory sections.

▽

133 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Activity Memory Mapping Overview

Relation Type Related Element Mult. Note

Aggregates Compile Atomic Software
Component

1

Aggregates Compile BSW Core Code 1

Aggregates Compile ECU Source Code 1

Aggregates Configure Memmap
Allocation

1

Aggregates Define Memory Addressing
Modes

1

Aggregates Generate BSW Memory
Mapping Header

1

Aggregates Generate SWC Memory
Mapping Header

1

Table 2.49: Memory Mapping Overview

2.11 E2E Protection

2.11.1 Purpose

This Activity provides a rough outline of the creation of E2E Protection to secure
communication flow in an AUTOSAR Architecture. [12]

2.11.2 Description

E2E Protection mechanisms are needed when safety related data exchanges need
to be protected at runtime against communication link faults.

[TR_METH_02006] E2E Protection ⌈The E2E Protection in AUTOSAR is realized
as an E2E Transformer Module [12, CP SWS E2E Transformer] which is invoked by
the RTE. First of all, the Serializer Transformer serializes the data and then the RTE
invokes E2E Transformer to protect the communication. The software component com-
municates through RTE using the plain RTE API.⌋

[TR_METH_01153] Configuration and Generation of the E2E Transformer
⌈According to the generic transformer approach, the E2E Transformer can be con-
figured at the system level (Inter-ECU communication). The generation of the E2E
Transformer module is done based on the System Description. No ECU configuration
is needed.⌋

[TR_METH_01154] Define E2E Transformer Technology Task ⌈The task De-
fine E2E Transformer Technology is needed to define all information required
for the generation of the E2E transformer module like pre-defined Profiles and state
machine configuration.⌋

134 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.11.3 Workflow

Figure 2.65 shows the Define E2E Transformer Technology task which is
mainly processed in the activity Design Communication.

Define E2E Transformer Technology

System
Engineer

Interaction Layer E2E Transformer

1

«performs»

«output»

+E2ETransformerTechnology

1

+ISignals

1 «input»

Figure 2.65: Task Define E2E Transformer Technology

2.12 Diagnostic Extract

2.12.1 Purpose

This use case provides a rough outline of the diagnostics configuration using the Di-
agnostic Extract Template [13, CP TPS Diagnostic Extract Template]. The involved
activities and deliverables will be refined based on the experience in the field in next
AUTOSAR releases.

2.12.2 Description

The distributed nature of AUTOSAR development requires an optimized capturing of in-
formation. In particular, diagnostic information (i.e. DEM and DCM configuration) shall
be captured only once by the person with the best knowledge and therefore being able
to take responsibility better than one centralized individual. ECU configuration is not
suitable to be exchanged between partners in an ECU development project. Therefore,
AUTOSAR defines the Diagnostic Extract Template that represents a standardized ex-
change format on diagnostic functionality. The Diagnostic Extract Template allows the
decentralized configuration of diagnostic aspects. The basic usage of the Diagnostic
Extract Template is the exchange of diagnostic data between the different parties in-
volved in the diagnostic development process to allow the configuration of the DCM
and the DEM and to provide the description of corresponding application interfaces to
implement diagnostic services and fault handling. In the AUTOSAR Methodology the
Diagnostic Extract is represented by the deliverable Diagnostic Extract and its
sub-deliverables.

135 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

[TR_METH_01136] Content of Diagnostic Extract ⌈The deliverable Diagnos-
tic Extract contains all relevant diagnostics aspects.

• Diagnostic Services (e.g. IOControl, MemoryByAddress)

• Diagnostic Event Handling (e.g. events, trouble codes, conditions)

• Mappings (Service Mappings, Diagnostic Mappings, etc.)

⌋

[TR_METH_01137] Diagnostic Extract category ⌈Depending on the phase in
the process, the Diagnostic Extract can have several categories that are repre-
sented as specialized deliverables:

• Diagnostic Abstract System Description: This deliverable represents
a high-level definition that can be taken as a template for creating concrete Di-
agnostic System Extracts or Diagnostic ECU Extracts.

• Diagnostic System Extract: This deliverable represents the diagnostic as-
pects for several ECUs.

• Diagnostic ECU Extract: This deliverable represents the diagnostic as-
pects for a single ECUs.

⌋

[TR_METH_01138] Decentralized configuration ⌈The timing and frequency of ex-
changes and the content in each of these exchanged files is highly dependent on the
individual project setup and situation. The Diagnostic Extract Template has been de-
signed to support the decentralized and independent definition of diagnostic require-
ments that can be linked together at a late point during the development process.
The approach of decentralized configuration is met in the Diagnostic Extract Template
mainly in two ways:

• Separation of elements over several physical files: Most elements of the Diag-
nostic Extract template can be split over several physical files. Therefore, parts of
these elements (e.g. certain attributes) can be defined by, for example, an OEM
and other parts of these elements by, for example, an ECU supplier.

• Usage of self-contained mappings: Many diagnostic requirements are estab-
lished by mappings between diagnostic elements (e.g., DTC to DemEvent map-
ping). However, the "‘decentralized configuration"’ approach requires that these
mappings can be flexibly defined at almost any time within the ECU development
process and by any of the involved companies respectively roles. Therefore, the
Diagnostic Extract Template defines self-contained mapping elements that have
references to two (or potentially more) diagnostic elements to define a mapping.
The usage of the Diagnostic Extract Template will be restricted by the appropriate
application of the "‘roles and rights"’ concepts in next AUTOSAR releases.

⌋

136 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

[TR_METH_01139] Roles ⌈The relevant activities of the Diagnostic Extract use case
are logically grouped to the following roles: Diagnostic Requester, Software Developer
and Diagnostic Integrator. Obviously, the OEM acts as a diagnostic requester and
the ECU supplier as the diagnostic integrator. Nevertheless, in several situations (e.g.
in-house development of application software components), the OEM may act as the
diagnostic integrator and performs collecting and merging tasks.⌋

2

[TR_METH_01140] Develop Diagnostic Abstract System Description
activity ⌈The basic workflow for the configuration of the diagnostic aspects may start
with the optional activity Develop Diagnostic Abstract System Descrip-
tion. This activity defines diagnostic requirements at abstract level. The resulting
Diagnostic Abstract System Description may be used by the following ac-
tivity as a basis for the Diagnostic System Extract or the Diagnostic ECU
Extract.⌋

[TR_METH_01141] Development of diagnostic requirements ⌈In the activity De-
velop Diagnostic Requirements the requester of diagnostic data defines the
diagnostic interfaces of one or multiple ECUs. The following tasks may be performed:

• Define the values of the DTCs

• Define the UDS services and sub-services supported by the ECUs

• Define the required events needed by a specific composition implemented by an
Application Developer

During this activity, several Develop Diagnostic Requirements from different
parties may be collected and merged.⌋

[TR_METH_01142] Diagnostic information in the context of SW-C development
⌈The purpose of the Diagnostic Extract during the development of software com-
ponents is basically twofold: On the one side the Diagnostic System Extract
may serve as a requirement for the software developer. The diagnostic requester can
specify e.g. the following issues:

• Definition of the content of a specific ReadDataByIdentifier which has to be im-
plemented by a specific SW-C

• Definition of the events needed for a certain SW-C

On the other side the application developer has the possibility to provide diagnostic
information relevant to the SW-Cs as a part of the Diagnostic System Extract
and/or using Service Needs. The Service Needs within the SW-C Description are still
to be used along with the Diagnostic System Extract in order to annotate the
SW-C ports which are relevant for further mapping and handling as defined by the
Diagnostic System Extract.⌋

2See Figure 2.67).

137 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

[TR_METH_01143] Integration of diagnostic information ⌈In activity Integrate
Diagnostic Information, the integrator receives one or several Diagnostic
System Extracts (or Diagnostic ECU Extracts) from the diagnostic requester
and from multiple application software or basic software developers. The main goal of
the integration activity is to integrate and merge all delivered Diagnostic Extracts
so that the configuration of the corresponding basic software modules (DCM, DEM)
can be generated (activity Integrate Software for ECU).

Since the AUTOSAR Methodology does not restrict the definition of elements like DIDs,
parameters of a UDS service, Events, Sessions, etc. in activity Integrate Diag-
nostic Information the integrator has to ensure that the complete information is
still valid after merging it. Usually, the following task may be performed:

• Mapping of DTCs (Diagnostic Trouble Code) to events

• Merge of events

• Mapping of services

During the integration activity the following issues and conflicts may be considered:

• Some DTCs may already be mapped to events - especially in cases where both
come from the same party. But if the DTCs are defined by the OEM and the
software components are implemented by other supplier acting as an application
developer the integrator has to ensure that both are mapped together.

• In some cases, an diagnostic event may be defined multiple times. An diagnos-
tic requester defines the events which shall be implemented by an application
developer. A supplier implements a software component which will be used in
multiple projects and which also detects this type of error and also defines this
same event. Both events may have different naming but the same meaning. The
integrator has to detect this redundancy during the integration and merge them
together.

• The diagnostic requester requires a specific ReadDataByIdentifier and an appli-
cation developer implements it. If the implementation is performed for one spe-
cific project only, the application developer may map the DID from the diagnostic
requester to the already defined job in their software component. In other cases
in which the application developer implements a generic diagnostic job, it will be
a task of the diagnostic integrator to merge this information and to map the jobs
to the corresponding DID.

⌋

After all issues and conflicts are resolved and the inputs are merged, the final com-
plete Diagnostic ECU Extract is produced. Based on this deliverable, the initial
configuration of the relevant basic software modules is generated (activity Integrate
Software for ECU).

138 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.12.3 Workflow

Diagnostic Extract
Overview

Develop Diagnostic Abstract
System Description

Develop Diagnostic
Requirements

Develop Application
Software

Integrate Diagnostic
Information

Integrate Software for
ECU

Develop Basic
Software

«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

Figure 2.66: Diagnostic Extract Overview

Diagnostics Integrator

Software DeveloperDiagnostic Requester

Develop
Diagnostic
Abstract System
Description

Develop
Diagnostic
Requirements

Integrate
Diagnostic
Information

Develop Application
Software

Integrate Software for ECU

Diagnostic ECU
Extract

Diagnostic Abstract
System Description

Diagnostic System
Extract

Develop Basic
Software

«output»

0..*

0..*

«input»

0..* «input»

«output»

0..*
0..*

«output»
1

0..*«input»

«output»

+complete DE

1..*

«output»

0..*

+partial ly fi lled DE

0..* «input»
+complete DE 0..1

«input»

«output»0..*

0..*

«input»

Figure 2.67: Diagnostic Extract Workflow

139 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Process Pattern Diagnostic Extract Overview

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Diagnostic Extract
Overview

Brief Description

Description

Relation Type Related Element Mult. Note

Aggregates Develop Application
Software

1

Aggregates Develop Basic Software 1

Aggregates Develop Diagnostic
Abstract System
Description

1

Aggregates Develop Diagnostic
Requirements

1

Aggregates Integrate Diagnostic
Information

1

Aggregates Integrate Software for ECU 1

Table 2.50: Diagnostic Extract Overview

Activity Develop Diagnostic Abstract System Description

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Diagnostic Extract
Overview

Brief Description

Description This activity defines diagnostic requirements at functional/abstract level. The resulting Diagnostic
Abstract System Description may be used by the following activity as a basis for the Diagnostic
System Extract or the Diagnostic ECU Extract.

Relation Type Related Element Mult. Note

Produces Diagnostic Abstract System
Description

1

Table 2.51: Develop Diagnostic Abstract System Description

Activity Develop Diagnostic Requirements

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Diagnostic Extract
Overview

Brief Description

Description In this activity the OEM or diagnostic requirer defines the diagnostic interfaces of one or multiple
ECUs. It may also define some InternalBehaviors as requirements for the ECU-Supplier or
application developer.
The following tasks may be relevant:
• Define the values of the DTCs

• Define the UDS services and sub-services supported by the ECUs

• Define the required events needed by a specific composition

Additionally, the OEM may also collect Diagnostic Extracts from different departments as well as
from SW-C developers and merge the information into one Diagnostic Extract.

Relation Type Related Element Mult. Note

Consumes Diagnostic System Extract 0..*

Produces Diagnostic ECU Extract 0..*

Produces Diagnostic System Extract 0..*

Diagnostic Abstract System
Description

0..*

Table 2.52: Develop Diagnostic Requirements

140 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Activity Integrate Diagnostic Information

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Diagnostic Extract
Overview

Brief Description

Description The main goal of this activity is to integrate all parts of the Diagnostic Description received from the
OEM and from the application developer. Based on the complete Diagnostic Extract the initial ECUC
can be generated.

Relation Type Related Element Mult. Note

Consumes Diagnostic ECU Extract 0..* partially filled DE:

Consumes Diagnostic System Extract 0..*

Produces Diagnostic ECU Extract 1..* complete DE:

Table 2.53: Integrate Diagnostic Information

2.13 Rapid Prototyping

2.13.1 Purpose

This use case describes usual activities to enable rapid prototyping in AUTOSAR.

2.13.2 Description

Rapid prototyping can be used during electronic control unit development to evaluate
and test new software control algorithms for various functions.

With Fullpass technology the original ECU is totally replaced by a Rapid Prototyping
Unit (RPU). With Bypass technology the original ECU and software stays in the con-
trol loop to supports the majority of the control algorithms and interface with sensors,
actuators and communication buses: only the specific control algorithm that shall be
prototyped is deported into the RPU (external bypass) or even directly executed in the
original ECU (internal bypass). Bypass mainly consists in replacing at run time inputs
and/or outputs of the original software algorithms by value computed by the prototype
algorithm under test.

[TR_METH_01132] Definition of a Rapid Prototyping Scenario ⌈In order to
enable rapid prototyping, first of all the initial Rapid Prototyping Scenario is de-
fined (task Define Rapid Prototyping Scenario). After the generation of the
ECU Extract the ECU Extract of Rapid Prototyping Scenario should be
refined to achieve a complete rapid prototyping scenario (task Refine Rapid Pro-
totyping Scenario).⌋

[TR_METH_01133] Content of Rapid Prototyping Scenario artifact ⌈A RPT
Scenario consist out of two main aspects: The description of the bypass points and the
relation to a hook. A bypass point describes the required preparation of the host ECU.
At a bypass point the host ECU shall be capable to communicate with a RPT system in
order to support the execution of the rapid prototyping algorithms with the original data
calculated by the host system and to replace dedicated results of the host system by

141 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

the results of the rapid prototyping algorithm. The hook represents the link between a
bypass point and the rapid prototyping algorithm.

Obviously, the bypass point and the hook reference aspects like parameterAc-
cess (dataWriteAccess, dataReadAccess, dataSendPoint, dataReceivePointByValue,
dataReceivePointByArgument, writtenLocalVariable, readLocalVariable). For more de-
tails see SW-C Template [5, CP TPS Software Component Template] (constr_2055).⌋

Currently, AUTOSAR supports two approaches for Rapid Prototyping: Component
wrapper method and direct buffer access method.

[TR_METH_01134] Component wrapper method ⌈The component wrapper method
consists in wrapping the original software component implementation with an integra-
tion code (Rapid Prototyping Wrapper Header File and Rapid Prototyp-
ing Wrapper Source Code) that implements the bypass. With this method the in-
tegration code is able to take the control of the AUTOSAR interfaces of the software
component because there is no more direct call between RTE and the SW-C but ev-
erything go through the integration code.

In order to use this method, the RTE has to be configured properly (task Config-
ure RTE, for configuration details see AUTOSAR_SWS_RTE [14] Chapter 8 “RTE
ECU Configuration” . Furthermore, based on the complete ECU Extract of Rapid
Prototyping Scenario artifact the corresponding wrapper code has to be gen-
erated and compiled (activity Encapsulate SW-C). Depending on the development
strategy the wrapper code generation may be processed in different stages of the de-
velopment process.

The RTE supports the component wrapper method by generating the SW-C interfaces
with a c-namespace including an additional [Byps_] infix for the bypassed SW-C (task
Generate RTE, for details see AUTOSAR_SWS_RTE [14] Chapter 8 “RTE ECU Con-
figuration” and [14] Chapter 7.3.14.1 “Component wrapper method” .⌋

[TR_METH_01135] Direct buffer access method ⌈The direct buffer access method
provides runtime direct read and write access to the RTE buffers that implement the
ECU communication infrastructure. If the direct buffer access method for bypass sup-
port is enabled for a software component type, the Generate RTE task produces RTE
Measurement and Calibration Support Data with mcDataAccessDetails for
each preemption area specific buffer that implements the implicit communication for
this software component type (For details see AUTOSAR_SWS_RTE [14] Chapter 8
“RTE ECU Configuration” and [14] Chapter 7.3.14.2 “Direct buffer access method” .⌋

2.13.3 Workflow

Figure 2.68 shows the work sequence for this use case.

142 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Rapid Prototyping
Overview

Define Rapid
Prototyping
Scenario

Generate
ECU Extract

Extract ECU Rapid
Prototyping Scenario

Generate BSW and
RTE

Generate RTE

Configure BSW and
RTE

Prepare ECU
Configuration

Configure RTE

Generate ECU
Executable

Encapsulate SW-C

Generate Rapid Prototyping
Wrapper

Compile Atomic Software
Component

Generate A2L

Refine Rapid
Prototyping
Scenario

«nesting»

«nesting»

«nesting»

«predecessor»

«nesting»

«nesting»

«predecessor»

«nesting»

«nesting»

«predecessor»

«nesting»

«nesting»
«nesting»

«predecessor»

«predecessor»

«nesting»

«nesting»

«nesting»

«nesting»

«predecessor»

«predecessor»

Figure 2.68: Rapid Prototyping Overview

Process Pattern Rapid Prototyping Overview

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Rapid Prototyping
Overview

Brief Description

▽

143 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Process Pattern Rapid Prototyping Overview

Description This use case shows the typical steps required from an updated rapid prototyping scenario down to
an update of the generated RTE and the produced A2L file. The use cases assumes, that rapid
prototyping scenario is changed in an already existing system, thus the steps required to define and
build a new system are omitted, only the calibration relevant steps are shown.
In addition, the use case includes the (optional) task of updating a set of calibration parameter
values as input for the RTE.

Relation Type Related Element Mult. Note

Aggregates Configure BSW and RTE 1

Aggregates Define Rapid Prototyping
Scenario

1

Aggregates Encapsulate SW-C 1

Aggregates Generate A2L 1

Aggregates Generate BSW and RTE 1

Aggregates Generate ECU Executable 1

Aggregates Generate ECU Extract 1

Aggregates Prepare ECU Configuration 1

Aggregates Refine Rapid Prototyping
Scenario

1

Table 2.54: Rapid Prototyping Overview

Activity Encapsulate SW-C

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Rapid Prototyping
Overview

Brief Description

Description Encapsulate the software component to enable rapid prototyping. During this activity the wrapper
code is generated based on the Rapid Prototyping Scenario and the software component is
compiled and linked with the generated wrapper.

Relation Type Related Element Mult. Note

Aggregates Compile Atomic Software
Component

1

Aggregates Generate Rapid Prototyping
Wrapper

1

Table 2.55: Encapsulate SW-C

2.14 Safety Extensions

Safety Extensions removed in R22-11
Please note that Safety Extensions has been set to obsolete with R21-11 and removed
with R22-11. Therefore, this section will be reworked or removed in a future AUTOSAR
release.

2.14.1 Purpose

This use case provides an overview of the usage of the Safety Extensions.

144 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.14.2 Description

ISO 26262 [15] is the applicable standard for functional safety of electronic and soft-
ware based systems in road vehicles which impacts almost all development activities,
including software specifications, design and implementation. The Safety Extensions
enable a standardized exchange of the safety information in an AUTOSAR context and
provide the basis for consistent management as required by ISO 26262. The additional
safety related information can be used e.g. for generation of the documentation or the
checking of ASIL constraints (w.r.t. allocation, mapping, decomposition and hierarchy),
which are prescribed by the ISO 26262. The AUTOSAR Methodology focuses on the
creation and refinement of the information. The corresponding analysis is out of scope
of this document.

According to the ISO 26262, the Safety Extensions provide the following means to
express safety information :

• Safety Requirements (Artifact Safety Requirement)

• Safety Measures (Artifact Safety Measure)

• Safety integrity levels: attribute of Safety Requirement, Safety Measure
and any AUTOSAR element

• Decomposition of Safety Requirements: reference between the original and the
decomposed requirement (Task Decompose Safety Requirement)

• Refinement of Safety Requirements: reference between the original and the re-
fined requirement (Task Refine Safety Requirement)

• Allocation of Safety Requirements: reference between of Safety Requirement
and an AUTOSAR element (Task Allocate Safety Requirement)

• Allocation of Safety Measures: reference between Safety Measure and an
AUTOSAR element (Task Allocate Safety Measure)

• Mapping between Safety Requirements and Safety Measures (Task Map
Safety Requirement to Safety Measure)

• Independence relation between Safety Requirements (Task Add Indepen-
dence Relation)

The safety relevant information can be exchanged independently and are therefore
consolidated in a separate deliverable Safety Extensions.

[TR_METH_01144] Activity Define Safety Information ⌈The activity Define
Safety Information represents a generic pattern for defining safety relevant in-
formation. The safety extensions are not restricted to specific AUTOSAR elements so
that safety relevant information can be added and modified in several stages of the
AUTOSAR Methodology in an iterative way. Thus, the AUTOSAR elements consumed
by some of the nested tasks are modeled using the General Autosar Artifact.
The AUTOSAR Methodology does not prescribe an explicit execution order of the tasks.

145 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

The only restrictions with respect to the execution order are given by the input and out-
put relations (E.g. obviously, before a Safety Requirement can be decomposed, it
has to be defined).⌋

Note: See Figure 2.69.

[TR_METH_01145] Creation of Safety Requirements ⌈Naturally, the process
starts with the task Define Safety Requirement. This task creates a Safety
Requirement and assigns the required attributes such as ASIL. The top level Safety
Requirement is a safety goal and obviously results from the hazard analysis and risk
assessment. If Safety Requirements are not detailed enough to allocate them di-
rectly to appropriate AUTOSAR elements, it is necessary to refine them first (task
Refine Safety Requirement). The refinement will add new Safety Require-
ments which are in a hierarchy relation to existing Safety Requirements. The ASIL
is maintained as attribute at each safety goal and inherited consistently through the
subsequent levels of functional safety requirements (as part of the Functional Safety
Concept) and technical safety requirements (as part of the Technical Safety Concept).
The latter will be refined into SW and HW safety requirements.⌋

[TR_METH_01146] Allocation of Safety Requirements ⌈Each Safety Re-
quirement must be allocated properly to an element of the system architecture, i.e.
component, HW, SW or both (HW and SW). Hence, an AUTOSAR element might re-
ceive an ASIL which indicates that it is in the scope of an ISO 26262 development.
The allocation is done by task Allocate Safety Requirement. If safety require-
ments are not available or will not be exchanged together with a specification, the
AUTOSAR implementation must at least be aware that the element is used in a safety
context. Hence, the task Define ASIL For AUTOSAR Element directly assigns
the ASIL attribute to an AUTOSAR element (independent of an allocation). Especially
in cases of a SEooC (Safety Element out of Context) development, where the safety
requirements are not fully known at development time, the ASIL attribute supports the
integration and verification of such parts in a later stage of development by matching
the assumptions against the finalized safety requirements.⌋

[TR_METH_01147] Decomposition of Safety Requirements ⌈In order to tailor
the ASIL of Safety Requirements, ASIL decomposition may be applied. The de-
composition is done by task Decompose Safety Requirement. According to the
ISO 26262 a requirement can be decomposed into two requirements. In the context
of ASIL decomposition the independence (freedom from interference) for the resulting
requirements has to be demonstrated (Task Add Independence Relation).⌋

[TR_METH_01148] Definition of Safety Measures ⌈Safety of a system is achieved
by means of safety measures that are applied at various stages of the development pro-
cess and safety mechanisms which are implemented in a number of technologies into
the system. Safety measures and safety mechanisms are represented by the artifact
Safety Measure which is created by the task Define Safety Measure. In task
Allocate Safety Measure the Safety Measures which are safety mechanisms

146 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

realized in AUTOSAR are allocated to AUTOSAR elements in order to describe what el-
ements are involved in the provision of a safety measure. The task Map Safety Re-
quirement to Safety Measure creates a mapping between the Safety Mea-
sure and the Safety Requirement.⌋

The following specialized activities demonstrate the usage of the Safety Extensions in
different development stages and are integrated into the corresponding use cases:

• Define VFB Safety Information

• Define Software Component Safety Information

• Define System Safety Information

2.14.3 Workflow

Safety Extensions
Overview

Define Safety
Information

Map Safety Requirement to
Safety Measure

Define Safety
Requirement

Define Safety
Measure

Refine Safety Requirement

Decompose Safety
Requirement

Define ASIL For
AUTOSAR Element

Add Independence
Relation

Allocate Safety MeasureAllocate Safety Requirement

«nesting»

«nesting»

«nesting»

«nesting»

«nesting»«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

Figure 2.69: Safety Extensions Overview

Process Pattern Safety Extensions Overview

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Safety Extensions
Overview

Brief Description

Description

Relation Type Related Element Mult. Note

Aggregates Define Safety Information 1

Table 2.56: Safety Extensions Overview

147 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Activity Define Safety Information

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Safety Extensions
Overview

Brief Description Defines all required safety information.

Description This activity represents a generic pattern for defining safety relevant information. The safety
extensions are not restricted to specific AUTOSAR elements so that safety relevant information can
be added and modified in several stages of the AUTOSAR Methodology. Thus, the AUTOSAR
elements consumed by some of the nested tasks are modeled using the "General Autosar Artifact".

Extended By Define Software Component Safety Information, Define System Safety Information, Define VFB
Safety Information

Relation Type Related Element Mult. Note

Aggregates Add Independence Relation 1

Aggregates Allocate Safety Measure 1

Aggregates Allocate Safety
Requirement

1

Aggregates Decompose Safety
Requirement

1

Aggregates Define ASIL For AUTOSAR
Element

1

Aggregates Define Safety Measure 1

Aggregates Define Safety Requirement 1

Aggregates Map Safety Requirement to
Safety Measure

1

Aggregates Refine Safety Requirement 1

Table 2.57: Define Safety Information

2.15 Variant Handling

2.15.1 Overview

[TR_METH_02009] Variation points in Variant Handling ⌈Variant Handling for
AUTOSAR is defined in the Generic Structure Template [16]. First, this concept de-
fines means to designate certain locations in the AUTOSAR meta-model as variation
points. A point roughly consists of a condition (under which conditions is this variation
active?) and a binding time (when should this variation be resolved?).⌋

Second, there are predefined variants.

[TR_METH_02010] Predefined variants in Variant Handling ⌈A typical AUTOSAR
model may contain a large number of variation points. However, usually only a relatively
small number of variants (i.e., combinations of “active” variation points) is actively used.
Each predefined variant describes such a variant.⌋

148 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.15.2 Binding Times

[TR_METH_02011] Types of binding times ⌈The AUTOSAR variant handling defines
two kinds of binding times for AUTOSAR: the latest binding time and the actual binding
time. They have the same kinds of values3, but are used in different contexts.⌋

AUTOSAR defines the following binding times (presented here in chronological order):

• BlueprintDerivationTime

• SystemDesignTime

• CodeGenerationTime

• PreCompileTime

• LinkTime

• PostBuild

The Generic Structure Template mentions two more binding times. First, there is
FunctionDesignTime, which comes before SystemDesignTime, but is indepen-
dent of BluePrintDerivationTime. Second, there is Runtime, which comes after
PostBuild. These binding times are not covered by AUTOSAR and mentioned here
only for completeness.

[TR_METH_02012] Definition of a binding time ⌈It should also be noted that a bind-
ing “time” is not really a point in time, but rather denotes a phase in the development of
an AUTOSAR system.⌋

2.15.2.1 Latest Binding Time

[TR_METH_02013] Latest Binding Time ⌈In the AUTOSAR meta model, ev-
ery variation point has a latest binding time, which is implemented by the tag
Vh.LatestBindingTime. As the name suggests, the latest binding time of a par-
ticular variation point puts an upper limit on when this point can be bound. A variation
may be bound earlier than this time, but not later.⌋

For example, the latest binding time for a software component which is part of a com-
position is PostBuild. In other words, an ECU can be configured to decide at startup
whether a software component is active or not.

However, it is not always possible to bind a variant at the latest possible time. To
continue the above example, making all software components PostBuild means that
an executable always contains code and other resources for all software components,
regardless whether it gets activated or not. Because of this, it may happen that the

3BlueprintDerivationTime and PostBuild are not part of the actual enum that is used in the
meta-model, but they are implied by the structure of the variation point. See chapter 7 in the Generic
Structure Template [16] are more details.

149 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

executable becomes too large to fit onto its designated ECU. If this is the case, the
software component needs to be bound earlier, typically at PreCompileTime or even at
SystemDesignTime.

This is not the only scenario that leads to this decision. For example, a software com-
ponent might contain two or more subcomponents each of which is specific to a certain
vendor. In this case, before delivering the software component to a specific vendor, it
is custom to remove the subcomponents that are targeted at the other vendor(s). This
can obviously be done at PrecompileTime the latest.

There are also cases where there is an implicit (i.e., not stated of the meta-model)
lower limit for the binding time of a variation point. For example, if a variant in software
component A uses a variant in software component B, then the binding times need
to be coordinated. Component A cannot be SystemDesignTime if component B is
PostBuild, but makes use of software component A.

2.15.2.2 Actual Binding Time

[TR_METH_02014] Actual Binding Time ⌈This brings us to the actual binding time of
a variation point, which is stored in an attribute4 of the variation point. Again, it is not
mandatory that the variation point is bound exactly at this stage; it rather states that
the variation point must not be bound at a later stage.

This binding time may be earlier than the latest binding time.⌋

As explained in the previous section, composition of software components can be
bound at PostBuild, but it is not always desirable or even feasible to do so. In such
a case. bindingTime should state an earlier binding time.

Also, unlike the latest binding time, which is a meta model element and is stated on
M2 level, this binding time is a model element associated with a variation point and is
stated on M1 level.

That is, the binding time of a variation point limits the point at which a particular vari-
ation point has to be bound, but this binding time is again constrained by the latest
binding time.

2.15.3 Defining Variants

[TR_METH_02015] Definition of variants ⌈A variant is almost always more than a
single variant point or a single system constant. Typically, a variant is a list of value as-
signments to system constants or postbuild variant conditions. In an AUTOSAR model,

4The attribute is named bindingTime and is located at the ConditionByformula element of a
variation point. For an AttributeValueVariationPoint, it is contained in the attribute binding-
Time.

150 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

such a list is represented by an instance of the meta-class PredefinedVariant, see
definition of artifact Predefined Variant.⌋

[TR_METH_02016] Evaluated Variant Set ⌈Similarly, an instance of the meta-
class EvaluatedVariantSet is a set of PredefinedVariants that are known to
work (or not to work) for a certain element of the meta-model, for example a specific
software component. Evaluated variants may be used to exchange information about
known variants between different vendors, for example to document which variants of
a software component have been tested and are known to work.

In the Methodology SPEM model, the variant selectors are represented by the Eval-
uated Variant Set artifact which is created by the Evaluate Variant task.⌋

This information is necessary because there is a extremely high number of possible
variants, but only a very small subset of them are feasible.

[TR_METH_02017] Use of Predefined Variant ⌈The set of system constants
that are contained in an instance of PredefinedVariant usually affect a number of
variation points, which are at different locations in the model and have different binding
times.

Hence, a predefined variant cannot be directly associated with a specific location in
the meta-model, or a certain binding time. On the contrary, a PredefinedVariant
is used for several meta-model elements and at different binding times.⌋

2.15.4 Choosing Variants

Whether a variation point is included in a system or not is determined by one or more
variables. If the binding time of a variation point is anywhere from SystemDesignTime
to LinkTime, then the variation point contains an expression that is based on system
constants (see artifact System Constant Value Set). If this expression evaluates
to true, then the variation point is included in the system. PostBuild uses a simplified
scheme that allows only a single comparison with a PostBuildVariantCriterion
(technically, an ARElement).

[TR_METH_02018] Choosing variants ⌈So, a variant is chosen as soon as the val-
ues for the respective system constants or postbuild variant conditions have been de-
termined. This is usually done by selecting a PredefinedVariant, which contains
the respective values. This selection must obviously happen before a variation point is
bound. But, it does not need to happen immediately before a variation point is bound.⌋

For example, the system constants that determine a PreCompileTime variation point
may already have been chosen at SystemDesignTime, but the actual binding has
to be delayed to PreCompileTime because of a dependency on another software
components that have the binding time PreCompileTime, as described in Section
2.15.2.2.

151 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Furthermore, since PredefinedVariant spans several variation points, which may
have different binding times, some might have a binding time (latest or even actual)
immediately after the PredefinedVariant has been chosen, and the others might
have a later binding time.

Finally, the decision to go for a particular variant is often tied to vendor specific pro-
cesses that follow their own timeline.

Hence, the time at which a particular variant is chosen is often not the same as the
time when the associated variation points are bound. In summary, a variant must be
chosen some time before it is bound, but the actual time when this is happening is not
determined by AUTOSAR, and is also quite vendor specific.

2.16 Definition of Binding Times

2.16.1 Overview

A binding time is not (as the name probably suggests) a precise point in time, but
rather a classification of processing steps. For example, the binding time CodeGener-
ationTime refers to a transformation step from an AUTOSAR model in ARXML format
to code.

In this section, we define binding times for artifacts and tasks in the methodology.

[TR_METH_00001] Definition of Binding Time for Tasks ⌈A task has binding time
X if it binds variation points of binding time X.

This means in particular:

• Any task that works on the model may bind variation points that have the binding
time SystemDesignTime.

• Any task that generates code needs to bind open variation points that have the
binding time CodeGenerationTime. All variation points with earlier binding
times must have been bound by then.

• Similarly, any task that compiles code needs to bind open variation points that
have the binding time PreCompileTime.5 All variation points with earlier binding
times must have been bound by then.

5Note that in case of the RTE code, the technical step of binding PreCompileTime variants is
partially done by a preparatory task which runs before the actual compilation, see Generate RTE
Prebuild Dataset. That means in particular, the relevant system constants must be defined before
executing this preparatory task. The binding time of actual compilation task Compile ECU Source
Code is indicated as CompileTime in this case.

152 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

At this time, the values for PostBuildVariantConditions of variation points
must also be bound. These values have a latest binding time of PreCompile-
Time6.

In all these cases, the system constants that are needed by the condition of a variation
point obviously must be defined before the variation point is bound.

In the Methodology library, the binding time of a task is indicated by a value of the tag
Meth.bindingTime for those tasks which always can be associated with this binding
time. It is not indicated for tasks that only optionally bind variations. This typically
is the case for all tasks that only work on the ARXML model, for example, it is up
to the concrete process whether a task like Extract ECU Topology shall bind any
variations.⌋

[TR_METH_00002] Definition of Binding Time for Artifacts ⌈In an artifact with bind-
ing time X, all variation points up to binding time X shall be bound.

We do not denote such a binding time for artifacts in the Methodology library, because
their binding time typically depends on the context. However, this definition could be
used to assign a binding time to an artifact as part of a specific use case.⌋

[TR_METH_00003] Definition of Binding Time for Artifacts in the context of par-
ticular tasks ⌈If an artifact of binding time X is used as input or output of a particular
task, then all variation points related to that task with binding time up to X shall be
bound.

This in particular means that if the artifact is input to the task, then binding time variation
points X shall be bound and the task relies on this.

If the artifact is output to the task, it is granted that the such created artifact has all
variation points of binding time X bound.

In the Methodology library, this is indicated by a value of the tag Meth.bindingTime
attached to a Consumes/ConsumedBy resp. Produces/ProducedBy relationship.

Note that the tag Meth.bindingTime is not applicable to inout relationships, as the
binding time values according to the above definition are usually different for the inputs
and outputs of a particular task. If it is important to express these binding times, the
inout relation must be split into an input (i.e. ConsumedBy) and output (i.e. Pro-
duces) relation.⌋

Figure 2.70 presents an overview of binding times as used in the AUTOSAR method-
ology. Boxed elements in this figure correspond to binding times, and the connections
between them characterize artifacts.

6The variation point is still PostBuild: the PostBuildVariantCondition is fixed at PreCompile-
Time, but the comparison with the associated PostBuildVariantCriterion occurs at PostBuild-
VariantCriterion. See the Generic Structure Template [16] for details

153 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Model + Requirements

BluePrintDerivationTime FunctionDesignTime

InitialBindingTime

CodeGenerationTime

PreCompileTime

CompileTime

LinkTime

PostBuild

RunTime

Object Code

Executable, Configuration Data Set

Bound Source Code

ARXML

Source Code

ARXML Function Model

Figure 2.70: Overview of Binding Times

2.16.2 A Classification of Artifacts with respect to Binding Times

Model, Requirements, Functional Model These refer to models that are not an
AUTOSAR Model. For example, a Model may be a Matlab/Simulink model or
a requirements document.

ARXML An ARXML artifact is a XML document that conforms to the AUTOSAR XML
schema.

154 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Source Code A Source Code artifact is text written using the syntax of a programming
language, for example such as C or C++.

Source Code may be generated by hand, or may be the output of a code gener-
ator.

Bound Source Code A Bound Source Code artifact contains source code without any
unbound precompile variation points.

Object Code An Object Code is the output of a compiler. Object code is typically
machine code, but may also include descriptive information in a format such as
XML.

Executable An Executable is an artifact that can run on an ECU. It is often similar to
Object Code; the difference between the two is that the former does not provide
means for execution on an ECU.

Configuration Data Set A Configuration Data Set is a set of assignments to Post-
BuildVariantCriterion.

2.16.3 Classification of Binding Times

Table 2.58 presents an overview of the binding times in AUTOSAR Variant Handling.

Binding Time AUTOSAR Metamodel AUTOSAR Methodology
BlueprintDerivationTime partially yes
FunctionDesignTime out of scope out of scope
InitialBindingTime no yes
SystemDesignTime yes yes
CodeGenerationTime yes yes
PreCompileTime yes yes
CompileTime unused yes
LinkTime yes yes
PostBuild yes yes
Runtime out of scope out of scope

Table 2.58: Binding Times in Meta Model and Methodology

Variant handling in the AUTOSAR meta model supports the following binding times:

• BlueprintDerivationTime

• SystemDesignTime

• CodeGenerationTime

• PreCompileTime

• LinkTime

• PostBuild

155 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

[TR_METH_02020] Definition of latest Binding Time for a variation point
in the meta-model ⌈All these binding times may be used in the tag
≪Vh.latestBindingTime≫, which is used to define the latest binding time for a
variation point in the meta model.

The actual binding time of a variation point is stored in the attribute bindingTime
of the ConditionByFormula of a VariationPoint, and can only use the values
SystemDesignTime, CodeGenerationTime, PreCompileTime, LinkTime.⌋

The AUTOSAR methodology utilizes two more binding times, InitialBinding-
Times to characterize artifacts where no variation points are bound, and Compile-
Time to distinguish between preprocessing and compiling of code. Finally, Func-
tionDesignTime and Runtime are not in the scope of AUTOSAR variant handling
but mentioned here for completeness.

2.16.3.1 BlueprintDerivationTime

At BlueprintDerivationTime, a model is derived from Blueprints. For example,
a function design tool provides the option to derive objects from a predefined set of
blueprints. See [1] for more details. This is different from the variant handling defined
in this chapter, but it uses the same meta model features (see [16]).

BlueprintDerivationTime is out of the scope of this document, but mentioned
here for completeness.

Input Artifacts: Model, Requirements

Output Artifacts: ARXML

2.16.3.2 FunctionDesignTime

At FunctionDesignTime, a software architecture independent model for (control)
systems is developed. Typical tools used at this stage are Matlab/Simulink, or ASCET-
MD.

If a function design tool supports variant handling according to AUTOSAR it has no
other choice than using CodeGenerationTime or later as binding time in the gener-
ated AUTOSAR artifacts.

FunctionDesignTime is out of the scope of this document (as long as it does not
affect calibration measurements), but mentioned here for completeness.

Input Artifacts: Model, Requirements

Output Artifacts: Function model

156 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.16.3.3 InitialBindingTime

At InitialBindingTime, no variation points are bound. This binding time is needed to
express a state where no SystemDesignTime points are bound in artifact

Input Artifacts: Model, Requirements, Function model, AUTOSAR models from
blueprints in ARXML format.

Output Artifacts: ARXML.

2.16.3.4 SystemDesignTime

SystemDesignTime is characterized by the following tasks:

• Designing the VFB

• Software Component types (Interfaces)

• SWC Prototypes and the Connections between SWCprototypes

• Designing the Topology

• ECUs and interconnecting Networks

• Designing the Communication Matrix and Data Mapping

Input Artifacts: Function model, Requirements, AUTOSAR models from blueprints in
ARXML format.

Output Artifacts: ARXML.

2.16.3.5 CodeGenerationTime

At this step, code is generated. This may be done either by hand, or using a tool, or a
mixture of both.

Handwritten code is typically based on a requirements document, whereas generated
code is usually created from a model that was designed at FunctionDesignTime or
SystemDesignTime.

Both the requirements and the model may contain variants, but code is only generated
for those variants that have been selected, or which need to be resolved later.

Input Artifacts: ARXML.

Output Artifacts: Source Code.

157 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

2.16.3.6 PreCompileTime

At PreCompileTime, a preprocessor (e.g., the C preprocessor) is used to further
customize the code and exclude parts of the code from the compilation process.

There are several reasons for such an exclusion: code is not required for the selected
variant(s), code is incompatible with the selected variant(s), or code requires resources
that are not present in the selected variant(s). The code that is excluded at this stage
code will not be available at later stages.

PreCompileTime is typically used for handwritten code (for which SystemDesign-
Time and CodeGenerationTime obviously cannot not take effect) or when a system
constant needs to be bound after code generation.

Input Artifacts: Source Code.

Output Artifacts: Bound Source Code.

2.16.3.7 CompileTime

At CompileTime, source code that has already been processed by a macro processor
such as the C preprocessor and stripped of all PreCompileTime variation points is
transformed into object code. The compiler might eliminate further variants by remov-
ing unused code paths.

CompileTime is not used in the AUTOSAR meta model, but is used in the AUTOSAR
methodology to discriminate between a preprocessor and a compiler.

Input Artifacts: Bound Source Code.

Output Artifacts: Object code.

2.16.3.8 LinkTime

The configuration at this stage determines which modules are included in the resulting
object code (executable), and which ones are omitted based on the selected variants.

Input Artifacts: Object code.

Output Artifacts: Executable program.

2.16.3.9 PostBuild

PostBuild is the binding time which is bound latest at startup of the ECU. In other words
this is everything between creation of the executable program and startup of the ECU.

The startup of the ECU is the PostBuild binding since and obviously cannot be resolved
in the model.

158 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Input Artifacts: Executable program, Configuration data set.

Output Artifacts: –

2.16.3.10 Runtime

Everything after startup and initialization is RunTime. Variant Handling at RunTime is
out of the scope of this document, but mentioned here for completeness.

2.17 How to resolve Name Conflicts

2.17.1 Reasons for Name Conflicts

In the highly distributed development of an AUTOSAR system, there is a certain risk
that symbolic names used in different development artifacts are not unique so that
name conflicts may occur when applying software tools.

[TR_METH_03000]Name spaces via ARPackages ⌈In the “upstream” specification of
an AUTOSAR system, a software component, a basic software module or configuration
parameters via AUTOSAR XML artifacts, such a risk can be widely avoided through the
proper usage of ARPackages because they set up name spaces and may be nested
(see also General Autosar Artifact). Here it is recommended to follow similar
rules as AUTOSAR is using for its own published artifacts, see [16, FO TPS Generic
Structure Template]: [TPS_GST_00081], [TPS_GST_00083], [TPS_GST_00086].⌋

However, certain symbols specified in the AUTOSAR XML artifacts need to be trans-
ferred to other development artifacts in later process steps (“downstream”) and will
appear e.g. as symbols in C-code, as file names, as names displayed by calibration
tools or in textual documents. Here we have in general two reasons for naming conflicts
(which may also occur in combination):

[TR_METH_03001] Reasons for name conflicts in “downstream” artifacts ⌈

• Uncoordinated co-development

Due to the global name space of the C-language within one compilation unit, the
risk of name conflicts is rather high if pieces of source code are integrated that
were developed by different parties without coordinating the definition of symbols.
The same can happen with names of header files or with symbols visible by the
linker.

In AUTOSAR, the programming language interfaces between software compo-
nents and (to some extend) between basic software modules are restricted to
certain patterns and are generated from ARXML, so the coordination effort is
restricted to the proper definition of the relevant symbols in ARXML.

159 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

In several cases the shortName of an ARElement corresponds to an identifier
in the code (or to a part of such an identifier), sometimes also to a file name
or a part of it. Since shortNames are also used in the links between ARXML
elements, it is hard to change such a name without impact on the overall design.
This is for example the case for the names of the AtomicSwComponentTypes.

• Multiple instantiation

The AUTOSAR Runtime Environment (RTE) supports multiple instantiation of
software components. This means, in a system and even on one ECU there
can be several instances of a given AtomicSwComponentType. Each instance
possesses its own data (managed by the RTE), but there is only one artifact (
VFB Atomic Software Component) describing the whole type. If one needs
a symbol identifying a particular component instance or particular data belonging
to that instance (for example for display in a calibration tool), a conflict arises.

A similar thing happens with data elements or operation arguments in a PortIn-
terface or in a composite data type, if the enclosing element is reused in more
than one context.

A different kind of “multiple instantiation” can occur in the basic software, if several
driver modules implement the same interface (only distinguished by an instance
identifier). In this case, we actually have different implementations of code, the
modules only share the upper levels of description (artifacts Basic Software
Module Description and Basic Software Module Internal Behav-
ior).

⌋

2.17.2 Points in the Methodology where Name Conflicts are resolved

On the other hand we have multiple points in the methodology where to resolve those
conflicts.

In general we can distinguish between the development phase in which a name conflict
is resolved and the phase in which it occurs (or would occur). Because a conflict usually
prevents a certain task from being completed (e.g. compilation), it must be resolved in
the same or an earlier phase than the phase in which it would occur.

• [TR_METH_03002] Conflict solution at system design time ⌈
This is mentioned mainly for completeness. Of course, a proper system design
can avoid conflicts in the first place and if a name conflict still arises in a later
phase, it is in principle possible to iterate over the system design. But in this
chapter we focus on solutions that allow to resolve name conflicts in later process
phases which usually causes less effort.⌋

• [TR_METH_03003] Conflict solution at coding time ⌈
Conflicts occurring at compile time or link time must be resolved (latest) at the

160 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

time a developer is producing the code and/or the ARXML descriptions leading to
the generation of code. In other words, this has to happen within the activities De-
velop an Atomic Software Component or Develop BSW Module. Note
that in the worst case, such a conflict is detected not before integration time (dur-
ing activity Build Executable) which means that some kind of iteration of the
activities is required.⌋

• [TR_METH_03004] Conflict solution at ECU integration time ⌈
During ECU integration time (latest) it is still possible to resolve name conflicts
that would occur in tasks after the software build, e.g. during generation of A2L
files.⌋

2.17.3 Mechanisms for resolving Name Conflicts

The mechanisms to resolve the name conflicts are:

• [TR_METH_03005] Conflict solution via SymbolProps ⌈

This mechanism allows to redefine a name in cases where the shortName by
default is used to generate RTE relevant code. This avoids to change the overall
design in the ARXML model.

This mechanism can be applied at coding time (activity Develop an Atomic
Software Component, task Define SymbolProps for Types) and solves
conflicts caused by uncoordinated development. Such changes - even if they do
not influence the overall design of the software - should be agreed upon by the
involved parties.

This mechanism is provided for the following meta-model elements:

AtomicSwComponentType.symbolProps
Allows to redefine the software component type name that the RTE is using in
its code. This resolves name clashes among different software component types
designed accidentally with the same shortName.7

ImplementationDataType.symbolProps
Allows to redefine the implementation data type name used in the code of the
RTE and/or the components. This resolves name clashes among different imple-
mentation data types designed accidentally with the same shortName.

For more information on the meta-model refer to [TPS_SWCT_01194] and
[TPS_SWCT_01110] in [5, CP TPS Software Component Template].⌋

• [TR_METH_03006] Conflict solution via literal prefixes ⌈

7Note that this mechanism is not applicable for the prefixes used in the preprocessor code of memory
sections. Conflicts among these preprocessor symbols due to duplicate component type names are not
visible to the linker. However conflicts might occur when compiling and must be resolved manually.

161 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

This mechanisms is similar to the one described before. It allows to define a pre-
fix for preprocessor literals (e.g. for enumeration types or upper/lower limits) cre-
ated by the RTE generator contract phase. Also this mechanism solves conflicts
caused by uncoordinated development and must be applied at coding time (part
of task Define Atomic Software Component Internal Behavior).

The model element to be manipulated is:
SwcInternalBehavior.includedDataTypeSet.literalPrefix

For more information refer to [TPS_SWCT_01157] in [5, CP TPS Software Com-
ponent Template].⌋

• [TR_METH_03007] Conflict solution in names of runnable entities ⌈

In case of a RunnableEntity the symbol used in the code is already indepen-
dent from the shortName - it is always modeled via the attribute
RunnableEntity.symbol. However, since these symbols need to be unique in
the scope of one RTE instance (see [constr_2025] in [5, CP TPS Software Com-
ponent Template]), also here a name conflict can occur at integration time if the
definition of the symbols was not coordinated before.

Similar to the cases discussed before, this conflict must be solved at coding time
simply be changing the symbol. Note that such a change would not influence
the overall design and can be done locally on one component (whose runnable
shall be renamed) since the runnable symbol is hidden to other component by the
RTE. Despite of that, the definition of unique runnable symbols still might need
some human coordination.⌋

• [TR_METH_03008] Conflict solution via FlatMap ⌈

This mechanism allows to assign identifiers to instances of model elements (e.g.
software component instances or data element instances) so that they are unique
in a certain scope, e.g. a system or an ECU. Thereby name conflicts are avoided,
which would occur if simply the shortNames of the ARXML elements would be
used. In other words, this mechanisms solves the name conflicts arising from
multiple instantiation of types in the ARXML model.

The identifiers defined in this way are typically not used within the code, since
AUTOSAR components do not rely on global variables. The main purpose is the
usage within other artifacts which need to handle symbols out of the package
context of the ARXML model, for example citation in documents (e.g. in arti-
fact Software Component Documentation) or input for measurement and
calibration tools (e.g. in artifact RTE Measurement and Calibration Sup-
port Data). A special use case of the ECU Flat Map is the the model trans-
formation from the System to ECU Extract, where it is used to define additional
names of component prototypes.

The point in the methodology where this mechanisms is applied depends of
course on the use case. The typical tasks in the methodology library for defining

162 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

a Flat Map are normally performed before integration time: Generate or Ad-
just System Flat Map, Define Partial Flat Map and Generate or
Adjust ECU Flat Map. But since identifiers in a FlatMap are independent of
the code, it can in principle be adjusted even at integration time in case a conflict
occurs.

For more information see artifacts System Flat Map, Partial Flat Map
and ECU Flat Map, for the underlying meta-model parts refer to [6, CP TPS
System Template].⌋

• [TR_METH_03009] Conflict solution via AliasNameSet ⌈

This mechanism is similar to FlatMap. It allows to define additional names for
model elements, either on top of an entry in a FlatMap or standalone. The
usage is also similar, but there are no standardized use cases in connection with
the AUTOSAR RTE. It can be used in cases where the format of the FlatMap is
too restrictive.

For more information refer to the artifact Alias Name Set and task Define
Alias Names. For the meta-model of AliasNameSet refer to [6, CP TPS Sys-
tem Template]. The document [6, CP TPS System Template] also gives recom-
mendations on how to transfer certain attributes below AliasNameSet into an
ASAM ASAP2 (“A2L”) specification.⌋

• [TR_METH_03010] Conflict solution via API Infixes ⌈

If several “instances” of a basic software module (with different implementation
but identical interface definition) are linked together, name conflicts have to be
solved by defining “infixes”. These are small pieces of strings denoting the mod-
ule vendor and the instance role. They are used to extend globally visible C
symbols and certain header file names. The mechanism is also relevant for the
basic software scheduler APIs generated in task Generate BSWM Contract
Header Files.

Though this mechanism solves a conflict of a certain kind of multiple instantiation,
it is relevant to the code and thus must be applied at coding time. The description
of the infixes has to be put into the artifact Basic Software Module Imple-
mentation Description.

For more information refer to [TPS_BSWMDT_04031] in [9, CP TPS BSW Mod-
ule Description Template] and to [SWS_BSW_00102] in [7, CP SWS BSW Gen-
eral].⌋

163 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3 Methodology Library

3.1 Common Elements

This chapter contains the definition of work products and tasks used in several areas of
AUTOSAR development. For the definition of the relevant meta-model elements refer
to [16, FO TPS Generic Structure Template].

3.1.1 Work Product Kinds

Category (Work
Product Kind)

AUTOSAR XML

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Product Kinds

Brief Description

Description An artifact that conforms to the AUTOSAR XML schema.

Table 3.1: AUTOSAR XML

Category (Work
Product Kind)

Source Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Product Kinds

Brief Description

Description A human readable artifact that conforms to a defined programming language syntax, such as C or
Java.

Table 3.2: Source Code

Category (Work
Product Kind)

Bound Source Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Product Kinds

Brief Description

Description A Bound Source Code artifact contains source code without any unbound precompile variation
points.

Table 3.3: Bound Source Code

Category (Work
Product Kind)

Object Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Product Kinds

Brief Description

Description An Object Code is the output of a compiler. Object code is typically machine code, but may also
include descriptive information in a format such as XML.

Table 3.4: Object Code

164 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Category (Work
Product Kind)

Configuration Data Set

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Product Kinds

Brief Description

Description This is a special kind of binary code containing configuration that can be loaded separately from the
main ECU code.

Table 3.5: Configuration Data Set

Category (Work
Product Kind)

Executable

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Product Kinds

Brief Description

Description An Executable is an artifact that can run on an ECU. It is often similar to Object Code; the difference
between the two is that the former does not provide means for execution on an ECU.

Table 3.6: Executable

Category (Work
Product Kind)

Text

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Product Kinds

Brief Description

Description A human readable artifact that is stored as plain text, rich text, PDF, etc.

Table 3.7: Text

Category (Work
Product Kind)

Custom

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Product Kinds

Brief Description

Description A custom artifact format which is not further specified in the AUTOSAR Methodology.

Table 3.8: Custom

Category (Work
Product Kind)

Delivered

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Product Kinds

Brief Description

Description These are collections of delivered work products. They form the basis of exchange between
organizations.

Table 3.9: Delivered

165 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.1.2 Tasks

3.1.2.1 Add General Documentation

Add General Documentation

General Documentation

«output» 1

Figure 3.1: Add General Documentation

Task Definition Add General Documentation
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Tasks

Brief Description

Description Add General Documentation to work products (AR_MET_REQ069)

Relation Type Related Element Mult. Note

Produces General Documentation 1

Table 3.10: Add General Documentation

3.1.2.2 Define Admin Data

Define Admin Data

General Autosar Artifact

«output» 1

Figure 3.2: Define Admin Data

Task Definition Define Admin Data
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Tasks

Brief Description Generic task to define admin data of an Identifiable within an AUTOSAR artifact.

Description Generic task to define administration data (metamodel element AdminData) of an Identifiable within
an AUTOSAR artifact. Note that administration data can be defined on several levels, namely for the
top-level package of a General Autosar Artifact, but also for sub-packages and for other Identifiables
within the XML description.
Administration data include versioning information of the model element via the meta-class Doc
Revision, and the aggregation of user specific data via so-called special data groups, meta-class
Sdg.
For more details on the administration data content refer to document ID 202 FO_TPS_Generic
StructureTemplate.

Relation Type Related Element Mult. Note

Produces General Autosar Artifact 1

Table 3.11: Define Admin Data

166 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.1.2.3 Define Alias Names

Define Alias Names

Alias Name Set

Delivered Atomic Software
Components

System Description

0..1 «input»

0..1

«input»

«output»

1

Figure 3.3: Define Alias Names

Task Definition Define Alias Names
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Tasks

Brief Description Define a set of alias names for AUTOSAR model elements.

Description The usual mechanism for defining global names for nested elements within an AUTOSAR XML
model is the Flat Map. However in the cooperation with non-AUTOSAR tools, there are uses cases
which require additional alias names which can be defined by this task.
It can be applied on System and on ECU level as well. Possible use cases are for example:
• The names defined by an ECU Flat Map, System Flat Map or Partial Flat Map shall be

superseded when used by an external tool (e.g. in order to use a more general string format).

• Resolve name conflicts for elements which cannot be referred in the context of a Flat Map (e.g.
for elements directly defined in the scope of ARPackages, like System Constants to be displayed
by A2L tools).

Relation Type Related Element Mult. Note

Consumes Delivered Atomic Software
Components

0..1 Needed for definition of alias names in the scope of
delivered software components.

Consumes System Description 0..1 Needed for definition of alias names with system,
system extract or ECU scope, depending of the role of
the System Description.

Produces Alias Name Set 1

Table 3.12: Define Alias Names

167 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.1.2.4 Evaluate Variant

Evaluate Variant

Evaluated Variant Set

Postbuild Variant Set

General Autosar Artifact

Predefined Variant

System Constant
Value Set

«input»

0..*

«output»

1

«input»

0..1

«input»

1..*

«input»

0..*

«input»0..*

Figure 3.4: Evaluate Variant

Task Definition Evaluate Variant
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Tasks

Brief Description Document the evaluation of variants in the software description.

Description Create or modify an Evaluated Variant Set in order to document the outcome of an evaluation of
particular variants. This namely means setting the "approval status" in relation to a given set of
PredefinedVariants and a given set of model elements (e.g. a particular Software Component) which
were evaluated.
This is a general task which can be applied on different levels, therefore the input is modeled as
General Autosar Artifact.

Relation Type Related Element Mult. Note

Consumes General Autosar Artifact 1..*

Consumes Evaluated Variant Set 0..1

Consumes Postbuild Variant Set 0..*

Consumes Predefined Variant 0..*

Consumes System Constant Value Set 0..*

Produces Evaluated Variant Set 1

Table 3.13: Evaluate Variant

168 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.1.2.5 Define Memory Addressing Modes

Define Memory
Addressing Modes

BSW Module
Preconfigured
Configuration

Basic Software
Module Developer

Software
Component
Developer

«output»

+MemMapAddressingModeSet

1..*

0..1

«performs»

1

«performs»

Figure 3.5: Define Memory Addressing Modes

Task Definition Define Memory Addressing Modes

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Tasks

Brief Description

Description Define the compiler specific configuration used in a later task to generate the "pragmas" in memory
mapping header files.
The output (container MemMapAddressingModeSet) is treated as pre-configured configuration
values for the "module" MemMap, because it can be prepared independently from the configuration
for a specific integration project.
Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by Basic Software Module
Developer

1

Performed by Software Component
Developer

0..1

Produces BSW Module Preconfigured
Configuration

1..* MemMapAddressingModeSet:
Meth.bindingTime = SystemDesignTime

Table 3.14: Define Memory Addressing Modes

169 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.1.2.6 Configure Memmap Allocation

Configure
Memmap
Allocation

BSW Module
Preconfigured
Configuration

ECU Configuration
Values

VFB Types

Basic Software
Module
Implementation
Description

ECU Integrator

Basic Software
Module Developer

Software
Component
Developer

Atomic Software
Component
Implementation

+SwAddrMethods

0..*

«input»

0..1

«performs»

0..1

«performs»

+MemorySections

0..*

«input»

+MemorySections

0..* «input»

+MemMapAddressingModeSet

1..*

«input» «output» +MemMapAllocation

1

0..1

«performs»

Figure 3.6: Configure Memmap Allocation

Task Definition Configure Memmap Allocation

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Tasks

Brief Description

Description Configure the ECU Configuration part MemMapAllocation for module "MemMap".
The output is to be used for generating memory mapping headers during ECU integration as well as
for BSW and SWC compiling/linking in local environments.
MemMapAllocation defines a mapping between abstract memory sections used in BSW or SWC
code and compiler specific configuration elements. The abstract sections are identified via links to
SwAddrmethods (generic mapping) resp. MemorySections of the XML input files. The compiler
specific configuration is given as a pre-configured configuration for module "MemMap" via the
container MemMapAddressingModeSet.
For more information refer to document ID 128 CP_SWS_MemoryMapping.
Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by Basic Software Module
Developer

0..1

Performed by ECU Integrator 0..1

Performed by Software Component
Developer

0..1

Consumes BSW Module Preconfigured
Configuration

1..* MemMapAddressingModeSet: Collection of compiler
specific configuration elements for memory allocation
and addressing modes.

Consumes Atomic Software
Component Implementation

0..* MemorySections:

▽

170 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Configure Memmap Allocation

Consumes Basic Software Module
Implementation Description

0..* MemorySections:

Consumes VFB Types 0..* SwAddrMethods: SwAddrMethods used for the generic
mapping. Note that one SwAddrmethod can represent
several memory sections.

Produces ECU Configuration Values 1 MemMapAllocation:
Meth.bindingTime = SystemDesignTime

Table 3.15: Configure Memmap Allocation

3.1.2.7 Generate BSW Memory Mapping Header

Generate BSW

Memory Mapping

Header

BSW Module

Preconfigured

Configuration

ECU Configuration

Values

VFB Types

Standard

Header Files

Basic Software

Module

Implementation

Description

Basic Software

Module

Developer

ECU Integrator

Basic Software

Module

Description

+infixes

1 «input»

+shortName 0..1

«input»

+moduleDescription

0..1 «input»

+DependencyOnArtifact

1

«input»

+0..*

0..1

«performs»

+MemMapAddressingModeSet

1..* «input»

1

«performs»

+MemMapAllocation

1 «input»

«output»

+BSW_MemMap

1

+SwAddrMethod

1..* «input»

+MemorySections

1
«input»

Figure 3.7: Generate BSW Memory Mapping Header

171 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Generate BSW Memory Mapping Header

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Tasks

Brief Description

Description Generate a memory mapping header to be used for one BSW module (the default case) or a group
of BSW modules (e.g. an ICC2 BSW cluster). Note that the usage of one MemMap.h for the
complete BSW of one build environment is possible, but deprecated.
This task can be used in ECU scope or with preliminary scope to test BSW modules. Note that the
content of the generated file is compiler specific (#pragma statements).
Inputs are:
• From Basic Software Module Description: The shortName is used (in the default case) as the first

part of the generated file name.

• From VFB Types: Properties of abstract sections given by SwAddrmethods, which in turn are
referred by MemorySection as well as by MemMapAllocation.

• From Basic Software Module Implementation Description: Names of the individual abstract
sections (preprocessor macros) used in the code (including optional prefixes overriding the
default rule); optional infixes for the file name (if the default rule is used); optional declaration of
file name (element DependencyOnArtifact) overriding the default rule.

• From Preconfigured Configuration for module "MemMap": Collection of compiler specific
configuration elements.

• From ECU Configuration for module "MemMap" : MemMapAllocation - this is the concrete
mapping for this environment.

• From ECU Configuration: Find the list of used BSW modules in case the task is done for the
whole BSW (EcucValueCollection.ecucValue.moduleDescription).

Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Performed by Basic Software Module
Developer

0..1 0..*:

Consumes Basic Software Module
Implementation Description

1 DependencyOnArtifact: Can be used to override the
default name of the memory mapping header file.
Meth.bindingTime = SystemDesignTime

Consumes Basic Software Module
Implementation Description

1 MemorySections: MemorySections defined for a BSW
module. This input includes optional prefixes for
memory sections overriding the default rule.
Meth.bindingTime = SystemDesignTime

Consumes Basic Software Module
Implementation Description

1 infixes: Optional infixes (denoting instance and vendor
ID) to be used within the created header file name.
Meth.bindingTime = SystemDesignTime

Consumes ECU Configuration Values 1 MemMapAllocation: Mapping of the abstract sections
(SwAddressMethods for generic mapping resp. Memory
Section Elements for specific mapping) to the compiler
specific MemMapAddressingModes.
Meth.bindingTime = SystemDesignTime

Consumes BSW Module Preconfigured
Configuration

1..* MemMapAddressingModeSet: Collection of compiler
specific configuration elements for memory allocation.
Meth.bindingTime = SystemDesignTime

Consumes VFB Types 1..* SwAddrMethod: Referred SwAddrMethods
Meth.bindingTime = SystemDesignTime

Consumes Basic Software Module
Description

0..1 shortName: The BSW module’s shortName is used as
the first part of the generated file name, in case the
default rule applies.
Meth.bindingTime = SystemDesignTime

Consumes ECU Configuration Values 0..1 moduleDescription: List of used BSW modules (Ecuc
ValueCollection.ecucValue.moduleDescription)
Meth.bindingTime = SystemDesignTime

▽

172 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Generate BSW Memory Mapping Header

Produces Standard Header Files 1 BSW_MemMap: The memory mapping header file to be
used for one or more BSW modules in a given build
environment.
The file name has in the standardized case a form like
{Mip}_MemMap.h in which the prefixes {Mip} are
determined by the BSW module (or BSW cluster) name
and optional infixes.
However, it is also possible to create a completely
different filename via explicit declaration in the BSW
Module Implementation.
For more detailed rules on the name of the generated
file refer to document ID 128 CP_SWS_Memory
Mapping.
Meth.bindingTime = CodeGenerationTime

Table 3.16: Generate BSW Memory Mapping Header

3.1.2.8 Generate SWC Memory Mapping Header

BSW Module
Preconfigured
Configuration

ECU Configuration
Values

VFB Types

Standard
Header Files

ECU Integrator

Generate SWC
Memory Mapping
Header

Software
Component
Developer

Atomic Software
Component
Implementation

+SwAddrMethod

1..* «input»

+MemMapAllocation

1 «input»

+MemMapAddressingModeSet

1..* «input»

«output»

+SWC_MemMap

1

+MemorySections

1 «input»

1

«performs»

+RteImplementationRef

0..1 «input»

0..1

«performs»

Figure 3.8: Generate SWC Memory Mapping Header

173 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Generate SWC Memory Mapping Header

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Tasks

Brief Description

Description Generate the memory mapping header file for one build environment and one Atomic Software
Component. This task can be used in ECU scope or with preliminary scope to test software
component. Note that the generated header file is compiler specific (#pragma statements).
Inputs are:
• From VFB Types: Properties of abstract sections given by SwAddrmethods, which in turn are

referred by MemorySection as well as by MemMapAllocation

• From Software Component Implementation, element MemorySection: Names of the individual
abstract sections (preprocessor macros) used in the code.

• From Preconfigured Configuration for module "MemMap": Collection of compiler specific
configuration elements.

• From ECU Configuration for module "MemMap" : MemMapAllocation - This is the concrete
mapping for this environment.

• From ECU Configuration: Find (optionally) the list of used software component implementations
by usage of the RTE ECU Configuration "RteSwComponentType.RteImplementationRef"

Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Performed by Software Component
Developer

0..1

Consumes Atomic Software
Component Implementation

1 MemorySections: MemorySections defined for an
Atomic Software Component.
Meth.bindingTime = SystemDesignTime

Consumes ECU Configuration Values 1 MemMapAllocation: Mapipng of the abstract sections
(SwAddressMethods for generic mapping resp. Memory
Section Elements for specific mapping) to the compiler
specific MemMapAddressingModes.
Meth.bindingTime = SystemDesignTime

Consumes BSW Module Preconfigured
Configuration

1..* MemMapAddressingModeSet: Collection of compiler
specific configuration elements for memory allocation.
Meth.bindingTime = SystemDesignTime

Consumes VFB Types 1..* SwAddrMethod: Referred SwAddrMethods
Meth.bindingTime = SystemDesignTime

Consumes ECU Configuration Values 0..1 RteImplementationRef: Existence of SWCs could be
identified by usage of the RTE ECU Configuration "Rte
SwComponentType.RteImplementationRef"
Meth.bindingTime = SystemDesignTime

Produces Standard Header Files 1 SWC_MemMap: One header per software component
type for a given build environment.
The file name follows the pattern {componentType
Name}_MemMap.h in which the prefix componentType
Name is determined by the software component type
name.
For more detailed rules on the name of the generated
file refer to document ID 128 CP_SWS_Memory
Mapping.
Meth.bindingTime = CodeGenerationTime

Table 3.17: Generate SWC Memory Mapping Header

174 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.1.3 Work Products

3.1.3.1 General Documentation

Artifact General Documentation
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Products

Brief Description

Description General documentation link to a given work product

Kind Custom

Relation Type Related Element Mult. Note

Aggregated by General Deliverable 0..*

Produced by Add General
Documentation

1

Table 3.18: General Documentation

3.1.3.2 Alias Name Set

Artifact Alias Name Set
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Products

Brief Description Set of alias names for AUTOSAR model elements for usage outside of AUTOSAR.

Description Set of alias names, each consisting of the name (string) itself and the reference to the model
element it renames.
Each reference to a model element is either a reference to an Identifiable or to an entry in an ECU
Flat Map or System Flat Map.
For an explanation of uses cases see task Define Alias Names.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software
Components

0..1 Alias names valid in the context of the delivered
components.

Aggregated by System Description 0..*

Produced by Define Alias Names 1

Consumed by Add Documentation to the
Software Component

0..* Optional input in order to refer to unique names defined
in an Alias Name Set (e.g. System Constants).

Consumed by Generate A2L 0..*

Use meta model
element

AliasNameSet 1

Table 3.19: Alias Name Set

175 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.1.3.3 Evaluated Variant Set

Artifact Evaluated Variant Set
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Products

Brief Description A set of evaluated variants

Description This artifact represents a table defining which ArElements or ArPackages (referrred as "evaluated
Elements") are able to support one or more particular variant. It can thus be used to document
which variants are support by a certain delivery, e.g. of a software component or of a system.
In other words, for a given set of evaluatedElements this element represents a table of evaluated
variants, where each PredefinedVariant represents one column. In this column each descendant sw
SystemConstantValue (part of System Constant Value Set) resp. postbuildVariantCriterionValue
(part of Postbuid Variant Set) represents one entry.
In a graphical representation each swSystemConstantValueSet / postBuildVariantCriterionValueSet
could be used as an intermediate headline in the table column.
The Evaluated Variant Set comes with an attribute "approvalStatus". If this is set to "APPROVED" it
expresses that the evaluatedElements are known be valid for the given evaluated variants.
Note that an evaluatedElement could be another Evaluated Variant Set. This allows to establish a
hierarchy of EvaluatedVariantSets.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software
Components

0..1

Aggregated by ECU Extract of System
Variant Model

0..*

Aggregated by System Description 0..*

Aggregated by VFB System 0..*

Produced by Define System Variants 1

Produced by Evaluate Variant 1

Produced by Define Integration Variant 0..1 Meth.bindingTime = SystemDesignTime

Produced by Define VFB Variants 0..*

Consumed by Evaluate Variant 0..1

Consumed by Extract ECU System
Variant Model

0..*

Use meta model
element

EvaluatedVariantSet 1

Table 3.20: Evaluated Variant Set

3.1.3.4 Autosar Specification

Deliverable Autosar Specification

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Products

Brief Description

Description An Autosar specification that is part of the Autosar standard. E.g. Software Component Template,
Main Requirements, Autosar Model Constraints, Specification of Communication, etc.

Kind
Relation Type Related Element Mult. Note

Table 3.21: Autosar Specification

176 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.1.3.5 General Autosar Artifact

Artifact General Autosar Artifact
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Products

Brief Description Describes the meta data for an AUTOSAR artifact.

Description This artifact represents the data which are common to all AUTOSAR XML artifacts.
Each file starts with the root element AUTOSAR.
The content of such an artifact below this root element is organized by packages using the element
ARPackage. Packages can be nested. It is important to understand, that the hierarchy defined via
packages and other aggregated elements can (in general) span over several XML files, i.e. over
several artifacts. That means, if an aggregation is "split" between several files, each file is
considered as a separate artifact by the methodology, even if the elements are formally aggregated
within the same package.
All elements derived from meta-class Identifiable can carry documentation and administrative
description based on the element AdminData. Note that ARPackage is itself derived from
Identifiable, so there can be AdminData for the top-level package, for sub-packages and for more
specific elements (derived from Identifiable) as well. The AdminData among other things contain
revision information (including the artifact version) based on the metamodel element DocRevision .

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by General Deliverable 0..*

Produced by Define ASIL For AUTOSAR
Element

1

Produced by Define Admin Data 1

Produced by Allocate Safety Measure 0..* Allocated Elements:

Produced by Allocate Safety
Requirement

0..* Allocated Elements:

Consumed by Define ASIL For AUTOSAR
Element

1

Consumed by Allocate Safety Measure 1..*

Consumed by Allocate Safety
Requirement

1..*

Consumed by Evaluate Variant 1..*

Consumed by Define Safety Measure 0..*

Consumed by Define Safety Requirement 0..*

Use meta model
element

ARPackage 1

Use meta model
element

AUTOSAR 1

Table 3.22: General Autosar Artifact

177 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.1.3.6 General Deliverable

General Deliverable

General Autosar Artifact General Non Autosar Artifact General Documentation

«aggregation»

0..*

«aggregation»

0..*

«aggregation»
0..*

Figure 3.9: General Deliverable

Deliverable General Deliverable
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Products

Brief Description General data for an XML based deliverable within AUTOSAR.

Description General data for an XML based deliverable within AUTOSAR : Especially it contains a catalog of all
included artifacts. These can be AUTOSAR artifacts (see General Autosar Artifact) or
non-AUTOSAR artifacts (see General Non AUTOSAR Artifact).
An AUTOSAR XML artifact which is contained in the catalog may refer to an non AUTOSAR Artifact
whithin the catalog via the metamodel element AutosarEngineeringObject (refer to document ID 202
FO_TPS_GenericStructureTemplate for further description).

Kind Delivered

Relation Type Related Element Mult. Note

Aggregates General Autosar Artifact 0..*

Aggregates General Documentation 0..*

Aggregates General Non Autosar
Artifact

0..*

Table 3.23: General Deliverable

3.1.3.7 General Non-Autosar Artifact

Artifact General Non Autosar Artifact
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Products

Brief Description Describes the data for a non AUTOSAR artifact.

Description Describes the data for a non AUTOSAR artifact.

Kind Custom

Relation Type Related Element Mult. Note

Aggregated by General Deliverable 0..*

Consumed by Provide RTE Calibration
Dataset

1..* input from calibration process

Table 3.24: General Non Autosar Artifact

178 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.1.3.8 Postbuild Variant Set

Artifact Postbuild Variant Set
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Products

Brief Description Set of Postbuild Variant Criterion Values used to define post-build variants of the software.

Description Set of Postbuild Variant Criterion Values used to define post-build variants of the software.
Such a set does not necessarily define a variant which is actually used. To define a meaningful
variant in the production process, such a set is to be used via reference by artifact Predefined
Variant.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software
Components

0..1

Aggregated by ECU Extract of System
Variant Model

0..*

Aggregated by System Description 0..*

Aggregated by VFB System 0..*

In/out Define System Variants 1

In/out Define Integration Variant 0..*

In/out Define VFB Variants 0..*

Consumed by Generate RTE Postbuild
Dataset

1

Consumed by Generate Atomic Software
Component Contract
Header Files

0..1

Consumed by Generate RTE Prebuild
Dataset

0..1

Consumed by Evaluate Variant 0..*

Consumed by Extract ECU System
Variant Model

0..*

Use meta model
element

PostBuildVariantCriterion
ValueSet

1

Table 3.25: Postbuild Variant Set

3.1.3.9 Predefined Variant

Artifact Predefined Variant
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Products

Brief Description Defines a variant predefined for usage in subsequent process steps.

Description Defines one variant of a software description for delivery and/or usage in subsequent process steps.
The actual definition of all settings which make up this variant is given by attached System Constant
Value Set (all settings which are resolved prior to post-build) and/or Postbuid Variant Set (all settings
which are resolved after software build). These sets may be part of the same artifact or may be
separated artifacts. Via these settings, the actual values which make up a particular variant, are
selected.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software
Components

0..*

▽

179 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact Predefined Variant
Aggregated by ECU Extract of System

Variant Model
0..*

Aggregated by System Description 0..*

Aggregated by VFB System 0..*

Produced by Define Integration Variant 1 Meth.bindingTime = SystemDesignTime

Produced by Define System Variants 1

Produced by Define VFB Variants 0..*

Consumed by Generate BSW Module
Prebuild Data Set

1

Consumed by Generate RTE Postbuild
Dataset

1

Consumed by Generate RTE Prebuild
Dataset

1

Consumed by Generate Atomic Software
Component Contract
Header Files

0..1

Consumed by Evaluate Variant 0..*

Consumed by Extract ECU System
Variant Model

0..*

Consumed by Generate Component
Prebuild Data Set

0..*

Use meta model
element

PredefinedVariant 1

Table 3.26: Predefined Variant

3.1.3.10 Standard Header Files

Artifact Standard Header Files
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Products

Brief Description Overall header files to be included by each standardized BSW module, optionally also by Software
Component code.

Description Overall header files to be included by each standardized BSW module, optionally also by Software
Component code. For simplicity of the methodology, these are modeled as one artifact though in
practice these are several different files:
• (<prefixes>_)MemMap.h - defines a common set of macros in order to define abstract memory

sections for code and data in the source code . The prefixes indicates whether the scope is
limited to a component, module or some other source code area (e.g. an ICC2 BSW cluster).
Note that the usage of one MemMap.h for the complete BSW is possible, but deprecated. It is
also possible to use a completely different filename via explicit declaration in the BSW Module
Implementation Description.

• Std_Types.h - defines a common set of C data types for usage within the basic software, this
header includes the following two headers:

• Platform_Types.h - for abstraction of platform specific types

Kind Source Code

Relation Type Related Element Mult. Note

▽

180 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact Standard Header Files
Produced by Generate BSW Memory

Mapping Header
1 BSW_MemMap: The memory mapping header file to be

used for one or more BSW modules in a given build
environment.
The file name has in the standardized case a form like
{Mip}_MemMap.h in which the prefixes {Mip} are
determined by the BSW module (or BSW cluster) name
and optional infixes.
However, it is also possible to create a completely
different filename via explicit declaration in the BSW
Module Implementation.
For more detailed rules on the name of the generated
file refer to document ID 128 CP_SWS_Memory
Mapping.
Meth.bindingTime = CodeGenerationTime

Produced by Generate SWC Memory
Mapping Header

1 SWC_MemMap: One header per software component
type for a given build environment.
The file name follows the pattern {componentType
Name}_MemMap.h in which the prefix componentType
Name is determined by the software component type
name.
For more detailed rules on the name of the generated
file refer to document ID 128 CP_SWS_Memory
Mapping.
Meth.bindingTime = CodeGenerationTime

Consumed by Compile Atomic Software
Component

1 Meth.bindingTime = CodeGenerationTime

Consumed by Compile BSW Core Code 1 Meth.bindingTime = CodeGenerationTime

Consumed by Compile ECU Source Code 1 Meth.bindingTime = CodeGenerationTime

Consumed by Implement a BSW Module 1 Meth.bindingTime = CodeGenerationTime

Consumed by Re-compile Component in
ECU context

1 Meth.bindingTime = CodeGenerationTime

Consumed by Implement Atomic Software
Component

0..1 Meth.bindingTime = CodeGenerationTime

Table 3.27: Standard Header Files

3.1.3.11 System Constant Value Set

Artifact System Constant Value Set

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Products

Brief Description Set of System Constant Values used to handle variants.

Description Set of System Constant Values used to define pre-build variants of the software.
Such a set does not necessarily define a variant which is actually used. To define a meaningful
variant in the production process, such a set is to be used via reference by artifact Predefined
Variant.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software
Components

0..*

Aggregated by ECU Extract of System
Variant Model

0..*

Aggregated by System Description 0..*

▽

181 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact System Constant Value Set

Aggregated by VFB System 0..*

In/out Define System Variants 1

In/out Define Integration Variant 0..*

In/out Define VFB Variants 0..*

Consumed by Generate BSW Module
Prebuild Data Set

1

Consumed by Generate RTE Prebuild
Dataset

1

Consumed by Generate Component
Prebuild Data Set

1..* Meth.bindingTime = CodeGenerationTime

Consumed by Generate Atomic Software
Component Contract
Header Files

0..1 Meth.bindingTime = SystemDesignTime

Consumed by Evaluate Variant 0..*

Consumed by Extract ECU System
Variant Model

0..*

Use meta model
element

SwSystemconstantValue
Set

1

Table 3.28: System Constant Value Set

3.1.4 Roles

Role AUTOSAR Partnership

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Roles

Brief Description The AUTOSAR Partnership development defines standard artifacts.

Description

Relation Type Related Element Mult. Note

Table 3.29: AUTOSAR Partnership

Role Basic Software Designer

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Roles

Brief Description Role responsible for the overall design of the Basic Software.

Description Role responsible for the overall design of the Basic Software. In contrast to the Basic Software
Module Developer he is responsible for the consistency of interfaces and data types between
modules.

Relation Type Related Element Mult. Note

Performs Define BSW Behavior 1

Performs Define BSW Entries 1

Performs Define BSW Interfaces 1

Performs Define BSW Types 1

Performs Create Transformer
Specification

0..1

Performs Define VFB NvBlock
Software Component

0..1

Performs Define Vendor Specific
Module Definition

0..1

Table 3.30: Basic Software Designer

182 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Role Basic Software Module Developer

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Roles

Brief Description Role responsible to develop and deliver a Basic Software Module.

Description

Relation Type Related Element Mult. Note

Performs Compile BSW Core Code 1

Performs Create Library 1

Performs Define BSW Entries 1

Performs Define BSW Interfaces 1

Performs Define BSW Module Timing 1

Performs Define BSW Types 1

Performs Define Memory Addressing
Modes

1

Performs Develop BSW Module
Generator

1

Performs Generate BSW Module
Prebuild Data Set

1

Performs Generate BSWM Contract
Header Files

1

Performs Implement a BSW Module 1

Performs Configure Memmap
Allocation

0..1

Performs Define Vendor Specific
Module Definition

0..1

Performs Generate BSW Memory
Mapping Header

0..1 0..*:

Performs Measure Component
Resources

0..1

Table 3.31: Basic Software Module Developer

Role Calibration Engineer

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Roles

Brief Description The calibration engieer determines the calibration parameters of an ECU.

Description

Relation Type Related Element Mult. Note

Performs Generate A2L 1

Performs Create MC Function Model 0..1

Performs Define VFB Constants 0..1

Performs Provide RTE Calibration
Dataset

0..1

Performs Define VFB Parameter
Component

0..*

Performs Merge CpSoftwareCluster 0..*

Table 3.32: Calibration Engineer

Role Certification Agency

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Roles

Brief Description The certification agency verifies the conformance of artifacts with respect to the standard artifacts
defined by the autosar consortium.

▽

183 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Role Certification Agency

Description

Relation Type Related Element Mult. Note

Table 3.33: Certification Agency

Role ECU Integrator

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Roles

Brief Description Integrates the complete software on an ECU.

Description Integrates the complete software on an ECU, which includes generating necessary code and
completing the configuration of all software components and basic software modules.

Relation Type Related Element Mult. Note

Performs Compile ECU Source Code 1

Performs Configure Com 1

Performs Configure Diagnostics 1

Performs Configure ECUC 1

Performs Configure IO Hardware
abstraction

1

Performs Configure MCAL 1

Performs Configure Mode
Management

1

Performs Configure NvM 1

Performs Configure OS 1

Performs Configure RTE 1

Performs Configure Transformer 1

Performs Configure Watchdog
Manager

1

Performs Connect Service
Component

1

Performs Create Library 1

Performs Create Service Component 1

Performs Define ECU Timing 1

Performs Define Integration Variant 1

Performs Extract the ECU
Communication

1

Performs Generate BSW
Configuration Code

1

Performs Generate BSW Memory
Mapping Header

1

Performs Generate Base Ecu
Configuration

1

Performs Generate ECU Executable 1

Performs Generate Local MC Data
Support

1

Performs Generate OS 1

Performs Generate RTE 1

Performs Generate RTE Postbuild
Dataset

1

▽

184 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Role ECU Integrator

Performs Generate RTE Prebuild
Dataset

1

Performs Generate SWC Memory
Mapping Header

1

Performs Generate Scheduler 1

Performs Generate Updated ECU
Configuration

1

Performs Measure Resources 1

Performs Provide RTE Calibration
Dataset

1

Performs Configure Memmap
Allocation

0..1

Performs Create MC Function Model 0..1

Performs Define VFB NvBlock
Software Component

0..1

Performs Extend Topology 0..1

Performs Extract ECU Rapid
Prototyping Scenario

0..1

Performs Extract ECU System Timing 0..1

Performs Extract ECU System
Variant Model

0..1

Performs Extract ECU Topology 0..1

Performs Flatten Software
Composition

0..1

Performs Generate Component
Header File in Vendor Mode

0..1

Performs Generate or Adjust ECU
Flat Map

0..1

Performs Map Software Component
to BSW

0..1

Performs Measure Component
Resources

0..1

Performs Design CpSoftwareCluster 0..*

Performs Extend CpSoftwareCluster 0..*

Performs Merge CpSoftwareCluster 0..*

Table 3.34: ECU Integrator

Role Software Component Designer

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Roles

Brief Description Designer of software components and VFB systems.

Description

Relation Type Related Element Mult. Note

Performs Add Documentation to the
Software Component

1

Performs Define Atomic Software
Component Internal
Behavior

1

Performs Define Complex Driver
Component

1

▽

185 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Role Software Component Designer

Performs Define Consistency Needs 1

Performs Define VFB Application
Software Component

1

Performs Define VFB Composition
Component

1

Performs Define VFB Timing 1

Performs Define VFB Variants 1

Performs Define Wrapper
Components to Integrate
Legacy Software

1

Performs Map Software Component
to BSW

1

Performs Define Partial Flat Map 0..1

Performs Define VFB Component
Constraints

0..1

Performs Define VFB NvBlock
Software Component

0..1

Performs Define VFB Top Level 0..1

Performs Define ECU Abstraction
Component

0..*

Performs Define VFB Constants 0..*

Performs Define VFB Interfaces 0..*

Performs Define VFB Modes 0..*

Performs Define VFB Sensor or
Actuator Component

0..*

Performs Define VFB Types 0..*

Table 3.35: Software Component Designer

Role Software Component Developer

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Roles

Brief Description Developer of the software component code.

Description

Relation Type Related Element Mult. Note

Performs Define Consistency Needs 1

Performs Define Software
Component Timing

1

Performs Define SymbolProps for
Types

1

Performs Generate Atomic Software
Component Contract
Header Files

1

Performs Generate Component
Header File in Vendor Mode

1

Performs Generate Component
Prebuild Data Set

1

Performs Implement Atomic Software
Component

1

Performs Measure Component
Resources

1

▽

186 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Role Software Component Developer

Performs Add Documentation to the
Software Component

0..1

Performs Compile Atomic Software
Component

0..1

Performs Configure Memmap
Allocation

0..1

Performs Define Atomic Software
Component Internal
Behavior

0..1

Performs Define Memory Addressing
Modes

0..1

Performs Define Partial Flat Map 0..1

Performs Generate SWC Memory
Mapping Header

0..1

Performs Merge CpSoftwareCluster 0..*

Performs Re-compile Component in
ECU context

0..*

Table 3.36: Software Component Developer

Role System Engineer

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Roles

Brief Description Creation, management, developement and integration of systems within the vehicle

Description

Relation Type Related Element Mult. Note

Performs Assign Top Level
Composition

1

Performs Create Transformer
Specification

1

Performs Define Communication
Matrix

1

Performs Define E2E Transformer
Technology

1

Performs Define ECU Description 1

Performs Define Frames 1

Performs Define Network
Management

1

Performs Define PDU Gateway 1

Performs Define RTE Fan-out 1

Performs Define Secured PDUs 1

Performs Define Signal Gateway 1

Performs Define Signal PDUs 1

Performs Define Signal Path
Constraints

1

Performs Define System Timing 1

Performs Define System Topology 1

Performs Define System Variants 1

Performs Define System View
Mapping

1

Performs Define TP 1
▽

187 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Role System Engineer

Performs Define Transformation
Chain

1

Performs Define Transformation
Technology

1

Performs Deploy Software
Component

1

Performs Derive Communication
Needs

1

Performs Extend Composition 1

Performs Extract the ECU
Communication

1

Performs Flatten Software
Composition

1

Performs Generate or Adjust System
Flat Map

1

Performs Select Design Time Variant 1

Performs Select Software Component
Implementation

1

Performs Set System Root 1

Performs Define VFB Component
Constraints

0..1

Performs Define VFB Composition
Component

0..1

Performs Define VFB Constants 0..1

Performs Define VFB Top Level 0..1

Performs Extend Topology 0..1

Performs Extract ECU Rapid
Prototyping Scenario

0..1

Performs Extract ECU System Timing 0..1

Performs Extract ECU System
Variant Model

0..1

Performs Extract ECU Topology 0..1

Performs Generate or Adjust ECU
Flat Map

0..1

Performs Design CpSoftwareCluster 0..*

Table 3.37: System Engineer

Role Non-AUTOSAR System Integrator

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Roles

Brief Description Responsibility for the quality of the description of the non-AUTOSAR system and its integration into
the AUTOSAR process.

Description The non-AUTOSAR System Integrator is responsible for the quality of the Description of the
non-AUTOSAR System, the correct definition of the VFB Integration Connector, and the integration
of the non-AUTOSAR system into the AUTOSAR process via the translation of the non-AUTOSAR
artifacts.

Relation Type Related Element Mult. Note

Performs Define VFB Integration
Connector

1

▽

188 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Role Non-AUTOSAR System Integrator

Performs Translate Non-Autosar
Description to Autosar
Description

1

Table 3.38: Non-AUTOSAR System Integrator

Role Rapid Prototyping Engineer

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Roles

Brief Description

Description

Relation Type Related Element Mult. Note

Performs Define Rapid Prototyping
Scenario

1

Performs Generate Rapid Prototyping
Wrapper

1

Performs Refine Rapid Prototyping
Scenario

1

Performs Compile Atomic Software
Component

0..1

Performs Merge CpSoftwareCluster 0..*

Table 3.39: Rapid Prototyping Engineer

Role Safety Engineer

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Roles

Brief Description

Description Responsibility for the safety relevant steps in the AUTOSAR development process

Relation Type Related Element Mult. Note

Performs Add Independence Relation 1

Performs Allocate Safety Measure 1

Performs Allocate Safety
Requirement

1

Performs Decompose Safety
Requirement

1

Performs Define ASIL For AUTOSAR
Element

1

Performs Define Safety Measure 1

Performs Define Safety Requirement 1

Performs Map Safety Requirement to
Safety Measure

1

Performs Refine Safety Requirement 1

Table 3.40: Safety Engineer

189 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.1.5 Tools

3.1.5.1 Compiler

Tool Compiler

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Guidance

Brief Description

Description

Kind
Relation Type Related Element Mult. Note

Used Compile Atomic Software
Component

1

Used Compile BSW Configuration
Data

1

Used Compile BSW Core Code 1

Used Compile Configured BSW 1

Used Compile ECU Source Code 1

Used Compile Generated BSW 1

Used Compile Unconfigured BSW 1

Used Re-compile Component in
ECU context

1

Table 3.41: Compiler

3.1.5.2 Linker

Tool Linker
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Guidance

Brief Description

Description

Kind
Relation Type Related Element Mult. Note

Used Generate ECU Executable 1

Used Link ECU Code after
Precompile Configuration

1

Used Link ECU Code during Link
Time Configuration

1

Used Link ECU Code during
Post-Build Time

1

Table 3.42: Linker

190 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.1.6 Diagnostics

3.1.6.1 Work Products

Diagnostic Extract

Diagnostic Abstract System
Description

Diagnostic System Extract Diagnostic ECU Extract

Figure 3.10: Diagnostic Extract Deliverables

Deliverable Diagnostic Extract

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Diagnostics::Work
Products

Brief Description

Description Generic deliverable for defining diagnostic information. It is used in different roles (Diagnostic
Extract categories).
In each role, this deliverable may contain variation points in its ARXML artifacts which need to be
bound in later steps. If such variation points are present, the Diagnostic Description may optionally
include PredefinedVariants in order to predefine variants for later selection and an Evaluated Variant
Set.

Kind
Extended By Diagnostic Abstract System Description, Diagnostic ECU Extract, Diagnostic System Extract

Relation Type Related Element Mult. Note

Table 3.43: Diagnostic Extract

Deliverable Diagnostic Abstract System Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Diagnostics::Work
Products

Brief Description

Description This deliverable represents a more or less high-level definition of diagnostic information that can be
taken as a template for creating Diagnostic System Extract or Diagnostic ECU Extract. It
corresponds to an Diagnostic Extract with DiagnosticContributionSet of category DIAGNOSTICS_
ABSTRACT_SYSTEM_DESCRIPTION.

Kind
Extends Diagnostic Extract

Relation Type Related Element Mult. Note

Produced by Develop Diagnostic
Abstract System
Description

1

Develop Diagnostic
Requirements

0..*

Table 3.44: Diagnostic Abstract System Description

191 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Deliverable Diagnostic System Extract

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Diagnostics::Work
Products

Brief Description

Description This deliverable represents concrete diagnostic information for several ECUs. It corresponds to an
Diagnostic Extract with DiagnosticContributionSet of category DIAGNOSTICS_SYSTEM_EXTRACT.

Kind
Extends Diagnostic Extract

Relation Type Related Element Mult. Note

Produced by Develop Application
Software

0..* Diagnostic information relevant to the SW-Cs is
provided as a part of the Diagnostic System Extract and
can contain relationships to the SW-C’s service needs.

Produced by Develop Basic Software 0..*

Produced by Develop Diagnostic
Requirements

0..*

Consumed by Develop Application
Software

0..* The Diagnostic System Extract contains diagnostic
information that serves as a requirement for the
software developer.

Consumed by Develop Basic Software 0..*

Consumed by Develop Diagnostic
Requirements

0..*

Consumed by Integrate Diagnostic
Information

0..*

Table 3.45: Diagnostic System Extract

Deliverable Diagnostic ECU Extract

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Diagnostics::Work
Products

Brief Description

Description This deliverable represents concrete diagnostic information for a single ECUs. It corresponds to an
Diagnostic Extract with DiagnosticContributionSet of category DIAGNOSTICS_ECU_EXTRACT.

Kind
Extends Diagnostic Extract

Relation Type Related Element Mult. Note

Produced by Integrate Diagnostic
Information

1..* complete DE:

Produced by Develop Diagnostic
Requirements

0..*

Consumed by Generate Base Ecu
Configuration

0..1

Consumed by Generate Updated ECU
Configuration

0..1

Consumed by Integrate Software for ECU 0..1 complete DE:

Consumed by Prepare ECU Configuration 0..1

Consumed by Update ECU Configuration 0..1

Consumed by Integrate Diagnostic
Information

0..* partially filled DE:

Table 3.46: Diagnostic ECU Extract

192 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.1.7 Safety

3.1.7.1 Tasks

3.1.7.1.1 Define Safety Requirement

Safety Engineer

Define Safety
Requirement

General Autosar
Artifact

Safety Requirement

«performs»

0..*

«input»
«output»

1

Figure 3.11: Define Safety Requirement

Task Definition Define Safety Requirement

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety::Tasks

Brief Description Add Safety Requirements to work products.

Description This task creates a safety requirement and sets the corresponding attributes such as ASIL. The
allocation to an AUTOSAR element and the mapping to a safety measure are not part of this task.

Relation Type Related Element Mult. Note

Performed by Safety Engineer 1

Consumes General Autosar Artifact 0..*

Produces Safety Requirement 1

Table 3.47: Define Safety Requirement

3.1.7.1.2 Define Safety Measure

Safety Engineer

Define Safety Measure

General Autosar
Artifact

Safety Measure

«output»

10..* «input»

«performs»

Figure 3.12: Define Safety Measure

193 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Define Safety Measure

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety::Tasks

Brief Description Add Safety Measures to work products.

Description This task creates a safety measure and sets the corresponding attributes such as ASIL. The
allocation to an AUTOSAR element and the mapping to a safety requirement are not part of this task.

Relation Type Related Element Mult. Note

Performed by Safety Engineer 1

Consumes General Autosar Artifact 0..*

Produces Safety Measure 1

Table 3.48: Define Safety Measure

3.1.7.1.3 Define ASIL For AUTOSAR Element

General Autosar Artifact

Safety Engineer

Define ASIL For
AUTOSAR Element

«performs»

1

«input»

«output» 1

Figure 3.13: Define ASIL For AUTOSAR Element

Task Definition Define ASIL For AUTOSAR Element
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety::Tasks

Brief Description Provide ASIL attribute for AUTOSAR element.

Description According to the safety extensions, AUTOSAR elements can carry ASIL attributes if they are safety
relevant. This task assigns the ASIL attribute to an AUTOSAR element.
The assignment of the ASIL attribute can also be done for safety requirements and safety
measures. This is covered by the tasks "Define Safety Requirement" and "Define Safety Measure".

Relation Type Related Element Mult. Note

Performed by Safety Engineer 1

Consumes General Autosar Artifact 1

Produces General Autosar Artifact 1

Table 3.49: Define ASIL For AUTOSAR Element

194 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.1.7.1.4 Refine Safety Requirement

Safety Engineer

Refine Safety
Requirement

Safety Requirement

«output»

+Refined Safety Requirement

1..*

+Original Safety Requirement

1«input»

«performs»

Figure 3.14: Refine Safety Requirement

Task Definition Refine Safety Requirement

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety::Tasks

Brief Description Refine existing Safety Requirements by adding more detailed safety requirements and organize
them in an appropriate hierarchy.

Description If safety requirements are not detailed enough to allocate them directly to appropriate AUTOSAR
elements, it is necessary to refine them first. The refinement will add new safety requirements which
are in a hierarchy relation to existing safety requirements.
This task adds the corresponding "REFINEMENT" relation between the original requirement and the
newly created requirements.
This task can be done on different levels, depending on the level of details of the safety
requirements.

Relation Type Related Element Mult. Note

Performed by Safety Engineer 1

Consumes Safety Requirement 1 Original Safety Requirement:

Produces Safety Requirement 1..* Refined Safety Requirement:

Table 3.50: Refine Safety Requirement

3.1.7.1.5 Decompose Safety Requirement

Safety Engineer

Decompose Safety
Requirement

Safety Requirement

+Initial Safety Requirement

1«input»

«performs»

«output»

+Decomposed Safety Requirements

2

Figure 3.15: Decompose Safety Requirement

195 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Decompose Safety Requirement

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety::Tasks

Brief Description Decompose existing Safety Requirements into independent Safety Requirements to tailor the ASIL.

Description By ASIL decomposition it is possible to decompose a safety requirement into two new safety
requirements with potentially lower ASILs. This can be done, if the independence (freedom from
interference) for the resulting requirements can be demonstrated. The modeling of the
corresponding INDEPENDENCE relation is covered by task "Add Independence Relation".
This task adds the corresponding "DECOMPOSITION" reference.

Relation Type Related Element Mult. Note

Performed by Safety Engineer 1

Consumes Safety Requirement 1 Initial Safety Requirement:

Produces Safety Requirement 2 Decomposed Safety Requirements:

Table 3.51: Decompose Safety Requirement

3.1.7.1.6 Allocate Safety Measure

Safety Engineer

Allocate Safety
MeasureGeneral Autosar

Artifact Safety Measure

1..*«input»

«output»

+Allocated Elements

0..*

1

«input»

«output»

+Allocated Safety Measure

0..1

«performs»

Figure 3.16: Allocate Safety Measure

Task Definition Allocate Safety Measure

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety::Tasks

Brief Description Allocate Safety Measure to AUTOSAR elements.

Description Safety measures which are safety mechanisms realized in AUTOSAR are allocated to AUTOSAR
elements in order to describe what elements are involved in the provision of a safety measure. This
task adds the corresponding "ALLOCATION" reference. The reference can be contained by the
AUTOSAR element or by the safety measure.
The allocation can be done on different levels, depending on the granularity of the safety measures
and the availability of the appropriate elements in the model.

Relation Type Related Element Mult. Note

Performed by Safety Engineer 1

Consumes Safety Measure 1

Consumes General Autosar Artifact 1..*

Produces Safety Measure 0..1 Allocated Safety Measure:

Produces General Autosar Artifact 0..* Allocated Elements:

Table 3.52: Allocate Safety Measure

196 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.1.7.1.7 Allocate Safety Requirement

Allocate Safety
Requirement

General Autosar
Artifact

Safety Engineer

Safety Requirement

1..*

«input»

1

«input»

«performs»

«output»

+Allocated Requirement

0..1«output»

+Allocated Elements

0..*

Figure 3.17: Allocate Safety Requirement

Task Definition Allocate Safety Requirement

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety::Tasks

Brief Description Allocate Safety Requirement to AUTOSAR elements.

Description Safety requirements are allocated to AUTOSAR elements in order to fulfill the needs of ISO 26262.
By this allocation, AUTOSAR elements obtain their ASIL attribute (if not defined e.g. during previous
development of the element).
This task adds the corresponding allocation reference to the AUTOSAR element. The reference can
be contained by the AUTOSAR element or by the safety requirement.
The allocation can be done on different levels, depending on the granularity of the safety
requirements and the availability of the appropriate elements in the model.

Relation Type Related Element Mult. Note

Performed by Safety Engineer 1

Consumes Safety Requirement 1

Consumes General Autosar Artifact 1..*

Produces Safety Requirement 0..1 Allocated Requirement:

Produces General Autosar Artifact 0..* Allocated Elements:

Table 3.53: Allocate Safety Requirement

3.1.7.1.8 Map Safety Requirement to Safety Measure

Safety Engineer

Map Safety
Requirement to Safety
MeasureSafety Requirement

Safety Measure

«output»0..1

1«input»

«performs»

«output» 0..1

1 «input»

Figure 3.18: Map Safety Requirement to Safety Measure

197 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Map Safety Requirement to Safety Measure

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety::Tasks

Brief Description Map Safety Requirements to Safety Measures

Description The mapping relates safety requirements with safety measures. This task creates the corresponding
MAPS_TO relation. The mapping relation can either be contained by the safety requirement or by
the safety measure.
The mapping can be done on different levels, depending on the granularity of the safety
requirements and the safety measures.

Relation Type Related Element Mult. Note

Performed by Safety Engineer 1

Consumes Safety Measure 1

Consumes Safety Requirement 1

Produces Safety Measure 0..1

Produces Safety Requirement 0..1

Table 3.54: Map Safety Requirement to Safety Measure

3.1.7.1.9 Add Independence Relation

Add Independence
Relation

Safety Engineer

Safety Requirement

1..*«input»

«output»

+Linked Requirement

1..*

«performs»

Figure 3.19: Add Independence Relation

Task Definition Add Independence Relation

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety::Tasks

Brief Description Add Independence relation to decomposed requirements.

Description This task establishes the INDEPENDENCE relation between requirements. The relation is
established between a decomposed requirement and a requirement which express a means to
achieve freedom from interference for the two requirements into which the decomposed requirement
is decomposed by the task Decompose Safety Requirement.
Obviously, this task is processed in the context of the decomposition of safety requirements.

Relation Type Related Element Mult. Note

Performed by Safety Engineer 1

Consumes Safety Requirement 1..*

Produces Safety Requirement 1..* Linked Requirement:

Table 3.55: Add Independence Relation

198 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.1.7.2 Work Products

3.1.7.2.1 Safety Extensions

Safety Extensions

Safety Requirement

Safety Measure

VFB Safety Extensions Software Component Safety
Extensions

System Safety Extensions

0..*

«aggregation»

0..*

«aggregation»

Figure 3.20: Safety Extensions

Deliverable Safety Extensions

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety::Work
Products

Brief Description Safety Extensions

Description This element represents an abstract deliverable containing all safety relevant artifacts. Several
specializations of this deliverable are used to demonstrate the handling of safety extensions in
specific development activities.
The explicit separation of the safety information from the AUTOSAR models allows an independent
exchange and processing of them.

Kind Delivered

Extended By Software Component Safety Extensions, System Safety Extensions, VFB Safety Extensions

Relation Type Related Element Mult. Note

Aggregates Safety Measure 0..*

Aggregates Safety Requirement 0..*

Table 3.56: Safety Extensions

Deliverable VFB Safety Extensions

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety::Work
Products

Brief Description Vfb Safety Extensions

Description This deliverable contains all safety information related to VFB elements.

Kind Delivered

Extends Safety Extensions

Relation Type Related Element Mult. Note

Produced by Define VFB Safety
Information

1

Consumed by Define Software
Component Safety
Information

1

Consumed by Define System Safety
Information

1

Table 3.57: VFB Safety Extensions

199 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Deliverable Software Component Safety Extensions

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety::Work
Products

Brief Description Software Component Safety Extensions

Description This deliverable contains all safety information related to software components.

Kind Delivered

Extends Safety Extensions

Relation Type Related Element Mult. Note

Produced by Define Software
Component Safety
Information

1

Consumed by Define System Safety
Information

1

Table 3.58: Software Component Safety Extensions

Deliverable System Safety Extensions

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety::Work
Products

Brief Description System Safety Extensions

Description This deliverable contains all safety information related to system elements (see Deliverable "System
Description" for more details).

Kind Delivered

Extends Safety Extensions

Relation Type Related Element Mult. Note

Produced by Define System Safety
Information

1

Table 3.59: System Safety Extensions

3.1.7.2.2 Safety Requirement

Artifact Safety Requirement

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety::Work
Products

Brief Description Safety Requirement

Description This artifact represents a safety requirement and the corresponding ASIL attribute. ISO 26262
defines a hierarchy of safety requirements: safety goals, technical, hardware and software.
Furthermore, it might be the case that safety requirements are specified outside the AUTOSAR
model (external) and are only referenced. Thus, the safety requirement can have one of the
following categories:
• SAFETY_GOAL

• SAFETY_FUNCTIONAL

• SAFETY_TECHNICAL

• SAFETY_SOFTWARE

• SAFETY_HARDWARE

• SAFETY_EXTERNAL

For details refer to ISO 26262-3, 4, 9.

Kind AUTOSAR XML
▽

200 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact Safety Requirement

Relation Type Related Element Mult. Note

Aggregated by Safety Extensions 0..*

Produced by Decompose Safety
Requirement

2 Decomposed Safety Requirements:

Produced by Define Safety Requirement 1

Produced by Add Independence Relation 1..* Linked Requirement:

Produced by Refine Safety Requirement 1..* Refined Safety Requirement:

Produced by Allocate Safety
Requirement

0..1 Allocated Requirement:

Produced by Map Safety Requirement to
Safety Measure

0..1

Consumed by Allocate Safety
Requirement

1

Consumed by Decompose Safety
Requirement

1 Initial Safety Requirement:

Consumed by Map Safety Requirement to
Safety Measure

1

Consumed by Refine Safety Requirement 1 Original Safety Requirement:

Consumed by Add Independence Relation 1..*

Use meta model
element

StructuredReq 1

Table 3.60: Safety Requirement

3.1.7.2.3 Safety Measure

Artifact Safety Measure

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety::Work
Products

Brief Description Safety Measure

Description This artifact represents a safety measure. A safety measure is an activity or solution to avoid
systematic failures and to detect random hardware failures or control failures (see ISO 26262).
The safety measure can have one of the following categories:
• SAFETY_MEASURE

• SAFETY_MECHANISM

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Safety Extensions 0..*

Produced by Define Safety Measure 1

Produced by Allocate Safety Measure 0..1 Allocated Safety Measure:

Produced by Map Safety Requirement to
Safety Measure

0..1

Consumed by Allocate Safety Measure 1

Consumed by Map Safety Requirement to
Safety Measure

1

▽

201 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact Safety Measure

Use meta model
element

TraceableText 1

Table 3.61: Safety Measure

3.2 Virtual Functional Bus

This chapter contains the definition of work products and tasks used for the develop-
ment of a VFB system. For the definition of the relevant meta-model elements refer
to [5, CP TPS Software Component Template], for the VFB concepts refer to [4, CP TR
VFB].

3.2.1 Tasks

3.2.1.1 Define VFB Top Level

Define VFB Top Level

VFB Composition
Component

VFB Atomic
Software
Component

VFB Non
AUTOSAR
Component

Software
Component
Designer

System Engineer

VFB
Parameter
Component

VFB Top Level
System Composition

0..*

«input»

0..1

«performs»
0..*

«input»

«output»

10..*

«input»

0..*

«input»

0..1

«performs»

Figure 3.21: Task Define VFB Top Level

Task Definition Define VFB Top Level

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define the top level VFB composition of a concrete system.

Description Define the top level composition of a VFB system.

Relation Type Related Element Mult. Note

Performed by Software Component
Designer

0..1

Performed by System Engineer 0..1

Consumes VFB Interfaces 1..*

Consumes VFB Types 1..*

Consumes VFB Atomic Software
Component

0..*

▽

202 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Define VFB Top Level

Consumes VFB Composition
Component

0..*

Consumes VFB Modes 0..*

Consumes VFB Non AUTOSAR
Component

0..*

Consumes VFB Parameter Component 0..*

Produces VFB Top Level System
Composition

1

Table 3.62: Define VFB Top Level

3.2.1.2 Define VFB Composition Component

Define VFB
Composition
Component

Software Component
Designer

System Engineer

VFB Composition
Component

VFB Interfaces

VFB AUTOSAR
Standard Package

VFB Types

VFB Atomic
Software
Component

VFB Modes VFB Non
AUTOSAR
Component

VFB Parameter
Component

«output»

1

1..*

«input»

0..*

«input»

0..1

«performs»

1

«performs»

0..*

«input»

0..*

«input»

0..1

«input»

1..*

«input»

0..*

«input»

0..*

«input»

Figure 3.22: Task Define VFB Composition Component

Task Definition Define VFB Composition Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define a Composition of VFB Software Components, i.e. a ComponentTypes which contains other
Component Types.

▽

203 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Define VFB Composition Component

Description Define a Composition of VFB Software Components, i.e. a ComponentType which contains other
Component Types. Iteration of this task can create a complete VFB system without the Atomic
Software Components itself.

Relation Type Related Element Mult. Note

Performed by Software Component
Designer

1

Performed by System Engineer 0..1

Consumes VFB Interfaces 1..*

Consumes VFB Types 1..*

Consumes VFB AUTOSAR Standard
Package

0..1 Use port blueprints in order to create ports with
standardized application interfaces.

Consumes VFB Atomic Software
Component

0..*

Consumes VFB Composition
Component

0..*

Consumes VFB Modes 0..*

Consumes VFB Non AUTOSAR
Component

0..*

Consumes VFB Parameter Component 0..*

Produces VFB Composition
Component

1

Table 3.63: Define VFB Composition Component

204 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.2.1.3 Extend Composition

Extend Composition

System Engineer

VFB System

VFB Composition
Component

VFB Atomic
Software
Component

VFB Parameter
Component

VFB Interfaces VFB Modes

VFB Software
Component Mapping
Constraints

VFB Types

VFB Non AUTOSAR
Component

«output»

0..*

«output»

0..*

«output»

0..*

«output»

0..*

«output»

0..*

1

«performs»

«output»

0..*

«output»
0..*

«output»

+extended system

1

«output»

0..*

+initial system

1 «input»

Figure 3.23: Task Extend Composition

Task Definition Extend Composition

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Extend a software composistion with further compositions and atomic software components.

Description This tasks describes the refinement of a delivered VFB System by extending an existing composition
with further sub-elements, which could be software components (Atomic Software Components as
well as Compositions), connectors or port groups, plus the related interfaces, data types and modes.
The main use case is the refinement of the VFB description of a sub-system: New elements are
added but the original delivery is not changed.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes VFB System 1 initial system:

Produces VFB System 1 extended system:

Produces VFB Atomic Software
Component

0..*

Produces VFB Composition
Component

0..*

Produces VFB Interfaces 0..*

Produces VFB Modes 0..*
▽

205 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Extend Composition

Produces VFB Non AUTOSAR
Component

0..*

Produces VFB Parameter Component 0..*

Produces VFB Software Component
Mapping Constraints

0..*

Produces VFB Types 0..*

Table 3.64: Extend Composition

3.2.1.4 Define VFB Component Constraints

Define VFB
Component
Constraints

Software
Component
Designer

VFB Software Component
Mapping Constraints

VFB Composition
Component

VFB Top Level
System Composition

VFB Atomic
Software
Component

System Engineer0..1

«performs»

1

«input»

1..*

«input»

0..1

«performs»

«output» 1..*

2..*

«input»

Figure 3.24: Task Define VFB Component Constraints

206 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Define VFB Component Constraints

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define which components need to be deployed together, and which need to be deployed separately.

Description In this task constraints for software components are defined. These constraints can on the one hand
describe which SW-Cs should be mapped together to a single ECU, and which must be mapped to
separate ECUs, without regard to any particular ECU or topology. This can be done by using the
meta-model ComponentClustering and ComponentSeparation constraint.
In fact, before the mapping process begins, it can be useful to impose the allocation of a predefined
set of SW components onto the same ECU, especially if such a set is tightly linked from a functional
point of view. In the same way, two critical SW components, performing some kind of redundancy,
may be not suitable to run both on the same ECU. Thus, we call these two kinds of mapping
constraints, respectively, ComponentClustering and ComponentSeparation. The Component
Clustering constraint (also, clustering) is to be used for expressing that a certain set of SW
components (atomic or not) shall be mapped (allocated) onto the same ECU. This is some kind of
"execute together on same ECU" constraint. The ComponentSeparation constraint (also, separation)
is to be used for expressing that two SW components (atomic or not) shall not be mapped (allocated)
onto the same ECU. This is some kind of "do not execute together on same ECU" constraint.

Relation Type Related Element Mult. Note

Performed by Software Component
Designer

0..1

Performed by System Engineer 0..1

Consumes VFB Atomic Software
Component

2..*

Consumes VFB Top Level System
Composition

1

Consumes VFB Composition
Component

1..*

Produces VFB Software Component
Mapping Constraints

1..*

Table 3.65: Define VFB Component Constraints

3.2.1.5 Define VFB Application Software Component

Define VFB Application Software
Component

VFB AUTOSAR
Standard Package

VFB Interfaces

VFB Types

VFB Modes

VFB Atomic Application
Software Component

Software Component Designer

1..*

«input»

«output» 1

0..*

«input»

«performs»

1..* «input»

0..1

«input»

Figure 3.25: Task Define VFB Application Software Component

207 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Define VFB Application Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define an ApplicationSoftwareComponentType on VFB level

Description Define an ApplicationSwComponentType on VFB level. (i.e. without Internal Behavior and
Implementation).

Relation Type Related Element Mult. Note

Performed by Software Component
Designer

1

Consumes VFB Interfaces 1..*

Consumes VFB Types 1..*

Consumes VFB AUTOSAR Standard
Package

0..1 Use port blueprints in order to create ports with
standardized application interfaces.

Consumes VFB Modes 0..*

Produces VFB Atomic Application
Software Component

1

Table 3.66: Define VFB Application Software Component

3.2.1.6 Define VFB Sensor or Actuator Component

Define VFB Sensor or
Actuator Component

Software Component
Designer

VFB AUTOSAR
Standard Package

VFB Types

ECU Resources Description

VFB Sensor Actuator
Component

VFB Interfaces

1..* «input»

0..1

«input»

0..*

«input»

1..*

«input»

«output» 1

0..*

«performs»

Figure 3.26: Task Define VFB Sensor or Actuator Component

Task Definition Define VFB Sensor or Actuator Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define a VFB Sensor or Actuator Comnponent.

Description Define a SensorActuatorSwComponentType on VFB level. (i.e. without Internal Behavior and
Implementation). In addition to defining the ports, references to the required sensor/actuator
hardrware shall be specified.

Relation Type Related Element Mult. Note

▽

208 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Define VFB Sensor or Actuator Component

Performed by Software Component
Designer

0..*

Consumes VFB Interfaces 1..*

Consumes VFB Types 1..*

Consumes VFB AUTOSAR Standard
Package

0..1 Use port blueprints in order to create ports with
standardized application interfaces.

Consumes ECU Resources Description 0..*

Produces VFB Sensor Actuator
Component

1

Table 3.67: Define VFB Sensor or Actuator Component

3.2.1.7 Define VFB Parameter Component

Define VFB Parameter Component

Calibration Engineer

VFB Parameter Component

VFB Interfaces

VFB
AUTOSAR
Standard
Package

VFB Types

1..*

«input»

«output» 1

0..*

«performs»

0..1

«input»

1..* «input»

Figure 3.27: Task Define VFB Parameter Component

Task Definition Define VFB Parameter Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define a VFB Parameter Component.

Description Define a VFB Parameter Component.

Relation Type Related Element Mult. Note

Performed by Calibration Engineer 0..*

Consumes VFB Interfaces 1..*

Consumes VFB Types 1..*

Consumes VFB AUTOSAR Standard
Package

0..1 Use port blueprints in order to create ports with
standardized application interfaces.

Produces VFB Parameter Component 1

Table 3.68: Define VFB Parameter Component

209 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.2.1.8 Define ECU Abstraction Component

Define ECU Abstraction
Component

Software Component Designer

VFB
AUTOSAR
Standard
Package

VFB Interfaces

VFB Types

VFB Modes ECU Resources Description

ECU Abstraction Software
Component

0..1

«input»

«input»

«input»

«input»

0..*

«performs»

«output» 1

0..*

«input»

Figure 3.28: Task Define ECU Abstraction Component

Task Definition Define ECU Abstraction Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define an EcuAbstractionSoftwareComponentType on VFB level.

Description Define a EcuAbstractionSwComponentType on VFB level. (i.e. without Internal Behavior and
Implementation). In addition to the defining the ports, references to required ECU or processor
hardware elements shall be specified.

Relation Type Related Element Mult. Note

Performed by Software Component
Designer

0..*

Consumes VFB AUTOSAR Standard
Package

1 Use port blueprints in order to create ports with
standardized application interfaces.

Consumes VFB Interfaces 1

Consumes VFB Types 1

Consumes ECU Resources Description 0..1

Consumes VFB Modes 0..*

Produces ECU Abstraction Software
Component

1

Table 3.69: Define ECU Abstraction Component

210 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.2.1.9 Define Complex Driver Component

Define Complex Driver
Component

Software Component Designer

VFB AUTOSAR
Standard
Package

VFB Interfaces

VFB Types

VFB Modes ECU Resources Description

Complex Driver Component

0..1

«input»
«performs»

1..* «input»

0..*

«input»

«output» 1

1..*

«input»

0..*

«input»

Figure 3.29: Task Define Complex Driver Component

Task Definition Define Complex Driver Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define a ComplexDeviceDriverSwComponentType on VFB level.

Description Define a ComplexDeviceDriverSwComponentType on VFB level. (i.e. without Internal Behavior and
Implementation). In addition to the defining the ports, references to the required ECU or processor
hardware elements shall be specified.

Relation Type Related Element Mult. Note

Performed by Software Component
Designer

1

Consumes VFB Interfaces 1..*

Consumes VFB Types 1..*

Consumes VFB AUTOSAR Standard
Package

0..1 Use port blueprints in order to create ports with
standardized application interfaces.

Consumes ECU Resources Description 0..*

Consumes VFB Modes 0..*

Produces Complex Driver Component 1

Table 3.70: Define Complex Driver Component

211 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.2.1.10 Define VFB NvBlock Software Component

Define VFB NvBlock
Software Component

ECU IntegratorBasic
Software
Designer

Software
Component
Designer

VFB AUTOSAR
Standard
Package

VFB Interfaces

VFB Types

VFB Modes Software Component Internal
Behavior

VFB NvBlock
Software
Component

0..1

«performs»

1..*

«input»
«output»

1

0..1

«performs»

0..1

«performs»

0..*

«input»

1..*

«input»

0..*

«input»

0..1

«input»

Figure 3.30: Task Define VFB NvBlock Software Component

Task Definition Define VFB NvBlock Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description

Description Define an NvBlockSwComponentType on VFB level. The NvBlockSwComponentType defines non
volatile data which can be shared between SwComponentPrototypes. The non volatile data of the
NvBlockSwComponentType are accessible via provided and required ports.

Relation Type Related Element Mult. Note

Performed by Basic Software Designer 0..1

Performed by ECU Integrator 0..1

Performed by Software Component
Designer

0..1

Consumes VFB Interfaces 1..*

Consumes VFB Types 1..*

Consumes VFB AUTOSAR Standard
Package

0..1

Consumes Software Component
Internal Behavior

0..* This input is required to collect the requirements for the
NvBlockNeeds from the using application software.

Consumes VFB Modes 0..*

Produces VFB NvBlock Software
Component

1

Table 3.71: Define VFB NvBlock Software Component

212 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.2.1.11 Define Wrapper Components to Integrate Legacy Software

Define Wrapper Components to
Integrate Legacy Software

Software Component
Designer

VFB AUTOSAR
Standard
Package

VFB Modes

VFB Types

VFB Non AUTOSAR
Component

VFB Interfaces

0..*

«input»

«output» 1

0..*

«input»

0..1

«input»

0..* «input»

«performs»

Figure 3.31: Task Define Wrapper Components to Integrate Legacy Software

Task Definition Define Wrapper Components to Integrate Legacy Software

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define a wrapper component used to represent legacy software that is integrated into an AUTOSAR
system.

Description Define a wrapper component used to represent legacy software that is integrated into an AUTOSAR
system. For the VFB system, this mainly means to define the corresponding port interfaces and data
elements.

Relation Type Related Element Mult. Note

Performed by Software Component
Designer

1

Consumes VFB AUTOSAR Standard
Package

0..1 Use port blueprints in order to create ports with
standardized application interfaces.

Consumes VFB Interfaces 0..*

Consumes VFB Modes 0..*

Consumes VFB Types 0..*

Produces VFB Non AUTOSAR
Component

1

Table 3.72: Define Wrapper Components to Integrate Legacy Software

213 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.2.1.12 Define VFB Interfaces

Define VFB Interfaces

Software Component
Designer

VFB AUTOSAR
Standard Package

VFB InterfacesVFB Types

0..1

«input»
0..*

«performs»

1..* «input» «output» 1..*

Figure 3.32: Task Define VFB Interfaces

Task Definition Define VFB Interfaces
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define a set of Port Interface required by a system.

Description Define a set of Port Interfaces required by a VFB system, to describe the communication of data via
SWC ports.

Relation Type Related Element Mult. Note

Performed by Software Component
Designer

0..*

Consumes VFB Types 1..*

Consumes VFB AUTOSAR Standard
Package

0..1 Use standardized Port Interfaces as blueprints (as far as
applicable) to create the corresponding elements of the
actual project.

Produces VFB Interfaces 1..*

Table 3.73: Define VFB Interfaces

214 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.2.1.13 Define VFB Types

Software Component Designer

VFB AUTOSAR
Standard Package

Define VFB Types

VFB Types

VFB Data Type
Mapping Set

«output»

1..*

0..1 «input»

0..*

«performs»

«output»

0..*

Figure 3.33: Task Define VFB Types

Task Definition Define VFB Types

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define a set of data types required by a system, but not already defined by AUTOSAR.

Description Define a set of Autosar Data Types and related elements as far as visible on the VFB. Standardized
types can be used as input in order to copy and refine them.
The VFB Types will be used for specifying types of DataElements in Sender-Receiver PortInterfaces
and argument/return values of Client-Server PortInterfaces.
This task inludes (optionally) also the creation of a VFB Data Type mapping Set between application
and implementation data types.

Relation Type Related Element Mult. Note

Performed by Software Component
Designer

0..*

Consumes VFB AUTOSAR Standard
Package

0..1 Use standardized elements (e.g. Data Types, Compu
Methods) as blueprints (as far as applicable) to create
the corresponding elements of the actual project.

Produces VFB Types 1..*

Produces VFB Data Type Mapping
Set

0..*

Table 3.74: Define VFB Types

215 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.2.1.14 Define VFB Modes

Define VFB Modes

VFB Modes

Software Component Designer

«output» 1..*

0..*

«performs»

Figure 3.34: Task Define VFB Modes

Task Definition Define VFB Modes
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define modes that are used by the VFB components.

Description Define modes (mode groups and the modes they contain) that are used by the VFB components.

Relation Type Related Element Mult. Note

Performed by Software Component
Designer

0..*

Produces VFB Modes 1..*

Table 3.75: Define VFB Modes

3.2.1.15 Define VFB Constants

Define VFB Constants

VFB Constants

VFB Data Type
Mapping Set

VFB Types

Software Component Designer

Calibration Engineer System Engineer

«output» 1..*

0..*

«input»

0..*

«performs»

0..1
«performs»

0..1

«performs»

0..*

«input»

Figure 3.35: Task Define VFB Constants

216 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Define VFB Constants
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define one or more VFB Constants.

Description Define one or more VFB Constants as standalone artifact. Such constants can be referred in the
specification of inital values at several places in the VFB descrption, such as port interfaces or
declaration of local parameters or variables.

Relation Type Related Element Mult. Note

Performed by Calibration Engineer 0..1

Performed by System Engineer 0..1

Performed by Software Component
Designer

0..*

Consumes VFB Data Type Mapping
Set

0..*

Consumes VFB Types 0..*

Produces VFB Constants 1..*

Table 3.76: Define VFB Constants

3.2.1.16 Define VFB Timing

Define VFB Timing

Software Component DesignerVFB Interfaces

VFB AUTOSAR
Standard Package

VFB Atomic
Software
Component

VFB Non
AUTOSAR
Component

VFB Composition Component VFB Timing

VFB Parameter
Component

1..* «input»

0..*

«input»

0..1

«input»

0..*

«input»

«output» 1

0..*

«input»

«performs»

1..*

«input»

Figure 3.36: Task Define VFB Timing

Task Definition Define VFB Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define VFB Timing (TimingDescription and TimingConstraints) for an Atomic Software Component
or a Composition Component

Description Define VFB Timing (TimingDescription and TimingConstraints) for an Atomic Software Component
or a Composition Component

Relation Type Related Element Mult. Note

Performed by Software Component
Designer

1

▽

217 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Define VFB Timing

Consumes VFB Composition
Component

1..*

Consumes VFB Interfaces 1..*

Consumes VFB AUTOSAR Standard
Package

0..1

Consumes VFB Atomic Software
Component

0..*

Consumes VFB Non AUTOSAR
Component

0..*

Consumes VFB Parameter Component 0..*

Produces VFB Timing 1

Table 3.77: Define VFB Timing

3.2.1.17 Define VFB Variants

Define VFB Variants

System Constant Value Set

Predefined VariantEvaluated Variant Set

Postbuild Variant Set

VFB Top Level
System
Composition

VFB
Composition
Component

VFB Atomic
Software
Component

VFB Interfaces

VFB Non AUTOSAR
Component

VFB Timing

Software
Component
Designer

VFB Parameter Component

1
«input»

«output»

0..*

0..*

«input»

«inoutput» 0..*

1..*

«input»

«output»

0..*

0..*

«input»

0..1

«input»

«inoutput»

0..*

«performs»

0..*

«input»

0..*

«input»

Figure 3.37: Task Define VFB Variants

Task Definition Define VFB Variants
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define variants for the artifacts of a VFB system.

Description Define one or more variants for the artifacts of a VFB system. Defining one variant means creating a
Predefined Variant related to the settings used by the VFB elements in scope. To do so, this task can
make use of existing System Constant Value Sets and/or Postbuid Variant Sets or define new ones.
Several Predefined Variants can be combined to one Evaluated Variant Set.

Relation Type Related Element Mult. Note

Performed by Software Component
Designer

1

▽

218 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Define VFB Variants
Consumes VFB Top Level System

Composition
1

Consumes VFB Composition
Component

1..*

Consumes VFB Timing 0..1

Consumes VFB Atomic Software
Component

0..*

Consumes VFB Interfaces 0..*

Consumes VFB Non AUTOSAR
Component

0..*

Consumes VFB Parameter Component 0..*

In/out Postbuild Variant Set 0..*

In/out System Constant Value Set 0..*

Produces Evaluated Variant Set 0..*

Produces Predefined Variant 0..*

Table 3.78: Define VFB Variants

3.2.1.18 Define VFB Integration Connector

Non-AUTOSAR
System Integrator

Define VFB Integration
Connector

VFB System

Description of a Non-
AUTOSAR System

Integration
Connector

«output»

1

1

«performs»

1

«input»

1

«input»

Figure 3.38: Task Define VFB Integration Connector

Task Definition Define VFB Integration Connector

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define how the non-AUTOSAR system shall be connected to the AUTOSAR system.

Description The VFB Integration Connector is used to represent the connection of the non-AUTOSAR system
and the AUTOSAR system. Its contents and format depend on the way in which the non-AUTOSAR
system is defined.
To define the VFB Integration Connector the requirements on the connection are brought into the
format of the Integration Connector. When the requirements are defined in a proprietary format the
have to be translated to the format of the Integration Connector. When they are only informally
defined or are even more tangible the format of the Integration Connector can be used to elicit,
formalize, and analyze the connection requirements.

▽

219 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Define VFB Integration Connector

Relation Type Related Element Mult. Note

Performed by Non-AUTOSAR System
Integrator

1

Consumes Description of a
Non-AUTOSAR System

1

Consumes VFB System 1

Produces Integration Connector 1

Predecessor Translate Non-Autosar
Description to Autosar
Description

1

Table 3.79: Define VFB Integration Connector

3.2.1.19 Translate Non-AUTOSAR Description to AUTOSAR Description

Translate Non-Autosar
Description to Autosar
Description

Non-AUTOSAR
System Integrator

Integration
Connector

Description of a
Non-AUTOSAR
System

VFB System

1

«performs»

1

«input»

+Initial VFB System

1

«input»

«output» +Integrated VFB System

1

1 «input»

Figure 3.39: Task Translate Non-AUTOSAR Description to AUTOSAR Descrip-
tion

Task Definition Translate Non-Autosar Description to Autosar Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Translate the description of the non-AUTOSAR system into a semantically equivalent AUTOSAR
description (template).

Description In order to incorporate the development of the non-AUTOSAR system into the AUTOSAR process
the Description of the non-AUTOSAR system must be translated into an AUTOSAR format. Typically
this will be achieved by a translation tool, although in principle it might also be done manually.

Relation Type Related Element Mult. Note

Performed by Non-AUTOSAR System
Integrator

1

Consumes Description of a
Non-AUTOSAR System

1

Consumes Integration Connector 1

▽

220 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Translate Non-Autosar Description to Autosar Description

Consumes VFB System 1 Initial VFB System:

Produces VFB System 1 Integrated VFB System:

Table 3.80: Translate Non-Autosar Description to Autosar Description

3.2.2 Work Products

3.2.2.1 VFB System

VFB System

Overall VFB
System

VFB System
Extract

ECU Extract of
VFB System

VFB Top Level
System Composition

VFB Composition
Component

��� �������� 	
�����

��
������

��������
����

System View
Mapping

0..1

«aggregation»

0..1

«aggregation»

0..*

«aggregation»

«extends»

0..*

«aggregation»

«extends»

1

«aggregation»

«extends»

Figure 3.40: Overview on the different roles of Deliverables based on VFB System

221 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

VFB System

System Constant Value Set

Predefined Variant

Evaluated Variant Set

Postbuild Variant Set

VFB Top Level

System Composition

VFB Interfaces VFB Data Type Mapping SetVFB Modes VFB Types

VFB Atomic

Application

Software

Component

Complex Driver

Component

VFB Sensor

Actuator

Component

ECU Abstraction

Software

Component

VFB Parameter

Component

VFB Non AUTOSAR

Component

VFB Software Component

Mapping Constraints

Consistency Needs

VFB NvBlock

Software

Component

1

«aggregation»

0..*

«aggregation»

0..*
«aggregation»

0..*

«aggregation»

0..*
«aggregation»

0..*

«aggregation»

0..*

«aggregation»

0..*

«aggregation»
0..*

«aggregation»

0..*

«aggregation»

0..*

«aggregation»

0..*
«aggregation»

«aggregation»

0..*

«aggregation»

0..*

«aggregation»

0..*

«aggregation»

0..*

«aggregation»

0..*

«aggregation»

Figure 3.41: Structure of Deliverable VFB System

Deliverable VFB System

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Complete VFB view of a concrete system.

Description Delivery of a VFB view of a concrete system. i.e. the top level composition and all nested
compositions and components. This element is the basis for several extensions according to the
scope of the VFB which can be an Overall System, a System Extract or an ECU Extract.
This deliverable may contain variation points in its XML artifacts which need to be bound in later
steps of the methodology. If such variation points are present, the delivered VFB system may
optionally include PredefinedVariants in order to predefine variants for later selection and an
Evaluated Variant Set.

Kind Delivered

Extended By ECU Extract of VFB System, Overall VFB System, VFB System Extract

Relation Type Related Element Mult. Note

Aggregates Consistency Needs 1 Correlation between a group of RunnableEntitys and a
group of DataPrototypes.

Aggregates VFB Top Level System
Composition

1

▽

222 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Deliverable VFB System

Aggregates Complex Driver Component 0..*

Aggregates ECU Abstraction Software
Component

0..*

Aggregates Evaluated Variant Set 0..*

Aggregates Postbuild Variant Set 0..*

Aggregates Predefined Variant 0..*

Aggregates System Constant Value Set 0..*

Aggregates VFB Atomic Application
Software Component

0..*

Aggregates VFB Data Type Mapping
Set

0..*

Aggregates VFB Interfaces 0..*

Aggregates VFB Modes 0..*

Aggregates VFB Non AUTOSAR
Component

0..*

Aggregates VFB NvBlock Software
Component

0..*

Aggregates VFB Parameter Component 0..*

Aggregates VFB Sensor Actuator
Component

0..*

Aggregates VFB Software Component
Mapping Constraints

0..*

Aggregates VFB Types 0..*

Produced by Extend Composition 1 extended system:

Produced by Translate Non-Autosar
Description to Autosar
Description

1 Integrated VFB System:

Consumed by Define Partial Flat Map 1 Various parts of a given VFB system will be used as
input:
• Refer to parameters and variables in port interfaces

and their data types.

• In order to define unique names, also other the
component definitions not in the scope of the partial
flat map might be checked.

• Set a link to the context of the Flat Map, e.g. a VFB
Composition.

Consumed by Define VFB Integration
Connector

1

Consumed by Define VFB Safety
Information

1

Consumed by Extend Composition 1 initial system:

Consumed by Extract the ECU
Communication

1 Need as input in order to set up the Data Mapping.

Consumed by Generate or Adjust System
Flat Map

1

Consumed by Translate Non-Autosar
Description to Autosar
Description

1 Initial VFB System:

Table 3.81: VFB System

223 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.2.2.2 Overall VFB System

Deliverable Overall VFB System

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description

Description Deliverable containing an overall VFB description. It must contain the VFB Top Level System
Composition of the complete system.

Kind Delivered

Extends VFB System

Relation Type Related Element Mult. Note

Aggregated by Abstract System
Description

1

Aggregated by System Configuration
Description

1

Aggregated by System Constraint
Description

0..1

Aggregates System View Mapping 0..1 The Overall VFB System aggregates a potential
mapping to the abstract or functional view of the system.

Aggregates VFB Composition
Component

0..* Further compositions below the top level composition.

Produced by Develop a VFB System
Description

1

Consumed by Define Software
Component Safety
Information

1

Consumed by Develop Application
Software

1 The application software needs to refer to the relevant
elements of the overall VFB system such as Software
Component Types, Port Interfaces and Data Types.

Consumed by Develop System 0..1 Usually the System refers to elements of an overall VFB
descriptions. But for the description of a legacy system,
this input might be empty.

Consumed by Flatten Software
Composition

0..1 Read relevant elements starting from VFB Top Level
System Composition in case transformation starts with
the full system.

Consumed by Generate or Adjust ECU
Flat Map

0..1 Used to set the upstream references in case one starts
from a complete system.

Table 3.82: Overall VFB System

3.2.2.3 VFB System Extract

Deliverable VFB System Extract

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description The VFB description for the partial system.

Description The VFB description for a sub-system. It contains only those software components which belong to
this sub-system. It should contain a VFB Top Level System Composition which has unconnected
ports reflecting the connection points to the outer system.

Kind Delivered

Extends VFB System

Relation Type Related Element Mult. Note

▽

224 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Deliverable VFB System Extract

Aggregated by System Extract 1

Aggregates System View Mapping 0..1 The VFB System Extract aggregates a potential
mapping to the abstract or functional view of the system.

Aggregates VFB Composition
Component

0..* Further compositions below the top level composition.

Consumed by Flatten Software
Composition

0..1 Read relevant elements starting from VFB Top Level
System Composition in case transformation starts from
the system extract.

Consumed by Generate or Adjust ECU
Flat Map

0..1 Used to set the upstream references in case one starts
from a system extract.

Table 3.83: VFB System Extract

3.2.2.4 VFB Top Level System Composition

Artifact VFB Top Level System Composition

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Highest Level Composition consisting of all components that make up the Virtual Functional Bus.

Description Highest Level Composition consisting of all components and their connectors that make up the VFB
System Deliverable.
This composition is not allowed to have ports if it represents the top level composition of an Overall
VFB System, but it may have unconnected ports (and port groups) if it is at the top of a System
Extract or ECU Extract.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by VFB System 1

Produced by Define VFB Top Level 1

Consumed by Assign Top Level
Composition

1

Consumed by Define VFB Component
Constraints

1

Consumed by Define VFB Variants 1

Consumed by Deploy Software
Component

1

Use meta model
element

CompositionSwComponent
Type

1

Table 3.84: VFB Top Level System Composition

225 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.2.2.5 VFB Composition Component

Artifact VFB Composition Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Describes a set of VFB CompositionTypes.

Description Describes a set of CompositionComponentTypes, which may be nested. A VFB composition
aggregates component types to encapsulate and abstract subsystem functionality. Compositions
contain instances of components (other compositions and atomic components), as well as the
connectors between them.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software
Components

0..* In case the delivered atomic components make up one
or more VFB Compositions, the composition
description(s) shall be included in the delivery.

Aggregated by Overall VFB System 0..* Further compositions below the top level composition.

Aggregated by VFB System Extract 0..* Further compositions below the top level composition.

Produced by Define VFB Composition
Component

1

Produced by Extend Composition 0..*

Consumed by Set System Root 1 Only the reference to the artifact is needed

Consumed by Define VFB Component
Constraints

1..*

Consumed by Define VFB Timing 1..*

Consumed by Define VFB Variants 1..*

Consumed by Define VFB Composition
Component

0..*

Consumed by Define VFB Top Level 0..*

Use meta model
element

CompositionSwComponent
Type

1

Use meta model
element

SwComponentType 1

Table 3.85: VFB Composition Component

3.2.2.6 VFB AUTOSAR Standard Package

VFB AUTOSAR
Standard Package

AUTOSAR Specification of
Application Interfaces

AUTOSAR
Standard Types
and Blueprints

AUTOSAR
Platform Types
and Blueprints

1

«aggregation»

1

«aggregation»

1

«aggregation»

Figure 3.42: Structure of Deliverable VFB AUTOSAR Standard Package

226 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Deliverable VFB AUTOSAR Standard Package

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Package with standardized AUTOSAR DataTypes, PortInterfaces, ComponentTypes (may include
compositions), etc. on VFB level.

Description Contains the standardized AUTOSAR blueprints needed on VFB level. This deliverable is released
by AUTOSAR and is read only within the methodology.

Kind Delivered

Relation Type Related Element Mult. Note

Aggregates AUTOSAR Platform Types
and Blueprints

1

Aggregates AUTOSAR Specification of
Application Interfaces

1

Aggregates AUTOSAR Standard Types
and Blueprints

1

Consumed by Define ECU Abstraction
Component

1 Use port blueprints in order to create ports with
standardized application interfaces.

Consumed by Develop a VFB System
Description

1..*

Consumed by Develop an Abstract
System Description

1..*

Consumed by Define Atomic Software
Component Internal
Behavior

0..1 Use standardized elements (e.g. Data Types) as
blueprints (as far as applicable) to create the
corresponding elements of the actual project.

Consumed by Define Complex Driver
Component

0..1 Use port blueprints in order to create ports with
standardized application interfaces.

Consumed by Define VFB Application
Software Component

0..1 Use port blueprints in order to create ports with
standardized application interfaces.

Consumed by Define VFB Composition
Component

0..1 Use port blueprints in order to create ports with
standardized application interfaces.

Consumed by Define VFB Interfaces 0..1 Use standardized Port Interfaces as blueprints (as far as
applicable) to create the corresponding elements of the
actual project.

Consumed by Define VFB NvBlock
Software Component

0..1

Consumed by Define VFB Parameter
Component

0..1 Use port blueprints in order to create ports with
standardized application interfaces.

Consumed by Define VFB Sensor or
Actuator Component

0..1 Use port blueprints in order to create ports with
standardized application interfaces.

Consumed by Define VFB Timing 0..1

Consumed by Define VFB Types 0..1 Use standardized elements (e.g. Data Types, Compu
Methods) as blueprints (as far as applicable) to create
the corresponding elements of the actual project.

Consumed by Define Wrapper
Components to Integrate
Legacy Software

0..1 Use port blueprints in order to create ports with
standardized application interfaces.

Consumed by Generate Atomic Software
Component Contract
Header Files

0..1

Consumed by Generate Component
Header File in Vendor Mode

0..1

Consumed by Generate Component
Prebuild Data Set

0..1

Table 3.86: VFB AUTOSAR Standard Package

227 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.2.2.7 AUTOSAR Specification of Application Interfaces

AUTOSAR
Specification of
Application Interfaces

ARElement
AtpType

Datatypes::AutosarDataType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface::PortInterface

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

Components::SwComponentType

ARElement
AtpBlueprint

AtpStructureElement

PortProtoypeBlueprint::
PortPrototypeBlueprint

ARElement
AtpBlueprint

AtpBlueprintable

GlobalConstraints::DataConstr

ARElement
AtpBlueprint

AtpBlueprintable

ComputationMethod::
CompuMethod

«AtpUseMetaModelElement»

«AtpUseMetaModelElement»

«AtpUseMetaModelElement»

«AtpUseMetaModelElement»

«AtpUseMetaModelElement»

«AtpUseMetaModelElement»

Figure 3.43: The AUTOSAR Specification of Application Interfaces

Artifact AUTOSAR Specification of Application Interfaces

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Definitions of the AUTOSAR standard appliction interfaces.

Description This includes standardized data types, port interfaces, units, port blueprints and example
component types (including compositions) for the design of Application Software Components.
Note that most of the content is not meant as direct input for defining a VFB system but as so-called
blueprints:
Blueprints need to be completed with company or project specific elements (e.g. a component type
defined as blueprint may need additional ports or a data type defined as blueprint may need
additional properties).

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by VFB AUTOSAR Standard
Package

1

Use meta model
element

AutosarDataType 1

Use meta model
element

CompuMethod 1

Use meta model
element

DataConstr 1

Use meta model
element

PortInterface 1

▽

228 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact AUTOSAR Specification of Application Interfaces

Use meta model
element

PortPrototypeBlueprint 1

Use meta model
element

SwComponentType 1

Table 3.87: AUTOSAR Specification of Application Interfaces

3.2.2.8 VFB Atomic Software Component

VFB Atomic
Software
Component

VFB Atomic
Application Software
Component

Complex Driver
Component

ECU Abstraction
Software Component

VFB Sensor
Actuator
Component

Components::
AtomicSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

Components::SwComponentType

«AtpUseMetaModelElement»

«extends»«extends»

«AtpUseMetaModelElement»

«extends»

«extends»

Figure 3.44: The Generic Work Product VFB Atomic Software Component

Artifact VFB Atomic Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Description of an Atomic VFB Component.

Description The description of an Atomic Software Component Type without Internal Behavior. Note that there
are more specific artifacts extending this one. This artifact is used to describe general use cases
which are valid for all kind of Atomic Software Components.

Kind AUTOSAR XML
Extended By Complex Driver Component, ECU Abstraction Software Component, VFB Atomic Application

Software Component, VFB Sensor Actuator Component

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software
Components

1..*

▽

229 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact VFB Atomic Software Component

Produced by Define SymbolProps for
Types

0..* symbolProps: The symbolProps attribute redefines the
software component type name used in the code of the
RTE. This resolves name clashes among different
software component types designed accidentally with
the same shortName.
Note that this output is a splitable element, so it can be
added later without changing the VFB model.

Produced by Extend Composition 0..*

Consumed by Define VFB Component
Constraints

2..*

Consumed by Define Atomic Software
Component Internal
Behavior

1

Consumed by Generate Atomic Software
Component Contract
Header Files

1 Meth.bindingTime = SystemDesignTime

Consumed by Generate Component
Header File in Vendor Mode

1 Meth.bindingTime = SystemDesignTime

Consumed by Generate Component
Prebuild Data Set

1 Meth.bindingTime = CodeGenerationTime

Consumed by Select Software Component
Implementation

1..*

Consumed by Define Consistency Needs 0..* The description of an AtomicSoftwareComponentType
without InternalBehavior.

Consumed by Define VFB Composition
Component

0..*

Consumed by Define VFB Timing 0..*

Consumed by Define VFB Top Level 0..*

Consumed by Define VFB Variants 0..*

Use meta model
element

AtomicSwComponentType 1

Use meta model
element

SwComponentType 1

Table 3.88: VFB Atomic Software Component

3.2.2.9 VFB Atomic Application Software Component

Artifact VFB Atomic Application Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Description of an Atomic VFB Component.

Description The description of an Application Software Component Type.
It is used to represent the ECU-independent application software.

Kind AUTOSAR XML
Extends VFB Atomic Software Component

Relation Type Related Element Mult. Note

Aggregated by VFB System 0..*

Produced by Define VFB Application
Software Component

1

▽

230 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact VFB Atomic Application Software Component

Use meta model
element

ApplicationSwComponent
Type

1

Table 3.89: VFB Atomic Application Software Component

3.2.2.10 Complex Driver Component

Artifact Complex Driver Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description VFB Description of a Complex Driver Component.

Description The Complex Driver Component is a special VFB Atomic Software Component that has direct
access to hardware on an ECU and which is therefore linked to a specific ECU or specific hardware.
It uses the meta-model element ComplexDeviceDriverSwComponentType which introduces the
possibility to link from the software representation to its hardware description provided by the ECU
Resource Template.
It provides (non-standardized) AUTOSAR Interfaces via ports on VFB level.

Kind AUTOSAR XML
Extends VFB Atomic Software Component

Relation Type Related Element Mult. Note

Aggregated by VFB System 0..*

Produced by Define Complex Driver
Component

1

Consumed by Map Software Component
to BSW

0..1

Use meta model
element

ComplexDeviceDriverSw
ComponentType

1

Table 3.90: Complex Driver Component

3.2.2.11 ECU Abstraction Software Component

Artifact ECU Abstraction Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description VFB Description of an ECU Abstraction Software Component.

Description The ECU Abstraction Software Component is a special Atomic Software Component that sits
between a component that wants to access ECU periphery (typically a Sensor Actuator Component)
and the Microcontroller Abstraction.
It provides (non-standardized) AUTOSAR Interfaces via ports which represent the ECU periphery.
The EcuAbstractionSwComponentType introduces the possibility to link from the software
representation to its hardware description provided by the ECU Resource Template.
During integration, an ECU Abstraction Software Component will be mapped to a BSW module
which implements it and which will directly (without RTE) be connected to the Microcontroller
Abstraction.

Kind AUTOSAR XML
Extends VFB Atomic Software Component

Relation Type Related Element Mult. Note

▽

231 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact ECU Abstraction Software Component

Aggregated by VFB System 0..*

Produced by Define ECU Abstraction
Component

1

Consumed by Map Software Component
to BSW

0..1

Use meta model
element

EcuAbstractionSw
ComponentType

1

Table 3.91: ECU Abstraction Software Component

3.2.2.12 VFB Parameter Component

Artifact VFB Parameter Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description A ParameterComponentType defines parameters and characteristic values accessible via provided
Ports.

Description A ParameterSwComponentType defines parameters and characteristic values accessible via
Provide Ports. The provided values are the same for all connected Component Prototypes. This is
as opposed to private parameters which are only available within the scope of an Atomic Software
Component

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by VFB System 0..*

Produced by Define VFB Parameter
Component

1

Produced by Extend Composition 0..*

Consumed by Define VFB Composition
Component

0..*

Consumed by Define VFB Timing 0..*

Consumed by Define VFB Top Level 0..*

Consumed by Define VFB Variants 0..*

Use meta model
element

ParameterSwComponent
Type

1

Table 3.92: VFB Parameter Component

3.2.2.13 VFB Sensor Actuator Component

Artifact VFB Sensor Actuator Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Describes a sensor or actuator component that exist at the VFB Level and represents the physical
interface of an actual sensor or actuator hardware element.

▽

232 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact VFB Sensor Actuator Component

Description A Sensor Actuator Software Component is an Atomic Software Component that makes the
functionality of a sensor or actuator usable for other software components. That means that the
Sensor Actuator Software Component provides to the application software components an interface
for the physical values of the sensors and actuators. It is written for a concrete sensor or actuator
and uses the ECU Abstraction interface.
It references the description of the associated hardware elements.

Kind AUTOSAR XML
Extends VFB Atomic Software Component

Relation Type Related Element Mult. Note

Aggregated by Complete ECU Description 0..*

Aggregated by VFB System 0..*

Produced by Define VFB Sensor or
Actuator Component

1

Use meta model
element

SensorActuatorSw
ComponentType

1

Table 3.93: VFB Sensor Actuator Component

3.2.2.14 VFB NvBlock Software Component

Artifact VFB NvBlock Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description

Description The VFB NvBlock Software Component defines non volatile data which can be shared between Sw
ComponentPrototypes. The non volatile data of the VFB NvBlock Software Component are
accessible via provided and required ports.

Kind
Relation Type Related Element Mult. Note

Aggregated by VFB System 0..*

Produced by Define VFB NvBlock
Software Component

1

Use meta model
element

NvBlockSwComponentType 1

Table 3.94: VFB NvBlock Software Component

3.2.2.15 VFB Non AUTOSAR Component

Artifact VFB Non AUTOSAR Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description A Component used to describe the non-autosar entities that exist at the VFB level.

Description A Component used to describe the non-AUTOSAR entities that exist at the VFB level.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

▽

233 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact VFB Non AUTOSAR Component

Aggregated by VFB System 0..*

Produced by Define Wrapper
Components to Integrate
Legacy Software

1

Produced by Extend Composition 0..*

Consumed by Define VFB Composition
Component

0..*

Consumed by Define VFB Timing 0..*

Consumed by Define VFB Top Level 0..*

Consumed by Define VFB Variants 0..*

Use meta model
element

SwComponentType 1

Table 3.95: VFB Non AUTOSAR Component

3.2.2.16 VFB Interfaces

Artifact VFB Interfaces
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Interfaces and related elements that form part of the VFB, but are not standardized by AUTOSAR.

Description Interfaces and related elements that form part of the VFB, but are not standardized by AUTOSAR.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software
Components

0..*

Aggregated by VFB System 0..*

Produced by Define VFB Interfaces 1..*

Produced by Extend Composition 0..*

Consumed by Define ECU Abstraction
Component

1

Consumed by Define Complex Driver
Component

1..*

Consumed by Define VFB Application
Software Component

1..*

Consumed by Define VFB Composition
Component

1..*

Consumed by Define VFB NvBlock
Software Component

1..*

Consumed by Define VFB Parameter
Component

1..*

Consumed by Define VFB Sensor or
Actuator Component

1..*

Consumed by Define VFB Timing 1..*

Consumed by Define VFB Top Level 1..*

Consumed by Define Consistency Needs 0..* Interfaces which are relevant for the consistency
definition.

Consumed by Define VFB Variants 0..*

▽

234 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact VFB Interfaces
Consumed by Define Wrapper

Components to Integrate
Legacy Software

0..*

Consumed by Generate Atomic Software
Component Contract
Header Files

0..* Meth.bindingTime = SystemDesignTime

Consumed by Generate Component
Header File in Vendor Mode

0..* Meth.bindingTime = SystemDesignTime

Consumed by Generate Component
Prebuild Data Set

0..* Meth.bindingTime = CodeGenerationTime

Use meta model
element

AutosarDataType 1

Use meta model
element

ModeDeclarationGroup 1

Use meta model
element

PortInterface 1

Table 3.96: VFB Interfaces

3.2.2.17 VFB Types

Artifact VFB Types

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Data types and related elements that form part of the VFB, but are not standardized by AUTOSAR.

Description Description of AutosarDataTypes and related elements (e.g. units, computation methods, etc.) that
form part of the VFB, but are not standardized by AUTOSAR. This may also include copies of
standardized elements which have been completed with project specific information (e.g. with
calibration access information or computation methods). A VFB system can contain several different
instances of this artifact, which may fulfill different roles.
AutosarDataTypes can come as so-called ApplicationDatatypes or ImplementationDataTypes. This
package can contain both kinds but they can also be split into separate artifacts. However, since it is
also possible to generate ImplementationDataTypes from ApplicationDataTypes, a VFB system can
be completely defined with ApplicationDatatypes only.
Note that this work product is meant for use cases, in which a set of data types is maintained as a
separate artifact. It is also possible to define particular AutosarDataTypes as part of another artifact,
e.g. of VFB Interfaces if the types are closely related to certain port interfaces.
In the methodology this artifact stands not only for data type definitions, but also for related
elements like addressing methods, units, computation methods, constraints. etc. This is done for
simplicity, because these elements are often consumed by the same tasks. Of course these can be
treated as separate artifacts in real projects.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software
Components

0..*

Aggregated by VFB System 0..*

Produced by Define VFB Types 1..*

Produced by Define SymbolProps for
Types

0..* symbolProps: The symbolProps attribute redefines the
implementation data type name used in the code of the
RTE and/or the component. This resolves name clashes
among different implementation data types designed
accidentally with the same shortName.
Note that this output is a splitable element, so it can be
added later without changing the VFB model.

▽

235 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact VFB Types

Produced by Extend Composition 0..*

Consumed by Define ECU Abstraction
Component

1

Consumed by Define Complex Driver
Component

1..*

Consumed by Define VFB Application
Software Component

1..*

Consumed by Define VFB Composition
Component

1..*

Consumed by Define VFB Interfaces 1..*

Consumed by Define VFB NvBlock
Software Component

1..*

Consumed by Define VFB Parameter
Component

1..*

Consumed by Define VFB Sensor or
Actuator Component

1..*

Consumed by Define VFB Top Level 1..*

Consumed by Generate BSW Memory
Mapping Header

1..* SwAddrMethod: Referred SwAddrMethods
Meth.bindingTime = SystemDesignTime

Consumed by Generate SWC Memory
Mapping Header

1..* SwAddrMethod: Referred SwAddrMethods
Meth.bindingTime = SystemDesignTime

Consumed by Configure Memmap
Allocation

0..* SwAddrMethods: SwAddrMethods used for the generic
mapping. Note that one SwAddrmethod can represent
several memory sections.

Consumed by Define Consistency Needs 0..* Data types which are relevant for the consistency
definition.

Consumed by Define VFB Constants 0..*

Consumed by Define Wrapper
Components to Integrate
Legacy Software

0..*

Consumed by Generate Atomic Software
Component Contract
Header Files

0..* Meth.bindingTime = SystemDesignTime

Consumed by Generate Component
Header File in Vendor Mode

0..* Meth.bindingTime = SystemDesignTime

Consumed by Generate Component
Prebuild Data Set

0..* Meth.bindingTime = CodeGenerationTime

Use meta model
element

ApplicationDataType 1

Use meta model
element

AutosarDataType 1

Use meta model
element

CompuMethod 1

Use meta model
element

DataConstr 1

Use meta model
element

ImplementationDataType 1

Use meta model
element

PhysicalDimension 1

Use meta model
element

SwAddrMethod 1

▽

236 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact VFB Types

Use meta model
element

Unit 1

Table 3.97: VFB Types

3.2.2.18 VFB Data Type Mapping Set

Artifact VFB Data Type Mapping Set

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Mapping Set between Application and Implementation Data Types.

Description Mapping Set between Application and Implementation Data Types.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software
Components

0..*

Aggregated by VFB System 0..*

Produced by Define VFB Types 0..*

Consumed by Generate Atomic Software
Component Contract
Header Files

0..1 Meth.bindingTime = SystemDesignTime

Consumed by Generate Component
Header File in Vendor Mode

0..1 Meth.bindingTime = SystemDesignTime

Consumed by Generate Component
Prebuild Data Set

0..1 Meth.bindingTime = CodeGenerationTime

Consumed by Define VFB Constants 0..*

Use meta model
element

DataTypeMappingSet 1

Table 3.98: VFB Data Type Mapping Set

3.2.2.19 VFB Modes

Artifact VFB Modes
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Modes declared here are non-AUTOSAR standard. They are modes that are managed by a
software component acting as a application mode manager.

Description Desclaration of mode groups and of the modes they contain. Modes declared here are
non-AUTOSAR standard. They are modes that are managed by an application software component
acting as a mode manager.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software
Components

0..*

Aggregated by VFB System 0..*

Produced by Define VFB Modes 1..*

▽

237 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact VFB Modes
Produced by Extend Composition 0..*

Consumed by Define Complex Driver
Component

0..*

Consumed by Define ECU Abstraction
Component

0..*

Consumed by Define VFB Application
Software Component

0..*

Consumed by Define VFB Composition
Component

0..*

Consumed by Define VFB NvBlock
Software Component

0..*

Consumed by Define VFB Top Level 0..*

Consumed by Define Wrapper
Components to Integrate
Legacy Software

0..*

Consumed by Generate Atomic Software
Component Contract
Header Files

0..* Meth.bindingTime = SystemDesignTime

Consumed by Generate Component
Header File in Vendor Mode

0..* Meth.bindingTime = SystemDesignTime

Consumed by Generate Component
Prebuild Data Set

0..* Meth.bindingTime = CodeGenerationTime

Use meta model
element

ModeDeclarationGroup 1

Table 3.99: VFB Modes

3.2.2.20 VFB Constants

Artifact VFB Constants
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Specification of constant data for usage as initial values by other artifacts.

Description Specification of constant data for usage as initial values by other artifacts, e.g. initial values for
calibration parameters or variable data elements provided in ports.
By using the ConstantSpecification meta-class, such data can be standalone artifacts and thus be
maintained independently of the components or interfaces to which they apply.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Produced by Define VFB Constants 1..*

Use meta model
element

ConstantSpecification 1

Table 3.100: VFB Constants

238 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.2.2.21 VFB Software Component Mapping Constraints

Artifact VFB Software Component Mapping Constraints

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description A defined constraint on how certain components must be mapped (clustered or separated) to ECUs.

Description These MappingConstraints define constraints describing which components need to be mapped to a
single ECU, and which must be mapped to separate ECUs, without regard to any particular ECU or
topology.
The ComponentClustering constraint (also, clustering) is to be used for expressing that a certain set
of SW components (atomic or not) shall be mapped (allocated) onto the same ECU. This is some
kind of "execute together on same ECU" constraint. The semantic of the clustering constraint is
straightforward if all concerned SW components are atomic. Otherwise, it shall be interpreted as
follows: all of the atomic SW components making up the composition shall be mapped together onto
the same ECU together with all other SW components (atomic or not) affected by the constraint.
This also means that a clustering constraint can also refer to only a single composition. The
ComponentSeparation constraint (also, separation) is to be used for expressing that two SW
components (atomic or not) shall not be mapped (allocated) onto the same ECU. This is some kind
of "do not execute together on same ECU" constraint. The semantic of the separation constraint is
straightforward if one or both SW components are atomic. Otherwise, it shall be interpreted as
follows: any of the atomic SW components making up the first composition, shall not be mapped
onto the same ECU with any atomic SW component from the second composition. As a
consequence, and to preserve consistency, an atomic SW component instance cannot be part of
two compositions concerned by the same separation constraint, i.e. the two compositions have to be
disjoint with regards to component instances.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by VFB System 0..*

Produced by Define VFB Component
Constraints

1..*

Produced by Extend Composition 0..*

Consumed by Deploy Software
Component

0..1

Use meta model
element

MappingConstraint 1

Use meta model
element

SystemMapping 1 The splitable element SystemMapping is the root for this
artifact.

Table 3.101: VFB Software Component Mapping Constraints

3.2.2.22 VFB Timing

Artifact VFB Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Atomic Software Component or Composition Component TimingDescription and TimingConstraints

Description TimingDescription and TimingConstraints defined for an Atomic Software Component or a
Composition Component

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Produced by Define VFB Timing 1

Consumed by Define Software
Component Timing

0..1

Consumed by Define System Timing 0..1

▽

239 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact VFB Timing

Consumed by Define VFB Variants 0..1

Use meta model
element

VfbTiming 1

Table 3.102: VFB Timing

3.2.2.23 Description of a Non-AUTOSAR System

Artifact Description of a Non-AUTOSAR System

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description View of the non-AUTOSAR system that contains the relevant information for its integration with the
AUTOSAR system at VFB level

Description This artifact describes the elements of the non-AUTOSAR system that are relevant for its integration
with an AUTOSAR system at the VFB level. The format of the description depends on the
methodology or platform that is employed for the development of the non-AUTOSAR system. It may
not be assumed that the description of the non-AUTOSAR system comes in an AUTOSAR format.
Also the contents of the description may differ both in its scope and in its details from an AUTOSAR
description that also addresses the VFB level, i.e. a SwComponent Description.

Kind Custom

Relation Type Related Element Mult. Note

Consumed by Define VFB Integration
Connector

1

Consumed by Translate Non-Autosar
Description to Autosar
Description

1

Table 3.103: Description of a Non-AUTOSAR System

3.2.2.24 Integration Connector

Artifact Integration Connector

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Specification of the connections of the elements of the non-AUTOSAR system with the elements of
the AUTOSAR system

Description This artifact specifies which elements of the non-AUTOSAR system are to be connected with which
elements of the AUTOSAR system. If for instance the Description of the non-AUTOSAR system
contains elements corresponding to port instances, the integration connector would define how
these ports are connected with the port instances contained in the AUTOSAR SwComponent
Description. In addition, the Integration Connector may specify information that is necessary for the
integration but not yet contained in the Description of the non-AUTOSAR system.
If for instance the Description of the non-AUTOSAR system contains only very coarse grained data
type descriptions the Integration Connector will be used to add sufficient information such that the
compatibility of the data types with the ones defined in the AUTOSAR SwComponent Description
can be checked.

Kind Custom

Relation Type Related Element Mult. Note

▽

240 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact Integration Connector

Produced by Define VFB Integration
Connector

1

Consumed by Translate Non-Autosar
Description to Autosar
Description

1

Table 3.104: Integration Connector

3.3 System

This chapter contains the definition of work products and tasks used for the devel-
opment of systems and sub-systems. For the definition of the relevant meta-model
elements refer to [6, CP TPS System Template] and [17, CP TPS ECU Resource Tem-
plate].

3.3.1 Tasks

3.3.1.1 Set System Root

Set System Root

System Description
Root Element

Topology

Mapping of Software
Components to ECUs

Signal Path Constraints Communication Layers

System Engineer

VFB Composition
Component

Data Mapping

1

«input»

1..*

«input»

«output» 1

1

«input»

1

«input»

1 «input»

1

«performs»

1

«input»

Figure 3.45: Set System Root

241 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Set System Root

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks

Brief Description

Description Set up the root element of a system description.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes Communication Layers 1 Only the reference to the artifact is needed

Consumes Mapping of Software
Components to ECUs

1 Only the reference to the artifact is needed

Consumes Signal Path Constraints 1 Only the reference to the artifact is needed

Consumes Topology 1 Only the reference to the artifact is needed

Consumes VFB Composition
Component

1 Only the reference to the artifact is needed

Consumes Data Mapping 1..* Only the reference to the artifact is needed

Produces System Description Root
Element

1 Set up the root element, and the links to other artifacts

Table 3.105: Set System Root

3.3.1.2 Assign Top Level Composition

Assign Top Level
Composition System Description

Root Element
VFB Top Level
System Composition

System Engineer

1 «input»

«performs»

«output» 1

Figure 3.46: Assign Top Level Composition

Task Definition Assign Top Level Composition

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks

Brief Description

Description Assign a VFB Top Level Composition to the System Root

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes VFB Top Level System
Composition

1

Produces System Description Root
Element

1

Table 3.106: Assign Top Level Composition

242 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.1.3 Define ECU Description

ECU Resources
Description

Define ECU Description

System Engineer

«output»
1..*

«performs»

Figure 3.47: Define ECU description

Task Definition Define ECU Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks

Brief Description Define a particular ECU’s resources.

Description Define a particular ECU’s resources by describing Hardware Elements, pins, connections.The HW
Elements are the main describing elements of an ECU,e.g processing units, memory, peripherals,
sensors and actuators. HW Elements have a unique name and can be identified within the ECU
description. HW Elements do not necessarily have to be described on the level of an ECU. It is
possible to describe HW Elements as parts of other HW Elements. By this means, a hierarchical
description of HW Elements can be created. HW Elements provide HW PinGroups and HW Pins for
being interconnected among each others. HW PinGroups allow a rough description of how certain
groups of HWPins are arranged. The detailed description can be done using the HW Pins.HW
Connections are used to describe connection on several levels:connections between HW Elements,
connections between HW PinGroups, connections between HW Pins.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Produces ECU Resources Description 1..* Decription of the ECU

Table 3.107: Define ECU Description

3.3.1.4 Define System Topology

System Engineer

ECU Resources
Description

Topology

Define System Topology

1..* «input»

1

«performs»

«output» 1

Figure 3.48: Define System Topology

243 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Define System Topology

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks

Brief Description Select the ECUs and how the they are interconnected by networks.

Description Define how the ECUs of a system are interconnected by networks.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes ECU Resources Description 1..*

Produces Topology 1

Table 3.108: Define System Topology

3.3.1.5 Deploy Software Component

System
Engineer

Topology

VFB Top Level
System
Composition

System
Timing

Mapping of
Software
Components to
ECUs

Deploy Software Component

VFB Software
Component Mapping
Constraints

«output» 1

1

«performs»

1

«input»

0..1

«input»

1 «input»

0..1

«input»

Figure 3.49: Deploy Software Component

Task Definition Deploy Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks

Brief Description Deploy VFB Software Components to an ECU

Description Deploy each VFB Software Component to an ECU that will execute the component.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes Topology 1

Consumes VFB Top Level System
Composition

1

Consumes System Timing 0..1

▽

244 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Deploy Software Component

Consumes VFB Software Component
Mapping Constraints

0..1

Produces Mapping of Software
Components to ECUs

1

Table 3.109: Deploy Software Component

3.3.1.6 Design CpSoftwareCluster

Design CpSoftwareCluster

System

Engineer ECU

Integrator

ECU System Description CpSoftwareCluster Extract

0..*

«performs»

«output»
0..*

«inoutput» 0..1

0..*

«performs»

Figure 3.50: Design CpSoftwareCluster

Task Definition Design CpSoftwareCluster

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::CpSoftwareCluster

Brief Description Create CpSoftwareCluster(s) and assign SW Components

Description Design the CpSoftwareClusters on System Level
• Define which CpSoftwareCluster(s) exist

• Deploy CpSoftwareClusters to EcuInstances (via the CpSoftwareClusterToEcuInstanceMapping)

• Deploy SoftwareComponents to CpSoftwareClusters (via the CpSoftwareCluster.swComponent
Assignment)

• Manage CpSoftwareClusterResource(s) and ResourceNeeds. How these are assigned and
managemed depends on the used tools and the project’s workflow.

In the Top-Down approach, this step refines the ECU System Description. In the Bottom-Up
approach, this step directly creates the CpSoftwareCluster Extract.

Relation Type Related Element Mult. Note

Performed by ECU Integrator 0..*

Performed by System Engineer 0..*

In/out ECU System Description 0..1 In case CpSoftwareClusters are used in the Top-Down
approach

Produces CpSoftwareCluster Extract 0..* In case CpSoftwareClusters are used in the Bottom-Up
approach

Table 3.110: Design CpSoftwareCluster

245 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.1.7 Extend CpSoftwareCluster

ECU

Integrator

Extend CpSoftwareCluster
CpSoftwareCluster Extract

0..1
«inoutput»

0..*

«performs»

Figure 3.51: Extend CpSoftwareCluster

Task Definition Extend CpSoftwareCluster

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::CpSoftwareCluster

Brief Description Extend a CpSoftwareCluster with compositions and atomic software components.

Description Extend CpSoftwareCluster allows to perform additional integration steps on a CpSoftwareCluster
Extract (i.e. on CpSoftwareCluster level), for example adding additional Atomic Software
Component(s). It is similar to the task Extend Composition.
In a System / EcuInstance that has CpSoftwareClusters, the role ECU Integrator is fulfilled by the
owners of the various CpSoftwareClusters. In a sense, instead of an ECU Integrator, there are now
many Cluster Integrators that can extend the CpSoftwareCluster Extract, while adhering to the Cp
SoftwareCluster Design.
The interfaces between different CpSoftwareClusters can be coordinated via a common System
Description, containing at least the outer Ports of each CpSoftwareCluster. A decentral workflow is
also possible. How CpSoftwareClusterResource s are assigned and managed depends on the used
tools and the project’s workflow.

Relation Type Related Element Mult. Note

Performed by ECU Integrator 0..*

In/out CpSoftwareCluster Extract 1

Table 3.111: Extend CpSoftwareCluster

246 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.1.8 Generate or Adjust System Flat Map

System Flat Map

System
Description
Root Element

VFB System

Generate or Adjust
System Flat Map

System Engineer

Partial Flat Map

«performs»

1

«input»

1

«input»

0..* «input» «inoutput» 1

Figure 3.52: Generate or Adjust System Flat Map

Task Definition Generate or Adjust System Flat Map

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks

Brief Description Generates and/or adjust the unique names of component prototypes and MCD display data in the
scope of system.

Description Generates and/or adjust the unique names of component prototypes and MCD display data in the
scope of a System or System Extract.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes System Description Root
Element

1

Consumes VFB System 1

Consumes Partial Flat Map 0..* If Partial Flat Maps were delivered along with software
components, they must be integrated into the System
Flat Map:
• The instance refs used in a partial flat map must be

taken over and adjusted to the context of the System
or System Extract.

• Name conflicts have to be resolved if several partial
flat maps are merged.

In/out System Flat Map 1

Table 3.112: Generate or Adjust System Flat Map

247 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.1.9 Derive Communication Needs

System
Engineer

Mapping of Software
Components to ECUs

System Signal

Derive
Communication
Needs

Data Mapping

System Signal Group

«output»

1..*

1 «input»

«output»

1..*

«output» 0..*

1

«performs»

Figure 3.53: Derive Communication Needs

Task Definition Derive Communication Needs
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks

Brief Description Define the signals used to exchange data & operations needed by software components over a
network.

Description Define the signals used to exchange data & operations needed by software components over a
network.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes Mapping of Software
Components to ECUs

1

Produces Data Mapping 1..*

Produces System Signal 1..*

Produces System Signal Group 0..*

Table 3.113: Derive Communication Needs

248 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.1.10 Define Signal Path Constraints

System Engineer

Mapping of Software
Components to ECUs

Topology

Signal Path Constraints

Define Signal Path Constraints

1

«input»

1

«performs»

1

«input»

«output» 1

Figure 3.54: Define Signal Path Constraints

Task Definition Define Signal Path Constraints

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks

Brief Description Additional guidelines for the System Generator, which specific way a signal between two Software
Components should take in the network without defining in which frame and with which timing it is
transmitted.

Description Define additional guidelines for the System Generator, which specific way a signal between two
Software Components should take in the network without defining in which frame and with which
timing it is transmitted.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes Mapping of Software
Components to ECUs

1

Consumes Topology 1

Produces Signal Path Constraints 1

Table 3.114: Define Signal Path Constraints

249 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.1.11 Define System Variants

System
Engineer

System Description
Root Element

Topology

Complete ECU
Description

Mapping of
Software
Components to
Implementations

Postbuild Variant
Set

Mapping of
Software
Components to
ECUs

System Constant Value
Set

System
Description

System Signal
Group

System
Signal

System
Timing

Evaluated Variant
Set

Predefined
Variant

Define System Variants

«input» «input»

1..*

«input»
«input»

«inoutput»

«input»

0..*

«input»

1

«input»

1

«performs»

«output»

«input»

«output»

«inoutput»

«input»

Figure 3.55: Define System Variants

Task Definition Define System Variants

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks

Brief Description Define variants for the artifacts of a System Description.

Description Define variants for the artifacts of a System Description. Definition of a variant means in general to
define its conditions and its latest binding time.
Therefore one has to create a PredefinedVariant referring to the settings which are used by the
system elements in scope. To do so, this task can make use of existing System Constant Value Set
s and/or Postbuid Variant Set s or define new ones. Several PredefinedVariant s can be combined to
one Evaluated Variant Set .
This task can also be applied when designing a subsystem, therefore the System Extract is an
optional input.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes Mapping of Software
Components to ECUs

1

Consumes Mapping of Software
Components to
Implementations

1

Consumes System Description Root
Element

1

Consumes System Signal 1

▽

250 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Define System Variants

Consumes System Signal Group 1

Consumes System Timing 1

Consumes Topology 1

Consumes Complete ECU Description 1..*

Consumes System Description 0..*

In/out Postbuild Variant Set 1

In/out System Constant Value Set 1

Produces Evaluated Variant Set 1

Produces Predefined Variant 1

Table 3.115: Define System Variants

3.3.1.12 Define System Timing

System
Engineer

Mapping of
Software
Components to
Implementations

Mapping of
Software
Components to
ECUs

Topology

Communication
Layers

Software Component
Timing

VFB
Timing

System
Timing

Define System Timing

0..1

«input»

«output» 1

1

«performs»

0..1

«input»

1 «input»

1

«input»

1

«input»

0..1

«input»

Figure 3.56: Define System Timing

Task Definition Define System Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks

Brief Description Define SystemTiming for a concrete system taking the mapping of software components to ECUs
and their implementation into account

Description Define SystemTiming (TimingDescription and TimingConstraints) for a concrete system taking the
mapping of software components to ECUs and their implementation into account. This means that
the resulting Communication Matrix (and its implication to the communication stack) can also be
referenced by the timing specification to refine remote communication timing behavior.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

▽

251 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Define System Timing

Consumes Communication Layers 1

Consumes Mapping of Software
Components to ECUs

1

Consumes Topology 1

Consumes Mapping of Software
Components to
Implementations

0..1

Consumes Software Component
Timing

0..1

Consumes VFB Timing 0..1

Produces System Timing 1

Table 3.116: Define System Timing

3.3.1.13 Extend Topology

System EngineerECU Integrator

ECU Resources
Description

Topology

Extend Topology

0..1

«performs»

0..1 «input» 1 «inoutput» 1

0..1

«performs»

Figure 3.57: Extend Topology

Task Definition Extend Topology

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks

Brief Description Extend the existing System Topology

Description Extend the existing System Topology by describing how new ECUs will be connected to the existing
one through the current network

Relation Type Related Element Mult. Note

Performed by ECU Integrator 0..1

Performed by System Engineer 0..1

Consumes ECU Resources Description 0..1

In/out Topology 1

Table 3.117: Extend Topology

252 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.1.14 Select Software Component Implementation

Select Software
Component
Implementation Mapping of Software

Components to
Implementations

Atomic Software
Component
Implementation

Software Component
Internal Behavior

VFB Atomic
Software
Component

System Engineer

1..* «input»

1..*

«input»

1

«performs»

1..*

«input»

«output» 1

Figure 3.58: Select Software Component Implementation

Task Definition Select Software Component Implementation

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks

Brief Description Select implementation for an Atomic Software Component.

Description The system engineer selects an Atomic Software Component Implementation for each defined VFB
Atomic Software Component.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes Atomic Software
Component Implementation

1..*

Consumes Software Component
Internal Behavior

1..*

Consumes VFB Atomic Software
Component

1..*

Produces Mapping of Software
Components to
Implementations

1

Table 3.118: Select Software Component Implementation

253 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.1.15 Select Design Time Variant

System Description

Complete ECU
Description

Select Design Time Variant

System Engineer

1

«inoutput»

1

1

«input» «performs»

Figure 3.59: Select Design Time Variant

Task Definition Select Design Time Variant

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks

Brief Description

Description Select a system variant at system design time. This could be done in different ways:
• Replace a model, which contains the variation points contributing to this particular variant and all

the possible settings/elements, by a model, which does no more contain these variation points
and which contains only the particular settings/elements selected for this variant.

• In order to document the selection for further process steps, it is also possible to keep the
information about the selected variant and the variation points in the model by introducing a
PredefinedVariant along with appropriate fixed settings of system constant values.

In constrast to variant selection in later process steps, no code generation or compilation is involved
at system design time, thus this task is just a transformation of one XML model into another one.

This task can be applied to a complete system description, represented by a System Extract.

Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes Complete ECU Description 1

In/out System Description 1

Table 3.119: Select Design Time Variant

3.3.1.16 Define System View Mapping

The task Define System View Mapping (see Figure 3.60) creates the System
View Mapping between two System Descriptions. Different cases can be sepa-
rated:

• Mapping of different overall VFB systems - the Abstract System Descrip-
tion and the System Configuration Description.

254 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

• Mapping of different structured System Extracts, e.g. System Extract de-
livered by a primary organization and the different structure (ECU System De-
scription) of the secondary organization (see 2.5.4, 2.5.5).

System
Description System View

Mapping

Define System View Mapping

System Engineer

«performs»

«output»2 «input»

Figure 3.60: Define System View Mapping

Task Definition Define System View Mapping

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks

Brief Description Map elements from different views on the system.

Description This task creates the System View Mapping between two System Descriptions (Mapping of different
structured system descriptions, e.g. system extract delivered by a primary organization and the
different structure of the secondary organisation).

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes System Description 2

Produces System View Mapping 1

Table 3.120: Define System View Mapping

3.3.1.17 Create Transformer Specification

Create Transformer Specification

System Engineer

Custom Transformer Specification

Basic Software Designer

«output» 1

0..1

«performs»

1

«performs»

Figure 3.61: Create Transformer Specification

255 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Create Transformer Specification

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks

Brief Description

Description In this task the specification of a transformer module is created. Since the specification is created as
a part of the communication design, the System Engineer has to perform this task. Optionally a
Basic Software Designer can support the creation of the specification.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Performed by Basic Software Designer 0..1

Produces Custom Transformer
Specification

1

Table 3.121: Create Transformer Specification

3.3.1.18 Define Rapid Prototyping Scenario

Rapid Prototyping
Engineer

Define Rapid Prototyping
Scenario

Software Component Internal
Behavior

System Description Root Element

Rapid Prototyping
Scenario

1

«input»

1

«performs»

1..* «input» «output» 1

Figure 3.62: Define Rapid Prototyping Scenario

Task Definition Define Rapid Prototyping Scenario

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks

Brief Description

Description Defines the rapid prototyping scenario.

Relation Type Related Element Mult. Note

Performed by Rapid Prototyping Engineer 1

Consumes System Description Root
Element

1

Consumes Software Component
Internal Behavior

1..*

Produces Rapid Prototyping Scenario 1

Table 3.122: Define Rapid Prototyping Scenario

256 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.2 Work Products

3.3.2.1 System Description

System
Description

Mapping of Software

Components to

Implementations

Mapping of Software

Components to ECUs

System

Description

Root Element

System Signal Group System Signal

System Timing

Topology

Evaluated Variant Set

Postbuild Variant Set

Predefined Variant

System Constant Value

Set

Data MappingCommunication

Matrix

Alias Name Set

Communication Layers

Rapid Prototyping

Scenario

Figure 3.63: Structure of generic deliverable System Description

257 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Deliverable System Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description Partial Extract of a System

Description Generic deliverable for defining a System. It is used in different roles within the methodology.
In each role, this deliverable may contain variation points in its ARXML artifacts which need to be
bound in later steps, e.g. when defining a subsystem from a complete system or later for the single
ECUs. If such variation points are present, the System Description may optionally include
PredefinedVariants in order to predefine variants for later selection and an Evaluated Variant Set.
Please note that this generic deliverable does not correspond to the system description with the
system category "SYSTEM_DESCRIPTION" (see [TPS_SYST_01003]). The system description
with the category "SYSTEM_DESCRIPTION" is represented by the deliverable "System
Configuration Description".
This deliverable is equivalent to a description of a system with any category. In the System Template
Specification "system description" is the most frequently used term for this kind of artifact.

Kind Delivered

Extended By Abstract System Description, System Configuration Description, System Constraint Description,
System Extract

Relation Type Related Element Mult. Note

Aggregates System Description Root
Element

1

Aggregates Communication Layers 0..1

Aggregates Mapping of Software
Components to ECUs

0..1

Aggregates Mapping of Software
Components to
Implementations

0..1

Aggregates Rapid Prototyping Scenario 0..1

Aggregates Topology 0..1

Aggregates Alias Name Set 0..*

Aggregates Communication Matrix 0..*

Aggregates Data Mapping 0..*

Aggregates Evaluated Variant Set 0..*

Aggregates Postbuild Variant Set 0..*

Aggregates Predefined Variant 0..*

Aggregates System Constant Value Set 0..*

Aggregates System Signal 0..*

Aggregates System Signal Group 0..*

Aggregates System Timing 0..*

In/out Select Design Time Variant 1

Consumed by Define System View
Mapping

2

Consumed by Define System Safety
Information

1

Consumed by Define Alias Names 0..1 Needed for definition of alias names with system,
system extract or ECU scope, depending of the role of
the System Description.

Consumed by Define System Variants 0..*

Table 3.123: System Description

258 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Deliverable System Constraint Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description

Description Contains the artifacts that describe System Constraints. It serves as an input for setting up the
complete Abstract System Description and/or System Configuration Description.
This deliverable corresponds to the system description with the system category "SYSTEM_
CONSTRAINTS" (see [TPS_SYST_01003]).

Kind Delivered

Extends System Description

Relation Type Related Element Mult. Note

Aggregates Overall VFB System 0..1

Aggregates System Flat Map 0..1

Consumed by Develop System 0..1

Consumed by Develop an Abstract
System Description

0..1 In the context of the "Develop an Abstract System
Description" activity, the constraints for the abstract or
functional view on the system can be provided by the
"System Constraint Description".

Table 3.124: System Constraint Description

Deliverable System Configuration Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description

Description Contains the artifacts that describe a complete AUTOSAR System. It is the basis for extracting
descriptions for sub-systems or ECUs.
Note that System Extracts may be refined by details which are not present in the System
Configuration.
This deliverable corresponds to the system description with the system category "SYSTEM_
DESCRIPTION" (see [TPS_SYST_01003]).

Kind Delivered

Extends System Description

Relation Type Related Element Mult. Note

Aggregates Overall VFB System 1

Aggregates System Flat Map 0..1

Produced by Develop System 1..*

Consumed by Generate System Extract 1

Consumed by Generate ECU Extract 0..1

Table 3.125: System Configuration Description

Deliverable System Extract

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description

Description Contains the artifacts that describe a subsystem specific view on the complete System Description.
Initially, the System Extract is not fully decomposed and still contains compositions. It is the basis for
designing subsystems, e.g. by adding further ECUs within the given constraints.
This deliverable corresponds to the system description with the system category "SYSTEM_
EXTRACT" (see [TPS_SYST_01003]).

Kind Delivered

Extended By ECU System Description

Extends System Description

▽

259 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Deliverable System Extract

Relation Type Related Element Mult. Note

Aggregates VFB System Extract 1

Aggregates System Flat Map 0..1

Produced by Develop System 0..*

Produced by Generate System Extract 0..*

Consumed by Create ECU System
Description

1

Consumed by Develop Sub-System 1

Consumed by Generate ECU Extract 0..1

Table 3.126: System Extract

Deliverable ECU System Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description

Description This System Description is used to describe the closed view on one EcuInstance (note that an
ECUInstance represents a single instantiation of a Classic Platform stack that may run directly on
the physical ECU, or under a hypervisor).
It can be derived from a System Extract or it can be designed independently and mapped to a
System Extract. The ECU System Description is not fully decomposed and still may contain
compositions.
It is refined during the activity Design Sub-System.
This deliverable corresponds to the system description with the system category "ECU_SYSTEM_
DESCRIPTION" (see [TPS_SYST_01003]).

Kind
Extended By CpSoftwareCluster Extract

Extends System Extract

Relation Type Related Element Mult. Note

Produced by Design Sub-System 1 System Extract refined during design of the
corresponding sub-system with elements needed to
generate ECU Extract(s).

Produced by Create ECU System
Description

1..*

In/out Design CpSoftwareCluster 0..1 In case CpSoftwareClusters are used in the Top-Down
approach

Consumed by Design Sub-System 1 System Extract as generated from the outer system.

Consumed by Generate CpSoftware
Cluster Extract

1 In case CpSoftwareClusters are used

Consumed by Configure Mode
Management

0..1 Input in case ECU Extract is not available (atomic
software components not available)

Consumed by Generate ECU Extract 0..1

Table 3.127: ECU System Description

260 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.2.2 Abstract System Description

Deliverable Abstract System Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description Provides an abstract or functional view on the system

Description The Abstract System Description extends the general System Description and provides an abstract
or functional view on the system to be developed.
This deliverable corresponds to the system description with the system category "ABSTRACT_
SYSTEM_DESCRIPTION" (see [TPS_SYST_01003]).

Kind Delivered

Extends System Description

Relation Type Related Element Mult. Note

Aggregates Overall VFB System 1

Produced by Develop an Abstract
System Description

1..*

Consumed by Develop System 0..* The abstract System Description is an optional input for
the activity "Develop System". Please note, that in this
step the Abstract System Description is refined to a
System Description.

Consumed by Develop a VFB System
Description

0..* The abstract System Description is an optional input for
the activity "Develop a VFB System Description". The
VFB-related part of the Abstract System Description can
be than refined to the concrete "Overall VFB System".
Additionally, a mapping between those two views can be
established.

Table 3.128: Abstract System Description

3.3.2.3 Complete ECU Description

Complete ECU
Description

ECU Resources
Description

VFB Sensor Actuator
Component

0..*

«aggregation»

1

«aggregation»

Figure 3.64: Complete ECU Description

Deliverable Complete ECU Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description An ECU Description includes the resources it has available along with its corresponding
ECU-specific software components.

Description An ECU Description includes the resources it has available along with its corresponding
ECU-specific software components.

▽

261 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Deliverable Complete ECU Description

Kind Delivered

Relation Type Related Element Mult. Note

Aggregates ECU Resources Description 1

Aggregates VFB Sensor Actuator
Component

0..*

Consumed by Select Design Time Variant 1

Consumed by Define System Variants 1..*

Table 3.129: Complete ECU Description

3.3.2.4 CpSoftwareCluster Extract

Generate

CpSoftwareCluster Extract

CpSoftwareCluster

Extract

ECU System

Description

Design CpSoftwareCluster Extend CpSoftwareCluster

«output»
0..*

0..1

«inoutput»

«output»

0..*

1 «input»
0..*

«inoutput»

0..1
«nesting»

Figure 3.65: CpSoftwareCluster Extract

Deliverable CpSoftwareCluster Extract

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description A SystemDescription for a single CpSoftwareCluster

Description Contains the artifacts that belong to a single CpSoftwareCluster. It is the basis for independent
integration and development of a CpSoftwareCluster. The deliverable is a System of Category SW_
CLUSTER_SYSTEM_DESCRIPTION .

Kind
Extends ECU System Description

Relation Type Related Element Mult. Note

Produced by Design CpSoftwareCluster 0..* In case CpSoftwareClusters are used in the Bottom-Up
approach

Produced by Generate CpSoftware
Cluster Extract

0..* In case CpSoftwareClusters are used in the Top-Down
approach

In/out Extend CpSoftwareCluster 1

Consumed by Generate ECU Extract 1 In case CpSoftwareClusters are used

Table 3.130: CpSoftwareCluster Extract

262 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.2.5 System Description Root Element

Artifact System Description Root Element

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description A System Description root element.

Description The System description defines the following major elements:
• Topology : description of the Topology of the System.

• Software : description of the root software composition containing all software components in the
System in a hierarchical structure.

• Communication : description of all Communication elements used in the System.

• Mapping and Mapping Constraints : description of all mapping aspects (mapping of SW
components to ECUs, mapping of data elements to signals, and mapping constraints).

The root element can be the basis for a System extract as well as for the whole System depending
on which elements are aggregated.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by System Description 1

Produced by Assign Top Level
Composition

1

Produced by Set System Root 1 Set up the root element, and the links to other artifacts

Consumed by Define Rapid Prototyping
Scenario

1

Consumed by Define System Variants 1

Consumed by Flatten Software
Composition

1 find the top level composition

Consumed by Generate or Adjust System
Flat Map

1

Use meta model
element

System 1

Table 3.131: System Description Root Element

3.3.2.6 System Mapping Overview

There are various artifacts which correspond to the mappings collected under the meta-
model element SystemMapping. Figure 3.66 shows an overview. The details will be
explained in the following sub-chapters. Please note that this figure only shows the
subset of mappings for which a methodology exists. For the full list of mappings, please
see chapter 5 "Mapping" in [6, CP TPS System Template].

263 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Data Mapping

Mapping of Software
Components to ECUs

Mapping of Software
Components to

Implementations

VFB Software
Component Mapping
Constraints

Identifiable

SystemTemplate::SystemMapping

DataMapping::DataMapping

SignalPaths::
SignalPathConstraint

Identifiable

SWmapping::
SwcToImplMapping

SWmapping::
MappingConstraint

Identifiable

SWmapping::
SwcToEcuMapping

ARElement
AtpStructureElement

UploadableDesignElement

SystemTemplate::System

Signal Path
Constraints

System View Mapping

Identifiable

ViewMapSet::ViewMap

ARElement

ViewMapSet::
ViewMapSet

Identifiable

SWmapping::
SwcToApplicationPartitionMapping

Identifiable

SWmapping::
ApplicationPartitionToEcuPartitionMapping

Figure 3.66: Overview on the various artifacts for System Mapping

264 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.2.7 Data Mapping

Artifact Data Mapping

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description

Description Mapping of data prototypes from the VFB description to System signals.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by System Description 0..*

Produced by Derive Communication
Needs

1..*

Consumed by Define Signal PDUs 1

Consumed by Flatten Software
Composition

1..*

Consumed by Set System Root 1..* Only the reference to the artifact is needed

Use meta model
element

DataMapping 1

Use meta model
element

SystemMapping 1 The splitable element SystemMapping is the root for this
artifact.

Table 3.132: Data Mapping

3.3.2.8 Mapping of Software Components to ECUs

Artifact Mapping of Software Components to ECUs

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description Describes the mapping of Software Components to the ECUs that are defined in the VFB context.

Description The VFB shows all software components independently of their deployment on individual ECUs.
This work product defines for each software component the corresponding ECU on which the
software component will be deployed and executed.
This artifact may contain a mapping of software components to application partitions by a SwcTo
ApplicationPartitionMapping. With an ApplicationPartitionToEcuPartitionMapping the application
partitions are assigned to ECU partitions. This can substitute the direct mapping of software
components to ECUs via SwcToEcuMapping.ecuInstance.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by System Description 0..1

Produced by Deploy Software
Component

1

Consumed by Define Signal PDUs 1

Consumed by Define Signal Path
Constraints

1

Consumed by Define System Timing 1

Consumed by Define System Variants 1

Consumed by Derive Communication
Needs

1

Consumed by Extract the ECU
Communication

1

▽

265 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact Mapping of Software Components to ECUs

Consumed by Flatten Software
Composition

1

Consumed by Set System Root 1 Only the reference to the artifact is needed

Use meta model
element

ApplicationPartitionToEcu
PartitionMapping

1

Use meta model
element

SwcToApplicationPartition
Mapping

1

Use meta model
element

SwcToEcuMapping 1

Use meta model
element

SystemMapping 1 The splitable element SystemMapping is the root for this
artifact.

Table 3.133: Mapping of Software Components to ECUs

3.3.2.9 Mapping of Software Components to Implementations

Artifact Mapping of Software Components to Implementations

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description

Description Specifies the selection of software implementations for the atomic component prototypes. Because
component prototypes can be located on different ECUs, it is possible to have different
Implementations of two prototypes of the same AtomicComponentType in the system.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by System Description 0..1

Produced by Select Software Component
Implementation

1

Consumed by Define System Variants 1

Consumed by Define System Timing 0..1

Use meta model
element

SwcToImplMapping 1

Use meta model
element

SystemMapping 1 The splitable element SystemMapping is the root for this
artifact..

Table 3.134: Mapping of Software Components to Implementations

266 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.2.10 Signal Path Constraints

Artifact Signal Path Constraints

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description Constraints on the Path that should be used or not by Signals

Description One of the tasks of the System Generator is actually to calculate automatically the communication
(signals) between the RTEs and define the needed frames for that communication. These definitions
of the frames include implicitly the definition of the paths the AUTOSAR-Signals are transmitted
through the system. Thereby the System Generator often has the choice between alternative ways
through the system. There exist four different constraints for signals regarding the signal path:
• The CommonSignalPath describes that two signals must take the same way (Signal Path) in the

topology.

• ’The ForbiddenSignalPath describes the way (Signal Path) that a signal must not take in the
topology, e.g. in case of safety critical transmission.

• The PermissibleSignalPath describes the way (Signal Path) a signal can take in the topology. If
more than one PermissibleSignalPath is defined for the same signal/operation attributes, any of
them can be chosen.

• The SeparateSignalPath describes that two or more signals must not take the same way (Signal
Path) in the topology e.g. in case of redundant transmission. It is also possible that the same
signal is aggregated two times by the SeparateSignalPath element to indicate that this signal
should be transmitted redundantly over two different paths.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Produced by Define Signal Path
Constraints

1

Consumed by Set System Root 1 Only the reference to the artifact is needed

Use meta model
element

SignalPathConstraint 1

Use meta model
element

SystemMapping 1 The splitable element SystemMapping is the root for this
artifact.

Table 3.135: Signal Path Constraints

3.3.2.11 Topology

Artifact Topology

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description The system topology, which may be reused in different systems.

Description Describes the topology of the system : A topology is formed by a number of EcuInstances that are
interconnected to each other in order to form ensembles of ECUs and CommunicationClusters.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by System Description 0..1

Produced by Define System Topology 1

In/out Extend Topology 1

Consumed by Define Communication
Matrix

1

Consumed by Define Network
Management

1

Consumed by Define Signal PDUs 1

▽

267 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact Topology

Consumed by Define Signal Path
Constraints

1

Consumed by Define System Timing 1

Consumed by Define System Variants 1

Consumed by Define TP 1

Consumed by Deploy Software
Component

1

Consumed by Extract ECU Topology 1

Consumed by Set System Root 1 Only the reference to the artifact is needed

Consumed by Define Secured PDUs 0..1

Use meta model
element

CommunicationCluster 1

Use meta model
element

EcuInstance 1

Table 3.136: Topology

3.3.2.12 Ecu Resources Description

Artifact ECU Resources Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description Definition of the resources available on an ECU.

Description Definition of the resources available on an ECU. It mainly contains a description of hardware
elements (like physical memory sections or peripherals, pins, hardware connections) which need to
be referred by a software component or a basic software description. The focus is to describe an
already engineered piece of hardware, its content and structure. It is not in the focus of the ECU
Resource Description to support the design of electronics hardware itself. In the XML it is
represented as a set of HwDescriptionEntity -s

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Complete ECU Description 1

Produced by Define ECU Description 1..* Decription of the ECU

Consumed by Define System Topology 1..*

Consumed by Define BSW Interfaces 0..1

Consumed by Define ECU Abstraction
Component

0..1

Consumed by Extend Topology 0..1

Consumed by Generate ECU Executable 0..1 may be used to set up build environment
Meth.bindingTime = CompileTime

Consumed by Implement a BSW Module 0..1 Meth.bindingTime = SystemDesignTime

Consumed by Measure Component
Resources

0..1

Consumed by Measure Resources 0..1

Consumed by Define Complex Driver
Component

0..*

Consumed by Define VFB Sensor or
Actuator Component

0..*

▽

268 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact ECU Resources Description

Use meta model
element

HwElement 1

Table 3.137: ECU Resources Description

3.3.2.13 System Signal

Artifact System Signal

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description

Description The system signals allow to represent this communication view in a flattened structure, with (at least)
one system signal defined for each data element sent or received by a SW component instance. If
data has to be sent over gateways, there is still only one system signal representing this data. The
representation of the data on the individual communication systems is done by the cluster signals.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by System Description 0..*

Produced by Derive Communication
Needs

1..*

Consumed by Define Signal PDUs 1

Consumed by Define System Variants 1

Consumed by Define RTE Fan-out 1..*

Consumed by Extract the ECU
Communication

0..*

Use meta model
element

SystemSignal 1

Table 3.138: System Signal

3.3.2.14 System Signal Group

Artifact System Signal Group

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description A signal group refers to a set of signals that must always be kept together. A signal group is used to
guarantee the atomic transfer of AUTOSAR composite data types.

Description The System Signal Group is representing a set of Signals that must be kept together. A signal group
is to guarantee the transfer of AUTOSAR composite data types for sender receiver
communication.The RTE is required to treat AUTOSAR signals transmitted using sender-receiver
communication atomically. To achieve this, the "signal group" mechanisms shall be utilized.It is not
possible to map a Variable Data Prototype with a composite datatype directly to a System Signal .
The complex data type must be decomposed into single signals. As this set of single signals has to
be treated as atomic, it is placed in a "signal group". It is also used in client server communication
when the RTE maps a response to a corresponding operation request. The arguments, application
errors, client identifier and sequence counter of an operation are mapped to System Signal of two
dedicated SystemSignalGroup elements;one for the request and one for the response. The RTE
Client Server Protocol is used to provide a specific semantics to each of these SystemSignalGroups
and System Signal , also those which are introduced only to support the protocol.

▽

269 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact System Signal Group

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by System Description 0..*

Produced by Derive Communication
Needs

0..*

Consumed by Define System Variants 1

Consumed by Extract the ECU
Communication

0..*

Use meta model
element

SystemSignalGroup 1

Table 3.139: System Signal Group

3.3.2.15 System Flat Map

Artifact System Flat Map

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description Mapping of instance names to nested model elements. Use cases: Resolve name conflicts when
flattening VFB software compositions; provide unique names and unique model references for
measurement and calibration data.

Description The flat map is a list of elements, each element represents exactly one node (e.g. a component
instance or data element) of the instance tree of a software system. The purpose of this element is
to map the various nested representations of this instance to a flat representation and assign a
unique name to it. The name will be unique in the scope to which this Flat Map belongs (which could
be a whole System or a System Extract).
Use case: The System Flat Map is defined in the context of a System or System Extract. It serves
as a basis for generating an ECU Flat Map (or a Flat Map of a "child" System Extract). In the ECU
Flat Map, the names will be used as display names for MCD tools or as names for component
prototypes in a flattened software composition. For further information refer to the description of
artifact ECU Flat Map.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by System Configuration
Description

0..1

Aggregated by System Constraint
Description

0..1

Aggregated by System Extract 0..1

In/out Generate or Adjust System
Flat Map

1

Consumed by Add Documentation to the
Software Component

0..1 Optional input in order to refer to unique names defined
in system context.

Consumed by Generate or Adjust ECU
Flat Map

0..1 Take over definitions of unique names from system level
to ECU level.

Use meta model
element

FlatMap 1

Table 3.140: System Flat Map

270 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.2.16 System Timing

Artifact System Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description Concrete system’s TimingDescription and TimingConstraints

Description TimingDescription and TimingConstraints defined for a concrete system taking the mapping of
software components to ECUs and their implementation into account. This means that the resulting
Communication Matrix (and its implication to the communication stack) can also be referenced by
the timing specification to refine remote communication timing behavior.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by System Description 0..*

Produced by Define System Timing 1

Consumed by Define System Variants 1

Consumed by Extract ECU System Timing 1

Consumed by Deploy Software
Component

0..1

Use meta model
element

SystemTiming 1

Table 3.141: System Timing

3.3.2.17 System View Mapping

Artifact System View Mapping

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description The System View Mapping provide an mapping between different views on the system.

Description This artifact contains a set of system view mappings and provides an mapping between different
views on the system, e.g. different overall VFB systems (e.g. abstract system description with
system configuration description), or the overall VFB system with the VFB System Extract
description.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Overall VFB System 0..1 The Overall VFB System aggregates a potential
mapping to the abstract or functional view of the system.

Aggregated by VFB System Extract 0..1 The VFB System Extract aggregates a potential
mapping to the abstract or functional view of the system.

Produced by Define System View
Mapping

1

Use meta model
element

ViewMapSet 1

Table 3.142: System View Mapping

271 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.2.18 Transformer Design Bundle

Transformer Design Bundle

Custom
Transformer
Specification

BSW Module Vendor-
Specific Configuration
Parameter Definition

«aggregation»

0..1

«aggregation»

Figure 3.67: Structure of deliverable Transformer Design Bundle

Deliverable Transformer Design Bundle

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description

Description This deliverable contains a specification of the transformer technology to be implemented by the
BSWM developer. Furthermore it contains the Vendor specific parameter definition for the
corresponding transformer.

Kind Delivered

Relation Type Related Element Mult. Note

Aggregates Custom Transformer
Specification

1

Aggregates BSW Module Vendor-
Specific Configuration
Parameter Definition

0..1

Produced by Design Custom Transformer 1

Produced by Develop System 0..*

Consumed by Develop Basic Software 0..*

Table 3.143: Transformer Design Bundle

3.3.2.19 Custom Transformer Specification

Artifact Custom Transformer Specification

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description

Description This artifact represents the functional specification of the Transformer to be implemented. The
AUTOSAR methodology does not prescribe the format of this artifact.

Kind Custom

Relation Type Related Element Mult. Note

Aggregated by Transformer Design Bundle 1

▽

272 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact Custom Transformer Specification

Produced by Create Transformer
Specification

1

Table 3.144: Custom Transformer Specification

3.3.2.20 Rapid Prototyping Scenario

Artifact Rapid Prototyping Scenario

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description Description of the (required) bypass points and the hooks in the system.

Description Description of the (required) bypass points and the in the system and the corresponding hooks. This
artifact contains the RptContainers with bypass points referencing things like parameterAccess
(dataWriteAccess, dataReadAccess, dataSendPoint, dataReceivePointByValue, dataReceivePoint
ByArgument, writtenLocalVariable, readLocalVariable, etc.) The hooks describe the link between the
bypass points and the rapid prototyping algorithm.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by System Description 0..1

Produced by Define Rapid Prototyping
Scenario

1

Consumed by Extract ECU Rapid
Prototyping Scenario

1

Use meta model
element

RapidPrototypingScenario 1

Table 3.145: Rapid Prototyping Scenario

3.3.3 Communication Matrix and Communication Layers

This section contains the tasks and work products to set up the communication matrix
and the communication layers as part of a system description.

273 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.3.1 Tasks

3.3.3.1.1 Define Communication Matrix

System
Engineer

Define
Communication
Matrix Communication MatrixTopology

1 «input» «output» 1

1

«performs»

Figure 3.68: Define Communication Matrix

Task Definition Define Communication Matrix
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Tasks

Brief Description The communication matrix contents are created or extended by adding communication definitions.

Description Define or extend Communication Matrix.
Define the triggering of the Physical Channels and the mapping to the communication connector
ports.
In case of extension the original communication matrix contents (which were delivered as part of a
system extract) are extended by adding communication definitions. The main use case is the
extension of the communication matrix when refining a sub-system.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes Topology 1

Produces Communication Matrix 1

Table 3.146: Define Communication Matrix

274 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.3.1.2 Define Frames

System
Engineer

Network Layer

Data Link LayerDefine Frames

Interaction Layer

0..1

«input»

1

«performs»

«output» 1

0..1

«input»

Figure 3.69: Define Frames

Task Definition Define Frames
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Tasks

Brief Description Define Data Link Layer

Description Define the Frame and assign it to a physical channel of a communication cluster. Determine the
number, the type, the length and the timing of Frames that are sent or received by the ECUs.
Describe the mapping of Pdus (I-Pdus, N-Pdus or NmPdus) into the frame. Define the triggering and
the identification of a frame on the physical channel, on which it is sent.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes Interaction Layer 0..1

Consumes Network Layer 0..1

Produces Data Link Layer 1

Table 3.147: Define Frames

275 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.3.1.3 Define Signal PDUs

System
Engineer

Mapping of Software
Components to ECUs

System Signal

Topology

Define Signal PDUs Interaction Layer

Data Mapping 1

«input»

«output»

1

«input»

1

«input»

1

«input»

1

«performs»

Figure 3.70: Define Signal PDUs

Task Definition Define Signal PDUs

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Tasks

Brief Description Define the I-PDU and their ISignals

Description Define the Signal Pdu that is handled by AUTOSAR COM and assign it to a physical channel of a
communication cluster. Determine the length and the timing and describe the mapping of Signals
into the Signal Pdu..

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes Data Mapping 1

Consumes Mapping of Software
Components to ECUs

1

Consumes System Signal 1

Consumes Topology 1

Produces Interaction Layer 1 ISignals

Table 3.148: Define Signal PDUs

276 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.3.1.4 Define Secured PDUs

System
Engineer

Topology Interaction Layer

Define Secured
PDUs

0..1 «input»

1

«performs»

+I-PDUs

1«input»

«output»

+Secured PDUs

1

Figure 3.71: Define Secured PDUs

Task Definition Define Secured PDUs
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Tasks

Brief Description Define Secured PDUs

Description If a secured communication of a PDU over network is required, SecuredIPDUs are defined. A
secured communication can be established for IPDUs from the Interaction Layer. In addition to the
SecuredPDUs corresponding SecureCommunicationProperties are specified that describe how the
PDU is secured (e.g. authentication algorithm).

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes Interaction Layer 1 I-PDUs: Authentic IPdu that will be secured against
manipulation and replay attacks.

Consumes Topology 0..1

Produces Interaction Layer 1 Secured PDUs: Secured IPdu that contains payload of
an Authentic IPdu supplemented by additional
Authentication Information.

Table 3.149: Define Secured PDUs

277 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.3.1.5 Define TP

System
Engineer

Topology

Network Layer

Define TP

Interaction Layer

Diagnostics Interaction
Layer

1

«performs»

1 «input»

«output»

1

0..1

«input»

«output»

0..1

Figure 3.72: Define TP

Task Definition Define TP
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Tasks

Brief Description Define the Network management and the N-PDUs

Description Define the N-PDU - Network Layer Protocol Data Unit (assembled and disassembled in a Transport
Protocol module). If an I-PDU does not fit into one frame, a segmentation is needed and will be
done through several N-PDUs by the Transport Protocol module.
If large COM PDUs are transported by TP, the Interaction Layer should be the Input to the Define TP
task. If Diagnostic is used then the Diagnostics Interaction Layer should be an output of Task Define
TP.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes Topology 1

Consumes Interaction Layer 0..1

Produces Network Layer 1

Produces Diagnostics Interaction
Layer

0..1

Table 3.150: Define TP

278 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.3.1.6 Define Network Management

System
Engineer

Topology Network Layer

Interaction Layer

Define Network
Management

0..1

«input»
«performs»

«output»1 «input»

Figure 3.73: Define Network Management

Task Definition Define Network Management

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Tasks

Brief Description

Description Define the Network Management that is responsible for the communication cluster wide coordinated
switching of ECUs between operational modes (Network Mode, Bus-sleep Mode). Describe the Nm
Pdus and configure the Nm Coordinator, the Nm Clusters and Nm Nodes.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes Topology 1

Consumes Interaction Layer 0..1

Produces Network Layer 1

Table 3.151: Define Network Management

3.3.3.1.7 Define PDU Gateway

System
Engineer

Define PDU Gateway

Interaction Layer

1

«performs»

1 «inoutput» 1

Figure 3.74: Define PDU Gateway

279 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Define PDU Gateway

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Tasks

Brief Description Define the gateway for IPDUs

Description Define the gateways that are transferring the I-Pdus from one channel to the other in pairs. Each
pair consists of a source and a target referencing to a IPduTriggering. In the case that a Pdu is
being gatewayed to more than one channel of the same communication cluster, all of this gateway
relationships shall be specified. Therefore, all affected IpduTriggerings must be described as
gateway mappings.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

In/out Interaction Layer 1

Table 3.152: Define PDU Gateway

3.3.3.1.8 Define Signal Gateway

System
Engineer

Interaction Layer

Define Signal Gateway

1 «inoutput» 1

«performs»

Figure 3.75: Define Signal Gateway

Task Definition Define Signal Gateway

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Tasks

Brief Description

Description Define the Signal Gateway to describe the routing of signals and signal groups from one Physical
Channel to another Physical Channel.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

In/out Interaction Layer 1

Table 3.153: Define Signal Gateway

280 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.3.1.9 Define RTE Fan-out

System
Engineer

System Signal

Define RTE Fan-out

Interaction Layer

1..* «input»

1

«performs»

«output» 1

Figure 3.76: Define RTE Fan-out

Task Definition Define RTE Fan-out
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Tasks

Brief Description Define RTE fan-out which are the relation between ISignals and System Signal

Description The RTE supports a "signal fan-out" where the same signal (System Signal) is sent in different
IPdus to multiple receivers. The Pdu Router supports the "PDU fan-out" where the same IPdu is
sent to multiple destinations.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes System Signal 1..*

Produces Interaction Layer 1 Link of ISignals to System Signals

Table 3.154: Define RTE Fan-out

3.3.3.1.10 Define Transformation Technology

Define Transformation
Technology

System
Engineer

Interaction Layer Serial izer Transformer

1

«performs»

«output»

+SerializerTransformerTechnology

1

+ISignals

1 «input»

Figure 3.77: Define Transformation Technology

281 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Define Transformation Technology

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Tasks

Brief Description Define the transformer for serialization.

Description This task defines the transformer for serialization. In general, there are two possibilities: serialization
based on network representation and serialization based on Implementation data types.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes Interaction Layer 1 ISignals:

Produces Serializer Transformer 1 SerializerTransformerTechnology:

Table 3.155: Define Transformation Technology

3.3.3.1.11 Define E2E Transformer Technology

See Figure 2.65 Task Define E2E Transformer Technology

Task Definition Define E2E Transformer Technology

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Tasks

Brief Description Define the E2E transformer technology.

Description This task defines the E2E transformer technology.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes Interaction Layer 1 ISignals:

Produces E2E Transformer 1 E2ETransformerTechnology:

Table 3.156: Define E2E Transformer Technology

3.3.3.1.12 Define Transformation Chain

Define Transformation Chain

Interaction LayerE2E Transformer

Serializer
Transformer

Custom Transformer

System
Engineer

«output»

+TransformationChain

0..1

«input»

1

«performs»

0..1 «input»

1

«input»

Figure 3.78: Define Transformation Chain

282 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Define Transformation Chain
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Tasks

Brief Description Concatenate several transformers to a transformer chain.

Description In this task the several Transformers are concatenated to a Transformer chain producing a set of
DataTransformationSets.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes Serializer Transformer 1

Consumes Custom Transformer 0..1

Consumes E2E Transformer 0..1

Produces Interaction Layer 1 TransformationChain:

Table 3.157: Define Transformation Chain

3.3.3.2 Work Products

3.3.3.2.1 Communication Layers

Communication

Layers

Data Link

Layer

Interaction

Layer

Network

Layer

FibexElement

Frame

+ frameLength: Integer [0..1]

Pdu

IPdu

NPdu

FibexElement

UploadableDesignElement

ISignal

+ dataTypePolicy: DataTypePolicyEnum [0..1]

+ iSignalType: ISignalTypeEnum [0..1]

+ length: UnlimitedInteger [0..1]

ARElement

SystemSignal

+ dynamicLength: Boolean [0..1]

Diagnostics

Interaction

Layer

DcmIPdu

+ diagPduType: DiagPduType [0..1]

ARElement

DataTransformationSet

«AtpUseMetaModelElement»

+systemSignal 0..1

0..1

«aggregation»

1

«aggregation»

«AtpUseMetaModelElement»

0..1

«aggregation»

«
A

tp
U

s
e

M
e

ta
M

o
d

e
lE

le
m

e
n

t»

«AtpUseMetaModelElement»

«AtpUseMetaModelElement»

«
A

tp
U

s
e

M
e

ta
M

o
d

e
lE

le
m

e
n

t»

1

«aggregation»

Figure 3.79: Communication Layers

283 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Deliverable Communication Layers

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Work
products

Brief Description Communication Matrix

Description It’s a container for the description elements of the communication layers

Kind Delivered

Relation Type Related Element Mult. Note

Aggregated by System Description 0..1

Aggregates Data Link Layer 1

Aggregates Interaction Layer 1

Aggregates Diagnostics Interaction
Layer

0..1

Aggregates Network Layer 0..1

Consumed by Define System Timing 1

Consumed by Extract the ECU
Communication

1

Consumed by Set System Root 1 Only the reference to the artifact is needed

Table 3.158: Communication Layers

3.3.3.2.2 Communication Matrix

Communication Matrix

Identifiable

CoreCommunication::ISignalTriggering

Identifiable

CoreCommunication::PduTriggering

Identifiable

CoreCommunication:
:FrameTriggering

«AtpUseMetaModelElement»

«atpVariation,atpSplitable»

+iSignalTriggering

0..*

«AtpUseMetaModelElement»
«atpVariation,atpSplitable»

+pduTriggering

0..*

«AtpUseMetaModelElement»

Figure 3.80: Communication Matrix

Artifact Communication Matrix
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Work

products

Brief Description

Description Define the mapping of the triggering elements within the Physical Channels to the communication
connector ports for the individual ECUs.
Because the triggering elements are aggregated as splitable elements within the Physical Channels
it is possible to define them in an artifact separated from the Topology.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by System Description 0..*

▽

284 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact Communication Matrix
Produced by Define Communication

Matrix
1

Use meta model
element

FrameTriggering 1

Use meta model
element

ISignalTriggering 1

Use meta model
element

PduTriggering 1

Table 3.159: Communication Matrix

3.3.3.2.3 Data Link Layer

Artifact Data Link Layer

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Work
products

Brief Description Describes the frames that are used in the Data Link Layer

Description Describes the layout of frames to be sent over communication channels. This definition belongs to
the Data Link Layer. The Data Link Layer provides the functional and procedural means to transfer
data between network entities. This layer is used to transmit data passed by an upper layer (PduR,
Tp) between adjacent network nodes. In AUTOSAR the Drivers (FrDrv, CanDrv, LinDrv) and
Interfaces (FrIf, CanIf, LinIf) belong to the Data Link Layer.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Communication Layers 1

Produced by Define Frames 1

Use meta model
element

Frame 1

Table 3.160: Data Link Layer

3.3.3.2.4 Interaction Layer

Artifact Interaction Layer

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Work
products

Brief Description Describes the Signals of the Interaction Layer.

Description Describes the Signals of the Interaction Layer covering the COM Signals. The Interaction Layer
packs one or more signals into assigned COM I-Pdus and passes them to the underlying layer for
transfer between nodes in a network.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Communication Layers 1

Produced by Define RTE Fan-out 1 Link of ISignals to System Signals

▽

285 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact Interaction Layer

Produced by Define Secured PDUs 1 Secured PDUs: Secured IPdu that contains payload of
an Authentic IPdu supplemented by additional
Authentication Information.

Produced by Define Signal PDUs 1 ISignals

Produced by Define Transformation
Chain

1 TransformationChain:

In/out Define PDU Gateway 1

In/out Define Signal Gateway 1

Consumed by Define E2E Transformer
Technology

1 ISignals:

Consumed by Define Secured PDUs 1 I-PDUs: Authentic IPdu that will be secured against
manipulation and replay attacks.

Consumed by Define Transformation
Technology

1 ISignals:

Consumed by Define Frames 0..1

Consumed by Define Network
Management

0..1

Consumed by Define TP 0..1

Use meta model
element

DataTransformationSet 1

Use meta model
element

IPdu 1

Use meta model
element

ISignal 1

Table 3.161: Interaction Layer

3.3.3.2.5 Diagnostics Interaction Layer

Artifact Diagnostics Interaction Layer

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Work
products

Brief Description

Description Collection of DCM IPDUs.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Communication Layers 0..1

Produced by Define TP 0..1

Use meta model
element

DcmIPdu 1

Table 3.162: Diagnostics Interaction Layer

286 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.3.2.6 Network Layer

Artifact Network Layer

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Work
products

Brief Description Describes the PDUs of the Network Layer.

Description Describes the PDUs of the Network Layer (N-PDUs and NM-PDUs). The Network Layer’s main
purposes are :
• the segmentation and reassembly of I-PDUs and DCM I-PDUs that do not fit in one of the

assigned N-PDUs

• the definition of NM-PDUs

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Communication Layers 0..1

Produced by Define Network
Management

1

Produced by Define TP 1

Consumed by Define Frames 0..1

Use meta model
element

NPdu 1

Table 3.163: Network Layer

3.3.3.2.7 Serializer Transformer

Artifact Serializer Transformer
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Work

products

Brief Description Serialization of the input data

Description This transformer performs the serialization of the input data. It is the first transformer in the
transformer chain.

Kind
Relation Type Related Element Mult. Note

Produced by Define Transformation
Technology

1 SerializerTransformerTechnology:

Consumed by Define Transformation
Chain

1

Table 3.164: Serializer Transformer

3.3.3.2.8 E2E Transformer

Artifact E2E Transformer
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Work

products

Brief Description E2E protection transformation

Description This transformer adds E2E protection related information to the data stream.

▽

287 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact E2E Transformer
Kind
Relation Type Related Element Mult. Note

Produced by Define E2E Transformer
Technology

1 E2ETransformerTechnology:

Consumed by Define Transformation
Chain

0..1

Table 3.165: E2E Transformer

3.3.4 ECU Extract

3.3.4.1 Tasks

3.3.4.1.1 Extract ECU Topology

System
Engineer

ECU
Integrator

Topology

Extract ECU Topology

System
Description ECU Extract

ECU Extract of Topology

1

«aggregation»

«output»

1..*

0..1

«performs»

1

«input»

0..1

«performs»

0..1

«aggregation»

Figure 3.81: Extract ECU Topology

Task Definition Extract ECU Topology

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Tasks

Brief Description Extract the topology for a single ECU from the System Topology

Description From the System or System Extract Topology, extract the topology for a single ECU.

Relation Type Related Element Mult. Note

Performed by ECU Integrator 0..1

Performed by System Engineer 0..1

Consumes Topology 1

Produces ECU Extract of Topology 1..*

Table 3.166: Extract ECU Topology

288 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.4.1.2 Generate or Adjust ECU Flat Map

System
Engineer

ECU
Integrator

ECU Flat Map

System Flat Map

Generate or Adjust
ECU Flat Map

Partial Flat Map

Overall VFB
System

VFB System
Extract ECU Extract

0..1

«input»

0..1 «input»

0..1

«performs»

0..1

«performs»

0..*

«input»

1 «inoutput» 1

0..1

«input»

1

«aggregation»

Figure 3.82: Generate or Adjust ECU Flat Map

Task Definition Generate or Adjust ECU Flat Map

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Tasks

Brief Description Generates and/or adjust the unique names of component prototypes and MCD display data in the
scope of a single ECU.

Description Generates and/or adjust the unique names of component prototypes and MCD display data in the
scope of a single ECU. This information is kept in the so-called ECU Flat Map.
The names can be generated according to some rules (e.g. from model elements of the VFB
system), taken over from the System Flat Map, from partial Flat Maps, or be manually defined. The
task shall always result in an ECU Flat Map with unique names.

Relation Type Related Element Mult. Note

Performed by ECU Integrator 0..1

Performed by System Engineer 0..1

Consumes Overall VFB System 0..1 Used to set the upstream references in case one starts
from a complete system.

Consumes System Flat Map 0..1 Take over definitions of unique names from system level
to ECU level.

Consumes VFB System Extract 0..1 Used to set the upstream references in case one starts
from a system extract.

Consumes Partial Flat Map 0..* If Partial Flat Maps were delivered along with software
components referring only to ECU internal information,
they may be integrated into the ECU Flat Map directly,
i.e. without needing the System Flat Map.
• The instance refs used in a partial flat map must be

taken over and adjusted to the context ECU Extract.

• Name conflicts have to be resolved if several partial
flat maps are merged.

In/out ECU Flat Map 1

Table 3.167: Generate or Adjust ECU Flat Map

289 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.4.1.3 Flatten Software Composition

System
Engineer

ECU
Integrator

ECU Flat Map

Mapping of Software
Components to ECUs

ECU Extract of VFB
System

Flatten
Software
Composition

System Description Root
Element

VFB System ExtractOverall VFB System

ECU Extract of
Data Mapping

Data Mapping

1

«performs»

1 «input» «output» 1

1

«input»

0..1

«input»

«output»

1

0..1

«input»

1

«input»

1..*

«input»

0..1

«performs»

Figure 3.83: Flatten Software Composition

Task Definition Flatten Software Composition

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Tasks

Brief Description Extract and flatten the ECU Software Composition.

Description Generate the complete software composition in an ECU by copying ComponentPrototypes from the
VFB description into a flat representation (still without service components).
Flat representation means, that all compositions are removed and a "flat" set of Componet
Prototypes is generated. Due to the replication of ComponentPrototypes new names have to be
generated for those. These can be predefined in the FlatMap which is an input to this task.
The ECU Extract of Data Mapping is also created by this task, as the references to the Data
Prototypes need to be created with respect to the new component structure.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Performed by ECU Integrator 0..1

Consumes ECU Flat Map 1

Consumes Mapping of Software
Components to ECUs

1

Consumes System Description Root
Element

1 find the top level composition

Consumes Data Mapping 1..*

Consumes Overall VFB System 0..1 Read relevant elements starting from VFB Top Level
System Composition in case transformation starts with
the full system.

Consumes VFB System Extract 0..1 Read relevant elements starting from VFB Top Level
System Composition in case transformation starts from
the system extract.

Produces ECU Extract of Data
Mapping

1

Produces ECU Extract of VFB System 1

Table 3.168: Flatten Software Composition

290 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.4.1.4 Extract the ECU Communication

System
Engineer

ECU
Integrator

Communication
Layers

ECU Extract for
Communication

Extract the ECU
Communication

System Signal

ECU ExtractVFB System

Mapping of Software
Components to ECUs

System Signal Group

0..*

«input»

0..*

«input»

«output» 1..*

1

«input»

1

«performs»

1 «input»

1

«input»

1

«performs»

1

«aggregation»

Figure 3.84: Extract the ECU Communication

Task Definition Extract the ECU Communication
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Tasks

Brief Description The limited-scope communication matrices for an ECU to communicate on all networks on which it
is directly connected.

Description The limited-scope communication matrices for an ECU to communicate on all networks on which it
is directly connected.

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Performed by System Engineer 1

Consumes Communication Layers 1

Consumes Mapping of Software
Components to ECUs

1

Consumes VFB System 1 Need as input in order to set up the Data Mapping.

Consumes System Signal 0..*

Consumes System Signal Group 0..*

Produces ECU Extract for
Communication

1..*

Table 3.169: Extract the ECU Communication

291 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.4.1.5 Extract the ECU Timing Model

System
Engineer

ECU
Integrator

System
Description ECU Extract

Extract ECU System Timing

ECU Extract of System
Timing

System Timing

1 «input» «output» 1

0..1

«performs»

0..1

«performs»

0..*

«aggregation»

0..1

«aggregation»

Figure 3.85: Extract the ECU System Timing Model

Task Definition Extract ECU System Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Tasks

Brief Description

Description Extract the System Timing Model for a particular ECU from the model for a complete system or
system extract.

Relation Type Related Element Mult. Note

Performed by ECU Integrator 0..1

Performed by System Engineer 0..1

Consumes System Timing 1

Produces ECU Extract of System
Timing

1

Table 3.170: Extract ECU System Timing

292 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.4.1.6 Extract the ECU System Variant Model

System Engineer ECU Integrator

System
Description

ECU Extract

Extract ECU System
Variant Model

ECU Extract of
System Variant
Model

System
Constant
Value Set

Predefined Variant

Postbuild Variant Set

Evaluated Variant Set

0..1

«performs»

0..*

«input»

0..*

«input»

«output» 1

0..1

«performs»

0..*

«aggregation»

0..*

«aggregation»

0..*

«aggregation»

0..1

«aggregation»

0..*

«input»

0..*

«input»

0..*

«aggregation»

Figure 3.86: Extract the ECU System Variant Model

Task Definition Extract ECU System Variant Model

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Tasks

Brief Description

Description Extract the global model elements (ARElements) that are used to describe variants from system or
system extract scope to a particular ECU scope. This applies to:
• System Constant Value Set

• Postbuild Variant Set

• Predefined Variant

• Evaluated Variant Set

They are transformed as far as they are needed into the ECU Extract.

Relation Type Related Element Mult. Note

Performed by ECU Integrator 0..1

Performed by System Engineer 0..1

Consumes Evaluated Variant Set 0..*

Consumes Postbuild Variant Set 0..*

Consumes Predefined Variant 0..*

Consumes System Constant Value Set 0..*

Produces ECU Extract of System
Variant Model

1

Table 3.171: Extract ECU System Variant Model

293 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.4.1.7 Extract ECU Rapid Prototyping Scenario

Extract ECU Rapid Prototyping
Scenario

ECU
Integrator

System
Engineer

System
Description

Rapid
Prototyping
Scenario

ECU Extract of Rapid
Prototyping Scenario

ECU Extract

«output» 1

0..1

«performs»

0..1

«performs»

1 «input»

0..1

«aggregation»

0..1

«aggregation»

Figure 3.87: Extract ECU Rapid Prototyping Scenario

Task Definition Extract ECU Rapid Prototyping Scenario

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Tasks

Brief Description Extracts the ECU Rapid Prototyping Scenario

Description From the System Rapid Prototyping Scenario extract the entities relevant for the single ECU.

Relation Type Related Element Mult. Note

Performed by ECU Integrator 0..1

Performed by System Engineer 0..1

Consumes Rapid Prototyping Scenario 1

Produces ECU Extract of Rapid
Prototyping Scenario

1

Table 3.172: Extract ECU Rapid Prototyping Scenario

294 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.4.2 Work Products

3.3.4.2.1 ECU Extract

ECU Extract

ECU Extract for

Communication

ECU Extract of VFB

System

ECU Extract

of Topology

ECU Flat Map

ECU Extract

Root

Element

ECU Extract of

System Timing

ECU Extract of System

Variant Model

ECU Extract of

Data Mapping

ECU Extract of Rapid

Prototyping Scenario

Figure 3.88: ECU Extract

Deliverable ECU Extract
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Work products

Brief Description A version of the System Description, with information pertaining to a single ECU.

Description A deliverable used to describe the ECU specific view on the System Description. The ECU Extract is
fully decomposed and contains only Atomic Software Components.It is the basis for setting up the
ECU Configuration.
A timing model is optionally included.
This deliverable may contain variation points in its XML artifacts which need to be bound for the
ECU. If such variation points are present, the ECU extract may optionally include Predefined
Variants in order to predefine variants for later selection and an Evaluated Variant Set (this is
expressed by artifact ECU Extract of System Variant Model).
This deliverable corresponds to the system description with the system category "ECU_EXTRACT"
(see [TPS_SYST_01003]).

Kind Delivered

Relation Type Related Element Mult. Note

Aggregates ECU Extract Root Element 1

Aggregates ECU Extract for
Communication

1

Aggregates ECU Extract of Data
Mapping

1

Aggregates ECU Extract of Topology 1

Aggregates ECU Extract of VFB System 1

Aggregates ECU Flat Map 1

Aggregates ECU Extract of Rapid
Prototyping Scenario

0..1

▽

295 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Deliverable ECU Extract
Aggregates ECU Extract of System

Timing
0..1

Aggregates ECU Extract of System
Variant Model

0..1

Produced by Generate ECU Extract 1

Produced by Develop Sub-System 1..*

Produced by Develop System 1..*

Consumed by Configure Com 1

Consumed by Configure Diagnostics 1 Application software requirements for diagnostics,
especially SwcServiceDependency and ServiceNeeds.

Consumed by Configure ECUC 1

Consumed by Configure NvM 1 Application software requirements for NvM, especially
SwcServiceDependency and ServiceNeeds.

Consumed by Configure RTE 1 Elements of the System Description and VFB
Description are referred by the RTE configuration.
Optional Input: ECU Extract of System Timing, e.g.
execution order constraints.

Consumed by Configure Watchdog
Manager

1 Application software requirements for WdgM, especially
SwcServiceDependency and ServiceNeeds.

Consumed by Connect Service
Component

1 Find the ports on the application side to be connected to
the Service Component.

Consumed by Define Integration Variant 1

Consumed by Generate Base Ecu
Configuration

1

Consumed by Generate RTE 1 Find the VFB description of all Atomic Software
Components on this ECU and the relevant parts of the
system description.
The ECU Flat Map is also an input.
Meth.bindingTime = SystemDesignTime

Consumed by Generate RTE Postbuild
Dataset

1 Meth.bindingTime = LinkTime

Consumed by Generate RTE Prebuild
Dataset

1 Meth.bindingTime = CodeGenerationTime

Consumed by Generate Updated ECU
Configuration

1

Consumed by Integrate Software for ECU 1

Consumed by Prepare ECU Configuration 1

Consumed by Update ECU Configuration 1

Consumed by Configure Mode
Management

0..1 Application software requirements for NvM, especially
SwcServiceDependency and ServiceNeeds. Input in
case atomic software components are available.

Consumed by Create MC Function Model 0..1 The ECU Flat Map can be used to define references to
variables and parameters which are later visible in A2L.
Furthermore, the ECU Extract can be used to find the
relevant software components.

Consumed by Create Service Component 0..1 Input information about the Service Ports and Service
Dependencies of the software components.

Consumed by Define ECU Timing 0..1 Needed to set up links to the elements of the ECU
extract.

Configure Transformer 1

Table 3.173: ECU Extract

296 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.4.2.2 ECU Extract Root Element

Artifact ECU Extract Root Element
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Work products

Brief Description

Description Extract of the System root element for a specific ECU.

Kind AUTOSAR XML
Extends System

Relation Type Related Element Mult. Note

Aggregated by ECU Extract 1

Consumed by Generate Rapid Prototyping
Wrapper

1

Use meta model
element

System 1

Table 3.174: ECU Extract Root Element

3.3.4.2.3 ECU Extract of VFB System

Deliverable ECU Extract of VFB System

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Work products

Brief Description Contains the complete software composition in an ECU, copied from the VFB description into a flat
representation, it is still without service components.

Description Contains the complete software composition in an ECU, copied from the VFB description into a flat
representation, that means it is still without service components. Flat representation means, that all
compositions have been removed and a "flat" set of ComponentPrototypes was generated (including
their connectors) which are put into the top level composition of the ECU.

Kind Delivered

Extends VFB System

Relation Type Related Element Mult. Note

Aggregated by ECU Extract 1

Produced by Flatten Software
Composition

1

Consumed by Generate Rapid Prototyping
Wrapper

1

Use meta model
element

RootSwComposition
Prototype

1

Table 3.175: ECU Extract of VFB System

297 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.4.2.4 ECU Extract of Data Mapping

Artifact ECU Extract of Data Mapping

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Work products

Brief Description

Description ECU extract of the mapping of data prototypes from the (flattened) VFB description to System
Signals.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by ECU Extract 1

Produced by Flatten Software
Composition

1

Use meta model
element

DataMapping 1

Table 3.176: ECU Extract of Data Mapping

3.3.4.2.5 ECU Extract of Topology

Artifact ECU Extract of Topology

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Work products

Brief Description A view of the topology centered around a single ECU.

Description A view of the topology centered around a single ECU.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by ECU Extract 1

Produced by Extract ECU Topology 1..*

Use meta model
element

CommunicationCluster 1

Use meta model
element

EcuInstance 1

Table 3.177: ECU Extract of Topology

3.3.4.2.6 ECU Extract for Communication

Artifact ECU Extract for Communication
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Work products

Brief Description A version of the System Communication Matrix work product, with information pertaining to a single
ECU.

▽

298 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact ECU Extract for Communication
Description This artifact represents an extract of the System Description elements for communication with

respect to a single ECU. It provides all information needed to let the ECU communicate on all
networks on which it is directly connected.
It is extracted from these system artifacts:
• Communication Matrix

• Communication Layers

• System Signal(s)

• System Signal Group(s)

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by ECU Extract 1

Produced by Extract the ECU
Communication

1..*

Use meta model
element

FibexElement 1

Table 3.178: ECU Extract for Communication

3.3.4.2.7 ECU Extract of System Timing

Artifact ECU Extract of System Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Work products

Brief Description

Description The extract of the System Timing for a particular ECU.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by ECU Extract 0..1

Produced by Extract ECU System Timing 1

Consumed by Define ECU Timing 0..1

Use meta model
element

SystemTiming 1

Table 3.179: ECU Extract of System Timing

299 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.3.4.2.8 ECU Extract of System Variant Model

Deliverable ECU Extract of System Variant Model

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Work products

Brief Description

Description An extract of the System artifacts
• System Constant Value Set

• Postbuld Variant Set

• Predefined Variant

• Evaluated Variant Set

It contains only the elements relevant for a particular ECU.

Kind Delivered

Relation Type Related Element Mult. Note

Aggregated by ECU Extract 0..1

Aggregates Evaluated Variant Set 0..*

Aggregates Postbuild Variant Set 0..*

Aggregates Predefined Variant 0..*

Aggregates System Constant Value Set 0..*

Produced by Extract ECU System
Variant Model

1

Consumed by Generate Rapid Prototyping
Wrapper

0..1

Table 3.180: ECU Extract of System Variant Model

3.3.4.2.9 ECU Flat Map

Artifact ECU Flat Map

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Work products

Brief Description Mapping of instance names to nested model elements. Use cases: Resolve name conflicts when
flattening VFB software compositions; provide unique names for measurement and calibration data.

Description The flat map is a list of elements, each element represents exactly one node (e.g. a component
instance or data element) of the instance tree of a software system. The purpose of this element is
to map the various nested representations of this instance to a flat representation and assign a
unique name to it. The name will be unique in the scope of a single ECU. (Note that additional alias
names can be defined via artifact Alias Name Set.)
Use cases:
• Specify the display name of a data object for measurement and calibration. This serves as an

input for the calibration support which is produced by the RTE generator. The RTE generator
needs to find the attributes assigned to these data via the attached references.

• Specify a unique name for an instance of a component prototype in the ECU extract of the system
description. This information is needed to set up the ECU extract.

• Assign initial values to calibration parameters as input for the RTE generator.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by ECU Extract 1

In/out Generate or Adjust ECU
Flat Map

1

▽

300 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact ECU Flat Map

Consumed by Flatten Software
Composition

1

Consumed by Generate Local MC Data
Support

1 Meth.bindingTime = SystemDesignTime

Consumed by Generate Rapid Prototyping
Wrapper

1

Consumed by Provide RTE Calibration
Dataset

1

Consumed by Generate A2L 0..1 The ECU Flat Map is needed in case the A2L generator
has to process an MC Function Model that relates to
data in the ECU Flat Map.

Use meta model
element

FlatInstanceDescriptor 1

Table 3.181: ECU Flat Map

3.3.4.2.10 ECU Extract of Rapid Prototyping Scenario

Artifact ECU Extract of Rapid Prototyping Scenario

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Work products

Brief Description Description of the (required) bypass points in the ECU.

Description Description of the (required) bypass points in the ECU.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by ECU Extract 0..1

Produced by Extract ECU Rapid
Prototyping Scenario

1

In/out Refine Rapid Prototyping
Scenario

1

Consumed by Generate Rapid Prototyping
Wrapper

1

Table 3.182: ECU Extract of Rapid Prototyping Scenario

3.4 Software Component

This chapter contains the definition of work products and tasks used for the develop-
ment of a single software component against a given VFB description. For the defi-
nition of the relevant meta-model elements refer to [5, CP TPS Software Component
Template].

301 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.4.1 Tasks

3.4.1.1 Define Software Component Internal Behavior

Define Atomic Software
Component Internal
Behavior

Software
Component
Designer Software

Component
Developer

Software Component Internal
Behavior

VFB Atomic
Software
Component

VFB AUTOSAR Standard Package

«performs»

1

«input»

0..1

«performs»

0..1

«input»

«output» 1

Figure 3.89: Define Software Component Internal Behavior

Task Definition Define Atomic Software Component Internal Behavior

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks

Brief Description Define the InternalBehavior in relation to a given AtomicSoftwareComponentType

Description Define the InternalBehavior in relation to a given AtomicSoftwareComponentType so that an RTE
API can be generated. This includes the definition of Runnables, RTE Events, Inter-Runnable
variables, etc.

Relation Type Related Element Mult. Note

Performed by Software Component
Designer

1

Performed by Software Component
Developer

0..1

Consumes VFB Atomic Software
Component

1

Consumes VFB AUTOSAR Standard
Package

0..1 Use standardized elements (e.g. Data Types) as
blueprints (as far as applicable) to create the
corresponding elements of the actual project.

Produces Software Component
Internal Behavior

1

Table 3.183: Define Atomic Software Component Internal Behavior

302 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.4.1.2 Define Partial Flat Map

Software Component
Designer

Software
Component
Developer

Software Component Internal
Behavior

VFB System

Partial Flat Map

Define Partial Flat Map

«output» 1

0..1

«performs»

0..1

«performs»

0..*

«input»

1

«input»

Figure 3.90: Define Partial Flat Map

Task Definition Define Partial Flat Map

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks

Brief Description

Description Define a Partial Flat Map for an intended delivery of Atomic Software Components.

Relation Type Related Element Mult. Note

Performed by Software Component
Designer

0..1

Performed by Software Component
Developer

0..1

Consumes VFB System 1 Various parts of a given VFB system will be used as
input:
• Refer to parameters and variables in port interfaces

and their data types.

• In order to define unique names, also other the
component definitions not in the scope of the partial
flat map might be checked.

• Set a link to the context of the Flat Map, e.g. a VFB
Composition.

Consumes Software Component
Internal Behavior

0..* Refer to parameter and variables defined in the Internal
Behavior of one or more Atomic Software Components.

Produces Partial Flat Map 1

Table 3.184: Define Partial Flat Map

303 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.4.1.3 Define Software Component Timing

Define Software Component Timing

Software Component Developer

Software
Component
Internal Behavior

VFB Timing

Software Component Timing

1

«input»

«performs»

«output» 1

0..1

«input»

Figure 3.91: Define Software Component Timing

Task Definition Define Software Component Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks

Brief Description Define SWCTiming (TimingDescription and TimingConstraints) for the Internal Behavior (Runnable
Entities) of a Software Component

Description Define SWCTiming (TimingDescription and TimingConstraints) of a software component. A software
component can either be of type AtomicSWComponentType or CompositionSWComponentType.
In the former case, the task allows to describe timing description and constraints for the Internal
Behavior of the AtomicSWComponentType.
In the latter case, timing descriptions and constraints can be defined for all Atomic Software
Components in the CompositionSWComponentType.

Relation Type Related Element Mult. Note

Performed by Software Component
Developer

1

Consumes Software Component
Internal Behavior

1

Consumes VFB Timing 0..1

Produces Software Component
Timing

1

Table 3.185: Define Software Component Timing

304 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.4.1.4 Define SymbolProps for Types

Software Component Developer

VFB Atomic
Software
Component

VFB Types

Define SymbolProps for
Types

«performs»

«output»

+symbolProps

0..*

«output»
+symbolProps

0..*

Figure 3.92: Define SymbolProps for Types

Task Definition Define SymbolProps for Types

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks

Brief Description Define SymbolProps for types in order to resolve name conflicts in the code.

Description Redefines the symbols used by the RTE contract for the names of software component types and/or
implementation data types (in the code as well as in certain header file names).
This task is used to resolve name conflicts between different software components without changing
the VFB model.

Relation Type Related Element Mult. Note

Performed by Software Component
Developer

1

Produces VFB Atomic Software
Component

0..* symbolProps: The symbolProps attribute redefines the
software component type name used in the code of the
RTE. This resolves name clashes among different
software component types designed accidentally with
the same shortName.
Note that this output is a splitable element, so it can be
added later without changing the VFB model.

Produces VFB Types 0..* symbolProps: The symbolProps attribute redefines the
implementation data type name used in the code of the
RTE and/or the component. This resolves name clashes
among different implementation data types designed
accidentally with the same shortName.
Note that this output is a splitable element, so it can be
added later without changing the VFB model.

Table 3.186: Define SymbolProps for Types

305 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.4.1.5 Add Documentation to the Software Component

Add Documentation to the
Software Component

Software
Component
Developer

Software
Component
Designer

Software
Component
Documentation

System Flat Map

Alias Name Set

Partial Flat Map

1«inoutput»

0..*

«input»

0..1

«input»

0..1 «input»

0..1

«performs»

1

«performs»

Figure 3.93: Add Documentation to the Software Component

Task Definition Add Documentation to the Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks

Brief Description Add documentation to the Software Component

Description Add documentation to the Software Component describing the functionality, how to test it, the
calibration uses, the maintenance and diagnosis issues.

Relation Type Related Element Mult. Note

Performed by Software Component
Designer

1

Performed by Software Component
Developer

0..1

Consumes Partial Flat Map 0..1 Optional input in order to refer to unique names defined
in component or composition context.

Consumes System Flat Map 0..1 Optional input in order to refer to unique names defined
in system context.

Consumes Alias Name Set 0..* Optional input in order to refer to unique names defined
in an Alias Name Set (e.g. System Constants).

In/out Software Component
Documentation

1

Table 3.187: Add Documentation to the Software Component

306 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.4.1.6 Generate Atomic Software Component Contract Header Files

Generate Atomic Software
Component Contract Header Files

Software
Component
Developer

Component API Generator Tool

Application Header File

Software
Component Data
Types Header

Software
Component
Internal
Behavior

VFB Atomic
Software
Component

Postbuild Variant Set

Predefined Variant

System Constant Value Set

VFB Data Type
Mapping Set

VFB Interfaces VFB Modes

VFB AUTOSAR Standard Package

VFB Types Software
Component to
BSW Mapping

0..*

«input»

«used tool»

«output»

11

«input»

0..1

«input»

«performs»

0..1

«input»

0..1

«input»

0..*

«input»

1

«input»

0..1

«input»

0..1

«input»

«output» 1

0..*

«input»

0..1

«input»

Figure 3.94: Generate Atomic Software Component Contract Header Files

Task Definition Generate Atomic Software Component Contract Header Files

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks

Brief Description Generate the component contract header files.

Description Generate the component header files as part of the so-called "contract phase". These headers will
allow to link the component lateron with the RTE.
The header can still contain variants with later binding time, therefore the information about these
variants is contained in the input to this task.
Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Mult. Note

Performed by Software Component
Developer

1

Consumes Software Component
Internal Behavior

1 Meth.bindingTime = SystemDesignTime

Consumes VFB Atomic Software
Component

1 Meth.bindingTime = SystemDesignTime

Consumes Postbuild Variant Set 0..1

Consumes Predefined Variant 0..1
▽

307 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Generate Atomic Software Component Contract Header Files

Consumes Software Component to
BSW Mapping

0..1 If a Software Component is mapped to a BSW module
description, this input is optionally needed already in the
contract phase in order to ensure that the generated
prototypes for runnables are consistent with the
definitions in Software Component and BSW.
Meth.bindingTime = SystemDesignTime

Consumes System Constant Value Set 0..1 Meth.bindingTime = SystemDesignTime

Consumes VFB AUTOSAR Standard
Package

0..1

Consumes VFB Data Type Mapping
Set

0..1 Meth.bindingTime = SystemDesignTime

Consumes VFB Interfaces 0..* Meth.bindingTime = SystemDesignTime

Consumes VFB Modes 0..* Meth.bindingTime = SystemDesignTime

Consumes VFB Types 0..* Meth.bindingTime = SystemDesignTime

Produces Application Header File 1 Meth.bindingTime = CodeGenerationTime

Produces Software Component Data
Types Header

1 Meth.bindingTime = CodeGenerationTime

Used tool Component API Generator
Tool

1

Table 3.188: Generate Atomic Software Component Contract Header Files

308 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.4.1.7 Generate Component Header File in Vendor Mode

Generate Component Header File in
Vendor Mode

Component API
Generator Tool

Optimized
Application Header
File

Software
Component Data
Types Header

Software
Component
Internal
Behavior

Atomic Software
Component
Implementation

VFB Atomic
Software
Component

VFB Data Type
Mapping Set

VFB Interfaces VFB Modes

VFB AUTOSAR
Standard Package

VFB Types

Software
Component
Developer

ECU Integrator

1

«input»

1

«input»

«output»

1

0..*

«input»

0..*

«input»

1

«performs»

«output»

1

0..*

«input»

0..1

«input»

0..1

«input»

0..1

«performs»

1

«input»

«used tool»

Figure 3.95: Generate Component Header File in Vendor Mode

Task Definition Generate Component Header File in Vendor Mode

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks

Brief Description Generate an optimized component header file. This is achieved by using the RTE’s vendor mode.

Description Generate an optimized component header file. This is achieved by using the RTE’s vendor mode.
Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Mult. Note

Performed by Software Component
Developer

1

Performed by ECU Integrator 0..1

Consumes Atomic Software
Component Implementation

1 Meth.bindingTime = SystemDesignTime

Consumes Software Component
Internal Behavior

1 Meth.bindingTime = SystemDesignTime

Consumes VFB Atomic Software
Component

1 Meth.bindingTime = SystemDesignTime

Consumes VFB AUTOSAR Standard
Package

0..1

Consumes VFB Data Type Mapping
Set

0..1 Meth.bindingTime = SystemDesignTime

▽

309 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Generate Component Header File in Vendor Mode

Consumes VFB Interfaces 0..* Meth.bindingTime = SystemDesignTime

Consumes VFB Modes 0..* Meth.bindingTime = SystemDesignTime

Consumes VFB Types 0..* Meth.bindingTime = SystemDesignTime

Produces Optimized Application
Header File

1 Meth.bindingTime = CodeGenerationTime

Produces Software Component Data
Types Header

1 Meth.bindingTime = CodeGenerationTime

Used tool Component API Generator
Tool

1

Table 3.189: Generate Component Header File in Vendor Mode

3.4.1.8 Generate Component Prebuild Data Set

Generate Component Prebuild
Data Set

Software Component Developer

Predefined
Variant

System Constant
Value Set

Software Component
Internal Behavior

VFB Atomic
Software
Component

VFB Data Type
Mapping Set

VFB Interfaces VFB Modes

VFB AUTOSAR Standard Package

VFB Types Component RTE
Prebuild
Configuration
Header

Component API Generator Tool
1..*

«input»

«performs»

«output»

1

0..*

«input»

«used tool»

1

«input»

0..1

«input»

0..*

«input»

0..1

«input»

0..*

«input»

0..*

«input»

1

«input»

Figure 3.96: Generate Component Prebuild Data Set

310 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Generate Component Prebuild Data Set

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks

Brief Description Prebuild Data Set Generation Phase for a software component: It binds all variations which need to
be set after generation of the RTE contract header but before compilation of the component.

Description Prebuild Data Set Generation Phase for a software component: It binds all variations which need to
be set after generation of the RTE contract header but before compilation of the component. The
output is a configuration header which is used when compiling the component and the RTE as well.
Meth.bindingTime = PreCompileTime

Relation Type Related Element Mult. Note

Performed by Software Component
Developer

1

Consumes Software Component
Internal Behavior

1 Meth.bindingTime = CodeGenerationTime

Consumes VFB Atomic Software
Component

1 Meth.bindingTime = CodeGenerationTime

Consumes System Constant Value Set 1..* Meth.bindingTime = CodeGenerationTime

Consumes VFB AUTOSAR Standard
Package

0..1

Consumes VFB Data Type Mapping
Set

0..1 Meth.bindingTime = CodeGenerationTime

Consumes Predefined Variant 0..*

Consumes VFB Interfaces 0..* Meth.bindingTime = CodeGenerationTime

Consumes VFB Modes 0..* Meth.bindingTime = CodeGenerationTime

Consumes VFB Types 0..* Meth.bindingTime = CodeGenerationTime

Produces Component RTE Prebuild
Configuration Header

1 Meth.bindingTime = PreCompileTime

Used tool Component API Generator
Tool

1

Table 3.190: Generate Component Prebuild Data Set

311 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.4.1.9 Implement Atomic Software Component

Implement Atomic Software
Component

Software
Component
Developer

Atomic Software Component
Source Code

Atomic Software Component
Implementation

Standard Header Files Software Component Timing

Library
Description

Library
Header
Files

Software
Component
Internal
Behavior

Application Header File

Software Component
Data Types Header

«performs»

0..*

«input»

0..1

«input»

1

«input» «output»

1

0..1
«input»

1 «input»

1

«input»

0..*

«input»

«output» 1

Figure 3.97: Implement Atomic Software Component

Task Definition Implement Atomic Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks

Brief Description Implement the code of the AtomicSoftwareComponent and decribe the Implementation.

Description Implement the code of the AtomicSoftwareComponent against the generated component contract
header. Document the basic information in the Implementation Description.
Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Mult. Note

Performed by Software Component
Developer

1

Consumes Application Header File 1 Meth.bindingTime = SystemDesignTime

Consumes Software Component Data
Types Header

1 Meth.bindingTime = SystemDesignTime

Consumes Software Component
Internal Behavior

1 Meth.bindingTime = SystemDesignTime

Consumes Software Component
Timing

0..1 Meth.bindingTime = SystemDesignTime

Consumes Standard Header Files 0..1 Meth.bindingTime = CodeGenerationTime

Consumes Library Description 0..* Meth.bindingTime = CodeGenerationTime

Consumes Library Header Files 0..* Meth.bindingTime = CodeGenerationTime

Produces Atomic Software
Component Implementation

1 Meth.bindingTime = CodeGenerationTime

Produces Atomic Software
Component Source Code

1 Meth.bindingTime = CodeGenerationTime

Table 3.191: Implement Atomic Software Component

312 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.4.1.10 Compile Atomic Software Component

Compile Atomic
Software
Component

Software
Component
Developer

Compiler

Atomic Software
Component Object
Code

Atomic
Software
Component
Source Code

Application Header File

Component RTE Prebuild
Configuration Header

Software
Component Data
Types Header

Library Header FilesStandard Header Files

Rapid
Prototyping
Wrapper
Header File

Rapid
Prototyping
Wrapper
Source Code

Rapid Prototyping
Engineer

1

«input»

«used tool»

1

«input»

0..*

«input»

0..1

«input»

0..1

«performs»

1

«input»

0..1

«input»

1

«input»

0..1

«performs»

«output»

1

0..1

«input»

Figure 3.98: Compile Atomic Software Component

Task Definition Compile Atomic Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks

Brief Description Compile the AtomicSoftwareComponent independently of an ECU.

Description Compile the Atomic Software Component independently of an ECU. In the context of Rapid
Prototyping Wrapper compilation the task is performed by the Rapid Prototyping Engineer.
Meth.bindingTime = CompileTime

Relation Type Related Element Mult. Note

Performed by Rapid Prototyping Engineer 0..1

Performed by Software Component
Developer

0..1

Consumes Application Header File 1 Meth.bindingTime = CodeGenerationTime

Consumes Atomic Software
Component Source Code

1 Meth.bindingTime = CodeGenerationTime

Consumes Software Component Data
Types Header

1 Meth.bindingTime = CodeGenerationTime

Consumes Standard Header Files 1 Meth.bindingTime = CodeGenerationTime

Consumes Component RTE Prebuild
Configuration Header

0..1 Meth.bindingTime = PreCompileTime

Consumes Rapid Prototyping Wrapper
Header File

0..1

▽

313 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Compile Atomic Software Component

Consumes Rapid Prototyping Wrapper
Source Code

0..1

Consumes Library Header Files 0..* Meth.bindingTime = CodeGenerationTime

Produces Atomic Software
Component Object Code

1 The object file should include both code of the SWC and
the E2E Protection Wrapper code (if present as an
input).
Meth.bindingTime = CompileTime

Used tool Compiler 1

Table 3.192: Compile Atomic Software Component

3.4.1.11 Map Software Component to BSW

Map Software Component to BSW Software
Component to
BSW Mapping

Basic Software
Module Internal
Behavior

Software
Component
Internal Behavior

Complex Driver Component

ECU Abstraction Software
Component

Software
Component
Designer

ECU Integrator1

«performs»

«output» 1

0..1

«input»

0..1

«performs»

1

«input»

1

«input»

0..1

«input»

Figure 3.99: Map Software Component to BSW

314 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Map Software Component to BSW

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks

Brief Description Define the mapping between a Software Component and a BSW Module.

Description Define the mapping between a Software Component and a BSW Module. Required only for
Complex Drivers and ECU Abstraction Components. Note that for Service Components, this
mapping will be generated in the ECU integration phase, so the latter is not considered as a task in
the responsibility of the BSW developer.

Relation Type Related Element Mult. Note

Performed by Software Component
Designer

1

Performed by ECU Integrator 0..1

Consumes Basic Software Module
Internal Behavior

1

Consumes Software Component
Internal Behavior

1

Consumes Complex Driver Component 0..1

Consumes ECU Abstraction Software
Component

0..1

Produces Software Component to
BSW Mapping

1

Table 3.193: Map Software Component to BSW

3.4.1.12 Measure Component Resources

Measure Component Resources

Basic Software Module Developer ECU Integrator

Software
Component
Developer

Atomic Software Component
Implementation

Atomic Software
Component Object
Code

ECU Resources
Description

Software Component Timing

1

«performs»

«inoutput» 1

1

«input»

«input»

0..1

0..1

«performs»

0..1

«performs»

«input»0..1

Figure 3.100: Measure Component Resources

315 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Measure Component Resources

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks

Brief Description Measure the resource consumption of an Atomic Software Component

Description Determine the resource consumption (memory, execution time) for a specific implementation of an
Atomic Software Component in a certain context (ECU or test environment) and document the
results in the Implementation description targeted at this specific platform.
The ECU Resources Description is an optional input, because some results should be documented
in relation to the hardware elements.

Relation Type Related Element Mult. Note

Performed by Software Component
Developer

1

Performed by Basic Software Module
Developer

0..1

Performed by ECU Integrator 0..1

Consumes Atomic Software
Component Object Code

1

Consumes ECU Resources Description 0..1

Consumes Software Component
Timing

0..1

In/out Atomic Software
Component Implementation

1

Table 3.194: Measure Component Resources

3.4.1.13 Recompile Component in ECU Context

Re-compile
Component in ECU
context

Software Component Developer

Compiler

Atomic Software
Component Source Code

Library Header
Files

Optimized Software Component
Object Code

Optimized Application
Header File

Standard Header Files

1

«input»

0..*

«input»

1

«input»

0..*

«performs»

«used tool»

1

«input»

«output» 1

Figure 3.101: Recompile Component in ECU Context

316 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Re-compile Component in ECU context

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks

Brief Description Re-compile Component with ECU-Configuration specific optimizations.

Description Re-compile Component with optimizations made by the RTE in the context of an ECU (so-called
RTE implementation phase).
Meth.bindingTime = CompileTime

Relation Type Related Element Mult. Note

Performed by Software Component
Developer

0..*

Consumes Atomic Software
Component Source Code

1 Meth.bindingTime = CodeGenerationTime

Consumes Optimized Application
Header File

1 Meth.bindingTime = CodeGenerationTime

Consumes Standard Header Files 1 Meth.bindingTime = CodeGenerationTime

Consumes Library Header Files 0..* Meth.bindingTime = CodeGenerationTime

Produces Optimized Software
Component Object Code

1 Meth.bindingTime = CompileTime

Used tool Compiler 1

Table 3.195: Re-compile Component in ECU context

3.4.1.14 Define Consistency Needs

Define Consistency
Needs

Software Component
Designer

Software Component
Developer

Consistency Needs

Software
Component
Internal
Behavior

VFB Types

VFB Interfaces

VFB Atomic Software Component

0..*

«input»

«performs»
«performs»

0..*

«input»

1..*

«input»

«inoutput» 1

0..*

«input»

Figure 3.102: Define Consistency Needs

317 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Define Consistency Needs

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks

Brief Description

Description Defines the consistency relations between a group of RunnableEntitys and a group of Data
Prototypes. The consistency relations can be defined first time at the design of an Atomic Software
Component but can be added as well if Compositions are created.

Relation Type Related Element Mult. Note

Performed by Software Component
Designer

1

Performed by Software Component
Developer

1

Consumes Software Component
Internal Behavior

1..* Runnables the consistency is defined for.

Consumes VFB Atomic Software
Component

0..* The description of an AtomicSoftwareComponentType
without InternalBehavior.

Consumes VFB Interfaces 0..* Interfaces which are relevant for the consistency
definition.

Consumes VFB Types 0..* Data types which are relevant for the consistency
definition.

In/out Consistency Needs 1 The description of the correlation between a group of
RunnableEntitys and a group of DataPrototypes. In
order to allow incremental development and refinement
the Consistency Needs artifact is also used as an input.

Table 3.196: Define Consistency Needs

318 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.4.1.15 Generate Rapid Prototyping Wrapper

Generate Rapid
Prototyping Wrapper

Software Component Internal
Behavior

Rapid Prototyping
Wrapper Header
File

Rapid Prototyping
Wrapper Source
Code

Rapid Prototyping
Engineer

ECU Extract
Root Element

ECU Extract of
System Variant
Model

ECU Extract of VFB
System

ECU Extract of Rapid
Prototyping Scenario

ECU Flat Map

1

«input»

«output»
1

0..1

«input»

«output»

1

1

«input»

1

«input»

1

«input»

1

«input»

1

«performs»

Figure 3.103: Generate Rapid Prototyping Wrapper

Task Definition Generate Rapid Prototyping Wrapper

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks

Brief Description Generate Rapid Prototyping Wrapper code.

Description Generate Rapid Prototyping Wrapper code. The header and source code are generated based on
the Rapid Prototyping Scenario describing the bypass points and the RPT hooks.

Relation Type Related Element Mult. Note

Performed by Rapid Prototyping Engineer 1

Consumes ECU Extract Root Element 1

Consumes ECU Extract of Rapid
Prototyping Scenario

1

Consumes ECU Extract of VFB System 1

Consumes ECU Flat Map 1

Consumes Software Component
Internal Behavior

1

Consumes ECU Extract of System
Variant Model

0..1

Produces Rapid Prototyping Wrapper
Header File

1

Produces Rapid Prototyping Wrapper
Source Code

1

Table 3.197: Generate Rapid Prototyping Wrapper

319 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.4.2 Work Products

3.4.2.1 Delivered Atomic Software Components

Delivered Atomic Software
Components

Software
Component
Internal
Behavior

Software
Component
to BSW
Mapping

Atomic
Software
Component
Source Code

Software
Component
Documentation

Atomic Software
Component
Implementation

Atomic Software
Component
Object Code

Application
Header File

Component RTE Prebuild
Configuration Header

Software Component
Data Types Header

System Constant
Value Set

Predefined Variant

Software
Component Timing

Evaluated Variant Set

Postbuild Variant Set
Library Object
Code

VFB Atomic Software
Component VFB Interfaces VFB Modes

VFB Data Type
Mapping SetVFB Types

VFB Composition
Component

Partial Flat MapAlias Name Set

Consistency Needs

Figure 3.104: Delivered Atomic Software Components

320 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Deliverable Delivered Atomic Software Components

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description Delivery of a set of AtomicSoftwareComponents including their Implementation.

Description Complete description of a set of AtomicSoftwareComponents including Implementation (still
standalone, not yet mapped to a specific ECU). The source or object code files are referred by the
Implementation Description.
The Atomic Software Components that make up the delivery may or may not form a composition (in
the sense of the VFB).
Note that the VFB descriptions of the components, compositions and the used interfaces are part of
the deliverable too in order to describe the delivered components completely. However, depending
on the use case, these parts could have been predefined and were treated as "readonly" during the
component development. The same holds (optionally) for the Internal Behavior(s).
In case of RTE generation a mapping set between Application and Implementation Data Types shall
be included if Application Data Types are used. A Timing Model is included optionally.
The delivery can optionally also contain variants (an Evaluated Variant Set and the related artifacts).

Kind Delivered

Relation Type Related Element Mult. Note

Aggregates Application Header File 1..*

Aggregates Software Component Data
Types Header

1..*

Aggregates VFB Atomic Software
Component

1..*

Aggregates Alias Name Set 0..1 Alias names valid in the context of the delivered
components.

Aggregates Evaluated Variant Set 0..1

Aggregates Partial Flat Map 0..1

Aggregates Postbuild Variant Set 0..1

Aggregates Atomic Software
Component Implementation

0..* If the delivery contains only VFB NvBlock Software
Components, no implementation is contained as the
code is generated as part of the RTE.

Aggregates Atomic Software
Component Object Code

0..*

Aggregates Atomic Software
Component Source Code

0..*

Aggregates Component RTE Prebuild
Configuration Header

0..*

Aggregates Consistency Needs 0..* Correlation between a group of RunnableEntitys and a
group of DataPrototypes.

Aggregates Library Object Code 0..*

Aggregates Predefined Variant 0..*

Aggregates Software Component
Documentation

0..*

Aggregates Software Component
Internal Behavior

0..* If the delivery contains only VFB NvBlock Software
Components, the Internal Behavior is optional since it is
needed only in special cases.

Aggregates Software Component
Timing

0..*

Aggregates Software Component to
BSW Mapping

0..*

Aggregates System Constant Value Set 0..*

Aggregates VFB Composition
Component

0..* In case the delivered atomic components make up one
or more VFB Compositions, the composition
description(s) shall be included in the delivery.

▽

321 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Deliverable Delivered Atomic Software Components

Aggregates VFB Data Type Mapping
Set

0..*

Aggregates VFB Interfaces 0..*

Aggregates VFB Modes 0..*

Aggregates VFB Types 0..*

Produced by Develop Application
Software

1..* Complete description of a set of AtomicSoftware
Components including implementation (incl. source or
object code files)

Consumed by Configure RTE 1..* Required input:
• References to all component implementation

descriptions on this ECU

• SwcInternalBehavior (for example to map the
runnables to tasks) which was used in the contract
phase of the software components on this ECU

Consumed by Generate RTE 1..* Required input:
• References to all component implementation

descriptions on this ECU

• SwcInternalBehavior which was used in the contract
phase of the software components on this ECU

• (optional) Software Component to BSW Mapping

Meth.bindingTime = SystemDesignTime

Consumed by Integrate Software for ECU 1..*

Consumed by Define Alias Names 0..1 Needed for definition of alias names in the scope of
delivered software components.

Consumed by Create MC Function Model 0..* The component model may be used to derive an MC
Function Model.

Table 3.198: Delivered Atomic Software Components

3.4.2.2 Software Component Internal Behavior

Artifact Software Component Internal Behavior

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description Description of the InternalBehavor: It describes the RTE relevant aspects of a component, for
example the runnable entities and the events they respond to.

Description Description of the Internal Behavor. The Internal Behavior of an Atomic Software Component
describes the RTE relevant aspects of a component, i.e. the runnable entities and the events they
respond to. It is used to generate the RTE but also as input for parts of the basic software
generation (AUTOSAR Services). The Internal Behavior (i.e. the XML description) can only be used
together with an Atomic Software Component Type to which it is related.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software
Components

0..* If the delivery contains only VFB NvBlock Software
Components, the Internal Behavior is optional since it is
needed only in special cases.

Produced by Define Atomic Software
Component Internal
Behavior

1

▽

322 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact Software Component Internal Behavior

Consumed by Define Software
Component Safety
Information

1

Consumed by Define Software
Component Timing

1

Consumed by Generate Atomic Software
Component Contract
Header Files

1 Meth.bindingTime = SystemDesignTime

Consumed by Generate Component
Header File in Vendor Mode

1 Meth.bindingTime = SystemDesignTime

Consumed by Generate Component
Prebuild Data Set

1 Meth.bindingTime = CodeGenerationTime

Consumed by Generate Rapid Prototyping
Wrapper

1

Consumed by Implement Atomic Software
Component

1 Meth.bindingTime = SystemDesignTime

Consumed by Map Software Component
to BSW

1

Consumed by Refine Rapid Prototyping
Scenario

1

Consumed by Define Consistency Needs 1..* Runnables the consistency is defined for.

Consumed by Define Rapid Prototyping
Scenario

1..*

Consumed by Select Software Component
Implementation

1..*

Consumed by Generate Local MC Data
Support

0..1 Meth.bindingTime = SystemDesignTime

Consumed by Define Partial Flat Map 0..* Refer to parameter and variables defined in the Internal
Behavior of one or more Atomic Software Components.

Consumed by Define VFB NvBlock
Software Component

0..* This input is required to collect the requirements for the
NvBlockNeeds from the using application software.

Use meta model
element

SwcInternalBehavior 1

Table 3.199: Software Component Internal Behavior

323 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.4.2.3 Atomic Software Component Implementation

Artifact Atomic Software Component Implementation

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description Description of an implementation for a single Atomic Software Component.

Description Description of an implementation for a single Atomic Software Component. It is possible to have
several different implementations for the same Software Component Internal Behavior, but only one
implementation can be mapped to a particular ECU. In general, this XML artifact relates to one
particular version of the code. It contains the version information as defined by the vendor.
An implementation description may depend on several non-AUTOSAR artifacts, especially its own
code files (source or object) but also required libraries, generator tools etc. These dependencies are
not described by direct references to files (because this might be ambiguous), but by referring
entries in the container catalog of the General Deliverable which contains the implementation
artifacts. Such a reference is described via the metamodel element AutosarEngineeringObject (refer
to document ID 202 FO_TPS_GenericStructureTemplate for further description). This allows among
other things to refer to a particular version of an artifact.
For more information on the content of the implmementation description refer to document ID 89
CP_TPS_BSWModuleDescriptionTemplate.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software
Components

0..* If the delivery contains only VFB NvBlock Software
Components, no implementation is contained as the
code is generated as part of the RTE.

Produced by Create Service Component 1 In order to generate the RTE, one needs to create a
kind of dummy Implementation element for the Service
Component, however this should not be filled with
descriptive elements, e.g. resource consumption, as
these are already defined by the Basic Software Module
Implementation Description.
Meth.bindingTime = SystemDesignTime

Produced by Implement Atomic Software
Component

1 Meth.bindingTime = CodeGenerationTime

Produced by Measure Resources 0..* Add extensions to the Implementation Description.
Meth.bindingTime = PostBuild

In/out Measure Component
Resources

1

Consumed by Generate Component
Header File in Vendor Mode

1 Meth.bindingTime = SystemDesignTime

Consumed by Generate SWC Memory
Mapping Header

1 MemorySections: MemorySections defined for an
Atomic Software Component.
Meth.bindingTime = SystemDesignTime

Consumed by Select Software Component
Implementation

1..*

Consumed by Configure Memmap
Allocation

0..* MemorySections:

Use meta model
element

Implementation 1

Table 3.200: Atomic Software Component Implementation

324 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.4.2.4 Software Component Documentation

Artifact Software Component Documentation

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description Documentation dedicated to a Software Component.

Description Documentation of a dedicated Software Component. This documentation is following the ASAM
FSX standard. In this documentation, you will find the SW Feature definition and description which
define the physical functionality of the Swc, the SW test description which will contains suggestions
and hints for the test of the software functionality of the Swc, the SW calibration notes which will give
calibration instructions and hints for a calibration engineer, some maintenance, diagnosis and CARB
notes which will bring general information, on the maintenance diagnosis and CARB issues on the
Swc. For other description not listed previously, some notes (chapters) are left free for that.
This artifact may also contain standalone documentation (meta-class Documentation) not
aggregeted by a specific software component.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software
Components

0..*

In/out Add Documentation to the
Software Component

1

Use meta model
element

Documentation 1

Use meta model
element

SwComponent
Documentation

1

Table 3.201: Software Component Documentation

3.4.2.5 Software Component Timing

Artifact Software Component Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description Software Component’s TimingDescription and TimingConstraints

Description TimingDescription and TimingConstraints of a software component. A software component can
either be of type AtomicSWComponentType or CompositionSWComponentType.
In the former case, the SwcTiming allows to describe timing description and constraints for the
InternalBehavior of the AtomicSWComponentType.
In the latter case, timing descriptions and constraints can be defined for all Atomic Software
Components in the CompositionSWComponentType.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software
Components

0..*

Produced by Define Software
Component Timing

1

Consumed by Define System Timing 0..1

Consumed by Implement Atomic Software
Component

0..1 Meth.bindingTime = SystemDesignTime

Consumed by Measure Component
Resources

0..1

▽

325 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact Software Component Timing

Use meta model
element

SwcTiming 1

Table 3.202: Software Component Timing

3.4.2.6 Software Component to BSW Mapping

Artifact Software Component to BSW Mapping

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description Desribes how to map a software component to basic software elements (required in special cases
only).

Description Maps an SwcInternalBehavior to an BswInternalBehavior. This is required to coordinate the API
generation and the scheduling for AUTOSAR Service Components, ECU Abstraction Components
and Complex Driver Components by the RTE and the BSW scheduling mechanisms.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software
Components

0..*

Produced by Map Software Component
to BSW

1

Produced by Create Service Component 0..1 Meth.bindingTime = SystemDesignTime

Consumed by Generate Atomic Software
Component Contract
Header Files

0..1 If a Software Component is mapped to a BSW module
description, this input is optionally needed already in the
contract phase in order to ensure that the generated
prototypes for runnables are consistent with the
definitions in Software Component and BSW.
Meth.bindingTime = SystemDesignTime

Consumed by Generate RTE 0..* This input is explicitly stated because the mapping may
be created during ECU integration and thus is not
necessarily part of the Delivered Atomic Software
Components.
Meth.bindingTime = SystemDesignTime

Use meta model
element

SwcBswMapping 1

Table 3.203: Software Component to BSW Mapping

3.4.2.7 Partial Flat Map

Artifact Partial Flat Map

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description

Description The Partial Flat Map pre-defines Flat Map entries in the context of delivered software components.
This allows the component developer to specify names of data instances for measurement and
calibration. It has to be integrated into the System Flat Map.
For more information on the Flat Map concept refer to artifact System Flat Map in the system
domain.

▽

326 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact Partial Flat Map

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software
Components

0..1

Produced by Define Partial Flat Map 1

Consumed by Add Documentation to the
Software Component

0..1 Optional input in order to refer to unique names defined
in component or composition context.

Consumed by Generate or Adjust ECU
Flat Map

0..* If Partial Flat Maps were delivered along with software
components referring only to ECU internal information,
they may be integrated into the ECU Flat Map directly,
i.e. without needing the System Flat Map.
• The instance refs used in a partial flat map must be

taken over and adjusted to the context ECU Extract.

• Name conflicts have to be resolved if several partial
flat maps are merged.

Consumed by Generate or Adjust System
Flat Map

0..* If Partial Flat Maps were delivered along with software
components, they must be integrated into the System
Flat Map:
• The instance refs used in a partial flat map must be

taken over and adjusted to the context of the System
or System Extract.

• Name conflicts have to be resolved if several partial
flat maps are merged.

Use meta model
element

FlatMap 1

Table 3.204: Partial Flat Map

3.4.2.8 Application Header File

Artifact Application Header File

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description Header generated for an AtomicSoftwareComponentType in the RTE contract phase.

Description Header generated for an AtomicSoftwareComponentType in the RTE contract phase. It represents
the complete source-code interface between the component code and RTE (calls into the RTE as
well as prototypes called by the RTE). All communication of the component code with other
components is routed through this header.

Kind Source Code

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software
Components

1..*

Produced by Generate Atomic Software
Component Contract
Header Files

1 Meth.bindingTime = CodeGenerationTime

Consumed by Compile Atomic Software
Component

1 Meth.bindingTime = CodeGenerationTime

Consumed by Implement Atomic Software
Component

1 Meth.bindingTime = SystemDesignTime

▽

327 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact Application Header File

Consumed by Compile ECU Source Code 1..* Meth.bindingTime = CodeGenerationTime

Table 3.205: Application Header File

3.4.2.9 Software Component Data Types Header

Artifact Software Component Data Types Header

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description Software Component Data Types Header provided by the RTE in the contract phase.

Description Software Component Data Types Header provided by the RTE in the contract phase. This includes
data types, which were declared as part of the SWC description but not used in any ports or data
elements.

Kind Source Code

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software
Components

1..*

Produced by Generate Atomic Software
Component Contract
Header Files

1 Meth.bindingTime = CodeGenerationTime

Produced by Generate Component
Header File in Vendor Mode

1 Meth.bindingTime = CodeGenerationTime

Consumed by Compile Atomic Software
Component

1 Meth.bindingTime = CodeGenerationTime

Consumed by Implement Atomic Software
Component

1 Meth.bindingTime = SystemDesignTime

Consumed by Compile ECU Source Code 0..* Meth.bindingTime = CodeGenerationTime

Table 3.206: Software Component Data Types Header

3.4.2.10 Component RTE Prebuild Configuration Header

Artifact Component RTE Prebuild Configuration Header

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description Generated header file used to resolve the prebuild variants in the prebuild RTE contract phase for an
SWC.

Description Generated header file used to resolve the prebuild variants of a software component in the prebuild
RTE contract phase. Contains macros which resolve the variants when compiled with the module
and the generated RTE.

Kind Bound Source Code

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software
Components

0..*

Produced by Generate Component
Prebuild Data Set

1 Meth.bindingTime = PreCompileTime

Consumed by Compile Atomic Software
Component

0..1 Meth.bindingTime = PreCompileTime

▽

328 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact Component RTE Prebuild Configuration Header

Consumed by Compile ECU Source Code 0..* Meth.bindingTime = CodeGenerationTime

Table 3.207: Component RTE Prebuild Configuration Header

3.4.2.11 Atomic Software Component Source Code

Artifact Atomic Software Component Source Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description Source code implementing an Atomic Software Component Type

Description Source code implementing an Atomic Software Component Type. In general it is independent from
an ECU.

Kind Source Code

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software
Components

0..*

Produced by Implement Atomic Software
Component

1 Meth.bindingTime = CodeGenerationTime

Consumed by Compile Atomic Software
Component

1 Meth.bindingTime = CodeGenerationTime

Consumed by Re-compile Component in
ECU context

1 Meth.bindingTime = CodeGenerationTime

Consumed by Compile ECU Source Code 0..* Meth.bindingTime = CodeGenerationTime

Table 3.208: Atomic Software Component Source Code

3.4.2.12 Atomic Software Component Object Code

Artifact Atomic Software Component Object Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description

Description Object Code of an Atomic Software Component.

Kind Object Code

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software
Components

0..*

Produced by Compile Atomic Software
Component

1 The object file should include both code of the SWC and
the E2E Protection Wrapper code (if present as an
input).
Meth.bindingTime = CompileTime

Consumed by Measure Component
Resources

1

Consumed by Generate ECU Executable 0..* Meth.bindingTime = CompileTime

Table 3.209: Atomic Software Component Object Code

329 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.4.2.13 Optimized Application Header File

Artifact Optimized Application Header File

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description Optimized application header file for a software component.

Description Application header file for a software component optimized by the RTE in vendor mode.

Kind Source Code

Relation Type Related Element Mult. Note

Produced by Generate Component
Header File in Vendor Mode

1 Meth.bindingTime = CodeGenerationTime

Consumed by Re-compile Component in
ECU context

1 Meth.bindingTime = CodeGenerationTime

Consumed by Compile ECU Source Code 0..* Meth.bindingTime = CodeGenerationTime

Table 3.210: Optimized Application Header File

3.4.2.14 Optimized Software Component Object Code

Artifact Optimized Software Component Object Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description The object code of a software component compiled with ECU specific optimizations.

Description The object code of a software component compiled with ECU specific optimizations.

Kind Object Code

Relation Type Related Element Mult. Note

Produced by Re-compile Component in
ECU context

1 Meth.bindingTime = CompileTime

Table 3.211: Optimized Software Component Object Code

3.4.2.15 Consistency Needs

Artifact Consistency Needs

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description

Description A ConsistencyNeed describes the correlation between a group of RunnableEntitys and a group of
DataPrototypes with the intended purpose to describe the need for
• Stable data during the execution of a group of RunnableEntitys.

• Coherent data consumption and propagation for a group of DataPrototypes.

The information can be defined first time at the design of an Atomic Software Component but can be
added as well if Compositions are created. In order to allow incremental development the groups of
Runnables and DataPrototypes can be distributed over several artifacts.

Kind
Relation Type Related Element Mult. Note

Aggregated by VFB System 1 Correlation between a group of RunnableEntitys and a
group of DataPrototypes.

▽

330 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact Consistency Needs

Aggregated by Delivered Atomic Software
Components

0..* Correlation between a group of RunnableEntitys and a
group of DataPrototypes.

In/out Define Consistency Needs 1 The description of the correlation between a group of
RunnableEntitys and a group of DataPrototypes. In
order to allow incremental development and refinement
the Consistency Needs artifact is also used as an input.

Use meta model
element

ConsistencyNeeds 1

Table 3.212: Consistency Needs

3.4.2.16 Rapid Prototyping Wrapper Header File

Artifact Rapid Prototyping Wrapper Header File

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description

Description This header replaces the RTE API in order to allow to read and modify inputs and outputs of the
original SWC as well as to control execution of the original (and prototype) runnable.

Kind Source Code

Relation Type Related Element Mult. Note

Produced by Generate Rapid Prototyping
Wrapper

1

Consumed by Compile Atomic Software
Component

0..1

Table 3.213: Rapid Prototyping Wrapper Header File

3.4.2.17 Rapid Prototyping Wrapper Source Code

Artifact Rapid Prototyping Wrapper Source Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description

Description A piece of code that is placed between software components and the RTE in order to provide rapid
prototyping functionality. This code allows to encapsulate the SWC to bypass into the rapid
prototyping component and may be implemented ad as a complex device driver and/or integration
code.

Kind Source Code

Relation Type Related Element Mult. Note

Produced by Generate Rapid Prototyping
Wrapper

1

Consumed by Compile Atomic Software
Component

0..1

Table 3.214: Rapid Prototyping Wrapper Source Code

331 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.4.3 Tools

3.4.3.1 Component API Generator Tool

Tool Component API Generator Tool

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Guidance

Brief Description Generates the software component contract header used to connect the software component to the
RTE layer.

Description This guidance represents the so-called contract phase of the RTE generation process.
• SWC Contract phase - a limited set of information about a component, principally the AUTOSAR

Interface definitions and the internal behavior, is used to create an application header file for a
component type. The application header file defines the "contract" between component and RTE.

• BSW Contract phase - a similar use case for a BSW module in order to generate the module
interlink header files, which are used to interface between the module and the BSW Scheduler.

• Additional phases - for SWS and BSW as well - are used to bind pre-build variants in the contract
headers of a single Software Component or BSW module.

Kind
Relation Type Related Element Mult. Note

Used Generate Atomic Software
Component Contract
Header Files

1

Used Generate BSW Module
Prebuild Data Set

1

Used Generate BSWM Contract
Header Files

1

Used Generate Component
Header File in Vendor Mode

1

Used Generate Component
Prebuild Data Set

1

Table 3.215: Component API Generator Tool

3.5 Basic Software

This chapter contains the definition of work products and tasks used for the develop-
ment of Basic Software modules. For the definition of the relevant meta-model ele-
ments refer to [9, CP TPS BSW Module Description Template].

332 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.5.1 Tasks

3.5.1.1 Define BSW Types

Define BSW Types
BSW Standard Package

BSW Types

Basic
Software
Designer

Basic
Software
Module
Developer

«performs»

«input»

«performs»

«inoutput»

Figure 3.105: Define BSW Types

Task Definition Define BSW Types

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks

Brief Description Define data types for usage within the Basic Software.

Description A data type is typically based on elements standardized by AUTOSAR, therefore BSW Standard
Package appears as a mandatory input.

Relation Type Related Element Mult. Note

Performed by Basic Software Designer 1

Performed by Basic Software Module
Developer

1

Consumes BSW Standard Package 1

In/out BSW Types 1

Table 3.216: Define BSW Types

3.5.1.2 Define BSW Entries

Define BSW Entries

BSW Types

BSW Standard Package

Basic Software Entries

Basic
Software
Designer

Basic
Software
Module
Developer

«input»

0..1

«input»

1

«performs»

0..1

«performs»

1

«output» 1

Figure 3.106: Define BSW Entries

333 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Define BSW Entries
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks

Brief Description Define BswEntries (= function signatures) for usage within the Basic Software.

Description

Relation Type Related Element Mult. Note

Performed by Basic Software Designer 1

Performed by Basic Software Module
Developer

1

Consumes BSW Types 1

Consumes BSW Standard Package 0..1

Produces Basic Software Entries 1

Table 3.217: Define BSW Entries

3.5.1.3 Define BSW Interfaces

Define BSW Interfaces
BSW Standard Package

BSW Types

Basic Software Entries ECU Resources Description

Basic Software Module Description

Basic
Software
Designer

Basic
Software
Module
Developer

«input»

1

«performs»

0..1

«input»

0..1

«input»0..1

«input»

1

«performs»

1

«output» 1

Figure 3.107: Define BSW Interfaces

Task Definition Define BSW Interfaces
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks

Brief Description Define the interfaces for a single BSW Module.

Description Define the interfaces for a particular BSW Module or BSW cluster as part of the BSW Module
Description. This includes an abstraction of the required and provided C-functions, as well as
triggers and modes. Note that this task also exists for modules standardized by AUTOSAR, as it
may be required to decide on optional or alternative elements and to add allowed project specific
extensions.

Relation Type Related Element Mult. Note

Performed by Basic Software Designer 1

Performed by Basic Software Module
Developer

1

▽

334 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Define BSW Interfaces
Consumes BSW Types 1

Consumes Basic Software Entries 1

Consumes BSW Standard Package 0..1

Consumes ECU Resources Description 0..1

Produces Basic Software Module
Description

1

Table 3.218: Define BSW Interfaces

3.5.1.4 Define Vendor Specific Module Definition

Define Vendor Specific
Module Definition

BSW Module Vendor-
Specific Configuration
Parameter Definition

AUTOSAR Standardized ECU
Configuration Parameter Definition

Basic
Software
Designer

Basic
Software
Module
Developer

«output» 1

0..1

«performs»

0..1

«performs»

1 «input»

Figure 3.108: Define Vendor Specific Module Definition

Task Definition Define Vendor Specific Module Definition

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks

Brief Description

Description Define the Vendor Specific Module Definition (=Configuration Parameters).

Relation Type Related Element Mult. Note

Performed by Basic Software Designer 0..1

Performed by Basic Software Module
Developer

0..1

Consumes AUTOSAR Standardized
ECU Configuration
Parameter Definition

1

Produces BSW Module Vendor-
Specific Configuration
Parameter Definition

1

Table 3.219: Define Vendor Specific Module Definition

335 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.5.1.5 Define BSW Behavior

Define BSW Behavior

Basic Software
Module Description

BSW Standard Package

Basic Software Module
Internal Behavior

Basic
Software
Designer

«input»

0..1

«performs»

1

«input»

1

«output» 1

Figure 3.109: Define BSW Behavior

Task Definition Define BSW Behavior
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks

Brief Description Define the BSW Behavior related to a BSW Module Description.

Description Define the BSW Behavior related to a BSW Module Description. This task is required during BSW
module development in order to be able to generate the API to the BSW Scheduler. In addition, local
data (variables or parameters) may be defined during this task in order to use the AUTOSAR data
type system for module local data and to generate measurement & calibration support.

Relation Type Related Element Mult. Note

Performed by Basic Software Designer 1

Consumes Basic Software Module
Description

1

Consumes BSW Standard Package 0..1

Produces Basic Software Module
Internal Behavior

1

Table 3.220: Define BSW Behavior

336 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.5.1.6 Define BSW Module Timing

Basic Software Module
Internal Behavior

Basic Software Module
Timing

Basic
Software
Module
Developer

Define BSW Module Timing

«output» 1

«performs»

1

«input»1

Figure 3.110: Define BSW Module Timing

Task Definition Define BSW Module Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks

Brief Description Define BSWModuleTiming (TimingDescription and TimingConstraints) for the Internal Behavior
(BSWModuleEntities) of a BSW module

Description Define BSWModuleTiming (TimingDescription and TimingConstraints) for the Internal Behavior
(BSWModuleEntities) of a BSW module

Relation Type Related Element Mult. Note

Performed by Basic Software Module
Developer

1

Consumes Basic Software Module
Internal Behavior

1

Produces Basic Software Module
Timing

1

Table 3.221: Define BSW Module Timing

337 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.5.1.7 Generate BSW Contract Header Files

Generate BSWM
Contract Header
Files

Basic Software Module
Internal Behavior

Basic Software Module
Description

Basic Software Module
Implementation Description

BSW
Standard
Package

Basic Software Module
Interl ink Header

Basic Software Interlink
Types Header

Basic
Software
Module
Developer

Component API
Generator Tool

«input»

1

«input»

0..1

«output»

1

«used tool»

«input»1 «output» 1

«performs»

1

«input»

1

Figure 3.111: Generate BSW Contract Header Files

Task Definition Generate BSWM Contract Header Files
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks

Brief Description Generate Basic Softwaree Module Contract Header Files

Description Generate the header files needed for a BSW module as part of the so-called "contract phase".
These headers will allow to link the module lateron with the RTE (namely the BSW Scheduler).
Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Mult. Note

Performed by Basic Software Module
Developer

1

Consumes Basic Software Module
Description

1 Meth.bindingTime = SystemDesignTime

Consumes Basic Software Module
Implementation Description

1 Meth.bindingTime = SystemDesignTime

Consumes Basic Software Module
Internal Behavior

1 Meth.bindingTime = SystemDesignTime

Consumes BSW Standard Package 0..1

Produces Basic Software Interlink
Types Header

1 Meth.bindingTime = CodeGenerationTime

Produces Basic Software Module
Interlink Header

1 Meth.bindingTime = CodeGenerationTime

Used tool Component API Generator
Tool

1

Table 3.222: Generate BSWM Contract Header Files

338 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.5.1.8 Implement a BSW Module

Implement a
BSW Module

Basic Software Module
Internal Behavior

Basic Software
Module Description

Basic Software Module
Interl ink Header

Basic Software Interl ink
Types Header

BSW
Standard
Package

Basic Software
Module Timing

Library Header
Files

ECU
Resources
Description

Basic Software Module
Core Header

Basic Software Module
Core Source Code

Basic Software Module
Implementation Description

Standard Header
Files

Basic
Software
Module
Developer

Build Action
Manifest

Custom Transformer

«input»

0..1

«output»

0..1

«input»

1

«input»

0..1

«input»

1

«input»

1

«output» 1

«input»

1

«output»

0..1

«input»

1

«input»

0..1

«output»

1

«output»

0..1

«performs»

1

«input»

0..1

Figure 3.112: Implement a BSW Module

Task Definition Implement a BSW Module

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks

Brief Description Implement the source code of a BSW module.

Description Implement the source code of a BSW module. This task is not described by AUTOSAR completely,
but included for completeness of the AUTOSAR use cases. Note that specification of an AUTOSAR
standard module imposes several requirements, e.g. the inclusion of certain header files, onto this
task.
In addition to the code, this task also produces the necessary XML descriptions.
Optionally, a build action manifest may be created or modified in order to be used for code
generation or further processing of the code.
Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Mult. Note

Performed by Basic Software Module
Developer

1

Consumes Basic Software Interlink
Types Header

1 Meth.bindingTime = SystemDesignTime

Consumes Basic Software Module
Description

1 Meth.bindingTime = SystemDesignTime

Consumes Basic Software Module
Interlink Header

1 Meth.bindingTime = SystemDesignTime

▽

339 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Implement a BSW Module

Consumes Basic Software Module
Internal Behavior

1 Meth.bindingTime = SystemDesignTime

Consumes Standard Header Files 1 Meth.bindingTime = CodeGenerationTime

Consumes BSW Standard Package 0..1

Consumes Basic Software Module
Timing

0..1 Meth.bindingTime = SystemDesignTime

Consumes ECU Resources Description 0..1 Meth.bindingTime = SystemDesignTime

Consumes Library Header Files 0..1 Meth.bindingTime = CodeGenerationTime

Produces Basic Software Module
Core Header

1 Meth.bindingTime = CodeGenerationTime

Produces Basic Software Module
Implementation Description

1 Meth.bindingTime = CodeGenerationTime

Produces Basic Software Module
Core Source Code

0..1 The creation of source code is optional, since it might be
generated completely in a later step based on the Build
Action Manifest.
Meth.bindingTime = CodeGenerationTime

Produces Build Action Manifest 0..1

Produces Custom Transformer 0..1

Table 3.223: Implement a BSW Module

3.5.1.9 Develop BSW Module Generator

BSW Module
Generator

Develop BSW Module Generator

BSW
Standard
Package

Basic
Software
Module
Developer

BSW Module Vendor- Specific
Configuration Parameter Definition

0..*

«input»

«performs»

1

«input»

«output» 1

Figure 3.113: Develop BSW Module Generator

Task Definition Develop BSW Module Generator

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks

Brief Description

Description Develop a generator for one or more BSW modules.

Relation Type Related Element Mult. Note

▽

340 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Develop BSW Module Generator

Performed by Basic Software Module
Developer

1

Consumes BSW Standard Package 1

Consumes BSW Module Vendor-
Specific Configuration
Parameter Definition

0..*

Produces BSW Module Generator 1

Table 3.224: Develop BSW Module Generator

3.5.1.10 Create Library

Create Library

Basic Software Module
Internal Behavior

Library Description

Library Header Files Library Object Code

Basic
Software
Module
Developer

ECU
Integrator

Basic Software Module
Implementation Description

BSW Standard
Package

«output»

1

«performs»

1

«output»

1

«output»

1

«performs»

0..1

«output»

1

1 «input»

«output»

1

Figure 3.114: Create Library

341 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Create Library

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks

Brief Description Create a library to be used within an EcuInstance.

Description Create a non-standardized library to be used within an EcuInstance. The task is the same for the
basic software and application level, but it is considered as a basic software task because no VFB
resp. RTE abstraction is used. The output includes source code, header file and XML descriptions
of the interfaces and of the implementation. A "dummy" BSW Behavior must be created too in order
to be able to link the other two XML artifacts.
Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Mult. Note

Performed by Basic Software Module
Developer

1

Performed by ECU Integrator 1

Consumes BSW Standard Package 1 Used for standard types and specifications.

Produces Basic Software Module
Implementation Description

1 Meth.bindingTime = CodeGenerationTime

Produces Basic Software Module
Internal Behavior

1 Meth.bindingTime = CodeGenerationTime

Produces Library Description 1 Meth.bindingTime = CodeGenerationTime

Produces Library Header Files 1 Meth.bindingTime = CodeGenerationTime

Produces Library Object Code 1 Meth.bindingTime = CodeGenerationTime

Table 3.225: Create Library

3.5.1.11 Compile BSW Core Code

Compile BSW
Core Code

Basic Software Module
Core Header

Basic
Software
Module
Interl ink
Header

Basic
Software
Interlink
Types
Header

BSW RTE
Prebuild
Configuration
Header

Basic Software Module
Object Code

Library Header Files

Basic Software Module
Developer

Standard Header Files Compiler

Basic Software Module
Core Source Code

Build Action Manifest

«performs»

«input»

1

«input»

0..1

«input»

1

«input»

«output» 1

«input»

1

«used tool»

«input»

1

1

«input»

0..1

«input»

Figure 3.115: Compile BSW Core Code

342 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Compile BSW Core Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks

Brief Description Compile the source code of a BSW modue without ECU specific configurations.

Description Compile the source code of a BSW modue without ECU specific configurations. This task is mainly
used to describe the use cases of BSW development for object code delivery. The output will only
represent the "core code". During ECU integration, additional generated code may be added per
module in response to ECU configuration.
Meth.bindingTime = CompileTime

Relation Type Related Element Mult. Note

Performed by Basic Software Module
Developer

1

Consumes BSW RTE Prebuild
Configuration Header

1 Meth.bindingTime = PreCompileTime

Consumes BSW Types 1 Meth.bindingTime = CodeGenerationTime

Consumes Basic Software Interlink
Types Header

1 Meth.bindingTime = CodeGenerationTime

Consumes Basic Software Module
Core Header

1 Meth.bindingTime = CodeGenerationTime

Consumes Basic Software Module
Core Source Code

1 Meth.bindingTime = CodeGenerationTime

Consumes Basic Software Module
Interlink Header

1 Meth.bindingTime = CodeGenerationTime

Consumes Standard Header Files 1 Meth.bindingTime = CodeGenerationTime

Consumes Build Action Manifest 0..1 The compilation can optionally be controlled by a Build
Action Manifest.

Consumes Library Header Files 0..1 Meth.bindingTime = CodeGenerationTime

Produces Basic Software Module
Object Code

1 Meth.bindingTime = CompileTime

Used tool Compiler 1

Table 3.226: Compile BSW Core Code

343 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.5.1.12 Generate BSW Module Prebuild Dataset

Generate BSW
Module Prebuild
Data Set

Basic
Software
Module
Description

Basic
Software
Module
Internal
Behavior

Basic Software Module
Implementation Description

BSW RTE
Prebuild
Configuration
Header

BSW Standard Package

Predefined Variant

Basic Software
Module Developer

Component API Generator ToolSystem Constant
Value Set

«used tool»

«performs»

«input»

0..1

1

«input»

«input»1 «output» 1

«input»

1

«input»

1

«input»

1

Figure 3.116: Generate BSW Module Prebuild Dataset

Task Definition Generate BSW Module Prebuild Data Set
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks

Brief Description Prebuild Data Set Generation Phase for a BSW module: It binds all variations which need to be set
after generation of the RTE contract header but before compilation of the module.

Description Prebuild Data Set Generation Phase for a basic software module: It binds all variations which need
to be set after generation of the RTE contract header but before compilation of the module. The
variant settings must be defined by the PredefinedVariant given as input.
The output is a BSW Module RTE Prebuild Configuration Header which is included by the
corresponding BSW Module Interlink Header, thereby resolving the variation points when compiled.
Note that link time variants are not allowed here.
Meth.bindingTime = PreCompileTime

Relation Type Related Element Mult. Note

Performed by Basic Software Module
Developer

1

Consumes Basic Software Module
Description

1 Meth.bindingTime = CodeGenerationTime

Consumes Basic Software Module
Implementation Description

1 Meth.bindingTime = CodeGenerationTime

Consumes Basic Software Module
Internal Behavior

1 Meth.bindingTime = CodeGenerationTime

Consumes Predefined Variant 1

Consumes System Constant Value Set 1

Consumes BSW Standard Package 0..1

Produces BSW RTE Prebuild
Configuration Header

1 Meth.bindingTime = PreCompileTime

Used tool Component API Generator
Tool

1

Table 3.227: Generate BSW Module Prebuild Data Set

344 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.5.2 Work Products

3.5.2.1 BSW Standard Package

BSW
Standard
Package

AUTOSAR Standardized
ECU Configuration
Parameter Definition

AUTOSAR
Standard Types
and Blueprints

AUTOSAR
Platform Types
and Blueprints

AUTOSAR
Software Module
Specification

1

«aggregation»

1

«aggregation»

1

«aggregation»

*

«aggregation»

Figure 3.117: BSW Standard Package

Deliverable BSW Standard Package

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Package containing standard artifacts for BSW.

Description Contains the standard specifications and standardized AUTOSAR blueprints for the artefacts to be
used within the AUTOSAR basic software and for the generation of the RTE. This deliverable is
released by AUTOSAR and is read only within the methodology.

Kind Delivered

Relation Type Related Element Mult. Note

Aggregates AUTOSAR Platform Types
and Blueprints

1

Aggregates AUTOSAR Standard Types
and Blueprints

1

Aggregates AUTOSAR Standardized
ECU Configuration
Parameter Definition

1

Aggregates AUTOSAR Software
Module Specification

0..*

Consumed by Create Library 1 Used for standard types and specifications.

Consumed by Define BSW Types 1

Consumed by Design Basic Software 1

Consumed by Develop BSW Module 1

Consumed by Develop BSW Module
Generator

1

Consumed by Develop Basic Software 1

Consumed by Define BSW Behavior 0..1

Consumed by Define BSW Entries 0..1

Consumed by Define BSW Interfaces 0..1

Consumed by Generate BSW Module
Prebuild Data Set

0..1

Consumed by Generate BSWM Contract
Header Files

0..1

Consumed by Implement a BSW Module 0..1

Table 3.228: BSW Standard Package

345 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.5.2.2 BSW Module Bundle

BSW Module Bundle

BSW Module
ICS Bundle

BSW Module
Integration Bundle

Basic
Software
Module
Description

Basic
Software
Module
Timing

Basic
Software
Entries

BSW Types

BSW Module
Delivered Bundle

BSW Design
Bundle

BSW Module
Vendor- Specific
Configuration
Parameter
Definition

0..1

«aggregation»

«extends»

1..*

«aggregation»

«extends»

0..1

«aggregation»

0..*

«aggregation»

«extends»

0..*

«aggregation»

«extends»

Figure 3.118: BSW Module Bundle

Deliverable BSW Module Bundle
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description

Description Generic deliverable representing a bundle of one or more BSW modules. It is used as a basis for
extended deliverables.
The deliverable aggregates the ARXML definitions on the interface level including vendor specific
configuration parameter definition.
According to the role of the extended deliverable, these elements maybe blueprints completely or
partially. .

Kind Delivered

Extended By BSW Design Bundle, BSW Module Delivered Bundle, BSW Module ICS Bundle

Relation Type Related Element Mult. Note

Aggregates Basic Software Module
Description

1..*

Aggregates Basic Software Entries 0..1

Aggregates Basic Software Module
Timing

0..1

Aggregates BSW Module Vendor-
Specific Configuration
Parameter Definition

0..* The configuration parameter definitions of the modules
under test - needed for static check against the
standardized configuration parameters.

Aggregates BSW Types 0..*

Table 3.229: BSW Module Bundle

346 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.5.2.3 BSW Design Bundle

Deliverable BSW Design Bundle

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description

Description A bundle of one or more BSW modules used in the design phase.
It contains only definitions on the interface level. These elements maybe blueprints completely or
partially.

Kind Delivered

Extends BSW Module Bundle

Relation Type Related Element Mult. Note

Produced by Design Basic Software 1..*

Consumed by Develop BSW Module 1..*

Table 3.230: BSW Design Bundle

3.5.2.4 BSW Module ICS Bundle

Basic Software
Module
Implementation
Description

BSW Module
Preconfigured
Configuration

Basic Software
Module Object Code

BSW Module
Bundle

BSW Module
ICS Bundle

1

«aggregation»

1..*
«aggregation»

«extends»

0..* «aggregation»

Figure 3.119: BSW Module ICS Bundle

Deliverable BSW Module ICS Bundle
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description

Description Deliverable containing the Implementation Conformance Statement (ICS) for one or more BSW
modules.

Kind Delivered

Extends BSW Module Bundle

Relation Type Related Element Mult. Note

Aggregates Basic Software Module
Implementation Description

1 The administrative elements (e.g. version info) of the
Implementation model needed for the conformance test.

▽

347 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Deliverable BSW Module ICS Bundle
Aggregates Basic Software Module

Object Code
1..*

Aggregates BSW Module Preconfigured
Configuration

0..* The predefined configurations implemented by the
modules under test. The modules under test are
completely configured.

Table 3.231: BSW Module ICS Bundle

3.5.2.5 BSW Module Delivered Bundle

Basic
Software
Module
Internal
Behavior

Basic Software Module
Core Header

Basic Software Module
Implementation Description

Basic Software Module
Interl ink Header

BSW RTE Prebuild
Configuration Header

Basic Software Interl ink
Types Header

Basic Software Module
Core Source Code

Basic Software Module
Object Code

BSW
Module
Generator

BSW Module
Preconfigured
Configuration

BSW Module
Recommended
Configuration

Build
Action
ManifestBSW

Module
Bundle

BSW Module
Delivered Bundle

BSW Module
Integration Bundle

1..*

«aggregation»

«extends»

1..*

«aggregation»

0..*

«aggregation»

0..*
«aggregation»

0..*

«aggregation»

1..*

«aggregation»

0..*

«aggregation»

0..*«aggregation»

«aggregation»

0..1

0..*

«aggregation»

1..*

«aggregation»

«extends»
0..*

«aggregation»

Figure 3.120: BSW Module Delivered Bundle

Deliverable BSW Module Delivered Bundle
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description

Description Deliverable containing one or more BSW modules delivered for integration (code and ARXML
descriptions).
It can still contain blueprints for some of the elements which need to be extended during ECU
integration.

Kind Delivered

Extended By BSW Module Integration Bundle

▽

348 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Deliverable BSW Module Delivered Bundle
Extends BSW Module Bundle

Relation Type Related Element Mult. Note

Aggregates Basic Software Module
Core Header

1..*

Aggregates Basic Software Module
Implementation Description

1..*

Aggregates Basic Software Module
Interlink Header

1..*

Aggregates Basic Software Module
Internal Behavior

1..*

Aggregates Build Action Manifest 0..1 The build action manifest to be used for the delivered
basic software.

Aggregates BSW Module Generator 0..*

Aggregates BSW Module Preconfigured
Configuration

0..*

Aggregates BSW Module
Recommended
Configuration

0..*

Aggregates BSW RTE Prebuild
Configuration Header

0..*

Aggregates Basic Software Interlink
Types Header

0..*

Aggregates Basic Software Module
Core Source Code

0..*

Aggregates Basic Software Module
Object Code

0..*

Produced by Develop BSW Module 1

Produced by Develop Basic Software 1..*

Consumed by Define Integration Variant 1..*

Consumed by Generate Base Ecu
Configuration

1..* Need vendor specific configuration parameters and their
recommended or pre-configured values.

Consumed by Generate Updated ECU
Configuration

1..*

Consumed by Integrate Software for ECU 1..*

Consumed by Prepare ECU Configuration 1..*

Consumed by Configure Com 0..1

Consumed by Configure Diagnostics 0..1 Predefined or recommended configuration values,
vendor specific parameters, ServiceNeeds defined by
BSW.

Consumed by Configure MCAL 0..1

Consumed by Configure Mode
Management

0..1 Predefined or recommended configuration values,
vendor specific parameters, ServiceNeeds defined by
BSW.

Consumed by Configure NvM 0..1 Predefined or recommended configuration values,
vendor specific parameters, ServiceNeeds defined by
BSW.

Consumed by Configure Watchdog
Manager

0..1 Predefined or recommended configuration values,
vendor specific parameters, ServiceNeeds defined by
BSW.

Consumed by Create Service Component 0..1 Required in order to define a mapping between SWC
and BSW.
In addition, the Build Action Manifest may be used.

Consumed by Configure ECUC 0..*

▽

349 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Deliverable BSW Module Delivered Bundle
Consumed by Configure IO Hardware

abstraction
0..*

Consumed by Configure OS 0..* OS Resources required by Basic Software.
Optional Input: Basic Software Module Timing, e.g.
execution order constraints.

Consumed by Configure RTE 0..* Input from the BSW Module Description is needed
related to Scheduling, Exclusive Areas, Triggers and
Modes.
Optional Input: Basic Software Module Timing, e.g.
execution order constraints.

Configure Transformer 0..1

Table 3.232: BSW Module Delivered Bundle

3.5.2.6 AUTOSAR Software Module Specification

Artifact AUTOSAR Software Module Specification

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description The standard sofware module specification.

Description Specification of a standardized Basic Software Module (SWS).
It is published as a textual specification, but can be seen as a Basic Software Design bundle in the
methodology, consisting mainly of blueprints. It may be published as ARXML in future releases of
AUTOSAR.

Kind Text

Relation Type Related Element Mult. Note

Aggregated by BSW Standard Package 0..*

Table 3.233: AUTOSAR Software Module Specification

3.5.2.7 AUTOSAR Standard Types and Blueprints

Artifact AUTOSAR Standard Types and Blueprints

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description AUTOSAR Standard Types and Blueprints

Description Model elements provided by AUTOSAR are mainly provided as blueprints:
MethodologyAndTemplates/AUTOSAR_MOD_GeneralDefinitions.zip contains blueprints for
standard implementation data types (in AUTOSAR_MOD_CommonDataTypes_Blueprint.arxml,
package /AUTOSAR/Std).
The concrete artefacts used in projects need to be derived from these blueprints.
See also document id 578 CP_SWS_BSWGeneral and 49 CP_SWS_StandardTypes.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Standard Package 1

Aggregated by VFB AUTOSAR Standard
Package

1

▽

350 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact AUTOSAR Standard Types and Blueprints

Use meta model
element

ImplementationDataType 1

Table 3.234: AUTOSAR Standard Types and Blueprints

3.5.2.8 AUTOSAR Platform Types and Blueprints

Artifact AUTOSAR Platform Types and Blueprints

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description AUTOSAR Platform Types and Blueprints

Description Model elements provided by AUTOSAR are mainly provided as blueprints:
MethodologyAndTemplates/AUTOSAR_MOD_GeneralDefinitions.zip contains
• blueprints for base types, implementation data types, computation methods (in AUTOSAR_MOD_

CommonDataTypes_Blueprint.arxml, package /AUTOSAR/Platform),

• physical dimensions (in AUTOSAR_MOD_PhysicalDimensions_Blueprint.arxml),

• units (in AUTOSAR_MOD_Units_Blueprint.arxml)

• and others.

The concrete artefacts used in projects need to be derived from these blueprints.

See also document id 578 CP_SWS_BSWGeneral and 49 CP_SWS_StandardTypes.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Standard Package 1

Aggregated by VFB AUTOSAR Standard
Package

1

Use meta model
element

ImplementationDataType 1

Use meta model
element

SwBaseType 1

Table 3.235: AUTOSAR Platform Types and Blueprints

3.5.2.9 BSW Module Generator

Artifact BSW Module Generator
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description

Description A generator that comes as part of one or more delivered BSW modules. It can be put into a
framework to let it generate a module’s configuration code.

Kind Custom

Relation Type Related Element Mult. Note

Aggregated by BSW Module Delivered
Bundle

0..*

Produced by Develop BSW Module
Generator

1

▽

351 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact BSW Module Generator
Consumed by Generate BSW

Configuration Code
0..1 This is an input in case a generator framework is used

which has to run some module specific generator code.

Table 3.236: BSW Module Generator

3.5.2.10 AUTOSAR Standardized ECU Configuration Parameter Definition

Artifact AUTOSAR Standardized ECU Configuration Parameter Definition

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Contains all the standardized module definition parameters.

Description Contains all the standardized module definition parameters. These parameters must be referred by
the vendor specific configuration of a specific module.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Standard Package 1

Consumed by Define Vendor Specific
Module Definition

1

Consumed by Configure Com 0..1

Consumed by Configure Diagnostics 0..1

Consumed by Configure ECUC 0..1

Consumed by Configure IO Hardware
abstraction

0..1

Consumed by Configure MCAL 0..1

Consumed by Configure Mode
Management

0..1

Consumed by Configure NvM 0..1

Consumed by Configure OS 0..1

Use meta model
element

EcucModuleDef 1

Configure Transformer 0..1

Table 3.237: AUTOSAR Standardized ECU Configuration Parameter Definition

3.5.2.11 BSW Module Preconfigured Configuration

Artifact BSW Module Preconfigured Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Configuration parameter values that are fixed to the object code and cannot be changed without
recompilation.

Description Configuration parameter values that are pre-configured in the delivered code. They cannot be
changed during the ECU integration of the code.
Pre-configuration is possible for object and source code as well.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

▽

352 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact BSW Module Preconfigured Configuration

Aggregated by BSW Module Delivered
Bundle

0..*

Aggregated by BSW Module ICS Bundle 0..* The predefined configurations implemented by the
modules under test. The modules under test are
completely configured.

Produced by Define Memory Addressing
Modes

1..* MemMapAddressingModeSet:
Meth.bindingTime = SystemDesignTime

Consumed by Configure Memmap
Allocation

1..* MemMapAddressingModeSet: Collection of compiler
specific configuration elements for memory allocation
and addressing modes.

Consumed by Generate BSW Memory
Mapping Header

1..* MemMapAddressingModeSet: Collection of compiler
specific configuration elements for memory allocation.
Meth.bindingTime = SystemDesignTime

Consumed by Generate SWC Memory
Mapping Header

1..* MemMapAddressingModeSet: Collection of compiler
specific configuration elements for memory allocation.
Meth.bindingTime = SystemDesignTime

Use meta model
element

EcucModuleConfiguration
Values

1

Table 3.238: BSW Module Preconfigured Configuration

3.5.2.12 BSW Module Recommended Configuration

Artifact BSW Module Recommended Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Recommended "default" configuration parameter values.

Description Set of configuration parameter values, which are recommended by the module vendor as a default,
but are not mandatory for the integration. There can be more than one such set in order to allow for
variable usage of the module. This artifact does not include values of so-called published
parameters. These must always be given as Basic Software Module Preconfigured Configuration.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Module Delivered
Bundle

0..*

Use meta model
element

EcucModuleConfiguration
Values

1

Table 3.239: BSW Module Recommended Configuration

3.5.2.13 BSW Module Vendor Specific Configuration Parameter Definition

Artifact BSW Module Vendor- Specific Configuration Parameter Definition

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Vendor specific parameter definition for a module. This defines the format of the parameters, not its
values.

▽

353 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact BSW Module Vendor- Specific Configuration Parameter Definition

Description Vendor specific parameter definition for a module. This defines the format of the parameters, not its
values. In case of a standardized module, it redefines the existing standardized configuration
parameter format (ModuleDef).

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Transformer Design Bundle 0..1

Aggregated by BSW Module Bundle 0..* The configuration parameter definitions of the modules
under test - needed for static check against the
standardized configuration parameters.

Produced by Define Vendor Specific
Module Definition

1

Consumed by Configure RTE 1 The definitions for the module RTE

Consumed by Develop BSW Module
Generator

0..*

Consumed by Generate BSW
Configuration Code

0..*

Use meta model
element

EcucModuleDef 1

Table 3.240: BSW Module Vendor- Specific Configuration Parameter Definition

3.5.2.14 BSW Types

Artifact BSW Types

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Set of data types for usage within the Basic Software.

Description Set of data types (arxml descriptions) for usage by Basic Software Modules. They will be referred by
the Basic Software Module Description

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Module Bundle 0..*

In/out Define BSW Types 1

Consumed by Compile BSW Core Code 1 Meth.bindingTime = CodeGenerationTime

Consumed by Define BSW Entries 1

Consumed by Define BSW Interfaces 1

Use meta model
element

AutosarDataType 1

Table 3.241: BSW Types

354 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.5.2.15 Basic Software Entries

Artifact Basic Software Entries
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Set of signatures for calls between BSW modules.

Description Set of signatures for calls between BSW modules. Defining such a set as a separate artifact allows
for a better reuse by several BSW modules.They are decribed in terms of the meta-model element
BswModuleEntry which represents a C-function signature and associated properties.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Module Bundle 0..1

Produced by Define BSW Entries 1

Consumed by Define BSW Interfaces 1

Use meta model
element

BswModuleEntry 1

Table 3.242: Basic Software Entries

3.5.2.16 Basic Software Module Description

Artifact Basic Software Module Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Description of a single BSW module or a module cluster in terms of its interfaces, dependencies and
module Id.

Description Description of all interfaces (ingoing and outgoing C-function calls, triggers and modes) and other
dependencies of a single BSW module or a BSW module cluster. In addition, this artifacts defines
the so-called module Id, which indicates the role of the module within the architecture (only
mandatory for standardized modules).
Note that the description of the function signatures (so-called BswModuleEntry and their
ImplementationDataType can be factored out into separate artifacts BSW Entries and BSW Types in
order to improve their reuse.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Module Bundle 1..*

Produced by Define BSW Interfaces 1

Consumed by Define BSW Behavior 1

Consumed by Generate BSW Module
Prebuild Data Set

1 Meth.bindingTime = CodeGenerationTime

Consumed by Generate BSWM Contract
Header Files

1 Meth.bindingTime = SystemDesignTime

Consumed by Implement a BSW Module 1 Meth.bindingTime = SystemDesignTime

Consumed by Generate BSW Memory
Mapping Header

0..1 shortName: The BSW module’s shortName is used as
the first part of the generated file name, in case the
default rule applies.
Meth.bindingTime = SystemDesignTime

Use meta model
element

BswModuleDescription 1

Table 3.243: Basic Software Module Description

355 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.5.2.17 Basic Software Module Internal Behavior

Artifact Basic Software Module Internal Behavior
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Specifies the InternalBehavior of a BSW module or a BSW cluster, especially the scheduling aspect.

Description Specifies the behavior of a BSW module or a BSW cluster w.r.t. the code entities visible by the BSW
Scheduler. It is possible to have several different BswInternalBehaviors referring to the same Bsw
ModuleDescription, but only one of them can be integrated on one CPU.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Module Delivered
Bundle

1..*

Produced by Create Library 1 Meth.bindingTime = CodeGenerationTime

Produced by Define BSW Behavior 1

Consumed by Define BSW Module Timing 1

Consumed by Generate BSW Module
Prebuild Data Set

1 Meth.bindingTime = CodeGenerationTime

Consumed by Generate BSWM Contract
Header Files

1 Meth.bindingTime = SystemDesignTime

Consumed by Implement a BSW Module 1 Meth.bindingTime = SystemDesignTime

Consumed by Map Software Component
to BSW

1

Consumed by Generate Local MC Data
Support

0..1 Meth.bindingTime = SystemDesignTime

Use meta model
element

BswInternalBehavior 1

Table 3.244: Basic Software Module Internal Behavior

3.5.2.18 Basic Software Module Implementation Description

Artifact Basic Software Module Implementation Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Contains the implementation specific information of a module.

Description Contains the implementation specific information of a module in addition to the generic specification
given in Basic Software Module Description and Basic Software Module Internal Behavior.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Module ICS Bundle 1 The administrative elements (e.g. version info) of the
Implementation model needed for the conformance test.

Aggregated by BSW Module Delivered
Bundle

1..*

Produced by Create Library 1 Meth.bindingTime = CodeGenerationTime

Produced by Implement a BSW Module 1 Meth.bindingTime = CodeGenerationTime

Consumed by Generate BSW Memory
Mapping Header

1 DependencyOnArtifact: Can be used to override the
default name of the memory mapping header file.
Meth.bindingTime = SystemDesignTime

▽

356 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact Basic Software Module Implementation Description

Consumed by Generate BSW Memory
Mapping Header

1 MemorySections: MemorySections defined for a BSW
module. This input includes optional prefixes for
memory sections overriding the default rule.
Meth.bindingTime = SystemDesignTime

Consumed by Generate BSW Memory
Mapping Header

1 infixes: Optional infixes (denoting instance and vendor
ID) to be used within the created header file name.
Meth.bindingTime = SystemDesignTime

Consumed by Generate BSW Module
Prebuild Data Set

1 Meth.bindingTime = CodeGenerationTime

Consumed by Generate BSWM Contract
Header Files

1 Meth.bindingTime = SystemDesignTime

Consumed by Configure Memmap
Allocation

0..* MemorySections:

Use meta model
element

BswImplementation 1

Table 3.245: Basic Software Module Implementation Description

3.5.2.19 Build Action Manifest

Artifact Build Action Manifest
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Describes the actions used to build certain artifacts from other artifacts.

Description Describes the actions used to build certain artifacts from other artifacts (generate, compile, link...).
Note: A build action manifest can include the actions for processing of basic software as well as of
application software artifacts. The manifest itself is however considered as a product of basic
software development.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Module Delivered
Bundle

0..1 The build action manifest to be used for the delivered
basic software.

Produced by Implement a BSW Module 0..1

Consumed by Compile BSW Core Code 0..1 The compilation can optionally be controlled by a Build
Action Manifest.

Consumed by Compile ECU Source Code 0..1 The task may be controlled by a Build Action Manifest.

Consumed by Connect Service
Component

0..1 The task may be controlled by a Build Action Manifest.

Consumed by Generate A2L 0..1 The task may be controlled by a Build Action Manifest.

Consumed by Generate BSW
Configuration Code

0..1 The task may be controlled by a Build Action Manifest.

Consumed by Generate ECU Executable 0..1 The task may be controlled by a Build Action Manifest.

Consumed by Generate OS 0..1 The task may be controlled by a Build Action Manifest.

Consumed by Generate RTE Postbuild
Dataset

0..1 The task may be controlled by a Build Action Manifest.

Consumed by Generate RTE Prebuild
Dataset

0..1 The task may be controlled by a Build Action Manifest.

Use meta model
element

BuildActionManifest 1

Table 3.246: Build Action Manifest

357 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.5.2.20 Basic Software Module Timing

Artifact Basic Software Module Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description BSW module’s TimingDescription and TimingConstraints

Description TimingDescription and TimingConstraints defined for the Internal Behavior of a BSW module
(BSWModuleEntities)

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Module Bundle 0..1

Produced by Define BSW Module Timing 1

Consumed by Define ECU Timing 0..1

Consumed by Implement a BSW Module 0..1 Meth.bindingTime = SystemDesignTime

Use meta model
element

BswModuleTiming 1

Table 3.247: Basic Software Module Timing

3.5.2.21 Basic Software Module Core Header

Artifact Basic Software Module Core Header
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description C-header files delivered with a BSW module.

Description C-header file delivered with a BSW module. It may have to be included by other modules.

Kind Source Code

Relation Type Related Element Mult. Note

Aggregated by BSW Module Delivered
Bundle

1..*

Produced by Implement a BSW Module 1 Meth.bindingTime = CodeGenerationTime

Consumed by Compile BSW Configuration
Data

1

Consumed by Compile BSW Core Code 1 Meth.bindingTime = CodeGenerationTime

Consumed by Compile Configured BSW 1

Consumed by Compile Unconfigured BSW 1

Consumed by Compile ECU Source Code 0..* Meth.bindingTime = CodeGenerationTime

Table 3.248: Basic Software Module Core Header

358 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.5.2.22 Basic Software Module Core Source Code

Artifact Basic Software Module Core Source Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description The core source code of a module provided by the vendor.

Description The core source code of a module provided by the vendor. "Core" means, that it does not include
addtional source code, which may be generated during the configuration process.

Kind Source Code

Relation Type Related Element Mult. Note

Aggregated by BSW Module Delivered
Bundle

0..*

Produced by Implement a BSW Module 0..1 The creation of source code is optional, since it might be
generated completely in a later step based on the Build
Action Manifest.
Meth.bindingTime = CodeGenerationTime

Consumed by Compile BSW Core Code 1 Meth.bindingTime = CodeGenerationTime

Consumed by Compile Configured BSW 1

Consumed by Compile Unconfigured BSW 1

Consumed by Compile ECU Source Code 0..* Meth.bindingTime = CodeGenerationTime

Table 3.249: Basic Software Module Core Source Code

3.5.2.23 Basic Software Interlink Header

Artifact Basic Software Module Interlink Header
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Generated Header file used to link a BSW module with the BSW Scheduler.

Description Generated Header file used to link a BSW module with the BSW Scheduler during Contract phase.

Kind Source Code

Relation Type Related Element Mult. Note

Aggregated by BSW Module Delivered
Bundle

1..*

Produced by Generate BSWM Contract
Header Files

1 Meth.bindingTime = CodeGenerationTime

Consumed by Compile BSW Core Code 1 Meth.bindingTime = CodeGenerationTime

Consumed by Implement a BSW Module 1 Meth.bindingTime = SystemDesignTime

Consumed by Compile ECU Source Code 1..* Meth.bindingTime = CodeGenerationTime

Table 3.250: Basic Software Module Interlink Header

359 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.5.2.24 Basic Software Interlink Types Header

Artifact Basic Software Interlink Types Header

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Generated Header file with data types used to link a BSW module with the BSW Scheduler

Description Generated Header file with data types used to link a BSW module with the BSW Scheduler.

Kind Source Code

Relation Type Related Element Mult. Note

Aggregated by BSW Module Delivered
Bundle

0..*

Produced by Generate BSWM Contract
Header Files

1 Meth.bindingTime = CodeGenerationTime

Consumed by Compile BSW Core Code 1 Meth.bindingTime = CodeGenerationTime

Consumed by Implement a BSW Module 1 Meth.bindingTime = SystemDesignTime

Consumed by Compile ECU Source Code 0..* Meth.bindingTime = CodeGenerationTime

Table 3.251: Basic Software Interlink Types Header

3.5.2.25 BSW RTE Prebuild Configuration Header

Artifact BSW RTE Prebuild Configuration Header

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Generated header file used to resolve the prebuild variants in the prebuild RTE contract phase for
the BSW.

Description Generated header file used to resolve the prebuild variants of a basic software module in the
prebuild RTE contract phase. Contains macros which resolve the variants when compiled with the
module.

Kind Bound Source Code

Relation Type Related Element Mult. Note

Aggregated by BSW Module Delivered
Bundle

0..*

Produced by Generate BSW Module
Prebuild Data Set

1 Meth.bindingTime = PreCompileTime

Consumed by Compile BSW Core Code 1 Meth.bindingTime = PreCompileTime

Consumed by Compile ECU Source Code 0..* Meth.bindingTime = PreCompileTime

Table 3.252: BSW RTE Prebuild Configuration Header

3.5.2.26 Basic Software Module Object Code

Artifact Basic Software Module Object Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Object code of a BSW module.

Description Object code of a BSW module.

Kind Object Code

▽

360 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact Basic Software Module Object Code

Relation Type Related Element Mult. Note

Aggregated by BSW Module ICS Bundle 1..*

Aggregated by BSW Module Delivered
Bundle

0..*

Produced by Compile BSW Core Code 1 Meth.bindingTime = CompileTime

Produced by Compile Configured BSW 1

Produced by Compile Generated BSW 1

Produced by Compile Unconfigured BSW 1

Consumed by Link ECU Code after
Precompile Configuration

1..*

Consumed by Link ECU Code during Link
Time Configuration

1..*

Consumed by Generate ECU Executable 0..* for object code delivery
Meth.bindingTime = CompileTime

Table 3.253: Basic Software Module Object Code

3.5.2.27 Library Description

Artifact Library Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Description of a library in Autosar XML.

Description Description of a library in Autosar XML. This uses the same template as for describing Basic
Software Modules, but with restricted content. Main purpose is to describe the C-interfaces of the
library.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Produced by Create Library 1 Meth.bindingTime = CodeGenerationTime

Consumed by Implement Atomic Software
Component

0..* Meth.bindingTime = CodeGenerationTime

Use meta model
element

BswModuleDescription 1

Table 3.254: Library Description

3.5.2.28 Library Header Files

Artifact Library Header Files

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description These additional headers are typically needed for libraries that a component uses.

Description These additional headers are typically needed for libraries that a component or a module uses (e.g.
a "math-libary").

Kind Source Code

Relation Type Related Element Mult. Note

▽

361 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact Library Header Files

Produced by Create Library 1 Meth.bindingTime = CodeGenerationTime

Consumed by Compile BSW Core Code 0..1 Meth.bindingTime = CodeGenerationTime

Consumed by Implement a BSW Module 0..1 Meth.bindingTime = CodeGenerationTime

Consumed by Compile Atomic Software
Component

0..* Meth.bindingTime = CodeGenerationTime

Consumed by Compile ECU Source Code 0..* Meth.bindingTime = CodeGenerationTime

Consumed by Implement Atomic Software
Component

0..* Meth.bindingTime = CodeGenerationTime

Consumed by Re-compile Component in
ECU context

0..* Meth.bindingTime = CodeGenerationTime

Table 3.255: Library Header Files

3.5.2.29 Library Object Code

Artifact Library Object Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description The object code of a lbrary.

Description The object code of a library, to be linked with other object code during a build of the ECU executable.

Kind Object Code

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software
Components

0..*

Produced by Create Library 1 Meth.bindingTime = CodeGenerationTime

Consumed by Generate ECU Executable 0..* for object code delivery
Meth.bindingTime = CompileTime

Table 3.256: Library Object Code

3.5.2.30 Custom Transformer

Artifact Custom Transformer
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description Custom transformation

Description This is a user defined transformer that is not standardized in AUTOSAR.

Kind
Relation Type Related Element Mult. Note

Produced by Implement a BSW Module 0..1

Consumed by Define Transformation
Chain

0..1

Table 3.257: Custom Transformer

362 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6 ECU Integration and Configuration

This chapter contains the definition of work products and tasks used for the integration
and configuration of AUTOSAR software on an ECU. For the definition of the relevant
meta-model elements refer to [10, CP TPS ECU Configuration].

3.6.1 Tasks

3.6.1.1 Provide RTE Calibration Dataset

Provide RTE
Calibration Dataset

ECU Flat Map

General Non Autosar Artifact

Calibration Parameter Value Set

Calibration
Engineer

ECU
Integrator

1

«performs»

1

«input»

1..*

«input»

«output» 1

0..1

«performs»

Figure 3.121: Provide RTE Calibration Dataset

Task Definition Provide RTE Calibration Dataset
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Provide a data set defining initial values for calibration parameters in the RTE code.

Description Since a model of the "downstream" calibration process of an ECU is not part of the AUTOSAR
methodology, the input data are only shown as a General Non AUTOSAR Artifact.
The output of this task is a set of calibration values in AUTOSAR format, which can be further
processed within AUTOSAR, namely by the RTE generator. The calibration values have to be
associated to the corresponding parameter specification via a reference to the ECU Flat Map.

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Performed by Calibration Engineer 0..1

Consumes ECU Flat Map 1

Consumes General Non Autosar
Artifact

1..* input from calibration process

Produces Calibration Parameter Value
Set

1

Table 3.258: Provide RTE Calibration Dataset

363 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.1.2 Define Integration Variant

Define
Integration
Variant Predefined Variant

System Constant Value SetPostbuild Variant Set

Evaluated Variant Set

ECU Extract

ECU
Integrator

BSW Module
Delivered Bundle

«inoutput»

0..*

«output» 1

1

«input»

1

«performs»

1..*

«input»

«inoutput»

0..*

«output»

0..1

Figure 3.122: Define Integration Variant

Task Definition Define Integration Variant

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Define a variant for the artifacts integrated on an ECU.

Description Define a variant for the artifacts integrated on an ECU, this means adding a PredefinedVariant
related to the ECU extract and the BSW modules in scope. To do so, this task can make use of
existing System Constant Value Set and/or Postbuid Variant Sets or define new ones.
Several PredefinedVariants can be combined to one Evaluated Variant Set.
It is up to particular process definition to decide, which variants are allowed to be set at integration
time. Technically, since this task is part of ECU integration, it can only resolve variation points which
have not yet been resolved in the delivered ECU extract or BSW modules. Especially, variation
points which have to be bound at system design time, should have been already resolved before.
Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Extract 1

Consumes BSW Module Delivered
Bundle

1..*

In/out Postbuild Variant Set 0..*

In/out System Constant Value Set 0..*

Produces Predefined Variant 1 Meth.bindingTime = SystemDesignTime

Produces Evaluated Variant Set 0..1 Meth.bindingTime = SystemDesignTime

Table 3.259: Define Integration Variant

364 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.1.3 Generate Base ECU Configuration

Generate Base
Ecu Configuration

ECU Extract

ECU Configuration
Values

ECU
Integrator

BSW Module
Delivered Bundle

Diagnostic ECU
Extract

1 «input»

1

«performs»

«output» 1

1..*

«input»

0..1

«input»

Figure 3.123: Generate Base ECU Configuration

Task Definition Generate Base Ecu Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Generate an initial set of ECU configuration values based on the delivered ECU extract.

Description Create the ECU configuration module structure including an initial set of ECU configuration values.
This is based on the delivered ECU extract and on the vendor specific configuration parameters and
their recommended or pre-configured values provided with the delivered BSW modules.
Furthermore the diagnostic extract is used to create the initial configuration for diagnostic related
modules, such as DCM and DEM.
Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Extract 1

Consumes BSW Module Delivered
Bundle

1..* Need vendor specific configuration parameters and their
recommended or pre-configured values.

Consumes Diagnostic ECU Extract 0..1

Produces ECU Configuration Values 1 Meth.bindingTime = SystemDesignTime

Table 3.260: Generate Base Ecu Configuration

365 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.1.4 Generate Updated ECU Configuration

ECU
Integrator

ECU Configuration
Values

ECU Extract

BSW Module
Delivered Bundle

Diagnostic
ECU Extract

Generate Updated ECU
Configuration

0..1

«input»

1

«performs»

1..*

«input»

1 «input» «inoutput»
1

Figure 3.124: Generate Updated ECU Configuration

Task Definition Generate Updated ECU Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Generates the updated ECU configuration.

Description This task generates the updated ECU configuration based on the initial ECU configuration, the
updated ECU Extract and optionally the Diagnostic Extract.
Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Extract 1

Consumes BSW Module Delivered
Bundle

1..*

Consumes Diagnostic ECU Extract 0..1

In/out ECU Configuration Values 1 The task "Generate Updated ECU Configuration"
consumes the initial ECU configuration values and
produces the updated ECU configuration values.

Table 3.261: Generate Updated ECU Configuration

366 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.1.5 Define ECU Timing

Define ECU
Timing

ECU Timing

ECU
Extract

Basic Software
Module Timing

ECU Configuration
Values

ECU Service
Connectors

ECU
Integrator

ECU Extract of
System Timing

1

«performs»

1..*

«input»

0..1 «input»

0..1

«input»

0..1

«input»

1

«input»

«output» 1

0..1 «aggregation»

Figure 3.125: Define ECU Timing

Task Definition Define ECU Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Define ECUTiming (TimingDescription and TimingConstraints) for a concrete ECU taking the ECU
configuration and the ECU Software Composition (including their implementation) into account.

Description Define ECUTiming (TimingDescription and TimingConstraints) for a concrete ECU taking the ECU
configuration and the ECU Software Composition (including their implementation) into account.
Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Configuration Values 1

Consumes ECU Service Connectors 1..*

Consumes Basic Software Module
Timing

0..1

Consumes ECU Extract 0..1 Needed to set up links to the elements of the ECU
extract.

Consumes ECU Extract of System
Timing

0..1

Produces ECU Timing 1 Meth.bindingTime = SystemDesignTime

Table 3.262: Define ECU Timing

367 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.1.6 Configure EcuC

Configure ECUC

ECU Configuration
Values

AUTOSAR Standardized
ECU Configuration
Parameter Definition

ECU
Integrator

ECU Extract

BSW Module
Delivered Bundle

1

«performs»
«input»

1

0..1

«input»

0..* «input»
«inoutput» 1

Figure 3.126: Configure EcuC

Task Definition Configure ECUC

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Set the general ECU configuration values.

Description Set the general ECU configuration values, the so-called EcuC parameters. These are the
configuration parameters which are not related to a particular module, but are relevant for the ECU
in general. The EcuC parameters consist of the following parts:
• Collection of all Pdu objects flowing through the Com-Stack.

• Definition of partitions for the ECU (One partition will be implemented using one OS application).
The memory partitions have to be known before doing the OS configuration.

• Collection of PredefinedVariant elements which shall be applied when resolving the variability
during ECU Configuration.

• Collection of mappings between ECU hardware memory segments (defined in ECU Resources
Description) and SwAddrMethod elements (defined in VFB Types). The name of each such Ecuc
MemoryMappingElement could be used as to predefine the logical memory segment for the linker
configuration.

Note: The usage of EcucMemoryMappingElement is deprecated in R4.0 rev.2, because the
configuration of the "MemMap" module has been added which allows a more fined grained memory
mapping than SwAddrmethod. A relatonship to hardware elements from this fine grained mapping is
currently not provided. See task definition Configure Memmap Allocation.

Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Extract 1

Consumes AUTOSAR Standardized
ECU Configuration
Parameter Definition

0..1

Consumes BSW Module Delivered
Bundle

0..*

In/out ECU Configuration Values 1

Table 3.263: Configure ECUC

368 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.1.7 Configure OS

Configure OS

ECU
Integrator

ECU Configuration Values

AUTOSAR Standardized
ECU Configuration
Parameter Definition

ECU Timing

BSW Module
Delivered Bundle

0..* «input» «inoutput» 1

1

«performs»

0..1

«input»

0..1

«input»

Figure 3.127: Configure OS

Task Definition Configure OS

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Configure the OS by creating the Tasks, events, alarms, etc.

Description The OS configuration process may be highly iterative between RTE and OS, e.g. RTE needs some
OsTasks or OsScheduleTables to map Runnables into them. To finalize a ECU Configuration the OS
is the last BSW module to configure. To use multi-core ECUs the EcuC Configuration needs to be
provided beforehand to the OS Configuration to map the cores. There cannot be specified a
precedence which configuration parameter values should be set first for OsAlarm, OsApplication, Os
Counter, OsIsr, OsOs, OsResource, OsScheduleTable, OsSpinlock, OsTask. This is dependent on
the development and configuration process. Application + Basic Software requirements and fulfill
those with OS artifacts. Mandatory Inputs:
• RTE part of the ECU Configuration

• EcuC part of the ECU Configuration

Outputs:

• OS part of the ECU Configuration

• RTE part of the ECU Configuration

The following steps are needed to perform the task :

• Map OS Configuration to Cores only in the case of multiple core ECU.

• Define the OSTasks and OSSchedule : Tables based on the events/runnables of the application &
bsw components, create the OSTasks that will invoke them.

• Map Runnables into OSTasks and OSSchedule Tables : Assign all the runnables to the OSTasks

• Steps for "OsAlarm, OsApplication, OsCounter, OsIsr, OsOs, OsResource, OsScheduleTable, Os
Spinlock, OsTask."

Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

▽

369 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Configure OS

Consumes AUTOSAR Standardized
ECU Configuration
Parameter Definition

0..1

Consumes ECU Timing 0..1

Consumes BSW Module Delivered
Bundle

0..* OS Resources required by Basic Software.
Optional Input: Basic Software Module Timing, e.g.
execution order constraints.

In/out ECU Configuration Values 1

Table 3.264: Configure OS

3.6.1.8 Configure RTE

Configure RTE

ECU
Integrator

ECU Configuration Values

BSW Module
Vendor- Specific
Configuration
Parameter
Definition

ECU Timing

ECU Extract

Service Component
Description

Delivered Atomic
Software Components

BSW Module
Delivered Bundle

0..1

«input»

1

«input»

1

«input»

1

«performs»

«inoutput» 11..* «input»

0..*

«input»

0..*

«input»

Figure 3.128: Configure RTE

370 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Configure RTE

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Describes the steps required to successfully configure the AUTOSAR RTE.

Description Configure the RTE to correctly interact with AUTOSAR COM and the OS.
The specification of the OS objects used by the generated RTE are configured in this task.
In addition, configuration includes setting RTE specific options and the handling of measurement
and calibration data. Post-build variants which shall be supported by the RTE code must be
referenced by the configuration.
The following steps are usualy done to configure the RTE :
1. Setup RTE General Configuration

2. Select Software Component Implementations

3. Select BSW Module Implementations

4. Each Runnable needs to be assigned to an Operating System Task in order to be invoked.

5. Map BSW Executables to tasks

6. Resolve Exclusive Areas

7. Select Implicit Communication behavior

8. Select Calibration Support

9. Configure Non Volatile Memory Block Component (only needed if decisions on the configuration
have to be taken during ECU Configuration)

10. Select the supported post-build variants

Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes BSW Module Vendor-
Specific Configuration
Parameter Definition

1 The definitions for the module RTE

Consumes ECU Extract 1 Elements of the System Description and VFB
Description are referred by the RTE configuration.
Optional Input: ECU Extract of System Timing, e.g.
execution order constraints.

Consumes Delivered Atomic Software
Components

1..* Required input:
• References to all component implementation

descriptions on this ECU

• SwcInternalBehavior (for example to map the
runnables to tasks) which was used in the contract
phase of the software components on this ECU

Consumes ECU Timing 0..1

Consumes BSW Module Delivered
Bundle

0..* Input from the BSW Module Description is needed
related to Scheduling, Exclusive Areas, Triggers and
Modes.
Optional Input: Basic Software Module Timing, e.g.
execution order constraints.

Consumes Service Component
Description

0..* The Internal Behavior of Service Components
contributes to the RTE configuration.

In/out ECU Configuration Values 1

Table 3.265: Configure RTE

371 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.1.9 Configure Watchdog Manager

Configure Watchdog Manager

ECU Configuration Values

ECU Extract

ECU Timing

ECU
Integrator

BSW Module
Delivered Bundle

1

«input»

0..1 «input»

1

«performs»

0..1

«input»

«inoutput» 1

Figure 3.129: Configure Watchdog Manager

Task Definition Configure Watchdog Manager

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Describes the steps required to succesfully configure the Watchdog Manager

Description Configured Top-Down. Service needs determine what kind of watchdog manager you need. For
each service need there is one interface. You can connect several of these interfaces to one
watchdog manager
Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Extract 1 Application software requirements for WdgM, especially
SwcServiceDependency and ServiceNeeds.

Consumes BSW Module Delivered
Bundle

0..1 Predefined or recommended configuration values,
vendor specific parameters, ServiceNeeds defined by
BSW.

Consumes ECU Timing 0..1

In/out ECU Configuration Values 1

Table 3.266: Configure Watchdog Manager

372 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.1.10 Configure Mode Management

Configure Mode
Management

ECU
Integrator

ECU Configuration
Values

AUTOSAR Standardized ECU
Configuration Parameter Definition

ECU Extract

BSW Module
Delivered Bundle

ECU System Description

0..1

«input»

«inoutput» 1

0..1

«input»

1

«performs»

0..1 «input»

0..1

«input»

Figure 3.130: Configure Mode Management

Task Definition Configure Mode Management

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Configure the Mode Managers in the Basic Software for this ECU.

Description Configure the Mode Managers in the Basic Software for this ECU. In the methodology library this is
modeled as a single task (for simplicity) though in practice it may consist of several single tasks. In
general, there are two approaches that are supported by AUTOSAR:
• Top-down approach: the software components are available and the mode management can be

configured using the data elements, i.e. mode requests, inside a port of a software component.

• Bottom-up approach: the software components are not available and the mode management can
be configured using a reference to a data element (stating the mode requests) in an interface, that
is not yet used by a port of a software component.

Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes AUTOSAR Standardized
ECU Configuration
Parameter Definition

0..1

Consumes BSW Module Delivered
Bundle

0..1 Predefined or recommended configuration values,
vendor specific parameters, ServiceNeeds defined by
BSW.

Consumes ECU Extract 0..1 Application software requirements for NvM, especially
SwcServiceDependency and ServiceNeeds. Input in
case atomic software components are available.

Consumes ECU System Description 0..1 Input in case ECU Extract is not available (atomic
software components not available)

In/out ECU Configuration Values 1

Table 3.267: Configure Mode Management

373 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.1.11 Configure NvM

Configure NvM

ECU
Integrator

ECU Configuration
Values

AUTOSAR Standardized
ECU Configuration
Parameter Definition

ECU Extract

Service Component
Description

BSW Module
Delivered Bundle

0..1

«input»

«inoutput» 1

0..*

«input»

1

«performs»

0..1

«input»

1 «input»

Figure 3.131: Configure NvM

Task Definition Configure NvM

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Configure the NvM stack for this ECU.

Description Configure the NvM stack for this ECU. In the methodology library this is modeled as a single task
(for simplicity) though in practice it may consist of several single tasks.
Requirements for the configuration of NvM can be collected
• from the upstream information about ServiceDependencies and ServiceNeeds in the ECU Extract

and BSW Modules

• from existing ECU configuration values

• from Service Component Descriptions created for other Services (e.g. DEM)

Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Extract 1 Application software requirements for NvM, especially
SwcServiceDependency and ServiceNeeds.

Consumes AUTOSAR Standardized
ECU Configuration
Parameter Definition

0..1

Consumes BSW Module Delivered
Bundle

0..1 Predefined or recommended configuration values,
vendor specific parameters, ServiceNeeds defined by
BSW.

Consumes Service Component
Description

0..* The configuration of diagnostics, especially of the DEM,
typically leads to the definition of additional data to be
stored in NvM. One possibility to handle this is to create
ServiceNeeds on the level ServiceComponentType
which is then taken into account for the configuration of
the NvM.

In/out ECU Configuration Values 1

Table 3.268: Configure NvM

374 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.1.12 Configure Diagnostics

Configure Diagnostics

ECU
Integrator

ECU Configuration
Values

AUTOSAR Standardized ECU
Configuration Parameter Definition

ECU Extract

BSW Module
Delivered Bundle

1

«performs»

0..1

«input»

«inoutput» 11 «input»

0..1

«input»

Figure 3.132: Configure Diagnostics

Task Definition Configure Diagnostics

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Configure the diagnostic modules for this ECU

Description Configure the diagnostic modules for this ECU. In the methodology library this is modeled as a
single task (for simplicity) though in practice it may consist of several single tasks.
Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Extract 1 Application software requirements for diagnostics,
especially SwcServiceDependency and ServiceNeeds.

Consumes AUTOSAR Standardized
ECU Configuration
Parameter Definition

0..1

Consumes BSW Module Delivered
Bundle

0..1 Predefined or recommended configuration values,
vendor specific parameters, ServiceNeeds defined by
BSW.

In/out ECU Configuration Values 1 Configuration Values for DEM, DCM, DLT, FIM.

Table 3.269: Configure Diagnostics

375 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.1.13 Create Service Component

Create Service
Component

ECU Configuration
Values

ECU Timing

Atomic Software Component
Implementation

Service Component
Description

Software Component
to BSW Mapping

ECU Extract

ECU
Integrator

BSW Module
Delivered Bundle

«output»

0..1

«output»

1

«output»

1

0..1 «input» «output» 1

1

«performs»

0..1

«input»

0..1

«input»

0..1

«input»

Figure 3.133: Create Service Component

Task Definition Create Service Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Create an instances for all required Service Components, configure them, create necessary ports
and connectors to the respective application software components. This completes the ECU
Software Composition.

Description The ECU Extract contains all information about which components are mapped to a specific ECU. In
a new "flat" Software Composition (meta-class RootSwCompositionPrototype) all other
compositions have been removed. This has to be extended by an aggregation of the SwComponent
Prototypes which describe the Services required by all application components on the ECU:
• For each mapped SwComponentPrototype of type AtomicSwComponentType, the PortPrototypes

requiring a particular Service and the asscociated SwcServiceDependency-s and ServiceNeeds
are collected. Based on this information, a ServiceSwComponentType and its prototype is
created exactly once per service with the corresponding number of PortPrototypes, thus that all
service-type PortPrototypes of the Application Components have their PortPrototype counterpart
on the ServiceSwComponentType.

• RTE generation requires that an InternalBehavior and Implementation is created for each Service
SwComponentType. In particular, the port defined argument values required for the usage of
some service interfaces are configured, and the required RunnableEntities and RTEEvents are
set up. It is also required to define a mapping between elements of the generated SWC and
existing or generated elements of the BSW module description.

• The evaluation of the input might result in further ServiceNeeds to be added to the generated
InternalBehavior - for example a ServiceSwComponentType created for the DEM might include
ServiceNeeds for NVRAM blocks. It is assumed, that such interdependencies are incrementally
resolved within this task for all involved Service Components such that the outputs are consistent.
Note that this is just one possibility to handle the situation - another option is to resolve the
interdependencies only within the ECU configuration tasks (Configure Diagnostics, Configure Nv
M) without creating additional ServiceNeeds.

Depending on the details of the configuration process for the particular module (namely which parts
are generated or manually created), the steps described above can be done before, in parallel or

▽

▽

376 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Create Service Component

△
after setting up the ECU configuration of the involved BSW modules. Likewise, the information used
to create the ServiceSwComponentType(s) can come directly as input from the ECU Extract, or via
the ECU Configuration. Therefore both artifacts are shown as optional input. The ECU
Configuration is also an output, because a reference to the created SwComponentPrototype(s) must
be entered here.

The creation of connectors between the service and application components is a separate task..

Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes BSW Module Delivered
Bundle

0..1 Required in order to define a mapping between SWC
and BSW.
In addition, the Build Action Manifest may be used.

Consumes ECU Configuration Values 0..1 The creation of Service Component details may depend
on ECU configuration values, especially for the DCM.

Consumes ECU Extract 0..1 Input information about the Service Ports and Service
Dependencies of the software components.

Consumes ECU Timing 0..1 Additional information for fine tuning configuration
decisions.

Produces Atomic Software
Component Implementation

1 In order to generate the RTE, one needs to create a
kind of dummy Implementation element for the Service
Component, however this should not be filled with
descriptive elements, e.g. resource consumption, as
these are already defined by the Basic Software Module
Implementation Description.
Meth.bindingTime = SystemDesignTime

Produces ECU Configuration Values 1 Enter links to the created SwComponentPrototypes.
Meth.bindingTime = SystemDesignTime

Produces Service Component
Description

1 Meth.bindingTime = SystemDesignTime

Produces Software Component to
BSW Mapping

0..1 Meth.bindingTime = SystemDesignTime

Table 3.270: Create Service Component

377 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.1.14 Connect Service Component

Service Component
Description

ECU Service Connectors

ECU
Integrator

Connect Service Component

ECU Extract

Build Action Manifest

«performs»

0..1

«input»

«output» 1..*

1

«input»

1 «input»

Figure 3.134: Connect Service Component

Task Definition Connect Service Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description

Description In order to connect the "isService"-ports of the application components to a particular ServiceSw
ComponentType, AssemblyConnectorPrototypes are generated.
The ECU Extract with its RootSwCompositionPrototype, extended by the Service Components and
their connectors, finally serves as input for generating the RTE.
Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Extract 1 Find the ports on the application side to be connected to
the Service Component.

Consumes Service Component
Description

1 Required in order to define the connector links to the
ports on the BSW side.

Consumes Build Action Manifest 0..1 The task may be controlled by a Build Action Manifest.

Produces ECU Service Connectors 1..* Meth.bindingTime = SystemDesignTime

Table 3.271: Connect Service Component

378 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.1.15 Configure COM

Configure Com

ECU
Integrator

ECU Configuration
Values

AUTOSAR Standardized
ECU Configuration
Parameter Definition

ECU Extract

BSW Module
Delivered Bundle

0..1

«input»

«performs»

1

«input»1

0..1

«input»

«inoutput» 1

Figure 3.135: Configure COM

Task Definition Configure Com

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Configure the COM stack modules within an ECU

Description The ECU Extract of the System Configuration contains the major part of information that is needed
to configure the COM Stack modules. Many parameter values of the ECU configuration can be
derived from the ECU extract.The missing ECU specific configuration parameters that can not be
derived from the System Description need to be set in this phase, e.g. Vendor-Specific Configuration
Parameters.
The following steps will be needed to perform the task :
1. Derive configuration parameter values from ECU extract : The System Template Specification

describes rules on how the individual ECU configuration parameters shall be derived from the
Upstream Templates (SWC Template, System Template, ECU Resource Template). This rules
shall be followed.

2. Derive global PDUs from ECU extract : A global PDU has to be configured for each I-PDU flow
and is added to the PDU collection of the module EcuC. Derived from the ECU Extract all PDUs
that traverse through the COM Stack have to be created.

3. Create PDU References from the BSW Module PDUs to the global PDUs in the module EcuC:As
soon as these global PDUs are created the references from the local module PDUs to the
appropriate global PDUs need to be configured.

4. Set Missing and Vendor-Specific Parameter Values:Missing and Vendor-Specific Parameter
Values need to be set

5. Set BSW Module specific PDU handle IDs:The last step is the assignment of the actual values for
the Handle IDs. This can be achieved by an automatic tool which might be run directly before the
generation of the module.

Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Extract 1
▽

379 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Configure Com

Consumes AUTOSAR Standardized
ECU Configuration
Parameter Definition

0..1

Consumes BSW Module Delivered
Bundle

0..1

In/out ECU Configuration Values 1

Table 3.272: Configure Com

3.6.1.16 Configure IO Hardware Abstraction

Configure IO Hardware abstraction

ECU Configuration Values

AUTOSAR Standardized
ECU Configuration
Parameter Definition

ECU
Integrator

BSW Module
Delivered Bundle

0..*
«input»

1«inoutput»

1

«performs»

0..1

«input»

Figure 3.136: Configure IO Hardware Abstraction

Task Definition Configure IO Hardware abstraction

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Configure I/O Hardware Abstraction

Description Configure the I/O Hardware Abstraction modules.
Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes AUTOSAR Standardized
ECU Configuration
Parameter Definition

0..1

Consumes BSW Module Delivered
Bundle

0..*

In/out ECU Configuration Values 1

Table 3.273: Configure IO Hardware abstraction

380 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.1.17 Configure MCAL

Configure MCAL

ECU Configuration Values

AUTOSAR Standardized
ECU Configuration
Parameter Definition

ECU
Integrator

BSW Module
Delivered Bundle

1

«performs»

0..1

«input»

0..1

«input»

1«inoutput»

Figure 3.137: Configure MCAL

Task Definition Configure MCAL

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Configure the Microcontroller Abstraction Layer for this ECU.

Description Configure the Microcontroller Abstraction Layer for this ECU.
Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes AUTOSAR Standardized
ECU Configuration
Parameter Definition

0..1

Consumes BSW Module Delivered
Bundle

0..1

In/out ECU Configuration Values 1

Table 3.274: Configure MCAL

381 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.1.18 Configure Transformer

Configure Transformer

ECU Configuration
Values

ECU
Integrator

AUTOSAR Standardized
ECU Configuration
Parameter Definition

ECU Extract

BSW Module
Delivered Bundle

0..1

«inoutput» 11

0..1

1

«performs»

Figure 3.138: Configure Transformer

Task Definition Configure Transformer

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description

Description Configure the Transformer modules for this ECU.

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

In/out ECU Configuration Values 1

ECU Extract 1

AUTOSAR Standardized
ECU Configuration
Parameter Definition

0..1

BSW Module Delivered
Bundle

0..1

Table 3.275: Configure Transformer

382 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.1.19 Generate BSW Configuration Code and Model Extensions

Generate BSW
Configuration
Code

ECU Configuration
Values

BSW Module
Configuration Header
File

BSW Module
Configuration
Data Source
Code

BSW Module
Behavior Extension

BSW Module
Interface Extension

BSW Module
Implementation
Extension

BSW
Generator
Framework

BSW Module
Generator

ECU
Integrator

BSW Module Vendor-
Specific Configuration
Parameter Definition

Build Action
Manifest

«performs»

0..*

«input»

«output»

1

«output»

0..1

«output» 1

0..1

«input»

0..1 «input»

1

«input»

«used tool»

«output»

0..1

«output»

0..1

Figure 3.139: Generate BSW Code and model extensions

Task Definition Generate BSW Configuration Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Tasks

Brief Description Generate source code which implements configuration data for link- or compile-time configuration.

Description A generator reads the relevant parameters from the ECU Configuration Description and creates a
separate code file that implements the specified configuration. This task is used for link-time
configuration, i.e. the configuration code can be produced at link-time of the core code or for
compile-time configuration, if the configuration code cannot be put into a header file (e.g. for tables),
even if the core code and the configuration code shall be compiled at the same time.
A header file may be produced in addition, to declare the data.
Furthermore the generator may produce extensions of the BSW module description artifacts as a
result of configuration parameter values which are set at integration time.

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Configuration Values 1

Consumes BSW Module Generator 0..1 This is an input in case a generator framework is used
which has to run some module specific generator code.

Consumes Build Action Manifest 0..1 The task may be controlled by a Build Action Manifest.

Consumes BSW Module Vendor-
Specific Configuration
Parameter Definition

0..*

Produces BSW Module Configuration
Data Source Code

1

Produces BSW Module Configuration
Header File

1

Produces BSW Module Behavior
Extension

0..1

Produces BSW Module
Implementation Extension

0..1

▽

383 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Generate BSW Configuration Code

Produces BSW Module Interface
Extension

0..1

Used tool BSW Generator Framework 1

Table 3.276: Generate BSW Configuration Code

3.6.1.20 Generate Local MC Data Support

Generate Local MC
Data Support

Basic Software Module
Internal Behavior

Software Component
Internal Behavior

Local Measurement
and Calibration
Support Data

BSW Module
Behavior Extension

ECU Flat Map

ECU Integrator

1

«input»

«output» 10..1 «input»

0..1

«input»

«performs»

0..1

«input»

Figure 3.140: Generate Local MC Data Support

Task Definition Generate Local MC Data Support

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Generate Local MC Support Data

Description Generate the support data needed for measurement and calibration of those parameters and
variables (roles constantMemory and staticMemory), which are owned locally by the code of a
module or component (in contrast to those, which are owned by the RTE).
The declaration of local variables/parameters is read from the Internal Behavior of either a BSW
module or an Atomic Software Component, therefore these can be considered as alternative
inputs.The ECU Flat Map is needed as input in order to resolve possible name conflicts.
This task can be combined with RTE generation for practical reasons, but it is considered as an
independent task.
Note that calibration data that need software emulation support by the RTE cannot be handled by
this task; they need to be processed by the task Generate RTE.
Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Flat Map 1 Meth.bindingTime = SystemDesignTime

Consumes BSW Module Behavior
Extension

0..1 Meth.bindingTime = SystemDesignTime

▽

384 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Generate Local MC Data Support

Consumes Basic Software Module
Internal Behavior

0..1 Meth.bindingTime = SystemDesignTime

Consumes Software Component
Internal Behavior

0..1 Meth.bindingTime = SystemDesignTime

Produces Local Measurement and
Calibration Support Data

1 Meth.bindingTime = CodeGenerationTime

Table 3.277: Generate Local MC Data Support

3.6.1.21 Create MC Function Model

Delivered Atomic
Software Components

Create MC
Function Model

MC Function
Model

ECU Extract

RTE Measurement
and Calibration
Support Data

Local Measurement
and Calibration
Support Data

Calibration
Engineer

ECU
Integrator

0..1

«performs»

0..1

«performs»

0..*

«input»

0..*

«input»

0..1

«input»

0..1 «input» «output» 1

Figure 3.141: Create MC Function Model

Task Definition Create MC Function Model
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Define a model of McFunctions.

Description Create (manually or by generator) a functional model of measurement and calibration data on an
ECU. Such a model may be derived from the logical structure of software components, ports etc. but
the rules for this transformation are not standardized.
This task may be performed before the RTE code is generated. Then the model will be based on the
data defined in the ECU Flat Map.
The task may also be performed at the same time as or after the generation of Measurement and
Calibration Support Data. In this case it is possible (but not mandatory) to base the model on these
support data only.
The task may be supported by the RTE generator (not a standardized feature) or another tool.

Relation Type Related Element Mult. Note

Performed by Calibration Engineer 0..1

Performed by ECU Integrator 0..1

▽

385 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Create MC Function Model
Consumes ECU Extract 0..1 The ECU Flat Map can be used to define references to

variables and parameters which are later visible in A2L.
Furthermore, the ECU Extract can be used to find the
relevant software components.

Consumes RTE Measurement and
Calibration Support Data

0..1 Used if the MC Function Model shall refer to McData
Instances allocated by the RTE.

Consumes Delivered Atomic Software
Components

0..* The component model may be used to derive an MC
Function Model.

Consumes Local Measurement and
Calibration Support Data

0..* Used if the MC Function Model shall refer to McData
Instances allocated by BSW modules without RTE
support.

Produces MC Function Model 1

Table 3.278: Create MC Function Model

3.6.1.22 Generate RTE

RTE Source Code

Generate RTE

ECU
Configuration
Values

ECU Extract

ECU Service
Connectors

Service Component
Description

RTE Implementation
Description

Calibration
Parameter
Value Set

RTE Measurement
and Calibration
Support Data

ECU
Integrator

RTE Generator

BSW Scheduler
Code

Delivered Atomic
Software Components

BSW Module
Integration Bundle

Software Component to
BSW Mapping

0..*

«input»

«output»

1

«output»

0..1

«output»

0..1

1

«input»

«used tool»

0..*

«input»

0..1

«input»

1

«input»

0..*

«input»

«output»

1

0..*

«input»

«output»

1

1

«performs»

1..*

«input»

Figure 3.142: Generate RTE

386 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Generate RTE
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Generate the RTE and several further artifacts.

Description Generate the RTE and several further artifacts from the input XML descriptions in the scope of a
given ECU:
• RTE Core Source Code

• BSW Scheduler Code

• RTE Implementation Description

• RTE Measurement and Calibration Support Data

In an optional mode, this task can also write into the ECU configuration, especially for the
configuration of the OS. This mode is used to pre-configure parts of the ECU configuration. It shall
support the integrator in setting up the configuration in an iterative way.

In the so-called strict mode, the ECU configuration is not changed but assumed to be complete. This
mode shall be used before the final build. A PredefinedVariant in the input data (referred in the EcuC
configuration, see task Configure EcuC) can be used to bind variation points at code generation
time. For variation points with latest binding time "code generation time" this is mandatory. Unbound
variation points can still be present in the generated code.

Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Configuration Values 1 Meth.bindingTime = SystemDesignTime

Consumes ECU Extract 1 Find the VFB description of all Atomic Software
Components on this ECU and the relevant parts of the
system description.
The ECU Flat Map is also an input.
Meth.bindingTime = SystemDesignTime

Consumes Delivered Atomic Software
Components

1..* Required input:
• References to all component implementation

descriptions on this ECU

• SwcInternalBehavior which was used in the contract
phase of the software components on this ECU

• (optional) Software Component to BSW Mapping

Meth.bindingTime = SystemDesignTime

Consumes Calibration Parameter Value
Set

0..1 Meth.bindingTime = SystemDesignTime

Consumes BSW Module Integration
Bundle

0..* Input for BSW scheduling, BSW mode and trigger
declaration, BSW exclusive areas, BSW calibration
parameters that need RTE support (for software
emulation).
Optionally, a Build Action Manifest maybe be used to
control the generator steps.
Meth.bindingTime = SystemDesignTime

Consumes ECU Service Connectors 0..* Meth.bindingTime = SystemDesignTime

Consumes Service Component
Description

0..* Meth.bindingTime = SystemDesignTime

Consumes Software Component to
BSW Mapping

0..* This input is explicitly stated because the mapping may
be created during ECU integration and thus is not
necessarily part of the Delivered Atomic Software
Components.
Meth.bindingTime = SystemDesignTime

Produces BSW Scheduler Code 1 Meth.bindingTime = CodeGenerationTime

Produces RTE Implementation
Description

1 Meth.bindingTime = CodeGenerationTime

Produces RTE Source Code 1 Meth.bindingTime = CodeGenerationTime

Produces ECU Configuration Values 0..1 Optional output for the configuration of the OS.
Meth.bindingTime = CodeGenerationTime

▽

387 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Generate RTE
Produces RTE Measurement and

Calibration Support Data
0..1 Meth.bindingTime = CodeGenerationTime

Used tool RTE Generator 1

Table 3.279: Generate RTE

3.6.1.23 Generate Scheduler

Generate
Scheduler

ECU Configuration
Values

BSW Scheduler
Code

ECU
Integrator

BSW Module
Integration
Bundle

RTE Generator
RTE Measurement
and Calibration
Support Data

RTE Implementation
Description

«output»

0..1

«used tool»

«output»

1

1..*
«input»

«output» 0..1

1

«input»

1

«performs»

Figure 3.143: Generate Scheduler

Task Definition Generate Scheduler
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Generate the BSW Scheduler

Description Optional task of the RTE generator which only produces the code of the BSW Scheduler and related
artifacts.
Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Configuration Values 1 Configuration values for the BSW Scheduler (subset of
RTE configuration).
Meth.bindingTime = SystemDesignTime

Consumes BSW Module Integration
Bundle

1..* Input for BSW scheduling, BSW mode and trigger
declaration, BSW exclusive areas, BSW calibration
parameters that need support for software emulation.
Optionally, a Build Action Manifest maybe be used to
control the generator steps.
Meth.bindingTime = SystemDesignTime

Produces BSW Scheduler Code 1 Meth.bindingTime = CodeGenerationTime

▽

388 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Generate Scheduler
Produces RTE Implementation

Description
0..1 Creates a subset of the RTE implementation description

that contains only the description of data owned by the
BSW Scheduler.
Meth.bindingTime = CodeGenerationTime

Produces RTE Measurement and
Calibration Support Data

0..1 Creates a subset of the measurement & calibration
support data related only to the data owned by the BSW
Scheduler.
Meth.bindingTime = CodeGenerationTime

Used tool RTE Generator 1

Table 3.280: Generate Scheduler

3.6.1.24 Generate OS

Generate OS

OS Generated CodeECU Configuration
Values

ECU
Integrator

Build Action
Manifest

«output» 1

0..1

«input»

1 «input»

1

«performs»

Figure 3.144: Generate OS

Task Definition Generate OS
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Generate the OS Generated Code files

Description Generate the OS Generated Code files using the OS configuration values from the ECU
Configuration .
Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Configuration Values 1 Meth.bindingTime = SystemDesignTime

Consumes Build Action Manifest 0..1 The task may be controlled by a Build Action Manifest.

Produces OS Generated Code 1 Meth.bindingTime = CodeGenerationTime

Table 3.281: Generate OS

389 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.1.25 Generate RTE Prebuild Dataset

Generate RTE
Prebuild Dataset

RTE Prebuild
Configuration
Header

ECU
Configuration
Values

ECU Extract

Service Component
Description

System Constant
Value Set

Predefined Variant Postbuild Variant Set

ECU Integrator

RTE Generator

Build
Action
Manifest

«output» 1

1

«input»

1 «input»

0..1

«input»

1

«input»

0..1

«input»

0..*

«input»

«used tool»1

«input»

1

«performs»

Figure 3.145: Generate RTE Prebuild Dataset

Task Definition Generate RTE Prebuild Dataset
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Prebuild Data Set Generation Phase for the RTE: It binds all variations which are later than code
generation time

Description Prebuild Data Set Generation Phase for the RTE: It binds all variations which are later than code
generation time but before build time. The output is a configuration header which is used for the
build.
The actually supported variant are defined by the PredefinedVariant referred in the EcuC
configuration (see task Configure EcuC).
Meth.bindingTime = PreCompileTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Configuration Values 1 find the Predefiined Variant to be used
Meth.bindingTime = CodeGenerationTime

Consumes ECU Extract 1 Meth.bindingTime = CodeGenerationTime

Consumes Predefined Variant 1

Consumes System Constant Value Set 1

Consumes Build Action Manifest 0..1 The task may be controlled by a Build Action Manifest.

Consumes Postbuild Variant Set 0..1

Consumes Service Component
Description

0..* Meth.bindingTime = CodeGenerationTime

Produces RTE Prebuild Configuration
Header

1 Meth.bindingTime = PreCompileTime

Used tool RTE Generator 1

Table 3.282: Generate RTE Prebuild Dataset

390 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.1.26 Compile ECU Source Code

Compile ECU
Source Code

Application Header
File

Component RTE
Prebuild
Configuration Header

Software Component
Data Types Header

Standard Header Files

Basic Software
Module Core
Source Code

Basic Software
Interlink Types
Header

BSW RTE Prebuild
Configuration
Header

BSW Scheduler Code

BSW Module
Configuration Data
Source Code

BSW Module
Configuration Header
File

Basic Software
Module Core Header

Basic Software
Module Interl ink
Header

Library
Header Files

OS Generated Code RTE Source Code

Atomic Software
Component Source
Code

Optimized
Application Header
File

ECU Integrator

Compiler

ECU Object
Code

RTE Prebuild
Configuration Header

Build Action
Manifest

«input»

1..*

0..1

«input»

«output» 1..*

0..1

«input»

«input»

0..*

«input»

1

«input»

0..*

«input»

1

«input»

0..*

«input»

1..*

«input»

0..*

«input»

0..*

«input»

0..*

«input»

0..*

«input»

0..*

«input»

0..*

«input»

1

«input»

0..*

«used tool»

«input»

0..*

«input»

1

«performs»

1

Figure 3.146: Compile ECU Source Code

Task Definition Compile ECU Source Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Compile Source Code for an ECU

Description Compile all the source code required for ECU integration, i.e. all source code except the code which
is delivered as object code.
Meth.bindingTime = CompileTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

▽

391 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Compile ECU Source Code

Consumes BSW Scheduler Code 1 Meth.bindingTime = CodeGenerationTime

Consumes OS Generated Code 1 Meth.bindingTime = CodeGenerationTime

Consumes RTE Source Code 1 Meth.bindingTime = CodeGenerationTime

Consumes Standard Header Files 1 Meth.bindingTime = CodeGenerationTime

Consumes Application Header File 1..* Meth.bindingTime = CodeGenerationTime

Consumes Basic Software Module
Interlink Header

1..* Meth.bindingTime = CodeGenerationTime

Consumes Build Action Manifest 0..1 The task may be controlled by a Build Action Manifest.

Consumes RTE Prebuild Configuration
Header

0..1 Meth.bindingTime = PreCompileTime

Consumes Atomic Software
Component Source Code

0..* Meth.bindingTime = CodeGenerationTime

Consumes BSW Module Configuration
Data Source Code

0..* Meth.bindingTime = CodeGenerationTime

Consumes BSW Module Configuration
Header File

0..* Meth.bindingTime = CodeGenerationTime

Consumes BSW RTE Prebuild
Configuration Header

0..* Meth.bindingTime = PreCompileTime

Consumes Basic Software Interlink
Types Header

0..* Meth.bindingTime = CodeGenerationTime

Consumes Basic Software Module
Core Header

0..* Meth.bindingTime = CodeGenerationTime

Consumes Basic Software Module
Core Source Code

0..* Meth.bindingTime = CodeGenerationTime

Consumes Component RTE Prebuild
Configuration Header

0..* Meth.bindingTime = CodeGenerationTime

Consumes Library Header Files 0..* Meth.bindingTime = CodeGenerationTime

Consumes Optimized Application
Header File

0..* Meth.bindingTime = CodeGenerationTime

Consumes Software Component Data
Types Header

0..* Meth.bindingTime = CodeGenerationTime

Produces ECU Object Code 1..* Meth.bindingTime = CompileTime

Used tool Compiler 1

Table 3.283: Compile ECU Source Code

392 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.1.27 Generate ECU Executable

Generate
ECU
Executable

Atomic Software
Component Object
Code

Basic Software
Module Object Code

Library Object
Code

ECU Configuration
Values

ECU Resources
Description

ECU Object Code

Map of the ECU Executable

ECU Executable

Linker

ECU
Integrator

Build Action Manifest

0..1

«input»

«used tool»

1..*

«input»

0..1

«input»

0..*

«input»

«output»

1

0..*

«input»

«output»

1

1

«performs»

0..1

«input»

0..*

«input»

Figure 3.147: Generate ECU Executable

Task Definition Generate ECU Executable
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Generate the executable code of the ECU out of the object files and linker configuration.

Description The steps to generate the code for an ECU resemble today’s development practice. However, it is
important to note that this activity is more than a simple linker step. Information from the ECU
Configuration Description might be used to generate specially configured executable software. The
ECU Configuration Description is needed as input to the Generate Executable activity, because it
contains the information which BSW modules and SWC implementations are used to create the
executable and further information about the memory mapping.
The output of this activity is the ECU Executable and the Map of Executable (which is typically the
log file from linking the ECU Executable).
The detailed input and output formats of this task are not standardized by AUTOSAR, therefore this
task is only included for informative purposes. Note that ECU Configuration is shown as an input to
get the overall picture, however in practice more specific artifacts (e.g. linker settings, make file etc.)
will have to be generated out of the ECU configuration before the actual software build can be
started. Especially, the information about the mapping of the physical memory sections to the
memory section used in the software, which is described in the so-called EcuC parameter values, is
needed in order to generate the linker settings.
Meth.bindingTime = LinkTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Object Code 1..* from generated or delivered source code
Meth.bindingTime = CompileTime

▽

393 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Task Definition Generate ECU Executable
Consumes Build Action Manifest 0..1 The task may be controlled by a Build Action Manifest.

Consumes ECU Configuration Values 0..1 may be used to set up build environment
Meth.bindingTime = CompileTime

Consumes ECU Resources Description 0..1 may be used to set up build environment
Meth.bindingTime = CompileTime

Consumes Atomic Software
Component Object Code

0..* Meth.bindingTime = CompileTime

Consumes Basic Software Module
Object Code

0..* for object code delivery
Meth.bindingTime = CompileTime

Consumes Library Object Code 0..* for object code delivery
Meth.bindingTime = CompileTime

Produces ECU Executable 1 Meth.bindingTime = LinkTime

Produces Map of the ECU Executable 1 Meth.bindingTime = LinkTime

Used tool Linker 1
Predecessor Encapsulate SW-C 1

Predecessor Generate BSW and RTE 1

Table 3.284: Generate ECU Executable

3.6.1.28 Generate RTE Postbuild Dataset

Generate RTE
Postbuild Dataset

ECU Configuration
Values

ECU Extract

RTE Postbuild
Variants Dataset

Postbuild
Variant Set

Predefined Variant

Service
Component
Description

ECU
Integrator

RTE GeneratorBuild Action
Manifest

0..1

«input»

1

«input»
«used tool»

1 «input» «output» 1

1

«input»

0..*

«input»

1

«performs»

1

«input»

Figure 3.148: Generate RTE Postbuild Dataset

394 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Generate RTE Postbuild Dataset
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Postbuild Data Set Generation Phase for the RTE: It binds all variations which are for postbuild time.

Description Data Set Generation Phase for the RTE: It binds all variations which are for postbuild time. The
output is a data set which can be used to build an image separately from the main code.
The supported post-build variants are defined by the PredefinedVariants referred in the post-build
section of the RTE configuration. At runtime, only one of those variants can be active. This selection
is done via the initialization structure for the BSW Scheduler. The actual value for this iniialization
structure used for runtime initialization is defined by the configuration of the ECU State Manager.
Meth.bindingTime = PostBuild

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Configuration Values 1 Meth.bindingTime = LinkTime

Consumes ECU Extract 1 Meth.bindingTime = LinkTime

Consumes Postbuild Variant Set 1

Consumes Predefined Variant 1

Consumes Build Action Manifest 0..1 The task may be controlled by a Build Action Manifest.

Consumes Service Component
Description

0..* Meth.bindingTime = LinkTime

Produces RTE Postbuild Variants
Dataset

1 Meth.bindingTime = PostBuild

Used tool RTE Generator 1

Table 3.285: Generate RTE Postbuild Dataset

3.6.1.29 Generate A2L

Generate A2L

A2L File

Calibration Engineer

Local Measurement
and Calibration
Support Data

Map of the ECU
Executable

MC Driver Support Data

RTE Measurement
and Calibration
Support Data

Alias
Name Set

MC Additional ConfigMC Function Model

ECU
Flat
Map

Build Action
Manifest

0..* «input»

1

«input»

0..*

«input»

0..*

«input»

0..1
«input»

«output» 1

0..1

«input»

1

«performs»

0..1

«input»

1

«input»

0..1

«input»

Figure 3.149: Generate A2L

395 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Generate A2L
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Generate the A2L File for an ECU.

Description The A2L File created by this task is the final representation of the data given by RTE Measurement
and Calibration Support Data and Local Measurement and Calibration Support Data.
The main purpose of this task is to replace all symbolic information on data location found in these
input data by actual addresses. Optionally, it replaces identifiers by alias names given in Alias Name
Set(s). Finally is completes the A2L file with configuration from ECU driver software (MC Driver
Support Data) and configuration not determined by AUTOSAR artifacts (MC Additional
Configuration).
This task is not part of AUTOSAR, it is only included for completeness of the use cases. The Map of
the ECU Executable (linker map file) is shown as input in order to illustrate the principle use case
only. Note that one needs additional information, like the .ELF or .COFF file, to resolve addresses of
elements of composite C-variables.

Relation Type Related Element Mult. Note

Performed by Calibration Engineer 1

Consumes Map of the ECU Executable 1

Consumes RTE Measurement and
Calibration Support Data

1

Consumes Build Action Manifest 0..1 The task may be controlled by a Build Action Manifest.

Consumes ECU Flat Map 0..1 The ECU Flat Map is needed in case the A2L generator
has to process an MC Function Model that relates to
data in the ECU Flat Map.

Consumes MC Additional Config 0..1

Consumes MC Function Model 0..1 This input is needed if the keyword FUNCTION shall be
supported in the generated A2L.

Consumes Alias Name Set 0..*

Consumes Local Measurement and
Calibration Support Data

0..*

Consumes MC Driver Support Data 0..*

Produces A2L File 1 Meth.bindingTime = CodeGenerationTime

Table 3.286: Generate A2L

396 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.1.30 Measure Resources

Measure Resources

Atomic Software
Component
Implementation

ECU Resources
Description

ECU
Integrator

ECU Executable

Map of the ECU
Executable

BSW Module
Implementation
Extension

0..1

«input»

«output»

0..*

«output»

0..*

1

«performs»

0..1 «input»

1

«input»

Figure 3.150: Measure Resources

Task Definition Measure Resources
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Measure the resource consumption and update the implementation section of the Application SWC
and BSW Module Descriptions.

Description Measure the resource consumption and update the implementation section of the Application SWC
and BSW Module Descriptions.

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Executable 1

Consumes ECU Resources Description 0..1

Consumes Map of the ECU Executable 0..1

Produces Atomic Software
Component Implementation

0..* Add extensions to the Implementation Description.
Meth.bindingTime = PostBuild

Produces BSW Module
Implementation Extension

0..* Meth.bindingTime = PostBuild

Table 3.287: Measure Resources

397 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.1.31 Refine Rapid Prototyping Scenario

Refine Rapid
Prototyping Scenario

Rapid
Prototyping
Engineer

Software Component
Internal Behavior

ECU Extract of Rapid
Prototyping Scenario

ECU Extract

0..1

«aggregation»

«inoutput» 1

1

«performs»

1 «input»

Figure 3.151: Refine Rapid Prototyping Scenario

Task Definition Refine Rapid Prototyping Scenario

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description

Description Add missing ECU specific information in the Rapid Prototyping Scenario, e.g. missing RptHooks or
hook implementation decisions.

Relation Type Related Element Mult. Note

Performed by Rapid Prototyping Engineer 1

Consumes Software Component
Internal Behavior

1

In/out ECU Extract of Rapid
Prototyping Scenario

1

Predecessor Generate ECU Extract 1

Table 3.288: Refine Rapid Prototyping Scenario

3.6.1.32 Merge CpSoftwareCluster

Calibration

Engineer
ECU

Integrator

Rapid

Prototyping

Engineer

Software

Component

Developer

Merge CpSoftwareCluster

Merged ECU ExecutableECU Executable

0..*

«performs»

0..*

«performs»

0..* «input» 0..*

0..*

«performs»

1..* «inoutput»
0..1

0..*

«performs»

Figure 3.152: Merge CpSoftwareCluster

398 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Merge CpSoftwareCluster

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::CpSoftwareCluster

Brief Description Combine several CpSoftwareCluster Executables into a single ECU Executable

Description Combine several CpSoftwareCluster executables into a single executable. This can happen before
flashing (off-board) or after flashing (on-board).
A Merged ECU Executable can also be built up over time, by adding additional CpSoftwareCluster
Executables to an existing Merged ECU Executable, or by overwriting CpSoftwareCluster
Executables inside a Merged ECU Executable with newer versions.

Relation Type Related Element Mult. Note

Performed by Calibration Engineer 0..*

Performed by ECU Integrator 0..*

Performed by Rapid Prototyping Engineer 0..*

Performed by Software Component
Developer

0..*

Consumes ECU Executable 0..* In case CpSoftwareClusters are used - only applicable
for ECU Executables created from a CpSoftwareCluster
Extract

In/out Merged ECU Executable 0..1

Table 3.289: Merge CpSoftwareCluster

3.6.2 Work Products

3.6.2.1 BSW Module Integration Bundle

BSW Module
Interface Extension

BSW Module Behavior
Extension

BSW Module
Implementation
Extension

Local Measurement
and Calibration
Support Data

BSW Module
Integration Bundle

BSW Module
Delivered Bundle

BSW Module
Bundle

0..*«aggregation»

«extends»

«extends»

0..*

«aggregation»

0..*
«aggregation»0..*

«aggregation»

Figure 3.153: BSW Module Integration Bundle

399 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Deliverable BSW Module Integration Bundle

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description

Description Contains the BSW artifacts for one or more BSW modules completed during integration.

Kind Delivered

Extends BSW Module Delivered Bundle

Relation Type Related Element Mult. Note

Aggregates BSW Module Behavior
Extension

0..*

Aggregates BSW Module
Implementation Extension

0..*

Aggregates BSW Module Interface
Extension

0..*

Aggregates Local Measurement and
Calibration Support Data

0..*

Consumed by Generate Scheduler 1..* Input for BSW scheduling, BSW mode and trigger
declaration, BSW exclusive areas, BSW calibration
parameters that need support for software emulation.
Optionally, a Build Action Manifest maybe be used to
control the generator steps.
Meth.bindingTime = SystemDesignTime

Consumed by Generate RTE 0..* Input for BSW scheduling, BSW mode and trigger
declaration, BSW exclusive areas, BSW calibration
parameters that need RTE support (for software
emulation).
Optionally, a Build Action Manifest maybe be used to
control the generator steps.
Meth.bindingTime = SystemDesignTime

Table 3.290: BSW Module Integration Bundle

3.6.2.2 ECU Software Delivered

ECU Executable
A2L FileBSW Module

Configuration Data
Loadable to ECU Memory

ECU Software
Delivered

0..*

«aggregation»

1..* «aggregation» 0..*«aggregation»

Figure 3.154: ECU Software Delivered

400 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Deliverable ECU Software Delivered
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description All the work products that form the deliverable of an ECUInstance.

Description All the work products that form the deliverable of an ECUInstance software build.
ECU in this context means ECUInstance. One electronic control unit can consist of several
ECUInstances (for example if it consists of several processors). In such a case, one "ECU Software
Delivered" will be needed for each ECUInstance.
Note that the detailed format for all parts of this deliverable is not defined by AUTOSAR.

Kind Delivered

Relation Type Related Element Mult. Note

Aggregates ECU Executable 1..*

Aggregates A2L File 0..*

Aggregates BSW Module Configuration
Data Loadable to ECU
Memory

0..*

Produced by Integrate Software for ECU 1

Table 3.291: ECU Software Delivered

3.6.2.3 Service Component Description

Artifact Service Component Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description Describes the RTE relevant part of an AUTOSAR Service on a given ECU in form of a Servcie
ComponentType with all its ports and an internal behavior.

Description Describes the RTE relevant part of an AUTOSAR Service on a given ECU in form of a Service
ComponentType with all its ports and an internal behavior. This artifact must be generated during
the ECU configuration process, latest before the RTE is generated. It depends on the needs of the
software components for this AUTOSAR Service.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Produced by Create Service Component 1 Meth.bindingTime = SystemDesignTime

Consumed by Connect Service
Component

1 Required in order to define the connector links to the
ports on the BSW side.

Consumed by Configure NvM 0..* The configuration of diagnostics, especially of the DEM,
typically leads to the definition of additional data to be
stored in NvM. One possibility to handle this is to create
ServiceNeeds on the level ServiceComponentType
which is then taken into account for the configuration of
the NvM.

Consumed by Configure RTE 0..* The Internal Behavior of Service Components
contributes to the RTE configuration.

Consumed by Generate RTE 0..* Meth.bindingTime = SystemDesignTime

Consumed by Generate RTE Postbuild
Dataset

0..* Meth.bindingTime = LinkTime

Consumed by Generate RTE Prebuild
Dataset

0..* Meth.bindingTime = CodeGenerationTime

Use meta model
element

ServiceSwComponentType 1

▽

401 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact Service Component Description

Use meta model
element

SwcInternalBehavior 1

Table 3.292: Service Component Description

3.6.2.4 ECU Service Connectors

Artifact ECU Service Connectors
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description The conectors to the Service Components which complete the complete Software Composition
predefined in the ECU extract.

Description The assembly connectors to the Service Components which complete the Software Composition
predefined in the ECU extract. These connectores are added during ECU integration as a separate
artifact to the already defined composition of Atomic Software Components.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Produced by Connect Service
Component

1..* Meth.bindingTime = SystemDesignTime

Consumed by Define ECU Timing 1..*

Consumed by Generate RTE 0..* Meth.bindingTime = SystemDesignTime

Use meta model
element

AssemblySwConnector 1

Table 3.293: ECU Service Connectors

3.6.2.5 ECU Timing

Artifact ECU Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description TimingDescription and TimingConstraints for a concrete ECU

Description TimingDescription and TimingConstraints defined for a concrete ECU taking the ECU configuration
and the ECU Software Composition (including their implementation) into account.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Produced by Define ECU Timing 1 Meth.bindingTime = SystemDesignTime

Consumed by Configure OS 0..1

Consumed by Configure RTE 0..1

Consumed by Configure Watchdog
Manager

0..1

Consumed by Create Service Component 0..1 Additional information for fine tuning configuration
decisions.

Use meta model
element

EcuTiming 1

Table 3.294: ECU Timing

402 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.2.6 BSW Module Interface Extension

Artifact BSW Module Interface Extension
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description

Description Additions to the BSW Module on the interface level during integration. It is used for example to add
Basic Software Module Entries in response to the ECU configuration, for example callback
declarations.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Module Integration
Bundle

0..*

Produced by Generate BSW
Configuration Code

0..1

Use meta model
element

BswModuleDescription 1

Use meta model
element

BswModuleEntry 1

Table 3.295: BSW Module Interface Extension

3.6.2.7 BSW Module Behavior Extension

Artifact BSW Module Behavior Extension
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description

Description Additions to the BSW Module on the behavior level during integration. It can for example be used to
add local data declaration (constantMemory, staticMemory, perInstanceMemory) for calibration
purposes in response to configuration parameters.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Module Integration
Bundle

0..*

Produced by Generate BSW
Configuration Code

0..1

Consumed by Generate Local MC Data
Support

0..1 Meth.bindingTime = SystemDesignTime

Use meta model
element

BswInternalBehavior 1

Table 3.296: BSW Module Behavior Extension

403 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.2.8 BSW Module Implementation Extension

Artifact BSW Module Implementation Extension

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description

Description Additions to the BSW Module on the implementation level during integration. It is used for example
to add information on resource consumption.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Module Integration
Bundle

0..*

Produced by Generate BSW
Configuration Code

0..1

Produced by Measure Resources 0..* Meth.bindingTime = PostBuild

Use meta model
element

BswImplementation 1

Table 3.297: BSW Module Implementation Extension

3.6.2.9 ECU Configuration Values

Artifact ECU Configuration Values

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description The collection of all configuration values for an ECU.

Description First of all, the ECU Configuration Values contain a link to the System element which comes with the
ECU Extract thus it can be used as a root element for integration on this ECU.
Furtheron, it contains a collection of all configuration values for an ECU, which is gradually filled.
Starting with the root element EcucValueCollection it contains the actual configuration settings Ecuc
ModuleConfigurationValues for each module including the RTE. Note that due to their strong
interrelation, these parts are not considered as separate artifacts in the use cases for ECU
integration.
A special set of configuration values is the so-called EcuC-configuration: It contains the
configuration values which are relevant for the whole ECU. Tools that interpret the configuration
values need to know the underlying parameter definition. Therefore, in addition to the configuration
values, each EcucValueCollection contains a link and the version of the parameter definition to
which it adheres. This parameter definition is either part of the AUTOSAR Standardized ECU
Configuration Parameter Definition or, in case of vendor specific extensions, is given by the artifact
Basic Software Module Vendor-Specific Configuration Parameter Definition.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Produced by Configure Memmap
Allocation

1 MemMapAllocation:
Meth.bindingTime = SystemDesignTime

Produced by Create Service Component 1 Enter links to the created SwComponentPrototypes.
Meth.bindingTime = SystemDesignTime

Produced by Generate Base Ecu
Configuration

1 Meth.bindingTime = SystemDesignTime

Produced by Prepare ECU Configuration 1

Produced by Generate RTE 0..1 Optional output for the configuration of the OS.
Meth.bindingTime = CodeGenerationTime

In/out Configure BSW and RTE 1

In/out Configure Com 1

▽

404 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact ECU Configuration Values

In/out Configure Diagnostics 1 Configuration Values for DEM, DCM, DLT, FIM.

In/out Configure ECUC 1

In/out Configure IO Hardware
abstraction

1

In/out Configure MCAL 1

In/out Configure Mode
Management

1

In/out Configure NvM 1

In/out Configure OS 1

In/out Configure RTE 1

In/out Configure Transformer 1

In/out Configure Watchdog
Manager

1

In/out Generate Updated ECU
Configuration

1 The task "Generate Updated ECU Configuration"
consumes the initial ECU configuration values and
produces the updated ECU configuration values.

Consumed by Define ECU Timing 1

Consumed by Generate BSW
Configuration Code

1

Consumed by Generate BSW Memory
Mapping Header

1 MemMapAllocation: Mapping of the abstract sections
(SwAddressMethods for generic mapping resp. Memory
Section Elements for specific mapping) to the compiler
specific MemMapAddressingModes.
Meth.bindingTime = SystemDesignTime

Consumed by Generate BSW Postbuild
Configuration Code

1

Consumed by Generate BSW Precompile
Configuration Header

1

Consumed by Generate BSW Source
Code

1

Consumed by Generate BSW and RTE 1

Consumed by Generate OS 1 Meth.bindingTime = SystemDesignTime

Consumed by Generate RTE 1 Meth.bindingTime = SystemDesignTime

Consumed by Generate RTE Postbuild
Dataset

1 Meth.bindingTime = LinkTime

Consumed by Generate RTE Prebuild
Dataset

1 find the Predefiined Variant to be used
Meth.bindingTime = CodeGenerationTime

Consumed by Generate SWC Memory
Mapping Header

1 MemMapAllocation: Mapipng of the abstract sections
(SwAddressMethods for generic mapping resp. Memory
Section Elements for specific mapping) to the compiler
specific MemMapAddressingModes.
Meth.bindingTime = SystemDesignTime

Consumed by Generate Scheduler 1 Configuration values for the BSW Scheduler (subset of
RTE configuration).
Meth.bindingTime = SystemDesignTime

Consumed by Create Service Component 0..1 The creation of Service Component details may depend
on ECU configuration values, especially for the DCM.

Consumed by Generate BSW Memory
Mapping Header

0..1 moduleDescription: List of used BSW modules (Ecuc
ValueCollection.ecucValue.moduleDescription)
Meth.bindingTime = SystemDesignTime

Consumed by Generate ECU Executable 0..1 may be used to set up build environment
Meth.bindingTime = CompileTime

▽

405 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact ECU Configuration Values

Consumed by Generate SWC Memory
Mapping Header

0..1 RteImplementationRef: Existence of SWCs could be
identified by usage of the RTE ECU Configuration "Rte
SwComponentType.RteImplementationRef"
Meth.bindingTime = SystemDesignTime

Use meta model
element

EcucModuleConfiguration
Values

1

Use meta model
element

EcucValueCollection 1

Table 3.298: ECU Configuration Values

3.6.2.10 RTE Implementation Description

Artifact RTE Implementation Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description Implementation Description for the RTE, generated by the RTE generator.

Description Implementation Description for the RTE, generated by the RTE generator. Uses the format of Bsw
Implementation. This artifact is required to provide information for other generators and the build
process, namely memory section. It aggregates also the support data for measurement and
calibration, which is considered as a separate artifact.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Produced by Generate RTE 1 Meth.bindingTime = CodeGenerationTime

Produced by Generate Scheduler 0..1 Creates a subset of the RTE implementation description
that contains only the description of data owned by the
BSW Scheduler.
Meth.bindingTime = CodeGenerationTime

Use meta model
element

BswImplementation 1

Table 3.299: RTE Implementation Description

3.6.2.11 RTE Prebuild Configuration Header

Artifact RTE Prebuild Configuration Header

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description RTE Prebuild Configuration Header File. It defines all variants for the RTE code which have to be
bound later than code generation time but before build time.

Description RTE Prebuild Configuration Header File. It defines the setting of all variants for the RTE code (via
macro code) which have to be bound later than code generation time but before build time.

Kind Bound Source Code

Relation Type Related Element Mult. Note

Produced by Generate RTE Prebuild
Dataset

1 Meth.bindingTime = PreCompileTime

▽

406 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact RTE Prebuild Configuration Header

Consumed by Compile ECU Source Code 0..1 Meth.bindingTime = PreCompileTime

Table 3.300: RTE Prebuild Configuration Header

3.6.2.12 Calibration Parameter Value Set

Artifact Calibration Parameter Value Set
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description Calibration Parameter Value Setting

Description A set of calibration parameter values used to initialize the memory objects which implement
calibration parameters. The values are specific for the software component instances in ECU scope.
They will override any initial values defined for those parameters within the ECU Extract. The
parameter values can be defined as ApplicationDataTypes or as ImplementationDataTypes which
has several use cases. These two use cases are supported by the RTE generation phase:
• Parameter values defined as ImplementationDataTypes can be used as instance specific

initialization for calibration parameters within components as soon as the respective
ImplementationDataTypes are available (which must be the case for RTE generation anyhow).

• Parameter values defined as ApplicationDataTypes can be used as instance specific initialization
for calibration parameters which are only defined with ApplicationDataTypes.

The next case is not modelled within AUTOSAR in detail:

• Parameter values defined as ApplicationDataTypes can be used to exchange initial values with
the component vendor not publishing the transformation algorithm between ApplicationDataTypes
and ImplementationDataTypes

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Produced by Provide RTE Calibration
Dataset

1

Consumed by Generate RTE 0..1 Meth.bindingTime = SystemDesignTime

Use meta model
element

CalibrationParameterValue
Set

1

Table 3.301: Calibration Parameter Value Set

407 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.2.13 MC Function Model

Artifact MC Function Model
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description A functional model to be used for A2L generation.

Description As set of nested McFunction elements to be used as input to generate A2L. Its purpose is to
• assign calibration parameters to a logical function

• assign measurement variables to a logical function

• structure functions hierarchically

It shall support the generation of the FUNCTION keyword and related elements defined in ASAM
MCD-2 MC.

An MC Function Model refers to the data descriptions in other AUTOSAR XML artifacts either via
entries in the ECU Flat Map or via McDataInstances being part of Measurement and Calibration
Support Data.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Produced by Create MC Function Model 1

Consumed by Generate A2L 0..1 This input is needed if the keyword FUNCTION shall be
supported in the generated A2L.

Use meta model
element

McFunction 1

Table 3.302: MC Function Model

3.6.2.14 Local Measurement and Calibration Support Data

Artifact Local Measurement and Calibration Support Data

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description Generated artifact, which supports the later generation of "A2L"-files for measurement and
calibration data which are owned locally by a component or module.

Description Generated artifact which is used as an input for the later generation of "A2L"-files for measurement
and calibration. It relates the measurment and calibration data listed in the ECU FlatMap to the
C-variables used locally within a component or module (this is relevant only valid for those
parameters and variables, which are not implemented by the RTE) . In addition, it contains all
configuration data which are relevant for the A2L generator (e.g. the access method to calibration
data whithin a Complex Driver).
This XML-artifact is linked via a (splitable) aggregation to the Implementation Description of the
component or module, but it is considered as a separate artifact.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Module Integration
Bundle

0..*

Produced by Generate Local MC Data
Support

1 Meth.bindingTime = CodeGenerationTime

Consumed by Create MC Function Model 0..* Used if the MC Function Model shall refer to McData
Instances allocated by BSW modules without RTE
support.

Consumed by Generate A2L 0..*

▽

408 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact Local Measurement and Calibration Support Data

Use meta model
element

McSupportData 1

Table 3.303: Local Measurement and Calibration Support Data

3.6.2.15 RTE Measurement and Calibration Support Data

Artifact RTE Measurement and Calibration Support Data

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description RTE generator output, which supports the later generation of "A2L"-files for the measurement and
calibration data which are owned by the RTE.

Description RTE generator output, which is used as an input for the later generation of "A2L"-files for
measurement and calibration. It relates the measurement and calibration data listed in the ECU Flat
Map to the C-variables of the generated RTE code. For all these data it contains copies of the
attributes which are relevant for A2L generation. In additions it contains all configuration data which
are relevant for the A2L generator (namely the access method to calibration data which is supported
by the RTE). This XML-artifact is linked via a (splitable) aggregation to the RTE Implementation
Description, but is considered as a separate artifact.
The most important attributes for each data instance are:
• Its shortName copied from the ECU Flat Map to be used as identifier and for display by the MC

system.

• The category copied from the corresponding data type (ApplicationDataType if defined, otherwise
ImplementationDataType) as far as applicable.

• The symbol used in the programing language. It will be used to find out the actual memory
address by the final generation tool with the help of linker generated information.

• All aggregated and referred elements like CompuMethod or BaseType describing the data (with
the exception of the Flat Map) are completely copied from "upstream" information. Therefore this
artifact is a self-contained description which can be forwarded to the A2L generator without
needing related descriptions.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Produced by Generate RTE 0..1 Meth.bindingTime = CodeGenerationTime

Produced by Generate Scheduler 0..1 Creates a subset of the measurement & calibration
support data related only to the data owned by the BSW
Scheduler.
Meth.bindingTime = CodeGenerationTime

Consumed by Generate A2L 1

Consumed by Create MC Function Model 0..1 Used if the MC Function Model shall refer to McData
Instances allocated by the RTE.

Use meta model
element

McSupportData 1

Table 3.304: RTE Measurement and Calibration Support Data

409 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.2.16 RTE Source Code

Artifact RTE Source Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description Source code implementiing the RTE on a CPU.

Description Source code implementing the RTE on a CPU.
The output of an RTE generator can consist of both generated code and configuration for "library"
code that may be supplied as either object code or source code. Both configured and generated
code reference standard definitions that are defined in one of two standardized header files: The
RTE Header File and the Lifecycle Header File. These header files are not explicitly shown in the
methodology, as in all tasks they appear with the RTE source code. For details refer to document ID
84 CP_SWS_RTE.
Apart from this, the file structure is not standardized, and therefore represented as one single
artifact in the methodology. In general, the RTE code can be partitioned in several files. The
partitioning depends on the RTE vendor’s software design and generation strategy. Nevertheless it
shall be possible to clearly identify code and header files which are part of the RTE module.

Kind Source Code

Relation Type Related Element Mult. Note

Produced by Generate BSW and RTE 1

Produced by Generate RTE 1 Meth.bindingTime = CodeGenerationTime

Consumed by Compile ECU Source Code 1 Meth.bindingTime = CodeGenerationTime

Table 3.305: RTE Source Code

3.6.2.17 BSW Scheduler Code

Artifact BSW Scheduler Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description Generated Code implementing the BSW Scheduler.

Description Generated Code implementing the BSW Scheduler. It can be source or macro code.

Kind Source Code

Relation Type Related Element Mult. Note

Produced by Generate RTE 1 Meth.bindingTime = CodeGenerationTime

Produced by Generate Scheduler 1 Meth.bindingTime = CodeGenerationTime

Consumed by Compile ECU Source Code 1 Meth.bindingTime = CodeGenerationTime

Table 3.306: BSW Scheduler Code

3.6.2.18 OS Generated Code

Artifact OS Generated Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description OS configuration generated code

Description OS configuration generated code. OS configuration code are composed of header and C files.
These will be compiled with the source code in the build process (see Compile Source Code).

Kind Source Code
▽

410 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact OS Generated Code
Relation Type Related Element Mult. Note

Produced by Generate OS 1 Meth.bindingTime = CodeGenerationTime

Consumed by Compile ECU Source Code 1 Meth.bindingTime = CodeGenerationTime

Table 3.307: OS Generated Code

3.6.2.19 RTE Postbuild Variants Dataset

Artifact RTE Postbuild Variants Dataset
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description Generated code used to resolve postbuild variants in the RTE.

Description Generated code used to resolve postbuild variants in the RTE. It consists of a c-file and a header file:
• The RTE generator must generate a Rte_PBCfg.c file containing the declarations and

initializations of one or more RTE post build variants. Only one of these variants can be active at
runtime.

• The RTE generator shall generate in the Rte_PBCfg.h file the SchM_ConfigType type declaration
of the predefined post build variants data structure. This header file must be used by other RTE
modules to resolve their runtime variabilities.

Kind Bound Source Code

Relation Type Related Element Mult. Note

Produced by Generate RTE Postbuild
Dataset

1 Meth.bindingTime = PostBuild

Table 3.308: RTE Postbuild Variants Dataset

3.6.2.20 ECU Object Code

Artifact ECU Object Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description

Description Object code file produced by compilation during ECU integration.
To be distinguished from code files which are already delivered as object code for integration (see
Basic Software Module Object Code or Atomic Software Component Object Code).

Kind Object Code

Relation Type Related Element Mult. Note

Produced by Compile ECU Source Code 1..* Meth.bindingTime = CompileTime

Consumed by Generate ECU Executable 1..* from generated or delivered source code
Meth.bindingTime = CompileTime

Consumed by Link ECU Code during Link
Time Configuration

1..*

Table 3.309: ECU Object Code

411 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.2.21 ECU Executable

Artifact ECU Executable
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description The executable image containing all the fully integrated software ready to download to an ECU.

Description The executable image containing all the fully integrated software ready to download to an ECU. This
work product and its format is not defined by AUTOSAR, it is only included for completeness of the
use cases.

Kind Executable

Relation Type Related Element Mult. Note

Aggregated by ECU Software Delivered 1..*

Produced by Generate ECU Executable 1 Meth.bindingTime = LinkTime

Produced by Link ECU Code after
Precompile Configuration

1

Produced by Link ECU Code during Link
Time Configuration

1

Consumed by Measure Resources 1

Consumed by Merge CpSoftwareCluster 0..* In case CpSoftwareClusters are used - only applicable
for ECU Executables created from a CpSoftwareCluster
Extract

Table 3.310: ECU Executable

3.6.2.22 Merged ECU Executable

Artifact Merged ECU Executable

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description The result of merging the ECU Executables of several CpSoftwareClusters

Description An ECU Executable created by merging several CpSoftwareCluster Executables.

Kind
Relation Type Related Element Mult. Note

In/out Merge CpSoftwareCluster 0..1

Table 3.311: Merged ECU Executable

3.6.2.23 Map of the ECU Executable

Artifact Map of the ECU Executable

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description Linker map file of the excecutable.

Description Linker map file of the excecutable. This work product and its format is not defined by AUTOSAR, it is
only included for completeness of the use cases.

Kind Text

Relation Type Related Element Mult. Note

Produced by Generate ECU Executable 1 Meth.bindingTime = LinkTime

▽

412 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact Map of the ECU Executable

Consumed by Generate A2L 1

Consumed by Measure Resources 0..1

Table 3.312: Map of the ECU Executable

3.6.2.24 A2L File

Artifact A2L File
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description Input file for measurment and calibration tools.

Description Input file for measurement and calibration tools related to one ECU. This format is not in the scope
of AUTOSAR, it is defined by the ASAM organization. The work product is only included for
completeness of the use cases.

Kind Text

Relation Type Related Element Mult. Note

Aggregated by ECU Software Delivered 0..*

Produced by Generate A2L 1 Meth.bindingTime = CodeGenerationTime

Table 3.313: A2L File

3.6.2.25 MC Driver Support Data

Artifact MC Driver Support Data

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description Support data describing the specific access of a driver (e.g. XCP) for exchange of data for
measurement and calibration.

Description Support data describing the specific access method of a driver (e.g. XCP) in order to exchange data
for measurement and calibration. These are the so-called IF-DATA needed in the A2L files.
This artifact shall be generated by a driver(e.g. XCP) specific generator out of its ECU
configuration. This format is not defined by AUTOSAR. The work product is only included for
completeness of the use cases.

Kind Custom

Relation Type Related Element Mult. Note

Consumed by Generate A2L 0..*

Table 3.314: MC Driver Support Data

413 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.2.26 MC Additional Config

Artifact MC Additional Config

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description External configuration data nedded to generate the A2L file.

Description Additional configuration data needed to generate the A2L file. This format is not defined by
AUTOSAR. The work product is only included for completeness of the use cases.

Kind Custom

Relation Type Related Element Mult. Note

Consumed by Generate A2L 0..1

Table 3.315: MC Additional Config

3.6.3 Tools

3.6.3.1 RTE Generator

Tool RTE Generator
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Guidance

Brief Description

Description RTE Generator used for several tasks during ECU integration.

Kind
Relation Type Related Element Mult. Note

Used Generate RTE 1

Used Generate RTE Postbuild
Dataset

1

Used Generate RTE Prebuild
Dataset

1

Used Generate Scheduler 1

Table 3.316: RTE Generator

3.6.3.2 BSW Generator Framework

Tool BSW Generator Framework
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Guidance

Brief Description

Description Framework that uses BSW generators that are being delivered as part of individual modules.

Kind
Relation Type Related Element Mult. Note

Used Generate BSW
Configuration Code

1

Table 3.317: BSW Generator Framework

414 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.4 ECU Config Classes

3.6.4.1 Tasks

3.6.4.1.1 Compile Unconfigured Bsw

Basic Software Module
Core Header

Compile
Unconfigured
BSW

Basic Software Module
Core Source Code

Basic Software Module
Object Code

Compiler

1

«input»

«output» 1

1

«input»

«used tool»

Figure 3.155: Compile Unconfigured Bsw

Task Definition Compile Unconfigured BSW

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Tasks

Brief Description Compile unconfigured BSW to get a BSW Module Object Code.

Description Compile Unconfigured BSW is the usual step to compile files without any configuration data when
no configuration is needed. This can be use either in the pre-compile, link or post-build time.

Relation Type Related Element Mult. Note

Consumes Basic Software Module
Core Header

1

Consumes Basic Software Module
Core Source Code

1

Produces Basic Software Module
Object Code

1

Used tool Compiler 1

Table 3.318: Compile Unconfigured BSW

415 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.4.1.2 Compile Configured Bsw

Compile
Configured
BSW

BSW Module
Configuration Header
File

Basic Software Module
Core Header

Basic Software Module
Core Source Code

Basic Software Module
Object Code

Compiler

1

«input»

1

«input»

«used tool»

1 «input» «output» 1

Figure 3.156: Compile Configured Bsw

Task Definition Compile Configured BSW

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Tasks

Brief Description Compile Configured BSW to get a BSW Module Object Code

Description Compile Configured BSW to get a Basic Software Module Object Code used in the link steps. This
Configured BSW is representing C files that have already included all needed configured data. This
is done in the pre-compile time.

Relation Type Related Element Mult. Note

Consumes BSW Module Configuration
Header File

1

Consumes Basic Software Module
Core Header

1

Consumes Basic Software Module
Core Source Code

1

Produces Basic Software Module
Object Code

1

Used tool Compiler 1

Table 3.319: Compile Configured BSW

416 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.4.1.3 Compile BSW Configuration Data

Compile BSW
Configuration Data

BSW Module
Configuration
Header File

Basic Software Module
Core Header

BSW Module
Configuration Data
Object Code

BSW Module
Configuration Data
Source Code

Compiler

1

«input»

1 «input»

«used tool»

1

«input»

«output» 1

Figure 3.157: Compile BSW Configuration Data

Task Definition Compile BSW Configuration Data

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Tasks

Brief Description Compile BSW Configuration Data during link time

Description Compile BSW Configuration Data during link-time- or post-build configuration to get the Basic
Software Module Configuration Data Object Code used in the link steps.

Relation Type Related Element Mult. Note

Consumes BSW Module Configuration
Data Source Code

1

Consumes BSW Module Configuration
Header File

1

Consumes Basic Software Module
Core Header

1

Produces BSW Module Configuration
Data Object Code

1

Used tool Compiler 1

Table 3.320: Compile BSW Configuration Data

417 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.4.1.4 Compile Generated BSW

Compile
Generated
BSW

BSW Module
Configuration
Header File

BSW Module Completely
Generated Source Code

Basic Software Module
Object Code

Compiler

1

«input»

1 «input»

«used tool»

«output» 1

Figure 3.158: Compile Generated BSW

Task Definition Compile Generated BSW

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Tasks

Brief Description Compile generated BSW in the pre-compile time:

Description Compile generated BSW in the pre-compile time: this generated BSW has been generated with a
BSW Configuration generator which generates the complete configuration-specific code.

Relation Type Related Element Mult. Note

Consumes BSW Module Completely
Generated Source Code

1

Consumes BSW Module Configuration
Header File

1

Produces Basic Software Module
Object Code

1

Used tool Compiler 1

Table 3.321: Compile Generated BSW

3.6.4.1.5 Generate BSW Precompile Configuration Header

Generate BSW Precompile
Configuration Header

BSW Module Configuration
Header File

ECU Configuration Values

1 «input»
«output» 1

Figure 3.159: Generate BSW Precompile Configuration Header

418 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Generate BSW Precompile Configuration Header

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Tasks

Brief Description Generate BSW Precompile Configuration Header

Description Generate BSW Pre-compile Configuration Header. The header is used for definition or declaration
(in case source code is needed) of the pre-compile configuration data code.

Relation Type Related Element Mult. Note

Consumes ECU Configuration Values 1

Produces BSW Module Configuration
Header File

1

Table 3.322: Generate BSW Precompile Configuration Header

3.6.4.1.6 Generate BSW Source Code

Generate BSW Source
Code

BSW Module
Completely Generated
Source Code

ECU Configuration Values

BSW Module Configuration
Header File

«output»

1

1 «input»

«output»

1

Figure 3.160: Generate BSW Source Code

Task Definition Generate BSW Source Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Tasks

Brief Description Generate the source code of a module completely from its precompile configuration.

Description Generate the source code of a BSW module completely from its pre-compile configuration. A
header file may be produced in addition, if required.

Relation Type Related Element Mult. Note

Consumes ECU Configuration Values 1

Produces BSW Module Completely
Generated Source Code

1

Produces BSW Module Configuration
Header File

1

Table 3.323: Generate BSW Source Code

419 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.4.1.7 Generate BSW Configuration Code

Generate BSW
Configuration Code

ECU Configuration Values

BSW Module
Configuration Header
File

BSW Module
Configuration Data
Source Code

1 «input»

«output»

1

«output»

1

Figure 3.161: Generate BSW Configuration Code

see also Generate BSW Configuration Code

3.6.4.1.8 Generate BSW Postbuild Configuration Code

Generate BSW Postbuild
Configuration Code

BSW Module
Configuration
Header File

ECU Configuration Values

BSW Module
Configuration Data
Source Code

«output»

1

1 «input»

«output»

1

Figure 3.162: Generate BSW Postbuild Configuration Code

Task Definition Generate BSW Postbuild Configuration Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Tasks

Brief Description Generate the code for data structures that can be used for postbuild configuration.

Description Generate the source code and associated header for data structures that can be used for postbuild
configuration.

Relation Type Related Element Mult. Note

Consumes ECU Configuration Values 1

Produces BSW Module Configuration
Data Source Code

1

Produces BSW Module Configuration
Header File

1

Table 3.324: Generate BSW Postbuild Configuration Code

420 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.4.1.9 Link ECU Code after Precompile Configuration

Link ECU Code
after Precompile
Configuration

ECU ExecutableBasic Software Module
Object Code

Linker

«output» 11..* «input»

«used tool»

Figure 3.163: Link ECU Code after Precompile Configuration

Task Definition Link ECU Code after Precompile Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Tasks

Brief Description Link the ECU code in the pre-compile time Configuration Class

Description Link the different BSW modules object code in the pre-compile Configuration Class. All parameters
values for configurable elements have been already fixed and are effective after compilation time.

Relation Type Related Element Mult. Note

Consumes Basic Software Module
Object Code

1..*

Produces ECU Executable 1

Used tool Linker 1

Table 3.325: Link ECU Code after Precompile Configuration

3.6.4.1.10 Link ECU Code During Link Time Configuration

Link ECU Code
during Link Time
Configuration ECU ExecutableBSW Module

Configuration Data
Object Code

Basic Software Module
Object Code

ECU Object Code
Linker

«output» 11..* «input»

1..*

«input»

1..*

«input»

«used tool»

Figure 3.164: Link ECU Code During Link Time Configuration

421 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Task Definition Link ECU Code during Link Time Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Tasks

Brief Description Link ECU Code during Link Time

Description Link ECU Code during Link Time

Relation Type Related Element Mult. Note

Consumes BSW Module Configuration
Data Object Code

1..*

Consumes Basic Software Module
Object Code

1..*

Consumes ECU Object Code 1..*

Produces ECU Executable 1

Used tool Linker 1

Table 3.326: Link ECU Code during Link Time Configuration

3.6.4.1.11 Link ECU Code During Post-build Time

Link ECU Code
during Post-Build
Time BSW Module

Configuration Data
Loadable to ECU Memory

BSW Module
Configuration Data
Object Code

Linker

1..* «input»

«used tool»

«output» 1

Figure 3.165: Link ECU Code During Post-build Time

Task Definition Link ECU Code during Post-Build Time

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Tasks

Brief Description Link ECU Code during post-build time loadable .

Description Link ECU Code during post-build time. The objects used for this link are coming from configuration
data file that contain all configured parameters. The result of the link is a hex file that will be loadable
in the ECU memory.

Relation Type Related Element Mult. Note

Consumes BSW Module Configuration
Data Object Code

1..*

Produces BSW Module Configuration
Data Loadable to ECU
Memory

1

Used tool Linker 1

Table 3.327: Link ECU Code during Post-Build Time

422 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.4.2 Work Products

3.6.4.2.1 BSW Module Configuration Header File

Artifact BSW Module Configuration Header File

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Work Products

Brief Description C-header file generated from the configuration data of a BSW module.

Description C-header file generated from the configuration data of a BSW module, defining the data (only
possible for pre-compile configuration) or containing additional declarations (needed by generated
configuration code only).

Kind Bound Source Code

Relation Type Related Element Mult. Note

Produced by Generate BSW
Configuration Code

1

Produced by Generate BSW Postbuild
Configuration Code

1

Produced by Generate BSW Precompile
Configuration Header

1

Produced by Generate BSW Source
Code

1

Produced by Generate BSW and RTE 1

Consumed by Compile BSW Configuration
Data

1

Consumed by Compile Configured BSW 1

Consumed by Compile Generated BSW 1

Consumed by Compile ECU Source Code 0..* Meth.bindingTime = CodeGenerationTime

Table 3.328: BSW Module Configuration Header File

3.6.4.2.2 BSW Module Completely Generated Source Code

Artifact BSW Module Completely Generated Source Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Work Products

Brief Description Generated BSW source code implementing the complete module after inclusion of pre-compilation
configuration data.

Description Generated BSW source code implementing the complete module after inclusion of pre-compilation
configuration data. In this case, no core code is delivered by the module vendor.

Kind Source Code

Relation Type Related Element Mult. Note

Produced by Generate BSW Source
Code

1

Consumed by Compile Generated BSW 1

Table 3.329: BSW Module Completely Generated Source Code

423 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

3.6.4.2.3 BSW Module Configuration Data Source Code

Artifact BSW Module Configuration Data Source Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Work Products

Brief Description BSW source code generated from configuration data, implementing only the data.

Description BSW source code generated from configuration data, implementing only the data.

Kind Bound Source Code

Relation Type Related Element Mult. Note

Produced by Generate BSW
Configuration Code

1

Produced by Generate BSW Postbuild
Configuration Code

1

Produced by Generate BSW and RTE 1

Consumed by Compile BSW Configuration
Data

1

Consumed by Compile ECU Source Code 0..* Meth.bindingTime = CodeGenerationTime

Table 3.330: BSW Module Configuration Data Source Code

3.6.4.2.4 BSW Module Configuration Data Object Code

Artifact BSW Module Configuration Data Object Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Work Products

Brief Description Generated data for link-time or postbuild configuration of a BSW module.

Description Generated & compiled configuration data for link-time or postbuild configuration of a BSW module.

Kind Object Code

Relation Type Related Element Mult. Note

Produced by Compile BSW Configuration
Data

1

Consumed by Link ECU Code during Link
Time Configuration

1..*

Consumed by Link ECU Code during
Post-Build Time

1..*

Table 3.331: BSW Module Configuration Data Object Code

3.6.4.2.5 BSW Module Configuration Data Loadable to ECU Memory

Artifact BSW Module Configuration Data Loadable to ECU Memory

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Work Products

Brief Description Generated loadable configuration data for post-build configuration of a BSW module.

Description Generated loadable configuration data for post-build configuration of a BSW module.

Kind Configuration Data Set

Relation Type Related Element Mult. Note

Aggregated by ECU Software Delivered 0..*

▽

424 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Artifact BSW Module Configuration Data Loadable to ECU Memory

Produced by Link ECU Code during
Post-Build Time

1

Table 3.332: BSW Module Configuration Data Loadable to ECU Memory

425 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

A Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class ARElement (abstract)

Note An element that can be defined stand-alone, i.e. without being part of another element (except for
packages of course).

Base ARObject , CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses AclObjectSet, AclOperation, AclPermission, AclRole, AliasNameSet, ApplicabilityInfoSet, Application
Partition, AutosarDataType, BaseType, BlueprintMappingSet, BswEntryRelationshipSet, BswModule
Description, BswModuleEntry, BuildActionManifest, CalibrationParameterValueSet, ClientIdDefinitionSet,
ClientServerInterfaceToBswModuleEntryBlueprintMapping, Collection, CompuMethod, Consistency
NeedsBlueprintSet, ConstantSpecification, ConstantSpecificationMappingSet, CpSoftwareCluster, Cp
SoftwareClusterBinaryManifestDescriptor, CpSoftwareClusterMappingSet, CpSoftwareClusterResource
Pool, CryptoEllipticCurveProps, CryptoServiceCertificate, CryptoServiceKey, CryptoServicePrimitive,
CryptoServiceQueue, CryptoSignatureScheme, DataConstr, DataTransformationSet, DataTypeMapping
Set, DdsCpConfig, DiagnosticCommonElement , DiagnosticConnection, DiagnosticContributionSet, Dlt
ArgumentPropsSet, DltContext, DltEcu, Documentation, E2EProfileCompatibilityProps, EcucDefinition
Collection, EcucDestinationUriDefSet, EcucModuleConfigurationValues, EcucModuleDef, EcucValue
Collection, EthIpProps, EthTcpIpIcmpProps, EthTcpIpProps, EvaluatedVariantSet, FMFeature,
FMFeatureMap, FMFeatureModel, FMFeatureSelectionSet, FirewallRule, FlatMap, GeneralPurpose
Connection, HwCategory, HwElement, HwType, IEEE1722TpConnection, IPSecConfigProps, IPv6Ext
HeaderFilterSet, IdsCommonElement , IdsDesign, Implementation, ImpositionTimeDefinitionGroup,
InterpolationRoutineMappingSet, J1939ControllerApplication, KeywordSet, LifeCycleInfoSet, LifeCycle
StateDefinitionGroup, LogAndTraceMessageCollectionSet, MacSecGlobalKayProps, MacSecParticipant
Set, McFunction, McGroup, ModeDeclarationGroup, ModeDeclarationMappingSet, OsTaskProxy,
PhysicalDimension, PhysicalDimensionMappingSet, PortInterface, PortInterfaceMappingSet, Port
PrototypeBlueprint, PostBuildVariantCriterion, PostBuildVariantCriterionValueSet, PredefinedVariant,
RapidPrototypingScenario, SdgDef, SecureComProps, SignalServiceTranslationPropsSet, SomeipSd
ClientEventGroupTimingConfig, SomeipSdClientServiceInstanceConfig, SomeipSdServerEventGroup
TimingConfig, SomeipSdServerServiceInstanceConfig, SwAddrMethod, SwAxisType, SwComponent
MappingConstraints, SwComponentType, SwRecordLayout, SwSystemconst, SwSystemconstantValue
Set, SwcBswMapping, System, SystemComSpecDefinitionSet, SystemSignal, SystemSignalGroup,
TDCpSoftwareClusterMappingSet, TcpOptionFilterSet, TimingExtension, TlsConnectionGroup, TlvData
IdDefinitionSet, TransformationPropsSet, Unit, UnitGroup, UploadablePackageElement , ViewMapSet

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

– – – – –

Table A.1: ARElement

Class ARPackage

Note AUTOSAR package, allowing to create top level packages to structure the contained ARElements.
ARPackages are open sets. This means that in a file based description system multiple files can be used
to partially describe the contents of a package.
This is an extended version of MSR’s SW-SYSTEM.

Base ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, MultilanguageReferrable,
Referrable

Aggregated by ARPackage.arPackage, AUTOSAR.arPackage

Attribute Type Mult. Kind Note

▽

426 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Class ARPackage

arPackage ARPackage * aggr This represents a sub package within an ARPackage,
thus allowing for an unlimited package hierarchy.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=arPackage.shortName, arPackage.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=30

element PackageableElement * aggr Elements that are part of this package
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=element.shortName, element.variation
Point.shortLabel
vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=20

referenceBase ReferenceBase * aggr This denotes the reference bases for the package. This is
the basis for all relative references within the package.
The base needs to be selected according to the base
attribute within the references.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=referenceBase.shortLabel
xml.sequenceOffset=10

Table A.2: ARPackage

Class AliasNameSet
Note This meta-class represents a set of AliasNames. The AliasNameSet can for example be an input to the

A2L-Generator.
Tags: atp.recommendedPackage=AliasNameSets

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

aliasName AliasNameAssignment * aggr AliasNames contained in the AliasNameSet.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=aliasName.shortLabel, aliasName.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

Table A.3: AliasNameSet

Class AtomicSwComponentType (abstract)

Note An atomic software component is atomic in the sense that it cannot be further decomposed and
distributed across multiple ECUs.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, SwComponentType

Subclasses ApplicationSwComponentType, ComplexDeviceDriverSwComponentType, EcuAbstractionSwComponent
Type, NvBlockSwComponentType, SensorActuatorSwComponentType, ServiceProxySwComponent
Type, ServiceSwComponentType

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

▽

427 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Class AtomicSwComponentType (abstract)

internalBehavior SwcInternalBehavior 0..1 aggr The SwcInternalBehaviors owned by an
AtomicSwComponentType can be located in a different
physical file. Therefore the aggregation is <<atp
Splitable>>.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=internalBehavior.shortName, internal
Behavior.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

symbolProps SymbolProps 0..1 aggr This represents the SymbolProps for the
AtomicSwComponentType.
Stereotypes: atpSplitable
Tags: atp.Splitkey=symbolProps.shortName

Table A.4: AtomicSwComponentType

Class «atpMixedString» ConditionByFormula

Note This class represents a condition which is computed based on system constants according to the
specified expression. The expected result is considered as boolean value.
The result of the expression is interpreted as a condition.
• "0" represents "false";

• a value other than zero is considered "true"
Base ARObject , FormulaExpression, SwSystemconstDependentFormula

Aggregated by VariationPoint.swSyscond, VariationPointProxy.conditionAccess

Attribute Type Mult. Kind Note

bindingTime BindingTimeEnum 1 attr This attribute specifies the point in time when condition
may be evaluated at earliest. At this point in time all
referenced system constants shall have a value.
Tags: xml.attribute=true

Table A.5: ConditionByFormula

Class EcuInstance
Note ECUInstances are used to define the ECUs used in the topology. The type of the ECU is defined by a

reference to an ECU specified with the ECU resource description.
Tags: atp.recommendedPackage=EcuInstances

Base ARObject , CollectableElement , FibexElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

associatedCom
IPduGroup

ISignalIPduGroup * ref With this reference it is possible to identify which ISignal
IPduGroups are applicable for which Communication
Connector/ ECU.
Only top level ISignalIPduGroups shall be referenced by
an EcuInstance. If an ISignalIPduGroup contains other
ISignalIPduGroups than these contained ISignalIPdu
Groups shall not be referenced by the EcuInstance.
Contained ISignalIPduGroups are associated to an Ecu
Instance via the top level ISignalIPduGroup.
This Attribute is only used by the AUTOSAR Classic
Platform.

▽

428 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Class EcuInstance
associated
Consumed
Provided
ServiceInstance
Group

ConsumedProvided
ServiceInstanceGroup

* ref With this reference it is possible to identify which
ConsumedProvidedServiceInstanceGroups are
applicable for which ECUInstance.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=associatedConsumedProvidedService
InstanceGroup.consumedProvidedServiceInstanceGroup,
associatedConsumedProvidedServiceInstance
Group.variationPoint.shortLabel
vh.latestBindingTime=postBuild

associatedPdur
IPduGroup

PdurIPduGroup * ref With this reference it is possible to identify which PduR
IPdu Groups are applicable for which Communication
Connector/ ECU.

channel
Synchronous
Wakeup

Boolean 0..1 attr If this parameter is available and set to true, then all
available channels will be woken up as soon as at least
one channel wakeup occurs. If PNCs are configured, then
all PNCs will be requested upon a channel wakeup.

clientIdRange ClientIdRange 0..1 aggr Restriction of the Client Identifier for this Ecu to an
allowed range of numerical values. The Client Identifier of
the transaction handle is generated by the client RTE for
inter-Ecu Client/Server communication.

com
Configuration
GwTimeBase

TimeValue 0..1 attr The period between successive calls to Com_Main
FunctionRouteSignals of the AUTOSAR COM module in
seconds.
This Attribute is only used by the AUTOSAR Classic
Platform.

com
ConfigurationRx
TimeBase

TimeValue 0..1 attr The period between successive calls to Com_Main
FunctionRx of the AUTOSAR COM module in seconds.
This Attribute is only used by the AUTOSAR Classic
Platform.

com
ConfigurationTx
TimeBase

TimeValue 0..1 attr The period between successive calls to Com_Main
FunctionTx of the AUTOSAR COM module in seconds.
This Attribute is only used by the AUTOSAR Classic
Platform.

comEnable
MDTForCyclic
Transmission

Boolean 0..1 attr Enables for the Com module of this EcuInstance the
minimum delay time monitoring for cyclic and repeated
transmissions (TransmissionModeTiming has cyclic
Timing assigned or eventControlledTiming with numberOf
Repetitions > 0).
This Attribute is only used by the AUTOSAR Classic
Platform.

commController Communication
Controller

* aggr CommunicationControllers of the ECU.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=commController.shortName, comm
Controller.variationPoint.shortLabel
vh.latestBindingTime=postBuild

connector Communication
Connector

* aggr All channels controlled by a single controller.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=connector.shortName, connector.variation
Point.shortLabel
vh.latestBindingTime=postBuild

dltConfig DltConfig 0..1 aggr Describes the Dlt configuration on this EcuInstance.
Stereotypes: atpSplitable
Tags: atp.Splitkey=dltConfig
This Attribute is only used by the AUTOSAR Classic
Platform.

▽

429 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Class EcuInstance

doIpConfig DoIpConfig 0..1 aggr DoIp configuration on this EcuInstance.
Tags: atp.Status=draft
This Attribute is only used by the AUTOSAR Classic
Platform.

ecuTaskProxy OsTaskProxy * ref Reference to OsTaskProxies assigned to the Ecu
Instance.
Stereotypes: atpSplitable
Tags: atp.Splitkey=ecuTaskProxy
This Attribute is only used by the AUTOSAR Classic
Platform.

ethSwitchPort
Group
Derivation

Boolean 0..1 attr Defines whether the derivation of SwitchPortGroups
based on VLAN and/or CouplingPort.pncMapping shall be
performed for this EcuInstance. If not defined the
derivation shall not be done.
This Attribute is only used by the AUTOSAR Classic
Platform.

firewallRule StateDependentFirewall * ref Firewall rules defined in the context of an EcuInstance.
Tags: atp.Status=candidate

j1939Node J1939Node * aggr Optional collection of J1939Nodes defined on this Ecu
Instance.
This Attribute is only used by the AUTOSAR Classic
Platform.

partition EcuPartition * aggr Optional definition of Partitions within an Ecu.
This Attribute is only used by the AUTOSAR Classic
Platform.

pncNmRequest Boolean 0..1 attr Defines if this EcuInstance shall request Nm on all its
PhysicalChannels which have Nm variant set to FULL
each time a PNC is requested.

pncPrepare
SleepTimer

TimeValue 0..1 attr Time in seconds the PNC state machine shall wait in
PNC_PREPARE_SLEEP.

pnc
Synchronous
Wakeup

Boolean 0..1 attr If this parameter is available and set to true then all
available PNCs will be woken up as soon as a channel
wakeup occurs. This is ensured by adding all PNCs to all
channel wakeup sources during upstream mapping.

pnResetTime TimeValue 0..1 attr Specifies the runtime of the reset timer in seconds. This
reset time is valid for the reset of PN requests in the EIRA
and in the ERA.

sleepMode
Supported

Boolean 0..1 attr Specifies whether the ECU instance may be put to a "low
power mode"
• true: sleep mode is supported

• false: sleep mode is not supported

Note: This flag may only be set to "true" if the feature is
supported by both hardware and basic software.

This Attribute is only used by the AUTOSAR Classic
Platform.

tcpIpIcmpProps EthTcpIpIcmpProps 0..1 ref EcuInstance specific ICMP (Internet Control Message
Protocol) attributes
This Attribute is only used by the AUTOSAR Classic
Platform.

tcpIpProps EthTcpIpProps 0..1 ref EcuInstance specific TcpIp Stack attributes.
This Attribute is only used by the AUTOSAR Classic
Platform.

v2xSupported V2xSupportEnum 0..1 attr This attribute is used to control the existence of the V2X
stack on the given EcuInstance.
This Attribute is only used by the AUTOSAR Classic
Platform.

▽

430 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Class EcuInstance

wakeUpOver
BusSupported

Boolean 0..1 attr Driver support for wakeup over Bus.
This Attribute is only used by the AUTOSAR Classic
Platform.

Table A.6: EcuInstance

Class EvaluatedVariantSet
Note This meta class represents the ability to express if a set of ARElements is able to support one or more

particular variants.
In other words, for a given set of evaluatedElements this meta class represents a table of evaluated
variants, where each PredefinedVariant represents one column. In this column each descendant sw
SystemconstantValue resp. postbuildVariantCriterionValue represents one entry.
In a graphical representation each swSystemconstantValueSet / postBuildVariantCriterionValueSet could
be used as an intermediate headline in the table column.
If the approvalStatus is "APPROVED" it expresses that the collection of CollectableElements is known be
valid for the given evaluatedVariants.
Note that the EvaluatedVariantSet is a CollectableElement. This allows to establish a hierarchy of
EvaluatedVariantSets.
Tags: atp.recommendedPackage=EvaluatedVariantSets

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

approvalStatus NameToken 1 attr Defines the approval status of a predefined variant. Two
values are predefined: "APPROVED" and "REJECTED":
• Approved variants are known to work.

• Rejected variants are known NOT to work.

Further values can be approved on a per-company basis;
within AUTOSAR only "APPROVED" and "REJECTED"
should be recognized.

evaluated
Element

CollectableElement * ref This represents a particular element which is evaluated in
context of the EvaluatedVariants. The approvalStatus
applies to this element (and all of its descendants). In
other words, the referenced elements are those that were
considered when the predefined variant was evaluated.

evaluated
Variant

PredefinedVariant * ref This metaclass represents one particular variant which
was evaluated. LowerMultiplicity is set to 0 to support a
stepwise approach.

Table A.7: EvaluatedVariantSet

Class FlatMap

Note Contains a flat list of references to software objects. This list is used to identify instances and to resolve
name conflicts. The scope is given by the RootSwCompositionPrototype for which it is used, i.e. it can be
applied to a system, system extract or ECU-extract.
An instance of FlatMap may also be used in a preliminary context, e.g. in the scope of a software
component before integration into a system. In this case it is not referred by a RootSwComposition
Prototype.
Tags: atp.recommendedPackage=FlatMaps
This Class is only used by the AUTOSAR Classic Platform.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

▽

431 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Class FlatMap

instance FlatInstanceDescriptor * aggr A descriptor instance aggregated in the flat map.
The variation point accounts for the fact, that the system
in scope can be subject to variability, and thus the
existence of some instances is variable.
The aggregation has been made splitable because the
content might be contributed by different stakeholders at
different times in the workflow. Plus, the overall size might
be so big that eventually it becomes more manageable if
it is distributed over several files.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=instance.shortName, instance.variation
Point.shortLabel
vh.latestBindingTime=postBuild

Table A.8: FlatMap

Class ImplementationDataType

Note Describes a reusable data type on the implementation level. This will typically correspond to a typedef in
C-code.
Tags: atp.recommendedPackage=ImplementationDataTypes

Base ARElement , ARObject , AbstractImplementationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier ,
AtpType, AutosarDataType, CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

dynamicArray
SizeProfile

String 0..1 attr Specifies the profile which the array will follow in case this
data type is a variable size array.

isStructWith
Optional
Element

Boolean 0..1 attr This attribute is only valid if the attribute category is set to
STRUCTURE.
If set to true, this attribute indicates that the
ImplementationDataType has been created with the
intention to define at least one element of the structure as
optional.

subElement
(ordered)

ImplementationData
TypeElement

* aggr Specifies an element of an array, struct, or union data
type.
The aggregation of
ImplementationDataTypeElement is subject to
variability with the purpose to support the conditional
existence of elements inside a
ImplementationDataType representing a structure.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=subElement.shortName, sub
Element.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

symbolProps SymbolProps 0..1 aggr This represents the SymbolProps for the Implementation
DataType.
Stereotypes: atpSplitable
Tags: atp.Splitkey=symbolProps.shortName

typeEmitter NameToken 0..1 attr This attribute is used to control which part of the
AUTOSAR toolchain is supposed to trigger data type
definitions.

Table A.9: ImplementationDataType

432 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Class IncludedDataTypeSet

Note An includedDataTypeSet declares that a set of AutosarDataType is used by a basic software module or a
software component for its implementation and the AutosarDataType becomes part of the contract.
This information is required if the AutosarDataType is not used for any DataPrototype owned by this
software component or if the enumeration literals, lowerLimit and upperLimit constants shall be
generated with a literalPrefix.
The optional literalPrefix is used to add a common prefix on enumeration literals, lowerLimit and upper
Limit constants created by the RTE.

Base ARObject

Aggregated by BswInternalBehavior.includedDataTypeSet, SwcInternalBehavior.includedDataTypeSet

Attribute Type Mult. Kind Note

dataType AutosarDataType * ref AutosarDataType belonging to the
includedDataTypeSet.

literalPrefix Identifier 0..1 attr LiteralPrefix defines a common prefix for all AutosarData
Types of the includedDataTypeSet to be added on
enumeration literals, lowerLimit and upperLimit constants
created by the RTE.

Table A.10: IncludedDataTypeSet

Class PortInterface (abstract)

Note Abstract base class for an interface that is either provided or required by a port of a software component.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses ClientServerInterface, DataInterface, ModeSwitchInterface, TriggerInterface

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

isService Boolean 0..1 attr This flag is set if the PortInterface is to be used for
communication between an
• ApplicationSwComponentType or

• ServiceProxySwComponentType or

• SensorActuatorSwComponentType or

• ComplexDeviceDriverSwComponentType

• ServiceSwComponentType

• EcuAbstractionSwComponentType

and a ServiceSwComponentType (namely an
AUTOSAR Service) located on the same ECU. Otherwise
the flag is not set.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivationTime

This Attribute is only used by the AUTOSAR Classic
Platform.

serviceKind ServiceProviderEnum 0..1 attr This attribute provides further details about the nature of
the applied service.
This Attribute is only used by the AUTOSAR Classic
Platform.

Table A.11: PortInterface

433 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Class Referrable (abstract)

Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).

Base ARObject

Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint , BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, DiagnosticEnvModeElement , EthernetPriority
Regeneration, ExclusiveAreaNestingOrder, HwDescriptionEntity , ImplementationProps, LinSlaveConfig
Ident, ModeTransition, MultilanguageReferrable, PncMappingIdent, SingleLanguageReferrable, SoCon
IPduIdentifier, TpConnectionIdent

Attribute Type Mult. Kind Note

shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.
Stereotypes: atpIdentityContributor
Tags:
xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100

shortName
Fragment

ShortNameFragment * aggr This specifies how the Referrable.shortName is
composed of several shortNameFragments.
Tags: xml.sequenceOffset=-90

Table A.12: Referrable

Class RunnableEntity

Note A RunnableEntity represents the smallest code-fragment that is provided by an
AtomicSwComponentType and are executed under control of the RTE. RunnableEntitys are for
instance set up to respond to data reception or operation invocation on a server.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , ExecutableEntity , Identifiable, Multilanguage
Referrable, Referrable

Aggregated by AtpClassifier .atpFeature, SwcInternalBehavior.runnable

Attribute Type Mult. Kind Note

argument
(ordered)

RunnableEntity
Argument

* aggr This represents the formal definition of a an argument to
a RunnableEntity.

asynchronous
ServerCall
ResultPoint

AsynchronousServer
CallResultPoint

* aggr The server call result point admits a runnable to fetch the
result of an asynchronous server call.
The aggregation of AsynchronousServerCallResultPoint
is subject to variability with the purpose to support the
conditional existence of client server PortPrototypes and
the variant existence of server call result points in the
implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=asynchronousServerCallResultPoint.short
Name, asynchronousServerCallResultPoint.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
This Attribute is only used by the AUTOSAR Classic
Platform.

canBeInvoked
Concurrently

Boolean 0..1 attr If the value of this attribute is set to "true" the enclosing
RunnableEntity can be invoked concurrently (even for
one instance of the corresponding
AtomicSwComponentType). This implies that it is the
responsibility of the implementation of the
RunnableEntity to take care of this form of
concurrency.

▽

434 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Class RunnableEntity

dataRead
Access

VariableAccess * aggr RunnableEntity has implicit read access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.
The aggregation of dataReadAccess is subject to
variability with the purpose to support the conditional
existence of sender receiver ports or the variant existence
of dataReadAccess in the implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataReadAccess.shortName, dataRead
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataReceive
PointBy
Argument

VariableAccess * aggr RunnableEntity has explicit read access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype. The result is passed back to the
application by means of an argument in the function
signature.
The aggregation of dataReceivePointByArgument is
subject to variability with the purpose to support the
conditional existence of sender receiver PortPrototype or
the variant existence of data receive points in the
implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataReceivePointByArgument.shortName,
dataReceivePointByArgument.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataReceive
PointByValue

VariableAccess * aggr RunnableEntity has explicit read access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.
The result is passed back to the application by means of
the return value. The aggregation of dataReceivePointBy
Value is subject to variability with the purpose to support
the conditional existence of sender receiver ports or the
variant existence of data receive points in the
implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataReceivePointByValue.shortName, data
ReceivePointByValue.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataSendPoint VariableAccess * aggr RunnableEntity has explicit write access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.
The aggregation of dataSendPoint is subject to variability
with the purpose to support the conditional existence of
sender receiver PortPrototype or the variant existence of
data send points in the implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataSendPoint.shortName, dataSend
Point.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

▽

435 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Class RunnableEntity

dataWrite
Access

VariableAccess * aggr RunnableEntity has implicit write access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.
The aggregation of dataWriteAccess is subject to
variability with the purpose to support the conditional
existence of sender receiver ports or the variant existence
of dataWriteAccess in the implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataWriteAccess.shortName, dataWrite
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

external
TriggeringPoint

ExternalTriggeringPoint * aggr The aggregation of ExternalTriggeringPoint is subject to
variability with the purpose to support the conditional
existence of trigger ports or the variant existence of
external triggering points in the implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=externalTriggeringPoint.ident.shortName,
externalTriggeringPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

internal
TriggeringPoint

InternalTriggeringPoint * aggr The aggregation of InternalTriggeringPoint is subject to
variability with the purpose to support the variant
existence of internal triggering points in the
implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=internalTriggeringPoint.shortName, internal
TriggeringPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

modeAccess
Point

ModeAccessPoint * aggr The runnable has a mode access point. The aggregation
of ModeAccessPoint is subject to variability with the
purpose to support the conditional existence of mode
ports or the variant existence of mode access points in
the implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=modeAccessPoint.ident.shortName, mode
AccessPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

modeSwitch
Point

ModeSwitchPoint * aggr The runnable has a mode switch point. The aggregation
of ModeSwitchPoint is subject to variability with the
purpose to support the conditional existence of mode
ports or the variant existence of mode switch points in the
implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=modeSwitchPoint.shortName, modeSwitch
Point.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

▽

436 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Class RunnableEntity

parameter
Access

ParameterAccess * aggr The presence of a ParameterAccess implies that a
RunnableEntity needs read only access to a Parameter
DataPrototype which may either be local or within a Port
Prototype.
The aggregation of ParameterAccess is subject to
variability with the purpose to support the conditional
existence of parameter ports and component local
parameters as well as the variant existence of Parameter
Access (points) in the implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=parameterAccess.shortName, parameter
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

readLocal
Variable

VariableAccess * aggr The presence of a readLocalVariable implies that a
RunnableEntity needs read access to a VariableData
Prototype in the role of implicitInterRunnableVariable or
explicitInterRunnableVariable.
The aggregation of readLocalVariable is subject to
variability with the purpose to support the conditional
existence of implicitInterRunnableVariable and explicit
InterRunnableVariable or the variant existence of read
LocalVariable (points) in the implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=readLocalVariable.shortName, readLocal
Variable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

serverCallPoint ServerCallPoint * aggr The RunnableEntity has a ServerCallPoint. The
aggregation of ServerCallPoint is subject to variability with
the purpose to support the conditional existence of client
server PortPrototypes or the variant existence of server
call points in the implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=serverCallPoint.shortName, serverCall
Point.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
This Attribute is only used by the AUTOSAR Classic
Platform.

symbol CIdentifier 0..1 attr The symbol describing this RunnableEntity’s entry
point. This is considered the API of the
RunnableEntity and is required during the RTE
contract phase.

waitPoint WaitPoint * aggr The WaitPoint associated with the RunnableEntity.

writtenLocal
Variable

VariableAccess * aggr The presence of a writtenLocalVariable implies that a
RunnableEntity needs write access to a VariableData
Prototype in the role of implicitInterRunnableVariable or
explicitInterRunnableVariable.
The aggregation of writtenLocalVariable is subject to
variability with the purpose to support the conditional
existence of implicitInterRunnableVariable and explicit
InterRunnableVariable or the variant existence of written
LocalVariable (points) in the implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=writtenLocalVariable.shortName, written
LocalVariable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table A.13: RunnableEntity

437 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Class SwcInternalBehavior
Note The SwcInternalBehavior of an AtomicSwComponentType describes the relevant aspects of the

software-component with respect to the RTE, i.e. the RunnableEntitys and the RTEEvents they
respond to.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, InternalBehavior , Multilanguage
Referrable, Referrable

Aggregated by AtomicSwComponentType.internalBehavior, AtpClassifier .atpFeature

Attribute Type Mult. Kind Note

arTypedPer
Instance
Memory

VariableDataPrototype * aggr Defines an AUTOSAR typed memory-block that needs to
be available for each instance of the SW-component.
This is typically only useful if
supportsMultipleInstantiation is set to "true" or
if the component defines NVRAM access via permanent
blocks.
The aggregation of arTypedPerInstanceMemory is
subject to variability with the purpose to support variability
in the software component’s implementations. Typically
different algorithms in the implementation are requiring
different number of memory objects.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=arTypedPerInstanceMemory.shortName, ar
TypedPerInstanceMemory.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

event RTEEvent * aggr This is a RTEEvent specified for the particular
SwcInternalBehavior.
The aggregation of RTEEvent is subject to variability with
the purpose to support the conditional existence of
RTEEvents. Note: the number of RTEEvents might vary
due to the conditional existence of PortPrototypes
using DataReceivedEvents or due to different
scheduling needs of algorithms.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=event.shortName, event.variationPoint.short
Label
vh.latestBindingTime=preCompileTime

exclusiveArea
Policy

SwcExclusiveArea
Policy

* aggr Options how to generate the ExclusiveArea related APIs.
When no SwcExclusiveAreaPolicy is specified for an
ExclusiveArea the default values apply.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=exclusiveAreaPolicy, exclusiveArea
Policy.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

explicitInter
Runnable
Variable

VariableDataPrototype * aggr Implement state message semantics for establishing
communication among runnables of the same
component. The aggregation of explicitInterRunnable
Variable is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=explicitInterRunnableVariable.shortName,
explicitInterRunnableVariable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

▽

438 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Class SwcInternalBehavior
implicitInter
Runnable
Variable

VariableDataPrototype * aggr Implement state message semantics for establishing
communication among runnables of the same
component. The aggregation of implicitInterRunnable
Variable is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=implicitInterRunnableVariable.shortName,
implicitInterRunnableVariable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

includedData
TypeSet

IncludedDataTypeSet * aggr The includedDataTypeSet is used by a software
component for its implementation.
Stereotypes: atpSplitable
Tags: atp.Splitkey=includedDataTypeSet

includedMode
Declaration
GroupSet

IncludedMode
DeclarationGroupSet

* aggr This aggregation represents the included Mode
DeclarationGroups
Stereotypes: atpSplitable
Tags: atp.Splitkey=includedModeDeclarationGroupSet

instantiation
DataDefProps

InstantiationDataDef
Props

* aggr The purpose of this is that within the context of a given
SwComponentType some data def properties of individual
instantiations can be modified. The aggregation of
InstantiationDataDefProps is subject to variability with the
purpose to support the conditional existence of Port
Prototypes and component local memories like "per
InstanceParameter" or "arTypedPerInstanceMemory".
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=instantiationDataDefProps, instantiationData
DefProps.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

perInstance
Memory

PerInstanceMemory * aggr Defines a per-instance memory object needed by this
software component. The aggregation of PerInstance
Memory is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=perInstanceMemory.shortName, perInstance
Memory.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

perInstance
Parameter

ParameterData
Prototype

* aggr Defines parameter(s) or characteristic value(s) that needs
to be available for each instance of the
software-component. This is typically only useful if
supportsMultipleInstantiation is set to "true". The
aggregation of perInstanceParameter is subject to
variability with the purpose to support variability in the
software components implementations. Typically different
algorithms in the implementation are requiring different
number of memory objects.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=perInstanceParameter.shortName, per
InstanceParameter.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

▽

439 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Class SwcInternalBehavior
portAPIOption PortAPIOption * aggr Options for generating the signature of port-related calls

from a runnable to the RTE and vice versa. The
aggregation of PortPrototypes is subject to variability with
the purpose to support the conditional existence of ports.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=portAPIOption.port, portAPIOption.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

runnable RunnableEntity * aggr This is a RunnableEntity specified for the particular
SwcInternalBehavior.
The aggregation of RunnableEntity is subject to
variability with the purpose to support the conditional
existence of RunnableEntitys. Note: the number of
RunnableEntitys might vary due to the conditional
existence of PortPrototypes using
DataReceivedEvents or due to different scheduling
needs of algorithms.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=runnable.shortName, runnable.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

service
Dependency

SwcService
Dependency

* aggr Defines the requirements on AUTOSAR Services for a
particular item.
The aggregation of SwcServiceDependency is subject to
variability with the purpose to support the conditional
existence of ports as well as the conditional existence of
ServiceNeeds.
The SwcServiceDependency owned by an SwcInternal
Behavior can be located in a different physical file in order
to support that SwcServiceDependency might be
provided in later development steps or even by different
expert domain (e.g OBD expert for Obd related Service
Needs) tools. Therefore the aggregation is <<atp
Splitable>>.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=serviceDependency.shortName, service
Dependency.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

shared
Parameter

ParameterData
Prototype

* aggr Defines parameter(s) or characteristic value(s) shared
between SwComponentPrototypes of the same Sw
ComponentType The aggregation of sharedParameter is
subject to variability with the purpose to support variability
in the software components implementations. Typically
different algorithms in the implementation are requiring
different number of memory objects.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=sharedParameter.shortName, shared
Parameter.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

supports
Multiple
Instantiation

Boolean 0..1 attr Indicate whether the corresponding software-component
can be multiply instantiated on one ECU. In this case the
attribute will result in an appropriate component API on
programming language level (with or without instance
handle).

variationPoint
Proxy

VariationPointProxy * aggr Proxy of a variation points in the C/C++ implementation.
Stereotypes: atpSplitable
Tags: atp.Splitkey=variationPointProxy.shortName

Table A.14: SwcInternalBehavior

440 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

Class SymbolProps

Note This meta-class represents the ability to attach with the symbol attribute a symbolic name that is conform
to C language requirements to another meta-class, e.g. AtomicSwComponentType, that is a potential
subject to a name clash on the level of RTE source code.

Base ARObject , ImplementationProps, Referrable

Aggregated by Allocator.namespace, ApApplicationErrorDomain.namespace, AtomicSwComponentType.symbolProps,
CppImplementationDataType.namespace, ImplementationDataType.symbolProps, PortInterface.
namespace, SecurityEventDefinition.eventSymbolName, TraceSwitchConfig.namespace

Attribute Type Mult. Kind Note

– – – – –

Table A.15: SymbolProps

Class VariationPoint
Note This meta-class represents the ability to express a "structural variation point". The container of the

variation point is part of the selected variant if swSyscond evaluates to true and each postBuildVariant
Criterion is fulfilled.

Base ARObject

Attribute Type Mult. Kind Note

blueprint
Condition

DocumentationBlock 0..1 aggr This represents a description that documents how the
variation point shall be resolved when deriving objects
from the blueprint.
Note that variationPoints are not allowed within a
blueprintCondition.
Tags: xml.sequenceOffset=28

desc MultiLanguageOverview
Paragraph

0..1 aggr This allows to describe shortly the purpose of the
variation point.
Tags: xml.sequenceOffset=20

formalBlueprint
Generator

BlueprintGenerator 0..1 aggr This represents a description that documents how the
variation point shall be resolved when deriving objects
from the blueprint by using ARMQL.
Note that variationPoints are not allowed within a formal
BlueprintGenerator.
Tags:
atp.Status=draft
xml.sequenceOffset=30

postBuildVariant
Condition

PostBuildVariant
Condition

* aggr This is the set of post build variant conditions which all
shall be fulfilled in order to (postbuild) bind the variation
point.
Tags: xml.sequenceOffset=40

sdg Sdg 0..1 aggr An optional special data group is attached to every
variation point. These data can be used by external
software systems to attach application specific data. For
example, a variant management system might add an
identifier, an URL or a specific classifier.
Tags: xml.sequenceOffset=50

shortLabel Identifier 0..1 attr This provides a name to the particular variation point to
support the RTE generator. It is necessary for supporting
splitable aggregations and if binding time is later than
codeGenerationTime, as well as some RTE conditions. It
needs to be unique with in the enclosing Identifiables with
the same ShortName.
Stereotypes: atpIdentityContributor
Tags: xml.sequenceOffset=10

swSyscond ConditionByFormula 0..1 aggr This condition acts as Binding Function for the Variation
Point. Note that the multiplicity is 0..1 in order to support
pure postBuild variants.
Tags: xml.sequenceOffset=30

Table A.16: VariationPoint

441 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

B Change History

Please note that the lists in this chapter also include specification items that have been
removed from the specification in a later version. These specification items do not
appear as hyperlinks in the document.

B.1 Change History of this document according to AUTOSAR Re-
lease R4.1.1

B.1.1 Added Specification Items in 4.1.1

Number Heading
[TR_METH_00001] Definition of Binding Time for Tasks
[TR_METH_00002] Definition of Binding Time for Artifacts
[TR_METH_00003] Definition of Binding Time for Artifacts in the context of particular tasks
[TR_METH_01000] Domains of the AUTOSAR methodology
[TR_METH_01001] AUTOSAR methodology assets
[TR_METH_01002] AUTOSAR methodology use cases
[TR_METH_01003] Scope of the AUTOSAR methodology
[TR_METH_01004] Support for various stakeholders by the AUTOSAR methodology
[TR_METH_01005] Restrictions of AUTOSAR methodology
[TR_METH_01006] General AUTOSAR methodology concepts
[TR_METH_01007] Method Library
[TR_METH_01008] Method Library Element
[TR_METH_01009] Relation of Method Library and Method Library Element to the SPEM

meta model
[TR_METH_01010] Overview of Method Library Elements
[TR_METH_01011] Task Definition
[TR_METH_01012] Task semantics
[TR_METH_01013] Task usage
[TR_METH_01014] Work Product Definition
[TR_METH_01015] Relationship between Roles and Work Products
[TR_METH_01017] Artifact Definition
[TR_METH_01018] Kinds of Artifacts
[TR_METH_01019] Properties of Artifacts
[TR_METH_01020] Relationship between Artifacts and meta model elements
[TR_METH_01021] Deliverable Definition
[TR_METH_01022] Aggregation of Work Products
[TR_METH_01023] Role Definition
[TR_METH_01024] Role assignment
[TR_METH_01025] Tool Definition
[TR_METH_01026] Guidance definition
[TR_METH_01027] Guidance kinds
[TR_METH_01028] Usage of tables
[TR_METH_01029] Capability Patterns definition
[TR_METH_01030] Composition of Capability Patterns
[TR_METH_01031] Adaptability of the AUTOSAR methodology
[TR_METH_01032] Use case elements
[TR_METH_01033] Definition of Activities

442 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

[TR_METH_01034] Composition of Activities
[TR_METH_01035] Definition of Processes
[TR_METH_01036] Description of overall Use Cases
[TR_METH_01037] Precise description of Use Cases
[TR_METH_01038] Detailed description of the work flow
[TR_METH_01039] AUTOSAR System development overview
[TR_METH_01040] Support of different system views
[TR_METH_01041] Abstract system
[TR_METH_01042] Overall technical system
[TR_METH_01043] Sub-System
[TR_METH_01044] Development of a functional view on the system
[TR_METH_01045] Development of the Overall VFB System
[TR_METH_01046] Development of the system
[TR_METH_01047] Two phase development approach
[TR_METH_01048] The overall system
[TR_METH_01049] Interaction between organizations
[TR_METH_01050] Abstract System Description activity
[TR_METH_01051] Creation of an overall abstract system
[TR_METH_01052] Definition of a constraints in the context of an abstract system
[TR_METH_01053] Definition of a System Description in the context of an abstract system
[TR_METH_01054] Virtual Functional Bus
[TR_METH_01055] Data Model Development activity
[TR_METH_01056] Definition of the VFB
[TR_METH_01057] Top-Down approach
[TR_METH_01058] Bottom-Up approach
[TR_METH_01059] Kinds of VFB Atomic Software Components
[TR_METH_01060] Develop an Atomic Software Component activity
[TR_METH_01061] Develop Application Software activity
[TR_METH_01065] Develop System and Develop Sub-System activities
[TR_METH_01066] Creation of a System Extract and a ECU Extract
[TR_METH_01067] Abstract System Description deliverable
[TR_METH_01068] Inputs and Output of the Design System activity
[TR_METH_01069] Deployment of AUTOSAR Software Components
[TR_METH_01070] Description of network signals
[TR_METH_01071] Description of design constraints
[TR_METH_01075] Design Sub-System activity
[TR_METH_01076] Collaboration between different organizations
[TR_METH_01077] Transformation changes during the Design Sub-System activity
[TR_METH_01078] Mapping of different views
[TR_METH_01079] Use Case: Substitution of existing components
[TR_METH_01080] Use Case: Mapping of requirements to the solution
[TR_METH_01081] Use Case: Reorganization of the software structure
[TR_METH_01082] Use Case: Description of changes between different versions of System De-

scriptions
[TR_METH_01083] Design Basic Software activity
[TR_METH_01084] Separation of design and development of basic software
[TR_METH_01085] Develop BSW Module activity
[TR_METH_01086] Integrate Software for ECU activity
[TR_METH_01087] Scope of Integrate Software for ECU activity
[TR_METH_01088] Prepare ECU Configuration activity
[TR_METH_01089] Configure BSW and RTE activity
[TR_METH_01090] Configure RTE task
[TR_METH_01091] Configure Debug task

443 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

[TR_METH_01092] Generating BSW modules, RTE, and OS source files
[TR_METH_01093] Building ECU Executable
[TR_METH_01095] Configuration Class: Pre-compile Time
[TR_METH_01096] Generating header files only
[TR_METH_01097] Generating header and source files
[TR_METH_01098] Configuration Class: Link Time
[TR_METH_01099] Generation and compilation of BSW Configuration Code
[TR_METH_01100] Definition of configuration data
[TR_METH_01101] Separate compilation of module source and configuration file
[TR_METH_01102] Linking process
[TR_METH_01103] Re-generation in case of configuration value changes
[TR_METH_01104] Configuration Class: Post-build Time
[TR_METH_01105] Generate BSW Postbuild Configuration Code
[TR_METH_01106] Generate BSW Configuration Data Loadable
[TR_METH_01107] Configuration Class: Post-build Time Selectable
[TR_METH_01108] Generating multiple post-build configuration variants
[TR_METH_01109] Producing ECU-specific deliverables
[TR_METH_01110] Development of Software Components
[TR_METH_01111] Development of Basic Software modules
[TR_METH_01112] Integration of AUTOSAR ECUs
[TR_METH_01113] Usage of hyperlinks
[TR_METH_01120] Definition of Consistency Needs
[TR_METH_01121] Building the AUTOSAR methodology document
[TR_METH_01122] Relations between AUTOSAR Work Products
[TR_METH_01123] Traceability to external artifacts
[TR_METH_01124] Documentation of Work Products
[TR_METH_02000] Use of AUTOSAR Services
[TR_METH_02001] Define Cross-component Calibration Parameters activity
[TR_METH_02002] Define Local Calibration Parameters activity
[TR_METH_02003] Provide Unique Parameter Names activity
[TR_METH_02004] Re-generate RTE and Calibration Support activity
[TR_METH_02005] Memory sections for data and code
[TR_METH_02006] E2E Protection
[TR_METH_02007] Define E2E Protection Set activity
[TR_METH_02008] Regenerate E2E Protection Wrapper activity
[TR_METH_02009] Variation points in Variant Handling
[TR_METH_02010] Predefined Variants in Variant Handling
[TR_METH_02011] Types of binding times
[TR_METH_02012] Definition of a binding time
[TR_METH_02013] Latest Binding Time
[TR_METH_02014] Actual Binding Time
[TR_METH_02015] Definition of variants
[TR_METH_02016] Evaluated Variant Set
[TR_METH_02017] Use of Predefined Variant
[TR_METH_02018] Choosing variants
[TR_METH_02020] Definition of latest Binding Time for a variation point in the meta-model
[TR_METH_03000] Name spaces via ARPackages
[TR_METH_03001] Reasons for name conflicts in “downstream” artifacts
[TR_METH_03002] Conflict solution at system design time
[TR_METH_03003] Conflict solution at coding time
[TR_METH_03004] Conflict solution at ECU integration time
[TR_METH_03005] Conflict solution via SymbolProps
[TR_METH_03006] Conflict solution via literal prefixes

444 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

[TR_METH_03007] Conflict solution in names of runnable entities
[TR_METH_03008] Conflict solution via FlatMap
[TR_METH_03009] Conflict solution via AliasNameSet
[TR_METH_03010] Conflict solution via API Infixes

Table B.1: Added Specification Items in 4.1.1

B.1.2 Changed Specification Items in 4.1.1

none

B.1.3 Deleted Specification Items in 4.1.1

none

B.2 Change History of this document according to AUTOSAR Re-
lease R4.1.2

B.2.1 Added Specification Items in 4.1.2

Number Heading
[TR_METH_01114] Input sources for ECU Configuration
[TR_METH_01115] A mix of parameters with different configuration classes within a BSW module

is allowed
[TR_METH_01116] ECU Configuration Value description contains the configuration of all BSW

modules in a single ECU
[TR_METH_01117] BSW implementation shall be chosen for each BSW module that is present in

the ECU

Table B.2: Added Specification Items in 4.1.2

B.2.2 Changed Specification Items in 4.1.2

none

B.2.3 Deleted Specification Items in 4.1.2

none

445 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

B.3 Change History of this document according to AUTOSAR Re-
lease R4.1.3

B.3.1 Added Specification Items in 4.1.3

Number Heading
[TR_METH_01125] Create ECU System Description activity
[TR_METH_01126] Using the System Extract as the structural basis for the ECU development
[TR_METH_01127] Creating a new structure for the ECU development

Table B.3: Added Specification Items in 4.1.3

B.3.2 Changed Specification Items in 4.1.3

Number Heading
[TR_METH_01049] Interaction between organizations
[TR_METH_01066] Creation of a System Extract and an ECU Extract
[TR_METH_01075] Design Sub-System activity
[TR_METH_01076] Collaboration between different organizations

Table B.4: Changed Specification Items in 4.1.3

B.3.3 Deleted Specification Items in 4.1.3

none

B.4 Change History of this document according to AUTOSAR Re-
lease R4.2.1

B.4.1 Added Specification Items in 4.2.1

Number Heading
[TR_METH_01128] Integration of Non AUTOSAR Systems in the context of an abstract system
[TR_METH_01129] Integrate Non AUTOSAR System at VFB level activity
[TR_METH_01130] Design Transformer activity
[TR_METH_01131] Output of Design Transformer activity
[TR_METH_01132] Definition of a Rapid Prototyping Scenario
[TR_METH_01133] Content of Rapid Prototyping Scenario artifact
[TR_METH_01134] Component wrapper method
[TR_METH_01135] Direct buffer access method
[TR_METH_01136] Content of Diagnostic Extract
[TR_METH_01137] Diagnostic Extract category
[TR_METH_01138] Decentralized configuration
[TR_METH_01139] Roles
[TR_METH_01140] Develop Diagnostic Abstract System Description activity
[TR_METH_01141] Development of diagnostic requirements

446 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

[TR_METH_01142] Diagnostic information in the context of SW-C development
[TR_METH_01143] Integration of diagnostic information
[TR_METH_01144] Activity Define Safety Information
[TR_METH_01145] Creation of Safety Requirements
[TR_METH_01146] Allocation of Safety Requirements
[TR_METH_01147] Decomposition of Safety Requirements
[TR_METH_01148] Definition of Safety Measures
[TR_METH_01149] Definition of VFB relevant safety information
[TR_METH_01150] Including different post-build variants
[TR_METH_01151] Update ECU Configuration activity
[TR_METH_01153] Configuration and Generation of the E2E Transformer
[TR_METH_01154] Define E2E Transformer Technology Task

Table B.5: Added Specification Items in 4.2.1

B.4.2 Changed Specification Items in 4.2.1

Number Heading
[TR_METH_01059] Kinds of VFB Atomic Software Components
[TR_METH_01046] Development of the system
[TR_METH_01065] Develop System and Develop Sub-System activities
[TR_METH_01060] Develop an Atomic Software Component activity
[TR_METH_01065] Develop System and Develop Sub-System activities
[TR_METH_01104] Configuration Class: Post-build Time
[TR_METH_01105] Generate BSW Postbuild Configuration Code
[TR_METH_01108] Generating multiple post-build configuration variants
[TR_METH_02006] E2E Protection

Table B.6: Changed Specification Items in 4.2.1

B.4.3 Deleted Specification Items in 4.2.1

Number Heading
[TR_METH_01106] Generate BSW Configuration Data Loadable
[TR_METH_01107] Configuration Class: Post-build Time Selectable
[TR_METH_02007] Define E2E Protection Set activity
[TR_METH_02008] Regenerate E2E Protection Wrapper activity

Table B.7: Deleted Specification Items in 4.2.1

B.5 Change History of this document according to AUTOSAR Re-
lease R4.2.2

B.5.1 Added Specification Items in 4.2.2

none

447 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

B.5.2 Changed Specification Items in 4.2.2

none

B.5.3 Deleted Specification Items in 4.2.2

none

B.6 Change History of this document according to AUTOSAR Re-
lease R4.3.0

B.6.1 Added Specification Items in 4.3.0

Number Heading
[TR_METH_01155] Definition of serialization
[TR_METH_01156] Use case: Serialization based on network representation
[TR_METH_01157] Use case: Serialization based on implementation data types
[TR_METH_01202] Create a Profile of Data Exchange Point
[TR_METH_01204] Agreement on a profile for data exchange points
[TR_METH_01205] Validation based on an Agreed Profile of Data Exchange Point

Table B.8: Added Specification Items in 4.3.0

B.6.2 Changed Specification Items in 4.3.0

Number Heading
[TR_METH_01006] General AUTOSAR methodology concepts
[TR_METH_01013] Task usage
[TR_METH_01032] Use case elements
[TR_METH_01036] Description of overall Use Cases
[TR_METH_01037] Precise description of Use Cases
[TR_METH_01000] Domains of the AUTOSAR methodology
[TR_METH_01039] Virtual Functional Bus View
[TR_METH_01040] Support of different system views
[TR_METH_01044] Development of a functional view on the system
[TR_METH_01045] Development of the Overall VFB System
[TR_METH_01046] Development of the system
[TR_METH_01047] Two phase development approach
[TR_METH_01049] Interaction between organizations
[TR_METH_01109] Producing ECU-specific deliverables
[TR_METH_01110] Development of Software Components
[TR_METH_01112] Integration of AUTOSAR ECUs
[TR_METH_01093] Building ECU Executable
[TR_METH_01071] Description of design constraints
[TR_METH_01130] Design Custom Transformer activity
[TR_METH_01131] Output of Design Custom Transformer activity

Table B.9: Changed Specification Items in 4.3.0

448 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

B.6.3 Deleted Specification Items in 4.3.0

none

B.7 Change History of this document according to AUTOSAR Re-
lease R4.3.1

B.7.1 Added Specification Items in 4.3.1

none

B.7.2 Changed Specification Items in 4.3.1

Number Heading
[TR_METH_01014] Work Product Definition

Table B.10: Changed Specification Items in 4.3.1

B.7.3 Deleted Specification Items in 4.3.1

none

B.8 Change History of this document according to AUTOSAR Re-
lease R4.4.0

B.8.1 Added Specification Items in 4.4.0

none

B.8.2 Changed Specification Items in 4.4.0

Number Heading

[TR_METH_01001] AUTOSAR methodology assets

[TR_METH_01002] AUTOSAR methodology use cases

[TR_METH_01004] Support for various stakeholders by the AUTOSAR methodology

[TR_METH_01005] Restrictions of AUTOSAR methodology

[TR_METH_01006] General AUTOSAR methodology concepts

[TR_METH_01007] Methodology Library

▽

449 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Number Heading

[TR_METH_01008] Methodology Library Element

[TR_METH_01009] Relation of Methodology Library and Methodology Library Ele-
ment to the SPEM meta model

[TR_METH_01010] Overview of Methodology Library Elements

[TR_METH_01011] Task Definition

[TR_METH_01012] Task semantics
[TR_METH_01013] Task usage

[TR_METH_01014] Work Product Definition

[TR_METH_01015] Relationship between Roles and Work Products

[TR_METH_01017] Artifact Definition
[TR_METH_01018] Kinds of Artifacts
[TR_METH_01019] Properties of Artifacts

[TR_METH_01020] Relationship between Artifacts and meta-model elements

[TR_METH_01021] Deliverable Definition
[TR_METH_01022] Aggregation of Work Products

[TR_METH_01023] Role Definition

[TR_METH_01024] Role assignment

[TR_METH_01026] Guidance definition
[TR_METH_01027] Guidance kinds
[TR_METH_01028] Usage of tables

[TR_METH_01033] Definition of Activities
[TR_METH_01034] Composition of Activities

[TR_METH_01044] Development of a functional view on the system

[TR_METH_01046] Development of the system

[TR_METH_01047] Two phase development approach

[TR_METH_01048] The overall system

[TR_METH_01050] Abstract System Description activity

[TR_METH_01051] Creation of an overall abstract system

[TR_METH_01052] Definition of a constraints in the context of an abstract system

[TR_METH_01053] Definition of a System Description in the context of an abstract system

[TR_METH_01054] Virtual Functional Bus

[TR_METH_01055] Data Model Development activity

[TR_METH_01056] Definition of the VFB
[TR_METH_01057] Top-Down approach

[TR_METH_01058] Bottom-Up approach

[TR_METH_01059] Kinds of VFB Atomic Software Components
[TR_METH_01060] Develop an Atomic Software Component activity

[TR_METH_01061] Develop Application Software activity
▽

450 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Number Heading

[TR_METH_01065] Develop System and Develop Sub-System activities
[TR_METH_01066] Creation of a System Extract and an ECU Extract

[TR_METH_01067] Abstract System Description deliverable

[TR_METH_01068] Inputs and Output of the Design System activity

[TR_METH_01070] Description of network signals

[TR_METH_01071] Description of design constraints

[TR_METH_01075] Design Sub-System activity

[TR_METH_01076] Collaboration between different organizations

[TR_METH_01077] Transformation changes during the Design Sub-System activity

[TR_METH_01078] Mapping of different views

[TR_METH_01079] Use Case: Substitution of existing components

[TR_METH_01080] Use Case: Mapping of requirements to the solution

[TR_METH_01081] Use Case: Reorganization of the software structure

[TR_METH_01082] Use Case: Description of changes between different versions of System
Descriptions

[TR_METH_01083] Design Basic Software activity

[TR_METH_01084] Separation of design and development of basic software

[TR_METH_01085] Develop BSW Module activity

[TR_METH_01086] Integrate Software for ECU activity

[TR_METH_01087] Scope of Integrate Software for ECU activity

[TR_METH_01088] Prepare ECU Configuration activity

[TR_METH_01089] Configure BSW and RTE activity

[TR_METH_01090] Configure RTE task

[TR_METH_01092] Generating BSW modules, RTE, and OS source files

[TR_METH_01093] Building ECU Executable

[TR_METH_01095] Configuration Class: Pre-compile Time

[TR_METH_01098] Configuration Class: Link Time

[TR_METH_01103] Re-generation in case of configuration value changes

[TR_METH_01104] Configuration Class: Post-build Time

[TR_METH_01109] Producing ECU-specific deliverables

[TR_METH_01110] Development of Software Components

[TR_METH_01111] Development of Basic Software modules

[TR_METH_01112] Integration of AUTOSAR ECUs

[TR_METH_01113] Usage of hyperlinks

[TR_METH_01114] Input sources for ECU Configuration

[TR_METH_01115] A mix of parameters with different configuration classes within a BSW module
is allowed

[TR_METH_01116] ECU Configuration Value description contains the configuration of all BSW
modules in a single ECU

▽

451 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Number Heading

[TR_METH_01117] BSW implementation shall be chosen for each BSW module that is present
in the ECU

[TR_METH_01121] Building the AUTOSAR methodology document

[TR_METH_01122] Relations between AUTOSAR Work Products

[TR_METH_01123] Traceability to external artifacts

[TR_METH_01125] Create ECU System Description activity

[TR_METH_01126] Using the System Extract as the structural basis for the ECU development

[TR_METH_01127] Creating a new structure for the ECU development

[TR_METH_01130] Design Custom Transformer activity

[TR_METH_01132] Definition of a Rapid Prototyping Scenario

[TR_METH_01133] Content of Rapid Prototyping Scenario artifact
[TR_METH_01136] Content of Diagnostic Extract

[TR_METH_01137] Diagnostic Extract category

[TR_METH_01138] Decentralized configuration

[TR_METH_01139] Roles
[TR_METH_01140] Develop Diagnostic Abstract System Description activity

[TR_METH_01141] Development of diagnostic requirements

[TR_METH_01142] Diagnostic information in the context of SW-C development

[TR_METH_01143] Integration of diagnostic information

[TR_METH_01144] Activity Define Safety Information

[TR_METH_01145] Creation of Safety Requirements
[TR_METH_01146] Allocation of Safety Requirements

[TR_METH_01147] Decomposition of Safety Requirements

[TR_METH_01148] Definition of Safety Measures

[TR_METH_01149] Definition of VFB relevant safety information

[TR_METH_01151] Update ECU Configuration activity

[TR_METH_01153] Configuration and Generation of the E2E Transformer

[TR_METH_01154] Define E2E Transformer Technology Task

[TR_METH_01155] Definition of serialization
[TR_METH_01156] Use case: Serialization based on network representation

[TR_METH_01157] Use case: Serialization based on implementation data types

[TR_METH_02000] Use of AUTOSAR Services
[TR_METH_02001] Define Cross-component Calibration Parameters activity

[TR_METH_02002] Define Local Calibration Parameters activity

[TR_METH_02003] Provide Unique Parameter Names activity

[TR_METH_02005] Memory sections for data and code

[TR_METH_02006] E2E Protection
[TR_METH_02015] Definition of variants

▽

452 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Number Heading

[TR_METH_02016] Evaluated Variant Set

[TR_METH_02017] Use of Predefined Variant

[TR_METH_02018] Choosing variants

[TR_METH_03000] Name spaces via ARPackages

[TR_METH_03001] Reasons for name conflicts in “downstream” artifacts
[TR_METH_03005] Conflict solution via SymbolProps

[TR_METH_03006] Conflict solution via literal prefixes

[TR_METH_03007] Conflict solution in names of runnable entities
[TR_METH_03008] Conflict solution via FlatMap

[TR_METH_03010] Conflict solution via API Infixes

Table B.11: Changed Specification Items in 4.4.0

B.8.3 Deleted Specification Items in 4.4.0

Number Heading

[TR_METH_01091] Configure Debug task

Table B.12: Deleted Specification Items in 4.4.0

B.9 Change History of this document according to AUTOSAR Re-
lease R19-11

B.9.1 Added Specification Items in 19-11

none

B.9.2 Changed Specification Items in 19-11

Number Heading

[TR_METH_01000] Domains of the AUTOSAR methodology

[TR_METH_01001] AUTOSAR methodology assets

[TR_METH_01002] AUTOSAR methodology use cases

[TR_METH_01003] Scope of the AUTOSAR methodology

[TR_METH_01005] Restrictions of AUTOSAR methodology

[TR_METH_01006] General AUTOSAR methodology concepts
▽

453 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Number Heading

[TR_METH_01007] Methodology Library

[TR_METH_01008] Methodology Library Element

[TR_METH_01009] Relation of Methodology Library and Methodology Library Ele-
ment to the SPEM meta model

[TR_METH_01010] Overview of Methodology Library Elements
[TR_METH_01011] Task Definition

[TR_METH_01013] Task usage

[TR_METH_01014] Work Product Definition

[TR_METH_01015] Relationship between Roles and Work Products

[TR_METH_01017] Artifact Definition
[TR_METH_01018] Kinds of Artifacts
[TR_METH_01021] Deliverable Definition
[TR_METH_01022] Aggregation of Work Products

[TR_METH_01023] Role Definition

[TR_METH_01024] Role assignment

[TR_METH_01025] Tool Definition

[TR_METH_01026] Guidance definition
[TR_METH_01032] Use case elements
[TR_METH_01034] Composition of Activities

[TR_METH_01036] Description of overall Use Cases

[TR_METH_01037] Precise description of Use Cases

[TR_METH_01038] Detailed description of the work flow

[TR_METH_01044] Development of a functional view on the system

[TR_METH_01045] Development of the Overall VFB System

[TR_METH_01046] Development of the system

[TR_METH_01049] Interaction between organizations

[TR_METH_01055] Data Model Development activity

[TR_METH_01056] Definition of the VFB
[TR_METH_01060] Develop an Atomic Software Component activity

[TR_METH_01065] Develop System and Develop Sub-System activities
[TR_METH_01066] Creation of a System Extract and an ECU Extract

[TR_METH_01109] Producing ECU-specific deliverables

[TR_METH_01110] Development of Software Components

[TR_METH_01111] Development of Basic Software modules

[TR_METH_01112] Integration of AUTOSAR ECUs

[TR_METH_01113] Usage of hyperlinks

[TR_METH_01120] Definition of Consistency Needs

[TR_METH_01121] Building the AUTOSAR methodology document

[TR_METH_01123] Traceability to external artifacts
▽

454 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

△
Number Heading

[TR_METH_01139] Roles
[TR_METH_01144] Activity Define Safety Information

[TR_METH_01149] Definition of VFB relevant safety information

[TR_METH_01150] Including different post-build variants

Table B.13: Changed Specification Items in 19-11

B.9.3 Deleted Specification Items in 19-11

none

B.10 Change History of this document according to AUTOSAR Re-
lease R20-11

B.10.1 Added Specification Items in R20-11

none

B.10.2 Changed Specification Items in R20-11

none

B.10.3 Deleted Specification Items in R20-11

none

B.11 Change History of this document according to AUTOSAR Re-
lease R21-11

B.11.1 Added Specification Items in R21-11

none

B.11.2 Changed Specification Items in R21-11

none

455 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

B.11.3 Deleted Specification Items in R21-11

none

B.12 Change History of this document according to AUTOSAR Re-
lease R22-11

B.12.1 Added Specification Items in R22-11

none

B.12.2 Changed Specification Items in R22-11

Number Heading

[TR_METH_01087] Scope of Integrate Software for ECU activity

[TR_METH_01112] Integration of EcuInstances

[TR_METH_02005] Memory sections for data and code

[TR_METH_03005] Conflict solution via SymbolProps

Table B.14: Changed Specification Items in R22-11

B.12.3 Deleted Specification Items in R22-11

none

B.13 Change History of this document according to AUTOSAR Re-
lease R23-11

B.13.1 Added Specification Items in R23-11

none

B.13.2 Changed Specification Items in R23-11

none

B.13.3 Deleted Specification Items in R23-11

none

456 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

Methodology for Classic Platform
AUTOSAR CP R25-11

B.14 Change History of this document according to AUTOSAR Re-
lease R24-11

B.14.1 Added Specification Items in R24-11

none

B.14.2 Changed Specification Items in R24-11

none

B.14.3 Deleted Specification Items in R24-11

none

B.15 Change History of this document according to AUTOSAR Re-
lease R25-11

B.15.1 Added Specification Items in R25-11

none

B.15.2 Changed Specification Items in R25-11

Number Heading

[TR_METH_01128] Integration of Non AUTOSAR Systems in the context of an abstract system

[TR_METH_01129] Integrate Non AUTOSAR System at VFB level activity

Table B.15: Changed Specification Items in R25-11

B.15.3 Deleted Specification Items in R25-11

Number Heading

[TR_METH_01202] Create a Profile of Data Exchange Point

[TR_METH_01204] Agreement on a profile for data exchange points

[TR_METH_01205] Validation based on an Agreed Profile of Data Exchange Point

Table B.16: Deleted Specification Items in R25-11

457 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

	1 Introduction
	1.1 Objective
	1.2 Document Conventions
	1.3 Scope
	1.4 Terms and Abbreviations
	1.5 Overview
	1.6 Methodology Concepts
	1.6.1 Methodology Library Elements
	1.6.1.1 Task Definition
	1.6.1.2 Work Product Definition
	1.6.1.3 Role Definition
	1.6.1.4 Tool Definition
	1.6.1.5 Guidance

	1.6.2 Use Case Specifications
	1.6.2.1 Activity
	1.6.2.2 Capability Pattern
	1.6.2.3 Description of Use Cases

	1.7 General Requirements

	2 Use Cases
	2.1 Overall View
	2.1.1 Purpose
	2.1.2 Description
	2.1.2.1 Views on the System
	2.1.2.2 Overall Workflow

	2.1.3 Workflow

	2.2 Develop an Abstract System Description
	2.2.1 Purpose
	2.2.2 Description
	2.2.3 Workflow

	2.3 Develop a VFB System Description
	2.3.1 Purpose
	2.3.2 Description
	2.3.3 Workflow

	2.4 Develop Software Components
	2.4.1 Develop an Atomic Software Component
	2.4.1.1 Purpose
	2.4.1.2 Description
	2.4.1.3 Workflow

	2.4.2 Develop Application Software
	2.4.2.1 Purpose
	2.4.2.2 Description
	2.4.2.3 Workflow

	2.4.3 Uses Cases for more Specialized Software Components
	2.4.3.1 Purpose
	2.4.3.2 Description
	2.4.3.3 Workflow

	2.5 Develop System and Subsystems
	2.5.1 Overview
	2.5.1.1 Purpose
	2.5.1.2 Description

	2.5.2 Design System
	2.5.2.1 Purpose
	2.5.2.2 Description
	2.5.2.3 Workflow

	2.5.3 Generate System Extract
	2.5.3.1 Purpose
	2.5.3.2 Description
	2.5.3.3 Workflow

	2.5.4 Create ECU System Description
	2.5.4.1 Purpose
	2.5.4.2 Description
	2.5.4.3 Workflow

	2.5.5 Design Sub-System
	2.5.5.1 Purpose
	2.5.5.2 Description
	2.5.5.3 Workflow

	2.5.6 Generate CpSoftwareCluster Extract
	2.5.6.1 Purpose
	2.5.6.2 Description
	2.5.6.3 Workflow

	2.5.7 Generate ECU Extract
	2.5.7.1 Purpose
	2.5.7.2 Description
	2.5.7.3 Workflow

	2.5.8 Design Custom Transformer
	2.5.8.1 Purpose
	2.5.8.2 Description
	2.5.8.3 Workflow

	2.5.9 Define System Safety Information
	2.5.9.1 Purpose
	2.5.9.2 Description
	2.5.9.3 Workflow

	2.6 Develop Basic Software
	2.6.1 Overview
	2.6.1.1 Purpose
	2.6.1.2 Description
	2.6.1.3 Workflow

	2.6.2 Design BSW
	2.6.2.1 Purpose
	2.6.2.2 Description
	2.6.2.3 Workflow

	2.6.3 Develop BSW Module
	2.6.3.1 Purpose
	2.6.3.2 Description
	2.6.3.3 Workflow

	2.7 Integrate Software for ECU
	2.7.1 Description
	2.7.2 Overview
	2.7.2.1 Purpose
	2.7.2.2 Description
	2.7.2.2.1 Inputs to ECU Configuration
	2.7.2.2.2 ECU Configuration Values

	2.7.2.3 Workflow

	2.7.3 Prepare ECU Configuration
	2.7.3.1 Description
	2.7.3.2 Workflow

	2.7.4 Configure BSW and RTE
	2.7.4.1 Description
	2.7.4.2 Workflow

	2.7.5 Update ECU Configuration
	2.7.5.1 Description
	2.7.5.2 Workflow

	2.7.6 Model ECU Timing
	2.7.6.1 Workflow

	2.7.7 Generate BSW and RTE
	2.7.7.1 Description
	2.7.7.2 Workflow

	2.7.8 Build Executable
	2.7.8.1 Description
	2.7.8.2 Workflow

	2.7.9 Configuration Classes
	2.7.9.1 Configuration Class: Pre-compile Time
	2.7.9.1.1 Description
	2.7.9.1.2 Workflow

	2.7.9.2 Configuration Class: Link Time
	2.7.9.2.1 Description
	2.7.9.2.2 Workflow

	2.7.9.3 Configuration Class: Post-build Time
	2.7.9.3.1 Description
	2.7.9.3.2 Workflow

	2.7.9.4 Handling of different post-build variants in configuration classes
	2.7.9.4.1 Description

	2.8 Components and Services
	2.8.1 Purpose
	2.8.2 Description
	2.8.3 Workflow

	2.9 Calibration Overview
	2.9.1 Purpose
	2.9.2 Description
	2.9.3 Workflow

	2.10 Memory Mapping
	2.10.1 Purpose
	2.10.2 Description
	2.10.3 Workflow

	2.11 E2E Protection
	2.11.1 Purpose
	2.11.2 Description
	2.11.3 Workflow

	2.12 Diagnostic Extract
	2.12.1 Purpose
	2.12.2 Description
	2.12.3 Workflow

	2.13 Rapid Prototyping
	2.13.1 Purpose
	2.13.2 Description
	2.13.3 Workflow

	2.14 Safety Extensions
	2.14.1 Purpose
	2.14.2 Description
	2.14.3 Workflow

	2.15 Variant Handling
	2.15.1 Overview
	2.15.2 Binding Times
	2.15.2.1 Latest Binding Time
	2.15.2.2 Actual Binding Time

	2.15.3 Defining Variants
	2.15.4 Choosing Variants

	2.16 Definition of Binding Times
	2.16.1 Overview
	2.16.2 A Classification of Artifacts with respect to Binding Times
	2.16.3 Classification of Binding Times
	2.16.3.1 BlueprintDerivationTime
	2.16.3.2 FunctionDesignTime
	2.16.3.3 InitialBindingTime
	2.16.3.4 SystemDesignTime
	2.16.3.5 CodeGenerationTime
	2.16.3.6 PreCompileTime
	2.16.3.7 CompileTime
	2.16.3.8 LinkTime
	2.16.3.9 PostBuild
	2.16.3.10 Runtime

	2.17 How to resolve Name Conflicts
	2.17.1 Reasons for Name Conflicts
	2.17.2 Points in the Methodology where Name Conflicts are resolved
	2.17.3 Mechanisms for resolving Name Conflicts

	3 Methodology Library
	3.1 Common Elements
	3.1.1 Work Product Kinds
	3.1.2 Tasks
	3.1.2.1 Add General Documentation
	3.1.2.2 Define Admin Data
	3.1.2.3 Define Alias Names
	3.1.2.4 Evaluate Variant
	3.1.2.5 Define Memory Addressing Modes
	3.1.2.6 Configure Memmap Allocation
	3.1.2.7 Generate BSW Memory Mapping Header
	3.1.2.8 Generate SWC Memory Mapping Header

	3.1.3 Work Products
	3.1.3.1 General Documentation
	3.1.3.2 Alias Name Set
	3.1.3.3 Evaluated Variant Set
	3.1.3.4 Autosar Specification
	3.1.3.5 General Autosar Artifact
	3.1.3.6 General Deliverable
	3.1.3.7 General Non-Autosar Artifact
	3.1.3.8 Postbuild Variant Set
	3.1.3.9 Predefined Variant
	3.1.3.10 Standard Header Files
	3.1.3.11 System Constant Value Set

	3.1.4 Roles
	3.1.5 Tools
	3.1.5.1 Compiler
	3.1.5.2 Linker

	3.1.6 Diagnostics
	3.1.6.1 Work Products

	3.1.7 Safety
	3.1.7.1 Tasks
	3.1.7.1.1 Define Safety Requirement
	3.1.7.1.2 Define Safety Measure
	3.1.7.1.3 Define ASIL For AUTOSAR Element
	3.1.7.1.4 Refine Safety Requirement
	3.1.7.1.5 Decompose Safety Requirement
	3.1.7.1.6 Allocate Safety Measure
	3.1.7.1.7 Allocate Safety Requirement
	3.1.7.1.8 Map Safety Requirement to Safety Measure
	3.1.7.1.9 Add Independence Relation

	3.1.7.2 Work Products
	3.1.7.2.1 Safety Extensions
	3.1.7.2.2 Safety Requirement
	3.1.7.2.3 Safety Measure

	3.2 Virtual Functional Bus
	3.2.1 Tasks
	3.2.1.1 Define VFB Top Level
	3.2.1.2 Define VFB Composition Component
	3.2.1.3 Extend Composition
	3.2.1.4 Define VFB Component Constraints
	3.2.1.5 Define VFB Application Software Component
	3.2.1.6 Define VFB Sensor or Actuator Component
	3.2.1.7 Define VFB Parameter Component
	3.2.1.8 Define ECU Abstraction Component
	3.2.1.9 Define Complex Driver Component
	3.2.1.10 Define VFB NvBlock Software Component
	3.2.1.11 Define Wrapper Components to Integrate Legacy Software
	3.2.1.12 Define VFB Interfaces
	3.2.1.13 Define VFB Types
	3.2.1.14 Define VFB Modes
	3.2.1.15 Define VFB Constants
	3.2.1.16 Define VFB Timing
	3.2.1.17 Define VFB Variants
	3.2.1.18 Define VFB Integration Connector
	3.2.1.19 Translate Non-AUTOSAR Description to AUTOSAR Description

	3.2.2 Work Products
	3.2.2.1 VFB System
	3.2.2.2 Overall VFB System
	3.2.2.3 VFB System Extract
	3.2.2.4 VFB Top Level System Composition
	3.2.2.5 VFB Composition Component
	3.2.2.6 VFB AUTOSAR Standard Package
	3.2.2.7 AUTOSAR Specification of Application Interfaces
	3.2.2.8 VFB Atomic Software Component
	3.2.2.9 VFB Atomic Application Software Component
	3.2.2.10 Complex Driver Component
	3.2.2.11 ECU Abstraction Software Component
	3.2.2.12 VFB Parameter Component
	3.2.2.13 VFB Sensor Actuator Component
	3.2.2.14 VFB NvBlock Software Component
	3.2.2.15 VFB Non AUTOSAR Component
	3.2.2.16 VFB Interfaces
	3.2.2.17 VFB Types
	3.2.2.18 VFB Data Type Mapping Set
	3.2.2.19 VFB Modes
	3.2.2.20 VFB Constants
	3.2.2.21 VFB Software Component Mapping Constraints
	3.2.2.22 VFB Timing
	3.2.2.23 Description of a Non-AUTOSAR System
	3.2.2.24 Integration Connector

	3.3 System
	3.3.1 Tasks
	3.3.1.1 Set System Root
	3.3.1.2 Assign Top Level Composition
	3.3.1.3 Define ECU Description
	3.3.1.4 Define System Topology
	3.3.1.5 Deploy Software Component
	3.3.1.6 Design CpSoftwareCluster
	3.3.1.7 Extend CpSoftwareCluster
	3.3.1.8 Generate or Adjust System Flat Map
	3.3.1.9 Derive Communication Needs
	3.3.1.10 Define Signal Path Constraints
	3.3.1.11 Define System Variants
	3.3.1.12 Define System Timing
	3.3.1.13 Extend Topology
	3.3.1.14 Select Software Component Implementation
	3.3.1.15 Select Design Time Variant
	3.3.1.16 Define System View Mapping
	3.3.1.17 Create Transformer Specification
	3.3.1.18 Define Rapid Prototyping Scenario

	3.3.2 Work Products
	3.3.2.1 System Description
	3.3.2.2 Abstract System Description
	3.3.2.3 Complete ECU Description
	3.3.2.4 CpSoftwareCluster Extract
	3.3.2.5 System Description Root Element
	3.3.2.6 System Mapping Overview
	3.3.2.7 Data Mapping
	3.3.2.8 Mapping of Software Components to ECUs
	3.3.2.9 Mapping of Software Components to Implementations
	3.3.2.10 Signal Path Constraints
	3.3.2.11 Topology
	3.3.2.12 Ecu Resources Description
	3.3.2.13 System Signal
	3.3.2.14 System Signal Group
	3.3.2.15 System Flat Map
	3.3.2.16 System Timing
	3.3.2.17 System View Mapping
	3.3.2.18 Transformer Design Bundle
	3.3.2.19 Custom Transformer Specification
	3.3.2.20 Rapid Prototyping Scenario

	3.3.3 Communication Matrix and Communication Layers
	3.3.3.1 Tasks
	3.3.3.1.1 Define Communication Matrix
	3.3.3.1.2 Define Frames
	3.3.3.1.3 Define Signal PDUs
	3.3.3.1.4 Define Secured PDUs
	3.3.3.1.5 Define TP
	3.3.3.1.6 Define Network Management
	3.3.3.1.7 Define PDU Gateway
	3.3.3.1.8 Define Signal Gateway
	3.3.3.1.9 Define RTE Fan-out
	3.3.3.1.10 Define Transformation Technology
	3.3.3.1.11 Define E2E Transformer Technology
	3.3.3.1.12 Define Transformation Chain

	3.3.3.2 Work Products
	3.3.3.2.1 Communication Layers
	3.3.3.2.2 Communication Matrix
	3.3.3.2.3 Data Link Layer
	3.3.3.2.4 Interaction Layer
	3.3.3.2.5 Diagnostics Interaction Layer
	3.3.3.2.6 Network Layer
	3.3.3.2.7 Serializer Transformer
	3.3.3.2.8 E2E Transformer

	3.3.4 ECU Extract
	3.3.4.1 Tasks
	3.3.4.1.1 Extract ECU Topology
	3.3.4.1.2 Generate or Adjust ECU Flat Map
	3.3.4.1.3 Flatten Software Composition
	3.3.4.1.4 Extract the ECU Communication
	3.3.4.1.5 Extract the ECU Timing Model
	3.3.4.1.6 Extract the ECU System Variant Model
	3.3.4.1.7 Extract ECU Rapid Prototyping Scenario

	3.3.4.2 Work Products
	3.3.4.2.1 ECU Extract
	3.3.4.2.2 ECU Extract Root Element
	3.3.4.2.3 ECU Extract of VFB System
	3.3.4.2.4 ECU Extract of Data Mapping
	3.3.4.2.5 ECU Extract of Topology
	3.3.4.2.6 ECU Extract for Communication
	3.3.4.2.7 ECU Extract of System Timing
	3.3.4.2.8 ECU Extract of System Variant Model
	3.3.4.2.9 ECU Flat Map
	3.3.4.2.10 ECU Extract of Rapid Prototyping Scenario

	3.4 Software Component
	3.4.1 Tasks
	3.4.1.1 Define Software Component Internal Behavior
	3.4.1.2 Define Partial Flat Map
	3.4.1.3 Define Software Component Timing
	3.4.1.4 Define SymbolProps for Types
	3.4.1.5 Add Documentation to the Software Component
	3.4.1.6 Generate Atomic Software Component Contract Header Files
	3.4.1.7 Generate Component Header File in Vendor Mode
	3.4.1.8 Generate Component Prebuild Data Set
	3.4.1.9 Implement Atomic Software Component
	3.4.1.10 Compile Atomic Software Component
	3.4.1.11 Map Software Component to BSW
	3.4.1.12 Measure Component Resources
	3.4.1.13 Recompile Component in ECU Context
	3.4.1.14 Define Consistency Needs
	3.4.1.15 Generate Rapid Prototyping Wrapper

	3.4.2 Work Products
	3.4.2.1 Delivered Atomic Software Components
	3.4.2.2 Software Component Internal Behavior
	3.4.2.3 Atomic Software Component Implementation
	3.4.2.4 Software Component Documentation
	3.4.2.5 Software Component Timing
	3.4.2.6 Software Component to BSW Mapping
	3.4.2.7 Partial Flat Map
	3.4.2.8 Application Header File
	3.4.2.9 Software Component Data Types Header
	3.4.2.10 Component RTE Prebuild Configuration Header
	3.4.2.11 Atomic Software Component Source Code
	3.4.2.12 Atomic Software Component Object Code
	3.4.2.13 Optimized Application Header File
	3.4.2.14 Optimized Software Component Object Code
	3.4.2.15 Consistency Needs
	3.4.2.16 Rapid Prototyping Wrapper Header File
	3.4.2.17 Rapid Prototyping Wrapper Source Code

	3.4.3 Tools
	3.4.3.1 Component API Generator Tool

	3.5 Basic Software
	3.5.1 Tasks
	3.5.1.1 Define BSW Types
	3.5.1.2 Define BSW Entries
	3.5.1.3 Define BSW Interfaces
	3.5.1.4 Define Vendor Specific Module Definition
	3.5.1.5 Define BSW Behavior
	3.5.1.6 Define BSW Module Timing
	3.5.1.7 Generate BSW Contract Header Files
	3.5.1.8 Implement a BSW Module
	3.5.1.9 Develop BSW Module Generator
	3.5.1.10 Create Library
	3.5.1.11 Compile BSW Core Code
	3.5.1.12 Generate BSW Module Prebuild Dataset

	3.5.2 Work Products
	3.5.2.1 BSW Standard Package
	3.5.2.2 BSW Module Bundle
	3.5.2.3 BSW Design Bundle
	3.5.2.4 BSW Module ICS Bundle
	3.5.2.5 BSW Module Delivered Bundle
	3.5.2.6 AUTOSAR Software Module Specification
	3.5.2.7 AUTOSAR Standard Types and Blueprints
	3.5.2.8 AUTOSAR Platform Types and Blueprints
	3.5.2.9 BSW Module Generator
	3.5.2.10 AUTOSAR Standardized ECU Configuration Parameter Definition
	3.5.2.11 BSW Module Preconfigured Configuration
	3.5.2.12 BSW Module Recommended Configuration
	3.5.2.13 BSW Module Vendor Specific Configuration Parameter Definition
	3.5.2.14 BSW Types
	3.5.2.15 Basic Software Entries
	3.5.2.16 Basic Software Module Description
	3.5.2.17 Basic Software Module Internal Behavior
	3.5.2.18 Basic Software Module Implementation Description
	3.5.2.19 Build Action Manifest
	3.5.2.20 Basic Software Module Timing
	3.5.2.21 Basic Software Module Core Header
	3.5.2.22 Basic Software Module Core Source Code
	3.5.2.23 Basic Software Interlink Header
	3.5.2.24 Basic Software Interlink Types Header
	3.5.2.25 BSW RTE Prebuild Configuration Header
	3.5.2.26 Basic Software Module Object Code
	3.5.2.27 Library Description
	3.5.2.28 Library Header Files
	3.5.2.29 Library Object Code
	3.5.2.30 Custom Transformer

	3.6 ECU Integration and Configuration
	3.6.1 Tasks
	3.6.1.1 Provide RTE Calibration Dataset
	3.6.1.2 Define Integration Variant
	3.6.1.3 Generate Base ECU Configuration
	3.6.1.4 Generate Updated ECU Configuration
	3.6.1.5 Define ECU Timing
	3.6.1.6 Configure EcuC
	3.6.1.7 Configure OS
	3.6.1.8 Configure RTE
	3.6.1.9 Configure Watchdog Manager
	3.6.1.10 Configure Mode Management
	3.6.1.11 Configure NvM
	3.6.1.12 Configure Diagnostics
	3.6.1.13 Create Service Component
	3.6.1.14 Connect Service Component
	3.6.1.15 Configure COM
	3.6.1.16 Configure IO Hardware Abstraction
	3.6.1.17 Configure MCAL
	3.6.1.18 Configure Transformer
	3.6.1.19 Generate BSW Configuration Code and Model Extensions
	3.6.1.20 Generate Local MC Data Support
	3.6.1.21 Create MC Function Model
	3.6.1.22 Generate RTE
	3.6.1.23 Generate Scheduler
	3.6.1.24 Generate OS
	3.6.1.25 Generate RTE Prebuild Dataset
	3.6.1.26 Compile ECU Source Code
	3.6.1.27 Generate ECU Executable
	3.6.1.28 Generate RTE Postbuild Dataset
	3.6.1.29 Generate A2L
	3.6.1.30 Measure Resources
	3.6.1.31 Refine Rapid Prototyping Scenario
	3.6.1.32 Merge CpSoftwareCluster

	3.6.2 Work Products
	3.6.2.1 BSW Module Integration Bundle
	3.6.2.2 ECU Software Delivered
	3.6.2.3 Service Component Description
	3.6.2.4 ECU Service Connectors
	3.6.2.5 ECU Timing
	3.6.2.6 BSW Module Interface Extension
	3.6.2.7 BSW Module Behavior Extension
	3.6.2.8 BSW Module Implementation Extension
	3.6.2.9 ECU Configuration Values
	3.6.2.10 RTE Implementation Description
	3.6.2.11 RTE Prebuild Configuration Header
	3.6.2.12 Calibration Parameter Value Set
	3.6.2.13 MC Function Model
	3.6.2.14 Local Measurement and Calibration Support Data
	3.6.2.15 RTE Measurement and Calibration Support Data
	3.6.2.16 RTE Source Code
	3.6.2.17 BSW Scheduler Code
	3.6.2.18 OS Generated Code
	3.6.2.19 RTE Postbuild Variants Dataset
	3.6.2.20 ECU Object Code
	3.6.2.21 ECU Executable
	3.6.2.22 Merged ECU Executable
	3.6.2.23 Map of the ECU Executable
	3.6.2.24 A2L File
	3.6.2.25 MC Driver Support Data
	3.6.2.26 MC Additional Config

	3.6.3 Tools
	3.6.3.1 RTE Generator
	3.6.3.2 BSW Generator Framework

	3.6.4 ECU Config Classes
	3.6.4.1 Tasks
	3.6.4.1.1 Compile Unconfigured Bsw
	3.6.4.1.2 Compile Configured Bsw
	3.6.4.1.3 Compile BSW Configuration Data
	3.6.4.1.4 Compile Generated BSW
	3.6.4.1.5 Generate BSW Precompile Configuration Header
	3.6.4.1.6 Generate BSW Source Code
	3.6.4.1.7 Generate BSW Configuration Code
	3.6.4.1.8 Generate BSW Postbuild Configuration Code
	3.6.4.1.9 Link ECU Code after Precompile Configuration
	3.6.4.1.10 Link ECU Code During Link Time Configuration
	3.6.4.1.11 Link ECU Code During Post-build Time

	3.6.4.2 Work Products
	3.6.4.2.1 BSW Module Configuration Header File
	3.6.4.2.2 BSW Module Completely Generated Source Code
	3.6.4.2.3 BSW Module Configuration Data Source Code
	3.6.4.2.4 BSW Module Configuration Data Object Code
	3.6.4.2.5 BSW Module Configuration Data Loadable to ECU Memory

	A Mentioned Class Tables
	B Change History
	B.1 Change History of this document according to AUTOSAR Release R4.1.1
	B.1.1 Added Specification Items in 4.1.1
	B.1.2 Changed Specification Items in 4.1.1
	B.1.3 Deleted Specification Items in 4.1.1

	B.2 Change History of this document according to AUTOSAR Release R4.1.2
	B.2.1 Added Specification Items in 4.1.2
	B.2.2 Changed Specification Items in 4.1.2
	B.2.3 Deleted Specification Items in 4.1.2

	B.3 Change History of this document according to AUTOSAR Release R4.1.3
	B.3.1 Added Specification Items in 4.1.3
	B.3.2 Changed Specification Items in 4.1.3
	B.3.3 Deleted Specification Items in 4.1.3

	B.4 Change History of this document according to AUTOSAR Release R4.2.1
	B.4.1 Added Specification Items in 4.2.1
	B.4.2 Changed Specification Items in 4.2.1
	B.4.3 Deleted Specification Items in 4.2.1

	B.5 Change History of this document according to AUTOSAR Release R4.2.2
	B.5.1 Added Specification Items in 4.2.2
	B.5.2 Changed Specification Items in 4.2.2
	B.5.3 Deleted Specification Items in 4.2.2

	B.6 Change History of this document according to AUTOSAR Release R4.3.0
	B.6.1 Added Specification Items in 4.3.0
	B.6.2 Changed Specification Items in 4.3.0
	B.6.3 Deleted Specification Items in 4.3.0

	B.7 Change History of this document according to AUTOSAR Release R4.3.1
	B.7.1 Added Specification Items in 4.3.1
	B.7.2 Changed Specification Items in 4.3.1
	B.7.3 Deleted Specification Items in 4.3.1

	B.8 Change History of this document according to AUTOSAR Release R4.4.0
	B.8.1 Added Specification Items in 4.4.0
	B.8.2 Changed Specification Items in 4.4.0
	B.8.3 Deleted Specification Items in 4.4.0

	B.9 Change History of this document according to AUTOSAR Release R19-11
	B.9.1 Added Specification Items in 19-11
	B.9.2 Changed Specification Items in 19-11
	B.9.3 Deleted Specification Items in 19-11

	B.10 Change History of this document according to AUTOSAR Release R20-11
	B.10.1 Added Specification Items in R20-11
	B.10.2 Changed Specification Items in R20-11
	B.10.3 Deleted Specification Items in R20-11

	B.11 Change History of this document according to AUTOSAR Release R21-11
	B.11.1 Added Specification Items in R21-11
	B.11.2 Changed Specification Items in R21-11
	B.11.3 Deleted Specification Items in R21-11

	B.12 Change History of this document according to AUTOSAR Release R22-11
	B.12.1 Added Specification Items in R22-11
	B.12.2 Changed Specification Items in R22-11
	B.12.3 Deleted Specification Items in R22-11

	B.13 Change History of this document according to AUTOSAR Release R23-11
	B.13.1 Added Specification Items in R23-11
	B.13.2 Changed Specification Items in R23-11
	B.13.3 Deleted Specification Items in R23-11

	B.14 Change History of this document according to AUTOSAR Release R24-11
	B.14.1 Added Specification Items in R24-11
	B.14.2 Changed Specification Items in R24-11
	B.14.3 Deleted Specification Items in R24-11

	B.15 Change History of this document according to AUTOSAR Release R25-11
	B.15.1 Added Specification Items in R25-11
	B.15.2 Changed Specification Items in R25-11
	B.15.3 Deleted Specification Items in R25-11

