AUTSSAR

Document Title Specification of Watchdog Driver
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 39

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 | R25-11 Release * No content changes.
Management
2024-11-27 | R24-11 gg;if:R * Added support for 12C External WDG
o) Configuration
Management
AUTOSAR
2023-11-23 | R23-11 Release * No content changes
Management
sooo1104 | FoDA1 QELSS:R » Changed ID from [SWS_Wdg_00175] to
o i M [SWS_Wdg_NA_00175]
anagement
2021-11-25 | R21-11 QELSS:R * Removed "E_NOT_OK" return code
o i when development error is reported
Management
AUTOSAR o " e
2020-11-30 R20-11 Release Editorial - reshaped "Error classification
chapter
Management
» Reworked items requiring that triggering
AUTOSAR of the WDG shall be done from interrupt
2019-11-28 | R19-11 | Release routine
Management - Changed Document Status from Final to
published
» Added ECUC_Wdg_00353:
AUTOSAR deEcucPartitionRef
2018-10-31 | 4.4.0 Release « minor corrections / clarifications /
Management

editorial changes; For details please
refer to the ChangeDocumentation

AUTSSAR

AUTOSAR » minor corrections / clarifications /
2017-12-08 4.3.1 Release editorial changes; For details please
Management refer to the ChangeDocumentation

* Removed chapter 10.2.1 "Variants"
including req SWS_Wdg_ 00157, SWS_
Wdg_00158 SWS_Wdg_00159

AUTOSAR * Removed Chapter "7.8 Debugging"
2016-11-30 | 4.3.0 Release - In table ECUC_Wdg_00073 added row
Management for "Supported Config Variants"

* minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

» Debugging support marked as obsolete

AUTOSAR
2015-07-31 | 4.2.2 Release * minor corrections / clarifications /
Management editorial changes; For details please
refer to the ChangeDocumentation
» Adapt specification of extended
AUTOSAR production errors.
2014-10-31 | 4.2.1 Release « WDG_E_INIT_FAILED added (error
Management code is referenced by SWS_
BSWGeneral)
AUTOSAR
2014-03-31 41.3 Release » Minor editorial changes
Management
« Shift Dem_ReportErrorStatus from
AUTOSAR mandatory to optional interfaces
2013-10-31 | 4.1.2 Release « Editorial changes
Management

* Removed chapter(s) on change
documentation

AUTSSAR

AUTOSAR

2013-03-15 | 4.1.1 Administration

» Add chapter for production errors
* Rename MemMap.h to Wdg_MemMap.h
* Remove GPT usage

» Added Subchapter 3.x due to SWS
General Rollout

» Reworked according to the new SWS_
BSWGeneral

» Reworded SWS_Wdg_00018, SWS_
Wdg_00019, SWS_Wdg_00052 for
debugging purpose

2011-12-22 | 4.0.3 AUTQ_SAR_ * DET-Error for Wdg_GetVersionInfo
Administration added
AUTOSAR * Requirement WDG141/WDG143

2010-09-30 | 3.1.5 Administration

removed

AUTOSAR

2010-02-02 | 3.1.4 Administration

» Modifications for windowed watchdog
concept

» Further maintenance for R4.0: see
Chapter 11

* Legal disclaimer revised

AUTOSAR

2008-08-13 | 3.1.1 Administration

* Legal disclaimer revised

AUTOSAR

2007-12-21 | 3.0.1 Administration

* Section 5.1.2 the file include structure
has been changed.

* Section 8.6.2 Dem_ReportErrorStatus
added as optional interfaces.

* Rephrased the requirements WDGO019,
SWS_Wdg_00031, SWS_Wdg_00034.

» Modified sequence diagrams in chapter
9.

« Document meta information extended

« Small layout adaptations made

AUTSSAR

2007-01-24

2.1.15

AUTOSAR
Administration

* In chapter 5.1.2 the file include structure
has been changed to comply with the
SPAL general include structure.

* In chapter WdgDefaultMode has been
added as PC variant and WDGO003 has
been changed to allow passing NULL
pointer.

» For WDGO037 the requirement was
changed to allow configuration of
activation code if the H/W allows for the
same.

» For SWS_Wdg_00078 the requirement
was changed to add reference to
SPI/DIO for accessing the external
watchdog

* Legal disclaimer revised
* Release Notes added
« "Advice for users" revised

« "Revision Information" added

2006-05-16

2.0

AUTOSAR
Administration

» Document structure adapted to common
Release 2.0 SWS Template

2005-05-31

1.0

AUTOSAR
Administration

« Initial Release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

—

Introduction and functional overview
Acronyms and Abbreviations

Related documentation

3.1 Input documents & related standardsandnorms
3.2 Related specification

Constraints and assumptions

4.1 Limitations
4.2 Applicability to cardomains L.

Dependencies to other modules

5.1 Filestructure e
5.1.1 Codefile structure
5.1.2 Headerfilestructure
5.1.3 Versioncheck

5.2 Systemclock

5.3 Onboard communicationhandlers

Requirements Tracing

Functional specification

7.1 Generaldesignrules
7.2 External watchdogdriver
7.3 Internal watchdog driver o
7.4 Triggering concept to support windowed watchdogs
7.5 Error Classification,
7.5.1 DevelopmentErrors
7.52 RuntimeErrors
7.5.3 ProductionErrors oo
7.5.4 Extended ProductionErrors o Lo

API specification

8.1 Importedtypes
8.2 Typedefinitions
8.2.1 Wdg_ConfigType
8.3 Functiondefinitions o
83.1 Wdg_ Init
8.32 Wdg_SetMode
8.3.3 Wdg_SetTriggerCondition
8.3.4 Wdg GetVersioninfo. o
8.4 Callback notifications
8.5 Scheduled functions

10

10
10

11

11
11

12

12
12
13
13
13
13

14

AUTSSAR

8.6 Expectedinterfaces 30
8.6.1 Mandatory interfaces 30
8.6.2 Optionalinterfaces 31
8.6.3 Configurable interfaces 31

9 Sequence diagrams 32
9.1 Watchdog initialization, setting trigger condition and mode. 32
9.2 Data exchange between watchdog driver and hardware 32

10 Configuration specification 34

10.1How toread thischapter 34

10.2Containers and configuration parameters 34
10.21WAg e e 34
10.2.2WdgSettingsFast 40

10.3Published Information. 42
10.3.1 WdgPublishedInformation 42

A Not applicable requirements 44

B Change history of AUTOSAR traceable items 45
B.1 Traceable item history of this document according to AUTOSAR Release

R24-11 . . . e 45
B.1.1 Added Specification ltemsin R25-11 45
B.1.2 Changed Specification Itemsin R25-11 45
B.1.3 Deleted Specification ltemsin R25-11 45
B.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e 45
B.2.1 Added Specification ltemsinR24-11 45
B.2.2 Changed Specification ltemsinR24-11 45
B.2.3 Deleted Specification temsin R24-11 45
B.3 Traceable item history of this document according to AUTOSAR Release
R23-11 . . . e 46
B.3.1 Added Specification ltemsinR22-11 46
B.3.2 Changed Specification ItemsinR22-11 46
B.3.3 Deleted Specification ltemsinR22-11 46
B.3.4 Added Specification Itemsin R23-11 46
B.3.5 Changed Specification Itemsin R23-11 47
B.3.6 Deleted Specification ltemsin R23-11 47

AUTSSAR

1 Introduction and functional overview

This document specifies the functionality, APl and the configuration of the AUTOSAR
Basic Software module watchdog driver (Wdg).

This module provides services for initialization, changing the operation mode and set-
ting the trigger condition (timeout).

The functional requirements and the functional scope are the same for both internal
and external watchdog drivers. Hence the APl is semantically identical.

An internal watchdog driver belongs to the Microcontroller Abstraction Layer (MCAL),
whereas an external watchdog driver belongs to the Onboard Device Abstraction Layer.
Therefore, an external watchdog driver needs other drivers (in MCAL) in order to ac-
cess the microcontroller hardware.

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Watchdog
Driver module that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:

WDG Watchdog (module specific prefix)

Table 2.1: Acronyms and abbreviations used in the scope of this Document

Definitions needed for understanding of the concepts

Definition: Description:

Off-Mode The watchdog hardware is disabled / shut down.

This might be necessary in order to shut down the complete
ECU and not get cyclic resets from a still running external
watchdog.

This mode might not be allowed for safety critical systems.
In this case, the Wdg module has to be configured to prevent
switching to this mode.

Slow-Mode Triggering the watchdog hardware can be done with a long
timeout period.

This mode can e.g. be used during system startup /
initialization phase. E.g. the watchdog hardware is
configured for toggle mode (no constraints on the point in
time at which the triggering is done) and a timeout period of
20 milliseconds.

Fast-Mode Triggering the watchdog hardware has to be done with a
short timeout period.

This mode can e.g. be used during normal operations of the
ECU. E.g. the watchdog hardware is configured for window
mode (triggering the watchdog has to occur within certain
minimum / maximum boundaries within the timeout period)
and a timeout period of 5 milliseconds.

Table 2.2: Terms used in the scope of this Document

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR _CP_SWS BSWGeneral

[3] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[4] Requirements on Watchdog Driver
AUTOSAR_CP_RS_WatchdogDriver

[5] General Requirements on Basic Software Modules
AUTOSAR_CP_RS BSWGeneral

[6] General Requirements on SPAL
AUTOSAR_CP_RS_SPALGeneral

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for Watchdog Driver.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for Watchdog Driver.

AUTSSAR

4 Constraints and assumptions
4.1 Limitations

No limitations.

4.2 Applicability to car domains

No restrictions.

AUTSSAR

5 Dependencies to other modules

A Wdg module for an internal (on-chip) watchdog accesses the microcontroller hard-
ware directly and is located in the Microcontroller Abstraction layer.

A Wdg module for an external watchdog uses other modules (e.g. SPI) to access
the external watchdog device. Such a Wdg module is located in the Onboard Device
Abstraction Layer (see [3]).

[SWS_Wdg_00055] [The Wdg module for an external watchdog driver shall have
source code that is independent of the microcontroller platform. |

5.1 File structure

5.1.1 Code file structure

[SWS_Wdg_00079]
Upstream requirements: SRS_BSW_00346, SRS _BSW 00314, SRS_SPAL_12263

[The code file structure shall not be defined within this specification completely. At this
point it shall be pointed out that the code-file structure shall include the following files
(as far as required; for name expansion see SWS_Wdg_00169):

» Wdg_Lcfg.c - for link time configurable parameters
« Wdg_PBcfg.c - for post build time configurable parameters

In case an internal watchdog servicing is implemented as interrupt routine, code-file
structure shall include Wdg_Irg.c for holding the interrupt frames.

These files shall contain all link time and post-build time configurable parameters. |
Note: These names are required by SRS_BSW_00314 and SRS_BSW_00346
[SWS_Wdg_00169]

Upstream requirements: SRS_BSW_00347

[If more than one watchdog driver instance exists on an ECU (namely an external and
an internal one) the implementer shall provide unique code file names by expanding
the names according to SRS_BSW_00347. |

AUTSSAR

5.1.2 Header file structure

[SWS_Wdg_00170]
Upstream requirements: SRS_BSW_00347

[If more than one watchdog driver instance exists on an ECU (namely an external and
an internal one) the implementer shall provide unique header file names by expanding
the names according to SRS_BSW_00347. |

Note:

In case of multiple watchdog driver instances, the Event |d symbols for production
errors defined in this specification (see SWS_Wdg 00010 and ECUC_Wdg_00148)
might be expanded in the configuration of the DEM in order to make them unique.

5.1.3 Version check

For details refer to [2] Chapter 5.1.8 “Version check”.

5.2 System clock

If the hardware of the internal watchdog depends on the system clock, changes to the
system clock (e.g. PLL on PLL off) may also affect the clock settings of the watchdog
hardware.

5.3 Onboard communication handlers

A Wdg module for an external watchdog device depends on the APl and capabilities of
the used onboard communication handlers or drivers (e.g. SPI handler).

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [4] and links to the fulfill-
ment of these. Please note that if column “Satisfied by” is empty for a specific require-

ment this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00004]

All Basic SW Modules shall perform a
pre-processor check of the versions
of all imported include files

[SWS_Wdg_00086]

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_Wdg_00001]

[SRS_BSW_00167]

All AUTOSAR Basic Software
Modules shall provide configuration
rules and constraints to enable
plausibility checks

[SWS_Wdg_00086]

[SRS_BSW_00314]

All internal driver modules shall
separate the interrupt frame definition
from the service routine

[SWS_Wdg_00079]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_Wdg_00025] [SWS_Wdg_00026]
[SWS_Wdg_00090] [SWS_Wdg_00091]
[SWS_Wdg_00092]

[SRS_BSW_00327]

Error values naming convention

[SWS_Wdg_00010] [SWS_Wdg_00180]
[SWS_Wdg_00181] [SWS_Wdg_00182]
[SWS_Wdg_00183]

[SRS_BSW_00331]

All Basic Software Modules shall
strictly separate error and status
information

[SWS_Wdg_00010] [SWS_Wdg_00180]
[SWS_Wdg_00181] [SWS_Wdg_00182]
[SWS_Wdg_00183]

[SRS_BSW_00335]

Status values naming convention

[SWS_Wdg_00017] [SWS_Wdg_00018]
[SWS_Wdg_00019]

[SRS_BSW_00336]

Basic SW module shall be able to
shutdown

[SWS_Wdg_00031]

[SRS_BSW_00337]

Classification of development errors

[SWS_Wdg_00010] [SWS_Wdg_00035]
[SWS_Wdg_00052]

[SRS_BSW_00343]

The unit of time for specification and
configuration of Basic SW modules
shall be preferably in physical time
unit

[SWS_Wdg_00155]

[SRS_BSW_00346]

All AUTOSAR Basic Software
Modules shall provide at least a basic
set of module files

[SWS_Wdg_00079]

[SRS_BSW_00347]

A Naming seperation of different
instances of BSW drivers shall be in
place

[SWS_Wdg_00169] [SWS_Wdg_00170]
[SWS_Wdg_00172]

[SRS_BSW_00350]

All AUTOSAR Basic Software
Modules shall allow the enabling/
disabling of detection and reporting of
development errors.

[SWS_Wdg_00010]

[SRS_BSW_00358]

The return type of init() functions
implemented by AUTOSAR Basic
Software Modules shall be void

[SWS_Wdg_00106]

[SRS_BSW_00385]

List possible error notifications

[SWS_Wdg_00010] [SWS_Wdg_00180]
[SWS_Wdg_00181] [SWS_Wdg_00182]
[SWS_Wdg_00183]

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00400]

Parameter shall be selected from
multiple sets of parameters after code
has been loaded and started

[SWS_Wdg_00001]

[SRS_BSW_00406]

API handling in uninitialized state

[SWS_Wdg_00019]

[SRS_BSW_00414]

Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_Wdg_00106] [SWS_Wdg_00171]

[SRS_BSW_00426]

BSW Modules shall ensure data
consistency of data which is shared
between BSW modules

[SWS_Wdg_00040]

[SRS_BSW_00429]

Access to OS is restricted

SWS_Wdg_00040]

[SRS_BSW_00466]

Classification of extended production
errors

SWS_Wdg_00180] [SWS_Wdg_00181]

[SRS_SPAL_12057]

All driver modules shall implement an
interface for initialization

[
[
[SWS_Wdg_00182] [SWS_Wdg_00183]
[SWS_Wdg_00100] [SWS_Wdg_00101]

[SRS_SPAL_12064]

All driver modules shall raise an error
if the change of the operation mode
leads to degradation of running
operations

[SWS_Wdg_00016] [SWS_Wdg_00017]

[SRS_SPAL_12092]

The driver’s API shall be accessed by
its handler or manager

[SWS_Wdg_00076]

[SRS_SPAL_12125]

All driver modules shall only initialize
the configured resources

[SWS_Wdg_00100] [SWS_Wdg_00101]

[SRS_SPAL_12163]

All driver modules shall implement an
interface for de-initialization

[SWS_Wdg_00025] [SWS_Wdg_00026]
[SWS_Wdg_00031]

[SRS_SPAL_12263]

The implementation of all driver
modules shall allow the configuration
of specific module parameter types at
link time

[SWS_Wdg_00079]

[SRS_SPAL_12448]

All driver modules shall have a
specific behavior after a development
error detection

[SWS_Wdg_00017] [SWS_Wdg_00090]
[SWS_Wdg_00091] [SWS_Wdg_00092]

[SRS_SPAL_12461]

Specific rules regarding initialization
of controller registers shall apply to all
driver implementations

[SWS_Wdg_00100] [SWS_Wdg_00101]

[SRS_Wdg_12015]

The watchdog driver shall allow the
static configuration of watchdog
modes

[SWS_Wdg_00051] [SWS_Wdg_00160]

[SRS_Wdg_12018]

The watchdog driver shall provide a
service for selecting the watchdog
mode

[SWS_Wdg_00160]

[SRS_Wdg_12019]

The watchdog driver shall provide a
watchdog trigger routine.

[SWS_Wdg_00093] [SWS_Wdg_00094]
[SWS_Wdg_00095] [SWS_Wdg_00134]
[SWS_Wdg_00135] [SWS_Wdg_00144]

[SRS_Wdg_12105]

The watchdog driver shall provide an
initialization service that allows the
selection of one of the statically
configured watchdog modes

[SWS_Wdg_00001] [SWS_Wdg_00100]
[SWS_Wdg_00101]

[SRS_Wdg_12106]

The disabling of the watchdog shall
not be possible

[SWS_Wdg_00025] [SWS_Wdg_00026]

[SRS_Wdg_12165]

For an external watchdog driver the
same requirements shall apply like
for an internal watchdog driver

[SWS_Wdg_00077]

Y%

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Wdg_12166]

A driver for an external SPI watchdog
shall allow the static configuration of
the required SPI parameters

[SWS_Wdg_00078]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 General design rules

[SWS_Wdg_00086]
Upstream requirements: SRS_BSW_00167, SRS_BSW_00004

[The Wdg module shall statically check the configuration parameters (at the latest
during compile time) for correctness. |

[SWS_Wdg_00031]
Upstream requirements: SRS_BSW_00336, SRS_SPAL_12163

[The Wdg module shall not implement an interface for de-initialization/shutdown. If the
watchdog supports a de-initialization/shutdown and the environment allows the usage
of this feature, the de-initialization/shutdown shall be achieved by calling the Wdg_ Set
Mode routine with OFF mode parameter. |

Rationale: Some watchdogs do not support the de-initialization/shutdown functionality
and in some environments this feature must not be used (e.g. in safety critical sys-
tems).

[SWS_Wdg_00040]
Upstream requirements: SRS_BSW_00426, SRS_BSW_00429

[If interrupts have to be disabled in order to ensure data consistency or correct func-
tionality of this module (e.g. while switching the watchdog mode or during the watchdog
trigger routine), this shall be done by using the corresponding BSW Scheduler func-
tionality if possible (this means definition of an exclusive area). The internal watchdog
driver (because it belongs to MCAL) may also directly disable interrupts - see SRS _
BSW_00429. |

[SWS_Wdg_00168] [Depending on a static configuration (see ECUC_Wdg_00147),
the code of the Wdg module is executed either from ROM or from RAM. |

Motivation: For certain use cases, e.g. for flash programming in bootloader mode, the
watchdog module has to be part of an executable which runs in RAM.

Hint: This is more a requirement for the build environment than for the watchdog mod-
ule itself. However, since it might also influence the implementation of the code, it is
stated here and a corresponding configuration parameter is given.

AUTSSAR

7.2 External watchdog driver

[SWS_Wdg_00076]
Upstream requirements: SRS_SPAL_12092

[To access the external watchdog hardware, the corresponding Wdg module instance
shall use the functionality and API of the corresponding handler or driver, e.g. the SPI
handler or DIO driver. |

Note:

The routine servicing an external watchdog may be implemented by usage of an own
internal hardware timer to be independent from other peripherals or by using a GPT
driver callback.

Hint: An external watchdog driver is part of the Onboard Device Abstraction Layer (see
[3]), which excludes direct hardware access.

This architectural discrepancy will be resolved in an upcoming release.

[SWS_Wdg_00077]
Upstream requirements: SRS_Wdg_12165

[A Wdg module for an external watchdog shall satisfy the same functional require-
ments and offer the same functional scope as a Wdg module for an internal watchdog.
Hence their respective APIs are semantically identical. |

[SWS_Wdg_00078]
Upstream requirements: SRS_Wdg_12166

[The Wdg module shall add all parameters required for accessing the external watch-
dog hardware, e.g. the used SPI channel or DIO port, to the module’s published pa-
rameters and to the module’s configuration parameters. |

7.3 Internal watchdog driver

[SWS_Wdg_00161] [To access the internal watchdog hardware, the corresponding
Wdg module instance shall access the hardware for watchdog servicing directly. |

Hint: An internal watchdog driver is part of the Microcontroller Abstraction Layer (see
[3]), which allows direct hardware access.

Note:

The routine servicing an internal watchdog may be implemented by usage of an internal
hardware timer to be independent from other peripherals or by using a GPT driver
callback."

AUTSSAR

If the watchdog servicing routine is implemented as an interrupt routine (i.e. as a
cat1 or cat2 interrupt routine and not via the GPT), it shall be described in the Basic
Software Module Description and the implementation shall follow the requirements for
interrupt handling as given by [5] and [6] (SRS_BSW 00427, SRS _BSW_00325, SRS _
BSW_00439, SRS_BSW_00314, SRS_BSW_00429, SRS_SPAL_12129).

7.4 Triggering concept to support windowed watchdogs

In former versions of this specification, the watchdog servicing routine was called from
an upper layer of the software which made it difficult to guarantee timing constraints
namely for windowed watchdog conditions. This concept has been changed leading to
the requirements explained in this chapter.

The basic idea of this concept is to decouple the timing for servicing the watchdog
hardware from the logical control.

The time base for triggering the watchdog may be provided by means of hardware.
This ensures minimum timing jitter. Servicing of the watchdog hardware directly from
a timer ISR ensures minimum latencies."

These two conditions - minimum jitter and latencies - ensure that the time window of a
windowed watchdog can be met.

The Wdg Driver expects, that the logical control of the watchdog (whether the watchdog
shall be triggered or not) shall be the responsibility of the environment, e.g. the Wdg
Manager, so that the basic concepts of the Wdg Manager (alive supervision) shall
remain unchanged.

[SWS_Wdg_00144]
Upstream requirements: SRS_Wdg_12019

[The Wdg Manager (or other entities) shall control the watchdog driver via a so called
trigger condition: as long as the trigger condition is valid the Wdg Driver services the
watchdog hardware, if the trigger condition becomes invalid the Wdg Driver stops trig-
gering and the watchdog expires.

The semantics of the trigger condition can be interpreted as a "permission to service
the watchdog for the next n milliseconds". Within this time frame the trigger condition
has to be updated by the controlling entity else the watchdog will expire.

Handover of the watchdog control logic is simply done by shared usage of the trigger
condition (e.g. during startup / shutdown). |

[SWS_Wdg_00134]
Upstream requirements: SRS_Wdg_12019

[If the trigger counter is greater than zero, the watchdog servicing routine shall decre-
ment the trigger counter and trigger the hardware watchdog. |

AUTSSAR

[SWS_Wdg_00135]
Upstream requirements: SRS_Wdg_ 12019

[If the trigger counter has reached zero, the watchdog servicing routine shall do noth-
ing (i.e. the watchdog is not triggered and will therefore expire). |

[SWS_Wdg_00093]
Upstream requirements: SRS_Wdg_12019

[If the watchdog hardware requires an activation code which can be configured or
changed, the Wdg Driver shall handle the activation code internally. In this case, the
Wdg Driver shall pass the correct activation code to the watchdog hardware and the
watchdog hardware in turn shall update the Wdg module’s internal variable where the
next expected access code is stored. |

[SWS_Wdg_00094]
Upstream requirements: SRS_Wdg_12019

[If the watchdog hardware requires an activation code which can be configured or
changed, the trigger cycle of the Wdg Driver shall be defined with a value so that
updating the activation code by the watchdog hardware can be guaranteed. |

[SWS_Wdg_00095]
Upstream requirements: SRS_Wdg_12019

[If the watchdog hardware requires an activation code which can be configured or
changed and the initial activation code can be configured, the activation code shall
be provided in the Wdg Driver’s configuration set. If the activation code is fixed for a
particular hardware the above requirement can be ignored. |

[SWS_Wdg_00035]
Upstream requirements: SRS_BSW_00337

[When development error detection is enabled for the Wdg Driver module: the watch-
dog servicing routine shall check whether the Wdg module’s state is WDG_IDLE
(meaning the watchdog driver and hardware are initialized and the watchdog is cur-
rently not being triggered or switched). If this is not the case, the function shall not
trigger the watchdog hardware but raise the development error WDG_E DRIVER _
STATE. |

[SWS_Wdg_00052]
Upstream requirements: SRS_BSW_00337

[When development error detection is enabled for the Wdg Driver module: the watch-
dog servicing routine shall set the Wdg module’s state to WDG_BUSY during its exe-
cution (indicating, that the module is busy) and shall reset the module’s state to WDG_
IDLE (indicating, that the module is initialized and not busy) as last operation before it
returns. |

AUTSSAR

Note: This specification prescribes the symbols WDG_IDLE and WDG_BUSY only, if
they are externally visible, e.g. for debugging (see SRS_BSW_00335). Choosing the
data type for the status variable is up to the implementation.

Hint for the integration: The Wdg module’s environment shall make sure that the Wdg

Driver module has been initialized before watchdog servicing routine is called.

7.5 Error Classification

Chapter [2, General Specification of Basic Software Modules] 7.2 “Error Handling” de-
scribes the error handling of the Basic Software in detail. Above all, it constitutes a
classification scheme consisting of five error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in

the respective subsections below.

7.5.1 Development Errors

[SWS_Wdg_00010] Definition of development errors in module Wdg

Upstream requirements: SRS_BSW_00337, SRS_BSW_00350, SRS_BSW_00385, SRS_BSW_
00327, SRS BSW 00331

Type of error

Related error code

Error value

API service used in wrong context (e.g. module
not initialized).

WDG_E_DRIVER_STATE

0x10

API service called with wrong / inconsistent
parameter(s)

WDG_E_PARAM_MODE

Ox11

maximum timeout value

API service called with wrong / inconsistent WDG_E_PARAM_CONFIG 0x12
parameter(s)
The passed timeout value is higher than the WDG_E_PARAM_TIMEOUT 0x13

APl is called with wrong pointer value (e.g. NULL
pointer)

WDG_E_PARAM_POINTER

0x14

Invalid configuration set selection

WDG_E_INIT_FAILED

0x15

7.5.2 Runtime Errors

There are no runtime errors.

7.5.3 Production Errors

There are no production errors.

AUTSSAR

7.5.4 Extended Production Errors

[SWS_Wdg_00178] [

Error Name: WDG_E_MODE_FAILED

Short Description: Setting watchdog mode failed

Long Description: Setting a watchdog mode failed (during initialization or mode switch).

Detection Criteria: Fail Setting watchdog mode failed (see
SWS_Wdg_00180)

Pass Setting watchdog mode not failed (see

SWS_Wdg_00181)

Secondary Parameters: N/A

Time Required: N/A

Monitor Frequency Depends on upper layer

]

[SWS_Wdg_00180]

Upstream requirements: SRS_BSW_00327, SRS_BSW_00331, SRS_BSW_00466, SRS_BSW_
00385

[The extended production error WDG_E_MODE_FAILED shall be reported with
FAILED when setting of the watchdog mode failed. |

[SWS_Wdg_00181]

Upstream requirements: SRS_BSW_00327, SRS_BSW_00331, SRS_BSW_00466, SRS_BSW_
00385

[The extended production error WDG_E_MODE_FAILED shall be reported with
PASSED when setting of the watchdog mode not failed. |

[SWS_Wdg_00179] [

Error Name: WDG_E_DISABLE_REJECTED
Short Description: Disabling watchdog mode failed
Long Description: Initialization or watchdog mode switch failed because it would disable the
watchdog though this is not allowed in this configuration
Detection Criteria: Fail Disabling watchdog mode failed (see
SWS_Wdg_00182)
Pass Disabling watchdog mode not failed
(see SWS_Wdg_00183)
Secondary Parameters: N/A
Time Required: N/A
Monitor Frequency Depends on upper layer

[SWS_Wdg_00182]

Upstream requirements: SRS_BSW_00327, SRS_BSW_00331, SRS_BSW_00466, SRS_BSW _
00385

[The extended production error WDG_E_DISABLE_REJECTED shall be reported with
FAILED when disabling of the watchdog mode failed. |

AUTSSAR

[SWS_Wdg_00183]
Upstream requirements: SRS_BSW_00327, SRS_BSW_00331, SRS_BSW_00466, SRS_BSW _
00385

[The extended production error WDG_E_DISABLE_REJECTED shall be reported with
PASSED when disabling of the watchdog mode not failed. |

AUTSSAR

8 API specification

[SWS_Wdg_00172]
Upstream requirements: SRS_BSW_00347

[If more than one watchdog driver instance exits on an ECU (namely an external and
an internal one) the APl names and instance specific type names specified in this
chapter shall be made unique by expansion according to SRS_BSW_00347. |

8.1 Imported types
In this chapter all types included from the following modules are listed:

[SWS_Wdg_00105] Definition of imported datatypes of module Wdg |

Module Header File Imported Type

Dem Rte_Dem_Type.h Dem_EventldType
Rte_Dem_Type.h Dem_EventStatusType

Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType

Wdglf Wdglf.h Wdglf ModeType

8.2 Type definitions

8.2.1 Wdg_ConfigType

[SWS_Wdg_00171] Definition of datatype Wdg_ConfigType
Upstream requirements: SRS_BSW_00414

[

Name Wdg_ConfigType

Kind Structure

Elements Hardware dependent structure
Type -
Comment Structure to hold the watchdog driver configuration set.

Description Used for pointers to structures holding configuration data provided to the Wdg module initialization
routine for configuration of the module and watchdog hardware.

Available via Wdg.h

AUTSSAR

8.3 Function definitions

8.3.1 Wdg_Init

[SWS_Wdg_00106] Definition of API function Wdg_Init
Upstream requirements: SRS_BSW_00358, SRS_BSW_00414

[
Service Name Wdg_Init
Syntax void Wdg_Init (
const Wdg_ConfigTypex ConfigPtr
)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) ConfigPtr Pointer to configuration set.
Parameters (inout) None
Parameters (out) None
Return value None
Description Initializes the module.
Available via Wdg.h
]

[SWS_Wdg_00001]
Upstream requirements: SRS_BSW_00400, SRS_BSW_00101, SRS_Wdg_12105

[The Wdg_Init function shall initialize the Wdg module and the watchdog hardware, i.e.
it shall set the default watchdog mode and timeout period as provided in the configura-
tion set. |

Note:

Via post-build configuration, the user can choose the configuration set to be used with
the Wdg_Init function from a limited number of statically configured sets (see also
SRS_BSW_00314).

[SWS_Wdg_00100]
Upstream requirements: SRS_SPAL_12057, SRS_SPAL 12125, SRS _SPAL_12461, SRS_Wdg
12105
[The Wdg_Init function shall initialize all global variables of the Wdg module and set
the default watchdog mode and initial timeout period |

[SWS_Wdg_00101]
Upstream requirements: SRS_SPAL_12057, SRS_SPAL 12125, SRS _SPAL_12461, SRS_Wdg
12105
[The Wdg_Init function shall initialize those controller registers that are needed for con-
trolling the watchdog hardware and that do not influence/depend on other (hardware)
modules.

AUTSSAR

Registers that can influence or depend on other modules are initialized by a common
system module. |

[SWS_Wdg_00025]
Upstream requirements: SRS_BSW_00323, SRS_SPAL_12163, SRS_Wdg_12106

[If disabling the watchdog is not allowed (because pre-compile configuration parameter
WdgDisableAllowed==0OFF) and if the default mode given in the provided configuration
set disables the watchdog, the Wdg_ Init function shall not execute the initialization but
raise the extended production error WDG_E_DISABLE_REJECTED. |

[SWS_Wdg_00173] [If switching the Wdg module and the watchdog hardware into
the default mode is not possible, e.g. because of inconsistent mode settings or be-
cause some timing constraints have not been met, the Wdg_ Init function shall raise the
extended production error WDG_E_MODE_FAILED. |

[SWS_Wdg_00090]
Upstream requirements: SRS_BSW_00323, SRS_SPAL_12448

[When development error detection is enabled for the Wdg module: The Wdg_Init
function shall check that the (hardware specific) contents of the given configuration set
is within the allowed boundaries. If this error is detected, the function Wdg_Init shall
not execute the initialization but raise the extended error WDG_E_PARAM_CONFIG. |

[SWS_Wdg_00019]
Upstream requirements: SRS_BSW_00406, SRS_BSW_00335

[When development error detection is enabled for the Wdg module: The Wdg_Init
function shall set the Wdg module’s internal state from WDG_UNINIT (the default state
indicating a non-initialized module) to WDG_IDLE if the initialization was successful. |

Note: This specification prescribes the symbols WDG_IDLE and WDG_UNINIT only, if
they are externally visible, e.g. for debugging (see SRS_BSW_00335). Choosing the
data type for the status variable is up to the implementation.

8.3.2 Wdg_SetMode

[SWS_Wdg_00107] Definition of API function Wdg_SetMode |

Service Name Wdg_SetMode

Syntax Std_ReturnType Wdg_SetMode (
WdgIf_ModeType Mode
)

Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Non Reentrant

AUTSSAR

A
Parameters (in) Mode One of the following statically configured modes: 1. WDGIF_
OFF_MODE 2. WDGIF_SLOW_MODE 3. WDGIF_FAST_MODE
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Service executed without errors.
E_NOT_OK: Service executed with errors.
Description Switches the watchdog into the mode Mode.
Available via Wdg.h
|

[SWS_Wdg_00160]

Upstream requirements: SRS_Wdg_12015, SRS_Wdg_12018
[The function Wdg_SetMode shall switch the watchdog driver from the current watch-
dog mode into the mode given by the argument Mode. This means: By choosing one
of a limited number of statically configured settings (e.g. toggle or window watchdog,

different timeout periods) the Wdg module and the watchdog hardware are switched to
one of the following three different modes:

- WDGIF_OFF_MODE
- WDGIF_SLOW_MODE
- WDGIF_FAST MODE

]

[SWS_Wdg_00051]
Upstream requirements: SRS_Wdg_12015

[The configuration set provided to the Wdg module’s initialization routine shall contain
the hardware / driver specific parameters to be used in the different watchdog modes. |

[SWS_Wdg_00145] [The Wdg_SetMode function shall reset the watchdog timeout
counter based on the new watchdog mode i.e. the timeout frame remaining shall be
recalculated based on a changed trigger period. |

[SWS_Wdg_00103] [The Wdg_SetMode function shall return E_OK if the mode
switch has been executed completely and successfully, i.e. all parameters of the Wdg
module and the watchdog hardware have been set to the new values |

[SWS_Wdg_00016]
Upstream requirements: SRS_SPAL_12064

[If switching the Wdg module and the watchdog hardware into the requested mode
is not possible, e.g. because of inconsistent mode settings or because some timing
constraints have not been met, the Wdg_SetMode function shall return the value E_
NOT_OK and raise the extended production error WDG_E_MODE_FAILED. |

AUTSSAR

[SWS_Wdg_00026]
Upstream requirements: SRS_BSW_00323, SRS_SPAL_12163, SRS_Wdg_ 12106

[If disabling the watchdog is not allowed (e.g. in safety relevant systems, seeECUC_
Wdg_00115) the Wdg_SetMode function shall check whether the settings for the re-
quested mode would disable the watchdog. In this case, the function shall not ex-
ecute the mode switch but raise the extended production error WDG_E_DISABLE
REJECTED and return with the value E_NOT_OK. |

[SWS_Wdg_00091]
Upstream requirements: SRS_BSW_00323, SRS_SPAL_12448

[When development error detection is enabled for the Wdg module: The Wdg_Set
Mode function shall check that the parameter Mode is within the allowed range. If this
is not the case, the function shall not execute the mode switch but raise development
error WDG_E_PARAM_MODE. |

[SWS_Wdg_00092]
Upstream requirements: SRS_BSW_00323, SRS _SPAL_12448

[When development error detection is enabled for the Wdg module: The Wdg_Set
Mode function shall check that the (hardware specific) settings for the requested mode
are within the allowed boundaries. If this is not the case, the function shall not execute
the mode switch but raise the development error WDG_E_PARAM_MODE. |

[SWS_Wdg_00017]
Upstream requirements: SRS _BSW_ 00335, SRS SPAL_ 12064, SRS _SPAL 12448

[When development error detection is enabled for the Wdg module: The Wdg_Set
Mode function shall check that the Wdg module’s state is WDG_IDLE (meaning the
Wdg module and the watchdog hardware are initialized and the watchdog is currently
not being triggered or switched). If this is not the case, the function shall not execute
the mode switch but raise the development error WDG_E_DRIVER_STATE. |

[SWS_Wdg_00018]
Upstream requirements: SRS_BSW_00335

[When development error detection is enabled for the Wdg module: The function Wdg_
SetMode shall set the Wdg module’s state to WDG_BUSY during its execution (indi-
cating, that the module is busy) and shall reset the Wdg module’s state to WDG_IDLE
as last operation before it returns to the caller. |

Note: This specification prescribes the symbols WDG_IDLE and WDG_BUSY only, if
they are externally visible, e.g. for debugging (see SRS_BSW_00335). Choosing the
data type for the status variable is up to the implementation.

AUTSSAR

8.3.3 Wdg_SetTriggerCondition

[SWS_Wdg_00155] Definition of API function Wdg_SetTriggerCondition

Upstream requirements: SRS_BSW_00343

[

Service Name

Wdg_SetTriggerCondition

Syntax void Wdg_SetTriggerCondition (
uintl6é timeout
)
Service ID [hex] 0x03
Sync/Async Synchronous
Reentrancy Non Reentrant

Parameters (in)

timeout

Timeout value (milliseconds) for setting the trigger counter.

Parameters (inout) None
Parameters (out) None
Return value None
Description Sets the timeout value for the trigger counter.
Available via Wdg.h
]

[SWS_Wdg_00136] [The function Wdg_SetTriggerCondition shall reset the watchdog
timeout counter according to the timeout value passed. |

[SWS_Wdg_00138] [The timeout value passed shall be interpreted as 'milliseconds’.
The conversion from milliseconds to the corresponding counter value shall be done
internally by the Wdg module. |

[SWS_Wdg_00139] [The current watchdog mode shall be taken into account when
calculating the counter value from the timeout parameter. |

[SWS_Wdg_00140] [This function shall also allow to set "0" as the time frame for
triggering which will result in an (almost) immediate stop of the watchdog triggering
and an (almost) instantaneous watchdog reset of the ECU. In case the counter value
stored inside watchdog has the value "0", the service Wdg_SetTriggerCondition shall
do nothing, which means it shall ignore the counter passed by the parameter to Wdg__
SetTriggerCondition. |

[SWS_Wdg_00146] [When development error detection is enabled for the module:
The function Wdg_SetTriggerCondition shall check that the timeout parameter given is
less or equal to the maximum timeout value (WdgMaxTimeout). If this is not the case
the function shall not reload the timeout counter but raise the development error WDG_
E_PARAM_TIMEOUT and return to the caller. |

AUTSSAR

8.3.4 Wdg_GetVersioninfo

[SWS_Wdg_00109] Definition of API function Wdg_GetVersioninfo |

Service Name

Wdg_GetVersioninfo

Syntax void Wdg_GetVersionInfo (

Std_VersionInfoType* versioninfo
)

Service ID [hex] 0x04

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) versioninfo Pointer to where to store the version information of this module.

Return value None

Description Returns the version information of the module.

Available via Wdg.h

]

[SWS_Wdg_00174] [If development error detection is enabled for the Wdg Driver
module, the function Wdg_GetVersionInfo shall raise WDG_E_PARAM_POINTER, if
the argument is a NULL pointer and return without any action. |

8.4 Callback notifications

This chapter lists all functions provided by the Wdg module to lower layer modules.

The Wdg module has no call back notifications

8.5 Scheduled functions

This chapter lists all functions provided by the Wdg module and called directly by the
Basic Software Module Scheduler.

The Wdg module has no scheduled functions.

8.6 Expected interfaces

This chapter lists all functions that the Wdg module requires from other modules.

8.6.1 Mandatory interfaces

This module does not require any mandatory interfaces.

AUTSSAR

8.6.2 Optional interfaces

This chapter lists all interfaces which are required to fulfill an optional functionality of

the module.

[SWS_Wdg_00111] Definition of optional interfaces requested by module Wdg |

API Function Header File

Description

Dem_SetEventStatus Dem.h

Called by SW-Cs or BSW modules to report monitor
status information to the Dem. BSW modules calling
Dem_SetEventStatus can safely ignore the return
value. This API will be available only if ({(Dem/Dem
ConfigSet/DemEventParameter/DemEvent
ReportingType} == STANDARD_REPORTING)

Det_ReportError Det.h

Service to report development errors.

]

In addition to the functions listed above, further functions might be used to access the

external watchdog over Dio or Spi.

8.6.3 Configurable interfaces

This module does not require any configurable interfaces.

AUTSSAR

9 Sequence diagrams

9.1 Watchdog initialization, setting trigger condition and mode.

The diagram shows the sequence to initialize the Wdg module, to set the trigger condi-
tion and to change the watchdog mode. Note that this is only an example. Especially,
another "client" module than the Watchdog Manager (WdgM) could set the trigger con-
dition.

«module» «module» «module» «module»
EcuM WdgM Wdglf Wdg
O

T
|
I
I
| Wdg_Init(const Wdg_ConfigType*)

T
I
I
I
|
T
! Wdg_Init
| — e wwo_____
I
I
I
I
I
|

Wdglf_SetTriggerCondition(uint8,
—uintl6)

______+_______
I
|
]
]
I
I
|
]
I
I
|
]
]
I
|
]
L 4
—

 J

. - Wad i iti
Wdglf_SetTriggerCondition() < 9-SetTriggerCondition) U

Wdg_SetMode(Std_RetumnType,

»
= Wdglf_ModeType) -
e Wdg_SetMode() U
Wdglf_SetMode!
e ol _SeMode)_ __ _ _ _

Figure 9.1: Sequence of watchdog initialization, setting trigger condition and mode
switching.

9.2 Data exchange between watchdog driver and hardware

The diagram shows the sequence to trigger the watchdog hardware when the WDG
servicing routine is implemented as an interrupt routine. Note that this is only an ex-
ample and the triggering routine is implementation specific. For an external watchdog,
the watchdog hardware cannot be accessed directly, but only via drivers of the MCAL
layer, like SPI or DIO.

AUTSSAR

«module»
WdgM

«module»
Wdglf

«module»
Wdg

Timer Hardware

«Peripheral»
Watchdog Hardware

|
I wdglf_SetTriggerCondition(uint8,
Wdg_SetTriggerCondition(uint16)

uintl6)

Wdglf_SetTriggerCondition()| (€ —————————————-

| Wdglf_SetTriggerCondition(uints,

uint16)

Wdglf_SetTriggerCondition()

Hint Access to external
Wdg hardware will be
done via peripheral

T
|
|
I
|
! .
Wdg_SetTriggerCondition() : drivers as SPI or DIO.
L | |
interrupt()	
Ll_	trigger WDG hardware() :
update activation code()	
<--—-—-—-—-—-- T———————=——=-=
- I
I I I
| interrupt() | |
|
Lrl trigger WDG hardware() 1
| update activation code()
K ———————= -
- |
| | |
I I I
Wdg_SetTriggerCondition(uint16) : : :
| |
| |
I I
T I I
| | |
| | |
| i | |
| interrupt() | |
L,.l trigger WDG hardware() 1
T update activation code()
ke —————— — — e -

Figure 9.2: Data exchange between watchdog driver and hardware

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
Wdg.

Chapter 10.3 specifies published information of the module Wdg.

10.1 How to read this chapter

For details refer to [2] Chapter 10.1 “Introduction to configuration specification”.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 and Chapter 8.

10.2.1 Wdg

[ECUC_Wdg_00082] Definition of EcucParamConfContainerDef WdgSettings
Config |

Container Name WdgSettingsConfig
Parent Container Wdg
Description Configuration items for the different watchdog settings, including those for external

watchdog hardware.
Note: All postbuild parameters are handled via this container.

Multiplicity 1

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

WdgDefaultMode 1 [ECUC_Wdg_00120]

Included Containers

Container Name Multiplicity Dependency

WdgExternalConfiguration 0..1 Configuration items for an external watchdog hardware

WdgSettingsFast 1 Hardware dependent settings for the watchdog driver’s "fast"
mode.

\Y

AUTSSAR

JAN
Included Containers
Container Name Multiplicity Dependency
WdgSettingsOff 1 Hardware dependent settings for the watchdog driver’s "off"
mode.
WdgSettingsSlow 1 Hardware dependent settings for the watchdog driver’s "slow"
mode.

]

[ECUC_Wdg_00120] Definition of EcucEnumerationParamDef WdgDefaultMode
[

Parameter Name

WdgDefaultMode
WdgSettingsConfig

Parent Container

Description Default mode for watchdog driver initialization.
ImplementationType: Wdglf_ModeType
Multiplicity 1
Type EcucEnumerationParamDef
Range WDGIF_FAST_MODE Default watchdog mode is "fast"

WDGIF_OFF_MODE

Default watchdog mode is "off"

WDGIF_SLOW_MODE

Default watchdog mode is "slow"

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Dependency

"Off" mode only possible if disabling the watchdog driver is allowed.

]

[ECUC_Wdg_00114] Definition of EcucParamConfContainerDef WdgGeneral |

Container Name

WdgGeneral

Parent Container

Wdg

Description

All general parameters of the watchdog driver are collected here.

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

WdgDevErrorDetect 1 [ECUC_Wdg_00115]
WdgDisableAllowed 1 [ECUC_Wdg_00116]
WdglIndex 1 [ECUC_Wdg_00117]
WdglnitialTimeout 1 [ECUC_Wdg_00130]
WdgMaxTimeout 1 [ECUC_Wdg_00131]
WdgRunArea 1 [ECUC_Wdg_00147]
WdgVersionInfoApi 1 [ECUC_Wdg_00119]
WdgEcucPartitionRef 0..1 [ECUC_Wdg_00353]

No Included Containers

AUTSSAR

]

[ECUC_Wdg_00115] Definition of EcucBooleanParamDef WdgDevErrorDetect |

Parameter Name WdgDevErrorDetect

Parent Container WdgGeneral

Description Switches the development error detection and notification on or off.
« true: detection and notification is enabled.
« false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time —

Post-build time -

Dependency

]

[ECUC_Wdg_00116] Definition of EcucBooleanParamDef WdgDisableAllowed |

Parameter Name

WdgDisableAllowed

Parent Container

WdgGeneral

Description Compile switch to allow / forbid disabling the watchdog driver during runtime.
True: Disabling the watchdog driver at runtime is allowed. False: Disabling the
watchdog driver at runtime is not allowed.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

Safety relevant compile switch, this has to be in accordance with the corresponding
settings for the watchdog manager.

]

[ECUC_Wdg_00117] Definition of EcucintegerParamDef Wdglindex |

Parameter Name

Wdglndex

Parent Container

WdgGeneral

Description Specifies the Instanceld of this module instance. If only one instance is present it shall
have the Id 0.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0..255 |

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time ‘ X ‘ All Variants

V

AUTSSAR

Link time -

Post-build time -

Dependency

]

[ECUC_Wdg_00130] Definition of EcucFloatParamDef WdglnitialTimeout |

Parameter Name

WadglnitialTimeout

Parent Container

WdgGeneral

Description The initial timeout (sec) for the trigger condition to be initialized during Init function. It
shall be not larger than WdgMaxTimeout.

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. 65.535]

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Wdg_00131] Definition of EcucFloatParamDef WdgMaxTimeout |

Parameter Name

WdgMaxTimeout

Parent Container

WdgGeneral

Description The maximum timeout (sec) to which the watchdog trigger condition can be initialized.
Multiplicity 1
Type EcucFloatParamDef
Range [0 .. 65.535] |
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

]

[ECUC_Wdg_00147] Definition of EcucEnumerationParamDef WdgRunArea |

Parameter Name WdgRunArea

Parent Container WdgGeneral

Description Represents the watchdog driver execution area is either from ROM(Flash) or RAM as
required with the particular microcontroller.

Multiplicity 1

Type EcucEnumerationParamDef

V

AUTSSAR

A
Range RAM Watchdog driver to be executed out of RAM area
ROM Watchdog driver to be executed out of ROM area
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Wdg_00119] Definition of EcucBooleanParamDef WdgVersionIinfoApi |

Parameter Name

WdgVersionInfoApi

Parent Container

WdgGeneral

Description Compile switch to enable / disable the version information API
« True: APl enabled
« False: API disabled

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time -

Post-build time -

Dependency

]

[ECUC_Wdg_00353] Definition of EcucReferenceDef WdgEcucPartitionRef |

Parameter Name

WdgEcucPartitionRef

Parent Container

WdgGeneral

Description Maps the Wdg driver to zero or one ECUC partitions to make the modules API
available in this partition.

Multiplicity 0..1

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

[ECUC_Wdg_00148] Definition of EcucParamConfContainerDef WdgDemEvent

ParameterRefs |

AUTSSAR

Container Name

WdgDemEventParameterRefs

Parent Container

Wdg

Description

Container for the references to DemEventParameter elements which shall be invoked
using the API Dem_SetEventStatus in case the corresponding error occurs. The Event
Id is taken from the referenced DemEventParameter’s DemEventld symbolic value.
The standardized errors are provided in this container and can be extended by
vendor-specific error references.

Multiplicity

0..1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID
WDG_E_DISABLE_REJECTED 0..1 [ECUC_Wdg_00150]
WDG_E_MODE_FAILED 0..1 [ECUC_Wdg 00149]

No Included Containers

]

[ECUC_Wdg_00150]
JECTED [

Definition of EcucReferenceDef WDG_E_DISABLE_RE-

Parameter Name

WDG_E_DISABLE_REJECTED

Parent Container

WdgDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when the error
"Initialization or mode switch failed because it would disable the watchdog" has
occurred.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants

Link time

Post-build time

Dependency

]

[ECUC_Wdg_00149] Definition of EcucReferenceDef WDG_E_MODE_FAILED |

Parameter Name

WDG_E_MODE_FAILED

Parent Container

WdgDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when the error "Setting a
watchdog mode failed (during initialization or mode switch)" has occurred.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity

false

V

AUTSSAR

A
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

]
[ECUC_Wdg_00073] Definition of EcucModuleDef Wdg |

Module Name Wdg

Description Configuration of the Wdg (Watchdog driver) module.

Post-Build Variant Support true

Supported Config Variants VARIANT-LINK-TIME, VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers
Container Name Multiplicity Dependency

WdgDemEventParameterRefs 0..1 Container for the references to DemEventParameter elements
which shall be invoked using the APl Dem_SetEventStatus in
case the corresponding error occurs. The Eventld is taken from
the referenced DemEventParameter's DemEventld symbolic
value. The standardized errors are provided in this container and
can be extended by vendor-specific error references.

WdgGeneral 1 All general parameters of the watchdog driver are collected here.

WdgPublishedInformation 1 Container holding all Wdg specific published information
parameters

WdgSettingsConfig 1 Configuration items for the different watchdog settings, including

those for external watchdog hardware.
Note: All postbuild parameters are handled via this container.

]

The three modes are provided as containers for the reason that they might be referred
by other modules and hence no parameters are needed. However those containers
might be extended by the vendor (resp. hardware) specific configuration parameters,
but these could not be standardized.

10.2.2 WdgSettingsFast

[ECUC_Wdg _00112] Definition of EcucParamConfContainerDef WdgExternal
Configuration [

AUTSSAR

Container Name

WdgExternalConfiguration

Parent Container WdgSettingsConfig
Description Configuration items for an external watchdog hardware
Multiplicity 0..1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity ECUC ID

WdgExternalContainerRef

0.1 [ECUC_Wdg_00113]

No Included Containers

]

[ECUC_Wdg_00113]
tainerRef |

Definition of EcucChoiceReferenceDef WdgExternalCon-

Parameter Name

WdgExternalContainerRef

Parent Container

WdgExternalConfiguration

Description Reference to either
« a DioChannelGroup container in case the hardware watchdog is connected via DIO
pins
« an SpiSequenceConfiguration container in case the watchdog hardware is accessed
via SPI
« an 12CSequenceConfiguration container in case the watchdog hardware is accessed
via 12C
Multiplicity 0..1
Type Choice reference to [DioChannelGroup, 12CSequence, SpiSequence]
Post-Build Variant Multiplicity true
Post-Build Variant Value true

Multiplicity Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

Post-build time VARIANT-POST-BUILD

Value Configuration Class

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

XX [X[X]|X|[X

Post-build time VARIANT-POST-BUILD

Dependency

See DIO resp. SPI SWS resp. 12C SWS

]

[ECUC_Wdg_00122] Definition of EcucParamConfContainerDef WdgSettingsOff

[

Container Name

WdgSettingsOff

Parent Container

WdgSettingsConfig

Description

Hardware dependent settings for the watchdog driver’s "off" mode.

Multiplicity

1

Configuration Parameters

No Included Parameters

AUTSSAR

| No Included Containers

]

[ECUC_Wdg_00123]
Slow |

Definition of EcucParamConfContainerDef WdgSettings

Container Name

WdgSettingsSlow

Parent Container

WdgSettingsConfig

Description

Hardware dependent settings for the watchdog driver’s "slow" mode.

Multiplicity

1

Configuration Parameters

| No Included Parameters

| No Included Containers

]

[ECUC_Wdg_00121]
Fast |

Definition of EcucParamConfContainerDef WdgSettings

Container Name

WdgSettingsFast

Parent Container

WdgSettingsConfig

Description

Hardware dependent settings for the watchdog driver’s "fast" mode.

Multiplicity

1

Configuration Parameters

| No Included Parameters

| No Included Containers

]

10.3 Published Information

For details refer to [2] Chapter 10.3 “Published Information”.

10.3.1 WdgPublishedinformation

[ECUC_Wdg_00074] Definition of EcucParamConfContainerDef WdgPublished

Information |

AUTSSAR

Container Name

WdgPublishedInformation

Parent Container Wdg
Description Container holding all Wdg specific published information parameters
Multiplicity 1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity

ECUC ID

WdgTriggerMode

1

[ECUC_Wdg_00127]

No Included Containers

]

[ECUC_Wdg_00127] Definition of EcucEnumerationParamDef WdgTriggerMode

[

Parameter Name

WdgTriggerMode

Parent Container

WdgPublishedInformation

Description Watchdog trigger mode (toggle/window/both)
Multiplicity 1
Type EcucEnumerationParamDef
Range WDG_BOTH
WDG_TOGGLE
WDG_WINDOW
Post-Build Variant Value false

Value Configuration Class

Published Information |

| All Variants

Dependency

]

WdgTriggerMode is only published for information purposes; this parameter is not used
to configure the Watchdog Driver or the modules using the Watchdog Driver.

AUTSSAR

A Not applicable requirements

[SWS_Wdg_NA_00175]

Upstream requirements: SRS_BSW_00344, SRS_BSW_00404, SRS_BSW_00405, SRS_BSW_
00170, SRS BSW 00419, SRS BSW 00383, SRS BSW 00375,
SRS BSW 00416, SRS BSW 00437, SRS BSW 00168, SRS BSW _
00423, SRS _BSW 00424, SRS BSW 00425, SRS BSW_00428,
SRS BSW_00432, SRS BSW 00433, SRS BSW_ 00450, SRS _BSW _
00339, SRS BSW 00422, SRS BSW 00417, SRS BSW 00161,
SRS BSW 00162, SRS BSW 00005, SRS BSW 00415, SRS BSW _
00007, SRS BSW 00413, SRS BSW 00441, SRS BSW 00307,
SRS _BSW_00373, SRS _BSW _00410, SRS _BSW_00447, SRS _BSW _
00348, SRS BSW 00353, SRS BSW 00302, SRS BSW_00328,
SRS BSW 00312, SRS BSW_00006, SRS BSW_ 00449, SRS BSW _
00377, SRS BSW 00304, SRS BSW 00378, SRS BSW_00306,
SRS BSW 00308, SRS BSW 00309, SRS BSW 00359, SRS BSW
00360, SRS BSW 00440, SRS BSW 00330, SRS BSW_00009,
SRS _BSW_00401, SRS _BSW_00172, SRS _BSW_00010, SRS_BSW _
00333, SRS BSW 00321, SRS BSW 00341, SRS _SPAL_12056,
SRS _SPAL 12267, SRS_SPAL 12462, SRS _SPAL 12463, SRS _
SPAL_12068, SRS_SPAL 12069, SRS SPAL 00157, SRS _SPAL
12063, SRS _SPAL_ 12075, SRS _SPAL 12067, SRS_SPAL 12077,
SRS_SPAL 12078, SRS _SPAL 12265, SRS Wdg 12167, SRS _Wdg__
12168

[These requirements are not applicable to this specification. |

AUTSSAR

B Change history of AUTOSAR traceable items

B.1 Traceable item history of this document according to
AUTOSAR Release R24-11

B.1.1 Added Specification Iltems in R25-11

none

B.1.2 Changed Specification ltems in R25-11

Number Heading

[SWS_Wdg_00094]

[SWS_Wdg_00107] Definition of API function Wdg_SetMode

[SWS_Wdg_00171] Definition of datatype Wdg_ConfigType

Table B.1: Changed Specification Items in R25-11

B.1.3 Deleted Specification Items in R25-11

none

B.2 Traceable item history of this document according to
AUTOSAR Release R24-11

B.2.1 Added Specification ltems in R24-11

none

B.2.2 Changed Specification ltems in R24-11

Number Heading

[ECUC_Wdg 00113] Definition of EcucChoiceReferenceDef WdgExternalContainerRef

Table B.2: Changed Specification Items in R24-11

B.2.3 Deleted Specification Items in R24-11

none

AUTSSAR

B.3 Traceable item history of this document according
AUTOSAR Release R23-11

B.3.1 Added Specification Iltems in R22-11

to

Number

Heading

[SWS_Wdg_NA_
00175

Table B.3: Added Specification Iltems in R22-11

B.3.2 Changed Specification ltems in R22-11

Number

Heading

[SWS_Wdg_00010]

[SWS_Wdg_00105]

[SWS_Wdg_00106]

[SWS_Wdg_00107]

[SWS_Wdg_00109]

[SWS_Wdg_00111]

[SWS_Wdg_00155]

[SWS_Wdg_00171]

Table B.4: Changed Specification Items in R22-11

B.3.3 Deleted Specification Items in R22-11

Number

Heading

[SWS_Wdg_00175]

Table B.5: Deleted Specification Items in R22-11

B.3.4 Added Specification Items in R23-11

none

AUTSSAR

B.3.5 Changed Specification ltems in R23-11

Number Heading

[SWS_Wdg_00105] Definition of imported datatypes of module Wdg

[SWS_Wdg _00107] Definition of API function Wdg_SetMode

[SWS_Wdg_00111] Definition of optional interfaces in module Wdg

[SWS_Wdg_00171] Definition of datatype Wdg_ConfigType

Table B.6: Changed Specification Items in R23-11

B.3.6 Deleted Specification Iltems in R23-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure
	5.1.3 Version check

	5.2 System clock
	5.3 Onboard communication handlers

	6 Requirements Tracing
	7 Functional specification
	7.1 General design rules
	7.2 External watchdog driver
	7.3 Internal watchdog driver
	7.4 Triggering concept to support windowed watchdogs
	7.5 Error Classification
	7.5.1 Development Errors
	7.5.2 Runtime Errors
	7.5.3 Production Errors
	7.5.4 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Wdg_ConfigType

	8.3 Function definitions
	8.3.1 Wdg_Init
	8.3.2 Wdg_SetMode
	8.3.3 Wdg_SetTriggerCondition
	8.3.4 Wdg_GetVersionInfo

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected interfaces
	8.6.1 Mandatory interfaces
	8.6.2 Optional interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	9.1 Watchdog initialization, setting trigger condition and mode.
	9.2 Data exchange between watchdog driver and hardware

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Wdg
	10.2.2 WdgSettingsFast

	10.3 Published Information
	10.3.1 WdgPublishedInformation

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R24-11
	B.1.1 Added Specification Items in R25-11
	B.1.2 Changed Specification Items in R25-11
	B.1.3 Deleted Specification Items in R25-11

	B.2 Traceable item history of this document according to AUTOSAR Release R24-11
	B.2.1 Added Specification Items in R24-11
	B.2.2 Changed Specification Items in R24-11
	B.2.3 Deleted Specification Items in R24-11

	B.3 Traceable item history of this document according to AUTOSAR Release R23-11
	B.3.1 Added Specification Items in R22-11
	B.3.2 Changed Specification Items in R22-11
	B.3.3 Deleted Specification Items in R22-11
	B.3.4 Added Specification Items in R23-11
	B.3.5 Changed Specification Items in R23-11
	B.3.6 Deleted Specification Items in R23-11

