AUTSSAR

. Supplementary material of

Document Title :
general blueprints for AUTOSAR

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 682
Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR * Removal of Predefined Names
2025-11-27 R25-11 Release
Management * Fix axis order for ROW_DIR
AUTOSAR
2024-11-27 | R24-11 Release * No content changes
Management
AUTOSAR
2023-11-23 | R23-11 Release * No content changes
Management
AUTOSAR
2022-11-24 | R22-11 Release * No content changes
Management
AUTOSAR
2021-11-25 | R21-11 Release * No content changes
Management
AUTOSAR
2020-11-30 | R20-11 Release * No content changes
Management
AUTOSAR » Update Multi dimensional ValueBlock
2019-11-28 | R19-11 Release « Changed Document Status from Final to
Management published
AUTOSAR « Multi dimensional ValueBlock
2018-10-31 4.4.0 Release
Management * Include Physical Dimensions and Units
AUTOSAR - Extend description of FIX_AXIS
2017-12-08 4.3.1 Release

Management

¢ Include Mentioned Class Tables

AUTSSAR

» Extended Blueprint artifacts

AUTOSAR
2016-11-30 | 4.3.0 Release » Composition of Blueprint artifacts
Management))
* Include Test Case Blueprint artifacts
AUTOSAR
2015-07-31 | 4.2.2 Release * Initial Release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction

2 Overview General Blueprints
2.1 AUTOSAR_MOD_BSWsServicelnterfaces_Blueprint
2.2 AUTOSAR_MOD_BswModuleEntrys_Blueprint
2.3 AUTOSAR_MOD_BswsServicelnterfaceMappings_Blueprint
2.4 AUTOSAR_MOD_BswServiceDataTypes_Blueprint
2.5 AUTOSAR_MOD_CommonDataTypes_Blueprint
2.6 AUTOSAR_MOD_BswDataTypes_Blueprint
2.7 AUTOSAR_MOD_IFL_RecordLayouts Blueprint.
2.8 AUTOSAR_MOD_IFX RecordLayouts Blueprint
2.9 AUTOSAR_MOD_Cube_RecordLayouts Blueprint
2.10AUTOSAR_MOD_ValBlk_SwRecordLayouts Blueprint
2.11AUTOSAR_MOD_MemoryMapping_SwAddrMethods_Blueprint
2.12AUTOSAR_MOD_SWCServiceRelatedInterfaces_Blueprint
2.13AUTOSAR_MOD_PhyiscalDimensions_Blueprint
2.14AUTOSAR_MOD_Units_Blueprint
2.15AUTOSAR_TP_FormulaLanguage TestCases_Blueprint
2.16Composition of Blueprints o Lo

3 Visualization of SwRecordLayouts

3.1 Distributed Data Points
3.1.1 RecordLayout: Distr
3.1.1.1 Logicalview
3.1.1.2 Memoryrepresentation.
3.1.1.3 ARXMLrepresentation

3.2 CUIVES
3.2.1 RecordLayout: Cur
3.2.1.1 Logicalview
3.2.1.2 Memoryrepresentation. L.
3.2.1.3 ARXMLrepresentation
3.2.2 Record Layout: IntCur
3.2.2.1 Logicalview
3.22.2 Memoryrepresentation. L.
3.2.2.3 ARXMLrepresentation
3.2.3 Record Layout: FixIntCur
3.2.3.1 Logicalview
3.2.3.2 Memoryrepresentation.
3.2.3.3 ARXML representation

3.3 Maps
3.3.1 Definitionof Indexing
3.3.2 Transform Logical View in Memory Representation

AUTSSAR

3.3.3 RecordLayout: Map 27
3.3.3.1 Logicalview 28
3.3.3.2 Memory representation (COLUMN_DIR) 28
3.3.3.3 ARXML representation 29

3.3.4 RecordLayout: IntMap 30
3.3.4.1 Logicalview 30
3.3.4.2 Memory representation (COLUMN_DIR) 30
3.3.4.3 ARXMLrepresentation, 31
3.3.4.4 Memory representation (ROW_DIR) 32
3.3.45 ARXMLrepresentation 33

3.3.5 Record Layout: IntMap3x4, 34
3.3.5.1 Logicalview 35
3.3.5.2 Memory representation L. 36

3.3.6 Record Layout: FixIntMap 37
3.3.6.1 Logicalview 38
3.3.6.2 Memory representation (COLUMN_DIR) 38
3.3.6.3 ARXML representation 39

3.4 Multidimensional Arrays 40

3.4.1 Definitionof Indexing o oL, 40

3.4.2 Record Layout: Cuboid, 41
3.4.21 Logicalview 41
3.422 Memoryrepresentation. 42
3.4.23 ARXMLrepresentation 43

3.4.3 Record Layout: Cube 4andCube 5 45
3.4.3.1 Logicalview 45
3.4.3.2 Memoryrepresentation. 47
3.4.3.3 ARXMLrepresentation 49

3.5 Valueand ValueBlock 52

3.5.1 RecordLayout: Value 52
3.5.1.1 Logicalview 52
3.5.1.2 Memory representation. 52
3.5.1.3 ARXMLrepresentation 52

3.5.2 Record Layout: One dimensional ValueBlock 53
3.5.2.1 Logicalview 53
3.5.2.2 Memoryrepresentation. oL 53
3.5.2.3 ARXMLrepresentation 53

3.5.3 Record Layout: Multi dimensional ValueBlock 54
3.5.3.1 Logicalview 54
3.5.3.2 Memoryrepresentation. 54
3.5.3.3 ARXMLrepresentation 55

4 Additional SwRecordLayouts 56

5 Units and Physical Dimensions 57

AUTSSAR

A Mentioned Class Tables

58

AUTSSAR

References

[1] Standardization Template
AUTOSAR_FO_TPS_StandardizationTemplate

[2] Basic Software Module Description Template
AUTOSAR_CP_TPS_BSWModuleDescriptionTemplate

[3] Specification of Floating Point Interpolation Library
AUTOSAR_CP_SWS_IFLLibrary

[4] Specification of Fixed Point Interpolation Library
AUTOSAR_CP_SWS_IFXLibrary

[5] Specification of Memory Mapping
AUTOSAR_CP_SWS_MemoryMapping

[6] Specification of NVRAM Manager
AUTOSAR_CP_SWS_NVRAMManager

[7] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

[8] XML Specification of Application Interfaces
AUTOSAR_CP_MOD_AlSpecification

[9] SW-C and System Modeling Guide
AUTOSAR_CP_TR_SWCModelingGuide

AUTSSAR

1 Introduction

This technical report provides additional information to existing blueprints.

AUTSSAR

2 Overview General Blueprints

The General Blueprints are provided in auxiliary package
AUTOSAR_FO_MOD_GeneralBlueprints. Currently it contains

+ AUTOSAR_MOD_BswDataTypes_Blueprint

+ AUTOSAR_MOD_BswModuleEntrys_Blueprint

« AUTOSAR_MOD_BswServiceDataTypes Blueprint

« AUTOSAR_MOD_BswServicelnterfaceMappings_Blueprint
+ AUTOSAR_MOD_BswServicelnterfaces_Blueprint

* AUTOSAR_MOD_CommonDataTypes_Blueprint

*+ AUTOSAR_MOD_Cube_SwRecordLayouts_Blueprint

« AUTOSAR_MOD_IFL_RecordLayouts Blueprint

+ AUTOSAR_MOD_IFX_RecordLayouts_Blueprint

+ AUTOSAR_MOD_MemoryMapping_SwAddrMethods_Blueprint
* AUTOSAR_MOD_PhyiscalDimensions_Blueprint

+ AUTOSAR_MOD_SWCServiceRelatedInterfaces_Blueprint
« AUTOSAR_MOD_Units_Blueprint

+ AUTOSAR_MOD_ValBIk_SwRecordLayouts_Blueprint

* AUTOSAR_TP_FormulaLanguage TestCases_Blueprint

2.1 AUTOSAR_MOD_BSWServicelnterfaces_Blueprint

The AUTOSAR_MOD_BSWServicelnterfaces_Blueprint provides for a variety of
BSW modules blueprinted specification of their Standardized AUTOSAR Inter-
faces which consists of ClientServerInterfaces, ModeDeclarationGroups,
ModeSwitchInterfaces, SenderReceiverInterfaces and ServiceSwCompo-—
nentTypesS. Inside these blueprints also the BlueprintPolicy is used. A detailed
description of the BlueprintPolicy is given in [1]. The ARXML file is generated
based on the BSW UML Model.

2.2 AUTOSAR_MOD_ BswModuleEntrys Blueprint

The AUTOSAR_MOD_BswModuleEntrys_Blueprint provides blueprints of the
BswModuleDescriptions and BswModuleEntrys based on [2].

AUTSSAR

2.3 AUTOSAR_MOD_BswsServicelnterfaceMappings_Blueprint

The AUTOSAR_MOD_BswServicelnterfaceMappings_Blueprint provides blueprints
of the mapping per client-server-interface ClientServerInterfaceToBswMod-
uleEntryBlueprintMappings based on [1].

24 AUTOSAR_MOD_ BswServiceDataTypes_Blueprint

The AUTOSAR_MOD_BswServiceDataTypes_Blueprint provides blueprints of the
DataConstrS, CompuMethods and ImplementationDataTypeS for Services
based on [1].

2.5 AUTOSAR_MOD_CommonDataTypes_Blueprint

The AUTOSAR_MOD_CommonDataTypes_Blueprint provides blueprints of the Base-
TypeS, CompuMethods and ImplementationDataTypes for Platform, Standard
and General Definitions based on [1].

2.6 AUTOSAR_MOD_BswbDataTypes_Blueprint

The AUTOSAR_MOD_BswDataTypes_Blueprint provides blueprints of the bataCon-
strs, CompuMethods and ImplementationDataTypes for BSW based on [1].

2.7 AUTOSAR_MOD IFL_RecordLayouts Blueprint

The AUTOSAR_MOD_IFL_RecordLayouts Blueprint provides blueprints of the In-
terpolationRoutineMappingSets and SwRecordLayouts based on [3].

2.8 AUTOSAR_MOD_IFX_ RecordLayouts Blueprint

The AUTOSAR_MOD_IFX_RecordLayouts Blueprint provides blueprints of the In-
terpolationRoutineMappingSets and SwRecordLayouts based on [4].

2.9 AUTOSAR_MOD_Cube_ RecordLayouts_Blueprint

The AUTOSAR_MOD_Cube RecordLayouts Blueprint provides blueprints of
SwRecordLayouts for cuboids.

AUTSSAR

2.10 AUTOSAR_MOD VailBlk_SwRecordLayouts Blueprint

The AUTOSAR_MOD_ValBlk _SwRecordLayouts Blueprint provides blueprints of
SwRecordLayouts for Value and Valueblocks.

2.11 AUTOSAR_MOD_MemoryMapping_SwAddrMethods_Blueprint

The AUTOSAR_MOD_MemoryMapping_SwAddrMethods_Blueprint provides
blueprints of the swAddrMethods based on [5].

2.12 AUTOSAR_MOD_SWCServiceRelatedInterfaces_Blueprint

The AUTOSAR_MOD_SWCServiceRelatedInterfaces_Blueprint provides blueprints of
the ClientServerInterfaces derived from the Standardized AUTOSAR Inter-
faces of the NVRAM Manager [6]. Those ClientServerInterfaces are used for
NvBlockSwComponentTypesS as described in [7].

2.13 AUTOSAR_MOD_PhyiscalDimensions_Blueprint

The AUTOSAR_MOD_PhyiscalDimensions_Blueprint provides a collection of
blueprints of Standardized AUTOSAR Physical Dimensions definitions which are
used for Unit definitions as, e.g. in AUTOSAR_MOD_Units_Blueprint.

2.14 AUTOSAR_MOD_ Units_Blueprint

The AUTOSAR_MOD_Units_Blueprint provides a collection of blueprints of Standard-
ized AUTOSAR Units definitions which are used, e.g. for interface definitions as de-
scribed in [8].

Predefined Names

The document FO TR PredefinedNames and the blueprint
AUTOSAR_TR_PredefinedNames_Blueprint were removed in R25-11.

2.15 AUTOSAR_TP_FormulaLanguage TestCases_ Blueprint

The AUTOSAR_TP_FormulaLanguage_TestCases_Blueprint provides various prede-
fined test cases to validate the formula language expressions.

AUTSSAR

2.16 Composition of Blueprints

The blueprints are composed by different elements which can be applied use case
specific. Table 2.1 provides an overview of the elements decribed by blueprints.

ClientServerInterfaceToBswModuleEntryBlueprintMapping|

[0) 8 0]
Q Q, © Q,
o o) > Q, Ll >
o) © H 3 [0) ~ [
It frir © o 0 [0} s
iu) G 2 9 © 2 o
[oN) 0] © (@] W (= [0}
har D =) =] 4 H ol
~ > (=) o e} [0} ~ o
8} €] H [¢) - 2 [0) o,
%) i8] 9 - is) =] > IS
] o 0] o} s © H - o
() = > (e} ~ [0} ~ e} [0} @]
[0} [0} g e} D is] © O O =
— — [0) in) 9] (= — +H (0] 0
=] =] w0 (0] = (0] o) - a4 [0}
kel el i) = o) £ O] 2 “ O
)) [3 O [0} [a] w0 [0) -
= = [0} [oN © — [0} [0} T >
2 = - £ +H Q T kel o 1
0 2] — €] o] =] [¢] O] [0}
M m &) &) [a) H = = 19p) 0
AUTOSAR_MOD_BswServicelnterfaces_Blueprint X X | x| x| x
AUTOSAR_MOD_BswModuleEntrys_Blueprint | x X
AUTOSAR_MOD_BswServicelnterfaceMappings_Blueprint X
AUTOSAR_MOD_SWCServiceRelatedInterfaces_Blueprint X
AUTOSAR_MOD_BswServiceDataTypes_Blueprint X | x
AUTOSAR_MOD_CommonDataTypes_Blueprint X
AUTOSAR_MOD_BswDataTypes_Blueprint X X

Table 2.1: Overview Blueprint Elements

AUTSSAR

AUTOSAR_MOD_GeneralBlueprints

«input»

(i

AUTOSAR_MOD_BswServicelnterface_Blueprint

(i
(i

«output» 1]
1 A Compose Complete
< Service Interface Table
AUTOSAR_MOD_BswModuleEntrys_Blueprint Complete Service
Interface Table (Model
- Representation)
Common Blueprint
—-
«input» «input»
— —
—
1 Vet ——
«input» N ——
AUTOSAR_MOD_BswServiceDataTypes_Blueprint «output» 1 | —
—
Compose Complete —
Module Entrys Table
omplete Module
Entrys Table (Model

C

1
__ «input» Representation)
— 1
— «input» «input>
—

«input»
AUTOSAR_MOD_CommonDataTypes_Blueprint
—— —
«input» «output» 7 | ee—
— —
— Compose Complete Service —
Interface Mapping Table

AUTOSAR_MOD_BswDataTypes_Blueprint Complete Service

I

1 «input»

AUTOSAR_MOD_BswServicelnterfaces
Mapping_Blueprint

Figure 2.1: Composition of different tables based on blueprints

AUTSSAR

3 Visualization of SwRecordLayouts

The visualization of the swrRecordLayouts follows a unique representation. The used
graphical elements are illustrated in figure 3.1.

1 Mx : Elements which are not defined inside the SwRecordLayout are illustrated by rectangle with dashed lines.
| I

Mx Elements which are defined inside the SwRecordLayout are illustrated by blue rectangle.

[1.1] Data values which are defined inside the SwRecordLayout are illustrated by orange rectangle.

[2.3] Data value which is highligthed for illustrative reason is represented by gold rectangle.

Figure 3.1: Legend of used graphical elements

The logical view represents the definitive elements as number of sampling points, axis
elements and data values. The data values are arranged according to the applicable
dimension. Curves are visualized one dimensional (e.g. one column, see figure 3.7).
Maps are visualized in a two dimensional matrix, see figure 3.19).

The memory representation illustrates the storage of values in linear memory. In case
the swRecordLayout defines also the elements as number of sampling points and
axis elements (blue rectangle) the memory representation starts with these. Subse-
quently the storage of data values follows (orange rectangle). In case the SwRecord-
Layout does not define the elements as number of sampling points and axis elements
the memory representation starts with the storage of data values.

The ARXML representation lists the significant part of the ARXML file describing the
SwRecordLayout.

3.1 Distributed Data Points

This chapter describes the record layout for distributed data point search. This means
that this swRecordLayout describes only the number of sampling points and the axis
values. It does not describe any values. In this case several curves can used the same
axis (distributed data points), see figure 3.3.

AUTSSAR

3.1.1 Record Layout: Distr
3.1.1.1 Logical view

The figure 3.2 illustrates the logical view of the SwRecordLayout Distr. Nx repre-
sents the standardized value of SwRecordLayoutV.swRecordLayoutVProp and is
documented in [TPS_SWCT_01489]. In the scope of this example the value COUNT is
used.

Mo

Walx Walx
ON I I I RS

Figure 3.2: Distr Logical View

3.1.1.2 Memory representation

Due to the fact that the number of sampling points and the axis values (content of
this record layout definition) are not stored in memory without any curve definition no
memory representation is defined.

AUTSSAR

3.1.1.3 ARXML representation
Extract of the record layout Distr_s16 from AUTOSAR_MOD_IFX_RecordLayouts_Blueprint.arxml.

<ELEMENTS>
<! —— SW-RECORD-LAYOUT: Distr sl6 -—>
<SW-RECORD-LAYOUT>
<SHORT-NAME NAME-PATTERN="{blueprintName}">Distr_sl6</SHORT-NAME>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">N</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sint1l6</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">X</SHORT-LABEL>
<CATEGORY>INDEX_INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-FROM>1</SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sintl6</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>

Listing 3.1: Record Layout: Distr_s16 in ARXML representation

Different curves can be assigned to one distribution.

i Mx Distribution U
i | Valx - Valx H
oo ' (|
i (1 i i [1] i
@ @ |
i (3] i i 3] i
i -1 i i [1] i
Curvet Curve2

Figure 3.3: Curves assigned to Distribution Logical View

Both curves use the same distribution (AXIS 1), e.g. illustrated by the purple-dotted
lines (x value 25) with different values (AXIS 0), curve values (y values 65 and 15).

curve values

--—rT - == == == - - = -—— -7 - — -

S— - — s — - — - — -7 - — -

ues

curve v

R e T i e e L e

N N

- - — = =

Figure 3.4: Curves assigned to same Distribution

AUTSSAR

3.2 Curves

3.2.1 Record Layout: Cur

This chapter describes the record layout for a curve.

3.2.1.1 Logical view

The figure 3.5 illustrates the logical view of the swRecordLayout Cur. The num-
ber of sampling points (Nx) and the elements of [AXIS 1] are not defined inside this
SwRecordLayout. The SwRecordLayoutGroup with the shortLabel Val is shown
in the lower part.

(-1]

Figure 3.5: Cur Logical View

3.2.1.2 Memory representation

The swRecordLayout Cur illustrated in figure 3.5 is stored as follows:

m | @ | @ - | [

Figure 3.6: Cur Memory Representation

This means that the data is stored in direction of columns ([1],[2],[3], -..).

AUTSSAR

3.2.1.3 ARXML representation

Extract of the record layout Cur_s16 from AUTOSAR_MOD_IFX_RecordLayouts_Blueprint.arxml.

<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sintl6</BASE-TYPE-REF>
<SW-RECORD-LAYQOUT-V-AXIS>(0</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYQOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
<SW-RECORD-LAYOUT-V-INDEX>X</SW-RECORD-LAYOUT-V-INDEX>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT>
<!—-— SW-RECORD-LAYOUT: Cur._s8 ——>
<SW-RECORD-LAYOUT>
<SHORT-NAME NAME-PATTERN="{blueprintName}">Cur_s8</SHORT-NAME>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Val</SHORT-LABEL>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>

Listing 3.2: Record Layout: Cur_s16 in ARXML representation

3.2.2 Record Layout: IntCur

This chapter describes the record layout for a curve with integrated data point search.
This means that this SwRecordLayout represents a complete curve with number of
sampling points, number of axis and values. It describes all elements of the curve.

3.2.2.1 Logical view

The figure 3.7 illustrates the logical view of the swRecordLayout IntCur. Nx rep-
resents the number of sampling points and is given by the standardized value of
SwRecordLayoutV.swRecordLayoutVProp. In the scope of this example the value
COUNT is used. The swRecordLayoutGroup with the shortLabel Val is shown in
the lower part. Its elements are indexed by [AXIS 1] from value (AXIS 1: = 1) to value
(AXIS 1: = -1) there -1 gives the last value.

AUTSSAR

MM
Walx - Walx
(1} e e e (_-1}

(1]

(2]

(3]

[-1]

Figure 3.7: IntCur Logical View

3.2.2.2 Memory representation

The swRecordLayout IntCur illustrated in figure 3.7 is stored as follows:

Walx Valx
Nx (1) . . . 1) 1 (2 [3] . [-1]

Figure 3.8: IntCur Memory Representation

This means that the data is stored in direction of columns ([1],[2],[3], -..).

AUTSSAR

3.2.2.3 ARXML representation

Extract of the record layout IntCur_s16_s8 from
AUTOSAR_MOD_IFX_RecordLayouts Blueprint.arxml.

</SW-RECORD-LAYOUT>
<!-- SW-RECORD-LAYOUT: IntCur_sl6_s8 —-—>
<SW-RECORD-LAYOUT>
<SHORT-NAME NAME-PATTERN=" {blueprintName}">IntCur_s1l6_s8</SHORT-NAME>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">N</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sint16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">X</SHORT-LABEL>
<CATEGORY>INDEX_INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sintl16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VAILUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Val</SHORT-LABEL>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>0</SW-RECORD-LAYOUT-GROUP—-AXIS>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW—-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sint8</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>(0</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
<SW-RECORD-LAYOUT-V-INDEX>X</SW-RECORD-LAYOUT-V-INDEX>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>

Listing 3.3: Record Layout: IntCur_s16_s8 in ARXML representation

3.2.3 Record Layout: FixIntCur

This chapter describes the record layout for a curve with fixed axis points.
Fixed axis exist in three categories: FIX_AXIS PAR, FIX_AXIS PAR_DIST and
FIX_AXIS_PAR_LIST, see [TPS_SWCT_01748] in [7].

AUTSSAR

The number of sampling points (Nx), the Offset, the shift and the distance values are
represented in the following chapters by these logical views:

—— oy -y -y
x| x| I x|
L1 - _1 |
Ll ol | - g E—— — —

| Offset | Shift | | Offset |Distan|:e| | List
LX L& L)y L

Figure 3.9: FIX_AXIS_PAR (left), FIX_AXIS_PAR_DIST (middle), FIX_AXIS_PAR_LIST
(right)

These values are not defined inside SwRecordLayouts with fixed axis points.

3.2.3.1 Logical view

The figure 3.10 illustrates the logical view of the SswrRecordLayout FixIntCur. The
SwRecordLayoutGroup With the shortLabel Val is shown in the lower part. lIts
elements are indexed by virtual [AXIS 1] which is fixed and of category FIX_AXIS_PAR
and not defined inside this SwRecordLayout.

—— oy

x|
(|
- —
| Offset| Shift |
1L L

(1]

(2]

(3]

[-1]

Figure 3.10: FixIntCur Logical View

3.2.3.2 Memory representation

The swRecordLayout FixIntCur illustrated in figure 3.10 is stored as follows:

AUTSSAR

I R N E .| [

Figure 3.11: FixIntCur Memory Representation

This means that the data is stored in direction of columns ([1],[2],[3], -..).

3.2.3.3 ARXML representation

Extract of the record layout FixIntCur_s16_s16 from
AUTOSAR_MOD_IFX_RecordLayouts Blueprint.arxml.

</SW-RECORD-LAYOUT>
<! —— SW-RECORD-LAYOUT: FixIntCur sl6 _sl6 -—>
<SW-RECORD-LAYOUT>
<SHORT-NAME NAME-PATTERN=" {blueprintName}">FixIntCur_s16_s16</SHORT-NAME>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Val</SHORT-LABEL>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM>1 </ SW-RECORD-LAYOUT-GROUP—-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sintl6</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>(0</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
<SW-RECORD-LAYOUT-V-INDEX>X</SW-RECORD-LAYOUT-V-INDEX>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>

Listing 3.4: Record Layout: FixIntCur_s16_s16 in ARXML representation

3.3 Maps

3.3.1 Definition of Indexing

To understand the visualization of SwRecordLayouts it is important to set-up a com-
mon understanding of the used indexing. There is the indexing used by matrix definition
in linear algebra and by cartesian coordinate systems. In linear algebra a matrix A(m,n)
is defined by the row index (m) and the column index (n).

AUTSSAR

m-by-n matrix

aij neolumns ST

m — —_—
rows a a a a
1.1 1.2 1,3 in

ap 4 apo Arn

LI o e e R 1 =

Figure 3.12: Linear Algebra Matrix

The cartesian coordinate system which is used by AUTOSAR and ASAM assigns AXIS
2 (AXIS_PTS_Y) to the row index (m) and AXIS 1 (AXIS_PTS_X) to the column index
(n). This is the essential point in the transformation from indexing in matrix definition to
the representation in cartesian coordinate system. The matrix element a(2,3) in figure
3.12 is represented in the cartesian coordinate system in figure 3.13 by (AXIS 1) x =3
and (AXIS 2) y = 2.

M

T . 1 T
X-axIs 1 2 3 4 3

Figure 3.13: Cartesian Coordinate System

Based on this transformation definition the following visualization of SwRecordLay—
outs shall improve a better common understanding of the provided SwRecordLay—
outs.

AUTSSAR

3.3.2 Transform Logical View in Memory Representation

The logical view is represented by m-by-n matrix (two dimensional matrix) as described
in 3.3.1.

first subscript
AXIS2:=2

} s
~

second subscnpt
AXIS1:=3

[1.1] [1.2] [1,3] [1.4] [1-1]

21] | 22 23 | 24 | [2-1]

[3.1] [3.2] [3.3] [3.4] [3.-1]

[4.1] [4.2] [4,3] [4.4] [4-1]

[-1.1] 1.2 1.3 | 1.4 | [1,-1]

Figure 3.14: Matrix Representation

Each element of a matrix is denoted by an index with two subscripts [AXIS 2, AXIS 1].
For instance, [2,3] represents the element at the second row (AXIS 2) and third column
(AXIS 1) of a matrix. The index of the matrix can be transformed to the memory
representation in two different ways:

« storage of array values in column-major order in linear memory -> COLUMN_DIR
+ storage of array values in row-major order in linear memory -> ROW_DIR

In column-major order', a multidimensional array in linear memory is organized such
that columns are stored one after the other. The first element of the first column [1,1] is
selected and then inside this column all elements will iterate up to the last element [-1,1]
(indicated by the red arrow in figure 3.15). The last element is defined in SwRecord-
Layout by ‘-1’. Afterwards the first element of the second column [1,2] is selected and
the iteration starts again as in the first column.

'The scientific programming language Fortran uses column-major ordering.

AUTSSAR

[1.1] 2 [va || na | o
e || ea || ea |} _a |i] 20
[5.1] 3.2] 3.3 [5.4] [3.-1]
wn || wa || e || e [e
[-1.1] [-1.2] [-1,3] [-1.4] [-1.-1]

Figure 3.15: Transformation Matrix in column-major order

This listing illustrates two nested FOR-loops in case of column-major order whereas
the outer loop iterates over AXIS 1 and the inner loop iterates over AXIS 2.

(select row element; outer loop)

iteration along row (AXIS 1 iterates, AXIS 2 is fixed !)
start with first element (AXIS 1: = 1)

[

(select column element; inner loop)
iteration along column (AXIS 2 iterates, AXIS 1 is fixed !)
start with first element (AXIS 2: = 1)

end with last element (AXIS 2: = -1)

]
end with last element (AXIS 1: = -1)

]

In row-major order?, a multidimensional array in linear memory is organized such that
rows are stored one after the other. The first element of the first row [1,1] is selected
and then inside this row all elements will iterate up to the last element [1,-1] (indicated
by the blue arrow in figure 3.16). Afterwards the first element of the second row [2,1] is
selected and the iteration starts again as in the first row.

2The C programming language uses row-major ordering.

AUTSSAR

Figure 3.16: Transformation Matrix in row-major order

This listing illustrates two nested FOR-loops in case of row-major order whereas the

outer loop iterates over AXIS 2 and the inner loop iterates over AXIS 1.

(select column element; outer loop)
iteration along column (AXIS 2 iterates, AXIS 1 is fixed !)
start with first element (AXIS 2: = 1)
[
(select row element; inner loop)
iteration along row (AXIS 1 iterates, AXIS 2 is fixed !)
start with first element (AXIS 1: = 1)

end with last element (AXIS 1: = -1)

]
end with last element (AXIS 2: = -1)

3.3.3 Record Layout: Map

This chapter describes the record layout for a map.

AUTSSAR

3.3.3.1 Logical view

The figure 3.17 illustrates the logical view of the SwRecordLayout Map. The number
of sampling points (Nx, Ny) and the elements of [AXIS 2, AXIS 1] are not defined
inside this swRecordLayout. The SwRecordLayoutGroup with the shortLabel
Val is shown in the lower part.

-—
|
L1

Ll el el el ol |

| Valx | | | IVaIx I

A T T T B

=—_—m
INyI
L1

- — = = e = = q

|Valy| I |Valy|
L L

[1.1] [1.2] [1.3] .. [1-11
21] | 22 23] .. [2-1]
[3.1] [3.2] [3.3] . [3-1]

[4-1]

[-1,1] [-1.2] [-1,3] [-1.4] | [-1,-1]

Figure 3.17: Map Logical View

The matrix element a(2,3) in figure 3.17 is represented by (AXIS 1) x = 3 and (AXIS 2)
y=2.

3.3.3.2 Memory representation (COLUMN_DIR)

The swRecordLayout Map illustrated in figure 3.17 is stored in case of category
COLUMN_DIR as follows:

AUTSSAR

Figure 3.18: Map Memory Representation

This means that the data is stored first in direction of columns and then in direction of
rows ([1,1],[2,1],[3,1], ...).

3.3.3.3 ARXML representation

Extract of the record layout Map_s16 from AUTOSAR_MOD _IFX_RecordLayouts_Blueprint.arxml.

<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP-AXIS>2</SW-RECORD-LAYOUT-GROUP—-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>Y</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sint16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>0</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VAILUE</SW-RECORD-LAYOUT-V-PROP>
<SW-RECORD-LAYOUT-V-INDEX>X Y</SW-RECORD-LAYOUT-V-INDEX>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT>
<!—— SW-RECORD-LAYOUT: Map s8 -—>
<SW-RECORD-LAYOUT>
<SHORT-NAME NAME-PATTERN="{blueprintName}">Map_s8</SHORT-NAME>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Val</SHORT-LABEL>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP—-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>

Listing 3.5: Record Layout: Map_s16 in ARXML representation

AUTSSAR

3.3.4 Record Layout: IntMap

This chapter describes the record layout for a map with integrated data point search.

3.3.4.1 Logical view

The figure 3.19 illustrates the logical view of the SwRecordLayout IntMap. Nx
and Ny represent the number of sampling points given by the standardized val-
ues of SwRecordLayoutV.swRecordLayoutVProp. In the following example the
dimensions of Nx and Ny are not fixed defined but given by a range indicated
by index values. In the scope of this example the value COUNT is used. The
SwRecordLayoutGroup With the shortLabel Val is shown in the lower part.
Its elements are indexed by [AXIS 2, AXIS 1] from value (AXIS 2: = 1, AXIS

1: = 1) to value (AXIS 2: = -1, AXIS 1: = -1) there -1 gives the last value.
Mx My
Walx Walx
{1} e e e {_1)
Valy Valy
(-1} e e s (_1)
o | oz | na . [1,-1]
21] | 22 | 23 .. [2-1]
B | Ba | B3 . [3.-1]
[4-1]
F11 | B2 | 13| AL A

Figure 3.19: IntMap Logical View

The matrix element a(2,3) in figure 3.19 is represented by (AXIS 1) x = 3 and (AXIS 2)
y=2.

3.3.4.2 Memory representation (COLUMN_DIR)

The swRecordLayout IntMap illustrated in figure 3.19 is stored in case of category
COLUMN_DIR as follows:

AUTSSAR

Figure 3.20: IntMap Memory Representation (COLUMN_DIR)

This means that the data is stored first in direction of columns and then in direction of
rows ([1,1],[2,1],[3,1], ...).

3.3.4.3 ARXML representation

Extract of the record layout IntMap_s16s16_s16 from
AUTOSAR_MOD_IFX_RecordLayouts Blueprint.arxml.

<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Ny</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sintl6</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>2</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">X</SHORT-LABEL>
<CATEGORY>INDEX_INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sintl16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VAILUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Y</SHORT-LABEL>
<CATEGORY>INDEX_INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>2</SW-RECORD-LAYOUT-GROUP—-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>Y</SW-RECORD-LAYOUT-GROUP—-INDEX>

AUTSSAR

<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sintl6</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>2</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VAILUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Val</SHORT-LABEL>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP-AXIS>2</SW-RECORD-LAYOUT-GROUP—-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>Y</SW—RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sint16</BASE-TYPE—-REF>
<SW-RECORD-LAYOUT-V-AXIS>0</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
<SW-RECORD-LAYOUT-V-INDEX>X Y</SW-RECORD-LAYOUT-V-INDEX>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT>
<! —— SW-RECORD-LAYOUT: IntMap slésl6_s8 ——>
<SW-RECORD-LAYOUT>
<SHORT-NAME NAME-PATTERN="{blueprintName}">IntMap_s16s16_s8</SHORT-NAME>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Nx</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sintl6</BASE-TYPE-REF>

Listing 3.6: Record Layout: IntMap_s16s16_s16 in ARXML representation

3.3.4.4 Memory representation (ROW_DIR)

The swRecordLayout IntMap illustrated in figure 3.19 is stored in case of category
ROW_DIR as follows:

AUTSSAR

Valx WValx | Valy Waly
MNx M ---
Y1 “n |) [
:--} 1,11 [1,2] [1,3] [1,-1] [2:1] [2,.2] [2,3] [2,-1] 3,11 [3.2] B
L—} 23] [3.-1] [4-1] a1 § .21 [-1.-1]

Figure 3.21: IntMap Memory Representation (ROW_DIR)

This means that the data are stored first in direction of rows and then in direction of
columns ([1,1],[1,2],[1,3], ...).

3.3.4.5 ARXML representation

Extract of the record layout IntMap_s8s16_s16 from
AUTOSAR_MOD_IFX_RecordLayouts_Blueprint.arxml.

<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Ny</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sint 8</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>2</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">X</SHORT-LABEL>
<CATEGORY>INDEX_ INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW—-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sint8</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Y</SHORT-LABEL>
<CATEGORY>INDEX_INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>2</SW-RECORD-LAYOUT-GROUP—-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>Y</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM>1</SW-RECORD-LAYOUT-GROUP-FROM>

AUTSSAR

<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sintl16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>2</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VAILUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Val</SHORT-LABEL>
<CATEGORY>ROW_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>2</SW-RECORD-LAYOUT-GROUP—-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>Y</SW—RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW—RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW—-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-—RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sintl6</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>(0</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
<SW-RECORD-LAYOUT-V-INDEX>Y X</SW-RECORD-LAYOUT-V-INDEX>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT>
<!—— SW-RECORD-LAYOUT: IntMap sl6s8 s8 ——>
<SW-RECORD-LAYOUT>
<SHORT-NAME NAME-PATTERN=" {blueprintName}">IntMap_s16s8_s8</SHORT-NAME>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Nx</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sint16</BASE-TYPE-REF>

Listing 3.7: Record Layout: IntMap_s8s16_s16 in ARXML representation

3.3.5 Record Layout: IntMap 3 x 4

Non-symmetrical matrices are commonly used and therefore a detailed description of
their handling is given here.

The logical view is represented by 3-by-4 matrix (two dimensional matrix). Each el-
ement of a matrix is denoted by an index with two subscripts [AXIS 2, AXIS 1]. For
instance, [3,2] represents the element at the third row (AXIS 2) and second column
(AXIS 1) of a matrix.

AUTSSAR

[1.1] [1.2] [1.3] [1.4]

21] | 22 | 23 | [24]

[3.1] [3.2] [3.3] 3.4]

Figure 3.22: 3 x 4 Matrix Representation

In case of column-major order transformation the 3 x 4 matrix results in

na s na | oA ||
ei il ea || ea || 24
B || B2] B3 || B4

Figure 3.23: Transform 3 x 4 Matrix in column-major order

and in case of row-major order transformation the 3 x 4 matrix results in.

Figure 3.24: Transform 3 x 4 Matrix in row-major order

3.3.5.1 Logical view

The figure 3.25 illustrates the logical view of the SwRecordLayout IntMap for the 3 x 4
matrix. Nx and Ny represent the number of sampling points given by the standardized
values of SwRecordLayoutV.swRecordLayoutVProp. In the following example the
dimensions are of Nx = 4 and Ny = 3. In the scope of this example the value COUNT is
used. The swRecordLayoutGroup Wwith the shortLabel Val is shown in the lower
part. Its elements are indexed by [AXIS 2, AXIS 1] from value (AXIS 2: =1, AXIS 1: =

AUTSSAR

1) to value (AXIS 2: = 3, AXIS 1: = 4). AXIS 1 is assigned to Valx and shown above
the values. AXIS 2 is assigned to Valy and shown on the left side of the values.

M
¥=4
Valx | Valx | Valx | Valx
mi1@ |G | @
M Waly
11,11 1121 [1,31 [1,4]
y=3 (1)
Waly
1 [2.2] [2,3] [2.4]
Waly
[3.1] [3.2] [3.3] [3.4]
(3)

Figure 3.25: IntMap Logical View 3 x 4 Matrix

3.3.5.2 Memory representation

The SwRecordLayout IntMap of 3 x 4 matrix illustrated in figure 3.26 is stored in case

of category COLUMN_DIR as follows:

N M Valx | Valx | Valx | Valx | Valy
= py=3 | ()| @ |38 @M

i_" ___

| Waly | Valy

Lo [1.1] 1 [3,1] [1.2] [2.2]
@ | ® B

i,__ ___

i

S 2| na | 3|63 | nea | 24| B4

Figure 3.26: IntMap Memory Representation (COLUMN_DIR) 3 x 4 Matrix

This means that the data is stored first in direction of columns and then in direction of
rows. This means for Valx(1) ([1,1],[2,1],[3,1]), for Valx(2) ([1,2],[2,2],[3,2]), for Valx(3)

([1,3],[2,3].[3,3]) and for Valx(4) ([1,4],[2,4],[3,4]).

The SwRecordLayout IntMap of 3 x 4 matrix illustrated in figure 3.27 is stored in case

of category ROW_DIR as follows:

AUTSSAR

Valy | Valy
E [1,1] [1,2] [1,3] [1,4] 2.1 ---
@|® il
R
i
A R | R3 | R4 B | BA | B3| B4

Figure 3.27: IntMap Memory Representation (ROW_DIR) 3 x 4 Matrix

This means that the data is stored first in direction of rows and then in di-
rection of columns. This means for Valy(1) ([1,1],[1,2],[1,3],[1,4]), for Valy(2)
([2,11,[2,2],[2,3],[2,4]), for Valy(3) ([3,1],[3,2],[3,3],[3,4]).

3.3.6 Record Layout: FixIntMap

This chapter describes the record layout for a map with fixed axis points.
Fixed axis exist in three categories: FIX_AXIS_PAR, FIX_AXIS_PAR_DIST and
FIX_AXIS PAR_LIST, see [TPS_SWCT 01748] in [7].

The number of sampling points (Nx, Ny), the Offset, the shift and the distance values
are represented in the following chapters by these logical views:

-y — o - - w—
b | omy o bonx bony o 1oy o
| I IR | - — L - — - L —1
-—pm ==y —— e —— == = ==y
|Oﬁset|5hiﬂ| | Offset Plstancel | List | ListI
L 0 LM 0] L% o
—OfgetTSEﬂ B —Ofget-'-ls;nc_el

o Vg ! el

L® ™, __L(‘f}l

Figure 3.28: FIX_AXIS_PAR (left), FIX_AXIS_PAR_DIST (middle), FIX_AXIS_PAR_LIST
(right)

These values are not defined inside SswRecordLayouts with fixed axis points.

AUTSSAR

3.3.6.1 Logical view

The figure 3.29 illustrates the logical view of the SwRecordLayout FixIntMap. The
SwRecordLayoutGroup With the shortLabel Val is shown in the lower part. lIts
elements are indexed by [AXIS 2, AXIS 1] from value (AXIS 2: =1, AXIS 1: = 1) to
value (AXIS 2: = -1, AXIS 1: = -1) there -1 gives the last value.

[l]
| I F |
[l]
|foset| Shift 1
I () I ix) I
-_— - = =
| Offset| Shift |
l_(v]] (vl I

[1,1] 11,21 11,31 . [1-1

1] | 22 [2.3] . [2-1

[3.1] [32] [3.3] .. [3-1

[4-1]

(SRR e O

Figure 3.29: FixIntMap Logical View

The matrix element a(2,3) in figure 3.29 is represented by (AXIS 1) x = 3 and (AXIS 2)
y=2.

3.3.6.2 Memory representation (COLUMN_DIR)

The swRecordLayout FixIntMap illustrated in figure 3.29 is stored in case of category
COLUMN_DIR as follows:

AUTSSAR

Figure 3.30: FixIntMap Memory Representation

This means that the data is stored in direction of columns and then in direction of rows
([(1,1L[2,1L[3,1], -..).

3.3.6.3 ARXML representation

Extract of the record layout FixIntMap_s16_s16 from
AUTOSAR_MOD_IFX_RecordLayouts Blueprint.arxml.

</SW-RECORD-LAYOUT>
<! —— SW-RECORD-LAYOUT: FixIntMap sl6_sl16 ——>
<SW-RECORD-LAYOUT>
<SHORT-NAME NAME-PATTERN="{blueprintName}">FixIntMap_s16_s16</SHORT-NAME>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN=" {blueprintName}">Val</SHORT-LABEL>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM>1</SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP-AXIS>2</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>Y</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM>1</SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sint1l6</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>0</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V—-PROP>
<SW-RECORD-LAYOUT-V-INDEX>X Y</SW-RECORD-LAYOUT-V-INDEX>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT>
<! —— SW-RECORD-LAYOUT: FixIntMap s8 s8 ——>

Listing 3.8: Record Layout: FixIntMap_s16_s16 in ARXML representation

AUTSSAR

The following SwRecordLayout$ are not part of
AUTOSAR_MOD_IFX_RecordLayouts Blueprint.arxml.

3.4 Multidimensional Arrays

This chapter describes record layouts for multidimensional arrays as cuboids, cube_4
and cube 5.

3.4.1 Definition of Indexing

To define record layouts for arrays with more than two dimensions the same approach
is used as for maps described in 3.3.1.

In linear algebra, a 3-dimensional matrix is defined by A(l,m,n). Even though the
specifics of symbolic matrix notation varies widely, the subscripts are intentionally de-
fined as follows (see figure 3.31): slice or plane index (l), the row index (m) and the
column index (n). The row index (m) and the column index (n) span maps as known
from figure 3.12. The slice or plane index (l) builds an array of maps defined by the
indexes (m,n).

I-by-m-by-n matrix asz 11 dzq2 ds 13 a3
an,ij d321 @322 8323 3d32p

| 12 @213 8@21n (B333

slices

Q21 @22 @23 QAxon | ... A mn

m I] —
fows 111 @112 @113 8110 |ax33

121 122 @23 J2n| ... Qinn

ai 31 ai32 ai33

Aimi1 A m2 a{mn

ncolumns . TR

Figure 3.31: Linear Algebra Matrix with more than two dimensions

AUTSSAR

The transformation from indexing in matrix definition to the representation in Cartesian
coordinate system is shown in figure 3.32.

AXIS (2)

WS

=
L]

slices «—— 3~

IR R A A A
AT NN N NN

[
4

AXIS (1)
Figure 3.32: Cartesian Coordiate System with an array of maps

The (AXIS 1) and (AXIS 2) span a map. The (AXIS 3) builds an array of these maps
called slices. Each of these slices will define a three-dimensional Euclidean space
which determines every point by three "coordinates”: (AXIS 1), (AXIS 2) and the
value.

It is essential to understand that the (AXIS 3) is not providing the value of the data
point. The (AXIS 3) gives the number of the three-dimensional Euclidean spaces in the
cuboid.

3.4.2 Record Layout: Cuboid

This chapter describes the record layout for a cuboid.

3.4.2.1 Logical view

The figure 3.33 illustrates the logical view of the SwRecordLayout Cuboid. The num-
ber of sampling points (Nx, Ny, Nz) are defined by separate SswRecordLayoutVs in-
side the swRecordLayout. In the following example the dimensions are of Nx = 5,
Ny = 4 and Nz = 2. The elements of [AXIS 1, AXIS 2, AXIS 3] are defined by sepa-
rate SwRecordLayoutGroups inside the enclosing SwRecordLayoutGroup. The
SwRecordLayoutGroup With the shortLabel Val defines the values of the data
points and is shown in the lower part.

AUTSSAR

®=5 | y=4 | z=2

Valx | Vaix | Vabx | Valx | Valx | = npEX INCR

Valy | Valy | Valy | Valy

o |l @ 3 | @ Y INDEX_INCR
Valz | Valz

il I Z INDEX_INCR

22| 222 | 223 | 224 | [2.2.5]

237 | 232 | 233] | 234 | [2.3.5]

1411 01,42 | 1,431 | [1.44] | [1.45 241 | [242] | [243] | [2.44] | [245

valz(1) Valz(2) |

Figure 3.33: Cuboid Logical View

The first slice (AXIS 3: = 1) is illustrated by the dotted rectangular area named Valz(1),
the second slice (AXIS 3: = 2) correspondently named by Valz(2).

3.4.2.2 Memory representation

The swRecordLayout Cuboid illustrated in figure 3.33 is stored in case of category
COLUMN_DIR as follows:

AUTSSAR

This means that the data is stored in direction of columns and then in direction of rows
starting with the first slice ([1,1,1],[1,2,1],[1,3,1], ... ,[1,4,5]). The second slice starts

M N N Valx | Valx | Valx | Valx | Valx | Valy | Valy | Valy
=D lyd|z=2 | 1@ |6 |@ @ 0@ 6
- “’Ei;? \ﬁal}z \"E;Z paalozalosalosn o alnzalnaa | ez
oA nad |nza | vaa | e g | vza | e |nsa | pnas | v2s | 035
S5 Y PP O Y POV O O OO o ey o
_____ Y PO Py o e ey o I

Figure 3.34: Cuboid Memory Representation (COLUMN_DIR)

with ([2,1,1],[2,2,1],[2,3,1], ... ,[2,4,5]) and follows the same pattern.

3.4.2.3 ARXML representation

The ARXML representation of the record layout Cuboid_s16s16s16_s16 is given in two
parts for illustrative reason. The first part defines the number of sampling points and

the elements of axis.

<ELEMENTS>

<! —— SW-RECORD-LAYOUT: Cuboid slé6sléslé_slé6 COLUMN DIR -—>
<SW-RECORD-LAYOUT>

<SHORT-NAME NAME-PATTERN=" {blueprintName}">Cuboid_s16s16s16_s16</SHORT-

NAME>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Nx</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/

BaseTypes_Blueprint/sintl6</BASE-TYPE—-REF>

<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-RECORD-LAYOUT-V—-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Ny</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/

BaseTypes_Blueprint/sint1l6</BASE-TYPE-REF>

<SW-RECORD-LAYOUT-V-AXIS>2</SW-RECORD-LAYOUT-V-AXIS>

<SW-RECORD-LAYOUT-V—-PROP>COUNT</SW-RECORD-LAYOUT-V—-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-V>

AUTSSAR

<SHORT-LABEL NAME-PATTERN="{blueprintName}">Nz</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sintl6</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>3</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">X</SHORT-LABEL>
<CATEGORY>INDEX_ INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sintl6</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VAILUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Y</SHORT-LABEL>
<CATEGORY>INDEX_INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>2</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>Y</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sintl6</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>2</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VAILUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Z%</SHORT-LABEL>
<CATEGORY>INDEX_ INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>3</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>7</SW-RECORD-LAYOUT-GROUP—-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW—RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sint16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>3</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>

Listing 3.9: Record Layout of Cuboid - part one

The second part defines the values of the data points. Inside the SwRecordLay-
outGroup with the shortLabel Val the definition of memory representation (COL-
UMN_DIR or ROW_DIR) has to be unique. This means that memory representation of
the map (AXIS 1 and AXIS 2) and those of the slice (AXIS 3) have to be equal. In case
of listing 3.10 the memory representation COLUMN_DIR is defined.

AUTSSAR

</SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Val</SHORT-LABEL>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>3</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>7</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </ SW—-RECORD-LAYOUT-GROUP—FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-GROUP>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP—-INDEX>X</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP—FROM> 1 </ SW—RECORD-LAYOUT—-GROUP—FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP-AXIS>2</SW-RECORD-LAYOUT-GROUP—-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>Y</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP—FROM> 1 </ SW—RECORD-LAYOUT—GROUP—FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sintl6</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>0</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
<SW-RECORD-LAYOUT-V-INDEX>7 X Y</SW-RECORD-LAYOUT-V-INDEX>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>

Listing 3.10: Record Layout of Cuboid - part two

The combination of different base types e.g. a Cuboid_u8s16u16_u32 are technically
possible but not further described in this document.

3.4.3 Record Layout: Cube_4 and Cube_5

This chapter describes the record layouts for Cube_4 and Cube_5. The Cube_4 stores
an array of Cuboids with incremented or decremented (AXIS 4). The Cube_5 corre-
spondingly stores an array of Cube_4s with incremented or decremented (AXIS 5). In
this version of the document only Cube_4 is described.

3.4.3.1 Logical view

The figure 3.35 illustrates the logical view of the swRecordLayout Cube 4. The
number of sampling points (Nx, Ny, Nz1, Nz2) are defined by separate SwRecord-
LayoutVs inside the SwRecordLayout. In the following example the dimensions are
of Nx =5, Ny =4, Nz1 =2 and Nz2 = 3. The elements of [AXIS 1, AXIS 2, AXIS 3, AXIS
4] are defined by separate SswRecordLayoutGroups inside the SwRecordLayout.

AUTSSAR

Supplementary material of general blueprints for
AUTOSAR
AUTOSAR CP R25-11

The swRecordLayoutGroup with the shortLabel Val defines the values of the data
points and is shown at the right side.

M M N M
=5 y:.' zl1=2 72=3
Valx | Valx | Valx | Valx | Valx
Mm@ |6 | @ |6
Valy | Valy | Valy | Valy
Mm@ | & | @
Valz1 | Valz1
1] @
Valz2 | Valz2 | Valz2
[V P I]
46 of 70

XINDEX_INCR

Y INDEX_INCR

Z1INDEX_INCR

Z2 INDEX_INCR

Figure 3.35: Cube_4 Logical View

Document ID 682: AUTOSAR_CP_TR_GeneralBlueprintsSupplement

AUTSSAR

The first array of cuboids (AXIS 4: = 1) is illustrated by the blue rectangular area named
Valz2(1) at the top in figure 3.35. It contains the cuboid with the slices Valz1(1) and
Valz1(2). The second array of cuboids (AXIS 4: = 2) and the third one (AXIS 4: = 3)
are illustrated in the middle and at the bottom in figure 3.35. Both contain cuboids with
the slices Valz1(1) and Valz1(2). Each element of a matrix is denoted by an index with
four subscripts [AXIS 4, AXIS 3, AXIS 2, AXIS 1].

3.4.3.2 Memory representation

The swRecordLayout Cube_4 illustrated in figure 3.35 is stored in case of category
COLUMN_DIR as follows:

M N N Valx | Valx | Valx | Valx | Valx | Valy | Valy | Valy | Valy | Valz1]
=Dy = z=E 1) @ @ | e pe e @ |

v | valzt | Valz2 | valz2 | Valz2 f 111, | oo, | oo o oo, | oos | oo, | oma | s | oo, .
@ | m) (3) 141 21 | 3 | a4 | 1alzalsa] aal 13| 23 !

[l ___
' [2.2, 22 W31, [3.1, 341, | 3.1, [3.1, 34, | 3.1,

4.4] 45] 1,11 211 3,11 41] 121 33] 43)
B ——— - ValzZ 3 =
D [3.2, [3.2, 32 | 32 32 | B2 32

. . 23 3.3] 43 1,4] 2.4] 3.4 I 44 I Vg I 2.5] I 3,5 | 48]

Figure 3.36: Cube_4 Memory Representation (COLUMN_DIR)

The data values are stored in the following order: starting with the iteration along
cuboids Valz2(1), Valz2(2) and Valz2(3). Inside each of these iterations the iteration
along slices Valz1(1) and Valz1(2) run. Inside each of these iterations the iteration
along the maps is executed as known from 3.3.2. The data values of cuboids Valz2(2)
and Valz2(3) are intentionally not completely illustrated in figure 3.36.

(select cuboid; loop level 4)

iteration along cubuids

(AXIS 4 iterates, AXIS 3, AXIS 2 and AXIS 1 are fixed !)
start with first cuboid (AXIS 4: = 1)

[

AUTSSAR

(select slice; loop level 3)
iteration along slices
(AXIS 3 iterates, AXIS 4, AXIS 2 and AXIS 1 are fixed !)
start with first slice (AXIS 3: = 1)
[
(select row element; loop level 2)
iteration along row
(AXIS 1 iterates, AXIS 4, AXIS 3 and AXIS 2 are fixed !)
start with first row (AXIS 1: = 1)
[
(select column element; loop level 1)
iteration along column
(AXIS 2 iterates, AXIS 4, AXIS 3 and AXIS 1 are fixed !)

start with column element (AXIS 2: = 1)
end with last column (AXIS 2: = 5)
]
end with last row (AXIS 1: = 4)
]
end with last slice (AXIS 3: = 2)

]
end with last cuboid (AXIS 4: = 3)

AUTSSAR

3.4.3.3 ARXML representation

The ARXML representation of the record layout Cube_4 s16s16s16s16_s16 is given
in three parts for illustrative reason. The first part defines the number of sampling
points (Nx, Ny, Nz1, Nz2).

</SW-RECORD-LAYOUT>
<!—— SW-RECORD-LAYOUT: Cube 4 slé6sl6sl6sl6 _sl6 COLUMN_DIR —-—>
<SW-RECORD-LAYOUT>
<SHORT-NAME NAME-PATTERN="{blueprintName}">Cube_4_s16s16s16s16_s16</SHORT-
NAME>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Nx</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sint16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Ny</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sintl6</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>2</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Nz1l</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sint1l6</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>3</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V—-PROP>COUNT</SW-RECORD-LAYOUT-V—-PROP>
</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-V>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Nz2</SHORT-LABEL>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sint1l6</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>4</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>COUNT</SW-RECORD-LAYOUT-V-PROP>

Listing 3.11: Record Layout of Cube_4 - part one

The second part defines the elements of axis [AXIS 1, AXIS 2, AXIS 3, AXIS 4].

</SW-RECORD-LAYOUT-V>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">X</SHORT-LABEL>
<CATEGORY>INDEX_INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP—-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP—-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1</ SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sintl6</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>1</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>

AUTSSAR

</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Y</SHORT-LABEL>
<CATEGORY>INDEX_ INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>2</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>Y</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sint16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>2</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Z1</SHORT-LABEL>
<CATEGORY>INDEX_INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>3</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>Z1</SW—RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sint16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>3</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VAILUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">2%2</SHORT-LABEL>
<CATEGORY>INDEX_INCR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>4</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>Z2</SW-RECORD-LAYOUT—-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM>1</SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sintl6</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>4</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VAILUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>

Listing 3.12: Record Layout of Cube_4 - part two

AUTSSAR

The third part defines the values of the data points. Inside the SwRecordLayout-
Group with the shortLabel Val the nesting of the axis definies the memory repre-
sentation. In case of listing 3.13 the memory representation COLUMN_DIR is defined.
The (AXIS 2) iterates along the column.

</SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Val</SHORT-LABEL>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>4</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>7Z2</SW—RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-GROUP>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>3</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>7Z1</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-GROUP>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-AXIS>1</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>X</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW-RECORD-LAYOUT-GROUP—-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP-AXIS>2</SW-RECORD-LAYOUT-GROUP-AXIS>
<SW-RECORD-LAYOUT-GROUP-INDEX>Y</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </ SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sint1l6</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>(0</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
<SW-RECORD-LAYOUT-V-INDEX>72 71 X Y</SW-RECORD-LAYOUT-V-INDEX>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>

Listing 3.13: Record Layout of Cube_4 - part three

AUTSSAR

3.5 Value and ValueBlock

3.5.1 Record Layout: Value

3.5.1.1 Logical view

The figure 3.37 illustrates the logical view of the SwRecordLayout Value.

SwRecordLayout contains only one value.

(1]

Figure 3.37: Value Logical View

3.5.1.2 Memory representation

The swRecordLayout Val illustrated in figure 3.37 is stored as follows:

(1]

Figure 3.38: Value Memory Representation

3.5.1.3 ARXML representation

</SW-RECORD-LAYOUT>
<!—— SW-RECORD-LAYOUT: Val_slé6 ——>
<SW-RECORD-LAYOUT>
<SHORT-NAME NAME-PATTERN=" {blueprintName}">Val_sl6</SHORT-NAME>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Val</SHORT-LABEL>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sintl6</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>(0</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYQOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>

Listing 3.14: Record Layout of Value

This

AUTSSAR

3.5.2 Record Layout: One dimensional ValueBlock
3.5.2.1 Logical view

The figure 3.39 illustrates the logical view of the swRecordLayout ValueBlock. This
SwRecordLayout is an array of values (similar to an axis but without the number of
axis points).

M| . . - |

Figure 3.39: ValueBlock Logical View

3.5.2.2 Memory representation

The swRecordLayout ValueBlock illustrated in figure 3.40 is stored as follows:

m | . .)

Figure 3.40: Value Memory Representation

3.5.2.3 ARXML representation

</SW-RECORD-LAYOUT>
<! —— SW-RECORD-LAYOUT: ValBlk sl6 —-—>
<SW-RECORD-LAYOUT>
<SHORT-NAME NAME-PATTERN="{blueprintName}">ValBlk_s16</SHORT-NAME>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Val</SHORT-LABEL>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-FROM> 1 </SW—RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sintl6</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>(0</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYQOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V-PROP>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>

Listing 3.15: Record Layout of ValueBlock

AUTSSAR

3.5.3 Record Layout: Multi dimensional ValueBlock

In general AUTOSAR and ASAM support multi dimensional ValueBlocks. The
following example shows a two dimensional SwRecordLayout. Therefore the
AUTOSAR_MOD_ValBlk_SwRecordLayouts_Blueprint.arxml contains only blueprints
for up to two dimensions.

3.5.3.1 Logical view

The figure 3.41 illustrates the logical view of the SwRecordLayout Multi dimensional
ValueBlock. This SwRecordLayout is an array of values (similar to a map or cuboid but
without axis points). N; defines the dimension of the ValueBlock, in this example to i =
2. N; defines the number of values in a dedicated dimension.

- o -y

U T B V|

(S I
[1.1] [1.2] [1,3] . [1-1]
[21] [2.2] [2,3] .. [2,-1]
[3.1] [3,2] [3,3] . [3-1]

[4-1]

[-1.1] | 1,31 | 1.4 | [-1,-1]

Figure 3.41: Multi dimensional ValueBlock Logical View

3.5.3.2 Memory representation

The SwRecordLayout Multi dimensional ValueBlock illustrated in figure 3.41 is stored
as follows:

[1.1] 12,1] [3,1] . 1,41 1 1,7 2.7 [3,2] . 1.2 | 11,3 23] f---

--H B3 . 1.3 F.4 | -1) 2211) BA1] B-11) -1

Figure 3.42: Multi dimensional ValueBlock Memory Representation

AUTSSAR

3.5.3.3 ARXML representation

</SW-RECORD-LAYOUT>
<! —=— SW-RECORD-LAYOUT: ValBlk2Dim sl6 -—>
<SW-RECORD-LAYOUT>
<SHORT-NAME NAME-PATTERN=" {blueprintName}">ValBlk2Dim_s16</SHORT-NAME>
<SW-RECORD-LAYOUT-GROUP>
<SHORT-LABEL NAME-PATTERN="{blueprintName}">Val</SHORT-LABEL>
<CATEGORY>COLUMN_DIR</CATEGORY>
<SW-RECORD-LAYOUT-GROUP-INDEX>i</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM>1</SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-GROUP>
<SW-RECORD-LAYOUT-GROUP-INDEX> j</SW-RECORD-LAYOUT-GROUP-INDEX>
<SW-RECORD-LAYOUT-GROUP-FROM>1</SW-RECORD-LAYOUT-GROUP-FROM>
<SW-RECORD-LAYOUT-GROUP-TO>-1</SW-RECORD-LAYOUT-GROUP-TO>
<SW-RECORD-LAYOUT-V>
<BASE-TYPE-REF DEST="SW-BASE-TYPE">/AUTOSAR/Platform/
BaseTypes_Blueprint/sintl16</BASE-TYPE-REF>
<SW-RECORD-LAYOUT-V-AXIS>0</SW-RECORD-LAYOUT-V-AXIS>
<SW-RECORD-LAYOUT-V-PROP>VALUE</SW-RECORD-LAYOUT-V—-PROP>
<SW-RECORD-LAYOUT-V-INDEX>i j</SW-RECORD-LAYOUT-V-INDEX>
</SW-RECORD-LAYOUT-V>
</SW-RECORD-LAYOUT-GROUP>
</SW-RECORD-LAYOUT-GROUP>

Listing 3.16: Record Layout of Multi dimensional ValueBlock

Hint: Comparable with FixIntMap. Due to ASAM the dimension is not limited, the
examples in ASAM will represent up to 3 dimension.

AUTSSAR

4 Additional SwRecordLayouts

In this chapter further swRecordLayout will be described which are not covered by
dedicated SWS documents.

Contents will be updated.

AUTSSAR

5 Units and Physical Dimensions

The Units and Physical Dimension are defined accordingly to the description in [9]
and [7] by [TPS_SWCT_01285], [TPS_SWCT_01056], [TPS_SWCT_01057], [TPS_
SWCT_01058], [TPS_SWCT 01736], [TPS_SWCT 01059], [TPS _SWCT_01737],
[TPS_SWCT_01060], [TPS_SWCT_01060], [TPS_SWCT_01061], [TPS_SWCT_-
01068], [constr_1026] and [constr_1255].

AUTSSAR

A Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class BaseType (abstract)

Note This abstract meta-class represents the ability to specify a platform dependent base type.

Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable

Element, Referrable

Subclasses SwBaseType

Aggregated by | ARPackage.element

Attribute Type Mult. Kind | Note

baseType BaseTypeDefinition 1 aggr | This is the actual definition of the base type.

Definition Tags:
xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

Table A.1: BaseType
Class BlueprintPolicy (abstract)
Note This meta-class represents the ability to indicate whether blueprintable elements will be modifiable or not
modifiable.

Base ARObject

Subclasses BlueprintPolicyModifiable, BlueprintPolicyNotModifiable

Aggregated by | AipBlueprint.blueprintPolicy

Attribute Type Mult. Kind | Note

attributeName String 1 attr This identifies the related attribute of a BlueprintPolicy.
For navigation over the model a subset of xpath
expressions is used.
Stereotypes: atpldentityContributor

Table A.2: BlueprintPolicy

Class BswModuleDescription
Note Root element for the description of a single BSW module or BSW cluster. In case it describes a BSW
module, the short name of this element equals the name of the BSW module.
Tags: atp.recommendedPackage=BswModuleDescriptions
This Class is only used by the AUTOSAR Classic Platform.
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtoFeature, AtpStructureElement,
CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable
Aggregated by | ARPackage.element, AtpClassifier.atpFeature
Attribute Type | Mult. | Kind | Note

\Y

AUTSSAR

A
Class BswModuleDescription
bswModule BswModuleDependency * aggr Describes the dependency to another BSW module.
Dependency Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=bswModuleDependency.shortName, bsw
ModuleDependency.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20
bswModule SwComponent 0..1 aggr This adds a documentation to the BSW module.
Documentation Documentation Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=bswModuleDocumentation, bswModule
Documentation.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=6
expectedEntry BswModuleEntry * ref Indicates an entry which is required by this module.
Replacement of outgoingCallback / requiredEntry.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=expectedEntry.oswModuleEntry, expected
Entry.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
implemented BswModuleEntry * ref Specifies an entry provided by this module which can be
Entry called by other modules. This includes "main” functions,
interrupt routines, and callbacks. Replacement of
providedEntry / expectedCallback.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=implementedEntry.oswModuleEntry,
implementedEntry.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
internalBehavior | BswinternalBehavior * aggr The various BswinternalBehaviors associated with a Bsw
ModuleDescription can be distributed over several
physical files. Therefore the aggregation is <<atp
Splitable>>.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=internalBehavior.shortName
xml.sequenceOffset=65
moduleld Positivelnteger 0..1 attr Refers to the BSW Module Identifier defined by the
AUTOSAR standard. For non-standardized modules, a
proprietary identifier can be optionally chosen.
Tags: xml.sequenceOffset=5
providedClient BswModuleClientServer * aggr Specifies that this module provides a client server entry

ServerEntry

Entry

which can be called from another partition or core.This
entry is declared locally to this context and will be
connected to the requiredClientServerEntry of another or
the same module via the configuration of the BSW
Scheduler.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=providedClientServerEntry.shortName,
providedClientServerEntry.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=45

AUTSSAR

Class

BswModuleDescription

providedData

VariableDataPrototype

aggr

Specifies a data prototype provided by this module in
order to be read from another partition or core.The
providedData is declared locally to this context and will be
connected to the requiredData of another or the same
module via the configuration of the BSW Scheduler.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=providedData.shortName, provided
Data.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=55

providedMode
Group

ModeDeclarationGroup
Prototype

agor

A set of modes which is owned and provided by this
module or cluster. It can be connected to the required
ModeGroups of other modules or clusters via the
configuration of the BswScheduler. It can also be
synchronized with modes provided via ports by an
associated ServiceSwComponentType, EcuAbstraction
SwComponentType or ComplexDeviceDriverSw
ComponentType.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=providedModeGroup.shortName, provided
ModeGroup.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=25

releasedTrigger

Trigger

agor

A Trigger released by this module or cluster. It can be
connected to the requiredTriggers of other modules or
clusters via the configuration of the BswScheduler. It can
also be synchronized with Triggers provided via ports by
an associated ServiceSwComponentType, Ecu
AbstractionSwComponentType or ComplexDeviceDriver
SwComponentType.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=releasedTrigger.shortName, released
Trigger.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=35

requiredClient
ServerEntry

BswModuleClientServer
Entry

aggr

Specifies that this module requires a client server entry
which can be implemented on another partition or
core.This entry is declared locally to this context and will
be connected to the providedClientServerEntry of another
or the same module via the configuration of the BSW
Scheduler.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=requiredClientServerEntry.shortName,
requiredClientServerEntry.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=50

requiredData

VariableDataPrototype

agor

Specifies a data prototype required by this module in oder
to be provided from another partition or core.The required
Data is declared locally to this context and will be
connected to the providedData of another or the same
module via the configuration of the BswScheduler.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=requiredData.shortName, required
Data.variationPoint.shortLabel

vh.latestBinding Time=preCompile Time
xml.sequenceOffset=60

SSAR

AUT<

A
Class BswModuleDescription
requiredMode ModeDeclarationGroup * aggr Specifies that this module or cluster depends on a certain
Group Prototype mode group. The requiredModeGroup is local to this

context and will be connected to the providedModeGroup
of another module or cluster via the configuration of the
BswScheduler.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=requiredModeGroup.shortName, required
ModeGroup.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=30

requiredTrigger

Trigger aggr Specifies that this module or cluster reacts upon an
external trigger.This requiredTrigger is declared locally to
this context and will be connected to the providedTrigger
of another module or cluster via the configuration of the
BswScheduler.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=requiredTrigger.shortName, required
Trigger.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=40

Table A.3: BswModuleDescription

Class BswModuleEntry
Note This class represents a single API entry (C-function prototype) into the BSW module or cluster.
The name of the C-function is equal to the short name of this element with one exception: In case of
multiple instances of a module on the same CPU, special rules for "infixes" apply, see description of class
Bswimplementation.
Tags: atp.recommendedPackage=BswModuleEntrys
This Class is only used by the AUTOSAR Classic Platform.
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
argument SwServiceArg * aggr An argument belonging to this BswModuleEntry.
(ordered) Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=argument.shortName, argument.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=45
bswEntryKind BswEntryKindEnum 0..1 attr This describes whether the entry is concrete or abstract.
If the attribute is missing the entry is considered as
concrete.
Tags: xml.sequenceOffset=40
callType BswCallType 0..1 attr The type of call associated with this service.
Tags: xml.sequenceOffset=25
execution BswExecutionContext 0..1 attr Specifies the execution context which is required (in case
Context of entries into this module) or guaranteed (in case of
entries called from this module) for this service.
Tags: xml.sequenceOffset=30
function NameToken 0..1 attr This attribute is used to control the generation of function
Prototype prototypes. If set to "RTE", the RTE generates the
Emitter function prototypes in the Module Interlink Header File.

AUTSSAR

Class

BswModuleEntry

isReentrant

Boolean

attr

Reentrancy from the viewpoint of function callers:
« true: Enables the service to be invoked again, before
the service has finished.

« false: It is prohibited to invoke the service again before
is has finished.

Tags: xml.sequenceOffset=15

isSynchronous

Boolean

attr

Synchronicity from the viewpoint of function callers:
« true: This calls a synchronous service, i.e. the service
is completed when the call returns.

« false: The service (on semantical level) may not be
complete when the call returns.

Tags: xml.sequenceOffset=20

returnType

SwServiceArg

aggr

The return type belonging to this bswModuleEntry.
Tags: xml.sequenceOffset=40

role

Identifier

attr

Specifies the role of the entry in the given context. It shall
be equal to the standardized name of the service call,
especially in cases where no Serviceldentifier is specified,
e.g. for callbacks. Note that the ShortName is not always
sufficient because it maybe vendor specific (e.g. for
callbacks which can have more than one instance).

Tags: xml.sequenceOffset=10

serviceld

Positivelnteger

attr

Refers to the service identifier of the Standardized
Interfaces of AUTOSAR basic software. For
non-standardized interfaces, it can optionally be used for
proprietary identification.

Tags: xml.sequenceOffset=5

swServicelmpl
Policy

SwServicelmplPolicy 0..1

Enum

attr

Denotes the implementation policy as a standard function
call, inline function or macro. This has to be specified on

interface level because it determines the signature of the
call.

Tags: xml.sequenceOffset=35

Table A.4: BswModuleEntry

Class ClientServerinterface
Note A client/server interface declares a number of operations that can be invoked on a server by a client.
Tags: atp.recommendedPackage=PortInterfaces
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtoType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
operation ClientServerOperation * aggr ClientServerOperation(s) of this
ClientServerInterface.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=operation.shortName, operation.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
This Attribute is only used by the AUTOSAR Classic
Platform.
possibleError ApplicationError * aggr Application errors that are defined as part of this interface.

Table A.5: ClientServerinterface

AUTSSAR

Class ClientServerinterfaceToBswModuleEntryBlueprintMapping
Note This represents a mapping between one ClientServerInterface blueprint and BswModuleEntry blueprint
in order to express the intended implementation of ClientServerOperations by specific BswModuleEntries
under consideration of PortDefinedArguments. Such a mapping enables the formal check whether the
number of arguments and the data types of arguments of the operation + additional PortDefined
Arguments matches the signature of the BswModuleEntry.
Tags: atp.recommendedPackage=BlueprintMappingSets
This Class is only used by the AUTOSAR Classic Platform.
Base ARElement, ARObject, AtpBlueprint, CollectableElement, Identifiable, MultilanguageReferrable,
PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Muit. Kind | Note
clientServer ClientServerinterface 1 ref The referenced ClientServerinterface represents the
Interface client server interface the mapping is dedicated to.
operation ClientServerOperation 1.7 aggr | This specifies the operations used in the mapping
Mapping BlueprintMapping between the ClientServerinterface and the BswModule
Entry.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=operationMapping, operation
Mapping.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
portDefined PortDefinedArgument * aggr | This specifies the PortDefinedArguments used in the
Argument Blueprint mapping between the ClientServerinterface and the Bsw
Blueprint ModuleEntry.
(ordered) Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=portDefinedArgumentBlueprint, portDefined
ArgumentBlueprint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
Table A.6: ClientServerinterfaceToBswModuleEntryBlueprintMapping
Class CompuMethod
Note This meta-class represents the ability to express the relationship between a physical value and the
mathematical representation.
Note that this is still independent of the technical implementation in data types. It only specifies the
formula how the internal value corresponds to its physical pendant.
Tags: atp.recommendedPackage=CompuMethods
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
compulnternal Compu 0..1 aggr | This specifies the computation from internal values to
ToPhys physical values.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=compulnternalToPhys
xml.sequenceOffset=80
compuPhysTo Compu 0..1 aggr | This represents the computation from physical values to
Internal the internal values.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=compuPhysTolnternal
xml.sequenceOffset=90
displayFormat DisplayFormatString 0..1 attr This property specifies, how the physical value shall be
displayed e.g. in documents or measurement and
calibration tools.
Tags: xml.sequenceOffset=20

AUT<

SSAR

A
Class CompuMethod
unit Unit 0..1 ref This is the physical unit of the Physical values for which
the CompuMethod applies.
Tags: xml.sequenceOffset=30
Table A.7: CompuMethod
Class DataConstr
Note This meta-class represents the ability to specify constraints on data.
Tags: atp.recommendedPackage=DataConstrs
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
dataConstrRule DataConstrRule * aggr | This is one particular rule within the data constraints.
Tags:

xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=30
xml.typeElement=false
xml.typeWrapperElement=false

Table A.8: DataConstr

Class ImplementationDataType

Note Describes a reusable data type on the implementation level. This will typically correspond to a typedef in
C-code.
Tags: atp.recommendedPackage=ImplementationDataTypes

Base ARElement, ARObject, AbstractimplementationDataType, AtpBlueprint, AtpBlueprintable, AtpClassifier,
AtpType, AutosarDataType, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable

Aggregated by | ARPackage.element

Attribute Type Mulit. Kind | Note

dynamicArray String 0..1 attr Specifies the profile which the array will follow in case this

SizeProfile data type is a variable size array.

isStructWith Boolean 0..1 attr This attribute is only valid if the attribute category is set to

Optional STRUCTURE.

Element If set to true, this attribute indicates that the
ImplementationDataType has been created with the
intention to define at least one element of the structure as
optional.

subElement ImplementationData * aggr Specifies an element of an array, struct, or union data

(ordered) TypeElement type.

The aggregation of
ImplementationDataTypeElement is subject to
variability with the purpose to support the conditional
existence of elements inside a
ImplementationDataType representing a structure.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=subElement.shortName, sub
Element.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

AUT<

SSAR

A
Class ImplementationDataType
symbolProps SymbolProps 0..1 aggr | This represents the SymbolProps for the Implementation
DataType.
Stereotypes: atpSplitable
Tags: atp.Splitkey=symbolProps.shortName
typeEmitter NameToken 0..1 attr This attribute is used to control which part of the
AUTOSAR toolchain is supposed to trigger data type
definitions.
Table A.9: ImplementationDataType
Class InterpolationRoutineMappingSet
Note This meta-class specifies a set of interpolation routine mappings.
Tags: atp.recommendedPackage=InterpolationRoutineMappingSets
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
interpolation InterpolationRoutine * aggr | This specifies one particular mapping of recordlayout and
Routine Mapping its matching interpolationRoutines.
Mapping
Table A.10: InterpolationRoutineMappingSet
Class ModeDeclarationGroup
Note A collection of Mode Declarations. Also, the initial mode is explicitly identified.
Tags: atp.recommendedPackage=ModeDeclarationGroups
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtoType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, UploadableDesignElement,
UploadablePackageElement
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
initialMode ModeDeclaration 0..1 ref The initial mode of the ModeDeclarationGroup. This
mode is active before any mode switches occurred.
mode ModeDeclaration * aggr | The ModeDeclarations collected in this ModeDeclaration
Declaration Group.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=modeDeclaration.shortName, mode
Declaration.variationPoint.shortLabel
vh.latestBindingTime=blueprintDerivationTime
modeManager ModeErrorBehavior 0..1 aggr This represents the ability to define the error behavior
ErrorBehavior expected by the mode manager in case of errors on the
mode user side (e.g. terminated mode user).
This Attribute is only used by the AUTOSAR Classic
Platform.
modeTransition ModeTransition * aggr | This represents the avaliable ModeTransitions of the
ModeDeclarationGroup
This Attribute is only used by the AUTOSAR Classic
Platform.
modeUserError ModeErrorBehavior 0..1 aggr | This represents the definition of the error behavior
Behavior expected by the mode user in case of errors on the mode
manager side (e.g. terminated mode manager).
This Attribute is only used by the AUTOSAR Classic
Platform.

AUT<

SSAR

Class

ModeDeclarationGroup

onTransition

Positivelnteger 0..1 attr The value of this attribute shall be taken into account by

Value the RTE generator for programmatically representing a
value used for the transition between two statuses.
This Attribute is only used by the AUTOSAR Classic
Platform.
Table A.11: ModeDeclarationGroup
Class ModeSwitchinterface
Note A mode switch interface declares a ModeDeclarationGroupPrototype to be sent and received.
Tags: atp.recommendedPackage=PortInterfaces
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note
modeGroup ModeDeclarationGroup 0..1 aggr The ModeDeclarationGroupPrototype of this mode
Prototype interface.
Table A.12: ModeSwitchinterface
Class NvBlockSwComponentType
Note The NvBlockSwComponentType defines non volatile data which data can be shared between Sw
ComponentPrototypes. The non volatile data of the NvBlockSwComponentType are accessible via
provided and required ports.
Tags: atp.recommendedPackage=SwComponentTypes
This Class is only used by the AUTOSAR Classic Platform.
Base ARElement, ARObject, AtomicSwComponentType, AtpBlueprint, AtpBlueprintable, AtpClassifier, Atp
Type, CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable, Sw
ComponentType
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note
bulkNvData BulkNvDataDescriptor * aggr | This aggregation formally defines the bulk Nv Blocks that
Descriptor are provided to the application software by the enclosing
NvBlockSwComponentType.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=bulkNvDataDescriptor.shortName, bulkNv
DataDescriptor.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
nvBlock NvBlockDescriptor * aggr Specification of the properties of exactly one NVRAM
Descriptor Block.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=nvBlockDescriptor.shortName, nvBlock
Descriptor.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
Table A.13: NvBlockSwComponentType
Class SenderReceiverinterface
Note A sender/receiver interface declares a number of data elements to be sent and received.
Tags: atp.recommendedPackage=PortInterfaces
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtoType, CollectableElement,

Datalnterface, Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable

\Y

AUT<

SSAR

JAN
Class SenderReceiverinterface
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note
dataElement VariableDataPrototype * aggr | The data elements of this SenderReceiverInterface.
invalidation InvalidationPolicy * aggr InvalidationPolicy for a particular dataElement
Policy
metaDataltem MetaDataltemSet * aggr | This aggregation defines fixed sets of meta-data items
Set associated with dataElements of the enclosing
SenderReceiverInterface

Table A.14: SenderReceiverinterface

Class ServiceSwComponentType
Note ServiceSwComponentType is used for configuring services for a given ECU. Instances of this class are
only to be created in ECU Configuration phase for the specific purpose of the service configuration.
Tags: atp.recommendedPackage=SwComponentTypes
Base ARElement, ARObject, AtomicSwComponentType, AtpBlueprint, AtoBlueprintable, AtpClassifier, Atp
Type, CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable, Sw
ComponentType
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
Table A.15: ServiceSwComponentType
Class SwAddrMethod
Note Used to assign a common addressing method, e.g. common memory section, to data or code objects.
These objects could actually live in different modules or components.
Tags: atp.recommendedPackage=SwAddrMethods
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
memory MemoryAllocation 0..1 attr Enumeration to specify the name pattern of the Memory
Allocation KeywordPolicy Type Allocation Keyword.
KeywordPolicy
option Identifier * attr This attribute introduces the ability to specify further
intended properties of the MemorySection in with the
related objects shall be placed.
These properties are handled as to be selected. The
intended options are mentioned in the list.
In the Memory Mapping configuration, this option list is
used to determine an appropriate MemMapAddressing
ModeSet.
section SectionlInitialization 0..1 attr Specifies the expected initialization of the variables
Initialization PolicyType (inclusive those which are implementing VariableData
Policy Prototypes). Therefore this is an implementation
constraint for initialization code of BSW modules
(especially RTE) as well as the start-up code which
initializes the memory segment to which the AutosarData
Prototypes referring to the SwAddrMethod’s are later on
mapped.
If the attribute is not defined it has the identical semantic
as the attribute value "INIT"
sectionType MemorySectionType 0..1 attr Defines the type of memory sections which can be
associated with this addressing method.

Table A.16: SwAddrMethod

AUT<

SSAR

Class SwRecordLayout
Note Defines how the data objects (variables, calibration parameters etc.) are to be stored in the ECU
memory. As an example, this definition specifies the sequence of axis points in the ECU memory.
Iterations through axis values are stored within the sub-elements swRecordLayoutGroup.
Tags: atp.recommendedPackage=SwRecordLayouts
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
swRecord SwRecordLayoutGroup 0..1 aggr | This is the top level record layout group.
LayoutGroup Tags:
xml.roleElement=true
xml.roleWrapperElement=false
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false
Table A.17: SwRecordLayout
Class SwRecordLayoutGroup
Note Specifies how a record layout is set up. Using SwRecordLayoutGroup it recursively models iterations
through axis values. The subelement swRecordLayoutGroupContentType may reference other Sw
RecordLayouts, SwRecordLayoutVs and SwRecordLayoutGroups for the modeled record layout.
Base ARObject
Aggregated by | SwRecordLayout.swRecordLayoutGroup, SwRecordLayoutGroupContent.swRecordLayoutGroup
Attribute Type Mult. Kind | Note
category AsamRecordLayout 0..1 attr This attribute denotes the semantics in particular in terms
Semantics of the corresponding A2L-Keyword. This is to support the
mapping of the more general record layouts in AUTOSAR/
MSR to the specific A2l keywords.
It is possible to express the specific semantics of A2l
recordlayout keywords in swRecordlayoutGroup but not
always vice versa. Therefore the mapping is provided in
this optional attribute.
Tags: xml.sequenceOffset=5
desc MultiLanguageOverview 0..1 aggr | This aggregation allows a brief description about the
Paragraph particular record layout group which can help to identify
the entry. In-depth documentation should be added to the
introduction of the surrounding record layout.
Tags: xml.sequenceOffset=20
shortLabel Identifier 0..1 attr This attribute specifies a name which can be used e.g.
when ECU code is generated from the record layout
group.
Tags: xml.sequenceOffset=3
swGenericAxis SwGenericAxisParam 0..1 ref This association allows to specify record layout groups to
ParamType Type iterate over generic axis parameters. For example, if the
generic axis parameter is an array, the record layout
group will iterate over this array.
Obviously, the axis referred to by swRecordLayoutGroup
Axis shall be a generic axis in which the referenced Sw
GenericAxisType is aggregated.
Tags: xml.sequenceOffset=50
swRecord Identifier 0..1 attr This attribute is used to denote the component to which
Layout the group in question applies. Thus, the record layout
Component supports structured objects.
This secures independence from the sequence of
components, because they can be referred to via name.
Tags: xml.sequenceOffset=90

AUTSSAR

A
Class SwRecordLayoutGroup
swRecord AxisIndexType 0..1 attr This attribute specifies the iteration axis number for a Sw
LayoutGroup RecordLayoutGroup. The current record layout group
Axis then refers exactly to the axis with this number. This
means that the values are taken by iterating along the
thus referenced axis.
Tags: xml.sequenceOffset=30
swRecord SwRecordLayoutGroup 0..1 aggr | This is the contents of the recordLayout which is
LayoutGroup Content produced for every step of iteration.
ContentType Tags:
xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=100
xml.typeElement=false
xml.typeWrapperElement=false
swRecord RecordLayoutlterator 0..1 attr This attribute specifies the iterator index for the point in
LayoutGroup Point the axis from which a record layout group is commenced.
From Negative values are also possible, i.e. the value -4 counts
from the fourth value from the end. If this property is
missing, the iteration starts with ’1°.
Tags: xml.sequenceOffset=60
swRecord NameToken 0..1 attr This attribute attributes a symbolic name to the iterator of
LayoutGroup the superimposed record layout group. This can be
Index referenced as a loop index in contained SwRecordLayout
V elements.
Tags: xml.sequenceOffset=40
swRecord Integer 0..1 attr This attribute specifies the step width for the iterator index
LayoutGroup that is used for the current record layout group.
Step Note that negative values are also possible, in case of the
starting point is higher than the endpoint. If the property
is missing, the step width is "1".
Tags: xml.sequenceOffset=80
swRecord RecordLayoutlterator 0..1 attr This attribute specifies the end point for the iteration.
LayoutGroupTo Point Negative values are also possible, i.e. the value -4 counts
up to the fourth value from the end. If this property is not
there, the iteration ends at "-1" which is the last element.
Note that depending on the arraySizeSemantics of Sw
TextProps the iteration ends at the value specified in sw
MaxTextSize.
Tags: xml.sequenceOffset=70
Table A.18: SwRecordLayoutGroup
Class SwRecordLayoutV
Note This element specifies which values are stored for the current SwRecordLayoutGroup. If no baseType is
present, the SwBaseType referenced initially in the parent SwRecordLayoutGroup is valid. The
specification of swRecordLayoutVAxis gives the axis of the values which shall be stored in accordance
with the current record layout SwRecordLayoutGroup. In swRecordLayoutVProp one can specify the
information which shall be stored.
Base ARObject
Aggregated by | SwRecordLayoutGroupContent.swRecordLayoutV
Attribute Type Mult. Kind | Note
baseType SwBaseType 0..1 ref This association allows to refer to a base type in case a

specific encoding is intended. If no base type is referred,
the base type referenced initially in the corresponding
DataPrototype is to be used.

Tags: xml.sequenceOffset=30

AUTSSAR

Class SwRecordLayoutV

desc MultiLanguageQOverview 0..1

Paragraph

aggr

This aggregation allows for a brief description about the
particular record layout value which can help to identify
the entry. In-depth documentation should be added to the
introduction of the surrounding record layout.

Tags: xml.sequenceOffset=20

shortLabel Identifier 0..1

attr

This attribute specifies a name which can be used e.g.
when ECU code is generated from the record layout
value.

Tags: xml.sequenceOffset=3

SwGenericAxisParam
Type

swGenericAxis
ParamType

ref

This association supports the case that a value from a
generic axis definition shall be stored. This value is
denoted by a particular generic axis parameter type.
Tags: xml.sequenceOffset=70

swRecord
LayoutVAxis

AxisIindexType

attr

This attribute gives the index of the axis of which values
that are stored in the record. swRecordVIndex refers to
the symbolic names of the iterators for which the axis
value shall be stored in the record.

In case of nested iterators (mainly for multidimensional
objects) the iterator names are specified as
whitespace-separated names.

These symbolic names relate to swRecordLayoutGroup
Index. The iterators are processed from left to right in
such a manner that they symbolize the loop index from
the outside to the inside.

It is considered an error if more components are specified
than axes exist in the related ApplicationDataType.
Tags: xml.sequenceOffset=40

swRecord 0..1
LayoutVFix

Value

Integer

attr

This attribute specifies the filler character for the current
record layout, in the form of hex digits. It is also used to
specify the fix value for e.g. FIXRIGHTDIFF.

Tags: xml.sequenceOffset=80

swRecord NameTokens 0..1

LayoutVIndex

attr

The symbolic value for iteration, or the symbolic values
separated by whitespaces, refer to the symbolic values
given in swRecordLayoutGroupindex .

The iterators are processed from left to right, in such a
manner that they symbolize the loop index from the
outside to the inside.

It is considered an error if the record layout is referenced
by an entity which has less number of axes than index
names referenced here.

Tags: xml.sequenceOffset=60

swRecord NameToken 0..1

LayoutVProp

attr

This attribute describes the kind of values to be stored.
More details see below. The standardized values
foreseen for this attribute are defined in [TPS_SWCT_
01489].

Tags: xml.sequenceOffset=50

Table A.19:

SwRecordLayoutV

	1 Introduction
	2 Overview General Blueprints
	2.1 AUTOSAR_MOD_BSWServiceInterfaces_Blueprint
	2.2 AUTOSAR_MOD_BswModuleEntrys_Blueprint
	2.3 AUTOSAR_MOD_BswServiceInterfaceMappings_Blueprint
	2.4 AUTOSAR_MOD_BswServiceDataTypes_Blueprint
	2.5 AUTOSAR_MOD_CommonDataTypes_Blueprint
	2.6 AUTOSAR_MOD_BswDataTypes_Blueprint
	2.7 AUTOSAR_MOD_IFL_RecordLayouts_Blueprint
	2.8 AUTOSAR_MOD_IFX_RecordLayouts_Blueprint
	2.9 AUTOSAR_MOD_Cube_RecordLayouts_Blueprint
	2.10 AUTOSAR_MOD_ValBlk_SwRecordLayouts_Blueprint
	2.11 AUTOSAR_MOD_MemoryMapping_SwAddrMethods_Blueprint
	2.12 AUTOSAR_MOD_SWCServiceRelatedInterfaces_Blueprint
	2.13 AUTOSAR_MOD_PhyiscalDimensions_Blueprint
	2.14 AUTOSAR_MOD_Units_Blueprint
	2.15 AUTOSAR_TP_FormulaLanguage_TestCases_Blueprint
	2.16 Composition of Blueprints

	3 Visualization of SwRecordLayouts
	3.1 Distributed Data Points
	3.1.1 Record Layout: Distr
	3.1.1.1 Logical view
	3.1.1.2 Memory representation
	3.1.1.3 ARXML representation

	3.2 Curves
	3.2.1 Record Layout: Cur
	3.2.1.1 Logical view
	3.2.1.2 Memory representation
	3.2.1.3 ARXML representation

	3.2.2 Record Layout: IntCur
	3.2.2.1 Logical view
	3.2.2.2 Memory representation
	3.2.2.3 ARXML representation

	3.2.3 Record Layout: FixIntCur
	3.2.3.1 Logical view
	3.2.3.2 Memory representation
	3.2.3.3 ARXML representation

	3.3 Maps
	3.3.1 Definition of Indexing
	3.3.2 Transform Logical View in Memory Representation
	3.3.3 Record Layout: Map
	3.3.3.1 Logical view
	3.3.3.2 Memory representation (COLUMN_DIR)
	3.3.3.3 ARXML representation

	3.3.4 Record Layout: IntMap
	3.3.4.1 Logical view
	3.3.4.2 Memory representation (COLUMN_DIR)
	3.3.4.3 ARXML representation
	3.3.4.4 Memory representation (ROW_DIR)
	3.3.4.5 ARXML representation

	3.3.5 Record Layout: IntMap 3 x 4
	3.3.5.1 Logical view
	3.3.5.2 Memory representation

	3.3.6 Record Layout: FixIntMap
	3.3.6.1 Logical view
	3.3.6.2 Memory representation (COLUMN_DIR)
	3.3.6.3 ARXML representation

	3.4 Multidimensional Arrays
	3.4.1 Definition of Indexing
	3.4.2 Record Layout: Cuboid
	3.4.2.1 Logical view
	3.4.2.2 Memory representation
	3.4.2.3 ARXML representation

	3.4.3 Record Layout: Cube_4 and Cube_5
	3.4.3.1 Logical view
	3.4.3.2 Memory representation
	3.4.3.3 ARXML representation

	3.5 Value and ValueBlock
	3.5.1 Record Layout: Value
	3.5.1.1 Logical view
	3.5.1.2 Memory representation
	3.5.1.3 ARXML representation

	3.5.2 Record Layout: One dimensional ValueBlock
	3.5.2.1 Logical view
	3.5.2.2 Memory representation
	3.5.2.3 ARXML representation

	3.5.3 Record Layout: Multi dimensional ValueBlock
	3.5.3.1 Logical view
	3.5.3.2 Memory representation
	3.5.3.3 ARXML representation

	4 Additional SwRecordLayouts
	5 Units and Physical Dimensions
	A Mentioned Class Tables

