AUTSSAR

) Application Design Patterns
Document Title Catalogue
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 672
Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 | R25-11 Release « Editorial changes
Management
AUTOSAR
2024-11-27 | R24-11 Release » Editorial changes
Management
AUTOSAR
2023-11-23 | R23-11 Release « Editorial changes
Management
« Table for interface definitions introduced
AUTOSAR » Usage options for
2022-11-24 | R22-11 Release SensorActuator-Pattern
Management
« Editorial changes
AUTOSAR
2021-11-25 | R21-11 Release « Editorial changes
Management
AUTOSAR + Signal quality states introduction
2020-11-30 R20-11 Release  Extension of definition of electrical
Management sensor interface




AUTSSAR

« Subfunctions per layer defined
+ Capability information introduced

« FAQ and known issues section

AUTOSAR implemented
2019-11-28 | R19-11 | Release P
Management * Separation of Sensor and Actuator in
namespace
» Changed Document Status from Final to
published
AUTOSAR
2018-10-31 4.4.0 Release « Editorial changes
Management
AUTOSAR
2017-12-08 | 4.3.1 Release « Editorial changes
Management
* generalization of arbitration pattern,
three examples: several setpoint
AUTOSAR requesters, several providers of
2016-11-30 | 4.3.0 Release estimated values, several providers of
Management consolidated values
* minor changes
* reconsideration of signal definitions and
tailored pattern for smart actuators and
AUTOSAR actuators with no feedback loop
2015-07-31 422 Release
Management * specification items added
* minor changes
* First Release of document. Patterns
covered:
AUTOSAR — Sensor and Actuator Pattern
2014-10-31 4.2.1 Release — Arbitration of Several Set-point
Management Requester Pattern

* Previously published as part of
EXP_AlPowertrain




AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.



AUTSSAR

Table of Contents

1 Introduction

1.1 Document conventions . . . . . . . . . ...

2 About Patterns

2.1 TypesofPattern . . . . . . . . ..
2.2 Describing Patterns . . . . . . ...

Sensor and Actuator Pattern

3.1 Motivation . . . . . . ..
3.2 Also Known As . . . . . . e
3.3 Applicability . . . . .. ..
3.4 Solution . . . ...
3.5 Naming . . . . . .
3.6 Interface definitions . . . . . . . ... Lo
3.7 Sensor Actuatortypes . . .. . . ...
3.7.1 SENnsOr . . .. e e
3.7.2 Actuator without Feedback Loop . . . . . . . ... ... ... ...
3.7.3 Actuator with Feedback Loop . . . . . . . ... ... ... ... ...
3.8 Usageofpattern . . ... ... ... ... ...
3.9 Examples . . . . ..
3.9.1 ThrottleValve . . . . . . . .. .. . ...
3.9.2 TurboCharger . . . .. . . . . . . . . e
3.9.3 Turbo Charger with StagesandBanks . . . . ... ... .......
3.9.4 Sensor for Environment Temperature . . . . . ... ... ... ...
3.9.5 Standard Sensor . . . . . . ...
3.9.6 Standard Sensor for Environment Temperature . . . . . . ... ...
3.9.7 Distributing Device Abstraction . . . . .. .. ... ... .......
3.10Sample CodeandModel . . . . .. .. ... ... ... ... .. ...,
3.11Typical location of some common function within the specified layers
3.11.1 Virtual Device Coordinator (DevCoorrVirt) . . . . .. ... ... ...
3.11.1.1 Conversion and linearization of physical requested value . . . .
3.11.1.2 DCM service / Diagnostic tester interface for basic function test
3.11.1.3 Cleaning /Icebreaking . . . . . .. . ... ... ... ......
3.11.1.4 Ditherof setpoint . . . . . . .. ... .. .. ... L.
3.11.1.5 Release function of setpoint . . . . . ... ... ... ......
3.11.1.6 Coordination of activation and deactivation of the actuator . . .
3.11.2 Actuator Device Driver (DevDrvrActr) . . . .. .. ... ... ....
3.11.2.1 Ditherof outputvalue . . . . . . .. ... ... ... .. .....
3.11.2.2 Release function of outputvalue . . . . . . . ... ... .. ...
3.11.238 Limitation . . . . . . . ..

3.11.2.4 Feed forward controller . . . . . . . . . . . .. . . ... .....
3.11.2.5 Closed loop controller . . . . . ... ... ... .. .......



AUTSSAR

3.11.2.6 Set point limitation . . . . . .. ... ... ... oL 41
3.11.2.7 Set point gradient limitation . . . . . ... ... ... ... ... 41
3.11.2.8 Control deviation monitoring . . . . . . . ... ... ... .... 41
3.11.29 Capability . . . .. ... 42
3.11.3 Electrical Actuator Driver (DrvrActrElec) . . . . . . . .. ... .. .. 43
3.11.3.1 Power stage monitoring . . . . . . . ... ... .. L. 44
3.11.4 Virtual Device Driver (DevSnsrVirt) . . . . . . . .. ... .. ..., 44
3.11.4.1 Substitution . . . . . .. ... L 44
3.11.4.2 Inertia compensation . . . . . ... ... ... ... ... 45
3.11.4.3 Signal qualifier evaluation . . . ... ... ... ......... 45
3.11.4.4 DCM service / Diagnostic tester interface for basic function test 45
3.11.4.5 Plausibilization . . ... ... ... ... .. ... . ... . ... 45
3.11.5 Sensor Device Driver (DevDrvrSnsr) . . . . . . .. ... ... ... 46
3.11.5.1 High levelfiltering . . . . . . .. ... ... ... .. ....... 46
3.11.5.2 Offsetadaption . . . . . .. .. ... ... ... L. 46
3.11.5.3 Zero pointadaption . . . . . .. ... oL 47
3.11.5.4 Driftdetection . . . . . . .. ... ... . o L 47
3.11.5.5 Conversion . . . . .. 47
3.11.5.6 Physical signal gradient calculation . . . .. .. ... ...... 47
3.11.5.7 Physical signal gradientcheck . . . . .. ... ... ... .... 47
3.11.5.8 Stuck check diagnosis . . . . . ... ... ... ... L. 47
3.11.5.9 Physical signalrangecheck . . ... .. .. ... ... ..... 48
3.11.6 Electrical Sensor Driver (DrvrSnsrElec) . . . .. ... ... ... .. 48
3.11.6.1 Basicfilter . . . . . . . . .. ... L 48
3.11.6.2 Voltage compensation . . . . ... ... ... ... ... ... 49
3.11.6.3 Electrical diagnosis . . . . . . . .. .. ... oL 49
3.12Known ISSUES . . . . . . L. e 49
SA3BFAQ . . . 49
3.14KnownUses . . . . . . . . . e e 49
3.15Related Patterns . . . . . . . ... L 50
3.16Anti-Patterns One Should be Awareof . . ... ... ... ... ..... 50
3.17Further Readings . . . . . . . . . . . 50
Arbitration between several requesters or providers 51
41 Problem . . . . . . . 51
4.2 Applicability . . . . . . 51
4.3 Solution . . . . . 51
4.4 Examples . . . . . . 54
4.4.1 Several Setpoint Requesters . . . . .. ... ... oL 54
4.4.2 Several Providers of Consolidated Values . . . . . ... ... .... 55
4.4.3 Several Providers of Estimated Values . . . . . . ... ... ..... 57
45 Sample CodeandModel . . . . ... ... ... . ... .. . ... ... 59
46 KnownUses . . . . . . . . . e 59

4.7 Related Patterns . . . . . . . . . . 59



AUTSSAR

5 Signal Quality States 60
51 Problem . . . . ... 60
5.2 Applicability . . . . . .. 60
5.3 Solution . . . ... 60

5.3.1 Implementation proposal . . .. .. ... ... ... .. .. ... .. 61

A Change history of AUTOSAR traceable items 62

A.1 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e 62
A.1.1 Added Specification ltemsin R24-11 . . . . . .. ... ... ..... 62
A.1.2 Changed Specification Itemsin R24-11 . . . . ... ... ... ... 62
A.1.3 Deleted Specification ltemsinR24-11 . . . . . ... ... ... ... 62

A.2 Traceable item history of this document according to AUTOSAR Release
R23-11 . . e 62
A.2.1 Added Specification ltemsin R23-11 . . . . . . ... ... ... ... 62
A.2.2 Changed Specification Itemsin R23-11 . . . . ... ... ... ... 62
A.2.3 Deleted Specification Itemsin R23-11 . . . .. .. ... ... .... 62

A.3 Traceable item history of this document according to AUTOSAR Release
R22-11 . . . e e 62
A.3.1 Added Specification ItemsinR22-11 . . . . . ... ... ... .... 62
A.3.2 Changed Specification ltemsinR22-11 . . . .. .. ... ...... 63
A.3.3 Deleted Specification ItemsinR22-11 . . . ... ... ... ..... 63
A.3.4 Added Constraintsin R22-11 . . . .. ... ... ... ........ 63
A.3.5 Changed Constraintsin R22-11 . . . .. .. .. .. ... ...... 63
A.3.6 Deleted Constraintsin R22-11 . . . . .. ... .. ... ....... 63

B Mentioned Class Tables 64



AUTSSAR

References

[1] ANTLR parser generator V3
http://www.antlr.org

[2] Standardization Template
AUTOSAR_FO_TPS_StandardizationTemplate

[8] SW-C and System Modeling Guide
AUTOSAR_CP_TR_SWCModelingGuide

[4] XML Specification of Application Interfaces
AUTOSAR_CP_MOD_AlSpecification

[5] Architectural Pattern
http://en.wikipedia.org/wiki/Architectural_pattern

[6] Software Design Pattern
http://en.wikipedia.org/wiki/Software_design_pattern

[7] Design Pattern
http://en.wikipedia.org/wiki/Design_Pattern

[8] Anti Pattern
http://en.wikipedia.org/wiki/Anti-pattern

[9] Software Design Pattern Template
http://c2.com/cgi/wiki?DesignPatternTemplate

[10] Secure Design Patterns
http://www.sei.cmu.edu/reports/09tr010.pdf

[11] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

[12] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture


http://www.antlr.org
http://en.wikipedia.org/wiki/Architectural_pattern
http://en.wikipedia.org/wiki/Software_design_pattern
http://en.wikipedia.org/wiki/Design_Pattern
http://en.wikipedia.org/wiki/Anti-pattern
http://c2.com/cgi/wiki?DesignPatternTemplate
http://www.sei.cmu.edu/reports/09tr010.pdf

AUTSSAR

1 Introduction

1.1 Document conventions

Technical terms (Class Names) are typeset in mono spaced font, e.g. FrameTrig-
gering.

When defining name patterns the syntax defined according to ANTLR is used [1]. The
grammar for name patterns as defined in [2], [TPS_STDT_00055], is used. In the
following we just list the most important placeholders that are used throughout the
document:

anyName This represents a string which is valid shortName according to Tdenti-
fier

anyNamePart This represents a string (([a-zA-Z0-9]|_[a-zA-Z0-9])*_?) which is valid
part of a shortName.

Hint: The place holder "anyNamePart" shall not be used at the beginning of a
shortName pattern to avoid invalid shortNames.

blueprintName This represents the shortName / shortLabel / symbol of the ap-
plied blueprint

componentName This represents the shortName of the BSW module resp.
ASW SwComponentType / ASW component prototype related to the derived ob-
ject. "Related" mainly could be both, aggregating or referencing.

The placeholder componentName in particular supports multiple derivation of
a PortPrototypeBlueprint in the context of different software component
types resp. modules [TPS_STDT_00036].

componentTypeName This represents the shortName of the dedicated SwCompo-
nentType.

componentPrototypeName This represents the shortName of the dedicated
SwComponentPrototype.

index This represents a numerical index applicable for example to arrays.

keyword This represents the abbrName of a keyword acting as a name part of the
short name [TPS_STDT _00004].

For a complete description see [2], [TPS_STDT_00055]. Additionally we assume that
the naming rules as defined in [3] are fulfilled. If applicable and available the keywords
used in names are those standardized in [4].

Additionally we extend the grammar using the following place holders:
anyLongName This represents a string which is a valid 1ongName.

Additionally we assume that AUTOSAR name pattern is fulfilled. This means that
the long name starts with a capital letter and that all words except articles (e.g.



AUTSSAR

"a”, "the”), prepositions (e.g. "at”, "by”, "t0”) and conjunctions (e.g. "and”, "or”)
start with a capital letter as well.

anyLongNamePart This represents a string which is a valid part of a longName.



AUTSSAR

2 About Patterns

This document gives an overview of the patterns defined in AUTOSAR for ease the
usage of AUTOSAR architecture, AUTOSAR application interfaces and the AUTOSAR
meta-model. The focus is on application software (ASW).

2.1 Types of Pattern

The following categories/classifications of patterns are distinguished:

Architectural Pattern An architectural pattern is a standard design in the field of soft-
ware architecture. The concept of an architectural pattern has a broader scope
than the concept of design pattern. The architectural patterns address various
issues in software engineering, such as computer hardware performance limita-
tions, high availability and minimization of a business risk [5].

Design Pattern In software engineering, a design pattern is a general reusable solu-
tion to a commonly occurring problem within a given context in software design.
A design pattern is not a finished design that can be transformed directly into
source or machine code. It is a description or template for how to solve a prob-
lem that can be used in many different situations. Patterns are formalized best
practices that the programmer must implement themselves in the application [6].

Solution Pattern A solution pattern describes a generic solution for a specific problem
like for example error handling or job scheduling [5].

An orthogonal classification of patterns is the following:

Design Patterns A design pattern in architecture and computer science is a formal
way of documenting a solution to a design problem in a particular field of expertise

[71

Anti-Patterns In software engineering, an anti-pattern (or anti-pattern) is a pattern
used in social or business operations or software engineering that may be com-
monly used but is ineffective and/or counterproductive in practice [8].

2.2 Describing Patterns

The description of the patterns in this document follow a predefined structure. This
structure was created based on the contents of the documents [6], [9], [10], [1], and

[2].

A pattern is described in a separate section and the header of the particular pattern
contains the name of the pattern and the pattern identification (standardized name):
{pattern name} ({pattern identification})



AUTSSAR

At the very beginning of the section describing a specific pattern the classification is
given as shown below:

Classification {type of pattern} Pattern

The type of the pattern is one of the categories described in section 2.1.

Section Mandatory | Instruction Additional Information

Problem Yes The problem solved by the | None
design pattern and its gen-
eral rationale and purpose.

Also Known As No Other names for the pattern, | None
if any are known.

Applicability Yes A general description of the | Indications: something you no-
characteristics a system | tice, hinting that this pattern may
must have for the pattern | be applicable Contraindications:
to be useful in the design | something that would indicate
or implementation of the | that this pattern would not be ap-
program. plicable

Solution Yes A textual or graphical de- | Also think about Overdose Ef-
scription of the pattern. This | fect: what undesirable thing
provides a detailed specifica- | happens if you keep applying
tion of the structural aspects | the suggested action over and
of the pattern, using appro- | over and over and over.
priate notations. Also think about Side Effects:

new problems that you might ex-
pect to crop up upon applying
the solution, or new issues that
come to the fore.

Naming No Describes naming pattern | Name pattern follow syntax de-
that are usable or should be | fined according to ANTLR like it
used in the context of the pat- | was decided to use in [2], e.g. in
tern. [TPS_STDT_00055].

Example Yes Example how to apply the | None
pattern.

Sample Code and No Code or model providing an | None

Model example of how to implement
the pattern.

Known Uses No Examples of the use of the | None
pattern, taken from existing
systems or literature.

Related Patterns No Other patterns that have | Other patterns that relate, ei-
some relationship with the | ther superordinate, subordinate,
pattern; discussion of the dif- | competitor, or neighboring pat-
ferences between the pattern | terns, with references to where
and similar patterns. they can be found.

Anti-Patterns No Anti-Patterns you should be | None
aware of.

Reading No Further material worthwhile | None
to know.

Table 2.1: Pattern Description Template




AUTSSAR

3 Sensor and Actuator Pattern

Classification Design Pattern

3.1 Motivation

The Sensor/Actuator Design Pattern describes how to handle sensors or actuators that
are connected to an ECU in the context of an overall architecture.

The main intention of this pattern is standardizing application interfaces for SWC con-
trolling sensors and actuators, it focuses on aspecits of:

* Independence of application software from concrete sensors and actuators con-
nected to a specific ECU.

* Reusable code between different sensors and actuators.

« Different code sharing cooperation models (software sharing), thus supporting
different business models.

 Deployment of functionality to different ECUs.

For standardizing interfaces it is useful to have an architectural design overview of a
sensor/actuator composition. Therefore it was decided to create an architectural de-
sign pattern first and define the interface inside next. In a first step a layer model
containing the main interfaces between those layers is created. Then the most com-
mon functions within the layers are defined and described for a common understanding
in a second step. In the third step it is planned to describe also the interfaces in these
functions from step 2.

The pattern in general is a strong recommendation but is not mandatory to be followed.
The interfaces which are standardized as a result from the pattern will be reserved
exactly for the described usecase and shall not be used for other purpose even if the
pattern is not followed.

3.2 Also Known As

This pattern is also known as Device Abstraction.

3.3 Applicability

The Device Abstraction is located above the RTE. It is a set of software components
that abstracts from the sensors and actuators connected to a specific ECU. It uses sen-
sor actuator software components, the only components above RTE that are allowed
to access the ECU abstraction interface.



AUTSSAR

In case direct access to the Micro controller is required because specific interrupts
and/or complex Micro controller peripherals to fulfill the special functional and timing
requirements of the sensor evaluation or actuator control have to be implemented this
pattern cannot be applied. Instead a complex driver implementation shall be used.

The Sensor/Actuator Design Pattern supports software sharing (=collaboration be-
tween various partners) on different levels: Development partner one might deliver
the sensors together with the basic electrical driver software (DrvrSnsrElec), develop-
ment partner two might deliver the sensor device driver software (DevDrvrSnsr) and
the third partner might develop the substitute models together with the virtual device
drivers (DevSnsrVirt). There might be different suppliers for the same Sensor/Actuator
or there might be sensors/actuators from different vendors used within one and the
same system.

In case software sharing shall not be supported it is also possible to just implement
the interfaces of the composition of a single sensor or actuator but not following the
internal three-level-architecture.

The Sensor/Actuator-Pattern also supports different deployment scenarios to ECUSs.
One ECU might provide the measured value of a sensor whereas another ECU is
implementing the model that calculates the estimated value that may substitute the
measured sensor value.

Note: In general a pattern is not applied without any changes but with extension by
combining several patterns to one solution. For example:

» The composition pattern (splitting of component if they are getting too large and
are not maintainable any longer) is combined with this pattern.

» The diagnosis pattern is combined with this pattern.

3.4 Solution

In Figure 3.1 that was taken from [11] an example of the signal flow for a lamp (actuator)
and a velocity sensor is shown. This signal flow pattern is refined by this sensor/actu-
ator pattern.



AUTSSAR

Electrical Interface Electrical Interface
lsensor [0..200mA] Ugcy [0..5V]

. ECU N ucC
Hardware e.g. Car Velocity —o—“? Eloctronics e, Peripherals

Physical Interface

getVelocity( ) get_|_ECU(velocity_sensor) ADC_get()

Application Sensor o :
- Micro
- -C"
sw-ct e sw-e o Controller
Abstraction
Software Abslir(;gtion Layer
HCAL
Application Actuator L .
WG 1 SW.C (MCAL Driver)
setLamp()  set_|_ECU(light_actuator) DIO_set( )iget() *
Y
. ECU B HC
Hardware e.g. Car Light M Electronics | Peripherals

lecy [0..2A] Uc [0..5V]

" Sensor Actuator SW Component Type

Figure 3.1: Sensor Actuator Signal Flow [11]

The solution is proposing a three-level layering within a composition representing a
sensor or actuator:

* electrical device driver layer,
* sensor/actuator device driver layer,
« virtual device driver layer.

Each layers can be represented by a single SwComponentType or also by a Com-
positionSwComponentType containing one or more SwComponentTypeS. The
electrical device driver layer in addition must contain at least one SensorActuator-
SwComponentType.

In Figure 3.2 the overall structure of the pattern is shown. Recursive elements are op-
tional. Closed loop controlled actuator and position feedback is included. The naming
is simplified and will be explained in more detail later.



AUTSSAR

1

A v A|Y oo
Cpby Reqd Consold Estimd O
v v
on oo
(m] m]
DevCoorVirt : DevSnsrVirt :
DevCoorrVirt Dev SnsrVirt
vl [A] (A]
Sp
5
.‘E ’J_‘ Measd Raw
© A v v A A
LY [E]] £
B =~ og oo
! o O
<L
Iy DevDrvrActr: DevDrvrSnsr :
Q DevDrvrActr DevDrvrSnsr
>
[}
(]
A\ A (A]
Outp
ElecBascFild ElecRaw
A ‘ A
DrvrActrElec : DrvrSnsrElec :
DrvrActrElec DrvrSnsrElec
[~] [~]
{componentPrototypeName} : {componentTypeName} jj

T 7
Figure 3.2: Sensor Actuator Pattern for Closed Loop

The application software can rely on the existence of the consolidated value. The
consolidated value can be calculated from the

» estimated value,
* setpoint value,
e measured and/or raw value.

The calculation of the consolidated value via the setpoint or estimated value is used
in case of actuators without feedback loop. In Figure 3.6 an example of an actuator
without feedback loop calculating the consolidated value from the setpoint value is
shown. Besides actuators with open loop control there are also smart actuators that
can directly deal with the setpoint value itself. In this case the device driver actuator
SW-C and the electrical driver actuator SW-C are only routing the setpoint value since



AUTSSAR

the controlling of the actuator and thus the calculating of the output value etc. is realized
within the smart actuator itself. However, the two layers, electrical device layer and
device driver layer, are additionally needed because of diagnosis etc.

The pattern can be tailored for a standard sensor. In this case the consolidated value
(Consold) is provided and the estimated value (Estimd) is requested, see Figure 3.5.

The signal flow is shown in Figure 3.3: The electrical raw value is requested from the
ECU Abstraction. After basic filtering the signal is converted to a physical value repre-
senting the measured value. If the measured value is not suitable for the application the
estimated value might be chosen to be the consolidated value, i.e. the value that can
be used by the rest of the application software. Some applications request to explicitly
know about the physical raw value. This is why this signal is also made available.

ElecRaw

From ECU \
Abstraction
B?fn'; e ElecBascFild
"|  phase shift)
[optional]
Simple Raw
»| conversion to ™
physical value
Final filtering Measd
> and offset
correction
| Selection between
measured and D
Estimd estimated value Consold
»| depending on conditions

From Application
sSw

Figure 3.3: Signal Flow within Sensor and Actuator Pattern

Please be aware: SensorActuatorSwComponentTypes are the only components
that are allowed to access ECU Abstraction Software, namely EcuAbstraction-
SwComponent Type. This is shown in Figure 3.4 taken from [12]. Access is denoted
by "10O”.



AUTSSAR

Figure 3.4: Access to ECU Abstraction

3.5 Naming

In the following the semantic port prototype (blueprint) definition together with the name
patterns are described.

The overall name pattern for port short names is described in grammar 3.1. In the
following these port (prototype blueprint) names are also referred to as signal names.
In Table 3.1 additionally the pattern for the corresponding long names is given.

grammar PSnsrActrPortNames;

portName
{’ sensorActuatorSignal’} ;

sensorActuatorSignal
{anyName} {’ sensorActuatorSignalType’} ;

sensorActuatorSignalType
( ElecRaw | ElecBascFild | Raw | Measd | Consold | Estimd | Outp |
Sp | Reqd ) ;

anyName



AUTSSAR

(" keyword’ ) %

4

Listing 3.1: Name Pattern for Ports in Device Abstraction

In addition to port prototypes, interface names are extended with sequence number.
Usage and handling of sequence numbers is described in [3] in [TR_SWNR_00044].

grammar PSnsrActrPortInterfaceNames;

interfaceName

{’ sensorActuatorSignal’} ;

sensorActuatorSignal
{anyName} {’ sensorActuatorSignalType’ } { sequenceNumber} ;

sensorActuatorSignalType
( ElecRaw | ElecBascFild | Raw | Measd | Consold | Estimd | Outp | Sp |

Reqd ) ;

anyName
("keyword’ ) *

Listing 3.2: Name Pattern for Portinterfaces in Device Abstraction

In case of a generic long name {anyLongNamePart} or {anyLongName}, resp., is

empty.
Generic Signal Name | Long Name Pattern | Generic AUTOSAR Definition
of Concrete Sen- | Long Name
sor/Actuator Signal | of Signal
(EN) (EN)
ElecRaw Electrical Raw | Electrical Electrical raw sensor value as provided by the
Value of {anyLong- | Raw Value ECU Abstraction. Typically this value is unfil-
NamePart} tered. However, there are for example smart
components doing some filtering themselves.
This signal can only be represented in volt-
age, current, (period) time, binary value, fre-
quency, dutycycle [11].
ElecBascFild Electrical Basic Fil- | Electrical Basic filtered electrical raw sensor value (e.g.
tered Value of {any- | Basic Fil- | maximum allowed phase shift is one schedul-
LongNamePart} tered Value ing raster or maximum 360 degree crankshaft
rotation if exhaust gas pulsation dependent).
Electrical representation of a technical signal
[11]. This signal can only be represented in
voltage, current, (period) time, binary value,
frequency, dutycycle.
Raw Raw Value of {any- | Raw Value Physical raw/base sensor value. Sim-
LongNamePart} ple conversion of basic filtered electrical (
ElecBascFild) to physical value.
Measd {anyLongName} Measured Final filtered and offset corrected physical
(Measured) Value sensor value. Physical sensor value/standard
sensor value. The physical sensor value is
the linearized/filtered physical raw/base sen-
sor value including offset. At this step a (sig-
nificant) phase-shift could be possible.




AUTSSAR

Consold {anyLongName}

Value

Consolidated physical value, either a mea-
sured value (Measd) or a modeled value (
Estimd). Final filtered and offset corrected
consolidated actuator value/physical sensor
value. Virtual physical sensor value/fused
sensor value that comes as close as possi-
ble to the technical signal. In case of inability
to provide a physical sensor value (e.g. fail-
ure, implausibility or other reasons) a substi-
tute value/default value or a frozen value is
provided.

Estimd {anyLongName}

(Estimated)

Estimated
Value

Modelled value physical sensor value/stan-
dard sensor value. Can be used as a replace-
ment for final filtered and offset corrected
physical sensor value. The interface is op-
tional.

Outp Output of {any-

LongNamePart}

Output
Value

Final controller output (closed loop or open
loop). It includes the necessary control ac-
tions to reach the requested setpoint in the
given system conditions.

For example for realizing the requested ac-
tuator position a precontrol impulse to over-
come the static friction is needed. In case of
a smart actuator the output value might add a
dedicated initialization duty cycle to wakeup
the actuator.

Typically expressed as percentage.

Sp Setpoint {anyLong-
NamePart}

Setpoint
Value

Final actuator setpoint. Typically expressed
as percentage.

Reqgd Requested Set-
point  {anyLong-

NamePart}

Requested
Setpoint

Final requested physical setpoint. Typically
expressed as percentage but could also be
expressed e.g. as factor.

Capability {any-
LongNamePart}

Cpby

Capability

Provides the dynamic instant capability typi-
cally based on output limitation but could also
contain the limitation on rate of change of the
consolidated value. It is expressed as per-
centage.

Table 3.1: Signal Names and Semantics

Some examples of short and long names for sensor/actuator signals or ports, resp.,

are given in Table 3.2.

Short Name Class Long Name (EN)

TrboChrgrReqd | PortPrototype Requested Setpoint for Turbo Charger
Consold PortPrototype Consolidated Value

TrboChrgr PortPrototype Value of Turbo Charger

Table 3.2: Port Names Examples

In grammar 3.3 the pattern for component types and component prototypes for the
atomic components within a composition representing a sensor or an actuator is de-

scribed.



AUTSSAR

In some cases there might be parts of the implementation that can be reused for dif-
ferent sensors/actuators. Therefore the name pattern for the component type name is
more generic and does not necessarily contain the Sensor/Actuator name. In other
cases the Sensor/Actuator names are not sufficient to make the component type
names unique so an additional identifier can be added to the component type name.

grammar PSnsrActrAtomicSwcShortName;

sensorActuatorComponent TypeName
sensorActuatorComponentName ;

sensorActuatorComponentPrototypeName
sensorActuatorComponentName ;

sensorActuatorComponentName

(Drvr{Device}Elec | DevDrvr{Device} | Dev{Device}Virt | DevCoorrVirt
) ("anyNamePart’) ;

Device
( Snsr | Actr ) ;

anyNamePart

(" keyword’ ) x ;
Listing 3.3: Name Pattern for Atomic Software Component Types in Device Abstraction

In grammar 3.4 the pattern is more refined but still conforming to grammar 3.3 because
"For” is a standardized keyword. Note: the refined grammar requests that field blocks
are concatenated by adding an appropriate preposition.

grammar PSnsrActrAtomicSwcShortNameRefined;

sensorActuatorComponent TypeName
sensorActuatorComponentName ;

sensorActuatorComponentPrototypeName
sensorActuatorComponentName ;

sensorActuatorComponentName

(Drvr{deviceType}Elec | DevDrvr{deviceType} | Dev{deviceType}Virt |
DevCoorrVirt) ({device}) ;
deviceType

( Snsr | Actr ) ;

device
( For{sensor} (' anyNamePart’) | For{actuator} (' anyNamePart’) ) ;
sensor
"anyName’ ;
actuator
"anyName’ ;
anyName

("keyword’ ) x ;



AUTSSAR

anyNamePart

("keyword’ ) x ;
Listing 3.4: Refined Name Pattern for Atomic Software Component Types in Device

Abstraction

In grammar 3.5 the pattern for the corresponding English long names of the compo-
nents is described.

grammar PSnsrActrAtomicSwcLongName;

sensorActuatorComponent LongName
sensorActuatorComponentName ;

sensorActuatorComponentLongName
("anyLongName’) ( Electrical Sensor Driver | Sensor Device Driver |
Virtual Device Driver | Electrical Actuator Driver | Actuator Device
Driver | Virtual Device Coordinator)

anyLongName

(" keyword’ ) x ;

anyLongNamePart
("keyword’ ) x ;

Listing 3.5: Pattern for English Long Names Atomic Software Component Types in

Device Abstraction

("anyLongNamePart’) ;

In Table 3.3 the generic sensor and actuator component short and long names are
shown as pairs.

Generic Short Name Pattern | Generic Long Name (EN)
DrvrSnsrElec Electrical Sensor Driver
DevDrvrSnsr Sensor Device Driver
DevSnsrVirt Virtual Device Driver
DrvrActrElec Electrical Actuator Driver
DevDrvrActr Actuator Device Driver
DevCoorrVirt Virtual Device Coordinator

Table 3.3: Sensor and Actuator Component Name Patterns

Short Name

Class

Long Name (EN)

DrvrActrElecForTle8209

nentType

SensorActuatorSwCompo-—

TLE8209: Electrical Sensor Driver

DrvrActrElecForTrboChrgr

SwComponentPrototype

Turbo Charger: Electrical Sensor

Driver

DevSnsrVirtForAnyTSnsr

Type

ApplicationSwComponent—

Virtual Device Driver for Any Tempera-
ture Sensor

DevSnsrVirtForTrboChrgr

SwComponentPrototype

Turbo Charger: Virtual Device Driver

TrboChrgrAcmeT064

Type

CompositionSwComponent—

Turbo Charger: ACME T064

Table 3.4: Examples for Sensor and Actuator Names




AUTSSAR

In grammar 3.6 a pattern is described how to refine ’'anyNamePart’ as defined in gram-
mar 3.4 in case of a system with several banks and stages. In Table 3.5 corresponding

name examples are shown using this grammar part.

grammar PSnsrActrStgBnkShortNames;

stageBank

(Stg{’indexStg’ } (AtBnk{’ indexBnk’}) ;

indexStg

( 1st |
indexBnk

( 1st |

2nd |

2nd |

3rd ) ;

3rd ) ;

Listing 3.6: Name Pattern for Signals in Device Abstraction in Case of a System with

Several Banks

Short Name

Class

Long Name (EN)

TrboChrgrStg3rdAtBnk1st

PortPrototype

at First Bank

Value of Turbo Charger at Third Stage

TrboChrgrStg3rdAtBnk2nd

SwComponentPrototype

ond Bank

Turbo Charger at Third Stage at Sec-

Table 3.5: Sensor, Actuator and Port Names examples in Case of a System with Several

Banks

3.6

Interface definitions

The following table defines the default attribute for all previously described Portinter-
faces. Sl units shall be used for SensorActuator Portinterfaces whenever possible.

Interface name ImplDatatype | CompuMethod | Unit PhysicalDimension

Reqd sint16 100/(29) Perc (%) Ratio

Cpby sint16 100/(219) Perc (%) Ratio

Sp sint16 100/(2%3) Perc (%) Ratio

outp sint16 100/(219) Perc (%) Ratio

Measd, Consold, Es- | n.a. 1 - Dimensionless

timd, Raw (binary)

Measd, Consold, Es- | float32 1 Kelvin (K) Absolute Tempera-

timd, Raw (T) ture / Relative Tem-
perature

Measd, Consold, Es- | float32 1 Pa (Pa) Pressure

timd, Raw (P)

Measd, Consold, Es- | float32 1 Perc (%) Ratio

timd, Raw (Posn)

Measd, Consold, Es- | float32 1 Ampr (A) Electric Current

timd, Raw (1)

Measd, Consold, Es- | float32 1 PerSec (1/s) Rotational Speed

timd, Raw (N)

Measd, Consold, Es- | float32 1 Volt (V) Voltage

timd, Raw (U)




AUTSSAR

Fild (U)

Measd, Consold, Es-— | float32 Ohm (Ohm) Electric Resistance
timd, Raw (R)

Measd, Consold, Es- | float32 Watt (W) Power

timd, Raw (Pwr)

Measd, Consold, Es- | float32 Perc (%) Ratio

timd, Raw (RelHum)

Measd, Consold, Es-— | float32 KiloGrPerMtrCubd | Mass Density
timd, Raw (AbsHum) (kg/m3)

Measd, Consold, Es- | float32 NwtMtr (Nm) Torque

timd, Raw (Tq)

Measd, Consold, Es- | float32 MolPerMtrCubd Concentration
timd, Raw (Conc) (mol/m3)

ElecRaw, ElecBasc— | n.a. - Dimensionless
Fild (binary)

ElecRaw, ElecBasc- | float32 Ampr (A) Electric Current
Fild (l)

ElecRaw, ElecBasc- | float32 S Time

Fild (Ti)

ElecRaw, FElecBasc— | float32 Hz Frequency
Fild (Frq)

ElecRaw, ElecBasc— | float32 Perc (%) Ratio

Fild (DutyCyc)

ElecRaw, ElecBasc- | float32 Volt (V) Voltage

3.7 Sensor Actuator types

Table 3.6: Interface Properties

The following S/A types are available as SwComponentTypes:

» Sensor (Snsr)

* Actuator without feedback (Actr)
+ Actuator with feedback (ActrWithFb)




AUTSSAR

3.7.1 Sensor

In Figure 3.5 a design pattern of blueprint components for a sensor is shown.

A—Y
, on
Consold Estimd O
v

on
n]
DevSnsrVirt :
DevSns rVirt
A (Al
Measd
=
9o
3]
g Raw
7] LY, ry
g oo
i o
o DevDrvrSnsr :
E DevDrvrSnsr
(]
(A}

A
ElecBas cFild
ElecRaw
A

DrvrSnsrElec :
DrvrSnsrElec

>
Y/

[~]
Snsr : {componentPrototypeName} ;:[;
™

Figure 3.5: Device Abstraction for Sensor

3.7.2 Actuator without Feedback Loop

In Figure 3.6 an open loop controlled actuator is shown. In addition to the actu-
ator chain it is possible to also provide and calculate the consolidated value using



AUTSSAR

the setpoint input, but there are alternatives how to calculate the consolidated value.
I — "
L]

A
Cpby ::I:: Reqd Consold nnn
v A

DevCoorrVirt : DevSnsrVirt :
DevCoorrVirt DevSnsrVirt

L)

[w]
c S
.2 p T
—
Q
o
= 'J_‘
[71]
2 ry hd
<L oo
@
8 a
= DevDrvrActr :
8 DevDrvrictr

Outp

[—«

DrvrActrElec :
DrvrActrElec

)|

Actr : {componentPrototypeName}

—H

Figure 3.6: Example Actuator without Feedback Loop (Setpoint Alternative)

3.7.3 Actuator with Feedback Loop

In Figure 3.7 a design pattern of blueprint components for a typical closed loop con-
trolled device with (position) feedback is shown.



AUTSSAR

1

(A v AY oo
Cpby Reqd Consold Estimd O
v v
on
o
DevCoorrVirt : DevSns r\Virt :
DevCoorrVirt DevSns rVirt
(W] [A] [A]
Sp
S
-_E ’J_‘ Measd Raw
o A v v A A
o o
-
O DevDrvrActr : DevDrvrSnsr:
=) DevDrvrActr DevDrvrSnsr
-
@
(]
v} A (Al
Outp
ElecBas cFild ElecRaw
Ad A Y, >\
DrvrActrElec : DrvrSnsrElec :
DrvrActrElec DrvrSnsrElec

ActrWithFb : {componentPrototypeName}

—{5H)]

—DHD)

Figure 3.7: Device Abstraction for Actuator with Feedback

3.8 Usage of pattern

The SensorActuator-Pattern can be used in different ways, see figure 3.8.

S/A types defined in 3.7 are stored and available via Al tool. User can either take
SwComponentTypes directly and create one or multiple instances, or he/she can take
them as a blueprint with the need to extend and adjust them afterwards.

During single or multi instantiation SwComponentPrototypes with different names, but
same content are generated. The blueprint mechanism offers the possibility to flexible
change name, content and even rename ports. From point of creation, it has to be

maintained separately.




AUTSSAR

Cpby Reqd Consold Estimd
Al—(V] [A—{V]
=] =]

ActrWithFb : {componentPrototypeName}

Blueprint

Instantiation

ThrVivReqd ThrVivPosn ThrVilvPosnEstimd
—{¥l (A] Ad

ThrVivComponent : Thriv

[l

A

Cpby Reqd Consold Estimd

oo

ActrWithFb : ThrViv

—

Dl

Figure 3.8: Usage options for SensorActuator-Pattern

3.9 Examples

3.9.1 Throttle Valve

Figure 3.9 shows an example device abstraction for a throttle valve.



AUTSSAR

ThriVivCpby | ThriVivReqd
Al

ThrVivPosn ThrVlvPosnEstimd
v A—Y
oo
:1:: Reqd v Estimd a
= oo oo
= | o
DevCoorrVirt: DevSnsrVirt:
- DevCoorrVirtForThrviv DevSns rVirtForThrVivPosn
2
e
Q
s Ad A Al
]
z s
< Cpby Consold
3 lJ_‘ Measd Raw
= l
2 (A] Y—v5q A A——ag
(m | o
DevDrvrActr: DevDrvrSnsr:
DevDrvrActrForThrViv DevDrvrSnsrForThrVivPosn
(] A (A]
Outp
ElecBas cFild ElecRaw
A * A
DrvrActrElec: DrvrSnsrElec:
DrvrActrElecForThrViv DrvrSnsrElecForThrVivPosn
[—~] [~]
ActrWithFb : Thrviv

o

Figure 3.9: Device Abstraction for a Throttle Valve

3.9.2 Turbo Charger

In Figure 3.10 an example of a closed looped controlled device with position feedback

— a turbo charger — is shown.




AUTSSAR

DrvrActrElecForTle8209

)]

{w] A [A]
Outp
ElecBascFild ElecRaw
A A
DrvrActrElec: DrvrSnsrElec:

DrvrSns rElecForSentForinfineon

)

TrboChrngpbyJ_"l’rboChrgrReqd TrboChrgrPosn TrboChrgrPosnEstimd
Al v AV
oo
Iﬂeqd Estimd = |
Y]
oo oo
o o
DevCoorrVirt: DevSnsrVirt:
DevCoorrVirtForTrboChrgrAcmeXYZ DevSns rVirtFor StdOffs LingForHbrd gDev
(v] [A] (Al
=
=) P
O Consold
§ Cpby
7 I ‘J_‘ Measd Raw
=)
A v A4 A A
<L £ LT LY [E]] ]|
) oo oo
; a a
1) DevDrvrActr: DevDrvrSnsr:
(a] DevDrvrActrForStdPidCtrir DevDrvrSnsrForStdPhyFilgForAny Snsr

Remark: The names for the
component types are completely
imaginary in order to illustrate the
usage and are not part of the
standard.

ActrWithFb : TrboChrgr
~ ~

Figure 3.10: Device Abstraction for a Turbo Charger

Hint: In most cases it is not recommended to use company names in model names
(like "AcmeXYZ" used in the Figures). Company names etc. are only used in the
examples to show the difference between type and prototype and what is the reason
for the difference. For general rules and recommendations how to deal with variants
in models, as for example expressed by the company names in the examples, please
refer to the modeling guides and templates.

3.9.3 Turbo Charger with Stages and Banks

In Figure 3.11 a project system configuration for turbo charger with several stages and
banks is shown.



AUTSSAR

TrboChrgrPosnStg1stAtBnk1st

TrboChrgrPosn Stg3rdAtBnk2nd

TrboChrgrStg1stAtBnk1stReqd ’J-‘ TrboChrgrStg3rdAtBnk2ndReqd
vl A i a]
oo
o
[wr] al [l Fal
Ad LA ] ao Ad LA CT
TrboChrgrReqd TrboChrgrPosn o TrboChrgrReqd TrboChrgrPosn o
TrboChrgrAcme2T064 : TrboChrgrStgistAtBnkist | [TrboChrgrAcme2T064 : TrboChrgrStg1stAtBnk2nd
[wr] Y [wr] iy
Ad LA oo Ad 1A oo
TrboChrgrReqd TrboChrgrPosn -] TrboChrgrReqd TrboChrgrPosn o
TrboChrgrAcme3CT007 : TrboChrgrStg2ndAtBnkist TrboChrgrAcme3CT007 : TrboChrgrStg2ndAtBnk2nd
[wr] iy Nl iy
Ad LY, oo A 1A oo
TrboChrgrReqd TrboChrgrPosn o TrboChrgrReqd TrboChrgrPosn [-]

in that overview.

TrboChrgrAcme1XYZ : TrboChrgrStg3rdAtBnkist

TrboChrgrAcmel XYZ : TrboChrgrStg3rdAtBnk2nd

Remark: The names for the
component types are
completely imaginary in order
to illustrate the usage and are
not part of the standard.

For demonstration purpose
Just Reqd as input and
Consold as ouput was used

AirSys : AirSys

Figure 3.11: Device Abstraction for a Turbo Charger with Banks and Stages

3.9.4 Sensor for Environment Temperature

In Figure 3.12 a typical sensor for environment temperature is shown.




AUTSSAR

OutdTEstimd

oo
Estimd a

Dev SnsrVirt : DrvrSns rVirtForQutd T

[A] [A]
Measd Raw
=
2
—
% Measd Raw
= [A] [A]
@ oo
< o
@
E DevDrvrSnsr : DevDrvrSnsrForOutdT
@
(m]
(Al (Al
ElecBas cFild ElecRaw
ElecBas cFild ElecRaw
LYy, 1A

A

DrvrSnsrElec : DrvrSnsrElecForQutdT

Snsr : QutdT

—H))

Figure 3.12: Device Abstraction for a Sensor measuring the Environment Temperature

3.9.5 Standard Sensor

In Figure 3.13 a design pattern of blueprint components for a standard sensor is shown.



AUTSSAR

A—Y
Consold Estimd
v
DevSnsrVirt :
DevSns rVirt
A (Al
Measd
=
=)
1]
© Raw
]
0 A A
a8 L] [
L= 8
@
o DevDrvrSnsr :
a DevDrvrSnsr
(]
A (A]
ElecBas cFild
ElecRaw
: A
DrvrSnsrElec :
DrvrSnsrElec
[ =]
{componentPrototypeName} : {componentTypeName}
™

i

Figure 3.13: Device Abstraction for Standard Sensor

3.9.6 Standard Sensor for Environment Temperature

In Figure 3.14 a standard sensor for environment temperature is shown.




AUTSSAR

oo
OutdT OutdTEstimd e
v

[

DevSns rVirtForQutdT :
DrvrSns rVirtForOQutd T

[A]

>

OutdTMeasd OutdTRaw

TMeasd TRaw
Ly

>

[

DevDrvrSnsrForOutdT :
DevDrvrSnsForOutd TForAnyT Snsr

Device Abstraction

>
>

OutdTElecBascFild TElecRaw

ElecBas cFild ElecRaw

>
>

DrvrSnsrElec ForQutdT :
DrvrSnsrElecForOutdTForAnyAdc Snsr

p)

OutdT : QutdT

—D

Figure 3.14: Device Abstraction for a Sensor measuring the Environment Temperature

3.9.7 Distributing Device Abstraction

In Figure 3.16 the ECU view derived from the VFB view of a temperature sensor as
shown in Figure 3.15 is shown. Finally it is shown that it is possible to also deploy the
different SW-C to different ECUs. Of course timing constraints have to be considered
before distributing components to different ECUs.



AUTSSAR

Device Abstraction

DrvSnsrElecOutdT : DevDrvrSnsrOutdT : DevDrvrVirtOutdT :
DrvSnsrElecOutdTAcme DevDrvrSnsrOutdTAcme DevDrvrVirtOutdTAcme
Sensor Actuator
Software Software Software
0 Component Component Component

e I

Virtual Function Bus

Figure 3.15: VFB View of Temperature Sensor Example

ECU1 ECU2
i DrvSnsrElecOutdT : DevDrvrSnsrOutdT : DevDrvrVirtOutdT :
i DrvSnsrElecOutdTAcme DevDrvrSnsrOutdTAcme DevDrvrVirtOutdTAcme !
i Sensor Actuator E
' Software Software Software I
! I’o Component Component Component :
' I

BSW 1 BSW 2
Basic Software Basic Software
on ECU 1 on ECU 2
' IDevice Abstraction RTE Runtime Environment

Figure 3.16: ECU Views after Distribution of SW-Cs of Temperature Sensor to two ECUs



AUTSSAR

3.10 Sample Code and Model

In Listing 3.7 a blueprint for the components used in the Sensor/Actuator pattern is
provided. The blueprint code is not complete but just gives an idea how it is realized.
The composition component is not shown.

Please note that the AUTOSAR meta model requests that a sensor actuator component
type references a corresponding sensor or actuator, resp., using a HwDescriptio-
nEntity, [11]. In this case a HwElement is needed to be used. Since there is a
standardized HwCategory for sensors and actuators also a HwType is defined that is
referenced by the HwE lement.

<AR-PACKAGE>
<SHORT-NAME>SwComponentTypes_Blueprint</SHORT-NAME>
<CATEGORY>BLUEPRINT</CATEGORY>
<REFERENCE-BASES>
<REFERENCE—-BASE>
<SHORT-LABEL>HwDescriptionEntitys</SHORT-LABEL>
<PACKAGE-REF DEST="AR-PACKAGE">/HwElements_Blueprint</PACKAGE-REF>
</REFERENCE-BASE>
<REFERENCE-BASE>
<SHORT-LABEL>PortInterfaces_Blueprint</SHORT-LABEL>
<PACKAGE-REF DEST="AR-PACKAGE">/AUTOSAR/AISpecification/
PortInterfaces_Blueprint</PACKAGE-REF>
</REFERENCE-BASE>
<REFERENCE-BASE>
<SHORT-LABEL>SwComponent Types_Example</SHORT-LABEL>
<PACKAGE-REF DEST="AR-PACKAGE">/AUTOSAR/AISpecification/
SwComponent Types_Example</PACKAGE-REF>
</REFERENCE-BASE>
<REFERENCE-BASE>
<SHORT-LABEL>PortInterfaces_Example</SHORT-LABEL>
<PACKAGE-REF BASE="SwComponentTypes_Example" DEST="AR-PACKAGE">
SwDesignPatterns/SnsrActrAbstraction/PortInterfaces_Example</
PACKAGE-REF>
</REFERENCE-BASE>
</REFERENCE-BASES>
<ELEMENTS>
<SENSOR-ACTUATOR-SW-COMPONENT-TYPE>
<SHORT-NAME NAME-PATTERN=" {anyName}DrvrSnsrElec{anyNamePart}">
DrvrSnsrElec</SHORT-NAME>
<LONG-NAME >
<L-4 L="EN">Driver for Electrical Signals of Sensor</L-4>
</LONG-NAME>
<INTRODUCTION><!-- optional: add documentation —-—>
</INTRODUCTION>
<PORTS>
<P-PORT-PROTOTYPE>
<SHORT-NAME NAME-PATTERN="{anyName}ElecRaw{anyNamePart}">ElecRaw
</SHORT-NAME>
<LONG-NAME>
<L-4 L="EN">Electrical Raw Value</L-4>
</LONG-NAME>
<PROVIDED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE" BASE="
PortInterfaces_Example">ElecRawl</PROVIDED-INTERFACE-TREF>



AUTSSAR

</P-PORT-PROTOTYPE>
<P-PORT-PROTOTYPE>
<SHORT-NAME NAME-PATTERN="{anyName}ElecBascFild{anyNamePart}">
ElecBascFild</SHORT-NAME>
<LONG-NAME>
<L-4 L="EN">Electrical Basic Filtered Value</L-4>
</LONG-NAME>
<PROVIDED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE" BASE="
PortInterfaces_Example">ElecBascFildl</PROVIDED-INTERFACE-
TREF>
</P-PORT-PROTOTYPE>
</PORTS>
<!—— add correct reference to sensor actuator type —-—>
<SENSOR-ACTUATOR-REF DEST="HW-DESCRIPTION-ENTITY" BASE="
HwDescriptionEntitys">mySensorActuatorElement</SENSOR-ACTUATOR-
REF>
</SENSOR-ACTUATOR-SW-COMPONENT-TYPE>
<APPLICATION-SW—-COMPONENT-TYPE>
<SHORT-NAME NAME-PATTERN="DevDrvrSnsr{anyNamePart}">DevDrvrSnsr</
SHORT-NAME>
<LONG-NAME>
<L-4 L="EN">Device Driver for Sensor</L-4>
</LONG-NAME>
<!—-— Ports to be added ——>
</APPLICATION-SW-COMPONENT-TYPE>
<APPLICATION-SW-COMPONENT-TYPE>
<SHORT-NAME NAME-PATTERN="DevSnsrVirt{anyNamePart}">DevSnsrVirt</
SHORT-NAME>
<LONG—-NAME>
<L-4 L="EN">Virtual Device Driver for Sensor</L-4>
</LONG-NAME>
<!-- Ports to be added --—>
</APPLICATION-SW-COMPONENT-TYPE>
</ELEMENTS>
</AR-PACKAGE>
<!-- AR-PACKAGE: HwTypes_Blueprint -—>
<AR-PACKAGE>
<SHORT-NAME>HwTypes_Blueprint</SHORT-NAME>
<CATEGORY>BLUEPRINT</CATEGORY>
<ELEMENTS>
<HW-TYPE>
<SHORT-NAME NAME-PATTERN="{anyName}">SensorActuatorType</SHORT-NAME>
<HW-CATEGORY—-REFS>
<HW-CATEGORY-REF DEST="HW-CATEGORY" BASE="HwCategorys">/
HwCategorys_Blueprint/SensorActuator</HW-CATEGORY-REF>
</HW-CATEGORY-REFS>
</HW-TYPE>
</ELEMENTS>
</AR-PACKAGE>
<!—— AR-PACKAGE: HwElements Blueprint -->
<AR-PACKAGE>
<SHORT-NAME>HwE lements_Blueprint</SHORT-NAME>
<CATEGORY>BLUEPRINT</CATEGORY>
<ELEMENTS>
<HW-ELEMENT>



AUTSSAR

<SHORT-NAME NAME-PATTERN="{anyName}">mySensorActuatorElement</SHORT-
NAME>
<HW-TYPE-REF DEST="HW-TYPE" BASE="HwTypes">/HwTypes_Blueprint/
SensorActuatorType</HW-TYPE-REF>
</HW-ELEMENT>
</ELEMENTS>
</AR-PACKAGE>

Listing 3.7: Sensor/Actuator Pattern

The HwCategorys should be provided centrally because they are standardized. Defi-
nition of HwCategory "SensorActuator” is shown in Listing 3.8.
<!—— AR-PACKAGE: HwCategorys Blueprint -->
<AR-PACKAGE>
<SHORT-NAME>HwCategorys_Blueprint</SHORT-NAME>
<CATEGORY>BLUEPRINT</CATEGORY>
<ELEMENTS>
<HW-CATEGORY>
<SHORT-NAME NAME-PATTERN="blueprintName">SensorActuator</SHORT-NAME>
</HW-CATEGORY>
<!—— add additional HW categories -—>
</ELEMENTS>
</AR-PACKAGE>

Listing 3.8: HW Categories as used in Sensor/Actuator Pattern

3.11 Typical location of some common function within the speci-
fied layers

This chapter is for detailed description of the distribution of features across the device
abstraction layers. It provides some examples of some typical and common features
and their recommended location within the specified layers of the S/A-Pattern. Scope
for this chapter is to make interface standardization easier.

3.11.1 Virtual Device Coordinator (DevCoorrVirt)

Virtual device is an abstraction of the physical representation of the actuator.



AUTSSAR

~®

You are here — —

Reqd
v

- oo

Conversion and . . Coordination of
linearization of LI / Llgneele Cleaning / activation and
. tester interface for - L
physical basic function test Ice breaking deactivation of
requested value the actuator
Dither of setpoint RElozse fur_lctlon o
setpoint
Application SW-Composition
DevCoorrVirtFor{Suffix1}{Suffix2}
|
v
Sp

Figure 3.17: Typical functions in layer DevCoorrVirt

3.11.1.1 Conversion and linearization of physical requested value

Typically there is a delta between the mechanical endstops and the position where the
physical effects are influenced due to the movement of the actuator. This gap could be
compensated via offset compensation algorithm of the position sensor or via lineariza-
tion of the requested setpoint value. The transfer function is used to compensate the
actuator HW design/physics.

3.11.1.2 DCM service / Diagnostic tester interface for basic function test

The DCM service interface is typically used as a tester interface and can overwrite the
requested value to perform a basic function test of the actuator.



AUTSSAR

3.11.1.3 Cleaning / Ice breaking

Overwrite/Ignore the requested value, in order to prepare the actuator for proper actu-
ation. The function switches between two different setpoint values for a specific time
to either

1. condition the actuator for offset learning
2. clean particles/compounds from actuator

3. break up from ice

3.11.1.4 Dither of setpoint

Continous overlayed/modulated signal on setpoint value to overcome static friction of
actuator.

3.11.1.5 Release function of setpoint

The release function is manipulating the requested setpoint value. This could be
needed in case of a blocked actuator, i.e. the actuator got stuck at its position.

3.11.1.6 Coordination of activation and deactivation of the actuator

Activation: The actuator shall be activated as soon as actuation is requested.
Deactivation: To ensure safe operation, the actuator shall be shut off under certain
conditions (incl. monitoring e.g. open hood) and shall be shut off to fail safe before
voltage supply is switched off.



AUTSSAR

3.11.2 Actuator Device Driver (DevDrvrActr)

You are here ~_
~
~
~

@

Cpby Consold Sp
Al [wrl E

A A4
T oo

a O
Dynamic limitation Dither of outout
Capability for overheating Static limitation P
: value
protection
Closed loop Feed forward Set point limitation Set p_0|r_1t gradlent
controller controller limitation

Control deviation ||Release function of Application SW-Com position
o |
TETHIE ouputvale | pevDrvrActrFor{Suffix1}{Suffix2}

v

Outp

Figure 3.18: Typical functions in layer DevDrvrActr

3.11.2.1 Dither of output value

Continous overlayed/modulated signal on output value to overcome static friction of
actuator.

3.11.2.2 Release function of output value

The release function is manipulating the output value. This could be needed in case of
a blocked actuator, i.e. the actuator got stuck at its position.



AUTSSAR

3.11.2.3 Limitation
3.11.2.3.1 Static limitation

The output value is limited to protect the actuator from any mechanical or thermal
damage at a static position. It is a static limitation of the output value.
Example: Limitation of dutycycle at the mechanical endstops, e.g. to avoid overheating.

3.11.2.3.2 Dynamic limitation for overheating protection

Effective current monitoring + housing/motor temperature monitoring is used as over-
heating protection. To protect the actuator of overheating, the energy input to the
actuator or the temperature inside the actuator is observed. It is a dynamic limitation
of the output value.

Hint: The temperature information could also come as a consolidated value from an
abstracted sensor SW component.

3.11.2.4 Feed forward controller

The Feed Forward Controller compensatex the influcence of the known disturbances
in the controlled system. It calculates the pre-controlled output value.

3.11.2.5 Closed loop controller

The Closed Loop Controller uses feedback to control output of a dynamic system, i.e.
the output value is adapted according to the consolidated value.

3.11.2.6 Set point limitation

Set point limitation given by plant used as closed loop controller input.

3.11.2.7 Set point gradient limitation

Protection of the actuator by limiting the set point gradient, e.g. in position close to the
endstops.

3.11.2.8 Control deviation monitoring

Monitoring of the permanent deviation between setpoint and consolidated value.



AUTSSAR

3.11.2.9 Capability

Providing a Capability is a way of summarizing all active limitations on an actuator.
The Capability is related to the requested set point, providing the dynamic boundaries
of possible usage.

For example, an electric machine actuator SW composition will report its capability to
the coordinator functionality in the application software. If the capability is reduced, the
coordinator functionality in the application software may use this capability information
to redistribute the requested set points differently between the actuators of the system
to obtain the overall system control objective.

Generic Sig- | Long Name Pattern of | Generic Long Name of | AUTOSAR Definition

nal Name Concrete Sensor/Actua- | Signal (EN)
tor Signal (EN)

Cpby Capability {anyLong- | Capability Provides the dynamic instant ca-
NamePart} pability typically based on output

limitation but could also contain
the limitation on rate of change
of the consolidated value. It is

expressed as percentage.

Table 3.7: Signal Names and Semantics of function Capability

This following section presents examples of capability.

The capability can be described as the temporary dynamic bounds of actuation. These
bounds could depend on current working point of operation or some consolidated
value. The capability is provided as percentage of maximum defined actuator limi-
tations.

For example, if the capability is provided as neutral (see figure 3.19), the capability is
set to 100%. Consequently, neutral capability does not reflect the current effectiveness
of the actuator.

100% Cpby

Figure 3.19: Example for providing neutral Capability information

In another example (see figure 3.20), the capability is provided as a function of the set
point and output limitations. The dynamic set point and output limitations may then also
be a function of the consolidated value.



AUTSSAR

/

Sp
EEE— —»
min

80%

(Consold) /

/

1

max | 60%

60%  Cpby
min —»

(Consold) /

Figure 3.20: Example for simple Capability calculation

3.11.3 Electrical Actuator Driver (DrvrActrElec)

You are here ~

AN
~N

Figure 3.21: Typical functions in layer DrvrActrElec

Outp

h

v
A\

Power Stage
Monitoring
Application SWC
- DrvrActrElecFor{Suffix1}{Suffix2}
1]




AUTSSAR

3.11.3.1 Power stage monitoring

An ECU might contain various power stages for driving different electrical loads.
Common electrical faults at power stages are Short Circuit to Battery (SCB), Short
Circuit to Ground (SCG), and Open Load (OL). These faults can occur during either
on-state or off-state of the power stage output.

3.11.4 Virtual Device Driver (DevSnsrVirt)

You are here —

Estmd Consold
. : oo
DCM service / n
Inertia Diagnosticitester: Signal qualifier
Substitution . interface for gnai g )
compensation . . evaluation
basic function
test
Continous Conditional
plausibilization plausibilization
Application SWC
DevSnsrVirtFor{Suffix1}{Suffix2}
A A
Measd Raw

Figure 3.22: Typical functions in layer DevSnsrVirt

3.11.4.1 Substitution

The function switches between the measured and a replacement value. The replace-
ment value could be the estimated value.
Example: The switching can happen based on:

1. Sensor diagnostic information



AUTSSAR

2. Sensor signal quality

3. Sensor availabilty

3.11.4.2 Inertia compensation

The function provides a predicted sensor value (forecast) to compensate the inertia of
the sensor.
Examples: thermal inertia, mechanical inertia

3.11.4.3 Signal qualifier evaluation

The quality of the consolidated value is provided by that function. It is determined by
checking consolidated value and all sensor related diagnosis information.

3.11.4.4 DCM service / Diagnostic tester interface for basic function test

The DCM service interface is typically used to overwrite and stimulate the consolidated
sensor value.

3.11.4.5 Plausibilization
3.11.4.5.1 Continous plausibilization

The measured value is checked continously against another redundant sensor infor-
mation. This redundant sensor information can be provided by any other sensor or by
the estimated value.

Example: Offset diagnosis, in case difference (measured value vs. redundant value)
exceeds certain threshold, e.g. tolerance threshold.

3.11.4.5.2 Conditional plausibilization

The measured value is checked at specific points in time (e.g. once in a driving cycle
or at specific driving modes) against another redundant sensor information. This re-
dundant sensor information can be provided by any other sensor or by the estimated
value.

Hint: The conditional plausibilization can be used to compensate or just identify sensor
individual tolerances.



AUTSSAR

3.11.5 Sensor Device Driver (DevDrvrSnsr)

Measd

You are here — |

Raw

A

A

High level filtering

Physical signal
gradient check

Physical signal
range check

Physical signal
gradient calculation

Offset adaption

Zero point
adaption

Stuck check
diagnosis

Drift detection

Conversion

(A]

Application SW-Composition
DevDrvrSnsrFor{Suffix1}{Suffix2}

(A]

]

ElecBascFild

]

ElecRaw

Figure 3.23: Typical functions in layer DevDrvrSnsr

3.11.5.1 High level filtering

This function block contains every kind of filter which might lead to a significant phase
shift of the sensor value in order to provide a physical sensor value, fitting to require-

ments from user functions (regarding timing, accuracy).

Hint: Therefore a good trade-off between phase shift and accuracy has to be found.

3.11.5.2 Offset adaption

The result of conditional plausibilization can be used to do an offset adaption of mea-
sured value to compensate individual tolerances of the sensor. The determined offset
information is used to adapt the sensor signal to show values closer to the actual phys-

ical signal.

Hint: The conditional plausibilization can be used to compensate or just identify sensor

individual tolerances




AUTSSAR

3.11.5.3 Zero point adaption

The zero point adaption is used to adjust the transfer function in the conversion to the
physical zero point.

Hint: The adaption of this zero point is done within the conversion block.

Example 1: Sensors measuring relative values (differential pressure) shall show 0 if
there is equalized pressure.

Example 2: The sensor value is adapted to the mechanical endstop position of an
closed loop operated actuator.

3.11.5.4 Drift detection

Sensor values are monitored throughout the driving cycle and used to derive a sensor
deviation compared to the first and last learned value.

Hint: Can be used for offset adaption, to improve sensor information or it can be used
for diagnosis purpose only.

3.11.5.5 Conversion

The electrical signal is converted into physical representation by transfer function. In
case of nonlinear signal, linearization will be part of transfer function as well.

3.11.5.6 Physical signal gradient calculation

In order to get information about the current dynamic of the sensed system, a gradient
is calculated based on current and previous sensor information.

3.11.5.7 Physical signal gradient check

The gradient of the physical signal is checked against a maximum. For certain sensors
a maximum gradient should not be exceeded. In case the sensor shows a higher
gradient, it could be indicated as defect.

3.11.5.8 Stuck check diagnosis

Identify a "frozen" sensor information, in case the sensor signal does not change. A
permanent "frozen" sensor information could be indicated as a defect.



AUTSSAR

3.11.5.9 Physical signal range check

Comparison of physical sensor signal against minimum and maximum thresholds for
continuous diagnosis of physical limits.

3.11.6 Electrical Sensor Driver (DrvrSnsrElec)

You are here ~_

[ ]
[ ]

A0

@
ElecBascFild ElecRaw
A A
)
Basic Filter veliege Electrical diagnosis

compensation

Application SWC
DrvrSnsrElecFor{Suffix1}{Suffix2}

[~]
L

Figure 3.24: Typical functions in layer DrvrSnsrElec

3.11.6.1 Basic filter

A basic filter is needed to mitigate electric noise. The timing behavior shall not give any
significant phase shift to signal.

Example: The definition of a significant phase shift is that it does not have any impact
on the physical behaviour of the system. For signals influenced by the combustion the
phase shift should not exceed the time given by a 360deg camshaft rotation.

Hint: Possible filter types for this use case could be FIR (finite impulse response) filter
or PLL (phase locked loop).

Reason: The DevDrvrSnsr transfers electrical value to physical value. In case the sig-
nal already has a phase shift, the timing within the upper layers cannot be compensated
anymore.



AUTSSAR

3.11.6.2 Voltage compensation

Required for sensors with power supply from outside ECU. The seperate power supply
creates a potential difference in reference voltage which needs to be compensated in
SW.

Hint: This functionality can be realized in hardware alternatively.

3.11.6.3 Electrical diagnosis

It is needed to diagnose electrical faults on the sensor.
Examples: Short Circuit to Battery (SCB), Short Circuit to Ground (SCG), Open Circuit,
Loose Contact.

3.12 Known Issues

Sensor abstraction of sensors with typical digital interfaces (e.g. SENT, FAS) or which
are connected via bus (e.g. CAN, LIN) is part of this pattern as well. Description of
required extensions is in progress.

3.13 FAQ

* Why is the estimated value in Example "Actuator without Feedback Loop (Set-
point Alternative)" not used?
An estimated value does not exist for every sensor. So there is no need for it
to be used. In this example, the consolidated value is calculated based on the
setpoint.

* Is there a signal quality considered in the pattern?
The topic "signal qualifier" is not yet considered. At the moment (R19-11) there
is no activity known for standardizing such a signal quality.

* How are the names for the layers derived (e.g. DevCoorrVirt)? Can they be
changed?
The AUTOSAR abbreviations are given by strict rules [3]. Even the concatena-
tion of the abbreviations is defined. The names should not be changed due to
backward compatibility reasons.

3.14 Known Uses

None.



AUTSSAR

3.15 Related Patterns

Pattern

Description

Arbitration Pattern
(see Chapter 4)

The sensor/actuator pattern is typically combined with the arbitration pattern
to allow several set point requesters, several providers of consolidated values
or several providers of estimated values. This is, arbitration is not done within
the sensor/actuator pattern but outside the device abstraction.

Table 3.8: Related Patterns

3.16 Anti-Patterns One Should be Aware of

None.

3.17 Further Readings

More information could be found in [11] and [12].




AUTSSAR

4 Arbitration between several requesters or providers

Classification Design Pattern

4.1 Problem

Arbitration between several different providers or requesters.

4.2 Applicability

The number of requesters or providers, resp., has to be known at pre-compile time.
The number of requesters or providers, resp., has to be known at implementation or
generation time of the arbiter component.

This pattern can be applied in the context of Sensor/Actuator Design Pattern, e.g.
for modeling several setpoint requesters, several providers of consolidated values or
several providers of estimated values.

4.3 Solution

A new component for managing all requests from different requesters or providers,
resp., is introduced. In Figure 4.1 the overall pattern for requesters is shown in case
sender receiver interfaces are used. In Figure 4.2 the overall pattern for providers is
shown in case sender receiver interfaces are used.

When using sender/receiver interfaces the arbitration component, also called "arbiter”,
needs to have unique names for the different requests or providers. This is realized by
different request or provide ports, one per requester or provider, resp. The port inter-
face or at least the application data type is typically the same for all of these requesters
or providers, resp., and the resulting request or arbitrated value.



1= Application Design Patterns Catalogue
AUTSSAR AUTOSAR CP R25-11

SW.C SWC
A Ad
{anyName} {anyName}
{anyName}{anyNamePart} {anyName}anyNamePart}
Ad Ad
LET LE
SW-C

{anyName}

Figure 4.1: Pattern ”Arbitration between Several Requesters”

52 of 71 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue



1= Application Design Patterns Catalogue
AUTSSAR AUTOSAR CP R25-11

>

{anyName}

{anyName}

>

{anyNameHanyNamePart} {anyName}anyMamePart}

Figure 4.2: Pattern ”Arbitration between Several Providers”

An arbitration component is introduced to support several requesters of the same ac-
tion but not necessarily of the same value.

An arbitration component is introduced to support several providers of the same signal.

53 of 71 Document ID 672: AUTOSAR_CP_TR_AIDesignPatternsCatalogue



AUTSSAR

4.4 Examples

441 Several Setpoint Requesters

In the context of the sensor/actuator pattern (see Chapter 3) there might be several
conflicting setpoint requesters. In this case a new component for managing all requests
from different setpoint requesters is introduced, see Figure 4.3.

When using sender/receiver interfaces the arbitration component, also called "arbiter”,
needs to have unique names for the different requests. This is realized by different
request ports, one per requester. The port interface or at least the application data
type is typically the same for all of these requesters and the resulting request.

SW-C SW-C

Reqd Reqd

{anyName}Reqd {anyName}Reqd
Ad Ad

Reqd

—«

Reqd

<

Device Abstraction

Figure 4.3: Pattern ”Arbitration between Several Set-point Requester”



AUTSSAR

In grammar 4.1 it is described how the provide ports of the requesters as well as
the request ports of the arbiter should be named: they all have the suffix "Reqd” for
"Required”. So terms like "desired”, "wished” etc. should not be used to avoid that too
many terms with similar meanings are used without being able to distinguish them.

grammar PArbSpRegPortNames;

portName
({anyName}) {'Regd’ } ;

anyName
("keyword’ ) x ;
Listing 4.1: Name Pattern for Ports of Arbiter and Requesters

Figure 4.4 shows the pattern in the context of the RTE. The Device Abstraction is
designed as one large composition but this is not requested by the Sensor/Actuator
pattern.

[] [] ] T
O
SW-C SW-C Arbiter Device
Abstraction)
Application Application Application .
Software Software Software Software
Component Component Component Component

{anyName}Reqd | {anyName}Reqd | {anyName}Reqd

Virtual Function Bus

) Sensor and Actuator Design Pattern (PSnsrActr)

Figure 4.4: Arbitration between Several Requesters via RTE

4.4.2 Several Providers of Consolidated Values

In the context of the sensor/actuator pattern (3) there might be several sensors provid-
ing the same physical information. This is, there are several component all providing a
consolidated values for a specific physical signal.

A new component for managing all consolidated values from different providers is in-
troduced, see Figure 4.5.

When using sender/receiver interfaces the arbitration component, also called "arbiter”,
needs to have unique names for the different providers. This is realized by different



AUTSSAR

request ports, one per provider. The port interface or at least the application data type
is typically the same for all of these providers and the resulting consolidated value.

SW-C
Al
Consold
Consold
iy
SW-C
(A] (A
{anyName}Consold {anyName}Consold

£ Consold Consold
k5 A A
=
I
o=
=T
8 SW-C SW-C
B
o

Figure 4.5: Pattern ”Arbitration between Several Providers of Consolidated Values”

In grammar 4.2 it is described how the provide ports of the providers as well as the
provide port of the arbiter should be named: they all have the suffix "Consold” for
"Consolidated”. So terms like "modeled” etc. should not be used to avoid that too
many terms with similar meanings are used without being able to distinguish them.

grammar PArbrConsoldPortNames;

portName
({anyName}) {’ Consold’} ;

anyName



AUTSSAR

("keyword’ ) * ;
Listing 4.2: Name Pattern for Ports of Arbiter and Providers of Consolidated Values

4.4.3 Several Providers of Estimated Values

In the context of the sensor/actuator pattern (3) there might be several model for calcu-
lating an estimation value. However, in the end only one of the estimated values should
be input to the sensor/actuator pattern. Therefore, a new component for managing all
estimated values from different providers is introduced, see Figure 4.6.

When using sender/receiver interfaces the arbitration component, also called "arbiter”,
needs to have unique names for the different providers. This is realized by different
request ports, one per provider. The port interface or at least the application data type
is typically the same for all of these providers and the resulting estimated value.



AUTSSAR

SW-C SW-C

v v
Estimd Estimd

{anyName}Estimd {anyName}Estimd

Ad Ad

<

—

Estimd

Estimd

<

Device Abstraction

Figure 4.6: Pattern ”Arbitration between Several Providers of Estimated Values”

In grammar 4.3 it is described how the provide ports of the providers as well as the
provide port of the arbiter should be named: they all have the suffix "Estimd” for "Esti-
mated”. So terms like "modeled” etc. should not be used to avoid that too many terms
with similar meanings are used without being able to distinguish them.

grammar PArbEstimdPortNames;

portName
({anyName}) {’Estimd’ } ;

anyName
("keyword’ ) x ;

Listing 4.3: Name Pattern for Ports of Arbiter and Providers of Estimated Values



AUTSSAR

4.5 Sample Code and Model

None.

4.6 Known Uses

This pattern is typically applied in the context of usage of the Sensor/Actuator Design
Pattern.

4.7 Related Patterns

Pattern Description

Sensor Actua- | The sensor/actuator pattern is typically combined with the arbitration pattern

tor Pattern (see | to allow several set point requesters, several providers of consolidated values

Chapter 3) or several providers of estimated values. This is, arbitration is not done within
the sensor/actuator pattern but outside the device abstraction.

Table 4.1: Related Patterns



AUTSSAR

5 Signal Quality States

Classification Design Pattern

5.1 Problem

For each (sensor) signal / value the corresponding quality information is also needed
to be transferred along with the signal value.

The main intention is to have a common understanding of signal quality and to stan-
dardize the states a signal quality can have.

5.2 Applicability

This scope of this pattern is the definition of signal quality states (e.g. the content of
the signal quality interfaces). The implementation of such a signal quality interface is
not in scope of this document as there are several implementations possible.

The signal quality states defined in this document are a minimum set of recommended
signal quality states.

5.3 Solution

Signal quality State of related sig- | Meaning

nal value

UNDEFINED Undefined value No information about quality at all. It means that signal
quality is not defined and the signal value is not initialized
/ calculated yet or is not calculated any more (e.g. desired
deactivation of functionality)

VALID Valid value Trustworthy value from main signal source

REPLACEMENT | Replacement value | Modelled value or even defined constant value (mostly

with reduced valid- | done by calibration). There is no information about the

ity validity of the signal value, i.e. there is no additional infor-
mation how "good™ the replacement value represents the
original value.

FROZEN Frozen value Frozen value. A valid value must have been calculated
before. There is no information about since how long the
signal value is frozen

INVALID Invalid value Value is not trustworthy and must not be used

Additional information to table 5.1:

Table 5.1: Signal Quality States

 Transitions from UNDEFINED to FROZEN is not allowed, because the previous
value was not a valid value




AUTSSAR
* UNDEFINED level is default value of signal quality interfaces

5.3.1 Implementation proposal

For easier reuse and collaboration an example implementation of a signal quality in C
code is given. It is recommended to store the signal quality along with its value in a
RECORD (=struct) datatype. Having that RTE will guarantee data consistency.
typedef struct {
float32 value; //datatype depending on need
uint8 quality;
} SignalQuality_t;

Listing 5.1: Signal quality implementation proposal

This is an example for a value given in f1oat and its corresponding quality information,
since float is the preferred datatype within Device Abstraction pattern for sensor
signals. The datatype is variable (also refer to table 3.6).



AUTSSAR

A Change history of AUTOSAR traceable items
A.1 Traceable item history of this document according to
AUTOSAR Release R24-11

A.1.1 Added Specification Items in R24-11

none

A.1.2 Changed Specification Items in R24-11

none

A.1.3 Deleted Specification ltems in R24-11

none

A.2 Traceable item history of this document according to
AUTOSAR Release R23-11

A.2.1 Added Specification Items in R23-11

none

A.2.2 Changed Specification ltems in R23-11

none

A.2.3 Deleted Specification Iltems in R23-11

none

A.3 Traceable item history of this document according to
AUTOSAR Release R22-11

A.3.1 Added Specification Iltems in R22-11

none



AUTSSAR

A.3.2 Changed Specification Items in R22-11

none

A.3.3 Deleted Specification ltems in R22-11

Number Heading

[TR_AIDPC_00001] Access to Hardware by PSnsract

[TR_AIDPC_00002] Collaboration supported by PSnsraAct

[TR_AIDPC_00003] Deployment/Relocation supported by PSnsract

[TR_AIDPC_00004] Layers of PSnsrAct

[TR_AIDPC_00005] Naming within PSnsract

[TR_AIDPC_00006] Arbitration of requesters

[TR_AIDPC_00007] Arbitration of providers

Table A.1: Deleted Specification Items in R22-11

A.3.4 Added Constraints in R22-11

none

A.3.5 Changed Constraints in R22-11

none

A.3.6 Deleted Constraints in R22-11

none



AUTSSAR

B Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class ApplicationSwComponentType

Note The ApplicationSwComponentType is used to represent the application software.
Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement, ARObject, AtomicSwComponentType, AtpBlueprint, AtpBlueprintable, AtpClassifier, Atp
Type, CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable, Sw
ComponentType

Aggregated by | ARPackage.element

Attribute Type Mulit. Kind | Note

Table B.1: ApplicationSwComponentType

Class CompositionSwComponentType

Note A CompositionSwComponentType aggregates SwComponentPrototypes (that in turn are typed by
SwComponent Type)s as well as swConnectors for primarily connecting SwComponentPrototypes
among each others and towards the surface of the CompositionSwComponentType. By this means, a
hierarchical structures of software-components can be created.
Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, SwComponentType

Aggregated by | ARPackage.element

Attribute Type Mulit. Kind | Note

component SwComponent * aggr | The instantiated components that are part of this
Prototype composition. The aggregation of

SwComponentPrototype is subject to variability with
the purpose to support the conditional existence of a
SwComponentPrototype. Please be aware: if the
conditional existence of SwComponentPrototypes is
resolved post-build, the deselected
SwComponentPrototypes are still contained in the
ECUs build but the instances are inactive in that they are
not scheduled by the RTE.

The aggregation is marked as atpSplitable in order to
allow the addition of service components to the ECU
extract during the ECU integration.

The use case for having 0 components owned by the
CompositionSwComponentType could be to deliver an
empty CompositionSwComponentType t0 €.g.a
supplier for filling the internal structure.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=component.shortName, component.variation
Point.shortLabel

vh.latestBinding Time=postBuild




AUTSSAR

A

Class CompositionSwComponentType

connector SwConnector * aggr SwConnectors have the principal ability to establish a
connection among PortPrototypes. They can have
many roles in the context of a
CompositionSwComponent Type. Details are refined
by subclasses.
The aggregation of SwConnectors is subject to
variability with the purpose to support variant data flow.
The aggregation is marked as atpSplitable in order to
allow the extension of the ECU extract with
AssemblySwConnectors between
ApplicationSwComponentTypeS and
ServiceSwComponent Types during the ECU
integration.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=connector.shortName, connector.variation
Point.shortLabel
vh.latestBindingTime=postBuild

constantValue ConstantSpecification * ref Reference to the ConstantSpecificationMapping to

Mapping MappingSet be applied for initValues of PPortComSpecs and
RPortComSpec.
Stereotypes: atpSplitable
Tags: atp.Splitkey=constantValueMapping

dataType DataTypeMappingSet * ref Reference to the DataTypeMappingSet to be applied

Mapping for the used ApplicationDataTypes in
PortInterfaces.
Background: when developing subsystems it may happen
that ApplicationDataTypes are used on the surface
of CompositionSwComponentTypes. In this case it
would be reasonable to be able to also provide the
intended mapping to the ImplementationDataTypes.
However, this mapping shall be informal and not
technically binding for the implementors mainly because
the RTE generator is not concerned about the
CompositionSwComponentTypesS.
Rationale: if the mapping of ApplicationDataTypes
on the delegated and inner PortPrototype matches
then the mapping to ImplementationDataTypes is not
impacting compatibility.
Stereotypes: atpSplitable
Tags: atp.Splitkey=dataTypeMapping

instantiation InstantiationRTEEvent * aggr | This allows to define instantiation specific properties for

RTEEventProps | Props RTE Events, in particular for instance specific scheduling.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=instantiationRTEEventProps.shortLabel,
instantiationRTEEventProps.variationPoint.shortLabel
vh.latestBindingTime=codeGenerationTime
This Attribute is only used by the AUTOSAR Classic
Platform.

physical PhysicalDimension 0..1 ref This reference identifies the

Dimension MappingSet PhysicalDimensionMappingSet thatis applicable in

Mapping the context of the enclosing
CompositionSwComponentType. The
PhysicalDimensionMappings contained in the
PhysicalDimensionMappingSet shall be taken into
account for the assessment of the compatibility of
PhysicalDimensions in the context of creation of a
PortInterfaceMapping in the scope of the
CompositionSwComponentType.

Table B.2: CompositionSwComponentType




AUT<

SSAR

Class EcuAbstractionSwComponentType
Note The ECUAbstraction is a special AtomicSwComponentType that resides between a software-component
that wants to access ECU periphery and the Microcontroller Abstraction. The EcuAbstractionSw
ComponentType introduces the possibility to link from the software representation to its hardware
description provided by the ECU Resource Template.
Tags: atp.recommendedPackage=SwComponentTypes
Base ARElement, ARObject, AtomicSwComponentType, AtpBlueprint, AtpBlueprintable, AtpClassifier, Atp
Type, CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable, Sw
ComponentType
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note
hardware HwDescriptionEntity * ref Reference from the EcuAbstractionComponentType to the
Element description of the used HwElements.
Table B.3: EcuAbstractionSwComponentType
Class HwCategory
Note This metaclass represents the ability to declare hardware categories and its particular attributes.
Tags: atp.recommendedPackage=HwCategorys
Base ARElement, ARObject, AtpDefinition, CollectableElement, Identifiable, MultilanguageReferrable,
PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
hwAttributeDef HwAttributeDef * aggr This aggregation describes particular hardware attribute
definition.
Table B.4: HwCategory
Class HwDescriptionEntity (abstract)
Note This meta-class represents the ability to describe a hardware entity.
Base ARObject, Referrable
Subclasses HwElement, HwPin, HwPinGroup, HwType
Attribute Type Mult. Kind | Note
hwAttribute HwAttributeValue * aggr This aggregation represents a particular hardware
Value attribute value.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=hwAttributeValue, hwAttributeValue.variation
Point.shortLabel
vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=50
hwCategory HwCategory * ref One of the associations representing one particular
category of the hardware entity.
Tags: xml.sequenceOffset=30
hwType HwType 0..1 ref This association is used to assign an optional HwType
which contains the common attribute values for all
occurences of this HwDescriptionEntity. Note that Hw
Types can not be redefined and therefore shall not have a
hwType reference.

Table B.5: HwDescriptionEntity




AUTSSAR

Class HwElement
Note This represents the ability to describe Hardware Elements on an instance level. The particular types of
hardware are distinguished by the category. This category determines the applicable attributes. The
possible categories and attributes are defined in HwCategory.
Tags: atp.recommendedPackage=HwElements
Base ARElement, ARObject, CollectableElement, HwDescriptionEntity, Identifiable, MultilanguageReferrable,
PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Muit. Kind | Note
hwElement HwElementConnector * aggr | This represents one particular connection between two
Connection hardware elements.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=hwElementConnection, hwElement
Connection.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=110
hwPinGroup HwPinGroup * aggr | This aggregation is used to describe the connection
facilities of a hardware element. Note that hardware
element has no pins but only pingroups.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=hwPinGroup.shortName, hwPin
Group.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=90
nestedElement HwElement * ref This association is used to establish hierarchies of hw
elements. Note that one particular HwElement can be
target of this association only once. l.e. multiple
instantiation of the same HwElement is not supported (at
any hierarchy level).
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=nestedElement.hwElement, nested
Element.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=70
Table B.6: HwElement
Class HwType
Note This represents the ability to describe Hardware types on an abstract level. The particular types of
hardware are distinguished by the category. This category determines the applicable attributes. The
possible categories and attributes are defined in HwCategory.
Tags: atp.recommendedPackage=HwTypes
Base ARElement, ARObject, CollectableElement, HwDescriptionEntity, Identifiable, MultilanguageReferrable,
PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note

Table B.7: HwType




AUT<

SSAR

Primitive Identifier
Note An Identifier is a string with a number of constraints on its appearance, satisfying the requirements typical
programming languages define for their Identifiers.
This datatype represents a string, that can be used as a c-Identifier.
It shall start with a letter, may consist of letters, digits and underscores.
Tags:
xml.xsd.customType=IDENTIFIER
xml.xsd.maxLength=128
xml.xsd.pattern=[a-zA-Z][a-zA-Z0-9_]*
xml.xsd.type=string
Attribute Type Mulit. Kind | Note
blueprintValue String 0..1 attr This represents a description that documents how the
value shall be defined when deriving objects from the
blueprint.
Tags:
atp.Status=draft
xml.attribute=true
namePattern String 0..1 attr This attribute represents a pattern which shall be used to
define the value of the identifier if the identifier in question
is part of a blueprint.
For more details refer to TPS_StandardizationTemplate.
Tags: xml.attribute=true
Table B.8: Identifier
Class Keyword
Note This meta-class represents the ability to predefine keywords which may subsequently be used to
construct names following a given naming convention, e.g. the AUTOSAR naming conventions.
Note that such names is not only shortName. It could be symbol, or even longName. Application of
keywords is not limited to particular names.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | KeywordSet.keyword
Attribute Type Mult. Kind | Note
abbrName NameToken 1 attr This attribute specifies an abbreviated name of a
keyword. This abbreviation may e.g. be used for
constructing valid shortNames according to the
AUTOSAR naming conventions.
Unlike shortName, it may contain any name token. E.g. it
may consist of digits only.
classification NameToken * attr This attribute allows to attach classification to the
Keyword such as MEAN, ACTION, CONDITION, INDEX,
PREPOSITION

Table B.9: Keyword

Class PortPrototype (abstract)

Note Base class for the ports of an AUTOSAR software component.
The aggregation of PortPrototypes is subject to variability with the purpose to support the conditional
existence of ports.

Base ARObject, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses AbstractProvidedPortPrototype, AbstractRequiredPortPrototype

Aggregated by | AtpClassifier.atpFeature, SwComponentType.port

Attribute Type Mult. Kind | Note

clientServer ClientServerAnnotation * aggr Annotation of this PortPrototype with respect to client/

Annotation

server communication.

V




AUT<

SSAR

A
Class PortPrototype (abstract)
delegatedPort DelegatedPort 0..1 aggr Annotations on this delegated port.
Annotation Annotation
ioHwAbstraction | loHwAbstractionServer * aggr Annotations on this |0 Hardware Abstraction port.
Server Annotation
Annotation
modePort ModePortAnnotation * aggr Annotations on this mode port.
Annotation
nvDataPort NvDataPortAnnotation * aggr Annotations on this non voilatile data port.
Annotation
parameterPort ParameterPort * aggr Annotations on this parameter port.
Annotation Annotation
senderReceiver | SenderReceiver * aggr Collection of annotations of this ports sender/receiver
Annotation Annotation communication.
Stereotypes: atpSplitable
Tags: atp.Splitkey=senderReceiverAnnotation
triggerPort TriggerPortAnnotation * aggr Annotations on this trigger port.
Annotation
Table B.10: PortPrototype
Class PortPrototypeBlueprint
Note This meta-class represents the ability to express a blueprint of a PortPrototype by referring to a particular
Portinterface. This blueprint can then be used as a guidance to create particular PortPrototypes which
are defined according to this blueprint. By this it is possible to standardize application interfaces without
the need to also standardize software-components with PortPrototypes typed by the standardized Port
Interfaces.
Tags: atp.recommendedPackage=PortPrototypeBlueprints
Base ARElement, ARObject, AtpBlueprint, AtpClassifier, AtpFeature, AtpStructureElement, Collectable
Element, Identifiable, MultilanguageReferrable, PackageableElement, Referrable
Aggregated by | ARPackage.element, AtpClassifier.atpFeature
Attribute Type Mulit. Kind | Note
initValue PortPrototypeBlueprint * aggr | This specifies the init values for the dataElements in the
InitValue particular PortPrototypeBlueprint.
interface Portinterface 1 ref This is the interface for which the blueprint is defined. It
may be a blueprint itself or a standardized PortInterface
providedCom PPortComSpec * aggr Provided communication attributes per interface element
Spec (data element or operation).
Stereotypes: atpSplitable
Tags: atp.Splitkey=providedComSpec.dataElement,
providedComSpec.getter, providedComSpec.mode
Group, providedComSpec.operation, providedCom
Spec.parameter, providedComSpec.setter, providedCom
Spec.variable
requiredCom RPortComSpec * aggr Required communication attributes, one for each

Spec

interface element.

Stereotypes: atpSplitable

Tags: atp.Splitkey=requiredComSpec.dataElement,
requiredComSpec.getter, requiredComSpec.modeGroup,
requiredComSpec.operation, requiredCom
Spec.parameter, requiredComSpec.setter, requiredCom
Spec.variable

Table B.11: PortPrototypeBlueprint




AUT<

SSAR

Class Referrable (abstract)
Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).
Base ARObject
Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint, BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, DiagnosticEnvModeElement, EthernetPriority
Regeneration, ExclusiveAreaNestingOrder, HwDescriptionEntity, ImplementationProps, LinSlaveConfig
Ident, ModeTransition, MultilanguageReferrable, PncMappingldent, SingleLanguageReferrable, SoCon
IPduldentifier, TpConnectionldent
Attribute Type Mult. Kind | Note
shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.
Stereotypes: atpldentityContributor
Tags:
xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100
shortName ShortNameFragment * aggr | This specifies how the Referrable.shortName is
Fragment composed of several shortNameFragments.
Tags: xml.sequenceOffset=-90
Table B.12: Referrable
Class SensorActuatorSwComponentType
Note The SensorActuatorSwComponentType introduces the possibility to link from the software representation
of a sensor/actuator to its hardware description provided by the ECU Resource Template.
Tags: atp.recommendedPackage=SwComponentTypes
Base ARElement, ARObject, AtomicSwComponentType, AtpBlueprint, AtpBlueprintable, AtpClassifier, Atp
Type, CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable, Sw
ComponentType
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note
sensorActuator HwDescriptionEntity 0..1 ref Reference from the Sensor Actuator Software Component
Type to the description of the actual hardware.
Table B.13: SensorActuatorSwComponentType
Class SwComponentPrototype
Note Role of a software component within a composition.
Base ARObject, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | AtpClassifier.atpFeature, CompositionSwComponentType.component
Attribute Type Mulit. Kind | Note
type SwComponentType 0..1 tref Type of the instance.
Stereotypes: isOfType
Table B.14: SwComponentPrototype
Class SwComponentType (abstract)
Note Base class for AUTOSAR software components.
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable
Subclasses AtomicSwComponentType, CompositionSwComponentType, ParameterSwComponentType
Aggregated by | ARPackage.element

\Y




AUTSSAR

Class

SwComponentType (abstract)

Attribute

Type

Mulit.

Kind

Note

consistency
Needs

ConsistencyNeeds

*

agaor

This represents the collection of ConsistencyNeeds
owned by the enclosing SwComponent Type.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=consistencyNeeds.shortName, consistency
Needs.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

This Attribute is only used by the AUTOSAR Classic
Platform.

port

PortPrototype

aggr

The PortPrototypes through which this
SwComponent Type can communicate.

The aggregation of PortPrototype is subject to
variability with the purpose to support the conditional
existence of PortPrototypes.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=port.shortName, port.variationPoint.short
Label

vh.latestBindingTime=preCompileTime

portGroup

PortGroup

aggr

A port group being part of this component.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=portGroup.shortName, portGroup.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

swcMapping
Constraint

SwComponentMapping
Constraints

ref

Reference to constraints that are valid for this Sw
ComponentType.

This Attribute is only used by the AUTOSAR Classic
Platform.

swComponent
Documentation

SwComponent
Documentation

0..1

aggr

This adds a documentation to the SwComponent Type.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=swComponentDocumentation, sw
ComponentDocumentation.variationPoint.shortLabel
vh.latestBinding Time=preCompile Time
xml.sequenceOffset=-10

unitGroup

UnitGroup

ref

This allows for the specification of which UnitGroups are
relevant in the context of referencing SwComponent Type.
This Attribute is only used by the AUTOSAR Classic
Platform.

Table B.15:

SwComponentType




	1 Introduction
	1.1 Document conventions

	2 About Patterns
	2.1 Types of Pattern
	2.2 Describing Patterns

	3 Sensor and Actuator Pattern
	3.1 Motivation
	3.2 Also Known As
	3.3 Applicability
	3.4 Solution
	3.5 Naming
	3.6 Interface definitions
	3.7 Sensor Actuator types
	3.7.1 Sensor
	3.7.2 Actuator without Feedback Loop
	3.7.3 Actuator with Feedback Loop

	3.8 Usage of pattern
	3.9 Examples
	3.9.1 Throttle Valve
	3.9.2 Turbo Charger
	3.9.3 Turbo Charger with Stages and Banks
	3.9.4 Sensor for Environment Temperature
	3.9.5 Standard Sensor
	3.9.6 Standard Sensor for Environment Temperature
	3.9.7 Distributing Device Abstraction

	3.10 Sample Code and Model
	3.11 Typical location of some common function within the specified layers
	3.11.1 Virtual Device Coordinator (DevCoorrVirt)
	3.11.1.1 Conversion and linearization of physical requested value
	3.11.1.2 DCM service / Diagnostic tester interface for basic function test
	3.11.1.3 Cleaning / Ice breaking
	3.11.1.4 Dither of setpoint
	3.11.1.5 Release function of setpoint
	3.11.1.6 Coordination of activation and deactivation of the actuator

	3.11.2 Actuator Device Driver (DevDrvrActr)
	3.11.2.1 Dither of output value
	3.11.2.2 Release function of output value
	3.11.2.3 Limitation
	3.11.2.4 Feed forward controller
	3.11.2.5 Closed loop controller
	3.11.2.6 Set point limitation
	3.11.2.7 Set point gradient limitation
	3.11.2.8 Control deviation monitoring
	3.11.2.9 Capability

	3.11.3 Electrical Actuator Driver (DrvrActrElec)
	3.11.3.1 Power stage monitoring

	3.11.4 Virtual Device Driver (DevSnsrVirt)
	3.11.4.1 Substitution
	3.11.4.2 Inertia compensation
	3.11.4.3 Signal qualifier evaluation
	3.11.4.4 DCM service / Diagnostic tester interface for basic function test
	3.11.4.5 Plausibilization

	3.11.5 Sensor Device Driver (DevDrvrSnsr)
	3.11.5.1 High level filtering
	3.11.5.2 Offset adaption
	3.11.5.3 Zero point adaption
	3.11.5.4 Drift detection
	3.11.5.5 Conversion
	3.11.5.6 Physical signal gradient calculation
	3.11.5.7 Physical signal gradient check
	3.11.5.8 Stuck check diagnosis
	3.11.5.9 Physical signal range check

	3.11.6 Electrical Sensor Driver (DrvrSnsrElec)
	3.11.6.1 Basic filter
	3.11.6.2 Voltage compensation
	3.11.6.3 Electrical diagnosis


	3.12 Known Issues
	3.13 FAQ
	3.14 Known Uses
	3.15 Related Patterns
	3.16 Anti-Patterns One Should be Aware of
	3.17 Further Readings

	4 Arbitration between several requesters or providers
	4.1 Problem
	4.2 Applicability
	4.3 Solution
	4.4 Examples
	4.4.1 Several Setpoint Requesters
	4.4.2 Several Providers of Consolidated Values
	4.4.3 Several Providers of Estimated Values

	4.5 Sample Code and Model
	4.6 Known Uses
	4.7 Related Patterns

	5 Signal Quality States
	5.1 Problem
	5.2 Applicability
	5.3 Solution
	5.3.1 Implementation proposal


	A Change history of AUTOSAR traceable items
	A.1 Traceable item history of this document according to AUTOSAR Release R24-11
	A.1.1 Added Specification Items in R24-11
	A.1.2 Changed Specification Items in R24-11
	A.1.3 Deleted Specification Items in R24-11

	A.2 Traceable item history of this document according to AUTOSAR Release R23-11
	A.2.1 Added Specification Items in R23-11
	A.2.2 Changed Specification Items in R23-11
	A.2.3 Deleted Specification Items in R23-11

	A.3 Traceable item history of this document according to AUTOSAR Release R22-11
	A.3.1 Added Specification Items in R22-11
	A.3.2 Changed Specification Items in R22-11
	A.3.3 Deleted Specification Items in R22-11
	A.3.4 Added Constraints in R22-11
	A.3.5 Changed Constraints in R22-11
	A.3.6 Deleted Constraints in R22-11


	B Mentioned Class Tables

