AUTSSAR

Document Title Methodology for Classic Platform
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 68

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
» Add methodology for
CpSoftwareClusters
AUTOSAR . Re.move support for Data Exchange
2025-11-27 | R25-11 | Release Points
Management « Remove Franca Integration
« Editorial changes - removal of FO RS
Methodology
AUTOSAR
2024-11-27 | R24-11 Release » Editorial changes
Management
* Be specific when using the term cluster
AUTOSAR (e.g. BSW cluster)
2023-11-23 R23-11 Release
Management * Clarify activity Create ECU System
Description
AUTOSAR
2022-11-24 R22-11 Release » Deprecate compiler abstraction
Management
AUTOSAR * Minor corrections and editorial changes
2021-11-25 | R21-11 'Ei/lelease » changed document title to: Methodology
anagement for Classic Platform
AUTOSAR
2020-11-30 | R20-11 Release » Minor corrections and editorial changes

Management

AUTSSAR

« Editorial changes

» Handling of Platform/Standard Types as

AUTOSAR Blueprints
2019-11-28 R19-11 Release
Management » Removed references to TR IOAT
» Changed Document Status from Final to
published
AUTOSAR * Removal of references to obsolete
2018-10-31 | 4.4.0 Release requirements
Management - Editorial changes
AUTOSAR » Minor corrections due to the modification
2017-12-08 | 4.3.1 Release of one requirement
Management « Editorial changes
» Support for Data Exchange Points added
AUTOSAR
2016-11-30 | 4.3.0 Release * Minor corrections / clarifications /
Management editorial changes; For details please
refer to the ChangeDocumentation
AUTOSAR
2015-07-31 4.2.2 Release » Minor corrections and editorial changes
Management
» Support for Safety Extensions added
AUTOSAR » Support for Diagnostic Extract added
2014-10-31 4.21 Release S . .
» Support for Rapid Prototyping added
Management PP P ypIng
» Support for Sender Receiver
Serialization added
* Alignment of the AUTOSAR
AUTOSAR Methodology to the System Description
2014-03-31 | 4.1.3 Release categories
Management
« Editorial changes
AUTOSAR » Harmonization between ECU
2013-10-31 4.1.2 Release Configuration specification and

Management

AUTOSAR Methodology

AUTSSAR

2013-03-15

411

AUTOSAR
Administration

* Allow the usage of requirement ID
definition and tracing for specification
items

» Updated chapter 3.6 Ecu Integration and
Configuration with support for A2L
function

» Added chapter 2.14 How to resolve
Name Conflicts

» Added sections 3.4.1.15 Define
Consistency Needs and 3.4.2.17
Consistency Needs

* Refine definition of Binding Times

2011-12-22

4.0.3

AUTOSAR
Administration

+ Simplification of use case diagrams by
removing task use and introducing
deliverables on use cases level (see
Methodology Concept chapter)

+ Readability improvement by generation
of tables with navigable links

* Introduction of Variant Handling, E2E
support, System Constraints Description

* Refinement of Methodology Library,
including the extension of deliverables in
different use cases

2009-12-18

4.0.1

AUTOSAR
Administration

» Changed tool platform for the SPEM
model

* Publish as pdf file instead of html

« Used new table format for the model
elements

» Added SPEM diagrams
» Methodology Concept chapter detailed
* Memory Mapping use case added

« Reworked and restructured use cases
for more readability

* Direct references to meta-model
elements in figures and tables

AUTSSAR

2008-08-13 | 3.1.1 AUTQ.SAR. * Legal Disclaimer revised
Administration
» Subchapter limitations of the current
AUTOSAR version enhanced
2007-12-21 | 3.0.1 Administration « Document meta information extended
» Small layout adaptations made
* Updated chapter 5 ECU-Design
» Updated chapter 6.1 Relationship with
Services
2007-01-24 | 2.1.15 AUTOSAR « Legal disclaimer revised
Administration
» Release Notes added
 Advice for users revised
* Revision Information added
2006-05-16 2.0 AUTOSAR « Initial release

Administration

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1

Introduction 21
1.1 Objective 21
1.2 Document Conventions, 21
1.3 Scope 21
1.4 Terms and Abbreviations L. 22
1.5 Overview e 22
1.6 Methodology Concepts 23
1.6.1 Methodology Library Elements 23
1.6.1.1 Task Definition., . 25
1.6.1.2 Work Product Definition 26
1.6.1.3 Role Definition. 30
1.6.1.4 Tool Definition 30
1.6.1.5 Guidance 31
1.6.2 Use Case Specifications. 32
1.6.2.1 Activity 33
1.6.2.2 Capability Pattern L 33
1.6.2.3 DescriptionofUseCases 34

1.7 General Requirements Lo 36
Use Cases 38
2.1 Overall View e 38
2.1.1 PUrpose e 38
2.1.2 Description 38
21.21 ViewsontheSystem 38
2.1.22 Overall Workflow 39
2.1.3 Workflow 43
2.2 Develop an Abstract System Description 46
221 PUrPOSE e 46
2.2.2 Description e 46
2.2.3 Workflow 48
2.3 Develop a VFB System Description 49
2.3.1 Purpose 49
2.3.2 Description 49
2.3.3 Workflow 52
2.4 Develop Software Components 55
2.4.1 Develop an Atomic Software Component 55
2411 PUrpoSe 55
24.1.2 Description 56
2413 Workflow 56
2.4.2 Develop Application Software L. 61

2421 Purpose 61

AUTSSAR

2.4.22 Description 61
2423 Workflow 61
2.4.3 Uses Cases for more Specialized Software Components 62
2431 Purpose 62
2.4.3.2 Description 62
2433 Workflow 62
2.5 Develop System and Subsystems 66
251 Overview 66
2511 Purpose 66
2.5.1.2 Description 66
252 DesignSystem 70
2521 Purpose 70
2522 Description 71
2523 Workflow 72
2.5.3 Generate SystemExtract 76
2.5.3.1 Purpose 76
2.5.3.2 Description 76
25383 Workflow 76
2.5.4 Create ECU System Description 77
2541 Purpose 77
25.4.2 Description 77
2543 Workflow 78
2.5.5 Design Sub-System oo L 79
2551 Purpose 79
2.5.5.2 Description 79
2553 Workflow 80
2.5.6 Generate CpSoftwareCluster Extract 80
2.5.6.1 Purpose 80
25.6.2 Description 81
256.3 Workflow 81
2.5.7 Generate ECUExtract 82
2571 Purpose 82
25.7.2 Description 83
2573 Workflow 83
2.5.8 Design Custom Transformer 84
2.5.8.1 Purpose 84
2.5.8.2 Description 84
2583 Workflow 85
2.5.9 Define System Safety Information 86
2591 Purpose 86
25.9.2 Description 86
2593 Workflow 86

2.6 Develop Basic Software 87

AUTSSAR

2.6.1 Overview 87
26.1.1 Purpose 87
2.6.1.2 Description 88
26.1.3 Workflowo 88

2.6.2 Design BSW 89
2.6.21 Purpose 89
2.6.22 Description 89
26.23 Workflow 89

2.6.3 DevelopBSWModule 91
2.6.3.1 Purpose 91
2.6.3.2 Description 91
26.33 Workflow 91

2.7 Integrate Softwarefor ECU L. 93

2.7.1 Description e 93

2.7.2 OVerview e 93
2.7.21 PUIpOSe 93
2.7.2.2 Description 94

2.7.2.21 Inputs to ECU Configuration 94
2.7.2.2.2 ECU Configuration Values 95
2723 Workflow 96

2.7.3 Prepare ECU Configuration 98
2.7.3.1 Description 98
2732 Workflow 99

2.7.4 Configure BSWandRTE 99
2.7.4.1 Description 99
27.42 Workflow 100

2.7.5 Update ECU Configuration 101
2.7.51 Description 101
2752 Workflow 102

27.6 Model ECUTImIng 103
27.6.1 Workflow 103

2.7.7 Generate BSWandRTE 103
2.7.7.1 Description 103
2772 Workflow 104

2.7.8 BuildExecutable o 107
2.7.8.1 Description 107
27.82 Workflow 108

2.7.9 ConfigurationClasses 109
2.7.9.1 Configuration Class: Pre-compile Time 110

2.7.9.1.1 Description 110
27.9.1.2 Workflow 112
2.7.9.2 Configuration Class: Link Time 113

2.7.9.2.1 Description 113

AUTSSAR

2.7.9.22 Workflow 115
2.7.9.3 Configuration Class: Post-build Time 116
2.7.9.3.1 Description 116
27932 Workflow 118
2.7.9.4 Handling of different post-build variants in configuration classes 120
2.7.9.4.1 Description 120

2.8 Componentsand Serviceso 120
2.8.1 Purpose 120
2.8.2 Description 120
2.8.3 Workflow 121
2.9 Calibration Overview 126
2.9.1 PUIrPOSE e 126
2.9.2 Description 126
2.9.3 Workflow 127
2.10Memory Mapping oL 131
2101 PUrpose e 131
2.10.2Description L e 131
2.10.3Workflow 131
2.11E2E Protection 134
2111 PUrpose e 134
211.2Description L 134
211.3Workflow 135
2.12DiagnosticExtracto 135
2121 PUrpose 135
2.12.2Description L 135
2123 Workflowo 139
2.13Rapid Prototyping 141
2131 Purpose e 141
2.13.2Description L 141
2.13.3Workflow 142
2.14Safety Extensions 144
2141 PUrPoSe 144
2.14.2Description L 145
2143 Workflow 147
215VariantHandling 148
2.15.10verview . ..o 148
2.15.2Binding Times 149
2.15.2.1 LatestBinding Time 149
2.15.2.2 Actual Binding Time 150
2.15.3Defining Variants 150
2.15.4Choosing Variants 151
2.16Definition of Binding Times 152

2.16.10verview s 152

AUTSSAR

2.16.2 A Classification of Artifacts with respect to Binding Times 154
2.16.3 Classification of Binding Times 155
2.16.3.1 BlueprintDerivationTime v v v v v v v v .. 156
2.16.3.2 FunctionDesignTime« v v v v v v v v it e . 156
2.16.3.3 InitialBindingTime v v v v v v v it e e 157
2.16.3.4 SystemDesignTime . . « v v v v v v v i b e e e 157
2.16.3.5 CodeGenerationTime v v v v v v i v i i i e 157
2.16.3.6 PreCompileTime . . . v v v v v v v v it et e e e 158
2.16.3.7 CompileTime . . . v v v v v it it e e e e e 158
2.16.3.8 LinkTime o v i i e e e e e e e e 158
2.16.3.9 PostBUild i e e e e 158
216.3. 10 Runtime o i e e e 159
2.17How to resolve Name Conflicts 159
2.17.1 Reasons for Name Conflicts 159
2.17.2 Points in the Methodology where Name Conflicts are resolved . . . 160
2.17.3 Mechanisms for resolving Name Conflicts 161
3 Methodology Library 164
3.1 CommonElements 164
3.1.1 Work ProductKinds 164
3.1.2 Tasks e 166
3.1.2.1 Add General Documentation 166
3.1.2.2 DefineAdminData 166
3.1.2.3 DefineAliasNames. 167
3.1.24 Evaluate Variant., 168
3.1.2.5 Define Memory AddressingModes 169
3.1.2.6 Configure Memmap Allocation 170
3.1.2.7 Generate BSW Memory Mapping Header 171
3.1.2.8 Generate SWC Memory Mapping Header 173
3.1.3 WorkProducts 175
3.1.3.1 General Documentation 175
3.1.3.2 AliasNameSet 175
3.1.3.3 Evaluated VariantSet. 176
3.1.8.4 Autosar Specification o oL 176
3.1.3.5 General Autosar Artifact 177
3.1.3.6 GeneralDeliverable 178
3.1.3.7 General Non-Autosar Artifact 178
3.1.3.8 Postbuild VariantSet L. 179
3.1.3.9 PredefinedVariant 179
3.1.3.10 Standard Header Files 180
3.1.3.11 System Constant Value Set 181
3.1.4 Roles e 182
3.15 Tools e 190

3.1.51 Compiler 190

AUTSSAR

3.1.5.2 Linker 190
3.1.6 Diagnostics 191
3.1.6.1 WorkProducts 191
3.1.7 Safety 193
3171 Tasks. . . . o 193
3.1.7.1.1 Define Safety Requirement 193
3.1.7.1.2 Define Safety Measure 193
3.1.7.1.3 Define ASIL For AUTOSAR Element 194
3.1.7.1.4 Refine Safety Requirement 195
3.1.7.1.5 Decompose Safety Requirement 195
3.1.7.1.6 Allocate Safety Measure 196
3.1.7.1.7 Allocate Safety Requirement 197
3.1.7.1.8 Map Safety Requirement to Safety Measure 197
3.1.7.1.9 Add Independence Relation 198
3.1.72 WorkProducts 199
3.1.7.21 Safety Extensions 199
3.1.7.2.2 Safety Requirement 200
3.1.7.23 SafetyMeasure 201

3.2 Virtual FunctionalBus 202
3.21 Tasks 202
3.21.1 DefineVFBToplLevel. 202
3.2.1.2 Define VFB Composition Component 203
3.2.1.3 Extend Composition 205
3.2.1.4 Define VFB Component Constraints 206
3.2.1.5 Define VFB Application Software Component 207
3.2.1.6 Define VFB Sensor or Actuator Component 208
3.2.1.7 Define VFB Parameter Component 209
3.2.1.8 Define ECU Abstraction Component 210
3.2.1.9 Define Complex Driver Component 211
3.2.1.10 Define VFB NvBlock Software Component 212
3.2.1.11 Define Wrapper Components to Integrate Legacy Software .. 213
3.2.1.12 Define VFB Interfaces 214
3.21.13 Define VFBTypes 215
3.2.1.14 Define VFBModes oL 216
3.2.1.15 Define VFB Constants 216
3.2.1.16 Define VFB Timing 217
3.2.1.17 Define VFB Variants 218
3.2.1.18 Define VFB Integration Connector 219
3.2.1.19 Translate Non-AUTOSAR Description to AUTOSAR Description 220
3.22 Work Products 221
3221 VFBSystem 221
3.222 OverallVFBSystem 224

3.223 VFBSystemExtract 224

AUTSSAR

3.2.2.4 VFB Top Level System Composition 225
3.2.2.5 VFB Composition Component 226
3.2.2.6 VFB AUTOSAR Standard Package 226
3.2.2.7 AUTOSAR Specification of Application Interfaces 228
3.2.2.8 VFB Atomic Software Component 229
3.2.2.9 VFB Atomic Application Software Component 230
3.2.2.10 Complex Driver Component 231
3.2.2.11 ECU Abstraction Software Component 231
3.2.2.12 VFB Parameter Component 232
3.2.2.13 VFB Sensor Actuator Component 232
3.2.2.14 VFB NvBlock Software Component 233
3.2.2.15 VFB Non AUTOSAR Component 233
3.22.16 VFBInterfaces oL 234
32217 VFBTypes o o o e 235
3.2.2.18 VFB Data Type MappingSet 237
32219 VFBModes 237
32220 VFBConstants 238
3.2.2.21 VFB Software Component Mapping Constraints 239
32222 VFBTIiMINg e 239
3.2.2.23 Description of a Non-AUTOSAR System 240
3.2.2.24 Integration Connector. 240
3.3 System 241
3.3.1 Tasks e 241
3.3.1.1 SetSystemRoot 241
3.3.1.2 Assign Top Level Composition 242
3.3.1.3 Define ECU Description 243
3.3.1.4 Define System Topology 243
3.3.1.5 Deploy Software Component 244
3.3.1.6 Design CpSoftwareCluster 245
3.3.1.7 Extend CpSoftwareCluster 246
3.3.1.8 Generate or Adjust SystemFlatMap 247
3.3.1.9 Derive CommunicationNeeds 248
3.3.1.10 Define Signal Path Constraints 249
3.3.1.11 Define System Variants 250
3.3.1.12 Define System Timing 251
3.3.1.13 Extend Topology L 252
3.3.1.14 Select Software Component Implementation 253
3.3.1.15 Select Design Time Variant 254
3.3.1.16 Define System View Mapping 254
3.3.1.17 Create Transformer Specification 255
3.3.1.18 Define Rapid Prototyping Scenario 256
3.3.2 Work Products 257

3.3.2.1 System Description oL 257

AUTSSAR

3.3.2.2 Abstract System Description oL 261
3.3.2.3 Complete ECU Description 261
3.3.2.4 CpSoftwareClusterExtract 262
3.3.2.5 System Description RootElement 263
3.3.2.6 System Mapping Overview 263
3.3.27 DataMapping 265
3.3.2.8 Mapping of Software Componentsto ECUs 265
3.3.2.9 Mapping of Software Components to Implementations 266
3.3.2.10 Signal Path Constraints 267
3.3.2.11 Topology o o e 267
3.3.2.12 Ecu Resources Description 268
3.3.2183 SystemSignal L 269
3.3.2.14 System Signal Group oL 269
3.3.215 SystemFlatMap oo 270
3.3.216 System Timing 271
3.3.2.17 System View Mapping L. 271
3.3.2.18 Transformer DesignBundle 272
3.3.2.19 Custom Transformer Specification. 272
3.3.2.20 Rapid Prototyping Scenario, 273
3.3.3 Communication Matrix and Communication Layers 273
3331 Tasks. e 274
3.3.3.1.1 Define Communication Matrix 274
3.3.3.1.2 DefineFrames, 275
3.3.3.1.3 DefineSignalPDUs 276
3.3.3.1.4 DefineSecuredPDUs 277
3.33.15 DefineTP. 278
3.3.3.1.6 Define Network Management 279
3.3.3.1.7 DefinePDUGateway 279
3.3.3.1.8 Define Signal Gateway 280
3.3.3.1.9 DefineRTEFan-out 281
3.3.3.1.10 Define Transformation Technology 281
3.3.3.1.11 Define E2E Transformer Technology 282
3.3.3.1.12 Define Transformation Chain 282
3.3.32 WorkProducts 283
3.3.3.2.1 Communication Layers 283
3.3.3.2.2 Communication Matrix 284
3.3.3.23 DatalinkLayer 285
3.3.3.2.4 InteractionlLayer 285
3.3.3.2.5 Diagnostics Interaction Layer 286
3.3.3.26 NetworkLayer 287
3.3.3.2.7 Serializer Transformer 287
3.3.3.28 E2E Transformer 287

3.3.4 ECUExtract 288

AUTSSAR

33441 Tasks. 288
3.3.41.1 Extract ECU Topology 288
3.3.4.1.2 Generate or AdjustECUFlatMap 289
3.3.4.1.3 Flatten Software Composition 290
3.3.4.1.4 Extractthe ECU Communication 291
3.3.4.1.5 Extractthe ECU TimingModel 292
3.3.4.1.6 Extract the ECU System Variant Model 293
3.3.4.1.7 Extract ECU Rapid Prototyping Scenario 294

3.3.42 WorkProducts 295
3.3421 ECUExtract, 295
3.3.4.2.2 ECU Extract RootElement 297
3.3.42.3 ECUExtractof VFBSystem 297
3.3.4.2.4 ECU Extract of Data Mapping 298
3.3.4.25 ECUExtractof Topology 298
3.3.4.2.6 ECU Extract for Communication 298
3.3.4.2.7 ECU Extract of System Timing 299
3.3.4.2.8 ECU Extract of System Variant Model 300
3.3.429 ECUFatMap 300
3.3.4.2.10 ECU Extract of Rapid Prototyping Scenario 301

3.4 Software Component 301
341 Tasks e 302

3.4.1.1 Define Software Component Internal Behavior 302

3.4.1.2 Define Partial FlatMap 303

3.4.1.3 Define Software Component Timing. 304

3.4.1.4 Define SymbolPropsfor Types 305

3.4.1.5 Add Documentation to the Software Component.. 306

3.4.1.6 Generate Atomic Software Component Contract Header Files . 307

3.4.1.7 Generate Component Header File in Vendor Mode 309

3.4.1.8 Generate Component Prebuild DataSet 310

3.4.1.9 Implement Atomic Software Component 312

3.4.1.10 Compile Atomic Software Component 313

3.4.1.11 Map Software ComponenttoBSW 314

3.4.1.12 Measure Component Resources 315

3.4.1.13 Recompile Componentin ECU Context 316

3.4.1.14 Define Consistency Needs 317

3.4.1.15 Generate Rapid Prototyping Wrapper 319

3.4.2 WorkProducts 320

3.4.2.1 Delivered Atomic Software Components 320

3.4.2.2 Software Component Internal Behavior 322

3.4.2.3 Atomic Software Component Implementation 324

3.4.2.4 Software Component Documentation 325

3.4.2.5 Software Component Timing 325

3.4.2.6 Software Componentto BSW Mapping 326

AUTSSAR

3.4.2.7 PartialFlatMap 326
3.4.2.8 ApplicationHeaderFile. 327
3.4.2.9 Software Component Data Types Header 328
3.4.2.10 Component RTE Prebuild Configuration Header 328
3.4.2.11 Atomic Software Component Source Code 329
3.4.2.12 Atomic Software Component Object Code 329
3.4.2.13 Optimized Application Header File 330
3.4.2.14 Optimized Software Component Object Code 330
3.4.2.15 Consistency Needs 330
3.4.2.16 Rapid Prototyping Wrapper Header File 331
3.4.2.17 Rapid Prototyping Wrapper Source Code 331
343 Tools e 332
3.4.3.1 Component APl Generator Tool 332
3.5 BasicSoftware 332
3.5.1 Tasks e 333
3.5.1.1 DefineBSWTypes 333
3.5.1.2 DefineBSWEntries 333
3.5.1.3 DefineBSW Interfaces 334
3.5.1.4 Define Vendor Specific Module Definition 335
3.5.1.5 Define BSW Behavior 336
3.5.1.6 Define BSW Module Timing 337
3.5.1.7 Generate BSW Contract Header Files 338
3.5.1.8 ImplementaBSW Module 339
3.5.1.9 Develop BSW Module Generator 340
3.5.1.10 Create Library 341
3.5.1.11 Compile BSW Core Code 342
3.5.1.12 Generate BSW Module Prebuild Dataset 344
3.5.2 WorkProducts 345
3.5.21 BSW Standard Package 345
3.5.22 BSWModuleBundle 346
3.5.23 BSWDesignBundle, 347
3.5.24 BSWModule ICSBundle. 347
3.5.2.5 BSW Module DeliveredBundle 348
3.5.2.6 AUTOSAR Software Module Specification 350
3.5.2.7 AUTOSAR Standard Types and Blueprints 350
3.5.2.8 AUTOSAR Platform Types and Blueprints 351
3.5.2.9 BSW Module Generator, 351
3.5.2.10 AUTOSAR Standardized ECU Configuration Parameter Definition 352
3.5.2.11 BSW Module Preconfigured Configuration 352
3.5.2.12 BSW Module Recommended Configuration 353
3.5.2.13 BSW Module Vendor Specific Configuration Parameter Definition 353
35214 BSWTypes 354

3.5.2.15 Basic Software Entries 355

AUTSSAR

3.5.2.16 Basic Software Module Description 355
3.5.2.17 Basic Software Module Internal Behavior 356
3.5.2.18 Basic Software Module Implementation Description 356
3.5.2.19 Build Action Manifest o oL 357
3.5.2.20 Basic Software Module Timing. 358
3.5.2.21 Basic Software Module Core Header 358
3.5.2.22 Basic Software Module Core Source Code 359
3.5.2.23 Basic Software Interlink Header 359
3.5.2.24 Basic Software Interlink Types Header 360
3.5.2.25 BSW RTE Prebuild Configuration Header 360
3.5.2.26 Basic Software Module Object Code 360
3.5.2.27 Library Description oL 361
3.5.2.28 Library Header Files 361
3.5.2.29 Library ObjectCode 362
3.5.2.30 Custom Transformer 362
3.6 ECU Integration and Configuration 363
3.6.1 Tasks 363
3.6.1.1 Provide RTE Calibration Dataset 363
3.6.1.2 Define Integration Variant 364
3.6.1.3 Generate Base ECU Configuration 365
3.6.1.4 Generate Updated ECU Configuration 366
3.6.1.5 DefineECUTiming 367
3.6.1.6 ConfigureEcuC 368
3.6.1.7 ConfigureOS 369
3.6.1.8 Configure RTE 370
3.6.1.9 Configure Watchdog Manager 372
3.6.1.10 Configure Mode Management 373
3.6.1.11 Configure NvVM 374
3.6.1.12 Configure Diagnostics 375
3.6.1.13 Create Service Component 376
3.6.1.14 Connect Service Component 378
3.6.1.15 Configure COM 379
3.6.1.16 Configure IO Hardware Abstraction 380
3.6.1.17 Configure MCAL 381
3.6.1.18 Configure Transformer 382
3.6.1.19 Generate BSW Configuration Code and Model Extensions . . . 383
3.6.1.20 Generate Local MC Data Support 384
3.6.1.21 Create MC FunctionModel 385
3.6.1.22 Generate RTE 386
3.6.1.23 Generate Scheduler L oL 388
3.6.1.24 Generate OS 389
3.6.1.25 Generate RTE Prebuild Dataset 390

3.6.1.26 Compile ECU Source Code 391

AUTSSAR

3.6.1.27 Generate ECU Executable 393
3.6.1.28 Generate RTE Postbuild Dataset 394
3.6.1.29 Generate A2L 395
3.6.1.30 Measure Resources 397
3.6.1.31 Refine Rapid Prototyping Scenario 398
3.6.1.32 Merge CpSoftwareCluster 398
3.6.2 WorkProducts 399
3.6.2.1 BSW Module IntegrationBundle 399
3.6.2.2 ECU Software Delivered 400
3.6.2.3 Service Component Description 401
3.6.24 ECU ServiceConnectors 402
3.6.25 ECUTIMING 402
3.6.2.6 BSW Module Interface Extension 403
3.6.2.7 BSW Module Behavior Extension 403
3.6.2.8 BSW Module Implementation Extension 404
3.6.2.9 ECU ConfigurationValues 404
3.6.2.10 RTE Implementation Description 406
3.6.2.11 RTE Prebuild Configuration Header 406
3.6.2.12 Calibration Parameter Value Set 407
3.6.2.13 MC FunctionModel 408
3.6.2.14 Local Measurement and Calibration Support Data 408
3.6.2.15 RTE Measurement and Calibration Support Data 409
3.6.2.16 RTESource Code 410
3.6.2.17 BSW SchedulerCode 410
3.6.2.18 OS GeneratedCode 410
3.6.2.19 RTE Postbuild Variants Dataset 411
3.6.2.20 ECUObjectCode e 411
3.6.221 ECUExecutable 412
3.6.2.22 Merged ECU Executable 412
3.6.2.23 Map of the ECU Executable 412
3.6.224 A2LFile 413
3.6.2.25 MC Driver SupportData, 413
3.6.2.26 MC Additional Config oL 414
3.6.3 Tools e 414
3.6.3.1 RTEGenerator 414
3.6.3.2 BSW Generator Framework 414
3.6.4 ECUConfigClasses i 415
3641 Tasks. 415
3.6.4.1.1 Compile UnconfiguredBsw 415
3.6.4.1.2 Compile ConfiguredBsw 416
3.6.4.1.3 Compile BSW ConfigurationData 417
3.6.4.1.4 Compile Generated BSW 418

3.6.4.1.5 Generate BSW Precompile Configuration Header 418

AUTSSAR

3.6.4.1.6 Generate BSW SourceCode 419
3.6.4.1.7 Generate BSW Configuration Code 420
3.6.4.1.8 Generate BSW Postbuild Configuration Code 420
3.6.4.1.9 Link ECU Code after Precompile Configuration 421
3.6.4.1.10 Link ECU Code During Link Time Configuration 421
3.6.4.1.11 Link ECU Code During Post-build Time 422
3.6.42 WorkProducts 423
3.6.4.2.1 BSW Module Configuration Header File 423
3.6.4.2.2 BSW Module Completely Generated Source Code 423
3.6.4.2.3 BSW Module Configuration Data Source Code 424
3.6.4.2.4 BSW Module Configuration Data Object Code 424
3.6.4.2.5 BSW Module Configuration Data Loadable to ECU Memory 424

A Mentioned Class Tables 426
B Change History 442
B.1 Change History of this document according to AUTOSAR Release R4.1.1 442
B.1.1 Added Specification ltemsin4.1.1 442
B.1.2 Changed Specification ltemsin4.1.1 445
B.1.3 Deleted Specification Itemsin4.1.1 445
B.2 Change History of this document according to AUTOSAR Release R4.1.2 445
B.2.1 Added Specification ltemsin4.1.2 445
B.2.2 Changed Specification ltemsin4.1.2 445
B.2.3 Deleted Specification ltemsin4.1.2 445
B.3 Change History of this document according to AUTOSAR Release R4.1.3 446
B.3.1 Added Specification ltemsin4.1.3 446
B.3.2 Changed Specification ltemsin4.1.3 446
B.3.3 Deleted Specification temsin4.1.3 446
B.4 Change History of this document according to AUTOSAR Release R4.2.1 446
B.4.1 Added Specification ltemsin4.2.1 446
B.4.2 Changed Specification ltemsin4.21 447
B.4.3 Deleted Specification ltemsin4.21 447
B.5 Change History of this document according to AUTOSAR Release R4.2.2 447
B.5.1 Added Specification ltemsin4.22 447
B.5.2 Changed Specification ltemsin4.22 448
B.5.3 Deleted Specification Itemsin4.22 448
B.6 Change History of this document according to AUTOSAR Release R4.3.0 448
B.6.1 Added Specification ltemsin4.3.0 448
B.6.2 Changed Specification Itemsin4.3.0 448
B.6.3 Deleted Specification Itemsin4.3.0 449
B.7 Change History of this document according to AUTOSAR Release R4.3.1 449
B.7.1 Added Specification ltemsin4.3.1 449
B.7.2 Changed Specification temsin4.3.1 449

B.7.3 Deleted Specification Itemsin4.3.1 449

AUTSSAR

B.8 Change History of this document according to AUTOSAR Release R4.4.0 449

B.8.1 Added Specification ltemsin4.4.0 449
B.8.2 Changed Specification temsin4.4.0 449
B.8.3 Deleted Specification Itemsin4.4.0 453
B.9 Change History of this document according to AUTOSAR Release R19-11 453
B.9.1 Added Specification Itemsin19-11. 453
B.9.2 Changed Specification ltemsin19-11 453
B.9.3 Deleted Specification ltemsin19-11 455
B.10 Change History of this document according to AUTOSAR Release R20-11 455
B.10.1 Added Specification Items in R20-11 455
B.10.2Changed Specification ltems in R20-11 455
B.10.3 Deleted Specification ltemsin R20-11 455
B.11 Change History of this document according to AUTOSAR Release R21-11 455
B.11.1 Added Specification Itemsin R21-11 455
B.11.2Changed Specification ltemsin R21-11 455
B.11.3Deleted Specification Itemsin R21-11 456
B.12 Change History of this document according to AUTOSAR Release R22-11 456
B.12.1 Added Specification Itemsin R22-11 456
B.12.2Changed Specification ltemsin R22-11 456
B.12.3 Deleted Specification Itemsin R22-11 456
B.13 Change History of this document according to AUTOSAR Release R23-11 456
B.13.1 Added Specification ltemsin R23-11 456
B.13.2Changed Specification Itemsin R23-11 456
B.13.3 Deleted Specification Itemsin R23-11 456
B.14 Change History of this document according to AUTOSAR Release R24-11 457
B.14.1 Added Specification Itemsin R24-11 457
B.14.2Changed Specification ltemsin R24-11 457
B.14.3 Deleted Specification Itemsin R24-11 457
B.15 Change History of this document according to AUTOSAR Release R25-11 457
B.15.1 Added Specification Itemsin R25-11 457
B.15.2Changed Specification ltems in R25-11 457

B.15.3 Deleted Specification Itemsin R25-11 457

AUTSSAR

References

[1] Standardization Template
AUTOSAR_FO_TPS_StandardizationTemplate

[2] Glossary
AUTOSAR_FO_TR_Glossary

[3] Software Process Engineering Meta-Model Specification
http://www.omg.org/spec/SPEM/2.0/

[4] Virtual Functional Bus
AUTOSAR _CP_TR_VFB

[5] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

[6] System Template
AUTOSAR_CP_TPS_SystemTemplate

[7] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[8] General Specification of Transformers
AUTOSAR_CP_ASWS_TransformerGeneral

[9] Basic Software Module Description Template
AUTOSAR_CP_TPS_BSWModuleDescriptionTemplate

[10] Specification of ECU Configuration
AUTOSAR_CP_TPS_ECUConfiguration

[11] Specification of Memory Mapping
AUTOSAR_CP_SWS_MemoryMapping

[12] Specification of Module E2E Transformer
AUTOSAR_CP_SWS_ E2ETransformer

[13] Diagnostic Extract Template
AUTOSAR_CP_TPS_DiagnosticExtractTemplate

[14] Specification of RTE Software
AUTOSAR_CP_SWS RTE

[15] ISO 26262:2018 Road vehicles -— Functional Safety
https://www.iso.org

[16] Generic Structure Template
AUTOSAR_FO_TPS_GenericStructureTemplate

[17] Specification of ECU Resource Template
AUTOSAR_CP_TPS_ECUResourceTemplate

http://www.omg.org/spec/SPEM/2.0/
https://www.iso.org

AUTSSAR

1 Introduction

1.1 Objective

AUTOSAR requires a common technical approach for some steps of system develop-
ment. This approach is called the AUTOSAR methodology. This document defines
and describes this AUTOSAR methodology. It covers all major steps of the develop-
ment of a system with AUTOSAR: from the definition of the Virtual Functional
Bus to the generation of an ECU executable.

1.2 Document Conventions

This document follows a list of document conventions, which are described in the fol-
lowing.

Technical terms of AUTOSAR are typeset in mono spaced font, e.g. ECU. As a general
rule, plural forms of technical terms are created by adding "s" to the singular form, e.g.
ECUS.

This document contains specification items in textual form that are distinguished from
the rest of the text by a unique numerical ID, a headline, and the actual text starting
after the | character and terminated by the | character. The conventions for require-
ments traceability follow [TPS_STDT_00080], see Standardization Template ([1, FO
TPS Standardization Template]).

1.3 Scope

[TR_METH_01003] Scope of the AUTOSAR methodology [The AUTOSAR method-
ology is not a complete process description, but rather aggregates the various ele-
ments of AUTOSAR and shows how they are brought together to develop a complete
system. |

Note: Sample aggregations are provided as Use Cases in chapter 2.

[TR_METH_01004] Support for various stakeholders by the AUTOSAR method-
ology [The structure of the methodology was designed to help cover the needs of
various AUTOSAR stakeholders:

» Organizations: Methodology is modeled in a modular format to allow organiza-
tions to tailor it and combine the Methodology within their own internal processes,
while identifying points where they interact with other organizations.

» Engineers: Methodology is scoped to allow engineers of various roles quickly find
AUTOSAR information that is relevant to their specific needs.

AUTSSAR

 Tool Vendors: Methodology provides a common language to share among all
AUTOSAR members and a common expectation of what capabilities tools should
support.

]

[TR_METH_01005] Restrictions of AUTOSAR methodology [Furthermore, the
methodology does not prescribe a precise order in which activities should be carried
out. The methodology is a mere work-product flow: it defines the dependencies of
activities on work-products. This means that when the information specified in the
methodology is available, an activity can be carried out to produce the output work-
products.

This restriction implies that the AUTOSAR methodology does not define an overall
time-line and does not define how and when iterations are carried out. For example
during system and design, the same activity (namely configuring the system) will be
carried out repeatedly with various levels of precision. There will be a first "rough”
configuration and a final "precise” configuration which might depend on the feedback
from the actual configuration or even implementation of Ecus. How and when such
refinement steps are to be carried out is NOT defined in the methodology. |

Note: The set of defined activities is described in chapter 3.

1.4 Terms and Abbreviations

The main list of terms and abbreviations are defined in [2, FO TR Glossary].

Abbreviation / Acronym Description

SPEM Software and Systems Process Engineering Meta-Model (previously called Software
Process Engineering Metamodel) - a way of modeling processes.

Table 1.1: Acronyms and abbreviations used in the scope of this document

1.5 Overview
[TR_METH_01000] Domains of the AUTOSAR methodology [The AUTOSAR
methodology is structured into several domains of development:

* Virtual Functional Bus

* System

* Software Component

* Basic Software

* ECU

AUTSSAR

These domains are depicted in the methodology overview workflow. |
Note: See Figure 2.9.

[TR_METH_01001] AUTOSAR methodology assets [For each domain relevant work
Product, Task, Role, and Tool elements are defined. In addition, there are ele-
ments that are common for all domains. |

Note: See chapter 3 and chapter 3.1 for the relevant elements.

[TR_METH_01002] AUTOSAR methodology use cases [Use cases show how these
standard reusable elements are applied to support real-world development. The Over-
all View provides an end to end view on the typical use cases of all domains. |

Note: See chapter 2 for the use cases and chapter 2.1 for the overall view.

1.6 Methodology Concepts

[TR_METH_01006] General AUTOSAR methodology concepts [The AUTOSAR
methodology defines activities' performed by roles that create work products as gen-
eral reusable method patterns. The reusable method pattern elements are described
in the methodology library elements chapter. The methodology also describes sam-
ple process patterns of typical use cases considered for the creation of AUTOSAR
work products. The patterns use process elements that are described in the use case
elements chapter.

The definitions and the figures are made according to the Software Process Engineer-
ing Meta-Model Specification [3]. The symbols are taken from the Enterprise Architect
modeling tool. |

Note: See chapter 1.6.1 for the methodology library elements and chapter 1.6.2 for the
use case elements.

1.6.1 Methodology Library Elements

[TR_METH_01007] Methodology Library [The Methodology Library defines
the Methodology Library Elements of every method pattern such as Roles,
Tasks, and Work Product Definitions.|

Note: See chapter 3.

'The RS_Methodology document uses the term “Activity” when addressing process elements in gen-
eral. In this document the atomic process elements are called “Tasks”, whereas an “Activity” is used to
organize tasks and to define processes.

AUTSSAR

[TR_METH_01008] Methodology Library Element [A Methodology Li-—
brary Element contains a description of the element to define its purpose in the
methodology and thus provides the basic contents of the AUTOSAR methodology. The
Methodology Library Elements are used for the description of the related devel-
opment processes. These Methodology Library ElementS can been seen as a
standard. |

[TR_METH _01009] Relation of Methodology Library and Methodology Li-
brary Element to the SPEM meta model [The Methodology Library and
the Methodology Library Elements correspond to the Method Content and
Method Content Elements inthe SPEM meta model [3].]

[TR_METH_01010] Overview of Methodology Library ElementS [Methodol-
ogy Library Element$S comprise:

* Task Definition
* Work Product Definition
* Role Definition
* Tool Definition

e Guidance 2

]

Note: See chapter 1.6.1.1 for Task Definition, chapter 1.6.1.2 for Work Prod-
uct Definition, chapter 1.6.1.3 for Role Definition, chapter 1.6.1.4 for Tool
Definition and chapter 1.6.1.5 for Guidance.

The element symbols are shown in Figure 1.1.

>

Taskl

RoleDefinition Tooll

Work Products

A

Deliverable

5
=]
)
=
IS]
o
c
o
=

Guidance

Figure 1.1: Symbols of AUTOSAR Methodology Library Element

2The Guidance is currently not used in the AUTOSAR Methodology. It may be used in future
AUTOSAR releases.

AUTSSAR

[TR_METH_01028] Usage of tables [Beside the graphical visualization of the different
SPEM diagrams, tables are used to specify and describe the model elements in detail. |

[TR_METH_01113] Usage of hyperlinks [Beside the conventional references to
chapters, figures and sections the AUTOSAR methodology document utilizes hyper-
links to the used SPEM elements. These hyperlinks are used across the text and
within the tables. Using the hyperlinks the reader can quickly navigate to the related
elements such as Tasks, Activity, RoleS, Work Products and Tools. |

1.6.1.1 Task Definition

[TR_METH_01011] Task Definition [According to the SPEM meta model, a Task
Definition is an assignable unit of work that is being performed by specific Ro1es.
The duration of a task is generally a few hours to a few days. Tasks usually generate
one or more work products. Each Task is associated to input and output Work Prod-
ucts. Inputs are differentiated in mandatory and optional inputs. A Task is used as
one element among others to define a Process. |

[TR_METH_01012] Task semantics [A Task has a clear purpose in which the per-
forming roles achieve a well defined goal. It provides complete step-by-step explana-
tions of doing all the work that needs to be done to achieve this goal. This description
is completely independent of when in a process lifecycle the work would actually be
done. It does not describe when what work is being done, but describes all the work
that gets done. |

[TR_METH_01013] Task usage [When a Task will be used in a development pro-
cess, it provides the information which pieces of the Task will actually be performed at
any particular point in time. This assumes that the Task will be performed in the pro-
cess over and over again, but each time with a slightly different emphasis on different
steps or aspects of the task description [3].

For the AUTOSAR Methodology, a Task is a reusable element that is used across
multiple methodology use cases. A Task is associated to at least one performing
Role and may have several additional performers. Tasks use Tools to achieve their
outputs. Optional performers and optional input and outputs to the task are described
by the relationship’s multiplicity. |

An overview of the Task as it is used in this document is given in Figure 1.2.

AUTSSAR

+Role that performs the Task

RoleDefinition

«performs»

Task Definition +Work Product produced
by the Task

«output» 0.*

+Work Product
consumed by the Task

0.1 <input»

WorkProduct1 WorkProduct3
+Work Product
produced and
consumed by the

Task

«inoutput»

«used tool»

0.”

used for the Task

WorkProduct2 Toolt
Figure 1.2: Task Definition Overview

Task Definition Task Name

Package Location in the MetaModel package

Brief Description some description as summary

Description some description as more detailed explanation

Extended By on demand: Extended By Task(s)

Extends on demand: extended Task(s)

Relation Type Related Element Mult. Note

Performed by what Role performs the 0..1 or1 | Description of the specific role needed
Task

Consumes what is consumed by the 0..1or Explanation on why this Element is needed.
Task 0..”

Produces what is produced by the 0..10or Explanation on why this Element is needed.
Task 0..”

In/out what is produced and 0..1or Explanation on why this Element is needed.
consumed by the Task 0..*

Used Tool Tool used for that Task 0..1or1 | Explanation on why this Tool is needed.

Table 1.2: Task Definition

1.6.1.2 Work Product Definition

[TR_METH_01014] Work Product Definition [According to the SPEM meta
model, a Work Product Definition is used, modified, and produced by Tasks
(i.e. a task input and output). Work Products are in most cases tangible work prod-
ucts consumed, produced, or modified by Tasks. They may serve as a basis for defin-
ing reusable assets. AWork Product can be related to other work products by a kind
of nesting relationship, but work products shall not have circular references with other
work products. |

AUTSSAR

[TR_METH_01015] Relationship between Roles and Work Products [Roles use
Work Products to perform Tasks and produce Work Products in the course of
performing the Tasks. Work Products are in the responsibility of the associated
Roles, thereby also defining a set of skills the performing Role should have. Even
though one Role might own a specific type of Work Product, other Roles can still
use the Work Product for their work, and update them [3].]

AWork Product can be of type Artifact orDeliverable:

* [TR_METH_01017] Artifact Definition [Artifact: A tangible wWwork
Product that is consumed, produced, or modified by one or more Tasks. Ar-
tifacts may be composed of other Artifacts and may serve as a basis for
defining reusable assets [3].]

[TR_METH_01018] Kinds of Artifacts [For the AUTOSAR Methodology, typ-
ical kinds of artifacts are:

AUTOSAR XML
— Source Code
— Object Code
— Executable

- Text

]

Note: For more details see chapter 3.1.1.

[TR_METH_01019] Properties of Artifacts [At a high level, an artifact is rep-
resented as a single conceptual file. As a rule of thumb, the AUTOSAR Method-
ology will distinguish artifacts that have most of the following properties:

— Separate versioning is needed

— A dedicated life cycle has to be cared for

— Different exchange requirements need to be fulfilled

— Change in responsible roles

— Change in multiplicities

— Change in physical representation or format

— One of the products may be a separate deliverable to another party

— Separation of standardized from non-standardized parts

AUTSSAR

[TR_METH_01020] Relationship between Artifacts and meta-model ele-
ments [To express a relationship between artifacts of the methodology model
and any AUTOSAR meta-model element, a relationship with the stereotype «at-
pUseMetaModelElement» is used to express this "dependency”. For AUTOSAR
meta-model elements that are not directly related to methodology elements, there
is usually an indirect relationship via a related meta-model element. The method-
ology can thus focus on the main elements of the meta-model. |

[TR_METH_01021] Deliverable Definition [Deliverable: Used to pre-
define typical or recommended content in the form of work Products that would
be packaged for delivery. beliverables are used to represent an output from
a process that has value, material or otherwise, to a client, customer, or other
stakeholder. |

[TR_METH_01022] Aggregation of Work Products [A Deliverable is a
Work Product that aggregates other Work Products. The Method Con-
tent maintains pre-configured potential Deliverables [3]. For the AUTOSAR
Methodology, the aggregation relationship is used to indicate which Wwork Prod-
ucts are contained in a deliverable. |

PackageableElement Work Product
ARPackage::ARElement Kind
+aggregates artifacts and/or deliverables

0.*

+related Metamodel elementr\\
\

«AtpUseMetaMode\lelemem»
\

«aggregation»

Artifact Deliverable

Definition Definition +to which Deliverable isit aggregated

-
|||| || i

«input»
«output» P

«inoutput» «inoutput»

+task

+ask . providing
C(r)tr]fmeg " the artifact +task providing
artifac

the deliverable

+task providing —
and consuming +task providing :

the artifact and consuming Task2
the deliverable

+task consuming
the deliverable

Taski

Figure 1.3: Work Product Definition Overview

Category (Work Category / Work Product Kind Name
Product Kind)

Package Location in the MetaModel package

Brief Description some description as summary

Description some description as more detailed explanation

Table 1.3: Category Definition

AUTSSAR

Artifact Artifact Name

Package Location in the MetaModel package

Brief Description some description as summary

Description some description as more detailed explanation
Kind Work Product Kind, e.g. ARXML

Extended By on demand: Extended By Work Product(s)
Extends on demand: extended Work Product(s)

Relation Type Related Element Mult. Note

Aggregates What Work Products 0..1or Description of the Aggregation.
(Artifacts) are aggregated 0..”

Aggregated by To which Work Product 0..1or1 | Description of the context of the Aggregation.
(Deliverable) is it
aggregated

Consumed by Which task is consuming 0..1or1 | Description of the context of the Work Product
the Work Product production and consumption.

In/out Which task is producing 0..1or1 Description of the context of the Work Product
and consuming the Work production and consumption.
Product

Produced by Which task is producing the | 0..1 or1 | Description of the context of the Work Product
Work Product production.

Use meta model MetamodelElement 0..1 or1 | Meta Model Class that implements or contributes to the

element Relationship implementation of the Work Product

Table 1.4: Artifact Definition

Deliverable Deliverable Name

Package Location in the MetaModel package

Brief Description some description as summary

Description some description as more detailed explanation

Kind Work Product Kind, e.g. ARXML

Extended By on demand: Extended By Work Product(s)

Extends on demand: extended Work Product(s)

Relation Type Related Element Mult. Note

Aggregates What Work Products 0..1or Description of the Aggregation.
(Artifacts) are aggregated 0..*

Aggregated by To which Work Product 0..1or1 | Description of the context of the Aggregation.
(Deliverable) is it
aggregated

Consumed by Which task is consuming 0..1or1 | Description of the context of the Work Product
the Work Product production and consumption.

In/out Which task is producing 0..1 or1 | Description of the context of the Work Product
and consuming the Work production and consumption.
Product

Produced by Which task is producing the | 0..1or1 | Description of the context of the Work Product
Work Product production.

Use meta model MetamodelElement 0..1or1 Meta Model Class that implements or contributes to the

element

Relationship

implementation of the Work Product

Table 1.5: Deliverable Definition

AUTSSAR

1.6.1.3 Role Definition

[TR_METH_01023] Role Definition [According to the SPEM meta model, Role
Definitions define responsibilities of an individual or a set of individuals and thereby
define a set of related skills, competencies, and qualifications needed to perform a
Task. A Role can be filled by one person or multiple people, one person may fill
several Roles. Each Role performs Tasks. |

[TR_METH_01024] Role assignment [Roles are not individuals or resources. In-
dividual members of the development organization will wear different hats, or perform
different Roles. The mapping from individual to Ro1e, usually performed by the project
manager when planning and staffing a project, allows different individuals to act as sev-
eral different Roles, and for a Role to be taken by several individuals [3].

In the AUTOSAR Methodology, a Role also assigns the responsibility of a Task and
defines optional performers. Performers that are responsible for e.g. a Task have
a multiplicity of 1 for the relationship to the Task, optional performers have optional
multiplicity assigned. Role Definitions are usually generic and still provide suffi-
cient level of detail for managers to organize a team. Examples of Roles are "System

Engineer”, "Safety Engineer”, or "Software Developer”. |

Role Definition RoleDefinition2

+ optional performer

performs» «performs»

+supports
+responsible for

Taski Task2

Figure 1.4: Role Definition Overview

Role Role Name

Package Location in the MetaModel package

Brief Description some description as summary

Description some description as more detailed explanation

Relation Type Related Element Mult. Note

Performs In which task the performer 0..1 or1 | Description of the activities of role in task
is acting

Table 1.6: Role Definition

1.6.1.4 Tool Definition

[TR_METH_01025] Tool Definition [According to the SPEM meta model, Tool
Definitions can be used to specify a tool’'s participation in a Task. A Tool Defi-

AUTSSAR

nition describes the capabilities of a CASE tool, general purpose tool, or any other
automation unit that supports the associated Ro1es in performing the work defined by
a Task. A Tool can identify a resource as useful, recommended, or necessary for a
task’s completion. A Tool can also be used to manage one or more Work Products

[3].

The AUTOSAR Methodology uses the Tool Definition todescribe AUTOSAR spe-
cific (e.g. Software Component Contract Generator) and other general Tools (e.g.
Compilers). The relationship of a Tool to a Task shows which Tools a Role will
need to perform the Task. |

+supported
by tool
/ «used tool»
Taskl
Tool Definition
Figure 1.5: Tool Definition Overview
Tool Tool Name
Package Location in the MetaModel package
Brief Description some description as summary
Description some description as more detailed explanation
Kind Tool Kind (e.g. Editor)
Relation Type Related Element Mult. Note
Used Task where the tool is used 0..1or1 | Description of the activites supported by the tool in this
task

Table 1.7: Tool Definition

1.6.1.5 Guidance

[TR_METH_01026] Guidance definition [According to the SPEM meta model, a
Guidance provides additional information related to e.g. Roles, Work Products,
and Tasks. A Guidance is classified to indicate a specific type for which perhaps a
specific structure and type of content is assumed [3].]

[TR_METH_01027] Guidance kinds [A Guidance can be a

* Supporting Material: Supporting Material is a catch-all for other
types of guidance not specifically defined elsewhere. It can be related to all kinds
of Content Elements, i.e., including other guidance elements. The AUTOSAR
Methodology uses the Supporting Material Guidance type to define title
pages, change histories, disclaimers etc.

* Tool Mentor: A Tool Mentor shows how to use a specific Tool to accom-
plish some piece of work either in the context of or independent from a Task or

AUTSSAR

Activity. In the context of the AUTOSAR Methodology, a Tool Mentor is
used in the same way as the Too1l element.

* White Paper: White Papers are concept guidances that have been exter-
nally reviewed or published and can be read and understood in isolation from
other Method Content. AUTOSAR documents are examples of Wwhite Pa-
pers.

Other Guidances such as Checklists, Concepts, Estimates, Guidelines, Practices,
Reports, Reusable Assets, Roadmaps, or Templates as defined in [3] are not used
within the AUTOSAR Methodology. |

~
~
~
~

~
RoleDefinition Sa
~
~
«refersTo» >

«refersTo»

- - Guidance (Supporting WorkProduct
_ =" «refersTo» Material, Tool Mentor,

—~

- White Paper)

Taski
Figure 1.6: Guidance Overview

1.6.2 Use Case Specifications

This section explains how the use cases in chapter 2 are specified. The first two sub-
sections introduce the main constituents of the use cases. Afterwards, it is explained
how these elements together with the Methodology Library elements are used for de-
scribing the use cases.

[TR_METH_01031] Adaptability of the AUTOSAR methodology [The main focus of
this section is merely to provide a use case process flow that can be supported by an
AUTOSAR tool chain rather than to define a complete process description. One reason
for doing this is that the AUTOSAR methodology should be adaptable to development
processes of different organizations. |

[TR_METH_01032] Use case elements [This section describes the main elements to
build a use case, which are given by the Capability Pattern andthe Activity.
RoleS, Work Products, Deliverables and Tasks are used directly to describe
the details of an Activity. The SPEM meta model additionally defines the Role Use
, the Work Product Use and the Task Use elements, which are not used in the
AUTOSAR methodology. Whereas these are important elements when applying SPEM

AUTSSAR

in an organization, the AUTOSAR methodology does not necessarily need these ele-
ments since no instantiation of the Enterprise Architect model is intended. |

Note: The element symbols are shown in Figure 1.7.

CapabilityPattern Activity

Figure 1.7: Symbols of AUTOSAR Use Case Elements

1.6.2.1 Activity

[TR_METH_01033] Definition of Activities [In the SPEM meta model, an Ac-
tivity is the main building block to define a process. An Activity is usually a
defined task or work to be done that is commonly executed in one sequence. |

[TR_METH_01034] Composition of Activities [Activities can include other
Activities and thereby often decompose a flow of work and show which Activity
precedes other Activities [3]. At the lowest level, Activities are collections of
work breakdown elements which in AUTOSAR methodology are Tasks, Roles, and
Work Products.]

[TR_METH_01035] Definition of Processes [A Process is a special Activity
in the SPEM meta model that describes a typical structure of development projects
or parts of them. A Process focuses on the lifecycle and the sequencing of work in
breakdown structures. Processes contain sequences of Task and Activities and
thereby express a lifecycle of the product under development. Processes also define
how to get from one milestone to the next by defining sequences of work, operations,
or events [3].]

1.6.2.2 Capability Pattern

The methodology library elements (cf. Section 1.6.1) are referenced in order to de-
scribe together with activities the so-called Capability Patterns.

[TR_METH_01029] Capability Pattern definition [A Capability Pattern®
is a process pattern that contains a reusable set of activities. |

3In Enterprise Architect a SPEM “Capability Pattern” is called “Process Pattern”.

AUTSSAR

[TR_METH_01030] Composition of Capability PatternsS [Capability Pat-—
terns can be assembled to larger Capability Patterns that describe develop-
ment processes or parts of a development process including typical use cases. |

1.6.2.3 Description of Use Cases

For the AUTOSAR Methodology, the main Use Cases are described with 3 types of
diagrams.

[TR_METH_01036] Description of overall Use Cases [In the first diagram, one

Capability Pattern describes the overall Use Case, composing a set of Activ-
ities and their main outputs (Deliverables). In these diagrams, the predecessor
relationship can be used in order to define a sequence of the Activities. However,
the predecessor relationship can be skipped and Deliverables can be extended by

other Deliverables.|
CapabilityPattern
+belongsto

capability
pattern

Note: See Figure 1.8.

«nesting»
Activity
Definition

«nesting»

Activity2

+what is provided by

+what is consumed the activity

by the activity

«output»

Deliverable Deliverable2

«extends»

+what isprovided and
consumed by the activity

«inoutput»

Deliverable3

Figure 1.8: Activity Overview

The diagram is followed by its corresponding table as detailed hereunder:

AUTSSAR

Process Pattern

Capability Pattern Name

Package Location in the MetaModel package

Brief Description some description as summary

Description some description as more detailed explanation

Relation Type Related Element Mult. Note

Aggregates Activity nested to the 0..1or1 | Context explanation
Capability Pattern or to
another Activity

Consumes Deliverable consumed by 0..1or Why this Capability Pattern needs to consume this
the Capability Pattern 0.* Deliverable

Produces Deliverable produced by the 0..1 or Why this Capability Pattern is producing this Deliverable
Capability Pattern 0..”

Table 1.8: Capability Pattern

[TR_METH_01037] Precise description of Use Cases [The second type of dia-
gram are Activities and Task Definition diagrams which precise the main
Tasks and Work Products used for the Use Cases but are not as detailed as in
the Methodology Library. The task usage in these diagrams can be expressed by the
role and in the note of the aggregation. This information will be also visible in the gen-
erated table. The Work Products consumed or produced in the use cases will be not
integrated in the table for readability. |

Note: See Figure 1.9.

+uses Task
Task2
«nesting»
Activi
ctivity) +uses Task
Definition «nesting»
Taskl

WorkProduct2

«output» 1

«extends»

<

«input» 1

WorkProduct

Figure 1.9: Activity and Tasks Overview

The diagram is followed by its corresponding table as detailed hereunder:

Activity Activity Name

Package Location in the MetaModel package

Brief Description some description as summary

Description some description as more detailed explanation
Extended By on demand: Extended By Activity(s)

Extends on demand: extended Activity(s)

V

AUTSSAR

A

Activity Activity Name

Relation Type Related Element Mult. Note

Aggregates Nested task definition 0..1 or1 | Task usage description if needed

Consumes What is consumed by the 0..10or Explanation on why this Element is needed.
Activity 0..”

In/out What is produced and 0..10or Explanation on why this Element is needed.
consumed by the activity 0..”

Produces What is produced by the 0..10or Explanation on why this Element is needed.
activity 0..x

Predecessor Predecessor of the activity 0..1or1 | Explanation on why the Predecessor is needed.

Table 1.9: Activity Definition

[TR_METH_01038] Detailed description of the work flow [The third type of diagram
contains the Tasks and Work Products used by an Activity in order to show
the detailed work flow but not the structure of Activity Definitions. The table
generation is not done for this type of diagram. |

Note: See chapter 1.6.1.1, as example see Figure 2.16.

1.7 General Requirements

The following requirements are satisfied by the AUTOSAR methodology in a general
way together with other documents as listed in the following:

[TR_METH_01120] Definition of Consistency Needs [The AUTOSAR methodol-
ogy supports the exchange of implicit communication behavior description as consis-
tency needs. |

Note: Chapters 3.4.1.14 and 3.4.2.15 depict the task and the artifact which allow to
define the corresponding consistency needs.

[TR_METH_01121] Building the AUTOSAR methodology document [All AUTOSAR
methodology related model elements are consumed by an internal AUTOSAR tool that
automatically produces the corresponding text, tables, and diagrams. These artifacts
are included into a document which is automatically transformed into the final PDF
file.]

Note: See chapter 1.6.

[TR_METH_01122] Relations between AUTOSAR Work Products [Work Prod-
ucts (Deliverables and Artifacts) are designed in such a way that no circular
references with other work Products exist. |

[TR_METH_01123] Traceability to external artifacts [Artifacts considered in the
Methodology model include external artifacts like c-code, libraries, documentation and
generated artifacts. General Non Autosar Artifact is a generic representation

AUTSSAR

of non AUTOSAR artifacts. It is aggregated by the General Deliverable and al-
lows linking and tracing of non AUTOSAR artifacts within the AUTOSAR context. Fur-
thermore, several specific artifacts represent non AUTOSAR elements or allow refer-
ring to them. The A2L File artifact is a representation of the measurement and cal-
ibration format that is defined by the ASAM and therefore out of scope of AUTOSAR.
The description of the Atomic Software Component Implementation artifact
explains how external artifacts can be referred from this ARXML artifact. |

Note: See e.g. chapter 3.5.2.22 for source code and chapter 3.4.2.4 for documentation.

[TR_METH_01124] Documentation of Work Products [In order to document de-
sign decisions or restrictions during the development process each Work Product
can aggregate the corresponding documentation which is represented by the Gen-
eral Documentation artifact. The General Documentation artifact is added to
Work Products by processing the task Add General Documentation.]

AUTSSAR

2 Use Cases

In the following, the main use cases for building an AUTOSAR system are described.
Chapter 2.1 gives an overall brief description of the main development steps. These
steps are elaborated in detail in chapter 2.2 to chapter 2.7. In addition, chapter 2.8 to
2.17 decribe general topics of interest.

2.1 Overall View

2.1.1 Purpose

This chapter provides a rough outline of the design steps to build an AUTOSAR system.
The main activities are depicted in Figure 2.8. The overall workflow including relevant
work products is given in Figure 2.9. A brief description of these main steps is given
below in section 2.1.2.2. For a detailed description please refer to the relevant chapters
2.2t02.7.

2.1.2 Description
2.1.2.1 Views on the System

During the development of an AUTOSAR system different views on the system can
exist. This allows to refine the system step by step as well as to concentrate on the
relevant parts during the development.

[TR_METH_01039] Virtual Functional Bus View | The development of an AUTOSAR
System is based on the definition of the virtual Functional Bus (VFB). The VFB
is an abstract communication mechanism that allows software components to interact.
This view is independent of any ECUs and networks used. Based on the VFB the
system is designed. |

[TR_METH_01040] Support of different system views [The views on the system
might further be restricted to e.g. the functionality only, or a subsystem. These views
are described explicitly, whereas a mapping mechanism is used to express the relation
between them. |

In the following, three different views on the system are distinguished:

« [TR_METH_01041] Abstract system [The abstract system abstracts from the
concrete software architecture and describes e.g. the functional view on the sys-
tem. |

« [TR_METH_01042] Overall technical system [The overall technical system
is organized from the software architecture perspective including a topology of
ECUs.|

AUTSSAR

« [TR_METH_01043] Subsystem [The subsystem is a reduced part of the overall
technical system and describes relevant aspects for a dedicated subsystem. |

2.1.2.2 Overall Workflow

The main activities in order to develop an AUTOSAR system are described briefly in the
following. The first step focuses on the development of an abstract system, followed
by the description of the VFB development and finally the activities for refining and
developing the system further.

[TR_METH_01044] Development of a functional view on the system [The over-
all workflow starts with an optional activity. In this activity, the Abstract System
Description is developed in advance, which represents the overall system from a
functional or abstract view (functional architecture). On the one hand, this Abstract
System Description mightcontain VFB-related parts. This information might serve
as an input for the development of the VFB later and a mapping between those two
views might be established. Please note that during this step the functionality includ-
ing ports is mapped to software components. Therefore some ports used in the ab-
stract view might not be used in the subsequent development. On the other hand, the
Abstract System Description might contain information regarding the topology
and the mapping to ECUs. This is then the basis for the development of the concrete
System Description.]

Note: See Figure 2.1. The development of the Abstract System Descriptionis
detailed in chapter 2.2.

Functionality A Functionality B Functionality C Functionality D | 2

| R i 3] :

5 . Q

: S Q

. L1 [[s

: OO S S R =
v y < <« ¥

swc1 [tL]swc2 sw-c3 [t SW-C 4 5

<

N [L] [] 2

Figure 2.1: Abstract view on the system (top) and exemplary mapping to the SW-Cs of
the VFB View (bottom)

AUTSSAR

[TR_METH_01045] Development of the Overall VFB System [In case of omitting
the optional first step, the development directly starts with the definition of the Overall
VFB System. The VFB is an abstraction of the communication between software
components. It provides a dedicated view of all the software components the system
contains, independent of any ECUs and networks. |

Note: See Figure 2.2 and chapter 2.3 for more details.

SW-C 1 SW-C 2 SW-C 3 SW-C 4

...

Virtual Functional Bus

Figure 2.2: VFB View

[TR_METH_01046] Development of the system [The VFB is refined into a system by
defining a topology of ECUs and networks and deploying software components to the
ECUs. Additionally, the communication matrices, which are required to interconnect
the distributed features, are derived. As a part of the communication development, a
custom transformation technology can be specified for transforming the data in case
of inter-ECU communication. This transformer specification is the basis for the imple-
mentation of the corresponding basic software module. The development of the system
can be achieved directly in one phase or in several phases. |

Note: See Figure 2.3.

ECU 1 ECU 2 ECU 3
SW-C1 SW-C2 SW-C 3 SW-C4

RTE RTE RTE

BSW BSW BSW

Communication Bus

Figure 2.3: Scope of the system

[TR_METH_01047] Two phase development approach [The two phase approach is
used when there is an organizational separation of responsibility, where the primary or-
ganization (usually OEM) defines the overall system in the first phase, and several other
organizations (usually suppliers) define the subsystems in parallel during the second
phase. In this case, the primary organization hands over System Extracts, which

AUTSSAR

represent the subsystems of the whole system. These subsystems contain subsystem
VFBs, which are parts of the overall VFB. |

[TR_METH_01048] The overall system [The overall system defines the major public
ECUs and topologies, and the subsystem design contributes by adding private ECUs
and networks to the system. Please note that portions defined within a subsystem are
not directly visible to any other subsystem or to the overall system. |

[TR_METH_01049] Interaction between organizations [Additionally, the software
component structure of the System Extracts delivered by the primary organization
can be transformed into a different structure for each ECU by the receiving organization
(ECU System Description). In this case the System Extract of the primary
organization can be considered as a requirement and the subsystem of the receiving
organization represented by one or more ECU System Descriptions$ can be seen
as a solution, which has to fulfill the delivered requirements. |

Note: See Figure 2.4 for the scope of the System Extract and the ECU System
Description and chapter 2.5.3 to chapter 2.5.5 for details.

Scope of System Extract Scope of System Extract

1 1
: ECU1 : ECU2 ||| ECU3 |
[| |
| | |l |
| SW-c1 SW-C2 ! SW-C3) sw-ca ‘
I
| | 0 i
: RTE | RTE i | RTE ‘
‘ BSW l BSW }“ ! BSW |
I I |
\ | I iy | |
| : - i
: Communication Bus : } ” :
‘ Scope of ECU " Tscopeof ECU || “Scope of ECU |
: System Description System Description I System Description ‘
- -

Figure 2.4: Scope of System Extract and ECU System Description

[TR_METH_01109] Producing ECU-specific deliverables [After the system design
is complete, the portions that are related to a specific ECU are extracted producing
a deliverable for each ECU, the so-called ECU Extract. Compared to the previous
descriptions of the system or the ECU, the ECU Extract is fully decomposed and
contains atomic software components only. It is the basis for ECU configuration. |

Note: The activities for creating the ECU Extract are elaborated further in chapter
2.5.7.

[TR_METH_01110] Development of Software Components [In parallel to the
system design, the software components (Delivered Atomic Software Compo-
nents) are implemented according to the definitions required by the abstract VFB,
the VFB or the subsystem VFB. Based on the external interfaces defined by the VFB,
the internal behavior can be defined and finally the software component can be imple-

AUTSSAR

mented. The software components are delivered to be integrated in the ECUs, where
they are deployed. Please note that the implementation of a software component is to
a great extent independent from the configuration of the ECU. This is a key feature of
the AUTOSAR methodology. |

Note: See Figure 2.5 and chapter 2.4 for more details.

SW-C
.arxml
l | i) .
Sl Design SW-C | Runnable 1 Lomfementation;)

of SW-C
l. Runnable 2 l

Figure 2.5: Development of a SW-C

[TR_METH_01111] Development of Basic Software modules [Since the Basic Soft-
ware modules are independent of the VFB, they can be developed at any time before
ECU integration. |

Note: See Figure 2.6 and chapter 2.6 for more details.

ECU 1

Application Layer .arxml
.arxml

SW-C1 SW-C2

.arxml

;

BSW Module
Delivered Bundle

Figure 2.6: Development of BSW

[TR_METH_01112] Integration of EcuInstances [The integration for an EculIn-
stance commences when the BSW Module Delivered BundleS, ECU Extract,
and the implementation of all Delivered Atomic Software Components are
available. At this stage, the EcuInstance is configured. The execution order is
defined by scheduling tasks, and assigning Software Component Runnables t0
these tasks. Finally, the Basic Software Modules are configured. After the RTE
is generated, the complete code is compiled and linked into an executable. |

Note: See Figure 2.7. This step is elaborated in detail in chapter 2.7.

AUT<=

Delivered
Atomic SW-Cs

SAR

ECU Extract —m————————————) Generate BSW \

BSW Module
Delivered Bundle

and RTE

gene rated RTE A

Generate \
E:I]Ilé]l =y 7

B

Figure 2.7: Integrate Software for one ECU

2.1.3 Workflow

Develop System

Develop a VFB
System Description

Develop an Abstract
System Description

Methodology
Overview

«nesting»

Develop Application
Software

“«nesting»

«nesting»

Develop Basic
Software

«nesting»

Integrate Software
for ECU

Figure 2.8: Methodology Overview: Overall Structure

Process Pattern

Methodology Overview

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Methodology Overview
Brief Description High level view of the AUTOSAR Methodology
Description This Process Patterns contains the typical activities to develop an AUTOSAR system.

Relation Type

Related Element

| Mult. |Note

\Y

AUTSSAR

A
Process Pattern Methodology Overview
Aggregates Develop Application 1
Software
Aggregates Develop Basic Software 1
Aggregates Develop Sub-System 1
Aggregates Develop System 1
Aggregates Develop a VFB System 1
Description
Aggregates Develop an Abstract 1
System Description
Aggregates Integrate Software for ECU 1

Table 2.1: Methodology Overview

AUTSSAR

Basic Software ! System c Virtual Functional Bus
N . Develop an Abstract . N
| BSW Standard Package ! ' System Description . !
- o p— z VFB AUTOSAR
[: ! dnput> 7 - - Standard Package '
. 1 v AN :
1 o v «input» .
' [i N «outputM L '
: o 0.1,/ inPut 1. o !
: - . dinputs | Developa !
. [. - VFB System
| ' i - 0.* C Description
! I 0. - !
. + . System 0.1 Abstract System v .
. + . Constraint Description I '
E : E Description cinputd «input» v foutput» :
: o A :
' N . Develop System - .
' «input» i Py - '
. o «input> 0.1 = :
! . - Software Component '
! . tout Overall VFB; \ 1 .
' v “output System Ve .
. o «output» " :
' - 0. o .
' - 0." - v '
' 0.* / \ Transformer Design - . .
' ' N «input» '
! | ! Bundle - e P .
' i System Extract| ! . |
. . «input» . E
E ' E «output» ' E .
N Develop Basic Softwara N . Develop Application:
| N Develop Sub- e Software '
. . System i .
' «output» v v <output» '
| v «output» I !
' 1. i 1. 1.0 . 1.7 .
- L AN e Dl =) '

BSW Module 1..* 1 Deliv(_ered
Delivered Bundle gtof{nlc
oftware
«input» «input» “input» Components

Integrate Software
for ECU

«output»

1

ECU Software Delivered ECU

Figure 2.9: Methodology Overview: Workflow

AUTSSAR

2.2 Develop an Abstract System Description

2.2.1 Purpose

This Activity provides a rough outline of the creation of the Abstract System
Description.

2.2.2 Description

[TR_METH_01050] Abstract System Description activity [Due to the fact that
the overall view on vehicle functions can differ from the actual technical definition of
the software architectures of individual ECUs, the optional activity Develop an Ab-
stract System Description allows to define a view on the overall system from
an abstract or functional perspective. This view describes a dedicated abstract VFB.
During the further activities this abstract view is refactored into a technical view of the
software architecture. |

For the purpose of this use case, this activity is split into sub-activities and tasks (see
Figure 2.10) that are in detail described in Chapter 2.3 and 2.5.2:

* Data Model Development

* Component Model Development

* VFB Timing Development

* Define VFB Top Level

* Define VFB Component Constraints

* Design System

* Integrate Non AUTOSAR System at VFB level

In the Data Model Development activity, the set of VFB Interfaces, VFB Modes,
and VFB Types that are used throughout the abstract VFB are defined. Please note,
that these objects can be used in later steps by the VFB and the subsystem VFB as
well.

[TR_METH_01051] Creation of an overall abstract system [In the Component
Model Development activity, a component model is created which represents the
overall system from a functional point of view, e.g. from a customer related perspec-
tive of vehicle functions, independent of a concrete vehicle platform design. During this
process compositions might be modeled, which are not further refined into Atomic Soft-
ware Components. However it is also possible to define atomic software components
as well in this abstract VFB view. |

AUTSSAR

[TR_METH_01052] Definition of a constraints in the context of an abstract sys-
tem [In the context of the abstract VFB, the task Define VFB Component Con-
straints defines constraints w.r.t. software components of the abstract VFB. These
constraints have to be considered when the abstract VFB is transformed into the con-
crete, technical VFB. |

[TR_METH_01128] Integration of Non AUTOSAR Systems in the context of an
abstract system [In parallel with the development of the Abstract System De-
scription within an AUTOSAR process there may be functions that are developed
based on another approach. The functionality of in-vehicle infotainment systems for
instance is usually not covered in an AUTOSAR development process. Rather, devel-
opment methods and platforms such as GENIVI (http://www.genivi.org/) for instance
are employed that address the specific needs and conditions of infotainment system
development. The integration of these functions into the overall system should be ad-
dressed as early as possible. For that purpose first a description of the non-AUTOSAR
functionality (Description of a Non-AUTOSAR System) is needed, which must
be provided by the non-AUTOSAR approach. Within the development of the Abstract
System Description the functional interaction of the non-AUTOSAR functions and
the AUTOSAR functions has to be specified that is based on the given descriptions
of both parts. Since the non-AUTOSAR part is typically specified in a non-AUTOSAR
format it must be translated to the corresponding AUTOSAR format (task Translate
Non-Autosar Description to Autosar Description). Moreover, the infor-
mation on the functional interaction must be incorporated in order to obtain one com-
mon view of the integrated system. |

[TR_METH_01053] Definition of a System Description in the context of an ab-
stract system [Additionally to the definition of the abstract VFB, parts of the System
Description can already be defined in the Design System activity, e.g. the topol-
ogy and ECUs where SWCs of the abstract VFB are mapped to. This SW-C mapping
from the abstract VFB to ECUs can be used as a methodological step to the definition
of the concrete VFB. Please note that not all tasks of the Design System activity
have to be performed in the context of an abstract system. |

AUTSSAR

2.2.3 Workflow

VFB AUTOSAR
Standard Package

«input»

System Constraint
Description

Define VFB
Component
Constraints

Define VFB
Top Level

«nesting»

«nesting»

«nesting»

«nesting»

Develop an Abstract
System Description

«output» 1.*
Abstract System
Description

«nesting>

«nesting»

Component Model
Development

«nesting»

~

/
, «predecessor»

/,’ Data Model

— / Development
/

/
/ «predecessor
/

VFB level

Integrate Non
AUTOSAR System at

Design System

VFB Timing
Development

Figure 2.10: Develop an Abstract System Description

Activity Develop an Abstract System Description
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::Develop System
Brief Description Develop an abstract or functional view on the system.
Description This activity defines an abstract view on the overall system from an abstract or functional point of
view. This activity is optional.
Relation Type Related Element Mult. Note
Consumes System Constraint 0..1 In the context of the "Develop an Abstract System
Description Description" activity, the constraints for the abstract or
functional view on the system can be provided by the
"System Constraint Description”.
Consumes VFB AUTOSAR Standard 1.*
Package
Produces Abstract System 1.7
Description
Aggregates Component Model 1
Development
Aggregates Data Model Development 1
Aggregates Define VFB Component 1
Constraints
Aggregates Define VFB Top Level 1
Aggregates Design System 1 In the context of the "Develop an Abstract System
Description" activity, not all tasks have to be performed.
Aggregates Integrate Non AUTOSAR 1
System at VFB level
Aggregates VFB Timing Development 1

Table 2.2: Develop an Abstract System Description

AUTSSAR

2.3 Develop a VFB System Description

2.3.1 Purpose

This Activity provides a rough outline of the creation of @ Virtual Functional
Bus view of a System. [3]

2.3.2 Description

[TR_METH_01054]virtual Functional Bus [TheVirtual Functional Bus
(VFB) view of a System shows how the Systems software functions interact indepen-
dently of any network topology or deployment of features across multiple ECUs. |

For more information on the VFB concept see [4, CP TR VFB]. For detailed information
on the meta-model parts relevant for the VFB see [5, CP TPS Software Component
Template].

For the purpose of this use case, this Activity is splitinto the following sub-activities:
* Data Model Development
* Component Model Development
* VFB Timing Development
* Integrate Non AUTOSAR System at VFB level

* Define VFB Safety Information

[TR_METH_01055] Data Model Development activity [In the Data Model De-
velopment, the set of VFB Interfaces, VFB Modes, and VEB Types that are
used throughout the VFB are defined. Some of these have already been pre-defined
by AUTOSAR (so-called “blueprints”). |

Note: See chapter 3.2.2.7.

[TR_METH_01056] Definition of the VFB [In the Component Model Develop-
ment activity, the VFB is defined. This can either be done by the use of the abstract
VFB as a basis, or is done directly by defining the software components. In case of
using the abstract VFB as a basis, a mapping between the abstract and the concrete
VFB can be established by performing the tasks Define System View Mapping.]

Note: See chapter 3.3.1.16 for more detalils.

Two general approaches can be separated:

* [TR_METH_01057] Top-Down approach [Following a Top-Down approach, the
highest level VFB Composition Components are created, and these are itera-
tively broken down to smaller components. At the leaves of the hierarchy the vEB

AUTSSAR

Atomic Software Component are defined. Note that the activity can be even
finished with empty VEB Composition Components, allowing the detailing of
the further structure at a later stage. |

[TR_METH_01058] Bottom-Up approach [If a Bottom-Up approach is used,
then the VFB Atomic Software Components are first defined, and aggre-
gated into VFB Composition Components.|

[TR_METH_01059] Kinds of VFB Atomic Software Components [Several spe-
cial kinds of VFB Atomic Software Component$ can be modeled in this activity:

]

VFB Atomic Application Software Component$ are the core elements.
They are used to implement the feature algorithms.

VFB Parameter Component are used to provide characteristic values, such
as calibration parameters, to software components.

VFB Sensor Actuator Components provide the connection between phys-
ical sensors/actuators and the VFB Atomic Application Software Com-—
ponents.

ECU Abstraction Software ComponentS can be modeled at this level as
well in order to model the ECU input and output interfaces which are used by
sensors and actuators.

Complex Driver Component$ also have to be modeled here, though their
implementation is ECU specific, because their ports need to be connected at the
VFB level.

VFB NvBlock Software Component can be modeled at this level if applica-
tion software accesses non-volatile data via ports.

Empty VFB Composition Components can be provided in case the detailed
structure of the desired solution is not in the scope of this activity and will be left
open to a later stage in the development.

[TR_METH _01129] Integrate Non AUTOSAR System at VFB level activity
[In addition to the components specified with an AUTOSAR SwComponent Descrip-
tion, there may be application components that are specified in other formats, because
they are developed within another application domain.

In-vehicle infotainment components, for instance, are usually not developed with
AUTOSAR means. Rather, development methods and platforms, such as GENIVI
(http://www.genivi.org/), are employed, which address the specific needs and condi-
tions of infotainment system development.

AUTSSAR

The integration of these components into the overall system should be addressed as
early as possible. For this purpose, the Description of a Non-AUTOSAR Sys-
tem must be incorporated into the VFB system description (VFB System). Since the
non-AUTOSAR components are typically specified in a non-AUTOSAR format, their
descriptions must be translated to the corresponding AUTOSAR format (Task Trans-
late Non-Autosar Description to Autosar Description). Moreover, the
information on the interconnection of the components must be incorporated, in order
to obtain one common view of the integrated system. |

[TR_METH_01149] Definition of VFB relevant safety information [In the optional
activity Define VFB Safety Information the VFB relevant safety information is
defined. Safety requirements and safety measures created at this development stage
may be detailed (refined, decomposed, allocated, mapped, etc.) later on in the pro-
cess. |

Note: See chapter 2.14.

After these activities are completed, the Vvirtual Functional Bus view of the Sys-
tem is defined. At this point, some VFB Software Component Mapping Con-
straints may already be known by design, or based on an analysis such as De-
fine VFB Timing. These can be described to provide guidance to the downstream
activities.

AUTSSAR

2.3.3 Workflow

Abstract System
Description

VFB AUTOSAR
Standard Package

0.* 1.7
Data Model Development
«input»
«input»
«nesting»
!
!
!
1
1
!
1
!
!
!
!
!
Develop a VFB i
System Description II
!
!
—= !
— !
«nesting» ’/
1
«output» ’/
1 /
- !
- «predecessor»
- 1
- !
- !
- !
!
Overall VFB /
System /
!
VFB Timing Development,
«nesting> ~ 7 " <predecessor»
«<nesting»
Define VFB Safety
Information
«nesting» Define VFB Timing
Integrate Non AUTOSAR
System at VFB level
«nesting»
Define VFB Top Level
«nesting»
Define System View
Mapping
«nesting»

Define VFB Component
Constraints

y

Define VFB Modes

«nesting»
«nesting» :
Define VFB Interfaces
«nesting»
«nesting» :
Define VFB Types
Define VFB
Constants
«nesting» :

«nesting»

Component
Model
Development

«nesting»

«nesting»

Define VFB Composition
Component

y

Define VFB
Application Software
Component

y

Define VFB Sensor or
Actuator Component

y

Define VFB
Parameter

@]
°
3
S
<)
E]
)
2

Define Wrapper
Componentsto Integrate
Legacy Software

«nesting»

y

Define Complex Driver
Component

«nesting»

y

Define ECU
Abstraction
Component

«nesting»

y

Define VFB
Variants

«nesting»

Figure 2.11: Develop a VFB System Description

y

Define VFB NvBlock
Software Component

AUTSSAR

Integrate Non AUTOSAR
System at VFB level

«nesting»

«nesting»

«predecessor

Define VFB Translate Non-Autosar Description to
Integration Connector Autosar Description

Figure 2.12: Integrate Non AUTOSAR System at VFB level

Define Safety
Information

«input» «output»

VFB System Define VFB Safety VFB Safety Extensions

Information

Figure 2.13: Define VFB Safety Information

Activity Develop a VFB System Description

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::VFB::Develop VFB

Brief Description This pattern describes the methodology to develop the Virtual Functional Bus view of the System.
Description The Virtual Functional Bus (VFB) view of a System shows how the Systems software and hardware

functions interact independent of any network topology or deployment of features across muliple
ECUs. This Activity is split into three sub-activities:
» Data Model Development

» Component Model Development

« Timing Model Development

* Integrate Non AUTOSAR System at VFB level
« Define VFB Safety Information.

Relation Type Related Element Mult. Note
Consumes Abstract System 0.~ The abstract System Description is an optional input for
Description the activity "Develop a VFB System Description". The
VFB-related part of the Abstract System Description can
be than refined to the concrete "Overall VFB System".
Additionally, a mapping between those two views can be
established.
Consumes VFB AUTOSAR Standard 1.7
Package
Produces Overall VFB System 1
Aggregates Component Model 1
Development
Aggregates Data Model Development 1

AUTSSAR

JAN

Activity Develop a VFB System Description
Aggregates Define System View 1

Mapping
Aggregates Define VFB Component 1

Constraints
Aggregates Define VFB Safety 1

Information
Aggregates Define VFB Top Level 1
Aggregates Integrate Non AUTOSAR 1

System at VFB level
Aggregates VFB Timing Development 1

Table 2.3: Develop a VFB System Description
Activity Data Model Development
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::VFB::Develop VFB
Brief Description
Description
Relation Type Related Element Muit. Note
Aggregates Define VFB Constants 1
Aggregates Define VFB Interfaces 1
Aggregates Define VFB Modes 1
Aggregates Define VFB Types 1
Table 2.4: Data Model Development

Activity Component Model Development
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::VFB::Develop VFB
Brief Description
Description

Relation Type

Related Element

Mult.

Note

Aggregates Define Complex Driver 1
Component

Aggregates Define ECU Abstraction 1
Component

Aggregates Define VFB Application 1
Software Component

Aggregates Define VFB Composition 1
Component

Aggregates Define VFB NvBlock 1
Software Component

Aggregates Define VFB Parameter 1
Component

Aggregates Define VFB Sensor or 1
Actuator Component

Aggregates Define VFB Variants 1

Aggregates Define Wrapper 1

Components to Integrate
Legacy Software

Table 2.5: Component Model Development

AUTSSAR

Activity VFB Timing Development
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::VFB::Develop VFB
Brief Description
Description
Relation Type Related Element Mult. Note
Aggregates Define VFB Timing 1
Predecessor Component Model 1
Development
Predecessor Data Model Development 1
Table 2.6: VFB Timing Development
Activity Integrate Non AUTOSAR System at VFB level
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::VFB::Develop VFB
Brief Description Incorporate the description of the non-AUTOSAR system and its connection with the AUTOSAR
system into the AUTOSAR methodology activities.
Description Based on the description of the non-AUTOSAR system its connection with the AUTOSAR system is

defined and specified using the VFB Integration Connector format. This is translated into an
AUTOSAR description that becomes part of the VFB system description.

Relation Type Related Element Mult. Note
Aggregates Define VFB Integration 1
Connector
Aggregates Translate Non-Autosar 1
Description to Autosar
Description
Table 2.7: Integrate Non AUTOSAR System at VFB level
Activity Define VFB Safety Information
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::VFB::Develop VFB
Brief Description Defines all required safety information at VFB level.
Description In this activity, the safety information at VFB level is defined. The safety information can be refined
or completed in further development phases.
Extends Define Safety Information
Relation Type Related Element Mult. Note
Consumes VFB System 1
Produces VFB Safety Extensions 1

Table 2.8: Define VFB Safety Information

2.4 Develop Software Components

2.4.1
24141

Develop an Atomic Software Component

Purpose

This Activity provides a rough outline of the creation of an Atomic Software

Component.

AUTSSAR

2.4.1.2 Description

[TR_METH_01060] Develop an Atomic Software Component activity [This is
the generic Activity valid for several kinds of Atomic Software Components. The
first step is to create design, including the runnables, events, inter-runnable variables,
etc. Once this is complete, the contract header files can be created and the software
component can be implemented.

Optionally, the safety relevant information for the software component and all contained
elements can be defined. If the software component is developed as a SEOOC (Safety
Element out of Context) and the safety requirements are not fully known at develop-
ment time, the ASIL attribute can be set to indicate the integrity level the component
was developed for, i.e. in the development process all development process related
requirements of ISO 26262 for the specified ASIL have been applied. |

For safety aspects, see chapter 2.14.

Note that the method of implementation, quality, testing, etc. are beyond the scope of
this activity.

After the component is implemented and successfully compiled, its resources are mea-
sured and stored as part of the software component description for further usage by
downstream processes.

The pattern also includes the optional tasks of creating a timing model, binding pre-
build-variants and evaluating variants, all in the scope of the atomic software compo-
nent. Note that the sequence of these optional tasks within the Activity is only one
possible example.

2.4.1.3 Workflow

Figure 2.14 shows the work breakdown assumed for this use case. The next two fig-
ures 2.16 and 2.17 show all the tasks and work products of the method library involved
in this use case.

AUTSSAR

-y

y

Define Consistency

Needs Evaluate Variant

Define Atomic

Software Component
Internal Behavior

y

Measure Component

Develop an Atomic

Resources

Software Component

Define SymbolProps for
Types

Define Software
Component Safety
Information

Generate Atomic
Software Component
Contract Header Files

7
o

>

v

Implement Atomic Define Generate

Software Component Software Component Compile Atomic
Component Prebuild Data Software
Timing Set Component

Figure 2.14: Develop an Atomic Software Component

Overall VFB System Define Safety
Information
«input»

«input»

«output»

VFB Safety Extensions Software Component

Safety Extensions

Define Software Component
Safety Information

Software Component
Internal Behavior

Figure 2.15: Define Software Component Safety Information

Activity Develop an Atomic Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software Component::Develop Atomic
SWC

Brief Description

\Y%

AUTSSAR

A
Activity Develop an Atomic Software Component
Description This is the generic pattern valid for several kinds of Atomic Software Components. The first step is

to create design, including the runnables, events, interrunnable variables, etc. Once this is complete,
the contract header files can be created and the software component can be implemented.

Note that the method of implementation, quality, testing, etc. are beyond the scope of this capability
pattern.

After the component is implemented and successfully compiled, its resources are measured and
stored as part of the software component for further usage by downstream processes.

The pattern also includes the optional tasks of creating a timing model, defining safety relevant
information, binding prebuild-variants and evaluating variants, all in the scope of the Atomic
Software Component. Note that the sequence of these optional tasks within the capability pattern is
only one possible example.

Extended By

Develop Application Software, Develop a Complex Driver Component, Develop a Sensor Actuator
Component, Develop an ECU Abstraction Component, Develop an NvBlock Software Component,
Optimize a Software Component for a Specific Target

Relation Type Related Element Mult. Note
Aggregates Compile Atomic Software 1
Component
Aggregates Define Atomic Software 1
Component Internal
Behavior
Aggregates Define Consistency Needs 1 Used for defining the consistency relations between a
group of RunnableEntitys and a group of Data
Prototypes.
Aggregates Define Software 1
Component Safety
Information
Aggregates Define Software 1
Component Timing
Aggregates Define SymbolProps for 1 Used for solving name conflicts on the level of
Types component or data types.
Aggregates Evaluate Variant 1
Aggregates Generate Atomic Software 1
Component Contract
Header Files
Aggregates Generate Component 1
Prebuild Data Set
Aggregates Implement Atomic Software 1
Component
Aggregates Measure Component 1
Resources

Table 2.9: Develop an Atomic Software Component

AUTSSAR

Activity Define Software Component Safety Information
Package é\L/JV'I;:OSAR Root::M2::Methodology::Methodology Use Cases::Software Component::Develop Atomic
Brief Description Defines all required safety information for a software component.
Description
Extends Define Safety Information
Relation Type Related Element Muit. Note
Consumes Overall VFB System 1
Consumes Software Component 1
Internal Behavior
Consumes VFB Safety Extensions 1
Produces Software Component 1
Safety Extensions

Table 2.10: Define Software Component Safety Information

J . Software
< Component
= Internal
Behavior
—
—
— Define Atomic
Software Component
VFB Atomic Internal Behavior
Software —
Component
—
—
—
Define Software
. Component Timing
Postbuild Software
Define SymbolProps — Variant Component
for Types Set Timing
- VFB _h
- AUTOSAR —
- Standard —
- Package —
Generate Atomic Application Header
Software Component
Contract Header Files

<
mn
w
=
<
kel
@
17}

YFB Modes System Constant

Value Set

VFB Data Type
Mapping Set

Predefined Variant

Interfaces

Generate Component
Prebuild Data Set Component RTE
Prebuild

Configuration Header

Figure 2.16: Develop an Atomic Software Component - Detailed view with work products

(1)

ALIT@ SAR Methodology for Classic Platform

AUTOSAR CP R25-11

Timing

Software
Component
—
—

0.1

Software Component

X 0.1
Internal Behavior

«input» «input»

— Implement —
N N Atomic Software, <oulouDy
 e— 0.. «input> Component P 1 e— 1
Library Description Atomic Software
Component
. . «output> Implementation
«input» «input»
«inputy, 1 0.1
Software Library Application Standard
Component Header Header File | Header Files

Data Types
Header

Files

«inoutput»

Atomic Software
Component Sourcg
Code

«input»

1

«output»

[l

L

0.1 «input»

Compile Atomic
Software Component
Component RTE Atomic Software

«input»

«input»

Prebuild Component Object
Configuration Header Code

General
Autosar
Artifact

Predefined
Variant

Measure Component
Resources

«input» Evaluate Variant

Postbuild Variant Set

. «output»
N «input»
«input»
0.1 1
0.*
—
—
| —
| —
| —
System Constant Evaluated
Value Set Variant Set

Figure 2.17: Develop an Atomic Software Component - Detailed view with work products

(2)

60 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

AUTSSAR

2.4.2 Develop Application Software
2.4.2.1 Purpose

This Activity provides a rough outline of the creation of one or more Application
Software Components.

2.4.2.2 Description

[TR_METH_01061] Develop Application Software activity [This Activity
describes the work flow and the necessary activities in terms of the AUTOSAR method-
ology to develop one or more Application Software Components. The work
flow shall allow a more or less independent development of the software compo-
nents core functionality. These activities have to be performed for each Application
Software Component.]

2.4.2.3 Workflow

The detailed workflow can be derived from the generic activity Develop an Atomic
Software Component.

Develop an Atomic Software
Component

«extends»

=)

Overall VFB Develop Application Delivgred
System Atomic

Software
Software

Components

«output» 1

1 «input» |

«input»
«output»
0.* 0.x

Di

iagnostic System Extract

Figure 2.18: Develop Application Software

Activity Develop Application Software

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software Component::Develop
Application SWC

Brief Description

\Y

AUTSSAR

A

Activity Develop Application Software

Description This pattern describes the workflow and the necessary activities in terms of the AUTOSAR
methodology for the development of application software components.

The workflow shall allow a more or less independent development of the software component core
functionality. These activities have to be performed for every application software component.

Extends Develop an Atomic Software Component

Relation Type Related Element Mult. Note

Consumes Diagnostic System Extract 0..* The Diagnostic System Extract contains diagnostic
information that serves as a requirement for the
software developer.

Consumes Overall VFB System 1 The application software needs to refer to the relevant
elements of the overall VFB system such as Software
Component Types, Port Interfaces and Data Types.

Produces Delivered Atomic Software 1.* Complete description of a set of AtomicSoftware

Components Components including implementation (incl. source or

object code files)

Produces Diagnostic System Extract 0..* Diagnostic information relevant to the SW-Cs is
provided as a part of the Diagnostic System Extract and
can contain relationships to the SW-C’s service needs.

Table 2.11: Develop Application Software

2.4.3 Uses Cases for more Specialized Software Components
2.4.3.1 Purpose

These Activities provides a rough outline of the creation of more specialized com-
ponents and of the ECU specific optimization of a software component.

2.4.3.2 Description

These Activities describe the work flow and the necessary activities in terms of
the AUTOSAR methodology to develop more specialized components, which could be
partially hardware or ECU dependent.

2.4.3.3 Workflow

These work flows are for the most part derived from the generic activity Develop an
Atomic Software Component. The diagrams show the required extensions.

Note the development of a Service Component does not fall into this category of use
cases, because it is for the most part generated during integration time.

For the development of a VFB Parameter Component refer to the calibration use
case 2.9.

AUTSSAR

Develop an
Atomic
Software
Component

«extends»

Develop a
——| | Sensor Actuator
Component

Figure 2.19: Develop a Sensor or Actuator Component

Activity Develop a Sensor Actuator Component

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software Component::Develop
Sensor-Actuator Component

Brief Description Show how to develop a Sensor Actuator Component

Description Activities to develop a VFB Sensor Actuator Component, i.e. component that represents a physical
sensor or actuator.

Extends Develop an Atomic Software Component

Relation Type

Related Element | Mult. |Note

Table 2.12: Develop a Sensor Actuator Component

Develop an
Atomic Software
Component

«extends»

Develop an
ECU

Abstraction
Component

«nesting»

Define BSW Module
Timing

Map Software Component
to BSW

Figure 2.20: Develop an ECU Abstraction Component

Activity Develop an ECU Abstraction Component

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software Component::Develop
Ecuabs Component

Brief Description Show how to develop an ECU Abstraction Component.

Description Activities to develop an ECU Abstraction Software Component, i.e. a component that implements an
ECU Abstraction..

Extends Develop an Atomic Software Component

Relation Type Related Element Muit. Note

Aggregates Define BSW Module Timing 1

Aggregates Map Software Component 1
to BSW

Table 2.13: Develop an ECU Abstraction Component

AUTSSAR

Develop a Complex Driver
Component

«nesting»

«extends»

Map Software Component

Develop an Atomic Software to BSW

Component

Figure 2.21: Develop a Complex Driver Component

Activity Develop a Complex Driver Component

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software Component::Develop CDD
Component

Brief Description Show how to develop a Complex Driver Component

Description Show how to develop a Complex Driver Component

Extends Develop an Atomic Software Component

Relation Type Related Element Mult. Note
Aggregates Map Software Component 1
to BSW
Table 2.14: Develop a Complex Driver Component
Develop an
Atomic
Software
Component
«extends»
— Develop an
— NvBlock
Software
Component
Figure 2.22: Develop an NvBlock Software Component
Activity Develop an NvBlock Software Component
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software Component::Develop Nv
Block Software Component
Brief Description

\Y

AUTSSAR

A

Activity

Develop an NvBlock Software Component

Description

Activities to develop an NvBlock Software Component. An NvBlockSoftwareComponentType
(designed as part of activity Component Model Development) allows the application software to
access non-volatile data in a convenient way via ports. The NvBlock Software Component takes
over the management and buffering of data within blocks including data exchange with the
underlying basic software (NvM). Optionally, it implements special writing strategies (e.g. cyclic
writing). The development activities are similar to the generic activity Develop an Atomic Software
Component with the following differences:

» The description of the NvBlockNeeds within a NvBlockSoftwareComponentType is done in
response to requirements given by the application software as part of their own NvBlockNeeds.
These are part of their Software Component Internal Behavior which means that this level must
be available when the NvBlockSoftwareComponentType is finally designed.

* The creation of an Software Component Internal Behavior within NvBlockSoftwareComponent
Type is optional. This artifact is only needed if special writing strategies have to implemented by
the RTE or if the application software needs a direct access (via client-server ports) to the NvM.

» The source code of an NvBlockSoftwareComponentType will be generated during integration as
part of the artifact RTE Source Code. Therefore no source code and no Atomic Software
Component Implementation needs to be created during this activity.

Note that if non-volatile data are accessed by the application software via an NvBlockSoftware
ComponentType, it is not required to define a ServiceComponentType for this use case.

Extends

Develop an Atomic Software Component

Relation Type

Related Element | Mult. |Note

Table 2.15: Develop an NvBlock Software Component

«extends»

Optimize a
Software
Component for a
Specific Target

+Compile Atomic SWC
ECU Specific

- «nesting»
«nesting» «nesting»

«nesting»

Create Service

Generate Base Generate Component

>

Re-compile

Component Ecu Configuration Header File in Vendor Componentin ECU
Mode context
Figure 2.23: Optimize Software Component
Activity Optimize a Software Component for a Specific Target
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Software Component::Optimize
Software Component
Brief Description Show how to optimize a software component for a specific target.

\Y

AUTSSAR

A
Activity Optimize a Software Component for a Specific Target
Description In practice the integration of an application software component has to consider some optimizations

to meet performance or resource requirements. The Component APl might be much more efficient,
if it will be generated particularly adapted to the concrete ECU configuration, e.g. via using macro
definitions instead of function calls for some RTE interaction. In fact this should not change the
Component Implementation (i.e. the C-sources).

That means now we have a different set of component headers, which include the
ECU-configuration-specific optimizations.

Note: This use case shows the typical steps needed until the recompilation with the optimized
header file can be done. It does not show all the other steps needed for the ECU build.

Extends Develop an Atomic Software Component

Relation Type Related Element Mult. Note

Aggregates Create Service Component 1

Aggregates Generate Base Ecu 1
Configuration

Aggregates Generate Component 1
Header File in Vendor Mode

Aggregates Re-compile Component in 1 Compile Atomic SWC ECU Specific:
ECU context

Table 2.16: Optimize a Software Component for a Specific Target

2.5 Develop System and Subsystems

2.5.1 Overview
2.5.1.1 Purpose

The Activities to develop the artifacts on the system level include the optional
development of the abstract system (see Chapter 2.2), the development of an overall
(technical) system and optionally the refinement into one or more subsystems. The
reason for this split is, that the latter may be done by another organization, as has
already been pointed out in 2.1.2.

2.5.1.2 Description

[TR_METH_01065] Develop System and Develop Sub-System activities |
Develop System is refined into sub-activities Design System, Define Sys-—
tem Safety Information, Design Custom Transformer, Generate ECU
Extract and Generate System Extract. Develop Sub-System is refined
into sub-activities Create ECU System Description, Design Sub-System,
Define System Safety Information and Generate ECU Extract.

Note that the activity Generate ECU Extract and Define System Safety In-
formation can be performed as part of both Develop SystemandDevelop Sub-
System.

AUTSSAR

Optionally a mapping between two different system views represented by different
System Descriptions can be added and a specification of the transformer technol-
ogy for the communication can be defined. |

Note: See Figure 2.24 for Develop System, Figure 2.25 for Develop Sub-System
and chapter 3.3.1.16 for the mapping between different system views.

[TR_METH_01066] Creation of a System Extract and an ECU Extract
[Depending on the intended work split, the System Configuration Descrip-
tion produced during this activity can be used as a basis

1. to create one or more so-called system Extracts as a basis for further refine-
ment as sub-systems

2. or to generate ECU Extracts which directly contain all relevant information to
be integrated on an ECU.

In the first case, only an outer system is defined. Based on the outer sys-
tem, One Oor more System Extracts can be delivered. The Ssystem Extract is
not fully decomposed and still needs to be refined before it forms the basis for the
ECU configuration. In order to distinguish between the delivered System Ex-
tracts and the refined sub-system, one or more ECU System Descriptions are
created as a basis for further refinement (See activity Create ECU System De-
scription). Atomic Software Components, additional ECUs, Networks and
the resulting communication will be added during the refinement step in the activity
Design Sub-Systemn. |

Note: See chapter 2.5.5 for System Extract and chapter 2.5.7 for ECU Extract.

ransformer Design
undle

11l gt

«output»
0..* 0.*
Develop System

01 «input» .. «output> 1

Overall VFB Iy ‘ ‘ ‘ “ ECU Extract

System

Abstract System

Description System Extract

«input» «output»

«input» «output»

o
LU

«nesting»

System
Configuration
Description

System
Constraint
Description «nesting» «nesting»

0.1 0. 1.
— —a - C O '
.. Define System

Design Define System X Generate ECU Generate System View Mapping
; Design Custom Extract Extract
Transformer

Figure 2.24: Structure of Activity: Develop System

«nesting» «nesting» «nesting»

0.*
1 0..1

System Safety Information

AUTSSAR

Develop Sub-System

1 «input» «output» =

o

System Extract ECU Extract
«nesting»
4 ing» «nesting» i
nesting 9 <nesting «nesting»
1 - 0.”
Create ECU System Design Sub-System Define System Generate Generate ECU
Description Safety Information CpSoftwareCluster Extract

Extract

Figure 2.25: Structure of Activity: Develop Subsystem

Figure 2.26 shows how the major deliverables produced during these activities are
related and how they refer to artifacts describing the software.

[TR_METH_01067] Abstract System Description deliverable [The Ab-
stract System Description extends the general System Description. The
System View Mapping maps the different views on the system together, e.g. dif-
ferent overall VFB systems (e.g. Abstract System Description with System
Configuration Description), or the overall VFB system with the VFB System
Extract description. |

AUTSSAR

System
- |System
~ |Description
- <}
- |ECU System -
~ |Description -
J7 CpSoftwareCluster Extract
- System - Abstract - System - -
- Constraint ~ — System - Configuration— -
- Description ~ Description — Description — System -lEcu
- - - ~ |Extract ~| Extract
Software
- |overall vFB - |VFB system - |ECU Extract of
~|System ~ |Extract ~ |VFB System
— — —
— — —
—
— — —
System Flat Map System View ECU Flat Map
Mapping

Figure 2.26: Overview on the different roles of deliverables based on System Description

Note that all the deliverables based on the generic deliverable System Description
as well as the ECU Extract consist of ARXML files that are using the meta-model
element system as the root element, from where the other information can be traced

down.
Activity Develop System
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::Develop System
Brief Description
Description Develop the description of an overall AUTOSAR System as a basis to deliver System and/or ECU
extracts.
Relation Type Related Element Muilt. Note
Consumes Abstract System 0..” The abstract System Description is an optional input for
Description the activity "Develop System". Please note, that in this
step the Abstract System Description is refined to a
System Description.
Consumes Overall VFB System 0..1 Usually the System refers to elements of an overall VFB
descriptions. But for the description of a legacy system,
this input might be empty.

AUTSSAR

JAN
Activity Develop System
Consumes System Constraint 0..1
Description
Produces ECU Extract 1.*
Produces System Configuration 1.*
Description
Produces System Extract .*
Produces Transformer Design Bundle >
Aggregates Define System Safety 0..1
Information
Aggregates Define System View 0..1
Mapping
Aggregates Design Custom Transformer 0..”
Aggregates Design System 1
Aggregates Generate ECU Extract 1.7
Aggregates Generate System Extract 0.*
Table 2.17: Develop System
Activity Develop Sub-System
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::Develop System
Brief Description
Description Develop the description of a sub-system based on a given System Extract.
Relation Type Related Element Mult. Note
Consumes System Extract 1
Produces ECU Extract 1.7
Aggregates Create ECU System 1
Description
Aggregates Define System Safety 0..1
Information
Aggregates Design Sub-System 1.*
Aggregates Generate CpSoftware 0..*
Cluster Extract
Aggregates Generate ECU Extract 1.%

Table 2.18: Develop Sub-System

2.5.2 Design System

2.5.2.1 Purpose

This Activity provides a rough outline of the design steps leading to an AUTOSAR
System Configuration Description and the system-specific part of the Ab-
stract System Description, including its topology, deployment, communication

matrix, etc.

AUTSSAR

2.5.2.2 Description

[TR_METH_01068] Inputs and Output of the Design System activity [The design
of an AUTOSAR system Configuration Description and the system-specific
part of the Abstract System Description uses input information from a Sys-
tem Constraint Description and is based on an Overall VFB System for
the software part. Optionally, the Abstract System Description that represents
the functional view on the system can be used as an input. Please note that the inputs
and output are depicted in the top-level activities which aggregates the activity Design
System.

The activity involves the creation of a Topology, ECU Resources Descriptions,
and the interconnection between ECU instances. |

[TR_METH_01069] Deployment of AUTOSAR Software Components [The
AUTOSAR Software Components defined within the VFB Top Level System Com-
position are then deployed to the ECU instances. |

[TR_METH_01070] Description of network signals [The required network signals
are identified and a mapping is done to System Signals to implement the VFB.
System Signal Groups, are defined to keep certain signals grouped together for
consistent transmission. System Signals are then defined and form the initial input
to design the Communication.]

[TR_METH_01071] Description of design constraints [During this stage, design
constraints can also be defined Mapping of Software Components to Im-
plementations, Mapping of Software Components to ECUs and Signal
Path Constraints. These constraints serve many purposes including the ability
for tools to use them to optimization a system, to interface with legacy ECUs, and to
"lock” design decision between iterations. |

Note: The mapping of software components to implementations is optional and needed
only if those components are specifically required to be used in an ECU.

[TR_METH_01155] Definition of serialization [There are two approaches possible
for defining the serialization. The first approach provides the necessary information
based on the network representation, the second approach based on implementation
data types. For details of these two approaches, please see [6, CP TPS System Tem-

plate]. |

[TR_METH_01156] Use case: Serialization based on network representation [The
OEM defines the network representation on network signal (I1Signal) level. This network
representation is used by the Sserializer Transformer to create the byte stream.
If not provided by the OEM, the Tier1s are free to choose implementation data types
for the application software. |

AUTSSAR

[TR_METH_01157] Use case: Serialization based on implementation data types
[The OEM defines the same implementation data types for the root software compo-
sition of communicating Ecu instances. These implementation data types are used
by the serializer Transformer to create the byte stream. Tier1s are free to use
arbitrary implementation data types for the application SW inside the root software
composition. |

2.5.2.3 Workflow

«nesting»

Design
Communication

Figure 2.27: Structure overview: Design System

AUTSSAR

Define ECU Set System Root

Description

Assign Top Level
Composition

Define System
Topology

Design System

Deploy Software
Component

Generate or Adjust
System Flat Map

Derive
Communication
Needs

Select Software
Component
Implementation

Define System Define System

Define Signal Path =
Variants Timing

Constraints

Define Communication Matrix

Design
Communication

Define Frames

Define Signal PDUs

Define RTE Fan-out

Define TP

Define Signal Gateway

Define Secured PDUs

Define E2E Transformer Define Transformation Define Network Define PDU Gateway

Define Transformation
Technology Technology Chain Management

Figure 2.28: Nesting relationship: Desigh System

AUTSSAR

3 VFB Software
— Component
— B — | Mapping
1. 1. \ s— | Constraints
Define ECU Define System 1 —
Description ECU Resources Topology
Description 0.1
' 1 «input»
Signal Path
ints /TOpologv
1 | — ;
_ Deploy Software N\
Define Signal Path 1 Component
Constraints VFB Top Level
L b 1 System Composition —
7 U]
1
7
1 Mapping of Software
Componentsto ECUs
- 1
Communication Set System Root] —
Layers Derive —
Communication _
Needs
U
1. Data Mapping
System
3 Description
= | Root Element 1.
7 | e—
Assign Top Level 1 s
Composition —
5 —
System Signal
1 | c—
Generate or Adjust
System Flat Map
System Flat Map
Figure 2.29: Detailed work flow for: Design System
Activity Design System
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::Design System
Brief Description Initial work to create a topology, map a VFB onto that topology and determine the ECU resources
each ECU needs.

\Y

AUTSSAR

A

Activity

Design System

Description

The design of an AUTOSAR System involves the creation of a Topology, ECU Resources
Descriptions, and the interconnection between ECU instances.

The software components defined within the VFB Top Level System Composition are then deployed
to the ECU instances.

The required network signals are identified and a mapping is done to System Signals to implement
the VFB. System Signal Groups, are defined to keep certain signals grouped together for atomic
transmission. System Signals are then defined and form the initial input to design the
Communication Matrix.

During this stage, design constraints can also be defined (Mapping of Software Components to
Implementations, Mapping of Software Components to ECUs, Signal Path Constraint). These
constraints serve many purposes including the ability for tools to use them to optimization a system,
to interface with legacy ECUs, and to "lock" design decision between iterations.

Notes: The mapping of software components to implementations is optional and needed only if
those components are specifically required to be used in an ECU.

Relation Type Related Element Mult. Note
Aggregates Assign Top Level 1

Composition
Aggregates Define ECU Description 1
Aggregates Define Signal Path

Constraints
Aggregates Define System Timing 1
Aggregates Define System Topology 1
Aggregates Define System Variants 1
Aggregates Deploy Software 1

Component
Aggregates Derive Communication 1

Needs
Aggregates Design Communication 1
Aggregates Generate or Adjust System 1

Flat Map
Aggregates Select Software Component 1

Implementation
Aggregates Set System Root 1

Table 2.19: Design System

Activity Design Communication
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::Design System
Brief Description
Description Describe all communication layers. and define the mapping of the triggering elements within the

Physical Channels to the communication connector ports for the individual ECUs.
Because the triggering elements are aggregated as splitable elements within the Physical Channels
it is possible to define them in an artifact separated from the Topology.

Relation Type Related Element Mult. Note
Aggregates Define Communication 1
Matrix
Aggregates Define E2E Transformer 1
Technology
Aggregates Define Frames 1
Aggregates Define Network 1
Management
Aggregates Define PDU Gateway 1

AUTSSAR

JAN

Activity Design Communication
Aggregates Define RTE Fan-out 1
Aggregates Define Secured PDUs 1
Aggregates Define Signal Gateway 1
Aggregates Define Signal PDUs 1
Aggregates Define TP 1
Aggregates Define Transformation 1

Chain
Aggregates Define Transformation 1

Technology

Table 2.20: Desigh Communication

2.5.3 Generate System Extract

2.5.3.1

Purpose

This Act ivity provides an extract of the system description for a specific sub-system.

2.5.3.2 Description

Generate a system Extract which is a basis to develop a sub-system.

2.5.3.3 Workflow

1 «input»

System
Configuration
Description

«output>» g7«

System Extract
Generate System Extract

Detailed tasks are not
modeled.

Figure 2.30: Generate the System Extract

The detailed tasks of Generate System Extract are not modeled since they are
considered as trivial - it just means to reduce the content of the input description to the
subsystem in question.

AUTSSAR

Activity Generate System Extract

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::Generate System Extract

Brief Description

Description Generate for further development, a System Extract which represents the description of a part of the
system (sub-system). This allows a start of work on ECU’s even if the system is not completely
described.

Relation Type Related Element Mult. Note

Consumes System Configuration 1
Description

Produces System Extract 0.~

Table 2.21: Generate System Extract

2.5.4 Create ECU System Description
2.5.4.1 Purpose

Based on a System Extract, this Activity creates ECU System Descrip-—
tions which are refined during the design of the sub-system.

2.5.4.2 Description

[TR_METH_01125] Create ECU System Description activity [Based on the
delivered System Extract, the receiving organization creates one or more ECU De-
scriptions. The ECU Descriptions are used for designing the sub-system arti-
facts (See activity Design Sub-System). |

From the methodological point of view there are two choices for creating the ECU Sys-
tem Description.

[TR_METH_01126] Using the system Extract as the structural basis for the
ECU development [The system Extract is taken as the structural basis for the
ECU development. In this case the System Extract becomes an ECU System
Description.]

[TR_METH_01127] Creating a new structure for the ECU development [A new
structure is created as a basis for the ECU development. The newly created ECU
System Description is mapped to the initial System Extract. For this purpose
the task Define System View Mapping creates the initial System View Map-
ping artifact which is refined during the sub-system design. |

[TR_METH_01078] Mapping of different views [The different views are mapped by
the System View Mapping.|

Typical use-cases for this transformation steps are:

AUTSSAR

« [TR_METH_01079] Use Case: Substitution of existing components [The
secondary organization has an existing software architecture. By software shar-
ing some of the existing components are substituted by the delivered software
components. |

« [TR_METH_01080] Use Case: Mapping of requirements to the solution [The
secondary organization develops one ECU for different primary organizations
and therefore has to map the requirements of different primary organizations to
its solution. |

« [TR_METH_01081] Use Case: Reorganization of the software structure [The
primary organization delivers a sub-system description which defines one ECU.
The secondary organization decides to use two ECUs. Therefore the software
structure has to be reorganized by the second organization. |

* [TR_METH_01082] Use Case: Description of changes between different ver-
sions of System Descriptions [Additionally the mapping can be used to for-
mally describe changes between different versions of System Descriptions.]

2.5.4.3 Workflow

Create ECU System
Description

1 «input» «output» 1.*

o

System Extract ECU System Description

«nesting»

Define System View
Mapping

Figure 2.31: Create ECU System Description

Activity Create ECU System Description

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::Create ECU System
Description

Brief Description

\Y

AUTSSAR

A

Activity Create ECU System Description

Description During the Develop Sub-System activity the supplier refines the received System Extract so that
valid ECU Extracts can be generated. The refinement of the System Extract is done using the ECU
System Description. Therefore, this activity creates one or more ECU System Descriptions based
on the System Extract. The sub-system artifacts are designed in the ECU System Description
during the activity "Design Sub-System".

From the methodological point of view there are two choices for creating the ECU System
Description.

1) The System Extract is taken as the structural basis for the ECU development. In this case the
System Extract becomes an ECU System Description.

2) A new structure is created as a basis for the ECU development. The newly created ECU System
Description is mapped to the initial System Extract. For this purpose the task "Define System View
Mapping" is performed.

Relation Type Related Element Mult. Note
Consumes System Extract 1
Produces ECU System Description 1.*
Aggregates Define System View 0..*

Mapping

Table 2.22: Create ECU System Description

2.5.5 Design Sub-System
2.5.5.1 Purpose

This Activity details a given ECU System Description (previously created from
the delivered System Extract).

2.5.5.2 Description

[TR_METH_01075] Design Sub-Systemactivity [Based onthe ECU System De-
scription, the description of a sub-system is defined. |

[TR_METH_01076] Collaboration between different organizations [Additionally,
the software component structure of the System Extracts, delivered by the primary
organization can be transformed into a different structure by the receiving organization
(ECU System Description). Inthis case the System Extract of the primary or-
ganization can be considered as a requirement and the sub-system of the receiving
organization can be seen as a solution which has to fulfill the delivered requirements.
Thus here again a mapping activity can be defined which maps the newly introduced
solution sub-system to the provided requirement sub-system from the primary organi-
zation.

[TR_METH_01077] Transformation changes during the Design Sub-System ac-
tivity [During this transformation the hierarchical SWC-structure can be changed,
some SWCs can be replaced by other SWCs, some can remain in the resulting view. |

This step can affect the System View Mapping. See [TR_METH_01078].

AUTSSAR

Finally all Atomic Software Components in the resulting sub-system scope are
included in this sub-system description.

2.5.5.3 Workflow

Design Sub-System

«input» «output»

1 1

ECU System Description

Figure 2.32: Overview: Design Sub-System

Note that the ECU System Description appears as input and output of this Activity
because it is refined.

As the detailed work flow for this Activity uses the same elements from the methodology
library as the one described in 2.5.2.3, the breakdown into tasks is not modeled here.

Activity Design Sub-System

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::Design Sub-System

Brief Description

Description Design the sub-system artifacts based on an ECU System Description which was previously created

from the delivered ECU Extract. It consists of the same tasks as the activity Design System.
The description must be completed down to the ECU level, so that valid ECU extracts can be

generated.
Relation Type Related Element Mult. Note
Consumes ECU System Description 1 System Extract as generated from the outer system.
Produces ECU System Description 1 System Extract refined during design of the
corresponding sub-system with elements needed to
generate ECU Extract(s).

Table 2.23: Design Sub-System

2.5.6 Generate CpSoftwareCluster Extract
2.5.6.1 Purpose

This Activity creates the CpSoftwareCluster Extract, in case CpSoft-
wareClusters are used (the system contains at least one CpSoftwareCluster—
ToEculnstanceMapping). A CpSoftwareCluster Extract iS a System with
category SW_CLUSTER_SYSTEM_DESCRIPTION. Similarto a System Extract, it
is not fully decomposed and still contains compositions. It only contains the elements
that belong to a single CpSoftwareCluster.

AUTSSAR

In a Top-Down approach, the CpSoftwareCluster Extract is an extract of the
ECU System Description forone CpSoftwareCluster.

In a Bottom-Up approach, the CpsoftwareCluster Extract is created directly.

This extract forms the basis for the ECU Extract for a single CoSoftwareCluster.
It can be developed and built independently of other CpSoftwareClusters on the
same Eculnstance.

2.5.6.2 Description

Generate a CpsoftwareCluster Extract, which is the basis for further develop-
ment on CpSoftwareCluster level.

2.5.6.3 Workflow

The workflow starts with Design CpSoftwareCluster, creating CpSoft-
wareClusters, mapping them to an EcuInstance and assigning Software Com-
ponentSto CpSoftwareClusters.

In the Top-Down approach, Design CpSoftwareCluster refines the ECU System
Description, by defining clusters. Afterwards, the CpSoftwareCluster Ex-—
tract can be created.

In the Bottom-Up approach, besign CpSoftwareCluster directly creates the Cp-
SoftwareCluster Extract, skiping the ECU System Description. In this ap-
proach, the CpsoftwareCluster can be used as a pre-integrated software building
block. It’s even possible to create a library of those building blocks.

The CpsoftwareCluster Extract can then be handed over to the owner of that
CpSoftwareCluster, who can then continue with development and integration (Ex—
tend CpSoftwareCluster).

In practice, each CpSoftwareCluster Extract is treated like a separate EcuIn-
stance. The steps in Integrate Software for ECU are executed for each Cp-
SoftwareCluster, including Build Executable, which creates a partial binary
fora cpsoftwareCluster. Several partial binaries are then merged together to form
the Merged ECU Executable

AUTSSAR

Develop Sub-System

«nesting» «nesting»

ECU System Description CpSoftwareCluster Extract ECU Extract
E 1 «input» 0~ «output> o~ E «output» E 1_
Generate CpSoftwareCluster Generate ECU Extract
<inoutput» Extract 0. «<inoutput»
«nesting»
0.1 0..1
«output»
Design CpSoftwareCluster Extend CpSoftwareCluster
«input»
Integrate Software
— * 0.. 1 m—
0.4 1.
«nesting» «outputs 7 | ee— «input» 57 <inoutputr
Generate ECU Executable — Merge
Build Executable CpSoftwareCluster
ECU Executable Merged ECU
Executable
Figure 2.33: Generate the CpSoftwareCluster Extract
Activity Generate CpSoftwareCluster Extract
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::CpSoftwareCluster
Brief Description Generate the CpSoftwareCluster Extract
Description Generate the CpSoftwareCluster Extract, either Top-Down out of the System Description, or

Bottom-Up. It is then delivered for integration and further development on CpSoftwareCluster level.
For details, see the chapters "Software Cluster Mapping" and "Software Cluster" in CP TPS System

Template.
Relation Type Related Element Mult. Note
Consumes ECU System Description 1 In case CpSoftwareClusters are used
Produces CpSoftwareCluster Extract 0..* In case CpSoftwareClusters are used in the Top-Down
approach
Aggregates Design CpSoftwareCluster 1

Table 2.24: Generate CpSoftwareCluster Extract

2.5.7 Generate ECU Extract
2.5.7.1 Purpose

This Activity provides an extract of the System description for setting up an ECU
Configuration for specific ECU.

AUTSSAR

2.5.7.2 Description

Generate an ECU Extract basis for setting up the ECU configuration and further
development on ECU level.

2.5.7.3 Workflow

System Extract

«input»
Generate ECU Extract

0.1 «input» «output» 1

System Configuration U Extract

Description

0.1 «nesting» «nesting»

«nesting» «nesting

ECU System
Description

Extract ECU
Topology

Extract the ECU
Communication

Extract EC
Rapid

Generate or|\}1
Adjust ECU

Prototyping Flat Map «output»
Scenario «input»
«output» «output) «inoutput L
1
—
- —
- —
- —
- —
- —
ECU Extract of ECU Extract of Rapid ECU Flat Map ECU Extract of ECU Extract of ECU Extract for
Topology Prototyping Scenario Data Mapping VFB System Communication

Figure 2.34: Generate the ECU Extract

Activity Generate ECU Extract
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::Generate Ecu Extract
Brief Description Generate the ECU Extract out of the System Description in order to be delivered for integration for

further development on ECU level.

Description Generate the ECU extract which is a basis for setting up the ECU configuration and further
development on ECU level.

It can be generated either from a full system (System Configuration Description), a System Extract
or a ECU System Description.

Relation Type Related Element Muit. Note
Consumes CpSoftwareCluster Extract 1 In case CpSoftwareClusters are used
Consumes ECU System Description 0..1
Consumes System Configuration 0..1
Description

Y

AUTSSAR

A

Activity Generate ECU Extract

Consumes System Extract 0..1

Produces ECU Extract 1

Aggregates Extract ECU Rapid 1
Prototyping Scenario

Aggregates Extract ECU Topology 1

Aggregates Extract the ECU 1
Communication

Aggregates Flatten Software 1
Composition

Aggregates Generate or Adjust ECU 1
Flat Map

Predecessor Define Rapid Prototyping 1
Scenario

Table 2.25: Generate ECU Extract

2.5.8 Design Custom Transformer
2.5.8.1 Purpose

This Activity specifies the functional aspects of a transformation technology used
for the serialization of selected system signals.

2.5.8.2 Description

Transformer enable AUTOSAR systems to use a data transformation mechanism to
linearize and transform data. They can be concatenated to transformer chains and
are executed by the RTE for inter-ECU communication which is configured to be trans-
formed.

The transformation technology (which transformer should be used for which commu-
nication) is defined in the context of the Design Communication activity (task De-
fine Transformation Technology). For the transformation of communication
data standardized transformers (e.g. SOME/IP transformer) or custom transformers
can be used.

[TR_METH_01130] Design Custom Transformer activity [In case of custom
transformers the Design Custom Transformer activity has to be performed to
define the functional specification of the custom transformation mechanism (Cus-
tom Transformer Specification)and the corresponding configuration parame-
ters (BSW Module Vendor- Specific Configuration Parameter Defini-
tion). The Design Custom Transformer activity is done during the Develop
System activity because it produces a definition what a transformer does and there-
fore significantly affects the corresponding communication. |

AUTSSAR

The specified transformer is then implemented (Develop Basic Software) and
can be used in the Design Communication activity. There, inter-ECU communi-
cation can be marked for being transformed.

[TR_METH_01131] Output of Design Custom Transformer activity [The
Design Custom Transformer activity shall result in a set of complete and
unambiguous written Custom Transformer Specifications and the corre-
sponding BSW Module Vendor—- Specific Configuration Parameter Def-
inition. A specification of a specific transformer shall adhere to [7, CP SWS BSW
General] and [8, CP ASWS Transformer General].

A specification of a transformer shall contain:

 Functional specification of the transformer. See [8, CP ASWS Transformer Gen-
eral] for details. The most important issue are:

— Specification of the transformers output
— Transformer class
— Transformer errors

* Definition of Development Errors, Production Errors and Extended Production
Errors.

» Transformer APlIs

» Extension of the transformer EcuC if necessary for the specific transformer

2.5.8.3 Workflow

Design Custom Transformer

2]

«output» 1

Transformer Design Bundle

«nesting» «nesting»

>

Define Vendor Specific Create Transformer Specification
Module Definition

Figure 2.35: Design Custom Transformer activity

AUTSSAR

Activity Design Custom Transformer

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::Design Custom Transformer
Brief Description

Description In this activity the functional specification of the custom transformer module is created and the

corresponding parameter definition is specified. The creation of the functional specification of the
Transformer can be seen as a part of the communication design.
This activity is performed only if a custom transformer for the communication is required.

Relation Type Related Element Mult. Note
Produces Transformer Design Bundle 1
Aggregates Create Transformer 1
Specification
Aggregates Define Vendor Specific 1
Module Definition

Table 2.26: Design Custom Transformer

2.5.9 Define System Safety Information
2.5.9.1 Purpose

This activity allows specifying safety information at system level.

2.5.9.2 Description

In this activity, the safety information at system or sub-system level is defined. Obvi-
ously, the safety information defined in previous development stages is detailed. (For
detailed tasks see chapter 2.14).

2.5.9.3 Workflow

Define Safety
Information

System Description

«input»

«input» «output»

VFB Safety

: Define System Safety System Safety
Extensions

Information Extensions

«input»

Software Component
Safety Extensions

Figure 2.36: Define System Safety Information

AUTSSAR

Activity Define System Safety Information

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::Develop System

Brief Description Defines all required safety information at system level.

Description In this activity, the safety information at system level is defined. The safety information can be
refined or completed in further development phases.

Extends Define Safety Information

Relation Type Related Element Mult. Note

Consumes Software Component 1
Safety Extensions

Consumes System Description 1

Consumes VFB Safety Extensions 1

Produces System Safety Extensions 1

Table 2.27: Define System Safety Information

2.6 Develop Basic Software
2.6.1 Overview
2.6.1.1 Purpose

This Activity provides an overall use case how to the develop AUTOSAR Basic
Software.

AUTSSAR

2.6.1.2 Description
2.6.1.3 Workflow

Develop Basic

0.* Software
Transformer Design «input»] -
Bundle - = -
.. «output» 1x -
BSW Module
z ’ Q Delivered Bundle
- «input»
- 1
BSW Standard «nesting»
Package X
«nesting»
Develop BSW Design Basic
Module 1> Software
«nesting» < . ____________ :
Generate BSW L7 . «predecessor» Define BSW Types
Module Prebuild 7 «nesting>
Data Set «nesting» g ‘ ~ Q
Define BSW Entries
Compile BSW Core «nesting»
Code . «nesting» >
«nesting»
«nesting» Define BSW Interfaces
«nesting»
Define BSW «nesting»
Module Timing «nesting»
Define Vendor Specific
Module Definition
Develop BSWModule |\ esw Generate BSWM Define BSW
Generator P Contract Header Behavior
Module Files
Figure 2.37: Nesting relationship: Develop Basic Software
Activity Develop Basic Software
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::BSW::develop_bsw
Brief Description
Description Describes the overall activities to develop Basic Software, starting from the design down to delivery
of modules.
In case of custom transformer module development, the Transformer Design Bundle containing the
functional specification and the parameter definition is taken as a basis for all required activities.
Relation Type Related Element Muilt. Note
Consumes BSW Standard Package 1
Consumes Diagnostic System Extract 0.~
Consumes Transformer Design Bundle 0.*
Produces BSW Module Delivered 1.*
Bundle
Produces Diagnostic System Extract 0..*
Aggregates Design Basic Software 1
Aggregates Develop BSW Module 1.*

Table 2.28: Develop Basic Software

It consists of two parts:

AUTSSAR

* Design Basic Software

* Develop BSW Module

2.6.2 Design BSW
2.6.2.1 Purpose

This Activity provides a rough outline for the Basic Software design for an ECU or
a set of ECUs.

2.6.2.2 Description

[TR_METH_01083] Design Basic Software activity [Design the Basic Software
for an ECU or a set of ECUs. This shall result in a set of complete and unambiguous
Basic Software Module Descriptions.|

Note that existing descriptions, especially standardized ones, can be reused, eventu-
ally setting only optional elements or user specific extension.

[TR_METH_01084] Separation of design and development of basic software [This
Activity is conceptually separated from Develop BSW Module, because it might
be performed by a Basic Software Designer responsible for the complete Basic
Software Design on a given ECU, which may be different in general from the Basic
Software Module Developer who develops or delivers the single modules. |

2.6.2.3 Workflow

Design Basic Software

1 «input» «output»

BSW Standard
Package

SW Design Bundle

«nesting»

«nesting» «nesting»)
«nesting»

Define BSW Types Define BSW Entries Define Vendor Specific Define BSW Interfaces
Module Definition

Figure 2.38: Nesting Relationship : Design Basic Software

AUTSSAR

Define BSW Entries

«inoutput» 1 «input» «output» 1

[l

Define BSW
Types

Basic Software
Entries

BSW Types

«input»

BSW Standard
Package

—
—
«output» 1 | —
—

«aggregation»

(i

0.1 «input» -
Define BSW
Interfaces
Basic Software
ECU Resources Module Description
Description
1
— —
—
— -
— 1 «input» «output» 1 | e—
—
Define Vendor Specific
AUTOSAR Standardized ECU Module Definition
Configuration Parameter Definition BSW Module Vendor-

Specific Configuration
Parameter Definition

Figure 2.39: Design Basic Software

Activity Design Basic Software

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::BSW::develop_bsw

Brief Description Design the Basic Software for an ECU or a set of ECUs.

Description Design the Basic Software for an ECU or a set of ECUs. This shall result in a set of complete and

unambiguous Basic Software Module Description. Note that existing descriptions, especially
standardized ones, can be reused, eventually setting only optional elements or user specific
extension.

This activity is conceptually separated from the activity Develop Basic Software Module, because it
might be performed by a Basic Software Designer responsible for the complete Basic Software
Design on a given ECU, which may be different (in general) from the Basic Software Module
Developer who develops and/or delivers the single modules.

Relation Type Related Element Mult. Note
Consumes BSW Standard Package 1

Produces BSW Design Bundle 1.7
Aggregates Define BSW Entries 1

Aggregates Define BSW Interfaces 1

Aggregates Define BSW Types 1

Aggregates Define Vendor Specific 1

Module Definition

Table 2.29: Design Basic Software

AUTSSAR

2.6.3 Develop BSW Module

2.6.3.1 Purpose

This Activity provides a rough outline for a single Basic Software module or BSw
cluster development prior to an ECU integration.

2.6.3.2 Description

[TR_METH_01085] Develop BSW Module activity [To develop the core code (i.e.
the code not generated during integration) of a single BSW module or BSWw cluster
prior to ECU integration. This Activity focuses on the tasks which are common for
most BSW modules. It is not valid for those modules (RTE, BSW Scheduler) which are

completely generated at integration time. |

2.6.3.3 Workflow

Package «input» =

«input» ” ‘ . ‘

BSW Design Bundle
“nesting»

«nesting»

Define BSW
Behavior knesting»

Define BSW Generate BSWM
Module Timing Contract Header
Files

Develop BSW Module

BSW Standard 1 - —

«nesting»
«nesting»

Implement a BSW
Module

«nesting»

«nesting»

Develop BSW Module
Generator

BSW Module
Delivered Bundle

>

Generate BSW
Module Prebuild
Data Set

Compile BSW Core
Code

Figure 2.40: Nesting relationship : Develop Basic Software Module

AUTSSAR

Define BSW
Module Timing

Define BSW
Behavior

%

;

Basic Software
Module Timing

Generate BSW
- Module Prebuild
Data Set

)

Basic Software
Module Intemal
Behavior

Generate BS%\ /

Contract Header,
Files

BSW RTE Prebuild
Configuration Hegder

il

Basic Software

Module Interlink

Header 3
—
—
—

fi"

—
— /
— < U
—
—
Basic Basic Software Basic Software
Software Module Module Core
Module Implementation Source Code
Description Description .
—
—
> Implement a N——o —
- BSW Module —
. Basic Software
- Module Core
BSW Standard Header
Package /
—
— . —
— Compile BSW
— Core Code —
—
Build Action Manifest
Basic Software
Module Object Code
— A\
— —
— —
Develop BSW Module
Generator
BSW Module Vendor- BSW Module
Specific Configuration Generator

Parameter Definition

Figure 2.41: Develop Basic Software Module

Activity Develop BSW Module

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::BSW::develop_bsw
Brief Description Develop a single BSW module or BSW cluster prior to ECU integration.
Description Develop a single BSW module or BSW cluster prior to ECU integration.

To develop the core code (i.e. the code not generated during integration) of a single BSW module or
BSW cluster prior to ECU integration including vendor specific configuration parameters and module
generators. This activity focuses on the tasks which are common for most BSW modules. It is not
valid for those modules (RTE, BSW Scheduler) which are completely generated at integration time.

Relation Type

Related Element Mult. Note

Consumes

BSW Design Bundle 1.*

\Y

AUTSSAR

A
Activity Develop BSW Module
Consumes BSW Standard Package 1
Produces BSW Module Delivered 1
Bundle
Aggregates Compile BSW Core Code 1
Aggregates Define BSW Behavior 1
Aggregates Define BSW Module Timing 1
Aggregates Develop BSW Module 1
Generator
Aggregates Generate BSW Module 1
Prebuild Data Set
Aggregates Generate BSWM Contract 1
Header Files
Aggregates Implement a BSW Module 1
Predecessor Design Basic Software 1
Predecessor Design Basic Software 1

Table 2.30: Develop BSW Module

2.7 Integrate Software for ECU

2.7.1 Description

In this chapter, the integration for an EcuInstance is described (note that an EcuIn-
stance represents a single instantiation of a Classic Platform stack that may run di-
rectly on the physical ECU, or under a hypervisor).

[TR_METH_01086] Integrate Software for ECU activity [The main activities
include configuring and/or generating the BSW modules (including the RTE) and build-
ing the executable. The BSW configuration can be done during different steps of devel-
opment. The detailed use cases for these different ways of configuration are introduced
later in the chapter, thanks to the Configuration Classes definition :

* Pre—-compile time
* Link time

* Post-build time

2.7.2 Overview
2.7.2.1 Purpose

This Activity is showing the high level view how to integrate AUTOSAR Software for
an ECU.

AUTSSAR

2.7.2.2 Description

[TR_METH_01087] Scope of Integrate Software for ECU activity [The de-
velopment of an EcuInstance consists of four main activities:

* Prepare ECU Configuration
* Configure BSW and RTE

* Generate BSW and RTE

* Build Executable

In addition, the optional activity Model ECU Timingis shown. The ECU timing model
depends on ECU configuration details (BSW and RTE), but the results shall help to
optimize the configuration in an iterative approach. |

The ECU configuration plays a significant role during the integration of the soft-
ware for an ECU. The relevant workflow is depicted in figure 2.43". All three activi-
ties (Prepare ECU Configuration,Configure BSW and RTE, Generate BSW
and RTE) use the work product ECU Configuration Values which contains (i.e.
references) all the configuration information for all BSW modules on the ECU. In or-
der to better understand the three different activities an introduction to configuration
classes is given in chapter 2.7.9.

One can measure resources used by the various BSW modules and applications and
save that information within the Basic Software Module Implementation De-
scription Or Atomic Software Component Implementation.

One can also generate an A21, File processing the Generate A2L task at this point.

2.7.2.2.1 Inputs to ECU Configuration

[TR_METH_01114] Input sources for ECU Configuration [ECU Configuration has
two input sources. First of all, all configuration that must be agreed across ECUs
is defined in the System Configuration, which results in a System Configuration
Description (and the resulting ECU Extract for the individual ECUs).

Secondly, the ECU BSW is built using BSW modules. The specifics of these mod-
ule implementation are defined in the BSW Module descriptions covered by the Bsw
Module Delivered Bundle.]

Note: See figure 2.43.

The latter is described in [9, CP TPS BSW Module Description Template] in more
detail. The concept of the ECU Extract is depicted below:

'In order to be more comprehensible, this figure hides some outputs of the activity Generate BSW
and RTE. For more details see the outputs of all aggregated tasks.

AUTSSAR

ECU Extract

ECU Configuration can only be started once a plausible System Configura-
tion Description and the corresponding ECU Extract has been generated (see
figure 2.43). Details on the System Configuration Description can be found
in [6, CP TPS System Template].

The System Configuration Description contains all relevant system-wide con-
figuration, such as

» ECUs present in the system
« Communication systems interconnecting those ECUs and their configuration

« Communication matrices (frames sent and received) for those communication
systems

Definition of Software Components with their ports and interfaces and connec-
tions (defined in the SWC Description and referenced in the System Configu-
ration Description).

» Mapping of SWCs to ECUs

The ECU Extract is a description in the same format as the System Configura-
tion Description, but with only those elements included that are relevant for the
configuration of one specific ECU.

2.7.2.2.2 ECU Configuration Values

The ECU Extract only defines the configuration elements that must be agreed be-
tween ECUs. In order to generate a working executable that runs on the ECU, much
more configuration information must be provided.

The remaining part of the configuration is about configuring all BSW modules within the
ECU. Typical BSW modules within an ECU can be: RTE, Com, Can, OS, NVRAM etc.
There are also dependencies between BSW modules to consider when configuring the
ECU.

When the configuration is done, the generation of configuration data takes place. |.e.
there are both configuration editors and configuration generators involved in the pro-
cess.

In order to obtain consistency within the overall configuration of the ECU, AUTOSAR
has defined a single format, the ECU Configuration Values to be used for all
BSW modules within an ECU. In the AUTOSAR Methodology the ECU Configuration
Values is represented by the artifact ECU Configuration Values. Both configura-
tion editors and configuration generators are creating ECU Configuration Values.

AUTSSAR

[TR_METH_01116] ECU Configuration Values contains the configuration of all
BSW modules in a single ECU [This one description (ECU Configuration Val-
ues) collects the complete configuration of BSW modules in a single ECU. Each mod-
ule generator may then extract the subset of configuration data it needs from that single
format. |

2.7.2.3 Workflow

Diagnostic ECU

BSW Module Delivered Atomic Software
ECU Extract Extract

Delivered Bundle Components

Prepare ECU Configuration

«nesting»

Configure BSW and RTE

«nesting»

Update ECU Configuration

«nesting»

Integrate Software
for ECU

Model ECU Timing

«output» «nesting»

«nesting»

Generate BSW and RTE

ECU Software Delivered

Build Executable

Figure 2.42: Integrate Software for ECU Overview

AUTSSAR

ECU Extract

BSW Module
Delivered Bundle

«inpu

ECU

Configuration

BSW Module
Configuration Data
Source Code

«output»

Prepare ECU
Configuration

«input»

Values
_h —
— —
1| «input» «OULPUL» ™ | | e
— —
— e
Generate BSW and
1 RTE BSW Module
Configuration
«inoutput» «output» Header File
~N
1 | —
—
—
—
—
D, —
Configure BSW and RTE RTE Source

Code

Figure 2.43: ECU Configuration Overview

Activity Integrate Software for ECU

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::Integrate Software for ECU
Brief Description

Description This activity contains all typical sub-activities required to integrate the software components and

modules on an Eculnstance.

ECU in this context means ECUInstance, one "ECU Delivered" will be needed for each

ECUInstance.

Relation Type Related Element Mult. Note

Consumes BSW Module Delivered 1.*
Bundle

Consumes Delivered Atomic Software 1.*
Components

Consumes Diagnostic ECU Extract 0..1 complete DE:

Consumes ECU Extract 1

Produces ECU Software Delivered 1

Aggregates Build Executable 1

Aggregates Configure BSW and RTE 1

Aggregates Generate BSW and RTE 1

Aggregates Model ECU Timing 1

Aggregates Prepare ECU Configuration 1

Aggregates Update ECU Configuration 1

Table 2.31: Integrate Software for ECU

AUTSSAR

2.7.3 Prepare ECU Configuration
2.7.3.1 Description

[TR_METH_01088] Prepare ECU Configuration activity [During the Prepare
ECU Configuration activity, the information available in ECU Extract for the spe-
cific ECU is extended by implementing the Service Needs required by the Soft-
ware Components and BSW Modules and by including their initial configurations as
provided in the BSW Module Preconfigured Configuration Or BSW Module
Recommended Configuration. The result of this activity is the base ECU Con-
figuration.

In addition, the BSW Module Vendor- Specific Configuration Parameter
Definition, which defines all possible configuration parameters and their structure,
is incorporated into the ECU Configuration. This is necessary because the output
ECU Configuration has a flexible structure which does not define a fixed number
of configuration parameters a priori. |

[TR_METH_01117] BSW implementation shall be chosen for each BSW module
that is present in the ECU [For each BSW module that shall be present in the ECU,
the implementation must be chosen. This is done by referencing the BSW Module
description delivered with the BSW module (BSW Module Delivered Bundle).]

The rules that must be followed when building the base ECU Configuration Val-
ues are available in [10] Chapter 2.2 “ECU Configuration Template Structure”.

AUTSSAR

2.7.3.2 Workflow

Prepare ECU

«input» Configuration

0.1 «input»

Diagnostic

ECU Extract .
«nesting»

«nesting»

«input»

«output» 1 | —

—
- Generate Base 1
1 «input» " . " . ’
Ecu Configuration ECU Configuration

ECU Extract Values Predefined Variant

«output»

I

«input» «inoutput» o

Define
Integration
Variant Set

)
o

a
o
=
o
<
o

riant

«output»

(i

Evaluated Variant Set

Figure 2.44: Prepare ECU Configuration

Activity Prepare ECU Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::Integrate Software for ECU
Brief Description
Description Initial actions required to create the initial ECU Configuration.
Relation Type Related Element Mult. Note
Consumes BSW Module Delivered 1.*
Bundle
Consumes Diagnostic ECU Extract 0..1
Consumes ECU Extract 1
Produces ECU Configuration Values 1
Aggregates Define Integration Variant 1
Aggregates Generate Base Ecu 1
Configuration
Predecessor Refine Rapid Prototyping 1
Scenario

Table 2.32: Prepare ECU Configuration

2.7.4 Configure BSW and RTE

2.7.4.1 Description

[TR_METH_01089] configure BSW and RTE activity [Once there is a base ECU
Configuration, the complete configuration can be performed. This is mainly editing
work on the ECU Configuration which is typically supported by an editing tool. In

AUTSSAR

practice this will require iterations and/or parallel work to configure the RTE and all
participating BSW modules. |

The methodology does not prescribe a certain order of these configuration steps. The
ECU Configuration description (e.g. ECU Configuration Values) which was
produced by one activity can be read by another activity (e.g. Configure RTE gener-
ates a description and Configure Comreads this). Usually the configuration activities
for the BSW modules (e.g. COM and OS) read and write the ECU Configuration.

[TR_METH_01090] Configure RTE task [The Configure RTE task is more com-
plex as this additionally needs all the Atomic Software Component Implemen-
tations required for that ECU. Whenever these change, e.g. because software com-
ponents have been moved to or from other ECUs, or simply another implementation of
a software component has been selected, the Configure RTE task must be repeated
as well. |

2.7.4.2 Workflow

Configure
Memmap
Allocation
Configure BSW and RTE

<
@ = >
N <

Configure ECUC v Create Service
NN Component

Configure OS Connect Service Component

Configure RTE Configure Transformer

Configure Watchdog Configure Com
Manager

>

Configure Mode Configure Diagnostics Configure NvM Configure 10 Configure MCAL
Hardware abstraction

Management

Figure 2.45: Configure BSW and RTE

AUTSSAR

Activity Configure BSW and RTE
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::Integrate Software for ECU
Brief Description
Description All the tasks used to configure the Basic Software Modules on an ECU.
Relation Type Related Element Mult. Note
Aggregates Configure Com 1
Aggregates Configure Diagnostics 1
Aggregates Configure ECUC 1
Aggregates Configure 10 Hardware 1
abstraction
Aggregates Configure MCAL 1
Aggregates Configure Memmap 1
Allocation
Aggregates Configure Mode 1
Management
Aggregates Configure NvM 1 Since the configuration of the DEM usually has impact
on the data to be stored in NvM, the task Configure
Diagnostics is assumed to precede the task Configure
NvM.
Aggregates Configure OS 1
Aggregates Configure RTE 1
Aggregates Configure Transformer 1
Aggregates Configure Watchdog 1
Manager
Aggregates Connect Service 1
Component
Aggregates Create Service Component 1
Predecessor Prepare ECU Configuration 1
In/out ECU Configuration Values 1

Table 2.33: Configure BSW and RTE

2.7.5 Update ECU Configuration
2.7.5.1 Description

In a post-build scenario, there are two loadable files generated in the end - one of
them containing the application software, basic software and the pre-compile and link
time configuration of the basic software (referred to as ECU Executable) and the
other one containing only the post-build time configuration of the basic software (Bsw
Module Configuration Data Loadable to ECU Memory). These two load-
able files represent the initial configuration. This initial configuration can be updated
in post-build time by generating two new loadable files. In this update, the ECU Exe-
cutable is not modified.

[TR_METH_01151] Update ECU Configuration activity [The update of the
BSW Module Configuration Data Loadable to ECU Memory is usually done
by importing the updated EcuExtract containing the needed post-build updates to the
ECU configuration tool which already contains the initial ECU configuration. Based on

AUTSSAR

these updates in the EcuExtract and everything else from the initial ECU configura-
tion, an updated ECU configuration shall be created (therefore we have both input and
output relations between the ECU Configuration Values and the Update ECU
Configuration activity). |

2.7.5.2 Workflow

Generate Updated
ECU Configuration

«inoutput» 1
—
—
«input», «input»
ECU Configuration

«nesting» Values

Tt
©
N

- 0.1
Diagnostic ECU «input»
Extract

Update ECU
Configuration

1

«input»

1 «nesting»

Define Integration

ECU ExtraTt 1 Variant

—

—

«input» «inoutput» 0. | e—
B

Postbuild Variant Set

Predefined Variant Evaluated Variant Set

Figure 2.46: Update ECU Configuration

Activity Update ECU Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::Integrate Software for ECU
Brief Description Tasks required to create the updated ECU Configuration.
Description Tasks required to create the updated ECU Configuration.
Relation Type Related Element Mult. Note
Consumes Diagnostic ECU Extract 0..1
Consumes ECU Extract 1
Aggregates Define Integration Variant 1
Aggregates Generate Updated ECU 1
Configuration

Table 2.34: Update ECU Configuration

AUTSSAR

2.7.6 Model ECU Timing

2.7.6.1 Workflow

ECU Extract

«aggregation»

1 «input»

—_<>

ECU Extract of
System Timing

Basic Software

Module Timing Connectors

Define ECU

Timing

Model ECU
Timing

«nesting»

«output»

ECU Timing

Figure 2.47: Model ECU Timing

Activity Model ECU Timing

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::Integrate Software for ECU
Brief Description

Description ECU timing model depends on ECU configuration data (BSW and RTE) but the result of the ECU

timing model shall help to optimize ECU configuration. The relation between "Configure BSW and
RTE" and "Model ECU Timing" must be seen as an iterative work.

Relation Type

Related Element

Mult.

Note

Aggregates

Define ECU Timing

1

Predecessor

Configure BSW and RTE

1

Table 2.35: Model ECU Timing

2.7.7 Generate BSW and RTE

2.7.7.1 Description

[TR_METH_01092] Generating BSW modules, RTE, and OS source files [After the
ECU Configuration is completed, the BSW modules, RTE, and OS source files are

generated. |

Generation is the process of applying the tailored ECU Configuration Values to
the software modules. This can be performed in different ways, and is dependent
on the configuration classes chosen for the different modules (see 2.7.9), and on

implementers choices.

AUTSSAR

For each BSW module, a generator reads the relevant parameters from the ECU Con-
figuration Values and creates code that implements the specified configuration.

In this generation step, the abstract parameters of the ECU Configuration Values
are translated to hardware and implementation-specific data structures that fit to the
implementation of the corresponding software module. The AUTOSAR Methodology
specification does not specify the generator tools in detail.

It is assumed however that generators perform error, consistency and completeness
checks on the part of the configuration they require for generation.

When generating code for a specific module, the generator shall also export ARTI infor-
mation if ARTI is configured. The ARTI export shall contain information for debugging
AUTOSAR modules, and tracing via ARTI hook macros, as defined in the appropriate
SWS documents of the module.

If ARTI trace is configured, before building the executable, an additional ARTI source
file (arti.c) is provided by the trace tool and shall be included in the build.

There are some alternative approaches when it comes to generation of configuration
data. See chapter A.1.2in [10, CP TPS ECU Configuration] for more details.

2.7.7.2 Workflow

Generate BSW and
RTE

«nesting»

Generate SWC
Memory Mapping
Header

«nesting»

>

Generate BSW
Configuration
Code

>

Generate RTE Generate BSW
Prebuild Dataset Memory Mapping
Header

Figure 2.48: Generate BSW and RTE

«nesting»

«nesting»

>

Generate Local Generate
MC Data Support RTE

Generate
0os

«nesting»!

Atomic Software
Component
Implementation

Basic Soﬂwar‘xGenerate BSW

Generate SWC
Memory Mappini
Header

BSW Module
Preconfigured
Configuration

Memory Mappin:
Header

Methodology for Classic Platform

Standard Header
Files

AUTOSAR CP R25-11

BSW Module
Generator
— —
— —
| —
| —
| —
| —
BSW Module
Behavior Extension
BSW Module
\ Configuration Data
— —

Source Code

Generate BS%\

[l[®

ECU Configuration
Values

105 of 457

BSW Module
Interface Extension

Configuration
Code

(i

BSW Module

vO<
£g82
2 =g
: 3@ o
229
850
58

S o
=

Build Action
Manifest

—
—
| —
| —
| —
BSW Module
Implementation
Extension

| S—

| —

| —

 —

| —

BSW Module

Configuration

Header File

Figure 2.49: Generate BSW and RTE (Part 1)

Document ID 68: AUTOSAR_CP_TR_Methodology

AUTSSAR

Methodology for Classic Platform
AUTOSAR CP R25-11

ECU Extract | 1

Calibration
Parameter
Value Set

Header

ECU

Configuration

Values

Service Component
Description

ECU Service
Connectors

Generate RTE

— —
— —
G RTE e— —
Prebuild Datasgt” 7 | Generate OS
| — 1 | —
OS Generated Code
RTE Prebuild
Configuration

BSW Scheduler

Code
o

RTE Source Code

RTE Measurement
and Calibration

Support Data

Delivered - BSW Module

Atomic - Integration

Software - Bundle

Components _ —
RTE
Implementation
Description

0.*

Local Measurement

and Calibration

Support Data

0.1
BSW Module
Behavior Extension

Basic Software
Module Internal
Behavior

0.1

Generate Local MC
Data Support

Figure 2.50: Generate BSW and RTE(Part 2)

106 of 457

Document ID 68: AUTOSAR_CP_TR_Methodology

AUTSSAR

Activity Generate BSW and RTE
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::Integrate Software for ECU
Brief Description High Level view showing how to build software for an Eculnstance.
Description High Level view showing how to build software for an Eculnstance.
Relation Type Related Element Mult. Note
Consumes ECU Configuration Values 1
Produces BSW Module Configuration 1
Data Source Code
Produces BSW Module Configuration 1
Header File
Produces RTE Source Code 1
Aggregates Generate BSW 1
Configuration Code
Aggregates Generate BSW Memory 1
Mapping Header
Aggregates Generate Local MC Data 1
Support
Aggregates Generate OS 1
Aggregates Generate RTE 1
Aggregates Generate RTE Prebuild 1
Dataset
Aggregates Generate SWC Memory 1
Mapping Header
Predecessor Configure BSW and RTE 1

Table 2.36: Generate BSW and RTE

2.7.8 Build Executable

2.7.8.1 Description

[TR_METH_01093] Building ECU Executable [After BSW and RTE have been gen-
erated, all the source code is compiled and linked along with all the applications, Ii-
braries, object code etc. to build the ECU Executable. |

Note: The details of the various compiling and linking options are explained in the
chapters 2.7.9.1,2.7.9.2,2.7.9.3 and 2.7.9.4.

AUTSSAR

2.7.8.2 Workflow

Build Action Manifest

Methodology for Classic Platform

[l'R

AUTOSAR CP R25-11

0.1 «input»
0.1
0.1 0.1
«input»
o
«output» 1 1.* «input» «output» 1
” —
Compile ECU
Source Code Generate
ECU Object Code ECU ECU 1
Executable Executablg
«input»
q_ Map of the
| — ECU
— ()] Executable
.
 —
ECU
Configuration 1 11]0.1
values input»
—
N | —
«input» «output» 1 | e—
—
Generate RTE L
Postbuild Dataset RTE Postbuild
L Variants Dataset
«input»
Generation of the
executable for
Postbuild Configuration -
Data is not modeled «input»
here.
| S—
 —
| —
| —
| —
“output» Atomic Software
Component
Implementation
«input» Measure Resources
BSW Module
Implementation
Extension
—
1
«input» «output» _—
—
Generate A2L

A2L File

Figure 2.51: Build Executable

108 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

AUTSSAR

Activity Build Executable

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::Integrate Software for ECU

Brief Description

Description Describes how to build one executable and related artifacts (A2L file) starting from the source code
(and delivered object code).

Relation Type Related Element Mult. Note

Aggregates Compile ECU Source Code 1

Aggregates Generate A2L 1

Aggregates Generate ECU Executable 1

Aggregates Generate RTE Postbuild 1
Dataset

Aggregates Measure Resources

Predecessor Generate BSW and RTE 1

Table 2.37: Build Executable

2.7.9 Configuration Classes

The development of BSW modules involve the following development cycles: com-
piling, linking and downloading of the executable to ECU memory. Configuration of
parameters can be done in any of these process-steps: pre-compile time, link time or
even post-build time.

According to the process-step that does the configuration of parameters, the configu-
ration classes are categorized as below

* pre-compile time
* link time
* post-build time

The configuration in different process-steps has some consequences for the handling
of ECU configuration parameters. If a configuration parameter is defined as pre-
compile time, after compilation this configuration parameter can not be changed any
more.

Or if a configuration parameter is defined at post-build time the configuration parameter
has to be stored at a known memory location. Also, the format in which the BSW
module is delivered determines in what way parameters are changeable. A source
code delivery or an object code delivery of a BSW module has different degrees of
freedom regarding the configuration.

The configuration class of a parameter depends on the chosen implementation vari-
ants of the BSW module it belongs to. However once the module is implemented, the
configuration class for each of the parameters is fixed. Choosing the right implementa-
tion variant for a module depends on the type of application and the design decisions
taken by the module implementer.

Different configuration classes can be combined within one module. For example, for
post-build time configurable BSW implementations only a subset of the parameters

AUTSSAR

might be configurable post-build time. Some parameters might be configured as pre-
compile time or link time.

File formats used for describing the configuration classes:
* .arxml (An xml file standardized by AUTOSAR.)
+ .exe (An executable that can be downloaded to an ECU.)

* .hex (A binary file that can be downloaded to an ECU , but it can not execute by
its own.)

» .c (A C-source file containing either source code or configuration data.)
* .h (A header file for either source code or configuration data.)

» .ob7j (A object file for either source code or configuration data.)

[TR_METH_01115] A mix of parameters with different configuration classes
within a BSW module is allowed [In a real implementation of a BSW module all
configuration parameters are most likely not in the same configuration class. l.e it will
be a mix of parameters with different configuration classes within a BSW module. |

2.7.9.1 Configuration Class: Pre-compile Time

[TR_METH_01095] Configuration Class: Pre-compile Time [This type of configura-
tion is a standalone configuration done before compiling the source code. That means
parameter values for those configurable elements are selected before compiling and
will be effective after compilation time. The value of the configurable parameter is
decided in earlier stage of software development process and any changes in the pa-
rameter value calls for a re-compilation. The contents of pre-compile time parameters
can not be changed at the subsequent development steps like link time or post-build
time. |

2.7.9.1.1 Description
The work breakdown structure shows two approaches:

[TR_METH_01096] Generating header files only [The first approach is to generate a
BSW Module Configuration Header File, then compile the module core code
using this header file. In this case the module core code is not touched by the BsSw
Configuration Generator.|

BSW Module Configuration Source Files (namely BSW Module Configuration
Header File and BSW Module Configuration Data Source Code, See also
Figure 2.56), however, may still be generated. This allows for the generation of different

AUTSSAR

C-structures inside a source file in order to support the use-case where pre-compile
configuration can contain unresolved post-build time variation points.

[TR_METH_01097] Generating header and source files [An alternative approach, in
which the BSW Configuration Generator generates the complete, configuration-
specific BSW Module Configuration Header FileS plus BSW Module Com-
pletely Generated Source Code. In this case, no core code exist. |

Both approaches are equally valid.

Whenever the decision of parameter value must be taken before the selection of other
dependable parameters, pre-compile time configuration is the right choice. For exam-
ple, the algorithm choice for CRC initial checksum parameter is based on the selection
of CRC type (CRC16 or CRC32). When CRC16 is selected, there will be increase in
processing time but reduction in memory usage. Whereas when CRC32 is selected,
there will be decrease in processing time but increase in memory usage. The correct
choice should be made by the implementer before compilation of source code based
on the requirement and resource availability.

Sample cases where pre-compile time configuration can be adopted are:

» Configure the number of memory tables and block descriptor table of NVRAM
manager.

» Enable the macro for the development error tracing of the software modules.

AUTSSAR

2.7.9.1.2 Workflow

BSW Module
Completely
Generated Source

Possible existence of
unbound Pre-Compile
time variation points. R

All Pre-compile time
variation points are
bound.

q 1
Source code is
completely “output»
enerated - X
¢ Generate Compile No existence of
BSW Source Generated unbound Pre-Compile
Code BSW time variation points.
Link-time and post-
build variation points
may still be unbound.
«output»

«output» '

f
Basic
Software
1 1 || Module
— §
— | Object
— Code
—
—
1
1 1
Configuration BSW Module 1.*
Values «input» «output» Configuration i
t:
Header File «input> «output»
Compile .
Configured BS' «input»
,-" Generate BSW
L Precompile
Configuration Header
only «input» .
Configuration 1 Link ECU Cod
header is after Precompile
generated Configuratiol
—
—
—
—
— «output»
 e——
Basic Software 1
. Module Core
Source Code
Possible existence of e
unbound Pre-Compile —
time variation points. —
—

ECU Executable

Figure 2.52: Pre-compile time configuration overview

Further description of the PreCompile binding time can be found in Section 2.16.3.6.

Do Pre
Compile
Configuration

«nesting»

«nesting»

«nesting»

«nesting» «nesting»

Compile Configured BSW Generate BSW Precompile Generate BSW Compile Link ECU Code
Configuration Header Source Code Generated after Precompile
BSW Configuration

Figure 2.53: Pre compile time configuration activities

AUTSSAR

Activity Do Pre Compile Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::Pre Compile Conf

Brief Description

Description [from ecuc sws 1031] This type of configuration is a standalone configuration done before compiling

the source code. That means parameter values for those configurable elements are defined before
compiling and will be effective after compilation time. The value of the configurable parameter is
decided in an earlier stage of software development process and any changes in the parameter
value calls for a re-compilation. The contents of pre-compile time parameters cannot be changed at
the subsequent development steps like link time or post-build time.

Relation Type Related Element Mult. Note

Aggregates Compile Configured BSW 1

Aggregates Compile Generated BSW 1

Aggregates Generate BSW Precompile 1
Configuration Header

Aggregates Generate BSW Source 1
Code

Aggregates Link ECU Code after 1

Precompile Configuration

Table 2.38: Do Pre Compile Configuration

2.7.9.2 Configuration Class: Link Time

[TR_METH_01098] Configuration Class: Link Time [This type of configuration is
done for the BSW module during link time. That means the object code of the BSW
module receives parts of its configuration from another object code file or it is defined
by linker options. Link time parameters are typically used when delivering object code
to the integrator. |

2.7.9.2.1 Description

This configuration class provides a modular approach to the configuration process. A
separate module will handle the configuration details and those parameter values will
be made available to the other modules during the linking process.

[TR_METH_01099] Generation and compilation of BSW Configuration Code
[The first step is to Generate BSW Configuration Code, which produces the
BSW Module Configuration Data Source Code and the BSW Module Con-
figuration Header File. These are compiled along with the Basic Soft-
ware Module Core Header into the BSW Module Configuration Data Ob-
ject Code.]

[TR_METH_01100] Definition of configuration data [The configuration parameter
data is defined in a common header file Basic Software Module Core Header
and included by both Basic Software Module Core Source Code and BSW
Module Configuration Data Source Code. The module source file needs this
header file to resolve the references and module configuration source file will need it in
order to cross check the declaration of data type against the definition. |

AUTSSAR

[TR_METH_01101] Separate compilation of module source and configuration file
[Both module source file and module configuration source file are compiled separately
to generate Basic Software Module Object CodeandBSW Module Config-
uration Data Object Code respectively.]

[TR_METH_01102] Linking process [During the linking process, the configuration
data will be available to Basic Software Module Object Code by resolving the
external references. |

[TR_METH_01103] Re-generation in case of configuration value changes [When
the values of configuration parameters change the Basic Software Module Ob-
ject Code needs to be re-generated. |

Sample cases where Link time configuration can be adopted are:
+ Initial value and invalid value of signal

» Unique channel identifier configured for the respective instance of the Network
Management.

* Logical handle of CAN network.

« Identifier and type of Hardware Reception Handle and Hardware Transmission
« Handle for CAN interface.

* Definition of ComFilterAlgorithm.

» COM callback function to indicate RTE about the reception of an invalidated sig-
nal.

AUTSSAR

2.7.9.2.2 Workflow

Possible existence of
unbound Link time
variation points.

— ==

— 1 «input» «output» 1

- —

— Compile Unconfigured BSW —
Basic Software 1.%

Module Object Code

«input»
No existence of
unbound Link time
variation points.
Unbound Post-build
variation points may still
exist.

«input»

1 «input»

ECU Configuration
Values

Further description of the LinkTime binding time can be found in Section 2.16.3.8.

Compile
Unconfigured
BSW

«input»
—
- —
—
«outputy 7] | me— | <iNPUL> «output» —_—
_ —
Generate BSW
Configuration Cod 1
BSW Module Compile BSW BSW Module -
Configuration Configuration Data Configuration
Header File Data Object
«output» Code
«input»
1 1
All Link time variation
points are bound.
BSW Module
Configuration
Data Source
Code Link ECU Code during
LinkTime
Configuration
«output»
No existence of 1
unbound Link time
variation points. Post-
build variation points
may still be unbound. —
—
—
—
—

ECU Executable

Figure 2.54: Overview Link Time Configuration

Do Link Time
Configuration

«nesting»

«nesting» «nesting»

«nesting»

Generate BSW

Configuration Code Compile BSW

Configuration Data

Link ECU Code during
LinkTime
Configuration

Figure 2.55: Link time configuration

AUTSSAR

Activity Do Link Time Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::Link Time Conf

Brief Description

Description [from ecuc sws 1032] This type of configuration is done for the BSW module during link time. That

means the object code of the BSW module receives parts of its configuration from another object
code file or it is defined by linker options. Link time parameters are typically used when delivering
object code to the integrator.

Relation Type Related Element Mult. Note
Aggregates Compile BSW Configuration 1
Data
Aggregates Compile Unconfigured BSW 1
Aggregates Generate BSW 1
Configuration Code
Aggregates Link ECU Code during Link 1
Time Configuration

Table 2.39: Do Link Time Configuration

2.7.9.3 Configuration Class: Post-build Time

[TR_METH_01104] Configuration Class: Post-build Time [This type of configura-
tion is possible after building the BSW module or the ECU software. The BSW module
gets the parameters of its configuration by downloading a separate file to the ECU
memory, avoiding a re-compilation and re-build of the BSW module. |

2.7.9.3.1 Description

[TR_METH_01105] Generate BSW Postbuild Configuration Code [In order to make
the post-build time re-configuration possible, the re-configurable parameters shall be
stored at a known memory location of the ECU memory. In this approach the Basic
Software Module Core Source Code is compiled and linked independently of its
configuration data. The BSW Configuration Generator generates the configura-
tion data as BSW Module Configuration Data Source Code that is compiled
and linked independently of the core source code. |

Note: Postbuild support for function pointers is limited. In case function pointers are
used as part of postbuild configuration, all functions that might potentially be called
need to be defined first. The only Postbuild variability of such pointers is the choice be-
tween the target functions that existed during Link ECU Code after Precompile
Configuration. After this step, the addresses of these functions are fixed.

The generation of the post-build configuration is a process that can be done multi-
ple times. The first time it is done during the creation of the initial ECU configuration
which includes the generation of both ECU Executable and BSW Module Config-
uration Data Loadable to ECU Memory binary files. This approach is shown
in Figure 2.56. After this, the post-build configuration may be updated (the updates

AUTSSAR

usually originate from the ECU Extract) separately from the ECU Executable as
many times as needed according to the process shown in Figure 2.57.

Sample cases where post-build time configuration can be adopted are:
+ Identifiers of the CAN frames
» CAN driver baudrate and propagation delay

+ COM transmission mode, transmission mode time offset and time period

Enabling/disabling signal transmission
» Frame packing

+ Signal gateway

LIN/FlexRay schedule

AUTSSAR

2.7.9.3.2 Workflow

Generate BSW Postbuild Compile BSW
Configuration Code Configuration Data
— — —
— 1 input» «output» 1 | m— 1 «inpUt» «output» 1 || —
— — —
— — —
ECU.) BSW Module BSW Module | 1.*
Configuration Configuration Configuration
Values Header File Data Object
«output» «input» Code
«input»
1 1
—
—
BSW Module
Configuration
ga;a Source Link ECU
ode Code during
Post-Build
Time
«output»
«input» 1
—
—
—
- —
- -7 —
1 . BSW Module
; Configuration Data
Basic Software Possible existence of Loadgble to ECU
Module Core unbound Post-build Memo
Header time variation points. v
— —
«output»] | m—) x<inpUt» «output» 1 || —
— —
Compile Unconfigured BSW Generate
/ - ECU
«input» Basic Software Executable ECU Executable

Basic Software
Module Core
Source Code

Module Object
Code

Figure 2.56: Overview of initial Post-Build Configuration

AUT<S

SAR

Generate BSW Postbuild

BSW Module
k Configuration Code _k Configuration
— — Data Object
— — —
Code
1 «input» «output»] |— | «input» «OULPUL 77 | s
— — —
Compile BSW
ECU BSW Module Configuration Data 1*
Configuration Configuration
Values Header File
«output»
“input»
«input»
1 L 1
BSW Module
Configuration
Data Source Link ECU
Code Code during
Post-Build
Time
«output»
«input»
1 1
—
—
—
— . Y T
— Possible existence pf ---- —
— unbound Post-build _
— time variation points.
Basic Software BSW Module

Module Core
Header

Configuration Data
Loadable to ECU
Memory

Figure 2.57: Update of the Post-Build Configuration

Further description of the PostBuild binding time can be found in Section 2.16.3.9.

Generate BSW Postbuild

Configuration Code

Do Post Build
Configuration

«nesting» «nesting» «nesting»

Compile
Unconfigured BSW

Link ECU Code during
Post-Build Time

Compile BSW
Configuration Data

Figure 2.58: Work Flow for Post-Build Configuration

Generate ECU
Executable

Activity Do Post Build Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::ECU::Post Build Conf

Brief Description

Description [from ecuc sws 4006] This type of configuration is possible after building the BSW module or the

ECU software. The BSW module gets the parameters of its configuration by downloading a separate
file to the ECU memory, avoiding a re-compilation and re-build of the BSW module.

Relation Type

Related Element Mult. Note

Aggregates

Compile BSW Configuration 1

Data

V

AUTSSAR

A
Activity Do Post Build Configuration
Aggregates Compile Unconfigured BSW 1
Aggregates Generate BSW Postbuild 1
Configuration Code
Aggregates Generate ECU Executable 1
Aggregates Link ECU Code during 1
Post-Build Time

Table 2.40: Do Post Build Configuration

2.7.9.4 Handling of different post-build variants in configuration classes

2.7.9.4.1 Description

[TR_METH_01108] Generating multiple post-build configuration variants [In this
use case, the BSW Configuration Generator generates two or more variants
of configuration parameters within BSW Module Configuration Header File$S
and BSW Module Configuration Data Source Code. The configuration data
is compiled and linked together with the Basic Software Module Core Source
Code. The resulting ECU Executable includes all configuration variants as well as the
source code of the BSW module. l.e. it is not possible to exchange the configuration
data without re-building the entire executable. |

[TR_METH_01150] Including different post-build variants [Different post-build vari-
ants are included in the configuration by specifying different variation points which shall
be bound at post-build time. |

Note: This can be done regardless of the configuration class, as shown in the notes of
Figure 2.52, Figure 2.54 and Figure 2.56.

2.8 Components and Services
2.8.1 Purpose

This use case focuses on the activities required to use and configure AUTOSAR Ser-
vices. It is therefore a subset of the overall use case (see 2.1).

2.8.2 Description

[TR_METH_02000] Use of AUTOSAR Services [Atomic Software Components can
use AUTOSAR Services. In order to do so, two things have to be defined on the VFB
and Software Component level:

AUTSSAR

» The ports which are to be connected to the Service during ECU integration (this is
a sub-task of Define VFB Application Software Component). The port
interfaces used for service ports should be standardized.

» The needs to configure the Service (for example NVM blocks or symbolic
names for diagnostic events) from the perspective of the single Software Compo-
nent (this is a sub-task of Define Atomic Software Component Inter—
nal Behavior.)

]

The service ports have impact on the component API just like any other port, so there is
no difference between service ports and "normal" ports with respect to API generation.

When the Application Software Components are mapped to an ECU their description
is put into the corresponding ECU Extract. These activities belong to the System
domain (see 2.5.7) and are not explicitly shown in this use case.

As part of the ECU integration, additional artifacts are generated to connect the service
ports over the RTE: Service Component Descriptions, including their mapping
to the Basic Software Modules, and the connectors between their ports and the service
ports of the Application Software Components.

The use case shows also the creation of ECU configuration of the corresponding Basic
Software Module (e.g. DEM, DCM, Watchdog Manager etc.). This must be done with
respect to the service ports and the service NeedsofallApplication Software
Component s connected to the corresponding Service Component (the diagram shows
only the configuration activity of diagnostics as an example).

2.8.3 Workflow

Figure 2.59 shows the work sequence assumed for this use case. The next two figures
2.60 and 2.61 show the tasks and work products of the method library involved in the
activities on the VFB and Component resp. the ECU level.

AUTSSAR

+Add Service Portsto Atomic
Software Component

y

«nesting» Define VFB
Application Software
Component

+Add Service Needsto
Atomic Component

y

«nesting» Define Atomic

Software Component
Internal Behavior

+Re-generate Contract Header
Files with Service Intefaces

y

«nesting» Generate Atomic Software
Component Contract
Header Files

+Re-Implement Atomic Software
Component with Service Ports

«nesting»

v

Add Service Ports
and Service Needs Implement Atomic
Software Component

«nesting»

«predecessor

v

Generate Base

Componentsand Services Ecu Configuration

“nesting»
«nesting» >
<nesting» Generate BSW
Source Code

«nesting»

Connect and

Configure Service

Module on ECU
«nesting» Create Service

Component

y

Generate RTE

Figure 2.59: Use Case: Components and Services

Process Pattern Components and Services

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Components and Services

Brief Description This use case focuses on the activities required to use and configure AUTOSAR Services. It is
therefore a subset of the overall use case (Methodology Overview).

\Y

AUTSSAR

A

Process Pattern

Components and Services

Description

Atomic Software Components can use AUTOSAR Services. In order to do so, two things have to be
defined: The ports which are to be connected to the Service during ECU integration and in addition
the needs to configure the Service (for example NvM blocks or symbolic names for diagnostic
events) from the perspecive of the single Software Component.

The service ports have impact on the component API just like any other port, so there is no
difference between service ports and "normal" ports with respect to API generation.

Afterwards the Application Software Components are mapped to an ECU and their description is put
into the corresponding ECU extract (deliverable Complete ECU Description). These activities belong
to the system domain and are not explictly shown in this use case (see Methodology Overview).

As part of the ECU integration, additional artifacts are generated to connect the service ports over
the RTE: Service Component Descriptions, including their mapping to the Basic Software Modules,
and the connectors between their ports and the service ports of the Appplication Software
Components.

The ECU configuration of the Basic Software Module (e.g. DEM, DCM, Watchdog Manager etc.) is
then created with respect to the service ports and the SeviceNeeds of the Application Software
Components connected to that Service.

Relation Type Related Element Mult. Note
Aggregates Add Service Ports and 1

Service Needs
Aggregates Connect and Configure 1

Service Module on ECU

Table 2.41: Components and Services

AUTSSAR

VFB Atomic
Application Software
Component

«output» 1

Define VFB
Application Software
Component

«extends»

«input»

Define Atomic Software
Component Intemal «output»
Behavior

«input»

Generate Atomic Software
Component Contract
Header Files

Software Component
Internal Behavior

«input»

Application Header File

Implement Atomic
Software Component ~ «output»

Atomic Software
Component Source Code

Figure 2.60: Add Service Ports and Service Needs - Detailed view with work products

Activity Add Service Ports and Service Needs

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Components and Services

Brief Description

Description Atomic Software Components can use AUTOSAR Services. In order to do so, two things have to be
defined:

» The ports which are to be connected to the Service during ECU integration (this is a sub-task of
Define VFB Application Software Component). The port interfaces used for service ports should
be standardized.

» The needs to configure the Service (for example NvM blocks or symbolic names for diagnostic
events) from the perspecive of the single Software Component (this is a sub-task of Define Atomic
Software Component Internal Behavior)

The service ports have impact on the component API just like any other port, so there is no
difference between service ports and "normal" ports with respect to API generation.

Relation Type Related Element | Mult. | Note

vV

AUTSSAR

A

Activity Add Service Ports and Service Needs

Aggregates Define Atomic Software 1 Add Service Needs to Atomic Component:
Component Internal
Behavior

Aggregates Define VFB Application 1 Add Service Ports to Atomic Software Component:
Software Component

Aggregates Generate Atomic Software 1 Re-generate Contract Header Files with Service
Component Contract Intefaces:
Header Files

Aggregates Implement Atomic Software 1 Re-Implement Atomic Software Component with
Component Service Ports:

Table 2.42: Add Service Ports and Service Needs

- . ECU
- Configuration
—
- 1 «inputs «output» 1 — | Values
~| ECU Extract S
- Generate Base pe T 1
191 (1 [o.1 Ecu Configuration P! 0.1 —
«output» 1
Service 1 1 lo.1
Component
Description
—
«input» «output» 1 | —
—
Create Service R
Component -
«input» 1 0o.»
ECU Service
Connectors
—
«input» COULPUL» ¢ ™ | s
—
Connect Service
Component ' «input»
0..*
«<input» [«input»
N—N—
«input» «inoutput»
Diagnosis is used as Configure
an example here. Diagnostics
M
«input» «output»
Generate RTE

Generate BSW
Source Code

Figure 2.61: Connect and Configure Service Module on ECU - Detailed view with work
products

AUTSSAR

Activity Connect and Configure Service Module on ECU

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Components and Services
Brief Description

Description As part of the ECU integration, additional artifacts are generated to connect the service ports over

the RTE: Service Component Descriptions, including their mapping to the Basic Software Modules,
and the connectors between their ports and the service ports of the Appplication Software
Components.

The ECU configuration of the Basic Software Module (e.g. DEM, DCM, Watchdog Manager etc.) is
then created with respect to the service ports and the SeviceNeeds of the Application Software
Components connected to that Service (the diagram shows only the configuration activity of
diagnostics as an example). The code gneration of the service module (e.g. DEM, DCM) and of the
RTE is shown for completeness.

Relation Type Related Element Mult. Note
Aggregates Create Service Component 1
Aggregates Generate BSW Source 1
Code
Aggregates Generate Base Ecu 1
Configuration
Aggregates Generate RTE 1
Predecessor Add Service Ports and 1
Service Needs

Table 2.43: Connect and Configure Service Module on ECU

2.9 Calibration Overview

2.9.1 Purpose

This use case describes the typical activities required from the creation or update of
calibration parameters down to the creation or update of the A21, Files.

2.9.2 Description

The use cases assumes, that calibration parameters are changed in an already existing
system, thus the tasks required to define and build a new system are omitted, only the
calibration relevant steps are shown.

In addition, the use case includes the (optional) task of updating a set of calibration
parameter values as input for the RTE.

As far as AUTOSAR artifacts are involved, this use case can be divided into four major
activities:

[TR_METH 02001] Define Cross-component Calibration Parameters ac-
tivity [Define Cross-component Calibration Parameters: Contains the
tasks used to define or update cross-component calibration parameters. These pa-
rameters have to be provided via ports by Parameter Components.]

[TR_METH_02002] Define Local Calibration Parameters activity [Define
Local Calibration Parameters: Contains the tasks used to define or update

AUTSSAR

component-local calibration parameters or calibration parameters defined within a
BSW module. These parameters are declared within the Internal Behavior of
the component (or the BSW module) which uses them. |

[TR_METH_02003] Provide Unique Parameter Names activity [Provide
Unique Parameter Names: Contains the tasks used to provide uniqgue names for
calibration parameters. A Flat Map is used to provide unique names for MCD tools.
An Alias Name Set can be provided additionally in cases, where this is not suffi-
cient. |

[TR_METH_02004] Re-generate RTE and Calibration Support activity [
Re—generate RTE and Calibration Support: Contains the tasks used to re-
generate relevant artifacts during ECU integration (before the final build) after an up-
date of calibration parameters. |

2.9.3 Workflow

Figure 2.62 shows the work sequence assumed for this use case.

AUTSSAR

Define VFB
Parameter
Component

Define VFB
Composition
Component

Define VFB
Interfaces

«nestini
“nesting»

«nesting»

+Define VFB Types for
Parameter Interfaces|

Define VFB

«nesting» Types

—

«nesting»

Define Cross-
component
Calibration N R .
parameters +Define Calibration Parameters

in Internal Behavior

«nesting»
«predecessor»

+Define VFB types
for Local Calibration,

knesting»

Define Atomic
Software Component
Internal Behavior

Define Partial

«nesting»

Define Local
Calibration
Parameters

«nesting» +Define local Calibration

Parametersin BSW

Flat Map

Define BSW
Behavior

Define Alias
Names

Generate or

Adjust System

I . «nesting»
Calibration Overview
\ «predecessor
\ |
\ |
\ |
\ |
\ |
\ |
\ I
‘\ : «nesting»
«nesting» «nesting»
Provide Unique
|
Parameter Names |
I
|
|
|
I
I
| Generate ECU Extract
|
|l «predecessor»
I
: «nesting»
|
«nesting» «nesting»
Re-generate RTE and
Calibration Support
«nesting»
Generate ECU
«nesting» Executable
«nesting»
«nesting»
Generate RTE
- Generate A2L
«nesting»

Figure 2.62: Use Case: Calibration Overview

Flat Map

Generate BS
Configuration
Code

Generate
Local MC
Data Support,

Provide RTE
Calibration
Dataset

Create MC
Function Model

AUTSSAR

Process Pattern

Calibration Overview

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Calibration Overview
Brief Description Describe the required steps to update the calibrations data down to an update of the A2L files.
Description This use case shows the typical steps required from an updated design of calibration data down to

an update of the A2L file. The use cases assumes, that calibration parameters are changed in an
already existing system, thus the steps required to define and build a new system are omitted, only
the calibration relevant steps are shown.

In addition, the use case includes the (optional) task of updating a set of calibration parameter
values as input for the RTE.

Relation Type Related Element Mult. Note
Aggregates Define Cross-component 1
Calibration Parameters
Aggregates Define Local Calibration 1
Parameters
Aggregates Generate A2L 1
Aggregates Generate ECU Executable 1
Aggregates Provide Unique Parameter 1
Names
Aggregates Re-generate RTE and 1
Calibration Support
Table 2.44: Calibration Overview
Activity Define Cross-component Calibration Parameters
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Calibration Overview
Brief Description
Description Contains the tasks used to define or update cross-component calibration parameters. These
parameters are provided by Parameter Components.
Relation Type Related Element Mult. Note
Aggregates Define VFB Composition 1
Component
Aggregates Define VFB Interfaces 1
Aggregates Define VFB Parameter 1
Component
Aggregates Define VFB Types 1 Define VFB Types for Parameter Interfaces: Use this
task to define VFB Types for Parameter Interfaces
Table 2.45: Define Cross-component Calibration Parameters
Activity Define Local Calibration Parameters
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Calibration Overview
Brief Description
Description Contains the tasks used to define or update component-local (or module-local) calibration

parameters. These parameters are declared within the Internal Behavior of the component (or BSW
module) which uses them.

Relation Type Related Element Mult. Note

Aggregates Define Atomic Software 1 Define Calibration Parameters in Internal Behavior: Use
Component Internal this task to define local calibration parameters as part of
Behavior the Internal Behavior of a software component.

Aggregates Define BSW Behavior 1 Define local Calibration Parameters in BSW: Use this

task to define local calibration parameters as part of the
Internal Behavior of a BSW module.

AUTSSAR

A

Activity Define Local Calibration Parameters

Aggregates Define Partial Flat Map 1 Define (optionally) a Partial Flat Map for one or more
delivered components.

Aggregates Define VFB Types 1 Define VFB types for Local Calibration: Use this task to
define VFB types for Local Calibration.

Table 2.46: Define Local Calibration Parameters

Activity Provide Unique Parameter Names

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Calibration Overview

Brief Description

Description Contains the tasks used to provide unique names for calibration parameters. A Flat Map is used to

provide unique names for MCD tools. An Alias Name Set can be provided in cases, where this is not
sufficient.

Relation Type Related Element Mult. Note
Aggregates Define Alias Names 1
Aggregates Generate ECU Extract 1 Use this activity to update the ECU Extract. This
includes updating the ECU Flat Map if parameter names
on ECU level have changed.
Aggregates Generate or Adjust System 1 Use this task if parameter names are defined on system
Flat Map level.
Predecessor Define Cross-component 1
Calibration Parameters
Predecessor Define Local Calibration 1
Parameters
Table 2.47: Provide Unique Parameter Names
Activity Re-generate RTE and Calibration Support
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Calibration Overview
Brief Description
Description Contains the tasks used to re-generate relevant artifacts during ECU integration (before the final
build) after an update of calibration parameters.
Relation Type Related Element Mult. Note
Aggregates Create MC Function Model 1 This use case shows the creation of an MC Function
Model as part of the activity that generates also the RTE
and calibration support data.
This is only one possibility. It is also possible to create
an MC Function Model earlier in the process (as part of
the design activities) or later (shortly before the A2L is
generated).
Aggregates Generate BSW 1 Use this task to generate the description of calibration
Configuration Code parameters in BSW that are a result of ECU
configuration.
Such parameters will be described within the artifact
BSW Module Behavior Extension.
Aggregates Generate Local MC Data 1 Use this task to generate support for calibration data
Support that are not handled via the RTE.
Aggregates Generate RTE 1 Use this task to generate support for calibration data

that are handled over the RTE.

This includes cross-component calibration as well as
local calibration (in SWC and BSW) that needs
emulation support by the RTE.

AUTSSAR

A
Activity Re-generate RTE and Calibration Support
Aggregates Provide RTE Calibration 1
Dataset
Predecessor Provide Unique Parameter 1
Names

Table 2.48: Re-generate RTE and Calibration Support

2.10 Memory Mapping
2.10.1 Purpose

This use case gives a comprehensive view on the tasks required to define, configure
and generate header files for memory mapping. The underlying concepts are specified
in [11, CP SWS Memory Mapping].

2.10.2 Description

[TR_METH_02005] Memory sections for data and code [AUTOSAR basic software
as well as application software use a standardized preprocessor mechanism in order
to define memory sections for their data and code. The goal of this mechanism is to
maintain the ECU specific mappings separately from the main code. |

With AUTOSAR it is possible to derive (i.e. generate) the content of these header
files from XML artifacts. This use case shows how the required artifacts and tasks are
related.

2.10.3 Workflow

Figure 2.63 shows the work sequence assumed for this use case. The next figure 2.64
shows the involved tasks and work products of the method library.

Note that this use case ends with compilation of the code. The assignment of memory
sections to the actual hardware (which is typically done by the configuration of the
linker) is currently not considered to be part of the AUTOSAR methodology.

AUTSSAR

«nesting»

Memory

Mapping
Oveniew

Configure
Memmap

Allocation
«nesting»

Define Memory

Addressing
Modes

«nesling»
nes{ing»
«nepting»
Generate BSW
Memory Mapping
Generate SWC Header
Memory Mapping
Header
nesting Compile BSW Core
Code
«nesting» Compile Atomic
Software
Component

Compile ECU Source
Code

Figure 2.63: Use Case: Memory Mapping

AUTSSAR

Per compiler platform

Define Memory
Addressing Modes

0..*MemorySections

«input

«output»

+MemMapAddressingModeSet:

+MemMapAddressingModeSet

1.*

«input»

1 +MemorySections

0. +SwAddrMethods

1..* +SwAddrMethod

1..*+SwAddrMethod

N

«outpub

i t: "
«Input> :Conflgure Memmap

' Allocation

Per build environment.

1.*

BSW Module
Preconfigured
Configuration

«input»

«input»

+MemorySections 0..1

+MemMapAllocation

VFB Types
«input» +MemMapAllocation
1
«input»
0..1+RtelmplementationRef «input> &\
| 1 +MemMapAllocation«input»
Generate SWC

ECU } +moduleDescription Memory Mapping
Configuration Header
Values

+MemMapAddressingModeSet

Per component and
build environment.

«input»

1 *MemorySections

«input»

+DependencyOnAttifact

«input»

.- Generate BSW
Memory Mapping

%

+MemMapAddressingModeSet

«output»

Module Header
e
+SWC_MemMap
Compile Atomic
((input>§oftware Component
1 ‘
«output» — 1
— |1 <INPUD>
+BSW MemMa R Compile BSW Core
- Pl Standard \ Code
Header Files «input»
Compile ECU Source
Code
Figure 2.64: Memory Mapping - Detailed view with work products
Activity Memory Mapping Overview
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Memory Mapping
Overview
Brief Description
Description Overview of the work sequence for defining and configuration of memory sections.

\Y

AUTSSAR

JAN
Activity Memory Mapping Overview
Relation Type Related Element Mult. Note
Aggregates Compile Atomic Software 1
Component
Aggregates Compile BSW Core Code 1
Aggregates Compile ECU Source Code 1
Aggregates Configure Memmap 1
Allocation
Aggregates Define Memory Addressing 1
Modes
Aggregates Generate BSW Memory 1
Mapping Header
Aggregates Generate SWC Memory 1
Mapping Header

Table 2.49: Memory Mapping Overview

2.11 E2E Protection

2.11.1 Purpose

This Activity provides arough outline of the creation of E2E Protection to secure
communication flow in an AUTOSAR Architecture. [12]

2.11.2 Description

E2E Protection mechanisms are needed when safety related data exchanges need
to be protected at runtime against communication link faults.

[TR_METH_02006] E2E Protection [The E2E Protection in AUTOSAR is realized
as an E2E Transformer Module [12, CP SWS E2E Transformer] which is invoked by
the RTE. First of all, the Serializer Transformer serializes the data and then the RTE
invokes E2E Transformer to protect the communication. The software component com-
municates through RTE using the plain RTE API. |

[TR_METH_01153] Configuration and Generation of the E2E Transformer
[According to the generic transformer approach, the E2E Transformer can be con-
figured at the system level (Inter-ECU communication). The generation of the E2E
Transformer module is done based on the System Description. No ECU configuration
is needed. |

[TR_METH_01154] Define E2E Transformer Technology Task [The task De-
fine E2E Transformer Technology is needed to define all information required
for the generation of the E2E transformer module like pre-defined Profiles and state
machine configuration. |

AUTSSAR

2.11.3 Workflow

Figure 2.65 shows the Define E2E Transformer Technology task which is
mainly processed in the activity Design Communication.

System
Engineer

«performs»

. —
+ISignals +E2ETransformerTechnolo%_

1 «input» «output» 1 || —
—

Define E2E Transformer Technology

Interaction Layer E2E Transformer

Figure 2.65: Task Define E2E Transformer Technology

2.12 Diagnostic Extract

2.12.1 Purpose

This use case provides a rough outline of the diagnostics configuration using the Di-
agnostic Extract Template [13, CP TPS Diagnostic Extract Template]. The involved
activities and deliverables will be refined based on the experience in the field in next
AUTOSAR releases.

2.12.2 Description

The distributed nature of AUTOSAR development requires an optimized capturing of in-
formation. In particular, diagnostic information (i.e. DEM and DCM configuration) shall
be captured only once by the person with the best knowledge and therefore being able
to take responsibility better than one centralized individual. ECU configuration is not
suitable to be exchanged between partners in an ECU development project. Therefore,
AUTOSAR defines the Diagnostic Extract Template that represents a standardized ex-
change format on diagnostic functionality. The Diagnostic Extract Template allows the
decentralized configuration of diagnostic aspects. The basic usage of the Diagnostic
Extract Template is the exchange of diagnostic data between the different parties in-
volved in the diagnostic development process to allow the configuration of the DCM
and the DEM and to provide the description of corresponding application interfaces to
implement diagnostic services and fault handling. In the AUTOSAR Methodology the
Diagnostic Extract is represented by the deliverable Diagnostic Extract and its
sub-deliverables.

AUTSSAR

[TR_METH_01136] Content of Diagnostic Extract [The deliverable Diagnos—
tic Extract contains all relevant diagnostics aspects.

« Diagnostic Services (e.g. I0Control, MemoryByAddress)
 Diagnostic Event Handling (e.g. events, trouble codes, conditions)
» Mappings (Service Mappings, Diagnostic Mappings, etc.)

]

[TR_METH_01137] Diagnostic Extract category [Depending on the phase in
the process, the Diagnostic Extract can have several categories that are repre-
sented as specialized deliverables:

* Diagnostic Abstract System Description: This deliverable represents
a high-level definition that can be taken as a template for creating concrete Di-
agnostic System ExtractSOrDiagnostic ECU Extracts.

* Diagnostic System Extract: This deliverable represents the diagnostic as-
pects for several ECUs.

* Diagnostic ECU Extract: This deliverable represents the diagnostic as-
pects for a single ECUs.

]

[TR_METH_01138] Decentralized configuration [The timing and frequency of ex-
changes and the content in each of these exchanged files is highly dependent on the
individual project setup and situation. The Diagnostic Extract Template has been de-
signed to support the decentralized and independent definition of diagnostic require-
ments that can be linked together at a late point during the development process.
The approach of decentralized configuration is met in the Diagnostic Extract Template
mainly in two ways:

» Separation of elements over several physical files: Most elements of the Diag-
nostic Extract template can be split over several physical files. Therefore, parts of
these elements (e.g. certain attributes) can be defined by, for example, an OEM
and other parts of these elements by, for example, an ECU supplier.

» Usage of self-contained mappings: Many diagnostic requirements are estab-
lished by mappings between diagnostic elements (e.g., DTC to DemEvent map-
ping). However, the "‘decentralized configuration” approach requires that these
mappings can be flexibly defined at almost any time within the ECU development
process and by any of the involved companies respectively roles. Therefore, the
Diagnostic Extract Template defines self-contained mapping elements that have
references to two (or potentially more) diagnostic elements to define a mapping.
The usage of the Diagnostic Extract Template will be restricted by the appropriate
application of the "roles and rights™ concepts in next AUTOSAR releases.

"

AUTSSAR

[TR_METH_01139] Roles [The relevant activities of the Diagnostic Extract use case
are logically grouped to the following roles: Diagnostic Requester, Software Developer
and Diagnostic Integrator. Obviously, the OEM acts as a diagnostic requester and
the ECU supplier as the diagnostic integrator. Nevertheless, in several situations (e.g.
in-house development of application software components), the OEM may act as the
diagnostic integrator and performs collecting and merging tasks. |

2

[TR_METH_01140] Develop Diagnostic Abstract System Description
activity [The basic workflow for the configuration of the diagnostic aspects may start
with the optional activity Develop Diagnostic Abstract System Descrip-
tion. This activity defines diagnostic requirements at abstract level. The resulting
Diagnostic Abstract System Description may be used by the following ac-
tivity as a basis for the Diagnostic System Extract or the Diagnostic ECU
Extract.|

[TR_METH_01141] Development of diagnostic requirements [In the activity De—
velop Diagnostic Requirements the requester of diagnostic data defines the
diagnostic interfaces of one or multiple ECUs. The following tasks may be performed:

 Define the values of the DTCs
» Define the UDS services and sub-services supported by the ECUs

» Define the required events needed by a specific composition implemented by an
Application Developer

During this activity, several Develop Diagnostic Requirements from different
parties may be collected and merged. |

[TR_METH_01142] Diagnostic information in the context of SW-C development
[The purpose of the Diagnostic Extract during the development of software com-
ponents is basically twofold: On the one side the Diagnostic System Extract
may serve as a requirement for the software developer. The diagnostic requester can
specify e.g. the following issues:

+ Definition of the content of a specific ReadDataByldentifier which has to be im-
plemented by a specific SW-C

» Definition of the events needed for a certain SW-C

On the other side the application developer has the possibility to provide diagnostic
information relevant to the SW-Cs as a part of the Diagnostic System Extract
and/or using Service Needs. The Service Needs within the SW-C Description are still
to be used along with the Diagnostic System Extract in order to annotate the
SW-C ports which are relevant for further mapping and handling as defined by the
Diagnostic System Extract.]

2See Figure 2.67).

AUTSSAR

[TR_METH_01143] Integration of diagnostic information [In activity ITntegrate
Diagnostic Information, the integrator receives one or several Diagnostic
System Extracts (or Diagnostic ECU Extracts) from the diagnostic requester
and from multiple application software or basic software developers. The main goal of
the integration activity is to integrate and merge all delivered Diagnostic Extracts
so that the configuration of the corresponding basic software modules (DCM, DEM)
can be generated (activity Integrate Software for ECU).

Since the AUTOSAR Methodology does not restrict the definition of elements like DIDs,
parameters of a UDS service, Events, Sessions, etc. in activity Integrate Diag-
nostic Information the integrator has to ensure that the complete information is
still valid after merging it. Usually, the following task may be performed:

» Mapping of DTCs (Diagnostic Trouble Code) to events
» Merge of events
* Mapping of services
During the integration activity the following issues and conflicts may be considered:

+ Some DTCs may already be mapped to events - especially in cases where both
come from the same party. But if the DTCs are defined by the OEM and the
software components are implemented by other supplier acting as an application
developer the integrator has to ensure that both are mapped together.

* In some cases, an diagnostic event may be defined multiple times. An diagnos-
tic requester defines the events which shall be implemented by an application
developer. A supplier implements a software component which will be used in
multiple projects and which also detects this type of error and also defines this
same event. Both events may have different naming but the same meaning. The
integrator has to detect this redundancy during the integration and merge them
together.

» The diagnostic requester requires a specific ReadDataByldentifier and an appli-
cation developer implements it. If the implementation is performed for one spe-
cific project only, the application developer may map the DID from the diagnostic
requester to the already defined job in their software component. In other cases
in which the application developer implements a generic diagnostic job, it will be
a task of the diagnostic integrator to merge this information and to map the jobs
to the corresponding DID.

]

After all issues and conflicts are resolved and the inputs are merged, the final com-
plete Diagnostic ECU Extract is produced. Based on this deliverable, the initial
configuration of the relevant basic software modules is generated (activity Integrate
Software for ECU).

AUTSSAR

2.12.3 Workflow

Diagnostic Extract
Overview

«nesting»

«nesting»

" . Integrate Software for
Develop Diagnostic Abstract ECUg

System Description

«nesting»

«nesting»

«nesting»
«nesting»

Develop Application Develop Basic Integrate Diagnostic
Software Information

Develop Diagnostic
Requirements Software

Figure 2.66: Diagnostic Extract Overview

Diagnostic Requester Software Developer

Develop
———| |Diagnostic
Abstract System
Description
Develop Basic
«output» Software
> . . «output»
- Diagnostic Abstract
- System Description input»
0.*
0.*
0.* =
Develop «output» - 0.* «output»
Diagnostic - -
Requirements «input> 0.x = 0. «input»
0.% N
Diagnosiic System Develop Application
Software
Extract
«output» «input»
Diagnoslics Integrator
0.*
Diagnostic ECU = +complete DE
Extract - 1.% «output»
- +partially filled DE
- 0.* «input»
+complete DE| 0..1 Integrate
Diagnostic
Information
«<input»

Integrate Software for ECU

Figure 2.67: Diagnostic Extract Workflow

AUTSSAR

Process Pattern

Diagnostic Extract Overview

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Diagnostic Extract
Overview
Brief Description
Description
Relation Type Related Element Mult. Note
Aggregates Develop Application 1
Software
Aggregates Develop Basic Software 1
Aggregates Develop Diagnostic 1
Abstract System
Description
Aggregates Develop Diagnostic 1
Requirements
Aggregates Integrate Diagnostic 1
Information
Aggregates Integrate Software for ECU 1
Table 2.50: Diagnostic Extract Overview
Activity Develop Diagnostic Abstract System Description
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Diagnostic Extract
Overview
Brief Description
Description This activity defines diagnostic requirements at functional/abstract level. The resulting Diagnostic

Abstract System Description may be used by the following activity as a basis for the Diagnostic
System Extract or the Diagnostic ECU Extract.

Relation Type Related Element Mult. Note
Produces Diagnostic Abstract System 1
Description
Table 2.51: Develop Diagnostic Abstract System Description
Activity Develop Diagnostic Requirements
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Diagnostic Extract
Overview
Brief Description
Description In this activity the OEM or diagnostic requirer defines the diagnostic interfaces of one or multiple

ECUs. It may also define some InternalBehaviors as requirements for the ECU-Supplier or
application developer.
The following tasks may be relevant:

+ Define the values of the DTCs

» Define the UDS services and sub-services supported by the ECUs
« Define the required events needed by a specific composition

Additionally, the OEM may also collect Diagnostic Extracts from different departments as well as
from SW-C developers and merge the information into one Diagnostic Extract.

Relation Type Related Element Muit. Note

Consumes Diagnostic System Extract 0..”

Produces Diagnostic ECU Extract 0.~

Produces Diagnostic System Extract 0..”
Diagnostic Abstract System 0..*
Description

Table 2.52: Develop Diagnostic Requirements

AUTSSAR

Activity Integrate Diagnostic Information

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Diagnostic Extract
Overview

Brief Description

Description The main goal of this activity is to integrate all parts of the Diagnostic Description received from the

OEM and from the application developer. Based on the complete Diagnostic Extract the initial ECUC
can be generated.

Relation Type Related Element Mult. Note

Consumes Diagnostic ECU Extract 0.r partially filled DE:
Consumes Diagnostic System Extract 0..”

Produces Diagnostic ECU Extract 1.* complete DE:

Table 2.53: Integrate Diagnostic Information

2.13 Rapid Prototyping
2.13.1 Purpose

This use case describes usual activities to enable rapid prototyping in AUTOSAR.

2.13.2 Description

Rapid prototyping can be used during electronic control unit development to evaluate
and test new software control algorithms for various functions.

With Fullpass technology the original ECU is totally replaced by a Rapid Prototyping
Unit (RPU). With Bypass technology the original ECU and software stays in the con-
trol loop to supports the majority of the control algorithms and interface with sensors,
actuators and communication buses: only the specific control algorithm that shall be
prototyped is deported into the RPU (external bypass) or even directly executed in the
original ECU (internal bypass). Bypass mainly consists in replacing at run time inputs
and/or outputs of the original software algorithms by value computed by the prototype
algorithm under test.

[TR_METH_01132] Definition of a Rapid Prototyping Scenario [In order to
enable rapid prototyping, first of all the initial Rapid Prototyping Scenario is de-
fined (task Define Rapid Prototyping Scenario). After the generation of the
ECU Extract the ECU Extract of Rapid Prototyping Scenario should be
refined to achieve a complete rapid prototyping scenario (task Refine Rapid Pro-
totyping Scenario).]

[TR_METH_01133] Content of Rapid Prototyping Scenario artifact [A RPT
Scenario consist out of two main aspects: The description of the bypass points and the
relation to a hook. A bypass point describes the required preparation of the host ECU.
At a bypass point the host ECU shall be capable to communicate with a RPT system in
order to support the execution of the rapid prototyping algorithms with the original data
calculated by the host system and to replace dedicated results of the host system by

AUTSSAR

the results of the rapid prototyping algorithm. The hook represents the link between a
bypass point and the rapid prototyping algorithm.

Obviously, the bypass point and the hook reference aspects like parameterAc-
cess (dataWriteAccess, dataReadAccess, dataSendPoint, dataReceivePointByValue,
dataReceivePointByArgument, writtenLocalVariable, readLocalVariable). For more de-
tails see SW-C Template [5, CP TPS Software Component Template] (constr_2055). |

Currently, AUTOSAR supports two approaches for Rapid Prototyping: Component
wrapper method and direct buffer access method.

[TR_METH_01134] Component wrapper method [The component wrapper method
consists in wrapping the original software component implementation with an integra-
tion code (Rapid Prototyping Wrapper Header File andRapid Prototyp-—
ing Wrapper Source Code) that implements the bypass. With this method the in-
tegration code is able to take the control of the AUTOSAR interfaces of the software
component because there is no more direct call between RTE and the SW-C but ev-
erything go through the integration code.

In order to use this method, the RTE has to be configured properly (task Config-
ure RTE, for configuration details see AUTOSAR_SWS_RTE [14] Chapter 8 “RTE
ECU Configuration”. Furthermore, based on the complete ECU Extract of Rapid
Prototyping Scenario artifact the corresponding wrapper code has to be gen-
erated and compiled (activity Encapsulate Sw-C). Depending on the development
strategy the wrapper code generation may be processed in different stages of the de-
velopment process.

The RTE supports the component wrapper method by generating the SW-C interfaces
with a c-namespace including an additional [Byps_] infix for the bypassed SW-C (task
Generate RTE, for details see AUTOSAR_SWS_RTE [14] Chapter 8 “RTE ECU Con-
figuration” and [14] Chapter 7.3.14.1 “Component wrapper method”. |

[TR_METH_01135] Direct buffer access method [The direct buffer access method
provides runtime direct read and write access to the RTE buffers that implement the
ECU communication infrastructure. If the direct buffer access method for bypass sup-
port is enabled for a software component type, the Generate RTE task produces RTE
Measurement and Calibration Support Data with mcDataAccessDetails for
each preemption area specific buffer that implements the implicit communication for
this software component type (For details see AUTOSAR_SWS_RTE [14] Chapter 8
“RTE ECU Configuration” and [14] Chapter 7.3.14.2 “Direct buffer access method”. |

2.13.3 Workflow

Figure 2.68 shows the work sequence for this use case.

AUTSSAR

Rapid Prototyping

Overview

Define Rapid
Prototyping
Scenario

|<<predece$0r»

«nesting»

Extract ECU Rapid
Generate Prototyping Scenatrio
ECU Extract

«nesting»
«predecessor

Refine Rapid
Prototyping
Scenario

‘«nesting»
I

I
| «predecessor»

«nesting» l'

Prepare ECU

«nesting»
9 : Configuration
! «predecessor»
; <
«nesting» «nesting»
Configure RTE
;|§ Configure BSW and
| RTE
«predecessorp
«nesting» .
«nesting» :

Generate RTE
;,K Generate BSW and

| RTE
«predecessbr»
|

«nesting»

Generate ECU
Executable

«nesting»

«nesting» :
|
l«predecessor»
|

y

Generate Rapid Prototyping

«nesting» Wrapper

Encapsulate SW-C «nesting»

y

Compile Atomic Software

Component
Generate A2L

Figure 2.68: Rapid Prototyping Overview

Process Pattern

Rapid Prototyping Overview

Package

AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Rapid Prototyping
Overview

Brief Description

Y%

AUTSSAR

A

Process Pattern

Rapid Prototyping Overview

Description

This use case shows the typical steps required from an updated rapid prototyping scenario down to
an update of the generated RTE and the produced A2L file. The use cases assumes, that rapid
prototyping scenario is changed in an already existing system, thus the steps required to define and
build a new system are omitted, only the calibration relevant steps are shown.

In addition, the use case includes the (optional) task of updating a set of calibration parameter
values as input for the RTE.

Relation Type Related Element Mult. Note
Aggregates Configure BSW and RTE 1
Aggregates Define Rapid Prototyping 1
Scenario
Aggregates Encapsulate SW-C 1
Aggregates Generate A2L 1
Aggregates Generate BSW and RTE 1
Aggregates Generate ECU Executable 1
Aggregates Generate ECU Extract 1
Aggregates Prepare ECU Configuration 1
Aggregates Refine Rapid Prototyping 1
Scenario
Table 2.54: Rapid Prototyping Overview
Activity Encapsulate SW-C
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Rapid Prototyping
Overview
Brief Description
Description Encapsulate the software component to enable rapid prototyping. During this activity the wrapper

code is generated based on the Rapid Prototyping Scenario and the software component is
compiled and linked with the generated wrapper.

Relation Type Related Element Mult. Note
Aggregates Compile Atomic Software 1

Component
Aggregates Generate Rapid Prototyping 1

Wrapper

Table 2.55: Encapsulate SW-C

2.14 Safety Extensions

Safety Extensions removed in R22-11
Please note that Safety Extensions has been set to obsolete with R21-11 and removed

with R22-11. Therefore, this section will be reworked or removed in a future AUTOSAR

release.

2.14.1 Purpose

This use case provides an overview of the usage of the Safety Extensions.

AUTSSAR

2.14.2 Description

ISO 26262 [15] is the applicable standard for functional safety of electronic and soft-
ware based systems in road vehicles which impacts almost all development activities,
including software specifications, design and implementation. The Safety Extensions
enable a standardized exchange of the safety information in an AUTOSAR context and
provide the basis for consistent management as required by ISO 26262. The additional
safety related information can be used e.g. for generation of the documentation or the
checking of ASIL constraints (w.r.t. allocation, mapping, decomposition and hierarchy),
which are prescribed by the ISO 26262. The AUTOSAR Methodology focuses on the
creation and refinement of the information. The corresponding analysis is out of scope
of this document.

According to the ISO 26262, the Safety Extensions provide the following means to
express safety information :

» Safety Requirements (Artifact Ssafety Requirement)
» Safety Measures (Artifact safety Measure)

» Safety integrity levels: attribute of Safety Requirement, Safety Measure
and any AUTOSAR element

» Decomposition of Safety Requirements: reference between the original and the
decomposed requirement (Task Decompose Safety Requirement)

» Refinement of Safety Requirements: reference between the original and the re-
fined requirement (Task Refine Safety Requirement)

* Allocation of Safety Requirements: reference between of Safety Requirement
and an AUTOSAR element (Task Allocate Safety Requirement)

* Allocation of Safety Measures: reference between Safety Measure and an
AUTOSAR element (Task Al1locate Safety Measure)

* Mapping between Safety Requirements and Safety Measures (Task Map
Safety Requirement to Safety Measure)

* Independence relation between Safety Requirements (Task Add Indepen-
dence Relation)

The safety relevant information can be exchanged independently and are therefore
consolidated in a separate deliverable safety Extensions.

[TR_METH_01144] Activity Define Safety Information [The activity Define
Safety Information represents a generic pattern for defining safety relevant in-
formation. The safety extensions are not restricted to specific AUTOSAR elements so
that safety relevant information can be added and modified in several stages of the
AUTOSAR Methodology in an iterative way. Thus, the AUTOSAR elements consumed
by some of the nested tasks are modeled using the General Autosar Artifact.
The AUTOSAR Methodology does not prescribe an explicit execution order of the tasks.

AUTSSAR

The only restrictions with respect to the execution order are given by the input and out-
put relations (E.g. obviously, before a safety Requirement can be decomposed, it
has to be defined). |

Note: See Figure 2.69.

[TR_METH_01145] Creation of safety Requirements [Naturally, the process
starts with the task Define Safety Requirement. This task creates a safety
Requirement and assigns the required attributes such as ASIL. The top level safety
Requirement is a safety goal and obviously results from the hazard analysis and risk
assessment. If safety Requirements are not detailed enough to allocate them di-
rectly to appropriate AUTOSAR elements, it is necessary to refine them first (task
Refine Safety Requirement). The refinement will add new Safety Require-
ments which are in a hierarchy relation to existing safety Requirements. The ASIL
is maintained as attribute at each safety goal and inherited consistently through the
subsequent levels of functional safety requirements (as part of the Functional Safety
Concept) and technical safety requirements (as part of the Technical Safety Concept).
The latter will be refined into SW and HW safety requirements. |

[TR_METH_01146] Allocation of Safety Requirements [Each Safety Re-
quirement must be allocated properly to an element of the system architecture, i.e.
component, HW, SW or both (HW and SW). Hence, an AUTOSAR element might re-
ceive an ASIL which indicates that it is in the scope of an ISO 26262 development.
The allocation is done by task Allocate Safety Requirement. If safety require-
ments are not available or will not be exchanged together with a specification, the
AUTOSAR implementation must at least be aware that the element is used in a safety
context. Hence, the task Define ASIL For AUTOSAR Element directly assigns
the ASIL attribute to an AUTOSAR element (independent of an allocation). Especially
in cases of a SEooC (Safety Element out of Context) development, where the safety
requirements are not fully known at development time, the ASIL attribute supports the
integration and verification of such parts in a later stage of development by matching
the assumptions against the finalized safety requirements. |

[TR_METH_01147] Decomposition of Safety Requirements [In order to tailor
the ASIL of safety Requirements, ASIL decomposition may be applied. The de-
composition is done by task Decompose Safety Requirement. According to the
ISO 26262 a requirement can be decomposed into two requirements. In the context
of ASIL decomposition the independence (freedom from interference) for the resulting
requirements has to be demonstrated (Task Add Independence Relation).|

[TR_METH_01148] Definition of safety Measures [Safety of a system is achieved
by means of safety measures that are applied at various stages of the development pro-
cess and safety mechanisms which are implemented in a number of technologies into
the system. Safety measures and safety mechanisms are represented by the artifact
Safety Measure Which is created by the task Define Safety Measure. Intask
Allocate Safety Measurethe safety Measures which are safety mechanisms

AUTSSAR

realized in AUTOSAR are allocated to AUTOSAR elements in order to describe what el-
ements are involved in the provision of a safety measure. The task Map Safety Re-
quirement to Safety Measure creates a mapping between the Safety Mea-
sure and the safety Requirement.]

The following specialized activities demonstrate the usage of the Safety Extensions in
different development stages and are integrated into the corresponding use cases:

* Define VFB Safety Information
* Define Software Component Safety Information

* Define System Safety Information

2.14.3 Workflow

Define Safety Define Safety Define ASIL For
Requirement Measure AUTOSAR Element

«nesting»

«nesting»

«neaing» D

«nesting» Refine Safety Requirement
«nesting» i
«nesting»
Decompose Safety
Safety Extensions Define Safety Requirement

Overview Information

«nesting»

«nesting» «nesting»

Map Safety Requirement to
Safety Measure

«nesting»

Add Independence Allocate Safety Requirement Allocate Safety Measure
Relation

Figure 2.69: Safety Extensions Overview

Process Pattern Safety Extensions Overview

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Safety Extensions
Overview

Brief Description

Description

Relation Type Related Element Mult. Note

Aggregates Define Safety Information 1

Table 2.56: Safety Extensions Overview

AUTSSAR

Activity Define Safety Information

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::High Level::Safety Extensions
Overview

Brief Description Defines all required safety information.

Description This activity represents a generic pattern for defining safety relevant information. The safety

extensions are not restricted to specific AUTOSAR elements so that safety relevant information can
be added and modified in several stages of the AUTOSAR Methodology. Thus, the AUTOSAR
elements consumed by some of the nested tasks are modeled using the "General Autosar Artifact".

Extended By

Define Software Component Safety Information, Define System Safety Information, Define VFB

Safety Information

Relation Type

Related Element

Mult.

Note

Aggregates Add Independence Relation 1

Aggregates Allocate Safety Measure 1

Aggregates Allocate Safety 1
Requirement

Aggregates Decompose Safety 1
Requirement

Aggregates Define ASIL For AUTOSAR 1
Element

Aggregates Define Safety Measure 1

Aggregates Define Safety Requirement 1

Aggregates Map Safety Requirement to 1
Safety Measure

Aggregates Refine Safety Requirement 1

Table 2.57: Define Safety Information

2.15 Variant Handling

2.15.1 Overview

[TR_METH_02009] Variation points in Variant Handling [Variant Handling for
AUTOSAR is defined in the Generic Structure Template [16]. First, this concept de-
fines means to designate certain locations in the AUTOSAR meta-model as variation
points. A point roughly consists of a condition (under which conditions is this variation
active?) and a binding time (when should this variation be resolved?). |

Second, there are predefined variants.

[TR_METH_02010] Predefined variants in Variant Handling [A typical AUTOSAR
model may contain a large number of variation points. However, usually only a relatively
small number of variants (i.e., combinations of “active” variation points) is actively used.
Each predefined variant describes such a variant. |

AUTSSAR

2.15.2 Binding Times

[TR_METH_02011] Types of binding times [The AUTOSAR variant handling defines
two kinds of binding times for AUTOSAR: the latest binding time and the actual binding
time. They have the same kinds of values?, but are used in different contexts. |

AUTOSAR defines the following binding times (presented here in chronological order):
* BlueprintDerivationTime
* SystemDesignTime
* CodeGenerationTime
* PreCompileTime
* LinkTime
* PostBuild

The Generic Structure Template mentions two more binding times. First, there is
FunctionDesignTime, which comes before SystemDesignTime, but is indepen-
dent of BluePrintDerivationTime. Second, there is Runt ime, which comes after
PostBuild. These binding times are not covered by AUTOSAR and mentioned here
only for completeness.

[TR_METH_02012] Definition of a binding time [t should also be noted that a bind-
ing “time” is not really a point in time, but rather denotes a phase in the development of
an AUTOSAR system. |

2.15.2.1 Latest Binding Time

[TR_METH_02013] Latest Binding Time [In the AUTOSAR meta model, ev-
ery variation point has a latest binding time, which is implemented by the tag
Vh.LatestBindingTime. As the name suggests, the latest binding time of a par-
ticular variation point puts an upper limit on when this point can be bound. A variation
may be bound earlier than this time, but not later. |

For example, the latest binding time for a software component which is part of a com-
position is PostBuild. In other words, an ECU can be configured to decide at startup
whether a software component is active or not.

However, it is not always possible to bind a variant at the latest possible time. To
continue the above example, making all software components PostBuild means that
an executable always contains code and other resources for all software components,
regardless whether it gets activated or not. Because of this, it may happen that the

SBlueprintDerivationTime and PostBuild are not part of the actual enum that is used in the
meta-model, but they are implied by the structure of the variation point. See chapter 7 in the Generic
Structure Template [16] are more details.

AUTSSAR

executable becomes too large to fit onto its designated ECU. If this is the case, the
software component needs to be bound earlier, typically at PreCompileTime or even at
SystemDesignTime.

This is not the only scenario that leads to this decision. For example, a software com-
ponent might contain two or more subcomponents each of which is specific to a certain
vendor. In this case, before delivering the software component to a specific vendor, it
is custom to remove the subcomponents that are targeted at the other vendor(s). This
can obviously be done at PrecompileTime the latest.

There are also cases where there is an implicit (i.e., not stated of the meta-model)
lower limit for the binding time of a variation point. For example, if a variant in software
component A uses a variant in software component B, then the binding times need
to be coordinated. Component A cannot be SystemDesignTime if component B is
PostBuild, but makes use of software component A.

2.15.2.2 Actual Binding Time

[TR_METH_02014] Actual Binding Time [This brings us to the actual binding time of
a variation point, which is stored in an attribute* of the variation point. Again, it is not
mandatory that the variation point is bound exactly at this stage; it rather states that
the variation point must not be bound at a later stage.

This binding time may be earlier than the latest binding time. |

As explained in the previous section, composition of software components can be
bound at PostBuild, but it is not always desirable or even feasible to do so. In such
acase. bindingTime should state an earlier binding time.

Also, unlike the latest binding time, which is a meta model element and is stated on
M2 level, this binding time is a model element associated with a variation point and is
stated on M1 level.

That is, the binding time of a variation point limits the point at which a particular vari-
ation point has to be bound, but this binding time is again constrained by the /atest
binding time.

2.15.3 Defining Variants
[TR_METH_02015] Definition of variants [A variant is almost always more than a

single variant point or a single system constant. Typically, a variant is a list of value as-
signments to system constants or postbuild variant conditions. In an AUTOSAR model,

4The attribute is named bindingTime and is located at the ConditionByformula element of a
variation point. For an AttributeValueVariationPoint, it is contained in the attribute binding-
Time.

AUTSSAR

such a list is represented by an instance of the meta-class Predefinedvariant, see
definition of artifact Predefined variant.]|

[TR_METH_02016] Evaluated Variant Set [Similarly, an instance of the meta-
class EvaluatedvVariantSet is a set of Predefinedvariants that are known to
work (or not to work) for a certain element of the meta-model, for example a specific
software component. Evaluated variants may be used to exchange information about
known variants between different vendors, for example to document which variants of
a software component have been tested and are known to work.

In the Methodology SPEM model, the variant selectors are represented by the Eval-
uated Variant Set artifact which is created by the Evaluate Vvariant task.|

This information is necessary because there is a extremely high number of possible
variants, but only a very small subset of them are feasible.

[TR_METH_02017] Use of Predefined Variant [The set of system constants
that are contained in an instance of Predefinedvariant usually affect a number of
variation points, which are at different locations in the model and have different binding
times.

Hence, a predefined variant cannot be directly associated with a specific location in
the meta-model, or a certain binding time. On the contrary, a Predefinedvariant
is used for several meta-model elements and at different binding times. |

2.15.4 Choosing Variants

Whether a variation point is included in a system or not is determined by one or more
variables. If the binding time of a variation point is anywhere from SystemDesignTime
to LinkTime, then the variation point contains an expression that is based on system
constants (see artifact System Constant Value Set). If this expression evaluates
to true, then the variation point is included in the system. PostBuild uses a simplified
scheme that allows only a single comparison with a PostBuildvVariantCriterion
(technically, an ARElement).

[TR_METH_02018] Choosing variants [So, a variant is chosen as soon as the val-
ues for the respective system constants or postbuild variant conditions have been de-
termined. This is usually done by selecting a Predefinedvariant, which contains
the respective values. This selection must obviously happen before a variation point is
bound. But, it does not need to happen immediately before a variation point is bound. |

For example, the system constants that determine a PreCompi leTime variation point
may already have been chosen at SystemDesignTime, but the actual binding has
to be delayed to PreCompileTime because of a dependency on another software
components that have the binding time PreCompileTime, as described in Section
2.15.2.2.

AUTSSAR

Furthermore, since Predefinedvariant spans several variation points, which may
have different binding times, some might have a binding time (latest or even actual)
immediately after the Predefinedvariant has been chosen, and the others might
have a later binding time.

Finally, the decision to go for a particular variant is often tied to vendor specific pro-
cesses that follow their own timeline.

Hence, the time at which a particular variant is chosen is often not the same as the
time when the associated variation points are bound. In summary, a variant must be
chosen some time before it is bound, but the actual time when this is happening is not
determined by AUTOSAR, and is also quite vendor specific.

2.16 Definition of Binding Times

2.16.1 Overview

A binding time is not (as the name probably suggests) a precise point in time, but
rather a classification of processing steps. For example, the binding time CodeGener-—
ationTime refers to a transformation step from an AUTOSAR model in ARXML format
to code.

In this section, we define binding times for artifacts and tasks in the methodology.

[TR_METH_00001] Definition of Binding Time for Tasks [A task has binding time
X if it binds variation points of binding time X.

This means in particular:

» Any task that works on the model may bind variation points that have the binding
time SystemDesignTime.

» Any task that generates code needs to bind open variation points that have the
binding time CodeGenerationTime. All variation points with earlier binding
times must have been bound by then.

» Similarly, any task that compiles code needs to bind open variation points that
have the binding time PreCompileTime.® All variation points with earlier binding
times must have been bound by then.

5Note that in case of the RTE code, the technical step of binding PreCompileTime variants is
partially done by a preparatory task which runs before the actual compilation, see Generate RTE
Prebuild Dataset. That means in particular, the relevant system constants must be defined before
executing this preparatory task. The binding time of actual compilation task Compile ECU Source
Code is indicated as CompileTime in this case.

AUTSSAR

At this time, the values for PostBuildvVariantConditions of variation points
must also be bound. These values have a latest binding time of PreCompile-

Time®.

In all these cases, the system constants that are needed by the condition of a variation
point obviously must be defined before the variation point is bound.

In the Methodology library, the binding time of a task is indicated by a value of the tag
Meth.bindingTime for those tasks which always can be associated with this binding
time. It is not indicated for tasks that only optionally bind variations. This typically
is the case for all tasks that only work on the ARXML model, for example, it is up
to the concrete process whether a task like Ext ract ECU Topology shall bind any
variations. |

[TR_METH_00002] Definition of Binding Time for Artifacts [In an artifact with bind-
ing time X, all variation points up to binding time X shall be bound.

We do not denote such a binding time for artifacts in the Methodology library, because
their binding time typically depends on the context. However, this definition could be
used to assign a binding time to an artifact as part of a specific use case. |

[TR_METH_00003] Definition of Binding Time for Artifacts in the context of par-
ticular tasks [If an artifact of binding time X is used as input or output of a particular
task, then all variation points related to that task with binding time up to X shall be
bound.

This in particular means that if the artifact is input to the task, then binding time variation
points X shall be bound and the task relies on this.

If the artifact is output to the task, it is granted that the such created artifact has all
variation points of binding time X bound.

In the Methodology library, this is indicated by a value of the tag Meth.bindingTime
attached to a Consumes/ConsumedBy resp. Produces/ProducedBy relationship.

Note that the tag Meth .bindingTime is not applicable to inout relationships, as the
binding time values according to the above definition are usually different for the inputs
and outputs of a particular task. If it is important to express these binding times, the
inout relation must be split into an input (i.e. ConsumedBy) and output (i.e. Pro-
duces) relation. |

Figure 2.70 presents an overview of binding times as used in the AUTOSAR method-
ology. Boxed elements in this figure correspond to binding times, and the connections
between them characterize artifacts.

6The variation point is still PostBuild: the PostBuildvariantCondition is fixed at PreCompile-
Time, but the comparison with the associated PostBuildvariantCriterion occurs atPostBuild-
VariantCriterion. See the Generic Structure Template [16] for details

AUTSSAR

| Model + Requirements |

] T

BluePrintDerivationTime FunctionDesignTime

ARM /unction Model

InitialBindingTime

WV

I
ARXML

CodeGenerationTime

T
Source Code

PreCompileTime

T
Bound Source Code

CompileTime

T
Object Code

LinkTime

I
Executable, Configuration Data Set

PostBuild

RunTime

LA

Figure 2.70: Overview of Binding Times

2.16.2 A Classification of Artifacts with respect to Binding Times

Model, Requirements, Functional Model These refer to models that are not an
AUTOSAR Model. For example, a Model may be a Matlab/Simulink model or
a requirements document.

ARXML An ARXML artifact is a XML document that conforms to the AUTOSAR XML
schema.

AUTSSAR

Source Code A Source Code artifact is text written using the syntax of a programming
language, for example such as C or C++.

Source Code may be generated by hand, or may be the output of a code gener-
ator.

Bound Source Code A Bound Source Code artifact contains source code without any
unbound precompile variation points.

Object Code An Object Code is the output of a compiler. Object code is typically
machine code, but may also include descriptive information in a format such as
XML.

Executable An Executable is an artifact that can run on an ECU. It is often similar to
Object Code; the difference between the two is that the former does not provide
means for execution on an ECU.

Configuration Data Set A Configuration Data Set is a set of assignments to Post -
BuildVariantCriterion.

2.16.3 Classification of Binding Times

Table 2.58 presents an overview of the binding times in AUTOSAR Variant Handling.

Variant handling in the AUTOSAR meta model supports the following binding times:

Binding Time AUTOSAR Metamodel | AUTOSAR Methodology
BlueprintDerivationTime | partially yes
FunctionDesignTime out of scope out of scope
InitialBindingTime no yes
SystemDesignTime yes yes
CodeGenerationTime yes yes
PreCompileTime yes yes
CompileTime unused yes
LinkTime yes yes
PostBuild yes yes
Runtime out of scope out of scope

Table 2.58: Binding Times in Meta Model and Methodology

* BlueprintDerivationTime

SystemDesignTime
CodeGenerationTime
PreCompileTime
LinkTime

PostBuild

AUTSSAR

[TR_METH_02020] Definition of latest Binding Time for a variation point
in the meta-model [All these binding times may be used in the tag
<Vh.latestBindingTime>>, which is used to define the latest binding time for a
variation point in the meta model.

The actual binding time of a variation point is stored in the attribute bindingTime
of the ConditionByFormula of @ VariationPoint, and can only use the values
SystemDesignTime, CodeGenerationTime, PreCompileTime, LinkTime. |

The AUTOSAR methodology utilizes two more binding times, InitialBinding-
Times to characterize artifacts where no variation points are bound, and Compile-
Time to distinguish between preprocessing and compiling of code. Finally, Func-
tionDesignTime and Runtime are not in the scope of AUTOSAR variant handling
but mentioned here for completeness.

2.16.3.1 BlueprintDerivationTime

At BlueprintDerivationTime, a model is derived from Blueprints. For example,
a function design tool provides the option to derive objects from a predefined set of
blueprints. See [1] for more details. This is different from the variant handling defined
in this chapter, but it uses the same meta model features (see [16]).

BlueprintDerivationTime is out of the scope of this document, but mentioned
here for completeness.

Input Artifacts: Model, Requirements

Output Artifacts: ARXML

2.16.3.2 FunctionDesignTime

At FunctionDesignTime, a software architecture independent model for (control)
systems is developed. Typical tools used at this stage are Matlab/Simulink, or ASCET-
MD.

If a function design tool supports variant handling according to AUTOSAR it has no
other choice than using CodeGenerationTime or later as binding time in the gener-
ated AUTOSAR artifacts.

FunctionDesignTime is out of the scope of this document (as long as it does not
affect calibration measurements), but mentioned here for completeness.

Input Artifacts: Model, Requirements

Output Artifacts: Function model

AUTSSAR

2.16.3.3 InitialBindingTime

At InitialBindingTime, no variation points are bound. This binding time is needed to
express a state where no SystemDesignTime points are bound in artifact

Input Artifacts: Model, Requirements, Function model, AUTOSAR models from
blueprints in ARXML format.

Output Artifacts: ARXML.

2.16.3.4 SystemDesignTime

SystemDesignTime is characterized by the following tasks:

* Designing the VFB

Software Component types (Interfaces)

SWC Prototypes and the Connections between SWCprototypes

Designing the Topology

ECUs and interconnecting Networks
* Designing the Communication Matrix and Data Mapping

Input Artifacts: Function model, Requirements, AUTOSAR models from blueprints in
ARXML format.

Output Artifacts: ARXML.

2.16.3.5 CodeGenerationTime

At this step, code is generated. This may be done either by hand, or using a tool, or a
mixture of both.

Handwritten code is typically based on a requirements document, whereas generated
code is usually created from a model that was designed at FunctionDesignTime Or
SystemDesignTime.

Both the requirements and the model may contain variants, but code is only generated
for those variants that have been selected, or which need to be resolved later.

Input Artifacts: ARXML.

Output Artifacts: Source Code.

AUTSSAR

2.16.3.6 PreCompileTime

At PreCompileTime, a preprocessor (e.g., the C preprocessor) is used to further
customize the code and exclude parts of the code from the compilation process.

There are several reasons for such an exclusion: code is not required for the selected
variant(s), code is incompatible with the selected variant(s), or code requires resources
that are not present in the selected variant(s). The code that is excluded at this stage
code will not be available at later stages.

PreCompileTime is typically used for handwritten code (for which Systembesign-
Time and CodeGenerationTime obviously cannot not take effect) or when a system
constant needs to be bound after code generation.

Input Artifacts: Source Code.

Output Artifacts: Bound Source Code.

2.16.3.7 CompileTime

At compileTime, source code that has already been processed by a macro processor
such as the C preprocessor and stripped of all PreCompileTime variation points is
transformed into object code. The compiler might eliminate further variants by remov-
ing unused code paths.

CompileTime is not used in the AUTOSAR meta model, but is used in the AUTOSAR
methodology to discriminate between a preprocessor and a compiler.

Input Artifacts: Bound Source Code.

Output Artifacts: Object code.

2.16.3.8 LinkTime

The configuration at this stage determines which modules are included in the resulting
object code (executable), and which ones are omitted based on the selected variants.

Input Artifacts: Object code.

Output Artifacts: Executable program.

2.16.3.9 PostBuild

PostBuild is the binding time which is bound latest at startup of the ECU. In other words
this is everything between creation of the executable program and startup of the ECU.

The startup of the ECU is the PostBuild binding since and obviously cannot be resolved
in the model.

AUTSSAR

Input Artifacts: Executable program, Configuration data set.

Output Artifacts: —

2.16.3.10 Runtime

Everything after startup and initialization is RunTime. Variant Handling at RunTime is
out of the scope of this document, but mentioned here for completeness.

2.17 How to resolve Name Conflicts

2.17.1 Reasons for Name Conflicts

In the highly distributed development of an AUTOSAR system, there is a certain risk
that symbolic names used in different development artifacts are not unique so that
name conflicts may occur when applying software tools.

[TR_METH_03000] Name spaces via ARPackages [In the “upstream” specification of
an AUTOSAR system, a software component, a basic software module or configuration
parameters via AUTOSAR XML artifacts, such a risk can be widely avoided through the
proper usage of ARPackages because they set up name spaces and may be nested
(see also General Autosar Artifact). Here it is recommended to follow similar
rules as AUTOSAR is using for its own published artifacts, see [16, FO TPS Generic
Structure Template]: [TPS_GST_00081], [TPS_GST_00083], [TPS_GST_00086]. |

However, certain symbols specified in the AUTOSAR XML artifacts need to be trans-
ferred to other development artifacts in later process steps (“downstream”) and will
appear e.g. as symbols in C-code, as file names, as names displayed by calibration
tools or in textual documents. Here we have in general two reasons for naming conflicts
(which may also occur in combination):

[TR_METH_03001] Reasons for name conflicts in “downstream” artifacts |
» Uncoordinated co-development

Due to the global name space of the C-language within one compilation unit, the
risk of name conflicts is rather high if pieces of source code are integrated that
were developed by different parties without coordinating the definition of symbols.
The same can happen with names of header files or with symbols visible by the
linker.

In AUTOSAR, the programming language interfaces between software compo-
nents and (to some extend) between basic software modules are restricted to
certain patterns and are generated from ARXML, so the coordination effort is
restricted to the proper definition of the relevant symbols in ARXML.

AUTSSAR

In several cases the shortName of an ARElement corresponds to an identifier
in the code (or to a part of such an identifier), sometimes also to a file name
or a part of it. Since shortNames are also used in the links between ARXML
elements, it is hard to change such a name without impact on the overall design.
This is for example the case for the names of the At omicSwComponent Types.

* Multiple instantiation

The AUTOSAR Runtime Environment (RTE) supports multiple instantiation of
software components. This means, in a system and even on one ECU there
can be several instances of a given AtomicSwComponent Type. Each instance
possesses its own data (managed by the RTE), but there is only one artifact (
VFB Atomic Software Component) describing the whole type. If one needs
a symbol identifying a particular component instance or particular data belonging
to that instance (for example for display in a calibration tool), a conflict arises.

A similar thing happens with data elements or operation argumentsina Port In-
terface orin a composite data type, if the enclosing element is reused in more
than one context.

A different kind of “multiple instantiation” can occur in the basic software, if several
driver modules implement the same interface (only distinguished by an instance
identifier). In this case, we actually have different implementations of code, the
modules only share the upper levels of description (artifacts Basic Software
Module Description and Basic Software Module Internal Behav-
ior).

2.17.2 Points in the Methodology where Name Conflicts are resolved

On the other hand we have multiple points in the methodology where to resolve those
conflicts.

In general we can distinguish between the development phase in which a name conflict
is resolved and the phase in which it occurs (or would occur). Because a conflict usually
prevents a certain task from being completed (e.g. compilation), it must be resolved in
the same or an earlier phase than the phase in which it would occur.

« [TR_METH_03002] Conflict solution at system design time |
This is mentioned mainly for completeness. Of course, a proper system design
can avoid conflicts in the first place and if a name conflict still arises in a later
phase, it is in principle possible to iterate over the system design. But in this
chapter we focus on solutions that allow to resolve name conflicts in later process
phases which usually causes less effort. |

« [TR_METH_03003] Conflict solution at coding time [
Conflicts occurring at compile time or link time must be resolved (latest) at the

AUTSSAR

time a developer is producing the code and/or the ARXML descriptions leading to
the generation of code. In other words, this has to happen within the activities De-
velop an Atomic Software Component Of Develop BSW Module. Note
that in the worst case, such a conflict is detected not before integration time (dur-
ing activity Build Executable) which means that some kind of iteration of the
activities is required. |

« [TR_METH_03004] Conflict solution at ECU integration time |
During ECU integration time (latest) it is still possible to resolve name conflicts
that would occur in tasks after the software build, e.g. during generation of A2L
files. |

2.17.3 Mechanisms for resolving Name Conflicts
The mechanisms to resolve the name conflicts are:

« [TR_METH_03005] Conflict solution via SymbolProps |

This mechanism allows to redefine a name in cases where the shortName by
default is used to generate RTE relevant code. This avoids to change the overall
design in the ARXML model.

This mechanism can be applied at coding time (activity Develop an Atomic
Software Component,taskDefine SymbolProps for Types)and solves
conflicts caused by uncoordinated development. Such changes - even if they do
not influence the overall design of the software - should be agreed upon by the
involved parties.

This mechanism is provided for the following meta-model elements:

AtomicSwComponentType.symbolProps

Allows to redefine the software component type name that the RTE is using in
its code. This resolves name clashes among different software component types
designed accidentally with the same shortName.’

ImplementationDataType.symbolProps

Allows to redefine the implementation data type name used in the code of the
RTE and/or the components. This resolves name clashes among different imple-
mentation data types designed accidentally with the same shortName.

For more information on the meta-model refer to [TPS_SWCT_01194] and
[TPS_SWCT_01110] in [5, CP TPS Software Component Template]. |

« [TR_METH_03006] Conflict solution via literal prefixes [

"Note that this mechanism is not applicable for the prefixes used in the preprocessor code of memory
sections. Conflicts among these preprocessor symbols due to duplicate component type names are not
visible to the linker. However conflicts might occur when compiling and must be resolved manually.

AUTSSAR

This mechanisms is similar to the one described before. It allows to define a pre-
fix for preprocessor literals (e.g. for enumeration types or upper/lower limits) cre-
ated by the RTE generator contract phase. Also this mechanism solves conflicts
caused by uncoordinated development and must be applied at coding time (part
oftask Define Atomic Software Component Internal Behavior).

The model element to be manipulated is:
SwcInternalBehavior.includedDataTypeSet.literalPrefix

For more information refer to [TPS_SWCT _01157]in [5, CP TPS Software Com-
ponent Template]. |

« [TR_METH_03007] Conflict solution in names of runnable entities [

In case of a RunnableEntity the symbol used in the code is already indepen-
dent from the shortName - it is always modeled via the attribute
RunnableEntity.symbol. However, since these symbols need to be unique in
the scope of one RTE instance (see [constr_2025] in [5, CP TPS Software Com-
ponent Template]), also here a name conflict can occur at integration time if the
definition of the symbols was not coordinated before.

Similar to the cases discussed before, this conflict must be solved at coding time
simply be changing the symbol. Note that such a change would not influence
the overall design and can be done locally on one component (whose runnable
shall be renamed) since the runnable symbol is hidden to other component by the
RTE. Despite of that, the definition of unique runnable symbols still might need
some human coordination. |

« [TR_METH_03008] Conflict solution via FlatMap |

This mechanism allows to assign identifiers to instances of model elements (e.g.
software component instances or data element instances) so that they are unique
in a certain scope, e.g. a system or an ECU. Thereby name conflicts are avoided,
which would occur if simply the shortNames of the ARXML elements would be
used. In other words, this mechanisms solves the name conflicts arising from
multiple instantiation of types in the ARXML model.

The identifiers defined in this way are typically not used within the code, since
AUTOSAR components do not rely on global variables. The main purpose is the
usage within other artifacts which need to handle symbols out of the package
context of the ARXML model, for example citation in documents (e.g. in arti-
fact Ssoftware Component Documentation) or input for measurement and
calibration tools (e.g. in artifact RTE Measurement and Calibration Sup-
port Data). A special use case of the ECU Flat Map is the the model trans-
formation from the System to ECU Extract, where it is used to define additional
names of component prototypes.

The point in the methodology where this mechanisms is applied depends of
course on the use case. The typical tasks in the methodology library for defining

AUTSSAR

a Flat Map are normally performed before integration time: Generate or Ad-
just System Flat Map, Define Partial Flat Map and Generate or
Adjust ECU Flat Map. Butsince identifiers in a F1atMap are independent of
the code, it can in principle be adjusted even at integration time in case a conflict
occurs.

For more information see artifacts System Flat Map, Partial Flat Map
and ECU Flat Map, for the underlying meta-model parts refer to [6, CP TPS
System Template]. |

* [TR_METH_03009] Conflict solution via AliasNameSet |

This mechanism is similar to FlatMap. It allows to define additional names for
model elements, either on top of an entry in a FlatMap or standalone. The
usage is also similar, but there are no standardized use cases in connection with
the AUTOSAR RTE. It can be used in cases where the format of the F1atMap is
too restrictive.

For more information refer to the artifact Alias Name Set and task Define
Alias Names. For the meta-model of A1iasNameSet refer to [6, CP TPS Sys-
tem Template]. The document [6, CP TPS System Template] also gives recom-
mendations on how to transfer certain attributes below A1iasNameSet into an
ASAM ASAP2 (“A2L") specification. |

« [TR_METH_03010] Conflict solution via API Infixes [

If several “instances” of a basic software module (with different implementation
but identical interface definition) are linked together, name conflicts have to be
solved by defining “infixes”. These are small pieces of strings denoting the mod-
ule vendor and the instance role. They are used to extend globally visible C
symbols and certain header file names. The mechanism is also relevant for the
basic software scheduler APls generated in task Generate BSWM Contract
Header Files.

Though this mechanism solves a conflict of a certain kind of multiple instantiation,
it is relevant to the code and thus must be applied at coding time. The description
of the infixes has to be put into the artifact Basic Software Module Imple-
mentation Description.

For more information refer to [TPS_BSWMDT_04031] in [9, CP TPS BSW Mod-
ule Description Template] and to [SWS_BSW_00102] in [7, CP SWS BSW Gen-
eral]. |

AUTSSAR

3 Methodology Library

3.1 Common Elements

This chapter contains the definition of work products and tasks used in several areas of
AUTOSAR development. For the definition of the relevant meta-model elements refer

to [16, FO TPS Generic Structure Template].

3.1.1 Work Product Kinds
Category (Work AUTOSAR XML
Product Kind)
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Product Kinds
Brief Description
Description An artifact that conforms to the AUTOSAR XML schema.
Table 3.1: AUTOSAR XML
Category (Work Source Code
Product Kind)
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Product Kinds
Brief Description
Description A human readable artifact that conforms to a defined programming language syntax, such as C or
Java.
Table 3.2: Source Code
Category (Work Bound Source Code
Product Kind)
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Product Kinds
Brief Description
Description A Bound Source Code artifact contains source code without any unbound precompile variation
points.
Table 3.3: Bound Source Code
Category (Work Object Code
Product Kind)
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Product Kinds
Brief Description
Description An Object Code is the output of a compiler. Object code is typically machine code, but may also
include descriptive information in a format such as XML.

Table 3.4: Object Code

AUTSSAR

Category (Work Configuration Data Set
Product Kind)
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Product Kinds
Brief Description
Description This is a special kind of binary code containing configuration that can be loaded separately from the
main ECU code.
Table 3.5: Configuration Data Set
Category (Work Executable
Product Kind)
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Product Kinds
Brief Description
Description An Executable is an artifact that can run on an ECU. It is often similar to Object Code; the difference
between the two is that the former does not provide means for execution on an ECU.
Table 3.6: Executable
Category (Work Text
Product Kind)
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Product Kinds
Brief Description
Description A human readable artifact that is stored as plain text, rich text, PDF, etc.
Table 3.7: Text
Category (Work Custom
Product Kind)
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Product Kinds
Brief Description
Description A custom artifact format which is not further specified in the AUTOSAR Methodology.
Table 3.8: Custom
Category (Work Delivered
Product Kind)
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Product Kinds
Brief Description
Description These are collections of delivered work products. They form the basis of exchange between

organizations.

Table 3.9: Delivered

AUTSSAR

3.1.2 Tasks

3.1.2.1 Add General Documentation

«output» 1

Add General Documentation

General Documentation

Figure 3.1: Add General Documentation

Task Definition Add General Documentation

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Tasks
Brief Description

Description Add General Documentation to work products (AR_MET_REQO069)

Relation Type Related Element Mult. Note

Produces General Documentation 1

Table 3.10: Add General Documentation

3.1.2.2 Define Admin Data

«output» 1

Define Admin Data

General Autosar Artifact

Figure 3.2: Define Admin Data

Task Definition Define Admin Data

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Tasks

Brief Description Generic task to define admin data of an Identifiable within an AUTOSAR artifact.

Description Generic task to define administration data (metamodel element AdminData) of an Identifiable within

an AUTOSAR artifact. Note that administration data can be defined on several levels, namely for the
top-level package of a General Autosar Artifact, but also for sub-packages and for other Identifiables
within the XML description.

Administration data include versioning information of the model element via the meta-class Doc
Revision, and the aggregation of user specific data via so-called special data groups, meta-class
Sdg.

For more details on the administration data content refer to document ID 202 FO_TPS_Generic
StructureTemplate.

Relation Type

Related Element Mult. Note

Produces

General Autosar Artifact 1

Table 3.11: Define Admin Data

AUTSSAR

3.1.2.3 Define Alias Names

0.1 «input»
System Description
—

—

«output» —

1 | e—

_ —

. 7 Define Alias Names
«input»,

AliasName Set

0.1

Delivered Atomic Software
Components

Figure 3.3: Define Alias Names

Task Definition Define Alias Names

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Tasks

Brief Description Define a set of alias names for AUTOSAR model elements.

Description The usual mechanism for defining global names for nested elements within an AUTOSAR XML

model is the Flat Map. However in the cooperation with non-AUTOSAR tools, there are uses cases
which require additional alias names which can be defined by this task.
It can be applied on System and on ECU level as well. Possible use cases are for example:
» The names defined by an ECU Flat Map, System Flat Map or Partial Flat Map shall be
superseded when used by an external tool (e.g. in order to use a more general string format).

* Resolve name conflicts for elements which cannot be referred in the context of a Flat Map (e.g.
for elements directly defined in the scope of ARPackages, like System Constants to be displayed
by A2L tools).

Relation Type Related Element Mult. Note
Consumes Delivered Atomic Software 0..1 Needed for definition of alias names in the scope of
Components delivered software components.

Consumes System Description 0..1 Needed for definition of alias names with system,
system extract or ECU scope, depending of the role of
the System Description.

Produces Alias Name Set 1

Table 3.12: Define Alias Names

AUT<S

SSAR

3.1.2.4 Evaluate Variant

«input»

«input»

«output» —

1

«input»

Evaluate Variant

Evaluated Variant Set

«input»

System Constant
Value Set

Postbuild Variant Set

Figure 3.4: Evaluate Variant

Task Definition Evaluate Variant

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Tasks

Brief Description Document the evaluation of variants in the software description.

Description Create or modify an Evaluated Variant Set in order to document the outcome of an evaluation of

particular variants. This namely means setting the "approval status” in relation to a given set of
PredefinedVariants and a given set of model elements (e.g. a particular Software Component) which
were evaluated.

This is a general task which can be applied on different levels, therefore the input is modeled as
General Autosar Artifact.

Relation Type Related Element Mult. Note
Consumes General Autosar Artifact 1.*
Consumes Evaluated Variant Set 0..1
Consumes Postbuild Variant Set 0..*
Consumes Predefined Variant 0..*
Consumes System Constant Value Set 0.*

Produces Evaluated Variant Set 1

Table 3.13: Evaluate Variant

AUTSSAR

3.1.2.5 Define Memory Addressing Modes

Basic Software Software
Component
Module Developer
0.1 Developer
1

«performs»

«performs»

+MemMapAddressingModeSet:

«output» 1

Define Memory

Addressing Modes
BSW Module
Preconfigured
Configuration

Figure 3.5: Define Memory Addressing Modes

Task Definition Define Memory Addressing Modes

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Tasks

Brief Description

Description Define the compiler specific configuration used in a later task to generate the "pragmas" in memory

mapping header files.

The output (container MemMapAddressingModeSet) is treated as pre-configured configuration
values for the "module" MemMap, because it can be prepared independently from the configuration
for a specific integration project.

Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by Basic Software Module 1
Developer

Performed by Software Component 0..1
Developer

Produces BSW Module Preconfigured 1.* MemMapAddressingModeSet:
Configuration Meth.bindingTime = SystemDesignTime

Table 3.14: Define Memory Addressing Modes

AUTSSAR

3.1.2.6 Configure Memmap Allocation

_L . Software
— Basic Software c t
— | +SWAddMethods Module Developer DZL“QTS;:P
—)
— -
0.1
VFB Types . «performs»
«input> «performs»
N | ‘
m— | +MemorySections «perioms»
p— A «input» Configure 0.1
— Memmap
Allocation
Basic Software ECU Integrator
Module . ;
Implementation «input>
Description
+MemorySections «input» «output» +MemMapAlloCation | w—
— | 0. * 7 [—
— —
—
— +MemMapAddressingModeSet
— . ECU Configuration
L Values

Atomic Software
Component —
Implementation _

—

—

BSW Module

Preconfigured
Configuration

Figure 3.6: Configure Memmap Allocation

Task Definition Configure Memmap Allocation

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Tasks
Brief Description

Description Configure the ECU Configuration part MemMapAllocation for module "MemMap".

The output is to be used for generating memory mapping headers during ECU integration as well as
for BSW and SWC compiling/linking in local environments.

MemMapAllocation defines a mapping between abstract memory sections used in BSW or SWC
code and compiler specific configuration elements. The abstract sections are identified via links to
SwAddrmethods (generic mapping) resp. MemorySections of the XML input files. The compiler
specific configuration is given as a pre-configured configuration for module "MemMap" via the
container MemMapAddressingModeSet.

For more information refer to document ID 128 CP_SWS_MemoryMapping.

Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note
Performed by Basic Software Module 0..1
Developer
Performed by ECU Integrator 0..1
Performed by Software Component 0..1
Developer
Consumes BSW Module Preconfigured 1.* MemMapAddressingModeSet: Collection of compiler
Configuration specific configuration elements for memory allocation
and addressing modes.
Consumes Atomic Software 0..” MemorySections:
Component Implementation

SSAR

AUT<S

Task Definition Configure Memmap Allocation
Consumes Basic Software Module 0..* MemorySections:
Implementation Description
Consumes VFB Types 0..x SwAddrMethods: SwAddrMethods used for the generic
mapping. Note that one SwAddrmethod can represent
several memory sections.
Produces ECU Configuration Values 1 MemMapAllocation:

Meth.bindingTime = SystemDesignTime

Table 3.15: Configure Memmap Allocation

3.1.2.7 Generate BSW Memory Mapping Header

—‘ e) Basic Software Basic Software
- | Module Module *0-*
. Description Developer
w— | +SwAddrMethod =
—
1% «input»
VFB Types +shortName| 0..1

+infixes
1 «input»

+MemorySections

1

[l

«input»

+DependencyOnArtifact

«input»)

«performs»

«perf S
periorms ECU Integrator

1
Basic Software
Module
Implementation
Description

«input»

[

BSW Module

1 «input»

+moduleDescription

+MemMapAddre$mgModeSe/
1.* «input»
Preconfigured
Configuration
+MemMapAllocation

«input»

Generate BSW
Memory Mapping
Header

+BSW_MemMap
—
«outputs 1| ee—
—
Standard
Header Files

Figure 3.7: Generate BSW Memory Mapping Header

AUTSSAR

Task Definition Generate BSW Memory Mapping Header

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Tasks

Brief Description

Description Generate a memory mapping header to be used for one BSW module (the default case) or a group

of BSW modules (e.g. an ICC2 BSW cluster). Note that the usage of one MemMap.h for the
complete BSW of one build environment is possible, but deprecated.
This task can be used in ECU scope or with preliminary scope to test BSW modules. Note that the
content of the generated file is compiler specific (#pragma statements).
Inputs are:
» From Basic Software Module Description: The shortName is used (in the default case) as the first
part of the generated file name.

» From VFB Types: Properties of abstract sections given by SwAddrmethods, which in turn are
referred by MemorySection as well as by MemMapAllocation.

» From Basic Software Module Implementation Description: Names of the individual abstract
sections (preprocessor macros) used in the code (including optional prefixes overriding the
default rule); optional infixes for the file name (if the default rule is used); optional declaration of
file name (element DependencyOnArtifact) overriding the default rule.

» From Preconfigured Configuration for module "MemMap": Collection of compiler specific
configuration elements.

» From ECU Configuration for module "MemMap" : MemMapAllocation - this is the concrete
mapping for this environment.

» From ECU Configuration: Find the list of used BSW modules in case the task is done for the
whole BSW (EcucValueCollection.ecucValue.moduleDescription).

Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Mult. Note
Performed by ECU Integrator 1
Performed by Basic Software Module 0..1 0..*:
Developer
Consumes Basic Software Module 1 DependencyOnAtrtifact: Can be used to override the
Implementation Description default name of the memory mapping header file.
Meth.bindingTime = SystemDesignTime
Consumes Basic Software Module 1 MemorySections: MemorySections defined for a BSW
Implementation Description module. This input includes optional prefixes for
memory sections overriding the default rule.
Meth.bindingTime = SystemDesignTime
Consumes Basic Software Module 1 infixes: Optional infixes (denoting instance and vendor
Implementation Description ID) to be used within the created header file name.
Meth.bindingTime = SystemDesignTime
Consumes ECU Configuration Values 1 MemMapAllocation: Mapping of the abstract sections
(SwAddressMethods for generic mapping resp. Memory
Section Elements for specific mapping) to the compiler
specific MemMapAddressingModes.
Meth.bindingTime = SystemDesignTime
Consumes BSW Module Preconfigured 1.7 MemMapAddressingModeSet: Collection of compiler
Configuration specific configuration elements for memory allocation.
Meth.bindingTime = SystemDesignTime
Consumes VFB Types 1.* SwAddrMethod: Referred SwAddrMethods
Meth.bindingTime = SystemDesignTime
Consumes Basic Software Module 0..1 shortName: The BSW module’s shortName is used as
Description the first part of the generated file name, in case the
default rule applies.
Meth.bindingTime = SystemDesignTime
Consumes ECU Configuration Values 0..1 moduleDescription: List of used BSW modules (Ecuc

ValueCollection.ecucValue.moduleDescription)
Meth.bindingTime = SystemDesignTime

AUTSSAR

A

Task Definition

Generate BSW Memory Mapping Header

Produces

Standard Header Files 1

BSW_MemMap: The memory mapping header file to be
used for one or more BSW modules in a given build
environment.

The file name has in the standardized case a form like
{Mip}_MemMap.h in which the prefixes {Mip} are
determined by the BSW module (or BSW cluster) name
and optional infixes.

However, it is also possible to create a completely
different filename via explicit declaration in the BSW
Module Implementation.

For more detailed rules on the name of the generated
file refer to document ID 128 CP_SWS_Memory
Mapping.

Meth.bindingTime = CodeGenerationTime

Table 3.16: Generate BSW Memory Mapping Header

3.1.2.8 Generate SWC Memory Mapping Header

+SwAddrMethod

1.% «input»

(Il

VFB Types

+MemorySections

1 «input»

[l

Atomic Software
Component
Implementation

+MemMapAddressingModeSet

iy

1.% «input»

BSW Module
Preconfigured
Configuration

+MemMapAllocation

1 «input»

[k

+RtelmplementationRef

0.1 «input»

ECU Configuration
Values

«performs»

Software
Component
Developer

1

«performs» ECU Integrator

Generate SWC
Memory Mapping
Header

+SWC_MemMap | ===

1 | —

«output»

Standard
Header Files

Figure 3.8: Generate SWC Memory Mapping Header

AUTSSAR

Task Definition Generate SWC Memory Mapping Header

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Tasks

Brief Description

Description Generate the memory mapping header file for one build environment and one Atomic Software

Component. This task can be used in ECU scope or with preliminary scope to test software
component. Note that the generated header file is compiler specific (#pragma statements).
Inputs are:
» From VFB Types: Properties of abstract sections given by SwAddrmethods, which in turn are
referred by MemorySection as well as by MemMapAllocation

* From Software Component Implementation, element MemorySection: Names of the individual
abstract sections (preprocessor macros) used in the code.

» From Preconfigured Configuration for module "MemMap": Collection of compiler specific
configuration elements.

» From ECU Configuration for module "MemMap" : MemMapAllocation - This is the concrete
mapping for this environment.

» From ECU Configuration: Find (optionally) the list of used software component implementations
by usage of the RTE ECU Configuration "RteSwComponentType.RtelmplementationRef"

Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Mult. Note
Performed by ECU Integrator 1
Performed by Software Component 0..1
Developer
Consumes Atomic Software 1 MemorySections: MemorySections defined for an
Component Implementation Atomic Software Component.
Meth.bindingTime = SystemDesignTime
Consumes ECU Configuration Values 1 MemMapAllocation: Mapipng of the abstract sections
(SwAddressMethods for generic mapping resp. Memory
Section Elements for specific mapping) to the compiler
specific MemMapAddressingModes.
Meth.bindingTime = SystemDesignTime
Consumes BSW Module Preconfigured 1.7 MemMapAddressingModeSet: Collection of compiler
Configuration specific configuration elements for memory allocation.
Meth.bindingTime = SystemDesignTime
Consumes VFB Types 1.7 SwAddrMethod: Referred SwAddrMethods
Meth.bindingTime = SystemDesignTime
Consumes ECU Configuration Values 0..1 RtelmplementationRef: Existence of SWCs could be
identified by usage of the RTE ECU Configuration "Rte
SwComponentType.RtelmplementationRef"
Meth.bindingTime = SystemDesignTime
Produces Standard Header Files 1 SWC_MemMap: One header per software component

type for a given build environment.

The file name follows the pattern {componentType
Name}_MemMap.h in which the prefix componentType
Name is determined by the software component type
name.

For more detailed rules on the name of the generated
file refer to document ID 128 CP_SWS_Memory
Mapping.

Meth.bindingTime = CodeGenerationTime

Table 3.17: Generate SWC Memory Mapping Header

AUTSSAR

3.1.3 Work Products

3.1.3.1 General Documentation

Artifact General Documentation
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Products
Brief Description
Description General documentation link to a given work product
Kind Custom
Relation Type Related Element Mult. Note
Aggregated by General Deliverable 0..*
Produced by Add General 1
Documentation

Table 3.18: General Documentation

3.1.3.2 Alias Name Set

Artifact Alias Name Set

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Products
Brief Description Set of alias names for AUTOSAR model elements for usage outside of AUTOSAR.
Description Set of alias names, each consisting of the name (string) itself and the reference to the model

element it renames.

Each reference to a model element is either a reference to an Identifiable or to an entry in an ECU
Flat Map or System Flat Map.

For an explanation of uses cases see task Define Alias Names.

Kind AUTOSAR XML

Relation Type Related Element Muit. Note

Aggregated by Delivered Atomic Software 0..1 Alias names valid in the context of the delivered
Components components.

Aggregated by System Description 0..*

Produced by Define Alias Names 1

Consumed by Add Documentation to the 0..* Optional input in order to refer to unique names defined
Software Component in an Alias Name Set (e.g. System Constants).

Consumed by Generate A2L 0..”

Use meta model AliasNameSet 1

element

Table 3.19: Alias Name Set

AUTSSAR

3.1.3.3 Evaluated Variant Set

Artifact Evaluated Variant Set

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Products

Brief Description A set of evaluated variants

Description This artifact represents a table defining which ArElements or ArPackages (referrred as "evaluated
Elements") are able to support one or more particular variant. It can thus be used to document
which variants are support by a certain delivery, e.g. of a software component or of a system.
In other words, for a given set of evaluatedElements this element represents a table of evaluated
variants, where each PredefinedVariant represents one column. In this column each descendant sw
SystemConstantValue (part of System Constant Value Set) resp. postbuildVariantCriterionValue
(part of Postbuid Variant Set) represents one entry.
In a graphical representation each swSystemConstantValueSet / postBuildVariantCriterionValueSet
could be used as an intermediate headline in the table column.
The Evaluated Variant Set comes with an attribute "approvalStatus". If this is set to "APPROVED" it
expresses that the evaluatedElements are known be valid for the given evaluated variants.
Note that an evaluatedElement could be another Evaluated Variant Set. This allows to establish a
hierarchy of EvaluatedVariantSets.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software 0..1
Components

Aggregated by ECU Extract of System 0..”
Variant Model

Aggregated by System Description 0..*

Aggregated by VFB System 0..*

Produced by Define System Variants 1

Produced by Evaluate Variant 1

Produced by

Define Integration Variant .1 Meth.bindingTime = SystemDesignTime

Produced by

Define VFB Variants

Consumed by

Consumed by

0

0
Evaluate Variant 0..1

0

Extract ECU System
Variant Model

Use meta model
element

EvaluatedVariantSet 1

Table 3.20: Evaluated Variant Set

3.1.3.4 Autosar Specification

Deliverable Autosar Specification

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Products

Brief Description

Description An Autosar specification that is part of the Autosar standard. E.g. Software Component Template,
Main Requirements, Autosar Model Constraints, Specification of Communication, etc.

Kind

Relation Type

Related Element | Mult. |Note

Table 3.21: Autosar Specification

AUTSSAR

3.1.3.5 General Autosar Artifact

Artifact General Autosar Artifact

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Products

Brief Description Describes the meta data for an AUTOSAR artifact.

Description This artifact represents the data which are common to all AUTOSAR XML artifacts.
Each file starts with the root element AUTOSAR.
The content of such an artifact below this root element is organized by packages using the element
ARPackage. Packages can be nested. It is important to understand, that the hierarchy defined via
packages and other aggregated elements can (in general) span over several XML files, i.e. over
several artifacts. That means, if an aggregation is "split" between several files, each file is
considered as a separate artifact by the methodology, even if the elements are formally aggregated
within the same package.
All elements derived from meta-class Identifiable can carry documentation and administrative
description based on the element AdminData. Note that ARPackage is itself derived from
Identifiable, so there can be AdminData for the top-level package, for sub-packages and for more
specific elements (derived from Identifiable) as well. The AdminData among other things contain
revision information (including the artifact version) based on the metamodel element DocRevision .

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by General Deliverable 0..x

Produced by Define ASIL For AUTOSAR 1
Element

Produced by Define Admin Data 1

Produced by Allocate Safety Measure 0..” Allocated Elements:

Produced by Allocate Safety 0.* Allocated Elements:
Requirement

Consumed by Define ASIL For AUTOSAR 1
Element

Consumed by Allocate Safety Measure 1.*

Consumed by Allocate Safety 1.7

Requirement

Consumed by

Evaluate Variant 1.

Consumed by

Define Safety Measure

Consumed by

Define Safety Requirement

Use meta model ARPackage 1
element
Use meta model AUTOSAR 1
element

Table 3.22: General Autosar Artifact

AUTSSAR

3.1.3.6 General Deliverable

General Deliverable

X «aggregation»
«aggregation»,

«aggregation 0

o
T
I o
*

General Autosar Artifact ~ General Non Autosar Artifact General Documentation

Figure 3.9: General Deliverable

Deliverable General Deliverable

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Products

Brief Description General data for an XML based deliverable within AUTOSAR.

Description General data for an XML based deliverable within AUTOSAR : Especially it contains a catalog of all
included artifacts. These can be AUTOSAR artifacts (see General Autosar Artifact) or
non-AUTOSAR artifacts (see General Non AUTOSAR Artifact).

An AUTOSAR XML artifact which is contained in the catalog may refer to an non AUTOSAR Atrtifact
whithin the catalog via the metamodel element AutosarEngineeringObject (refer to document ID 202
FO_TPS_GenericStructureTemplate for further description).

Kind Delivered

Relation Type Related Element Mult. Note

Aggregates General Autosar Artifact 0..*

Aggregates General Documentation 0..*

Aggregates General Non Autosar 0..*

Artifact

Table 3.23: General Deliverable

3.1.3.7 General Non-Autosar Artifact

Artifact General Non Autosar Artifact
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Products
Brief Description Describes the data for a non AUTOSAR artifact.
Description Describes the data for a non AUTOSAR artifact.
Kind Custom
Relation Type Related Element Mult. Note
Aggregated by General Deliverable 0..*
Consumed by Provide RTE Calibration 1.7 input from calibration process
Dataset

Table 3.24: General Non Autosar Artifact

AUTSSAR

3.1.3.8 Postbuild Variant Set

Artifact Postbuild Variant Set
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Products
Brief Description Set of Postbuild Variant Criterion Values used to define post-build variants of the software.
Description Set of Postbuild Variant Criterion Values used to define post-build variants of the software.
Such a set does not necessarily define a variant which is actually used. To define a meaningful
variant in the production process, such a set is to be used via reference by artifact Predefined
Variant.
Kind AUTOSAR XML
Relation Type Related Element Mult. Note
Aggregated by Delivered Atomic Software 0..1
Components
Aggregated by ECU Extract of System 0..*
Variant Model
Aggregated by System Description 0..”
Aggregated by VFB System 0..*
In/out Define System Variants 1
In/out Define Integration Variant 0.~
In/out Define VFB Variants 0..”
Consumed by Generate RTE Postbuild 1
Dataset
Consumed by Generate Atomic Software 0..1
Component Contract
Header Files
Consumed by Generate RTE Prebuild 0..1
Dataset
Consumed by Evaluate Variant 0..*
Consumed by Extract ECU System 0..*
Variant Model
Use meta model PostBuildVariantCriterion 1
element ValueSet

Table 3.25: Postbuild Variant Set

3.1.3.9 Predefined Variant

Artifact Predefined Variant

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Products

Brief Description Defines a variant predefined for usage in subsequent process steps.

Description Defines one variant of a software description for delivery and/or usage in subsequent process steps.
The actual definition of all settings which make up this variant is given by attached System Constant
Value Set (all settings which are resolved prior to post-build) and/or Postbuid Variant Set (all settings
which are resolved after software build). These sets may be part of the same artifact or may be
separated artifacts. Via these settings, the actual values which make up a particular variant, are
selected.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software 0..*
Components

AUTSSAR

A
Artifact Predefined Variant
Aggregated by ECU Extract of System 0..*
Variant Model
Aggregated by System Description 0..*
Aggregated by VFB System 0..*
Produced by Define Integration Variant 1 Meth.bindingTime = SystemDesignTime
Produced by Define System Variants 1
Produced by Define VFB Variants 0..”
Consumed by Generate BSW Module 1
Prebuild Data Set
Consumed by Generate RTE Postbuild 1
Dataset
Consumed by Generate RTE Prebuild 1
Dataset
Consumed by Generate Atomic Software 0..1
Component Contract
Header Files
Consumed by Evaluate Variant 0..*
Consumed by Extract ECU System 0..”
Variant Model
Consumed by Generate Component 0.
Prebuild Data Set
Use meta model PredefinedVariant 1
element

Table 3.26: Predefined Variant

3.1.3.10 Standard Header Files

Artifact

Standard Header Files

Package

AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Products

Brief Description

Overall header files to be included by each standardized BSW module, optionally also by Software
Component code.

Description

Overall header files to be included by each standardized BSW module, optionally also by Software
Component code. For simplicity of the methodology, these are modeled as one artifact though in
practice these are several different files:

* (<prefixes>_)MemMap.h - defines a common set of macros in order to define abstract memory
sections for code and data in the source code . The prefixes indicates whether the scope is
limited to a component, module or some other source code area (e.g. an ICC2 BSW cluster).
Note that the usage of one MemMap.h for the complete BSW is possible, but deprecated. It is
also possible to use a completely different filename via explicit declaration in the BSW Module
Implementation Description.

» Std_Types.h - defines a common set of C data types for usage within the basic software, this
header includes the following two headers:

* Platform_Types.h - for abstraction of platform specific types

Kind

Source Code

Relation Type

Related Element | Mult. |Note

\Y

AUTSSAR

Artifact

Standard Header Files

Produced by

Generate BSW Memory
Mapping Header

BSW_MemMap: The memory mapping header file to be
used for one or more BSW modules in a given build
environment.

The file name has in the standardized case a form like
{Mip}_MemMap.h in which the prefixes {Mip} are
determined by the BSW module (or BSW cluster) name
and optional infixes.

However, it is also possible to create a completely
different filename via explicit declaration in the BSW
Module Implementation.

For more detailed rules on the name of the generated
file refer to document ID 128 CP_SWS_Memory
Mapping.

Meth.bindingTime = CodeGenerationTime

Produced by

Generate SWC Memory
Mapping Header

SWC_MemMap: One header per software component
type for a given build environment.

The file name follows the pattern {componentType
Name}_MemMap.h in which the prefix componentType
Name is determined by the software component type
name.

For more detailed rules on the name of the generated
file refer to document ID 128 CP_SWS_Memory
Mapping.

Meth.bindingTime = CodeGenerationTime

Consumed by

Compile Atomic Software
Component

Meth.bindingTime = CodeGenerationTime

Consumed by

Compile BSW Core Code

Meth.bindingTime = CodeGenerationTime

Consumed by

Compile ECU Source Code

Meth.bindingTime = CodeGenerationTime

Consumed by

Implement a BSW Module

Meth.bindingTime = CodeGenerationTime

Consumed by

Re-compile Component in
ECU context

_| a A =

Meth.bindingTime = CodeGenerationTime

Consumed by

Implement Atomic Software
Component

0..1

Meth.bindingTime = CodeGenerationTime

3.1.3.11 System Constant Value Set

Table 3.27: Standard Header Files

Artifact System Constant Value Set
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Work Products
Brief Description Set of System Constant Values used to handle variants.
Description Set of System Constant Values used to define pre-build variants of the software.
Such a set does not necessarily define a variant which is actually used. To define a meaningful
variant in the production process, such a set is to be used via reference by artifact Predefined
Variant.
Kind AUTOSAR XML
Relation Type Related Element Muit. Note
Aggregated by Delivered Atomic Software 0..”
Components
Aggregated by ECU Extract of System 0..*
Variant Model
Aggregated by System Description 0..x

AUTSSAR

A

Artifact System Constant Value Set
Aggregated by VFB System 0.*
In/out Define System Variants 1
In/out Define Integration Variant 0..”
In/out Define VFB Variants 0..”
Consumed by Generate BSW Module 1

Prebuild Data Set
Consumed by Generate RTE Prebuild 1

Dataset

Consumed by

Generate Component
Prebuild Data Set

1.7 Meth.bindingTime = CodeGenerationTime

Consumed by Generate Atomic Software 0..1 Meth.bindingTime = SystemDesignTime
Component Contract
Header Files

Consumed by Evaluate Variant 0..*

Consumed by Extract ECU System 0.~
Variant Model

Use meta model SwSystemconstantValue 1

element Set

3.1.4 Roles

Table 3.28: System Constant Value Set

Role AUTOSAR Partnership

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Roles
Brief Description The AUTOSAR Partnership development defines standard artifacts.

Description

Relation Type

Related Element ‘ Mult. ‘Note

Table 3.29: AUTOSAR Partnership

Role Basic Software Designer

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Roles

Brief Description Role responsible for the overall design of the Basic Software.

Description Role responsible for the overall design of the Basic Software. In contrast to the Basic Software
Module Developer he is responsible for the consistency of interfaces and data types between
modules.

Relation Type Related Element Mult. Note

Performs Define BSW Behavior 1

Performs Define BSW Entries 1

Performs Define BSW Interfaces 1

Performs Define BSW Types 1

Performs Create Transformer 0..1
Specification

Performs Define VFB NvBlock 0..1
Software Component

Performs Define Vendor Specific 0..1
Module Definition

Table 3.30: Basic Software Designer

AUTSSAR

Role Basic Software Module Developer
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Roles
Brief Description Role responsible to develop and deliver a Basic Software Module.
Description
Relation Type Related Element Mult. Note
Performs Compile BSW Core Code 1
Performs Create Library 1
Performs Define BSW Entries 1
Performs Define BSW Interfaces 1
Performs Define BSW Module Timing 1
Performs Define BSW Types 1
Performs Define Memory Addressing 1
Modes
Performs Develop BSW Module 1
Generator
Performs Generate BSW Module 1
Prebuild Data Set
Performs Generate BSWM Contract 1
Header Files
Performs Implement a BSW Module 1
Performs Configure Memmap 0..1
Allocation
Performs Define Vendor Specific 0..1
Module Definition
Performs Generate BSW Memory 0..1 0..%:
Mapping Header
Performs Measure Component 0..1
Resources

Table 3.31: Basic Software Module Developer

Role Calibration Engineer
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Roles
Brief Description The calibration engieer determines the calibration parameters of an ECU.
Description
Relation Type Related Element Muit. Note
Performs Generate A2L 1
Performs Create MC Function Model 0..1
Performs Define VFB Constants 0..1
Performs Provide RTE Calibration 0..1
Dataset
Performs Define VFB Parameter 0..”
Component
Performs Merge CpSoftwareCluster 0..*

Table 3.32: Calibration Engineer

Role Certification Agency

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Roles

Brief Description The certification agency verifies the conformance of artifacts with respect to the standard artifacts
defined by the autosar consortium.

\Y%

AUTSSAR

A
Role Certification Agency
Description
Relation Type Related Element ‘ Mult. ‘ Note

Table 3.33: Certification Agency

Role ECU Integrator

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Roles

Brief Description Integrates the complete software on an ECU.

Description Integrates the complete software on an ECU, which includes generating necessary code and
completing the configuration of all software components and basic software modules.

Relation Type Related Element Mult. Note

Performs Compile ECU Source Code 1

Performs Configure Com 1

Performs Configure Diagnostics 1

Performs Configure ECUC 1

Performs Configure 10 Hardware 1
abstraction

Performs Configure MCAL

Performs Configure Mode 1
Management

Performs Configure NvM 1

Performs Configure OS 1

Performs Configure RTE 1

Performs Configure Transformer 1

Performs Configure Watchdog 1
Manager

Performs Connect Service 1
Component

Performs Create Library 1

Performs Create Service Component 1

Performs Define ECU Timing 1

Performs Define Integration Variant 1

Performs Extract the ECU 1
Communication

Performs Generate BSW 1
Configuration Code

Performs Generate BSW Memory 1
Mapping Header

Performs Generate Base Ecu 1
Configuration

Performs Generate ECU Executable 1

Performs Generate Local MC Data 1
Support

Performs Generate OS 1

Performs Generate RTE 1

Performs Generate RTE Postbuild 1

Dataset

AUTSSAR

A

Role ECU Integrator

Performs Generate RTE Prebuild 1
Dataset

Performs Generate SWC Memory 1
Mapping Header

Performs Generate Scheduler 1

Performs Generate Updated ECU 1
Configuration

Performs Measure Resources 1

Performs Provide RTE Calibration 1
Dataset

Performs Configure Memmap 0..1
Allocation

Performs Create MC Function Model 0..1

Performs Define VFB NvBlock 0..1
Software Component

Performs Extend Topology .1

Performs Extract ECU Rapid A
Prototyping Scenario

Performs Extract ECU System Timing A

Performs Extract ECU System A
Variant Model

Performs Extract ECU Topology .1

Performs Flatten Software A
Composition

Performs Generate Component 0..1
Header File in Vendor Mode

Performs Generate or Adjust ECU 0..1
Flat Map

Performs Map Software Component 0..1
to BSW

Performs Measure Component 0..1
Resources

Performs Design CpSoftwareCluster 0..*

Performs Extend CpSoftwareCluster s

Performs Merge CpSoftwareCluster W

Table 3.34: ECU Integrator

Role Software Component Designer

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Roles

Brief Description Designer of software components and VFB systems.

Description

Relation Type

Related Element

Mult.

Note

Performs Add Documentation to the 1
Software Component

Performs Define Atomic Software 1
Component Internal
Behavior

Performs Define Complex Driver 1

Component

AUTSSAR

A
Role Software Component Designer
Performs Define Consistency Needs 1
Performs Define VFB Application 1
Software Component
Performs Define VFB Composition 1
Component
Performs Define VFB Timing 1
Performs Define VFB Variants 1
Performs Define Wrapper 1
Components to Integrate
Legacy Software
Performs Map Software Component 1
to BSW
Performs Define Partial Flat Map 0..1
Performs Define VFB Component 0..1
Constraints
Performs Define VFB NvBlock 0..1
Software Component
Performs Define VFB Top Level 0..1
Performs Define ECU Abstraction .*
Component
Performs Define VFB Constants 0..”
Performs Define VFB Interfaces 0..”
Performs Define VFB Modes 0..*
Performs Define VFB Sensor or 0.*
Actuator Component
Performs Define VFB Types 0..”
Table 3.35: Software Component Designer
Role Software Component Developer
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Roles
Brief Description Developer of the software component code.
Description

Relation Type

Related Element

Mult.

Note

Performs Define Consistency Needs 1

Performs Define Software 1
Component Timing

Performs Define SymbolProps for 1
Types

Performs Generate Atomic Software 1
Component Contract
Header Files

Performs Generate Component 1
Header File in Vendor Mode

Performs Generate Component 1
Prebuild Data Set

Performs Implement Atomic Software 1
Component

Performs Measure Component 1

Resources

AUTSSAR

A
Role Software Component Developer
Performs Add Documentation to the 0..1
Software Component
Performs Compile Atomic Software 0..1
Component
Performs Configure Memmap 0..1
Allocation
Performs Define Atomic Software 0..1
Component Internal
Behavior
Performs Define Memory Addressing 0..1
Modes
Performs Define Partial Flat Map .
Performs Generate SWC Memory .1
Mapping Header
Performs Merge CpSoftwareCluster >
Performs Re-compile Component in .*
ECU context
Table 3.36: Software Component Developer
Role System Engineer
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Roles
Brief Description Creation, management, developement and integration of systems within the vehicle
Description
Relation Type Related Element Mult. Note
Performs Assign Top Level 1
Composition
Performs Create Transformer 1
Specification
Performs Define Communication 1
Matrix
Performs Define E2E Transformer 1
Technology
Performs Define ECU Description 1
Performs Define Frames 1
Performs Define Network 1
Management
Performs Define PDU Gateway 1
Performs Define RTE Fan-out 1
Performs Define Secured PDUs 1
Performs Define Signal Gateway 1
Performs Define Signal PDUs 1
Performs Define Signal Path 1
Constraints
Performs Define System Timing 1
Performs Define System Topology 1
Performs Define System Variants 1
Performs Define System View 1
Mapping
Performs Define TP 1

AUTSSAR

A

Role System Engineer

Performs Define Transformation 1
Chain

Performs Define Transformation 1
Technology

Performs Deploy Software 1
Component

Performs Derive Communication 1
Needs

Performs Extend Composition 1

Performs Extract the ECU 1
Communication

Performs Flatten Software 1
Composition

Performs Generate or Adjust System 1
Flat Map

Performs Select Design Time Variant 1

Performs Select Software Component 1
Implementation

Performs Set System Root 1

Performs Define VFB Component 0..1
Constraints

Performs Define VFB Composition 0..1
Component

Performs Define VFB Constants 0..1

Performs Define VFB Top Level 0..1

Performs Extend Topology 0..1

Performs Extract ECU Rapid 0..1
Prototyping Scenario

Performs Extract ECU System Timing 0..1

Performs Extract ECU System .1
Variant Model

Performs Extract ECU Topology .1

Performs Generate or Adjust ECU .1
Flat Map

Performs Design CpSoftwareCluster 0..”

Table 3.37: System Engineer

Role Non-AUTOSAR System Integrator

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Roles

Brief Description Responsibility for the quality of the description of the non-AUTOSAR system and its integration into
the AUTOSAR process.

Description The non-AUTOSAR System Integrator is responsible for the quality of the Description of the

non-AUTOSAR System, the correct definition of the VFB Integration Connector, and the integration
of the non-AUTOSAR system into the AUTOSAR process via the translation of the non-AUTOSAR

artifacts.

Relation Type

Related Element

Mult.

Note

Performs

Define VFB Integration
Connector

1

\Y

AUTSSAR

JAN

Role Non-AUTOSAR System Integrator
Performs Translate Non-Autosar 1

Description to Autosar

Description

Table 3.38: Non-AUTOSAR System Integrator

Role Rapid Prototyping Engineer
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Roles
Brief Description
Description
Relation Type Related Element Mult. Note
Performs Define Rapid Prototyping 1

Scenario
Performs Generate Rapid Prototyping 1

Wrapper
Performs Refine Rapid Prototyping 1

Scenario
Performs Compile Atomic Software 0..1

Component
Performs Merge CpSoftwareCluster 0..”

Table 3.39: Rapid Prototyping Engineer

Role Safety Engineer
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Roles
Brief Description
Description Responsibility for the safety relevant steps in the AUTOSAR development process

Relation Type

Related Element

Mult.

Note

Performs Add Independence Relation 1

Performs Allocate Safety Measure 1

Performs Allocate Safety 1
Requirement

Performs Decompose Safety 1
Requirement

Performs Define ASIL For AUTOSAR 1
Element

Performs Define Safety Measure 1

Performs Define Safety Requirement 1

Performs Map Safety Requirement to 1
Safety Measure

Performs Refine Safety Requirement 1

Table 3.40: Safety Engineer

AUTSSAR

3.1.5 Tools

3.1.5.1 Compiler
Tool Compiler
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Guidance
Brief Description
Description
Kind
Relation Type Related Element Mult. Note
Used Compile Atomic Software 1
Component
Used Compile BSW Configuration 1
Data
Used Compile BSW Core Code 1
Used Compile Configured BSW 1
Used Compile ECU Source Code 1
Used Compile Generated BSW 1
Used Compile Unconfigured BSW 1
Used Re-compile Component in 1
ECU context

3.1.5.2 Linker

Table 3.41: Compiler

Post-Build Time

Tool Linker
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Guidance
Brief Description
Description
Kind
Relation Type Related Element Mult. Note
Used Generate ECU Executable 1
Used Link ECU Code after 1
Precompile Configuration
Used Link ECU Code during Link 1
Time Configuration
Used Link ECU Code during 1

Table 3.42: Linker

AUTSSAR

3.1.6 Diagnostics

3.1.6.1 Work Products

Diagnostic Extract

Diagnostic Abstract System
Description

Figure 3.10: Diagnostic Extract Deliverables

Diagnostic System Extract Diagnostic ECU Extract

Deliverable Diagnostic Extract

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Diagnostics::Work
Products

Brief Description

Description Generic deliverable for defining diagnostic information. It is used in different roles (Diagnostic
Extract categories).
In each role, this deliverable may contain variation points in its ARXML artifacts which need to be
bound in later steps. If such variation points are present, the Diagnostic Description may optionally
include PredefinedVariants in order to predefine variants for later selection and an Evaluated Variant
Set.

Kind

Extended By

Diagnostic Abstract System Description, Diagnostic ECU Extract, Diagnostic System Extract

Relation Type

Related Element | Mult. |Note

Table 3.43: Diagnostic Extract

Deliverable Diagnostic Abstract System Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Diagnostics::Work
Products

Brief Description

Description This deliverable represents a more or less high-level definition of diagnostic information that can be
taken as a template for creating Diagnostic System Extract or Diagnostic ECU Extract. It
corresponds to an Diagnostic Extract with DiagnosticContributionSet of category DIAGNOSTICS_
ABSTRACT_SYSTEM_DESCRIPTION.

Kind

Extends Diagnostic Extract

Relation Type Related Element Mult. Note

Produced by Develop Diagnostic 1
Abstract System
Description
Develop Diagnostic 0..*
Requirements

Table 3.44: Diagnostic Abstract System Description

AUTSSAR

Deliverable Diagnostic System Extract

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Diagnostics::Work
Products

Brief Description

Description This deliverable represents concrete diagnostic information for several ECUs. It corresponds to an
Diagnostic Extract with DiagnosticContributionSet of category DIAGNOSTICS_SYSTEM_EXTRACT.

Kind

Extends Diagnostic Extract

Relation Type Related Element Mult. Note

Produced by Develop Application 0..* Diagnostic information relevant to the SW-Cs is

Software provided as a part of the Diagnostic System Extract and

can contain relationships to the SW-C’s service needs.

Produced by

Develop Basic Software

Produced by

Develop Diagnostic
Requirements

Consumed by Develop Application 0..* The Diagnostic System Extract contains diagnostic

Software information that serves as a requirement for the
software developer.

Consumed by Develop Basic Software 0..*

Consumed by Develop Diagnostic 0..”
Requirements

Consumed by Integrate Diagnostic 0..”
Information

Table 3.45: Diagnostic System Extract

Deliverable Diagnostic ECU Extract

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Diagnostics::Work
Products

Brief Description

Description This deliverable represents concrete diagnostic information for a single ECUs. It corresponds to an
Diagnostic Extract with DiagnosticContributionSet of category DIAGNOSTICS_ECU_EXTRACT.

Kind

Extends Diagnostic Extract

Relation Type Related Element Mult. Note

Produced by Integrate Diagnostic 1.* complete DE:
Information

Produced by Develop Diagnostic 0.*

Requirements

Consumed by Generate Base Ecu 0..1
Configuration

Consumed by Generate Updated ECU 0..1
Configuration

Consumed by

Integrate Software for ECU A1 complete DE:

Consumed by

Prepare ECU Configuration

Consumed by

Update ECU Configuration

Consumed by

ololole

Integrate Diagnostic
Information

partially filled DE:

Table 3.46: Diagnostic ECU Extract

AUTSSAR

3.1.7 Safety
3.1.7.1 Tasks

3.1.7.1.1 Define Safety Requirement

Safety Engineer

«performs»

«output» —

«input»

[

0.% 1 || e—
—

Define Safety
Requirement

General Autosar Safety Requirement

Artifact
Figure 3.11: Define Safety Requirement
Task Definition Define Safety Requirement
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety:: Tasks
Brief Description Add Safety Requirements to work products.
Description This task creates a safety requirement and sets the corresponding attributes such as ASIL. The
allocation to an AUTOSAR element and the mapping to a safety measure are not part of this task.
Relation Type Related Element Mult. Note
Performed by Safety Engineer 1
Consumes General Autosar Artifact 0..*
Produces Safety Requirement 1

Table 3.47: Define Safety Requirement

3.1.7.1.2 Define Safety Measure

Safety Engineer

«performs»

«output»

0.* «input» | e—

[l

Define Safety Measure

General Autosar Safety Measure

Artifact

Figure 3.12: Define Safety Measure

AUTSSAR

Task Definition Define Safety Measure

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety:: Tasks

Brief Description Add Safety Measures to work products.

Description This task creates a safety measure and sets the corresponding attributes such as ASIL. The
allocation to an AUTOSAR element and the mapping to a safety requirement are not part of this task.

Relation Type Related Element Mult. Note

Performed by Safety Engineer 1

Consumes General Autosar Artifact 0.*

Produces Safety Measure 1

Table 3.48: Define Safety Measure

3.1.7.1.3 Define ASIL For AUTOSAR Element

Safety Engineer

«performs»

«input»

Define ASIL For «output»
AUTOSAR Element

General Autosar Artifact

Figure 3.13: Define ASIL For AUTOSAR Element

Task Definition Define ASIL For AUTOSAR Element

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety:: Tasks

Brief Description Provide ASIL attribute for AUTOSAR element.

Description According to the safety extensions, AUTOSAR elements can carry ASIL attributes if they are safety

relevant. This task assigns the ASIL attribute to an AUTOSAR element.
The assignment of the ASIL attribute can also be done for safety requirements and safety
measures. This is covered by the tasks "Define Safety Requirement" and "Define Safety Measure".

Relation Type

Related Element

Mult.

Note

Performed by

Safety Engineer

1

Consumes

General Autosar Artifact

1

Produces

General Autosar Artifact

1

Table 3.49: Define ASIL For AUTOSAR Element

AUTSSAR

3.1.7.1.4 Refine Safety Requirement

Safety Engineer

«performs»

+Original Safety Requirement

«input» 1
+Refined Safety Requirement:

Refine Safety «output» 1.%
Requirement

Safety Requirement

Figure 3.14: Refine Safety Requirement

Task Definition Refine Safety Requirement

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety::Tasks

Brief Description Refine existing Safety Requirements by adding more detailed safety requirements and organize
them in an appropriate hierarchy.

Description If safety requirements are not detailed enough to allocate them directly to appropriate AUTOSAR

elements, it is necessary to refine them first. The refinement will add new safety requirements which
are in a hierarchy relation to existing safety requirements.

This task adds the corresponding "REFINEMENT" relation between the original requirement and the
newly created requirements.

This task can be done on different levels, depending on the level of details of the safety
requirements.

Relation Type Related Element Mult. Note

Performed by Safety Engineer 1

Consumes Safety Requirement 1 Original Safety Requirement:
Produces Safety Requirement 1.* Refined Safety Requirement:

Table 3.50: Refine Safety Requirement

3.1.7.1.5 Decompose Safety Requirement

Safety Engineer

«performs»
+Initial Safety Requirement
- —
«input» | p—
—
+Decomposed Safety Requirements| sesm—m—n
Decompose Safety ~— «output» 2 | —

Requirement
Safety Requirement

Figure 3.15: Decompose Safety Requirement

AUTSSAR

Task Definition Decompose Safety Requirement

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety:: Tasks

Brief Description Decompose existing Safety Requirements into independent Safety Requirements to tailor the ASIL.
Description By ASIL decomposition it is possible to decompose a safety requirement into two new safety

requirements with potentially lower ASILs. This can be done, if the independence (freedom from
interference) for the resulting requirements can be demonstrated. The modeling of the
corresponding INDEPENDENCE relation is covered by task "Add Independence Relation".

This task adds the corresponding "DECOMPOSITION" reference.

Relation Type Related Element Mult. Note

Performed by Safety Engineer 1

Consumes Safety Requirement 1 Initial Safety Requirement:
Produces Safety Requirement 2 Decomposed Safety Requirements:

Table 3.51: Decompose Safety Requirement

3.1.7.1.6 Allocate Safety Measure

Safety Engineer

«performs»
—)
s—) 1. #iNpU» «input»
—
— —
s | +Allocated Elements +Allocated Safety Measure | s
T | oomtput Allocate Safety «output» RIS pe—

General Autosar

Measure

Artifact Safety Measure
Figure 3.16: Allocate Safety Measure
Task Definition Allocate Safety Measure
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety:: Tasks
Brief Description Allocate Safety Measure to AUTOSAR elements.
Description Safety measures which are safety mechanisms realized in AUTOSAR are allocated to AUTOSAR

elements in order to describe what elements are involved in the provision of a safety measure. This
task adds the corresponding "ALLOCATION" reference. The reference can be contained by the
AUTOSAR element or by the safety measure.

The allocation can be done on different levels, depending on the granularity of the safety measures
and the availability of the appropriate elements in the model.

Relation Type Related Element Mult. Note

Performed by Safety Engineer 1

Consumes Safety Measure 1

Consumes General Autosar Artifact 1.*

Produces Safety Measure 0..1 Allocated Safety Measure:
Produces General Autosar Artifact 0..” Allocated Elements:

Table 3.52: Allocate Safety Measure

AUTSSAR

3.1.7.1.7 Allocate Safety Requirement

Safety Engineer

«performs»
— «input» «input»
— | % | —
— o ——
| +Allocated Elements +Allocated Requirement || se—
—10..* «output» Allocate Safety «output» 0.1}
—

Requirement

General Autosar

Artifact

Safety Requirement

Figure 3.17: Allocate Safety Requirement

Task Definition Allocate Safety Requirement

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety:: Tasks

Brief Description Allocate Safety Requirement to AUTOSAR elements.

Description Safety requirements are allocated to AUTOSAR elements in order to fulfill the needs of ISO 26262.

By this allocation, AUTOSAR elements obtain their ASIL attribute (if not defined e.g. during previous
development of the element).

This task adds the corresponding allocation reference to the AUTOSAR element. The reference can
be contained by the AUTOSAR element or by the safety requirement.

The allocation can be done on different levels, depending on the granularity of the safety
requirements and the availability of the appropriate elements in the model.

Relation Type Related Element Muit. Note

Performed by Safety Engineer 1

Consumes Safety Requirement 1

Consumes General Autosar Artifact 1.7

Produces Safety Requirement 0..1 Allocated Requirement:
Produces General Autosar Artifact 0.* Allocated Elements:

Table 3.53: Allocate Safety Requirement

3.1.7.1.8 Map Safety Requirement to Safety Measure

Safety Engineer

«performs»

1 «input» «input» 1

0..1 «output» «output» 01

Map Safety
Requirement to Safety

Safety Requirement Measure

Safety Measure

Figure 3.18: Map Safety Requirement to Safety Measure

AUTSSAR

Task Definition Map Safety Requirement to Safety Measure

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety:: Tasks

Brief Description Map Safety Requirements to Safety Measures

Description The mapping relates safety requirements with safety measures. This task creates the corresponding

MAPS_TO relation. The mapping relation can either be contained by the safety requirement or by
the safety measure.

The mapping can be done on different levels, depending on the granularity of the safety
requirements and the safety measures.

Relation Type Related Element Mult. Note
Performed by Safety Engineer 1

Consumes Safety Measure 1

Consumes Safety Requirement 1

Produces Safety Measure 0..1

Produces Safety Requirement 0..1

Table 3.54: Map Safety Requirement to Safety Measure

3.1.7.1.9 Add Independence Relation

Safety Engineer

«performs»

*

«input» 1.

+Linked Requirement

Add Independence «output> 1.%

Relation "
Safety Requirement

Figure 3.19: Add Independence Relation

Task Definition Add Independence Relation

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety::Tasks
Brief Description Add Independence relation to decomposed requirements.

Description This task establishes the INDEPENDENCE relation between requirements. The relation is

established between a decomposed requirement and a requirement which express a means to
achieve freedom from interference for the two requirements into which the decomposed requirement
is decomposed by the task Decompose Safety Requirement.

Obviously, this task is processed in the context of the decomposition of safety requirements.

Relation Type Related Element Mult. Note

Performed by Safety Engineer 1

Consumes Safety Requirement 1.*

Produces Safety Requirement 1.* Linked Requirement:

Table 3.55: Add Independence Relation

AUTSSAR

3.1.7.2 Work Products

3.1.7.2.1 Safety Extensions
Safety Extensions
E «aggregation» _—
E 0| ee—
A «aggregation> Safety Requirement
0..% | eo—
Safety Measure
VI_=B Safety Extensions S:)ftware Component Safety S;slem Safety Extensions
Extensions
Figure 3.20: Safety Extensions
Deliverable Safety Extensions
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety::Work
Products
Brief Description Safety Extensions
Description This element represents an abstract deliverable containing all safety relevant artifacts. Several
specializations of this deliverable are used to demonstrate the handling of safety extensions in
specific development activities.
The explicit separation of the safety information from the AUTOSAR models allows an independent
exchange and processing of them.
Kind Delivered
Extended By Software Component Safety Extensions, System Safety Extensions, VFB Safety Extensions
Relation Type Related Element Mult. Note
Aggregates Safety Measure 0..*
Aggregates Safety Requirement 0.*
Table 3.56: Safety Extensions
Deliverable VFB Safety Extensions
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety::Work
Products
Brief Description Vib Safety Extensions
Description This deliverable contains all safety information related to VFB elements.
Kind Delivered
Extends Safety Extensions
Relation Type Related Element Muit. Note
Produced by Define VFB Safety 1
Information
Consumed by Define Software 1
Component Safety
Information
Consumed by Define System Safety 1
Information

Table 3.57: VFB Safety Extensions

AUTSSAR

Deliverable Software Component Safety Extensions
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety::Work
Products
Brief Description Software Component Safety Extensions
Description This deliverable contains all safety information related to software components.
Kind Delivered
Extends Safety Extensions
Relation Type Related Element Mult. Note
Produced by Define Software 1
Component Safety
Information
Consumed by Define System Safety 1
Information

Table 3.58: Software Component Safety Extensions

Deliverable System Safety Extensions

Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety::Work
Products

Brief Description System Safety Extensions

Description This deliverable contains all safety information related to system elements (see Deliverable "System
Description" for more details).

Kind Delivered

Extends Safety Extensions

Relation Type Related Element Mult. Note
Produced by Define System Safety 1
Information

Table 3.59: System Safety Extensions

3.1.7.2.2 Safety Requirement

Artifact

Safety Requirement

Package

AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety::Work
Products

Brief Description

Safety Requirement

Description

This artifact represents a safety requirement and the corresponding ASIL attribute. 1ISO 26262
defines a hierarchy of safety requirements: safety goals, technical, hardware and software.
Furthermore, it might be the case that safety requirements are specified outside the AUTOSAR
model (external) and are only referenced. Thus, the safety requirement can have one of the
following categories:

« SAFETY_GOAL

* SAFETY_FUNCTIONAL

* SAFETY_TECHNICAL

» SAFETY_SOFTWARE

« SAFETY_HARDWARE

* SAFETY_EXTERNAL
For details refer to ISO 26262-3, 4, 9.

Kind

AUTOSAR XML

\Y

AUTSSAR

JAN
Artifact Safety Requirement
Relation Type Related Element Mult. Note
Aggregated by Safety Extensions 0..*
Produced by Decompose Safety 2 Decomposed Safety Requirements:
Requirement
Produced by Define Safety Requirement 1
Produced by Add Independence Relation 1.7 Linked Requirement:
Produced by Refine Safety Requirement 1.* Refined Safety Requirement:
Produced by Allocate Safety 0..1 Allocated Requirement:
Requirement
Produced by Map Safety Requirement to 0..1

Safety Measure

Consumed by

Allocate Safety
Requirement

Consumed by

Decompose Safety
Requirement

Initial Safety Requirement:

Consumed by

Map Safety Requirement to
Safety Measure

Consumed by

Refine Safety Requirement

Original Safety Requirement:

Consumed by

Add Independence Relation

Use meta model
element

StructuredReq

Table 3.60: Safety Requirement

3.1.7.2.3 Safety Measure

Safety Measure

Artifact Safety Measure
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Elements::Safety::Work
Products
Brief Description Safety Measure
Description This artifact represents a safety measure. A safety measure is an activity or solution to avoid
systematic failures and to detect random hardware failures or control failures (see ISO 26262).
The safety measure can have one of the following categories:
* SAFETY_MEASURE
* SAFETY_MECHANISM
Kind AUTOSAR XML
Relation Type Related Element Mult. Note
Aggregated by Safety Extensions 0..”
Produced by Define Safety Measure 1
Produced by Allocate Safety Measure 0..1 Allocated Safety Measure:
Produced by Map Safety Requirement to 0..1

Consumed by

Allocate Safety Measure

Consumed by

Map Safety Requirement to
Safety Measure

AUTSSAR

Artifact

Safety Measure

Use meta model
element

TraceableText 1

Table 3.61: Safety Measure

3.2 Virtual Functional Bus

This chapter contains the definition of work products and tasks used for the develop-
ment of a VFB system. For the definition of the relevant meta-model elements refer
to [5, CP TPS Software Component Template], for the VFB concepts refer to [4, CP TR

VFB].

3.2.1 Tasks

3.2.1.1 Define VFB Top Level

VFB Non Software
AUTOSAR

Component Designer

VFB
Parameter
Component

0.1

0.* «performs»

«input»

«input»

«input» «output»

Component

0.1 .
System Engineer

Define VFB Top Level

<
m
w
Q
o
3
o
(<]
g.
S o
S .

VFB Top Level

Component System Composition
Figure 3.21: Task Define VFB Top Level
Task Definition Define VFB Top Level
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define the top level VFB composition of a concrete system.
Description Define the top level composition of a VFB system.
Relation Type Related Element Mult. Note
Performed by Software Component 0..1
Designer
Performed by System Engineer 0..1
Consumes VFB Interfaces 1.7
Consumes VFB Types 1.*
Consumes VFB Atomic Software 0.*
Component

AUT<S

SSAR

A
Task Definition Define VFB Top Level
Consumes VFB Composition 0.”
Component
Consumes VFB Modes 0..*
Consumes VFB Non AUTOSAR 0.*
Component
Consumes VFB Parameter Component 0.*
Produces VFB Top Level System 1
Composition

Table 3.62: Define VFB Top Level

3.2.1.2 Define VFB Composition Component

VFB Interfaces

VFB AUTOSAR
Standard Package

Software Component
Designer

0..1/ System Engineer

«performs» «performs»,

«input»

VFB Atomic
Software
Component

<
s
w
<
o
=%
@
»

«input» «input»

«output»

Define VFB
Composition
Component

«input»
VFB Composition
Component

«input»)
: «input»
«input»

VFB Non VFB Parameter
AUTOSAR Component
Component

Figure 3.22: Task Define VFB Composition Component

Task Definition Define VFB Composition Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::\VFB::Tasks
Brief Description Define a Composition of VFB Software Components, i.e. a ComponentTypes which contains other

Component Types.

\Y

AUTSSAR

A
Task Definition Define VFB Composition Component
Description Define a Composition of VFB Software Components, i.e. a ComponentType which contains other

Component Types. lteration of this task can create a complete VFB system without the Atomic

Software Components itself.

Relation Type Related Element Mult. Note
Performed by Software Component 1
Designer
Performed by System Engineer 0..1
Consumes VFB Interfaces 1.*
Consumes VFB Types 1.*
Consumes VFB AUTOSAR Standard 0..1 Use port blueprints in order to create ports with
Package standardized application interfaces.
Consumes VFB Atomic Software 0..”
Component
Consumes VFB Composition 0..*
Component
Consumes VFB Modes >
Consumes VFB Non AUTOSAR >
Component
Consumes VFB Parameter Component 0..”
Produces VFB Composition 1
Component

Table 3.63: Define VFB Composition Component

AUTSSAR

3.2.1.3 Extend Composition

System Engineer

VFB Interfaces 0..* VFB Modes

«performs»

«output» «output»

0..% | e—
P «output»
- +initial system VFB Atomic
- 1 «input> Software
- +extended system Extend Composition Component
- 1 «output»
VFB System «output»
g [mmm—
<output» —
VFB Parameter
Component
0.
VFB Software VFB Composition VFB Non AUTOSAR
Component Mapping Component Component
Constraints
Figure 3.23: Task Extend Composition
Task Definition Extend Composition
Package AUTOSAR Root::M2::Methodology::Methodology Library::\VFB::Tasks
Brief Description Extend a software composistion with further compositions and atomic software components.
Description This tasks describes the refinement of a delivered VFB System by extending an existing composition

with further sub-elements, which could be software components (Atomic Software Components as
well as Compositions), connectors or port groups, plus the related interfaces, data types and modes.
The main use case is the refinement of the VFB description of a sub-system: New elements are
added but the original delivery is not changed.

Relation Type Related Element Mult. Note
Performed by System Engineer 1
Consumes VFB System 1 initial system:
Produces VFB System 1 extended system:
Produces VFB Atomic Software 0.
Component
Produces VFB Composition 0..”
Component
Produces VFB Interfaces 0..*
Produces VFB Modes 0..*

AUTSSAR

A
Task Definition Extend Composition
Produces VFB Non AUTOSAR 0.*
Component
Produces VFB Parameter Component 0..”
Produces VFB Software Component >
Mapping Constraints
Produces VFB Types 0..”

Table 3.64: Extend Composition

3.2.1.4 Define VFB Component Constraints

VFB Atomic
Software

Component «performs»

«input»

«input»

Software
Component
Designer

System Engineer

Iy

Define VFB
Component
Constraints

VFB Top Level
System Composition

«input»

VFB Composition
Component

Figure 3.24:

Task Define

VFB Component

«output» 1k | —

VFB Software Component
Mapping Constraints

Constraints

AUTSSAR

Task Definition Define VFB Component Constraints

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define which components need to be deployed together, and which need to be deployed separately.
Description In this task constraints for software components are defined. These constraints can on the one hand

describe which SW-Cs should be mapped together to a single ECU, and which must be mapped to
separate ECUs, without regard to any particular ECU or topology. This can be done by using the
meta-model ComponentClustering and ComponentSeparation constraint.

In fact, before the mapping process begins, it can be useful to impose the allocation of a predefined
set of SW components onto the same ECU, especially if such a set is tightly linked from a functional
point of view. In the same way, two critical SW components, performing some kind of redundancy,
may be not suitable to run both on the same ECU. Thus, we call these two kinds of mapping
constraints, respectively, ComponentClustering and ComponentSeparation. The Component
Clustering constraint (also, clustering) is to be used for expressing that a certain set of SW
components (atomic or not) shall be mapped (allocated) onto the same ECU. This is some kind of
"execute together on same ECU" constraint. The ComponentSeparation constraint (also, separation)
is to be used for expressing that two SW components (atomic or not) shall not be mapped (allocated)
onto the same ECU. This is some kind of "do not execute together on same ECU" constraint.

Relation Type Related Element Mult. Note

Performed by Software Component 0..1
Designer

Performed by System Engineer 0..1

Consumes VFB Atomic Software 2.F
Component

Consumes VFB Top Level System 1
Composition

Consumes VFB Composition 1.
Component

Produces VFB Software Component 1.*
Mapping Constraints

Table 3.65: Define VFB Component Constraints

3.2.1.5 Define VFB Application Software Component

VFB AUTOSAR
Standard Package

Software Component Designer

«input»
«performs»

«input» «output» 1

Define VFB Application Software

Component " P
P VFB Atomic Application

Software Component

«input»

VFB Modes

Figure 3.25: Task Define VFB Application

Software Component

AUTSSAR

Task Definition Define VFB Application Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define an ApplicationSoftwareComponentType on VFB level

Description Define an ApplicationSwComponentType on VFB level. (i.e. without Internal Behavior and
Implementation).

Relation Type Related Element Mult. Note

Performed by Software Component 1
Designer

Consumes VFB Interfaces 1.7

Consumes VFB Types 1.*

Consumes VFB AUTOSAR Standard 0..1 Use port blueprints in order to create ports with
Package standardized application interfaces.

Consumes VFB Modes 0..”

Produces VFB Atomic Application 1
Software Component

Table 3.66: Define VFB Application Software Component

3.2.1.6 Define VFB Sensor or Actuator Component

VFB AUTOSAR
Standard Package Software Component

Designer

«input»

«input» «performs»

«input» «output» 1

Define VFB Sensor or

Actuator Component VFB Sensor Actuator

Component

VFB Types

«input»

ECU Resources Description

Figure 3.26: Task Define VFB Sensor or Actuator Component

Task Definition Define VFB Sensor or Actuator Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::\VFB::Tasks

Brief Description Define a VFB Sensor or Actuator Comnponent.

Description Define a SensorActuatorSwComponentType on VFB level. (i.e. without Internal Behavior and

Implementation). In addition to defining the ports, references to the required sensor/actuator
hardrware shall be specified.

Relation Type

Related Element ‘ Mult. ‘Note

\Y%

AUTSSAR

Component

A
Task Definition Define VFB Sensor or Actuator Component
Performed by Software Component 0.”
Designer
Consumes VFB Interfaces 1.7
Consumes VFB Types 1.*
Consumes VFB AUTOSAR Standard 0..1 Use port blueprints in order to create ports with
Package standardized application interfaces.
Consumes ECU Resources Description 0..*
Produces VFB Sensor Actuator 1

Table 3.67: Define VFB Sensor or Actuator Component

3.2.1.7 Define VFB Parameter Component

VFB Interfaces 1. *

«input»

1.% «input»

«input

VFB
AUTOSAR
Standard
Package

«performs»

Calibration Engineer

«output»

Define VFB Parameter Component

VFB Types

1

VFB Parameter Component

Figure 3.27: Task Define VFB Parameter Component

Task Definition Define VFB Parameter Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define a VFB Parameter Component.

Description Define a VFB Parameter Component.

Relation Type Related Element Mult. Note

Performed by Calibration Engineer 0..”

Consumes VFB Interfaces 1.7

Consumes VFB Types 1.*

Consumes VFB AUTOSAR Standard 0..1 Use port blueprints in order to create ports with
Package standardized application interfaces.

Produces VFB Parameter Component 1

Table 3.68: Define VFB Parameter Component

AUTSSAR

3.2.1.8 Define ECU Abstraction Component

VFB
AUTOSAR
Standard

Software Component Designer
Package p 9

VFB Interfaces

. «input»’
«input»

(il

«input» «output» 1 | —

Define ECU Abstraction

Component ECU Abstraction Software
Component

VFB Types

«input»

VFB Modes ECU Resources Description

Figure 3.28: Task Define ECU Abstraction Component

Task Definition Define ECU Abstraction Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define an EcuAbstractionSoftwareComponentType on VFB level.

Description Define a EcuAbstractionSwComponentType on VFB level. (i.e. without Internal Behavior and
Implementation). In addition to the defining the ports, references to required ECU or processor
hardware elements shall be specified.

Relation Type Related Element Mult. Note

Performed by Software Component 0..*

Designer

Consumes VFB AUTOSAR Standard 1 Use port blueprints in order to create ports with
Package standardized application interfaces.

Consumes VFB Interfaces 1

Consumes VFB Types 1

Consumes ECU Resources Description 0..1

Consumes VFB Modes 0..*

Produces ECU Abstraction Software 1
Component

Table 3.69: Define ECU Abstraction Component

AUTSSAR

3.2.1.9 Define Complex Driver Component

VFB AUTOSAR
Standard
Package

1.%
VFB Interfaces

Software Component Designer

«input»
P «performs»

«input»

«input»

[l

«output»

Define Complex Driver
Component

VFB Types Complex Driver Component

«input»

P
L

VFB Modes ECU Resources Description

Figure 3.29: Task Define Complex Driver Component

Task Definition Define Complex Driver Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define a ComplexDeviceDriverSwComponentType on VFB level.

Description Define a ComplexDeviceDriverSwComponentType on VFB level. (i.e. without Internal Behavior and

hardware elements shall be specified.

Relation Type Related Element Mult. Note

Performed by Software Component 1
Designer

Consumes VFB Interfaces 1.7

Consumes VFB Types 1.7

Consumes VFB AUTOSAR Standard 0..1 Use port blueprints in order to create ports with
Package standardized application interfaces.

Consumes ECU Resources Description .*

Consumes VFB Modes 0..*

Produces Complex Driver Component 1

Table 3.70: Define Complex Driver Component

Implementation). In addition to the defining the ports, references to the required ECU or processor

AUTSSAR

3.2.1.10 Define VFB NvBlock Software Component

0.1
VFB AUTOSAI
Standard Bas
Package Software | g 7 0 asic ECU Integrator
Componen Software
«input» Designer Designer
«performs» «performs»
«performs»

[l

«input»

VFB Interfaces
N

«output»

input:
/ —

Define VFB NvBlock
Software Component

VFB NvBlock
Software
Component

[l

«input»

«input»

0..*

VFB Modes Software Component Internal
Behavior

Figure 3.30: Task Define VFB NvBlock Software Component

Task Definition Define VFB NvBlock Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description

Description Define an NvBlockSwComponentType on VFB level. The NvBlockSwComponentType defines non
volatile data which can be shared between SwComponentPrototypes. The non volatile data of the
NvBlockSwComponentType are accessible via provided and required ports.

Relation Type Related Element Mult. Note

Performed by Basic Software Designer 0..1

Performed by ECU Integrator 0..1

Performed by Software Component 0..1
Designer

Consumes VFB Interfaces 1.7

Consumes VFB Types 1.*

Consumes VFB AUTOSAR Standard 0..1
Package

Consumes Software Component 0..* This input is required to collect the requirements for the
Internal Behavior NvBlockNeeds from the using application software.

Consumes VFB Modes 0..*

Produces VFB NvBlock Software 1
Component

Table 3.71: Define VFB NvBlock Software Component

AUTSSAR

3.2.1.11

Define Wrapper Components to Integrate Legacy Software

VFB AUTOSAR
Standard
Package

Software Component

VFB Interfaces 0..* :
Designer

«input»

«performs»
«input»

0.% «input»

[l

—
—
«output» 1| m—
—
—

7 efine Wrapper Components to

Integrate Legacy Software

VFB Modes VFB Non AUTOSAR

Component

«input»

VFB Types

Figure 3.31: Task Define Wrapper Components to Integrate Legacy Software

Task Definition Define Wrapper Components to Integrate Legacy Software

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define a wrapper component used to represent legacy software that is integrated into an AUTOSAR
system.

Description Define a wrapper component used to represent legacy software that is integrated into an AUTOSAR

system. For the VFB system, this mainly means to define the corresponding port interfaces and data
elements.

Relation Type Related Element Mult. Note

Performed by Software Component 1
Designer

Consumes VFB AUTOSAR Standard 0..1 Use port blueprints in order to create ports with
Package standardized application interfaces.

Consumes VFB Interfaces 0..*

Consumes VFB Modes 0..*

Consumes VFB Types 0..x

Produces VFB Non AUTOSAR 1
Component

Table 3.72: Define Wrapper Components to Integrate Legacy Software

AUTSSAR

3.2.1.12 Define VFB Interfaces

VFB AUTOSAR
Standard Package

0.1
0.%
«input» «performs»

1.% «input»

[l

VFB Types

Define VFB Interfaces

Software Component
Designer

«output» 1, || —

VFB Interfaces

Figure 3.32: Task Define VFB Interfaces

Task Definition Define VFB Interfaces

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define a set of Port Interface required by a system.

Description Define a set of Port Interfaces required by a VFB system, to describe the communication of data via
SWC ports.

Relation Type Related Element Mult. Note

Performed by Software Component 0.”
Designer

Consumes VFB Types 1.*

Consumes VFB AUTOSAR Standard 0..1 Use standardized Port Interfaces as blueprints (as far as
Package applicable) to create the corresponding elements of the

actual project.
Produces VFB Interfaces 1.7

Table 3.73: Define VFB Interfaces

AUTSSAR

3.2.1.13 Define VFB Types

Software Component Designer

«performs|

«output»

0.1 «input»

Define VFB Types

VFB AUTOSAR
Standard Package
«output»

VFB Data Type

Mapping Set
Figure 3.33: Task Define VFB Types
Task Definition Define VFB Types
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define a set of data types required by a system, but not already defined by AUTOSAR.
Description Define a set of Autosar Data Types and related elements as far as visible on the VFB. Standardized

types can be used as input in order to copy and refine them.

The VFB Types will be used for specifying types of DataElements in Sender-Receiver Portinterfaces
and argument/return values of Client-Server PortInterfaces.

This task inludes (optionally) also the creation of a VFB Data Type mapping Set between application
and implementation data types.

Relation Type Related Element Mult. Note
Performed by Software Component 0..*
Designer
Consumes VFB AUTOSAR Standard 0..1 Use standardized elements (e.g. Data Types, Compu
Package Methods) as blueprints (as far as applicable) to create
the corresponding elements of the actual project.
Produces VFB Types 1.*
Produces VFB Data Type Mapping 0..*
Set

Table 3.74: Define VFB Types

AUTSSAR

3.2.1.14 Define VFB Modes

LD

0..*
Software Component Designer

«performs»

«output» 1.

[/

Define VFB Modes

VFB Modes

Figure 3.34: Task Define VFB Modes

Task Definition Define VFB Modes
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Define modes that are used by the VFB components.
Description Define modes (mode groups and the modes they contain) that are used by the VFB components.
Relation Type Related Element Mult. Note
Performed by Software Component 0..*
Designer
Produces VFB Modes 1.*

3.2.1.15 Define

Table 3.75: Define VFB Modes

VFB Constants

Software Component Designer

«performs»
VFB Data TyPe input»
Mapping Set
—
Define VFB Constants COULPULY || e
—
—
VFB Constants
«performs»
0.1 «performe»

o
o
=

VFB Types Calibration Engineer System Engineer

Figure 3.35: Task Define VFB Constants

AUTSSAR

Task Definition Define VFB Constants

Package AUTOSAR Root::M2::Methodology::Methodology Library::\VFB::Tasks

Brief Description Define one or more VFB Constants.

Description Define one or more VFB Constants as standalone artifact. Such constants can be referred in the

specification of inital values at several places in the VFB descrption, such as port interfaces or
declaration of local parameters or variables.

Relation Type Related Element Mult. Note
Performed by Calibration Engineer 0..1
Performed by System Engineer 0..1
Performed by Software Component 0.~
Designer
Consumes VFB Data Type Mapping 0..”
Set
Consumes VFB Types 0..*
Produces VFB Constants 1.*

Table 3.76: Define VFB Constants

3.2.1.16 Define VFB Timing

VFB AUTOSAR
Standard Package

1.

VFB Interfaces Software Component Designer

1.* «input» «output» 1 || —

il

Define VFB Timing

VFB Composition Component VFB Timing

«inputy «input
«inputy

VFB Atomic | VFB Non
Software — | AUTOSAR
Component Component

VFB Parameter
Component

Figure 3.36: Task Define VFB Timing

Task Definition Define VFB Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define VFB Timing (TimingDescription and TimingConstraints) for an Atomic Software Component
or a Composition Component

Description Define VFB Timing (TimingDescription and TimingConstraints) for an Atomic Software Component
or a Composition Component

Relation Type Related Element Mult. Note

Performed by Software Component 1
Designer

\Y

AUTSSAR

A

Task Definition Define VFB Timing

Consumes VFB Composition 1.7
Component

Consumes VFB Interfaces 1.7

Consumes VFB AUTOSAR Standard 0..1
Package

Consumes VFB Atomic Software 0.
Component

Consumes VFB Non AUTOSAR 0..*
Component

Consumes VFB Parameter Component 0..*

Produces VFB Timing 1

Table 3.77: Define VFB Timing

3.2.1.17 Define VFB Variants

VFB Atomic VFB Top Leve VFB

Software System Composition Software

COMPONeNt | s | Composition Component Component
Designer

Y

System Constant Value Set

«performs»

«input» «inoutput»

«input»

Define VFB Variants X
0..* «inoutput» 0..*

[l

VFB Non AUTOSAR
Component

Postbuild Variant Set

' «output»
«inputy «input» output
« »

0.1
— = —
—
—

VFB Parameter Component VFB Interfaces VFB Timing Evaluated Variant Set ~ Predefined Variant

Figure 3.37: Task Define VFB Variants

Task Definition Define VFB Variants

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define variants for the artifacts of a VFB system.

Description Define one or more variants for the artifacts of a VFB system. Defining one variant means creating a

Predefined Variant related to the settings used by the VFB elements in scope. To do so, this task can
make use of existing System Constant Value Sets and/or Postbuid Variant Sets or define new ones.
Several Predefined Variants can be combined to one Evaluated Variant Set.

Relation Type Related Element Mult. Note
Performed by Software Component 1
Designer

Y%

AUTSSAR

A
Task Definition Define VFB Variants
Consumes VFB Top Level System 1
Composition
Consumes VFB Composition 1.*
Component
Consumes VFB Timing 0..1
Consumes VFB Atomic Software 0..*
Component
Consumes VFB Interfaces 0..*
Consumes VFB Non AUTOSAR 0..*
Component
Consumes VFB Parameter Component 0.”
In/out Postbuild Variant Set 0..”
In/out System Constant Value Set 0..*
Produces Evaluated Variant Set 0..”
Produces Predefined Variant 0..”

Table 3.78: Define VFB Variants

3.2.1.18 Define VFB Integration Connector

Non-AUTOSAR
System Integrator

1
«input»
1

«performs»

VFB System

«output»

. Define VFB Integration
«input»
Connector .
Integration

1 Connector

Description of a Non-
AUTOSAR System

Figure 3.38: Task Define VFB Integration Connector

Task Definition Define VFB Integration Connector

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks

Brief Description Define how the non-AUTOSAR system shall be connected to the AUTOSAR system.
Description The VFB Integration Connector is used to represent the connection of the non-AUTOSAR system

and the AUTOSAR system. lts contents and format depend on the way in which the non-AUTOSAR
system is defined.

To define the VFB Integration Connector the requirements on the connection are brought into the
format of the Integration Connector. When the requirements are defined in a proprietary format the
have to be translated to the format of the Integration Connector. When they are only informally
defined or are even more tangible the format of the Integration Connector can be used to elicit,
formalize, and analyze the connection requirements.

\Y

AUTSSAR

JAN
Task Definition Define VFB Integration Connector
Relation Type Related Element Mult. Note
Performed by Non-AUTOSAR System 1
Integrator
Consumes Description of a 1
Non-AUTOSAR System
Consumes VFB System 1
Produces Integration Connector 1
Predecessor Translate Non-Autosar 1
Description to Autosar
Description

Table 3.79: Define VFB Integration Connector

3.2.1.19 Translate Non-AUTOSAR Description to AUTOSAR Description

Non-AUTOSAR

«performs» System Integrator
1 «input»
Integration «output» +Integrated VFB System -
Connector 1 -
«input» +Initial VFB System =
1 -
«input» Translate Non-Autosar - VFB System
Description to Autosar
Description

[

Description of a
Non-AUTOSAR
System

Figure 3.39: Task Translate Non-AUTOSAR Description to AUTOSAR Descrip-
tion

Task Definition Translate Non-Autosar Description to Autosar Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Tasks
Brief Description Translate the description of the non-AUTOSAR system into a semantically equivalent AUTOSAR

description (template).

Description In order to incorporate the development of the non-AUTOSAR system into the AUTOSAR process
the Description of the non-AUTOSAR system must be translated into an AUTOSAR format. Typically
this will be achieved by a translation tool, although in principle it might also be done manually.

Relation Type Related Element Mult. Note
Performed by Non-AUTOSAR System 1
Integrator
Consumes Description of a 1
Non-AUTOSAR System
Consumes Integration Connector 1

AUTSSAR

A

Task Definition Translate Non-Autosar Description to Autosar Description
Consumes VFB System 1 Initial VFB System:
Produces VFB System 1 Integrated VFB System:

Table 3.80: Translate Non-Autosar Description to Autosar Description

3.2.2 Work Products
3.2.2.1 VFB System

See separate diagram

for further
aggregations. VFB System
- «aggregation»
z l—
- —
- —
VFB Top Level
System Composition
«extends» «extends» «extends»

VFB System
Extract

Overall VFB
System

ECU Extract of
VFB System

«aggregation»

aggregatign

«pggregation»

«aggregation»

System View
0.* Mapping

VFB Composition
Component

Figure 3.40: Overview on the different roles of Deliverables based on VFB System

AUT<S

[/

System Constant Value Se

0.7

[lin

Predefined Variant

0.*

iy

Evaluated Variant Set

([

«aggregation»

SAR

VFB Interfaces VFB Modes VFB Types VFB Data Type Mapping Set

*

0.*
<aggregations

VFB Top Level
System Composition

aggregation»

regation»

«aggregation» «aggregation»

«aggregation»
Consistency Needs

O\MQQregaW
0.*

«aggregat

VFB System

VFB Software Component
Mapping Constraints

«aggregation»

0. «aggreggtion»
«aggregatiop» aggregation | —
«aggregation» 0 —
/ tion» «aggregation» —
Postbuild Variant Set aggregation
= 0. 0. 0.* VFB Non AUTOSAR
Component
—
—
—
VFB Atomic VFB Sensor ECU Abstraction Complex Driver "VFB Parameter vFB NvBlock
Application Actuator Software Component Component Software
Software Component Component Component
Component

Figure 3.41: Structure of Deliverable VFB System

Deliverable VFB System

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Complete VFB view of a concrete system.

Description Delivery of a VFB view of a concrete system. i.e. the top level composition and all nested
compositions and components. This element is the basis for several extensions according to the
scope of the VFB which can be an Overall System, a System Extract or an ECU Extract.

This deliverable may contain variation points in its XML artifacts which need to be bound in later
steps of the methodology. If such variation points are present, the delivered VFB system may
optionally include PredefinedVariants in order to predefine variants for later selection and an
Evaluated Variant Set.

Kind Delivered

Extended By ECU Extract of VFB System, Overall VFB System, VFB System Extract

Relation Type Related Element Muit. Note

Aggregates Consistency Needs 1 Correlation between a group of RunnableEntitys and a

group of DataPrototypes.

Aggregates VFB Top Level System 1
Composition

AUTSSAR

A

Deliverable VFB System

Aggregates Complex Driver Component 0.*

Aggregates ECU Abstraction Software 0..”
Component

Aggregates Evaluated Variant Set 0..*

Aggregates Postbuild Variant Set 0..*

Aggregates Predefined Variant 0..*

Aggregates System Constant Value Set 0..”

Aggregates VFB Atomic Application 0..*
Software Component

Aggregates VFB Data Type Mapping 0..”
Set

Aggregates VFB Interfaces e

Aggregates VFB Modes >

Aggregates VFB Non AUTOSAR .*
Component

Aggregates VFB NvBlock Software 0..x
Component

Aggregates VFB Parameter Component .*

Aggregates VFB Sensor Actuator .*
Component

Aggregates VFB Software Component 0..*
Mapping Constraints

Aggregates VFB Types 0..”

Produced by

Extend Composition

extended system:

Produced by

Translate Non-Autosar
Description to Autosar
Description

Integrated VFB System:

Consumed by

Define Partial Flat Map

Various parts of a given VFB system will be used as
input:
* Refer to parameters and variables in port interfaces
and their data types.

* In order to define unique names, also other the
component definitions not in the scope of the partial
flat map might be checked.

+ Set a link to the context of the Flat Map, e.g. a VFB
Composition.

Consumed by

Define VFB Integration
Connector

Consumed by

Define VFB Safety
Information

Consumed by

Extend Composition

initial system:

Consumed by

Extract the ECU
Communication

Need as input in order to set up the Data Mapping.

Consumed by

Generate or Adjust System
Flat Map

Consumed by

Translate Non-Autosar
Description to Autosar
Description

Initial VFB System:

Table 3.81: VFB System

AUTSSAR

3.2.2.2 Overall VFB System

Deliverable Overall VFB System
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products
Brief Description
Description Deliverable containing an overall VFB description. It must contain the VFB Top Level System
Composition of the complete system.
Kind Delivered
Extends VFB System
Relation Type Related Element Mult. Note
Aggregated by Abstract System 1
Description
Aggregated by System Configuration 1
Description
Aggregated by System Constraint 0..1
Description
Aggregates System View Mapping 0..1 The Overall VFB System aggregates a potential
mapping to the abstract or functional view of the system.
Aggregates VFB Composition 0..” Further compositions below the top level composition.
Component
Produced by Develop a VFB System 1
Description
Consumed by Define Software 1
Component Safety
Information
Consumed by Develop Application 1 The application software needs to refer to the relevant
Software elements of the overall VFB system such as Software
Component Types, Port Interfaces and Data Types.
Consumed by Develop System 0..1 Usually the System refers to elements of an overall VFB
descriptions. But for the description of a legacy system,
this input might be empty.
Consumed by Flatten Software 0..1 Read relevant elements starting from VFB Top Level
Composition System Composition in case transformation starts with
the full system.
Consumed by Generate or Adjust ECU 0..1 Used to set the upstream references in case one starts
Flat Map from a complete system.

Table 3.82: Overall VFB System

3.2.2.3 VFB System Extract

Deliverable VFB System Extract

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description The VFB description for the partial system.

Description The VFB description for a sub-system. It contains only those software components which belong to
this sub-system. It should contain a VFB Top Level System Composition which has unconnected
ports reflecting the connection points to the outer system.

Kind Delivered

Extends VFB System

Relation Type Related Element | Mult. | Note

\Y

AUTSSAR

A
Deliverable VFB System Extract
Aggregated by System Extract 1
Aggregates System View Mapping 0..1 The VFB System Extract aggregates a potential
mapping to the abstract or functional view of the system.
Aggregates VFB Composition 0..” Further compositions below the top level composition.
Component
Consumed by Flatten Software 0..1 Read relevant elements starting from VFB Top Level
Composition System Composition in case transformation starts from
the system extract.
Consumed by Generate or Adjust ECU 0..1 Used to set the upstream references in case one starts
Flat Map from a system extract.

Table 3.83: VFB System Extract

3.2.2.4 VFB Top Level System Composition

Artifact VFB Top Level System Composition

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Highest Level Composition consisting of all components that make up the Virtual Functional Bus.

Description Highest Level Composition consisting of all components and their connectors that make up the VFB
System Deliverable.
This composition is not allowed to have ports if it represents the top level composition of an Overall
VFB System, but it may have unconnected ports (and port groups) if it is at the top of a System
Extract or ECU Extract.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by VFB System 1

Produced by Define VFB Top Level 1

Consumed by Assign Top Level 1
Composition

Consumed by Define VFB Component 1
Constraints

Consumed by Define VFB Variants 1

Consumed by Deploy Software 1
Component

Use meta model CompositionSwComponent 1

element Type

Table 3.84: VFB Top Level System Composition

AUTSSAR

3.2.2.5 VFB Composition Component

Artifact VFB Composition Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Describes a set of VFB CompositionTypes.

Description Describes a set of CompositionComponentTypes, which may be nested. A VFB composition
aggregates component types to encapsulate and abstract subsystem functionality. Compositions
contain instances of components (other compositions and atomic components), as well as the
connectors between them.

Kind AUTOSAR XML

Relation Type Related Element Muit. Note

Aggregated by Delivered Atomic Software 0..* In case the delivered atomic components make up one
Components or more VFB Compositions, the composition

description(s) shall be included in the delivery.

Aggregated by Overall VFB System 0..” Further compositions below the top level composition.

Aggregated by VFB System Extract 0..* Further compositions below the top level composition.

Produced by Define VFB Composition 1
Component

Produced by Extend Composition 0..”

Consumed by Set System Root 1 Only the reference to the artifact is needed

Consumed by Define VFB Component 1.7
Constraints

Consumed by Define VFB Timing 1.*

Consumed by Define VFB Variants 1.*

Consumed by Define VFB Composition 0..”

Component

Consumed by Define VFB Top Level 0.*

Use meta model CompositionSwComponent 1

element Type

Use meta model SwComponentType 1

element

Table 3.85: VFB Composition Component

3.2.2.6 VFB AUTOSAR Standard Package

Figure 3.42: Structure of Deliverable VFB AUTOSAR Standard

«aggregation»
1

AUTOSAR Specification of
Application Interfaces

_—

>
[
5
e}
n
>
Pyl

Standard Types
and Blueprints

«aggregation»

VFB AUTOSAR
Standard Package

«aggregation»

AUTOSAR
Platform Types
and Blueprints

Package

AUTSSAR

Deliverable VFB AUTOSAR Standard Package

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Package with standardized AUTOSAR DataTypes, Portinterfaces, ComponentTypes (may include

compositions), etc. on VFB level.

Description Contains the standardized AUTOSAR blueprints needed on VFB level. This deliverable is released

by AUTOSAR and is read only within the methodology.
Kind Delivered
Relation Type Related Element Mult. Note
Aggregates AUTOSAR Platform Types 1
and Blueprints

Aggregates AUTOSAR Specification of 1
Application Interfaces

Aggregates AUTOSAR Standard Types 1
and Blueprints

Consumed by Define ECU Abstraction 1 Use port blueprints in order to create ports with
Component standardized application interfaces.

Consumed by Develop a VFB System 1.7
Description

Consumed by Develop an Abstract 1.*
System Description

Consumed by Define Atomic Software 0..1 Use standardized elements (e.g. Data Types) as
Component Internal blueprints (as far as applicable) to create the
Behavior corresponding elements of the actual project.

Consumed by Define Complex Driver 0..1 Use port blueprints in order to create ports with
Component standardized application interfaces.

Consumed by Define VFB Application 0..1 Use port blueprints in order to create ports with
Software Component standardized application interfaces.

Consumed by Define VFB Composition 0..1 Use port blueprints in order to create ports with
Component standardized application interfaces.
Consumed by Define VFB Interfaces 0..1 Use standardized Port Interfaces as blueprints (as far as
applicable) to create the corresponding elements of the
actual project.
Consumed by Define VFB NvBlock 0..1
Software Component

Consumed by Define VFB Parameter 0..1 Use port blueprints in order to create ports with
Component standardized application interfaces.

Consumed by Define VFB Sensor or 0..1 Use port blueprints in order to create ports with
Actuator Component standardized application interfaces.

Consumed by Define VFB Timing .1

Consumed by Define VFB Types .1 Use standardized elements (e.g. Data Types, Compu
Methods) as blueprints (as far as applicable) to create
the corresponding elements of the actual project.

Consumed by Define Wrapper 0..1 Use port blueprints in order to create ports with

Components to Integrate standardized application interfaces.
Legacy Software
Consumed by Generate Atomic Software 0..1
Component Contract
Header Files
Consumed by Generate Component 0..1
Header File in Vendor Mode
Consumed by Generate Component 0..1

Prebuild Data Set

Table 3.86: VFB AUTOSAR Standard Package

AUT<

SAR

3.2.2.7 AUTOSAR Specification of Application Interfaces

Figure 3.43: The AUTOSAR Specification of Application Interfaces

<
AUTOSAR \ ~
Specification bf S
Application InteKaces ~
\

«AtpUseMetaModelElement»

ARElement
AtpType
Datatypes::AutosarDataType

ARElement
AtpBlueprint
AtpBlueprintable
ComputationMethod::
CompuMethod

ARElenent

AtpBlueprint

AtpBlueprintable
GlobalConstraints::DataConstr

ARElement

AtpBlueprint

AtpBlueprintable

AtpType
Portinterface::Portinterface

ARElement

AtpBlueprint

AtpStructureElement
PortProtoypeBlueprint:
PortPrototypeBlueprint

ARElement

AtpBlueprint

AtpBlueprintable

AtpType
Components::SwComponentType

Artifact AUTOSAR Specification of Application Interfaces

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Definitions of the AUTOSAR standard appliction interfaces.

Description This includes standardized data types, port interfaces, units, port blueprints and example
component types (including compositions) for the design of Application Software Components.
Note that most of the content is not meant as direct input for defining a VFB system but as so-called
blueprints:
Blueprints need to be completed with company or project specific elements (e.g. a component type
defined as blueprint may need additional ports or a data type defined as blueprint may need
additional properties).

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by VFB AUTOSAR Standard 1
Package

Use meta model AutosarDataType 1

element

Use meta model CompuMethod 1

element

Use meta model DataConstr 1

element

Use meta model PortInterface 1

element

AUTSSAR

A
Artifact AUTOSAR Specification of Application Interfaces
Use meta model PortPrototypeBlueprint 1
element
Use meta model SwComponentType 1
element

Table 3.87: AUTOSAR Specification of Application Interfaces

3.2.2.8 VFB Atomic Software Component

ARElement

AtpBlueprint

AtpBlueprintable

AtpType
Conponents::SwComponentType

/ b

/
| «AtpUseMetaModelElement»

VFB Atomic /
Software Conponents::
Component ~— |wsssss== | _ _ ____ = AtomicSwComponentType

ModelElement»

«AtpUseM

«extends» «extends»

«extends»

VEB Atomi VFB Sensor Complex Driver ECU Abstraction
N omlc Actuator Component Software Component
Application Software
Component
Component

Figure 3.44: The Generic Work Product VFB Atomic Software Component

Artifact VFB Atomic Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Description of an Atomic VFB Component.

Description The description of an Atomic Software Component Type without Internal Behavior. Note that there

are more specific artifacts extending this one. This artifact is used to describe general use cases
which are valid for all kind of Atomic Software Components.

Kind AUTOSAR XML

Extended By Complex Driver Component, ECU Abstraction Software Component, VFB Atomic Application
Software Component, VFB Sensor Actuator Component

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software 1.
Components

Y%

AUTSSAR

A

Artifact

VFB Atomic Software Component

Produced by Define SymbolProps for 0.* symbolProps: The symbolProps attribute redefines the
Types software component type name used in the code of the
RTE. This resolves name clashes among different
software component types designed accidentally with
the same shortName.
Note that this output is a splitable element, so it can be
added later without changing the VFB model.
Produced by Extend Composition 0..”
Consumed by Define VFB Component 2.
Constraints
Consumed by Define Atomic Software 1
Component Internal
Behavior
Consumed by Generate Atomic Software 1 Meth.bindingTime = SystemDesignTime
Component Contract
Header Files
Consumed by Generate Component 1 Meth.bindingTime = SystemDesignTime
Header File in Vendor Mode
Consumed by Generate Component 1 Meth.bindingTime = CodeGenerationTime
Prebuild Data Set
Consumed by Select Software Component 1.*
Implementation
Consumed by Define Consistency Needs 0..* The description of an AtomicSoftwareComponentType
without InternalBehavior.
Consumed by Define VFB Composition 0..*
Component
Consumed by Define VFB Timing >
Consumed by Define VFB Top Level s
Consumed by Define VFB Variants >

Use meta model
element

AtomicSwComponentType

Use meta model
element

SwComponentType

Table 3.88: VFB Atomic Software Component

3.2.2.9 VFB Atomic Application Software Component

Artifact VFB Atomic Application Software Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products
Brief Description Description of an Atomic VFB Component.
Description The description of an Application Software Component Type.
It is used to represent the ECU-independent application software.
Kind AUTOSAR XML
Extends VFB Atomic Software Component
Relation Type Related Element Mult. Note
Aggregated by VFB System 0..”

Produced by

Define VFB Application
Software Component

1

\Y

AUTSSAR

Artifact

Use meta model
element

A
VFB Atomic Application Software Component
ApplicationSwComponent 1
Type

Table 3.89: VFB Atomic Application Software Component

3.2.2.10 Complex Driver Component

Artifact Complex Driver Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description VFB Description of a Complex Driver Component.

Description The Complex Driver Component is a special VFB Atomic Software Component that has direct
access to hardware on an ECU and which is therefore linked to a specific ECU or specific hardware.
It uses the meta-model element ComplexDeviceDriverSwComponentType which introduces the
possibility to link from the software representation to its hardware description provided by the ECU
Resource Template.
It provides (non-standardized) AUTOSAR Interfaces via ports on VFB level.

Kind AUTOSAR XML

Extends VFB Atomic Software Component

Relation Type Related Element Mult. Note

Aggregated by VFB System 0..*

Produced by Define Complex Driver 1
Component

Consumed by Map Software Component 0..1
to BSW

Use meta model ComplexDeviceDriverSw 1

element ComponentType

Table 3.90: Complex Driver Component

3.2.2.11 ECU Abstraction Software Component

Artifact

ECU Abstraction Software Component

Package

AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description

VFB Description of an ECU Abstraction Software Component.

Description

The ECU Abstraction Software Component is a special Atomic Software Component that sits
between a component that wants to access ECU periphery (typically a Sensor Actuator Component)
and the Microcontroller Abstraction.

It provides (non-standardized) AUTOSAR Interfaces via ports which represent the ECU periphery.
The EcuAbstractionSwComponentType introduces the possibility to link from the software
representation to its hardware description provided by the ECU Resource Template.

During integration, an ECU Abstraction Software Component will be mapped to a BSW module
which implements it and which will directly (without RTE) be connected to the Microcontroller
Abstraction.

Kind

AUTOSAR XML

Extends

VFB Atomic Software Component

Relation Type

Related Element | Mult. |Note

vV

AUTSSAR

A

Artifact ECU Abstraction Software Component
Aggregated by VFB System 0.*
Produced by Define ECU Abstraction 1

Component
Consumed by Map Software Component 0..1

to BSW
Use meta model EcuAbstractionSw 1
element ComponentType

Table 3.91: ECU Abstraction Software Component

3.2.2.12 VFB Parameter Component

Artifact VFB Parameter Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description A ParameterComponentType defines parameters and characteristic values accessible via provided
Ports.

Description A ParameterSwComponentType defines parameters and characteristic values accessible via
Provide Ports. The provided values are the same for all connected Component Prototypes. This is
as opposed to private parameters which are only available within the scope of an Atomic Software
Component

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by VFB System 0.*

Produced by Define VFB Parameter 1
Component

Produced by Extend Composition 0..*

Consumed by Define VFB Composition 0..*

Component

Consumed by Define VFB Timing 0..*

Consumed by Define VFB Top Level .*

Consumed by Define VFB Variants 0..*

Use meta model ParameterSwComponent 1

element Type

Table 3.92: VFB Parameter Component

3.2.2.13 VFB Sensor Actuator Component

Artifact VFB Sensor Actuator Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Describes a sensor or actuator component that exist at the VFB Level and represents the physical
interface of an actual sensor or actuator hardware element.

\Y%

AUTSSAR

A

Artifact VFB Sensor Actuator Component

Description A Sensor Actuator Software Component is an Atomic Software Component that makes the
functionality of a sensor or actuator usable for other software components. That means that the
Sensor Actuator Software Component provides to the application software components an interface
for the physical values of the sensors and actuators. It is written for a concrete sensor or actuator
and uses the ECU Abstraction interface.
It references the description of the associated hardware elements.

Kind AUTOSAR XML

Extends VFB Atomic Software Component

Relation Type Related Element Mult. Note

Aggregated by Complete ECU Description 0..*

Aggregated by VFB System 0..*

Produced by Define VFB Sensor or 1
Actuator Component

Use meta model SensorActuatorSw 1

element ComponentType

Table 3.93: VFB Sensor Actuator Component

3.2.2.14 VFB NvBlock Software Component

Artifact VFB NvBlock Software Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description

Description The VFB NvBlock Software Component defines non volatile data which can be shared between Sw
ComponentPrototypes. The non volatile data of the VFB NvBlock Software Component are
accessible via provided and required ports.

Kind

Relation Type Related Element Mult. Note

Aggregated by VFB System 0..*

Produced by Define VFB NvBlock 1

Software Component

Use meta model
element

NvBlockSwComponentType 1

Table 3.94: VFB NvBlock Software Component

3.2.2.15 VFB Non AUTOSAR Component

Artifact VFB Non AUTOSAR Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description A Component used to describe the non-autosar entities that exist at the VFB level.
Description A Component used to describe the non-AUTOSAR entities that exist at the VFB level.
Kind AUTOSAR XML

Relation Type Related Element | Mult. | Note

V

AUTSSAR

JAN

Artifact VFB Non AUTOSAR Component
Aggregated by VFB System 0.*
Produced by Define Wrapper 1

Components to Integrate

Legacy Software
Produced by Extend Composition >
Consumed by Define VFB Composition >

Component
Consumed by Define VFB Timing 0..”
Consumed by Define VFB Top Level 0.~
Consumed by Define VFB Variants 0..*
Use meta model SwComponentType 1
element

Table 3.95: VFB Non AUTOSAR Component

3.2.2.16 VFB Interfaces

Artifact VFB Interfaces
Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products
Brief Description Interfaces and related elements that form part of the VFB, but are not standardized by AUTOSAR.
Description Interfaces and related elements that form part of the VFB, but are not standardized by AUTOSAR.
Kind AUTOSAR XML
Relation Type Related Element Mult. Note
Aggregated by Delivered Atomic Software 0..*
Components
Aggregated by VFB System 0..*
Produced by Define VFB Interfaces 1.*
Produced by Extend Composition 0.~
Consumed by Define ECU Abstraction 1
Component
Consumed by Define Complex Driver 1.*
Component
Consumed by Define VFB Application 1.*

Software Component

Consumed by Define VFB Composition 1.*
Component
Consumed by Define VFB NvBlock 1.*

Software Component

Consumed by Define VFB Parameter 1.*
Component
Consumed by Define VFB Sensor or 1.*
Actuator Component
Consumed by Define VFB Timing 1.*
Consumed by Define VFB Top Level 1.*
Consumed by Define Consistency Needs 0..* Interfaces which are relevant for the consistency
definition.
Consumed by Define VFB Variants 0..*

AUTSSAR

Artifact

VFB Interfaces

Consumed by

Define Wrapper 0..”
Components to Integrate
Legacy Software

Consumed by

Generate Atomic Software
Component Contract
Header Files

0..* Meth.bindingTime = SystemDesignTime

Consumed by

Generate Component
Header File in Vendor Mode

0..” Meth.bindingTime = SystemDesignTime

Consumed by Generate Component 0..* Meth.bindingTime = CodeGenerationTime
Prebuild Data Set

Use meta model AutosarDataType 1

element

Use meta model ModeDeclarationGroup 1

element

Use meta model PortInterface 1

element

Table 3.96: VFB Interfaces

3.2.2.17 VFB Types

Artifact

VFB Types

Package

AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description

Data types and related elements that form part of the VFB, but are not standardized by AUTOSAR.

Description

Description of AutosarDataTypes and related elements (e.g. units, computation methods, etc.) that
form part of the VFB, but are not standardized by AUTOSAR. This may also include copies of
standardized elements which have been completed with project specific information (e.g. with
calibration access information or computation methods). A VFB system can contain several different
instances of this artifact, which may fulfill different roles.

AutosarDataTypes can come as so-called ApplicationDatatypes or ImplementationDataTypes. This
package can contain both kinds but they can also be split into separate artifacts. However, since it is
also possible to generate ImplementationDataTypes from ApplicationDataTypes, a VFB system can
be completely defined with ApplicationDatatypes only.

Note that this work product is meant for use cases, in which a set of data types is maintained as a
separate artifact. It is also possible to define particular AutosarDataTypes as part of another artifact,
e.g. of VFB Interfaces if the types are closely related to certain port interfaces.

In the methodology this artifact stands not only for data type definitions, but also for related
elements like addressing methods, units, computation methods, constraints. etc. This is done for
simplicity, because these elements are often consumed by the same tasks. Of course these can be
treated as separate artifacts in real projects.

Kind

AUTOSAR XML

Relation Type

Related Element Mult. Note

Aggregated by

Delivered Atomic Software 0..
Components

Aggregated by

VFB System 0.*

Produced by

Define VFB Types 1.*

Produced by

Define SymbolProps for 0.. symbolProps: The symbolProps attribute redefines the
Types implementation data type name used in the code of the
RTE and/or the component. This resolves name clashes
among different implementation data types designed
accidentally with the same shortName.

Note that this output is a splitable element, so it can be
added later without changing the VFB model.

AUTSSAR

JAN
Artifact VFB Types
Produced by Extend Composition 0..”
Consumed by Define ECU Abstraction 1
Component
Consumed by Define Complex Driver 1.7
Component
Consumed by Define VFB Application 1.*
Software Component
Consumed by Define VFB Composition 1.7
Component
Consumed by Define VFB Interfaces 1.7
Consumed by Define VFB NvBlock 1.*
Software Component
Consumed by Define VFB Parameter 1.7
Component
Consumed by Define VFB Sensor or 1.7
Actuator Component
Consumed by Define VFB Top Level 1.
Consumed by Generate BSW Memory 1.* SwAddrMethod: Referred SwAddrMethods
Mapping Header Meth.bindingTime = SystemDesignTime
Consumed by Generate SWC Memory 1.7 SwAddrMethod: Referred SwAddrMethods
Mapping Header Meth.bindingTime = SystemDesignTime
Consumed by Configure Memmap 0..” SwAddrMethods: SwAddrMethods used for the generic
Allocation mapping. Note that one SwAddrmethod can represent
several memory sections.
Consumed by Define Consistency Needs 0..* Data types which are relevant for the consistency
definition.
Consumed by Define VFB Constants .*
Consumed by Define Wrapper >
Components to Integrate
Legacy Software
Consumed by Generate Atomic Software 0..” Meth.bindingTime = SystemDesignTime
Component Contract
Header Files
Consumed by Generate Component 0.~ Meth.bindingTime = SystemDesignTime
Header File in Vendor Mode
Consumed by Generate Component 0..* Meth.bindingTime = CodeGenerationTime

Prebuild Data Set

Use meta model

ApplicationDataType

element
Use meta model AutosarDataType 1
element
Use meta model CompuMethod 1
element
Use meta model DataConstr 1
element
Use meta model ImplementationDataType 1
element
Use meta model PhysicalDimension 1
element
Use meta model SwAddrMethod 1
element

AUTSSAR

A
Artifact VFB Types
Use meta model Unit 1
element

Table 3.97: VFB Types

3.2.2.18 VFB Data Type Mapping Set

Artifact VFB Data Type Mapping Set

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Mapping Set between Application and Implementation Data Types.

Description Mapping Set between Application and Implementation Data Types.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software 0..”
Components

Aggregated by VFB System 0..*

Produced by Define VFB Types .*

Consumed by Generate Atomic Software 0..1 Meth.bindingTime = SystemDesignTime
Component Contract
Header Files

Consumed by Generate Component 0..1 Meth.bindingTime = SystemDesignTime
Header File in Vendor Mode

Consumed by Generate Component 0..1 Meth.bindingTime = CodeGenerationTime
Prebuild Data Set

Consumed by Define VFB Constants 0..”

Use meta model
element

DataTypeMappingSet

Table 3.98: VFB Data Type Mapping Set

3.2.2.19 VFB Modes

Artifact VFB Modes

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Modes declared here are non-AUTOSAR standard. They are modes that are managed by a
software component acting as a application mode manager.

Description Desclaration of mode groups and of the modes they contain. Modes declared here are
non-AUTOSAR standard. They are modes that are managed by an application software component
acting as a mode manager.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software 0..*

Components
Aggregated by VFB System 0..*

Produced by

Define VFB Modes

1.7

AUTSSAR

JAN
Artifact VFB Modes
Produced by Extend Composition 0..*
Consumed by Define Complex Driver 0.”
Component
Consumed by Define ECU Abstraction 0..*
Component
Consumed by Define VFB Application 0..*
Software Component
Consumed by Define VFB Composition 0..*
Component
Consumed by Define VFB NvBlock 0..”
Software Component
Consumed by Define VFB Top Level .*
Consumed by Define Wrapper >
Components to Integrate
Legacy Software
Consumed by Generate Atomic Software 0..* Meth.bindingTime = SystemDesignTime
Component Contract
Header Files
Consumed by Generate Component 0..* Meth.bindingTime = SystemDesignTime
Header File in Vendor Mode
Consumed by Generate Component 0.* Meth.bindingTime = CodeGenerationTime

Prebuild Data Set

Use meta model
element

ModeDeclarationGroup

Table 3.99: VFB Modes

3.2.2.20 VFB Constants

Artifact VFB Constants

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Specification of constant data for usage as initial values by other artifacts.

Description Specification of constant data for usage as initial values by other artifacts, e.g. initial values for
calibration parameters or variable data elements provided in ports.
By using the ConstantSpecification meta-class, such data can be standalone artifacts and thus be
maintained independently of the components or interfaces to which they apply.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Produced by Define VFB Constants 1.*

Use meta model ConstantSpecification 1

element

Table 3.100: VFB Constants

AUTSSAR

3.2.2.21

VFB Software Component Mapping Constraints

Artifact

VFB Software Component Mapping Constraints

Package

AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description

A defined constraint on how certain components must be mapped (clustered or separated) to ECUs.

Description

These MappingConstraints define constraints describing which components need to be mapped to a
single ECU, and which must be mapped to separate ECUs, without regard to any particular ECU or
topology.

The ComponentClustering constraint (also, clustering) is to be used for expressing that a certain set
of SW components (atomic or not) shall be mapped (allocated) onto the same ECU. This is some
kind of "execute together on same ECU" constraint. The semantic of the clustering constraint is
straightforward if all concerned SW components are atomic. Otherwise, it shall be interpreted as
follows: all of the atomic SW components making up the composition shall be mapped together onto
the same ECU together with all other SW components (atomic or not) affected by the constraint.
This also means that a clustering constraint can also refer to only a single composition. The
ComponentSeparation constraint (also, separation) is to be used for expressing that two SW
components (atomic or not) shall not be mapped (allocated) onto the same ECU. This is some kind
of "do not execute together on same ECU" constraint. The semantic of the separation constraint is
straightforward if one or both SW components are atomic. Otherwise, it shall be interpreted as
follows: any of the atomic SW components making up the first composition, shall not be mapped
onto the same ECU with any atomic SW component from the second composition. As a
consequence, and to preserve consistency, an atomic SW component instance cannot be part of
two compositions concerned by the same separation constraint, i.e. the two compositions have to be
disjoint with regards to component instances.

Kind

AUTOSAR XML

Relation Type

Related Element Mult. Note

Aggregated by

VFB System 0..”

Produced by

*

Define VFB Component 1.
Constraints

element

Produced by Extend Composition 0..”
Consumed by Deploy Software 0..1
Component
Use meta model MappingConstraint 1
element
Use meta model SystemMapping 1 The splitable element SystemMapping is the root for this

artifact.

Table 3.101: VFB Software Component Mapping Constraints

3.2.2.22 VFB Timing

Artifact VFB Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description Atomic Software Component or Composition Component TimingDescription and TimingConstraints

Description TimingDescription and TimingConstraints defined for an Atomic Software Component or a
Composition Component

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Produced by Define VFB Timing 1

Consumed by Define Software 0..1

Component Timing

Consumed by

Define System Timing 0..1

AUTSSAR

A
Artifact VFB Timing
Consumed by Define VFB Variants 0..1
Use meta model VfbTiming 1
element

Table 3.102: VFB Timing

3.2.2.23 Description of a Non-AUTOSAR System

Artifact Description of a Non-AUTOSAR System

Package AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description View of the non-AUTOSAR system that contains the relevant information for its integration with the
AUTOSAR system at VFB level

Description This artifact describes the elements of the non-AUTOSAR system that are relevant for its integration
with an AUTOSAR system at the VFB level. The format of the description depends on the
methodology or platform that is employed for the development of the non-AUTOSAR system. It may
not be assumed that the description of the non-AUTOSAR system comes in an AUTOSAR format.
Also the contents of the description may differ both in its scope and in its details from an AUTOSAR
description that also addresses the VFB level, i.e. a SwComponent Description.

Kind Custom

Relation Type Related Element Muit. Note

Consumed by Define VFB Integration 1
Connector

Consumed by Translate Non-Autosar 1
Description to Autosar
Description

Table 3.103: Description of a Non-AUTOSAR System

3.2.2.24 Integration Connector

Artifact

Integration Connector

Package

AUTOSAR Root::M2::Methodology::Methodology Library::VFB::Work Products

Brief Description

Specification of the connections of the elements of the non-AUTOSAR system with the elements of
the AUTOSAR system

Description

This artifact specifies which elements of the non-AUTOSAR system are to be connected with which
elements of the AUTOSAR system. If for instance the Description of the non-AUTOSAR system
contains elements corresponding to port instances, the integration connector would define how
these ports are connected with the port instances contained in the AUTOSAR SwComponent
Description. In addition, the Integration Connector may specify information that is necessary for the
integration but not yet contained in the Description of the non-AUTOSAR system.

If for instance the Description of the non-AUTOSAR system contains only very coarse grained data
type descriptions the Integration Connector will be used to add sufficient information such that the
compatibility of the data types with the ones defined in the AUTOSAR SwComponent Description
can be checked.

Kind

Custom

Relation Type

Related Element | Mult. |Note

Y

AUTSSAR

Artifact

Integration Connector

Produced by

Define VFB Integration
Connector

Consumed by

Translate Non-Autosar
Description to Autosar
Description

Table 3.104: Integration Connector

3.3 System

This chapter contains the definition of work products and tasks used for the devel-
opment of systems and sub-systems. For the definition of the relevant meta-model
elements refer to [6, CP TPS System Template] and [17, CP TPS ECU Resource Tem-

plate].

3.3.1 Tasks

3.3.1.1 Set System Root

1 «input»

Mapping of Software
Componentsto ECUs

«input»

Signal Path Constraints Communication Layers

«performs»

Set System Root

System Engineer

«output»

VFB Composition
Component

Figure 3.45: Set System Root

System Description

Root Element

Data Mapping

AUTSSAR

Task Definition Set System Root

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks
Brief Description

Description Set up the root element of a system description.

Relation Type

Related Element

Mult.

Note

Performed by

System Engineer

1

Element

Consumes Communication Layers 1 Only the reference to the artifact is needed

Consumes Mapping of Software 1 Only the reference to the artifact is needed
Components to ECUs

Consumes Signal Path Constraints 1 Only the reference to the artifact is needed

Consumes Topology 1 Only the reference to the artifact is needed

Consumes VFB Composition 1 Only the reference to the artifact is needed
Component

Consumes Data Mapping 1.7 Only the reference to the artifact is needed

Produces System Description Root 1 Set up the root element, and the links to other artifacts

Table 3.105: Set System Root

3.3.1.2 Assign Top Level Composition

1 «input»

VFB Top Level
System Composition

System Engineer

«performs»

«output» 1

Assign Top Level

Composition

System Description
Root Element

Figure 3.46: Assign Top Level Composition

Task Definition Assign Top Level Composition

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks
Brief Description

Description Assign a VFB Top Level Composition to the System Root

Relation Type

Related Element

Mult.

Note

Element

Performed by System Engineer 1

Consumes VFB Top Level System 1
Composition

Produces System Description Root 1

Table 3.106: Assign Top Level Composition

AUTSSAR

3.3.1.3 Define ECU Description

System Engineer

«performs»

«output»

1..%

Define ECU Description

ECU Resources
Description

Figure 3.47: Define ECU description

Task Definition Define ECU Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks

Brief Description Define a particular ECU’s resources.

Description Define a particular ECU’s resources by describing Hardware Elements, pins, connections.The HW

Elements are the main describing elements of an ECU,e.g processing units, memory, peripherals,
sensors and actuators. HW Elements have a unique name and can be identified within the ECU
description. HW Elements do not necessarily have to be described on the level of an ECU. It is
possible to describe HW Elements as parts of other HW Elements. By this means, a hierarchical
description of HW Elements can be created. HW Elements provide HW PinGroups and HW Pins for
being interconnected among each others. HW PinGroups allow a rough description of how certain
groups of HWPins are arranged. The detailed description can be done using the HW Pins.HW
Connections are used to describe connection on several levels:connections between HW Elements,
connections between HW PinGroups, connections between HW Pins.

Relation Type Related Element Mult. Note
Performed by System Engineer 1
Produces ECU Resources Description 1.* Decription of the ECU

Table 3.107: Define ECU Description

3.3.1.4 Define System Topology

1 System Engineer

«performs»

1.* «input» «output» 1

Define System Topology

ECU Resources Topology
Description

Figure 3.48: Define System Topology

AUTSSAR

Task Definition Define System Topology

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks
Brief Description Select the ECUs and how the they are interconnected by networks.
Description Define how the ECUs of a system are interconnected by networks.
Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes ECU Resources Description 1.*

Produces Topology 1

Table 3.108: Define System Topology

3.3.1.5 Deploy Software Component

System
Engineer

«performs»

«input» «output» 7 | —

Deploy Software Component

Mapping of
System Software
Composition input Components to
«input» oo
0.1
/
— ()] —
— -—
— e
VFB Software Syslgm
Component Mapping Timing
Constraints

Figure 3.49: Deploy Software Component

Task Definition Deploy Software Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks
Brief Description Deploy VFB Software Components to an ECU
Description Deploy each VFB Software Component to an ECU that will execute the component.
Relation Type Related Element Mult. Note
Performed by System Engineer 1
Consumes Topology 1
Consumes VFB Top Level System 1
Composition
Consumes System Timing 0..1

AUTSSAR

JAN
Task Definition Deploy Software Component
Consumes VFB Software Component 0..1
Mapping Constraints
Produces Mapping of Software 1
Components to ECUs

Table 3.109: Deploy Software Component

3.3.1.6 Design CpSoftwareCluster

Cl

ECU System Description

System
Engineer ECU
Integrator
0..*
«performs» «performs»
N z
«inoutput» 0.1 «output» 0. -

Design GpSoftwareCluster CpSoftwareCluster Extract

Figure 3.50: Design CpSoftwareCluster

Task Definition Design CpSoftwareCluster

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::CpSoftwareCluster
Brief Description Create CpSoftwareCluster(s) and assign SW Components

Description Design the CpSoftwareClusters on System Level

* Define which CpSoftwareCluster(s) exist
* Deploy CpSoftwareClusters to Eculnstances (via the CpSoftwareClusterToEculnstanceMapping)

* Deploy SoftwareComponents to CpSoftwareClusters (via the CpSoftwareCluster.swComponent
Assignment)

» Manage CpSoftwareClusterResource(s) and ResourceNeeds. How these are assigned and
managemed depends on the used tools and the project’s workflow.

In the Top-Down approach, this step refines the ECU System Description. In the Bottom-Up
approach, this step directly creates the CpSoftwareCluster Extract.

Relation Type Related Element Mult. Note

Performed by ECU Integrator 0..*

Performed by System Engineer 0..*

In/out ECU System Description 0..1 In case CpSoftwareClusters are used in the Top-Down
approach

Produces CpSoftwareCluster Extract 0..” In case CpSoftwareClusters are used in the Bottom-Up
approach

Table 3.110: Design CpSoftwareCluster

AUTSSAR

3.3.1.7 Extend CpSoftwareCluster

ECU
Integrator

0..*

«performs»

0.1 «inoutput»

Extend CpSoftwareCluster

CpSoftwareCluster Extract

Figure 3.51: Extend CpSoftwareCluster

Task Definition Extend CpSoftwareCluster

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::CpSoftwareCluster

Brief Description Extend a CpSoftwareCluster with compositions and atomic software components.

Description Extend CpSoftwareCluster allows to perform additional integration steps on a CpSoftwareCluster

Extract (i.e. on CpSoftwareCluster level), for example adding additional Atomic Software
Component(s). It is similar to the task Extend Composition.

In a System / Eculnstance that has CpSoftwareClusters, the role ECU Integrator is fulfilled by the
owners of the various CpSoftwareClusters. In a sense, instead of an ECU Integrator, there are now
many Cluster Integrators that can extend the CpSoftwareCluster Extract, while adhering to the Cp
SoftwareCluster Design.

The interfaces between different CpSoftwareClusters can be coordinated via a common System
Description, containing at least the outer Ports of each CpSoftwareCluster. A decentral workflow is
also possible. How CpSoftwareClusterResource s are assigned and managed depends on the used
tools and the project’s workflow.

Relation Type Related Element Mult. Note
Performed by ECU Integrator 0..*
In/out CpSoftwareCluster Extract 1

Table 3.111: Extend CpSoftwareCluster

AUTSSAR

3.3.1.8 Generate or Adjust System Flat Map

System
Description
Root Element

«input>

0.* «input»

Partial Flat Map

«input»

B System

/\ «inoutput» 1

System Engineer

«performs»

Generate or Adjust
System Flat Map

System Flat Map

Figure 3.52: Generate or Adjust System Flat Map

Task Definition Generate or Adjust System Flat Map
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks
Brief Description Generates and/or adjust the unique names of component prototypes and MCD display data in the
scope of system.
Description Generates and/or adjust the unique names of component prototypes and MCD display data in the
scope of a System or System Extract.
Relation Type Related Element Mult. Note
Performed by System Engineer 1
Consumes System Description Root 1
Element
Consumes VFB System 1
Consumes Partial Flat Map 0..* If Partial Flat Maps were delivered along with software
components, they must be integrated into the System
Flat Map:

* The instance refs used in a partial flat map must be
taken over and adjusted to the context of the System
or System Extract.

» Name conflicts have to be resolved if several partial
flat maps are merged.

In/out System Flat Map 1

Table 3.112: Generate or Adjust System Flat Map

AUTSSAR

3.3.1.9 Derive Communication Needs

)

1 «input»

Mapping of Software
Components to ECUs

Derive

Communication

Needs

System
Engineer

w
&
a
o
3
j%)
Q
E]
=

«output» o0

System Signal Group

-
*

Data Mapping

Figure 3.53: Derive Communication Needs

Task Definition Derive Communication Needs

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks

Brief Description Define the signals used to exchange data & operations needed by software components over a
network.

Description Define the signals used to exchange data & operations needed by software components over a
network.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes Mapping of Software 1
Components to ECUs

Produces Data Mapping 1.*

Produces System Signal 1.

Produces System Signal Group 0..*

Table 3.113

: Derive Communication Needs

AUTSSAR

3.3.1.10 Define Signal Path Constraints

System Engineer

«performs»

«input»

«output» 1

Define Signal Path Constraints

«input» Signal Path Constraints

Topology
Figure 3.54: Define Signal Path Constraints
Task Definition Define Signal Path Constraints
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks
Brief Description Additional guidelines for the System Generator, which specific way a signal between two Software
Components should take in the network without defining in which frame and with which timing it is
transmitted.
Description Define additional guidelines for the System Generator, which specific way a signal between two

Software Components should take in the network without defining in which frame and with which
timing it is transmitted.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes Mapping of Software 1
Components to ECUs

Consumes Topology 1

Produces Signal Path Constraints 1

Table 3.114: Define Signal Path Constraints

AUTSSAR

3.3.1.11

M
k]
=

5
=]

=3

Software
Components to
Implementations

System
Description

*
«input» -
«inoutput»

Define System Variants

Mapping of
Software - System
Engineer
— | COMpONENtS to - Complete ECU ¢
s— |ECUs - Description
— -
1.% 1
«performs»

«input» . “«output»
«input» «input»

o m
o <
-2
c
=8
@
o
<
2
6
2

[}
@ o
- Qa
o
=%
a
<
o
5.
M
El

Define System Variants

. KInput» .
O «output» [
e input» «input» «input» o dinoutpu ——
System Description Predefined
Root Element Variant
1
Topology System Signal System System System Constant Value
Group Signal Timing Set
Figure 3.55: Define System Variants
Task Definition Define System Variants
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks
Brief Description Define variants for the artifacts of a System Description.
Description Define variants for the artifacts of a System Description. Definition of a variant means in general to

define its conditions and its latest binding time.

Therefore one has to create a PredefinedVariant referring to the settings which are used by the
system elements in scope. To do so, this task can make use of existing System Constant Value Set
s and/or Postbuid Variant Set s or define new ones. Several PredefinedVariant s can be combined to
one Evaluated Variant Set .

This task can also be applied when designing a subsystem, therefore the System Extract is an
optional input.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes Mapping of Software 1
Components to ECUs

Consumes Mapping of Software 1
Components to
Implementations

Consumes System Description Root 1
Element

Consumes System Signal 1

AUTSSAR

JAN

Task Definition Define System Variants

Consumes System Signal Group 1
Consumes System Timing 1
Consumes Topology 1
Consumes Complete ECU Description 1.*
Consumes System Description 0.~
In/out Postbuild Variant Set 1
In/out System Constant Value Set 1
Produces Evaluated Variant Set 1
Produces Predefined Variant 1

Table 3.115: Define System Variants
3.3.1.12 Define System Timing

System

_ o Engineer

- Communication

- Layers

- 0.1 -

Mapping of 1 1
Software
—
_ —
— | «input» «output» q |
— Define System Timing —
Mapping of System
Software Timing

Components to .
«input»

Topology

Software Component VFB
Timing Timing

Figure 3.56: Define System Timing

Task Definition Define System Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks

Brief Description Define SystemTiming for a concrete system taking the mapping of software components to ECUs
and their implementation into account

Description Define SystemTiming (TimingDescription and TimingConstraints) for a concrete system taking the

mapping of software components to ECUs and their implementation into account. This means that
the resulting Communication Matrix (and its implication to the communication stack) can also be
referenced by the timing specification to refine remote communication timing behavior.

Relation Type

Related Element Mult. Note

Performed by

System Engineer 1

vV

AUTSSAR

A
Task Definition Define System Timing
Consumes Communication Layers 1
Consumes Mapping of Software 1
Components to ECUs
Consumes Topology 1
Consumes Mapping of Software 0..1
Components to
Implementations
Consumes Software Component 0..1
Timing
Consumes VFB Timing 0..1
Produces System Timing 1
Table 3.116: Define System Timing
3.3.1.13 Extend Topology
ECU Integrator System Engineer
0.1 0.1
«performs» «performs»
—— 0.1 «input» 1 «inoutput» 1 | co—
— Extend Topology
ECU Resources Topology
Description
Figure 3.57: Extend Topology
Task Definition Extend Topology
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks
Brief Description Extend the existing System Topology
Description Extend the existing System Topology by describing how new ECUs will be connected to the existing

one through the current network

Relation Type Related Element Mult. Note
Performed by ECU Integrator 0..1

Performed by System Engineer 0..1
Consumes ECU Resources Description 0..1

In/out Topology 1

Table 3.117: Extend Topology

AUTSSAR

3.3.1.14 Select Software Component Implementation

Atomic Software
Component
Implementation

1

System Engineer

«performs»

_h —
— —
— «input» «output» 1 || —
— —
—

Select Software

Component =
Software Component Implementation Mapping of Software

Internal Behavior Components to
Implementations

«input»

VFB Atomic
Software
Component

Figure 3.58: Select Software Component Implementation

Task Definition Select Software Component Implementation

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks

Brief Description Select implementation for an Atomic Software Component.

Description The system engineer selects an Atomic Software Component Implementation for each defined VFB

Atomic Software Component.

Relation Type Related Element Mult. Note
Performed by System Engineer 1
Consumes Atomic Software 1.7
Component Implementation
Consumes Software Component 1.*
Internal Behavior
Consumes VFB Atomic Software 1.7
Component
Produces Mapping of Software 1
Components to
Implementations

Table 3.118: Select Software Component Implementation

AUTSSAR

3.3.1.15 Select Design Time Variant

Complete ECU
Description

System Engineer

«input» «performs»

Select Design Time Variant

«inoutput»

System Description

Figure 3.59: Select Design Time Variant

Task Definition Select Design Time Variant

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks

Brief Description

Description Select a system variant at system design time. This could be done in different ways:

» Replace a model, which contains the variation points contributing to this particular variant and all
the possible settings/elements, by a model, which does no more contain these variation points
and which contains only the particular settings/elements selected for this variant.

« In order to document the selection for further process steps, it is also possible to keep the
information about the selected variant and the variation points in the model by introducing a
PredefinedVariant along with appropriate fixed settings of system constant values.

In constrast to variant selection in later process steps, no code generation or compilation is involved
at system design time, thus this task is just a transformation of one XML model into another one.

This task can be applied to a complete system description, represented by a System Extract.
Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note
Performed by System Engineer 1
Consumes Complete ECU Description 1
In/out System Description 1

Table 3.119: Select Design Time Variant

3.3.1.16 Define System View Mapping

The task Define System View Mapping (see Figure 3.60) creates the System
View Mapping betweentwo System Descriptions. Different cases can be sepa-

rated:

* Mapping of different overall VFB systems - the Abstract System Descrip-
tion andthe System Configuration Description.

AUTSSAR

» Mapping of different structured System Extracts, €.g. System Extract de-
livered by a primary organization and the different structure (ECU System De-
scription) of the secondary organization (see 2.5.4, 2.5.5).

System Engineer

«performs»

2 «input» «output»

System Define System View Mapping

Description System View
Mapping

Figure 3.60: Define System View Mapping

Task Definition

Define System View Mapping

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks
Brief Description Map elements from different views on the system.
Description This task creates the System View Mapping between two System Descriptions (Mapping of different

structured system descriptions, e.g. system extract delivered by a primary organization and the
different structure of the secondary organisation).

Relation Type Related Element Mult. Note
Performed by System Engineer 1
Consumes System Description 2
Produces System View Mapping 1

Table 3.120: Define System View Mapping

3.3.1.17 Create Transformer Specification

System Engineer Basic Software Designer

«performs» «performs»

«output» 1

Create Transformer Specification

Custom Transformer Specification

Figure 3.61: Create Transformer Specification

AUTSSAR

Task Definition Create Transformer Specification

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks

Brief Description

Description In this task the specification of a transformer module is created. Since the specification is created as

a part of the communication design, the System Engineer has to perform this task. Optionally a
Basic Software Designer can support the creation of the specification.

Relation Type Related Element Muit. Note

Performed by System Engineer 1

Performed by Basic Software Designer 0..1

Produces Custom Transformer 1
Specification

Table 3.121: Create Transformer Specification

3.3.1.18 Define Rapid Prototyping Scenario

Rapid Prototyping

Engineer

1

«performs»
— —
— —
— —
—] % «input» «output» | —
— —
— Define Rapid Prototyping

Scenario : .

Software Component Internal Rapid Prototyping

Behavior

X Scenario
«input»

System Description Root Element

Figure 3.62: Define Rapid Prototyping Scenario

Task Definition Define Rapid Prototyping Scenario
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Tasks
Brief Description
Description Defines the rapid prototyping scenario.
Relation Type Related Element Mult. Note
Performed by Rapid Prototyping Engineer 1
Consumes System Description Root 1
Element
Consumes Software Component 1.*
Internal Behavior
Produces Rapid Prototyping Scenario 1

Table 3.122: Define Rapid Prototyping Scenario

ALIT@ SAR Methodology for Classic Platform

AUTOSAR CP R25-11

3.3.2 Work Products

3.3.2.1 System Description

System
Description
| — —
— — | ROt Element
— — —
— — —
| —
System Timing Mapping of Software Mapping of Software Evaluated Variant Set

Componentyto ECUs Componerts to

Implementations

UL 4

System Constant Value

<> Set

11
B 4

System
Description Postbuild Variant Set

Ty

Communication Layers Predefined Variant
| — —
— — — — \

| —

| —

| —

— — — —

Communication Data Mapping System Signal Group System Signal Rapid Prototyping
Matrix Scenario

Figure 3.63: Structure of generic deliverable System Description

257 of 457 Document ID 68: AUTOSAR_CP_TR_Methodology

AUTSSAR

Deliverable

System Description

Package

AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description

Partial Extract of a System

Description

Generic deliverable for defining a System. It is used in different roles within the methodology.

In each role, this deliverable may contain variation points in its ARXML artifacts which need to be
bound in later steps, e.g. when defining a subsystem from a complete system or later for the single
ECUs. If such variation points are present, the System Description may optionally include
PredefinedVariants in order to predefine variants for later selection and an Evaluated Variant Set.
Please note that this generic deliverable does not correspond to the system description with the
system category "SYSTEM_DESCRIPTION" (see [TPS_SYST_01003]). The system description
with the category "SYSTEM_DESCRIPTION" is represented by the deliverable "System
Configuration Description".

This deliverable is equivalent to a description of a system with any category. In the System Template
Specification "system description" is the most frequently used term for this kind of artifact.

Kind

Delivered

Extended By

Abstract System Description, System Configuration Description, System Constraint Description,
System Extract

Relation Type Related Element Mult. Note
Aggregates System Description Root 1
Element
Aggregates Communication Layers 0..1
Aggregates Mapping of Software 0..1
Components to ECUs
Aggregates Mapping of Software 0..1
Components to
Implementations
Aggregates Rapid Prototyping Scenario 0..1
Aggregates Topology 0..1
Aggregates Alias Name Set 0..*
Aggregates Communication Matrix 0..*
Aggregates Data Mapping 0..”
Aggregates Evaluated Variant Set 0..”
Aggregates Postbuild Variant Set 0..*
Aggregates Predefined Variant 0..”
Aggregates System Constant Value Set 0..”
Aggregates System Signal 0..x
Aggregates System Signal Group 0.~
Aggregates System Timing 0..”
In/out Select Design Time Variant
Consumed by Define System View 2
Mapping
Consumed by Define System Safety 1
Information
Consumed by Define Alias Names 0..1 Needed for definition of alias names with system,
system extract or ECU scope, depending of the role of
the System Description.
Consumed by Define System Variants 0..*

Table 3.123: System Description

AUTSSAR

Deliverable System Constraint Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description

Description Contains the artifacts that describe System Constraints. It serves as an input for setting up the
complete Abstract System Description and/or System Configuration Description.
This deliverable corresponds to the system description with the system category "SYSTEM_
CONSTRAINTS" (see [TPS_SYST 01003]).

Kind Delivered

Extends System Description

Relation Type Related Element Mult. Note

Aggregates Overall VFB System 0..1

Aggregates System Flat Map 0..1

Consumed by Develop System 0..1

Consumed by Develop an Abstract 0..1 In the context of the "Develop an Abstract System

System Description

Description" activity, the constraints for the abstract or
functional view on the system can be provided by the
"System Constraint Description”.

Table 3.124: System Constraint Description

Deliverable System Configuration Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description

Description Contains the artifacts that describe a complete AUTOSAR System. It is the basis for extracting
descriptions for sub-systems or ECUs.
Note that System Extracts may be refined by details which are not present in the System
Configuration.
This deliverable corresponds to the system description with the system category "SYSTEM_
DESCRIPTION" (see [TPS_SYST_01003]).

Kind Delivered

Extends System Description

Relation Type Related Element Mult. Note

Aggregates Overall VFB System 1

Aggregates System Flat Map 0..1

Produced by Develop System 1.*

Consumed by Generate System Extract 1

Consumed by Generate ECU Extract 0..1

Table 3.125: System Configuration Description

Deliverable System Extract

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description

Description Contains the artifacts that describe a subsystem specific view on the complete System Description.
Initially, the System Extract is not fully decomposed and still contains compositions. It is the basis for
designing subsystems, e.g. by adding further ECUs within the given constraints.
This deliverable corresponds to the system description with the system category "SYSTEM_
EXTRACT" (see [TPS_SYST_01003]).

Kind Delivered

Extended By ECU System Description

Extends System Description

AUTSSAR

JAN

Deliverable System Extract
Relation Type Related Element Mult. Note
Aggregates VFB System Extract 1
Aggregates System Flat Map 0..1
Produced by Develop System 0..”
Produced by Generate System Extract 0..”
Consumed by Create ECU System 1

Description
Consumed by Develop Sub-System 1
Consumed by Generate ECU Extract 0..1

Table 3.126: System Extract

Deliverable ECU System Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description

Description This System Description is used to describe the closed view on one Eculnstance (note that an
ECUInstance represents a single instantiation of a Classic Platform stack that may run directly on
the physical ECU, or under a hypervisor).
It can be derived from a System Extract or it can be designed independently and mapped to a
System Extract. The ECU System Description is not fully decomposed and still may contain
compositions.
It is refined during the activity Design Sub-System.
This deliverable corresponds to the system description with the system category "ECU_SYSTEM_
DESCRIPTION" (see [TPS_SYST_01003]).

Kind

Extended By CpSoftwareCluster Extract

Extends System Extract

Relation Type

Related Element Mult. Note

Produced by

Design Sub-System 1 System Extract refined during design of the
corresponding sub-system with elements needed to
generate ECU Extract(s).

Produced by Create ECU System 1.7
Description
In/out Design CpSoftwareCluster 0..1 In case CpSoftwareClusters are used in the Top-Down
approach
Consumed by Design Sub-System 1 System Extract as generated from the outer system.
Consumed by Generate CpSoftware 1 In case CpSoftwareClusters are used
Cluster Extract
Consumed by Configure Mode 0..1 Input in case ECU Extract is not available (atomic
Management software components not available)

Consumed by

Generate ECU Extract 0..1

Table 3.127: ECU System Description

AUTSSAR

3.3.2.2 Abstract System Description

Deliverable Abstract System Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description Provides an abstract or functional view on the system

Description The Abstract System Description extends the general System Description and provides an abstract
or functional view on the system to be developed.
This deliverable corresponds to the system description with the system category "ABSTRACT_
SYSTEM_DESCRIPTION" (see [TPS_SYST_01003]).

Kind Delivered

Extends System Description

Relation Type Related Element Mult. Note
Aggregates Overall VFB System 1
Produced by Develop an Abstract 1.*
System Description
Consumed by Develop System 0.* The abstract System Description is an optional input for
the activity "Develop System". Please note, that in this
step the Abstract System Description is refined to a
System Description.
Consumed by Develop a VFB System 0.~ The abstract System Description is an optional input for
Description the activity "Develop a VFB System Description". The
VFB-related part of the Abstract System Description can
be than refined to the concrete "Overall VFB System".
Additionally, a mapping between those two views can be
established.
Table 3.128: Abstract System Description

3.3.2.3 Complete ECU Description

Complete ECU
Description

«aggregation»

VFB Sensor Actuator
Component

«aggregation»

ECU Resources
Description

Figure 3.64: Complete ECU Description

Deliverable Complete ECU Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description An ECU Description includes the resources it has available along with its corresponding
ECU-specific software components.

Description An ECU Description includes the resources it has available along with its corresponding
ECU-specific software components.

\Y%

AUT<

SSAR

JAN
Deliverable Complete ECU Description
Kind Delivered
Relation Type Related Element Mult. Note
Aggregates ECU Resources Description 1
Aggregates VFB Sensor Actuator 0..*
Component
Consumed by Select Design Time Variant 1
Consumed by Define System Variants 1.*

Table 3.129: Complete ECU Description

3.3.2.4 CpSoftwareCluster Extract

ECU System —
Description

CpSoftwareCluster
Extract

1 «input» 0.7

Generate

«inoutput»

«nesting»
0.1 ¢

«output» 0.7

CpSoftwareCluster Extract

«inoutput»

0.1

«output»

Design CpSoftwareCluster

Extend CpSoftwareCluster

Figure 3.65: CpSoftwareCluster Extract

Deliverable CpSoftwareCluster Extract

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description A SystemDescription for a single CpSoftwareCluster

Description Contains the artifacts that belong to a single CpSoftwareCluster. It is the basis for independent
integration and development of a CpSoftwareCluster. The deliverable is a System of Category SW_
CLUSTER_SYSTEM_DESCRIPTION .

Kind

Extends ECU System Description

Relation Type Related Element Mult. Note

Produced by Design CpSoftwareCluster 0..” In case CpSoftwareClusters are used in the Bottom-Up

approach

Produced by Generate CpSoftware 0..* In case CpSoftwareClusters are used in the Top-Down
Cluster Extract approach

In/out Extend CpSoftwareCluster 1

Consumed by Generate ECU Extract 1 In case CpSoftwareClusters are used

Table 3.130: CpSoftwareCluster Extract

AUTSSAR

3.3.2.5 System Description Root Element

Artifact System Description Root Element

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products
Brief Description A System Description root element.

Description The System description defines the following major elements:

» Topology : description of the Topology of the System.

« Software : description of the root software composition containing all software components in the
System in a hierarchical structure.

» Communication : description of all Communication elements used in the System.

» Mapping and Mapping Constraints : description of all mapping aspects (mapping of SW
components to ECUs, mapping of data elements to signals, and mapping constraints).

The root element can be the basis for a System extract as well as for the whole System depending
on which elements are aggregated.

Kind AUTOSAR XML
Relation Type Related Element Mult. Note
Aggregated by System Description 1
Produced by Assign Top Level 1
Composition
Produced by Set System Root 1 Set up the root element, and the links to other artifacts
Consumed by Define Rapid Prototyping 1
Scenario
Consumed by Define System Variants 1
Consumed by Flatten Software 1 find the top level composition
Composition
Consumed by Generate or Adjust System 1
Flat Map
Use meta model System 1
element

Table 3.131: System Description Root Element

3.3.2.6 System Mapping Overview

There are various artifacts which correspond to the mappings collected under the meta-
model element SystemMapping. Figure 3.66 shows an overview. The details will be
explained in the following sub-chapters. Please note that this figure only shows the
subset of mappings for which a methodology exists. For the full list of mappings, please
see chapter 5 "Mapping" in [6, CP TPS System Template].

AUTSSAR

ARElement
AtpStructureElement
UploadableDesignElement [@pr—————

SystemTemplate::System

Identifiable
SystemTemplate::SystemMapping
NN N NN [2K 2K 2K 2K 2K)
—) _ _ _ ______ o \ \ \ \			
—			
! ! ! ! SWmapping::			
p—— :‘———JI‘———JI'———JI'—————> MappingConstraint			
VFB Software ! ! ! !			
.			
Component Mapping			
Consgtraints 1 1 1 1			
) _ _ _ _ _______1 : : : DataMapping::DataMapping			
—			
—		I	
— Lol L~			
— i 0 0 =			
Data Mapping			
1 1 1 Identifiable			
1 : : SWmapping::			
SwcTolmplMappin			
—_— Ao piiiapping			
— \ \			
—			
- | |
Mapping of Software 1 1 Identifiable
Components to | | SWmapping::
Implementations | | B
p | | r———=> SwcToEcuMapping
| | |
| | |
1 1 |
1 1 :
| |
1 1 | Identifiable
___________ _: : : SWmapping::
— | | SwcToApplicationPartitionMapping
_______________ r———-—-
________________ o ___=
|
_______________ Y
| |
Mapping of Software ! ! ldentifiable
Componentsto ECUs : :_ SWmapping::
| - —>ApplicationPanitionToEcuPanitionMapping
|
—
e e SignalPaths::
— SignalPathConstraint
Signal Path
Constraints
ARElement
ViewMapSet:: Identifiable
— ViewMapSet ViewMapSet::ViewMap
—
e T >—
System View Mapping

Figure 3.66: Overview on the various artifacts for System Mapping

AUTSSAR

3.3.2.7 Data Mapping

Artifact Data Mapping

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products
Brief Description

Description Mapping of data prototypes from the VFB description to System signals.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by System Description 0.~

Produced by

Derive Communication
Needs

Consumed by

Define Signal PDUs

Consumed by

Flatten Software
Composition

Consumed by

Set System Root

Only the reference to the artifact is needed

Use meta model DataMapping 1

element

Use meta model SystemMapping 1 The splitable element SystemMapping is the root for this
element artifact.

Table 3.132: Data Mapping

3.3.2.8 Mapping of Software Components to ECUs

Artifact Mapping of Software Components to ECUs

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description Describes the mapping of Software Components to the ECUs that are defined in the VFB context.

Description The VFB shows all software components independently of their deployment on individual ECUs.
This work product defines for each software component the corresponding ECU on which the
software component will be deployed and executed.
This artifact may contain a mapping of software components to application partitions by a SwcTo
ApplicationPartitionMapping. With an ApplicationPartitionToEcuPartitionMapping the application
partitions are assigned to ECU partitions. This can substitute the direct mapping of software
components to ECUs via SwcToEcuMapping.eculnstance.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by System Description 0..1

Produced by

Deploy Software
Component

1

Consumed by

Define Signal PDUs

Consumed by

Define Signal Path
Constraints

Consumed by

Define System Timing

Consumed by

Define System Variants

Consumed by

Derive Communication
Needs

Consumed by

Extract the ECU
Communication

AUTSSAR

A

Artifact

Mapping of Software Components to ECUs

Consumed by

Flatten Software
Composition

1

Consumed by

Set System Root

Only the reference to the artifact is needed

Use meta model
element

ApplicationPartitionToEcu
PartitionMapping

Use meta model

SwcToApplicationPartition

element Mapping

Use meta model SwcToEcuMapping 1

element

Use meta model SystemMapping 1 The splitable element SystemMapping is the root for this
element artifact.

Table 3.133: Mapping of Software Components to ECUs

3.3.2.9 Mapping of Software Components to Implementations

Artifact Mapping of Software Components to Implementations

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description

Description Specifies the selection of software implementations for the atomic component prototypes. Because
component prototypes can be located on different ECUSs, it is possible to have different
Implementations of two prototypes of the same AtomicComponentType in the system.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by System Description 0..1

Produced by Select Software Component 1
Implementation

Consumed by Define System Variants 1

Consumed by Define System Timing 0..1

Use meta model SwcTolmplMapping 1

element

Use meta model SystemMapping 1 The splitable element SystemMapping is the root for this

element artifact..

Table 3.134: Mapping of Software Components to Implementations

AUTSSAR

3.3.2.10 Signal Path Constraints

Artifact Signal Path Constraints

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description Constraints on the Path that should be used or not by Signals

Description One of the tasks of the System Generator is actually to calculate automatically the communication
(signals) between the RTEs and define the needed frames for that communication. These definitions
of the frames include implicitly the definition of the paths the AUTOSAR-Signals are transmitted
through the system. Thereby the System Generator often has the choice between alternative ways
through the system. There exist four different constraints for signals regarding the signal path:

» The CommonSignalPath describes that two signals must take the same way (Signal Path) in the
topology.

* 'The ForbiddenSignalPath describes the way (Signal Path) that a signal must not take in the
topology, e.g. in case of safety critical transmission.

» The PermissibleSignalPath describes the way (Signal Path) a signal can take in the topology. If
more than one PermissibleSignalPath is defined for the same signal/operation attributes, any of
them can be chosen.

» The SeparateSignalPath describes that two or more signals must not take the same way (Signal
Path) in the topology e.g. in case of redundant transmission. It is also possible that the same
signal is aggregated two times by the SeparateSignalPath element to indicate that this signal
should be transmitted redundantly over two different paths.

Kind AUTOSAR XML
Relation Type Related Element Mult. Note
Produced by Define Signal Path 1
Constraints
Consumed by Set System Root 1 Only the reference to the artifact is needed
Use meta model SignalPathConstraint 1
element
Use meta model SystemMapping 1 The splitable element SystemMapping is the root for this
element artifact.

Table 3.135: Signal Path Constraints

3.3.2.11 Topology

Artifact Topology
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products
Brief Description The system topology, which may be reused in different systems.
Description Describes the topology of the system : A topology is formed by a number of Eculnstances that are
interconnected to each other in order to form ensembles of ECUs and CommunicationClusters.
Kind AUTOSAR XML
Relation Type Related Element Mult. Note
Aggregated by System Description 0..1
Produced by Define System Topology 1
In/out Extend Topology 1
Consumed by Define Communication 1
Matrix
Consumed by Define Network 1
Management
Consumed by Define Signal PDUs 1

AUTSSAR

A
Artifact Topology
Consumed by Define Signal Path 1
Constraints
Consumed by Define System Timing 1
Consumed by Define System Variants 1
Consumed by Define TP 1
Consumed by Deploy Software 1
Component
Consumed by Extract ECU Topology 1
Consumed by Set System Root 1 Only the reference to the artifact is needed
Consumed by Define Secured PDUs 0..1

Use meta model
element

CommunicationCluster

Use meta model
element

Eculnstance

3.3.2.12 Ecu Resources Description

Table 3.136: Topology

Actuator Component

Artifact ECU Resources Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description Definition of the resources available on an ECU.

Description Definition of the resources available on an ECU. It mainly contains a description of hardware
elements (like physical memory sections or peripherals, pins, hardware connections) which need to
be referred by a software component or a basic software description. The focus is to describe an
already engineered piece of hardware, its content and structure. It is not in the focus of the ECU
Resource Description to support the design of electronics hardware itself. In the XML it is
represented as a set of HwDescriptionEntity -s

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Complete ECU Description 1

Produced by Define ECU Description 1.* Decription of the ECU

Consumed by Define System Topology 1.7

Consumed by Define BSW Interfaces .1

Consumed by Define ECU Abstraction .1
Component

Consumed by Extend Topology A

Consumed by Generate ECU Executable .1 may be used to set up build environment

Meth.bindingTime = CompileTime

Consumed by Implement a BSW Module . Meth.bindingTime = SystemDesignTime

Consumed by Measure Component .1
Resources

Consumed by Measure Resources 0..1

Consumed by Define Complex Driver >
Component

Consumed by Define VFB Sensor or 0..”

AUTSSAR

Artifact

ECU Resources Description

Use meta model
element

HwElement 1

Table 3.137: ECU Resources Description

3.3.2.13 System Signal

Artifact System Signal

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description

Description The system signals allow to represent this communication view in a flattened structure, with (at least)
one system signal defined for each data element sent or received by a SW component instance. If
data has to be sent over gateways, there is still only one system signal representing this data. The
representation of the data on the individual communication systems is done by the cluster signals.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by System Description 0..*

Produced by Derive Communication 1.7
Needs

Consumed by Define Signal PDUs 1

Consumed by Define System Variants 1

Consumed by Define RTE Fan-out 1.*

Consumed by Extract the ECU 0.*
Communication

Use meta model SystemSignal 1

element

Table 3.138: System Signal

3.3.2.14 System Signal Group

Artifact System Signal Group

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description A signal group refers to a set of signals that must always be kept together. A signal group is used to
guarantee the atomic transfer of AUTOSAR composite data types.

Description The System Signal Group is representing a set of Signals that must be kept together. A signal group

is to guarantee the transfer of AUTOSAR composite data types for sender receiver
communication.The RTE is required to treat AUTOSAR signals transmitted using sender-receiver
communication atomically. To achieve this, the "signal group" mechanisms shall be utilized.lt is not
possible to map a Variable Data Prototype with a composite datatype directly to a System Signal .
The complex data type must be decomposed into single signals. As this set of single signals has to
be treated as atomic, it is placed in a "signal group". It is also used in client server communication
when the RTE maps a response to a corresponding operation request. The arguments, application
errors, client identifier and sequence counter of an operation are mapped to System Signal of two
dedicated SystemSignalGroup elements;one for the request and one for the response. The RTE
Client Server Protocol is used to provide a specific semantics to each of these SystemSignalGroups
and System Signal , also those which are introduced only to support the protocol.

Y%

AUTSSAR

A
Artifact System Signal Group
Kind AUTOSAR XML
Relation Type Related Element Mult. Note
Aggregated by System Description 0..*
Produced by Derive Communication 0..*
Needs
Consumed by Define System Variants 1
Consumed by Extract the ECU 0..*
Communication
Use meta model SystemSignalGroup 1
element

Table 3.139: System Signal Group

3.3.2.15 System Flat Map

Artifact System Flat Map

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description Mapping of instance names to nested model elements. Use cases: Resolve name conflicts when
flattening VFB software compositions; provide unique names and unique model references for
measurement and calibration data.

Description The flat map is a list of elements, each element represents exactly one node (e.g. a component
instance or data element) of the instance tree of a software system. The purpose of this element is
to map the various nested representations of this instance to a flat representation and assign a
unigue name to it. The name will be unique in the scope to which this Flat Map belongs (which could
be a whole System or a System Extract).
Use case: The System Flat Map is defined in the context of a System or System Extract. It serves
as a basis for generating an ECU Flat Map (or a Flat Map of a "child" System Extract). In the ECU
Flat Map, the names will be used as display names for MCD tools or as names for component
prototypes in a flattened software composition. For further information refer to the description of
artifact ECU Flat Map.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by System Configuration 0..1
Description

Aggregated by System Constraint 0..1
Description

Aggregated by System Extract 0..1

In/out Generate or Adjust System 1
Flat Map

Consumed by Add Documentation to the 0..1 Optional input in order to refer to unique names defined
Software Component in system context.

Consumed by Generate or Adjust ECU 0..1 Take over definitions of unique names from system level
Flat Map to ECU level.

Use meta model FlatMap 1

element

Table 3.140: System Flat Map

AUTSSAR

3.3.2.16 System Timing

Artifact System Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description Concrete system’s TimingDescription and TimingConstraints

Description TimingDescription and TimingConstraints defined for a concrete system taking the mapping of
software components to ECUs and their implementation into account. This means that the resulting
Communication Matrix (and its implication to the communication stack) can also be referenced by
the timing specification to refine remote communication timing behavior.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by System Description 0..*

Produced by Define System Timing 1

Consumed by Define System Variants 1

Consumed by Extract ECU System Timing 1

Consumed by Deploy Software 0..1
Component

Use meta model SystemTiming 1

element

Table 3.141: System Timing

3.3.2.17 System View Mapping

Artifact System View Mapping

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description The System View Mapping provide an mapping between different views on the system.

Description This artifact contains a set of system view mappings and provides an mapping between different
views on the system, e.g. different overall VFB systems (e.g. abstract system description with
system configuration description), or the overall VFB system with the VFB System Extract
description.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Overall VFB System 0..1 The Overall VFB System aggregates a potential

mapping to the abstract or functional view of the system.

Aggregated by

VFB System Extract 0..1 The VFB System Extract aggregates a potential
mapping to the abstract or functional view of the system.

Produced by Define System View 1
Mapping
Use meta model ViewMapSet 1

element

Table 3.142: System View Mapping

AUTSSAR

3.3.2.18 Transformer Design Bundle

Transformer Design Bundle

«aggregation

«aggregation»

BSW Module Vendor- Custom
Specific Configuration Transformer
Parameter Definition Specification

Figure 3.67: Structure of deliverable Transformer Design Bundle

Deliverable Transformer Design Bundle

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description

Description This deliverable contains a specification of the transformer technology to be implemented by the
BSWM developer. Furthermore it contains the Vendor specific parameter definition for the
corresponding transformer.

Kind Delivered

Relation Type Related Element Mult. Note

Aggregates Custom Transformer 1
Specification

Aggregates BSW Module Vendor- 0..1

Specific Configuration
Parameter Definition

Produced by Design Custom Transformer 1
Produced by Develop System 0..*
Consumed by Develop Basic Software 0..*

Table 3.143: Transformer Design Bundle

3.3.2.19 Custom Transformer Specification

Artifact Custom Transformer Specification

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description

Description This artifact represents the functional specification of the Transformer to be implemented. The
AUTOSAR methodology does not prescribe the format of this artifact.

Kind Custom

Relation Type Related Element Muit. Note

Aggregated by Transformer Design Bundle 1

\Y

AUTSSAR

Artifact

Produced by

A
Custom Transformer Specification
Create Transformer 1
Specification

Table 3.144: Custom Transformer Specification

3.3.2.20 Rapid Prototyping Scenario

Artifact Rapid Prototyping Scenario

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products

Brief Description Description of the (required) bypass points and the hooks in the system.

Description Description of the (required) bypass points and the in the system and the corresponding hooks. This
artifact contains the RptContainers with bypass points referencing things like parameterAccess
(dataWriteAccess, dataReadAccess, dataSendPoint, dataReceivePointByValue, dataReceivePoint
ByArgument, writtenLocalVariable, readLocalVariable, etc.) The hooks describe the link between the
bypass points and the rapid prototyping algorithm.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by System Description 0..1

Produced by Define Rapid Prototyping 1
Scenario

Consumed by Extract ECU Rapid 1
Prototyping Scenario

Use meta model RapidPrototypingScenario 1

element

Table 3.145: Rapid Prototyping Scenario

3.3.3 Communication Matrix and Communication Layers

This section contains the tasks and work products to set up the communication matrix
and the communication layers as part of a system description.

AUTSSAR

3.3.3.1 Tasks

3.3.3.1.1 Define Communication Matrix

System
Engineer
1
«performs»
— —
— —
— —
— «input» «output» N f—
— —
Define
Communication
Topology Matrix Communication Matrix

Figure 3.68: Define Communication Matrix

Task Definition Define Communication Matrix

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Tasks
Brief Description The communication matrix contents are created or extended by adding communication definitions.
Description Define or extend Communication Matrix.

Define the triggering of the Physical Channels and the mapping to the communication connector
ports.

In case of extension the original communication matrix contents (which were delivered as part of a
system extract) are extended by adding communication definitions. The main use case is the
extension of the communication matrix when refining a sub-system.

Relation Type Related Element Mult. Note
Performed by System Engineer 1
Consumes Topology 1
Produces Communication Matrix 1

Table 3.146: Define Communication Matrix

AUTSSAR

3.3.3.1.2 Define Frames

System
Engineer
— 1
p— O
«performs»
Network Layer X
«input»
«output» 1 || e—
Define Frames Data Link Layer
«input»
Interaction Layer
Figure 3.69: Define Frames
Task Definition Define Frames
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Tasks
Brief Description Define Data Link Layer
Description Define the Frame and assign it to a physical channel of a communication cluster. Determine the

number, the type, the length and the timing of Frames that are sent or received by the ECUs.
Describe the mapping of Pdus (I-Pdus, N-Pdus or NmPdus) into the frame. Define the triggering and
the identification of a frame on the physical channel, on which it is sent.

Relation Type Related Element Mult. Note
Performed by System Engineer 1

Consumes Interaction Layer 0..1
Consumes Network Layer 0..1

Produces Data Link Layer 1

Table 3.147: Define Frames

AUTSSAR

3.3.3.1.3 Define Signal PDUs

Data Mapping 1

Mapping of Software
Componentsto ECUs

«input»

«input»

System Signal

Topology

Figure 3.70: Define Signal PDUs

System
Engineer
1
«performs»
—
—
«output» —
—
Define Signal PDUs nteraction L. yer

Task Definition Define Signal PDUs

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Tasks
Brief Description Define the I-PDU and their ISignals

Description Define the Signal Pdu that is handled by AUTOSAR COM and assign it to a physical channel of a

into the Signal Pdu..

communication cluster. Determine the length and the timing and describe the mapping of Signals

Relation Type Related Element Mult. Note
Performed by System Engineer 1

Consumes Data Mapping 1

Consumes Mapping of Software 1

Components to ECUs

Consumes System Signal 1

Consumes Topology 1

Produces Interaction Layer 1 ISignals

Table 3.148: Define Signal PDUs

AUTSSAR

3.3.3.1.4 Define Secured PDUs

System
Engineer

«performs»

+Secured PDUS| p

«input»

=)
P

Topology

Define Secured

PDUs

«output» 1 || —

—
+[-PDUsS| se—

«input» | | —

Interaction Layer

Figure 3.71: Define Secured PDUs

Task Definition Define Secured PDUs

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Tasks
Brief Description Define Secured PDUs

Description If a secured communication of a PDU over network is required, SecuredIPDUs are defined. A

secured communication can be established for IPDUs from the Interaction Layer. In addition to the
SecuredPDUs corresponding SecureCommunicationProperties are specified that describe how the
PDU is secured (e.g. authentication algorithm).

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes Interaction Layer 1 I-PDUs: Authentic IPdu that will be secured against
manipulation and replay attacks.

Consumes Topology 0..1

Produces Interaction Layer 1 Secured PDUs: Secured IPdu that contains payload of

an Authentic IPdu supplemented by additional
Authentication Information.

Table 3.149

: Define Secured PDUs

AUTSSAR

3.3.3.1.5 Define TP

0.1

Interaction Layer

«input»

Network Layer

1 «input»

([

Define TP
Topology «output»

0.1

Diagnostics Interaction
Layer

Figure 3.72: Define TP

Task Definition Define TP

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Tasks
Brief Description Define the Network management and the N-PDUs

Description Define the N-PDU - Network Layer Protocol Data Unit (assembled and disassembled in a Transport

Protocol module). If an I-PDU does not fit into one frame, a segmentation is needed and will be
done through several N-PDUs by the Transport Protocol module.

If large COM PDUs are transported by TP, the Interaction Layer should be the Input to the Define TP
task. If Diagnostic is used then the Diagnostics Interaction Layer should be an output of Task Define

TP.
Relation Type Related Element Mult. Note
Performed by System Engineer 1
Consumes Topology 1
Consumes Interaction Layer 0..1
Produces Network Layer 1
Produces Diagnostics Interaction 0..1
Layer

Table 3.150: Define TP

AUTSSAR

3.3.3.1.6 Define Network Management

System
Engineer
0.1
Interaction Layer
«performs»
_h —
— —
—] «input» «output» —
—
— Define Network —
Management

Topology Network Layer

Figure 3.73: Define Network Management

Task Definition Define Network Management

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Tasks
Brief Description

Description Define the Network Management that is responsible for the communication cluster wide coordinated

switching of ECUs between operational modes (Network Mode, Bus-sleep Mode). Describe the Nm
Pdus and configure the Nm Coordinator, the Nm Clusters and Nm Nodes.

Relation Type Related Element Mult. Note
Performed by System Engineer 1

Consumes Topology 1

Consumes Interaction Layer 0..1

Produces Network Layer 1

Table 3.151: Define Network Management

3.3.3.1.7 Define PDU Gateway

System
Engineer
1
«performs»
—
—
1 «inoutput» 1 | S—
—
Define PDU Gateway

Interaction Layer

Figure 3.74: Define PDU Gateway

AUTSSAR

Task Definition Define PDU Gateway

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Tasks
Brief Description Define the gateway for IPDUs

Description Define the gateways that are transferring the I-Pdus from one channel to the other in pairs. Each

pair consists of a source and a target referencing to a IPduTriggering. In the case that a Pdu is
being gatewayed to more than one channel of the same communication cluster, all of this gateway
relationships shall be specified. Therefore, all affected IpduTriggerings must be described as
gateway mappings.

Relation Type Related Element Mult. Note
Performed by System Engineer 1
In/out Interaction Layer 1

Table 3.152: Define PDU Gateway

3.3.3.1.8 Define Signal Gateway

System
Engineer
«performs»
—
—
—
1 «inoutput» 1 || —

—
—

Define Signal Gateway

Interaction Layer

Figure 3.75: Define Signal Gateway

Task Definition Define Signal Gateway

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Tasks

Brief Description

Description Define the Signal Gateway to describe the routing of signals and signal groups from one Physical
Channel to another Physical Channel.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

In/out Interaction Layer 1

Table 3.153: Define Signal Gateway

AUT<=

SSAR

3.3.3.1.9 Define RTE Fan-out

1.% «input»

(Il

System Signal

System
Engineer

«performs»

Define RTE Fan-out

«output» 1

[l

Interaction Layer

Figure 3.76: Define RTE Fan-out

Task Definition Define RTE Fan-out

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Tasks
Brief Description Define RTE fan-out which are the relation between ISignals and System Signal

Description The RTE supports a "signal fan-out" where the same signal (System Signal) is sent in different

IPdus to multiple receivers. The Pdu Router supports the "PDU fan-out" where the same IPdu is
sent to multiple destinations.

Relation Type Related Element Mult. Note
Performed by System Engineer 1

Consumes System Signal 1.7

Produces Interaction Layer 1

Link of ISignals to System Signals

Table 3.154: Define RTE Fan-out

3.3.3.1.10 Define Transformation Technology

+ISignals

System
Engineer

«performs»

[l

1 «input»

Interaction Layer

Figure 3.77:

+SerializerTransformerTechnology,

Define Transformation
Technology

«output»] || —
—
—

Serializer Transformer

Define Transformation Technology

AUTSSAR

Task Definition Define Transformation Technology

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Tasks

Brief Description Define the transformer for serialization.

Description This task defines the transformer for serialization. In general, there are two possibilities: serialization
based on network representation and serialization based on Implementation data types.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes Interaction Layer 1 ISignals:

Produces Serializer Transformer 1 SerializerTransformerTechnology:

Table 3.155: Define Transformation Technology

3.3.3.1.11 Define E2E Transformer Technology
See Figure 2.65 Task Define E2E Transformer Technology

Task Definition Define E2E Transformer Technology

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Tasks
Brief Description Define the E2E transformer technology.

Description This task defines the E2E transformer technology.

Relation Type Related Element Muit. Note

Performed by System Engineer 1

Consumes Interaction Layer 1 ISignals:

Produces E2E Transformer 1 E2ETransformerTechnology:

Table 3.156: Define E2E Transformer Technology

3.3.3.1.12 Define Transformation Chain

System
Engineer

[

Serializer
Transformer

«input» 1

«performs»

+TransformationChain

0.1 «input» «output»

~7 Define Transformation Chain

m
N
m
=
Q,

||| :
5

o

o 3
o

Interaction Layer

Zinput»

(o]
c
3
)
3
-
8
=1
Q
e
3
ol

Figure 3.78: Define Transformation Chain

AUTSSAR

Task Definition Define Transformation Chain

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Tasks

Brief Description Concatenate several transformers to a transformer chain.

Description In this task the several Transformers are concatenated to a Transformer chain producing a set of
DataTransformationSets.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Consumes Serializer Transformer 1

Consumes Custom Transformer 0..1

Consumes E2E Transformer 0..1

Produces Interaction Layer 1 TransformationChain:

Table 3.157: Define Transformation Chain

3.3.3.2 Work Products

3.3.3.2.1 Communication Layers

Communication
Layers

«aggregation» «aggregation»

«aggregation»

«aggregation»

]

ISignal

+ framelength: Integer [0..1] + dataTypePolicy: DataTypePolicyEnum [0..1]

+ iSignalType: ISignalTypeEnum [0..1]
+ length: UnlimitedInteger [0..1]

0..1
Data Link Interaction Network Diagnostics
Layer Layer Layer Interaction
— | Layer
— . —
— == £ —
_—— [}
— r E R —
' m
! | | 3 |
I 2
' | [(-] : I
| I g g | I
: | : g = «AtpUseMetaMode|Element» |
! | 138 2 I «AtpUseMetaModel Element»
! | [\1/ Z : |
! I I's : | |
«AtpUseMetaModelElement» | e Pdu | v
i y |2 PPd < T
: «AtpUseMetaModelElement» 13 o X DcmiPdu
(=3
! : 1< : + diagPduType: DiagPduType [0..1]
I e
| ! \vi |
v ! - l
" I FibexElement v
Gbsitlerent | UploadableDesignElement|
Frame | NPdu
I
I
I
I
|
I
I

ARElement
DataTransformationSet

0..1

+systemSignal

ARElement
SystemSignal

+ dynamicLength: Boolean [0..1]

Figure 3.79: Communication Layers

AUTSSAR

Deliverable Communication Layers

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Work
products

Brief Description Communication Matrix

Description It's a container for the description elements of the communication layers

Kind Delivered

Relation Type Related Element Mult. Note

Aggregated by System Description 0..1

Aggregates Data Link Layer 1

Aggregates Interaction Layer 1

Aggregates Diagnostics Interaction 0..1
Layer

Aggregates Network Layer 0..1

Consumed by Define System Timing 1

Consumed by Extract the ECU 1
Communication

Consumed by Set System Root 1 Only the reference to the artifact is needed

Table 3.158: Communication Layers

3.3.3.2.2 Communication Matrix

CoreCommunication::ISignalTriggering | *iSignalTriggering

Identifiable
CoreCommunication::PduTriggering

Identifiable

0> «atpVariation,atpSplitable»

~
N 77 MNo-
N .))
N P +pduTriggering
AN 7
S s
N 7
.7 «atpVariation,atpSplitable»
«AtpUseMetaModelElement»
7

Identifiable
CoreCommunication:
:FrameTriggering

Communication Matrix

Figure 3.80: Communication Matrix

Artifact Communication Matrix

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Work
products

Brief Description

Description Define the mapping of the triggering elements within the Physical Channels to the communication
connector ports for the individual ECUs.
Because the triggering elements are aggregated as splitable elements within the Physical Channels
it is possible to define them in an artifact separated from the Topology.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by System Description 0..*

\Y

AUTSSAR

A

Artifact Communication Matrix

Produced by Define Communication 1

Matrix

Use meta model FrameTriggering 1
element

Use meta model ISignalTriggering 1
element

Use meta model PduTriggering 1
element

Table 3.159: Communication Matrix

3.3.3.2.3 Data Link Layer

Artifact Data Link Layer

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Work
products

Brief Description Describes the frames that are used in the Data Link Layer

Description Describes the layout of frames to be sent over communication channels. This definition belongs to
the Data Link Layer. The Data Link Layer provides the functional and procedural means to transfer
data between network entities. This layer is used to transmit data passed by an upper layer (PduR,
Tp) between adjacent network nodes. In AUTOSAR the Drivers (FrDrv, CanDrv, LinDrv) and
Interfaces (Frlf, Canlf, Linlf) belong to the Data Link Layer.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Communication Layers 1

Produced by Define Frames 1

Use meta model Frame 1

element

Table 3.160: Data Link Layer

3.3.3.2.4 Interaction Layer

Artifact Interaction Layer

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Work
products

Brief Description Describes the Signals of the Interaction Layer.

Description Describes the Signals of the Interaction Layer covering the COM Signals. The Interaction Layer
packs one or more signals into assigned COM |-Pdus and passes them to the underlying layer for
transfer between nodes in a network.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Communication Layers 1

Produced by Define RTE Fan-out 1 Link of ISignals to System Signals

\Y

AUTSSAR

A
Artifact Interaction Layer
Produced by Define Secured PDUs 1 Secured PDUs: Secured IPdu that contains payload of
an Authentic IPdu supplemented by additional
Authentication Information.
Produced by Define Signal PDUs 1 ISignals
Produced by Define Transformation 1 TransformationChain:
Chain
In/out Define PDU Gateway 1
In/out Define Signal Gateway 1
Consumed by Define E2E Transformer 1 ISignals:
Technology
Consumed by Define Secured PDUs 1 I-PDUs: Authentic IPdu that will be secured against
manipulation and replay attacks.
Consumed by Define Transformation 1 ISignals:
Technology
Consumed by Define Frames 0..1
Consumed by Define Network 0..1
Management
Consumed by Define TP 0..1
Use meta model DataTransformationSet 1
element
Use meta model IPdu 1
element
Use meta model ISignal 1
element

Table 3.161: Interaction Layer

3.3.3.2.5 Diagnostics Interaction Layer

Artifact Diagnostics Interaction Layer

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Work
products

Brief Description

Description Collection of DCM IPDUs.

Kind AUTOSAR XML

Relation Type Related Element Muilt. Note

Aggregated by Communication Layers 0..1

Produced by Define TP 0..1

Use meta model DemlPdu 1

element

Table 3.162: Diagnostics Interaction Layer

AUTSSAR

3.3.3.2.6 Network Layer

Artifact Network Layer
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Work
products
Brief Description Describes the PDUs of the Network Layer.
Description Describes the PDUs of the Network Layer (N-PDUs and NM-PDUs). The Network Layer’'s main
purposes are :
« the segmentation and reassembly of I-PDUs and DCM I-PDUs that do not fit in one of the
assigned N-PDUs
« the definition of NM-PDUs
Kind AUTOSAR XML
Relation Type Related Element Mult. Note
Aggregated by Communication Layers 0..1
Produced by Define Network 1
Management
Produced by Define TP 1
Consumed by Define Frames 0..1
Use meta model NPdu 1
element

Table 3.163: Network Layer

3.3.3.2.7 Serializer Transformer

Artifact Serializer Transformer

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Work
products

Brief Description Serialization of the input data

Description This transformer performs the serialization of the input data. It is the first transformer in the
transformer chain.

Kind

Relation Type Related Element Mult. Note

Produced by Define Transformation 1 SerializerTransformerTechnology:
Technology

Consumed by Define Transformation 1
Chain

Table 3.164: Serializer Transformer

3.3.3.2.8 E2E Transformer

Artifact E2E Transformer

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Communication Matrix::Work
products

Brief Description E2E protection transformation

Description This transformer adds E2E protection related information to the data stream.

V

AUT<

SSAR

A
Artifact E2E Transformer
Kind
Relation Type Related Element Mult. Note
Produced by Define E2E Transformer 1 E2ETransformerTechnology:
Technology
Consumed by Define Transformation 0..1
Chain

Table 3.165: E2E Transformer

3.3.4 ECU Extract

3.3.4.1 Tasks

3.3.4.1.1 Extract ECU Topology
System ECU
- Engineer Integrator -
z System z
~ |Description ~|ECU Extract
0.1
«aggregation» «performs»! «aggregation»
0.1 1
— 1 L | —
— «input» «output» e
— Extract ECU Topology —
Topology ECU Extract of Topology
Figure 3.81: Extract ECU Topology
Task Definition Extract ECU Topology
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Tasks
Brief Description Extract the topology for a single ECU from the System Topology
Description From the System or System Extract Topology, extract the topology for a single ECU.
Relation Type Related Element Mult. Note
Performed by ECU Integrator 0..1
Performed by System Engineer 0..1
Consumes Topology 1
Produces ECU Extract of Topology 1.*

Table 3.166: Extract ECU Topology

AUTSSAR

3.3.4.1.2 Generate or Adjust ECU Flat Map

System ECU
Engineer Integrator -
VFB System -
Extract ~|ECU Extract
0.. 0.1
«<aggregation
«perfoms: «performs» 99reg
1
—
—
—
Overall VFB |1 «input» 1 «inoutput» 1 | e—
System —
Generate or Adjust
ECU Flat Map ECU Flat Map

«input»

*

|||||| o

System Flat Map Partial Flat Map

«input»

Figure 3.82: Generate or Adjust ECU Flat Map

Task Definition Generate or Adjust ECU Flat Map

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Tasks

Brief Description Generates and/or adjust the unique names of component prototypes and MCD display data in the
scope of a single ECU.

Description Generates and/or adjust the unique names of component prototypes and MCD display data in the

scope of a single ECU. This information is kept in the so-called ECU Flat Map.

The names can be generated according to some rules (e.g. from model elements of the VFB
system), taken over from the System Flat Map, from partial Flat Maps, or be manually defined. The
task shall always result in an ECU Flat Map with unique names.

Relation Type Related Element Mult. Note

Performed by ECU Integrator 0..1

Performed by System Engineer 0..1

Consumes Overall VFB System 0..1 Used to set the upstream references in case one starts
from a complete system.

Consumes System Flat Map 0..1 Take over definitions of unique names from system level
to ECU level.

Consumes VFB System Extract 0..1 Used to set the upstream references in case one starts
from a system extract.

Consumes Partial Flat Map 0..” If Partial Flat Maps were delivered along with software
components referring only to ECU internal information,
they may be integrated into the ECU Flat Map directly,
i.e. without needing the System Flat Map.

* The instance refs used in a partial flat map must be
taken over and adjusted to the context ECU Extract.

» Name conflicts have to be resolved if several partial
flat maps are merged.

In/out ECU Flat Map 1

Table 3.167: Generate or Adjust ECU Flat Map

AUT<=

SSAR

3.3.4.1.3 Flatten Software Composition

System
Engineer

ECU
Integrator

ECU Extract of VFB
System

1
ECU Flat Map 0.1

«performs» «performs»

«input» «output» | —

Flatten
Software

Composition

<
)
°
=3
S
@
S
&
=

=
=
2
@

ECU Extract of
Data Mapping

Components to ECUs
«input»

I «input»

System Description Root
Element

Overall VFB System VFB System Extract

Figure 3.83: Flatten Software Composition

Task Definition Flatten Software Composition

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Tasks

Brief Description Extract and flatten the ECU Software Composition.

Description Generate the complete software composition in an ECU by copying ComponentPrototypes from the

VFB description into a flat representation (still without service components).

Flat representation means, that all compositions are removed and a "flat" set of Componet
Prototypes is generated. Due to the replication of ComponentPrototypes new names have to be
generated for those. These can be predefined in the FlatMap which is an input to this task.

The ECU Extract of Data Mapping is also created by this task, as the references to the Data
Prototypes need to be created with respect to the new component structure.

Relation Type Related Element Mult. Note

Performed by System Engineer 1

Performed by ECU Integrator 0..1

Consumes ECU Flat Map 1

Consumes Mapping of Software 1

Components to ECUs
Consumes System Description Root 1 find the top level composition
Element

Consumes Data Mapping 1.*

Consumes Overall VFB System 0..1 Read relevant elements starting from VFB Top Level
System Composition in case transformation starts with
the full system.

Consumes VFB System Extract 0..1 Read relevant elements starting from VFB Top Level
System Composition in case transformation starts from
the system extract.

Produces ECU Extract of Data 1

Mapping
Produces ECU Extract of VFB System 1

Table 3.168: Flatten Software Composition

AUTSSAR

3.3.4.1.4 Extract the ECU Communication

System ECU
- Engineer Integrator
~|VFB System = |ECU Extract
1 1
«performs» «performs» «aggregation
«input»
P 1

—3 N —
— —
— 11 «input» «OULPUL 17 x| em—
— —

Extract the ECU —

Communication

Mapping of Software
Componentsto ECUs

ECU Extract for
Communication

«input» «input»

«input»

System Signal Group System Signal Communication
Layers

Figure 3.84: Extract the ECU Communication

Task Definition Extract the ECU Communication

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Tasks

Brief Description The limited-scope communication matrices for an ECU to communicate on all networks on which it
is directly connected.

Description The limited-scope communication matrices for an ECU to communicate on all networks on which it
is directly connected.

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Performed by System Engineer 1

Consumes Communication Layers 1

Consumes Mapping of Software 1
Components to ECUs

Consumes VFB System 1 Need as input in order to set up the Data Mapping.

Consumes System Signal 0..”

Consumes System Signal Group 0.~

Produces ECU Extract for 1.*

Communication

Table 3.169: Extract the ECU Communication

AUTSSAR

3.3.4.1.5 Extract the ECU Timing Model

System ECU

Engineer Integrator

System
Description ECU Extract
0.1

«aggregation» «performs» «aggregation»

0.*
—
— «input» «output» 1

Extract ECU System Timing

System Timing ECU Extract of System
Timing

Figure 3.85: Extract the ECU System Timing Model

Task Definition Extract ECU System Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Tasks

Brief Description

Description Extract the System Timing Model for a particular ECU from the model for a complete system or
system extract.

Relation Type Related Element Mult. Note

Performed by ECU Integrator 0..1

Performed by System Engineer 0..1

Consumes System Timing 1

Produces ECU Extract of System 1
Timing

Table 3.170: Extract ECU System Timing

AUTSSAR

3.3.4.1.6 Extract the ECU System Variant Model

System

0.* 0.*
i «input»
«aggregation» 5o jefined Variant P
Description
«aggregation»

«aggregation»

System
Constant
Value Set

ECU Extract

System EngineeX 0..1 ECU Integrajor g 1

«aggregation» «aggregation

«output» 1

Extract ECU System

Variant Model ECU Extract of

System Variant
Model

«input»

Evaluated Variant Set

Figure 3.86: Extract the ECU System Variant Model

Task Definition Extract ECU System Variant Model

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Tasks

Brief Description

Description Extract the global model elements (ARElements) that are used to describe variants from system or

system extract scope to a particular ECU scope. This applies to:
+ System Constant Value Set

* Postbuild Variant Set
* Predefined Variant
+ Evaluated Variant Set
They are transformed as far as they are needed into the ECU Extract.

Relation Type

Related Element Mult. Note

Performed by ECU Integrator 0..1
Performed by System Engineer 0..1
Consumes Evaluated Variant Set 0..*
Consumes Postbuild Variant Set 0..*
Consumes Predefined Variant 0..”
Consumes System Constant Value Set 0..”
Produces ECU Extract of System 1

Variant Model

Table 3.171: Extract ECU System Variant Model

AUTSSAR

3.3.4.1.7 Extract ECU Rapid Prototyping Scenario

System ECU
- Engineer Integrator =
- System -
= | Description = | ECU Extract
0.1
«aggregation»
«aggregation»
«performs «performs»
0.1 0.1
— —
— —
— —
— | «input> «output» 1 —
Extract ECU Rapid Prototyping
- Scenario .
Rapid ECU Extract of Rapid
Prototyping Prototyping Scenario
Scenario

Figure 3.87: Extract ECU Rapid Prototyping Scenario

Task Definition Extract ECU Rapid Prototyping Scenario
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Tasks
Brief Description Extracts the ECU Rapid Prototyping Scenario
Description From the System Rapid Prototyping Scenario extract the entities relevant for the single ECU.
Relation Type Related Element Mult. Note
Performed by ECU Integrator 0..1
Performed by System Engineer 0..1
Consumes Rapid Prototyping Scenario 1
Produces ECU Extract of Rapid 1
Prototyping Scenario

Table 3.172: Extract ECU Rapid Prototyping Scenario

AUTSSAR

3.3.4.2 Work Products

3.3.4.2.1 ECU Extract

ECU Extract ECU Extract
Root of Topology
Element

ECU Extract for
Communication

ECU Extract of System
Variant Model

1y

ECU Extract of ~ |ECU Extract

Data Mapping -

— — —

— — — -

—— —— — -

—— —— — -

ECU Flat Map ECU Extract of ECU Extract of Rapid ECU Extract of VFB
System Timing Prototyping Scenario System

Figure 3.88: ECU Extract

Deliverable ECU Extract

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Work products

Brief Description A version of the System Description, with information pertaining to a single ECU.

Description A deliverable used to describe the ECU specific view on the System Description. The ECU Extract is
fully decomposed and contains only Atomic Software Components.lt is the basis for setting up the
ECU Configuration.
A timing model is optionally included.
This deliverable may contain variation points in its XML artifacts which need to be bound for the
ECU. If such variation points are present, the ECU extract may optionally include Predefined
Variants in order to predefine variants for later selection and an Evaluated Variant Set (this is
expressed by artifact ECU Extract of System Variant Model).
This deliverable corresponds to the system description with the system category "ECU_EXTRACT"
(see [TPS_SYST_01003]).

Kind Delivered

Relation Type Related Element Mult. Note

Aggregates ECU Extract Root Element 1

Aggregates ECU Extract for 1
Communication

Aggregates ECU Extract of Data 1
Mapping

Aggregates ECU Extract of Topology 1

Aggregates ECU Extract of VFB System 1

Aggregates ECU Flat Map 1

Aggregates ECU Extract of Rapid 0..1
Prototyping Scenario

AUTSSAR

JAN
Deliverable ECU Extract
Aggregates ECU Extract of System 0..1
Timing
Aggregates ECU Extract of System 0..1
Variant Model
Produced by Generate ECU Extract 1
Produced by Develop Sub-System 1.*
Produced by Develop System 1.*
Consumed by Configure Com 1
Consumed by Configure Diagnostics 1 Application software requirements for diagnostics,
especially SwcServiceDependency and ServiceNeeds.
Consumed by Configure ECUC 1
Consumed by Configure NvM 1 Application software requirements for NvM, especially
SwcServiceDependency and ServiceNeeds.
Consumed by Configure RTE 1 Elements of the System Description and VFB
Description are referred by the RTE configuration.
Optional Input: ECU Extract of System Timing, e.g.
execution order constraints.
Consumed by Configure Watchdog 1 Application software requirements for WdgM, especially
Manager SwcServiceDependency and ServiceNeeds.
Consumed by Connect Service 1 Find the ports on the application side to be connected to
Component the Service Component.
Consumed by Define Integration Variant 1
Consumed by Generate Base Ecu 1
Configuration
Consumed by Generate RTE 1 Find the VFB description of all Atomic Software
Components on this ECU and the relevant parts of the
system description.
The ECU Flat Map is also an input.
Meth.bindingTime = SystemDesignTime
Consumed by Generate RTE Postbuild 1 Meth.bindingTime = LinkTime
Dataset
Consumed by Generate RTE Prebuild 1 Meth.bindingTime = CodeGenerationTime
Dataset
Consumed by Generate Updated ECU 1
Configuration
Consumed by Integrate Software for ECU 1
Consumed by Prepare ECU Configuration 1
Consumed by Update ECU Configuration 1
Consumed by Configure Mode 0..1 Application software requirements for NvM, especially
Management SwcServiceDependency and ServiceNeeds. Input in
case atomic software components are available.
Consumed by Create MC Function Model 0..1 The ECU Flat Map can be used to define references to
variables and parameters which are later visible in A2L.
Furthermore, the ECU Extract can be used to find the
relevant software components.
Consumed by Create Service Component 0..1 Input information about the Service Ports and Service
Dependencies of the software components.
Consumed by Define ECU Timing 0..1 Needed to set up links to the elements of the ECU

extract.

Configure Transformer

1

Table 3.173: ECU Extract

AUTSSAR

3.3.4.2.2 ECU Extract Root Element

Artifact ECU Extract Root Element
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Work products
Brief Description
Description Extract of the System root element for a specific ECU.
Kind AUTOSAR XML
Extends System
Relation Type Related Element Mult. Note
Aggregated by ECU Extract 1
Consumed by Generate Rapid Prototyping 1
Wrapper
Use meta model System 1
element

Table 3.174: ECU Extract Root Element

3.3.4.2.3 ECU Extract of VFB System

Deliverable ECU Extract of VFB System

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Work products

Brief Description Contains the complete software composition in an ECU, copied from the VFB description into a flat
representation, it is still without service components.

Description Contains the complete software composition in an ECU, copied from the VFB description into a flat
representation, that means it is still without service components. Flat representation means, that all
compositions have been removed and a "flat" set of ComponentPrototypes was generated (including
their connectors) which are put into the top level composition of the ECU.

Kind Delivered

Extends VFB System

Relation Type Related Element Mult. Note

Aggregated by ECU Extract 1

Produced by Flatten Software 1
Composition

Consumed by Generate Rapid Prototyping 1
Wrapper

Use meta model RootSwComposition 1

element Prototype

Table 3.175: ECU Extract of VFB System

AUTSSAR

3.3.4.2.4 ECU Extract of Data Mapping

Artifact ECU Extract of Data Mapping

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Work products

Brief Description

Description ECU extract of the mapping of data prototypes from the (flattened) VFB description to System
Signals.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by ECU Extract 1

Produced by Flatten Software 1
Composition

Use meta model DataMapping 1

element

Table 3.176: ECU Extract of Data Mapping

3.3.4.2.5 ECU Extract of Topology

Artifact ECU Extract of Topology

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Work products
Brief Description A view of the topology centered around a single ECU.
Description A view of the topology centered around a single ECU.
Kind AUTOSAR XML

Relation Type Related Element Mult. Note
Aggregated by ECU Extract 1

Produced by Extract ECU Topology 1.

Use meta model CommunicationCluster 1

element

Use meta model Eculnstance 1

element

Table 3.177: ECU Extract of Topology

3.3.4.2.6 ECU Extract for Communication

Artifact ECU Extract for Communication
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Work products
Brief Description A version of the System Communication Matrix work product, with information pertaining to a single

ECU.

Y%

AUTSSAR

A
Artifact ECU Extract for Communication
Description This artifact represents an extract of the System Description elements for communication with
respect to a single ECU. It provides all information needed to let the ECU communicate on all
networks on which it is directly connected.
It is extracted from these system artifacts:
» Communication Matrix
» Communication Layers
» System Signal(s)
» System Signal Group(s)
Kind AUTOSAR XML
Relation Type Related Element Mult. Note
Aggregated by ECU Extract 1
Produced by Extract the ECU 1.
Communication
Use meta model FibexElement 1
element

Table 3.178: ECU Extract for Communication

3.3.4.2.7 ECU Extract of System Timing

Artifact ECU Extract of System Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Work products
Brief Description

Description The extract of the System Timing for a particular ECU.
Kind AUTOSAR XML

Relation Type Related Element Mult. Note
Aggregated by ECU Extract 0..1

Produced by Extract ECU System Timing 1

Consumed by Define ECU Timing 0..1

Use meta model SystemTiming 1

element

Table 3.179: ECU Extract of System Timing

AUTSSAR

3.3.4.2.8 ECU Extract of System Variant Model

Deliverable ECU Extract of System Variant Model

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Work products
Brief Description

Description An extract of the System artifacts

» System Constant Value Set
* Postbuld Variant Set

* Predefined Variant

« Evaluated Variant Set

It contains only the elements relevant for a particular ECU.

Kind Delivered

Relation Type Related Element Mult. Note

Aggregated by ECU Extract 0..1

Aggregates Evaluated Variant Set 0.~

Aggregates Postbuild Variant Set 0.*

Aggregates Predefined Variant 0.*

Aggregates System Constant Value Set 0..”

Produced by Extract ECU System 1
Variant Model

Consumed by Generate Rapid Prototyping 0..1
Wrapper

Table 3.180: ECU Extract of System Variant Model

3.3.4.2.9 ECU Flat Map

Artifact ECU Flat Map
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Work products
Brief Description Mapping of instance names to nested model elements. Use cases: Resolve name conflicts when

flattening VFB software compositions; provide unique names for measurement and calibration data.

Description The flat map is a list of elements, each element represents exactly one node (e.g. a component

instance or data element) of the instance tree of a software system. The purpose of this element is

to map the various nested representations of this instance to a flat representation and assign a

unigue name to it. The name will be unique in the scope of a single ECU. (Note that additional alias

names can be defined via artifact Alias Name Set.)

Use cases:

» Specify the display name of a data object for measurement and calibration. This serves as an

input for the calibration support which is produced by the RTE generator. The RTE generator
needs to find the attributes assigned to these data via the attached references.

» Specify a unique name for an instance of a component prototype in the ECU extract of the system
description. This information is needed to set up the ECU extract.

« Assign initial values to calibration parameters as input for the RTE generator.

Kind AUTOSAR XML
Relation Type Related Element Mult. Note
Aggregated by ECU Extract 1
In/out Generate or Adjust ECU 1
Flat Map

\Y

AUTSSAR

A
Artifact ECU Flat Map
Consumed by Flatten Software 1
Composition
Consumed by Generate Local MC Data 1 Meth.bindingTime = SystemDesignTime
Support
Consumed by Generate Rapid Prototyping 1
Wrapper
Consumed by Provide RTE Calibration 1
Dataset
Consumed by Generate A2L 0..1 The ECU Flat Map is needed in case the A2L generator

has to process an MC Function Model that relates to
data in the ECU Flat Map.

Use meta model
element

FlatinstanceDescriptor

Table 3.181: ECU Flat Map

3.3.4.2.10 ECU Extract of Rapid Prototyping Scenario

Artifact ECU Extract of Rapid Prototyping Scenario

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::ECU Extract::Work products
Brief Description Description of the (required) bypass points in the ECU.

Description Description of the (required) bypass points in the ECU.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by ECU Extract 0..1

Produced by

Extract ECU Rapid
Prototyping Scenario

1

In/out

Refine Rapid Prototyping
Scenario

Consumed by

Generate Rapid Prototyping
Wrapper

3.4 Software Component

Table 3.182: ECU Extract of Rapid Prototyping Scenario

This chapter contains the definition of work products and tasks used for the develop-
ment of a single software component against a given VFB description. For the defi-
nition of the relevant meta-model elements refer to [5, CP TPS Software Component

Template].

AUTSSAR

3.4.1 Tasks

3.4.1.1 Define Software Component Internal Behavior

Software
Component

Designer Software
Component
Developer
«performs»
—_—
—
—
—
—
1
- «input»
VFB Atomic —
Software —
Component
«output» 1 || —
—
—
<input» Define Atomic Software
Component Internal Software Component Internal
0.1 Behavior Behavior

\

ul

B AUTOSAR Standard Package

Figure 3.89: Define Software Component Internal Behavior

Task Definition Define Atomic Software Component Internal Behavior

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks

Brief Description Define the InternalBehavior in relation to a given AtomicSoftwareComponentType

Description Define the InternalBehavior in relation to a given AtomicSoftwareComponentType so that an RTE

API can be generated. This includes the definition of Runnables, RTE Events, Inter-Runnable
variables, etc.

Relation Type Related Element Mult. Note
Performed by Software Component 1
Designer
Performed by Software Component 0..1
Developer
Consumes VFB Atomic Software 1
Component
Consumes VFB AUTOSAR Standard 0..1 Use standardized elements (e.g. Data Types) as
Package blueprints (as far as applicable) to create the
corresponding elements of the actual project.
Produces Software Component 1
Internal Behavior

Table 3.183: Define Atomic Software Component Internal Behavior

AUTSSAR

3.4.1.2 Define Partial Flat Map

«performs»

- 1
VFB System «input»

Software Component
Designer

«i

[=)
*

Software Component Internal
Behavior

Software

Component

Developer

0.1
«perfgrms»
—
—
—
«output» 1 || —

—

Define Partial Flat Map

Partial Flat Map

Figure 3.90: Define Partial Flat Map

Task Definition Define Partial Flat Map
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks
Brief Description
Description Define a Partial Flat Map for an intended delivery of Atomic Software Components.
Relation Type Related Element Muit. Note
Performed by Software Component 0..1
Designer
Performed by Software Component 0..1
Developer
Consumes VFB System 1 Various parts of a given VFB system will be used as
input:

* Refer to parameters and variables in port interfaces
and their data types.

* In order to define unique names, also other the
component definitions not in the scope of the partial
flat map might be checked.

+ Set a link to the context of the Flat Map, e.g. a VFB
Composition.

Consumes Software Component 0..* Refer to parameter and variables defined in the Internal
Internal Behavior Behavior of one or more Atomic Software Components.
Produces Partial Flat Map 1

Table 3.184: Define Partial Flat Map

AUTSSAR

3.4.1.3 Define Software Component Timing

Software Component Developer

/

«performs»

«input»

Software —
Component —
Intemal Behavior
«output» 1 | e—
—
Define Software Component Timing —
«input» Software Component Timing

0.1

VFB Timing

Figure 3.91: Define Software Component Timing

Task Definition Define Software Component Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks

Brief Description Define SWCTiming (TimingDescription and TimingConstraints) for the Internal Behavior (Runnable
Entities) of a Software Component

Description Define SWCTiming (TimingDescription and TimingConstraints) of a software component. A software

component can either be of type AtomicSWComponentType or CompositionSWComponentType.
In the former case, the task allows to describe timing description and constraints for the Internal
Behavior of the AtomicSWComponentType.

In the latter case, timing descriptions and constraints can be defined for all Atomic Software
Components in the CompositionSWComponentType.

Relation Type Related Element Mult. Note
Performed by Software Component 1
Developer
Consumes Software Component 1
Internal Behavior
Consumes VFB Timing 0..1
Produces Software Component 1
Timing

Table 3.185: Define Software Component Timing

AUTSSAR

3.4.1.4 Define SymbolProps for Types

Software Component Developer

«performs»

-

Define SymbolProps for
Types

«output»

«output»

+symbolProps

0.%
VFB Atomic

Software
Component

+symbolProps

VFB Types

Figure 3.92: Define SymbolProps for Types

Task Definition Define SymbolProps for Types

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks

Brief Description Define SymbolProps for types in order to resolve name conflicts in the code.

Description Redefines the symbols used by the RTE contract for the names of software component types and/or

implementation data types (in the code as well as in certain header file names).
This task is used to resolve name conflicts between different software components without changing

the VFB model.

Relation Type Related Element Mult. Note
Performed by Software Component 1
Developer
Produces VFB Atomic Software 0..” symbolProps: The symbolProps attribute redefines the
Component software component type name used in the code of the
RTE. This resolves name clashes among different
software component types designed accidentally with
the same shortName.
Note that this output is a splitable element, so it can be
added later without changing the VFB model.
Produces VFB Types 0..* symbolProps: The symbolProps attribute redefines the

implementation data type name used in the code of the
RTE and/or the component. This resolves name clashes
among different implementation data types designed
accidentally with the same shortName.

Note that this output is a splitable element, so it can be
added later without changing the VFB model.

Table 3.186: Define SymbolProps for Types

AUTSSAR

3.4.1.5 Add Documentation to the Software Component

Software
Component
Developer

Software
Component
Designer

—
—
—
—)] «input» «inoutput» 1
—

Add Documentation to the
b Tt Software Component
artial Flat Map Software
Component
Documentation

«input»

AliasName Set

Figure 3.93: Add Documentation to the Software Component

Task Definition Add Documentation to the Software Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks
Brief Description Add documentation to the Software Component
Description Add documentation to the Software Component describing the functionality, how to test it, the
calibration uses, the maintenance and diagnosis issues.
Relation Type Related Element Mult. Note
Performed by Software Component 1
Designer
Performed by Software Component 0..1
Developer
Consumes Partial Flat Map 0..1 Optional input in order to refer to unique names defined
in component or composition context.
Consumes System Flat Map 0..1 Optional input in order to refer to unique names defined
in system context.
Consumes Alias Name Set 0..* Optional input in order to refer to unique names defined
in an Alias Name Set (e.g. System Constants).
In/out Software Component 1
Documentation

Table 3.187: Add Documentation to the Software Component

AUTSSAR

3.4.1.6 Generate Atomic Software Component Contract Header Files

VFB Atomic
Software
Component

Software
Component
Developer

Software
Component
Internal

Behavior

«performs» «output»

«used tool»

Application Header File

=

t API Generator Tool

(@]
o
3
o
o
S
)
S

Generate Atomic Software

Component Contract Header Files «output»

input»

«inpuf®
0.1

«input»

«input»

«input»

[

Software
Component Data
Types Header

Vi

=

B AUTOSAR Standard Package

VFB Types VFB Data Type VFB Interfaces VFB Modes Software
Mapping Set Component to
BSW Mapping
Figure 3.94: Generate Atomic Software Component Contract Header Files
Task Definition Generate Atomic Software Component Contract Header Files
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks
Brief Description Generate the component contract header files.
Description Generate the component header files as part of the so-called "contract phase". These headers will

allow to link the component lateron with the RTE.

variants is contained in the input to this task.
Meth.bindingTime = CodeGenerationTime

The header can still contain variants with later binding time, therefore the information about these

Relation Type Related Element Mult. Note

Performed by Software Component 1
Developer

Consumes Software Component 1 Meth.bindingTime = SystemDesignTime
Internal Behavior

Consumes VFB Atomic Software 1 Meth.bindingTime = SystemDesignTime
Component

Consumes Postbuild Variant Set 0..1

Consumes Predefined Variant 0..1

AUTSSAR

JAN
Task Definition Generate Atomic Software Component Contract Header Files
Consumes Software Component to 0..1 If a Software Component is mapped to a BSW module
BSW Mapping description, this input is optionally needed already in the
contract phase in order to ensure that the generated
prototypes for runnables are consistent with the
definitions in Software Component and BSW.
Meth.bindingTime = SystemDesignTime
Consumes System Constant Value Set . Meth.bindingTime = SystemDesignTime
Consumes VFB AUTOSAR Standard A
Package
Consumes VFB Data Type Mapping 0..1 Meth.bindingTime = SystemDesignTime
Set
Consumes VFB Interfaces 0.* Meth.bindingTime = SystemDesignTime
Consumes VFB Modes .* Meth.bindingTime = SystemDesignTime
Consumes VFB Types .* Meth.bindingTime = SystemDesignTime
Produces Application Header File 1 Meth.bindingTime = CodeGenerationTime
Produces Software Component Data 1 Meth.bindingTime = CodeGenerationTime
Types Header
Used tool Component AP| Generator 1

Tool

Table 3.188: Generate Atomic Software Component Contract Header Files

AUTSSAR

3.4.1.7 Generate Component Header File in Vendor Mode

Atomic Software Software ECU Integrator
Component Component
— .
Implementation Developer
—
—
—
1
Software
Component
Internal
Behavior
«performs»
«input»
VB Ao «used tool» Component API
Generator Tool
Software
Component

Generate Component Header File i
Vendor Mode

Optimized
Application Header
File

«input»

VFB AUTOSAR
Standard Package

VFB Data Type VFB Interfaces VFB Modes

Mapping Set Software
Component Data
Types Header

Figure 3.95: Generate Component Header File in Vendor Mode

Task Definition Generate Component Header File in Vendor Mode
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks
Brief Description Generate an optimized component header file. This is achieved by using the RTE’s vendor mode.
Description Generate an optimized component header file. This is achieved by using the RTE’s vendor mode.
Meth.bindingTime = CodeGenerationTime
Relation Type Related Element Mult. Note
Performed by Software Component 1
Developer
Performed by ECU Integrator 0..1
Consumes Atomic Software 1 Meth.bindingTime = SystemDesignTime
Component Implementation
Consumes Software Component 1 Meth.bindingTime = SystemDesignTime
Internal Behavior
Consumes VFB Atomic Software 1 Meth.bindingTime = SystemDesignTime
Component
Consumes VFB AUTOSAR Standard 0..1
Package
Consumes VFB Data Type Mapping 0..1 Meth.bindingTime = SystemDesignTime
Set

AUTSSAR

JAN
Task Definition Generate Component Header File in Vendor Mode
Consumes VFB Interfaces 0.” Meth.bindingTime = SystemDesignTime
Consumes VFB Modes 0.* Meth.bindingTime = SystemDesignTime
Consumes VFB Types 0.r Meth.bindingTime = SystemDesignTime
Produces Optimized Application 1 Meth.bindingTime = CodeGenerationTime
Header File
Produces Software Component Data 1 Meth.bindingTime = CodeGenerationTime
Types Header
Used tool Component API Generator 1
Tool

Table 3.189: Generate Component Header File in Vendor Mode

3.4.1.8 Generate Component Prebuild Data Set

VFB Atomic Software Component ’

Software Internal Behavior

Component
— —
— —

= Software Component Developer
— —
Predefined 0..* 1 1
Variant
«input» «input» «input»! «performs»

Component API Generator Tool

. «used tool»
«input»
System Constant

Value Set

Generate Component Prebuild

Data Set
«input» m
—
1 —
—
«input» «input»
VFB Types «input» «input» Component RTE
Prebuild
Configuration
Header
0.* 0.1
— o -
—— — — -
| 0..1 — z
— — -
— VFB AUTOSAR Standard Package
VFB Data Type VFB Interfaces VFB Modes

Mapping Set

Figure 3.96: Generate Component Prebuild Data Set

AUTSSAR

Task Definition Generate Component Prebuild Data Set

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks

Brief Description Prebuild Data Set Generation Phase for a software component: It binds all variations which need to
be set after generation of the RTE contract header but before compilation of the component.

Description Prebuild Data Set Generation Phase for a software component: It binds all variations which need to

be set after generation of the RTE contract header but before compilation of the component. The
output is a configuration header which is used when compiling the component and the RTE as well.
Meth.bindingTime = PreCompileTime

Relation Type Related Element Mult. Note

Performed by Software Component 1
Developer

Consumes Software Component 1 Meth.bindingTime = CodeGenerationTime
Internal Behavior

Consumes VFB Atomic Software 1 Meth.bindingTime = CodeGenerationTime
Component

Consumes System Constant Value Set 1.7 Meth.bindingTime = CodeGenerationTime

Consumes VFB AUTOSAR Standard 0..1
Package

Consumes VFB Data Type Mapping 0..1 Meth.bindingTime = CodeGenerationTime
Set

Consumes Predefined Variant 0..”

Consumes VFB Interfaces 0.* Meth.bindingTime = CodeGenerationTime

Consumes VFB Modes 0.r Meth.bindingTime = CodeGenerationTime

Consumes VFB Types 0..x Meth.bindingTime = CodeGenerationTime

Produces Component RTE Prebuild 1 Meth.bindingTime = PreCompileTime
Configuration Header

Used tool Component AP| Generator 1

Tool

Table 3.190: Generate Component Prebuild Data Set

AUTSSAR

3.4.1.9 Implement Atomic Software Component
Library Software
Description Component
ﬁ Developer
Component
Internal)
Behavior «input» «performs»
— Implement Atomic Software —
—] «input» Component «output» 1 | —
Application Header File Atomic Software Component
Source Code
«input»
«output»
0.1
1
Software Component Standard Header Files Software Component Timing Atomic Software Component
Data Types Header Implementation
Figure 3.97: Implement Atomic Software Component
Task Definition Implement Atomic Software Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks
Brief Description Implement the code of the AtomicSoftwareComponent and decribe the Implementation.
Description Implement the code of the AtomicSoftwareComponent against the generated component contract
header. Document the basic information in the Implementation Description.
Meth.bindingTime = CodeGenerationTime
Relation Type Related Element Mult. Note
Performed by Software Component 1
Developer
Consumes Application Header File 1 Meth.bindingTime = SystemDesignTime
Consumes Software Component Data 1 Meth.bindingTime = SystemDesignTime
Types Header
Consumes Software Component 1 Meth.bindingTime = SystemDesignTime
Internal Behavior
Consumes Software Component 0..1 Meth.bindingTime = SystemDesignTime
Timing
Consumes Standard Header Files 0..1 Meth.bindingTime = CodeGenerationTime
Consumes Library Description 0..* Meth.bindingTime = CodeGenerationTime
Consumes Library Header Files 0..* Meth.bindingTime = CodeGenerationTime
Produces Atomic Software 1 Meth.bindingTime = CodeGenerationTime
Component Implementation
Produces Atomic Software 1 Meth.bindingTime = CodeGenerationTime
Component Source Code

Table 3.191: Implement Atomic Software Component

AUTSSAR

3.4.1.10 Compile Atomic Software Component
Atomic Rapid Rapid
Softwlare PZ:Totyping 3 Prototyping
— Component | s | Wrapper — | \WIAPpET
— Source Code|======== | Header File — Source Code
0.1 Software
Component
Developer
«input» «input»)
0.1
M - .
Component RTE Prebuild ~ «input> E:g:g;fflotypmg
Configuration Header
Compile Atomic
«input» Software
Component —
«input»
Atomic Software
Software «used tow» Component Object
Component Data Code
Types Header
Standard Header Files Library Header Files Compiler
Figure 3.98: Compile Atomic Software Component
Task Definition Compile Atomic Software Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks
Brief Description Compile the AtomicSoftwareComponent independently of an ECU.
Description Compile the Atomic Software Component independently of an ECU. In the context of Rapid

Prototyping Wrapper compilation the task is performed by the Rapid Prototyping Engineer.
Meth.bindingTime = CompileTime

Relation Type Related Element Mult. Note

Performed by Rapid Prototyping Engineer 0..1

Performed by Software Component 0..1
Developer

Consumes Application Header File 1 Meth.bindingTime = CodeGenerationTime

Consumes Atomic Software 1 Meth.bindingTime = CodeGenerationTime
Component Source Code

Consumes Software Component Data 1 Meth.bindingTime = CodeGenerationTime
Types Header

Consumes Standard Header Files 1 Meth.bindingTime = CodeGenerationTime

Consumes Component RTE Prebuild 0..1 Meth.bindingTime = PreCompileTime
Configuration Header

Consumes Rapid Prototyping Wrapper 0..1
Header File

AUTSSAR

A
Task Definition Compile Atomic Software Component
Consumes Rapid Prototyping Wrapper 0..1
Source Code
Consumes Library Header Files 0..” Meth.bindingTime = CodeGenerationTime
Produces Atomic Software 1 The object file should include both code of the SWC and
Component Object Code the E2E Protection Wrapper code (if present as an
input).
Meth.bindingTime = CompileTime
Used tool Compiler 1
Table 3.192: Compile Atomic Software Component
3.4.1.11 Map Software Component to BSW

Software 1
Component

Internal Behavior

- «input»
Basic Software

Module Intemal
Behavior

«input»

Complex Driver Component, «input>

0.1

ECU Abstraction Software
Component

Software
Component
Designer

Map Software Component to BSW

ECU Integrator

«performs»

«output» 1

Software
Component to
BSW Mapping

Figure 3.99: Map Software Component to BSW

AUT<=

SAR

Task Definition Map Software Component to BSW

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks

Brief Description Define the mapping between a Software Component and a BSW Module.

Description Define the mapping between a Software Component and a BSW Module. Required only for

Complex Drivers and ECU Abstraction Components. Note that for Service Components, this
mapping will be generated in the ECU integration phase, so the latter is not considered as a task in
the responsibility of the BSW developer.

Relation Type Related Element Mult. Note
Performed by Software Component 1
Designer
Performed by ECU Integrator 0..1
Consumes Basic Software Module 1
Internal Behavior
Consumes Software Component 1
Internal Behavior
Consumes Complex Driver Component 0..1
Consumes ECU Abstraction Software 0..1
Component
Produces Software Component to 1
BSW Mapping
Table 3.193: Map Software Component to BSW
3.4.1.12 Measure Component Resources

Atomic Software
Component Object

Code

Software
Component
Developer

1

1

«input» «performs»

[l

Software Component Timing

Measure Component Resources,

«input» «inoutput»

0.1

1

Atomic Software Component
Implementation

«performs»

0.1 «performs»

Basic Software Module Developer ECU Integrator

Figure 3.100: Measure Component Resources

AUTSSAR

Task Definition Measure Component Resources

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks

Brief Description Measure the resource consumption of an Atomic Software Component

Description Determine the resource consumption (memory, execution time) for a specific implementation of an

Atomic Software Component in a certain context (ECU or test environment) and document the
results in the Implementation description targeted at this specific platform.

The ECU Resources Description is an optional input, because some results should be documented
in relation to the hardware elements.

Relation Type Related Element Mult. Note

Performed by Software Component 1
Developer

Performed by Basic Software Module 0..1
Developer

Performed by ECU Integrator 0..1

Consumes Atomic Software 1
Component Object Code

Consumes ECU Resources Description 0..1

Consumes Software Component 0..1
Timing

In/out Atomic Software 1

Component Implementation

Table 3.194: Measure Component Resources

3.4.1.13 Recompile Component in ECU Context

Atomic Software
Component Source Code

0.+ Software Component Developer

«input» «performs»

«input»
Optimized Application

—
Header File e
—

«output» 1

Re-compile
Component in ECU
context

«input» Optimized Software Component

Object Code

Library Header

Files «used tool»

Compiler

Standard Header Files

Figure 3.101: Recompile Component in ECU Context

SSAR

AUT<S

Task Definition Re-compile Component in ECU context

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks

Brief Description Re-compile Component with ECU-Configuration specific optimizations.

Description Re-compile Component with optimizations made by the RTE in the context of an ECU (so-called
RTE implementation phase).
Meth.bindingTime = CompileTime

Relation Type Related Element Mult. Note

Performed by Software Component 0.~
Developer

Consumes Atomic Software 1 Meth.bindingTime = CodeGenerationTime
Component Source Code

Consumes Optimized Application 1 Meth.bindingTime = CodeGenerationTime
Header File

Consumes Standard Header Files 1 Meth.bindingTime = CodeGenerationTime

Consumes Library Header Files 0..* Meth.bindingTime = CodeGenerationTime

Produces Optimized Software 1 Meth.bindingTime = CompileTime
Component Object Code

Used tool Compiler 1
Table 3.195: Re-compile Component in ECU context

3.4.1.14 Define Consistency Needs

Software Component

Designer
Software Software Component
Component 1. Developer
Internal
Behavior
«performs»
P «performs»
«input»
—
—
«inoutput» 1 | —
—
) . —
Define Consistency

«input»

«input»

VFB Atomic Software Component

Figure 3.102:

Needs Consistency Needs

Define Consistency Needs

AUTSSAR

Task Definition Define Consistency Needs

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks

Brief Description

Description Defines the consistency relations between a group of RunnableEntitys and a group of Data

Prototypes. The consistency relations can be defined first time at the design of an Atomic Software
Component but can be added as well if Compositions are created.

Relation Type Related Element Mult. Note
Performed by Software Component 1
Designer
Performed by Software Component 1
Developer
Consumes Software Component 1.* Runnables the consistency is defined for.
Internal Behavior
Consumes VFB Atomic Software 0..* The description of an AtomicSoftwareComponentType
Component without InternalBehavior.
Consumes VFB Interfaces 0.* Interfaces which are relevant for the consistency
definition.
Consumes VFB Types 0..” Data types which are relevant for the consistency
definition.
In/out Consistency Needs 1 The description of the correlation between a group of

RunnableEntitys and a group of DataPrototypes. In
order to allow incremental development and refinement
the Consistency Needs artifact is also used as an input.

Table 3.196: Define Consistency Needs

AUTSSAR

3.4.1.15 Generate Rapid Prototyping Wrapper

ECU Extract
Root Element

ECU Extract of
System Variant
Model

0.1

Rapid Prototyping
Engineer

«input»

- 1
ECU Extract of VFB .
System «input»

«input»

«performs»

—
—
—
—
—
1 | ——
«output»

Generate Rap
Prototyping Wrappe!

«input»

«input»

ECU Extract of Rapid
Prototyping Scenario

Code

ECU Flat Map Software Component Internal
Behavior

Figure 3.103: Generate Rapid Prototyping Wrapper

Task Definition Generate Rapid Prototyping Wrapper
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Tasks
Brief Description Generate Rapid Prototyping Wrapper code.
Description Generate Rapid Prototyping Wrapper code. The header and source code are generated based on
the Rapid Prototyping Scenario describing the bypass points and the RPT hooks.
Relation Type Related Element Mult. Note
Performed by Rapid Prototyping Engineer 1
Consumes ECU Extract Root Element 1
Consumes ECU Extract of Rapid 1
Prototyping Scenario
Consumes ECU Extract of VFB System 1
Consumes ECU Flat Map 1
Consumes Software Component 1
Internal Behavior
Consumes ECU Extract of System 0..1
Variant Model
Produces Rapid Prototyping Wrapper 1
Header File
Produces Rapid Prototyping Wrapper 1
Source Code

Table 3.197: Generate Rapid Prototyping Wrapper

Methodology for Classic Platform
AUTOSAR CP R25-11

AUTSSAR

3.4.2 Work Products

3.4.2.1 Delivered Atomic Software Components

VFB Data Type
Mapping Set

— \
Software Component
Data Types Header
Application
Header File

VFB Atomic Software
Component

VFB Composition

Component VFB Interfaces VFB Modes VFB Types

|

)
b

System Constant
Value Set
redefined Varian
—

(i
[l

-

[l
Iy

—
—
Evaluated Variant Set — Component RTE Prebuild
Configuration Header
f— Delivered Atomic Software 3
Components —
 — O — | —
— —
 — — | —
—
Library Object
Postbuild Variant Set Code
—h —
| — | —
| — | —
| — | —
— —
| —
Atomic Software
Consistency Needs Component
Object Code
R D A (— —h — _—7 —2
Software Software Alias Name Set Software Partial Flat Map Software Atomic Software Atomic
Component Timing Component Component Component Component Software
Internal to BSW Documentation Implementation Component
Behavior Mapping Source Code

320 of 457

Figure 3.104: Delivered Atomic Software Components

Document ID 68: AUTOSAR_CP_TR_Methodology

AUTSSAR

Deliverable Delivered Atomic Software Components
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products
Brief Description Delivery of a set of AtomicSoftwareComponents including their Implementation.
Description Complete description of a set of AtomicSoftwareComponents including Implementation (still
standalone, not yet mapped to a specific ECU). The source or object code files are referred by the
Implementation Description.
The Atomic Software Components that make up the delivery may or may not form a composition (in
the sense of the VFB).
Note that the VFB descriptions of the components, compositions and the used interfaces are part of
the deliverable too in order to describe the delivered components completely. However, depending
on the use case, these parts could have been predefined and were treated as "readonly” during the
component development. The same holds (optionally) for the Internal Behavior(s).
In case of RTE generation a mapping set between Application and Implementation Data Types shall
be included if Application Data Types are used. A Timing Model is included optionally.
The delivery can optionally also contain variants (an Evaluated Variant Set and the related artifacts).
Kind Delivered
Relation Type Related Element Mult. Note
Aggregates Application Header File 1.*
Aggregates Software Component Data 1.*
Types Header
Aggregates VFB Atomic Software 1.7
Component
Aggregates Alias Name Set 0..1 Alias names valid in the context of the delivered
components.
Aggregates Evaluated Variant Set 0..1
Aggregates Partial Flat Map 0..1
Aggregates Postbuild Variant Set 0..1
Aggregates Atomic Software 0..” If the delivery contains only VFB NvBlock Software
Component Implementation Components, no implementation is contained as the
code is generated as part of the RTE.
Aggregates Atomic Software 0..*
Component Object Code
Aggregates Atomic Software 0..x
Component Source Code
Aggregates Component RTE Prebuild 0..*
Configuration Header
Aggregates Consistency Needs 0..” Correlation between a group of RunnableEntitys and a
group of DataPrototypes.
Aggregates Library Object Code 0..*
Aggregates Predefined Variant >
Aggregates Software Component 0..*
Documentation
Aggregates Software Component 0..” If the delivery contains only VFB NvBlock Software
Internal Behavior Components, the Internal Behavior is optional since it is
needed only in special cases.
Aggregates Software Component 0.*
Timing
Aggregates Software Component to 0..”
BSW Mapping
Aggregates System Constant Value Set 0..”
Aggregates VFB Composition 0..” In case the delivered atomic components make up one
Component or more VFB Compositions, the composition

description(s) shall be included in the delivery.

AUTSSAR

JAN
Deliverable Delivered Atomic Software Components
Aggregates VFB Data Type Mapping 0..*
Set
Aggregates VFB Interfaces 0..”
Aggregates VFB Modes 0..”
Aggregates VFB Types 0..”
Produced by Develop Application 1.7 Complete description of a set of AtomicSoftware
Software Components including implementation (incl. source or
object code files)
Consumed by Configure RTE 1.7 Required input:
 References to all component implementation
descriptions on this ECU
 SwclinternalBehavior (for example to map the
runnables to tasks) which was used in the contract
phase of the software components on this ECU
Consumed by Generate RTE 1.7 Required input:
* References to all component implementation
descriptions on this ECU
» SwclinternalBehavior which was used in the contract
phase of the software components on this ECU
* (optional) Software Component to BSW Mapping
Meth.bindingTime = SystemDesignTime
Consumed by Integrate Software for ECU 1.*
Consumed by Define Alias Names 0..1 Needed for definition of alias names in the scope of
delivered software components.
Consumed by Create MC Function Model 0..* The component model may be used to derive an MC

Function Model.

Table 3.198: Delivered Atomic Software Components

3.4.2.2 Software Component Internal Behavior

Components

Artifact Software Component Internal Behavior

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description Description of the InternalBehavor: It describes the RTE relevant aspects of a component, for
example the runnable entities and the events they respond to.

Description Description of the Internal Behavor. The Internal Behavior of an Atomic Software Component
describes the RTE relevant aspects of a component, i.e. the runnable entities and the events they
respond to. It is used to generate the RTE but also as input for parts of the basic software
generation (AUTOSAR Services). The Internal Behavior (i.e. the XML description) can only be used
together with an Atomic Software Component Type to which it is related.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software 0..* If the delivery contains only VFB NvBlock Software

Components, the Internal Behavior is optional since it is
needed only in special cases.

Produced by

Define Atomic Software
Component Internal
Behavior

AUTSSAR

JAN
Artifact Software Component Internal Behavior
Consumed by Define Software 1
Component Safety
Information
Consumed by Define Software 1
Component Timing
Consumed by Generate Atomic Software 1 Meth.bindingTime = SystemDesignTime
Component Contract
Header Files
Consumed by Generate Component 1 Meth.bindingTime = SystemDesignTime
Header File in Vendor Mode
Consumed by Generate Component 1 Meth.bindingTime = CodeGenerationTime
Prebuild Data Set
Consumed by Generate Rapid Prototyping 1
Wrapper
Consumed by Implement Atomic Software 1 Meth.bindingTime = SystemDesignTime
Component
Consumed by Map Software Component 1
to BSW
Consumed by Refine Rapid Prototyping 1
Scenario
Consumed by Define Consistency Needs 1.7 Runnables the consistency is defined for.
Consumed by Define Rapid Prototyping 1.*
Scenario
Consumed by Select Software Component 1.*
Implementation
Consumed by Generate Local MC Data 0..1 Meth.bindingTime = SystemDesignTime
Support
Consumed by Define Partial Flat Map 0..” Refer to parameter and variables defined in the Internal
Behavior of one or more Atomic Software Components.
Consumed by Define VFB NvBlock 0..r This input is required to collect the requirements for the
Software Component NvBlockNeeds from the using application software.
Use meta model SweclnternalBehavior 1
element

Table 3.199: Software Component Internal Behavior

AUTSSAR

3.4.2.3 Atomic Software Component Implementation

Artifact Atomic Software Component Implementation

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description Description of an implementation for a single Atomic Software Component.

Description Description of an implementation for a single Atomic Software Component. It is possible to have
several different implementations for the same Software Component Internal Behavior, but only one
implementation can be mapped to a particular ECU. In general, this XML artifact relates to one
particular version of the code. It contains the version information as defined by the vendor.

An implementation description may depend on several non-AUTOSAR artifacts, especially its own
code files (source or object) but also required libraries, generator tools etc. These dependencies are
not described by direct references to files (because this might be ambiguous), but by referring
entries in the container catalog of the General Deliverable which contains the implementation
artifacts. Such a reference is described via the metamodel element AutosarEngineeringObject (refer
to document ID 202 FO_TPS_GenericStructureTemplate for further description). This allows among
other things to refer to a particular version of an artifact.

For more information on the content of the implmementation description refer to document ID 89
CP_TPS_BSWModuleDescriptionTemplate.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software 0..* If the delivery contains only VFB NvBlock Software
Components Components, no implementation is contained as the

code is generated as part of the RTE.

Produced by Create Service Component 1 In order to generate the RTE, one needs to create a

kind of dummy Implementation element for the Service
Component, however this should not be filled with
descriptive elements, e.g. resource consumption, as
these are already defined by the Basic Software Module
Implementation Description.

Meth.bindingTime = SystemDesignTime

Produced by Implement Atomic Software 1 Meth.bindingTime = CodeGenerationTime
Component

Produced by Measure Resources 0..” Add extensions to the Implementation Description.

Meth.bindingTime = PostBuild

In/out Measure Component 1
Resources

Consumed by Generate Component 1 Meth.bindingTime = SystemDesignTime
Header File in Vendor Mode

Consumed by Generate SWC Memory 1 MemorySections: MemorySections defined for an
Mapping Header Atomic Software Component.

Meth.bindingTime = SystemDesignTime

Consumed by Select Software Component 1.*
Implementation

Consumed by Configure Memmap 0..* MemorySections:
Allocation

Use meta model Implementation 1

element

Table 3.200: Atomic Software Component Implementation

AUTSSAR

3.4.2.4 Software Component Documentation

Artifact Software Component Documentation

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description Documentation dedicated to a Software Component.

Description Documentation of a dedicated Software Component. This documentation is following the ASAM

FSX standard. In this documentation, you will find the SW Feature definition and description which
define the physical functionality of the Swc, the SW test description which will contains suggestions
and hints for the test of the software functionality of the Swc, the SW calibration notes which will give
calibration instructions and hints for a calibration engineer, some maintenance, diagnosis and CARB
notes which will bring general information, on the maintenance diagnosis and CARB issues on the
Swec. For other description not listed previously, some notes (chapters) are left free for that.

This artifact may also contain standalone documentation (meta-class Documentation) not
aggregeted by a specific software component.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software 0..*
Components

In/out Add Documentation to the 1
Software Component

Use meta model Documentation 1

element

Use meta model SwComponent 1

element Documentation

Table 3.201: Software Component Documentation

3.4.2.5 Software Component Timing

Artifact Software Component Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description Software Component’s TimingDescription and TimingConstraints

Description TimingDescription and TimingConstraints of a software component. A software component can

either be of type AtomicSWComponentType or CompositionSWComponentType.

In the former case, the SwcTiming allows to describe timing description and constraints for the
InternalBehavior of the AtomicSWComponentType.

In the latter case, timing descriptions and constraints can be defined for all Atomic Software
Components in the CompositionSWComponentType.

Kind AUTOSAR XML
Relation Type Related Element Mult. Note
Aggregated by Delivered Atomic Software 0..*
Components
Produced by Define Software 1
Component Timing
Consumed by Define System Timing 0..1
Consumed by Implement Atomic Software 0..1 Meth.bindingTime = SystemDesignTime
Component
Consumed by Measure Component 0..1
Resources

AUTSSAR

Artifact

Software Component Timing

Use meta model
element

SwcTiming

Table 3.202: Software Component Timing

3.4.2.6 Software Component to BSW Mapping

Artifact Software Component to BSW Mapping

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description Desribes how to map a software component to basic software elements (required in special cases
only).

Description Maps an SwclnternalBehavior to an BswinternalBehavior. This is required to coordinate the API
generation and the scheduling for AUTOSAR Service Components, ECU Abstraction Components
and Complex Driver Components by the RTE and the BSW scheduling mechanisms.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software 0..*

Components

Produced by Map Software Component 1
to BSW

Produced by Create Service Component 0..1 Meth.bindingTime = SystemDesignTime

Consumed by Generate Atomic Software 0..1 If a Software Component is mapped to a BSW module
Component Contract description, this input is optionally needed already in the
Header Files contract phase in order to ensure that the generated

prototypes for runnables are consistent with the
definitions in Software Component and BSW.
Meth.bindingTime = SystemDesignTime

Consumed by Generate RTE 0..” This input is explicitly stated because the mapping may

be created during ECU integration and thus is not
necessarily part of the Delivered Atomic Software
Components.

Meth.bindingTime = SystemDesignTime

Use meta model
element

SwcBswMapping

Table 3.203: Software Component to BSW Mapping

3.4.2.7 Partial Flat Map

Artifact Partial Flat Map

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description

Description The Partial Flat Map pre-defines Flat Map entries in the context of delivered software components.

This allows the component developer to specify names of data instances for measurement and
calibration. It has to be integrated into the System Flat Map.
For more information on the Flat Map concept refer to artifact System Flat Map in the system

domain.

\Y%

AUTSSAR

Flat Map

JAN
Artifact Partial Flat Map
Kind AUTOSAR XML
Relation Type Related Element Mult. Note
Aggregated by Delivered Atomic Software 0..1
Components
Produced by Define Partial Flat Map 1
Consumed by Add Documentation to the 0..1 Optional input in order to refer to unique names defined
Software Component in component or composition context.
Consumed by Generate or Adjust ECU 0..* If Partial Flat Maps were delivered along with software
Flat Map components referring only to ECU internal information,
they may be integrated into the ECU Flat Map directly,
i.e. without needing the System Flat Map.
* The instance refs used in a partial flat map must be
taken over and adjusted to the context ECU Extract.
» Name conflicts have to be resolved if several partial
flat maps are merged.
Consumed by Generate or Adjust System 0..” If Partial Flat Maps were delivered along with software

components, they must be integrated into the System
Flat Map:
» The instance refs used in a partial flat map must be
taken over and adjusted to the context of the System
or System Extract.

» Name conflicts have to be resolved if several partial
flat maps are merged.

Use meta model
element

FlatMap

Table 3.204: Partial Flat Map

3.4.2.8 Application Header File

Artifact Application Header File

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description Header generated for an AtomicSoftwareComponentType in the RTE contract phase.

Description Header generated for an AtomicSoftwareComponentType in the RTE contract phase. It represents
the complete source-code interface between the component code and RTE (calls into the RTE as
well as prototypes called by the RTE). All communication of the component code with other
components is routed through this header.

Kind Source Code

Relation Type

Related Element

Mult.

Note

Aggregated by

Delivered Atomic Software
Components

1.*

Produced by

Generate Atomic Software
Component Contract
Header Files

Meth.bindingTime = CodeGenerationTime

Consumed by

Compile Atomic Software
Component

Meth.bindingTime = CodeGenerationTime

Consumed by

Implement Atomic Software
Component

Meth.bindingTime = SystemDesignTime

AUTSSAR

A

Artifact

Application Header File

Consumed by

Compile ECU Source Code \ 1.r \ Meth.bindingTime = CodeGenerationTime

Table 3.205: Application Header File

3.4.2.9 Software Component Data Types Header

Artifact Software Component Data Types Header

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description Software Component Data Types Header provided by the RTE in the contract phase.

Description Software Component Data Types Header provided by the RTE in the contract phase. This includes
data types, which were declared as part of the SWC description but not used in any ports or data
elements.

Kind Source Code

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software 1.*
Components

Produced by Generate Atomic Software 1 Meth.bindingTime = CodeGenerationTime
Component Contract
Header Files

Produced by Generate Component 1 Meth.bindingTime = CodeGenerationTime
Header File in Vendor Mode

Consumed by Compile Atomic Software 1 Meth.bindingTime = CodeGenerationTime
Component

Consumed by Implement Atomic Software 1 Meth.bindingTime = SystemDesignTime
Component

Consumed by Compile ECU Source Code 0..” Meth.bindingTime = CodeGenerationTime

Table 3.206: Software Component Data Types Header

3.4.2.10 Component RTE Prebuild Configuration Header

Artifact Component RTE Prebuild Configuration Header

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description Generated header file used to resolve the prebuild variants in the prebuild RTE contract phase for an
SWC.

Description Generated header file used to resolve the prebuild variants of a software component in the prebuild
RTE contract phase. Contains macros which resolve the variants when compiled with the module
and the generated RTE.

Kind Bound Source Code

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software 0..”

Components

Produced by Generate Component 1 Meth.bindingTime = PreCompileTime
Prebuild Data Set

Consumed by Compile Atomic Software 0..1 Meth.bindingTime = PreCompileTime
Component

AUTSSAR

A

Artifact

Component RTE Prebuild Configuration Header

Consumed by

Compile ECU Source Code ‘ 0..r ‘ Meth.bindingTime = CodeGenerationTime

Table 3.207: Component RTE Prebuild Configuration Header

3.4.2.11 Atomic Software Component Source Code

Artifact Atomic Software Component Source Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description Source code implementing an Atomic Software Component Type

Description Source code implementing an Atomic Software Component Type. In general it is independent from
an ECU.

Kind Source Code

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software 0..*
Components

Produced by Implement Atomic Software 1 Meth.bindingTime = CodeGenerationTime
Component

Consumed by Compile Atomic Software 1 Meth.bindingTime = CodeGenerationTime
Component

Consumed by Re-compile Component in 1 Meth.bindingTime = CodeGenerationTime
ECU context

Consumed by Compile ECU Source Code 0..* Meth.bindingTime = CodeGenerationTime

Table 3.208: Atomic Software Component Source Code

3.4.2.12 Atomic Software Component Object Code

Artifact Atomic Software Component Object Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description

Description Object Code of an Atomic Software Component.

Kind Object Code

Relation Type Related Element Mult. Note

Aggregated by Delivered Atomic Software 0..*
Components

Produced by Compile Atomic Software 1 The object file should include both code of the SWC and
Component f[he E2E Protection Wrapper code (if present as an

Il\r;lgl:r:).EindingTime = CompileTime

Consumed by Measure Component 1
Resources

Consumed by Generate ECU Executable 0..” Meth.bindingTime = CompileTime

Table 3.209: Atomic Software Component Object Code

AUTSSAR

3.4.2.13 Optimized Application Header File

Artifact Optimized Application Header File

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description Optimized application header file for a software component.

Description Application header file for a software component optimized by the RTE in vendor mode.

Kind Source Code

Relation Type Related Element Mult. Note

Produced by Generate Component 1 Meth.bindingTime = CodeGenerationTime
Header File in Vendor Mode

Consumed by Re-compile Component in 1 Meth.bindingTime = CodeGenerationTime
ECU context

Consumed by Compile ECU Source Code 0..” Meth.bindingTime = CodeGenerationTime

Table 3.210: Optimized Application Header File

3.4.2.14 Optimized Software Component Object Code

Artifact Optimized Software Component Object Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products
Brief Description The object code of a software component compiled with ECU specific optimizations.
Description The object code of a software component compiled with ECU specific optimizations.
Kind Object Code

Relation Type Related Element Mult. Note

Produced by Re-compile Component in 1 Meth.bindingTime = CompileTime

ECU context

Table 3.211: Optimized Software Component Object Code

3.4.2.15 Consistency Needs

Artifact Consistency Needs
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products
Brief Description
Description A ConsistencyNeed describes the correlation between a group of RunnableEntitys and a group of
DataPrototypes with the intended purpose to describe the need for
« Stable data during the execution of a group of RunnableEntitys.
» Coherent data consumption and propagation for a group of DataPrototypes.
The information can be defined first time at the design of an Atomic Software Component but can be
added as well if Compositions are created. In order to allow incremental development the groups of
Runnables and DataPrototypes can be distributed over several artifacts.
Kind
Relation Type Related Element Mult. Note
Aggregated by VFB System 1 Correlation between a group of RunnableEntitys and a

group of DataPrototypes.

\Y

AUT<

SAR

Artifact

Consistency Needs

Aggregated by

Delivered Atomic Software
Components

Correlation between a group of RunnableEntitys and a
group of DataPrototypes.

In/out

Define Consistency Needs The description of the correlation between a group of
RunnableEntitys and a group of DataPrototypes. In
order to allow incremental development and refinement

the Consistency Needs artifact is also used as an input.

Use meta model
element

ConsistencyNeeds

3.4.2.16 Rapid

Table 3.212: Consistency Needs

Prototyping Wrapper Header File

Artifact Rapid Prototyping Wrapper Header File
Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products
Brief Description
Description This header replaces the RTE API in order to allow to read and modify inputs and outputs of the
original SWC as well as to control execution of the original (and prototype) runnable.
Kind Source Code
Relation Type Related Element Mult. Note
Produced by Generate Rapid Prototyping 1
Wrapper
Consumed by Compile Atomic Software 0..1
Component

3.4.2.17 Rapid

Table 3.213: Rapid Prototyping Wrapper Header File

Prototyping Wrapper Source Code

Artifact Rapid Prototyping Wrapper Source Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Work Products

Brief Description

Description A piece of code that is placed between software components and the RTE in order to provide rapid
prototyping functionality. This code allows to encapsulate the SWC to bypass into the rapid
prototyping component and may be implemented ad as a complex device driver and/or integration
code.

Kind Source Code

Relation Type Related Element Mult. Note

Produced by Generate Rapid Prototyping 1
Wrapper

Consumed by Compile Atomic Software 0..1
Component

Table 3.214: Rapid Prototyping Wrapper Source Code

AUTSSAR

3.4.3 Tools

3.4.3.1 Component APl Generator Tool

Tool Component APl Generator Tool

Package AUTOSAR Root::M2::Methodology::Methodology Library::Component::Guidance

Brief Description Generates the software component contract header used to connect the software component to the
RTE layer.

Description This guidance represents the so-called contract phase of the RTE generation process.

* SWC Contract phase - a limited set of information about a component, principally the AUTOSAR
Interface definitions and the internal behavior, is used to create an application header file for a
component type. The application header file defines the "contract" between component and RTE.

* BSW Contract phase - a similar use case for a BSW module in order to generate the module
interlink header files, which are used to interface between the module and the BSW Scheduler.

« Additional phases - for SWS and BSW as well - are used to bind pre-build variants in the contract
headers of a single Software Component or BSW module.

Kind

Relation Type Related Element Muit. Note

Used Generate Atomic Software 1
Component Contract
Header Files

Used Generate BSW Module 1
Prebuild Data Set

Used Generate BSWM Contract 1
Header Files

Used Generate Component 1
Header File in Vendor Mode

Used Generate Component 1
Prebuild Data Set

Table 3.215: Component APl Generator Tool

3.5 Basic Software

This chapter contains the definition of work products and tasks used for the develop-
ment of Basic Software modules. For the definition of the relevant meta-model ele-
ments refer to [9, CP TPS BSW Module Description Template].

AUTSSAR

3.5.1 Tasks
3.5.1.1 Define BSW Types

Basic

Software

Basic
Software

Designer Module
Developer
«performs»
- «input» «inoutput» e—
B_SW Standard Package Define BSW Types
BSW Types
Figure 3.105: Define BSW Types
Task Definition Define BSW Types
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description Define data types for usage within the Basic Software.
Description A data type is typically based on elements standardized by AUTOSAR, therefore BSW Standard
Package appears as a mandatory input.
Relation Type Related Element Mult. Note
Performed by Basic Software Designer 1
Performed by Basic Software Module 1
Developer
Consumes BSW Standard Package 1
In/out BSW Types 1
Table 3.216: Define BSW Types
3.5.1.2 Define BSW Entries

Basic Basic

Software Software

Designer Module

Developer
«performs»
BSW Types cinput» -
«output» 1 || e—
/ Define BSW Entries —
«input»

0.1

i

BSW Standard Package

Figure 3.106: Define

Basic Software Entries

BSW Entries

AUTSSAR

Task Definition Define BSW Entries
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description Define BswEntries (= function signatures) for usage within the Basic Software.
Description
Relation Type Related Element Mult. Note
Performed by Basic Software Designer 1
Performed by Basic Software Module 1
Developer
Consumes BSW Types 1
Consumes BSW Standard Package 0..1
Produces Basic Software Entries 1

Table 3.217: Define BSW Entries

3.5.1.3 Define BSW Interfaces

Basic
Software
Designer

Basic
Software
Module

Developer

1

«performs»

«performs»
«input»

0.1 «input» «output» 1

[/

BSW Standard Package

Basic Software Entries

Define BSW Interfaces

Basic Software Module Description
«input» «input»

0.1

ECU Resources Description

Figure 3.107: Define BSW Interfaces

Task Definition Define BSW Interfaces

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks

Brief Description Define the interfaces for a single BSW Module.

Description Define the interfaces for a particular BSW Module or BSW cluster as part of the BSW Module

Description. This includes an abstraction of the required and provided C-functions, as well as
triggers and modes. Note that this task also exists for modules standardized by AUTOSAR, as it

may be required to decide on optional or alternative elements and to add allowed project specific
extensions.

Relation Type Related Element Mult. Note
Performed by Basic Software Designer 1
Performed by Basic Software Module 1

Developer

\Y

AUTSSAR

A

Task Definition Define BSW Interfaces

Consumes BSW Types 1
Consumes Basic Software Entries 1
Consumes BSW Standard Package 0..1
Consumes ECU Resources Description 0..1
Produces Basic Software Module 1

Description

Table 3.218: Define BSW Interfaces

3.5.1.4 Define Vendor Specific Module Definition

Basic
Software
Module
Developer

Basic
Software
Designer

«performs»

«performs»

1 «nput> «output» 1
Define Vendor Specific
. Module Definiti
AUTOSAR Standardized ECU odule Detinition BSW Module Vendor-
Configuration Parameter Definition Specific Configuration

Parameter Definition

Figure 3.108: Define Vendor Specific Module Definition

Task Definition Define Vendor Specific Module Definition
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description
Description Define the Vendor Specific Module Definition (=Configuration Parameters).
Relation Type Related Element Mult. Note
Performed by Basic Software Designer 0..1
Performed by Basic Software Module 0..1
Developer
Consumes AUTOSAR Standardized 1
ECU Configuration
Parameter Definition
Produces BSW Module Vendor- 1

Specific Configuration
Parameter Definition

Table 3.219: Define Vendor Specific Module Definition

AUTSSAR

3.5.1.5 Define BSW Behavior

Basic Software
Module Description

- 0.1

BSW Standard Package «input>
/
1

Define BSW Behavior

Basic
Software
Designer

«performs»

«output» 1

Basic Software Module
Internal Behavior

Figure 3.109: Define BSW Behavior

Task Definition Define BSW Behavior

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks

Brief Description Define the BSW Behavior related to a BSW Module Description.

Description Define the BSW Behavior related to a BSW Module Description. This task is required during BSW

module development in order to be able to generate the API to the BSW Scheduler. In addition, local
data (variables or parameters) may be defined during this task in order to use the AUTOSAR data
type system for module local data and to generate measurement & calibration support.

Relation Type Related Element Mult. Note
Performed by Basic Software Designer 1
Consumes Basic Software Module 1
Description
Consumes BSW Standard Package 0..1
Produces Basic Software Module 1
Internal Behavior

Table 3.220

: Define BSW Behavior

AUTSSAR

3.5.1.6 Define BSW Module Timing

Basic

Software

Module

Developer

«performs»
1

— —
— —
— —
— «input» «output» 1 | —
— —
— Define BSW Module Timing —
Basic Software Module Basic Software Module
Internal Behavior Timing

Figure 3.110: Define BSW Module Timing

Task Definition Define BSW Module Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks

Brief Description Define BSWModuleTiming (TimingDescription and TimingConstraints) for the Internal Behavior
(BSWModuleEntities) of a BSW module

Description Define BSWModuleTiming (TimingDescription and TimingConstraints) for the Internal Behavior
(BSWModuleEntities) of a BSW module

Relation Type Related Element Mult. Note

Performed by Basic Software Module 1
Developer

Consumes Basic Software Module 1
Internal Behavior

Produces Basic Software Module 1
Timing

Table 3.221: Define BSW Module Timing

AUTSSAR

3.5.1.7 Generate BSW Contract Header Files

Basic

_ Software
- BSW Module

- Standard Developer
- Package

Component API

Basic Software Module Generator Tool

Internal Behavior

«input»
«input»
«used tool»

«input» «output» 1

Generate BSWM

Contract Header -
Files Basic Software Module

w
o
@
B
7
=3
5
e =
<
S
=
=
B

Description Interlink Header
«output>

1 1
— —
— —
— —
— —
— —
— —
Basic Software Module Basic Software Interlink
Implementation Description Types Header

Figure 3.111: Generate BSW Contract Header Files

Task Definition Generate BSWM Contract Header Files

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks

Brief Description Generate Basic Softwaree Module Contract Header Files

Description Generate the header files needed for a BSW module as part of the so-called "contract phase".

These headers will allow to link the module lateron with the RTE (namely the BSW Scheduler).
Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Mult. Note

Performed by Basic Software Module 1
Developer

Consumes Basic Software Module 1 Meth.bindingTime = SystemDesignTime
Description

Consumes Basic Software Module 1 Meth.bindingTime = SystemDesignTime
Implementation Description

Consumes Basic Software Module 1 Meth.bindingTime = SystemDesignTime
Internal Behavior

Consumes BSW Standard Package 0..1

Produces Basic Software Interlink 1 Meth.bindingTime = CodeGenerationTime
Types Header

Produces Basic Software Module 1 Meth.bindingTime = CodeGenerationTime
Interlink Header

Used tool Component AP| Generator 1
Tool

Table 3.222: Generate BSWM Contract Header Files

AUTSSAR

3.5.1.8 Implement a BSW Module
ECU .
Resources Basic
Description = BSW Software —
z Standard Module =
- Package Developer -
B 0.1 Basic Software Module
Core Header
«performs» :
«input» —
«input» 7| —
Basic Software Module
«output» Core Source Code
Basic Software Module i
Interal Behavior «input>
Implement a —
BSW MOdUIe/ «output» 1 | —
; «input> Basic Software Module
— Implementation Description
«input» —
Basic Software Module «inputs —
Interlink Header —
Build Action
0.1 Manifest
Basic Software Interlink Standard Header Basic Software Library Header Custom Transformer
Types Header Files Module Timing Files
Figure 3.112: Implement a BSW Module
Task Definition Implement a BSW Module
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description Implement the source code of a BSW module.
Description Implement the source code of a BSW module. This task is not described by AUTOSAR completely,

but included for completeness of the AUTOSAR use cases. Note that specification of an AUTOSAR
standard module imposes several requirements, e.g. the inclusion of certain header files, onto this
task.

In addition to the code, this task also produces the necessary XML descriptions.

Optionally, a build action manifest may be created or modified in order to be used for code
generation or further processing of the code.

Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Mult. Note

Performed by Basic Software Module 1
Developer

Consumes Basic Software Interlink 1 Meth.bindingTime = SystemDesignTime
Types Header

Consumes Basic Software Module 1 Meth.bindingTime = SystemDesignTime
Description

Consumes Basic Software Module 1 Meth.bindingTime = SystemDesignTime
Interlink Header

AUTSSAR

JAN
Task Definition Implement a BSW Module
Consumes Basic Software Module 1 Meth.bindingTime = SystemDesignTime
Internal Behavior
Consumes Standard Header Files 1 Meth.bindingTime = CodeGenerationTime
Consumes BSW Standard Package 0..1
Consumes Basic Software Module 0..1 Meth.bindingTime = SystemDesignTime
Timing
Consumes ECU Resources Description 0..1 Meth.bindingTime = SystemDesignTime
Consumes Library Header Files 0..1 Meth.bindingTime = CodeGenerationTime
Produces Basic Software Module 1 Meth.bindingTime = CodeGenerationTime
Core Header
Produces Basic Software Module 1 Meth.bindingTime = CodeGenerationTime
Implementation Description
Produces Basic Software Module 0..1 The creation of source code is optional, since it might be
Core Source Code generated completely in a later step based on the Build
Action Manifest.
Meth.bindingTime = CodeGenerationTime
Produces Build Action Manifest 0..1
Produces Custom Transformer 0..1

Table 3.223: Implement a BSW Module

3.5.1.9 Develop BSW Module Generator

Basic

Software
Module
Developer
«performs»
1
BSW «input» S—
Standard —
Package «output» 7 | —
—
Develop BSW Module Generator —
«input» BSW Module
Generator

0.%

BSW Module Vendor- Specific
Configuration Parameter Definition

Figure 3.113: Develop BSW Module Generator

Task Definition Develop BSW Module Generator

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks
Brief Description

Description Develop a generator for one or more BSW modules.

Relation Type

Related Element | Mult. |Note

V

AUTSSAR

A
Task Definition Develop BSW Module Generator
Performed by Basic Software Module 1
Developer
Consumes BSW Standard Package 1
Consumes BSW Module Vendor- 0..*
Specific Configuration
Parameter Definition
Produces BSW Module Generator 1

Table 3.224: Develop BSW Module Generator

3.5.1.10 Create Library

Basic
Software

ECU
Integrator

Module
Developer

«performs»|

Basic Software Module
Internal Behavior

1 «input»

BSW Standard Create Library

Package

«output»

Library Header Files

Figure 3.114: Create Library

Basic Software Module
Implementation Description

Library Description

|||| H

Library Object Code

AUTSSAR

Task Definition Create Library

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks

Brief Description Create a library to be used within an Eculnstance.

Description Create a non-standardized library to be used within an Eculnstance. The task is the same for the

basic software and application level, but it is considered as a basic software task because no VFB
resp. RTE abstraction is used. The output includes source code, header file and XML descriptions
of the interfaces and of the implementation. A "dummy" BSW Behavior must be created too in order

to be able to link the other two XML artifacts.
Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Mult. Note

Performed by Basic Software Module 1
Developer

Performed by ECU Integrator 1

Consumes BSW Standard Package 1 Used for standard types and specifications.

Produces Basic Software Module 1 Meth.bindingTime = CodeGenerationTime
Implementation Description

Produces Basic Software Module 1 Meth.bindingTime = CodeGenerationTime
Internal Behavior

Produces Library Description 1 Meth.bindingTime = CodeGenerationTime

Produces Library Header Files 1 Meth.bindingTime = CodeGenerationTime

Produces Library Object Code 1 Meth.bindingTime = CodeGenerationTime

Table 3.225: Create Library
3.5.1.11 Compile BSW Core Code

Basic
Software
Module
Interlink
Header

Basic
Software
Interlink
Types

Header

Basic Software Module
Developer

Configuration

Basic Software Module
Core Header

Compile BSW
Core Code

«output» 1

Basic Software Module
Object Code

input» «inpyt> «used tool»

Basic Software Module

Core Source Code «input»\

Build Action Manifest

Compiler

Library Header Files

Standard Header Files

Figure 3.115: Compile BSW Core Code

AUTSSAR

Task Definition Compile BSW Core Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks

Brief Description Compile the source code of a BSW modue without ECU specific configurations.

Description Compile the source code of a BSW modue without ECU specific configurations. This task is mainly

used to describe the use cases of BSW development for object code delivery. The output will only
represent the "core code". During ECU integration, additional generated code may be added per
module in response to ECU configuration.

Meth.bindingTime = CompileTime

Relation Type Related Element Mult. Note

Performed by Basic Software Module 1
Developer

Consumes BSW RTE Prebuild 1 Meth.bindingTime = PreCompileTime
Configuration Header

Consumes BSW Types 1 Meth.bindingTime = CodeGenerationTime

Consumes Basic Software Interlink 1 Meth.bindingTime = CodeGenerationTime
Types Header

Consumes Basic Software Module 1 Meth.bindingTime = CodeGenerationTime
Core Header

Consumes Basic Software Module 1 Meth.bindingTime = CodeGenerationTime
Core Source Code

Consumes Basic Software Module 1 Meth.bindingTime = CodeGenerationTime
Interlink Header

Consumes Standard Header Files 1 Meth.bindingTime = CodeGenerationTime

Consumes Build Action Manifest 0..1 The compilation can optionally be controlled by a Build

Action Manifest.

Consumes Library Header Files 0..1 Meth.bindingTime = CodeGenerationTime

Produces Basic Software Module 1 Meth.bindingTime = CompileTime
Object Code

Used tool Compiler 1

Table 3.226: Compile BSW Core Code

AUTSSAR

3.5.1.12 Generate BSW Module Prebuild Dataset

Basic
Software
Module
Description

Basic
Software
Module
Internal
Behavior

Basic Software Module
Implementation Description

Basic Software
Module Developer

«performs»

«input» «output»

([

Generate BSW

Module Prebuild

Predefined Variant

BSWRTE
Prebuild
Configuration
Header

Data Set

«input» «used tool»

System Constant
Value Set

Figure 3.116: Generate BSW Module Prebuild Dataset

BSW Standard Package Component API Generator Tool

Task Definition Generate BSW Module Prebuild Data Set

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Tasks

Brief Description Prebuild Data Set Generation Phase for a BSW module: It binds all variations which need to be set
after generation of the RTE contract header but before compilation of the module.

Description Prebuild Data Set Generation Phase for a basic software module: It binds all variations which need

to be set after generation of the RTE contract header but before compilation of the module. The
variant settings must be defined by the PredefinedVariant given as input.

The output is a BSW Module RTE Prebuild Configuration Header which is included by the
corresponding BSW Module Interlink Header, thereby resolving the variation points when compiled.
Note that link time variants are not allowed here.

Meth.bindingTime = PreCompileTime

Relation Type Related Element Mult. Note

Performed by Basic Software Module 1
Developer

Consumes Basic Software Module 1 Meth.bindingTime = CodeGenerationTime
Description

Consumes Basic Software Module 1 Meth.bindingTime = CodeGenerationTime
Implementation Description

Consumes Basic Software Module 1 Meth.bindingTime = CodeGenerationTime
Internal Behavior

Consumes Predefined Variant 1

Consumes System Constant Value Set 1

Consumes BSW Standard Package 0..1

Produces BSW RTE Prebuild 1 Meth.bindingTime = PreCompileTime
Configuration Header

Used tool Component AP| Generator 1
Tool

Table 3.227: Generate BSW Module Prebuild Data Set

AUTSSAR

3.5.2 Work Products

3.5.2.1 BSW Standard Package
- BSW
- Standard
- Package
. «aggregation»
«aggregation», .
«aggregationy «aggregation»
1 A 1
AUTOSAR AUTOSAR Standardized AUTOSAR AUTOSAR
Software Module ECU Configuration Standard Types Platform Types
Specification Parameter Definition and Blueprints and Blueprints
Figure 3.117: BSW Standard Package

Deliverable BSW Standard Package

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Package containing standard artifacts for BSW.

Description Contains the standard specifications and standardized AUTOSAR blueprints for the artefacts to be
used within the AUTOSAR basic software and for the generation of the RTE. This deliverable is
released by AUTOSAR and is read only within the methodology.

Kind Delivered

Relation Type Related Element Mult. Note

Aggregates AUTOSAR Platform Types 1
and Blueprints

Aggregates AUTOSAR Standard Types 1
and Blueprints

Aggregates AUTOSAR Standardized 1
ECU Configuration
Parameter Definition

Aggregates AUTOSAR Software 0..*

Module Specification

Consumed by Create Library 1 Used for standard types and specifications.

Consumed by Define BSW Types 1

Consumed by Design Basic Software 1

Consumed by Develop BSW Module 1

Consumed by Develop BSW Module 1
Generator

Consumed by Develop Basic Software 1

Consumed by Define BSW Behavior 0..1

Consumed by Define BSW Entries 0..1

Consumed by Define BSW Interfaces 0..1

Consumed by Generate BSW Module 0..1
Prebuild Data Set

Consumed by Generate BSWM Contract 0..1
Header Files

Consumed by Implement a BSW Module 0..1

Table 3.228: BSW Standard Package

AUTSSAR

3.5.2.2 BSW Module Bundle

Basic
Software
Module
Description

BSW Types

«aggregation»

«aggregation»

Basic BSW Module
Software Vendor- Specific
Module Configuration
Timing Parameter
Definition

«aggregation» «aggregation»

BSW Module Bundle

«extends» «extends» «extends»
BSW Design BSW Module BSW Module
Bundle Delivered Bundle ICS Bundle

«extends»

BSW Module
Integration Bundle

Figure 3.118: BSW Module Bundle

Deliverable BSW Module Bundle

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description

Description Generic deliverable representing a bundle of one or more BSW modules. It is used as a basis for
extended deliverables.
The deliverable aggregates the ARXML definitions on the interface level including vendor specific
configuration parameter definition.
According to the role of the extended deliverable, these elements maybe blueprints completely or
partially. .

Kind Delivered

Extended By BSW Design Bundle, BSW Module Delivered Bundle, BSW Module ICS Bundle

Relation Type Related Element Mult. Note

Aggregates Basic Software Module 1.*
Description

Aggregates Basic Software Entries .1

Aggregates Basic Software Module .1
Timing

Aggregates BSW Module Vendor- 0.* The configuration parameter definitions of the modules
Specific Configuration under test - needed for static check against the
Parameter Definition standardized configuration parameters.

Aggregates BSW Types 0..*

Table 3.229: BSW Module Bundle

AUTSSAR

3.5.2.3 BSW Design Bundle

Deliverable BSW Design Bundle

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description

Description A bundle of one or more BSW modules used in the design phase.
It contains only definitions on the interface level. These elements maybe blueprints completely or
partially.

Kind Delivered

Extends BSW Module Bundle

Relation Type Related Element Muit. Note

Produced by Design Basic Software 1.*

Consumed by Develop BSW Module 1.*

Table 3.230: BSW Design Bundle

3.5.2.4 BSW Module ICS Bundle

- BSW Module
- Bundle
T@xtendg
- BSW Module
- ICS Bundle
«aggregation»
1 1.*
«aggregation>
S— — —
— — —
— — e —
Basic Software Basic Software
BSW Module
" Module Module Object Code

Preconfigured

Configuration Implementation

Description

Figure 3.119: BSW Module ICS Bundle

Deliverable BSW Module ICS Bundle

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description

Description Deliverable containing the Implementation Conformance Statement (ICS) for one or more BSW
modules.

Kind Delivered

Extends BSW Module Bundle

Relation Type Related Element Mult. Note

Aggregates Basic Software Module 1 The administrative elements (e.g. version info) of the
Implementation Description Implementation model needed for the conformance test.

AUTSSAR

completely configured.

Deliverable BSW Module ICS Bundle

Aggregates Basic Software Module 1.*
Object Code

Aggregates BSW Module Preconfigured 0..* The predefined configurations implemented by the
Configuration modules under test. The modules under test are

Table 3.231: BSW Module ICS Bundle

3.5.2.5 BSW Module Delivered Bundle

Basic

Software

Module

Internal

Behavior

1.*

«aggregation®

«aggregation»

Basic Software Module
Implementation Description

Basic Software Module
Object Code

Basic Software Module
Core Source Code

«aggregation»

«aggregation»
*

«aggregation»

BSW
Module
Generator

BSW
Module
Bundle

«extends»

BSW Module
Delivered Bundle

Build
Action
Manifest

‘«aggregation»

«aggregation»

«aggregation»

BSW Module
Recommended
Configuration

«aggregation»

1%

Basic Software Module
Core Header

«extends»

«aggregation»

BSW Module
Integration Bundle

«aggregation»

BSW RTE Prebuild
Configuration Header

0..%

Figure 3.120: BSW Module Delivered Bundle

BSW Module
Preconfigured
Configuration

Basic Software Interlink
Types Header

Basic Software Module
Interlink Header

Deliverable BSW Module Delivered Bundle

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description

Description Deliverable containing one or more BSW modules delivered for integration (code and ARXML
descriptions).
It can still contain blueprints for some of the elements which need to be extended during ECU
integration.

Kind Delivered

Extended By BSW Module Integration Bundle

\Y

AUTSSAR

JAN
Deliverable BSW Module Delivered Bundle
Extends BSW Module Bundle
Relation Type Related Element Mult. Note
Aggregates Basic Software Module 1.*
Core Header
Aggregates Basic Software Module 1.*
Implementation Description
Aggregates Basic Software Module 1.7
Interlink Header
Aggregates Basic Software Module 1.*
Internal Behavior
Aggregates Build Action Manifest 0..1 The build action manifest to be used for the delivered
basic software.
Aggregates BSW Module Generator 0..”
Aggregates BSW Module Preconfigured 0..”
Configuration
Aggregates BSW Module 0.*
Recommended
Configuration
Aggregates BSW RTE Prebuild 0..*
Configuration Header
Aggregates Basic Software Interlink 0..”
Types Header
Aggregates Basic Software Module 0..”
Core Source Code
Aggregates Basic Software Module 0..*
Object Code
Produced by Develop BSW Module 1
Produced by Develop Basic Software 1.
Consumed by Define Integration Variant 1.*
Consumed by Generate Base Ecu 1.7 Need vendor specific configuration parameters and their
Configuration recommended or pre-configured values.
Consumed by Generate Updated ECU 1.
Configuration
Consumed by Integrate Software for ECU 1.7
Consumed by Prepare ECU Configuration 1.7
Consumed by Configure Com .1
Consumed by Configure Diagnostics .1 Predefined or recommended configuration values,
vendor specific parameters, ServiceNeeds defined by
BSW.
Consumed by Configure MCAL A
Consumed by Configure Mode .1 Predefined or recommended configuration values,
Management vendor specific parameters, ServiceNeeds defined by
BSW.
Consumed by Configure NvM 0..1 Predefined or recommended configuration values,
vendor specific parameters, ServiceNeeds defined by
BSW.
Consumed by Configure Watchdog 0..1 Predefined or recommended configuration values,
Manager vendor specific parameters, ServiceNeeds defined by
BSW.
Consumed by Create Service Component 0..1 Required in order to define a mapping between SWC
and BSW.
In addition, the Build Action Manifest may be used.
Consumed by Configure ECUC 0..*

AUTSSAR

A
Deliverable BSW Module Delivered Bundle
Consumed by Configure 10 Hardware 0..*
abstraction
Consumed by Configure OS 0.* OS Resources required by Basic Software.
Optional Input: Basic Software Module Timing, e.g.
execution order constraints.
Consumed by Configure RTE 0..” Input from the BSW Module Description is needed
related to Scheduling, Exclusive Areas, Triggers and
Modes.
Optional Input: Basic Software Module Timing, e.g.
execution order constraints.
Configure Transformer 0..1

Table 3.232: BSW Module Delivered Bundle

3.5.2.6 AUTOSAR Software Module Specification

Artifact AUTOSAR Software Module Specification

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description The standard sofware module specification.

Description Specification of a standardized Basic Software Module (SWS).
It is published as a textual specification, but can be seen as a Basic Software Design bundle in the
methodology, consisting mainly of blueprints. It may be published as ARXML in future releases of
AUTOSAR.

Kind Text

Relation Type Related Element Mult. Note

Aggregated by BSW Standard Package 0..*

Table 3.233: AUTOSAR Software Module Specification

3.5.2.7 AUTOSAR Standard Types and Blueprints

Artifact AUTOSAR Standard Types and Blueprints

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description AUTOSAR Standard Types and Blueprints

Description Model elements provided by AUTOSAR are mainly provided as blueprints:
MethodologyAndTemplates/AUTOSAR_MOD_GeneralDefinitions.zip contains blueprints for
standard implementation data types (in AUTOSAR_MOD_CommonDataTypes_Blueprint.arxml,
package /AUTOSAR/Std).
The concrete artefacts used in projects need to be derived from these blueprints.
See also document id 578 CP_SWS_BSWGeneral and 49 CP_SWS_StandardTypes.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Standard Package 1

Aggregated by VFB AUTOSAR Standard 1
Package

V

AUTSSAR

A
Artifact AUTOSAR Standard Types and Blueprints
Use meta model ImplementationDataType 1
element

Table 3.234: AUTOSAR Standard Types and Blueprints

3.5.2.8 AUTOSAR Platform Types and Blueprints

Artifact AUTOSAR Platform Types and Blueprints
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products
Brief Description AUTOSAR Platform Types and Blueprints
Description Model elements provided by AUTOSAR are mainly provided as blueprints:
MethodologyAndTemplates/AUTOSAR_MOD_GeneralDefinitions.zip contains
* blueprints for base types, implementation data types, computation methods (in AUTOSAR_MOD_
CommonDataTypes_Blueprint.arxml, package /AUTOSAR/Platform),
« physical dimensions (in AUTOSAR_MOD_PhysicalDimensions_Blueprint.arxml),
* units (in AUTOSAR_MOD_Units_Blueprint.arxml)
+ and others.
The concrete artefacts used in projects need to be derived from these blueprints.
See also document id 578 CP_SWS_BSWGeneral and 49 CP_SWS_StandardTypes.
Kind AUTOSAR XML
Relation Type Related Element Mult. Note
Aggregated by BSW Standard Package 1
Aggregated by VFB AUTOSAR Standard 1
Package
Use meta model ImplementationDataType 1
element
Use meta model SwBaseType 1
element

Table 3.235: AUTOSAR Platform Types and Blueprints

3.5.2.9 BSW Module Generator

Artifact BSW Module Generator
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products
Brief Description
Description A generator that comes as part of one or more delivered BSW modules. It can be put into a
framework to let it generate a module’s configuration code.
Kind Custom
Relation Type Related Element Mult. Note
Aggregated by BSW Module Delivered 0..*
Bundle
Produced by Develop BSW Module 1
Generator

AUTSSAR

A

Artifact

BSW Module Generator

Consumed by

Generate BSW
Configuration Code

0..1 This is an input in case a generator framework is used

which has to run some module specific generator code.

Table 3.236: BSW Module Generator

3.5.2.10 AUTOSAR Standardized ECU Configuration Parameter Definition

Artifact AUTOSAR Standardized ECU Configuration Parameter Definition

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Contains all the standardized module definition parameters.

Description Contains all the standardized module definition parameters. These parameters must be referred by
the vendor specific configuration of a specific module.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Standard Package 1

Consumed by Define Vendor Specific 1
Module Definition

Consumed by Configure Com 0..1

Consumed by Configure Diagnostics 0..1

Consumed by Configure ECUC 0..1

Consumed by Configure 10 Hardware 0..1
abstraction

Consumed by Configure MCAL 0..1

Consumed by Configure Mode 0..1
Management

Consumed by Configure NvM 0..1

Consumed by Configure OS 0..1

Use meta model EcucModuleDef 1

element
Configure Transformer 0..1

Table 3.237: AUTOSAR Standardized ECU Configuration Parameter Definition
3.5.2.11 BSW Module Preconfigured Configuration

Artifact BSW Module Preconfigured Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Configuration parameter values that are fixed to the object code and cannot be changed without
recompilation.

Description Configuration parameter values that are pre-configured in the delivered code. They cannot be
changed during the ECU integration of the code.
Pre-configuration is possible for object and source code as well.

Kind AUTOSAR XML

Relation Type

Related Element | Mult. |Note

\Y

AUTSSAR

JAN
Artifact BSW Module Preconfigured Configuration
Aggregated by BSW Module Delivered 0..*
Bundle
Aggregated by BSW Module ICS Bundle 0..” The predefined configurations implemented by the
modules under test. The modules under test are
completely configured.
Produced by Define Memory Addressing 1.* MemMapAddressingModeSet:
Modes Meth.bindingTime = SystemDesignTime
Consumed by Configure Memmap 1.7 MemMapAddressingModeSet: Collection of compiler
Allocation specific configuration elements for memory allocation
and addressing modes.
Consumed by Generate BSW Memory 1.* MemMapAddressingModeSet: Collection of compiler
Mapping Header specific configuration elements for memory allocation.
Meth.bindingTime = SystemDesignTime
Consumed by Generate SWC Memory 1.* MemMapAddressingModeSet: Collection of compiler
Mapping Header specific configuration elements for memory allocation.
Meth.bindingTime = SystemDesignTime
Use meta model EcucModuleConfiguration 1
element Values

Table 3.238: BSW Module Preconfigured Configuration

3.5.2.12 BSW Module Recommended Configuration

Artifact BSW Module Recommended Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Recommended "default" configuration parameter values.

Description Set of configuration parameter values, which are recommended by the module vendor as a default,
but are not mandatory for the integration. There can be more than one such set in order to allow for
variable usage of the module. This artifact does not include values of so-called published
parameters. These must always be given as Basic Software Module Preconfigured Configuration.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Module Delivered 0..”

Bundle

Use meta model EcucModuleConfiguration 1

element Values

Table 3.239: BSW Module Recommended Configuration

3.5.2.13 BSW Module Vendor Specific Configuration Parameter Definition

Artifact BSW Module Vendor- Specific Configuration Parameter Definition
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products
Brief Description Vendor specific parameter definition for a module. This defines the format of the parameters, not its

values.

\Y

AUTSSAR

JAN
Artifact BSW Module Vendor- Specific Configuration Parameter Definition
Description Vendor specific parameter definition for a module. This defines the format of the parameters, not its
values. In case of a standardized module, it redefines the existing standardized configuration
parameter format (ModuleDef).
Kind AUTOSAR XML
Relation Type Related Element Mult. Note
Aggregated by Transformer Design Bundle 0..1
Aggregated by BSW Module Bundle 0.” The configuration parameter definitions of the modules
under test - needed for static check against the
standardized configuration parameters.
Produced by Define Vendor Specific 1
Module Definition
Consumed by Configure RTE 1 The definitions for the module RTE
Consumed by Develop BSW Module 0..*
Generator
Consumed by Generate BSW 0.*
Configuration Code
Use meta model EcucModuleDef 1
element

Table 3.240: BSW Module Vendor- Specific Configuration Parameter Definition

3.5.2.14 BSW Types

Artifact BSW Types

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Set of data types for usage within the Basic Software.

Description Set of data types (arxml descriptions) for usage by Basic Software Modules. They will be referred by
the Basic Software Module Description

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Module Bundle 0..”

In/out

Define BSW Types

Consumed by

Compile BSW Core Code Meth.bindingTime = CodeGenerationTime

Consumed by

Define BSW Entries

Consumed by

Define BSW Interfaces

Use meta model
element

al a]l a] =

AutosarDataType

Table 3.241: BSW Types

AUTSSAR

3.5.2.15 Basic Software Entries

Artifact Basic Software Entries

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Set of signatures for calls between BSW modules.

Description Set of signatures for calls between BSW modules. Defining such a set as a separate artifact allows
for a better reuse by several BSW modules.They are decribed in terms of the meta-model element
BswModuleEntry which represents a C-function signature and associated properties.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Module Bundle 0..1

Produced by Define BSW Entries 1

Consumed by Define BSW Interfaces 1

Use meta model BswModuleEntry 1

element

Table 3.242: Basic Software Entries

3.5.2.16 Basic Software Module Description

Artifact Basic Software Module Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Description of a single BSW module or a module cluster in terms of its interfaces, dependencies and
module Id.

Description Description of all interfaces (ingoing and outgoing C-function calls, triggers and modes) and other
dependencies of a single BSW module or a BSW module cluster. In addition, this artifacts defines
the so-called module Id, which indicates the role of the module within the architecture (only
mandatory for standardized modules).

Note that the description of the function signatures (so-called BswModuleEntry and their
ImplementationDataType can be factored out into separate artifacts BSW Entries and BSW Types in
order to improve their reuse.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Module Bundle 1.7

Produced by Define BSW Interfaces 1

Consumed by Define BSW Behavior 1

Consumed by Generate BSW Module 1 Meth.bindingTime = CodeGenerationTime
Prebuild Data Set

Consumed by Generate BSWM Contract 1 Meth.bindingTime = SystemDesignTime
Header Files

Consumed by Implement a BSW Module 1 Meth.bindingTime = SystemDesignTime

Consumed by Generate BSW Memory 0..1 shortName: The BSW module’s shortName is used as
Mapping Header the first part of the generated file name, in case the

default rule applies.
Meth.bindingTime = SystemDesignTime

Use meta model BswModuleDescription 1

element

Table 3.243: Basic Software Module Description

AUTSSAR

3.5.2.17 Basic Software Module Internal Behavior

Support

Artifact Basic Software Module Internal Behavior
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products
Brief Description Specifies the InternalBehavior of a BSW module or a BSW cluster, especially the scheduling aspect.
Description Specifies the behavior of a BSW module or a BSW cluster w.r.t. the code entities visible by the BSW
Scheduler. It is possible to have several different BswinternalBehaviors referring to the same Bsw
ModuleDescription, but only one of them can be integrated on one CPU.
Kind AUTOSAR XML
Relation Type Related Element Mult. Note
Aggregated by BSW Module Delivered 1.*
Bundle
Produced by Create Library 1 Meth.bindingTime = CodeGenerationTime
Produced by Define BSW Behavior 1
Consumed by Define BSW Module Timing 1
Consumed by Generate BSW Module 1 Meth.bindingTime = CodeGenerationTime
Prebuild Data Set
Consumed by Generate BSWM Contract 1 Meth.bindingTime = SystemDesignTime
Header Files
Consumed by Implement a BSW Module 1 Meth.bindingTime = SystemDesignTime
Consumed by Map Software Component 1
to BSW
Consumed by Generate Local MC Data 0..1 Meth.bindingTime = SystemDesignTime

Use meta model
element

BswIinternalBehavior

Table 3.244: Basic Software Module Internal Behavior

3.5.2.18 Basic Software Module Implementation Description

Artifact Basic Software Module Implementation Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Contains the implementation specific information of a module.

Description Contains the implementation specific information of a module in addition to the generic specification
given in Basic Software Module Description and Basic Software Module Internal Behavior.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by

BSW Module ICS Bundle

1

The administrative elements (e.g. version info) of the
Implementation model needed for the conformance test.

Aggregated by

BSW Module Delivered
Bundle

Produced by

Create Library

Meth.bindingTime = CodeGenerationTime

Produced by

Implement a BSW Module

Meth.bindingTime = CodeGenerationTime

Consumed by

Generate BSW Memory
Mapping Header

DependencyOnAtrtifact: Can be used to override the
default name of the memory mapping header file.
Meth.bindingTime = SystemDesignTime

AUTSSAR

A

Artifact

Basic Software Module Implementation Description

Consumed by

Generate BSW Memory
Mapping Header

1

MemorySections: MemorySections defined for a BSW
module. This input includes optional prefixes for
memory sections overriding the default rule.
Meth.bindingTime = SystemDesignTime

Consumed by

Generate BSW Memory
Mapping Header

infixes: Optional infixes (denoting instance and vendor
ID) to be used within the created header file name.
Meth.bindingTime = SystemDesignTime

Consumed by

Generate BSW Module
Prebuild Data Set

Meth.bindingTime = CodeGenerationTime

Consumed by

Generate BSWM Contract
Header Files

Meth.bindingTime = SystemDesignTime

Consumed by

Configure Memmap
Allocation

MemorySections:

Use meta model
element

Bswimplementation

Table 3.245: Basic Software Module Implementation Description

3.5.2.19 Build Action Manifest

Dataset

Artifact Build Action Manifest

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Describes the actions used to build certain artifacts from other artifacts.

Description Describes the actions used to build certain artifacts from other artifacts (generate, compile, link...).
Note: A build action manifest can include the actions for processing of basic software as well as of
application software artifacts. The manifest itself is however considered as a product of basic
software development.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Module Delivered 0..1 The build action manifest to be used for the delivered
Bundle basic software.

Produced by Implement a BSW Module A

Consumed by Compile BSW Core Code .1 The compilation can optionally be controlled by a Build

Action Manifest.

Consumed by Compile ECU Source Code .1 The task may be controlled by a Build Action Manifest.

Consumed by Connect Service .1 The task may be controlled by a Build Action Manifest.
Component

Consumed by Generate A2L .1 The task may be controlled by a Build Action Manifest.

Consumed by Generate BSW A The task may be controlled by a Build Action Manifest.
Configuration Code

Consumed by Generate ECU Executable .1 The task may be controlled by a Build Action Manifest.

Consumed by Generate OS .1 The task may be controlled by a Build Action Manifest.

Consumed by Generate RTE Postbuild .1 The task may be controlled by a Build Action Manifest.
Dataset

Consumed by Generate RTE Prebuild 0..1 The task may be controlled by a Build Action Manifest.

Use meta model
element

BuildActionManifest

Table 3.246: Build Action Manifest

AUTSSAR

3.5.2.20 Basic Software Module Timing

Artifact Basic Software Module Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description BSW module’s TimingDescription and TimingConstraints

Description TimingDescription and TimingConstraints defined for the Internal Behavior of a BSW module
(BSWModuleEntities)

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Module Bundle 0..1

Produced by Define BSW Module Timing 1

Consumed by Define ECU Timing 0..1

Consumed by Implement a BSW Module 0..1 Meth.bindingTime = SystemDesignTime

Use meta model
element

BswModuleTiming

Table 3.247: Basic Software Module Timing

3.5.2.21 Basic Software Module Core Header

Artifact Basic Software Module Core Header
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products
Brief Description C-header files delivered with a BSW module.
Description C-header file delivered with a BSW module. It may have to be included by other modules.
Kind Source Code
Relation Type Related Element Mult. Note
Aggregated by BSW Module Delivered 1.*
Bundle
Produced by Implement a BSW Module 1 Meth.bindingTime = CodeGenerationTime
Consumed by Compile BSW Configuration 1
Data
Consumed by Compile BSW Core Code 1 Meth.bindingTime = CodeGenerationTime
Consumed by Compile Configured BSW 1
Consumed by Compile Unconfigured BSW 1
Consumed by Compile ECU Source Code 0..* Meth.bindingTime = CodeGenerationTime

Table 3.248: Basic Software Module Core Header

AUTSSAR

3.5.2.22 Basic Software Module Core Source Code

Artifact Basic Software Module Core Source Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description The core source code of a module provided by the vendor.

Description The core source code of a module provided by the vendor. "Core" means, that it does not include

addtional source code, which may be generated during the configuration process.

Kind Source Code

Relation Type Related Element Mult. Note
Aggregated by BSW Module Delivered 0..*
Bundle
Produced by Implement a BSW Module 0..1 The creation of source code is optional, since it might be

generated completely in a later step based on the Build
Action Manifest.
Meth.bindingTime = CodeGenerationTime

Consumed by Compile BSW Core Code 1 Meth.bindingTime = CodeGenerationTime
Consumed by Compile Configured BSW 1
Consumed by Compile Unconfigured BSW 1
Consumed by Compile ECU Source Code 0..” Meth.bindingTime = CodeGenerationTime

Table 3.249: Basic Software Module Core Source Code

3.5.2.23 Basic Software Interlink Header

Artifact Basic Software Module Interlink Header
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products
Brief Description Generated Header file used to link a BSW module with the BSW Scheduler.
Description Generated Header file used to link a BSW module with the BSW Scheduler during Contract phase.
Kind Source Code
Relation Type Related Element Mult. Note
Aggregated by BSW Module Delivered 1.*
Bundle
Produced by Generate BSWM Contract 1 Meth.bindingTime = CodeGenerationTime
Header Files
Consumed by Compile BSW Core Code 1 Meth.bindingTime = CodeGenerationTime
Consumed by Implement a BSW Module 1 Meth.bindingTime = SystemDesignTime
Consumed by Compile ECU Source Code 1.* Meth.bindingTime = CodeGenerationTime

Table 3.250: Basic Software Module Interlink Header

AUTSSAR

3.5.2.24 Basic Software Interlink Types Header

Artifact Basic Software Interlink Types Header
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products
Brief Description Generated Header file with data types used to link a BSW module with the BSW Scheduler
Description Generated Header file with data types used to link a BSW module with the BSW Scheduler.
Kind Source Code
Relation Type Related Element Mult. Note
Aggregated by BSW Module Delivered 0..*
Bundle
Produced by Generate BSWM Contract 1 Meth.bindingTime = CodeGenerationTime
Header Files
Consumed by Compile BSW Core Code 1 Meth.bindingTime = CodeGenerationTime
Consumed by Implement a BSW Module 1 Meth.bindingTime = SystemDesignTime
Consumed by Compile ECU Source Code 0..” Meth.bindingTime = CodeGenerationTime

Table 3.251: Basic Software Interlink Types Header

3.5.2.25 BSW RTE Prebuild Configuration Header

Artifact BSW RTE Prebuild Configuration Header

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Generated header file used to resolve the prebuild variants in the prebuild RTE contract phase for
the BSW.

Description Generated header file used to resolve the prebuild variants of a basic software module in the
prebuild RTE contract phase. Contains macros which resolve the variants when compiled with the
module.

Kind Bound Source Code

Relation Type Related Element Mult. Note

Aggregated by BSW Module Delivered 0..*

Bundle

Produced by Generate BSW Module 1 Meth.bindingTime = PreCompileTime
Prebuild Data Set

Consumed by Compile BSW Core Code 1 Meth.bindingTime = PreCompileTime

Consumed by Compile ECU Source Code 0..* Meth.bindingTime = PreCompileTime

Table 3.252: BSW RTE Prebuild Configuration Header

3.5.2.26 Basic Software Module Object Code

Artifact Basic Software Module Object Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products
Brief Description Object code of a BSW module.

Description Object code of a BSW module.

Kind Object Code

AUTSSAR

JAN
Artifact Basic Software Module Object Code
Relation Type Related Element Mult. Note
Aggregated by BSW Module ICS Bundle 1.7
Aggregated by BSW Module Delivered 0..*
Bundle
Produced by Compile BSW Core Code 1 Meth.bindingTime = CompileTime
Produced by Compile Configured BSW 1
Produced by Compile Generated BSW 1
Produced by Compile Unconfigured BSW 1
Consumed by Link ECU Code after 1.7
Precompile Configuration
Consumed by Link ECU Code during Link 1.*
Time Configuration
Consumed by Generate ECU Executable 0..” for object code delivery
Meth.bindingTime = CompileTime

Table 3.253: Basic Software Module Object Code

3.5.2.27 Library Description

Artifact Library Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description Description of a library in Autosar XML.

Description Description of a library in Autosar XML. This uses the same template as for describing Basic
Software Modules, but with restricted content. Main purpose is to describe the C-interfaces of the
library.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Produced by Create Library 1 Meth.bindingTime = CodeGenerationTime

Consumed by Implement Atomic Software 0..” Meth.bindingTime = CodeGenerationTime
Component

Use meta model BswModuleDescription 1

element

Table 3.254: Library Description

3.5.2.28 Library Header Files

Artifact Library Header Files

Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products

Brief Description These additional headers are typically needed for libraries that a component uses.

Description These additional headers are typically needed for libraries that a component or a module uses (e.g.
a "math-libary").

Kind Source Code

Relation Type Related Element | Mult. | Note

V

AUTSSAR

ECU context

A
Artifact Library Header Files
Produced by Create Library 1 Meth.bindingTime = CodeGenerationTime
Consumed by Compile BSW Core Code .1 Meth.bindingTime = CodeGenerationTime
Consumed by Implement a BSW Module .1 Meth.bindingTime = CodeGenerationTime
Consumed by Compile Atomic Software .* Meth.bindingTime = CodeGenerationTime
Component
Consumed by Compile ECU Source Code > Meth.bindingTime = CodeGenerationTime
Consumed by Implement Atomic Software > Meth.bindingTime = CodeGenerationTime
Component
Consumed by Re-compile Component in 0..” Meth.bindingTime = CodeGenerationTime

Table 3.255: Library Header Files

3.5.2.29 Library Object Code

Artifact Library Object Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Bsw::Work products
Brief Description The object code of a Ibrary.
Description The object code of a library, to be linked with other object code during a build of the ECU executable.
Kind Object Code
Relation Type Related Element Mult. Note
Aggregated by Delivered Atomic Software 0..*
Components
Produced by Create Library 1 Meth.bindingTime = CodeGenerationTime
Consumed by Generate ECU Executable 0.~ for object code delivery

Meth.bindingTime = CompileTime

Table 3.256: Library Object Code

3.5.2.30 Custom Transformer

Chain

Artifact Custom Transformer

Package AUTOSAR Root::M2::Methodology::Methodology Library::System::Work products
Brief Description Custom transformation

Description This is a user defined transformer that is not standardized in AUTOSAR.

Kind

Relation Type Related Element Mult. Note

Produced by Implement a BSW Module 0..1

Consumed by Define Transformation 0..1

Table 3.257: Custom Transformer

AUTSSAR

3.6 ECU Integration and Configuration

This chapter contains the definition of work products and tasks used for the integration
and configuration of AUTOSAR software on an ECU. For the definition of the relevant
meta-model elements refer to [10, CP TPS ECU Configuration].

3.6.1 Tasks
3.6.1.1 Provide RTE Calibration Dataset

ECU
Integrator

Calibration
Engineer

«performs» «performs»

«input»

«output» 1

Provide RTE
- Calibration Dataset
«input» A "
Calibration Parameter Value Set
1.+

Figure 3.121: Provide RTE Calibration Dataset

Task Definition Provide RTE Calibration Dataset

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Provide a data set defining initial values for calibration parameters in the RTE code.
Description Since a model of the "downstream" calibration process of an ECU is not part of the AUTOSAR

methodology, the input data are only shown as a General Non AUTOSAR Artifact.

The output of this task is a set of calibration values in AUTOSAR format, which can be further
processed within AUTOSAR, namely by the RTE generator. The calibration values have to be
associated to the corresponding parameter specification via a reference to the ECU Flat Map.

Relation Type Related Element Mult. Note
Performed by ECU Integrator 1
Performed by Calibration Engineer 0..1
Consumes ECU Flat Map 1
Consumes General Non Autosar 1.7 input from calibration process
Artifact
Produces galibration Parameter Value 1
et

Table 3.258: Provide RTE Calibration Dataset

AUTSSAR

3.6.1.2 Define Integration Variant

ECU
Integrator

Evaluated Variant Set

1
ECU Extract m —
—
«output» 1 | e—
—
" —
- Define
«input> Integration ; .
1 Variant Predefined Variant
«inoutput>»
inoutput
BSW Module «inoutput>
Delivered Bundle 0..*

Postbuild Variant Set System Constant Value Set

Figure 3.122: Define Integration Variant

Task Definition Define Integration Variant

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Define a variant for the artifacts integrated on an ECU.

Description Define a variant for the artifacts integrated on an ECU, this means adding a PredefinedVariant

related to the ECU extract and the BSW modules in scope. To do so, this task can make use of
existing System Constant Value Set and/or Postbuid Variant Sets or define new ones.

Several PredefinedVariants can be combined to one Evaluated Variant Set.

It is up to particular process definition to decide, which variants are allowed to be set at integration
time. Technically, since this task is part of ECU integration, it can only resolve variation points which
have not yet been resolved in the delivered ECU extract or BSW modules. Especially, variation
points which have to be bound at system design time, should have been already resolved before.
Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note
Performed by ECU Integrator 1
Consumes ECU Extract 1
Consumes BSW Module Delivered 1.*
Bundle
In/out Postbuild Variant Set 0..*
In/out System Constant Value Set 0..*
Produces Predefined Variant 1 Meth.bindingTime = SystemDesignTime
Produces Evaluated Variant Set 0..1 Meth.bindingTime = SystemDesignTime

Table 3.259: Define Integration Variant

AUTSSAR

3.6.1.3 Generate Base ECU Configuration

ECU
Integrator
- 1
Diagnostic ECU
Extract 0.1 «performs»
«input»
- N\ —
- —
- —
- 1 «input» «output» 1 || —
- 7
- —
ECU Extract Generate. Base.
Ecu Configuration
ECU Configuration
«input» Values
- 1.
BSW Module

Delivered Bundle

Figure 3.123: Generate Base ECU Configuration

Task Definition Generate Base Ecu Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Generate an initial set of ECU configuration values based on the delivered ECU extract.
Description Create the ECU configuration module structure including an initial set of ECU configuration values.

This is based on the delivered ECU extract and on the vendor specific configuration parameters and
their recommended or pre-configured values provided with the delivered BSW modules.
Furthermore the diagnostic extract is used to create the initial configuration for diagnostic related
modules, such as DCM and DEM.

Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Extract 1

Consumes BSW Module Delivered 1.* Need vendor specific configuration parameters and their
Bundle recommended or pre-configured values.

Consumes Diagnostic ECU Extract 0..1

Produces ECU Configuration Values 1 Meth.bindingTime = SystemDesignTime

Table 3.260: Generate Base Ecu Configuration

AUTSSAR

3.6.1.4 Generate Updated ECU Configuration

Diagnostic
ECU Extract 0.1

«input»

1 «input»

ECU Extract

«input»

BSW Module
Delivered Bundle

—~

ECU
Integrator

«performs»

«inoutput»

Generate Updated ECU

Configuration

ECU Configuration
Values

Figure 3.124: Generate Updated ECU Configuration

Task Definition Generate Updated ECU Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Generates the updated ECU configuration.

Description This task generates the updated ECU configuration based on the initial ECU configuration, the

updated ECU Extract and optionally the Diagnostic Extract.

Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note
Performed by ECU Integrator 1
Consumes ECU Extract 1
Consumes BSW Module Delivered 1.*
Bundle
Consumes Diagnostic ECU Extract 0..1
In/out ECU Configuration Values 1 The task "Generate Updated ECU Configuration”

consumes the initial ECU configuration values and
produces the updated ECU configuration values.

Table 3.261: Generate Updated ECU Configuration

AUTSSAR

3.6.1.5 Define ECU Timing

[l

ECU
Integrator

ECU

0.1 «aggregation» - Extract
0..1 -
ECU Extract of 0.1
System Timing
«input» «input»
~ —
— 0.1 «input» «output» 1 | eo—
= —
— —
Define ECU

Basic Software Timing ECU Timing
Module Timing

ECU Service
Connectors

ECU Configuration
Values

«input»

1.*

Figure 3.125: Define ECU Timing

Task Definition Define ECU Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Define ECUTiming (TimingDescription and TimingConstraints) for a concrete ECU taking the ECU
configuration and the ECU Software Composition (including their implementation) into account.

Description Define ECUTiming (TimingDescription and TimingConstraints) for a concrete ECU taking the ECU

configuration and the ECU Software Composition (including their implementation) into account.
Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note
Performed by ECU Integrator 1
Consumes ECU Configuration Values 1
Consumes ECU Service Connectors 1.*
Consumes Basic Software Module 0..1
Timing
Consumes ECU Extract 0..1 Needed to set up links to the elements of the ECU
extract.
Consumes ECU Extract of System 0..1
Timing
Produces ECU Timing 1 Meth.bindingTime = SystemDesignTime

Table 3.262

: Define ECU Timing

AUTSSAR

3.6.1.6 Configure EcuC

ECU
Integrator
ECU Extract 1
«input> «performs»
—
7 —
—
—
0..* «input»
«inoutput» | —
Configure ECUC
BSW Module
Delivered Bundle ECU Configuration

/ Values
«input»

AUTOSAR Standardized
ECU Configuration
Parameter Definition

Figure 3.126: Configure EcuC

Task Definition Configure ECUC

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Set the general ECU configuration values.

Description Set the general ECU configuration values, the so-called EcuC parameters. These are the

configuration parameters which are not related to a particular module, but are relevant for the ECU
in general. The EcuC parameters consist of the following parts:
« Collection of all Pdu objects flowing through the Com-Stack.

« Definition of partitions for the ECU (One partition will be implemented using one OS application).
The memory partitions have to be known before doing the OS configuration.

» Collection of PredefinedVariant elements which shall be applied when resolving the variability
during ECU Configuration.

» Collection of mappings between ECU hardware memory segments (defined in ECU Resources
Description) and SwAddrMethod elements (defined in VFB Types). The name of each such Ecuc
MemoryMappingElement could be used as to predefine the logical memory segment for the linker
configuration.

Note: The usage of EcucMemoryMappingElement is deprecated in R4.0 rev.2, because the
configuration of the "MemMap" module has been added which allows a more fined grained memory
mapping than SwAddrmethod. A relatonship to hardware elements from this fine grained mapping is
currently not provided. See task definition Configure Memmap Allocation.

Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note
Performed by ECU Integrator 1
Consumes ECU Extract 1
Consumes AUTOSAR Standardized 0..1
ECU Configuration
Parameter Definition
Consumes BSW Module Delivered 0..”
Bundle
In/out ECU Configuration Values 1

Table 3.263: Configure ECUC

AUTSSAR

3.6.1.7 Configure OS

ECU

Integrator
1
«performs»
—
—
—
0..* «input» «inoutput» 1 | —
—
BSW Module Configure OS
Delivered Bundle ECU Configuration Values
«input»
—
—
| 0.1
—
—
—
—
ECU Timing

Figure 3.127: Configure OS

Task Definition Configure OS

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Configure the OS by creating the Tasks, events, alarms, etc.

Description The OS configuration process may be highly iterative between RTE and OS, e.g. RTE needs some

OsTasks or OsScheduleTables to map Runnables into them. To finalize a ECU Configuration the OS
is the last BSW module to configure. To use multi-core ECUs the EcuC Configuration needs to be
provided beforehand to the OS Configuration to map the cores. There cannot be specified a
precedence which configuration parameter values should be set first for OsAlarm, OsApplication, Os
Counter, Oslsr, OsOs, OsResource, OsScheduleTable, OsSpinlock, OsTask. This is dependent on
the development and configuration process. Application + Basic Software requirements and fulfill
those with OS artifacts. Mandatory Inputs:

* RTE part of the ECU Configuration

* EcuC part of the ECU Configuration
Outputs:
* OS part of the ECU Configuration
* RTE part of the ECU Configuration
The following steps are needed to perform the task :
» Map OS Configuration to Cores only in the case of multiple core ECU.

« Define the OSTasks and OSSchedule : Tables based on the events/runnables of the application &
bsw components, create the OSTasks that will invoke them.

» Map Runnables into OSTasks and OSSchedule Tables : Assign all the runnables to the OSTasks

» Steps for "OsAlarm, OsApplication, OsCounter, Oslsr, OsOs, OsResource, OsScheduleTable, Os
Spinlock, OsTask."

Meth.bindingTime = SystemDesignTime

Relation Type

Related Element Mult. Note

Performed by

ECU Integrator 1

V

AUTSSAR

Task Definition Configure OS
Consumes AUTOSAR Standardized 0..1
ECU Configuration
Parameter Definition
Consumes ECU Timing 0..1
Consumes BSW Module Delivered 0.~ OS Resources required by Basic Software.
Bundle Optional Input: Basic Software Module Timing, e.g.
execution order constraints.
In/out ECU Configuration Values 1

3.6.1.8 Configure RTE

ECU Extract 1

Table 3.264: Configure OS

Definiti

Delivered Atomic
Software Components

1 «input»

-7

«input»

N
——
-
-
—
=
—

Service Component
Description

BSW Module
Delivered Bundle

BSW Module ECU
Vendor- Specific Integrator
Configuration

Parameter

on

«performs»
«inoutput» 1 || —
—
Configure RTE
ECU Configuration Values
«input»\
0.1
—
—
—
ECU Timing

Figure 3.128: Configure RTE

AUTSSAR

Task Definition Configure RTE

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Describes the steps required to successfully configure the AUTOSAR RTE.
Description Configure the RTE to correctly interact with AUTOSAR COM and the OS.

The specification of the OS objects used by the generated RTE are configured in this task.
In addition, configuration includes setting RTE specific options and the handling of measurement
and calibration data. Post-build variants which shall be supported by the RTE code must be

referenced by the configuration.

The following steps are usualy done to configure the RTE :

1. Setup RTE General Configuration

. Select BSW Module Implementations

. Map BSW Executables to tasks
. Resolve Exclusive Areas
. Select Implicit Communication behavior

. Select Calibration Support

© 00 N O o~ W N

. Select Software Component Implementations

. Each Runnable needs to be assigned to an Operating System Task in order to be invoked.

. Configure Non Volatile Memory Block Component (only needed if decisions on the configuration

have to be taken during ECU Configuration)

10. Select the supported post-build variants

Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note
Performed by ECU Integrator 1
Consumes BSW Module Vendor- 1 The definitions for the module RTE
Specific Configuration
Parameter Definition
Consumes ECU Extract 1 Elements of the System Description and VFB
Description are referred by the RTE configuration.
Optional Input: ECU Extract of System Timing, e.g.
execution order constraints.
Consumes Delivered Atomic Software 1.* Required input:
Components + References to all component implementation
descriptions on this ECU
+ SwclnternalBehavior (for example to map the
runnables to tasks) which was used in the contract
phase of the software components on this ECU
Consumes ECU Timing 0..1
Consumes BSW Module Delivered 0..* Input from the BSW Module Description is needed
Bundle related to Scheduling, Exclusive Areas, Triggers and
Modes.
Optional Input: Basic Software Module Timing, e.g.
execution order constraints.
Consumes Service Component 0.* The Internal Behavior of Service Components
Description contributes to the RTE configuration.
In/out ECU Configuration Values 1

Table 3.265: Configure RTE

AUTSSAR

3.6.1.9 Configure Watchdog Manager

ECU

Integrator
z 1

ECU Extract 1
«performs»
«input»

- —
- —
- ——
- 0.1 «nput» «inoutput»] [—
- —
- ——

BSW Module

Delivered Bundle

Configure Watchdog Manager
ECU Configuration Values
«input»

0.1

ECU Timing

Figure 3.129: Configure Watchdog Manager

Task Definition Configure Watchdog Manager

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Describes the steps required to succesfully configure the Watchdog Manager

Description Configured Top-Down. Service needs determine what kind of watchdog manager you need. For

each service need there is one interface. You can connect several of these interfaces to one
watchdog manager
Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Extract 1 Application software requirements for WdgM, especially
SwcServiceDependency and ServiceNeeds.

Consumes BSW Module Delivered 0..1 Predefined or recommended configuration values,

Bundle vendor specific parameters, ServiceNeeds defined by

BSW.

Consumes ECU Timing 0..1

In/out ECU Configuration Values 1

Table 3.266: Configure Watchdog Manager

AUTSSAR

3.6.1.10 Configure Mode Management

ECU
Integrator

1

BSW Module
Delivered Bundle

0.1 «performs»

«input»

0.1 «input»

«inoutput» 1

ECU System Description

Configure Mode
Management

ECU Configuration

«input»
P Values

«input»

ECU Extract —
AUTOSAR Standardized ECU
Configuration Parameter Definition
Figure 3.130: Configure Mode Management
Task Definition Configure Mode Management
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Configure the Mode Managers in the Basic Software for this ECU.
Description Configure the Mode Managers in the Basic Software for this ECU. In the methodology library this is

modeled as a single task (for simplicity) though in practice it may consist of several single tasks. In
general, there are two approaches that are supported by AUTOSAR:
* Top-down approach: the software components are available and the mode management can be
configured using the data elements, i.e. mode requests, inside a port of a software component.

» Bottom-up approach: the software components are not available and the mode management can
be configured using a reference to a data element (stating the mode requests) in an interface, that
is not yet used by a port of a software component.

Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes AUTOSAR Standardized 0..1

ECU Configuration
Parameter Definition
Consumes BSW Module Delivered 0..1 Predefined or recommended configuration values,
Bundle vendor specific parameters, ServiceNeeds defined by
BSW.

Consumes ECU Extract 0..1 Application software requirements for NvM, especially
SwcServiceDependency and ServiceNeeds. Input in
case atomic software components are available.

Consumes ECU System Description 0..1 Input in case ECU Extract is not available (atomic
software components not available)

In/out ECU Configuration Values 1

Table 3.267: Configure Mode Management

AUTSSAR

3.6.1.11 Configure NvM

BSWModule 7
Delivered Bundle

«input»

1 «input»

ECU Extract

AUTOSAR Standardized
ECU Configuration
Parameter Definition

Description

Service Component

ECU
Integrator
1
«performs»
—
—
—
«inoutput» 1 | —
—
—
Configure NvM

ECU Configuration
Values

Figure 3.131: Configure NvM

and BSW Modules

« from existing ECU configuration values

Meth.bindingTime = SystemDesignTime

Task Definition Configure NvM

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Configure the NvM stack for this ECU.

Description Configure the NvM stack for this ECU. In the methodology library this is modeled as a single task

(for simplicity) though in practice it may consist of several single tasks.
Requirements for the configuration of NvM can be collected
« from the upstream information about ServiceDependencies and ServiceNeeds in the ECU Extract

« from Service Component Descriptions created for other Services (e.g. DEM)

Relation Type Related Element Mult. Note
Performed by ECU Integrator 1
Consumes ECU Extract 1 Application software requirements for NvM, especially
SwcServiceDependency and ServiceNeeds.
Consumes AUTOSAR Standardized 0..1
ECU Configuration
Parameter Definition
Consumes BSW Module Delivered 0..1 Predefined or recommended configuration values,
Bundle vendor specific parameters, ServiceNeeds defined by
BSW.
Consumes Service Component 0.* The configuration of diagnostics, especially of the DEM,
Description typically leads to the definition of additional data to be
stored in NvM. One possibility to handle this is to create
ServiceNeeds on the level ServiceComponentType
which is then taken into account for the configuration of
the NvM.
In/out ECU Configuration Values 1

Table 3.268: Configure NvM

AUTSSAR

3.6.1.12 Configure Diagnostics

ECU
Integrator
BSW Module 1
Delivered Bundle 0--1
«input» «performs»
—
—
—
1 «input» «inoutput» q | —
—
—
ECU Extract Configure Diagnostics
ECU Configuration
Values
«input»
0.1

AUTOSAR Standardized ECU
Configuration Parameter Definition

Figure 3.132: Configure Diagnostics

Task Definition Configure Diagnostics

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Configure the diagnostic modules for this ECU

Description Configure the diagnostic modules for this ECU. In the methodology library this is modeled as a

single task (for simplicity) though in practice it may consist of several single tasks.
Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note
Performed by ECU Integrator 1
Consumes ECU Extract 1 Application software requirements for diagnostics,
especially SwcServiceDependency and ServiceNeeds.
Consumes AUTOSAR Standardized 0..1
ECU Configuration
Parameter Definition
Consumes BSW Module Delivered 0..1 Predefined or recommended configuration values,
Bundle vendor specific parameters, ServiceNeeds defined by
BSW.
In/out ECU Configuration Values 1 Configuration Values for DEM, DCM, DLT, FIM.

Table 3.269: Configure Diagnostics

AUTSSAR

3.6.1.13 Create Service Component

ECU Configuration
Values

ECU Extract ~ 0..1 0.1 1
«output»
«input® «input»

—
—
—
o «input» «output» | —
—

«output»

Create Service

BSW Module
Component

Delivered Bundle

«performs «output»

1

ECU
Integrator 0..1

.1
«input»
1

0..

ECU Timing
to BSW Mapping
Figure 3.133: Create Service Component
Task Definition Create Service Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Create an instances for all required Service Components, configure them, create necessary ports

and connectors to the respective application software components. This completes the ECU
Software Composition.

Description The ECU Extract contains all information about which components are mapped to a specific ECU. In
a new "flat" Software Composition (meta-class RootSwCompositionPrototype) all other
compositions have been removed. This has to be extended by an aggregation of the SwComponent
Prototypes which describe the Services required by all application components on the ECU:

* For each mapped SwComponentPrototype of type AtomicSwComponentType, the PortPrototypes
requiring a particular Service and the asscociated SwcServiceDependency-s and ServiceNeeds
are collected. Based on this information, a ServiceSwComponentType and its prototype is
created exactly once per service with the corresponding number of PortPrototypes, thus that all
service-type PortPrototypes of the Application Components have their PortPrototype counterpart
on the ServiceSwComponentType.

RTE generation requires that an InternalBehavior and Implementation is created for each Service
SwComponentType. In particular, the port defined argument values required for the usage of
some service interfaces are configured, and the required RunnableEntities and RTEEvents are
set up. It is also required to define a mapping between elements of the generated SWC and
existing or generated elements of the BSW module description.

The evaluation of the input might result in further ServiceNeeds to be added to the generated
InternalBehavior - for example a ServiceSwComponentType created for the DEM might include
ServiceNeeds for NVRAM blocks. It is assumed, that such interdependencies are incrementally
resolved within this task for all involved Service Components such that the outputs are consistent.
Note that this is just one possibility to handle the situation - another option is to resolve the
interdependencies only within the ECU configuration tasks (Configure Diagnostics, Configure Nv
M) without creating additional ServiceNeeds.

Depending on the details of the configuration process for the particular module (namely which parts
are generated or manually created), the steps described above can be done before, in parallel or

\Y

AUTSSAR

A

Task Definition

Create Service Component

A

after setting up the ECU configuration of the involved BSW modules. Likewise, the information used
to create the ServiceSwComponentType(s) can come directly as input from the ECU Extract, or via
the ECU Configuration. Therefore both artifacts are shown as optional input. The ECU
Configuration is also an output, because a reference to the created SwComponentPrototype(s) must

be entered here.

The creation of connectors between the service and application components is a separate task..

Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note
Performed by ECU Integrator 1
Consumes BSW Module Delivered 0..1 Required in order to define a mapping between SWC
Bundle and BSW.
In addition, the Build Action Manifest may be used.
Consumes ECU Configuration Values 0..1 The creation of Service Component details may depend
on ECU configuration values, especially for the DCM.
Consumes ECU Extract 0..1 Input information about the Service Ports and Service
Dependencies of the software components.
Consumes ECU Timing 0..1 Additional information for fine tuning configuration
decisions.
Produces Atomic Software 1 In order to generate the RTE, one needs to create a
Component Implementation kind of dummy Implementation element for the Service
Component, however this should not be filled with
descriptive elements, e.g. resource consumption, as
these are already defined by the Basic Software Module
Implementation Description.
Meth.bindingTime = SystemDesignTime
Produces ECU Configuration Values 1 Enter links to the created SwComponentPrototypes.
Meth.bindingTime = SystemDesignTime
Produces Service Component 1 Meth.bindingTime = SystemDesignTime
Description
Produces Software Component to 0..1 Meth.bindingTime = SystemDesignTime

BSW Mapping

Table 3.270: Create Service Component

AUTSSAR

3.6.1.14 Connect Service Component

ECU

Integrator
ECU Extract 1

«performs»
«input»
— —
— —
— —
—— «input» «output» 1 x| —
— —
— —
Connect Service Component

Service Component ECU Service Connectors
Description

Build Action Manifest

Figure 3.134: Connect Service Component

Task Definition Connect Service Component

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description

Description In order to connect the "isService"-ports of the application components to a particular ServiceSw

ComponentType, AssemblyConnectorPrototypes are generated.

The ECU Extract with its RootSwCompositionPrototype, extended by the Service Components and
their connectors, finally serves as input for generating the RTE.

Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Extract 1 Find the ports on the application side to be connected to

the Service Component.

Consumes Service Component 1 Required in order to define the connector links to the
Description ports on the BSW side.

Consumes Build Action Manifest 0..1 The task may be controlled by a Build Action Manifest.

Produces ECU Service Connectors 1.* Meth.bindingTime = SystemDesignTime

Table 3.271: Connect Service Component

AUTSSAR

3.6.1.15 Configure COM

ECU
Integrator
0.1 1
BSW Module
Delivered Bundle «performs»
«input»
N\ —
—
—
1 «input» «inoutput» 1 || —
—
—

ECU Extract Configure Com

ECU Configuration
Values
«input»

AUTOSAR Standardized
ECU Configuration
Parameter Definition

Figure 3.135: Configure COM

Task Definition Configure Com

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Configure the COM stack modules within an ECU

Description The ECU Extract of the System Configuration contains the major part of information that is needed

to configure the COM Stack modules. Many parameter values of the ECU configuration can be

derived from the ECU extract.The missing ECU specific configuration parameters that can not be

derived from the System Description need to be set in this phase, e.g. Vendor-Specific Configuration

Parameters.

The following steps will be needed to perform the task :

1. Derive configuration parameter values from ECU extract : The System Template Specification
describes rules on how the individual ECU configuration parameters shall be derived from the
Upstream Templates (SWC Template, System Template, ECU Resource Template). This rules
shall be followed.

2. Derive global PDUs from ECU extract : A global PDU has to be configured for each |I-PDU flow
and is added to the PDU collection of the module EcuC. Derived from the ECU Extract all PDUs
that traverse through the COM Stack have to be created.

3. Create PDU References from the BSW Module PDUs to the global PDUs in the module EcuC:As
soon as these global PDUs are created the references from the local module PDUs to the
appropriate global PDUs need to be configured.

4. Set Missing and Vendor-Specific Parameter Values:Missing and Vendor-Specific Parameter
Values need to be set

5. Set BSW Module specific PDU handle IDs:The last step is the assignment of the actual values for
the Handle IDs. This can be achieved by an automatic tool which might be run directly before the
generation of the module.

Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note
Performed by ECU Integrator 1
Consumes ECU Extract 1

\Y

AUTSSAR

A
Task Definition Configure Com
Consumes AUTOSAR Standardized 0..1
ECU Configuration
Parameter Definition
Consumes BSW Module Delivered 0..1
Bundle
In/out ECU Configuration Values 1

Table 3.272: Configure Com

3.6.1.16 Configure 10 Hardware Abstraction

0.*

BSW Module
Delivered Bundle

«input»

«input»

0.1

AUTOSAR Standardized
ECU Configuration
Parameter Definition

ECU
Integrator

«performs»

«inoutput»

Configure 10 Hardware abstraction

ECU Configuration Values

Figure 3.136: Configure 10 Hardware Abstraction

Task Definition Configure 10 Hardware abstraction
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Configure 1/0 Hardware Abstraction
Description Configure the I/O Hardware Abstraction modules.
Meth.bindingTime = SystemDesignTime
Relation Type Related Element Muit. Note
Performed by ECU Integrator 1
Consumes AUTOSAR Standardized 0..1
ECU Configuration
Parameter Definition
Consumes BSW Module Delivered 0.*
Bundle
In/out ECU Configuration Values 1

Table 3.273: Configure 10 Hardware abstraction

AUTSSAR

3.6.1.17 Configure MCAL

ECU
Integrator

«perforphs»

0.1
BSW Module

«input»
Delivered Bundle P

«inoutput» 1 || e—

—
Configure MCAL
«input» ECU Configuration Values
0.1

AUTOSAR Standardized
ECU Configuration
Parameter Definition

[l

Figure 3.137: Configure MCAL

Task Definition Configure MCAL

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Configure the Microcontroller Abstraction Layer for this ECU.

Description Configure the Microcontroller Abstraction Layer for this ECU.
Meth.bindingTime = SystemDesignTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes AUTOSAR Standardized 0..1

ECU Configuration
Parameter Definition

Consumes BSW Module Delivered 0..1
Bundle
In/out ECU Configuration Values 1

Table 3.274: Configure MCAL

AUTSSAR

3.6.1.18 Configure Transformer

BSW Module 0.1

Delivered Bundle

ECU Extract

AUTOSAR Standardized
ECU Configuration
Parameter Definition

ECU
Integrator

«performs»

«inoutput»

Configure Transformer

ECU Configuration
Values

Figure 3.138: Configure Transformer

Task Definition Configure Transformer
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description
Description Configure the Transformer modules for this ECU.
Relation Type Related Element Mult. Note
Performed by ECU Integrator 1
In/out ECU Configuration Values 1

ECU Extract 1

AUTOSAR Standardized 0..1

ECU Configuration

Parameter Definition

BSW Module Delivered 0..1

Bundle

Table 3.275: Configure Transformer

AUTSSAR

3.6.1.19 Generate BSW Configuration Code and Model Extensions

ECU
BSW Integrator
Generator
Framework

Build Action 0.1 T asw Module
Manifest 1 i
«used tool» Configuration
Data Source
«input® Code

—

— Generate BSW —

— N onfiguration P

J— 0 % § «input» Code «output» | —
—

BSW Module
Generator

BSW Module
Configuration Header
File

«output»
«input»

«input»

0..* 0.1
1
0.1 0.1
— — — — —
— — — — —
— — — — —
— — — — —
— — — — —
ECU Configuration BSW Module Vendor- BSW Module BSW Module BSW Module
Values Specific Configuration Interface Extension Behavior Extension Implemenlauon
Parameter Definition Extension

Figure 3.139: Generate BSW Code and model extensions

Task Definition Generate BSW Configuration Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Tasks

Brief Description Generate source code which implements configuration data for link- or compile-time configuration.
Description A generator reads the relevant parameters from the ECU Configuration Description and creates a

separate code file that implements the specified configuration. This task is used for link-time
configuration, i.e. the configuration code can be produced at link-time of the core code or for
compile-time configuration, if the configuration code cannot be put into a header file (e.g. for tables),
even if the core code and the configuration code shall be compiled at the same time.

A header file may be produced in addition, to declare the data.

Furthermore the generator may produce extensions of the BSW module description artifacts as a
result of configuration parameter values which are set at integration time.

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Configuration Values 1

Consumes BSW Module Generator 0..1 This is an input in case a generator framework is used
which has to run some module specific generator code.

Consumes Build Action Manifest 0..1 The task may be controlled by a Build Action Manifest.

Consumes BSW Module Vendor- 0..*

Specific Configuration
Parameter Definition

Produces BSW Module Configuration 1
Data Source Code

Produces BSW Module Configuration 1
Header File

Produces BSW Module Behavior 0..1
Extension

Produces BSW Module 0..1

Implementation Extension

AUTSSAR

A
Task Definition Generate BSW Configuration Code
Produces BSW Module Interface 0..1
Extension
Used tool BSW Generator Framework 1

Table 3.276: Generate BSW Configuration Code

3.6.1.20 Generate Local MC Data Support

ECU Integrator

«performs»

«output» 1

Generate Local MC
Data Support

Local Measurement
and Calibration

«input» Support Data

Software Component ECU Flat Map
Intemal Behavior

Figure 3.140: Generate Local MC Data Support

Task Definition Generate Local MC Data Support

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Generate Local MC Support Data

Description Generate the support data needed for measurement and calibration of those parameters and

variables (roles constantMemory and staticMemory), which are owned locally by the code of a
module or component (in contrast to those, which are owned by the RTE).

The declaration of local variables/parameters is read from the Internal Behavior of either a BSW
module or an Atomic Software Component, therefore these can be considered as alternative
inputs.The ECU Flat Map is needed as input in order to resolve possible name conflicts.

This task can be combined with RTE generation for practical reasons, but it is considered as an
independent task.

Note that calibration data that need software emulation support by the RTE cannot be handled by
this task; they need to be processed by the task Generate RTE.

Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Flat Map 1 Meth.bindingTime = SystemDesignTime

Consumes BSW Module Behavior 0..1 Meth.bindingTime = SystemDesignTime
Extension

\Y%

AUTSSAR

A

Task Definition Generate Local MC Data Support

Consumes Basic Software Module 0..1 Meth.bindingTime = SystemDesignTime
Internal Behavior

Consumes Software Component 0..1 Meth.bindingTime = SystemDesignTime
Internal Behavior

Produces Local Measurement and 1 Meth.bindingTime = CodeGenerationTime
Calibration Support Data

Table 3.277: Generate Local MC Data Support

3.6.1.21 Create MC Function Model

ECU
Integrator

Calibration
Engineer

0..*

Delivered Atomic

Software Components «performs» «performs»

«input»

N\

0.1 «input» «output» 1

Create MC

ECU Extract Function Model

MC Function
«input» Model

0.*

RTE Measurement Local Measurement
and Calibration and Calibration
Support Data Support Data

Figure 3.141: Create MC Function Model

Task Definition Create MC Function Model

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Define a model of McFunctions.

Description Create (manually or by generator) a functional model of measurement and calibration data on an

ECU. Such a model may be derived from the logical structure of software components, ports etc. but
the rules for this transformation are not standardized.

This task may be performed before the RTE code is generated. Then the model will be based on the
data defined in the ECU Flat Map.

The task may also be performed at the same time as or after the generation of Measurement and
Calibration Support Data. In this case it is possible (but not mandatory) to base the model on these
support data only.

The task may be supported by the RTE generator (not a standardized feature) or another tool.

Relation Type Related Element Mult. Note
Performed by Calibration Engineer 0..1
Performed by ECU Integrator 0..1

\Y

AUTSSAR

A
Task Definition Create MC Function Model
Consumes ECU Extract 0..1 The ECU Flat Map can be used to define references to
variables and parameters which are later visible in A2L.
Furthermore, the ECU Extract can be used to find the
relevant software components.
Consumes RTE Measurement and 0..1 Used if the MC Function Model shall refer to McData
Calibration Support Data Instances allocated by the RTE.
Consumes Delivered Atomic Software 0..* The component model may be used to derive an MC
Components Function Model.
Consumes Local Measurement and 0..” Used if the MC Function Model shall refer to McData
Calibration Support Data Instances allocated by BSW modules without RTE
support.
Produces MC Function Model 1

Table 3.278: Create MC Function Model

3.6.1.22 Generate RTE

Delivered Atomic
Software Components

ECU Extract

BSW Module

Integration Bundle

Calibration
Parameter
Value Set

«input»

«input»

«input»

«input»

Software Componentto Service Component
BSW Mapping Description

Generate RTE

ECU Senice
Connectors

«input»

ECU
Configuration ECU
Values Integrator

RTE Source Code

«output»

BSW Scheduler
Code

RTE Implementation
Description

RTE Generator

RTE Measurement
and Calibration
Support Data

Figure 3.142: Generate RTE

AUTSSAR

Task Definition Generate RTE

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Generate the RTE and several further artifacts.

Description Generate the RTE and several further artifacts from the input XML descriptions in the scope of a

given ECU:
* RTE Core Source Code

* BSW Scheduler Code
* RTE Implementation Description
* RTE Measurement and Calibration Support Data

In an optional mode, this task can also write into the ECU configuration, especially for the
configuration of the OS. This mode is used to pre-configure parts of the ECU configuration. It shall
support the integrator in setting up the configuration in an iterative way.

In the so-called strict mode, the ECU configuration is not changed but assumed to be complete. This
mode shall be used before the final build. A PredefinedVariant in the input data (referred in the EcuC
configuration, see task Configure EcuC) can be used to bind variation points at code generation
time. For variation points with latest binding time "code generation time" this is mandatory. Unbound
variation points can still be present in the generated code.

Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Mult. Note
Performed by ECU Integrator 1
Consumes ECU Configuration Values 1 Meth.bindingTime = SystemDesignTime
Consumes ECU Extract 1 Find the VFB description of all Atomic Software
Components on this ECU and the relevant parts of the
system description.
The ECU Flat Map is also an input.
Meth.bindingTime = SystemDesignTime
Consumes Delivered Atomic Software 1.7 Required input:
Components * References to all component implementation
descriptions on this ECU
+ SwclnternalBehavior which was used in the contract
phase of the software components on this ECU
* (optional) Software Component to BSW Mapping
Meth.bindingTime = SystemDesignTime
Consumes Calibration Parameter Value 0..1 Meth.bindingTime = SystemDesignTime
Set
Consumes BSW Module Integration 0.* Input for BSW scheduling, BSW mode and trigger
Bundle declaration, BSW exclusive areas, BSW calibration
parameters that need RTE support (for software
emulation).
Optionally, a Build Action Manifest maybe be used to
control the generator steps.
Meth.bindingTime = SystemDesignTime
Consumes ECU Service Connectors .* Meth.bindingTime = SystemDesignTime
Consumes Service Component > Meth.bindingTime = SystemDesignTime
Description
Consumes Software Component to 0.* This input is explicitly stated because the mapping may
BSW Mapping be created during ECU integration and thus is not
necessarily part of the Delivered Atomic Software
Components.
Meth.bindingTime = SystemDesignTime
Produces BSW Scheduler Code 1 Meth.bindingTime = CodeGenerationTime
Produces RTE Implementation 1 Meth.bindingTime = CodeGenerationTime
Description
Produces RTE Source Code 1 Meth.bindingTime = CodeGenerationTime
Produces ECU Configuration Values 0..1 Optional output for the configuration of the OS.

Meth.bindingTime = CodeGenerationTime

AUTSSAR

A
Task Definition Generate RTE
Produces RTE Measurement and 0..1 Meth.bindingTime = CodeGenerationTime
Calibration Support Data
Used tool RTE Generator 1

Table 3.279: Generate RTE

3.6.1.23 Generate Scheduler

«input»

ECU Configuration

«performs»

ECU
Integrator

1

Values
Generate
. Scheduler
«input»

1.

«used tool

BSW Module
Integration
Bundle

—
—
«output» 0.1 | —
—
—

RTE Implementation
Description
«output»

RTE Generator

Figure 3.143: Generate Scheduler

Task Definition Generate Scheduler
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Generate the BSW Scheduler
Description Optional task of the RTE generator which only produces the code of the BSW Scheduler and related
artifacts.
Meth.bindingTime = CodeGenerationTime
Relation Type Related Element Mult. Note
Performed by ECU Integrator 1
Consumes ECU Configuration Values 1 Configuration values for the BSW Scheduler (subset of
RTE configuration).
Meth.bindingTime = SystemDesignTime
Consumes BSW Module Integration 1.* Input for BSW scheduling, BSW mode and trigger
Bundle declaration, BSW exclusive areas, BSW calibration
parameters that need support for software emulation.
Optionally, a Build Action Manifest maybe be used to
control the generator steps.
Meth.bindingTime = SystemDesignTime
Produces BSW Scheduler Code 1 Meth.bindingTime = CodeGenerationTime

AUTSSAR

A
Task Definition Generate Scheduler
Produces RTE Implementation 0..1 Creates a subset of the RTE implementation description
Description that contains only the description of data owned by the
BSW Scheduler.
Meth.bindingTime = CodeGenerationTime
Produces RTE Measurement and 0..1 Creates a subset of the measurement & calibration
Calibration Support Data support data related only to the data owned by the BSW
Scheduler.
Meth.bindingTime = CodeGenerationTime
Used tool RTE Generator 1

Table 3.280: Generate Scheduler

3.6.1.24 Generate OS

—
— ECU
— Integrator
—
—
—
Build Action 0.1
Manifest 1
«input»
«performs»
— S—
— —
— —
— «input» «output» 1| m—
— —
Generate OS
ECU Configuration OS Generated Code

Values

Figure 3.144: Generate OS

Task Definition Generate OS

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Generate the OS Generated Code files

Description Generate the OS Generated Code files using the OS configuration values from the ECU

Configuration .
Meth.bindingTime = CodeGenerationTime

Relation Type Related Element Muit. Note

Performed by ECU Integrator 1

Consumes ECU Configuration Values 1 Meth.bindingTime = SystemDesignTime

Consumes Build Action Manifest 0..1 The task may be controlled by a Build Action Manifest.
Produces OS Generated Code 1 Meth.bindingTime = CodeGenerationTime

Table 3.281: Generate OS

AUTSSAR

3.6.1.25 Generate RTE Prebuild Dataset

ECU
Configuration
Values

Build
Action

N

Service Componen ECU Integrator
Description
«input» «performs»
z Generate RTE —
- Prebuild Dataset
- 1 «input» «output» 1 | e—
- —
ECU Extract
RTE Prebuild

Configuration

“input» «input» Header
input»
1 0.1
_h 1 _h —
— — —
— — —
— — —
— — —
System Constant Predefined Variant Postbuild Variant Set RTE Generator

Value Set

Figure 3.145: Generate RTE Prebuild Dataset

Task Definition Generate RTE Prebuild Dataset

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Prebuild Data Set Generation Phase for the RTE: It binds all variations which are later than code
generation time

Description Prebuild Data Set Generation Phase for the RTE: It binds all variations which are later than code
generation time but before build time. The output is a configuration header which is used for the
build.

The actually supported variant are defined by the PredefinedVariant referred in the EcuC
configuration (see task Configure EcuC).
Meth.bindingTime = PreCompileTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Configuration Values 1 find the Predefiined Variant to be used

Meth.bindingTime = CodeGenerationTime

Consumes ECU Extract 1 Meth.bindingTime = CodeGenerationTime

Consumes Predefined Variant 1

Consumes System Constant Value Set 1

Consumes Build Action Manifest 0..1 The task may be controlled by a Build Action Manifest.

Consumes Postbuild Variant Set 0..1

Consumes Service Component 0.* Meth.bindingTime = CodeGenerationTime
Description

Produces RTE Prebuild Configuration 1 Meth.bindingTime = PreCompileTime
Header

Used tool RTE Generator 1

Table 3.282: Generate RTE Prebuild Dataset

AUTSSAR

3.6.1.26 Compile ECU Source Code

Basic Software BSW Module BSW Module Basic Software BSW RTE Prebuild Basic Software
Module Core Configuration HeadeBasic Software Configuration Data Interlink Types Library Configuration Module Interlink
Source Code File Module Core HeaderSource Code Header Header Files Header Header
0..* 1. \
0.* 0..* 0..* 0..*
— «input}
— «input»' «input»
— 1 «input
Standard Header Files «nput>
ECU Integrator
— «input»
— «performs»
— 1.
«inp AN
Application Header Compile ECU =
File Source Code
«output» —
27 —
«input»
—— ECU Object
— Code
0.*
— «used tool>
«input»
Software Component
Data Types Header T
«input» .
— «input
— 0. Compiler
— . «nputy
‘«input»
— «input»
«input» «input»
Atomic Software
Component Source
Code 1 1 0..x
1
0.1
— — | 0..1 — — — — —
Component RTE RTE Prebuild OS Generated Code BSW Scheduler Code RTE Source Code Optimized Build Action
Prebuild Configuration Header Application Header Manifest
Configuration Header File
Figure 3.146: Compile ECU Source Code
Task Definition Compile ECU Source Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description Compile Source Code for an ECU
Description Compile all the source code required for ECU integration, i.e. all source code except the code which
is delivered as object code.
Meth.bindingTime = CompileTime
Relation Type Related Element Mult. Note
Performed by ECU Integrator 1

Y

AUTSSAR

JAN

Task Definition Compile ECU Source Code

Consumes BSW Scheduler Code 1 Meth.bindingTime = CodeGenerationTime

Consumes OS Generated Code 1 Meth.bindingTime = CodeGenerationTime

Consumes RTE Source Code 1 Meth.bindingTime = CodeGenerationTime

Consumes Standard Header Files 1 Meth.bindingTime = CodeGenerationTime

Consumes Application Header File 1.* Meth.bindingTime = CodeGenerationTime

Consumes Basic Software Module 1.* Meth.bindingTime = CodeGenerationTime
Interlink Header

Consumes Build Action Manifest .1 The task may be controlled by a Build Action Manifest.

Consumes RTE Prebuild Configuration .1 Meth.bindingTime = PreCompileTime
Header

Consumes Atomic Software 0..* Meth.bindingTime = CodeGenerationTime
Component Source Code

Consumes BSW Module Configuration 0..* Meth.bindingTime = CodeGenerationTime
Data Source Code

Consumes BSW Module Configuration 0..* Meth.bindingTime = CodeGenerationTime
Header File

Consumes BSW RTE Prebuild 0..” Meth.bindingTime = PreCompileTime
Configuration Header

Consumes Basic Software Interlink 0.* Meth.bindingTime = CodeGenerationTime
Types Header

Consumes Basic Software Module 0.* Meth.bindingTime = CodeGenerationTime
Core Header

Consumes Basic Software Module 0.” Meth.bindingTime = CodeGenerationTime
Core Source Code

Consumes Component RTE Prebuild 0..* Meth.bindingTime = CodeGenerationTime
Configuration Header

Consumes Library Header Files 0..” Meth.bindingTime = CodeGenerationTime

Consumes Optimized Application 0..” Meth.bindingTime = CodeGenerationTime
Header File

Consumes Software Component Data 0.* Meth.bindingTime = CodeGenerationTime
Types Header

Produces ECU Object Code 1.* Meth.bindingTime = CompileTime

Used tool Compiler 1

Table 3.283: Compile ECU Source Code

AUTSSAR

3.6.1.27 Generate ECU Executable

Atomic Software
Component Object

ECU
Integrator

c
B
]

=

«performs»

«used tool»

[N

«output» Map of the ECU Executable

Generate
ECU
Executable

«input»
«output»

m
o]
c
m
x
@
o
=3
8
j=a
@

) . Build Action Manifest
ECU Configuration ECU Resources

Values Description

Figure 3.147: Generate ECU Executable

Task Definition Generate ECU Executable

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Generate the executable code of the ECU out of the object files and linker configuration.
Description The steps to generate the code for an ECU resemble today’s development practice. However, it is

important to note that this activity is more than a simple linker step. Information from the ECU
Configuration Description might be used to generate specially configured executable software. The
ECU Configuration Description is needed as input to the Generate Executable activity, because it
contains the information which BSW modules and SWC implementations are used to create the
executable and further information about the memory mapping.

The output of this activity is the ECU Executable and the Map of Executable (which is typically the
log file from linking the ECU Executable).

The detailed input and output formats of this task are not standardized by AUTOSAR, therefore this
task is only included for informative purposes. Note that ECU Configuration is shown as an input to
get the overall picture, however in practice more specific artifacts (e.g. linker settings, make file etc.)
will have to be generated out of the ECU configuration before the actual software build can be
started. Especially, the information about the mapping of the physical memory sections to the
memory section used in the software, which is described in the so-called EcuC parameter values, is
needed in order to generate the linker settings.

Meth.bindingTime = LinkTime

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Object Code 1.7 from generated or delivered source code
Meth.bindingTime = CompileTime

V

AUTSSAR

JAN
Task Definition Generate ECU Executable
Consumes Build Action Manifest 0..1 The task may be controlled by a Build Action Manifest.
Consumes ECU Configuration Values 0..1 may be used to set up build environment
Meth.bindingTime = CompileTime
Consumes ECU Resources Description 0..1 may be used to set up build environment
Meth.bindingTime = CompileTime
Consumes Atomic Software 0..* Meth.bindingTime = CompileTime
Component Object Code
Consumes Basic Software Module 0.* for object code delivery
Object Code Meth.bindingTime = CompileTime
Consumes Library Object Code 0.* for object code delivery
Meth.bindingTime = CompileTime
Produces ECU Executable 1 Meth.bindingTime = LinkTime
Produces Map of the ECU Executable 1 Meth.bindingTime = LinkTime
Used tool Linker 1
Predecessor Encapsulate SW-C 1
Predecessor Generate BSW and RTE 1

Table 3.284: Generate ECU Executable

3.6.1.28 Generate RTE Postbuild Dataset

ECU Configuration
Values

«input»

1 «input»

ECU Extract

«input»

Postbuild
Variant Set

Generate RTE
Postbuild Daj

Predefined Variant

Service
Component
Description

ECU
Integrator

1

«performs»

«output» 1 || e—

RTE Postbuild
Variants Dataset

«input»!

«used tool»

Build Action RTE Generator

Manifest

Figure 3.148: Generate RTE Postbuild Dataset

AUTSSAR

Task Definition Generate RTE Postbuild Dataset

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Postbuild Data Set Generation Phase for the RTE: It binds all variations which are for postbuild time.
Description Data Set Generation Phase for the RTE: It binds all variations which are for postbuild time. The

output is a data set which can be used to build an image separately from the main code.

The supported post-build variants are defined by the PredefinedVariants referred in the post-build
section of the RTE configuration. At runtime, only one of those variants can be active. This selection
is done via the initialization structure for the BSW Scheduler. The actual value for this iniialization
structure used for runtime initialization is defined by the configuration of the ECU State Manager.
Meth.bindingTime = PostBuild

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Configuration Values 1 Meth.bindingTime = LinkTime

Consumes ECU Extract 1 Meth.bindingTime = LinkTime

Consumes Postbuild Variant Set 1

Consumes Predefined Variant 1

Consumes Build Action Manifest 0..1 The task may be controlled by a Build Action Manifest.

Consumes Service Component 0.~ Meth.bindingTime = LinkTime
Description

Produces RTE Postbuild Variants 1 Meth.bindingTime = PostBuild
Dataset

Used tool RTE Generator 1

Table 3.285: Generate RTE Postbuild Dataset

3.6.1.29 Generate A2L

ECU
Flat
Map

0.* «input»

Generate A2L

D

Calibration Engineer

«performs»

MC Driver Support Data
«input»

Ainput»

-

0.*

«input»
0.1

«output» 1

A2L File

Local Measurement
and Calibration
Support Data

RTE Measurement
and Calibration
Support Data

MC Function Model

Build Action

MC Additional Config .
Manifest

Figure 3.149: Generate A2L

AUTSSAR

Task Definition Generate A2L

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Generate the A2L File for an ECU.

Description The A2L File created by this task is the final representation of the data given by RTE Measurement

and Calibration Support Data and Local Measurement and Calibration Support Data.

The main purpose of this task is to replace all symbolic information on data location found in these
input data by actual addresses. Optionally, it replaces identifiers by alias names given in Alias Name
Set(s). Finally is completes the A2L file with configuration from ECU driver software (MC Driver
Support Data) and configuration not determined by AUTOSAR artifacts (MC Additional
Configuration).

This task is not part of AUTOSAR, it is only included for completeness of the use cases. The Map of
the ECU Executable (linker map file) is shown as input in order to illustrate the principle use case
only. Note that one needs additional information, like the .ELF or .COFF file, to resolve addresses of
elements of composite C-variables.

Relation Type Related Element Mult. Note
Performed by Calibration Engineer 1
Consumes Map of the ECU Executable 1
Consumes RTE Measurement and 1
Calibration Support Data
Consumes Build Action Manifest 0..1 The task may be controlled by a Build Action Manifest.
Consumes ECU Flat Map 0..1 The ECU Flat Map is needed in case the A2L generator
has to process an MC Function Model that relates to
data in the ECU Flat Map.
Consumes MC Additional Config 0..1
Consumes MC Function Model 0..1 This input is needed if the keyword FUNCTION shall be
supported in the generated A2L.
Consumes Alias Name Set 0..”
Consumes Local Measurement and 0..”
Calibration Support Data
Consumes MC Driver Support Data 0.~
Produces A2L File 1 Meth.bindingTime = CodeGenerationTime

Table 3.286: Generate A2L

AUTSSAR

3.6.1.30 Measure Resources

ECU
Integrator

BSW Module
Implementation
Extension

0.1 «input»

Measure Resources
Map of the ECU «output»

—
—
«input» —
—
—

0.1 Atomic Software

Component
Implementation

Figure 3.150: Measure Resources

Task Definition Measure Resources

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks

Brief Description Measure the resource consumption and update the implementation section of the Application SWC
and BSW Module Descriptions.

Description Measure the resource consumption and update the implementation section of the Application SWC
and BSW Module Descriptions.

Relation Type Related Element Mult. Note

Performed by ECU Integrator 1

Consumes ECU Executable 1

Consumes ECU Resources Description 0..1

Consumes Map of the ECU Executable 0..1

Produces Atomic Software 0..” Add extensions to the Implementation Description.
Component Implementation Meth.bindingTime = PostBuild

Produces BSW Module 0..* Meth.bindingTime = PostBuild

Implementation Extension

Table 3.287: Measure Resources

AUTSSAR

3.6.1.31 Refine Rapid Prototyping Scenario

Rapid
Prototyping _
Engineer - ECU Extract
1
«aggregation»
«performs»
_k —
— —
—— «input» «inoutput» 1 | e—
— —
— Refine Rapid —
Prototyping Scenario .

Software Component ECU Extract of Rapid
Internal Behavior Prototyping Scenatrio

Figure 3.151: Refine Rapid Prototyping Scenario

Task Definition Refine Rapid Prototyping Scenario
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Tasks
Brief Description
Description Add missing ECU specific information in the Rapid Prototyping Scenario, e.g. missing RptHooks or
hook implementation decisions.
Relation Type Related Element Muit. Note
Performed by Rapid Prototyping Engineer 1
Consumes Software Component 1
Internal Behavior
In/out ECU Extract of Rapid 1
Prototyping Scenario
Predecessor Generate ECU Extract 1

Table 3.288: Refine Rapid Prototyping Scenario

3.6.1.32 Merge CpSoftwareCluster

Calibration ECU Rapid Software
Engineer Integrator Prototyping Component
Engineer Developer

0.*

«performs»

«performs»
«performs»
P «performs»

o <inputs o T+ «inoutput» 077 | —

(Il

Merge CpSoftwareCluster

ECU Executable Merged ECU Executable

Figure 3.152: Merge CpSoftwareCluster

AUTSSAR

Task Definition Merge CpSoftwareCluster

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::System::CpSoftwareCluster

Brief Description Combine several CpSoftwareCluster Executables into a single ECU Executable

Description Combine several CpSoftwareCluster executables into a single executable. This can happen before

flashing (off-board) or after flashing (on-board).

A Merged ECU Executable can also be built up over time, by adding additional CpSoftwareCluster
Executables to an existing Merged ECU Executable, or by overwriting CpSoftwareCluster
Executables inside a Merged ECU Executable with newer versions.

Relation Type Related Element Mult. Note

Performed by Calibration Engineer 0..”

Performed by ECU Integrator 0..*

Performed by Rapid Prototyping Engineer 0..”

Performed by Software Component 0..”

Developer

Consumes ECU Executable 0..* In case CpSoftwareClusters are used - only applicable
for ECU Executables created from a CpSoftwareCluster
Extract

In/out Merged ECU Executable 0..1

Table 3.289: Merge CpSoftwareCluster

3.6.2 Work Products

3.6.2.1 BSW Module Integration Bundle

BSW Module
Bundle

«extends»

BSW Module
Delivered Bundle

«extends»

BSW Module
Integration Bundle

laggregation»
0.*

BSW Module BSW Module Behavior

Interface Extension Extension

«aggregation> 0..*
— —
— —
— —
— —
— —
BSW Module Local Measurement
Implementation and Calibration
Extension Support Data

Figure 3.153: BSW Module Integration Bundle

AUTSSAR

Deliverable BSW Module Integration Bundle
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products
Brief Description
Description Contains the BSW artifacts for one or more BSW modules completed during integration.
Kind Delivered
Extends BSW Module Delivered Bundle
Relation Type Related Element Mult. Note
Aggregates BSW Module Behavior 0..*
Extension
Aggregates BSW Module 0..”
Implementation Extension
Aggregates BSW Module Interface 0..”
Extension
Aggregates Local Measurement and 0..*
Calibration Support Data
Consumed by Generate Scheduler 1.* Input for BSW scheduling, BSW mode and trigger
declaration, BSW exclusive areas, BSW calibration
parameters that need support for software emulation.
Optionally, a Build Action Manifest maybe be used to
control the generator steps.
Meth.bindingTime = SystemDesignTime
Consumed by Generate RTE 0.~ Input for BSW scheduling, BSW mode and trigger
declaration, BSW exclusive areas, BSW calibration
parameters that need RTE support (for software
emulation).
Optionally, a Build Action Manifest maybe be used to
control the generator steps.
Meth.bindingTime = SystemDesignTime

Table 3.290: BSW Module Integration Bundle

3.6.2.2 ECU Software Delivered

ECU Software
Delivered

1..* “«aggregation»

ECU Executable

Figure 3.154:

—

*

>
o
[
us)
@

BSW Module

«aggregation»

«aggregation 0.*

Configuration Data
Loadable to ECU Memory

ECU Software Delivered

AUTSSAR

Deliverable ECU Software Delivered
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products
Brief Description All the work products that form the deliverable of an ECUInstance.
Description All the work products that form the deliverable of an ECUInstance software build.
ECU in this context means ECUInstance. One electronic control unit can consist of several
ECUInstances (for example if it consists of several processors). In such a case, one "ECU Software
Delivered" will be needed for each ECUInstance.
Note that the detailed format for all parts of this deliverable is not defined by AUTOSAR.
Kind Delivered
Relation Type Related Element Muit. Note
Aggregates ECU Executable 1.*
Aggregates A2L File 0..”
Aggregates BSW Module Configuration 0..”
Data Loadable to ECU
Memory
Produced by Integrate Software for ECU 1

Table 3.291: ECU Software Delivered

3.6.2.3 Service Component Description

Artifact Service Component Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description Describes the RTE relevant part of an AUTOSAR Service on a given ECU in form of a Servcie
ComponentType with all its ports and an internal behavior.

Description Describes the RTE relevant part of an AUTOSAR Service on a given ECU in form of a Service
ComponentType with all its ports and an internal behavior. This artifact must be generated during
the ECU configuration process, latest before the RTE is generated. It depends on the needs of the
software components for this AUTOSAR Service.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Produced by Create Service Component 1 Meth.bindingTime = SystemDesignTime

Consumed by Connect Service 1 Required in order to define the connector links to the
Component ports on the BSW side.

Consumed by Configure NvM 0.~ The configuration of diagnostics, especially of the DEM,

typically leads to the definition of additional data to be
stored in NvM. One possibility to handle this is to create
ServiceNeeds on the level ServiceComponentType
which is then taken into account for the configuration of

the NvM.
Consumed by Configure RTE 0..* The Internal Behavior of Service Components
contributes to the RTE configuration.
Consumed by Generate RTE 0..” Meth.bindingTime = SystemDesignTime
Consumed by Generate RTE Postbuild 0..* Meth.bindingTime = LinkTime
Dataset
Consumed by Generate RTE Prebuild 0..” Meth.bindingTime = CodeGenerationTime
Dataset
Use meta model ServiceSwComponentType 1

element

AUTSSAR

A

Artifact

Service Component Description

Use meta model
element

SwclinternalBehavior 1

Table 3.292: Service Component Description

3.6.2.4 ECU Service Connectors

Artifact ECU Service Connectors

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description The conectors to the Service Components which complete the complete Software Composition
predefined in the ECU extract.

Description The assembly connectors to the Service Components which complete the Software Composition
predefined in the ECU extract. These connectores are added during ECU integration as a separate
artifact to the already defined composition of Atomic Software Components.

Kind AUTOSAR XML

Relation Type

Related Element Mult. Note

Produced by

Connect Service 1.7 Meth.bindingTime = SystemDesignTime

element

Component
Consumed by Define ECU Timing 1.7
Consumed by Generate RTE 0..* Meth.bindingTime = SystemDesignTime
Use meta model AssemblySwConnector 1

Table 3.293: ECU Service Connectors

3.6.2.5 ECU Timing

Artifact ECU Timing

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description TimingDescription and TimingConstraints for a concrete ECU

Description TimingDescription and TimingConstraints defined for a concrete ECU taking the ECU configuration
and the ECU Software Composition (including their implementation) into account.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Produced by Define ECU Timing 1 Meth.bindingTime = SystemDesignTime

Consumed by Configure OS 0..1

Consumed by Configure RTE 0..1

Consumed by Configure Watchdog 0..1
Manager

Consumed by Create Service Component 0..1 Additional information for fine tuning configuration

decisions.
Use meta model EcuTiming 1
element

Table 3.294: ECU Timing

AUTSSAR

3.6.2.6 BSW Module Interface Extension

Artifact BSW Module Interface Extension

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description

Description Additions to the BSW Module on the interface level during integration. It is used for example to add
Basic Software Module Entries in response to the ECU configuration, for example callback
declarations.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Module Integration 0..*
Bundle

Produced by Generate BSW 0..1

Configuration Code

Use meta model
element

BswModuleDescription

Use meta model
element

BswModuleEntry

3.6.2.7 BSW Module Behavior Extension

Table 3.295: BSW Module Interface Extension

Artifact BSW Module Behavior Extension

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description

Description Additions to the BSW Module on the behavior level during integration. It can for example be used to
add local data declaration (constantMemory, staticMemory, perlnstanceMemory) for calibration
purposes in response to configuration parameters.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Module Integration 0..*
Bundle

Produced by Generate BSW 0..1
Configuration Code

Consumed by Generate Local MC Data 0..1 Meth.bindingTime = SystemDesignTime

Support

Use meta model
element

BswinternalBehavior

Table 3.296: BSW Module Behavior Extension

AUTSSAR

3.6.2.8 BSW Module Implementation Extension

Artifact BSW Module Implementation Extension

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description

Description Additions to the BSW Module on the implementation level during integration. It is used for example
to add information on resource consumption.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Module Integration 0..”
Bundle

Produced by Generate BSW 0..1

Configuration Code

Produced by

Measure Resources 0..* Meth.bindingTime = PostBuild

Use meta model
element

BswImplementation 1

Table 3.297: BSW Module Implementation Extension

3.6.2.9 ECU Configuration Values

Artifact ECU Configuration Values

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description The collection of all configuration values for an ECU.

Description First of all, the ECU Configuration Values contain a link to the System element which comes with the
ECU Extract thus it can be used as a root element for integration on this ECU.
Furtheron, it contains a collection of all configuration values for an ECU, which is gradually filled.
Starting with the root element EcucValueCollection it contains the actual configuration settings Ecuc
ModuleConfigurationValues for each module including the RTE. Note that due to their strong
interrelation, these parts are not considered as separate artifacts in the use cases for ECU
integration.
A special set of configuration values is the so-called EcuC-configuration: It contains the
configuration values which are relevant for the whole ECU. Tools that interpret the configuration
values need to know the underlying parameter definition. Therefore, in addition to the configuration
values, each EcucValueCollection contains a link and the version of the parameter definition to
which it adheres. This parameter definition is either part of the AUTOSAR Standardized ECU
Configuration Parameter Definition or, in case of vendor specific extensions, is given by the artifact
Basic Software Module Vendor-Specific Configuration Parameter Definition.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Produced by Configure Memmap 1 MemMapAllocation:
Allocation Meth.bindingTime = SystemDesignTime

Produced by Create Service Component 1 Enter links to the created SwComponentPrototypes.

Meth.bindingTime = SystemDesignTime

Produced by Generate Base Ecu 1 Meth.bindingTime = SystemDesignTime
Configuration

Produced by Prepare ECU Configuration 1

Produced by Generate RTE 0..1 Optional output for the configuration of the OS.

Meth.bindingTime = CodeGenerationTime
In/out Configure BSW and RTE 1
In/out Configure Com 1

AUTSSAR

A
Artifact ECU Configuration Values
In/out Configure Diagnostics 1 Configuration Values for DEM, DCM, DLT, FIM.
In/out Configure ECUC 1
In/out Configure 10 Hardware 1
abstraction
In/out Configure MCAL 1
In/out Configure Mode
Management
In/out Configure NvM 1
In/out Configure OS 1
In/out Configure RTE 1
In/out Configure Transformer 1
In/out Configure Watchdog 1
Manager
In/out Generate Updated ECU 1 The task "Generate Updated ECU Configuration”
Configuration consumes the initial ECU configuration values and
produces the updated ECU configuration values.
Consumed by Define ECU Timing 1
Consumed by Generate BSW 1
Configuration Code
Consumed by Generate BSW Memory 1 MemMapAllocation: Mapping of the abstract sections
Mapping Header (SwAddressMethods for generic mapping resp. Memory
Section Elements for specific mapping) to the compiler
specific MemMapAddressingModes.
Meth.bindingTime = SystemDesignTime
Consumed by Generate BSW Postbuild 1
Configuration Code
Consumed by Generate BSW Precompile 1
Configuration Header
Consumed by Generate BSW Source 1
Code
Consumed by Generate BSW and RTE 1
Consumed by Generate OS 1 Meth.bindingTime = SystemDesignTime
Consumed by Generate RTE 1 Meth.bindingTime = SystemDesignTime
Consumed by Generate RTE Postbuild 1 Meth.bindingTime = LinkTime
Dataset
Consumed by Generate RTE Prebuild 1 find the Predefiined Variant to be used
Dataset Meth.bindingTime = CodeGenerationTime
Consumed by Generate SWC Memory 1 MemMapAllocation: Mapipng of the abstract sections
Mapping Header (SwAddressMethods for generic mapping resp. Memory
Section Elements for specific mapping) to the compiler
specific MemMapAddressingModes.
Meth.bindingTime = SystemDesignTime
Consumed by Generate Scheduler 1 Configuration values for the BSW Scheduler (subset of
RTE configuration).
Meth.bindingTime = SystemDesignTime
Consumed by Create Service Component 0..1 The creation of Service Component details may depend
on ECU configuration values, especially for the DCM.
Consumed by Generate BSW Memory 0..1 moduleDescription: List of used BSW modules (Ecuc
Mapping Header ValueCollection.ecucValue.moduleDescription)
Meth.bindingTime = SystemDesignTime
Consumed by Generate ECU Executable 0..1 may be used to set up build environment

Meth.bindingTime = CompileTime

AUTSSAR

Artifact

ECU Configuration Values

Consumed by

Generate SWC Memory 0..1
Mapping Header

RtelmplementationRef: Existence of SWCs could be
identified by usage of the RTE ECU Configuration "Rte
SwComponentType.RtelmplementationRef"
Meth.bindingTime = SystemDesignTime

Use meta model EcucModuleConfiguration 1
element Values

Use meta model EcucValueCollection 1
element

Table 3.298: ECU Configuration Values

3.6.2.10 RTE Implementation Description

Artifact RTE Implementation Description

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description Implementation Description for the RTE, generated by the RTE generator.

Description Implementation Description for the RTE, generated by the RTE generator. Uses the format of Bsw
Implementation. This artifact is required to provide information for other generators and the build
process, namely memory section. It aggregates also the support data for measurement and
calibration, which is considered as a separate artifact.

Kind AUTOSAR XML

Relation Type Related Element Muit. Note

Produced by Generate RTE 1 Meth.bindingTime = CodeGenerationTime

Produced by Generate Scheduler 0..1 Creates a subset of the RTE implementation description
that contains only the description of data owned by the
BSW Scheduler.
Meth.bindingTime = CodeGenerationTime
Use meta model Bswimplementation 1
element
Table 3.299: RTE Implementation Description
3.6.2.11 RTE Prebuild Configuration Header
Artifact RTE Prebuild Configuration Header
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products
Brief Description RTE Prebuild Configuration Header File. It defines all variants for the RTE code which have to be
bound later than code generation time but before build time.
Description RTE Prebuild Configuration Header File. It defines the setting of all variants for the RTE code (via
macro code) which have to be bound later than code generation time but before build time.
Kind Bound Source Code
Relation Type Related Element Mult. Note
Produced by Generate RTE Prebuild 1 Meth.bindingTime = PreCompileTime

Dataset

\Y

AUTSSAR

A

Artifact

RTE Prebuild Configuration Header

Consumed by

Compile ECU Source Code ‘ 0..1 ‘ Meth.bindingTime = PreCompileTime

Table 3.300: RTE Prebuild Configuration Header

3.6.2.12 Calibration Parameter Value Set

Artifact Calibration Parameter Value Set

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description Calibration Parameter Value Setting

Description A set of calibration parameter values used to initialize the memory objects which implement
calibration parameters. The values are specific for the software component instances in ECU scope.
They will override any initial values defined for those parameters within the ECU Extract. The
parameter values can be defined as ApplicationDataTypes or as ImplementationDataTypes which
has several use cases. These two use cases are supported by the RTE generation phase:

» Parameter values defined as ImplementationDataTypes can be used as instance specific
initialization for calibration parameters within components as soon as the respective
ImplementationDataTypes are available (which must be the case for RTE generation anyhow).

» Parameter values defined as ApplicationDataTypes can be used as instance specific initialization
for calibration parameters which are only defined with ApplicationDataTypes.

The next case is not modelled within AUTOSAR in detail:

» Parameter values defined as ApplicationDataTypes can be used to exchange initial values with
the component vendor not publishing the transformation algorithm between ApplicationDataTypes
and ImplementationDataTypes

Kind AUTOSAR XML
Relation Type Related Element Mult. Note
Produced by Provide RTE Calibration 1
Dataset
Consumed by Generate RTE 0..1 Meth.bindingTime = SystemDesignTime
Use meta model CalibrationParameterValue 1
element Set

Table 3.301: Calibration Parameter Value Set

AUTSSAR

3.6.2.13 MC Function Model

Artifact MC Function Model
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products
Brief Description A functional model to be used for A2L generation.
Description As set of nested McFunction elements to be used as input to generate A2L. Its purpose is to
« assign calibration parameters to a logical function
* assign measurement variables to a logical function
« structure functions hierarchically
It shall support the generation of the FUNCTION keyword and related elements defined in ASAM
MCD-2 MC.
An MC Function Model refers to the data descriptions in other AUTOSAR XML artifacts either via
entries in the ECU Flat Map or via McDatalnstances being part of Measurement and Calibration
Support Data.
Kind AUTOSAR XML
Relation Type Related Element Mult. Note
Produced by Create MC Function Model 1
Consumed by Generate A2L 0..1 This input is needed if the keyword FUNCTION shall be
supported in the generated A2L.
Use meta model McFunction 1
element

Table 3.302: MC Function Model

3.6.2.14 Local Measurement and Calibration Support Data

Artifact Local Measurement and Calibration Support Data

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description Generated artifact, which supports the later generation of "A2L"-files for measurement and
calibration data which are owned locally by a component or module.

Description Generated artifact which is used as an input for the later generation of "A2L"-files for measurement
and calibration. It relates the measurment and calibration data listed in the ECU FlatMap to the
C-variables used locally within a component or module (this is relevant only valid for those
parameters and variables, which are not implemented by the RTE) . In addition, it contains all
configuration data which are relevant for the A2L generator (e.g. the access method to calibration
data whithin a Complex Driver).
This XML-artifact is linked via a (splitable) aggregation to the Implementation Description of the
component or module, but it is considered as a separate artifact.

Kind AUTOSAR XML

Relation Type Related Element Mult. Note

Aggregated by BSW Module Integration 0..*
Bundle

Produced by Generate Local MC Data 1 Meth.bindingTime = CodeGenerationTime
Support

Consumed by Create MC Function Model 0.~ Used if the MC Function Model shall refer to McData

Instances allocated by BSW modules without RTE
support.
Consumed by Generate A2L 0..”

AUTSSAR

A

Artifact

Local Measurement and Calibration Support Data

Use meta model
element

McSupportData 1

Table 3.303: Local Measurement and Calibration Support Data

3.6.2.15 RTE Measurement and Calibration Support Data

Artifact

RTE Measurement and Calibration Support Data

Package

AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description

RTE generator output, which supports the later generation of "A2L"-files for the measurement and
calibration data which are owned by the RTE.

Description

RTE generator output, which is used as an input for the later generation of "A2L"-files for
measurement and calibration. It relates the measurement and calibration data listed in the ECU Flat
Map to the C-variables of the generated RTE code. For all these data it contains copies of the
attributes which are relevant for A2L generation. In additions it contains all configuration data which
are relevant for the A2L generator (namely the access method to calibration data which is supported
by the RTE). This XML-artifact is linked via a (splitable) aggregation to the RTE Implementation
Description, but is considered as a separate artifact.
The most important attributes for each data instance are:

« Its shortName copied from the ECU Flat Map to be used as identifier and for display by the MC

system.

» The category copied from the corresponding data type (ApplicationDataType if defined, otherwise
ImplementationDataType) as far as applicable.

» The symbol used in the programing language. It will be used to find out the actual memory
address by the final generation tool with the help of linker generated information.

« All aggregated and referred elements like CompuMethod or BaseType describing the data (with
the exception of the Flat Map) are completely copied from "upstream" information. Therefore this
artifact is a self-contained description which can be forwarded to the A2L generator without
needing related descriptions.

Kind

AUTOSAR XML

Relation Type

Related Element Mult. Note

Produced by

Generate RTE 0..1 Meth.bindingTime = CodeGenerationTime

Produced by

Generate Scheduler 0..1 Creates a subset of the measurement & calibration
support data related only to the data owned by the BSW
Scheduler.

Meth.bindingTime = CodeGenerationTime

Consumed by

Generate A2L 1

Consumed by

Create MC Function Model 0..1 Used if the MC Function Model shall refer to McData
Instances allocated by the RTE.

Use meta model
element

McSupportData 1

Table 3.304: RTE Measurement and Calibration Support Data

AUTSSAR

3.6.2.16 RTE Source Code

Artifact RTE Source Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description Source code implementiing the RTE on a CPU.

Description Source code implementing the RTE on a CPU.
The output of an RTE generator can consist of both generated code and configuration for "library"
code that may be supplied as either object code or source code. Both configured and generated
code reference standard definitions that are defined in one of two standardized header files: The
RTE Header File and the Lifecycle Header File. These header files are not explicitly shown in the
methodology, as in all tasks they appear with the RTE source code. For details refer to document ID
84 CP_SWS_RTE.
Apart from this, the file structure is not standardized, and therefore represented as one single
artifact in the methodology. In general, the RTE code can be partitioned in several files. The
partitioning depends on the RTE vendor’s software design and generation strategy. Nevertheless it
shall be possible to clearly identify code and header files which are part of the RTE module.

Kind Source Code

Relation Type Related Element Mult. Note

Produced by Generate BSW and RTE 1

Produced by Generate RTE 1 Meth.bindingTime = CodeGenerationTime

Consumed by Compile ECU Source Code 1 Meth.bindingTime = CodeGenerationTime

Table 3.305: RTE Source Code

3.6.2.17 BSW Scheduler Code

Artifact BSW Scheduler Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description Generated Code implementing the BSW Scheduler.

Description Generated Code implementing the BSW Scheduler. It can be source or macro code.
Kind Source Code

Relation Type Related Element Mult. Note

Produced by Generate RTE 1 Meth.bindingTime = CodeGenerationTime
Produced by Generate Scheduler 1 Meth.bindingTime = CodeGenerationTime
Consumed by Compile ECU Source Code 1 Meth.bindingTime = CodeGenerationTime

Table 3.306: BSW Scheduler Code

3.6.2.18 OS Generated Code

Artifact OS Generated Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description OS configuration generated code

Description OS configuration generated code. OS configuration code are composed of header and C files.
These will be compiled with the source code in the build process (see Compile Source Code).

Kind Source Code

Y%

AUTSSAR

JAN
Artifact OS Generated Code
Relation Type Related Element Mult. Note
Produced by Generate OS 1 Meth.bindingTime = CodeGenerationTime
Consumed by Compile ECU Source Code 1 Meth.bindingTime = CodeGenerationTime

Table 3.307: OS Generated Code

3.6.2.19 RTE Postbuild Variants Dataset

Artifact RTE Postbuild Variants Dataset

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description Generated code used to resolve postbuild variants in the RTE.

Description Generated code used to resolve postbuild variants in the RTE. It consists of a c-file and a header file:

» The RTE generator must generate a Rte_PBCfg.c file containing the declarations and
initializations of one or more RTE post build variants. Only one of these variants can be active at
runtime.

» The RTE generator shall generate in the Rte_PBCfg.h file the SchM_ConfigType type declaration
of the predefined post build variants data structure. This header file must be used by other RTE
modules to resolve their runtime variabilities.

Kind Bound Source Code
Relation Type Related Element Mult. Note
Produced by Generate RTE Postbuild 1 Meth.bindingTime = PostBuild

Dataset

Table 3.308: RTE Postbuild Variants Dataset

3.6.2.20 ECU Object Code

Artifact ECU Object Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description

Description Obiject code file produced by compilation during ECU integration.
To be distinguished from code files which are already delivered as object code for integration (see
Basic Software Module Object Code or Atomic Software Component Object Code).

Kind Object Code

Relation Type Related Element Mult. Note

Produced by Compile ECU Source Code 1.7 Meth.bindingTime = CompileTime

Consumed by

Generate ECU Executable 1.7 from generated or delivered source code

Meth.bindingTime = CompileTime

Consumed by

Link ECU Code during Link 1.7
Time Configuration

Table 3.309: ECU Object Code

AUTSSAR

3.6.2.21 ECU Executable

Artifact ECU Executable

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description The executable image containing all the fully integrated software ready to download to an ECU.

Description The executable image containing all the fully integrated software ready to download to an ECU. This
work product and its format is not defined by AUTOSAR, it is only included for completeness of the
use cases.

Kind Executable

Relation Type Related Element Muit. Note

Aggregated by ECU Software Delivered 1.7

Produced by Generate ECU Executable 1 Meth.bindingTime = LinkTime

Produced by Link ECU Code after 1
Precompile Configuration

Produced by Link ECU Code during Link 1

Time Configuration

Consumed by

Measure Resources 1

Consumed by

Merge CpSoftwareCluster 0..” In case CpSoftwareClusters are used - only applicable
for ECU Executables created from a CpSoftwareCluster

Extract

Table 3.310: ECU Executable

3.6.2.22 Merged ECU Executable

Artifact Merged ECU Executable

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products
Brief Description The result of merging the ECU Executables of several CpSoftwareClusters
Description An ECU Executable created by merging several CpSoftwareCluster Executables.
Kind

Relation Type Related Element Mult. Note

In/out Merge CpSoftwareCluster 0..1

Table 3.311: Merged ECU Executable

3.6.2.23 Map of the ECU Executable

Artifact Map of the ECU Executable

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description Linker map file of the excecutable.

Description Linker map file of the excecutable. This work product and its format is not defined by AUTOSAR, it is
only included for completeness of the use cases.

Kind Text

Relation Type Related Element Mult. Note

Produced by Generate ECU Executable 1 Meth.bindingTime = LinkTime

\Y

AUTSSAR

A
Artifact Map of the ECU Executable
Consumed by Generate A2L 1
Consumed by Measure Resources 0..1

Table 3.312: Map of the ECU Executable

3.6.2.24 AZ2L File

Artifact A2L File

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description Input file for measurment and calibration tools.

Description Input file for measurement and calibration tools related to one ECU. This format is not in the scope
of AUTOSAR, it is defined by the ASAM organization. The work product is only included for
completeness of the use cases.

Kind Text

Relation Type Related Element Mult. Note

Aggregated by ECU Software Delivered 0..*

Produced by Generate A2L 1 Meth.bindingTime = CodeGenerationTime

Table 3.313: A2L File

3.6.2.25 MC Driver Support Data

Artifact MC Driver Support Data

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description Support data describing the specific access of a driver (e.g. XCP) for exchange of data for
measurement and calibration.

Description Support data describing the specific access method of a driver (e.g. XCP) in order to exchange data
for measurement and calibration. These are the so-called IF-DATA needed in the A2L files.
This artifact shall be generated by a driver(e.g. XCP) specific generator out of its ECU
configuration. This format is not defined by AUTOSAR. The work product is only included for
completeness of the use cases.

Kind Custom

Relation Type Related Element Mult. Note

Consumed by Generate A2L 0..*

Table 3.314: MC Driver Support Data

AUTSSAR

3.6.2.26 MC Additional Config

Artifact MC Additional Config

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Work Products

Brief Description External configuration data nedded to generate the A2L file.

Description Additional configuration data needed to generate the A2L file. This format is not defined by
AUTOSAR. The work product is only included for completeness of the use cases.

Kind Custom

Relation Type Related Element Mult. Note

Consumed by Generate A2L 0..1

3.6.3 Tools

Table 3.315: MC Additional Config

3.6.3.1 RTE Generator
Tool RTE Generator
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Guidance
Brief Description
Description RTE Generator used for several tasks during ECU integration.
Kind
Relation Type Related Element Mult. Note
Used Generate RTE 1
Used Generate RTE Postbuild 1
Dataset
Used Generate RTE Prebuild 1
Dataset
Used Generate Scheduler 1

Table 3.316: RTE Generator

3.6.3.2 BSW Generator Framework

Tool BSW Generator Framework

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::Guidance

Brief Description

Description Framework that uses BSW generators that are being delivered as part of individual modules.
Kind

Relation Type Related Element Mult. Note

Used Generate BSW 1

Configuration Code

Table 3.317: BSW Generator Framework

AUTSSAR

3.6.4 ECU Config Classes
3.6.4.1 Tasks
3.6.4.1.1 Compile Unconfigured Bsw

1

Basic Software Module «input»
Core Header =\
—
«output» | —
—
Compile —
Tnput Unconfigured
«f »
BSwW Basic Software Module
Object Code
«used tool»
Basic Software Module
Core Source Code
Compiler

Figure 3.155: Compile Unconfigured Bsw

Task Definition Compile Unconfigured BSW
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Tasks
Brief Description Compile unconfigured BSW to get a BSW Module Object Code.
Description Compile Unconfigured BSW is the usual step to compile files without any configuration data when
no configuration is needed. This can be use either in the pre-compile, link or post-build time.
Relation Type Related Element Mult. Note
Consumes Basic Software Module 1
Core Header
Consumes Basic Software Module 1
Core Source Code
Produces Basic Software Module 1
Object Code
Used tool Compiler 1

Table 3.318: Compile Unconfigured BSW

AUTSSAR

3.6.4.1.2 Compile Configured Bsw

BSW Module
Configuration Header
File

1 «input»

[l

«output»] | —

Compile
Configured
BSW

Basic Software Module
Core Header

Basic Software Module
Object Code

«used tool»

Compiler

Basic Software Module
Core Source Code

Figure 3.156: Compile Configured Bsw

Task Definition Compile Configured BSW

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Tasks

Brief Description Compile Configured BSW to get a BSW Module Object Code

Description Compile Configured BSW to get a Basic Software Module Object Code used in the link steps. This
Configured BSW is representing C files that have already included all needed configured data. This
is done in the pre-compile time.

Relation Type Related Element Muit. Note
Consumes BSW Module Configuration 1
Header File
Consumes Basic Software Module 1
Core Header
Consumes Basic Software Module 1
Core Source Code
Produces Basic Software Module 1
Object Code
Used tool Compiler 1

Table 3.319: Compile Configured BSW

AUTSSAR

3.6.4.1.3 Compile BSW Configuration Data

Basic Software Module
Core Header

1 «input»

“input»

Compile BSW
Configuration Data

«output» 1 || —

BSW Module
Configuration Data
Object Code
«used tool»

Compiler

Figure 3.157: Compile BSW Configuration Data

Task Definition Compile BSW Configuration Data
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Tasks
Brief Description Compile BSW Configuration Data during link time
Description Compile BSW Configuration Data during link-time- or post-build configuration to get the Basic
Software Module Configuration Data Object Code used in the link steps.
Relation Type Related Element Mult. Note
Consumes BSW Module Configuration 1
Data Source Code
Consumes BSW Module Configuration 1
Header File
Consumes Basic Software Module 1
Core Header
Produces BSW Module Configuration 1
Data Object Code
Used tool Compiler 1

Table 3.320: Compile BSW Configuration Data

AUTSSAR

3.6.4.1.4 Compile Generated BSW

BSW Module

Configuration Compiler
Header File
«used tool»
_h —
— —
1 «input» «output» 1 | —
—
Compile —
Generated :
BSW Module Completely BSW Ba_sc Software Module
Generated Source Code Object Code

Figure 3.158: Compile Generated BSW

Task Definition Compile Generated BSW
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Tasks
Brief Description Compile generated BSW in the pre-compile time:
Description Compile generated BSW in the pre-compile time: this generated BSW has been generated with a
BSW Configuration generator which generates the complete configuration-specific code.
Relation Type Related Element Mult. Note
Consumes BSW Module Completely 1
Generated Source Code
Consumes BSW Module Configuration 1
Header File
Produces Basic Software Module 1
Object Code
Used tool Compiler 1

Table 3.321: Compile Generated BSW

3.6.4.1.5 Generate BSW Precompile Configuration Header

«output» 1

[l

—
—
1 «input»
—
—

Generate BSW Precompile

Configuration Header . .
ECU Configuration Values BSW Module Configuration

Header File

Figure 3.159: Generate BSW Precompile Configuration Header

AUTSSAR

Task Definition Generate BSW Precompile Configuration Header

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Tasks

Brief Description Generate BSW Precompile Configuration Header

Description Generate BSW Pre-compile Configuration Header. The header is used for definition or declaration
(in case source code is needed) of the pre-compile configuration data code.

Relation Type Related Element Mult. Note

Consumes ECU Configuration Values 1

Produces BSW Module Configuration 1
Header File

Table 3.322: Generate BSW Precompile Configuration Header

3.6.4.1.6 Generate BSW Source Code

«input»

[

Generate BSW Source

. . Code
ECU Configuration Values «output»

BSW Module Configuration
Header File

Figure 3.160: Generate BSW Source Code

Task Definition Generate BSW Source Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Tasks
Brief Description Generate the source code of a module completely from its precompile configuration.
Description Generate the source code of a BSW module completely from its pre-compile configuration. A
header file may be produced in addition, if required.
Relation Type Related Element Mult. Note
Consumes ECU Configuration Values 1
Produces BSW Module Completely 1
Generated Source Code
Produces BSW Module Configuration 1
Header File

Table 3.323: Generate BSW Source Code

AUTSSAR

3.6.4.1.7 Generate BSW Configuration Code

71 | —

BSW Module
Configuration Data
Source Code

«output»

1 «input»

[l

Generate BSW
Configuration Code

ECU Configuration Values

BSW Module
Configuration Header
File

Figure 3.161: Generate BSW Configuration Code

see also Generate BSW Configuration Code

3.6.4.1.8 Generate BSW Postbuild Configuration Code

«output» BSW Module
Configuration Data
Source Code

1 «input»

[l

Generate BSW Postbuild
Configuration Code

ECU Configuration Values

BSW Module
Configuration
Header File

Figure 3.162: Generate BSW Postbuild Configuration Code

Task Definition Generate BSW Postbuild Configuration Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Tasks
Brief Description Generate the code for data structures that can be used for postbuild configuration.
Description Generate the source code and associated header for data structures that can be used for postbuild
configuration.
Relation Type Related Element Mult. Note
Consumes ECU Configuration Values 1
Produces BSW Module Configuration 1
Data Source Code
Produces BSW Module Configuration 1
Header File

Table 3.324: Generate BSW Postbuild Configuration Code

AUTSSAR

3.6.4.1.9 Link ECU Code after Precompile Configuration

1% «input» «output» 1

[l
[l

Link ECU Code
after Precompile
Configuration

@

Basic Software Module ECU Executab

Object Code

«used tool»

Linker

Figure 3.163: Link ECU Code after Precompile Configuration

Task Definition Link ECU Code after Precompile Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Tasks

Brief Description Link the ECU code in the pre-compile time Configuration Class

Description Link the different BSW modules object code in the pre-compile Configuration Class. All parameters
values for configurable elements have been already fixed and are effective after compilation time.

Relation Type Related Element Muit. Note

Consumes Basic Software Module 1.*
Object Code

Produces ECU Executable 1

Used tool Linker 1

Table 3.325: Link ECU Code after Precompile Configuration

3.6.4.1.10 Link ECU Code During Link Time Configuration

«input»

)

1. «input» «output» | S—

Link ECU Code
during Link Time
Configuration

BSW Module
Configuration Data

ECU Executable

= Linker
ECU Object Code

Figure 3.164: Link ECU Code During Link Time Configuration

AUTSSAR

Task Definition

Link ECU Code during Link Time Configuration

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Tasks
Brief Description Link ECU Code during Link Time
Description Link ECU Code during Link Time
Relation Type Related Element Mult. Note
Consumes BSW Module Configuration 1.*
Data Object Code
Consumes Basic Software Module 1.7
Object Code
Consumes ECU Object Code 1.*
Produces ECU Executable 1
Used tool Linker 1

Table 3.326: Link ECU Code during Link Time Configuration

3.6.4.1.11 Link ECU Code During Post-build Time

1.% «input» «output» 1

Link ECU Code
during Post-Build

BSW Module Time BSW Module
Configuration Data Configuration Data
Object Code Loadable to ECU Memory

«used tool»

Linker

Figure 3.165: Link ECU Code During Post-build Time

Task Definition Link ECU Code during Post-Build Time

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Tasks

Brief Description Link ECU Code during post-build time loadable .

Description Link ECU Code during post-build time. The objects used for this link are coming from configuration

data file that contain all configured parameters. The result of the link is a hex file that will be loadable
in the ECU memory.

Relation Type Related Element Mult. Note
Consumes BSW Module Configuration 1.*
Data Object Code
Produces BSW Module Configuration 1
Data Loadable to ECU
Memory
Used tool Linker 1

Table 3.327: Link ECU Code during Post-Build Time

AUTSSAR

3.6.4.2 Work Products

3.6.4.2.1 BSW Module Configuration Header File

Artifact BSW Module Configuration Header File

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Work Products

Brief Description C-header file generated from the configuration data of a BSW module.

Description C-header file generated from the configuration data of a BSW module, defining the data (only
possible for pre-compile configuration) or containing additional declarations (needed by generated
configuration code only).

Kind Bound Source Code

Relation Type Related Element Mult. Note

Produced by Generate BSW 1
Configuration Code

Produced by Generate BSW Postbuild 1
Configuration Code

Produced by Generate BSW Precompile 1
Configuration Header

Produced by Generate BSW Source 1
Code

Produced by Generate BSW and RTE 1

Consumed by Compile BSW Configuration 1
Data

Consumed by Compile Configured BSW 1

Consumed by Compile Generated BSW 1

Consumed by Compile ECU Source Code 0..” Meth.bindingTime = CodeGenerationTime

Table 3.328: BSW Module Configuration Header File

3.6.4.2.2 BSW Module Completely Generated Source Code

Artifact BSW Module Completely Generated Source Code

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Work Products

Brief Description Generated BSW source code implementing the complete module after inclusion of pre-compilation
configuration data.

Description Generated BSW source code implementing the complete module after inclusion of pre-compilation
configuration data. In this case, no core code is delivered by the module vendor.

Kind Source Code

Relation Type Related Element Mult. Note

Produced by Generate BSW Source 1
Code

Consumed by Compile Generated BSW 1

Table 3.329: BSW Module Completely Generated Source Code

AUTSSAR

3.6.4.2.3 BSW Module Configuration Data Source Code

Artifact BSW Module Configuration Data Source Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Work Products
Brief Description BSW source code generated from configuration data, implementing only the data.
Description BSW source code generated from configuration data, implementing only the data.
Kind Bound Source Code
Relation Type Related Element Mult. Note
Produced by Generate BSW 1
Configuration Code
Produced by Generate BSW Postbuild 1
Configuration Code
Produced by Generate BSW and RTE 1
Consumed by Compile BSW Configuration 1
Data
Consumed by Compile ECU Source Code 0..* Meth.bindingTime = CodeGenerationTime

Table 3.330: BSW Module Configuration Data Source Code

3.6.4.2.4 BSW Module Configuration Data Object Code

Artifact BSW Module Configuration Data Object Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Work Products
Brief Description Generated data for link-time or postbuild configuration of a BSW module.
Description Generated & compiled configuration data for link-time or postbuild configuration of a BSW module.
Kind Object Code
Relation Type Related Element Mult. Note
Produced by Compile BSW Configuration 1
Data
Consumed by Link ECU Code during Link 1.7
Time Configuration
Consumed by Link ECU Code during 1.*
Post-Build Time

Table 3.331: BSW Module Configuration Data Object Code

3.6.4.2.5 BSW Module Configuration Data Loadable to ECU Memory

Artifact BSW Module Configuration Data Loadable to ECU Memory

Package AUTOSAR Root::M2::Methodology::Methodology Library::Ecu::ECU Config Classes::Work Products
Brief Description Generated loadable configuration data for post-build configuration of a BSW module.

Description Generated loadable configuration data for post-build configuration of a BSW module.

Kind Configuration Data Set

Relation Type Related Element Mult. Note

Aggregated by ECU Software Delivered 0.*

\Y

AUTSSAR

A

Artifact

BSW Module Configuration Data Loadable to ECU Memory

Produced by Link ECU Code during 1

Post-Build Time

Table 3.332: BSW Module Configuration Data Loadable to ECU Memory

AUTSSAR

A Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class ARElement (abstract)

Note An element that can be defined stand-alone, i.e. without being part of another element (except for
packages of course).

Base ARObject, CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable

Subclasses AclObjectSet, AclOperation, AclPermission, AclRole, AliasNameSet, ApplicabilitylnfoSet, Application

Partition, AutosarDataType, BaseType, BlueprintMappingSet, BswEntryRelationshipSet, BswModule
Description, BswModuleEntry, BuildActionManifest, CalibrationParameterValueSet, ClientldDefinitionSet,
ClientServerlnterfaceToBswModuleEntryBlueprintMapping, Collection, CompuMethod, Consistency
NeedsBlueprintSet, ConstantSpecification, ConstantSpecificationMappingSet, CpSoftwareCluster, Cp
SoftwareClusterBinaryManifestDescriptor, CpSoftwareClusterMappingSet, CpSoftwareClusterResource
Pool, CryptoEllipticCurveProps, CryptoServiceCertificate, CryptoServiceKey, CryptoServicePrimitive,
CryptoServiceQueue, CryptoSignatureScheme, DataConstr, DataTransformationSet, DataTypeMapping
Set, DdsCpConfig, DiagnosticCommonElement, DiagnosticConnection, DiagnosticContributionSet, DIt
ArgumentPropsSet, DitContext, DItEcu, Documentation, E2EProfileCompatibilityProps, EcucDefinition
Collection, EcucDestinationUriDefSet, EcucModuleConfigurationValues, EcucModuleDef, EcucValue
Collection, EthlpProps, EthTcplplcmpProps, EthTcplpProps, EvaluatedVariantSet, FMFeature,
FMFeatureMap, FMFeatureModel, FMFeatureSelectionSet, FirewallRule, FlatMap, GeneralPurpose
Connection, HwCategory, HwElement, HwType, IEEE1722TpConnection, IPSecConfigProps, IPv6Ext
HeaderFilterSet, IdsCommonElement, IdsDesign, Implementation, ImpositionTimeDefinitionGroup,
InterpolationRoutineMappingSet, J1939ControllerApplication, KeywordSet, LifeCyclelnfoSet, LifeCycle
StateDefinitionGroup, LogAndTraceMessageCollectionSet, MacSecGlobalKayProps, MacSecParticipant
Set, McFunction, McGroup, ModeDeclarationGroup, ModeDeclarationMappingSet, OsTaskProxy,
PhysicalDimension, PhysicalDimensionMappingSet, Portinterface, PortinterfaceMappingSet, Port
PrototypeBlueprint, PostBuildVariantCriterion, PostBuildVariantCriterionValueSet, PredefinedVariant,
RapidPrototypingScenario, SdgDef, SecureComProps, SignalServiceTranslationPropsSet, SomeipSd
ClientEventGroupTimingConfig, SomeipSdClientServicelnstanceConfig, SomeipSdServerEventGroup
TimingConfig, SomeipSdServerServicelnstanceConfig, SwAddrMethod, SwAxisType, SwComponent
MappingConstraints, SwComponentType, SwRecordLayout, SwSystemconst, SwSystemconstantValue
Set, SwcBswMapping, System, SystemComSpecDefinitionSet, SystemSignal, SystemSignalGroup,
TDCpSoftwareClusterMappingSet, TcpOptionFilterSet, TimingExtension, TlsConnectionGroup, TlvData
IdDefinitionSet, TransformationPropsSet, Unit, UnitGroup, UploadablePackageElement, ViewMapSet

Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note

Table A.1: ARElement

Class ARPackage

Note AUTOSAR package, allowing to create top level packages to structure the contained ARElements.
ARPackages are open sets. This means that in a file based description system multiple files can be used
to partially describe the contents of a package.

This is an extended version of MSR’s SW-SYSTEM.

Base ARObject, AtpBlueprint, AtoBlueprintable, CollectableElement, Identifiable, MultilanguageReferrable,
Referrable

Aggregated by | ARPackage.arPackage, AUTOSAR.arPackage

Attribute Type | Mult. | Kind | Note

\Y

AUTSSAR

A
Class ARPackage
arPackage ARPackage * aggr | This represents a sub package within an ARPackage,
thus allowing for an unlimited package hierarchy.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=arPackage.shortName, arPackage.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=30
element PackageableElement * agor Elements that are part of this package
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=element.shortName, element.variation
Point.shortLabel
vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=20
referenceBase ReferenceBase * aggr This denotes the reference bases for the package. This is
the basis for all relative references within the package.
The base needs to be selected according to the base
attribute within the references.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=referenceBase.shortLabel
xml.sequenceOffset=10
Table A.2: ARPackage
Class AliasNameSet
Note This meta-class represents a set of AliasNames. The AliasNameSet can for example be an input to the
A2L-Generator.
Tags: atp.recommendedPackage=AliasNameSets
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note
aliasName AliasNameAssignment * aggr AliasNames contained in the AliasNameSet.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=aliasName.shortLabel, aliasName.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
Table A.3: AliasNameSet
Class AtomicSwComponentType (abstract)
Note An atomic software component is atomic in the sense that it cannot be further decomposed and
distributed across multiple ECUs.
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, SwComponentType
Subclasses ApplicationSwComponentType, ComplexDeviceDriverSwComponentType, EcuAbstractionSwComponent
Type, NvBlockSwComponentType, SensorActuatorSwComponentType, ServiceProxySwComponent
Type, ServiceSwComponentType
Aggregated by | ARPackage.element
Attribute Type | Mult. | Kind | Note

\Y

AUTSSAR

A

Class

AtomicSwComponentType (abstract)

internalBehavior

SwclnternalBehavior 0..1 The SwcInternalBehaviors owned by an
AtomicSwComponent Type can be located in a different
physical file. Therefore the aggregation is <<atp
Splitable>>.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=internalBehavior.shortName, internal
Behavior.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

aggr

symbolProps

SymbolProps 0..1 This represents the symbolProps for the
AtomicSwComponentType.
Stereotypes: atpSplitable

Tags: atp.Splitkey=symbolProps.shortName

agor

Table A.4: AtomicSwComponentType

Class «atpMixedString» ConditionByFormula
Note This class represents a condition which is computed based on system constants according to the
specified expression. The expected result is considered as boolean value.
The result of the expression is interpreted as a condition.
+ "0" represents "false";
+ a value other than zero is considered "true"
Base ARObject, FormulaExpression, SwSystemconstDependentFormula
Aggregated by | VariationPoint.swSyscond, VariationPointProxy.conditionAccess
Attribute Type Mult. Kind | Note
bindingTime BindingTimeEnum 1 attr This attribute specifies the point in time when condition
may be evaluated at earliest. At this point in time all
referenced system constants shall have a value.
Tags: xml.attribute=true
Table A.5: ConditionByFormula
Class Eculnstance
Note ECUInstances are used to define the ECUs used in the topology. The type of the ECU is defined by a
reference to an ECU specified with the ECU resource description.
Tags: atp.recommendedPackage=Eculnstances
Base ARObject, CollectableElement, FibexElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable
Aggregated by | ARPackage.element
Attribute Type Muit. Kind | Note

associatedCom
IPduGroup

ISignallPduGroup ref With this reference it is possible to identify which ISignal
IPduGroups are applicable for which Communication
Connector/ ECU.

Only top level ISignallPduGroups shall be referenced by
an Eculnstance. If an ISignallPduGroup contains other
ISignallPduGroups than these contained ISignallPdu
Groups shall not be referenced by the Eculnstance.
Contained ISignallPduGroups are associated to an Ecu
Instance via the top level ISignallPduGroup.

This Attribute is only used by the AUTOSAR Classic
Platform.

AUTSSAR

A
Class Eculnstance
associated ConsumedProvided * ref With this reference it is possible to identify which
Consumed ServicelnstanceGroup ConsumedProvidedServicelnstanceGroups are
Provided applicable for which ECUInstance.
Servicelnstance Stereotypes: atpSplitable; atpVariation
Group Tags:
atp.Splitkey=associatedConsumedProvidedService
InstanceGroup.consumedProvidedServicelnstanceGroup,
associatedConsumedProvidedServicelnstance
Group.variationPoint.shortLabel
vh.latestBinding Time=postBuild
associatedPdur PdurlPduGroup * ref With this reference it is possible to identify which PduR
IPduGroup IPdu Groups are applicable for which Communication
Connector/ ECU.
channel Boolean 0..1 attr If this parameter is available and set to true, then all
Synchronous available channels will be woken up as soon as at least
Wakeup one channel wakeup occurs. If PNCs are configured, then
all PNCs will be requested upon a channel wakeup.
clientldRange ClientldRange 0..1 aggr Restriction of the Client Identifier for this Ecu to an
allowed range of numerical values. The Client Identifier of
the transaction handle is generated by the client RTE for
inter-Ecu Client/Server communication.
com TimeValue 0..1 attr The period between successive calls to Com_Main
Configuration FunctionRouteSignals of the AUTOSAR COM module in
GwTimeBase seconds.
This Attribute is only used by the AUTOSAR Classic
Platform.
com TimeValue 0..1 attr The period between successive calls to Com_Main
ConfigurationRx FunctionRx of the AUTOSAR COM module in seconds.
TimeBase This Attribute is only used by the AUTOSAR Classic
Platform.
com TimeValue 0..1 attr The period between successive calls to Com_Main
ConfigurationTx FunctionTx of the AUTOSAR COM module in seconds.
TimeBase This Attribute is only used by the AUTOSAR Classic
Platform.
comEnable Boolean 0..1 attr Enables for the Com module of this Eculnstance the
MDTForCyclic minimum delay time monitoring for cyclic and repeated
Transmission transmissions (TransmissionModeTiming has cyclic
Timing assigned or eventControlledTiming with numberOf
Repetitions > 0).
This Attribute is only used by the AUTOSAR Classic
Platform.
commController | Communication * aggr CommunicationControllers of the ECU.
Controller Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=commController.shortName, comm
Controller.variationPoint.shortLabel
vh.latestBindingTime=postBuild
connector Communication * agor All channels controlled by a single controller.
Connector Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=connector.shortName, connector.variation
Point.shortLabel
vh.latestBindingTime=postBuild
dItConfig DItConfig 0..1 aggr Describes the DIt configuration on this Eculnstance.

Stereotypes: atpSplitable

Tags: atp.Splitkey=dItConfig

This Attribute is only used by the AUTOSAR Classic
Platform.

AUTSSAR

Class

Eculnstance

dolpConfig

DolpConfig

0..1

aggr

Dolp configuration on this Eculnstance.

Tags: atp.Status=draft

This Attribute is only used by the AUTOSAR Classic
Platform.

ecuTaskProxy

OsTaskProxy

ref

Reference to OsTaskProxies assigned to the Ecu
Instance.

Stereotypes: atpSplitable

Tags: atp.Splitkey=ecuTaskProxy

This Attribute is only used by the AUTOSAR Classic
Platform.

ethSwitchPort
Group
Derivation

Boolean

attr

Defines whether the derivation of SwitchPortGroups
based on VLAN and/or CouplingPort.pncMapping shall be
performed for this Eculnstance. If not defined the
derivation shall not be done.

This Attribute is only used by the AUTOSAR Classic
Platform.

firewallRule

StateDependentFirewall

ref

Firewall rules defined in the context of an Eculnstance.
Tags: atp.Status=candidate

j1939Node

J1939Node

agaor

Optional collection of J1939Nodes defined on this Ecu
Instance.

This Attribute is only used by the AUTOSAR Classic
Platform.

partition

EcuPartition

agor

Optional definition of Partitions within an Ecu.
This Attribute is only used by the AUTOSAR Classic
Platform.

pncNmRequest

Boolean

0..1

attr

Defines if this Eculnstance shall request Nm on all its
PhysicalChannels which have Nm variant set to FULL
each time a PNC is requested.

pncPrepare
SleepTimer

TimeValue

attr

Time in seconds the PNC state machine shall wait in
PNC_PREPARE_SLEEP.

pnc
Synchronous
Wakeup

Boolean

attr

If this parameter is available and set to true then all
available PNCs will be woken up as soon as a channel
wakeup occurs. This is ensured by adding all PNCs to all
channel wakeup sources during upstream mapping.

pnResetTime

TimeValue

0..1

attr

Specifies the runtime of the reset timer in seconds. This
reset time is valid for the reset of PN requests in the EIRA
and in the ERA.

sleepMode
Supported

Boolean

attr

Specifies whether the ECU instance may be put to a "low
power mode"
« true: sleep mode is supported

« false: sleep mode is not supported

Note: This flag may only be set to "true" if the feature is
supported by both hardware and basic software.

This Attribute is only used by the AUTOSAR Classic
Platform.

teplplcmpProps

EthTcplplcmpProps

ref

Eculnstance specific ICMP (Internet Control Message
Protocol) attributes

This Attribute is only used by the AUTOSAR Classic
Platform.

tcplpProps

EthTcplpProps

ref

Eculnstance specific Tcplp Stack attributes.
This Attribute is only used by the AUTOSAR Classic
Platform.

v2xSupported

V2xSupportEnum

0..1

attr

This attribute is used to control the existence of the V2X
stack on the given Eculnstance.

This Attribute is only used by the AUTOSAR Classic
Platform.

SSAR

AUT<

A

Class Eculnstance

wakeUpOver Boolean 0..1 attr Driver support for wakeup over Bus.

BusSupported This Attribute is only used by the AUTOSAR Classic

Platform.
Table A.6: Eculnstance

Class EvaluatedVariantSet

Note This meta class represents the ability to express if a set of ARElements is able to support one or more
particular variants.
In other words, for a given set of evaluatedElements this meta class represents a table of evaluated
variants, where each PredefinedVariant represents one column. In this column each descendant sw
SystemconstantValue resp. postbuildVariantCriterionValue represents one entry.
In a graphical representation each swSystemconstantValueSet / postBuildVariantCriterionValueSet could
be used as an intermediate headline in the table column.
If the approvalStatus is "APPROVED" it expresses that the collection of CollectableElements is known be
valid for the given evaluatedVariants.
Note that the EvaluatedVariantSet is a CollectableElement. This allows to establish a hierarchy of
EvaluatedVariantSets.
Tags: atp.recommendedPackage=EvaluatedVariantSets

Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable

Aggregated by | ARPackage.element

Attribute Type Mult. Kind | Note

approvalStatus NameToken 1 attr Defines the approval status of a predefined variant. Two

values are predefined: "APPROVED" and "REJECTED":
« Approved variants are known to work.

* Rejected variants are known NOT to work.

Further values can be approved on a per-company basis;
within AUTOSAR only "APPROVED" and "REJECTED"
should be recognized.

evaluated CollectableElement * ref This represents a particular element which is evaluated in
Element context of the EvaluatedVariants. The approvalStatus
applies to this element (and all of its descendants). In
other words, the referenced elements are those that were
considered when the predefined variant was evaluated.
evaluated PredefinedVariant * ref This metaclass represents one particular variant which
Variant was evaluated. LowerMultiplicity is set to 0 to support a
stepwise approach.
Table A.7: EvaluatedVariantSet
Class FlatMap
Note Contains a flat list of references to software objects. This list is used to identify instances and to resolve
name conflicts. The scope is given by the RootSwCompositionPrototype for which it is used, i.e. it can be
applied to a system, system extract or ECU-extract.
An instance of FlatMap may also be used in a preliminary context, e.g. in the scope of a software
component before integration into a system. In this case it is not referred by a RootSwComposition
Prototype.
Tags: atp.recommendedPackage=FlatMaps
This Class is only used by the AUTOSAR Classic Platform.
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type | Mulit. | Kind | Note

V

AUTSSAR

A
Class FlatMap
instance FlatinstanceDescriptor * agor A descriptor instance aggregated in the flat map.
The variation point accounts for the fact, that the system
in scope can be subject to variability, and thus the
existence of some instances is variable.
The aggregation has been made splitable because the
content might be contributed by different stakeholders at
different times in the workflow. Plus, the overall size might
be so big that eventually it becomes more manageable if
it is distributed over several files.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=instance.shortName, instance.variation
Point.shortLabel
vh.latestBinding Time=postBuild
Table A.8: FlatMap
Class ImplementationDataType
Note Describes a reusable data type on the implementation level. This will typically correspond to a typedef in
C-code.
Tags: atp.recommendedPackage=ImplementationDataTypes
Base ARElement, ARObject, AbstractimplementationDataType, AtpBlueprint, AtpBlueprintable, AtpClassifier,
AtpType, AutosarDataType, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable

Aggregated by | ARPackage.element

Attribute Type Mult. Kind | Note

dynamicArray String 0..1 attr Specifies the profile which the array will follow in case this

SizeProfile data type is a variable size array.

isStructWith Boolean 0..1 attr This attribute is only valid if the attribute category is set to

Optional STRUCTURE.

Element If set to true, this attribute indicates that the
ImplementationDataType has been created with the
intention to define at least one element of the structure as
optional.

subElement ImplementationData * aggr Specifies an element of an array, struct, or union data

(ordered) TypeElement type.

The aggregation of
ImplementationDataTypeElement is subject to
variability with the purpose to support the conditional
existence of elements inside a
ImplementationDataType representing a structure.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=subElement.shortName, sub
Element.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

symbolProps

SymbolProps 0..1 aggr | This represents the SymbolProps for the Implementation
DataType.

Stereotypes: atpSplitable

Tags: atp.Splitkey=symbolProps.shortName

typeEmitter

NameToken 0..1 attr This attribute is used to control which part of the
AUTOSAR toolchain is supposed to trigger data type
definitions.

Table A.9: ImplementationDataType

AUT<

SSAR

Class IncludedDataTypeSet
Note An includedDataTypeSet declares that a set of AutosarDataType is used by a basic software module or a
software component for its implementation and the AutosarDataType becomes part of the contract.
This information is required if the AutosarDataType is not used for any DataPrototype owned by this
software component or if the enumeration literals, lowerLimit and upperLimit constants shall be
generated with a literalPrefix.
The optional literalPrefix is used to add a common prefix on enumeration literals, lowerLimit and upper
Limit constants created by the RTE.
Base ARObject
Aggregated by | BswinternalBehavior.includedDataTypeSet, SwcinternalBehavior.includedDataTypeSet
Attribute Type Mulit. Kind | Note
dataType AutosarDataType * ref AutosarDataType belonging to the
includedDataTypeSet.
literalPrefix Identifier 0..1 attr LiteralPrefix defines a common prefix for all AutosarData
Types of the includedDataTypeSet to be added on
enumeration literals, lowerLimit and upperLimit constants
created by the RTE.
Table A.10: IncludedDataTypeSet
Class Portinterface (abstract)
Note Abstract base class for an interface that is either provided or required by a port of a software component.
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtoType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable
Subclasses ClientServerinterface, Datalnterface, ModeSwitchInterface, Triggerinterface
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
isService Boolean 0..1 attr This flag is set if the Port Interface is to be used for
communication between an
* ApplicationSwComponentType Or
¢ ServiceProxySwComponentType Or
* SensorActuatorSwComponentType Or
* ComplexDeviceDriverSwComponentType
* ServiceSwComponentType
* EcuAbstractionSwComponentType
and a SserviceSwComponent Type (namely an
AUTOSAR Service) located on the same ECU. Otherwise
the flag is not set.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivationTime
This Attribute is only used by the AUTOSAR Classic
Platform.
serviceKind ServiceProviderEnum 0..1 attr This attribute provides further details about the nature of
the applied service.
This Attribute is only used by the AUTOSAR Classic
Platform.

Table A.11: Portinterface

AUTSSAR

Class Referrable (abstract)

Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).

Base ARObject

Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint, BswModuleClientServerEntry, Bsw

VariableAccess, CouplingPortTrafficClassAssignment, DiagnosticEnvModeElement, EthernetPriority
Regeneration, ExclusiveAreaNestingOrder, HwDescriptionEntity, ImplementationProps, LinSlaveConfig
Ident, ModeTransition, MultilanguageReferrable, PncMappingldent, SingleLanguageReferrable, SoCon
IPduldentifier, TpConnectionldent

Attribute Type Mulit. Kind | Note

shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.
Stereotypes: atpldentityContributor
Tags:
xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100

shortName ShortNameFragment * aggr | This specifies how the Referrable.shortName is

Fragment composed of several shortNameFragments.

Tags: xml.sequenceOffset=-90
Table A.12: Referrable
Class RunnableEntity
Note A RunnableEnt ity represents the smallest code-fragment that is provided by an
AtomicSwComponent Type and are executed under control of the RTE. RunnableEntitys are for
instance set up to respond to data reception or operation invocation on a server.
Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, ExecutableEntity, Identifiable, Multilanguage
Referrable, Referrable

Aggregated by | AtpClassifier.atpFeature, SwcinternalBehavior.runnable

Attribute Type Mult. Kind | Note

argument RunnableEntity * aggr | This represents the formal definition of a an argument to

(ordered) Argument a RunnableEntity.

asynchronous AsynchronousServer * aggr The server call result point admits a runnable to fetch the

ServerCall CallResultPoint result of an asynchronous server call.

ResultPoint The aggregation of AsynchronousServerCallResultPoint
is subject to variability with the purpose to support the
conditional existence of client server PortPrototypes and
the variant existence of server call result points in the
implementation.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=asynchronousServerCallResultPoint.short
Name, asynchronousServerCallResultPoint.variation
Point.shortLabel

vh.latestBinding Time=preCompile Time

This Attribute is only used by the AUTOSAR Classic
Platform.

canBelnvoked Boolean 0..1 attr If the value of this attribute is set to "true" the enclosing

Concurrently RunnableEntity can be invoked concurrently (even for
one instance of the corresponding
AtomicSwComponentType). This implies that it is the
responsibility of the implementation of the
RunnableEntity to take care of this form of
concurrency.

AUTSSAR

Class RunnableEntity

dataRead VariableAccess aggr RunnableEntity has implicit read access to dataElement
Access of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The aggregation of dataReadAccess is subject to
variability with the purpose to support the conditional
existence of sender receiver ports or the variant existence
of dataReadAccess in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=dataReadAccess.shortName, dataRead
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataReceive VariableAccess aggr RunnableEntity has explicit read access to dataElement
PointBy of a sender-receiver PortPrototype or nv data of a nv data
Argument PortPrototype. The result is passed back to the
application by means of an argument in the function
signature.

The aggregation of dataReceivePointByArgument is
subject to variability with the purpose to support the
conditional existence of sender receiver PortPrototype or
the variant existence of data receive points in the
implementation.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=dataReceivePointByArgument.shortName,
dataReceivePointByArgument.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataReceive VariableAccess aggr RunnableEntity has explicit read access to dataElement
PointByValue of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The result is passed back to the application by means of
the return value. The aggregation of dataReceivePointBy
Value is subject to variability with the purpose to support
the conditional existence of sender receiver ports or the
variant existence of data receive points in the
implementation.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=dataReceivePointByValue.shortName, data
ReceivePointByValue.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataSendPoint VariableAccess aggr RunnableEntity has explicit write access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The aggregation of dataSendPoint is subject to variability
with the purpose to support the conditional existence of
sender receiver PortPrototype or the variant existence of
data send points in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=dataSendPoint.shortName, dataSend
Point.variationPoint.shortLabel

vh.latestBinding Time=preCompile Time

AUTSSAR

Class

RunnableEntity

dataWrite
Access

VariableAccess

aggr

RunnableEntity has implicit write access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The aggregation of dataWriteAccess is subject to
variability with the purpose to support the conditional
existence of sender receiver ports or the variant existence
of dataWriteAccess in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=dataWriteAccess.shortName, dataWrite
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

external
TriggeringPoint

ExternalTriggeringPoint

agor

The aggregation of ExternalTriggeringPoint is subject to
variability with the purpose to support the conditional
existence of trigger ports or the variant existence of
external triggering points in the implementation.
Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=externalTriggeringPoint.ident.shortName,
externalTriggeringPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

internal
TriggeringPoint

InternalTriggeringPoint

aggr

The aggregation of InternalTriggeringPoint is subject to
variability with the purpose to support the variant
existence of internal triggering points in the
implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=internalTriggeringPoint.shortName, internal
TriggeringPoint.variationPoint.shortLabel
vh.latestBinding Time=preCompile Time

modeAccess
Point

ModeAccessPoint

aggr

The runnable has a mode access point. The aggregation
of ModeAccessPoint is subject to variability with the
purpose to support the conditional existence of mode
ports or the variant existence of mode access points in
the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=modeAccessPoint.ident.shortName, mode
AccessPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

modeSwitch
Point

ModeSwitchPoint

aggr

The runnable has a mode switch point. The aggregation
of ModeSwitchPoint is subject to variability with the
purpose to support the conditional existence of mode
ports or the variant existence of mode switch points in the
implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=modeSwitchPoint.shortName, modeSwitch
Point.variationPoint.shortLabel

vh.latestBinding Time=preCompileTime

AUTSSAR

Class RunnableEntity

parameter ParameterAccess aggr | The presence of a ParameterAccess implies that a
Access RunnableEntity needs read only access to a Parameter
DataPrototype which may either be local or within a Port
Prototype.

The aggregation of ParameterAccess is subject to
variability with the purpose to support the conditional
existence of parameter ports and component local
parameters as well as the variant existence of Parameter
Access (points) in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=parameterAccess.shortName, parameter
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

readLocal VariableAccess aggr | The presence of a readLocalVariable implies that a
Variable RunnableEntity needs read access to a VariableData
Prototype in the role of implicitinterRunnableVariable or
explicitinterRunnableVariable.

The aggregation of readLocalVariable is subject to
variability with the purpose to support the conditional
existence of implicitinterRunnableVariable and explicit
InterRunnableVariable or the variant existence of read
LocalVariable (points) in the implementation.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=readLocalVariable.shortName, readLocal
Variable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

serverCallPoint ServerCallPoint * aggr | The RunnableEntity has a ServerCallPoint. The
aggregation of ServerCallPoint is subject to variability with
the purpose to support the conditional existence of client
server PortPrototypes or the variant existence of server
call points in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=serverCallPoint.shortName, serverCall
Point.variationPoint.shortLabel

vh.latestBinding Time=preCompile Time

This Attribute is only used by the AUTOSAR Classic
Platform.

symbol Cldentifier 0..1 attr The symbol describing this RunnableEntity’s entry
point. This is considered the API of the
RunnableEntity and is required during the RTE
contract phase.

waitPoint WaitPoint * aggr The waitPoint associated with the RunnableEntity.

writtenLocal VariableAccess aggr | The presence of a writtenLocalVariable implies that a
Variable RunnableEntity needs write access to a VariableData
Prototype in the role of implicitinterRunnableVariable or
explicitinterRunnableVariable.

The aggregation of writtenLocalVariable is subject to
variability with the purpose to support the conditional
existence of implicitinterRunnableVariable and explicit
InterRunnableVariable or the variant existence of written
LocalVariable (points) in the implementation.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=writtenLocalVariable.shortName, written
LocalVariable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table A.13: RunnableEntity

AUTSSAR

Class SwclinternalBehavior

Note The SwcInternalBehavior of an AtomicSwComponentType describes the relevant aspects of the
software-component with respect to the RTE, i.e. the RunnableEntitys and the RTEEvents they
respond to.

Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, InternalBehavior, Multilanguage

Referrable, Referrable

Aggregated by | AtomicSwComponentType.internalBehavior, AfpClassifier.atpFeature

Attribute Type Mult. Kind | Note

arTypedPer VariableDataPrototype * aggr Defines an AUTOSAR typed memory-block that needs to
Instance be available for each instance of the SW-component.
Memory This is typically only useful if

supportsMultipleInstantiation is setto "true" or
if the component defines NVRAM access via permanent
blocks.

The aggregation of arTypedPerInstanceMemory is
subject to variability with the purpose to support variability
in the software component’s implementations. Typically
different algorithms in the implementation are requiring
different number of memory objects.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=arTypedPerIinstanceMemory.shortName, ar
TypedPerlnstanceMemory.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

event RTEEvent * aggr This is a RTEEvent specified for the particular
SwcInternalBehavior.

The aggregation of RTEEvent is subject to variability with
the purpose to support the conditional existence of
RTEEvents. Note: the number of RTEEvents might vary
due to the conditional existence of PortPrototypes
using DataReceivedEvents or due to different
scheduling needs of algorithms.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=event.shortName, event.variationPoint.short
Label

vh.latestBindingTime=preCompileTime

exclusiveArea SwcExclusiveArea aggr Options how to generate the ExclusiveArea related APls.
Policy Policy When no SwcExclusiveAreaPolicy is specified for an
ExclusiveArea the default values apply.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=exclusiveAreaPolicy, exclusiveArea
Policy.variationPoint.shortLabel

vh.latestBinding Time=preCompile Time

explicitinter VariableDataPrototype * agor Implement state message semantics for establishing
Runnable communication among runnables of the same
Variable component. The aggregation of explicitinterRunnable

Variable is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=explicitinterRunnableVariable.shortName,
explicitinterRunnableVariable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

AUTSSAR

Class SwcinternalBehavior

implicitinter VariableDataPrototype aggr Implement state message semantics for establishing
Runnable communication among runnables of the same

Variable component. The aggregation of implicitinterRunnable
Variable is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=implicitinterRunnableVariable.shortName,
implicitinterRunnableVariable.variationPoint.shortLabel
vh.latestBinding Time=preCompile Time

includedData IncludedDataTypeSet aggr The includedDataTypeSet is used by a software
TypeSet component for its implementation.

Stereotypes: atpSplitable

Tags: atp.Splitkey=includedDataTypeSet

includedMode IncludedMode * aggr This aggregation represents the included Mode
Declaration DeclarationGroupSet DeclarationGroups
GroupSet Stereotypes: atpSplitable

Tags: atp.Splitkey=includedModeDeclarationGroupSet

instantiation InstantiationDataDef aggr | The purpose of this is that within the context of a given
DataDefProps Props SwComponentType some data def properties of individual
instantiations can be modified. The aggregation of
InstantiationDataDefProps is subject to variability with the
purpose to support the conditional existence of Port
Prototypes and component local memories like "per
InstanceParameter" or "arTypedPerIinstanceMemory".
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=instantiationDataDefProps, instantiationData
DefProps.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

perlnstance PerInstanceMemory aggr Defines a per-instance memory object needed by this
Memory software component. The aggregation of PerInstance
Memory is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=perinstanceMemory.shortName, perinstance
Memory.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

perinstance ParameterData aggr Defines parameter(s) or characteristic value(s) that needs
Parameter Prototype to be available for each instance of the
software-component. This is typically only useful if
supportsMultipleInstantiation is set to "true". The
aggregation of perinstanceParameter is subject to
variability with the purpose to support variability in the
software components implementations. Typically different
algorithms in the implementation are requiring different
number of memory objects.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=perinstanceParameter.shortName, per
InstanceParameter.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

AUTSSAR

Class

SwcinternalBehavior

portAPIOption

PortAPIOption

aggr

Options for generating the signature of port-related calls
from a runnable to the RTE and vice versa. The
aggregation of PortPrototypes is subject to variability with
the purpose to support the conditional existence of ports.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=portAPIOption.port, portAPIOption.variation
Point.shortLabel

vh.latestBindingTime=preCompileTime

runnable

RunnableEntity

agaor

This is a RunnableEnt ity specified for the particular
SwcInternalBehavior.

The aggregation of RunnableEntity is subject to
variability with the purpose to support the conditional
existence of RunnableEntitys. Note: the number of
RunnableEntitys might vary due to the conditional
existence of PortPrototypes using
DataReceivedEvents or due to different scheduling
needs of algorithms.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=runnable.shortName, runnable.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

service
Dependency

SwcService
Dependency

aggr

Defines the requirements on AUTOSAR Services for a
particular item.

The aggregation of SwcServiceDependency is subject to
variability with the purpose to support the conditional
existence of ports as well as the conditional existence of
ServiceNeeds.

The SwcServiceDependency owned by an Swcinternal
Behavior can be located in a different physical file in order
to support that SwcServiceDependency might be
provided in later development steps or even by different
expert domain (e.g OBD expert for Obd related Service
Needs) tools. Therefore the aggregation is <<atp
Splitable>>.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=serviceDependency.shortName, service
Dependency.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

shared
Parameter

ParameterData
Prototype

aggr

Defines parameter(s) or characteristic value(s) shared
between SwComponentPrototypes of the same Sw
ComponentType The aggregation of sharedParameter is
subject to variability with the purpose to support variability
in the software components implementations. Typically
different algorithms in the implementation are requiring
different number of memory objects.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=sharedParameter.shortName, shared
Parameter.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

supports
Multiple
Instantiation

Boolean

0..1

attr

Indicate whether the corresponding software-component
can be multiply instantiated on one ECU. In this case the
attribute will result in an appropriate component APl on
programming language level (with or without instance
handle).

variationPoint
Proxy

VariationPointProxy

aggr

Proxy of a variation points in the C/C++ implementation.
Stereotypes: atpSplitable
Tags: atp.Splitkey=variationPointProxy.shortName

Table A.14: SwcinternalBehavior

AUT<

SSAR

Class SymbolProps
Note This meta-class represents the ability to attach with the symbol attribute a symbolic name that is conform
to C language requirements to another meta-class, e.g. AtomicSwComponentType, that is a potential
subject to a name clash on the level of RTE source code.
Base ARObject, ImplementationProps, Referrable
Aggregated by | Allocator.namespace, ApApplicationErrorDomain.namespace, AtomicSwComponentType.symbolProps,
CpplmplementationDataType.namespace, ImplementationDataType.symbolProps, Portinterface.
namespace, SecurityEventDefinition.eventSymbolName, TraceSwitchConfig.namespace
Attribute Type Mult. Kind | Note
Table A.15: SymbolProps
Class VariationPoint
Note This meta-class represents the ability to express a "structural variation point". The container of the
variation point is part of the selected variant if swSyscond evaluates to true and each postBuildVariant
Criterion is fulfilled.
Base ARObject
Attribute Type Mult. Kind | Note
blueprint DocumentationBlock 0..1 aggr This represents a description that documents how the
Condition variation point shall be resolved when deriving objects
from the blueprint.
Note that variationPoints are not allowed within a
blueprintCondition.
Tags: xml.sequenceOffset=28
desc MultiLanguageOverview 0..1 aggr This allows to describe shortly the purpose of the
Paragraph variation point.
Tags: xml.sequenceOffset=20
formalBlueprint BlueprintGenerator 0..1 aggr This represents a description that documents how the
Generator variation point shall be resolved when deriving objects
from the blueprint by using ARMQL.
Note that variationPoints are not allowed within a formal
BlueprintGenerator.
Tags:
atp.Status=draft
xml.sequenceOffset=30
postBuildVariant | PostBuildVariant * aggr This is the set of post build variant conditions which all
Condition Condition shall be fulfilled in order to (postbuild) bind the variation
point.
Tags: xml.sequenceOffset=40
sdg Sdg 0..1 aggr An optional special data group is attached to every
variation point. These data can be used by external
software systems to attach application specific data. For
example, a variant management system might add an
identifier, an URL or a specific classifier.
Tags: xml.sequenceOffset=50
shortLabel Identifier 0..1 attr This provides a name to the particular variation point to
support the RTE generator. It is necessary for supporting
splitable aggregations and if binding time is later than
codeGenerationTime, as well as some RTE conditions. It
needs to be unique with in the enclosing Identifiables with
the same ShortName.
Stereotypes: atpldentityContributor
Tags: xml.sequenceOffset=10
swSyscond ConditionByFormula 0..1 aggr This condition acts as Binding Function for the Variation
Point. Note that the multiplicity is 0..1 in order to support
pure postBuild variants.
Tags: xml.sequenceOffset=30

Table A.16: VariationPoint

AUTSSAR

B Change History

Please note that the lists in this chapter also include specification items that have been
removed from the specification in a later version. These specification items do not
appear as hyperlinks in the document.

B.1 Change History of this document according to AUTOSAR Re-

lease R4.1.1

B.1.1 Added Specification Iltems in 4.1.1

Number

Heading

[TR_METH_00001]

Definition of Binding Time for Tasks

[TR_METH_00002]

Definition of Binding Time for Artifacts

[TR_METH_00003]

Definition of Binding Time for Artifacts in the context of particular tasks

[TR_METH_01000]

Domains of the AUTOSAR methodology

[TR_METH_01001]

AUTOSAR methodology assets

[TR_METH_01002]

AUTOSAR methodology use cases

[TR_METH_01003]

Scope of the AUTOSAR methodology

[TR_METH_01004]

Support for various stakeholders by the AUTOSAR methodology

[TR_METH_01005]

Restrictions of AUTOSAR methodology

[TR_METH_01006]

General AUTOSAR methodology concepts

[TR_METH_01007]

Method Library

[TR_METH_01008]

Method Library Element

[TR_METH_01009]

Relation of Method Library andMethod Library Element tothe SPEM
meta model

[TR_METH_01010]

Overview of Method Library Elements

[TR_METH_01011]

Task Definition

[TR_METH_01012]

Task semantics

[TR_METH_01013]

Task Uusage

[TR_METH_01014]

Work Product Definition

[TR_METH_01015]

Relationship between Roles and Work Products

[TR_METH_01017]

Artifact Definition

[TR_METH_01018]

Kinds of Artifacts

[TR_METH_01019]

Properties of Artifacts

[TR_METH_01020]

Relationship between Artifacts and meta model elements

[TR_ METH_01021]

Deliverable Definition

[TR_METH_01022]

Aggregation of Work Products

[TR_METH_01023]

Role Definition

[TR_METH_01024]

Role assignment

[TR_METH_01025]

Tool Definition

[TR_METH_071026]

Guidance definition

[TR_METH_01027]

Guidance kinds

[TR_METH_01028]

Usage of tables

[TR_METH_01029]

Capability Patterns definition

[TR_METH_01030]

Composition of Capability Patterns

[TR_METH_01031]

Adaptability of the AUTOSAR methodology

[TR_METH_01032]

Use case elements

[TR_METH_01033]

Definition of Activities

AUTSSAR

[TR_METH_01034]

Composition of Activities

[TR_METH_01035]

Definition of Processes

[TR_METH_01036]

Description of overall Use Cases

[TR_METH_01037]

Precise description of Use Cases

[TR_METH_01038]

Detailed description of the work flow

[TR_METH_01039]

AUTOSAR System development overview

[TR_METH_01040]

Support of different system views

[TR_METH_01041]

Abstract system

[TR_METH_01042]

Overall technical system

[TR_METH_01043]

Sub-System

[TR_METH_01044]

Development of a functional view on the system

[TR_METH_01045]

Development of the Overall VFB System

[TR_METH_01046]

Development of the system

[TR_METH_01047]

Two phase development approach

[TR_METH_01048]

The overall system

[TR_METH_01049]

Interaction between organizations

[TR_METH_01050]

Abstract System Description activity

[TR_METH_01051]

Creation of an overall abstract system

[TR_METH_01052]

Definition of a constraints in the context of an abstract system

[TR_METH_01053]

Definition of a System Description inthe context of an abstract system

[TR_METH_01054]

Virtual Functional Bus

[TR_METH_01055]

Data Model Development activity

[TR_METH_01056]

Definition of the VFB

[TR_METH_01057]

Top-Down approach

[TR_METH_01058]

Bottom-Up approach

[TR_METH_01059]

Kinds of VFB Atomic Software Component$

[TR_METH_01060]

Develop an Atomic Software Component activity

[TR_METH_01061]

Develop Application Software activity

[TR_METH_01065]

Develop Systemand Develop Sub-System activities

[TR_METH_01066]

Creation of a System Extract and a ECU Extract

[TR_METH_01067]

Abstract System Description deliverable

[TR_METH_01068]

Inputs and Output of the Design System activity

[TR_METH_01069]

Deployment of AUTOSAR Software Components

[TR_METH_01070]

Description of network signals

[TR_METH_01071]

Description of design constraints

[TR_ METH_01075]

Design Sub-System activity

[TR_METH_01076]

Collaboration between different organizations

[TR_ METH _01077]

Transformation changes during the Design Sub-System activity

[TR_METH_01078]

Mapping of different views

[TR_METH_01079]

Use Case: Substitution of existing components

[TR_METH_01080]

Use Case: Mapping of requirements to the solution

[TR_METH_01081]

Use Case: Reorganization of the software structure

[TR_METH_01082]

Use Case: Description of changes between different versions of System De-
scriptions

[TR_METH_01083]

Design Basic Software activity

[TR_METH_01084]

Separation of design and development of basic software

[TR_METH_01085]

Develop BSW Module activity

[TR_METH_01086]

Integrate Software for ECU activity

[TR_METH_01087]

Scope of Integrate Software for ECU activity

[TR_METH_01088]

Prepare ECU Configuration activity

[TR_METH_01089]

Configure BSW and RTE activity

[TR_METH_01090]

Configure RTE task

[TR_METH_01091]

Configure Debug task

AUTSSAR

[TR_METH_01092]

Generating BSW modules, RTE, and OS source files

[TR_METH_01093]

Building ECU Executable

[TR_METH_01095]

Configuration Class: Pre-compile Time

[TR_METH_01096]

Generating header files only

[TR_METH_01097]

Generating header and source files

[TR_METH_01098]

Configuration Class: Link Time

[TR_METH_01099]

Generation and compilation of BSW Configuration Code

[TR_METH_01100]

Definition of configuration data

[TR_METH 01107]

Separate compilation of module source and configuration file

[TR_METH _01102]

Linking process

[TR_METH_01103]

Re-generation in case of configuration value changes

[TR_METH_01104]

Configuration Class: Post-build Time

[TR_METH_01105]

Generate BSW Postbuild Configuration Code

[TR_METH_011086]

Generate BSW Configuration Data Loadable

[TR_METH_01107]

Configuration Class: Post-build Time Selectable

[TR_METH_071108]

Generating multiple post-build configuration variants

[TR_METH_01109]

Producing ECU-specific deliverables

[TR_METH 07110]

Development of Software Components

[TR_METH_01111]

Development of Basic Software modules

[TR_METH_01112]

Integration of AUTOSAR ECUs

[TR_METH_01113]

Usage of hyperlinks

[TR_METH_01120]

Definition of Consistency Needs

[TR_ METH 01121]

Building the AUTOSAR methodology document

[TR_METH_01122]

Relations between AUTOSAR wWork Products

[TR_METH_01123]

Traceability to external artifacts

[TR_METH_01124]

Documentation of Work Products

[TR_METH_02000]

Use of AUTOSAR Services

[TR_METH_02001]

Define Cross—-component Calibration Parameters activity

[TR_METH_02002]

Define Local Calibration Parameters activity

[TR_METH_02003]

Provide Unique Parameter Names activity

[TR_METH_02004]

Re-generate RTE and Calibration Support activity

[TR_METH_02005]

Memory sections for data and code

[TR_METH_020086]

E2E Protection

[TR_METH_02007]

Define E2E Protection Set activity

[TR_METH_02008]

Regenerate E2E Protection Wrapper activity

[TR_METH_02009]

Variation points in Variant Handling

[TR_METH_02010]

Predefined Variants in Variant Handling

[TR_METH_02011]

Types of binding times

[TR_METH_02012]

Definition of a binding time

[TR_METH_02013]

Latest Binding Time

[TR_METH_02014]

Actual Binding Time

[TR_METH_02015]

Definition of variants

[TR_METH_02016]

Evaluated Variant Set

[TR_METH_02017]

Use of Predefined Variant

[TR_METH_02018]

Choosing variants

[TR_METH_02020]

Definition of latest Binding Time for a variation point in the meta-model

[TR_METH_03000]

Name spaces via ARPackage$s

[TR_METH_03001]

Reasons for name conflicts in “downstream” artifacts

[TR_METH_03002]

Conflict solution at system design time

[TR_METH_03003]

Conflict solution at coding time

[TR_METH_03004]

Conflict solution at ECU integration time

[TR_METH_03005]

Conflict solution via SymbolProps

[TR_METH_030086]

Conflict solution via literal prefixes

AUTSSAR

[TR_METH_03007]

Conflict solution in names of runnable entities

[TR_METH_03008]

Conflict solution via FlatMap

[TR_METH_03009]

Conflict solution via AliasNameSet

[TR_METH_03010]

Conflict solution via API Infixes

Table B.1: Added Specification ltems in 4.1.1

B.1.2 Changed Specification ltems in 4.1.1

none

B.1.3 Deleted Specification Iltems in 4.1.1

none

B.2 Change History of this document according to AUTOSAR Re-
lease R4.1.2

B.2.1 Added Specification ltems in 4.1.2

Number

Heading

[TR_METH_01114]

Input sources for ECU Configuration

[TR_METH_01115]

A mix of parameters with different configuration classes within a BSW module
is allowed

[TR_METH_01116]

ECU Configuration Value description contains the configuration of all BSW
modules in a single ECU

[TR_ METH 01117]

BSW implementation shall be chosen for each BSW module that is present in
the ECU

Table B.2: Added Specification Iltems in 4.1.2

B.2.2 Changed Specification Iltems in 4.1.2

none

B.2.3 Deleted Specification ltems in 4.1.2

none

AUTSSAR

B.3 Change History of this document according to AUTOSAR Re-
lease R4.1.3

B.3.1 Added Specification Iltems in 4.1.3

Number

Heading

[TR_ METH _01125]

Create ECU System Description activity

[TR_METH_01126]

Using the System Extract as the structural basis for the ECU development

[TR_METH 01127]

Creating a new structure for the ECU development

Table B.3: Added Specification Iltems in 4.1.3

B.3.2 Changed Specification Items in 4.1.3

Number

Heading

[TR_METH_01049]

Interaction between organizations

[TR_METH_01066]

Creation of a System Extract and an ECU Extract

[TR_METH_01075]

Design Sub-System activity

[TR_ METH_01076]

Collaboration between different organizations

Table B.4: Changed Specification Items in 4.1.3

B.3.3 Deleted Specification ltems in 4.1.3

none

B.4 Change History of this document according to AUTOSAR Re-

lease R4.2.1

B.4.1 Added Specification Iltems in 4.2.1

Number

Heading

[TR_METH_01128]

Integration of Non AUTOSAR Systems in the context of an abstract system

[TR_ METH_01129]

Integrate Non AUTOSAR System at VFB level activity

[TR_METH_01130]

Design Transformer activity

[TR_METH_01131]

Output of Design Transformer activity

[TR_METH_01132]

Definition of a Rapid Prototyping Scenario

[TR_METH_01133]

Content of Rapid Prototyping Scenario artifact

[TR_METH_01134]

Component wrapper method

[TR_METH_01135]

Direct buffer access method

[TR_METH_01136]

Content of Diagnostic Extract

[TR_METH 01137]

Diagnostic Extract category

[TR_METH_01138]

Decentralized configuration

[TR_METH_01139]

Roles

[TR_METH_01140]

Develop Diagnostic Abstract System Description activity

[TR_METH_01141]

Development of diagnostic requirements

AUTSSAR

[TR_METH_01142]

Diagnostic information in the context of SW-C development

[TR_METH_01143]

Integration of diagnostic information

[TR_METH_01144]

Activity Define Safety Information

[TR_METH_01145]

Creation of Safety Requirements

[TR_METH_01146]

Allocation of Safety Requirements

[TR_METH 01147]

Decomposition of Safety Requirements

[TR_METH_01148]

Definition of safety Measures

[TR_METH_01149]

Definition of VFB relevant safety information

[TR_METH_01150]

Including different post-build variants

[TR_METH_01151]

Update ECU Configuration activity

[TR_METH_01153]

Configuration and Generation of the E2E Transformer

[TR_METH_01154]

Define E2E Transformer Technology Task

Table B.5: Added Specification ltems in 4.2.1

B.4.2 Changed Specification Items in 4.2.1

Number

Heading

[TR_METH_01059]

Kinds of VFB Atomic Software Component$

[TR_METH_01046]

Development of the system

[TR_METH_01065]

Develop Systemand Develop Sub-System activities

[TR_METH_01060]

Develop an Atomic Software Component activity

[TR_METH_01065]

Develop Systemand Develop Sub-System activities

[TR_METH_01104]

Configuration Class: Post-build Time

[TR_METH_01105]

Generate BSW Postbuild Configuration Code

[TR_METH_01108]

Generating multiple post-build configuration variants

[TR_METH_02006]

E2E Protection

Table B.6: Changed Specification Items in 4.2.1

B.4.3 Deleted Specification Iltems in 4.2.1

Number

Heading

[TR_METH_01106]

Generate BSW Configuration Data Loadable

[TR_METH_01107]

Configuration Class: Post-build Time Selectable

[TR_METH_02007]

Define E2E Protection Set activity

[TR_METH_02008]

Regenerate E2E Protection Wrapper activity

B.5 Change History of this document according to AUTOSAR Re-

Table B.7: Deleted Specification Items in 4.2.1

lease R4.2.2

B.5.1 Added Specification Items in 4.2.2

none

AUTSSAR

B.5.2

none

B.5.3

none

Changed Specification Items in 4.2.2

Deleted Specification ltems in 4.2.2

B.6 Change History of this document according to AUTOSAR Re-
lease R4.3.0

B.6.1

Added Specification Items in 4.3.0

Number

Heading

[TR_METH_01155]

Definition of serialization

[TR_ METH_01156]

Use case: Serialization based on network representation

[TR_METH_01157]

Use case: Serialization based on implementation data types

[TR_METH_01202]

Create aProfile of Data Exchange Point

[TR_METH_01204]

Agreement on a profile for data exchange points

[TR_METH_01205]

Validation based on an Agreed Profile of Data Exchange Point

Table B.8: Added Specification Iltems in 4.3.0

B.6.2 Changed Specification Items in 4.3.0

Number Heading
[TR_METH_01006] General AUTOSAR methodology concepts
[TR_METH_01013] Task usage

[TR_METH_01032]

Use case elements

[TR_METH_01036]

Description of overall Use Cases

[TR_METH_01037]

Precise description of Use Cases

[TR_METH_01000]

Domains of the AUTOSAR methodology

[TR_METH_01039]

Virtual Functional Bus View

[TR_METH_01040]

Support of different system views

[TR_METH_01044]

Development of a functional view on the system

[TR_METH_01045]

Development of the Overall VFB System

[TR_METH_01046]

Development of the system

[TR_METH_01047]

Two phase development approach

[TR_METH_01049]

Interaction between organizations

[TR_METH_01109]

Producing ECU-specific deliverables

[TR_METH_01110]

Development of Software Components

[TR_METH_01112]

Integration of AUTOSAR ECUs

[TR_METH_01093]

Building ECU Executable

[TR_METH _01071]

Description of design constraints

[TR_METH_01130]

Design Custom Transformer activity

[TR_METH_01131]

Output of Design Custom Transformer activity

Table B.9: Changed Specification Items in 4.3.0

AUTSSAR

B.6.3 Deleted Specification Items in 4.3.0

none

B.7 Change History of this document according to AUTOSAR Re-
lease R4.3.1

B.7.1 Added Specification Iltems in 4.3.1

none

B.7.2 Changed Specification Items in 4.3.1

Number Heading

[TR_METH_01014] Work Product Definition

Table B.10: Changed Specification Items in 4.3.1

B.7.3 Deleted Specification Iltems in 4.3.1

none

B.8 Change History of this document according to AUTOSAR Re-
lease R4.4.0

B.8.1 Added Specification ltems in 4.4.0

none

B.8.2 Changed Specification Iltems in 4.4.0

Number Heading

[TR_METH_01001] AUTOSAR methodology assets

[TR_METH_01002] AUTOSAR methodology use cases

[TR_METH_01004] Support for various stakeholders by the AUTOSAR methodology
[TR_METH_01005] Restrictions of AUTOSAR methodology

[TR_METH_01006] General AUTOSAR methodology concepts

[TR_METH_01007] Methodology Library

\Y

AUTSSAR

A

Number

Heading

[TR_METH_01008]

Methodology Library Element

[TR_METH_01009]

Relation of Methodology Library and Methodology Library Ele-
ment to the SPEM meta model

[TR_METH_01010]

Overview of Methodology Library Elements

[TR_METH_01011]

Task Definition

[TR_METH_01012]

Task semantics

[TR_METH_01013]

Task usage

[TR_METH_01014]

Work Product Definition

[TR_METH_01015]

Relationship between Roles and Work Products

[TR_METH_01017]

Artifact Definition

[TR_METH_01018]

Kinds of Artifacts

[TR_METH_01019]

Properties of Artifacts

[TR_METH_01020]

Relationship between Artifacts and meta-model elements

[TR_METH_01021]

Deliverable Definition

[TR_METH_01022]

Aggregation of Work Products

[TR_METH_01023]

Role Definition

[TR_METH_01024]

Role assignment

[TR_METH_01026]

Guidance definition

[TR_METH_01027]

Guidance kinds

[TR_METH_01028]

Usage of tables

[TR_METH_01033]

Definition of Activities

[TR_METH_01034]

Composition of Activities

[TR_METH_01044]

Development of a functional view on the system

[TR_METH_01046]

Development of the system

[TR_METH_01047]

Two phase development approach

[TR_METH_01048]

The overall system

[TR_METH_01050]

Abstract System Description activity

[TR_METH_01051]

Creation of an overall abstract system

[TR_METH_01052]

Definition of a constraints in the context of an abstract system

[TR_METH_01053]

Definition of a System Description in the context of an abstract system

[TR_METH_01054]

Virtual Functional Bus

[TR_METH_01055]

Data Model Development activity

[TR_METH_01056]

Definition of the VFB

[TR_METH_01057]

Top-Down approach

[TR_METH_01058]

Bottom-Up approach

[TR_METH_01059]

Kinds of VFB Atomic Software Component$

[TR_METH_01060]

Develop an Atomic Software Component activity

[TR_METH_01061]

Develop Application Software activity

\Y

AUTSSAR

A

Number

Heading

[TR_METH_01065]

Develop Systemand Develop Sub-System activities

[TR_METH_01066]

Creation of a System Extract and an ECU Extract

[TR_METH_01067]

Abstract System Description deliverable

[TR_METH_01068]

Inputs and Output of the Design System activity

[TR_METH_01070]

Description of network signals

[TR_METH_01071]

Description of design constraints

[TR_METH_01075]

Design Sub-System activity

[TR_METH_01076]

Collaboration between different organizations

[TR_METH_01077]

Transformation changes during the Design Sub-System activity

[TR_METH_01078]

Mapping of different views

[TR_METH_01079]

Use Case: Substitution of existing components

[TR_METH_01080]

Use Case: Mapping of requirements to the solution

[TR_METH_01081]

Use Case: Reorganization of the software structure

[TR_METH_01082]

Use Case: Description of changes between different versions of System
Descriptions

[TR_METH_01083]

Design Basic Software activity

[TR_METH_01084]

Separation of design and development of basic software

[TR_METH_01085]

Develop BSW Module activity

[TR_METH_01086]

Integrate Software for ECU activity

[TR_METH_01087]

Scope of Integrate Software for ECU activity

[TR_METH_01088]

Prepare ECU Configuration activity

[TR_METH_01089]

Configure BSW and RTE activity

[TR_METH_01090]

Configure RTE task

[TR_METH_01092]

Generating BSW modules, RTE, and OS source files

[TR_METH_01093]

Building ECU Executable

[TR_METH_01095]

Configuration Class: Pre-compile Time

[TR_METH_01098]

Configuration Class: Link Time

[TR_METH_01103]

Re-generation in case of configuration value changes

[TR_METH_01104]

Configuration Class: Post-build Time

[TR_METH_01109]

Producing ECU-specific deliverables

[TR_METH_01110]

Development of Software Components

[TR_METH_01111]

Development of Basic Software modules

[TR_METH_01112]

Integration of AUTOSAR ECUs

[TR_METH_01113]

Usage of hyperlinks

[TR_METH_01114]

Input sources for ECU Configuration

[TR_METH_01115]

A mix of parameters with different configuration classes within a BSW module
is allowed

[TR_METH_01116]

ECU Configuration Value description contains the configuration of all BSW
modules in a single ECU

\Y

AUTSSAR

A

Number

Heading

[TR_METH_01117]

BSW implementation shall be chosen for each BSW module that is present
in the ECU

[TR_METH_01121]

Building the AUTOSAR methodology document

[TR_METH_01122]

Relations between AUTOSAR Work Products

[TR_METH_01123]

Traceability to external artifacts

[TR_METH_01125]

Create ECU System Description activity

[TR_METH_01126]

Using the System Extract as the structural basis for the ECU development

[TR_METH_01127]

Creating a new structure for the ECU development

[TR_METH_01130]

Design Custom Transformer activity

[TR_METH_01132]

Definition of a Rapid Prototyping Scenario

[TR_METH_01133]

Content of Rapid Prototyping Scenario artifact

[TR_METH_01136]

Content of Diagnostic Extract

[TR_METH_01137]

Diagnostic Extract category

[TR_METH_01138]

Decentralized configuration

[TR_METH_01139]

Roles

[TR_METH_01140]

Develop Diagnostic Abstract System Description activity

[TR_METH_01141]

Development of diagnostic requirements

[TR_METH_01142]

Diagnostic information in the context of SW-C development

[TR_METH_01143]

Integration of diagnostic information

[TR_METH_01144]

Activity Define Safety Information

[TR_METH_01145]

Creation of safety Requirements

[TR_METH_01146]

Allocation of Safety Requirements

[TR_METH_01147]

Decomposition of Safety Requirement$s

[TR_METH_01148]

Definition of safety Measures

[TR_METH_01149]

Definition of VFB relevant safety information

[TR_METH_01151]

Update ECU Configuration activity

[TR_METH_01153]

Configuration and Generation of the E2E Transformer

[TR_METH_01154]

Define E2E Transformer Technology Task

[TR_METH_01155]

Definition of serialization

[TR_METH_01156]

Use case: Serialization based on network representation

[TR_METH_01157]

Use case: Serialization based on implementation data types

[TR_METH_02000]

Use of AUTOSAR Services

[TR_METH_02001]

Define Cross-component Calibration Parameters activity

[TR_METH_02002]

Define Local Calibration Parameters activity

[TR_METH_02003]

Provide Unique Parameter Names activity

[TR_METH_02005]

Memory sections for data and code

[TR_METH_02006]

E2E Protection

[TR_METH_02015]

Definition of variants

\Y%

AUTSSAR

A

Number

Heading

[TR_METH_02016]

Evaluated Variant Set

[TR_METH_02017]

Use of Predefined Variant

[TR_METH_02018]

Choosing variants

[TR_METH_03000]

Name spaces via ARPackages

[TR_METH_03001]

Reasons for name conflicts in “downstream” artifacts

[TR_METH_03005]

Conflict solution via SymbolProps

[TR_METH_03006]

Conflict solution via literal prefixes

[TR_METH_03007]

Conflict solution in names of runnable entities

[TR_METH_03008]

Conflict solution via FlatMap

[TR_METH_03010]

Conflict solution via API Infixes

Table B.11: Changed Specification Iltems in 4.4.0

B.8.3 Deleted Specification Items in 4.4.0

Number Heading

[TR_METH_01091] Configure Debug task

Table B.12: Deleted Specification Iltems in 4.4.0

B.9 Change History of this document according to AUTOSAR Re-
lease R19-11

B.9.1 Added Specification ltems in 19-11

none

B.9.2 Changed Specification Items in 19-11

Number

Heading

[TR_METH_01000]

Domains of the AUTOSAR methodology

[TR_METH_01001]

AUTOSAR methodology assets

[TR_METH_01002]

AUTOSAR methodology use cases

[TR_METH_01003]

Scope of the AUTOSAR methodology

[TR_METH_01005]

Restrictions of AUTOSAR methodology

[TR_METH_01006]

General AUTOSAR methodology concepts

\Y

AUTSSAR

A

Number

Heading

[TR_METH_01007]

Methodology Library

[TR_METH_01008]

Methodology Library Element

[TR_METH_01009]

Relation of Methodology Library and Methodology Library Ele-
ment to the SPEM meta model

[TR_METH_01010]

Overview of Methodology Library Element$

[TR_METH_01011]

Task Definition

[TR_METH_01013]

Task usage

[TR_METH_01014]

Work Product Definition

[TR_METH_01015]

Relationship between Roles and Work Products

[TR_METH_01017]

Artifact Definition

[TR_METH_01018]

Kinds of Artifacts

[TR_METH_01021]

Deliverable Definition

[TR_METH_01022]

Aggregation of Work Products

[TR_METH_01023]

Role Definition

[TR_METH_01024]

Role assignment

[TR_METH_01025]

Tool Definition

[TR_METH_01026]

Guidance definition

[TR_METH_01032]

Use case elements

[TR_METH_01034]

Composition of Activities

[TR_METH_01036]

Description of overall Use Cases

[TR_METH_01037]

Precise description of Use Cases

[TR_METH_01038]

Detailed description of the work flow

[TR_METH_01044]

Development of a functional view on the system

[TR_METH_01045]

Development of the Overall VFB System

[TR_METH_01046]

Development of the system

[TR_METH_01049]

Interaction between organizations

[TR_METH_01055]

Data Model Development activity

[TR_METH_01056]

Definition of the VFB

[TR_METH_01060]

Develop an Atomic Software Component activity

[TR_METH_01065]

Develop Systemand Develop Sub-System activities

[TR_METH_01066]

Creation of a System Extract and an ECU Extract

[TR_METH_01109]

Producing ECU-specific deliverables

[TR_METH_01110]

Development of Software Components

[TR_METH_01111]

Development of Basic Software modules

[TR_METH_01112]

Integration of AUTOSAR ECUs

[TR_METH_01113]

Usage of hyperlinks

[TR_METH_01120]

Definition of Consistency Needs

[TR_METH_01121]

Building the AUTOSAR methodology document

[TR_METH_01123]

Traceability to external artifacts

\Y

AUTSSAR

JAN
Number Heading
[TR_METH_01139] Roles
[TR_METH_01144] Activity Define Safety Information
[TR_METH_01149] Definition of VFB relevant safety information
[TR_METH_01150] Including different post-build variants

Table B.13: Changed Specification Items in 19-11

B.9.3 Deleted Specification Iltems in 19-11

none

B.10 Change History of this document according to AUTOSAR Re-
lease R20-11

B.10.1 Added Specification Iltems in R20-11

none

B.10.2 Changed Specification ltems in R20-11

none

B.10.3 Deleted Specification Iltems in R20-11

none

B.11 Change History of this document according to AUTOSAR Re-
lease R21-11

B.11.1 Added Specification Items in R21-11

none

B.11.2 Changed Specification Items in R21-11

none

AUTSSAR

B.11.3 Deleted Specification Iltems in R21-11

none

B.12 Change History of this document according to AUTOSAR Re-
lease R22-11

B.12.1 Added Specification Items in R22-11

none

B.12.2 Changed Specification Iltems in R22-11

Number

Heading

[TR_METH_01087]

Scope of Integrate Software for ECU activity

[TR_METH_01112]

Integration of EcuInstances

[TR_METH_02005]

Memory sections for data and code

[TR_METH_03005]

Conflict solution via SymbolProps

Table B.14: Changed Specification Items in R22-11

B.12.3 Deleted Specification Iltems in R22-11

none

B.13 Change History of this document according to AUTOSAR Re-
lease R23-11

B.13.1 Added Specification Iltems in R23-11

none

B.13.2 Changed Specification ltems in R23-11

none

B.13.3 Deleted Specification Items in R23-11

none

AUT<

SAR

B.14 Change History of this document according to AUTOSAR Re-
lease R24-11

B.14.1 Added Specification Items in R24-11

none

B.14.2 Changed Specification Iltems in R24-11

none

B.14.3 Deleted Specification Iltems in R24-11

none

B.15 Change History of this document according to AUTOSAR Re-
lease R25-11

B.15.1 Added Specification ltems in R25-11

none

B.15.2 Changed Specification ltems in R25-11

Number

Heading

[TR_METH_01128]

Integration of Non AUTOSAR Systems in the context of an abstract system

[TR_METH_01129]

Integrate Non AUTOSAR System at VFB level activity

Table B.15: Changed Specification Items in R25-11

B.15.3 Deleted Specification Iltems in R25-11

Number

Heading

[TR_METH_01202]

Create aProfile of Data Exchange Point

[TR_METH_01204]

Agreement on a profile for data exchange points

[TR_METH_01205]

Validation based on an Agreed Profile of Data Exchange Point

Table B.16: Deleted Specification Iltems in R25-11

	1 Introduction
	1.1 Objective
	1.2 Document Conventions
	1.3 Scope
	1.4 Terms and Abbreviations
	1.5 Overview
	1.6 Methodology Concepts
	1.6.1 Methodology Library Elements
	1.6.1.1 Task Definition
	1.6.1.2 Work Product Definition
	1.6.1.3 Role Definition
	1.6.1.4 Tool Definition
	1.6.1.5 Guidance

	1.6.2 Use Case Specifications
	1.6.2.1 Activity
	1.6.2.2 Capability Pattern
	1.6.2.3 Description of Use Cases

	1.7 General Requirements

	2 Use Cases
	2.1 Overall View
	2.1.1 Purpose
	2.1.2 Description
	2.1.2.1 Views on the System
	2.1.2.2 Overall Workflow

	2.1.3 Workflow

	2.2 Develop an Abstract System Description
	2.2.1 Purpose
	2.2.2 Description
	2.2.3 Workflow

	2.3 Develop a VFB System Description
	2.3.1 Purpose
	2.3.2 Description
	2.3.3 Workflow

	2.4 Develop Software Components
	2.4.1 Develop an Atomic Software Component
	2.4.1.1 Purpose
	2.4.1.2 Description
	2.4.1.3 Workflow

	2.4.2 Develop Application Software
	2.4.2.1 Purpose
	2.4.2.2 Description
	2.4.2.3 Workflow

	2.4.3 Uses Cases for more Specialized Software Components
	2.4.3.1 Purpose
	2.4.3.2 Description
	2.4.3.3 Workflow

	2.5 Develop System and Subsystems
	2.5.1 Overview
	2.5.1.1 Purpose
	2.5.1.2 Description

	2.5.2 Design System
	2.5.2.1 Purpose
	2.5.2.2 Description
	2.5.2.3 Workflow

	2.5.3 Generate System Extract
	2.5.3.1 Purpose
	2.5.3.2 Description
	2.5.3.3 Workflow

	2.5.4 Create ECU System Description
	2.5.4.1 Purpose
	2.5.4.2 Description
	2.5.4.3 Workflow

	2.5.5 Design Sub-System
	2.5.5.1 Purpose
	2.5.5.2 Description
	2.5.5.3 Workflow

	2.5.6 Generate CpSoftwareCluster Extract
	2.5.6.1 Purpose
	2.5.6.2 Description
	2.5.6.3 Workflow

	2.5.7 Generate ECU Extract
	2.5.7.1 Purpose
	2.5.7.2 Description
	2.5.7.3 Workflow

	2.5.8 Design Custom Transformer
	2.5.8.1 Purpose
	2.5.8.2 Description
	2.5.8.3 Workflow

	2.5.9 Define System Safety Information
	2.5.9.1 Purpose
	2.5.9.2 Description
	2.5.9.3 Workflow

	2.6 Develop Basic Software
	2.6.1 Overview
	2.6.1.1 Purpose
	2.6.1.2 Description
	2.6.1.3 Workflow

	2.6.2 Design BSW
	2.6.2.1 Purpose
	2.6.2.2 Description
	2.6.2.3 Workflow

	2.6.3 Develop BSW Module
	2.6.3.1 Purpose
	2.6.3.2 Description
	2.6.3.3 Workflow

	2.7 Integrate Software for ECU
	2.7.1 Description
	2.7.2 Overview
	2.7.2.1 Purpose
	2.7.2.2 Description
	2.7.2.2.1 Inputs to ECU Configuration
	2.7.2.2.2 ECU Configuration Values

	2.7.2.3 Workflow

	2.7.3 Prepare ECU Configuration
	2.7.3.1 Description
	2.7.3.2 Workflow

	2.7.4 Configure BSW and RTE
	2.7.4.1 Description
	2.7.4.2 Workflow

	2.7.5 Update ECU Configuration
	2.7.5.1 Description
	2.7.5.2 Workflow

	2.7.6 Model ECU Timing
	2.7.6.1 Workflow

	2.7.7 Generate BSW and RTE
	2.7.7.1 Description
	2.7.7.2 Workflow

	2.7.8 Build Executable
	2.7.8.1 Description
	2.7.8.2 Workflow

	2.7.9 Configuration Classes
	2.7.9.1 Configuration Class: Pre-compile Time
	2.7.9.1.1 Description
	2.7.9.1.2 Workflow

	2.7.9.2 Configuration Class: Link Time
	2.7.9.2.1 Description
	2.7.9.2.2 Workflow

	2.7.9.3 Configuration Class: Post-build Time
	2.7.9.3.1 Description
	2.7.9.3.2 Workflow

	2.7.9.4 Handling of different post-build variants in configuration classes
	2.7.9.4.1 Description

	2.8 Components and Services
	2.8.1 Purpose
	2.8.2 Description
	2.8.3 Workflow

	2.9 Calibration Overview
	2.9.1 Purpose
	2.9.2 Description
	2.9.3 Workflow

	2.10 Memory Mapping
	2.10.1 Purpose
	2.10.2 Description
	2.10.3 Workflow

	2.11 E2E Protection
	2.11.1 Purpose
	2.11.2 Description
	2.11.3 Workflow

	2.12 Diagnostic Extract
	2.12.1 Purpose
	2.12.2 Description
	2.12.3 Workflow

	2.13 Rapid Prototyping
	2.13.1 Purpose
	2.13.2 Description
	2.13.3 Workflow

	2.14 Safety Extensions
	2.14.1 Purpose
	2.14.2 Description
	2.14.3 Workflow

	2.15 Variant Handling
	2.15.1 Overview
	2.15.2 Binding Times
	2.15.2.1 Latest Binding Time
	2.15.2.2 Actual Binding Time

	2.15.3 Defining Variants
	2.15.4 Choosing Variants

	2.16 Definition of Binding Times
	2.16.1 Overview
	2.16.2 A Classification of Artifacts with respect to Binding Times
	2.16.3 Classification of Binding Times
	2.16.3.1 BlueprintDerivationTime
	2.16.3.2 FunctionDesignTime
	2.16.3.3 InitialBindingTime
	2.16.3.4 SystemDesignTime
	2.16.3.5 CodeGenerationTime
	2.16.3.6 PreCompileTime
	2.16.3.7 CompileTime
	2.16.3.8 LinkTime
	2.16.3.9 PostBuild
	2.16.3.10 Runtime

	2.17 How to resolve Name Conflicts
	2.17.1 Reasons for Name Conflicts
	2.17.2 Points in the Methodology where Name Conflicts are resolved
	2.17.3 Mechanisms for resolving Name Conflicts

	3 Methodology Library
	3.1 Common Elements
	3.1.1 Work Product Kinds
	3.1.2 Tasks
	3.1.2.1 Add General Documentation
	3.1.2.2 Define Admin Data
	3.1.2.3 Define Alias Names
	3.1.2.4 Evaluate Variant
	3.1.2.5 Define Memory Addressing Modes
	3.1.2.6 Configure Memmap Allocation
	3.1.2.7 Generate BSW Memory Mapping Header
	3.1.2.8 Generate SWC Memory Mapping Header

	3.1.3 Work Products
	3.1.3.1 General Documentation
	3.1.3.2 Alias Name Set
	3.1.3.3 Evaluated Variant Set
	3.1.3.4 Autosar Specification
	3.1.3.5 General Autosar Artifact
	3.1.3.6 General Deliverable
	3.1.3.7 General Non-Autosar Artifact
	3.1.3.8 Postbuild Variant Set
	3.1.3.9 Predefined Variant
	3.1.3.10 Standard Header Files
	3.1.3.11 System Constant Value Set

	3.1.4 Roles
	3.1.5 Tools
	3.1.5.1 Compiler
	3.1.5.2 Linker

	3.1.6 Diagnostics
	3.1.6.1 Work Products

	3.1.7 Safety
	3.1.7.1 Tasks
	3.1.7.1.1 Define Safety Requirement
	3.1.7.1.2 Define Safety Measure
	3.1.7.1.3 Define ASIL For AUTOSAR Element
	3.1.7.1.4 Refine Safety Requirement
	3.1.7.1.5 Decompose Safety Requirement
	3.1.7.1.6 Allocate Safety Measure
	3.1.7.1.7 Allocate Safety Requirement
	3.1.7.1.8 Map Safety Requirement to Safety Measure
	3.1.7.1.9 Add Independence Relation

	3.1.7.2 Work Products
	3.1.7.2.1 Safety Extensions
	3.1.7.2.2 Safety Requirement
	3.1.7.2.3 Safety Measure

	3.2 Virtual Functional Bus
	3.2.1 Tasks
	3.2.1.1 Define VFB Top Level
	3.2.1.2 Define VFB Composition Component
	3.2.1.3 Extend Composition
	3.2.1.4 Define VFB Component Constraints
	3.2.1.5 Define VFB Application Software Component
	3.2.1.6 Define VFB Sensor or Actuator Component
	3.2.1.7 Define VFB Parameter Component
	3.2.1.8 Define ECU Abstraction Component
	3.2.1.9 Define Complex Driver Component
	3.2.1.10 Define VFB NvBlock Software Component
	3.2.1.11 Define Wrapper Components to Integrate Legacy Software
	3.2.1.12 Define VFB Interfaces
	3.2.1.13 Define VFB Types
	3.2.1.14 Define VFB Modes
	3.2.1.15 Define VFB Constants
	3.2.1.16 Define VFB Timing
	3.2.1.17 Define VFB Variants
	3.2.1.18 Define VFB Integration Connector
	3.2.1.19 Translate Non-AUTOSAR Description to AUTOSAR Description

	3.2.2 Work Products
	3.2.2.1 VFB System
	3.2.2.2 Overall VFB System
	3.2.2.3 VFB System Extract
	3.2.2.4 VFB Top Level System Composition
	3.2.2.5 VFB Composition Component
	3.2.2.6 VFB AUTOSAR Standard Package
	3.2.2.7 AUTOSAR Specification of Application Interfaces
	3.2.2.8 VFB Atomic Software Component
	3.2.2.9 VFB Atomic Application Software Component
	3.2.2.10 Complex Driver Component
	3.2.2.11 ECU Abstraction Software Component
	3.2.2.12 VFB Parameter Component
	3.2.2.13 VFB Sensor Actuator Component
	3.2.2.14 VFB NvBlock Software Component
	3.2.2.15 VFB Non AUTOSAR Component
	3.2.2.16 VFB Interfaces
	3.2.2.17 VFB Types
	3.2.2.18 VFB Data Type Mapping Set
	3.2.2.19 VFB Modes
	3.2.2.20 VFB Constants
	3.2.2.21 VFB Software Component Mapping Constraints
	3.2.2.22 VFB Timing
	3.2.2.23 Description of a Non-AUTOSAR System
	3.2.2.24 Integration Connector

	3.3 System
	3.3.1 Tasks
	3.3.1.1 Set System Root
	3.3.1.2 Assign Top Level Composition
	3.3.1.3 Define ECU Description
	3.3.1.4 Define System Topology
	3.3.1.5 Deploy Software Component
	3.3.1.6 Design CpSoftwareCluster
	3.3.1.7 Extend CpSoftwareCluster
	3.3.1.8 Generate or Adjust System Flat Map
	3.3.1.9 Derive Communication Needs
	3.3.1.10 Define Signal Path Constraints
	3.3.1.11 Define System Variants
	3.3.1.12 Define System Timing
	3.3.1.13 Extend Topology
	3.3.1.14 Select Software Component Implementation
	3.3.1.15 Select Design Time Variant
	3.3.1.16 Define System View Mapping
	3.3.1.17 Create Transformer Specification
	3.3.1.18 Define Rapid Prototyping Scenario

	3.3.2 Work Products
	3.3.2.1 System Description
	3.3.2.2 Abstract System Description
	3.3.2.3 Complete ECU Description
	3.3.2.4 CpSoftwareCluster Extract
	3.3.2.5 System Description Root Element
	3.3.2.6 System Mapping Overview
	3.3.2.7 Data Mapping
	3.3.2.8 Mapping of Software Components to ECUs
	3.3.2.9 Mapping of Software Components to Implementations
	3.3.2.10 Signal Path Constraints
	3.3.2.11 Topology
	3.3.2.12 Ecu Resources Description
	3.3.2.13 System Signal
	3.3.2.14 System Signal Group
	3.3.2.15 System Flat Map
	3.3.2.16 System Timing
	3.3.2.17 System View Mapping
	3.3.2.18 Transformer Design Bundle
	3.3.2.19 Custom Transformer Specification
	3.3.2.20 Rapid Prototyping Scenario

	3.3.3 Communication Matrix and Communication Layers
	3.3.3.1 Tasks
	3.3.3.1.1 Define Communication Matrix
	3.3.3.1.2 Define Frames
	3.3.3.1.3 Define Signal PDUs
	3.3.3.1.4 Define Secured PDUs
	3.3.3.1.5 Define TP
	3.3.3.1.6 Define Network Management
	3.3.3.1.7 Define PDU Gateway
	3.3.3.1.8 Define Signal Gateway
	3.3.3.1.9 Define RTE Fan-out
	3.3.3.1.10 Define Transformation Technology
	3.3.3.1.11 Define E2E Transformer Technology
	3.3.3.1.12 Define Transformation Chain

	3.3.3.2 Work Products
	3.3.3.2.1 Communication Layers
	3.3.3.2.2 Communication Matrix
	3.3.3.2.3 Data Link Layer
	3.3.3.2.4 Interaction Layer
	3.3.3.2.5 Diagnostics Interaction Layer
	3.3.3.2.6 Network Layer
	3.3.3.2.7 Serializer Transformer
	3.3.3.2.8 E2E Transformer

	3.3.4 ECU Extract
	3.3.4.1 Tasks
	3.3.4.1.1 Extract ECU Topology
	3.3.4.1.2 Generate or Adjust ECU Flat Map
	3.3.4.1.3 Flatten Software Composition
	3.3.4.1.4 Extract the ECU Communication
	3.3.4.1.5 Extract the ECU Timing Model
	3.3.4.1.6 Extract the ECU System Variant Model
	3.3.4.1.7 Extract ECU Rapid Prototyping Scenario

	3.3.4.2 Work Products
	3.3.4.2.1 ECU Extract
	3.3.4.2.2 ECU Extract Root Element
	3.3.4.2.3 ECU Extract of VFB System
	3.3.4.2.4 ECU Extract of Data Mapping
	3.3.4.2.5 ECU Extract of Topology
	3.3.4.2.6 ECU Extract for Communication
	3.3.4.2.7 ECU Extract of System Timing
	3.3.4.2.8 ECU Extract of System Variant Model
	3.3.4.2.9 ECU Flat Map
	3.3.4.2.10 ECU Extract of Rapid Prototyping Scenario

	3.4 Software Component
	3.4.1 Tasks
	3.4.1.1 Define Software Component Internal Behavior
	3.4.1.2 Define Partial Flat Map
	3.4.1.3 Define Software Component Timing
	3.4.1.4 Define SymbolProps for Types
	3.4.1.5 Add Documentation to the Software Component
	3.4.1.6 Generate Atomic Software Component Contract Header Files
	3.4.1.7 Generate Component Header File in Vendor Mode
	3.4.1.8 Generate Component Prebuild Data Set
	3.4.1.9 Implement Atomic Software Component
	3.4.1.10 Compile Atomic Software Component
	3.4.1.11 Map Software Component to BSW
	3.4.1.12 Measure Component Resources
	3.4.1.13 Recompile Component in ECU Context
	3.4.1.14 Define Consistency Needs
	3.4.1.15 Generate Rapid Prototyping Wrapper

	3.4.2 Work Products
	3.4.2.1 Delivered Atomic Software Components
	3.4.2.2 Software Component Internal Behavior
	3.4.2.3 Atomic Software Component Implementation
	3.4.2.4 Software Component Documentation
	3.4.2.5 Software Component Timing
	3.4.2.6 Software Component to BSW Mapping
	3.4.2.7 Partial Flat Map
	3.4.2.8 Application Header File
	3.4.2.9 Software Component Data Types Header
	3.4.2.10 Component RTE Prebuild Configuration Header
	3.4.2.11 Atomic Software Component Source Code
	3.4.2.12 Atomic Software Component Object Code
	3.4.2.13 Optimized Application Header File
	3.4.2.14 Optimized Software Component Object Code
	3.4.2.15 Consistency Needs
	3.4.2.16 Rapid Prototyping Wrapper Header File
	3.4.2.17 Rapid Prototyping Wrapper Source Code

	3.4.3 Tools
	3.4.3.1 Component API Generator Tool

	3.5 Basic Software
	3.5.1 Tasks
	3.5.1.1 Define BSW Types
	3.5.1.2 Define BSW Entries
	3.5.1.3 Define BSW Interfaces
	3.5.1.4 Define Vendor Specific Module Definition
	3.5.1.5 Define BSW Behavior
	3.5.1.6 Define BSW Module Timing
	3.5.1.7 Generate BSW Contract Header Files
	3.5.1.8 Implement a BSW Module
	3.5.1.9 Develop BSW Module Generator
	3.5.1.10 Create Library
	3.5.1.11 Compile BSW Core Code
	3.5.1.12 Generate BSW Module Prebuild Dataset

	3.5.2 Work Products
	3.5.2.1 BSW Standard Package
	3.5.2.2 BSW Module Bundle
	3.5.2.3 BSW Design Bundle
	3.5.2.4 BSW Module ICS Bundle
	3.5.2.5 BSW Module Delivered Bundle
	3.5.2.6 AUTOSAR Software Module Specification
	3.5.2.7 AUTOSAR Standard Types and Blueprints
	3.5.2.8 AUTOSAR Platform Types and Blueprints
	3.5.2.9 BSW Module Generator
	3.5.2.10 AUTOSAR Standardized ECU Configuration Parameter Definition
	3.5.2.11 BSW Module Preconfigured Configuration
	3.5.2.12 BSW Module Recommended Configuration
	3.5.2.13 BSW Module Vendor Specific Configuration Parameter Definition
	3.5.2.14 BSW Types
	3.5.2.15 Basic Software Entries
	3.5.2.16 Basic Software Module Description
	3.5.2.17 Basic Software Module Internal Behavior
	3.5.2.18 Basic Software Module Implementation Description
	3.5.2.19 Build Action Manifest
	3.5.2.20 Basic Software Module Timing
	3.5.2.21 Basic Software Module Core Header
	3.5.2.22 Basic Software Module Core Source Code
	3.5.2.23 Basic Software Interlink Header
	3.5.2.24 Basic Software Interlink Types Header
	3.5.2.25 BSW RTE Prebuild Configuration Header
	3.5.2.26 Basic Software Module Object Code
	3.5.2.27 Library Description
	3.5.2.28 Library Header Files
	3.5.2.29 Library Object Code
	3.5.2.30 Custom Transformer

	3.6 ECU Integration and Configuration
	3.6.1 Tasks
	3.6.1.1 Provide RTE Calibration Dataset
	3.6.1.2 Define Integration Variant
	3.6.1.3 Generate Base ECU Configuration
	3.6.1.4 Generate Updated ECU Configuration
	3.6.1.5 Define ECU Timing
	3.6.1.6 Configure EcuC
	3.6.1.7 Configure OS
	3.6.1.8 Configure RTE
	3.6.1.9 Configure Watchdog Manager
	3.6.1.10 Configure Mode Management
	3.6.1.11 Configure NvM
	3.6.1.12 Configure Diagnostics
	3.6.1.13 Create Service Component
	3.6.1.14 Connect Service Component
	3.6.1.15 Configure COM
	3.6.1.16 Configure IO Hardware Abstraction
	3.6.1.17 Configure MCAL
	3.6.1.18 Configure Transformer
	3.6.1.19 Generate BSW Configuration Code and Model Extensions
	3.6.1.20 Generate Local MC Data Support
	3.6.1.21 Create MC Function Model
	3.6.1.22 Generate RTE
	3.6.1.23 Generate Scheduler
	3.6.1.24 Generate OS
	3.6.1.25 Generate RTE Prebuild Dataset
	3.6.1.26 Compile ECU Source Code
	3.6.1.27 Generate ECU Executable
	3.6.1.28 Generate RTE Postbuild Dataset
	3.6.1.29 Generate A2L
	3.6.1.30 Measure Resources
	3.6.1.31 Refine Rapid Prototyping Scenario
	3.6.1.32 Merge CpSoftwareCluster

	3.6.2 Work Products
	3.6.2.1 BSW Module Integration Bundle
	3.6.2.2 ECU Software Delivered
	3.6.2.3 Service Component Description
	3.6.2.4 ECU Service Connectors
	3.6.2.5 ECU Timing
	3.6.2.6 BSW Module Interface Extension
	3.6.2.7 BSW Module Behavior Extension
	3.6.2.8 BSW Module Implementation Extension
	3.6.2.9 ECU Configuration Values
	3.6.2.10 RTE Implementation Description
	3.6.2.11 RTE Prebuild Configuration Header
	3.6.2.12 Calibration Parameter Value Set
	3.6.2.13 MC Function Model
	3.6.2.14 Local Measurement and Calibration Support Data
	3.6.2.15 RTE Measurement and Calibration Support Data
	3.6.2.16 RTE Source Code
	3.6.2.17 BSW Scheduler Code
	3.6.2.18 OS Generated Code
	3.6.2.19 RTE Postbuild Variants Dataset
	3.6.2.20 ECU Object Code
	3.6.2.21 ECU Executable
	3.6.2.22 Merged ECU Executable
	3.6.2.23 Map of the ECU Executable
	3.6.2.24 A2L File
	3.6.2.25 MC Driver Support Data
	3.6.2.26 MC Additional Config

	3.6.3 Tools
	3.6.3.1 RTE Generator
	3.6.3.2 BSW Generator Framework

	3.6.4 ECU Config Classes
	3.6.4.1 Tasks
	3.6.4.1.1 Compile Unconfigured Bsw
	3.6.4.1.2 Compile Configured Bsw
	3.6.4.1.3 Compile BSW Configuration Data
	3.6.4.1.4 Compile Generated BSW
	3.6.4.1.5 Generate BSW Precompile Configuration Header
	3.6.4.1.6 Generate BSW Source Code
	3.6.4.1.7 Generate BSW Configuration Code
	3.6.4.1.8 Generate BSW Postbuild Configuration Code
	3.6.4.1.9 Link ECU Code after Precompile Configuration
	3.6.4.1.10 Link ECU Code During Link Time Configuration
	3.6.4.1.11 Link ECU Code During Post-build Time

	3.6.4.2 Work Products
	3.6.4.2.1 BSW Module Configuration Header File
	3.6.4.2.2 BSW Module Completely Generated Source Code
	3.6.4.2.3 BSW Module Configuration Data Source Code
	3.6.4.2.4 BSW Module Configuration Data Object Code
	3.6.4.2.5 BSW Module Configuration Data Loadable to ECU Memory

	A Mentioned Class Tables
	B Change History
	B.1 Change History of this document according to AUTOSAR Release R4.1.1
	B.1.1 Added Specification Items in 4.1.1
	B.1.2 Changed Specification Items in 4.1.1
	B.1.3 Deleted Specification Items in 4.1.1

	B.2 Change History of this document according to AUTOSAR Release R4.1.2
	B.2.1 Added Specification Items in 4.1.2
	B.2.2 Changed Specification Items in 4.1.2
	B.2.3 Deleted Specification Items in 4.1.2

	B.3 Change History of this document according to AUTOSAR Release R4.1.3
	B.3.1 Added Specification Items in 4.1.3
	B.3.2 Changed Specification Items in 4.1.3
	B.3.3 Deleted Specification Items in 4.1.3

	B.4 Change History of this document according to AUTOSAR Release R4.2.1
	B.4.1 Added Specification Items in 4.2.1
	B.4.2 Changed Specification Items in 4.2.1
	B.4.3 Deleted Specification Items in 4.2.1

	B.5 Change History of this document according to AUTOSAR Release R4.2.2
	B.5.1 Added Specification Items in 4.2.2
	B.5.2 Changed Specification Items in 4.2.2
	B.5.3 Deleted Specification Items in 4.2.2

	B.6 Change History of this document according to AUTOSAR Release R4.3.0
	B.6.1 Added Specification Items in 4.3.0
	B.6.2 Changed Specification Items in 4.3.0
	B.6.3 Deleted Specification Items in 4.3.0

	B.7 Change History of this document according to AUTOSAR Release R4.3.1
	B.7.1 Added Specification Items in 4.3.1
	B.7.2 Changed Specification Items in 4.3.1
	B.7.3 Deleted Specification Items in 4.3.1

	B.8 Change History of this document according to AUTOSAR Release R4.4.0
	B.8.1 Added Specification Items in 4.4.0
	B.8.2 Changed Specification Items in 4.4.0
	B.8.3 Deleted Specification Items in 4.4.0

	B.9 Change History of this document according to AUTOSAR Release R19-11
	B.9.1 Added Specification Items in 19-11
	B.9.2 Changed Specification Items in 19-11
	B.9.3 Deleted Specification Items in 19-11

	B.10 Change History of this document according to AUTOSAR Release R20-11
	B.10.1 Added Specification Items in R20-11
	B.10.2 Changed Specification Items in R20-11
	B.10.3 Deleted Specification Items in R20-11

	B.11 Change History of this document according to AUTOSAR Release R21-11
	B.11.1 Added Specification Items in R21-11
	B.11.2 Changed Specification Items in R21-11
	B.11.3 Deleted Specification Items in R21-11

	B.12 Change History of this document according to AUTOSAR Release R22-11
	B.12.1 Added Specification Items in R22-11
	B.12.2 Changed Specification Items in R22-11
	B.12.3 Deleted Specification Items in R22-11

	B.13 Change History of this document according to AUTOSAR Release R23-11
	B.13.1 Added Specification Items in R23-11
	B.13.2 Changed Specification Items in R23-11
	B.13.3 Deleted Specification Items in R23-11

	B.14 Change History of this document according to AUTOSAR Release R24-11
	B.14.1 Added Specification Items in R24-11
	B.14.2 Changed Specification Items in R24-11
	B.14.3 Deleted Specification Items in R24-11

	B.15 Change History of this document according to AUTOSAR Release R25-11
	B.15.1 Added Specification Items in R25-11
	B.15.2 Changed Specification Items in R25-11
	B.15.3 Deleted Specification Items in R25-11

