AUTSSAR

Document Title Specification of Time Service
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 624

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 | R25-11 Release * No content changes
Management
» Major rework of whole specification,
AUTOSAR added service interface
2024-11-27 R24-11 Release
Management * [SRS_BSW _00334] removed from
[SWS_Tm_NA_00059]
AUTOSAR
2023-11-23 | R23-11 Release « Editorial changes
Management
AUTOSAR » Changed [SWS_Tm_00059] to [SWS_
2022-11-24 | R22-11 | Release Tm_NA_00059]
Management - Editorial changes
AUTOSAR : :
* Artefact incluseion based on
2021-11-25 | R21-11 Release ArtefactAnalysis corrected
Management
AUTOSAR
2020-11-30 | R20-11 | Release) :;‘CL‘;fjnfd gﬁ‘é‘:'soggnaerrt‘itffgsrs and
Management untime
AUTOSAR * No content changes
2019-11-28 | R19-11 | Release « Changed Document Status from final to
Management published
AUTOSAR
2018-10-31 4.4.0 Release * Header File Cleanup

Management

AUTSSAR

» Changed TM_E_HARDWARE_TIMER

AUTOSAR to Runtime Error
2017-12-08 | 4.3.1 Release
Management » Renamed “default error” to “development
error”
» Removed the definition of “configuration
variants” from 10.2.1 Variants
 Added line “Supported Config Variants”
to the table of hte module definition in
AUTOSAR 10.2.2 Tm
2016-11-30 | 4.3.0 Release
Management * Removed [SWS_Tm_00058]
* Removed [SRS_BSW_00326], [SRS_
BSW_00338], [SRS_BSW_00376],
[SRS_BSW_00435], [SRS_BSW_
00436]
AUTOSAR
2015-17-30 | 4.2.2 Release « Editorial changes
Management
AUTOSAR
2014-10-30 | 4.2.1 Release « Editorial changes
Management
AUTOSAR
2013-10-31 4.1.2 Release « Editorial changes
Management
2013-03-15 4.1.1 AUTOSAR * Initial release

Administration

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional overview 7
1.1 USeCases i i i i e e e 8
1.1.1 Time measurement 8

1.1.2 Time-based state machine 8

1.1.3 Timeout supervision and busy waiting 9

2 Acronyms, abbreviations and terms 10
3 Related documentation 11
3.1 Input documents & related standardsandnorms 11
3.2 Related specification 11

4 Constraints and assumptions 12
4.1 Assumptions L e 12
4.2 Limitations 12
4.3 Applicability tocardomains0 12

5 Dependencies to other modules 13
6 Requirements Tracing 14
7 Functional specification 16
71 TMPredef Timers 16
7.1.1 Background 16
7.1.2 Time Service Predef Timers 16
7.1.3 Timing aspectstoconsider 17
7.1.3.1 Maximal measurable timespan 17

7.1.3.2 Time quantizationerror 18

7.1.3.3 Execution times of services / measurement of short time spans 20

7.1.4 APl Services e 20
7.1.4.1 Service ResetTimer. 21

7.1.4.2 Service GetTimeSpan 21

7.1.4.3 Service ShiftTimer 22

7.1.4.4 Service SyncTimer o 22

7.1.45 ServiceBusyWait Lo 22

7.1.4.6 Unintentional behavior of BusyWait services 23

7.1.5 Configuration of Predef Timers 24
7.1.6 Samplecodeofusecases 24
7.1.6.1 Timemeasurement, 24

7.1.6.2 time-based state machine 25

7.1.6.3 Timeout supervision 26

7.1.6.4 Busywaiting. 26

7.2 Versioncheck 27

7.3 Error classification. 27

AUTSSAR

7.3.1 DevelopmentErrorso o
7.3.2 RuntimeErrors
7.3.3 ProductionErrors
7.3.4 Extended ProductionErrors

8 API specification
8.1 Importedtypes e
8.2 Type Definitions
8.2.1 Tm_ConfigType
8.3 Functiondefinitions o
83.1 Tm Init
8.3.2 Tm_GetVersioninfo
8.3.3 Tm_ResetTimer i
8.3.4 Tm_GetTimeSpan i
8.3.5 Tm_ShiftTimer
8.3.6 Tm_SyncTimer
8.3.7 Tm_BusyWaitlus
8.4 Call-back Notifications
8.5 Scheduled functions
8.6 ExpectediInterfaces
8.6.1 Mandatory Interfaces L.
8.6.2 OptionalInterfaces,
8.6.3 Configurable Interfaces
8.7 Servicelnterfaceso
8.7.1 Provided Portsof Tm
8.7.2 Client-Server-Interfaces

8.7.2.1

TmPreDefTimerService

9 Sequence diagrams
9.1 Tm Normal Operation

10 Configuration specification
10.1How toread thischapter
10.2Containers and configuration parameters

10.2.1Tm

10.2.2TmGeneral e
10.2.3 TmPreDefTimerinstance
10.3Published Information

A Not applicable requirements

B History of Constraints and Specification ltems
B.1 Differences between R24-11 and R25-11
B.1.1 Added Specification ltemsin R25-11
B.1.2 Changed Specification ltemsin R25-11
B.1.3 Deleted Specification ltemsin R25-11

AUTSSAR

B.1.4 Added Constraintsin R25-11 45
B.1.5 Changed Constraintsin R25-11 45
B.1.6 Deleted Constraints in R25-11 45
B.2 Differences between R23-11and R24-11 45
B.2.1 Added Specification ltemsinR24-11 45
B.2.2 Changed Specification ltemsin R24-11 46
B.2.3 Deleted Specification ltemsin R24-11 46
B.2.4 Added ConstraintsinR24-11 46
B.2.5 Changed Constraintsin R24-11 46
B.2.6 Deleted Constraintsin R24-11 46
B.3 Differences between R22-11 and R23-11 46
B.3.1 Added Specification ltemsinR23-11 46
B.3.2 Changed Specification Itemsin R23-11 47
B.3.3 Deleted Specification temsin R23-11 47

C Migration from Operating System 48

AUTSSAR

1 Introduction and functional overview

This specification specifies the functionality, APl and the configuration of the AUTOSAR
Basic Software module "Time Service".

The Time Service module is part of the Services Layer. The module provides services
for time-based functionality. Use cases are:

* Time measurement
 time-based state machine

» Timeout supervision

» Busy waiting

Application Layer

AUTOSAR Runtime Environment (RTE)

ECU Abstraction Layer
and
Complex Drivers:

Alllayers may interact
with system services

Existing interaction
with GPTis not
Bypassing of one software affectedby Time
layeris allowed Service module

Direct interaction from GPT to other
MCALmodules is not allowed

Microcontroller

Figure 1.1: Architectural overview

The Time Service module does not use and distribute all features of the GPT driver.

Several types of - so called "Time Service Predef Timers" - are available, if supported
by hardware and enabled by configuration.

Each Predef Timer has a predefined tick duration (physical time unit) and a predefined
number of bits (physical range, width). By this, compatibility of time-based functionality
is ensured for all platforms which support the required Predef Timers.

The Time Service Predef Timers are based on so-called "GPT Predef Timers", which
are free running hardware timers, provided by the GPT driver [1].

The following time-based services are provided:
* Tm_ResetTimer
* Tm_GetTimeSpan

* Tm_ShiftTimer

AUTSSAR

* Tm_SyncTimer

* Tm_BusyWaitlus
All services are called by user (polling mode). Notifications are not supported.
The time services can be used in:

* Initialization phase (after a call to Tm_Init)

» Tasks

 Cat2 interrupt service routines

* OS hooks

For implementation of the Time Service module no interrupts are needed.

1.1 Use cases

1.1.1 Time measurement

By using the Time Service module, execution time and cycle time of code can be
measured, even run time and cycle time of:

 Tasks
» Cat2 interrupt service routines
» Functions
* Pieces of software
Time stamps can be generated.

Services of the Time Service module may be used to measure CPU load and task
load, because the services may be called in the PreTaskHook (and Post TaskHook)
of the Operating System.

1.1.2 Time-based state machine

"Time base state machine" means: State transitions depending on timing. By using
the Time Service module, time-based state machines can be implemented, which are
nearly independently from the cycle time of the calling task. The user software has
to ensure that the cycle time of the task is short enough relating to the desired timing
behavior, due to polling of time information.

AUTSSAR

1.1.3 Timeout supervision and busy waiting

By using the Time Service module, errors and ambiguous behavior may be prevented
in software modules by applying Predef Timers instead of "loops" or "nop instructions"
to implement timeout supervision or busy waiting.

Using "loops" or "nop instructions" is a poor and critical design, because time intervals
implemented in such a way are dependent on:

» CPU speed
* Pipeline effects
» Cache effects

» Access time to memory (bus width, wait states, ...)

Interruption by Interrupt Service Routines

« Compiler version, compiler options, compiler optimizations

AUTSSAR

2 Acronyms, abbreviations and terms

Only a few acronyms and abbreviations are listed here which are helpful to understand
this document or which have a local scope. Further information can be found in the
official [2, AUTOSAR glossary].

Acronym / Abbreviation: Description:

nop No Operation

Table 2.1: Acronyms and abbreviations

The terms defined in the table below have a local scope within this document.

Term: Description:

GPT Predef Timer A GPT Predef Timer is a free running up counter provided by the GPT driver [1].
Which GPT Predef Timer(s) are available depends on hardware (clock, hardware
timers, prescaler, width of timer register, ...) and configuration. A GPT Predef
Timer has predefined physical time unit and range.

Time Service Predef Timer A Time Service Predef Timer is a free running up counter with predefined
physical time unit and range. The hardware timer functionality is based on the
corresponding GPT Predef Timer. The user uses timer instances to interact with
the PreDef Timers.

Timer instance A timer instance is a configured object (of a Time Service Predef Timer) and is
used as handle in APIs. The user can configure any number of instances, they
are completely independently of each other.

Reference time The reference time is a time value stored for each timer instance. It represents
the "start" time of the timer instance.

Table 2.2: Terms

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Specification of GPT Driver
AUTOSAR_CP_SWS_GPTDriver

[2] Glossary
AUTOSAR_FO_TR_Glossary

[38] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [3, SWS BSW
General], which is also valid for Tm.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for Tm.

AUTSSAR

4 Constraints and assumptions

4.1 Assumptions

The Time Service module is using hardware timers which may be impacted when the
ECU is in SLEEP mode. This means that it depends on the hardware if a timer still
counts in such a situation or if it stops while the ECU is in SLEEP. As the Time Service
module itself cannot detect this it is assumed that the users of the module are aware of
such situations. As a consequence it is assumed that users don’t measure time across
SLEEP periods and that they reset the Time Service timers after a SLEEP.

4.2 Limitations

Functionality is based on HW timers which are not perhaps available

The functionality of the Time Service module is based on hardware timers (GPT Predef
Timers) provided by the GPT Driver [1]. Which GPT Predef Timer(s) can be enabled
depends on clock and available timer hardware (prescaler, width of timer register). It is
recommended to enable all GPT Predef Timers to ensure compatibility of time-based
functionality for all platforms.

4.3 Applicability to car domains

No restrictions.

AUTSSAR

5 Dependencies to other modules

This section describes the relations to other modules.

The Time Service module has dependencies to the following other AUTOSAR modules:

GPT:

The functionality of the Time Service module is based on so called "GPT Predef
Timers". A GPT Predef Timer is a free running up counter provided by the [1, GPT
driver].

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in AUTOSAR SRS docu-
ments and links to the fulfilment of these. Please note that if column “Satisfied by” is
empty for a specific requirement this means that this requirement is not fulfilled by this

document.

Requirement

Description

Satisfied by

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_Tm_91000] [SWS_Tm_91001]

[SRS_BSW_00312]

Shared code shall be reentrant

[SWS_Tm_00020]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_Tm_00008] [SWS_Tm_00012]
[SWS_Tm_00016] [SWS_Tm_00018]
[SWS_Tm_00021] [SWS_Tm_00037]
[SWS_Tm_00068] [SWS_Tm_00077]
[SWS_Tm_00082]

[SRS_BSW_00337]

Classification of development errors

[SWS_Tm_00030]

[SRS_BSW_00344]

BSW Modules shall support link-time
configuration

[SWS_Tm_91001]

[SRS_BSW_00348]

All AUTOSAR standard types and
constants shall be placed and
organized in a standard type header
file

[SWS_Tm_00031]

[SRS_BSW_00358]

The return type of init() functions
implemented by AUTOSAR Basic
Software Modules shall be void

[SWS_Tm_91001]

[SRS_BSW_00369]

All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[SWS_Tm_00008] [SWS_Tm_00012]
[SWS_Tm_00066] [SWS_Tm_91002]
[SWS_Tm_91003]

[SRS_BSW_00386]

The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_Tm_00068] [SWS_Tm_00082]

[SRS_BSW_00404]

BSW Modules shall support
post-build configuration

[SWS_Tm_91001]

[SRS_BSW_00405]

BSW Modules shall support multiple
configuration sets

[SWS_Tm_91001]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_Tm_00036]

[SRS_BSW_00414]

Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_Tm_91001]

[SRS_BSW_00452]

Classification of runtime errors

[SWS_Tm_00064]

[SRS_Tm_00001]

Different types of Predef Timers shall
be supported by the Time Service
module

[SWS_Tm_91002] [SWS_Tm_91003]
[SWS_Tm_91004] [SWS_Tm_91005]
[SWS_Tm_91006]

[SRS_Tm_00002]

The GPT Predef Timers shall be
used as time base for the Predef
Timers of the Time Service module

[SWS_Tm_00001] [SWS_Tm_00057]

[SRS_Tm_00004]

The Time Service module shall
provide a synchronous service to

[SWS_Tm_00006] [SWS_Tm_00063]
[SWS_Tm_91002]

reset a timer instance

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Tm_00005]

The Time Service module shall
provide a synchronous service to get
the time span

[SWS_Tm_00009] [SWS_Tm_00010]
[SWS_Tm_00063] [SWS_Tm_00065]
[SWS_Tm_00069] [SWS_Tm_91003]

[SRS_Tm_00006]

The Time Service module shall
provide a synchronous service to shift
the reference time of a timer instance

[SWS_Tm_00013] [SWS_Tm_00014]
[SWS_Tm_00063] [SWS_Tm_91004]
[SWS_Tm_CONSTR_00002]

[SRS_Tm_00007]

The Time Service module shall
provide a synchronous service to
synchronize two timer instances

[SWS_Tm_00019] [SWS_Tm_00063]
[SWS_Tm_91005]

[SRS_Tm_00008]

The Time Service module shall
provide a synchronous service with
tick duration 1us to perform busy
waiting by polling

[SWS_Tm_00022] [SWS_Tm_00023]
[SWS_Tm_00024] [SWS_Tm_00070]
[SWS_Tm_91006]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 TM Predef Timers

7.1.1 Background

This functionality of the Time Service module is based on so called "GPT Predef
Timers", see [1, SWS GPTDriver].

7.1.2 Time Service Predef Timers

A Time Service Predef Timer is based on the corresponding GPT Predef Timer. The
Time Service module assumes that the GPT is configured in a way suitable for the
Time Service.

The following resolutions are available:

Type of Time Service Predef Timer Tick duration Maximum tick Number of bits Maximum time
value span (circa
values)
TM_PREDEF_TIMER_1US_16BIT 1 pus 65535 16 bit 65 ms
TM_PREDEF_TIMER_1US_24BIT 16777215 24 bit 16s
TM_PREDEF_TIMER_1US_32BIT 4294967295 32 bit 71 minutes
TM_PREDEF_TIMER_100US_32BIT 100 ps 4294967295 32 bit 4.9 days

Table 7.1: Characteristics of Time Service Predef Timers

Users of Time Service require a timer instance to access the functionality offered in
Time Service module. A timer instance has to be configured (via TmPreDefTimerIn-
stance) before it can be used.

The Time Service module offers a set of API services which are available to its users.
The following services are offered for timer instances:

* Tm_ResetTimer
* Tm_GetTimeSpan
e Tm_ShiftTimer
* Tm_SyncTimer
Additionally the service Tm_BusyWaitlus is available for short waiting times.

[SWS_Tm_00001]
Upstream requirements: SRS_Tm_00002
[The Time Service module shall use the GPT driver service Gpt_GetPredefTimer-

Value with the related resolution and width of the timers to get the current time value
for the desired timer instance. |

AUTSSAR

7.1.3 Timing aspects to consider

This chapter contains several aspects of the provided Time Service functionality which
has to be considered on user software level. Chapter 7.1.4.6 contains additional hints
for users of Tm_BusyWaitlus

7.1.3.1 Maximal measurable time span

The measurable time span is restricted to the maximum value of the corresponding
GPT Predef Timer. A wrap-around of a timer is handled by the Tm_GetTimeSpan
function, see [SWS_Tm_00010].

The diagram "Free running up counter" below shows the general behavior of a free
running up counter provided by the GPT driver [1]. The services Tm_ResetTimer and
Tm_GetTimeSpan are used to measure three time spans, as example.

timer value
1
max. value

current
time 3

current
time

reference
time

1

‘
current -J----A--- 4
time 2 !
1

1

1

J

0

v

\

Tm_ResetTimer Tm_GetTimeSpan 2

Tm_GetTimeSpan ' Tm_GetTimeSpan 3

Figure 7.1: Free running up counter

By calling Tm_ResetTimer the current time of the related GPT Predef Timer is stored
as a reference time in the timer instance. For details see chapter 7.1.4.1.

By calling Tm_GetTimeSpan the time difference between the current time and the
reference time is calculated and delivered. For details see chapter 7.1.4.2.

For:
s Tm_GetTimeSpan'
* Tm_GetTime Span2

the time span will be calculated correctly.

AUTSSAR

For:
s Tm_GetTimeSpan®

it is not possible to calculate the correct time span, because the maximum time span is
exceeded. It is not possible for the Time Service module to detect such an exceeding.
This is not a fault of this specification, it’s a logical consequence caused by the technical
principle. See also "Unintentional behavior of Tm_BusyWaitlus services" in chapter
7.1.4.6.

To ensure correct behavior under every possible circumstance, the user of the Tm_
GetTimeSpan service has to check:

» which Predef Timer is required/sufficient
* the task scheduling
» whether an interrupt or resource lock is necessary on user software level

» whether the user software is tolerant of such problems

7.1.3.2 Time quantization error

The theory of quantization error has to be considered at using/interpretation of the
values delivered by the Tm_Get TimeSpan function.

The value delivered by a Tm_Get TimeSpan function has an accuracy of +/- 1 tick.

For example:

Value delivered by Tm_ Real time minimum Real time maximum Comment

GetTimeSpan function

Value Tick

duration

1 us nearly 0 us nearly 2 us See
figure 7.2

3400 us nearly 3399 us nearly 3401 us

56 100us nearly 5500 us nearly 5700 us

AUTSSAR

quantized time
in us ticks

L

»
! | I =

10 11 12 timeinps

o -
-~ -
o -

T rTTrErOrTTNOTTNTNTIThTIThmhmhhhhorr

| TSR NNP. (I ——

Ay

’
’
’

Tm_ResetTimer’ Tm_ResetTimer?

Tm_GetTimeSpan' Tm_GetTimeSpan?

Figure 7.2: Time quantization example diagram

In the example diagram above both calls of Tm_GetTimeSpan (! and 2) deliver the
value 1, this means 1us.

Depending on points in time the calls of Tm_ResetTimer and Tm_GetTimeSpan OC-
cur, the real time span can be in a range nearly Ous to nearly 2us.

If a Tm_GetTimeSpan function is used to check a minimum time, e.g. for:
» Timeout supervision
 Busy waiting

n+1 ticks must be observed by user software to ensure that an interval of at least n
ticks has passed, see also [SWS_Tm_00024].

For busy waiting please use the Tm_BusyWaitlus service, see chapter 7.1.4.5.

AUTSSAR

7.1.3.3 Execution times of services / measurement of short time spans

If short time spans shall be measured on user software level, the execution times of
the Tm services and the underlying GPT driver services shall be short enough related
to the time spans to be measured.

The execution times are dependent on:
 Implementation
» CPU speed

* Realization of related GPT Predef Timer, see chapter GPT Predef Timer in [1,
SWS GPT Driver]

The user has to check whether the execution times are sufficient for his use case.

7.1.4 API Services

The Tm_GetTimeSpan, Tm_ShiftTimer and Tm_SyncTimer Services require timer
instance(s) as input. It is assumed that these timer instance(s) do have a valid refer-
ence time. This means there was a previous call to Tm_ResetTimer which used the
timer instance.

[SWS_Tm_00068] Development error when refernce time is missing
Upstream requirements: SRS_BSW_00386, SRS_BSW_00323

[If development error detection for the Time Service module is enabled: If a timer
instance provided by the user in a call to Tm_GetTimeSpan, Tm_ShiftTimer oOr
Tm_SyncTimer does not contain a reference time the called function shall raise the
development error TM_E_STATE. |

The Tm_GetTimeSpan and the Tm_sShiftTimer services provide or require a timer
value. For both services the type of the timer value is fixed to a 32 bit type (uint32).
If predef timers are used with a smaller width (16bit or 24bit), the "unused" part of the
timer value shall always be 0.

Example: If a timer instance is using a 16bit pre def timer then values of the timer are
always in the range of 0x00000000 and 0x0000FFFF.

[SWS_Tm_CONSTR_00002] Assumption on provided timer value
Upstream requirements: SRS_Tm_00006

[When Tm_shiftTimer is called with a timer instance using a 16bit (or 24bit) the

Time Service module assumes that the value of the parameter TimeValue is in the
range of 0x0000 to OxFFFF (or 0x000000 to OxFFFFFF). |

AUTSSAR

[SWS_Tm_00069] Range of timer values
Upstream requirements: SRS_Tm_00005

[For timer instance using a 16bit (or 24bit) the Tm_GetTimeSpan will always re-
turn a timer value between 0x00000000 and 0x0000FFFF (or 0x00000000 and
0x00FFFFFF).]

7.1.4.1 Service ResetTimer
The service Tm_ResetTimer resets a timer instance from user point of view.

[SWS_Tm_00006]
Upstream requirements: SRS_Tm_00004

[The Tm_ResetTimer function shall reset the provided timer instance. This means,
the reference time of the timer instance shall be set to the current time of the related
GPT Predef Timer. |

7.1.4.2 Service GetTimeSpan
The service Tm_Get TimeSpan returns the current timer value of the timer instance.

[SWS_Tm_00009]
Upstream requirements: SRS_Tm_00005

[The Tm_GetTimeSpan function shall calculate and deliver the time difference be-
tween the current time and the reference time of the timer instance. |

Note: The restriction of maximal measurable time span has to be considered on user
software level, see chapter 7.1.3.1.

Note: Because the Tm_GetTimeSpan function deliver time differences as integer val-
ues, the theory of quantization error has to be considered on user software level at
using/interpretation of the values, see chapter 7.1.3.2.

[SWS_Tm_00010]
Upstream requirements: SRS_Tm_00005
[The Tm_GetTimeSpan function shall perform proper wrap-around handling at sub-

traction (current time - reference time), if value of current time is less than value of
reference time. |

AUTSSAR

7.1.4.3 Service ShiftTimer

[SWS_Tm_00013]
Upstream requirements: SRS_Tm_00006

[The Tm_shiftTimer function shall shift the reference time of the timer instance.
This means, the provided timer value shall be added to the reference time of the timer
instance. |

[SWS_Tm_00014]
Upstream requirements: SRS_Tm_00006

[The Tm_shiftTimer function shall perform proper wrap-around handling at adding
(reference time + TimeValue), if the sum is greater than the maximum value of the
timer. |

7.1.4.4 Service SyncTimer

[SWS_Tm_00019]
Upstream requirements: SRS_Tm_00007
[The Tm_SyncTimer function shall synchronize two timer instances. This means, the

reference time of the destination timer instance shall be set to the reference time of the
source timer instance. |

7.1.4.5 Service BusyWait

The service Tm_BusyWaitlus performs busy waiting (active waiting) by polling with
a guaranteed minimum waiting time. The Tm_BusyWaitlus service should be used
instead of own implementations on user software level to avoid risks of bad implemen-
tations.

Risks may be:
* minimum waiting time is not guaranteed

* "loops" or "nop instructions" are used instead of hardware timers, see chapter
1.1

Note: The specification of the Tm_BusyWaitlus function considers the theory of
quantization error, see chapter 7.1.3.2.

Note: Because the Tm_BusyWaitlus service is based on polling, the user of the Tm__
BusyWaitlus service is responsible for avoiding unintentional behavior, see chapter
7.1.4.6.

The service is available with tick duration of 1us. The waiting time is restricted to 8 bits
(255u8) to prevent long time blocking of code execution.

AUTSSAR

[SWS_Tm_00022]

Upstream requirements: SRS_Tm_00008
[The Tm_BusyWaitlus function shall perform busy waiting for the minimum time
passed by the parameter WaitingTimeMin. |

[SWS_Tm_00023]
Upstream requirements: SRS_Tm_00008

[The Tm_BusyWaitlus function shall not disable the interrupts. This means the real
waiting time may be greater than the desired waiting time. |
[SWS_Tm_00024]

Upstream requirements: SRS_Tm_00008
[The Tm_BusyWaitlus function shall guarantee the minimum waiting. This means,
n+1 ticks must be observed to ensure that an interval of at least n ticks have passed. |
[SWS_Tm_00070] Resolution of busy waiting

Upstream requirements: SRS_Tm_00008

[The Tm_BusyWaitlus function shall always use a PreDef Timer with 1.s resolution
and 32bit width. |

7.1.4.6 Unintentional behavior of BusyWait services

This chapter has to be considered on user software level.

Because the Tm_BusyWaitlus service is based on polling, the user of Tm_Busy-
Waitlus service is responsible for avoiding unintentional behavior.

Unintentional behavior can occur when an ongoing call of Tm_BusyWaitlus is pre-
empted or interrupted. Here is a possible scenario:

1. A Task A calls Tm_BusyWaitlus with waiting time of 10us. The function reads
the current value of the timer. The current value is 0.

2. After 2us the scheduler preempts Task A, and another Task is executed.

3. Task A stays preempted for a long time. In the meantime the timer wraps around
and the value is again 0

4. Shortly afterwards Task A continues. The next value which is read in the function
Tm_BusyWaitlus is 3

5. For Tm_BusyWaitlus it looks like that just 1us has passed. So it still loops until
the timer reaches 10.

The waiting time in the above example is in the end extremely long. By using the
service Tm_BusyWaitlus a problem as described above can only occur, if a task

AUTSSAR

which calls the busy wait function is preempted for more than 71 minutes. See also
[SWS_Tm_00070].

To ensure correct behavior under every possible circumstance, the user of the Tm_
BusyWaitlus service has to check:

* the task scheduling
» whether an interrupt or resource lock is necessary on user software level

» whether the user software is tolerant of such problems

7.1.5 Configuration of Predef Timers

The Time Service module requires that timer instances are configured before they can
be used. See TmPreDefTimerInstance for details. For each timer instance the type
of the underlying timer has to be provided (see TmPreDefTimerType). Additionally it
has to be specified if the timer instance is used on application level (access via ports)
or just from other modules via its C-API. This can be specified in TmTimerUser.

There is a restriction regarding the availability of port(s) and timer types: For ports only
PreDef Timers of type TM_PREDEF_TIMER_1US_32BIT are allowed.

[SWS_Tm_CONSTR_00001] Service interface always use 32bit wide 1us resolu-
tion [The Time Service module only support ports for configured timer instances of
type TM_PREDEF_TIMER_1US_32BIT.|

[SWS_Tm_00071] Configuration check [If a configuration contains a TmPreDef-
TimerInstance where the TmTimerUser equals PORT and the TmPreDefTimer—
Type is not equal TM_PREDEF_TIMER_1US_32BIT then the generator tool of the
Time Service module shall report an error. |

7.1.6 Sample code of use cases

This chapter contains example code of use cases in addition to the use cases de-
scribed in chapter 1.1.

7.1.6.1 Time measurement

Sometimes execution time of code shall be measured.

Sample code:
#include "Os.h"
#include "Tm.h"

/+ TmConf_TmPreDefTimerInstance_TimerIsrl = Name of the configured timer
instance with a lus resolution =/

AUTSSAR

/+ TmConf_TmPreDefTimerInstance_TimerTaskl00us = Name of the configured
timer instance with a lus resolution =*/

uint32 RunTimelIsrlus; /+ Gross runtime of Isrl =*/
uint32 RunTimeTask100us; /* Gross runtime of Task1l00ms =*/

ISR(Isrl) {
(void) Tm_ResetTimer (TmConf_ TmPreDefTimerInstance_TimerIsrl);
/* Code =/
(void) Tm_GetTimeSpan (TmConf_TmPreDefTimerInstance_TimerIsrl, &
RunTimeIsrlus) ;

TASK (Task100ms) {
(void) Tm_ResetTimer (TmConf_TmPreDefTimerInstance_TimerTask1l00us);
/* Code =/
(void) Tm_GetTimeSpan (TmConf_TmPreDefTimerInstance_TimerTaskl00us, &
RunTimeTask100us) ;
(void) TerminateTask () ;

7.1.6.2 time-based state machine

By implementing a time-based state machine it is possible to realize time-based func-

tionality nearly independently from the cycle time of the calling task.

Sample code:

#include "Os.h"
#include "Tm.h"

#define MY_INIT O
#define MY_WAITI1 1
#define MY_WAIT2 2

/* TmConf_TmPreDefTimerInstance_Timer = Name of configured timer instance.

*/
uint8_least State = MY_INIT;
TASK (Taskb5ms) {

uint32 WaitingTimel_us
uint32 WaitingTime2_us

500000u; /+ 500ms =*/
250000u; /* 250ms =/

switch (State) {

case MY_INIT: {
(void) Tm_ResetTimer (TmConf_ TmPreDefTimerInstance_Timer) ;
State = MY_WAITI;
break;

}

case MY_WAIT1: {
uint32 Time_us;

(void) Tm_GetTimeSpan (TmConf_ TmPreDefTimerInstance_Timer, &Time_us);

if (Time_us >= WaitingTimel_us) {

AUTSSAR

26 /* Action ... %/

27 Tm_ShiftTimer (TmConf_TmPreDefTimerInstance_Timer, WaitingTimel_us);
28 State = MY _WAIT2;

29 }

30 break;

31 }

32 case MY _WAIT2: {

33 uint32 Time_us;

34 (void) Tm_GetTimeSpan (TmConf_TmPreDefTimerInstance_Timer, &Time_us);
35 if (Time_us >= WaitingTime2_us) {

36 /% Action ... %/

37 Tm_ShiftTimer (TmConf_ TmPreDefTimerInstance_Timer, WaitingTime2_us);
38 State = MY_WAITI1;

39 }

40 break;

41 }

42 }

43 (void) TerminateTask () ;

7.1.6.3 Timeout supervision

In case of hardware accessing MCAL driver, sometimes it is necessary that a hardware
reaction is expected within certain but short time frame.

Sample code:

1 #include "Register.h"

2 #include "Tm.h"

3

4 /* TmConf_TmPreDefTimerInstance_Timerl = Name of configured timer instance
*/

5

6 uintl6 StatusRegisterBitO0;

7 uint32 TimeElapsed_us;

8

9 void SampleFunction (void) {

10 (void) Tm_ResetTimer (TmConf_TmPreDefTimerInstance_Timerl) ;

11 do {

12 StatusRegisterBit0 = HW_STATUS_REG & 0x0001u;

13 (void) Tm_GetTimeSpan (TmConf_TmPreDefTimerInstance_Timerl, &
TimeElapsed_us);

14 } while ((StatusRegisterBitO != 0x0001u) /+ Wait until bit 0 is setx/

15 && (TimeElapsed_us <= 40) /x Timeout 40us */);

7.1.6.4 Busy waiting

In case of hardware accessing MCAL driver, sometimes it is necessary that a certain
but short time frame shall elapse.

Sample code:

1
2
3

AUTSSAR

#include "Tm.h"

Std_ReturnType CanTrcv_SetOpMode (uint8 Transceiver, CanIf_TrcvModeType
OpMode) {
/* Code =/
switch (OpMode) {

case CANIF_TRCV_MODE_NORMAL: {
/+ Code =*/
break;

}

case CANIF_TRCV_MODE_SLEEP: {
/+ Code =*/
SetPinEnableHigh () ;
/+ Busy waiting: 50us (for TJA1054: at least 50us) =/
(void) Tm_BusyWaitlus (50);
SetPinEnablelLow () ;
/+ Code =*/
break;

}

case CANIF_TRCV_MODE_STANDBY: {
/* Code =/
break;

}

}
/* Code */

7.2 Version check
Please refer to chapter "Version Check" in [3, SWS BSW General].

7.3 Error classification

[SWS_Tm_00063]

Upstream requirements: SRS_Tm_00004, SRS Tm_00005, SRS_Tm_00006, SRS_Tm_00007

[When an error occurs the corresponding Time Service function shall return without
any action, unless it is specified for the specific function differently/more in detalil. |

AUTSSAR

7.3.1 Development Errors

[SWS_Tm_00028] Definition of development errors in module Tm |

Type of error Related error code Error value
API| parameter checking: invalid pointer TM_E_PARAM_POINTER 0x01

API parameter checking: invalid value TM_E_PARAM_VALUE 0x02

API| parameter checking: incompatible timer TM_E_PARAM_SYNC 0x03
instances for Tm_SyncTimer

A provided timer instance was not initialized via TM_E_STATE 0x04
Tm_ResetTimer

]

[SWS_Tm_00030]
Upstream requirements: SRS_BSW_00337

[Additional errors that are detected because of specific implementation shall be added
in the specific implementation specification. The classification and enumeration shall
be compatible to the errors listed. |

7.3.2 Runtime Errors

[SWS_Tm_00067] Definition of runtime errors in module Tm [

Type of error Related error code Error value
Access to underlying hardware timer failed TM_E_HARDWARE_TIMER 0x03

]

[SWS_Tm_00064]
Upstream requirements: SRS_BSW_00452

[If the underlying GPT driver service returns E_NOT_OK, the functions Tm_Reset-
Timer, Tm_GetTimeSpan and Tm_BusyWaitlus shall raise the runtime error T™M_
E_HARDWARE_TIMER. |

7.3.3 Production Errors

No production errors are defined for the Time Service module.

7.3.4 Extended Production Errors

There are no extended production errors.

AUTSSAR

8 API specification

8.1 Imported types
In this chapter all types included from the following modules are listed:

[SWS_Tm_00031] Definition of imported datatypes of module Tm
Upstream requirements: SRS_BSW_00348

[
Module Header File Imported Type
Gpt Gpt.h Gpt_PredefTimerType
Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType

8.2 Type Definitions

8.2.1 Tm_ConfigType

[SWS_Tm_91000] Definition of datatype Tm_ConfigType
Upstream requirements: SRS_BSW_00101

[
Name Tm_ConfigType
Kind Structure
Elements implementation specific
Type -
Comment The contents of the initialization data structure are implementation
specific
Description This type contains the implementation-specific configuration structure.
Available via Tm.h

AUTSSAR

8.3 Function definitions

8.3.1 Tm_lInit

[SWS_Tm_91001] Definition of API function Tm_Init
Upstream requirements: SRS_BSW_00344, SRS_BSW_00404, SRS_BSW_00405, SRS_BSW_

00101, SRS_BSW_00358, SRS_BSW_00414

Service Name

Tm_Init

Syntax void Tm_Init (
const Tm_ConfigTypex config

)
Service ID [hex] 0x02
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) config Pointer to the Time Service module’s configuration dat
Parameters (inout) None
Parameters (out) None
Return value None

Description

This service initializes the Time Service module. Is shall be called before other functional APls
are used.

Available via

Tm.h

8.3.2 Tm_GetVersioninfo

[SWS_Tm_00036] Definition of API function Tm_GetVersioninfo
Upstream requirements: SRS_BSW_00407

Service Name

Tm_GetVersioninfo

Syntax void Tm_GetVersionInfo (
Std_VersionInfoTypex VersionInfoPtr

)

Service ID [hex] 0x01

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out)

VersionInfoPtr Pointer to where to store the version information of this module.

Return value None
Description Returns the version information of this module.
Available via Tm.h

AUTSSAR

[SWS_Tm_00037]
Upstream requirements: SRS_BSW_00323

[If development error detection for the Time Service module is enabled: If the param-
eter VersionInfoPtr is a null pointer, the function Tm_GetversionInfo shall raise the
error TM_E_PARAM POINTER. |

8.3.3 Tm_ResetTimer

[SWS_Tm_91002] Definition of API function Tm_ResetTimer
Upstream requirements: SRS_Tm_00001, SRS_Tm_00004, SRS_BSW_00369

[

Service Name

Tm_ResetTimer

Syntax Std_ReturnType Tm_ResetTimer (
uint32 timerId
)

Service ID [hex] 0x03

Sync/Async Synchronous

Reentrancy Reentrant but not for the same timerld

Parameters (in) timerld A timer instance handle.
Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK:

The underlying GPT driver service has returned E_OK. E_NOT__
OK: The underlying GPT driver service has not returned E_NOT_
OK.

Description

Reset a timer instance by setting the reference time to the current value of the related PreDef
Timer.

Available via

Tm.h

]

[SWS_Tm_00008]
Upstream requirements: SRS_BSW_00369, SRS_BSW_00323
[If development error detection for the Time Service module is enabled: If the param-

eter timerld is not a valid timer instance, the Tm_Reset Timer functions shall raise the
development error TM_E_PARAM_VALUE. |

AUTSSAR

8.3.4 Tm_GetTimeSpan

[SWS_Tm_91003] Definition of API function Tm_GetTimeSpan
Upstream requirements: SRS_Tm_00001, SRS _Tm_00005, SRS_BSW 00369

Service Name Tm_GetTimeSpan
Syntax Std_ReturnType Tm_GetTimeSpan (
uint32 timerId,
uint32+ timeSpan
)
Service ID [hex] 0x04
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) timerld A timer instance handle.
Parameters (inout) None
Parameters (out) timeSpan Pointer to location where the time will be stored.
Return value Std_ReturnType E_OK: The underlying GPT driver service has returned E_OK.
E_NOT_OK: The underlying GPT driver service has not returned
E_OK.
Description Delivers the (relative) value of the time since the last reset (or shifting) of the timer instance.
Available via Tm.h

[SWS_Tm_00082] Unknown timer
Upstream requirements: SRS_BSW_00386, SRS_BSW_00323

[If development error detection for the Time Service module is enabled: If the parame-
ter timerld is not a valid timer instance, the Tm_Get TimeSpan functions shall raise the
development error TM_E_PARAM_VALUE. |

[SWS_Tm_00012]
Upstream requirements: SRS_BSW_00369, SRS_BSW_00323

[If development error detection for the Time Service module is enabled: If the pointer
parameter (timeSpan) is a null pointer, the Tm_Get TimeSpan functions shall raise the
development error TM_E_PARAM_POINTER. |

[SWS_Tm_00065]
Upstream requirements: SRS_Tm_00005

[When Tm_GetTimeSpan returns E_NOT_OK it shall set the value for the timeSpan to
HOII'J

AUTSSAR

8.3.5 Tm_ShiftTimer

[SWS_Tm_91004] Definition of API function Tm_ShiftTimer
Upstream requirements: SRS_Tm_00001, SRS_Tm_00006

Service Name Tm_ShiftTimer
Syntax void Tm_ShiftTimer (
uint32 timerId,
uint32 timeValue
)
Service ID [hex] 0x05
Sync/Async Synchronous
Reentrancy Reentrant but not for the same timer instance
Parameters (in) timerld A timer instance handle.
timeValue Time value in in units (e.g. ps), the reference time has to be
shifted.
Parameters (inout) None
Parameters (out) None
Return value None
Description Shifts the reference time of the timer instance.
Available via Tm.h

[SWS_Tm_00018]
Upstream requirements: SRS_BSW_00323

[If development error detection for the Time Service module is enabled: If the timerld is
not a valid timer instance, the Tm_Shift Timer functions shall raise the development

error TM_E_PARAM_VALUE.J

[SWS_Tm_00016]
Upstream requirements: SRS_BSW_00323

[If development error detection for the Time Service module is enabled: If the value of
the parameter timeValue is greater than the maximum allowed of the base GPT predef
timer (OxFFFFEF for 24bit timers and OxFFFF for 16bit timers), the Tm_ShiftTimer

functions shall raise the development error TM_E_PARAM_VALUE. |

Note: A shift by "0" is considered a valid request although no real adjustments are

performed.

AUTSSAR

8.3.6 Tm_SyncTimer

[SWS_Tm_91005] Definition of API function Tm_SyncTimer
Upstream requirements: SRS_Tm_00001, SRS_Tm_00007

[

Service Name

Tm_SyncTimer

Syntax void Tm_SyncTimer (
uint32 timerIdSrc,
uint32 timerIdDst
)
Service ID [hex] 0x06
Sync/Async Synchronous
Reentrancy Non Reentrant Conditionally reentrant (see [SWS_Tm_00020])
Parameters (in) timerldSrc Source timer instance defined by the user.
timerldDst Destination timer instance defined by the user.
Parameters (inout) None
Parameters (out) None
Return value None

Description

Synchronizes two timer instances.

Available via

Tm.h

]

[SWS _Tm_00021]
Upstream requirements: SRS_BSW_00323

[If development error detection for the Time Service module is enabled: If a parameter
is not a valid timer instance, the Tm_SyncTimer functions shall raise the development
error TM_E_PARAM_VALUE. |

[SWS_Tm_00077] Resolution mismatch
Upstream requirements: SRS_BSW_00323

[If development error detection for the Time Service module is enabled: If the resolu-
tion or the width of the two timer instances are not equal , the Tm_SyncTimer functions
shall raise the development error TM_E_PARAM_SYNC. |

[SWS_Tm_00020]
Upstream requirements: SRS_BSW_00312

[The SyncTime functions shall be reentrant, if the timer instances used in concurrent
calls are different. |

AUTSSAR

8.3.7 Tm_BusyWaitlus

[SWS_Tm_91006] Definition of API function Tm_BusyWait1us
Upstream requirements: SRS_Tm_00001, SRS_Tm_00008

[
Service Name Tm_BusyWait1us
Syntax Std_ReturnType Tm_BusyWaitlus (
uint8 WaitingTimeMin
)
Service ID [hex] 0x15
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) WaitingTimeMin Minimum waiting time in microseconds.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The underlying GPT driver service has returned E_OK.
E_NOT_OK: The underlying GPT driver service has not returned
E_OK.
Description Performs busy waiting by polling with a guaranteed minimum waiting time.
Available via Tm.h
]

Note: Because the BusyWait service is based on polling, the user of the BusyWait
service is responsible for avoiding unintentional behavior, see chapter 7.1.4.5 Service
BusyWait.

[SWS_Tm_00066]
Upstream requirements: SRS_BSW_00369

[When an error is detected, the BusyWait functions shall return E_NOT_0OK and shall
abort "waiting" immediately. |

The [SWS_Tm_00066] means that if an error is returned the minimal waiting time is
(most likely) not reached.

8.4 Call-back Notifications

None.

8.5 Scheduled functions

None.

AUTSSAR

8.6 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces, which are required to fulfill the core functionality of
the module.

[SWS_Tm_00057] Definition of mandatory interfaces required by module Tm
Upstream requirements: SRS_Tm_00002

API Function Header File Description

Det_ReportRuntimeError Det.h Service to report runtime errors. If a callout has
been configured then this callout shall be called.

Gpt_GetPredefTimerValue Gpt.h Delivers the current value of the desired GPT Predef
Timer.

8.6.2 Optional Interfaces

This chapter defines all interfaces, which are required to fulfill an optional functionality
of the module.

[SWS_Tm_00060] Definition of optional interfaces requested by module Tm |

API Function Header File Description

Det_ReportError Det.h Service to report development errors.

8.6.3 Configurable Interfaces

In this chapter all interfaces are listed where the target function could be configured.
The Time Service module does not have such functions.

None.

AUTSSAR

8.7 Service Interfaces

8.7.1 Provided Ports of Tm

[SWS_Tm_91007] Definition of Port TmPreDefTimer_{Name} provided by module
Tm |

Name TmPreDefTimer_{Name}

Kind ProvidedPort | Interface TmPreDefTimerService

Description -

Port Defined Type uint32

AT V) Value {ecuc(Tm/TmPreDefTimerInstance/TmPreDefTimerInstanceld)}
Variation {ecuc(Tm/TmPreDefTimerlnstance/TmTimerUser) == PORT AND

Name = {ecuc(Tm/TmPreDefTimerinstance. SHORT-NAME)}

8.7.2 Client-Server-Interfaces

The offered ClientServerinterface provides functionality to reset, get and shift a timer.
The C API additionally offers Tm_SyncTimer and Tm_BusyWaitlus which are not
part of the ClientServerInterface. The reasons are: SWCs should not really perform
busy waiting and for synchronization the SWC would require access to the generated
symbols of the instance Ids which is currently not possible for the application.

8.7.2.1 TmPreDefTimerService

[SWS_Tm_91008] Definition of ClientServerinterface TmPreDefTimerService |

Name TmPreDefTimerService
Comment -
IsService true
Variation -
Possible Errors 0 E_OK Operation successful
1 E_NOT_OK Operation failed
Operation GetTimeSpan
Comment -
Relates to Tm_GetTimeSpan
Variation -
Parameters timeSpan
Type uint32
Direction ouT
Comment The current value of the timer.
Variation -

V

AUTSSAR

A
Possible Errors E_OK
E_NOT_OK
Operation ResetTimer
Comment This service sets the reference time to the current value of the underlying predef timer
Relates to Tm_ResetTimer
Variation -
Possible Errors E_OK
E_NOT_OK
Operation ShiftTimer
Comment This service shifts the reference time by the given value.
Relates to Tm_ShiftTimer
Variation -
Parameters value
Type uint32
Direction IN
Comment The value by which the timer is shifted.
Variation -
Possible Errors E_OK

AUTSSAR

9 Sequence diagrams

9.1 Tm Normal Operation

sd Tm Normal Operation ~

Tm User «modules amodules
Tm Gpt

Tm_ResetTimer(Timer1)

y

Gpt_GetPredefTimerValue(GPT_PREDEF_TIMER_1US_32BIT, &...)
oy

Reference time of Timer1 is set

LV
A
1
1
1
1
1
1
1
1
1
1
L

{_ _________________________________
= |
| |
Tm_SyncTimer(Timer2, Timer1) ! !
| |
- |
|
Reference time of Timer2 is set to the reference time of :
Timer1 |
|
€ mmmmmmmmmmmmmmmmmmmm e !
U - |
| | |
| | |
| | |
| | |
| | |
| | |
I Tm_GetTimeSpan(Timer1, &TimeSpan1) I |
L Gpt_GetPredefTimerValue(GPT_PREDEF_TIMER_1US_32BIT, &. .}:
= 1
TimeSpan is time span since marker 1 Iﬁ
= —— —— ———
e e .
s s |
| | |
| | |
! Tm_GetTimeSpan(Timer2, &TimeSpan2) g :
T | Gpt_GetPredefTimervalue(GPT_PREDEF_TIMER_1US_32BIT, & .}:
-
Lt
TimeSpan2 is time span since marker 1 B‘
[m e mmmmm e
g

Tm_ShiftTimer(Timer1, TimeSpan1)

Yy

TimeSpan1 is added to reference time of Timerl ﬁ

ez e i i i i i i

T T
| |
: Tm_GetTimeSpan(Timer1, &TimeSpan3) :

: P Gpt_GetPredefimerValue(GPT_PREDEF_TIMER_1US_32BIT, &)
g
TimeSpan3 is time span since marker 2 ﬁ
ey
.<_ _________________________________

U - |
: Tm_GetTimeSpan(Timer2, &TimeSpand) : :
I -l l

= ‘ Gpt_GetPredefTimerValue(GPT_PREDEF_TIMER_1US_32BIT, & ..).
-
-
TimeSpan4 is time span since marker 1 B‘

Figure 9.1: Sequence diagram TmNormalOperation

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
Tm.

Chapter 10.3 specifies published information of the module Tm.

10.1 How to read this chapter

For details refer to the chapter 10.1 “Introduction to configuration specification” in [3,
SWS BSW General].

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 and Chapter 8.

10.2.1 Tm

[ECUC_Tm_00008] Definition of EcucModuleDef Tm |

Module Name Tm

Description Configuration of the Time Service module.
Post-Build Variant Support false

Supported Config Variants VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Dependency
TmGeneral 1 General configuration of Time Service module.
TmPreDefTimerlnstance 0..* Contains all configurable elements for timer instances

10.2.2 TmGeneral

[ECUC_Tm_00001] Definition of EcucParamConfContainerDef TmGeneral |

AUTSSAR

Container Name

TmGeneral

Parent Container

Tm

Description

General configuration of Time Service module.

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity

ECUC ID

TmDevErrorDetect

1

[ECUC_Tm_00002]

TmVersionInfoApi

1

[ECUC_Tm_00007]

No Included Containers

]

[ECUC_Tm_00002] Definition of EcucBooleanParamDef TmDevErrorDetect |

Parameter Name

TmDevErrorDetect

Parent Container

TmGeneral

Description Switches the development error detection and notification on or off.
« true: detection and notification is enabled.
« false: detection and natification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

]

[ECUC_Tm_00007] Definition of EcucBooleanParamDef TmVersioninfoApi [

Parameter Name

TmVersionInfoApi

Parent Container TmGeneral

Description Adds / removes the service Tm_GetVersionInfo() from the code. ON or OFF.
Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Dependency

AUTSSAR

10.2.3 TmPreDefTimerinstance

[ECUC_Tm_00009] Definition of EcucParamConfContainerDef TmPreDefTimerIn-

stance |

Container Name TmPreDefTimerlnstance

Parent Container Tm

Description Contains all configurable elements for timer instances
Multiplicity 0..*

Post-Build Variant Multiplicity false

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity ECUC ID

TmPreDefTimerlnstanceld

1 [ECUC_Tm_00010]

TmPreDefTimerType

1 [ECUC_Tm_00011]

TmTimerUser

1 [ECUC_Tm _00012]

No Included Containers

]

[ECUC_Tm_00010] Definition of EcucintegerParamDef TmPreDefTimerinstance

Id [

Parameter Name

TmPreDefTimerlnstanceld

Parent Container

TmPreDefTimerInstance

Description Instance handle of the timer.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 4294967295

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time All Variants

Link time

Post-build time

Dependency

withAuto = true

]

[ECUC_Tm_00011]
Type [

Definition of EcucEnumerationParamDef TmPreDefTimer

Parameter Name

TmPreDefTimerType

Parent Container

TmPreDefTimerInstance

Description Configures the type of PreDef timer used from GPT
Multiplicity 1
Type EcucEnumerationParamDef

V

AUTSSAR

A

Range TM_PREDEF_TIMER_100US_32 | predef timer with 100us resolution and 32bit
BIT width
TM_PREDEF_TIMER_1US_16 predef timer with 1us resolution and 16bit width.
BIT
TM_PREDEF_TIMER_1US_24 predef timer with 1us resolution and 24bit width.
BIT
TM_PREDEF_TIMER_1US_32 predef timer with 1us resolution and 32bit width.
BIT

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

J
[ECUC_Tm_00012] Definition of EcucEnumerationParamDef TmTimerUser |

Parameter Name TmTimerUser
Parent Container TmPreDefTimerInstance
Description Specifies if timer instance is used via C-API or via port interface.
Multiplicity 1
Type EcucEnumerationParamDef
Range CAPI timer instance is used via C-API
PORT timer instance is used via port interface.
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

10.3 Published Information
For details refer to the chapter 10.3 “Published Information” in [3, SWS BSW General].

AUTSSAR

A Not applicable requirements

[SWS_Tm_NA_00059]

Upstream requirements: SRS_BSW_00159, SRS_BSW_00167, SRS_BSW_00170, SRS_BSW _
00398, SRS_BSW _ 00416, SRS_BSW_00437, SRS_BSW_00168,
SRS_BSW_00423, SRS_BSW_00424, SRS_BSW_00425, SRS_BSW_
00426, SRS_BSW_00427, SRS_BSW_00428, SRS_BSW_00429,
SRS_BSW_00432, SRS_BSW_00433, SRS_BSW_00422, SRS_BSW_
00417, SRS _BSW_00161, SRS BSW_00162, SRS _BSW_00005,
SRS _BSW_00415, SRS _BSW_00325, SRS_BSW_00342, SRS_BSW _
00160, SRS_BSW_00007, SRS_BSW_00413, SRS_BSW_00347,
SRS_BSW_00307, SRS_BSW_00373, SRS_BSW_00335, SRS_BSW_
00353, SRS_BSW_00328, SRS _BSW_00006, SRS_BSW_00439,
SRS BSW_00357, SRS BSW_ 00377, SRS _BSW 00378, SRS _BSW _
00306, SRS_BSW 00308, SRS _BSW 00309, SRS BSW_00359,
SRS_BSW_00360, SRS_BSW_00440, SRS_BSW_00330, SRS_BSW _
00331, SRS_BSW_00009, SRS _BSW_00172, SRS_BSW_00010,
SRS_BSW_00333, SRS_BSW_00321, SRS_BSW_00341

[These requirements are not applicable to this specification. |

AUTSSAR

B History of Constraints and Specification ltems

B.1 Differences between R24-11 and R25-11

B.1.1 Added Specification Iltems in R25-11

none

B.1.2 Changed Specification Items in R25-11

none

B.1.3 Deleted Specification Iltems in R25-11

none

B.1.4 Added Constraints in R25-11

none

B.1.5 Changed Constraints in R25-11

none

B.1.6 Deleted Constraints in R25-11

none

B.2 Differences between R23-11 and R24-11

B.2.1 Added Specification Iltems in R24-11

[ECUC_Tm_00009] [ECUC_Tm_00010] [ECUC_Tm_00011] [ECUC_Tm_00012]
[SWS_Tm_00068] [SWS_Tm_00069] [SWS_Tm_00070] [SWS_Tm_00071] [SWS_
Tm_00077] [SWS_Tm_00082] [SWS_Tm_91000] [SWS_Tm_91001] [SWS_Tm_
91002] [SWS_Tm_91003] [SWS_Tm_91004] [SWS_Tm_91005] [SWS_Tm_91006]
[SWS_Tm_91007] [SWS_Tm_91008]

AUTSSAR

B.2.2 Changed Specification Items in R24-11

[ECUC_Tm_00001] [ECUC_Tm_00008] [SWS_Tm_00001] [SWS_Tm_00006]
[SWS_Tm_00008] [SWS_Tm_00009] [SWS_Tm_00010] [SWS_Tm_00012] [SWS_
Tm_00013] [SWS_Tm_00014] [SWS_Tm_00016] [SWS_Tm_00018] [SWS_Tm_
00019] [SWS_Tm_00020] [SWS_Tm_00021] [SWS_Tm_00022] [SWS_Tm_00023]
[SWS_Tm_00024] [SWS_Tm_00028] [SWS_Tm_00064] [SWS_Tm_00065]

B.2.3 Deleted Specification Iltems in R24-11

[ECUC_Tm_00003] [ECUC_Tm_00004] [ECUC_Tm_00005] [ECUC_Tm_00006]
[SWS_Tm_00002] [SWS_Tm_00003] [SWS_Tm_00004] [SWS_Tm_00005] [SWS_
Tm_00007] [SWS_Tm_00011] [SWS_Tm_00015] [SWS_Tm_00017] [SWS_Tm_
00025] [SWS_Tm_00026] [SWS_Tm_00027] [SWS_Tm_00032] [SWS_Tm_00033]
[SWS_Tm_00034] [SWS_Tm_00035] [SWS_Tm_00038] [SWS_Tm_00039] [SWS_
Tm_00040] [SWS_Tm_00041] [SWS_Tm_00042] [SWS_Tm_00043] [SWS_Tm_
00044] [SWS_Tm_00045] [SWS_Tm_00046] [SWS_Tm_00047] [SWS_Tm_00048]
[SWS_Tm_00049] [SWS_Tm_00050] [SWS_Tm_00051] [SWS_Tm_00052] [SWS_
Tm_00053] [SWS_Tm_00054] [SWS_Tm_00055] [SWS_Tm_00056]

B.2.4 Added Constraints in R24-11
[SWS_Tm_CONSTR _00001] [SWS_Tm_CONSTR_00002]

B.2.5 Changed Constraints in R24-11

none

B.2.6 Deleted Constraints in R24-11

none

B.3 Differences between R22-11 and R23-11

B.3.1 Added Specification Items in R23-11

none

AUTSSAR

B.3.2

none

B.3.3

none

Changed Specification Items in R23-11

Deleted Specification Items in R23-11

AUTSSAR

C Migration from Operating System

In previous releases of AUTOSAR only the Operating System (Os) offered a timer re-
lated port interface to software components. This Os interface was replaced by a ser-
vice interface of the Time Service module (see chapter 8.7). The following hints shall
help users which have used the port interface from the Os to migrate their application
to use the Tm module:

Availability of ports

The Os offered a port per Counter object. Counter objects are similar to timer in-
stances of the Time Service module. The Tm module offers a port per timer instance,
depending on the configuration (see TmTimerUser). When migrating an application
from using Os ports to Tm it is suggested to replace the used Os ports by a Tm port of
a timer instance which is accordingly configured.

Port interfaces

The Os offered a client server interface with two operations: GetCountervalue and
GetElapsedValue. The client server interface of the Tm module provides operations
for resetting, getting, shifting and syncing (same functionality as provided by Tm_-
ResetTimer, Tm_GetTimeSpan, Tm_ShiftTimer, and Tm_SyncTimer).

The GetCountervalue operation can be replaced by a combination of ResetTimer,
ShiftTimer and GetTimeSpan operations. The difference is that the Os function
always returns the absolute value of the Os Counter. The Tm operations return always
relative values. A solution can be to shift the reference time to "0" so that the relative
and absolute values are the same.

The GetElapsedvalue operation can be replaced by Get TimeSpan.

	1 Introduction and functional overview
	1.1 Use cases
	1.1.1 Time measurement
	1.1.2 Time-based state machine
	1.1.3 Timeout supervision and busy waiting

	2 Acronyms, abbreviations and terms
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Assumptions
	4.2 Limitations
	4.3 Applicability to car domains

	5 Dependencies to other modules
	6 Requirements Tracing
	7 Functional specification
	7.1 TM Predef Timers
	7.1.1 Background
	7.1.2 Time Service Predef Timers
	7.1.3 Timing aspects to consider
	7.1.3.1 Maximal measurable time span
	7.1.3.2 Time quantization error
	7.1.3.3 Execution times of services / measurement of short time spans

	7.1.4 API Services
	7.1.4.1 Service ResetTimer
	7.1.4.2 Service GetTimeSpan
	7.1.4.3 Service ShiftTimer
	7.1.4.4 Service SyncTimer
	7.1.4.5 Service BusyWait
	7.1.4.6 Unintentional behavior of BusyWait services

	7.1.5 Configuration of Predef Timers
	7.1.6 Sample code of use cases
	7.1.6.1 Time measurement
	7.1.6.2 time-based state machine
	7.1.6.3 Timeout supervision
	7.1.6.4 Busy waiting

	7.2 Version check
	7.3 Error classification
	7.3.1 Development Errors
	7.3.2 Runtime Errors
	7.3.3 Production Errors
	7.3.4 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type Definitions
	8.2.1 Tm_ConfigType

	8.3 Function definitions
	8.3.1 Tm_Init
	8.3.2 Tm_GetVersionInfo
	8.3.3 Tm_ResetTimer
	8.3.4 Tm_GetTimeSpan
	8.3.5 Tm_ShiftTimer
	8.3.6 Tm_SyncTimer
	8.3.7 Tm_BusyWait1us

	8.4 Call-back Notifications
	8.5 Scheduled functions
	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable Interfaces

	8.7 Service Interfaces
	8.7.1 Provided Ports of Tm
	8.7.2 Client-Server-Interfaces
	8.7.2.1 TmPreDefTimerService

	9 Sequence diagrams
	9.1 Tm Normal Operation

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Tm
	10.2.2 TmGeneral
	10.2.3 TmPreDefTimerInstance

	10.3 Published Information

	A Not applicable requirements
	B History of Constraints and Specification Items
	B.1 Differences between R24-11 and R25-11
	B.1.1 Added Specification Items in R25-11
	B.1.2 Changed Specification Items in R25-11
	B.1.3 Deleted Specification Items in R25-11
	B.1.4 Added Constraints in R25-11
	B.1.5 Changed Constraints in R25-11
	B.1.6 Deleted Constraints in R25-11

	B.2 Differences between R23-11 and R24-11
	B.2.1 Added Specification Items in R24-11
	B.2.2 Changed Specification Items in R24-11
	B.2.3 Deleted Specification Items in R24-11
	B.2.4 Added Constraints in R24-11
	B.2.5 Changed Constraints in R24-11
	B.2.6 Deleted Constraints in R24-11

	B.3 Differences between R22-11 and R23-11
	B.3.1 Added Specification Items in R23-11
	B.3.2 Changed Specification Items in R23-11
	B.3.3 Deleted Specification Items in R23-11

	C Migration from Operating System

