AUTSSAR

: Specification of Watchdog
Document Title Manager
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 80
Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR * Fixed transition IDs in the
2025-11-27 | R25-11 | Release statemachines.
Management « Editorial changes
AUTOSAR * Fixed uptraces to SRS
2024-11-27 | R24-11 | Release ModeManagement
Management - Editorial changes
AUTOSAR
2023-11-23 | R23-11 Release « Editorial changes
Management
AUTOSAR
2022-11-24 | R22-11 Release « Editorial changes
Management
* Resolved inconsistency regarding
determination of Supervised Entity ID
values, between SWS WdgM and TPS
+ Set “Partition Restart / Shutdown”
feature to obsolete
AUTOSAR
2021-11-25 R21-11 Release * Removed the redundant parameter
Management WdgMDemStoppedSupervisionRe-

port

» Extended to support supervision for
Clustered Software Architecture (Classic
Platform Flexibility), incl. support of
multiple main functions

AUTSSAR

» Clarified the meaning of thresholds
WdgMDeadlineMin and

AUTOSAR WdgMDeadlineMax
2020-11-30 R20-11 Release
Management * Updated t.he structure and tables of the
error sections
» Editorial/Minor Corrections
» Enhancement of Deadline Supervision
to support timeout detection
» Correction/Clarification of supervision
Algorithms and their configurations
5019-11-28 | R19-11 QELSSS:R * Clarification of startup behavior (incl.
o i failed WdgIf_SetMode during init)
Management
* Corrected/Changed/added Error Codes
and other editorial issues
» Changed Document Status from Final to
published
» Header File cleanup
AUTOSAR
2018-10-31 440 Release * EcuPartition vs. OSApplication
Management o
« Editorial changes
AUTOSAR « Correction in development errors.
2017-12-08 | 4.3.1 Release « Renaming of default error to
Management development errors.
* Deprecated features removed
AUTOSAR * Service interfaces modified/corrected
2016-11-30 | 4.3.0 Release
Management * Removed duplicate type definitions
* Several minor fixes.
» Debugging support marked as obsolete
AUTOSAR 99ing Stpp
2015-07-31 422 Release * Several minor fixes
Management) i
* Fixed handling of development errors.
* Introduced modeling of system services
AUTOSAR Ref lated i nts t
2014-10-31 | 4.2.1 Release enO:rm'l;? ed some requirements 1o
Management constraints

* Minor corrections

AUTSSAR

2014-03-31

AUTOSAR
Release
Management

 Addition of the OS counters for deadline
monitoring

» Fixed data types for Supervised Entity
and Checkpoints (uint16)

» Several minor corrections throughout the
document

2013-10-31

AUTOSAR
Release
Management

 Minor fixes (mode switching,
dependencies to other modules)

* Quality corrections in the document
(e.g.formatting of requirements)

« Editorial changes

* Removed chapter(s) on change
documentation

2013-03-15

411

AUTOSAR
Administration

* Reworked according to the new
SWS BSWGeneral

* New indexing scheme for requirements
» Clarification in Deadline Supervision

» Minor corrections in Specification of the
Ports and Port Interfaces

* Include file structure changed.

» Added a method to read after restart
which SE caused the reset: WdgM__
GetFirstExpiredSEID.

* New template with requirements
traceability

2011-12-22

4.0.3

AUTOSAR
Administration

 Streamlined the used terms

* Reorganized the structure of some
chapters

* Clarified ambigous statements and
resolved contradicting ones

» Corrected several bugs

* Provided more details what WdgM
functions do and in which sequence

AUTSSAR

2010-09-30

AUTOSAR
Administration

* New concept of windowed watchdogs

* New supervision functions, Logical
Supervision and Deadline Supervision

» Split of the supervision status into local
and global supervision status

» New concept for activation and
deactivation of supervision

* New concept of Defensive Behavior

» New failure recovery concept for
partition (application) restart

* Legal disclaimer revised

2008-08-13

3.1.1

AUTOSAR
Administration

* Legal disclaimer revised

2007-12-21

3.0.1

AUTOSAR
Administration

» Extended mode concept

» Added GPT as activation source for
operating during Startup, Shutdown and
Sleep

* Restructure module configuration
» Generated APIs from BSW UML module

» Generated configuration from Meta
Model

» Document meta information extended

» Small layout adaptations made

2007-01-24

2.1.15

AUTOSAR
Administration

* New chapter “Specification of the ports
and port interfaces” added from
“AUTOSAR Services” document

* New featured added added : active reset
as optional behavior

* New behavior of Deinit function :
triggering of the Watchdog Driver added

* Default mode for the Watchdog Manager
when SetMode service fails

* Legal disclaimer revise

* Release notes added
v

AUTSSAR

A
» “Advice for users” revised

» “Revision Information” added

2006-05-16

2.0

AUTOSAR
Administration

« Initial Release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional overview

1.1 Supervised Entities and Checkpoints
1.2 Interaction of Supervision Mechanisms
1.3 Supervision Functions o o oL
1.3.1 Alive Supervision. L
1.3.2 Deadline Supervision
1.3.3 Logical Supervision
1.4 WatchdogHandling
1.5 ErrorHandling
1.5.1 Error Handling in the Supervised Entity
1.5.2 Reset by Hardware Watchdog
1.5.3 Immediate MCUReset,

2 Acronyms and Abbreviations

3 Related documentation

3.1 Input documents & related standardsandnorms
3.2 Related specification o Lo

4 Constraints and assumptions

4.1 Limitations and conditionsofuse
4.2 Applicability to cardomains L oL

5 Dependencies to other modules

5.1 File Structure

5.1.1 Code File Structure
5.2 Version Check

6 Requirements Tracing

7 Functional specification

7.1 Interaction of Supervision Functions
711 Overview
7.1.2 Local Supervision Status oL
7.1.3 Global SupervisionStatus

7.2 Supervision Functions L
7.2.1 Alive Supervision

7.2.1.1 Alive Supervision Configuration
7.2.1.2 Alive Supervision Algorithm
7.2.2 Deadline Supervision o
7.2.2.1 Deadline Supervision Configuration
7.2.2.2 Deadline Supervision Algorithm
7.2.3 Logical Supervision

11

11
12
12
12
12
13
13
13
14
14
14

15

17

17
17

18

18
19

20

21
21
21

22

AUTSSAR

7.2.3.1 Logical Supervision Configuration 47
7.2.3.2 Logical Supervision Algorithm 49
7.3 Error Handling / Failure Recovery 53
7.3.1 RTE Mode Mechanism Notifications 53
7.3.2 Reportto DEM in WDGM_GLOBAL_STATUS_STOPPED 53
7.3.3 Not Setting the Watchdog Trigger Condition 53
734 MCUReset e 54
7.4 Watchdog Handling 54
7.4.1 Support for Multiple Watchdog Instances 54
7.4.2 Setting the Trigger Conditions 55
7.5 SwitchingModes 56
7.5.1 Effecton Supervision Status 56
7.5.2 EffectonWatchdogs oo 57
7.5.3 Watchdog HandlingduringSleep 57
7.6 Watchdog Manager Configuration 58
7.6.1 Mode-independent Supervision Settings 58
7.6.1.1 SupervisedEntity oo 58
7.6.1.2 Logical Supervision of Internal GraphS 59
7.6.2 Mode-Dependent Parameters 60
7.6.21 Mode 60
7.6.2.2 Logical Supervision of External GraphS 60
7.6.2.3 Alive Supervision 62
7.6.2.4 Deadline Supervision Lo oo 63

7.7 Support for Clustered Software Architecture using Software Cluster Con-
nector (SWCIUC) o 63
7.7.1 Software Architectural Assumptions and Constraints 63
7.7.2 Configuration Aspects L 64
7.7.2.1 Configuration for Cross-Cluster External GraphS 66
7.8 Error Classification 67
7.8.1 DevelopmentErrorso 67
7.8.2 Runtime Errors 68
7.8.3 ProductionErrors L 68
7.8.4 Extended ProductionErrors oL 69
7.9 Security Eventso 69
8 API specification 70
8.1 Importedtypes 70
8.2 Type definitions 70
8.2.1 WAGM_ConfigTyPe . « v v v v v i e et e e e e e e e e 70
8.3 Function definitions 71
8.3.1 WAgM_TInit i e e e e e e e 71
8.3.2 WAgM_DelInit i i i i i it e e e e e e e e e e e 73
8.3.3 WdgM_GetVersionInfo v v v v v v i i i v iii 74

8.3.4 WAgM_SetMode i i i v i i e e e e e e e e e e e 75

AUTSSAR

8.3.5 WAgM_GetMode« i v i v it e e e e e e e e e e e e 77
8.3.6 WdgM_CheckpointReached, 78
8.3.7 WAgM_GetLocalStatus v v v v v it e e it e e e e 80
8.3.8 WdgM_GetGlobalStatus v v v v v v v v v i i e e 81
8.3.9 WdgM_PerformReset o i v v i i i v it e et e 82
8.3.10 WdgM_GetFirstExpiredSEID v v v v v v i i i i 83
8.4 Callback notifications 84
8.5 Scheduled functions 84
8.5.1 WdgM_MainFunction v i v 84
8.6 Expectedinterfaces 85
8.6.1 Mandatoryinterfaces 86
8.6.2 Optionalinterfaces 86
8.6.3 Configurableinterfaces 87
8.7 Servicelnterfaces 87
8.7.1 Ports and Port Interface for Supervision 88
8.7.1.1 General Approach 88
8.7.1.2 DataTypes e 89
8713 PortiInterfaces. 90
8.7.1.4 ServicePorts 92
8715 ErrorCodes 94
8.7.2 Ports and Port Interface for Status Reporting 95
8.7.2.1 General Approach 95
8.7.22 DataTypes e 95
8723 PortiInterfaces. 97
8724 ModePorts 98

9 Sequence diagrams 101
9.1 Initialization 101
10 Configuration specification 102
10.1Parameter Differentiation L. 102
10.1.1 Static Configuration Parameters 102
10.1.2 Runtime Configuration Parameters 102
10.1.3 Precompile Options 102
10.2Containers and configuration parameters 102
10.2.1 Configuration Variants 103
10.2.2WAgM . v v o e e e e e e e e e e e e 103
10.2.3WdgMGeneral . . . v v v v i i i e e e e e e e e e e e e e 103
10.2.4 WdgMSupervisedEntity i 108
10.2.5 WAgMCheckpoint . . v v v v v i e e e e e e e e e e e e e 111
10.2.6 WdgMInternalTransition 112
10.2.7 WdgMWatchdog v v v v i e e s e e e e 114
10.2.8 WdgMConfigSet . . . v v v v i i it e e e e e e e e 115

10.2.9 WdgMDemEventParameterRefs 116

AUTSSAR

10.2.10 WAgGMMOde . . v v v v e e e e e e e e e e e e e e e e e
10.2.11 WdgMAliveSupervision v v v v v i v
10.2.12 WdgMDeadlineSupervisSion . .« v v v v v v v v v v i e e e
10.2.13 WdgMExternallLogicalSupervision.
10.2.14 WdgMExternalTransition v v v v v v v i v v v v v o
10.215 WAgMTrigger . . . v v v v i e e e e e e e e e e e e
10.2.16 WdgMLocalStatusParams v v v v v v v v v e e e e
10.2.17 WdgMMainFunction v v v v v v i v it i e e
10.2.18 WdgMMainFunct ionModePTropsS « « v v v v v v v v v v e e e
10.2.19 WdgMCrossClusterTransition« .« . v v v v v v v v v v ..
10.2.20 WAgMTransitionProXy . « « v v v v v v v v vt e e e e e e e
10.2.21 WdgMBaseSocket . . v v v v v i i i e e e e e e e e
10.3Published Information oL

A Example Implementation of Alive Supervision Algorithm

A.1 Scenario A e
A2 ScenarioB

B Not applicable requirements

C Change history of AUTOSAR traceable items

C.1 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e
C.1.1 Added Specification ltemsinR24-11
C.1.2 Changed Specification ltemsin R24-11
C.1.3 Deleted Specification ltemsin R24-11
C.1.4 Added Constraintsin R24-11
C.1.5 Changed Constraints in R24-11
C.1.6 Deleted Constraintsin R24-11
C.2 Traceable item history of this document according to AUTOSAR Release
R25-11 e

C.2.1 Added Specification ltemsin R25-11
C.2.2 Changed Specification ltemsin R25-11
C.2.3 Deleted Specification ltems in R25-11
C.2.4 Added Constraintsin R25-11
C.2.5 Changed Constraints in R25-11
C.2.6 Deleted Constraintsin R25-11

AUTSSAR

1 Introduction and functional overview

The Watchdog Manager is a basic software module at the service layer of the stan-
dardized basic software architecture of AUTOSAR.

The Watchdog Manager is able to supervise the program execution abstracting from
the triggering of hardware watchdog entities.

The Watchdog Manager supervises the execution of a configurable number of so-called
Supervised Entities. When it detects a violation of the configured temporal and/or
logical constraints on program execution, it takes a number of configurable actions to
recover from this failure.

The Watchdog Manager provides three mechanisms:
1. Alive Supervision — for supervision of timing of periodic software
2. Deadline Supervision — for supervision of timing of aperiodic software

3. Logical Supervision — for supervision of the correctness of the execution se-
quence.

1.1 Supervised Entities and Checkpoints

The Watchdog Manager supervises the execution of software. The logical units of
supervision are Supervised Entities. There is no fixed relationship between Supervised
Entities and the architectural building blocks in AUTOSAR, i.e., SW-Cs, CDDs, RTE,
BSW modules, but typically a Supervised Entity may represent one SW-C Prototype or
one or more Runnable Entities within a SW-C Prototype, a BSW module instance or
CDD instance depending on the choice of the developer.

Important places in a Supervised Entity are defined as Checkpoints. The code of
Supervised Entities is interlaced with the calls of Watchdog Manager that report to the
Watchdog Manager when they have reached a Checkpoint.

Each Supervised Entity has one or more Checkpoints. The Checkpoints and Tran-
sitions between the Checkpoints of a Supervised Entity form a Graph. This Graph
is called Internal Graph. Moreover, Checkpoints from different Supervised En-
tities may also be connected by External Transition, forming an External Graph.
There can be several External Graphs in each Watchdog Manager Mode.

A Graph may have one or more Initial Checkpoints and one or more Final Check-
points. Any sequence of starting with any Initial Checkpoint and finishing with any
Final Checkpoint is correct (assuming that the Checkpoints belong to the same
Graph). After the Final Checkpoint, any Initial Checkpoint can be reported.

Within the Watchdog Manager configurations, it is possible to configure the required
timing of Checkpoints as well as the allowed External and Internal Graphs.

AUTSSAR

At runtime, Watchdog Manager verifies if the configured Graphs are executed. This
is called Logical Supervision. Watchdog Manager also verifies the timing of Check-
points and Transitions. The mechanism for periodic Checkpoints is called Alive
Supervision and for aperiodic Checkpoints it is called Deadline Supervision.

The granularity of Checkpoints is not fixed by the Watchdog Manager. Few coarse-
grained Checkpoints limit the detection abilities of the Watchdog Manager. For ex-
ample, if an application SW-C only has one Checkpoint that indicates that a cyclic
Runnable has been started, then the Watchdog Manager is only capable of detecting
that this Runnable is re-started and check the timing constraints. In contrast, if that
SW-C has Checkpoints at each block and branch in the Runnable the Watchdog
Manager may also detect failures in the control flow of that SW-C. High granularity of
Checkpoints causes a complex and large configuration of the Watchdog Manager.

1.2 Interaction of Supervision Mechanisms

The three supervision mechanisms supervise each Supervised Entity. A Supervised
Entity may have one, two or three mechanisms enabled. Based on the results from
each of enabled mechanisms, the status of the Supervised Entity (called Local Super-
vision Status) is computed.

When the status of each Supervised Entity is determined, then based on each Local
Supervision Status, the status of the whole MCU is determined (called Global Super-
vision Status).

1.3 Supervision Functions

1.3.1 Alive Supervision

Periodic Supervised Entities have constraints on the number of times they are executed
within a given time span. By means of Alive Supervision, Watchdog Manager checks
periodically if the Checkpoints of a Supervised Entity have been reached within the
given limits. This means, Watchdog Manager checks that a Supervised Entity is neither
executed too frequently nor too rarely.

1.3.2 Deadline Supervision

Aperiodic or episodical Supervised Entities have individual constraints on the timing
between two Checkpoints. By means of Deadline Supervision, Watchdog Manager
checks the timing of transitions between two Checkpoints of a Supervised Entity.
This means that Watchdog Manager checks if some steps in a Supervised Entity take
a time that is within the configured minimum and maximum values. Watchdog Manager
also detects no arrival to the second Checkpoint.

AUTSSAR

1.3.3 Logical Supervision

Logical Supervision is a fundamental technique for checking the correct execution
of embedded system software. Please refer to the safety standards (IEC 61508 [1] or
ISO 26262 [2]) when Logical Supervision is required.

Logical Supervision focuses on control flow errors, which cause a divergence from the
valid (i.e. coded/compiled) program sequence during the error-free execution of the
application. An incorrect control flow occurs if one or more program instructions
are processed either in the incorrect sequence or are not even processed at all.
Control flow errors can lead to data corruption, microcontroller resets, or fail-silence
violations.

For the Control Flow Graph this implies that every time the Supervised Entity re-
ports a new Checkpoint, it must be verified that there is a Transition configured be-
tween the previous Checkpoint and the reported one.

1.4 Watchdog Handling

Watchdog Manager communicates with Watchdog Interface to control the hardware
watchdog.

In contrast to versions before R4.0.1, the Watchdog Manager is no longer responsible
for triggering the hardware watchdog via the Watchdog Interface and the Watchdog
Driver. Instead, the Watchdog Manager reports via the Watchdog Interface a triggering
condition to the Watchdog Driver. The Watchdog Driver is then responsible for trigger-
ing the hardware watchdog with the right timing for as long as the condition is true. The
triggering condition is a counter value that the Watchdog Manager sets cyclically. The
Watchdog Driver decrements this counter every time it triggers the hardware watch-
dog. When the counter reaches 0, the Watchdog Driver stops triggering the hardware
watchdog. Therefore, when the Watchdog Manager fails to execute, this automatically
causes a watchdog reset (after the time needed to decrement the counter plus the
timeout value of HW watchdog).

When the Supervised Entities are not correctly evaluated due to a programming error
or memory failure in the Watchdog Manager itself, it may still happen that the Watch-
dog Manager erroneously sets the triggering condition and no watchdog reset will be
caused. Therefore, it may be needed to use Supervised Entities and Checkpoints
(or some other internal supervision mechanism) within Watchdog Manager itself, while
avoiding recursion in Watchdog Manager.

1.5 Error Handling

Depending on the Local Supervision Status of each Supervised Entity and on the
Global Supervision Status, the Watchdog Manager initiates a number of mechanisms

AUTSSAR

to recover from supervision failures. These range from local error recovery within the
Supervised Entity to a global reset of the ECU.

1.5.1 Error Handling in the Supervised Entity

In case the Supervised Entity is an SW-C or a CDD, then the Watchdog Manager may
inform the Supervised Entity about supervision failures via the RTE Mode mechanism.
The Supervised Entity may then take its actions to recover from that failure.

The Watchdog Manager may register an entry with the Diagnostic Event Manager
(DEM) when it detects a supervision failure. A Supervised Entity may take recovery
actions based on that error entry.

1.5.2 Reset by Hardware Watchdog

The Watchdog Manager indicates to the Watchdog Interface when Watchdog Interface
shall no longer trigger the hardware watchdog. After the timeout of the hardware watch-
dog, the hardware watchdog resets the ECU or the MCU. This leads to a re-initialization
of the ECU and/or MCU hardware and the complete reinitialization of software.

1.5.3 Immediate MCU Reset

In case an immediate, global reaction to the supervision failure is necessary, the
Watchdog Manager may directly cause an MCU reset. This will lead to a re-initialization
of the MCU hardware and the complete software. Usually, a MCU reset will not re-
initialize the rest of the ECU hardware.

Note that a MCU reset is not available on some types of micro controllers.

MCU reset and watchdog reset are two mostly equivalent mechanisms for system-
level error reaction. In safety-related systems, it is recommended to use both of them
in parallel. By this means, the two mechanisms make a “redundant shutdown path”.

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Watchdog
Manager module that are not included in the [3, AUTOSAR glossary].

Abbreviation / Acronym:

Description:

Al Alive Indication
EAI Expected Alive Indications
SC Supervision Cycle
SE Supervised Entity
SRC Supervision Reference Cycle
Table 2.1: Acronyms and abbreviations used in the scope of this Document
Term: Description:

Alive Counter

An independent data resource in the Watchdog Manager in context of a
Checkpoint to track and handle its amount of Alive Indications.

Alive Indication

An indication provided by a checkpoint of a Supervised Entity to signal its
aliveness to the Watchdog Manager.

Alive Supervision

Kind of supervision that checks if a Supervised Entity executed sufficiently often
and not too often (including tolerances).

Checkpoint

A point in the control flow of a Supervised Entity where the activity is reported to
the Watchdog Manager.

Deadline Supervision

Kind of supervision that checks if the execution time between two Checkpoints
are lower than a given upper execution time limit.

Deadline Start Checkpoint

A Checkpoint for which Deadline Supervision is configured and which is a
starting point for a particular Deadline Supervision.

Deadline End Checkpoint (Deadline
Stop Checkpoint)

A Checkpoint for which Deadline Supervision is configured and which is an
ending point for a particular Deadline Supervision.

It is possible that a Checkpoint is both a Deadline Start Checkpoint and
Deadline End Checkpoint — if Deadline Supervision is chained.

Expired Supervision Cycle

A Supervision Cycle where the Alive Supervision has failed its two escalation
steps (Alive Counter fails the expected amount of Alive Indications (including
tolerances) more often than the allowed amount of failed reference cycles).

Failed Supervision Reference Cycle

A Supervision Reference Cycle that ends with a detected deviation
(including tolerances) between the Alive Counter and the expected amount of
Alive Indications.

Global Supervision Status

Status that summarizes the Local Supervision Status of all Supervised Entities.

Graph

Control Flow Graph. A set of Checkpoints connected through Transitions,
where at least one of Checkpoints is an Initial Checkpoint. There is a path
(through Transitions) between any two Checkpoints of the Graph.

External Graph

Graph that may involve more than one Supervised Entity. Its configuration is
mode-dependent.

Cross-Cluster External Graph

A special kind of External Graph that spans over multiple Software Clusters
for Clustered Software Architecture. Its configuration is mode-dependent
(controlled by Host Software Cluster) and has dedicated configuration structure
additionally.

Note: External Graph within one Software Cluster can be modelled without
the configuration structure dedicated for clustered software architecture.

External Transition

An External Transition is a transition between two Checkpoints, where the
Checkpoints belong to different Supervised Entities.

Local Supervision Status

Status that represents the current result of alive-supervision of a single
Supervised Entity.

Y%

AUTSSAR

A

Logical Supervision

Kind of online supervision of software that checks if the software (Supervised
Entity or set of Supervised Entities) is executed in the sequence defined by the
programmer (by the developed code).

Internal Graph

Graph that may not span over several Supervised Entity. Its configuration is
mode-independent and can be disabled by disabling the corresponding
Supervised Entity.

Internal Transition

An Internal Transition is a transition between two Checkpoints of a Supervised
Entity.

Mode

A mode is a certain set of states of the various state machines that are running in
the vehicle that are relevant to a particular entity, e.g. a SW-C, a BSW module,
an application, a whole vehicle

In its lifetime, an entity changes between a set of mutually exclusive modes.
These changes are triggered by environmental data, e.g. signal reception,
operation invocation.

In the context of the Watchdog Manager a mode is defined by a set of
configuration options. The set of Supervised Entities to be supervised may vary
from mode to mode.

Supervised Entity

A software entity which is included in the supervision of the Watchdog Manager.

Each Supervised Entity has exactly one identifier. A Supervised Entity denotes a
collection of Checkpoints within an instance of Software Component Types or

Basic Software Modules. There may be zero, one or more Supervised Entities in
an instance of Software Component Types or Basic Software Modules.

Supervised Entity Identifier

An I|dentifier that identifies uniquely a Supervised Entity within an Application.

Supervision Counter

An independent data resource in context of a Supervised Entity which is updated
by the Watchdog Manager during each Supervision Cycle and which is used by
the Alive Supervision algorithm to perform the check against counted Alive
Indications.

Supervision Cycle

The time base of Supervision Reference Cycle of Watchdog Manager,
where the cyclic Alive Supervision is performed. And it’s also the interval for
updating Global Supervision Status and execution of resulting Recovery Actions.
This is done in every call of the Main Function of belonging Watchdog Manager
and mode-dependent (may vary when swiching mode).

Supervision Reference Cycle

The amount of Supervision Cycles to be used as reference by the Alive
Supervision to perform the check of counted Alive Indications (individually for
each Supervised Entity) and mode-dependent.

Table 2.2: Terms used in the scope of this Document

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] IEC 61508 (all parts) — Functional safety of electrical/electronic/programmable
electronic safety-related systems
https://iec.ch/

[2] I1ISO 26262:2018 Road vehicles -— Functional Safety
https://www.iso.org

[3] Glossary
AUTOSAR_FO_TR_Glossary

[4] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[5] Specification of ECU State Manager
AUTOSAR_CP_SWS ECUStateManager

[6] Requirements on Health Monitoring
AUTOSAR_FO_RS_HealthMonitoring

[7] General Requirements on Basic Software Modules
AUTOSAR_CP_RS_BSWGeneral

[8] Requirements on Mode Management
AUTOSAR_CP_RS ModeManagement

[9] Specification of MCU Driver
AUTOSAR_CP_SWS_MCUDriver

[10] Specification of RTE Software
AUTOSAR_CP_SWS_RTE

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [4] (SWS BSW
General), which is also valid for Watchdog Manager.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for Watchdog Manager.

https://iec.ch/
https://www.iso.org

AUTSSAR

4 Constraints and assumptions

4.1

Limitations and conditions of use

The main limitations of Watchdog Manager design are as follows. They may be re-
moved in upcoming versions of this document:

{DRAFT} A Supervised Entity cannot span over multiple EcucPartitions.

{DRAFT} Handling of unconnected transition proxies for Logical Supervision
based on Cross-Cluster External Graph by Watchdog Manager is un-
specified in this release.

As libraries cannot call BSWs, libraries cannot be supervised by Watchdog Man-
ager.

The nesting of Deadline Supervision (i.e. start 1, start 2, end 2, end 1) is not
supported.

The Alive Supervision function with more than one Checkpoint per Supervised
Entity is not consistently specified within the document. For now, it is recom-
mended to support only one Alive Supervision Checkpoint per Supervised En-
tity.

Further limitations:

The Watchdog Manager does not encapsulate the Watchdog Driver initialization.
The Watchdog Driver must be initialized by [5, Specification of ECU State Man-
ager] in the startup process before the initialization of the Watchdog Manager.

The Watchdog Manager is initialized after the OS has been started. Hence, it
cannot be responsible for controlling the Watchdog Driver earlier in the startup
process. Usually, it is sufficient to configure a large enough initial timeout in
the Watchdog Driver to bridge the gap between Watchdog Driver and Watchdog
Manager initialization. Alternatively, the Integrator may use ECU State Manager
facilities (callouts).

The Watchdog Manager is de-initialized before the OS shutdown. Hence, it can-
not be responsible for controlling the Watchdog Driver later in the shutdown pro-
cess. Usually, it is sufficient to configure a large enough final timeout that is
set when the Watchdog Manager is de-initialized. This allows bridging the gap
between Watchdog Manager de-initialization and system power-off or resetting.
Alternatively, the Integrator may use ECU State Manager facilities (callouts).

For ECUs which implement sleep modes, if the hardware watchdog remains ac-
tive in these sleep modes, its triggering shall also be handled by the ECU State
Manager.

The error recovery mechanism “Immediate MCU Reset” is available only on mi-
crocontrollers that are able to perform a reset by using the hardware feature of
the microcontroller.

AUTSSAR

+ All of following conditions must be met for the expected operation of WdgM su-
pervision:

Initialized Wdg Interface,

Initialized OS (because of possible usage of OsCounter)

Initialized WdgM (done by calling wdgM_Tnit)

Periodic invocation of wdgM_MainFunction preferably by AUTOSAR BSW
scheduler; during startup the invocation may be done by another module.

= Note: The deviations/jitters on the periodic call of WdgM_MainFunc-
tion will lead to a potential risk of delayed detection in both Alive
Supervision and Deadline Supervision (timeout detection part) and
false/missed detection in Alive Supervision.

= Note: Any blocking of this periodic invocation will cause loss of Deadline
Supervision (timeout detection part), Alive Supervision, all state transi-
tion of both Local/Global Supervision Status and resulting Error Han-
dling mechanisms to recover from supervision failures, except the last
resort “Reset by Hardware Watchdog” due to the loss of the Watchdog
Handling (no trigger to the hardware instance via Wdglf).

* A Supervised Entity with all its Checkpoints may belong to only one OS-
Application (at most). Because OS-application can run on one core only, there-
fore one specific Supervised Entity may run at one core.

» The Deadline Supervision (timeout detection part) and Alive Supervision is highly
depending on the periodic invocation of WdgM_MainFunction: the periodicity
shall be chosen carefully according to the requested value of the timeout detec-
tion.

» {DRAFT} The result of WdgM_GetFirstExpiredSEID in software architecture
with multi-partition configuration may be not fully reliable, depending on imple-
mentation (at least, it cannot be achieved without reliable and common time
stamping over partitions, but it will not to be standardized).

» Watchdog Manager cannot detect timeout of Deadline Supervision for the Super-
vised Entities which are running in Category 2 ISRs.

— Rationale: A deadlock of Runnable Entities which are running in Category 2
ISR blocks the execution of WdgM_MainFunction on Task level.

4.2 Applicability to car domains

No restriction.

AUTSSAR

5 Dependencies to other modules

Watchdog Interface (Wdglf) The Watchdog Manager module is responsible for
changing the mode of the Watchdog Driver and for reporting to the Watchdog
Driver the condition to trigger the hardware watchdog. The services of the Watch-
dog Driver are accessed via the Watchdog Interface which allows addressing
multiple watchdog instances.

ECU State Manager (EcuM) The ECU State Manager is responsible for initializing,
de-initializing of the Watchdog Manager module and for triggering the hardware
watchdog in sleep modes.

Micro Controller Unit Driver (Mcu) The Watchdog Manager module may perform an
immediate reset of the ECU in case of a supervision failure. This reset service is
provided by the MCU driver.

Default Error Tracer (Det) If development error detection is enabled, the Watchdog
Manager module informs the Default Error Tracer about detected development
errors.

Diagnostic Event Manager (Dem) The Watchdog Manager may notify the Diagnostic
Event Manager about detected functional / production-code relevant errors.

BSW Scheduler (SchM) The BSW Scheduler is responsible for calling the scheduled
functions of the Watchdog Manager module. The Watchdog Manager module
uses the services of the BSW Scheduler to implement critical sections.

Runtime Environment (Rte) The Runtime Environment is responsible for propagat-
ing Checkpoint information from Supervised Entities in SW-Cs or in CDDs to
the Watchdog Manager module. The Watchdog Manager module uses the ser-
vices of the Runtime Environment to inform SW-Cs about changes in the supervi-
sion status. BSW Modules can call the Watchdog Manager module without using
RTE.

Operating system (Os) The Operating System is used by Watchdog Manager to pro-
vide the timestamp.

{DRAFT} Software Cluster Connector (SwWCIuC) SwCIuC (introduced by Classic
Platform Flexility Concept) can establish internal connection of WdgM over Soft-
ware Clusters, by means of Binary Manifests. Note that, inter-EcucPartition con-
nection within a WdgM will be established without SwCIuC, as it's a part of BSW
Multicore Distribution Concept and its way for implementation is not standardized
(one of typical implementation method is master-satellite pattern).

AUTSSAR

5.1 File Structure

5.1.1 Code File Structure

For details refer to [4] Chapter 5.1.6 “Code file structure”.

5.2 Version Check

For details refer to [4] Chapter 5.1.8 “Version check”.

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [6, Requirements on
Health Monitoring], [7, General Requirements on Basic Software Modules], [8, Re-
quirements on Mode Management] and links to the fulfillment of these. Please note
that if column “Satisfied by” is empty for a specific requirement this means that this

requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[RS_HM_09235]

Health Monitoring shall provide a
Deadline Supervision

[SWS_WdgM_00322] [SWS_WdgM_00373]
[SWS_WdgM_00374] [SWS_WdgM_00403]
[SWS_WdgM_00404]

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_WdgM_00018] [SWS_WdgM_00135]
[SWS_WdgM_00268] [SWS_WdgM_00269]
[SWS_WdgM_00285] [SWS_WdgM_00296]
[SWS_WdgM_00298] [SWS_WdgM_00370]

[SRS_BSW_00171]

Optional functionality of a Basic-SW
component that is not required in the
ECU shall be configurable at
pre-compile-time

[SWS_WdgM_00104]

[SRS_BSW_00310]

API naming convention

[SWS_WdgM_00151] [SWS_WdgM_00153]
[SWS_WdgM_00154] [SWS_WdgM_00159]
[SWS_WdgM_00168] [SWS_WdgM_00169]
[SWS_WdgM_00175] [SWS_WdgM_00261]
[SWS_WdgM_00263] [SWS_WdgM_00264]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_WdgM_00010] [SWS_WdgM_00020]
[SWS_WdgM_00021] [SWS_WdgM_00030]
[SWS_WdgM_00031] [SWS_WdgM_00039]
[SWS_WdgM_00172] [SWS_WdgM_00173]
[SWS_WdgM_00176] [SWS_WdgM_00253]
[SWS_WdgM_00254] [SWS_WdgM_00256]
[SWS_WdgM_00257] [SWS_WdgM_00258]
[SWS_WdgM_00270] [SWS_WdgM_00278]
[SWS_WdgM_00279] [SWS_WdgM_00284]
[SWS_WdgM_00288] [SWS_WdgM_00388]
[SWS_WdgM_00389] [SWS_WdgM_00390]
[SWS_WdgM_00392] [SWS_WdgM_00394]
[SWS_WdgM_00395] [SWS_WdgM_00396]
[SWS_WdgM_00397] [SWS_WdgM_00401]

[SRS_BSW_00327]

Error values naming convention

[SWS_WdgM_00004] [SWS_WdgM_00375]
[SWS_WdgM_00402]

[SRS_BSW_00336]

Basic SW module shall be able to
shutdown

[SWS_WdgM_00261]

[SRS_BSW_00337]

Classification of development errors

[SWS_WdgM_00004] [SWS_WdgM_00375]
[SWS_WdgM_00402]

[SRS_BSW_00339]

Reporting of production relevant error
status

[SWS_WdgM_00129] [SWS_WdgM_00142]
[SWS_WdgM_00408]

[SRS_BSW_00345]

BSW Modules shall support
pre-compile configuration

[SWS_WdgM_00025] [SWS_WdgM_00104]

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00350]

All AUTOSAR Basic Software
Modules shall allow the enabling/
disabling of detection and reporting of
development errors.

[SWS_WdgM_00010] [SWS_WdgM_00020]
[SWS_WdgM_00021] [SWS_WdgM_00039]
[SWS_WdgM_00172] [SWS_WdgM_00173]
[SWS_WdgM_00176] [SWS_WdgM_00253]
[SWS_WdgM_00254] [SWS_WdgM_00256]
[SWS_WdgM_00257] [SWS_WdgM_00258]
[SWS_WdgM_00270] [SWS_WdgM_00278]
[SWS_WdgM_00279] [SWS_WdgM_00284]
[SWS_WdgM_00288] [SWS_WdgM_00388]
[SWS_WdgM_00389] [SWS_WdgM_00390]
[SWS_WdgM_00392] [SWS_WdgM_00394]
[SWS_WdgM_00395] [SWS_WdgM_00396]
[SWS_WdgM_00397] [SWS_WdgM_00401]

[SRS_BSW_00357]

For success/failure of an API call a
standard return type shall be defined

[SWS_WdgM_00011]

[SRS_BSW_00358]

The return type of init() functions
implemented by AUTOSAR Basic
Software Modules shall be void

[SWS_WdgM_00151]

[SRS_BSW_00373]

The main processing function of each
AUTOSAR Basic Software Module
shall be named according the defined
convention

[SWS_WdgM_00159]

[SRS_BSW_00385]

List possible error notifications

[SWS_WdgM_00004] [SWS_WdgM_00375]
[SWS_WdgM_00402]

[SRS_BSW_00406]

API handling in uninitialized state

[SWS_WdgM_00021] [SWS_WdgM_00039]

[SRS_BSW_00450]

A Main function of a un-initialized
module shall return immediately

[SWS_WdgM_00406] [SWS_WdgM_00407]

[SRS_BSW_00452]

Classification of runtime errors

[SWS_WdgM_00030] [SWS_WdgM_00031]
[SWS_WdgM_00142] [SWS_WdgM_00319]

[SRS_BSW_00458]

Classification of production errors

[SWS_WdgM_00129] [SWS_WdgM_00375]
[SWS_WdgM_00408]

[SRS_BSW_00469]

Fault detection and healing of
production errors and extended
production errors

[SWS_WdgM_00129] [SWS_WdgM_00408]

[SRS_BSW_00470]

Execution frequency of production
error detection

[SWS_WdgM_00129] [SWS_WdgM_00408]

[SRS_BSW_00471]

Do not cause dead-locks on detection
of production errors - the ability to
heal from previously detected
production errors

[SWS_WdgM_00408]

[SRS_BSW_00480]

Null pointer errors shall follow a
naming rule

[SWS_WdgM_00004]

[SRS_BSW_00481]

Invalid configuration set selection
errors shall follow a naming rule

[SWS_WdgM_00004]

[SRS_BSW_00487]

Errors for module initialization shall
follow a naming rule

[SWS_WdgM_00004]

[SRS_ModeMgm_
09028]

The Watchdog Manager shall support
multiple watchdog instances

[SWS_WdgM_00002]

[SRS_ModeMgm_
09106]

The list of entities supervised by the
Watchdog Manager shall be
configurable at pre-compile time

[SWS_WdgM_00085]

[SRS_ModeMgm_
09107]

The Watchdog Manager shall provide
an initialization service

[SWS_WdgM_00018] [SWS_WdgM_00135]
[SWS_WdgM_00151]

[SRS_ModeMgm_
09109]

It shall be possible to prohibit the
disabling of watchdog

[SWS_WdgM_00030] [SWS_WdgM_00031]

Y

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_ModeMgm_
09110]

The watchdog Manager shall provide
a service interface, to select a mode
of the Watchdog Manager

[SWS_WdgM_00139] [SWS_WdgM_00154]

[SRS_ModeMgm_
09112]

The Watchdog Manager shall
cyclically check the periodicity of the
supervised entities

[SWS_WdgM_00063] [SWS_WdgM_00074]
[SWS_WdgM_00076] [SWS_WdgM_00077]
[SWS_WdgM_00078] [SWS_WdgM_00083]
[SWS_WdgM_00098] [SWS_WdgM_00115]
[SWS_WdgM_00117] [SWS_WdgM_00213]
[SWS_WdgM_00214] [SWS_WdgM_00413]

[SRS_ModeMgm_
09125]

The Watchdog Manager shall provide
a service allowing the Update
temporal program flow monitoring

[SWS_WdgM_00413] [SWS_WdgM_00414]

[SRS_ModeMgm_
09143]

The Watchdog Manager shall set the
triggering condition during inactive
monitoring

[SWS_WdgM_00083] [SWS_WdgM_00119]
[SWS_WdgM_00186] [SWS_WdgM_00223]

[SRS_ModeMgm_
09158]

The Watchdog Manager shall support
Post build time and mode dependent
selectable configuration sets for the
Watchdog Manager

[SWS_WdgM_00145]

[SRS_ModeMgm_
09159]

The Watchdog Manager shall report
failure of temporal or program flow
monitoring to DEM

[SWS_WdgM_00129] [SWS_WdgM_00408]

[SRS_ModeMgm_
09160]

The Watchdog Manager shall provide
the indication of failed temporal
monitoring

[SWS_WdgM_00148] [SWS_WdgM_00150]

[SRS_ModeMgm_
09161]

The Watchdog Manager shall reset
the triggering condition in the
Watchdog Driver in Case of temporal
failure

[SWS_WdgM_00223]

[SRS_ModeMgm_
09162]

The Watchdog Manager shall be able
to notify the software of an upcoming
watchdog reset

[SWS_WdgM_00150]

[SRS_ModeMgm_
09163]

It shall be possible to configure a
delay before provoking a watchdog
reset

[SWS_WdgM_00077] [SWS_WdgM_00215]
[SWS_WdgM_00219] [SWS_WdgM_00220]

[SRS_ModeMgm_
09169]

The Watchdog Manager shall be able
to immediately reset the MCU

[SWS_WdgM_00133] [SWS_WdgM_00134]
[SWS_WdgM_CONSTR_06500]

[SRS_ModeMgm_
09221]

The Watchdog Manager shall check
the correct sequence of code
execution in supervised entities

[SWS_WdgM_00246] [SWS_WdgM_00252]
[SWS_WdgM_00271] [SWS_WdgM_00273]
[SWS_WdgM_00274] [SWS_WdgM_00295]
[SWS_WdgM_00297] [SWS_WdgM_00331]

[SRS_ModeMgm_
09222]

The Watchdog Manager shall provide
a service allowing the Update logical
program flow monitoring

[SWS_WdgM_00246] [SWS_WdgM_00252]
[SWS_WdgM_00271] [SWS_WdgM_00273]
[SWS_WdgM_00274] [SWS_WdgM_00295]
[SWS_WdgM_00297] [SWS_WdgM_00331]

[SRS_ModeMgm_
09225]

The Watchdog Manager shall provide
the indication of failed logical
monitoring

[SWS_WdgM_00148] [SWS_WdgM_00150]

[SRS_ModeMgm_
09226]

The Watchdog Manager shall reset
reset the triggering condition in the
Watchdog Driver in Case of logical
program flow violation

[SWS_WdgM_00223]

[SRS_ModeMgm_
09231]

The Watchdog Manager shall
periodically set the triggering
condition in the Watchdog Driver as
long as the monitoring has not failed

[SWS_WdgM_00119] [SWS_WdgM_00120]
[SWS_WdgM_00121] [SWS_WdgM_00122]
[SWS_WdgM_00223]

Y%

AUTSSAR

A
Requirement Description Satisfied by
[SRS_ModeMgm_ The Watchdog Manager shall provide | [SWS_WdgM_00232] [SWS_WdgM_00233]
09232] a service to cause a watchdog reset [SWS_WdgM_00264]
[SRS_ModeMgm_ The Watchdog Manager shall support | [SWS_WdgM_00002]
09233] independent triggering condition
values for each watchdog instance

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

This chapter presents the specification details of the internal functional behavior of the
Watchdog Manager module.

7.1 Interaction of Supervision Functions

7.1.1 Overview

Supervised Entities are the units of supervision for the Watchdog Manager module.
Each Supervised Entity can be supervised by a different Supervision Function or a
combination of them.

The available Supervision Functions are:
* Alive Supervision (see Chapter 7.2.1)
» Deadline Supervision (see Chapter 7.2.2)

* Logical Supervision (see Chapter 7.2.3)

Each of three Supervision Functions results with a list of Results of Supervision Func-
tion for each Supervised Entity (highlighted in Blue on Figure 7.1), where each Result
is either correct or incorrect. At Watchdog Manager initialization, all the Results
are set to correct. This means that for every Supervised Entity there are three par-
tial results (one from Alive Supervision, one from Deadline Supervision and one from
Logical Supervision).

In a given Mode, each Supervised Entity may have zero, one or more Alive Supervi-
sions (WdgMAliveSupervision), each having one correct/incorrect result.

In a given Mode, each Supervised Entity may have zero, one or more Deadline Su-
pervisions (WdgMbDeadlineSupervision), each having one correct/incorrect
result.

Note: Deadline Supervision is the combination of the mechanisms for detection of:

« early arrivals: End Checkpoint reported before wdgMDeadlineMin since re-
porting of Start Checkpoint.

» delays: End Checkpoint reported after WdgMbeadlineMax since reporting of
Start Checkpoint.

« timeouts: End Checkpoint not reported even after wdgMbDeadl ineMax Ssince
reporting of Start Checkpoint

In a given Mode, each Supervised Entity may have zero, one or more Logical Supervi-
sions (i.e. Graphs) configured (WdgMExternalLogicalSupervision for one Ex—
ternal Graph, a set of WdgMInternalTransitions for one Internal Graph),

AUTSSAR

each having one correct/incorrect result. Each Logical Supervision is for one
External Graph Or Internal Graph.

In case there are zero active supervisions in a given Mode, then Main Function sees
no EXPIRED local status, so WdgIf_SetTriggerCondition can be invoked.

Based on the results of Supervision Functions (correct/incorrect), the Local Su-
pervision Status of each Supervised Entity (highlighted in Green on Figure 7.1) is de-
termined by means of the Local Supervision Status state machine (see Chapter 7.1.2).

Based on Local Supervision Status of each Supervised Entity, the Global Supervision
Status highlighted in Red on Figure 7.1) is determined by means of Global Supervision
Status state machine (see Chapter 7.1.3).

Based on the Global Supervision Status, the error handling (see Chapter 7.3) and
watchdog handling (see Chapter 7.3) take place.

AUTSSAR

SE mwext 05 Scheduler contest
Widghl_ChedpointResched() Widghd_M ai nFunctiong
4 For SE 0
Increment Alive Alive Indication Counters
Indication Counter of Alive Supervisionof5E
Checlpoint
v
Deadline Reailt of esch Alive
Supervision of Supervision of 5E
W SE (fmecuts {oomrectincorect)
.-' ~,
Deadline Superdsion of Result of each Deadline
5E fzarhy arrivalsand —= Supenddson of 5E
delays) {porectinoomect
L. -
Determine the Local Swpervision
) ki . StstsofSE
Reault of each Logical
Logical Superdon of SE =a Superdgon of 5E
{oore chinoo mect) IIl,
%, A
| ocal Supervision Stetusof
5SE (gat=)
. vy
\

Cetermine Global Superdson Statws

v

‘Global Swpervsion Status
(date)

v

Handle emors

v

Set condifion for HW watchd og
tiggeing

s

Figure 7.1: Overview of Watchdog Manager Supervision

The determination of supervision result for Deadline Supervision (detection of early
arrivals and delays) and Logical Supervision is executed within the function wdgmM_-

AUTSSAR

CheckpointReached. During one execution of this function, it updates the result for
one particular Supervised Entity only.

The determination of supervision result for Deadline Supervision (timeout detection
part) and Alive Supervision is executed within the function WdgM_MainFunction.
During one execution of this function, it updates the Results of Deadline Supervision
(timeout detection part) and/or Alive Supervision for all Supervised Entities.

[SWS_WdgM_00406]

Upstream requirements: SRS_BSW_00450
[The WdgM module shall start both the Supervision Functions (for all Supervision
Algorithms, including Supervision Reference Cycles) and the Watchdog Han-

dling during the first invocation of the wdgM_MainFunction after the initialization of
the module. |

Note: If the WdgM module is not initialized, its Main Function will return immediately
without performing any functionality and without raising any errors (see [SWS_BSW
00037]). Also, the module cannot use RTE APIs before first invocation of the Main
Function (see [SWS_BSW _00218]). Therefore, the first call of the Main Function after
initialization should be considered as the starting point of the Supervision Functions
and the resulting handling of the hardware watchdog instances (using the Wdglf mod-
ule), to have consistent behavior as a Safety-related Monitoring Mechanism.

[SWS_WdgM_00407]
Upstream requirements: SRS _BSW_00450

[The WdgM module shall stop the Supervision Functions (for all Supervision Algo-
rithms) and Watchdog Handling in the wdgM_DeInit.]

[SWS_WdgM_CONSTR_06510] [The following shall be available for the operation
Supervision Functions of Watchdog Manager:

1. availability of initialized Wdg Interface,
2. availability of initialized OS,
3. initialized WdgM — by invocation of wdgM_1Init () function, and

4. periodic invocation of WdgM_MainFunction () function.

]

[SWS_WdgM_CONSTR_06511] [It shall be ensured by the callers of WdgM module,
that the functions WdgM_DeInit, WdgM_Init and WdgM_SetMode are not invoked
concurrently to the WdgM_MainFunction.]

This can be achieved by the integrator by means of appropriate coordination of initial-
ization and task scheduling.

AUTSSAR

{DRAFT} Note that, in the case of clustered software architecture (WdgMSwCluster—
Support = ENABLE_SW_CLUSTER_SUPPORT), the WdgM_MainFunction instances
in Application Software Clusters can be called at any time, regardless of the concur-
rent invocation of the functions WdgM_DeInit, WdgM_Init and WdgM_SetMode in
the Host Software Cluster.

To be able to continue Alive Supervision and Deadline Supervision (timeout detection
part) even if a Supervised Entity had a deadlock, each WwdgM_MainFunction must be
mapped to the tasks which don’t contain Supervised Entities to be supervised by the
WdgM_MainFunction instance.

[SWS_WdgM_CONSTR_00275] [The OS task which is executing the main function
WdgM_MainFunction shall be separated from the OS task(s) calling any function from
a Supervised Entity under supervision. |

7.1.2 Local Supervision Status

The Local Supervision Status state machine determines the status of the Supervised
Entity. This is done based on the following:

1. Previous value of the Local Supervision Status,

2. Current values of result of Alive Supervision, result of Deadline Supervision, re-
sult of Logical Supervision.

[SWS_WdgM_00409]
Status: DRAFT

[The Local Supervision Status state machine shall be calculated in every call of the
function WdgM_MainFunction which the Supervised Entity is belonging to. |

The Watchdog Manager module provides a feature to provide fault tolerance (corre-
sponding to the local supervision status WhDGM_LOCAL_STATUS_FAILED) for Alive Su-
pervision for a configurable amount of (cumulative) time measured in multiples of the
Supervision Cycle (Supervision Cycle is the period at which WdgM_MainFunction is
called), named Failed Supervision Reference Cycles (See configuration pa-
rameter WdgMFailedAliveSupervisionRefCycleTol). If this parameter is set to
0, then there is no tolerance for Alive Supervision and then Alive Supervision behaves
in the same way as Deadline Supervision and Logical Supervision, where the first
incorrect result causes the transition to WDGM_LOCAL_STATUS_EXPIRED.

Note that, Deadline and Logical Supervisions will not be affected by wdgmM-
FailedAliveSupervisionRefCycleTol.

[SWS_WdgM_00200] [The Watchdog Manager module shall track the Local Supervi-
sion Status of each Supervised Entity. |

AUTSSAR

[SWS_WdgM_91006] shows the state machine for Local Supervision Status of a Su-
pervised Entity with all possible states.

[SWS_WdgM_91006] Local Supervision Status |

stm SPEC?deM?LocaLSupervisionfStatus/

(10) (1'1)

WDGM_LOCAL_STAT USDEACTIVATj

Lo A

(5) (12)

/ DGM_LOCAL_STATUS_FAILEB] =
(4)

(DGM_LOCAL_STAT US_EXPI Rj

]

For the transitions between the states of the Local Supervision Status the following
rules apply:

[SWS_WdgM_00268]
Upstream requirements: SRS_BSW_00101

[If the function wdgM_1Init is successfully called, then for each Supervised Entity that
is referenced from the Initial Mode (WdgMInitialMode) (i.e. each Supervised Entity
that is activated in the Initial Mode), the function wdgM_Tnit shall set the Local Super-
vision Status for this Supervised Entity to wDGM_LOCAL_STATUS_OK. And the counter
for Failed Supervision Reference Cycles shall be setto zero (0). (see Tran-
sition (10) in [SWS_WdgM_910086])). |

[SWS_WdgM_00269]
Upstream requirements: SRS_BSW_00101

[If the function wdgM_1Init is successfully called, then for each Supervised Entity that
is not referenced from the Initial Mode (WdgMInitialMode), the function WdgM_TInit

AUTSSAR

shall set the Local Supervision Status for this Supervised Entity to WbGM_LOCAL_ -
STATUS_DEACTIVATED (see Transition (11) in [SWS_WdgM_91006]). |

[SWS_WdgM_00201] [If all values in three sets of results of Supervision (results of
Alive Supervision, results of Deadline Supervision, results of Logical Supervision) for
the Supervised Entity are correct and the Supervised Entity was in Local Supervision
Status WDGM_LOCAL_STATUS_OK, then the function WdgM_MainFunction shall keep
the Supervised Entity in the Local Supervision Status WDGM_LOCAL_STATUS_OK (see
Transition (1) in [SWS_WdgM_91006]). |

[SWS_WdgM_00202] [If the Supervised Entity was in Local Supervision Status
WDGM_LOCAIL_STATUS_OK AND:

1. (At least one result of Alive Supervision of the Supervised Entity is incorrect
and a Failure Tolerance of zero is configured (see configuration parameter wdgM-
FailedAliveSupervisionRefCycleTol [ECUC_WdgM_00327]) OR

2. If the result of at least one Deadline Supervision of the Supervised Entity or the
result of at least one Logical supervision of the Supervised Entity is incorrect),

THEN the function wdgM_MainFunction shall change the Local Supervision Status
to WDGM_LOCAL_STATUS_EXPIRED (see Transition (2) in [SWS_WdgM_91006]). |

The below requirements show the important difference of Alive Supervision versus
Deadline and Logical Supervision: The Alive Supervision has an error tolerance for
failed reference cycles.

[SWS_WdgM_00203] [If the Supervised Entity was in Local Supervision Status
WDGM_LOCAL_STATUS_OK AND:

1. (If the result of at least one Alive Supervision of the Supervised En-
tity is incorrect and a Failure Tolerance greater than zero is configured
(see configuration parameter WdgMFailedAliveSupervisionRefCycleTol
[ECUC_WdgM_00327]) AND

2. If all the results of Deadline Supervision of the Supervised Entity and all results
of Logical Supervision of the Supervised Entity are correct),

THEN the function wdgM_MainFunction shall change the Local Supervision Status
to WDGM_LOCAL_STATUS_FAILED and increment the counter for Failed Supervi-
sion Reference Cycles (see Transition (3) in [SWS_WdgM_91006]). |

[SWS_WdgM_00204] [If the Supervised Entity was in Local Supervision Status
WDGM_LOCAL_STATUS_FAILED AND:

1. (If the result of at least one Alive Supervision is incorrect and the counter for
Failed Supervision Reference Cycles is less than the configured Fail-
ure Tolerance (see parameter WdgMFailedAliveSupervisionRefCycleTol
[ECUC_WdgM_00327]) AND

AUTSSAR

2. If all the results of Deadline Supervisions of the Supervised Entity and all the
result of Logical Supervision of the Supervised Entity are correct),

THEN the function wdgM_MainFunction shall keep the Local Supervision Status in
WDGM_LOCAL_STATUS_FAILED and increment the counter for Failed Supervi-
sion Reference Cycles (see Transition (4)in [SWS_WdgM_910086]). |

[SWS_WdgM_00300] [If the Supervised Entity was in Local Supervision Status
WDGM_LOCAIL_STATUS_FAILED AND:

1. (If all the results of Alive Supervision of the Supervised Entity are correct and
the counter for Failed Supervision Reference Cyclesis> 1) AND

2. If all the result of Deadline Supervision of the Supervised Entity and all the result
of Logical Supervision of the Supervised Entity are correct),

THEN the function wdgM_MainFunction shall keep the Local Supervision Status in
WDGM_LOCAL_STATUS_FAILED and decrement the counter for Failed Supervi-
sion Reference Cycles (see Transition (4) in [SWS_WdgM_91006]). |

[SWS_WdgM_00205] [If the Supervised Entity was in Local Supervision Status
WDGM_LOCAIL_STATUS_FAILED AND:

1. (If all the results of Alive Supervision of the Supervised Entity are correct and
the counter for Failed Supervision Reference Cycles equals 1) AND

2. If all the results of Deadline Supervisions of the Supervised Entity and all the
results of Logical Supervision of the Supervised Entity are correct),

THEN the function wdgM_MainFunction shall change the Local Supervision Status
to WDGM_LOCAL_STATUS_OK and decrement the counter for Failed Supervision
Reference Cycles (see Transition (5) in [SWS_WdgM_91006])). |

[SWS_WdgM_00206] [If the Supervised Entity was in Local Supervision Status
WDGM_LOCAL_STATUS_FAILED AND:

1. (If at least one result of Alive Supervision is incorrect and the counter for
Failed Supervision Reference Cycles isequalto the configured Failure
Tolerance (see configuration parameter WdgMFailedAliveSupervisionRef-
CycleTol [ECUC_WdgM_00327]) OR

2. If at least one result of Deadline Supervision of the Supervised Entity or at least
one the result of Logical Supervision of the Supervised Entity is incorrect),

THEN the function wdgM_MainFunction shall change the Local Supervision Status
to WDGM_LOCAL_STATUS_EXPIRED (see Transition (6) in [SWS_WdgM_91006]). |

[SWS_WdgM_00207] [If the Supervised Entity was in Local Supervision Status
WDGM_LOCAL_STATUS_OK and if a call of wdgM_setMode switches to a mode
which deactivates the Supervised Entity (see [SWS_WdgM_00283]), then the Watch-

AUTSSAR

dog Manager module shall change the Local Supervision Status to WDGM_LOCAL_
STATUS_DEACTIVATED (see Transition (7) in [SWS_WdgM_91006]). |

[SWS_WdgM_00291] [If the Supervised Entity was in Local Supervision Status
WDGM_LOCAL_STATUS_FAILED and if a call of wdgM_SetMode switches to a mode
in which the Supervised Entity is Deactivated (see [SWS_WdgM_00283]), then the
Watchdog Manager module shall change the Local Supervision Status to wbGM_ -
LOCAL_STATUS_DEACTIVATED (see Transition (12) in [SWS_WdgM_910086])). |

Note that the above requirement is only applicable for the WDGM_T1.OCAI_STATUS_—
FATLED status, but not for WbGM_TLOCAL_STATUS_EXPIRED.

[SWS_WdgM_00208] [If the Supervised Entity was in the Local Supervision Status
WDGM_LOCAL_STATUS_DEACTIVATED, the functions WdgM_CheckpointReached
and WdgM_MainFunction shall not perform any Supervision Functions for this Su-
pervised Entity and keep the Local Supervision Status in the state WbGM_TLOCAL_ -
STATUS_DEACTIVATED. (see Transition (8) in [SWS_WdgM_91006]) |

[SWS_WdgM_00209] [If the Supervised Entity was in Local Supervision Status
WDGM_LOCAL_STATUS_DEACTIVATED and if a call of WwdgM_SetMode switches to
a mode in which the Supervised Entity is active (see [SWS_WdgM_00282]), then
the Watchdog Manager module shall change the Local Supervision Status to WDGM_
LOCAL_STATUS_OK. And the counter for Failed Supervision Reference Cy-
cles shall be set to zero (0). (see Transition (9) in [SWS_WdgM_910086]) |

7.1.3 Global Supervision Status

Based on the Local Supervision Status of all Supervised Entities, the Global Supervi-
sion Status is computed.

The Global Supervision Status has similar values as the Local Supervision Status.
The main differences are the addition of the WDGM_GLOBAL_STATUS_STOPPED value.
[SWS_WdgM_91005] shows the values and transitions between them.

[SWS_WdgM_91005] Global Supervision Status |

AUTSSAR

stm SPEC_deM_GIobal_Supervision_Status/

(18)

fDGM_G LOBAL_STATUS_DEACT IVATEB]

—\
= M

(17)

(6) N2)

12) \

(12)

M\

CJGM_GLOBAL_STATUS_FAILEB\

®)

@) DGM_GLOBAL_STATUS_EXPIRE
(12—
(3).

©) (10)

/DGM_GLOBAL_STATUS_STOPPE
an

]

[SWS_WdgM_00213]
Upstream requirements: SRS_ModeMgm_09112

[The Watchdog Manager module shall have one Global Supervision Status for the
whole monitored software. |

[SWS_WdgM_00387] [Global Supervision Status shall be statically initial-
ized with WDGM_GLOBAL_STATUS_DEACTIVATED (see Transition (18) in
[SWS_WdgM_91005]). |

The Watchdog Manager module provides a feature to postpone the error reaction
(the error reaction being not setting a correct trigger condition) for a configurable
amount of time measured in multiples of the Supervision Cycle, named Expired Super-
vision Tolerance (see configuration parameter WdgMExpiredSupervisionCycle—
Tol [ECUC_WdgM_00329]).

The Expired Supervision Tolerance is implemented within the state machine of the
Global Supervision Status. The defined state machine is in the state WbGM_GLOBATL_
STATUS_EXPIRED while the blocking is postponed.

AUTSSAR

[SWS_WdgM_00214]
Upstream requirements: SRS_ModeMgm_09112

[The function WdgM_MainFunction shall calculate the Global Supervision Status in
every Main Function Period. The function shall compute the Global Supervision Status
after computation of every Local Supervision Status. |

The cyclic update of Global Supervision Status is necessary to trigger the timely tran-
sition from WDGM_GLOBAL_STATUS_EXPIRED to WDGM_GLOBAL_STATUS_STOPPED.

{DRAFT} Note that, in case of clustered software architecture, multiple WdgM_Main-
Function instances may exist. In this case, Global Supervision Status can be updated
every call of any wdgM_MainFunction instance.

Following rules shall be used to calculate the Global Supervision Status:

[SWS_WdgM_00285]
Upstream requirements: SRS_BSW_00101

[If the function WwdgM_Init [SWS_WdgM_00151] was successfully called then the
function shall change the Global Supervision Status to WDGM_GLOBAL_STATUS_ -
OK. And the Expired Cycle Counter shall be set to zero (0). (see Transition (13) in
[SWS_WdgM_91005]). |

[SWS_WdgM_00286] [If the Global Supervision Status was either WDGM_GLOBAL__
STATUS_OK Or WDGM_GLOBAL_STATUS_FAILED Or WDGM_GLOBAL_STATUS_EX-
PIRED Of WDGM_GLOBAI_STATUS_STOPPED and the function wWdgM_DelInit
[SWS_WdgM_00261] is successfully called, then the function shall change the Global
Supervision Status to WDGM_GLOBAIL_STATUS_DEACTIVATED (see Transitions (14),
(15), (16) and (17) in [SWS_WdgM_91005]). |

It has to be considered carefully that a deactivation of WdgM when it is in states
WDGM_GLOBAIL_STATUS_EXPIRED Or WDGM_GLOBAL_STATUS_STOPPED can hinder
error reporting or error reaction.

[SWS_WdgM_00078]
Upstream requirements: SRS_ModeMgm_09112

[If the Global Supervision Status was WDGM_GLOBAL_STATUS_OK and the Local Su-
pervision Status of all Supervised Entities are either WDGM_LOCAL_STATUS_OK Or
WDGM_LOCAL_STATUS_DEACTIVATED then the function WdgM_MainFunction shall
keep the Global Supervision Status WhGM_GLOBAIL_STATUS_OK (see Transition (1) in
[SWS_WdgM_91005]). |

[SWS_WdgM_00076]
Upstream requirements: SRS_ModeMgm_09112
[If the Global Supervision Status was WDGM_GLOBAL_STATUS_OK, the Local Supervi-

sion Status of at least one Supervised Entity is WbGM_TL.OCAL_STATUS_FAILED, and
no Supervised Entity is in Local Supervision Status WDGM_1.OCAI_STATUS_EXPIRED,

AUTSSAR

then the function wdgM_MainFunction shall change the Global Supervision Status
to WDGM_GLOBAL_STATUS_FAILED (see Transition (2) in [SWS_WdgM_91005]). |

The Watchdog Manager module supports a feature to delay the error reaction (switch-
ing to WbGM_LOCAL_STATUS_EXPIRED) for a configurable amount of time. This could
be used to allow clean-up activities before a watchdog reset, e.g. writing the error
cause, writing NVRAM data.

[SWS_WdgM_00215]
Upstream requirements: SRS_ModeMgm_09163

[If the Global Supervision Status was WDGM_GLOBAL_STATUS_OK, the Local Supervi-
sion Status of at least one Supervised Entity is WDGM_TLOCAL_STATUS_EXPIRED, and
the Expired Supervision Tolerance is configured to a value larger than zero (see config-
uration parameter WdgMExpiredSupervisionCycleTol [ECUC_WdgM_00329]),
then function wdgM_MainFunction shall change the Global Supervision Status to
WDGM_GLOBAIL_STATUS_EXPIRED. And increment the Expired Cycle Counter. (see
Transition (3) in [SWS_WdgM_91005]). |

[SWS_WdgM_00216] [If the Global Supervision Status was WDGM_GLOBAL_-—
STATUS_OK, the Local Supervision Status of at least one Supervised Entity is
WDGM_LOCAL_STATUS_EXPIRED, and the Expired Supervision Tolerance is config-
ured to zero (see configuration parameter WdgMExpiredSupervisionCycleTol
[ECUC_WdgM_00329]), then the function WdgM_MainFunction shall change the
Global Supervision Status to WDGM_GLOBAL_STATUS_STOPPED (see Transition (4) in
[SWS_WdgM_91005]). |

[SWS_WdgM_00217] [If the Global Supervision Status was WDGM_GLOBAL_-—
STATUS_FAILED, the Local Supervision Status of at least one Supervised Entity is
WDGM_LOCAL_STATUS_FAILED, and no Supervised Entity is in Local Supervision Sta-
tus WDGM_LOCAL_STATUS_EXPIRED, then function WdgM_MainFunction shall re-
main in Global Supervision Status WDGM_GLOBAL_STATUS_FAILED. (see Transition
(5) in [SWS_WdgM_91005]) |

[SWS_WdgM_00218] [If the Global Supervision Status was WDGM_GLOBAL_-—
STATUS_FAILED and the Local Supervision Status of all Supervised Entities is ei-
ther WDGM_LOCAL_STATUS_OK Of WDGM_LOCAIL_STATUS_DEACTIVATED then func-
tion wdgM_MainFunction shall change the Global Supervision Status to wpcM_ -
GLOBAL_STATUS_OK (see Transition (6) in [SWS_WdgM_91005]). |

[SWS_WdgM_00077]
Upstream requirements: SRS_ModeMgm_09112, SRS_ModeMgm_09163

[If the Global Supervision Status was WDGM_GLOBAL_STATUS_FAILED, the Lo-
cal Supervision Status of at least one Supervised Entity is WDGM_LOCAL_-
STATUS_EXPIRED, and the Expired Supervision Tolerance is configured to a value
larger than zero (see configuration parameter WdgMExpiredSupervisionCycle—
Tol [ECUC_WdgM_00329]), then function wdgM_MainFunction shall change the

AUTSSAR

Global Supervision Status to WDGM_GLOBAL_STATUS_EXPIRED. And increment the
Expired Cycle Counter. (see Transition (7) in [SWS_WdgM_91005]). |

[SWS_WdgM_00117]
Upstream requirements: SRS_ModeMgm_09112

[If the Global Supervision Status was WDGM_GLOBAL_STATUS_FAILED, the Local
Supervision Status of at least one Supervised Entity is WDGM_TLOCAL_STATUS_EX-
PIRED, and the Expired Supervision Tolerance is configured to zero (see configura-
tion parameter WdgMExpiredSupervisionCycleTol [ECUC_WdgM 00329]), then
function WdgM_MainFunction shall change the Global Supervision Status to WbGM_
GLOBAL_STATUS_STOPPED (see Transition (8) in [SWS_WdgM_91005]). |

[SWS_WdgM_00219]
Upstream requirements: SRS_ModeMgm_09163

[If the Global Supervision Status was WDGM_GLOBAL_STATUS_EXPIRED, the Local
Supervision Status of at least one Supervised Entity is WDGM_LOCAL_STATUS_EX-
PIRED, and the Expired Cycle Counter is less than the configured Expired Supervi-
sion Tolerance (see configuration parameter WdgMExpiredSupervisionCycleTol
[ECUC_WdgM_00329]), then function WdgM_MainFunction shall keep Global Su-
pervision Status WDGM_GLOBAL_STATUS_EXPIRED and increment the Expired Cycle
Counter (see Transition (9) in [SWS_WdgM_91005]). |

[SWS_WdgM_00220]
Upstream requirements: SRS_ModeMgm_09163

[If the Global Supervision Status was WDGM_GLOBAL_STATUS_EXPIRED, the Local
Supervision Status of at least one Supervised Entity is WDGM_TLOCAL_STATUS_EX-
PIRED, and the Expired Cycle Counter is equal to the configured Expired Super-
vision Tolerance (see configuration parameter WdgMExpiredSupervisionCycle—
Tol [ECUC_WdgM_00329]), then function wdgM_MainFunction shall change the
Global Supervision Status to WDGM_GLOBAL_STATUS_STOPPED (see Transition (10)
in [SWS_WdgM_91005]). |

[SWS_WdgM_00221] [If the Global Supervision Status was WDGM_GLOBAL_-—
STATUS_STOPPED, then function WdgM_MainFunction shall remain in Global
Supervision Status WDGM_GLOBAL_STATUS_STOPPED (see Transition (11) in
[SWS_WdgM_91005]). |

[SWS_WdgM_00139]
Upstream requirements: SRS_ModeMgm_09110
[If a call to wdgIf_SetMode fails, function shall assume a global supervision fail-

ure and set the Global Supervision Status to WDGM_GLOBAL_STATUS_STOPPED. (see
Transition (12) in [SWS_WdgM_91005]) |

Note: see also Chapter 7.5.2 for the information about possible failed call to WdgTIf_
SetMode.

AUTSSAR

This is the final state and the failure recovery mechanisms will be started. Usually a
watchdog reset will occur after the hardware watchdog has expired.

7.2 Supervision Functions

[SWS_WdgM_00413]
Status: DRAFT
Upstream requirements: SRS_ModeMgm_09112, SRS_ModeMgm_09125

[Alive Supervision and Deadline Supervision (timeout detection part) for each Super-
vised Entity shall be executed within the corresponding Main Function instance, which
is identified by wdgMMainFunctionPartitionRef.]

[SWS_WdgM_00063]
Status: DRAFT
Upstream requirements: SRS_ModeMgm_09112

[If the Global Supervision Status is not in the state WhDGM_GLOBAL_STATUS_DEACTI-
VATED, then the wdgM_MainFunction () shall execute Alive Supervision according
to the configured Supervision Cycle. |

[SWS_WdgM_00414]
Status: DRAFT
Upstream requirements: SRS_ModeMgm_09125

[If the Global Supervision Status is not in the state WbDGM_GLOBAIL_STATUS_DEACTI-
VATED, then the wdgM_MainFunction () shall execute Deadline Supervision (time-
out detection part) according to the configured Main Function Period. |

7.2.1 Alive Supervision

Alive Supervision is one of the Supervision Functions of the Watchdog Manager mod-
ule. The Alive Supervision offers a mechanism to periodically check the execution
reliability of one or several Supervised Entities. This mechanism supports a check of
cyclic timing constraints of independent Supervised Entities.

7.2.1.1 Alive Supervision Configuration

To provide Alive Supervision, the Checkpoints and their timing constraints need to
be configured. The simplest configuration for Alive Supervision is one Checkpoint
without any Transitions, as shown in Figure 7.2.

AUTSSAR

SE3

CP3-1

WdgMExpectedAlivelndications
WdgMMaxMargin
WdgMMinMargin
WdgMSupervisionReferenceCycle

Figure 7.2: Simplest Alive Supervision Checkpoint Configuration

The above configuration provides backward compatibility to Alive Supervision as de-
fined in versions before AUTOSAR Classic Platform R4.0.1, where each Supervised
Entity could be supervised with one set of parameters only.

Moreover, it is also possible to have more than one Checkpoint as shown in Figure
7.3.

SE3

e cP3-1 N\

WdgMExpectedAlivelndications
WdgMMaxMargin
WdgMMinMargin
WdgMSupervisionReferenceCycle

e cP3-2 N\
WdgMExpectedAlivelndications
WdgMMaxMargin

WdgMMinMargin
WdgMSupervisionReferenceCycle

%
e CP3-3 N\

WdgMExpectedAlivelndications
WdgMMaxMargin
WdgMMinMargin
WdgMSupervisionReferenceCycle

%

Figure 7.3: Multiple Checkpoints for Alive Supervision in one Supervised Entity

Each checkpoint has its own set of Alive Supervision Parameters. Transitions are
not used by Alive Supervision. Although each Checkpoint has its own parameters,
it is the Supervised Entity for which status is determined based on the frequency of
Checkpoints.

The parameters of the Alive Supervision (see WdgMAliveSupervision) depend on
the Watchdog Manager Mode and are defined for per Checkpoint (and not globally
for the whole Supervised Entity).

None, some, or all of the Checkpoints of a Supervised Entity can be configured for
Alive Supervision in a given Mode. Moreover, in each Mode the Alive Supervision
options of Checkpoints can be different.

AUTSSAR

The WdgMExpectedAliveIndications [ECUC_WdgM_00311] (EAT) specifies the
amount of Expected Alive Indications from a given Checkpoint, within a
fixed period of Supervision Cycles.

An acceptable negative variation (WdgMMinMargin [ECUC_WdgM_00312]) and ac-
ceptable positive variation (WdgMMaxMargin [ECUC_WdgM_00313]) can be config-
ured.

The Watchdog Manager module has to support a configurable amount of independent
Supervised Entities. As a consequence, the following general issue has to be consid-
ered.

[SWS_WdgM_00085]
Upstream requirements: SRS_ModeMgm_09106

[The Watchdog Manager module shall derive the required number of independent data
resources to perform the Alive Supervision within the Watchdog Manager module from
the number of Supervised Entities, number of wdgMModes and their wdgMA1liveSu-
pervisions.|

Examples of independent data resources in context of the Watchdog Manager mod-
ule are: Alive Counters, Supervision Cycles counters, Failed Supervision Ref-
erence Cycles counters, Expired Supervision Cycles counters, Local Supervision
Status.

7.2.1.2 Alive Supervision Algorithm

To send an Alive Indication, a Supervised Entity invokes the function wdgM_Check-
pointReached, which results with incrementation of an Alive Counter for the Check-
point.

Alive Supervision is performed by counting the number of reports from Supervised
Entities (by WdgM_CheckpointReached) during a configurable period.

This Supervision is executed by wdgM_MainFunct ions with configurable cycle times.
The cyclic examination of the Counter of each checkpoint of a Supervised Entity by
the Main Function happens at every Supervision Reference Cycle (whichis a
multiple of Supervision Cycle).

The Supervision Cycle and Supervision Reference Cycle (See WdgMSupervi-
sionReferenceCycle) are the properties of an Alive Supervision of a Checkpoint
in a given Watchdog Manager Mode.

[SWS_WdgM_00098]
Upstream requirements: SRS_ModeMgm_09112
[The function WdgM_MainFunction shall perform for each Alive Supervision (Wdg-

MAliveSupervision) configured in the active Mode, the examination of the Alive
Counter of each Checkpoint of the Supervised Entity. The examination shall be

AUTSSAR

done at the period wdgMSupervisionReferenceCycle of the corresponding Alive
Supervision (WdgMAliveSupervision).]

Note: During the intermediate Supervision Cycles of the Alive Supervision, the function
WdgM_MainFunction does not perform the examination of Alive Counters.

[SWS_WdgM_00074]
Upstream requirements: SRS_ModeMgm_09112

[The function WdgM_MainFunction shall examine an Alive Counter by checking if
it is within the allowed tolerance (Expected - Min Margin; Expected + Max Margin)
(see WdgMExpectedAliveIndications [ECUC_WdgM_00311], wdgMMinMargin,
WdgMMaxMargin).|

If any Checkpoint of a Supervised Entity fails the examination, then the result of Alive
Supervision for the Supervised Entity is setto incorrect.

[SWS_WdgM_00115]
Upstream requirements: SRS_ModeMgm_09112

[If the function WdgM_MainFunction detects a deviation between the counted Alive
Indications and the expected amount of alive indications [ECUC_WdgM_00311] (in-
cluding tolerance margins [ECUC_WdgM 00312], [ECUC_WdgM 00313]) for any
Checkpoint of a Supervised Entity, then Alive Supervision at this Supervision
Reference Cycle for this Supervised Entity shall be defined as incorrect. Other-
wise, it shall be defined as correct.]

If a Checkpoint is not Alive-Supervised in a mode, then it is ignored by Watchdog
Manager.

[SWS_WdgM_00083]
Upstream requirements: SRS_ModeMgm_09112, SRS_ModeMgm_09143

[The function WdgM_MainFunction shall not perform the examination of the Alive
Counter of a Checkpoint if no corresponding Alive Supervision (WdgMAliveSuper—
vision) is defined in the active Watchdog Manager Mode. |

7.2.2 Deadline Supervision

Deadline Supervision checks the timing constraints of non-cyclic Supervised Entities.
In these Supervised Entities, a certain event happens and a following event happens
within a given time span. This time span can have a maximum and minimum deadline
(time window).

AUTSSAR

7.2.2.1 Deadline Supervision Configuration

For every Deadline Supervision, two Checkpoints connected by a Transition are con-
figured. The Deadline is attached to the Transition from the Start Checkpoint to the
End checkpoint. The simplest Deadline Supervision configuration contains two

Checkpoints and one Transition, as shown in Figure 7.4.

SE4

CP4-1

+ WdgMDeadlineMin,+ WdgMDeadlineMax

CP4-2

Figure 7.4: Simplest Deadline Supervision Configuration

More than one Transition can be defined in a Supervised Entity. The Transitions and
Checkpoints do not have to form a closed Graph. Since only the Start and End
(Stop) Checkpoints are considered by this Supervision Function, there can be in-
dependent Graphs, as shown in Figure 7.5. Moreover, the Checkpoints can be
chained.

CP4-1

CP4-3
+ WdgMDeadlineMin,+
WdgMDeadlineMax

+ WdgMDeadlineMin,+
WdgMDeadlineMax

C

CP4-2

)

+WdgMDeadlineMin,
+WdgMDeadlineMax

CP4-5

i

Figure 7.5: Multiple Transitions for Deadline Supervision in one Supervised Entity

The configuration of Deadline Supervision is similar to the one of Alive Supervision.

AUTSSAR

The parameters of the Deadline Supervision (see WdgMDeadl ineSupervision) de-
pend on the Watchdog Manager Mode (WdgMMode) and are defined for per a set of
two Checkpoints. None, some, or all of the Checkpoints of a Supervised Entity
can be configured for Deadline Supervision in a given Mode.

A Deadline Supervision is defined as a set of Transitions with time con-
straints. A Transition is defined as two references to two Checkpoints, called
Deadline Start Checkpoint and Deadline End Checkpoint (WdgMDead-
lineStartRef and WdgMDeadlineStopRef). A Transition has minimum and
maximum time (WdgMDeadlineMin [ECUC_WdgM_00317], WdgMDeadlineMax
[ECUC_WdgM_00318]).

[SWS_WdgM_00293] [The Watchdog Manager module shall derive the required num-
ber of independent data resources to perform the Deadline Supervision within the
Watchdog Manager module from the number of Supervised Entities, number of wdg-
MModes and their WdgMDeadlineSupervisions.]

7.2.2.2 Deadline Supervision Algorithm

For each Deadline Start Checkpoints (i.e. Checkpoint referenced by wdg-
MDeadlineStartRef), Watchdog Manager has a timestamp variable storing the time
when that Checkpoint has been reached.

A timestamp variable for Deadline Supervision is obtained by reading OS tick. For each
Supervised Entity, an OS counter is configured.

An OS counter can be shared between Supervised Entities, or a separate OS counter
can be used for each Supervised Entity (implementation-specific). In case OS-
Applications/partitioning is used and a counter is shared across Supervised Entities
belonging to different OS-applications, then the list of allowed OS-Applications to ac-
cess the counter needs to be configured (OsCounterAccessingApplication).

[SWS_WdgM_CONSTR_06513] [For each Supervised Entity, an OS counter shall
be configured (see WdgMOSCounter, [ECUC_WdgM_00361]) if at least one Deadline
Supervision is configured for the Supervised Entity in any of the Watchdog Manager
Modes. |

[SWS_WdgM_CONSTR_06514] [The OS counters for each Supervised Entity shall
be configured to be accessible from the OsApplication which contains the Supervised
Entity. |

[SWS_WdgM_CONSTR_06515] [The OS counters for each Supervised Entity shall
be configured to be also accessible from the OsApplication which calls WdgM_Main-
Function, if WdgMEnableTimeoutDetection is set to true. |

AUTSSAR

[SWS_WdgM_00373]
Upstream requirements: RS_HM_09235

[To determine the timestamp and to compute the timestamp differences, the func-
tion WdgM_CheckpointReached (for detection of both early arrivals and delays) and
the function wdgM_MainFunction (for detection of timeouts) shall use OS function
GetElapsedvalue, using as 1% parameter the CounterID that is configured for the
Supervised Entity (see WdgMOsSCounter, [ECUC_WdgM_00361]) |

The timestamps are in ticks. However, the Watchdog deadline configuration is in sec-
onds. The scaling between ticks and seconds is configured in OS.

[SWS_WdgM_00374]
Upstream requirements: RS_HM_09235

[For scaling of timestamp difference to the Ilimit values (WdgMDeadlineMin
and WdgMDeadlineMax) (see [SWS_WdgM_00294], the function WdgM_Check-
pointReached (for detection of early arrivals and delays) and the function wdgM_
MainFunction (for detection of timeouts) shall use OsSecondsPerTick configuration
parameter. |

During the initialization, all the timestamps of Deadline Start Checkpoints (i.e.
Checkpoint referenced by wdgMbeadlineStartRef) are cleared — set to 0.

[SWS_WdgM_00298]
Upstream requirements: SRS_BSW_00101

[The function WwdgM_Init shall for all Deadline Start Checkpoints set their
timestamps to 0. |

When a Deadline Start Checkpoint (i.e. Checkpoint referenced by wdg-
MDeadlineStartRef) is reached, a Supervised Entity invokes the function wdagM_
CheckpointReached, which results with the execution of Deadline Supervision.

[SWS_WdgM_00228] [When the Deadline Start Checkpoint is reached and
this Checkpoint is referenced in the active Mode, then the function wdgM_Check-
pointReached shall record the current timestamp under the timestamp of the reached
Deadline Start Checkpoint. The current timestamp shall be used as the refer-
ence for examining the time of the corresponding Deadline End Checkpoint.|

The function wdgM_CheckpointReached shall determine the current timestamp by
invoking the OS functions ()

[SWS_WdgM 00228] means that the timestamp of the reached Deadline Start
Checkpoint is overwritten by the current timestamp, regardless of the value (just
before the overwriting) of the reached Deadline Start Checkpoint. Moreover,
[SWS_WdgM_00228] means that it is not considered as an error by Deadline Super-
vision if a given Deadline Start Checkpoint is reached several times without

AUTSSAR

reaching the corresponding Deadline End Checkpoint (each time the timestamp
is just updated).

[SWS_WdgM_00229] [When the Deadline End Checkpoint is reached and
this Checkpoint is referenced in the active Mode, and timestamp of the corre-
sponding Deadline Start Checkpoint is <>0, then the function WdgM_Check-
pointReached shall measure the time difference between current timestamp and the
corresponding Deadline Start Checkpoint timestamp. Then, the function shall
clear (i.e. set to 0) the timestamp of the corresponding Deadline Start Check-
point.]

[SWS_WdgM_00354] [When the Deadline End Checkpoint is reached and
this Checkpoint is referenced in the active Mode, and timestamp of the corre-
sponding Deadline Start Checkpoint is =0, then the function WdgM_Check-
pointReached shall exit with success (without measuring the time difference). |

[SWS_WdgM_00354] means that it is not considered as an error by Deadline Supervi-
sion if a given Deadline End Checkpoint is reached several times in a sequence.

[SWS_WdgM_00294] [If the measured time difference (see [SWS_WdgM_00229]) is
not within the minimum and the maximum limits (that is, the time difference is either
less than WdgMDeadl ineMin or greater than WdgMbDeadl ineMax), then the function
WdgM_CheckpointReached shall define the result of Deadline Supervision for this
Supervised Entity as incorrect. Otherwise, it shall be defined as correct. |

Note: If the maximum limit ("dgMDead1 ineMax) is configured with value 'INF’, it is not
necessary to check whether time difference is greater than the limit.

[SWS_WdgM_00299] [For any reported Checkpoint that is neither a Deadline
Start Checkpoint nor a Deadline End Checkpoint, the function wdgM_-
CheckpointReached [SWS_WdgM_00263] shall ignore this Checkpoint and not
update the result of the Deadline Supervision for the Supervised Entity. |

[SWS_WdgM_00403]
Upstream requirements: RS_HM_09235

[If Deadline Timeout detection is enabled [i.e. WdgMEnableTimeoutDetection
[ECUC_WdgM_00363] is set to 'true’] then, for all Deadline Supervisions configured
in the active mode, if timestamp of the corresponding Deadline Start Check-
point is <>0 (i.e. if the Start Checkpoint is reported but corresponding End Check-
point is not yet reported), then the function WdgM_MainFunction shall measure the
time difference between current timestamp and the corresponding Deadline Start
Checkpoint timestamp. If the measured time difference exceeds (is greater than)
maximum limit (WdgMDeadlineMax), then the function WdgM_MainFunction shall
define the result of Deadline Supervision for the Supervised Entity as incorrect. |

Note: With this, it is possible to detect error in case Deadline End Checkpoint is
never reached (timeout detection part of Deadline Supervision).

AUTSSAR

7.2.3 Logical Supervision

Logical Supervision checks if the code of Supervised Entities is executed in the cor-

rect sequence.

7.2.3.1 Logical Supervision Configuration

For every Logical Supervision, there is a Graph of Checkpoints connected by Tran-
sitions. The Graph abstracts the behavior of the Supervised Entity for the Watchdog

Manager module.

As an example for a Supervised Entity, let us consider the following code fragment,
which contains the Checkpoints CP0-0 to CPO-6.

CP0-0
CPO-1
CP0-2
CP0-3
Cp0-4

CPO0-5
CP0-6

i

:O;

while (1 < n) {
if (afi]

}

ali]
else

ali]
i++;

This Supervised Entity can be represented by the Graph shown by Figure 7.6.

AUTSSAR

CP0-6

Figure 7.6: Example Control Flow Graph

A more abstract view of the Supervised Entity is given by the Graph shown in Figure
7.7, where the Checkpoint CPO-1 represents the complete while loop.

SEO
CP0-0
CPO-1
CP0-6

Figure 7.7: Abstracted Example Control Flow Graph

AUTSSAR

There are two types of Graphs for Logical Supervision. Firstly, there is an Internal
Graph, in which all the Checkpoints belong to the same Supervised Entity and the
Checkpoints are connected by Internal Transitions.

Second, there is an External Graph, in which at least two Checkpoints belong to
different Supervised Entities. The Checkpoints are connected with External Transi-
tions.

There are two types of Graphs for Logical Supervision. The main difference of the 1n-
ternal Graphs and External Graphs isthatan Internal Graph is a property
of a Supervised Entity and is Mode independent (i.e. its structure does not change by
switching Watchdog Manager Modes, even though its supervision behavior can be dis-
abled if the Supervised Entity is disabled in a Mode), whereas an External Graph
is Mode dependent.

The parameters of the Logical Supervision for internal Graphs are Internal Transi-
tions (see WdgMInternalTransition), which are contained in a Supervised Entity
(WdgMSupervisedEntity). Each Internal Transition connects two Checkpoints.
This means that all the modes share the same Internal Transitions. It is only possible
to deactivate a Supervised Entity in a Mode, which makes its Logical Supervision of
Internal Transitions inactive.

The parameters of the External Graphs (see WdgMExternalLogicalSupervi-—
sion) are contained in a Mode (WdgMMode). Each External Transition connects two
Checkpoints.

The Checkpoints exist irrespective if they are connected by any Transitions.

[SWS_WdgM_00366] [The Watchdog Manager module shall derive the required num-
ber of independent data resources to perform the Logical Supervision within the
Watchdog Manager module from the number of Supervised Entities, number of wdg-
MModes and their WdgMExternallogicalSupervisions and WdgMInternal-—
Transitions.]

7.2.3.2 Logical Supervision Algorithm

Immediately after initialization of the Watchdog Manager there has not yet been a
Checkpoint reported, i.e. Logical Supervision for the Supervised Entity is inactive.
This information is held in the Activity Flag (one flag per Graph).

Each Internal Graph represents one Logical Supervision. Assuming N Internal
Graphs, this means that a Supervised Entity has N results from Logical Supervision
for the Supervised Entity (Note: currently N is limited up to one per Supervised Entity).

Each External Graph represents one Logical Supervision, but it spans across pos-
sibly several Supervised Entities. Assuming M External Graphs that cross a Super-
vised Entity, this results with M results from the Logical Supervision for the Supervised
Entity.

AUTSSAR

[SWS_WdgM_00271]
Upstream requirements: SRS_ModeMgm_09221, SRS_ModeMgm_09222

[The Watchdog Manager module shall maintain an Activity Flag for each Graph. |

[SWS_WdgM_00296]
Upstream requirements: SRS_BSW_00101

[The function wdgM_Init shall set the Activity Flag for each Graph to false. |

Each Graph may have one or more Initial Checkpoints. Initial Checkpoints are
Checkpoints with which a Graph can start.

To notify reaching a Checkpoint, a Supervised Entity invokes the function wdgM_
CheckpointReached, which results with execution of Logical Supervision algorithm.

To verify if transitions are valid, the algorithm needs to store the most recently reached
Checkpoint. For every External Graph and Internal Graph, the Watchdog
Manager stores the most recently reached Checkpoint.

Because a Checkpoint can belong to multiple Graphs, the function WdgM_Check—
pointReached has to be able to identify to which Graph(s) a Checkpoint belongs.

[SWS_WdgM_00295]
Status: DRAFT
Upstream requirements: SRS_ModeMgm_09221, SRS_ModeMgm_09222

[The Watchdog Manager module shall identify to which Graph(s) each Checkpoint
belongs. |

[SWS_WdgM_00246]
Status: DRAFT
Upstream requirements: SRS_ModeMgm_09221, SRS_ModeMgm_09222

[The function WdgM_CheckpointReached shall store the Checkpoint that has
been most recently reported by a Supervised Entity, for each Graph (see wdgM_-
CheckpointReached [SWS_WdgM_00263]).

If the Activity Flag for a Graph is true, the function WdgM_CheckpointReached
checks for each new checkpoint if the Transition between the stored Checkpoint
and the newly reported Checkpoint is allowed. |

[SWS_WdgM_00274]
Upstream requirements: SRS _ModeMgm_09221, SRS _ModeMgm_09222

[The function WdgM_CheckpointReached [SWS_WdgM_00263] shall verify if the
reported Checkpoint belonging to an Internal Graph is @ correct one by the
following checks:

1. If the Activity Flag for the Graph of the reported Checkpoint is false, then:

AUTSSAR

* If the Checkpoint is an Initial Checkpoint (WdgMInternalCheckpoin-
tInitialRef) the result of Logical Supervision for the Supervised Entity is
correct, otherwise incorrect.

2. Else if Activity Flag is true and all previously called Checkpoints of this Graph
were called in the right sequence, then:

* If the reported Checkpoint is a successor of the stored Check-
point within the Graph of the reported Checkpoint (this means there
iS an WdgMInternalTransition with WdgMInternalTransition-—
SourceRef and WdgMInternal TransitionDestRef), then the result of
this Logical Supervision of the Supervised Entity is correct, otherwise
incorrect.

3. Else (i.e. Activity Flag is true, but at least one Checkpoint in this Graph was
previously called in a wrong sequence):

» The result of this Logical Supervision of the Supervised Entity keeps in-
correct.

]

A similar check takes place for Checkpoints belonging to External Graphs.

[SWS_WdgM_00252]
Upstream requirements: SRS_ModeMgm_09221, SRS_ModeMgm_09222

[The function WdgM_CheckpointReached [SWS_WdgM_00263] shall verify if the
reported Checkpoint belonging to an External Graph is a correct one by the
following checks:

1. If the Activity Flag for the Graph of the reported Checkpoint is false, then:

* Ifthe Checkpoint is an Initial Checkpoint (WdgMExternalCheckpoin-
tInitialRef), then the result of this Logical Supervision within the Super-
vised Entity of the reported Checkpoint is correct, otherwise incor-
rect.

2. Else if Activity Flag is true and all previously called Checkpoints of this Graph
were called in the right sequence, then:

* If the reported Checkpoint is a successor of the stored Check-
point within the Graph of the reported Checkpoint (this means there
iS an WdgMExternalTransition with WdgMExternalTransition-
SourceRef and WdgMExternal TransitionDestRef), then the result of
this Logical Supervision for Supervised Entity of the reported Checkpoint
is correct, otherwise incorrect.

3. Else (i.e. Activity Flag is true, but at least one Checkpoint in this Graph was
previously called in a wrong sequence):

AUTSSAR

» The result of this Logical Supervision of the Supervised Entity keeps incor-
rect.

The above requirement means that in case of an incorrect External Transition, the
Supervised Entity that is considered as erroneous is the one that reported the incor-
rect Checkpoint.|

If a Checkpoint is one of the initial Checkpoints of a Graph, then the Graph is set
as active.

[SWS_WdgM_00273]
Upstream requirements: SRS_ModeMgm_09221, SRS_ModeMgm_09222

[If the function WdgM_CheckpointReached determines that the result of the Logical
Supervision for the given Checkpoint is correct, and the Checkpoint is defined as
an initial one, then the function wdgM_CheckpointReached shall set the Activity Flag
of the corresponding Graph to true. |

The reverse applies for the Final Checkpoint.

[SWS_WdgM_00331]
Upstream requirements: SRS_ModeMgm_09221, SRS_ModeMgm_09222

[If the function WdgM_CheckpointReached determines that the result of the Logical
Supervision for the given Checkpoint is correct, and the Checkpoint is defined as
a final one, then the function wdgM_CheckpointReached shall set the Activity Flag
of the corresponding Graph to false. |

As a result, after the report from a Final Checkpoint, the correct reports within
the same Graph are only from Initial Checkpoints (Note: for an evaluation of the
Graph, any reports from the Checkpoints not belonging to the Graph are ignored,
see [SWS_WdgM_00297]).

A Checkpoint can belong to multiple Graphs (can be a combination of Inter-
nal Graphs and External Graphs). This means that both the check defined in
[SWS_WdgM 00274] and the one in [SWS_WdgM 00252] can be executed simul-
taneously, and also means that, in any execution of WdgM_CheckpointReached
and if the reported Checkpoint belongs to any Internal Graphs Or External
Graphs, the function can set the result of Logical Supervision for each corresponding
Supervised Entity to correct (for all belonging Graphs) or incorrect (for all or a
part of belonging Graphs).

If the reported Checkpoint does not belong to any Graph, then the result of Logical
Supervision is not be updated. This is because the Checkpoint may be used by other
Supervision Functions (Alive or Deadline).

AUTSSAR

[SWS_WdgM_00297]
Upstream requirements: SRS_ModeMgm_09221, SRS_ModeMgm_09222

[For any reported Checkpoint that does not belong to any Graph, the function
WdgM_CheckpointReached [SWS_WdgM_00263] shall ignore it and not update the
result of the Logical Supervision for the Supervised Entity. |

7.3 Error Handling / Failure Recovery

The Watchdog Manager module initiates a number of mechanisms to recover from
supervision failures. These range from local error recovery within the Supervised Entity
to a global reset of the ECU.

7.3.1 RTE Mode Mechanism Notifications

The Watchdog Manager module informs SW-Cs and CDDs about supervision failures
via the RTE Mode mechanism. The SW-C and CDDs can then take its actions to
recover from that failure. (see [SWS_WdgM_00197], [SWS_WdgM_00198]).

7.3.2 Report to DEM in WDGM_GLOBAL_STATUS_STOPPED

The Watchdog Manager module registers an entry with the Diagnostic Event Man-
ager (DEM) when Watchdog Manages reaches the state WDGM_GLOBAI_STATUS_ -
sTOPPED. An SW-C or a CDD can take recovery actions based on that error entry.

[SWS_WdgM_00129]
Upstream requirements: SRS_BSW_00339, SRS_BSW_00458, SRS_BSW_00469, SRS_BSW _
00470, SRS_ModeMgm_09159

[Within the first call of wdgM_MainFunction after wdgM_Init and when the reset-
cause was that in the previous operation cycle the Global Supervision Status had
reached WDGM_GLOBAL_STATUS_STOPPED and if the parameter WhDGM_E_ SUPERVI—
SION is configured, the Watchdog Manager module shall report an error status FAILED
for wDGM_E_SUPERVISION to the DEM. |

7.3.3 Not Setting the Watchdog Trigger Condition

In the state WDGM_GLOBAIL_STATUS_STOPPED, the Watchdog Manager module stops
setting the trigger condition to Watchdog Interface. As a result, after the timeout of the
hardware watchdog, it will cause a reset of the ECU.

See Chapter 7.4.2 for the corresponding requirements.

AUTSSAR

7.3.4 MCU Reset

For applications which need a microcontroller reset as soon as an unrecoverable su-
pervision failure is detected, or to have the independent shutdown path from the Hard-
ware Watchdog, the Watchdog Manager module can perform an immediate reset of
the MCU.

[SWS_WdgM_00133]
Upstream requirements: SRS_ModeMgm_09169

[If the configuration parameter WdgMImmediateReset [ECUC_WdgM_00339] is set
to TRUE and the Global Supervision Status has reached the state WhDGM_GLOBATL_
STATUS_STOPPED, the Watchdog Manager module shall call the MCU service Mcu_
PerformReset on the MCU Driver module. |

[SWS_WdgM_CONSTR_06500] Interface provision in MCU driver
Upstream requirements: SRS_ModeMgm_09169

[The parameter WdgMImmediateReset [ECUC_WdgM_00339] may only be set to
TRUE if the McuPerformResetApi (defined in SWS MCU Driver [9]) is set to TRUE. |

[SWS_WdgM_00134]
Upstream requirements: SRS_ModeMgm_09169

[In case of an immediate MCU reset, the Watchdog Manager module shall not provide
a notification to the application via the RTE mode mechanism. |

7.4 Watchdog Handling

The handling of watchdogs is an important feature of the Watchdog Manager module. It
prevents the ECU from resets by expired hardware watchdog instances while program
execution is running properly.

Usually hardware watchdogs have their own timing constraints and the trigger for each
watchdog instance must be performed cyclically within a maximum time span or within
a defined time window according to the timing constraints of the corresponding watch-
dog instance. If the trigger does not occur, the corresponding hardware watchdog
instance will cause a reset.

The actual timing of watchdog triggering is encapsulated in the Watchdog Driver. The
Watchdog Manager only sets via the Watchdog Interface a triggering condition that
instructs the Watchdog Driver to continue triggering.

7.4.1 Support for Multiple Watchdog Instances

Some hardware platforms can be designed to have multiple watchdog instances (i.e.
an internal and an external watchdog in parallel).

AUTSSAR

[SWS_WdgM_00002]
Upstream requirements: SRS_ModeMgm_09028, SRS _ModeMgm_09233

[The Watchdog Manager module shall support the parallel usage of multiple watch-
dogs. |

7.4.2 Setting the Trigger Conditions

The Watchdog Manager module uses the service WdgIf_SetTriggerCondition
of the Watchdog Interface modules to set (update) the trigger condition of the watch-
dogs. This service requires the watchdog device index and the timeout/counter as a
parameter (see configuration parameter wdgMTrigger [ECUC_WdgM_00331]).

[SWS_WdgM_00223]
Upstream requirements: SRS_ModeMgm_09143, SRS_ModeMgm_09161, SRS_ModeMgm_-
09226, SRS_ModeMgm_09231

[The Watchdog Manager module shall update the trigger condition every time the
Global Supervision Status has been recomputed. The following rules shall be used
to derive the decision, how to set the triggering condition:

1. For the states WDGM_GLOBAIL_STATUS_OK, WDGM_GLOBAIL_STATUS_FAILED
and WDGM_GLOBAIL_STATUS_EXPIRED, the function WdgM_MainFunction
shall correctly set the trigger conditions.

2. Forthe state WDGM_GLOBAL_STATUS_STOPPED, the function WdgM_MainFunc—
tion shall set the trigger condition to 0, which results in a reset through HW
watchdog(s).

3. Forthe state WDGM_GLOBAL_STATUS_DEACTIVATED, the function WdgM_Main-—
Function shall not perform setting of the trigger condition (because this state
means that the Watchdog Manager module is not properly initialized).

]

[SWS_WdgM_00119]
Upstream requirements: SRS_ModeMgm_09143, SRS_ModeMgm_09231

[If the Global Supervision Status has recomputed as WDGM_GLOBAL_STATUS_-
OK, then the Watchdog Manager module shall call WdgIf_SetTriggerCondi-
tion for all watchdogs not configured as WwDGIF_OFF_MODE [ECUC_WdgM_00332]
with <parameter for id> set to WdgMWatchdogbDeviceRef [ECUC_WdgM_00348]
and <parameter for trigger condition> set to WdgMTriggerConditionValue
[ECUC_WdgM_00333]. |

AUTSSAR

[SWS_WdgM_00120]
Upstream requirements: SRS_ModeMgm_09231

[If the Global Supervision Status has recomputed as WDGM_GLOBAL_STATUS_-
FAILED, then the Watchdog Manager module shall call WdgIf_SetTriggerCondi-
tion for all watchdogs not configured as WDGIF_OFF_MODE [ECUC_WdgM_00332]
with <parameter for id> set to WdgMWatchdogbeviceRef [ECUC_WdgM_00348]
and <parameter for ftrigger condition> set t0 WdgMTriggerConditionValue
[ECUC_WdgM_00333]. |

[SWS_WdgM_00121]
Upstream requirements: SRS_ModeMgm_09231

[If the Global Supervision Status has recomputed as WDGM_GLOBAL_STATUS_EX-
PIRED, then the Watchdog Manager module shall call WdgIf_SetTriggerCondi-
tion for all watchdogs not configured as WDGIF_OFF_MODE [ECUC_WdgM_00332]
with <parameter for id> set to WdgMWatchdogbeviceRef [ECUC_WdgM 00348]
and <parameter for trigger condition> set t0 WdgMTriggerConditionValue
[ECUC_WdgM_00333]. |

[SWS_WdgM_00122]
Upstream requirements: SRS_ModeMgm_ 09231

[If the Global Supervision Status has recomputed as WDGM_GLOBAL_STATUS_-
STOPPED, then the Watchdog Manager module shall call wdgIf_SetTriggerCon-
dition for all watchdogs not configured as WbG1F_OFF_MODE [ECUC_WdgM_00332]
with <parameter for id> set to WdgMWat chdogDeviceRef [ECUC_WdgM_00348] and
<parameter for trigger condition> set to zero. |

Setting the trigger condition to zero will immediately prevent the Watchdog Driver mod-
ule from triggering the hardware watchdog.

7.5 Switching Modes

7.5.1 Effect on Supervision Status

The function WdgM_setMode (see [SWS_WdgM_00154]) is used to switch between
different modes. The modes are statically configured and contained in the Watchdog
Manager module configuration set.

A Mode switch changes the supervision parameters of the Supervised Entities.

[SWS_WdgM_00182] [If the current global status is WDGM_GLOBAL_STATUS_OK Or
WDGM_GLOBAL_STATUS_FAILED then for each Supervised Entity that is activated in
the new mode (passed to function WdgM_sSetMode as parameter), the function WwdgM_
SetMode shall retain the current state of the Supervised Entity.

AUTSSAR

Switching to the mode where a Supervised Entity is deactivated clears also errors that
had resulted with the WbGM_GLOBAL_STATUS_FAILED status. |

[SWS_WdgM_00315] [If the current global status is WDGM_GLOBAL_STATUS_OK Or
WDGM_GLOBAIL_STATUS_FAILED then for each Supervised Entity that is deactivated
in the new mode (passed to function WwdgM_SetMode as parameter), the function

WdgM_setMode shall change the state of the Supervised Entity to WDGM_LOCAL_ -
STATUS_DEACTIVATED; It shall set its Results of Active, Deadline and Logical Super-
vision to correct; It shall also clear its failed reference cycle counter to 0. |

Executing a mode switch is possible when the Watchdog Manager module is in
the state WDGM_GLOBAL_STATUS_OK Or WDGM_GLOBAL_STATUS_FAILED. In other
modes the function WdgM_SetMode has no effect (see [SWS_WdgM_00145]).

[SWS_WdgM_00316] [If the current global status is not WDGM_GLOBAL_STATUS_OK
nor WDGM_GLOBAL_STATUS_FAILED then the function WwdgM_SetMode shall return
without doing any actions. |

7.5.2 Effect on Watchdogs
A mode switch also changes the parameters for watchdog triggering.

[SWS_WdgM_00186]
Upstream requirements: SRS_ModeMgm_09143

[If function WdgM_setMode (see [SWS_WdgM_00154]) is called, the Watchdog Man-
ager module shall apply the configured watchdog mode parameters (see WdgMWat ch-
dogMode [ECUC_WdgM_00332]) to each watchdog by calling the wdgIf_SetMode
service. |

Note: If a call to wdgM_sSetMode service fails, the Watchdog Manager module as-
sumes a global supervision failure and set the Global Supervision Status to WpDGM_
GLOBAL_STATUS_STOPPED (see [SWS_WdgM_00139]). This will cause a reset, ei-
ther when the first watchdog expires or immediately, if an immediate reset of the Watch-
dog Manager module is configured.

There is also the possibility to forbid switching off the watchdogs (see
[SWS_WdgM_00031]).

7.5.3 Watchdog Handling during Sleep

When the ECU State Manager enters SLEEP state it activates the sleep mode and
calls the service WdgM_DeInit.

AUTSSAR

The wdgM_DeInit (see [SWS_WdgM_00261]) updates the trigger conditions via a
Watchdog Manager Mode switch to a sleep mode defined by the integrator and deini-
tializes the Watchdog Manager module. The mode switch is needed to update the
watchdogs trigger conditions of all running watchdogs to a timeout that allows the rest
of the shutdown to be executed without a watchdog reset. This is needed as a conse-
guence of the concept “Windowed Watchdogs”.

While the ECU is in SLEEP state, the normal execution of code and therefore also of
the Watchdog Manager module is suspended. If the hardware watchdogs cannot or
shall not be deactivated during SLEEP, this would inevitably lead to a watchdog reset.

Thus, the watchdogs have to be triggered at some time during SLEEP. BSW compo-
nents which are still in-service (like the BswM or the EcuM) have to care about the
triggering of the hardware watchdogs while the Watchdog Manager module is deacti-
vated. The Integrator has to configure the needed modes accordingly.

7.6 Watchdog Manager Configuration

7.6.1 Mode-independent Supervision Settings
7.6.1.1 Supervised Entity

To support portability of SW-Cs across platforms, the Watchdog Manager module
needs to be adapted to the amount of Supervised Entities located on the respective
ECU.

[SWS_WdgM_CONSTR_06502]
Status: DRAFT

[A unique Supervised Entity identifier for each Supervised Entity is provided in con-
figuration parameter WdgMSupervisedEntityId (see [ECUC_WdgM 00304]). The
Identifier shall be unique in the scope of a Watchdog Manager configuration. |

The Supervised Entities and Checkpoints exist irrespective of Modes. On the other
side, the Supervision Functions exist partially irrespective of Modes, and partially de-
pendent on Modes.

[SWS_WdgM_00282] [In order to have a Supervised Entity with supervision activated
in a given mode (in short: Activated Supervised Entity), the following shall be fulfilled:

1. The Supervised Entity shall be referenced from the Mode (see WwdgMMode ->
WdgMLocalStatusParams -> WdgMLocalStatusSupervisedEntityRef -
> WdgMSupervisedEntity AND

2. At least one of mode-dependent settings of Supervision Functions shall be set
for the given Mode (Alive, Deadline, Logical for External Graphs)

AUTSSAR

[SWS_WdgM_00283] [In order to have a Supervised Entity with supervision deacti-
vated in a given mode (in short: Deactivated Supervised Entity), the following shall be
fulfilled:

1. The Supervised Entity shall not be referenced from the Mode (see WdgMMode -
> WdgMLocalStatusParams -> WdgMLocalStatusSupervisedEntityRef
-> WdgMSupervisedEntity AND

2. No mode-dependent settings of Supervision Functions shall be set for the given
Mode (Alive, Deadline, Logical for External Graphs)

As the Logical supervision for Internal Graphs is a property of a Supervised Entity,
the configurations of Logical Supervision for Internal Graphs do not impact the
deactivation/activation status of Supervised Entity. |

7.6.1.2 Logical Supervision of Internal Graphs

Each Supervised Entity can have a configured control flow that is supervised by Watch-
dog Manager. This control flow is abstracted by its Checkpoints and Transitions (see
[ECUC_WdgM_00303]). At least one of the Checkpoints per Graph is marked as
the initial one (see [ECUC_WdgM_00343]).

[SWS_WdgM_CONSTR_06506] [Internal Transitions (see WdgMInternalTransi-
tion) in a Supervised Entity shall not connect Checkpoints that do not both belong
to the same Supervised Entity. |

To switch on and off the Logical Supervision of an Internal Graph depending on
the mode, it is needed to reference (or respectively do not reference) the Supervised
Entity from each mode (see WdgMLocalStatusParams).

It is possible to have zero or one Internal Graphs per Supervised Entity. Not all
Checkpoints of a Supervised Entity need to be a part of its Internal Graph.

The Internal Transitions and Internal Graphs are a property of Supervised Entity.
These Internal Transitions depend only on the control flow within the Supervised Entity.
Thus, the developer of an SW-C or BSW module that contains the Supervised Entity
can deliver this configuration of Checkpoints and Internal Transitions independently
of other Supervised Entities. Figure 7.8 shows a configuration of two independently
Supervised Entities, with independently configured Internal Graphs.

AUTSSAR

SE1 SE2

CP2-1

CP2-2

Figure 7.8: Two Supervised Entities with their Checkpoints and Internal Transitions

7.6.2 Mode-Dependent Parameters
7.6.2.1 Mode

Changing the mode of the Watchdog Manager module (Watchdog Manager Mode) also
leads to changed conditions for handling the watchdogs, such as different watchdog
modes. Therefore the Watchdog Manager module provides for each configured mode
and for each watchdog a number of statically configured watchdog parameters (see
WdgMTrigger [ECUC_WdgM_00331]).

[SWS_WdgM_00181] [For each watchdog instance, the watchdog mode shall be stat-
ically configured and represented by the parameter wdgMwWat chdogMode. |

The corresponding watchdog can be disabled by configuring the watchdog mode to
WDGIF_OFF_MODE.

The Watchdog Manager module has a set of statically configured supervision param-
eters for each configured mode (WwdgMMode [ECUC_WdgM_00335]) and for each Su-
pervised Entity that is expected to be supervised in the given mode.

7.6.2.2 Logical Supervision of External Graphs

There are also Transitions that cross the boundaries of Supervised Entities. These Ex-
ternal Transitions appear when the Watchdog Manager module should also supervise
the execution sequence of multiple Supervised Entities. The External Transitions form
External Graphs.

AUTSSAR

Thus, External Transitions have to be configured independently from the Internal Tran-
sitions and only in the context of Logical Supervision. (see WdgMExternalLogical-
Supervision [ECUC_WdgM_00319])

When we integrate the two Supervised Entities from Figure 7.8, we can for example
decide that Supervised Entity SE1 must always be executed to Checkpoint CP1-4
and then Supervised Entity SE2 has to start execution at Checkpoint CP2-1. Then
it is necessary to configure a Transition from CP1-4 to CP2-1. This Transition does
neither belong to SE1 nor to SE2. Figure 7.9 shows the External Transition.

There is a significant difference in configuring Internal and External Transitions. An
Internal Transition belongs to one Supervised Entity and it does not depend on the
Watchdog Manager Modes. One can configure to activate/deactivate an SE in a given
mode by referencing it from the mode. However, it is not possible to have different
Transitions or Checkpoints within the same SE depending on the mode. In contrary,
External Transitions are contained in a particular Watchdog Manager Mode. There can
be several External Transition Graphs per mode. In case two different Modes have
same global Graphs of global Transitions, then they need to be duplicated.

SE1 SE2

CP2-1

CP2-2

Figure 7.9: Two Supervised Entities with an External Transition

The start points (see [ECUC_WdgM_00324]), endpoints (see [ECUC_WdgM_00323])
and the External Transitions are configured for each Watchdog Manager Mode (see
[ECUC_WdgM_00319]).

The Watchdog Manager module supports a number of different modes (see WwdgM-
ConfigsSet [ECUC_WdgM_00337]) of operation. Each mode (see wWdgMMode
[ECUC_WdgM_00335]) is defined by:

+ the set of Activated Supervised Entities (see [SWS_WdgM_00282]) and their pa-
rameters (see WdgMLocalStatusParams [ECUC_WdgM_00325]),

AUTSSAR

* the Supervision Functions (see WdgMAliveSupervision
[ECUC_WdgM_00308], wdgMbeadlineSupervision [ECUC_WdgM_00314],
WdgMExternallLogicalSupervision [ECUC_WdgM_00319]),

* the set of watchdogs to have their trigger condition updated (see WdgMTrigger
[ECUC_WdgM_00331])

Different modes are needed for different phases in the ECU life cycle. E.g. one mode
is active during startup and shutdown, another during normal operation and yet an-
other during sleep. Even during normal operation, multiple modes could be needed:
when multiple applications run on the same ECU, one application could be shutdown
already and require no supervision, while another application still runs and needs to be
supervised.

[SWS_WdgM_00178] [Each mode of the Watchdog Manager module has an identifier
(see WdgMModeId [ECUC_WdgM_00308]) which shall be unique. |

[SWS_WdgM_00179] [The Watchdog Manager module has one initial mode wdg-
MInitialMode [ECUC_WdgM_00336] which shall be activated when it is initialized. |

7.6.2.3 Alive Supervision

The timing constraints of each Checkpoint are represented by configurable
parameters of the Watchdog Manager module (see WdgMAliveSupervision
[ECUC_WdgM _00308]). Although the timing constraints are defined for a Check-
point, the Watchdog Manager determines the result of the Alive Supervision for the
whole Supervised Entity.

The acceptable amount of Failed Supervision Reference Cycles isbasedon
application context of each Supervised Entity. Therefore the individual thresholds to
check if Alive Supervision of the corresponding Supervised Entity has failed finally,
needs to be a configurable parameter (see WdgMFailedAliveSupervisionRef—
CycleTol [ECUC_WdgM_00327]).

When the Alive Supervision has reached expired conditions by any Local Super-
vision Status, this will make recovery obsolete. As a consequence the watchdog
triggering will be stopped, but to ensure a certain time-period for any further reac-
tions on this condition, the blocking of watchdog triggering could be postponed for an
amount of consecutive Supervision Cycles (see WdgMExpiredSupervisionCycle-—
Tol [ECUC_WdgM_00329]).

[SWS_WdgM_CONSTR_00320] [No two WdgMAliveSupervisions aggregated by
the same wdgMMode shall refer to the identical WdgMCheckpoint. |

AUTSSAR

7.6.2.4 Deadline Supervision

[SWS_WdgM_CONSTR_06505] [Deadline Supervision (WdgMbeadlineSupervi-
sion) of a Supervised Entity shall refer to Checkpoints (WdgMDeadlineStartRef,
WdgMDeadl ineStopRef) that both belong to that Supervised Entity. In other words,
any of the referred Checkpoints shall not belong to other Supervised Entities. |

[SWS_WdgM_CONSTR_06512] [Any ordered set of two Checkpoints shall not
have more than one Deadline Supervision (WdgMDeadlineSupervision) defined. |

7.7 Support for Clustered Software Architecture using Software
Cluster Connector (SwCIluC)

This section is applicable to clustered software architecture (WdgMSwClusterSup-
port = ENABLE_SW_CLUSTER_SUPPORT) only, i.e. not applicable to non-clustered
software architecture.

7.7.1 Software Architectural Assumptions and Constraints

For an ECU Software which supports clustered software architecture (with or without
a multi-partition configuration), it is assumed that the Watchdog Manager will be allo-
cated to each Software Cluster with the fashion below (also illustrated in Figure 7.10):

» Within the Host Software Cluster, the WdgM shall provide complete sets of
APIs (WdgM_MainFunction, WdgM_CheckpointReached etc.). At least one
WdgM_MainFunction will be available per EcucPartition. These API sets per-
form:

— Alive, Deadline and Logical Supervision within the Host Software Cluster,
per EcucPartition (i.e. in the master and in every satellites)

— Logical Supervision over Software Clusters, based on Cross-Cluster
External Graph (only in the EcucPartition which contains master side of
WdgM)

Determination of Local Supervision Status per Supervised Entity

Determination of Global Supervision Status (only in the master)

Recovery Actions based on Local Supervision Status

Recovery Actions based on Global Supervision Status (only in the master)

Watchdog Handling (incl. Watchdog Trigger via Wdglf and Wdg modules)
(only in the master)

» Within the Host Software Cluster, WdgM shall provide satellites (wdgM_Main-—
Functions) on all EcucPartitions, that can be connected to WdgM masters

AUTSSAR

within every Application Software Cluster. This ensures that each WdgM (mas-
ter) in an Application Software Cluster can get access to the WdgM in the Host
Software Cluster on the same partition.

« Within each Application Software Cluster, WdgM shall provide subsets of APIs.
At least one WdgM_MainFunction will be available per EcucPartition.

— Alive, Deadline and Logical Supervision within the Host Software Cluster,
per EcucPartition (i.e. in the master and in every satellites)

— Determination of Local Supervision Status per Supervised Entity
— Recovery Actions based on Local Supervision Status

Note that, if there’re multiple Main Functions in the master side within Host Software
Cluster, following design decision will be required, but not standardized in this specifi-
cation (because realization of master-satellite pattern is implementation specific).

» Mapping of Recovery Action etc. to Main Functions
+ Availability of Init / Delnit APIs etc.

9 — -— (o]
2 ¥ 3
SW-C S|8 § LEW-C ch g
= RTE gl@ RTE Q
= &
= @QdeM’ < | WdgM’ (Master) g’ (Sat.)
w
2 | swdiucC | | SwCIuC |
<<
Sy P e
o RTE
;’ [swcwc [| [swcic]]
o 2|a O | '™ ki
o 2_ B WdgM (Master) | WdgM (Sa gM (Sat)
o o
©l gl T | Wdglf | |
|]

Figure 7.10: Overview of Watchdog Manager with Software Clustering

7.7.2 Configuration Aspects

[SWS_WdgM_CONSTR_06516] Software Cluster related configurations cannot
be used with disabled Software Cluster Support

Status: DRAFT

[In case of non-clustered software architecture (WdgMsSwClusterSupport is not set
or set to DISABLE_SW_CLUSTER_SUPPORT), the parameters and containers wdgM-

CrossClusterTransition, WdgMTransitionProxy and WdgMBaseSocket shall
not exist. |

AUTSSAR

[SWS_WdgM_CONSTR_06517] Valid cross cluster transition
Status: DRAFT
[A WdgMCrossClusterTransition is only valid in following configurations:

» from a WdgMCheckpoint t0 @ WdgMTransitionProxy
» from a WdgMTransitionProxy t0 @ WdgMCheckpoint

* from a WdgMTransitionProxy to another wdgMTransitionProxy (in Host
Software Cluster only)

» from a WdgMTransitionProxy to the identical WdgMTransitionProxy (in
Application Software Cluster only for the case that no WdgMCheckpoint has
to be reached in the Application Software Cluster), or

» from a wdgMCheckpoint t0 @ WdgMCheckpoint (in case the cross cluster tran-
sition Graph is entirely described with WdgMCrossClusterTransition con-
tainers).

Hereby the “from” is configured with the wWdgMCrossClusterTransition-—
SourceRef, and the “to0” is given by the WdgMCrossClusterTransitionDe-
stRef.]

[SWS_WdgM_CONSTR_06518] wWdgMBaseSocket relates only to a CpSoft-
wareClusterServiceResource Of category SWCLUSTER RES_WDGM BASE_-
SOCKET

Status: DRAFT

[The WdgMBaseSocket.WdgMResourceRef shall only reference a CpSoft-
wareClusterServiceResource of category SWCLUSTER_RES_WDGM_BASE_ -
SOCKET. |

[SWS_WdgM_CONSTR_06519] WdgMTransitionProxy relates only to a
CpSoftwareClusterServiceResource of category SWCLUSTER_RES_WDGM -
TRANSITION

Status: DRAFT

[The WdgMTransitionProxy.WdgMResourceRef shall only reference a CpSoft-
wareClusterServiceResource Of Category SWCLUSTER_RES_WDGM_TRANSI-
TION.]

ECU Configuration will be made per Software Cluster. Therefore,

» A Supervised Entity ID can be reused in different Software Clusters (see also
[SWS_WdgM_CONSTR_06502])

* WdgMMode and WdgMInitialMode configuration must be consistent over Soft-
ware Clusters (Host Software Clusters and Application Software Clusters)

Note that, type of Software Cluster can be identified by SwCluCGeneral. SwCluCDefi-
nitionSelection.

AUTSSAR

7.7.2.1 Configuration for Cross-Cluster External Graphs

Cross—Cluster External Graph is an extension of External Graph to model
Graphs that spans over multiple Software Clusters for clustered software architecture.

To model Graphs with inter-Cluster Transitions, following configuration elements can
be used:

* WdgMCrossClusterTransition (instead of WdgMExternalTransition)
which represents a Transition to other Software Cluster (contains reference to
destination Checkpoint in other Software Cluster) or a Transition from other
Software Cluster (contains reference to source Checkpoint in other Software
Cluster)

* WdgMTransitionProxy (instead of WdgMCheckpoint) which represents a
Checkpoint in other Software Cluster

AUTSSAR

7.8 Error Classification

Chapter [4, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in

the respective subsections below.

7.8.1 Development Errors

[SWS_WdgM_00004] Definition of development errors in module WdgM

Upstream requirements: SRS_BSW_00327, SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_
00480, SRS BSW 00481, SRS BSW_00487

[

Type of error

Related error code

Error value

API service used in wrong context (without module
initialization)

WDGM_E_UNINIT

0x10

API service Wdg_ Init was called with an WDGM_E_PARAM_CONFIG 0x11
erroneous configuration set

API service called with wrong "mode" parameter WDGM_E_PARAM_MODE 0x12
API service called with wrong "supervised entity WDGM_E_PARAM_SEID 0x13
identifier" parameter

API service called with invalid pointer WDGM_E_INV_POINTER 0x14
API service used with an invalid Checkpointlid. WDGM_E_CPID 0x16
API service used in wrong context - WdgM_Init WDGM_E_NO_DEINIT 0x1A
called when module is not deinitialized (global

status is not WDGM_GLOBAL_STATUS_

DEACTIVATED)

Initialization failed, e.g. selected configuration set WDGM_E_INIT_FAILED 0x1B
doesn’t exist

API service called with a null pointer parameter WDGM_E_PARAM_POINTER 0x1C

AUTSSAR

7.8.2 Runtime Errors

[SWS_WdgM_00402] Definition of runtime errors in module WdgM
Upstream requirements: SRS_BSW_00327, SRS_BSW_00337, SRS_BSW_00385

Type of error Related error code Error value
Disabling of watchdog not allowed (e.g. in WDGM_E_DISABLE_NOT_ALLOWED 0x15
safety-related systems)

API service used with a checkpoint of a WDGM_E_SEDEACTIVATED 0x19

Supervised Entity that is deactivated in the current
Watchdog Manager mode.

Watchdog drivers’ mode switch has failed WDGM_E_SET_MODE 0x1D

7.8.3 Production Errors
The Watchdog Manager module detects the following production errors:

[SWS_WdgM_00375] Supervision has failed and a watchdog reset will occur.
Upstream requirements: SRS_BSW_00327, SRS_BSW_00337, SRS_BSW_00385, SRS_BSW _

00458
[
Diagnostic Event (Error Name) WDGM_E_SUPERVISION
Description Supervision has failed (Global Supervision Status has reached WDGM_GLOBAL _
STATUS_STOPPED) and a watchdog reset will occur.
Failed condition WDGM_GLOBAL_STATUS_STOPPED has been reached, the reset will occur.
Passed condition After a start up.
]

Note: The stored DTC will never show up as “confirmed”, because it will be reset at
each start up (see [SWS_Dem_00391]).

Note: The stored DTC may not show up “test failed (event active)” even if DemSta-
tusBitStorageTestFailed were set to true, because storage of the DTC cannot be al-
ways ensured after reaching Global Supervision Status = WDGM_GLOBAIL_STATUS_
STOPPED (see [SWS_Dem_00388] and [SWS_Dem_00525]).

[SWS_WdgM_00408]
Upstream requirements: SRS_BSW_00339, SRS_BSW_00458, SRS_BSW_00469, SRS_BSW _
00470, SRS_BSW_00471, SRS_ModeMgm_09159
[Within the first call of WdgM MainFunction after wdgM_Init, but after
[SWS_WdgM_00129] is executed and if the parameter WDGM_E_SUPERVISION is

AUTSSAR

configured, the Watchdog Manager module shall report an error status PASSED for
WDGM_E_SUPERVISION to the DEM. |

7.8.4 Extended Production Errors

There are no extended production errors.

7.9 Security Events

The module does not report security events.

AUTSSAR

8 API specification

8.1 Imported types
The following data types are used by Watchdog Manager module.

[SWS_WdgM_00011] Definition of imported datatypes of module WdgM
Upstream requirements: SRS _BSW_00357

[
Module Header File Imported Type
Dem Rte_Dem_Type.h Dem_EventldType
Rte_Dem_Type.h Dem_EventStatusType
Os Os.h CounterType
Os.h StatusType
Os.h TickRefType
Os.h TickType
Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType
SwCIuC SwCluC_BManif.h SwCluC_BManif_HandlelndexType
SwCluC_BManif.h SwCluC_BManif_SwClusterldType
SwCIluC_BManif.h SwCluC_BManif_TablelndexType
Wdglf Wdglf.h Wdglf_ModeType
]

8.2 Type definitions

The following Data Types are used for the functions defined in this specification.

8.2.1 WdgM _ConfigType

[SWS_WdgM_00355] Definition of datatype WdgM_ConfigType |

Name WdgM_ConfigType
Kind Structure
Elements implementation specific

Type

\Y

AUTSSAR

A
Comment ‘ The contents of this structure depends on the configuration variant.
Description This structure contains all post-build configurable parameters of the Watchdog Manager. A pointer

to this structure is passed to the Watchdog Manager initialization function for configuration.
Available via WdgM.h

8.3 Function definitions

[SWS_WdgM_00411]
Status: DRAFT

[For clustered software architecture (one Host Software Cluster and zero or more Ap-
plication Software Cluster), Host Software Cluster shall provide all APls which are per-
manently available or enabled by configuration. |

[SWS_WdgM_00412]
Status: DRAFT

[For clustered software architecture, Application Software Cluster shall provide follow-
ing APls which are permanently available or enabled by configuration.

* WdgM_GetVersionInfo
* WdgM_CheckpointReached
* WdgM_GetMode

* WdgM_GetLocalStatus

8.3.1 WdgM Init

[SWS_WdgM_00151] Definition of API function WdgM_Init
Upstream requirements: SRS_BSW_00310, SRS_BSW_00358, SRS_ModeMgm_09107

[
Service Name WdgM_Init
Syntax void WdgM_Init (
const WdgM_ConfigTypex ConfigPtr
)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Non Reentrant

AUTSSAR

A
Parameters (in) ConfigPtr ‘ Pointer to post-build configuration data
Parameters (inout) None
Parameters (out) None
Return value None
Description Initializes the Watchdog Manager.
Available via WdgM.h
]

This function initializes the Watchdog Manager. After execution of this function, su-
pervision is activated according to the list of Supervised Entities defined in the initial
Mode.

To perform a module reinitialization (e.g. after error), the caller can invoke wdgM_
DeInit () andthen wdgM_Init ().

[SWS_WdgM_00018]
Upstream requirements: SRS_BSW_00101, SRS _ModeMgm_09107

[The function wdgM_1Init shall initialize all module variables (global and static) of the
Watchdog Manager module. |

[SWS_WdgM_00135]
Upstream requirements: SRS_BSW_00101, SRS_ModeMgm_09107

[The function wdgM_Init shall establish the initial mode of the Watchdog Manager
module. |

Note: If a call to WdgIf_SetMode service fails during wdgM_1Init, then the MCU
Reset API is called directly (only if configured, see [SWS_WdgM_00133]) and the
Watchdog Manager module will be in state initialized afterwards with Global Super-
vision Status = WDGM_GLOBAIL_STATUS_STOPPED (see [SWS_WdgM_00139]). This
will cause a reset, either when the first watchdog expires (if an immediate reset of the
Watchdog Manager module is not configured) or immediately (if an immediate reset is
configured).

[SWS_WdgM_00030]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00452, SRS_ModeMgm_09109

[If the WdgMOf fModeEnabled [ECUC_WdgM_00340] switch is not enabled, and the
initial mode provided by the configuration (ConfigPtr) will disable the watchdog (
WDGIF_OFF_MODE) then the function wdgM_1nit shall return with E_NOT_OK without
any action, and the function wdgM_1Init shall report runtime error code WDGM_E_ -
DISABLE_NOT_ALLOWED to the Default Error Tracer. |

There are optional checks that are executed if and only if wWdgMDevErrorDetect is
enabled.

AUTSSAR

[SWS_WdgM_00389]

Upstream requirements: SRS_BSW_00323, SRS_BSW_00350
[If the configuration parameter wdgMDevErrorDetect [ECUC_WdgM_00301] is en-
abled: The function wdgM_1Init shall report the error to default error tracer with er-

ror code WDGM_E_UNINIT, without any further effect, if the Watchdog Manager is in
WDGM_GLOBAL_STATUS_DEACTIVATED. |

[SWS_WdgM_00390]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00350
[If the configuration parameter wdgMDevErrorDetect [ECUC_WdgM_00301] is dis-

abled: The function wdgM_1nit shall return without any effect if the Watchdog Man-
ager is not in WDGM_GLOBAL_STATUS_DEACTIVATED.

[SWS_WdgM_00010]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00350

[If the wdgMDevErrorDetect [ECUC_WdgM_00301] switch is enabled and the con-
figuration variant is VARIANT-POST-BUILD, the function wdgM_Init shall check the
contents of the given configuration set for being within the allowed boundaries. If the
function wdgM_Init detects an error, then it shall not execute the initialization of the
Watchdog Manager module and it shall report the error code WDGM_E_PARAM_CONFIG
to the Det_ReportError service of the Default Error Tracer. |

[SWS_WdgM_00370]
Upstream requirements: SRS_BSW_00101

[The function wdgM_Init shall clear from the non-initialized RAM the double-inverse
value storing the SEID that first reached the EXIRED state. |

See Chapter 8.3.10 for more information.

8.3.2 WdgM DeInit

[SWS_WdgM_00261] Definition of API function WdgM_Delnit
Upstream requirements: SRS_BSW_00310, SRS_BSW_00336

Service Name WdgM_Delnit
Syntax void WdgM_DelInit (
void
)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Non Reentrant

AUTSSAR

A

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description De-initializes the Watchdog Manager.
Available via WdgM.h

]

This function deinitializes the Watchdog Manager module and updates the trigger con-
ditions of all Watchdog Drivers via a mode switch (see [SWS_WdgM_00154]).

Note this service is needed as a consequence of the concept “Windowed Watchdogs”.
Before the Watchdog Manager module stops working, it has to set the trigger conditions
of all running watchdogs to a timeout that allows the rest of the shutdown to be executed
without a watchdog reset.

There are optional checks that are executed if and only if wWdgMDevErrorDetect is
enabled.

[SWS_WdgM_00288]

Upstream requirements: SRS_BSW_00323, SRS_BSW_00350
[If the configuration parameter wdgMDevErrorDetect [ECUC_WdgM_00301] is en-
abled: The function wdgM_DeInit shall report the error to default error tracer with

error code WDGM_E_UNINIT, without any further effect, if the Watchdog Manager is in
WDGM_GLOBAL_STATUS_DEACTIVATED.]

[SWS_WdgM_00388]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00350

[If the configuration parameter wdgMDevErrorDetect [ECUC_WdgM_00301] is dis-
abled: The function wdgM_DeInit shall return without any effect if the Watchdog Man-
ager is in WDGM_GLOBAL_STATUS_DEACTIVATED. |

8.3.3 WdgM_GetVersionInfo

[SWS_WdgM_00153] Definition of API function WdgM_GetVersioninfo
Upstream requirements: SRS_BSW_00310

Service Name WdgM_GetVersioninfo
Syntax void WdgM_GetVersionInfo (
Std_VersionInfoType* VersionInfo
)
Service ID [hex] 0x02

\Y

AUTSSAR

A
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) Versioninfo Pointer to where to store the version information of the module
WdgM.
Return value None
Description Returns the version information of this module.
Available via WdgM.h

]

[SWS_WdgM_00256]

Upstream requirements: SRS_BSW_00323, SRS_BSW_00350
[If the wdgMDevErrorDetect [ECUC_WdgM_00301] switch is enabled, the function
WdgM_GetVersionInfo shall check if a NULL pointer is passed for the version-
Info parameter. In case of an error the remaining function WdgM_GetVersionInfo
shall not be executed and the function WdgM_GetVersionInfo shall report devel-

opment error code WDGM_E_ INV_POINTER to the Det_ReportError service of the
Default Error Tracer. |

8.3.4 WdgM SetMode

[SWS_WdgM_00154] Definition of API function WdgM_SetMode
Upstream requirements: SRS_BSW_00310, SRS _ModeMgm_09110

[

Service Name

WdgM_SetMode

Syntax Std_ReturnType WdgM_SetMode (
WdgM_ModeType Mode
)

Service ID [hex] 0x03

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) Mode One of the configured Watchdog Manager modes.
Parameters (inout) None

Parameters (out) None

Return value

Std_ReturnType E_OK: Successfully changed to the new mode

E_NOT_OK: Changing to the new mode failed

Description

Sets the current mode of Watchdog Manager.

Available via

WdgM.h

]

The behavior of this service and the corresponding functional requirements are de-
scribed in Chapter 7.5.

AUTSSAR

[SWS_WdgM_00145]
Upstream requirements: SRS_ModeMgm_09158
[The Watchdog Manager module shall only execute the service WdgM_sSetMode if

the Global Supervision Status is equal to WDGM_GLOBAIL_STATUS_OK Of WDGM_ -
GLOBAL_STATUS_FAILED.]

[SWS_WdgM_00142]
Upstream requirements: SRS_BSW_00339, SRS_BSW_00452
[If the function WwdgM_setMode [SWS_WdgM_00154] fails because a call to wdgIf_

SetMode service fails [SWS_WdgM_00139], the Watchdog Manager shall report to
the Default Error Tracer a runtime error with the value WDGM_E_SET_MODE. |

[SWS_WdgM_00031]

Upstream requirements: SRS_BSW_00323, SRS_BSW_00452, SRS_ModeMgm_09109
[If disabling the watchdog is not allowed by setting the parameter wdgMOf fModeEn-
abled [ECUC_WdgM_00340] to FALSE, the routine shall check if the requested mode

would disable the watchdog (WDGIF_OFF_MODE). In this case (i.e. it would disable
while it is not allowed),

1. The mode switch shall not be executed.

2. The error shall be reported to the Default Error Tracer with the runtime error code
WDGM_E_DISABLE_NOT_ALLOWED.

3. The routine shall return the value E_NOT_OK.

]

There are optional checks that are executed if and only if wWdgMDevErrorDetect is
enabled.

[SWS_WdgM_00020]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00350

[If the configuration parameter wdgMDevErrorDetect [ECUC_WdgM_00301] is en-
abled, the parameter Mode shall be checked for being in the allowed range. In case of
an error, the mode switch shall not be executed and the error shall be reported to the
Default Error Tracer with the value WDGM_E_PARAM_MODE. |

[SWS_WdgM_00021]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00350, SRS_BSW_00406

[If the configuration parameter wdgMDevErrorDetect [ECUC_WdgM_00301] is en-
abled: The function wdgM_setMode shall report the error to default error tracer with
error code WDGM_E_UNINIT, without any further effect, if the Watchdog Manager is in
WDGM_GLOBAL_STATUS_DEACTIVATED. |

AUTSSAR

[SWS_WdgM_00392]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00350

[If the configuration parameter wdgMDevErrorDetect [ECUC_WdgM_00301] is dis-
abled: The function wdgM_SetMode shall return without any effect if the Watchdog
Manager is in WDGM_GLOBAL_STATUS_DEACTIVATED. |

8.3.5 WdgM GetMode

[SWS_WdgM_00168] Definition of API function WdgM_GetMode
Upstream requirements: SRS_BSW_00310

[
Service Name WdgM_GetMode
Syntax Std_ReturnType WdgM_GetMode (
WdgM_ModeTypex Mode
)
Service ID [hex] 0x0b
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) Mode Current mode of the Watchdog Manager.
Return value Std_ReturnType E_OK: Current mode successfully returned
E_NOT_OK: Returning current mode failed
Description Returns the current mode of the Watchdog Manager.
Available via WdgM.h
|

[SWS_WdgM_00170] [The wdgM_GetMode service shall return the currently active
mode of the Watchdog Manager. If the WwdgM_sSetMode service is active while this
service is called, wdgM_GetMode shall return the previously active mode as long as
the new mode has not been completely activated. |

There are optional checks that are executed if and only if WdgMDevErrorDetect is
enabled.

[SWS_WdgM_00253]
Upstream requirements: SRS_BSW_00323, SRS _BSW_00350

[If the configuration parameter WdgMbDevErrorDetect [ECUC_WdgM_00301] is en-
abled: The function wdgM_GetMode shall report the error to default error tracer with
error code WDGM_E_UNINTIT, without any further effect, if the Watchdog Manager is in
WDGM_GLOBAL_STATUS_DEACTIVATED. |

AUTSSAR

[SWS_WdgM_00395]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00350
[If the configuration parameter wdgMDevErrorDetect [ECUC_WdgM_00301] is dis-

abled: The function wdgM_GetMode shall return without any effect if the Watchdog
Manager is in WDGM_GLOBAL_STATUS_DEACTIVATED. |

[SWS_WdgM_00254]

Upstream requirements: SRS_BSW_00323, SRS_BSW_00350
[If the configuration parameter WdgMbDevErrorDetect [ECUC_WdgM_00301] is en-
abled, the routine shall check if NULL pointers are passed for OUT parameters. In

case of an error, the service shall not be executed and the error shall be reported to
the Default Error Tracer with the error code WDGM_E_INV_POINTER. |

8.3.6 WdgM_CheckpointReached

[SWS_WdgM_00263] Definition of API function WdgM_CheckpointReached
Upstream requirements: SRS_BSW_00310

Service Name WdgM_CheckpointReached
Syntax Std_ReturnType WdgM_CheckpointReached (
WdgM_SupervisedEntityIdType SEID,
WdgM_CheckpointIdType CheckpointID
)
Service ID [hex] 0x0e
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) SEID Identifier of the Supervised Entity that reports a Checkpoint.
CheckpointID Identifier of the Checkpoint within a Supervised Entity that has
been reached.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Successfully updated alive counter
E_NOT_OK: Update failed
Description Indicates to the Watchdog Manager that a Checkpoint within a Supervised Entity has been
reached.
Available via WdgM.h

[SWS_WdgM_00321] [The function WwdgM_CheckpointReached () shall increment
the Alive Counter of reported Checkpoint. |

[SWS_WdgM_00322]
Upstream requirements: RS_HM_09235

[The function wdgM_CheckpointReached () shall perform the Deadline Supervision
(detection of early arrivals and delays) for the reported Supervised Entity using the

AUTSSAR

reported Checkpoint. The output shall be an updated result of Deadline Supervision
for the Supervised Entity. |

[SWS_WdgM_00323] [The function WdgM_CheckpointReached () shall perform
the Logical Supervision for the reported Supervised Entity using the reported Check-
point. The output shall be an updated result of Logical Supervision for the Supervised
Entity. |

[SWS_WdgM_00319]
Upstream requirements: SRS_BSW_00452

[The routine shall check if Supervised Entity to which the parameter CheckpointID
belongs, is activated in the current mode. In case of an error (i.e. the Supervised Entity
is deactivated in the current mode), the service shall return with E_NOT_OK without any
action, and the error shall be reported to the Default Error Tracer with the runtime error
code WDGM_E_SEDEACTIVATED. |

There are optional checks that are executed if and only if wWdgMDevErrorDetect is
enabled.

[SWS_WdgM_00394]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00350

[If the configuration parameter WwdgMDevErrorDetect [ECUC_WdgM_00301] is dis-
abled: The function WdgM_CheckpointReached shall return without any effect if the
Watchdog Manager is in WDGM_GLOBAL_STATUS_DEACTIVATED. |

[SWS_WdgM_00278]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00350

[If the configuration parameter WwdgMDevErrorDetect [ECUC_WdgM_00301] is en-
abled, the parameter SEID shall be checked for being in the list of the entities under
control of the Watchdog Manager. In case of an error, the service shall not be executed
and the error shall be reported to the Default Error Tracer with the error code WDGM__
E_PARAM_SEID.|

[SWS_WdgM_00279]
Upstream requirements: SRS_BSW_00323, SRS BSW_00350

[If the configuration parameter WdgMDevErrorDetect [ECUC_WdgM_00301] is en-
abled: The function wdgM_CheckpointReached shall report the error to default error
tracer with error code WDGM_E_UNINIT, without any further effect, if the Watchdog
Manager is in WDGM_GLOBAL_STATUS_DEACTIVATED. |

[SWS_WdgM_00396]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00350
[If the configuration parameter wdgMDevErrorDetect [ECUC_WdgM_00301] is dis-

abled: The function WdgM_CheckpointReached shall return without any effect if the
Watchdog Manager is in WDGM_GLOBAL_STATUS_DEACTIVATED. |

AUTSSAR

[SWS_WdgM_00284]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00350

[If the configuration parameter wdgMDevErrorDetect [ECUC_WdgM_00301] is en-
abled, the routine shall check if the parameter CheckpointID is within the set of
Checkpoints (see [ECUC_WdgM_00303]) associated with the Supervised Entity
given by the parameter SEID. In case of an error, the service shall not be executed
and the error shall be reported to the Default Error Tracer with the error code WDGM__
E_CPID.]

8.3.7 WdgM _GetLocalStatus

[SWS_WdgM_00169] Definition of API function WdgM_GetLocalStatus
Upstream requirements: SRS_BSW_00310

Service Name WdgM_GetlLocalStatus
Syntax Std_ReturnType WdgM_GetLocalStatus (
WdgM_SupervisedEntityIdType SEID,
WdgM_LocalStatusTypex Status
)
Service ID [hex] 0x0c
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) SEID Identifier of the supervised entity whose supervision status shall
be returned.
Parameters (inout) None
Parameters (out) Status Supervision status of the given supervised entity.
Return value Std_ReturnType E_OK: Current supervision status successfully returned
E_NOT_OK: Returning current supervision status failed
Description Returns the supervision status of an individual Supervised Entity.
Available via WdgM.h

[SWS_WdgM_00171] [The WwdgM_GetLocalStatus service shall return the individ-
ual supervision status of the given Supervised Entity. |

There are optional checks that are executed if and only if wWdgMDevErrorDetect is
enabled.

[SWS_WdgM_00172]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00350

[If the configuration parameter WwdgMDevErrorDetect [ECUC_WdgM_00301] is en-
abled, the parameter sE 1D shall be checked for being in the list of entities under control
of the Watchdog Manager. In case of an error, the service shall not be executed and
the error shall be reported to the Default Error Tracer with the error code WDGM_E_
PARAM_SEID. |

AUTSSAR

[SWS_WdgM_00257]

Upstream requirements: SRS_BSW_00323, SRS_BSW_00350
[If the configuration parameter wdgMDevErrorDetect [ECUC_WdgM_00301] is en-
abled, the routine shall check if NULL pointers are passed for OUT parameters. In

case of an error, the service shall not be executed and the error shall be reported to
the Default Error Tracer with the error code WDGM_E_INV_POINTER. |

[SWS_WdgM_00173]

Upstream requirements: SRS_BSW_00323, SRS_BSW_00350
[If the configuration parameter WwdgMDevErrorDetect [ECUC_WdgM_00301] is en-
abled: The function WwdgM_GetLocalStatus shall report the error to default error

tracer with error code wbGM_E_UNINIT, without any further effect, if the Watchdog
Manager is in WDGM_GLOBAL_STATUS_DEACTIVATED. |

[SWS_WdgM_00397]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00350

[If the configuration parameter wdgMDevErrorDetect [ECUC_WdgM_00301] is dis-
abled: The function WdgM_GetLocalStatus shall return without any effect if the
Watchdog Manager is in WDGM_GLOBAL_STATUS_DEACTIVATED. |

8.3.8 WdgM _GetGlobalStatus

[SWS_WdgM_00175] Definition of API function WdgM_GetGlobalStatus
Upstream requirements: SRS_BSW_00310

[
Service Name WdgM_GetGlobalStatus
Syntax Std_ReturnType WdgM_GetGlobalStatus (
WdgM_GlobalStatusTypex Status
)
Service ID [hex] 0xod
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) Status Global supervision status of the Watchdog Manager.
Return value Std_ReturnType E_OK: Current supervision status successfully returned
E_NOT_OK: Returning current supervision status failed
Description Returns the global supervision status of the Watchdog Manager.
Available via WdgM.h
]

[SWS_WdgM_00344] [If development error detection for the Watchdog Manager mod-
ule is enabled, then the function wdgM_GetGlobalstatus shall check whether the
parameter Status is a NULL pointer (NULL_PTR, see [SWS_Std_00031]). If Status

AUTSSAR

is @ NULL pointer, then the function shall raise the development error WDGM_E_ INV__
POINTER (i.e. invalid pointer), without any further effect. |

There are optional checks that are executed if and only if WdgMDevErrorDetect is
enabled.

[SWS_WdgM_00258]

Upstream requirements: SRS_BSW_00323, SRS_BSW_00350
[If the configuration parameter WwdgMDevErrorDetect [ECUC_WdgM_00301] is en-
abled, the routine shall check if NULL pointers are passed for OUT parameters. In

case of an error, the service shall not be executed and the error shall be reported to
the Default Error Tracer with the error code WDGM_E_ INV_POINTER. |

[SWS_WdgM_00176]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00350

[If the configuration parameter WdgMDevErrorDetect [ECUC_WdgM_00301] is en-
abled, the routine shall check if the Watchdog Manager is initialized. In case of an
error, the service shall not be executed and the error shall be reported to the Default
Error Tracer with the error code WDGM_E_UNINIT. |

8.3.9 WdgM PerformReset

[SWS_WdgM_00264] Definition of API function WdgM_PerformReset
Upstream requirements: SRS_BSW_00310, SRS_ModeMgm_09232

[

Service Name

WdgM_PerformReset

Syntax void WdgM_PerformReset (
void
)
Service ID [hex] 0xOf
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description Instructs the Watchdog Manager to cause a watchdog reset.
Available via WdgM.h
]

[SWS_WdgM_00232]
Upstream requirements: SRS_ModeMgm_09232

[When this service is called, the Watchdog Manager shall set the trigger condition for
all configured Watchdog Drivers to 0 (zero). |

AUTSSAR

Thereby, the hardware watchdogs will cause an external hardware reset.
[SWS_WdgM_00233]

Upstream requirements: SRS_ModeMgm_09232
[After this service has been called, the Watchdog Manager shall not update the trigger
condition anymore. |

When this API has been called, Global Supervision Status is not considered anymore.

There are optional checks that are executed if and only if WdgMDevErrorDetect is
enabled.

[SWS_WdgM_00270]

Upstream requirements: SRS_BSW_00323, SRS_BSW_00350
[If the configuration parameter WwdgMDevErrorDetect [ECUC_WdgM_00301] is en-
abled: The function wdgM_PerformReset shall report the error to default error tracer

with error code WDGM_E_UNINIT, without any further effect, if the Watchdog Manager
iS in WDGM_GLOBAL_STATUS_DEACTIVATED. |

[SWS_WdgM_00401]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00350

[1f the configuration parameter WdgMDevErrorDetect [ECUC_WdgM_00301] is dis-
abled: The function wdgM_PerformReset shall return without any effect if the Watch-
dog Manager is in WDGM_GLOBAL_STATUS_DEACTIVATED.]

8.3.10 WdgM_GetFirstExpiredSEID

[SWS_WdgM_00346] Definition of APl function WdgM_GetFirstExpiredSEID |

Service Name WdgM_GetFirstExpiredSEID
Syntax Std_ReturnType WdgM_GetFirstExpiredSEID (
WdgM_SupervisedEntityIdType* SEID
)
Service ID [hex] 0x10
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) SEID Identifier of the supervised entity that first reached the state
WDGM_LOCAL_STATUS_EXPIRED.
Return value Std_ReturnType E_OK: SEID successfully returned
E_NOT_OK: Error when returning the SEID
Description Returns SEID that first reached the state WDGM_LOCAL_STATUS_EXPIRED.
Available via WdgM.h

AUTSSAR

[SWS_WdgM_00347] [If development error detection for the Watchdog Manager
module is enabled, then the function WdgM_GetFirstExpiredSEID () shall check
whether the parameter SEID is a NULL pointer (NULL_PTR, see [SWS_Std_00031]).
If Status is a NULL pointer, then the function shall raise the development error WDGM__
E_INV_POINTER (i.e. invalid pointer), without any further effect. |

[SWS_WdgM_00348] [The function WdgM_GetFirstExpiredSEID () shall be
available before wdgM_Init. |

[SWS_WdgM_00349] [The function WdgM_GetFirstExpiredSEID () shall read the
SEID from non-initialized RAM location, stored as a double-inverse value. In case the
value and the inverse value do not correspond to each other, then the function shall
return E_NOT_OK and shall write 0 to *SEID. In case the value and the inverse value
correspond, the function shall return E_0OK and set write the read value to »SEID. |

8.4 Callback notifications

Not Applicable.

8.5 Scheduled functions

These functions are directly called by Basic Software Scheduler.

8.5.1 WdgM MainFunction

[SWS_WdgM_00159] Definition of scheduled function WdgM_MainFunction
Upstream requirements: SRS_BSW_00310, SRS_BSW_00373

Service Name WdgM_MainFunction
Syntax void WdgM_MainFunction (
void
)
Service ID [hex] 0x08
Description Performs the processing of the cyclic Watchdog Manager jobs.
Available via SchM_WdgM.h

[SWS_WdgM_00324] [The function wdgM_MainFunction () shall perform the Alive
Supervision for the reported Supervised Entity using the reported Checkpoint. The
input of this function shall be the Alive Counters of the Checkpoint. The output of
this function shall be the Results of Alive Supervision for the Supervised Entity. |

AUTSSAR

[SWS_WdgM_00404]
Upstream requirements: RS_HM_09235

[The function WdgM_MainFunction () shall perform the Deadline Supervision (de-
tection of timeouts) for the all Supervised Entities with active Deadline Supervisions
(e.g. reached a Deadline Start Checkpoints and before reaching the corresponding
Deadline End Checkpoint). The output shall be an updated result of Deadline
Supervision for the Supervised Entity. |

[SWS_WdgM_00325] [Based on the results from Alive, Deadline and Logical Supervi-
sion, for each activated Supervised Entity the function WdgM_MainFunction () shall
determine the Local Supervision Status. |

[SWS_WdgM_00351] [For the first Supervised Entity that switched to the state
WDGM_LOCAL_STATUS_EXPIRED since the last time wdgM_Init () was called, the
function WdgM_MainFunction () shall store the SEID of that Supervised Entity in a
non-initialized RAM, as a double-inverted value (i.e. SEID and ~SEID).]|

[SWS_WdgM_00326] [Based on the Local Supervision Status of each activated Su-
pervised Entity, the function wdgM_MainFunction () shall determine the Global Su-
pervision Status. |

[SWS_WdgM_00415]
Status: DRAFT

[If multiple Main Functions were configured (see WdgMMainFunction), each Main
Function shall have function name WdgM_MainFunction_<shortName>. The suf-
fix <shortName> shall be derived from the short name of the wdgMMainFunction
configuration container in the ECU configuration. |

[SWS_WdgM_00039]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00350, SRS_BSW_00406

[If the configuration parameter wdgMDevErrorDetect [ECUC_WdgM_00301] is en-
abled, the routine shall check if the Watchdog Manager is initialized. In case of an error,
the main function shall not be executed and the development error shall be reported to
the Default Error Tracer with the error code WDGM_E_UNINIT. |

8.6 Expected interfaces

In this chapter all interfaces required from other modules are listed.

AUTSSAR

«module» El________d________>
«mandatory»
WdgM i Wadglf_SetTriggerCondition
e - >
«mandatory»
——————————— Wdglf_SetMode
«mandatory»
Det_ReportRuntimeError
F—— e >
«mandatory»
GetElapsedValue
mmmmmmmoeo o>
«optional»
Mcu_PerformReset
e e
«optional»
Det_ReportError
b >
«optional»
Dem_SetEventStatus

Figure 8.1: Expected Interfaces

8.6.1 Mandatory interfaces

This section defines all interfaces, which are required to fulfill the core functionality of
the module.

[SWS_WdgM_00161] Definition of mandatory interfaces required by module Wdg
M

API Function Header File Description

Det_ReportRuntimeError Det.h Service to report runtime errors. If a callout has
been configured then this callout shall be called.

GetElapsedValue Os.h This service gets the number of ticks between the
current tick value and a previously read tick value.

Wdglf_SetMode Wdglf.h Map the service Wdglf_SetMode to the service
Wdg_SetMode of the corresponding Watchdog
Driver.

Wdglf_SetTriggerCondition Wdglf.h Map the service Wdglf_SetTriggerCondition to the

service Wdg_SetTriggerCondition of the
corresponding Watchdog Driver.

8.6.2 Optional interfaces

This section defines all interfaces, which are required to fulfill an optional functionality
of the module.

AUTSSAR

[SWS_WdgM_00162] Definition of optional interfaces requested by module Wdg
M

API Function Header File Description

Dem_SetEventStatus Dem.h Called by SW-Cs or BSW modules to report monitor
status information to the Dem. BSW modules calling
Dem_SetEventStatus can safely ignore the return
value. This API will be available only if ({(Dem/Dem
ConfigSet/DemEventParameter/DemEvent
ReportingType} == STANDARD_REPORTING)

Det_ReportError Det.h Service to report development errors.

Mcu_PerformReset Mcu.h The service performs a microcontroller reset.

SwCluC_BManif_GetConSwCluster SwCluC_BManif.h Returns the Id of the connected Software Cluster for

Id_<ResourceEntryGroup>_<Handle> a Notifier Handle of a Provide Resource Entry or a
Provide Handle of a Require Resource Entry

SwCluC_BManif_GetConSwCluster SwCIluC_BManif.h Returns the Id of the connected Software Cluster for

Id_<ResourceEntryGroup> a Notifier Handle of a Provide Resource Entry or a

<ResourceEntry><Handle> Provide Handle of a Require Resource Entry

SwCIuC_BManif Get SwCIluC_BManif.h Returns a handle of a Resource Entry in a Resource

Handle_<ResourceEntryGroup> Entry Group

_<Handle>

SwCluC_BManif_Get SwCluC_BManif.h Returns a handle of a Resource Entry in a Resource

Handle_<ResourceEntryGroup> Entry Group

<ResourceEntry><Handle>

SwCluC_BManif_GetNoOfHandle SwCluC_BManif.h Returns the number of actually used - and thereby

Sets_<Resource Entry Group> connected - handle sets.

SwCluC_BManif_GetNoOfHandle SwCluC_BManif.h Returns the number of actually used - and thereby

Sets_<Resource Entry Group> connected - handle sets

_<Resource Entry>

8.6.3 Configurable interfaces

Not Applicable.

8.7 Service Interfaces

This chapter specifies the AUTOSAR Interfaces which are provided by the Watchdog
Manager module. The SW-C description of the Watchdog Manager Service will define
the Watchdog Manager ports available to SW-Cs and CDDs. Each AUTOSAR SW-C
or CDD that uses the service must contain service ports in its own description. These
ports are typed with the same interfaces and have to be connected to the ports of the
Watchdog Manager module, so that the RTE can generate the appropriate IDs and the
required symbols.

The Local Supervision Status and the Global Supervision Status of the Watchdog Man-
ager module are reported to SW-Cs and CDDs through mode ports. An SW-C and
CDD can define its own mode port with the same interface as the mode ports of the
Watchdog Manager module. Afterwards the SW-C or CDD can query the status and

AUTSSAR

will be informed of status changes via the mode port. In addition, the SW-C can define
Runnables that are started or stopped by the RTE because of status changes.

BSW modules can call the WdgM API functions directly and taking into account the
mapping by RTE, or call them via Service Ports using RTE.

[SWS_WdgM_00416]
Status: DRAFT

[For clustered software architecture (one Host Software Cluster and zero or more Ap-
plication Software Cluster), Host Software Cluster shall provide all Ports and corre-
sponding Port Interfaces with all Operations and ModeGroups which are permanently
available or enabled by configuration. |

[SWS_WdgM_00417]
Status: DRAFT

[For clustered software architecture, Application Software Cluster shall provide follow-
ing Ports and corresponding Port Interfaces with listed Operations and ModeGroups
which are permanently available or enabled by configuration.

 Port: localSupervision_{SupervisedEntityCheckpointName}
[SWS_WdgM_00147] (Port Interface: WdgM_LocalSupervision
[SWS_WdgM 00333] with the Operation: CheckpointReached)

* Port: globalSupervision [SWS_WdgM 91002] (Port Interface: wdgM_-
GlobalSupervision [SWS_WdgM_91001] with the Operation: GetMode)

* Port: mode_ {SupervisedEntityName} [SWS_ WdgM_ 00149] (Port Interface:
WdgM_LocalMode [SWS_WdgM_00335] with the ModeGroup: currentMode

8.7.1 Ports and Port Interface for Supervision
8.7.1.1 General Approach

To reduce the number of ports provided by the Watchdog Manager module all inter-
faces between SW-Cs / CDD and the service are modeled as Client/Server communi-
cation. To report Checkpoints the sender-receiver paradigm may seem more appro-
priate, but this kind of modeling would double the number of ports. Therefore, also for
this functionality, the Client/Server paradigm has been chosen.

The unique Supervised Entity IDs are used to identify the Supervised Entities within an
ECU. In order to keep the application code independent of the configuration of ECU-
dependent Supervised Entity IDs, the IDs used by SW-Cs and CDDs are not mod-
eled explicitly as data elements to be passed between SW-C and service. These IDs
are modeled as “port defined argument values” of the Provide Ports of the Watchdog
Manager module. As a consequence, the Supervised Entity IDs will not show up as

AUTSSAR

arguments in the operations of the client-server interface. As a further consequence
for this approach, there will be separate ports for each Supervised Entity.

8.7.1.2 Data Types

The information passed between the application and the service are:
1. ID to identify a Supervised Entity (as port defined argument value) and
2. ID to identify a Checkpoint.

The type for this Supervised Entity Identifier shall be based on the type WdgM_Super-
visedEntityIdType. This type is defined as uint16. Therefore, the following type
description is required:

[SWS_WdgM_00356] Definition of ImplementationDataType WdgM_Supervised
EntityldType |

Name WdgM_SupervisedEntityldType

Kind Type

Derived from uint16

Range 0-<Number of Supervised - The range of valid IDs depends
Entities> on the number of configured

Supervised Entities.

Description This type identifies an individual Supervised Entity for the Watchdog Manager.

Variation -

Available via Rte_WdgM_Type.h

]

The type for this Checkpoint Identifier shall be based on the type WdgM_Check-
pointIdType. Thistype is defined as uint16. Therefore, the following type descrip-
tion is required:

[SWS_WdgM_00357] Definition of ImplementationDataType WdgM_Checkpoint
IdType |

Name WdgM_CheckpointldType
Kind Type
Derived from uint16
Range 0-<Maximum number of - The range of valid IDs depends
Checkpoints> on the maximum number of
configured Checkpoints within all
configured Supervised Entities.
Description This type identifies a Checkpoint in the context of a Supervised Entity for the Watchdog Manager.
Note that an individual Checkpoint can only be identified by the pair of Supervised Entity ID and
Checkpoint ID.
Variation -
Available via Rte_WdgM_Type.h

AUTSSAR

Beware, that the Checkpoint ID by itself is not unique. Only the pair of Supervised
Entity ID and Checkpoint ID uniquely identifies a Checkpoint.

8.7.1.3 Port Interfaces

All operations are put into two interfaces (one with operations specific for an individual
Supervised Entity, and one for global WdgM operations).

[SWS_WdgM_00333] Definition of ClientServerinterface WdgM_LocalSupervi-
sion [

Name WdgM_ LocalSupervision

Comment -

IsService true

Variation -

Possible Errors 0 E_OK Operation successful
1 E_NOT_OK Operation failed

Operation CheckpointReached

Comment Indicates to the Watchdog Manager that a Checkpoint within a Supervised Entity has been
reached.

Relates to WdgM_CheckpointReached

Variation -

Possible Errors E OK
E_NOT_OK

]

[SWS_WdgM_91004] Definition of ClientServerinterface WdgM_LocalSupervi-
sionStatus |

Name WdgM_LocalSupervisionStatus
Comment -
IsService true
Variation -
Possible Errors 0 E_OK Operation successful
1 E_NOT_OK Operation failed
Operation GetlocalStatus
Comment Returns the supervision status of an individual Supervised Entity.
Relates to WdgM_GetLocalStatus
Variation -
Parameters Status
Type WdgM_ LocalStatusType
Direction ouT
Comment Supervision status of the given supervised entity.
Variation -

V

AUTSSAR

Possible Errors

E_OK
E_NOT_OK

]

[SWS_WdgM_91001] Definition of ClientServerinterface WdgM_GlobalSupervi-

sion [
Name WdgM_GlobalSupervision
Comment -
IsService true
Variation -
Possible Errors 0 E_OK Operation successful
1 E_NOT_OK Operation failed
Operation GetFirstExpiredSEID
Comment Returns SEID that first reached the state WDGM_LOCAL_STATUS EXPIRED.
Relates to WdgM_GetFirstExpiredSEID
Variation -
Parameters SEID
Type WdgM_ SupervisedEntityldType
Direction ouT
Comment Identifier of the supervised entity that first reached the state WDGM_LOCAL_
STATUS_EXPIRED.
Variation -
Possible Errors E_OK
E_NOT_OK
Operation GetGlobalStatus
Comment Returns the global supervision status of the Watchdog Manager.
Relates to WdgM_GetGlobalStatus
Variation -
Parameters Status
Type WdgM_GlobalStatusType
Direction ouT
Comment Global supervision status of the Watchdog Manager.
Variation -
Possible Errors E _OK
E_NOT_OK
Operation GetMode
Comment Returns the current mode of the Watchdog Manager.
Relates to WdgM_GetMode
Variation -
Parameters Mode
Type WdgM_ModeType
Direction ouT
Comment Current mode of the Watchdog Manager.

Y%

AUTSSAR

A
Variation -
Possible Errors E_OK
E_NOT_OK
Operation PerformReset
Comment Instructs the Watchdog Manager to cause a watchdog reset.
Relates to WdgM_PerformReset
Variation -
Possible Errors -
Operation SetMode
Comment Sets the current mode of Watchdog Manager.
Relates to WdgM_SetMode
Variation -
Parameters Mode
Type WdgM_ModeType
Direction IN
Comment One of the configured Watchdog Manager modes.
Variation -
Possible Errors E_OK
E_NOT_OK

]

Compared to the API, the “WdgM_" prefix in the names is not required, because the
names given here will show up in the XML not globally but as part of an interface
description.

8.7.1.4 Service Ports

Figure 8.2 shows how AUTOSAR Software components (single or multiple instances)
are connected via service ports to the Watchdog Manager module. On the left side,
there are two instances (swc1 and swc?2) of component SWC Type A and one instance
(swc3) of component SWC Type B.

AUTSSAR

swcil: SWC Type A E Wdgh
WdgM_LocalSupervision
-] a r
] © (]
sel/ alive000 /
21 WdgM_LocalSupervision 2000
- (- r
[l_l @ (]
se? / alive001 /
se2 alive001

swc2: SWC Type A gl
WdgM_LocalSupervisgan
m a r
[] © L]
sel / alive002 /
sel WdgM_LocalSupervison2002

I:lge.? / @ [:I

aliveQ03 /
se2 alive003

swc3d: SWC Type B gl
WdgM_LocalSupervision

[© L]

/ aliveQ04 /
alive004

Figure 8.2: Example of SW-Cs connected to the Watchdog Manager via service ports

On the Watchdog Manager side, there is one port per Supervised Entity providing
all the services of the interface WdgM_TLocalSupervision described above. Each
Supervised Entity has one port for requiring those services for each Supervised Entity
associated with that application.

[SWS_WdgM_00146] [The Watchdog Manager module shall provide a single service
port for Supervision for each Supervised Entity that is configured.

To be able to match a Supervision port with its corresponding mode port for Status
Reporting, a naming convention is necessary. |

The Local Supervision ports of the Watchdog Manager module is named as follows:

AUT<

[SWS_WdgM_00147]

SAR

Definition of Port localSupervision_{SupervisedEntity

CheckpointName} provided by module WdgM |

Name localSupervision_{SupervisedEntityCheckpointName}
Kind ProvidedPort ‘ Interface ‘ WdgM_LocalSupervision
Description This port provides the Supervision interface of one Supervised Entity Checkpoint to a SWC.
Port Defined Type WdgM_SupervisedEntityldType
Argument Value(s) Value {ecuc(WdgM/WdgMGeneral/WdgMSupervisedEntity/WdgMSupervisedEntity
Id.value)}
Type WdgM_ CheckpointldType
Value ecuc{WdgM/WdgMGeneral/WdgMSupervisedEntity/WdgMCheckpoint/Wdg
MCheckpointld}

Variation

SupervisedEntityCheckpointName = {ecuc(WdgM/WdgMGeneral/WdgMSupervised
Entity. SHORT-NAME)}_{ecuc(WdgM/WdgMGeneral/WdgMSupervisedEntity/Wdg
MCheckpoint. SHORT-NAME)}

]

[SWS_WdgM_91003] Definition of Port localSupervisonStatus_{SupervisedEn-
tityName} provided by module WdgM |

Name localSupervisonStatus_{SupervisedEntityName}

Kind ProvidedPort | Interface | WdgM_ LocalSupervisionStatus

Description This port provides the Supervision status interface of one Supervised Entity to a SWC.

Port Defined Type WdgM_SupervisedEntityldType

Argument Value(s) Value {ecuc(V\;<}:igM/deMGeneral/deMSupervisedEntity/deMSupervisedEntity
Id.value

Variation

SupervisedEntityName = {ecuc(WdgM/WdgMGeneral/WdgMSupervisedEntity. SHORT-NAME)}

]

The Global Supervision ports of the Watchdog Manager module is named as follows:

[SWS_WdgM_91002] Definition of Port globalSupervision provided by module

WdgM [
Name globalSupervision
Kind ProvidedPort ‘ Interface ‘ WdgM_GilobalSupervision
Description This port provides the Global Supervision interface of the WdgM.
Variation -

8.7.1.5 Error Codes

The Supervision service does not return any service specific error codes.

AUTSSAR

8.7.2 Ports and Port Interface for Status Reporting
8.7.2.1 General Approach

To control the state-dependent behavior of SW-Cs and CDDs, the RTE provides the
mechanism of mode ports. A mode manager can switch between different modes that
are defined in the mode port. The SW-C / CDD that connects to the mode port can use
the mode information in two ways:

* The SW-C / CDD can query the current mode via the mode port.

» The SW-C / CDD can declare Runnables that are started or stopped by the RTE
because of mode changes.

According to RTE Specification [10, Specification of RTE Software] a mode port has
a ModeSwitchinterface. The mode manager, here the Watchdog Manager module, is
the sender and the SW-Cs are the receivers.

The Watchdog Manager module uses mode ports to provide two kinds of information:

« First, it provides the Local Supervision Status of each Supervised Entity. There-
fore, the Watchdog Manager module has a mode port for each Supervised Entity.

» Second, the Watchdog Manager module provides the Global Supervision Status
which reflects the combined Supervision Status of all Supervised Entities. There-
fore, it has one additional mode port.

8.7.2.2 Data Types

The mode declaration group WdgM_Mode represents the modes of the Watchdog Man-
ager module that will be notified to the SW-Cs / CDDs and the RTE.

[SWS_WdgM_00334] Definition of ModeDeclarationGroup WdgM_Mode |

Name WdgM_Mode

Kind ModeDeclarationGroup
Category EXPLICIT_ORDER
Initial mode SUPERVISION_OK
On transition value 255

Modes SUPERVISION_OK

SUPERVISION_FAILED
SUPERVISION_EXPIRED
SUPERVISION_STOPPED
SUPERVISION_DEACTIVATED

V

ArlO|INM|=]|O

AUTSSAR

A

Description The category of ModeDeclarationGroup WdgM_Mode is EXPLICIT_ORDER, The
attribute value for the ModeDeclaration are set as following:

"SUPERVISION_OK" = 0 "SUPERVISION_FAILED" = 1 "SUPERVISION_
EXPIRED" = 2 "SUPERVISION_STOPPED" = 3 "SUPERVISION_DEACTIVATED"
=4

The onTransitionValue is defined as 255

]

[SWS_WdgM_00359] Definition of ImplementationDataType WdgM_LocalStatus
Type [

Name WdgM_LocalStatusType
Kind Type
Derived from uint8
Range WDGM_LOCAL_STATUS _ 0 The supervision of this
OK Supervised Entity has not shown
any failures.
WDGM_LOCAL_STATUS_ 1 The supervision of this
FAILED Supervised Entity has failed but
can still be "healed". l.e., if the
Supervised Entity returns to a
normal behavior, its supervision
state will also return to WDGM_
LOCAL_STATUS_OK.
Furthermore, the number of times
that the supervision has failed has
not yet exceeded a configurable
limit. When this limit has been
exceeded the state will change to
WDGM_LOCAL_STATUS_
EXPIRED.
WDGM_LOCAL_STATUS_ 2 The supervision of this
EXPIRED Supervised Entity has failed
permanently. This state cannot be
left.
WDGM_LOCAL_STATUS_ 4 The supervision of this
DEACTIVATED Supervised Entity is temporarily
disabled.
Description This type shall be used for variables that represent the current status of supervision for individual
Supervised Entities.
Variation -
Available via Rte_WdgM_Type.h

]

[SWS_WdgM_00360] Definition of ImplementationDataType WdgM_GlobalStatus
Type |

Name WdgM_GilobalStatusType

Kind Type

Derived from uint8

Range WDGM_GLOBAL_ 0 Supervision did not show any
STATUS_OK failures.
WDGM_GLOBAL _ 1 Supervision has failed but is still
STATUS_FAILED within the limit of allowed failures.

AUTSSAR

A
WDGM_GLOBAL _ 2 Supervision has failed, the
STATUS_EXPIRED allowed limit of failures has been
exceeded, but the Watchdog
Driver has not yet been instructed
to stop triggering.
WDGM_GLOBAL _ 3 Supervision has failed, the
STATUS_STOPPED allowed limit of failures has been
exceeded, and the Watchdog
Driver has been instructed to stop
triggering. A watchdog reset is
about to happen.
WDGM_GLOBAL _ 4 WdgM is not initialized and
STATUS_DEACTIVATED therefore will not manage the
watchdogs.
Description This type shall be used for variables that represent the global supervision status of the Watchdog
Manager module.
Variation -
Available via Rte_WdgM_Type.h

]
[SWS_WdgM_00358] Definition of ImplementationDataType WdgM_ModeType |

Name WdgM_ModeType

Kind Type

Derived from uint8

Range 0-<Number of Modes> - The actual upper limit depends on
the number of configured modes
for Watchdog Manager.

Description This type distinguishes the different modes that were configured for the Watchdog Manager.

Variation -

Available via Rte_WdgM_Type.h

8.7.2.3 Port Interfaces

There are two different interfaces to indicate changes in the Supervision Status to
interested SW-Cs / CDDs and the RTE.

The interface WdgM_TLocalMode is used to signal the Local Supervision Status of a
single Supervised Entity.

[SWS_WdgM_00335] Definition of ModeSwitchinterface WdgM_LocalMode |

Name WdgM_LocalMode

Comment -

IsService true

Variation -

ModeGroup currentMode WdgM_Mode

AUTSSAR

The interface WwdgM_GlobalMode is used to signal the Global Supervision Status that
is combined from all individual Supervised Entities.

[SWS_WdgM_00336] Definition of ModeSwitchinterface WdgM_GlobalMode |

Name WdgM_GlobalMode

Comment -

IsService true

Variation -

ModeGroup currentMode WdgM_Mode
J

The reason for defining two different interfaces is the way these interfaces are used.
For the wdgM_GlobalMode interfaces the Watchdog Manager module provides only
one single port with that interface. By contrast, for the wdgM_LocalMode interface the
Watchdog Manager module provides as many ports as there are Supervised Entities.
In order to access these ports efficiently, the Indirect Port API of the RTE can be used.
This API provides a list of all ports that have the same interface, e.g.:

/K *

x Called within WdgM. Reports the status/mode of the SE

* to SW-Cs / CDDs through Rte

*/

void WdgM_NotifyOKToSE (WdgM_SupervisedEntityIdType se)

{
Rte_PortHandle_WdgM_LocalMode_P ph = Rte_Ports_WdgM_LocalMode_P () ;
phise] .Switch_currentMode (RTE_MODE_WdgM_Mode_SUPERVISION_OK) ;

}

© 00 N o 0o »~ W N =

To avoid that the mode port for the Global Supervision Status shows up in this list, this
port uses a different interface, i.e. WdgM_G1obalMode instead of WdgM_TLocalMode.

8.7.2.4 Mode Ports

Figure 8.3 shows how AUTOSAR Software components (single or multiple instances)
are connected via mode and service ports to the Watchdog Manager module. On the
left side, there are two instances (swc1 and swc2) of component SWC Type A and one
instance (swc3) of component SWC Type B. Each component is connected to the mode
ports that correspond to its own Supervised Entities. In addition, swc3 is connected to
the global mode port and can therefore react to changes in the combined Supervision
Status of all Supervised Entities.

AUTSSAR

swcl: SWC Type El ‘WdgM
A WdgM_LocalSupervision
Iy
S
1/ WdM LocalMode alive000 /
N alive000
s« 1Mode / mode000 /
s« 1Mode mode000
WdgM_LocalSupervison
&
A\
%2/ WdM_LocalMode — alive001/
2 I alive001
A\
*2Mode / mode001/
*2Mode mode001

swc2: SWC Type E
A alive002 /

WdgM_LocalSupervison
I e002

S
1/ WdM_LocalMode
O
A
s=1Mode / mode002 /
se1Mode WdgM_LocalSu per\.fisionﬂjmeoo"2
I
A g
%2 | WdM_LocalMode ~ 211ve003/
2) alive003
Y
*2Mode / mode003 /
*2Mode mode003

swes st\;c Type WdgM_LocalSupervison
Ny

A\
se/ WdM_LocalMode —alive004/
I alive004
A\
seMode / mode004 /
seMode WdgM_GlobalM ode mode004
e
A=
ecuMode / globalMode /
ecuMode globalMode

Figure 8.3: Example of SW-Cs connected to the Watchdog Manager via service ports
and mode ports

This results in one mode port per Supervised Entity.
[SWS_WdgM_00148]
Upstream requirements: SRS_ModeMgm_09160, SRS_ModeMgm_09225

[The Watchdog Manager module shall provide a single mode port for reporting the
Local Supervision Status of each Supervised Entity that is configured.

To be able to match a Supervision port with its corresponding mode port for Status
Reporting, a naming convention is necessary. |

The Watchdog Manager provides mode ports for reporting the Supervision Status of
each Supervised Entity:

AUTSSAR

[SWS_WdgM_00149] Definition of Port mode_{SupervisedEntityName} provided
by module WdgM |

Name mode_{SupervisedEntityName}

Kind ProvidedPort | Interface | WdgM_LocalMode

Description -

Variation SupervisedEntityName = {ecuc(WdgM/WdgMGeneral/WdgMSupervisedEntity/WdgMSupervised
Entityld. SHORT-NAME)}

]

[SWS_WdgM_00197] [When the Local Supervision Status of a single Supervised En-
tity changes, the Watchdog Manager module shall report that change via the mode
port for that Supervised Entity immediately after it has been recognized. |

The Watchdog Manager module provides one mode port for reporting the Global Su-
pervision Status:

[SWS_WdgM_00150] Definition of Port globalmode provided by module WdgM
Upstream requirements: SRS_ModeMgm_09160, SRS_ModeMgm_09225, SRS_ModeMgm_-

09162
Name globalmode
Kind ProvidedPort Interface WdgM_GlobalMode
Description -
Variation -

[SWS_WdgM_00198] [When the Global Supervision Status changes, the Watchdog
Manager module shall report that change via the global mode port. |

[SWS_WdgM_00199] [After computing the Global Supervision Status from all Local
Supervision Status, the Watchdog Manager module shall report any change in the
resulting Global Supervision Status only once. |

The resulting behavior is that first all changes in Local Supervision Status are reported.
Afterwards the Global Supervision Status is reported only once and only if it changed
due to the individual changes.

For instance, if in one Supervision Cycle SE1 goes from WDGM_LOCAL_STATUS_OK to
WDGM_LOCAL_STATUS_FAILED, WDGM_LOCAL_STATUS_FAILED is reported on the
local mode port for SE1. In the same Supervision Cycle SE2 goes from wWDGM_—
LOCAL_STATUS_OK t0 WDGM_LOCAIL_STATUS_EXPIRED directly, WDGM_LOCAIL_-
STATUS_EXPIRED is reported on the local mode port for SE2. The resulting Global
Supervision Status in this Supervision Cycle changes from WDGM_GLOBAIL_STATUS_
OK to WDGM_GLOBAL_STATUS_EXPIRED and only WDGM_GLOBAL_STATUS_EXPIRED
is reported on the global mode port. In that example WDGM_GLOBAI_STATUS_FAILED
is not reported on the global mode port, because it was only an intermediate state while
evaluating a subset of Supervised Entities.

AUTSSAR

9 Sequence diagrams

This chapter shows the interactions between the Watchdog Manager and other BSW
modules as well as Supervised Entities.

9.1 Initialization

The diagram shows the initialization of the Watchdog Manager module. The initializa-
tion should be done at a late phase of ECU initialization after the initialization of the
OS.

:EcuM ‘WdgM ‘Wdglf

After the initialization of the OS the EcuM should initialize
the Watchdog Manager.

WdgM_Init(const I
WdgM_ConfigType* !
gM_ConfigType?) WdgM_SetMode(Std_RetumnType,
WdgM_ModeType) |
I

|
Wdglf_SetMode(Std_ReturnType, uint8, Wdglf_ModeType)
» L

—

-
I I

Figure 9.1: Initialization of the Watchdog Manager module

AUTSSAR

10 Configuration specification

10.1 Parameter Differentiation

Within this chapter, you find a brief introduction of terms, which are used to differentiate
type of configuration parameters. In the subchapter you find concrete specification
issue for parameters in Watchdog Manager context.

For details refer to [4] Chapter 10.1 “Introduction to configuration specification”.

10.1.1 Static Configuration Parameters

[SWS_WdgM_00025]
Upstream requirements: SRS_BSW_00345

[The parameters of the Watchdog Manager module that shall minimally be config-
urable at system generation and / or system compile time (pre-compile). |

10.1.2 Runtime Configuration Parameters

[SWS_WdgM_00029] [The parameters of the Watchdog Manager module that shall
be configurable at post-build time. |

10.1.3 Precompile Options

[SWS_WdgM_00104]
Upstream requirements: SRS_BSW_00345, SRS_BSW_00171

[The precompile options shall be used for code implementations that are not directly
generated out of code generators. Therefore, the precompile options support the op-
timization of re-used source code-file of the Watchdog Manager module according to
settings of static configuration. |

10.2 Containers and configuration parameters

The following variants are supported by Watchdog Manager module:

AUTSSAR

10.2.1 Configuration Variants

For details refer to chapter “Variants” in [4, General Specification of Basic Software
Modules].

10.2.2 WdgM

[ECUC_WdgM_00001] Definition of EcucModuleDef WdgM |

Module Name WdgM

Description Configuration of the WdgM (Watchdog Manager) module.
Post-Build Variant Support true

Supported Config Variants VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Dependency

WdgMConfigSet 1 This container describes one of multiple configuration sets of
WdgM.

WdgMGeneral 1 Container defines all general configuration parameters of the
Watchdog Manager.

WdgM: EcucModuleDef +container WdgMGeneral:

EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 0

+container WdgMConfigSet:
EcucParamConfContainerDef

Figure 10.1: Configuration Module Watchdog Manager (WdgM)

10.2.3 WdgMGeneral

[ECUC_WdgM_00300] Definition of EcucParamConfContainerDef WdgMGeneral
[

Container Name WdgMGeneral

Parent Container WdgM

Description Container defines all general configuration parameters of the Watchdog Manager.
Multiplicity 1

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name Multiplicity ECUC ID

WdgMDevErrorDetect 1 [ECUC_WdgM_00301]
WdgMEnableTimeoutDetection 1 [ECUC_WdgM_00363]
WdgMImmediateReset 0..1 [ECUC_WdgM_00339]
WdgMOffModeEnabled 0..1 [ECUC_WdgM_00340]
WdgMSwClusterSupport 0..1 [ECUC_WdgM_00365]
WdgMVersionInfoApi 1 [ECUC_WdgM_00302]

Included Containers
Container Name Multiplicity Dependency

WdgMBaseSocket 0..” This container configures how many EcucPartitions specific
infrastructure links are required for the WdgM instances in
Application Software Clusters provided by the Host Software
Cluster. Such infrastructure links serve for: the initialization of
Application Software Cluster WdgM instances by Host WdgM
instance the transmission of supervision results from Application
Software Cluster WdgM instances to Host WdgM instance any
other implementation specific purpose which is need for the
interaction of Application Software Cluster WdgM instances and
Host WdgM instance

If the infrastructure connection is specific to one or several Ecuc
Partition(s) the WdgMSocketEcucPartitionRef(s) denotes the
applicable EcucPartition.

Tags: atp.Status=draft

WdgMMainFunction 0..” Reference to the WdgMInstanceMainFunction which this
Supervised Entity belongs to. Relevant to Alive Supervision and
Deadline Supervision

Tags: atp.Status=draft

WdgMSupervisedEntity 0..65535 This container collects all common (mode-independent)
parameters of a Supervised Entity to be supervised by the
Watchdog Manager.

WdgMWatchdog 0..255 This container collects all common (mode-independent)
parameters of a Watchdog to be triggered by the Watchdog
Manager.

]

[ECUC_WdgM_00301] Definition of EcucBooleanParamDef WdgMDevErrorDe-
tect |

Parameter Name WdgMDevErrorDetect
Parent Container WdgMGeneral
Description Switches the development error detection and natification on or off.

« true: detection and notification is enabled.
« false: detection and natification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

AUTSSAR

[ECUC_WdgM_00363] Definition of EcucBooleanParamDef WdgMEnableTimeout

Detection |

Parameter Name

WdgMEnableTimeoutDetection

Parent Container

WdgMGeneral

Description This parameter enables the timeout detection part of the Deadline Supervision (needed
to detect deadline supervision violation when end checkpoint is never reached).
true : Timeout detection is enabled.
false : Timeout detection is disabled.

Note: By default this option is disabled for backward compatibility reasons.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_WdgM_00339] Definition of EcucBooleanParamDef WdgMImmediateRe-

set |

Parameter Name

WdgMImmediateReset

Parent Container

WdgMGeneral

Description This parameter enables/disablse the immediate reset feature in case of
alive-supervision failure.
true: Immediate reset is enabled false: Immediate reset is disabled
Multiplicity 0..1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_WdgM_00340]
abled |

Definition of EcucBooleanParamDef WdgMOffModeEn-

Parameter Name WdgMOffModeEnabled

Parent Container WdgMGeneral

Description This parameter enables/disables the selection of the "OffMode" of the watchdog driver.
true: "OffMode" selection is allowed false: "OffMode" selection is disallowed

Multiplicity 0..1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time | X | All Variants

V

AUTSSAR

Link time -

Post-build time -

Dependency

]

[ECUC_WdgM_00365] Definition of EcucEnumerationParamDef WdgMSwCluster
Support

Status: DRAFT

Parameter Name WdgMSwClusterSupport

Parent Container WdgMGeneral

Description This parameter selects the support for SW Architecture with Software Clusters. If the
parameter is not set the default behavior DISABLE_SW_CLUSTER_SUPPORT
applies.
Tags: atp.Status=draft

Multiplicity 0..1

Type EcucEnumerationParamDef

Range DISABLE_SW_CLUSTER_ Additional functionality to support the Watchdog

SUPPORT Manager integration into a SW Architecture with
Software Clusters is disabled.

Tags: atp.Status=draft

ENABLE_SW_CLUSTER_
SUPPORT

Additional functionality to support the Watchdog
Manager integration into a SW Architecture with
Software Clusters is enabled.

Tags: atp.Status=draft

Default value

DISABLE_SW_CLUSTER_SUPPORT

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_WdgM_00302] Definition of EcucBooleanParamDef WdgMVersioninfoApi

[

Parameter Name

WdgMVersionInfoApi

Parent Container

WdgMGeneral

Description Preprocessor switch to enable/disable the existence of the APl WdgM_GetVersioninfo.
Shall be used to remove unneeded code segments.
true: APl is enabled false: APl is disabled

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

AUTSSAR

Post-build time

Dependency

WdgMGeneral:

EcucParam ConfContainerDef

+parameter

+parameter

WdgMVersionInfoApi:

EcucBooleanParamDef

defaultValue = false

WdgMDevErrorDetect:
EcucBooleanParamDef

+parameter

defaultValue = false

WdgMImmediateReset:
EcucBooleanParamDef

+parameter

+subContainer

upperMultiplicity = 1
lowerMultiplicity = 0

WdgMOffModeEnabled:

EcucBooleanParamDef

upperMultiplicity = 1
lowerMultiplicity = 0

WdgMSupervisedEntity:
EcucParamConfContainerDef

+subContainer

upperMultiplicity = 65535
lowerMultiplicity = 0

WdgMWatchdog:
EcucParamConfContainerDef

+parameter

+subContainer

+parameter

+subContainer

upperMultiplicity = 255
lowerMultiplicity = 0

WdgMEnableTimeoutDetection:
EcucBooleanParamDef

defaultValue = false

WdgMBaseSocket:

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

WdgMSwClusterSupport: EcucEnumerationParamDef

defaultvValue = DISABLE_SW_CLUSTER_SUPPORT
lowerMultiplicity = 0
upperMultiplicity = 1

+literal

DISABLE_SW_CLUSTER _SUPPORT:

+literal

EcucEnumerationLiteralDef

ENABLE_SW_CLUSTER_SUPPORT:

EcucEnumerationLiteralDef

WdgMMainFunction:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

Figure 10.2: Configuration Container WdgMGeneral

AUTSSAR

10.2.4 WdgMSupervisedEntity

[ECUC_WdgM_00303] Definition of EcucParamConfContainerDef WdgMSuper-

visedEntity |

Container Name

WdgMSupervisedEntity

Parent Container

WdgMGeneral

Description This container collects all common (mode-independent) parameters of a Supervised
Entity to be supervised by the Watchdog Manager.

Multiplicity 0..65535

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

WdgMSupervisedEntityld 1 [ECUC_WdgM_00304]

WdgMinternalCheckpointlnitialRef 0..65535 [ECUC_WdgM_00343]

WdgMinternallCheckpointFinalRef 0..65535 [ECUC_WdgM_00344]

WdgMMainFunctionRef 0..1 [ECUC_WdgM_00368]

WdgMOSCounter 0..1 [ECUC_WdgM_00361]

Included Containers

Container Name Multiplicity Dependency

WdgMCheckpoint 1..65535 This container collects all Checkpoints of this Supervised Entity.
Each Supervised Entity has at least one Checkpoint.

WdgMinternalTransition 0..65535 This container defines the graph of Internal Transitions within this
Supervised Entity.

]

[ECUC_WdgM_00304] Definition of EcucintegerParambDef WdgMSupervisedEn-

tityld [
Parameter Name WdgMSupervisedEntityld
Parent Container WdgMSupervisedEntity

Description This parameter shall contain the unique identifier of the supervised entity.
Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0..65535
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

AUTSSAR

[ECUC_WdgM_00343] Definition of EcucReferenceDef WdgMInternalCheckpoint

InitialRef |

Parameter Name

WdgMinternalCheckpointlnitialRef

Parent Container

WdgMSupervisedEntity

Description This is the reference to the initial Checkpoint for this Supervised Entity.
Multiplicity 0..65535
Type Symbolic name reference to WdgMCheckpoint
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_WdgM_00344] Definition of EcucReferenceDef WdgMInternallCheckpoint

FinalRef |

Parameter Name

WdgMinternallCheckpointFinalRef

Parent Container

WdgMSupervisedEntity

Description This is the reference to the final Checkpoint(s) for this Supervised Entity.

Multiplicity 0..65535

Type Symbolic name reference to WdgMCheckpoint

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_WdgM_00368] Definition of EcucReferenceDef WdgMMainFunctionRef

Status: DRAFT

Parameter Name

WdgMMainFunctionRef

Parent Container

WdgMSupervisedEntity

Description Reference to the WdgMInstanceMainFunction which this Supervised Entity belongs to.
Relevant to Alive Supervision and Deadline Supervision
Tags: atp.Status=draft

Multiplicity 0..1

Type Reference to WdgMMainFunction

Post-Build Variant Multiplicity false

Post-Build Variant Value false

V

AUTSSAR

Multiplicity Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time —

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time —

Dependency

]

[ECUC_WdgM_00361] Definition of EcucReferenceDef WdgMOSCounter |

Parameter Name

WdgMOSCounter

Parent Container

WdgMSupervisedEntity

Description OS counter used by Watchdog Manager to perform the deadline supervision of the
Supervised Entity.

Multiplicity 0..1

Type Reference to OsCounter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

WdgMChechkpointld:
EcuclIntegerParamDef
WdgMSupervisedEntity: ! WdgMSupervisedEntityld: GEENTNENE = fre
EcucParamConfContainerDef +parameter EcuclntegerParamDef max =§5535
min =
upperMultiplicity = 65535 symbolicNameValue = true
lowerMultiplicity = 0 :Ia: =(§35535 +parameteri
WdgMIinternalCheckpointinitial Ref: £ cP"Z—"#farﬁ]"g::f%o:t‘;‘;erDef
u i
+reference EcucReferenceDef +destination
lowerMultiplicity = 0 upperMuItiplicjty = 65535
upperMultiplicity = 65535 lowerMultiplicity = 1
iresSymbolicN: Value =t .
requiresSymbolicNameValue = true +subContainer
>
WdgM IntemallCheckpointFinalRef: +destination
+reference EcucReferenceDef
lowerMultiplicity = 0
upperMultiplicity = 65535
requiresSymbolicNameValue = true
WdgMiIntemalTransition:
+subContainer EcucParamConfContainerDef
upperMultiplicity = 65535
lowerMultiplicity = 0
WdgMOSCounter: EcucReferenceDef OsCounter:
+reference +destination| EcucParamConfContainerDef
lowerMultiplicity = 0
upperMultiplicity = 1 lowerMultiplicity = 0
upperMultiplicity = *
WdgMMainFunctionRef: WdgMMainFunction:
+reference EcucReferenceDef +destination | EcucParamConfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = 1 upperMultiplicity = *

Figure 10.3: Configuration Container WdgMSupervisedEntity

10.2.5 wWdgMCheckpoint

[ECUC_WdgM_00305] Definition of EcucParamConfContainerDef WdgMCheck-
point |

Container Name WdgMCheckpoint

WdgMSupervisedEntity

Parent Container

Description This container collects all Checkpoints of this Supervised Entity. Each Supervised
Entity has at least one Checkpoint.
Multiplicity 1..65535

Configuration Parameters

Included Parameters
Parameter Name

WdgMCheckpointld 1

ECUC ID
[ECUC_WdgM_00306]

Multiplicity

AUTSSAR

| No Included Containers

]
[ECUC_WdgM_00306] Definition of EcuclntegerParamDef WdgMCheckpointid |

Parameter Name WdgMCheckpointld
Parent Container WdgMCheckpoint
Description This parameter shall contain the unique identifier of Checkpoint.
Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0.. 65535
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

WdgMCheckpoint:
EcucParamConfContainerDef

. WdgMCheckpointld:
upperMultiplicity = 65535 Ew(?mTrI:grarmf
lowerMultiplicity = 1 +parameter =cucintegerrarambet

e symbolicNameValue = true
max = 65535
min =0

Figure 10.4: Configuration Container WdgMCheckpoint

10.2.6 WdgMInternalTransition

[ECUC_WdgM_00345] Definition of EcucParamConfContainerDef WdgMIinternal
Transition |

Container Name WdgMinternalTransition

Parent Container WdgMSupervisedEntity

Description This container defines the graph of Internal Transitions within this Supervised Entity.
Multiplicity 0..65535

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
WdgMinternalTransitionDestRef 1 [ECUC_WdgM_00351]
WdgMinternalTransitionSourceRef 1 [ECUC_WdgM_00350]

No Included Containers

AUTSSAR

]

[ECUC_WdgM_00351] Definition of EcucReferenceDef WdgMiInternalTransition
DestRef |

Parameter Name WdgMinternalTransitionDestRef

Parent Container WdgMiInternalTransition

Description This is the reference to the destination Checkpoint of a Internal Transition within this
Supervised Entity.

Multiplicity 1

Type Symbolic name reference to WdgMCheckpoint

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_WdgM_00350] Definition of EcucReferenceDef WdgMInternalTransition
SourceRef |

Parameter Name WdgMiInternalTransitionSourceRef

Parent Container WdgMinternalTransition

Description This is the reference to the source Checkpoint of a Internal Transition within this
Supervised Entity.

Multiplicity 1

Type Symbolic name reference to WdgMCheckpoint

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

WdgMiInternalTransition: WdaMChecknoint:
EcucParamConfContainerDef iti : ot &
+reference deMIn;egzs}lc;l;rfaer::rtlfen[)sec;urceRef. +destination | EcucParamConfContainerDef
upperMultiplicity = 65535 e o
lowerMultiplicity = 0 requitesSymbeteNameatie— e upperMultiplicity = 65535
M 7 lowerMultiplicity = 1
+reference WdgMInternalTransitionDestRef: +destination
EcucReferenceDef
reqttresSymbotieNameatre—trae

Figure 10.5: Configuration Container WdgMInternalTransition

AUTSSAR

10.2.7 WdgMWatchdog

[ECUC_WdgM_00347] Definition of EcucParamConfContainerDef WdgMWatch-

dog |

Container Name

WdgMWatchdog

Parent Container

WdgMGeneral

Description This container collects all common (mode-independent) parameters of a Watchdog to
be triggered by the Watchdog Manager.
Multiplicity 0..255

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
WdgMWatchdogName 1 [ECUC_WdgM_00348]
WdgMWatchdogDeviceRef 1 [ECUC_WdgM_00349]

No Included Containers

]

[ECUC_WdgM_00348] Definition of EcucStringParamDef WdgMWatchdogName

[

Parameter Name

WdgMWatchdogName

Parent Container

WdgMWatchdog

Description This parameter shall contain the name of the watchdog instance.
Multiplicity 1
Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_WdgM_00349]
Ref |

Definition of EcucReferenceDef WdgMWatchdogDevice

Parameter Name

WdgMWatchdogDeviceRef

Parent Container

WdgMWatchdog

Description Reference to one device container of Watchdog Interface. In the referenced container
WdglfDevice, the parameter WdglfDevicelndex contains the Index parameter that Wdg
M has to use for Wdglf_SetTriggerCondition calls for that watchdog instance.

Multiplicity 1

Type Symbolic name reference to WdglfDevice

V

AUTSSAR

A
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

WdgMWatchdog:
EcucParamConfContainerDef +parameter deMWgtchdogName:
o P EcucStringParamDef
upperMultiplicity = 255
lowerMultiplicity = 0
+reference WdgMWatchdogDeviceRef:
EcucReferenceDef
requiresSymbolicNameValue = true

+destination

WdglfDevi WdglfDevicelndex:
Jegrvevice: EcuclIntegerParamDef
EcucParamConfContainerDef +parameter

— symbolicNameValue = true
upperMultiplicity = * min =0
lowerMultiplicity = 1 max = 255

Figure 10.6: Configuration Container WdgMWat chdog

10.2.8 wWdgMConfigSet

[ECUC_WdgM_00337] Definition of EcucParamConfContainerDef WdgMConfig
Set |

Container Name WdgMConfigSet

Parent Container WdgM

Description This container describes one of multiple configuration sets of WdgM.
Multiplicity 1

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID
WdgMinitialMode 1 [ECUC_WdgM_00336]

AUTSSAR

Included Containers
Container Name Multiplicity Dependency

WdgMDemEventParameterRefs 0..1 Container for the references to DemEventParameter elements
which shall be invoked using the APl Dem_SetEventStatus in
case the corresponding error occurs. The Eventld is taken from
the referenced DemEventParameter's DemEventld symbolic
value. The standardized errors are provided in this container and
can be extended by vendor-specific error references.

WdgMMode 1..255 The container describes one of several modes of the Watchdog
Manager.

]
[ECUC_WdgM_00336] Definition of EcucReferenceDef WdgMiInitialMode |

Parameter Name WdgMinitialMode
Parent Container WdgMConfigSet
Description The mode that the Watchdog Manager is in after it has been initialized.
Multiplicity 1
Type Symbolic name reference to WdgMMode
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency

WdaMConfiaSet: WdgMMode:
WegVisonTigsets +subContainer EcucParamConfContainerDef

EcucParamConfContainerDef

upperMultiplicity = 255
lowerMultiplicity = 1

+destination
DemEventParameter:
EcucParamConfContainerDef
+reference [wdgMinitialMode: EcucReferenceDef upperMultiplicity = 65535
lowerMultiplicity = 1
requiresSymbolicNameValue = true

+destination
WdgMDemEventParameterRefs: WDGM_E_SUPERVISION:
+subContainer| EcucParamConfContainerDef +reference EcucReferenceDef
PR o— o
upperMultiplicity = 1 lowerMultiplicity = 0
lowerMultiplicity = 0 upperMultiplicity = 1
requiresSymbolicNameValue = true

Figure 10.7: Configuration Container WdgMConfigSet

10.2.9 WdgMDemEventParameterRefs

[ECUC_WdgM_00353] Definition of EcucParamConfContainerDef WdgMDem
EventParameterRefs |

AUTSSAR

Container Name WdgMDemEventParameterRefs
Parent Container WdgMConfigSet
Description Container for the references to DemEventParameter elements which shall be invoked

using the API Dem_SetEventStatus in case the corresponding error occurs. The Event
Id is taken from the referenced DemEventParameter’s DemEventld symbolic value.
The standardized errors are provided in this container and can be extended by
vendor-specific error references.

Multiplicity 0..1

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

WDGM_E_SUPERVISION 0.1 [ECUC_WdgM_00362]

No Included Containers

]

[ECUC_WdgM_00362] Definition of EcucReferenceDef WDGM_E_SUPERVISION
[

Parameter Name WDGM_E_SUPERVISION
Parent Container WdgMDemEventParameterRefs
Description Reference to the DemEventParameter which shall be issued when the error

"Supervision has failed (Global Supervision Status has reached WDGM_GLOBAL _
STATUS_STOPPED) and a watchdog reset will occur" has occurred.

Multiplicity 0..1
Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity true

Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency

10.2.10 wWdgMMode

[ECUC_WdgM_00335] Definition of EcucParamConfContainerDef WdgMMode |

Container Name WdgMMode
Parent Container WdgMConfigSet
Description The container describes one of several modes of the Watchdog Manager.

Y%

AUTSSAR

A
Multiplicity 1..255
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
WdgMExpiredSupervisionCycleTol 1 [ECUC_WdgM_00329]
WdgMModeld 1 [ECUC_WdgM_00307]
Included Containers
Container Name Multiplicity Dependency
WdgMAliveSupervision 0..65535 This container collects all configuration parameters of

Alive-Supervision of one Checkpoint. Note that each Checkpoint
may have different parameters. For example, it may have
different min and max margin.

WdgMDeadlineSupervision 0..65535 This container collects all configuration parameters for Deadline
Supervision for a Supervised Entity.

WdgMExternallLogicalSupervision 0..65535 This container collects all configuration parameters for Logical
Supervision for one external graph.

WdgMLocalStatusParams 0..65535 This container collects all configuration parameters for the Local
Status of a Supervised Entity.

WdgMMainFunctionModeProps 0..” This container provides configuration values for a WdgMMain
Function which apply in a specific WdgMMode.
Tags: atp.Status=draft

WdgMTrigger 0..255 This container collects all configuration parameters for the
triggering of hardware watchdogs.

]

[ECUC_WdgM_00329] Definition of EcuclntegerParamDef WdgMExpiredSupervi-
sionCycleTol |

Parameter Name WdgMExpiredSupervisionCycleTol

Parent Container WdgMMode

Description This parameter shall be used to define a value that fixes the amount of expired
supervision cycles for how long the blocking of watchdog triggering shall be postponed,
AFTER THE GLOBAL SUPERVISION STATUS HAS REACHED THE STATE
EXPIRED.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..65535

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_WdgM_00307] Definition of EcuclntegerParamDef WdgMModeld |

Parameter Name

WdgMModeld

Parent Container

WdgMMode

Description This parameter fixes the identifier for the mode. This identifier is for instance passed as
a parameter to the WdgM_SetMode service.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0..255

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

AUTSSAR

WdgMMode:
EcucParamConfContainerDef

+parameter

WdgMModeld: EcuclntegerParamDef

>

upperMultiplicity = 255
lowerMultiplicity = 1

+subContainer

max = 255
min=0
symbolicNameValue = true

WdgMAliveSupervision:

EcucParamConfContainerDef

+subContainer

upperMultiplicity = 65535
lowerMultiplicity = 0

WdgMDeadlineSupervision:
EcucParamConfContainerDef

+subContainer

upperMultiplicity = 65535
lowerMultiplicity = 0

WdgMExternal LogicalSupervision:
EcucParamConfContainerDef

+subContainer

upperMultiplicity = 65535
lowerMultiplicity = 0

WdgMLocalStatusParams:
EcucParamConfContainerDef

+parameter

+subContainer

upperMultiplicity = 65535
lowerMultiplicity = 0

WdgMExpiredSupervisionCycleTol:

EcuclntegerParamDef
min=0
max = 65535
WdgMTrigger:

EcucParamConfContainerDef

+subContainer

WdgMMainFunctionModeProps:

EcucParamConfContainerDef

+reference

lowerMultiplicity = 0
upperMultiplicity = *

+parameter

lowerMultiplicity = 0
upperMultiplicity = 255

WdgMMainFunctionModePropsMainFunctionRef:

EcucReferenceDef

+destination

WdgMMainFunction:

EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 1

WdgMMainFunctionModePropsTimePeriod:

EcucFloatParamDef

min =0
max = INF

10.2.11 WdgMAliveSupervision

Figure 10.8: Configuration Container wdgMMode

lowerMultiplicity = 0
upperMultiplicity = *

[ECUC_WdgM_00308] Definition of EcucParamConfContainerDef WdgMAliveSu-

pervision |

AUTSSAR

Container Name WdgMAliveSupervision
Parent Container WdgMMode
Description This container collects all configuration parameters of Alive-Supervision of one

Checkpoint. Note that each Checkpoint may have different parameters. For example, it
may have different min and max margin.

Multiplicity 0..65535

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

WdgMExpectedAlivelndications 1 [ECUC_WdgM_00311]
WdgMMaxMargin 1 [ECUC_WdgM_00313]
WdgMMinMargin 1 [ECUC_WdgM_00312]
WdgMSupervisionReferenceCycle 1 [ECUC_WdgM_00310]
WdgMAliveSupervisionCheckpointRef 1 [ECUC_WdgM_00309]

No Included Containers

]

[ECUC_WdgM_00311] Definition of EcucintegerParambDef WdgMExpectedAlive
Indications |

Parameter Name WdgMExpectedAlivelndications
Parent Container WdgMAliveSupervision
Description This parameter contains the amount of expected alive indications of the Checkpoint
\évghin the referenced amount of defined supervision cycles according to corresponding
Multiplicity 1
Type EcuclntegerParamDef
Range 0 .. 65535
Default value -
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency

]
[ECUC_WdgM_00313] Definition of EcuclntegerParamDef WdgMMaxMargin |

Parameter Name WdgMMaxMargin

Parent Container WdgMAliveSupervision

Description This parameter contains the amount of alive indications of the Checkpoint that are
acceptable to be additional to the expected alive indications within the corresponding
supervision reference cycle.

Multiplicity 1

Type EcuclntegerParamDef

V

AUTSSAR

A
Range 0. 255 |
Default value -
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency

J
[ECUC_WdgM_00312] Definition of EcucintegerParamDef WdgMMinMargin |

Parameter Name WdgMMinMargin

Parent Container WdgMAliveSupervision

Description This parameter contains the amount of alive indications of the Checkpoint that are
acceptable to be missed from the expected alive indications within the corresponding
supervision reference cycle.

Multiplicity 1

Type EcucintegerParamDef

Range 0..255

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_WdgM_00310] Definition of EcucintegerParamDef WdgMSupervisionRef-
erenceCycle |

Parameter Name WdgMSupervisionReferenceCycle

Parent Container WdgMAliveSupervision

Description This parameter shall contain the amount of supervision cycles to be used as reference
by the alive-supervision mechanism to perform the checkup with counted alive
indications according to corresponding SE.

Multiplicity 1

Type EcuclntegerParamDef

Range 1.. 65535

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_WdgM_00309] Definition of EcucReferenceDef WdgMAliveSupervision

CheckpointRef |

Parameter Name

WdgMAliveSupervisionCheckpointRef

Parent Container

WdgMAliveSupervision

Description Reference to Checkpoint within a Supervised Entity that shall be supervised.
Multiplicity 1
Type Symbolic name reference to WdgMCheckpoint
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

WdgMAliveSupervision:
EcucParamConfContainerDef

upperMultiplicity = 65535
lowerMultiplicity = 0

sreference| WdgMAliveSupervisionCheckpointRef: +destination WdgMCheckpoint:
EcucReferenceDef EcucParamConfContainerDef

requiresSymbolicNameValue = true upperMultiplicity = 65535

lowerMultiplicity = 1

WdgMSupervisionReferenceCycle:
EcuclntegerParamDef

+parameter

min =1
max = 65535

WdgMExpectedAlivelndications:
EcuclntegerParamDef

+parameter

min =0
max = 65535

WdgMMinMargin:

+parameter| g5 cintegerParambDef

min =0
max = 255

+parameter WdgMMaxMargin:
EcuclntegerParamDef
min =0

max = 255

Figure 10.9: Configuration Container WdgMAliveSupervision

10.2.12 wWdgMDeadlineSupervision

[ECUC_WdgM_00314] Definition of EcucParamConfContainerDef WdgMDeadline

Supervision |

Container Name

WdgMDeadlineSupervision

Parent Container

WdgMMode

Description This container collects all configuration parameters for Deadline Supervision for a
Supervised Entity.
Multiplicity 0..65535

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name Multiplicity ECUC ID

WdgMDeadlineMax 1 [ECUC_WdgM_00318]
WdgMDeadlineMin 1 [ECUC_WdgM_00317]
WdgMDeadlineStartRef 1 [ECUC_WdgM_00315]
WdgMDeadlineStopRef 1 [ECUC_WdgM_00316]

No Included Containers

]

[ECUC_WdgM_00318] Definition of EcucFloatParamDef WdgMDeadlineMax |

Parameter Name

WdgMDeadlineMax

Parent Container

WdgMDeadlineSupervision

Description This parameter contains the longest time span after which the deadline is considered to
be met.
Unit: [s]

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_WdgM_00317] Definition of EcucFloatParamDef WdgMDeadlineMin |

Parameter Name

WdgMDeadlineMin

Parent Container

WdgMDeadlineSupervision

Description This parameter contains the shortest time span after which the deadline is considered
to be met.
Unit: [s]

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_WdgM_00315] Definition of EcucReferenceDef WdgMDeadlineStartRef |

Parameter Name

WdgMDeadlineStartRef

Parent Container

WdgMDeadlineSupervision

Description This is the reference to the start Checkpoint for Deadline Supervision.
Multiplicity 1
Type Symbolic name reference to WdgMCheckpoint
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_WdgM_00316] Definition of EcucReferenceDef WdgMDeadlineStopRef |

Parameter Name

WdgMDeadlineStopRef

Parent Container

WdgMDeadlineSupervision

Description This is the reference to the stop Checkpoint for Deadline Supervision.
Multiplicity 1
Type Symbolic name reference to WdgMCheckpoint
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Dependency
WdgMDeadlineSupervision: WdgMDeadlineStartRef: o -
EcucPar:r?\Clonnefcgn?ar;,r::?Dnef +reference EcucReferenceDef +destination WdgM Checkpoint:
EcucParamConfContainerDef
- = requiresSymbolicNameValue = true
Fopvl::r;\l;lﬂmltlil;\il;\tt;/: (?5535 upperMultiplicity = 65535
lowerMultiplicity = 1
WdgMDeadlineStopRef: +destination
+eference EcucReferenceDef
requiresSymbolicNameValue = true
WdgMDeadlineMin:
P *tparameter EcucFloatParamDef
min =0
max = INF
WdgMDeadlineMax:
P *tparameter EcucFloatParamDef
min =0
max = INF

Figure 10.10: Configuration Container WdgMDeadlineSupervision

10.2.13 WdgMExternallogicalSupervision

[ECUC_WdgM_00319] Definition of EcucParamConfContainerDef WdgMExternal
LogicalSupervision |

AUTSSAR

Container Name

WdgMExternalLogicalSupervision

Parent Container

WdgMMode

Description This container collects all configuration parameters for Logical Supervision for one
external graph.
Multiplicity 0..65535
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
WdgMExternalCheckpointFinalRef 1..65535 [ECUC_WdgM_00324]
WdgMExternalCheckpointInitialRef 1..65535 [ECUC_WdgM_00323]
Included Containers
Container Name Multiplicity Dependency
WdgMCrossClusterTransition 0..65535 This container configures a cross cluster transition.
A WdgMCrossClusterTransition can be configured
+ from a WdgMCheckpoint to a WdgMTransitionProxy
» from a WdgMTransitionProxy to a WdgMCheckpoint
« from a WdgMTransitionProxy to another WdgMTransitionProxy
(in Host Software Cluster only)
« from a WdgMTransitionProxy to the identical WdgMTransition
Proxy (in Application Software Cluster only for the case that
no WdgMCheckpoint has to be reached in the Application
Software Cluster)
« from a WdgMCheckpoint to a WdgMCheckpoint (in case the
cross cluster transition graph is entirely described with Wdg
MCrossClusterTransition containers)
Tags: atp.Status=draft
WdgMExternalTransition 0..65535 This container collects the Checkpoints for an External Transition
across Supervised Entities.
WdgMTransitionProxy 0..65535 The WdgMTransitionProxy defines a proxy for a transition

between the Host Software Cluster and an Application Software
Cluster and vice versa. From the Host Software Cluster
perspective a Cross Cluster Transition graph leaves the host
after the transition which has the WdgMTransitionProxy as a
destination or initial reference and returns in this Wdg
MTransitionProxy after the configured transitions are occurred in
the related Application Software Cluster. Afterwards the
transition in the host are expected which are referencing the
WdgMTransitionProxy by a source or final reference.

Tags: atp.Status=draft

]

[ECUC_WdgM_00324]
CheckpointFinalRef |

Definition of EcucChoiceReferenceDef WdgMExternal

Parameter Name

WdgMExternalCheckpointFinalRef

Parent Container

WdgMExternalLogicalSupervision

Description

This is the reference to the final Checkpoint(s) for this External Graph which can end
with a WdgMCheckpoint or in case of cross cluster transitions with a WdgMTransition
Proxy. Both WdgMCheckpoint(s) and WdgMTransitionProxy(s) could be mixed inside
the same WdgMExternalLogicalSupervision.

\Y%

AUTSSAR

A
Multiplicity 1..65535
Type Choice symbolic name reference to [WdgMCheckpoint, WdgMTransitionProxy]
Post-Build Variant Multiplicity true
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_WdgM_00323]
CheckpointinitialRef |

Parameter Name

Definition of EcucChoiceReferenceDef WdgMExternal

WdgMExternalCheckpointlnitialRef
WdgMExternallLogicalSupervision

Parent Container

Description This is the reference to the initial Checkpoint(s) for this External Graph which can start
with a WdgMCheckpoint or in case of cross cluster transitions with a WdgMTransition
Proxy. Both WdgMCheckpoint(s) and WdgMTransitionProxy(s) could be mixed inside
the same WdgMExternalLogicalSupervision.
Multiplicity 1..65535
Type Choice symbolic name reference to [WdgMCheckpoint, WdgMTransitionProxy]
Post-Build Variant Multiplicity true
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

WdgMMode:

EcucParamConfContainerDef

upperMultiplicity = 255
lowerMultiplicity = 1

+subContaineI

WdgMExternalLogicalSupervision:

7 WdgMExternal Transition:
EcucParamConfContainerDef i SLELUNSUANTENTEEETE
*subContainer EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 0 upperMultiplicity = 65535

lowerMultiplicity = 0

WdgMExternal CheckpointinitialRef: WdgMCheckpoint:
+reference EcucChoiceReferenceDef +destination | EcucParamConfContainerDef
lowerMultiplicity = 1 upperMultiplicity = 65535
upperMultiplicity = 65535 lowerMultiplicity = 1
requiresSymbolicNameValue = true

WdgMExternal CheckpointFinalRef: o
+reference EcucChoiceReferenceDef +destination

lowerMultiplicity = 1
upperMultiplicity = 65535
requiresSymbolicNameValue = true

Figure 10.11: Configuration Container WdgMExternalLogicalSupervision

10.2.14 WdgMExternalTransition

[ECUC_WdgM_00320] Definition of EcucParamConfContainerDef WdgMExternal
Transition |

Container Name WdgMExternalTransition

Parent Container WdgMExternallLogicalSupervision

Description This container collects the Checkpoints for an External Transition across Supervised
Entities.

Multiplicity 0..65535

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
WdgMExternalTransitionDestRef 1 [ECUC_WdgM_00322]
WdgMExternalTransitionSourceRef 1 [ECUC_WdgM_00321]

No Included Containers

]

[ECUC_WdgM_00322] Definition of EcucReferenceDef WdgMEXxternalTransition
DestRef |

Parameter Name WdgMExternalTransitionDestRef
Parent Container WdgMExternalTransition
Description This is the reference to the destination Checkpoint of an External Transition.

V

AUTSSAR

A
Multiplicity 1
Type Symbolic name reference to WdgMCheckpoint
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_WdgM_00321] Definition of EcucReferenceDef WdgMEXxternalTransition

SourceRef |

Parameter Name

WdgMExternalTransitionSourceRef

Parent Container

WdgMExternalTransition

Description This is the reference to the source Checkpoint of an External Transition.
Multiplicity 1
Type Symbolic name reference to WdgMCheckpoint
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

WdgMExtemal Transition:

EcucParamConfContainerDef

upperMultiplicity = 65535
lowerMultiplicity = 0

WdgMCheckpoint:

EcucParamConfContainerDef

WdgMExtemalTransitionSourceRef:
EcucReferenceDef

+destination

upperMultiplicity = 65535
lowerMultiplicity = 1

requiresSymbolicNameValue = true

WdgMExternal TransitionDestRef: +degtination

EcucReferenceDef

+reference

requiresSymbolicNameValue = true

Figure 10.12: Configuration Container WdgMExternalTransition

10.2.15 WdgMTrigger

[ECUC_WdgM_00331] Definition of EcucParamConfContainerDef WdgMTrigger |

Container Name

WdgMTrigger

Parent Container

WdgMMode

Description This container collects all configuration parameters for the triggering of hardware
watchdogs.
Multiplicity 0..255

Configuration Parameters

AUTSSAR

Included Parameters

Parameter Name Multiplicity ECUC ID

WdgMTriggerConditionValue 1 [ECUC_WdgM_00333]
WdgMWatchdogMode 1 [ECUC_WdgM_00332]
WdgMTriggerWatchdogRef 1 [ECUC_WdgM_00334]

| No Included Containers

]

[ECUC_WdgM_00333]
tionValue |

Definition of EcuclntegerParamDef WdgMTriggerCondi-

Parameter Name

WdgMTriggerConditionValue

Parent Container

WdgMTrigger

Description This parameter shall contain the value that is passed to Wdglf_SetTriggerCondition for
this watchdog.

Multiplicity 1

Type EcuclntegerParamDef

Range 1.. 65535

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_WdgM_00332] Definition of EcucEnumerationParamDef WdgMWatchdog

Mode |
Parameter Name WdgMWatchdogMode
Parent Container WdgMTrigger

Description This parameter contains the watchdog mode that shall be used for the referenced
watchdog in this Watchdog Manager mode.
Implementation Type: Wdglf_ModeType

Multiplicity 1

Type EcucEnumerationParamDef

Range WDGIF_FAST_MODE -

WDGIF_OFF_MODE -

WDGIF_SLOW_MODE -

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

AUTSSAR

[ECUC_WdgM_00334] Definition of EcucReferenceDef WdgMTriggerWatchdog
Ref |

Parameter Name WdgMTriggerWatchdogRef

Parent Container WdgMTrigger

Description This parameter is a reference to the configured watchdog.

Multiplicity 1

Type Reference to WdgMWatchdog

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

WdgMTrigger: +literal| WDGIF_FAST _MODE:
EcucParamConfContainerDef EcucEnumerationLiteral Def
lowerMultiplicity = 0 l
upperMultiplicity = 255
+parameter WdgMWatchdogMode: +literal WDGIF_SLOW_MODE:
o EcucEnumerationParamDef ' @—————— EcucEnumerationLiteralDef
? +literal WDGIF_OFF_MODE:

EcucEnumerationLiteral Def

parameter WdgMTriggerConditionValue:
4

EcuclintegerParamDef
>

min =1
max = 65535

+reference WdgMTriggerWatchdogRef:
> EcucReferenceDef

+destination
WdgMWatchdog: WdgMWatchdogName:
EcucParamConfContainerDef +parameter EcucStringParamDef

upperMultiplicity = 255
lowerMultiplicity = 0

Figure 10.13: Configuration Container WdgMTrigger

10.2.16 WdgMLocalStatusParams

[ECUC_WdgM_00325] Definition of EcucParamConfContainerDef WdgMLocal
StatusParams |

AUTSSAR

Container Name WdgMLocalStatusParams

Parent Container WdgMMode

Description This container collects all configuration parameters for the Local Status of a Supervised
Entity.

Multiplicity 0..65535

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

WdgMPFailedAliveSupervisionRefCycleTol 1 [ECUC_WdgM_00327]

WdgMLocalStatusSupervisedEntityRef 1 [ECUC_WdgM_00326]

No Included Containers

]

[ECUC_WdgM_00327] Definition of EcuclntegerParamDef WdgMFailedAliveSu-

pervisionRefCycleTol |

Parameter Name

WdgMFailedAliveSupervisionRefCycleTol

Parent Container

WdgMLocalStatusParams

Description This parameter shall contain the acceptable amount of reference cycles with incorrect/
failed alive supervisions for this Supervised Entity.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..255

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Dependency

]

[ECUC_WdgM_00326] Definition of EcucReferenceDef WdgMLocalStatusSuper-

visedEntityRef |

Parameter Name

WdgMLocalStatusSupervisedEntityRef

Parent Container

WdgMLocalStatusParams

Description This is the reference to the Supervised Entity for which the Local Status parameters
are specified.

Multiplicity 1

Type Symbolic name reference to WdgMSupervisedEntity

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

AUTSSAR

| Dependency
WdgMLocalStatusParams: . q WdgMSupervisedEntity:
A WdgMLocalStatusSupervisedEntityRef: inati
EcucParamConfContainerDef +reference 9 EcucRefer:nceDef 1 +destination | gcjicparam ConfContainerDef
upperMultiplicity = 65535 X X _ upperMultiplicity = 65535
lowerMultiplicity = 0 requiresSymbolicNameValue = true lowerMultiplicity = 0

+parameter| WdgMFailedAliveSupervisionRefCycleTol:
EcuclntegerParamDef

min =0
max = 255

Figure 10.14: Configuration Container WdgMLocalStatusParams

10.2.17 WdgMMainFunction

[ECUC_WdgM_00373] Definition of EcucParamConfContainerDef WdgMMain
Function

Status: DRAFT

Container Name WdgMMainFunction
Parent Container WdgMGeneral
Description Reference to the WdgMinstanceMainFunction which this Supervised Entity belongs to.

Relevant to Alive Supervision and Deadline Supervision
Tags: atp.Status=draft

Multiplicity 0.*
Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -

Post-build time -

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID
WdgMMainFunctionPartitionRef 0..1 [ECUC_WdgM_00369]

No Included Containers

AUTSSAR

[ECUC_WdgM_00369] Definition of EcucReferenceDef WdgMMainFunctionParti-
tionRef

Status: DRAFT

Parameter Name WdgMMainFunctionPartitionRef

Parent Container WdgMMainFunction

Description Reference to EcucPartition, where the according WdgM_MainFunction instance is
assigned to. For the software architecture with single partition, this reference is
unnecessary.
Tags: atp.Status=draft

Multiplicity 0..1

Type Reference to EcucPartition

Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

WdgMGeneral:

EcucParamConfContainerDef

+subContainer

. EcucPartition:
WdgMMainFunction: WdgMMainFunctionPartitionRef: EcucParamConfContainerDef
EcucParamConfContainerDef +reference EcucReferenceDef +destination| ——————————————
X A lowerMultiplicity = 0
lowerMultiplicity = 0 lowerMultiplicity = 0 u erMuItipIicity —o
upperMultiplicity = * upperMultiplicity = 1 pp plicity

(from EcucPartition)

Figure 10.15: Configuration Container WdgMMainFunction

10.2.18 WdgMMainFunctionModeProps

[ECUC_WdgM_00372] Definition of EcucParamConfContainerDef WdgMMain
FunctionModeProps

Status: DRAFT

AUTSSAR

Container Name WdgMMainFunctionModeProps
Parent Container WdgMMode
Description This container provides configuration values for a WdgMMainFunction which apply in a
specific WdgMMode.
Tags: atp.Status=draft
Multiplicity 0..*
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
WdgMMainFunctionModePropsTimePeriod 1 [ECUC_WdgM_00370]
WdgMMainFunctionModePropsMainFunctionRef 1 [ECUC_WdgM_00371]

No Included Containers

]

[ECUC_WdgM_00370]
ModePropsTimePeriod

Status: DRAFT

Definition of EcucFloatParamDef WdgMMainFunction

Parameter Name

WdgMMainFunctionModePropsTimePeriod

Parent Container

WdgMMainFunctionModeProps

Description The period between successive calls to according instance of WdgM_MainFunction in
seconds. This parameter may be used by the WdgM generator to transform the values
of the WdgMModes and/or WdhMSupervisedEntities timing configuration parameters
of the WdgM module to internal implementation specific counter or tick values. The
WdgM module’s internal timing handling is implementation specific. The WdgM module
(generator) may rely on the fact that Wdg_MainFunction is scheduled according to the
value configured here.

Unit: [s]
Tags: atp.Status=draft

Multiplicity 1

Type EcucFloatParamDef

Range 10 .. INF[

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

AUTSSAR

[ECUC_WdgM_00371] Definition of EcucReferenceDef WdgMMainFunctionMode
PropsMainFunctionRef

Status: DRAFT

Parameter Name

WdgMMainFunctionModePropsMainFunctionRef

Parent Container

WdgMMainFunctionModeProps

Description Reference to the WdgMMainFunction for which the WdgMMainFunctionModeProps
apply.
Tags: atp.Status=draft

Multiplicity 1

Type Reference to WdgMMainFunction

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

10.2.19 WdgMCrossClusterTransition

[ECUC_WdgM_00376] Definition of EcucParamConfContainerDef WdgMCross

ClusterTransition
Status: DRAFT

Container Name

WdgMCrossClusterTransition

Parent Container

WdgMExternalLogicalSupervision

Description

This container configures a cross cluster transition.
A WdgMCrossClusterTransition can be configured
« from a WdgMCheckpoint to a WdgMTransitionProxy

« from a WdgMTransitionProxy to a WdgMCheckpoint

« from a WdgMTransitionProxy to another WdgMTransitionProxy (in Host Software
Cluster only)

« from a WdgMTransitionProxy to the identical WdgMTransitionProxy (in Application
Software Cluster only for the case that no WdgMCheckpoint has to be reached in the
Application Software Cluster)

« from a WdgMCheckpoint to a WdgMCheckpoint (in case the cross cluster transition
graph is entirely described with WdgMCrossClusterTransition containers)

Tags: atp.Status=draft

Multiplicity

0..65535

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
WdgMCrossClusterTransitionDestRef 1 [ECUC_WdgM_00375]
WdgMCrossClusterTransitionSource Ref 1 [ECUC_WdgM_00374]

AUTSSAR

| No Included Containers

]

[ECUC_WdgM_00375] Definition of EcucChoiceReferenceDef WdgMCrossClus-

terTransitionDestRef
Status: DRAFT

Parameter Name

WdgMCrossClusterTransitionDestRef

Parent Container

WdgMCrossClusterTransition

Description This is the reference to the destination of a cross cluster transition.
Tags: atp.Status=draft
Multiplicity 1
Type Choice symbolic name reference to [WdgMCheckpoint, WdgMTransitionProxy]
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time -

Dependency

]

[ECUC_WdgM_00374] Definition of EcucChoiceReferenceDef WdgMCrossClus-

terTransitionSourceRef
Status: DRAFT

Parameter Name

WdgMCrossClusterTransitionSourceRef

Parent Container

WdgMCrossClusterTransition

Description This is the reference to the source of a cross cluster transition.
Tags: atp.Status=draft
Multiplicity 1
Type Choice symbolic name reference to [WdgMCheckpoint, WdgMTransitionProxy]
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time -

Dependency

AUTSSAR

WdgMMode:
EcucParamConfContainerDef

upperMultiplicity = 255
lowerMultiplicity = 1

+subContainer

WdgMExternalLogicalSupervision: WdgMExtemalTransition:
EcucParamConfContainerDef +subContainer| £ o0 5= S o ntaineDef

upperMultiplicity = 65535

Multiplicity =
lowerMultiplicity = 0 UTen ARy = G

lowerMultiplicity = 0

WdgMCrossClusterT ransition: +reference | WdgMCrossClusterTransitionSourceRef:
EcucParamConfContainerDef o EcucChoiceReferenceDef

upperMultiplicity = 65535 requiresSymbolicNameValue = true |——

+subContainer lowerMultiplicity = 0

+reference| WdgMCrossClusterT ransitionDestRef:
EcucChoiceReferenceDef

requiresSymbolicNameValue = true

+destination +destination
WdgMExtemalCheckpointinitialRef: +degtination WdgMCheckpoint:
ference EcucChoiceReferenceDef EcucParamConfContainerDef
lowerMultiplicity = 1 upperMultiplicity = 65535

upperMultiplicity = 65535 —

lowerMultiplicity = 1
requiresSymbolicNameValue = true

WdgMExtemalCheckpointFinal Ref:
+reference EcucChoiceReferenceDef —

+destination

lowerMultiplicity = 1
upperMultiplicity = 65535
requiresSymbolicNameValue = true

+subContainer

WdgMTransitionProxy: +destination
EcucParamConfContainerDef
+destination
lowerMultiplicity = 0
upperMultiplicity = 65535 +destination
+destination
CpSoftwareClusterResource
SoftwareCluster::CpSoftwareClusterServiceResource
)
|
+reference WdgMResourceRef: EcucForeignReferenceDef

destinationType = CP-SOFTWARE-CLUSTER-SERVICE-RESOURCE

Figure 10.16: Configuration Container WdgMCrossClusterTransition (for Clustered
Software Architecture)

AUTSSAR

10.2.20 WdgMTransitionProxy

[ECUC_WdgM_00364] Definition of EcucParamConfContainerDef WdgMTransi-
tionProxy

Status: DRAFT

Container Name WdgMTransitionProxy
Parent Container WdgMExternalLogicalSupervision
Description The WdgMTransitionProxy defines a proxy for a transition between the Host Software

Cluster and an Application Software Cluster and vice versa. From the Host Software
Cluster perspective a Cross Cluster Transition graph leaves the host after the transition
which has the WdgMTransitionProxy as a destination or initial reference and returns in
this WdgMTransitionProxy after the configured transitions are occurred in the related
Application Software Cluster. Afterwards the transition in the host are expected which
are referencing the WdgMTransitionProxy by a source or final reference.

Tags: atp.Status=draft

Multiplicity 0..65535
Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID
WdgMResourceRef 1 [ECUC_WdgM_00367]

No Included Containers

]

For parameter table [ECUC_WdgM_00367] WdgMResourceRef, see definition below
container WdgMBaseSocket.

10.2.21 wdgMBaseSocket

[ECUC_WdgM_00377] Definition of EcucParamConfContainerDef WdgMBase
Socket

Status: DRAFT

AUTSSAR

Container Name WdgMBaseSocket
Parent Container WdgMGeneral
Description This container configures how many EcucPartitions specific infrastructure links are

required for the WdgM instances in Application Software Clusters provided by the Host
Software Cluster. Such infrastructure links serve for: the initialization of Application
Software Cluster WdgM instances by Host WdgM instance the transmission of
supervision results from Application Software Cluster WdgM instances to Host WdgM
instance any other implementation specific purpose which is need for the interaction of
Application Software Cluster WdgM instances and Host WdgM instance

If the infrastructure connection is specific to one or several EcucPartition(s) the Wdg
MSocketEcucPartitionRef(s) denotes the applicable EcucPartition.

Tags: atp.Status=draft

Multiplicity 0.*
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
WdgMResourceRef 1 [ECUC_WdgM_00367]
WdgMSocketEcucPartitionRef 0..* [ECUC_WdgM_00366]

No Included Containers

]

[ECUC_WdgM_00367] Definition of EcucForeignReferenceDef WdgMResource
Ref

Status: DRAFT

Parameter Name WdgMResourceRef
Parent Container WdgMBaseSocket, WdgMTransitionProxy
Description Reference to the CpSoftwareClusterServiceResource.
Tags: atp.Status=draft
Multiplicity 1
Type Foreign reference to CP-SOFTWARE-CLUSTER-SERVICE-RESOURCE
Dependency

AUTSSAR

[ECUC_WdgM_00366] Definition of EcucReferenceDef WdgMSocketEcucParti-
tionRef

Status: DRAFT

Parameter Name WdgMSocketEcucPartitionRef

Parent Container WdgMBaseSocket

Description Reference to the EcucPartition.
Tags: atp.Status=draft

Multiplicity 0..”

Type Reference to EcucPartition

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

Identifiable

SoftwareCluster::
CpSoftwareClusterResource

+ globalResourceld: Positivelnteger [0..1]
+ isMandatory: Boolean [0..1]

WdgMGeneral:
EcucParamConfContainerDef

SoftwareCluster::CpSoftwareClusterService Resource

)
+subContainer ll
WdgMBaseSocket: +reference WdgMResourceRef: EcucForeignReferenceDef

EcucParamConfContainerDef

destinationType = CP-SOFTWARE-CLUSTER-SERVICE-RESOURCE

lowerMultiplicity = 0
upperMultiplicity = *

EcucPartition:
WdgMSocketEcucPartitionRef: EcucParamConfContainerDef

+reference EcucReferenceDef

+destination

lowerMultiplicity = 0
lowerMultiplicity = 0 upperMultiplicity = *
upperMultiplicity = *

(from EcucPartition)

Figure 10.17: Configuration Container wdgMBaseSocket (for Clustered Software Archi-
tecture)

10.3 Published Information

For details refer to [4] Chapter 10.3 “Published Information”.

AUTSSAR

A Example Implementation of Alive Supervision
Algorithm

For the Alive Supervision, an algorithm to detect mismatching timing constraints of the
Checkpoints is provided in order to clearly define the parameters needed for the
Alive Supervision.

Doing this with incremental Alive Counters for the Checkpoints brings up a repre-
sentation of aliveness by a counted number of alive indications in relationship with the
Alive Supervision period.

With this approach, it must be possible to deal with two different scenarios:

A) The alive indications of a Checkpoint are expected to occur at least one time within
one supervision cycle. The number of alive indications (Al) within one supervision cycle
(SC) shall be counted.

B) The alive indication of a Checkpoint is expected to occur less often than the su-
pervision cycle. The number of supervision cycles (SC) between two alive indications
(Al) has to be counted.

To cope with these two scenarios, it is necessary to count both Al and SC.

We also need the parameter WdgMExpectedAliveIndications
[ECUC_WdgM 00311] (Ea1) which represents the expected amount of alive in-
dications of the Checkpoint within the referenced amount of supervision cycles also
called Supervision Reference Cycle [ECUC_WdgM_00310] (SrRcC). The value
of this parameter should have been determined during the design phase and defined
by configuration.

To avoid the detection of too many supervision errors for the Checkpoints,
there are parameters WdgMMinMargin [ECUC_WdgM_00312] and WdgMMinMargin
[ECUC_WdgM_00313] to define tolerances on the timing constraints.

WdgMMinMargin represents the allowed number of missing executions of the Check -
point.

WdgMMaxMargin represents the allowed number of additional executions of the
Checkpoint.

Therefore, the algorithm becomes:

(n (Al) - n (SC) + f(EAI, SRC) <= WdgMMinMargin) and
(n (Al) - n (SC) + f(EAI, SRC) >= - WdgMMinMargin),
where the function f is defined as

f(EAI, SRC) = SRC - EAT .

Note that f(EAT, SRC) has a constant value and can be preliminary computed if EAT
and SRC are constant.

AUTSSAR

A.1 Scenario A

The alive indications (Al) of a Checkpoint are expected to occur at least one time
within one supervision cycle.

Example: 2 alive indications are expected in one supervision cycle which represents
the Supervision Reference Cycle then the value of f(EAT, SRC) is:

f(EAI, SRC)=1-2=-1

When SC occurs, the number of supervision cycles is incremented (n (SC) = 1) and the
regularly checkup is performed during each supervision cycle (Supervision Ref-—
erence Cycle = 1 supervision cycle) with the algorithm.

After performing the check, the current numbers of alive indications and supervision
cycles are reset.

For our examples, Max and Min margins are set to 0 for more simplicity, so the algo-
rithm used is

n (Al) - n (SC) + f(EAT, SRC) = 0.

This brings the compare algorithm to a negative result if not enough alive indications
occurred before the supervision cycle. If the number of alive indications fits exactly
to the expected number, the result is 0. If more alive indications have occurred, the
number is bigger than 0.

The result of the algorithm represents exactly the number of “extra” alive indications
within the last supervision cycle.

AUTSSAR

scenario A : one or several alive indications within one
supervision cycle

t (WdgM_MainFunction) T (SC) Alive Indications for SE (A) missing Alive Indication for SE (A)
i i

¥ r"’ \\E‘\ i "
i\ “-.,__
¥ 1 “
£ i i
4 >t
n
5
| "Gy nAD) g v v v v v v v
3
2
1 H
[] [] [] [] [] >
t
| reset »
parior chck of " v A ‘a\lve counter vy A v A v A
alive counter SC 1 and N SC 2 sSC 3 SC 4
(reference cycle) supervision
counter t
—» nsos aimess [Ccompies svanes | - | >
n () : counted number of
Al - alive indications
SC : supervision cycle CYCLE 1: n(AiI:y)cle_ﬂn (SC)+ f(EAl)=2-1-1=0 —>» ok.
f(EAI) : -expected n(AI)-‘- 1=-1 CYCLE 2 - n(AI)I—zn(SC)+ f(EAl) = 2-1-1=0 —» gk
MinMargin = MaxMargin = 0 e not
CYCLE 3: N(AD,;N(SC) + f(EAD) = 1-1-1=-1 —* .k
supervision reference cycle = 1 SC crele ot
CYCLE 41 n(A) -n(SC)+ f(EA) = 3-1-1=1 E— ok

in this example :expected n(Al)= 2 ;
2 expected alive indications within one
supervision cycle ;

Figure A.1: Alive-supervision algorithm — Scenario A

A.2 ScenarioB

The supervision cycle is expected more often than the alive indication. In this case, we
have to count the supervision cycles, which have occurred, until the Alive Counter is
incremented again. The check of aliveness should be performed during each Super-
vision Reference Cycle and the same algorithm should be used:

n (Al) - n (SC) + f(EAT, SRC) = 0

The alive indication must occur at least within a predefined number of supervision
cycles which represent the Supervision Reference Cycle.

Example: one alive indication is expected within 2 supervision cycles (Supervision
Reference Cycle = 2 supervision cycles):

f(EAI, SRC)=2-1 = +1

The Alive Counter has to be incremented by 1 with every alive indication. Alive-
ness should be evaluated in the supervision cycle corresponding to the Supervi-
sion Reference Cycle. The compare-conditions of the algorithm remain in the

AUTSSAR

same manner, but the detected incrementation of the Alive Counter should also invoke
a reset of the Alive Counter and Supervision Counter after this compare-operation.

t

(WdgM_MainFunction_ T (SC) Alive Indications for SE(B) missing Alive Indication for SE(B)
AlivgSupervision) T E
i Y
H | 1 1 1 1 | 1 1 1 1
i |
i i i [i i i
',I | | 1 ! 1 1 | | 1 1 1 1 1
i | | | | | | | | | | | | | t
n
b su r:rs\ﬁf:ion reset
5 n{Al) cpounter n(8C) supervision counter
4 - ; (cmssan sancton comgien)
T —
3 — d)i and -,
_ o an H alive counter,
2 alive counter
1 — '—l l
— - >t
perform check of ¥
alive counter © - gcﬁ sc2 gcg gct scs gc";
(reference cycle) SC 4
‘.l [reTEa— | com.pled alnencss | [—— | continucus dveness }._ t
n (L counted number of CYCLEL n(Al).n(SC)£f(EAL2-2+1=0 —» ok
Al alive indication
SC - supervision cycle
CYCLE 3 - - = —_—
f(EAIexpected n(SC) - 1 = 1 = nA)n O LHEALA 24120 ok
MinMargin = MaxMargin = 0
supervision reference cycle =2 SC CYCLES: n{Al)-n(SC)+fEAL H-2+1=-1 ——— > notok

in this example - expected n(SC) =2 ;
max. 2 expected supervision cycles, before Al must accur ;

CYCLEZ: n(Alop(SO+fEAL=D-1+1=0 ————> ok

Figure A.2: Alive-supervision algorithm — Scenario B

AUTSSAR

B Not applicable requirements

[SWS_WdgM_NA_00345]
Upstream requirements: SRS_BSW_00004, SRS_BSW_00159, SRS_BSW_00167, SRS_BSW_
00168, SRS BSW 00170, SRS BSW 00344, SRS BSW 00369,
SRS BSW 00375, SRS BSW 00380, SRS BSW 00383, SRS BSW _
00384

[These requirements are not applicable to this specification. |

AUTSSAR

C Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

C.1 Traceable item history of this document according to AU-
TOSAR Release R24-11

C.1.1 Added Specification Iltems in R24-11

Number Heading

[SWS_WdgM_91005] | Global Supervision Status

[SWS_WdgM_91006] | Local Supervision Status

Table C.1: Added Specification Iltems in R24-11

C.1.2 Changed Specification Items in R24-11

none

C.1.3 Deleted Specification ltems in R24-11

none

C.1.4 Added Constraints in R24-11

none

C.1.5 Changed Constraints in R24-11

none

C.1.6 Deleted Constraints in R24-11

none

AUTSSAR

C.2 Traceable item history of this document according to AU-
TOSAR Release R25-11

C.2.1 Added Specification Items in R25-11

none

C.2.2 Changed Specification Items in R25-11

Number Heading

[ECUC_WdgM _

00365] Definition of EcucEnumerationParamDef WdgMSwClusterSupport

[SWS_WdgM_00011] | Definition of imported datatypes of module WdgM

[SWS_WdgM _00186]

[SWS_WdgM_00269]

[SWS_WdgM_00286]

[SWS_WdgM _00373]

Table C.2: Changed Specification Items in R25-11

C.2.3 Deleted Specification Iltems in R25-11

Number Heading

[SWS_WdgM _00410]

Table C.3: Deleted Specification Items in R25-11

C.2.4 Added Constraints in R25-11

none

C.2.5 Changed Constraints in R25-11

Number Heading

[SWS_

WdgM_ WdgMBaseSocket relates only to a CpSoftwareClusterServiceResource of
CONSTR_ category SWCLUSTER_RES_WDGM_BASE_SOCKET

06518]

Table C.4: Changed Constraints in R25-11

AUTSSAR

C.2.6 Deleted Constraints in R25-11

none

	1 Introduction and functional overview
	1.1 Supervised Entities and Checkpoints
	1.2 Interaction of Supervision Mechanisms
	1.3 Supervision Functions
	1.3.1 Alive Supervision
	1.3.2 Deadline Supervision
	1.3.3 Logical Supervision

	1.4 Watchdog Handling
	1.5 Error Handling
	1.5.1 Error Handling in the Supervised Entity
	1.5.2 Reset by Hardware Watchdog
	1.5.3 Immediate MCU Reset

	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations and conditions of use
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File Structure
	5.1.1 Code File Structure

	5.2 Version Check

	6 Requirements Tracing
	7 Functional specification
	7.1 Interaction of Supervision Functions
	7.1.1 Overview
	7.1.2 Local Supervision Status
	7.1.3 Global Supervision Status

	7.2 Supervision Functions
	7.2.1 Alive Supervision
	7.2.1.1 Alive Supervision Configuration
	7.2.1.2 Alive Supervision Algorithm

	7.2.2 Deadline Supervision
	7.2.2.1 Deadline Supervision Configuration
	7.2.2.2 Deadline Supervision Algorithm

	7.2.3 Logical Supervision
	7.2.3.1 Logical Supervision Configuration
	7.2.3.2 Logical Supervision Algorithm

	7.3 Error Handling / Failure Recovery
	7.3.1 RTE Mode Mechanism Notifications
	7.3.2 Report to DEM in WDGM_GLOBAL_STATUS_STOPPED
	7.3.3 Not Setting the Watchdog Trigger Condition
	7.3.4 MCU Reset

	7.4 Watchdog Handling
	7.4.1 Support for Multiple Watchdog Instances
	7.4.2 Setting the Trigger Conditions

	7.5 Switching Modes
	7.5.1 Effect on Supervision Status
	7.5.2 Effect on Watchdogs
	7.5.3 Watchdog Handling during Sleep

	7.6 Watchdog Manager Configuration
	7.6.1 Mode-independent Supervision Settings
	7.6.1.1 Supervised Entity
	7.6.1.2 Logical Supervision of Internal Graphs

	7.6.2 Mode-Dependent Parameters
	7.6.2.1 Mode
	7.6.2.2 Logical Supervision of External Graphs
	7.6.2.3 Alive Supervision
	7.6.2.4 Deadline Supervision

	7.7 Support for Clustered Software Architecture using Software Cluster Connector (SwCluC)
	7.7.1 Software Architectural Assumptions and Constraints
	7.7.2 Configuration Aspects
	7.7.2.1 Configuration for Cross-Cluster External Graphs

	7.8 Error Classification
	7.8.1 Development Errors
	7.8.2 Runtime Errors
	7.8.3 Production Errors
	7.8.4 Extended Production Errors

	7.9 Security Events

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 WdgM_ConfigType

	8.3 Function definitions
	8.3.1 WdgM_Init
	8.3.2 WdgM_DeInit
	8.3.3 WdgM_GetVersionInfo
	8.3.4 WdgM_SetMode
	8.3.5 WdgM_GetMode
	8.3.6 WdgM_CheckpointReached
	8.3.7 WdgM_GetLocalStatus
	8.3.8 WdgM_GetGlobalStatus
	8.3.9 WdgM_PerformReset
	8.3.10 WdgM_GetFirstExpiredSEID

	8.4 Callback notifications
	8.5 Scheduled functions
	8.5.1 WdgM_MainFunction

	8.6 Expected interfaces
	8.6.1 Mandatory interfaces
	8.6.2 Optional interfaces
	8.6.3 Configurable interfaces

	8.7 Service Interfaces
	8.7.1 Ports and Port Interface for Supervision
	8.7.1.1 General Approach
	8.7.1.2 Data Types
	8.7.1.3 Port Interfaces
	8.7.1.4 Service Ports
	8.7.1.5 Error Codes

	8.7.2 Ports and Port Interface for Status Reporting
	8.7.2.1 General Approach
	8.7.2.2 Data Types
	8.7.2.3 Port Interfaces
	8.7.2.4 Mode Ports

	9 Sequence diagrams
	9.1 Initialization

	10 Configuration specification
	10.1 Parameter Differentiation
	10.1.1 Static Configuration Parameters
	10.1.2 Runtime Configuration Parameters
	10.1.3 Precompile Options

	10.2 Containers and configuration parameters
	10.2.1 Configuration Variants
	10.2.2 WdgM
	10.2.3 WdgMGeneral
	10.2.4 WdgMSupervisedEntity
	10.2.5 WdgMCheckpoint
	10.2.6 WdgMInternalTransition
	10.2.7 WdgMWatchdog
	10.2.8 WdgMConfigSet
	10.2.9 WdgMDemEventParameterRefs
	10.2.10 WdgMMode
	10.2.11 WdgMAliveSupervision
	10.2.12 WdgMDeadlineSupervision
	10.2.13 WdgMExternalLogicalSupervision
	10.2.14 WdgMExternalTransition
	10.2.15 WdgMTrigger
	10.2.16 WdgMLocalStatusParams
	10.2.17 WdgMMainFunction
	10.2.18 WdgMMainFunctionModeProps
	10.2.19 WdgMCrossClusterTransition
	10.2.20 WdgMTransitionProxy
	10.2.21 WdgMBaseSocket

	10.3 Published Information

	A Example Implementation of Alive Supervision Algorithm
	A.1 Scenario A
	A.2 Scenario B

	B Not applicable requirements
	C Change history of AUTOSAR traceable items
	C.1 Traceable item history of this document according to AUTOSAR Release R24-11
	C.1.1 Added Specification Items in R24-11
	C.1.2 Changed Specification Items in R24-11
	C.1.3 Deleted Specification Items in R24-11
	C.1.4 Added Constraints in R24-11
	C.1.5 Changed Constraints in R24-11
	C.1.6 Deleted Constraints in R24-11

	C.2 Traceable item history of this document according to AUTOSAR Release R25-11
	C.2.1 Added Specification Items in R25-11
	C.2.2 Changed Specification Items in R25-11
	C.2.3 Deleted Specification Items in R25-11
	C.2.4 Added Constraints in R25-11
	C.2.5 Changed Constraints in R25-11
	C.2.6 Deleted Constraints in R25-11

